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PREFACE 

We have been very pleased by the widespread acceptance of the first edition of 
this book. It has been especially gratifying to find other texts adopting 
some of our innovative ideas . For example, the early introduction of complex 
numbers, permitting the solution of any quadratic equation, has now become 
the accepted approach. 

The objectives of this edition are 

• to improve the chapters on trigonometry by: 
a. eliminating the "wrapping function" to permit a faster pacing of the open

ing sections; 
b. introducing early the concept of angular measure (in both radians and 

degrees )  to avoid the abrupt switch from theory to application; 
c .  guiding the student to use calculators for determining the values of the 

trigonometric functions; 
•to respond to suggestions from instructors and students , thus improving the 
exposition and the examples; 

• to eliminate the need for the student to purchase a study guide, by providing a 
section in the back of the book that contains worked-out solutions to selected 
Review Exercises; 

• to ensure accuracy of the Answers section by utilizing computer programs with 
rational arithmetic to verify the answers; 

• to enliven the book by introducing Features of interest to both student and 
instructor (see pages with color marking along the edges ); 

• to add topics that are currently taught at many schools (for example, linear 
programming) .  

We have retained the supportive elements that have become the hallmark 
of this series: 

SPLIT SCREENS Many algebraic procedures are described with the aid of a "split screen" that 
displays simultaneously both the steps of an algorithm and a worked-out example. 

PROGRESS CHECKS At carefully selected places, problems similar to those worked in the text have 
been inserted (with answers ) to enable the student to test his or her understanding 
of the material just described. 

ix 



X PREFACE 

* WARNINGS To help eliminate misconceptions and prevent bad mathematical habits, we have 
inserted numerous Warnings (indicated by the symbol shown in the margin) that 
point out the incorrect practices most commonly found in homework and 
exam papers. 

END-OF-CHAPTER 
MATERIAL Every chapter contains a summary, including 

ANSWERS 
[ml EXERCISES 

Terms and Symbols with appropriate page references; 

Key Ideas for Review to stress the concepts; 

Review Exercises to provide additional practice; 

Progress Tests to provide self-evaluation and reinforcement. 

The answers to all Review Exercises and Progress Tusts appear in the back of 
the book. 

Abundant, carefully graded exercises provide practice in the mechanical and 
conceptual aspects of algebra. Exercises requiring a calculator are indicated by 
the symbol shown in the margin.  Answers to odd-numbered exercises appear at 
the back of the book. Answers to even-numbered exercises appear in the Instruc
tor's Manual. The Instructor's Manual/Test Bank is available to the instructor on 
request. 
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TO THE STUDENT 
This book was written for you. It gives you every possible chance to succeed-if 
you use it properly. 

We would like to have you think of mathematics as a challenging game-but not 
as a spectator sport. This wish leads to our primary rule: Read this textbook with 
pencil and paper handy. Every new idea or technique is illustrated by fully 
worked-out examples. As you read the text, carefully follow the examples and 
then do the Progress Checks. The key to success in a math course is working 
problems, and the Progress Checks are there to provide immediate practice with 
the material you have just learned. 

Your instructor will assign homework from the extensive selection of exercises 
that follows each section in the book. Do the assignments regularly, thoroughly, 
and independently. By doing lots of problems, you will develop the necessary 
skills in algebra, and your confidence will grow. Since algebraic techniques and 
concepts build on previous results , you can't afford to skip any of the work. 

To help prevent or eliminate improper habits and to help you avoid the errors that 
we see each semester as we grade papers , we have interspersed Warnings 
throughout the book. The Warnings point out common errors and emphasize the 
proper method. 

There is important review material at the end of each chapter. The Terms and 
Symbols should all be familiar by the time you reach them. If your understanding 
of a term or symbol is hazy, use the page reference to find the place in the text 
where it is introduced. Go back and read the definition. 

It is possible to become so involved with the details of techniques that you lose 
track of the broader concepts. The list of Key Ideas for Review at the end of each 
chapter will help you focus on the principal ideas. 

The Review Exercises at the end of each chapter can be used as part of your 
preparation for examinations. The section covering each exercise is indicated so 
that, if needed, you can go back to restudy the material . If you get stuck on a 
problem, see if the problem that is giving you difficulty or a similar problem is 
numbered in color, indicating that a worked-out solution appears in the back of the 
book. You are then ready to try Progress Test A. You will soon pinpoint your weak 
spots and can go back for further review and more exercises in those areas. Only 
then should you proceed to Progress Test B. 

We believe that the eventual "payoff" in studying mathematics is an improved 
ability to tackle practical problems in your field of interest. To that end, this book 
places special emphasis on word problems, which recent surveys show are often 
troublesome to students. Since algebra is the basic language of the mathemati
cal techniques used in virtually all fields , the mastery of algebra is well worth 
your effort. 

xiii 



1.1 
THE REAL NUMBER 
SYSTEM 

SETS 

THE FOUNDATIONS OF 
ALGEBRA 
No one would debate that 2 + 2 = 4, or that 5 + 3 = 3 + 5. The significance of 
the statement "2 + 2 = 4" lies in the recognition that it is true whether the 
objects under discussion are apples or ants, cradles or cars. Further, the statement 
'' 5 + 3 = 3 + 5'' indicates that the order of addition is immaterial, and this prin
ciple is true for any pair of integers . 

These simple examples illustrate the fundamental task of algebra: to abstract 
those properties that apply to a number system. Of course, the properties depend 
on the type of numbers we choose to deal with. We will therefore begin with a 
discussion of the real number system and its properties, since much of our work 
in algebra will involve this number system. We will then indicate a correspon
dence between the real numbers and the points on a real number line and will give 
a graphical presentation of this correspondence. 

The remainder of this chapter is devoted to a review of some fundamentals 
of algebra: the meaning and use of variables; algebraic expressions and polyno
mial forms; factoring; and operations with rational expressions or algebraic frac
tions. 

We will need to use the notation and terminology of sets from time to time. A set 
is simply a collection of objects or numbers, which are called the elements or 
members of the set. The elements of a set are written within braces so that the 
notation 

A =  {4, 5, 6} 

tells us that the set A consists of the numbers 4, 5, and 6. The set 

B = {Exxon, Ford, Honeywell} 

consists of the names of these three corporations. We also write 4 e A, which we 
read as "4 is a member of the set A." Similarly, Ford e B is read as "Ford is a 
member of the set B," and IBM fl. B is read as "IBM is not a member of the set 
B." 

PAGE 1 



2 THE FOUNDATIONS OF ALGEBRA 

THE REAL NUMBER 
SYSTEM 

lf every element of a set A is also a member of a set B, then A is a subset of 
B. For example, the set of all robins is a subset of the set of all birds. 

EXAMPLE 1 
The set C consists of the names of all coins whose denominations are less than 50 
cents. We may write C in set notation as follows: 

C ={penny, nickel , dime, quarter} 

We see that dime EC but half dollar f. C. Further, the set H = {nickel, dime} is a 
subset of C. 

PROGRESS CHECK 
The set V consists of the vowels in the English alphabet. 

(a) Write V in set notation. 
(b) Is the letter k a member of V? 
(c) Is the letter u a member of V? 
(d) List the subsets of V having four elements. 

ANSWERS 
(a) V = {a, e, i, o, u} (b) No (c) Yes 
(d) {a, e, i, o}, {e, i, o, u}, {a, i, o, u}, {a, e, o, u}, {a, e, i, u} 

Since much of our work in algebra deals with the real number system, we '11 begin 
with a review of the composition of this number system. 

The numbers 1 ,  2, 3, . . .  , used for counting, form the set of natural 
numbers. If we had only these numbers to use to show the profit earned by a 
company, we would have no way to indicate that the company had no profit or 
had a loss. To indicate no profit we introduce 0, and for losses we need to 
introduce negative numbers . The numbers 

. . .  ' -2, - 1 , 0 , 1 , 2, . .  

form the set of integers. Thus, every natural number is an integer, and the set of 
natural numbers is seen to be a subset of the set of integers. 

When we try to divide two apples equally among four people we find no 
number in the set of integers that will express how many apples each person 
should get. We need to introduce the set of rational numbers, which are num
bers that can be written as a ratio of two integers, 

p_ 
q 

with q not equal to zero 

Examples of rational numbers are 

0 
2 
3 

-4  
7 
5 

- 3  
4 

By writing an integer n in the form nil, we see that every integer is a rational 
number. The decimal number 1 . 3  is also a rational number, since 1 . 3  = M. 



PROPERTIES OF THE REAL 
NUMBERS (Optional) 

Closure 

1.1 THE REAL NUMBER SVSTEM 3 

We have now seen three fundamental number systems: the natural number 
system, the system of integers, and the rational number system. Each later system 
includes the previous system or systems, and each is more complicated than the 
one before. However, the rational number system is still inadequate for sophis
ticated uses of mathematics, since there exist numbers that are not rational , that 
is, numbers that cannot be written as the ratio of two integers . These are called 
irrational numbers. It can be shown that the number a that satisfies a · a = 2 is 
such a number. The number '7T, which is the ratio of the circumference of a circle 
to its diameter, is also such a number. 

The decimal form of a rational number will either terminate , as 

3 4 = 0.75 

or will form a repeating pattern, as 

2 3 = 0.666 . .. 
1 II= 0.090909 . � = 0.1428571 

Remarkably ,  the decimal form of an irrational number never forms a repeating 
pattern. 

The rational and irrational numbers together form the real number system 
(Figure 1). 

Rational numbers 

AGURE 1 

Real numbers 

lmtional 
numbers 

With respect to the operations of addition and multiplication, the real number 
system has properties that are fundamental to algebra. The letters a, b, and c will 
denote real numbers. 

Property I. The sum of a and b, denoted by a+ b, is a real number. 
Property 2. The product of a and b, denoted by a· b or ab, is a real number. 

We say that the set of real numbers is closed with respect to the operations of 
addition and multiplication, since the sum and the product of two real numbers 
are also real numbers. 
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Commutative Laws 

Associative Laws 

Identities 

Inverses 

Distributive Laws 

Property 3. a + b = b + a Commutative law of addition 
Property 4. ab = ba Commutative law of multiplication 

That is, we may add or multiply real numbers in any order. 

Property 5. (a+ b) + c = a+ (b + c) Associative law of addition 
Property 6. (ab)c = a(bc) Associative law of multiplication 

That is , when adding or multiplying real numbers we may group them in any 
order. 

Property 7. There is a unique real number, denoted by 0, such that a +  0 = 
0 + a = a for every real number a. 

Property 8. There is  a unique real number, denoted by I ,  such that a· l = 
I · a = a for every real number a. 

The real number 0 of Property 7 is  called the additive identity; the real number l 
of Property 8 is called the multiplicative identity. 

Property 9. For every real number a, there is a unique real number, denoted by 
-a. such that 

a+(-a) = (-a) + a = O 

Property JO. For every real number a* 0, there is a unique real number, 
denoted by Ila, such that 

a(�) = G)a = I 

The number -a of Property 9 is called the negative or additive inverse of a. The 
number lla of Property I O  is called the reciprocal or multiplicative inverse of a. 

Property 11. a(b + c) = ab +  ac 
Property 12. (a+ b)c = ac +be 

EXAMPLE 2 
Specify the property illustrated by each of the following statements. 
(a) 2 + 3 = 3 + 2 (b) (2 • 3) • 4 = 2 · (3 • 4) 

(c) 2 · � = l (d) 2(3 + 5) = 2 · 3 + 2 · 5 



Properties of Equality 

THEOREMS 

SOLUTION 

(a) commutative law of addition 
(c) multiplicative inverse 

1.1 THE REAL NUMBER SYSTEM 5 

(b) associative law of multiplication 
(d) distributive Jaw 

W hen we say that two numbe rs are equal, we mean that they are identical . Thus, 
when we write 

a=b 

(read "a equals b"), we m ean th at a and b r epresent t he same numbe r. F or 
example, 2 + S and 4 + 3 are dif ferent ways of writ ing the numbe r 7 ,  so we can 
wr ite 

2 + 5= 4+3 

Equalit y  satisfies four basic propert ies. 

L et a, b, and c be elements of a set. 

1. a = a Reflexive property 

2. If a = b, then b = a. Symmetric property 

3. If a= b and b = c, then a= c. Transitive property 

4. If a = b, then a may be replaced by b in any statement that involves a or 
b. Substitution property 

EXAMPLE 3 
Spe cify the pr opert y illustr ated by each of tin e  fo llowing st atements. 
(a) If Sa - 2 = b, then b = Sa - 2 .  
(b) If a= b and b = 5 then a = 5. 
(c) If 3 (a + 2) = 3a + 6, ari d a = b, t hen 3 (b + 2) = 3b + 6. 

SOLUTION 

(a) symmet ric prope rty (b) transitive propert y 
(c) substitution propert y 

U sing P ropert ies 1-12, the propert ies of equality, and rules of logic, we can 
prove m any other prope rties of the real numbe rs. 

Theorem 1 If a, b, and c are real numbers, and a= b, then 
(a) a+ c = b + c 
(b) ac =be 

This theorem, which will be used often in working wi th equations, allows us 
to add the same numbe r  to bo th sides of an eq uation and to muh iply bo th sides of 



6 THE FOUNDATIONS OF ALGEBRA 

an equation by the same number. W e  will prove Theorem l a  and leave the proo f 
of Theorem 1 b as an exercise. 

PROOF OF THEOREM 1a 

........ Reason a + c i s  a real number a+c=a+c a+c=b+c 

Concellatlon Laws 

--

ac, be are real numben 
! is a real number c (ac)(�)- (be)(�) 
a(c·�)- b(c·�) a·l•b•l a=b 

C losure propert y 
Reflexive propert y 
Sub stitution propert y with a = b 

The fol lowing theorem is the converse of Theorem l. 

Theorem 2 Let a, b, and c be real numbers. 
(a) If a+ c = b + c, then a = b. 
(b) If ac = be and c * 0, then a = b. 

P art b of Theorem 2 is oft en call ed the cancellation law of multiplication. W e'll 
prove this theorem to offer another exampl e  of the method to be used. 

PROOF OF THEOREM 2b 

Reason 

C losure propert y 

Inverse 

Theorem l b  

Associative law 

M ul tipl icative inverse 

M ultipl icative identity 

We can r estate part a of T heorems 1 and2 in this way: If a, b, and c are  real 
numb ers, then a + c = b + c if and only if a = b. The connector' ' if and only if' 
is used to ind icate that either b oth statements are tr ue or both statements are 
fa lse. 



Theor�m 3 Let a and b be real numbers. 
(a) a · 0 = 0 ·a = 0 
(b) If ab= 0, then a =  0 or b = 0. 

1.1 THE REAL NUMBER SYSTE M  7 

The real numbers a and b are said to be factors of the product ab. Part b of 
Theorem 3 says that a product of two real numbers can be zero only if at least one 
of the factors is zero. 

The next theorem gives us the usual rules of signs. 

Theorem 4 Let a and b be real numbers . Then 
(a) - (-a) =  a 

(b) (-a)(b) = -(ab) = a(-b) 

(c) (-J)(a) =-a 

(d) (-a)(-b) =ab 

(e) -(a+ b) = (-a)+ (-b) 

It is important to note that -a is not necessarily a negative number. In fact, 
Theorem 4(a ) shows that -(- 3) = 3 .  

We next introduce the operations of  subtraction and division. I f  a and bare 
real numbers, the difference between a and b, denoted by a -b, is defined by 

a - b = a + (-b) 

and the operation is called subtraction. Thus, 

6 - 2 = 6 +(-2) = 4  2 - 2 = 0 0 - 8 = -8 

It is easy to show that the distributive laws hold for subtraction, that is, 

a(b - c) = ab - ac 

(a - b) c = a c - be 

If a and bare real numbers and b =F 0, then the quotient of a and b, denoted 
by alb, is defined by 

and the operation is called division. We also write alb as a-:- band speak of the 
fraction a over b. The numbers a and bare called the numerator and denom

inator, respectively, of the fraction alb. Observe that we have not defined divi
sion by zero, since 0 has no reciprocal . 



8 THE FOUNDATIONS OF ALGEBRA 

EXERCISE SET 1.1 

The following theorem summarizes the familiar properties of fractions.  

Theerem 5 Let a, b, c, and d be real numbers with b =f: 0, d =f: 0. Then 

Example 

(a) � = � if and only if ad = be 

a 
a ad d 

(b) - = - = -
b bd b 

d 

( c) !! + £ = a + c 
b b b 

(d) !! + £ = ad+ be 
b d bd 

a 
(f) !. = !!.4 (if e * 0) 

e b e 
d 

PROGRESS CHECK 
Perform the indicated operations. 

� = i since 2 · 6 = 3 · 4 3 6 

6 
6 6·3 3 
1 2  

= 
12. 3 = 12 

3 

� +
� = 2+5 = :?. 

3 3 3 3 

2 3 2 . 4 + 5 . 3 23 
5+ 4= 5·4 

=
20 

2 4 2·4 8 3·5= 3·5 = 15 

2 
3 2 5 2·5 10  

7 = 3· 7 =
3.7 = 2 1  

5 

3 1 5 4 2 3 (a) -

+ - (b) - · - (c) - + 
-

5 4 2 15 3 7 

ANSWERS 
1 7  (a) 20 (b) 

2 
3 (c) 

23 
21 

In Exercises l-8 write each set by listing its elements within braces. 

I .  The set of natural numbers f rom 3 to 7 ,  inclusive. 

2. The set of integers between -4 and 2.  

3 .  The set of integers between - IO and -8. 

4. The set of natural numbers f rom -9 to 3, inclusive. 

5. The subset of the setS = {-3, -2,  - 1 , 0, l , 2} con
sisting of the positive integers in S.  

6. The subset of the set S = {-L - I. I ,  3.7 ,  4.8} consist
ing of the negative rational numbers in S.  



7 .  The subset of all x ES, S = {l , 3 ,  6 ,  7 ,  I O} ,  such that x 8 .  The subset of  all x ES, S = {2 , 5 ,  8 ,  9,  10} ,  such that x 
is an odd integer. is an even integer. 

In Exercises 9-22 determine whether the given statement is true (T) or false (F). 

9 .  - 14 i s  a natural number. 1 8 .  The sum of two rational numbers i s  always a rational 

10 .  -� is a rational number. number. 

1 1 .  11'13 is a rational number. 19 .  The sum of  two irrational numbers i s  always an irra-

1 2 .  1 .75/ 1 8 .6  is an irrational number. 
tional number. 

20. The product of two rational numbers is always a ratio-
1 3 .  - 1207 i s  an integer. nal number. 
14 .  0.  75 is an irrational number. 2 1 .  The product of two irrational numbers is always an 
1 5 .  � is a real number. irrational number. 

16 .  3 i s  a rational number. 22. The difference of two irrational numbers is always an 
1 7 .  2 11'  i s  a real number. irrational number. 

In Exercises 23-36 the letters represent real numbers . Identify the property or properties of real numbers that justify each 
statement. 

23. a + x = x + a  24. (.xy )z = x(yz) 

25. .xy z + .xy = .xy (z + I) 26. x + y is a real number 

27 . (a + b) + 3 = a  + (b + 3) 28 . 5 + (x + y) = (x + y) + 5 

29. ex is a real number 30. (a + 5) + b = (a + b) + 5 

3 1 .  UV = VU 32. x + O = x 

33 .  a(be) = e(ab) 34. .xy-.xy = O  

35 . 5 · ! = 1 36. .xy · l = .xy 

In Exercises 37-40 find a counterexample; that is, find real values for which the statement is false. 

37. a - b = b - a 

39. a(b + e) = ab + c 

38. 
b 
a 

40. (a + b)(c + d) = ac + bd 

In Exercises 4 1-44 indicate the property or properties of equality that justify the statement. 

4 1 .  If 3x = 5, then 5 = 3x. 44. If x + 2y + 3z = r + s and r = x + 1 ,  then x + 2y + 

42. If x + y = 7 and y = 5 , then x + 5 = 7 . 3z = x + l + s. 

43 . If 2y = z and z = x + 2, then 2y = x + 2 .  

In  Exercises 45-49, a,  b ,  and e are real numbers . Use the properties of the real numbers and the properties of  equality to 
prove each theorem. 

45. 

46. 

47 . 

48 . 

49. 

If a =  b, then ae = be. (Theorem l b) 

a b 
If a = b and e * 0, then - = -. 

c e 

If a +  e = b + c, then a =  b. (Theorem 2a) 

a(b - e) = ab - ac 

Prove that the real number 0 does not have a recipro
cal. (Hint: Assume b = 1 /0 is the reciprocal of O. Sup-

ply a reason for each of the following steps. 

1 
1 = 0 ·0 

= O · b  

= O  

Since this conclusion is impossible, the original 
assumption must be false. )  
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1.2 
THE REAL NUMBER LINE 

INEQUALITIES 

There is a simple and very useful geometric interpretation of the real number 
system. Draw a horizontal straight line; pick a point on this line, label it with the 
number 0, call it the origin, and denote it by 0. Designate the side to the right of 
the origin as the positive direction and the side to the left as the negative direc· 

tion. 

Negative 
direction 

______ __,f----------- Positive 

0 direction 

Origin 

Next, select a unit of length for measuring distance. With each positive real 
number r we associate the point that is r units to the right of the origin, and with 
each negative number -r we associate the point that is r units to the left of the 
origin . Thus, the set of real numbers is identified with all possible points on a 
straight line. For every point on the line there is a real number and for every real 
number there is a point on the line. The line is called the real number line, and 
the number associated with a point is called its coordinate. We can now show 
some points on this line. 

-2.5 0.75 1T 
Negative ---+l-• -+-1 ---+---+l-• ...... l --'11-----+I"""•"-.. Positive 
direction direction 

-3 -2 -1 0 I 2 3 

The numbers to the right of zero are called positive; the numbers to the left 
of zero are called negative. The positive numbers and zero together are called the 
nonnegative numbers . 

We will frequently tum to the real number line to help us picture the results 
of algebraic computations. 

EXAMPLE 1 

Draw a real number line and plot the following points: -�, 2 ,  �. 
SOLUTION 

3 13 
2 2 4 

• I ; I• .. 

-4 -3 -2 -I 0 2 3 4 

If a and b are real numbers, we can compare their positions on the real number 
line by using the relations less than, greater than, less than or equal to, and 
greater than or equal to, denoted by the inequality symbols <, >, ::s;, and :=:::, 



Properties of 
lnequalltles 

1.2 THE REAL NUMBER LINE 11 

respecti vely. T able l descri bes both al gebrai c and geometri c interpretations of 
the inequality sy mbol s. 

TABLE 1 

Algebraic Statement Equivalent Statement Geometric Statement 

a >O a is positive a lies to the right of the origin 
a < O a is negative a lies to the left of the origin 
a >b a - b is positive a lies to the right of b 

a < b  a - b is negative a lies to the left of b 

a "2::. b a - b is zero or posi- a coincides with b or lies to the 
tive right of b 

a s, b a - b is zero or nega- a coincides with b or lies to the 
tive left of b 

Expressi ons i nvolving inequali ty sy mbols, such as a <  b and a:::: b, are 
call ed inequalities. We often combine these expressi ons so that a ::5 b < c means 
both a ::5 b and b < c. For example, - 5  ::5 x < 2 is equivalent to -5 ::5 x and 
x < 2. 

PROGRESS CHECK 
V eri fy that the foll owi ng i nequalities are true by using ei ther the "Equivalent 
Statement" or "Geometri c Statement" of T able l. 

( a) - 1 < 3  ( b) 2::5 2 ( c) -2.7 < -l. 2 
7 7 ( d) -4 < - 2  < 0 ( e) -2 < 2 < 7 

T he real numbers sati sfy the foll owing useful properties of i nequaliti es. 

Le t  a, b, a nd e be real numbe rs. 
1. O ne and only one of the foll owi ng rel ati ons hol ds: 

a < b, a > b, a = b Trichotomy property 

2. If a< b and b < e, th en a< e. Transitive property 

3. If a< b, th en a +  e < b + e. 
4. If a< ba nd e > 0, then ae < be. W hen an i nequali ty i s  mul ti pli ed by a 

posi ti ve numbe r, the sense of the i neq uali ty i s  preserved. 
S. If a< ba nd e < 0, th en ae > be.  Wh en an i neq uali ty i s  mul ti pli ed by a 

negati ve numbe r, the s ense of th e i nequali ty i s  reversed. 
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ABSOLUTE VALUE 

EXAMPLE 2 

(a) Since -2 < 4 an d 4 < 5, then -2 < 5. 

(b) Since -2 < 5, -2 + 3 < 5 + 3, or 1 < 8. 

(c) Since 3 < 4, 3 + ( -5) < 4 + ( -5), or - 2 < - 1. 

(d) Since 2 < 5, 2(3) < 5(3), or 6 < 15. 

(e) Since -3 < 2, (-3)(-2) > 2(-2), or 6 > -4. 

Suppose we are interested in the distances be tween the origin and the points 
labe led 4 and -4 on the real number line. Each of these points is four units fr om 
the origin; that is, the distance is independent of the direction and is nonnegative 
(F igure 2). 

Negative I I I I I I I I .. Positive 
direction 

-4 -3 -2 -1 0 2 3 4 
direction 

4 units 4 u nit s 
FIGURE 2 

W hen we are interested in the magnitude of a numbe r  a, and don' t care abo ut 
the direction or sign, we u se the concept of absolute value, which we write as lal. 
The formal definition of absolute value is stated as follows. 

{ a if a 2: 0 
lal = 

-a if a< 0 

Since distance is indepe ndent of direc tion and is always nonnegative, we can 
view !al as the distance fr om the origin to either point a or point -a on t he real 
number line. 

EXAMPLE 3 
( a) 141 = 4 1-41=4 101=0 

(b) The distance on the rea l  numbe r  line be tween the point labe led 3.4 an d the 
origin is 13.41 = 3.4. Similarly, the distance be tween point -2.3 and the ori gin is 
1-2.31 = 2.3. 

I n  working with t he notation of absolute value, it is import ant to pe rform the 
ope rations within the bars first. H ere are some examples. 

EXAMPLE 4 
(a) 15 - 21=131 = 3 (b) 12 - 51 = 1-31 = 3 

( c) 13 - 51 - 18 - 61 = 1-21 - 121 = 2 - 2 = 0 

(d) 
14 - 71 1-31 3 1 

-=6 = 
-6 

= 
-6 

= -2 
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Distance on the Real 
Number Une 
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T he foll owin g properti es of absol ute val ue fo ll ow f rom the defi ni tion. 

For all real numbe rs a and b, 
1. lal 2: 0 
2. lal = I-al 
3. la - bl = lb - al 

We be gan by showi ng a use fo r  absolute val ue i n  denoti ng di stance fr om the 
ori gi n wi thout regard to di recti on. We wi ll conclude by dem onstrati ng th e u se of 
absolu te val ue to denote the di stance between any two poi nts a and b on th e real 
numbe r li ne. I n  Fi gure 3, the di stance be tween the poi nts l abe led 2 and 5 i s  3 uni ts 
and can be obtai ned by eva1 uati ng ei th er 1 5  -21 or12 - 51. Simil arly, the di stance 
be tween the poi nts labe led -1 and 4 i s  given by ei ther 14 - (-1 )1 = 5 or 
1- 1 -41 = 5 .  U si ng the notati on AB to denote the di stance be tween the poi nts A 
and B. we provi de the fo llowi ng defi ni ti on. 

T he distance AB between poi nts A and B on the real numbe r li ne, whose coo r
dinates are a and b, respe ctively, i s  gi ven by 

AB= lb - al 

P roperty (3 ) then tells us that AB = lb - al = la - bl. Vi ewed another way, P rop
erty (3 ) states that the di stance between any two poin ts <m the real numbe r li ne i s  
i ndepe ndent of the di recti on. 

3 u ni ts 

.. 

- 5 -4 -3 -2 -1 0 2 3 4 5 

5 u nit s 
FIGURE 3 

EXAMPLE 5 

L et poi nts A. B. and C have coordi nates -4, - 1, and 3, respe ctively, on the real 
num ber li ne. Fi nd the fo ll owi ng di stances. 
( a) AB ( b) CB ( c) OB 

SOLUTION 

U si ng the defini ti on, we have 
( a) AB= 1-1 - (-4 )1=1-1+41=131 = 3 
( b) CB = 1-1 - 31 = 1-41 = 4 
( c) OB= 1-1 - 01=1-11 = 1 
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PROGRESS CHECK 
The poi nts P, Q, and R on the real number line have coo rdinate s  -6, 4, and 6, 

re s pe ctive1 y.  Find the fol1 owio g distance s. 
(a) PR (b) QP (c) PQ 

EXERCISE SET 1.2 

ANSWERS 
(a) 1 2  (b) 1 0  

1 .  Draw a real number line and plot the following 
points. 
(a) 4 
(e) 0 

(b) - 2  (c) � (d) -3 . 5 

2. Draw a 
points. 
(a) -5 
(e) -4 

real number line and plot the following 

(b) 4 (c) -3.5 

E c 0 
I I • I , I , -S -4 -3 -2 -1 0 

A 

, 

(d) 1 

B 
I • I 
2 3 

(c) 1 0  

3. Give the real numbers associated with the points A, B, 
C, D, 0, and Eon. the real number line below. 

4. Represent the following by real numbers. 
(a) a profit of $ l 0 

4 

(b) a loss of $20 
(c) a temperature of 20° above zero 
(d) a temperature of 5° below zero 

s 

In Exercises 5- 10 indicate which of the two given numbers appears first, viewed from left to right, on the real number 
line. 

5. 4, 6 

9. -5,  _, 

6. t 0 

10. 4, -5  

7 .  -2. i 

In Exercises l l-14  indicate the set of numbers on a real number line. 

8. 0, -4 

l l . The natural numbers less than 8 .  1 3 .  The integers that are greater titan 2 and Jess than 7 .  

1 2 .  The natural numbers greater than 4 and less than 
10. 

14 .  The integers that are greater than -5 and less than or 
equal to I .  

In Exercises 1 5-24 express the statement as an inequality. 

1 5 .  10  i s  greater than 9.99. 20. a is between 3 and 7 .  

1 6. -6 i s  less than - 2. 2 1 .  b is less than or equal to -4. 

17. a is nonnegative. 22. a is between � and i. 
1 8 . b is negative. 23 . b is greater than or equal to 5 .  

19. x is positive . 24. x is negative. 

In Exercises 25-30 give a property of inequalities that justifies the statement. 

25. Since -3 < I, then - l  < 3 .  2 8 .  Since 5 > 3 ,  then 5 * 3 .  

26. Since -5 < - I and - I < 4, then -5 < 4. 29. Since - I < 6, then -3 < 1 8 .  

27. Since 14 > 9, then - 14 < -9. 
In Exercises 3 1 -44 find the value of the expression. 

3 1 .  121 32. HI 

30. Since 6 > - 1 ,  then 7 is a positive number. 

33 .  1 1 .5 1  34 .  1 -0.8 1  
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35. -121 36. -HI 37 . 12 - 31  38. 12 - 21 

39. 12 - ( - 2)1 40. 121 + 1 -31 4 1 .  
1 14 - 81 

42. 
12 - 12 1  

1-3 1  1 1  - 61 

43 . 131 - 121 44. 13 - 21 
131 + 121 13 + 21 

In Exercises 45-50 the coordinates of points A and B are given. Find AB. 
45 . 2, 5 
49. -� , � 

1.3 
ALGEBRAIC 
EXPRESSIONS; 
POLYNOMIALS 

46. - 3 ,  6 
50. 2, 2 

47 . -3 ,  - 1  48 . -4, ¥ 

A variable i s  a sy mbol to whi ch we can assi gn val ues. For example, i n  Secti on 
1.1 we defi ned a rati onal number as one that can be wri tten as plq, where p and q 
are i ntegers ( and q i s  not zero) . The sy mbol s p and q are vari ables, si nce we can 
assi gn val ues to them. A vari able can be restri cted to a parti cul ar number sy stem 
( for exampl e, p and q must be i ntegers) or to a subset of a number sy stem ( note 
that q cannot be zero). 

I f  we i nvest P dol lars at an annual i nterest rate of 6%, then we wi ll earn 
0. 06P doll ars i nterest per y ear, and we wil l  have P + 0.06P dol lars at the end of 
the y ear. We call P + 0. 06P an algebraic expression. Note that an algebrai c  
expressi on i nvolves variables (i n thi s case P ), constants ( such as 0. 06), and 
algebraic operations ( such as +, -, x, -:- ). Vi rtual ly every thi ng we do i n  
algebra i nvol ves al gebrai c expressi ons, someti mes as si mple as our exampl e  and 
someti mes very i nvol ved . 

An algebrai c expressi on takes on a value when we assi gn a specifi c number 
to each vari able i n  the expressi on. Thus, the expressi on 

3m + 4n 
m + n  

i s  evaluated when m = 3 and n = 2 by substi tuti on of these val ues for m and 
n: 

3(3) + 4( 2) = 9 + 8 
= 

!2 
3 + 2 5 5 

We often need to wri te al gebrai c expressi ons i n  whi ch a vari able multi pli es 
i tsel f  repeatedly . We use the notati on of exponents to i ndi cate such repeated 
multi pli cati on. Thus, 

a
1 

= a  a
2 

= a·a an = a·a· . . .  ·a 

'---v-----' 
n fa ctors 

where n i s  a natural number and a i s  a real number. We cal l  a the base and n the 
exponent and say that an i s  the n th power of a. When n = 1, we si mply wri te a 

rather than a 1 • 

I t  i s  conveni ent to defi ne a0 for all real numbers a* 0 by havi ng a0 = 1. We 
wi ll provi de moti vati on for thi s seemi ngly arbi trary defi ni ti on i n  Secti on 1. 6. 
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* 

POLYNOMIALS 

EXAMPLE 1 
Write without using exponents. 
(a) (03 (b) 2x3 (c) (2x)3 (d) -3x2y3 

SOLUTION 
(a) W3 = i. �. i =. (b) 2x3 = 2. x. x. x 
(c) (2x)3=2x·2x·2x=8·x·x·x (d) -3x2y3=-3·x·.x-y·y·y 

WARNING Note the difference between 

(-3)2 = (-3)(-3) = 9 
and 

Later in this chapter we will need an important rule of exponents. Observe 
that if m and n are natural numbers and a is any real number, then 

am · a"= a · a ·  . . .  ·a a·a · .. .  ·a 

m factors n factors 

Since there are a total of m + n factors on the right side, we conclude that 

EXAMPLE 2 
Multiply. 
(a) x2. x3 

SOLUTION 

( b) (3x)(4x4) 

(a) x2. x3 = x2+3 = x5 
(b) (3x)(4x4) = 3 · 4 · x · x4 = 12x1 +4 = l2x5 

PROGRESS CHECK 
Multiply. 
(a) x5 • x2 (b) (2x6) (-2x4) 

ANSWERS 
(a) x7 (b) -4x10 

A polynomial is an algebraic expression of a certain fonn. Polynomials play an 
important role in the study of algebra, since many word problems translate into 
equations or inequalities that involve polynomials. We first study the manipula· 



tive and mechanical aspects of poly nomials; th is knowledge will serve as back
ground for dealing with their applications in later chapters . 

L et x denote a variable and let n be a nonnegative integer. T he expression 
aX', where a is a constant real number, is called a monomial in x. A polynomial 
in x is an expression that is a sum of monomials and has the general form 

(1 ) 

E ach of the monomials in E quation ( 1) is called a term of P, and a0, a i. ... , a0 

are constant real numbers that are called the coefficients of the terms of P .  Note 
that a poly nomial may consist of j ust one term; that is, a monomial is also 
considered to be a poly nomial. 

( a) T he following expressions are poly nomials in x: 

3x4 + 2x + 5 2x3 + 5x2 - 2x + 1 
3 - x3 
2 

Notice that we write 2x3 + 5x2 + ( -2)x + 1 as 2x3 + 5x2 - 2x + 1 .  

( b) T he following expressions are not poly nomials in x: 

4 3 -
x 

2x - 1 
x - 2  

R emember that each term of a poly nomial in x must be of the form aX' 
where a is a real number and n is a nonnegative integer. 

T he degree of a monomial in x is the exponent of x. T hus, the degree of 5x3 
is 3 .  A monomial in which the exponent of x is 0 is called a constant term and is 
said to be of degree zero. T he nonz ero coef ficient an of the term in P with highest 
degree is called the leading coefficient of P and we say that P is a polynomial of 
degree n. A special case is the poly nomial all of whose coefficients are z ero. 
Such a poly nomial is called the zero polynomial, is denoted by 0, and is said to 
have no degree . 

Given the poly nomial 

T he terms of P are 

4 P = 2x4 - 3x2 + -x - 1 3 

2x 4, Ox3 , - 3x2 , 

T he coefficients of the terms are 2, 0, - 3 ,  

T he degree of P i s  4 and the leading coefficient i s  2 .  

4 
- 1. 3x, 

4 
- 1. 

3 '  
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OPERATIONS WITH 
POLYNOMIALS 

A monomial in the variables x and y is an expression of the form ax!"y", 
where a is a constant and m and n are nonnegative integers. The number a is 
called the coefficient of the monomial. The degree of a monomial in x and y is 
the sum of the exponents of x and y. Thus, the degree of 2x3y2 is 3 + 2 = 5. A 
polynomial in x andy is an expression which is a sum of monomials. The degree 
of a polynomial in x and y is the degree of the highest-degree monomial with 
nonzero coefficient. 

EXAMPLE 5 
The following are polynomials in x and y: 

2x2y + y2 - 3xy + l 
xy 
3x4 + xy - y2 

Degree is 3. 
Degree is 2. 
Degree is 4. 

I f  P and Qare polynomials in x, then the terms ex' in P and dx' in Q are said to be 
like terms; that is, like terms have the same exponent in x. For example, 
given 

P = 4x2 + 4x - l 

and 

Q=3x3-2x2+4 

then the like terms are Ox3 and 3x3; 4x2 and -2x2; 4x and Ox; - l and 4. 
We define equality of polynomials in the following way. 

Two polynomials are equal if all like terms are identical. 

EXAMPLE 6 
Find A, B ,  C, and D if 

Ax3 + (A + B)x2 + Cx + (C - D) = -2x3 + x + 3 

SOWJION 
E quating the coeffi cients of like terms, we have 

A =  -2 A+B=O 
B=2 

C= l C - D = 3  
D =  -2 

I f  P and Q are poly nomials in x, the sum P + Q is obtained by forming the 
sums of all pairs of like terms. The sum of ex in P and dx' in Q is (c + d)x. 
Similarly, the difference P - Q is obtained by forming the differences, 
(c - d)x, of like terms. 
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EXAMPLE 7 

(a) Add 2x3 + 2x2 - 3 and x3 - x2 + x + 2. 
(b) Subtract 2x3 + x2 - x + 1 from 3x3 - 2x2 + 2x. 

SOLUTION 

(a) Adding the coefficients of Jike terms, 

(2x3 + 2x2 - 3) + (x3 - x2 + x + 2) = 3x3 + x2 + x - 1 

(b) Subtracting the coefficients of like terms, 

(3x3 - 2x2 + 2x) - (2x3 + x2 - x + J )  = x3 - 3x2 + 3x - 1 

WARNING 

(x + 5) - (x + 2) * x + 5 - x + 2 

The coefficient -1 must multiply each term in the parentheses. Thus, 

-(x+ 2) = -x - 2 

and 

(x + 5) - (x + 2) = x + 5 - x - 2 
= 3  

Multiplication of polynomials is based on the rule for exponents developed 
earlier in this section, 

a"' an = a"' + n 

and on the distributive laws 

EXAMPLE 8 

a(b + c) = ab + ac 

(a + b)c = ac + be 

Multiply 3.x3(2x3 - 6x2 + 5) . 

SOl:UTION 

3.x3 (2x3 - 6x2 + 5) = (3x3)(2x3) + (3x3)(-6x2) + (3x3)(5) Distributive law 

EXAMPLE 9 

= (3)(2)x3+3 + (3)( -6)x3+2 + (3)(5)x3 cl"an = am+n 
= 6x6 - t8x5 + t5x3 

Multiply (x + 2)(3x2 - x + 5). 
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SOLUTION 

(x + 2)(3x2 - x + 5) = x(3x2 - x + 5) + 2(3x2 - x + 5) 
= 3x3 - x2 + 5x + 6x2 - 2x + 10 
= 3x3 + 5x2 + 3x + 10 

D istri butive law 

Di strib utive law and a"'a" = a"'+n 

Addi ng l ike terms 

PROGRESS CHECK 

M ultiply. 
( a) (x2 + 2)(x2 - 3x + l) (b) (x2 -

2xy + y)(2x + y) 

ANSWERS 

( a) x4 - 3x3 + 3x2 - 6x + 2 (b) 2x3 - 3x2y + 2xy - 2xy2 + y2 

The multi plication in Example 9 can be car ried out i n  "long form" as 
follows. 

3x2 - x+5 
x+2 

3x3 - x2+5x 
6x2 - 2x+10 

= x(3x2 - x + 5) 
= 2(3x2 - x + 5) 

3x3 + 5x2 + 3x + 10 = sum of abo ve li nes 

In Example 9 the product of polynomi als of degrees one and two i s  seen to 
be a polynomial of degre e three. Fr om the multiplication pr ocess i t  is easy to 
deri ve the following useful ru le.  

The degree of the product of two nonz ero polynomials is the sum of the degrees 
of the polynomials. 

P roducts of the fonn (2x + 3)(5x - 2) or (2x + y)(3x - 2y) occur of ten, and 
we can handle them menta lly b y  the fami li ar met hod: 

PROGRESS CHECK 

10x2 -6 

� 
(2x + 3)(5x - ) - 10x2 + I Ix - 6 L.:.......J 

I Sx 

-4x 
Su m =  I lx 

( a) M ultiply (2x2 - xy + y2)(3x + y) i n  long for m .  
( b) M ultiply (2x - 3)(3x - 2) mentally. 

ANSWERS 

( a) 6x3 - x2y + 2.xy2 + y3 (b) 6x2 - Bx + 6 
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A numbe r  of spe cia] pmd11cts occur frequently, and i t  is wo t1hwhi1e know
ing tiJem. 

Special IProclucts (a+ b)2 = (a + b)(a + b) = a2 + 2ab + b2 

(a - b)2 = (a - b)(a - b) = a2 - 2ab + b2 

(a + b)(a - b) = a2 - b2 

EXAMPLE 10 

M 11h ip]y mentally. 
(a) (x + 2)2 (b) (x - 3)2 (cl (x + 4)(x - 4) 

SOLUTION 

(a) (x + 2)2 = (x + 2)(x + 2) = x2 + 4x + 4 
(b) (x - 3)2 = (x - 3)(x - 3) = x2 

- 6x + 9 
{c) (x + 4)(x - 4) = x2 - 16 

EXERCISE SET 1.3 
In Exercises 1 -6 evaluate the given expression when r = 2, s = 3 , and t = 4. 

1 .  r + 2s + t  2 . rst 

r + s  
5 .  

r + s + t  6. rt 
7. Evaluate ir + 5 when r = 12 . 
8 . Evaluate K + 32 when C = 37 . 

t 

9. If P dollars are invested at a simple interest rate of r 
percent per year for t years, the amount on hand at the 
end of t years is P + Prt. Suppose you invest $2000 at 
8% per year (r = 0.08). Find the amount you will 
have on hand after 
(a) 1 year; (b) � year; (c) 8 months. 

Evaluate the given expression in Exercises 1 3- 18 . 
13 . lxl - lx l · lyl when x = -3, y = 4 

la - 2bl 1 5 . � when a = l , b = 2  

1 7 . - la - 2bl 
la + b l when a =  -2, b = - I 

Carry out the indicated operations in Exercises 1 9-24. 
19. b5 · b2 20. x3 · x5 

23. Gx3) (-2x) 24. ( - �x6) ( - 1
3
0x
3) 

3 _ rst 
r + s + t  4. (r + s)t 

I 0. The perimeter of a rectangle is given by the formula 
P = 2 (L + W), where L is the length and W is the 
width of the rectangle. Find the perimeter if 
(a) L = 2 feet, W = 3 feet; 
(b) L = � meter, W = ! meter. 

1 1 .  Evaluate 0.02r + 0.3 14st + 2 .25t when r = 2 .5 ,  s =[ill] 
3.4, and t = 2.8 1 .  

12 . Evaluate I 0.42 lx + 0.82ly + 2.34xyz when x =[ill] 
3.2 1 ,  y = 2.42, and z = 1 .23. 

14. Ix + yl + Ix - yl when x = -3, y = 2 

hl..±..Jr! - -16. lxl _ lyl when x - -3 , y - 4 

18 . l a  - b l  - 2 1c  - a l 
la _ b + cl when a =  -2,  b = 3, c = -5 
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25 . Which of the following expressions are not poly- 26. Which of the following expressions are not polynomi-
nomials? als? 

(a) -3x2 + 2x + 5  
(c) -3x213 + 2xy + 5 

(b) -3x2y 
(d) -2x-4 + 2xy3 + 5 (a) 4x5 - x112 + 6 

(c) 4x5y 
In Exercises 27-30 indicate the leading coefficient and the degree of the given polynomial. 

27 . 2x3 + 3x2 - 5  28. -4x5 - 8x2 + x + 3 
3 29. S x4 + 2x2 - x - 1 

In Exercises 3 1 -34 find the degree of the given polynomial . 

30. - 1 .5 + 7x3 + 0. 75x7 

3 1 .  3x2y - 4x2 - 2y + 4  32. 4xy3 + xy2 - y2 + y  

33. 2xy3 - y3 + 3x2 - 2 1 34. 2 x3y3 - 2 

(b) � x3 + � x - 2 5 3 
(d) x413y + 2x - 3 

35 . Find the value of the polynomial 3x2y2 + 2xy - x + 
2y + 7 when x = 2 and y = - I .  [illl 36. 

[ill] 37. 
38. 

39. 

40. 

Find the value of the polynomial 0.02x2 + 0.3x - 0.5 
when x = 0.3. 
Find the value of the polynomial 2. lx3 + 3.3x2 -
4. lx - 7 .2 when x = 4. 1 .  
Write a polynomial giving the area of a circle of ra
dius r. 
Write a polynomial giving the area of a triangle of 
base b and height h.  
A field consists of a rectangle and a square arranged as 
shown in Figure 4. What does each of the following 
polynomials represent? 

T 
x 

1 

T 
�l 

(a) x2 + xy (b) 2x + 2y 
(c) 4x (d) 4x + 2y 

4 1 .  An investor buys x shares of G.E.  stock at $55 per 
share, y shares of Exxon stock at $45 per share, and z 
shares of A.T.&T. stock at $60 per share. What does 
the polynomial 55x + 45y + 60z represent? 

Perform the indicated operations in Exercises 42-60. 
42. (4x2 + 3x + 2) + (3x2 - 2x - 5) 
43 . (2x2 + 3x + 8) - (5 - 2x + 2x2) 
44. 4xy2 + 2xy + 2x + 3 - (-2xy2 + xy - y + 2) 
45. (2s2t3 - sr + st - s + t) - (3s2r - 2s2t - 4st2 - t + 3) 
46. 3xy2z - 4x2yz + xy + 3 - (2xy2z + x2yz - yz + x - 2) 
47. a2bc + ab2c + 2ab3 - 3a2bc - 4ab3 + 3 
48. (x + 1 )  (x2 + 2x - 3) 
50. (2s - 3) (s3 - s + 2) 
52. (x2 + 3) (2x2 - x + 2) 

FIGURE 4 

49. (2 - x) (2x3 + x  - 2) 
5 1 .  (-3s + 2) (-2s2 - s + 3) 
53. (2y2 + y) (-2y3 + y - 3) 



54. (x2 + 2x - 1 )  (2x2 - 3x + 1) 
56. (1a2 + ab +  b2) (3a - b2 + 1 )  
58. 5(2x - 3)2 
60. (x - 1) (x + 1) (x + 3) 
6 1 .  An investor buys x shares of IBM stock at $160 per 

share at Thursday's  opening of the stock market. Later 
in the day, he sells y shares of G& W stock at $ 1 3 per 
share and z shares of Holiday Inn stock at $ 17 per 
share. Write a polynomial that expresses the money 
transactions for the day. 

61. An artist takes a rectangular piece of cardboard whose 
sides are x and y and cuts out a square of side x/1 
(Figure 5) to obtain a mat for a painting . Write a poly
nomial giving the area of the mat. 

In Exercises 63-76 perform the multiplication mentally. 

63. (x - 1 )  (x + 3) 64. (x + 1) (x + 3) 
67. (3x - 1) (x - 1 )  68. (x + 4) (2x - 1 )  
7 1 .  (3x - 1 )2 72. (x + 1) (x - 1) 
75. (x2 + y2)2 76. (x - y)2 

1A FACTORING 23 

55. (a2 - 4a + 3) (4a3 + la + 5) 
57. ( -3a + ab + b2) (3b2 + lb + 1) 
59. 1(3x - 1) (3 - x) 

FIGURE 5 

y 

x 

2 

Cut out 
x 

2 

65. (2x + 1) (2x + 3) 66. (3x - 1 )  (x + 5) 
69. (x + y)2 70. (x - 4)2 
73. (2x + 1) (2x - 1 ) 74. (3a + lb)2 

x 

1.4 
FACTORING 

Now that we can find the product of two poly nomi als, let's consi der the reverse 
problem: gi ven a poly nomi al , can we fi nd fa ctors whose product wi ll yi eld the 
gi ven poly nomi al? Thi s process, known as factoring, i s  one of the basi c tools of 
algebra. I n  thi s chapter a poly nomi al wi th integer coeffi ci ents i s  to be factored as 
a product of poly nomi als of lower degree wi th integer coef fici ents; a poly nomi al 
wi th rational coeffi ci ents i s  to be factored as a product of poly nomi als of lower 
degree wi th rational coeffici ents . 

COMMON FACTORS 

We wi ll approach factoring by learni ng to recogniz e the si tuati ons i n  whi ch 
fa ctoring i s  possi ble. 

Consi der the poly nomi al 

Si nce the fa ctor x i s  common to both terms, we can wri te 

x2 + x = x(x + l )  
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FACTORING BY 
GROUPING 

EXAMPLE 1 

Factor . 
(a) 1 5.x3 - 10x2 

SOLUTION 

(b) 4'x2y - 8xy2 + 6xy (c) 2x(x + y) - 5y(x + y) 

(a) Both 5 and x2 are common to bo th terms. Therefore, 

I 5x3 - 10x2 = 5x2(3x - 2) 

(b) Here we see that 2, x, and y are common to all terms . Therefore, 
4x2y - 8xy2 + 6xy = 2xy(2x - 4y + 3) 

(c) The expression (x + y) is found in both terms. Factoring , we have 

2x(x + y) - 5y(x + y) = (x + y)(2x - Sy) 

PROGRESS CHECK 

Factor. 
(a) 4x2 - x (b) 3x4 - 9x2 (c} 3m(2x - 3y) - n(2x - 3y) 
ANSWERS 
(a) x(4x - 1 ) (b) 3x2(x2 - 3) (c) (2x - 3y)(3m - n) 

It is sometimes possible to discover common factors by first grouping tenns. The 
best way to learn the procedure is by studying some examples . 

EXAMPLE 2 

Factor. 
(a) 2ab + b + 2ac + c ( b) 2x - 4x2y - 3y + 6xy2 
SOLUTION 

(a) Group those terms containing b and those tenns containing c. 

(b) 

2ab + b + 2ac + c = (2ab + b) + (2ac + c) 

= b(,2a + ] )  + c(2a + l)  

= (2a + l )(b + c) 

Group fog 

Common factors b, c 
Common factor 2a + 1 

2x - 4x2y - 3y + 6xy2 = (2x - 4x2y) - {3y - 6xy2) Grouping with sign 
change 

PROGRESS CHECK 

Factor. 

= 2x(l -•2xy) - 3y( l - 2xy) Common factors 2x, 3y 
= 0 - 2xy)(2x - 3y) Common factor 1 - 2xy 

(a) 2m3n + m2 + 2mn2 + n (b) 2a2 - 4'ab2 - ab + 2b3 



FACTORING 
SECOND-DEGREE 
POLYNOMIALS 

ANSWERS 
( a) (2mn + l )(m2 + n) ( b) (a - 2b2)(2a - b) 

T o  fa ctor a second-degree poly nomial, such as 
x2 + 5x + 6 

1A FACTORING 25 

we first note that the term x2 can have come only from x · x, so we can wri te two 
incomplete fa ctors like this: 

x2 + 5x + 6 = (x ) (x 

T he constant term +6  can be the product of either two positive numbers or two 
negative numbers . Since the middle term + 5x is the sum of two other products, 
both signs must be positive. T hus, 

x2 + 5x + 6 = (x + )(x + 

Finally , the number 6 can be written as the product of two integers in only two 
way s: I· 6 and 2 · 3 .  T he fi rst pair gives a middle term of 7x. T he second pair 
gives the actual middle term, 5x. So 

EXAMPLE 3 
Factor. 
(a) x2 - 7x + 10 

SOLUTION 

x2 + 5x + 6 = (x + 2)(x + 3) 

(b) x2 - 3x - 4 

( a) Since the constant term is positive and the middle term is negative, we must 
have two negative signs. I nteger pairs whose product is IO are I and IO, and 
2 and 5 . We find that 

x2 - 7x + IO = (x - 2)(x - 5) 

( b) Since the constant term is negative, we must have opposite signs. I nteger 
pairs whose product is 4 are I and 4 ,  and 2 and 2. We find that 

x2 - 3x - 4 = (x + I )(x - 4) 

When the leading coefficient of a second-degree poly nomial is an integer 
other than I ,  the factori ng process becomes more complex. T o  factor the poly 
nomial ax2 + bx +  c, where a, b, and c are integers with a >  I ,  we must 
have 

ax2 + bx + c = (rx + u)(sx + v) = (rs)x2 + (rv + su)x + uv 
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* 
SPECIAL FACTORS 

where r, s, u, and v are i ntegers. Equating the coeffi ci ents of like terms, we 
have 

rs = a rv + SU =  b UV = C 
T hese three equati ons give candi dates for r, s, u, and v. T he fi nal choi ces from 
among the candidates are determi ned by trial and error, whi ch i s  made easi er by 
usi ng mental multi pli cation. 

EXAMPLE 4 
Factor 2.x2 - x - 6. 

SOLUTION 
T he term 2.x2 can result only f rom the fa ctors 2x and x, so the factors must be of 
the form 

2.x2 - x - 6 = (2.x )(x 

T he constant term, -6, must be the product of fa ctors of opposi te signs, so we 
may write 

2.x2 - x - 6 = {�� + 
(2.x -

T he i nteger fa ctors of 6 are 
I · 6 

By tryi ng these we find that 
6 · I  2 · 3  

)(x -

)(x + 

3 · 2  

2.x2 - x - 6 = (2.x + 3 )(x - 2) 

PROGRESS CHECK 
Factor. 
( a) 3.r - I6x + 2 1  

ANSWERS 
( a) (3x - 7)(x - 3) 

( b) 2.x2 + 3x - 9 

( b) (2.x - 3)(x + 3) 

WARNING T he poly nomial i1- - 6x can be written as 
i1- - 6x = x(x - 6) 

and is then a product of two poly nomi als of positi ve degree. Students of ten fai l to 
consider x to be a "true" fa ctor. 

T here i s  a spe cial case of the second-degree poly nomi al that occurs f requently 
and fa ctors easi ly. Gi ven the poly nomial i1- - 9, we see that each term i s  a perf ect 



I 
Dlllerence of Two 
Squares 

sum and Difference of 
Two Cubes 

1.4 FACTORING 27 

square, and we can easily verify that 

x?-
- 9 = (x + 3) (x - 3) 

The general rule, which holds whenever we are dealing with a difference of two 
squares, may be stated as follows. 

EXAMPLE 5 
Factor. 

a2 - b2 = (a + b) (a - b) 

(a) 4x?- - 25 (b) 9r2 - 16t2 

SOLUTION 
(a) Since 

4x?- - 25 = (h)'2 - (5)2 
we may use the formula for the difference of two squares with a = h and 
b = 5 . Thus, 

4x2 - 25 = (h + 5)(h - 5) 

(b) Since 

9r2 - I 6t2 = (3r)2 - (4t)2 
we have a = 3r and b = 4t, resulting in 

9r2 - 16t2 = (3r + 4t)(3r - 4t) 

PROGRESS CHECK 
Factor. 
(a) x?- - 49 (b) 16x?- - 9 (c) 25x?- - y2 

ANSWERS 
(a) (x + 7)(x - 7) (b) (4x + 3)(4x - 3) (c) (5x + y)(5x - y) 

The fonnulas for a sum of two cubes and a difference of two cubes can be 
verified by multiplying the factors on the right-hand sides of the following equa
tions. 

a3 + b3 = (a +  b)(a2 - ab + b2) 
a3 - b3 = (a - b)(a2 + ab +  b2) 
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COMBINING METHODS 

These formulas provide a direct means of factoring the sum or difference of two 
cubes and are used in the same way as the fonnuJa for a difference of two squares. 
Be careful with the placement of plus and minus signs when using these formu
las. 

EXAMPLE 6 
Factor. 

(a) x3 + l 

SOLUTION 

(b) 27m3 - 64n3 l 
(c) -u3 + 8v3 27 

(a) With a = x and b = 1 .  the formula for the sum of two cubes yields the 
following result: 

x3 + I = (x + I )(x2 - x + l )  

(b) Since 

27m3 - 64n3 = (3m)3 - (4n)3 
we can use the formufa for the difference of t'wo cubes with a = 3m and 
b = 4n: 

(c) Note that 

27m3 - 64n3 = (3m - 4n)(9m2 + 1 2mn + 16n2) 

1 ( l ) 3 -u3 + 8v3 = -u + (2v)3 27 3 
and then use the formula for the sum of two cubes: 

_!__u3 + 8v3 = (� + 2v) ("2 - �uv + 4v2) 27 3 9 3 

We conclude with problems that combine the various methods of factoring that 
we have studied. Here is a good rule to follow . 

Always remove common factors before attempting any other factoring tech
niques. 

EXAMPLE 7 
Factor. 
(a) 2x3 - 8x 

SOLUTION 

(b) 3y(y + 3) + 2(y + 3)(y2 - l ) 

(a) Removing 2x as a common factor, we find that 



"NO FUSS" FACTORING 
FOR SECOND-DEGREE 
POLYNOMIALS 

Try the method on 
these second-degree 
polynomials. 

3x2 + 1 0x - 8 

6x2 - 1 3x + 6 

4x2 - 1 5x - 4 

1 ox2 + 1 1x - 6  

1.4 FACTORING 29 

Factoring involves a certain amount of trial and error, which can become frus
trating, especially when the lead coefficient is not 1 .  You might want to try a 
rather neat scheme that will greatly reduce the number of candidates. 

We'l l  demonstrate the method for the polynomial 

4x2 + 1 1 x + 6  (1 ) 

Using the lead coefficient of 4, write the pair of incomplete factors 

(4x )(4x (2) 

Next, multiply the coefficient of x2 and the constant term in ( 1 ) to produce 
4 · 6 = 24. Now find two integers whose product is 24 and whose sum is 1 1 ,  the 
coefficient of the middle term of ( 1  ). It's clear that 8 and 3 will do nicely, so we 
write 

(4x + 8)(4x + 3) (3) 

Finally, within each parenthesis in (3) discard any common divisor. Thus 
( 4x + 8) reduces to (x + 2) and we write 

(x + 2)(4x + 3) (4) 

which is the factorization of 4x2 + 1 1x + 6. 
Will the method always work? Yes-if you first remove all common factors in 

the original polynomial. That is, you must first write 

6x2 + 1 5x + 6 = 3(2x2 + 5x + 2) 

and apply the method to the polynomial 2x2 + 5x + 2. 
(For a proof that the method works, see M. A. Autrie and J. D. Austin, "A 

Novel Way to Factor Quadratic Polynomials," The Mathematics Teacher 72, no. 
2 [ 1 979).) 

We'll use the polynomial 2x2 - x - 6 of Example 7 to demonstrate the 
method when some of the coefficients are negative. 

Example: 2x2 - x - 6 

Step 1. The lead coefficient is 2, so we write 

(2x )(2x 

Step 2. a · c  = (2)(-6) = - 1 2  

Step 3. Two integers whose product is - 1 2  and 
whose sum is - 1  are 3 and -4. We then write 

(2x + 3)(2x - 4) 

Step 4. Reducing (2x - 4) to (x - 2), we have 

2x2 - x - 6 = (2x + 3)(x - 2) 
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IRREDUCIBLE 
POLYNOMIALS 

EXERCISE SET 1A 
Factor completely. 

I .  5x - 1 5 

5 . 5bc + 25b 
9 . 3x2 + 6x2y - 9x2z 
1 1 .  x2 + 4x + 3 

15 . a2 - 7ab + 12b2 

19 . 9 - x2 
I 23. - - y2 16 

27 . x2 - 12x + 20 

3 1 .  2x2 - 3x - 2  
35. 6x2 + 1 3x + 6 
39. IOx2 - 1 3x - 3 
43 . IOrs2 + 9rst + 2t2 

2x3 - 8x ;;;:; 2x(x2 - 4) 
"" 2x(x + 2)(x - 2) 

(b) Removing the common factor y + 3, we see that 
3y(y + 3) + 2(y + 3)(y2 - 1 ) = (y + 3)[3y + 2(y2 - I )] 

= (y + 3)(3y + 2y2 - 2) 
= (y + 3)(2y2 + 3y - 2) 
= (y + 3)(2y - I )(y + 2) 

PROGRESS CHECK 
Factor. 
(a) x3 + 5x2 - 6x (b) 2x3 - 2x2y - 4xy2 
(c) -3x(x + 1) + (x + 1 )(2x2 + I )  
ANSWERS 
(a) x(x + 6)(x - 1 ) (b) 2x(x + y)(x - 2y) (c) (x + 1 )(2x - l )(x - I )  

Are there polynomials that cannot be written as a product of polynomials of lower 
degree with integer coefficients? The answer is yes. Examples are the polyno-
mials x2 + 1 and x2 + x + 1 .  A polynomial is said to be prime or irreducible if it 
cannot be written as a product of two polynomials each of positive degree. Thus, 
x2 + I is irreducible over the integers. 

2. 

6. 

12 . 

16. 

20. 

24. 

2S. 

32. 
36. 
40. 
44. 

1 I 
2x + 4Y 
2x4 + x2 

x2 + 2x - S  

x2 - 49 

4b2 - a2 

4a2 - b2 

x2 - Sx - 20 

2x2 + 7x + 6 
4y2 - 9 
9/ - 16x2 
x12 - I 

3 . -2x - Sy 

7. -3y2 - 4y5 
10. 9a3b3 + 12a2b - 15ab2 
13 . y2 - Sy + 15 

I 17 . y2 - -9 
21 . x2 - 5x - 14 

25. x2 - 6x + 9  

29. x2 + I  Ix +  24 

33. 3a2 - I l a + 6 
37. Sm2 - 6m - 9 
4 1 .  6a2 - 5ab - 6b2 
45 . 16 - 9x2y2 

4. 3x - 6y + 15 

S . 3abc + 12bc 

14 . y2 + 7y - s 

I S . a2 - 7a + 10 

22. x2y2 - 9 
I 26. a2b2 - -9 

9 30. y2 - -
16 

34. 4x2 - 9x + 2 
3S. 9x2 + 24x + 16 
42. 4x2 + 20x + 25 
46. 6 + 5x - 4x2 
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47. 8n2 - 1 8n - 5 48. 15 + 4x - 4x2 49. 2x2 - 2x - 12 50. 3y2 + 6y - 45 
5 1 .  30x2 - 35x + 10 52. x4y4 - x2y2 53. 1 8x2m + 33xm + 9m 54. 25m2n3 - 5m2n 
55. 12x2 - 22x3 - 20x4 56. IOr2 - 5rs - I 5s2 57. x4 - y4 58. a4 - 16 
59. b4 + 2b2 - 8 60. 4b4 + 20b2 + 25 6 1 .  x3 + 27y3 62. 8x3 + 1 25y3 
63. 27x3 - y3 64. 64x3 - 27y3 65. a3 + 8 66. 8r3 - 27 

l 8a3 _ J_b3 69. (x + y)3 - 8 27 + (x + y)3 67. -m3 - 8n3 68. 70. 8 64 
7 1 .  8x6 - 1 25y6 72. a6 + 27b6 
73. 4(x + l )(y + 2) - 8(y + 2) 74. 2(x + l )(x - l )  + 5(x - l )  
75. 3(x + 2)2(x - I ) - 4(x + 2)2(2x + 7) 
76. 4(2x - 1 )2(x + 2)3(x + l )  - 3(2x - l )s(x + 2)2(x + 3) 

1.5 
RATIONAL EXPRESSIONS 

MULTIPLICATION AND 
DMSION OF RATIONAL 
EXPRESSIONS 

Much of the terminology and many of the techniques of arithmetic fractions carry 
over to algebraic fractions, which are the quotients of algebraic expressions. In 
particular, we refer to a quotient of two polynomials as a rational expression. 
Our objective in this section is to review the procedures for adding, subtracting, 
multiplying, and dividing rational expressions. We will then be able to convert a 
complicated fraction like 

1 - ! 
x 

into a form that will simplify evaluation of the fraction and facilitate other oper
ations with it. 

The symbols appearing in rational expressions represent real numbers. We may, 
therefore, apply the rules of arithmetic to rational expressions. 

a c ac 
- · - = -
b d bd 
a 

Multiplication of rational expressions 

b a d ad 
- = - · - = - Division of rational expressions £. b c be 
d 

EXAMPLE 1 

Divide 2x by 2.i_3. y x -
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I 
Cancellation Principle 

SOLUTION 
2x 

.....l..._ _ 2x .  x - 3 _ 2.x(x - 3) .li_ - y 3y3 - 3y4 
x - 3  

The basic rule that allows us to simplify rational expressions is the cancel
lation principle. 

ab b 
ac c '  

This rule results from the fact that ala = 1 .  Thus, 
ab = � · !!. = I · !!. = !!. 
ac a c  c c  

Once again we find that a rule for arithmetic of fractions carries over to rational 
expressions. 

EXAMPLE 2 
Simplify . 

x2 - 4 
(a) x2 + 5x + 6 

SOLUTION 

3r(y - l ) -'- 6x(y - 1 )2 
(b) y + 1 . (y + 1 )3 

x2 - x - 6  (c) 3x - x2  

x2 - 4 _ (x + 2)(x - 2) _ x - 2 (a) x2 + 5x + 6 - (x + 3)(x + 2) - x + 3 '  
x =I= -2 

(b) 
3x2(y - l )  

y + 1 _ 3x2 (y - l )  . (y + 1 )3 _ 3x2(y - 1 )(y + 1 )3 

6x(y - 1 )2 - y + 1 6x(y - 1 )2 - 6x(y - l )2(y + l )  
(y + 1 )3 

_ 
x(y + 1 )2 

- 2(y - l ) ' y =l= l , - l  

x2 - x - 6 _ 
(x - 3)(x + 2) _ (x - 3)(x + 2) (c) 3x - x2 - x(3 - x) - -x(x - 3) 

x + 2  x + 2  
-x x 

x =I= 3 

Note that in Example 2c we wrote (3 - x) as - (x - 3) .  This technique is 
often used to recognize factors that may be canceled . 



* 

ADDITION AND 
SUBTRACTION OF 
RATIONAL EXPRESSIONS 

PROGRESS CHECK 
Simplify. 

4 -x2 
(a) x2 - x - 6 (b) 

8 - 2x + x2 - 16  
y y 
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ANSWERS 
2 - x 

(a) x - 3 ,  x *  -2 (b) 
2 x * 4  x + 4 ' 

WARNING 

(a) Only multiplicative factors can be canceled. Thus, 

2x - 4 'F 2 - 4  x 
Since x is not a multiplicative factor in the numerator, we may not pe rform 
cancellation. 

(b) Note that 

To simplify correctl y, write 

y2 - x2 = (y + x)(y - x) = + x y - x y - x  y ' y-=l= x 

Since the variab les in rational expressions represent real numbers , the rules of 
arithmetic for addition and subtraction of fr actions apply to rational expressions. 
W hen rational expressions have the same denominator, the addition and subtrac
tion ru les are as follows. 

For example, 

a b a - b  
- - - = --

c c c 

_2 _ _ _  4_ + _5_ = 2 - 4 +  5 = -3-
x - l x - 1 x - 1 x - l x - 1 

To add or sub tract rational expressions with different denominators, we must 
first rewrite each rational expression as an equivalent one with the same denom-
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inator as the others. Although any common denominator will do, we will con
centrate on finding the least common denominator, or LCD, of two or more 
rational expressions. We now outline the procedure and provide an example. 

EXAMPLE 3 
Find the LCD of the following three rational expressions: 

SOLUTION 

1 
x3 - x2  

-2 
x3 - x  

Least Common Denominator 

3x 
x2 + 2x + l 

Step I .  Factor the denominator of each rational Step 1 .  
expression. 

I -2 3x 
r(x - I )  x(x - l )(x + I ) (x + 1 )2 

Step 2. Determine the different factors in the Step 2 .  

denominators of the rational expressions, and the 
r - - - - - -, 

highest I final I 
highest power to which each factor occurs in any I I 

factor exponent • factors 1 
denominator. --

x 
x - 1 
x + I 

2 
I 
2 

1 -- 1 
I x2 I 
I I 
I x - I I 
I 2 I 
I (X + } )  I L _ _ _ _ _ _  

1 

Step 3. The product of the factors determined in Step 3. The LCD is 
Step 2 is the LCD. 

Equivalent Fractions 

x2(x - l )(x + I )2 
PROGRESS CHECK 
Find the LCD of the following fractions: 

2a -1b 3 
(3a2 + 1 2a + 1 2)b a(4b2 

- Sb + 4) ab3 + 2b3 

ANSWER 
l 2ab3 (a + 2)2(b - I )2 

The fractions 2/5 and 6/1 5  are said to be equivalent, because we obtain 6/ 1 5  by 
multiplying 2/5 by I = 3/3 . We also say that algebraic fractions are equivalent 
fractions if we can obtain one from the other by multiplying both the numerator 
and denominator by the same expression. 

To add rational expressions, we must first determine the LCD and then 
convert each rational expression into an equivalent fraction with the LCD as its 
denominator. We can accomplish this conversion by multiplying the fraction by 



Step I .  Find the LCD. 
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the appropriate equivalent of I .  We now outline the procedure and provide an 
example. 

EXAMPLE 4 
Simplify 

SOLUTION 

x + I  2 
2.x2 - 3x(x + 2) 

Addition of Rational Expreulona 

Step I.  
LCD = 6.x2(x + 2) 

Step 2. Multiply each rational expression by a frac- Step 2.  

tion whose numerator and denominator arc the 
same and consist of all factors of the LCD that arc 
missing in the denominator of the expression. 

Step 3. Add the rational expressions. Do not mul- Step 3. 
tiply out the denominators since it may be possible x + l 
to cancel. 2x2 -

PROGRESS CHECK 

x + I 
• 
3(x + 2) = 2x2 3(x + 2) 

2 2x 

3x2 + 9x + 6 
6.x2(x + 2) 

4x 
3x(x + 2) · 2x 

= 6.x2(x + 2) 

2 3x2 + 9x + 6 - 4x = 6x2(x + 2) 6x2(x + 2) 3x(x + 2) 
3x2 + 5x + 6 

= 6.x2(x + 2) 

Perform the indicated operations. 

COMPLEX FRACTIONS 

x - 8 3 
(a) x2 - 4 + x2 - 2x 

ANSWERS 
x - 3  

(a) x(x + 2)' x =l= 2  

{b) 
4r - 3 _ 2r + I + 1_ 

9r3 4r2 3r 

6r2 + 1r - 12  
(b) 36r3 

At the beginning of this section we said that we wanted to be able to simplify 
fractions like 

I 1 - -x -
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This is an example of a complex fraction, which is a fractional form with frac
tions in the numerator or denominator or both . 

There are two methods commonly used to simplify complex fractions. For
tunately, we already have all the tools needed, and we can now demonstrate both 
methods: 

EXAMPLE 5 
Simplify 

SOLUTION 

1 
l - -x ---
1.. + ! 
x2 x 

Simplifying Complex Fractions 

Method 1 Example 

Step I . Find the LCD of all fractions in the numer- Step I. Th LCD of 1 1 1 , l !x, and l /x2 i x2. 
ator and denominator. 

Step 2 .  Multiply the numerator and denominator by Step 2.  
the LCD. Since this is multiplication by l ,  the 

x2( I - ;) result is an equivalent fraction. x2 - x x(x - I )  
= -- = 

x2(� + ;) l + x x + I 

Method 2 Example 

Step I .  Combine the terms in the numerator into a Step I. 
single rational expression. I x I x - I 

1 - - = - - - = --x x x x 
Step 2. Combine the tenns in the denominator into Step 2.  
a single rational expression. 

I I I x I + x  
- + - - -+- - --x2 x - x2 .t2 - x2 

Step 3. Apply the rules for division of rational Step 3. 
expressions; that is, multiply the numerator by the 

x - 1 
reciprocal of the denominator. x x - I x2 x(x - I )  -- = -- · -- =  l + x x l + x x + I 

� 



PROGRESS CHECK 
Simplify. 

l 2 + -
(a) x 

(b) -
2 1 - -
x 

ANSWERS 

(a) 
2x +  1 (b) x - 2  

EXERCISE SET 1.5 
Perform all possible simplification in Exercises 1 -20. 

_!_±__±_ y2 - 25 l .  x2 - 16 2· y + 5 

5 . 6x2 - x - l 6. 2x3 + x2 - 3x 
2x2 + 3x - 2  3x2 - 5x + 2 

9. 25 - a2 2b2 + 6b 10. Et_ 
. 
£.±..2'. -- ·  

b + 3  a - 5  x + y 
x + 2  x2 - 2x - 8  1 1 .  � +  1 5y2 
6x2 - x - 2 2x2 - 7x + 6 1 3· 2x2 - 5x + 3 · 3x2 + x - 2 

2 2x + 3 15 . (x - 4) · x2 + 2x _ 8 

17 . (x2 - 2x - 15 ) + x2 �
2
7: � 10 

4xy 

x2 - 4  x2 + 3x - 4  x + 3  19· x2 + 2x - 3 · x2 - 7x + 10 . x2 + 3x + 2 
In Exercises 2 1-30 find the LCD. 

2 1 .  4 x - 2  22. x x + 4  
x - I '  x + 2  x y 

25 . 2b 3 26. 2 + x  3 
b - l , (b - 1 )2 x2 - 4 '  x - 2  

27 . 4x 5 
x - 2 , x2 + x - 6  

29. 3 2 x - , x + l , x x - l 
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� + £  b a 
l l 
a b 

a2 + b2 - ---
a - b  

3 . x2 - 8x + 16 
x - 4  

5x2 - 45 4. 2x - 6 
_2 _ _,_ _3_ 7· 3x - 6  · 2x - 4  

5x + 15 _,_ 3x + 9 8· 8 . 4 

3x . 6x2 12 · x + 2 "7" x2 - x - 6 
6x2 + l Ix - 2 5x2 - 3x - 2 14· 4x2 - 3x - I 

· 

3x2 + 7x + 2 

16 ( 2 2 ) a + l . a - a · 6 - a - a2 

18 . 2y2 - 5y - 3 + (y2 + y - 1 2) y - 4  
x2 - 9 2x2 + 5x + 2 x2 - x - 2 20· 6x2 + x - I x2 + 4x + 3 . x2 - 3x 

23. 5 - a  7 24. x + 2  
' 2a a x 

28. 3 _lt_ 
y2 - 3y - 4 , y + I 

30. 4 3 x 
, x2 - 2x +  I x x - I '  

x - 2  
� 

In Exercises 3 1-50 perform the indicated operations and simplify. 

3 1 .  a� 2 + 2�a 32. x2�4 + 4�x2 33. x; l + 2  34 _1_ + _2_ 

· x - 1 x - 2  
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35. 

39. 

43 . 

45 . 

_1_ + _3_ 
a + 2  a - 2  
5 x 

-- - --

2x + 6 x + 3  
I 2x - I 

-- + x - I (x - 2) (x + I )  
2x + -3-

x2 + x - 2  x + 2  
x - 2  

36. a b 
- - -

Sb 1 2a 

40. _x_ - --1'._ 
x - y x + y 

37. 

4 1 .  

4 
3x 

5 
xy 

5x 4 + --2x2 - 18 3x - 9 

38 . 

42. 

2x x - I 44· 2x + I - (2x + I ) (x - 2) 

46 _2_ + x 
· x - 2  x2 - x - 6  

2x - I x 

4x - I 2 
-- + -

4 
6x3 3x2 

3 - - --

r r + 2  

2x - I 47 · x2 + 5x + 6  x2 + 4x + 3 48· x3 - 4x - x2 + x - 2 
2x x + I  49· x2 - I + x2 + 3x - 4 

2x x I 50· x + 2 + x - 2 - x2 - 4 
In Exercises 5 1-66 simplify the complex fraction and perform all indicated operations. 

5 1 .  

55. 

59. 

63. 

1.6 

2 ! + -x 
3 I - -x 

x2 - 16 
I I 
4 x 

a b 
b a 
_! + _! a b 

I 
y - --

1 - _! 
y 

I y + --
1 + _! 

y 

INTEGER 
EXPONENTS 

POSITIVE INTEGER 
EXPONENTS 

52. 

56. 

60. 

64. 

I x - -x 
I 2 + -x 

a b 
-- - --

a - b  a + b  
a2 - b2 

x x 
-- - --

x - 2  x + 2  
2x x2 --+ --x - 2  x - 2  

I - _! 
y 

1 ---1 
y - 

y 

53. 

57. 

6 1 .  

65 . 

x + I 
I ! - -x 

2 - -

1
_ 

I I +  -a 

3 - 2 
1 - -

1_ 
I + x  

! - ------
l + ---

1 - -l_ 
l + x 

54. 

58. 

r2 l - s2 

I + � s 
4 -Y--4 + I  x -
x 

62. 2 + --3-
1 + _2_ 

1 - x 

66. 1 + -----

1 - --

I + -1-1 + x  

In Section 1 . 3 we defined an for a real number a and a positive integer n as 

n factors 

and we showed that if m and n are positive integers then aman = am+n . The 
method we used to establish this rule was to write out the factors am and an and 
count the total number of occurrences of a. The same method can be used to 
establish the rest of the rules in Table 2 when m and n are positive integers. 



TABLE 2 

((/")" = a""' 

(ab)"' = ti" b"' 

- = - b :l: O  (a)"' ti" 
b b"'' 

If a * 0, 

ti" = ti"-" ti' if m > n  

ti" I - - -- if n > m  ti' ti' - "' 
ti"

= I ti' if m = n 
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POSITIVE INTEGER EXPONENTS 

EXAMPLE 1 
Simplify the following. 

4s42 = 4S+2 = 41 

x3x2 = x3+2  = .r 

Examples 

(2y)3(2y)S = (2y)3+S = (2y)8 

(22)3 = 22 · 3 = 26 

(x4)3 = x4 · 3 = x•2 
(a2)n = a2n 

[(x + 2)4 ]3 = (x + 2)4 ' 3 = (x + 2) 1 2  

(ab)4 = a4b4 
(2x2y)4 = 24(x2)4y4 = t6x8y4 

(a) (4a2b3)(2a3b) (b) (2x2y)4 � (c) 2Y
2Jc ,  y * 0 

PROGRESS CHECK 
Simplify, using only positive exponents. 

(a) (x3)4 
a•4 

(c) as 
-2(x + l)" (d) (x + 1 )211 

(f) (-:rr 
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ZERO AND NEGATIVE 
EXPONENTS 

ANSWERS 

(a) x12 (b) x•o (c) a6 
2 

(d) (x + l )" 

We next expand our rules to include zero and negative exponents when the base is 
nonzero. We will assume that the previous rules for exponents apply to a0 and see 
if this leads us to a definition of a0. For example, applying the rule a"'a" = a"'+" 
yields 

Dividing both sides by a"', we obtain a0 = L We therefore define a0 for any 
nonzero real number by 

a0 = l 

The same approach will lead us to a definition of negative exponents . For con
sistency, we must have 

or ( 1 )  

Division of both sides of Equation ( l )  by am suggests that we define a-m by 

a-"' = J_ a *  0 
a" " 

Dividing Equation ( 1 )  by a-m, we have 

Thus, a-m is the reciprocal of a"' , and a"' is the reciprocaJ of a-m. The rule for 
handling negative exponents can be expressed as follows. 

A nonzero factor moves from numerator to denominator (or from denominator 
to numerator) by changing the sign of the exponent . 

Table 3 summarizes and illustrates these results. 



lABLE 3 

Delnltlon 

a0 = l ,  a * O  

ZERO AND INlEGER EXPONENTS 

3° = I  Gr = 1 

2 2 
= - = 2  

(x - 1 )0 I 
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Example 

4(xy)O = 4 

- 3(y2 + 1 )0 = - 3 

l 
a"' = -

a-"''  
a * O  

- 2  
= - 2(a - 1 )2 

(a - 1 )-2 
-3 1 1 (2x) = (2x)3 = 8x3 

l IS 
a-"' = - a * O  (x2y-3)-s = (x2)-s(y-3)-s = x- 1oy1s = � 

a"'' x•o 

PROGRESS CHECK 
Simplify, using only positive exponents. 

ANSWERS 
1 

(a) 
x2y3 

(b) (c) 

(c) e=:) - 1 

x 

* WARNING Don't confuse negative numbers and negative exponents. 

(a) i-4  = � 
2 

EXERCISE SET 1.6 

Note that 2-4 =I= - 24• 

l 1 l 
(b) ( - 2)-3 = ( - 2)3 = -8 = 8 
Note that ( - 2)-3 * i3 = �· 

In  Exercises 1 -6 the right-hand side is incorrect. Find the correct tenn. 

b6 l .  x1- · x4 = XS 2. (y2)5 = y7 3. b2 = bl 
x2 

4. :6 = x4 
x 

In Exercises 7-64 use the rules for exponents to simplify. Write the answers using only positive exponents. 

8. (x"')3nr 9. (y4)2n (-4)6 10. (-4)10 
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1 1 .  -�r 12 . -3r3r3 

15. (-2x2)S 1 6. -(2x2)S 

19. X' 20. (3;:r xi+2 

23. (r2)4 24. [(3b + 1 )5]5 (r4)2 

27. (2x + 1 )3(2x + I )7 28. � 
(y4)6 

3 1 .  2° + r1 32. (xy)o - r • 

35 .  r4 36. x-s 

39. 1 40. (2a)-6 ?' 
43 . (32)-3 44. (x-2)4 

47. 22 48. XS 

r3 x- 10 

5 1 .  (3a-2b-3)-2 52. l 
(2xy)-2 

55. 
3a5b-2 56. (/-2)

2 
9a-4b2 

59. (a - 2b2)- I 60. �r
l 

63. a- 1 + b- 1 64. (�r ·  + (�r ·  a- • - b- 1 

13. 

17 . 

2 1 . 
25 .  

29 . 

33. 

37. 

41 . 

45. 

49. 

53. 

57 . 

61 . 

65. 

(x3)S . X4 14 . 

x3n . X' 18 .  

(-5x3) (-�) 22. 

(�x2y3 )n 26. 

(-2a2b3)2n 30. 

3 34. (2x2 + 1 )0 

(-x)3 38. 

5-355 42. 

(x-J)-J 46. 
2x4y-2 

50. x2y-J 

(-�x3y-4r
J 

54. 

(
2a2b-4

r a-3c-3 58. 

{a +  b}- 1 
62. (a - b) 2 

Show that (�)
-n 

= (�) 
n 

x•2 7 
(-2rc-2)n 

(x2)3(y2)4(x3) 7 
{-2a2b)4 
(-3ab2)3 

( -�a2b3c2) 
3 

(-3)-3 

-x-s 

4y5y-2 

[(x + y)-2]2 

(x4y-2)- I 

(x-2)2 
(3y-2)J 
ix-3y2 
x-ly-3 

(a- 1 + b- 1 )- 1 

Evaluate each expression in Exercises 66-69. 

w 66. ( J .2Q2)- I [fill 67. ((-3.67)2]- l [ill] 68. (7.6s- ·r 
Ifill 69. ( 

4.462 rl - 7 .652 . 4.46- 1 

1.7 
RATIONAL EXPONENTS 
ANO RADICALS 
nTH ROOTS 

Consider a square whose area is 25 square centimeters, and whose sides are of 
length a. We can then write 

a2 = 25 

so that a is a number whose square is 25. We say that a is the square root of b if 
a2 = b. Similar1y , we say that a is a cube root of b if a3 = b, and, in general , if n 
is a natural number, we say that 

a is an nth root of b if � = b 

Thus, 5 is a square root of 25 since 52 = 25, and -2 is a cube root of - 8 since 
( - 2)3 = -8. 



TABLE 4 

b n 

> 0  Even 
< O  Even 
> 0  Odd 
< 0  Odd 

0 All 

Principal nth Root 
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Since ( -5)2 = 25, we conclude that -5 is also a square root of 25 .  More 
generally, if b > 0 and a is a square root of b, then -a is also a square root of b.  If 
b < 0, there is no 11eal number a such that a2 = b, since the square of a real 
number is always nonnegative. (We'll see in Section 1 .8 that mathematfcians 
have created an extended number system in which there is a root when b < 0 and 
n is even.) 

The cases are summarized in Table 4. 

Number of nth 
roots of b such Fonn of 

that b "" a" nth roots b Examples 

2 a, -a 4 Square roots are 2, -2. 
None None - I  No square roots. 

1 a > O  8 Cube root is 2. 
I a < O  -8 Cube root i s  -2.  
I 0 0 Square root is 0. 

We would Like to define rational exponents in a manner that will be consis
tent with the rules for integer exponents. If the rule (a"'t = a""' is to hold, then 
we must have 

(b l/n)n = If"" = b 

But a is an nth root of b if d' = b. Then for every natural number n, we say 
that 

b11" is an nth root of b 

If n is even and b is positive, Table 4 indicates that there are two numbers, a and 
-a, that are nth roots of b. For example, 

42 = 1 6  and (-4)2 - 16 
There are then two candidates for 16112, namely 4 and -4. To avoid ambiguity 
we say that 1 6112 - 4. That is, if n is even and b is positive, we always choose the 
positive number a such that d' == b to be the nth root and call a the principal nth 
root of b. Thus, b11" denotes the principal nth root of b. 

EXAMPLE 1 

Evaluate. 

(a) 144112 (b) ( - 8)113 (c) ( -25) 112 ( 1 ) 1/4 
(d) - 16 
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RATI� EXPONENTS 

SOLUTION 
(a) 144 112 = 12 

(c) (-25)112 is not a real number 

(b) (-8) 1/3 = - 2  

(d) - (:6)
1
/
4 

= -� 
Now we are prepared to define bmtn, where m is an integer (positive or negative), 
n is a natural number, and b > 0 when n is even. We want the rules for exponents 
to hold for rationa1 exponents as well. That is, we want to have 

4312 = 4( 112) (3) = (4"2)3 = 23 = 8 

and 

4312 = 4(3)( 112) = (43)112 = (64)112 = 8 

To achieve this consistency, we define b'"1n, for an integer m, a natural number n, 
and a real number b, by 

where b must be positive when n is even . With this definition, aU the rules of 
exponents continue to hold when the exponents are rational numbers. 

EXAMPLE 2 
SimpUfy. 
(a) ( - 8)413 

SOLUTION 

(b) x112 
• 
x3'4 

(a) (- 8)413 = ((-8)"3]4 = (-2)4 = ]6 
(b) x'12 . x314 = x112 + 314 = �14 
(c) (x3'4)2 = r3t4X2) = x312 

(d) (3x2f3y-S13)3 = 3J . X(213)(J>y(-S13)(3) ;: 27x2y-S = 27, y * 0 

PROGRESS CHECK 
Simplify. Assume all variables are positive l'eal numbers. 

(
�

)
,'2 

(a) 27413 (b) (a112b-2)-2 (c) z5t6 

ANSWERS 

(a) 8 1  b" (b) a 
f4y8 

(c) zlO 



WHEN IS A PROOF NOT A 
PROOF? 

RADICALS 

* 
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Books of mathematical puzzles love to include "proofs" that lead to false or 
contradictory results. Of course, there is always an incorrect step hidden some
where in the proof. The error may be subtle, but a good grounding in the fun
damentals of mathematics will enable you to catch it. 

Examine the following "proof." 

1 = 1 1 12 
= ((- 1 )2]112 
= (- 1 )2/2 
= (- 1 )1 
= - 1 

( 1 )  
(2) 
(3) (4) (5) 

The result is obviously contradictory: we can't have 1 = - 1 .  Yet each step seems 
to be legitimate. Did you spot the flaw? The rule 

(bm)1/n = bmln 
used in going from (2) to (3) doesn't apply when n is even and b is negative. Any 
time the rules of algebra are abused the results are unpredictable! 

The symbol Vb is an alternative way of writing b112; that is, Vb denotes the 
nonnegative square root of b. The symbol Vis called a radical sign, and Vb is 
called the principal square root of b. Thus, 

v25 = 5 Vo = 0 V-2s is undefined 

In general , the symbol "'\lb is an alternative way of writing b11" ,  the principal nth 
root of b. Of course, we must apply the same restrictions to "'\lb that we estab
lished for b11". In summary, 

"'\lb = b1 1" = a  where an = b 
with these restrictions: 
• if n is even and b < 0, "'\lb is not a real number; 

• if n is even and b ;:::: 0, "'\lb is the nonnegative number a satisfying an = b. 

WARNING Many students are accustomed to writing \/4 = ±2. This is incor
rect, since the symbol Vindicates the principal square root, which is nonnega
tive. Get in the habit of writing \/4 = 2. If you want to indicate all square roots 
of 4, write ±\/4 = ±2. . 

In short, "'\lb is the radical form of b11n. We can switch back and forth from 
one form to the other. For instance , 

V7 = 7 1 13 ( 1 1 ) 1/5 = Vil 
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Finally, we treat the radical form of bm1n where m is an integer and n is a 
natural number as fol1ows. 

b"''" ;;;;; {b"') l/n ;;;;; "\/ifi 
and 

b"''n "" ( b lln)"' = (\lb)"' 

Thus, 

7213 ;;;;; (72) 1/3 = � 
7213 = (7 ''3)2 = c?.17)2 

EXAMPLE 3 
Change from radical form to rational exponent form or vice versa. Assume all 
variables are nonzero. 

(a) (2x)-312, x > 0 

(c) (-3a)317 

SOLUTION 

I 
(b) VY4 
(d) Vx2 + l 

I I 
(a) (2x)-312 = (2x)312 = � 
(c) (- 3a)3n = -l!/-27a3 

PROGRESS CHECK 

1 1 
(b) Vy4 = 

y4n 
= y-4n 

(d) Vx2 + y2 = <x2 + y2) •12 

Change from radical form to rational exponent form or vice versa. Assume all 
variables are positive real numbers . 

(a) "\l2ri3 (b) (x + y)512 
) 

(c) y-514 (d) � 
ANSWERS 
(a) (2r)1145314 

1 
(c) � 

(b) V(x + y)' 
(d) m-S/4 

Since radicals are just another way of writing exponents, the properties of 
radicals can be derived from the properties of exponents . 



Properties of Radicals 

* 

Slmplltylng Radicals 
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If n is a natural number, a and b are real numbers, and all radicals denote real 
numbers, then 

( 1 )  "\fii'r = (b"')l/n = (bllnyn = c"V"hr 
(2) V'Q .  efb = 011n . b lln = (ab)lln = \/;;b 

V'Q 011n (a) 1111 "� 
<3> -vr,; = b.,,. 

= "b = -Y"h. b * o 

(4) '\/;ti= { a  if n is odd lal if n is even 

Here are some examples using these properties. 

EXAMPLE 4 

Simplify. 

(a) vls 

SOLUTION 

(b) VC54 (c) 2� 

(a) vls = v'9=2 = v9v'2 = 3v'2 

V'82 = (�)2 
v'4 v9 = v36 

v'(=4)2 = 1-41 = 4 

(d) w 

(b) VC54 = �(-27)(2) = V-27� = -3� 
(c) 2� = 2�V?Vy = 2(2)(x)Vy = 4xVy 
(d) w = v? · v? · v? = 1x1 · 1x1 · 1x1 = 1x13 

WARNING The properties of radicals state that 

v? = lxl 
It is a common error to write W = x, but this leads to the conclusion that 
V(=-6)2 = -6. Since the symbol V represents the principal or nonnegative 
square root of a number, the result cannot be negative. It is therefore essential to 
write v? = lxl (and, in fact, \!'xi =  I whenever n is even) unless we know that 
x =::: 0, in which case we can write W = x. 

A radical is said to be in simplified form when the following conditions are 
satisfied: 

1. '\/ifi has m < n; 
2. '\/ifi has no common factors between m and n; 
3. A denominator is free of radicals .  
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The first two conditions can always be met by using the properties of radicals and 
by writing radicals in exponent form. For example , 

V'? = � = W °Yx = x°Yx 
and 

'lfx4 = x416 = x2'3 = W 
The third condition can always be satisfied by multiplying the fraction by a 

properly chosen form of unity, a process called rationalizing the denomina
tor. For example , to rationalize 11\/3, we proceed as follows. 

) 1 V3 V3 V3 
V3 = V3·V3= w = 3 

In this connection, a useful formula is 

(Vm + Vn) (Vm - Vn) = m - n 

which we will apply in the following examples . 

EXAMPLE 5 

Rationalize the denominator. Assume all variables denote positive real num
bers. 

(a) .fy 4 
(b) Vs - v'2 

5 
(c) 4 r vx + 2 

SOLUTION 

(a) � - Yx - Yx Yi - vXY - vXY 'Jy - Vy - Vy. Vy - w - y 

4 4 \/5 + v'2 (b) Vs - v'2 = Vs - Vi '  Vs +  v'2 
= 4(Vs + v'2) = � (Vs + Yl) 

5 - 2  3 

(d) 4 � vx + 2 

5 

5 5 Yx - 2 S(Yx - 2) 
(c) Vx + 2 

= Yx + 2 • Yx - 2 
= x - 4 ' 

x * 4 

s s Vx+2 sVx+-2 
(d) Vx+2 = Vx+2 . Vx+2 = x + 2 

PROGRESS CHECK 

Rationalize the denominator. Assume all radicals denote real numbers. 

� -6 4 
(a) \/3xY (b) V2 + v6 (c) Vx _ Vy' x * y 



Operations with 
Rad lea II 
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ANSWERS 

(a) -3y2v'lzy Cb> � cv2 - v6> 4(Vx + vY) (c) x - y  
EXAMPLE 6 

Write in simplified form. Assume all radicals denote real numbers. 

(a) "W (b) "f, y > O  (c) 62 "� 
SOLUTION 

(a) � = � = � yY = y yY 
(b) 

� _ v'(4x2)(2x) _ � v'h _ 2xv'h 
-.y-y- - vY - vY - vY 

- 2x v'h � - 2xv'iXY 
- vY · 0 - y 

(c) 61?._ = � = fj. = fj. · � This multiplier will produce V?. VY. vy2 vy vy vy2 
Vx� 

y 
PROGRESS CHECK 

Write in simplified form. All radicals denote real numbers. 

(a) v'7s 
ANSWERS 

(a) 5 V3 

(b) !¥-
(b) 

3lxl3 v% 
y 

(c) � -w (d) �J2x3y5 ' X, y > Q 

(c) bc2 � (d) _i'. �  2 

We can add or subtract expressions involving exactly the same radical forms. For 
example, 

2 v'2 + 3 Y2 = s v2 

since 

2 v2 + 3 Y2 = (2 + 3) v2 = 5 v2 

And 

3 V?Y -
7 � = -4 V?Y 
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* 

EXERCISE SET 1.7 

EXAMPLE 7 

(a) 7 Vs +  4 VJ - 9 Vs = -2 Vs +  4 v3 
(b) � - ! v'.zy - 3 � + 4 v.zy = -2 � + 7_ v.zy 2 2 
WARNING 

You can perform addition only with identical radical fonns. Adding unlike rad
icals is one of the most common mistakes made by students in algebra! You can 
easily verify that 

Y9 + v'i6 = 3 + 4 = 7 
The product of % and "V'b can be readily simplified only when m = n. 

Thus, 

but 

cannot be readily simplified. 

EXAMPLE 8 
Multiply and simplify. 

(a) 2 � · � = 2 � = 2xy vy· 
(b) V?b vQj, f/Qij2 = � vQj, 

In Exercises 1 - 1 2 simplify, and write the answer using only positive exponents. 

1 .  1 63'4 2. ( - 1 25)- 113 3. (-64)-213 

5 .  2xl/3 6. y-2/3 7. (x3'2) 116 
x-314 y 1'5 x213 

9. (x1'3y2)6 10. (x6y4)- 112 1 1 .  �:�r5 

In Exercises 1 3- 1 8 write the expression in radical form. 

1 3 . (�)2'5 14. x213 15 . a314 

17 . ( 1 2x3y-2)2/3 18 . (8 r3/2 -x-2y-4 3 

4. c114 c-213 
1 254'3 8. 1 252/3 

12 . ��:r/3 

16 . (-8x2)21s 



In Exercises 1 9-24 write the expression in exponent form. 

19 . @ 20. V32 2 1 .  I 

VN)2 
23. ffe 24. v(2a2b3)4 

In Exercises 25-33 evaluate the expression. 

25. � 26. It 27. � 
29. v(-5)2 30 . JR) 3 1 .  � [�ro 33. ( 14.43)312 

- - In Exercises 34-36 provide a real value for each variable to demonstrate the result. 

34. W * x 35 . Yx2 + y2 * x + y 36. Vx vY * vry 

22. y;; 

28. % 7 
32. ti 

In Exercises 37-56 write the expression in simplified form. (Every variable represents a positive real number. )  

37. v4s 38. v'200 39. €4 40. v? 
4 1 .  V7 42. � 43 . � 44. VxY 
45. Yx9 46. v24bwc14 47. � 48. Y20x5y7z4 

� 4 l /y 49. 50. 3Vil 5 1 .  V3y 52. 

4x2 8a2b2 53. v'h 54. 2 v'2b 55. vrxy 56. �48x8y6z2 

In Exercises 57-66 simplify and combine terms . 

57. 2v'3 + 5v'3 58. 4Vil - 6Vi! 
59. 3Vx + 4Yx 60. 3Vz + 5Vz - 2Vz 
6 1 .  2 v'27 + v'i2 - v4s 62 . v2o - 4 v'4s + v8o 

63. V4o + v'4s - V'i35 + 2v8o 64 . � - 3� + fi. 
65. 2Vs - (3Vs + 4Vs) 66. 2VI8 - (3vlz - 2\/?s) 
In Exercises 67-74 multiply and simplify. 

67. v3(v3 + 4) 68 . Vs(Vz - \/3) 69. 3V?_Y V'if 70. -4V'.ry3 V?Y2 
7 1 .  (Vz - v'3)2 72 . (Vs - 2Yl) (Vz + 2Vs) 
73. (v3x + v'2J) (v3x - 2v'2J) 74. (Vh + 3) (Vh - 3) 
In Exercises 75-86 rationalize the denominator. 

3 -3 -2 3 75. v'2 + 3 76. v'7 - 9  77. v'3 - 4  78. Vx - 5  
-3 4 -3 v'3 79. 3Va + l 

80. 2 - v'2Y 8 1 .  5 + VsY 82. v'3 - 5 
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v'2 + 1 
83. � 

v2 - 1 

Vs + V3 
84. v'5 - V3 85 v6 + v'2 

. V3 - v'2 
2Va 

86. vh + Vy 
111 Exercises 87-88 provide real values for x and y and a po itive integer value for n to demonstrate the result . 

87. Vx + Vy :/= Yx+Y 88. 'i/ X' + yn :/= X + y 

89. Find the step in the following "proof " that is incor
rect. Explain. 

90. Prove that labl = lal lbl. (Hint: Begin with 
labl = vc;;b5'1-.)  

1 = VJ = Y (- I )(- I ) = v=t v=t = - 1 

1.8 
COMPLEX NUMBERS 

One of the central problems in algebra is to find solutions to a given polynomial 
equation. This problem will be di cussed in later chapters of this book . For now, 
observe that there is no real number that satisfies a simple polynomial equation 
like 

x2 = -4 

since the square of a real number is always nonnegative . 
To resolve this problem, mathematicians created a new number system built 

upon an "imaginary unit" i, defined by i = V-T. This number i has the prop
erty that when we square both sides of the equation we have i2 = - I ,  a result that 
cannot be obtained with real numbers . By definition, 

We also assume that i behaves according to all the algebraic laws we have 
already developed (with the exception of the rules for inequalities for real num
bers). This allows us to simplify higher powers of i. Thus, 

i3 = i2 • i = ( - l )i = -i 
1-4 = i2 . i2 = ( - l )( - l )  = l 

Now it's  easy to simplify in when n is any natural number. Since 1-4 = 1, we 
simply seek the highest multiple of 4 which is less than or equal to n. For exam
ple, 

;5 = 1-4 • i = ( I )  · i = i 
i27 = 

;24 . ;3 = (1-4)6 . ;3 = ( 1 )6 . ;3 = ;3 = -i 

EXAMPLE 1 

Simplify. 
(a) ;s • (b) - ;74 

SOLUTION 

(a) ;s 1 = ;48 .  i3 = (i-4) 12 . ;3 = ( 1 ) 1 2 . i3 = ;3 = -i 
(b) -j74 = - ;72 . ;2 = - (1-4) 18 . i2 = -( 1 ) 18 . ;2 = - ( 1 )(- l )  = ] 
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It is easy also to write square roots of negative numbers in terms of i. For 
example , 

V-2s = iv'25 = 5i 
and, in general , we define 

for a >  0 

Any number of the form bi, where b is a real number, is called an imaginary 
number. 

WARNING 

v=4v=9 o1- v36 
The rule Va · Vb = Vab holds only when a �  0 and b ;:::: 0. Instead, write 

vC4\/=9 = 2i . 3i = 6i2 = -6 

Having created imaginary numbers, we next combine real and imaginary 
numbers. We say that a +  bi, where a and b are  real numbers, is a complex 
number. The number a is called the real part of a +  bi and b is calJed the 
imaginary part. The following are examples of complex numbers. 

3 + 2i 2 - i -2i i + !i 5 5 

Note that every real number a can be written as a complex number by choosing 
b = 0. Thus, 

a =  a +  Oi 

We see that the real number system is a subset of the complex number system. 
The desire to find solutions to every quadratic equation has led mathematicians to 
create a more comprehensive number system, which incorporates an previous 
number systems .  

Will you have to learn still more number systems? The answer, fortunately, 
is a resounding "No!" We will show in a later chapter that complex numbers are 
all that we need to provide solutions to any polynomial equation . 

EXAMPLE 2 

Write as a complex number. 

(a) 
I 

2 
(b) V=9 (c) - 1 - \/=4 
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Addition and 
Subtraction of Complex 
Numbers 

SOLUTION 

(a) _! = _! + Oi 2 2 

(b) v=9 = i\19 = 3i = 0 + 3i 
(c) - 1 - V=4 = - 1 - ;\14 = - l - 2i 

Don't be disturbed by the word "complex . "  You already have all the basic 
tools you will need to tackle this number system. We will next define operations 
with complex numbers in such a way that the rules for the real numbers and the 
imaginary unit i continue to hold. We begin with equality and say that two 
complex numbers are equal if their real parts are equal and their imaginary parts 
are equal; that is, 

EXAMPLE 3 

a + bi = c + di if a = c and b = d 

Solve the equation x + 3i = 6 - yi for x and y. 

SOLUTION 
Equating the real parts, we have x = 6; equating the imaginary parts, 3 = -y or 
y =  -3 .  

Complex numbers are added and subtracted by adding or subtracting the real 
parts and by adding or subtracting the imaginary parts . 

(a + bi) + (c + di) = (a + c) + (b + d)i 
(a + bi) - (c + di) = (a - c) + (b - d)i 

Note that the sum or difference of two complex numbers is again a complex 
number. 

EXAMPLE 4 
Perform the indicated operations. 
(a) (7 - 21) + (4 - 3i) (b) 14 - (3 - 8i) 

SOLUTION 
(a) (7 - 21) + (4 - 3i) = (7 + 4) + (-2 - 3)i = l l - Si 
(b) 14 - (3 - Si) = ( 14 - 3) + Si = 1 1  + Si 

PROGRESS CHECK 
Perform the indicated operations. 
(a) ( - 9  + 3i) + (6 - 2i) (b) 7i - (3 + 91) 



Multlpllcotlon of 
Complex Numbers 

EXERCISE SET 1.8 
Simplify in Exercises 1 -9. 

I . ,«> 

5 .  -;33 
9. -;-25 

ANSWERS 
(a) -3 + i  (b) -3 - 2i 

1.8 COMPLEX NUMBERS 55 

We now define multiplication of complex numbers in a manner that permits 
the commutative, associative, and distributive laws to hold, along with the def
inition i2 = - 1 .  We must have 

(a + bi)(c + di) = a(c + di) + bi(c + di) 
= ac + adi + bci + bdi2 
= ac + (ad + bc)i + bd( - 1 ) 
= (ac - bd) + (ad + bc)i 

The rule for multiplication is 

(a + bi)(c + dz) = (ac - bd) + (ad + bc)i 

This result is significant because it demonstrates that the product of two complex 
numbers is again a complex number. It need not be memorized; simply use the 
distributive law to form all the products and the substitution i2 = - I to simplify .  

EXAMPLE 5 
Find the product of (2 - 3i) and (7 + 51). 

SOLUTION 

PROGRESS CHECK 
Find the product. 

(2 - 3i)(7 + 5i) = 2(7 + 51) - 3i(7 + 51) 
= 14 + IOi - 2 1 i - 1 5i2 
= 14 - l l i - 1 5(- 1) 
= 29 - l l i  

(a) (-3 - i)(4 - 21) (b) (-4 - 21)(2 - 31) 

ANSWERS 
(a) - 14 + 2i 

2. ;27 
6. ;- 15 

(b) - 14 + Si 

3 .  i83 

7 . ;-84 
4. -;54 
8 .  -;39 

In Exercises 1 0-21 write the number in the form a +  bi. 

10. 2 1 1 .  
I 
2 1 2. -0.3 1 3 .  V-25 
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14 .  -\/-5 
1 8 . _1_ _ �  

2 

1 5 .  -v'=36 
1 9 .  0 . 3  - Y-98 

In Exercises 22-26 solve for x and for y. 

22. (x + 2) + (2y - 1 )i = - l + 5i 

24. (tx + 2) + (3y - 2)i = 4 - 7i 

26. (y - 2) + (5x - 3)i = 5 

16. -V-18 
20. -0.5 + V-32 

1 7 .  3-V-49 

2 1 .  -2 - V-16 

23. (3x - I )  + (y + 5)i = I - 3i 

25 . (2y + I )  - (2x - l )i = -8 + 3i 

In Exercises 27-42 compute the answer and write it in the form a + bi. 

27. 2i + (3 - i) 28 . -3i + (2 - 5i) 29. 2 + 3i + (3 - 2i) 30. (3 - 2i) - ( 2 + �i) 
3 1 .  -3 - 5 i  - ( 2  - i) 32. (t - ;) + ( J - �i) 33. -2i(3 + i) 34. 3i(2 - i) 

35. 
'( l ·) 36. 

i ( 4 - i) 37. (2 - i) (2 + i) I -2 + I ' _ __  , 
2 2 

38. (5 + i) (2 - 3i) 

39. (-2 - 2i) (-4 - 3i) 40. (2 + 5i) ( I - 3i) 4 1 .  ( 3  - 2i) (2 - i) 42. ( 4 - 31) (2 + 3i) 

In Exercises 43-46 evaluate lhe polynomial :? - 2x + 5 for the given complex value of x. 
43. I + 2i 44. 2 - i 45. I - i 46. I - 2i 

47. Prove that lhe commutative law of addition holds for 50. Prove that -a - bi is the additive inverse of the com-
the set of complex numbers. plex number a +  bi. 

48. Prove thal the commutative law of multiplication 
holds for the set of complex numbers . 

49. Prove that 0 + Oi is the additive identity and I + Oi is 
the multiplicative identity for the set of complex num
bers. 

TERMS AND SYMBOLS 
set (p. I ) 
element, member (p. I ) 
{ } (p. 1 )  
E (p. I )  
l (p.  I ) 
subset (p. 2) 
natural numbers (p. 2) 
integers (p. 2) 
rational numbers (p .  2) 
irrational numbers (p. 3) 
real number system (p. 3) 
equal (p. 5) 
factor (p. 7) 
real number line (p.  IO) 
origin (p. IO) 
nonnegative (p. IO) 
< , > , s , 2: (p. 1 0) 
inequality symbols (p. 1 0) 

ioequal ities (p. 1 1  ) 
absolute value (p. 12) 
I I (p .  12) 
AB (p. 1 3) 
variable (p. 1 5 )  
algebraic expression 

(p. 1 5) 
constant (p. 1 5) 
algebraic operations (p.  15) 
evaluate (p. I 5) 
base (p. 1 5) 
exponent (p. 1 5) 
power (p .  1 5) 
polynomial (p. 17) 
monomial (p.  1 7) 
coefficienl (p. 17 )  
degree of a monomial 

(p. 1 7) 

5 1 .  Prove the distributive property for the set of complex 
numbers. 

52. For what values of x is v1x'"='3 a real number? 

53. For what values of y i Y2y - lO a real number? 

degree of a polynomial 
(p. 1 7) 

constant term (p. 17 )  
leading coefficient (p. 1 7) 
zero polynomial (p. 1 7) 
like terms (p. I 8) 
factoring (p .  23) 
prime polynomial (p. 30) 
irreducible polynomial 

(p. 30) 
algebraic fraction (p. 3 1 )  
rational expression (p. 3 1 )  
cancellation principle 

(p. 32) 
least common denominator 

(p. 34) 
LCD (p. 34) 
equivalent fraction (p. 34) 

complex fraction (p. 36) 
nth rool (p. 42) 
priqcipal nth root (p. 43) 
radical sign (p. 45) 
principal square ro01 

(p. 45) 
radical form (p. 45) 
simplified form of a radical 

(p. 47) 
rationalizing 1he denomina-

tor (p. 48) 
imaginary unit i (p. 52) 
imaginary number (p. 53) 
complex number (p. 53) 
real part (p. 53) 
imaginary part (p.  53) 



KEY IDEAS FOR REVIEW 
D A set is simply a collection of objects or numbers. 

D The real number system is composed of the rational and 
irrational numbers. The rational numbers are those that 
can be written as the ratio of two integers, p/q, with 
q '¢ O; the irrational numbers cannot be written as a ratio 
of integers. 

D The real number system satisfies a number of important 
properties. These are 

closure commutativity associativity 
identities inverses distributivity 

D If two numbers are identical, we say that they are equal . 
Equality satisfies these basic properties 

reflexive property symmetric property 
transitive property substitution property 

D There is a one-to-one correspondence between the set of 
all real numbers and the set of all points on the real 
number line. That is, for every point on the line there is a 
real number and for every real number there is a point on 
the line. 

D Algebraic statements using inequality symbols have 
straightforward geometric interpretations using the real 
number line. For example, a <  b says that a lies to the 
left of b on the real number line. 

D Inequalities can be operated on in the same manner as 
statements involving an equals sign, with one important 
exception. When an inequality is multiplied or divided 
by a negative number, the sense of the inequality is 
reversed. 

D Absolute value specifies distance independent of the 
direction. Three important properties of absolute value 
are 

lal � O  lal = I-al la - bl = lb - al 

D The distance between points A and B whose coordinates 
are a and b, respectively, is given by 

AB =  lb - al 
D Algebraic expressions of the form 

P = a,,r' + an- 1.x"- 1 + · · · + a1x + ao 
are called polynomials. 

REVIEW EXERCISES 
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D To add (subtract) polynomials, simply add (subtract) 
like terms. To multiply polynomials, form all possible 
products, using the rule for exponents: am� = am+n. 

D A polynomial is said to be factored when it  is written as 
a product of polynomials of lower degree. 

D Most of the rules of arithmetic for handling fractions 
carry over lo rational expressions. For example, the 
LCD has the same meaning except that we deal with 
polynomials in factored form rather than with inte
gers. 

D The rules for positive integer exponents also apply to 
zero and negative integer exponents and to rational 
exponents. 

D Radical notation is simply another way of writing a 
rational exponent. That is, efb = b11" . 

D If n is even and b is positive, there are two real numbers 
a such that b11" = a . Under these circumstances, we 
insist that the nth root be positive. That is, \'lb is a 
positive number if n is even and b is positive. Thus, 
Vl6 = 4. 

D We must write W = lxl to ensure that the result is a 
positive number. 

D To be in simplified form, a radical must satisfy the fol
lowing conditions. 

• 1\/7" has m < n.  

• 1\/7" has no common factors between m and n. 

• The denominator has been rationalized. 

D Complex numbers were created because there are no real 
numbers that satisfy such simple polynomial equations 
as x:2 + 5 = 0. 

D Using the imaginary unit i = v'=t, a complex number 
is of the form a + bi, where a and b are real num
bers. 

D The real number system is a subset of the complex num
ber system. 

Solutions to exercises who e numbers are in color are in the Solutions section in the back of the book. 

I .  I In Exercises 1 -3 write each set by listing its elements 
w"thin braces. 

I .  The set of natural numbers from -5 to 4, inclu
sive. 
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2. The set of integers from -3 to - 1 ,  inclusive. 

3 .  The sub et of x E S, S = {0.5 , I, 1 .5 , 2} such that 
x is an even integer. 

For Exercises 4-7 detennine whether the statement is 
true (T) or false (F). 
4. '\/7 is  a real number. 

5. -35 is a natural number. 

6. - 14 is not an integer. 

7 .  0 i s  an  irrational number. 

In Exercises 8- 1 1  identify the property of the real num
ber system that justifies the statement. All variables 
represent real numbers. 

8. (3a) + (-3a) = O  
9. (3 + 4)x = 3x + 4x 
IO. 2x + 2y + z = 2x + z + 2y 
1 1 .  9x · I  = 9x 

1 .2 In Exercises 1 2- 14 sketch the given set of numbers on 
a real number line. 

12 .  The negative real numbers. 

1 3 .  The real numbers x such that x > 4 .  
14. The real numbers x such that - I � x < I .  
1 5 .  Find the value of 1-31 - 1 1  - 51. 
1 6. Find PQ if the coordinates of P and Q are t 

and 6. respectively . 

1 . 3 17 .  A salesperson receives 3.25x + 0. 1 5y dollars, 
where x is the number of hours worked and y is 
the number of miles driven. Find the amount due 
the salesperson if x = 12  hours and y = 80 
miles. 

1 8 . Which of the following expressions are not poly
nomials. 

(a) -2xy2 + x2y 
(C) x- 112 + 5x2 - X 

(b) 3b2 + 2b - 6 

In Exercises 1 9  and 20 indicate the leading coefficient 
and the degree of each polynomial . 

19 . -0.5x1 + 6x3 - 5 20. 2x2 + 3x4 - 7x5 
In Exercises 2 1-23 perfonn the indicated operations. 

2 1 .  (3a2b2 - a1b + 2b - a) -
(2a2b2 + 2a1b - 2b - a) 

22. x(2x - l )(x + 2) 23. 3x(2x + 1 )2 

1 .4 In Exercises 24-29 factor each expression. 

24. 2x2 - 2 
25. x2 - 25y2 
26. 2a2 + 3ab + 6a + 9b 
27 . 4x2 + I 9x - 5 
28. x8 - 1 
29. 27r6 + Ss6 

1 . 5 In Exercises 30-33 perfonn the indicated operations 
and simplify. 

14(y - I) _ 9(x + y) 4 - x2 x - 2 30. 3(x2 - y2) ---:::;;;:- 3 1 .  2Y2 + 3Y 
a +  b a2 - 4b2 32· a + 2b · a2 - b2 

x2 - 2x - 3  x2 - 4x + 3  33 · i? - x  + 3x3 - 3x2 
In Exercises 34-37 find the LCD. 

34. - I  2 3 
2x2 ' x2 - 4 ' x - 2  
4 5 -3 35. ; , T-":; , (x _ l )2 

2 -4 x + 2 36· (x - l )y '  ?" 5(x - 1 )2 

y - 1 x - 2  3x 37· x2(y + I ) '  2xy - 2x' 4y2 + Sy +  4 
In Exercises 38-41 perfonn the indicated operations 
and simplify. 

4 38. 2 + -r---4 a -

40. 

3 2 
--· - --

x + 2  x - 1 
x - 1 

39. 3 2 
x2 - 16 - x - 4 

! + 1 
4 1 .  x2 + -x __ 

l x - x 
1 .6-ln Exercises 42-50 simplify ,  and express the answers 
I . 7 using only positive exponents. All variables are posi

tive numbers. 

42. (2a2b-3)-3 43. 2(a2 - 1 )0 44. ��6r413 
45.  

x3+n 46 . VsO 47. 2 
x" V'ii 

48. v;ry 49. �32x8y6 50. Yx 
Yx + vY 



Jn Exercises 5 1 -52 perform the indicated operations. 
Simplify the answer. 
5 1 .  � + 2� 52. (V3 + Vs)2 

1 . 8 53. Solve for x and for y: 
(x - 2) + (2y - l )i = -4 + 7i 

54. Simplify i47 .  

PROGRESS TEST 1A 

PROGRESS TEST 1A 59 

Jn Exercise 55-57 perform the indicated operations 
and write all answers in the form a +  bi. 

55. 2 + (6 - i) 
57. (4 - 3i) (2 + 3i) 

56. (2 + i)2 

In Problems 1 and 2 write each set by listing its elements 14 .  -2 .2x5 + 3x3 - 2x 15 .  14x6 - 2x + 1 
within braces. In Problems 16 and 1 7  perform the indicated opera-
I .  The set of positive, even integers less than 1 3 .  tions. 
2. The subset ofx E S, S = {- 1 , 2 , 3 , 5 , 7} , such that x is 16 .  3xy + 2x + 3y + 2 - ( l - y - x + xy) 

a multiple of 3 .  1 7 .  (a + 2 )  (3a2 - a +  5 )  
l n  Problems 3 and 4 determine whether the statement i s  true 
(T) or false (F) . 
3 .  - l . 36  i s  an irrational number. 
4. 1T is equal to ¥. 

In Problems 5 and 6 identify the property of the real number 
system that justifies the statement. All variables represent 
real numbers. 

5 .  xy(z + l )  = (z + l )xy 6. (-6) (-i) = I  

In Problems 7 and 8 sketch the given set of numbers on a 
real number line. 
7 .  The integers that are greater than -3 and less than or 

equal to 3 .  
8. The real numbers x such that -2  � x < 1 12 .  
9 .  Find the value of 12 - 3 1  - 14 - 21 .  

10 . Find AB if the coordinates of A and B are -6 and -4, 
respectively. 

1 1 .  The area of a region is given by the expression 
3x2 - xy. Find the area when x = 5 meters and 
y = 10 meters. 

. - ly - 2xl 12 . Evaluate the expression lxyl when x = 3 and 
y = - 1 .  

1 3 .  Which of  the following expressions are not polynomi
als? 
(a) x5 
(c) 4x3 + x 

(b) 5x-4y + 3x2 - y 
(d) 2x2 + 3x0 

In Problems 14  and 15 indicate the leading coefficient and 
the degree of each polynomial . 

In Problems 1 8  and 19  factor each expression. 
1 8 .  8a3b5 - 12a5b2 + 16a2b 19 .  4 - 9x2 
In Problems 20 and 2 1  perform the indicated operations and 
simplify. 

20. 

22. 

m4 (m2 n ) 3n2 7 9n . 2m3 
Find the LCD of 
- I  
2x2 

2 
4x2 - 4 

16 - x2 x - l 2 1 .  x2 - 3x - 4 . x + 4  

3 
x - 2  

In Problems 23 and 24 perform the indicated operations and 
simplify. 

2x 5 23 · x2 - 9 + 3x + 9 

4 2 ---24. x + l 
x - l 

In Problems 25-28 simplify ,  and express the answers using 
only positive exponents. 

25. 
(x112) -6 

26. L 
x213 yn - I 

27 . - 1  28. (2a2b- 1 )2 (x - 1 )0 
In Problems 29-31 perform the indicated operations. 

29. 3Y'24 - 2Vsl 30. (0 - 5)2 

3 1 .  ��- V9xY  
32 .  For what values of x is �  a real number? 
In Problems 33 and 34 perform the indicated operations and 
write all answers in the form a +  bi. 
33 .  (2 - i) + ( -3 + i )  34. (5 + 2i)(2 - 3i) 
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PROGRESS TEST 18 
In Problems 1 and 2 write each set by listing its elements 1 7 .  (b + 3) (-3b2 + 2b + 4) 
within braces. 

I .  The set of positive, odd integers less than 10. 
2. The subset of x E S, S = {O, 1 5 ,  12 , 24}, such that x is 

divisible by 3 .  
I n  Problems 3 and 4 determine whether the statement is true 
(T) or false (F). 
3. 19 .6 is a real number. 4. 'TT is equal to 3 . 14. 

In Problems 5 and 6 identify the property of the real number 
system that justifies the statement. All variables represent 
real numbers. 
5. a + b + c = c + a  + b 6. 2(3 + x) = 6 + 2x 

In Problems 7 and 8 sketch the given set of numbers on a 
real number line. 
7. The natural numbers that are less than 5 .  
8 .  The real numbers x such that � < x < 3 .  

12 - 5 1 + 1 1 - 51 Find the value of 1 _7 1  9 .  

IO .  Find AB if the coordinates of A and B are -2 and 5,  
respectively. 

1 1 .  The area of a trapezoid is given by the formula A = 
l:h(b + b') . Find the area if h = 4 meters, b = 3 
meters, and b' = 4 meters. 

1 2 .  Evaluate the expression lxl/lx - yl when x = -2 and 
y = -3 .  

1 3 .  Which of  the following expressions are not polynomi
als? 
(a) 3x2 + x- 1 - 2 (b) 2x3 - xy2 + x 
(c) 2x2y2 + xy - 4 (d) x2y + x1 12y + 2 

In Problems 14 and 1 5  indicate the leading coefficient and 
the degree of each polynomial . 
14 .  - 3x3 + 4x5 1 5 .  l .5x'0 - x9 +  17x8 
In Problems 16 and 1 7  perform the indicated operations. 
1 6. (2s2r3 - sr + st - s + t) -

(3s2r - 2s2t - 4sr - t + 3) 

In Problems 1 8  and 19  factor each expression. 
1 8 .  5r3s4 - 40r4s3t 19 .  2x2 + 7x - 4 
In Problems 20 and 2 1  perform the indicated operations and 
simplify. 

3x2(y - I ) + � 20· 6u2v3 2uv2 
x2 + 7x - 8 x 21 . x - x2 ' x2 + 8x 

22. Find the LCD of 
y - 1 x - 2  

x2(y + I )  2xy - 2x 
3x 

4y2 + Sy +  4 
In Problems 23 and 24 perform the indicated operations and 
simplify. 

-4 3 x I - x 2x 23 -- - -- + -- 24. _2 _ _ _  _ · x - 1 1 - x x - 1 x + x  x + I 
In Problems 25-28 simplify, and express the answers using 
only positive exponents . 

25 .  4x- 3 26. (b2)5(b3)6 x-2 
27 .  �1

8
2) 3/4 28. 2(x + 2)0 

-2 
In Problems 29-3 1 simplify the given expression. 

-4 29. vFyi7 30. Vx 2 x - 2 
3 1 .  

I 
For what values of x is , � a real number? 

vx - 2 
32 . 

In Problems 33 and 34 perform the indicated operations and 
write all answers in the form a + bi. 

33. (4 - 2i) - (2 - �i) 34. (3 - 2i) (2 - i) 



2.1 
LINEAR EQUATIONS 
IN ONE UNKNOWN 

SOLVING EQUATIONS 

EQUATIONS AND 
INEQUALITIES 
A major concern of algebra is the solution of equations. Does a given equation 
have a solution? Is it possible for an equation to have more than one solution? Is 
there a procedure for solving an equation? In this chapter we will explore the 
answers to these questions for polynomial equations of the first and second 
degree . We will also see that the ability to solve equations enables us to tackle a 
wide variety of applications and word problems. 

Linear inequalities also play an important role in solving word problems. 
For example ,  if we are required to combine food products in such a way that a 
specified minimum or maximum of protein is provided, we need to use inequal
ities .  Many important industries, including steel and petroleum refineries , use 
computers daily to solve problems that involve thousands of inequalities. The 
solutions to such problems enable a company to optimize its "product mix" and 
its profitability. 

Expressions of the form 

x - 2 = 0  

2x + 5 = � 

x2 - 9 = 0 3(2x - 5) = 3 

I 
2x + 3 = 5 x3 - 3x2 = 32 

are examples of equations in the unknown x. An equation states that two alge
braic expressions are equal . We refer to these expressions as the left-hand and 
right-hand sides of the equation . 

Our task is to find values of the unknown for which the equation holds true . 
These values are called solutions or roots of the equation , and the set of all 
solutions is called the solution set. For example, 2 is a solution of the equation 
3x - I = 5 since 3(2) - I =  5 .  However, -2 is not a solution since 3 (-2) -
1 * 5 .  

The solutions o f  an  equation depend on the number system we  are using. For 
example , the equation 2x - 5 has no integer solutions but does have a solution 

PAGE 61 
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Identities and 
Conditional Equations 

Equlvalent Equations 

among the rational numbers , namely �. Similarly, the equation x2 = -4 has 
no solutions among the real numbers but does have solutions if we consider com
plex numbers , namely 2i and -2i. The solution sets of these two equations 
are m and {2i, -2i}, respectively. 

We say that an equation is an identity if it is true for every real number for which 
both sides of the equation are defined. For example, the equation 

x2 - 1 = (x + 1 )(x - I )  

is an identity because it is true for all real numbers; that is, every real number is a 
solution of the equation. The equation 

x - 5 = 3  

is a false statement for all values of x except 8 . If, as in that equation, there are 
real-number values of x for which the sides of the equation, although both 
defined, are unequal, the equation is called a conditional equation. 

When we say that we want to ' ' solve an equation, ' '  we mean that we want to 
find all solutions or roots. If we can replace an equation with another, simpler 
equation that has the same solutions, we will have an approach to solving equa
tions. Equations having the same solutions are called equivalent equations. For 
example, 3x - 1 = 5 and 3x = 6 are equivalent equations because it can be 
shown that {2} is the solution set of both equations. 

There are two important rules that allow us to replace an equation with an 
equivalent equation. 

The solutions of a given equation are not affected by the following opera
tions: 
1. addition or subtraction of the same number or expression on both sides of the 
equation 

2. multiplication or division of both sides of the equation by a number other 
than 0 

EXAMPLE 1 

Solve 3x + 4 = 1 3 . 

SOLUTION 

We apply the preceding rules to this equation. The strategy is to isolate x, so we 
subtract 4 from both sides of the equation. 

3x + 4 -4 = 1 3  - 4 
3x = 9 

Dividing both sides by 3, we obtain the solution 
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x = 3  

It is generally a good idea to check by substitution, to make sure that 3 does 
indeed satisfy the original equation. 

3x + 4 :b 1 3  

3(3) + 4:b 1 3  

1 3 =  1 3  

To be technically accurate, the solution of the equation in Example l i s  3 ,  
while x = 3 is an  equation that is equivalent to the original equation. Now that 
this distinction is understood, we will join in the common usage that says that the 
equation 3x + 4 = 1 3  "has the solution x = 3 . "  

When the given equation contains rational expressions , we eliminate frac
tions by first multiplying by the least common denominator of all of the fractions. 
This technique is illustrated in Examples 2, 3, and 4.  

EXAMPLE 2 
5 4 3 

Solve the equation 6x - 3 = 5x + 1 .  

SOLUTION 
We first eliminate fractions by multiplying both sides of the equation by the LCD 
of all fractions, which is 30. 

3o(�x - �) = 30Gx +  1 ) 
25x - 40 = 18x + 30 

7x = 70 
x = IO 

The student should verify that x = 10  is a solution of the original equation. 

PROGRESS CHECK 

Solve and check .  

(a) 
2 3 

- - (x - 5) = - (x + l )  3 2 

ANSWERS 
1 1  

(a) 1 3  (b) - 24 
5 
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SOLVING LINEAR 
EQUATIONS 

Roots ot a Linear 
Equation 

The equations we have solved are all of the first degree and involve only one 
unknown. Such equations are called first-degree equations in one unknown, or 
more simply, linear equations. The general form of such equations is 

ax + b = O 

where a and b are any real numbers and a =t- 0. Let's see how we would solve this 
equation. 

ax + b = O  
ax + b - b = 0 - b Subtract b from both sides. 

ax = -b  
ax -b 
a a 

b x = - a 

Divide both sides by a =t- 0.  

We have thus obtained the following result. 

The bnear equation ax +  b = 0, a =t- 0, has exactly one solution: - bla . 

Sometimes we are led to linear equations in the course of solving other 
equations. The following example illustrates this situation . 

EXAMPLE 3 
Sx 1 

Solve -- - 3 = --. 
x + 3  x + 3 

SOLUTION 
The LCD of all fractions is x + 3 .  Multiplying both sides of the equation by x + 3 
to eliminate fractions, we obtain 

5x - 3(x + 3) = 1 

5x - 3x - 9 = 1 

2x = 10  

x = 5  

Checking the solution , we have 

5(5) 
_ 3 ,;, _I_ 

5 + 3  5 + 3  
25 - 3 ,,;.! 
8 8 

1 1 
- � -

8 - 8 
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We said earlier that multiplication of both sides of an equation by any non
zero number results in an equivalent equation . What happens if we multiply an 
equation by an expression that contains an unknown? In Example 3 this procedure 
worked just fine and gave us a solution. But this will not always be so, because 
the answer we obtain may produce a zero denominator when substituted in the 
original equation . The following rule must therefore be carefully observed. 

When we multiply or divide both sides of an equation by an expression that 
contains the unknown, the resulting equation might not be equivalent to the 
original equation. The answer obtained must be substituted in the original equa
tion to verify that it is a solution. 

EXAMPLE 4 
8x + 1 7x + 3 

Solve and check: -- + 4 = --. x - 2  · x - 2  

SOLUTION 
The LCD of all fractions is x - 2. Multiplying both sides of the equation by 
x - 2,  we eliminate fractions and 6btain 

8x + l + 4(x - 2) = 7x + 3 
Bx + l + 4x - 8 = 1x + 3 

5x = 10 
x = 2  

Checking our answer, we find that x = 2 is not a solution, since substituting x = 2 
in the original equation yields a denominator of zero. We conclude that the given 
equation has no solution. 

PROGRESS CHECK 
Solve and check. 

3 1 6 
(a) - - I = - - -

x 2 x (b) 
2x 2 

- -- = l + --x + l x + l 

ANSWERS 
(a) x = 6 (b) no solution 

EXAMPLE 5 
Solve the equation 2x + l = 2x - 3 .  

SOLUTION 
Subtracting 2x from both sides, we have 



66 EQUATIONS AND INEQUALmES 

2x +  l - 2x = 2x - 3 - 2x 
] = -3  

This equivalent equation is a contradiction. Conclusion: not every equation has a 
solution! 

EXERCISE SET 2.1 
In Exercises 1 -4 determine whether the given statement is true (T) or false (F). 

l .  x = -S is a solution of 2x + 3 = -7 .  
S . 1 . f S 2 .  x = 2 1 s  a so  utmn o 3x - 4 = 2· 

3 .  x = 4 � k , k * 4, is a solution of kx + 6 = 4x. 

4. x = ;k , k * 0, is a solution of 2kx + 7 = Sx. 

In Exercises S-24 solve the given linear equation and check your answer. 

s .  3x + S = - I 6. Sr + 10 = 0 

9 .  3 10 . 2 -t - 2 = 7  - 1  = --x + l 2 3 
1 3 .  -Sx + 8 = 3x - 4 14. 2x - 1 = 3x + 2  
17 .  2(3b + I )  = 3b - 4 
19 .  4(x - l )  = 2(x + 3) 

7. 

1 1 .  

I S .  
1 8 .  
20. 

2 = 3x + 4  

I 2 0 = --a --
2 3 

-2x + 6 = -Sx - 4 
-3(2x + l )  = -8x + I 
-3(x - 2) = 2(x + 4) 

8. I 
-s + 2 = 4 2 

1 2 .  4r + 4 = 3r - 2 

16 .  6x + 4 = -3x - S 

2 1 .  2(x + 4) - l = 0 22. 3a + 2 - 2(a - l )  = 3(2a + 3) 
23. - 4(2x + l) - (x - 2) = - 1 1  
Solve for x in Exercises 2S-28. 
2S. kx + 8 = Sx 
27. 2 - k + S(x - I ) = 3 
Solve and check in Exercises 29-44. 

29. 

33 .  

37 .  

39 .  

4 1 . 

43. 

� 5 
2 3 

�l = � 
y + 3  7 

2 2 3 -- + -- = --x - 2  x2 - 4  x + 2  
x 3 

-- - 1 = --

x - 1 x + I 
4 I 3b + 2 - - -- =  b2 + 2b - 3  b b + 3  
3r + I_ + 2 = Sr - 2 
r + 3 r + 3  

30. 

34. 

3x 
_ S = ! 

4 4 
I - 4x 9 
-- = -I - 2x 8 

24. 

26. 
28. 

3 1 .  

3S .  

38. 

40. 

42. 

44. 

3(a + 2) - 2(a - 3) = 0 

8 - 2kx = -3x 
3(2 + 3k) + 4(x - 2) = S 

� + I = l_ x x 
I I 2 

-- + - = --x - 2  2 x - 2  
3 2 s 

x - l + x + l = x2 - I  
_2_ + I = x + 2 
x - 2  x - 2  

3 2x - I -- +  x2 - 2x x2 + 2x - 8  
2x - I  3x - 2  
-- + 3 = --x - S  S - x 

32. 

36. 

2 

S 3 I - - - = -a 2 4 
4 I -- - 2 = --x - 4  x - 4  

x + 4  
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In Exercises 45-48 indicate whether the equation is an identity (I) or a conditional equation (C). 

45 . x2 + x - 2 = (x + 2)(x - I )  46. (x - 2)2 = x2 - 4x + 2 
47 . 2x +  I = 3x - I 48. 3x - 5 = 4x - x - 2 - 3 
In Exercises 49-54 write (T) if the equations within each exercise are all equivalent equations and (F) if they are not 
equivalent. 
49. 2x - 3 = 5  2x = 8 x = 4  50. 5(x - I ) = 10  x - 1 = 2 x = 3  
5 1 .  x(x - 1 )  = 5x x - 1 = 5 x = 6  52. x = 5  x2 = 25 
53. 3(x2 + 2x + I ) = -6 

x2 + 2x + I =  -2 
(x + 1 )2 = - 2  

2.2 

APPLICATIONS 

54. (x + 3)(x - I ) = x2 - 2x + 1 
(x + 3 )(x - 1 )  = (x - 1 )2 
x + 3 = x - I 

Many applied problems lead to linear equations that must be solved. The solution 
procedure described in Section 2 . 1 was already familiar to you and probably 
presents no difficulties. The challenge of applied problems is translating words 
into appropriate algebraic forms .  This translation process requires an ability that 
you can acquire only with practice. 

The steps listed here can guide you in solving word problems . 

Step 1 .  Read the problem carefully to understand what is required . 
Step 2 .  Separate what is known from what is to be found. 
Step 3. In many problems, the unknown quantity is the answer to a question such 

as "how much" or "how many . "  Let an algebraic symbol,  say x, rep
resent the unknown. 

Step 4. If possible, represent other quantities in the problem in terms of x. 
Step 5. Find the relationship in the problem that you can express as an equation 

(or an inequality) .  
Step 6.  Solve and check . 

The words and phrases in Table 1 should prove helpful in translating a word 
problem into an algebraic expression that can be solved. 

EXAMPLE 1 

If you pay $66 for a car radio after receiving a 25% discount, what was the price 
of the radio before the discount? 

SOLUTION 

Let x = the price of the radio (in dollars) before the discount. Then 

0.25x = the amount discounted 

and the price of the radio after the discount is given by 

x - 0.25x 



COIN PROBLEMS 

TABLE 1 

Word or phrase 

Sum 
Difference 

Product 

Quotient 

Exceeds 
More than 
More of 
Twice 

ls or equals 

Hence 

Algebraic 
symbol 

+ 

x or · 

-7- or I 

Example 

Sum of two numbers 
Difference of two numbers 
Difference of a number and 3 

Product of two numbers 

Quotient of two numbers 

a exceeds b by 3 
a is 3 more than b 
There are 3 more of a than of b 

Twice a number 
Twice the difference of x and 3 
3 more than twice a number 
3 less than twice a number 
The sum of a number and 3 is 15 .  

x - 0.25x = 66 
0. 75x = 66 

66 x = 0.75 = 88 

The price of the radio was $88 before the discount. 

Algebraic 
expression 

a + b  

a - b  
x - 3  

a · b  

a b or alb 

a = b + 3  
or 

a - 3 = b  

2x 
2(x - 3) 
2x + 3 
2x - 3 

x + 3 = 15  

Coin problems are easy to interpret if  you keep this in  mind: Always distinguish 
between the number of coins and the value of the coins. You will also find it 
helpful to use a chart, as in the following example. 

A purse contains $3.20 in quarters and dimes. If there are 3 more quarter'.; than 
dimes, how many coins of each type are there? 

In this problem, we may let the unknown represent either the number of quarters 
or the number of dimes. We make a choice . Let 

n = the number of quarters 
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Then 

n - 3 = the number of dimes 

since there are 3 more quarters than dimes. 
The following table is useful in further analysis of the problem. 

Number of coins x Number of cents in each coin = Value in cents 

Quarters n 25 

Dimes n - 3  J O  

We  know that 

Then 

total value = (value of quarters) + (value of dimes) 

320 = 25n + l O(n - 3) 

320 = 25n + 1 0n - 30 

350 = 35n 

10 = n 

n = number of quarters = 10  

n - 3 = number of dimes = 7 

Now verify that the total value of all the coins is $3 . 20.  

25n 

IO(n - 3) 

Interest is the fee charged for borrowing money. In this section we will deal only 
with simple interest, which assumes the fee to be a fixed percentage r of the 
amount borrowed. We call the amount borrowed the principal and denote it 
by P. 

If the principal P is borrowed at a simple interest rate r, then the interest due 
at the end of each year is Pr, and the total interest I due at the end of t years 
is 

I =  Prt 

Consequently , if S is the total amount owed at the end of t years , then 

S = P + Prt 

since both the principal and interest are to be repaid. 
The basic formulas that we have derived for simple interest calculations 

are 

I =  Prt 
S = P + Prt 
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DISTANCE (UNIFORM 
MOTION) PROBLEMS 

EXAMPLE 3 
A part of $7000 was borrowed at 6% simple annual interest and the remainder at 
8% . If the total amount of interest due after 3 years is $1 380, how much was 
borrowed at each rate? 

SOLUTION 
Let 

Then 

n = the amount borrowed at 6% 

7000 - n = the amount borrowed at 8% 

since the total amount is $7000. We can display the information in table form 
using the equation I =  Prt. 

p x r x t = Interest 

6% portion n 0.06 3 0. 18n 

8% portion 7000 - n 0.08 3 0.24(7000 - n) 

Note that we write the rate r in its decimal form, so that 6% = 0.06 and 8% = 

0.08 .  
Since the total interest of  $ 1 380 i s  the sum of the interest from the two 

portions , we have 

1 380 = 0. 1 8n + 0. 24(7000 - n) 

1 380 = 0. 1 8n + 1680 - 0.24n 

0.06n = 300 

n = 5000 

We conclude that $5000 was borrowed at 6% and $2000 was borrowed at 
8% . 

Here is the key to the solution of distance problems. 

Distance = rate x time 

d =  r ·t 

The relationships that permit you to write an equation are sometimes 
obscured by the words. Here are some questions to ask as you set up a distance 
problem. 
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(a) Are there two distances that are equal? (Will two objects have traveled the 
same distance? Is the distance on a return trip the same as the distance 
going?) 

(b) ls the sum (or difference) of two distances equal to a constant? (When two 
objects are traveling toward each other, they meet when the sum of the 
distances traveled by them equals the original distance between them. )  

EXAM PLE  4 

Two trains leave New York for Chicago. The first train travels at an average 
speed of 60 miles per hour. The second train, which departs an hour later, travels 
at an average speed of 80 miles per hour. How long will it take the second train to 
overtake the first train? 

SOLUTION 

Since we are interested in the time the second train travels, we choose to let 

t = the number of hours the second train travels 

Then 

t + 1 = the number of hours the first train travels 

since the first train departs one hour earlier. 

Rate x Time = Distance 

First train 60 I +  l 60(t + l ) 
Second train 80 I 80t 

At the moment the second train overtakes the first, they must both have traveled 
the same distance . Thus, 

60(1 + 1 )  = 80t 

601 + 60 = 80t 

60 = 20t 

3 = t  

It takes the second train 3 hours to catch up with the first train.  

One type of mixture problem involves mixing commodities, say two or more 
types of nuts, to obtain a mixture with a desired value . If the commodities are 
measured in pounds, the relationships we need are 

number of pounds x price per pound = value of commodity 
pounds in mixture = sum of pounds of each commodity 

value of mixture = sum of values of individual commodities 
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WORK PROBlEMS 

EXAMPLE 5 
How many pounds of Brazilian coffee worth $5 per pound must be mixed with 20 
pounds of Colombian coffee worth $4 per pound to produce a mixture worth 
$4.20 per pound? 

SOLUTION 
Let n = number of pounds of Brazilian coffee. We display all the information, 
using cents in place of dollars. 

Type of coffee Number of pounds x Price per pound = Value (in cents) 

Brazilian n 500 500n 

Colombian 20 400 8000 

Mixture n + 20 420 420(n + 20) 

Note that the weight of the mixture equals the sum of the weights of the Brazilian 
and Colombian coffees that make up the mixture. Since the value of the mixture 
is the sum of the values of the two types of coffee, 

value of mixture '"' (value of Brazilian) + (value of Colombian) 

420(n + 20) = 500n + 8000 
420n + 8400 = 500n + 8000 

400 = 80n 
5 = n  

We must add 5 pounds of Brazilian coffee to make the required mixture. 

Work problems typically involve two or more.people or machines working on the 
same task. The key to these problems i to express the rate of work per unit of 
time, whether an hour, a day , a week, or some other unit . For example, if a 
machine can do a job in 5 days, then 

rate of machine = � job per day 

If this machine were used for two days, it would perform � of the job. In sum
mary: 

If a machine (or person) can complete a job in n days, then 

Rate of machine (or person) =
! 

job per day n 
Work done = Rate x Time 
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EXAMPLE 6 

Using a small mower, at 1 2  noon a student begins to mow a lawn, a job that 
would take him 9 hours working a1one. At I P.M. another student, using a tractor, 
joins him, and they compJete the job iogether at 3 P.M . How many hours would it 
take to do the job by tractor only? 

SOLUTION 

Let x = number of hours to do the job by tractor alone. The small mower works 
from 1 2  noon to 3 P.M . ,  or 3 hours; the tractor is used from 1 P.M.  to 3 P.M . ,  or 2 
hours . 

All the information can be displayed in table form. 

Rate x Time = 

Small mower I 
3 

9 

Tractor I 2 
x 

Since 

work done by + work done by 1 h 1 
. 

b 
small mower tractor 

= w 0 e JO 

3 
9 

+ 2 
= 1 

x 

To solve , multiply both sides by the LCD, which is 9x. 

9x( � + �) = 9x · 1 

3x + 1 8  = 9x 

x = 3  

Thus, by tractor alone, the job can be done in 3 hours . 

The circumference C of a circle is given by the formula 

C = 21Tr 

Work done 

3 
9 
2 
x 

where r is the radius of the circle. For every value of r, the formula gives us a 
value of C. If r = 20, we have 

c = 27T(20) = 407T 

It is sometimes convenient to be able to tum a formula around, that is ,  to be 
able to solve for a different variable . For example, if we want to express the 
radius of a circle in terms of the circumference, we have 
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C = 27Tr 

C 27Tr 
27T 277' 

c - = r  277' 

Dividing by 27T 

Now, given a value of C, we can determine a value of r. 

EXAMPLE 7 
If an amount P is borrowed at the simple annual interest rate r, then the amount S 
due at the end of t years is 

S = P + Prt 

Solve for P. 

SOLUTION 
S = P + Prt 

S = P( l + rt) Common factor P 

EXERCISE SET 22 

s 
-- = P  
l + rt Dividing both sides by ( 1 + rt) 

In Exercises 1 -3 let n represent the unknown. Translate from words to an algebraic expression or equation . 
I .  The number of blue chips is 3 more than twice the 3 .  Five less than 6 times a number is 26. 

number of red chips. 
2 .  The number of station wagons on a parking lot is 20 

fewer than 3 times the number of sedans .  
In Exercises 4-41 translate from words to an algebraic problem and solve. 
4. Janis is 3 years older than her sister. Thirty years from 

now the sum of their ages will be 1 1 1 . Find the current 
ages of the sisters . 

5 .  John is presently 1 2  years older than Fred. Four years 
ago John was twice as old as Fred. How old is each 
now? 

6 .  The larger of two numbers is 3 more than twice the 
smaller. I f  their sum is 1 8 ,  find the numbers. 

7 .  Find three consecutive integers whose sum i s  2 1 .  
8 .  A certain number is 5 less than another number. If 

their sum is 1 1 ,  find the two numbers . 
9 .  A resort guarantees that the average temperature over 

the period Friday, Saturday, and Sunday will be exact
ly 80°F, or else each guest pays only half price for the 

facilities. If the temperatures on Friday and Saturday 
were 90°F and 82°F, respectively, what must the tem
perature be on Sunday so that the resort does not lose 
half of its revenue? 

IO .  A patient's temperature was taken at 6 A.M. , 1 2  noon, 
3 P.M . ,  and 8 P .M. The first, third, and fourth readings 
were I 02 . 5°, I O l . 5°, and I02°F, respectively. The 
nurse forgot to write down the second reading but 
recorded that the average of the four readings was 
I 0 1 . 5°F. What was the second temperature reading? 

1 1 . A 1 2-meter-long steel beam is to be cut into two pieces 
so that one piece will be 4 meters longer than the oth
er. How long will each piece be? 

1 2. A rectangular field whose length is IO meters longer 



than its width is to be enclosed with exactly 100 
meters of  fencing material. What are the dimensions 
of the field? 

1 3 .  A vending machine contains $3 .00 in nickels and 
dimes. If the number of dimes is 5 more than twice the 
number of nickels, how many coins of each type are 
there? 

1 4. A wallet contains $460 in $5, $ 10 ,  and $20 bills. The 
number of $5 bills exceeds twice the number of $ IO  
bills by 4, and the number of  $20 bills i s  6 fewer than 
the number of $ IO  bills. How many bills of each type 
are there? 

1 5 .  A movie theater charges $3  admission for an adult and 
$ 1 . 50 for a child. If 700 tickets were sold on a partic
ular day and the total revenue received was $ 1 650, 
how many tickets of each type were sold? 

16 .  A student bought 5-cent, I O-cent, and 1 5-cent stamps 
with a total value of $6.70. If the number of 5-cent 
stamps is 2 more than the number of I O-cent stamps, 
and the number of 1 5-cent stamps is 5 more than one
half the number of IO-cent stamps, how many stamps 
of each denomination did the student obtain? 

17 .  An amateur theater group is  converting a classroom to 
an auditorium for a forthcoming play. The group will 
sell $3 , $5 , and $6 tickets, and will receive exactly 
$503 from the sale of tickets. If the number of $5 
tickets is twice the number of $6 tickets , and the num
ber of $3 tickets is I more than 3 times the number of 
$6 tickets, how many tickets of each type are there? 

1 8 .  To pay for their child' s college education, the parents 
invested $ IO ,OOO, part in a certificate of deposit pay
ing 8 .5% annual interest, the rest in a mutual fund 
paying 7% annual interest. The annual income from 
the certificate of deposit is $200 more than the annual 
income from the mutual fund. How much money was 
put into each type of investment? 

1 9 .  A bicycle store i s  closing out its entire stock of  a cer
tain brand of 3-speed and IO-speed models. The profit 
on a 3-speed bicycle is 1 1  % of the sale price, and the 
profit on a I O-speed model is 22% of the sale price. If 
the entire stock will be sold for $ 16 ,000 and the profit 
on the entire stock will be 19%, how much will be 
obtained from the sale of each type of bicycle? 

20. A film shop carrying black-and-white film and color 
film has $4000 in inventory. The profit on black-and
white film is 1 2% ,  and the profit on color film is 2 1  % . 

If all the film is sold, and if the profit on color film is 
$ 1 50 less than the profit on black-and-white film, how 
much was invested in each type of film? 

2 1 .  A firm borrowed $ 1 2 ,000 at a simple annual interest 
rate of 8% for a period of 3 years. At the end of the 
first year, the firm found that its needs were reduced . 
The firm returned a portion of the original loan and 
retained the remainder until the end of the 3-year peri
od. If the total interest paid was $ 1760, how much was 
returned at the end of the first year? 

22. A finance company lent a certain amount of money to 
Firm A at 7% annual interest. An amount $ 100 less 
than that lent to Firm A was lent to Firm B at 8%, and 
an amount $200 more than that lent to Firm A was lent 
to Firm C at 8 .5% for one year. If the total annual 
income is $ 1 26 .50, how much was lent to each 
firm? 

23. Two trucks leave Philadelphia for Miami. The first 
truck to leave travels at an average speed of 50 kilo
meters per hour. The second truck, which leaves two 
hours later, travels at an average speed of 55 kilome
ters per hour. How long will it take the second truck to 
overtake the first truck? 

24. Jackie either drives or bicycles from home to school . 
Her average speed when driving ts 36 miles per hour, 
and her average speed when bicycling is 1 2  miles per 
hour. If it takes her ! hour less to drive to school than 
to bicycle, how long does it take her to go to school, 
and how far is the school from her home? 

25. Professors Roberts and Jones, who live 676 miles 
apart, are exchanging houses and jobs for the summer. 
They start out for their new locations at exactly the 
same time, and they meet after 6.5 hours of driving. If 
their average speeds differ by 4 miles per hour, what 
are their average speeds? 

26. Steve leaves school by moped for spring vacation. 
Forty minutes later his roommate, Frank, notices that 
Steve forgot to take his camera, so Frank decides to try 
to catch up with Steve by car. If Steve's average speed 
is 25 miles per hour and Frank averages 45 miles per 
hour, how long does it take Frank to overtake 
Steve? 

27 . An express train and a local train start out from the 
same point at the same time and travel in opposite 
directions. The express train travels twice as fast as 



the local train. If after 4 hours they are 480 kilometers 
apart, what is the average speed of each train? 

28 .  How many pounds of raisins worth $ 1 .50 per pound 
must be mixed with 10 pounds of peanuts worth $ 1 . 20 
per pound to produce a mixture worth $ 1 .40 per 
pound? 

29. How many ounces of Ceylon tea worth $ 1 .50 per 
ounce and how many ounces of Formosa tea worth 
$2.00 per ounce must be mixed to obtain a mixture of 
8 ounces that is worth $ 1 . 85 per ounce? 

30. A copper alloy that is 40% copper is to be combined 
with a copper alloy that is 80% copper to produce 1 20 
kilograms of an alloy that is 70% copper. How many 
kilograms of each alloy must be used? 

3 1 .  A vat contains 2 7  gallons of water and 9 gallons of 
acetic acid. How many gallons of water must be evap
orated if the resulting solution is to be 40% acetic 
acid? 

32. A producer of packaged frozen vegetables wants to 
market mixed vegetables at $ 1 . 20 per kilogram. How 
many kilograms of green beans worth $ 1 .00 per kilo
gram must be mixed with 100 kilograms of corn worth 
$ 1 .30 per kilogram and 90 kilograms of peas worth 
$ 1 .40 per kilogram to produce a satisfactory mix
ture? 

33. A certain number is 3 times another. If the difference 
of their reciprocals is 8, find the numbers. 

34. If � is subtracted from 3 times the reciprocal of a cer
tain number, the result is it. Find the number. 

35. Computer A can carry out an engineering analysis in 4 
hours, while computer B can do the same job in 6 
hours . How long will it take to complete the job if both 
computers work together? 

36. Jackie can paint a certain room in 3 hours, Lisa in 4 
hours, and Susan in 2 hours . How long will it take to 
paint the room if they all work together? 

37. A senior copy editor together with a junior copy editor 
can edit a book in 3 days. The junior editor, working 
alone, would take twice as long to complete the job as 
the senior editor would require if working alone. How 
long would it take each editor to complete the job by 
herself? 

38 .  Hose A can fil l  a certain vat in 3 hours . After 2 hours 
of pumping, hose A is turned off. Hose B is then 
turned on and completes filling the vat in 3 hours . 
How long would it take hose B alone to fill the vat? 

39. A printing shop starts a job at 10 A.M. on press A. 
Using this press alone, it would take 8 hours to com
plete the job. At 2 P .M. press B is also turned on, and 
both presses together finish the job at 4 P.M. How long 
would it take press B alone to do the job? 

40. A boat travels 20 kilometers upstream in the same 
time that it would take the same boat to travel 30 kilo
meters downstream. If the rate of the stream is 5 kilo
meters per hour, find the speed of the boat in still 
water. 

4 1  . An airplane flying against the wind travels 300 miles 
in the same time that it would take the same plane to 
travel 400 miles with the wind. If the wind speed is 20 
miles per hour, find the speed of the airplane in still 
air. 

In Exercises 42-5 1 solve for the indicated variable in terms of the remaining variables. 
42. A = Pr for r 43. C = 2TTr for r 

I 9 
44. v = - m2h for h 45 . F = - C  + 32 for C 3 5 

1 46. s = - gt2 + vt for v 47 . 2 

48. A =  P( I + rt) for r 49. 

50. a =  v1 - Vo for Vo 5 1 .  t 

1 A =  - h  (b + b') 2 
I I 1 - = - + -f !1 h 

a - rl S = --L - r  

for fz 

for L 

for b 
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Much of the terminology of equations carries over to inequalities. A solution of 
an inequality is a value of the unknown that satisfies the inequality, and the 
solution set is composed of all solutions. The properties of inequalities listed in 
Section 1 .  I enable us to use the same procedures in solving inequalities as in 
solving equations with one exception . 

Multiplication or division of an inequality by a negative number reverses the 
sense of the inequality. 

We will concentrate for now on solving a linear inequality, that is, an 
inequality in which the unknown appears only in the first degree . 

EXAMPLE 1 

Solve the inequality 2x + 1 1  � Sx - I .  

SOLUTION 

We perform addition and subtraction to collect terms in x just as we did for 
equations. 

2x + J J ;;::: Sx - 1 
2x ;;::: Sx - 1 2 

-3x � - 1 2 

We now divide both sides of the inequality by -3, a negative number, and 
therefore reverse the sense of the inequality. 

-3x - 12 -- < --
-3 - -3 
x s 4  

PROGRESS CHECK 

Solve the inequality 3x - 2 � Sx + 4. 
ANSWER 

x S -3 

WARNING Given the inequality 

-2x � -6 

i t  i s  a common error t o  conclude that dividing b y  -2 gives x s -3. Multiplica
tion or division by a negative number changes the sense of the inequality but the 
signs obey the usual rules of algebra. Thus, 
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-2x � - 6 
-2x -6 

-- s-
-2  - 2  

x s 3 

Reverse sense of the inequality . 

There are three methods commonly used to describe subsets of the real 
numbers: graphs on a real number line, interval notation, and set-builder nota
tion . Since there will be occasions when we want to use each of these schemes, 
this is a convenient time to introduce them and to apply them to inequalities. 

The graph of an inequality is the set of all points satisfying the inequality . 

The graph of the inequality a s  x < b is shown in Figure 1 .  The portion of the 

a b 
FIGURE 1 

real number line that is in color is the solution set of the inequality . The circle at 
point a has been filled in to indicate that a is also a solution of the inequality; the 
circle at point b has been left open to indicate that b is not a member of the 
solution set. 

An interval is a set of numbers on the real number line that form a line 
segment, a half line , or the entire real number line. The subset shown in Figure 1 
would be written in interval notation as [a, b) , where a and b are the endpoints 
of the interval . A bracket, [ or ] ,  indicates that the endpoint is included, while a 
parenthesis, ( or ) , indicates that the endpoint is not included. The interval [a , b] 
is called a closed interval because both endpoints are included. The interval (a, 
b) is called an open interval because neither endpoint is included. Finally, the 
intervals [a, b) and (a, b] are called half-open intervals. 

The set of all real numbers satisfying a givt:n property P is written as 

{xix satisfies property P} 

which is read as "the set of all x such that x satisfies property P ."  This form, 
called set-builder notation, provides a third means of designating subsets of the 
real number line . Thus, the interval [a, b) shown in Figure 1 is written as 

{xla s x  < b} 

which indicates that x must satisfy the inequalities x 2". a and x < b.  

EXAMPLE 2 
Graph each of the given intervals on a real number line and indicate the same 
subset of the real number line in set-builder notation . 
(a) ( - 3 , 2] (b) ( 1 , 4) (c) [ -4, - 1 ]  



-2 - 1  

FIGURE 2 
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SOWTION 

' I I • � {xl-3  < x  s 2} 
-3 -2 - 1 0 2 3 

I � I I $ I ... {xi i < x < 4} 
- 1 0 2 3 4 5 

I • I I • I ... {xl-4 :S x :S l } 
-5 -4 -3 -2 - l 0 

To describe the inequalities x > 2 and x s 3 in interval notation, we need to 
introduce the symbols oo and -oo (read "infinity" and "minus infinity ,"  respec
tively). The inequalities x > 2 and x s 3 are then written as (2, oo) and (-oo, 31, 
respectively, in interval notation and would be graphed on a real number line as 
shown in Figure 2. Note that oo and -co are symbols (not numbers) indicating that 

0 
$ I ) 
2 3 4 

E I 
-2 - 1 0 

+ I .. 
2 3 4 

the intervals extend indefinitely. An interval using one of these symbols is called 
an infinite interval. The interval (-co,  co) designates the entire real number line. 
Square brackets must never be used around co and -oo, since they are not rea) 
numbers. 

EXAMPLE 3 
Graph each inequality and write the solution set in interval notation .  
(a) x s -2 (b) x �  - 1  (c) x < 3 

SOLUTION 

( • I I .. ( -oo, -2] 
-3 -2 - 1  0 2 

• I !!iii ( - 1 ,  co) 
-3 -2 - 1 0 2 

� I I � I .. (-co, 3) 

-2 - 1 0 I 2 3 1 
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EXAMPLE 4 
Solve the inequality 

:! - 9 < 1 - 2x 
2 . 3 

Graph the solution set, and write the solution set in both interval notation and 
set-builder notation. 

SOLUTION 
To clear the inequality of fractions, we multiply both sides by the LCD of all 
fractions, which is 6. 

3x - 54 < 2( 1 - 2x) 
3x - 54 < 2 - 4x 

7x < 56 

x < 8  

We may write the solution set as {xix < 8} or as the infinite interval ( -oo, 8). The 
graph of the solution set is shown in Figure 3 .  

( 
- 1  

FIGURE 3 

EXAMPLE 5 

0 

Solve the inequality. 

(a) 
2(x + 1) 

< 
2x _ ! 

3 3 6 

SOLUTION 

2 3 4 s 

(b) 2(x - 1)  < 2x + 5 

6 7 8 

(a) The LCD of all fractions is 6. Multiplying both sides of the inequality by 6, 
we obtain 

4(x + 1 ) < 4x - l 

4x + 4 < 4x - l 

4 <  - 1  

Our procedure has led to a contradiction, indicating that there is no solution to the 
inequality. 
(b) Expanding and simplifying leads to the inequality 

-2 < 5  

Since this inequality is true for all real values of x, we conclude that the solution 
set is the set of all real numbers. 



DOUBLE INEQUAU11ES 

PROGRESS CHECK 
So]ve, and write the answers in interval notation. 

3x - ] x 
(a) -- + l > 2 + -4 3 

2x - 3 2 
(b) -- � x + -2 5 

ANSWERS 
(a) (3 , oo) (b) no solution 

We can solve double inequalities such as 

l < 3x - 2 S 7  
by operating on both inequalities at the same time. 

2.3 LINEAR INEQUALmES 81 

3 < 3x s 9 Add +2 to each member. 

1 < x s 3 Divide each member by 3 . 
The solution set is the half-open interval ( 1 ,  3) . 

EXAMPLE 6 
Solve the inequality -3 s 1 - 2x < 6, and write the answer in interval nota
tion. 

SOLUTION 
Operating on both inequalities, we have 

-4 s -2x < 5 Add - 1  to each member. 

5 2 � x > -2 Divide each member by -2. 

The solution set is the half-open interval ( - ,, 2). 

PROGRESS CHECK 
Solve the inequality -5 < 2 - 3x < - 1 , and write the answer in interval nota
tion. 

EXAMPLE 7 
A taxpayer may choose to pay a 20% tax on the gross income or a 25% tax on the 
gross income less $4000. Above what income level should the taxpayer elect to 
pay at the 20% rate? 
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EXERCISE SET 2.3 

SOLUTION 
It we let x = gross income, then the choice available to the taxpayer is 
(a) pay at the 20% rate on the gross income, that is, pay 0.20x, or 
(I>) pay at the 25% rate on the gross income less $4000, that is, pay 

0.25(x - 4000) 
To detennine when (a) produces a lower tax than (b), we must solve 

0.20x < 0.25(x - 4000) 
0.20x < 0.25x - 1000 

-0.05x < - 1000 

1000 x > 0.05 = 20,000 

The taxpayer should choose to pay at the 20% rate if the gross income is more 
than $20,000. 

PROGRESS CHECK 
A customer is offered the following choice of telephone services: unlimited local 
caJls at a fixed $20 monthly charge, or a base rate of $8 per month plus $0.06 per 
message unit. At what level of use does it cost less to choose the unlimited 
service? 

ANSWER 
Unlimited service costs less when the anticipated use exceeds 200 message 
units . 

In Exercises 1 -9 express the given inequality in interval notation . 
I .  -5 s x < l 2. -4 < x s J 3. x > 9  
5 . - J 2 s x s -3 
9. -6 < x s  -4 

6. x 2:  -5 7. 3 < x < 7  

In Exercises 10- 1 8 express the given interval as an inequality. 
J O. (-4, 3] 
1 4. [ -3 , 10) 
18 . (-5 , 7) 

1 1 .  [5 , 8] 
15 . ( - oo ,  5] 

In Exercises 1 9-36 solve the inequality and graph the result. 
19 . x + 4 < 8  20. x + 5 < 4 
23. x - 3 2: 2  24. x + 5 2: - I 

27. 2y < - I  28 . 3x < 6 

3 1 .  2r + 5 < 9 32. 3x - 2 > 4 

12 . ( -oo, -2] 
16. (-2, - 1 ) 

21 . x + 3 < -3 
25. 2 < a + 3  

29. 2x 2: 0 

33 . 3x - l 2: 2 

4. x s -2 
8. x <  17 

13 . (3 , oo) 
1 7 . [O, oo) 

22. x - 2 S 5  
26. -5 > b - 3 

30. I -2y 2: 4 

34. - I  -- > O  2x + 3 
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4 35. 5 - 3x < 0 
3 36. 3x - I > 0 

Solve the given inequality in Exercises 37-60 and write the solution set in interval notation. 
I 3 37 . 4x + 3 :S l l  38. 2y - 2 :S 2 39. 2x + l 2:: 4 40. -5x + 2 > -8 

4 1 .  
45 . 

47 . 

49. 

5 1 .  
53 . 
57 . 

4(2x + 1 ) < 16 42 . 
3(2a - I ) > 4(2a - 3) 
2 5 I -(x + I )  + - 2:: -(2x - I ) + 4 3 6 2 
x - 1 I x + 2  I 
-- + - <-- - -3 5 5 3 
3(x + I )  + 6 2:: 2(2x - I ) + 4 
-2 < 4x :S 5 54. 
3 :S l - 2x < 7  58. 

3(3r - 4) 2:: 1 5 43 . 
46. 

48. 

50. 

52. 
3 :S 6x < 12 55. 
5 < 2 - 3x :S l l  59. 

2(x - 3) < 3(x + 2) 44. 4(x - 3) 2:: 3(x - 2) 
2(3x - I) + 4 < 3(x + 2) - 8 
I I 3 
4(3x + 2) - I :S -2(x - 3) + 4 

x 1 - x x 5 - -
2- > 2 - 3  

4(3x + 2) - I :S -2(x - 3) + 1 5 
-4 :S 2x + 2 :S -2 56 . 5 :S 3x - I :S 1 1  
-8 < 2 - 5x :S 7 60. - 10 < 5 - 2x < -5 

In Exercises 6 1-67 translate from words to an algebraic problem and solve. 
61 . A student has grades of 42 and 70 in the first two tests interest per year, so that the return on the total invest-

of the semester. If an average of 70 is required to ment will be at least 6%. What is the minimum 
obtain a C grade, what is the minimum score the stu- amount that must be invested in the more speculative 
dent must achieve on the third exam to obtain a C? bond? 

62. A compact car can be rented from firm A for $ 160 per 
week with no charge for mileage or from firm B for 
$100 per week plus 20 cents for each mile driven. If 
the car is driven m miles, for what values of m does it 
cost less to rent from firm A? 

63. An appliance salesperson is paid $30 per day plus $25 
for each appliance sold. How many appliances must 
be sold for the salesperson's income to exceed $ 1 30 
per day? 

64. A pension trust invests $6000 in a bond that pays 5% 
simple interest per year. Additional funds are to be 
invested in a more speculative bond paying 9% simple 

65 . A book publisher spends $38,000 on editorial 
expenses and $ 1 2 per book for manufacturing and 
sales expenses in the course of publishing a psychol
ogy textbook. If the book sells for $25 , how many 
copies must be sold to show a profit? 

66. If the area of a right triangle is not to exceed 80 square 
inches and the base is 1 0 inches, what values may be 
assigned to the altitude h? 

67. A total of 70 meters of fencing material is available 
with which to enclose a rectangular area. If the width 
of the rectangle is 1 5 meters, what values can be 
assigned to the length L? 

2A 
ABSOLUTE VAlUE IN 
EQUATIONS AND 
INEQUAUTIES 

In Section L2 we discussed the use of absolute value notation to indicate dis
tance , and we provided this formal definition . - { x if x � 0 

lxl - I 'f < 0  -x I X 
The following example illustrates the application of this definition to the so]ution 
of equations involving absolute vaJue. 

EXAMPLE 1 
Solve the equation 12x - 71 = l l .  



84 EQUATIONS AND INEQUALffiES 

SOLUTION 
We apply the definition of absolute value to the two cases . 

Case 1 .  2x - 7 � 0 
With the first part of the definition, 

12x - 71 = 2x - 7 = 1 1  
2x = 1 8  
x = 9  

PROGRESS CHECK 

Case 2 . 2x - 7 < 0 
With the second part of the definition, 

12x - 71 = -(2x - 7) = 1 J 
-2.x + 7 = I I  

x =  - 2  

Solve each eq11ation and check the solution(s). 
(a) Ix +  81 = 9 (b) 13x - 41 = 7 
ANSWERS 

(a) 1 ,  - 17 (b) 
131 ' - I 

When used in inequalities, absolute value notation plays an important and 
frequently used role in higher mathematics. To solve inequaJities involving ab o
lute value, we recan that lxl is the distance between the origin and the point on the 
real number line corresponding to x. For a >  0, the solution set of the inequality 
lxl < a  is then seen to consist of all real numbers whose distance from the origin is 
less than a, that is, all real numbers in the open interval (-a, a), hown in Figure 
4. Similarly, if lxl > a > 0, the olution set consists of all real numbers whose 

��$�---------+----------�$ir----• lxl < a  
-a 

FIGURE 4 
0 a 

distance from the origin is greater than a, that is, all points in the infinite intervals 
( -oo, -a) and (a, oo) , shown in Figure 5. Of course, lxl :s; a and lxl � a  would 
inch.tde the endpoints a and -a, and the circles would be fiUed in. 

4(--------•$:B-����+-����4��-------)• lxl > a  
-a 0 a 

FIGURE 5 

EXAMPLE 2 
Solve 12.x - 51 s 7, graph the solution set, and write the solution set in interval 
notation. 



2.4 ABSOLUTE VALUE IN EQUATIONS AND INEQUALmES 85 

SOLUTION 

We must so)ve the equivalent double inequality 

-7 S 2x - 5 S 7  
-2 s 2x s l2 
- J s x s 6  

The graph of the solution set is then 

-3 -2 - I 0 

Add + 5  to each member. 
Divide each member by 2.  

2 3 4 s 6 

Thus, the solution set is the dosed interval r- 1 ,  6). 

PROGRESS CHECK 

.. 
7 

Solve each inequaJity, graph the solution set, and write the solution set in interval 
notation. 
(a) lxt < 3 

ANSWERS 

(a) (- 3, 3) 

(b) 13x - l l  s 8 

-3 

•I 

(c) lxl < -2  

0 

-3 -2 - 1  0 2 

3 

. ... 
3 4 

(c) No solution. Since lxl is always nonnegative, lxl cannot be less than -2. 

EXAMPLE 3 
Solve the inequality 12x - 61 > 4, write the solution set in interval notation , and 
graph the solution . 

SOLUTION 
We must solve the equivalent inequalities 

2x - 6 > 4  
2:x > 10 
x > 5  

2x - 6 < -4 
2x < 2 
x < 
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* 

EXERCISE SET 2A 

The solution set consists of the real numbers in the infinite intervals ( -oo, 1 )  and 
( 5 , oo). The graph of the solution set is then 

( 
-2 - 1  

PROGRESS CHECK 

0 2 3 4 5 6 
) 

7 

Solve each inequality, write the solution set in interval notation , and graph the 
solution. 
(a) 15x - 61 > 9  (b) J2x - 21 :::: 8 
ANSWERS 

(a) (-oo, -�) .  (3 , oo) 

( l e 
-4 -3 -2 - 1  0 

(b) ( -oo, -3) ,  (5 , oo) 

( • 
-4 -3 -2 - 1  0 

WARNING Students sometimes write 

l > x > 5  

I $ ) 
2 3 4 5 6 

; I ) 
2 3 4 s 6 

This is a misuse of the inequality notation since it states that x is simultaneously 
less than 1 and greater than 5, which is impossible. What is usually intended is 
the pair of infinite intervals (-oo, 1 ) and (5, oo), and the inequalities must be 
written 

x < 1 or x > 5 

In Exercises 1 -9 solve and check. 

1 .  lx + 2 1  = 3 

5 .  l-3x + 1 1 = 5  

I 1 9· ls - 1 1
= 3 

2. 

6. 

1 3 . 12x - 4 1 = 2 Ir - 5 1 = -2 
121 + 21 = 0  7 .  3 1  - 4x - 3 1  = 27 

In Exercises 1 0-1 5 solve the inequality and graph the solution set. 
10. lx + 31 < 5  1 1 .  lx + l l > 3  12 . 13x + 61 :S l 2 

4. 15y + I I =  I I  

8.  
1 
lxl = 5 

13 . l4x - 1 1 > 3  



14 . l3x + 21 2: - I  15 l .!
- x 1 < � 

. 3 3 
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In Exercises 1 6-24 solve the inequality, and write the solution set using interval notation. 

16 . 

20. 

24. 

lx - 21 :::; 4 

13x + 21 < 4 2 -

1 2
x
; 

I
l :S 5 

17 . 

2 1 .  

lx - 31 2: 4  

12x + I I < O 3 

In Exercises 25 and 26, x and y are real numbers. 

25. Prove that I� I = � (Hint: Treat as four cases. )  

27 . A machine that packages I 00 vitamin pills per bottle 
can make an error of 2 pills per bottle. If x is the 
number of pills in a bottle, write an inequality, using 
absolute value, that indicates a maximum error of 2 
pill s  per bottle. Solve the inequality. 

1 8 . 12x + 1 1 < 5  

22. 1 3x� 2 1< I  

26. Prove that lxl2 = x2 

1 9. 12x - I I  2 --4-< 

23. 1
5
�
x
1 > 4  

28. The weekly income of a worker in a manufacturing 
plant differs from $300 by no more than $50. If x is the 
weekly income, write an inequality, using absolute 
value, that expresses this relationship. Solve the 
inequality . 

2.5 
THE QUADRATIC 
EQUATION 

We now tum our attention to equations involving second-degree polynomials .  A 
quadratic equation is an equation of the form 

THE FORMS 
ax2 + c = 0 AND 
a(x + h)2 + c = O 

ax2 + bx + c = 0, 

where a, b. and c are real numbers . In this section we will explore techniques for 
solving this important class of equations. We will also show that there are several 
kinds of equations that can be transformed to quadratic equations and then 
solved. 

When the quadratic equation ax2 + bx +  c = 0 has the coefficient b = 0, we have 
an equation of the form 

Solving for x, we have 

or 

That is, 

ax2 + c = O 

x2 = _£ 
a 

x = ± � 
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x = R and x = -R 
are solutions of the original equation. Don't try to memorize the form of the 
solution; in dealing with the fonn ax2 + c = 0, just follow the usual steps of 
solving for x1-, as in the following example. 

EXAMPLE 1 

Solve the equation 3r - 8 = 0. 

SOLUTION 
3r - s = o 

x2 = � 3 
X = + � = + V24 = + 

2v'6 
- y3 - 3 - 3 

The solutions are �v'6 and -�v'6. 

Equations of the fonn 

a(x + h)2 + c = 0 

are also easy to solve . Again, just follow the usual steps as shown in the following 
example. 

EXAMPLE 2 

Solve the equation 3(x - 5)2 - 1 8  = 0. 

SOLUTION 
Solving for x, we have 

3(x - 5)2 = 1 8  
(x - 5)2 = 6 

x - 5 = ±v'6 
x = 5 ± v'6  

The solutions are the real numbers 5 + v'6 and 5 - v'6. 

PROGRESS CHECK 

Solve the given equation. 
(a) sx'- + 1 3 = o (b) (2x - 7)2 - 5 = 0 



SOLVING BY FACTORING 

ANSWERS 

iv'6s 
(a) ± -5- (b) 7 ± Vs  2 
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We have seen that the solutions of a quadratic equation may be complex 
numbers whereas the solution of a linear equation is a real number. In addition, 
quadratic equations appear to have two solutions. We will have more to say about 
these observations when we study the roots of polynomial equations in a later 
chapter. 

If we can factor the left-hand side of the quadratic equation 

ax2 + bx + c = 0, 

into two linear factors, then we can solve the equation quickly . For example, the 
quadratic equation 

3x2 + 5x - 2 = 0 

can be written as 

(3x - 1 )(x + 2) = 0 

Since the product of two real numbers can be zero only if one or more of the 
factors are zero, we can set each factor equal to zero. 

3x - 1 = 0 
1 x = -3 

or x + 2 = 0  

x =  -2  

The solutions of the given quadratic equation are ! and -2 . 

EXAMPLE 3 
Solve the equation 2x2 - 3x - 2 = 0 by factoring. 

SOLUTION 

2x2 - 3x - 2 = 0 
(2x + l ) (x - 2) = 0  

Since the product of the factors is 0, at least one factor must be 0. Setting each 
factor equal to 0, we have 

2x + l = O or x - 2 = 0  

x = -- x = 2 
2 
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COMPLETING THE 
SQUARE 

EXAMPLE 4 
Solve the equation 3.x2 - 4x = 0 by factoring. 

SOLUTION 
Factoring, we have 

3x2 - 4x = 0 
x(3x - 4) = 0 

Setting each factor equal to zero, 
4 x = O  or x = -
3 

EXAMPLE 5 
Solve the equation x2 + x + l = 0 by factoring. 

SOLUTION 
The polynomial x2 + x + 1 is irreducible over the integers and even over the 
reals; that is, it cannot be written as a product 

(x + r)(x + s) 

where r and s are real numbers. It can, however, be written in this fonn if r and s 
are complex numbers. Since it is not easy to find these factors, we will next 
develop solution techniques that are more powerful than factoring . 

PROGRESS CHECK 
Solve each of the given equations by factoring . 
(a) 4x2 - x = 0 (b) 3x2 - I Ix - 4 = 0 
ANSWERS 

I 
(a) 0, 4 (b) l -- 4 

3 '  

We have shown that a quadratic equation of the fonn 

a(x + h )2 + c = 0 

(c) 2x2 + 4x + I = 0 

( c) cannot be factored 
over the reals 

( l )  

where a, h, and c are constants , is easily solved (see Example 2) . A technique 
known as completing the square permits us to rewrite any quadratic equation in 
the form of Equation ( I ) .  Beginning with the expression x2 + dx, we seek a 
constant h2 to complete the square so that 

x2 + dx + h2 = (x + h)2 

Expanding and solving, we have 

x2 + dx + h2 = x2 + 2hx + h2 
dx = 2hx 

h = <.!. 
2 
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so h2 is the square of half the coefficient of x .  

EXAMPLE 6 
Complete the square for each of the following. 
(a) x2 - 6x (b) x2 + 3x 

SOLUTION 
(a) The coefficient of x is -6, so h2 = (-�)2 = 9 .  Then 

(x2 - 6x + 9) = (x - 3)2 

(b) The coefficient of x is 3, and h2 = (3/2)2 = 914. Then 

x2 + 3x + � = ( x + �y 
We are now in a position to use this method to solve a quadratic equa

tion. 

EXAMPLE 7 

Solve the quadratic equation 2x2 - IOx + 1 = 0 by completing the square. 

SOLUTION 

We now outline and explain each step of the process. 

Completing the Square 

Rewrite the equation with the constant Step I .  2x2 - IOx = - 1  
term on the right-band side. 

Step 2. Factor out the coefficient a of x2. Step 2.  
Step 3.  Complete the square Step 3 .  

x2 + dx + lt2 = (.r + lr)2 
where lt2 = (d/2)2• Balance the equation by add-
ing ah2 to the right-band side. Simplify. 

Step 4. Solve for .r. Step 4. 

- � 

2(x2 - 5x ) = - 1  

( 25) 25 2 x2 - 5x + 4 = - 1  + 2 
2(x - �Y = 2; 

(x - �Y = 2: 
x - � = + v'23 2 - 2 

5 ± v'23 x =  2 
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THE QUADRATIC 
FORMUlA 

I 
Quadratic formula 

PROGRESS CHECK 
Solve by completing the square . 
(a) x2 - 3x + 2 = 0 (b) 3x2 - 4x + 2 = 0 

ANSWERS 

(a) l ,  2 2 :!:: iVl (b) 3 

We can apply the method of completing the square to the general quadratic 
equation 

ax2 + bx + c = 0, a > 0 

Following the steps of the method, we have 

ax2 + bx = - c  

a( x2 + �x ) = - c 

a[x2 + �x + (�)2] = a(�r - c 

( b )2 b2 a x + 2a = 4a - c  

(x + _E.) 2 = ..!t_ - £ = b2 - 4ac 
2a 4a2 a 4a2 

b x + - =  2a 
+ ,lz - 4ac 
- 4a2 

Move constant tenn to 
right-hand side. 
Factor out the coeffi
cient of x2 
Complete the square and 
balance the equation . 

Simplify .  

Solve for x. 

_ jJ_ + V b2 - 4ac -b :t Vb2 - 4ac x =  2a - 2a or x =  2a 

By applying the method of completing the square to the standard form of the 
quadratic equation, we have derived aformula that gives us the roots or solutions 
for any quadratic equation in one variable. 

-b ± Vb2 - 4ac x =  2a a > O  

EXAMPLE 8 
Solve 2x2 - 3x - 3 = 0 by use of the quadratic fonnula. 

SOLUTION 

Since a =  2, b = -3 , and c = -3 , we have 



* 

EXAMPLE 9 
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-b ± Vb2 - 4ac x = ------

2a 

-<-3> ± V(-3)2 - 4(2) <-3)  
2(2) 

3 ±  V33 = ---

4 

Solve -5x2 + 3x = 2 by the quadratic formula. 

SOLUTION 
We first rewrite the given equation as 5x2 - 3x + 2 = 0 so that a >  0 and the 
right-hand side equals 0. Then a =  5 ,  b = -3 ,  and c = 2. Substituting in the 
quadratic formula, we have 

PROGRESS CHECK 

-b ± Vb2 - 4ac x =  
2a 

_ 
-<-3> ± V( - 3)2 - 4(5)(2) 

- 2(5) 
3 ± V-31 3 ± iV3l 
---- = ---

10  10  

Solve by use of the quadratic formula. 
(a) x2 - Sx ;::: - 10 (b) 4x2 - 2x + 1 = 0 

ANSWERS 

(a) 4 ± \/6 l ± i\/3 
(b) 4 

WARNING There are a number of errors that students make in using the qua
dratic formula. 
(a) To solve x2 - 3x ;::: -4, you must write the equation in the form 

x2 - 3x + 4 = 0 

to properly identify a, b, and c. Note that b = -3 ,  not 3 .  

(b) The quadratic formula is 

-b ± Yb2 - 4ac x =  2a 

Note that 
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THE DISCRIMINANT 

... -b + Vb2 - 4ac X -r- -

2a 

since the term -b must also be divided by 2a. 

Now that you have a formula that works for any quadratic equation, you may 
be tempted to use it all the time. However, if you see an equation of the form 

x2 = 1 5  

i t  is certainly easier to supply the answer immediately: x = ± Vi5 .  Similarly, if 
you are faced with 

x2 + 3x + 2 = 0 

it is faster to solve if you see that 

x2 + 3x + 2 = (x + l )(x + 2) 

The method of completing the square is generally not used for solving qua
dratic equations once you have learned the quadratic formula. The technique of 
completing the square is helpful in a variety of applications , and we will use it in a 
later chapter when we graph second-degree equations. 

By analyzing the quadratic formula 

-b ± Yb2 - 4ac 
x =  2a 

we can learn a great deal about the roots of the quadratic equation 

ax2 + bx + c = 0, a > O  

The key to the analysis is the discriminant b2 - 4ac found under the radical . 
• If b2 - 4ac is negative, we have the square root of a negative number, and the 
roots of the quadratic equation are complex numbers. 
• If b2 - 4ac is positive, we have the square root of a positive number, and the 
roots of the quadratic equation will be real numbers . 
• If b2 - 4ac = 0, then x = - b/2a, which we call a double root or repeated 
root of the quadratic equation. For example, if x2 - 10x + 25 = 0, then the 
discriminant is 0 and x = 5 .  But 

x2 - l Ox + 25 = (x - 5)(x - 5) = 0 

We call x = 5 a double root because the factor (x - 5) is a double factor of 
x2 - 10x + 25 = 0. This hints at the importance of the relationship between roots 
and factors , a relationship that we will explore in a later chapter on roots of 
polynomial equations .  

I f  the roots of  the quadratic equation are real and a, b ,  and c are rational 
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numbers, the discriminant enables us to determine whether the roots are rational 
or irrational . Since Vk is a rational number only if k is a perfect square, we see 
that the quadratic formula produces a rational result only if b2 - 4ac is a perfect 
square. We summarize as follows. 

The quadratic equation ax2 + bx +  c = 0, a >  0, has exactly two roots, the 
nature of which are determined by the discriminant b2 - 4ac. 

Negative 
0 
Positive 

Discriminant 

a, b, c { A  perfect square 
rational Not a perfect square 

EXAMPLE 10 

Roots 

Two complex roots A double root 
Two real roots 
Rational roots 
Irrational roots 

Without solving, determine the nature of the roots of the quadratic equation 
3x2 - 4x + 6 = 0 .  

SOLUTION 

We evaluate b2 - 4ac using a = 3 ,  b = -4, and c = 6: 

b2 - 4ac = (-4)2 - 4(3)(6) = 16 - 72 = -56 

The discriminant is negative, so the equation has two complex roots. 

EXAMPLE 11 

Without solving, determine the nature of the roots of the equation 

2x2 - 7x = - 1  

SOLUTION 

We rewrite the equation in the standard form 

2x2 - 7x + I = 0 

and then substitute a =  2 ,  b = - 7 ,  and c = I in the discriminant . Thus, 

b2 - 4ac = ( - 7)2 - 4(2)( 1 )  = 49 - 8 = 4 1  

The discriminant is positive and is not a perfect square; thus, the roots are real, 
unequal , and irrational. 
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FORMS LEADING TO 
QUADRATICS 

PROGRESS CHECK 
Without solving, detennine the nature of the roots of the quadratic equation by 
using the discriminant. 

(a) 4x2 - 20x + 25 = 0 
(c) Iox2 -= x + 2 
ANSWERS 
(a) a real , double root 
(c) 2 real , rational roots 

(b) 5x2 - 6x ;:  -2 
(d) x2 + x - 1 ;: 0 

(b) 2 complex roots 
( d) 2 real , irrational roots 

Certain types of equations can be transfonned into quadratic equations, which 
can be solved by the methods discussed in this section. One form that leads to a 
quadratic equation is the radical equation, such as 

x - v'x"=2 -= 4  

which is solved in Example 12 . To solve the equation, we isolate the radical and 
raise both sides to a suitable power. The following is the key to the solution of 
such equations. 

If P and Q are algebraic expressions, then the solution set of the equation 

P = Q  

is a subset of the solution set of the equation 

pn = Qn 

where n is a natural number. 

This suggests that we can solve radical equations if we observe a precaution. 

If both sides of an equation are raised to the same power, the solutions of the 
resulting equation must be checked to see that they satisfy the original equa
tion. 

EXAMPLE 12 

Solve x - v'x"=2 = 4 
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SOLUTION 

Solving Radical Equations 

Step I .  When possible, isolate the radical on one Step 1 .  x - 4 = � 
side of the equation. 
Step 2. Raise both sides of the equation to a suit- Step 2 .  Squaring both sides, we have 
able power to eliminate the radical. x2 - 8x + 16 = x - 2 
Step 3. Solve for the unknown. Step 3 .  

x2 - 9x + 1 8 ::;: 0 
(x - 3)(x - 6) ::;: 0 

x = 3  x ::;: 6  
Step 4. Check each solution by substituting in the Step 4. 
original equation. checking x ::;: 3 checking x ::;: 6 

3 - vT-=2,; 4  6 - "\16=2 ,;  4 
3 - 1 ,; 4 6 - \!4 ,b 4  

2 4' 4  4 = 4  

We conclude that 6 is a solution of the original equation and 3 is not a solution of 
the original equation. We say that 3 is an extraneous solution that was intro
duced when we raised each side of the original equation to the second power. 

PROGRESS CHECK 

Solve x - Vt-=-; = -5. 

ANSWER 

-3 

The equation in the next example contains more than one radical . Solving 
this equation will require that we square both sides twice. 

EXAMPLE 13 

Solve Y2x - 4 - Y3x + 4 = -2. 

SOLUTION 

Before squaring, rewrite the equation so that a radical is on each side of the 
equation. 
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Y2x - 4 = v'3x + 4 - 2 
2x - 4 = (3x + 4) - 4v'3x + 4 + 4 Square both sides. 

-x - 1 2  = -4 v' 3x + 4 Isolate the radical. 

x2 + 24x + 1 44  = 16(3x + 4) Square both sides. 

x2 - 24x + 80 = 0 
(x - 20)(x - 4) = 0 

x = 20 x = 4  

Verify that both 20 and 4 are solutions of the original equation . 

PROGRESS CHECK 

Solve � - Yx-+2 = l .  

ANSWER 

2 

Although the equation 

x4 - x2 - 2 = 0  

is not a quadratic in the unknown x, it is a quadratic in the unknown x2: 

(x2)2 - (x2) - 2 = 0 

This may be seen more clearly by replacing x2 with a new unknown u such that 
u = x2. Substituting, we have 

u2 - u - 2 = 0  

which is a quadratic equation in the unknown u.  Solving, we find 

(u + l )(u - 2) = 0 
u = - 1  or u = 2 

Since x2 = u, we must next solve the equations 

x2 = - l and x2 = 2 
x =  ± i  x = ±v'2 

The original equation has four solutions: i, -i, v'2, and -v'2. 
The technique w e  have used i s  caJled a substitution of variable. Although 

simple in concept, this is a powerful method that 'is commonly used in calcu
lus. 

PROGRESS CHECK 
Indicate an appropriate substitution of variable and solve each of the following 
equations. 

(a) 3x4 - IO:x2 - 8 = 0 (b) 4x2'3 + 7x1'3 - 2 = 0 
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2 l (c) 2 + - - 10 = 0 
x x 

ANSWERS 
iv'6 

(a) u = x2; ::t:2, :!: -3-
1 2 I 

(c) u = x� -5' 2 

In Exercises 1 - 10 solve the given equation. 
I .  3x2 - 27 = 0 2 . 4x2 - 64 = 0 
5 . (2r + 5)2 = 8 6. (3x - 4)2 = -6 
9. 9x2 + 64 = 0 10. 8lx2 + 25 = 0 

In Exercises 1 1-24 solve by factoring. 
1 1 .  x2 - 3x + 2 = 0  12 . x2 - 6x + 8 = 0  
1 5 .  x2 + 6x = -8 16 . x2 + 6x + 5 = 0  
19 . 2x2 - 5x = -2 20. 2s2 - 5s - 3 = 0 
23. 6x2 - 5x + I =  0 24. 6x2 - x = 2  
In Exercises 25-36 solve by completing the square . 
25. x2 - 2x = 8  26. t2 - 2t = 1 5 
29. 3x2 + 8x = 3  30. 2y2 + 4y = 5 
33. 4x2 - x = 3 34. 2x2 + x = 2  
In Exercises 37-48 solve by the quadratic formula. 
37. 2x2 + 3x = O  38. 2x2 + 3x + 3 = 0  
4 1 . 5/ - 4y + 5 = o 42. x2 - 5x = 0 
45 . 3y2 - 4 = 0 46. 2x2 + 2x + 5 = 0  
In Exercises 49-58 solve by any method . 
49. 2x2 + 2x - 5 = 0 50. 2t2 + 21 + 3 = o 
53. 2x2 + 5x + 4 = 0 54. 2? - 3r + 2 = 0 
57. 4x3 + 2x2 + 3x = 0 58. 4s3 + 4s2 - 15s = 0 

3 . 
7. 

1 3 .  
1 7 .  
2 1 .  

27 . 
3 1 .  
35. 

39. 
43. 
47. 

5 1 .  
55. 
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(b) u ""' x113 ; �, - 8 

2 l 
(d) u = 1 + ;; 1 , 2 

5y2 - 25 = 0 
(3x - 5)2 - 8 = 0 

x2 + x - 2 = 0  
y2 - 4y = 0 
r - 4 = o  

2? - 7r = 4 
2/ + 2y = - I 
3x2 + 2x = - I 

5x2 - 4x + 3 = 0 
3x2 + x - 2 = 0  
4u2 + 3u = 0 

3x2 + 4x - 4 = 0 
4u2 - I =  0 

4. 6x2 - 12 = 0 
8. ( 4t + I )2 - 3 = 0 

14. 3? - 4r + I =  0 
18 . 2x2 - x = O  
22 . 4x2 - 9 = 0 

28. 9x2 + 3x = 2 
32. 3x2 - 4x = -3 
36. 3u2 - 3u = - I 

40. 2x2 - 3x - 2 = 0  
44. 2x2 + 4x - 3 = 0 
48 . 4x2 - I =  0 

52. x2 + 2x = O  
56. x2 + 2 = 0  

In Exercises 59-64 solve for the indicated variable in terms of the remaining variables. 

59. 

6 1 . 

63 . 

a2 + b2 = c2, 

I v = - 7rr2h 3 , 

I s = - gr + vr 2 , 

for b 

for r 

for t 

60. I s = 2 gr, for t 

62. A =  7rr2, for r 

64. F
- m1m2 - g d2 , for d 
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Without solving, determine the nature of the roots of each quadratic equation in Exercises 65-80. 
65 . x2 - 2x + 3 = 0  66. 3x2 + 2x - 5 = 0  67 . 4x2 - l 2x + 9 = 0 68 . 2x2 + x + 5 = 0 
69. -3x2 + 2x + 5 = 0  70. -3y2 + 2y - 5 = 0  7 1 .  3x2 + 2x = O  72. 4x2 + 20x + 25 = 0  
73. 2r = r - 4 74. 3x2 = 5 - x 75 . 3x2 + 6 = O 76. 4x2 - 25 = o 
77. 6r = 3r2 + 1 78. 4x = 2x2 + 3  79. l2x = 9x2 + 4  80. 4s2 = -4s - l 
In Exercises 8 1-84 find a value or values of k for which the quadratic has a double root. 
8 1 .  kx2 - 4x + l = O 82. 2x2 + 3x + k = O  83 . x2 - kx - 2k = O  84. kx2 - 4x + k = O  
In Exercises 85-92 find the solution set. 
85. x + � = 7 86. x - v)3-=-; = I 
89. Y3x + 4 - v'h"+-J = 1 
9 1 . � + Yx-=-4 = 4  

87. 2x + v7+J = 8 88. 3x - v'J+3x = 1 
9o. v'4 - 4x - Vx°+4 = 3  
92. v5x+J + v'4x - 3 = 7 

In Exercises 93- 100 indicate an appropriate substitution of variable and solve each of the equations. 

93. 3x4 + 5x2 - 2 = 0 94. 2x6 + 15x3 - 8 = 0 95 . !z + ; - 2 = 0 96. � - ? - 9 = 0 

97. 2x215 + 5x115 + 2 = 0 

99. 2(; + I ) 2 - 3(; + 1 ) - 20 = 0 

98. 3x413 - 4x213 - 4 = 0 

100. 3(; - 2 r + 2(; - 2) - I = 0 

In Exercises J O 1 and 102 provide a proof of the stated theorem. 
IOI . If r1 and r2 are the roots of the equation ax2 + bx + inant of the equation ax2 + bx + c = 0 is positive , 

then the quadratic has either two rational roots or two 
irrational roots. 

c = 0, then (a) r1 r2 = cla and (b) r1 + r2 = -bla. 
1 02. If a, b, and c are rational numbers , and the discrim-

In Exercises 103- 109 use the theorems of Exercise 10 I to find a value or values of k that will satisfy the indicated 
condition . 
1 03 .  kx2 + 3x + 5 = O ; sum of the roots i s  6. 104. 2x2 -- 3kx - 2 = O; sum of the roots is -3 .  

106. 2kx2 + 5x - I = O; product of the roots is j .  
1 08 . 3x2 - 4x + k = 0; one root is triple the other. 

1 05 .  3x2 - IOx + 2k = 0 ; product of the roots i s  -4. 
I 07. 2x2 - kx + 9 = O; one root is double the other. 
1 09 . 6x2 - 1 3x + k = O; one root i s  the reciprocal of  the 

other. 

2.6 
APPLICATIONS OF 
QUADRATIC EQUATIONS 

As your knowledge of mathematical techniques and ideas grows,  you will 
become capable of solving an ever wider variety of applied problems . In Section 
2 .  2 we explored many types of word problems that lead to linear equations:  We 
can now tackle a group of applied problems that lead to quadratic equations .  

One word of caution: It is possible to arrive at a solution that is meaningless. 
For example ,  a negative solution that represents hours worked or the age of an 
individual is meaningless and must be rejected . 

EXAMPLE 1 
The larger of two positive numbers exceeds the smaller by 2. If the sum of the 
squares of the two numbers is 74, find the two numbers . 
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SOLUTION 

If we let 

x = the larger number 

then 

x - 2 = the smaller number 

The sum of the squares of the numbers is 74. 

(larger number)2 + (smaller number)2 "" 74 
x2 + (x - 2)2 "" 74 

x2 + x2 - 4x + 4 "" 74 
2x2 - 4x - 70 = 0 
x2 - 2x - 35 = 0 

(x + 5)(x - 7) = 0 
x = 7 Reject x "" -5. 

The numbers are then 7 and (7 - 2) = 5 .  Verify that the sum of the squares is 
indeed 74. 

EXAMPLE 2 

The length of a pool is 3 times its width, and the pool is surrounded by a grass 
walk 4 feet wide. If the total area covered and enclosed by the walk is 684 square 
feet, find the dimensions of the pool .  

3x + 8 

T 4 

k 
Jt 

x + 8 4 4 

l 4 

FIGURE 6 

SOLUTION 
A diagram such as Figure 6 is useful in solving geometric problems. If we let x = 
width of the pool , then 3x = length of the pool , and the region enclosed by the 
walk has length 3x + 8 and width x + 8. The total area is the product of the length 
and width , so 
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length x width = 684 
(3x + 8)(x + 8) = 684 
3x2 + 32x + 64 = 684 

3x2 + 32x - 620 = 0 
(3x + 62)(x - 10) = 0 

x =  10 

The dimensions of the pool are J O  feet by 30 feet. 

EXAMPLE 3 

R . 62 
eject x = -3. 

Working together, two cranes can unload a ship in 4 hours . The slower crane, 
working alone, requires 6 hours more than the faster crane to do the job. How 
Jong does it take each crane to do the job by itself? 

SOLUTION 
Let x = number of hours for the faster crane to do the job. Then x + 6 = number 
of hours for the slower crane to do the job. The rate of the faster crane is l /x,  the 
portion of the whole job that it completes in I hour; similarly, the rate of the 
slower crane is l /(x + 6). We display this information in a table. 

Rate x Time = Work done 

Faster crane I 4 4 
x x 

Slower crane I 4 4 
-- --

x + 6  x + 6  

When the two cranes work together, we must have (work done by) + (work done by) = 1 whole 
. ob fast crane slow crane J 

or 

� + -4- =  I 
x x + 6  

To solve, we multiply by the LCD, x(x + 6), obtaining 

4(x + 6) + 4x = x2 + 6x 

x =  -4 

0 = x2 - 2x - 24 

0 = (x + 4)(x - 6) 

or x = 6  

The solution x = - 4 is rejected, because it makes no sense to speak of negative 
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hours of work. Then 

x = 6 is the number of hours in which the 
fast crane can do the job alone. 

x + 6 "" 1 2  is the number of hours in which the 
slow crane can do the job alone. 

EXERCISE SET 2.6 

1 . Working together, computers A and B can complete a 
data-processing job in 2 hours. Computer A working 
alone can do the job in 3 hours less than computer B 
working alone . How long does it take each computer 
to do the job by itself? 

2 .  A graphic designer and her assistant working together 
can complete an advertising layout in 6 days. The 
assistant working alone could complete the job in 16  
more days than the designer working alone. How long 
would it take each person to do the job alone? 

3 .  A roofer and his assistant working together can finish 
a roofing job in 4 hours . The roofer working alone 
could finish the job in 6 hours less than the assistant 
working alone. How long would it take each person to 
do the job alone? 

4 .  A 1 6-by-20-inch mounting board i s  used to mount a 
photograph .  How wide a uniform border is there if the 
photograph occupies � of the area of the mounting 
board? 

5 .  The length of a rectangle exceeds twice its width by 4 
feet. If the area of the rectangle is 48 square feet, find 
the dimensions. 

6. The length of a rectangle is 4 centimeters less than 
twice its width. Find the dimensions if the area of the 
rectangle is 96 square centimeters . 

7 .  The area of a rectangle i s  48 square centimeters . I f  the 
length and width are each increased by 4 centimeters , 
the area of the newly formed rectangle is 1 20 square 
centimeters . Find the dimensions of the original rect
angle. 

8 .  The base of a triangle is 2 feet more than twice its 
altitude, If the area is 1 2  square feet, find the dimen
sions. 

9 .  Find the width of a strip that has been mowed around a 
rectangular field 60 feet by 80 feet if l the lawn has 
not yet been mowed . 

1 0. The sum of the reciprocals of two consecutive num
bers is f;.. Find the numbers. 

1 1 .  The sum of a number and its reciprocal is ¥. Find 
the number. 

1 2. The difference of a number and its reciprocal is 'if. 
Find the number. 

1 3 .  The smaller of two numbers is 4 less than the larger. If 
the sum of their squares is 58, find the numbers. 

1 4 .  The sum of  the reciprocals of  two consecutive odd 
numbers is /s. Find the numbers. 

15 .  The sum of the reciprocals of two consecutive even 
numbers is {.. Find the numbers. 

1 6. A number of students rented a car for $ 1 60 for a one
week camping trip. If another student had joined the 
original group, each person's share of expenses would 
have been reduced by $8. How many students were in 
the original group? 

1 7 .  A n  investor placed an order totaling $ 1 200 for a cer
tain number of shares of a stock. If the price of each 
share of stock were $2 more, the investor would get 30 
shares less for the same amount of money . How many 
shares did the investor buy? 

1 8 .  A fraternity charters a bus for a ski trip at a cost of 
$360. When 6 more students join the trip, each per
son's cost decreases by $2. How many students were 
in the original group of travelers? 

19 .  A salesman worked a certain number of days to earn 
$ 192 .  If he had been paid $8 more per day, he would 
have earned the same amount of money in 2 fewer 
days. How many days did he work? 

20. A freelance photographer worked a certain number of 
days for a newspaper to earn $480. If she had been 
paid $8 less per day, she would have earned the same 
amount in 2 more days. What was her daily rate of 
pay? 



104 EQUATIONS AND INEQUALffiES 

21 
SECOND-DEGREE 
INEQUAUTIES· 

To solve a second-degree inequality, such as 

x2 - 2x > J5 
we rewrite the inequality in the form 

x2 - 2x - l5 > 0 

or, after factoring, 

(x + 3)(x - 5) > 0 

With the right-hand side equal to 0, this inequality requires that the product of the 
two factors , which l'epresent real numbers, be positive. That means that both 
factors must have the same sign. We must therefore analyze the signs of (x + 3) 
and (x - 5). 

ln any situation like this we are interested in knowing all values of x for 
which the general expression ax + b will be positive and those values for which it 
will be negative. Since ax +  b = 0 when x = -b/a, we see that 

The linear factor ax +  b equals 0 at the critical value x = -bla and has oppo
site signs to the left and right of the critical value on a number line. 

x + 3  

x - 5 -

(x + 3 )(x - 5 )  + 

FIGURE 7 

+ 

0 + + + + + + + + + 

-3 
+ + 0 

0 + + + 

5 
0 + + + 

A practical means for solving such problems as the current example is illus
trated in Figure 7. Since the critical values occur where x + 3 = 0 and x - 5 = 0, 
the vah1es - 3 and + 5 are displayed on a real number line . The rows above the 
real number line display the signs of the factors x + 3 and x - 5 for all real values 
of x. The row below the real number line displays the signs of the product 
(x + 3)(x - 5). The product is positive when the factors have the same sign, is 
negative when the factors are of opposite sign, and is zero when either factor is 
zero. The row below the real number line shows the solution set of the inequality 
(x + 3)(x - 5) > 0 to be 

{xix < -3  or x > 5} 
which consists of the real numbers in the open intervals ( -oo. - 3) and ( 5, oo). The 
solution set is shown in Figure 8 .  

( ) 
-3 5 

FIGURE 8 
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EXAMPLE 1 
Solve the inequality x2 s - 3x + 4 and graph the solution set on a real number 
line . 

SOLUTION 

We rewrite the inequality and factor. 

x2 s -3x + 4 
x2 + 3x - 4 s 0 

(x - I )(x + 4) s 0 

x - 1 
x + 4 

- 0 + + + 

(x - I )(x + 4) + + 
FIGURE 9 

0 + + 

-4 
+ 0 

+ + + + + + 

I 
0 + + + 

We seek values of x for which the factors (x - I )  and (x + 4) have opposite signs 
or are zero. The critical values occur where x - 1 = 0 and where x + 4 = 0, that 
is, at + 1 and -4 .  Figure 9 gives an analysis of the signs of the factors x - 1 and 
x + 4 as well as the signs of their product ,  (x - 1 )(x + 4). We see that the solu
tion set consists of all real numbers 

{xi -4 s x s 1 }  

which is the closed interval [ -4, 1 ] ,  shown in Figure 10 .  

I t I I 
-5 -4 -3 - 2 

FIGURE 10 

PROGRESS CHECK 

I t I I 
0 I 2 3 

.. 

Solve the inequality 2x2 =::: 5x + 3 and graph the solution set on a real number 
line . 

ANSWER 

{x :5 -i or x =::: 3 } 
Although 

• I I • 
-4 -3 -2 - I 0 

ax + b < O 
ex + d 

t I • 
2 3 4 
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is not a second-degree inequality, the solution of this inequality is the same as the 
solution of the inequality 

(ax + b)(cx + d) < 0 

since both inequalities require that the two expressions composing them have 
different signs. 

EXAMPLE 2 

Solve the inequality Y2 
+ 1 s 0.  
- y  

SOLUTION 
Figure 1 1  gives an analysis of the signs of y + l and 2 - y. The critical values 
occur where y + I = 0 and where 2 - y = 0, that is, at - ]  and +2 .  The bottom 
row shows the signs of the quotient (y + 1 )/(2 - y), from which we see that the 
solution set is {yly s - l or y > 2} or all real numbers in the intervals ( - co, - 1 ] , 
(2, co). Note that y :;::; 2 would result in division by 0 and must be excluded. 

y + l  - - - 0 + + + + + + + + + + + 

2 - y  + + + + + + + + + + + + 0 

y + I 
2 - y  

FIGURE 11 

- - - - 0 

PROGRESS CHECK 

Solve the inequality �
-
-� � 0. 

ANSWER 

{ � � < x :s n or (4' �] 
EXAMPLE 3 

+ + + + + + + 

Solve the inequality (x - 2)(2x + 5)(3 - x) < 0. 

SOLUTION 

2 

Although this is a third-degree inequality, the same approach will work . Figure 
1 2  gives an analysis of the signs of x - 2, 2x + 5 , and 3 - x. The product of three 
factors is negative when there is an odd number of negative factors . The solution 
set is then 



x - 2  

2x + 5 
3 - x + + + 
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{xi - � < x < 2 or x > 3} or (�, 2) , (3, oo) 

0 + + + + + + + + 

0 + + + + + + + + + + + + + 

+ + + + + + + 

2 

+ + + + 0 

3 

(x - 2)(2x + 5)(3 - x) + + + 0 
FIGURE 12 

0 + + + + 0 

EXERCISE SET 2.7 

PROGRESS CHECK 
Solve the inequality (2y - 9)(6 - y)(y + 5) � 0. 

ANSWER 

{yly :5 -5 or � :5 y :5 6} or (-oo, -5] , [ -�, 6] 

EXAMPLE 4 
Solve the inequality x2 + 1 > 0. 

SOLUTION 
This inequality is equ.ivalent to 

x2 > - I 

For any real number x, we know that x2 is nonnegative. Therefore, the solution 
set consists of an real numbers . 

To solve the inequality 

x2 + x + l < O 

we need to factor the polynomial x2 + x + l .  We saw in Section 2.5 , however, 
that this polynomial is irreducible over the reals. We will be better equipped to 
solve more difficult inequalities after we have studied methods for solving poly
nomial equations in a later chapter. 

Detennine the solution set of each inequalily. 

l .  x2 + 5.t + 6 > 0 2. x2 + 3.t - 4 s 0 3 . 2x2 - .t - I < 0 4. 3.t2 - 4.t - 4 2: 0 
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5 .  4x - 2x2 < 0  6.  ? + 4r >- O  

2r + 1 s o  
x - l 

9 .  r - 3  
10 .  

2x - 3 >- 0 

1 3. (x + 2)(3x - 2)(x - I )  > 0 

7 . 

1 1 .  

14. 

x + 5 s o  
x + 3  

3s + 2 
> 0 2s - 1 -

8.  

12 .  

(x - 4)(2x + 5)(2 - x) s 0 

x - 6
>- 0 

x + 4  

4x + 5 s o  
x2 

indicate the solution set of each inequality on a real number line. 

15 .  x2 + x - 6 > 0 1 6. x2 - 3x - 10 >- 0 17 .  2x2 - 3.x - 5 < 0 1 8 .  3x2 - 4x - 4 s 0 

19  
2r  + 3 

< 0 · 2r - l 
3x + 2 > 0 20. 
2x - 3 

-

23 . 6x2 + 8x + 2 >- 0 
25 . (y - 3)(2 - y)(2y + 4) >- 0 

27 . (x - 3)( 1 + 2x)(3x + 5) > 0 

x - 1 
2 1 . -- >- 0  

x + 1 
2x - I 

22. -- s o  
x + 2  

24. 2x2 + 5.x + 2 s o  

26. (2x + 5)(3x - 2)(x + I ) < 0 

28. ( I - 2x)(2x + l )(x - 3) s 0 

[n Exercises 29-32 find lhe values of x for which the given expression has real values. 

29. V(x - 2)(x + l )  30. V(2x + l )(x - 3 3 1 .  V2X'- + 7x + 6 32.V2x2 + 3x + I 

33. A manufacturer of solar heaters finds that when x units 
are made and sold, the profit (in thousands of dollars) 
is given by x2 - 50x - 5000. For what values of x will 
the firm show a loss? 

TERMS AND SYMBOLS 
equation (p. 6 1 )  
left-hand side (p. 6 1 )  
right-hand side (p. 6 1 )  
solution (p. 6 1  ) 
root (p. 6 1 )  
olution set (p. 6 1 )  

equivalent equation (p. 62) 
first-degree equation in one 

unknown (p. 64) 

KEY IDEAS FOR REVIEW 

linear equation (p. 64) 
graph of the solution set 

(p. 78) 
interval (p. 78) 
interval notation (p. 78) 
open interval (p. 78) 
closed interval (p. 78) 
half-open interval (p. 78) 
oo ,  - oo  (p. 79) 

0 To solve an equation, we generally form a succession of 
simpler, equivalent equations. 

0 In the process of solving an equation, we may add to or 
subtract from both sides of the equation any number or 
expression. We may also multiply both sides by any 
nonzero r1umber. If we multiply the equation by an 
expression containing a variable,  the an wers must be 
substituted in the original equation to verify that they are 
solutions. 

0 The linear equation ax +  b = 0, a ¢  0, has precisely 
one solution: -b/a . 

34. A ball thrown directly upward from level ground at an 
initial velocity of 40 feet per second attains a height d 
given by d = 40t - 16r2 after t seconds. During what 
time interval is the ball at a height of at least 1 6  feet? 

infinite interval (p. 79) 
quadratic equation (p. 87) 
completing lhe square 

(p. 90) 
quadracic formula (p. 92) 
discriminant (p. 94) 
double root (p. 94) 
repeated root (p. 94) 
radical equation (p. 96) 

extraneous solution (p. 97) 
substitution of variable 

(p. 98) 
second-degree inequality 

(p. 104) 
critical value (p. 104) 

0 When solving linear inequalities. remember that multi
plication or division by a negative number reverses the 
sense of the inequality. 

0 The solution set of a linear inequality can be indicated by 
a graph on the real number line, by set-builder notation, 
or by interval notation. 

0 The quadratic equation ax2 + bx +  c = 0, a >  0, 
always has two solutions, which are given by the qua
dratic formula 

-b :t: Vb2 - 4ac x = 2a 



If b = 0 or if the quadratic can be factored, then faster 
solution methods are available. 

D The solutions or roots of a quadratic equation may be 
complex numbers . The expression b2 - 4ac, called the 
discriminant, which appears under the radical of the 
quadratic formula, permits the nature of the roots to be 
analyzed without solving the equation . 

D Radical equations often can be transformed into quadrat
ic equations. Since the process involves raising both 
sides of an equation to a power, the answers must be 
checked to see that they satisfy the original equation. 

D The method called substitution of vari.able can be used 
to transform certain equations into quadratics. This tech
nique is a handy tool and will be used in other chapters 
of this book .  
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D If a second-degree inequality can be written in the fac
tored form 

or 

(ax + b)(cx + d) < 0 

(ax + b)(cx + d) > 0 

then the solution set is easily found. First, determine the 
intervals on the real number line in which each factor is 
positive and the intervals in which each is negative. If 
the product of the factors is negative (< 0), then the 
solution set consists of the intervals in which the factors 
are opposite in sign; if the product is posit.ive (> 0) , the 
solution set consists of the intervals in which the factors 
are of like sign. 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 

2. I ln Exercises 1 -4 solve for x. 

I .  3x - 5 = 3 2. 2(2x - 3) - 3(x + I) = -9 

3. 
2 - x  -- = 4 
3 - x  

k - 2x = 4kx 

2. 2 5 .  The width of a rectangle i s  4 centimeters less than 
twice its length. If the perimeter is 1 2  centime
ters, find the measurement of each side . 

6 .  A donation box cont.ains coins consisting of 
dimes and quarters. The number of dimes is 4 
more than twice the number of quarters. Jf the 
total value of the coins is $2. 65, how many coins 
of each type are there? 

7. II takes 4 hours for a bush pilot in Australia to 
pick up mail at a remote vil lage and return to 
home base. If the average speed going is 1 50 
miles per hour and the average speed returning is 
lOO miles per hour, how far from the home base 
is the vi.Hage? 

8 .  Copying machines A and B, working together, 
can prepare enough copies of the annual report 
for the Board of Directors in 2 hours. Machine A ,  
working alone , would requjre 3 hours 10  do 1he 
job. How long would it take machine B to do the 
job by itself? 

2. 1 9 .  lndicate whether the stat.ement i s  true (T) or false 
(F): The equation 3x2 = 9 is an identity . 

IO. 

2.3 1 1 . 

1 2 .  

Indicate whether the statement i s  true (n or 
false (F): x = 3 is a solution of the equation 
3x - l = 1 0. 

Solve and graph 3 s 2x + l . 

Solve and graph -4 < -2x + I :5. 10.  

In Exercises 1 3- 1 5  solve the inequality and express the 
solution set in interval notation. 

1 3 .  

15 .  

2 .4  16 .  

17 .  

18 .  
1 9 .  

2(a + 5) > 3a + 2 14 .  - I  
2x - 5 

< O  

2x I x 
3 + 2 � 2 - 1  

Solve 13x + 21 = 7 for x. 

Solve and graph l4x - l I = 5 .  

Solve and graph 12x + 1 1  > 7.  
Solve 12  - Sxl < I and write the solution in  inter
val notation. 

20. Solve 13x - 21 � 6 and write the solution in inter-
val notation. 

2.5 2 1 .  Solve x2 - x - 20 = 0 by factoring. 

22. Solve 6x2 - I Ix + 4 = 0 by factoring. 

23. Solve x2 - 2x + 6 = 0 by completing the 
square. 

24. Solve 2x2 
- 4x + 3 = 0 by the quadratic formu

la. 
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2.6 

25. Solve 3x2 + 2x - I = 0 by the quadratic fonnu-
la. 

In Exercises 26-28 solve for x. 
26. 49x2 - 9 = 0 27. kx2 - 31T = O 
28. x2 + x = 1 2  
In Exercises 29-3 1  detennine the nature of the roots of 
the quadratic equation without solving . 

29. 3? = 2r + S 30. 4x2 + 20x + 25 = 0 
3 1 .  6y2 - 2y = - 7  
In Exercises 32-35 solve the given equation. 

32. Yx + 2 = x 33. Yx+3 + V2x - 3 = 6 
34. x4 - 4x2 + 3 = 0 

35 . ( I - ;y - s( I - ;) + 1 5  = 0 

36. A charitable organization rented an auditorium 

PROGRESS TEST 2A 
In Problems I and 2 solve for y. 

I .  5 - 4y = 2 2. 2 + Sy = 6 3y - I 
3 . One side of a triangle i s  2 meters shorter than the base, 

and the other side is 3 meters longer than half the base. 
If the perimeter is 1 5 meters , find the length of each 
side. 

4 . A trust fund invested a certain amount of money at 
6.5% simple annual interest, a second amount $200 
more than the first amount at 7 .5%, and a third amount 
$300 more than twice the first amount at 9%. If the 
total annual income from these investments is $ 1962, 
how much was invested at each rate? 

5 .  Indicate whether the statement is true (T) or false (F): 
The equation (2x - I )2 = 4x2 - 4x + I is an identi
ty . 

6. Solve - I s 2x -r 3 < 5 and graph the solution set. 
In Problems 7 and 8 solve the inequality and express the 
solution set in interval notation. 

for a meeting at a cost of $420 and split the co t 
among the attendees . If 10 additional persons had 
attended the meeting, the cost per person would 
have decreased by $ 1 .  How many persons actu
ally auended? 

2.7 37. Find the values of x for which V2x2 - x  - 6 ha 

38. 

39. 

40. 

real values. 

Write the solution et of the inequality 
x2 + 4x - 5 � 0 in interval notation. 

W . th I . ' 2x + I 
o · · nte e so u!lon set .or x + 5 =:::: m inter-

val notation. 

Write the solution set for 

(3 - x)(2x + 3)(x + 2) < 0 
in interval notation. 

1 2 . Solve x2 - 5x = 14 by factoring. 
13 . 
14. 

Solve 5x2 - x + 4 = 0 by completing the square. 
Solve I 2x2 + 5x - 3 = 0 by the quadratic formula. 

In Problems 15 and 16 solve for x. 

1 5 .  (2x - 5)2 + 9 = 0 16 . I 3 2 + - - - = 0  x x2 
In Problems 1 7  and 1 8  determine the nature of the roots of 
the quadratic equation without solving. 
1 7 .  6x2 + x - 2 = 0  18 . 3x2 - 2x = -6 
In Problems 1 9 and 20 solve the given equation. 
19 . x - V 4 - 3x = -8 20. 3x4 + 5x2 - 2 = 0 
2 1 .  The area of a rectangle is 96 square meters. If the 

length and the width are each increased by 2 meters, 
the area of the newly formed rectangle is 140 square 
meters . Find the dimensions of the original rectan
gle . 

22. Find the values of x for which V3x2 - 4x + I has real 
values. 

7.  3(2a - I) - 4(a + 2) s 4 
9. Solve 14x - I I = 9. 

8. -2 s 2 - x s 6 In Problems 23 and 24 write the solution set in interval nota
tion. 

1 0. Solve 12x - I I s 5 and graph the solution set. 
1 1  . Solve 1 1  - 3xl < 5 and write the solution in interval 

notation . 

23. -2x2 + 3x - I s 0 
24. (x - 1 )(2 - 3x)(x + 2) s 0 



PROGRESS TEST 28 
In Problems l and 2 solve for x. 

l .  3(2x + 5) = 5 - (3x - I ) 2. 3x - k2 = -kx 
3. 

4. 

5. 

6. 

An alloy that is 60% silver is to be combined with an 
alloy that is 80% silver to produce 1 20 ounces of an 
alloy that is 75% silver. How many ounces of each 
alloy must be used? 

ax + b Solve --b = d for x. ex + 
Indicate whether the statement is true (T) or false (F): 

l . 1 . f h  . x - I O x = - 1s a so utton o t e equation -- = . x + I 
Solve -9 � I - 5x � -4 and graph the solution 
set. 

In Problems 7 and 8 solve the inequality and express the 
solution set in interval notation. 

x I 1 7 · 4 - 2 � 2 - x 

9. Solve I I - 3xl = 7 . 

8 . -2 
-- 2: 0 3 - x 

10. lx - 41 Solve -2
-2: 1 and graph the solution set. 

1 1 .  Solve 15x + 21 > 3 and write the solution set in inter
val notation. 

12 . Solve 6x2 + 1 3x - 5 = 0 by factoring . 
13 . Solve 2x2 - 5x + 2 = 0 by completing the square. 
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14 . Solve 3x2 - x = -7 by the quadratic formula. 
In Problems 15 and 16 solve for x. 

15 . (x - 3)2 + 2 = 0 16. 

In Problems 1 7 and 1 8  determine the nature of the roots of 
the quadratic equation without solving. 
17 . 6z2 - 4z = -2 18 . 4y2 - 20y + 25 = 0 
In Problems 1 9 and 20 solve the given equation. 
19 . � - V3x - 2 = - 1  

20. 8 9 473 + 273 + 1 = 0 x x 
2 1 .  I f  the price of a large candy bar rose by 1 0  cents, a 

buyer would receive 2 fewer candy bars for $6.00 than 
she does at the current price. What is the current 
price? 

22. Find the values of x for which xi� has real 
values. 

In Problems 23 and 24 write the solution set in interval nota
tion. 

x2 23. -- � o x + 5  
24. (3x - 2)(x + 4)( 1  - x) > 0 



FUNCTIONS 
What is the effect of increased fertilization on the growth of an azalea? If the 
minimum wage is increased, what will be the impact on the number of unem
ployed workers? When a submarine dives, can we calculate the water pressure 
against the hull at a given depth? 

Each of the questions posed above seeks a relationship between phenomena. 
The search for relationships, or correspondence, is a central activity in our 
attempts to understand the universe; it is used in mathematics, engineering, the 
physical and biological sciences, the social sciences, and business and econom
ics . 

The concept of a function has been developed as a means of organizing and 
assisting in the study of relationships. Since graphs are powerful means of exhib
iting relationships, we begin with a study of the Cartesian, or rectangular, coor
dinate system. We will then formally define a function and will offer a number of 
ways of viewing the function concept. Function notation will be introduced to 
provide a convenient means of writing functions .  

We wil l  also explore some special types of functional relationships (increas
ing and decreasing functions) and will see that variation can be viewed as a 
functional relationship. 

PAGE 113 
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3.1 
THE RECTANGULAR 
COORDINATE SYSTEM 

In Chapter I we associ ated the sy stem of real numbers wi th poi nts on the real 
number li ne. T hat i s, we saw that there i s  a one-to-one correspondence between 
the sy stem of real numbers and poi nts on the real number li ne. 

We wi ll now develop an analogous way to handle poi nts i n  a plane. We 
begi n by drawi ng a pai r  of perpendi cular li nes i ntersecti ng at a poi nt 0 called the 
origin. O ne of the li nes, called the x-axis, i s  usually drawn i n  a hori zontal 
posi ti on. T he other li ne, called the y-axis, i s  usually drawn verti cally. 

I f  we thi nk of the x-axi s as a real number li ne, we may mark off some 
conveni ent uni t  of length, wi th posi ti ve numbers to the ri ght of the ori gi n and 
negati ve numbers to the left of the ori gi n. Si mi larly, we may thi nk of the y-axi s 
as a real number li ne. Agai n, we may mark off a conveni ent uni t of length 
( usually the same as the uni t  of length on the x-axi s) wi th the upward di recti on 
representi ng posi ti ve numbers and the downward di recti on negati ve numbers . 
T he x and y axes are called coordinate axes, and together they consti tute a 
rectangular or Cartesian coordinate system. T he coordi nate axes di vi de the 
plane i nto four quadrants, whi ch we label I, I I, I I I, and I V  as i n  Fi gure l .  

y 
3 

b 
p 

- -1 2 
I 

Quadrant I Quadrant 

II I 
I I 

-3 -2 - 1  
a 

2 3 x 

- 1 

Quadrant Quadrant 
I I I  -2 IV 

-3 

FIGURE 1 

By usi ng the coordi nate axes, we can outli ne a procedure for labeli ng a 
poi nt P i n  the plane. From P, draw a perpendi cular to the x-axi s and note that i t  
meets the x-axi s at x = a.  Now draw a perpendi cular from P to the y-axi s and 
note that i t  meets the y-axi s at y = b.  We say that the coordinates of P are gi ven 
by the ordered pair (a, b) . T he term "ordered pai r" means that the order i s  
si gni fi cant; that i s, the ordered pai r  (a, b) i s  di fferent from the ordered pai r  (b, a) . 

T he fi rst number of the ordered pai r (a, b) i s  someti mes called the abscissa 
or x-coordinate of P. T he second number i s  called the ordinate or y-coordinate 
of P. 
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We have now developed a procedure for associating with each point P in the 
plane a unique ordered pair of real numbers (a, b) . We usually write the point P 
as P(a, b) . Conversely, every ordered pair of real numbers (a, b) determines a 
unique point P in the plane. The point P is located at the intersection of the lines 
perpendicular to the x-axis and to the y-axis at the points on the axes having 
coordinates a and b, respectively .  We have thus established a one-to-one corre
spondence between the set of all points in the plane and the set of all ordered 
pairs of real numbers . 

We have indicated a number of points in Figure 2 .  Note that all points on the 
x-axis have a y-coordinate of 0 and all points on the y-axis have an x-coordinate 

(-3, 2) 
• 

(-2, 0) 

-3 -2 - 1  

y 
3 

2 

• (-4, - 1 )  - I  

FIGURE 2 

-2 

(0, -3) 
-3 

• (2, 3) 

2 3 x 

(3, -2) • 

of 0. It is important to observe that the x-coordinate of a point P is the distance of 
P from the y-axis; the y-coordinate is its distance from the x-axis . The point (2,  3) 
in Figure 2 is 2 units from the y-axis and 3 units from the x-axis . 

There is a useful formula that gives the distance PQ between two points P(x1 , y1 ) 
and Q(x2 , y2) .  In Figure 3a we have shown the x-coordinate of a point as the 
distance of the point from the y-axis, and the y-coordinate as its distance from the 
x-axis .  Thus we labeled the horizontal segments x1 and x2 and the vertical seg
ments y 1 and y2 • In Figure 3b we use the lengths from Figure 3a to indicate that 
PR = x2 - x1 and QR = y2 - y1 • Since triangle PRQ is a right triangle , we can 
apply the Pythagorean theorem. 
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The Distance Formula 
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Although the points in Figure 3 are both in quadrant I ,  the same result will be 
obtained for any two points. Since distance cannot be negative, we have 

The distance PQ between the points P(x1 , y 1 )  and Q(xi , y2) in the plane is 

PQ = V(x2 - x1)2 + (y2 - y1 )2 

It is also clear from the distance fonnula that PQ = QP. 

EXAMPLE 1 
Find the distance between the points P(-2, -3) and Q( l ,  2). 

SOLUTION 
Using the djstance fonnula, we have 
PQ = Y[ l - (-2))2 + (2 - (-3))2 = \/32 + 52 = V34 
PROGRESS CHECK 
Find the distance between the points P( -3,  2) and Q(4, -2). 

ANSWER 
\/65 

EXAMPLE 2 
Show that the triangle with vertices A(-2, 3), 8(3, - 2), and C(6, l )  is a right 
triangle. 
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SOLUTION 
It is a good idea to draw a diagram as in Figure 4. We compute the lengths of the 
three sides. 

y 

4 

A(-2 , 3) 

-4 

8(3, -2) 

-4 

FIGURE 4 

AB = Y(3 + 2)2 + (-2  - 3)2 = v5o 
BC = Y(6 - 3)2 + ( l  + 2)2 = vls 
AC = Y(6 + 2)2 + ( l  - 3)2 = v'6s 

If the Pythagorean theorem holds, then triangle ABC is a right triangle. We see 
that 

(AC)2 = (AB)2 + (BC)2 since 68 = 50 + 1 8  

and we conclude that triangle ABC is a right triangle whose hypotenuse is AC. 

By the graph of an equation in two variables x and y we mean the set of all 
points P(x, y) whose coordinates satisfy the given equation. We say that the 
ordered pair (a, b) is a solution of the equation if substitution of a for x and b 
for y yields a true statement. 

To graph y = x2 - 4, an equation in the variables x and y, we note that we 
can obtain solutions by assigning arbitrary values to x and computing corre
sponding values of y. Thus, if x = 3 ,  then y = 32 - 4 = 5 ,  and the ordered pair 
(3 ,  5) is a solution of the equation. Table 1 shows a number of solutions. We next 
plot the points corresponding to these ordered pairs. Since the equation has an 
infinite number of solutions, the plotted points represent only a portion of the 
graph. We assume that the curve behaves nicely between the plotted points and 
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connect these points by a smooth curve (Figure 5) .  We must plot enough points 
to feel reasonably certain of the outline of the curve . 

TABLE 1 

x -3 

y 5 

-2 

0 

-4 -3 -

FIGURE 5 
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3 4 x 

The abscissa of a point at which a graph meets the x-axis is called an 
x-intercept. Since the graph in Figure 5 meets the x-axis at the points (2, 0) and 
( - 2, 0), we see that 2 and -2  are the x-intercepts. Similarly, we define the 
y-intercept as the ordinate of a point at which the graph meets the y-axis. In 
Figure 5 the y-intercept is - 4. Intercepts are often easy to calculate and are 
useful in sketching a graph. 

EXAMPLE 3 
Sketch the graph of the equation y = 2x + l .  Determine the x- and y-intercepts, 
if any. 

SOLUTION 
We form a short table of values and sketch the graph in Figure 6. The graph 
appears to be a straight line that intersects the x-axis at (-! ,  0) and the y-axis at 
(0, 1 ) .  The x-intercept is -!  and the y-intercept is l .  Alternatively, we can find 
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-4 

FIGURE 6 

the y-intercept algebraically by letting x = 0 so that 

y = 2x + l = 2(0) + l = 1 

and the x-intercept by letting y = 0 so that 

y = 2x + l 

0 = 2x + l 

x = -! 

If we folded the graph of Figure 7a along the x-axis , the top and bottom portions 
would exactly match, which is what we intuitively mean when we speak of 
symmetry about the x-axis .  We would like to develop a means of testing for 
symmetry that doesn't  rely upon examining a graph. We can then use informa
tion about symmetry to help in sketching the graph. 

y y 

x 

(b) (c) 
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Tests tor Symmetry 

Returning to Figure 7a, we see that every point (x i .  y 1 )  on the portion of the 
curve above the x-axis is reflected in a point (x1 ,  -y1)  that lies on the portion of 
the curve below the x-axis. Similarly, using the graph of Figure 7b, we can argue 
that symmetry about the y-axis occurs if, for every point (x . ,  y1) on the curve, 
(-x i .  y1) also lies on the curve . Finally, using the graph sketched in Figure 7c , 
we ee that symmetry about the origin occurs if, for every point (xi .  y1)  on the 
curve , ( -x1 , -y1 )  also lies on the curve . We now summarize these results. 

The graph of an equation is symmetric with respect to the 
(i) x·axis if replacing y with -y results in an equivalent equation; 
(ii) y·axis if replacing x with -x results in an equivalent equation; 
(iii) origin if replacing x with -x and y with -y results in an equivalent 

equation. 

EXAMPLE 4 
Use intercepts and symmetry to assist in graphing the equations. 
(a) y = 1 - x2 (b) x = y2 + 1 

SOLUTION 

(a) To determine the intercepts , set x = 0 to yield y = 1 as the y-intercept. 
Setting y = 0, we have x2 = 1 or x = ± l as the x-intercepts . 

To test for symmetry , replace x with -x in the equation y = l - x2 to 
obtain 

y = l - ( -x)2 = 1 - x2 

Since the equation is unaltered, the curve is symmetric with respect to the y-axis. 
Now,  replacing y with -y, we have 

-y = I - x2 

which is not equivalent to the original equation . The curve is therefore not sym
metric with respect to the x-axis. Finally, replacing x with -x and y with -y 
repeats the last result and shows that the curve is not symmetric with respect to 
the origin. 

We can now form a table of values for x 2'. 0 and use symmetry with respect 
to the y-axis to help sketch the graph of the equation (see Figure Sa) . 

(b) The y-intercepts occur where x = 0. Since this leads to the equation 
y2 = - 1 ,  which has no real roots, there are no y-intercepts. Setting y = 0, we 
have x = 1 as the x-intercept. 

Replacing x with -x in the equation x = y2 + I gives us 

-x = y2 + 1 
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which is not an equivalent equation. The curve is therefore not symmetric with 
respect to the y-axis. Replacing y with -y, we find that 

x = ( -y)2 + I = y
2 + I 

which is the same as the original equation. Thus, the curve is symmetric with 
respect to the x-axis. Replacing x with -x and y with -y also results in the 
equation 

-x = y2 + I 

and demonstrates that the curve is not symmetric with respect to the origin. We 
next form the table of values shown in Figure 8b by assigning nonnegative values 
to y and calculating the corresponding values of x from the equation; symmetry 
enables us to sketch the lower half of the graph wit�lotting points. 

Solving the given equation for y yields y = ± v' x - 1 ,  which confirms the 
symmetry about the x-axis. We can think of the upper half of Figure 8b as the ;r�� �uation y = Vx=---1 and the lower half as the graph of the equation 

EXAMPLE 5 
Without sketching the graph, determine symmetry with respect to the x-axis, the 
y-axis, and the origin. 

(a) x2 + 4y2 - y = l (b) xy = 5 
x2 + l 

(c) y2 = -

x2 - l 
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SOLUTION 

(a) Replacing x with -x in the equation , we have 

( -x)2 + 4y2 - y = l 

x2 + 4y2 - y = l 

Since the equation is unaltered, the curve is symmetric with respect to the y-axis. 
Next, replacing y with -y, we have 

x2 + 4(-y)2 - (-y) = 1 
x2 + 4y2 + y = 1 

which is not an equivalent equation. Replacing x with -x and y with -y repeats 
the last result. The curve is therefore not symmetric with respect to either the 
x-axis or the origin. 

(b) Replacing x with -x, we have -xy = 5, which is not an equivalent equa
tion . Replacing y with -y, we again have -xy = 5 .  Thus the curve is not sym
metric with respect to either axis. However, replacing x with -x and y with -y 
gives us 

(-x)( -y) = 5  

which is equivalent to xy = 5 .  We conclude that the curve is symmetric with 
respect to the origin . 

(c) Since x and y both appear to the second power only,  all tests will lead to an 
equivalent equation . The curve is therefore symmetric with respect to both axes 
and the origin. 

PROGRESS CHECK 

Without graphing, determine symmetry with respect to the coordinate axes and 
the origin. 

(a) x2 - y2 = l 

ANSWERS 

(b) x + y "" l O  
1 

(c) y = x + 
x 

(a) Symmetric with respect to the x-axis, the y-axis, and the origin. 
(b) Not symm.etric with respect to either axis or the origin . 
(c) Symmetric with respect to the origin only. 

Note that in Example Sc and in (a) of the last Progress Check, the curves are 
symmetric with respect to both the x- and y-axes, as well as the origin. In fact, 
we have the following genera.I rule. 

A curve that is syRlffietric with respect to both coordinate axes is also symmet
ric with l'espect to the origin. However, a curve that is symmetric with respect 
to the origin need not be symmetric with respect to the coordinate axes . 
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The curve in Figure 7c illustrates the last point. The curve is symmetric with 
respect to the origin but not with respect to the coordinate axes. 

EXERCISE SET 3.1 
In each of Exercises 1 and 2 plot the given points on the same coordinate axes . 

1 .  (2, 3), (-3 , -2), (-+. +) . (o, !) , (- � ,  o) , 

(3, -2) 

2. (-3, 4), (5, -2) , (- 1 ,  -3) , ( - 1 ,  � ) ,  (0, 1 .5) 

In Exercises 3-8 find the distance between each pair of points. 

3. (5, 4), (2, 1 )  4 .  (-4, 5), (-2, 3) 
5. ( - 1 ,  -5), (-5 , - 1) 

7 (� 1-) (-2 -4) . 3 '  2 ' ' 

6. (-3, 0), (2, -4) 

8 . (- � , 3) , (- 1 , - !) 

In Exercises 9-12 find the length of the shortest side of the triangle determined by the three given points. 

9. A(6, 2), 8(- 1 ,  4), C(O, -2) 10 . P(2, -3), Q(4, 4) , R(- 1 ,  - 1 ) 

1 1 .  R(- 1 ,  +) , s(- � ,  1 ) ,  T(2, - 1) 12 . F(-5, - 1 ), G(O, 2), H( l ,  -2) 

In Exercises 1 3- 16 determine if the given points form a right triangle. (Hint: A triangle is a right triangle if and only if 
the lengths of the sides satisfy the Pythagorean theorem.) 

1 3 .  ( 1 ,  -2), (5, 2), (2, 1 )  14. (2, -3) , (- 1 ,  - 1 ) , (3, 4) 
15 . (-4, 1 ) ,  ( 1 ,  4), (4, - 1) 16 . ( 1 ,  - 1 ) , (-6, 1 ) , ( 1 , 2) 
In Exercises 1 7-20 show that the points lie on the same line. (Hint: Three points are collinear if and only if the sum of 
the lengths of two sides equals the length of the third side . )  

1 7 . (- 1 ,  2) , ( 1 ,  1 ) , (5 , - 1 ) 1 8 . (- 1 ,  -4), ( 1 ,  10) , (0, 3) 

19 . (- 1 ,  2) , ( 1 ,  5) , (-2, +) 
2 1 . Find the perimeter of the quadrilateral whose vertices 

are (-2 , - 1) , (-4, 5), (3, 5), (4, -2). 
22. Show that the points (-2 , - 1 ) , (2, 2), (5, -2) are the 

vertices of an isosceles triangle. 
23. Show that the points (9, 2), ( 1 1 ,  6), (3, 5), and ( I ,  1 )  

are the vertices of a parallelogram. 

24. Show that the point ( - 1 ,  1 )  is the midpoint of the line 
segment whose endpoints are (-5, - 1 ) and (3, 3). 

20. (- 1 ,  -5), ( I , 1), (-2, -8) 

25. The points A(2, 7), 8(4, 3) , and C(x, y) determine a 
right triangle whose hypotenuse is AB. Find x and y. 
(Hint: There is more than one answer.) 

26. The points A(2, 6) , 8(4, 6), C(4, 8), and D(x, y) form 
a rectangle. Find x and y. 

In Exercises 27-32 determine the intercepts and sketch the graph of the given equation. 

27. y = 2x + 4 28. y = - 2x  + 5 29. y = Vx 30. y = � 
3 1 .  y = Ix +  31 32. y = 2 - lxl 
In Exercises 33-38 determine the intercepts and use symmetry to assist in sketching the graph of the given equation. 

33 . y = 3 - x2 34. y = 3x - x2 35. y = x3 + 1 36. x = y3 - 1 
37. x = y2 - 1 38. y = 3x 
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Without graphing, detennine whether each curve is symmelric with respect to the x-axis, the y-axis, the origin, or none of 
these. 
39'. 3x + 2y - 5 
43 . y2 = t + x3 

47. Ix + 2x2 - 4x2y 

5 1 .  y = x2 + l  
x2 - l 

3.2 

IFUNCllONS AND 
IFUNCTIONI NOlATION 

Function. Domain', 
Image, andl Range 

40. y = 4x2 4 1 .  y = x - 4  42. x2 - y = 2 
44. y = (x - 2)2 45 . I - (x - 2>2 46. Ix + ix - 4 

48. y3 - x2 - 9  49. 
x2 + 4  

50. 
l 

y -
x2 - 4  

y -
x2 + l  

52. 4x2 + 9l = 36 53. xy =  4 

The equation 

y = 2x + 3  

assigns a value to y for every value of x. If we let X denote the set of va1ues that 
we can assign to x, and let Y de11ote the set of values that the equation assigns to 
y, we can show the correspondence schematically as in Figure 9. The equation 
can be thought of as a rule defining the COR'espondence between the sets X and Y. 

x y = 2.x + 3 
x 

FIGURE 9 

We are particuJarly interested in the situation where , for each element x in 
X, there corresponds one and only one element y in Y; that is, the nde assigns 
exactiy one y for a given x. This type of correspondence plays a fundamental role 
in mathematics and is given a specia1 name. 

A function is a nile that, for each x i.n a set X, assigns exactly one y in a set 
Y. The element y is called the image of x. The set X is caUed the domain of the 
function and the set of all images is calJed the range of the function . 

'--��--��������������� 

We can think of the rule defined by the equation y = 2x + 3 as a function 
machine (see Figure 1 0) .  Each time we drop a value of x from the domain into 
the input hopper, exactly one value of y falls out of the output chute. If we drop 
in x = 5 ,  the function machine follows the rule and produces y = 1 3 .  Since we 
are free to choose the values of x that we drop into the machine, we call x the 
independent variable; the value of y that drops out depends upon the choice of 
x, so y is called the dependent variable. We say that the dependent variable is 



FIGURE 11 

VERTICAL LINE TEST 

Input 

FIGURE 10 

3.2 FUNCTIONS AND FUNCTION NOTATION 125 

Function machine 

Rule : 
y = 2.x + 3 

a function of the independent variable; that is, the output is a function of the 
input. 

Let's look at a few schematic presentations. The correspondence in 
Figure I l a  is a function; for each x in X there is exactly one correspondjng value 
of y in Y. The fact that y1 is the image of both x1 and x2 does not violate the 
definition of a function . However, the correspondence in Figure l l b  is not a 
function, since x1 has two images, Yi and Y2. assigned to it, thus violating the 
definition of a function. 

y x y 

( a  (b)  

There is  a simple graphic way to test whether a correspondence determines a 
function . When we draw vertical lines on the graph of Figure 1 2a,  we see that no 
vertical line intersects the graph at more than one point. This means that the 
correspondence used in sketching the graph assigns exactly one y-value for each 
x-value and therefore determines y as a function of x. When we draw vertical 
lines on the graph of Figure l 2b, however, some vertical lines intersect the graph 
at two points. S ince the correspondence graphed in Figure 1 2b assigns the values 
y1 and y2 to x1 , it does not determine y as a function of x. Thus, not every 
equation or correspondence in the variables x and y determines y as a function 
of x. 
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FIGURE 12 

Vertical Une Test 

y 

(a) 

y y 

x 

(a) (b ) 

A graph determines y as a function of x if and only if no vertical line meets the 
graph at more than one point. 

EXAMPLE 1 

Which of the following graphs determine y as a function of x? 

y y 

x 

(b) (c) 

SOLUTION 

(a) Not a function . Some vertical lines meet the graph in more than one point. 
(b) A function. Passes the vertical line test. 
(c) Not a function. Fails the vertical li11e test. 
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FUNCTION NOTATION 
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We have defined the domain of a function as the set of values assumed by the 
independent variable .  In more advanced courses in mathematics, the domain 
may include complex numbers . In this book we will restrict the domain of a 
function to those real numbers for which the image is also a real number, and we 
say that the function is defined at such values. When a function is defined by an 
equation, we must always be alert to two potential problems. 
(a) Division by zero. For example, the domain of the function 

2 
y = -

x - l 

is the set of all real numbers other than x = 1 .  When x = 1 ,  the denominator is 
0, and division by 0 is not defined. 
(b) Even roots of negative numbers. For example, the function 

y = Vx=l 

is defined only for x � 1 ,  since we exclude the square root of negative numbers . 
Hence the domain of the function consists of all real numbers x � 1 .  

The range of a function is, in general, not as easily determined as is the 
domain. The range is the set of all y-values that occur in the correspondence; that 
is , it is the set of all outputs of the function. For our purposes, it will suffice to 
determine the range by examining the graph. 

EXAMPLE 2 

Graph the equation y = Yx. If the correspondence detennines a function, find 
the domain and range. 

SOLUTION 

We obtain the graph of the equation by plotting points and connecting them to 
fonn a smooth curve. Applying the vertical line test to the graph as shown in 
Figure 1 3 , we see that the equation determines a function. The domain of the 
function is the set {xix ;;::-: O} and the range is the set {yly ;;::-: O}. 

PROGRESS CHECK 

Graph the equation y = r 
- 4, - 3 s; x s; 3 .  If the correspondence determines 

a function, find the domain and range. 

ANSWER 

The graph is that portion of the curve shown in Figure 5 that lies between x = -3 
and x = 3 . The domain is {xl -3 s; x s; 3}; the range is {yl -4 s; y s; 5}. 

It is customary to designate a function by a letter of the alphabet, such as f, g, 
F, or C. We then denote the output corresponding to x by f(x), which is read "! 
of x."  Thus, 

f(x) = 2x + 3 
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* 

specifies a rule f for determining an output f(x) for a given value of x. To find 
f(x) when x ""  5 ,  we simply substitute 5 for x and obtain 

/(5) ;;;;; 2(5) + 3 ;;;;; 1 3  

The notation/(5) is a convenient way of specifying "the value of the function / 
that corresponds to x = 5 .  ' '  The symbol f represents the function or rule; the 
notationf(x) represents the output produced by the rule. For convenience, how
ever, we will at times join in the common practice of designating the function / 
by f(x). 

EXAMPLE 3 

(a) lff(x) = 2x2 - 2x + 1 ,  find f( - 1 ) . 

(b) If f(t) "" 3t2 - 1 ,  find /(2a). 

SOLUTION 

(a) We substitute - 1  for x. 
f(- 1 )  ;;;;; 2( - 1)2 - 2(- 1 )  + 1 = 5 

(b) We substitute 2a for t. 
/(2a) = 3(2a)2 - 1 "" 3(4a2) - 1 "" 1 2a2 - l 

PROGRESS CHECK 

(a) If f(u) = u3 + 3u - 4, find f(-2) .  
(b) If /(t) :-; t2 + l ,  find f(t - 1 ) .  

ANSWERS 

(a) - 1 8 

EXAMPLE 4 

(b) f - 2t + 2 

Let the function f be defined by ft.x) "" x2 - 1 .  Find 
(a) f( - 2) (b) /(a) (c) /(a + h) (d) /(a + h) - ft.a) 

SOLUTION 
(a) f( - 2) = ( - 2)2 - 1 = 4 - 1 = 3 
(b) /(a) = a2 - l 
(c) ft.a + h) = (a + h)2 - l = a2 + 2ah + h2 - l 
(d) ft.a + h) - ft.a) = (a + h)2 - l - (a2 - l )  

WARNING 

= a2 + 2ah + h2 - 1 - a2 + 1 
;;;;; 2ah + h2 

(a) Note that ft.a + 3) 7'= /(a) + /(3) . Function notation is not to be confused 
with the distributive law. 
(b) Note that ft..x2) ¥: f · x2. The use of parentheses in function notation does not 
imply multiplication. 
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EXAMPLE 5 
A newspaper makes this offer to its advertisers: The first column inch will cost 
$40, and each subsequent column inch will cost $30. If T is the total cost of 
running an ad whose length is n column inches, and the minimum space is 1 
column inch, 
(a) express T as a function of n; 
(b) find T when n = 4 . 

SOLUTION 
(a) The equation 

T = 40 + 30(n - 1 )  
= 1 0  + 30n 

gives the correspondence between n and T. In function notation, 

T(n) = IO + 30n, n 2: 1 
(b) \Vhen n = 4,  

T(4) = 10  + 30(4) = 1 30 

In Exercises 1-6 graph the equation. If the graph determines y as a function of x, find the domain and use the graph to 
determine the range of the function . 

l .  y = 2.x - 3 2. y = X2 + X, -2 $ x $ l 
3. x = y + l 4. x = y2 - l 
5 . y = Vx-=-T 6. Y = lxl 

In Exercises 7- 1 2 determine the domain of the function defined by the given rule . 
I 7. f(x) = � 8. j(x) = � 9. j(x) = Vx"=-2 

x - 2  
Vx-=-T 1 1 .  j(x) = --x - 2 

x 1 2 .  f(x) = --y--4 x -
In Exercises 1 3- 16 find the number (or numbers) whose image is 2 . 

I 1 3 . j(x) = 2x - 5 14. f(x) = x2 15 . f(x) = -x - 1 
Given the function f defined by j(x) = 2.x2 + 5 , determine the following. 
17 . j(O) 
2 1 . 3f(x) 

18 . j(-2) 
22. -f(x) 

19 . f(a) 

Given the function g defined by g(x) = x2 + 2.x, determine the following. 

23. g(-3) 

27 . g(a + h) 28. g(a + h) - g(a) 
h 

25 . g(x) 

-2 10 . f(x) = ---

x2 + 2x - 3 

16 . f(x) = Vx""=""T 

20. f(3x) 

26. g(-x) 
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[ill] -

Given the function F defined by F(x) = �' determine the following. 3x - 1 

29. F(-2.73) � 30. F( 16 . 1 1 ) 3 1 .  32. F(-x) 
- F(x) 

33. 2F(2x) 34. F(x2) 

Given the function r defined by r(t) = t2 t - 2 
, determine the following. + 2t - 3 

35. r(-8 .27) B LJ 36. r(2.04) 37. r(2a) 38. 2r(a) 
39. r(a + 1 )  40. r( l + h) 
41 . If x dollars are borrowed at 7% simple annual interest, 

express the interest I at the end of 4 years as a function 
of x. 

43 . Express the diameter d of a circle as a function of its 
circumference C. 

44. Express the perimeter P of a square as a function of its 
area A . 42 . Express the area A of an equilateral triangle as a func

tion of the length s of its side. 

3.3 
GRAPHS OF 
;FUNCTIONS 

"SPECIAL" FUNCTIONS 
AND THEIR GRAPHS 

We have used the graph of an equation to help us find out whether or not the 
equation determines a function. It is not surprising, therefore , that the graph of 
a function f is defined as the graph of the equation y = fix) . For example, the 
graph of the function f defined by the rule f(x) = Vx is the graph of the equation 
y = Vx, which was sketched in Figure 1 3 .  

There are a number of "special" functions that a mathematics instructor is likely 
to use to demonstrate a point. The instructor will sketch the graph of the function, 
since the graph shows at a glance many characteristics of the function .  For exam
ple , information about symmetry , domain ,  and range is available from a graph. In 
fact, we have already used the graphs of some of these functions to illustrate these 
characteristics. 

You should become thoroughly acquainted with the following functions and 
their graphs. For each function we will form a table of values, sketch the graph of 
the function , and discuss symmetry , domain, and range . 

f(x) = x Identity function 

The domain off is the set of all real numbers . We form a table of values and use 
it to sketch the graph of y = x in Figure 14 .  The graph is symmetric with respect 
to the origin (note that -y = -x is equivalent to y = x) . The range off is seen to 
be the set of all real numbers . 

f(x) = -x Negation function 

The domain off is the set of all real numbers . A table of values is used to sketch 
the graph of y = -x in Figure 1 5 .  The graph is symmetric with respect to the 
origin (note that -y = x is equivalent to y =  -x) . The range off is seen to be the 
set of all real numbers . 
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x 
-2 - I 0 I 2 x -2 - I 0 I 2 

y - 2 - I 0 I 2 y 2 I 0 - I -2 

y y 

2 

-2 - I 2 
x 

- 1 

y = -x -2 

FIGURE 14 FIGURE 15 

f(x) = lxl Absolute value function 

The domain of f is the set of all real numbers. A table of values allows us to 
sketch the graph in Figure 16 .  The graph is symmetric with respect to the y-axis. 
Since the graph always lies above the x-axis, the range of f is the set of all 
nonnegative real numbers. 

f(x) = c Constant function 

The domain off is the set of all real numbers . In fact, the value off is the same 
for all values of x (see Figure 17) .  The range of f is the set { c} . The graph is 
symmetric with respect to the y-axis (note that y 

= c is unaltered when x is 
replaced by -x) . 

y 

-2 - I l 2 x 
y = lxl 

FIGURE 16 

y 

-2 - I 

FIGURE 17 

2 
y = c 

x 
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x -2 - I 0 

y 4 I 0 

-2 - I 

FIGURE 18 

PIECEWISE-DEFINED 
FUNCTIONS 

I 2 

I 4 

x 
2 

f(x) = x2 Squaring function 

The domain off is the set of all real numbers . The graph in Figure 1 8  is called a 
parabola and illustrates the general shape of all second-degree polynomials .  The 
graph of f is symmetric with respect to the y-axis (note that y = (-x)2 = x2) .  
Since y 2'. 0 for all values of  x, the range i s  the set of  all nonnegative real 
numbers . 

f(x) = vX Square root function 
Since Vx is not defined for x < 0, the domain is the set of nonnegative real 
numbers . The graph in Figure 1 9  always lies above the x-axis, so the range off 
is {yl y 2'. O}, that is, the set of all nonnegative real numbers . The graph is not 
symmetric with respect to either axis or the origin. 

f(x) = x3 Cubing function 

The domain is the set of all real numbers . S ince the graph in Figure 20 extends 
indefinitely both upward and downward with no gaps, the range is also the set of 
all real numbers . The graph is symmetric with respect to the origin (note that 
-y = (-x)3 = -x3 is equivalent to y = x3) .  

x -2 - I 0 I 2 

y -8 - I 0 I 8 

x 0 I 4 9 

y 0 I 2 3 

y 

3 
2 
I 

4 
FIGURE 19 FIGURE 20 

Thus far we have defined each function by means of an equation . A function can 
also be defined by a table, by a graph , or by several equations. When a function 
is defined in different ways over different parts of its domain,  it is said to be a 
piecewise-defined function. We illustrate this idea by several examples. 
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EXAMPLE 1 
Sketch the graph of the function f defined by 

SOLUTION 

{x2 i f  -2 $ x $ 2 

ft.x) = 2x + l if x >2 

We form a table of points to be plotted, being careful to use the first equation 
when -2 $ x $ 2 and the second equation when x > 2. 

I : I 
-2 - 1 5 

4 l l  

Note that the graph in Figure 2 1  has a gap . Also note that the point (2, 5) has 
been marked with an open circle to indicate that it is not on the graph of the 
function. 

y 

j I 
j I 

-,___ L j - I 
A 

\ J \ � I ' - I 
\ J 

-' < ( x 

FIGURE 21 

EXAMPLE 2 
Sketch the graph of the function flx) == Ix + l I .  



134 FUNCTIONS 

SOLUTION 
We apply the definition of absolute value to obtain 

or 

{ x + 1 y = Ix +  l J = 
-(x + l ) 

if x + I � O 
if x + l < 0 

{ x + I if x � - 1 y = -x - 1 if x < - 1  

From this example it is easy to see that a function involving absolute value will 
usually be a piecewise-defined function. As usual, we form a table of values, 
being careful to use y = x + I when x 2: - l and y = -x - I when x < - l .  It 
is a good idea to ·include the value x = - I in the table . 

x - 3 - 2  - l  0 2 3 

y 2 0 2 3 4 

The points are joined by a smooth curve (Figure 22) , which consists of two rays 
or half-lines intersecting at ( - 1 ,  0) . 

y 

4 

y = Ix + 1 1  

-4 - 2  2 4 x 

FIGURE 22 

EXAMPLE 3 
The commission earned by a door-to-door cosmetics salesperson is determined as 
shown in the accompanying table. 

(a) Express the commission C as a function of sales s. 
(b) Find the commission if the weekly sales are $425 . 
(c) Sketch the graph of the function. 
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Weekly sales Commission 

less than $300 20% of sales 

$300 or more but $60 + 35% of sales 
less than $400 over $300 
$400 or more $95 + 60% of sales 

over $400 

SOLUTION 

(a) The function C can be described by three equations. 

10.20s if s < 300 
C{s) = 60 + 0.35(s - 300) if 300 � s < 400 

95 + 0.60(s - 400) if s � 400 
(b) When s ;;: 425, we must use the third equation and substitute to detennjne 
C(425) . 

C(425) = 95 + 0.60(425 - 400) = 95 + 0.60(25) 
= 1 10 

The commission on sales of $425 is $ 1 10 . 
(c) The graph of the function C consists of three line segments (Figure 23) . 

• C  / , -- J -- I 
!� r n I 
� - , 
� ' 
& -- v 
I I .' 
"1 "" /, I• -- v' I 

........ v-. " - v L/ 
,/ v -

I CP  2(0 3<0 400 51 0 6 )0 s 

.�ale � ( in do lars� 

FIGURE 23 
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INCREASING AND 
DECREASING FUNCTIONS 

-2 - I 

FIGURE 25 

FIGURE 24 

y 

y 

(a) 

When we apply the terms increasing and decreasing to the graph of a function, 
we assume that we are viewing the graph from left to right. The straight line of 
Figure 24a is increasing, since the values of y increase as we move from left to 
right; similarly, the graph in Figure 24b is decreasing, since the values of y 
decrease as we move from left to right. 

y y 

x 

(b) (c) 

One portion of the graph pictured in Figure 24c is decreasing and another is 
increasing. Since this i the most common situation, we define increasing and 
decreasing on an interval . 

If x1 and x2 are in the interval [a, b] in the domain of a function /, then 
f is increasing on [a, b] if ftx1) < ftx2) whenever X1 < X2 
f is decreasing on {a, b] if j{x1 )  > f(x2) whenever x 1  < x2 
f is constant on l[a, b] if j{x1 )  = f(x2) for all x i .  x2 

Returning to Figure 24c, note that the function is decreasing when x :5 -3 
and increasing when x 2:: -3;  that is, the function is decreasing on the interval 
(-oo, - 3) and increasing on the interval [ -3 ,  oo) . The graph shows that the 
function has a minimum value at the point x = - 3 .  Finding such points is very 
useful in sketching graphs and is an important technique taught in calculus 
courses . 

It is important to become accustomed to the notation used in Figure 24, 
where the y-coordinate at the point x = x1 is denoted by j{x1 ) .  

EXAMPLE 4 
Use the graph of the function j{x) = x3 - 3x + 2, shown in Figure 25,  to deter
mine where the function is increasing and where it is decreasing . 

SOLUTION 
From the graph we see that there are turning points at ( - 1 ,  4) and at ( I ,  0) . We 
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conclude that 

f is increasing on the intervals ( -oo, - 1 ] and [ ] ,  oo) 

f is decreasing on the interval [ - 1 , I ]  

EXAMPLE 5 

The function f is defined by 

f(x) = 

{ lxl if x � 2 

-3 if x > 2 

Use a graph to find the values of x for which the function is incl'easing, decreas
ing, and constant .  

SOLUTION 

Note that the piecewise-defined function f is composed of the absolute value 
function when x � 2 and a constant function when x > 2. We can therefore 
sketch the graph of f immediately as shown in Figure 26. From the graph in 
Figure 26 we determine that 

f is increasing on the interval [0, 2 ]  
f i s  decreasing o n  the interval ( - oo ,  0) 
f is constant and has value -3 on the interval (2, oo) 

y 

4 -2 

-2 

-4 

FIGURE 26 

PROGRESS CHECK 

The function f is defined by 

( � + I 
f(x) = 0 

- 2.x  + I  

2 4 x 

if x < - ] 

if - 1  � x � 3  
if x > 3  
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POLYNOMIAL FUNCTIONS 

Use a graph to find the values of x for which the function is increasing, decreas
ing, and constant. 

ANSWERS 
increasing on the interval ( - x ,  - l ) ;  constant on [ - l , 3 ] ;  decreasing on 
(3,  oo) . 

The polynomial function of first degree 
f(x) = ax +  b 

is called a linear function. We have already graphed a number of such functions 
in this chapter: f(x) = 2x + 1 (Figure 6, page 1 1 9),  f(x) = x (Figure 1 4 ,  page 
1 3 1 ) , and f( x) = -x (Figure 1 5 ,  page 1 3 1 ) . In each case the graph appeared to be 
a straight line . We will prove in the next section that the graph of every linear 
function is indeed a straight line . 

The polynomial function of second degree 
f(x) = ax2 + bx + c, a =F 0 

is called a quadratic function. We have graphed a few quadratic functions: 
f(x) = x2 - 4 (Figure 5 ,  page 1 1 8),  f(x) = 1 - x2 (Figure 8a, page 1 2 1 ) , and 
f(x) = x2 (Figure 1 8 , page 1 32).  The graph of the quadratic function is called a 
parabola and will be studied in detail in a later chapter. For now, we offer an 
example for which a, b, and c are all nonzero . 

EXAMPLE 6 
Sketch the graph of fix) = 2x2 - 4x + 3 .  

SOLUTION 
We need to graph y = 2x2 - 4x + 3 .  We form a table of values, plot the corre
sponding points, and connect them by a smooth curve, as shown in Figure 
27. 

y = 2x2 - 4x + 3 

..., 3 .\' 

FIGURE 27 



An investigation of polynomials of any degree reveals that they are all func
tions. The graphs of polynomials of degree greater than 2 are always smooth 
curves; their shapes, however, are not easily determined. The exercises at the end 
of this section are intended to help you gain experience with the graphs of poly
nomials. We will take another look at this topic in a later chapter after learning 
more about the roots of polynomial equations . You should be warned, however, 
that it is very difficult to graph polynomial functions accurately without results 
obtained by methods taught in calculus courses. 

In Exercises 1 -1 6 sketch the graph of the function and state where it is increasing, decreasing, and constant . 
I .  fix) = 3x + I 2. f(x) = 3 - 2x 3. f(x) = x2 + I 4. fix) = x2 - 4 
5. fix) = 9 - x2 6. fix) = 4x - x2 7. fix) = l2x + J I 8. /(x) = l l - xl 

x > - I  9 .  fix) = { 2x, 
-x, - I ,  x s  - I  

1 1 .  fix) = {x, x < 2 
2, x �  2 

13 . fix) = {-x�', 
-3x, 

15 . fix) = {=� . 
I ,  

- 3  < x < I  
J s x s 2  
x > 2  
x <  -2 

-2 s x s - J 
x >  - I  

x > 2  { x + I , 
J O . f(x) = I ,  - I s x s 2 

-x + I , x < - 1 

{-x x s - 2  
12 . fix) = x2, -2 < x s 2  

-x, 3 s x s 4  

14. fix) = { 
_ 
� if x is an integer 

if x is not an integer 

1 6. f(x) = {�2 __ / '  x * I 
3 , x = I  

In Exercises 1 7-24 sketch the graphs of the given functions on the same coordinate axes. 

I 1 7 .  fix) = x2 , g(x) = 2x2 , h(x) = zx2 

19 . fix) = 2x2, g(x) = -2x2 

2 1 .  fix) = x3, g(x) = 2x3 

23. fix) = x3 , g(x) = -x3 

25 . The telephone company charges a fee of $6.50 per 
month for the first I 00 message units and an additional 
fee of $0.06 for each of the next 100 message units. A 
reduced rate of $0.05 is charged for each message unit 
after the first 200 units. Express the monthly charge C 
as a function of the number of message units u .  

26. The annual dues of a union are as shown in  the 
table . 

I I I 18 . fix) = zx2 , g(x) = 3x2 , h(x) = 4x2 

20. fix) = x2 - 2 , g(x) = 2 - x2 

22. 

24. 

I I fix) = 2x3 • g(x) = 4x3 

f(x) = -2x3, g(x) = -4x3 

Employee's annual salary Annual dues 

less than $8000 $60 
$8000 or more but less $60 + 1% of  the salary 
than $ 1 5 ,000 in excess of $8000 
$ 15 ,000 or more $ 130 + 2% of the salary 

in excess of $ 15 ,000 
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Express the annual dues d as a function of the sal
ary S. 

27. A tour operator who runs charter flights to Rome has 
established the following pricing schedule. For a 
group of no more than 100 people, the round trip fare 
per person is $300, with a minimum rental of $30,000 
for the plane. For a group of more than 100, the fare 
per person for al l passengers is reduced by $ I  for each 
passenger in excess of 100. Write the tour operator's 
total revenue R as a function of the number of people x 
in the group. 

28. A firm packages and ships I -pound jars of instant cof
fee. The cost C of shipping is 40 cents for the first 
pound and 25 cents for each additional pound. 
(a) Write C as a  function of the weight w (in pounds) 

for 0 < w :S 30. 
(b) What is the cost of shipping a package contain

ing 24 jars of instant coffee? 

29. The daily rates of a car rental firm are $ 14 plus $0.08 
per mile. 
(a) Express the cost C of renting a car as a function 

of the number of miles m traveled. 
(b) What is the domain of the function? 
(c) How much would it cost to rent a car for a 100-

mile trip? 
30. In a wildlife preserve, the population P of eagles 

depends on the population x of its basic food supply, 
rodents. Suppose that P is given by 

P(x) = 0.002x + 0.004x2 

Find the eagle population when the rodent population 
is 
(a) 500; (b) 2000. 

3A In the last section we said that the polynomial function of first degree 
LINEAR FUNCTIONS 

SLOPE OF THE STRAIGHT 
LINE 

Slope of a Line 

fix) = ax + b 
is called a linear function ,  and we observed that the graph of such a function 
appears to be a straight line. In this section we will look at the property of a 
straight line that differentiates it from all other curves. We will then develop 
equations for the straight line, and we will show that the graph of a linear function 
is indeed a straight line. 

In Figure 28 we have drawn a straight line L that is not vertical . We have indi
cated the distinct points P 1 (x 1 ,  Y i ) and P2(x2, Y2) on L. The increments or changes 
x2 - x1 and Y2 - Yi in the x- and y-coordinates, respectively, from Pi to P2 are 
also indicated. Note that the increment x2 - xi cannot be zero, because L is not 
vertical . 

If P3(x3, y3) and P4(X4, y4) are another pair of points on L, the increments 
X4 - X3 and y4 - y3 win, in general, be different from the increments obtained by 
using P1 and P2. However, since triangles P 1AP2 and P?)JP4 are similar, the 
corresponding sides are in proportion; that is, the ratios 

� and h.=.l:'.! 
x4 - x3 x2 - x1 

are the same. This ratio is called the slope of the line L and is denoted by m. 

The slope of a line that is not vertical is given by 
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x 

FIGURE 28 

For a vertical line, Xi = x2 , so x2 - Xi == 0. Since we cannot divide by 0, we say 
that a vertical line has no lope. 

The property of constant slope characterizes the straight line; that is, no 
other curve has this property. In fact, to define slope for a curve other than a 
straight line is not a trivial task; it requires use of the concept of limit, which is 
fundamental to calculus. 

EXAMPLE 1 
Find the slope of the line that passes through the points (4, 2), ( 1 ,  - 2). 

SOLUTION 
We may choose either point as (x i ,  Y i )  and the other as (x2, y2). Our choice is 

Then 

(xi , Yi ) = (4, 2) and (x2, y2) = ( 1 ,  - 2) 

rr..=.l'.!. - 2 - 2 -4 4 m =  = = - = -
x2 - x1 1 - 4 - 3  3 

The student should verify that reversing the choice of Pi and P2 produces the 
same result for the slope m .  We may choose either point as P1 and the other as P2, 
but we must use this choice consistently once it has been made. 

Slope is a means of measuring the steepness of a line. That is, slope specifies 
the number of units we must move up or down to reach the line after moving one 
unit to the left or right of the line. In Figure 29 we have displayed several lines 
with positive and negative slopes. We can summarize this way.  
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EQUATIONS OF THE 
STRAIGHT LINE 

Point-Slope Fonn 

I 111 = 2 

FIGURE 29 

Ill = 3 

Let m be the slope of a line L .  

) ' 

Ill = 3 

{a) When m > 0, the line is the graph of an increasing function. 
(b) When m < 0, the line is the graph of a decreasing function. 
(c) When m = 0, the line is the graph of a constant function. 
{d) Slope does not exist for a vertical line, and a vertical line is not the graph 
of a function . 

We can apply the concept of slope to develop two important forms of the equation 
of a straight line. In Figure 30 the point P1(x. , y 1 )  lies on a line L whose slope is 
m .  If P(x, y) is any other point on L ,  then we may use P and P1 to compute m; that 
is, 

which can be written in the form 

m = � 
x - x, 

y - y1 = m(x - x1 )  

Since (x1 ,  y 1 )  satisfies this equation, every point on L satisfies this equation . 
Conversely, any point satisfying this equation must lie on the line L, since there is 
only one line through P1(x. , y i ) with slope m. This equation is called the point
slope form of a line. 

y - Yi = m(x - xi ) 

is an equation of the line with slope m that passes through the point (x1 ,  y1 ) .  



THE PIRATE TREASURE 
(PART II 

3A LINEAR FUNCTIONS 143 

Five pirates traveling with a slave found a chest of gold coins. The pirates agreed 
to divide the coins among themselves the following morning. 

During the night Pirate 1 awoke and, not trusting his fellow pirates. decided 
to remove his share of the coins. After dividing the coins into five equal lots. he 
found that one coin remained. The pirate took his lot and gave the remaining coin 
to the slave to ensure his silence. 

Later that night Pirate 2 awoke and decided to remove his share of the 
coins. After dividing the remaining coins into five equal lots. he found one coin 
left over. The pirate took his lot and gave the extra coin to the slave. 

That same night the process was repeated by Pirates 3, 4, and 5. Each time 
there remained one coin, which was given to the slave. 

In the morning these five compatible pirates divided the remaining coins 
into five equal lots. Once again a single coin remained. 

Question: What is the minimum number of coins there could have been in 
the chest? (For help, see Part II on page 1 47.) 

y 

l 

FIGURE 30 

EXAMPLE 2 
Find an equation of the line that passes through the points (6, -2) and 
( -4, 3).  

SOLUTION 
We first find the slope. We let (x1 , y1)' = (6, -_2) and (x2 , Y2) = (-4, 3); then 

m = �= 3 - (-2) = _5_ =  _! X2 - X1 - 4  - 6 - JO 2 
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FIGURE 31 

Next, the point-slope fonn is used with m - -�  and (x1 • y 1 )  - (6, -2) . 

Y - Yt '"' m(x - xi ) 

1 
y - ( -2) = -*<x - 6) 

2 

I 
y - --x + 1 

2 

The student should verify that using the point ( -4, 3) and m = -� in the 
point-slope form will yield the same equation. 

PROGRESS CHECK 
Find an equation of the line that passes through the points (-5 , 0) and 
(2, -5) .  

ANSWER 
5 25 

y =  -7x - 7  

There is another form of the equation of the straight line that is very usefuJ. 
In Figure 3 1  the Jine l meets the y-axis at the point (0, b) and is assumed to have 

x slope m. Then we can let (xi . y 1 )  - (0. b) and use the point-slope form: 

Y - Yi '"' m(x - x1) 

y - b - m(x - 0) 
y - mx + b  

Recalling that b is the y-intercept, we call this equation the slope-intercept form 
of the line. 

Slqpe-lntercept Form The graph of the equation 

y - mx + b  

is  a straight line with slope m and y-intercept b. 

The last result leads to the important conclusion mentioned in the introduction to 
this section . Since the graph of y = mx + b is the graph of the function f(x) = 
mx + b, we have shown that the graph of a linear function is a straight line . 

EXAMPLE 3 
Find the s1ope and y·intercept of the line y - 3x + J = 0. 
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SOLUTION 
The equation must be placed in the form y ""'  mx + b. Solving for y gives 

y ""' 3x - I 

and we find that m = 3 is the slope and b = - I is the y-intercept. 

PROGRESS CHECK 
Find the slope and y-intercept of the line 2y + x - 3 ""' 0 . 

ANSWER 
I . . 

b 
3 

slope = m - -2; y- mtercept = = 2 

In Figure 32a we have drawn a horizontal line through the point (a. b). Every 
point on this line has the form (x. b), since the y-coordinate remains constant. If  
P(x 1 ,  b)  and Q(x2, b)  are any two distinct points on the line, then the slope is 

y 

(a) 
FIGURE 32 

b - b  m = -- - o 
X2 - xi 

(a, b) 

x 

We have established the following. 

y 

(a, b) 

(b) 

The equation of the horizontal line through the point (a, b) is 

y = b  

The slope of a horizontal line is 0. 

x 

In Figure 32b every point on the vertical line through the point (a. b) has the 
form (a, y) , since the x-coordinate remains constant. The slope computation 
using any two points P(a, y 1 )  and Q(a, y2) on the line produces 
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Vertical Unes 

* 
PARALLEL AND 
PERPENDICULAR LINES 

m = h..=..ll. = h..::..1.J. 
a - a 0 

Since we cannot divide by 0, slope is not defined for a vertical line. 

The equation of the vertical line through the point (a, b) is 

x = a  

A vertical line has no slope. 

EXAMPLE 4 
Find the equations of the horizontal and vertical lines through (-4, 7). 

SOLUTION 
The horizontal line has the equation y = 7 .  The vertical line has the equation 
x =  -4. 

WARNING Don't confuse "no slope" and "zero slope . "  A horizontal line has 
zero slope . A vertical line has no slope; in other words, its slope is unde
fined. 

The concept of slope of a line can be used to detennine when two lines are parallel 
or perpendicular. Since parallel lines have the same "steepness , "  we intuitively 
recognize that they must have the same slope. 

Two lines with slopes m1 and m2 are parallel if and only if 

The criterion for perpendicular lines can be stated in this way. 

Two lines with slopes m1 and m2 are perpendicular if and only if 

l 
m2 = - m1 

These two theorems do not apply to vertical lines, since the slope of a vertical line 
is undefined. The proofs of these theorems are geometric in nature and are out
lined in Exercises 54 and 56. 

EXAMPLE 5 
Given the line y = 3x - 2, find an equation of the line passing through the point 
( -5 , 4) that is (a) parallel to the given line; (b) perpendicular to the given 
line. 
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First. note that any number that is a multiple of 5 can be written in the form Sn, 
where n is an integer. Since the number of coins found in the chest by Pirate 1 
was one more than a multiple of S, we can write the original number of coins C in 
the form C = 5n + 1 , where n is a positive integer. Now, Pirate 1 removed his lot 
of n coins and gave one to the slave. The remaining coins can be calculated 
as 

Sn + 1 - (n + 1 ) = 4n 

and since this is also one more than a multiple of five, we can write 4n = Sp + 1 .  
where p is a positive integer. Repeating the process, we have the following 
sequence of equations. 

C = Sn + 1  found by Pirate 1 

4n = Sp + 1  found by Pirate 2 

4p = Sq +  1 found by Pirate 3 

4q = Sr +  1 found by Pirate 4 

4r = 5s + 1 found by Pirate S 
4s = St + 1 found next morning 

Solving for s in the last equation and substituting successively in the preced ing 
equations leads lo the requirement that 

1 024n - 31 2St = 2101  ( 1 ) 

where n and t are positive integers. Equations such as this, which require integer 
solutions, are called Diophantine equations, and there is an established proce
dure for solving them that is studied in courses in number theory. 

You might want to try to solve Equation ( 1 )  using a computer program. 
Since 

n = 
31 2St + 2101  

1 024 

you can substitute successive integer values for t unti l  you produce an integer 
result for n. The accompanying BASIC program does just that. 

SO UTION 
We first note that the line y = 3x - 2 has slope m 1  = 3 .  

(a) Every line parallel to  the line y = 3x - 2 must have slope m 2  = m 1  = 3 .  We 
therefore seek a line with slope 3 that passes through the point ( - 5 ,  4) .  Using the 
point-slope formula, we have 

y - y1 = m(x - x1 )  

y - 4 = 3(x + 5)  

y = 3x + 19  
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GENERAL FIRST-DEGREE 
EQUATION 

(b) Every line perpendicular to the line y = 3x - 2 has slope m2 = - l !m 1 = 
- 113 .  The line we seek has slope - �  and passes through the point (-5 ,  4) .  We 
can again apply the point-slope formula to obtain 

y - y 1 = m(x - x1 ) 

I 
v - 4 = --(x + 5) , 3 

1 7 
y = -3x + 3 

The three lines are shown in Figure 33 .  

FIGURE 33 

The general first-degree equation in x and y can always be written in the form 

Ax + By + C = 0 

where A ,  B ,  and C are constants and A and B are not both zero . We can rewrite 
this equation as 

By = -Ax - C 



The General 
First-Degree Equation 

EXERCISE SET 3A 

If B =I= 0, the equation becomes 

A C 
y =  - -x - -

B B 
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which we recognize as having a straight-line graph with slope -AIB and y
intercept - C IB. If B = 0, the original equation becomes Ax + C = 0 ,  whose 
graph is a vertical line . 

• The graph of the general first-degree equation 

Ax + By + C =  0 

is a straight line . 
• lf B = 0 ,  the graph is a vertical line. 
• If A = 0, the graph is a horizontal Line. 

In Exercises 1-6 determine the slope of the line through the given points. State whether the line is the graph of an increasing 
function, a decreasing function , or a constant function. 
1 .  (2, 3), (- 1 ,  - 3) 

5. G· 2) . (�. 1 ) 2. ( 1 , 2), (-2 , 5) 

6. (-4, 1) , (- 1 ,  -2) 

7. Use slopes to show that the points A(- 1 ,  -5) , 
B( l ,  - 1 ) , and C(3 , 3) are collinear ( l ie on the same 
line) . 

3 . (-2 , 3), (0, 0) 4. (2, 4) , (-3, 4) 

8 . Use slopes to show that the points A(-3 , 2 ) , B(3 , 4) , 
C(5 , -2) ,  and D(- 1 ,  -4) are the vertices of a paral
lelogram. 

In Exercises 9-1 2 determine an equation of the line with the given slope m that passes through the given point. 
1 9. m = 2, (- 1 , 3) 10. m = -2 , ( 1 , -2) 1 1 .  m = 3 , (0 , 0) 12 . m = 0, ( - 1 , 3) 

In Exercises 1 3- 1 8  determine an equation of the line through the given points. 
1 3. (2, 4) , (-3 , -6) 

1 7 . (-�. - 1 ) . G· 1 ) 14 . (-3 , 5) , ( 1 , 7) 

18 . ( -8, -4), (3 , - 1 ) 

1 5 .  (0, 0) , (3, 2) 16 . (-2 , 4) , (3 , 4) 

In Exercises 1 9-24 determine an equation of the line with the given slope m and the given y-intercept b. 
1 1 19 . m = 3, b = 2  20. m = -3 , b = -3 2 1 .  m = O, b = 2  22. m = -2 , b = 2 

1 24. m = -2, b = -2 

In Exercises 25-30 determine the slope m and y-intercept b of the given line. 
25. 3x + 4y = 5  26. 2x - 5y + 3 = 0 27 . y - 4 = 0  

29. 3x + 4y + 2 = 0 1 30. x = -? + 3 
28. x = -5 
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In Exercises 3 1-36 write an equation of (a) the horizontal line passing through the given point and (b) the vertical line 
passing through the given point . 
3 1 .  (-6, 3) 

35. (9, -9) 

32. (-5 , -2) 

36. (-�, 1 ) 33. (-7, 0) 34. (0, 5) 

In Exercises 37-40 determine the slope of (a) every line that is parallel to the given line and (b) every line that is 
perpendicular to the given line. 
37. y = -3x + 2  38. 2y - 5x + 4 = 0  39. 3y = 4x - I 40. 5y + 4x = - I 
In Exercises 41 -44 determine an equation of the line through the given point that (a) is parallel to the given line; (b) is 
perpendicular to the given line. 
4 1 . (l , 3) ; y = -3x + 2  
43. ( - 3 , 2); 3x + 5y = 2 
45 . The Celsius (C) and Fahrenheit (F) temperature scales 

are related by a linear equation . Water boils at 2 I 2°F 
or I00°C, and freezes at 32°F or 0°C. 
(a) Write a linear equation expressing F in terms of 

c. 
(b) What is the Fahrenheit temperature when the 

Celsius temperature is 20°? 
46. The college bookstore sells a textbook that costs $ 10 

for $ 13 . 50, and a textbook that costs $ 1 2 for $ 15 .90. 
If the markup policy of the bookstore is linear, write a 
linear function that relates sales price S and cost C. 
What is the cost of a book that sells for $22? 

4 7. An appliance manufacturer finds that it had sales of 
$200,000 five years ago and sales of $600,000 this 
year. If the growth in sales is assumed to be linear, 
what will the sales amount be five years from now? 

48. A product that cost $2.50 three years ago sells for $3 
this year. If price increases are assumed to be linear, 
how much will the product cost six years from 
now? 

49. Find a real number c such that P(-2, 2) is on the line 
3x + cy = 4 . 

50. Find a real number c such that the line ex - 5y + 8 = 
0 has x-intercept 4. 

5 1 .  If the points ( -2 , -3) and ( - 1 ,  5) are on the graph of 
a linear function f, find f(x) . 

52. If j( I )  = 4 and j( - 1 ) = 3 and the function f is linear, 
find f(x) . 

53. Prove that the linear function f(x) = ax + b is an 
increasing function if a > 0 and is a decreasing func
tion if a <  0. 

42. ( - 1 ,  2); 3y + 2x = 6 
44. ( - l , -3); 3y + 4x - 5 = 0  
54. In the accompanying figure, lines L1 and L2 are par

allel . Points A and D are selected on lines L1 and L2 , 
respectively. Lines parallel to the x-axis are con
structed through A and D that intersect the y-axis at 
points B and E. Supply a reason for each of the steps in 
the following proof. 

L 2  

(a) Angles ABC and DEF are equal . 
(b) Angles ACB and DFE are equal . 
(c) Triangles ABC and DEF are similar. 

CB FE (d) -=- = = 
BA ED 

CB (e) m1 = BA , 
FE m2 = ED 
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(f) m1 = m2 

(g) Parallel lines have the same slope. 

56. In the accompanying figure, lines perpendicular to 
each other, with slopes m1 and m2, intersect at a point 
Q. A perpendicular from Q to the x-axis intersects the 
x-axis at the point C. Supply a reason for each of the 
steps in the following proof. 

y 

x 

(a) Angles CAQ and BQC are equal. 
(b) Triangles ACQ and BCQ are similar. 

CQ _ CB 
(c) AC 

-
CQ 

CQ CQ 
(d) m 1  = 

AC ' m2 = 
CB 

1 
(e) m2 = --

m1 
57. Prove that if two lines have slopes m 1 and m2 such that 

m2 = - l/m 1 ,  the lines are perpendicular. 

58. If x1  and x2 are the abscissa of two points on the graph 
of the function y = j(x), show that the slope m of the 
line connecting the two points can be written as 

55. Prove that if two lines have the same slope, they are 
parallel . 

J(x2) -/(xi ) 
m = ----

3.5 
DIRECT AND INVERSE 
VARIATION 

(Optional) 
DIRECT VARIATION 

Principle of Direct 
Vartatlon 

Two functional relationships occur so frequently that they are given distinct 
names. They are direct and inverse variation . We say that two quantities vary 
directly if an increase in one causes a proportional increase in the other. In the 
table 

x 2 3 4 

y 3 6 9 1 2  

w e  see that an increase i n  x causes a proportional increase i n  y. If w e  look a t  the 
ratios ylx, we see that 

or y = 3x. The ratio ylx remains constant for all values of y and x * 0. This is an 
example of the principle of direct variation. 

If y varies directly as x, then y = kx for some constant k. 
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INVERSE VARIATION 

As another example, when we say that y varies directly as the square of x, we 
mean that y = kx2 for some constant k. The constant k is called the constant of 
variatiDn. 

EXAMPLE 1 
Suppose that y varies directly as �he cube of x and that y = 24 when x = -2 .  
Write the appropriate equation , solve for the constant o f  variation k ,  and use this k 
to relate the variables. 

SOLUTION 

From the principle of direct variation , we know that the functional relationship 
is 

y = k.x3 for some constant k 

Substjtuting the values y = 24 and x = -2, we have 

24 = k " ( -2)3 = -Bk 
k =  -3 

Thus, 

y = -3x3 

PROGRESS CHECK 

(a) ]f P varies directly as the square of V, and P ;::; 64 when V = 16,  find tile 
constant of variation. 
(b) The circumference C of a circle varies direct! y as the radius r.  l f C = 25. 1 3  
when r ;::; 4, express C as a function of r ;  that is, use the constant o f  variation to 
relate the variables C and r .  

ANSWERS 

I 
(a) 4 (b) C = 6. 2825r 

Two quantities are said to vary inversely if an increase in one causes a propor
tional decrease in the other. Jn the table 

x 2 3 4 

y 24 12 8 6 

we see that an increase in x causes a proportional decrease in y .  If we look at the 
product xy, we see that 

xy = I · 24 = 2 · 1 2  = 3 · 8 = 4 · 6 = 24 
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Variation 

JOINT VARIATION 

or 
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24 y = x 

ln general, the principle of inverse variation is as follows. 

If y varies inversely as x, then y "" � for some constant k. x 

Once again, k is called the constant of variation . 

EXAMPLE 2 
Suppose that y varies inversely as x2 and that y ""  IO when x = IO. Write the 
appropriate equation, solve for the constant of variation k, and use this k to relate 
the variables. 

SOLUTION 
The functional relationship is 

for some constant k 

Substituting y = 1 0 and x = 10 , we have 

Thus, 

PROGRESS CHECK 

k k 10 ;;;; ( 10)2 ;;;; 100 
k = IOOO 

IOOO y = ---;z-

If v varies inversely as the cube of w, and v = 2 when w = -2, find the constant 
of variation . 

ANSWER 
- 16 

An equation of variation can involve more than two variables. We say that a 
quantity varies jointly as two or more other quantities if it varies directly as their 
product . 
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EXAMPLE 3 
Express the following statement as an equation: P varies jointly as R, S, and the 
square of T. 

SOLUTION 
Since P must vary directly as RST2, we have P = kRST2 for some constant k. 

EXAMPLE 4 

A snow removal firm finds that the annual profit P varies jointly as the number of 
available plows p and the square of the total inches of snowfall s and inversely as 
the price per gallon of gasoline g .  If the profit is $ 15 ,000 when the snowfall is 6 
inches, 5 plows are used, and the price of gasoline is $1 . 50 per gal lon , express the 
profit P as a function of s, p, and g. 

SOLUTION 
We are given that 

2 
p = k ps 

g 

for some constant k. To determine k, we substitute P = 15 ,000, p = 5 ,  s = 6, and 
g = 1 .5 .  Thus, 

Thus, 

EXERCISE SET 3.5 
I .  In the following table , y varies directly with x. 

I : I : 1 , : 1 , : 1 ,: I ' I " I ,0 I 1 2° J 
(a) Find the constant of variation. 
(b) Write an equation showing that y varies directly 

with x. 
(c) Fill the blanks in the table . 

2 . I n  the accompanying table, y varies inversely with 
x. 

1 5 ,000 = k <5���>2 = 1 20k 

k = 1 5
•
000 = 1 25 

1 20 

x 

y 

I 

2 
p = 125 � 

8 

2 3 

6 3 2 

6 9 

2 I -

3 

1 2 15 

(a) Find the constant of variation. 

18 

I I 
- -

4 10 

(b) Write an equation showing that y varies inversely 
with x. 

(c) Fill the blanks in the table. 
3 .  If y varies directly as  x ,  and y = -! when x = 8 ,  

(a) find the constant of variation; 
(b) find y when x = 1 2 . 



4 . I f  C varies directly a s  the square of  s ,  and C = 1 2  
when s =  6, 
(a) find the constant of variation; 
(b) find C when s =  9. 

5. If s varies directly as the square of t, and s =  10 when 
t = 10 , 
(a) find the constant of variation; 
(b) find s when t = 5 .  

6 .  I f  V varies as the cube of T, and V = 1 6 when T = 4 , 
(a) find the constant of variation; 
(b) find V when T = 6 . 

7. If y varies inversely as x, and y = -� when x = 6, 
(a) find the constant of variation; 
(b) find y when x = 1 2 .  

8. If V varies inversely as the square of p, and V = i 
when p = 6 , 
(a) find the constant of variation; 
(b) find V when p = 8 . 

9 . I f  K varies jnversely a s  the cube of  r ,  and K = 8 when 
r =  4, 
(a) find the constant of variation; 
(b) find K when r = 5 . 

1 0. If T varies inversely as the cube of u, and T = 2 when 
u = 2 , 
(a) find the constant of variation; 
(b) find T when u = 5 . 

1 1 .  If M varies directly as the square of r and inversely as 
the square of s, and M = 4 when r = 4 and s =  2, 
(a) write the appropriate equation relating M, r, 

and s; 
(b) find M when r = 6 and s = 5 .  

1 2 .  I f  f varies jointly as u and v ,  and f = 36 when u = 3 
and v = 4, 
(a) write the appropriate equation connecting f, u, 

and v; 
(b) find f when u = 5 and v = 2 . 

1 3 .  I f  T varies jointly as p and the cube of v ,  and inversely 
as the square of u, and T = 24 whenp = 3, v = 2 ,  and 
u = 4, 
(a) write the appropriate equation connecting T, p, 

v, and u; 
(b) find T when p = 2, v = 3, and u = 36. 

14. If A varies jointly as the square of b and the square of 
c, and inversely as the cube of d, and A = 18 when 
b = 4, c = 3, d = 2 , 

(a) write the appropriate equation relating A, b, c, 
and d; 

(b) find A when b = 9, c = 4, and d = 3 . 
15 . The distance s an object falls from rest i n  t seconds 

varies directly as the square of t. If an object falls 144 
feet in 3 seconds, 
(a) how far does it fall in 5 seconds? 
(b) how long does it take to fall 400 feet? 

1 6. In a certain state the income tax paid by a person var
ies directly as the income. If the tax is $20 per month 
when the monthly income is $ 1600, find the tax due 
when the monthly income is $900. 

17 . The resistance R of  a conductor varies inversely a s  the 
area A of its cross section. If R = 20 ohms when A = 8 
square centimeters, find R when A =  1 2 square centi
meters. 

1 8 . The pressure P of  a certain enclosed gas varies directly 
as the temperature T and inversely as the volume V. 
Suppose that 300 cubic feet of gas exert a pressure of 
20 pounds per square foot when the temperature is 
500° K (absolute temperature measured on the Kelvin 
scale). What is the pressure of this gas when the tem
perature is lowered to 400° K and the volume is 
increased to 500 cubic feet? 

19 . The intensity of  illumination I from a source of  light 
varies inversely as the square of the distance d from 
the source . If the intensity is 200 candlepower when 
the source is 4 feet away, 
(a) what is the intensity when the source is 6 feet 

away? 
(b) how close should the source be to provide an 

intensity of 50 candlepower? 
20. The weight of a body in space varies inversely as the 

square of its d istance from the center of the earth. If a 
body weighs 400 pounds on the surface of the earth, 
how much does it weigh 1000 miles from the surface 
of the earth? (Assume that the radius of the earth is 
4000 miles . )  

2 1 .  The equipment cost of a printing job varies jointly as 
the number of presses and the number of hours that the 
presses are run. When 4 presses are run for 6 hours, 
the equipment cost is $ 1 200. If the equipment cost for 
1 2 hours of running is $3600, how many presses are 
being used? 

22. The current I in a wire varies directly as the electro
motive force E and inversely as the resistance R .  In a 
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wire whose resistance is IO ohms, a current of 36 
amperes is obtained when the electromotive force is 
1 20 volts. Find the current produced when E = 220 
volts and R = 30 ohms. 

50 candlepower per square foot on a screen 2 feet 
away from a light source whose intensity is 400 can
dlepower, what is the illumination 4 feet away from a 
source whose intensity is 3840 candlepower? 

23. The illumination from a light source varies directly as 
the intensity of the source and inversely as the square 
of the distance from the source. If the illumination is 

24. Iffvaries directly as u and inversely as the square of v, 
what happens to f if both u and v are doubled? 

3.6 
COMBINING 
FUNCTIONS; INVERSE 
FUNCTIONS 

Functions such as 

f(x) = x2 g(x) = x - l 

can be combined by the usual operations of addition , subtraction, multiplication , 
and division. Using these functions f and g, we can form 

(f + g)(x) = f(x) + g(x) = x2 + x - 1 
(f - g)(x) = f(x) - g(x) = x2 - (x - l )  = x2 - x + l 

(f · g)(x) = f(x) · g(x) = x2(x - l )  = x3 - x2 

[(x) = f(x) = � 
g g(x) x - 1 

In each case, we have combined two functions f and g to form a new function. 
Note, however, that the domain of the new function need not be the same as the 
domain of either of the original functions. The function formed by division in the 
above example has as its domain the set of all real numbers x except x = l ,  since 
we cannot divide by 0. On the other hand, the original functions f(x) = x2 and 
g(x) = x - l are both defined at x = l .  

EXAMPLE 1 
Given .f(x) = x - 4 ,  g(x) = x2 - 4, find the following. 
(a) (/ + g)(x) (b) (f - g)(x) (c) (f · g)(x) 
(d) (f) (x) (e) the domain of (f) cx) 

SOLUTION 
(a) (f + g)(x) = f(x) + g(x) = x - 4 + x2 - 4 = x2 + x - 8 
(b) (f - g)(x) = fix) - g(x) = x - 4 - (x2 - 4) = -x2 + x 
(c) (f· g)(x) = fix) · g(x) = (x - 4)(x2 - 4) = x3 - 4x2 - 4x + 1 6  

(d) (l) (x) = fi
x) = x � 4 

g g(x) x2 - 4 
(e) The domain of (flg)(x) must exclude values of x for which x2 - 4 = 0. 
Thus, the domain consists of the set of all real numbers except 2 and - 2. 



COMPOSITE FUNCTION 

3.6 COMBINING FUNCTIONS; INVERSE FUNCTIONS 157 

PROGRESS CHECK 
Given j(x) = 2x2 ,  g(x) = .x2 - 5x + 6, find the following. 
(a) (j + g)(x) (b) (j- g)(x) (c) (j· g)(x) 

(d) (£)(x) (e) the domain of (£ ) (x) 

ANSWERS 

(a) 3.x2 - 5x + 6 

(c) 2x4 - 1 0x3 + 12x2 

(b) x2 + 5x - 6 

2x2 
( d) .x2 - Sx + 6 

( e) The set of all real numbers except 2 and 3 .  

There i s  another important way i n  which two functions/and g can b e  combined to 
fonn a new function . l n  Figure 34 the function/ assigns the value y in set Y to x in 
set X; then function g assigns the value z in set Z to y in Y. The net effect of this 
combination off and g is a new function h, called the composite function of g 
and /, g 0 /, which assigns z in Z to x9in X. We write the new function as 

h(x) = (g o  f)(x) = g[j(x)] 

which is read "g off of x. " 

FIGURE 34 

EXAMPLE 2 
Given .ft.x) = .x2, g(x) = x - 1 ,  find the following. 
(a) /[g(3)] (b) g(ft..3)) (c) f[g(x)] (d) g[j(x)] 

SOLUTION 
(a) We begin by evaluating g(3): 

g(x) = x - l 
g(3) = 3 - l = 2 

Therefore, 

/[g(3)] = ft..2) 
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Since 
j(x) = x2 

then 
ft.2) = 22 = 4 

Thus, 
f(g(3 )] = 4 

(b) Beginning with.1(3), we have 
j(3) = 32 = 9 

Then we find by substituting .1(3) = 9 that 
g{j{3)] = g(9) = 9 - l = 8 

(c) Since g(x) = x - I ,  we make the substitution 
f[g(x)] = ft.x - 1 )  = (x - 1 )2 = x2 - 2x + I 

"' 

(d) Since j(x) = x2, we make the substitution 
g [f(x)] = g(x2) = x2 - I 

Note that f(g(x)] * g[f(x)] . 

PROGRESS CHECK 

Given f(x) = x2 - 2x, g(x) = 3x, find the foUowing. 
(a) /[g(- 1 )] (b) g (f(- 1 )) (c) /(g(x)] 
(d) g [f(x)] (e) (Jo g)(2) ( t) (g o /)(2) 
ANSWERS 

(a) l 5  
(d) 3x2 - 6x 

(b) 9 
(e) 24 

(c) 9x2 - 6x 
( f) 0 

ONE-TO-ONE FUNCTIONS An element in the range of a function may correspond to more than one element in 
the domain of the function . In Figure 35 we see that y in Y corresponds to both x1 
and x2 in X. If we demand �hat every element in the domain be assigned to a 
different element of the range, then the function is called one-to-one. More 
formally: 

A function f is one-to-one if f(a) = j(b) only when a = b. 
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y 

FIGURE 35 

There is a simple means of determining if a function f is one-to-one by 
examining the graph of the function. In Figure 36a we see that a horizontal line 
meets the graph in more than one point. Thus,j{a) = j{b) although a *  b; hence 
the function is not one-to-one . On the other hand, no horizontal line meets the 
graph in Figure 36b in more than one point; the graph thus determines a one
to-one function. In summary, we have the following test. 

If no horizontal line meets the graph of a function in more than one point, then 
the function is one-to-one . 

FIGURE 36 

) ' 

11 h 

ot one-to-one 
( a )  

EXAMPLE 3 

) ' 

One-to-one 
(b )  

Which of the graphs in Figure 37 are graphs of one-to-one functions? 
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I 
I 

y JI y 

- - 1 - - - - - - -
1 

( a )  
FIGURE 37 

( a ) 

FIGURE 38 

x x x 

(b ) (c) 

SOLUTION 
(a) No vertical line meets the graph in more than one point; hence, it is the 
graph of a function. No horizontal line meets the graph in more than one point; 
hence , it is the graph of a one-to-one function. 
(b) No horizontal line meets the graph in more than one point. But vertical lines 
do meet the graph in more than one point. It is therefore not the graph of a 
function and consequendy cannot be the graph of a one-to-one function. 
(c) No vertical Line meets the graph in more than one point; hence, it is the 
graph of a function. But a horizontal line does meet the graph in more than one 
point This is the graph of a function but not of a one-to-one function. 

PROGRESS CHECK 

Which of the graphs in Figure 38 are graphs of one-to-one functions? 
ANSWER 

(b) 

) ' r 

��-...--�-+-���- --x .\" x 

( b ) ( c )  
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(a) 
FIGURE 39 

Inverse Functions 
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Suppose the function f in Figure 39a is a one-to-one function and that y = f(x) . 
Sincef is one-to-one, we know that the correspondence is unique; that is, x in X is 
the only element of the domain for which y = f(x) . It is then possible to define a 
function g (Figure 39b) with domain Y and range X that reverses the correspon
dence, that is, 

g(y) = x 

If we substitute y = f(x) , we have 

g[f(x)] = x 

for every x in X 

for every x in X 

Substituting g(y) = x in the equation f(x) = y yields 

f[g(y)] = y for every y in Y 

(b) 

( 1 )  

(2) 

The functions f and g of Figure 39 are therefore seen to satisfy the properties 
of Equations ( 1 )  and (2). Such functions are caJled inverse fonctions. 

If/ is a one-to-one function with domain X and range Y, then the function g with 
domain Y and range X satisfying 

g[ftx)] = x for every x i.n X 

f [g(y)] = y for every y in Y 
is caJled an inverse function off. 

It is not difficult to show that the inverse of a one-to-one function is unique (see 
Exercise 61) . 

Since the inverse (reciprocal) l /x of a real number x =F 0 can be written as 
X- I , it iS natural tO Write the inverse Of a function j as r I . Thus We have 

r 1 [.ftx)] = x for every x in x 
nr 1(y)] = y for every y in y 
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FIGURE 40 

See Figure 40 for a graphical representation . 
In the following chapter we wiU study a very important class of inverse 

functions, the exponential and logarithmic functions. Always remember that we 
can define the inverse function off only if f is one-to-one . 

y 

EXAMPLE 4 
Let f be the function defined by 

f(x) = x2 - 4,  x � 0 

Verify that the inverse off is given by 
1- 1(x) = Vx+4 

SOLUTION 

We must verify thatf[r 1(x)J = x andr 1 [f(x)J = x. Thus, 

and 

Since x � 0, 

flr 1 (x)J = f(Vx-+4) 
= (Yx+°4)2 - 4  
= x + 4 - 4 = x 

f- 1 (/(x)) = r 1cx2 - 4) 
= Y(x2 - 4) + 4 
= v? = lxl 

r1[f(x)) = lxl = x 
We have verified that the equations defining inverse functions hold, and we 
conclude that the inverse off is as given. The student should verify (a) that the 
domain off is the set of nonnegative real numbers and the range off is the set of 
all real numbers in the interval [-4, oo); (b) that the domain off- 1 is the range off 
and the range off- 1 is the domain off. 
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We may also think of the function f defined by y = ft.x) as the set of all 
ordered pairs (x, .ft.x)), where x assumes all values in the domain off. Since the 
inverse function reverses the COITeSpOndenCe, the function r I is the Set Of all 
ordered pairs (./{x) , x), where ./{x) assumes all values in the range off. With this 
approach, we see that the graphs of inverse functions are related in a distinct 
manner. First, note that the points (a, b) and (b, a) in Figure 4 l a  are located 
symmetrically with respect to the graph of the l ine y = x. That is, if we fold the 
paper along the line y = x, the two points will coincide. And if (a, b) lies on the 
graph of a function/, then (b, a) must lie on the graph of] 1 • Thus, the graphs of 
a pair of inverse functions are reflections of each other about the line y = x. In 
Figure 4 1  b we have sketched the graphs of the functions from Example 4 on the 
same coordinate axes to demonstrate this interesting re1ationship. 

It is sometimes possible to find an inverse by algebraic methods, as is shown 
by the following example. 

EXAMPLE 5 
Find the inverse function of ./{x) = 2x - 3 .  

SOLUnON 

By definition, fl! 1 (x)] = x. Then we must have 

f[f- 1(x)] = 2 [j- 1 (x) ) - 3 = x 
x + 3  

1- i(x) = -2-

)' 

/ / 

( a )  
FIGURE 41 

/ 
(a,  b )  / J'  = x 

. / / 
/ 

/ • t b . u ) 

y 

( b )  

y = y'X+4 
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* 

We then verify that/- 1 [.ftx)] = x: 

PROGRESS CHECK 

1-1 [.ftx)] = 2x - 3 + 3 = x 2 

Given fix) = 3x + 5 ,  find r I .  

ANSWER 

1- •(x) = x - 5 
3 

WARNING 

(a) In general , F 1(x) *ft�) .  If g(x) = x - I ,  then 

g- • (x) * _l_ x - 1 
Use the methods of this section to show that 

g- 1(x) = x + I 

(b) The inverse function notation is not to be thought of as a power. 

EXERCISE SET 3.6 
In Exercises 1 - IOJ(x) = x2 + I  and g(x) = x - 2. Determine the following. 
I .  (f + g)(x) 2. (f + g)(2) 3 . (f- g)(x) 

5 . (f· g)(x) 6. (f· g)( - 1 )  7 . (f) (x) 
9. the domains off and of g JO. the domains of f and of !I g f 

In Exercises 1 1- 1 8 fix) = 2x + I and g(x) = 2x2 + x. Determine the following. 

4. (f- g)(3) 

8. (f) (-2) 

1 1 .  (f o g)(x) 
15 . (Jo g)(x + I ) 

12 . (g 0j)(x) 
16. (foj)(-2) 

13 . (fo g)(2) 
17 . (g o j)(x - I ) 

1 4 .  (g 0 j)(3) 
18 . (g o g)(x) 

In Exercises 1 9-24 fix) = x2 + 4 and g(x) = Vx+z. Determine the following. 
19. (f o g)(x) 
2 1 .  (fo j)(- 1 ) 
23. the domain of (g 0 f)(x) 
In Exercises 25-28 determine (f 0 g)(x) and (g 0 f)(x) . 
25. fix) = x - I ,  g(x) = x + 2 

I I 27. f(x) = --, g(x) = --x + I  x - I 

20. (g o j)(x) 
22. the domain of (f 0 g)(x) 
24. the domain of (g 0 g)(x) 

26. f(x) = v:;+I, g(x) = x + 2 
x + I 28. f(x) = --1 , g(x) = x x -

file:///i-/Sfx
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In Exercises 29-38 write the given function h(x) as a composite of two functions I and g so that h(x) = (f 0 g)(x). (There may 
be more than one answer. )  

29. h(x) = x2 + 3 30. 

3 1 .  h(x) = (3x + 2)8 32. 

33. h(x) = (x3 _ 2x2) 113 34. 

35 . h(x) = lx2 - 41 36. 
37. h(x) = � 38. 

1 h(x) = x + 2 
h(x) = (x3 + 2x2 + 1 ) 1 s (x2 + 2x) 312 h(x) = --x3 - 1 
h(x) = lx2 + xi - 4 
h<x> = V2x2 - x + 2 

In Exercises 39-44 verify that g = 1- 1 for the given functions I and g by showing thatl[g(x)] = x and g[f(x)] = x. 
1 1 2 39. f(x) = 2x + 4 g(x) = "t - 2 40. l(x) = 3x - 2 g(x) = 3x + 3 

4 1 .  

43. 

f(x) = 2 - 3x 

1 

1 2 
g(x) = --x + -

3 3 
1 

f(x) = - g(x) = -
x x 

42. l(x) = x3 g(x) = Vx 
1 1 44. l(x) = -- g(x) = - + 2 x - 2  x 

In Exercises 45-52 findl- 1 (x). Sketch the graphs of y = f(x) and y = 1- 1 (x) on the same coordinate axes. 

45 . l(x) = 2x + 3 

1 49. l(x) = 3x - 5 

46. f(x) = 3x - 4 

1 50. l(x) = 2 - ? 
47 . l(x) = 3 - 2x 

5 1 .  f(x) = x3 + I 

1 48. l(x) = 2x + 1 

1 52 f(x) = --. x + 1 
In Exercises 53-60 use the horizontal line test to determine whether the given function is a one-to-one function. 
53. f(x) = 2x - 1 54. f(x) = 3 - 5x 55. f(x) = x2 - 2x + 1 56. f(x) = x2 + 4x + 4 
57. f(x) = -x3 + 1  58. f(x) = x3 - 2 

x :5 - 1  {2x, 
59. l(x) = x2 , 

3x - 1 ,  
- l < x :5 0  

x > O  
6 1 . Prove that a one-to-one function can have at most one 

inverse function. (Hint: Assume that the functions g 
and h are both inverses of the function f. Show that 
g(x) = h(x) for all real values x in the range off. )  

62. Prove that the l inear function l(x) = ax + b is a 

TERMS AND SYMBOLS 
origin (p. 1 14) 
x-axis (p. 1 14) 
y-axis (p. 1 14) 
coordinate axes (p. 1 14) 
rectangular coordinate sys-

tem (p. 1 14) 
Cartesian coordinate sys

tem (p. 1 14) 

quadrant (p. 1 14) 
coordinates of a point (p. 

1 14) 
ordered pair (p. 1 14) 
abscissa (p. 1 14) 
x-coordinate (p. 1 14) 
ordinate (p. 1 14) 
y-coordinate (p. 1 14) 

60. f(x) = {x2 - 4x + 4, x :5 2 
x, x >  2 

one-to-one function if a * 0, and is not a one-to-one 
function if a = 0. 

63 . Find the inverse of the linear functionl(x) = ax +  b, 
a *  0. 

distance formula (p. 1 1 6) 
graph of an equation in 

two variables (p. 1 1 7) 
solution of an equatlon m 

two variables (p. 1 1 7) 
x-intercept (p. 1 1 8) 
y-intercept (p. 1 1 8) 
symmetry (p. 1 19) 

symmetry with respect to 
the x-axis (p. 1 20) 

symmetry with respect to 
the y-axis (p. 1 20) 

symmetry with respect to 
the origin (p. 1 20) 

function (p. 1 24) 
image (p. 1 24) 
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domain (p. 1 24) 
range (p. 1 24) 
independent variable 

(p. 124) 
dependent variable (p. 1 24) 
vertical line test (p. 126) 
f(x) (p. 1 27) 
graph of a function (p. 1 30) 
increasing function (p. 1 36) 

KEY IDEAS FOR REVIEW 

decreasing function (p. 1 36) 
constant function (p. 1 36) 
linear function (p. 1 38) 
quadratic function (p. 1 38) 
parabola (p. I 38) 
polynomial function 

(p. 1 39) 
slope (p. 1 4 1 )  
point-slope form (p. 143) 

0 In a rectangular coordinate system, every ordered pair of 
real numbers (a, b) corresponds to a point in the plane, 
and every point in the plane corresponds to an ordered 
pair of real numbers. 

0 The distance PQ between points P(x1 , y1 ) and Q(x2, y2) 
is given by the distance formula 

PQ = V(x2 - x1 )2 + (y2 - y 1 )2 
0 An equation in two variables can be graphed by plotling 

points that satisfy the equation and joining the points to 
form a mooth curve. 

0 A function is a rule that assigns exactly one element y of 
a set Y to each element x of a set X. The domain is the set 
of inputs, and the range is the set of output . 

0 A graph represents a function if no vertical line meets 
the graph in more than one point . 

0 The domain of a function is the set of all real numbers 
for which the function is defined. Beware of division by 
zero and of even roots of negative numbers. 

0 Function notation gives the definition of the function 
and also the value or expression at which to evaluate the 
function. If the function / is defined by ft.x) = x2 + 2x, 
then the notationft.3) denotes the result of replacing the 
independent variable x by 3 wherever it appears: 

ft.x) = x2 + 2x 
ft.3) = 32 + 2(3) = 1 5  

0 To graph ft.x), simply graph y = ft.x). 
0 An equation is not the only way to define a function. 

Sometimes a function is defined by a table or chart, or 
by several equations. Moreover, not every equation 
determines a function. 

0 A we move from left to right , the graph of an increasing 
function rises and the graph of a decreasing function 
falls. The graph of a constant function neither rises nor 
falls; it is horizontal. 

slope-intercept form 
(p. 144) 

general first-degree equa
tion (p. 149) 

direct variation (p. 1 5 1  ) 
constant of variation 

(p. 152) 
inverse variation (p. 1 52) 
joint variation (p. 1 53) 

composite function (p. 1 57) 
f(g(x)] (p. 1 57) 
Jo g (p. 1 57) 
one-to-one function (p. 1 58) 
horizontal line test (p. 1 59) 
inverse function (p. 16 1 )  
r • <P· 1 6 1 >  

0 The graph of a function can have holes or gaps, and can 
be defined in "pieces. "  

0 Polynomials i n  one variable are all functions and have 
"smooth" curves as their graphs. 

0 The graph of the linear function ft.x) = ax + b is a 
straight line. 

0 Any two points on a line can be used to find its slope 
m: 

0 Positive slope indicates that a line is rising; negative 
slope indicates that a line is falling. 

0 The slope of a horizontal line is O; the slope of a vertical 
line is undefined. 

0 The point-slope form of a line is y - y1 = m(x - x1). 
0 The slope-intercept form of a line is y = mx + b.  

0 The equation of the horizontal line through the point 
(a, b) is y = b; the equation of the vertical line through 
the point (a, b) is x = a. 

0 Parallel lines have the same slope. 
D The slopes of perpendicular lines are negative recipro

cals of each other. 
0 The graphs of the linear function ft.x) = ax + b and of 

the general first-degree equation Ax +  By = C are 
always straight lines. 

0 Direct and inverse variation are functional relation
ships . 

D We say that y varies directly as x if y = loc for some 
constant k; we say that y varies inversely as x if y = k/x 
for some constant k. 

0 Joint variation is a term for direct variation involving 
more than two quantities. 



D Functions can be combined by the usual operations of 
addition, subtraction, multiplication, and division. 
However, the domain of the resulting function need not 
correspond with the domain of either of the original 
functions. 

D A composite function is a function of a function. 

D We say a function is one-to-one if every element of the 
range corresponds to precisely one element of the 
domain. 

REVIEW EXERCISES 
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D No horizontal line meets the graph of a one-to-one func
tion in more than one point. 

D The inverse of a function , f- 1 ,  reverses the correspon
dence defined by the function /. The domain of f 
becomes the range of 1- 1 , and the range off becomes 
the domain off- 1 . 

D The inverse of a function / is defined only if f is a one
to-one function. 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book.  
3. 1 I .  Find the distance between the points (-4 , -6) In Exercises 9 and 10 determine the domain of the giv-

and (2, - 1 ) . en function. 

2. Find the length of the longest side of the triangle 
whose vertices are A(3, -4), B( -1,  -6) , and 
C(- l ,  2). 

In Exercises 3 and 4 sketch the graph of the given equa
tion by forming a table of values. 

3. y = l - I.xi 4. y = Yx=-2 
In Exercises 5 and 6 analyze the given equation for 
symmetry with respect to the x-axis, y-axis, and ori
gin. 

x2 6. y2 = x2 - 5 
3.2 In Exercises 7 and 8 state if the graph determines y to 

be a function of x. 

7. 
y 

x 
8 .  

y 

x 

9. f(x) = �  x 
IO. ft.x) = x2 + 2x + I 

1 1 .  If ft.x) = �, find a real number whose 
image is 1 5 . 

1 2 . If}tt) = t2 + l ,  find a real number whose image 
is IO .  

In  Exercises l 3- l5ft.x) = x2 - x. Evaluate the follow
ing. 
1 3 .  /(-3) 14. fly - I )  

ft.2 + h) -ft.2) h .... 0 1 5 .  h .,... 
3 .  3 Exercises 1 6- 1 9  refer to the function f defined by 

{x - l ,  
ft.x) = x2, 

-2,  

x :s: - 1  
- l < x :S: 2  

x > 2  

16 .  Sketch the graph of the function /. 
1 7 .  Determine where the function f i s  increasing, 

decreasing, and constant. 
1 8 . Evaluate ft.-4) . 
19 .  Evaluate fi4). 

3 .4 In Exercises 20-25 the points A and B have coordinates 
(-4, -6) and (- 1 , 3), respectively. 
20. Find the slope of the line through A and B.  
2 1 .  Find an equation of the line through the points A 

and B.  
22. Find an equation of the line through A that is 

parallel to the y-axis. 
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23. Find an equation of the horizontal line through 
B.  

24. Find an equation of the line through A that is 
parallel to the line 2x - y - 3 = 0. 

25. Find an equation of the line through B that is 
perpendicular to the line 2y + x - 5 = 0. 

3 .5 26. If R varies directly as q, and if R = 20 when q = 
5, find R when q = 40. 

27. If S varies inverse))' as the cube of t, and if S = 8 
when t = - 1 ,  find S when t = -2. 

28. P varies jointly as q and r and inversely as the 
square of t, and P = -3 when q = 2, r = -3, 
and l = 4. Find P when q = - I ,  r = i, and I =  4.  

3.6 In Exercises 29-34 flx) = x + I and g(x) = x2 - 1 .  
Determine the following. 
29. (f + g)(x) 30. (f· g)( - 1 )  

PROGRESS TEST 3A 
1 .  Find the perimeter of the triangle whose vertices are 

(2, 5) ,  (-3 , 1 ) , and (-3 , 4). 
2 .  Use symmetry to assist i n  sketching the graph of  the 

equation y = 2x2 - 1 .  
3. Analyze the equation y = 1 /x3 for symmetry with 

respect to the axes and origin. 
4. Determine the domain of the function 

1 
f(x) = 

Vx - 1 
5 .  I f  fix) = �. find a real number whose-image 

is 4. 
6. lff(x) = 2x2 + 3 , findfl2t) . 

Problems 7-9 refer to the function f defined by 

E, f(x) = xi, 
2 - x, 

x <  - 2  
-2  '.'.'S x  :'.'S 3 
x > 3  

7 .  Determine where the function! i s  increasing, decreas
ing, and constant. 

8 .  Evaluatef(-5) .  9 .  Evaluate f(-2) .  
JO .  Find an equation of the line through the points (-3 , 5)  

and (-5 ,  2 ) .  

3 1 .  ({)<x) 32. the domain of 

(f)<x
) 

33. (g 0 f}(x) 34. (f 0 g)(2) 
ln Exercises 35-38 flx) = Vx - 2 and g(x) = x2. 
Determine the following. 
35. (Jo g)(x) 
37. (f 0 g)(-2) 

36. (g o f)(x) 
38 . (g 0 j)(-2) 

In Exercises 39 and 40 flx) = 2x + 4 and g(x) = 
:! _ 2 2 . 

39. Prove that f and g are inverse functions of each 
other. 

40. Sketch the graphs of y = flx) and y = g(x) on the 
same coordinate axes. 

1 1  . Find an equation of the vertical line through the point 
(-3 , 4). 

1 2 .  Find the slope m and y-intercept b o f  the line whose 
equation is 2y - x = 4. 

1 3 .  Find an equation of the line through the point (4, - 1 ) 
that is parallel to the x-axis. 

14 . Find an equation of the line that passes through the 
point ( -2 ,  3) and is perpendicular to the line 

y - 3x - 2 = 0 
1 5 .  I f  h varies directly as the cube o f  r, and h = 2 when 

r = - l, find h when r = 4. 
16 .  T varies jointly as a and the square of  b and inversely 

as the cube of c, and T = 64 when a = - 1 ,  b = l ,  
and c = 2.  Find T when a =  2,  b = 4, and c = - 1 . 

In Problems 17- 19  f(x) = l !(x - I )  and g(x) = x2. Find the 
following. 

1 7 .  (f - g)(2) 1 8 .  ( � ) <x) 

1 9 .  (g oj)(3) 
20. Prove thatflx) = -3x +  l and g(x) = -Mx - 1 )  

are inverse functions of each other. 
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I .  Find the length of the shorter diagonal of the parallel
ogram whose vertices are ( -3 ,  2), (-5 ,  -4), (3, -4), 
and (5 , 2). 

2. Use symmetry to assist in sketching the graph of the 
equation y2 = -4x + 4. 

3 .  Analyze the equation x2 - xy + 2 = 0 for symmetry 
with respect to the axes and the origin. 

4. Determine the domain of the function 
x2 

f(x) 
= 16 - x2 

5 .  If f(x) = x2 - 2x, find a real number whose image is 
- 1 .  

6. Iff(x) = Vx - I ,  find f(4) . 
Problems 7-9 refer to the function f defined by 

!x2 - I 

f(x) 
= 

10, 
Vx. 

x :s  -3 
-3 < x :S 3 

x > 3  

7. Determine where the function! is increasing, decreas
ing, and constant . 

8. Evaluate j(2) . 9. Evaluate f(-5) .  
10 . Find the slope of the line through the points ( -2 , -3) 

and (-4, 6) . 

PROGRESS TEST 3B 169 

1 1 .  Find an equation of the horizontal line through the 
point (-6, -5) .  

1 2 . Find the y-intercept of the line through the points 
(4, - 3) and ( - 1 ,  2). 

1 3 . Determine the slope of every line that is perpendicular 
to the line 6y - 2x = 5 .  

14 . Determine an equation of the line that passes through 
the point (3, -2) and is parallel to the line 

3y + x - 4 = 0 
1 5 .  I f  A varies inversely as the square o f  b, and i f  A =  -2 

when b = 4, find A when b = 3 .  
16 . R varies jointly as  x and the square root of  y and 

inversely as the square of z, and R = � when x = 2, 
y = 9 , and z = 4. Find the constant of variation. 

In Problems 1 7- 19 fix) = 11v;+I and g(x) = x - I .  Find 
the following. 
1 7 .  (Jo g)(3) 
19 . (Jo g)(x) 

1 8 . (f + g)( l )  

20 h I'( 
I I . . Prove t at 1,x) = - and g(x) = - are mverse func-

tions. 
x x 



4.1 
EXPONENTIAl. 
FUNCTIONS 

EXPONENTIAL AND 
LOGARITHMIC 
FUNCTIONS 
Thus far in our study of algebra we have dealt primarily with functions that are 
polynomials,  or sums, differences, products , quotients , or powers of polynomi
als. In this chapter we introduce a new type of function , the exponential function , 
and its inverse, the logarithmic function. 

Exponential functions arise in nature and are useful in chemistry, biology, 
and economics , as well as in mathematics and engineering .  We will study appli
cations of exponential functions in calculating such quantities as compound inter
est and the growth rate of bacteria in a culture medium. 

Logarithms can be viewed as another way of writing exponents. Histori
cally , logarithms have been used to simplify calculations; in fact , the slide rule, a 
device long used by engineers , is based on logarithmic scales. In today's world of 
inexpensive hand calculators , the need for manipulating logarithms is reduced. 
The section on computing with logarithms will provide enough background to 
allow you to use this powerful tool but omits some of the detail found in older 
textbooks. 

The function fix) = 2x is very different from any of the functions we have worked 
with thus far. Previously we defined functions by using the basic algebraic oper
ations (addition , subtraction, multiplication, division, powers, and roots) .  How
ever, fix) = 2x has a variable in the exponent and doesn't fall into the class of 
algebraic functions. Rather, it is our first example of an exponential function. 

An e.xponential function has the form 

fix) :;: er 
where a >  0, a *  1 .  The constant a is called the base, and the independent 
variable x may assume any real value. 

PAGE 171 
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GRAPHS OF EXPONENTIAL 
FUNCTIONS 

The best way to become familiar with exponential functions is to sketch their 
graphs. 

EXAMPLE 1 
Sketch the graph of j{x) = 2x. 

SOLUTION 
We let y = 2x, and we form a table of values of x and y. Then we plot these points 
and sketch the smooth curve as in Figure I .  Note that the x-axis is a horizontal 
asymptote. 

In a sense, we have cheated in our definition ofj{x) = 2" and in sketching the 
graph in Figure J . Since we have not explained the meaning of 2x when x is 
irrational , we have no right to plot values such as 2Y2. For our purposes, how
ever, it will be adequate to think of 2v'i as the value we approach by taking 
successively closer approximations to V2, such as 2 1 .4, 2 1 . 4 1 ,  2 1 .4 14 ,  . . . .  A 
precise definition is given in more advanced mathematics courses, where it is also 
shown that the laws of exponents hold for irrational exponents . 

We now look atj{x) = a"  when 0 < a <  l .  

EXAMPLE 2 
Sketch the graph of fl..x) = UY = i-x. 

y 

-4 -2 2 

FIGURE 1 

4 x 
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EXPONENTIAL FUNCTIONS 

Properties of the 
Exponential Functions 

SOLUTION 

y = HY = i-x 
i o  

8 

6 

4 

-4 -2 

FIGURE 2 
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y 

2 4 x 

We form a table, plot points , and sketch the graph shown in Figure 2 .  Note that 
the graph of y = r x  is a reflection about the y-axis of the graph of y = 2x. 

In Figure 3 we have sketched the graphs of 

g(x) = y h<x> = GY k(x) = (�Y 
on the same coordinate axes to provide additional examples of the graphs of 
exponential functions. 
The graphs in Figure 3 illustrate the following important properties of the expo
nential functions. (Recall that the definition of the exponential functionj{x) = <T 
requires that a > 0 and a * 1 . ) 

• The graph of ft..x) = <T always passes through the point (0, I ), since a0 = I .  
• The domain ofj{x) = <T consists of the set of all real numbers; the range is the 
set of all positive real numbers . 
• If a > 1 ,  <T is an increasing function; if a < l ,  <T is a decreasing func
tion. 
• If a < b, then <T < Ir.  for an x > 0, and <T > bX for all x < 0. Note in Figure 3 
that y = Y lies above y = 2x when x > 0 and below it when x < 0. 
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y = (lf 3 
y 

y = 3x 

10 

8 

-4 -2 2 4 x 

FIGURE 3 

Since tr is either increasing or decreasing, it never assumes the same value 
twice. (Recall that a =I= l . ) This leads to a useful conclusion. 

The graphs of tr and Ir intersect only at x = 0. This observation provides us 
with the following result . 

1f a" = bu for u 4'- 0, then a = b. 

EXAMPLE 3 

Solve for x. 
(a) 3 10 = 35x (b) 27 = (x - I )7 (c) 33x = o/ -

I 

SOLUTION 
(a) Since au = av implies u = v, we have 

10  = 5x 
2 = x 
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(b) Since a" = b" implies a =  b, we have 
2 = x - 1 

3 = x 

(c) 33.r = 9°" - I = (32)" - I = 32.r - 2 

Since a" = av implies u = v, we have 

PROGRESS CHECK 
Solve for x. 
(a) 28 = 2.r + I 

ANSWERS 

(a) 7 (b) 5 

3x = 2x - 2 

x = -2 

(b) 42x + 1 = 41 1  (c) gx + I  = 2 

(c) 
2 
3 

There is an irrational number that was first designated by the letter e by the Swiss 
mathematician Leonhard Euler ( 1 707- 1 783). The number e is the value 
approached by the expression 

as m gets larger. The procedure for studying the behavior of this expression as m 
gets larger and larger is developed in calculus courses. We will simply evaluate 
this expression for different values of m, as shown in Table 1 .  

TABLE 1 

m l 2 1 0  100  1000 1 0,000 100,000 1 ,000,000 

( 1 + ;r 2 .0 2 . 25 2 . 5937 2 .7048 2 .7 1 69 2 .7 1 8 1  2 . 7 1 82 2 .7 1 828 

The function f(x) = � is called the natural exponential function; we 
assume that this is the function referred to when someone speaks of ' 'the expo
nential function . " The graphs of f(x) = � and.f(x) = e-x are shown in Figure 4. 
Since e = 2.  7 1 828 , the graph of y = � falls between the graphs of y = 2x and 
y = 3x. Table I in the Tables Appendix lists values for � and e -x. 
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APPLICATIONS 

Exponential Growth 

y Y = 3x 

-4 - 2 2 4 x 

FIGURE 4 

Exponential functions occur in a wide variety of applied problems. We will look 
at problems dealing with population growth, such as predicting the growth of 
bacteria in a culture medium; radioactive decay, such as determining the half-life 
of strontium 90; and the interest earned when an interest rate is compounded. 

The function Q defined by 

Q(t) = q0ek' ,  k > O  

in which the variable t represents time, is called an exponential growth model; k 
is a constant and t is the independent variable. We may think of Q as the quantity 
of a substance available at any given time t. Note that when t = 0 we have 

Q(O) = qoe0 = qo 

which says that q0 is the initial quantity. (It is customary to use the subscript 0 to 
denote an initial value . )  The constant k is called the growth constant. 

EXAMPLE 4 
The number of bacteria in a culture after t hours is described by the exponential 
growth model 

Q(t) = 50eo.11 

(a) Find the initial number of bacteria, qo, in the. culture . 
(b) How many bacteria are in the culture after lO hours? 

SOLUTION 
(a) To find q0 we need to evaluate Q(t) at t = 0: 

Q(O) = 50e0·1<0> = 50e0 = 50 = qo 
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Thus, there are initially 50 bacteria in the culture. 
(b) The number of bacteria in the culture after 10 hours is given by 

Q( lO) = 50e0·1< 10> = 50e7 = 50( 1096.6) = 54,830 

Thus, there are 54,830 bacteria after 10 hours . (The value e7 = 1096.6 can be 
found by using Table I in the Tables Appendix; it can also be found by using a 
calculator with a 'Y" key, with y = e = 2 .  7 1 828 and x = 7 . )  

PROGRESS CHECK 

The number of bacteria in a culture after I minutes is described by the exponential 
growth model Q(t) = qoe0·0051. If there were 100 bacteria present initially, how 
many bacteria will be present after 1 hour has elapsed? 
ANSWER 
1 35 

The model defined by the function 
Q(t) = qoe

-k'
, k > O  

is called an exponential decay model; k is a constant, called the decay constant, 
and / is the independent variable denoting time. Here is an application of this 
model. 

EXAMPLE 5 

A substance has a decay rate of 5% per hour. If 500 grams are present initially, 
how much of the substance remains after 4 hours? 

SOLUTION 
The general equation of an exponential decay model is 

Q(t) = qoe
-kl 

In our model , q0 = 500 grams (since the quantity available initially is 500 
grams) , and k = 0.05 (since the decay rate is 5% per hour) . After 4 hours 

Q(4) = 500e-0·05<4> = 500e-0·2 = 500(0.8 1 87) = 409.4 

(The value e-0·2 = 0 . 8 1 87 is obtained from Table I in the Tables Appendix). 
Thus, there remain 409.4 grams of the substance . 

PROGRESS CHECK 
The number of grams Q of a certain radioactive substance present after / seconds 
is given by the exponential decay model Q(t) = qoe-0 ·4'. If 200 grams of the 
substance are present initially, find how much remains after 6 seconds. 
ANSWER 

1 8 . 1 grams 
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Compound Interest We begin by recalling the definition of simple interest. If the principal P is 
invested at a simple annual interest rate r, then the amount or sum S that we will 
have after t years is given by 

S = P + Prt 

In many business transactions the interest that is added to the principal at regular 
time intervals also earns interest. This is called the compound interest pro
cess. 

The time period between successive additions of interest is known as the 
conversion period. If interest is compounded quarterly, the conversion period is 
three months; if interest is compounded semiannually, the conversion period is 
six months. 

Suppose now that a principal P is invested at an annual interest rate r, 
compounded k times a year. Then each conversion period lasts t = I lk years . 
Thus, the amount S1 at the end of the first conversion period is 

S1 = P + Prt 

= P + P · r · i = P( 1 + �) 
The amount S2 at the end of the second conversion period is 

Si = S1 + S1rt 

= p( 1 + i) + p( 1 + i) . 

r . i 

In this way, we see that the amount Sn after n conversion periods is given by 

which is usually written 

S = P( l + it 

where i = rlk. Table IV in the Tables Appendix gives values of ( 1  + it for a 
number of values of i and n. Accurate results can also be obtained by using a 
calculator with a · 'y'' '  key . 
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EXAMPLE 6 
Suppose that $6000 is invested at an annual interest rate of 8%. What will the 
value of the investment be after 3 years if 
(a) interest is compounded quarterly? 
(b) interest is compounded semiannually? 

SOLUTION 
(a) We are given P = 6000, r = 0.08 ,  k = 4, and n = 1 2  (since there are 4 
conversion periods per year for 3 years) . Thus, 

and 

i = !. = 
0·08 = 0 02 k 4 

. 

S = P( l + i)n = 6000( 1 + 0.02) 1 2 

Table IV in the Tables Appendix , with i = rlk = 0.02 = 2% and n = 1 2 ,  
yields 

s = 6000( 1 .26824 1 79) = 7609.45 

Thus, the sum at the end of the three-year period will be $7609.45 . 
(b) We have P = 6000, r = 0.08 ,  k = 2 ,  and n = 6 (since there are 2 conver
sion periods per year for 3 years) .  Then 

i = !. = 0·08 = 0 04 k 2 
. 

S = P( l + it = 6000( 1 + 0.04)6 

Table IV in the Tables Appendix, with i = 0.04 = 4% and n = 6, yields 

s = 6000( 1 .2653 1902) = 759 1 .9 1  

The sum at the end of the three-year period will be $759 1 .9 1 ,  which is $ 1 7 .54 
less than the interest earned when compounding is quarterly rather than semian
nual . 

PROGRESS CHECK 
Suppose that $5000 is invested at an annual interest rate of 6% compounded 
semiannually. What is the value of the investment after 1 2  years? 
ANSWER 

$ 10, 1 63 .97 

WARNING When using Table IV , be certain that n is the total number of con
version periods and i is the interest rate per conversion period. For example, an 
interest rate of 1 8% compounded monthly for 2 years leads to n = 24 and 
i = · �%. 
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Continuous 
Compounding 

When P, r, and t are held fixed and the frequency of compounding is increased, 
the return on the investment is increased . We wish to determine the effect of 
making the number of conversions per year larger and larger. 

Suppose a principal P is invested at an annual rate r, compounded k times 
per year. After t years , the number of conversions is n = tk. Then the value of the 
investment after t years is 

Letting m = klr, we can rewrite this equation as 

or 

S = p( 1 + 
;) 'mr 

[ ( J ) m j rt 
S = P  I + -m 

If the number of conversions k per year gets larger and larger, then m gets larger 
and larger. Since we saw in Table 1 of this chapter that the expression 

gets closer and closer to e as m gets larger and larger, we conclude that 

S = Pe" 

As the number of conver ion increases, so does the value of the investment. 
But there is a limit, or bound, to this value, and it is given by Equation ( I ) . We 
say that Equation ( l )  represents the resuh of continuous compounding. 

EXAMPLE 7 
Suppose that $20,000 is invested at an annual interest rate of 7% compounded 
continuously . What is the value of the investment af:ter 4 years? 

SOLUTION 
We have P = 20,000, r = 0.07 ,  and t = 4, and we substitute in Equation ( 1 ) :  

S = Pert 
= 20,000e0·07<4l = 20,000e0·28 
= 20,000( 1 . 323 1 )  from Table I, Tables Appendix,  or a calculator 
= 26,462 

The sum available after 4 years is $26,462 . 
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PROGRESS CHECK 

Suppose that $ 10,000 is invested at an annual interest rate of 1 0% compounded 
continuously. What is the value of the investment after 6 years? 
ANSWER 

$ 1 8,22 1 

By solving Equation ( 1 )  for P, we can determine the principal P that must be 
invested at continuous compounding to have a certain amount S at some future 
time . The values of e-x from Table I in the Tables Appendix will be used in this 
connection. 

EXAMPLE 8 
Suppose that a principal P is to be invested at continuous compound interest of 
8% per year to yield $ 10,000 in 5 years . Approximately how much should be 
invested? 

SOLUTION 

Using Equation ( l ) with S = 10,000, r = 0.08, and t = 5 , we have 
S = Pe"' 

10,000 = Peo.oscs> = Peo.40 

p = 10,000 
eo.4o 

= 10,oooe-0·40 

= 10,000(0.6703) 

= 6703 

from Table I, Tables 
Appendix, or a calculator 

Thus, approximately $6703 should be invested initially. 
PROGRESS CHECK 
Approximately how much money should a 35-year-old woman invest now at 
continuous compound interest of 10% per year to obtain the sum of $20,000 upon 
her retirement at age 65? 
ANSWER 
$996 

ln Exercises 1 - 1 2  sketch the graph of the given function f. 

l .  /(x) = 4x 2. /(x) = 4-x 

5. /(x) = 2x+ I 6. /(x) = ix- I 

9. /(x) = 22x 10. f(x) = rL< 

3.  
7.  

1 1 . 

/(x) = Hf 4. /(x) = 10-x 

/(x) = 21..l 8 . ft..x) = r•x• 

ft..x) = (!'+ ! 1 2. ft..x) = e- ix 
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In Exercises 1 3-20 solve for x. 

1 3 .  2x = 23 
1 7 .  23x = 4x+ I 

14 .  2x- l = 24 
J 8 .  34x = iy- 1 

In Exercises 2 1-24 solve for a .  
2 1 .  (a + l )x = (2a - I Y 
23. (a + W = (2aY 

1 5 .  
1 9 .  

22. 
24. 

3x = iy-2 16 .  2x = 3x+2 
e'- 1 = e3 20. e'- 1 = I  

(2a + I Y = (a + 4)x 

(2a + 3Y = (3a + l )x 

In Exercises 25-29 use Table I in the Tables Appendix to evaluate e' and e-' . 
25 . The number of bacteria in a culture after t hours is 

described by the exponential growth model Q(t) = 

200eo.251 
(a) What is the initial number of bacteria in the cul

ture? 
(b) Find the number of bacteria in the culture after 

20 hours . 
(c) Use Table I in the Tables Appendix to complete 

the following table . 

I I 
I O  4 8 

Q 

26. The number of bacteria in a culture after t hours is 
described by the exponential growth model Q(t) = 

q0e0 011 . If there were 400 bacteria present ini
tially, how many bacteria are present after 2 
days? 

27 . At the beginning of 1975 the world population 
was approximately 4 billion. Suppose that the 
population is described by an exponential 
growth model , and that the rate of growth is 2% 
per year. Give the approximate world popula
tion in the year 2000. 

28. The number of grams of potassium 42 present 
after t hours is given by the exponential decay 
model Q(t) = q0e-0 055' . If 400 grams of the 
substance were present initially, how much 
remains after 10 hours? 

29. A radioactive substance has a decay rate of 4% 
per hour. If 1 000 grams were present initially, 
how much of the substance remains after IO 
hours? [� In Exercises 30-33 use Table IV in the Tables Appendix, or a calculator, to assist in the computations. 

30. An investor purchases a $ 1 2 ,000 savings certificate Investment A pays 8% annual interest compounded 
paying IO% annual interest compounded semiannual- quarterly, and investment B pays 9% compounded 
ly. Find the amount received when the savings certif- annually . Which investment will yield a greater 
icate is redeemed at the end of 8 years. return? 

3 1 .  The parents of a newborn infant place $ IO,OOO in an 33. A firm intends to replace its present computer in 5 
investment that pays 8% annual interest compounded years. The treasurer suggests that $25 ,000 be set aside 
quarterly .  What sum is available at the end of 1 8  years in an investment paying 1 2% compounded monthly. 
to finance the child's college education? What sum will be available for the purchase of the new 

32. A widow is offered a choice of two investments . computer? 
In Exercises 34-38 use Tables I and IV in the Tables Appendix, or a calculator, to assist in the computations. 
34. If $5000 is invested at an annual interest rate of 9% pound interest of 9% to yield $50,000 in 20 years . 

compounded continuously, how much is available What is the approximate value of P to be invested? 
after 5 years? 37. A 40-year-old executive plans to retire at age 65 . How 

35. If $ 1 00 is invested at an annual interest rate of 5.5% much should be invested at 1 2% annual interest com-
compounded continuously, how much is available pounded continuously to provide the sum of $50,000 
after IO years? upon retirement? 

36. A principal P is to be invested at continuous com- 38. Investment A offers 8% annual interest compounded 
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semiannually , and investment B offers 8% annual 
interest compounded continuously. If $ 1000 were 

invested in each, what would be the approximate dif
ference in value after J O  years? 

In Exercises 39 and 40 use a calculator to detennine which number is greater. 

39. 2 ", 17'2 40. 3 ", 17'3 

4.2 
LOGARITHMIC 
FUNCTIONS 

LOGARITHMS AS 
EXPONENTS 

FIGURE 5 

I 
logarithmic FOnction 
Base a 

We have previously noted thatf(x) = a' is an increasing function if a >  1 and a 
decreasing function if 0 < a < l .  It is thus clear that no horizontal line can meet 
the graph of/(x) = a' in more than one point. We conclude that the exponential 
function is a one-to-one function . 

In Figure Sa, we see the function/(x) = 2x assigning values in the set Y for 
various values of x in the domain X. Since/(x) = 2x is a one-to-one function , it 
makes sense to seek a function/- l that will return the values of the range of/back 
to their origin as in Figure Sb. That is, 

a) 

f maps 3 into 8, r• maps 8 into 3 
f maps 4 into 1 6, r• maps 1 6  into 4 

and so on. Since ix is always positive, we see that the domain ofr 1 is the set of 
all positive real numbers. Its range is the set of all real numbers. 

The functionf- 1 of Figure Sb has a special name, the logarithmic function 
base 2, which we write as log2. lt is also possible to generalize and define the 
logarithmic function as the inverse of the exponential function with any base a 
such that a > 0 and a * I . 

y = log,, x if and only if x = aY 

When no base is indicated, the notation log x is interpreted to mean logio x. 
The notation In x is used to indicate logarithms to the base e. Since In x is the 

inverse of the natural exponential function e, it is called the natural logarithm 
of x. 



184 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

Natural Logarithm In x = lo� x 

The exponential form x = aY and the logarithmic form y = log., x are two 
ways of expressing the same relationship among x, y, and a. Further, it is always 
possible to convert from one form to the other. The natural question , then, is why 
bother to create a logarithmic form when we already have an equivalent expo
nential form. One reason is to allow us to switch an equation from the form x = aY 
to a form in which y is a function of x. We will also demonstrate that the loga
rithmic function has some very useful properties. 

EXAMPLE 1 
Write in exponential form. 

(a) log3 9 = 2 

I 
(c) log 16 4 = 2 

SOLUTION 

I 
(b) log2 8 = -3 

(d) In 7 .39 = 2 

We change from the logarithmic form log., x = y to the equivalent exponential 
form aY = x. 

(b) i-3 = .!. 
8 

PROGRESS CHECK 

Write in exponential form. 

(c) 1 6 112 = 4 {d) e2 = 7 .39 

(a) log4 64 = 3 (b) log,0( 10.�) = -4 

I 
(c) log2s 5 = 2 
ANSWERS 

(a) 43 = 64 

(c) 25 112 = 5 

EXAMPLE 2 

(d) In 0.3679 = - 1  

(b) 10-4 = _
l_ 

10,000 

(d) e- 1 = 0. 3679 

Write in logarithmic form. 

(a) 36 = 62 (b) 7 = v'49 (c) _!_ = 4-2 
1 6  

(d) 0. 1 353 = e-2  
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SOLUTION 
Since y = log., x if and only if x = aY, the logarithmic forms are 

(a) log6 36 = 2 

I 
(c) log4 

16 
= -2 

PROGRESS CHECK 

I 
(b) 10�9 7 ;:::: 2 

(d) In 0. 1 353 = - 2  

Write i n  logarithmic form. 
(a) 64 = 82 (b) 6 = 36112 

(c) ! = r 1 (d) 20.09 = e3 
7 

ANSWERS 

(a) logs 64 = 2 (b) 
1 

log36 6 = 2 

(c) 
1 

(d) In 20.09 = 3 log7 - = - 1  7 

Logarithmic equations can often be solved by changing them to equivalent expo
nential forms. Here are some straightforward examples; more challenging prob
lems will be handled in Section 4 .5 .  

EXAMPLE 3 

Solve for x. 
(a) log3 x = - 2  

(c) log5 1 25 = x 

SOLUTION 

(b) log.. 8 1  = 4 
1 

(d) In x = 2 

(a) Using the equivalent exponential form, we have 

x = 3-2 = ! 
9 

(b) Changing to the equivalent exponential form, we have 

x4 = 8 1  = 34 

Since au = bu implies a =  b, we have 

x = 3  
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LOGARITHMIC IDENTITIES 

(c) ln exponentiaJ fonn we have 

sx = 125 
Writing 125 to the base 5 ,  we have 

sx = 53 

and since a" = av implies u = v, we conclude that 

x = 3  

(d) The equivalent exponential form is 

x = e 112 = 1 .65 

which we obtain from Table I in the Tables Appendix or by using a calculator 
with a ' "/" key. 

PROGRESS CHECK 

Solve for x. 
(a) log... 1000 = 3 

ANSWERS 

(a) IO  (b) 32 

(b) log2 x = 5 

(c) -2 

1 
(c) x = log1 49 

lf.f\x) = tr, thenl- 1(x) = log., x. Recall that inverse functions have the property 
that 

fll- 1(x)] = x and l- 1 [.f\x)] = x 

Substitutiog.f\x) = tr  and l- 1 (x) = log., x, we have 

f[f- ' (x)] = x 
}\log., x) = x 
alog.,x = x 

1- 1 [.f\x)] = x 
r 1(u<) = x 
log., tr = x 

These two identities are useful in simplifying expressions and should be remem
bered. 

alog.,x = x 
log., tr =  x 



MEASURING AN 
EARTHQIJME 

Richter Scale 
Readings 

Here's what you can 
anticipate from earth· 
quakes of various Richter 
scale readings. 

2 .0 not noticed 
4 .5 some damage in a 

very limited area 
6.0 hazardous; serious 

damage with de· 
struction of build· 
ings in a l imit· 
ed area 

7.0 felt over a wide area 
with significant dam
age 

8.0 great damage 
8.7 maximum recorded 

The great San 
Francisco earthquake of 
1 906 is estimated to have 
had a Richter scale 
reading of 8.3. 
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Radio and television newscasts often describe earthquakes in this way: "A minor 
earthquake in China registered 3.0 on the Richter scale," or, "A major earth
quake in Chile registered 8.0 on the Richter scale. "  From statements like this we 
know that 3.0 is a "low" value and 8.0 is a "high" value. But ju�t what is the 
Richter scale? 

On the Richter scale, the magnitude R of an earthquake is defined as 

I R = log -
fo 

where 10 is a constant that represents a standard intensity and I is the i ntensity of 
the earthquake being measured. The Richter scale is a means of measuring a 
given earthquake against a "standard earthquake" of intensity 10. . 

What does 3.0 on the Richter scale mean? Substituting R = 3 in the above 
equation. we have 

I 
3 = log fo 

or, in the equivalent exponential form , 

I 
1 000 = 

lo 

Solving for /, we arrive at the equation 

I =  1 000 lo 

which states that an earthquake with a Richter scale reading of 3.0 is 1 000 times 
as intense as the standard I No wonder, then, that an earthquake registering 8.0 
on the Richter scale is serious: it has an intensity 1 00.000,000 times that of the 
standard ! 

The following pair of identities can be established by converting to the 
equivalent exponential form. 

EXAMPLE 4 
Evaluate . 
(a) 81oga5 
SOLUTION 

(b) log10 10-3 

(a) 5 (b) -3 (c) 

log.. a =  l 

log., l = 0 

(c) log7 7 

(d) 0 

(d) Jog4 I 
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PROGRESS CHECK 
Evaluate. 
(a) log3 34 (b) 61ou9 (c) logs l (d) log8 8 
ANSWERS 
(a) 4 (b) 9 (c) 0 (d) 

GRAPHS Of THE To sketch the graph of a logarithmic function, we convert to the equivalent 
LOGARITHMIC FUNCTIONS exponential form. For example, to sketch the graph of y = log2 x, we form a table 

of values for the equivalent exponential equation x = 2>'. 

y 

x =  2>' 

We can now plot these points and sketch a smooth curve, as in Figure 6. 
Note that the y-axis is a vertical asymptote . We have included the graph of y = 2x 
to illustrate that the graphs of a pair of inverse functions are reflections of each 
other about the line y = x. 

y = x 

FIGURE 6 

EXAMPLE 5 
Sketch the graphs of y = log3 x and y = log113 x on the same coordinate axes. 

SOLUTION 
The graphs are shown in Figure 7 .  Practical applications of logarithms generally 
involve a base a > 1 .  



PROPERT1IES OF 
LOGARITHMIC IFl!JNCTIONS 

p,ropertles of 
Log.arithmlc 1Fun.ctlons 

2 

- 2  

FIGURE 7 

4.2 LOGARITHMIC FUNCTIONS 189 

8 10 x 

The graphs in Figures 6 and 7 illustrate the following important properties of 
logarithmic functions. 

• The point ( l .  0) lies on the graph of the function f(x) = log,, x for all real 
numbers a > 0. This is another way of saying log,, l = 0. 

• The domain ofj{x) = log,, x is the set of all positive real numbers; the range is 
the set of aU real numbers. 

• When a > 1 ,  f(x) = log,, x is an increasing function; when 0 < a < l , f(x) = 
log,, x is a decreasing function . 

These results are in accord with what we anticipate for a pair of inverse functions. 
As expected, the domain of the logarithmic function is the range of the corre
sponding exponential function, and vice versa. · 

Since log,, x is either increasing or decreasing, the same value cannot be 
assumed more than once. Thus: 

I If log0 u = log,, v, then u = v .  

Since the graphs of log., u and logb u intersect only at u = 1 ,  we have the fol
lowing rule: 

I If fog0 u = logb u and u * l ,  then a =  b.  

EXAMPLE 6 
Solve for x. 
(a) log5(x + l )  = log5 25 

SOLUTION 

(b) log.._ 1 3 1  = log5 3 1  

(a) Since log,, u = loga v implies u = v, then 

x + 1 = 25 

x = 24 
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EXERCISE SET 4.2 

(b) Since log,, u = logi, u ,  u * I ,  implies a =  b, 

x - 1 = 5 
x = 6  

PROGRESS CHECK 

Solve for x. 

(a) log2 x2 = log2 9 

ANSWERS 

(a) 3 , -3 (b) 7 
2 

(b) log7 14 = logix 14 

In  Exercises 1 - 1 2  write each equation in  exponential form. 

I .  log2 4 = 2 2 .  log5 1 25 = 3 

5 .  In 20.09 = 3 6. I In 7 . 39 = - 2 

9 .  In I =  0 10 .  log10 0 .0 1  = -2 

In Exercises 1 3-26 write each equation i n  logarithmic form. 
1 3 .  2 5  = 52 14. 

1 7 .  .! = i-3 
8 18 .  

2 1 . 6 =  V36 22 . 

25. .! = 27- 113 
3 26. 

In Equations 27-44 solve for x. 

27. log5 x = 2 28. 

3 1 .  ln x = 2 32. 

35. I log5 25 = x 36. 

39. log5(x + I ) = 3 40. 
43. logx+ 1 17 = log4 1 7  44. 

27 = 33 

.l = r3 
27 
2 =  Vs 
.! = 16- 1 /4 2 

I log 11>  x = 2 
In x = -3 

I log . 4 = -. \ 2 
log2(x - I )  = log2 10  
log3, 1 8  = log4 1 8  

3 .  

7 .  

1 1 .  

15 .  

19 .  

23 . 

29. 

33. 

37. 

41 . 

I log9 81 = - 2 

log10 1000 = 3 

I log3 27 = -3  

10.000 = 104 

I = 2° 

64 = 16312 

I log25 x = -2 
I In x = --2 

log I I 
t 8 3 

logx+ 1 24 = log3 24 

4 .  

8 .  

12 .  

16 .  

20 . 

24 . 

30. 

34. 

38 . 

42 . 

I log64 4 = 3 
I log 10 1000 = - 3 

I I log1 25 5 = -3 

_I_ = 10-2  
100 

I = e0 
8 1  = 27413 

log ) /2 x = 3 

log4 64 = x 

log3(x - I ) =  2 

log3 x3 = log3 64 
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In Exercises 45-64 evaluate the given expression. 
45 . 31og36 46. l1ogz(2/3) 47 . 
49. log5 5

3 50. log4 4-2 5 1 .  
53. log7 49 54. log7 v7 55. 

57 . In l 58. log4 I 59. 

6 1 .  log 1 0,000 62 . log 0 .001 63 . 

eln 2 
log8 8 112 
log5 5 

l log2 4 
In e2 

48. 
52. 
56. 

60. 

64. 

eln 1 /2 
log64 64 - 113 

In e 
log 1 6  4 

In e- 213 
In Exercises 65-72 sketch the graph of the given function . 

65 . f(x) = log4 x 

x 69. f(x) = In -2 

4.3 
FUNDAMENTAL 
PROPERTIES OF 
LOGARITHMS 

66. f(x) = log 1 12 x 67 . f(x) = log 2x 68. I f(x) = 2 log x 

70. f(x) = In 3x 7 1 .  f(x) = log3(X - l )  72. f(x) = log3(x + I )  

There are three fundamental properties of logarithms that have made them a 
powerful computational aid. 

Property 1 .  1oga(X • y) = 1oga x + 1oga y 

Property 2 .  loga(�) = 1oga x - 1oga y 

Property 3 .  1oga Xn = n 1oga x, n a real number 

These properties can be proved by using equivalent exponential forms.  To prove 
the first property , 1oga(x • y) = 1oga x + 1oga y, we let 

loga x = u and loga y = v 

Then the equivalent exponential forms are 

a" = x and av = y 

Multiplying the left-hand and right-hand sides of these equations , we have 

au . av = x · y 

or 

au + v = x · y 

Substituting au + v for x .  y in loga(X . y) , we have 

1oga(X • y) = lo�(au + v) 
= u + v  since log,, er = x 
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Substituting for u and v, we find that 
log,,(x · y) = log,, x + log,, y 

Properties 2 and 3 can be established in much the same way. 
It is these properties that originally made the study of logarithms worth

while . Note that the more complex operations of multiplication and division are 
converted to addition and subtraction and that exponentiation is converted to 
multiplication. We will first demonstrate these properties, and in the next section 
we will apply them to realistic computational problems. 

EXAMPLE 1 
(a) log10(225 x 478) = log 10 225 + log 10 478 

(b) logs(�;;) = log8 422 - log8 735 
(c) log2(2)5 = 5 log2 2 = 5 · l = 5 

(d) log0( 7) = log,, x + log,, y - log,, z 

PROGRESS CHECK 
Write in terms of simpler logarithmic forms. 
(a) 10&4( 1 .47 x 22. 3) 

ANSWERS 

x - l (b) log,, -Vx 

(a) lo&4 1 .47 + log4 22.3 1 (b) log,,(x - 1 )  - - log,, x 2 

SIMPLIFYING LOGARITHMS The next example illustrates rules that speed the handling of logarithmic 
forms. 

EXAMPLE 2 

W . I 
(x - 1)-2(y + 2)3 . f . I I "th . '" nte og,, Vx m terms o s1mp er ogan ffilC 1orms . 
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SOLUTION 

Slmpllfylng Logarithms 

Skp I .  Rewrite the expression so that each factor Step 1 .  
bas a positive exponent. 

(x - 1 )-2(y + 2)3 
log,, Yx 

(y + 2)3 
= log,, 

(x - 1 )2Yx 
Step 2 .  Apply Property I and Property 2 for multi- Step 2 .  
plication and division of logariduns. Each factor in 

= log,,(y + 2)3 - log,,(x - 1 )2 - log,, Yx 
the numerator will yield a tenn with a plus sign. 
Each factor in the denominator will yield a tenn 
with a minus sign. 

Step 3. Apply Property 3 to simplify. Step 3. 

I 
= 3 log,,(y + 2) - 2 log,,(x - I )  - 2 log,, x 

PROGRESS CHECK 
(2x - 3) "2(y + 2)213 

Simplify log,, z4 
ANSWER 
l 2 2 log.,(2x - 3) + 3 log.,(y + 2) - 4 log., z 

EXAMPLE 3 

If log,, I .  5 = r, loga 2 = s, and log., 5 = t, find the following . 

(a) log., 7 .5 (b) log,, vlo 

SOLUTION 
(a) Since 

then 

7 . 5  = 1 .5  x 5 

log,, 7 .5 = log,,( l .5 x 5) 

= log,, l .5  + log,, 5 Property l 

= r + t Substitution 
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* 

(b) Write this as 
1 

log,,( 10)112 - - log,, 10 
2 

Property 3 

PROGRESS CHECK 

1 . - 2 Jog,,(2 · 5) 

1 - 2 [log,, 2 + Jog,, 5) Property 1 

1 
= -(s + t) Substitution 

2 

If Jog,, 2 = 0.43 and log,, 3 - 0.68, find the following. 

(a) log,, 1 8  (b) log,,/2 
ANSWERS 
(a) 1 .79 

WARNING 
(a) Note that 

(b) 0 . 3 1  

Property I tells u s  that 

log,,(x + y) -:/:- log,, x + log0 y 

log,,(x · y) = log,, x + Jog,, y 
Don't try to apply this property to Jog,,(x + y), which cannot be simplified. 
(b) Note that 

By Property 3,  

Jog,, x" = n log,, x 

We can also apply the properties of logarithms to combine terms involving 
logarithms . 

EXAMPLE 4 
Write as a single logarithm: 

1 
3 log,, x - 2 log,,(x - 1 )  
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CHANGE OF BASE 
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SOLUTION 

3 log., x - 4 1og.,(x - 1 ) = log., x3 - log.,(x - 1 )  112 Property 3 

x3 
= Jog., (x - 1) 112 

x3 
= Jog., Vx-=-1 

PROGRESS CHECK 

Write as a single logarithm: 
l 3[log.,(2x - 1 ) - Jog,,(2x - 5)] + 4 Jog., x 

ANSWER 

WARNING 
(a) Note that 

Property 2 tells us that 

� 
1 * log., x - Jog., y og., Y 

log.,�) = Jog., x - log., y 

Property 2 

Don't try to apply this property to (log., x)/(log., y) , which cannot be simpli
fied. 
(b) The expressions 

log., x + logb x 
and 

log., x - lo� x 
cannot be simphfied. Logarithms with different bases do not readily combine 
except in special cases . 

Sometimes it is convenient to be able to write a logarithm that is given in terms of 
a base a in terms of another base b, that is, to convert loga x to logb x. (As always, 
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I 
Change ol llose  
Formula 

we must require a and b to be positive real numbers other than 1 . ) For example ,  
some calculators can compute Jog x but not I n  x ,  or vice versa. 

To compute logb x given loga x, let y = logb x. The equivalent exponential 
form is then 

&" = x 

Taking logarithms to the base a of both sides of this equation, we have 

loga &" = log0 x 

We now apply the fundamental properties of logarithms developed earlier in this 
section. By Property 3 ,  

Solving for y gives us 

V = 
loga x 

· loga b 

Since y = logb x, we have 

EXAMPLE 5 

- �  logb x 
- 10� b 

A calculator ha a key labeled "log" (for log 10) but doe n't have a key labeled 
"In . " The calculator i used to find that 

Find In 27 . 

SOLUTION 

log 27 = 1 .43 1 4  

log e =  log 2 .7 1 83 = 0.4343 

We use the change of base formula 

JOP . r 
logb x = �  log" b 

with b = e, a =  10 ,  and x = 27.  Then 

)<W 27 
log 27 = In 27 = =-=-e log e 

= I .43 1 4  
= 3 2959 

0.4343 
. 

Note that for any positive number k, the conversion from log k to Jn k 
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involves division by the constant log e = 0.4343 . A calculator that has a "log" 
key can thereby be used efficiently to find natural logarithms. 

PROGRESS CHECK 
Given log 16 = 1 .204 1 and log 5 = 0.6990, find log5 16. 
ANSWER 
1 .7226 

EXERCISE SET 4.3 

In Exercises 1-20 write each expression in terms of simpler logarithmic forms. 

I .  log 10( 1 20 x 36) 2. ( 1 87) log6 39 3 .  log3(34) 4. log3(43) 

5 .  log0(2xy) 6. ln(4.xyz) 7 .  loga(*) 8. In(�) 
9. In x5 I O. log3 y213 I I . loga(x2y3) 1 2 . loga(xy)3 

1 3. logav;y 14. loga Y.ry4 15 .  ln(x2y3z4) 1 6. loga(xy3z2) 

17 .  In( Vxvy) 1 8 .  lnV'ifefz 19. (li) 20. li loga z4 In 112 z 
In Exercises 2 1 -30 log 2 = 0.30, log 3 = 0.47, and log 5 = 0.70. Find the following. 

log 6 22. 2 23. 2 1 .  log -3 

log 1 2  26. 6 27. 25. log -5 
29. log \/7.5 30. log -v3o 
In Exercises 3 1 -44 write each expression as a single logarithm. 

3 1 .  

33 .  

35 .  

37. 

39. 

4 1 .  

43. 

I 2 log x + 2 log y 

1 1 - In x + - In y 3 3 
I 3 
3 loga X + 2 loga y - Z loga z 

1 
Z(log0 x + log0 y) 

I 
3 (2 In x + 4 In y) - 3 In z 

1 
Z loga(X - I )  - 2 loga(X + I )  

I V'0J 3 log0 X - 2 loga(X - I )  + Z log0 X + I 

32. 

34. 

36. 

38. 

40. 

42. 

44. 

log 9 

15  log -2 

3 loga x - 2 loga z 

1 2 - In x - - In y 3 3 

24. 

28. 

2 
3loga X + loga y - 2 log0 z 

2 
3(4 In x - 5 In y) 

1 In x - 2(3 In x + 5 In y) 

log Vs 

log 0 .3 

I 2 log0(x + 2) - Z(log0 y + loga z) 

I 4 ln(x - I )  + 2 ln(x + I )  - 3 In y 
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The key labeled "ln" on a calculator is used to compute In 10 = 2.3026, ln 6 = 1 .7918 ,  and In 3 = 1 .0986. In Exercises 
45-50 use the first value to find the required value. 
45 . In 1 7  = 2 .8332; find log 17  46. In 22 = 3 .09 10; find lo� 22 

48. In 78 = 4 .3567; find lo� 78 
50. In 7 = l .9459; find log3 7 

47. In 1 4 1  = 4.9488; find log3 14 1  
49. In 245 = 5 . 5013 ;  find log 245 

4.4 
COMPUTING WITH 
LOGARITHMS 
(Optional) 

We indicated earlier that logarithms can be used to simplify complex calcula
tions. In this section we win demonstrate the power of logarithms in computa
tional work. 

We will use 10 as the base for OUT computations with logarithms because 10 
is  the base of our number system. We can logarithms to the base I O  common 
logarithms. 

We begin with the observation that any positive real number can be written 
as a product of a number c, I s c < 10, and an integer power of I 0, say HY.  This 
format is often referred to as scientific notation. Here are some examples. 

643 = 6.43 x 102 

754,000 =' 7 .54 x 105 

0.0423 = 4.23 x 10-2 

4629 = 4.629 x 1 03 

1 .76 = l .76 x 100 

0.0000926 = 9.26 x 1 0-s 

Let's begin with the number 643 expx;essed in scientific notation, that is, 

643 = 6.43 x 102 

We next take the logarithm of each side of this equation (to the base 1 0) and then 
apply the properties of logarithms. 

log 643 ;::::; log(6.43 x IC>2) 
;:: Jog 6.43 + fog 10� 

= log 6.43 + 2 log 10 

= log 6.43 + 2 

Property l 
Property 3 

Jog 1 0  = 1 

We can generalize this result dealing with the logarithm of a number that is 
written in scientific notation . 

If x is a positive real number and x = c · HY', then 

log x = log c + k 

The number log c is called the mantissa and the integer k the characteristic of 
the number x. Since 

x = c ·  Ht where l s c < lO 
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and since the function fix) = log x is an increasing function , we see that 
log l 5 log c < log 1 0  

or 
0 s log c < 1 

We conclude that the mantissa is always a number between 0 and l .  
Table I I  in the Tables Appendix can be used to approximate the common 

logarithm of any three-digit number between l .  00 and 9. 99 at intervals of 0. 0 L .  
The next example shows how to proceed. 

EXAMPLE 1 
Find the following. 
(a) log 73.5 (b) log 0.0045 1 .  

SOLUTION 

(a) Since 73.5 = 7 .35 x I 0 1 ,  the characteristic of 73.5 is l .  Using Table l l  in 
the Tables Appendix , we find that log 7.35 is 0.8663 (approximately) . Then 

log 73.5 = log(7.35 x 10 1 ) = log 7.35 + log 10 1  

= 0.8663 + L = 1 . 8663 

(b) Since 0.0045 1 = 4.5 1 x 10-3 ,  the characteristic of 0.0045 1 is -3. From 
Table l l  we have 

log 0.00451 = 0.6542 - 3 
Here we have a positive mantissa and a negative characteristic. For reasons that 
will be clear later, we always leave the answer in this form. 

PROGRESS CHECK 

Find the following. 
(a) log 69,700 (b) log 0.000697 (c) log 0.697 

ANSWERS 

(a) 4.8432 (b) 0.8432 - 4 (c) 0.8432 - l 

WARNING Note that 
log 0.00547 = 0.7380 - 3 

but 
log 0.00547 * -3.7380 

since this is algebraically incorrect. In fact, 0.7380 - 3 = - 2.2620. 
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Table I I in the Tables Appendix can al o be used in the reverse process, that 
is , to find x if log x is known .  Since the entries in the body of Table II are numbers 
between 0 and I ,  we must first write the number log x in the fonn 

Jog x = log c + k 

where log c is the mantissa, 0 s Jog c < 1 ,  and k. the characteristic, is an integer. 
(This is why we insisted in Example l b  that the number be left in the form 
0.6542 - 3 . )  

EXAMPLE 2 
Find x if 
(a) log x = 2 .835 1 

SOLUTION 

(b) log x = -6.6478 

(a) We must write log x in the form 

log x = log c + k. 0 :5 log c < 1 

so 

log x = 2 .835 1 = 0. 835 1 + 2 
'-y----J -

log c k 

We seek the mantissa 0. 835 1 in the body of Table II in the Tables Appendix and 
find that it corresponds to log 6 .84 .  Since the characteristic k = 2, 

x = 6 .84 x 102 = 684 

(b) We have to proceed carefully to ensure that the mantissa is between 0 and I .  
If we add and subtract 7 ,  we have 

log x = (7 - 6.6478) - 7 

= 0.3522 - 7 
'-y----J ...._,__, 
log c k 

We seek the mantissa 0.3522 in the body of Table II in the Tables Appendix and 
find 

0.3522 = log 2 .25 

Since the characteristic k = -7 ,  we have 

x = 2 .25 x 10-7 = 0.000000225 . 

PROGRESS CHECK 
Find x for the following. 
(a) log x = 3 . 8457 (b) log x = 0.6201 - 2 

ANSWERS 
(a) 70 10  (b) 0.04 1 7  (c) 0.00894 

(c) log x = -2.0487 



DATING THE IATEST ICE 
AGE 

Q(t) = Qoe-k' 

0.254Qo = Qoe-0.0001 21 
0.254 = e-0.000121 

In 0.254 = I n  e-0·000121 

- 1 .3704 = -0.0001 2t 

t = 1 1 ,420 
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All organic forms of life contain radioactive carbon 1 4. In 1 947 the chemist Wll· 
lard Libby (who won the Nobel prize in 1 960) found that the percentage of car
bon 1 4  in the atmosphere equals the percentage found in the l iving tissues of all 
organic forms of life. When an organism dies, it stops replacing carbon 14 in its 
living tissues. Yet the carbon 14 continues decaying at the rate of 0.01 2% per 
year. By measuring the amount of carbon 1 4  in the remains of an organism, it is 
possible to estimate fairly accurately when the organism died. 

In the late 1 940s radiocarbon dating was used to date the last ice sheet to 
cover the North American and European continents. Remains of trees in the Two 
Creeks Forest in northern Wisconsin were found to have lost 74.6% of their car
bon 14 content. The remaining carbon 1 4. therefore. was 25.4% of the original 
quantity q0 that was present when the descending ice sheet felled the trees. The 
accompanying computations use the general equation of an exponential decay 
model to find the age t of the wood. Conclusion: The latest ice age occurred 
approximately 1 1 ,420 years before the measurements were taken. 

The following example shows how to use logarithms to simplify computa
tions. 

EXAMPLE 3 
Approximate 478 x 0.0345 by using logarithms . 

SOLUTION 
If 

then 

N = 478 x 0.0345 

log N = log(478 x 0.0345) 
= log 478 + log 0.0345 

Using Table II in the Tables Appendix, we find 

log 478 = 2 .6794 
log 0.0345 = 0.5378 - 2 

Property 1 

log N = 3 .  2 1 72 - 2 Adding the logarithms 
= 1 .2 1 72 = 0 .2 172 + 1 

� ._,..._, 
log c k 

Looking in the body of Table I I ,  we find that the mantissa 0 .2 172 does not 
appear. However, 0 .2 175 does appear and corresponds to log 1 .65 . Thus, 

N = 1 .65 x 10 1 = 16 .5  
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Inexpensive calculators have reduced the importance of logarithms as a 
computational device. Still ,  many calculators cannot, for example, handle 
V'14.2 directly. If you know how to compute with logarithms and if you combine 
this knowledge with a calculator that can handle logarithms, you can enhance the 
power of your calculator. Many additional applications of logarithms occur in 
more advanced mathematics, especia1ly in calculus . 

EXAMPLE 4 

. 
W?A

b . I ' h  Approximate 
(2.3)3 

y usmg ogant ms . 

SOLUTION 
u 

then 

N = \/47.4 
(2 .3)3 

I 
log N = 2 1og 47 .4 - 3 log 2 .3  

I I 21og 47.4 = 2( 1 .6758) = 0.8379 

3 log 2 .3  = 3(0 . 36 1 7) = l .085 1 

log N = 0 .8379 - 1 .085 1 = -0.2472 Subtracting the logarithms 

or 

log N = 0.7528 - I 
.___,,._., ......_,_..., 

log c k 
Adding and subtracting I 

From the body of Table H in the Tables Appendix, we find 0.7528 = log 5 .66, 
so 

N = 5.66 x 10- 1 = 0.566 

PROGRESS CHECK . . . (4.64)312 
Approximate by loganthms. V? .42 x 165 

ANSWER 
0.286 

Problems in compound interest provide us with an opportunity to demon
strate the power of logarithms in computational work. In Section 4 . 1 we showed 
that the amount S available when a principal P is invested at an annual interest 
rate r compounded k times a year is given by 
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S = P( l + i)n 

where i = rlk, and n is the number of conversion periods. 

EXAMPLE 5 

If $ 1000 is left on deposit at an interest rate of 8% per year compounded quar
terly, how much money is in the account at the end of 6 years? 

SOLUTION 

We have P = 1000, r = 0.08, k = 4, and n = 24 (since there are 24 quarters in 6 
years). Thus, 

Then 

s = P( l + ;r = 1000( 1 + 0·�8) 24 

= 1000( 1 + 0.02)24 = 1000( 1 .02)24 

log S = log 1000 + 24 log 1 .02 

= 3 + 24(0.0086) = 3.2064 

From the body of Table II in the Tables Appendix, we find 0.2064 = log 1 .6 1 ,  
so 

s = 1 .6 1  x 1 03 = 1 610  

The account contains $ 16 10  (approximately) at the end of  6 years . 

PROGRESS CHECK 

If $ 1000 is left on deposit at an interest rate of 6% per year compounded semi
annually, approximately how much is in the account at the end of 4 years? 

ANSWER 

$ 1 267 

In Exercises 1 -8 write each number in scientific nolation. 
I .  2725 2. 493 

5. 7 16,000 6. 527 ,600,000 
3. 0.0084 
7. 296.2 

4. 0.0009 14 
8 .  32.767 

In Exercises 9-20 compule the logarilhm by using Table II or Table Ill in the Tables Appendix. 

9. log 3 .56 10. In 3 .2  1 1 .  log 37 .5 12 .  log 85.3 

13. In 4.7 14 .  In 60 1 5 .  log 74 16. log 4230 
17 .  log 48,200 18 .  log 7,890,000 19. log 0.342 20. log 0.00532 
In Exercises 2 1-32 use Table n or Table Ill in lhe Tables Appendix to find x. 
2 1 .  log x = 0.40 14  22. I n  x = -0.5 108 23. In x = 1 .0647 24. log x = 2.7332 
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25 . In x = 2.0669 
29. log x = 0.7832 - 4 

26. log x = 0. 1903 - 2 
30. log x = 0.9320 - 2 

27 . log x = 0.4099 - l 
3 1 . log x = - 1 .6599 

28. 
32. 

log x = 0.7024 - 2 
log x = -3.9004 

In Exercises 33-43 find an approximate answer by using logarithms. 
679 

33. (320)(0.00321 )  34. (8780)(2. 1 3) 35. 32 1 36. 88.3 

37. (3 . 19)4 

V7870 
4 ' - (46.3)4 

38. (42.3)3(7 1 .2)2 

(7 .28)213 
42" -V(87.3)( 1 6.2)4 

44. The period T ( in seconds) of a simple pendulum of 
length L (in feet) is given by the formula 

T = 27T.Jf; 
Using common logarithms, find the approximate val
ue of T if L = 4.72 feet, g = 32.2,  and 7T = 3. 14 .  

45. Use logarithms to find the approximate amount that 
accumulates if $6000 is invested for 8 years in a bank 
paying 7% interest per year compounded quarterly? 

46. Use logarithms to find the approximate sum if $8000 
is invested for 6 years in a bank paying 8% interest per 
year compounded monthly . 

47 . If $ 1 0,000 is invested at 7 .8% interest per year com
pounded semiannually, what sum is available after 5 
years? 

97.2 
(87 .3)2(0. 1 25)3 39. ( 17  .3)3 4-0 .  �(66 .9)4(0.78 ] )2 

(32.870)(0.001 25) 43· ( 1 2.8)024,000) 

48. Which of the following offers will yield a greater 
return: 8% annual interest compounded annually , or 
7 .75% annual interest compounded quarterly? 

49. Which of the following offers will yield a greater 
return: 9% annual interest compounded annually , or 
8.75% annual interest compounded quarterly? 

50. The area of a triangle whose sides are a, b, and c in 
length is given by the formula 

A =  Ys(s - a)(s - b)(s - c) 

where s = i(a + b + c). Use logarithms to find the 
approximate area of a triangle whose sides are 1 2 .86 
feet, 1 3.72 feet, and 20.3 feel. 

4.5 
EXPONENTIAL AND 
LOGARITHMIC 
EQUATIONS 

Some exponential equations, such as 2x = 8, are easily solved. Here is a useful 
approach that will often work on tougher problems .  

• To solve an exponential equation, take logarithms of both sides o f  the equa
tion. 
• To solve a logarithmic equation. form a single logarithm on one side of the 
equation, and then convert the equation to the equivalent exponentiaJ form. 

EXAMPLE 1 
Solve 3lx - 1 = 1 7 .  

SOLUTION 
Taking logarithms to the base l O  of both sides of the equation, we have 
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log 32x - 1 = log 1 7 
(2x - l )log 3 = log 1 7 Property 3 

2x - 1 = !.2gJ2 
log 3 

2x = 1 + !.2&12 
log 3 

x = .! + .!2&.J..1. 
2 2 log 3 

If a numerical value is required, Table II in the Tables Appendix ,  or a calculator, 
can be used to approximate log 1 7 and log 3 .  Also, note that we could have taken 
logarithms to any base in solving this equation. 

PROGRESS CHECK 

Solve 2x + 1 = 3ix - 3 

ANSWER 

log 2 + 3 log 3 
2 log 3 - log 2 

EXAMPLE 2 

Solve log x = 2 + log 2. 

SOLUTION 

If we rewrite the equation in the form 

log x - log 2 = 2 

then we can apply Property 2 to form a single logarithm: 

Now we convert to the equivalent exponential form: 

PROGRESS CHECK 

1 
Solve log x - 2 = - log 3 

ANSWER 

vTc}/3 

� = 1 02 = 100 
2 

x =  200 
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EXAMPLE 3 
Solve log2 x = 3 - log2(x + 2). 

SOLUTION 
Rewriting the equation with a single logarithm, we have 

log2 x + log2(x + 2) = 3 
log2[x(x + 2)] = 3 Why? 

x(x + 2) = 23 = 8 Equivalent exponential form 

x2 + 2x - 8 = 0  
(x - 2)(x + 4) = 0 Factoring 

x = 2 or x = -4 

The "solution" x = -4 must be rejected , since the original equation contains 
log2 x and the domain of j(x) = log., x is the set of positive real numbers. 

PROGRESS CHECK 
Solve log3(x - 8) = 2 - log3 x. 

ANSWER 
x = 9 

EXAMPLE 4 
World population is increasing at an annual rate of 2 .5%. If we assume an expo
nential growth model, in how many years will the population double? 

SOLUTION 
The exponential growth model 

Q(t) = qoe0.02St 

describes the population Q as a function of time t. Since the initial population is 
Q(O) = q0, we seek the time t required for the population to double or become 
2qo. We wish to solve the equation 

for t. We then have 

Q(t) = Zqo = qoeo.02s1 

2q0 = qoeo.02s1 
2 = e0·0251 Dividing by q0 

In 2 = ln eo.o2sr Taking natural logs of both sides 

= 0.025t Since In � = x 

In 2 0.693 1  t = 0.025 = 0.025 = 27 ·7 

or approximately 28 years . 



EXERCISE SET 4.5 
In Exercises 1 -3 1  solve for x. 

I .  5x = 1 8  
5 .  32.x = 46 
9 .  3x- I = 22.x+ l 

1 3 .  4-2.x+ l = 1 2  
1 7 .  e2.x+3 = 20 
2 1 .  logx(3 - 5x) = I 
23. log x + log(x - 3) = I 
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EXAMPLE 5 
A trust fund invests $8000 at an annual interest rate of 8% compounded contin
uously. How long does it take for the initial investment to grow to $ 12,000? 

SOLUTION 

By Equation ( 1 )  of Section 4. 1 ,  

S = Pe' 

We have S = 1 2,000, P = 8000, and r = 0.08, and we must solve for t. 

Thus , 

12 ,000 = 8000e0·08' 

1 2 ,000 = eo.osr 
8000 

eo.os1 - l .S 

Talcing natural logarithms of both sides, we have 

0.08t = In 1 .5 
ID I .5 0.4055 t = -- = --
0.08 0.08 

= 5 .07 

from Table HJ 

It talces approximately 5 .07 years for the initial $8000 to grow to $ 12 ,000. 

2.  2x = 24 3 .  2x- I = 7 4 .  y- I = 1 2  
6. 22.x- 1 = 56 7 .  52.x-S = 564 8 .  33x-2 = 23 . 1  

IO .  42.x- l  = 32.x+ J 1 1 .  2-x = 1 5  1 2 .  rx+2 = 103 
14 .  3-3x+ 2 = 2-x 1 5 .  e" = 1 8  16 .  e"- 1  = 2 .3  
1 8 . e- 3x+ 2  = 40 19 .  log x + log 2 = 3 20. log x - log 3 = 2 

22. log«8 - 2x) = 2 
24. log x + log(x + 2 1 )  = 2 

25. log(3x + l) - log(x - 2) = I 26. log(7x - 2) - log(x - 2) = I 
27. log2 x = 4 - log2(x - 6) 28. log2(x - 4) = 2 - log2 x 

30. ex + e-x 
y = 2 

ex - e-x 
3 1 .  y = --

2
-
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32. Suppose that world population is increasing at an 
annual rate of 2% . If we assume an exponential 
growth model, in how many years will the population 
double? 

33. Suppose that the population of a certain city is increas
ing at an annual rate of 3%. If we assume an expo
nential growth model, in how many years will the 
population triple? 

34. The population P of a certain city t years from now is 
given by 

p = 20,000eo.o51 
How many years from now will the population be 
50,000? 

35 . Potassium 42 has a decay rate of approximately 5 .5% 
per hour. Assuming an exponential decay model , find 
the number of hours it will take for the original quan
tity of potassium 42 to be halved. 

36. Consider an exponential decay model given by 
Q = qoe

-0.41 
where t is in weeks . How many weeks does it take for 
Q to decay to a of its original amount? 

3 7 .  How long does it take an amount of money to double if 
it is invested at a rate of 8% per year compounded 
semiannually? 

38. At what rate of annual interest, compounded semian-

TERMS AND SYMBOLS 
exponential function 

(p. 1 7 1 )  
base (p. 1 7 1 )  
a' (p. 1 7 1 )  
e (p. 1 75) 
exponential growlh model 

KEY IDEAS FOR REVIEW 

(p. 1 76) 
growth constant (p. 1 76) 
exponential decay model 

(p. 1 77) 
decay constant (p. 1 77) 
compound interest (p. 1 78) 

0 An exponential function has a variable in the exponent 
and has a base that is a positive con tant. 

0 The graph of the exponential function f(x) = a', where 
a > O and a *  I ,  
• passes through the points (0, I )  and ( 1 ,  a) for any 

value of x: 
• is increa ing if a > I and decreasing if 0 < a < I .  

0 The domain of the exponential function i the set of all 
real numbers; the range is the set of all positive num
bers. 

nually, should a certain amount of money be invested 
so that it will double in 8 years? 

39. The number N of radios that an assembly line worker 
can assemble daily after t days of training is given 
by 

N = 60 - 60e-0·04' 

After how many days of training does the worker 
assemble 40 radios daily? 

40. The quantity Q (in grams) of a radioactive substance 
that is present after t days of decay is given by 

Q = 400e-k' 

If Q = 300 when t = 3 , find k, the decay rate. 
4 1 .  A person on an assembly line produces P items per 

day after t days of training, where 
P = 400( 1 - e-1 )  

How many days o f  training will i t  take this person to 
be able to produce 300 items per day? 

42. Suppose that the number N of mopeds sold when x 
thousands of dollars are spent on advertising is given 
by 

N = 4000 + 1000 ln(x + 2) 

How much advertising money must be spent to sell 
6000 mopeds? 

Conversion period (p. 1 78) 
continuous compounding 

(p. 1 80) 
logarithmic function 

(p. 1 83) 
log,, x (p. 1 83) 

In x (p. 1 83) 
natural logarithm (p. 1 83) 
common logarithm (p. 1 98) 
scientific notation (p. 198) 
mantissa (p. 198) 
characteristic (p. 1 98) 

0 If a' = a>', then x = y (assuming a >  0, a *  1 ) . 
0 If d' = If for all x * 0, then a = b (a urning a > 0, 

b > O). 
0 Exponential functions play a key role in the following 

important applications: 
• Exponential growth model: Q(t) = q()t*1, k > 0 
• Exponential decay model: Q(t) = qoe-t', k > 0 
• Compound interest: S = P( I + ;r 
• Continuous compounding: S = Pe" 



0 The logarithmic function log., x is the inverse of the 
function er. 

0 The logarithmic form y = log0 x and the exponential 
form x = aY are two ways of expressing the same rela
tionship. In short, logarithms are exponents. Conse
quently, it is always possible to convert from one form 
to the other. 

0 The following identities are useful in simplifying 
expressions and in solving equations. 

a10l!aX = x log., a = l 

log., er = x log., I = 0 

0 The graph of the logarithmic function f(x) = log,, x, 
where x > 0, 
• passes through the points ( I ,  0) and (a, I )  for any 

a > O; 
• is increasing if a > I and decreasing if 0 < a < 1 .  

0 The domain of the logarithmic function is the set of all 

REVIEW EXERCISES 

REVIEW EXERCISES 209 

positive real numbers; the range is the set of all real 
numbers . 

0 If log., x = log., y, then x = y. 

0 If log., x = lo&, x and x =F l ,  then a = b. 

0 The fundamental properties of logarithms are as fol
lows. 

Property I .  log.,(xy) = log0 x + log., y 

Property 2 .  log,,�) = log., x - log., y 

Property 3. log., x" = n log., x 

0 The fundamental properties of logarithms, used in con
junction with tables of logarithms, are a powerful tool in 
perlorming calculations. It is these properties that make 
the study of logarithms worthwhile. 

0 The change of base formula is 

� lo&, x = 
log., b 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 

4 . 1  l .  Sketch the graph of j(x) = (!)"'. Label the point 1 3 .  log3 35 14.  In e- 113 
( - l , Jt- 1 )) .  ( 1 ) 2x 1 1 5 .  log3 -

3 
16. e1n 3 

2.  Solve 2 = 8 .. - for x. 

3 .  Solve (2a + l)" = (3a - l )"  for a. 17. Sketch the graph ofj(x) = log3 x + l .  
4. The sum of $8000 is invested in a certificate pay

ing 1 2% annual interest compounded semiannu
ally. What sum is available at the end of 4 
years? 

4.2 In Exercises 5-8 write each logarithmic form in expo
nential form and vice versa. 

5 .  27 = 9312 

In Exercises 9- 1 2  solve for x. 

9. log.. 1 6  = 4 

10.  

1 1 .  In x = -4 

1 2. log3(x + 1 )  = log3 27 

6. 
I 

log64 8 = 2 
8. 6° = l 

In Exercises 1 3- 16 evaluate the given expression. 

4.3 In Exercises 1 8-21  write the given expression in terms 
of simpler logarithmic forms. 

v'x=1 
1 8 . log., � 

19.  

20. 

2 1 .  

x(2 - x)2 
log., (y + I )112 
ln(x + I )4(y - 1 )2 

log sl/z \j-;+J 
In Exercises 22-25 use the values log 2 = 0.30, 
log 3 = 0.50, and log 7 = 0.85 to evaluate the given 
expression. 

22. 

24. 

log 14 

log V6 
23. log 3.5 

25 . log 0.7 

In Exercises 26-29 write the given expression as a sin
gle logarithm. 
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1 I 
26. 3 log,, x - 2 log,, y 

4 
27. 3!1o g .x  + log(x - I )) 

28. In 3x + 2( In y - � In z) 
3 

29. 2 log,,(x + 2) - 2 log,,(x + 1 )  

ln Exercises 30 and 3 1  use the values log 32 = 1 .  5 ,  log 
8 = 0.9, and log 5 = 0.7 to find the requested value. 

30. log8 32 3 1 .  logs 32 

4.4 In Exercises 32-35 write the given number in scientific 
notation. 

32. 476.5 

34. 26,475 

PROGRESS TEST 4A 

33. 0.098 

35. 77 .67 

1 .  Sketch the graph of j{x) = 2x + 1 • Label the point 
( l , j{ I )) .  

2 .  Solve or = m2x + I 

In Problems 3 and 4 convert from logarithmic form to expo
nential form or vice versa. 

l 
3. log3 9 = -2 4. 64 = 16312 

In Problems 5 and 6 solve for x.  

5 .  lo& 27  = 3 6. lo&6G
6
) = 3x + 1 

In Problems 7 and 8 evaluate the given expression. 
7. In e512 8. Jogs Vs 

In Problems 9 and 1 0  write the given expression in terms of 
simpler logarithmic forms. 

9 loo. £.. 1 0  I x2V2Y"=l . ""' y2z 
. og 

y3 

In Problems 1 1  and 1 2  use the values log 2 .5  = 0.4 and 
log 2 = 0.3 to evaluate the given expression. 
1 1 .  log 5 1 2 .  log 2v'2 

In Problems 1 3  and 14 write the given expression as a single 
logarithm. 

PROGRESS TEST 48 
1 .  Sketch the graph of fix) = ot - I . Label the 

point (0, j{O)). 

In Exercises 36-38 use logarithms to calculate the val
ue of the given expression. 

36. (0.765)(32.4)2 37. V62.3 
38 

2. 1 
. 

(32.5)312 

39. A substance is known to have a decay rate of 6% 
per hour. Approximately how many hours are 
required for the remaining quantity to be half of 
the original quantity? 

4.5 In Exercises 40-42 solve for x. 

40. 2lx- l = 14  

4 1 .  2 log x - log 5 = 3 

42. log(2x - I ) =  2 + log(x - 2) 

1 3. 2 log x - 3 log(y + l )  

2 
14 .  JClog,,(x + 3) - log,,(x - 3)] 

In Problems 15 and 16 write the given number in scientific 
notation. 
1 5 .  0.000273 1 6. 5.972 

In Problem 17 and 1 8  use logarithms to evaluate the given 
expression. 

17 
72.9 

. 
(39.4)2 1 8 .  �0.01 76 

19 .  The number of  bacteria in a culture i s  de cribed by the 
exponential growth model 

Q(r) = qoeo.021 
Approximately how many hours are required for the 
number of bacteria to double? 

In Problems 20 and 2 1  solve for x. 

20. log x - log 2 = 2 

2 1 .  I0&4(x - 3) = l - log4 x 

2.  Solve (a + 3Y = (2a - 5)" for a. 



In Problems 3 and 4 convert from logarithmic form to expo
nential form and vice versa. 

3 .  I --- = IO 3 
1000 4. 

In Problems 5 and 6 solve for x. 

log3 I = 0 

5 .  log2(x - I ) = - I  6. logix 27 = log3 27 

In Problems 7 and 8 evaluate the given expression. 
7. log3 3 10 8. e1n 4 

In Problems 9 and 1 0  write the given expression in terms of 
simpler logarithmic forms. 
9. log,,(x - l )(y + 3)514 10 .  In v;y Th 

In Problems 1 1 and 1 2  use the values log 2 .5 = 0.4, log 2 = 
0 .3 ,  and log 6 = 0. 75 to evaluate the given expression . 
1 1 .  log 7 . 5  1 2 .  log 36 

1 3 . 

14 .  

3 2 I - ln(x - I )  + - In y - - In z 5 5 5 

log � - log l'. 
y x 

In Problems 1 5  and 1 6  write the given number in scientific 
notation . 
1 5 .  22,684,321 16 .  0.297 
In Problems 1 7  and 1 8  use logarithms to evaluate the given 
expression. 

1 7 .  (0.295)(3 1 . 7)3 1 8 .  (3 .75)2(747) 
1 9 .  Suppose that $500 i s  invested i n  a certificate at an 

annual interest rate of 1 2% compounded monthly. 
What is the value of the investment after 6 months? 

In Problems 20 and 2 1  solve for x. 
20. logx(x + 6) = 2 

In Problems 1 3  and 1 4  write the given expression as a single 2 1  . log(x _ 9) = I _ log x 
logarithm. 



5.0 
REVIEW OF 
GEOMETRY 

THE TRIGONOMETRIC 
FUNCTIONS 

The word trigonometry derives from the Greek , meaning "measurement of tri
angles . ' '  The conventional approach to the subject matter of trigonometry deals 
with relationships among the sides and angles of a triangle, reflecting the impor
tant applications of trigonometry in such fields as navigation and surveying. 

The modem approach to trigonometry emphasizes the function concept that 
was introduced in Chapter 3 .  This has become the accepted approach since it 
demonstrates the unifying influence of the function concept. 

In this chapter we will define this important class of functions and will 
discuss their fundamental properties and graphs. We will devote the next chapter 
to the study of triangles and their applications. 

We need to recall various facts about the circle from plane geometry . A line 
segment joining the center of a circle to any point on the circle is called a radius. 
Since every point on the circle is the same distance from the center, the radii of a 
circle are all equal . Thus, in Figure I ,  OP = OQ. A chord of a circle is a line 

FIGURE 1 

PAGE 213 
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c 

D 
FIGURE 2 

5.1 
ANGLES AND THEIR 
MEASUREMENT 

DEFINffiON OF AN ANGLE 

segment joining any two points on the circle; a diameter of a circle is a chord that 
passes through the center of the circle. Note that the length of a diameter is twice 
that of a radius. 

The circumference C of a circle is the distance around the circle and is 
given by 

C = 21Tr 
where r is the radius of the circle . The constant 1T is then seen to be the ratio of the 
circumference of a circle to the length of its diameter and has an approximate 
value of 3. 1 4 1 59. The area A of a circle of radius r is given by 

A = 1Tr2 
An arc of a circle is simply a part of a circle. The arc AB of Figure 2 consists of 
the two endpoints A and B and the set of all points on the circle that are between A 

and B and are hown in color. 
A central angle has its vertex at the center of the circle, and its sides are 

radii of the circle. We define the measure of a central angle to be the same as that 
of the arc it intercepts. Thus, in Figure 2, the measurement of LAOB and AB are 
the same. We can then show that equal arcs determine or subtend equal chords. If 
arc AB= arc CD in Figure 2, then, by definition, .UOB = <¥:.COD. Since AO = 

BO = CO = DO are all radii, it follows that triangles AOB and COD are con
gruent. Hence, CD = AB .  The converse can be proven in a similar manner. 
Thus, 

Equal arcs determine equal chords. 
Equal chords determine equal arcs. 

In geometry you frequently dealt with angles formed by the sides of a triangle. In 
trigonometry we need to introduce a more generaJ concept of angle. The angles 
we use will be much less restricted; not on.ly are they uruimited in magnitude, but 
they can be either positive or negative as well .  

An angle i s  the geometric shape formed by two rays or  half-lines with a 
common endpoint. For our purposes, it is convenient to think of an angle as the 
result of a rotation of a ray about its endpoint. In Figure 3 the initial side is 
rotated about its endpoint at 0 until it coincides with the terminal side to fonn the 
angle a .  
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We will frequently place an angle on a rectangular coordinate system in 
standard position so that the initial side coincides with tne positive x-axis and 
the rotation occurs about the endpoint at the origin. In Figure 4a the angle a 
results from a rotation in the counterclockwise direction, and we say that a is a 
positive angle. In Figure 4b the ray has been rotated in a clockwise direction to 
form the angle {3, and we say that {3 is a negative angle. 

y y 

I nitial side 
Initial side x x 

(a) (b) 
AGURE 4 

If an angle is in standard position and its terminal side coincides with a 
coordinate axis, the angle is called a quadrantaJ angle; otherwise, the angle is 
said to lie in the same quadrant as its terminal side. Figure 5 displays an angle in 
each of the four quadrants. Note that the quadrant designation depends only upon 
the quadrant in which the terminal side l ies and not upon the direction of rota
tion. 

y y 

x x x x 

FIGURE 5 
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THE UNIT CIRCLE 

FIGURE 6 

ANGULAR MEASUREMENT: 
DEGREES AND RADIANS 

Degree Measure of an 
Angle 

Before we talk about angle measurement, it is helpful to define the unit circle as a 
circle of radius one whose center is at the. origin of a rectangular coordinate 
system (Figure 6a). A point P(x,y) is on the unit circle if and only if the distance 
OP = l .  Using the distance formula, 

OP = Y(x - 0)2 + (y - 0)2 = 1 
Squaring both sides, we conclude 

The equation of the unit circle is 

y 

A ( l ,  0) 
0 x 

(a) 

x2 + y2 = I 

(_.!. _-:fl.) 2' 2 

y 

(b) 

A ( I ,  0) 
x 

Using the methods of Section 3. 1 ,  we find that the unit circle is symmetric 
with respect to the x-axis , the y-axis, and the origin. These symmetries will prove 
to be very useful. For example, you can easily verify that the point ( 1 /2, V3/2) 
lies on the unit circle. Figure 6b shows the coordinates of various other points that 
can be obtained from the symmetries of the circle. (See Exercises 61 and 62. ) 

ln geometry, you used degree measure of an angle. This measure i s the result of 
an arbitrary (but convenient) selection made thousands of years ago. 

An angle formed by one complete revolution of an initial side back to its starting 
position has a measure of 360 degrees (written 360°) . 
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Since 

360° = l revolution 

it follows that the right angle obtained by one-fourth of a complete revolution has 
a measure of 90°. An angle between 0° and 90° is called an acute angle; an angle 
between 90° and 1 80° is called an obtuse angle. 

There is a econd unit of angular measure, called radian measure, that is 
often u ed in mathematics and has certain advantages over degree measure. To 
introduce this unit, we place an angle (J in standard position and include a unit 
circle as in Figure 7. The terminal side of the angle (J intersects the unit circle at 
the point P and the arc AP is of length t. We then say that (J is an angle or t 
radians. We are, in effect ,  measuring the angle (J by the length of the arc that (J 
intercepts on the unit circle .  (We wilI later show that it is possible to find the 
radian measure of an angle by using any circle . ) 

The radian measure of an angle () is the length t of the arc that () intercepts on the 
unit circle. We write 

() = t radians or () = t 

If the arc is measured in the counterclockwise direction, then t is positive. If the 
arc is measured in the clockwise direction, then t is negative . 

y 

A ( I ,  0) 

x 

FIGURE 7 

Since we will be dealing with arcs on a unit circle, it is convenient to 
establish a standard notation and terminology. The letter A will always denote the 
point A( l ,  0) as in Figure 7 .  If the arc AP on the unit circle is of length t, we wiU 
say that P is the unit circl.! point corresponding to t or determined by t. 
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ANGLE CONVERSION We can obtain a better grasp of radian measure by developing a simple relation
ship between the degree measure and the radian measure of an angle. An angle in 
standard position that traces a complete revolution in the counterclockwise direc
tion has, by definition, a measure of 360°. This angle intercepts an arc on the unit 
circle that corresponds to its circumference and the arc must therefore be of length 
C = 2Trr = 27r since r = 1 .  Thus, 27r radians = 360° or 

TT radians = 1 80° 

This relationship enables us to transfonn angular measure from radians to degrees 
and vice versa. From the equation just given we obtain 

( 1 80) 0 
I radian = -:;;- and lo 7T 

d. = 1 80 ra 1ans 

EXAMPLE 1 

Convert 1 20° to radian measure . 

SOLUTION 

Since 1° = 7T/ l 80 radians , we must have 

PROGRESS CHECK 

1 20° = 1 20(...!!....) = 
21T radians 1 80 3 

Convert the following from degree to radian measure . 
(a) -210° (b) 390° 

ANSWERS 

( ) 71T d. a -6 ra 1ans 

EXAMPLE 2 

(b) 
1 37T d. 6 ra 1ans 

Convert 27T/3 radians to degree measure. 

SOLUTION 
Since 1 radian = 1 80/7T degrees, we have 

PROGRESS CHECK 

21T 
d. 21T( 1 80) 0 1 200 3 ra 1ans = 3 -:;;- = 

Convert the following from radian measure to degrees. 

( ) 97T d. a T ra 1ans (b) 41T d. -3 ra 1ans 
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ANSWERS 
(a) 8 10° (b) -240° 

There are certain angles that we will use frequently in the examples and 
exercises throughout this chapter. It wiU prove heJpful if you take the time now to 
verify the conversions shown in Table l ;  you win then see how easy it is to switch 
between degree and radian measure for these values. Figure 8 displays some 
angles in standard position and shows both the degree measure and the radian 
measure. 

TABLE 1 

Radians 1Tl6 7r/4 7r/3 7r/2 7T 3'TT/2 2'1T 

Degrees 30° 45° 60° 900 1 80° 270° 360° 

y y y 

p 

(a) 8 = 60° = } radians 

FIGURE 8 

(b ) 8 = 1 3 5° = !7T radians (c) 8 = 270° = 17T radians 

EXAMPLE 3 
If the angle 8 is in standard position, determine the quadrant in which the angle 
lies . · 

(a) 8 :;;: 200° (b) 8 :;;: 77r/4 radians 

SOLUTION 
Figure 9 shows the quadrantal angles in standard position . 
(a) Since 8 = 200° is between 1 80° and 270°, 8 lies in quadrant Ill. 
(b) Since 0 = 7 7T/4 radians is between 3 7T/2 and 27T, 8 l ies in quadrant IV.  
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COTERMINAL ANGLES 

y 

90° (�) 

1 80° (7T) 360° (27T) 

x 

FIGURE 9 

Figure l Oa displays an angle of 30° in standard position. Since a revolution of 
360° returns to the same position, different angles in standard position may have 
the same terminal side. For instance, the angles of 30° and 390° shown in Figure 
l Oa have the same terminal side and are said to be coterminal angles. Similarly, 
the angles of 45° and - 3 1 5° shown in Figure l Ob are coterminal angles. 

y 

y 

x 
-3 1 5° 

(a) (b) 

FIGURE 10 

It is intuitively clear that any number of revolutions in either direction will 
return to the same terminal side. Since a revolution requires 360°, or 27T radians, 
we can write this result in a mathematical shorthand as follows: 



Cotermlnal Angles 

THE CENTRAL 
ANGLE FORMULA 
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An angle () in standard position is cotenninal with every angle of the form 

() + 360°n (degree measure) 

or 

() + 27Tn (radian measure) 

where n is an integer. 

EXAMPLE 4 

Find a first quadrant angle that is coterminal with an angle of 
(a) 4 1 0° (b)-57T/3 radians 

SOLUTION 

(a) With () =  4 1 0° and n = - 1 ,  we have 

() + 360°n = 4 1 0° - 360° = 50° 

(b) With () = -57T/3 radians and n = 1 ,  we have 

() + 27Tn = - 57T + 27T = 2! radians 3 . 3 

PROGRESS CHECK 

Show that each pair of angles is cotenninal . 
(a) - 265° and 95° (b) 227T/3 and 4'7T/3 radians 

The radian measure of an angle can be found by using a circle other tllan a unit 
circle. In Figure 1 1  the central angle () subtends an arc of length t on the unit circle 
and an arc of length s on a circle of radius r. By definition, (} = t. Since the ratio 

y 

B(r, 0) x 

FIGURE 11 
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Central Angle Formula 

Radian Measure 

* 

of the arcs is the same as the ratio of the radii, we have 

or 

t l 
s r 

s 
t = 

r 

Since () = t, we have the following useful result. 

If a central angle () subtends an arc of length s on a circle of radius r, then the 
radian measure of () js given by 

() =  � 
r 

and the length of the arc s is given by 

s = r(} 

Note that when s = r, (} = I radian. This leads to an alternative definition of 
radian measure . 

An angle of one radian subtends an arc on a circle whose length equals the 
length of the radius of the circle. 

WARNING The formula 

() = � 
r 

can only be applied if the angle () is in radian measure. 

EXAMPLE 5 

A central angle () subtends an arc of length 1 2  inches on a circle whose radius is 6 
inches. Find the radian measure of the central angle. 

SOLUTION 

We have s =  1 2  and r = 6, so that 

() s 1 2  2 d' = - = - = ra ians r 6 

In Example 5 we used the formula () = sir to find that the radian measure of 
() is given by 

() = 
1 2  inches

= 2 6 inches 
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This shows that the radian measure of an angle is dimensionless. We may there
fore treat the radian measure of an angle as a real number. We will make use of 
this result throughout the next SP.Ction. 

EXAMPLE 6 
A designer has to place the word ALMONDS on a can using equally spaced 
letters (see Figure 12a). For good visibility, the letters must cover a sector of the 
circle having a 90° central angle . If the base of the can is a circle of radius 2 inches 
(see Figure 12b), what is the maximum width of each letter? 

(a) 
FIGURE 12 

SOLUTION 
Since (} = 90° = 7T/2 radians, the arc has length 

7T s = r8 = -(2) = 1T 2 

s 

(b) 

Each of the seven letters can occupy l / 7 of this arc , or 7T/ 7 inches, which is about 
0.45 inches. 

If the angle 8 is in standard position, determine the quadrant in which the angle lies. 
I .  (} = 3 1 3° 2. (} = 1 82° 3. (} = 14° 
5. (} = 14 1 °  6. (} = - 1 67° 7. (} = -345° 
9. (} = 6 1 8° 1 0. (} = -428° 1 1 . (} = - 195° 

1 3 .  (} = 7; - 31T 1 5 .  -81T 14 .  (J = -- (} = -5 3 
-� 

1 7 .  (} =  1;1T 1 8 .  (J = 
91T 
5 

4 .  (} = 227° 
8 .  (} = 555° 

1 2. (J = 730° 

16 .  (} = 31T 
8 
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[fill -

Convert from degree measure to radian measure. 
19 .  30° 20. 200° 2 1 .  - 1 50° 22. -330° 
23 . 75° 24. 570° 25. -450° 26. -570° 
27. 1 35° 28. 405° 29. 1 20° 30. 90° 
3 1 .  45 .22° w�I 32. 196 .54° 

"J - -

Convert from radian measure to degree measure. 

33. 1T 34. 1T 35. 31T 36 .  51T 
4 3 2 6 

37. -1T  38. -71T 39. 41T 40. 31T 2 1 2  3 

4 1 .  51T 42. -51T 43. -51T 91T 
2 3 44. 2 

45 . 1 .72 �:,l 46. 24.98 'j -

For each pair of angles, write T if they are coterminal and F if they are not coterminal. 

47. 30°, 390° 48. 50°, -3 10° 

5 1 .  1T 71T 52. -60°, 760° 2 '  2 
53. If a central angle (J subtends an arc of length 4 centi

meters on a circle of radius 7 centimeters , find the 
approximate measure of (J in radians and in degrees. 

54. Find the length of an arc subtended by a central angle 
of 1Tl5 radians on a circle of radius 6 inches. 

55. Find the radius of a circle if a central angle of 27r/3 
radians subtends an arc of 4 meters. 

56. In a circle of radius 150 centimeters, what is the length 
of an arc subtended by a central angle of 45°? 

57. A subcompact car uses a tire whose radius is 1 3  
inches. How far has the car moved when the tire com
pletes one rotation? How many rotations are complet
ed when the tire has traveled one mile? (Assume 1T = 

3 . 14 . )  
58. A builder intends placing 7 equally spaced homes on a 

semicircular plot as shown in the accompanying fig-

49. 45°, -45° 50. 1200 141T 
' 3 

ure. If the circle has a diameter of 400 feet, what is the 
distance between any two adjacent homes? (Use 1T = 

3 . 14 . )  
59. How many ribs are there in an umbrella if the length of 

each rib is 1 .5 feet and the arc between two adjacent 
ribs measures 31TI 10  feet? 

60. A microcomputer accepts both 5Hnch and 8-inch 
floppy disks. If both disks are divided into 8 sectors, 
find the ratio of the arc length of a sector of the 8-inch 
disk to the arc length of a sector of the Sa-inch disk. 

6 1 . If the point (a, b) is on the unit circle, show that 
(a, -b), (-a, b), and ( -a, -b) also lie on the unit 
circle. 

62. If the point (a, b) is on the unit circle, show that (b, a), 
(b, -a), ( -b, a), and ( -b, -a) also lie on the unit 
circle. 
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Figure 1 3a displays an angle () whose radian measure is t. Focusing on the unit 
ci.rcle point P determined by t, we assume the coordinates of P to be (x, y) . There 
are six trigonometric f:unctions that are defined by the coordinates of the point 
P. In this section we will discuss the sine, cosine, and tangent functions, which 
are written as sin, cos, and tan, respectively. The remaining three functions are 
reciprocals of these and will be described in Section 5 .5 .  We now define the fir t 
three trigonometric functions . 

If P(x, y) is the unit circle point determined by the real number t, then 

sin t = y 

cos t =  x 

tan t = l  x =F O  
x '  

y y 

A ( I , 0) 

x 

(a) (b) 

A ( I , 0) 

x 

FIGURE 13 

The trigonometric functions are seen to be functions of a real number t whose 
values are determined by the coordinates of the unit circle point P corresponding 
to t as in Figure l 3b. 

It is convenient to speak of the trigonometric functions of an angle. To do 
so, we simply associate the angle with its radian measure. 

If an angle (J has a radian measure of t, then 

sin () = sin t 
cos () = cos t 
tan () = tan t 
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y 

I 
pl_l - -If) t 4, 4 
FIGURE 14 

From here on we will use Greek letters (such as a, {3, -y, and ()) to represent 
angles and Roman letters (such as s, t, u. and v) to represent arc lengths or real 
numbers. In higher mathematics as well as in engineering and computer science, 
it is generaUy more convenient to deal with sine, cosine, and tangent as functions 
of real numbers, and we will stress this approach throughout the remainder of this 
chapter. We wilJ work with angular measure whenever it is convenient and to 
make sure that you are comfortable with both approaches. 

We stated earlier that an angle in standard position is said to lie in the same 
quadrant as its terminal side. Similarly, if a real number t determines the unit 
circle point P as shown in Figure 1 3 ,  we say that t lies in the same quadrant as the 
point P. 

EXAMPLE 1 
The coordinates of the unit circle point P determined by the real number t are 
( - 314, - V?/4) .  Determine 
(a) the quadrant in which t lies 
(b) sin t, cos t, and tan t 

SOLUTION 
(The student is urged to first verify that the coordinates (-3/4, -\/7/4) satisfy 
the equation of the unit c ircle . )  
(a) The point P is sketched i n  Figure 14 and lies i n  the third quadrant .  Then, by 
definition, t lies in the third quadrant .  

A ( 1 ,  0) (b) From the definitions of the trigonometric functions we have 

x . V7 Sill t = y = - -

4 

3 cos l = x = - 4  
tan t = l'. =  V7 x 3 

DOMAIN AND RANGE From the definitions ,  we see immediately that the domain of the sine and cosine 
functions is the set of all real numbers . The tangent function, however, is not 
defined when x = 0. The unit circle points where x = 0 correspond to arcs of 
length t = TTl2 and t = 3TTl2 . From our earlier work with coterminal angles we see 
that x = 0 whenever 

'TT 37T t = 2 + 2TTn and t = 2 + 2TTn 

or, more compactly, when t = TTl2 + TTn for all integers n.  We conclude that the 
tangent function is not defined for these values. 
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Domain of the sin t: all real values of t 
Trigonometric Functions cos t: all real values of t 

Range of Sine and 
Cosine 

PROPERTIES OF THE 
TRIGONOMETRIC 
FUNCTIONS 

Signs 

ll 
sin t > 0 
cos t <  0 
tan t < O  

Ill 
sin t < O  
cos t <  0 
tan t >  0 

FIGURE 15 

7T tan t: all real values of t such that t =f:. 2 + 7Tn 

Turning again to the definitions, we note that the values of sin t and cos t 
correspond to coordinates of points on the unit circle . Since the coordinates of a 
point on the unit circle cannot exceed 1 in absolute value, we must have . 

lsin ti :s I and lcos ti :s I 

The range of the sine and cosine functions is given by 

- I :s sin t ::s I - 1  ::s cos r :s  I 

We will show in Section 5 .  4 that the range of the tangent function consists of the 
set of all real numbers. The student is invited to use the definition of tan t to show 
that this is a reasonable conclusion. 

In mathematics, whenever we define a new quantity or function ,  we then proceed 
to investigate its properties. We will spend the rest of this section detennining 
some simple properties of the trigonometric functions. 

The signs of the trigonometric functions in each of the four quadrants are 
shown in Figure 1 5a. These follow immediately from the definitions. For exam
ple, since both the x- and y-coordinates of any point in the third quadrant are 
negative, the sine and cosine functions both have negative values if t is in the third 
quadrant. The tangent will be positive in the third quadrant since it is the ratio ylx 
of two negative values. 

y y 
I I  I 

sin t > 0 sin t >  0 
cos t >  0 sin t > O cos r >  0 
tan t >  0 tan t > O  

x x 
IV Ill IV 

sin t < 0 
cos t >  0 tan t >  0 cos t > O  
tan t < 0 

( a) (b) 
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Negative Arguments 

FIGUllE 16 

y 

P(x, y) 

P' (x , -y) 

Figure I 5b shows where each of the trigonometric functions is positive. If  
you remember this, you can then determine by inference the quadrants in which 
the trigonometric functions are negative. 

EXAMPLE 2 
Determine the quadrant in which t lies in each of the following. 
(a) sin t > 0 and tan t < 0 (b) sin t < 0 and cos t > 0 

SOLUTION 
(a) sin t > 0 in quadrants I and II ;  tan t < 0 in quadrants I I  and IV. Both 
conditions therefore apply only in quadrant I I .  
(b)  sin t < 0 in  quadrants III and IV;  cos t > 0 in quadrants I and IV. Both 
conditions therefore apply only in quadrant IV. 

PROGRESS CHECK 

Determine the quadrant in which t lies in each of the following. 
(a) cos / < 0 and tan r > 0 (b) cos t < 0 and sin t > 0 

ANSWERS 

(a) quadrant III (b) quadrant I I  

We can use the symmetries of the unit circle to find sin( - 1) and cos( -1) .  In 
Figure 16 we see that arcs of lengths t and -r correspond to points P and P' ,  for 
which the x-coordinates are the same and the y-coordinates are opposite in sign. 
Thus 

sin t = y and sin(- 1) = -y 

or sin( -t) = -sin t. Similarly, 

In summary, 

cos t =  x = cos( -t) and tan( -t) = _!'. = - tan / 
x 

sin( -t) = -sin t 

cos( -t) = cos t 

tan( -t) = -tan t 

where t is any real number in the domain of the function. 

EXAMPLE 3 
(a) Given sin( 1!'/6) = l /2,  find sin( - 1!'/6) . 
(b) Given cos 45° = V2./z, find cos( -45°). 



Symmetries of the Circle 
(Optional) 

FIGURE 17 
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SOLUTION 

(a) sin (-�) = -sin(�) = -� 
\/2 (b) cos( -45°) = cos(45°) = 2 

PROGRESS CHECK 

Given tan(7T/4) = l ,  find tan( -45°). 

ANSWER 

- I 

The following theorem can be combined with earlier results to extend our ability 
to find values of the trigonometric functions . 

If P(a, b) and P'(a ' ,  b') are the unit circle points corre ponding to the real 
numbers t and t ± 7T/2, re pectively, then either 

(i) (a' , b' )  = ( -b, a), or 

(ii) (a ' ,  b') = (b, -a). 

The proof is outlined in Exercises 38-40. We will use this result in the next 
example. 

EXAMPLE 4 

In Figure 1 7  the unit circle point P( 1/4, vTS/4) corresponds to the real number t . 
Find 

(a) sin(r + ¥) (b) co (1 - ¥) 
SOLUTION 

In Figure 1 7 ,  unit circle points P 1 and P2 correspond to t + 7T/2 and to t - 7Tl2, 
respectively. From the symmetries of the circle, their coordinates are 

Then 

'1T ( vT5 I ) 1T (V15 I ) t + -:r P1 -4. 4 r - -:r P2 -
4
- , -4 

. ( 7T) I ( 7T) vT5 sm t + 2 = 4 and cos t - 2 = -
4
-

PROGRESS CHECK 

If the unit circle point P(3/5 , -415) corresponds to the real number t, find 

(a) sin (r - ¥) (b) cos(r + ¥) (c) cos(-1 + ¥) 
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IDENTITIES 

ANSWERS 
3 
5 

(a) (b) 
4 
5 

(c) 4 
5 

Trigonometry often involves the use of identities, that is, equations that are true 
for all values in the domain of the variable . Identities are usefu] in simplifying 
equations and in providing aJtemative fonns for computations. We can now 
establish two fundamentaJ identities of trigonometry. 

Since the coordinates (x, y) of every point on the unit circle satisfy the 
equation x2 + y2 = l ,  we may substitute x = cos t and y = sin 1 to obtain 

(cos t)2 + (sin t)2 = I 

Expressions of the form (sin t)" occur so frequentJy that a special notation is 
used: 

sin" t = (sin t)" when n :/=- - l 

Using this notation and reordering the tenns, the identity becomes 

sin2 t + cos2 t = l 

Of course, we may also use this identity in the alternative forms 

sin2 t = I - cos2 t 
cos2 t = l - sin2 t 

Since tan t = ylx, x * 0, we may substitute sin t = y and cos t = x to 
obtain 

sin t tan t = -cos t 

for all values of t in the domain of the tangent function. 

EXAMPLE 5 

If cos t =  315 and t is in quadrant IV, find sin t and tan t. 

SOLUTION 
Using the identity sin2 t + cos2 t = 1 ,  we have 

si.n2 t + (�) 2 = l 

sin2 t = l - 1._ = 1 6  
25 25 

. 4 
SIR I =  ± S 
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Since t is in quadrant IV, sin t must be negative so that sin t = -415. Then 

PROGRESS CHECK 

4 
sin t 5 4 tan r = -- = - ;::; - -cos t 3 3 

5 

If sin t = l 2/ l  3 and t is in quadrant II, find the following . 
(a) cos t (b) tan t 

ANSWERS 

(a) 5 
1 3  

(b) 1 2  
5 

WARNING Don't confuse 

We have defined sin2 t by 

sin t2 and si.n2 t 

sin2 t = (sin 1)2 

which indicates that we find sin t and th.en square the resu]t. But sin t2 indicates 
that we are to square t and then find the sine of the argument t2•  

EXAMPLE 6 

Show that 1 + tan2 x ;::; l /cos2 x. 

SOLUTION 

We will use the trigonometric identities to transform the left-hand side of the 
equation into the right-hand side. Since tan x = sin x/cos x, we have 

. 2 1 + 2 I + SIR x tan x =  --2-cos x 

cos2 x + sin2 x 
cos2 x 

Since cos2 x + sin2 x = 1 ,  

PROGRESS CHECK 

l 
1 + tan2 x ;::; --2-cos x 

Use identities to transform the expression (tan t)(cos t) + sin t to 2 sin t. 
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* WARNING You cannot verify an identity by checking to see that it "works" for 
one or more values of the variable as these values could tum out to be solutions to 
a conditional equation (see Section 2 .  1 ) . You must show tnat an equation is true 
for all values in the domain of its variable to prove that it is an identity . 

EXERCISE SET 5.2 

In Exercises 1 -8 detennine the quadrant in which t or (} lies. 
4rr rr I .  t = 3 2. t = -6 3 .  (} = 150° 

5. (} =  - 190° 

4. (} = 2 15° 

In Exercises 9- 1 6  the unit circle point P corresponds to the real number r. Find sin t, cos t, and tan t . 

9. P( -�. �) 10 .  P( -�. �) 1 1 . P(� . -�) 1 2 . P( -�. -�) 
P(- v'2 v'2) 1 3 .  2 ' 2 P(v'2 

- v'2) 14. 2 • 2 P(VtS _!) 1 5 .  4 , 4 
In Exercises 17-22 find the quadrant in which t lies if the following conditions hold. 
17 .  sin t > 0 and cos t < 0 
19 .  cos t < 0 and tan t > 0 
2 1 .  sin t < 0 and cos t < 0 

18 .  sin r < 0 and tan t > 0 
20. tan r < 0 and sin t > 0 
22. tan t < 0 and cos t < 0 

P(! VtS) 16 .  4 ' 4 

In Exercises 23-34 find the value of the trigonometric function when t is replaced by -1 .  [For example, given 
sin t =  j, find sin (-t)] .  

3 23. tan t = 2 
. v'2 27. sm t =  T 

24. 

28. 

sin t = I 

\/3 cos t = T 
3 1 .  tan r = \/3 32. sin t = � 
35 . If the unit circle point (3/5, 415) corresponds to the real 

number t, use the symmetries of the circle to find the 
coordinates of the unit circle point corresponding to 
the real number 
(a) t + rr (b) t - rr/2 
(c) -1  (d) - 1  - rr 

36. If the unit circle point ( -4/5 , -315) corresponds to the 
real number t, use the symmetries of the circle to find 
the coordinates of the unit circle point corresponding 
to the real number 
(a) t - rr (b) t + rr/2 
(c) -1 (d) -t + rr 

37. The unit circle point P(a, b) corresponding to the real 
number t lies in quadrant II. Find the values of 
(a) sin(t + rr/2) (b) cos(t + rr/2) 

25. 

29. 

33. 

tan t = I 26. cos t =  - I 

\/3 30. I cos t =  -2 sin t = - -2 
\/3 34. \/3 sin 1 = - tan 1 = 3 2 
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In Exercises 38-40 the unit circle points P(a, b) and P'(a ' ,  b') correspond to the real numbers t and 1 ± 7T/2 ,  respectively, as 
shown in the following figure. 

y 

38. Show that b'la' = -alb. (Hint: Show that the lines 
OP and OP' are perpendicular and then determine 
their slope .)  

39. Show that b' = ± a  and a' = ± b. (Hint: The radii 
OP and OP' are equal in length. Use the distance for
mula combined with the result of Exercise 38 above lo 
substitute alternately for b' and for a' . )  

40. Show that either ( i)  (a' ,  b ')  = ( -b, a)  or (ii) (a' ,  b') = 
(b, -a).  (Hint: Begin with the result of Exercise 39 
and apply the result of Exercise 38.) 

In Exercise 4 1 -48 use trigonometric identities to find the indicated value under the given conditions. 

4 1 .  sin t = � and I is in quadrant I I ;  find Ian t. 42. tan t = -� and t is in quadrant II; find cos r. 

43. cos t = - 1
5
3 and t is in quadrant HI; find sin t. 44. sin t = - 1

5
3 and t is in quadrant Ill; find tan t. 

45. cos t = � and sin t < O; find sin t. 46. tan t = � and cos t < O; find sin c. 

47. sin c = -� and tan t < O; find cos t. 48 . tan t = - 1
5
2 and sin t > 0; find sin t. 

In Exercises 49-58 use trigonometric identities to transform the first expression into the second. 

49. (tan t)(cos r), sin 1 

5 1 .  I - sin2 t cos t 
sin t ' tan t 

so. 

52. 

COS I -- --
sin t '  tan 1 
(tan l)(sin I) + cos 1, -1-cos ( 

53. cos 1(-1- - cos r) , sin2 t 54. I - cos2 t 
, sin t cos t sin t 

55. I - C0!'-2 l , tan2 I cos2 / 56. cos2 1 . 
1 . , I + sm c - sm t 

57 . (sin t - cos r)2, I - 2(sin r)(cos r) 58. I + 2 
I - sin t l + in t ' cos2 t 

5.3 
VALUES OF SINE, 
COSINE, AND 
TANGENT 

"SPECIAL VALUES" 

The definitions of sine, cosine, and tangent indicate that their values depend only 
upon the coordinates of the unit circle point P corresponding to the real number I .  
In generaJ, it is not easy 10 find these coordinates. The simplest cases occur when 
tne point P lies on a coordinate axis. 

EXAMPLE 1 

Find sin l, cos t, and tan I for 
(a) t = 0 (b) t = 1T'l2 (c) t = 'TT' (d) l = 37T/2 
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SOLUTION 
From Figure 1 8 , the coordinates of the unit circle point corresponding to the 
values of / are 

t = O : ( l , O) 
1T 

I =  2: (0, I )  I = 'TT': ( - l ,  0) 
377' t = 2: (0, - 1 )  

y y 

FIGURE 18 

Applying the definitions of sine, cosine, and tangent, we have 

sin 0 = 0 

cos 0 = I 

tan 0 = 0 

• 7T 
sm - = I 

2 

7T 
cos - = 0 

2 

1T 
tan 2 = undefined 

sin 1T = 0 
. 377' 

sin - =  - I 
2 

COS 7T = - J 
377' 

cos - = 0  
2 

tan 7T = 0 
377' 

tan T = undefined 

Note that tan 7T/2 and tan 37r/2 are both undefined, since tan J = ylx is undefined 
when x = 0. 

PROGRESS CHECK 
Repeat Example I ,  replacing t by the degree measure of tile correspondjng angle 
0, 0 $ 0 $ 360°. 

Another special value occurs when t = 1Tl4; that is, when l) = 45°. We will 
apply a geometric argument in the next example . 

EXAMPLE 2 
Find the values of sin 7T/4, cos Tr/4, and tan 7T/4. 

SOLUTION 
In Figure J 9, the point P determined by the arc AP of length 7r/4 is seen to bisect 
the arc AQ of length 7T/2.  Therefore P must lie on the line whose equation is y = 
x. We can then designate the coordinates of P as (a, a). Since the coordinates of 
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any point on the unit circle satisfy the condition 

x2 + y2 = l 

we have a2 + a2 = l 
2a2 = l 

l v2 a = ±v2 = ±2 
Since P is in  the first quadrant, we conclude that the coordinates of  P are cv2/2, 
v2/i) and that 

FIGURE 19 

. 'TT 'TT v2 sm 4 = cos 4 = 2 
'TT 

tan 4 = l  

Q 

y 

Finally, we will tackle the special value of rr/6, or 30°. In Figure 20a, arc AB 
has length rr/6 on a unit circle, so <rAOB has a measure of 30°. We let (a, b) be 
the coordinates of the point B .  To determine the values of a and b, we locate the 
point D in quadrant IV so that arc Ai5 is also of length rr/6. Then <rDOA also has 
a measure of 30° and, by the symmetries of the circle, the coordinates of point D 
are (a, -b) . We complete the figure by drawing the line BD as in Figure 20a. 

We now tum to the tools of plane geometry applied to the triangles shown in 
Figure 20b. S ince OB and OD are radii of a circle, OB = OD and MOD is 
isosceles. But an isosceles triangle whose vertex angle measures 60° must be 
an equilateral triangle. Therefore BD = l and b = 1/2. Since a2 + b2 = l ,  a = \/3/2 .  Finally, we have 

• 'TT l sm 6 = 2 
'TT v3 cos 6 = 2 

'TT v3 
tan - = -

6 3 
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PERIODIC FUNCTIONS 

y 

0 

(a) 

FIGURE 20 

B 
b 

0 IE-�"::-+-.. c 

(b) 

b 
D 

A similar argument (see Exercise 95) applied to the special value of TT/3 ,  or 
60°, would show the coordinates of the point B to be ( 1 12, \13/z). Table 2 lists the 
values of the sine, cosine, and tangent functions for certain frequently used real 
numbers t in the interval [O, 2TT] . There is no entry for tan TT/2 or tan 3TTl2 because 
the tangent function is not defined for these values. 

TABLE 2 

Unit circle 
t point P sin t cos t tan t 

0 ( I ,  0) 0 I 0 

!!. (V3 l) I V3 V3 - -
6 2 ' 2  2 2 3 

!!. (Vz Vz) Vz Vz I - -
4 2 ' 2 2 2 

!!. (l V3) V3 I V3 -
3 2 '  2 2 2 
!!. (0, I )  I 0 -
2 
7T (- 1 ,  0) 0 - I  0 
37T (0, - 1 ) - I  0 2 

-
In Section 5 .  I we defined coterminal angles as angles that have the same terminal 
side. We can extend this concept to the unit circle point determined by a real 
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number t. Since the circumference of the unit circle is 21T, we have the following 
result. 

For any real number t, the real numbers 

t + 21Tn 

detennine the same unit circle point for all integer values of n. 

Since the values of the trigonometric functions depend only upon the unit 
circle point determined by t, we can reach the following conclusion . 

For any real number t, 

sin (l + 21Tn) = sin t and cos (t + 21Tn) = cos t 

for all integer values of n. 

The cyclical behavior of sine and cosine is characteristic of functions that are 
called periodic, and the least number for which the cyclical behavior is exhibited 
is called the period of the function. It is not difficult to show that the period of the 
sine and cosine functions is 27T (see Exercises 93 and 94); that is , 27T is the 
smallest positive real value of p such that 

sin(t + p) = sin t and cos(t + p) = cos t 

We will discuss the periodicity of the tangent function in Section 5.4 . 

We have thus far found sin t and cos t for some very special values of the 
argument t. If you want to find the value of a trigonometric function for an 
arbitrary value of t, you can use a calculator or you can refer to a table of 
values. 

Many inexpensive calculators now have keys labeled sin, cos, and tan that can 
provide the values of the trigonometric functions. The procedure for using these 
calculators varies slightly for each manufacturer. In general , the steps are 

Step 1 .  Set a selector switch to radians or degrees . This switch is often marked 
RAD/DEG or DRG . 

Step 2. Enter the input in radians or degrees ,  corresponding to the switch set
ting. 

Step 3 .  Depress the appropriate key for sine , cosine, or tangent. 

If you have yet to purchase a calculator that can handle trigonometric func
tions, here are some of the things you should look for. 
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(Courtesy of Teitas Instruments, Inc. ) 

• Arguments can be entered in either degrees or radians. 

• Arguments are unrestricted in size. (We will show you later in this section how 
to work with a calculator that restricts the arguments; it is easier, however, to 
use a calculator that pennits any argument. )  

• Inverse functions are available. (We will discuss this topic at the end of this 
chapter. ) 

Do not be surprised if the answers you obtain when using a calcuJator differ 
slightly from the answers in this book . Most calculators use some type of approx
imation method (see Exercises 85-90) that may not give results identical with 
those in our tables. 

EXAMPLE 3 
Using the instruction booklet for your calculator, verify the following approxi
mations. 
(a) sin 47 .45° = 0.7367 
(c) tan 5 . 1 1  = -2 .38 1 1 
( e) tan 48° = 1 . I 106 

(b) sin 5 . 763 = -0.4970 
(d) cos(- 1 5°) = 0.9659 
(f) cos 6.83 = 0. 8542 
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SOLUTION 

Illustrated here are the keys you might have to press to solve part (a) : I DEG I I 47 .45 I I SIN 

The result would then be displayed. 

Tables have long been the customary way to find the values of the trigonometric 
functions. If you examine Table V in the Tables Appendix, you will find the 
values of sin t and cos t for 0 :5 t :5 1 .57 in increments of 0.01 , which corre
sponds (approximately) to 0 :5 t :s n/2 .  We are now prepared to show that this 
limited table is adequate to enable you to find sin t or cos t for any real value 
of t. 

First, we note that if t is negative we can use the identities 

sin(- t) = - sin t and cos(- t) = cos t 

to provide us with a positive value of the argument. 
Next, we observe that the periodic nature of the trigonometric functions 

provides us with an approach if t > 271'. We need only subtract an appropriate 
multiple of 271' until the remaining value is between 0 and 271'. 

Finally, we need to find sin t and cos t when 71'/2 < t < 271'. In Figure 21 we 
illustrate the cases in which the unit circle point P(x, y) , determined by t, lies in 
quadrants II, III, and IV. We define the reference number t' associated with t as 
the shortest arc of the unit circle between P and the x-axis. Clearly, if P is not on a 
coordinate axis, then the reference number t' is less than 71'/2;  that is, 

0 < t' < 71'12 

The real number t' determines the unit circle point P' (x' , y')  in the first quadrant .  
By the symmetries of the unit circle, in al l  three cases we have 

Then 

x' = lxl and y' = lyl 

sin t = y and sin t' = y' = ly l 

cos t = x and cos t' = x' = lxl 

so sin t and sin t' differ only in sign and cos t and cos t' differ only in sign . If we 
can find sin t' and cos t' from a table of values of t' in the interval [O, 71'/2] ,  we 
need only attach the proper sign to find sin t and cos t according to the quadrant in 
which t lies. This procedure is known as the Reference Number Rule and is 
outlined in Example 4. 
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FIGURE 2'1 

y 

EXAMPLE 4 
Find cos 27T/3 . 

SOLUTION 

y y 

P'(x'' y' )  P'(x', y')  

t '  

t ' x 

Referenc. Number Rule 

Step I. Find the reference number t' associated 
with I. 

I 

'TTl2 < t < '1T 

,,, < t < 3,,,12 

Quadrant 

n 
Ill 

t' 

t' = 1r - I  

t' = t - .,, 

3'Trl2 < I < 2'Tr IV t' = 2Tr - I 
Step 2. Obtain the value of the required trigono
metric function from Table V in the Tables Appen
dix . 

Step 3. Assign the appropriate sign according to the 
quadrant in which t lies and the trigonometric func
tion being sought. 

Step I .  The argument t = 2,,,;3 is in quadrant U. 
Thus, 

t' = ,,, - t 

= 1r - 2Tr/3 
= -rr/3 

Step 2 .  Since 7T/3 is a "special value , "  we know 
that 

cos 7r/3 = 0.5 
Step 3.  Since cos t is negative in quadrant U ,  we 
have 

cos 2,,,13 = -cos ,,,13 = -0.5 

In  Example 4 the argument t was given in  terms of 'TT and led to a "special 
value" of t ' .  For less convenient values of t you will find Figure 22 helpfuJ in 
determining the quadrant in which t lies. 

EXAMPLE 5 
Find sin 3 . 62 using the Reference Number Rule and Table V in the Tables 
Appendix. 



y 

1 . 5 7  

3 . 1 4  6.28 

4.7 1 

Quadrantal Arcs 

FIGURE 22 

x 

SOLUTION 
Step 1 .  Since 
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7J' < 3 . 62 < 37i/2 

the argument t is in quadrant m and, using 7J' ""'  3 . 1 4, 

t' = t - 7J' ""'  3 .62 - 3 . 14 = 0 .48 

Step 2. From Table V, 
sin 0.48 = 0.46 l 8  

Step 3 .  Since sine i s  negative i n  quadrant HI ,  we have 

sin 3 . 62 = - sin 0.48 = -0.46 1 8  

PROGRESS CHECK 
Use 7r ""'  3. 14  and Table V to find 
(a) tan 5 . 96 (b) sin 3 .79 (c) cos 2.68 

ANSWER 

FIGURE 23 

(a) -0.33 14 (b) -0.6052 (c) - 0.8961 

Example 5 shows that the Reference Number Rule is cumbersome when the 
argument t is not expressed in terms of 'Ti. Not only must you determine the 
quadrant in which t lies and use a table, but the use of a two�place approximation 
for 1T will lead to inaccurate results. The method is tine for values of t that lead to 
"special values. " You will find, however, that using a caJculator is a much more 
practical way to obtain values of the trigonometric functions for arbitrary argu
ments. 

To deaJ with degree measure , we use a scheme anaJogous to the Reference 
Number Rule. The reference angle ()' associated with the angle () is the acute 
angle formed by the terminal side of () and the x-axis .  If 8 1ies in quadrant I, then () 
is itself an acute angle and 81 = (). The other cases are illustrated in Figure 
23. 

y y y 

x x 
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The procedure for finding sin () and cos () when () is in the interval [90°, 360°] 
is called the Reference Angle Rule and is identical to the Reference Number 
Rule with these exceptions: 

• replace 7T by the degree measure of 1 80° 

• use Table VI in the Tables Appendix instead of Table V 

Examination of Table VI indicates that minutes and seconds are used as subdi
visions of a degree according to these definitions. 

EXAMPLE 6 
Find sin 200°. 

SOLUTION 

l degree = 60 minutes (written 60') 

l minute = 60 seconds (written 60'1 

Refetence Angle Rule 

Step I . Find the ref ere nee angle 8' associated with Step 1 .  Since the terminal side of an angle of 200° is in 
(). quadrant III, we have 

(J Quadrant ()' ()' = () - 1 80° 

90° < (J < 180" n (J' = 1 80" - () = 200° - 1 80° 

J 80" < () < 270° m ()' = () - 1 80" 
= 20° 

270° < () < 360° IV ()' = 360" - () 
S1ep 2. Obtain the value of the required trigono- Step 2 .  
metric function fro m  Table V I  i n  the Tables 

sin 20" = 0.3420 
Appendix. 

Step 3. Assign the appropriate sign according to the Step 3.  Since sine is negative in quadrant III, we 
quadrant in which 8 lies and the trigonometric have 
function being sought. sin 200° = - sin 20° = -0.3420 

Of course , a calculator that provides the values of the trigonometric func
tions for any degree measure of an angle is more efficient than using the Refer
ence Angle Rule and Table VI. You should note that the calculator entry , 32.5°, 
corresponds to the table entry of 32° 30' ;  that is, the calculator uses decimal 
format to represent a fractional part of a degree. 
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EXAMPLE 7 
Find tan 6 1 1°20' by (a) using a calculator and (b) using the Reference Angle 
Rule. 

SOLUTION 
(a) Using a calculator, the value 6 1 1 .333 would be entered since 20' is 20/60, 
or 1/3 of a degree. The key sequence would be 

I DEG I 1 61 1 . 333 I �I -
TAN� 

The calculator will display an (approximate) answer of 2.9600. 
(b) We first reduce the angle 6 1 1 °20' to an angle in the interval (0, 360°) by 
subtracting 360°, leaving () = 25 1 °20' . Using the Reference Angle Rule, we note 
that the angle () is in quadrant III .  The reference angle 8' is given by 

()' = () - 1 80° :;::: 25 1°20' - 1 80° :;::: 7 1 °20' 

From Table VI in the Tables Appendix, tan 7 1°20' - 2.9600. Finally, we note 
that tangent i s  positive in quadrant III and 2.9600 is indeed the answer. 

PROGRESS CHECK 
For each angle () 

1. use the Reference Angle Rule to find cos 8; 

2. convert the angle to decimal form and use a calculator to find cos 0. 
(a) 143°40' (b) 345°1 0' 

ANSWERS 
(a) -0. 8056 (b) 0.9667 

In Exercises 1 - 1 2  replace each given real number s by a real number t, 0 :s t < 27T, so that s and t determine the same unit 
circle point . 

I .  47T 2. 1 37T 3 .  157T 4.  257T 
2 7 4 

5 .  2 1 7T  
6. 

l 1 7T  7 .  4 1 7T  8 .  l l 7T 
2 2 6 2 

9 .  -97T 10 .  77T 1 1 . 277T 1 2. 227T 
5 3 

In Exercises 1 3-20 find a positive and a negative value of t, ltl < 27T, that determine the unit circle point P whose 
coordinates are given. 

1 3. P (- 1 , 0) 

P (-V3 !) 1 7 .  2 , 2 

14. p (0, - 1 ) 

1 8  P (_! - \/3) . 2 '  2 

P (- Y2 Y2) 1 5 .  2 , 2 

P (! -\/3) 19 .  2 '  2 

P (Vi - Y2) 16 .  2 , 2 

20 P (-V3 _!) . 2 , 2 
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In Exercises 2 1 -36, for each given real number t find (a) the coordinates of the unit circle point P determined by t; and (b) 
the values of sin t, cos t, and tan t. 

2 1 .  57T 22. 57T 23. 1T 24. 37T 
2 4 2 

25 . 57T 26. 87T 27 . 47T 28. 27T 
4 3 3 

29. 27T 30. 1 97T 3 1 .  l 97T 32. 177T 
3 3 6 6 

33. 57T 34. l l 7T 35. l97T 36. 257T 
6 6 3 3 

In Exercises 37-48 use Table V in the Tables Appendix to find each of the following. (Use 1T = 3 . 14 . )  
37. cos 1 . 1 2 38. sin 0.48 39. tan( - 1 . 39) 40. sin 4.86 
4 1 .  tan 3 .44 42. cos(-4.79) 43. sin(-5 .28) 44. tan 6.05 
45 . cos(-2 .9 1 )  46. sin 2.43 47. tan(-3 .27) 48. cos 1 .72 
49-60. Repeat Exercises 37-48 using a calculator to find the value of the required trigonometric function. 
In Exercises 6 1-72 use Table VI in the Tables Appendix to find each of the following. 
6 1 .  tan 1 55° 62. cos(- 305°) 63. sin 232° 64. sin(- 147°) 
65. cos 257° 66. tan 290° 67. cos 1 36° 68. sin 345° 
69. tan 1 9°10' 70. cos 470°50' 7 1 .  sin(- 197°30' )  72 .  tan( - 105°40' )  
73-84. Repeat Exercises 6 1-72 using a calculator to find the value of the required trigonometric function. 
In Exercises 85-90 use a calculator and the polynomial approximations 

to find each of the following. 
85. sin 0.80 
89. tan 0. 1 

. t1 t5 (7 sm t = t - 6 + 
1 20 

-
5040 

(2 (4 (6 
cos t = t - - + - - -

2 24 720 

86. cos 1 .  JO  
90. tan( - 1 .2) 

87. sin(-0.20) 88. cos( -0. 75) 

9 1 .  Using the polynomial approximation for sin t given 
above, show that sine is an odd function; that is, 
sin(-t) = -sin t. 

92. Using the polynomial approximation for cos t given 
above, show that cosine is an even function; that is, 
cos(-t) = cos t. 

95 . Show that the unit circle point P determined by 
the real number t = 7Tl3 has coordinates ( 1 /2 ,  \/3/2). 
[Hint: If P has coordinates (a, b), then the unit circle 
point P' corr�onding to t = 27T/3 has coordinates 
(-a, b) and AP = PP' . ]  

93. Prove that the period of the sine function is 27T. [Hint: 
Assume sin(t + c) = sin t, 0 < c < 27T, for all t. By 
letting t = 0, show that sin c = 0 and, consequently, 
that c = 1T. Finally, conclude that sin(t + 7T) = sin t 
does not hold for t =  7T/2. ]  

94. Prove that the period of the cosine function is 27T. 
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In the last section we used the periodic property of the trigonometric functions to 
reduce the number of entries in Tables V and VI in the Tables Appendix to a 
reasonable length. We will now take advantage of the same periodic propert¥ in 
sketching graphs of the trigonometric functions. 

If we can graph the sine and cosine functions over the interval [O, 21T] ,  we can 
then repeat the graph for every interval of length 27T. As usual, we fonn a table of 
values, plot the corresponding points on a ty coordinate system, and sketch a 
smooth curve. We can make use of the results of the last section to provide us 
with values for plotting, as in Table 3 .  

TABLE 3 

t 0 1Tl6 1Tl4 1Tl3 1Tl2 31T/4 1T 51Tl4 31Tl2 71Tl4 21T 

Sin I 0 0.50 0.7 1 0.87 I 0.7 1  0 -0.7 1  - 1  -0.7 1  0 

cos t I 0.87 0.7 1 0.50 0 -0.7 1  - I -0.71 0 0.7 1 I 

We have used the approximations V2 = 1 .414 and V3 = I .732. With the values 
in the table we can sketch y ;;;;; sin t over the interval [O, 21T] ,  as in Figure 24. 

y 

27T 

- ]  
y = sin t 

FIGURE 24 

Repeating for adjacent intervals of length 27T yields the graph in Figure 25. 

y 

y = sin t 

t 

FIGURE 25 
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TANGENT 

y 

p (x, y) 

t 
A ( I ,  0) 

x 

P'(-x, -y) 

FIGURE 27 

Turning to the cosine function, we can use values given in Table 3 to sketch 
the graph of y = cos t as in Figure 26. 

y 

y = cos t 

FIGURE 26 

To graph the tangent function , we first establish that tan(t + 7T) '"" tan t for all real 
values of t. If P(x, y) is any point on the unit circle, then P'(-x, -y) also lies on 
the unit cirde (Figure 27) , and arc PP' is of length 77'. If the unit circle point 
P(x, y) corresponds to the real number t, then 

and 

tan t = l 
x 

tan(t + 7T) '"" .=i'. '"" l 
-x x 

so that tan(t + 7T) = tan t. It is easy to show that there is no real number c, 
0 < c < 77', such that .tan(t + c) = tan t for all real numbers t. Hence, the 
tangent function has period 7T. 

We can use the identities 

sin t 
tan t = -- and tan(-t) = -tan t 

cos t 

to establish the entries in Table 4. For example, 

tan 0 = sin 0 = Q = 0 
cos 0 I 

• 7T I 

7T sm 6 2 V3 
tan 6 = ---; = 

V3 = 3 = 0.58 
cos 6 

2 

• 
1T V3 

1T sm 3 2 4 � 
tan 3 = ---; = -1- = v 3 = I .  73 

cos 3 2 



EVEN AND ODD 
FUNCTIONS 

5.4 GRAPHS OF SINE. COSINE, AND TANGENT 247 

TABLE 4 

t 1T 1T 1T 1T 0 1T 1T 1T 1T -- -- - - - - - - - -2 3 4 6 6 4 3 2 

tan t - 1 . 73 - 1  -0.58 0 0.58 I 1 .73 

Since tan t is undefined at TTl2 and at -TTl2 ,  we need to carefully consider the 
behavior of the graph near these values of t. As t increases from 0 toward TTl2, the 
x-coordinate of the unit circle point P(x, y) corresponding to t gets closer and 
closer to 0. Since tan t = ylx, arbitrarily small values of x produce arbitrarily large 
values for the quotient y/x. We say that tan t increases without bound as t 
approaches TTl2.  Similarly, as t decreases from 0 toward -TT/2, tan t grows 
smaller and smaller. Accordingly, we say that tan t decreases without bound as t 
approaches - TT/2. These considerations lead us to the graph of tan t shown in 
Figure 28 . The vertical , dashed lines are called vertical asymptotes. 

y 

t 

FIGURE 28 

A function f for which f( -x) = f(x) is said to be an even function; if j(-x) = 
-j(x) , then f is called an odd function. From our earlier work with negative 
values, we see tl1at sine and tangent are odd fl!nctions ,  while cosine is an even 
function . 

It is easy to see from the definitions that the graph of an even function is 
always symmetric about the y-axis, while the graph of an odd function is sym
metric with respect to the origin. An example of an even function whose graph 
you know isf(x) = x2 , whilef(x) = x3 is a good example of an odd function. Now 
that we have sketched the graphs of sin t, cos t, and tan t in Figures 24, 25 , and 
27 , respectively ,  we have visual verification that sine and tangent are odd func
tions and cosine is an even function. 
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RANGE OF THE 
TRIGONOMETRIC 
FUNCTllONS 

From the graphs of the sine and cosine functions it is clear that both functions 
assume values between - 1  and + I .  Examination of the graph of the tangent 
function again shows that tan t is not bounded. These conclusions concerning the 
range of the trigonometric functions are listed in Table 5 ,  along with the domain 
and period of each function. 

TABLE 5 

in I COS I tan I 

Domain all / all I I * n/2 + nn, 
n an integer 

Range - I S y S I - J s y s l all real numbers 

Period 2n 27T 7T 

EXAMPLE 1 
Sketch the graph of /(t) = I + sin t. 

SOLUTION 

Rather than form a table of values and plot points, we simply note that the 
y-coordinate of /(t) = 1 + sin t is one unit larger than that of sin t for each value 
of t. In Figure 29 we have sketched sin t with dashed Jines andftt) = l + sin t 
with a solid line . 

y 

y = l + sin t 

y = sin t 

FIGURE 29 

EXAMPLE 2 

Sketch the graph of fit) = sin t + cos t. 

SOLUTION 
Again, rather than plot points, we note that the y-coordinate of/(t) = sin t + cos t 
is simply the sum of the y-coordinates of sin t and cos t for each vaJue of t. In 
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Figure 30 we have sketched the graphs of sin t and cos t with dashed Jines, formed 
the sum of the y-coordinates geometrically, and then sketched a smooth curve 
through the resulting points . 

y 

2 

t 

-2 
y = sin t + cos t 

FIGURE 30 

We next seek to sketch the graph off( x) = A sin (Bx + C), where A ,  B. and C are 
real numbers and B > 0. Note that we are now using the familiar symbol "x" to 
indicate the independent variable, rather than the symbol "t" used until now. Of 
course, any symbol can be used to denote a variable; however, the symbol "x" 
used here is not to be confosed with the x-coordinate of the unit circle point 
P(x, y) corresponding to an arc of length t. The results that we obtain th.roughou t 
this section will also apply to the form A cos (Bx + C). 

Since the sine function has a maximum va1ue of + 1 and a minimum value of - 1 ,  
it is clear that the function f(x) = A sin x has a maximum value of IAI and a 
minimum value of - IA I. ]f we define the amplitude of a periodic function as half 
the difference of the maximum and minimum values, we see that the amplitude of 
f{x) = A sin x is [ IA I  - ( - IAl)]/2 = IA I .  

The amplitude of ft.x) = A sin x is IA I .  

The multiplier A acts as a vertical "stretch" factor when IAI > l ,  and as  a 
vertical ' ' shrinkage" factor when IA I < 1 .  These remarks hold for both y = 
A sin x and y = A  cos x. Here are some examptes . 

EXAMPLE 3 
Sketch the graplls of y = 2sin x and y = �sin x on tile same coordinate axes. 

SOLUTION 
The graph of y = 2 sin x has an amplitude of 2 ;  the maximum value of y is + 2  and 
the minimum is -2 .  SimilarJy, the amplitude of y = i sin x is i and the graph 
has a maximum value of +�  and a minimum of -�  (Figure 3 l ) .  
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FIGURE 31 

FIGURE 32 

y 

x 

EXAMPLE 4 

Sketch the graph of J{x) = - 3 cos x. 

SOLUTION 

The amplitude is 3 ,  and y = - 3 cos x has maximum and minimum values of + 3 
and - 3 ,  respectively. Since A = - 3 ,  each y-coordinate wilJ be that of cos x 
multiplied by - 3 .  

The graph of y = - 3 cos x shown i n  Figure 3 2  i s  said to be a reflection 
about the x-axis of the graph of y = 3 cos x. 

y 

x 
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FIGURE 33 
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The key to sketching the graph of f(x) = sin Bx, B > 0, lies in determining the 
period of the function . Table 6 shows values of sin x and sin 2x for selected values 
of x in the interval (0, 21T] . These values were used in sketching the graphs shown 
in Figure 33.  Since y = sin x has period 2 7T, the graph shows that the sine function 
completes one cycle or wave as x varies from 0 to 21T. However. the graph of y = 
sin 2x completes two cycles as x varies from 0 to 21T. 

TABLE 6 

x 0 '11'14 '11'12 37T/4 '11' 5,,,14 37T/2 77T/4 2,,, 

sin x 0 v2/2 I v2/2 0 -V2'2 - I  -v'212 0 

sin 2x 0 1 0 - I  0 I 0 - I  0 

y 

x 

In general , sin Bx will complete B cycles over the interval (0, 27r] ,  so that a 
cycle is completed as x varies from 0 to 27TIB. We conclude: 

The period of /(x) = sin Bx, B > 0, is 
2; . 

The multiplier B acts as a horizontal "stretch" factor if 0 < B < 1 and as a 
horizontal "shrinkage" factor if B > L 

EXAMPLE 5 

Sketch the graph of /(x) = 2 cos �x. 

SOLUTION 

Since B = t, the period is 21TI� = 41T. The graph wm complete a cycle every 41T 
units. Note that the amplitude is 2, which provides us with maximum and mini
mum values of 2 and -2,  respectively. The graph is shown in Figure 34. 
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FIGURE 34 
Phase Shift 

y 

x 

Let us examine the behavior of the function /(x) = A  sin(Bx + C), B > 0. Since 
y = sin x completes a cycle as x varies from 0 to 27T, the function/will complete 
a cycle as Bx + C varies from 0 to 27T. Solving the equations 

B.x + C = O Bx + C = 27T 

we have 

c 
x =  - -

B 

The number -C!B is called the phase shift and indicates that the graph of the 
function is shifted right -C!B units if -C!B > 0 and is shifted left if -CIB is 
negative. 

The phase shift of 

f(x) = A  sin(Bx + C), B > 0 

is -CIB. 

Note that the amplitude off is IAI and the period is 27TIB; that is, the introduction 
of a phase shift has not altered our ear1ier results. 

EXAMPLE 6 
Sketch the graph of f(x) = 3 sin(2x - 7T). 

SOLUTION 

Graphing f(x) = A  sln(Bx + C) 

Step I .  Detennine A ,  B, and C. Step I .  Since 

f (x) = 3 sin(2x - 7T) = A sin( Bx + C) 

A =  3, B = 2, and C = - 7T. 
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Step 2 .  Dctennine the amplitude, period, and phase Step 2 .  
shift. 

amplitude = IAI = 3 

Step J. Analyze the effect of the phase shift on the 
point (0, 0). 

Step 4. Use the period to detennine the values of x 
at which a cycle i completed. 

Step 5. Using the amplitude, sketch the graph. 

y 

3 

1 

. 21T 21T 
penod = B = 2 = 1T 

pha e hift = _f. = 7!. 
B 2 

(or: 2x - 1T = 0 yields x = ¥ a the phase hift) 

Step 3. A pha e shift of 1Tl2 cause the cycle to "be
gin" at ( 1Tl2,  0) rather than at (0, 0). 

Step 4 .  Adding and ubtracting the period of 1T to the 
pha e hift of 1Tl2,  we have 

1T 1T 
x = 2 - 1T = -2 

1T 31T 
x = 2 + 1T = T 

The graph complete a cycle in the interval [ 1T 1T] [1T 31T] -2· 2 and 2• 2 

Step 5. Recalling that the amplitude i 3 ,  ee the graph 
sketched in Figure 35 .  

I I 
I 

, y = 3 sin 2x 

x 2\ I \ I ,_1 y = 3 sin (2x - 1T) 
-3 

FIGURE 35 
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PROGRESS CHECK 

Iff(x) = 2 cos(2x + 7T/2), find the amplitude, period, and phase shift off. Sketch 
the graph of the function. 

ANSWER 

amplitude = 2 period = 7T phase shift = - 7T/4 (or shift left 7T/4) (Figure 
36) 

FIGURE 36 

EXAMPLE 7 

y 

Rewrite the equations 
(a) y = ! sin(-x + 7T) (b) y = - 2  cos(- 2x - 7T) 
as equivalent equations with B > 0. 

SOLUTION 

(a) We rewrite the original equation as 

y = 4 sin( -x + 7T) 

= ! sin [ - (x - 7T)] 2 

Since sin( - t) = - sin t, we have 

where B > 0 .  

y = _ !  sin(x - 7T) 2 

(b) We rewrite the original equation as 

y = - 2 cos( - 2x - 7T) 

= -2 cos [ - (2x + 7T)] 

Since cos(- t) = cos(t), we have 

y = - 2  cos(2x + 7T) 

x 
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INTERACTION 

EXERCISE SET 5.4 
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In the natural world we frequently find that two plant or animal species interact in their 
environment in such a manner that one species (the prey) serves as the primary food 
supply for the second species (the predator). Examples of such interaction are the rela
tionships between trees (prey) and insects (predators) and between rabbits (prey) and 
lynxes (predators). As the population of the prey increases, the additional food supply 
results in an increase in the population of the predators. More predators consume more 
food, so the population of the prey will decrease, which, in tum, will lead to a decrease 
in the population of the predators. The reduction in the predator population results in an 
increase in the number of prey and the cycle will start all over again. 

The accompanying figure, adapted from Mathematics: Ideas and Applications, by 
Daniel D. Benice, Academic Press, 1978 (used with pennission), shows the interaction 
between lynx and rabbit populations. Both curves demonstrate periodic behavior and can 
be described by trigonometric functions. 

Time -

In Exercises 1 -6 sketch the graph of each given function . 

l .  f (t) = l + cos t 2. f (t) = - 1  + sin t 

4. f(t) = sin(-t) + cos t 5 .  f(t) = t + sin t 

7. Verify that sin( -t) = -sin t by using the graph 
of the sine function. 

8. Verify that cos(-1) = cos t by using the graph 
of the cosine function. 

3 .  f(t) = sin t - cos t 

6. f(t) = -1 + cos t 

Determine the amplitude and period and sketch the graph of each of the following functions .  

9. f(x) = 3 sin x 10. f(x) = � cos x I I .  f(x) = cos 4x 12 . f(x) = sin � 
1 3 .  

17 . 

f(x) = - 2 s in  4x 

f l . x (x) = - sm -
4 4 

14.  

1 8 . 

f (x) = -cos :! 
4 

l x f(x) = - cos -
2 4 

1 5 .  x f(x) = 2 cos 3 16 . f(x) = 4 sin 4x 

19. f(x) = -3 cos 3x 20. f(x) = -2 sin 3x 
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For each given function, determine the amplitude, period, and phase shift. Sketch the graph of the function. 

2 1 .  f(x) = 2 sin(x - 7T) 22. f(x) = � cos(x + ¥) 
23. f (x) = 3 cos(2x - ?T) 24. f(x) = 4 sin(x + �) 
25 . f(x) = � sin(3x + 3:) 26. f(x) = 2 cos( 2x + ¥) 
27. f(x) = 2 cos(� - '7T) 28. f(x) = 6 sin(� + ¥) 
Use the identities sin(- t) = - sin t and cos( -t) = cos t to rewrite each equation as an equivalent equation with B > 0. 

29. y = - 2 sin( - 2x + 7T) 30. y = 4 cos(-� + f) 

5.5 
SECANT, COSECANT, 
AND COTANGENT 

Definition of see t, ese 
t, and cot t 

32. y = -5 sin(- 2x - 1T) 

We stated earlier in this chapter that there are six trigonometric functions and that 
the remaining three functions are reciprocals of sine, cosine, and tangent. These 
functions are called the secant, cosecant, and cotangent and are written as sec, 
csc, and cot, respectively. We now formally define these functions. 

I 
sec t = -- cos t * 0 

cos t '  

1 
csc t = -.- sin t * 0 

Sin t '  
1 

cot t = -- , tan t * 0 
tan I 

By using these definitions, we can apply the results that we have obtained for 
sine, cosine, and tangent to these new functions. 

EXAMPLE 1 
Find sec 7T/3 . 
SOLUTION 
Since cos 1Tl3 = i (from Table 2 in Section 5 .  3) we see that 

EXAMPLE 2 

1T 1 1 
sec - = -- = - =  2 3 1T 1 

cos - -

3 2 

Find the real number t, 0 5 t 5 7T/2, such that cot t = vi 
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SOLUTION 

We seek the real number t such that 

I l VJ 
tan 1 = -- = - = -

cot t \/3 3 

Thus,  t = 1Tl6 since (from Table 2 in Section 5 .3) tan 1t/6 = V3'3. 

We know that a real number and its reciprocal have the same sign; that i s ,  if 
x > 0, then l/x > 0 and if x < 0, then l /x < 0. From this, we can immediately 
extend our conclusions (see Figure 1 Sb) concerning the signs of the trigonometric 
functions in each quadrant (Figure 37). You do not have to memorize these; 
simply associate each function with its reciprocal. 

EXAMPLE 3 

II 

sin t > 0 

csc I >  0 

DI 

tan I >  0 

cot t > 0 

FIGURE 37 

I 
All positive 

IV 

cos r > O  
sec t > O 

Find the quadrant in which t lies if sin I >  0 and sec t <  0.  

SOLUTION 

If sec t <  0, then cos t <  0. We know that sine is positive in quadrants I and II, 
cosine is negative in quadrants II and III (Figure 37). Both conditions are satisfied 
in quadrant IL 

PROGRESS CHECK 

Find the quadrant in which t lies if tan t < 0 and csc t < 0. 

ANSWER 

quadrant IV 

EXAMPLE 4 

Find t if sin t = \/3/i and sec t < 0. 
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GRAPHS OF SECANT, 
COSECANT, AND 
COTANGENT 

SOLUTION 

Since sec t <  0, we have cos t <  0. Then t must lie in quadrant II, since sine is 
positive and cosine is negative only in quadrant II f Figure 37). Finally, we know 
(from Table 2 in Section 5 .3 )  that sin 7T/3 = V1 2. Thus, 'TT/3 is the reference 
number of t; that is , 

PROGRESS CHECK 

Find t if cos t = - �  and cot t > 0. 

ANSWER 

47T/3 

EXAMPLE 5 

Use a calculator to find csc 0.72. 

SOLUTION 

Most calculators do not have function keys for secant, cosecant, and cotangent. 
To find csc 0.72, we can use the calculator to find sin 0.72 and then compute the 
reciprocal. The typical key sequence is 

RAD I I 0.72 I I SIN I I l /x 

where l !x indicates the key for finding a reciprocal . The answer displayed is 
1 . 5 1 7 . 

We can also employ the definition of cosecant to aid in sketching the graph of the 
function. Since csc t = l /sin t, we compute the reciprocal of the y-coordinate of 
sin t at a point to determine the y-coordinate of csc t at that point. Of course, we 
cannot form a reciprocal when sin t = 0, that is, when t = n1T, where n is an 
integer. The situation at these values of t is analogous to that of the tangent 
function when t = 1Tl2 + n1T. We conclude that the graph of csc t has vertical 
asymptotes when t = mr, for all integer values of n. In Figure 38 we have 
sketched the graph of the sine function with dashed lines , to aid in sketching the 
reciprocal values of the y-coordinates for the cosecant function. 
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I 
I 
I 
I I I � y = sin t 

�2rr - �... ./ 

(\! if\ 1(\' ,./li T I I I I I I I 1 y = csc t I I I I 

FIGURE 38 

I I I I I 

A similar approach yields the graphs of sec t and cot t shown in Figures 39 
and 40. 

!vi l I I I 
I I I 
I I I 
I ,..... ...., I I ,. 

y 

I iv: I I I 
I I I 
I I I I I I y = cos t , 1 1 , .... .... � �(\' .... ..... �; s; 
I I I I I I I I I I y = sec t I I I I I I I 

FIGURE 39 
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EXERCISE SET 5.5 

y 

FIGURE 40 

I I 
ry = � ,  

I I 
I I I 

t 

Table 7 summarizes the significant properties of the trigonometric func
tions . 

TABLE 7 

Positive in 
Quadrant - ( Period Domain Range 

sin I, II -sin t 217 all real numbers [ - 1 , 1 ) 

cos I, IV cos t 217 all real numbers [ - 1 ,  l )  

I ,  UI 7T 
( - oo, oo) tan -tan t 7T t *- -z + mr 

csc I, II  -csc t 27T I 4' n1T ( -oo, - 1 ) ,  [ I ,  oo) 

I ,  IV 27T 7T 
( -oo, - 1 ),  ( I ,  oo) sec sec 1 t * 2 + n'TT 

cot I .  111 -cot t 1T t :/= n'TT ( - oo, oo) 

Use lhe definitions of ecant, co ecant, and cotangent to determine sec t, csc t, and cot t for each of the following values 
of I .  

l .  J! 2 .  :!! 3.  J! 4. 
1T 

3 6 4 2 

5 .  57T 
6. 

47T 
7 .  

37T 
8. 

77T 
6 3 2 4 
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9 377 
. 4 IO .  l l 1T 

6 1 1  51T . 4 
Determine the value(s) of t, 0 :5 t :5 277, that satisfy each of the following. 
1 3 .  sec t = I 14 .  sec t =  - I 1 5 .  csc t = -2 

1 7 .  cot t = I 

2 1 .  sec t =  Vi 
18 .  cot 1 = v3 
22. csc t = -Vi 

1 9. cot 1 = - I 

23. cot 1 = -v3 
Find the quadrant in which t lies if the following conditions hold. 
25. sec t < O, sin t < O  26. tan t < O, sec t < O  27. csc 1 > 0, sec 1 < 0  
29. sec t < O, cot t > O  30. cot t < O, sin t > O  3 1 .  sec r < O, csc t < O  
Determine the value of t, 0 s t < 21T, that satisfies each of the following. 
33. sin t = 1/2, sec t < 0 34. tan t = v3, csc t < 0 
35. sec t =  -2,  csc t > 0 36. csc t = -2, cot t > 0 
37. csc t = -V2, sec t <  0 38. sec t =  Vi, cot t > 0 
39. cot t = - 1 ,  sec t <  0 40. cot t = v3, csc t < 0 

1 2 .  71T 
6 

16 .  csc t = 0 

20. v3 cot 1 = 3 
24. v3 csc 1 = 2-3 

28. sin t < 0, cot t > 0 
32. csc t < 0, cot t > 0 

Use Table V in the Tables Appendix to find each of the following. (Assume 7T = 3 . 1 4  to find the reference number. ) 
4 1 .  cot 3 .37 42. sec 0.48 43. csc(-4.68) 44. csc 2.48 
45 . sec 1 .26 

5.6 
THE INVERSE 
TRIGONOMETRIC 
FUNCTIONS 

46. cot(- I .  82) 

Inverse functions were introduced in Section 3 .6  and were used to define loga
rithmic functions in Section 4.2 .  We have seen that if I is a one-to-one function 
whose domain is the set X and whose range is the set Y, then the inverse function 
1- • reverses the correspondence; that is,  

if and only if 

I (x) - y for all x E X 

Using this definition, we saw that the following identities characterize inverse 
functions. 

1- 1 [l(x)] = x for all x in X 
l[J- 1 ( y)] = y for all y in Y 

If we attempt to find an inverse of the sine function, we have an immediate 
problem. Since sine is a periodic function, it is not a one-to-one function and has 
no inverse. However, we can resolve this problem by defining a function that 
agrees with the sine function but over a restricted domain.  That is, we would like 
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Inverse Sine Function 

* 

to find an interval such that y "" sin x is one-to-one and y assumes all values 
between - I and + l over this interval . If we define the function / by 

f(x) = sin x, -¥ ::5 x ::5 ¥ 
then/takes on the same values as the sine function over the interval [- 7T/2, 7T/2] 
and assumes an reaJ values in the interval [ - l ,  l ] .  The graph of sin x over the 
interval ( - 7T/2, 7T/2] shows that/ is an increasing function and is therefore one
to-one. Consequently, f has an inverse, and we are led to the following defini
tion. 

The inverse sine function, denoted by arcsin or sin- 1 , is defined by 

sin - l  y = x if and only if sin x: = y 

Note that - 1 :s; y :s; 1 ,  so the domain of the inverse sine function is the set of all 
real numbers in the interval [ - l ,  1 ] .  

WARNING When we defined sin11 t = (sin t)11 we said that this definition does 
not hold when n ""  - 1 ,  allowing us to reserve the notation sin- • for the inverse 
sine function. Thel'efore, sin- • y is not to be confused with I/sin y; speci
fically, 

y 
7f 

- 2  
7f 

- -3 
7f 

- c;  
0 
7f -
6 
1T 
3 
1T 
2 

FIGURE 41 

x 

- 1 

. - I  -J. 1 
sm y '1"" -.

sm y 

y 

./3 - - � -0.87 2 
I 
2 

0 
J_ 
2 

./3 � 0.87 2 
I 

y = arcsin x = sin- 1 x 

x 
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The notations arcsin and sin - I are both in common use and we will therefore 
employ both notations. Note that ifx = arcs in y, then sin x = y. On a unit circle, x 
determines an arc whose sine is y, which is the origin of the notation arcsin y. 
Although this notation has the advantage of avoiding the possible confusion noted 
in the preceding warning, the sin- 1 notation has become more popular in recent 
years. 

We would like to sketch the graph of y = sin- 1 x. (Since x and y are simply 
symbols for variables, we have reverted to the usual practice of letting x be the 
independent variable . )  The graph, of course , is the same as that of sin y = x, with 
the restriction that - 7T/2 s y s  7T/2.  We form a table of values and sketch the 
graph in Figure 4 1 .  Note that for a given value of x, x and sin- 1 x are both positive 
or both negative. 

EXAMPLE 1 

Find (a) arcsin ! (b) arcsin(- 1  ). 

SOLUTION 

(a) If y = arcsin !, then sin y = ! where y is restricted to the interval [- 7T/2, 
7T/2] .  Thus, y = 1Tl6 is the only correct answer. 
(b) If y = arcsin( - I ) , then sin y = - I where - 1Tl2 s y s 7T/2.  Thus, - 1Tl2 is 
the only correct answer. 

EXAMPLE 2 

Evaluate sin- 1 ( cos *) · 

SOLUTION 

S
. 1T V2 h 
mce cos 4 = Z' we ave 

. - 1 ( 'TT) . - 1 (Y2) sm cos 4 = sm 2 
We let 

. - 1 (Y2) y = sm 2 
Then 

. V2 
sm y = z 

1T 
y = -4 

which is the only solution. 

where 
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PROGRESS CHECK 

Find (a) · - • ( VJ) Stn -2 
ANSWERS 
(a) - tr/3 (b) -rr/2 

(b) arcsin(tan 5;) . 

We may use a similar approach to define the inverse cosine function. If we 
define the function f by 

f(x) = cos x, 0 ::5 x ::5 7r 
then f agrees with the cosine function over the interval [O, -rr] ,  assumes all real 
values in the interval ( - 1 ,  l ] , and is a decreasing function. Consequently , /  is a 
one-to-one function and has an inverse . 

Inverse Cosine Function The inverse cosine function, denoted by arccos or cos- • , is defined by 

cos- • y = x if and only if cos x = y 
where 0 ::5 x ::5 -rr. 

Since - 1  ::5 y ::5 1 ,  the domain of the inverse cosine function is the set of all real 
numbers in the interval { - l , l ] . 

To sketch the graph of y = cos- • x we sketch the graph of cos y = x as in 
Figure 42. Note that cos- 1 x is always positive. 

y 

y x 

0 1 

!. .j3 - :::: Q.87 
6 2 

! I 

3 2 

I!. 0 
2 

21T I 

3 
- 2 

51T .j3 
6 

- 2 <::: -0.87 
1T -1 - 1  x 

y = arccos x = cos- I x 
FIGURE 42 
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EXAMPLE 3 

Find (a) cos- 1 ( - n  (b) arccos(sin 7T/2).  

SOLUTION 

(a) If y = cos- 1 ( -!),  then cos y = -! where y is restricted to the interval 
(0, TT] . Consequently, y = 27T/3 is the only correct answer. 
(b) Since sin 7T/2 = 1 ,  we let y = arccos( 1 ) .  Then cos y = l where 0 ::5 y ::5 7T. 
Therefore, y = 0 is the only correct answer. 

If we restrict the tangent function to the interval [ - TT/2, 7T/2] ,  we can define 
the inverse tangent function. 

The inverse tangent function, denoted by arctan or tan-1 , is defined by 

tan - 1  y = x if and only if tan x = y 

7T 7T where -2 < x < 2. 

Note that the domain of  the inverse tangent function i s  the set of  all real num
bers. 

Proceeding as before, we sketch the graph of y = tan- 1 x in Figure 43 . 

EXAMPLE 4 

11' 
2 

y 

- - - - - - - - - - - - - - - - - - - -

FIGURE 43 

11' - 2 y = arctan x = tan- I x 

x 

Find tan- 1 v3. 
SOLUTION 

If y = tan- 1 v3, then tan y = v3. Since - TT/2 < y < 7Tl2, we must have y = 
7T/3.  
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CALCUlATORS 

PROGRESS CHECK 
Find tan- 1 (- 1 ) .  

ANSWER 
- 7T/4 

EXAMPLE 5 
Find cos(arctan 4/3) without using tables or a calculator. 

SOLUTION 
If we let x ;::; arctan 4/3, then tan x = 4/3 and 0 ::;; x < 7T/2 .  Using trigonometric 
identities , 

sin x 4 
tan x = -- = 

cos x 3 

3 sin x ;::; 4 cos x 
9 sin2 x ;::; 16 cos2 x 

9( 1 - cos2 x) ;::; 16 cos2 x 
9 2 -cos x = 25 

3 cos x ;::; ±5  

Clearing fractions 

Squaring both sides 

sin2 x ;::; 1 - cos2 x 

Since x e (0, 7T/2] ,  we conclude that cos x ;::; 3/5 . 
PROGRESS CHECK 

Without using tables or a calculator, find cot( sin_ , -
1
5
3
) .  

ANSWER 
- 1215 

The values of the inverse trigonometric functions can be found by using a cal
culator. For example, to find arcsin 0. 86, you would enter the following func
tions on most calculators: 

RAD I I . 86 I I INV I I SIN 

By pressing INV before SIN, you are requesting the inverse sine function rather 
than the sine function. The answer displayed is 1 .035 and will always obey the 
same restrictions that we have defined for each of the inverse trigonometric func
tions. 
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EXAMPLE 6 
Using a calculator, find (a) tan- 1 4.256 

SOLUTION 
(a) The key sequence 

(b) cot (arccos 0.627). 

RAD I ' 4. 256 I I INV I I TAN 

provides the answer 1 . 340 in the display. 
(b) The key sequence 

RAD I I 0.627 I I INV I I cos 
produces the answer 0.893 1 . To evaluate cot 0.893 1 ,  we use the key se
quence 

I 0. 893 1 I I TAN I I l /x 

and obtain the answer 0. 8049 in the display. 

PROGRESS CHECK 
Use a calculator to find (a) sin- • (-0.725) 

ANSWERS 
(a) -0.8 1 10 (b) 1 . 107 

(b) sec (arcsin -0.429). 

The inverse trigonometric functions can be used to provide exact expressions for 
the solutions of certain equations. The next pair of examples illustrates this 
point. 

EXAMPLE 7 
Find all solutions of the equation 3 sin x = 1 that are in the interval [O, 11'/2] .  

SOLUTION 
Solving for sin x, we have 

which we can then write as 

. l sm x =  3 

. 1 x = arcsm 3 
This is an exact expression for the solution. Using a calculator (or a table),  we 
find that 0.3398 is an approximate value of x that satisfies the original equation . 
Since sine is an increasing function in the interval fO, 71'/2] ,  there can be at most , 
one solution. · 



268 lHE ffilGONOMETRIC FUNCTIONS 

* 

EXERCISE SET 5.6 

EXAMPLE 8 
Find the solutions of the equation 5 cos2 x - 3 = 0 that are in the interval 
lO, 1T] . 

SOLUTION 
We treat the equation as a quadratic in cos x. Then 

5 cos2 x = 3 

cos x = ± Is = ± v;s 
We may then write 

x = arccos(v;5) or x = arccos( -v;5) 
These are exact expressions for the solutions. Numerical approximations can be 
obtained using Table V in the Tables Appendix or a calculator. The student is 
urged to verify that 

x = 0.6847 and x = 2.4568 

are appropriate solutions of the original equation. 

PROGRESS CHECK 
Find the solutions of the equation 2 sin2 x + 2 sin x - I = 0 that are in the 
interval [ - 7T/2, 7T/2] . 

ANSWER 
arcsin(-! ± iVJ) 

WARNING It is important to remember that the range of each of the inverse 
trigonometric· functions is a subset of the domain of the corresponding trigono
metric function. Given tlte equation 

t = sin- • (-�) 
students often write t ;;;;:; 71T/6, which is incorrect since t must lie in the interval 
[ - 1T/2, 1T/2] .  The only correct answer is - 1Tl6. 

In Exercises 1-1 8  evaluate the given expression. 

I .  sin- • (-�) 2 .  arccos(�) 3 .  arctan VJ 4. tan- I 0 
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5 .  . ( Vi) arcsm -2 6. cos- 1(- 1 )  7. arccos( -'-?) 8. un- 1 (�) 
9. sin- 1(- 1 ) 10. arctan 1 1 1 .  cos- •  0 1 2. . - ·( v3) sm -2 

13 .  cos- 1 1 14. . (Vi) arcsm T 1 5 . arctan(- 1 ) 1 6. sin- • 0 

17 .  cos- • (-�) 1 8. arcs in(!) 
ln Exercises 19-24 use Table V in the Tables Appendix to approximate the given expression. 
19. sin- 1 (0.3709) 20. arcran( l . 398) 2 1 .  cos- 1(-0.7648) 22. tan- 1(-3.0 10) 
23 . arcsin(0.9636) 24. arccos(-0.92 1 )  
25-30. Repeat Exercises 19-24 using a calculator that has a key marked INV or an equivalent notation. 
In Exercises 3 1-46 evaluate the given expression . 

3 1 .  sin(arctan 1 )  32. cos( arcsin -�) 33. tan- • (cos ¥) 34. sin- 1 (sin 0.62) 

35. - ·( . 91T) cos sm 4 36. tan( sin - • 0) 37. cos-1 (cos 2;") 38. sin- • (cos i) 
In Exercises 39-44 use the inverse trigonometric functions to express the solutions of the given equation exactly. 
39. 7 sin2 x - 1 = 0, x E [-1Tl2, 1Tl2] 40. 6 cos2 y - 5 = 0, y e  [0, ?T] 
4 1 . 1 2  cos2 x - cos x - 1 = 0, x E [0, 1T] 42. 2 tan2 / + 4 tan t - 3 = 0, t e [-1Tl2, 1Tl2] 
43 . 9 sin2 t - 12  sin t + 4 = 0, / e [-1T/2, 1Tl2] 44. 3 cos2 x - 7 cos x - 6 = 0, x E [O, 7T] 
In Exercises 45 and 46 provide a value for x to show that the equation is not an identity. 

45 . sin- • x = -.-

1
-

sm x 

TERMS AND SYMBOLS 
angle (p. 2 14) 
initial side of an angle 

(p. 214) 
terminal side of an angle 

(p. 214) 
standard position of an an-

gle (p. 2 1 5) 
positive angle (p. 2 1 5) 
negative angle (p. 2 1 5) 
quadrantal angle (p. 2 1 5) 
unit circle (p. 2 16) 
degree measure (p. 2 I 6) 
right angle (p. 2 I 7) 
acute angle (p. 2 1 7) 

obtuse angle (p. 2 1 7) 
radian measure (p. 2 I 7) 
angle of / radians (p. 2 17) 
unit circle point (p. 2 1 7) 
cotenninal angles (p. 220) 
trigonometric functions 

(p. 225) 
sine (sin) (p. 225) 
cosine (cos) (p. 225) 
tangent (tan) (p. 225) 
identities (p. 230) 
circular functions (p. 230) 
trigonometric identity 

(p. 230) 

46. (sin- 1  x)2 + (cos- • x)2 = l 

periodic function (p .  237) 
period (p. 237) 
reference number (p. 239) 
Reference Number Rule 

(p. 239) 
reference angle (p. 24 1 )  
Reference Angle Rule 

(p. 242) 
minutes (p. 242) 
seconds (p. 242) 
increases without bound 

(p. 247) 
decreases without bound 

(p. 247) 

vertical asymptotes 
(p. 247) 

even function (p. 247) 
odd function (p. 247) 
amplitude (p. 249) 
reflection (p. 250) 
phase shift (p. 252) 
secant (sec) (p. 256) 
cosecant (csc) (p. 256) 
cotangent (cot) (p. 256) 
arcsin (sin- 1 ) (p. 262) 
arccos (cos- 1) (p. 264) 
arctan (tan- 1 )  (p. 265) 
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KEY IDEAS FOR REVIEW 
0 An angle may be measured in either degrees or in radi

ans. The two forms of measure are related by the equa
tion 1T radians = 1 80°. 

D Every real number t determines a unit circle point P 
measured along the circle from A(l , 0). If t is positive, 
the arc is measured in the counterclockwise direction; if 
t is negative, the arc is measured in the clockwise direc
tion. 

0 If the unit circle point P corresponds to the real number 
t, then it also corresponds to every real number of the 
form t + 21Tn where n is an integer. 

D The trigonometric functions sine, cosine, and tangent 
are defined in terms of the rectangular coordinates of a 
unit circle point P(x, y) determined by a real number t: 

sin t = y 

cos t = x  
tan t = ylx, x =t- 0 

D A trigonometric function of an angle is the same as the 
trigonometric function of the arc on the unit circle that 
the angle intercepts. 

0 The signs of the trigonometric functions in each of the 
quadrants follow from the definitions and are displayed 
in Figure 37. 

0 Sine and tangent are odd functions and cosine is an even 
function . That is, 

REVIEW EXERCISES 

sin ( -t) = -sin t 
cos (-t) = cos t 
tan (-t) = -tan t 

0 The trigonometric functions are all periodic. The period 
of the sine and cosine functions is 27T; the period of the 
tangent function is 1T. 

D Standard tables of the values of the trigonometric func
tions (see Table V in the Tables Appendix) display the 
independent variable t from 0 to 7T/2. If it is desired to 
find sin t' where 7T/2 < t' < 27T, the Reference Number 
Rule is used to determine a real number t, 0 :S t <  7T/2, 
such that lsin ti = lsin t'I. The appropriate sign is then 
assigned depending on the quadrant of t' . 

0 The Reference Angle Rule is analogous to the Reference 
Number Rule. It enables us to find the value of a trigo
nometric function of an angle greater than 90° by using 
Table VI in the Tables Appendix, which gives the values 
for angles between 0° and 90°. 

D To sketch the graph of f (x) = A sin(Bx + C), note 
that 
(i) the amplitude is !Al; 
(ii) the period is 27TIB; 
(iii) the phase shift is -CIB. 
The same observations hold for f(x) = A  cos(Bx + C). 

0 The secant, cosecant, and cotangent functions are de
fined as the reciprocals of cosine, sine, and tangent, 
respectively. 

D To define the inverse trigonometric functions, it is nec
essary to restrict the domain of the trigonometric func
tions to ensure that the result is a one-to-one function . 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book.  

5 . 1 In Exercises 1 -4 convert from degree measure to radi-
an measure or from radian measure to degree mea
sure. 

I .  -600 2. 
37T 
2 

3. 51T 4. 45° 1 2  



5.2 

In  Exercises 5-7 detennine if  the pair of angles are 
cotennin.al. 

5.  iooo, s; 6. 
4; . 4800 

7 .  
S1T - 1 35° 
4 '  

8 .  If a central angle 8 subtends an arc of length l 4 
centimeters on a circle whose radius is ] Q  centi
meters, find the radi.an measure of 8. 

9 .  A central angle of  21T/3 radians subtends an arc of 
length 51r/2 centimeters. Find the radi.us of the 
circle. 

In Exercises l 0- 13  determine the quadrant in which t 
or 8 lies . 

1 1 1T 
10. t = 6 

12.  I) =  490° 

1 1 . 8 = -220° 

l h 
1 3 . t =  --3-

In Exercises 14- 17  replace each given real number t by 
t', O s t' < 21T, so that t and t' determine the same unit 
circle point. 

91T 
14. 2 

1 6. -61T 

1 5 .  
l51T 
2 

231T 1 7. 3 

In Exercises 1 8-22 the unit circle point (415, - 3/5) 
corresponds to the real number t. Use the symmetries 
of the circle to find the rectangular coordinates corre
sponding to the given real number. 

1 8. (t - 1T) 19. (1 + ¥) 
20. (-1) 2 1 .  (1 - ¥) 
22. (-1 - 1T) 
In Exercises 23-26 find the quadrant in which 1 hes if 
the following conditions hold. 

23. tan 1 < 0 and 24. sin t < 0 and 
sin t < 0 cos t > 0 

25. sin (-1) > 0 26. sin (-1) < 0 and 
and tan t > 0 cos (-t) > O  
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In Exercises 27-30 use the trigonometric identities 

sin2 t + cos2 t = 1 sin t tan t = --cos t 

to find the indicated value under the given condi
tions. 

27. cos t = � and t is in quadrant IV; find cot t. 

28. sin t = -� and tan t > O; find sec t. 

29. sin t = !; and cos t < O; find tan t. 

5 30. cos t = -0 and tan t < O; find csc t. 
In Exercises 3 1  and 32 use the trigonometric identities 
to transform the first expression into the second. 
3 1 .  (sin t)(sec t), tan t 

sin t 
32. �. (tan t)(sec t) 

cos- t 

5 .3  In Exercises 33-36 determine the value of the indi
cated trigonometric function, without the use of tables 
or a calculator. 

34. sec( - 5
4
1T) 33. 21T sin -

3 

35. tan 51T 
6 36. csc(-�) 

In Exercises 37-40 find a value of t, 0 s t  s 21T, sat
isfying the given conditions. 

37. sin t ... -v;, t in quadrant III 

38. cos t = v;, t in quadrant IV 

39. v3 . dr I cot t = 3• t m qua ant 

40. sec t = - 2, t in quadrant II  
In Exercises 4 1  and 42 use a calculator (or Table V in 
the Tables Appendix) to evaluate the given expres
sion. 
4 1 .  cos 3 .7 1  - sin 1 .44 

42. tan(-2.74) 
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5.4 [n Exercises 43 and 44 sketch the graph of the given 
function. 
43 . f(x) = I - sin x 

44. f(x) = 2 sin (� + 7T) 
In Exercises 45-47 detennine the amplitude, period, 
and phase shift of each given function . 
45. f (x) = -cos(2x - 7T) 

46. f(x) = 4 sin( -x + ¥) 
47. f(x) = -2  sin(� + �) 

S .S  In Exercise 48 and 49 detennine the value of t ,  
0 .s t  .s 27T, that satisfies the given conditions. 
48. cos t = I ,  sec t < 0 
49. sec r = -v'2, csc t > 0 

PROGRESS TEST SA 
In Problems 1-3 convert from degree measure to radian 
measure or from radian measure to degree measure. 

I .  57r 
3 

3 .  75° 

2. -200° 

In Problems 4 and 5 find an angle (J, 0 s (J < 360°, that is 
coterminal with the given angle. 

4. -2S0 5 .  l 77r  
4 

6. If a central angle (J subtends an arc of length 12 inches 
on a circle whose radius is I S  inches, find the radian 
measure of fJ. 

In Problems 7 and 8 replace the given real number t by t' , 
0 s t' < 27r, so that t and t' detennine the same unit circle 
point. 

7 l 97r . 3 8. -227r 

In Problems 9 and I 0 find the rectangular coordinates of the 
unit circle point determined by the given real number t . 

m7r 7r 9. 6 10 .  3 

5 .6 In Exercises S0-53 evaluate the given expression. 

50. arcsin( -�) 
5 1 .  tan(cos- 1 I ) 
52. tan( tan - i S) 
53. Use the inverse cosine function to express the 

exact solutions of the equation 
S cos2 x - 4 = 0 

In Problems 1 1 - 1 3  the unit circle point P(-51 1 3 ,  1 2/ 1 3) 
corresponds to the real number t. Use the symmetries of the 
circle to find the rectangular coordinates of the point corre
sponding to the given real number. 

7r 
1 - 2  1 1 .  1 2 .  - ( 1 3 .  

I n  Problems 14 and I S  find the reference angle of  the given 
angle . 

14 .  1 60° 1 5 .  77r 
4 

In Problems 16 and 1 7  determine the value of the indicated 
trigonometric function without the use of the tables or a 
calculator. 

16 .  cos(737r) 1 7 .  csc(- 2
3
7r) 

In Problems 1 8  and 1 9  find a value of t E [0, 27r] satisfying 
the given conditions. 
1 8 . tan t = I ,  t in quadrant III 
19. sec t =  Vf t in quadrant IV 



In Problems 20 and 2 1  use the trigonometric identities 

· 2 2 sin t sm t + cos t = I ,  tan t = -cos t 
to find the indicated value under the given conditions. 

1 2  fi . 20. cos t =  -13 and tan t > O; nd sm t . 

2 1 .  sin t = � and t i s  i n  quadrant II; find sec t . 

22. Use the trigonometric identities given for Problems 20 
and 21 to transform 

1 - tan x to cos x - sin x 
cos x 

In Problems 23 and 24 use Table V in the Tables Appendix 
or a calculator to evaluate the given expression. 
23. tan(- 3 .68) 
24. cos 1 . 1 5 - sin 0.72 
25. Sketch the graph of the function f defined by f(x) = 

x + cos x. 

In Problems 1 -3 convert from degree measure to radian 
measure or from radian measure to degree measure. 

37T I .  - 1 35° 2. 4 
57T 
6 3 .  

In Problems 4 and 5 find an angle ll ,  0 :s ll < 360°, that is 
coterminal with the given angle. 

4. 430° 5 .  27T 
3 

6 .  A central angle of 100° subtends an arc of length 7 7T/3 
centimeters . Find the radius of the circle. 

In Problems 7 and 8 replace the given real number t by t ' ,  
0 :s t' < 27T, so that t and t' determine the same unit circle 
point. 

7 .  - 147T 8. 5 1 7T  
5 

In Problems 9 and I 0 find the rectangular coordinates of the 
unit circle point determined by the given real number t . 

237T 37T 9. 6 10. -4 

I n  Problems 26  and 27 determine the amplitude, period, and 
phase shift of each given function. 
26. f (x) = -2  cos( 7T - x) 

27. f(x) = 2 sin(� - �) 
In Problems 28 and 29 evaluate the given expression without 
the use of tables or a calculator. 
28. tan- 1 (-v3) 

29. ( . - 1v3) cos sm 2 
30. Use the inverse tangent function to express the exact 

solutions of the equation 

6 tan2 x - 1 3  tan x + 6 = 0 

In Problems 1 1-1 3  the unit circle point P( -415 , - 3/5) cor
responds to the real number t. Use the symmetries of the 
circle to find the rectangular coordinates of the point corre
sponding to the given real number. 

1 1 . - ( 

1 3 .  -t + 1T  

1 2. t + E: 2 

In Problems 14 and 1 5  find the reference angle of the given 
angle. 

97T 14 .  1 6  1 5 .  345° 

In Problems 1 6  and 1 7  determine the value of the indicated 
trigonometric function without the use of the tables or a 
calculator. 

16. tan(7;) 1 7 .  sin(- 3;) 
In Problems 1 8  and 1 9  find a value of t E [0, 27T] satisfying 
the given conditions . 

. v3 . d I 1 8 .  sm t = 2, t m qua rant 

19 .  sec t =  -2 ,  t in quadrant II 



In Problems 20 and 2 1  use the trigonometric identities 

sin2 t + cos2 t = I 
sin t tan t = -cos t 

to find the indicated value under the given conditions. 

20. sin t = - 1
5
3 and tan t < O; find tan t. 

2 1 .  

22. 

3 cos t = 5 and cot t < 0; find cot t .  

Use the trigonometric identities of Problems 20 and 2 1  
to transform sec2 t cot t to csc t .  

In Problems 23 and 24 use Table V in the Tables Appendix 
or a calculator to evaluate the given expression. 
23. sin(2.45) 
24. tan( - 1 .25) + cos 1 .67 
25. Sketch the graph of the function f defined by 

f (x) = sin x + sin � 

In Problems 26 and 27 determine the amplitude, period, and 
phase shift of each given function. 
26. f (x) = 4 sin(3x - 1T) 

27. f(x) = -� cos( 2x + f) 
In Problems 28 and 29 evaluate the given expression without 
the use of tables or a calculator. 

28. sin - 1 (cos f) 
29. tan(cos- 1 �) 

30. Use the inverse sine function to express the exact solu
tions of the equation 5 sin2 x - 2 sin x - 3 = 0. 



6.1 
RIGHT TRIANGLE 
TRIGONOMETRY 

TRIGONOMETRY: 
MEASURING TRIANGLES 

In the previous chapter we discussed trigonometry in terms of functions of angles 
and real numbers . This approach has the advantage of illustrating the centrality of 
the function concept in much of modem mathematical thinking . 

We now tum to the more traditional approach to trigonometry, which 
revolves about the measurement of triangles. We will show that it is possible to 
define the trigonometric functions in terms of the angles and sides of a right 
triangle. This will then give us an opportunity to explore a wide variety of appli
cations that clearly demonstrate the usefulness of trigonometry in such fields as 
surveying and navigation. 

We will conclude by examining the law of sines and the law of cosines, two 
important rules that can be employed when dealing with an oblique triangle, that 
is, a triangle that does not contain a right angle. 

We are now prepared to show that the trigonometric functions of an acute angle 
are related to the ratios of the sides of a right triangle . In Figure l a  we display a 
right triangle with sides a and b, hypotenuse r, and an acute angle 0. We can 
place this triangle on a Cartesian coordinate system with () in standard position 
(Figure l b) .  We can draw a unit circle and let N(x, y) denote the point of inter
section of the circle and the hypotenuse OP. If we drop the perpendicular NM as 
indicated , we see that the triangles OMN and OQP are similar. The corresponding 
sides must then be proportional so that 

Since OP 

MN 
= 

QP 
and 

OM 
= 

OQ 
ON OP OP 

r, we obtain by substitution 

and x a 
- =  -

r 

PAGE 275 
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Adjacent 
FIGURE 2 

4 
FIGURE 3 

r 
b 

0 M(x, 0) 

8 
a 

(a) (b) 
FIGURE 1 

By definition, sin (J = y and cos 8 = x. Substituting, we have 

. () 
b Sm = y = -;: 

cos (J = x = � 
r 

tan 8 = sin 8 = !!. 
cos (J a 

P(a, b) 

Q(a, 0 )  x 

If we denote the sides a and b of the right triangle in Figure l a  as the adjacent 
and opposite sides relative to the angle 8 (see Figure 2), then this last result 
expresses the trigonometric functions as ratios of the lengths of the sides of the 
right triangle. 

EXAMPLE 1 

. 
8 

side opposite .() sm = --

hypotenuse 

() side adjacent to (J cos = 
-

hypotenuse 

() side opposite () tan = 

. 

side adjacent to (J 

() _ hypotenuse csc - 'd . () s1 e opposite 

() _ hypotenuse sec - .d d '  8 s1 e a Jacent to 

() _ side adjacent to (J cot - .d . 8 s1 e opposite 

Find the values of the trigonometric functions of the angle (J in Figure 3 .  



FIGURE 4 

FIGURE 5 

b 

(a) 

(b) 

y 

a 

x 

SOLUTION 

EXAMPLE 2 

. () 4 sm . = 5 
3 cos () = 5 

taJ1 () = � 3 
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5 csc 8 = 4 
sec () = � 3 

3 cot () = 4 

Use the values of the trigonometric functions to find the following. 
(a) The sides of a 30°-60°-90° right triangle whose hypotenuse is of length 2. 
(b) The hypotenuse of an isosceles right triangle whose sides are of length 1 .  
SOLUTION 

(a) (See Figure 4a.) Since cos 6QP = �. we have 
cos 60° = � = � or b = 1 

Similarly, we can establish that 

sin 60° = v3 = � or a = v'3 2 2 
The student is urged to verify these results using the 30° angle and to verify that 
these values of a and b satisfy the Pythagorean theorem. 

The results for a 30° -60° -90° right triangle can also be obtained by a geo
metric argument starting with an equilateral triangle whose sides are of length 2. 
(See Exercise 40.) 
(b) (See Figure 4b.) We know that sin 45° = V2J2, so 

sin 45° = v'2 = .!. or r = � � = v'2 
2 r v2 

Of course, we could have obtained r directly by using the Pythagorean theo
rem. 

EXAMPLE 3 

Find sec () if the point P( -5 , - l 2) lies on the terminal side of 8. 

SOLUTION 

(See Figure 5. ) We construct a perpendicular from P to the x-axis to form right 
triangle PCO and use the Pythagorean theorem to find OP = 1 3 . Then 

sec ()' = 

hypotenuse = _!l adjacent 5 
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y 

FIGURE 6 

4 

3 x 

SOLVING A TRIANGLE 

b 
FIGURE 7 

B 

FIGURE 8 

a 

Since 0 is in the third quadrant ,  by the Reference Angle Rule, 

1 3  sec O =  -sec O' = -5 

In the last chapter we worked on various problems involving the inverse 
trigonometric functions. Right triangle trigonometry provides us with a faster, 
simpler approach to many of these problems . We illustrate by repeating Example 
5 of Section 5.6 .  

EXAMPLE 4 

Find cos(arctan 4/3) without using tables or a calculator. 

SOLUTION 

We let () =  arctan 4/3 so that tan () =  4/3 and 0 s () s; 7T/2 .  The angle () in Figure 
6 satisfies these conditions. Then we see that 

cos( arctan �) = cos 0 = � 
The expression "to solve a triangle" is used to indicate that we seek all parts of 
the triangle, that is, the length of each side and the measure of each angle. For any 
right triangle, given any two sides, or given one side and an acute angle, it is 
always possible to solve the triangle. We will standardize the notation as shown 
in Figure 7 so that (a) the acute angles are labeled a and {3, the right angle is 
labeled -y, and (b). the sides opposite angles a, {3, and 'Y are labeled a, b, and c, 
respectively. In solving a triangle, we will restrict ourselves to the sine, cosine, 
and tangent functions since these are the trigonometric functions available on 
calculators. 

EXAMPLE 5 

In triangle ABC, 'Y = 90°, f3 = 27°, and b :::; 8.6.  Find approximate values for the 
remaining parts of the triangle .  

SOLUTION 

We begin by labeling a right triangle as in Figure 8 .  Since the sum of the angles of 
a triangle is 1 80°, we see that a :::; 63°. Using the trigonometric functions of angle 
f3 we have 

. 270 
8 .6 and 270 

8 .6 sm :::; - tan :::; -
c a 

Solving for a and c yields 

8 .6 8 .6  c :::; --
sin 27° 

a = ---tan 27° 
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Using a calculator, sin 27° = 0.4540 and tan 27° = 0.5095 , so 

c = 8 .6/0.4540 = 1 8 . 9  

a =  8.6/0.5095 = 1 6.9  

PROGRESS CHECK 
In triangle ABC, y = 90°, ex = 64 °, and b = 24 . 7 . Solve the triangle . 

ANSWERS 
{3 = 26° a = 50.6 

EXAMPLE 6 

c = 56 .3  

In triangle ABC, y = 90°, a =  22 .5 ,  and b = 1 2.8 .  Find approximate values for 
the remaining parts of the triangle. 

SOLUTION 

Figure 9 displays the parts of the triangle. Using angle f3 we have 

tan {3 = �;:� = 0.5689 

A 

FIGURE 9 

Using a calculator, we find that f3 = 29.63°, or 29°38 ' .  (The closest entry in 
Table VI in the Tables Appendix is 29°40 ' . )  Since the sum of the angles is 1 80°, 
we must have a = 60°22 ' .  Alternatively , 

tan ex = i;:� = I .  7578 

also yields a = 60°22' .  
Finally, c can be found by the Pythagorean theorem or by trigonometry . 

sin f3 = sin 29°38 '  = 1 2 · 8 
c 
1 2 . 8  

2 c = 
0.4944= 5 ·9 
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PROGRESS CHECK 

In triangle ABC, 'Y = 90°, a =  1 7 .4, and b = 38.2 .  Solve the triangle. 

ANSWERS 

a =  24°30' /3 = 65°30' c ;;;;; 42 

EXERCISE SET 6.1 
Find the values of the trigonometric functions of lhe angle 8 in each of the following right triangles . 
l .  2. 

3 

4 

3 .  4 .  

6 

8 

5 .  6. 

1 2  

5 



6.1 RIGHT TRIANGLE TRIGONOMETRY 281 

7 .  8 .  

x 

Find the values of the trigonometric functions of the angle 9 if the point P lies on the tenninal side of 9. 
9. P(-5 , 1 2) IO. P(3, -4) I I .  P(- 1 , - 1 ) 12 .  P( l , 2) 

1 3. P(-8,  6) 14. P( l 2 ,  5) 15 . P( l 2 ,  -5) 16. P(- 1 ,  VJ) 
17 .  P(- 12, -5) 1 8 . P(-3 ,  4) 19 .  P(-2, I )  20. P(-2,  - 1 )  
In each of the following right triangles, express the length h as a trigonometric function of the angle 9. 
2 1 .  22. 

h 

23. 24. 

h 

6.5 

25. 26. 

Ii 

4. 1 

h 

2.8 

In triangle ABC. y = 90°. Find the required parts of the triangle in each of the following. 
27. a =  1 2 ,  b = 16; find a. 28. a =  5, b = 1 5 ;  find {3. 
29. b = 40, f3 = 40°; find c. 30. a = 22, a = 36°; find b. 
3 1 .  a =  75 , f3 = 22°; find b. 32. b = 60, a =  53°; find c .  

33. a =  25, f3 = 42°30' ; find c .  34. b = 50, a =  36°20 ' ;  find a .  
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Evaluate the given expression wilhoul using tables or a calculator. 35. tan(sin- 1 - 153) 36. sin(arctan - 152) 37. cos(sin- • �) 38. cos(arcsin -�) 
39. tan(cos- 1 -�) 
40. ln the accompanying figure, ABC is an equilateral triangle who e 
from A to side BC. Show that 

ides are of length 2, and AD is the perpendicular 
A 

(a) triangle ABD is a 30°-60°-90° right triangle; 
(b) sides BD and AD are of lengths I and \/3, respectively. 

6.2 
APPLICATIONS OF 
RIGHT TRIANGLE 
TRIGONOMETRY 

5 
FIGURE 10 

h 

B D c 

Many applied problems involve right triangles. We are now prepared to use our 
ability in solving triangles to tackle a variety of interesting problems. 

EXAMPLE I 
A ladder leaning against a building makes an angle of 35° with the ground. If the 
bottom of the ladder is 5 meters from the building, how long is the ladder? To 
what height does it rise along the building? 

SOLUTION 
In Figure l O  we seek the length d of the ladder and the height h along the 
building. Using right triangle trigonometry, 

cos 35° = � and 
d 

5 
d = cos 35° 

5 
d = 

0.8 1 92 

d == 6. l meters 

PROGRESS CHECK 

and 

h tan 35° = -
5 

h - 5 tan 35° 

h = 5(0. 7002) 

h == 3 . 5  meters 

The string of a kite makes an angle of 32°30' with the ground. If 1 25 meters of 
string have been let out, how high is the kite? 
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ANSWER 
67 meters 

There are two technical tenns that will occur frequently in our word problems. 
The angle of elevation is the angle between the horizontal and the line of sight. In 
Figure I la ,  () is the angle of elevation of the top T of a tree from a point x meters 
from the base of the tree. 

x 

(a) 
FIGURE 11 

T W 

{b) 

The angle of depression is the angle between the horizontal and the line of 
sight when looking down . In Figure I l b, () is the angle of depression of a boat B 
as seen from a watchtower W. 

EXAMPLE 2 

A vendor of balloons inadvertently releases a balloon, which rises straight up. A 
child standing 50 feet from the vendor watches the balloon rise. When the angle 
of elevation of the balloon reaches 44°, how high is the balloon? 

SOLUTION 
We seek the height h in Figure 1 2. Thus, 

tan 44 ° = !!:_ 50 
h = 50 tan 44° 
h = 50(0.9657) = 48 

The balloon has risen approximately 48 feet. 

EXAMPLE 3 

A forest ranger is in a tower 65 feet above the ground. If the ranger spots a fire at 
an angle of depression of 6°40' , how far is the fire from the base of the tower 
(assuming level terrain)? 
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SOLUTION 
We need to find the distance d in Figure 1 3 . Since () +  6°40' = 90°, () = 83°20' , 
then 

d tan 0 = 65 
d = 65 tan 83°20' 
d = 65(8 .5555) = 556 

The fire is approximately 556 feet from the base of the tower. 

65 

d 
FIGURE 13 

EXAMPLE 4 

A mathematics professor walks toward the university clock tower on the way to 
her office, and decides to find the height of the clock above ground. She deter
mines the angle of elevation to be 30° and, after proceeding an additional 60 feet 
toward the base of the tower, finds the angle of elevation to be 40°. What is the 
height of the clock tower? 

SOLUTION 
This problem is somewhat more sophisticated since it involves more than one 
right triangle. In Figure 14 we seek to determine h. From triangle ACD, 

tan 30° = d: 60 or h = (d + 60)(tan 30°) 

and from triangle ACB, 

tan 40° = � or h = d tan 40° 

d B 60 
FIGURE 14 
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Equating the two expressions for h yields 

(d + 60)(tan 30°) = d tan 40° 
60 tan 30° = d(tan 40° - tan 30°) 

60 tan 30° d = 
400 300 = 1 32 feet tan - tan 

h = d tan 40° = ( 1 32)(0. 839 1 )  = 1 1 0 .8 
The height of the clock tower is approximately 1 10 .8 feet. 

In navigation and surveying, directions are often given by bearings, which spec
ify an acute angle and its direction from the north-south line. In Figure 1 5a the 
bearing of point B from point A is N 40° E, that is , 40° east of north; in Figure l 5b 
the bearing of point B from point A is S 60° W; and in Figure l 5c it is 
S 20° E. 

N N 
B 

E w E w E A A 
B 

B 
s s 

(b) (c)  

EXAMPLE 5 

A ship leaves port at 10 A . M .  and heads due east at a rate of 22 miles per hour. At 
1 1  A . M .  the course is changed to S 52° E. Find the distance and bearing of the ship 
from the dock at noon. 

SOLUTION 
The situation is depicted in Figure 1 6. We find angle f3 = 38°. From right triangle 
BCE, 

e cos f3 = 22 or e = 22 cos 38° = 1 7 . 3 miles 

sin f3 = {2 or b = 22 sin 38° = 1 3 .5 miles 
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EXERCISE SET 6.2 

We now know two sides of right triangle ACE, namely 

AC :;:; 22 + e = 22 + 1 7 . 3  = 39 .3  
CE = b = ! 3 . 5  

We can now solve triangle ACE to obtain 

From triangle ACE, 

1 3 . 5  1 90 tan a = -- or a = 39 . 3  

. b l 3.5 sm a :;:; d = d 
d = .1 3 ·1

5
90 = 4 1 .5  miles sm 

The ship is 4 1 .5 miles from port at a bearing of S 7 1 °  E. 

FIGURE 16 

I . A ladder 20 feet in length touches a wall at a point 16  
feet above the ground. Find the angle the ladder makes 
with the ground . 

elevation of the inn from the hotel is 1 8°), find the 
distance along the trail from the hotel to the inn. 

2. A monument is 550 feet high. What is the length of the 
shadow cast by the monument when the sun is 64° 
above the horizon? 

3 .  Find the angle of  elevation of  the sun when a tower 45 
meters in height casts a horizontal shadow 25 meters 
in length . 

4 .  A technician positioned on an oil-drilling rig 120 feet 
above the water spots a boat at an angle of depression 
of 1 6°. How far is the boat from the rig? 

5 .  A mountainside hotel i s  located 8000 feet above sea 
level. From the hotel, a trail leads farther up the moun
tain to an inn at an elevation of 10,400 feet. If the trail 
has an angle of inclination of 1 8° (that is, the angle of 

I 



6 .  A hill i s  known to be 200 meters high. A surveyor 
standing on the ground finds the angle of elevation of 
the top of the hill to be 42°50' .  Find the distance from 
the surveyor to a point directly below the top of the 
hill . (Ignore the height of the surveyor. )  

7 .  An  observer i s  425 meters from a launching pad when 
a rocket is launched vertically. If the angle of eleva
tion of the rocket at its apogee (highest point) is 
66°20' , how high does the rocket rise? 

8 .  An airplane pilot wants to climb from an altitude of 
6000 feet to an altitude of 1 6,000 feet. If the plane 
climbs at an angle of 9° with a constant speed of 
22,000 feet per minute, how long will it take to reach 
the increased altitude? 

9. A rectangle is 16 inches long and 1 3  inches wide. Find 
the measures of the angles formed by a diagonal with 
the sides. 

10. The sides of an isosceles triangle are 15, 15, and 26 
centimeters . Find the measures of the angles of the 
triangle. (Hint: The altitude of an isosceles triangle 
bisects the base. )  

1 1 . The side of a regular pentagon is 22 centimeters . Find 
the radius of the circle circumscribed about the penta
gon. (Hint: The radii from the center of the circum
scribed circle to any two adjacent vertices of che reg
ular pentagon form an isosceles triangle. The altitude 
of an isosceles triangle bisects the base . )  

1 2 .  To determine the width of  a river, markers are placed 
at each side of the river in line with the base of a tower 
that rises 23.4 meters above the ground. From the top 
of the tower, the angles of depression of the markers 
are 58°20' and 1 1 °40' . Find the width of the river. 

1 3 .  The angle of elevation of the top o f  building B from 
the base of building A is 29°. From the top of building 
A, the angle of depression of the base of building B is 
1 5° . If building B is 1 10 feet high, find the height of 
building A. 

A 

1 4. A ship leaves port at 2 P . M .  and heads due east at a rate 
of 40 kilometers per hour. At 4 P . M .  the course is 
changed to N 32° E. Find the distance and bearing of 
the ship from the dock at 6 P . M .  

1 5 .  A n  attendant in a lighthouse receives a request for aid 
from a stalled craft located 1 5  miles due east of the 
lighthouse. The attendant contacts a second boat locat
ed 14 miles from the lighthouse at a bearing of 
N 23° W. What is the distance of the rescue ship from 
the stalled craft? 

B 

L 1 5  c 
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6.3 
lAW OF COSINES 

The Law of Cosines 

In Section 6. 1 we studied the trigonometry of a right triangle. In this and the next 
section we will examine an oblique triangle, a triangle that does not contain a 
right angle . 

We can always so1ve an oblique triangle by dropping a perpendicular as in 
Figures 1 7  a and 1 7b and treating the resulting right triangles ADC and BDC. It is, 
however, worthwhile to perform the analysis in a general way. This yields two 
results, known as the law of sines and the law of cosines. We now state and prove 
the law of cosines, maintaining the notation of the last section; thus, the angles of 
triangle ABC are denoted by a, {3, and y, with opposite sides a, b, and c, respec
tively. 

c 

c - x 

c 

A -------------- B A ...,.._ ........ _____ �....._ __ ......... D 

�i.,__��-D��c������•�I c B x 

(a) 
AGURE 17 

In triangle ABC, 

a2 = b2 + c2 - 2bc cos a 
b2 = a2 + c2 - 2ac cos {3 
c2 = a2 + b2 - 2ab cos y 

(b) 

( 1 )  

(2) 
(3) 

The student is urged to note the pattern of the three forms of the law of cosines as 
an aid in their memorization. 

To prove the law of cosines, we deal with the cases shown in Figure 1 7 . 

Case I .  The angles of triangle ABC are all acute (Figure 1 7a) . We construct the 
perpendicular CD to side AB. Applying the Pythagorean theorem to right trian
gles BDC and ADC, we have 

a2 = h2 + (c - x)2 

= h2 + c2 - 2cx + x2 

= (h2 + x2) + c2 - 2cx 
= b2 + c2 - 2cx (4) 
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The last step results from application of the Pythagorean theorem to right triangle 
ADC. Also, 

x cos a = b or x = b cos a 

which we then substitute in Equation ( 4) to yield 

a2 = b2 + c2 - 2bc cos a 

This establishes the desired result of Equation ( l ) .  

Case 2 .  Triangle ABC has an obtuse angle f3 (Figure 1 7b). We construct the 
perpendicular CD to side AB. The Pythagorean theorem can be applied to right 
triangle BDC to give 

a2 = h2 + x2 

Next, we use the trigonometry of the right triangle ADC to obtain 

. h sm a =  b or 

c + x  cos a =  -b-

h = b sin a 

or x = b cos a - c 

Substituting for h and x in Equation (5) we have 

a2 = b2 sin2 a + (b cos a - c)2 
= b2 sin2 a + b2 cos2 a - 2bc cos a + c2 
= b2(sin2 a +  cos2 a) - 2bc cos a + c2 
= b2 + c2 - 2bc cos a (Since sin2 a + cos2 a = 1 )  

Once again, this is the desired result of Equation ( l ) .  

(5) 

We have thus established the first form of the law of cosines for both cases. 
A similar argument can be used to establish the other two forms, given in Equa
tions (2) and (3) .  

Examination of the law of cosines shows that it can be used in the following 
circumstances. 

The law of cosines may be used when 
(a) three sides of a triangle are known (SSS), or 
(b) two sides of a triangle are known and the measure of the angle formed by 
those sides is known (SAS). 

The law of cosines involves a good deal of computation. A calculator is 
great for easing the burden; not only will you be able to evaluate the cosine and 
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B 

c 20 A 

FIGURE 18 

c 

inverse cosine functions, but you will also be able to effortlessly perfonn the 
arithmetic computations. 

EXAMPLE 1 
Find the length of the third side of the triangle shown in Figure 1 8 . 

SOLUTION 
We are given two sides and the included angle (SAS),  so the law of cosines can be 
used: 

EXAMPLE 2 

c2 = a2 + b2 - 2ab cos 'Y 
= 1 52 + 202 - 2( 15)(20) cos 1 30° 
= 225 + 400 - 600(-0.6428) 

c2 = 1010.7 
c = 3 1 .8 

Highway engineers who are to dig a tunnel through a small mountain wish to 
detennine the length of the tunnel . Points A and B are chosen as the endpoints of 
the tunnel . Then a point C is selected from which the distances to A and B are 
found to be 190 feet and 230 feet, respectively. If angle ACB measures 48°, find 
the approximate length of the tunnel .  

SOLUTION 
The known information is displayed in Figure 19 . Applying the law of cosines, 

c2 = a2 + b2 - 2ab cos 'Y 
= 2302 + 1 902 - 2(230)( 1 90) cos 48° 

A ------- B c2 = 30,5 1 8 
c 

FIGURE 19 c = 175 feet 
EXAMPLE 3 
Find the approximate measure of the angles of triangle ABC if a =  1 50, b = 100,. 
and c = 75 . 

SOLUTION 
Substituting in the equation 

a2 = b2 + c2 - 2bc cos a 
1 502 = 1 002 + 752 - 2( 100)(75) cos a 

22,500 = 1 0,000 + 5625 - 1 5 ,000 cos a 
cos a = -0.4583 

Since cos a is negative, angle a must lie in the second quadrant and is an obtuse 
angle. Using a calculator, enter 
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DEG I I .4583 I I +!- I I INV I I cos 
The display shows an answer of 1 1 7 . 28°. Converting to degrees and minutes, we 
have 

Similarly ,  

lt' = 1 17° 1 7 ' 

b2 = a2 + c2 - 2ac cos /3 

1 002 = 1 502 + 752 - 2( 1 50)(75) cos /3 

1 0,000 = 22,500 + 5625 - 22,500 cos /3 

cos /3 = 0. 8056 
/3 = 36°20' 

Finally, we may easily determine y since the sum of the angles of a triangle is 
1 80°. 

y = 1 80° - ( 1 1 7° 1 7 ' + 36°20') = 26°23 ' 

The student should verify this result by substituting in the equation 

c2 = a2 + b2 - 2ab cos y 

We conclude this section by reminding you of a useful result from plane 
geometry. 

In triangle ABC. if a <  b, then a <  {3; that is, the smaller angle lies opposite the 
smaller side. 

This theorem provides you with a means to perform a quick check as to whether 
your computational results are reasonable . You should always verify that the 
angles and sides correspond, that is, the smallest angle is opposite the smallest 
side and the largest angle is opposite the largest side. 

EXERCISE SET 6.3 
In Exercises 1 - 1 0  use the law of cosines to approximate the required part of triangle ABC. 

I .  a =  10 ,  b = 1 5 ,  c = 2 1 ;  find {3. 2. a =  5 , b = 1 2, c = 1 5 ;  find y. 
3 .  a =  25 , c = 30, f3 = 28°30 ' ;  find b. 4. b = 20, c = 1 3 ,  a =  1 9° 10 ' ;  find a. 

5. a =  10 ,  b = 1 2, y = 108°; find c.  6. a =  30, c = 40, f3 = 1 22°; find b. 
7 .  b = 6, a = 7 ,  y = 68°; find a. 8 .  a =  6, b = 1 5 ,  c = 1 6; find {3. 
9. a =  9, b = 1 2, c = 15; find y. 1 0. a =  I I , c = 1 5 ,  f3 = 33°; find y. 
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1 1 .  The sides of a parallelogram measure 25 centimeters 
and 40 centimeters, and the longer diagonal measures 
50 centimeters. Find the approximate measure of the 
smaller angle of the parallelogram. 

12 .  The sides of  a parallelogram measure 40 inches and 70 
inches, and one of the angles is 108°. Find the approx
imate length of each diagonal of the parallelogram. 

1 3 .  A ship leaves port at 9 A .M .  and travels due west at a 
rate of 1 5  miles per hour. At 1 1  A .M .  the ship changes 
direction to S 32° W. What is the distance and bearing 
of the ship from port at I P .M .? 

1 4. A ship leaves from port A intending to travel direct to 
port B ,  a distance of 25 kilometers . After traveling 1 2  
kilometers the captain finds that his course has been in 
error by 10°. How far is the ship from port B? 

1 5 .  Two trains leave Pennsylvania Station i n  New York 
City at 2 P .M. and travel in directions that differ by 
55°. If the trains travel at constant rates of 50 miles per 
hour and 80 miles per hour, respectively, what is the 
distance between them at 2:30 P .M .? 

1 6. Hurricane David has left a telephone pole in a nonver
tical position. Workmen place a 30-foot ladder at a 
point IO feet from the base of the pole. If the ladder 
touches the pole at a point 26 feet up the pole, find the 
angle the pole makes with the ground. 

1 7 .  Find the approximate perimeter of  triangle ABC if a = 

20, b = 30, and y = 37°. 
1 8 .  A hill makes an angle o f  10° with the horizontal . An 

antenna 50 feet in height is erected at the top of the hill 
and a guy wire is run to a point 30 feet from the base of 
the antenna. What is the length of the guy wire? 

19 .  Prove that if ABC is a right triangle, the law of cosines 
reduces to the Pythagorean theorem. 

20. Prove the following in triangle ABC. 
(a) a2 + b2 + c2 

= 2(bc cos a + ac cos f3 + ab cos y) 
cos a cos f3 cos y a2 + b2 + c2 (b) -a- + 

b 
+ c = 2abc 

2 1  . Prove that if 

� - cos a 
a - b 

triangle ABC is either a right triangle or an isosceles 
triangle .  

6A 
lAW OF SINES 

In the last section we applied the law of cosines to an oblique triangle. That law 
derives its name from the appearance of the cosine function in its statement. 

The Law of Sines 

We will now state and prove the law of sines, which also applies to an 
oblique triangle . Not surprisingly, the law of sines involves the sine function . 
Once again, we denote the angles of triangle ABC by a, {3, and y, with opposite 
sides a, b, and c, respectively . 

In triangle ABC, 

a b c 
-- = -- = --

sin a sin {3 sin y 

The two cases are illustrated in Figure 20. 
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FIGURE 20 
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c 

I 
I 
1 11 
I 

.....:;;..--i..----'--"'-�-d 
B A c B D 

(a) (b) 

Case 1 .  The angles of triangle ABC are all acute (Figure 20a) . We construct the 
perpendicular CD to side AB. Then triangles ADC and BDC are both right trian
gles, and we can apply trigonometry of a right triangle to obtain 

sin a = � or h = b sin a 
. /3 

h h . sm = - or = a sm f3 
a 

Equating the expressions for h yields 

b sin a = a sin f3 

which can be written in the convenient form 

a b 
sin a sin f3 

Case 2 .  Triangle ABC has an obtuse angle f3 (Figure 20b) . We construct the 
perpendicular CD to side AB . Applying right triangle trigonometry to triangles 
ADC and BDC, and noting that o = 1 80° - {3, we obtain 

. h sm a =  b or 

sin o = sin( l 80° - /3) = /_!_ or 
a 

Equating the expressions for h yields 

h = b sin a 
h = a sin( l 80° - /3) 

b sin a = a sin( l 80° - /3) 

Since sine is positive in both the first and second quadrants, the Reference Angle 
Rule tells us that 

sin( 1 80° - /3) = sin f3 
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Applying the 
Law of Sines 

Substituting, we again obtain 

or 

b sin a ;:: a sin f3 

a b 
-- = --

sin er sin f3 

To complete the proof of the law of sines we need only drop a perpendicular 
from A to BC and use a similar argument to show that 

b c 
sin {3 sin 'Y 

The law of sines then fo1lows from the transitive property of equality . 
The law of sines can be used in the following circumstances. 

The law of sines may be used when the known parts of a triangle are 

(a) one side and two angles (SAA), or 

(b) two sides and an angJe opposite one of these sides (SSA). 

Remember that if two angles of a triangle are known, we can immediately deter
mine the third angle. Here is an example. 

c EXAMPLE 1 
In triangle ABC, a =  38°, {3 = 64°, and c = 24. Find approximate values for the 
remaining parts of the triangle. 

SOLUTION 
A ...._..._ ________ � 8 (See Figure 2 1 . ) Since er and {3 are known, 

FIGURE 21 'Y = 1 80° - (er + /3) = 1 80° - (38° + 64°) = 78° 

Applying the law of sines, 

Similarly, from 

we obtain 

a c 
sin a = 

sin 'Y 
a 24 

sin 38° - sin 78° 

= 24 sin 38° 
= 

24(0.6 157) 
= 1 5  1 a 

sin 78° (0.978 1 )  · 

b c 
-- = --

sin f3 sin 'Y 

b = 22. 1 
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When the given parts of a triangle are two sides and an angle opposite one of 
them, the situation is not straightforward since a unique triangle is not always 
determined. In Figure 22 we have constructed angle a and side b and then used a 
compass to construct a side of length a with an endpoint at C. In Figure 22a no 
triangle exists satisfying the given conditions; Figure 22b shows that we may 
obtain a right triangle; Figure 22c illustrates the possibility that two triangles will 
satisfy the given conditions; Figure 22d shows that precisely one acute triangle 
may be possible. 

(a) 

(c) 

FIGURE 22 

(b) 

c 

� \ �  ' / ' / ' / ...... ..._ .-
..._ _ _  __ 

(d) 

In Exercise 23 you will be asked to prove a number of inequalities that 
determine which of the four cases applies to a given set of conditions. In practice, 
we prefer to have you go ahead with the law of sines and let the results lead you to 
the appropriate answer. 

Assume that sides a and b and angle a of triangle ABC are known and that 
we use the law of sines to determine angle {3. These are the results that correspond 
to the possibilities of Figure 22. 
(a) sin f3 > 1 .  Since lsin 01 ::::; 1 for all 0, there is no angle f3 satisfying the given 
conditions .  This corresponds to the illustration in Figure 22a. 
(b) sin f3 = 1 .  Then f3 = 90° and the given parts determine a unique right tri
angle (Figure 22b). 
(c) 0 < sin f3 < 1 .  There are two possible choices for {3, which is why this is 
called the ambiguous case. Since the sine function is positive in quadrants I and 
II ,  one choice will be an acute angle and one will be an obtuse angle 
(Figure 22c). 
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(d) 0 < sin {3 < 1 .  There are two possible choices for f3 but the obtuse angle 
does not form a triangle (Figure 22d) . This case is signaled by a +  f3 exceeding 
1 80°. 

Here are several illustrations of the law of sines when two sides and an angle 
opposite one of these sides are known. 

EXAMPLE 2 
In triangle ABC, a =  60°, a =  5 ,  and b = 7. Find angle {3. 

SOLUTION 
Using the law of sines, 

a b 
sin a 

= 
sin {3 

sin {3 = 
b s�n a = 7 si� 60° = 1 . 2 

Since the sine function has a maximum value of l ,  there is no angle f3 such that 
sin {3 = 1 .2 . Hence, there is no triangle with the given parts . This example cor
responds to Figure 22a. 

EXAMPLE 3 
In triangle ABC, a =  5 ,  b = 8, and a =  22°. Find the remaining angles of the 
triangle . 

SOLUTION 
Using the law of sines, 

a b 
sin a = sin {3 

. a _ b sin a _ 8 sin 22° _ 

0 5994 sm I" - --
a
- - 5 

- . 

Using tables or a calculator, we find that {3 = 36°50' .  Thus, the angles are 
(approximately) a =  22°, {3 = 36°50' , and y = 12 1 ° 10' . 

However, the angle {3 = 1 80° - 36°50' = 143°10'  also satisfies the require
ment that sin f3 = 0.5994. Therefore, another satisfactory triangle has angles a =  
22°, {3 = 143° 10' , and y = 14°50' . 

This is an example of the ambiguous case, and corresponds to Figure 
22c.  

EXAMPLE 4 
In triangle ABC, a =  9, b = 6, and a =  35°. Find angles {3 and y. 

SOLUTION 
We again apply the law of sines. 



a b 
sin a sin f3 
sin f3 = b s: a = 6 si� 350 

= 0.3824 

Using tables or a calculator yields f3 = 22°30' . A triangle satisfying the given 
conditions has a = 35°, f3 = 22°30 ' ,  and y = 1 22°30 ' .  

The angle f3 = 1 80° - 22°30' = 1 57°30' also satisfies the requirement that 
sin f3 = 0.3824. But this "solution" must be rejected since a +  f3 > 1 80°. 

This example corresponds to Figure 22d. 

In Exercises 1 - 1 2  use the law of sines to approximate the required part(s) of triangle ABC. Give both solutions if more than 
one triangle satisfies the given conditions. 
I .  a =  25°, {3 = 82°, a =  12 .4; find b. 
3 . {3 = 23°, y = 47°, a =  9 .3; find c .  

5 .  a =  42°20' , y = 78°40' , b = 20; find a .  
7 .  a =  65°, a =  25, b = 30; find {3. 
9 .  y = 30°, a =  1 2.6, c = 6 .3 ;  find b. 

I I .  y = 45°, b = 7, c = 6; find a .  
13 .  Points A and B are chosen on opposite sides of a rock 

quarry . A point C is 1 60 meters from B, and the mea
sures of angles BAC and ABC are found to be 95° and 
47°, respectively. Find the width of the quarry . 

14 .  A tunnel i s  to be dug between points A and B on oppo
site sides of a hill . A point C is chosen that is 150 
meters from A and 1 80 meters from B .  If angle ABC 
measures 54°, find the length of the tunnel .  

1 5 .  A ski lift 750 meters in  length rises to the top of  a 
mountain at an angle of inclination of 40°. A second 
lift is to be built whose base is in the same horizontal 
plane as the initial lift. If the angle of elevation of the 
second lift is 45°, what is the length of the second 
lift? 

16 .  A tree leans away from the sun at an angle of 9° from 
the vertical . The tree casts a shadow 20 meters in 
length when the angle of elevation of the sun is 62°. 
Find the height of the tree. 

1 7 .  A ship i s  sailing due north at a rate of  22  miles per 
hour. At 2 P . M .  a lighthouse is seen at a bearing of 
N 15° W. At 4 P . M . , the bearing of the same light
house is S 65° W. Find the distance of the ship from 
the lighthouse at 2 P . M .  

2.  a =  74°, y = 36°, c = 6 .8 ;  find a .  

4 .  a =  46°, {3 = 88°, c = 10 .5 ;  find b. 
6 .  {3 = 1 6°30 ' ,  y = 84°40' ,  a =  15 ;  find c .  

8 .  {3 = 32°, b = 20, c = 14 ;  find a and y. 
10. {3 = 64°, a =  10 ,  b = 8 ;  find c .  

1 2 .  a =  64°, a =  I I , b = 12 ;  find {3 and y. 
1 8 .  A plane leaves airport A and flies at a bearing of 

N 32° E. A few moments later, the plane is spotted 
from airport B at a bearing of N 56° W .  If airport B lies 
15 miles due east of airport A, find the distance of the 
plane from airport B at the moment it is spotted. 

19 .  A guy wire attached to the top of a vertical pole has an 
angle of incl ination of 65° with the ground. From a 
point 10 meters farther from the pole, the angle of 
elevation of the top of the pole is 45°. Find the height 
of the pole. 

p 

x 

45° 
w 1 0  
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20. At 5 P . M .  a sailor on board a ship sailing at a rate of 1 8  
miles per hour spots an island due east of the ship. The 
ship maintains a bearing of N 26° E .  At 6 P . M .  the 
sailor finds the bearing of the island to be S 37° E. 
Find the distance of the island from the ship at 6 
P . M .  

2 1  . The short side of a parallelogram and the shorter diag
onal measure 80 centimeters and 1 00 centimeters, 
respectively. If the angle between the longer side and 
the shorter diagonal is 43°, find the length of the long
er side. 

x 

22. An archaeological mound is discovered in a jungle in 
Central America. To determine the height of the 
mound, a point A is chosen from which the angle of 
elevation of the top of the mound is found to be 3 1 ° . A 

TERMS AND SYMBOLS 
angle of elevation (p. 283) 
angle of depression (p. 283) 

KEY IDEAS FOR REVIEW 

bearing (p. 285) 
oblique triangle (p. 288) 

D Right triangle trigonometry relates a trigonometric func
tion of an angle 8 of a right triangle to the ratio of the 
lengths of two of its sides as follows: 

. ,, side opposite 8 Sin v = --hypotenuse 

8 side adjacent to 8 cos = . 

hypotenuse 

8 _ side opposite to (} tan - side adjacent to 8 

23. 

second point B is chosen on a line with A and the base 
of the mound, 30 meters closer to the base of the 
mound . If the angle of elevation of the top of the 
mound from point B is 39°, find the height of the 
mound. 

B 30  A 
In a triangle, sides of length a and b and an angle a are 
given. Prove the following. 
(a) If b sin a >  a, there is no triangle with the given 
parts. 
(b) If b sin a = a, the parts determine a right trian
gle. 
(c) If b sin a < a <  b, there are two triangles with 
the given parts. 
(d) If b ::s a, there is one acute triangle with the giv
en parts. 

law of cosines (p. 288) 
law of sines (p. 292) 

ambiguou case of the law 
of sines (p. 295) 

0 Right triangle trigonometry can be used to solve a wide 
variety of applied problems. 

D The law of cosines and the law of sines are useful in 
solving problems that involve an oblique triangle. The 
derivation of these laws is accomplished by using right 
triangle trigonometry. 
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REVIEW EXERCISES 
Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 
6. 1 In Exercises 1 -5 express the required trigonometric 

function as a ratio of the given parts of the right triangle 
ABC with y = 90°. 

I .  a = 5 ,  b = 1 2; find sin a. 
2.  a =  3,  c = 5; find tan (3.  
3. a =  4, b = 7; find sec a. 
4. b = 8, c = I O; find cot a. 
5. b = 4, c = 7; find sec (3. 

In Exercises 6-9 the point P lies on the terminal side of 
the angle 8. Find the value of the required trigonomet
ric function without using tables or a calculator. 
6. P(-\13, l ); csc 8 

7. P(Vz, -Vz); cot 8 

8. P( - 1 ,  -\13); cos 8 

9. P(Vz, \/2); sin 8 

In Exercises 10- 1 3  find the required part of triangle 
ABC with y = 90°. Use Table VI in the Tables Appen
dix, or a calculator. 
IO. a = 50, b = 60; find a. 
1 1 . a = 40, {3 = 20°; find b. 

1 2. a =  20, a =  52°; find c. 
1 3 .  b = 1 5 ,  a =  25°; find c. 

PROGRESS TEST 6A 
In Problems 1 -3 ABC is a right triangle with y = 90°. 
Express the required trigonometric function as a ratio of the 
given parts of the triangle. 

I .  a = 1, b = 5 ; tan a 
2. b = 5, c = 1 5 ;  sec a 
3 .  a =  5 ,  c = 13 ;  cot {3 

In problems 4-7 the point P lies on the terminal side of the 
angle (}. Find the value of the required trigonometric func
tion without using tables or a calculator. 
4 .  P( - Vi, Vz); cot (} 

5 .  P(O, -5) ;  sin (} 

6. P(2,  2\13); sec (} 

7. P( - 1 ,  -3/2); cos (} 

6.2 14 .  A ladder 6 meters in length leans against a verti
cal wall. If the ladder makes an angle of 65° with 
the ground, find the height that the ladder reaches 
above the ground. 

1 5 .  Find the angle of  elevation of  the sun when a tree 

25 meters in height casts a horizontal shadow I 0 
meters in length. 

16 .  A rectangle i s  22 centimeters long and 16 centi
meters wide. Find the measure of the smaller 
angle formed by the diagonal with a side. 

6.3 In Exercises 1 7-20 use the law of cosines or the law of 
6.4 sines to approximate the required part of triangle 

ABC. 

17 . a = J 2 , b = 7, c = l 5 ; find a . 
1 8 .  a =  20, b = 1 5 ,  a =  55°; find (3 .  
19. a =  10, a =  38°, {3 = 22°; find c. 
20. b = 8, c = 12 ,  a =  35°; find a .  

In Problems 8- I O use Table VI in  the Tables Appendix, or  a 
calculator, to find the required part of triangle ABC with y = 
90°. 
8 .  a = 25 ,  c = 30; find a. 
9 .  b = 20, a =  32°; find c.  

10 .  a = 15 ,  b = 20; find {3. 
In Problems 1 1  and 12 find the required part of triangle 
ABC. 
1 1 .  a = 2 ,  b = 4, c = 5 ;  find a. 
1 2. b = 10 ,  a =  1 5°, {3 = 28°; find c. 

1 3 .  From the top o f  a hill 1 00 meters i n  height, the angle 
of depression of the entrance to a castle is 36°. Find 
the distance of the castle from the base of the hil l .  
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PROGRESS TEST 68 
In Problems 1 -3 ABC is a right triangle with y = 90°. 
Express the required trigonometric function as a ratio of the 
given parts of the triangle. 

1 .  a = 6 ,  b = 8 ;  csc f3 
2. a = 7 , b = 6; cot a 
3 .  b = 4 ,  c = 5; sin a 

In Problems 4-7 the point P lies on the terminal side of the 
angle 8. Find the value of the required trigonometric func
tion without using tables or a calculator. 
4. P(-3, O); csc (J 
5. P(2, 2\13); csc (J 
6. P(-Vi, -Vi); tan (J 
7 .  P(2, - l ) ; sin (J 

In Problems 8-10 use Table VI in the Tables Appendix, or a 
calculator, to find the required part of triangle ABC with y = 
90°. 
8 .  a =  5 ,  f3 = 6 1°; find c .  

9. b = 6, c = 15; find a. 
10. a = 7 ,  b = 10; find c. 

In Problems 1 1  and 12 find the required part of triangle 
ABC. 
I I .  b = 10, c = 1 3 ,  a =  54°; find {3. 
1 2 . a =  5, c = 9, f3 = 36°; find b. 
1 3 .  A surveyor finds the angle of  elevation of  the top of a 

tree to be 42°. If the surveyor is 75 feet from the base 
of the tree, find the height of the tree. 



7.1 
TRIGONOMETRIC 
IDENTtTIES 

FUNDAMENTAL IDENTITIES 

ANALYTIC 
TRIGONOMETRY 

Much of the language and terminology of algebra carries over to trigonometry. 
For example, we have seen that algebraic expressions involve variables, con
stants, and algebraic operations. Trigonometric expressions involve these same 
elements but also permit trigonometric functions of variables and constants. They 
also allow algebraic operations upon these trigonometric functions .  Thus, 

1 - cos x 
x + sin x sin x + tan x 

sec2 x 

are all examples of trigonometric expressions . 
The distinction between an identity and an equation also carries over to 

trigonometry . Thus, a trigonometric identity is true for all real values in the 
domain of the variable, but a trigonometric equation is true only for certain 
values called solutions. (Note that the solutions of a trigonometric equation may 
be expressed as real numbers or as angles . )  As usual, the set of all solutions of a 
trigonometric equation is called the solution set. 

In Section 5 .2 we established the identity 

sin2 t + cos2 t = 1 

If cos t *  0, we may divide both sides of Equation ( I )  by cos2 t to obtain 

sin2 t 
+ 

cos2 t = _1 __ 

cos2 t cos2 t cos2 t 

or 

tan2 t + l = sec2 t 

( 1 )  

(2) 

PAGE 30t 
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Similarly, if sin t * 0, dividing Equation ( 1 )  by sin2 t yields 

sin2 t + cos2 t = _l_ 
sin2 t sin2 r sin2 t 

or 

cot2 t + 1 = csc2 t (3) 

Observe that tan t and cot t are undefined for exactly those values of t for which 
cos t and sin t are 0, respectively. It follows that the identities (2) and (3) are true 
for all values of t for which the trigonometric expressions are defined. 

The two identities that we have just established, together with the identities 
discussed in Sections 5 . 2  and 5 . 5 ,  are called the fundamental identities. Since 
we will use these eight identities throughout this chapter, it is essential that you 
know and recognize them in their various forms as shown in Table 1 .  

TABLE 1 

Fundamental Identity Alternate Form(s) 

sin t tan t = --cos t 
cos t cot t = -.-sm t 

l 1 csc t = -.- sin t =  --sm t csc t 
l l sec t =  -- cos t =  --cos t sec t 
I I cot t = -- tan t = --tan t cot t 

sin2 t + cos2 t = I sin2 t = l - cos2 t 

cos2 t = l - sin2 t 
tan2 t + I = sec2 t tan2 t = sec2 t - l 
cot2 t + l = csc2 t cot2 t = csc2 t - l 

In Section 5 . 2  we saw that trigonometric identities can be used to simplify a 
trigonometric expression. Here is another example, in which we use the identities 
developed in this section . 

EXAMPLE 1 
Simplify the expression sin2 x + sin2 x tan2 x .  
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SOLUTION 

We begin by noting that sin2 x appears in both terms, which suggests that we 
factor. 

sin2x + sin2 x tan2 x = sin2 x( ] + tan2 x) 

= sin2 x sec2 x 

sin2 x = 
cos2 x 

= tan2 x 

PROGRESS CHECK 

S. lif th 
. csc () imp y e expresst0n 

1 + cot2 .(J
. 

ANSWER 

sin () 

Factoring 

1 + tan2 x = ec2 x 

1 
sec x = -

cos x 

sin x 
-- =  tan x 
cos x 

The fundamental identities can be employed to prove or, more properly, to verify 
various trigonometric identities. The principal reasons for including this topic are 
(a) to improve your skills in recognizing and using the fundamental identities, and 
(b) to sharpen your reasoning processes. There are also times in calculus and 
applied mathematics when simplification of a trigonometric expression may 
enable us to see a relationship that would otherwise be obscured . Finally, in 
computer applications it is much more efficient to evaluate a simple trigonometric 
expression than an involved one . 

The preferred method of verifying an identity is to transform one side of the 
equation into the other. We will use this method whenever practical, recognizing 
that it is also acceptable to transform each side independently with the hope of 
arriving at the same expression. 

Unfortunately , we cannot outline a rigid set of steps that will "work" to 
transform one side into the other; in fact, there are often many ways to tackle a 
given identity . Each of the next four examples demonstrates a different technique 
(highlighted in italics) for working on trigonometric identities. If you should 
make a false start and find yourself trying something that doesn't appear to be 
working, start again and try another approach. With practice your skills will 
improve. 

EXAMPLE 2 

Verify the identity cos x tan x csc x = l .  

SOLUTION 
It is often helpful to write all of the trigonometric functions in terms of sine and 
cosine . The student should supply a reason for each step. 
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PROGRESS CHECK 

sin x l 
cos x tan x csc x = cos x -- -.

cos x sm x 

= ] 

Verify the identity sin x sec x = tan x. 

EXAMPLE 3 

Verify the identity l 1 .  + 
1 + . = 2 sec2 x. 

1 - sm x sm x 

SOLUTION 

Another useful technique is to begin with the more complicated expression and 
complete the indicated operations. We win begin with the left-hand side and will 
combine the fractions . 

1 l + sin x + l - sin x 
1 - sin x + 1 + sin x 

= 
( 1  - sin x)( l + sin x) 

2 2 
= 

1 - sin2 x 
= 

cos2 x 

= 2 sec2 x 

PROGRESS CHECK 

Verify the identity cos x + tan x sin x = sec x. 

EXAMPLE 4 

V 'f h .d . . . 2 l - sin a 
en y t e 1 entity sm a - sm a = 

csc a 

SOLUTION 
Factoring will sometimes help to simplify an expression. The student snou1d 
supply a reason for each step. 

sin a - sin2 a =  sin a( l - sin o.) 
1 

- sin cc 
= 

csc a 

PROGRESS CHECK 

. . . sin2 y - l . 
Venfy the 1dent1ty l . = - l - sm y. 

1 - sm y 

EXAMPLE 5 

V 'f h "d 
' cos (J () () en y t e 1 entity 1 . 0 = sec , + tan . 

- sm , 
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SOLUTION 
Multiplying the numerator and denominator of a rational expression by the same 
quantity is a useful technique. Of course, this quantity should be selected care
fully . In this example, multiplying the denominator 1 - sin 8 by 1 + sin (J will 
produce 1 - sin2 8 :; cos2 8. (Similarly, should sec x - l appear in a denomi
nator, you might try multiplying by sec x + l to obtain sec2 x - 1 = tan2 x.) 

The student should supply a reason for each of the following steps. 

PROGRESS CHECK 

cos (J cos (J l + sin (J 
l - sin 8 l - sin 8 1 + sin 8 

_ cos 0( 1  + sin (J) -
l - sin2 8 

cos (J( l  + sin (J) :; 
cos2 () 

l + sin (J :; 
cos () 

= -1-
+ 

sin 8 
cos (J cos (J 

= sec 8 + tan 8 

V 'f h 'd 
. 1 + cos t sin t 

2 en y t e 1 entity 
sin 1 + 1 + cos 1 

= csc t. 

We said earlier that the preferred way of verifying an identity is to transform 
one side of the equation into the other. At times, both sides may involve com
plicated expressions and this approach may not be practical. We can then try to 
transform each side of the equation into the same expression, being careful to use 
only procedures that are reversible. Here is an example. 

EXAMPLE 6 

V 'fy h .d . cot u - tan u 2 2 en t e 1 entity . = csc u - sec u.  
sm u cos u 

SOLUTION 
Beginning with the left-hand side we have 

cos u sin u 
cot u - tan u sin u cos u 

sin u cos u sin u cos u 

cos2 u - sin2 u 
- sin2 u cos2 u 

We then transform the right-hand side of the equation by writing all trigonometric 
functions in terms of sine and cosine. 
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I 1 
csc2 u - sec2 u = -.-- - --

sm2 u cos2 u 

cos2 u - sin2 u 
;:; 

sin2 u cos2 u 

We have successfully transformed both sides of the equation into the same 
expression. Since all the steps are reversible, we have verified the identity . 

PROGRESS CHECK 

V 
. 
f h 

. 
d 

. sin x + cos x 
en y t e 1 entity 

tan2 x _ 1 
cos2 x 

sin x - cos x 

EXERCISE SET 7.1 
Verify each of the following identities. 
I .  csc 'Y - cos 'Y cot 'Y = sin 'Y 

3 .  

5 .  
7 .  

I +  s in v sec v + tan v = --cos v 
sin a sec a = tan a 

3 - sec2 x = 2 - tan2 x 
sec2 y 9. -- = tan y + cot y tan y 

1 1 . 

1 3 . 

1 5 .  

1 7. 

19 .  

2 1 .  

23. 

25. 

27. 

29. 

sin u + cos u 
= 1 csc u sec u 

sec2 8 - I . 2 0 sec2 (} 
= sm 

cos 'Y + cos 'Y tan2 ')' = sec 'Y 

sec w sin w . 2 tan w + cot w 
= sm w 

(sin a + cos a)2 + (sin a - cos a)2 = 2 

2 sec4 v + I sec2 v + cos v = ---,,..-sec2 v 
sin2 a 

I +  = I  - cos a cos a 
I - sin t cos t 

I +  sin t cos t 
cos2 (} csc2 (} - -.-- = I sm2 8 

cot y . 
I + 2 = sm y cos y cot y 

2 .  cot x sec x = csc x 

4 .  

6 .  
8 .  

cos 8 + tan 8 s in 8 = sec (} 

sec f3 - cos f3 = sin f3 tan f3 
I - 2 sin2 t = 2 cos2 t - I 
sin x + cos x 1 10 .  = + tan x 

12 .  

14 .  

16 .  

18 .  

20. 

22. 

24. 

26. 

28. 

30. 

cos x 
tan2 a 

1 + = sec a - I sec a 

sin4 x + 2 sin2 x cos2 x + cos4 x = I 

I . 
+ = cos u sm u tan u cot u 

( I  - cos2 {3)( I + cot2 {3) = I 

I +  tan2 u 2 2 = tan u csc u 

sin2 (} - tan2 8 = -tan2 (} sin2 (} 

cot x sin2 x = cos x( I - sin x) 

sin f3 + I +_ 
cos f3 = 2 csc f3 I + cos f3 sm f3 

cos2 u . 
I . = I +  sm u 

- sm u 

I + tan2 x , 
tan2 x = csc- x 



3 1 .  cos( - t) csc( - r) = -cot t 

33. 

35 . 

37 . 

sec x + csc x 
I + tan x = csc x 

l + tan x 
I + cot x 

sec x 
csc x 

I - sin t 2 I + . = (sec t - tan t) sm t 

32. 

34. 

36. 
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sin(- 0) sec(- 0) = -tan 0 
sec u I 

sec u - I I - cos u 

2 I + sin u (tan u + sec u) = 1 . - sm u 

38. 2 csc2 0 - csc4 0 = I - cot4 0 

sin2 w 2 39· cos4 w + cos2 w sin2 w 
= tan w 40. sin z + tan z 

l + cos z = tan z 

4 1 .  

43. 

sec y - csc y _ tan y - I 
sec y + csc y - tan y + I 
tan y - sin y _ sin2 y 

tan y - I + cos y 

42 . 

44. 

cot x - I 
I - tan x 

csc x 
sec x 

cos4 u - sin4 u = cos2 u - sin2 u 

csc x csc x = 2 sec2 x 45 · I + csc x I - csc x 46. sin3 O + cos3 0 = ( I - sin 0 cos O)(sin 0 + cos 0) 

Show that each of the following equations is not an identity by finding a value of the variable for which the equation is not 
true. 
47. sin x = YI - cos2 x 48. tan x = Y sec2 x - I 
49. (sin t + cos t)2 = sin2 t + cos2 t 
5 1 .  � = cos x 

50. sin 0 + cos 0 = sec 0 + csc 0 
52. � = cot x 

7.2 
THE ADDITION 
FORMULAS 

The identities that we verified in the examples and exercises of Section 7. 1 were 
themselves of no special significance; we were primarily interested in having you 
practice manipulation with the fundamental identities .  There are , however, many 
trigonometric identities that are indeed of importance; these identities are called 
trigonometric formulas. Such formulas are used so frequently that it is probably 
best for you to memorize them. We will develop these formulas in a logical 
sequence so that you will be able to derive them yourself should you wish to 
verify that your memorization is correct. 

Our first objective is to develop the addition formula for cos(s + t) where s 
and t are any real numbers . It happens that it is easier to begin with cos(s - t) , 
which demonstrates that the mathematician may at times have to take a circuitous 
route to establish a result! 

For convenience, we assume that s ,  t, and s - t are all positive and less than 
27T. We let P, Q, and R be the unit circle points determined by the real numbers s, 
t, and s - t as in Figure 1 .  Then AP =  s, AQ = t, AR =  s - t, and by the defi
nitions of sine and cosine, the coordinates of the points can be written as 

P(cos s, sin s) Q(cos t, sin t) R(cos(s - t) , sin(s - t) ) 
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y 

A ( I ,  0) 

x 
P(cos s, sin s)  

FIGURE 1 

Since the arcs QP and AR are both of length s - t, the chords QP and AR are also 
of equal length. By the distance formula, we have 

AR = QP 
r-����--,,----����--= ������������� 

Y[cos(s - t) - 1 ]2 + [sin(s - 1)]2 = Y(cos s - cos t)2 + (sin s - sin t)2 

Squaring both sides and rearranging terms, we have 

sin2(s - t) + cos2(s - t) - 2 cos(s - t) + 1 

= sin2 s + cos2 s + sin2 t + cos2 t - 2 cos s cos t - 2 sin s sin t 

Since each of the expressions sin2(s - t) + cos2(s - t) , sin2 s + cos2 s, and 
sin2 t + cos2 t equals 1 ,  we have 

2 - 2 cos(s - t) = 2 - 2 cos s cos t - 2 sin s sin t 

Solving for cos(s - t) yields the formula 

cos (s - t) = cos s cos t + sin s sin t 

Now it is easy to obtain the addition formula for cos(s + t) . By writing 

s + t = s - (-t) 

we have 

cos(s + t)) = cos(s - (- t)) 

= cos s cos( -t) + sin s sin( - t) 

( 1 )  
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Since cos(- t) = cos t and sin( -r) = -sin t, 

cos(s + t) = cos s cos t - sin s sin l 

EXAMPLE 1 

Find cos 1 5° without the use of tables or a calculator. 

SOLUTION 
Since 15° = 45° - 30°, we may use the fonnula for cos(s - t) to obtain 

cos 1 5° = cos(45° - 30°) 

PROGRESS CHECK 

= cos 45° cos 30° + sin 45° sin 30° 

= 
Y2 .  v'3 + Y2 . .!. 

2 2 2 2 
v'6 + Y2 = 

4 

Solve Example 1 using 1 5° = 60° - 45°. 

EXAMPLE 2 
Find the exact value of cos(57Tl l 2) .  

SOLUTION 
We note that 57T/ l 2  = 27T/ 1 2  + 37T/ 1 2  = 7r/6 + 7r/4.  Then 

PROGRESS CHECK 

cos(�;) = cos(� + *) 
7T 1r . 7T . 1T  

= cos - cos - - sm - sin -
6 4 6 4 

v'3 Y2 ] Y2 = - · - - - · -
2 2 2 2 

v'6 - Y2 
4 

Solve Example 2 using the identity 5 7T/ 1 2  = 97T/1 2  - 4Trl l 2. 

Before tackling sin(s + t) , we first establish the following important functional 
relationships. 
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B 

FIGURE 2 

cos(¥ - r) = sin t 

sin(¥ - 1) = cos t 

tan(-¥ - r) = cot t 

(3) 

(4) 

(5) 

Functions satisfying the properties of the identities (3) and (4) are called cofunc
tions. Thus, sine and cosine are cofunctions. So, too, the tangent and cotangent 
functions are cofunctions ,  as are secant and cosecant. This is the origin of the 
prefix co in cosine, cosecant, and cotangent. 

Applying the difference formula for cosine to the left-hand side of Equation 
(3),  

(7T ) 7T • 7T . cos 2 - t = cos 2 cos t + sm 2 sm t 

= 0 · cos t + 1 • sin t 

= sin t 

which establishes Equation (3). Replacing t with ¥ - t in this identity yields 

cos[¥ - (¥ - i) J = sin(-¥ - i) 
cos t =  sin( -¥ - i) 

which establishes Equation (4) . The third identity follows from the definition of 
tangent and from Equations (3) and (4): 

EXAMPLE 3 

('TT ) sin(¥ - t) 
cos t 

tan 2 - t = (7T ) = sin 
1 = cot t 

cos - - t 
2 

Use trigonometry of the right triangle to show that sine and cosine are cofunc
tions . 

SOLUTION 
In right triangle ABC, angle 'Y = 90° (Figure 2). Then sin a =  ale = cos {3. But 
angles a and {3 are complementary; that is, a + {3 = 90°. Thus sin a = 
cos(90° - a) and cos {3 = sin(90° - /3). which establishes that they are cofunc
tions . 
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We are now prepared to prove the following. 

sin(s + t) = sin s cos t + cos s sin t 
sin(s - t) = sin s cos t - cos s sin r 

(6) 
(7) 

We supply the steps for a proof of Equation (6); the student should supply a 
reason for each step. 

sin(s + r) = cos[¥ - (s + t)J 
= cos [ ( ¥ - s) - t] 
= cos(¥ - s) cos t +  sin(¥ - s) sin t 

= sin s cos t + cos s sin t 
The student should now prove Equation (7) by using 

sin(s - t) = sin[s + (-t)] 
We conclude with the addition formulas for the tangent function . 

t 
( + )  

tan s + tan t 
an s t = -----

1 - tan s tan t 
tan s - tan t 

tan(s - t) = 
1 + tan s tan t 

(8) 

(9) 

Again, we supply the steps for a proof of Equation (8) and will let the student 
supply a reason for each step. 

( + ) sin(s + t) tan s t = --'----'-
cos(s + t) 
sin s cos t + cos s sin t 
cos s cos t - sin s sin t 

( sin s . cos t) + (cos s . sin t) cos s cos t cos s cos t -
(cos s . cos t) _ ( si� . sin t) cos s cos t cos s cos t 

tan s +  tan t 
I - tan s tan t 

The student should now prove Equation (9) by using 

tan(s - t) = tan[s + ( - t)] 
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EXAMPLE 4 
Show that sin(x + 31T/2) = -cos x. 

SOLUTION 

Using the addition formula, 

. ( 37T) . 31T . 37T sm x + 2 = sm x cos 2 + cos x sm 2 
= sin x · 0 + cos x · ( - 1 ) 
= -cos x 

PROGRESS CHECK 
Verify that tan(x - 1T) = tan x. 

EXAMPLE 5 

Given sin a =  -415 , with a an angle in quadrant Ill ,  and cos /3 = -51 1 3 ,  with /3 
an angle in quadrant II , use the addition formula to find sin(a + /3) and the 
quadrant in which a +  f3 lies. 

SOLUTION 
The addition formula 

sin(a + {3) = sin a cos {3 + cos a sin {3 
requires that we know sin a, cos a, sin {3, and cos {3. Using the fundamental 
identity sin2 a + cos2 a = 1 ,  we have 

cos2 a = 1 - sin2 a = 1 - .!..§. = 2_ 
25 25 

Taking the square root of both sides, we must have cos a = - 3/5 since a is in 
quadrant III .  Similarly, 

. 2 - 2 - 25 - 144 
sm {3 - I - cos {3 - I -

169 - 169 

Taking the square root of both sides, we must have sin {3 = 1 2/ 1 3  since {3 is in 
quadrant I I .  Thus, 

sin( a +  {3) = ( -�) ( - 1
5
3) + ( -�) c;) 

20 36 1 6  - - -
65 65 65 

Since sin( a + {3) is negative, a + {3 lies in either quadrant III or quadrant IV. 
However, the sum of an angle that lies in quadrant III and an angle that lies in 
quadrant II cannot lie in quadrant III. Thus, a + {3 lies in quadrant IV.  



COMPUTING SINE AND 
COSINE 

10 LET S l  = 0 .  0 1745 
20 LET Cl = 0 .  99985 

30 PRINT 
' ' DEGREES ' ' .  
· ' SIN ' · . · • cos • • 

40 PRINT ' ' l '  ' ,  
S l , C l  

50 LET S2 = S l  

60 LET C2 = Cl 
70 FOR I = 2 TO 90 

80 LET S3 = S2 

90 LET S2 = 
( Sl * C2 ) + 
( C l * S2 ) 

100 LET C2 = 
( C l * C2 ) -
( Sl * S3 ) 

1 10 PRINT I ,  S2 , 

C2 
120 NEXT I 

130 END 

EXERCISE SET 7.2 
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We can make use of the trigonometric fonnulas to generate a table of sine and cosine 
values. Suppose we have determined that 

We can then write 

sin 1° = 0.0 1745 cos 1° = 0.99985 ( 1 )  

sin( l0 + a) =  sin 1 °  cos a +  cos 1 °  sin a 
cos( l 0  + a) =  cos 1 °  cos a - sin 1° sin a 

Substituting for sin 1° and cos 1° from Equation ( 1 ) , 

sin( J °  + a) =  0.0 1745 cos a +  0 .99985 sin a 
cos( 1 °  + a) =  0.99985 cos a - 0 .0 1 745 sin a 

(2) 
(3) 

Now, if we let a = I 0, Equations (2) and (3) can be used to calculate sin 2° and cos 2°. 
We can then repeat the process with a = 2° to calculate sin 3° and cos 3°, and so on . 
Since this is an iterative procedure well suited for a computer, we are providing a 
program in BASIC that will calculate sine and cosine values from 2° to 90° in increments 
of 1 °. 

PROGRESS CHECK 
Given cos a =  -4/5, with a in quadrant Ill , and cos f3 = 315 , with f3 in quadrant 
I ,  find cos(a - /3) and the quadrant in which a - f3 lies . 

ANSWER 
-24125 , quadrant II 

Exercises 1 -6 display conditional equations. To show that they are not identities, find a pair of values of s and t for which 
each equation is not true . 

I .  cos(s - t) = cos s - cos t 2. sin(s + t) = sin s + sin t 
3 .  sin(s - t )  = sin s - sin t 
5 .  tan(s + t) = tan s + tan t 

4. cos(s + t )  = cos s + cos t 
6. tan(s - t )  = tan s - tan t 

In Exercises 7-22 use the addition formulas to find exact values. 

7. ��+�  8 .  



9. . (7T 7T) 
Sill 4 + 3 10 .  cos( 7!. - 7!.) 3 4; 

1 1 . cos(30° + 1 80°) 1 2 .  tan( 60° + 300°) 
1 3 .  tan(300° - 60°) 14. sin(270° - 45°) 
1 5 .  sin I I ?T/ 1 2  (Hint: I I ?T/ 1 2  = ?T/6 + 3?T/4) 16 .  tan 77T/ 1 2  (Hint: 7?Tl l 2  = ?T/4 + ?T/3) 
1 7 .  cos 77T/ 1 2  (Hint: 7?Tl l 2  = 5?T!6 - ?T/4) 1 8 .  tan 75° (Hint: 75° = 1 35° - 60°) 
19 .  sin 77T/6 20. cos 5?T/6 
2 1 .  tan 1 5° 22. tan 165° 

In Exercises 23-28 write the given expression in terms of cofunctions of complementary angles. 
23. sin 47° 
25. tan ?T/6 
27. cos 7T/3 
29 . If sin t = - 315, with t in quadrant III, find sin( 7T/2 -

t) . 
3 1  . If tan () = 413 and angle () lies in quadrant III, find 

tan(O + ?T/4). 
33. If cos t = 0.4, with t in quadrant IV, find tan(t + 

7T). 
35. If sin s = 315 and cos t = - 1 21 1 3 ,  with s in quadrant 

II and t in quadrant III, find sin(s + t) . 
37. If cos a = 51 1 3  and tan /3 = -2, with angle a in quad

rant I and angle /3 in quadrant II, find 

tan(a + /3) 

24. cos 78° 
26. tan 84° 
28. sin 72°30' 
30. If cos t = -51 1 3 ,  with t in quadrant II, find sin(t -

7T). 
32. If sec () = 513 and angle () lies in quadrant I ,  find 

sin(() + ?T/6) . 
34. If sec a =  1 . 2 and angle a lies in quadrant IV, find 

tan(a - 7T). 
36. If sin s = -415 and csc t = 1 315, with s in quadrant IV 

and t in quadrant II , find cos(s - t) . 
38. If sec a = 513 and cot /3 = 1 5/8 , with angle a in quad

rant IV and angle /3 in quadrant III, find 

tan(a - /3) 

Prove each of the following identities by transforming the left-hand side of the equation into the expression on the right-hand 
side. 
39. 

4 1 .  

43. 

45 . 

47 . 

49. 

5 1 .  

53 . 

sin 2a = 2 sin a cos a 
2 tan a tan 2a = 1 2 - tan a 

cos(x - y) cos(x + y) = cos2 x - sin2 x 

csc(t + 7T/2) = sec t 
l + tan x tan(x + ?T/4) = 1 - tan x 

cot(s - t) = 
l + tan s tan t 
tan s - tan t 

sin(s + t) + sin(s - t) = 2 sin s cos t 
sin(x + h) - sin x _ . (cos h - I ) (sin h) 

h - Sill X h + COS X h 

40. 

42 . 

44. 

46. 

48. 

50. 

52. 

54. 

cos 2t = cos2 t - sin2 t 

sin(x + y)sin(x - y) = sin2 x - sin2 y 

sin(s + t) tan s + tan t 
sin(s - t) tan s - tan t 
tan(a + 90°) = -cot a 

csc(t - 7T) = -csc t 

cot(u + v) = cot u cot v - I 
cot u + cot v 

cos(s + t) + cos(s - t) = 2 cos s cos t 
cos(x + h) - cos x _ (cos h - 1 ) - . (sin h) 

h - COS X h Sill X h 
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Our initial objective in this section is to derive expressions for sin 2t, cos 2t, and 
tan 2t in terms of trigonometric functions of t. We will establish the following 
double-angle formulas. 

sin 2t = 2 sin t cos t 

cos 2t = cos2 t - sin2 t 

2 tan t 
tan 2t =

1 2 - tan t 

( l )  

(2) 

(3) 

These formulas are used quite often and you might want to memorize them. 
However, the derivations are so straightforward that you can always return to 
them to verify the results. 

To establish Equation ( l  ) , we simply rewrite 2t as (t + t) and use the addi
tion formula. 

sin 2t = sin(t + t) 

= sin t cos t + cos t sin t 

= 2 sin t cos t 

We proceed in the same manner to prove Equation (2). 

cos 2t = cos(t + t) 
= cos t cos I - sin t sin t 

= cos2 t - sin2 t 

Using the addition formula for the tangent function yields a proof of Equation 
(3). 

tan 2t = tan(t + t) 

tan t + tan t = 
I - tan t tan t 

2 tan t 
= 

l - tan2 t 

EXAMPLE 1 

If cos t = - 3/5 and t is in quadrant I I ,  evaluate sin 2t and cos 2t. In which 
quadrant does 2t lie? 

SOLUTION 
We first find sin t by use of the fundamental identity sin2 t + cos2 t = l .  
Thus, 

sin2 t + -2.. = l 
25 

. 2 16 
sm t = -

25 
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Since t is in quadrant II ,  sin t must be positive . Therefore, 

. 4 
sm t = 5 

Applying the double-angle formulas with cos t =  - 3/5, sin t = 415, yields 

sin 21 = 2 sin t cos 1 = 2(�) (-�) = -;� 
cos 21 = cos2 t - sin2 t = 1_ _ 1 6  = _

J_ 
25 25 25 

Since sin 2t and cos 2t are both negative, we may conclude that 2t lies in quadrant 
m. 
PROGRESS CHECK 
If sin () = 5/ 1 3  and 6 is in quadrant I ,  evaluate sin 26 and tan 26. 

ANSWER 

. 1 20 1 20 
sm 20 = 169, tan 26 = i"i9 

EXAMPLE 2 
Express sin 3t in terms of sin I and cos t. 

SOLUTION 
We write 3t as (2t +. t). Then 

sin 3t = sin(2t + t) 

PROGRESS CHECK 

= sin 2t cos t + cos 2t sin t 

= 2 sin t cos t cos t + (cos2 t - sin2 t) sin t 

= 2 sin t cos2 t + sin t cos2 t - sin3 t 

= 3 sin t cos2 t - sin3 t 

Express cos 3t in terms of sin t and cos t .  

ANSWER 
cos 3t = 4 cos3 t - 3 cos t 

If we begin with the formula for cos 2t and use the fundamental identity 
cos2 t = l - sin2 t, we obtain 

cos 2t = cos2 t - sin2 t 

= ( 1  - sin2 t) - sin2 t 

= 1 - 2 sin2 t 
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Similarly, replacing sin2 t by I - cos2 t yields 

cos 2t = cos2 t - sin2 t 
= cos2 t - ( 1  - cos2 t) 
= 2 cos2 t - I 

We then have three useful formulas for cos 2t. 

EXAMPLE 3 

cos 2t = cos2 t - sin2 t 
cos 2t = I - 2 sin2 t 

cos 2t = 2 cos2 t - l 

V rif th 
.d 

. I - cos 2a 
e y e 1 entity 2 . = tan a .  

sm a cos a 

SOLUTION 
Substituting cos 2a = 1 -

2 sin2 a, we have 

PROGRESS CHECK 

1 - cos 2a _ I - ( 1  - 2 sin2 a) 2 sin a cos a - 2 sin a cos a 
2 sin2 a 

= -----2 sin a cos a 
sin a 

= --

cos a 
= tan a 

V .f th 
.
d 

. I + cos 28 (J en y e 1 entity . 28 = col. . 
sm 

WARNING Note that 

From Equation ( I ) , 

sin 2t _,_ . -2-. - -r- SIR I 

sin 2t 2sin t cost t . -2- = 2 = sm t cos t 

(4) 

(5) 

(6) 
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HALF-ANGLE FORMULAS If we begin with the alternative fonns for cos 2t given in Equations (5) and (6), 
we can obtain the following expressions for sin2 t and cos2 t .  These expressions 
are often used in calculus. 

. 2 I - cos 2t Sill t = 2 

2 I + cos 2t 
cos I =  

2 

(7) 

(8) 

Since the identities in Equations (7) and (8) hold for all values of t, they must hold 
when we replace t by t/2. This yields the pair of equations 

Solving, we have 

. 2 t 1 - COS t Sm 2 =  2 

2 .!_ _ l + co t 
cos 

2 - 2 

. .!. - + ,p - cos t Sill 
2 

- -
2 

t + � 
cos 2 = - y � 

(9) 

( 1 0) 

The appropriate sign to use in Equations (9) and ( I  0) depends on the quadrant in 
which t/2 is located. Thus, sin t/2 is positive if t/2 lies in quadrant I or II; 
similarly, we choose the positive root for cos t/2 in Equation ( 1 0) if t/2 l ies in 
quadrant I or IV . 

Using the identity 

we obtain 

. t 
sm -/ 2 

tan - = --

2 I 
cos 2 

t 1 - cos t tan 2 = ± 1 + cos I 

Fonnulas (9), ( 1 0), and ( 1 1 )  are known as the half-angle formulas. 

( 1 1 ) 
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The Pythagorean Theorem can be derived by using trigonometry of the right triangle. In 
the accompanying figure, ABC is a right triangle, and CD is perpendicular to the hypot· 
enuse AB of length c. Using triangle ABC, you can verify that 

. a b 
sm a = 

c 
and cos a ::  -c 

Now, from right triangle ACD, 

AD ::  b cos a 
Noting that f3 = 90° - a and using right triangle BCD , 

BD = a cos(90° - ex) = a sin a 
since cos(90° - a) :: sin a. We can now use Equations (2) and (3) to sum 

c :: BD + AD "' a sin a + b cos a 
and, substituting from Equation ( l ) ,  

or 

a2 ti 
c = - + 

c c 

c2 = a2 + b2 
This, of course, is a statement of the Pythagorean Theorem. 

( 1 ) 

(2) 

(3) 



320 ANAL vnc ffilGONOMETRY 

EXAMPLE 4 
Find the exact values of sjn 22.5° and cos 1 1 2 .5° . 

SOLUTION 
Applying the half-angle formulas with 22.5° = 45°12 yields 

. 22 50 . 450 
sm . . = sm T 

= VI - c�s 45° 

� � 
\12 - \Ji = ----

2 

225° 
cos 1 1 2 .5° = cos 2 

= - v· + c� 225° 

= -vi - c�s 45° 

= -� 
= 

PROGRESS CHECK 

\12 - \Ii 
2 

Cnoose the positive square root 
for an angle in quadrant L 

Choose the negative square root 
since cosine is  negative in quad
rant U .  

Use the half-angle formulas to evaluate tan Tr/8 .  

ANSWER 
Y2 - 1 

EXAMPLE 5 

If sin () = -3/5 and () is in quadrant Ill ,  evaluate cos 012.  

SOLUTION 
We first evaluate cos (} by using the identity 

9 16  
cos2 () = l - sin 2 () = l - - = __: 

25 25 
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Since (J is in quadrant III ,  cos () is .negative. Thus, cos (J = -415 . We can now 
employ the half-angle fonnula 

() + /1 + cos 0 cos 2 = - v 2 

= + H - V2 
+ ViO 
- 10 

Since 1 80° < 0 < 270°, we see that 90° < 012 < 1 35°. Thus, 812 is in quadrant H 
and cos 012 is negative. We conclude that cos 812 = -Vi0/ 10 . 

PROGRESS CHECK 
If tan a = 3/4 and a is in quadrant m, evaluate tan cr/2. 

EXERCISE SET 7.3 

ANSWER 
-3 

Use the given conditions to determine the value of the specified trigonometric function. 
I .  sin u = 315 and u is in quadrant II; find cos 2u. 8. sec Sx = - 1 31 1 2  and Sx is in quadrant Ill; find 
2. cos x = -51 1 3  and x is in quadrant Ill; find sin 2x. tan !Ox. 

3 .  sec a =  -2 and a is in quadrant II; find sin 2a. 
4 .  tan 0 = 413 and 0 is in quadrant I; find cos 20 .  
S .  csc t = - 17/8 and t is i n  quadrant IV; find tan 2t. 
6. cot f3 = 3/4 and f3 is in quadrant Ill; find cot 2{3. 
7 .  sin 2a  = -415 and 2a  i s  i n  quadrant IV; find 

sin 4a. 

9. cos(0/2) = 8/ 1 7  and 012 is acute; find cos 0. 
10. csc(t/4) = - 1315 and t/4 is in quadrant IV; find 

cos(t/2). 
1 1 .  sin 42° = 0.67; find cos 84°. 
1 2 . cos 77° = 0.22 ;  find cos 1 54°. 

Use the half-angle formulas to find exact values for each of the following. 
1 3 .  sin 1 5° 
I S .  tan 7r/8 
1 7 .  csc 165° 

14 .  cos 75° 
16 .  sec 57r/8 
1 8 .  cot 77r/ 1 2  

Use the given conditions to determine the exact value o f  the specified trigonometric function. 
19 .  sin 0 = -415 and 0 is in quadrant IV; find cos 012. 24. csc a = 1 315 and a is in quadrant II; find tan a/2. 
20. cos 0 = 315 and 0 is in quadrant I ; find sin 0/2 .  
2 1 .  sec t =  -3  and t is in quadrant II; find sin t/2 . 
22. tan x = 413 and x is in quadrant Ill; find cos x/2. 
23. cot f3 = 314 and f3 is in quadrant Ill ; find tan {312. 

25. cos 4x = 1 13 and 4x is in quadrant IV; find cos 2x. 
26. sec 6a = - 1 3/ 1 2  and a is in quadrant Ill; find 

sin 3a . 
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Verify the given identities. 
27. sin 50x = 2 sin 25x cos 25x 

2 cot y 29. tan 2y = 2 2 csc y -
3 1 .  sin 4a = 4 sin a cos3 a - 4 sin3 a cos a 

I - tan2 u 33 .  cos 2u = 1 +  2 tan u 
. t t sin t 35 . sm 2 cos 2 = -2-

. a a 37. sm a - cos a tan 2 = tan 2 
39. cos4 x - sin4 x = cos 2x 

4 1 . 2 tan a . 2 I + tan2 a = sm a 

sec2 t 43. sec 2t = 2 2 - sec t 
t I - cos t 45 . tan 2 = sin t 

28. (sin 8 + cos 8)2 = I + sin 28 

30. 2 sin2 2t + cos 4t = I 

32. cos 4{3 = I - 8 sin2 f3 cos2 f3 
. 2 tan 8 34. sm 28 = 1 + tan2 8 

36. tan � = csc y - cot y 

38. I - cos 2(3 _ 2 f3 
I + cos 2{3 - tan 

sin 2t cos 2t 40. -.- - -- = sec t 
42. 

sm t cos t 

cos2 � 2 
tan x + sin x 

2 tan x 

44. cos 2t + cot 2t = cot 2t(sin t + cos t)2 

t sin t 46. tan - = ---2 I + cos t 

7.4 
THE PRODUCT -SUM 
FORMUlAS 

The product-sum formulas derived in this section are of use in calculus and in 
other courses in higher mathematics. They are .not as important as the formulas 
that appeared in Sections 7 .2 and 7 .3 and need not be memorized. Rather, you 
should be aware of these fonnulas so that you can look them up when 
needed. 

The following formulas express a product as a sum. 

. sin(s + t) + sin(s - t) 
sm s cos t =  

2 

. sin(s + t) - sin(s - t) 
co s sm t = 

2 

cos(s + t) + cos(s - t) 
cos s cos t =  

2 

. . cos(s - t) - cos(s + t) 
sm s sm t = 

2 

To prove Equation ( 1  ) , we begin with the right-hand side of th� equation. 

( l )  

(2) 

(3) 

(4) 
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sin(s + t) + sin(s - t) 
2 

_ (sin s cos t + cos s sin t) + (sin s cos t - cos s sin t) 
- 2 

2 sin s cos t 
= 

2 

= sin s cos t 
The proof of Equations (2), (3), and (4) are very similar. 

EXAMPLE 1 
Express sin 4x cos 3x as a sum or a difference. 

SOLUTION 
Applying Equation ( l )  we obtain 

· 4 3 sin(4x + 3x) + sin(4x - 3x) Stn x COS X = 
2 

sin ?x + sin x 
= 

2 

PROGRESS CHECK 
Express sin 5x sin 2x as a sum or as a difference. 
ANSWER 
Kcos 3x - cos 7x) 

EXAMPLE 2 
Evaluate the product cos (517'/8) cos (317'/8) by a product-sum formula. 

SOLUTION 
Using Equation (3) we have 

cos 5; cos 3; = H cos(5; + 
3;) + cos(5; -

3
;) J 

= �[COS 1T + C-OS *] 

= �[ - 1 + �] 
V2 - 2 

= 4 

PROGRESS CHECK 
Evaluate cos (7T/3) sin (1T/6) by a product-sum formula. 
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ANSWER 
l /4 

The following formulas express a sum as a product. 

. + . 

2 
. s + t  s - t 

sm s sm t = sm -2- cos 2 
. . 

2 
s + t  . s - t  

sm s - sm t = cos -

2
- sm 2 

s + t  s - t  
cos s + cos t =  2 cos -

2
- cos -2-

2 . s + t  . s - t  
cos s - cos r = - sm -

2
- sm -2-

(5) 

(6) 

(7) 

(8) 

To prove the identity in Equation (5), begin with the right-hand side and apply 
Equation ( 1 ) . Then 

. s + t s - t 1 [ . (s + t s - ') . (s + t s - ') J 2 sm -- cos -- = - sm -- + -- + sm -- - --

2 2 2 2 2 2 2 

= sin s +  sin t 

This establishes Equation (5). 

EXAMPLE 3 
Express sin 5x - sin 3x as a product. 

SOLUTION 
Using Equation (6) we have 

. 5 . 3 2 
5x + 3x . 5x - 3x 

sm x - sm x = cos 
2 

sm 
2 

= 2 cos 4x sin x 

PROGRESS CHECK 
Express cos 6x + cos 2x as a product. 

ANSWER 2 cos 4x cos 2x 

EXAMPLE 4 
Evaluate cos (5'7T! l 2) - cos ( '7Tl l 2) by using a sum-product formula. 

SOLUTION 
Using Equation (8) , we have 
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51T 1T 2 . 1T . 1T 
cos - - cos - = - sm - sm -1 2 12 4 6 

= -2(v'2).!. = - v'2 2 2 2 
PROGRESS CHECK 
Evaluate sin 21T/3 by using a sum-product formula. 

ANSWER 

V3'2 

EXERCISE SET 7 A 
Express each product as a sum or difference . 

I .  2 sin Sa cos a 2 .  -3  cos 6x sin 2x 
. S8 . 8 sm 2 sm 2 s .  6. -2 cos 28 cos S8  

Evaluate each product by using a product-sum formula. 
7TT . STT TT TT 9. cos g sm g 10. cos 3 cos 6 

Express each sum or difference as a product. 
1 3 .  sin Sx + sin x 
I S .  cos 28  + cos 68 

1 7 .  sin( a + {3 )  + sin( a - {3) 

1 9 .  sin 7x - sin 3x 
Evaluate each sum by using a sum-product formula. 

2 1 .  cos 7S0 + cos l S0 22. . STT . TT sm 12 + sm 12 

Verify the identities in Exercises 2S-34. 
2S . 

27. 

29. 

3 1 .  

33. 

sin 40° + sin 20° = sin I 0° 
sin S8  - sin 38 48 cos 38 - cos S8 = cot 

sin t - sin s s + t 
cos t - cos s 

= -cot -2-

sin S0° - sin 1 0° = -V3 cos S0° - cos 10° 
cot x - tan x = cos 2x cot x + tan x 

3 .  

7 .  

1 1 . 

14 .  
16 .  

18 .  

20. 

23. 

26 . 

28. 

30. 

32. 

34. 

sin 3x sin( -2x) 4. 

cos( a + {3) cos( a - {3) 8. 

sin 1 20° cos 60° 1 2. 

cos 8t - cos 2t 
sin Sa - sin 7a 

x 3x cos 2 - cos 2 
cos S8  + cos 38 

3TT TT cos 4 - cos 4 24 . 

cos 70° - cos 1 0° = - sin 40° 
cos Sx - cos x _ _ 3 sin 7x + sin x - tan x 

sin s + sin t s + t = tan --cos s + cos t 2 

cos 7 t cos( - 3t) 

- sin 2u cos 4u 

. 1 3TT . J JTT sm ---u- sm U 

. 1 3TT . STT sm ---u- - sm lZ 

2 sin( 8 + *) sin( 8 - *) = -cos 28 

cos 6t cos 2t + sin2 4x = cos2 2x 

3S. Express (sin ax)(cos bx) as a sum. 36. Express (cos ax)(cos bx) as a sum. 
37 .  Prove the product-sum formulas given in Equations (2) through (4) . 
38. Prove the product-sum formulas given in Equations (6) through (8) . 
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7.5 
TRIGONOMETRIC 
EQUATIONS 

Thus far, this chapter has dealt exclusively with trigonometric identitie . We now 
seek to solve trigonometric equations that are not true for all values of the variable 
but may be true for some values. 

We have seen that algebraic equations may have just one or two solutions . 
The situation is quite different with trigonometric equations since the periodic 
nature of the trigonometric functions assures us that if there is a solution, there are 
an infinite number of solutions. To handle this complication, we simply seek all 
solutions t such that 0 :5 I <  21T. Then for every integer value of n, t + 27Tn is 
also a solution . The following example illustrates this convenient means for writ
ing the solution set. 

EXAMPLE 1 
Find all solutions of the equation cos t = 0. 

SOLUTION 
The only values in the interval [0, 27T) for whic cos t = 0 are 7T/2 and 37T/2 . Then 
every solution is included among those values of t such that 

1T 37T t = 2 + 27Tn or t = T + 21Tn, n an integer 

S
. 37T 1T 

th 1 . b . . h ' mce T = 2 + 1T, e so ution set can e wntten m t  e more compact 1orrn 

t = !! + 1Tn n an integer 
2 ' 

Each of the following examples illustrates a technique (highlighted in italics) 
for solving trigonometric equations . 

EXAMPLE 2 
Find all solutions of the equation 2 cos2 t - cos t - 1 = 0 in the interval 
[O, 27T) . 

SOLUTION 
Factoring provides the key for solving many trigonometric equations. If we can 
write the equation in the form P(x)Q(x) = 0, we can then find the solutions by 
setting P(x) = 0 and Q(x) = 0. Of cour e, P and Q will themselves generally 
contain trigonometric functions. 

Factoring the left side of the equation yields 

(2 cos t +  l )(cos t - l )  = 0 
Setting each factor equal to 0, we have 

2 cos t + 1 = 0 or co t - 1 = 0 
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so that 1 
co t - -2 or cos t = I 

We were asked to find solutions of the original equation in the interval [0, 2 7T). In 
this interval , the solutions of cos t = -! are t = 27T/3 and t "" 47T/3; the only 
solution of cos t = l is t = 0. The solutions of the original equation in the interval 
[O, 27T) are 

PROGRESS CHECK 
Find all solutions of the equation 2 sin2 t - 3 sin t + l = 0 in the interval 
[0, 27T). 

ANSWER 
7T 57T 7T - - -
6 ' 6 '  2 

EXAMPLE 3 
Find all solutions of the equation tan 8 cos2 (J - tan (J = 0. 
SOLUTION 
Factoring the left side yields 

tan 8(cos2 (J - 1 )  = 0 

Setting each factor equal to 0, 

so that 

tan (J = 0 or cos2 () = 1 

tan (J = 0, cos () = 1 , or cos () = - 1 

These equations yield the following solutions in the interval [O, 27T). 

tan () = 0: () = 0 or () = 7T 

cos () = l : () = 0 
cos () = - 1 : (J = 7T 

The solutions of the original equation are 

() = 0 + 21Tn and () = 7T + 27Tn, n an integer 

which can be expressed more compactly as 

() = 1Tn, n an integer 

In degree measure , the solution is 

() = 1 80°n, n an integer 



328 ANALYTIC TRIGONOMETRY 

EXAMPLE 4 
Find all solutions of the equation sin 2() - 3 sin 0 = 0 in the interval [O, 21T). 

SOLUTION 
Using trigonometric identities to simplify an equation can help in solving the 
equation . The substitution 

yields 

sin 20 = 2 sin 0 cos 0 

2 sin 8 cos 8 - 3 sin 8 = 0 
sin 8(2 cos 8 - 3) = 0 

sin O = 0 or 

sin 8 = 0 or 

2 cos 8 - 3 = 0 

3 
cos 0 = 2 

The equation cos 8 = 3/2 has no solutions; the solutions of sin 8 = 0 are 8 = 0 
and 8 = 1T. The solutions of the original equation are 

or, in degree 111easure, 

PROGRESS CHECK 

8 = 0 and 8 = 1T 

8 = 0° and 8 = 1 80° 

Find all solutions of the equation cos 28 + cos 0 = 0. 

ANSWER 
1T 51T 3 + 211n, 1T + 21Tn, 3 + 21Tn 

or 

60° + 360°n, 180° + 360°n, 300° + 360°n 

EXAMPLE 5 
Find all solutions of the equation cos 3x = 0 in the interval [O, 21T). 

SOLUTION 
Equations involving multiple angles can often be solved by using a substitution of 
variable. We are given 

cos 3x = 0, 

Substituting t = 3x, we obtain 

cos t = 0, 

0 S x  < 21T 



* 
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or 
cos t = 0, 0 ::;; t < 67T 

Note that we seek solutions of cos t = 0 in the interval [O, 67r) rather than [O, 27T). 
The solutions are then 

'TT 37T 57T 77T 97T l l 7T 
t = - -

2 2 2 2 2 2 

Since x = t/3 we obtain 

'TT 'TT 57T 77T 37T l l 7T 
x = -6 2 6 6 2 6 

WARNING When you perform a substitution of variable , you must remember 
to go back and to express the answers in terms of the original variable. 

Substitution of variable is a powerful tool . The equation 

4 sin2 x + 3 sin x - I = 0 

can be viewed as a quadratic in u 

4u2 + 3u - I = 0 

by substituting u = sin x. Here is another example. 

EXAMPLE 6 

Find all solutions of the equation 

3 tan2 x + tan x - I = 0 

in the interval [O, 7r) . 

SOLUTION 
The equation does not yield to the method of factoring . However, it can be 
viewed as a quadratic equation in tan x. That is,  if we substitute t = tan x we 
obtain 

3t2 + t - 1 = 0 

which is a quadratic in t. By the quadratic formula, 

- I ±  \/i3 

Solving for t, 

t = ----

6 

t = 0.4343 and t = -0. 7676 

Since tan x = t, we must have 

tan x = 0.4343 and tan x = -0. 7676 



so that 

x = tan- 1 0.4343 and x = tan - 1  ( -0. 7676) 

are exact expressions for the solutions of the original equation . To obtain numer
ical values, we can use a calculator to find that 

x = 0.41 and x = -0.65 

The calculator has provided us with solutions in the interval [ - 7T/2,  7T/2] since 
this is the range of the inverse tangent function . We were, however, instructed to 
find solutions in the interval [O, 7T). Since -0.65 is not in this interval , we use the 
fact that the period of the tangent function is 1T to obtain 

x = 0.65 + 1T = 2 .49 

as an acceptable solution in addition to x = 0.41 . 

Find all solutions of the given equation in the interval [0, 27T). Express the answers in both radian measure and degree 
measure. 

I .  2 sin (} - 1 = 0 2 .  2 cos (} +  1 = 0 
3 .  cos Cl' +  1 = 0 4 .  cot 'Y + 1 = 0 
5 .  4 cos2 Cl' =  3 6. tan2 (} = 3 
7 .  3 tan2 Cl' =  I 8. 2 cos2 Cl' - 1 = 0 
9 .  2 sin2 /3 = sin /3 10 .  sin Cl' =  cos Cl' 

1 1 . 2 cos2 (} - 3 cos (} + 1 = 0 1 2 .  2 sin2 (} - sin (} - 1 = 0 
1 3 . sin 50 = 1 14. tan 313 = -V3 
1 5 .  2 sin2 Cl' - 3 cos Cl' = 0 16 .  csc 2(} = 2 
17 .  2 cos2 (} - 1 = sin (} 1 8 .  cos2 2CI' = V4 
1 9. sin2 /3 + 3 cos /3 - 3 = 0 20. 2 cos2 (} tan (} - tan (} = 0 
Find all the solutions of the given equation. 
2 1 .  3 tan2 x - 1 = 0 22. 2 sin2 y - 1 = 0 
23. 3 cot2 (} - 1 = 0 24. 1 - 4 cos2 t = 0 
25 . sec 2u - 2 = 0 26. tan 3x - 1 = 0 
27. sin 4x = 0 28. cos 5t = - 1  
29. 4 cos2 2t - 3 = 0 30. csc2 2x - 2 = 0 
3 1 .  sin 2t + 2 cos t = 0 32. sin 2t + 3 cos t = 0 
33 .  cos 2t + s in t = 0 34. 2 cos 2t + 2 sin t = 0 
35. tan2 x - tan x = 0 36. sec2 x - 3 sec x + 2 = 0 
37. 2 sin2 x + 3 sin x - 2 = 0 38. 2 cos2 x - 5 cos x - 3 = 0 
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Find the approximate solutions of the given equations in the interval [0, 2'1T) by using Table V in the Tables Appendix, or a 
calculator. 

39. 5 sin2 x - sin x - 2 = 0 40. sec2 y - 5 sec y +  6 = 0 
4 1 .  3 tan2 u + 5 tan u + I = 0 42. cos2 t - 2 sin t + 3 = 0 

7.6 
TRIGONOMETRY AND 
COMPLEX NUMBERS 

THE COMPLEX PLANE 

We associate the complex number a +  bi with the point in the plane whose 
coordinates are (a,b). Figure 3 illustrates the geometric repre entation of several 
complex numbers . Conver ely, every point (a, b) in the plane represents a com
plex number, a + bi . When a rectangular coordinate system is used to represent 
complex numbers, it is called a complex plane and the x- and y-axes are called 
the real axis and the imaginary axis, respectively. 

FIGURE 3 

• 
-4 - 3i 

Imaginary axis 

2 + 3i 
• a +  bi 

• 
4 - 2i 

We can extend the concept of absolute value to complex numbers in a 
natural manner. Since I.xi represents the distance on a real number line from the 
origin to a point that corresponds to x, it would be consistent to define the abso
lute value la + bi1 as the distance from the origin to the point corresponding to 
a +  bi. Applying the distance formula (see Figure 4) we are led to the following 
definition. 

The ab olute value of a complex number a + bi is denoted by la + bil and is 
defined by 

la + bil = V a2 + b2 
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y 

a 

P(a, b) = a +  bi 
I 
I 
I 
I 
l b  
I 
I 
I 

x 

FIGURE 4 
EXAMPLE 1 
Find the absolute value of each of the fol lowing complex numbers. 
(a) 2 - 3i (b) 4i (c) -2 

SOLUTION 
Applying the definition of absolute value, 
(a) 12 - 3il = V4+9 = Vi3 (b) 14il = Vo+i6 = 4 
(c) I - 21 = \/4+0 = 2 

The representation of a complex number as a point in a coordinate plane can 
be used to link complex numbers with trigonometry of the right triangle. ln 
Figure 4, a +  bi is any nonzero complex number, and we consider the line seg
ment OP to be the terminal side of an angle 8 in standard po ition. Using trig
onometry of the right triangle , we see that 

We may then write 

or 

a =  r cos 8 and b = r sin 8 

a + bi = (r cos 0) + (r sin 8)i 

a + bi = r(cos 0 + i in 0) 

where r = OP = la + bil = Ya2 + b2 . If a + bi = O, then r = O, and 8 may 
assume any value. 

Equation ( I )  is known as the trigonometric form or polar form of a com
plex number. Since we have an infinite number of choices for the angle 8, the 
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polar fomt of a complex number is not unique. We caJI r the moduJus and 8 the 
argument of the complex number r(cos 8 + i sin 8). If 0 :::; 8 < 360°, then 8 is 
caUed the principal argument. 

EXAMPLE 2 

Write the complex number -2  + 2i in trigonometric form. 

SOLUTION 
The geometric representation is shown in Figure 5 .  The modulus of - 2  + 2i 
is 

r = I - 2  + 2il = V4'+4 = 2v'2 

y 

-2 + 2 i  

8 

-2 - 1 x 

FIGURE 5 

The principal argument 8 is an angle in the second quadrant such that 

tan 8 = !2 = - 1  

Thus, 8 = 1 35°, and using the trigonometric form of a complex number of Equa
tion ( 1  ), we have 

- 2  + 2i = 2v'2(cos 1 35° + i sin 1 35°) 

PROGRESS CHECK 
Write the complex number 1 - VJi in trigonometric form. 
ANSWER 
2(cos 300° + i sin 300°) 

EXAMPLE 3 

Write the complex number 2VJ(cos 1 50° + i sin 150°) in the fomt a +  bi. 
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SOLUTION 
We need only substitute cos 1 50° = V3'2 and sin 1 50° ;;; - � . Thus, 

2V3(cos 1 50° + i sin 1 50°) = 2V3(� - �i) 
;;; 3 - V3i 

PROGRESS CHECK 

Write the complex number Vi( cos � + i sin i) in the form a +  bi. 
ANSWER 
l + i 

Why have we introduced the trigonometric fonn of a complex number? 
Because multiplication and division of complex numbers is very simple when this 
form is used. If r1 (cos 81 + i sin 8i)  and r2(cos 82 + i sin 82) are any two complex 
numbers, the rules for their multiplication and division are 

Note that the rule for multiplication requires the multiplication of the modidi and 
addition of the arguments. To prove this we see that 

r1(cos 81 + i sin 81)  · r2(cos 82 + i sin 82) 
= r1r2[(cos 81 cos 82 - sin 81 sin 82) + i(sin 81 cos 82 + cos 81 sin 82)] 

= r1r2[cos(81 + 82) + i sin(81 + 82)] 

where the last step results from the addition formulas. 
The rule for division requires the di vision of moduli and the subtraction of 

the arguments. The proof is left as an exercise. 

EXAMPLE 4 
Find the product of the complex numbers l + i and -2i (a) by writing the num
bers in trigonometric form and (b) by multiplying the numbers algebraically. 

SOLUTION 
(a) The trigonometric forms of these complex numbers are 

1 + i = v'2(cos 45° + i sin 45°) 
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De Moivre's Theorem 
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and 

-2i = 2( cos 270° + i sin 270°) 

Multiplying, we have 

V2(cos 45° + i sin 45°) · 2(cos 270° + i sin 270°) 
= 2Y2(cos 3 ] 5° + i sin 3 l5°) 

- 2v'2(� - j'?) 
= 2 - 2i 

(b) Multiplying algebraically, 

( 1  + i)( - 2i) = -2i - 2i2 = -2i + 2 = 2 - 2i 

PROGRESS CHECK 
Express the complex numbers I + \/3i and i - \/3; in trigonometric form and 
find their product. 

ANSWER 
2(cos 60° + i sin 60°); 2(cos 300° + i sin 300°); 4 

Since exponentiation is repeated mllltipJication , we are led to anticipate a simple 
result when a complex number in trigonometric form is raised to a power. The 
theorem that states this reslllt is credited to Abraham De Moivre, a French math· 
ematician. In this theorem r(cos (} + i sin 8) is a complex number and n is a 
natural number. 

[r(cos 8 + i sin 8W = r"(cos n8 + i sin n8) 

We can verify the theorem for some values of n .  Thus, by Equation (2) , 

[r(cos 8 + i sin 8)]2 = r (cos 8 + i sin 8) · r(cos 8 + i sin 8) = r2[ cos( 8 + 8) + i sin( 8 + 8)] 

= r2( cos 28 + i sin 28) 

which is precisely what we obtain by using De Moivre's theorem. If we multiply 
again by r(cos 8 + i sin 8) and again apply Equation (2) , we have 

[r( cos 8 + i sin 8) ]3 = r2( cos 28 + i sin 28) · r( cos 8 + i sin 8) 

= r3(cos 38 + i sin 38) 

Thus, De Moivre's  theorem seems "reasonable. "  A rigorous proof requires the 
application of the method of mathematical induction , which will be discussed in a 
later chapter. 
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EXAMPLE 5 
Evaluate ( 1  - i) 10. 

SOLUTION 
Writing 1 - i in trigonometric form we have 

1 - i = Vl(cos 3 1 5° + i sin 3 1 5°) 

and 

( 1  - i) 10 = [Vl(cos 3 1 5° + i sin 3 1 5°)) 10 

Applying De Moivre's theorem, 

( 1  - i)w = (Vl) 10[cos 3 1 50° + i sin 3 150°) 

= 32[cos 270° + i sin 270°) 

= 32[0 + i(- 1 )] = - 32i 

PROGRESS CHECK 
Evaluate (VJ +  i)6. 

ANSWER 
- 64 

Recall that a real number a is said to be an nth root of the real number b if 
an = b for a positive integer n. In an analogous manner, we say that the complex 
number u is an nth root of the nonzero complex number z if un = z. If we express 
u and z in trigonometric form as 

u = s(cos </> + i sin </>) z = r(cos (} + i sin 8) (4) 

we can then apply De Moivre 's  theorem to obtain 

un = sn( cos n</> + i sin n<f>) = r( cos (} + i sin 8) (5) 

Since the two complex numbers un and z are equal, they are represented by the 
same point in the complex plane. Hence, the moduli must be equal , since the 
modulus is the distance of the point from the origin . Therefore, sn = r or 

s = -.::;;. 
Since z =I= 0, we know that r =I= 0. We may therefore divide Equation (5) by r to 
obtain 

cos n<f> + i sin n<f> = cos (} + i sin (} 

By the definition of equality of complex numbers, we must have 

cos n<p = cos (} sin n<f> = sin (} 

Since both sine and cosine are periodic functions with period 271', we conclude 
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that 

n</J = () + 27Tk 

or 

where k is an integer. Substituting for s and for </J in the trigonometric fonn of u 
given in Equation (4) yields 

The n distinct roots of r(cos () + i sin 8) are given by 

-vt;:[ cos(() + 
n
27Tk) + i sin( 9 + 

n
27Tk

) J 
where k = 0, I ,  2, . . .  , n - I . 

Note that when k exceeds n - 1 ,  we repeat a previou root. For example, when 
k = n, the angle is 

() + 27Tn 
= !!. + 27T = !!. 

n n n 

which is the same result that is obtained when k = 0. 

EXAMPLE 6 

Find the cube roots of -8i . 

SOLUTION 
In trigonometric fonn, 

- 8i = 8(cos 270° + i sin 270°) 

We then have r =  8, (} = 270°, and n = 3 .  
The cube roots are then 

�Jr.::g [ (270° + 360°k) + 
. . (270° + 360°k

) ] v lS cos 
3 

i sm 
3 

for k =  0, 1 ,  2. Substituting for each value of k we have 

2(cos 90° + i sin 90°) = 2i 

2(cos 2 1 0° + i sin 2 10°) = -V3 - i 

2(cos 330° + i sin 330°) = V3 - i 

When z = 1 ,  we call the n distinct nth roots the nth roots of unity. 
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EXEROSE SET 7.6 

EXAMPLE 7 
Find the four fourth roots of unity. 

SOLUTION 
In trigonometric form, 

l = l (cos 0° + j sin 0°) 

so that r = l , 0 = 0°, and n = 4. The fourth roots are then given by 

Y'I[ cos(oo + :60ok) + i sin(oo + ;60ok) J 
for k = 0, 1 ,  2, 3 .  Substituting these values for k yields 

cos 0° + i sin 0° = l 

. cos 90° + i sin 90° = i 
cos 1 80° + i sin 1 80° = - l 

cos 270° + i sin 270° = -i 

It is easy to verify that each of these answers is indeed a fourth root of unity. 

PROGRESS CHECK 
Find the two square roots of v'3'2 - ii. Express the answers in trigonometric 
form. 

ANSWER 
cos 1 65° + i sin 1 65°, cos 345° + i sin 345° 

Find the absolute value of each _given complex number. 

1 .  3 - 2i 2 .  -7 + 6i 

5. -6 - 2i 6. 3 - i 
Express the given complex number in trigonometric form. 
7. 3 - 3i 8. 2 + 2i 

1 1 .  - I +  i 1 2 . -2i 

3 .  1 + i 

9. VJ - i  
1 3 .  -4 

Convert the given complex number from trigonometric form to the algebraic form a + bi. 

1 5 .  4 (  cos 180° + i sin 1 80°) 

1 7 . Vz(cos 1 35° + i sin 1 35°) 

19 .  5( 37T . . 37T) cos -z + 1 sm -z 

16 .  

18 .  

20. 

I ( 1T . . 1T) - cos - + 1 sm -2 2 2 
2(cos 120° + i sin 1 20°) 

4(cos 240° + i sin 240°) 

4 .!. + .!.,· . 2 2 

10. -2  - 2VJi 
14. 3i 
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Find the product of the given complex numbers. Express the answers in trigonometric fonn. 
2 1 .  2(cos 1 50° + i sin 1 50°) · 3( cos 2 I0° + i sin 2 1 0°) 23. 2(cos 1 0° + i sin 1 0°) · (cos 320° + i sin 320°) 
22. 3(cos 1 20° + i sin 1 20°) · 3(cos 1 50° + i sin 150°) 24. 3(cos 230° + i sin 230°) · 4(cos 250° + i sin 250°) 
Express the given complex numbers in trigonometric form, compute the product, and write the answer in the form 
a +  bi. 
25. I - i, 2i 26. - \13  + i, -2 
27. -2 + 2VJi, 3 + 3i 28. 1 - VJi, I + VJi 
29. 5 ,-2  - 2i 30. -4i, -3i 
Use De Moivre's theorem to express the given number in the form a +  bi. 
3 1 .  ( - 2 + 2i)6 32. (VJ - i) IO 33. ( l - i)9 34. ( - l + VJi) 10 
35. (- 1 - ;)7 36. ( - v'2 + Vzi)6 
Find the indicated roots of the given complex number. Express the answer in the indicated form. 
37. The fourth roots of - 16; algebraic form a +  bi. 39. The square roots of I - VJi; trigonometric form. 
38. The square roots of - 25; trigonometric fonn. 
Jn Exercises 4 1 -44 determine all roots of the given equation. 

40. The four fourth roots of unity; algebraic fonn. 

4 1 .  x3 + 8 = 0 42 . x3 + 1 25 = 0 43. x4 - 1 6  = O 44. x4 + 1 6 = 0  

45. 

TERMS AND SYMBOLS 
trigonometric expression 

(p. 30 1 )  
trigonometric identity 

(p. 30 1 )  
trigonometric equation 

(p. 30 1 )  
fundamental identities 

(p. 302) 
trigonometric fonnulas 

(p. 307) 

KEY IDEAS FOR REVIEW 

addition formulas (p. 307) 
cofunctions (p. 3 10) 
double-angle formulas 

(p. 3 1 5) 
half-angle formulas 

(p. 3 1 8) 
product-sum formulas 

(p. 322) 
complex plane (p. 33 1 )  

0 A trigonometric identity i s  true for all real values i n  the 
domain of the variable. The fundamental identities are 
those trigonometric identities that occur so frequently 
that they must be remembered and recognized. 

0 The fundamental identities can be used to verify other 
trigonometric identities. The techniques commonly used 
to verify identities include the following. 
• Writ.e all of the trigonometric functions in terms of 

sine and cosine. 

real axis (p. 33 1 )  
imaginary axis (p. 33 1 )  
ab olute value of a com-

plex number (p. 33 1 )  
trigonometric form 

(p. 332) 
polar form (p. 332) 
modulus (p. 333) 

• Factor. 

argumen1 (p. 333) 
principal argument (p. 333) 
De Moivre's theorem 

(p. 335) 
nth roots of a complex 

number (p. 336) 
nth roots of unity (p. 337) 

• Complete the indicated operations, especially when 
this involves the sum of fractional expressions. 

• Multiply the numerator and denominator of a fraction
al expression by the same quantity to produce a sim
pler product such as 1 - sin2 (J, I - cos2 (J, or 
sec2 (J - I .  
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D The most useful of the trigonometric formulas are the 
following. 

Addition Formulas 

sin(s + t) = sin s cos t + cos s sin t 
cos(s + t) = co s cos 1 - sin s sin 1 

( + ) tan s + tan t tan s 1 = I - tan s tan 1 
Double-Angle Formulas 

sin 21 = 2 sin 1 cos 1 
cos 21 = cos2 t - sin2 t 

2 tan I tan 2t = 1 2 - tan t 

Half-Angle Formulas 

. I + �I - cos I Sin 2 = - 2 
I + {f+COst cos 2 = - y-----:i--

REVIEW EXERCISES 

I - cos r 
I + cos t 

D Since the trigonometric functions are periodic, a trigo
nometric equation has either no solutions or an infinite 
number of solutions. 

D The complex number a + bi can be associated with the 
point P(a,b). The trigonometric or polar form of the 
complex number a + bi is given by 

a + bi = r(cos (J + i sin 9) 
where r is the length of the line segment OP and (J is the 
measure of the angle in standard position whose terminal 
side is OP. 

D The trigonometric form of a complex number is useful 
since multipl ication and division of complex numbers 
take on simple forms. In particular, exponentiation of 
complex numbers is handled by De Moivre's theorem, 
which states 

[r(cos (J + i sin fJ)t = r"(cos nfJ + i sin nfJ) 

D The complex number u is an nth root of the complex 
number z if un = z. De Moivre's theorem can be used to 
find a formula for determining u. 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 
7.  I In  Exercises 1 -3 verify the given identity. 1 3 .  If sec u = 1 0/8 and u lies in quadrant IV, find 

I .  in u sec u + tan u = 2 tan u csc(u + 1Tl3). 

cos2 x . 14. If sin I =  -3/5 and W(t) is in quadrant I I I ,  fin<i 
2. l . = I + stn x tan(t + 1T). - sm x 
3.  s in a +  s in a cot2 a =  csc a 

7. 2 In Exercises 4-7 determine the exact value of the given 
expression by using the addition formulas. 

4. sin(� + �) 5. cos(45° + 90°) 

6. tan(� + �) 7. sin �; 
In Exerci es 8- 1 1  write the given expression in terms 
of cofunctions of complementary angles. 

8. csc 1 5° 9. cos 23° 

10. 1T 1 1 .  21T sin - tan 7 8 
1 2. If cos u = - 121 1 3  and O .s u .s 1 80°, 

sin(7r - u). 
find 

1 5 .  If cos a =  - 1 21 1 3  and tan f3 = -5/2, with 
angles a and f3 in quadrant I I , find tan(a + {3). 

1 6. If sin x = 3/5 and csc y = 1 3/ 1 2 ,  with x in quad
rant II and y in quadrant I ,  find cos(x - y). 

7 .3 17 .  If csc u = -514 and u is in quadrant rv,  find 
cos 2u. 

1 8 .  If tan u = -3/4 and 0 .S u :S l 80°, find 
sin 2u. 

1 9. If sin 21 = 3/5 and 21 is in quadrant 1, find 
sin 41. 

20. If sin u = 0.5 and 7T/2 .s u .s 1T, find sin 2u. 
2 1 .  If cos(u/2) = 1 21 1 3  and u is acute, find sin u. 



22. lf sin a =  -315 and a is in quadrant I l l ,  find 
cos(a/2). 

23 . If cot t = -4/3 and t is in quadrant IV, find 
tan(t/2) .  

24. If cos 4x = 213 and 4x is in quadrant lV, find cos 
2x. 

25. Find the exact value of cos 1 5° by using a half
angle fonnula. 

26. Find the exact value of sin '7T/8 by using a half
angle fonnula. 

27. Find the exact value of tan 1 12.5° by using a 
half-angle formula. 

ln Exercises 28-30 verify the given identity . 
28. cos 30x = I - 2 sin2 1 5x 

29 
l . 2 sin y . -
2 sin y = sec y 

30. tan �2 
= Ll.. -. cos a) 

sm a 

3 1  E . 3a . a d'ff 7.4 . xpress sin 2 sm 2 as a sum or 1 erence. 

32. Express cos 3x - cos x as a product. 
33. Evaluate sin 75° sin 1 5° by using a product-sum 

formula. 
3'7T '7T b . 34. Evaluate cos 4 + cos 4 y usmg a sum-

product formula. 
7 .5  ln Exercises 35-37 find all solutions of the given equa

tion in the interval (0, 2'7T) .  Express the answers in 
radian measure. 
35. 2 cos2 a - I = 0 
36. 2 sin u cos u = 0 
37. sin 2t - sin t = O  

PROGRESS TEST 7A 
I .  Verify the identity 4 - tan2 x = 5 - sec2 x. 

Jn Problems 2 and 3 determine exact values of the given 
expressions by using the addition formulas . 

2. cos(270° + 30°) 

4. Write in 47° in terms of its cofunction . 
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ln Exercises 38-40 find all solutions of the given equa
tion. Express the answers in degree measure. 
38. cos2 a - 2 cos a = 0 
39. tan 3x + l = 0 
40. 4 sin2 2t = 3 

7. 6 ln Exercises 4 l -43 determine the ab olute value of the 
given complex number. 
4 1 .  2 - i  42. - 3 + 2i 43. -4 - 5i 
In Exercises 44-47 convert from trigonometric to alge
braic form and vice versa. 
44. - 3  + 3i 
45 . 2(cos 90° + i sin 90°) 

46. \12(cos 3 15° + i sin 3 1 5°) 
47. -2 

In Exercises 48-50 find the indicated product or quo
tient. Express the answer in trigonometric form. 
48. 4(cos 22° + i sin 22°) · 6(cos 1 5° + i sin 1 5°) 

49. 

50. 

5(cos 7 1 °  + i sin 7 1 °) 
3(cos 50° + i sin 50°) 
2(cos 2 10" + i sin 2 10°) · (cos 240° + 
i sin 240°) 

In Exercises 5 1  and 52 use De Moi vre' s theorem to 
express the given number in the form a + bi. 
5 1 . (3 - 3i)s 

52. [2(cos 90° + i sin 90°)]3 
53. Express the two square roots of -9 in trigono

metric form. 
54. Determine all roots of the equation x3 - I = 0. 

5 .  If cos 8 = 415 and £J lies in quadrant IV,  find 
sin(8 - '7T). 

6. If sin x = -5/ 1 3 and tan y = 8/3 with angles x and y in 
quadrant m. find lan(x - y). 

7. If sin v = - 1 21 1 3  and v is in quadrant rv.  find 
cos 2v. 



8 .  If cos 2a = -4/5 and 2a i s  in  quadrant II , find cos 
4a. 

9 .  If csc a = -2 and a is in quadrant III, find 
cos(a/2) .  

10 .  

1 1 . 

12 .  
1 3 .  

Find the exact value of tan 15°  by using a half-angle 
formula. 

V "f h "d . . x 2 . x x en y t e 1 entity sm 4 = sm 8 cos 8. 
Express s in 2x + sin 3x as a product. 
Express sin 1 50° - sin 30° by using a sum-product 
formula. 

1 4. Find all solutions of the equation 4 sin2 a = 3 in the 
interval [O, 27T). Express the answers in radian mea-
sure. 

1 5 .  Find all solutions of the equation sin2 (} - cos2 (} = 0 
and express the answers in degree measure. 

V . f h .d . tan u + cot u 2 I .  en y t e 1 entity . = csc u .  sec u sm u 

In Problems 2 and 3 determine exact values of the given 
expression by using the addition formulas. 

2. csc( 1 80° - 30°) 3 . 77T . sm 12 
4. Write tan 7 1 °  in terms of its cofunction. 
5. If sin t = -51 1 3  and t lies in quadrant III , find 

sec(t + 7T/4). 
6. If cos a = -0.6 and csc f3 = 514 with angles a and f3 

in quadrant I I ,  find sin(a - {3). 
7 .  I f  sec (} =  514 and 0 s (} s 1 80°, find sin 20. 
8. If sin 012 = 315 and (} is acute , find sin 20. 
9. If sin 6x = - 1 2/ 13  and 6x is in quadrant IV, find 

cos 3x. 
1 0. Find the exact value of sin 7T/8 by using a half-angle 

formula. 

In Problems 1 6  and 1 7  find the indicated product or quo
tient. Express the answer in trigonometric form. 

16 .  � (cos 14° + i sin 14°) · l O(cos 72° + i sin 72°) 

3 (cos 85° + i sin 85°) 1 7 .  
1 8 .  

1 9 .  

1 1 .  

6( cos 8° + i sin 8°) 
Use De Moivre's theorem to express [� (cos I 20° + i sin 1 20°) r in the form a +  bi. 

Express the three cube roots of -27 in trigonometric 
form. 

V "f h "d . 2 I + tan2 t en y t e 1 entity sec t = 1 _ tan2 ( 
1 2. Express sin 7T/4 cos 7T/3 as a sum or difference. 
1 3 .  Express cos 75° cos 1 5° by using a product-sum for

mula. 
14 .  Find all solutions of the equation tan2 x + tan x = 0 in 

the interval [O, 27T). Express the answers in radian
measure. 

1 5 .  Find all solutions of the equation 2 sin2 a - sin a -
1 = 0 and express the answers in degree measure. 

In Problems 1 6  and 1 7  find the indicated product or quotient. Express the answer in trigonometric form. 
1 6. (cos 1 25° + i sin 1 25°) · 5(cos 1 25° + i sin 1 25°) 1 8 .  Use De Moivre's theorem to express (-2i)6 in the 

l:( cos 67° + i sin 67°) 
1 7· !(cos 1 2° + i sin 1 2°) 19 .  

form a +  bi. 

Determine all roots of the equation x3 + I = 0. 



8.1 
ANALYTIC GEOMETRY 

ANALYTIC GEOMETRY: 
THE CONIC SECTIONS 
In 1 637 the great French philosopher and scientist Rene Descartes developed an 
idea that the nineteenth-century British philosopher John Stuart Mill described as 
· 'the greatest single step ever made in the progress of the exact sciences. ' '  Des
cartes combined the techniques of algebra with those of geometry and created a 
new field of study called analytic geometry. Analytic geometry enables us to 
apply algebraic methods and equations to the solution of problems in geometry 
and, conversely, to obtain geometric representations of algebraic equations. 

We will first develop a formula for the coordinates of the midpoint of a line 
segment. We will then use the distance and midpoint formulas as tools to illus
trate the usefulness of analytic geometry by proving a number of general theo
rems from plane geometry . 

The power of the methods of analytic geometry is also very well demon
strated, as we shall see in this chapter, in a study of the conic sections. We will 
find in the course of that study that (a) a geometric definition can be converted 
into an algebraic equation and (b) an algebraic equation can be classified by the 
type of graph it represents. 

We have previously seen that the length d of the line segment joining points 
Pi(x. , Y1 )  and P2(x2, y2) is given by 

d = V(x2 - x1)2 + (y2 - y1 )2 

It is al o possible to obtain a formula for the coordinates (x, y) of the midpoint P 
of the line segment whose endpoints are P1 and P2 (see Figure l ) . Passing lines 
through P and P2 parallel to the y-axis and a line through P 1 parallel to the x-axis 
results in the similar right triangles P1AP and P1BP2. Using the fact that corre
sponding sides of similar triangles are in proportion, we can write 

P1P2 = P,P 
P2B PA 

PAGE 343 
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y 

A 
y I p I (X I • Y I  ) -x - x 1 -

B 

-----x 2 - X i -----

x 

FIGURE 1 

The Midpoint Formula 

Since P is the midpoint of P1P2, the length of P,P is d/2, so 

d 

Solving for y, we have 

Similarly, 

We solve for x to obtain 

d 2 
--- = --

Y2 - YI y - Y t 

y = lL..±..h 2 

d 
d 2 

--- = --

X1 + X2 x = ---
2 

We have established the following formu1a. 

If P(x,y) is the midpoint of the line segment whose endpoints are P1(x i . y 1 ) and 
P2(x2, y2). then 

X1 + x2 x = ---2 
v. + v� y = � 

2 
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EXAMPLE 1 
Find the midpoint of the line segment whose endpoints are P1(3,  4) and 
P2( -2, -6). 

SOLUTION 
If P(x, y) is the midpoint, then 

X = X1 + X2 = 
3 + ( - 2) = }_ 

2 2 2 

y = i'.1...±....h = 

4 + (-6) = - 1  
2 2 

Thus, the midpoint is (1, - l ) . 

PROGRESS CHECK 
Find the midpoint of the line segment whose endpoints are given. 
(a) (0, -4), ( -2, - 2) (b) (- 10, 4) , (7 , -5) 

ANSWERS 
(a) ( - 1 ,  - 3) (b) (-�. - o  

The formulas for distance, midpoint of a line segment, and slope of a line are 
sufficient to allow us to demonstrate the beauty and power of analytic geometry. 
With these tools, we can prove theorems from plane geometry by placing the 
figures on a rectangular coordinate system. 

EXAMPLE 2 
Prove that the line joining the midpoints of two sides of a triangle is parallel to the 
third side and has length equal to one-half the third side. 

SOLUTION 
We place the triangle OAB in a convenient location, namely, with one vertex at 
the origin and one side on the positive x-axis (Figure 2) . If Q and R are the 
midpoints of OB and AB ,  then, by the midpoint formula, the coordinates of Q and 

R are  
y 

B(b . c )  

A (a ,  0) 
x 

FIGURE 2 
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R
(a + b £)1 

2 ' 2  

We see that the line joining Q and R has slope 0, since file difference of the 
y-coordinates is 

But side OA also has slope 0, which proves that QR is parallel to OA . 

Applying the distance fonnula to QR, we have 

QR = V(x2 - xi)2 + (y2 - y1)2 

�(a + b _ !!.) 2 + (£ _ £)12 
= 2 2 2 2 

= � = � 
Since OA has length a, we have shown that QR is one-half of OA . 

PROGRESS CHECK 
Prove that the midpoint of the hypotenuse of a right triangle is equidistant from alJ 
three vertices. (Hint: Place the triangle so that two legs coincide with the positive 
x- and y-axes. Find the coordinates of I.he midpoint of the hypotenuse by the 
midpoint fonnula. Finally, compute the distance from the midpoint to each vertex 
by the distance fonnula.) 

EXERCISE SET 8.1 
In Exercises 1 - 1 2  find the midpoint of the line segment whose endpoints are given. 
I .  (2, 6), (3 , 4) 
5 .  ( - 2, 1 ) ,  (-5 ,  -3) 
9. ( - 1 , 3) , (- 1 , 6) 

2. ( 1 , 1 ) , ( -2, 5) 
6 .  (2, 3) ,  ( - 1 , 3) 

10. (3 , 2) , (0, 0) 
1 3 .  Prove that the medians from the equal angles of an 

isosceles triangle are of equal length. (Hint: Place the 
triangle so that its vertices are at the points A(-a,  0), 
B(a, 0), and C(O, b) . )  

1 4. Show that the midpoints of the sides of a rectangle are 
the vertices of a rhombus (a quadrilateral with four 
equal sides). (Hint: Place the rectangle so that its ver
tices are at the points (0, 0) , (a, 0), (0, b) , and 
(a, b) . )  

1 5 .  Prove that a triangle with two equal medians i s  isos
celes. 

3 .  (2, 0) , (0 ,  5) 
7. (0, -4) , (0, 3) 

I I .  ( I , - 1 ) , ( - 1 ,  I ) 

4. (-3 ,  0), (-5 ,  2) 
8 .  ( 1 , - 3) , (3 , 2) 

12 .  (2 , 4 )  (2 , -4) 
16 .  Show that the sum of the squares of the lengths of the 

medians of a triangle equals three-fourths the sum of 
the squares of the lengths of the sides. (Hint: Place the 
triangle so that its vertices are at the points ( - a ,  0) , 
(b, 0), and (0, c) . ) 

17 .  Prove that the diagonals of  a rectangle are equal in  
length. (Hint: Place the rectangle so that its vertices 
are at the points (0, 0), (a, 0) , (0, b), and (a, b). )  
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Circle 
FIGURE 3 
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The conic sections provide us with an outstanding opportunity to illustrate the 
double-edged power of analytic geometry. We will see that a geometric figure 
defined as a set of points can often be described analytically by an algebraic 
equation; conversely, we can start with an algebraic equation and use graphing 
procedures to study the properties of the curve. 

First, let's see how the term conic section originates. If we pass a plane 
through a cone at various angles, as shown in Figure 3, the intersections are 
called conic sections. In exceptional cases the intersection of a plane and a cone 
is a point, a line, or a pair of lines. 

Let's  begin with the geometric definition of a circle. 

Parabola Ellipse Hyperbola 

A circle is the set of all points in a plane that are at a given distance from a fixed 
point. The fixed point is called the center of the circle and the given distance i 
called the radius. 

Using the methods of analytic geometry, we place the center at a point (h, k) as in 
Figure 4. If P(x, y) is a point on the circle, then, by the distance formula, the 
distance from P to the center ( h, k) is 

vex - h)2 + <Y - k)2 

Since this distance is equal to the radius r, we can write 

V (x - h)2 + (y - k)2 = r 
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standard Form of the 
Equation of a Circle 

y 

r 

(h , k )  

x 

FIGURE 4 

Squaring both sides provides us with an important fo• 
circle. 

(x - h)2 + (y - k)2 = ,2 
i the standard form of the equation of the circle with center at ( h, k) and 
radiu r. 

EXAMPLE 1 
Write the equation of the circle with center at (2, -5) and radius 3 . 

SOLUTION 
Substituting h = 2, k = -5 , and r = 3 in the equation 

(x - h)2 + (y - k)2 = r2 

yields 

(x - 2)2 + (y + 5)2 = 9 

EXAMPLE 2 
Find the center and radius of the circle whose equation is 

(x + 1 )2 + (y - 3)2 = 4 

SOLUTION 
Since the standard fonn is 

(x - h)2 + (y - k)2 = r2 



GENERAL FORM 

we must have 

x - h = x + I 

Solving, we find that 

h =  - I  

y - k = y - 3  

k = 3  r = 2  

The center is at (- 1 ,  3) and the radius is 2.  

PROGRESS CHECK 

8.2 TI-IE CIRCLE 349 

r2 = 4 

Find the center and radius of the circle whose equation is 

( x - D 2 + (y + 5)2 = 1 5  

ANSWER 

center G· -5) , radius v'l5 

When we are given the equation of a circle in the general form 

Ax2 + Ay2 + Dx + Ey + F = 0, 

in which the coefficients of x2 and y2 are the same, we may rewrite the equation in 
standard form. The process involves completing the square in each variable and is 
essentially the process we studied in Section 2 .5 .  Recall that if we have the 
expression 

x2 + bx 

we add (b/2)2 to form 

b2 ( b) 2 
x2 + bx + 4 = x + 2 

For example, starting with the expressions 

x2 + 4x and y2 - l Oy 

we would complete the squares in this way: 

x2 + 4x + 4 = (x + 2)2 and y2 - l Oy + 25 = (y - 5)2 

After completing the squares, we can write the equation in standard form, deter
mine the center and radius, and easily sketch the graph . 

EXAMPLE 3 
Write the equation of the circle 2x2 + 2y2 - I 2x + l 6y - 3 1  = 0 in standard 
form. 
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SOLUTION 
Grouping the terms in x and y and factoring produces 

2(x2 - 6x) + 2(y2 + Sy) = 3 1  
Completing the square in both x and y, we have 

2(x2 - 6x + 9) + 2(y2 + Sy +  16) = 3 1  + l S + 32 
2(x - 3)2 + 2(y + 4)2 = S l 

Note that the quantities I S  and 32 were added to the right-hand side because each 
factor is multiplied by 2 . The last equation can be written as 

S l (x - 3)2 + (y + 4)2 = -2 
This is the standard form of the equation of the circle with center at (3, -4) and 
radius 9Yl/2. 

PROGRESS CHECK 
Write the equation of the circle 4x2 + 4y2 - Sx + 4y = 103 in standard form, and 
determine the center and radius. 

ANSWER 

(x - 1 )2 + (y + �)2 = 27, center ( 1 ,  - �) . radius Vfi 

EXAMPLE 4 

Write the equation 3x2 + 3y2 - 6x + 15 = 0 in standard form. 

SOLUTION 
Regrouping, we have 

3(x2 - 2x) + 3y2 = - 15 
We then complete the square in x and y: 

3(x2 - 2x + 1) + 3y2 == - 15 + 3 
3(x - 1 )2 + 3y2 = - 12 
(x - 1 )2 + y2 = -4 

Since r2 = -4 is an impossible situation, the graph of the equation is not a circle. 
Note that the left-hand side of the equation in standard form is a sum of squares 
and is therefore nonnegative, while the right-hand side is negative. Thus, there 
are no real values of x and y that satisfy the equation. This is an example of an 
equation that does not have a graph ! 

PROGRESS CHECK 
Write the equation x2 + y2 - 12y + 36 = 0 in standard form, and analyze its 
graph . 
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ANSWER 

The standard form is r + (y - 6)2 ;:::; o. The equation is that of a "circle" with 
center at (0, 6) and radius of 0. The "circle" is actually the point (0, 6) . 

EXAMPLE 5 

Find an equation of the circle that has its center at C(- 1 ,  2) and that passes 
through the point P(3, 4). 

SOLUTION 

Since the distance from the center to any point on the circle determines the radius, 
we can use the distance formula to find 

r = PC =  VW 
Then we can write the equation of the circle in standard form as 

(x + 1 )2 + (y - 2)2 = 20 

EXERCISE SET 8.2 
In Exercises 1 -8 write an equation of the circle with center at (h, k) and radius r. 
1 .  (h, k) = (2, 3), r = 2 2 .  (h, k) = (-3 , 0), r = 3  
3 .  (h ,  k )  = (-2, -3), r = Vs 4. (h ,  k) = (2, -4) ,  r = 4 
5 .  (h, k) = (0, 0) , r = 3 6 .  (h, k) = (0, -3) ,  r = 2 
7 .  ( h ,  k )  = ( - 1 ,  4), r = 2v2 8 .  (h, k) = (2, 2) , r = 2 

In Exercises 9-1 6  find the center and radius of the circle with the given equation. 
9 .  (x - 2)2 + (y - 3)2 = 1 6  10 .  (x + 2)2 + y2 = 9 

1 1 . <x - 2)2 + <Y + 2)2 = 4 1 2. (x + �) 2 + (y - 2)2 = s 

1 3 .  <x + 4)2 + (y + �r = 1 s  1 4. x2 + (y - 2)2 = 4 

1 5 .  (x - �r + y2 = � 1 6 .  <x - 1 )2 + (y - �r = 3 

In Exercises 1 7-24 write the equation of the given circle in standard form and determine its center and radius . 
1 7 .  x2 + y2 + 4x - 8y + 4 = 0  1 8 .  x2 + y2 - 2x + 6y - 1 5 = 0  
19. 2x2 + 2y2 - 6x - IOy + 6 = 0 20. 2x2 + 2y2 + Sx - 1 2y - 8 = 0 
2 1 .  2x2 + 2y2 - 4x - 5 = 0 
23. 3x2 + 3y2 - 1 2x  + 1 8y + 1 5  = 0 

22. 4x2 + 4y2 - 2y - 7 = 0 
24. 4x2 + 4y2 + 4x + 4y - 4 = 0 

In Exercises 25-36 write the given equation in standard form. and determine if the graph of the equation is a circle, a point, 
or neither. 
25. x2 + y2 - 6x + Sy + 7 = 0 
27. x2 + y2 + 3x - 5y + 7 = 0 
29. 2x2 + 2y2 - 12x - 4 = 0 

26. x2 + y2 + 4x + 6y + 5 = 0 
28. x2 + y2 - 4x - 6y - 13 = 0 
30. 2x2 + 2y2 + 4x - 4y + 25 = 0 
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3 1 .  2x2 + 2/ - 6x - 4y - 2 = 0  
33. 3x2 + 3/ + 1 2x - 4y - 20 = 0 
35. 4x2 + 4/ + 1 2x - 20y + 38 = 0 
37. Find the area of the circle whose equation is 

x2 + y2 - 2x + 4y - 4 = 0 
38. Find the circumference of the circle whose equation 

is 
x2 + y2 - 6x + 8 = 0 

39. Show that the circles whose equations are 
x2 + y2 - 4x + 9y - 3 = 0 

and 
3x2 + 3/ - 12x  + 27y - 27 = 0 

are concentric. 

32. 2x2 + 2/ - IOy + 6 = 0 
34. x2 + y2 + x + y = 0 
36. 4x2 + 4/ - 12x - 36 = 0 
40. Find an equation of the circle that has its center at 

(3, - 1 )  and that passes through the point (-2 .  2) .  
4 1  . Find an equation of the circle that has its center at 

( -5 ,  2) and that passes through the point ( -3 , 4) . 
42. The two points ( -2, 4) and (4, 2) are the endpoints of 

the diameter of a circle. Write the equation of the cir
cle in standard form. 

43. The two points (3, 5) and (7, -3) are the endpoints of 
the diameter of a circle. Write the equation of the cir
cle in standard form. 

8.3 We begin our study of the parabola with the geometric definition . 
THE PARABOLA 

Given a fixed point (called the focus) and a fixed line (called the directrix), a 
parabola is the set of all points each of which is equidistant from the point and 
from the line .  

ln Figure 5 each point P on the parabola i s  equidistant from the focus F and the 
directrix L, that is, PF = PQ. The line through the focus that is perpendicular to 
the directrix is called the axis of the parabola (or simply the axis), and the 
parabola is seen to be symmetric with respect to the ax.is. The point V (Figure 5), 
where the parabola intersects its axis, is called the vertex of the parabola. The 
vertex, then, is the point from which the parabola opens. Note that the vertex is 
the point on the parabola that is closest to the directrix. 

Q Q Q Q Q Q  Q Q Q Q Q  L 
FIGURE 5 
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We can apply the methods of analytic geometry to find an equation of the parab
ola. We choose the y-axis as the axis of the parabola and the origin as the vertex 
(Figure 6). S ince the vertex is on the parabola, it is equidistant from the focus and 
the directrix . Thus, if the coordinates of the focus F are (0, p) , then the equation 
of the directrix is y = -p. We then let P(x, y) be any point on the parabola, and 
we equate the distance from P to the focus F and the distance from P to the 
directrix L .  Using the distance formula, we find 

PF = PQ 

Y(x - 0)2 + (y - p)2 = Y(x - x)2 + (y + p)2 
Squaring both sides, we have 

x2 + y2 _ 2py + p2 = y2 + 2py + p2 
x2 = 4py 

y 

Directrix L Q(x, -p) 
-- Y = -p 

x 

x 

Y = -p Q(x, -p) 
(a) p > 0 (b) p < 0 

FIGURE 6 

Standard Form of the 
Equation of a Parabola 

We have obtained an important form of the equation of a parabola. 

x2 
== 4py 

is the standard fonn of the equation of a parabola whose vertex is at the origin, 
whose focus is at (0 , p), and whose axis is vertical . 

Conversely, it can be shown that the graph of the equation x2 = 4py is a parabola. 
Note that substituting -x for x leaves the equation unchanged, verifying sym
metry with respect to the y-axis. If p > 0, the parabola opens upward as shown in 
Figure 6a; if p < 0, the parabola opens downward as shown in Figure 6b. 
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EXAMPLE 1 
Determine the focus and directrix of the parabola x1- = Sy. and sketch its 
graph. 

SOLUTION 
The equation of the parabola is of the form 

x1- = 4py = Sy 

so p = 2. The equation of the directrix is y = -p = -2,  and the focus is at 
(0, p) = (0, 2) . Since p > 0, the parabola opens upward . The graph of the parab
ola is shown in Figure 7.  

y 

y == -2 

FIGURE 7 

PROGRESS CHECK 
Determine the focus and directrix of the parabola x1- = - 3y . 

ANSWER 

focus at ( 0, -�) , directrix y = � 
EXAMPLE 2 
Find the equation of the parabola with vertex at (0, 0) and focus at (0, -n. 



l y 
x = -P I 

I 
I 
I 
I 

Directrix L 
(a) p > 0 

FIGURE & 

Standard fonn of the 
!Equation of a !Parabola 
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SOLUTION 
Since the focus is at (0, p), we have p = -i. The equation of the parabola is 

x2 = 4py = 4( -�) = -6y 

PROGRESS CHECK 
Find the equation of the parabola with vertex at (0, 0) and focus at (0, 3 ) . 
ANSWER 
x2 = liy 

If we place the parabola as shown in Figure 8, we can proceed as above to 
obtain the following result. 

x 

y2 = 4px 

y I 
I 
I 
I 
I x = -p 
I 
I x 
I 

I 
I Directrix L 

(b) p < 0 

is the standard form of the equation of a parabola whose vertex is at the origin, 
whose focus is at (p, 0) , and whose axis is horizontal. 

Note that substituting -y for y leaves this equation unchanged, verifying sym
metry with respect to the x-axis. If p > 0, the parabola opens to the right as shown 
in Figure Sa; if p < 0, the parabola opens to the left as shown in Figure Sb. 
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VERTEX AT (h, k) 

EXAMPLE 3 
Find the equation of the parabola with vertex at (0, 0) and directrix x = !. 

SOLUTION 
The directrix is x = -p, so p = -!.  The equation of the parabola is then 

y2 = 4px = - 2x  

EXAMPLE 4 
Find the equation of the parabola that has the x-axis as its axis, that ha vertex at 
(0, 0), and that passes through the point (-2, 3). 

SOLUTION 
Since the axis of the parabola is the x-axis, the equation of the parabola is 
y2 = 4px. The parabola passes through the point (-2, 3), so the coordinates of 
this point must satisfy the equation of the parabola. Thus, 

y2 = 4px 

(3)2 = 4p( - 2) 
9 

4p = - -2 
and the equation of the parabola is 

PROGRESS CHECK 

9 
y2 

= 4px = --x 2 

Find the equation of the parabola that has the y-axis as its axis, that has vertex at 
(0, 0) , and that passes through the point ( 1 ,  -2) . 
ANSWER 

l 
x2 = -?' 

It is also possible to determine an equation of the parabola when the vertex is at 
some arbitrary point (h, k) . The form of the equation depends on whether the axis 
of the parabola is parallel to the x-axis or to the y-axis. The situations are sum
marized in Table 1 .  Note that if the point (h, k) is the origin, then h = k = 0, and 
we arrive at the equations we derived previously, x2 = 4py and y2 

= 4px. Thus, 
in all cases, the sign of the constant p determines the direction in which the 
parabola opens. An equation of a parabola can always be written in the standard 
forms shown in Table 1 by completing the square , as in Example 6.  
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The properties of the parabola are used in the design of some important devices. 
For example. by rotating a parabola about its axis, we obtain a parabolic reflec
tor, a shape used in the headlight of an automobile. In the accompanying figure, 
the light source (the bulb) is placed at the focus of the parabola. The headlight is 
coated with a reflecting material, and the rays of l ight bounce back in lines that 
are parallel to the axis of the parabola. This permits a headlight to disperse light 
in front of the auto where it is needed. 

A reflecting telescope reverses the use of these same properties. Here, the 
rays of light from a distant star, which are nearly parallel to the axis of the parab
ola, are reflected by the mirror to the focus (see accompanying figure). The 
eyepiece is placed at the focus, where the rays of light are gathered. 

Head light Telescope 

TABlE 1 

Standard Forms of the Equations of the Parabola 

Equation Vertex Axis Direction 

(x - h)2 = 4p(y - k) (h, k) x = h  Up if p > 0  
Down if p < O  

(y - k)2 = 4p(x - h) (h, k) y = k  Right if p > 0 
Left if p < 0 

Note that these changes in the equations of the parabola are similar to the 
change that occurs in the equation of the circle when the center is moved from the 
origin to a point (h, k) . In both cases , x is replaced by x - h and y is replaced by 
y - k. 

EXAMPLE 5 
Detennine the vertex, axis, and direction of the graph of the parabola 

(x - �r ;: -

3(y + 4) 
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SOLUTION 
Comparison of the equation with the standard form 

(x - h)2 = 4p(y - k) 

yields h = !, k = -4, p = -i .  The axis of the parabola is always found by set
ting the square term equal to 0. 

I x = -2 

Thus, the vertex is at (h, k) = O. -4), the axis is x = !, and the parabola opens 
downward since p < 0. 
PROGRESS CHECK 
Determine the vertex, axis, and direction of the graph of the parabola 

3(y + 1 )2 = 12(x - k) 
ANSWER 

vertex G, - J ) , axis y = - l , opens to the right 

EXAMPLE 6 
Locate the vertex and the axis of symmetry of each of the given parabolas. Sketch 
the graph . 
(a) x2 + 2x - 2y - 3 = 0 (b) y2 - 4y + x + l = 0 

SOLUTION 
(a) We complete the square in x: 

x2 + 2x = 2y + 3 
x2 + 2x + l = 2y + 3 + J 

(x + 1 )2 = 2(y + 2) 
The vertex of the parabola is at (- 1 ,  -2); the axis is x = - 1 . See Figure 9a. 
(b) We complete the square in y: 

y2 - 4y = -x - 1 
y2 - 4y + 4 = -x - 1 + 4  

(y - 2)2 = -(x - 3) 
The vertex of the parabola is at (3 , 2); the axis is y = 2. See Figure 9b. 



FIGURE 9 

v 
(-3, l )  

FIGURE 10 

y 

x 

v 
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V(3, 2) 

4 x 

-2 (y - 2)2 = - (x - 3) 

(- 1 , -2) (x + l )2 = 2(y + 2) 

(a) (b) 

PROGRESS CHECK 

Write the equation of the parabola in standard fonn. Locate the vertex and the 
axis, and sketch the graph. 

(a) y2 - 2y - 2x - 5 = 0 

ANSWERS 
{b) x2 - 2x + 2y - I = 0 

(a) (y - 1 )2 = 2(x + 3), vertex (-3 , 1 ) , axis y = I ,  graph in Figure IOa 
(b) (x - 1 )2 = -2(y - 1 ). vertex ( 1 ,  I ), axis x = I , graph in Figure lOb 

y y 

x 

(y - I )2 = 2(x + 3 ) 

(a) 

(x - I )2 = -2(y - I )  

2 v 
( l ,  1 )  

(b) 

x 
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EXERCISE SET 8.3 
In Exercises 1 -8 determine the focus and directrix of the given parabola, and sketch the graph . 

I .  x2 = 4y 2 .  x2 = -4y 3 .  y2 = 2x 3 4. y2 = --x 2 
5 .  x2 + 5y = 0 6 .  2/ - 3x = 0 7 .  y2 - 1 2x = 0 8 .  x2 - 9y = O  

In Exercises 9-20 determine the equation of the parabola that has its vertex at the origin and that satisfies the given 
conditions. 
9. focus at ( l , O) . 

1 1 .  directrix x = _, 
1 3 .  Axis i s  the x-axis, and parabola passes through the 

point (2, 1 ) .  
1 5 .  Axis i s  the x-axis, and p = -a.  
1 7 .  focus at ( - 1 ,  0 )  and directrix x = I 
19 .  Axis is the x-axis, and parabola passes through the 

point (4, 2 ) .  

10 .  focus at (0 ,  - 3) 
1 2 .  directrix y = � 
14. Axis is the y-axis, and parabola passes through the 

point (4, -2) .  
16 .  Axis is the y-axis, and p = 2.  
1 8 .  focus at (0, -l) and directrix y = � 
20. Axis is the y-axis, and parabola passes through the 

point (2, 4). 
In Exercises 2 1-34 write the equation in standard form. Determine the vertex, axis, and direction of each parabola. 
2 1 .  x2 - 2x - 3y + 7 = 0 22. x2 + 4x + 2y - 2 = 0 
23. y2 - 8y + 2x +  1 2 = 0  24. y2 + 6y - 3x +  1 2 = 0  
25. x2 - x + 3y + I = 0 26. y2 + 2y - 4x - 3 = 0 
27. y2 - IOy - 3x + 24 = 0 28. x2 + 2x - 5y - 1 9  = 0 
29. x2 - 3x - 3y + I = 0 30. y2 + 4y + x + 3 = 0 

I 3 1 .  y2 + 6y + -x + 7 = 0 32. x2 + 2x - 3y + 1 9  = 0 2 
33. x2 + 2x + 2y + 3 = 0 34. y2 - 6y + 2x + l 7 = 0  
In Exercises 35-40 determine the vertex, axis, and direction of each parabola. Sketch the graph. 
35 . x2 - 4x - 2y + 2 = 0 36. y2 + 2x - 4y + 6 = 0 
37. 2x2 + 1 6x + y + 34 = 0 
39. y2 + 2x + 2 = 0 

8.4 
THE ELLIPSE AND 
HYPERBOLA 

THE EWPSE 

38. 2x2 - y + 3 = 0 
40. y2 + 3x - 2y - 5 = 0 

The geometric definition of an ellipse is as follows. 

Given two fixed points (called foci), an eJJipse is the set of all points for which 
the sum of the distances from the fixed points is a constant. 

The ellipse is in standard position if the two fixed points are on either the x-axis or 
the y-axis and are equidistant from the origin .  Thus, if F1 and F2 are the foci of 
the ellipse in Figure I I and P and Q are points on the ellipse, then 

F1P + F2P = c and F1Q + F2Q = c 
where c is a constant. 
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y 

( a , 0) (a , 0) 

x 

Q (0, -b) 

FIGURE 11 

The equation of an ellipse in standard position can be shown to be as follows 
(see Exercise 35). 

x2 v2 
- + "- = I 
a2 b2 

Note that the equation indicates that the graph win be symmetric with respect to 
the x-axis, the y-axis ,  and the origin. 

lf we let x = 0 in the standard form, we find y = ± b; if we let y = 0, we find 
x = ±a. Thus, the ellipse whose equation is 

x2 + t = 1 
a2 b2 

has intercepts (±a, 0) and (0, ± b) .  

EXAMPLE 1 
Find the intercepts and sketch the graph of the ellipse whose equation is 

SOLUTION 

x2 r_ _ 

4 + 25 - l 

Setting x = 0 and solving for y yields the y-intercepts ±5;  setting y = 0 and 
solving for x yields the x-intercepts ±2 .  The graph is then easily sketched as in 
Figure 12 .  
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EXAMPLE 2 

( - 2, 0) 

xz 

y2 
- + - = I 
4 25 

FIGURE 12 

(2, 0) x 

Write the equation of the ellipse in standard form and determine the inter
cepts. 

(a) 4x2 + 3y2 = 1 2  

SOLUTION 

(b) 9x2 + y2 = 10 

(a) Dividing by 1 2  to make the right-band side equal to  l ,  we have 

x2 + i = 1  3 4 

The x-intercepts are (±VJ, 0); the y-intercepts are (0, ± 2) .  
(b) Dividing by 10 we have 

9x2 i_ _ 

10 + 10 - I 

But this is nol standard form. However, if we write 

9x2 as x2 
IO 10 

9 

then 



THE HYPERBOLA 

standard Forms of the 
Equation. of a 

Hyperbola: 
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is the standard form of an ellip e. The intercepts are 

PROGRESS CHECK 

( ±ViO ) . r:;; 1 -3-, 0 and (0, ± v 10) 

Write the equation of each ellipse in standard form and determine the inter
cepts. 
(a) 2.x2 + 3y2 = 6 
ANSWERS 

(b) 3x2 + y2 = 5 

(a) � + � = I ; (±v'3, 0), (0, ± Yl) 

x2 i _ . (±v'i5 ) +· � (b) 5 + 5 - 1 ,  . 3 ' 0  , (0, - v 5) 

3 

The hyperbola is the last of the conic sections we will study. 

Given two fix:ed points (called foci), a hyperbola is the set of all points for 
which the difference of the distances from the two fixed points is a constant. 

The hyperbola is in standard position if the two fixed points are on either the 
x-axis or the y-axis and are equidistant from the origin. The equations of the 
hyperbolas in standard position can be shown to be as follows (see Exercise 
36). 

x2 _ i - 1 a2 b2 - foci on the x-axis ( I )  

2 x2 L _ _ = l a2 b2 foci on the y-axis (2) 

These equations indicate that the graphs are symmetric with respect to the x-axis, 
the y-axis, and the origin . 

Lening y = 0, we see that the x-intercepts of the graph of Equation ( l ) are 
x = ±a. Letting x = 0, we find there are no y-intercepts since the equation 
y2 = -b2 has no real roots (Figure I 3a) . Similarly, the graph of Equation (2) has 
y-intercepts of ±a and no x-intercepts (Figure 1 3b) . 
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x2 y2 - - - = I a2 b2 
FIGURE 13 

FIGURE 14 

y 

( a )  

EXAMPLE 3 

x y2 x 2  
- - - = I 
al b2 

y 

Find the intercepts and sketch the graph of each equation . 
x2 v2 v2 x2 (a) - - L- = I (b) "- - - = I 
9 4 4 3 

SOLUTION 

x 

(a) When y = 0, we have x2 = 9 or x = ±3. The intercepts are (3, 0) and 
(-3 , 0) . With the assistance of a few plotted points, we can sketch the graph 
(Figure J4a). 

(b) When x = 0, we have y2 = 4 or y = ±2 .  The intercepts are (0, 2) and 
(0, - 2) .  Plotting a few points , we can sketch the graph (Figure 14b). 

4 

-4 
(a) 

-" 

x - 4 - 2 2 

(b) 

y2 x2 
- - - = I 4 3 

4 x 



ASYMPTOTES OF THE 
HYPERBOLA 

BA THE ELLIPSE AND HYPERBOLA 365 

EXAMPLE 4 
Write the equation of the hyperbola 9x2 - 5y2 = lO in standard fonn and deter
mine the intercepts. 

SOLUTION 
Dividing by 10, we have 

9x2 _ _i _, I 
10 2 

Rewriting the equation in standard form, we have 

x2 i 
10 - 2

= 1  

9 

The x-intercepts are ± v'I0/3; there are no y-intercepts . 

PROGRESS CHECK 
Write the equation of the hyperbola in standard form and determine the inter
cepts. 

(a) 2x2 - 5y2 = 6 (b) 4y2 - x2 = 5 

ANSWERS 

(a) ; - � ""  l ;  (±VJ, 0) 

5 

(b) Y2 
_ x2 

= t · (o ±Vs) 
5 5 ' • 2 
4 

There is a way of sketching the graph of a hyperbola without having to plot any 
points on the curve itself. Given the equation of the hyperbola 

x2 
_ i_ _ 

a2 b2 -
1 

in standard form, we plot the four points (a, ±b) ,  ( -a,  ±b) as in Figure 1 5  and 
draw the diagonals of the rectangle formed by the four points. The hyperbola 
opens from the intercepts (±a ,  0) and approaches the lines formed by the diag
onals of the rectangle. We call these lines the asymptotes of the hyperbola. Since 
one asymptote passes through the points (0, 0) and (a, b) , its equation is 

b y = � x 

Similarly, the equation of the other asymptote is found to be 

b y = - - x  a 
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y = - � x 

........ ' 
'- ( - a, b) 

""'--- -, , ' 
/ 

1 / 

/iL _ _  _ 

/ ( - a, - b) / 
FIGURE 15 

y 

y = � x 

/ 
(a, b) / 

- - - -7(' 
/ I / I 

........ 
"'- 1  

- - -� ........ 
(a, - b) '-

x 

"-

Of course, a similar discussion can be carried out for the standard form 

i_
_ xz -

a2 b2 - 1 

In this case, the four points (±b, ±a) determine the rectangle, and the equations 
of the asymptotes are 

EXAMPLE 5 
Using asymptotes, sketch the graph of the equation 

SOLUTION 

2 x2 l:. - - = l  
4 9 

The points (±3 ,  ± 2) form the vertices of the rectangle. See Figure 1 6. Using the 
fact that (0, ±2) are intercepts, we can sketch the graph opening from these 
points and approaching the asymptotes . 
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EXERCISE SET 8A 

y 

" / 
""' �  (0, 2)  7 

K- - --..,.(, 
(-3 , 2) I ""' / 1 (3 , 2) I " / : 

I / "- : 
( -3, -2) �__:::::�_.....__,... ___ �=-�3 , -2) 

,.,,:::: (0, -2) :::::..... 

/ / ;;;;:..... y2 x2 
- - - = l 
4 9 

FIGURE 16 

In Exercises 1 -6 find the intercepts and sketch the graph of the ellipse. 

x 

� i � L � i I .  25 + 4 = I 2 · 4 + 1 6  = I 3 · S + 4 = I x2 L _ 4· 1 2  + 1 8  - I 

x2 L _ 5 · 1 6  + 25 - I x2 i 6. I + 3 = I 

In Exercises 7-1 6  write the equation of the ellipse in standard form and determine the intercepts. 
7. 4x2 + 9y2 = 36 8 .  1 6� + 9y2 = 144 9. 4x2 + 1 6y2 = 1 6  10 .  25x2 + 4y2 = 100  

1 1 . 4x2 + 1 6y2 = 4 1 2 .  8x2 + 4y2 = 32 1 3 .  8x2 + 6y2 = 24 14 .  5x2 + 6y2 = 50 
1 5 .  36x2 + 8y2 = 9 16 .  5x2 + 4y2 = 45 
In Exercises 1 7-22 find the intercepts and sketch the graph of the hyperbola. 

1 7 .  ;; - fi = - 1  1 8 .  � - f = I  1 9 .  ;� - f  = I  

22. f - �� = - 1 

L x2 -20· 49 - 25 - I 

In Exercises 23-28 write the equation of the hyperbola in standard form and determine the intercepts. 
23. I� - y2 = 64 24. 4x2 - 25y2 = 100  
25. 4y2 - 4x2 = I 26. 2x2 - 3y2 = 6 
27 . 4x2 - 5y2 = 20 28. 25y2 - 1 6x2 = 400 
In Exercises 29-34 use the asymptotes and intercepts to sketch the graph of the hyperbola. 
29. 1 6x2 - 9y2 = 1 44 30. 1 6y2 - 25x2 = 400 

32. 25x2 - 9y2 = 225 

34. y2 - 4x2 = 4 
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35. Derive the standard form of the equation of the ellipse 
from the geometric definition of an ellipse. (Hint: In 
Figure 1 1 ,  let P(x, y) be any point on the ellipse and let 
F 1 ( -c,  0) and F 2(c, 0) be the foci . Note that the point 
B(a, 0) lies on the ellipse and that BF1 + BF2 = 2a. 

Thus, the sum of the distances PF1 + PF2 must also 

equal 2a . Use the distance formula, simplify, and sub
stitute b2 = a2 - c2 . )  

36.  Derive the standard form of the equation of the hyper
bola from the geometric definition of a hyperbola. 
(Hint: Proceed in a manner similar to that of Exercise 
35 . )  

8.5 
IDENTIFYING THE 
CONIC SECTIONS 

TABLE 2 

Each of the conic sections we have studied in this chapter has at least one axis of 
symmetry . We studied circles and parabolas whose axes of symmetry were the 
coordinate axes or lines parallel to them. Although the only ellipses and hyper-

as we have studied are ones that have the coordinate axes as their axes of 
symmetry , the method of completing the square , which we used for the circle and 
the parabola, allows us to transform the general equation of a conic section 

Ax2 + Cy2 + Dx + Ey + F = 0 

into standard form. This transformation is very helpful in sketching the graph of 
the conic. Identifying the conic section from the general equation is also easy (see 
Table 2). 

Ax2 + Cy2 + Dx + Ey + F = 0 Conic Section Remarks 

A =  0 or C = 0 Parabola Second degree in one variable, first degree 
in the other. 

A =  C (-4=- 0) Circle Coefficients A and C are the same. 
Caution: Complete the square to obtain the 
standard form and check that radius r > 0. 

A -4=- C  Ellipse A and C are unequal but have the same sign. 
AC > O  Caution: Complete the square and check 

that the right-hand side is a positive con-
stant. 

AC < O  Hyperbola A and C have opposite signs. 



EXAMPLE 1 
Identify the conic section. 

(a) 3.x2 + 3y2 - 2y = 4 
l 

(c) 2.x2 + 3y2 - 2x + 6y + 2 = 0 

SOLUTION 
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(b) 3x2 - 9y2 + 2x - 4y = 7 
(d) 3y2 - 4x +  17y =  - 10 

(a) Since the coefficients of x2 and y2 are the same. the graph will be a c ircle if 
the standard fonn yields r > 0. Completing the sq11are, we have ( l )2 1 3 3x2 + 3 y - 3 = 3 
which is the equation of a circle. 

(b) Since the coefficients of x2 and y2 are of opposite sign, the graph is a 
hyperbola. 

(c) The coefficients of x2 and y2 are unequal but of like sign. We must complete 
the square in both x and y to obtain standard form. 

] 2(x2 - x) + 3(y2 + 2y) = --2 

2(x2 - x + !) + 3(y2 + 2y + 1 ) = _! + ! + 3 
4 2 2 

2( x - D 2 + 3(y + 1 )2 = 3 

Since the right-hand side is positive, the graph is an ellipse. 

( d) The graph is a parabola since the equation is of the second degree in y and of 
the first degree in x. 

PROGRESS CHECK 
Identify the conic section . 

(a) � - 3y2 - 2x + 2y - 4 = 0 

(c) x2 + y2 - 4x - 6y = - 1 1  
ANSWERS 
(a) hyperbola (b) parabola 

(b) x2 - 2y - 3x = 2 

(d) 4x2 + 3y2 + 6x - 10 = 0 

(c) circle (d) ellipse 

A summary of the characteristics of the conic sections is given in Table 3. 



TABLE 3 

Curve and Standard Equation 

Circle 
(x - h)2 + (y - k)2 = ?  

Parabola 
(x - h)2 = 4p(y - k) 

or 

(y - k)2 = 4p(x - h) 

Hyperbola 
x2 2 _ _ ,r:: = I  a2 b2 

or 

2 x2 ,r:: _ _ _ I a2 b2 -

Identify the conic section. 
I .  2x2 + y - x + 3 = 0  
3 . 4x2 + 4y2 - 2x + 3y - 4 = 0 
5 . 36.x2 - 4y2 + x - y + 2 = 0 
7. 1 6x2 + 4y2 - 2y + 3 = 0 

Characteristics 

Center: (h, k) 
Radius: r 

Vertex: (h, k) 
Axis: x = h 
p > 0: Opens up 
p < 0: Opens down 

Vertex: (h, k) 
Axis: y = k 
p > 0: Opens right 
p < 0: Opens left 

Intercepts: (±a, 0) , (0, ±b) 

Intercepts: (±a, 0) 
b Asymptotes: y = ± -x a 

Opens to left and right 

Intercepts: (0, ±a) 
a Asymptotes: y = ± // 

Opens up and down 

Example 

(x - 2)2 + (y + 4)2 = 25 
Center: (2, -4) 
Radius: 5 

(x + 1 )2 = 2(y - 3) 
Vertex: (- 1 ,  3) 
Axis: x = - I 
Opens up 

(y + 4)2 = -3(x + 5) 
Vertex: (-5, -4) 
Axis: y = -4 
Opens left 

x2 2 - + .t:: = I  4 6 
Intercepts: (±2, 0), (0, ±v6) 

£ _ i = I 4 9 
Intercepts: (±2 , 0) 

3 Asymptotes: y = ± Zx 
Opens to left and right 

i _ £ = I 9 4 
Intercepts: (0, ±3) 

3 Asymptotes: y = ± Zx 
Opens up and down 

2. 4y2 - x2 + 2x - 3y + 5 = 0 
4. 3x2 + 6y2 - 2x + 8 = 0 
6. x2 + y2 - 6x + 4y + 1 3 = 0 
8 .  2y2 - 3x + y + 4 = 0 



9. x? + y2 - 4x - 2y + 8 = 0 
l l . 4r + 9y2 - x + 2 = 0  
1 3. 4x? - 9y2 + 2x + y + 3 = 0 
15 .  x? + y2 - 4x + 4 = 0 

TERMS AND SYMBOLS 
analytic geometry (p. 343) 
midpoint formula (p. 344) 
conic sections (p.  347) 
circle (p. 347) 
center of a circle (p. 347) 
radius of a circle (p. 347) 
standard form of the equa-

tion of a circle ( p. 348) 

KEY IDEAS FOR RMEW 

general form of the equa-
tion of a circle (p. 349) 

parabola (p. 352) 
focus (p. 352) 
directrix (p. 352) 
axis of a parabola (p. 352) 
vertex (p. 352) 
parabolic reflector (p. 357) 

D The midpoint of the line segment joining the points 
P 1(xi . y1) and P·i.(x2, Y2) has coordinates (xi + xi Y• + Y2) 

2 • 2 

D Theorems from plane geometry can be proved using the 
methods of analytic geometry. In general , place the giv
en geometric figure in a convenient position relative to 
the origin and axes. The distance formula, the midpoint 
formula, and the computation of slope are the tools to 
apply in proving a theorem. 

D The conic sections represent the possible intersections of 
a plane and a cone. The conic sections are the circle, 
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lO. x? + y2 - 2x - 2y + 6 = 0 
l2.  3x? + 3y2 - 3x + y = 0 
14 .  x? + y2 + 6x - 2y + 10 = 0 
16. 4x? + y2 = 32 

standard forms of the equa
tion of a parabola 
(p. 357) 

ellipse (p. 360) 
foci of an ellipse (p. 360) 
standard form of the equa-

tion of an ellipse 
(p. 36 1 )  

hyperbola (p. 363) 

foci of a hyperbola 
(p. 363) 

standard forms of the equa
tion of a hyperbola 
(p. 363) 

asymptotes of a hyperbola 
(p. 365) 

general equation of a conic 
section (p.  368) 

parabola, ellipse, and hyperbola. (In special cases these 
may be reduced to a point, a line, or two lines. )  

D Each conic section has a geometric definition , which can 
be used to derive a second-degree equation in two vari
ables whose graph corresponds to the conic . 

D A seco11d-degree equation in x and y can be converted 
from general form to standard fonn by completing the 
square in each variable. h is much simpler to sketch the 
graph of an equation when it is written in standard 
form. 

D It is often possible to distinguish the various conic sec
tions even when the equation is given in general 
form. 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 

8. 1 In Exercises 1-3 find the midpoint of the line segment 6. Show that the points A(-8,  4), 8(5, 3), and 
whose endpoints are given. C(2, - 2) are lhe vertices of a right triangle . 

I .  (-5 ,  4), (3, -6) 
3. (2, -7), (-3, -2) 

2. (-2, 0), ( - 3, 5) 

4. Find the coordinates of  the point P2 if  (2, 2)  are 
the coordinates of the midpoint of the line seg
ment joining P 1 (-6, -3) and P2. 

5 .  Use the distance formula to show that P 1 ( - 1 , 2), 
P2(4, 3), P3( 1 ,  - 1 ) ,  and P4( -4, - 2) are the 
coordinates of a parallelogram. 

7. Find an equation of  the perpendicular bisector of 
the line segment joining the points A(-4, -3) 
and 8(1 ,  3). (The perpendicular bisector passes 
through the midpoint of AB and is perpendicular 
to AB.) 

8. 2 8 .  Write an equation of the circle with center at 
(-5,  2) and a radius of 4.  

9.  Write an equation of the circle with center at 
(-3 ,  -3)  and a radius of 2. 
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ln Exercises 10- 15 detennioe the center and radius of 
the circle with the given equation . 

10.  (x - 2)2 + (y + 3)2 = 9 

l l .  (x + !Y + (y _ 4)2 = � 
1 2. x2 + y2 + 4x - 6y = - 10 
l 3 .  2x2 + 2y2 - 4x + 4y = -3 
l4. x2 + y2 - 6y + 3 = 0 

l5 .  x2 + y2 - 2x - 2y = 8 
8.3 ln Exercises 1 6  and 1 7  determine the vertex and axis of 

tile given parabola. Sketch the graph. 

l6 .  (y + 5)2 = 4(.� - �) 
l 7 .  (x - 1 )2 = 2 - y 
In Exercises 1 8-23 determine the vertex, axis, and 
direction of the given parabola. 
l 8 .  y2 + 3x + 9 = 0 

1 9. y2 + 4y + x + 2 = 0 

PROGRESS TEST 8A 
1 .  Find the midpoint of the line segment whose endpoints 

are (2 , 4) and (-2, 4). 
2 .  Find the coordinates of the point P if (-3 ,  3) are the 

coordinates of the midpoint of the line segment joining 
P and Q(-5,  4). 

3 .  By  computing slopes, show that the points A( -3,  - 1), 
B(-5,  4), C(2, 6), and D(4, 1 )  determine a para11elo
gram. 

4 .  Write an equation of the circle of radius 6 whose cen
ter is at (2, -3). 

In Problems 5 and 6 detennine the center and radius of the 
circle. 

5.  x2 + y2 - 2x + 4y = - I 

6. x2 - 4x + y2 = l 

Jn Problems 7 and 8 detennine the vertex and axis of the 
parabola. Sketch the graph. 

PROGRESS TEST 88 
l .  Find the midpoint of the line segment whose endpoints 

are (-5,  - 3) and (4, I ). 

2. Find the coordinates of the point A if ( -2, -!) are 

8.4 

20. 2x2 - 1 2x  - y + 16 = 0 
2 1 .  x2 + 4x + 2y + 5 = 0 
22. y2 - 2y - 4x + I = 0 
23 . x2 + 6x + 4y + 9 = 0 
In Exercises 24-29 write the given equation in stan
dard form and det.ermine the intercepts. 
24. 9x2 - 4y2 = 36 25. 9x2 + y2 = 9 
26. 5x2 + 7y2 = 35 
28. 3x2 + 4y2 = 9 

27. 9x2 - J6y2 = 144 
29 . 3y2 - 5x2 = 20 

In Exercises 30 and 3 J use the intercepts and asymp
totes of the hyperbola to sketch the graph. 
30. 4.x2 - 4y2 = l 3 1 .  9y2 - 4x2 = 36 

8 .5 In Exercises 32-35 identify the conic section. 
32. 2y2 + 6y - 3x + 2 ;: 0 
33. 6x2 - 7/ - 5x + 6y = 0 
34. 2x2 + y2 + 12x - 2y + 1 7  = 0 
35. 9x2 + 4y2 = - 36 

7 ' x2 + 6x + 2y + 7 = 0 

8 .  y2 - 4x - 4y + 8 = 0 
In Problems 9 and I 0 determine the vertex, axis, and direc
tion of the parabola. 

9. x2 - 6x + 2y + 5 = 0 
10. y2 + 8y - x + 14 = 0 
In Problems l l-13  write the given equation in standard 
form and detennine the intercepts. 
1 1 .  x2 + 4y2 = 4 1 2. 4y2 - 9x2 = 36 
1 3 .  4x2 - 4y2 = l 

14 .  Use the intercepts and asymptotes of the hyperbola 
9x2 - y2 = 9 to sketch its graph. 

In Problems 1 5  and 1 6  identify the conic section. 
15 .  x2 + Y2 + 2x - 2y - 2 = 0 
l6. x2 + 9y2 - 4x + 6y + 4 = 0 

the coordinates of the midpoint of the line segment 
joining A and 8(3, -2). 



3 .  Show that the diagonals of  the quadrilateral whose 
vertices are P(-3 ,  I ) , Q(- 1 ,  4), R(5 , 0) , and 
S(3 , - 3) are equal. 

4 .  Write an equation of the circle of radius 5 whose cen
ter is at (-2, -5) .  

In Problems 5 and 6 determine the center and radius of the 
circle. 
5 .  x2 + y2 + 6x - 4y = -4 
6. 4x2 + 4y2 - 4x - 8y = 35 

In Problems 7 and 8 determine the vertex and axis of the 
parabola. Sketch the graph. 
7 .  2y2 - 8y - x + 30 = 0 
8 .  9x2 + l 8y - 6x + 7 = 0 

In Problems 9 and lO  determine the vertex, axis, and direc
tion of the parabola. 

9 .  y2 - 4y - 3x + l = 0 
10 .  4x2 - 4x - 8y - 23 = 0 
In Problems l l-1 3  write the given equation in standard 
form and determine the intercepts .  
l l .  5x2 + 9y2 = 25 1 2. 7x2 + 6y2 = 2 1 
1 3 .  y2 - 3x2 = 9 
14 .  Use the intercepts and asymptotes of the hyperbola 

4y2 - x2 = l to sketch its graph. 
In Problems 1 5  and 1 6  identify the conic section. 
1 5 .  5y2 - 4x2 - 6x + 2 = 0 
16 .  3x2 - 5x + 6y = 3 



9.1 
SYSTEMS OF 
EQUATIONS 

SYSTEMS OF EQUATIONS 
AND INEQUALITIES 
Many problems in business and engineering require the solution of systems of 
equations and inequalities. In fact, systems of linear equations and inequalities 
occur with such frequency that mathematicians and computer scientists have 
devoted considerable energy to devising methods for their solution. With the aid 
of large-scale computers it is possible to solve systems involving thousands of 
equations or inequalities , a task that previous generations would not have dared 
tackle. 

We begin with the study of the methods of substitution and elimination, 
methods that are applicable to all types of systems. We then introduce graphical 
methods for solving systems of linear inequalities and apply these techniques to 
linear programming problems, a type of optimization problem. 

A pile of 9 coins consists of nickels and quarters . If the total value of the 
coins is $ 1 .25 ,  how many of each type of coin are there? 

This type of word problem was handled in earlier chapters by using one variable. 
A more natural way to approach this problem is to let 

x = the number of nickels 

and 

y = the number of quarters 

that is, to use two variables. The requirements can then be expressed as 

x +  y =  9 

5x + 25y = 1 25 

This is an example of a system of equations, and we seek values of x and y that 
satisfy both equations. An ordered pair (a, b) such that x = a, y = b satisfies both 
equations is called a solution of the system. Thus, 

PAGE 375 
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SOLVING BY GRAPHING 

x = 5  y = 4  

is a solution because substituting in the equations of the system gives 

5 + 4 = 9 
5(5) + 25(4) = 1 25 

The coordinates of every point on the graph of an equation must satisfy the 
equation. If we sketch the graphs of a pair of equations on the same coordinate 
axes, it follows that the points of intersection must satisfy both equations. Thus 
we have a graphical means of solving a system of equations. 

EXAMPLE 1 
Solve the system of equations by graphing. 

SOLUTION 

x2 + y2 = 25 

x + y = - 1  

The graphs of the equations are a circle and a line, as shown in Figure l .  The 
points of intersection are seen to be (-4, 3) and (3, -4) . The solutions of the 
system are x = -4, y = 3 and x - 3, y = -4. 

y 
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' / . ., """ 
I " . , -

... I\ I " - \ 
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Consistent system, 
unique solution 

(a) 

FIGURE 2 

Consistent and 
Inconsistent Systems 

SOLVING BY 
SUBSTITUTION 
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x 

y 

lnconsistent  system, 
no solu tion 

( b) 

x 

y 

Consistent system, 
infinite number of solutions 

(c) 

x 

It is possible for a system of equations to have no solutions. Surprisingly, a 
system of equations may even have an infinite number of solutions. The follow
ing terminology is used to distinguish these situations. 

• A consistent system of equations has one or more solutions. 

• An inconsistent system of equations has no solutions. 

A system consisting only of equations that are of the first degree in x and y is 
called a system of linear equations or simply a linear system. When we graph a 
linear system of two equations on the same set of coordinate axes, there are three 
possibilities: 

1. The two lines intersect at a point (Figure 2a) . The system is consistent and has 
a unique solution, the point of intersection. 

2. The two lines are parallel (Figure 2b) . Since the lines do not intersect, the 
linear system is inconsistent. 

3. The equations are different forms of the same line (Figure 2c). The system is 
consistent and has an infinite number of solutions, namely, all points on the 
line. 

The method of graphing has severe limitations since the accuracy of the 
solution depends on the accuracy of the graph . The algebraic methods that follow 
avoid this limitation. 

If we can use one of the equations of a system to express one variable in terms of 
the other variable , then we can substitute this expression in the other equa
tion. 
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* 

EXAMPLE 2 

Solve the system of equations . 

SOLUTION 

.x2 + y2 = 25 
x + y = - 1  

From the second equation, we have 

y = - 1 - x 

Substituting for y in the first equation, we have 

.x2 + (- 1 - x)2 = 25 
x2 + l + 2x + x2 = 25 

2x2 + 2x - 24 = 0  
x2 + x - 12  = 0 

(x + 4)(x - 3) = 0 

which yields x = -4 and x = 3. Substituting these values for x in the equation 

x + y ""  - 1 ,  we obtain the corresponding values of y. 

x = -4: -4 + y = - 1  
y = 3  

x = 3: 3 + y = - 1  
y =  -4 

The solutions are the same as those obtained when we solved this same system by 
graphing (Example 1 ). 

PROGRESS CHECK 
Solve the system of equations . 

(a) .x2 + 3y2 = 12 
x + 3y = 6 

ANSWERS 
(a) x = 3, y = l ; x = O, y = 2 

(b) x2 + y2 = 34 
x - y  = 2 

(b) x = -3 .  y = -5;  x = 5, y = 3 

WARNING The expression for x or y obtained from an equation must not be 
substituted in the same equation. From the first equation of the system 

x + 2y = - I 
3.x2 + y = 2 

we obtain 

x = - 1  - 2y 
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Substituting (incorrectly) in the same equation would result in 

(- 1 - 2y) + 2y = - l 

- 1  = - 1  

The substitution x = - 1  - 2y must be made in the second equation. 

EXAMPLE 3 
Solve the system of equations. 

(a) x2 - 2x - y + 3 = 0 
x + y - 1 = 0 

SOLUTION 

(b) x + 4y = 10 
- 2x - Sy = -20 

(a) Solving the second equation for y, we have 

y = l - x 
and substituting in the first equation yields 

x2 - 2x - ( l  - x) + 3 = 0 
x2 - x + 2 = 0  

Since the discriminant of this quadratic equation is negative, the equation has no 
real roots. But any solution of the system of equations must satisfy this quadratic 
equation. We can therefore conclude that the system is inconsistent. The graphs 
of the equations are a parabola and a line that do not intersect (see Figure 3). 

x2 - 2x - y + 3 = 0 
y 

x + y - 1 = 0 

- I 
FIGURE 3 

(b) Solving the first equation for x, we have 

x = 10 - 4y 

3 x 
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and substituting in the second equation gives 

-2( 10  - 4y) - 8y = -20 

-20 + 8y - Sy = -20 

-20 = -20 

The substitution procedure has resulted in an identity, indicating that any solution 
of the first equation will also satisfy the second equation. Since there are an 
infinite number of ordered pairs x = a, y = b satisfying the first equation, the 
system is consistent and has an infinite number of solutions. 

PROGRESS CHECK 
So1ve by substitution. 

(a) 3x - y = 7 
- 9x + 3y = -22 

ANSWERS 

(b) -5x + 2y = -4 

5 -x - y = 2 
2 

(a) no solution (b) any point on the line - 5x + 2y = -4 

EXERCISE SET 9.1 
In Exercises 1 - 10 find approximate solutions of the given system by graphing. 

I. x + y = 1 2. x - y = I 3. 3x - y = 4 
x - y = 3 x + y = 5 fu - 2y = -8  

5 .  xy = -4 6. 4x2 + y2 = 4  7 .  4x2 + 9y2 = 72 
4x - y = 8 x2 - y2 = 9 4x - 3y2 = 0 

9. x2 + y2 = I 10. 3x2 + 8y2 = 2 1  
y 2  - 3x2 = 5 x2 + 4y2 = 10  

Jn Exercises 1 1-20 solve the system of equations by the method of  substitution. 
1 1 .  x + y = I 1 2. x + 2y = 8 1 3 .  x2 + y2 = 1 3  

x - y = 3 3x - 4y = 4 2x - y = 4 

1 5 .  y2 - x =  0 1 6. .xy = -4 17 .  x2 - 2x + y2 = 3 

19 .  

y - 4x = - 3 4x - y = 8 2x + y = 4 

xy =  I 
x - y + l = O 

I 3 20. 2x - 2Y  == 

4 

3 -x + y = I 
2 

4. x2 + 4y2 = 32 
x + 2y = 0 

8.  2y2 - x2 = - 1 
4y2 + x2 = 25 

14. x2 + 4y2 = 32 
x + 2y = 0 

18 .  4x2 + y2 = 4 
x - y  = 3 

9.2 
SOLVING BY 
ELIMINATION 

When we solve a system of equations by graphing, we must estimate the coor
dinates of the point of intersection. If we require the answers to be accurate to, 
say, five decimal places, it is clear that graphing will not suffice . The method of 
substitution pmvides us with exact answers but suffers from the disadvantage that 
it is difficult to program for use in a computer. 
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The method of elimination overcomes these difficulties. The strategy of the 
method is to obtain an equation that has just one variable and is easily solved. The 
procedure is il lustrated in the following example. 

EXAMPLE 1 
Solve by elimination . 

4x2 + 9y2 = 36 
-9x2 + 1 8y2 = 4 

SOLUTION 

Method of Elimination 

Step J .  Multiply each equation by a constant so that Step 1 .  Multiply the first equation by -2 and the see
the coefficients of either x or y will differ only in ond equation by 1 so that the coefficients of y will be 
sign. - 18  and 1 8: 

Step 2 .  Add the equations. The resulting equation Step 2 .  
will contain (at most) one variable. 

Step 3. Solve the resulting equation in one vari- Step 3. 
able . 

- 8x2 - 1 8y2 = -72 
- 9x2 + l 8y2 = 4 

- 1 7x2 = - 68 

x2 = 4 
x =  ±2 

Step 4. Substitute in  either of  the original equations 
to solve for the second variable. 

Step 4. Substitute x = 2 in the first equation of the 
original system: 

Step 5. Check in both equations. 

4x2 + 9y2 = 36 
4(2)2 + 9y2 = 36 

y =  ±�Vs 

Substituting x = -2 yields the same values for y. 

Step 5. Verify that the solutions 

x = 2  y = � Vs ' 3 

x = 2  y = - � Vs ' 3 

x =  - 2  y = � Vs ' 3 

x = - 2, y = - � Vs 
3 

satisfy both equations. 
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y 

FIGURE 4 

y 

FIGURE 5 

Note that in Step 2 we have "eliminated ' '  y, which is why we call this the method 
of elimination. The graphs are the hyperbola and ellipse shown in Figure 4.  

PROGRESS CHECK 
Find the real solutions of the system. x 

x2 - 4x + y2 - 4y = 

x2 - 4x + y =  -5 

ANSWER 
x = 2, y = - 1  (The parabola is tangent to the circle . )  

EXAMPLE 2 
Solve by elimination. 

(a) 2x2 - 3y2 = 9 (b) 5x + 6y = 4 

x2 + y2 = 4 - lOx - 1 2y = -8 

SOLUTION 
(a) Adding -2 times the second equation to the first equation yields 

1 
-5y2 = 1 or y2 = --

5 

Sine_!! this equation has no solutions, the graphs of the given system do not 
intersect, and the system is inconsistent (see Figure 5). 

(b) Multiplying the first equation by 2, we have 

IOx + 1 2y = 8 
- lOx - 1 2y = -8  

Ox +  Oy = 0 

We conclude that the equations represent the same line and that the solution set 
consists of all points on the line 5x + 6y = 4. 

PROGRESS CHECK 
Solve by elimination. 

(a) x - y = 2 

3x - 3y = -6 

ANSWERS 
(a) no solution 

(b) 4x + 6y = 3 

� 3 
3 -2x - y =  -2 

(b) all points on the line 4x + 6y = 3 



EXERCISE SET 9.2 
In Exercises 1 -1 0  solve the system of equations by the method of elimination. 
1 .  x + 2y =  1 2. x - 4y = -7 3 .  25y2 - 16x2 = 400 

5 .  

9 .  

5x + 2y = 1 3  2x + 3y = - 8  9y2 - 4x2 = 36 
4x2 + 9y2 = 72 6. x2 + y2 + 2y = 9 7 .  3x - y =  4 
4x - 3y2 = 0 y - 2x = 4 6x - 2y = -8  
2y2 - x2 = - 1  10 .  x2 + 4y2 = 25 
4y2 + x2 = 25 4x2 + y2 = 25 
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4. x2 - y2 = 3 
x2 + y2 = 5  

8 .  2x + 3y = -2  
-3x - 5y = 4 

In Exercises 1 1-1 8  determine whether the system is consistent (C) or inconsistent (I). If the system is consistent, find all 
solutions. 
1 1 .  2x + 2y = 6 1 2. 2x + y = 2  1 3 .  y2 - 8x2 = 9 14 .  4y2 + 3x2 = 24 

3x + 3y = 6 3x - y = 8  y2 + 3x2 = -3 1  3y2 - 2x2 = 35 
1 5 .  3x + 3y = 9 16 .  x - 4y = -7 17 .  3x - y = 1 8  1 8 .  2x + y = 6  

2x + 2y = -6  2x - 8y = -4  3 1 9 1 2x - ?'  = x + ?' = 3  

In Exercises 1 9-23 use a pair of equations to solve the given problem. 
19 .  A pile of 34 coins worth $4. 10 consists of nickels and 22 .  A part of $8000 was invested at an annual interest of 

quarters. Find the number of each type of coin. 7% and the remainder at 8%. If the total interest 
20. Car A can travel 20 kilometers per hour faster than car 

B. If car A travels 240 kilometers in the same time that 
car B travels 200 kilometers, what is the speed of each 
car? 

2 1 .  How many pounds of nuts worth $2. 10 per pound and 
how many pounds of raisins worth $0.90 per pound 
must be mixed to obtain a mixture of two pounds that 
is worth $ 1 .62 per pound? 

received at the end of one year is $590, how much was 
invested at each rate? 

23 .  The sum of the squares of the sides of a rectangle is 
100  square meters. If the area of the rectangle is 48 
square meters, find the length of each side of the rect
angle .  

9.3 
APPLICATIONS 

In earlier sections of this chapter we saw that many of the word problems we had 
previously solved by using one variable could be recast as a system of l inear 
equations. There are, in addition, many word problems that are difficult to handle 
with one variable but are easily formulated by using two variables. 

EXAMPLE 1 
If 3 sulfa pills and 4 penicillin pills cost 69 cents, whereas 5 sulfa pills and 2 
penicillin pills cost 73 cents, what is the cost of each type of pill? 

SOLUTION 
Using two variables, we let 

x = the cost of each sulfa pill 

y = the cost of each penicillin pin 
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Then 

3x + 4y = 69 

5x + 2y = 73 

We multiply the second equation by -2 and add to eliminate y: 

3x + 4y = 69 
- l Ox - 4y = - 146 
-7x = -77 

x = 1 1  

Substituting in the first equation, we have 

3( 1 1 ) + 4y = 69 

4y = 36 

y = 9  

Each sulfa pill costs 1 1  cents and each penicillin pill costs 9 cents. (Could you 
have set up this problem using only one variable? Not easily ! )  

EXAMPLE 2 
Swimming downstream, a swimmer can cover 2 kilometers in 1 5  minutes. The 
return trip upstream requires 20 minutes. What is the rate of the swimmer and of 
the current in kilometers per hour? (The rate of the swimmer is the speed at which 
he would swim if there were no current. )  

SOLUTION 
Let 

x = the rate of the swimmer (in km per hour) 

y = the rate of the current (in km per hour) 

For swimming downstream, the rate of the current is added to the rate of the 
swimmer, so x + y is the rate downstream. Similarly, x - y is the rate for swim
ming upstream. We display the information we have, expressing time in 
hours. 

Rate x Time = Distance 

I I Downstream x + y  4(x + y) 
4 
I I Upstream x - y  3 -(x - y) 3 
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Since distance upstream = distance downstream = 2 kilometers , 

or, equivalently, 

Solving, we have 

1 
-(x + y) = 2 4 

1 -(x - y) = 2 3 

x + y = 8  

x - y = 6  

x = 7 rate of the swimmer 

y = 1 rate of the current 

Thus, the rate of the swimmer is 7 kilometers per hour, and the rate of the current 
is 1 kilometer per hour. (The student is urged to verify the solution. )  

EXAMPLE 3 
The sum of a two-digit number aDd its units digit is 64, and the sum of the number 
and its tens digit is 62. Find the number . 

SOLUTION 
The basic idea in solving digit problems is to note that if we let 

t = tens digit 

and 

u = units digit 

then 

1 Ot + u = the two-digit number 

Then " the sum of a two-digit number and its units digit is 64" translates into 

( l Ot + u) + u = 64 or l Ot + 2u = 64 

Also, "the sum of the number and its tens digit is 62" becomes 

( lOt + u) + t = 62 or l l t  + u = 62 

Solving, we find that t = 5 and u = 7 (verify this), so the number we seek 
is 57. 
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APPLICATIONS IN 
BUSINESS AND 
ECONOMICS: BREAK-EVEN 
ANALYSIS 

An important problem faced by a manufacturer is that of determining the level of 

production, that is, the number of units of the product to be manufactured during 
a given time period-a day, a week, or a month. Suppose that 

c = 400 + 2x ( l )  

is the total cost (in thousands of dollars) of producing x units of the product and 
that 

R = 4x (2) 

is the total revenue (in thousands of dollars) when x units of the product are sold. 
In this example , after setting up production at a cost of $400,000, the manufac
turer has an additional cost of $2000 to make each unit [Equation ( 1 ) ] ,  and a 
revenue of $4000 is earned from the sale of each unit [Equation (2)] . If all units 
that are manufactured are sold, the total profit P is the difference between total 
revenue and total cost: 

P = R - C  

= 4x - (400 + 2x) 

= 2x - 400 

The value of x for which R = C, so that the profit is zero, is called the break-even 

point. When that many units of the product have been produced and sold the 
manufacturer neither makes money nor loses money. To find the break-even 
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point, we set R = C. Using Equations ( I )  and (2), we obtain 

400 + 2x = 4x 

x = 200 

Thus, the break-even point is 200 units. 
The break-even point can also be obtained graphically as follows. Observe 

that Equations ( 1 )  and (2) are linear equations and therefore equations of straight 
lines. The break-even point is the x-coordinate of the point where the two lines 
intersect. Figure 6 shows the lines and their point of intersection (200, 800). 
When 200 units of the product are made, the cost ($800,000) is exactly equal to 
the revenue, and the profit is $0. If x > 200, then R > C, so the manufacturer is 
making a profit. If x < 200, R < C and the manufacturer is losing money . 

PROGRESS CHECK 
A producer of photographic developer finds that the total weekly cost of produc
ing x liters of developer is given (in dollars) by C = 550 + 0.40x. The manufac
turer sells the product at $0.50 per liter. 
(a) What is the total revenue received when x liters of developer are sold? 
(b) Find the break-even point graphically . 
(c) What is the total revenue received at the break-even point? 

ANSWERS 
(a) R = 0.50x (b) 5500 liters (c) $2750 

A manufacturer of a product is free to set any price p (in dollars) for each unit of 
the product. Of course , if the price is too high, not enough people will buy the 
product; if the price is too low, so many people will rush to buy the product that 
the producer will not be able to satisfy demand. Thus, in setting price, the man
ufacturer must take into consideration the demand for the product. 

Let S be the number of units that the manufacturer is willing to supply at the 
price p; S is called the supply. Generally, the value of S will increase as p 
increases; that is, the manufacturer is willing to supply more of the product as the 
price p increases . Let D be the number of units of the product that consumers are 
willing to buy at the price p; D is called the demand. Generally , the value of D 
will decrease as p increases; that is, consumers are willing to buy fewer units of 
the product as the price rises. For example, suppose that S and D are given 
by 

S = 2p + 3  

D = -p + 1 2  

(3) 

(4) 

Equations (3) and (4) are linear equations, so they are equations of straight lines 
(see Figure 7) .  The price at which supply S and demand D are equal is called the 
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equilibrium price. At this price, every unit that is supplied is purchased. Thus 
there is neither a surplus nor a shortage . In Figure 7 the equilibrium price is p = 
3 .  At this price , the number of units supplied equals the number of units demand
ed and is found by substituting in Equation (3): S = 2(3) + 3 = 9. This value can 
also be obtained by finding the ordinate at the point of intersection in Figure 7 .  

I f  we  are in  an economic system in  which there i s  pure competition , the law 
of supply and demand states that the selling price of a product will be its equi
librium price. That is, if the selling price were higher than the equilibrium price , 
consumers ' reduced demand would leave the manufacturer with an unsold sur
plus. To sell this surplus, the manufacturer would be forced to reduce the selling 
price . If the selling price were below the equilibrium price, the increased demand 
would cause a shortage of the product, leading the manufacturer to raise the 
selling price. Of course, in actual practice, the marketplace does not operate 
under pure competition . Also deeper mathematical analysis of economic systems 
requires the use of more sophisticated equations . 

EXAMPLE 4 
Suppose that supply and demand for ball-point pens are given by 

9 
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(a) Find the equilibrium price . 
(b) Find the number of pens sold at that price . 

SOLUTION 
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(a) Figure 8 illustrates the graphical solution . The equilibrium price is p = l .  
Algebraic methods will, of course , yield the same solution . 

(b) When p = l ,  the number of pens sold is S = 1 + 5 = 6, the value of the 
ordinate at the point of intersection. 

PROGRESS CHECK 
Suppose that supply and demand for radios are given by 

(a) Find the equilibrium price . 

s = 3p + 1 20 

D = -p + 200 

(b) Find the number of radios sold at that price . 

ANSWERS 
(a) 20 (b) 1 80 

FIGURE 8 

3 5 
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EXERCISE SET 9.3 

1 . A pile of 40 coins consists of nickels and dimes. If the 
value of the coins is $2.75, how many of each type of 
coin are there? 

2 .  An automatic vending machine i n  the post office, 
which charges no more than a clerk , sells a packet of 
27 ten-cent and twenty-cent stamps for $3. How many 
of each type of stamp are in the packet? 

3 .  A photography store sells sampler A, consisting of 6 
rolls of color film and 4 rolls of black and white film 
for $2 1 . It also sells sampler B ,  consisting of 4 rolls of 
color film and 6 rolls of black and white film for $ 19 .  
What i s  the cost per roll of  each type of film? 

4. A hardware store sells power pack A, consisting of 
four D cells and two C cells for $ 1 .  70, and power pack 
B ,  consisting of six D cells and four C cells for $2.80. 
What is the price of each cell? 

5. A fund manager invested $6000 in two types of bonds , 
A and B .  Bond A, which is safer than bond B ,  pays 
annual interest of 8 percent, whereas bond B pays 
annual interest of 10 percent. If the total annual return 
on both investments is $520, how much was invested 
in each type of bond? 

6 .  A trash removal company carries waste material in 
sealed containers weighing 4 kilograms and 3 kilo
grams. On a certain trip the company carries 30 con
tainers weighing a total of 100 kilograms. How many 
of each type of container are there? 

7 .  A paper firm makes rolls o f  paper 1 2  inches wide and 
1 5  inches wide by cutting a sheet that is 1 80 inches 
wide. Suppose that a total of 14 rolls of paper are to be 
cut without any waste . How many of each type of roll 
will be made? 

8 .  An animal-feed producer mixes two types of grain, A 
and B .  Each unit of grain A contains 2 grams of fat 
and 80 calories, and each unit of grain B contains 3 
grams of fat and 60 calories . If the producer wants the 
final product to provide 1 8  grams of fat and 480 cal
ories, how much of each type of grain should be 
used? 

9 .  A supermarket mixes coffee that sells for $ 1 . 20 per 
pound with coffee that sells for $ 1 . 80 per pound to 
obtain 24 pounds of coffee selling for $ 1 .60 per 
pound. How much of each type of coffee should be 
used? 

IO .  An airplane flying against the wind covers a distance 
of 3000 kilometers in 6 hours. The return trip, with the 
aid of the wind, takes 5 hours. What is the speed of the 
airplane in still air, and what is the speed of the 
wind? 

1 1 .  A cyclist traveling against the wind covers a distance 
of 45 miles in 4 hours. The return trip, with the aid of 
the wind, takes 3 hours . What is the speed of the 
cyclist in still air, and what is the speed of the 
wind? 

1 2. The sum of a two-digit number and its units digit is 20, 
and the sum of the number and its tens digit is 16 .  Find 
the number. 

1 3 .  The sum of the digits of a two-digit number i s  7 .  I f  the 
digits are reversed, the resulting number exceeds the 
given number by 9. Find the number. 

14 .  The sum of the units digit and three times the tens digit 
of a two-digit number is 14 ,  and the sum of the tens 
digit and twice the units digit is 1 8 .  Find the num
ber. 

1 5 .  A health food shop mixes nuts and raisins into a snack 
pack. How many pounds of nuts, selling for $2.00 per 
pound, and how many pounds of raisins, selling for 
$ 1 . 50 per pound, must be mixed to produce a 50-
pound mixture selling for $ 1 . 80 per pound? 

16 .  A movie theater charges $3.00 admission for an adult 
and $ 1 . 50 for a child. On a particular day 600 tickets 
were sold and the total revenue received was $ 1 350. 
How many tickets of each type were sold? 

1 7 .  A moped dealer selling a model A and a model B 
moped has $ 1 8 ,000 in inventory. The profit on a mod
el A moped is 1 2%,  and the profit on a model B 
moped is 1 8%.  If the profit on the entire stock would 
be 16%, how much was invested in each model? 

1 8 .  The cost of sending a telegram i s  determined as fol
lows: there is a flat charge for the first IO  words and a 
uniform rate for each additional word. Suppose that an 
1 8-word telegram costs $ 1 . 94 and a 22-word telegram 
costs $2. 1 6. Find the cost of the first IO  words and the 
rate for each additional word. 

19 .  A certain epidemic disease is treated by a combination 
of the drugs Epiline I and Epiline I I .  Suppose that each 
unit of Epiline I contains 1 milligram of factor X and 2 
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milligrams of factor Y, while each unit of Epiline II 
contains 2 milligrams of factor X and 3 milligrams of 
factor Y. Successful treatment of the disease calls for 
1 3  milligrams of factor X and 22 milligrams of factor 
Y .  How many units of Epiline I and Epiline II should 
be administered to a patient? 

20. (Break-even analysis) An animal feed manufacturer 
finds that the weekly cost of making x kilograms of 
feed is given (in dollars) by C = 2000 + 0.50x and 
that the revenue received from selling the feed is given 
by R = 0.75x. 
(a) Find the break-even point graphically. 
(b) What is the total revenue at the break-even 

point? 
2 1 .  (Break-even analysis) A small manufacturer of a new 

solar device finds that the annual cost of making x 
units is given (in dollars) by C = 24,000 + 55x. Each 
device sells for $95 . 
(a) What is the total revenue received when x 

devices are sold? 
(b) Find the break-even point graphically. 
(c) What is the total revenue received at the break

even point? 

22. (Supply and demand) A manufacturer of calculators 
finds that the supply and demand are given by 

s = 0.5p + 0.5 

D = -2p + 8 
(a) Find the equilibrium price . 
(b) What is the number of calculators sold at this 

price? 
23 . (Supply and demand) A manufacturer of mopeds 

finds that the supply and demand are given by 
s = 2p + 10 

D = - p  + 22 
(a) Find the equilibrium price. 
(b) What is the number of mopeds sold at this 

price? 
24. Find the dimensions of a rectangle with an area of 30 

square feet and a perimeter of 22 feet. 
25 . Find two numbers whose product is 20 and whose sum 

is 9 .  
26. Find two numbers the sum of whose squares is 65 and 

whose sum is 1 1 .  

9.4 
SYSTEMS OF UNEAR 
EQUATIONS IN JHREE 
UNKNOWNS 

The method of substitution and the method of elimination can both be applied to 
systems of linear equations in three unknowns and, more generally , to systems of 
linear equations in any number of unknowns .  There is yet another method, ideally 
suited for computers , which we will now apply to solving linear systems in three 
unknowns. 

GAUSSIAN ELIMINATION 
AND TRIANGUIAR FORM 

In solving equations ,  we found it convenient to transform an equation into an 
equivalent equation having the same solution set. Similarly, we can attempt to 
transform a system of equations into another system, called an equivalent sys
tem, that has the same solution set. In particular, the objective of Gaussian 
elimination is to transform a linear system into an equivalent system in triangular 
form, such as 

3x - y + 3z = - 1 1  

2y + z = 2 
2z = -4 

A linear system is in triangular form when the only nonzero coefficient of x 

appears in the first equation , the only nonzero coefficients of y appear in the first 
and second equations , and so on . 
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Note that when a linear system is in triangular form, the last equation imme
diately yields the value of an unknown. In our example, we see that 

2z = -4 
z = -2 

Substituting z = -2 i n  the second equation yields 

2y + (-2) = 2 
y = 2  

Finally, substituting z = - 2 and y = 2 in the first equation yields 

3x - (2) + 3 (-2) = - 1 1  
3x = -3 
x = - 1  

This process of back-substitution thus allows us to solve a linear system quickly 
when it is in triangular form. 

The challenge, then, is to find a means of transforming a linear system into 
triangular form. We now offer (without proof) a list of operations that transform a 
system of linear equations into an equivalent system. 

1. Interchange any two equations. 

2. Multiply an equation by a nonzero constant. 

3. Replace an equation with the sum of itself plus a constant times another 
equation. 

Using these operations, we can now demonstrate the method of Gaussian elim
ination. 

EXAMPLE 1 
Solve the linear system: 

SOLUTION 

2y - z = -5 

x - 2y + 2z = 9 

2x - 3y + 3z = 14 

Gaussian Ellmlnatlon 

Step J .  (a) If necessary, interchange equations to 
obtain a nonzero coefficient for x in the first equa
tion. 

Step J .  (a) Interchanging the first two equations 
yields 

x - 2y + 2z = 9 

2y - z = - 5  

2x - 3y + 3z = 1 4  
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(b) Replace the second equation with the um of 
itself and an appropriate multiple of the first equa
tion, which will result in a uro coefficient for x. 
(c) Replace the third equation with the sum of 
itself and an appropriate multiple of the first equa
tion, which will result in a uro coefficient for x. 

Step 2. Apply the procedures of Step I to the sec
ond and third equations. 

Step 3. The system i now in triangular fonn. The 
solution is obtained by back-substitution. 

PROGRESS CHECK 

(b) The coefficient of x in the second equation is 
already 0. 

(c) Replace the third equation with the sum of itself 
and -2 times the first equation. 

x - 2y + 2z = 9 
2y - z = -5  
y - z = - 4  

Step 2.  Replace the third equation with the sum of 
itself and -i times the second equation. 

x - 2y + 2z = 9 
2y - z = -5  

I 3 
- -z = --

2 2 

Step 3. From the third equation, 

Substituting this value of z in the second equation, we 
have 

2y - (3) = -5 

y =  - I  

Substituting for y and for z in the first equation, we 
obtain 

x - 2( - I )  + 2(3) = 9 
x + 8 = 9  

x = I 

The solution is x = 1 ,  y = - I , z = 3 .  

Solve by Gaussian elimination. 
(a) 2x - 4y + 2z =  I (b) -2x + 3y - 12z = - 17 

3x + y + 3z = 5 3x - y - I 5z = 1 1  

x - y - 2z = - 8  -x + 5y + 3z = -9 
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CONSISTENT AND 
INCONSISTENT SYSTEMS 

(a) 
FIGURE 9 

Consistent and 
lncoNistent Systems 

ANSWERS 
3 l 

(a) x = -2 , y = 2 , z = 3 (b) x = 5, y = - 1 , z = � 
The graph of a linear equation in three unknowns is a plane in three-dimensional 
space. A system of three linear equations in three unknowns corresponds to three 
planes (Figure 9). If the planes intersect in a point P (Figure 9a) , the coordinates 

(b) (c) 

of the point P are a solution of the system and can be found by Gaussian elim
ination. The cases of no solution and of an infinite number of solutions are 
signaled as follows. 

• If Gaussian elimination results in an equation of the form 

Ox + Oy + Oz = c, c =F 0 

then the system is inconsistent (Figure 9b). 
• lf Gaussian elimination results in no equation of the type above but results in 

an equation of the form 

Ox + Oy + Oz =  0 

then the system is consistent and has an infinite number of solutions (Figure 
9c) .  

• Otherwise, the system is consistent and has a unique solution. 

EXAMPLE 2 
Solve the linear system: 

x - 2y + 2z = -4 

x + y - 7z = 8 

-x - 4 y + l 6z = - 20 
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SOLUTION 
Replacing the second equation with itself minus the first equation , and replacing 
the third equation with itself plus the first equation , we have 

x - 2y + 2z = -4 
3y - 9z = 12 

-6y + 1 8z = -24 

Replacing the third equation of this system with itself plus 2 times the second 
equation results in the system 

x - 2y + 2z = -4 
3y - 9z = 12 

Ox + Oy + Oz =  0 

in which the last equation indicates that the system is consistent and has an 
infinite number of solutions .  If we solve the second equation of the last system for 
y,  we have 

y = 3z + 4 

Then, solving the first equation for x, we have 

x = 2y - 2z - 4 
= 2(3z + 4) - 2z - 4 
= 4z + 4 

Substituting for y 

The equations 

x = 4z + 4 
y = 3z + 4 

yield a solution of the original system for every real value of z. For example, if 
z = 0, then x = 4, y = 4, z = 0 satisfies the original system; if z = -2 ,  then 
x = -4, y = -2,  z = -2 is another solution. 

PROGRESS CHECK 
(a) Verify that the linear system 

x - 2y + z = 3 
2x + y - 2z = - I 
-x - 8y + 1z =  5 

is consistent. 

(b) Verify that the linear system 

2x + y + 2z =  
x - 4y + 7z = -4 
x - y + 3z  = - I 

has an infinite number of solutions. 
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EXERCISE SET 9.4 
In Exercises 1 - 1 8  solve by Gaussian elimination . Indicate if the system is inconsistent or has an infinite number of 
solutions. 
I .  x + 2y + 3z = -6 2 .  2x + 3y + 4z = - 1 2 

2x - 3y - 4z = I S  x - 2y + z =  -s 
3x + 4y + Sz = -8  3x + y + 2z = 

S .  x +  y +  z = 2  6. x + y + z = O 
x - y + 2z = 3 x + y = 3  

3x + Sy +  2z = 6 y + z = I 
9 .  x +  y + z = 2  IO. x +  y - z = 2  

x + 2y + z = 3 x + 2y + z = 3 
x +  y - z = 2  x +  y + 4z = 3 

1 3 .  x + 3y + 7z = I  14. 2x - y + z =  2 
3x - y - Sz = 9 3x + y + 2z = 3 
2x + y +  z = 4  x + y - z = - I 

1 7 .  x - 2y + z = - s  1 8 .  2y - 3z = 4 
2x + z = - 10 x + 2z = -2  

y - z =  I S  x - 8y + 14z = - 1 8  
19 .  A special low-calorie diet consists of dishes A, B ,  and 

C. Each unit of A has 2 grams of fat, 1 gram of car
bohydrate , and 3 grams of protein. Each unit of B has 
I gram of fat , 2 grams of carbohydrate, and I gram of 
protein .  Each unit of C has 1 gram of fat, 2 grams of 
carbohydrate, and 3 grams of protein . The diet must 
provide exactly IO grams of fat , 14 grams of carbohy
drate , and 1 8  grams of protein. How much of each 
dish should be used? 

20. A furniture manufacturer makes chairs , coffee tables, 
and dining room tables. Each chair requires 2 minutes 
of sanding, 2 minutes of staining, and 4 minutes of 
varnishing. Each coffee table requires S minutes of 
sanding, 4 minutes of staining, and 3 minutes of var
nishing. Each dining room table requires S minutes of 
sanding, 4 minutes of staining, and 6 minutes of var
nishing. The sanding bench is available 6 hours per 

3 .  

7 .  

I I . 

I S .  

x + y +  z = I  4. 2x - y +  z =  3 
x + y - 2z = 3 x - 3y + z =  4 

2x + y + z = 2  -Sx - 2z = -S 
x + 2y + z =  7 8. 4x + 2y - z = S  
x + 2y + 3z = 1 1  3x + 3y + 6z = I  

2x + y + 4z = 1 2  Sx + y - 8z = 8 
2x + y + 3z = 8 1 2. 2x - 3z = 4 
-x + y + z = 10 x + 4y - Sz = -6 

x + y +  z = 1 2  3x + 4y - z = -2  
x - 2y + 3z = -2  16 .  x + 2y - 2z = 8 
x - Sy + 9z = 4 Sy - z =  6 

2x - y 6 -2x + y + 3z = -2  

day, the staining bench S hours per day, and the var
nishing bench 6 hours per day. How many of each 
type of furniture can be made if all facilities are used 
to capacity? 

2 1 .  A manufacturer produces 1 2-inch, 1 6-inch, and 19-
inch television sets that require assembly, testing. and 
packing. Each 1 2-inch set requires 4S minutes to 
assemble, 30 minutes to test, and IO  minutes to pack
age. Each 1 6-inch set requires I hour to assemble . 4S 
minutes to test , and I S  minutes to package . Each 19-
inch set requires l l  hours to assemble, I hour to test, 
and I S  minutes to package. If the assembly line oper
ates for 173 hours per day, the test facility is used 
for 1 2! hours per day, and the packing equipment is 
used for 3� hours per day, how many of each type of 
set can be produced? 

9.5 When we draw the graph of a linear equation, say 
SYSTEMS OF LINEAR 
INEQUALITIES 

GRAPHING LINEAR 
INEQUAUTIES 

y = 2x - l 

we can readily see that the graph of the line divides the plane into two regions, 
which we call half-planes (see Figure 10). If, in the equation y = 2x - 1 ,  we 
replace the equals sign with any of the symbols < ,  > ,  :s: ,  or 2: ,  we have a linear 
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y 

l 

FIGURE 10 

inequality in two variables. By the graph of a linear inequality such as 

y < 2x - l 

we mean the set of all points whose coordinates satisfy the inequality. Thus, the 
point (4, 2) lies on the graph of y < 2x - l ,  since the substitution 

2 < (2)(4) - l 

2 < 7  

shows that x = 4,  y = 2 satisfies the inequality. The point ( l ,  5), however, does 
not lie on the graph of y < 2x - l , because the statement 

5 < (2)( 1 )  - I 

5 < 1  

is not true . Since the coordinates of every point on the line L in Figure JO satisfy 
the equation y = 2x - I , we readily see that the coordinates of those points in the 
half-plane below the line must satisfy the inequality y < 2x - l .  Similarly, the 
coordinates of those points in the half-plane above the line must satisfy the 
inequality y > 2x - I .  This observation suggests that the graph of a linear 
inequality in two variables is a half-plane, and it leads to a straightforward meth
od for graphing linear inequalities . 

EXAMPLE 1 
Sketch the graph of the inequality x + y � l . 
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SOLUTION 

Graphing Unear Inequalities 

Step I .  Replace the inequality sign with an equals Step I .  x + y = l 
sign and plot the line. 
(a) If the inequality is :S or �. plot a solid line 
(points on the line will satisfy the illC<\uality). 
(b) If the inequality is < or >. plot a dashed line 
(points on the line will not satisfy the inequali
ty). 

Step 2.  Choose any point that is not on the line as a Step 2 .  Choose (0, 0) as a test point. 
test point. If the origin is not on the line. it i the 
most convenient choice. 
Step 3. Substitute the coordinates of the test point 
in the inequality. 
(a) If the test point satisfies the inequality, the coor
dinates of every point in the half-plane that con
tains the test point will satisfy the inequality. 

Step 3. Substituting (0, 0) in 
x + y � l 

gives 

which is false. 

0 + 0 � 1 (?) 

0 � 1 

x 

(b) lf the test point does not satisfy the inequality, 
the half-plane on the other side of the line contains 
all the points satisfying the inequality. 

Since (0, 0) is in the half-plane below the line and 
does not satisfy the inequality, all the points above the 
line will satisfy the inequality . See Figure 1 1 . 

FIGURE 11 

EXAMPLE 2 
Sketch the graph of the inequality 2x - 3y > 6. 

SOLUTION 
We first graph the line 2x - 3y = 6. We draw a dashed or broken line to indicate 
that 2x - 3y = 6 is not part of the graph (see Figure 12) . Since (0, 0) is not on the 
line, we can use it as a test point: 

2x - 3y > 6 
2(0) - 3(0) > 6 (?) 

0 - 0 > 6  (?) 

0 > 6  



y 

- I x 

2x - 3y > 6  

FIGURE 12 

9.5 SYSTEMS OF LINEAR INEQUALmES 399 

The last statement is false. Since (0, 0) is in the half-plane above the line, the 
graph consists of the half-plane below the line. 

PROGRESS CHECK 
Graph the inequalities. 
(a) y � 2x + 1 (b) y + 3x > -2 
ANSWERS 
(a) (b) 

y y 

x 

y ::;; 2x + l  

EXAMPLE 3 
Graph the inequalities. 
(a) y > x (b) 2x ;;:: 5 

SOLUTION 

(c) y ;;:: -x + 1 

(c) 

y + 3x > -2 

.\' 

(a) Since the origin lies on the line y = x, we choose another test point , say 
(0, 1 ) , which is above the line. Since (0, 1 ) does satisfy the inequality, the graph 
of the inequality is the half-plane above the line. See Figure 13a. 
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SYSTEMS OF LINEAR 
INEQUALITIES 

(b) The graph of 2x = 5 is a vertical line, and the graph of 2x � 5 is the half
plane to the right of the line and also the line itself. See Figure 1 3b . 

PROGRESS CHECK 
Graph the inequalities. · 

(a) 2y � 7  (b) x < -2 (c) l 5 y < 3 

ANSWERS 
(a) 

2y > 7  
y 

x 

(b) 

y 

x < - 2 

(c) 

y 

x x 

We can also consider systems of linear inequalities in two variables , x and y. 
Examples of such systems are 

2x - 3y > 6 
x + 2y < 2 

2x - 5y ::::; 1 2  
2x +  y ::s l 8 

x 2: 0 

y ;:::: 0 

The solution of a system of linear inequalities consists of all ordered pairs (a, b) 
such that the substitution x = a, y = b satisfies all the inequalities. Thus, the 
ordered pair (2, l )  is a solution of the system 

2x - 3y ::::; 2 
x +  y ::s 6  

because the substitution x = 2 ,  y = l satisfies both inequalities: 
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(2)(2) - (3)( 1 )  :::; 1 s 2 

2 + 1 :::; 3 S 6  

We can graph the solution set of a system of linear inequalities by graphing 
the solution set of each inequality and marking that portion of the graph that 
satisfies all the inequalities. 

EXAMPLE 4 
Graph the solution set of the system: 

SOLUTION 

2x - 3y s 2 

x + y s 6  

In Figure 14 we have graphed the solution set of each of the inequalities. The 
cross-hatched region indicates those points that satisfy both inequalities and is 
therefore the solution set of the system of inequalities. 

FIGURE 14 
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EXAMPLE 5 
Graph the solution set of the system: 

SOLUTION 

x +  y < 2  
2x + 3y 2: 9 

x 2:: 1 

See Figure 1 5 . Since there are no points satisfying all the inequalities, we con
clude that the system is inconsistent and has no solutions .  

y 

FIGURE 15 

PROGRESS CHECK 
Graph the solution set of the given system. 

(a) x +  y 2:: 3 (b) 2x + y :s: 4  
x + 2y < 8 x + y :s; 3 

x 2: 0 
y 2: 0  



ANSWERS 

(a) 

EXAMPLE 6 
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(b) 

y 

2x + y = 4 

A dietitian at a university is planning a menu for a meal to consist of two primary 
foods, A and B ,  whose nutritional contents are shown in the table. The dietitian 
insists that the meal provide at most 1 2  units of fat, at least 2 units of carbohy
drate, and at least l unit of protein . If x and y represent the number of grams of 
food types A and B ,  respectively, write a system of linear inequalities expressing 
the restrictions. Graph the solution set. 

Nutritional Content in Units per Gram 

Fat Carbohydrate Protein 
A 2 2 0 
B 3 I I 

SOLUTION 
The number of units of fat contained in the meal is 2x + 3y, so x and y must 
satisfy the inequality 

2x + 3y :s 1 2  fat requirement 

Similarly, the requirements for carbohydrate and protein result in the inequali
ties 

2x + y 2".: 2 carbohydrate requirement 

y 2".: l protein requirement 
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Of course, we must also have x � 0, since negative quantities of food type A 
would make no sense . The system of linear inequalities is then 

2x + 3y :S n  
2x +  y �  2 

x �  0 

and the graph is shown in Figure 16. 

y 
6 

x 

2x + y = 2  
FIGURE 16 

EXERCISE SET 9.5 
Graph the solution set of the given inequality in the following exercises. 

I .  y :5 x + 2 2 .  y 2: x + 3  3 .  y > x - 4  4. y < x - S  
S .  
9 .  

1 3 .  
1 7 .  

y ::5 4 - x 
3x - Sy > l S  
y >  - 3  
-2  :5 x :::::; 3 

6 .  y 2: 2 - x  
10 .  2y - 3x < 12 
14 .  Sy :::::; 2S 
1 8 .  -6 < y < -2  

19 .  A steel producer makes two types of  steel , regular and 
special . A ton of regular steel requires 2 hours in the 
open-hearth furnace, and a ton of special steel requires 
S hours . Let x and y denote the number of tons of 
regular and special steel , respectively, made per day. 
If the open-hearth furnace is available at most l S  
hours per day, write an inequality that must be satis
fied by x and y. Graph this inequality. 

7 .  y > x 8. y :::::; 2x 
1 1 .  x '.5 4  1 2. 3x > -2 
l S .  x > O  16 .  y < O  

20. A patient is placed on a diet that restricts caloric intake 
to I SOO calories per day. The patient plans to eat x 
ounces of cheese, y slices of bread, and z apples on the 
first day of the diet. If cheese contains 100 calories per 
ounce, bread 1 10 calories per slice, and apples 80 cal
ories each, write an inequality that must be satisfied 
by x, y, and z.  



Graph the solution set of the system of l inear inequalities. 
2 1 .  2x - y :S 3 22. x - y :S 4  

2x + 3y ? - 3  2x + y ? 6  
25. 3x - 2y ? -4 26. 2x - y ? -3 

2x - y :S 5 x + y :S  5 
y ?  y ?  l 

29. 3x + y :S 6 30. x - y ?  -2  
x - 2y :S - 1  x + y ?  -5  

x ?  2 y ?  0 

33 .  A farmer has lO quarts of milk and 1 5  quarts of cream, 
which he will use to make ice cream and yogurt. Each 
quart of ice cream requires 0.4 quart of milk and 0 .2  
quart of  cream, and each quart of  yogurt requires 0 .2  
quart of  milk and 0.4 quart of  cream. Graph the set of 
points representing the possible production of ice 
cream and of yogurt. 

34. A coffee packer uses Jamaican and Colombian coffee 
to prepare a mild blend and a strong blend. Each 
pound of mild blend contains � pound of Jamaican 
coffee and ! pound of Colombian coffee, and each 
pound of the strong blend requires ! pound of Jamai
can coffee and � pound of Colombian coffee. The 
packer has available 100 pounds of Jamaican coffee 
and 1 25 pounds of Colombian coffee . Graph the set of 
points representing the possible production of the two 
blends. 

35 . A trust fund of $ 100,000 that has been established to 
provide university scholarships must adhere to certain 
restrictions. 
• No more than half of the fund may be invested in 
common stocks. 

23. 

27 . 

3 1 .  
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3x - y ? -7 
3x + y :S -2  
2x - y :S 5  
x + 2y ? l 

24. 3x - 2y > I 
2x + 3y :S 1 8  

28. -x + 3y :S 2 
4x + 3y :S 1 8  

x ? O  x ?  0 
y ? O  y ?  0 

3x - 2y :S -6  32 .  2x + 3y ? 1 8  
8x + 3y :S 24 x + 3y ? 1 2  
� + � ? W � + � ? M  

x ?  0 x ?  0 
y ?  0 y ?  0 

• No more than $35,000 may be invested in pre
ferred stocks . 
• No more than $60,000 may be invested in all types 
of stocks. 
• The amount invested in common stocks may not 
be more than twice the amount invested in preferred 
stocks. 
Graph the solution set representing the possible invest
ments in common and preferred stocks. 

36. An institution serves a luncheon consisting of two 
dishes, A and B ,  whose nutritional content in grams 
per unit served is given in the accompanying table. 

Fat Carbohydrate Protein 

A l l 2 
B 2 l 6 

The meal is to provide no more than lO  grams of fat , 
no more than 7 grams of carbohydrate, and at least 6 
grams of protein. Graph the solution set of possible 
quantities of dishes A and B .  

9.6 Let's  pose the following problem: 
LINEAR 
PROGRAMMING 
(Optional) 

A lot is zoned for an apartment building to consist of no more than 40 
apartments, totaling no more than 45 ,000 square feet .  A builder is planning 
to construct I -bedroom apartments, each of which will require !000 square 
feet and will rent for $200 per month, and 2-bedroom apartments, each of 



which will utilize I 500 square feet and will rent for $280 per month. If all 
available apartments can be rented, how many apartments of each type 
should be built to maximize the builder's monthly rental revenue? 

If we let x denote the number of I -bedroom units and y denote the number of 
2-bedroom units, the accompanying table displays the information given in the 
problem. 

Number of Square 
units feet Rental 

I -bedroom x 1 ,000 $200 
2-bedroom y 1 ,500 280 
Total 40 45,000 z 

Using the methods of the previous section, we can translate the constraints 

or requirements on the variables x and y into a system of inequalities. The total 
number of apartments is x + y, so we have 

x + y :::; 40 number of units constraint 

Since each I -bedroom apartment occupies 1000 square feet of space , x apart
ments·will occupy 1000x square feet of space . Similarly , the 2-bedroom apart
ments will require I 500y square feet of space. The total amount of space needed 
is I OOOx + I 500y, so we must have 

IOOOx + I 500y :::; 45 ,000 square footage constraint 

Moreover, since x and y denote the number of apartments to be built, we must 
have x 2: 0, y 2: 0. Thus, we have obtained the following system of inequali
ties: 

x + y :::; 40 number of units constraint 

I OOOx + I 500y :::; 45 ,000 square footage constraint 

x 2: 0 need for number of apartments 

y 2: 0 to be nonnegative 

We can graph the solution set of this system of linear inequalities as in Figure 
I 7 . 
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y 

I OOOx + I SOOy � 45 ,000 

RGURE 17 

But the problem as stated asks that we maximize the monthly rental 

z = 200x + 280y 

a requirement that we have never before seen in a mathematical problem of this 
sort ! It is this requirement to optimize, that is, to seek a maximum or a minimum 
value of a linear expression, that characterizes a linear programming problem. 

A linear programming problem seeks the optimal (either the largest or the 
smallest) value of a linear expression called the objective function while sat
isfying constraints that can be fonnulated as a system of linear inequalities. 

Returning to our apartment builder, we can state the linear programming 
problem in this way: 

maximize z = 200x + 280y 

subject to x +  40 

lOOOx + 1 500y � 45 ,000 

x 2: 0 

y 2: 0 

Then the coordinates of each point of the solution set shown in Figure 1 7  are a 
feasible solution; that is, the coordinates give us ordered pairs (a, b) that satisfy 
the system of linear inequalities. But which points provide us with values of x and 
y that maximize the rental income z? For example , the points ( 40, 0) and ( 1 5 ,  20) 
are feasible solutions ,  yielding these results for z: 
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Fundamental Theorem 
of Linear Programming 

x 

40 
1 5  

y 

0 
20 

z = 200x + 280y 

8000 
8600 

Clearly, building 1 5  one-bedroom and 20 two-bedroom units yields a higher 
rental revenue than building 40 one-bedroom units, but is there a solution that 
will yield a still higher value for z? 

Before providing the key to solving linear programming problems, we first 
must note that the solution set is bounded by straight lines , and we use the term 
vertex to denote an intersection point of any two boundary lines. We are then 
ready to state the following theorem.  

If  a linear programming problem has an optimal solution , that solution occurs at 
a vertex of the set of feasible solutions . 

With this result, the builder need only examine the vertices of the solution set of 
Figure 1 7 ,  rather than considering each of the infinite number of feasible solu
tions-a bewildering task! We then evaluate the objective function z = 200x + 
280y for the coordinates of the vertices (0, 0), (0, 30), (40, 0) , and (30, 1 0) .  

x y z = 200x + 280y 

0 0 0 
0 30 8400 

40 0 8000 
30 10 8800 

Since the largest value of z is 8800 and this value corresponds to x = 30, y = 10,  
the builder finds that the optimal strategy is to build 30 one-bedroom and 10 
two-bedroom units. 

We can now illustrate the steps in solving a linear programming prob
lem. 

EXAMPLE 1 
Solve the linear programming problem 

minimize z = x - 4y 

subject to x + 2y ::::; I O  
-x + 4y :S  8 

x 2: 0 

y 2: 
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SOLUTION 

Linear Programming 

Step I .  Sketch the solution set of the sy tem of Step I .  
linear inequalities. 

y 

FIGURE 18 

Step 2. Detenninc all vertices of the solution set. Step 2. The vertices (0, I )  and (0, 2) are the y-inter
cepts of the lines whose equations are y = I and -x + 
4y = 8, respectively. The vertex B in Figure 1 8 is the 
intersection of the lines y = l and x + 2y = 10 and is 
seen to be (8, 1 ) . The vertex A of Figure 1 8 is the 
intersection of the lines whose equations are 

Step 3. Evaluate the objective function for the 
coordinates of each vertex. 

Step 4. The point or points providing the optimal 
value of the objective function arc solution of the 
linear programming problem. 

-x + 4y = 8 
and 

x + 2y = 10 
Solving the system of  equations (try elimination) 
yields the vertex A(4, 3). 
Step 3. 

Vertex x y z ;  x - 4y 

(0, 1 )  0 I -4 
(0, 2)  0 2 - 8  
(8 , I )  8 I 4 
(4, 3) 4 3 - 8  

Step 4 .  The minimal value of the objective function is 
-8, which occurs at the vertices (0, 2) and (4, 3). 
Thus, x = 0, y = 2 and x = 4, y = 3 are both solutions 
of the linear programming problem. 

Linear programming problems occur in real-life situations with great fre
quency. In certain industries these problems can involve thousands of variables 
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and hundreds of constraints. Obviously, the method of graphical solution we 
presented for two variables cannot be used. A solution method known as the 
simplex algorithm was first devised by George Dantzig in l 947 . Despite the 
sophistication of this approach,  the number of calcuJations required becomes 
unmanageably large for hand computation for even relatively small numbers of 
constraints. Fortunately, the discovery of the simplex algorithm occurred at the 
time electronic computers made their initia1 appearance .  Since then industries 
such as oil refining and steel production have used linear programming to deter
mine the optim':-'m use of their facilities. 

EXERCISE SET 9.6 
In Exercises 1 -8 find the minimum value and the maximum value of the linear expression, subject to the given constraints. 
Indicate coordinates of the vertices at which the minimum and maximum values occur. 

1 1 .  x - zY subject to 

3x - y 2: 1 
x 2: 0  
x :S 5 
y 2: 0  

2 .  2x + y subject to 
x + y s 4  

x 2: l 
y 2: 2  

1 3 .  z-x - 2y subject to 

x + 2y ".S 6 
-2x + 3y s 2  

x � O  
y 2: 0  

4. 0.2x + 0 .8y subject to 
x + 3y :S 8 
x - 4y 2: 1 

x 2: 0 
y 2: 0 

9 .  A firm has budgeted $ 1 500 for display space at a toy 
show. Two types of display booths are available: 
"preferred space" costs $ 1 8  per square foot, with a 
minimum rental of 60 square feet, and "regular 
space" costs $ 1 2  per square foot, with a minimum 
rental of 30 square feet .  It is estimated that there will 

5 .  2x - y subject to 

6. x + 3y 

-x + y s O  
3x + 4y 2: 6 

x s 4  

subject to 
2x +  y 2:  2 
4x + Sy s  40 

x 2:  0 
y 2:  
y :S 6 

7 .  2x - y subject to 
-x + 2y :S 8 

x + 2y 2: 1 2  
5x + 2y s 44 

x 2: 3 

8. y - x subject to 
-5x + 2y s 10 

5x + 6y s 50 
5x + y s 20 

x 2:  0 
y 2: 1 

be 1 20 visitors for each square foot of "preferred 
space" and 60 visitors for each square foot of "regu
lar space. " How should the firm allot its budget to 
maximize the number of potential clients that will visit 
the booths? 



1 0. A company manufactures an eight-bit computer and a 
sixteen-bit computer. To meet existing orders, it must 
schedule at least 50 eight-bit computers for the next 
production cycle and can produce no more than 1 50 
eight-bit computers . The manufacturing facilities are 
adequate to produce no more than 300 sixteen-bit 
computers, but the total number of computers that can 
be produced cannot exceed 400. The profit on each 
eight-bit computer is $3 1 0; on each sixteen-bit com
puter the profit is $275 . Find the number of computers 
of each type that should be manufactured to maximize 
profit. 

1 1 .  Swift Truckers is negotiating a contract with Better 
Spices, which uses two sizes of containers: large, 4-
cubic-foot containers weighing 10  pounds and small, 
2-cubic-foot containers weighing 8 pounds. Swift 
Truckers will use a vehicle that can handle a maxi
mum load of 3280 pounds and a cargo size of up to 
1000 cubic feet. The firms have agreed on a shipping 
rate of 50 cents for each large container and 30 cents 
for each small container. How many containers of 
each type should Swift place on a truck to maximize 
income? 

1 2. A bakery makes both yellow cake and white cake . 
Each pound of yellow cake requires ! pound of flour 
and ! pound of sugar; each pound of white cake 
requires ! pound of flour and ! pound of sugar. The 
baker finds that 100  pounds of flour and 80 pounds of 
sugar are available. If yellow cake sells for $3 per 
pound and white cake sells for $2.50 per pound, how 
many pounds of each cake should the bakery produce 
to maximize income, assuming that all cakes baked 
can be sold? 

1 3 .  A shop sells a mixture o f  Java and Colombian coffee 
beans for $4 per pound. The shopkeeper has allocated 
$ 1000 for buying fresh beans and finds that he must 
pay $ 1 .50 per pound for Java beans and $2 per pound 
for Colombian beans. In a satisfactory mixture the 
weight of Colombian beans will be at least twice and 
no more than four times the weight of the Java beans. 
How many pounds of each type of coffee bean should 
be ordered to maximize the profit if all the mixture can 
be sold? 

14 .  A pension fund plans to invest up to $50,000 in U .S .  
Treasury bonds yielding 1 2% interest per year and 
corporate bonds yielding 1 5% interest per year. The 
fund manager is told to invest a minimum of $25 ,000 

in the Treasury bonds and a minimum of $10 ,000 in 
the corporate bonds, with no more than ! of the total 
investment to be in corporate bonds. How much 
should the manager invest in each type of bond to 
achieve a maximum amount of annual interest? What 
is the maximum interest? 

1 5 .  A farmer intends to plant crops A and B on all or part 
of a 100-acre field. Seed for crop A costs $6 per acre, 
and labor and equipment costs $20 per acre. For crop 
B ,  seed costs $9 per acre, and labor and equipment 
costs $ 1 5  per acre. The farmer cannot spend more than 
$8 1 0  for seed and $ 1 800 for labor and equipment. If 
the income per acre is $ 1 50 for crop A and $ 175 for 
crop B ,  how many acres of each crop should be 
planted to maximize total income? 

16 .  The farmer in Exercise 1 5  finds that a worldwide sur
plus in crop B reduces the income to $ 140 per acre 
while the income for crop A remains steady at $ 1 50 
per acre. How many acres of each crop should be 
planted to maximize total income? 

1 7 .  I n  preparing food for the college cafeteria, a dietitian 
will combine Volume Pack A and Volume Pack B .  
Each pound o f  Volume Pack A costs $2.50 and con
tains 4 units of carbohydrate, 3 units of protein, and 5 
units of fat. Each pound of Volume Pack B costs 
$ 1 . 50 and contains 3 units of carbohydrate, 4 units of 
protein, and I unit of fat. If minimum monthly 
requirements are 60 units of carbohydrates ,  52 units of 
protein, and 42 units of fat, how many pounds of each 
food pack will the dietitian use to minimize costs? 

1 8 .  A lawn service uses a riding mower that cuts a 5000-
square-foot area per hour and a smaller mower that 
cuts a 3000-square-foot area per hour. Surprisingly, 
each mower uses � gallon of gasoline per hour. Near 
the end of a long summer day, the supervisor finds that 
both mowers are empty and that there remains 0 .6 
gallon of gasoline in the storage cans. To conclude the 
day at a sensible point, at least 4000 square feet of 
lawn must still be mowed. If the cost of operating the 
riding mower is $9 per hour and the cost of operating 
the smaller mower is $5 per hour, how much of the 
remaining gasoline should be allocated to each mower 
to do the job at the least possible cost? 
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TERMS AND SYMBOLS 
system of equations (p. 375) 
solution of a system of 

equations (p. 375) 
consistent system (p. 377) 
inconsistent system (p. 377) 
l inear system (p. 377) 
method of substitution 

(p.  377) 

KEY llDEAS FOR REVIEW 

method of elimination 
(p. 38 1 )  

equivalent system (p. 39 1 )  
Gaussian elemination 

(p. 39 1 )  
triangular form (p. 39 1 )  
back-substitution (p. 392) 
half-plane (p. 396) 

D The method of substitution involves solving an equation 
for one variable and substituting the result in another 
equation. 

D The method of elimination involves multiplying an 
equation by a nonzero constant so that, when the equa· 
lion is added to a second equation, a variable drops 
out. 

D A consistent system of equations has one or more real 
solutions; an inconsistent system has no real solu
tions. 

D The graph of a pair of linear equations in two variables is 
two straight lines, which may either (a) intersect in a 
point, (b) be parallel , or (c) be the same line. If the two 
straight lines intersect, the coordinates of the point of 
intersection are a solution of the system of linear equa
tions. If the lines do not intersect, the system is incon
sistent. 

1REV1EW EXERCISES 

linear inequality in two 
variables (p. 397) 

graph of a linear inequality 
(p. 397) 

system of linear inequali
ties (p. 400) 

solution of a system of lin
ear inequalities (p. 400) 

constraints (p. 406) 
optimize (p. 407) 
linear programming prob-

lem (p.  407) 
objective function (p. 407) 
feasible solution (p. 407) 
vertex (p .  408) 

D With any method of solution, it is possible to detect the 
special cases when lines are parallel or reduce to the 
same line. 

D It is often easier and more natural to set up word prob
lems by using two or more variables . 

D Gaussian elimination is a systematic way of transform
ing a linear system to triangu.lar form. A l inear system in 
triangular fonn is easily solved by back-substitution. 

D The solution ·Of a system of linear inequalities can be 
found graphically as the region satisfying an the inequal
ities. 

D To solve a linear programming problem, it is only nec
essary to consider the vertices of the region of feasible 
solutions. 

Solutions to exercises whose numbers are in color are in the Solutions section in th.e back of the book. 

9. 1 In Exercises 1 and 2 solve the given system by graph- 9.2 ln Exercises 9-1 4  solve the given system by the meth-
ing. od of elimination. 

l .  2x + 3y = 2 2. y2 = x - I 
4x + 5y = 3 x + y = 7 

In Exercises 3-8 solve the given system by the method 
of substitution. 

3 .  -x  + 6y = - 1 1  4. 2x - 4y = - 14 
2x + 5y = 5 -x - 6y = -5 

5 .  2x +  y = O  6. x2 + y2 = 25 
7 x + 3y = 5 x - 3y = -4 

7 .  x2 - 4l = 9 8. y2 = 4x 
y - 2x = O  y2 + x - 2y = 1 2  

9. x + 4y =  1 7  10. 5x - 2y = 1 4  
2x - 3y = - 2 1  -x - 3y = 4 

I l .  -3x + y = - ]3 1 2. 7x - 2y = -20 
2x - 3y = 1 1  3x - y =  -9 

1 3. y2 = 2x - I 1 4. x2 + y2 = 9  
x - y = 2  y = x2 + 3  

9.3 1 5 .  The sum of a two.digit number and its tens digit 
is 49. If we reverse the digits of the number, the 
resulting number is 9 more than the original num-
ber. Find the number. 



1 6. The sum of the digits of a two-digit number is 9. 
The sum of the number and its units digi1 is 74. 
Find the number. 

17 .  Five pounds o f  hamburger and 4 pounds o f  steak 
cost $22, and 3 pounds of hamburger and 7 
pounds of steak cost $28. 1 5 .  Find the cost per 
pound of hamburger and of steak. 

1 8 . An airplane flying with a tail wind can complete a 
journey of 3500 kilometers in 5 hours. Flying 1he 
reverse direclion, the plane completes the same 
trip in 7 hours. What is the speed of the plane in 
still air? 

19 . A manufacturer of faucets finds that the supply S 
and demand D are related to price p as follows: 

s = 3p + 2 
D = -2p + 1 7  

Find the equilibrium price and the number of fau
cets sold at that price. 

20. An auto repair shop finds that ils monthly expen
diture (in dollars) is given by C = 4025 + 9x, 
where x is the total number of hours worked by 
all employees. If the revenue received (in dollars) 
is given by R = 16x, find the break-even point in 
number of work hours, and lhe total revenue 
received at that point. 

9.4 In Exercises 2 1-24 use Gaussian elimination to solve 
the given linear system. 

2 1 .  -3x - y +  z =  1 2  
2x + 5y - 2z = -9 
-x + 4y + 2z = 15 

22. 3x + 2y - z = -8 
2x + 3z = 5 
x - 4y = -4 

23. 5x - y + 2z = 10 
-2x + 3y - z = -7 

3x + 21 = 7 
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24. x + 4y = 4 
-x + 3z = -4 

4 1  2x +  2y - z =  -6 
In Exercises 25-28 solve by any method. 

25. 2x + 3y = 6 26. x + 2y = 0 
3x - y = - 1 3  -x + 4y = 5  

27 . 2x + 3y - z = -4 
x - 2y + 2z = -6 

2x - 3z = 5 
28. 2x + 2y - 3z = -4 

3y - z = -4 
4x - y + z = 4 

9.5 In Exercises 29-34 graph the solution ser of the l inear 
inequality or system of linear inequalities. 

29. x - 2y :S 5 30. 2x + y > 4 
3 1 .  2x + 3y :S: 2  32. x - 2y 2:: 4 

x - y 2:: l 2x - y :S 2  
33. 2x + 3y :S 6 34. 2x + y s 4 

x :2:: 0 2x - y s 3  
y 2:: 1 x :2:: 0 

y :2:: 0 
9.6 In Exercises 35 and 36 solve the given linear program

ming problem. 

35. maximize z = 5y - x 
subject to 8y - 3x s 36 

6x + y s 30 
y 2:: 1 
x 2:: 0 

36. minimize z = x + 4y 
subject to 4x - y :2:: 8 

4x + y s  24 
5y + 4x 2:: 32 
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PROGRESS TEST 9A 
I .  Solve the l inear system by graphing: 

3x - y = - 1 7 
x + 2y = - 1  

In Problems 2 and 3 solve the given system by the method of 
substitution. 
2. 2x + y = 4 

3x - 2y = - 1 5 
3 .  y2 = 5x 

y2 - x2 = 6 
In Problems 4 and 5 solve the given linear system by the 
method of elimination. 
4. x - 2y = 7 5. x2 + y2 

= 25 
3x + 4y = -9 4x2 - y2 

= 20 
6. The sum of the digits of a two-digit number is 1 1 .  If 

the sum of the number and its tens digit is 4 1  . find the 
number. 

7 .  An elegant men's shop is having a post-Christmas 
sale. All shirts are reduced to one low price, and all 
ties are reduced to an even lower price. A customer 
purchases 3 ties and 7 shirts, paying $ 1 35 .  Another 
customer selects 5 ties and 3 shirts and pays $95. What 
is the sale price of each tie and of each shirt? 

8 .  A school cafeteria manager finds that the weekly cost 
of operation is $ 1 375 plus $ 1 . 25 for every meal 
served. If the average meal produces a revenue of 
$2.50, find the number of meals served that results in 
zero profit and zero loss. 

9 .  Solve by Gaussian elimination: 
3x + 2y - z = -4 
x - y + 3z = 12  

2x - y - 2z = - 20 
Solve Problems JO and 1 1  by any method . 
J O. -3x + 2y = - I 1 1 .  3x + y - 2z = 8 

6x - y = - 1  3y - 4z = 14 
1 3x + 2Y + z = 1 

In Problems t 2 and 1 3  graph the solution set of the system of 
linear inequalities . 
1 2 .  x - 2y :s t 

3x + 2y � 4 
1 3 .  2x +  y :s JO 

-x + 3y :s 1 2  

PROGRESS TEST 98 
I .  Solve the system by graphing: 

x2 + 3y2 = 1 2  
x + 3y = 6 

In Problems 2 and 3 solve the given linear system by the 
method of substitution. 
2. 3x + y = I  

I x - 3y = 1 

3 .  2x  - 3y = 1 
3x - 2y = 1 

In Problems 4 and 5 solve the given system by the method of 
elimination. 
4. - 2x + 4y = 5  

-x + 3y = 2 
5 .  x2 - y2 = 9 

x2 + y2 = 41 
6. 

7 .  

8 .  

9 .  

The sum of the digits of a two-digit number i s  1 4 .  The 
difference between the number and that obtained by 
reversing the digits of the number is 1 8 .  Find the num
ber. 
A motorboat can travel 60 kilometers downstream in 3 
hours, and the return trip requires 4 hours. What is the 
rate of the current? 
Suppose that supply and demand for a particular tennis 
racket is related to price p by 

S = 5p + I  
D = -2p + 43 

Find the equilibrium price and the number of rackets 
sold at this price. 
Solve by Gaussian elimination: 

x + 2z =  7 
3y + 4z = - 10 

-2x + y - 2z = - 1 4  
I n  Problems J O  and 1 1  solve by any method. 
10 .  x - 2y = I 1 1 .  3x + y - 7z = -4 

3x + 2y = 1 2x - 2y - z = 9 
-2x + y + 3z = -4 

In Problems 1 2  and 13 graph the solution set of the system of 
linear inequalities. 
1 2. 2x - 3y � 6 

3x + y :s 3  
1 3 .  2x + y :S 4  

2x - 5y :s 5 
y � l 



10.1 
MATRICES AND LINEAR 
SYSTEMS 

DEFINITIONS 

MATRICES AND 
DETERMINANTS 
The material on matrices and determinants presented in this chapter serves as an 
introduction to linear algebra, a mathematical subject that is used in the natural 
sciences, business and economics, and the social sciences. Since matrix methods 
may require millions of numerical computations, computers have played an 
important role in expanding the use of matrix techniques to a wide variety of 
practical problems . 

Our study of matrices and determinants will focus on their application to the 
solution of systems of linear equations . We will see that the method of Gaussian 
elimination studied in the previous chapter can be neatly implemented using 
matrices . We will show that matrix notation provides a convenient means for 
writing linear systems and that the inverse of a matrix enables us to solve such a 
system. Determinants will also provide us with an additional technique, known as 
Cramer's  rule, for the solution of certain linear systems. 

It should be emphasized that this material is a very brief introduction to 
matrices and determinants .  Their properties and applications are both extensive 
and important . 

We have already studied several methods for solving a linear system such as 

2x +  3y = - 7  

3x - y = 1 7  

This system can be displayed by a matrix, which is simply a rectangular array of 
mn real numbers arranged in m horizontal rows and n vertical columns. The 
numbers are called the entries or elements of the matrix and are enclosed within 
brackets. Thus, 

A =  [2 
3 

t 

3 

- 1  
t 

- 7i-

rows 
1 7  -

t 
columns 

PAGE 415 
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SUBSCRIPT 
NOTATION 

is a matrix consisting of two rows and three columns, whose entries are obtained 
from the two given equations. In general , a matrix of m rows and n columns is 
said to be of dimension m by n, written m x n.  The matrix A is seen to be of 
dimension 2 x 3. U the numbers of rows and columns of a matrix are both equal 
to n, the matrix is called a square matrix of order 11. 

EXAMPLE 1 

(a) 
[- I  

A -
O. I 

is a 2 x 2 matrix. Since matrix A has two rows and two columns, it is a square 
matrix of order 2 . 

(b) [ 4 -5] B = -� � 
has three rows and two columns and is a 3 x 2 matrix . 

(c) C =  [ - 8  6 l )  

is a I x 3 matrix and 1s called a row matrix because it has precisely one 
row. 

(d) D = [ -�J 
is a 2 x matrix and is called a column matrix because it has precisely one 
column. 

There is a convenient way of denoting a general m x n matrix, using "double 
subscripts . "  

A =  a;2 

i i 
first second 

column column 

Gmj 

i 
jth 

column 

+--- first row 
+--- second row 

+--- ith row 

+--- mth row 
i 

nth 
column 



COEFFICIENT AND 
AUGMENTED 
MATRICES 
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Thus, a11 is the entry in the ith row andjth column of the matrix A .  It is customary 
to write A =  [au] to indicate that au is the entry in row i and columnj of matrix A .  

EXAMPLE 2 
Let 

A =  [ � 
-3 

-2 4 
l 2 
2 -4 �] 

Matrix A is of dimension 3 x 4. The element a12 is found in the first row and 
second column and is seen to be -2 . Similarly, we see that a3 1 = -3 , a33 = -4, 
and a34 = 8. 

PROGRESS CHECK 
Let 

B � [ � 8 -!] - 5  
- 8  6 

0 1 - 1 

Find the following: 
(a) bl l  (b) b23 (c) b3 1  (d) b42 
ANSWERS 
(a) 4 (b) 3 (c) -8 (d) 

If we begin with the system of linear equations 

the matrix 

2x + 3y = -7 

3x - y = 1 7  

[� -�J 
i n  which the first column i s  formed from the coefficients of x and the second 
column is formed from the coefficients of y, is called the coefficient matrix. The 
matrix [2

3 

3 I - 7J - 1  i 1 7  

which includes a column consisting of the right-hand sides of the equations, 
separated from the other columns by a dashed line, is called the augmented 

matrix. 
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Elementary Row 
Operattons 

GAUSSIAN 
ELIMINATION 

EXAMPLE 3 
Write a system of Jinear equations that corresponds to the augmented matrix 

SOLUTION 

2 
- 2 

- 1  
l 

- 1  

: 15] 
I -7 
: 3 

We attach the unknown x to the first column, the unknown y to the second 
column, and the unknown z to the third column. The resulting system is 

- 5x + 2y - z = 15 

- 2y + z = -7 
�x + y - z = 3 

Now that we have seen how a matrix can be used to represent a system of 
linear equations, we next proceed to show how routine operations on that matrix 
can yield the solution of the system. These ' 'matrix methods' '  are simply a clever 
streamlining of the methods already studied. 

In the previous chapter we used three elementary operations to transform a 
system of linear equations into triangular form. When applying the same proce
dures to a matrix, we speak of rows, columns, and elements instead of equations, 
variables ,  and coefficients. The three elementary operations that yield an equiv
alent system now become the elementary row operations. 

The following elementary row operations transform an augmented matrix into 
an equivalent system. 

1. Interchange any two rows. 

2. Multiply each element of any row by a constant k * 0. 

3. Replace each element of a given row with the sum of itself plus k times the 
corresponding element of any other row. 

The method of Gaussian elimination introduced in the previous chapter can now 
be restated in terms of matrices. By use of elementary row operations, we seek to 
transform an augmented matrix into a matrix for which aij = 0 when i > j. The 
resulting matrix will have the following appearance for a system of three linear 
equations in three unknowns . 

* 

[� 
* 

0 

* : *] 
* I * 

I 
* I * 

I 
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Since this matrix represents a linear system in triangular fonn, back-substitution 
will provide a solution of the original system. We will illustrate the process with 
an example. 

EXAMPLE 4 
Solve the system 

SOLUTION 

x - y + 4z = 4 
2x + 2y - z ::; 2 
3x - 2y + 3z = -3 

We describe and illustrate the steps of the procedure. 

Gaussian Elimination 

Step I .  Fonn the augmented matrix. 

Step 2 .  If necessary, interchange rows to make sure 
that a 1 1 , the first clement of the first row, is non
zero. We call a1 1 the pivot element and row I the 
pivot row. 

Step 3 .  Arrange to have 0 as the first element of 
every row below row 1 .  To do so, replace each row 
after row I with the sum of itself and an appropriate 
multiple of row I . 

Step 4. Repeat the process defined by Steps 2 and 
3, allowing row 2, row 3, and so on to play the role 
of the first row. Thus, each row in tum serves as 
the pivot row. 

Step 5 .  The corresponding linear system is in trian
gular fonn .  Solve by back-substitution. 

Step 1 .  The augmented matrix is 

[ l - I 4 : 4] 
2 2 - I  l 2 
3 -2 3 : -3 

Step 2.  We see that a 1 1  "' I * 0 . The pivot element, 
a 1 1  , is shown in color. 

Step 3. To make a2 1 = 0, replace row 2 with the sum 
of itself and -2 times row 1 ;  to make a3 1 = 0, replace 
row 3 with the sum of itself and -3 times row 1 . 

[ l - l 4 : 4] 
0 4 -9 : -6 
0 I -9 l - 15 

Step 4 .  Since a22 = 4 * 0, it will serve as the next 
pivot element and is shown in color. To make a32 = 0, 
replace row 3 with the sum of itself and -1 times 
row 2. 

[] - 1  4 : 4] 
0 4 - 9 : - 6 
0 0 -2} : -¥ 

Step 5.  The third row of the final matrix yields 

27 27 -4z = -2 
z = 2  
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PROGRESS CHECK 

Substituting z = 2, we obtain from the second row of 
the final matrix 

4y - 9z = -6 
4y - 9(2) = -6 

y = 3  
Substituting y = 3, z = 2, we obtain from the first row 
of the final matrix 

x - y + 4z = 4 
x - 3 + 4(2) = 4 

x =  - 1  
The solution is x = - 1 ,  y = 3, z = 2. 

Solve the linear system by matrix methods. 

ANSWER 
x = 6, y = -2, z = 4 

2x + 4y - z = 0 

x - 2y - 2z = 2 
-5x - 8y + 3z = -2 

Note that we have described the process of Gaussian elimination in a manner 
that will apply to any augmented matrix that is n x (n + l ); that is, Gaussian 
elimination may be used on any system of n linear equations in n unknowns that 
has a unique solution . 

It is also permissible to perform elementary row operations in clever ways to 
simplify the arithmetic. For instance, you may wish to interchange rows, or to 
multiply a row by a constant to obtain a pivot element equal to I .  We will 
illustrate these ideas with an example. 

EXAMPLE S 
Solve by matrix methods. 

2y + 3z = 4 
4x + y + 8z + 1 5w = - 14 
x - y + 2z = 9 

-x - 2y - 3z - 6w = IO 
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SOLUTION 

We begin with the augmented matrix and perform a sequence of elementary row 
operations . The pivot element is shown in color. 

u 
2 3 0 

' ·1 I 8 1 5  i - 14 Augmented matrix . 
- I  2 0 : 9 Note that a 1 1  = 0. 
-2 -3 -6 ! IO  

u 
- I  2 0 

- 1!] I 8 1 5  Interchanged rows I and 3 so that 
2 3 0 a 1 1 = I .  

- 2  - 3  -6 IO 

[ 
I - I  2 0 -5�] To make a21 = 0, replaced row 2 with the 
0 5 0 1 5  sum of itself and -4  times row I .  
0 2 3 0 To make a4 1 = 0, replaced row 4 with the 
0 -3  - I  -6 19  sum of itself and row 1 . 

[ 
I - I  2 0 - I�] 0 I 0 3 Multiplied row 2 by ! so that a22 = I .  
0 2 3 0 
0 -3  - I  -6 1 9  

[ 
I - I  2 0 

- I�] To make a32 = 0, replaced row 3 with the 
0 1 0 3 sum of itself and - 2  times row 2 .  
0 0 3 -6 24 To make a42 = 0, replaced row 4 with the 
0 0 - 1  3 - 1 1  sum of itself and 3 times row 2 .  

[ 
I - 1  2 0 - I�] 0 1 0 3 Interchanged rows 3 and 4 so that the next 
0 0 - I  3 - I I pivot will be a33 = - I .  
0 0 3 -6 24 

[ 
I - I  2 O i  

- I�] 0 0 3 : To make a43 = 0, replaced row 4 with the 
0 0 - I  3 : - I I  sum of itself and 3 times row 3 .  
0 0 0 3 I -9 I 

The last row of the matrix indicates that 

3w = -9 
w = - 3  

The remaining variables are found by back-substitution .  
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Gauss-Jordan 
Elimination 

Third row of Second row of First row of 
final matrix final matrix final matrix 

-z  + 3w = - 1 1  y + 3w = - 1 0 x - y + 2z = 9  

-z + 3(- 3) = - 1 1  y + 3(-3)  = - 1 0 x - ( - 1 ) + 2(2) = 9  

z = 2  y = - 1  x = 4  

The solution is x = 4,  y = - 1 ,  z = 2,  w = -3 .  

There i s  an important variant of Gaussian elimination known as Gauss-Jordan 
elimination. The objective is to transform a linear system into a form that yields a 
solution without back-substitution . For a 3 x 3 system that has a unique solution , 
the final matrix and equivalent linear system will look like this. [ l 0 0 i c 1 ] x + Oy + Oz =  c 1  

0 1 0 I c 2  Ox + y + Oz = c2 

0 0 1 ! c3 Ox + Oy + z = c3 

The solution is then seen to be x = c 1 ,  y = c2, and z = c3. 

The execution of the Gauss-Jordan method is essentially the same as that of 
Gaussian elimination except that 

• the pivot elements are always required to be equal to l ,  and 

• all elements in a column, other than the pivot element, are forced to be 0. 

These objectives are accomplished by the use of elementary row operations , as 
illustrated in the following example. 

EXAMPLE 6 
Solve the linear system by the Gauss-Jordan method. 

x - 3y + 2z = 1 2  
2x + y - 4z = - 1 
x + 3y - 2z = -8 

SOLUTION 
We begin with the augmented matrix . At each stage, the pivot-element is shown 
in color and is used to force al l elements in that column (other than the pivot 
element itselO to be zero. 

[ � -! 
2 i 1 2] -4 I - 1  -2 I -8 

Pivot element is a1 1 •  



[� 
-3 2 I 1 2] To make a2 1 = 0, replaced row 2 with the 

7 -s I -25 sum of itself and - 2 times row 1 . 

6 -4 I -20 To make a3 1 = 0, replaced row 3 with the 
sum of itself and - l times row l .  

[� 
-3 2 I 1 2] Replaced row 2 with the sum of itself and 

-4 I -5 - 1  times row 3 to yield the next pivot, 
6 -4 1 -20 a22 = l .  

[� 
0 - 10 -3] To make a 1 2 = 0, replaced row l with the 

l -4 -5 sum of itself and 3 times row 2 .  

0 20 1 0  To make a32 = 0 ,  replaced row 3 with the 
sum of itself and -6 times row 2. 

[� 
0 - 10 -3] 
1 -4 -5 Multiplied row 3 by io so that a33 = 1 .  
0 � 

[� 
0 0 -�] 

To make a 1 3  = 0, replaced row 1 with the 

0 sum of itself and 1 0  times row 3 .  

0 To make a23 = 0, replaced row 2 with the 
sum of itself and 4 times row 3 .  

We can see the solution directly from the final matrix: x = 2, y = -3 ,  
and z = i. 

In Exercises 1 -6 state the dimension of each matrix. 
I .  [� -:J 2. [ 1  2 3 - 1 ) 3 .  u 2 3 4 .  [-:i - 1  4 

3 6 
- 1  2 

5 .  [_! 2 :J 6. [� - 1  2 �] 1 8 4 
- 2  

7 .  Given 8 .  Given A � [: -4 -2 _: l -5 6 -:] 7 6 4 1 
B =  

0 9 0 2 

find -3  9 

(a) a 1 2 (b) a22 (c) a23 (d) a34 find 
(a) b1 3 (b) b2 1  (c) b33 (d) b42 



424 MATRICES AND DETERMINANTS 

In Exercises 9- 1 2  write the coefficient matrix and the augmented matrix for the given linear system. 
9. 3x - 2y = 1 2  

5x + y = - 8  
IO .  3x - 4y = 15 

4x - 3y = 1 2  
I I .  lx + y +  z = 4  

2x - y - 4z = 6 
4x + 2y - 3z = 8 

In Exercises 1 3- 16  write the l inear system whose augmented matrix is given. 1 3 .  [� 6 1 - 1 ] 14. [ 4 0 1 2] 
4 5 I 3 -7 8 I 3 

1 5 .  [ 1 1 3 I -4] 
-3  4 0 I 8 

2 o 7 I 6 

16 .  [4 8 3 
1 -5  3 
0 2 7 

I 1 2] 1 - 14 I 1 8  

1 2 .  2x + 3y - 4z = I O  
-3x + y = 1 2  

5x - 2y + z = - 8  

I n  Exercises 1 7-20 the augmented matrix corresponding to a l inear system has been transformed to the given matrix by 
elementary row operations. Find a solution of the original linear system. 
1 7 .  [� � -� i !] 1 8 .  [� � � i -�i 19 .  [� -� 

o o 1 1 2 o o 1 1 5 o o 

1 I 3] 
3 I 2 
1 1 -4 

20. [ l -4 
0 1 
0 0 

3 I -2  
2 : -4] 
1 I 5 

In Exercises 2 1 -30 solve the given l inear system by applying Gaussian elimination to the augmented matrix .  
2 1 .  x - 2y = -4 22. 2x + y = - I 23. x + y + z = 4 24. x - y + z = -5  

2x + 3y =  1 3  3x - y = -7 2x - y + 2z = 1 1 3x + y + 2z = -5 
x + 2y + z = 3 2x - y - z = -2  

25 . 2x + y - z =  9 26. 2x + y - z = -2 27. -x - y + 2z = 9 28. 4x + y - z = - 1  
x - y + 2z =  3 

-x + 2y - z = 0 
x - 2y + 2z = -3  -2x - 2y + 3z = 2 x + 2y - 2z = -7 

3x + 3y + 4z = 1 1  3x + y - z = -4 2x - y +  z = -9 

29. x +  y - z + 2w = 0 30. 2x + y - 3w = -7 
2x + y w =  -2 3x + 2z + w =  0 
3x + 2z = -3  -x  + 2y + 3w = 10 
-x + 2y + 3w = -2x - 3y + 2z - w =  7 

3 1-40. Solve the l inear systems of Exercises 2 1 -30 by applying Gauss-Jordan elimination to the augmented matrix. 

10.2 
MATRIX OPERATIONS 
AND APPLICATIONS 
(Optional) 

Equality of Matrices 

After defining a new type of mathematical entity, it is useful to define operations 
using this entity . It is common practice to begin with a definition of equaHty . 

Two matrices are equal if they are of the same dimension and their correspond
ing entries are equal. 

EXAMPLE 1 
Solve for all unknowns. 
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[ -2 2x

3 

9 l [ z 6 9] 
y - l -4s 

= -4 r 7 

SOLUTION 
Equating corresponding elements, we must have 

-2 = z  or z = -2 
2x = 6  or x = 3  

y - l = -4 or y =  -3 
3 = r  or r = 3  

- 4s = 7 or s = -1 

Matrix addition can be performed only when the matrices are of the same 
dimension. 

The sum of two m x n matrices A and B is the m x n matrix obtained by adding 
the corresponding elements of A and B. 

EXAMPLE 2 
Given the following matrices, 

A =  [2 -3 4) B = (5 3 2] 

c �  [ I 
6 -:i D �  [ I: 2 

J -2 4 -7 
find (if possible) 
(a) A + B  (b) A + D (c) C + D  

SOLUTION 
(a) Since A and B are both l x 3 matrices, they can be added, giving 

A +  B = [2 + 5 -3 + 3 4 + 2] = (7 0 6] 
(b) Matrices A and D are not of the same dimension and cannot be added. 
(c) C and D are both 2 x 3 matrices.  Thus, 

[ l + 16 
C + D =  

-2 + 4 

6 + 2  

4 + (-7) 

- 1 + 9  l [ 1 7 
5 + (- 1 )  

= 
2 -3 

8 

:J 
Matrices are a natural way of writing the information displayed in a table. 

For example, Table l displays the current inventory of the Quality TV Company 
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Scalar Multlpllcotlon 

TABLE 1 

TV Sets Boston Miami 

1 7'' 140 84 

1 9" 62 17 

at its various outlets . The same data is displayed by the matrix s = [ 1 40 84 25] 
62 1 7  48 

Chicago 

25 

48 

in which we understand the columns to represent the cities and the rows to 
represent the sizes of the television sets. If the matrix 

M = [30 46 1 5] 
50 25 60 

specifies the number of sets of each size received at each outlet the following 
month, then the matrix 

[ 1 70 
T = S + M = 

1 1 2 

1 30 40] 
108 42 

gives the revised inventory. 
Suppose the salespeople at each outlet are told that half of the revised inven

tory is to be placed on sale. To determine the number of sets of each size to be 
placed on sale, we need to multiply each element of the matrix T by 0 .5 .  When 
working with matrices, we call a real number such as 0.5 a scalar and define 
scalar multiplication as follows. 

To multiply a matrix A by a scalar c, multiply each entry of A by c. 

EXAMPLE 3 
The matrix Q 

Q =  

Regular 

[ 1 30 

1 10 

Unleaded 

250 

1 80 

Premium 

:J 
City A 

City B 

shows the quantities (in thousands of gallons) of the principal types of gasolines 
stored by a refiner at two different locations. It is decided to increase the quantity 
of each type of gasoline stored at each site by 10% .  Use scalar multiplication to 
determine the desired inventory levels. 
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MATRIX MULTIPLICATION 
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SOLUTION 

To increase each entry of matrix Q by 10%, we compute the sca1ar product 
l . lQ. 

[ 1 30 250 60] 
l . lQ = l . l  

1 10 1 80 40 

= [ l . 1 ( 1 30) 1 . 1 (250) 1 . 1 (60)]
=
[ 143 275 6644] 

l . l ( l  1 0) l . 1 ( 180) 1 . 1 (40) 1 2 1 1 98 

We denote A + ( - 1 )B by A - B and refer to this as the difference of A 
and 8 .  

The difference of two m x n matrices A and B is the m x n matrix obtained by 
subtracting each entry of B from the corresponding entry of A .  

EXAM PLE  4 
Using the matrices C and D of Example 2, find C - D. 

SOLUTION 

By definition, 

[ l - 1 6  
C - D = 

-2 - 4 

6 - 2  - 1  - 9 l [- 1 5 

5 - (- 1) 
= 

-6 4 - (-7) 

4 

1 1  

We will use the Quality TV Company again, this time to help us arrive at a 
definition of matrix multiplication. Suppose 

Boston 

s 
= 
[60 

40 

Miami 

85 

100 

Chicago 

70] 
20 1 9" 

1 7" 

is a matrix representing the supply of television sets at the end of the year. 
Further, suppose the cost of each 1 7-inch set is $80 and the cost of each 1 9-inch 
set is $ 1 25 .  To find the total cost of the inventory at each outlet, we need to 
multiply the number of 1 7-inch sets by $80, multiply the number of 1 9-inch sets 
by $ 1 25 ,  and sum the two products. lf we let 

c = [80 1 25] 

be the cost matrix, we seek to define the product 
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[
60 85 70] [80 125] 
40 100 20 

so that the result will be a matrix displaying the total cost at each oul:let. To find 
the total cost at the Boston outlet, we need to calculate 

(80)(60) + ( 1 25)(40) :::; 9800 

[60 85 70] [80 125 ] 
40 100 20 

At the Miami outlet, the total cost is 

(80)(85) + ( 125)( 100) = 1 9,300 

[60 85 70] [80 125 ] 
40 100 20 

At the Chicago outlet, the total cost is 

(80)(70) + ( 1 25)(20) :::; 8 100 

[80 125 ] [60 85 70 ] 
40 100 20 

The total cost at each outlet can then be displayed by the 1 X 3 matrix 

[9800 19,300 8100] 
which is the product of C and S. Thus, 

[
60 85 70] cs = [80 1 25] 
40 100 20 

= [(80)(60) + ( 1 25)(40) (80)(85) + ( 125)( 100) (80)(70) + ( 125)(20)) 
= [9800 19,300 8 100] 
Our example illustrates the process for multiplying a matrix by a row matrix. 

If  the matrix C had more than one row, we would repeat the process using each 
mw of C. Here is an example.  

EXAMPLE 5 
Find the product AB if 
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SOLUTION 

AB = [
(2)(4) + ( 1 )(2) (2)(-6) + ( l )(O) (2)(-2) + ( 1 )( 1 ) (2)(4) + ( l )(- 5)] 
(3)(4) + (5)(2) (3)(-6) + (5)(0) (3)(-2) + (5)( 1 ) (3)(4) + (5)(-5) 

= 
[ 10 - 12 -3 3] 
22 . - 1 8 - 1 - 1 3 

PROGRESS CHECK 
Find the product AB if 

ANSWER [- 15 
AB = 

28 

5 -4 

B =  3 

- l  0 

It is important to note that the product AB of an m x n matrix A and an n x r 
matrix B exists only when the number of columns of A equals t'he number of rows 
of B (see Figure 1 ) . The product AB will then be of dimension m x r. 

A 
m X /1 

FIGURE 1 

EXAMPLE 6 
Given the matrices 

To fonn the matrix  product AB ,  
these must be equal 

Dimension of the product AB 

A =  
[ 1 - 1 1 

B = [ 5 -3] 
2 3 -2 2 

(a) show that AB #- BA ; 

B 
n X r 
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(b) determine the dimension of AC. 

SOLUTION 

(a) AB = [
(l)(5) + (- 1)(-2) 

(2)(5) + (3)(-2) 

[ (5)( 1 ) + (-3)(2) BA = 
(-2)( 1 ) + (2)(2) 

( 1 )(-3) + (- 1 )(2)] = [7 -5] 
(2)(-3) + (3)(2) 4 0 
(5)(- 1 ) + (-3)(3)] = [

- 1 - 14

8
] 

(-2)(- 1 ) + (2)(3) 2 
Since the corresponding elements of AB and BA are not equal, AB * BA . 
(b) The product of a 2 x 2 matrix and a 2 x 3 matrix is a 2 x 3 matrix. 

PROGRESS CHECK 
If possible, using the matrices of Example 6, find the dimension of the given 
product. 

(a) CD (b) CB 
ANSWERS 
(a) 2 x l (b) not defined 

We saw in Example 6 that AB * BA; that is, the commutative law does not 
hold for matrix multiplication. However, the associative law A(BC) = (AB)C 
does hold when the dimensions of A , B, and C permit us to find the necessary 
products. 

PROGRESS CHECK 
Verify that A(BC) = (AB)C for the matrices A, B, and C of Example 6. 

Matrix multiplication provides a convenient shorthand means of writing a l inear 
system. For example, the linear system 

can be expressed as 

where 

2x - y - 2z = 3 
3x + 2y + z = - 1  
x + y - 3z = 14 

AX = B  

[2 -2
1 -2

1 ] A =  3
1 -3 
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To verify this, simply fonn the matrix product AX and then apply the definition of 
matrix equality to the matrix equation AX = B.  

EXAMPLE 7 
Write out the l inear system AX = B if 

SOLUTION 
Equating corresponding elements of the matrix equation AX = B yields 

-2x + 3y = 16  
x + 4y = -3 

EXERCISE SET 10.2 
I .  For what values of a, b, c, and d are the matrices A and 

B equal? 
2. For what values of a, b, c, and d are the matrices A and 

B equal? 

A = [a bl B = [3 -4
] 6 -2 c d 

A = [a +
a 
b 2c l [- I 6

] c - d  
B = 

5 10 
In Exercises 3- 1 8 the following matrices are given. 

A = [ _: : '. ] 
-3 E = [� 2 �] 

[2 - I i B = ! ; c = [� -! �] 
[ I 3] [ -2 4 2] F = -2 4 

G = 
I 0 3 

If possible, compute the indicated matrix. 
3. C + E  
7 .  A + F  
1 1 .  CB + D  
15 . DA + EB 

19. If A = [ -; 

20. If A = [� 

2 1 .  I f  A = [ -; 

4. 
8. 
1 2. 
16 . 

3] [ - I -3 ' B = 2 

;] and B = [-� 

C - E  
28 - D  
EB - FA 
FG + B 

3] [ -4 0 , and C = 0 

5 .  2A + 3G 
9. AB 
1 3 . DF + AB 
17 . 2GE - 3A 

-3] _4 , show that AB = AC. 

- I J 4 , show that AB * BA. 

-�J and B = [� �] . show that AB = [� �] . 

6. 3G - 4A 
10 .  BA 
14. AC + 2DG 
18 . AB + FG 



22. If A = [� �] , show that A · A = [ � �] . 
0 a 1 2  

23. If I = [� 1 
OJ [ a 1 1  
0 and A = a2 1 a22 

an

] a23 , show that Al =  A and IA = A . 
0 1 a3 1 a32 a33 

24. Pesticides are sprayed on plants to eliminate harmful 
insects . However, some of the pesticide is absorbed 
by the plant, and the pesticide is then absorbed by 
herbivores (plant-eating animals such as cows) when 
they eat the plants that have been sprayed. Suppose 
that we have three pesticides and four plants and that 
the amounts of pesticide absorbed by the different 
plants are given by the matrix 

Plant Plant Plant Plant 
1 2 3 4 

A =  [� 2 
5 
3 

4 
2 

Pesticide 1 
Pesticide 2 
Pesticide 3 

where a;1 denotes the amount of pesticide i in milli
grams that has been absorbed by plantj. Thus, plant 4 

has absorbed 5 mg of pesticide 3 .  Now suppose that 
we have three herbivores and that the numbers of 
plants eaten by these animals are given by the 
matrix 

Herbivore Herbivore Herbivore 
1 2 3 [ 1 8  30 

'°] 
Plant 1 

B = 1 2  1 5  10 Plant 2 
16  1 2  8 Plant 3 
6 4 1 2  Plant 4 

How much of pesticide 2 has been absorbed by herbi
vore 3? 

25. What does the entry in row 2, column 3, of the matrix 
product AB of Exercise 24 represent? 

In Exercises 26-29 indicate the matrices A ,  X, and B so that the matrix equation AX =  B is equivalent to the given linear 
system. 
26. 7x - 2y = 6 

-2x + 3y = -2 

27 .  3x + 4y =  -3 

3x - y = 5 

28. 5x + 2y - 3z = 4 I 2x - ?' + z =  1 0  

x + y - 5 z  = -3  

29 . 3x - y + 4z = 5 
3 2x + 2y + 42 = - I 

I 
z = -

2 
In Exercises 30-33 write out the l inear system that is represented by the matrix equation AX =  B. 

30. 
A = [

_
: -�] X = [:J B = [�:l 

32. [ I 
A =  3 

-4 

7 
6 
2 

X = [�] B = [
-fl 

34. The m x n matrix all of whose elements are zero is 
called the zero matrix and is denoted by 0. Show that 
A + 0 = A for every m x n matrix A .  

35 . The square matrix of order n such that a;; = I and 
au = 0 when i * j is called the identity matrix of 
order n and is denoted by In. (Note: The definition 
indicates that the diagonal elements are equal to I and 

3 1 .  [ I 
A =  

4 
33. [4 

A =  0 
0 

5 
3 
0 

-2] - 1  
2 

all elements off the diagonal are 0 . )  Show that Ain = 
InA for every square matrix A of order n .  

36. The matrix B, each of whose entries is the negative of 
the corresponding entry of matrix A, is called the 
additive inverse of the matrix A .  Show that A + B = 
0 where 0 is the zero matrix (see Exercise 34). 
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If a '* 0, then the linear equation ax = b can be solved easily by multiplying both 
sides by the reciprocaJ of a. Thus, we obtain x = ( l/a)b. It would be nice if we 
could multiply both sides of the matrix equation AX = B by the "reciprocall of 
A . "  Unfortunately, a matrix has no reciprocal . However, we shall discuss a 
notion that, for a square matrix, provides an analogue of the reciprocal of a real 
number and will enable us to solve the linear system in a manner distinct from the 
Gauss-Jordan method discussed earlier in this chapter. 

In this section we confine our attention to square matrices. The n x n 

matrix 

l 0 0 . . .  0 
0 0 . . .  0 

In = 

0 0 0 . . .  

which has ls  on the main diagonal and Os elsewhere, is called the identity 
matrix. Examples of identity matrices are 

[ l 0 OJ 
/3 = 0 1 0 

0 0 1 

If A is any n x n matrix, we can show that 

0 O

J 0 0 
1 0 
0 1 

(see Exercise 35, Section 7.2) .  Thus, In is the matrix analogue of the real 
number 1 .  

An n x n matrix A is called invertible or nonsingular if we can find an 
n x n matrix B such that 

AB = BA = In 

The matrix B is called an inverse of A .  

EXAMPLE 1 
Let 

Since 
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* 

(verify this) 

we conclude that A is an invertible matrix and that B is an inverse of A .  Of course , 
if B is an inverse of A ,  then A is an inverse of B .  

I t  can be shown that if an n x n matrix A has an inverse, it can have only one 
inverse. We denote the inverse of A by A - 1 • Thus, we have 

Note that the products AA - 1 and A- 1A yield the identity matrix, and that the 
products a( l la) and ( l la)a yield the identity element. For this reason, A - 1 may be 
thought of as the matrix analogue of the reciprocal l/a of the real number a. 
PROGRESS CHECK 
Verify that the matrices 

are inverses of each other. 

and B = [- 1 il 
I -2 

WARNING I f  a *  0 i s  a real number, then a- 1 has the property that aa- 1  = 
a - 1 a  = l .  Since a- • = Va, we may refer to a- • as the inverse or reciprocal of a. 
However, the matrix A - • is the inverse of the n x n matrix A, since AA - i = 
A- 1A = lm but cannot be referred to as the reciprocal of A ,  since matrix division 
is not defined. 

We now develop a practical method for finding the inverse of an invertible 
matrix.  Suppose we want to find the inverse of the matrix 

Let the inverse be denoted by 

Then we must have 

AB = /2 
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and 

(2) 
Equation ( t ) now becomes 

[ � �] 
or [ b 1 + 3� � + 3b4] [ l OJ 

2b , + 5b3 2b2 + 5b4 = 0 1 
Since two matrices are equal if and only if their corresponding entries are equa1 , 
we have 

and 

b, + 3b3 = 1 
2b1 + 5b3 = 0  

� + 3b4 = 0 
2b2 + 5b4 = 1 

(3) 

(4) 

We solve the linear systems (3) and (4) by Gauss-Jordan elimination. We begin 
with the augmented matrices of the linear systems and perfonn a sequence of 
elementary row operations as follows: 

(3) (4) 

[� 3 �] u 3 �] Augmented matrices of (3) 
5 5 and (4). 

[� 3 ! -�JI [� 3 �] To make a21 = 0, replaced 

- ]  - I  
row 2 with the sum of itself 
and -2 times row 1 .  

[� 3 I �] I[� 3 : o] Multiplied row 2 by - 1 to ' 
l : I : - 1 obtain 022 = I . 

[� o : - 5 ] I[,� 0 
: 

3
] 

To make a12  = 0, replaced 

1 : 2 : - ]  row 1 with the sum of itself 
and -3 times row 2. 

Thus, b 1  = -5 and b3 = 2 is the solution of (3),  and b2 = 3 and b4 = - I is the 
solution of (4). We can check that 

B = [ - 5 3
] 

2 - ]  

also satisfies the requirement BA = /2 of Equation (2). 
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Compuflfl9 A-1 

Observe that the linear systems (3) and (4) have the same coefficient matrix 
(which is also the same as the original matrix A) and that an identical sequence of 
elementary row operations was performed in the Gauss-Jordan elimination . This 
suggests that we can solve the systems at the same time. We simply write the 
coefficient matrix A and next to it list the right-hand sides of (3) and (4) to obtain 
the matrix 

[ l 3 ! l o
1
] 

2 5 : 0 
(5) 

Note that the columns to the right of the dashed line in (5) form the identity matrix 
[z . Performing the same sequence of elementary row operations on matrix (5) as 
we did on matrices (3) and (4) yields 

[� 
0 :  -5 

I 
I 

1 : 2 

Then A - 1 is the matrix to the right of the dashed line in (6) . 

(6) 

The procedure outlined for the 2 x 2 matrix A applies in general . Thus, we 
have the following method for finding the inverse of an invertible n x n matrix 
A .  

Step I .  Form the n x 2n matrix [A : lnl by adjoining the identity matrix In to the 
given matrix A .  

Step 2.  Apply elementary row operations to  the matrix [A : Inl to transform the 
matrix A to In . 

Step 3. The final matrix is of the form [In : BJ where B is A- 1 • 

EXAMPLE 2 
Find the inverse of 

SOLUTION 
We form the 3 x 6 matrix [A : I3J and transform it by elementary row operations 
to the form [/3 : A- 1 ] .  The pivot element at each stage is shown in color. 

2 
5 
1 

3 
7 
1 

I 
0 
0 

0 
1 
0 �] 

Matrix A augmented by h 
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u 
2 3 I 0 

�] 
To make a2 1 = 0, replaced row 2 with 

I the sum of itself and -2 times row l . 
1 l 1 -2 l 

To make a3 1 = 0, replaced row 3 with 
- l  -2  : - 1  0 

the sum of itself and - 1  times row 1 .  

[� 
0 I 5 -2  

�] 
To make a1 2 = 0, replaced row 1 with 

I the sum of itself and -2  times row 2. 
1 : -2 

To make a32 = 0, replaced row 3 with 0 - 1  : - 3 
the sum of itself and row 2 .  

[� 
0 I 5 -2 

J] 
Multiplied row 3 by  - 1 .  I 

1 : -2 
0 I 3 - I  

I 

[� 
0 0 I 2 - 1  

J 
To make a1 3 = 0, replaced row I with 

I the sum of itself and - 1  times row 3 .  0 : -s 2 
0 3 - I  To make a23 = 0, replaced row 2 with 

the sum of itself and - I times row 3 .  

The final matrix i s  of  the form [ /  3 : A - 1 ] ;  that is, 

A- · � H  
- I 

J 2 
- I  

We now have a practical method for finding the inverse of an invertible 
matrix, but we don't  know whether a given square matrix has an inverse. It can be 
shown that if the preceding procedure is carried out with the mat . ix [A : lnl and 
we arrive at a point at which all possible candidates for the next pivot element are 
zero, then the matrix is not invertible and we may stop our calculations. 

EXAMPLE 3 
Find the inverse of 

SOLUTION 
We begin with [A : /3) .  

u 
2 6 : I 
0 2 : 0  

-6 -9 � 0 

[ 
l 2 6 : l 
0 0 2 : 0  
0 0 9 : 3  

0 1 
0 

0 1 
0 

A =  [ � 
-3 

�] 

2 
0 

-6 Jl 

�] 
To make a3 1 = 0, replaced row 3 by 
the sum of itself and 3 times row l .  
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Note that a22 = a32 = 0 in the last matrix .  We cannot perform any elementary 
row operations upon rows 2 and 3 that will produce a nonzero pivot element for 
a22 . We conclude that the matrix A doe not have an inverse. 

PROGRESS CHECK 
Show that the matrix A is not invertible. 

2 
2 
6 
-�i - 5  

SOLVING LINEAR SYSTEMS Consider a linear system of n equations in n unknowns . 

a1 1X1 + a 12X2 + 
a12x2 + a22X2 + 

+ a 1nXn = b 1 
+ QznXn = b2 

(7) 

As has already been pointed out in Section 2 of this chapter, we can write the 
linear system (7) in matrix form as 

AX = B  (8) 

where 

a1 1  a 1 2 • . a 1n X1 b 1 
a2 1 a22 · · a2n X2 b2 

A =  X = B =  

an l an2 · . ann Xn bn 

Suppose now that the coefficient matrix A is invertible so that we can compute 
A - 1 . Multiplying both sides of (8) by A - I ,  we have 

A- 1 (AX) = A- 1B 
(A- 1A)X = A- 18 

l,,X = A- 18 
X = A- 18 

Thus, we have the following result. 

Associative law 

A- 1A = ln 
l,,X = x 



CODED MESSAGES 

A B c D E F 
t t t t t t 
1 2 3 4 5 6 

H I J K L M 

t t t t t t 
8 9 1 0  1 1  1 2  1 3  

0 p Q R s T 
t t t t t t 

1 5  1 6  1 7  1 8  1 9  20 

u v w x y z 
t t t t t t 

21 22 23 24 25 26 

G 
t 
7 

N 

t 
1 4  

10.3 INVERSES OF MATRICES (OPTIONAL) 439 

Cryptography is the study of methods for encoding and decoding messages. 
One of the very simplest techniques for doing this involves the use of the inverse 
of a matrix. 

First, attach a different number to every letter of the alphabet. For example, 
we can let A be 1 ,  B be 2, and so on, as shown in the accompanying table. 
Suppose that we then wanl to send the message 

ALGEBRA WORKS 

Substituting for each letter, we send the message 

1 ,  1 2, 7, 5, 2, 1 8, 1 ,  23, 1 5, 1 8, 1 1 ,  1 9  (1 ) 

Unfortunately, this simple code can be easily cracked. A better method involves 
the use of matrices. 

Break the message ( 1 )  into four 3 x 1 matrices: 

x, = HJ x, �rn x,+il x. = rm 
The sender and receiver jointly select an invertible 3 x 3 matrix such as 

A = [� 1 2 ] 
1 1 
0 1 

The sender forms the 3 x 1 matrices 

AX, = r�� l AX, = rm AX, = [E] AX, = ml 
and sends the message 

27, 20, 8, 43, 25, 23, 54, 39, 1 6, 67, 48, 37 

To decode the message, the receiver uses the inverse of matrix A, 
and forms 

[- 1 1 1 l A-1 = 0 1 - 1  
1 - 1  0 

A- ' [�i] = x, A-' [iU = x, A- 'ml = x, A- ' rm = x. 

(2) 

which, of course, Is the original message ( 1 )  and which can be understood by 
using the accompanying table. 

If the receiver sends back the message 

46, 37, 29, 50, 39, 30, 75, 52, 37 

what is the response? 
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* 

If AX = B is a linear system of n equations in n unknowns and if the coefficient 
matrix A is invertible, then the system bas exactly one solution, given by 

X = A - 1B 

WARNING Since matrix multiplication is not commutative , you must be care
ful to write the solution to the system AX = B as X = A - 1 B and not 
X = BA- 1 • 

EXAMPLE 4 
Solve the linear system by finding the inverse of the coefficient matrix .  

SOLUTION 
The coefficient matrix 

x + 2y + 3z - -3 
2x + 5y + 7 z  = 4 

x +  y +  z =  5 

[ l 2 3] A =  2 5 7 
1 1 1 

is the matrix whose inverse was obtained in Example 2 as 

r ' = [-� =� J 
Since 

we obtain the solution of the given system as 

X = r 'B = H =� J nl = [ji] 
Thus x =  -5, y = 28,  z = - 1 8 . 

PROGRESS CHECK 
Solve the linear system by finding the inverse of the coefficient matrix . 



ANSWER 
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x - 2y + z = 

x + 3y + 2z = 2 

-x + z = - 1 1  

x = 1, y =  1 ,  z =  -4 

The inverse of the coefficient matrix is especially useful when we need to 
solve a number of linear systems 

AX =  B i .  AX =  B2, . . .  , AX =  B1c 

where the coefficient matrix is the same and the right-hand side changes. 

EXAMPLE 5 

A steel producer makes two types of steel ,  regular and special . A ton of regular 
steel requires 2 hours in the open-hearth furnace and 5 hours in the soaking pit; a 
ton of special steel requires 2 hours in the open-hearth furnace and 3 hours in the 
soaking pit . How many tons of each type of steel can be manufactured daily if 
(a) the open-hearth furnace is available 8 hours per day and the soaking pit is 
available 1 5 hours per day? 
(b) the open-hearth furnace is available 9 hours per day and the soaking pit is 
available 15 hours per day? 

SOLUTION 
l&l 

x = the number of tons of regular steel to be made 

y = the number of tons of special steel to be made 

Then the total amount of time required in the open-hearth furnace is 

2x + 2y 

Similarly, the total amount of time required in the soaking pit is 

5x + 3y 

If we let b1 and b2 denote the number of hours that the open-hearth furnace and 
the soaking pit , respectively, are available per day, then we have 

2x + 2y = bi 
5x + 3y = b2 

or 



Then 

tl � l: :n::i 
We find the inverse of the coefficient matrix to be 

(verify this) . 
(a) We are given b1 = 8 and b2 = 1 5 .  Then 

That is, ' tons of regular steel and ; tons of special steel can be manufactured 
daily. 
(b) We are given b1 = 9 and b2 = 1 5 .  Then 

That is , a tons of regular steel and i; tons of special steel can be manufactured 
daily. 

In Exercises 1-4 determine whether the matrix B is the inverse of the matrix A . 
I .  
A =  [ 2 :J - I [ I 2 2] 3 . A = - I  3 0 

0 2 I 

B = [  
I - I i 

-2 4 [ 3 2 -6
] B = I I -2 -2 -2 5 

In Exercises 5- 1 0 find the inverse of the given matrix. 
5. [ -� -�J 6. [ -� -�J 
8.  

[
2 I OJ [-l 

-2 
-�] I I 0 9. 3 

I I I 5 -4 

2. 
A = [ 

3 - 1  
i 

-2 2 

A = [ � 0 
4. 

-4 

7. [ - I : J -2 
10 . 

[
I I OJ I 0 0 
I 2 2 

B = [: ;J 
-fl B = [-i 2 

-�i -4 
- I 
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In Exercises 1 1- 1 8  find the inverse, if possible. 
1 1 . [ _ ! !] 1 2 .  [� -4] 1 3 .  [j 

I 
-�] 

14 .  

[-� 
7 

- : i -6  -8  -5  
2 -4 -4 

15 .  [� -�J 16 .  [ - I 0 O

J 
1 7. [� 

0 

-fl 1 8 . 

[ -i 0 -3  

�] 0 4 0 I I 0 
0 0 2 I 0 4 

0 -6  
I n  Exercises 1 9-24 solve the given linear system by finding the inverse of the coefficient matrix .  
1 9. 2x + y = 5  20. 2x - 3y =  -5  2 1 .  3x + y - z =  2 22. 3x + 2y - z = JO 

2x - y +  z = - 1 
-x + y - 2z = 5 

x 
-

3y = 6 3x + y = - 1 3 x - 2y 8 

23. 2x - y + 3z = - 1 1  
3x - y + z = -5 
x + y +  z =  - I 

24. 2x + 3y - 2z =  1 3  
4x + 2y + z = 3 

y - z = 5 
25-34. Solve the l inear systems of Section I of this chap

ter, Exercises 2 1-30, by finding the inverse of the 
coefficient matrix . 

35. Solve the l inear systems AX =  81 and AX =  82 , giv
en 

36. Solve the l inear systems AX =  8 1 and AX =  82 , giv
en 

3y + z = -8  

37. Show that the matrix 

38. 

[� � j] 
is not invertible. 
A trustee decides to invest $30,000 in two mortgages, 
which yield I 0% and 1 5% per year, respectively. How 
should the $30,000 be invested in the two mortgages if 
the total annual interest is to be 
(a) $3600? (b) $4000? (c) $5000? 
(Hint: Some of these investment objectives cannot be 
attained . )  

10.4 
DETERMINANTS AND 
CRAMER'S RULE 

In this section we will define a determinant and will develop manipulative skills 
for evaluating determinants. We will then show that determinants have important 
applications and can be used to solve linear systems. 

Associated with every square matrix A is a number called the determinant 

of A ,  denoted by IA I .  If A is the 2 x 2 matrix 

[a l I A = a2 1 
a1 2] a22 

then IAI is said to be a determinant of second order and is defined by the 
rule 
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MINORS AND 
COFACTORS 

EXAMPLE 1 

G 1 1 G 1 2  
IA I  = = a , 1022 - a21a1 2  

02 1 022 

Compute the real number represented by 

14 -5 1 3 - J  

SOLUTION 
We apply the rule for a determinant of second order: 

4 -5 
= (4)(- 1 ) - (3)( -5) = I I 

3 - 1 
PROGRESS CHECK 
Compute the real number represented by the following. 

(a) 
-6 2 

- 1 -2 

ANSWERS 
(a) 14 (b) 0 

(b) 

-4 - 2  

To simplify matters, when we want to compute the detenninant o f  a matrix 
we will say "evaluate the determinant ."  This wording is not technically correct, 
however, since a determinant is a real number. 

The rule for evaluating a determinant of order 3 is 

a 1 1  0 13 



The situation becomes even more cumbersome for determinants of higher order! 
Fortunately,  we don't  have to memorize this rule; instead, we shall see that it is 
possible to evaluate a determinant of order 3 by reducing the problem to that of 
evaluating three determinants of order 2 .  

The minor of a n  element au i s  the determinant o f  the matrix remaining after 
deleting the row and column in which the element au appears . Given the 
matrix 

4 0 - 2  

- 3  

- 6  7 

2 5 

the minor of the element in row 2 ,  column 3 ,  is 

0 

2 
= 8 - 0 = 8  

The cofactor of the element au is the minor of the element a;j multiplied by 
( - 1  ); + j. Since ( - 1 ); + j is + 1 if i + j is even and - 1  if i + j is odd, we see that 
the cofactor is the minor with a sign attached . The cofactor attaches the sign to the 
minor according to this pattern: 

+ + 
+ + 

+ + 
+ + 

Find the cofactor of each element in the first row of the matrix 

[- 2  0 1 2] 
-4 5 3 

7 8 -6 
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Expansion by 
Cofactors 

SOLUTION 
The cofactors are 

(- 1 ) 1 + 1  
5 3 

5 3 = = -30 - 24 = -54 

8 -6 
8 -6 

-4 3 
(- 1 ) 1 + 2 -4 3 = - = -(24 - 2 1 ) = -3 

7 -6 
7 -6 

(- 1 ) 1 + 3 -4 5 

PROGRESS CHECK 

7 8 

= 
-4 5 

7 8 
= -32 - 35 = -67 

Find the cofactor of each entry in the second column of the matrix. 

[ �i -! J] 
ANSWER 
Cofactor of -9 is -5; cofactor of 2 is -7� cofactor of 4 is - 15 . 

The cofactor i s  the key to the process o f  evaJuating detenninants o f  order 3 
or higher. 

To evaluate a detenninant, form the sum of the products obtained by multiply
ing each entry of any row or any column by its cofactor. This process is called 
expansion by cofactors. 

Let's illustrate the process with an ex.ample. 

EXAMPLE 3 
Evaluate the determinant by cofactors . 

-2 7 2 
6 -6 0 
4 10 -3 
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SOLUTION 

Expansion by Cofactors 

Step 1 .  Choose a row or column about which to 
expand. In general . a row or column containing 
7.aOS will simplify the work. 

Step 2 .  Expand about the cofactors of the chosen 
row or column by multiplying each entry of the row 
or column by its cofactor. Repeat the procedure 
until all determinants are of order 2. 

Step 3. Evaluate the determinants of order 2 and 
form the sum resulting from Step 2. 

Step 1 .  We will expand about column 3 .  

Step 2 .  The expansion about column 3 is 

6 -6 
(2)(- 1 ) 1 + 3  

4 10 

-2 7 
+(0)(- 1 )2 + 3 

4 10 

-2 7 1 +(-3)(- 1 )3 + 3 
6 -6 1 

Step 3. Using the rule for evaluating a determinant of 
order 2, we have 

(2)( 1 ) [(6)( 10) - (4)(-6)) + 0 
+ (-3)( 1 )((-2)(-6) - (6)(7)] = 2(60 + 24) - 3( 12  - 42) 

= 258 

Note that expansion by cofactors about any row or any column will produce 
the same result . This important property of detenninants can be used to simplify 
the arithmetic . The best choice of a row or column about which to expand is the 
one that has the most zero enmes. The reason is that if an entry is zero, the entry 
times its cofactor will be zero, so we don't  have to evaluate that cofactor. 

PROGRESS CHECK 
Evaluate the determinant of Example 3 by expanding about the second row. 

ANSWER 
258 

EXAMPLE 4 
Verify the rule for evaluating a determinant of order 3: 

a 1 1  a 12 
a2 1 a22 
a3 1 an 
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SOLUTION 

Expanding about the first row, we have 

0 1 1  0 12 0 1 3 
022 on 

t 
023 

02 1  022 023 = 01 1 - 01 + 0 1 
032 033 03 1 033 

03 1 032 033 

PROGRESS CHECK 
Show that the following determinant is equal to zero: 

o b c 

o b c 

d e f 

t 
022 

03 1 032 

The process of expanding by cofactors works for determinants of any order. 
If we apply the method to a determinant of order 4, we will produce determinants 
of order 3; applying the method again will result in determinants of order 2 .  

EXAMPLE 5 
Evaluate the determinant 

-3  5 0 - 1  
1 2 3 -3  
0 4 -6 0 
0 -2 2 

SOLUTION 

Expanding about the cofactors of the first column, we have 

-3  5 0 - I  
2 3 - 3  5 0 - I  

2 3 -3 = -3 4 -6 0 - I 4 -6 0 
0 4 -6 0 

-2  2 -2 2 
0 -2 2 

Each determinant of order 3 can then be evaluated . 

2 3 - 3  5 0 - I 

- 3  4 - 6  

-2 

0 = (-3)( -24) 

2 = 72 

- I 4 -6 0 = {- l )(- 52) 

-2  2 = 52 
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The original determinant has the value 72 + 52 = 1 24.  

PROGRESS CHECK 
Evaluate 

ANSWER 
7 

0 - 1 
3 0 
0 5 
1 0 

0 2 
4 0 
0 - 3  
1 0 

Determinants provide a convenient way of expressing formulas in many areas of 
mathematics, particularly in geometry . One of the best-known uses of determi
nants is in solving systems of linear equations, a procedure known as Cramer's 

rule. 

In 1n earlier chapter we solved systems of linear equations by the method of 
eliminatiun. Let' s  apply this method to the general system of two equations in 
two unknowns, 

G 1 1X + G1 2)' = C1 
a2 1X + a22Y = c2 

( I )  

(2) 

If we multiply Equation ( I )  by a22 and Equation (2) by -a12 and add, we will 
eliminate y .  

Thus, 

or 

a 1 1a22X + a12a22Y = c1a22 
-a2 1a 1 2X - a1 2a22Y = -c2a12 

x = c1a22 - c2a 12 
a 1 1a22 - a2 1a 1 2 

Similarly , multiplying Equation ( I )  by a2 1 and Equation (2) by -a1 1  and adding, 
we can eliminate x and solve for y: 

The denominators in the expressions for x and y are identical and can be written as 
the determinant of the matrix 
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If we apply this same idea to the numerators, we have 

I �: ::� I x =  
IAI 

1:� : �: I y = 
IA I  

What we have arrived at  i s  Cramer's rule, which i s  a means of expressing the 
solution of a system of linear equations in determinant form. 

The following example outlines the steps for using Cramer's rule. 

EXAMPLE 6 
Solve by Cramer's rule. 

SOLUTION 

Cramer's Rule 

Step J .  Write the determinant of the coefficient Step 1. 
matrix A .  

Step 2 .  The numerator for x is the determinant of Step 2.  
the matrix obtained from A by replacing the col-
umn of coefficients of x with the column of right-
hand sides of the equations. 

Step 3. The numerator for y is the detenninant of Step 3. 
the matrix obtained from A by replacing the col-
umn of coefficients of y with the column of right-
hand sides of the equations. 

Step 4 .  Evaluate the determinants to obtain the Step 4 .  
solution. H IA I  = 0, Cramer's rule cannoc be 
used. 

3x - y = 9 
x + 2y = -4 

IAI = 
3 - 1 

l 2 

1 -� -� 1 X = ---
IAI 

I � -� I y = 
IAI 

IAI = 6 + 1 = 7 

x =  18 - 4 = � = 2 
7 7 

- 1 2 - 9  2 1 
y = 7 = -7 = -3 



PROGRESS CHECK 

Solve by Cramer's rule. 

ANSWER 
x = -5, y = 2  
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2x + 3y = -4 

3x + 4y = -7 

The steps outlined in Example 6 can be applied to solve any system of linear 
equations in which the number of equations is the same as the number of variables 
and in which IAI =f:. 0. Here is an example with three equations and three 
unknowns. 

EXAMPLE 7 
Solve by Cramer's rule. 

SOlUTION 

3x + 2z = -2 

2x - y = 0 
2y + 6z = - 1  

We form the determinant of coefficients: 

Then 

3 0 2 
IAI = 2 - 1  0 

0 2 6 

where A 1 is obtained from A by replacing the first column of A with the column of 
right-hand sides, A2 is obtained by replacing the second column of A with the 
column of right-hand sides, and A3 is obtained from A by replacing the third 
column with the column of right-hand sides. Thus 

-2 0 2 3 - 2  2 3 0 -2  
0 - 1  0 2 0 0 2 - 1  0 

- 1  2 6 0 - 1  6 0 2 - 1  
x =  IAI y =  IAI z =  IAI 

Expanding by cofactors , we calculate IAI = - 10, IA 1 1 = 10,  L42 I = 20, and 
IA31 = - 5 , obtaining 

10  20 -5 1 x = -- = - 1 y = - = -2  z = -- = -- 10 - 10 - 10 2 
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* 

PROGRESS CHECK 

Solve by Cramer's rule . 

ANSWER 

2 1 
x = J ' y = -2 · z = I  

WARNING 

3x 
-6x + 2y 

z = l 

= -5 

-4y + 3z = 5 

(a) Each equation of the linear system must be written in the fonn 

ax + by + CZ = k 

before using Cramer's rule. 
(b) If !Al = 0, Cramer' rule cannot be used . 

Determinants have significant theoretical importance but are not of much 
use for computational purposes. The matrix methods discussed in this chapter 
provide the basis for techniques better suited for computer implementation . 

EXERCISE SET 10.4 

In Exercises 1 -6 evaluate the given determinant . 
1 .  I � -� 1 2. I - � � I 
s . I � � I 6. I =� -� 1 

In Exercises 7-10 let 

4. I � � I 

A = [; �� -�] 
7 .  Compute the minor of  each of  the following ele- 9. Compute the cofactor of each of the following ele-

ments. ments . 
(a) a 1 1 (b) a23 (c) a3 1 (d) a33 (a) a 1 1 (b) a23 (c) a3 1  (d) a33 

8. Compute the minor of each of the following ele- 1 0. Compute the cofactor of each of the following ele-
ments. ments. 
(a) a 1 2 (b) a22 (c) a23 (d) a32 (a) a 1 2 (b) a22 (c) a23 (d) a32 

In Exercises 1 1 -20 evaluate the given determinant. 
1 1 .  4 -2  5 1 2. 4 I 2 1 3 .  - 1  2 0 14 .  - 1  3 2 

5 2 0 0 2 3 3 4 I 0 7 7 
2 0 4 0 0 -4 6 5 2 2 1 3 
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1 5 .  2 2 4 16 .  0 l 3 17 .  3 2 0 18 .  
3 8 I 2 5 - 1  - 1  -3 - I 0 
l 2 4 2 -2 0 0 2 2 

4 3 3 
19 . 2 -3 2 -4 20 . 1 1 0 I 

0 4 - 1  9 0 - 1  4 - 1  
0 2 0 -2 3 1 -4 
0 3 - I  0 2 0 2 

In Exercises 2 1-28 solve the given linear system by use of Cramer's rule . 
2 1 .  2x + y +  z = - 1 22 . x - y +  z = -5 

2x - y + 2z = 2 3x + y + 2z = -5 
x + 2y + z = -4 2x - y - z = -2 

23. 2x +  y - z =  9 24 . 2x +  y - z =  -2 

25. 

27 . 

29. 

x - 2y + 2z = -3 -2x - 2y + 3z =  2 
3x + 3y + 4z = 1 1  3x + y - z = -4 
-x - y + 2z = 7 
x + 2y - 2z = -7 

2x - y +  z =  -4 
x +  y - z + 2w = 0 

2x +  y - w =  -2  
3x + 2z = -3 
-x + 2y + 3w = 
Show that 

a1 + bi a2 + bi a ,  

c d c 

a2 b, 
+ 

d c 

b2 
d 

26. 4x + y - z = - I 
x - y + 2z =  3 

-x + 2y - z = 0 
28 .  2x + y - 3w = - 7 

3x + 2z +  w = - 1 
-x + 2y + 3w = 0 

-2x - 3y + 2z - w = 8 
30. Show that 

- 1  2 4 
3 -2 -3 
0 4 2 
0 -3 

= k  

453 

0 
0 
5 
4 

3 1 . Prove that if a row or column of a square macrix con
sists entirely of zeros, the determinant of the matrix is 
zero. (Hint: Expand by cofactors. )  

33. Prove that if A is an n x n matrix and B = kA, where k 
is a constant, then IBI = k"IAI. 

32. Prove that if matrix B is obtained by multiplying each 
element of a row of a square matrix A by a constant k, 
then IBI = klAI. 

TERMS AND SYMBOLS 
matrix (p. 415) 
entries, elements (p. 4 1 5) 
dimension (p. 416) 
square matrix (p. 4 16) 
order (p. 416) 
row matrix (p. 416) 
column matrix (p. 416) 
[aij] (p. 417) 
coefficient matrix (p .  4 17) 

augmented matrix (p. 4 17 )  
elementary row operations 

(p. 4 18) 
pivot element (p. 419) 
pivot row (p. 4 19) 
Gauss-Jordan elimination 

(p. 422) 
equality of matrices (p. 

424) 

34. Prove that if matrix B is obtained from a square matrix 
A by interchanging the rows and columns of A, then 
IBI = IAI. 

scalar (p. 426) 
scalar multiplication 

(p. 426) 
zero matrix (p. 432) 
identity matrix, In (p. 432) 
additive inverse (p. 432) 
invertible or nonsingular 

matrix (p. 433) 
inverse (p. 433) 

A- 1 (p. 434) 
determinant (p. 443) 
minor (p. 445) 
cofactor (p. 445) 
expansion by cofactors 

(p. 446) 
Cramer's rule (p. 449) 
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KEY IDEAS FOR REVIEW 
0 A matrix is simply a rectangular array of numbers. 

D Systems of linear equations can be conveniently handled 
in matrix notation. By dropping the names of the vari
ables, matrix notation focuses on the coefficients and the 
right-hand side of the system. The elementary row oper
ations are then seen to be an abstraction of the operations 
that produce equivalent systems of equations. 

0 Gaussian elimination and Gauss-Jordan elimination 
both involve the use of elementary row operations on the 
augmented matrix corresponding to a linear system. In 
the case of a system of three equations with three 
unknowns, the final matrices will be of this form: 

l: • • ! • i [� 
0 0 ! "] 

* * I * 0 I C2 I 
0 

I 0 
I * I * 1 I C3 

Gaussian elimination Gauss-Jordan elimination 

If Gauss-Jordan elimination is used, the solution can be 
read from the final matrix; if Gaussian elimination is 
used, back-substitution is then performed with the final 
matrix.  

0 A linear system can be written in the form AX = B, 
where A is the coefficient matriX , X is a column matrix 
of the unknowns, and B is the column matrix of the 
right-hand sides. 

REVIEW EXERCISES 

0 The sum and difference of two matrices A and B can be 
formed only if A and B are of the same dimension. The 
product AB can be formed only if the number of columns 
of A is the same as the number of rows of B.  

D The n x n matrix B is said to be the inverse of the n x n 
matrix A if AB = In and BA = In· We denote the inverse 
of A by A - • .  The inverse can be computed by using 
elementary row operations to transform the matrix 
(A I lnl to the form [In I B]. Then B = A- 1 .  

D If the linear system AX = B has a unique solution, then 
X = A- 18 . 

D Associated with every square matrix is a number called a 
determinant. The rule for evaluating a determinant of 
order 2 is 

a b 

c d 
= ad - be  

D For determinants of order greater than 2, the method of 
expansion by cofactors may be used to reduce the prob
lem to one of evaluating determinants of order 2. 

D When expanding by cofactors, choose the row or col
umn that contains the most zeros. This will ease the 
arithmetic burden. 

0 Cramer's rule provides a means for solving a linear sys
tem by expressing the value of each unknown as a quo
tient of determinants . 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book.  

10. 1 Exercises 1 -4 refer to the matrix 

A = [-� � _; -� �] 
4 -6 9 I -2 

1 .  Determine the dimension of the matrix A .  

2 .  Find a24. 3 .  Find a31 .  4 .  Find a1s·  

Exercises 5 and 6 refer to the linear system 

3x - 7y = 14 
x + 4y = 6 

5. Write the coefficient matrix of the linear sys
tem. 

6. Write the augmented matrix of the linear sys
tem. 

ln Exercises 7 and 8 write a linear system correspond
ing to the augmented matrix.  
7
. [4 - 1 l 3] 2 5 1 0  

8. 4 
-9 

2 

5 l 0] 
4 1 0 - t i 0 

ln Exercises 9-1 2  use back-substitution to solve the 
linear system corresponding to the given augmented 
matrix. 

9. [� 10. [ 1 2 ' 1f] 
o 1 I s 

-2 1 
7] 

1 I -4 



1 1 .  [�1 -4 2 '. - 1 8] 
1 - 2  I s · I 
0 l I - 1  

In Exercises 1 3- 1 6  use matrix methods to solve the 
given linear system. 

1 3 .  x + y = 2 

2x - 4y = - 5  

1 4. 3x - y = - 17 2x + 3y = -4 

1 5 . x + 3y + 2z = 0 

-2x + 3z = - l2 

2x - 6y - z = 6 

16 .  2x - y - 2z = 3 

-2x + 3y + z = 3 

2y - z = 6 

10. 2 In Exercises 1 7  and 1 8 solve for x. 

1 7 .  [5 - 1 1 
= 

[5 - 1 1 
3 2x 3 -6 

1 8. [6 x2l [ 6 9] 
4x - 2  

= 

- 1 2  -2 

Exercises 1 9-28 refer to the following malrices. 

A = 
[2 - l 1 B = [- 1 51 

3 2 4 -3 [- 1 O

J C =  O 4 

2 -2 

[ l 
D =  

- I  
If possible, find the following. 

1 9. A + B 20. B - A 
22. SD 23 . CD 

PROGRESS TEST 10A 
Problems 1 and 2 refer to the matrix · � [=i �] 

2 1 .  A +  C 

24. DC 

1 .  Find the dimension of the matrix A .  

2 .  Find a31 · 
3 .  Write the augmented matrix of  the linear system 

PROGRESS TEST 10A 455 

25 . BC 

28. -AB 
26. CB 27. A +  2B 

10.3 ln Exercises 29 and 30 find the inverse of the given 
matrix. 

29. [ -� !] 30. [ I I -41 
-5 -2 0 

4 2 - 1 

In Exercises 3 1  and 32 solve the given system by find
ing the inverse of the coefficient matrix. 

3 1 .  2x - y 
= 

1 32. x + 2y - 2z = -4 
x + y = 5 3x - y = -2 

y + 4z ::: 1 
J 0.4 ln Exercises 33-38 evaluate the given detenninant. 

33 . I -� ; I 34. i -� �I 35. 1 � =� I 
36. 1 0 - 1  37 . 1 - 1 2 

2 3 - 5  0 5 4 

0 4 0 2 3 8 

38. 1 2 - l 
0 3 4 

0 0 - I  

ln Exercises 39-44 use Cramer's rule to solve the giv
en linear system. 

39. 2x - y = - 3  

-2x + 3y = 1 1  40. 3x - y = 7 

2x + 5y = - 1 8 

4 1 .  x + 2y = 2 

2x - 7y = 48 

42. 2x + 3y - z = -3 

- 3x + 4z = 16 

2y + 5z = 9 

43. 3x + z = 0 44. 

x +  y +  z =  0 

- 3y + 2z = -4 

2x + 3y + z = -5 

2y + 2z = -3 
4x + y - 2z = -2 

- 7x + 6z = 3 

2y - z = 10  

x - y +  z =  5 

4.  Write a linear system corresponding to the augmented 
matrix 

[-5 2 1 4] 
3 -4 I 4 



5 . Use back-substitution to solve the linear system corre
sponding to the augmented matrix 

[ I I I ol 
0 I I I I 2 

6. Solve the l inear system 
-x + 2y = 2 
1 - x  + 2y = -7 2 

by applying Gaussian elimination to the augmented 
matrix . 

7 . Solve the linear system 
2x - y + 3z = 2 

x + 2y - z = 1 
-x + y + 4z = 2 

by applying Gauss-Jordan elimination to the aug
mented matrix .  

8 .  Solve for x. 

[
2x - 1 OJ 

= [
5 OJ 

I -3 I -3 
Problems 9-1 2 refer to  the matrices 

[ -4 0 

_:
J 

B =  [�] A =  
6 2 

c = [ -� 3] D = [� -�i - 1 

Problems 1 and 2 refer to the matrix 

I . 
2 . 
3 . 

[
- 1  

B =  
4 

5 0 

-2 
Determine the dimension of  the matrix B .  
Find b23 . 
Write the coefficient matrix of the linear system 

2x - 6y = 5 
x + 3y = -2 

If possible, find the following. 
9. C - 2D IO . AC 1 1 .  CB 1 2 . BA 
1 3 . 

14 . 

Find the inverse of the matrix 

0 4] 1 - I  
-3 2 

Solve the given l inear system by finding the inverse of 
the coefficient matrix .  

3x - 2y = -8 
2x + 3y = - I 

In Problems 1 5 and 1 6 evaluate the given determinant. 
1 5 . 1 - � -� 1  1 6. 0 - I  

2 -2 
2 
3 

17 . 
4 5 

Use Cramer' s rule to solve the l inear system 
x + 2y = -2 

-2x - 3y = I 

4. Write a l inear system corresponding to the augmented 
matrix 

5 . 

6 I IO] 
5 I 8 - I I -6 

Use back-substitution to solve the linear system corre
sponding to the augmented matrix 

[
l 3 - I I OJ 
0 1 -2 I 5 
0 0 I I -3 



6. Solve the l inear system 
2x + 3y = - 1 1  

3x - 2y = 3 
by applying Gaussian elimination to the augmented 
matrix. 

7 .  Solve the l inear system 
2x +  y - 2z =  7 

-3x - Sy + 4z = -3 
5x + 4y = 1 7  

by applying Gauss-Jordan elimination to the aug
mented matrix .  

8 .  Solve for y .  

-5  -5 

1 -y 6 
Problems 9- 1 2  refer to the matrices 

A
� H -� l B 

�

[ I -2  

c = [ � -�1 -2  5 

3 ]  

If possible, find the following. 
9 .  BA IO .  2C + 3A 1 1 .  CB 12 .  BC - A 

1 3 .  Find the inverse o f  the matrix [-� -� -�1 
-2  0 4 

1 4. Solve the given l inear system by finding the inverse of 
the coefficient matrix .  

5x - 2y = -6 
- 2x + 2y = 3 

Jn Problems 1 5  and 1 6  evaluate the given determinant. 
1 5 .  1 - � ; 1 16 .  -2  0 

1 2 
2 - 1  

1 7 .  Use Cramer's rule to solve the linear system 
x +  y = - 1 

2x - 4y = -5 

0 
- I  



THEORY OF 
POLYNOMIALS 

In Section 3 . 3  we observed that the polynomial function 

f(x) = ax +  b 

is called a linear function and that the polynomial function 

g(x) = ax2 + bx +  c, 

( l ) 

(2) 

is called a quadratic function . To facilitate the study of polynomial functions in 
general , we will use the notation 

(3) 

to represent a polynomial function of degree n. Note that the subscript k of the 
coefficient ak is the same as the exponent of x in �- In general , the coefficients ak 
may be real or complex numbers; our work in this chapter will focus on real 
values for ab but we will indicate which results hold true when the coefficients ak 
are complex numbers . 

If a * 0 in Equation ( 1 ) ,  we set the polynomial function equal to zero and 
obtain the linear equation 

ax + b = O  

which has precisely one solution , -b/a . If we set the polynomial function in 
Equation (2) equal to zero, we have the quadratic equation 

ax2 + bx +  c = 0 

which has the two solutions given by the quadratic formula. If we set the poly
nomial function in Equation (3) equal to zero, we have the polynomial equation 

of degree n 
(4) 

PAGE 459 
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11.1 

POLYNOMIAL DMSION 
AND SYNTHETIC 
OMS ION 

POLYNOMIAL DMSION 

Any complex number satisfying Equation (4) is called a solution or root of the 
polynomial equation P(x) = 0 .  Such values are also called the zeros of the poly
nomial P(x). In short, a complex number satisfying P(x) = 0 is a root of the 
equation or a zero of the polynomial P (  x) . 

Here are some of the fundamental questions concerning zeros of a polyno
mial that have attracted the attention of mathematicians for centuries . 

• Does a polynomial always have a zero? 

• Including complex zeros , what is the total number of zeros of a polynomial of 
degree n? 
• How many of the zeros of a polynomial are real numbers? 

• If the coefficients of a polynomial are integers , how many of the zeros are 
rational numbers? 

• Is there a relationship between the zeros and the factors of a polynomial? 

• Can we find a formula for expressing the zeros of a polynomial in terms of the 
coefficients of the polynomial? 

Some of these questions are tough mathematical problems. We will explore 
them and provide the answers in the course of this chapter. 

To find the zeros of a polynomial , it will be necessary to divide the polynomial by 
a second polynomial . There is a procedure for polynomial division that parallels 
the long division process of arithmetic . In arithmetic, if we divide an integer p by 
an integer d =t- 0, we obtain a quotient q and a remainder r, so we can write 

where 

p r 
- = q + d d 

0 ::5. r < d  
This result can also be written in the form 

For example, 

or 

p = qd + r, 0 ::5. r < d 

7284 = 560 + _.! 1 3  1 3  

7284 = (560)( 1 3) + 4 

( I )  

(2) 

(3) 

In the long division process for polynomials, we divide the dividend P(x) by 
the divisor D(x) =t- 0 to obtain a quotient Q(x) and a remainder R(x). We then 
have 

P(x) = Q(x) + R(x) 
D(x) D(x) 

(4) 
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where R(x) = 0 or where 

degree of R(x) < degree of D(x) 

This result can also be written as 

P(x) = Q(x)D(x) + R(x) 

(5) 

(6) 

Note that Equations ( 1 )  and (4) have the same fonn and that Equation (6) has the 
same form as Equation (3) . Equation (2) requires that the remainder be less than 
the divisor, and the parallel requirement for polynomials in Equation (5) is that 
the degree of the remainder be less than that of the divisor. 

We iJlustrate the long division process for polynomials by an example. 

EXAMPLE 1 
Divide 3x3 - 7x2 + l by x - 2.  

SOLUTION 

Polynomial Division 

Step I .  Arrange the terms of both polynomials by Step I .  x - 2)3x3 - 7x2 + Ox + 1 
descending powers of x. If a power is mis ing, 
write the tenn with a zero coefficient. 

Step 2 .  Divide the first tenn of the dividend by Step 2 .  _3_x2 
_____ _ 

the first tenn of the divisor. The answer i written x - 2)3x3 - 7x2 + Ox +  1 
above the first tenn of the dividend. 

Step 3. Multiply the divisor by the quotient 
obtained in Step 2, and then subtract the prod-

uct. 

Step 3 .  3x2 
x - 2)_3_x3---7x_2_+_0x_+_l 

3x3 - 6x2 
- x2 + 0x +  1 

Step 4 .  Repeat Steps 2 and 3 until the remainder Step 4 .  3x2 - x - 2 = Q(x) 
is zero or the degree of the remainder is le s than x - 2)3x3 - 7 x2 + Ox + 1 
the degree of the divisor. 3x3 - 6x2 

Step 5 .  Write the answer in the fonn of Equation 
(4) or Equation (6). 

-x2 + 0x +  l 
-x2 + 2x 

-2x + l 
-2x + 4 

Step 5 .  P(x) = 3x3 - 7x2 + l 

-3  = R(x) 

= (3x2 - x - 2) (x - 2) -3 
'---.----' '--v---" 

Q(x) D(x) + R(x) 
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SYNntETIC DMSION 

PROGRESS CHECK 
Divide 4x2 - 3x + 6 by x + 2.  

ANSWER 
28 

4x - J J  + -

x + 2  

Our work in this chapter will frequently require division of a polynomial by a 
first-degree polynomial x - r, where r is a constant .  Fortunately,  there is a short
cut called synthetic division that simplifies this task. To demonstrate synthetic 
division we will do Example l again, writing only the coefficients. 

3 - 1  - 2  
-2)3 -7 0 

3 -6 

- I  0 

- l  2 

-2 
- 2  4 

- 3 

Note that the boldface numerals are duplicated . We can use this to our advantage 
and simplify the process as follows. 

-2 1 3 -7 
-6 

3 - l 

0 

2 4 

-2 I - 3  

coefficients 
of the 
quotient 

remainder 

In the third row we copied the leading coefficient (3) of the dividend, multiplied i t  
by the divisor ( - 2) ,  and wrote the result ( -6) in the second row under the next 
coefficient. The numbers in the second column were subtracted to obtain 
-7 - ( -6) = - l .  The procedure was repeated until the third row was of the 
same length as the first row .  

Since subtraction i s  more apt to produce errors than i s  addition, we  can 
modify this process s]ightly. If the divisor is x - r, we will write r instead of - r  

in the box and use addition in each step instead of subtraction. Repeating our 
example, we have 

� 3 - 7  
6 

3 - l  

0 

- 2  -4 

-2 1 - 3 
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EXAMPLE 2 
Divide 4.x3 - 2x + 5 by x + 2 using synthetic division . 

SOLUTION 

Synthetic Division 

Step 1 .  If the divisor is x - r, write r in the box. Step I .  

Anange the coefficients of the dividend by -2
1
4 0 -2 5 

descending powers of x, supplying a :zero coeffi-
cient for every missing power. 

Step 2. Copy the leading coefficient in the third Step 2 .  
row. -2

1
4 0 -2 5 

c 

4 

Step 3. Multiply the last entry in the third row by Step 3 .  
the number in  the box and write the result i n  the � 4 0 -2 5 
second row under the next coefficient. Add the -8 
numbers in that column. 4 -8 

Step 4 .  Repeat Step 3 until there is an entry in the Step 4. 
third row for each entry in the fint row . The last -2 1 4 0 -2 5 
number in the third row is the remainder; the other -8 16 -28 
numbers are the coefficients of the quotient in 4 -8 1 4 1 -23 descending order. 

4.x3 - 2x + 5 23 = 4x2 - 8x + 14 - --x + 2  x + 2  

PROGRESS CHECK 
Use synthetic division to obtain the quotient Q(x) and the constant remainder R 
when 2x4 - J Ox2 - 23x + 6 is divided by x - 3. 

* 
ANSWER 
Q(x) - 2.x3 + 6x2 + 8x + 1 ;  R - 9 

WARNING 
(a) Synthetic division can be used only when the divisor is a linear factor. Don't 
forget to write a zero for the coefficient of each missing term. 
(b) When dividing by x - r. place r in the box. For example, when the divisor 
is x + 3, place -3 in the box, since x + 3 - x - (-3) . Similarly, when the 
divisor is x - 3, place +3 in the box, since x - 3 = x - ( + 3) .  



464 THEORY OF POLYNOMIALS 

EXERCISE SET 11.1 
In faercises 1 - 10 use polynomial division to find the quotient Q(x) and the remainder R(x) when the fir t polynomial is 
divided by the second polynomial. 

I .  x2 - 1x + 12, x - 5 
3. 2x3 - 2x, x2 + 2x - 1 
5 .  3x4 - 2x2 + 1 ,  x + 3 
7. 2x3 - 3x2, x2 + 2  

2. x2 + 3x + 3, x + 2 
4. 3x3 - 2x2 + 4, x2 - 2 
6 . .2 - 1 . x2 - 1  
8. 3x3 - 2x - I , x2 - x 

9. x4 - x3 + 2x2 - x + I ,  x2 + I 10 . 2x4 - 3x3 - x2 - x - 2, x - 2 
Jn Exercises 1 1 -20 use synthetic division to find the quotient Q(x) and the constant remainder R when the first polynomial is 
divided by the second polynomial . 
1 1 .  x3 - x2 - 6x + 5, x + 2  12 . 2x3 - 3x2 - 4, x - 2  
13 .  x4 - 8 1 ,  x - 3 
15 .  3x3 - x2 + 8, x + 1 
1 7. r + 32, x + 2  
1 9. 6x4 - x2 + 4, x - 3  

11.2 
THE REMAINDER AND 
FACTOR THEOREMS 

THE REMAINDER THEOREM 

Remainder Theorem 

14 . x4 - 8 1 ,  x + 3 
16. 2x4 - Jx3 - 4x - 2, x - I 
1 8 .  r + J2. x - 2 
20. 8x3 + 4x2 - x - 5, x + 3 

From our work with the division process we may surmise that division of a 
polynomial P(x) by x - r results in a quotient Q(x) and a constant remainder R 
such that 

P(x) = (x - r) · Q(x) + R 

Since this identity holds for all real values of x, it must hold when x = r. Con
sequently, 

or 

P(r) = (r - r) · Q(r) + R 
P(r) = 0 · Q(r) + R 

P(r) = R 

We have proved the Remainder Theorem. 

If a polynomial P(x) is divided by x - r, the remainder is P(r) . 

EXAMPLE 1 

Determine the remainder when P(�) = 2x3 - 3x2 - 2x + 1 is divided by x - 3.  

SOLUTION 
By the Remainder Theorem, the remainder is R = P(3). We then have 

R = P(3) = 2(3)3 - 3(3)2 - 2(3) + 1 = 22 

We may verify this result by using synthetic division: 
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FERMATS LAST THEOREM If you were asked to find natural numbers a, b, and c that satisfy lhe equation 

+ 

Graphing P[x} 

a2 + b2 = c2 
you would have no trouble coming up with such "triplets" as (3, 4 ,  5) and 
(5, 1 2, 1 3) .  In fact, there are an infinite number of solutions, since any multiple of 
(3, 4, 5), such as (6, 8, 1 0), is also a solution. 

Generalizing the above problem, suppose we seek natural numbers a, b, 
and c that satisfy the equation 

an + bn = c" 
for integer values of n > 2. Pierre Fermat, a great French mathematician of the 

c" seventeenth century, stated that there are no natural numbers a, b, and c that 
satisfy these conditions. This seductively simple conjecture is known as Fermat's 
Last Theorem. Fermat wrote in his notebook that he had a proof but that it was too 
long to include in the margin. 

A proof of this theorem or a counterexample has eluded mathematicians for 
three hundred years. In 1 983 the German mathematician Gerd Faltings proved 
that the equation 

xn + y'1 = 1  
has only a finite number of rational solutions. This proof may well be a significant 
step in establishing Fermat's Last Theorem. 

· 

1J 2 - 3  -2 
6 9 

l 
2 1  

2 3 7 1 22 
The number in boldface is the remainder, so we have verified that R = 22. 

PROGRESS CHECK 
Determine the remainder when 3x2 - 2x - 6 is divided by x + 2. 

ANSWER 10 
We can use the Remainder Theorem to tabulate values of a polynomial function 
from which we can sketch the graph. Recall that if a polynomial P(x) is divided 
by x - r, the remainder is P(r) . Thus , the point (r, P(r)) lies on the graph of the 
function P(x) . 

An efficient scheme for evaluating P(r) is a streamlined form of synthetic 
division in which the addition is performed without writing the middle row. 
Given the polynomial P(x) of Example 1 ,  

P(x) = 2x3 - 3x2 
- 2x + 1 
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FACTOR THEOREM 

we can find P(3) by synthetic division without writing the middle line: 

2 -3 - 2  1 
l] 2 3 7 22 '"' P(3) 

so the point (3,  22) lies on the graph of P(x). Repeating this procedure for a 
number of values of .r will provide a table of values for plotting. 

EXAMPLE 2 
Sketch the graph of P(x) '"' 2x3 - 3x2 - 2x + l .  

SOLUTION 
For each value r of x, the point (r, P(r)) lies on the graph of y = P(x) . We will 
allow x to assume integer values from - 3 to + 3 and will find P(x) by using 
synthetic division. 

2 -3 -2  

-3  2 - 9 25 

-2  2 -7 1 2  

- 1  2 -5 3 

0 2 -3 -2 

l 2 - 1  -3 

2 2 l 0 

3 2 3 7 

-74 

-23 

-2 

l 

-2 

l 

22 

(x, y) = (x, P(x)) 

(-3 ,  -74) 

(-2 ,  -23) 

( - 1 ,  -2) 

(0, 1 )  

( l ,  - 2) 

(2, l )  

(3 , 22) 

The ordered pairs shown at the right of each row are the coordinates of points on 
the graph shown in Figure l .  

Let's assume that a polynomial P(x) can be written as a product of polynomials, 
that is, 

P(x) = D i(x)D2(x) · · · Dn(x) 

where D 1(x) , D2(x), . . .  , Dn(x) are polynomials each of degree greater than zero . 
Then D 1(x) , D2(x) , . . .  , Dn(x) are called factors of P(x) . If we focus on D 1 (x) 

and let 

then 

P(x) = D i(x)Q(x) 

This equation suggests the following formal definition: 
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RGURE 1 

The polynomial D(x) is a factor of a polynomial P(x) if division of P(x) by D(x) 
results in a remainder of zero . 

We can now combine this rule and the Remainder Theorem to prove the 
Factor Theorem. 

A polynomial P(x) has a factor x - r if and only if P(r) = 0. 

If x - r is a factor of P(x), then division of P(x) by x - r must result in a remain
der of 0. By the Remainder Theorem, the remainder is P(r), and hence P(r) = 0. 
Conversely, if P(r) = 0, then the remainder is 0 and P(x) = (x - r) Q(x) for some 
polynomial Q(x) of degree one Jess than that of P(x). By definition, x - r is then a 
factor of P(x). 

EXAMPLE 3 
Show that x + 2 is a factor of 

P(x) = x3 - x2 - 2x + 8 
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SUMMARY 

EXERCISE SET 11.2 

SOLUTION 
By the Factor Theorem, x + 2 is a factor if P(- 2) = 0. Using synthetic division 
to evaluate P(-2), 

-2 1 - 1  - 2  8 
-2 6 - 8  

-3 4 I o 

we see that P(-2) = 0. Alternatively, we can evaluate 

P(-2) = (-2)3 - ( - 2)2 - 2(-2) + 8 = 0 

We conclude that x + 2 is a factor of P(x). 

PROGRESS CHECK 

Show that x - 1 is a factor of P(x) = 3x6 - 3x5 - 4x4 + 6x3 - 2x2 - x + I .  

We can summarize our work thus far in this neat way. 

The following are equivalent statements: 

• r is a zero of P(x) . 
• r is a root of the equation P(x) ::::: 0. 

• P(r) = 0. (Remainder Theorem) 

• x - r is a factor of P(x). (Factor Theorem) 

• Dividing P(x) by synthetic division with r as the divisor will result in a 
remainder of zero. 

In Exercises 1 -6 use the Remainder Theorem and synthetic division to find P(r) .  
I .  P(x) = x3 - 4x2 + I .  r = 2 2. P(x) = x4 - 3x2 - 5x, r = - I 
3 .  P(x) = x5 - 2 ,  r = -2  4 .  P(x) = 2x4 - 3x3 + 6, r = 2 
5 .  P(x) = x6 - 3x4 + 2x3 + 4 ,  r = - I 6. P(x) = x6 - 2, r = I 

In Exercises 7-1 2  use the Remainder Theorem to determine the remainder when P(x) is divided by x - r. 
7 .  P(x) = x3 - 2x2 + x - 3, x - 2  8 .  P(x) = 2x3 + x2 - 5 , x + 2  
9 .  P(x) = -4x3 + 6x - 2 ,  x - I 

1 1 .  P(x) = x5 - 30, x + 2 
10 .  P(x) = 6x5 - 3x4 + 2x2 + 7 ,  x + I 
1 2 . P(x) = x4 - 16 ,  x - 2 

In Exercises 1 3- 1 8  use the Remainder Theorem and synthetic division to sketch the graph of the given polynomial for 
-3 :S x :S 3 . 
1 3 . P(x) = x3 + x2 + x + I 
1 5 .  P(x) = 2x3 + 3x2 - 5x - 6  
1 7 .  P(x) = x4 - 3x3 + I 

14 .  P(x) = 3x4 + 5x3 + x2 + 5x - 2 
16 .  P(x) = x3 + 3x2 - 4x - 1 2 
1 8 . P(x) = 4x4 + 4x3 - 9x2 - x + 2 
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In Exercises 1 9-26 use the Factor Theorem to decide whether or not the first polynomial is a factor of the second 
polynomial. 
1 9 .  x - 2 ,  
2 1 .  x + 2, 
23 .  x + 3 ,  
25 .  x + 2 ,  

x3 - x2  - 5x + 6 
x4 - 3x - 5 
x3 + 27 
x4 - 1 6  

20. 
22 .  
24. 
26. 

x - I ,  x3 + 4x2 - 3x + I 
x + I , 2x3 - 3x2 + x + 6 
x + 2 ,  x4 + 16  
x - 3 .  x3 + 27 

In Exercises 27-30 use synthetic division to determine the value of k or r as requested. 
27 . Determine the values of r for which division of 29 . Determine the values of k for which x - 2 is a factor of 

x2 - 2x - 1 by x - r has a remainder of 2 .  x 3  - 3x2 + kx - I .  
28.  Determine the values of r for which 30. Determine the values of k for which 2k2x3 + 3kx2 - 2 

is divisible by x - 1 .  

x - r  

has a remainder of -9.  

3 1 .  Use the Factor Theorem to show that x - 2 is a factor 33.  Use the Factor Theorem to show that x - y is a factor 
of P(x) = x8 - 256. of x'' - y" , where n is a natural number. 

32. Use the Factor Theorem to show that P(x) = 2x4 + 
3x2 + 2 has no factor of the form x - r, where r is a 
real number. 

11.3 
FACTORS AND ZEROS 

COMPLEX NUMBERS AND 
THEIR PROPERTIES 

We introduced the complex number y tern in Section 1 . 8 and then used this 
number system in Section 2 .5  to provide solutions to quadratic equations. Recall 
that a + bi is said to be a complex number where a and b are real number and the 
imaginary unit i = v'=I has the property that i2 = - 1 .  We defin J fundamental 
operations with complex numbers in the following way . 

Equality : 

Addition: 

Multiplication: 

a + bi = c + di if a = c and b = d 

(a + bi) + (c + di) = (a + c) + (b + d)i 

(a + bi)(c + dt) = (ac - bd) + (ad + bc)i 

With this background, we can now explore further properties of the complex 
number system. 

The complex number a - hi is called the complex conjugate (or simply the 
conjugate) of the complex number a + bi. For example , 3 - 2i is the conjugate 
of 3 + 2i, 4i is the conjugate of - 4i ,  and 2 is the conjugate of 2. Forming the 
product (a + bi)(a - bi) , we have 

(a + bi)(a - bi) = a2 - abi + abi - b2i2 

= (/2 + b2 Since i2 = - 1  

Because a and b are real numbers, a2 + b2 is also a real number. We can sum
marize this result as follows. 
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The product of a complex number and its conjugate is a real number: 

(a + bi)(a - bi) = a2 + bi 

We can now demonstrate that the quotient of two complex numbers is also a 
complex number. The quotient 

q + ri 
s + ti 

can be written in the form a + bi by multiplying both numerator and denominator 
by s - ti, the conjugate of the denominator. We then have 

q + ri q + ri s - ti (qs + rt) + (rs - qt)i 
s + ti = s + ti 

. 
s - ti = s2 + t2 

qs + rt (rs - qt) . = --- + l 
s2 + t2 s2 + t2 

which is a complex number of the form a +  bi. Of course , the reciprocal of the 
complex number s + ti is the quotient l /(s + ti), which can also be written as a 
complex number by using the same technique . In summary: 

• The quotient of two complex numbers is a complex number. 

• The reciprocal of a nonzero complex number is a complex number . 

EXAMPLE 1 

( ) W . h . -2 + 3i . 
h ,. b . a nte t e quotient 

3 _ 2i 
m t  e iorm a + 1 .  

(b) Write the reciprocal of 2 - Si in the form a + bi. 

SOLUTION 

(a) Multiplying numerator and denominator by the conjugate 3 + 2i of the 
denominator, we have 

-2 + 3i 
3 - 2i 

-2 + 3i 3 + 2i -6 - 4i + 9i + 6i2 
3 - 2i 

. 3 + 2i = 32 + 22 

_ 
- 12 + Si 

_ _  
_!1 + j_. 

- 13  - 1 3  d 

-6 + Si +  6(- 1 )  
9 + 4  

(b) The reciprocal is 1 /(2 - Si) . Multiplying both numerator and denominator 
by the conjugate 2 + Si, we have 

I 2 + Si 2 + Si 2 + Si 2 5 . 
2 - Si

. 
2 + Si = 22 + 52 = � = 29 + 291 

Verify that (2 - Si)(2 
-1. j_i) = 1 29 29 . 



Propertl .. of Complex 
Numbers 

PROGRESS CHECK 
Write the following in the form a + bi. 

4 - 2i 
(a) 5 + 2i 

ANSWERS 
16  1 8 .  

(b) 2 - 3i 
- 3i 

(c) 3 + Si 
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1 5  9 . 
(a) 29 - 291 (c) - 34 - 341 

If we let z = a +  bi, it is customary to write the conjugate a - bi as z. We 
will have need to use the following properties of complex numbers and their 
conjugates. 

lf z and w are complex numbers, then 

l .  z = w if and only if z = w; 
2. z = z if and only if z is a real number; 
3 .  z + w = i + w; 
4. z · w = z · w; 
5 .  z" = Z", n a positive integer. 

To prove Properties 1-5 , let z = a + bi and w = c + di. Properties 1 and 2 follow 
directly from the definition of equality of complex numbers. To prove Property 3 ,  
w e  note that z + w = (a +  c) + (b  + d)i. Then, by the definition of a complex 
conjugate, 

z + w = (a + c) - (b + d)i 
= (a - bi) + (c - di) 
= z + w  

Properties 4 and 5 can be proved in a similar manner, although a rigorous proof of 
Property 5 requires the use of mathematical induction, a method we will discuss 
in a later chapter. 

EXAMPLE 2 
If z = 1 + 2i and w = 3 - i, verify the following statements. 
(a) z + w = i + w (b) z . w = z .  w (c) Zl = z2 

SOLUTION 
(a) Adding, we get z + w = 4 + i. Therefore z + w = 4 - i. Also, 

i + w = ( I  - 2i) + (3 + i) = 4 - i 

Thus, z + w = i + w. 
(b) Multiplying, we get z • w = ( l  + 2i)(3 - i) = 5 + 5i. Therefore 

:;:-; =  5 - 5i 

Also, 
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FACTOR THEOREM 

Factor Theorem 

z . w = ( I  - 2i)(3 + i) = 5 - 5i 

Thus, z · w = z · w. 
(c) Squaring , we get 

z2 = ( 1 + 2i)( I + 2i) = - 3 + 4i 

Therefore ? = -3 - 4i. Also, 

z2 = ( I  - 2i)( l - 21) = - 3 - 4i 

Thus, ? = z2. 
PROGRESS CHECK 
If z = 2 + 3i and w = ! - 2i, verify the following statements. 

(a) z + w = z + w (b) z · w = z · w 

(c) ? = z2 (d) � = W3 

We are now in a position to answer some of the questions posed in the introduc
tion to this chapter. By using the Factor Theorem we can show that there is a close 
relationship between the factors and the zeros of the polynomial P(x). By defi
nition, r is a zero of P(x) if and only if P(r) = 0. But the Factor Theorem tells us 
that P(r) = 0 if and only if x - r is a factor of P(x) . This leads to the following 
alternative statement of the Factor Theorem. 

A polynomial P(x) has a zero r if and only if x - r is a factor of P(x). 

EXAMPLE 3 
Find a polynomial P(x) of degree 3 whose zeros are - 1 ,  l ,  and -2.  

SOLUTION 
By the Factor Theorem, x + l ,  x - l ,  and x + 2 are factors of P(x). The prod
uct 

P(x) = (x + l )(x - l )(x + 2) = x3 + 2x2 - x - 2 

is a polynomial of degree 3 with the desired zeros. Note that multiplying P(x) by 
any nonzero real number results in another polynomial that has the same zeros . 
For example, the polynomial 

5 · P(x) = 5x3 + lox2 - 5x - IO 
also has - 1 , l ,  and - 2  as its zeros. Thus, the answer is not unique. 

PROGRESS CHECK 
Find a polynomial P(x) of degree 3 whose zeros are 2,  4, and -3 .  
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ANSWER 
x3 - 3x2 - 10x + 24 

We began this chapter with the question, Does a polynomial always have a 
zero? The answer was supplied by Carl Friedrich Gauss in his doctoral disserta
tion in 1 799. Unfortunately, the proof of this theorem is beyond the scope of this 
book. 

Every polynomial P(x) of degree n 2:: 1 has at least one zero among the complex 
numbers. 

Note that the zero guaranteed by this theorem may be a real number since the real 
numbers are a subset of the complex number system. 

Gauss, who is considered by many to have been the greatest mathematician 
of all time, supplied the proof at age 22. The importance of the theorem is 
reflected in its title. We now see why it was necessary to create the complex 
numbers and that we need not create any other number system beyond the com
plex numbers in order to solve polynomial equations. 

How many zeros does a polynomial of degree n have? The next theorem will 
bring us closer to an answer. 

A polynomial P(x) of degree n 2:: 1 can be written as the product of n l inear 
factors: 

Note that a is the leading coefficient of P(x) and that r1 , r2, , rn are , in 
general , complex numbers . 

To prove this theorem, we first note that the Fundamental Theorem of Alge
bra guarantees us the existence of a zero r1 • By the Factor Theorem, x - r1 is a 
factor, and, consequently ,  

P(x) = (x - r1)Q i (x) ( 1 )  

where Q 1 (x) is a polynomial of degree n - 1 .  I f  n - 1 2:: 1 ,  then Q 1 (x) must have 
a zero r2• Thus 

(2) 

where Q2(x) is of degree n - 2.  Substituting in Equation ( 1 )  for Q 1 (x) we 
have 

This process is repeated n times until Qn(x) = a is of degree 0. Hence, 

P(x) = a(x - r1 )(x - r2) · · · (x - rn) 

(3) 

(4) 
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The Fundamental 
Theorem of Algebra
Port II 

Since a is the leading coefficient of the polynomial on the right side of Equation 
(4), it must also be the leading coefficient of P(x) . 

EXAMPLE 4 
Find the polynomial P(x) of degree 3 that has the zeros -2, i, and -i and that 
satisfies P( l )  = - 3.  

SOLUTION 

Since -2,  i, and -i  are zeros of P(x) , we may write 

P(x) = a(x + 2)(x - i)(x + i) 

To find the constant a, we use the condition P( l )  = - 3 :  

So 

P( l )  = -3 = a( l + 2)( 1 - i)( l + i) = 6a 
I a =  

- 2 

P(x) = -�(x + 2)(x - i)(x + i) 

Recall that the zeros of a polynomial need not be distinct from each other. 
The polynomial 

P(x) = x2 - 2x + I 

can be written in the factored form 

P(x) = (x - I )(x - 1 )  

which shows that the zeros of P(x) are 1 and 1 .  Since a zero is associated with a 
factor and a factor may be repeated , we may have repeated zeros . If the factor 
x - r appears k times, we say that r is a zero of multiplicity k. 

It is now easy to establish the following, which may be thought of as an 
alternative form of the Fundamental Theorem of Algebra. 

If P(x) is a polynomial of degree n � I ,  then P(x) has precisely n zeros among 
the complex numbers when a zero of multiplicity k is counted k times. 

We may prove this theorem as follows: If we write P(x) in the form of 
Equation (4) , we see that r. , r2, . . .  , rn are zeros of the polynomial P(x) and that 
hence there exist n zeros. If there is an additional zero r that is distinct from the 
zeros r. , r2, . . .  , rm then r - r. , r - r2, . . .  , r - rn are all different from 0. 
Substituting r for x in Equation (4) yields 
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(5) 

which cannot equal 0, since the product of nonzero numbers cannot equal 0. 
Thus, ri . r2 , • • •  , r,. are zeros of P(x) and there are no other zeros. We conclude 
that P(x) has precisely n zeros . 

EXAMPLE 5 

Find an zeros of the polynomial 

P(x) = (x - �)3(x + i)(x - 5)4 

SOLUTION 
The distinct zeros are �, - i, and 5 .  Funher, � is a zero of multiplicity 3 ;  - i is a 
zero of multiplicity l ;  5 is a zero of multiplicity 4. 

If we know that r is a zero of P(x), we may write 

P(x) = (x - r)Q(x) 

If r 1  is a zero of Q(x), then Q(r1 ) = 0 and 

P(r,}  = (r1 - r)Q(r1 ) = (ri - r) · 0 = 0 

which shows that r1 is also a zero of P(x). We call Q(x) = 0 the depressed 
equationt since Q(x) is of lower degree than P(x). In the next example we ilJus
trate the use of the depressed equation in finding the zeros of a polynomial. 

EXAMPLE 6 
If 4 is a zero of the polynomial P(x) = x3 - 8x2 + 2 lx - 20, find the other 
zeros. 

SOLUTION 
Since 4 is a zero of P(x), x - 4 is a factor of P(x). Therefore, 

PM = (x - 4)Q(x) 

To find the depressed equation, we compute Q(x) = P(x)l(x - 4) by synthetic 
division. 

� - 8  2 1  -20 

The depressed equation is 

4 - 16 20 
-4 5 

coefficients 
of Q(x) 

0 
I 
remainder 

x2 - 4x + 5 = 0  
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Using the quadratic formula, we find the roots of the depressed equation to be 
2 + i and 2 - i. The zeros of P(x) are then seen to be 4, 2 + i ,  and 2 - i . 

PROGRESS CHECK 
If -2 is a zero of the polynomial P(x) = x3 - 1x - 6, find the remaining 
zeros. 

ANSWER 
- I ,  3 

EXAMPLE 7 
If - I is a zero of multiplicity 2 of P(x) = x4 + 4x3 + 2x2 - 4x - 3, find the 
remaining zeros and write P(x) as a product of linear factors. 

SOLUTION 
Since - I is a double zero of P(x) , then (x + I )2 is a factor of P(x). There
fore, 

P(x) = (x + I )2Q(x) 

or 

P(x) = (x2 + 2x + l )Q(x) 

Using polynomial division, we can divide both sides of the last equation by 
x2 + 2x + 1 to obtain 

Q( ) = 
x4 + 4x3 + 2x2 - 4x - 3 x x2 + 2x +  1 

= x2 + 2x - 3 

= (x - l )(x + 3) 

The roots of the depressed equation Q(x) = 0 are I and -3,  and these are the 
remaining zeros of P(x) . By the Linear Factor Theorem, 

P(x) = (x + 1 )2(x - l )(x + 3) 

PROGRESS CHECK 
If -2 is a zero of multiplicity 2 of P(x) = x4 + 4x3 + 5x2 + 4x + 4, write P(x) as 
a product of linear factors. 

ANSWER 
P(x) = (x + 2)(x + 2)(x + i)(x - i) 

We know from the quadratic formula that if a quadratic equation with real 
coefficients has a complex root a + bi, then the conjugate a - bi is the other root . 
The following theorem extends this result to a polynomial of degree n with real 
coefficients. 



Conjugate Zer0$ 
Theorem 

PROOF OF CONJUGATE 
ZEROS THEOREM 
(Optional) 
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If P(x) is a polynomial of degree n 2: l with real coefficients, and if a + bi, 
b * 0, is a zero of P(x), then the complex conjugate a - bi is also a zero of 
P(x) . 

To prove the Conjugate Zeros Theorem, we let z = a + bi and make use of the 
properties of complex conjugates developed earlier in this section. We may 
write 

P(x) = a,,x1' + an- 1.x"- 1 + · · · + a1x + ao (6) 

and, since z is a zero of P(x), 

(7) 

But if z = w, then z = w. Applying this property of complex numbers to both 
sides of Equation (7) ,  we have 

(8) 

We also know that z + w = z + w. Applying this property to the left side of 
Equation (8) we see that 

anZn + an- JZn-I + . . .  + a 1z + ao = 0 

Further_ 7 • l" = z · w, so we may rewrite Equation (9) as 

an""li + an- )Zn- l + . . . + G1Z + ao = 0 

(9) 

( 10) 

Since a0, a . ,  . . .  , an are ali real numbers , we know that a0 = a0, a 1 = a. ,  
. .  , an = an. Finally, we use the property zn = -zn to rewrite Equation ( 1 0) as 

anzn + an- 1-zn- l + · · · + a 1z + ao �- � 
which establishes that z is a zero of P(x) . 

EXAMPLE 8 
Find a polynomial P(x) with real coefficients whose degree is 3 and whose zeros 
include -2 and l - i. 

SOLUTION 
Since I - i is a zero, it follows from the Conjugate Zeros Theorem that 1 + i 
is also a zero of P(x). By the Factor Theorem, (x + 2), [x - ( 1  - i)] , and 
[x - ( I  + 1)) are factors of P(x) . Therefore, 

P(x) = (x + 2)[x - ( l  - i)) [x - ( 1  + i)) 

"" (x + 2)(x2 - 2x + 2) 
= x3 - 2x + 4 
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POLYNOMIALS WITH 
COMPLEX COEFFICIENTS 

PROGRESS CHECK 

Find a polynomial P(x) with real coefficients whose degree is 4 and whose zeros 
include i and -3 + i. 
ANSWER 

P(x) = x
4 + 6x3 + l lx2 + 6x + 1 0  

The following i s  a corollary of the Conjugate Zeros Theorem. 

A polynomial P(x) of degree n � 1 with real coefficients can be written as a 
product of linear and quadratic factors with real coefficients so that the quadratic 
factors have no reaJ zeros. 

By the Linear Factor Theorem, we may write 

P(x) = a(x - r1 )(x - r2) · · · (x - rn) 

where r. , r2 , . . .  , rn are the n zeros of P(x) . Of course, some of these zeros may 
be complex numbers . A complex zero a +  bi, b =t- 0, may be paired with its 
conjugate a - bi to provide the quadratic factor 

[x - (a + bi)][x - (a - bi)] = x2 - 2ax + a2 + b2 ( 1 1 ) 

which has real coefficients. Thus, a quadratic factor with real coefficients results 
from each pair of complex conjugate zeros; a linear factor with real coefficients 
results from each real zero . Further, the discriminant of the quadratic factor in 
Equation ( 1 1 )  is -4b2 and is therefore always negative, which shows that the 
quadratic· factor has no real zeros . 

Although the definition of a polynomial given in Section 3 . 1 permits the coeffi
cients to be complex numbers, we have limited our examples to polynomials with 
real coefficients. To round out our work, we point out that both the Linear Factor 
Theorem and the Fundamental Theorem of Algebra hold for polynomials with 
complex coefficients . 

On the other hand, the Conjugate Zeros Theorem may not hold if the poly
nomial P(x) has complex coefficients. To see this, consider the polynomial 

P(x) = x - (2 + i) 

which has a complex coefficient and has the zero 2 + i. Note that the complex 
conjugate 2 - i is not a zero of P(x) and that, therefore, the Conjugate Roots 
Theorem fails to apply to P(x) . 

EXAMPLE 9 

Find a polynomial P(x) of degree 2 that has the zeros - 1  and 1 - i. 
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SOLUTION 
Since - 1 is a zero of P(x) , x + l is a factor. Similarly, [x - ( l  - i)] is also a 
factor of P(x) . We can then write 

P(x) = (x + l )[x - ( l  - i)] 

= x2 + ix - l + i 

which is a polynomial of degree 2 (with complex coefficients) that has the desired 
zeros . 

EXERCISE SET 11.3 
In Exercises 1 -6 multiply by the conjugate and simplify. 

l .  2 - i 2 .  3 + i 
6. 5 + 2i 

3 .  3 + 4i 4. 2 - 3i 
5 .  -4 - 2i 

In Exercises 7-15  perform the indicated operations and write the answer in the form a + bi. 
2 + 5i 1 + 3i 3 - 4i 7 · 1 - 3i 8 · 2 - 5i 9 · 3 + 4i 
3 - 2i 2 - 3i 2 + 5i 1 l .  1 2 .  3 - 1· 1 3 .  2 - i 

4i 1 5 . 2 + i 

3i 

In Exercises 1 6-2 1  find the reciprocal and write the answer in the form a +  bi. 
1 6. 3 + 2i 1 7 .  4 + 3i 1 8 . � - i  
20. - 7i 2 1 . -5i 

1 0. 4 - 3i 
4 + 3i 

14 .  5 - 2i 
-3i 

1 9. I - J,i 

22. Prove that the multiplicative inverse of the complex 24. 
number a + bi (a and b not both 0) is 

If z is a complex number, verify that :? = z1 and 
7 = :z3 . 

a b . 
al + bl - al + b1 1 

23 . If z and w are complex numbers, prove that 
z · w = z · w  

In Exercises 25-30 find a polynomial P(x) of lowest degree that has the indicated zeros . 
25 . 2, -4, 4 26. 5, -5 ,  I ,  - I  27 . - 1 ,  -2 ,  -3  28 .  - 3 , Vz, -Vz 
29. 4 ,  I ± \/3 30. I ,  2, 2 ± Vz 
In Exercises 3 1-34 find the polynomial P(x) of lowest degree that has the indicated zeros and satisfies the given condi
tion. 
3 1 .  l.  l .  - 2; P(2)  = 3 
33 .  Vz, -Vz, 4; P( - 1 ) = 5 
In Exercises 35-42 find the roots of the given equation. 
35. (x - 3)(x + l ) (x - 2) = 0 
37. (x + 2)(x1 - 1 6) = 0 

32. 3 ,  3 ,  -2 ,  2;  P(4) = 1 2  
34. l .  -2,  5; P(O) = 5 

36. (x - 3)(x1 - 3x - 4) = 0 
38 .  (x1 - x)(x1 - 2x + 5 )  = 0 
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39. (x2 + 3x + 2)(2x2 + x) = 0 
4 1 .  (x - 5)3(x + 5)2 = 0 

40. (x2 + x + 4)(x - 3)2 = 0 
42. (x + 1 )2(x + 3)4(x - 2) = 0 

In Exercises 43-46 find a polynomial that has the indicated zeros and no others . 
43 . - 2  of multiplicity 3 44. I of multiplicity 2. -4 of multiplicity I 
4'i. l of multiplicity 2, - I of multiplicity 2 46. - I of multiplicity 2, 0 and 2 each of multiplicity I 
In Exercises 47-52 use the given root(s) to help in finding the remaining roots of the equation . 
47. x3 - 3x - 2 = 0; - I  50. x3 - 2x2 - 7x - 4 = 0; - I  
48 . x3 - 7x2 + 4x + 24 = 0; 3  5 1 . x4 + x3 - 1 2x2 - 28x - l 6 = 0; - 2  
49. x3 - 8x2 + 1 8x - 1 5  = O; 5 52. x4 - 2x2 + I = O; I (double root) 
In Exercises 53-58 find a polynomial that has the indicated zeros and no others . 
53.  I + 3i, - 2  54. I ,  - 1 ,  2 - i 55. I + i. 2 - i 56. -2 .  3 ,  I + 2i 
57 .  - 2  is a root of multiplicity 2 ,  3 - 2i 58 .  3 is a triple root. -i  
In  Exercises 59-64 use the given root(s) to help in  writing the given equation as a product of  linear and quadratic factors 
with real coefficients. 
59. x3 - 7x2 + l 6x - IO = O; 3 - i 60. x3 + x2 - 7x + 65 = 0; 2 + 3i 
6 1 . x4 + 4x3 + l 3x2 + l 8x + 20 = O; - I - 2i 
63. x5 + 3x4 - J 2x3 - 42x2 + 32x + 1 20 = 0; 

-3  - i,  - 2  

65 . Write a polynomial P(x) with complex coefficients 
that has the zero a +  bi, b * 0, and that docs not have 
a - bi as a zero . 

66. Prove that a polynomial equation of degree 4 with real 

62. x4 + 3x3 - 5x2 - 29x - 30 = 0; -2 + i 
64. x5 - 8x4 + 29x3 - 54x2 + 48x - 1 6  = 0; 2 + 2i, 2 

coefficients has 4 real roots, 2 real roots, or no real 
roots 

67. Prove that a polynomial equation of odd degree with 
real coefficients has at least one real root. 

11.4 
REAL AND RATIONAL 
ZEROS 

In this section we will restrict our investigation to polynomials with real coeffi
cients. Our objective is to obtain some information concerning the number of 
positive real zeros and the number of negative real zeros of such polynomials .  

If the terms of a polynomial with real coefficients are written in descending 
order, then a variation in sign occurs whenever two successive terms have oppo
site signs. In determining the number of variations in sign, we ignore terms with 
zero coefficients. The polynomial . 

4.x5 - 3x4 - 2x2 + ] '--" � 
has two variations in sign. The French mathematician Rene Descartes ( 1 596-
1 650) , who provided us with the foundations of analytic geometry , also gave us a 
theorem that relates the nature of the real zeros of polynomials to the variations in 
sign. The proof of Descartes's theorem is outlined in Exercises 39-44.  
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Signs 
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If P(x) is a polynomial with real coefficients, then 
• the number of �sitive zeros either is equal to the number of variations in 
sign of P(x) or is less than the number of variations in sign by an even number, 
and 

• the number of negative zeros either is equal to the number of variations in 
sign of P(-x) or is less than the number of variations in sign by an even 
number. 

If it is detennined that a polynomial of degree n has r real zeros, then the remain-
ing n - r zeros must be complex numbers. 

· 

To apply Descartes's Rule of Signs to the polynomial 

P(x) = 3x5 + 2x4 - x3 + 2x - 3 ..........___,.�...:::.:__,,o 
we first note that there are 3 variations in sign as indicated . Thus, either there are 
3 positive zeros or there is 1 positive zero. Next, we form P(-x) ,  

P(-x) = 3(-x)5 + 2(-x)4 - (-x)3 + 2(-x) - 3 
= - 3x5 + 2x4 + x3 - 2x - 3 

� .....__.... 
which can be obtained by changing the signs of the coefficients of the odd-power 
terms. We see that P(-x) has two variations in sign and conclude that P(x) has 
either 2 negative zeros or no negative zeros . 

EXAMPLE 1 
Use Descartes's Rule of Signs to analyze the roots of the equation 

SOLUTION 
Since 

2x5 + 7x4 + 3x2 - 2 = 0 

P(x) = 2x5 + 7x4 + 3x2 - 2 '-..._.,/ 
has 1 variation in sign, there is precisely I positive zero. The polynomial P(-x) is 
formed-

P(-x) = -2x5 + 7x4 + 3x2 - 2 '-----"' .......__,. 
and is seen to have 2 variations in sign, so P(-x) has either 2 negative zeros or no 
negative zeros . Since P(x) has 5 zeros, the possibilities are 1 positive zero, 2 negative zeros , 2 complex zeros 

1 positive zero, 0 negative zeros , 4 complex zeros 
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Rational Zero Theorem 

PROOF OF RATIONAL 
ZERO THEOREM 
(Optional) 

PROGRESS CHECK 

Use Descartes's Rule of Signs to analyze the nature of the roots of the equa
tion 

x6 + 5x4 - 4x2 - 3 :::; 0 

ANSWER 

1 positive root , l negative root, 4 complex roots 

When the coefficients of a polynomial are all integers, a systematic search for the 
rational zeros is possible by using the following theorem . 

If the coefficients of the polynomial 

P(x) = a,,x' + a,, - 1.x" - 1 + · · · + a ix + ao, 
are all integers and plq is a rational zero in lowest terms, then 
(a) p is a factor of the constant term a0, and 
(b) q is a factor of the leading coefficient a,,. 

Since plq is a zero of P(x) , then P(plq) = 0. Thus, 

( p) " (p)
"- 1 

(p) an q + an- 1 q + · · · + a 1 q + ao = 0 

Multiplying Equation ( l )  by qn, we have 

GnPn + Gn- IPn- lq + . . .  + a ,pqn- 1 + aoqn = Q 

or 

Taking the common factor p out of the left-hand side of Equation (3) yields 

( l )  

(2) 

(3) 

(4) 

Since a i ,  a2, . . .  , an, p, and q are all integers , the quantity in parentheses in the 
left-hand side of Equation (4) is an integer. Division of the left-hand side by p 
results in an integer, and we conclude that p must also be a factor of the right
hand side, - a0q" . But p and q have no common factors since, by hypothesis , plq 
is in lowest terms. Hence, p must be a factor of a0; thus we have proved part a of 
the Rational Zero Theorem. 

We may also rewrite Equation (2) in the form 

q(an- tPn - I + Gn-2Pn- Zq + . . .  + a ,pq"-2 + aoqn- l )  = -anPn (5) 

An argument similar to the preceding one then establishes part b of the theo
rem. 



SOLVING POLYNOMIAL 
EQUATIONS 

Cardan's Formula 

Cardano provided this for

mula for one root of the cubic 
equation x3 + bx + c = 0: 

x =  4�b3 ?_ c - + - -
27 4 2 - 4��; +�+ � 

Try it for the cubics 

x3 - x = O  
x3 - 1 = 0 

x3 - 3x + 2 = 0  
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The quadratic formula provides us with the solutions of a polynomial equation of 
second degree. How about polynomial equations of third degree? of fourth 
degree? of fifth degree? 

The search for formulas expressing the roots of polynomial equations in 
terms of the coefficients of the equations intrigued mathematicians for hundreds 
of years. A method for finding the roots of polynomial equations of degree three 
was published around 1 535 and is known as Cardan's formula despite the pos
sibility that Girolamo Cardano stole the result from his friend Nicolo Tartaglia. 
Shortly afterward a method that is attributed to Ferrari was published for solving 
polynomial equations of degree four. 

The next 250 years were spent in seeking formulas for the roots of polyno
mial equations of degree five or higher-without success. Finally, early in the 
nineteenth century, the Norwegian mathematician N. H. Abel and the French 
mathematician Evariste Galois proved that no such formulas exist. Galois's work 
on this problem was completed a year before his death in a duel at age 20. His 
proof, using the new concepts of group theory, was so advanced that his teach
ers wrote it off as being unintelligible gibberish. 

EXAMPLE 2 

Find the rational roots of the equation 

8x4 - 2x3 + 7x2 
- 2x - 1 = 0 

SOLUTION 

If plq is a rational root in lowest terms, then p is a factor of 1 and q is a factor of 8 .  
We can now list the possibilities: 

possible numerators: ± 1 (the factors of l )  
possible denominators: ± 1 ,  ±2,  ±4, ±8  (the factors of 8) 
possible rational roots: ± I ,  ±�,  ±:1, ± l 

Synthetic division can be used to test whether these numbers are roots. Trying 
x = 1 and x = - l , we find that the remainder is not zero and they are therefore 
not roots. Trying !, we have 

_JJ 8 -2 7 -2 - I 

4 l 4 l 

8 2 8 2 1  0 

which demonstrates that ! is a root.  Similarly, 

2J 8 -2 7 -2  - I  
-2 -2 

8 -4 8 -4 I 0 
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which shows that -! is also a root . The student may verify that none of the other 
possible rational roots will result in a zero remainder when synthetic division is 
employed . 

PROGRESS CHECK 
Find the rational roots of the equation 

ANSWER 
2 2 
3' 3 

9x4 - 12x3 + 1 3x2 - 1 2x  + 4 = 0 

We can combine the Rational Zero Theorem and the depressed equation to 
give us even greater power in eeking the zero of a polynomial. 

EXAMPLE 3 
Find the rational roots of the polynomial equation 

sx5 + l 2x4 + t 4x3 + l 3x2 + 6x + 1 = o 

SOLUTION 
Since the coefficients of the polynomial are all integers , we may use the Rational 
Zero Theorem to list the possible rational roots: 

possible numerators: ± 1 (factors of I )  
possible denominators: ± I ,  ± 2 ,  ±4,  ± 8 (factors of 8) 
possible rational roots: ± 1 ,  ± L ± l, ± � 

Trying + I , - 1 , and + L  we find that they are not roots. Testing -�  by syn
thetic division results in a remainder of zero . 

=iJ 8 1 2 14 1 3  6 1 
-4 -4 -5 -4 - ]  

8 8 IO 8 2 I 0 

coefficients of depressed equation 

Rather than return to the original equation to continue the search, we will use the 
depressed equation 

8x4 + 8x3 + l0x2 + 8x + 2 = 0  

The values + I ,  - 1 ,  and + �  have been eliminated, but the value -�  must be 
tried again: 
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=iJ 8 8 10  8 2 
-4 - 2  -4 -2 

8 4 8 4 I 0 

coefficients of depressed equation 

Since the remainder is zero, - � is again a root. This illustrates an important 
point: A rational root may be a multiple root! Applying the same technique to the 
resulting depressed equation 

8x3 + 4x2 + 8x + 4 = 0 

we see that -i is once again a root: 

=iJ 8 4 
-4 

8 0 

8 4 
0 -4 
s I o 

coefficients of depressed equation 

The final depressed equation 

8x2 + 8 = 0 or x2 + l = 0 

has the roots ±i. Thus, the original equation has the rational roots 

PROGRESS CHECK 

1 
- - - - - -

2 '  2'  2 

Find all zeros of the polynomial 

ANSWER 
2 l · '-

2
· 3• -3, ± V LI 

EXAMPLE 4 

P(x) = 9x4 - 3x3 + t 6.x2  - 6x - 4 

Use Descartes' Rule of Signs, the Rational Zero Theorem, and the depressed 
equation to write 

P(x) = 3x4 + 2x3 + 2x2 + 2x - I 

as a product of linear and quadratic factors with real coefficients such that the 
quadratic factors have no real zeros. 



486 THEORY OF POI. YNOMIALS 

SOLUTION 
We first use the Rational Zero Theorem to list the possible rational zeros. 

possible numerators: ± 1 (factors of 1 )  
possible denominators: ± 1 ,  ± 3  (factors o f  3) 
possible rational roots: ± l ,  ±! 

Next, we note that P(x) has real coefficients and that Descartes's Rule of Signs 
may therefore be employed. Since P(x) has I variation in sign, there is precisely 1 
positive real zero. If this real zero is a rational number, it must be either + 1 or 
+ !. Trying + 1 ,  we quickly see that P( I )  = 8 and that + 1 is not a zero. Using 
synthetic division, 

2 

3 3 

2 

3 

2 - 1  
1 1 

3 I o 

coefficients of depressed equation 

we see that � is a zero and the depressed equation is 

Q1(x) = 3x3 + 3x2 + 3x + 3 = 0 

which has the same roots as 

Since any root of Q2(x) is also a zero of P(x) and since we have removed the only 
positive zero, we know that Q2(x) cannot have any positive zeros. (Verify that 
Q2(x) has no variations in sign !)  However, forming 

we see that Q2(x) has at least 1 negative zero. By the Rational Zero Theorem, the 
only possible rational zeros of Q2(x) are ± 1 .  Using synthetic division, 

- 1  

0 

I I 
0 - 1  

I o 

coefficients of depressed equation 

we verify that - 1  is indeed a zero. Finally, we note that the depressed equation 
x2 + 1 = 0 has no real roots, since the discriminant is negative. Thus, 

P(x) = 3x4 + 2x3 + 2x2 + 2x - I = 3(x - �) <x + l )(x2 + l )  



TRANSCENDENTAL 
'NUMBERS 
Theorem: Every rallonal 
number plq is algebraic. 
Proof: The number plq is a 
root of the equation 

qx - p  = 0 
since 

q(g) - p = p - p = O  

Further. by definition of a 
rational number, q and p are 
integers and q * o. So plq is 
a root of a polynomial equa
tion with integer coefficients 
and is therefore algebraic. 
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A real number that is a root of some polynomial equation with integer coefficients 
is said to be algebraic. We see that � is algebraic since it is the root of the 
equation 3x - 2 = O; v'2 is also algebraic, since it satisfies the equation 
x2 - 2 = 0. 

Note that every real number a satisfies the equation x - a = 0; that is, it 
satisfies a polynomial equation with real coefficients. But to be algebraic the 
number a must satisfy a polynomial equation with integer coefficients. To show 
that a real number a is not algebraic we must demonstrate that there is no 
polynomial equation with integer coeflicients that has a as one of its roots. 
Although this appears to be an impossible task, it was performed in 1 844 when 
Joseph Liouville exhibited specific examples of such numbers. called transcen
dental numbers. Subsequently, Georg Cantor ( 1 845-1 91 8) , in his bri lliant work 
on infinite sets, provided a more general proof of the existence of transcendenta1 
numbers. 

You are al ready familiar with a transcendental number: the number 1T is not 
a root of any polynomial equation with integer coefficients. 

In Ch!j>ter I we discussed number systems and said that numbers such as 
V2 and V3 were irrational . The Rational Zero Theorem provides a direct means 
of verifying that this is indeed so. 

EXAMPLE 5 

Prove that v'3 is not a rational number. 

SOLUTION 

If we let x = v'3, then x2 = 3 or x2 - 3 = 0. By the Rational Zero Theorem, the 
only possible rational roots are ± 1 ,  ±3 .  Synthetic division can be used to show 
that none of these are roots . However, v'3 is a root of x2 - 3 = 0. Hence, v'3 is 
not a rational number. 

In Exercises 1 - 1 2  use Descartes's Rule of Signs to analyze the nature of the roots of the given equation. List all possi
bilities. 

l .  3.x4 - 2x3 + 6x2 + 5x - 2 = 0 2. 2x6 + 5x5 + x3 - 6 = 0 
3. x6 + 2x4 + 4.x2 + I = 0 
5 .  x5 - 4.x3 + 1x - 4 = 0 
7 .  5x3 + 2x2 + 7.x - ] = 0 

4. 3x3 - 2x + 2 = 0 
6 .  2.x3 - sx2 + &x - 2 = o 

8.  x5 + 6x4 - x3 - 2x - 3 = 0 



9. x4 - 2x3 + 5x2 + 2 = 0 
1 1 . x8 + 7x3 + 3x - 5 = 0 

10. 3x4 - 2x3 - I = 0 
12. . x7 + 3x5 - x3 - x + 2 = 0 

In Exercises 1 3-22 use the Rational Zero Theorem to find all rational roots of the given equation . 
1 3 .  x3 - 2x2 - 5x + 6 = 0 14. 3x3 - x2 - 3x + I = 0 
1 5 .  6x4 - 7x3 - 1 3x2 + 4x + 4 = 0 16. 36x4 - 15x3 - 26x2 + 3x + 2 = 0 
1 7 .  5x6 - x5 - 5x4 + 6x3 - x2 - 5x + 1 = 0 18 .  1 6x4 - 16x3 - 29x2 + 32x - 6 = 0  
19 .  4x4 - x3 + 5x2 - 2x - 6 = 0 20. 6x4 + 2x3 + 7x2 + x + 2 = 0 
2 1 .  2x5 - 1 3x4 + 26x3 - 22x2 + 24x - 9 = 0 22. 8x5 - 4x4 + 6x3 - 3x2 - 2x + I = 0 
In Exercises 23-30 use the Rational Zero Theorem and the depressed equation to find all roots of the given equation. 
23. 4x4 + x3 + x2 + x - 3 = 0  24. x4 + x1 + x2 + 3x - 6 = 0  
25. 5x5 - 3x4 - IOx3 + 6x2 - 40x + 24 = 0 26. 12x4 - 52x3 + 75x2 - 1 6x - 5 = 0 

27. 6x4 - x3 - 5x2 + 2x = 0 

29. 2x4 - x3 - 28x2 + 30x - 8 = 0 

28. 

30. 

2x4 - �x3 + llx2 + 23 
x + � = 0 2 2 2 2 

l 2x4 + 4x3 - 1 7  x2 + 6x = 0 
In Exercises 3 1 -34 find the integer value(s) of k for which the given equation has rational roots, and find the roots. (Hint: 

Use synthetic division . )  
3 1 .  x3 + kx2 + kx + 2 = 0 32. x4 - 4x3 - kx2 + 6kx + 9 = 0 
33 .  x4 - 3x3 + kx2 - 4x - I = 0 

35 . If P(x) is a polynomial with real coefficients that has 
one variation in sign, prove that P(x) has exactly one 
positive zero. 

36. If P(x) is a polynomial with integer coefficients and 
the leading coefficient is + I or - 1 ,  prove that the 
rational zeros of P(x) are all integers and are factors of 
the constant term. 

37. Prove that Vs is not a rational number. 
38. If p is a prime, prove that vp is not a rational num

ber. 
39. Prove that if P(x) is a polynomial with real coefficients 

and r is a positive zero of P(x), then the depressed 
equation 

Q(x) = P(x) 
(x - r) 

has at least one fewer variations in sign than P(x). 
(Hint: Assume the leading coefficient of P(x) to be 
positive, and use synthetic division to obtain Q(x). 
Note that the coefficients of Q(x) remain positive at 
least until there is a variation in sign in P(x) . )  

40. Prove that if P(x) is a polynomial with real coeffi
cients, the number of positive zeros is not greater than 
the number of variations in sign in P(x). (Hint: Let r1 , 

34. x3 - 3kx2 + k2x + 4 = 0 

r2 , · 
· · , rk be the positive zeros of P(x) , and let 
P(x) = (x - ri )(x - r2) · · 

· (x - rk) Q(x) 
Use the result of Exercise 39 to show that Q(x) has at 
least k fewer variations in sign than does P(x) . )  

4 1 .  Prove that if r i .  r2 , . . .  , rk are positive numbers, 
then 

P(x) = (x - r1 )(x - rz) · · · (x - rk) 
has alternating signs. (Hint: Use the result of Exercise 
40. )  

42. Prove that the number of variations in sign of a poly
nomial with real coefficients is even if the first and last 
coefficients have the same sign and is odd if they are 
of opposite sign. 

43. Prove that if the number of positive zeros of the poly
nomial P(x) with real coefficients is less than the num
ber of variations in sign, it is less by an even number. 
(Hint: Write P(x) as a product of linear factors corre
sponding to the positive and negative zeros , and of 
quadratic factors corresponding to complex zeros. 
Apply the results of Exercises 41 and 42.) 

44. Prove that the positive zeros of P( -x) correspond to 
the negative zeros of P(x); that is, prove that if a >  0 is 
a zero of P(-x) , then -a is a zero of P(x). 
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A function f of the fonn 

ft. 
) = 

P(x) x Q(x) 

where P(x) and Q(x) are polynomials and Q(x) * 0, is called a rational function. 

We will study the behavior of rational functions with the objective of sketching 
their graphs. 

We first note that the polynomials P(x) and Q(x) are defined for all real 
values of x. Since we must avoid division by zero, the domain of the function / 
will consist of all real numbers except those for which Q(x) = 0. 

EXAMPLE 1 
Detennine the domain of each function. 

x + I x2 + 9  
(a) f(x) = 

x - I (b) g(x) = x2 - 4 
x2 

(c) h(x) = x2 + 1 

SOLUTION 
(a) We must exclude all real values for which the denominator x - 1 = 0. 

Thus, the domain off consists of all real numbers except x = I .  
(b) Since x2 - 4 = 0 when x = ±2,  the domain of g consists of all real numbers 
except x = ±2.  
(c) Since x2 + 1 = 0 has no real solutions, the domain of  h is the set of  all real 
numbers . 

PROGRESS CHECK 
Determine the domain of each function. 

x - 1 
(a) S(x) = 

2x2 _ 3x _ 2 
(b) T(x) = x4 + x2 + 2 

ANSWERS 

{b) all real numbers 

Let's  first consider rational functions for which the numerator is a constant, for 
example, 

1 1 
f(x) = - and g(x) = -

x x2 

The domain of both / and g is the set of all nonzero real numbers . Furthermore, 
the graph off is symmetric with respect to the origin, since the equation y = l lx 
remains unchanged when x and y are replaced by -x and -y, respectively. 
Similarly, the graph of g is symmetric with respect to the y-axis, since the equa
tion y = l /x2 is unchanged when x is replaced by -x. We therefore need plot only 
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FIGURE 2 

those points corresponding to positive values of x (see Table 1 )  and can utilize 
symmetry to obtain the graphs of Figure 2 .  

TABLE 1 

I I 
x x .? 

0 .(JO I 1000 1 ,000,000 
0 .0 1  1 00 10,000 

0. 1 1 0  1 00  
1 I I 
2 0.5 0 .25 
4 0 .25 0.06 

When a graph gets closer and closer to a line , we say that the line is an 
asymptote of the graph . Note the behavior of the graphs off and g (Figure 2) as x 
gets closer and closer to 0. We say that the line x = 0 is a vertical asymptote for 
each of these graphs. Similarly ,  we note that the line y = 0 is a horizontal 
asymptote in both cases. We will later show that the x-axis is a horizontal 
asymptote for any rational function for which the numerator is a constant and the 
denominator is a polynomial of degree one or higher. 

The determination of asymptotes is extremely helpful in the graphing of 
rational functions . The following theorem provides the means for finding all 
vertical asymptotes. 

(a) 

1 1· = 
. x 

y 

(b )  

I 
y = 7 

x 



Vertical Asymptote 
Theorem 
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The graph of the rational function 

_ P(x) 
ft.x) - Q(x) 

has a vertical asymptote at x = r if r is a real root of Q(x) but not of P(x) . 

EXAMPLE 2 
Determine the vertical asymptotes of the graph of the function 

2 T(x) = x3 - 2.x2 - 3x 

SOLUTION 
Factoring the denominator, we have 

2 T(x) = x 
_
(
_
x

_
+
_

l
-
)(
_
x 
_

_
_ 

3
_

) 

and we conclude that x = 0 ,  x = - I ,  and x = 3 are vertical asymptotes of the 
graph of T. 

Let 's  examine the behavior of the function T(x) of Example 2 when x is in 
the neighborhood of + 3. When x is slightly more than + 3, x - 3 is positive, as 
are x and x + l ;  therefore , T( x) is positive and growing larger and larger as x gets 
closer and closer to + 3 .  When x is slightly less than + 3 ,  x - 3 is negative , but 
both x and x + l are positive; therefore, T(x) is negative and growing smaller and 
smaller as x gets closer and closer to + 3 .  This reasoning leads to the portion of 
the graph of T(x) shown in Figure 3c . Similarly, when x is slightly more than 0, 
T(x) is  negative, and when x is slightly less than 0, T(x) is  positive (Figure 3b) . 
The behavior of T(x) when x is close to - 1 is shown in Figure 3a. Since the 
numerator of T(x) is constant, T(x) * 0 for any value of x and the graph of T(x) 
does not cross the x-axis. Moreover, since T(x) is of the form k!Q(x) , where k is a 
constant, the x-axis is a horizontal asymptote. Combining these observations with 
the portions of the graph of T(x) sketched in Figure 3 leads to the graph of T(x) 
sketched in Figure 4 .  
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lf 
I I 
(a) 

FIGURE 3 

x 

EXAMPLE 3 

r 
- I  

( 
(b)  

y = 2 
x(x + l )(x - 3 )  

FIGURE 4 

x 

y 

Sketch the graphs of the rational functions. 
I 1 

(a) F(x) = x _ 1 (b) G(x) = 
(x + 2)2 

SOLUTION 

y 

x 

(C)  

I 
I 

ll 
I x 

I 
I 
I 
I 

The graphs are shown in Figure 5 .  Note that the graphs are identical to those of 
Figure 2 with an points moved right one unit in the case of F and moved left two 
units in the case of G. In both cases we say that the y-axis has been translat

ed.  



y 

(a ) 

RGURE 5 

I 
y = -x - 1 

x 
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y 

Y = (x + 2 )2 

-2 x 
' 

(b) 

The x-axis is a horizontal asymptote for each of the rational functions 
sketched in Figures 2, 4, and 5 .  In general , we can determine the existence of a 
horizontal asymptote by studying the behavior of a rational function as x 
approaches +oo and -oo, that is, as lxl becomes very large . Recall that the expres
sion 

k 
x" 

where n is a positive integer and k is a constant, will become very small as lxl 
becomes very large; that is, klx" approaches 0 as I approaches +oo. The proce
dure for detennining horizontal asymptotes employs the technique, used earlier, 
of factoring out the highest power of x to determine the behavior of the function as 
lxl become large . 

EXAMPLE 4 
Determine the horizontal asymptote of the function 

. 2x2 - 5  
ft..x) 

;;;;; 3x2 + 2x - 4 
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SOLUTION 
We illustrate the steps of the procedure . 

Horizontal Asymptotes 

Step J .  Factor out the highest power of x found in Step J .  
the numerator; factor out the highest power of x 
found in the denominator. r(2 - �) 

f(x) = ( 2 4 ) x2 3 + - - -x x2 
Step 2 .  Since we are interested in large value of I ,  Step 2. 
we may cancel common factors in the numerator 5 2 - :;i and denominator. 

Step 3. Let lxl increase . Then all terms of the form 
lc/X' approach 0 and may be discarded. 
Step 4. If what remains is a real number c, then 
y = c is the horizontal asymptote . Otherwise there 
is no horizontal a ymptote . 

EXAMPLE 5 

f(x) =- 2 4 '  3 + � - x2 

Step 3. The terms -51 x2, 2/x, and -4/x2 approach O as 
lxl approaches + oo. 
Step 4.  Discarding these terms, we have y = ! as the 
horizontal asymptote . 

Determine the horizontal asymptote of the function 

if there is one. 

SOLUTION 
Factoring, we have 

2x3 + 3x - 2 fl.x) = .x2 + 5 

As lxl increases, the terms 3/x2 , -21x', and 51x2 approach zero and can be dis-



Hortzontal Asymptote 
Theorem 

SKETCHING GRAPHS 
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carded. What remains is 2x, which becomes larger and larger as lxl increases. 
Thus, there is no horizontal asymptote, and lyl becomes larger and larger as lxl 
approaches infinity. 

The foHowing theorem can be proved by utilizing the procedure of Exam
ple 4. 

The graph of the rational function 

j( 
) = 

P(x) 
x 

Q(x) 

has a horizontal asymptote if the degree of P(x) is less than or equal to the 
degree of Q(x). 

Note that the graph of a rational function may have many vertical asymptotes but 
at most one horizontal asymptote. 

PROGRESS CHECK 
Detennine the horizontal asymptote of the graph of each function. 

x - 1 4x2 - 3x + 1 
(a) f(x) = 

2x2 + l 
(b) g(x) = -3.x2 + I 

3x3 - x + l 
(c) h(x) = 2x2 _ 1 

ANSWERS 

(a) y = 0 
4 

(b) y = -
-

3 
( c) no horizontal asymptote 

We now summarize the information that can be gathered in preparation for 
sketching the graph of a rational function: 
• symmetry with respect to the axes and the origin 

• x-intercepts 

• vertical asymptotes 

• horizontal asymptotes 

• brief table of values including points near the vertical asymptotes 

EXAMPLE 6 
Sketch the graph of 

x2 
j(x) = x2 - l 
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I y 

I 
I 
I 

- -+ 1 
I 
I 

- I  I 
I 
I 
I 
I 

FIGURE 6 

SOLUTION 
Symmetry. Replacing x with -x results in the same equation, establishing sym
metry with respect to the y-axis. 
Intercepts. Setting the numerator equal to zero, we see that the graph off crosses 
the x-axis at the point (0, 0). 
Vertical asymptotes. Setting the denominator equal to zero, we find that x = l 
and x = - l are vertical asymptotes of the graph off. 
Horizontal asymptotes. We note that 

f{x) = ( l )  = 1 '  
x2 1 - - I - -

x2 xi 

x # O  

As lxl gets larger and larger, l/x2 approaches 0 and the values off(x) approach 1 .  
Thus, y = I is the horizontal asymptote. Plotting a few points, we sketch the 
graph of Figure 6. 

x2 y = .xr-=I x 
In  
3/4 

x 
2 

514 
312 
2 

PROGRESS CHECK 
Sketch the graph of the function 

x2 - x - 6 
f(x) = x2 - 2x 

y 

-0.33 
- 1 .29 

2.78 
1 . 80 
1 . 33 



ANSWER 

FIGURE 7 
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y I 
I 
I 
I _ x2 - x  - 6 

I Y - xi - ix 
I 
I 
I 

x 

We conclude this section with an example of a rational function that is not in 
l'educed form, that is, one in which the numerator and denominator have a com
mon factor. 

EXAMPLE 7 
Sketch the graph of the function 

SOLUTION 

x2 - 1 f{x) = -x - 1 

We observe that 

j{x) = :x2 - 1 :::; (x + l )(x - l )  = x + l , x * l x - l x - 1 

Thus, the graph of the function/ coincides with the straight line y = x + 1 ,  with 
the eX:ception that f is undefined when x o= l (Figure 8) .  
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FIGURE 8 

PROGRESS CHECK 

\I 

x2 - I y = -x - 1 

x 

Sketch the graph of the function 

ANSWER 

- 4  

FIGURE 9 

EXERCISE SET 11.5 

8 - 2x2 
.fi.x) = x + 2 

y 

In Exercises 1 -6 detennine the domain of the given function. 
r x - 1 

l .  ft..x) = x - I 
2· ft..x) = r + x - 2 

r +  1 
3 .  g(x) = r - 2x 

8 - 2x2 
x + 2  

4 x 

r + 2  
4. g(x) = r - 2 



x2 - 3 
5. F(x) = x2 + 3 

6. T(x) = 

3x + 2 
2x3 - x2 - x  
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In Exercises 7-2 1  
graph. 

detennine the ve.rtical and horizontal asymptotes of the graph of the given function. Sketch the 

I 
7 .  ftx) = x - 4 

1 1 . 
1 

fix) = (x + 02 

15 .  
fi.x) = 2x2 + 1 

x2 - 4  

19.  
x2 

ffa) = --4x - 4 

8. 

1 2. 

1 6. 

20. 

-2 
ft.x) = --x - 3  

- 1  
fi.x) = x2 + l 

x2 + 1 
fl..x) = x2 + 2x - 3 

x - 1 
.f(x) = 2x3 - 2x 

9. 

1 3. 

17. 

2 1 .  

3 
fi.x) = --. x + 2 

x + 2 
fi.x) = --x - 2 

x2 + 2 fix) = 2x2 - x - 6 

j(x) = 
x3 + 4x2 + 3x 

x2 - 25 

10.  
- 1  

fi.x) = (x - 1 )2 

x 14.  fi.x) = --. x + 2 

18 .  x2 - 1 
ft..x) = --

x + 2  

ln Exercises 22-27 detennine the domain and sketch lhe graph of the reducible function. 

22. fl..x) = � = �� 23. ft.x) = ix:+
-

2
8 

24. fl..x) = 2x2 ;x � i 12 x2 + 2x - 8  
25 . .f(x) = 2x2 

_ 8x + 8 

26 Rx) :: 
X + 2 

• J\ x2 - x - 6 

TERMS AND SYMBOLS 
polynomial function of de

gree n (p.  459) 
polynomial equation of de

gree n (p. 459) 

KEY IDEAS FOR RMEW 

2x 
27. ft.x) = x2 + x 

zeros of a polynomial 
(p. 460) 

synthetic division (p. 462) 
complex conjugate (p. 469) 

0 Polynomial division results in a quotient and a remain
der, both of which are polynomials. Either the remain
der is z.ero or its degree is less than the degree of the 
divisor. 

0 Synthetic division is a quick way to divide a polynomial 
by a first-degree polynomial x - r, where r is a real 
constant. 

0 The zeros of the polynomial P(x) are the roots of the 
equation P(x) = 0. 

0 The following are the primary theorems concerning 
polynomials and their roots; 

Remainder Theorem 

If a polynomial P(x) is divided by x - r, the remainder is 
P(r). 

Factor Theorem 

A polynomial P(x) has a zero r if and only if x - r is_ a 
factor of P(x). 

z (p. 47 1 ) 
zero of multiplicity k 

(p. 474) 
depressed equation 

(p. 475) 
variation in sign (p. 480) 

rational function (p. 489) 
vertical asymptote (p. 490) 
horizontal asymptote 

(p. 490) 

Linear Factor Theorem 

A polynomial P(x) of degree n 2: l can be written as the 
product of n linear factors, 

P(x) = a(x - r1 )(x - r2) • • • (x - r,,) 

where ri .  r2, • • •  , r,, are the complex zeros of P(x) and a 
is the leading coefficient of P(x). 

Fundamental Theorem Of Algebra 

If P(x) is a polynomial of degree n 2 l ,  then P(x) has 
precisely n zeros among the complex numbers when a 
zero of multiplicity k is counted k times. 

Conjugate Zeros Theorem 

If a + bi, b :/: 0, is a zero of the polynomial P(x) with 
real coefficients, then a - bi is also a zero of P(x). 

RationaJ Zero Theorem 

If plq is a rational zero (in lowest terms) of the polyno
mial P(x) with integer coefficients, then p is a factor of 
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the constant tenn a0 of P(x), and q is a factor of the 
leading coefficient an of P(x). 

D U r is a real zero of the polynomial P(x), the roots of the 
depressed equation are the other zeros of P(x). The 
depressed equation can be found by using synthetic divi
sion. 

D Descartes's Rule of Signs tells us the maximum number 
of positive zeros and the maximum number of negative 
zeros of a polynomial P(x) with real coefficients. 

REVIEW �RCISES 

D If P(x) has integer coefficients, the Rational Zero Theo

rem enables us to list all possible rational zeros of P(x). 
Synthetic division can then be used to test these potential 
rational zeros, since r is a zero if and only if the remain· 
der is zero, that is, if and only if P(r) = 0. 

D Always detennine the vertical and horizontal asymp· 
tote of a rational function before attempting to sketch 
its graph. 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 

1 1 .  l ln Exercises l and 2 use synthetic division to find the 17 .  i, -i,  each of multiplicity 2 
quotient Q(x) and the constant remainder R when the 18 .  - 1  of multiplicity 3, 3 of multiplicity I 
first polynomial is divided by the second polynomial . 

I .  2.x3 + .6.x - 4 ,  x - I 
2. x4 - 3x3 + 2x - 5,  x + 2 

.ln Exercises 3 and 4 use synthetic division to find P(2) 
and P(- 1 ) .  

3.  7x3 - 3x2 + 2 4. XS - 4x3 + 2x 

1 1  . 2 In Exercises 5 and 6 use the Factor Theorem to how 
that the second polynomial is a factor of the first poly
nomial. 

5 . 2x4 + 4x3 + 3x2 + 5x - 2, x + 2 

6. 2.x3 - 5x2 + 6x - 2, x - � 
1 1 .3 ln Exercises 7-9 write the given quotient in the fonn 

a +  bi. 

3 - 2i 
1· 4 + 3i 

8 2 + i 
. -5i 

9. 
-5 

) + i 
In Exercises I 0-l 2 write the reciprocal of the given 
complex number in the form a + bi. 

10. l + 3i 1 1 .  -4i 12. 2 - 5i 

ln Exercises 1 3-1 5  find a polynomial of lowest degree 
that has the indicated zeros. 

1 3 .  -3. -2, - 1  

15 .  -2,  ± v1, I 
14 .  3, ± v'=3 

In Exercises J 6-- J 8 find a polynomial that has the indi· 
cated zeros and no others. 

16 .  l of multiplicity 2, - 1  of multiplicity 2 

ln Exercises 19-2 1  use the given root to assist in find
ing the remaining roots of the equation. 

1 9. 2.x3 - x2 - l3x - 6 = O; -2 

20. x3 - 2x2 - 9x + 4 = O; 4 

2 1 .  2x4 - 15x3 + 34x2 - 19x - 20 = O; -1. 
1 1 .4 In Exercises 22-25 use Descarte 's Rule of Signs to 

determine the maximum number of positive and nega· 
tive real roots of the given equation . 

22. x4 - 2x - I = 0 

23. x5 - x4 + 3x3 - 4x2 + x - 5 = 0 

24. x3 - 5 = 0 25. 3x4 - 2x2 + I = 0 

ln Exercises 26-28 find all the rational roots of the 
given equation. 

26. 6x3 - 5x2 - 33x - 18 = 0 

27. 6x4 - 7x3 - !9x2 + 32x - 12 = 0 

28. x4 + 3x3 + 2x2 + x - I = 0 

In Exercises 29 and 30 find all root of the given equa
tion. 

29. 6x3 + 1 5x2 - x - 10 = 0 

30. 2x4 - 3x3 - Jox2 + l 9x - 6 = 0 

1 1 . 5 ln Exercises 3 1  and 32 sketch the graph of the given 
function. 

x 
3 1 .  f(x) = -

x + I  

x2 
32. /(x) = 

x + I 
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l .  Find the quotient and remainder when 2x4 - x2 + I is 
divided by x2 + 2 .  

2 .  Use synthetic division to  find the quotient and remain
der when 3x4 - x3 - 2 is divided by x + 2 .  

3 .  If P(x) = x3 - 2x2 + 7x + 5 ,  use synthetic division to 
find P(-2) .  

4 .  Determine the remainder when 4x5 - 2x4 - 5 is divid
ed by x + 2 .  

5 .  Use the Factor Theorem to show that x - 3 is a factor 
of 2x4 - 9x3 + 9x2 + x - 3 .  

I n  Problems 6 and 7 find a polynomial o f  lowest degree that 
has the indicated zeros. 
6. -2 ,  l ,  3 7 .  - l , l , 3 ± Vz  

In Problems 8 and 9 find the roots of the given equation. 
8 .  (x2 + l )(x - 2) = 0 
9 .  (x + l )2(x2 - 3x - 2) = 0  

In Problems 1 0- 1 2  find a polynomial that has the indicated 
zeros and no others. 
IO .  -3  of multiplicity 2, l of multiplicity 3 
1 1 . -a of multiplicity 2, i, -i ,  I 
1 2 . i, l + i 

PROGRESS TEST 118 
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In Problems 1 3  and 14 use the given root to help in finding 
the remaining roots of the equation. 
1 3 .  4x3 - 3x + I = O; - I 
1 4. x4 - x2 - 2x + 2 = O; 
1 5 .  I f  2 + i i s  a root of x3 - 6x2 + 1 3x - 10  = 0 ,  write 

the equation as a product of l inear and quadratic fac
tors with real coefficients. 

In Problems 16 and 1 7  determine the maximum number of 
roots, of the type indicated, of the given equation. 
1 6. 2x5 - 3x4 + I = O; positive real roots 
1 7 .  3x4 + 2x3 - 2x2  - l = 0 ;  negative real roots 
In Problems 1 8  and 1 9  find all rational roots of the given 
equation. 
1 8 .  6x3 - 1 7x2 + 14x + 3 = 0  

1 9 .  
20. 

2 1 .  

2x5 - x4 - 4x3 + 2x2 + 2x - l = 0 
Find all roots of the equation 

3x4 + 7x3 - 3x2 + 7x - 6 = 0 
x2 + 2 Sketch the graph of the function f(x) = x2 _ 1 

l .  Find the quotient and remainder when 3x5 - x4 - In Problems l 0- 1 2  find a polynomial tha! .1as the indicated 
5x3 - x + l is divided by x2 - x - l .  zeros and no others. 

2 .  Use synthetic division to find the quotient and remain
der when -2x3 + 3x2 - I is divided by x - I . 

3 .  I f  P(x) = 2x4 - 2x3 + x - 4, use synthetic division to 
fad P(- 1 ) .  

4 .  Determine the remainder when 3x4 - 5x3 + 3x2 + 4 
is divided by x - 2 .  

5 .  Use the Factor Theorem to show that x + 2 i s  a factor 
of x3 - 4x2 - 9x + 6. 

In Problems 6 and 7 find a polynomial of lowest degree that 
has the indicated zeros. 
6. -l, I ,  I ,  - I  7 .  2 ,  I ±  v3 

In Problems 8 and 9 find the roots of the given equation . 
8 .  (x2 - 3x + 2)(x - 2)2 = 0 
9 .  (x2 + 3x - l )(x - 2)(x + 3)2 = 0 

1 0. i of multiplicity 3, -2  
1 1 . - 3  of multiplicity 2, I + i, I - i 
1 2 . 3 ± v=J, - I of multiplicity 2 
In Problems 1 3  and 1 4  use the given root(s) to help in find
ing the remaining roots of the equation . 
1 3 .  x3 - x2 - 8x - 4 = 0; - 2  
14 .  x4 - 3x3 - 22x2 + 68x - 40 = O; 2 ,  5 
1 5 .  If I - i i s  a root of 2x4 - x3 - 4x2 + I Ox - 4 = 0, 

write the equation as a product of linear and quadratic 
factors with real coefficients. 

In Problems 1 6  and 1 7  determine the maximum number of 
roots, of the type indicated, of the given equation. 
16 .  3x4 + 3x - I = 0; positive real roots 
1 7 .  2x4 + x3 - 3x2 + 2x + I = O; negative real roots 



In Problems 1 8  and 1 9  find all rational roots of the given 
equation. 
1 8 .  3x3 + 7x2 - 4 = 0 
19 .  4x4 - 4x3 + x2 - 4x - 3 = 0 

20. Find all roots of the equation 
2x4 - x3 - 4x2 + 2x = 0 

2 1 .  Sketch the graph of the function f( x) = x2 � 1 . 



TOPICS IN ALGEBRA 
The topics in this chapter are related in that they all involve the set of natural 
numbers . As you might expect, despite our return to a simpler number system, 
the approach and results will be more advanced than in earlier chapters . For 
example, in discussing sequences, we will be dealing with functions whose 
domain is the set of natural numbers . Yet, sequences lead to considerations of 
series , and the underlying concepts of infinite series can be used as an introduc
tion to calculus. 

Another of the topics ,  mathematical induction, provides a means of proving 
certain theorems involving the natural numbers that appear to resist other means 
of proof. As an example, we will use mathematical induction to prove that the 
sum of the first n consecutive positive integers is n(n + 1 )/2 . 

Yet another topic is the binomial theorem, which gives us a way to expand 
the expression (a + hr where n is a natural number. One of the earliest results 
obtained in a calculus course requires the binomial theorem in its derivation . 

Probability theory , a very useful topic in algebra, enables us to state the 
likelihood of occurrence of a given event and has obvious applications to games 
of chance . The theory of permutations and combinations, which enables us to 
count the ways in which we can arrange a set of objects or select a subset of the 
original set, is necessary background to a study of probability theory. 

PAGE 503 
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12.1 
SEQUENCES AND 
SIGMA NOTATION 

INFINITE SEQUENCES 

Can you see a pattern or relationship that describes this string of numbers? 

1 , 4, 9, 16, 25, . . .  

If we rewrite this string as 

it is clear that these are the squares of successive natural numbers. Each number 
in the string is called a term. We could write the nth term of the list as a function 
a defined by 

a(n) == n2 

where n is a natural number. Such a string of numbers is called an infinite 
sequence, since the list is infinitely long. 

An infinite sequence (often called simply a sequence) is a function who e 
domain is the set of all natural numbers. 

The range of the function a is 

a( l ) ,  a(2), a(3), . . .  , a(n) ,  . . .  

which we write as 

That is, we indicate a sequence by using subscript notation rather than function 
notation. We say that at is the first term of the sequence, a2 is the second term, 

and so on, and we write the nth term as a,. where a,. == a(n) . 

EXAMPLE 1 

Write the first three terms and the tenth term of each of the sequences whose nth 
term is given. 

(a) a,. = n2 + l 

SOLUTION 

(c) a,. = 2" - l 

The first three terms are found by substituting n = l ,  2, and 3 in the formula for 
a,. . The tenth term is found by substituting n = 10. 

(a) Gt = 1 2 + l = 2 a2 = 22 + 1 = 5 a3 = 32 + l = 10 
a10 = 1 02 + I = I O I  

I I 2 2 3 3 
(b) Gt = 1+l" = 2 a2 = 2+l = 3 G3 = J+l = 4 

10 10 
a - - -10 - 10 + 1  

-
1 1  



SUMMATION NOTATION 
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(c) a1 = 2 1 - 1 = 1 a2 = 22 - 1 = 3 a3 = 23 - I = 7 
a '° = 2 10 - 1 = 1023 

PROGRESS CHECK 
Write the first three terms and the twelfth term of each of the sequences whose 
nth term is given. 
(a) an = 3( 1 - n) (b) an '"' n2 + n + 1 (c) a11 = 5 

ANSWERS 
(a) a1 = 0, a2 = - 3 ,  a3 = -6, a12  = - 33 
(b) a 1  '"' 3, ai = 7, a3 = 1 3 ,  a1 2 = 1 57 
(c) a1 = a2 = a3 = a 1 2  = 5 

An infinite sequence is often defined by a formula expressing the nth term 
by reference to preceding terms . Such a sequence is said to be defined by a 
recursive formula. 

EXAMPLE 2 
Find the first four terms of the sequence defined by 

an = an- 1 + 3 with a 1 = 2  and n 2:: 2 

SOLUTION 
Any tenn of the sequence can be obtained if the preceding term is known. Of 
course, this recursive formulation requires a starting point, and we are indeed 
given a 1 •  Then 

PROGRESS CHECK 

a1 = 2 
az = a 1  + 3 = 2 + 3 = 5 
a3 = a2 + 3 = 5 + 3 = 8 

a4 = a3 + 3 = 8 + 3 = 1 1  

Find the first four terms of the infinite sequence 

an = 2an- I - 1 with a1 = - 1  and n 2::: 2 

ANSWER 
- 1 ,  - 3 ,  - 7, - 1 5 

In the following sections of this chapter, we will seek the sum of tenns of a 
sequence such as 

a1  + a2 + a3 + · • + am 
Since sums occur frequently in mathematics, a special notation has been devel
oped that is defined in the following way . 
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Summation Notation m 

2: ak = a l  + az + a3 + · · · + am 
k� I 

This is often referred to as sigma notaijon, since the Greek letter I indicates a 
sum of terms of the form ak. The letter k is caned the index of summation and 
always assumes successive integer vah1es, starting with the value written under 
the l sign and ending with the value written above the 2 sign. 

EXAMPLE 3 

3 4 

Evaluate (a) L 2k(k + 1 )  (b) L: (i2 + 2). 
k= I 

SOLUTION 

(a) The tenns are of the form 

and the sigma notation indicates that we want the sum of the terms a 1 through a3 . 
Forming the tenns and adding, 

3 
L 2k(k + I ) = 2 1 ( 1  + I ) + 22(2 + 1 )  + 23(3 + I )  
k= l  

= 4 + 1 2  + 32 = 48 

(b) Any letter may be used for the index of summation . Here , the letter i is 
used, and 

4 

2: u2 + 2) = <22 + 2) + (32 + 2) + (42 + 2) 
i=2 = 6 + 1 1  + 1 8  = 35 

Note that the index of summation can begin with an integer value other than I . 

EXAMPLE 4 

Write each sum using summation notation . 

1 1 1 1 1 
(a) 2 + 

2 .  2 
+ M + 

2 · 4 
+ �5 

2 3 4 5 
(b) - + - + - + -

3 4 5 6 
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SOLUTION 

(a) The denominator of each term is of tlie form 2 · k, where k assumes integer 
values from l to 5 . Then 

5 l 2: -
k= I  2 ·  k 

expresses the desired sum. 
(b) If the value of the numerator of a tenn is k, then the denominator is k + l .  
Letting k range from 2 to 5, 

5 k 2: -

k=2 k + I 

expresses the desired sum. 

PROGRESS CHECK 
Write each sum using summation notation. 
(a) xt + � + � + · · · + �o (b) 23 + 34 + 45 + 56 

ANSWERS 
20 s 

<a) 2: xt (b) L �+ I 
k= I k=2 

If  a sequence is defined by an = c, where c is a real constant, then 

This leads to the rule: 

For any real con tant c, 

EXAMPLE 5 
20 

Evaluate (a) 2: 5 
j- 1 

r 

L ak = a 1 + a2 + · · · + a, 
k- 1 

= c + c + · · · + c  
= re 

4 
(b) 2: <k2 - 2). 

k= I 
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Properties of Sums 

SERIES 

SOLUTION 
20 

(a) L 5 = 20 · 5 = 100 
j= I 

4 
(b) 2: (k2 - 2) = ( 1 2 - 2) + (22 - 2) + (32 

- 2) + (42 - 2) 

= 
- 1 + 2 + 7 + 14 = 22 

The following are properties of sums expressed in sigma notation. 

For the sequences a i .  a2 , • • .  , and bi . bi • .  

n n n 

(i) L (ak + bk) = L ak + L bk 
k= l k= I k= l  

n n n 

(ii) L (ak - bk) = L ak - L bk 
k= I 

n n 

k= l 

(iii) L cak = c L ak, c a constant 
k= I k= l 

EXAMPLE 6 
4 

Use the propertjes of sums to evaluate L (k.2 - 2) . 
k- 1 

SOLUTION 

Rather than write out the terms as was done in Example 4b, we may write 
4 4 4 4 

2: <k2 - 2) = L: 1c2 - 2: 2 = 2: k2 
- s 

k= I k= l k= I  
= t 2 + 22 + 32 + 42  

- 8 = 30 - 8 = 22 

A sum of terms of a sequence is caHed a series. We denote by Sn the sum of the 
first n terms of an infinite sequence where n is a natural number. Summation 
notation is very useful in handl ing a series. For example, given the sequence 



AREAS BY RECTANGLES 

y, I 
y = x2 

I � 

L 
I '---

A- -l x 
u b 
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Many textbooks introduce the integral calculus by the use of rectangles to ap-
proximate area. In the accompanying figure, we are interested in calculating the 
area under the curve of the function f(x) = x2 that is bounded by the x-axis and 
the lines x = a  and x = b. The interval [a, b] is divided into n subintervals of 
equal width, and a rectangle is erected in each interval as shown. We then seek 
to use the sum of the areas of the rectangles as an approximation to the area 
under the curve. 

To calculate the area of a rectangle, we need to know the height and the 
width. Since the interval (a, b] has been divided into n parts of equal width, we 
see that b - a 

width of rectangle = --n 
Next. note that the height of the rectangle whose left endpoint is at xk is deter-
mined by the value of the function at that point; that is, 

height of rectangle = t(xk) = x� 
The area of a "typical" rectangle is then ( b - a )  ( b - a )  

-n- f(xk) = -n- x� 
and the sum of the areas of the rectangles is neatly expressed in summation 
notat ion by n ( b - a ) ( b - a ) n 2: -- x� = -- L x� 

k=1 n n k� 1  
Intuitively, we see that the greater the number of rectangles, the better our 

approximation will be, and this concept is  pursued in calculus. The student is 
urged to let a = 1 and b = 3 in the accompanying figure and to use the method 
of approximating rectangles with n = 2, n = 4, and n = 8. The exact answer is 26/3 square units, and the approximations improve as n grows larger. 

we have 

and, in general, 

S1 = a 1 

S2 = a 1 + a2 

S3 = a 1 + a2 + a3 

,, 
S,, = L ak = a 1 + a2 + · · · + a,, 

k= I 
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The number Sn is called the nth partial sum, and the numbers 

form a sequence called the sequence of partial sums. This type of sequence is 
studied in calcuJus courses, where methods are developed for analyzing infinite 
series. 

EXAMPLE 7 

Given the infinite sequence 

SOLUTION 

The first four terms of the sequence are 

a 1 = 0 a2 = 3 a3 = 8 a4 = 1 5  

Then the sum S4 is given by 

4 
S4 = L ak = 0 + 3 + 8 + 1 5 = 26 

k= l  

If a series alternates in sign , then a multiplicative factor of ( - I  )k or ( - I )k+ 1 
can be used to obtain the proper sign . For example, the series 

- 1 2 + 22 - 32 + 42 
can be written in sigma notation as 

while the series 

1 2 - 22 + 32 - 42 
can be written as 

4 
2: c - 1 )k+ 1k2 
k= l  

EXAMPLE 8 

The terms of a sequence are of the form ak = Vk, and the terms are negated 
when k is even. Write an expression for the general term a,, and for the sum S,, in 
summation notation . 
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SOLUTION 
1f we multiply each term by ( - l )k+ 1 , then the odd terms wiJl be positive and the 
even terms will be negative. The general term a,, is then 

a,, =  ( - lt+ ty!;; 

and the sequence is 

Vt, -Yl, \13, -\/4, . . .  , ( - l )n+ l\/ii, . . .  
Finally, the sum Sn is given by 

n 
Sn = L ( - l )k+ 1 Vk  

k= I  

EXERCISE SET 12.1 
In Exercises 1 - 1 2  find the first four terms and the twentieth term of the sequence whose nth term is given. 

I .  an =  2n 2. an = 2n + I 3 .  an =  4n - 3 4. an = 3n - I 

I n 
an = Vn 5 .  an =  5 6. an = I - - 7. a = -- 8 .  n n n + I 

n1 - I n1 2n + I 
9 .  an = 2 + 0. 1 n 10 .  a = ---n 

n2 + I 1 1 . a = ---n 
2n + I 1 2 .  an =  _n

_2_ 

In Exercises 1 3- 1 8  a sequence is defined recursively. Find the indicated term of the sequence. 
1 3 .  an =  2an- l - I ,  a , = 2; find a4 

I . 1 5 .  an = , a3 = 2; fmd a6 
an- l + I 

1 7 .  an =  (an- 1 )2 , a , = 2; find a4 

In Exercises 1 9-26 find the indicated sum. 
5 5 

19 .  I (3k - I )  20. I (3 - 2k) 
k� l k� l 

5 4 

23 . 2: -k- 24. I 4(2k) k� 3 k - I k�2 

14 .  an = 3 - 3an- l •  a , = - I ;  find a3 

16 .  an = _
n

_, a2 = I ;  find as 
an - l  

1 8 .  an = (an_ , )"- 1 ,  a , = 2; find a4 

6 4 
2 1 .  I (k2 + I )  22. 

k�o k2: 1 k� l 

4 IO  
25 .  I 20 26. I 50 

1� 1 i= I 

In Exercises 27-36 use summation notation to express the sum. (The answer is not unique . )  
27. 

29. 

3 1 .  

33 .  

35 .  

1 + 3 + 5 + 7 + 9  

I + 4 + 9 + 1 6  + 25 

I I I 
- I + -- -

-- + --

V2 \/3 V4 
I 2 3 4 

--- - --- + ---
-

---

1 2 + I 22 + I 32 + I 42 + I 
I I I I 

I + - + - + - + ·  . .  + -x x2 x3 x'' 

28 .  

30. 

32.  

34. 

36. 

2 + 5 + 8 + 1 1  + 1 4  

I - 4 + 9 - 1 6  + 25 

I I I I 
-- + -- + -- + --
2 · 4  2 · 5  2 · 6  2 · 7 

2 - 4 + 8 - 1 6  

I I I I I 
-- + -- + -- + -- + ·  . .  + --
I ·  2 2 · 3  3 · 4 4 · 5  49 . 50 
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12.2 
AAlfHMEllC 
SEQUENCES 

Arithmetic Sequence 

The sequence 

2, 5, 8, 1 1 ,  14, 1 7 ,  . . .  

is an example of a special type of sequence in which each successive temi is 
obtained by adding a fixed number to the previous term. 

In an arithmetic sequence there is a real number d uch that 

a,. = an- I + d 

for all n > I .  The number d i called the common difference. 

An arithmetic sequence is also called an arithmetic progression. Returnjng to 
the sequence 

2, 5 ,  8, 1 1 , 14 ,  1 7 ,  . . .  

the nth term can be defined recursively by 

a,. = a,,_ 1 + 3 ,  a 1 = 2 

This is an arithmetic progression with the first term equal to 2 and a common 
difference of 3 .  

EXAMPLE 1 
Write the first four terms of an arithmetic sequence whose first term is -4 and 
whose common difference is - 3 .  

SOLUTION 
Beginning with -4, we add the common difference -3 to obtain 

-4 + ( - 3) = -7 -7 + ( - 3) = - w - w + ( - 3) = - 1 3 

Alternatively, we note that the sequence is defined by 

a,. = a,._ 1 - 3, a 1 :...: -4 

which leads to the terms 

a 1 = -4, a2 = -7,  a3 = - 10, a4 = - l 3 

PROGRESS CHECK 
Write the first four terms of an arithmetic sequence whose first term is 4 and 
whose common difference is -!.  
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EXAMPLE 2 

Show that the sequence 

an = 2n - 1 

is an arithmetic sequence , and find the common difference. 

SOLUTION 

We must show that the sequence satisfies 

all - an- I =  d 

for some real number d. We have 

an = 2n - 1 
an- I  = 2(n - 1 )  - 1 = 2n - 3 

so 

an - an- I = 2n - 1 - (2n - 3) = 2 

This demonstrates that we are dealing with an arithmetic sequence whose com
mon difference is 2 .  

For a given arithmetic sequence, i t ' s  easy to find a formula for the nth term 
all in terms of n and the first term a 1 .  Since 

a1 = a1 + d 

and 

we see that 

a3 = (a 1  + d) + d = a 1  + 2d 

Similarly ,  we can show that 

In general, 

a4 = a3 + d = (a 1  + 2d) + d = a1 + 3d 
a5 = a4 + d = (a1  + 3d) + d = a1 + 4d 

The nth term a,, of an arithmetic sequence is given by 

a,, = a 1 + (n - l )d 
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EXAMPLE 3 
Find the seventh tenn of the arithmetic progression whose first term is 2 and 
whose common difference is 4. 

SOLUTION 
We substitute n = 7 ,  a1 = 2 ,  d = 4 in the formula 

an = a I + (n - 1 )d 

obtaining 

a1 = 2 + (7 - l )4 = 2 + 24 = 26 

PROGRESS CHECK 
Find the 1 6th term of the arithmetic progression whose first term is -5 and 
whose common difference is ! . 
ANSWER 
5 

2 

EXAMPLE 4 
Find the 25th term of the arithmetic sequence whose first and 20th terms are -7 
and 3 1 ,  respectively. 

SOLUTION 
We can apply the given information to find d. 

an = a ,  + (n - l )d 
a20 = a 1 + (20 - l )d 
3 1  = -7 + 19d 
d = 2  

Now we use the formula for an to find a25 . 

PROGRESS CHECK 

a,, = a 1 + (n - l )d 
a2s = -7 + (25 - 1 )2 

a25 = 4 1  

Find the 60th term of the arithmetic sequence whose first and 1 0th term are 3 
and -i. respectively. 

ANSWER 
53 

2 
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Arithmetic Serles 
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The series associated with an arithmetic sequence is called an arithmetic series. 

Since an arithmetic sequence has a common difference d, we can write the nth 
partial sum S,, as 

Sn = a 1 + (a 1 + d) + (a 1 + 2d) + · · · + (an - 2d) + (a11 - d) + an ( 1 )  

where we write a2 , a3 , . . .  in terms of a 1 and w e  write an- I •  an_2 , . . .  in terms 
of an. Rewriting the right-hand side of Equation ( 1 )  in reverse order, we have 

S,, = an + (a,, - d )  + (an - 2d) + · · · + (a 1 + 2d ) + (a 1 + d) + a 1 (2) 

Summing the corresponding sides of Equations ( I )  and (2) , 

Thus, 

2S,, = (a 1 + an) + (a 1 + an) + (a 1 + an) + · · · 
= n(a 1 + an) 

Since an = a 1 + (n - l )d, we see that 

n 

Repeated n times 

Sn = 2[a1 + a 1 + (n - l )d] Substituting for an 

n 
= 2[2a 1 + (n - l )d] 

We now have two useful formulas. 

For an arithmetic series, 

n Sn = �2a1 + tn - l )d] 

The choice of which fonnula to use depends on the available information. The 
following examples illustrate the use of the formulas. 

EXAMPLE 5 

Find the sum of the first 30 terms of an arithmetic equence whose first term is 
- 20 and whose common difference is 3 .  
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SOLUTION 

We know that n = 30, a1 = -20, and d = 3. Substituting in 

n 
S,, = �2a 1 + (n - l )d] 

we obtain 

30 
S30 = 2[2(-20) + (30 - 1 )3] 

= 15(-40 + 87) 
= 705 

PROGRESS CHECK 

Find the sum of the first 1 0 terms of the arithmetic sequence whose first term is 
2 and whose common difference is -!. 
ANSWER 
5 
2 

EXAMPLE 6 

The first term of an arithmetic series is 2 , the last term is 58, and the sum is 450. 
Find the number of terms and the common difference. 

SOLUTION 

We have a 1 = 2, an = 58, and Sn = 450. Substituting in 

we have 

Now we substitute in 

450 = ; (2 + 58) 

900 = 60n 

n = 1 5 

an = at + ( n  - l )d 
58 = 2 + ( l 4)d 
56 = 1 4d  

d = 4  
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PROGRESS CHECK 
The first term of an arithmetic series is 6, the last term is 1 ,  and the sum is 7712. 
Find the number of term and the common difference. 

ANSWER 

n = l l ,  

EXERCISE SET 12.2 

I 
d = --

2 

Write the next two terms of each of the following arithmetic sequences. 
I .  

3 .  

5 .  

7 .  

3 ,  6, 9, 12, . . .  
I I 3 0· 4· 2· 4· · · 

0, log 10 ,  log 1 00. log 1 000, . . .  
Vs - 2,  Vs, Vs + 2 ,  Vs +  4, . 

2 .  

4 .  

6. 

8. 

2, -2 ,  -6, - 10, . . .  
y - 4, y,  y + 4, y + 8, . . 

1 1  1 7  4, 2, 7· 2· · · ·  
1 2, 8, 4, 0, . . .  

Write the first four terms of the arithmetic sequence whose first term is a 1  and whose common difference is d. 
9. a1 = 2, d = 4 

I 1 1 . a1 = 3 d = --, 2 

10 .  a1 = -2, d = -5 
I 

1 2 .  a 1  = - d = 2 2 ' 
5 14. a 1 = 6 d = -' 2 

Find the specified term of the arithmetic sequence whose first term is a1 and whose common difference is d. 

15 .  a 1  = 4, d = 3 ;  8th term 

1 7 .  a 1 = 1 4 ,  d = - 2; 1 2th term 

I 1 6. a1 = -3 ,  d = 4; 14th term 

I 1 8 .  a1 = 6, d = -3; 9th term 

Given two terms of an arithmetic sequence, find the specified term. 

1 9. a1 = -2 ,  a20 = -2; 24th term 

2 1 .  

23. 

a1 = 0, a6 1 = 20; 20th term 
I a, = -4. a4 1 = 10; 22nd term 

20. I 
a 1 = 2' a 12 = 6; 30th term 

22. a 1  = 23, a 1 5 = - 19; 6th term 

24. a 1  = -3 ,  a 1s = 65 ; 30th term 

Find the sum of the specified number of terms of the arithmetic sequence whose first term is a1 and whose common 
difference is d. 

25 . 

27. 

29. 

a1 = 3 ,  d = 2; 20 terms 

I 
a = - d = - 2 · I 2 ,  , 1 2  terms 

a1 = 82, d = -2;  40 terms 

26. 

28. 

30. 

I 
a = -4 d = -· 24 terms I ' 2 ' 

I 
a = -3  d = --· I ' 3 ' 1 8  terms 

a 1 = 6, d = 4; 1 6  terms 
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3 1 .  How many terms of the arithmetic progression 2 ,  4, 6 ,  
8 ,  . . .  add up to 930? 

32. How many terms of the arithmetic progression 44, 4 1 ,  
38, 35, . . .  add up to 340? 

33. The first term of an arithmetic series is 3 ,  the last term 
is 90, and the sum is 1 395 . Find the number of terms 
and the common difference. 

34. The first term of an arithmetic series is - 3, the last 
term is t and the sum is -3 .  Find the number of 
terms and the common difference. 

35 . The first term of an arithmetic series is � . the last term 
is t, and the sum is ¥ . Find the number of terms and 
the common difference. 

12.3 
GEOMETRIC 
SEQUENCES 

The sequence 

36. The first term of an arithmetic series is 20, the last 
term is - 14,  and the sum is 54. Find the number of 
terms and the common difference. 

37. Find the sum of the first 1 6  terms of an arithmetic 
progression whose 4th and 10th terms are -i and !, 
respectively. 

38 . Find the sum of the first 12 terms of an arithmetic 
progression whose 3rd and 6th terms are 9 and 1 8 ,  
respectively. 

39. Show that the sum of the first n natural numbers is 
n(n + 1 )/2. 

40. Show that 
I + 3 + 5 + · · · + (2n - 1 )  = n2 

3 ,  6, 1 2 ,  24 , 48 , . . .  

in which each term after the first is obtained by multiplying the preceding one by 
2, is an example of a geometric sequence . 

Geometric Sequence In a geometric sequence there is a real number r such that 

for an n > 1 .  The number r is called the common ratio. 

A geometric sequence is also called a geometric progression. The common ratio 
r can be found by dividing any term ak by the preceding term, ak- I · 

In a geometric sequence, the common ratio r is given by 

Let's  look at successive terms of a geometric sequence whose first term is a 1 
and whose common ratio is r. We have 

a2 = ra 1 

a3 = ra2 = r(ra 1 ) = r2a 1 

a4 = ra3 = r(r2a 1 ) = r3a 1  



FIBONACCI ·COUNTS 
THE RABBITS 

Month Pairs of Rabbits 
0 P1 
1 P1 
2 P1 -+  P2 
3 P1 -+ P3 P2 
4 P1 -+ P4 P2 -+ Ps 

P3 
5 P1 -+ Pa P2 -+P1 

P3 -+ Pa P4 Ps 
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Here is a problem that was first publ ished in the year 1 202. 
A pair of newborn rabbits begins breeding at age one month and thereafter 
produces one pair of offspring per month. If we start with a newly born pai r 
of rabbits, how many rabbits will there be at the beginning of each month? 

The problem was posed by Leonardo Fibonacci of Pisa, and the resulting se
quence is known as a Fibonacci sequence. 

The accompanying figure helps in analyzing the problem. At the beginning 
of month zero, we have the pair of newborn rabbits P1 . At tile beginning of month 
1 ,  we still have the pair P1 , since the rabbits do not breed until age 1 month. At 
the beginning of month 2, the pair P1 has the pair of offspring P2. At the begin
ning of month 3, P1 again has offspring, P3, but P2 does not breed during its first 
month. At the beginning of month 4, P1 has offspring P4, P2 has offspring P5, and 
P3 does not breed during its first month. 

If we let an denote the number of pairs of rabbits at the beginning of month 
n, we see that 

80 = 1 ,  a1 = 1 ,  82 = 2, a3 = 3, 84 = 5, 8s = 8, . . .  

The sequence has the interesting property that each term is the sum of the two 
preceding terms; that is. 

Strange as it seems, nature appears to be aware of the Fibonacci sequence. For 
example, arrangements of seeds on sunf lowers and leaves on some trees are 
related to Fibonacci numbers. Stranger still, some researchers believe that 
cycle analysis, such as analysis of stock market prices, is also related in some 
way to Fibonacci numbers. 

The pattern suggests that the exponent of r is one less than the subscript of a in 
the left-hand side. 

The nth tenn of a geometric sequence is given by 

Once again, mathematical induction is required to prove that the formula holds 
for all natural numbers . 

EXAMPLE 1 

Find the seventh term of the geometric sequence -4, -2,  - 1 ,  . . . .  

SOLUTION 

Since 
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GEOMETRIC MEAN 

we ee that 

a3 - 1  1 
r = - = -- = -

a2 - 2  2 

Substituting a 1  = -4, r = t and n = 7 ,  we have 

an = a1r'1- • 

PROGRESS CHECK 

( 1 )7- 1 ( l )6 
a1 = (-4) 2 = (-4) 2 

= (-4)
( � ) = -i-

Find the sixth term of the geometric sequence 2,  -6, 1 8, . . . .  

ANSWER 

-486 

In a geometric sequence, the terms between the first and last terms are called 
geometric means. We will illustrate the method of calculating such means. 

EXAMPLE 2 

Insert three geometric means between 3 and 48. 

SOLUTION 
The _geometric sequence must look like this. 

Thus, a1 = 3, a5 = 48, and n = 5 . Substituting in 

48 = 3r4 

r4 
= 1 6  

r = ±2  

Thus there are two geometric sequences with three geometric means between 3 
and 48 . 

3 ,  6, 1 2 ,  24 , 48 , . . . r = 2 
3 ,  - 1 6, 1 2 ,  -24,  48, . . . r = - 2  



GEOMETRIC SERIES 

Geometric Serles 
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PROGRESS CHECK 
Insert two geometric means between 5 and /s. 
ANSWER 

4 2. 5 

If a i .  a2 , . . . is a geometric sequence, then the nth partial sum 

( 1 )  

is called a geometric series. Since each term of the series can be rewritten as 
ak = a 1,;<-

1
, we can rewrite Equation ( 1 )  as 

Sn = a , + a , r  + a 1r2 + · · · + a 1�
- 2  

+ a 1�
- I  

Multiplying each term in Equation (2) by r, we have 

rS,, = a 1 r  + a 1r2 + a 1r3 
+ · · · + a ,�-

I 
+ a 1� 

Subtracting Equation (2) from Equation (3) produces 

rS,. - S11 = a ,� - a 1  

(r - l )S,, = a 1 (r" - 1 )  

a 1 (r" - 1 )  
Sn = ---

r - I 

Factoring 

Dividing by r - 1 
(if r ?"' 1 )  

(2) 

(3) 

Changing the signs in both the numerator and the denominator gives us the 
fol lowing formula for the nth partial sum. 

In a geometric serie with fir t term a 1 and common ratio r � l , 

EXAMPLE 3 

a 1 ( 1 - r") Sn =
----1 - r 

Find the sum of the first six terms of the geometric equence whose first three 
term are l 2 ,  6, 3 .  

SOLUTION 
The common ratio can be found by dividing any term by the preceding term. 

ak a2 6 I r = -- = - = - = -
ak- I a , 1 2  2 
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Substituting a 1 = 12 ,  r = !, n = 6 in the fommla for Sm we have 

1 89 :::: --8 

PROGRESS CHECK 
Find the sum of the first five terms of the geometric sequence whose first three 
terms are 2, -!. H. 
ANSWER 

1 10 
8 1  

EXAMPLE 4 
A father promises to give each child 2 cents on the first day and 4 cents on the 
second day and to continue doubling the amount each day for a total of 8 days. 
How much will each child receive on the· last day? How much will each child 
have received in total after 8 days? 

SOLUTION 
The daily payout to each child forms a geometric sequence 2, 4, 8, . . . with 
a1 = 2 and r = 2. The term a8 is given by substituting in 

an :::: a , r'r- 1 
a8 = a1r8- 1 = 2 · 27 = 256 

Thus, each child will receive $2.56 on the last day. The total received by each 
child is given by 

a1 ( 1  - �) 
Sn = ----1 - r 

a 1 ( 1  - r8) 2( 1 - 28) 
Ss = 

l - r l - 2 

= 
2( 1 - 256) 

= 5 10 
- 1  

Each child will have received a total of $5 . I O  after 8 days. 

PROGRESS CHECK 
A ball is dropped from a height of 64 feet. On each bounce, it rebounds half the 
height it fell (Figure 1 ) .  How high is the ball at the top of the fifth bounce? What 
is the total distance the ball has traveled at the top of the fifth bounce? 



FIGURE 1 

INFINITE GEOMETRIC 
SERIES 

ANSWER 
2 feet; 1 86 feet 

I 
I 

I 

I 

I 
I 

I 
I 
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-
--

-

_
_

_ -€) 

We now want to focus on a geometric series for which 1r1 < 1 ,  say 

1 1 1 1 
- + - + - + · · · + - + · · ·  
2 4 8 2n 

To see how the sum increases as n increases ,  let 's form a table of values of Sn -

·- -

2 3 4 5 6 7 8 9 

.750 0 .875 0 .938 0 .969 0.984 0.992 0.996 0.998 

We begin to suspect that Sn gets closer and closer to 1 as n increases. To see that 
this is really so, let 's  look at the formula 

a1 ( 1  - r") s =
----n 

1 - r 
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Sum of an Infinite 
Geometric Series 

when lrl < I .  When a number r that is less than 1 in absolute value is raised to 
higher and higher positive integer powers , the absolute value of r" gets smaller 
and smaller. Thus, the term r" can be made as smaJl as we like by choosing n 
sufficiently large. Since we are dealing with an infinite series, we say that " r'' 
approaches zero as n approaches infinity . "  We then replace r" with 0 in the 
formula and denote the sum by S. 

The sum S of the infinite geometric series 

given by 

00 

L a 1 1'  = a 1 + a ir + a 1 12  + · · · + a 1r" + · · · 
kaO 

S = _a_, - when Ir! < I 1 - r 

Applying this formula to the preceding series, we see that 

1 
2 

S = -- = I  I 
1 - -2 

which justifies the conjecture resulting from the examination of the above table. 
It is appropriate to !'emark that the ideas used in deriving the formula for an 
infinite geometric series have led us to tile very border of tile beginning concepts 
of calcuJus. 

EXAMPLE 5 
Find the sum of the infinite geometric series 

SOLUTION 

3 2 4 
- + 1 + - + - + · ·

· 

2 3 9 

The common ratio r = ! . The sum of the infinite geometric series, with lrl < I ,  
is given by 

3 

S = _a_1_ = __ 2 __ = -2_ 
l - r 2 2 

l - -
3 



12.3 GEOMETRIC SEQUENCES 525 

PROGRESS CHECK 
Find the sum of the infinite geometric series 

ANSWER 

1 6  

5 

The notation 

I 1 
4 - 1 + - - - + · · ·  

4 1 6  

0.6525252 

indicates a repeating decimal with a pattern in which 52 is repeated indefinitely . 
Every repeating decima1 can be written as a rational number. We will apply the 
formula for the sum of an infinite geometric series to find the rational number 
equal to a repeating decimal. 

EXAMPLE 6 
Find the rational number that is equal to 0.6525252. 

SOLUTION 
Note that 

0.6525252 = 0.6 + 0.052 + 0.00052 + 0.0000052 + . . .  

We treat the sum 

0.052 + 0 .00052 + 0.0000052 + . . .  

as an infinite geometric series with a = 0.052 and r = 0.0 1 . Then 

S = _a_ = 0 .052 

1 - r 1 - 0.01  

0.052 52 
= -- = --

0.99 990 

and the repeating decimal is equal to 

52 6 52 646 323 
0.6 + -- = - + -- = -- = --

990 ] Q  990 990 495 

PROGRESS CHECK 
Write the repeating decimal 2 .545454 as a rational number. 

ANSWER 
252 

99 
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EXERCISE SET 12.3 
In Exercises 1 -6 find the next term of the given geometric sequence . 
I .  3 ,  6, 1 2, 24, . 2 .  

9 27 3 .  -4, 3 ,  4 '  1 6  • .  

4. 

5 .  1 . 2 ,  0 .24, 0.048 , . 6 .  

-4, 1 2 ,  -36, 
I 2 ,  - I  -, 2 , 

I I 
8' 2' 2 ,  8 , . 

1 08 ,  . 
I 
4 , .  

In Exercises 7-1 2  write the first four terms of the geometric sequence whose first term is a 1 and whose common ratio is r. 

7. a1 = 3, r = 3 8 .  a1 = -4. r = 2 9 .  

1 2 . 

I 
a1 = 4 r = -, 2 10 .  3 

a1 = 1 6  r = --' 2 

In Exercises 1 3-24 use the information given about a geometric sequence to find the requested item . 

1 3 .  

1 5 .  

1 7 .  

1 9 .  

2 1 . 

23 . 

25. 

26. 

27. 

28. 

a1 = 3 ,  r = -2; find a8 

a1 = 1 6 ,  a2 = 8; find a7 

3 l f d a1 = , as = 27; m a7 

1 6  3 
a1 = Sl' a6 = 2; find a8 

a2 = 4, a8 = 256; find r 

a1 = +, r = 2 ,  an = 32; find n 

. 1 Insert two geometnc means between 3 and 9 .  

Insert two geometric means between -3 and 192 .  
. b I Insert two geometnc means etween I and 64· 

2 32 Insert three geometric means between 3 and 243 . 

14 .  

16 .  

1 8 . 

20. 

22 

24. 

I . 
a1 = 1 8 ,  r = -2; fmd a6 

a1 = 1 5 ,  a2 = - 10; find a6 

I . 
a1 = 2 ,  a6 = 16; fmd a3 

I . 
a4 = 4, a7 = I ;  fmd r 

a3 = 3, a6 = -8 1 ;  find a8 

a1 = -2 ,  r =  3, an = - 162; find n 

In Exercises 29-32 find the requested partial sum for the geometric sequence whose first three terms are given. 

29. 

3 1 .  

1 . 3 ,  I ,  3; fmd S7 

6 1 2  -3  - -- · find S5 , 5 , 25 , . 

30. 

32. 

1 . 3, I ,  3; fmd S6 

4 8 . 2, 3• 9; fmd s6 

In Exercises 33-36 use the information given about a geometric sequence to find the requested partial sum. 

33 .  a1 = 4, r = 2; find Ss 

35 . a1 = 2, a4 = - 5
8
4 ; find S5 

34. 

36. 

1 . 
a1 = -2, r = -3 ;  fmd 510  



37. 

[ill] 38. 

A Christmas Club calls for savings of $5 in January, � 39. 
and twice as much in each successive month as in theLJ 
previous month. How much money will have been 
saved by the end of November? 

A city had 20,000 people in 1 980. If the population 
increases 5% per year, how many people will the city 
have in 1990? 

lliil40. 
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A city had 30,000 people in 1 980 . If the population 
increases 25% every I O  years , how many people will 
the city have in the year 20 IO? 
For good behavior a child is offered a reward consist
ing of I cent on the first day, 2 cents on the second 
day, 4 cents on the third day, and so on . If the child 
behaves properly for two weeks, what is the total 
amount that the child will receive? 

Evaluate the sum of each infinite geometric series . 

4 1 . 

43. 

45 . 

I I I l + - + - + - + · · ·  2 4 8 
1 1 I ) - - + - - - + . . . 
3 9 27 
1 1 1 2 + - + - + - +  . . . 
2 8 32 

4 1 I 1 42. - + - + - + - +  . . . 
5 5 20 80 
1 1 1 I 44. - - - + - - - + . . . 
2 4 8 1 6  

46. 1 + 0. 1 + 0.01 + 0.001  + . . .  

47 . 0.5 + (0.5)2 + (0.5)3 + (0.5)4 + . . .  2 4 8 1 6  
48. - + - + -- + -- + . . .  

5 25 1 25 625 

49. 

50. 
5 1 .  
52. 
53. 

1 2 4 8 - - - + - - - + " · 
3 9 27 8 1  
Find the rational number equal to 3 . 6666. 
Find the rational number equal to 0 .3676767. 
Find the rational number equal to 4 . 1 4 14 14 .  
Find the rational number equal to 0.325325 . 

12.4 

MATHEMATICAL 
INDUCTION 

Mathematical induction is a method of proof that serves as one of the most 
powerful tools available to the mathematician . Viewed another way, mathemati
cal induction is a property of the natural numbers that enables us to prove theo
rems that would otherwise appear unmanageable . 

We begin by considering the sums of consecutive odd integers 

I = I 
1 + 3 = 4 

1 + 3 + 5 = 9  

1 + 3 + 5 + 7 = 16  

1 + 3 + 5 + 7 + 9 = 25 

We instantly recognize that the sequence 

1 ,  4, 9, 16 ,  25 

consists of the squares of the integers 1 ,  2, 3, 4,  and 5. Is this coincidental or do 
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Principle of 
Mathematical Induction 

we have a general rule? ls the sum of the first n consecutive odd integers always 
equal to n2? Curiosity leads us to try yet one more case . 

1 + 3 + 5 + 7 + 9 + 1 1  = 36 = 62 

Indeed, the sum of the first six odd integers is 62 • This strengthens our suspicion 
that the result may hold in general , but we cannot possibly verify a theorem for 
all positive integers by testing one integer at a time. At this point we need to tum 
to the principle of mathematical induction. 

If a statement involving a natural number n 
(I) is true when n = 1 and 
(II) whenever it is true for n = k, is also true for n = k + I , 
then the statement is true for all positive integer values of n.  

Let's examine the logic of the principle of mathematical induction. Part (l )  
says that we must verify the statement for n = I .  Then, by Part ( I I ) ,  the state
ment is also true for n = 1 + l = 2. But Part (II) then implies that the statement 
must also be true for fl = 2 + 1 = 3 ,  and so on. The effect is similar to an 
endless string of dominoes whereby each domino causes the next to fall .  Thus, it 
is plausible that the principle has established the validity of the statement for all 
positive integer values of n.  

We outline the steps involved in  applying the principle of mathematical 
induction in the following example. 

EXAMPLE 1 
Prove that the sum of the first n consecutive integers is given by fl(n + 1 )/2. 

SOLUTION 

Mathematical Induction 

Step 1 .  Verify that the statement i true for n = I .  Step 1 .  The "sum" of the first integer is l .  Evaluat
ing the formula for n = I yields 

l ( l  + 1 )  = � = I 
2 2 

which verifies the formula for fl = l .  



Step 2 .  A ume the statement is true for n = k. 
Show it is true for n = k + 1 .  

EXAMPLE 2 
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Step 2 .  For n = k we have 

k(k + l )  l + 2 + 3 + · · · + k = .....;,,----"-2 
Adding the next consecutive integer, k + 1 ,  to both 
sides, we obtain 

k(k + l )  
1 + 2 + . . .  + k + (k + l )  = 

2 + (k + l )  

"" (k + l )( � + 1) 
( k + 2 ) = (k + 1 )  -2-

1 
= -(k + 1 )(k + 2) 2 

Thus, the formula holds for n = k + l .  By the prin
c iple of mathematical induction, it is then true for all 
positive integer values of n.  

Prove that the sum of the first n consecutive odd integers is given by n2 . 

SOLUTION 
To verify the formula for n = I ,  we need only observe that I = 1 2 . 

The fol lowing table shows the correspondence between the natural numbers 
and the odd integers . We see that when n = k, the value of the nth consecutive 

n 

nth odd 
integer 

L - -- --
2 3 

3 5 

·-- --- -�---

4 k 

7 2k - I 

odd integer is 2k - I .  Since the formula is assumed to be true for n = k, we have 

I + 3 + 5 + · · · + (2k - I ) = k2 

Adding the next consecutive odd integer, 2k + I ,  to both sides, we obtain 

I + 3 + · · · + (2k - I )  + (2k + I )  = k2 + (2k + I )  
or 

I + 3 + · · · + (2k + I )  = (k + I )2 
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Thus, the sum of the first k + 1 consecutive odd integers is (k + 1 )2 . By the 
principle of mathematical induction, the formula is true for all positive integer 
values of n .  

The student should be  aware that many of  the theorems that were used in 
this book can be proved formally by using mathematical induction. Here is an 
example of a basic property of positive integer exponents that yields to this type 
of proof. 

EXAMPLE 3 

Prove that (xyt ;:::; x'y" for all positive integer values of n.  

SOLUTION 
For n = 1 ,  we have 

which verifies the validity of the statement for n = I . Assuming the statement 
holds for n = k, we have 

(xy)k = xkl 

To show that the statement holds for n = k + I ,  we write 

(xy)k + 1 = (xy)k(xy) 

= (�/)(xy) 

= (xkx)(/y) 

= �+ 1/+ 1 

Definition of exponents 

Statement holds for n = k 
Associative and commutative laws 

Definition of exponents 

Thus , the statement holds for n = k + I ,  and by the principle of mathematical 
induction the statement holds for all integer values of n .  

EXERCISE SET 12.4 
In Exercises 1 - 1 0 prove that the statement is true for all positive integer values of 11 by using the principle of mathematical 
induction. 

I .  2 + 4 + 6 + · · · + 211 = 11(11 + 1 )  

2.  11(211 + 1 )(211 - 1 )  1 2 + 32 + 52 + . . .  + (211 - 1 )2 = -------
3 

11(3n + 1 )  3 .  2 + 5 + 8 + · · · + (3n - 1 )  = 2 
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4. 4 + 8 +  1 2 + · · · + 4n = 2n(n + I )  

5 .  

6 .  

7 .  

8 .  

9 .  

10. 

511(11 + I )  5 + 1 0  + 1 5  + · · · + 5n = ----
2 

n(n + 1 )(2n + I )  1 2 + 22 + 32 + . . .  + 112 = ------
6 

n(n + 1 )(11 + 2) I · 2 + 2 · 3 + 3 · 4 + · · · + n(n + I )  = ------
3 

112(11 + 1 )2 1 3 + 23 + 33 + . . .  + n3 = ----4 
I + 5 + 9 + · · · + (4n - 3) = n(2n - I )  (�)" 

= � y y" 

1 1 .  Prove that the nth term a11 of an arithmetic progression 
whose first term is a 1 and whose common difference 
is d is given by a,, = a 1 + (n - l )d. 

14. 

1 5 .  

Prove that a + ar  + ar2 + · · · + ar"- 1 = a( \ - r") . 1 - r 
Prove that x" - I is divisible by x - I ,  x op I .  [Hint: 

12 .  Prove that the nth term a11 of  a geometric progression 
whose first term is a 1 and whose common ratio is r is 
given by a,, = a 1r"- 1 • 1 6 .  

Recall that divisibility requires the existence of  a poly
nomial Q(x) such that x" - I = (x - l )Q(x) . ] 
Prove that x" - y" is divisible by x - y, x op y.  

[Hint: Note that x'' + 1 - y"+ 1 = (x"+ 1 - xy") + 
(xv" - y"+ 1 ) . ]  

1 3 .  Prove that 2 + 2 2  + 2 3  + · · · + 2" = 211 +  1 - 2 .  

12.5 
THE BINOMIAL 
THEOREM 

By sequential multiplication by (a + b) you may verify that 

(a + b) 1 = a +  b 
(a + b)2 = a2 + 2ab + b2 
(a + b)3 = a3 + 3a2h + 3ab2 + h3 
(a + b)4 = a4 + 4a3h + 6a2b2 + 4ab3 + b4 
(a + b)5 = a5 + 5a4h + I Oa3b2 + I Oa2h3 + 5ab4 + b5 

The expression on the right-hand side of the equation is called the expansion of 
the left-hand side . If we were to predict the form of the expansion of (a + b)" , 
where n is a natural number, the preceding example would lead us to conclude 
that it has the following properties. 
(a) The expansion has n + 1 terms. 
(b) The first term is a" and the last term is b" . 
(c) The sum of the exponents of a and b in each term is n .  
(d) In each successive term after the first, the exponent of a decreases by 1 ,  and 
the exponent of b increases by 1 . 
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( e) The coefficients may be obtained from the following array , which is known 
as Pascal's triangle. Each number, with the exception of those at the ends of the 
rows, is the sum of the two nearest numbers in the row above . The numbers at 
the ends of the rows are always I . 

4 
5 

2 
3 3 

6 
1 0  1 0  

4 
5 

Pascal ' s  triangle is not a convenient means for determining the coefficients of 
the expansion when n is large. Here is an alternative method. 
(e' )  The coefficient of any term (after the first) can be found by the following 
rule: In the preceding term, multiply the coefficient by the exponent of a and then 
divide by one more than the exponent of b.  

EXAMPLE 1 

Write the expansion of (a + b)6. 

SO UTION 
From Property (b) we know that the first term is a6 . Thus, 

(a + b)6 = a6 + · · · 
From Property (e') the next coefficient is 

I · 6  
- = 6  

I 

(since the exponent of b is 0) . By Property (d) the exponents of a and b in this 
term are 5 and l ,  respectively , so we have 

(a + b)6 = a6 + 6a5b + · · · 
Applying Property (e') again, we find that the next coefficient is 

6 · 5  
- = 1 5 2 

and by Property (d) the exponents of a and h in this term are 4 and 2 ,  respec
tively. Thus, 

(a + b)6 = a6 + 6a5b + 1 5a4b2 + · · · 
Continuing in this manner, we see that 

(a + b)6 = a6 + 6a5b + 1 5a4b2 + 20a3b3 + 1 5a2h4 + 6ab5 + h6 
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PROGRESS CHECK 

Write the first five terms in the expansion of (a + b) 10 • 

ANSWER 

a10 + 1 0a9b + 45a8b2 + J 20a7b3 + 2 10a6b4 

The expansion of (a + b)" that we have described is called the binomial 

theorem or binomial formula and can be written 

11 11(11 - I )  a"-2b2 + n(n - I )(n - 2) 0,,_3b3 (a +  b)" = a" + -a"- 1 b  + ---. 
I l · 2  I · 2 · 3  

11(11 - I )(11 - 2) • • • (n - r + 1 )  + . . . + a"-rbr + . . . + b" I ·  2 · 3  · . . r 

The binomial formula can be proved by the method of mathematical induction 
discussed in the preceding section . 

EXAMPLE 2 

Find the expansion of (2.x - 1 )4. 

SOLUTION 
Let a = 2.x, b = - 1 , and apply the binomial formula. 

4 4 · 3  (2.x - 1 )4 = (2.x)4 + -:-(2x)3( - l )  + -(2.x)2( - 1 )2 
I I · 2  

PROGRESS CHECK 

4 · 3 · 2  + (2.x)( - I )3 + ( - I )4 
I · 2 · 3  

1 6x4 - 32.x3 + 24x2 - 8x + l 

Find the expansion of (x2 - 2)4 . 
ANSWER 

x8 - 8x6 + 24x4 - 32.x2 + 16 

Note that the denominator of the coefficient in the binomial formula is always the 
product of the first n natural numbers. We use the symbol n ! ,  which is read as n 
factorial, to indicate this type of product. For example, 

4! = 4 .  3 . 2 . l = 24 
6! = 6 . 5 .  4 .  3 . 2 . 1 = 720 
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I 
n Factorial 

and, in general , 

n l = n(n - I )(n - 2) • • · 4 • 3 · 2 • I 

Since 

(n - l ) ! = (n - l )(n - 2)(n - 3) · · · 4 · 3 · 2 · l 

we see that for n > l 

n! = 11(11 - I ) ! 

For convenience , we define O! by 

O!  = l 

EXAMPLE 3 
Evaluate each of the folfowi"ng. 

5 !  
(a) -

3 !  

Since 5 ! = 5 · 4 · 3 !  we may write 

9 !  9 .  8 !  
(b) - = -- = 9 

8 !  8 !  

1 0 ! 4 !  

5 !  5 . 4 .  3 !  

3 !  3 !  

(c) 
1 0 !4 !  

1 2 ! 1 2  · 1 1 · 1 0 !  

4 !  

1 2  · 1 1  

= 5 .  4 = 20 

4 · 3 · 2 · I 

1 2  · 1 1  

2 

1 1  

n !  n(n - I )(11 - 2 ) !  
= n(n - I )  = n2 - n (d) 

(n - 2 ) !  (n - 2 ) !  

( 2  - 2 ) !  O !  
(e) 

3 !  3 · 2  6 
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PROGRESS CHECK 
Evaluate each of the following. 

1 2 ! 6 ! 1 018 ! 
(a) 

1 0 !  
(b) 

4 !2 ! (c) 9!7 l 

(n + l ) ! (n - 2) ! 
(d) 

n l(n - l ) ! (e) 8 ! 
6!(3 - 3) ! 

ANSWERS 

(a) 1 32 (b) 1 5 (c) 80 (d) 
n - l 

n + l 
(e) 56 

Here i what the binomial formula looks like in factorial notation. 

n! n ! 
(a + b t  = an +  an- l b + an-2b2 

1 1 (n - l ) !  2 ! (n - 2) ! 
n! n ! 

+ a"- 3b3 + . . .  + a"-rbr 
3 !(n - 3)! r!(n - r) ! 

+ . . .  + b" 

The symbol (�) , cal led the binomiaJ coefficieot1 is defined in this way: 

(n,) =-n_! 
r!(n - r) l 

This symbol is useful in denoting the coefficients of the binomial expansion . 
Using this notation , the binomial formula can be written as 

(a + b)" = d' + (�)a" - 1 b + (;)a" -2b2 + (;)a"-3b3 
+ . . .  + C)a"- 'b' + . . .  + b" 

Sometimes we merely want to find a certain term in the expansion of (a + b)" . We shall use the following observation to answer this question. In the 
binomial formula for the expansion of (a + b)" , b occurs in the second term , b2 
occurs in the third term, b3 occurs in the fourth term, and, in general , bk occurs in 
the (k + I )th term . The exponents of a and b must add up to n in each term. 
Since the exponent of b in the (k + I )th term is k, we conclude that the exponent 
of a must be n - k. 
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EXAMPLE 4 
Find the fourth term in the expansion of (x - 1 )5 .  

SOLUTION 
The exponent of b in the fourth term is 3 ,  and the exponent of a is then 5 - 3 = 

2. From the binomial formula we see that the coefficient of the term a2b3 is 

(11) (5) 5 ! 

3 = 
3 

= 3 !2 !  

Since a = x and b = - 1 ,  the fourth term is 

5 1 
-· x2( - 1 )3 = - 1 0x2 
3!2 !  

PROGRESS CHECK 

Find the third term in the expansion of 

ANSWER 

7 -x6 
l 6  

EXAMPLE 5 
Find the term in the expansion of (x2 - y2)6 that involves y8. 

SOLUTION 
Since y8 = ( -y2)4, we seek that term which involves b4 in the expansion of 
(a + b)6. Thus, b4 = (-y2)4 = y8 occurs in the fifth term . l n  thi term the expo
nent of a is 6 - 4 = 2 .  By the binomial formula the corresponding coefficient is (6) 

-
6! 

- 1 5  
4 4!2 !  

Since a = x2 and b = -y2, the desired term is 

1 5(x2)2( -y2)4 = I 5x4y8 

PROGRESS CHECK 
Find the tem1 in the expansion of (x3 - \/2)5 that involves x6 . 

ANSWER 
-20V2x6 
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EXERCISE SET 12.5 
Expand and simplify. 

I .  (3x + 2y)5 2. (2a - 3b)6 3 .  (4x - y)4 4 .  (3 + +xr 
5 .  (2 - xy)5 6. (3a1 + b)4 7 .  (a1b + 3)4 8 .  (x  - y)7 

9. (a - 2b)8 10 .  (� + yr 1 1 .  (+x + 2) 3 1 2 .  (� + f)5 
Find the first four terms in the given expansion and simplify. 
1 3 .  ( 2  + X)IO 14 .  (x - 3) 1 1 

1 7 .  (2x - 3y) 14 1 8 .  (a - :l r 
Evaluate . 

2 1 .  5 !  22 .  7 !  

25 . 1 1 !  
8 !  26. 7! 

9! 

29. 6! 
3 !  30. G) 

In each expansion find only the term specified. 
33. The fourth term in (2x - 4) 7 . 
34. The third term in (4a + 3b) 1 1 . 

( 1 ) 1 2 35 . The fifth term in lx - y . 
36. The sixth term in (3x - 2y) 10 • 

37. The fifth term in (� - 2)9. 
38. The next to last term in (a + 4b)5. 
39. The middle term in (x - 3y)6. 

40. The middle term in ( 2a + +b r. 
4 1 .  The term involving x4 i n  (3x + 4y)7 . 

1 5 .  

1 9 . 

23 .  

27 .  

3 1 .  

42. 
43 . 

44. 

45 . 

46. 

[rnJ 47 . 
-

[� 48. 
- - -

(3 - 2a)9 1 6 .  (al + b1) 1 1 

(2x - yz) u 20. (x - �r 
1 2 !  1 3 !  24. I I !  1 2 !  
10 !  28. 9! 
6! 6 !  ( 1
6
0) 32. (n + l ) !  

( n  - l ) !  

The term involving x6 i n  (2x2 - l )9 . 
The term involving x6 in (2x3 - I )9. 

The term involving x8 in ( x2 + � ) 8 . 
The term involving x12 in (x3 + +) 7. 
The term involving x-4 in (y + :2 r 
Evaluate ( l  .3 )6 to four decimal places by writing it as 
( I  + 0.3)6 and using the binomial formula. 
Using the method of Example 47, evaluate 
(a) (3 .4)4 (b) (48)5 (Hint: 48 = 50 - 2 . )  

12.6 
COUNTING: 
PERMUTATIONS AND 
COMBINATIONS 

How many arrangements can be made using the letters a, b, c, and d three at a 
time? One way to solve this problem is to enumerate all the possible arrange
ments. The tree diagram shown in Figure 2 is a graphic device that yields pre
cisely what we need . The letters a, b, c, and d are listed at the top and represent 
the candidates for the first letter. The three branches emanating from these lead to 
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a 

the possible choices for the second letter, and so on . For example, the portion of 
the tree shown in Figure 3 i llustrates the arrangements bda and bdc. In this way 
we determine that there are a total of 24 arrangements. 

b c d 

c d b d b c c d a d a c b d a d a b b c a c a b 
FIGURE 2 

b 

a c 

FIGURE 3 

Counting Principle 

There is a more efficient way to solve this problem. Each arrangement 
consists of a choice of candidates to fill 3 positions in Figure 4. Any one of the 4 
candidates a, b, c, or d can be assigned to the first position; once a candidate is 

[] [] []  
Position I 
AGURE 4 

Position 2 Position 3 

assigned to the first position, any one of the 3 remaining candidates can be 
assigned to the second position; finally, either one of the remaining 2 candidates 
can be assigned to the third position. Since each candidate for a position can be 
associated with any other candidate in the other positions, the product 

4 . 3 .  2 = 24 

yields the total number of arrangements. This simple example illustrates a very 
important principle. 

If one event can occur in m different ways and, after it has happened in one of 
these ways, a second event can occur in n different ways, then both events can 
occur in mn different ways. 

Note that the order or sequence of events is significant since each arrangement is 
counted as one of the '' mn different ways . ' '  
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EXAMPLE 1 
In how many ways can 5 students be seated in a row of 5 seats? 

SOLUTION 
We have 5 positions to be filled. Any one of the 5 students can occupy the first 
position, after which any one of the remaining 4 students can occupy the next 
position. Reapplying the counting principle to the other positions, we see that the 
number of arrangements is 

5 · 4 · 3 · 2 · I = 1 20 

PROGRESS CHECK 
How many different 4-digjt numbers can be formed using the digits 2, 4, 6, and 
8? (Don't repeat any of the digits.) 

ANSWER 
24 

EXAMPLE 2 
How many different 3-lener arrangements can be made using the letters A, B, C, 
X, Y, and Z 
(a) if no letter may be repeated in an arrangement, and 
(b) if letters may be repeated? 

SOLUTION 
(a) We need to fill 3 positions .  Any one of the 6 letters may occupy the first 

position; then, any one of the remair.ing 5 letters may occupy the second 
position (since repetitions are not allowed). Thus, the total number of 
arrangements is 6 · 5 · 4 = 1 20 .  

(b) Any one of the 6 letters may fill any of the 3 positions (since repetitions are 
allowed). The total number of arrangements is 6 · 6 · 6 = 2 1 6. 

PROGRESS CHECK 
The positions of president, secretary , and treasurer are to be fi lled from a class of 
1 5  students . In how many ways can these positions be filled if no student may 
hold more than 1 position? 

ANSWER 
2730 

Each arrangement that can be made by using an or some of the elements of a set 
of objects without repetition is called a permutation. The phrase "without rep
etition" means that no element of the set appears more than once. For example, 
the permutations of the letters a, b, and c taken 3 at a time include b a c but 
exclude a a b. 
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We wil l use the notation P(n,  r) to indicate the number of permutations of n 
distinct objects taken r at a time. (There are a number of other notations in 
common use: nPr, P�. "P,, P,,,, . ) If r = n, then using the counting principle, we 
ee that 

P(n, n) = n(n - l )(n - 2) · · · 2 · 1 

since any one of the n objects may fill the fir t position, any one of the remaining 
(n - I )  objects may fill the second position, and so on. Using factorial nota
tion, 

P(n ,  n) = n !  

Let's try to calculate P(n, r) , that is, the number o f  permutations o f  n distinct 
objects taken r at a time when r is less than n. We may think of this as the number 
of ways of fi lling r positions with n candidates. Once again, we may fi ll the first 
position with any one of the n candidates, the second position with any one of the 
remaining (n - 1 )  candidates, and so on , so 

P(n, r) = n(n - l )(n - 2) · · · 

r factors 

We may write this as 

P(n, r) = n(n - 1 )(n - 2) · · · (n - r + 1 )  ( I )  

since (n - r + 1 )  will be the rth factor. If we multiply the right-hand side of 
Equation ( I )  by 

we have 

(n - r) !  = 1 (n - r) !  

n(n - l )(n - 2) · · · (n - r +  l )(n - r)(n - r - 1 ) · · · 2 · 1 P(n , r) = (n _ r) !  

or 

EXAMPLE 3 
Evaluate. 

(a) P(S, 5) (b) P(S, 2) 

n !  
P(n,  r )  = 

(n _ r)! 

(c) 
P(6, 2) 

3 !  
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SOLUTION 

(a) P(5 5) = 
5 !  = 5 ! 

= 
5 · 4 · 3 · 2 · 1 ,,,, ] 20 ' (5 - 5)! O! I 

5 !  51  5 .  4 .  3!  
(b) P(5 ,  2)  = (5 _ Z) ! 

""
3 !  = 3 !  = 20 

P(6, 2) 
_ 

6!  _ ..M_ _ 6 ·  5 · 4 ! _ (c) 3! 
-

3 ! (6 - 2) ! 
-

3!4! 
-

3 · 2 • 4! 
- 5 

PROGRESS CHECK 
Evaluate . 

(a) P(4, 4) (b) P(6, 3) (c) 2 P(6, 4) 
2! 

ANSWERS 
(a) 24 (b) l 20 

EXAMPLE 4 

(C) 360 

How many different arrangements can be made by taking 5 of the letters of the 
word relation? 

SOLUTION 
Since the word relation has 8 different letters , we are seeking the number of 
permutations of 8 objects taken 5 at a time or P(8 , 5) .  Thus, 

PROGRESS CHECK 

P(n , r) =
( ) I' 
n - ' ' · 

n !  

8 !  8 !  P<R . 5 )  = (8 _ 5) 1 "" 3 !  "" 6720 

There is space on a bookshelf for displaying 4 book:.. !f' !h,.,.e are 6 different 
novels available, how many arrangements can be made? 

ANSWER 
360 

EXAMPLE S 
How many arrangements can be made using all the letters of the word quartz if 
the vowels are always to remain adjacem to each other? 

SOLUTION 
lf we treat the vowel pair ua as a unit, then there are five " letters" (q, ua, r, t, z) 

that can be arranged in P(5 ,  5 )  ways.  But the vowels can th.emselves be arranged 
i n  P(2, 2) ways. By the counting principle, the total number of arrangements 
is 

P(5, 5) · P(2, 2)  
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COMBINATIONS 

P(n, r) or C(n, r) 

Since P(5, 5) = l 20 and P(2, 2) = 2, the total number of arrangements is 
240. 

PROGRESS CHECK 
A bookshelf is to be used to display 5 new textbooks. There are 7 mathematics 
textbooks and 4 biology textbooks available. If we wish to put 3 mathematics 
book and 2 biology books on display, how many arrangements can be made if 
the books in each discipline must be kept together? 

ANSWER 
5040 

Let's take another look at the arrangements of the letters a .  b, and c taken 2 at a 
time: 

ab 

ac 

ba 

be 

ca 

cb 

Now let's ask a different question: In how many ways can we select 2 letters from 
the letters a, b, and c? In answering this que tion, we disregard the order in which 
the letters are chosen. The result is then 

ab ac be 

In general , a set of r objects chosen from a set of n objects is called a combi· 

nation. We denote the number of combinations of r objects chosen from n objects 

by C(n, r) . [other notations in common use include nCr, C�, ncr. Cn.r• and 

(�) . ]  
EXAMPlE 6 
List the combinations of the letter a, b, c, and d taken 3 at a time . 

SOLUTION 
The combinations are seen to be 

abc abd acd bed 

Here is a rule that is helpful in determining whether a problem calls for the 
number of pennutations or the number of combinations. 

U we are interested in calculating the number of arrangements, in which dif
ferent orderings of the same objects are counted, we use permutations. 

U we are interested in calculating the number of ways of selecting objects , and 
the order of the selected objects does not matter, we use combinations. 
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For example, suppose we want to determine the number of different 4-card hands 
that can be dealt from a deck of 52 cards. Since a hand consisting of 4 cards is the 
same hand regardless of the order of the cards, we must use combinations. 

Let' s  find a fonnula for C(n. r). There are three combinations of the letters 
a, b, and c taken 2 at a time, namely 

ab ac be 

so that C(3 ,  2) = 3 .  Now, each of these combinations can be arranged in 2! ways 
to yield the total list of pennutations 

ab ba ac ca be cb 

Thus, P(3, 2) = 6 = 2 !C(3 ,  2). ln general, each of the C(n, r) combinations can 
be pennuted in r! ways , so by the counting principle the total number of permu
tations is P(n, r) = r !C(n, r) or 

EXAMPLE 7 
Evaluate . 

(a) C(5 , 2) 

SOLUTION 

C(n r) = P(n, r) = n !  
' r !  r!(n - r) ! 

(b) C(4, 4) (c) 
P(6, 3) 
C(6, 3) 

5 !  5 !  5 · 4 · 3 � 
(a) C(S , 2) = 2 !(5 - 2) = 2!3 t = 2 · 3 ! = 10 

4 !  4! 
(b) C(4• 4) = 41(4 - 4) ! = 4!0! = l 

6! 61 (c) P(6, 3 )  = (6 _ 3) r = 3 !  = 6 · 5 · 4 = l20 

6! 6! 6 ·  5 · 4 C(6, 3) = 3 !(6 - 3) !  = 3 !3 !  = � = 20 

P(6, 3) = 120
= 6 C(6, 3) 20 

PROGRESS CHECK 
Evaluate . 

(a) C(6, 2) (b) C( lO, 10) 

ANSWERS 

(a) l 5 (b) l (c) 
l 
5 

(c) 
P(3, 2) 

3 !C(5 , 4) 
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EXAMPLE 8 
In how many ways can a committee of 4 be selected from a group of 1 0  peo
ple? 

SOLUTION 
If A,  B, C, and D constitute a committee , is the arrangement B, A ,  C, D a 
different committee? Of course not-the order does not matter. We are therefore 
interested in computing COO, 4): 

PROGRESS CHECK 

10! 1 0 · 9 · 8 · 7  
C( IO ,  4) = 

4 !6! 
= 

4 · 3 · 2 · l = 2 10  

In  how many ways can a 5-card hand be dealt from a deck of 52  cards? 

ANSWER 
2,598,960 

EXAMPLE 9 
In how many ways can a committee of 3 girls and 2 boys be selected from a class 
of 8 girls and 7 boys? 

SOLUTION 
The girls can be selected in C(8 ,  3) ways, and the boys can be selected in C(7, 2) 
ways. By the counting principle, each choice of boys can be associated with each 
choice of girls: 

8 ! 7 ! 
C(8, 3) · C(7 ,  2) = 

3 !5 ! · 

2!5 ! 
= (56)(2 1 )  = 1 1 76 

PROGRESS CHECK 
From 5 representative of District A and 8 representatives of District B ,  in how 
many ways can 4 persons be chosen if only I representative from District A is to 
be included? 

ANSWER 
280 

EXAMPLE 10 
A bookstore has 1 2  French and 9 German books. In how many ways can a group 
of 6 books, consisting of 4 French and 2 German books, be placed on a 
shelf? 

SOLUTION 
The French books can be selected in C( l 2 ,  4) ways and the German books in 
C(9, 2) ways. The 6 books can then be selected in C( l2 ,  4) · C(9, 2) ways. Each 
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selection of6 books can tben be arranged on the shelf in P(6, 6) ways, so the total 
number of arrangements is 

12! 9!  6!  C( 1 2, 4) · C(9, 2) · P(6, 6) = 
4!8 

! · 
2!7 !  

· 

(6 _ 6) ! 
= 495 · 36 · 720 = 1 2,830,400 

PROGRESS CHECK 
From 6 different consonants and 4 different vowels, how many 5-letter words can 
be made consisting of 3 consonants and 2 vowels? (Assume every arrangement is 
a "word . ") 

ANSWER 
14 ,400 

EXERCISE SET 12.6 
1 .  How many different 5-digi. � . .  1bcrs can be formed 

using the digits 1 ,  3 ,  4, 6, and 8° 
2 .  How many different ways are there to arrange the let

ters in the word study? 

3 .  An  employee identification number consists o f  2 let
ters of the alphabet followed by a sequence of 3 digits 
selected from the digits 2. 3, 5, 6, 8, and 9. If repe
titions are allowed, how many different identification 
numbers are possible? 

4. In a psychological experiment , a subject has to 
arrange a cube, a square, a triangle, and a rhombus in 

In Exercises 8- 19 evaluate the given expression . 
8. P(6, 6) 9 .  P(6, 5 )  

1 2 . P(5 , 2) 1 3 .  P( lO ,  2) 

16 .  4P( l 2 ,  3 )  17 .  P(3 ,  I )  2 !  
20. Find the number of ways in which 5 men and 5 women 

can be seated in a row 
(a) if any person may sit next to any other person; 
(b) if a man must always sit next to a woman. 

2 1 .  Find the number of permutations of the letters in the 
word money. 

22. Find the number of distinguishable permutations of 
the letters in the word goose . (Hint: Permutations in 
which the letters o and o exchange places are not dis
tinguishable . )  

a row.  How many different arrangements are possi·
ble? 

5 .  A coin i s  tossed 8 times and the result of  each toss i s  
recorded . How many different sequences of heads and 
tails are possible? 

6 .  A die (from a pair of dice) is tossed 4 times, and the 
result of each toss is recorded. How many different 
sequences are possible? 

7 .  A concert is to consist o f  3 guitar pieces, 2 vocal num
bers, and 2 jazz selections. In how many ways can the 
program be arranged? 

J O. P(4, 2) 1 1 .  P(8, 3) 

14 .  P(8 ,  4) 1 5 .  P(9, 3) 
3! 

1 8 .  P(7, 3 )  1 9 .  P( IO, 4) 
2 !  4! 

23. Find the number of distinguishable permutations of 
the letters of the word needed. (See hint in Exercise 
22 . )  

24. How many permutations of the letters a, b, e, g,  h, k, 
and m are there when taken 
(a) 2 at a time? 
(b) 3 at a time? 

25. How many 3-letter labels of new chemical products 
can be formed from the letters a, b, c, d, f. g, I, and 
m? 
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26. Find the number of distinguishable permutations that 
can be formed from the letters of the word mississippi 

taken 4 at a time. 
27. A family consisting of a mother, a father, and 3 chil

dren is having a picture taken. If all 5 people are 
In Exercises 29-37 evaluate the given expression. 
29. C(9, 3) 
33. C(7 ,  7) 
37. C(n + l, n - 1 )  

30. C(7 , 3) 
34. C(5 ,  4) 

38. In how many ways can a committee of 2 faculty mem
bers and 3 students be selected from 8 faculty mem
bers and 10 students? 

39. In how many ways can a basketball team of 5 players 
be selected from among 1 5  candidates? 

40. In how many ways can a 4-card hand be dealt from a 
deck of 52 cards? 

4 1 .  How many three-letter moped plates can be formed for 
a local campus 
(a) if no letters can be repeated? 
(b) if letters can be repeated? 

42. In a certain city each police car is staffed by 2 officers , 
I male and I female. A police captain, who needs to 
staff 8 cars, has 1 5  male officers and 1 2  female offi
cers available . How many different teams can be 
formed? 

43. How many different JO-card hands with 4 aces can be 
dealt from a deck of 52 cards? 

44. A car manufacturer makes 3 different models, each of 

arranged in a row,  how many different photographs 
can be taken? 

28. List all the combinations of the numbers 4, 3 ,  5 ,  8, 
and 9 taken 3 at a time. 

3 1 .  C( IO, 2) 
35 . C(n, n - I )  

32. C(7 , I )  
36. C(n, n - 2) 

46. An automobile manufacturer that is planning an adver
tising campaign is considering 7 newspapers , 2 mag
azines, 3 radio stations, and 4 television stations. In 
how many ways can 5 advertisements be placed 
(a) if all 5 arc to be in newspapers? 
(b) if 2 arc to be in newspapers, 2 on radio, and I on 
television? 

4 7 .  In a certain police station there are 1 2  prisoners and 10  
police officers. How many possible lineups consisting 
of 4 prisoners and 3 officers can be formed? 

48. The notation C) is often used in place of C(n, r) .  

Show that C) = C � J 
49. How many different I 0-card hands with 6 red cards 

and 4 black cards can be dealt from a deck of 52 
cards? 

which is available in 5 different colors with 2 different 50. A bin contains 12 transistors , 7 of which arc defective. 
engines. How many cars must a dealer stock in the 
showroom to display the full line? 

45 . A penny, a nickel, a dime, a quarter, a half-dollar, and 
a silver dollar arc to be arranged in a row. How many 
different arrangements can be formed if the penny and 
dime must always be next to each other? 

In how many ways can 4 transistors be chosen so 
that 
(a) all 4 are defective? 
(b) 2 are good and 2 are defective? 
(c) all 4 are good? 
(d) 3 arc defective and I is good? 

12.7 
PROBABILITY 

DEFINITION 

There is a vast difference between the statements " ' It will probably rain today" 
and "It is equally probable that a tossed coin will come up heads or tails . "  The 
first statement conveys an expectation but only in a vague sense; the latter state
ment is much more useful because it quantifies the notion of probability . 

Let's take a closer look at what happens when we toss a coin. The event has 
only 2 possible outcomes: heads and tails. Since heads represents 1 of 2 possible 
outcomes, we say that the probability of a head is 1/2. Thus, we can define 
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probability in the following way: If an event can occur in a total of t ways and s of 
these are considered successful, the probability of success is sit. In short, 

EXAMPLE 1 

b b.1 . number of succes ful outcomes pro a 1 tty = total number of outcomes 

A container holds 1 red ball, 2 white balls, and 2 blue baJls. If I ball is drawn, 
what is the probability that it will  be white? 

SOLUTION 
The selection of a ball represents a possible outcome, so there are a totaJ of 5 
possible outcomes. Since there are 2 ways of achieving a successful outcome (a 
white ball), 

probability of 
selecting a white ball 

number of successful outcomes 2 
total number of outcomes 

= 5 

PROGRESS CHECK 
One card is drawn from an ordinary deck of 52 cards. What is the probability it is  
an ace? 

ANSWER 
I 

l 3  

EXAM PLE  2 
A single die (whose faces contain the numbers l ,  2, 3 ,  4, 5 ,  and 6) is tossed. 
What is the probabihty that the result is less than 5? 

SOLUTION 
There are 4 successfuJ outcomes, occurring when the die shows a I ,  2 ,  3 ,  or 4. 
Since there are 6 possible outcomes, we see that 

b bT number of successful outcomes pro a 1 ity = 
total number of outcomes 

PROGRESS CHECK 
A bag of coins contains 4 nickels, 5 dimes, and 10 quarters. If 1 coin is with
drawn, what is the probabiUty that it will be worth less than 25 cents? 
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�RINCIPLES OF 
.PROBABILITY 

APPLICATIONS 

ANSWER 
9 
1 9  

Let's consider a bag containing 3 red marbles and 5 brown marbles. I t  is easy to 
verify that the probability of drawing a red marble in a single draw is 3/8 and that 
the probability of drawing a brown marble is 518 = 1 - 3/8. What is the proba
bility of drawing either a red marble or a brown marble? S ince any of the 8 
possible outcomes is considered a success, the probability i 8/8 = 1 .  What is the 
probability of drawing a black marble? Since there are no successful outcomes , 
the probability is 0/8 = 0. Generalizing these results, we can state the following 
principles: 

• A probability of I indicates certainty. 

• A probability of 0 indicates impossibility . 

• If p is the probabiJity that an event will happen, I - p is the probability that it 
will not happen. 

EXAMPLE 3 
While shuffling an ordinary deck of 52 cards , you drop l card. What is the 
probability that it is not a king? 

SOLUTION 
Since there are 4 kings in a deck, the probability of a king is p = 4152 = 1 / 1 3 .  
Then the probability that i t  i s  not a king i s  I - p = 1 21 1 3 .  

PROGRESS CHECK 
Two people throw a single die. I f  player A rolls a 4, what is the probability that 
player B will not also roll a 4? 

ANSWER 
5 
6 

The rules for computing permutations and combinations are useful in solving 
probability problems. 

EXAMPLE 4 
A bag contains 3 green, 5 white, and 7 yellow balls. If 3 balls are drawn at 
random, what is the probability that they will all be white? 
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SOLUTION 
We can select 3 white balls from 5 white balls in C(5 ,  3) ways; we can select 3 
balls from the bag of 1 5  balls in C( l 5 ,  3) ways. Then 

probability of selecting _ C(5 ,  3) 
_ 

lO _ 2 
three white balls - C( 15 ,  3) 

-
455 - 9 ]  

PROGRESS CHECK 
Three cards are drawn from an ordinary deck of 52 cards . What is the probability 
that they are all aces? 

ANSWER 
1 

5525 

Many problems in probability involve the tossing of a pair of dice. Since the 
faces of the dice contain the numbers 1 ,  2, 3, 4, 5, and 6, the sum of the numbers 
on the 2 dice can be any of the numbers 2 through 1 2 .  The outcomes, however, 
are not equally probable. In Table I we display the possible outcomes of tossing a 
pair of dice . In Table 2 we then summarize the number of ways in which each 
sum can be obtained. The probability of tossing a 3 with a pair of dice is therefore 
2/36, or 1 / 1 8 ;  the probability of tossing a 7 is 6/36, or 1/6. 

TABLE 1 

Die 2 
Die I I 2 3 4 5 6 

I 2 3 4 5 6 7 
2 3 4 5 6 7 8 
3 4 5 6 7 8 9 
4 5 6 7 8 9 IO 
5 6 7 8 9 IO I I  
6 7 8 9 IO I I  1 2  

TABLE 2 

Sum of 2 3 4 5 6 8 2 dice 7 9 IO I I  1 2  

Number I 2 3 4 5 of ways 6 5 4 3 2 I 
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INDEPENDENT EVENTS 

EXAMPLE 5 
What is the probability of throwing a l 0 or higher with a single throw of a pair of 
dice? 

SOLUTION 
The favorable outcomes are I O, 1 1 ,  and 1 2, which, by Table 2, can occur in a 
total of 6 ways. Then 

b bT 
number of successful outcome 

pro a 1 ity = 
total number of outcomes 

PROGRESS CHECK 
What is the probability of throwing no higher than a 5 with a single throw of a pair 
of dice? 

ANSWER 
5 
1 8  

We conclude our introduction to probability by considering the probability of 
successive , independent events. For example, if a card is drawn from a deck of 52 
cards, that card is replaced in the deck, and a second card is drawn, what is the 
probability that both cards will be aces? Note that these events are independent, 
since the second outcome in no way depends on the first outcome. Here is the 
principle that permits us to solve this type of problem: 

If p1 is the probability that an event will occur and p2 is the probability that a 
second, independent event will occur, then p1p2 is the probability that both 
events wi11 occur. 

In our example, the probability that the first card drawn will be an ace is 
p1 = 4/52 = l / l 3 ;  the probability that the second card drawn will be an ace 
is also 1 1 1 3  = p2. Then the probability of drawing aces successively is P1P2 = 
( 1 / 1 3)( 1 1 1 3) = 1 1 1 69. Of course , we can extend this principle to more than two 
events by forming the product of the probabilities of the independent events. 

EXAMPLE 6 
What is the probability of throwing a 7 twice in succession with a pair of 
dice? 

SOLUnON 
From Table 2 we see that a 7 can occur in 6 ways, so the probability of throwing a 
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7 is p 1  = 6136 :::; 1 /6. The probability of throwing a 7 on the second roll is again 
p2 :::; 1 16,  so the probability of throwing a 7 on both rolls is p1p2 :::; ( 1 16)( 1 16) :::; 
l /36. 

PROGRESS CHECK 
What is the probability of throwing an l l twice in succession with a pair of 
dice? 

ANSWER 
l 

324 

EXAMPLE 7 
What is the probability of drawing an ace 3 times in succession from a deck of 52 
cards if the drawn cards are not replaced? · 

SOLUTION 
On the first draw, the probability of obtaining an ace is p 1  = 4/52 . Since the ace is 
not replaced in the deck, there remain 3 aces and a total of 5 1  cards, so the 
probability of obtaining a second ace is p2 = 3/5 l .  Arguing the same way, we see 
that there now. remain 2 aces and 50 cards, so the probability of drawing a third 
ace is p3 :::; 2/50. Thus, the probability of drawing aces 3 times in succession 
without replacement is 

PROGRESS CHECK 

4 3 2 I 
PiP2P3 = 

52
. SI .  50 

= 

5525 

What is the probability of drawing a spade 3 times in succession from a deck of 52 
cards if the drawn cards are not replaced? 

ANSWER 
1 1  

850 

EXAMPLE 8 
What is the probability of throwing a 5 only on the first of 2 successive throws 
with a single die? 

SOLUTION 
The probability of throwing a 5 on the first toss is p1 = 1 16. A success on the 
second toss consists of not throwing a 5 and has a probability P2 = l - p1 :::; 516. 
The probability of the desired result is 
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EXAMPLE 9 
A transistor manufacturer finds that 8 1  of every I 000 transistors made are defec
tive. What is the probability that 2 transi tors selected at random will both prove 
to be defective? 

SOLUTION 
This problem is an example of empirical probability, that is, probability 
obtained from experience or measurement rather than by theoretical means . The 
probability that a transistor is defective is p1 = 8 ] ! JOOO. The probability that a 
second transistor is defective is p2 = 8 l / 1000 . Thus, the probability that both 
transistors will be defective is 

8 l  8 1  6561 
P tP2 = 1000 . 1000 

= l ,000,000 

PROGRESS CHECK 
The probability of rain in a certain town on any given day is 1 /4 . What is the 
probability of having a rainy Monday, a dry Tuesday, and a rainy Wednes
day? 

EXERCISE SET 12.7 

ANSWER 
3 

64 

I .  If a single die is tossed, what is the probability that an 
odd number will appear? 

2 .  I f  two dice are tossed, what i s  the probability of hav
ing at least one 5 showing on the top faces of the 
dice? 

3 .  I f  a card is randomly selected from an ordinary deck of 
52 cards, what is the probability that it will be 
(a) a red card? (b) a spade? (c) a king? 

4 .  Suppose that 2 coins are tossed. What is the probabil
ity of having 
(a) both tails? 
(b) at least I heads? 
(c) neither tails? 
(d) I heads and I tails? 

5 .  I f  2 dice are tossed, what i s  the probability that 
(a) at least I of the dice will show a 4 on its top 

face? 
(b) the sum of the numbers on the dice will be 8? 
(c) neither a 3 nor a 4 will appear on the top face of a 

die? 

6 .  If a card is picked at random from a standard deck of 
52 cards , what is the probability that it will be 
(a) a club? 
(b) a 4? 
(c) not an ace? 
(d) a 4 of spades? 
(c) either an ace or a king? 
(f) neither an ace nor a king? 

7 .  The quality control department of a calculator manu
facturer determines that I percent of all calculators 
made arc defective. What is the probability that a buy
er of a calculator will get 
(a) a good calculator? 
(b) a defective calculator? 

8 .  A photography club consisting of  1 8  women and 1 2  
men wishes to elect a steering committee composed of 
3 members . If every member is equally likely to be 
elected, find the probability that 
(a) all 3 members will be women? 
(b) none of the members will be women? 



(c) exactly I member will be a woman? 
(d) at least I member will be a woman? 

9. A box contains 97 good bulbs and 5 defective bulbs. If  
3 bulbs are chosen at  random, what is  the probability 
that 
(a) all three bulbs will be defective.? 
(b) exactly one of the bulbs will be defective? 
(c) none of the bulbs will be defective? 

IO.  Suppose that 2 cards are to be drawn in succession 
from a deck of 52 cards. What is the probability that 
both cards will be aces if 
(a) drawn cards are replaced? 
(b) drawn cards are not replaced? 

1 1 .  Suppose that 4 card!> are selected, without replace
ment , from a deck of 52 cards. What is the probability 
that they are all hearts? 

1 2 .  I f  the probability of getting a n  A i n  this course i s  0.2, 
what is the probability of not getting an A? 

1 3. The board of trustees of a university consists of 1 4  
women and 1 2  men. Suppose that an executive com
mittee of 6 persons is to be elected and that every 
trustee is equally likely co be elected. Find the proba-

TERMS AND SYMBOLS 
infinite sequence (p. 504) arithmetic sequence 
term of a sequence (p. 5 1 2) 

(p. 504) arithmetic progression 
recursive formula (p. 505) (p. 5 1 2) 
sigma (�) notation common difference 

(p.  506) (p. 5 1 2) 
summation notation arithmetic series (p. 5 1 5)  

(p .  506) geometric sequence (p. 
index of summation 5 1 8) 

(p. 506) geometric progression 
series (p. 508) (p. 5 1 8) 
partial sum (p. 5 1 0) common ratio (p. 5 1 8) 

KEY IDEAS FOR REVIEW 
D An infinite sequence is a function whose domain is 

restricted to the sec of natural numbers . We generally 
write a sequence by using subscript notation; that is, an 
replaces a(n). 

D An infinite sequence is defined recursively if each term 
i defined by reference to preceding tenns. 

D Sigma (�) or summation notation is a handy means of 
indicating a sum of terms. The values written below and 
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bility that the committee will consist of 3 men and 3 
women. 

14 .  Suppose that the probability of a cloudy day in  a cer
�in town in England is 0.6. 
(a) What is the probability of a clear day? 
(b) What is the probability of 2 consecutive clear 

days? 

1 5 .  A bag contains 6 blue marbles, 5 green marbles, and 7 
yellow marbles. If S marbles are chosen without 
replacement, what is the probability thac 2 will be 
blue, 2 will be green, and 1 will be yellow? 

16 .  Suppose that 2 cards have been chosen at random from 
a deck of 52 cards. What is the probability that 1 card 
is an ace and the other card is not a king? 

17 .  If  2 percent of  cameras made 0 11  a production line are 
defective, what is the probability that 4 cameras cho
sen at random will all be 
(a) good? (b) defective? 

18 .  A fraternity consists of  1 2  seniors, 10 juniors, and 14  
sophomores.  A steering committee of  7 members i s  
randomly chosen. What i s  the probability that i t  con
sists of 3 seniors, 2 juniors, and 2 sophomores? 

geometric mean (p. 520) 
geometric series (p. 52 1 )  
infinite geometric series 

(p. 523) 
0.537537537 (p. 525) 
mathematical induction 

(p. 527) 
expansion of (a + bt 

(p. 53 1 )  
Pascal 's triangle (p.  532) 
binomial formula (p. 533) 
n! (p. 533) 

factorial (p. 533) (�) (p. 535) 

binomial coefficient (p. 
535) 

permutation (p. 539) 
P(n, r) (p. 540) 
combination (p. 542) 
C(n, r) (p. 542) 
probability (p. 547) 
empirical probability 

(p. 552) 

above the I indicate the starting and ending values, 
respectively, of the index of summation. 

D An arithmetic sequence has a common difference d 
between tenns. We can define an arithmetic sequence 
recursively by Writing an = On- I + d and Specifying 
01 . 

D A geometric sequence has a common ratio r between 
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tenns. We can define a geometric sequence recursively 
by writing an = ran- I and specifying a 1 • 

0 The fonnulas for the nth terms of arithmetic and geo
metric sequences are 

an = a1 + (n - l )d  Arithmetic 

Geometric 

0 A series is the sum of the tenns of a sequence. 

0 The fonnulas for the sums Sn of the first n terms of 
arithmetic and geometric sequences are 

Arithmetic 

n 
Sn = 2[2a1 + (n - l )d] Arithmetic 

Geometric 

0 If the common ratio r satisfies - 1  < r < 1 ,  the infinite 
geometric series has the sum S given by the formula 

S = � 
1 - r 

where a 1  is the first term of the series. 

0 Mathematical induction is useful in proving certain 
types of theorems involving natural numbers.  

0 The notation n!  indicates the product of the natural num
bers 1 through n: 

n! = n(n - l )(n - 2) · · · 2 · 1 for n 2:: 1 
O! = 1 

0 The binomial fonnula provides the tenns of the expan
sion of (a + b)": 

n '  n 1  
(a + b)n = an + 

l !(n :__ l ) !a
n- Jb + 

2!(n :__ 2)!a"-2b2 

n '  . 
+ 3 !(n :__ 3)!a

n-3b3 

+ · · · + 
n !  

an-rbr + · · · + b
n 

r!(n-r)! 

RMEW EXERCISES 

0 The notation (�) is defined by the formula 

(�) 
= r!(n

n� r) ! 

and is useful in writing out the binomial formula. 

0 Permutations involve arrangements or the order of 
objects; thus, abc and bac are distinct permutations of 
the letters a, b, and c. 

0 Combinations involve selection of objects; the order is  
not significant. If  we are selecting 3 letters from a box 
containing the letters a. b, c, and d, then abc and bac are 
the same combination. 

0 The formulas for counting permutations and combina
tions of n things taken r at a time are 

n !  
P(n, r) = 

(n _ r)! 

n !  
C(n, r) = '

( _ ) ' r. n r .  

Permutations 

Combinations 

0 Probability is a means of expressing the likelihood of the 
occurrence of an event . It is the ratio of the number of 
successful outcomes to the total number of outcomes. 

0 A probability of 1 indicates that an event is certain to 
occur, whereas a probability of 0 indicates that an event 
cannot possibly occur. 

0 If p 1 and p2 are the probabilities of the occurrence of two 
independent events, then p 1p2 is the probability that both 
events will occur. 

Solutions to exercises whose numbers are in color are in the Solutions section in the back of the book. 

12. I In Exercises 1 and 2 write the first three terms and the In Exercises 3 and 4 find the fifth term of the recursive 
tenth term of the sequence whose nth term is given. 

1 . an = n2 + n + 1 n3 - I 
2. a = --n 

n + I  

sequence. 

3 .  an = n - an- I >  a ,  = 0 
4. an = nan- 1 >  a 1 = 1  



ln Exercises 5-7 find the indicated sum. 

4 s 
5.  :z: < 1 - 2k> 6 .  L k(k + I )  

k =  I k - 3 

s 
7. :z: 1 0  

; = I 

ln Exercises 8- I O  express the sum in sigma nota
tion . 

1 2 3 4 8· 3 + 4 + 5 + 6 
9. 1 - x + x2 - x3 + x4 

10. log x + log 2x + log 3x + · · · + log ru 

1 2. 2 ln Exercises I l and 1 2  find the specified term of the 
arithmetic sequence whose firs! term is Gt and whose 
common difference is d. 

1 1 .  a1 = -2, d = 2; 2 1st term 
1 2. G t = 6, d = - 1. ;  1 6th term 
Jn Exercises l 3  and l4,  given two terms of an arith
metic sequence , find the specified tenn . 
13.  G t  = 4, a16 = 9; 1 3th term 
1 4. G t = -4, Gi; = - 15; 26th term 
In Exe1dses 1 5  and 1 6  find the sum of the first 25 terms 
of the arithmetic sequence whose first term is a 1 and 
whose common difference is d. 

16 .  G1  = 6,  d = -2 

12 .  3 Jn Exercises l 7 and 18 determine the common ratio of 
the given geometric sequence. 
1 7 .  2 ,  -6, l8 ,  -54, . . .  

] 3 9 27 i .s .  -2· 4 '  -g,  16· · · · 
In Exercises 19  and 20, write the first four terms oi the 
geometric sequence whose first term is G 1 and whose 
common ratio is r. 

l 19. a1  = 5, r = 5 20. a1 = -2, r = - I 

2 1 .  Find the sixth l.errn of the geometric sequence 
-4, 6, -9 . . . . . 

22. Find the eighth term of a geometric sequence for 
which G1  = -2 and as = -32 .  

23. Insert two geometric means between 3 and 
tn2. 
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24. Find the sum of the first six terms of the geomet
ric progression whose first three terms are �. t 
b_. 

25. Find the sum of the first six terms of the geomet
ric progression for which a1 = -2  and r = 3. 

Jn Exercises 26 and 27 find the sum of the infinite 
geometric series. 

1 2.4 28. Use the principle of mathematical induction to 
show that 

3 + 6 + 9 + · · · + 3n = 3n(n + I )  
2 

is true for all positive integer values of n. 

1 2.5 In Exercises 29-3 l expand and simplify .  

29. (2x - y)4 

3 1 .  (x2 + 1 )3 
Jn Exercises 32-37 evaluate the expression. 

1 3 !  32. ,6 t. 33. l 1 !2! 
(n - J ) !(n + I ) !  34 . 35. (�) 

n1n!  

36. (�) 37 . ( 1
8
0) 

12.6 38. Four novels have been selected for display on a 
shelf. How many different arrangements are pos
sible? 

39. Find the number of distinguishable permutations 
of the letters in the word soothe. 

40. ln how many ways can a tennis team of 6 players 
be selected from 1 0  candidates? 

4 l .  ln how many ways can a consonant and a vowel 
be chosen from the letters in the word fouled? 

1 2. 742. lf 2 dice are tossed, what is the probability that 
the sum of the numbers on the dice will be 7 or 1 1  ? 

43. A box contains 3 red pens and 4 white pens. ]f 2 
pens are selected at random, what is lhe proba
bility that they win both be white? 

44. Two cruds are drawn in succession from a deck of 
52 cards. What is the probability that the cards 



will be a king and an ace if the first card drawn is 
not replaced? 

45. If 10 percent of the trees in a region are found to 
be diseased, what is the probability that 2 trees 
chosen at random are both free of disease? 

I .  Write the first four terms of a sequence whose nth term 
is an = nl(n + 1 )2 . 

4 . 
2. Evaluate 2:: -::-1-_ . 

j � 2 1 - I  

3 .  Write the first four terms of  the arithmetic sequence 
whose first term is - I and whose common difference 
is � .  

4. Find the 25th term of the arithmetic sequence whose 
first term is -4 and whose common difference is J .  

5. Find the 1 5th term of an arithmetic sequence whose 
first term is - 1  and whose tenth term is 26. 

6. Find the sum of the first 10  terms of an arithmetic 
sequence whose first term is -4 and whose ninth term 
is 8 .  

7 .  Find the common ratio of  the geometric sequence 12 ,  
4, t $, . . . .  

8 .  Write the first four terms of the geometric sequence 
whose first term is _, and whose common ratio is 2 .  

9 .  Find the tenth term of the sequence 2 ,  -2 ,  2 , .  . . .  
10 .  Insert two geometric means between -4 and 32 .  
1 1  . Find the sum of the first seven terms of the geometric 

sequence whose first three terms are -8 ,  4, -2 .  
1 2. Find the sum of the infinite geometric series 

-4 - � - � - . . . .  

I .  Write the first four terms of a sequence whose nth term 
is 

2 2n a = n  + --n n + 2 

2 .  Write the sum 2 !  + 3 !  + 4 !  + · · · + n !  in summation 
notation. 

46. Six husband-wife teams volunteer for an experi
ment in parapsychology . If 4 persons are selected 
at random to participate in the experiment, what 
is the probability that they will be two husband
wife teams? 

1 3 .  Use the principle of mathematical induction to show 
that 2 + 6 + 1 0  + · · · + (4n - 2) = 2n2 is true for all 
positive integer values of n .  

14 .  Find the first four terms in  the expansion of 
(a + l /b) 10 . 

1 5 .  Evaluate 1 2 !/ 1 0 ! 3 ! .  
1 6 . Evaluate P(6, 4). 
1 7 .  Evaluate C(n + I , n) .  
1 8 .  Three buses arrive simultaneously at a terminal that 

has 4 parking stalls . In how many ways can the buses 
be parked? 

19 .  The 1 980 census staff divided a region into 3 districts 
that were to be canvassed by 10, 8, and 15 staff mem
bers, respectively. If 40 staff members were available, 
in how many ways could they have been assigned to 
the 3 districts? 

20. The telephone company uses white, black, and green 
telephones, which are distributed to new customers at 
random. If an apartment dweller requests 2 tele
phones, what is the probability that they will be the 
same color? 

2 1 .  Four marbles are removed at random from a box con
taining 4 purple , 3 blue, and 3 red marbles. What is 
the probability that these are 2 purple and 2 blue mar
bles? 

3 .  Write the first four terms of  the arithmetic sequence 
whose first term is 6 and whose common difference is 
-�. 

4. Find the sixth term of the arithmetic sequence whose 
first term is -5  and whose common difference is 3 .  

5 .  Find the thirtieth term of  an arithmetic sequence 



whose first and twentieth terms are 3 and -35, respec
tively. 

6. The first term of an arithmetic series is -5 .  the last 
term is -2 ,  and the sum is -9 112 .  Find the number of 
terms and the common difference. 

7 .  Find the common ratio of  the geometric sequence 20, 
4 ,  0 .8 ,  0. 16 .  

8 .  Write the first four terms of the geometric sequence 
whose first term is - I and whose common ratio is 
-!. 

9 .  Find the sixth term of a geometric sequence for which 
a1 = 3 and a4 = -�.  

1 0. Insert two geometric means between -6 and 
- 1 6/9 . 

1 1 .  Find the sum of the first five terms of a geometric 
sequence if a1 = -8 and a4 = - 1 .  

1 2 .  Find the sum of the infinite geometric progression 
5 - 2 + � - . . . .  

1 3 .  Use the principle of mathematical induction to show 
that 

1 1 1 1 n 
-- + -- + -- + . . .  + 1 · 2 2 · 3 3 · 4 n(n + 1 )  n + 1 

is true for all positive integer values of n .  

1 4. Find the third term in the expansion of (2x - 1 ) 10 . 
1 5 .  Evaluate n · n !/(n + l ) ! .  
1 6 .  Evaluate P(7 ,  2)/6. 
1 7 .  Evaluate P(5 , 2)/C(5 ,  2) . 
1 8 .  Four plants are to be displayed on a window shelf. I f  6 

different plants are available, how many arrangements 
are possible? 

19 .  A student-faculty committee of  6 members is to be set 
up, composed of 3 faculty members and 3 students. In 
how many ways can this be done if 5 faculty members 
and 6 students volunteer to serve on the committee? 

20. A manufacturer finds that 2 percent of his products are 
defective. If 3 items are selected at random, what is 
the probability that they will all be defective? 

2 1  . What is the probability that a throw of two dice will 
result in a sum of 7 or greater? 



TABLES APPENDIX 
TABLE I Exponentials and Their Reciprocal 

x ez e-z x e" e_,, 

0.00 1 .0000 1 .0000 1 .4 4.0552 0.2466 
O.o t 1 .0 I O I  0.9900 l .5 4.48 1 7  0.223 1 
0.02 l .0202 0.9802 l .6 4.9530 0.20 1 9  
0.03 l .0305 0.9704 1 .7 5.4739 0. 1 827 
0.04 l .0408 0.9608 1 .8 6.0496 0. 1653 
0.05 1 .05 1 3  0.95 12 1 .9 6.6859 0. 1496 
0.06 l .06 1 8  0.94 1 8  2.0 7.389 1 0. 1 353 
O.Q7 l .0725 0.9324 2. 1 8. 1 662 0.1 225 
0.0 1 .0833 0.923 1 2.2 9.0250 O.l I08 
0.09 1 .0942 0.9 1 39 2.3 9.9742 0. 1003 
0. 10 l . 1052 0.9048 2.4 1 1 .023 0.0907 
0. 1 1  l . l  1 63 0.8958 2.5 12. 1 82 0.082 1 
0. 1 2  l . 1 275 0.8869 2.6 13 .464 0.0743 
0. I J  l . 1 388 0.878 1 2.7 14.880 0.0672 
0. 14  1 . 1 503 0.8694 2.8 16.445 0.0608 
0. 1 5  l . 1 6 1 8  0.8607 2.9 1 8 . 1 74 0.0550 
0. 16 l . l  735 0.852 1 3.0 20.086 0.0498 
0. 1 7  l . 1 853 0.8437 3. 1 22. 1 98 0.0450 
0. 1 8  l . 1972 0.8353 3.2 24.533 0.0408 
0. 1 9  1 .2092 0.8270 3.3 27. 1 1 3 0.0369 
0.20 1 .22 14 0.8 1 87 3.4 29.964 0.0334 
0.2 1 1 .2337 0.8 l06 3.5 33. 1 1 5 0.0302 
0.22 1 .246 1 0.8025 3 .6 36.598 0.0273 
0.23 l .2586 0.7945 3.7 40.447 0.0247 
0.24 l .27 1 2  0.7866 3.8 44.701 0.0224 
0.25 l .2840 0.7788 3.9 49.402 0.0202 
0.26 1 2969 0.77 1 1  4.0 54.598 0.0 1 83 
0.27 l .3 1 00  0.7634 4. l 60.340 0.0166 
0.2 l .323 l 0.7558 4.2 66.686 0.0 1 50 
0.29 l .3364 0.7483 4.3 73.700 0.0136 
0.30 l .3499 0.7408 4.4 8 1 .45 1 0.0123 
0.35 l .4 1 9 1  0.7047 4.5 90.0 1 7  O.ot 1 1  
0.40 l .49 1 8  0.6703 4.6 99.484 0.0 1 0 1  
0.45 l .5683 0.6376 4.7 1 09.95 0.009 1 
0.50 l .6487 0.6065 4.8 1 2 1 .5 1 0.0082 
0.55 1 .7333 0.5769 4.9 1 34.29 0.0074 
0.60 1 . 822 1 0.5488 5 1 48.4 1 0.0067 
0.65 1 .9 1 55 0.5220 6 403.43 0.0025 
0.70 20 1 38 0.4966 7 l ,096.6 0.0009 
0.75 2. 1 170 0.4724 2,98 1 .0 0.0003 
0. 0 2.2255 0.4493 9 8, I03. I 0.000 1 
0. 5 2.3396 0.4274 IO 22,026 0.00005 
0.90 2.4596 0.4066 l l  59,874 0.00002 
0.9 2.5857 0.3867 12  1 62,754 0.000006 
1 .0 2.7 1 83 0.3679 13 442,4 1 3  0.000002 
I .  I 3.0042 0.3329 14 1 .202,604 0.0000008 
1 .2 3.3201 0.30 1 2  15  3.269,0 1 7  0.0000003 I 1 .3 3.6693 0.2725 

559 



560 TABLE I I  Common Logar i thm� 
--;:; 0 1 l 2 

1 .0 .0000 .0043 .0086 
LI .0414 .0453 .0492 
l .2 .0792 .0828 .0864 
1 .3 . 1 1 39 1 . 1 173 . 1 206 
1 .4 . 146 1 . 1492 . 1 523 

1.5 . 1 76 1  . 1790 . 1 8 1 8  
l .6 .204 1 .2068 .2095 
l .7 .2304 .2330 .2355 
l .8 .2553 .2577 I .2601 
1 .9 .2788 .28 10  .2833 

2.0 .30 10 .3032 .3054 
2. 1 .3222 .3243 .3263 
2.2 .3424 .3444 .3464 
2.3 .36 1 7  .3636 .3655 
2.4 .3802 .3820 .3838 

2.5 .3979 .3997 .40 14  
2.6 .4 1 50 .4 166 .4 1 83 
2.7 .43 14  .4330 .4346 
2.8 .4472 .4487 .4502 
2.9 .4624 .4639 .4654 

3.0 .477 1 .4786 .4800 
3. 1 .4914 .4928 .4942 
3.2 .505 1 .5065 .5079 
3.3 .5 1 85 .5 198 .52 1 1 
3.4 .53 1 5  .5328 .5340 

3.5 .5441 .5453 .5465 
3.6 .5$63 .5575 .5587 
3.7 .5682 .5694 .5705 
3.8 .5798 .5809 .582 1 
3.9 .59 1 1 .5922 .5933 

4.0 .6021 .603 1 .6042 
4. 1  .6 128 .6 138 .6 149 
4.2 .6232 .6243 .6253 
4.3 .6335 .6345 .6355 
4.4 .6435 .6444 .6454 

4.5 .6532 .6542 .655 1 
4.6 .6628 .6637 .6646 
4.7 .672 1 .6730 .6739 
4.8 .68 12  .682 1 .6830 
4.9 .6902 .69 1 1 .6920 

5.0 .6990 .6998 .7007 
5 . 1  .7076 .7084 .7093 
5.2 .7 1 60 .7 1 68 .7 1 77 
5.3 .7243 .725 1 .7259 
5 .4 .7324 .7332 .7340 

�-

3 

.0128 

.053 1 

.0899 

. 1 239 

. 1 553 

. 1 847 

.2 122 

.2380 

.2625 

.2856 

.3075 

.3284 

.3483 

.3674 
.3856 

.403 1 

.4200 

.4362 

.45 1 8  

.4669 

.48 14 

.4955 

.5092 

.5224 

.5353 

.5478 

.5599 

.57 1 7  

.5832 

.5944 

.6053 

.6 1 60 

.6263 

.6365 

.6464 

.6561 

.6656 

.6749 

.6839 

.6928 

.7016  

.7 10 1 

.7 1 85 

.7267 

.7348 

4 I 
.0 170 
.0569 
.0934 
. 1 27 1  
. 1 584 

. 1 875 

.2 148 1 
.2405 
.2648 
.2878 

.3096 

.3304 

.3502 

.3692 

.3874 

.4048 

.42 16 

.4378 

.4533 

.4683 

.4829 

.4969 

.5 105 

.5237 

.5366 

.5490 

.56 1 1 

.5729 

.5843 

.5955 

.6064 

.6 1 70 

.6274 

.6375 

.6474 

.6571 

.6665 

.6758 

.6848 

.6937 

.7024 

.7 1 10 

.7 1 93 

.7275 

.7356 

5 6 7 

.02 1 2  I .0253 

.0607 .0645 
.0294 
.0682 

.0969 

. 1 303 

. 16 14  

. 1903 

.2 1 75 

.2430 

.2672 

.2900 

.3 1 1 8 

.3324 

.3522 

.37 1 1  

.3892 

.4065 

.4232 
.4393 
.4548 
.4698 

.4843 

.4983 

.5 1 19 

.5250 

. 5378 

.5502 

.5623 

. 5740 

.5855 

.5966 

.6075 

.6 180 

.6284 

.6385 

.6484 

.6580 

.6675 

.6767 

.6857 

.6946 

.7033 

.7 1 18 

.7202 
.7284 
.7364 

. 1 004  . 1038 

. 1 335 . 1 367 

. 1644 . 1673 

. 193 1 . 1959 

.2201 .2227 

.2455 .2480 

.2695 .27 1 8  

.2923 .2945 

.3 139 .3 1 60 

.3345 .3365 

.354 1 .3560 

.3729 .3747 

.3909 .3927 

.4082 .4099 

.4249 .4265 

.4409 .4425 

.4564 .4579 

.47 1 3  .4728 

.4857 .487 1 

.4997 .501 1 
.5 1 32 .5 145 
.5263 .5276 
.5391  . 5403 

.55 14 .5527 

.5635 .5647 

.5752 .5763 

.5866 .5877 

.5977 .5988 

.6085 .6096 

.6 1 9 1  .6201 

.6294 .6304 

.6395 .6405 

.6493 .6503 

.6590 .6599 

.6684 .6693 

.6776 .6785 

.6866 .6875 

.6955 .6964 

.7042 .7050 

.7 1 2

U 
.7 1 35 

.72 10  .72 1 8  

.7292 .7300 

.7372 .7380 

8 9 

.0334 .0374 
.07 1 9  .0755 
. 1072 . 1 106 
. 1399 . 1 430 
. 1 703 . 1 732 

. 1 987 .2014 

.2253 .2279 

.2504 .2529 

.2742 .2765 

. 2967 .2989 

. 3 1 8 1  .3201 

.3385 .3404 

. 3579 .3598 

.3766 .3784 

.3945 .3692 

.4 1 16 .4 133 

.428 1 .4298 

.4440 .4456 

.4594 .4609 

.4742 .4757 

.4886 .4900 
.5024 .5038 
. 5 1 59 .5 172 
.5289 . 5302 
.54 16 .5428 

.5539 .555 I 

.5658 .5670 

.5775 .5786 

.5888 .5899 

.5999 .60 IO 

.6 107 .6 1 17 

.62 1 2  .6222 

.63 14 .6325 

.64 1 5 .6425 

.65 1 3  .6522 

.6609 .66 18 

.6702 .67 12 

.6794 .6803 

.6884 .6893 

.6972 .698 1 

.7059 .7067 

.7 143 .7 1 52 

.7226 .7235 

.7308 .73 16  

.7388 .7396 
_, 



TABLE I I  ( co111i1111ed ) 
-

0 1 

5.5 .7404 .74 12  
5.6 .7482 .7490 
5.7 .7559 .7566 
5.8 .7634 .7642 
5.9 .7709 .77 16 

6.0 .7782 .7789 
6. 1 .7853 .7860 
6.2 .7924 .793 1 
6.3 .7993 .8000 
6.4 .8062 .8069 

6.5 .8 1 29 .8 136 
6.6 .8 195 .8202 
6.7 .826 1 .8267 
6.8 .8325 .833 1 
6.9 .8388 .8395 

7.0 .845 1 .8457 
7. 1 .85 13  .85 19  
7.2 .8573 .8579 
7.3 .8633 .8639 
7.4 .8692 .8698 

7.5 .875 1 .8756 
7.6 .8808 .88 14 
7.7 .8865 .887 1 
7.8 .892 1 .8927 
7.9 .8976 .8982 

8.0 .903 1 .9036 
8. 1 .9085 .9090 
8.2 .9 1 38 .9 143 
8.3 .9 19 1  .9 196 
8.4 .9243 .9248 

8.5 .9294 .9299 
8.6 .9345 .9350 
8.7 .9395 .9400 
8.8 .9445 .9450 
8.9 .9494 .9499 

9.0 .9542 .9547 
9. 1 .9590 .9595 
9.2 .9638 .9643 
9.3 .9685 .9689 
9.4 .973 1 .9736 

9.5 .9777 .9782 
9.6 .9823 .9827 
9.7 .9868 .9872 
9.8 .99 12 .99 17  
9.9 .9956 .996 1 

� 

2 3 

.74 19 I .7427 

.7497 .7505 

.7574 .7582 

.7649 .7657 

.7723 .773 1 

.7796 .7803 

.7868 .7875 

.7938 .7945 

.8007 .8014 

.8075 .8082 

.8 142 .8 149 

.8209 .82 1 5  

.8274 .8280 

.8338 .8344 

.840 1 .8407 

.8463 .8470 

.8525 .853 1 

.8585 .859 1 

.8645 .865 1 

.8704 .87 10 

.8762 .8768 

.8820 .8825 

.8876 .8882 

.8932 .8938 

.8987 .8993 

.9042 .9047 

.9096 .9 10 1  

.9 149 .9 1 54 

.920 1 .9206 

.9253 .9258 

.9304 .9309 

.9355 .9360 

.9405 .94 !0  

.9455 .9460 

.9504 .9509 

.9552 .9557 

.9600 .9605 

.9647 .9652 

.9694 .9699 

.9741 .9745 

.9786 .979 1 

.9832 .9836 

.9877 .988 1 

.992 1 .9926 

.9965 .9969 

4 

.7435 

.75 1 3  

.7589 

.7664 

.7738 

.78 10  

.7882 

.7952 

.802 1 

.8089 

.8 1 56 

.8222 

.8287 

.835 1 

.84 14 

.8476 

.8537 

.8597 

.8657 

.87 16  

.8774 
.883 1 
.8887 
.8943 
.8998 

.9053 

.9106 

.9 159 

.92 12  

.9263 

.93 1 5  

.9365 

.94 1 5  

.9465 

.95 13 

.9562 

.9609 

.9657 

.9703 

.9750 

.9795 

.9841 

.9886 

.9930 

.9974 

5 

.7443 

.7520 

.7597 

.7672 

.7745 

.78 1 8  

.7889 

.7959 

.8028 

.8096 

.8 162 

.8228 

.8293 

.8357 

.8420 

.8482 

.8543 

.8603 

.8663 

.8722 

.8779 

.8837 

.8893 
.8949 
.9004 

.9058 

.9 1 1 2 

.9 165 

.92 17 

.9269 

.9320 

.9370 

.9420 

.9469 

.95 1 8  

.9566 

.96 14 

.966 1 

.9708 

.9754 

.9800 

.9845 

.9890 

.9934 

.9978 

6 --

.745 1 

.7528 
.7604 
.7679 
.7752 

.7825 

.7896 

.7966 

.8035 

.8 102 

.8 169 

.8235 

.8299 

.8363 

.8426 

.8488 

.8549 

.8609 

.8669 

.8727 

.8785 

.8842 

.8899 

.8954 

.9009 

.9063 
.91 1 7  
.9170 
.9222 
.9274 

.9325 

.9375 

.9425 

.9474 

.9523 

.9571  

.96 19 

.9666 

.97 1 3  

.9759 

.9805 

.9850 

.9894 

7 ,. 8 

.7459 I .7466 

.7536 .7543 

.76 1 2  .76 19 

.7686 .7694 

.7760 .7767 

.7832 .7839 

.7903 .79 10 

.7973 .7980 

.804 1 .8048 

.8 109 .8 1 16 

.8 176 .8 1 82 

.824 1 .8248 

.8306 .83 1 2  

.8370 .8376 

.8432 .8439 

.8494 .8500 

.8555 .856 1 

.86 1 5  .862 1 

.8675 .868 1 

.8733 .8739 

.879 1 .8797 

.8848 .8854 

.8904 .89 10  

.8960 .8965 

.9015  .9020 

.9069 .9074 

.9 122 .9128 

.9 175 .9 1 80 

.9227 .9232 

.9279 .9284 

.9330 .9335 

.9380 .9385 

.9430 .9435 

.9479 .9484 

.9528 .9533 

.9576 .958 1 
.9624 .9628 
.967 1 .9675 
.97 17  .9722 
.9763 .9768 

.9809 .98 14 

.9854 .9859 
.9899 .9903 

.9939 .9943 J .9948 
.9983 I .9987 .999 1 

561 

9 I 

.7474 

.755 1 

.7627 

.770 1 

.7774 

.7846 

.79 17  

.7987 

.8055 

.8 122 

.8 189 

.8254 

.83 19 

.8382 

.8445 

.8506 

.8567 

.8627 

.8686 

.8745 

.8802 

.8859 

.89 1 5  

.897 1 

.9025 

.9079 

.9 133 

.9 1 86 

.9238 

.9289 

.9340 

.9390 

.9440 

.9489 

.9538 

.9586 

.9633 

.9680 

.9727 

.9773 

.98 1 8  

.9863 

.9908 

.9952 

.9996 



562 TABLE I l l  atural Logari thm 
In  N 

0. 1 -2.3026 
0.2 - 1 .6094 
0.3 - 1 .2040 
0.4 -0.9 163 

0.5 -0.693 1 
0.6 - 0.5 108 
0.7 - 0.3567 
0.8 - 0.223 1 
0.9 - 0. 1054 

1 .0 0.0000 
I .  I 0.0953 
1 .2 0. 1 823 
1 .3 0.2624 
1 .4 0.3365 

1 .5 0.4055 
1 .6 0.4700 
1 .7 0.5306 
1 .8 0.5878 
1 .9 0.64 19  

2.0 0.693 1 
2. 1 0.74 19  
2.2 0.7885 
2.3 0.8329 
2.4 0.8755 

2.5 0.9 163 
2.6 0.9555 
2.7 0.9933 
2.8 1 .0296 
2.9 1 .0647 

3.0 1 .0986 
3. 1 1 . 1 3 14 
3.2 1 . 1 632 
3.3 1 . 1 939 
3.4 1 .2238 

3.5 1 .2528 
3.6 1 .2809 
3.7 1 .3083 
3.8 1 .3350 
3.9 1 .3610 

4.0 1 .3863 
4. 1 1 .4 1 10 
4.2 1 .435 1 
4.3 1 .4586 
4.4 1 .48 16  

� 

4.5 
4.6 
4.7 
4. 
4.9 

5.0 
5. 1 
5.2 
5.3 
5.4 

5.5 
5.6 
5.7 
5. 
5.9 

6.0 
6. 1 
6.2 
6.3 
6.4 

6.5 
6.6 
6.7 
6.8 
6.9 

7.0 
7. 1 
7.2 
7.3 
7.4 

7.5 
7.6 
7.7 
7. 
7.9 

8.0 
. I  
.2 
.3 
.4 

8.5 
8.6 
8.7 

8.9 

In N I In N 

1 .504 1  9.0 2. 1 972 
1 .526 1 9. 1 2.2083 
1 .5476 9.2 2.2 192 
1 .5686 9.3 2.2300 
1 .5892 9.4 2.2407 

1 .6094 9.5 2.25 1 3  
1 .6292 9.6 2.26 1 8  
1 .6487 9.7 2.272 1 
1 .6677 9. 2.2824 
1 .6864 9.9 2.2925 

1 .7047 10 2.3026 
1 .7228 I I  2.3979 
1 . 7405 12  2.4849 
1 .7579 1 3  2.5649 
1 .7750 14 2.63 9 1  

1 .79 1 8  1 5  2.708 1 
1 .8083 1 6  2.7726 
1 . 8245 1 7  2.8332 
1 . 8405 I 2.8904 
1 .8563 1 9  2.9444 

1 .87 1 8  20 2.9957 
1 .887 1 25 3.2 1 89 
1 .902 1 30 3.40 1 2  
1 .9 1 69 35 3.5553 
1 .93 1 5  40 3.6889 

1 .9459 45 3.8067 
1 .9601 50 3.9 1 20 
1 .974 1 55 4.0073 
1 .9879 60 4.0943 
2.00 1 5  65 4. 1 744 

2.0 149 70 4.2485 
2.028 1 75 4.3 175  
2.04 1 2  0 4.3820 
2.054 1 5 4.4427 
2.0669 90 4.4998 

2.0794 95 4.5539 
2.09 19 100 4.6052 
2. 1 04 1  
2. 1 163 
2. 1 282 

2. 140 1  
2. 1 5 1 8  
2. 1 633 
2. 1 748 
2. 1 86 1  



TABLE I V  l ntere�t Rate\ 
i = � c 

-
( I  + i)" ( I  + lf" l 

n II 

1 1 .0050 ()()()() 5 1  1 .2896 4 1 94 I 
2 1 .0 100 2500 52 1 .2960 9015 
3 l .O l SO 7S l 3  53 1 .3025 7060 
4 1 .0201 5050 54 1 .3090 8346 
5 1 .0252 5 1 25 55 1 .3 1 56 2887 

6 1 .0303 7751 56 1 .3222 0702 
7 1 .0355 2940 57 1 .3288 1 805 
8 1 .0407 0704 5 1 .3354 62 14 
9 1 .0459 1058 59 1 .342 1 3946 

10 1 .05 1 1  401 3  60 1 .3488 501 5  

I I  1 .0563 9583 6 1  1 .3555 9440 
1 2  1 .06 1 6  7781 62 1 .3623 7238 
1 3  1 .0669 8620 63 1 .369 1 8424 
14 1 .0723 2 1 1 3 64 1 .3760 301 6  
15  1 .0776 8274 65 1 .3829 1 03 1  

1 6  1 .0830 7 1 1 5  66 1 .3898 2486 
1 7  1 .0884 865 1 67 1 .3967 7399 
1 8  1 .0939 2894 68 1 .4037 5785 
1 9  1 .0993 9858 69 1 .4 1 07 7664 
20 1 . 1048 9558 70 1 .4 1 78 3053 

2 1  1 . 1 104 2006 7 1  1 .4249 1 968 
22 I . I  1 59 72 1 6  72 1 .4320 4428 
23 1 . 1 2 1 5  5202 73 1 .4392 0450 
24 1 . 1271  5978 74 1 .4464 0052 
25 1 . 1 327 9558 75 1 .4536 3252 

26 1 . 1 384 5955 76 1 .4609 0069 
27 1 . 1441 5 1 85 77 1 .4682 05 1 9  
28 J . 1498 7261 7 l .475S 4622 
29 l . I SS6 2 197 79 1 .4829 2395 
30 1 . 1 6 14 0008 80 1 .4903 38S7 

3 1  1 . 1672 0708 1 1 .4977 9026 
32 1 . 1 730 43 1 2  2 1 .5052 792 1 
33 1 . 1 789 0833 3 J .S l28 056 1 
34 1 . 1 848 0288 84 J .S203 6964 
35 1 . 1 907 2689 85 1 .5279 7 1 48 

36 1 . 1 966 80S2 6 l .53S6 1 1 34 
37 1 .2026 6393 87 1 .5432 8940 
38 1 .2086 7725 I .SS 10 0S8S 
39 1 .2 147 2063 9 J .S587 6087 
40 1 .2207 9424 90 1 .5665 5468 

4 1  1 .2268 9821 9 1  1 .5743 8745 
42 1 .2330 3270 92 1 .5822 5939 
43 1 .2391 9786 93 1 .5901 7069 
44 l .24S3 9385 94 1 .598 1 2 154 
45 l .2S l6 2082 95 1 .606 1  1 2 1 S  

46 1 .2578 7892 96 1 .6 1 4 1  427 1 
47 1 .264 1 6832 97 1 .6222 1 342 
4 1 .2704 89 16 98 1 .6303 2449 
49 1 .2768 4 1 6 1  99 1 .6384 76 1 1 
so 1 .2832 258 1 JOO 1 .6466 6849 

II 

I 
2 
3 
4 
5 
6 
7 

9 
10 

I I  
12 
13 
14 
IS 

16 
1 7  
I 
19 

20 

2 1  
22 
23 
24 
25 

26 
27 
2 
29 
30 

3 1  
32 
33 
34 
3S 

36 
37 
3 
39 
40 

4 1  
42 
43 
44 
45 

46 
47 
4 
49 
50 

563 

i = 1<'( i = l �% 
( I  + i)" II ( I  + i )"' n ( I  + i )" II ( I  + i)" 

1 .0 100 ()()()() 5 I 1 .66 1 0  78 14 I 1 .0 1 50 0000 S I  2 . 1 368 2 1 06  
1 .0201 ()()()() 52 1 .6776 8892 2 1 .0302 2500 52 2. 1688 7337 
1 .0303 0100 53 l .6944 6S8 1 3 1 .0456 7838 S3 2.20 14 0647 
1 .0406 0401 54 1 .7 1 14 1047 4 1 .06 1 3  635S 54 2.2344 27S7 
l .OS I O  JOOS 5S l .728S 24S7 s 1 .0772 8400 SS 2.2679 4398 

l .06 1 S  201 S  56 1 .7458 0982 6 1 .0934 4326 S6 2.30 1 9 63 14 
1 .072 1  3535 S7 1 .7632 6792 7 1 . 1098 449 1 7 2.3364 9259 
1 .0828 S67 1 5 1 .7809 0060 8 1 . 1 264 9259 S8 2.37 1 5  3998 
1 .0936 8527 59 1 .7987 0960 9 1 . 1433 8998 S9 2.407 1 1 308 
1 . 1046 22 1 3  60 1 .8 166 9670 10 1 . 1605 4083 60 2.4432 1 978 

1 . 1 1 56 683S 6 1  1 .8348 6367 1 1  1 . 1779 4894 6 1  2.4798 6807 
1 . 1 268 2503 62 1 .8532 1 230 12  1 . 1956 1 8 1 7  62 2.5 170 6609 
1 . 1 380 9328 63 1 .87 1 7  4443 13 1 . 2 1 35 5244 63 2.S548 2208 
1 . 1494 742 1 64 1 .8904 6 1 87 14 1 .23 1 7  5573 64 2.593 1 4442 
1 . 1609 6896 65 1 .9093 6649 1 5  1 .2502 3207 65 2.6320 4 158 

1 . 1 725 7864 66 1 .9284 601 5  1 6  1 .2689 8555 66 2.67 1 5  222 1 
1 . 1 843 0443 67 1 .9477 4475 1 7  1 .2880 2033 67 2.7 1 1 5 9504 
1 . 1 96 1  4748 6 1 .9672 2220 I 1 .3073 4064 68 2.7522 6896 
1 .208 1 0895 69 1 .9868 9442 19 1 .3269 5075 69 2.7935 5300 
1 .2201 9004 70 2.0067 6337 20 1 .3468 5501 70 2.8354 5629 

1 .2323 9 1 94 7 1  2.0268 3 1 00  2 1  1 .3670 5783 7 1  2.8779 88 14 
1 .2447 1 S86 72 2.0470 993 1 22 1 .3875 6370 72 2.92 1 1  S796 
1 .257 1 6302 73 2.0675 703 1 23 1 .4083 77 1 5  73 2.9649 7533 
1 .2697 3465 74 2.0882 460 1  24 1 .4295 0281 74 3.0094 4996 
1 .2824 3200 75 2. 1 09 1  2847 25 1 .4509 4535 75 3.0545 9 1 7 1  

1 .2952 563 1 76 2. 1 302 1975 26 1 .4727 0953 76 3. 1 004  1059 
1 .3082 0888 77 2. 1 5 1 5 2 1 95 27 1 .4948 00 1 8  77 3. 1469 1674 
1 .32 1 2  9097 78 2. 1 730 3 7 1 7  2 1 5 1 72 22 1 8  78 3. 1 94 1  2050 
1 .3345 0388 79 2. 1947 6754 29 1 . 5399 805 1 79 3.2420 3230 
1 .3478 4892 0 2.2167 1 522 30 1 .5630 8022 0 3.2906 6279 

1 .36 1 3  2740 I 2.2388 8237 3 1  1 .5865 2642 I 3.3400 2273 
1 .3749 4068 2 2.26 1 2  7 1 1 9 32 1 .6103 2432 2 3.3901 2307 
1 .3886 9009 83 2.2838 8390 33 1 .6344 79 18 3 3.4409 7492 
l .402S 7699 4 2.3067 2274 34 1 .6589 9637 4 3.4925 8954 
1 .4 1 66  0276 85 2.3297 8997 35 1 .6838 8 132 s 3.5449 7838 

1 .4307 6878 86 2.3S30 8787 36 1 .7091 3954 6 3.5981 5306 
1 .4450 7647 7 2.3766 1 875 37 1 .7347 7663 87 3.6521 2535 
1 .4595 2724 8 2.4003 8494 38 1 .7607 9828 8 3.7069 0723 
1 .4741 225 1 89 2.4243 8879 39 1 .7872 1 025 89 3.762S 1084 
1 .4888 6373 90 2.4486 3267 40 1 .8 1 40 1 84 1  90 3.8 1 89 485 1 

1 .5037 5237 9 1  2.473 1 1 900 41  l .84 12 2868 9 1  3.8762 3273 
1 . 5 1 87 8989 92 2.4978 SO l 9  42 1 .8688 47 1 2  92 3.9343 7622 
1 .5339 7779 93 2.5228 2869 43 1 .8968 7982 93 3.9933 9 1 87 
1 .5493 1 757 94 2.5480 5698 44 l .92S3 3302 94 4.0S32 927S 
1 .5648 1 075 95 2.5735 3755 45 1 .9542 1 30 1  95 4. 1 140 92 1 4  

1 .5804 5885 96 2.5992 7293 46 1 .9835 262 1 96 4. 1758 0352 
1 .5962 6344 97 2.6252 6565 47 2.0 1 32 79 10 97 4.2384 40S7 
1 .6 1 22 2608 98 2.65 1 S  1 83 1  4 2.0434 7829 98 4.3020 1 7 1 8  
1 .6283 4834 99 2.6780 3349 49 2.074 1 3046 99 4.3665 4744 
1 .6446 3 1 82 100 2.7048 1 383 50 2. 1052 4242 1 00  4.4320 4565 

- - -



564 TABLE IV (continued ) 

i = 2% 
n ( I + i)" II 

I l.0200 0000 ' I  
2 1 .0404 0000 52 
3 1.06 12 0800 53 
4 1 .0824 32 16 54 
5 l . 1040 8080 SS 

6 1 . 1261 6242 56 
7 1 . 1486 8567 S7 
8 1 . 1 7 1 6  5938 5 
9 1 . 1 950 9257 59 

10 1 .2 1 89 9442 60 

I I  1 .2433 743 1 6 1  
1 2  l .2682 4179 62 
13 l .2936 0663 63 
14 l .3194 7876 64 
1 5  1 .3458 6834 65 

1 6  1 .3727 8S7 1 66 
17 1 .4002 4 142 67 
I 1 .4282 4625 6 
19 1 .4568 1 1 17 69 
20 1 .4859 4740 70 

2 1  1 .5 1 56 6634 7 1  
22 1 .5459 7%7 72 
23 l .5768 9926 73 
24 1 .6084 3725 74 
25 l .6406 0S99 75 

26 1 .6734 18 1 1  76 
27 1 .7068 8648 77 
28 1.74 1 0  242 1 78 
29 1 .7758 4469 79 
30 1 .81 13 6 158 80 

3 1  1 .8475 8882 8 1  
32 1 .8845 4059 82 
33 1 .9222 3 140 83 
34 1 .9606 7603 84 
3S 1 .9998 8955 8S 

36 2.0398 8734 6 
37 2.0806 8509 87 
38 2. 1 222 9879 R 
39 2. 1647 4477 9 
40 2.2080 3966 90 

4 1  2.2522 0046 9 1  
42 2.2972 4447 92 
43 2.343 1 8936 93 
44 2.3900 5314 94 
45 2.4378 542 1 95 

46 2.4866 1 129 96 
47 2.5363 4352 97 
48 2.5870 7039 98 
49 2.6388 1 179 99 
50 2.69 15 8803 100 

( I  + i )n n 

2.7454 1979 I 
2.8003 2819 2 
2.8563 3475 3 
2.9 1 34 6144 4 
2.97 1 7  3067 5 

3.03 1 1  6529 6 
3.09 1 7  8859 7 
3. 1 536 2436 8 
3.2 1 66  9685 9 
3.28 10 3079 IQ 

3.3466 5 140 I I  
3.4 1 35 8443 12  
3.48 1 8  56 12 1 3  
3.55 14 9324 14 
3.6225 231 1 1 5  

3.6949 7357 16 
3.7688 7304 1 7  
3.8442 S050 18 
3.92 1 1  355 1 19 
3.9995 S822 20 

4.0795 4939 2 1  
4. 1 6 1 1 4038 22 
4.2443 63 18 23 
4.3292 5045 24 
4.4158 3546 25 

4.5041 52 16 26 
4.5942 3S2 1 27 
4.686 1 1991 2 
4.7798 423 1 29 
4.8754 39 16 30 

4.9729 4794 31  
5.0724 0690 32 
5. 1738 5504 33 
5.2773 3214 34 
5.3828 7878 35 

5.4905 3636 36 
5.6003 4708 37 
5.7 1 23 5402 38 
5.8266 0 1 10 39 
5.943 1 33 1 3  40 
6.06 19 9579 4 1  
6. 1832 3570 42 
6.3069 0042 43 
6.4330 3843 44 
6.56 16 9920 45 

6.6929 33 1 8  46 
6.8267 9 1 84 47 
6.%33 2768 4 
7 . 1025 9423 49 
7.2446 46 12 50 

i = 2!% i = 3% 

( I + i )" n ( I + i )" n ( I + i )" 

1 .0250 0000 5 1  3.5230 3644 I 1 .0300 0000 
1 .0506 2500 52 3.61 l l  1235 2 1.0609 0000 
1.0768 9063 53 3.70 1 3  9016 3 1 .0927 2700 
1 . 1038 1 289 54 3.7939 249 1 4 1 . 1255 088 1 
1 . 1 3 14 082 1 55 3.8887 7303 s 1 . 1 592 7407 

1 . 1596 9342 56 3.98S9 9236 6 1 . 1 940 5230 
1 . 1886 8575 57 4.0856 421 7  7 1 .2298 7387 
1 . 2 1 84 0290 5 4. 1 877 8322 8 1 .2667 7008 
1 .2488 6297 59 4.2924 7780 9 1 .3047 73 1 8  
1 .2800 8454 60 4.3997 8975 10 1 .3439 1638 

1 .3 120 8666 6 1  4.5097 8449 I I  1 .3842 3387 
1 .3448 8882 62 4.6225 29 10 12  1 .4257 6089 
1.3785 1 104 63 4.7380 9233 13 1 .4685 337 1 
1 .4 129 7382 64 4.8565 4464 14 1 .5 125 8972 
1 .4482 98 1 7  6S 4.9779 5826 15  1 .5579 6742 

1 .4845 0562 66 5. 1024 072 1 16 1 .6047 0644 
1 .5216 1 826 67 

. 
5.2299 6739 17 1 .6528 4763 

1 .5596 5872 68 5.3607 1658 18 1 .7024 3306 
1 .5986 50 19 69 5.4947 3449 19 1 .7535 0605 
1 .6386 1644 70 5.632 1 0286 20 1 .8061 1 123 

1 .6795 8 1 85 7 1  5.7729 0543 2 1  1 .8602 9457 
1 .72 1 5  7 140 72 5.91 72 2806 22 1 .9161  0341 
1 .7646 1068 73 6.065 1 5876 23 1 .9735 865 1 
1 .8087 2595 74 6.2 167 8773 24 2.0327 94 1 1 
1 .8539 4410 7S 6.3722 0743 25 2.0937 7793 

1 .9002 9270 76 6.53 1 5  1 26 1  26 2. 1 565 9 1 27 
1 .9478 0002 77 6.6948 0043 27 2.22 12 8901 
1 .9964 9502 7 6.862 1 7044 28 2.2879 2768 
2.0464 0739 79 7.0337 2470 29 2.3565 655 1 
2.0975 6758 0 7.2095 6782 30 2.4272 6247 

2. 1 500 0677 8 1  7.3898 0701 3 1  2.5000 8035 
2.2037 5694 2 7.5745 5219 32 2.5750 8276 
2.2588 5086 83 7.7639 1 599 33 2.6523 3524 
2.3 153 22 1 3  84 7.9580 1389 34 2.73 19 0530 
2.3732 05 19 85 8. 1 569 6424 35 2.8 1 38 6245 

2.4325 3S32 6 8.3608 8834 36 2.8982 7833 
2.4933 4870 7 8.5699 1055 37 2.9852 2668 
2.5556 8242 8 8.7841 5832 38 3.0747 8348 
2.6 195 7448 89 9.0037 6228 39 3 . 1 670 2698 
2.6850 6384 90 9.2288 5633 40 3.2620 3779 

2.752 1 9043 9 1  9.4595 7774 4 1  3.3598 9893 
2.8209 9520 92 9.6960 67 1 8  42 3.4606 9589 
2.89 15 2008 93 9.9384 6886 43 3.5645 1677 
2.9638 0808 94 10. 1 869 3058 44 3.67 14 5227 
3.0379 0328 95 10.44 16 0385 45 3.78 1 5  9584 

3 . 1 1 38 5086 96 10.7026 4395 46 3.8950 4372 
3. 1 9 16 97 1 3  97 10.9702 1004 47 4.01 1 8  9503 
3.2714 8956 98 1 1 .2444 6530 48 4. 1322 5 188 
3.3532 7680 99 1 1 .5255 7693 49 4.2S62 1944 
3.437 1 0872 100 1 1 . 8 1 37 1635 50 4.3839 0602 



565 

i = 4% i = 5% i = 6% i = 7% i = 8% 

n ( I + i)" II ( l .+ i)" I 11 ( l  + i)n II ( I  + i)" II ( I + i )" 

1 .0400 0000 I 1 .0500 0000 I 1 .0600 0000 I 1 .0700 0000 I 1 .0800 0000 
2 1.0816 0000 2 1 . 1025 0000 2 l . 1 236 0000 2 1 . 1449 0000 2 l . 1664 0000 
3 l . 1 248 6400 3 1 . 1 576 2500 3 1 . 19 10 1600 3 1 .2250 4300 3 1 .2597 1200 
4 l . 1698 5856 4 1 .2 1 55 0625 4 1 .2624 7696 4 1.3107 960 1 4 1 .3604 8896 
5 1 .2 166 529() 5 1.276.2 8 156 5 1 .3382 2558 5 l .402S 5 1 73 5 1 .4693 2808 

6 1 .2653 1902 6 1 .3400 9564 6 1 .4 185 191 1 6 1 .5007 3035 6 1 .5868 7432 
7 1 .3 159 3 178 7 1 .407 1 0042 7 1 . 5036 3026 7 1.6057 8 148 7 l.7 1 38 2427 
8 1 .3685 6905 1 .4774 5544 8 1 .5938 4807 1 . 7 1 8 1  861 8  8 1 .8509 302 1 
9 1 .4233 1 18 1  9 l .5S 13 2822 9 1 .6894 7896 9 J .8384 5921 9 l .9990 0463 

lO 1 .4802 4428 10  1 .6288 9463 10 1 .7908 4770 10 1 .967 1 5 1 36 to 2. 1589 2500 

l l  1 .5394 5406 I I  1 .7 103 3936 I I  1 .8982 9856 I I  2 . 1048 S l9S l l 2.33 16 3900 
12 1 .60 10 3222 12  l .7958 5633 12 2.0 12 1 9647 12 2.252 1 9 159 1 2  2.5 1 8 1  7012 
13 1 .6650 735 1 13  1 .8856 49 14 13 2. 1 329 2826 13 2.4098 4500 13 2.7196 2373 
14 1 .73 16 7645 14 J .9799 3 1 60  14 2.2609 0396 14 2.5785 34 1 5  14 2.937 1 9362 
15 1 .8009 43S I 1 5  2.0789 28 18  15 2.3965 S819 IS 2.7590 3 I S4 lS 3. 172 1  691 1 

16 1.8729 8 125 16 2. 1828 74S9 16 2.5403 S l68 16 2.952 1 637S 16 3.4259 4264 
17  1.9479 0050 
I 2.0258 1652 
19 2. 1068 49 1 8  
20 2. 191 1 2314 

17  2.2920 1832 
18 2.4066 1923 
19 2.5269 5020 
20 2.6532 977 1 

17 2.6927 7279 1 
18 2.8543 3915 
19 3.02SS 99SO 
20 3.207 1 3547 

17 3. I S88 IS21 
I 3.3799 3228 
19 3.61 65 2754 
20 3.8696 8446 

17 3.7000 1805 
18 3.9960 19SO 
19 4.3 1 57 0106 
20 4.6609 57 14 

2 1  2.2787 6807 2 1  2.78S9 62S9 2 1  3.3995 6360 2 1  4. 1405 6237 21  5.0338 3372 
22 2.3699 1 879 22 2.9252 6072 22 3.6035 3742 22 4.4304 0174 22 5.4365 4041 
23 2.4647 I SS4 23 3.07 15  2376 23 3.8 197 4966 23 4.7405 2986 23 5.87 14 6365 
24 2.5633 0416 24 3.2250 9994 24 4.0489 3464 24 5.0723 6695 24 6.34 1 1 8074 
2S 2.66S8 3633 2S 3.3863 5494 25 4.29 18 7072 25 S.4274 3264 25 6.8484 7520 

26 2.7724 6978 26 3.5556 7269 26 4.5493 8296 26 S.8073 S292 26 7.3963 532 1 
27 2.8833 68S8 27 3.7334 S632 27 4.8223 4594 27 6.2 1 38 6763 27 7.9880 6 147 
28 2.9987 0332 2 3.920 1 2914 2 5. 1 1 16 8670 2 6.6488 3836 28 8.6271 0639 
29 3. 1 1 86 s 145 29 4. 1 16 1  3560 29 5.4 183 8790 29 7. 1 142 5705 29 9.3 172 7490 
30 3.2433 975 1 30 4.32 19 4238 30 5.7434 9 1 17 30 7.6 1 22 5504 30 10.0626 5689 

3 1  3.373 1 3341 3 1  4.5380 3949 3 1  6.088 1 0064  31  8. 145 1 1290 31  10.8676 6944 
32 3.5080 5875 32 4.7649 4147 32 6.4533 8668 32 8.7 1 52 7080 32 1 1. 7370 8300 
33 3.6483 8 1 10 33 5.003 1 8854 33 6.8405 8988 33 9.3253 3975 33 12.6760 4964 
34 3.7943 1634 34 5.2533 4797 34 1.25 10 2528 34 9.9781 1 354 34 13.6901 3361 
35 3.9460 8899 3S 5.Sl60 I S37 35 7.6860 8679 35 10.6765 8 148 35 14. 7853 4429 

36 4. 1039 3255 36 5.79 18 1614 36 8. 1472 5200 36 1 1 .4239 42 19 36 15.968 1 7 184 
37 4.2680 8986 37 6.08 14 0694 37 8.6360 8712 37 12.2236 18 14  37 17.2456 2558 
38 4.4388 1 345 3 6.3854 7729 38 9. 1 542 5235 38 13.0792 7 14 1  38 18.6252 7563 
39 4.6 163 6S99 39 6.7047 5 1 15 39 9.7035 0749 39 13.9948 2041 39 20. 1 1 52 9768 
40 4.8010 2063 40 7.0399 8871 40 10.2857 1794 40 14.9744 S784 40 2 1.7245 2 150 

4 1  4.9930 6 145 4 1  7.39 19 88 15 41  10.9028 6 101 41 16.0226 6989 41 23.4624 8322 
42 5. 1927 8391 42 7.76 1S  87S6 42 1 1 .5570 3267 42 17.1442 S678 42 25.3394 8 187 
43 5.4004 9527 43 8. 1496 6693 43 1 2.2504 S463 43 18.3443 5475 43 27.3666 4042 
44 S.6165 1 508 44 8.5571 5028 44 12.98S4 8 191 44 19.6284 5959 44 29.5559 7 166 
4S S.841 1 7568 45 8.9850 0779 45 13.7646 1083 45 2 1 .0024 5 176 45 3 1 .9204 4939 

46 6.0748 227 1 46 9.4342 5818 46 14.5904 8748 46 22.4726 2338 46 34.4740 8534 
47 6.3 178 1 562 47 9.9059 7 109 47 15.4659 1673 47 24.0457 0702 47 37 .2320 1 2 1 7  
48 6.5105 2824 4 10.40 12 6965 48 16.3938 7 1 73 48 25. 7289 065 1 48 40.2 105 7314 
49 6.8333 4937 49 10.92 13 3313 49 17.3775 0403 49 27.S299 2997 49 43.4274 1899 
so 7. 1066 8335 so 1 1 .4673 9979 so 18.4201 5427 so 29.4570 2506 50 46.9016 12S l 

- � 



566 TABLE V Trigonometric Function of Radians and Real N u m ber a 
-� 

t sin t cos t tan t col t sec t 

.00 .0000 1 .0000 .0000 - 1 .000 

.01 .0100 1 .0000 .0100 99.997 1 .000 

.02 .0200 .9998 .0200 49.993 1 .000 

.03 .o300 .9996 .o300 33.323 1 .000 

.04 .0400 .9992 .0400 24.987 LOOI 

.05 .0500 .9988 .0500 19.983 l .OO l  

.06 .0600 .9982 .060 1 1 6.647 1 .002 

.07 .0699 .9976 .070 1 1 4.262 1 .002 

.08 .0799 .9968 .0802 12.473 l .003 

.09 .0899 .9960 .0902 1 1 .08 1 1 .004 

. 10 .0998 .9950 . 1003 9.967 1 .005 

. l l  . 1098 .9940 . l l04 9.054 1 .006 

. 1 2  . 1 197 .9928 . 1 206 8.293 l .007 

. 1 3  . 1 296 .99 1 6  . 1 307 7.649 l .009 

. 14 . 1 395 .9902 . 1 409 7.096 l .0 1 0  

. 1 5  . 1494 .9888 . 15 l l 6.6 1 7  1 .0 1 1 

. 1 6  . 1 593 .9872 . 1 6 14  6. 1 97 1 .013  

. 1 7 . 1 692 .9856 . 1 7 17 5.826 1 .015  

. 1 8  . 1 790 .9838 . 1 820 5.495 1 .0 16  

. 1 9  . 1 889 .9820 . 1 923 5.200 1.0 1 8  

.20 . 1987 .980 1 .2027 4.933 1 .020 

.21  .2085 .9780 .2 13 1 4.692 1.022 

.22 .2 1 82 .9759 .2236 4.472 l .025 

.23 .2280 .9737 .234 1 4.271 l .027 

.24 .2377 .97 1 3  .2447 4.086 l .030 

.25 .2474 .9689 .2553 3.9 16 l .032 

.26 .257 1 .9664 .2660 3.759 1.035 

.27 .2667 .9638 .2768 3.6 1 3  1 .038 

.28 .2764 .96 1 1 .2876 3.478 1 .04 1  

.29 .2860 .9582 .2984 3.35 1 1 .044 

.30 .2955 .9553 .3093 3.233 1 .047 

.3 1 .305 1 .9523 .3203 3. 1 22 1 .050 

.32 .3 1 46 .9492 .33 14 3.0 l 8  1 .053 

.33 .3240 .9460 .3425 2.920 1 .057 

.34 .3335 .9428 .3537 2.827 1 .061 

.35 .3429 .9394 .3650 2.740 1 .065 

.36 .3523 .9359 .3764 2.657 1 .068 

.37 .36 16 .9323 .3879 2.578 1 .073 

.38 .3709 .9287 .3994 2.504 l .077 

.39 .3802 .9249 .41 1 1  2.433 1 .08 1 

csc t 

-

100.00 

50.00 

33.34 

25.01 

20.0 1 

1 6.68 

1 4.30 

1 2.5 1 

I l . 1 3  

10.Q2 

9. 109 

8.353 

7.7 14 

7. 1 66 

6.692 

6.277 

5.9 1 1  

5.586 
5.295 

5.033 
4.797 

4.582 

4.386 

4.207 

4.042 

3.890 
3.749 
3.6 l9 

3.497 

3.384 
3.278 

3. 1 79 
3.086 
2.999 

2.9 1 6  
2.839 

2.765 

2.696 

2630 

a Reprinted with permission of the publisher from Fundamentals of Algebra and Trigonometry, Fourth 
Edition, by Earl W. Swokowski, copyright © 1978, Prindle, Weber & Schmidt. 



TABLE V (conti11t1ed) 567 

I sin / cos I tan I cot t sec / CSC I 

.40 .3894 .92 1 1 .4228 2.365 1 .086 2.568 

.4 1 .3986 .9 1 7 1  .4346 2.301 1.090 2.509 

.42 .4078 .9 1 3 1  .4466 2.239 1.095 2.452 

.43 .4 169 .9090 .4586 2. 180 1. 100 2.399 

.44 .4259 .9048 .4708 2. 124 1 . 105 2.348 

.45 .4350 .9004 .483 1 2.070 l . 1 1 1  2.299 

.46 .4439 .8961 .4954 2.01 8  1. 1 1 6 2.253 

.47 .4529 .89 16 .5080 1 .969 1 . 122 2.208 

.48 .46 1 8  .8870 .5206 1 .92 1 1 . 1 27 2. 166 

.49 .4706 .8823 . 5334 1 .875 J . 133 2. 1 25 

.50 .4794 .8776 .5463 1 .830 1 . 139 2.086 

.S I .4882 .8727 .5594 1 .788 1 . 146 2.048 

.52 .4969 .8678 .5726 1.747 1 . 152 2.0 1 3  

.53 .5055 .8628 .5859 1 .707 1 . 1 59 1 .987 

.54 . 5 1 4 1  .8577 .5994 1 .668 1 . 1 66 1 .945 

.55 .5227 .8525 .6 1 3 1  1 .63 1 1 . 173 1 .913 

.56 .53 12 .8473 .6269 1 .595 J . 1 80 1 .883 

.57 .5396 .84 19 .6410  l .560 l . 1 88 l . 853 

.58 .5480 .8365 .6552 1 .526 l . 196 l.825 

.59 .5564 .8309 .6696 1 .494 1.203 1.797 

.60 .5646 .8253 .684 1 1 .462 1 .212 1 .771 

.61 .5729 .8 196 .6989 1 .43 1 1 .220 1 .746 

.62 .5810 . 8 1 39 .7 1 39 1 .40 1 1 .229 1 .721 

.63 .589 1  .8080 .7291 1.372 1 .238 1 .697 

.64 .5972 .802 1 .7445 1 .343 1 .247 1.674 

.65 .6052 .796 1 .7602 1 . 3 1 5  1 .256 l .652 

.66 .6 1 3 1  .7900 .776 1 1 .288 1 .266 1 .63 1 

.67 .62 1 0  .7838 .7923 1 .262 1 .276 1 .610 

.68 .6288 .7776 .8087 1 .237 1 .286 1 .590 

.69 .6365 .77 12 .8253 l .212  1.297 1 .571  

.70 .6442 .7648 .8423 1 . 187 1 .307 1 .552 

.7 1 .65 1 8  .7584 .8595 1 . 163 1 .3 1 9  1 .534 

.72 .6594 .75 1 8  .877 1 1 . 140 1 .330 1 .5 1 7 

.73 .6669 .7452 .8949 l . 1 1 7 1 .342 1 .500 

.74 .6743 .7385 .9 1 3 1  1.095 l .354 1 .483 

.75 .68 1 6  .73 1 7  .93 16 1 .073 1 .367 1 .467 

.76 .6889 .7248 .9505 1.052 1 .380 1.452 

.77 .696 1 .7 179 .9697 1 .03 1 1 .393 1 .437 

.78 .7033 .7109 .9893 I .O J  I 1.407 1.422 

.79 .7104 .7038 1 .009 .9908 1 .42 1 l.408 



568 TABLE V (continued) 

I sin t 
i' .80 .7174 

.81  .7243 

.82 .73 1 1 

.83 .7379 

.84 .7446 

.85 .75 13 

.86 .7578 
.87 .7643 
.88 .7707 
.89 .777 1 

.90 .7833 

.91 .7895 

.92 .7956 

.93 .8016 

.94 . 8076 

.95 .8 134 

.96 .8192 

.97 .8249 

.98 .8305 

.99 .8360 

1 .00 .84 1 5  
1 .01 . 8468 
1 .02 .852 1 
1 .03 .8573 
1.04 .8624 

1 .05 .8674 
1 .06 .8724 
1 .07 .8772 
1 .08 .8820 
1 .09 .8866 

1 . 10  .8912  
1 . 1 1  .8957 
1 . 1 2 .9001 
1 . 1 3 .9044 
l . 1 4 .9086 

l . 1 5  .9 1 28 
l . 1 6 .9 1 68 
1 . 1 7 .9208 
1. 18  .9246 
1 . 1 9  .9284 

cos t tan t 
.6967 1 .030 
.6895 1.050 
.6822 1.072 
.6749 1 .093 
.6675 1 . 1 16 

.6600 1 . 138 

.6524 1 . 162 

.6448 1 . 1 85 

.6372 1 .210 

.6294 1 .235 

.62 1 6  1.260 

.6137 1 .286 
.6058 1 .3 13  
.5978 1 .34 1 
.5898 1 .369 

.58 17 1 .398 

.5735 1 .428 

.5653 1 .459 

.5570 1 .491 

.5487 1 .524 

.5403 1 .557 

.53 19 1 .592 

.5234 1 .628 

.5 148 1 .665 

.5062 1.704 

.4976 1.743 

.4889 1.784 

.4801 l .827 

.47 13 1 .87 1  

.4625 1 .917 

.4536 1 .965 

.4447 2.014 

.4357 2.066 

.4267 2. 1 20 

.4176 2. 1 76 

.4085 2.234 

.3993 2.296 

.3902 2.360 

.3809 2.427 

.37 17 2.498 

cot t sec t CSC I  
.97 12 1.435 1 .394 
.9520 1 .450 1 .381 
.933 1 1 .466 1 .368 
.9 146 1 .482 1 .355 
.8964 1 .498 1 .343 

.8785 1 .5 15  1 .33 1 
.8609 1 .533 1 .320 
.8437 1 .55 1  1.308 
.8267 1.569 1 .297 
.8100 1 .589 1 .287 

.7936 1 .609 1 .277 

.7774 1 .629 1 .267 

.76 1 5  1.65 1 1 .257 

.7458 1 .673 1 .247 

.7303 1 .696 1 .238 

.7 1 5 1  1 .719 1 .229 

.7001 1.744 1 .22 1 
.6853 1 .769 1 .212 
.6707 1 .795 1 .204 
.6563 1 .823 1 . 1 96  

.642 1 1 .85 1 1 . 1 88 

.628 1 1 .880 1 . 1 8 1  

.6 142 1 .9 1  l 1 . 1 74 

.6005 1 .942 1 . 166 

.5870 1 .975 I . J 60  

.5736 2.010 l . 1 53 

.5604 2.046 1 . 146 

.5473 2.083 1 . 1 40 

.5344 2. 122 1 . 1 34 

.52 16 2. 162 1 . 1 28 

.5090 2.205 l . 1 22 

.4964 2.249 1 . 1 16 

.4840 2.295 1 . 1 1 1  

.47 1 8  2.344 l . 106 

.4596 2.395 l . 101 

.4475 2.448 1 .096 

.4356 2.504 1 .09 1  

.4237 2.563 1 .086 

.4 1 20 2.625 1 .082 

.4003 2.691 1 .077 



TABLE V (continued) 569 

t sin t COS I tan I cot e  sec t csc t 

1 .20 .9320 .3624 2.572 .3888 2.760 1 .073 
1 .2 1  .9356 .3530 2.650 .3773 2.833 1 .069 
1 .22 .939 1 .3436 2.733 .3659 2.9 10  1 .065 
1 .23 .9425 .3342 2.820 .3546 2.992 1 .061 
1 .24 .9458 .3248 2.9 12 .3434 3.079 1 .057 

1 .25 .9490 .3 153 3.0 10 .3323 3. 1 7 1  1 .054 
1 .26 .952 1 .3058 3 . 1 13 .32 12  3.270 1 .050 
1 .27 .955 1 .2963 3.224 .3 102 3.375 1 .047 
1 .28 .9580 .2867 3.341 .2993 3.488 1 .044 
1 .29 .9608 .277 1 3.467 .2884 3.609 1 .041  

1 .30 .9636 .2675 3.602 .2776 3.738 1 .038 
1 .3 1  .9662 .2579 3.747 .2669 3.878 1 .035 
1 .32 .9687 .2482 3.903 .2562 4.029 1 .032 
1 .33 .97 1 1  .2385 4.072 .2456 4. 1 93 1 .03,0 
1 .34 .9735 2288 4.256 .2350 4.372 1 .027 

1 .35 .9757 .2 190 4.455 .2245 4.566 1 .025 
1 .36 .9779 2092 4.673 .2 140 4.779 1 .023 
1 .37 .9799 . 1 994 4.9 13  2035 5.0 14 1 .02 1 
1 .38 .98 19  . 1 896 5. 1 77 . 19 13  5.273 1 .0 18  
1 .39 .9837 . 1 798 5.47 1 . 1 828 5.56 1 1 .0 17  

1 .40 .9854 . 1700 5.798 . 1 725 5.883 1 .015 
1 .4 1  .987 1 . 1601  6. 165 . 1 622 6.246 1 .013 
1 .42 .9887 . 1 502 6.58 1 . 1 5 1 9  6.657 1 .0 1 1 
1 .43 .9901 . 1403 7.055 . 14 17  7. 1 26 1 .010 
1 .44 .99 1 5  . 1 304 7.602 . 1 3 1 5  7.667 1 .009 

1 .45 .9927 . 1205 8.238 . 12 14 8.299 1 .007 
1 .46 .9939 . 1 106 8.989 . 1 1 13 9.044 1 .006 
1 .47 .9949 . 1006 9.887 . 10 1 1 9.938 l .005 
1 .48 .9959 .0907 10.983 .0910 1 1 .029 1 .004 
1.49 .9967 .0807 12.350 .0810 12.390 1 .003 

1 .50 .9975 .0707 14. 101  .0709 14. 1 37 1 .003 
1 .5 1  .9982 .0608 16.428 .0609 16.458 1 .002 
1 .52 .9987 .0508 19.670 .0508 19.695 1 .001  
1 .53 .9992 .0408 24.498 .0408 24.5 19  1 .001 
1 .54 .9995 .0308 32.461 .0308 32.476 1 .000 

1 .55 .9998 .Q208 48.078 .0208 48.089 1 .000 
1 .56 .9999 .0 108 92.620 .0 108 92.626 1 .000 
1 .57 1 .0000 .0008 1255.8 .0008 1255.8 1 .000 



570 TABLE VI  Trigonomet ric Funct ion' of ng .l cs in Degrees" 

I 
degree sin t COS I tan / col l sec / csc I 

0 °00· .0000 l .0000 .0000 - 1 .000 -

10 .0029 l .0000 .0029 343.8 1 .000 343.8  
20 .0058 l .0000 .0058 1 7 1 .9 1 .000 1 7 1 .9 
30 .0087 l .0000 .0087 1 14.6 1 .000 1 1 4.6 
40 .0 1 1 6 .9999 .01 1 6  85.94 1 .000 85.95 
50 .0 145 .9999 .0145 68.75 1 .000 68.76 

1 ° 00' .0 1 75 .9998 .01 75 57.29 1 .000 57.30 
10 .0204 .9998 .0204 49. 1 0  1 .000 49. 1 1  
20 .0233 .9997 .0233 42.96 . 1 .000 42.98 
30 .0262 .9997 .0262 38. 1 9  1 .000 38.20 
40 .029 1 .9996 .029 1 34.37 1 .000 34.38 
50 .0320 .9995 .0320 3 1 .24 l .00 1  3 1 .26 

2°00' .0349 .9994 .0349 28.64 l .00 1  28.65 
lO .0378 .9993 .0378 26.43 l .00 1  26.45 
20 .0407 .9992 .0407 24.54 1 .00 1  24.56 
30 .0436 .9990 .0437 22.90 1 .00 1  22.93 
40 .0465 .9989 .0466 2 1 .47 l .00 1  2 1 .49 
50 .0494 .9988 .0495 20.2 1 LOO I 20.23 

3°00' .0523 .9986 .0524 19.08 l .001 19. 1 1 
I O  .0552 .9985 .0553 1 8.07 l .002 18. 1 0  
20 .058 1 .9983 .0582 1 7. 1 7  l .002 1 1.io 
30 .06 10 .998 1 .06 1 2  16.35 l .002 16.38 
40 .0640 .9980 .064 1 1 5.60 l .002 1 5.64 
50 . 0669 .9978 • .0670 14.92 l .002 14.96 

4°00' .0698 .9976 .0699 1 4.30 l .002 14.34 
10 .0727 .9974 .0729 1 3.73 l .003 1 3.76 
20 .0756 .997 1 .0758 1 3.20 l .003 1 3.23 
30 .0785 .9969 .0787 1 2.7 1 l .003 1 2.75 
40 .08 14 .9967 .08 16 1 2.25 1 .003 1 2.29 
50 .0843 ·.9964 .0846 1 1 .83 1 .004 1 1 .87 

s·oo· .0872 .9962 .0875 1 1 .43 l .004 1 1 .47 
IO  .090 1 .9959 .0904 1 1 .06 1 .004 1 1 . 1 0  
20 .0929 .9957 .0934 1 0.7 1 1 .004 I0.76 
30 .0958 .9954 .0963 10.39 1 .005 I0.43 
40 .0987 .995 1 .0992 1 0.08 l .005 10. 1 3  
50 . 10 1 6  .9948 . 1022 9.788 1 .005 9.839 

6°00' . 1 045 .9945 . I 05 1 9.5 14 l .006 9.567 
10 . 1074 .9942 . 1 080 9.255 1 .006 9.309 
20 . 1 1 03 .9939 . 1 1 10 9.0 1 0  1 .006 9.065 
30 . 1 1 32 .9936 . 1 1 39 8.777 1 .006 8.834 
40 . 1 1 6 1  .9932 . 1 1 69 8.556 1 .007 8.6 14 
50 . 1 1 90 .9929 . 1 1 98 8.345 1 .007 8.405 

7 °00' . 1 2 1 9  .9925 . 1 228 8 . 144 l .008 8.206 

cos t sin I col l tan I CSC I sec I 

90° 00' 
50 
40 
30 
20 
10 

89•00• 
50 
40 
30 
20 
10 

ss·oo· 
50 
40 
30 
20 
10 

87°00' 
50 
40 
30 
20 
10 

860001 
50 
40 
30 
20 
10 

ss·oo· 
50 
40 
30 
20 
10 

84 ° 00' 
50 
40 
30 
20 
10 

83 •00· 

I 
degrees 

a Reprinted with permission of the publisher from Fundamentals of Algebra and Trigonometry, Fourth 
Edition, by Earl W. Swokowski, copyright © 1978, Prindle, Weber & Schmidt. 



TABLE VI (co11ti11ued) 571 

I 
degree sin I cos I tan I col l sec t CSC I 

7°00' . 1 2 19 .9925 . 1 228 8. 144 1 .008 8.206 8J •OO' 

IO . 1 248 .9922 . 1 257 7.953 1 .008 8.0 16 so 
20 . 1 276 .99 1 8  . 1 287 7.770 1 .008 7.834 40 
30 . 1 305 .99 14 . 1 3 1 7  7.596 1 .009 7.66 1 30 
40 . 1 334 .991 1 . 1 346 7.429 1 .009 7.496 20 
50 . 1 363 .9907 . 1 376 7.269 1 .009 7.337 10 

s000' . l 392 .9903 . 1405 7. 1 1 5 l .O I O  7. 1 85 82°00' 
I O  . 142 1 .9899 . 1435 6.968 1 .010  7.040 50 
20 . 1449 .9894 . 1465 6.827 1 .0 1 1 6.900 40 
30 . 1478 .9890 . 1495 6.69 1 1 .0 1  l 6.765 30 
40 . 1 507 .9886 . 1 524 6.561 l .012  6.636 20 
50 . 1 536 .988 1 . 1 554 6.435 l .012  6.5 1 2  I O  

90001 . 1 564 .9877 . 1 584 6.3 14 1 .0 1 2  6.392 s 1 °00' 
I O  . 1 593 .9872 . 1 6 1 4  6. 197 1 .0 1 3  6.277 50 
20 . 1622 .9868 . 1 644 6.084 1 .0 1 3  6. 166 40 
30 . 1 650 .9863 . 1 673 5.976 1 .0 14  6.059 30 
40 . 1 679 .9858 . 1 703 5.871 1 .0 14 5.955 20 
50 . 1 708 .9853 . 1 733 5.769 l .015 5.855 I O  

10°00' . 1 736 .9848 . 1 763 5.67 1 1 .0 1 5  5.759 80°00' 
1 0  . 1 765 .9843 . 1 793 5.576 1 .0 1 6  5.665 50 
20 . 1 794 .9838 . 1 823 5.485 1 .0 1 6  5.575 40 
30 . 1 822 .9833 . 1 853 5.396 1 .0 1 7  5.487 30 
40 . l 85 1 .9827 . l 883 5.309 1 .0 1 8  5.403 20 
50 . l 880 .9822 . l 9 14  5.226 1 .0 1 8  5.320 IO 

1 1 °00' . 1 908 .98 1 6  . 1 944 5 . 1 45 1 .0 1 9  5.24 1 79°001 
10 . 1937 .98 1 I . 1 974 5.066 l .0 1 9  5. 1 64 50 
20 . 1965 .9805 .2004 4.989 1 .020 5.089 40 
30 . 1994 .9799 .2035 4.9 1 5  1 .020 5.016 30 
40 .2022 .9793 .2065 4.843 l .02 1 4.945 20 
50 .205 1 .9787 .2095 4.773 1 .022 4.876 I O  

1 2°00' .2079 .9781 .2 126 4.705 l .022 4.8 1 0  78°001 
I O  .2 1 08 .9775 .2 1 56 4.638 1 .023 4.745 so 
20 .2 1 36 .9769 .2 186 4.574 l .024 4.682 40 
30 .2 1 64 .9763 .:22 1 7  4.5 1 1  l .024 4.620 30 
40 .2 193 .9757 .2247 4.449 l .025 4.560 20 
50 .222 1 .9750 .2278 4.390 1 .026 4.502 10  

1 3°001 .2250 .9744 .2309 4.3 3 1  1 .026 4.445 77°001 
10  .2278 .9737 .2339 4.275 1 .027 4.390 50 
20 .2306 .9730 .2370 4.2 19 l .028 4.336 40 
30 .2334 .9724 .240 1 4. 1 65 1 .028 4.284 30 
40 .2363 .97 17 .2432 4. 1 1 3 1 .029 4.232 20 
50 .239 1 .97 I O  .2462 4.06 1 1 .030 4. 182 I O  

14°00' .24 1 9  .9703 .2493 4.0 1 l 1 .03 1 4. 1 34 76°00' 

I 
cos I sin / cot t tan t csc I sec t degree 



572 TABLE VI (conti11ued) 

I 
degree sin t cos t tan t cot t sec t csc t 

14°00' .24 19 .9703 .2493 4.0 1 1 l .03 1 4. 1 34 76°00' 
10 .2447 .9696 .2524 3.962 l .03 1 4.086 50 
20 .2476 .9689 .2555 3.9 14 1 .032 4.039 40 
30 .2504 .968 1 .2586 3.867 l .033 3.994 30 
40 .2532 .9674 .26 1 7  3.82 1 1 .034 3.950 20 
50 .2560 .9667 .2648 3.776 1 .034 3.906 1 0  

1 s0001 .2588 .9659 .2679 3.732 l .035 3.864 1s000' 
10 .26 16 .9652 .27 1 1 3.689 l .036 3.822 50 
20 .2644 .9644 .2742 3.647 1 .037 3.782 40 
30 .2672 .9636 2773 3.606 1 .038 3.742 30 
40 .2700 .9628 .2805 3.566 1 .039 3.703 20 
50 .2728 .962 1 .2836 3.526 1 .039 3.665 10 

16°00' .2756 .96 1 3 .2867 3.487 1 .040 3.628 74°00' 
10 .2784 .9605 .2899 3.450 1 .041 3.592 50 
20 .28 1 2  .9596 .293 1 3.4 1 2  1 .042 3.556 40 
30 .2840 .9588 .2962 . 3.376 1 .043 3.52 1 30 
40 .2868 .9580 .2994 3.340 1 .044 3.487 20 
50 .2896 .9572 .3026 3.305 1 .045 3.453 1 0  

17°001 .2924 .9563 .3057 3.27 1 1 .046 3.420 73°00' 
10 .2952 .9555 .3089 3.237 1 .047 3.388 50 
20 .2979 .9546 .3 1 2 1  3.204 1 .048 3.356 40 
30 .3007 .9537 .3 153 3. 1 72 1 .049 3.326 30 
40 .3035 .9528 .3 1 85 3. 140 1 .049 3.295 20 
50 .3062 .9520 .32 1 7  3. 108 1 .050 3.265 10 

1s ·oo· .3090 .95 1 1  .3249 3.078 1 .05 1 3.236 72°001 
10 .3 1 18 .9502 .328 1 3.047 1 .052 3.207 50 
20 .3 145 .9492 .33 14 3.0 1 8  1 .053 3. 1 79 40 
30 .3 173 .9483 .3346 2.989 1 .054 3. 152 30 
40 .320 1 .9474 .3378 2.960 1 .056 3. 1 24 20 
50 .3228 .9465 .34 1 1 2.932 1 .057 3.098 10 

19°001 .3256 .9455 .3443 2.904 1 .058 3.072 71 °001 
10 .3283 .9446 .3476 2.877 1 .059 3.046 50 
20 .33 1 1  .9436 .3508 2.850 l .060 3.02 1  40 
30 .3338 .9426 .3541 2.824 l .06 1  2.996 30 
40 .3365 .94 17 .3574 2.798 1 .062 2.97 1 20 
50 .3393 .9407 .3607 2.773 1 .063 2.947 10 

20°001 .3420 .9397 .3640 2.747 l .064 2.924 70°001 
10 .3448 .9387 .3673 2.723 l .065 2.90 1 50 
20 .3475 . . 9377 .3706 2.699 1 .066 2.878 40 
30 .3502 .9367 .3739 2.675 l .068 2.855 30 
40 .3529 .9356 .3772 2.65 1 l .069 2.833 20 
50 .3557 .9346 .3805 2.628 l .070 2.8 12 10 

2 1 °001 .3584 .9336 .3839 2.605 1 .07 1 2.790 69°001 

t 
cos I sin t cot I tan t csc t sec t degree 



TABLE VI (continued) 573 

t 
degrees sin t cos t tan t cot t sec I csc I 

21 °00' .3584 .9336 .3839 2.605 1 .071 2.790 69°00' 
10  .361 1 .9325 .3872 2.583 1 .072 2.769 so 
20 .3638 .93 15  .3906 2.560 1 .074 2.749 40 
30 .3665 .9304 .3939 2.539 1 .075 2.729 30 
40 .3692 .9293 .3973 2.5 17  1 .076 2.709 20 
50 .3719 .9283 .4006 2.496 1.077 2.689 10 

22°00' .3746 .9272 .4040 2.475 1 .079 2.669 68000' 
JO .3773 .9261 .4074 2.455 1 .080 2.650 50 
20 .3800 .9250 .4108 2.434 1 .08 1 2.632 40 
30 .3827 .9239 .4142 2.414 1 .082 2.6 1 3  30 
40 .3854 .9228 .4176 2.394 1 .084 2.596 20 
50 .388 1 .9216 .42 10 2.375 1 .085 2.577 10  

230()0' .3907 .9205 .4245 2.356 1 .086 2.559 67°00' 
10 .3934 .9194 .4279 2.337 1 .088 2.542 50 
20 .3961 .9 182 .43 14 2.3 18  1 .089 2.525 40 
30 .3987 .9 171  .4348 2.300 1 .090 2.508 30 
40 .4014 .9 159 .4383 2.282 1 .092 2.491 20 
50 .404 1 .9147 .4417 2.264 1 .093 2.475 10 

240001 .4067 .9135 .4452 2.246 1 .095 2.459 66000' 
JO .4094 .9 124 .4487 2.229 1 .096 2.443 50 
20 .4120 .9 1 12 .4522 2.2 1 1  1 .097 2.427 40 
30 .4147 .9100 .4557 2. 194 1 .099 2.4 1 1 30 
40 .4 173 .9088 .4592 2. 177 1 . 100 2.396 20 
50 .4200 .9075 .4628 2.161 1 . 102 2.38 1 10 

25 °00' .4226 .9063 .4663 2. 145 1 . 103 2.366 65 °00' 
J O  .4253 .905 1 .4699 2. 128 1 . 105 2.352 50 
20 .4279 .9038 .4734 2. 1 12 l . 106 2.337 40 
30 .4305 .9026 .4770 2.097 l . l08 2.323 30 
40 .433 1 .9013 .4806 2.081 1 . 109 . 2.309 20 
50 .4358 .9001 .4841 2.066 I. l l  I 2.295 I Q  

26°00' .4384 .8988 .4877 2.050 l . 1 13 2.28 1 64°00' 
10 .4410 .8975 .4913 2.035 1 . 1 14 2.268 50 
20 .4436 · .8962 .4950 2.020 l . l  16 2.254 40 
30 .4462 .8949 .4986 2.006 1 . 1 17 2.24 1 30 
40 .4488 .8936 .5022 1 .99 1 l . l l9 2.228 20 
50 .45 14 .8923 .5059 1 .977 1 . 12 1  2.2 15  10 

27°00' .4540 .8910 .5095 1 .963 1 . 122 2.203 63 °00' 
J O  .4566 .8897 .5 132 1 .949 1 . 124 2. 190 50 
20 .4592 .8884 .5 169 1 .935 1 . 126 2. 178 40 
30 .46 17  .8870 .5206 1 .92 1 1 . 127 2. 166 30 
40 .4643 .8857 .5243 1.907 1 . 129 2. 154 20 
50 .4669 .8843 .5280 1.894 1 . 1 3 1  2. 142 10 

28000' .4695 .8829 .53 17 1 .881 1 . 1 33 2. 130 62°00' 

t 
cos t sin t cot t tan t csc t sec t degrees 



574 TABLE V I  (co11ti1111ed) 
I 

degree sin r cos I tan t cot t sec t csc t 

28°00' .4695 .8829 .53 17 1 .881  1 . 1 33 2. 130 62°00' 
10  .4720 .88 16 .5354 1 .868 1 . 1 34 2. 1 1 8 50 
20 .4746 .8802 .5392 1 .855 1 . 1 36 2. 107 40 
30 .4772 .8788 .5430 1 .842 1 . 138 2.096 30 
40 .4797 .8774 .5467 1 .829 1 . 140 2.085 20 
50 .4823 .8760 .5505 1 . 8 16  1 . 142 2.074 10 

29°00' .4848 .8746 .5543 1 .804 1 . 143 2.063 61 °00' 
10 .4874 .8732 .558 1 1 .792 1 . 145 2.052 50 
20 .4899 .87 1 8  .56 19 1 .780 1 . 147 2.04 1 40 
30 .4924 .8704 .5658 1 .767 1 . 149 2.03 1 30 
40 .4950 .8689 .5696 1 .756 1 . 1 5 1  2.020 20 
50 .4975 .8675 .5735 1 .744 1 . 1 53 2.0 10 10 

30°00' .5000 .8660 .5774 1 .732 1 . 1 55 2.000 6()•00• 
10 .5025 .8646 .58 1 2  1 .720 1 . 1 57 1 .990 50 
20 .5050 .863 1 .585 1 1 .709 1 . 1 59 1 .980 40 
30 .5075 .86 16 .5890 1 .698 1 . 1 6 1  1 .970 30 
40 .5 100 .860 1 .5930 1 .686 1 . 163 1 .96 1 20 
50 .5 125 .8587 .5969 1 .675 1 . 165 1 .95 1 10 

31 °00' .5 1 50 .8572 .6009 1 .664 1 . 167 1 .942 59°00' 
10 .5 1 75 .8557 .6048 1 .653 1 . 1 69 1 .932 50 
20 .5200 .8542 .6088 1 .643 1 . 1 7 1  1 .923 40 
30 .5225 .8526 .6 128 1 .632 1 . 1 73 1 .9 1 4  30 
40 .5250 .85 1 1  .6 168 1 .62 1 1 . 175 1 .905 20 
50 .5275 .8496 .6208 1 .6 1 1 1 . 1 77 1 .896 10 

32°00' .5299 .8480 .6249 1 .600 1 . 179 1 .887 58°00' 
10 .5324 .8465 .6289 1 .590 1 . 1 8 1  1 .878 50 
20 ,5348 .8450 .6330 1 .580 1 . 1 84 1 .870 40 
30 .5373 .8434 .637 1 1 .570 1 . 1 86 1 .86 1 30 
40 .5398 .84 1 8  .64 12  1 .560 1 . 1 88 1 .853 20 
50 .5422 .8403 .6453 1 .550 1 . 1 90  1 .844 10 

33°00' .5446 .8387 .6494 1 .540 1 . 1 92 1 . 836 57°001 
10 .547 1 .8371  .6536 1 .530 1 . 1 95 1 .828 50 
20 .5495 .8355 .6577 1 .520 1 . 1 97 1 .820 40 
30 .55 19 .8339 .66 1 9  1 .5 1 1  1 . 1 99 1 .8 1 2  30 
40 .5544 .8323 .666 1 1 .501 1 .202 1 . 804 20 
50 .5568 .8307 .6703 1 .492 1 .204 1 .796 10 

34°001 .5592 .8290 .6745 1 .483 1 .206 1 .788 56°00' 
10 .56 16 .8274 .6787 t .473 1 .209 1 .78 1 50 
20 .5640 .8258 .6830 1 .464 1 .2 1 1  1 .773 40 
30 .5664 .8241 .6873 1 .455 1 .2 1 3  1 .766 30 
40 .5688 .8225 .69 16 1 .446 1 .2 16 1 .758 20 
50 .57 12  .8208 .6959 l .437 1 .2 1 8  1 .75 1 10 

35°00' .5736 .8 192 .7002 1 .428 1 .22 1 1 .743 55°00' 

I 
cos I sin t cot t tan t CSC I sec t degree 



TABLE VI (continued) 575 

I 
degree sin / cos t tan t cot t sec 1 CSC I 

35° 00' .5736 .8 192 .7002 1 .428 1 .22 1 1 .743 55°00' 
10 .5760 .8 1 75 .7046 1.419 1 .223 1 .736 so 
20 .5783 .8 1 S8 .7089 1 .4 1 1 1 .226 1 .729 40 
30 .5807 .8 141  .7 1 33 1 .402 1 .228 1 .722 30 
40 .S83 1 .8 124 .7 1 77 1 .393 1 .23 1 1 . 7 1 5  20 
so .5854 .8 107 .722 1 J .385 1 .233 1 .708 10 

36•00· .5878 .8090 .7265 1 .376 1 236 1 .70 1 54 °00' 
10 .5901 .8073 .73 10 1 .368 1 .239 J .695 50 
20 .5925 .8056 .7355 1 .360 1 .24 1 J .688 40 
30 .5948 .8039 .740<) 1 .3 5 1  1 .244 1 .68 1 30 
40 .5972 .802 1 .7445 1 .343 1 .247 1 .675 20 
so .5995 .8004 .7490 l .33S 1 .249 J .668 10 

37°00' .6018  .7986 .7536 1 .327 1 252 1 .662 53 ° 00' 

10 .604 1 .7969 .75 8 1  1 .3 19 1 .255 1 .655 50 
20 .6065 .795 1 .7627 1 .3 1 1  1 .258 1 .649 40 
30 .6088 .7934 .7673 1 .303 1 .260 1 .643 30 
40 .6 1 1 1  .79 16 .7720 1 .295 1 .263 1 .636 20 
so .6 134 .7898 .7766 1 .288 1 .266 1 .630 10 

38°00' .6 1 57 .7880 .78 1 3  1 .280 1 .269 1 .624 52°00' 
10 .6 1 80 .7862 .7860 1 .272 1 .272 1 .6 1 8  so 
20 .6202 .7844 .7907 1 .265 1 .275 1 .6 1 2  40 
30 .6225 .7826 .7954 1 .257 1 .278 1 .606 30 
40 .6248 .7808 .8002 1 .250 1 .28 1  1 .601 20 
50 .627 1 .7790 .8050 1 .242 1 .284 1 .595 10 

39°00' .6293 .777 1 .8098 1 .235 1 .287 1 .589 5 1 °00' 
IO .63 16 .7753 .8146 1 .228 1 .290 1 .583 50 
20 .6338 .7735 . 8 1 9S 1 .220 1 .293 1 .578 40 
30 .636 1 .77 16 .8243 1 .2 1 3  1 .296 1 .572 30 
40 .6383 .7698 .8292 1 .206 1 .299 1 .567 20 
50 .6406 .7679 .8342 1 . 1 99 1 .302 1 .56 1 I O  

40° 00' .6428 .7660 .839 1 1 . 192 1 .305 1 .556 500001 
IO  .6450 .7642 .844 1 1 . 1 85 1 .309 1 .550 so 
20 .6472 .7623 .849 1 1 . 1 78 1 .3 1 2  1 .545 40 
30 .6494 .7604 .854 1 1 . 1 7 1  1 .3 1 5  1 .540 30 
40 .65 1 7  .7585 .859 1 1 . 1 64 1 .3 1 8 1 .535 20 
so .6539 .7566 .8642 1 . 1 57 1 .322 1 .529 10 

4 1 °00' .656 1 .7547 .8693 1 . 1 50 1 .325 1 .524 49°00' 

I O  .6583 .7528 .8744 1 . 1 44 1 .328 1 . 5 1 9  50 
20 .6604 .7509 .8796 1 . 137 1 .332 1 .5 14 40 
30 .6626 .7490 .8847 1 . 1 30 1 .335 1 .509 30 
40 .6648 .7470 .8899 1 . 1 24 1 .339 1 .504 20 
50 .6670 .745 1 .8952 1 . 1 1 7  1 .342 1 .499 1 0  

42 ° 00' .6691 .743 1 .9004 I . J I I 1 .346 1 .494 48°00' 

I 
cos t sin I col t tan I csc I sec t degrees 



576 TABLE VI (continued) 

I 

degrees sin t COS I tan t cot t sec t csc I 

42 °00' .6691 .743 1 .9004 l . 1 1 1  1 .346 1 .494 48°00' 
10 .67 13  .74 12 .9057 l . 1 04 l .349 1 .490 50 
20 .6734 .7392 .9 1 10 l .098 1 .353 1 .485 40 
30 .6756 .7373 .9 163 l .09 1 1 .356 1 .480 30 
40 .6777 .7353 .9217 l .085 1 .360 1 .476 20 
50 .6799 .7333 .9271 l .079 1 .364 1 .47 1 10 

43°00' .6820 .73 14 .9325 l .072 1 .367 1 .466 47"00' 

10 .6841 .7294 .9380 l .066 J .371 J .462 50 
20 .6862 .7274 .9435 l.060 1 .375 1 .457 40 
30 .6884 .7254 .9490 1 .054 1 .379 1 .453 30 
40 .6905 .7234 .9545 1 .048 1 .382 1 .448 20 
50 .6926 .7214  .9601 1 .042 J .386 1 .444 10 

44°00' .6947 .7l93 .9657 1 .036 J .390 1 .440 46"00' 
IO .6967 .7 173 .97 1 3  1 .030 1 .394 1 .435 50 
20 .6988 .7 153 .9770 l .024 l .398 l.43 1 40 
30 .7009 .7 133 .9827 l .0 18  1 .402 1 .427 30 
40 .7030 .7 1 12 .9884 l.012  l .406 l .423 20 
50 .7050 .7092 .9942 1 .006 1 .4 10  l .4 18  10  

45°00' .7071 .707 1 1 .0000 1 .0000 1 .4 1 4  1 .4 14 45°00' 

I 
cos t sin t cot I tan I CSC I sec t degrees 



ANSWERS TO ODD-NUMBERED 
EXERCISES , AND TO REVIEW 

EXERCISES AND PROGRESS TESTS 

CHAPTER 1 

EXERCISE SET 1.1, page 8 
1 .  {3, 4 ,  5 ,  6 ,  7} 
7. { l , 3 , 7} 9. F 

1 5 .  T 17 .  T 
23. commutative (addition) 
27. associative (addition) 
3 1 .  commutative (multiplication) 
35. multiplicative inverse 

EXERCISE SET 1.2, page 14 

1 .  l • I  + I + I l• I + -3.S -2 0 1 4 
5. 4 2 

1 1 . I + + + + + + + I 0 I 2 3 4 5 6 7 8 
13 .  I + + + + I 

2 3 4 5 6 7 

3. {-9} 

4 1 .  symmetric 

7. -2 

I 9 

1 7 .  a 2: 0 19 .  x > O  
25. multiplication by negative number 
29. multiplication by positive number 
3 1 .  2 33. 1 . 5 
39. 4 4 1 .  2 
47. 2 49. 8/5 

1 1 .  F 
19. F 
25. distributive 

5. { 1 ,  2} 
13 .  T 
2 1 . F 

29. closure (multiplication) 
33. commutative, associative (multiplication) 

43. substitution 

3. A :  I ,  8 : 2.5 ,  C : -2,  D : 4, 0 : 0, E: -3.5 

9. - 5  

1 5 .  10 > 9.99 

2 1 .  b :s -4 23. b � 5  
27. multiplication by negative number 

35 . -2  37. 1 
43. 1/5 45. 3 

PAGE A·1 



A-2 AN5WERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCISE SET 1.3, page 21 
I .  1 2  3 .  8/3 5 .  518 7.  1 3  
9.  (a) $2 160 (b) $2080 (c) $2106.67 1 1 .  9.37 

1 3 .  -9  15 .  312 1 7 .  0 19 .  b1 
2 1 .  - 20y9 23. -3x4 25 . C, d 27. 2; 3 
29. 315; 4 3 l .  3 33. 4 35.  1 1  
37. 1 76 .20 39. bh/2 41 . cost of all purchases 43 . 5x + 3 
45. 2s2t3 - 3s2t2 + 2s2t + 3st2 + st - s + 2t - 3 47. -2a2bc + ailc - 2ab3 + 3 
49. -(2x4 - 4x3 + x2 - 4x + 4) 5 1 . 6s3 - s2 - l ls + 6  
53. -41 - 2y4 + 2y3 - 5l - 3y 55.  4a5 - 16a4 + 14a3 - 3a2 - 14a + 1 5  
57. 3b4 + 3ab3 + 2b3 - 1ab2 + 2b2 - 4ab - 6a 
59. -6x2 + 22x - 1 2  6 1 . -260x + 1 3y + 1 7z 63. x2 + 2x - 3  
65. 4x2 + 8x + 3 67. 3x2 - 5x + 2  69. x2 + 2xy + y2 
7 1 .  9x2 - 6x + 1 73. 4x2 - 1 75 . x4 + 2x2y2 + y4 

EXERC'5E SET 1.4, page 29 

I .  5(x - 3) 3 .  -2(x + 4y) 5 .  5b(c + 5) 7. -y2(3 + 4y3) 
9. 3x2( 1 + 2y - 3z) 1 1 . (x + l )(x + 3) 1 3 .  (y - 3)(y - 5 )  1 5 .  (a - 3b)(a - 4b) 

17 .  (y - l/3)(y + 1/3) 1 9. (3 - x)(3 + x) 2 1 .  (x - 7)(x + 2) 23. ( V4 + y)( V4 - y) 
25 . (x - 3)2 27. (x - lO)(x - 2) 29. (x + 3)(x + 8) 3 1 . (2x + l )(x - 2) 
33.  (3a - 2)(a - 3) 35.  (3x + 2)(2x + 3) 37. (4m + 3)(2m - 3) 39. (5x + 1 )(2x - 3) 
4 1 .  (3a + 2b)(2a - 3b) 43 . (5rs + 2t)(2rs + t) 45 . (4 + 3xy)(4 - 3xy) 47. (4n + 1 )(2n - 5) 
49. 2(x + 2)(x - 3) 5 1 .  5(3x - 2)(2x - 1 )  53. 3m(2x + 3)(3x + 1 )  55.  2x2(3 + 2x)(2 - 5x) 
57. (x2 + y2)(x + y)(x - y) 59. (b'). + 4)(bl - 2) 6 1 .  (x + 3y)(x2 - 3xy + 9y2) 
63 . (3x - y)(9x2 + 3xy + y2) 65. (a + 2)(a2 - 2a + 4) 67. O m  - 2n)(l m2 + mn + 4n2) 

69. (x + y - 2)(x2 + 2xy + y2 + 2x + 2y + 4) 7 1 .  (2x2 - 5y2)(4x4 + lo.x2y2 + 25y4) 

73. 4(y + 2)(x - 1 )  75. -(x + 2)2(5x + 3 1 )  

EXERC'5E SET 1.5, page 37 

I .  
l 3. x - 4  5 .  

3x + 1 
x - 4  x + 2  

7 .  419 9.  -2b(5 + a) 1 1 .  2L 
x - 4  

1 3 .  
{2x + l}{x - 22 1 5 .  

{x + 2l{2x + 32 1 7 .  {x + 32{x2 + l} 
(x - l )(x + 1 )  x + 4  x - 2  

1 9. x + 4  2 1 .  23. 2a (x - 5)(x + 1 )  
xy 

25. (b - 1 )2 27. (x - 2)(x + 3) 29. x(x + l )(x - 1 )  

3 1 .  
4 

33.  x + 5  
35 .  4(a + Q 

a - 2  3 (a - 2)(a + 2) 



4y - 1 5  5 - 2x 4 1 .  23x + 24 
37. 39. ---

6(x + 3)(x - 3) 3.xy 2(x + 3) 

43 . 3x2 - 4x - 1 45 . 5x - 3 
(x - l )(x - 2)(x + 1 )  (x + 2)(x - 1 )  

47. x2 + x + 3  49. 3x2 + 10x + l 
(x + l )(x + 2)(x + 3) (x + 4)(x - l )(x + 1 )  

5 1 .  x + 2  53. x(x + 1 ) 55 . 4x(x + 4) x - 3  x - 1 

57. a + 2  59. a - b  6 1 .  x - 2  
a +  1 x 

63. (y - 2)(y + 1 ) 65 . x + 1 
(y + 2)(y - 1 )  2x + 1 

1 .  x6 3 . b4 5 . 1 6x4 7. - 1 / 1 28 
9 . YSn 1 1 .  -x3!y3 1 3 .  x•9 15 . -32x10 
17 . x4n 19. llx2 2 1 .  30x8 23. 1 
25 . (312rx2ny3n 27 . (2x + 1 )10 29. 22na4nb6n 3 1 .  4/3 
33. 3 35. 8 1  37. -x3 39. y6 
41 . 25 43 . 1 136 45 . x9 47 . 32 
49. 2x2y 5 1 .  a4b619 53. _8y121x9 55. a9!3b4 
57. 4a10c6/b8 59. l/(a - 2b2) 6 1 .  (a - b)2/(a + b) 
63. (b + a)/(b - a) 67 . 0.074 69. 0.01 1 3  

1 .  8 3 . 1 1 16 5 .  2xl3/12 7 . x5t36 
9 . x2y12 1 1 .  x91y6 13 . Vi7i6 15 . w 
1 7 . �144x61y4 19 . 83/4 2 1 . (-8)-2/5 23. (4a3/9)- l/4 
25. 2/3 27. not real 29. 5 3 1 .  514 
33. 54.82 35 . 3 , 4 37. 4yl3 39. 3� 
41 .  y2vy 43 . 2x2�Vx 45 . x2yv;y 47. 2x2y'Vj 
49. Vs/5 5 1 .  v'3Yt3y 53. 2xVh 55. y2� 
57. 7yl3 59. 7Vx 6 1 .  4yl3 63. ! IVs - Vs  
65. -5\/5 67. 3 + 4V3 69. 3.xy 7 1 .  5 - 2v'6 
73. 3x - 4y - VfuY 75 . 3(3 - Vz)/7 77. 2(4 + V3)/1 3  

79. -3�3Va - I � 8 1 .  -3�5 - �� 83. 3 + 2Vz 9a - 1 5(5 - y) 
85 . 2 + v'6 + 3Vz + 2V3 87. 9, 1 6 



A-4 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCtSE SET 1.8, page 55 
1 .  l 3 . 
9. I l .  

17 .  3 - 1i 
23 . x = 213. y = -8 
29. 5 + i 3 l .  

. 37. 5 + Oi 39. 
45. 3 

REVIEW EXERCISES, page 57 
I .  { 1 , 2, 3, 4} 
4. T 

53. 

- i  5 .  -i 7 . 
- 112 + 0i 13 . 0 + Si 15. 

19 .  0.3 - 7v'2i 2 1 .  -2 - 4i 
25 . x = - I , y = -912 27. 3 + i  

-5 - 4j 33. 2 - 6i 
2 + l4i 41 . 4 - 7i 
y <:o! 5  

2. {-3, -2, - 1} 3. {2} 
5. F 6. F 

35. 
43 . 

I 
0 - 6i 

- 1  - i/2 
0 

7. F 8. addibve inverse 9. distributive 
J O. commutative (addition) 

1 2 .  I + I .. 
- 1  0 I 

14. I + I + I - I  0 1 

16 .  3/2 17 .  $5 1 
20. -7, 5 21 . a2b2 - 3a2b + 4b 
24. 2(x + l )(x - I ) 25. (x + 5y)(x - Sy) 
28. (x + l)(x - l)(x2 + l )(x4 + l )  

-6(y - 1) 30. (x _ y)xy
z 

34. 2x2(x + 2)(x - 2) 

2(a2 - 2) 38· (a + 2)(a - 2) 
42. b9!8a6 
46. 4y'5 

x -YXY 50. x - y 
54. -i 

-3(x + 2) 3 1 .  2y 
35 . A'(X - Ii 

-ZX - 5  
39- (x + 4)(x - 4) 
43. 2 
47. \1'313 
5 1 .  3\!GYi 

55. 8 - i 

PROGRESS TEST 1A. page 59 
I .  {2, 4, 6, 8, J O, 1 2} 2. {3} 
5. commutative (multiplication) 
1.  I I I + + + + + + · I • 

-5 -4 -3 -2 - 1  0 I 2 3 4 

9. - 1  JO. 2 

1 1 .  multiplicative identity 

13 .  I + I I I I 3 4 5 6 7 8  

15 .  - 1  

1 8 .  c 19 .  -0.5 ,  7 
22. 2x3 + 3x2 - 2x 23. !2x3 + 1 2x2 + 3x 
26. (2a + 3b)(a + 3) 27. (4x - I )(x + 5) 
29. (3r2 + 2s2)(9r4 - 6r2? + 4s4) 
32. a - 2b 

a - b 
36. 5y2(x - 1 )2 

40. 
x - 7  

(x - 1 )2(x + 2) 
44. I lx4y8 
48. xVYXY 

52. 8 + 2Vi5 

56. 3 + 4i 

33. 

37. 

4 1 .  

45 . 
49. 

53. 

57. 

3x(x + 1) 
2x - I 

4x2(y + 1 )2(y - 1 )  
x3 - x2 + 1  

x - 1 
x3 
2�2x2yvy 

x = -2, y = 4 

17 + 6i 

3. F 4. F 
6. multiplicative reciprocal 
s .  I + I I e I I .. 

-3 -2 - I  0 l 2 

1 1 .  25 1 2. -7/3 



CHAPTER TWO A-5 

1 3. b 14. -2.2,  5 1 5 .  1 4 ,  6 16. 2xy + 3x + 4y + 1 
1 7. 3a3 + 5a2 + 3a + 10 1 8. 4a2b(2ab4 - 3a3b + 4) 1 9. (2 - 3x)(2 + 3x) 
20. 6m5/n2 2 1 .  - (x - l )f(x + I )  22. 4x2(x + l )(x - l )(x - 2) 
23. ( 1  lx - l 5)/3(x2 - 9) 24. 2/(x + I )  25 . l /x17 
27. - 1 28. 4a4/b2 29. 0 
3 1 .  - 1 1v'i;14 32. x :5 2 33. - 1 + Oi 

PROGRESS TEST 18, page 60 

1 .  { l ,  3 ,  5 ,  7 ,  9} 2. {O, 1 2, 15 ,  24} 3 .  T 
5 .  commutative (addition) 6. distributive 
7 .  8 .  I I I I 9 I + • 

0 l 2 3 4 s -2 - 1  0 l 2 3 

9. 10. 7 1 1 .  14 
1 3. a, d 14. 4, 5 1 5 .  1 .5 ,  10  
16 .  2s2t3 - 3s2t2 + 2s21 + 3st2 + st - s + 21  - 3 17 .  -3b3 - 7b2 + lOb + 1 2  
1 8 .  5r3s3(s - 8rt) 19. (2x - l )(x + 4) 20. x21uv(y - I ) 

22. 4x2(y + 1 )2(y - I )  23. 0 24. (-2x + l )lx 
26. b28 27. x6/y9 28. - 1  

30. -2(Vx + l)/(x - 1 )  3 1 .  ab@ 32. x > 2  
34. 4 - 7i 

CHAPTER 2 
EXERCISE SET 2.1, page 66 
1 .  T 3. T 5 .  -2  
9 .  6 1 1 . -4/3 13 .  312 

17. -2  19. 5 2 1 . -712 
25. 8/(5 - k), k =I= 5 • 27. (6 + k)/5 29. 1 0/3 
33. 4 35. 4 37. 1 2  
4 1 .  1 2/7 43. none 45 . I 
49. T 5 1 .  F 53. T 

EXERCISE SET 2.2, page 74 

l .  2n + 3  3 .  6n - 5 = 26 5. 16 , 28 
9 .  68° 1 1  . 4 meters and 8 meters 

1 3 . 10 nickels, 25 dimes 1 5 .  300 children, 400 adults 
17 .  6 1  three-dollar tickets, 40 five-dollar tickets, 20 six-dollar tickets 
19 .  $ 1 1 ,636.36 on 10-speeds, $4363 .64 on 3-speeds 2 1 .  $7000 

26. y" + I 

30. 32 - wv? 
34. 16 - l l i 

4. F 

1 2 .  2 

2 1 . - llx 
25. 4/x 
29. x7y8Vy 
33. 2 - 3i/2 

7 .  -213 
1 5 .  - 10/3 
23 . 1 
3 1 .  1 
39. 2 
47 . c 

7. 6, 7, 8 

23. 20 hours 25. 50 and 54 mph 27. 40 kph, 80 kph 
29. Ceylon: 2.4 ounces, Fomlosa: 5.6 ounces 3 1 .  1 3 .5 gal 
33. l / 12 ,  1 14; - 1/4, - 11 1 2  35. 1 215 hours 
39. 8 hours 41 . 140 mph 43 . C/27T 

37. 9/2 days, 9 days 
45. 5(F - 32)/9 

47. -b + 2Alh 49 . Jfi/<!1 -f) 5 1 .  (a + Sr)!(r + S) 



A-6 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCISE SET 2.3, page 82 
I .  (-5 ,  1 )  
7.  (3, 7) 

1 3 .  x > 3 
19.  x < 4 

I I 0 

25 . a > - 1 

- I  0 

3 1 .  r < 2  

I I + 0 2 

37. (-oo, 2) 
45. (-oo, 9/2) 
53. ( - 1/2, 5/4) 
6 1 . 98 

+ • 4 

EXERCISE SET 2A, page 86 
I . 1 ,  - 5  
7.  312, - 3  

1 1 . x < -4 or x > 2 

I + 
-4 0 + .. 2 

1 7 .  (-oo, - I ] .  [7,  oo) 
23. ( -oo, -7), ( 17,  oo) 

EXERCISE SET 2.5, page 99 
I .  ±3 
9. ± 8i/3 

17 .  o. 4 
25. 4, -2  
33 .  I ,  - 3/4 
4 1 . 215 ± v'i"ii!5 
49. - 112 ± v'Ji'12 
57. - 1 /4 :!: v'Ji'i/4, 0 
65. two complex roots 
73. two complex roots 

3. (9, oo) 

9. ( -6, -4] 
1 5 .  x .:S 5 
2 1 .  x < -6 

+ I I I I I l • -6 0 

27 . y < - 1/2 

- 1  

I - 2  

33. x �  I 

39. [2, oo) 

47. (-oo, -6] 
55.  [ - 3 ,  -2] 
63. 5 

0 I 

3. 3, I 
9. 4, -2  

0 

4 1 .  (-oo, 312) 
49. (-oo, 312) 
57. (-3 ,  - 1 ]  
65 . 2924 

1 3 .  x <  - 1 /2 or .r >  I 

e I + -f O I 

19.  ( -7/2, 9/2) 
27 . Ix - 1 001 :S 2; 98 :S x :S 1 02 

3. ±Vs 
1 1 .  I ,  2 
19.  1/2, 2 
27 . - 112, 4 
35 . - 1/3 ± Viit3 
43. 213, - 1  

5.  -5/2 ± V2 
1 3 .  I ,  -2 
2 1 .  ±2  
29. 1/3, - 3  
3 7 .  0 ,  -3/2 
45. ±2\/313 

5. ( - 1 2, - 3]  
I I . 5 .:S x .:S 8  
1 7. x � 0 
23. x �  5 

I I I I I t 0 s 

29. x � O  

0 

35 .  x > 513 

0 s 3 
43. ( - 1 2, oo) 

5 1 .  (-oo, 7] 
59. [ - 1 ,  2) 
67. L .s 20 

5. 2, -4/3 

1 5 .  - 1/3 < x < 1 

2 1  . no solution 

7. 5/3 ± 2Vv3 
1 5 .  -2.  -4 
23. 1/3, 1 /2 
3 1 . - 1/2 ± i/2 
39. 215 ± v'Ji' i/5 
47 . 0, -3/4 

5 1 .  -2,  213 
59. ± � 

53. - 5/4 ± \/7;14 
6 1 .  ± � 

55. ± 1/2 
63. (-v ± v'v2 + 2gs)lg 
7 1  . two real roots 67. double real root 

75. two complex roots 
69. two real roots 
77 . two real roots 79. double real root 



8 1 . 4 
89. 0, 4 
93. u = x2; ± iv'2, ± v'3t3 
97 . u = x11� ; -32, - l/32 

103.  - 1/2 

EXERCISE SET 2.6, page 103 

1 .  A: 3 hr; B :  6 hr 
7. L = 8 cm, W = 6 cm 

15. 6, 8 

EXERCISE SET 2.7, page 107 

l .  x <  -3,  x > - 2  
9. - 112 s r < 3 

1 5. x < -3, x > 2 

-3 0 2 

19. -3/2 < r < 1 12 

3 0 1 - 2 2 

23. x s  - l , x 2  - 113 

- l 1 0 - 3  

27. -513 < x  < - 1 12, x >  3 

5 _ .!.  0 - 3  2 

83. o. -8 
9 1 .  5 

85. 4 

95. u = llx; 2, - 3/2 
99. u = l + l lx; 1 /3 ,  -217 

CH.APTER TWO A-7 

87. 3 

105 .  -6 107. ±9 109. 6 

3 .  roofer: 6 hr; assistant: 12 hr 5 .  L =  1 2  ft, W = 4  ft 

9. 10  ft 1 1 . 5 or 1/5 
n. 1 50 shllfes 19. 8 days 

3.  - l/2 < x <  1 5 .  x < O, x > 2  
H .  s s -213, s > 1/2 13 .  -2 < x < 213, x > 1 

1 7 .  - 1 < x < 512 

- 1 0 5 
2 

2 1 . x < - l , x 2: 1 

- I  0 

25. y :S  -2, 2 S y :S 3  

-2 0 2 

29. x s - l , x 2:: 2 
3 1 .  x s -2, x 2: - 3/2 

3 
33. O s x < lOO 

1 3 .  3, 7; - 3, -7 

7. -5 S x < -3 

3 

REVIEW EXERClSES, page 109 

l .  8/3 2 .  0 3 .  1 0/3 4. kJ2(2k + I )  
5 .  1 0/3 x 8/3 6. 5 quarters, 14 dimes 7 .  240 mi 8.  6 hr 
9 .  F 10. F 

H .  x 2 l 12 .  -9/2 S x  < 5/2 

0 1 9 0 s -1 2 
1 3 .  (-oo, 8) 14. (5/2, oo) 15 .  ( -9, oo) 16. 5/3, -3 



A-8 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO RE'.J'I� EXERCISES AND PROGRESS TESTS 

17 .  x = - l , x = 3/2 

+ I + 
- 1  0 3 2 

19 .  ( l/5, 3/5) 20. (-oo, -4/3] , (8/3 , oo) 
23. I ±  iVs 24. (2 ± iV2)12 
27. ±v'31Jlk 28. -4. 3 
3 1 .  two complex roots 32. 4 
35. - 112, - 1  36. 60 
39. (-oo, -5}, (- 112, oo) 40. (-2, -3/2), (3, oo) 

PROGRESS TEST 2A, page 110 
l .  3/4 2. 8/ 1 3  
4 .  $6000 at 6.5%, $6200 at 7.5%, $12,300 at 9% 
6. -2 s x <  I 

8. 
10. 

+ I + -2 0 I 

(-4, 4] 
-2 S x S 3  

-2 0 

1 1 .  (-4/3, 2) 

3 

1 3 .  ( I  ± i\/79)110 14. -3/4, 1/3 
17 .  
2 1 .  

two real roots 
8 x 1 2  meters 

18 .  two compleJC roots 
22. x s 1/3, x � l 

PROGRESS TEST 28. page 111 

1 .  - 1  
3. 30 ounces 60%, 90 ounces 80% 
5 .  F 

7 .  ( -oo, 4/5} 
JO. x :s 2, x � 6  

• I + + .. 
0 2 6 

1 1 .  (-oo, - 1 ) ,  ( l/5 , oo) 
14. (1 ± iv'83)t6 

8. (3, oo) 

12. -5/2, 1/3 
15 .  3 ± iV2 

18 .  x> 3- or x < -4 

-4 0 

2 l .  5 , -4 
25 . - 1 .  1 13 
29. two real roots 
33. 6 
37 . x :5 -3/2, x � 2 

5 .  T 
7. (-oo, 1 5/2) 

9. 512, -2 

3 

22. l/2, 4/3 
26. ±317 
30. double root 
34. ± 1 ,  ±3 
38. (-oo , -5] .  [ I , oo) 

3. I 8'5 ,  2S'S • 29"5 

12. -2. 7 

15 .  (5 ± 3i)/2 
19. -4 
23. (-oo, 1/2] . [ l .  oo) 

2. k2t(k + 3) 
4. b(d - 1)/(a - cd) 
6. I S x :5 2  

I + + 0 I 2 

16. 1 ,  -3/2 
20. ±V2i, ±VJ/3 
24. [-2. 213] , ( l , oo) 

9. 8/3, -2 

17 .  two complex roots 18 .  double real root 



20. ±i, ± (-8)312 

23 . ( - oo ,  -5) 

CHAPTER 3 

EXERCISE SET 3.1, page 123 
I .  

4 

(- ! ! )  
I 1 '1 2• 

' ' 
(-l,  0) I 2 I 

(-3, -2) 

27. x-int . :  - 2  
y-int . : 4 

y 

J 
1 4  

y 

>--- I � (Oq) 

(2,  3)  

3 

(3, :.2) 

2 1 . 50¢ 
24. (-oo , -4) , (213 , I )  

3 .  3Yl 
1. Vt345t6 

I I . RS = '\/W. 
15 .  yes 

CH.APTER lriREE A-9 

22. x > in 

5. 4Yl 
9. BC "" v'fi 

1 3 .  no 
2 1 .  2v'i0 + 1 + 5v'2 + v'fi 

25 . any point satisfying x2 + y2 - 10y - 6x + 29 = 0 

x 

29. x-int. :  0 
y-int . :  0 

y 

3 

2 x 

-8 

3 1 .  x-int . :  - 3  
y-int . :  3 



A-10 Ml�RS TO ODD-NUMBERED EXERCISES. MID TO REVIEW EXERCISES MID PROGRESS TESTS 

39. none 
47. none 

EXERCISE SET 3.2, page 129 
1 .  domain: all reals 

range: all reals 

)' 

4 1 . x-axis 
49. y-axis 

43. x-axis 
5 1 .  all 

3. domain: all reals 
range: all reals 

y 

45 . x-axis 
53. origin 

5. domain: x 2: I 
range: y 2: 0 

y 

4 x x 

7. x 2: 3/2 
13 .  712 
19. 2a2 + 5 
25 . l/(x2 + 2x) 
3 1 .  (3x - l )l(x2 + I )  
37. 1(a - l )/(4a2 + 4a - 3) 
43. d(C) = Orr 

EXERCISE SET 3.3, page 139 
1 .  increasing: ( -oo, oo) 

y 

x 

9. 
15 .  
2 1 . 
27. 
33. 
39. 

x > 2  1 1 .  x 2: l , x :F 2  
3/2 17 .  5 
6x2 + 1 5  23. 3 
a2 + h2 + 2ah + 2a + 1h 29. -0.92 
2(4x2 + l )/6x - 1 )  35. -0.21 
(a - l )la(a + 4) 41 . l(x) = 0.28x 

3. increasing: x 2: 0 
decreasing: x :::;; 0 

y 

- 3  

0 :  Reals 
R: y � l  

3 x 



S .  increasing: x s 0 
decreasing: x :2: 0 

y 

9. increasing: x > - 1  
decreasing: x < - 1 

y 

1 3 .  increasing: x s 0 

x 

x 

decreasing: 0 s x < 1 ,  x > 2 
constant: 1 s x s 2 

increasing: x _:::;_ 0 decreasing: 0 _s_ x < I • x > 2 constant: I .S. x _s_ 2 

y 

2 

\ 

x 

7 .  increasing: x :2: - 1 /2 
decreasing: x s - 1 12 

y 

2 

1 1 .  increasing: x s 2 
constant: x :2: 2 

y 

(2, 2) 

x 

x 

1 5 .  constant: x < -2 ,  -2 s x s - 1 , x > - 1 

y 

2 

- 2 x 



1 7 .  

- 1  x 

2 1 .  y Y = g(x ) 
Y = f(x ) 

20 

I O  

-4 4 x 

- I O  

{6.50, 0 :S u  :S 1 00  
25 . C(u) = 6.50 + 0.06(u - 100) ,  100 < u :S 200 

1 2.50 + 0.05(u - 200), u > 200 

27 R(x) = {30
,
000 , 0 :S x :S 1 00  

· 400x - x2, x > 100 

29. (a) C(m) = 14 + 0.08m 
(b) m � 0 
(c) $22 

I .  2;  increasing 
1 1 .  3x - y = 0 
19 .  3x - y + 2 = 0 

3 .  
1 3 . 

2 1 .  

- 312, decreasing 
2x - y = O  
y - 2 = 0  

19 .  Y y = f(x) 

-4  4 x 

23 . 

-4 4 x 

Y = f(x )  Y = g(x) 

5 .  - I ; decreasing 9 .  2x - y + 5 = 0 
1 5 .  2x - 3y = 0 17 .  2x - y = O  
23. x - 3y - 15  = 0 25 . m = - 3/4, b = 514 

27. m = 0, b = 4 29 . m = -3/4, b = - 1 12 3 1 .  (a) y = 3  (b) x = -6 
33.  (a) y = O  (b) x = -7 35 .  (a) y = -9 (b) x = 9  37. (a) - 3  (b) 1 13 
39. (a) 4/3 (b) - 3/4 4 1 .  (a) 3x + y - 6 = 0  (b) x - 3y + 8 = 0 

43. (a) 3x + Sy - I =  0 (b) Sx - 3y + 21 = 0 45 . (a) F = � C + 32 (b) 68° F 

47. $ 1 ,000 ,000 49. 5 5 1 .  fix) = Sx + 1 3  

file:///400jc


CHAPTER THREE A-13 

EXERCISE SET 3.5, page 154 

1 .  (a) 4 (b) y = 4x (c) 

30 

1 20 

3. (a) - 1/32 (b) -3/8 5. (a) l / lO  (b) 512 7. (a) -3 (b) - 1/4 
9. (a) 5 1 2  (b) 5 1 21 1 25 1 1 . (a) M = -?1s2 (b) 36/25 13 .  (a) T = 16pv3/u2 (b) 213 

15 .  (a) 400 feet (b) 5 seconds 
19 .  (a) 800/9 candlepower (b) 8 feet 

EXERCISE SET 3.6, page 164 
l .  x2 + x - 1 3. x2 - x + 3 
9. domain off and of g: all reals 

1 3. 2 1  1 5 .  4x2 + 10.x + 7 
2 1 .  29 23. all reals 
27 . (/0 g)(x) = (x - l )/x, x *- l ;  

17 .  40/3 ohms 
2 1 . 6 23 . 1 20 candlepower/ft2 

5. x3 - 2x2 + x - 2 
1 1 .  4x2 + 2x + I 

7 .  (� + l )/(x - 2)  

17 .  8x2 - 6x + l 19 .  x + 6, x � -2 
25 . (/0 g)(x) = x + l ;  (g o/)(x) = x + 1 
29. ft.x) = x + 3; g(x) = x2 
31 . ft.x) = x8; g(x) = 3x + 2 (g o/)(x) = -(x + 1 )/x, x =F - 1  

33. /{.x) = x113; g(x) = x3 - 2x2 
45. r 1(x) = (x - 3)/2 

35. ft.x) = lxl; g(x) = x2 - 4 37. ft.x) = Yx; g(x) = 4 - x 

y y = j{:x) 
4 

4 :x 

47. r 1(x) = (3 - x)/2 49. r 1 (x) = 3x + 1 5  

53. yes 
57. yes 
63. (x - b)la 

y• j{:x) 

y • f" ' (;x) 

55. no 
59. no 

y 



A-14 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

REVIEW EXERCISES, page 167 
1 .  v'6l 
3 .  y 

2 

12 .  ± 3  
16 .  

/ 

30. 0 
33. x2 + 2x 
36. x + 4 - 4Yx 
40. 

13 .  

2 x 

� 

y 

1 2  

x 

2. \/65 
4. y 

2 

14 .  
17 .  

18 .  
20. 
22. 
24. 
26. 
28. 

3 1 .  (x + l )/(x2 - 1 )  
34. 4 
37. 0 

5 .  x-axis 
6. all 
7 .  yes 
8.  yes 
9. x ;::: 5/3 

10.  x -oF  - I 
1 1 .  226 

x 

y2 - 3y + 2 15 .  
increasing: x ::s - I , 0 ::s x ::s 2 
decreasing: - I < x ::s 0 
constant: x > 2 
- 5 
3 
x =  - 4  
y - 2x - 2 = 0  
160 
- 1/4 

19 .  
2 1 .  
23. 
25. 
27 . 
29. 

32. x -oF ± I  
35. lxl - 2 

3 + h  

-2 
y - 3x - 6 = 0  
y = 3  
y - 2x - 5 = 0  
I 
x2 + x 

38.  not defined 



PROGRESS TEST �ge 168 
1 .  3 + v'26 + 41  
3 . origin 4. x � 0, x :f. I 
5. n 6. 8t2 + 3 
7 .  increasing: x � 0 8. 0 

decreasing: -2 s x s 0 
constant: x < -2 9. 2 

10. 2y - 3x - 1 9  = 0 1 ] .  x =  -3 
1 4. 3y + x - 7 = 0 15 .  - 1024 
1 8. x2(x - 1 ) 19. 1 14 

PROGRESS TEST 38, page 168 
1 .  6V2 
3. origin 4. x * ±4 
5. 1 6 .  1 
7 .  increasing: x > 3 8. 1 0  

decreasing: x s -3 9. 24 
constant: -3 < x ::;; 3 

10 . -9/2 1 1 .  y = -5 
l4 .  x + 3y + 3 = 0 l 5 .  -3219 
18 .  Yv2 l9. 'lh!x 

CHAPTER 4 
EXERCISE SET 4.1, page 181 
l .  y 3. 

50 

7. y 9. 
50 

x 

2. 

12. 
16. 

2. 

12. 
1 6. 

y 
100 

y 

)' 

m = 1/2; b = 2 
65,536 

3 x 

2 

2 x 

x 

x 

1 3 .  
17 .  

13 .  
17 .  

5 .  

30 

1 1 . 

CHAPTER FOUR A-15 

y = - 1  
-3 

-3 

y 

y 

5 

4 )( 

2 x 



A-16 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

1 3 .  3 15 .  4 
19 .  4 2 1 . 2 
25 . (a) 200 (b) 29,682 (c) 256.8, 543.7, 1478, 2436 
27 . 6. 59 billion 29. 670.3 grams 
33. $45,41 7.50 35. $ 1 73 .33 
39. 11'2 

EXERCISE SET 4.2, page 190 

) .  22 = 4 3 .  9- 2 = 118 1 5. e3 = 20.09 
9. e0 = I  I I .  r 3 = 1 121 1 3 .  logs 25 = 2 

17 .  Jog2 1 18 = -3 19. log2 I =  0 2 1 .  Jog36 6 = 1/2 
25. log27 1/3 = - 1/3 27. 25 29. 1 15 
33. e- 112 = 0.61 35 .  -2 37. 5 1 2  
4 1 .  2 43 . 3 45 . 6 
49. 3 5 1 .  1/2 53. 2 
57. 0 59. -2 6 1 . 4 
65 . y 67. y 

2 2 

64 x 

69. y 7 1 . y 
4 3 

EXERCISE SET 4.3, page 197 
I .  log10 1 20 + Iog10 36 3 .  4 
7 .  log., x - log., y - log., z 9. 5 In x 

1 3 .  !(log., x + log., y) 1 5 .  2 In x + 3 I n  y + 4 In z 
19 .  2 Jog0 x + 3 log., y - 4 Jog., z 2 1 . 0.77 
25. 1 .07 27. 0.87 

3 1 .  log x2vY 33. In � 

1 7 .  
23. 

3 1 .  
37. 

5 .  
1 1 .  
1 7 .  
23. 
29. 

35. 

2 

$4 1 ,6 1 1 
$2489 

7. 103 = 1000 
1 5 .  Iog 10 10,000 = 4 
23 . log16 64 . =  3/2 
3 1 .  e2 = 7.39 
39. 1 24 
47. 2 
55. 1 
63 . 2 

50 x 

50 x 

log., 2 + log., x + log., y 
2 log., x + 3 Jog., y 
i In x + i In y 
0.94 
0.435 

x113y2 
log., 

z3!2 



log,, VxY 39. VxY 37. In --

ZJ 

43. log,, 
x3(x + l ) 116 

45 . 1 . 2304 
(x - 1 )2 

49. 2 .3892 

EXERCISE SET 4A, page 203 

1 .  2.725 x 1 03 3. 8.4 x 10-3 

9. 0.55 14  1 1 .  1 . 5740 
17 .  4.6830 19. -0.4660 
25. 7 .9 27. 0 .257 
33. 1 .028 35 . 2 . 1 1 5 
4 1 .  1 .93 x 1 0-s 43. 2.59 x 10-s 

49. 8.75% compounded quarterly 

EXERCISE SET 4.5, page 207 

I .  log 1 8/log 5 3. I + log 7/log 2 
9. (log 2 + log 3)/(log 3 - 2 log 2) 

13 .  1/2 - log 1 2/(2 log 4) 1 5 .  In 1 8  
2 1 .  112 23. 5 
29. - 1  + v'U 3 1 .  ln(y + \/l+}) 
37. 8 .8 years 39. 27.47 days 

REVIEW EXERCISES, page 209 

I .  y 

1 7 .  y 

3 

2. 3 
4. $ 1 2,750.40 
5. log9 27 = 3/2 
6. 8 = 641n 
1.  1 18 = r3 

8. 10&6 I =  0 
10. -2 
1 2. 26 

x 14 .  - 1 /3 
16 .  3 

4 1 .  

47. 

5. 7 . J 6 X 105 
1 3 .  1 . 5476 
2 1 . 2.520 
29. 0.000607 
37. 103 .55 
45. $ 10.453 

CHAPTER FOUR 

Vx-=I 
log,, 

(x + I >'-
4.5046 

7. 2.962 x 102 
1 5 .  1 .8692 
23. 2.9 
3 1 .  0.02 19 
39. 0.002875 
47. $ 14 ,660.72 

A-17 

5.  Jog 4612 log 3 7. 512 + log 56412 log 5 
1 I .  -log 1 5/log 2 
1 7 .  ( -3 + I n  20)/2 19.  
25. 3 27. 
33. 36.62 years 35. 
4 1 . l . 386 days 

3. 2 

9. 2 
1 1 .  e - 4 

1 3. 5 
15 .  - 1  

1 8 . ! log0(x - 1 )  - log,, 2 - log,, x 

500 
8 
12 .6  hours 

19. log,, x + 2 log,,(2 - x) - ! log,,(y + I ) 
20. 4 ln(x + l ) + 2 ln(y - l ) 
2 1 .  � log y + l log z - l log(z + 3) 
22. 1 . 1 5 23. 0.55 
24. 0.4 25 . -0. 1 5  Vt; 
26. log,, Vy 27 . log(x2 - x)4'3 



A-18 ANSWERS TO ODO-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

28. 
3.zy2 

29. 
(x + 2)2 

30. 5/3 3 1 .  1 517 In - log,, (x + I )112 z 
32. 4.765 x 102 33. 9.8 x w-2 34. 2.6475 x 1 04 35. 7.767 x 101 

36. 803 37. 7.9 38. 3 .49 x 1 0-4 39. 1 1 .5 hours 

40. 
I �  

4L \/5000 42 . 
199 - + 98 3 3 log 2 

PROGRESS TEST 4A. page 210 

I .  y 2. -2/3 3. 1 /9 = r2 4. log,6 64 = 3/2 
5 .  3 
8. 1/2 

x 

6. - I  7 .  5/2 
9. 3 log,, x - 2 log0 y - log,, z 

10. 2 log x + ! log(2y - I) - 3 log y 
1 1 .  0.7 1 2. 0 .45 

13 .  
x2 

log
--(y + 1 )3 

15 .  2 .73 x ]0-4 

1 7. 4.7 x 1 0-2 

19. 34.6 hours 
2 1 .  4 

14 .  

1 6. 
1 8 .  
20. 

log,,G � �) 2/l 
5.972 x 10° 
0.26 
200 

PROGRESS TEST 48, page 210 1 
1 .  

1 5 .  2.2684321 x 1 07 

19. $530 .76 

CHAPTER 5 

2 x 

EXERCISE SET 5.1, page 223 
I .  IV 
9. 111 

1 7 .  I 
25. -51r12 
33. 45° 
4 1 .  450° 

2. 8 

4 .  1 = 3° 
6. 3/2 
8. 4 

10 .  ! In x + ! In y + 1 In 2z 

1 2 . 1 . 5 

xi 
14 .  log; 

1 6. 2.97 x io- • 
20. 3 

3. 
1 1 .  n 
19 .  1Tl6 
27. 31T/4 
35. 270° 
43. -300° 

17 .  9397 
2 1 .  IO 

5 .  II 
1 3 .  l l  
2 1 .  -51Tl6 
29. 21T/3 
37. -90° 
45. 98.55° 

3 .  log 1000 = -3 

5 .  312 
7 .  JO  
9. log,,(x - I ) + i logh + 3) 

1 1 . 0.85 
I (x - 1 )3y2 1 3 .  -ln ---

5 z 

1 8 .  6.2 x 10-4 

7. I 
1 5 . I I I  
23. 51T/ 12  
3 1 .  0.25 1 1T  
39. 240° 
47. T 



49. F 5 1 .  F 
53. 417; 32.74° 55. 617r 
57. 6 .8 ft; .,..776.5 rotations 59. l O  

EXERCISE SET 5.2, page 232 
1 .  lII 3. II 

9. 
I I .  
1 3 .  
1 5 .  

1 7 .  II 
25. - I  
33. -\/3/i 

sin t 
415 
- 117 V2/2 
- 114 

19. III �/ 
27. -v'2!2 

5 .  I I  

cos t 
-3/5 
\/3'2

/ -v'2 2 
VJ5/4 

2 1 .  m 
29. -\/3/i 

35. 
37 . 

(a)( -3/5 , -4/5) (b) (4/5, -3/5) (c) (3/5 , -4/5) (d) (-315, 4/5) 
(a) a (b) -b 4 1 .  -3/4 43. - 1 2/ 1 3  45 . -315 

EXERCISE SET 5.3, page 243 
I .  0 3 . n/7 5. 3n/2 
9. 7r 1 1 .  7n/5 

47. 4/5 

1 3. "TT, - 'TT 15 .  3n/4, -5nl4 17 . 5n!6, -7tr/6 

sin t cos I 
2 1 .  (a) (- 1 ,  0) (b) 0 - I  

23. (a) cv'2/2, -v'2/2) (b) -v'2/2 v'2/2 
25. (a) (-v'2'2. -v'212) (b) -v'2/2 -Viii 
27. (a) (- 1/2, -\/3'2) (b) -\/3/2 - 1/2 
29. (a) (- 1/2, -\/3fo (b) -V3/2 - 1/2 
3 1 .  (a) (-\/3/2, - 1 12) (b) - 1/2 -V3/2 
33. (a) (-\/3'2. - 1 /2) (b) - 1/2 -V3'2 
35. (a) ( 1 12, \/3/2) (b) \/3/i 112 

37 . 0.4357 39. -5 .47 1 41 . 0.3093 
45. -0.9737 47 . -0. 1 307 
6 1 .  -0.4663 63. -0.7880 65. -0.2250 
69. 0.3476 7 1 .  0.3007 85. 0 .7 174 
89. 0. 1003 

CHAPTER FIVE A-19 

7. u 

tan t 
-4/3 
-V3'3 
- l  
-VIS/is 

23. -3/2 
3 1 .  -V3 

7 .  5n/6 

19 .  5n/3 , -n/3 

tan t 
0 
- ) 
1 
V3 
V3 
V3'3 
V3'3 
\/3 

43. 0.84 1 5  

67. -0.7 193 
87. -0. 1987 



A-20 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCISE SET 5.4, page 255 

I .  y 

7f 

2 

5 .  

7f 

3 .  

9. amplitude: 3 
period: 2w 

\ '  

_\' 

x 



1 1 . amplitude: I 
period: TT/2 

15 .  amplitude: 2 
period: 67T 

x 

- I  

1 3 .  amplitude: 2 
period: 7Tl2 

1 7 .  amplitude: 1 /4 
period: 87T 

\ '  

y 

x 



1 9 .  amplitude: 3 
period: 2 TT/3 

23. amplitude: 3 
period: TT 
phase shift: TTl2 

r 

3 

.1 · 

2 1 .  amplitude: 2 
period: 2TT 
phase shift: TT 

25 . amplitude: l /3 
period: 2 TT/3 
phase shift: - TT/4 

.1 · 

.\" 

\" 



27. amplitude: 2 
period: 8'7T 
phase shift: 4'7T 

29. y = 2 sin(2x - '7T) 

EXERCISE SET 5.5, page 260 

I .  sec t =  2 ,  csc f = 2V3h, cot t = V3'3 
5 .  sec t = -2Vl 3,  csc t = 2, cot c = -\/3 
9 .  sec t =  -V2, csc t = \/2, cot t = - I 

1 3. 0, 2'7T 15 .  7'7T/6, H ni6 2 1 .  1Tl4, 7'1Tl4 23 . Srr/6, 1 1  rr/6 
29. Il l  3 1 .  m 
37. 5rr/4 39. 3rr/4 
45. 3 .270 

EXERCISE SET 5.6, page 268 

I .  -1Tl6 3. rr/3 
9. -?T/2 l l .  '1Tl2 

17 .  2'1T/3 19 .  0.38 
3 1 .  Y2'2 33.  0 
39. arcsin( ±V7'7> 
43. sin- 1 (2/3) 

REVIEW EXERCISES, page 270 

1 .  -?T/3 2. 270° 
5 .  yes 6 .  no 
9.  1 514 cm 

10. IV 1 1 .  I I 
1 4. -rr/2 1 5 .  1Tl2 

y 

3 1 .  y = 3 cos(x/3 - 2'7T/3) 

3 .  sec t = \/2, csc t = \/2, cot t = I 
7. sec c not defined, csc t = - I ,  cot c = 0 

1 1 . sec t = -\/2, csc t = -\/2, cot t = I 
1 7 .  '1Tl4, 51Tl4 19 .  31T/4, 7'1T/4 
25. I l l  27. I I 
33. 5'1Tl6 35. 2'1T/3 
4 1 .  4.27 1 43. 1 .000 

5 .  -?T/4 7 .  5?T/6 
1 3 .  0 1 5 .  - '1Tl4 
2 1 .  2.44 23. 1 . 30 

35. 1Tl4 37. 2'7T/3 
4 1 .  cos- 1 ( 113) ,  cos- 1 (- 1 14) 
45. 0 

3 .  -75° 4. ?Tl4 
7. yes 8 .  1 .4 

1 2. I I  1 3 .  
16 .  0 17 .  5rr/3 



1 8 .  ( -4/5 , 3/5) 19 .  (3/5 , 415) 
22. ( -4/5 , -3/5) 
23. IV 24. IV 
27. -314 28. -513 
33. V3/z 34. - V2  
37. 57Tl4 38. l l 7T/6 
4 1 .  - 1 . 8334 

43. 
y 

- 1T  1T 2n 

45 . amplitude: 1 ;  period: 7T; phase shift: 7T/2 
47. amplitude: 2; period: 67T; phase shift: - 7T  
50. - 7Tl6 5 1 .  0 

I .  300° 2 .  - 1 07Tl9 
5 .  45° 6. 415 
9 .  ( -V3/2, 1/2) 10 .  ( 1 /2 ,  -V3/zi 

1 3 .  (-51 1 3 ,  - 121 1 3) 14. 20° 
1 6. 1 12 1 7 .  -2V3/3 
20. -51 1 3  2 1 .  -514 
25. y 

x 

20. (415, 315) 2 1 .  ( - 315, -415) 

25. III 26. 
29. - 1 217 30. 1 31 1 2  
35. -V3 3 36. -2 
39. 7T/3 40. 27T/3 
42. 0.4228 

44. 
\ '  

46. amplitude: 4; period: 27T; phase shift: 7T/2 
48. none 49. 37T/4 
52. 5 53. cos - 1 ( ± 2Vs/5) 

3 .  57Tl l 2 4. 335° 
7. 7Tl3 8 .  0 

I I .  (51 1 3 ,  - 1 2/ 13) 1 2 . ( 1 21 1 3 ,  51 13)  
1 5 .  7Tl4 
18 .  57Tl4 19 .  77T/4 
23. -0.5973 24. -0.2509 
26. amplitude: 2; period: 27T; phase shift: 1T 
27. amplitude: 2; period: 47T; phase shift: 1T 
28. - 7T/3 
29. 1 12 
30. arctan(2/3 ), arctan(3/2) 

x 



PROGRESS TEST 58, page 273 

1 .  -37T/4 2. 1 35° 
5. 240°

/ 
6. 

9. (VJ 2, - 1 /2) 10. 
2 1 15 
(-v2/2, -Y2'2) 

1 3. (4/5 , -315) 14 .  77r/ l6  
16 .  - 1  1 7 .  I 
20. -5/ 1 2  2 1 . -3/4 
25. y 

2 

CHAPTER 6 
EXERCISE SET 6.1, page 280 

sin e cos e tan 0 
I .  3/S 415 3/4 
3 .  415 3/5 413 
5 .  2vs/5 vs/5 2 
7. w+1 xv?'+! I X2 + l X2 +  I x 
9. 1 2/ 1 3  -5/ 1 3  - 1 2/5 

l l .  -v'212 -Viii I 
1 3 .  3/5 -415 -3/4 
1 5 . -5/ 1 3  1 2/ 1 3  -5/ 12  
17 .  -5/ 1 3  - 1 2/ 1 3  S/ 1 2  
19. vs/5 -2vs/5 - l/2 

csc 8 

5/3 
514 

vs/i 

v?'+l 
1 3/ 1 2  
-Vi 
513 

- 1 3/S 
- 1 3/5 
Vs 

2 1 .  5 sin e 23. 6.5 cot 8 

29. 62.2 3 1 .  30. 3  
37 . 315 39. -4/3 

x 

CHAPTER SIX A-25 

3 .  - 150° 4. 70° 
7 .  0 8. 'TT'/5 

1 1 .  (-415 , 3/5) 12. (3/5, -4/5) 
1 5 .  1 5° 
1 8 .  7r/3 19 . 27r/3 
23 . 0.6378 24. -3 . 109 
26. amplitude: 4; period: 27T/3 ; phase shift: 7T/3 
27. amplitude: 1/2; period: 7r; phase shift: -7T/4 
28. 7rl6 
29. I 
30. arcsin( -315) , 7T/2 

sec 8 cot e 

5/4 4/3 
513 3/4 
Vs 1 12 

v?'+l x x 
- 1 3/5 -511.2 
-Vi I 
-514 -4/3 
1 3/ 1 2  - 1 2/5 

- 1 3/ 1 2  1 2/5 
-vs/2 -2 

25 . 3 .7 csc 8 27. 36°50' 
33. 33.9 35. -5/ 1 2  



A-26 ANSWERS TO ODD-NUMBERED EXERCISES, AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCISE SET 6.2, poge 286 
I .  53°10' 3 .  6 1 °  
9 .  39°10' '  50°50' 1 1 .  18 .7  cm 

EXERCISE SET 6.3, poge 291 
I .  4 1° 10' 3 .  14 .4 
9. 900 1 1 . 82° 10' 

17 .  68.5 

EXERCISE SET 6 .. 4, poge 297 
l .  29. 1  3 .  7 .2 
9. 10.9 I I .  8 .3 ,  1 .6 

1 7. 40.5 miles 19 .  1 8 .8 meters 

REVIEW EXERCISES, poge 299 
I .  51 1 3  2. 4/3 
5 .  7'1/J3 6. 2 
9. v2 2 10. 39°50' 

1 3. 1 6.6 14 .  5 .4  meters 
1 7 .  5 1 °50' 1 8 .  37°50' 

PROGRESS TEST 6A, poge 299 
I .  715 2. 3 
5 .  - I  6. 2 
9. 23.6 10. 53° 10' 

1 3 .  1 38 meters 

PROGRESS TEST 68, page 300 
l .  514 
5 .  2V3h 
9. 66°30' 

1 3 .  67 .5 feet 

CHAPTER 7 
EXERCISE SET 7.1, page 306 
47. 31'12 

EXERCISE SET 7.2, poge 313 
I .  s = t = O  
9. (v2 + V6)/4 

2. 617 
6. I 

10. 1 2 . 2  

49. 'Trl4 

3. s = 'Tr, I = 7r/2 
1 1 .  -V312 

5 .  7767 feet 
1 3 .  5 3  feet 

5 .  17.8  
13 .  52 .5  miles, S29°W 

5 .  1 5. 7  
1 3 .  98.9 meters 
2 1 .  1 1 5 cm 

3. v'65h 
7. - I  

1 1 . 14 .6 
1 5 .  68° 10' 
1 9. 14 . 1 

3 .  5/ 1 2  
7 .  -2Vl3/ 1 3  

1 1 . 22°20' 

3 .  3/5 
7.  -vs/5 

1 1 . 48°30' 

5 1 .  'Tr 

5 .  S = I =  -rr/4 
1 3 .  V3 

7 .  970 meters 
1 5 .  24. 1 9 miles 

7.  62°30' 
1 5 . 32.8 miles 

7. none 
15 .  682 meters 

4. 4/3 
8 .  - 112 

12 .  25. 4  
16. 36° 
20. 7. 1 

4. - I  
8.  56°30' 

12 .  14 .5 

4. undefined 
8.  10 .3 

1 2. 1 5 . 8  

7. (V6 - \/2)/4 
1 5 .  (V6 - v2)/4 



CHAPTER SEVEN 

1 7 . (v'2 - v'6)/4 19 .  - 1/2 2 1 .  2 - VJ  23. cos 43° 
25. cot 7T/3 27. sin 7T/6 29. -4/5 3 1 .  -7 
33. -2.29 35. - 1 6/65 37 . 2/29 

EXERCISE SET 7.3, page 321 

1 .  7/25 3. -V3/2 5 .  -240/ 16 1  
7 .  -24125 I 9. - 161 1289 
l 3 .  ? 2 15 .  V £!: - Vi)IV <2 + Vi> 
19 .  \12o 5  2 1 .  v'6 3 
25. -v'613 

EXERCISE SET 7 A, page 325 

I .  sin 6a + sin 4a 3. (co 5x - co x)/2 
7. (cos 2a + cos 2/3)/2 9. -(2 + v'2)14 

1 3 .  2 sin 3x cos 2x 1 5 .  2 cos 48 cos 26 
1 9. 2 cos 5x cos 2x 2 1 . V6/i 
35. sin(a + b)x + sin(a - b)x 

2 

EXERCISE SET 7.5, page 330 
I .  w/6, 57T/6; 30°, 1 50° 3 .  'lT; 1 80° 

1 1 . 0. 1022 
n. 21V2 - \73 
23. -2 

5. -(cos 76 + cos 38) 
1 1 .  V)/4 
17 .  2 sin a cos f3 
23 . -v'2 

5. 7r/6, 5'1Tl6, 77Tl6, l l7r/6;  30°, 1 50°, 7 .  '1Tl6. 5wl6, 7'1T/6, l l 'lT/6; 30°, 1 50°, 
2 l0°, 330° 2 l0°, 330° 

9. 0°, 30°, 1 50°, 1 80°; O. 7Tl6, 5wl6, 'lT 1 1 . 0, w/3, 57T/3; 0°, 60°, 300° 
13 .  7r/ l0, 1Tl2, 97T/ IO, 1 377/lO, 177T/ IO; 1 8°, 90°, 162°, 234°, 306° 
1 5 .  'lT/3, 5'lTl3; 60°, 300° 17 .  '1Tl6, 57rl6, 37T/2; 30°, I 50°, 270° 
19. O; 0° 2 1 .  'lT/6 + 1T11; 5wl6 + 7rn 
23. 7T/3 + 7rn, 2'lT/3 + 7rn 25. 1Tl6 + 1Tn; 57rl6 + 7rn 
27. mi/4 29. 'lT/ 12  + '1Tnl2, 5'lT/ 1 2  + wn/2 
3 1 .  'lTl2 + 7rn 33 . 'lTl2 + 21Tnl3 
35. 1rn, w/4 + wn 37. 'lT/6 + 2'1Tn, 57rl6 + 2'1Tn 
39. 0.83, 2.3 1 ,  3. 7 1 ,  5. 7 1  radians 4 1 .  6 .05 radians, 5.32 radians 

EXERCISE SET 7.6, page 338 

I .  Vi3 3 .  v'2 5 .  2vlo 

A-27 

7. 3v'2(cos 77r/4 + i sin 77r/4) 
13 .  4(cos 7r + i sin 'lT) 

9 .  2(cos 1 1  'lT/6 + i sin 1 1  'lT/6) I I .  v'2(cos 3'lT/4 + i sin 37r/4) 
1 5 .  -4 

19. -5i 2 1 .  6 
25. 2(cos 77T/4 + i sin 7'lT/4) , 2(cos 'lT/2 + i sin 1Tl2) 

1 7 .  
23 . 

27. 4(cos 2'lT/3 + i sin 2'lT/3), 3v'2(cos '1Tl4 + i sin 'lT/4), (-6 - 6VJ) + (6VJ - 6)i 
29. 5(cos 0 + i sin 0), 2v'2(cos 5w/4 + i sin 5'lT/4), - 10 - IOi 
3 1 .  0 + 5 1 2i 33. 16 - 16i 35. -8 + 8i 37. ±v'2 ± v'2i 
39. v'2(cos 1 50° + i sin 1 50°), v'2(cos 330° + i sin 330°) 
4 1 .  -2, I ± VJi 43. ±2, ±2i 

- 1  + i VJ - i  



A-28 ANSWERS TO ODD-NUMBERED EXERCISES, AND TO REVIEW EXERCISES AND PROGRESS TESTS 

REVIEW EXERCISES, page 340 

4. (Vi + '\/6y4 5 .  -0./z 6. - 2 - v'3  7. (Vl + '\/6)/4 
8 .  sec 75° 9. sin 67° 1 0. cos 37T/8 I l .  cot 37T/ 14  

1 2. 5/ 1 3  1 3 .  10(3 + 4V)>iJ9 14.  3/4 1 5 . 70 
1 6. - 1 6165 1 7. -7/25 1 8 .  -24/25 19 .  24125 
20. - V3'2 2 1 . 1 20/ 1 69 22. -ViO/io 23. - 1 /3 
24. -V3ol6 25 . \/2 + V3'2 26. \/2 - Y2'2 
27. -v2+V2lv2=\7i 3 1 .  (co a - co 2a)/2 32. -2 sin 2x sin x 
33. 1 14 34. 2(cos 7T/2)(cos ?T/4) 35. 7T/4, 37T/4, 57T/4, 77r/4 
36. 0, 7T/2, 'IT, 37T/2 37 . 0. 7T/3 .  'IT. 57T/3 38. 90° + 360°n, 270° + 360°n 
39. 45° + 60°n 40. 30° + 90°n. 60° + 90°11 4 l .  Vs 
42. Vi3 43 . \/41 44. 3V2(cos 37T/4 + i sin 37T/4) 
45 . 2i 46. I - i  47. 2(cos 'IT + i sin 7T) 
48. 24(cos 37° + i sin 37°) 49. 5(cos 2 1 °  + i sin 2 1 °)/3 50. 2(cos 90° + i sin 90°) 
5 1 .  -972 + 972; 52. 0 - Si 

53. 3(cos 90° + i sin 90°), 3(cos 270° + i sin 270°) 54 . l ,  - 1/2 ± VJi/2. 

PROGRESS TEST 7A, page 341 
2 .  1 /2 
5. 315 
8. 7/25 

1 2. 2(sin 5x/2)(cos x/2) 
1 5 .  45° + 90°n 

8 I \/3 .  I . -
2 · 54 + 

2 · 54 1 

3. VJ - 2 
6. - 8 1 176 
9. - �/2 

4. cos 43° 
7. - [ 1 9/ 1 69 

J O. �/V2+\73 
13.  2(cos 90°)(cos 60°) = 0 14 .  7T/3, 2'1Tl3, 4'1Tl3 , 5'1Tl3 
1 6. 5(cos 86° + i sin 86°) 1 7 . (co 77° + i in 77°)/2 
19 .  3(cos 60° + i sin 60°) ; 3(cos 180° + i sin 1 80°): 

3( cos 300° + i in 300°) 

PROGRESS TEST 78, page 342 
2.  2 3. ('\/6 + Vl)/4 4. cot 19° 5 .  - 1 3v/2/7 

24/25 8 .  3361625 9. -3VJ3f i3  6. o I 1. 
1 0. v2=\7i 2  12 .  (sin 77T/ 1 2  - sin 'TT/ 1 2)/2 1 3 . (cos 90° + cos 60°)/2 
14.  o. 37T/4, 'IT ,  77Tl4 
1 7. 2(cos 55° + i in 55°) 

CHAPTER 8 
EXERCISE SET 8.1, page 346 

l .  (5/2, 5)  
7. (0. - 1/2) 

EXERCISE SET 8.2, page 351 
I .  (x - 2)2 + (y - 3)2 = 4 
5 .  x2 + l = 9 
9. (h, k) = (2, 3); r = 4 

1 3. (h , k) = ( -4, - 312); r = 3v'2 

15 .  90° + 1 20°n 
1 8 .  -64 + Oi 

3. ( 1 ,  5/2) 
9. (- 1 , 912) 

1 7 .  (x + 2)2 + (y - 4)2 = 1 6; (h, k )  = ( -2, 4); r = 4 

16 .  5(  cos 250° + i sin 250°) 
19 .  - I ,  1 12 ± v/3;12 

5 .  (-7/2, - 1 )  
1 1 .  (0, 0) 

3. (x + 2)2 + (y + 3)2 = 5 
7 .  (x + 1 )2 + (y - 4)2 = 8 

1 1 . (h , k) = (2, -2); r = 2 
1 5 .  (h, k )  = ( 1/3, 0); r = 1 /3 

1 9. (x - 3/2)2 + (y - 512)2 ::: 1 1 /2; (h, k) = (3/2, 5/2); r = Yn/2 



CHAPTER EIGHT A-29 

2 1 .  (x - 1 )2 + y2 = 7/2; (h, k) = ( l ,  0); r = Vi4t2 
23. (x - 2)2 + (y + 3)2 = 8; (h. k) = (2, -3); r = 2Vz 
25. (x - 3)2 + (y + 4)2 = 1 8; (h, k) = (3, -4); r = 3Vz 
27. (x + 312)2 + (y - 512)2 = 3/2; (h, k) = (-3/2, 512); r = V612 
29. (x - 3)2 + :1 = 1 1 ; (h, k) = (3, O); r = Vil 
3 1 .  (x - 312)2 + (y - l )2 = 1 7/4; (h, k) = (312, I ) ; r = v'i112 
33. (x + 2)2 + (y -- 2/3)2 = 100/9; (h, k) = ( -2, 2/3); r = 1 0/3 
35 . neither 37. 97T 
4 1 .  (x + 5)2 + (y - 2)2 = 8 43 . (x - 5)2 + (y - 1 )2 = 20 

EXERCISE SET 8.3, page 360 
I .  focus: (0, I ); directrix: y = - I 3. focus: ( 1/2, 0); directrix :  x = - 1/2 

y 

x' r = -. 4 

5 x 

5 .  focus: (0, -5/4); directrix: y = 514 

- 5 
x r = - -. 5 

x 

4 

5 

,.1 r = -· -. 2 

7. focus: (3, O) ; directrix: x = - 3  

2 

x 

.t 



9. y2 = 4x 1 1 .  y2 = 6x 
17 .  y2 = -4x 19.  y2 = x  
2 1 . (x - 1 )2 = 3(y - 2); vertex: ( l ,  2); axis: x = I ; direc

tion: up 
25 . (x - l /2)2 = -3(y + l/4); vertex: ( l /2, - 1/4); axis: 

x = l/2; direction: down 
29. (x - 3/2)2 = 3(y + 5/12); vertex: (3/2, -5/ 1 2) ;  axis: 

x = 3/2; direction: up 
33 . (x + l)2 = -2(y + l ) ;  vertex: ( - 1 ,  - I ) ; axis: 

x = - I ;  direction: down 

1 3 .  y2 = � x  1 5 .  y2 = -5x 

23 . (y - 4)2 = -2(x - 2); vertex: (2, 4); axis: y = 4; 
direction: left 

27 . (y - 5)2 = 3(x + 1/3); vertex: ( - 1/3, 5); axis: y = 5; 
direction: right 

3 1 .  (y + 3)2 = - l/2(x - 4); vertex: (4, - 3) ;  axis: y = 
- 3; direction: left 

35. vertex: (2, - 1 ); axis: x = 2; 37 . vertex: ( -4, -2) ;  axis: x = -4; 39. vertex: (- 1 ,  O); axis: y = O; di
rection: left direction: up direction: down 

y y 

5 (x - 2 )2 = 2(y + I ) 
-5 

x (\ -5 
(x + 4)2 = - 1 (y + 2) 

I .  y 

2 

7 .  � + � = l ;  (0, ±2), (±3 ,  0) 

1 1 .  f + � = I ; (0, ± 1/2), (± I , 0) 

3 .  

x 

15 .  �: + fs = I ;  (0, ± 3Yl/4) , (± 1 /2, 0) 

2 

x 

(r - 0)' = - 2 (x + I ) 

y 5. 

x 

9. � + f = I ; (0, ± 1) ,  ( ± 2, 0) 

1 3 .  � + � = I ;  (0, ± 2) ,  (± \/3, 0) 

y 
2 

x 

x 



CHAPTER EIGHT A-31 

1 7 .  

x2 

i. 
23. 4 - 64 = 1;  ( ± 2, 0) 

29. ) ' 

1 0  

19 .  y 

25 _i_ _ .£_ _ I · (0 + 1/2) . 
1 /4 1 /4 -

, , -

3 1 .  

50 x 

2 1 .  

i _ i _ . + 27. 
5 4 

- I ,  (-Vs, 0) 

33 .  ) '  
1 0  

I 
J ;, 

,1 / 
- - 7( / I  / / 

1 0  x \ / I /  � - / 
\ I \ - -21\ 

\ 

EXERCISE SET 8.5, page 370 
l . parabola 3.  
9. no graph 1 1 .  

RMEW EXERCISES, page 371 

5 .  hyperbola 
1 3 .  hyperbola 

v 

7 .  no graph 
1 5 .  point 

1 .  ( - 1 ,  - 1 ) 2. ( - 5/2, 5/2) 3. ( - 1 /2 ,  -9/2) 
4. ( 10, 7) 5. P1P2 = P3P4 = \/26, P,P4 = P2P3 = 5 
6 .  AB = VJ7o, AC = vfi36, BC = V34, AB2 = AC2 + BC2 

7 .  I Ox + 1 2y + 1 5  = 0 8. (x + 5)2 + (y - 2)2 = 1 6  
9 .  (x + 3)2 + (y + 3)2 

= 4 I O. (h.  k) = (2, -3) ;  r = 3 
1 1 .  (h,  k) = ( - 1/2,  4); r = 1 /3 12 .  (h,  k) = ( - 2 ,  3); r = v3 
1 3 .  (h, k) = ( I ,  - 1); r = Vl/2 14 .  (h, k) = (0, 3); r = V6 
1 5 .  (h, k) = ( I ,  I ) ;  r = Vlo 

� 

1 0  x 



1 6 .  vertex: (3/2, -5 ) ;  axis: y = -5; direction: right 

- 5 

Vertex Axis Direction 

1 8 .  (-3 , 0) y = O left 
1 9 .  ( 2 ,  - 2) y = -2  left 
20 . (3 ,  - 2) x = 3  up 
2 1 .  ( - 2 , - 1 /2) x =  -2  down 
22. (0, l ) y = 1 right 
23 . (-3 ,  0) x =  -3 down 

30. y 

5 

32. parabola 33. hyperbola 

1 7 .  vertex: ( 1 ,  2 ) ;  axis: x = I ;  direction: down 

x2 v2 
24. 4 - 9 = 1 ; (±2 , 0) 

i i_ _ . + + 25. l + 9 - 1 ,  ( - 1 ,  0), (0, _3) 

.\' 

x2 v2 
26 . 7 + S = l ;  ( ±  v0, 0) , (0, ± Vs) 

x2 \'2 
27 . 16 - 9 = 1 ; ( ±4 , 0) 

x2 v1 28. 3 + 914 = 1 ;  ( ± \13, 0), (0, ± 3/2) 

L _ i _ . + 29. 2013 4 - 1 ,  (0, _2  Vls/3) 

3 1 .  

4 

34. ell ipse 35 . no graph 



PROGRESS TEST 8A, page 372 
l .  (0, 4) 

4. (X - 2)2 + (y + 3)2 = 36 
6. (h, k) = (2, 0); r = Vs 
7. vertex: (-3 , I ); axis: x = -3 

.1' 

2. ( - 1 , 2) 

x 

9. vertex: (3, 2) ;  axis: x = 3; direction: down 

l l .  � + f = 1 ; ( ± 2 , 0), (0, ± 1 )  

x2 L 1 3 . 114 
-

114 
= I; (± l /2, 0) 

14 .  

x 

PROGRESS TEST 88, page 372 1 . ( - 1 12, - I )  
3 .  PR = QS = V65  
5. (h, k) = (-3 , 2); r = 3  

CHAPTER EIGHT A-33 

3. slope AB =  slope CD = -512; 
slope BC = slope AD = 2/7 

5.  (h, k) = ( I ,  - 2); r = 2  

8. vertex: ( 1 ,  2); axis: y = 2 

x 

10 .  vertex: (-2, -4); axis: y = -4; direction: right 
v2 x2 12 .  9 - 4 = I ;  (0, ±3) 

1 5 . circle 16 .  ellipse 

2. ( -7, I )  
4. (x + 2)2 + (y + 5)2 = 25 
6. (h, k) = ( l/2, 1 ); r = vTo 



A-34 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

7. vertex:  (22, 2); ax.is: y = 2; direction: right 8. vertex: ( 1 /3 , - 113); axis: x = 1/3; direction: down• 

y 

x 

x 

9. vertex: (- I ,  2); ax.is: y = 2; direction: right 

1 0. vertex: ( 1/2, - 3); axis: x = 1/2; direction: up 1 1 .  f + 2;;9 = I ; (±Vs, 0), (0, ±5/3) 

1 2. x1- 2 3 + #2. = I ; (±VJ, 0) , (0, ±Vi4t2) 

14. y 

x 

CHAPTER 9 
EXERCISE SET 9.1, page 380 

i x2 1 3. - - = I · (0 + 3) 9 3 ' ' -

1 5 .  hyperbola 16 . parabola 

l .  x = 2, y = - 1  3. none 5. x = I ,  y = -4 
7. x = 3 , y = 2; x = 3, y =  -2 9. no olution 

I I .  x = 2, y = - I 1 3 .  x = 3 ,  y = 2 ;  x = 115, y = - 1 8/5 
1 5 .  x = l , y = l ; x = 9! 1 6, y = -314 17 .  x = l , y = 2; x = l 3/5 , y = -6/5 

- ! + Vs  ! + Vs - I - Vs I - Vs 19. x = 2 ' y = --2-; x = 2 • 

y = --2-

EXERCISE SET 9.2, page 383 
I .  x = 3 ,  y = - I 3. no solution 
5. x = 3, y = 2; x = 3, y = -2 7. none 
9. x = 3 ,  y = 2; x = -3, y = 2; x = 3 ,  y = -2; x = -3, y = -2 
I I .  I 1 3 .  I 1 5 .  
17 .  C; all points on the line 3x - y = 18 
19. 22 nickels, 1 2  quarters 
2 1 .  6/5 pounds nuts, 415 pounds raisins 
23 . 6 and 8 



CHAPTER NINE A-35 

EXERCISE SET 9.3, page 390 
l .  25 nickels, 1 5  dimes 
5. $4000 in bond A, $2000 in bond B 
9. 8 pounds of $ 1 .20 coffee, 16 pounds of $ 1 .80 coffee 

I I .  speed of bicycle: 10518 mph; wind speed: 15/8 mph 
13. 34 
17. $(iOOO in type A, $12,000 in type B 
21 . (a) R = 9�x 

(b) y 

50,000 

(c) $57,000 

y : 95x 

500 

3.  color: $2.50; black and white: $1 .50 
7.  10 rolls of 1 2", 4 rolls of 1 5" 

15.  30 pounds of nuts, 20 pounds of raisins 
19. 5 units Epiline I,  4 units Epiline Il 
23. (a) p = 4 (b) 1 8  
25 . 4 and 5 

EXERCISE SET 9.4, page 396 
l .  x = 2, y = - l , z = -2 
7. x = l , y = 2, z = 2  

5 .  no solution 3.  x = I ,  y = '213, z = -213 
9. x = l , y = l , z = O  1 1 .  x = 1 , y = 21t2, z == -512 

17. x = 5,  y = -5,  z = -20 
2 1 .  three 12" sets, eight 1 6" sets, five 19" sets 

1 3 .  no solution 
19. A:2; B:3; C:3 

EXERCISE SET 9.5, page 404 
I .  

3 

15.  no solution 

4 

-4 

/ 
/ 

/ / / 

/ 
/ 4  � / 

5 .  

4 

-4 

x 



A-36 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

7.  y 
2 / / / / / / / 

-2 / '.! y 
/ / / / 

2 

1 3 .  y 1 5. 
2 

-3 3 x 

3 - - - -
-4 

21 . 2.r - .1 = 3 

.r 

9. )' 

3 

3 2 / / 2 / / 
,. ""' 

)' 1 7. 

2 

-3 
3 x 

2 

23 . 

/ x 

.l' 

'.! 

2 

I l .  
4 

3 

4 

1 9. 

3 � 

3� - v = - 7 

lt i· 2 

J' 

'.! 4, x 

2r + Sy s:  1 5; 
x � O; )' � 0 

I S  



29. no olution 

33. 

� 25 0 
>-

�s 
Ice cream 

3• - 2, 4 27. 

60 
ommon 
�lock 

CHAPTER NINE A-37 

2.! - \ 



A-38 ANSWERS TO ODD-NUMBERED EXERCISES, AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCISE SET 9.6, page 410 

Minimum Maximum 
I .  -2; (5, 14) 5; (5 ,  0) 9. preferred: 190/3 square feet 1 1 . large: 1 20 
3 . -3; (2 , 2) 3; (6, 0) regular: 30 square feel small: 260 

13 .  Java: 2000/ l I pounds 1 5 .  crop A: 30 acres 
5 .  �; (�. �) 1;

; ( 4, 
-�) Colombian: 4000/ 1 1  pounds crop B: 70 acre 

17. pack A: 6 pounds 

�; (3. 
';) pack B: 1 2  pounds 

7. 14; (8, 2) 

REVIEW EXERCISES, page 412 
2. x = 5, y = 2; x = IO, y = -3 I .  x = - 112, y = I 

3. x = 5 ,  y = - I 4. x = -4, y = 3/2 5 .  x = 1/4, y = - 1 12 
6. x = 5, y = O; x = -4, y = 3 
8. x = 4. y = 4; x = 36!25 , y =  - 1 215 

I O. x = 2, y = -2 I I .  
13 .  x =  l , y =  - l ; x = 5 , y = 3 14. 
1 6. 72 17 .  
1 8. 600 kph 19. 
2 1 .  x = -3,  y = I , z = 4 
23. x = I .  y = - I ,  z = 2 
25. x = -3,  y = 4 
27. x = -2. y = - 1 ,  z = -3 

29. .l' 

7 .  none 
9. x = -3, y = 5 

x = 4, y = - I 12 .  x =  -2, y = 3  
x = O, y = 3  1 5 .  45 
steak: $3.25/lb; hamburger: $ 1 .80/lb 
3, 1 1  20. 575 , $9200 

22. x = -2, y = 1/2, z = 3 
24. x = 3, y = 1/4, z = - 1/3 
26. x = -513, y = 516 
28. x = 1/2, y = - I ,  z = I 

30. )' 

, x - \ 
\ 

\ 
\ 



3 1 .  

33. 

35. x = 4, y = 6, z = 26 

PROGRESS TEST 9A, page 414 

l .  x = - 5, y = 2 2. 
4. x = 1 ,  y = - 3  
7 .  shirts: $ 1 5; ties: $10 

10. x = - 1/3, y = - 1  

32. > 

34. 

36. x = 1 1/2, y = 2, z = 2712 

CHAPTER NINE A-39 

x = - l , y 7' 6  3.  x = 2, y = ± VW; x = 3, y = ±v"i5 
5 .  x = 3, y = ±4; x = -3, y = ±4 6. 38 
8. 1 100 9. x = -2, y = 4, z = 6 

I I .  x = 213, y = 2, z = -2 



A-40 ANSWERS TO ODD-NUMBERED EXERCISES, AND TO REVIEW EXERCISES AND PROGRESS TESTS 

1 2. y 

PROGRESS TEST 98, page 414 
1 .  x = 0 ,  y = 2 ;  x = 3 ,  y = I 
4. x = -7/2, y = - 112 
6. 86 
9. x = -3, y = - 10, z = 5  

1 2. y 

CHAPTER 10 
EXERCISE SET 10.1, page 423 

I .  2 X 2  
7 .  (a) -4 (b) 7 (c) 

9. [; -2] [; -2 I 1 2] 
1 • l -8 

1 3. �x + 6y = - I 
4x + 5y = 3 

17 . x = - 1 3, y = 8, z = 2  

x 

6 

13 .  

2 .  :c = 2/3 , y = - 1  
5 .  

7 . 5/2 kph 
10. x = 1 12, y = - 1/4 

13 .  

3 . 4 X 3  
(d) -3 

1 1 .  

1 5 .  

)' 

x 

3. x = 1/5, y = - 1 /5 
x = 5, y = ±4; x = -5, y = ±4 

8 .  6, 31 
1 1 .  x = 2, y = -3, z = I 

5 .  3 x 3 

[ "! I -!] . [ "! I 

il - I  - I  -4 
2 -3 2 -3 

x + y + 3z = -4 
-3x + 4y 8 

2x + 1z = 6 
19. x = 35, y = 14, z = -4 2 1 . x = 2 ,  y = 3 



CHAPTER TEN A-41 

23 . x = 2, y = - 1 , z = 3 25 . x = 3, y = 2, z = - I 27 . x = -5, y = 2, z = 3 
29. x = -517 , y = -217 , z = -317, w = 217 

EXERCISE SET 10.2, page 431 
I .  a =  3 ,  b = -4, c = 6, d = -2 
3. [! -1 �] 
9 . [ 1 7  

1 ;] 1 1 .  not possible 
10  

1 7 .  [ 1 8  23 29] 17 - 1 2 1 3  
25 . The amount of pesticide 2 eaten by herbivore 3. 

29. [3 - 1  
A =  2 2 

I - 1/4 

EXERCISE SET 10.3, page 442 
I .  no 

7 .  [� = : J  
1 3. none 

3. yes 

9 . [ -! 
-5 

1 5 .  [ ·'� 

3 1 .  

7 .  not possible 

1 3. ( 1 0  4] 1 2  28 
1 5 .  not possible 

19 . 

27. 

AB = [ 8 
-8 -�J AC = [ _: -�J 

A = [; -�l X = [�] . B = [-;] 
X1 - 5x2 = 0 

4x1 + 3x2 = 2  
33. 4x1 + 5x2 - 2x3 = 2 

3x2 - X3 = -5 
2x3 = 4 

5 .  [213 5/6] 1 /3 1 /6 
7 

- : i -4 
-5 

1 1 .  [417 -317] 1 17 1 17 

- I/�] 1 7 .  [-� - !  -�i 
-2 I - 1  

19 .  x = 3, y = - 1 2 1 .  x = 2 ,  y = - 3 ,  z = 1 23. x = O, y = 2, z = -3 

EXERCISE SET 10.4, page 452 
I .  22 
7. (a) -6 

1 1 . 52 
1 7 .  - 1 2 

(b) - 1  

23. x = 3, y = 2, z = - 1  

(c) 
3. -8 
(d) 7 

13 .  -3 
19 .  0 

27. x = -517 , y = - 217 ,  z = -317, w = 217 

9 . (a) -6 
5 . 0 

(b) 1 (c) 1 
1 5 .  0 

(d) 7 

2 1 .  x = l , y = -2, z = - I 
25 . x = -3, y = 0, z = 2 



A-42 ANSWERS TO ODD-NUMBERED EXERCISES, AND TO REVIEW EXERCISES AND PROGRESS TESTS 

REVIEW EXERCISES, page 454 
1 .  3 X 5  2. - 1  3. 4 4 . 8 

6. [� -� ':] 5. [� -�J 7. 4x - y = 3 8. -2x + 4y + 5z = 0 
2x + 5y = 0 6x - 9y + 4z = 0 

9. x :; - 1 , y = -4 
1 1 .  x = -4, y = 3, z = - I 
1 3 .  x = 112, y = 3/2 
15 .  x = 3, y = 113, z = -2 
17 . -3 

20. [ -� -�J 
23. [ - 1  -3 -4] -4 0 -24 

4 6 20 
25 . not possible 

28. [ 6 - 1 3] -5 -9 

3 1 .  x = 2, y = 3  
33. 10 
36. 1 2  
39. x = 1 12, y = 4 
42. x = -4, y = 2, z = I 
44. x = 1 /4, y = -2, z = 1/2 
PROGRESS TEST 10A, page 455 
1 .  3 x 2 

4. -5x + 2y = 4 
3x - 4y = 4 

7 .  x = 1 12, y = 1 /2, z = 1 12 
9. [-� 

-5 ��] 
1 2. not possible 

1 5 .  -2 

1 8. -3 

2 1 . not possible 

24. [
- 1� 1�] 

26. [ 
I� -�;] 

- 10 16 

10 . x = 112, y = 5 
12. x = - 1 , y = l , z = -3 
14. x = -5. y = 2 
16. x = 3 + 5tl4, y = 3 + t/2, z = t 

19 . [ l 4] 7 - 1  

3x + 2y -

22. [ 5 
-5 

1 5  20] 0 -30 

27 . L� -�J 
29. [ -4/ 1 1 3/1 1 ] 1 1 1 1 21 1 1  

30. [ �� -7/� -8/�l 
-215 215 3/5 

34. -6 
37. 0 

32. x = - l , y = - 1 , z = l/2 
35. 0 
38. -3 

40. x = I , y = -4 
43. 

41 . x =  1 0, y =  -4 

x = 1/3, y = 213, z = - I 

z = O  

2. 0 3 .  [ -� 0 6 
1�] · 

2 - 1  
- 1  

5 .  x = - 1 /2, y = 1/2 6. x =  -6, y =  -2 

8. 3 
10 . [-7 - 1 1 ] 

1 1 1 5  
1 1 .  [- 1�] 

1 3 . [ 1 127 1 2127 4/27] 5/27 6/27 -7/27 
7127 3/27 1127 

14. x = -2, y = I  

16 .  27 1 7 .  x = 4, y = -3 



PROGRESS TEST_ 108, page 456 

1 .  2 x 4 2 .  I 3 .  [2 -6 : 5 ] 
I 3 :  -2 

4_ 

Cl-WTER ELMN A-43 

16.x + 6z = 10 
-4x - 2y + Sz = 8 

2x + 3y - z = -6 

5 .  x = O, y = - 1 , z = -3 6 . .t' = - 1 , y = -3 7 .  x = 5 ,  y = -2 .  z = 1/2 

8 .  -5 9. ( 10, 0] 

1 3. [-3/2 
- 1 /2 
-3/4 

1 2. not possible 

1 5 .  -22 

CHAPTER 11 
EXERCISE SET 11.1, page 464 

L Q(x) = x - 2, R(x) = 2 

16. - I  

5. Q(x) = 3x3 - 9x2 + 25x - 75, R(x) = 226 
9. Q(x) = x2 - x + 1 ,  R(x) = 0 
1 3. Q(x) = x3 + 3x2 + 9x + 27 , R = 0 
17 .  Q(x) = x4 - 2x3 + 4x2 - 8x +  16, R = O  

EXERCISE SET 11.2, page 46a 
1 .  -7 3 .  -34 
9. 0 1 1 .  -62 

13 .  y 

19 .  yes 
27. r = 3, - I  

x 

2 1 .  no 
29. 512 

15 .  y 

10. [� - 1�] l l .  not possible 

-5/2 
- 1/2 
-514 

2 1 3  

-3/4] 
- 1/4 
- 1/8 

14 . x = - 1 .  y = 1/2 

17 .  ,t' =  -3/2, y =  1/2 

3. Q(x) = 2x - 4, R(x) = 8x - 4 
7. Q(x) = 2x - 3, R(x) = -4x + 6 
1 1 . Q(x) = x2 - 3x, R = 5 
15 .  Q(x) = 3x2 - 4x + 4, R = 4 
19 .  Q(x) = 6x3 + 1 8x2 + 53x + 159, R = 48 1 

5. 0 7. - I  

17 .  

x 

23. yes 25. yes 

4 



A-44 ANSWERS TO ODD-NUMBERED EXERCISES. AND TO REVIEW EXERCISES AND PROGRESS TESTS 

EXERCISE SET 11.3, page 479 

I .  5 3 .  25 5. 20 
9. -7125 - 24i/25 1 1 .  8/5 - i/5 13 .  5/3 - 2i/3 

17 .  4/25 - 3i/25 19 .  9/ 10 + 3i/ IO 2 1 .  O + i/5 
25. x3 - 2.x2 - 16x + 32 27. _x3 + 6x2 + l lx + 6 
3 1 .  x3/3 + x2!3 - 7x/ 1 2  + 1 /6 33 . .x3 - 4x2 - 2x + 8 
37 . -2, 4, -4 39. -2, - 1 , 0, - 1 /2 
43. .x3 + 6x2 + 12x + 8 45 . 4x4 + 4.x3 - 3x2 - 2x + I 

7. - 1 3/ IO + l l i/ IO 
IS .  415 + Si/5 

29. x3 - 6x2 + 6x + 8 
3S. 3, - 1 .  2 
4 1 .  5 ,  5 ,  5 ,  - 5 .  - 5  
47. 2 ,  - I 

49. (3 :!: iVJ)/2 5 1 .  - 1 ,  -2, 4 
SS. x2 - 3x + (3 + i) 
59. (x2 - 6x + l O)(x - l )  

53. x2 + (I - 3i)x - (2 + 6i) 
57 . .x3 + ( I  + 2i)x2 + ( -8 + Si)x + ( - 12  + Si) 
61 . (x2 + 2x + 5)(x2 + 2x + 4) 

63. (x - 2)(x + 2)(x - 3)(x2 + 6x + 10) 

EXERCISE SET 11.4. page 487 

65. x - (a + bi) 

Positive roots Negative roots Complex. roots 

I .  

3. 
5 . 

7 . 

9 . 

1 1 . 

3 
I 
0 
3 
1 
3 

1 
l 
2 
0 

1 
I 
0 
2 
2 
0 
0 
2 
0 
0 
0 

EXERCISE SET 11.5, page 498 

I .  x * 1 
7. x = 4, y = O  

0 13 .  I ,  -2 ,  3 1 5 .  2 ,  - 1 ,  - 1 12, 2/3 
2 17 .  I , - I , - I , 115 19. I ,  -3/4 
6 2 1 . 3, 3, 1 /2 23. - I ,  3/4, :!:i 
0 25. 3/5, :!:2, :!:i''/2 27 . 0, 1 /2, 213 , - I 
2 29. 1/2, -4, 2 ± V2 3 1 .  k = 3 , r = -2 
2 33. k =  7, r =  l ;  k =  -7, r =  - I  
4 
0 
2 
2 
4 
6 

3. x * 0, 2 
9. x =  -2, y = O  

S. all real numbers 
I I .  x = - 1 , y = O  

- I  



1 3 .  x = 2 ,  y = I  

\\_ - --1 - - - - -

, 

T 
I 
I 
I 

1 7 .  x = 2 ,  x = - 3/2 , y = 1 /2 19 .  x = I 

1 5 .  x = 2, x = -2,  y = 2 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I I 

- - - - - - - t- - 2 - -1- - - - - - - -

1 I 
I ---++++1 --l-±++-+-1---4--- x 
I 

2 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

21 . x = 5, x = -5 



23 . x * - 2  

27. x -oF 0, x -oF - I  

\! 
I .  Q(x) = 2x2 + 2x + 8 ,  R = 4 
3 .  46, - 8 4 .  
9.  - 512 + 5i/2 10 .  

1 3 .  x3 + 6x2 + I Ix + 6 
16 .  4x4 + 4x3 - 3x2 - 2x + I 
19 .  - 1/2, 3 20. 

25 . x * 2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
_ _  L _ _ _ _ _ _ _ _  _ 

2. Q(x) = x3 - 5x2 + l0x - 1 8 , R = 3 1 
4, I 7 .  6125 - 17i/25 8. - 1 /5 + 2i/5 
1 1 10  - 3i/ IO  1 1 .  i/4 12 .  2/29 + 5i/29 

14.  x3 - 3x2 + 3x - 9 15 .  x4 + x3 - 5x2 - 3x + 6 
I 7. x4 + 2x2 + I 1 8 . x4 - 6x2 - Bx - 3 

- 1  ± \12 2 1 .  4, 2 + i, 2 - i 22.  I positive, I negative 
23. 5 positive, 0 negative 

I ,  -2 ,  2/3, 3/2 
24. I positive, 0 negative 25 . 2 positive, 2 n�tive 26. 3 ,  - 2/3 , - 3/2 
28. none 29. - 1 , ( - 9 ± \/32 1 )/ 1 2  30. 2 , 3/2, - J ± \12 27. 



3 1 .  I 
I 

Ji 
- - - - - --j l - - - - - -

-+---+--+--1---1----+--+--+--+--+- x 

! .  Q(x) = 2x2 - 5 ,  R(x) = 1 1  
3 .  -25 
6.  x3 - 2x2 - 5x + 6 
9. - l , - 1 , (3 ± Vi7)/2 

I I .  I 6x5 - 8x4 + 9x3 - 9x2 - 7 x - I 
1 3 .  1 /2,  1/2 
16. 2 
19.  1 , 1 , - 1 , - 1 , 1 /2 
2 1 .  

I 

_)j 
- - - - r 

32. 

;11 
2. Q(x) = 3x3 - 7x2 + 1 4x - 28, R(x) = 54 
4. - 1 65 

7. x4 - 6x3 + 6x2 + 6x - 7 8. 2, ± i 
10.  x5 + 3x4 - 6x3 - 10x2 + 2 1x - 9  
12 .  x2 - ( I  + 2i) x + ( - 1  + i) 

14. I ,  - I  ± i  1 5 .  (x2 - 4x + 5)(x - 2) 
17 .  I 1 8 .  none 

20. 2/3 , -3 ,  ± i 



A-48 .AN5WERS TO ODD-NUMBERED EXERCISES, .AND TO REVIEW EXERCISES .AND PROGRESS TESTS 

PROGRESS TEST 118, page 501 
I .  Q(x) = 3x3 + 2x2 + 2, R(x) = x + 3 
2. Q(x) = -2x2 + x +  l , R(x) = O  3 .  - I  
4. 24 
8 .  I ,  2, 2, 2 

1 1  . x4 + 4x3 - x2 - 6x + 1 8  
1 3. ( 3  ± Vi7)/2 

6. 2x4 - x3 - 3x2 + x + I 7. x3 - 4x2 + 2x + 4 
9. (-3  :!:: Vl3)t2, -3 ,  -3  10. 8x4 + 4x3 - 18x2 + I  Ix  - 2 

12 .  x4 - 4.x3 - x2 + 14x + IO  
14. -2 ± 2v2 15 .  (x2 - 2x + 2)(2x - l }(x + 2) 

16 .  I 1 7 .  2 1 8 .  19 .  - 1 /2 , 3/2, ±i  
20 .  0,  1 /2, :tv2 

CHAPTER 12 
EXERCISE SET 12.1, page 511 

I .  2 ,  4 ,  6, 8; 40 
5 .  5, 5 ,  5 ,  5; 5 
9. 2 . 1 ,  2.0 1 , 2.00 1 ,  2 .000 1 ;  2 + 0. 1 20 

1 3. 9 1 5. 4/7 

2 1 .  97 23. 49/ 1 2  

s 4 ( - l )k 
29. 2: k2 3 1 . 2: -

k =  I k �  I Vk 

EXERCISE SET 12.2, page 517 
I .  1 5 ,  1 8  3 .  I ,  514 
9 .  2, 6, IO, 1 4  1 1 . 3, 512, 2, 3/2 

17 .  - 8  1 9. -2 
25. 440 27. - 1 26 
33. n = 30, d = 3 35. n = 6, d = 1 /4 

2 1 . Y I 

3 .  I ,  5 ,  9 ,  1 3; 77 
7. 1 /2, 213, 314, 415; 20/2 1 

1 1 .  1/3, 4/5 , 917, 1 6/9; 400/41 
17 .  

25. 

33. 

5 .  
1 3 . 
2 1 .  
29. 
37. 

256 

80 

4 (- l )k +  1 k  2: 
k - 1 k2 + 1  

4, 5 
1/3, o. - l/3, -2/3 
19/3 
1 720 
-2 

19. 

27. 

35. 

7. 
1 5 .  
23. 
3 1 .  

40 

s 

2: (2k - I )  
k - 1 n 1 2: -k - 0 � 

Vs + 6. Vs + 8 
25 
82 1 / 160 
30 



EXERCISE SET 12.3, page 526 
1 .  48 3. -8 1 /64 
9. 4, 2, 1 , 1 12 1 1 . -3, -6, - 1 2, -24 
17 . 1 /243 19 .  27/8 
25. I ,  3 27. 1/4, 1 1 1 6  
33. 1020 35 . 55/8 
4 1 . 2 43. 3/4 
49. 1 15 5 1 .  364/990 

EXERCISE SET 12.5, page 537 
1 .  243x5 + 8 10x4y + 1 080x3y2 + nox2y3 + 240xy4 + 32y5 

CHAPTER lWELVE A-49 

5. 0.0096 7 .  3 ,  9, 27, 8 1  
1 3 .  -384 1 5 .  1 /4 
2 1 .  2 23. 7 
29. 1 093/243 3 1 .  - 1 3531625 
37. $ 10,235 39. 58,594 
45. 8/3 47. I 
53. 325/999 

3. 256x4 - 256x3y + 96x2y2 - 16xy3 + y4 5. 32 - 80xy + 80x2y2 - 40x3y3 + 1 0x4y4 - x5y5 
7 .  a8b4 + 1 2a6b3 + 54a4b2 + 1 08a2b + 8 1  
9. a8 - 16a7b + l 1 2a6b2 - 448a5b3 + 1 1 20a4b4 - 1 792a3b5 + 1 792a2b6 - 1024ab7 + 256b8 

1 1 .  r,x3 + ix2 + 4x + 8 1 3 .  1024 + 5 1 20x + l l ,520x2 + 1 5,360x3 
1 5 .  1 9,683 - 1 1 8 ,098a + 3 14,928a2 - 489,888a3 
1 7 .  16,384x14 - 344,064x13y + 3,354,624x1 2y2 - 20, 1 27,744x1 1y3 
19 . 8 192x13 - 53,248x12yz + 1 59,744x1 1y2i2 - 292,864x10y3z3 
2 1 .  1 20 23 . 1 2  25. 
29. 1 20 3 1 .  2 10 33 .  
37 .  2016.x-s 39. -540x3y3 4 1 . 
45. -Vx12 47 . 4.8268 

EXERCISE SET 12.6, page 545 
I .  1 20 3 .  146,0 16  
9 .  720 1 1 .  336 
17 . 3 19. 2 10 
25 . 336 27 . 1 20 
33. l 35. n 
4 1 .  (a) 1 5,600 (b) 17 ,576 

5 .  
1 3 .  
2 1 .  
29. 
37. 
43. 

990 
- 35,840x4 
I 8 1 ,440x4y3 

256 
90 
120 
84 
(n2 + n)/2 
1 2,27 1 ,5 1 2  

27. 5040 
35. mxsy4 
43. - 144x6 

7. 5040 
15 .  84 
23 . 60 
3 1 .  45 
39. 3003 

45. 240 47. 59,400 49. (26!)2/22!20!6!4! 

EXERCISE SET 12.7, page 552 
1 .  1 12 3 . 
5 .  (a) 1 1/36 (b) 5136 (c) 419 7 .  
9 .  (a) 1 1 1 7 1 70 (b) 1 164/8585 (c) 737218585 
1 1 . 1 1/4 1 65 1 3 .  8008/23023 
1 7 .  (a) 0.922 (b) 1 .6 x 10-7 

REVIEW EXERCISES, page 554 
1 .  3, 7, 1 3; 1 1 1  2. 0, 7/3, 1 3/2; 999/ 1 1 

(a) 
(a) 

4. 120 5. - 16 6. 62 

1 /2 (b) 1 /4 (c) l / 1 3  
99/ 100 (b) 1 / 100 

1 5 .  75/6 1 2  

3 .  2 
7 .  50 

file:///024ab7


8 .  

I I .  38 
I5 .  275/3 
I 9. 5, I ,  I /5 , 1 125 
23. I/2, I / 1 2  
27. 9/5 

I 2 .  -9 
I6 .  -450 

9. 
4 I (- I l.! 

k � O  

20. -2, 2 ,  -2 ,  2 
24. 2 I /32 

30. x41 1 6  - x3 + 6x2 - I 6x + I6 
32 .  720 33 .  78 
35. I 5  
39. 360 
43. 217 

I .  I /4, 2/9 , 3/ 16 ,  4/25 
4 .  8 

36. 
40. 2 IO  
44. 8/663 

2 .  
5 .  

29/6 
4 I 

I 3 .  8 
1 7 .  -3  
2 I .  243/8 
25. -728 

IO. 
" I tog k.x 

k � t 
I4 .  -33/2 
I8 .  - 3/2 
22. ±256 
26. I O  

29. I6x4 - 32r�y + 24x2y2 - 8xy3 + y4 
3 I . x6 + 3x4 + 3x2 + I 

37. 90 
41 . 9 
45 . 0 .8 I  

34. (n + I )n 

3 .  
6. 

38 . 24 
42. 2/9 
46. I /33 

- I ,  112, 2 ,  7/2 
5512 

7 .  I /3 8 .  -2/3 , -4/3, -8/3, - I6/3 9 .  -2 
I O. 8, - I 6 I I .  -43/8 I2 .  -6 
I4 .  a 10 + 10a9/b + 45a8!b2 + I 20a7/b3 I 5 .  22 
I6 .  360 I 7 .  n + I I 8 .  24 
I9 .  8 .46 x 1020 20. I /3 2 1 .  3/35 

" 

I .  513 , 5 ,  5 I /5 ,  52/3 2. 2: k' 
k - 2 

3 .  6, I 6/3, I4/3, 4 4 .  IO 5 .  -55 6. I 3 ,  1 /4 
7 .  0 . 2  8 .  - I ,  I /4 ,  - I / 16 ,  I /64 9. - I /8 I IO. -4, -8/3 

I I .  -3 I/2 I 2 . 2517 I4 .  I I 520x8 I5 .  nl(n + I )  
I6 .  7 I 7 .  2 I 8 .  360 
I9 .  200 20. o .8 x 10-5 2 1 .  7/ I 2  



SOLUTIONS TO SELECTED REVIEW 
EXERCISES 

CHAPTER 1 
I .  { I ,  2 ,  3 , 4}. (The negative integers and zero are not 

natural numbers . )  
4 .  T .  (Irrational numbers are a subset o f  the real num

bers . )  
6. F. (The negative integers and zero are a subset of the 

integers . )  
1 5 . 1-3 1 - I I - 5 1 = 1-31 - 1-41 

= 3 - 4  
= - 1  

1 6. FQ = 19/2 - 61 = 1-3/21 = 3/2 
18 . c .  (Every exponent of a polynomial must be a nonneg

ative integer. )  
22. x(2x - I )(x + 2) = (2x2 - x)(x + 2) 

= 2x3 + 3x2 - 2x 
26. 2a2 + 3ab + 6a + 9b 

= (2a2 + 6a) + (3ab + 9b) 
= 2a(a + 3) + 3b(a + 3) 

= (a + 3)(2a + 3b) 

28. x8 - I = (x4)2 - ( 1 )2 
= (x4 + l )(x4 - I ) 
= (x4 + l )(x2 + l )(x2 - I )  

Grouping 
Common factors 
2a, 3b 
Common factor 
a + 3  

= (x4 + I )(x2 + I )(x + 1 )(x - 1 ) 
x2 - 2x - 3 . x2 - 4x + 3 33. 2x2 - x � 3x3 - 3x2 

x2 - 2x - 3 3x3 - 3x2 
2x2 - x · x2 - 4x + 3 

(x + l )(x - 3) 3x2(x - 1 ) 

x(2x - I )  (x - l )(x - 3) 
_ 3x(x + I )  - 2x - I , 

34. Factor each denominator: 
- I  2 
2x2 (x + 2)(x - 2) 

3 
x - 2  

Product of all factors each to its highest power: 
2x2(x + 2)(x - 2) 

39. LCD = (x + 4)(x - 4) 

40. 

42 . 

46. 
48 . 

3 2 3 2(x + 4) 
x2 - 16 - x - 4 = (x + 4)(x - 4) (x + 4)(x - 4) 

_ 3 - 2(x + 4) _ -5 - 2x - (x· + 4)(x - 4) - (x + 4)(x - 4) 
Multiply numerator and denominator by 

LCD = (x + 2)(x - I )  
3 2 

x + 2  x - I 
x - I 

3(x - I )  - 2(x + 2) 
(x + 2)(x - 1 )2 

x - 7 
= (x + 2)(x - 1 )2 

(2a2b-3)- 3 = (2)-3(a2)- 3(b-3)-3 
I b9 = - a-6b9 = -8 8a6 

\/8o = \!i6=5 = Vl6 .  Vs = 4 Vs V« = (x7y5) 1 12 = x112y512 
= x3x112y2y 112 = x3y2vX)i 

or 
V« = V x6xy4y = x3y2vX)i 

Vx Vx Vx - Vy  50· Vx + vY = Vx + vY .  Vx - vY 
x -vX)i 
x - y 

5 1 .  � + 2� = 3� 
= 31xl 1121yl 112 = 3v'i:ryi 

53. Equate the real and the imaginary parts. 
x - 2 = -4 2y - I = 7 

x = -2 y = 4 
PAGE S-1 



S-2 SOLUTIONS TO SELECTED REVIEW EXERCISES 

54. i47 = 144 • ;3 = i3 = -i 
56. (2 + i)(2 + i) = 4 + 2i + 2i + i2 

CHAPTER 2 
4. k - 2x = 4k.x 

k = 4k.x + 2x 
k = x(4k + 2) 

= 4 + 4i - l 

= 3 + 4i 

k k x = 4k + 2 = 2(2k + I )  
6. Let n be the number of quarters . 

Coins Cents Value x = 

per coin 

Quarters n 25 25n 
Dimes 2n + 4 JO J 0(2n + 4) 

T I I (value of) + (value of) ota va ue = . quarters dimes 
265 = 25n + 10(2n + 4) 
265 = 25n + 20n + 40 
225 = 45n 
n = 5 = number of quarters 

2n + 4 = 14 = number of dimes 
8. Let x be the number of hours for machine B. 

A 

B 

Rate x Time = Work 

I 2 2 
3 3 
I 2 2 
x x 

(work done by A) + (work done by B) = I 

� + � = I 3 x 
2x + 6 = 3x 

x = 6  

9 . F. The equation does not hold for x = 0, and therefore 
it does not hold for all real values of x. 

1 2. -4 < -2x + I 5: JO 
-5 < -2x :'.S 9 
-5 > -2x 2: _2_ 
-2 -2  -2 
5 9 2 > x 2: -2 

or 

0 5 2 
14 . Since the numerator i s negative, the denominator must 

be positive if the quotient is to be negative. Note also 
that the denominator cannot equal 0. 

2x - 5 > 0  

16 . 13x + 2 1 = 7 

x > 512 or (5/2 , oo) 

3x + 2 = 7 -(3x + 2) = 7 
3x = 5  -3x = 9  
x = 513 x = -3 

1 9 .  1 2  - 5xl < I 
- I < 2 - 5x < I  
-3 < -5x < - I 
-3 > -5x >..=_!_ 
-5 -5 -5 
3 I 5 > x > 5  

� < x < �  or (k. �) 
22. 6x2 - I Ix + 4 = (2x - 1 )(3x - 4) 

2x - l = O 3x - 4 = 0  
I 4 x = z x = 3  

23. x2 - 2x = -6 
x2 - 2x + I = -6 + I 

(x - 1 )2 = -5 
x - I =  ±\/=5 

x = l ± iVs 



27. kx2 - 37T = 0 
kx2 = 37T 

2 37T x = k 

x =  ± If- = 
v3;k + --- k 

29. 3r2 - 2r - 5 = 0 
a = 3, b = -2, c = -5 

b2 - 4ac = 64 
Since b2 - 4ac is positive and a square, the roots are 
real and rational . 

33. Vx+3 + V2x - 3 = 6 Vx+3 = 6 - V2x - 3 
x + 3 = 36 - 12V2x - 3 + 2x - 3 
1 2V2x - 3 = x + 30 
1 44(2x - 3) = x2 + 60x + 900 
x2 - 228x + 1 332 = 0  
(x - 6)(x - 222) = 0 
x = 6 x = 222 
Check: 

x = 6  
v6+3 + vlT=3 ob 6 

3 + 3 ob 6 
6 =  6 

x = 222 
V225 + V44l ob 6 

1 5  + 21 ob 6 
36 * 6 

The solution is 6. 
2 

35.  Let u = 1 - -. 
x 

u2 - Su + 1 5  = 0 
(u - 3)(u - 5) = 0 

u = 3  
Substituting, we have 

u = 5  

3 = 1 -
� 

5 = 1 -
� 

2 = -
� 
x 

x = - I 

x 

4 = -� 
x 
I x = -2 

36. Let n = number of actual attendees. 

Number of 
attendees 

Actual group n 

Enlarged group n + IO 

x 

Cost per 
attendee 

420 
-

n 
420 

--

n + IO 

Since the larger group would have paid $ 1  less per 
attendee, 

� + l 
=

420 
n + IO n 

420n + n(n + I O) = 420(n + IO) 
n2 + I On - 4200 = 0 
(n - 60)(n + 70) = 0 

n = 60 
37.  The quantity under the radical sign must be nonnega-

tive. 
2x2 - x - 6 2: 0 

(2x + 3)(x - 2) 2: 0 

2x + 3 - 0 + + + + + 

x - 2 - - 0 + 

I I 
3 0 
2 

(2t + 3) (x - 2) + + 0 - 0 

or 

39. 2t + 1 
x + 5 

{xix :S - 312 or x 2: 2} 

( - oo ,  - 3/2] , [2 ,  oo) 

- 0 + -' 
0 + + + + + 

- 5  _ l  
2 

2t + I + + - 0 + + 
x + 5 

or 

{xix < -5 or x 2: - 1/2} 

( - oo ,  -5) ,  [ - 1/2,  oo) 

I 
2 

- 0 + 

+ 

+ 
.. 

+ 

Exclude x = -5 ,  since the denominator cannot equal 
0.  

3 
I .  d = Y(x2 - X1 )2 + (y2 - Y1 )2 

= V<2 + 4)2 + < - I + 6)2 
= v 36 + 25 = v'6l 



5 .  y-axis test 
Replace x with -x: 

v2 = l - ( -x)3 
�2 = l + x3 

no 

x-axis test 
Replace y with -y: 

( - v)2 = I - x3 
.y2 = I  - x' 

yes 
origin test 

Replace both: 
( -y)2 = I - ( -x)3 

y2 = I + x3 
no 

7 .  Yes. No vertical line meets the graph in more than one 
point. 

9. The quantity under the radical cannot be negative. 
3x - 5 2>: 0 

5 
x 2>: -3 

1 1 . Solve the equation: 
f(x) = 1 5 = �  

225 = x - I 
x = 226 

1 4. Replace x with y - I :  

1 8 . 

f(x) = x2 - x = (y - I )2 - (_v - I )  
= y2 - 2y + 1 - y + I 
= y2 - 3y + 2 

f(x) = x - 1 when x :::o: - 1 
f( -4) = -4 - I =  -5 

1 9 .  f(x) = -2 when x > 2 
f(4) = - 2  

20. 

2 1 .  

25 . 

28 .  

m = ll..=..2'.l = 3 - ( -6) = 2 = 3 x2 - xi - 1  - ( -4) 3 
y - Yi = m(x - xi ) 

y - ( -6) = 3[x - ( -4)]  
y + 6 = 3x + 1 2  

y = 3x + 6  
2y + x - 5 = 0 

I 5 y = -2 x + 2 
The slope of the given line is m 1  = - 112 .  The slope m 
of any line perpendicular to the given line is 

1 
m = -- = 2 

m i 
Then, with m = 2 and (x i , Y i ) =  ( - 1 ,  3 ) ,  

p - kqr - i2 

y - Yi = m(x - xi ) 
y - 3 = 2(x + 1 )  

y = 2x + 5  

- 3  = k (2)(;3) 
4-

k = 8  

p - 8 qr - i2 
I p = -4 

30. (f· g)(x) = (x + l )(x2 - I )  
= x3 + x2 - x - l 

(f· g)( - l ) = ( - 1 )3 + ( - 1 )2 - (- 1 ) - 1 = O  
33. (g 0 f)(x) = g(x + I )  = (x + I )2 - I = x2 + 2x 
34. g(x) = x2 - I 

g(2) = 22 - I = 3 
(f 0 g)(2) = f(3)  = 3 + I = 4 

35. (Jo g)(x) = j\x2) = v? - 2 = lx l - 2 
37. (jo g)( -2 ) = 1 - 2 1 - 2 = 0  
39. (f 0 g)(x) = J(� - 2) = 2(� - 2) + 4 = X 

2x + 4 (g oj)(x) = g(2x + 4) = -2- - 2 = x 

2 .  22x = 8x - i = (23) ' - I Write in terms of same 
base . 

221 = 23' - 3 (am)" = am" 

2x = 3x - 3 If au = a'', then u = v.  
x = 3 Solve for x. 

4. S = P( I + i)" . r 0. 1 2  
I 

= k = -2-
i = 0.6 
n = 4 X 2 = 8  
s = 8000( 1 + 0.6)8 

= 8000( 1 . 5938) 

= $ 1 2 , 750.40 
I IO .  log5 m = x - I 

Compound interest formula. 
Interest rate i per 
conversion period. 

Number of conversion periods . 
Substitute for P, i, and n .  
Table IV in  Tables Appendix 
or a calculator. 

- I 5·' i = - Equivalent exponential form. 1 25 
y - i = 5 - 3 Write in terms of same base. 
x - I =  -3  If au = a'" , then u = v .  

x = -2  Solve for x .  
1 2 .  log3(x + I )  = log3 27  If loga u = loga v, 

then u = v.  
x + I = 27 Solve for x. 

x = 26 



1 3 .  
or 

16 .  
or 

1 8. 

22. 

25. 

26. 

27. 

30. 

38. 

log3 35 = 5 Since loga a' = x. 

log3 35 = x Introduce unknown x.  
3x = 35 Equivalent exponential form. 
x = 5  If au = a'', then u = v .  

eln 3 = 3 Since a10gax = x. 

e1n 3 = x Introduce unknown x. 
In x = In 3 Equivalent logarithmic form. 

x = 3 If loga u = log" v, then u = v.  � - (x - 1 ) 1 12 loga 2x - loga 
2x 

= loga (x - 1 ) 1 12 - loga 2x 
= loga (x - 1 ) 1 12 - [loga 2 + loga x] 

1 = 2 loga (x - I )  - loga 2 - loga x 

log 1 4  = log (2 · 7) 
= log 2 + log 7 
= 0 .30 + 0.85 = 1 . 1 5 

Property 1 .  
Substitute given 
data. 

7 log 0.7 = log 10 
= log 7 - log 1 O 
= 0.85 - l 
= -0. 1 5  

Property 2 .  
loga a =  I .  

1 I 3 loga x - 2 loga y 

= loga x1 13 - loga y 1 12 Property 3 .  
x 1 13 

= loga 1/2 Property 2 .  y Vx = loga vY Radical form. 

4 3 [log x + log (x - l ) ] 

4 = 3 log (x)(x - 1 )  Property 1 .  

= log (x2 - x)413 Property 3 .  
)o<J � r log x = =...:.:. 

b log0 b 

I 32 _ log 32 ogs - log 8 

Change of base formula. 

x = 32, b = 8, a =  10. 

I 32 1 .5 5 ogs = 0 .9 = 3 Substitute given data. 

Checking: 8513 � 32 
32 = 32 

2 . 1 x = ---(32 .5)512 
Introduce 
unknown x. 

39. 

40. 

4 1 .  

I .  

2.  

5 Properties of log x = log 2 . 1 - 2 log 32.5 logarithms. 

= 0 .3222 - � ( 1 . 5 1 1 9) Table II in Tables 
Appendix. 

= -3 .4575 
= (4 - 3 .4575) - 4 

= 0.5425 - 4 
x = 3 .49 x 10-4 

Q(t) = qoe-k' 
qo qoe-0.061 
2 
I e-0.061 
2 
I In e-o 061 In - = 2 

In 0.5 = -0.06t(ln e) 
-0.06t 
In 0.5 t =  -0.06 

-0.693 1 
-0.06 

1 1 .5 hours 
23x - I = 14 

(3x - I )  log 2 = log 14 

x = .! + � 
3 3 log 2 

2 log x - log 5 = 3 

Mantissa must be 
positive . 

Table II in Tables 
Appendix . 

Exponential decay model . 
Substitute k = 0.06 and 
Q(t) = qo/2 

Take logs of both sides. 

Property 3 .  
I n  e = I . 

Table III in Tables 
Appendix .  

Take logs of both sides. 

Solve for x. 

log x2 - log 5 = 3 Property 3 .  
x2 

log 5 = 3 Property 2 .  
x2 
S = 103 = 1 000 Equivalent exponent 

form. 
x = \/5000 Solve for x. 

l o 7T d. = 180 ra 1ans 

-60° = -6o(i;0
) = -� radians ( 1 80) 0 

I radian = --;-

37T . 37T ( l 80) - radians = - - = 270° 2 2 7T 



( 1 80)0 6. I radian = -;;-
47T radians = 47T ( 180) = 240° 3 3 7T 
Since 480° - 240° = 240° and 240° is not an integral 
multiple of 360°, they are not coterminal. 

8 . () = � = : � = I .4 radians 

IO .  l�7T radians = l�7T (1!0) = 330° 
Since 

270° < 330° < 360° 
the angle is in quadrant IV. 

1 1 . () = -220° is coterminal with ()' = -220° + 360° = 
1 40°, which is an angle in quadrant II .  

1 4 . The real numbers t and t '  determine the same unit 
circle point if they differ by a multiple of 27T. 

I 97T 87T 7T t = - - - = -2 2 2 
15. The same unit circle point is determined by 

t + 27Tn 
for all integer values of n. With n = 4, 

I 57T 7T t + 21Tn = -- + 87T = -2 2 
23. tan t < 0 in quadrants II and IV 

sin t < 0 in quadrants III and IV 
Both tan t and s in t are negative in quadrant IV. 

25. From 

sin( - t) = - sin t > 0 
we conclude that 

sin t < 0 
so t is in quadrant III or IV. Since tan t is positive in 
quadrants I and III, both conditions hold in quadrant 
III. 

27. sin2 t + cos2 t = I 

sin2 t = I - (�) 2 
= �� 

. 4 sin t = -5 (Since t is in quadrant IV, sine is 
negative . )  

sin t -415 4 tan t = cos t = 315 = -3 
I 3 cot t =  -- = --tan t 4 

28. sin2 t + cos2 t = I 

32. 

35 . 

cos2 t = I - ( -�r = ;5 
3 cos t =  -5 (Since s in t < 0, tan t > 0, t must 

be in quadrant III . )  
I 5 sec t =  -- = --cos t 3 

sin t sin t I -- = -- · -- = (tan t)(sec t) cos2 t cos t cos t 

Step I .  The argument t = 5; is in 

quadrant II .  Then 

Step 2 .  
7T v3 tan 6 = 3 

Step 3. Since tangent is negative in quadrant II , 

57T 7T v3 tan 6 = -tan 6 = -3 

2 . b2 = c2 - a2 = 25 - 9 = 16 
b = 4 
tan = opposite = 

:! 
f3 adjacent 3 A 

b 



5 .  

6 .  

a2 = c2 - b2 = 49 - 16 = 3 3  
a = V33 

sec f3 = hypotenuse = _7
_ = 7\133 

adjacent \/33 33 

7 

0 
B 

hypotenuse OP = V3+l = 2 

csc 0, = hypote�use = .?_ = 2 
opposite I 

Since (J is in quadrant II and 
cosecant is positive in quadrant I I ,  

csc (J = csc (} '  = 2 

y 

p 

13 

A 

4 

c 

8\ 
x 

7 .  cot (J '  = adjac�nt 
= 

\12 = 1 opposite \12 
Since (J is in quadrant IV and 
cotangent is negative in quadrant IV,  

cot (J = -cot (J' 
= - I 

1 0. 

1 2 .  

y 

50 tan a = 
60 = 0.8333 

a =  39°50' 

B 

sin 52° = 20 
c 

50 

20 c = sin 52° 
= 25 .4 

c 

x 
2 

12 

p 

A 
a 

60 

c 

A 

B L-----2-0 ___ ...L..J 
C 



1 5 .  tan (J = h
tr
�
e he

i
ght = 20

5 = 2 .5 s a ow ength 1 (J = 68° 10 ' 
17 . a2 = b2 + c2 - 2bc cos a 

144 = 49 + 225 - 2(7)( 15 ) cos a 

5 .  cos( 45° + 90°) = cos 45° cos 90° - sin 45° sin 90° 

= (�)(0) - (�)( ! ) = -� 

- 130 0 6 190 7 . _ 2 1 0 = . = cos a . 77T . (
37T 47T) . (7T 7T) sm 12 = sm 12 + 12 = sm 4 + 3 

a = 5 1 °50' 

B 

7 

19 . Y = 1 80° - 38° - 22° = 1 20° 
c 10 

sin 1 20° = sin 38° 
c = 14. 1 

c 

� 38°:2° A B 

1 . sin U" sec lT + tan lT 

c 

. 1 = sm (T-- + tan lT cos (T 
= tan U" + tan lT 
= 2 tan lT 

3. sin a +  sin a cot2 a 
= sin a( ! + cot2 a) 
= sin a csc2 a 
csc2 a = -- = csc a csc a 

= sin(�) cos (�) + cos (�) sin (�) 

= (�) (�) + (�) (�) 

v2 + V6  
4 

8 .  csc 1 5° = sec(90° - 15°) = sec 75° 

1 0. sin i = cos(¥ - i) = cos387T 
1 3 .  csc( (T + �) = sin ( U"  

1
+ TT/3) 

1 5 .  

· ( 7T)
. 7T . TT  sm lT + 3 = sm lT cos3 + cos lT sm 3 

1 8 cos (T =  -- = -sec lT 10 

sin2 lT = 1 - cos2 U" = � 100 
. 6 sm lT = -IO Since lT is in quadrant IV. 

Substituting, we have 

sin( lT + �) = ( - 1
6
0) G) + ( 1

8
0) (�) 

4VJ - 3  
10 

( + 
�) - 1 0 

- 10(4\13 + 3) csc (T 3 - 4 \13 - 3 - 39 
tan a + tan /3 5 tan( a + {3) = 1 f3 ,  tan f3 = --2 - tan a tan 

1 tan2a = sec2 a - 1 = -- - 1 cos2 a 

5 tan a =  -12 

= ( - :;r - I = 1
2
14 

Since a is in quadrant II .  



1 7 .  

1 9. 

Substituting, we have 

tan(a + /3) = 70 

cos 2u = cos2 u - sin2 u 
. I 4 sm u = -- = --csc u 5 ( 4) 2 9 cos2 u = I - sin2 u = I - -5 = 25 

Substituting, we have 

9 ( 4) 2 7 cos 2u = 25 - -5 = -25 

sin 4t = sin 2u, where u = 2t 
sin 2u = 2 sin u cos u = 2 sin 2t cos 2t 

. 2 3 sm t = 5 

cos2 2t = I - sin2 2t = � 25 

4 cos 2t = 5 Since 2t is in quadrant I .  

Substituting, we have 

. (3) (4) 24 sm 4t = 2 5 5 = 25 

2 1 .  cos � = : � = ± �I + �OS u 

23 . 

( 1 2) 2 1 1 9 cos u = 2 G - I = 1 69 
. 2 - 2 - 1 4400 sm u - I - cos u - 28561 
. 1 20 sm u = 1 69 

t tan2 = ± 

Since u is acute (quadrant I) .  

I - cos t I + cos t 

csc2 t = cot2 t + I = ( -�r + I = 2: 
. 2 I 9 sm t = csc2 t = 25 

cos2 t = I - sin2 t = � 25 
4 cos t = 5 Since W(t) is in quadrant IV. 

25 . 

27.  

28 .  

30. 

t tan 2 = 

Since 

270° < t < 360° 
1 35° < t/2 < 1 80° 
so t/2 is in quadrant II and 

tan t/2 = - 1/3 

1 50 30° /1 + cos 30° cos = cos 2 = \j 2 

cos 1 5° = l. \12+\73 2 

225° tan 1 1 2 .5° = tan -2- = - I - cos 225° 
I + cos 225° 

Since cos 225° = -cos 45° = -v;, 
tan 1 1 2 .5° = - � \j� 

Let u = l 5x. 
Then 2u = 30x. 

cos 2u = cos2 u - sin2 u 
I - 2 sin2 u 

Substituting 

u = l 5x. 

cos 30x = I - 2 sin2 1 5x 

tan Q: = + 
2 - I - cos a 

I + cos a 
I - cos a 

= +--;===::::;= 
YI - cos2 a 

= + I - cos a 
sm a 

I - cos a 
I - cos a I - cos a + 
- �  

Since I - cos a 2: 0 for all a,  the sign of tan a/2 is 
determined by the sign of sin a. Therefore, 

3 1 .  

a I - cos a tan 2 = sin a 
. 3a . a I [ (3a a) (3a a) ]  sm Z sm 2 = 2 cos 2 - 2 - cos 2 + 2 

I = 2[cos a - cos 2a] 



3 . 3x + x . 3x - x 32. cos x - cos x = -2 sm -2- sm -2-

36. 

37. 

= -2 sin 2x sin x 

2 sin u cos u = 0 
sin u = 0 or cos u = 0 

7T 37T 
u = 0, 7T u = 2 · 2 

sin 2t - sin t = 0 
2 sin t cos t - sin t = 0 

sin t(2 cos t - I )  = 0 
sin t = 0 or 2 cos t - I = 0 

t = 0, 7T I cos t =  2 
7T 57T t = 3. 3 

4 1 .  12 - ii = v'22 + ( - 1 )2 = Vs  
44. r = v'a2 + b2 = Y(-3)2 + (3)2 = vis =  3\12 

45 . 

49. 

3 tan 6 = _3 = - I 

(} = 1 35° 
-3 + 3i = r( cos (} + i sin (}) 

= 3v'2(cos 1 35° + i sin 135°) 

- 3  + 3i y 

- 3 

2(cos 90° + i sin 90°) = 2(0 + i) = 0 + 2i 
5(cos 7 1 °  + i sin 7 1 °) 

= �[cos(7 l 0  _ 500) 
3(cos 50° + i sin 50°) 3 

+ i sin(7 1 °  - 50°)] 
5 = - (cos 2 1 °  + i sin 2 1 °) 3 

5 1 .  r = v'a2 + b2 = Y32 + (-3)2 = vis =  3\12 

-3  
tan 6 = - = - 1 3 

(} = 3 1 5° 
(3 - 3i)5 = [3v'2(cos 3 1 5° + i sin 3 1 5°)]5 

= (3v'2)5(cos 1 575° + i sin 1 575°) 
= 972v'2(cos 1 35° + i sin 1 35°) 

= 972\12( -v; + iY/) 
= -972 + 972i 

y 

3 - 3i 

53. In trigonometric form, 
-9 = 9(cos 1 80° + i sin 1 80°) 

so r = 9, (} = 1 80°, and n = 2. The square roots are , r;;. [ ( 1 80° + 360°k) . .  ( 1 80° + 360°k) ]  v 'J cos 2 + 1 sm 2 
for k = 0, I .  Substituting for k, we have 

3(cos 90° + i sin 90°) = 3i 
3( cos 270° + i sin 270°) = -3i 

I .  x = x1 ; x2 = -5
2
+ 3 = - I  

y = h..±...fl = 4 - 6 = - I  2 2 
6 .  By the distance formula, 

AB = VJ7o, AC = Vi36, BC = \/34 
Since AB2 = AC2 + BC2, triangle ABC satisfies the 
Pythagorean theorem and is a right triangle. 



7 . slope of AB: 

m =� = 3 + 3 = �  X2 - x1 I +  4 5 
midpoint of AB: 

X1 + x2 -4 + I  3 x = -
2
- = --

2
- = -2 

y = 2'.1...±.2:2 = -3 + 3 = 0 2 2 
The perpendicular bisector passes through ( - 3/2, 0) 
and has slope -516. Then 

y - Y 1 = m(x - x1 ) 
y - 0 = - �( x + �) 

lOx + 12y + 1 5 = 0 
8. h = -5 , k = 2, r = 4 

(x - h)2 + (y - k)2 = r2 
(x + 5)2 + (y - 2)2 = 16 

10 .  x - = x - 2 y - k = y + 3 r2 = 9 
i1 = 2  k = -3 r = 3  

center: (2, -3); r = 3 
12 . x2 + 4x + y2 - 6y = - l0 

(x2 + 4x + 4) + (y2 - 6y + 9) = - 10 + 4 + 9 
(x + 2)2 + (y - 3)2 = 3 

cent. (-2 , 3); r =  V3 
19 . ,.2 4': -x - 2  

v2 + LI. +- 1 � - x  -- '"' + .1 
(y + 2)2 = -x + 2 = -(x - 2) 

Since (y - k)2 = 4p(x - h), 
vertex: (h, k) = (2, -2); 
axis: y + 2 = 0 or y = -2; 
direction: opens left, since p < 0. 

20. 2x2 - 1 2x = y - 16 
2(x2 - 6x + 9) = y - 16 + 18 

2(x - 3)2 = y + 2 
(x - 3)2 = �(y + 2) 

Since (x - h)2 = 4p(y - k), 
vertex: (3, -2); 
axis: x - 3 = 0 or x = 3; 
direction: opens up, since p > 0. 

24. Dividing by 36, we have 
x2 y2 - - - = I 4 9 

Setting y = 0, we have 
x2 = 4  or x =  ± 2  

Setting x = 0, we see that there are no y-intercepts. 

28. Dividing by 9 , we have 
x2 y2 - + - = I 3 9 

With x = 0, y = ± 3/2. 
With y = 0, x = ± V3. 

4 

34. 2x2 + 12x + y2 - 2y = - 17 
Completing the square, we have 
2(x2 + 6x + 9) + (y2 - 2y + I ) = - 17 + 18 + I 

2(x + 3)2 + (y - 1 )2 = 2 
Since the right-hand side is positive, A =F C, and 
AC > 0, the graph is an ellipse. 

3. Substituting x = 6y + 1 1 ,  we have 
2(6y + 1 1 ) + 5y = 5 

1 7y = - 17 
y =  - 1  

x = 6y + 1 1  = 6( - l )  + 1 1  = 5 
Solution: x = 5, y = - 1 .  

6 . Substituting x = 5 - 3y, we have 
(5 - 3y)2 + y2 = 25 

25 - 30y + 9y2 + y2 = 25 
l0y2 - 30y = 0 
lOy(y - 3) = 0 

y = 0 or y = 3 
x = 5 - 3y = 5 x = 5 - 3y = -4 

9. To eliminate x, multiply the first equation by -2 and 
t!:c: second equation by l .  Then add the two equa
tions: 

-Lx - 8v = -34 
2x - 3y = - 2.l  
- l ly = -55 

y = 5  
x + 4(5) = 17 

x = -3 
Solution: x = -3 , y = 5 . 

14 . Rewriting the equations and adding, we have 
x2 + y2 - 9 = 0  

-x2 + y - 3 = 0 
y2 + y - 1 2  = 0 

(y - 3)(y + 4) = 0 
y = 3 or y = -4 

x2 = y - 3 = 0 x2 = y - 3 = -7 
x = 0 no real solutions 

The circle and parabola are tangent at (0, 3). 



S-12 SOLUTIONS TO SELECTED REVIEW EXERCISES 

1 5 .  t = tens digit, u = units digit 
IOt + u = original number 

Then 
( lOr + u) + t = 49 

or 
I I r + u = 49 

Also, 
lOu + t = number with digits reversed 

Then 
IOu + t = ( I Or + u) + 9 

or 

( I ) 

-9t + 9u = 9 (2) 
Solving Equations ( I )  and (2) simultaneously, we 
find 

t = 4, u = 5 
The original number is 45 . 

17 .  x = cost per lb  of  hamburger 
y = cost per lb of steak 

Then 
5x + 4y = 22.00 
3x + 1y = 28 . 1 5 

Solving, we find 
x = $ 1 .80, y = $3.25 

2 1 .  Interchange equations 1 and 3: 
- x + 4y + 2z = 15 • 

2x + 5y - 2z = -9 
-3x - y + z = 12 

Add 2 times equation l to equation 2; add -3 times 
equation I to equation 3: 

-x + 4y + 2z = 15  
1 3y + 2z = 2 1  

- 1 3y - 5z = -33 
Add equation 2 to equation 3: 

-x + 4y + 2z = 1 5  
1 3y + 2z =  2 1  

- 3z = - 1 2  
Use back-substitution: 

-3z = - 12 or z = 4 
l 3y + 2(4) = 2 1  or y = l 

-x + 4( 1 )  + 2(4) = 15  or x = -3 
x = -3 y = 1 z = 4 

35. The figure shows the set of feasible solutions and the 
coordinates of the vertices. 

co. 2.1  2 

,. 
(4. 6) 

(0. 1 )  ..... -------.. ( 29, J )  
6 

Evaluating the objective function at these points gives 
us the following information: 

x y z = 5y - x  
0 1 5 
0 9 45 

2 2 
4 6 26 
29 1 
6 6 

The maximum value, z = 26, occurs at x = 4, y = 6. 

CHAPTER 10 
1 2. From the third row, x3 = -3. Then, from row 2, 

X2 + 3x3 = -8 
X2 + 3(-3) = -8 

From row I ,  
X1 - 2x2 + 2x3 = -9 

x, - 2( 1 )  + 2(-3) = -9 

x, = - 1  
1 3. lo matrix form, [

2
1 l ; 2] 

-4 : -5 

X3 = -3 



Add -2 times row I to row 2: 

[0
1 I I 2

] -6 I -9 
Multiply row 2 by - 1/6: 

[0
1 I I 2

] I \ 3;2 
Add - I times row 2 to row I :  

[
I 0 I 1 /2

] 0 I I 3/2 

The solution is x = 1 /2, y = 312. 

1 8 .  Two matrices of  the same dimension are equal i f  cor
responding entries are equal. This requires that 

x2 = 9 and 4x = - 12 

The only value satisfying both equations is x = -3 . 

= [
- 1 - 2 
4 - 3 

2 1 .  Addition of matrices i s  defined only when the matrices 
are of the same dimension . 

29. Appending the identity matrix /2 to the coefficient 
matrix, we have 

[
-
� 

3 I I 
�] 

I 
4 I 0 

' 

[ _� 
4 i 0 

�] 
Interchanged rows. 3 :  I 

[� 
4 : 0 

�] 
Added 2 times row I 

I I : I to row 2 .  

[� 
4 1 0 

21 1 : ] 
Multipl ied row 2 by I 

I ! 1 / 1 1 I/ 1 1 .  

[� 
0 ; -41 1 1  311 1

] 
Added -4 times row 

I : I l l I 21 1 1  2 to row I .  

[ 
-41 1 1 
1 / 1 1 

3/ 1 1
] 2/ 1 1  Inverse . 

3 1 .  Appending the identity matrix /2 to the coefficient 
matrix, we have 

[� 
- I : I 

�] I :  0 

[� 
I 1 0 

�] 
Interchanged rows. I - I  I I 

[� 
: o  

-�J 
Added -2 times row 

-3 : I I to row 2 . 

[� 
I i 0 

21�] 
Multiplied row 2 by 

I :  - 1 /3 - 1 /3. 

[� 
o '  1 /3 1/3

] 
Added - I times row I 

I � - 1/3 213 2 to row I .  

Multiplying the coefficients of the right-hand side by 
the inverse, we have 

[ 
1/3 1/3

] [
I
] [

2
] - 113 2/3 5 = 3 

so x = 2, y = 3 is the unique solution. 
37. Expanding by the cofactors of the first column, we 

have 

39. 

I .  

1 1 � : 1 + 2 1
-
! � I  

D = I 2 
-2 

1
-3 
1 1  

x =  

I -; y =  

.!J 2 

2 

4 

4 

0 
2 
2 

= (40 - 1 2) + 2(-4 - 10) = 0  

- 1
1 3 
= 6 - 2 = 4 

- 1
1 3 

= � = .!. 4 2 
-3

1 I I  16 = - = 4  4 

6 -4 
2 8 

8 4 
I 

Q(x) R 

Q(x) = 2x2 + 2x + 8; R = 4 



3 .  

S .  

8 .  

.=-!J 7 -3 0 2 
-7 IO  - I O 

7 - I O IO  -8 
P(- 1 ) = -8 

� 7 -3  0 2 
14 22 44 

7 I I  22 46 
P(2) = 46 

� 2 4 3 s -2  
-4  0 -6 2 

2 0 3 - I  0 
Since P(-2) = 0, x + 2 is a factor. 

-- -- -2 + i (0 + Si) 
0 - Si 0 + Si 

= 

IOi + Si2 
-2Si2 

-s + IOi 
2S 

I 2 . = - 5  + 51 
14. With v'=3 = v'3i, form the product: 

(x - 3)(x - \/3i)(x + v'3i) = (x - 3)(x2 + 3) 
= x3 - 3x2 + 3x - 9 

16. The number 1 /2 is a zero of the linear factor (2x - I ) ,  
and - I is a zero of the linear factor (x + I ) . Form the 
product: 

(2x - 1 )2(x + 1 )2 = 4x4 + 4x3 - 3x2 - 2x + I 

19 .  Divide by x + 2 to find the depressed equation: 
� 2 - ) - 1 3 -6 

-4 IO  6 
2 - s  -3  0 

depressed 
equation 

Solving 2x2 - Sx - 3 = 0, we have 

23. The polynomial 

(2x + l )(x - 3) = 0  

1 x = -- x = 3 2 

P(x) = xs - x4 + 3x3 - 4x2 + x - S V \J  v v v  

has S variations in sign and therefore has a maximum 
of S positive real zeros . 

The polynomial 

P( -x) = -xs - x4 - 3x3 - 4x2 - x - S 

has no variations in sign , and therefore there are no 
negative real zeros. 

2S. The polynomial 

P(x) = 3x4 - 2x2 + I v \.J' 
has 2 variations in sign, so there can be at most 2 
positive real roots .  P(-x) = P(x), so there can be at 
most 2 negative real roots. 

28. The only possible rational roots are ± I .  Using con
densed synthetic division, we find 

3 2 - ) 
4 6 7 161 
2 0 1 l=lj 

Since neither remainder is zero, there are no rational 
roots. 

29. Since the coefficients arc all integers, the Rational 
Zero "1'1Jeorem restricts the possible rational roots to 

± 1 ,  I I I 
±2 , 2 + - + - + - + --2 ' - 3 · -6 ' -3 · 

±S ,  s s s 
± IO, 

10 + - + - + - + --2 ·  - 3 · -6 '  - 3 

Testing by synthetic division, 

2J 6 I S - ) - 1 0 
-6 -9 IO  

6 9 - 10 0 

we show that - I is a root. The remaining roots are 
those of the depressed equation 

6x2 + 9x - lO = 0 

and are found by the quadratic formula: 

-9 ± v'81 + 240 x = 1 2  
- 9  ± V32i" 

1 2  



3 .  Gn = n - Gn - t 

lit = 0 
a2 = 2 - 0 = 2 
G3 = 3 - 2 = I  
G4 = 4 - I =  3 
G5 = 5 - 3 = 2 

4 
5 .  2: o - 2k) = o - 2 )  + o - 4) 

k � t + ( I - 6) + ( I  -- 8) 
= - 1 6 

I I . an = a t + (n - l )d 
a2 1  = -2  + (2 1 - 1 )(2) = 38 

1 3 .  Use the given information to determine d: 
n = 1 6, G t6 = 9, a 1 = 4 

a,, = a 1 + (11 - l )d 

9 = -" + 1 '>d 

d =  ) ; _  
Then find a13 :  

a u = a 1 + (11 - l )d 

= 4 + 12G) = 8 

n 1 5 .  Sn = 2[2a 1  + ( n  - l )d] 

= 
25[-� + 24(!) ]  = 

275 
2 3 3 3 

a2 -6 17 .  r = - = - = -3 
a 1  2 

19 .  a2 = ai r = 5G) = I 

a3 = a2r = I (k) = k 
a2 6 3 2 1 .  r = - = - = --
a 1  -4 2 

23. The sequence is 

With G t = 3, a4 = 1 172, and n = 4, 

Then 

Gn = G tr
n- t 

a4 = a tr3 

s _ �[ I - GrJ _ � 6 - I - 32 I - 2 
a2 2 27. r = - = --
G t 3 

s = _!!.l_ = 
3 

I - r I _ (-�) 9 
5 

30. By the binomial formula, 

(� - 2 r = (�r + i(�f < -2l 

+ !:.1(�) \-2)2 I ·  2 2 · 

+ 
4 · 3 · 2(�) ( - 2)3 + ( -2)4 I ·  2 · 3 2 

x4 = - - x3 + 6x2 - 1 6x + 1 6  16  
1 3 !  1 3 · 1 2 · 1 1 !  1 3 · 1 2  33 · 1 1 !2 !  = 1 1 !2 !  = -2

- = 78 

(n - l ) !(n + I ) ! = (n - l ) ! (n + l )n !  
= 

n + I 34. n !n !  n !n(n - I ) !  n 

35. (6) 6 !  6 . 5 
4 = 4!2 !  = 2 = 15  



39. The six letters can be arranged in 

40. 

42. 

P(6, 6) = 6! = 720 
ways. However, the existence of two of the letter o 
will make half the arrangements indistinguishable. 
The answer is therefore 

P(6, 6) = � = 360 P(2, 2) 2 !  
10! C( IO ,  6) = 4!6 !  = 2 10 

There are 8 successful outcomes: 
I ,  6 
6, I 
5, 6 

2, 5 
5, 2 
6, 5 

3, 4 
4, 3 

There are 6 x 6 = 36 total outcomes. So 
. . 8 2 probability = 

36 = 9 

43. We can select 2 white pens in C(4, 2) ways. We can 
select 2 pens in C(7 ,  2) ways. Therefore, 

b b. 1 . C(4, 2) 2 pro a 1 1ty = C(?, 2) = 7 



A 

Abscissa, 1 1 4 
Ab olute value. 1 2  

of a complex number, 331  
in  equations, 83 
in Inequalities, 84 
properties of, 1 3  

Acute angle. 2 1 7  
Absolute value function, 1 3 1  
Addition 

of algebraic fractions, 33 
associative law of. 4 
commutative law of, 4 
of complex numbers, 54. 469 
of functions, 1 56 
of matrices, 425 
of polynomial • 1 8  

Addition fonnulas o f  trigonometry, 307 
Algebraic expressions, 1 5  
Algebraic fractions. 30 

addition of, 33 
division of. 30 
least common denominator of, 34 
multiplication of, 30 
subtraction of, 33 

Algebraic numbers, 487 
Algebraic operations, 1 5  
Ambiguous case, 295 
Amplitude, 249 
Analytic geometry, 343 
Angle(s). 2 1 4  

acute , 2 1 7  
central, 2 1 4  
cotenninal, 220 
degree measure of, 2 1 6  
initial side of, 2 1 4  
negative, 2 1 5  
obtuse, 2 1 7  
positive. 2 1 5  
quadrantal, 2 1 5  
radian measure of, 2 1 7  
reference, 24 l 
right, 2 1 7  
standard position of, 2 1 5  
terminal, 2 1 4  
trigonometric functions of. 225 

Angle of depression, 283 
Angle of elevation, 283 
Arc of a circle, 2 1 4  
Arccosine. 264 
Arcsine. 262 

Index 
Arctangent, 265 
Area of a circle, 2 1 4  
Argument of a complex number. 333 
Arithmetic progression, 5 1 2  

common difference in, 5 1 2  
Arithmetic sequence, 5 1 2  
Arithmetic series, 5 1 5  
Associative laws. 4 
Asymptotes 

horizontal. 490 
of a hyperbola, 365 
of a rational function, 490 
vertical, 247. 490 

Augmented matrix,  4 1 7  
Axis o f  symmetry, 1 20, 352, 368 

B 

Back-substitution, 392 
Base, 1 5 , 1 7 1 ,  1 83 

change of. 196 
Bearing, 285 
Binomial coefficient. 535 
Binomial expansion, 53 l 
Binomial formula, 533 
Binomial theorem, 533 
Break-even analysis, 386 
Break-even point, 386 

c 

Calculators, 237, 266 
Cancellation laws, 6 
Cancellation principle, 32 
Cardan's fonnula, 483 
Cartesian coordinate system, 1 1 4 
Center of a circle, 2 1 3  
Central angle, 2 1 4  
Central angle formula, 222 
Change of base formula, 1 95 
Characteristic, 1 98 
Chord, 2 1 3  
Circle, 2 1 3  

center of, 2 1 3  
circumference of, 2 1 4  
diameter of, 2 1 4  
general form of, 349 
radiu of, 347 
standard form of, 348 

symmetries of, 229 
unit, 2 1 6  

Closure, 3 
Coefficient, 1 7  

binomial, 535 
leading. 17 

Coefficient matrix, 4 1 7  
Cofactors, 445 

ex.pansion by, 446 
Cofunction, 309 
Coin problems, 68 
Column matrix, 4 1 6  
Combination, 542 
Common difference, 5 1 2  
Common factors, 23 
Common logarithms, 198 
Common ratio, 5 1 8  
Commutative laws, 4 
Completing the square, 90 
Complex coefficients, 459, 478 
Complex fractions, 36 
Complex numbers, 53 

absolute value of, 33 1 
addition of, 54, 469 
argu mem of, 333 
conjugate, 469 
division of, 470 
equality of, 469 
imaginary part of, 53 
modulus of, 333 
multiplication of, 55, 469 
nth root of, 337 
properties of. 471 
quotient of, 470 
real part of, 53 
reciprocal of, 470 
subtraction of, 54 
trigonometric form of, 332 

Complex plane, 3 3 1  
Composite funclion, 1 57 
Compound interest , 1 78 
Conditional equation, 62 
Conic sections, 34 7 

characterislics of, 370 
general equation of, 368 
standard fonns of, 370 

Conjugate complex numbers, 469 
Conjugate Zeros Theorem, 477 
Consistent linear system, 376, 394 
Constant, 1 5  

of variation, 1 52,  1 53 
Constant function, 1 3 1  
Constant term, 1 7  
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Continuous compounding, 1 80 
Conversion period, 1 78 
Coordinate(s), 1 0  

o f  a point, 1 1 4 
Coordinate axes, 1 14 
Cosecant function, 256 

graph of. 259 
Cosine func.tion, 225 

graph of, 233 
Cotangent function, 256 

graph of, 260 
Cotenninal angles, 220 
Counting principle, 538 
Cramer's rule, 449 
Critical value, I 04 
Cube root , 42 

· 

Cubing function, 1 32 

D 

De Moivre's Theorem, 335 
Decay constant, 1 77 
Decreasing function, 1 36 
Degree 

angular measure of. 2 1 6  
o f  a monomial, 1 7, 1 8  
o f  a polynomial, 1 7 ,  1 8  

Demand, 387 
Denomfoator(s), 7 

rationalizing, 40 
Oependent variable, 1 24 
Depressed equation, 475 
Descartes's Rule of Signs, 48 1 
Detenninant, 443 

cofactor of. 445 
minor of, 445 
of second order, 443 

Diameter of a circle, 2 1 4  
Difference 

of complex numbers, 54 
of functions, 1 56 
of matrices, 427 
of polynomials, 1 8  
of real numbers, 7 

Dimension of a matrix, 4 1 6  
Direct variation, 1 5 1  
Directriit ,  352 
Discriminant, 94 
Distance, 1 3  

fonnula, 1 1 6 
problems. 70 

Distributive laws, 4 
Division, 7 

of algebraic fractions, 30 
of polynomials, 460 

Domain. 1 24 

of the exponential function. 1 73 
of the logarithmic function, 1 89 
of the trigonometric functions, 227 

Double-angle fonnulas, 3 1 5  
Double inequalitie , 8 1  
Double root, 94 

E 

e, 1 75 
Element of a set, I 
Elementary row operations. 4 1 8  
Elements of a matrix,  4 1 5  
Ellipse, 360 

foci of, 360 
standard fonn of, 36 1 

Empirical probability, 552 
Entries of a matrix, 4 1 5  
Equality, 5 

of complex numbers, 54 
of matrices, 424 
properties of, 5 

Equations, 6 1  
absolute value in , 83 
conditional, 62 
equivalent, 62 
first-degree, 64. 1 49 
fractions in, 63 
general first-degree, 149 
general second-degree, 87 
graph of, 1 1 7 
left-hand side of, 6 1  
linear, 64 
literal ,  73 
logarithmic, 1 85, 204 
in one unknown, 64 
polynomial, 459 
quadratic, 87 
right-hand side of, 6 1  
roots of, 6 1  
econd-degree, 87, 1 00  

solution of, 6 1 ,  1 1 7, 460 
systems of, 375 
trigonometric, 326 

Equilibrium price, 388 
Equivalent equations, 62 
Equivalent fraction. 34 
Equivalent system, 4 1 8  
Even function, 247 
Expansion of a binomial, 531  
Exponent(s), 15  

negative, 40 
positive integer, 38 
rational ,  44 
zero, 40 

Exponential decay models. 1 77 

Exponential equations, 204 
Exponential functions, 1 7 1  

graphs of, 1 72 
natural, 17 5 
properties of, 1 74 

Exponential growth models, 1 76 
Extraneous solution, 97 

F 

Factor, 7, 466 
Fa.ctor Theorem, 467. 472 
Factorial , 533 
Factoring 

by grouping, 24 
of difference of cubes, 27 
of difference of squares, 27 
of polynomials, 23, 25 
of sum of cubes, 27 

Feasible solution. 407 
Fennat's Last Theorem, 465 
Fibonacci equence, 5 1 9  
First-degree equations, 64 

general , 1 49 
Foci of an ellipse. 360 
Foci of a hyperbola, 363 
Focus of a parabola, 352 
Fractions. 7 

addition of, 30, 33 
algebraic, 30 
cancellation principle of, 32 
complex, 36 
division of, 30 
equivalent. 34 
multiplication of, 30 
subtraction of, 33 

Function(s), 1 24 
addition of. 1 56 
composite, 1 57 
constant, 1 3 1 ,  1 36 
decreasing, 1 36 
division of, 1 56 
domain of. 1 24 
evaluation of, 1 28 
even. 247 
exponential, 1 7 1  
graphs of, 1 30 
identity, 1 30 
increasing, 1 36 
inverse, 1 6 1  
inverse trigonometric, 261 
linear. 1 38. 1 40 · 

logarithmic, 1 83 
multiplication of. 1 56 
notation for, 1 27 
odd, 247 



one-to-one, 1 58 
periodic, 237 
piecewi e-defined, 1 32 
polynomial, 1 38,  459 
quadratic, 1 38 
range of. 1 24 
rational ,  489 
special. 1 30 
subtraction of. 1 56 
trigonometric. 225 
zeros of. 460 

Fundamental identities. 30 1  
Fundamental Theorem. 473. 474 

G 

Gauss-Jordan elimination, 422 
Gaussian elimination. 39 1 .  4 1 8  
General fi r  I-degree equation, 1 49 
Geometric mean, 520 
Geometric progre sion, 5 1 8  

common ratio in, 5 1 8  
Geometric sequence. 5 1 8  
Geometric series. 52 1 

infinite, 523. 524 
Graph 

of an equation, I 1 7  
of an exponential function, 1 72 
of a function. 1 30 
of an inequality. 78 
of a logarithmic function, 188 
of a polynomial,  465 
of a rational function. 489 
of trigonometric functions. 245. 262 

Growth constant. 1 76 

H 

Half planes. 396 
Half-angle fonnula . 3 1 8  
Horizontal asymptote, 490 
Horizontal Asymptote Theorem, 495 
Horizontal line test , 1 59 
Horizontal lines. 145 
Hyperbola, 363 

asymptotes of. 365 
foci of, 362 
standard forms of. 363 

ldentitie . 62, 230 

fundamental trigonometric, 230. 302 
logarithmic, 1 86 

Identity 
additive, 4 
multiplicative. 4 

Identity function, 1 30 
Identity matrix. 433 
Image. 1 24 
Imaginary axi . 3 3 1  
Imaginary number, 5 3  
Imaginary part, 53 
Imaginary unit. 52 
lnconsi�tent linear ystem. 376. 394 
Increasing function. 1 36 
Independent variable, 1 24 
Index of ummation, 506 
Inequalities, 1 1  

absolute value in, 84 
double, 8 1  
graphing of. 78. 396 
l inear, 77 
properties of, 1 1  
second-degree, 104 
solution of, 77 
systems of, 400 

Inequality symbol , 1 0  
Infinite geomelric series. 523, 524 
Infinite sequence. 504 
Infinity, 79 
Initial side of an angle. 2 1 4  
Integer, 2 
Intercept . 1 1 8 .  1 44 
lntere t 

compound, 1 78 
continuous compound, 1 80 
simple. 69 

Interval, 78 
closed, 78 
half-open. 78 
infinite. 79 
open. 78 

Interval notation, 78 
Inverse 

additive , 4 
matrix. 433 
multiplicative, 4 

Inverse function , 26 1 
Inverse trigonometric functions, 26 1 
Inverse variation, 1 52 
Irrational number, 3 
Irreducible polynomial. 29 

J 

Joint variation, 1 53 

L 

Law of cosines. 289 
Law of sines. 292 
Leading coefficient. 1 7  
Least common denominator, 34 
Level of production, 386 
Like terms, 1 8  
Line(s), see Straight line. 
Linear equations, 64 

applications of. 67 
roots of, 64 

ystem of, 376 
Linear Factor Theorem, 473 
Linear function, 1 38,  140 
Linear inequalities, 77 

graph of, 78, 397 
systems of, 400 
in two variables, 397 

INDEX 1-3 

Linear programming problem. 407 
constraints of, 406 
fundamental theorem of. 408 
objective function, 407 

Linear systems, 376 
applications of, 383 
con istent, 376, 394 
equivalent, 39 1 
inconsistent, 376, 394 
matrix methods in, 4 1 8  
solving by Cramer's rule, 449 
solving by Gaussian elimination, 39 1 .  

4 1 8  
i n  triangular fonn, 391 

Literal equations, 73 
Logarithmic equations, 1 85 .  204 
Logarithmic functions, 183 

graph of, 1 88 
properties of, 1 89 

Logarithmic identities, 1 86, 1 87 
Logarithms, 1 83 

M 

base of, 1 83 
change of base. 1 95 
common, 1 98 
computing with. 1 98 
equations with. 1 85 
identities, 1 86, 1 87 
natural , 1 83 
properties of, 1 89. 19 1  
simplifying. 1 92 

Mantissa, 1 98 
Mathematical induction, 527 
Matrix.  4 1 5  

addition of, 425 
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augment.cd, 4 1 7  
cocfficienc, 4 1 7  
column, 4 1 6  
columns of, 4 1 6  
dccenninant of, 443 
dimension of, 4 1 6  
elementary row operations, 4 J 8 
elements of, 4 1 5  
entries of, 4 1 5  
equality, 424 
identity, 433 
inverse , 433 
invertible, 433 
multiplication, 427 
nonsingular, 433 
order of, 4 1 6  
pivot element of, 4 1 9  
pivot row of, 4 1 9  
row, 4 l 6  
rows of, 4 1 6  
scalar multiplication of, 426 
square , 4 1 6  
subtraction, 427 
zero, 432 

Member of a set, I 
Midpoint fonnula, 344 
Minors, 445 
Minute, 242 
Mixture problems, 7 1  
Modulus o f  a complex number, 333 
Monomial. 7 1  

degree of, 1 7 ,  1 8  
i n  two variables, 1 8  

Multiplication 

N 

of algebraic fractions, 30 
associative law of, 4 
cancellation law of, 6 
commutative law of, 4 
of complex numbers, 55, 469 
of fractions, 30 
of matrices, 427 
of polynomials, 19 

Natural exponential function, 175 
Natural logarithms, 1 83 
Natural number, 2 
Negative angle, 2 1 5  
Negative direction, 1 0  
Negative function, 1 30 
Negative number, 10 
Nonnegative number, 10 
nth root ,  42 

of a complex number, 337 
principa l ,  43 

of unity. 337 
Number of Roots Theorem. 473 
Numerator, 7 

0 

Objective function, 407 
Obi ique triangle, 288 
Obtuse angle. 2 1 7  
Odd function, 247 
One-to-one function, 158 
Ordered pair. 1 1 4 
Ordinate, I 1 4  
Origin. 1 0, 1 14 

p 

Parabola, 1 32,  352 
axis of, 352 
directrix of, 352 
focus of, 352 
standard forms of, 353 , 355, 357 
vertex of, 352 

Parabolic reflector. 357 
Parallel lines, 146 
Panial sums, 5 10 
Pascal's triangle , 532 
Period, 237, 25 1 
Periodic function, 237 
Permutation, 539 
Perpendicular lines, 1 46 
Phase-shift, 252 
Piecewise-defined function, 1 32 
Plane, 394 
Point-slope form, 142 
Polar form, 332 
Polynomial(s), 1 7  

addition of, 18  
coefficients of, 1 7  
complex cocfftcients of, 459, 478 
constant term of, J 7 
degree of, 1 7, 1 8  
difference of. 1 8  
division of. 460 
equations, 459 
factoring of, 23 
graphs of, 465 
irreducible, 30 
multiplication of, 1 9  
operations with, 1 8  
prime, 30 
roots of, 460 
subtraction of, l 8 
sum of, 1 8  

term of. 17  
i n  two variables, 18  
zero, 1 7  

Polynomial function, 1 38 
of degree 11, 459 
graph of, 1 38, 465 

Positive angle, 2 15 
Positive direction, 10  
Positive number, 10 
Power. 1 5  
Prime polynomials, 29 
Principal argument, 333 
Principal nth root. 43 
Principal square root. 45 
Probability, 547 

empirical,  552 
Produce, 3 
Product-sum formulas. 322 
Progression 

arithmetic, 5 1 2  
geometric. 5 1 8  

Pythagorean Theorem, 3 1 9  

Q 

Quadrant. 1 14 
Quadrantal angle, 2 1 5  
Quadratic equations, 87 

applications of, 1 00  
discriminant of, 94 
roots of, 92, 95 

Quadratic fonnula, 92 
Quadratic functions, 1 38 
Quotient, 7 

R 

of complex numbers, 470 
of polynomials, 460 
of real numbers, 8 

Radian measure, 2 1 7 ,  222 
Radical equation, 96 
Radical form, 45 
Radical sign, 45 
Radicals, 45 

operations with, 49 
properties of, 4 7 
simplified form of, 47 

Radius, 2 1 3,  347 
Range, 1 24 
Rational expression(s), 30 

addition of, 33 
division of, 30 
multiplication of, 30 



subtraction of, 33 
Rational function, 489 

gniph of, 489 
Rational number, 2 
Rational Zero Theorem, 482 
Rationalizing denominators, 48 
Real axis, 331 
Real number line, 10 

coordinates on, JO 
distance on, 1 3  

Real number system, 3 
properties of, 3 

Real part, 53 
Reciprocal, 4 
Rectangular coordinate system, 1 14 
Recursive formula, 505 
Reference angle, 241 
Reference Angle Rule, 242 
Reference number, 239 
Reference Number Rule, 239 
Reflexive property of equality, 5 
Remainder Theorem ,  464 
Repeated root, 94 
Richter scale, 1 87 
Right angle, 2 1 7  
Right triangle trigonometry, 275 
Roots 

of an equation, 460 
of a linear equation, 64 
of multiplicity k, 474 
of a polynomial, 460 
of a quadratic equation, 92, 95 

Row matrix, 4 1 6  

s 

Scalar, 426 
Scalar multiplication, 426 
Scientific notation, 1 98 
Secant function, 256 

graph of, 259 
Second, 242 
Second-degree equations, 87 
Second-degree inequalities, 1 04  
Sequence, 504 

arithmetic, 5 1 2  
Fibonacci, 5 1 9  
geometric, 5 1 8  
infinite, 504 
partial sums of, 5 1 0  
term of, 504 

Series, 508 
arithmetic, 5 1 5  
geometric, 5 2 1  
infinite geometric, 524 

Set, I 
clement of, I 

member of, I 
solution, 6 1  

Set-builder notation, 78 
Sigma notation, 506 
Signs of trigonometric functions, 227 
Simple interest, 69 
Simplifying fractions, 36 
Simplifying radicals, 47 
Sine function, 225 

gniph of, 245 
Slope of a line, 1 4 1  
Slope-intercept form, 144 
Solution set, 6 1 ,  77, 30 I 
Solution(s) 

of an equation, 6 1 ,  1 1 7, 460 
extraneous, 97 
of an inequality, 77 
of systems of equations, 375 
of systems of inequalities, 400 

Square matrix, 4 1 6  
Square root, 42 

principal, 45 
Square root function, 1 32 
Squaring function, 1 32 
Standard position of an angle, 2 1 5  
Straight Line(s) 

equations of, 143, 144, 1 48 
horizontal, 145 
parallel, 146 
perpendicular, 1 46 
slope of, 1 4 1  
vertical, 146 

Subset, 2 
Substitution of variable, 98 
Substitution prope.rty of equality, 5 
Subtraction 

of algebraic fractions, 33 
of complex numbers, 54 
of fractions, 33 
of matrices, 427 
of polynomials, 1 8  

Summation notation, 506 
Supply, 387 
Symmetric property of equality, 5 
Symmetry. 1 19 

tests for, 1 20 
Synthetic division, 462 
Systems of equations, 375 

consistent, 377, 394 
equivalent, 39 1 
inconsistent, 377, 394 
solving by elimination, 380 
solving by graphing, 376 
solving by substitution, 377 

Systems of linear equations, 376 
See also Linear systems. 

Systems of linear inequalities, 400 
See also Linear inequalities. 

T 

Tangent function, 225 
graph of, 247 

Term of a polynomial, 1 7  
Term of a sequence, 504 
Terminal side of an angle, 2 1 4  
Transcendental numbe.rs, 487 
Transitive property, 5, 1 1  
Triangle 

oblique, 288 
right, 275 

Triangular form, 391 

INDEX 1-5 

Trichotomy property, 1 1  
Trigonometric equations, 301 ,  326 

solution set, 301 
Trigonometric expression, 301 
Trigonometric form of a complex num

ber, 332 
Trigonometric formulas 

addition, 307 
double-angle,  3 1 5  
half-angle, 3 1 8  
product-sum, 322 

Trigonometric functions, 225 
domain of, 227 
graphs of. 245, 259 
inverse, 26 1 
range of, 227, 248 
signs of, 227 

Trigonometric identities, 230, 30 I 
fundamental, 301 

Trigonometry, 2 1 3  

u 

Unit circle, 2 1 6  
equation of, 2 1 6  

Unit circle point, 2 1 7  

v 

Variable, 1 5  
dependent, 1 24 
independent, 1 24 
substitution of, 98 

Variation 
constant of, 1 5 2  
direct, I S  I 
in sign, 480 
inverse, 1 52 
joint, 1 53 

Vertex 
of a parabola, 352 
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of a feasible solution set, 408 
Vertical asymptote, 247, 490 
Vertical Asymptote Theorem, 49 1 
Vertical line test, 1 26 
Vertical lines, 1 46 

w 

Work problems, 72, 102 

x 
x-axis, 1 14 
x-coordinate, 1 14 
x-intercept, 1 1 8 

y 

y-axis, 1 14 
y-coordinate, 1 14 
y-intercept, 1 1 8  

z 

:zero matrix, 432 
:zero of multiplicity k. 474 
:lero polynomial, 1 7  
:zeros 

of functions, 460 
rational , 482 
real ,  480 

A6 
87 
cs 
D9 
EO 


