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PREFACE

This book is devoted to the investigation of algebraic structures
whispered by the concept of automaton. The emphasis is made on algebraic
framework of real automata and databases. Thus, these notions appear as
many-sorted algebraic structures, allowing developed algebraic theory.
Since treating of algebralc structure paves way to the structure and
behavior of real automata and databases, we hope that the constructed
theory will find its applications. On the other hand, we have pursued
quite a lot of algebraic purposes, searching for ways of enriching
algebra itself.

This book consists of five chapters. First four of them are
related directly to the algebraic theory of automata while the last one,
describing an algebraic model of database, takes a special part.
Nevertheless, this chapter is closely connected with previous ones and
we think that this book owns a certain unity. In both cases of automata
and databases, we concentrate on mathematical models of the
corresponding systems.

This book is addressed primarily for mathematicians graduates,
postgraduates and conceivably for programmers, engineers and scientists
who wish to apply algebraic methods in their research. We have tried to
minimize the algebraic background of the potential reader, therefore the
definitions in the "Preliminary notions"” and in the sequel attempt to
make the book self-contained. However, touching the advanced topics, we
assume a certain familiarity with universal algebra, theory of groups
and semigroups. Chapter 5 will be much easier for those who are
acquainted with set-theoretical and logical methods.

The concept of automaton arises in various problems associated
with computer science, network systems, control theory etc. Its
mathematical structure is based on intuitive arguments, reflecting the
entity of real (not necessarily physical) automata. Now, automata theory
is a developed mathematical field. On our opinion, two aspects could be

pointed out in automata research. They are the combinatorial approach
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and algebraic theory. The first one ([38], [54], [99] etc.) is in a
greater extent connected with behavior, analysis and synthesis of
automata. Certainly, both these directions are not mutually independent:
algebraic methods are used in combinatorial problems. For example,
algebraic automata theory plays a significant role in the theory of
algorithms and languages ([37], [38]). However, speaking on algebraic
aspect of automata theory, first of all we bear in mind an automaton as
an algebraic structure (this point of view has been reflected in [29],
[34], [2] etc.). A consequent analysis of this algebraic structure is
one of the main goals of this book. Moreover, the algebraic structure of
automaton provides an important information about the structure of real
automata. Krohn-Rhodes decomposition Theorem turns out to be the most
impressive witness of this. Another important direction is presented by
application of algebraic methods for the classification of automata,
description of 1its behavior by identities, study of varieties of
automata. That is why the standard algebraic notions: automorphisms,
identities and varieties are widely used in this book. Finally, we have
tried to follow the categorical point of view on automaton as on
algebraic systems.

As it was mentioned, chapter 5 is meant for the construction of
adequate algebraic model of databases. This theme is studied in detail
in the book of B. Plotkin ([86]) and we frequently refer to it. In this
chapter, we describe the sketch of the theory. A number of problems in
the theory of relational databases can be reformulated in terms of an
algebraic model. Among them are the problems of informational
equivalence and 1isomorphism of databases, its composition and
decomposition, classification on the base of symmetries and so on.

An automaton 4=(A,X,B) is an algebraic system with three basic
sets, A, X, B called the sets of states, input signals and output

signals respectively, and two binary operations:

o : AxX — A,

* . AxX — B.

The operation o is a function of two variables aeA, xeX, whose values

’

lie in the set of states A: aex = a’' € A. It is often called a
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transition function and shows how the input signal x transforms each
state a into the new a’. The operation * assigns to a pair aeA, xeX the
element beB and is called input function of the automaton 4.

In chapter 1 we consider pure automata, i.e. automata with the
sets of states and outputs being arbitrary sets, without additional
structure. Let the automaton (A,X,B) be transformed by the element xieX
from the state a into the state a,=a, ° x, Considering an element x, as
a new input signal, we get a new state azox2=(alox1)ox2, Simultaneously,
the element az’x2=(a1o xl)“'x2 arises as an output signal. This means
that we can consider a new input signal x x_, which takes the state

12

aiinto a new one (azoxl)ox and gives the signal (aloxl)'xzin output. It

is natural to consider xliz as a product of input elements X, and X,
and the multiplication thus defined has to be associative. It is assumed
that the set of input signals is a semigroup. Denote it by TI'. An
automaton (A,I',B) is called a semigroup automaton if the set of inputs

is a semigroup, and the axioms
acy 7,=(acy )ov,,

3*7172=(a°71)*72, aeA, 1y €T
are satisfied. In this book we deal mainly with semigroup automata.

In the first chapter we study also Moore automata, i.e. automata
determined by the operation o and the defining mapping p:A— B. There
are various criteria for an arbitrary automaton to be a Moore one. One
of them points out the class of semigroups being the semigroup of input
signals of Moore automata.

Automata can have extra inputs, outputs and states. The
construction of three types of universal automata is connected, in
particular, with this problem.

More often, the problem of constructing more complicated automata
from the simple ones leads us to search for suitable constructions. The
most important of them is cascade connection and its universal variant,
the wreath product of automata. The inverse task of how to decompose an
arbitrary pure automaton has a decision. It is the classic Krohn-Rhodes

decomposition theorem. These and the related questions are treated in
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chapter 2.

There are various generalizations of the notion of pure
automaton. We can consider automata in varieties and in arbitrary
categories. A particular case of latter ones present affine automata,
stochastic and fuzzy automata.

Chapter 3 deals with well organized generalizations of pure
automata: linear automata and biautomata. In linear automata, sets if
states and output signals are linear spaces over field or modules over a
commutative ring. All corresponding mappings are also linear.

Biautomata appear when not only states, but also output signals
are subjected to transformation. In this case, relation between
multiplying in semigroup and the rest operations carries character of
differentiation. This concept is quite warranted physically and implies
meaningful algebraic theory.

Several problems considered in chapter 1 for pure automata obtain
new features in the linear case. Defining an important construction of
triangular product, we establish Krohn-Rhodes type decomposition theorem
for linear automata. We also study symmetries of pure and linear
automata, that is, we treat their automorphisms.

Identities and varieties of automata and biautomata are examined
in chapter 4. The main result here is the theorem that the semigroup of
proper varieties of biautomata over a field is a free semigroup. This
means that each proper variety of biautomata admits unique decomposition
in product of indecomposable multiples. Moreover, there is a canonical
homomorphism of this semigroup onto the semigroup of varieties of
automata, which is already not free. This theorem is close by its nature
to the theorem of Newmann-Shmelkin relating to group varieties theory
and the theorem of Plotkin for varieties of representations of groups.
In this chapter, the quasiidentities and quasivarieties of automata are
considered too.

As it was mentioned, chapter 5 deals with algebraic model of
database. In the first instance, a database is a triplet (*-automaton)
of the form «£=(F,Q,R), where F is the set of states and Q,R are the
algebras of queries and replies respectively. We denote by f*q the reply
to a query q in the given state f. An automaton (F,Q,R) has to be



assoclated with data algebra D; algebra Q and R should be chosen in some
variety of algebras. Already these arguments show that the construction
of algebraic model needs significant efforts. It is accomplished in the
first part of the chapter. The remainder is devoted to various problems:
homomorphisms of databases, constructivization of databases, defining of
the constructions.

We have tried to make not only the direct references but also
include in bibliography the papers close in some aspects to the theme of
the book. However, we would like to painfully put forward for not being
able to provide the complete reference list.

The book is based on a series of lecture courses on algebraic
systems delivered by B.Plotkin at Latvian University and on various
talks given at some universities in the former USSR, former Yugoslavia,
Hungary, Israel and Bulgaria. The book reflects not all the aspects of
algebraic theory of automata but only those close to the results
obtained by the authors and the other participants of Riga Algebraic
Seminar during its past long years.

We wish to thank our colleagues for their stimulating interest
and encouragement. We are particularly grateful to Ja. Cirulis,
U. Kaljulaid, I. Kor jakov, A. Mikhalev, E. Plotkin, T. Plotkina,
L. Shevrin, and M. Volkov. The first of the authors was partially
supported by Latvian Scientific Council in 1992. Finally, we express our
sincere thanks to Ramakrishnan P. for his kind assistance in preparing

the English version of the parts of the manuscript.
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PRELIMINARIES

1. Sets

As usual, a€A means that a is an element of a set A and AcB means
that A is a subset of B. AnB and AUB are the intersection an the union

of the sets A and B. Finally, A\B is the complement of B in A. A mapping
£
of sets is denoted by f:A — B or A — B. For each a€A the corresponding

beB is denoted by b=af or b=f(a) or b=af. A mapping f is called sur jec-
tive if for each beB there exists aeA such that b=af; f is injective if
alta2 implies alfﬁazf. If the mapping f is surjective and injective then
it is called bijective one.

The product of mappings f:A — B and ¢:B — C is defined by the
equality a(fp)=(af)e. Identity mapping is a mapping of the form cA:A i
A, defined by the rule ck(a)=a for each aeA. Mapping £ B — A is cal-
led an inverse one with respect to f:A — B if f‘f_1=eA and f_1f=ef
Fun(A,B) or B* denotes the set of all mappings from A to B.

Any mapping A — A is called a transformation of the set A. All
these mappings are denoted by SA. Bijective transformation of A is cal-
led substitution on A.

Cartesian product A1X"'XAn consists of the sequences (n-tuples)

of the form (al,a,...,a ), aleA‘, i=1,...,n. If J is an arbitrary set
n

2

and Aa corresponds to each aeJ, then the Cartesian product A=n Aa is a
o

set of all functions a defined on J, such that for any aeJ holds

a(a)=a €A . In particular, if all A are copies of A then [ A =A’,
o« o iy %
Binary relation p on a set A can be treated as a subset in the

Cartesian product AxA. This subset consists of all pairs (al,az) such
that elements al,a2 are in the relation p. Henceforth we will use nota-
tions a,pa, or (at,az)ep. Since binary relation is a set, one can consi-

der intersection, union and inclusion of binary relations. Relation p is



called reflexive if apa holds for each a€A. Relation p is called transi-
tive if apb and bpc implies apc. Finally, p is the relation of symmetry
if apb implies bpa. An equivalence is a relation satisfying these three
properties. If p is an equivalence on the set A then the set of all a’€A
such that apa’ is called a coset by p with the representative a. It is
denoted by [a] or [a]p. An equivalence uniquely defines the decomposi-
tion of a set into cosets. The set of all cosets [a]p, a€A, is called
quotient set of A by p and is denoted by A/p. Let the mapping f:A — B
be given. Consider relation p=p(f) on A defined by the rule: apa’ if
f(a)=f(a’). It is evident that p is an equivalence, called the kernel
equivalence of f or simply the kernel of f, and denoted by Kerf. Let
PPy P be binary relations on A. There exists at least one equiva-
lence containing all P i=1,2,...,n. Denote by p the intersection of
all such equivalences. Then p is also an equivalence and it is the mini-
mal equivalence containing all these P, In this case E is said to be
generated by binary relations PPy P

One can define a relation of partial order on the set of all
equivalences on the set A, namely p1<p2 if for each aeA the inclusion

[a]l cla] takes place. In minimal equivalence each class consists of
1 2
one element while in a maximal one there is only one class, coinciding

with A.

Let M be a nonempty set, and p a subset of Cartesian product MxM,
i.e. binary relation on M. A pair (M,p) is called an oriented graph with
the set of vertexes M and the set p of oriented edges. It can be presen-
ted by the diagram, where vertexes are displayed by circles and edges by

arrows.
2. Q-algebras

n-ary algebraic operation on the set A is a function of the form
w:Ax...xA —> A. The result of operation w on the element (al,...,an) of
the Cartesian product is denoted by aa,...aw. If n=2 then the opera-
tion is called binary. In various specific cases we use infix notation
a+b, ab, etc. Q-algebra is a set with the certain system of operations

Q. Let A be Q-algebra; equivalence p on the set A is called a congruence



of Q-algebra A if alpa'l, i=1,2,...,n implies (ai. . .anw)p(a'l. ..a;lw) for
all weQ. For a congruence p of A all the operations from Q can be natu-
rally transferred to quotient set A/p by the rule: if w is n-ary opera-
tion, then [all... [an]w=[a1...anw]. This definition does not depend on
the choice of representatives in the cosets. Thus we obtain Q-algebra
A/p which is called the quotient algebra of the algebra A by the congru-
ence p. Let A and B be two Q-algebras with the same set of symbols of

operations Q. A mapping pu:A — B is called the homomorphism of
w

n
place. This means that p preserves all operations from Q. The set of all

Q-algebras if for all weQ, aeA, the equality (al...anw)“=a':...a w takes
homomorphisms from A to B is denoted by Hom(A,B). Endomorphism of
Q-algebra A is a homomorphism of A into itself. The set of all endomor-
phisms of Q-algebra A is denoted by EndA. Injective homomorphism is cal-
led monomorphism; bijective one is isomorphism and bijective endomor-
phisnﬁ is automorphism.

Let Q@ be a fixed set of operations and Aoc’ acl some set of

Q-algebras. Consider A= || Aoc All operations from Q can be defined on
ael

the set A: if al,az....,an belong to A then a'a®...a"w is such a func-
tion that (al...anw)(a)=a1(a)...a"(a)w. This Q-algebra A is a Cartesian
product of Q-algebras Aa. If A is some Q-algebra and BcA is a closed
subset with respect to operations from Q (i.e. if weQ, then for all bleB
holds bl...bnweB), then B is Q-subalgebra in A. If X is some subset in
Q-algebra A then intersection of all subalgebras containing the set X is
called Q-subalgebra generated by the set X.

Let X be a set and Q a set of symbols of operations. Define
Q-word over X. All elements of X and all symbols of null-ary operations
are considered to be words. If We..,W are Q-words and w is a symbol
of n-ary operation then the formal expression WW. WO is also a word.
Inductively we get a set of such words denoted by F=F(X,Q). This set is
an Q-algebra, which is called free algebra with the set of generators X.
Q-algebra F(X,Q) satisfies the following universal property: for any
Q-algebra A each mapping X —> A is uniquely extended up to the homomor-
phism F(X,2) — A.

Each Q-word w=w(x1, T ,xn) defines a set of elements



w(al,...,a Js aleA, in A. Identity LA is said to be satisfied in
n
Q-algebra A if for all al,...,an of A holds
wl(al,az,...,an)=w2(a1,a2,...,any

A class of Q-algebras is called a variety of Q-algebras if it con-

sists of all Q-algebras satisfying a fixed set of identities.

Birkhoff’s theorem [13]. A class of Q-algebras is a variety if
and only if it is closed with respect to subalgebras, homomorphic images

and Cartesian products.

Q-algebra is defined on one basic set and it is so-called one-
sorted algebraic system. One can consider algebraic systems with several
basic sets, automata for example. The above stated theorem is true in
this case too [86]. We move now to the definition of main algebraic
structures: semigroups, groups, linear spaces, modules, etc. Each of
them is an Q-algebra with the given set of operations Q. Therefore, all
general definitions (of homomorphism, congruence, Cartesian product,

etc) hold true.
3. Main structures

Semigroup is a set S with one binary operation (often called mul-
tiplication) which satisfies the associative identity: (xy)z=x(yz). The
above set SA of all transformations of A is a semigroup. A semigroup
with unit (monoid), is a semigroup with designated element ee€S, called
unit element, satisfying the identity xe=ex=x. Consider the construction
of semigroup with external unit. Take a semigroup S with unit or without
it. Let € be a symbol not belonging to S and s' a union of two sets: S
and {e}. One can introduce a multiplication in st by the rule: if a,b
lie in S then their product is already defined in S; if aeSl, b=g, then
assume ac=ga=a. Evidently S1 is a semigroup and S is a subsemigroup in
s'.

Right (left) unit of S is an element t of S such that for all aeS
the equality at=a (ta=a) holds. Right (left) zero of S is such element
t, that for all aeS the quality at=t (ta=t) takes place. A semigroup S

is said to be a semigroup with two sided cancellation if for every



X,y,2€S each of the equalities xz=yz and zx=zy imply x=y. If for any
X,y€S there exists z=z(x,y) such that zx=y then S is called a semigroup
with left division. A subset TcS is called left (right) ideal if for all
teT and seS the inclusion tseT (steT) holds. If both inclusions hold in
T, then T is called an ideal of S. A semigroup is monogenic (cyclic), if
it is generated by one element. Along with congruence one can consider
left (right) congruence in S, i.e. an equivalence which preserves left
(right) multiplication: if s,sl,szes and s,PS, then ss pss, (sispszs).
Element a of the semigroup S with unit e is called invertible, if
there exists beS such that ab=ba=e. Given invertible a, there is only
one such b, denoted by a'. In the semigroup SA only bijections are
invertible. A group is a semigroup G with unit such that all geG are
invertible. A subgroup H of G is called invariant (normal) subgroup (or
divisor) if any heH and aeG satisfy a 'haeH. If p is a congruence of a
group G, and H=[e]p, where e is a unit, then H is an invariant subgroup.
Cosets on this congruence have the form [a]p=aH=(ah[heH}. Quotient group
G/p is denoted by G/H. A group G is called simple if it does not contain
invariant subgroups except {e} and G. A group G is called commutative

(Abelian) if for all elements a,beG holds ab=ba.
A series (chain) of subgroups
1=G <G c ... <G =G
0o 1 n

of a group G is a normal series, if Gl is normal subgroup in Gnq’ for
each i=0,...,n-1.

A ring is a set K with two binary operations, addition (+) and
multiplication (<), satisfying the conditions:
1. K is an Abelian group with respect to addition,
2. K is a semigroup with respect to multiplication,

3. A distributive law connects the above operations:
x(y+z)=xy+xz; (x+y)z=xz+yz.

Thus, a ring joins the structure of Abelian group and the structure of
semigroup. If the multiplication is commutative then a ring is called
commutative. For example the set of integers Z is a commutative ring.

A field is a commutative ring in which all nonzero elements form



a group on multiplication. The set of rational numbers @ and real ones R
are the examples of fields.

A linear space A over field K is an Abelian group on addition in
which the multiplication of elements a€A by scalars a€eK is defined. The
following axioms have to be satisfied:

1. a(x+y)=ax+ay
2. 1x=x
3. (a+B)x=ox+Bx
4. (aB)x=a(Bx)

Replacing a field K by a ring in the definition of linear space
we obtain the notion of a module over ring (or K-module). Homomorphisms
of modules are also called linear mappings and endomorphisms - linear
operators. Every linear space is freely generated by its basis. However,
not all modules over rings are free. A free module over ring K with the

basis X consists of all formal sums

o X+ X+ ... +a« x, o €K, x eX.
11 22 n n i 1

It is assumed in this case that K has a unit and 1x is identified with
Xx. Operations are defined componentwise. The K-module thus defined is
called left K-module, since we consider left-hand multiplication. Right
K-module is defined in a similar way. Let K,L be commutative rings. If A
is a right K-module and left L-module and a condition («a)B=a(aB) takes
place then A is called a bimodule.

Linear space (module) A is a direct sum of its subspaces (submo-
dules) A1’Az' if AlnA2=O and A1’A2 generate A. In this case A2 is a
direct complement of A1 in A.

Define a tensor product of modules A,B over a commutative ring K.
Consider a Cartesian product AxB and generate a free K-module M over

AxB. Denote by N its submodule generated by elements of the form
(a1+a2,b)—(a1,b)—(a2,b); (a,b1+b2)—(a,b1)-(a,b2h
(xa,b)-a(a,b); (a,ab)-ala,b); a,al,azeA; b,bl,bzeB, aeK.

Quotient module M/N is called a tensor product of modules A and B over
ring K. It is denoted by A%B or simply A®B. Tensor product satisfies the

universal property: for each K-module C and bilinear mapping ¢:AxB — C



there exists the uniquely defined homomorphism w:A?B — C such that the
following diagram is commutative

v
AxB ————————A®B

N

Let H be a K-module over a commutative ring K and, moreover, H

(v is a canonic homomorphism).

has a structure of semigroup relative to multiplication. H is an asso-
ciative algebra if

1. H is a ring,

2. Alxy)=ax-y=x-Ary; AeK, x,y,eH.
The following examples are of special interest. Let A be a K-module. One
can consider EndA as an associative algebra over K defining operations
by the rule: if ¢,yeEndA, aeA, «eK, then (p+y)(a)=p(a)+y(a);
(py) (a)=p(y(a)); (ap)(a)=ap(a). Let now K be a commutative ring with
unit and S be a semigroup. Construct a semigroup algebra KS. Its ele-
ments are formal sums of the kind alsl+...+ansn, a‘eK, sleS, =10 ¢ wys
Addition and multiplication by scalars of K are defined componentwise,
and multiplication in KS inherits one in S:

(Zylsi)(ZBJsJ)= ) “1Bjslsf
1 ] 1,]

Replacing semigroup S from the definition by group G we come to group

algebra KG.
4. Representations

A semigroup SA of transformations and a group GA of substitutions
can be associated with each set A. If S is an abstract group then any
homomorphism v:S — SA defines a representation of S by transformations
of A. Similarly, a representation of G by substitutions of A are defined
by homomorphism v:G — GA. A representation can be also treated as an
operation ¢:AxS — A. Taking this into account we speak about action of
S on A and denote it by (A,S,e) or simply (A,S). If S is a semigroup,

then the definition of representation implies the condition: aoy1y2=



(a°y1)°y2' aeA, y1'yaeS; for groups we must add ace=a, where e is a unit
of S. If a semigroup S acts on A then every element of S can be conside-
red as an unary operation on A and thus A is S-algebra. Such algebra is
also called S-polygon. A representation (A,S) of semigroup S can be
extended to representation (A,Si) of the semigroup s' with adjoint unit
€, assuming ace=a for all ae€A.

Thus defined representation (A,S) of the semigroup S is also cal-
led a right representation. Along with it, sometimes it is natural to
consider left representation of semigroup S by the transformations of
the set A, defined by antihomomorphism v:S —> SA. Here aoslsz=(aosz)°sf
a€A, sl,szeS. It is more convenient in this case to use left notation of
the action: slsaoa=51°(saoa) and write (S,A) instead of (A,S).

Let S be a semigroup. To each element se€S corresponds a transfor-
mation AS of this very semigroup: As:x —> sx for all xeS. A mapping s —
As defines an antihomomorphism of the semigroup S into semigroup of all
transformations of S. So it defines left representation (S,S). In this
case, if se€S, then sox=sx, xe€S. This representation is called left regu-
lar one. The right regular representation is defined in a similar way.

Let (A,S) be a representation. A subset BcA is called invariant
with respect to S (S-invariant) if the set BoS={bos|beB,seS} lies in B.
A representation (A,S) is called irreducible if there are no proper S-
invariant subsets in A. For each subset BcA one can consider its norma-
lizer in S, i.e. the set of all elements seS such that BescB. A kernel
of representation (A,S) is the kernel congruence of the homomorphism
v:Ss — SA. A representation is called exact one if this kernel is tri-
vial, 1i.e. all its classes consist of one element. Along with S-
invariant subset in A we consider S-invariant equivalence p in A such
that a pa, implies (alos)p(azos), for all seS, aleA, i=1,2.

Let A,B be two semigroups, (C,B) right representation, A% a Car-
tesian power of A. Right representation (C,B) induces left representa-
tion (B,A%): if aeA®, beB, then bea is such element of A° that
(bea)(c)=a(ceb); ceC. Take the Cartesian product A°xB and define multip-
lication on it by the rule: (a1’b1)(az’b2)=(a1(b1°a2)’b1b2)' Given semi-

group is called wreath product (right wreath product) of semigroups A
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and B over the set C and is denoted by AGrB. Left representation (B,C)
of semigroup B induces right representation (AC,B): if aeAc, beB, ceC,
then (aob)(c)=a(bec), in a dual way. Defining multiplication on BxA® by
(bl,a)(b2,52)=(blb2,(alobz)a2 we come to semigroup BxA®, which is left
wreath product of A and B over the set C.

5. Categories

A category R consists of objects and morphisms. A class of all
objects of the given R is denoted by ObR and a class of all morphisms by
MorR. A set of morphisms Mor(A,B) corresponds to each pair A,B. Elements
of this set are denoted by f:A — B. The class Morf is a union of pair-
wise nonintersected sets Mor(A,B). For each triplet of objects A,B,C

there is a mapping
Mor (A, B)xMor (B, C) — Mor(A,C),

which- allows to speak of composition or product of morphisms. It is
assumed that this product has the following properties:
a) the product of morphisms is associative
b) for each object A there exists such unit morphism eAeMor(A,A),
that for any feMor(A,B) and geMor(C,A) holds eAf=f, <=0
The concept of category is one of the most important joining
notions of mathematics. The category of sets gives the example of cate-
gory. If A and B are two sets then Mor(A,B) is the set of all mappings
from A to B, where €, is an identical mapping of the set A into itself.
The category of Q-algebras is considered for fixed set of operations Q.
If A and B are two Q-algebras then Mor(A,B) is Hom(A,B). In particular
we have a category of linear spaces with linear mappings as morphisms, a
category of semigroups with homomorphisms as morphisms, etc.
An object A of category R is called initial object of & if for
any object B of f there is a unique morphism f:A — B. Dually, A is a
terminal object if for any object B of R there is a unique morphism
f:B — A.
Functors are homomorphisms of categories. Let Rl,Rz be two cate-
gories. Covariant functor E:RI -2 ﬁz is a mapping assigning to each

AeOle some F(A) of ObRZ, and to each feMorR1 some §(f)eMor(K2). The
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following conditions have to be satisfied:
a) if feMor(A,B) then J(f)eMor(J(A),F(B)),

b) S(CA)=e for each AeOle,

3(A)
c) 3(fp)=3(f)F(p) for each pair of morphisms of Morkf

The notion of contravariant functor arises by replacing of the condi-

tions a) and c) by the following ones:
a) if feMor(A,B) then J(f)eMor(F(B),F(A)),
c) J(fe)=5(p)F(f).

Contravariant functor is an antihomomorphism of categories: the order of

multiplication changes to contrary one.
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CHAPTER 1
PURE AUTOMATA

1.1. Basic concepts
1.1.1. Definitions and examples

Definitions of an automaton and of a semigroup automaton were
given in the preface. Recall (see Preface), that we consider automaton
#A=(A,X,B) as an algebraic system with three basic sets A,X,B called the
sets of states, input signals and output signals respectively, and two

binary operations:
o: AxX — A,

*:AxX — B.

An automaton (A,I',B) is called a semigroup automaton if the set of
inputs is a semigroup, and the axioms
acy, 7, =(acy Joy,, -
3'7172=(ao71)~72. aeA, 7ler.
are satisfied.

An automaton &=(A,X,B) is called finite, if the sets A,X,B are
finite. In a number of cases the sets A,B have to be provided with some
algebraic structures, for example those of linear space. However, in
this chapter we study only pure automata, i.e. automata whose sets of
states and outputs do not have algebraic structure. Unlike the case of a
semigroup automaton, an automaton (A,X,B) will be called an absolutely
pure one if the set of inputs also does not have any algebraic struc-
ture.

In order to define an automaton, the basic sets and operations o

and * should be defined.
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Example. An RS flip-flop is used in electrical and radio enginee-
ring. It is a device with two input lines, on each of them 0 or 1
signals can be fed; the device could be in one of two states 0 or 1,
whose values coincide with the values of the output signal. Inputs are
two-dimensional vectors with coordinates taken from the set {0,1}.
Though four various input vectors are possible, in a RS flip-flop three
different vectors x1=(0,0], X2=(0,1), x3=(1,0) can be fed into its
input. These input vectors act on the states of the device in the follo-
wing way: if RS flip-flop was in the O state, then with X, and X,
inputs, the state does not change, while with X, input it changes its
state to 1; if the RS flip-flop is in the state 1, the state does not
change with inputs x1 and X and changes to 0 with input X,

Thus, a RS flip-flop is an automaton (A,X,B) with the set of

inputs X={x_,x_,x_}, the set of states A={a ,a; a =0,a =1} and with
1’72" 73 o o 1

1
outputs which are identical to the states. The functions of transitions
and outputs of the automaton coincide and are defined by the following
rule:

a ox =a_ , a ox =a _ , a _ox_=a

o1 o 02 0 31

a oX =a , a oX =a , a_oX _=a
1 1 1 1 2 0 1 3 1

The example is of interest since the automaton thus defined is
one of blocks with which other automata can be constructed, (see Chapter
2)x

Example. Let A=(A,X,B) be an automaton with two states A={0,1},
with two inputs, X={0,1}, and with two outputs B={0,1}. The o and * ope-
rations are defined according to the rule:

aex=a+x(mod2)

ar*x=a-x(mod2)

There exist different ways of setting of automata: the analytical
one, defining with tables , with plots etc. In the latter example, the
operations o and * are defined in an analytical way. The corresponding

tables are as follows:
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Table of transitions Table of outputs
to new states
Input Input
Initial Initial
state 0o 1 state [0} 1
0

In the case of description with a plot, the automaton is defined
by an oriented graph, with vertices being states of the automaton, while
the edge connecting the vertex a with the vertex a’ is denoted by the
pair of symbols (x,y), where x is the input signal effecting transition
of the automaton from the state a into the state a’, and y is the output
signal of the automaton which is equal to a*x. For instance, the graph

of the automaton of last example is of the form:

(1,0)

(0,0) G 69 (0,0)

(1,1)

Example. Let A and B be arbitrary sets, SA the semigroup of all
transformations of the set A, Fun(A,B) the set of all mappings on A to
B. Consider the Cartesian product S(A,B)=SAxFun(A,B) and define the mul-

tiplication operation on the set S(A,B), assuming
(o0 )(p,,0.)=(0.0,,0¥,).0 €5, cFun(A,B),1=1,2

A direct check shows the associativity of this operation; hence
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S(A,B) is a semigroup. Define the automaton (A,S(A,B),B); the operations

o and * are defined by:

as (o, ¢)=a’,

a*(o,7)=a",
where aeA, (o,¢)eS(A,B), ceSA, peFun(A, B).

This is a semigroup automaton. Indeed,
%% %1%
ao((al,wl)(wz,wz))=ao(¢la2,olw2)=a =(a ) " =

=((a°(01,¢1))o(62,¢2);

o ¢
_ —(a 1y 2 _
a*((al,wl)(02,¢2)—a'(¢102,¢1¢2)—(a )

=(ao(cl,¢2))*(02,w2).

So the axioms (1.1) of a semigroup automaton are fulfilled. This
automaton is denoted by Atml(A,B) and plays an important part in the
sequel.

Along with the introduced automata in real situations one can
often find the so-called partially defined automata, whose operations o
and * are defined not for all elements. Automata for which only sets A,X
are essential and only the operation o is given, are called semiautomata
or the automata of the input-state type. In fact such automata are rep-
resentations #=(A,X). There are also automata (A, X,B), in which only the
* operations is defined. Such automata will be called automata of the
input-output type, or *-automata. It is quite natural to ask, whether
arbitrary semiautomaton and =®-automaton could be joined to form an
automaton? How it could be done?, and whether such an union would be

unique. The answer to this question will be given in Section 1.1.2.
1.1.2. The automaton representation of a set and a semigroup

Let A be a set and SA be the semigroup of all its transforma-
tions. If X is some other set, then each mapping f:X — SA produces a
representation of elements from X by transformations of A. We have

simultaneously a binary operation o:AxX — A defined by the equality
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aox=af(x). On the other hand, given the operation o, each x can be con-
sidered as a transformation of A, and so the representation f:X — SA
arises. This is one-to-one correspondence. In the case when X=I' is a
semigroup, it can be directly shown that the relation a°7172=(a°71)°75
7ler holds if and only if the representation f:I' — SA is a homomor-
phism. Basing on these well known arguments, we define the notion of a
automaton representation.

Take an automaton #A=(A,X,B) and a semigroup S(A,B). The input
elements xeX act, on the one hand, as transformations on the set A, i.e.
as elements of SA, and on the other hand, as elements of Fun(A,B). Thus,
we define two mappings: o:X — SA and B:X — Fun(A,B). For each xeX we
define the transformation x* of SA and the mapping xB of Fun(A,B) in the
following way: if aeA, then axa=aox, axB=a¢x.

Define the representation f:X — S(A,B), setting xf=(xa,xB). This
representation is associated with the automaton #A. If X=I' is a semi-
group, it can be easily seen that f:X — S(A,B) is a homomorphism of the
semigroup I' to S(A,B).

On the other hand, let us consider a mapping f:X — S(A,B), and
the element xf=(¢,W)eS(A,B)=SAxFun(A,B) being the image of the element

L Y

x. The automaton #A=(A,X,B,v,*) with aox=a', a*x=a’ corresponds to this
mapping. If X=I' is a semigroup, the homomorphism f:I' — S(A,B) defines
the semigroup automaton (A,I',B) (to prove this, it suffices to verify
fulfillment of the semigroup automaton axioms.)

Thus, defining of the automaton (A,X,B) is equivalent to that of
the representation f:X — S(A,B), while defining of the semigroup auto-
maton (A,I',B) is equivalent to that of the homomorphism f:I' — S(A,B).
We will call this homomorphism the automaton representation of the semi-
group TI.

An absolutely pure automaton (A,X,B) is called an exact automaton
if the associated mapping X — S(A,B) is injective. Respectively, a
semigroup automaton (A,I',B) is an exact one, if the homomorphism f:I' —
S(A,B) is a monomorphism of semigroups, 1i.e. different elements of T
correspond to different elements of S(A,B). The kernel congruence p=Kerf

of the semigroup I' is called the kernel of the automaton representation,
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or the kernel of the automaton #A. An exact automaton (A,I'/p,B) can be
assigned to each automaton #A=(A,I',B).

Together with the kernel p=Kerf consider the kernels of the map-
pings o:" — SA ,B:T — Fun(A,B), which will be denoted by pa=Kera,
pB=KerB respectively. Since «w is a homomorphism, Py is the congruence of
the semigroup I'. The equivalence pB could be not a congruence, but it
endures the left multiplication: if 71p372 then 77193772 (it follows

B
o
Using the automaton representation, an absolutely pure automaton

from the equality (7172)B=7?7 71,725F). Besides, p=panp3.

A=(A,X,B) can be extended to a semigroup automaton ¥(#&)=(A,F,B), where
F=F(X) is a free semigroup generated by the set X. Indeed, as it was
mentioned above, defining of the automaton A is equivalent to defining
of the representation f:X — S(A,B). By the universal property of a free
semigroup, the mapping f:X — S(A,B) is uniquely extended up to the
homomorphism f:F(X) — S(A,B), while defining of latter is equivalent to
defining of the semigroup automaton (A,F(X),B).

Example. #=(A,X,B) is an automaton with the set of states
5 ,a _}, the set of input signals X consisting of one element

RREREE
x, and the set of output signals B={0,1}. The operations o and * are

A=(ao,a

defined by the equalities:
a ex=a_ where k=i+1(modn);

0, i=0(mod2),
a‘tx=
1, i=1(mod2).

Recall that, if t,m, and n are integer numbers then t=m(modn)
means that t is the remainder of division of m by n, and t=m(modn) that
t and m have the same remainder of division by n.

In the corresponding semigroup automaton %(&)=(A,F(X),B) the
semigroup of input sequences F(X) is the infinite cyclic semigroup with
generator x. The elements of the semigroup are of the form xm,

m=1,2,..., and act in the following way:
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a‘oxm=ak , where k=i+m(modn);

m
a *X =

{ 0, i+m-1=0(mod2);
1

1, i+m-1=1(mod2).
1.1.3. Homomorphisms of automata

Functioning of an automaton can be described by the functioning
of another one. Homomorphism is a mathematical notion which reflects the
physical concept of modeling. A triplet of mappings “=(“1'“2’“3)' ule—*
A, uzzx - X', “3:B — B’ is defined to be the homomorphism p:8 — &’
of the automaton A=(A,X,B) to the automaton A’=(A’,X’,B’), if the follo-
wing conditions are satisfied:

1 MKy
(aex) "=a ox °,
"

(1.2)
s M My
(a*x) "=a *x °; aeA, xeX

In order to define a homomorphism of semigroup automata

p: (A,T,B) = (A’,I’,B’) we should add the condition:

K, is a homomorphism of the semigroup I' to semigroup I'’ (1.3)

If the mappings B By My of the latter definition are one-to-
one, M is called an isomorphism of automata. A homomorphism (isomor-
phism) of an automaton & into itself is called an endomorphism (automor-
phism) of an automaton.

Absolutely pure automata with their homomorphisms form a cate-
gory. Semigroup automata together with their homomorphisms also form a
category. Consider the mapping ¥ which assigns to each pure automaton &
a semigroup automaton ¥(#&). Further, we take an arbitrary homomorphism
of absolutely pure automata u=(u1,u2,u3): A=(A,X,B) = A’=(A’,X’,B’) and
define the corresponding homomorphism of semigroup automata
(ﬁl,ﬁz,ﬁs)=?(u):?(a) — F(4’) by: ﬂ1=u1, ﬁ3=u3. As ﬁz we take EPe unique
extension of the mapping pZ:X —> X’cF(X’) to the homomorphism pz:F(X) i
F(X'). It is easy to understand that F(u) is a homomorphism of semigroup
automata and that ¥ is a functor on the category of absolutely pure

automata into the category of semigroup automata.
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Consider some special homomorphisms. Let automata #A=(A,X,B) and
A’=(A’,X,B) have identical sets of input and output signals. A
homomorphism @ — A’ of the form ﬁ1=UH,eX,£B), where € and €g are
identity mappings of sets X and B respectively is called a homomorphism
in states. If the mapping ® is surjective (injective), ﬁl is called an
epimorphism (monomorphism) in states. In this case the work of the
automaton & is modeled by functioning of the automaton &’ with the same
sets of input and output signals, but different set of states. It is
natural to restrict the number of states of an automaton without
limiting the number of its options. For finite automata, given automaton
A, there exists an algorithm of constructing of its epimorphic in states
image A’ with the the smallest number of states (see e.g. [62]). A
homomorphism in input signals and a homomorphism in output signals are
defined in a similar way as the homomorphism in states. For example, a
homomorphism in input signals of an automaton #A=(A,X,B) into automaton
A’=(A,X’,B) is a homomorphism of the type ﬁ2=(eA,u2,sB) with €, and €5

being identity mappings of sets A and B respectively. The condition

Ea B M My )
(1.2) implies aox=(aocx) "=a "ox "=aex °, a€A, xeX; similarly, a*x=a*x

The homomorphism in input signals means making an automaton more exact;
if A is an exact automaton, the automaton A’ is again exact and the
homomorphism ﬁz:ﬂ — A’ is an isomorphism.

One can consider also homomorphisms of automata which are identi-
cal only on one of the sets A,X,B. Note that homomorphisms in states
define the category of automata having a variable set A and fixed X and
B, homomorphisms in output signals define the category of automata with
fixed representation (A,X), and finally, homomorphisms in input signals
yield the category of automata with given A and B.

If p is a homomorphism of an automaton @ into #’, and v a homo-
morphism @’ into 4", the multiplication of mappings =
(“1111'“2”2'“3"3):8 —> A" is defined in a natural way. Fulfillment of
(1.2) for this mapping is obvious:

nv uov MoK, VRV pp

(aox) ' '=((aox) 1) '=(a lox

The second condition of (1.2) is verified in the similar way. Hence, the
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mapping uw:# — A" is a homomorphism of automata.

Proposition 1.1. Any homomorphism u=(u1,p2,u3) of an automaton

can be represented as a product u=ﬁ3ﬁlﬁz of homomorphisms in outputs ;73,

in states "11 and in inputs ﬁz'

Proof. Let u=(u1.u2,u3) be a homomorphism of the semigroup auto-
mata, p:#=(A,T,B,o,*) — #A’=(A’,I’,B’,o’,*' ). Consider the automaton
#=(A,T',B’) with the operations o, and * defined according to the rule:

3
ae y=aoy, a'17=(a~7) , aeA, yel'. This automaton is a semigroup one:

n m

- - 3_ 3— .
ot R (a°17’1)°17z’3'17172'(3’7’172) =((acy )*y,) "=(ac 7 )* 7
My
homomorphism uzzl" — I’ and the automaton (A’,I'’,B’) define the automa-

=(eA,er,u3) is a homomorphism of (A,I,B) into (A,I,B’). Now, by the

ton H;(A',I‘,B’) with the operations 5 and *2: if aeA’,yel', then
K K
rv, 2 » . .

ae y=aec’y -, a*27=a*7 2 It 1is also a semigroup automaton and

ﬁ2=(cA,,u2,cB,) is a homomorphism of (A’,I',B’) into (A’,I'’,B’). Finally,
it is immediately verified, that ﬂ1=(u1,er,ca,) is a homomorphism of
(A, I',B’) into (A’,I',B’). We derived the sequence of homomorphisms

M, Ky M,

(A,T,B) — (A, T,B’) —™ (A’,T’,B") — (A", ",B").

It is clear that u=ﬁ3ﬁlﬁ2

Note, that the given order of multiples is important. Such repre-
sentation of the automaton homomorphism is called a canonical decomposi-
tion of a homomorphism. The proof is given for the case of the homomor-
phism of the semigroup automaton. If we consider a homomorphism of an
absolutely pure automaton, the arguments will be even simpler.

It is interesting to remark, that if u=(u1,u2,u3) is an endomor-
phism of the automaton A into itself, and u=u3u1u2 is its canonical
decomposition, then ’Il’ﬁz’ﬁa are homomorphisms and not endomorphisms.
For example, ﬁa maps the automaton (A,I',B) into the automaton
(A’F’B'°1"1)' These automata have common basic sets, but different ope-

rations.
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An important role in the theory of automata can play the notion
of a homomorphism with substitution. A homomorphism of the automaton
A=(A,X,B) into the automaton A’=(A’,X’',B’) with the substitution of out-
put signals is a triplet of mappings ul:A — A, pZ:X - X, uazB’ — B,
p=(u1,p2,p3), which agrees with the basic operations o and *

BoH
a ‘ox °=(aox) '

(1.4)
[T TR’

(a Lax 2) 3oawx ; aeA, xeX.
(In the given example the mapping By acts in the opposite direction in
comparison with H, and uz). The homomorphism with the substitution of
the output signal can be naturally explained: input signals of the auto-
maton A are coded by the signals of the automaton A’ and operation of
the second automaton imitates the operation of the first one and deco-
ding is performed in the output.

Homomorphism of the automaton @A=(A,X,B) into the automaton
A’=(A’,X’,B") with the substitution of input signals is a triplet of
mappings A = A, uz:X’ — K, p,:B =% B u=(u1,u2,u3), satisfying
the conditions

o My My
a ox’=(aox’ °)

Hy

» » “3
a *x’=(a*x

My
) 7, aeA, x'e€X'.

The homomorphism with the substitution of input and output sig-
nals constitute a triplet of mappings ule —> A, uz:X’ - X, uazB’ — B
u=(py iy p), with

My . ,#2 My
a ox’=(aox )

u n
*x’) 3=a*x’ 2, aeA, x'eX’.
Consider the definitions of subautomata and quotient automata.
Let #A=(A,X,B) be a certain automaton, A cA, X cX, B cB and for any aeA,
1
xeX1 hold aoxeAl, a‘xeBl. Then the sets A1'X1’B1 define the automaton
(Al,Xi,B1)=S1 with respect to the same operations o and *. It is called

a subautomaton of the given automaton #A. The subautomaton (A1'X1'B ) is
1
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called a subautomaton in states, if X1=X and B1=B. Similarly, we can
define subautomata in inputs and subautomata in outputs. If (A,T',B) is a
semigroup automaton, then a subautomaton of the form (A1'F‘B1) is called
a I'-subautomaton.

Congruence of an automaton #=(A,X,B) is a triplet of equivalences
p=(p1,p2,p3): p, on the set A, p, on the set X, p, on the set B, which
satisfies the following condition:

apla’Axpzx' > (aox)pl(a’ox')A(a'x)pa(a’-x’) (1.5)

Let p=(p1,p2,p3) be a congruence of the automaton @. An automaton
with basic sets A/pl,X/pZ,B/p3 and operations o and *, defined according
to the rule

[a]l o[x] =[acx] ; [a] =[x] =[a*x]
Py Py Py Py P2 3

where [a] , [x]p , [bl are classes by corresponding equivalences

P PPy i; calle: a quo:ient automaton of the automaton & by congru-
ence p and denoted as #A/p. According to (1.5) operations o and * in the
automaton are correctly defined.

If (A,T,B) is a semigroup automaton, then the definition of cong-
ruence p has to be complemented by the requirement: P, is a congruence
of the semigroup . In this case the quotient automaton ®#/p=
(A/pl,r/pz,B/pa) also be a semigroup automaton.

Example. Let @#=(A,T,B) be a semigroup automaton, (AO,F,BO)
I'-subautomaton in 4, P, an equivalence on the set A, classes of which
are the set A0 and individual elements not belonging to Ao; P, is a
similar equivalence on the set B. Let P 7P be a trivial equivalence on
the set I', i.e. the equivalence, whose classes coincide with the ele-
ments of I'. It is obvious, that p=(p1,p2,p3) is a congruence of the
automaton #A. In this case quotient sets A/p1 and B/p3 are denoted by
A/A0 and B/B0 respectively. Factor automaton ﬁ/p=(A/A0,F,B/BO) corres-
ponds to the congruence p. Take in I' a set J of all o, such that aoveAd
a*ceBO for every aeA. J is a two-sided ideal in I', associated with Rees

congruence t of the semigroup I'. The ideal J and the elements not belon-

ging to J are the classes of this congruence. Factor-semigroup I'/T in
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the theory of semigroups is denoted by I'/J. It is easy to verify that
(pl,t,pa) is a congruence of the automaton #. If I is an arbitrary two
sided ideal of the semigroup I', belonging to J, then the corresponding
Rees congruence P, belongs to T and (pl,pz,pa) is also a congruence of
the automaton 4.

Now we can introduce a notion of the kernel of homomorphism. Let
u=(p1,p2,u3) is a homomorphism of the semigroup automata #&=(A,[,B) —
A’=(A’,T’,B’). Denote by T, Ty T, kernels of mappings M, M, Mg, TS

n
- 1._ 1 .
pectively. Recall that aTta for a =a, with al,azeA, T, and T, are
defined similarly. In this case T is a congruence of I'. For the triplet
,T.) is a
2' '3
congruence of the automaton #A. This congruence is called a kernel of the

(11,1:2,1:3) conditions of (1.5) are satisfied. Hence, 'r=('rl,1:

homomorphism p and is denoted by t=Keru. The homomorphism T of the auto-

maton & on #A/Kerp is called natural.

Theorem of homomorphisms 1.2. Let ¢ be a homomorphism of the
automaton @ on the automaton A’ and p a natural homomorphism of # on
A/Kerp. Then the automaton A’ is isomorphic to the automaton A/Kery, and

there exists a unique isomorphism y such that py=¢.

P
"

AL

A/Kergp

Denote by T the kernel congruence of the automaton representa-

tion of the semigroup TI: 3’11' when for all a€A hold ao'a'1=a°3'2 and

Y.
r'2
a*71=a*72. Let -cA be the equivalence on the set A defined by: aITAaZ'

when a1w=az'3r for all yel. Thus, input elements 71 and 72 are
'rl_.—equivalent, if they act identically as operators on the set of states
A and from A to B; states a1 and a? are rA—equivalent. if a1 and a2 act
identically as functions from the input set I' to the output signal set
B.

The automaton (A,I',B) is exact, if classes of the congruence 'rl..
consist of the separate elements, i.e. aoyl=a072, a"ar1=a'72 for all aeA
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imply ¥ =v; ¥ ..

Let us call an automaton # left-reduced, if classes of the cong-
ruence TA consist of separate elements, i.e. if different elements from
the set A act as different operators from I' to B, and right-reduced, if
B coincides with the set A*I'={a*y|aeA,yel'}. We will call left reduced
automaton simply a reduced automaton.

Consider the following congruences of the automaton #=(A,T,B):
T‘=(€ , T, € ) and T:=(TA'8A'CB)' The automaton S/r‘

r A" T’"B r
left-reduced automaton. As it has been mentioned, in finite case there

L
is exact, ﬂ/‘rA is a

is an algorithm restricting the number of essential states of & or, in
*
other words, realizing S/tA. The problem of construction of the exact

automaton ﬂ/t; also has practical argumentation and for finite automata

there exists the corresponding simple algorithm. The automaton (A,T,B)
and automaton (A’,I',B) are called equivalent in states, if reduced auto-
mata are isomorphic in states. The automata (A,I,B) and (A,I'",B) are
called equivalent in inputs, if the corresponding exact automata are

isomorphic in inputs.

Proposition 1.3. If there exists an epimorphism in states
¢=(wA,cr,eB):ﬂ=(A,F,B) —> #’=(A’,I',B), then the automata A and A’ are

equivalent in states.

14
Indeed, since in the given case a*y=a A*y, then the equality

] (%
a107=a2'7 is equivalent to alA'y=a2A'7; al,azeA, yel'. It means that

ag and that the automata H/r: and S'/r: are

a T a_ is equivalent to a¥z
1A 2 1

isomorphic in states.

A

A similar property holds for the equivalence in inputs.
1.1.4. Cyclic automata

We shall consider subautomata ﬂa, acl, in the fixed semigroup
automaton A=(A,I',B) under the relation of inclusion: ﬂlcﬂz, if ﬁl is a
subautomaton in ﬂz. For any set of subautomata Ha, ael, it is possible
to consider the least upper bound and the greatest lower bound of this

set. The greatest lower bound @ is an intersection of the subautomata

= A= = " I. It is assumed that the corres-
ﬁa (Aa'ra’Ba)' ﬂ—nﬂa (nAa,nFa,nBu) oE i


http://rj.y-.er
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ponding intersections are not empty.

The least upper bound or union of the automata is defined in the
following way: this is the subautomaton Uﬂa= (A,=,B), ael, where T is a
subsemigroup from I' generated by all Fa; A is the least invariant with
respect to ¥ subset from A containing all Aa; B is a union of the set of
all elements from B of the form a*o, where a€A, oe€X, and of all sets Ba’
ael.

Let the automaton #A=(A,I'B) and triplet of sets (Z,X,Y), ZcA,
XcI', YcB be given. The least subautomaton #’=(A’,I’,B’) from @ with the
property ZcA’, XcI'’, YcB’ will be called the subautomaton generated by
this triplet In its turn, the triplet of sets (Z,X,Y) is called a
generator system of the automaton A’ It is clear, that &’ is equal to
the intersection of all such subautomata ga=(Aa’ra'Ba) from @A, that
ZcAa, XcFa, YcBa.

The following proposition describes an automata induced by the

system (Z,X,Y).

Proposition 1.4. If the subautomaton A’=(A’,T'’,B’) from (A,T',B)
is induced by the generator system (Z,X,Y), then I'" is a subsemigroup
from I' generated by the set X; the set A’ is a union of the set Z with
the set ZoI'’ of all aoy, a€Z, yeI'’; the set B’ is a union of the set Y

and the set of all elements axy, aeA, yel’.

The proof is evident.

Remark. We regard mainly semigroup automata. Consider the automa-
ton #A=(A,X,B) with an arbitrary set of input signals X. Take in & a
triplet of sets (Z,X’,Y) and generate by it a subautomaton in #&. This
can be done in the following way. First generate the semigroup subauto-
maton (A',E’',B’) in ¥(&) by the given triplet and then take its part
(A’,X’,B’) "forgetting" about the semigroup E. In particular, the given
system (Z,X',Y) generates the automaton # if and only if X’=X and the
same triplet generates F(4).

Together with stated in 1.1.1 these simple arguments constitute
one of the reasons why we suggest to associate the semigroup automaton

F(d) with every @. Further we, as a rule, consider semigroup automata.
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As particular cases of the generator systems (Z,X,Y) it is
possible to consider the systems with an empty set Y; with X=I'; and
finally, with an empty Y and X=I'. If in the latter case Z consists of
one element we come to the concept of cyclic automaton. In view of pro-
position 1.4 the definition of the cyclic automaton can be formulated in
the following way.

An automaton #A=(A,T',B) is said to be a cyclic automaton with a
generator element «, if A={a}vacI’, where aoI'={acy,yel'} and B={a*y,yel}=
A*T". (Henceforth we shall denote {a}uaoI' by aol').

Now we describe all the cyclic automata with the given semigroup

Consider the automaton Atm(r)=(r‘,r,r) with operations o and *
defined by the rules: xoy=xy, X*y=xy, xeFl, €. The axioms of the semi-
group automaton are evident.

This automaton is cyclic with the unit of the semigroup r! as a
generator element. Atm(I') is called a regular cyclic automaton of the
semigroup I'. It is clear, that a homomorphic image of the cyclic automa-
ton is also cyclic and therefore all quotient automata of the automaton

Atm(I') are cyclic.

Proposition 1.5. Every cyclic automaton with the semigroup TI' is

isomorphic to a certain quotient automaton of the automaton Atm(T).

Proof. Let #A=(A,I',B) be a cyclic automaton with the generating
element a. Define mappings ul:l‘1 — A and ua:r — B by:

“1 1 “3
y =aoy, acl=a, yel'; 7 "=a%y, yel.

Then the triplet of mappings (ul,er,ua) is a homomorphism of the automa-
ton Atm(I') into #A. Really,
M ® Ko g
(x07) '=(xy) ‘=aoxy=(asx)ey=x oy ;
= K [
(x*y) ’=(xx) Sasxy=(acx)*y=x '*y r; xel!, yer.
Image r! under the mapping H, is the set of all elements of the

h
form ¥ 1=aoy, 7eF1. Since the automaton @ is cyclic with the generating

element a, then this set coincides with the set A; similarly, image T



26

under the mapping My is B. Hence, (“1’81“'“3) is an epimorphism of Atm(I)
onto @, which by the Theorem 1.2 proves the Proposition.

Let the mapping ¥ of the semigroup I' to the set B be given. A
natural automaton realizing such mapping is the automaton (I‘i.I'.B) with
the operations o and * introduced as follows: Xoy=xy; x~1=(x7)¢; ‘xel'l,
yel'. Denote this automaton by Atm.(w:l" — B). If the mapping y:I — B is
sur jective, i.e. is a mapping onto all B, then Atm‘(w:l" — B) is a

cyclic automaton with generator element 1 (unit element) from rt. In

this case we obtain the reduced automaton Eﬁ(w:r e B)=(l"1/p,l",B) where
p is the kernel of the corresponding mapping <:T' = Fun(T,B).

Remark. 71p72 means that 71*x=72*x for all xel. It is equivalent
(by the definition of the operation *) to that for every xeI' holds

(arlx)w=(72x)w. Thus defined equivalence p is called Nerode equivalence.
Proposition 1.6. Every reduced cyclic automaton #A(A,T',B) is iso-
morphic to a certain automaton Atm(y:T — B).

Proof. By Proposition 1.5 the cyclic automaton #=(A,T',B) is an
epimorphic image of the regular automaton Atm(I'). Let u=(u1,er.u3) be a
corresponding epimorphism and u=ﬂ3ﬁ1ﬂ2 its canonical decomposition (see
1.3.):

i i,
Atm(r)=(r',r,r) — (r',r,B) — (A,T,B)

where ﬂais an epimorphism in outputs, ﬁais an identity mapping and ;~11 is
an epimorphism in states. Show that (r',r,B) is the automaton Atm'(lll:l“—)
B) for the mapping ¥:I' —> B defined by the rule: 7w=1'7, lel"l, vel.
Really, if xEl"l, yel', then xoy=xy. (As (I‘l,l",B) is epimorphic in outputs
image of the automaton Atm(I')). Thus x"{=(lox)'7=1'x7=(x7)w. So we have
Xoy =Xy, x"a'=(x7f)w. Hence, (l"l,l",B)=Atm‘(w:l" — B). Therefore, if (A,T,B)

is a reduced automaton, then it is isomorphic to the reduced automaton
P - —
Atm (y:T — B)/Kerul=Atm(¢t:1" — B).

An automaton #A=(A,I',B) is called I'-irreducible, if it does not

contain F-subautomata. It is clear that # is I'-irreducible if and only
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if this automaton is cyclic and every element of A is its generator. An
automaton #A=(A,T',B) is called completely reducible, if it is generated
by its I'-irreducible subautomata.

Proposition 1.7. An automaton A=(A,T,B) is completely reducible
if and only if A=UA°L, ael, where AoanB'_'z’ o#f, Aaol"=Aa, and B=A*T'={a*y,

aeA, yel'}. The irreducible subautomata in @ have the form Sa=(Aa,1",Ba)

where Ba=Aa*l"={a~y, aeAm, yel'}.
The proof of this Proposition is rather simple and is omitted.
1.2. Universal automata

1.2.1.Universal automata definition. Universal property

The automaton Atml(A,B) discussed in section 1.1 has the univer-

sal property, namely:

Proposition 2.1. For any semigroup automaton #A=(A,I',B) there

exists a unique homomorphism in input signals u:d — Atml(A,B).

Proof. Let f:I' — S(A,B) be an automaton representation of the
semigroup I'. Homomorphism of semigroups f defines the homomorphism in

inputs u=(ek,f,eB) of the automaton A into Atm(A,B). Indeed, if aeA,

7€l’, ¥'=(c,9)eS(A,B)=S, xFun(A,B), then

€ £
A [ A T
(aocy) "=aoy=a =ao(g-'¢)=a oy

s Ca, f
(at'a') =al'x=aq)=al (g-,q))za oy

Show the uniqueness of the mapping u. Let (eA,w,eB) be another

homomorphism # into Atmi(A,B) and let 7{"’=(0",«>'). By axioms (1.2), for
€a_Ea y__o’ Ex. B2 f o
all aeA we have aoy=(aocy) '=a oy’ '=a ; aoy=(a,y) =a oy =a . There-

? =a? and o’ =p.

Proposition 2.1 means that the automaton Atml(A,B) is a terminal

o' o , -
fore, a =a , and ¢’ =c. Similarly, a

object in the category of automata with fixed sets A and B.

The kernel of homomorphism p:d — Atml(A,B) coincides with the

»
congruence 1:]: (see 1.1.3) and corresponding exact automaton H/'rr. is
monomorphically embedded into Atml(A.B). Because of uniqueness of this
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embedding we can say that any exact automaton with the set of states A
and the set of outputs B lies in Atml(A,B).

Each input signal x transforms the state a of the automaton into
the output signal b: a*x=b. On the other hand, it is possible to say
that the state a transforms the input signal x into the output signal,
i.e. each fixed state a acts as mapping from X into B, that is, as an
element from Fun(X,B). The following construction corresponds to this
point of view.

Let the semigroup I' and the set B be given. Define the automaton
(A,T,B) where A=Fun(I',B) is a set of all mappings from I' into B. Opera-
tions o and * are introduced in the following way: if aeA=Fun(I',B), 7yeTl,
then aey is such function from Fun(I',B) that (aoy)(x)=a(yx) for all xel;

a*y=a(y). This automaton is a semigroup one:
(aowlwz)(x)=a(7172x)=a(71(72x))=(a°71)(72x)=((a°71)°72)(x)
a'1172=a(7172)=(a°71)(72)=(ao71)*72
Denote it by Ath(F,B). The role of this automaton is shown by
the following property:

Proposition 2.2. For any automaton #=(A,I',B) there exists an

unique homomorphism in states u:8 —> Ath(F,B).

Proof. Define the mapping v:A — Fun(l,B) setting av(x)= a*xeB
for each aeA, xel'. Then u=(v,er,cB) is a homomorphism (in states) of the
automaton & into Ath(F,B): (aoy)u(x)=(aov)'x=a'7x=av(7x)=(av°7)(x).

€

€ v
that is, (aow)v=avow r; a*y=(a*y) B=au(y)=av'7=av'7

r
This homomorphism is unique. Indeed, for another homomorphism

(h,er,eB):H — Atm(A,B) holds ah*7=ah(7)=(a'7)ss=av(7) and as it is true
for all aeA, yeI', then h=v.

Proposition 2.2 implies that the automaton Atmz(F.B) is an ter-
minal object in the category of the pure automata with fixed sets of
inputs and outputs.

The kernel of the homomorphism u=(v,sr,cB):B —% Atmz(F,B) coin-

.
cides with the congruence T, (see 1.1.3). This means that the automaton

A is reduced (left) if the corresponding v:A — Fun(I',B) is a monomor-
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phism, that is, different functions in Fun(I,B) correspond to different
states in A. It also means that the left reduced automaton El/r: is mono-
morphically embedded into Ath(F,B). In other words, each left reduced
automaton "lies" in Atm’(T',B).

Observe the following fact: let two representations (A,I') and
(A’,T), an automaton &’'=(A’,I',B) and mapping v:A —> A’ which preserves
the action of T in A and in A’ (that is (aoy)”=a”oy) be given. Setting
a"y=au‘"y we define the automaton #A=(A,I',B) and (v,cr,eB) is a homomor-
phism in states of & into 4A’.

In particular, to the given (A,T'), (Fun(I',B),I') and v:A —>
Fun(l,B) corresponds the automaton (A,I,B) with the homomorphism
(v,er,es):(A,l",B) = Atmz(l",B). On the other hand it follows that any
automaton (A,I',B) may be defined in this way.

The automata Atml(A,B) and Atmz(l",B) are associated with the
exact and left reduced automata respectively. Next we are going to int-
roduce a universal automaton Atm3(A,r‘) associated with right reduction,
that is with the elimination of extraneous output signals.

Let for a set A and a semigroup I' an action aoy of the elements
7€l’ on the elements a€eA be defined. That is, the representation (A,I') be
given. Take a Cartesian product AxI' and generate the equivalence p on it
by the binary relation (a,z’lvz)g(aeyl,wz). Let AeI' denotes the quotient
set Ax[/p and the bar denotes the mapping :AxI’ — Ael'. Consider the

automaton (A,T,AeI'). The operations o and * in it are defined by the

representation (A,I') and the relation a*y=(a,7), respectively. Thus

defined semigroup automaton is denoted by Atms(A,l').

Proposition 2.3. For any automaton @=(A,I',B) there exists an
unique homomorphism in output signals from Atma(A,I') into A (i.e.
Atma(A,F) is an initial object in the category of the automata with

fixed representation (A,T')).
Proof. Let us define the mapping v:Ae’ —> B according to the

rule: (a,y)v=aw. Then (cA,cF,v) is a homomorphism in output signals of
the corresponding semigroup automata. Its unicity is verified immedia-

tely in a similar way, as it was done in the previous propositions.
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The given proposition implies that the operation of any automaton
(A,T,B) can be modeled by the operation of Atm3(A,F), the automaton
without extraneous output signals.

If the automaton (A,I',B) is right reduced then the homomorphism
(eA,er,v):Atm3(A,F) —> A is an epimorphism.

Remark. From the uniqueness of the homomorphisms given by the
Propositions 2.1-2.3 follows the uniqueness (up to isomorphism) of the
corresponding universal objects i.e automata having the given universal
properties. For example, if the automaton B=(A,[',C) is such that for any
automaton #=(A,I',B) with the same as in B operation o there exists the

unique homomorphism from B into &, then B is isomorphic to Atm3(A,F).

1.2.2. Exactness of the universal automata; left and right

reducibility

It is clear that Atml(A,B) and Atmz(F,B) are exact and left and
right reduced, and Atm3(A,F) is right reduced. If (A,I') is an exact rep-
resentation, then it is obvious that the automaton Atma(A,F) is also

exact. The following statements are easily verified:

Proposition 2.4. a) The automaton Atma(A,F) is exact if and only
if for given (A,I') there exists at least one exact automaton (A,T,B).
b) The automaton Atma(A,F) is left reduced if and only if for given
(A,T') there exists at least one left reduced automaton (A,T',B).

It is clear that only sufficiency conditions have to be proved.
Let there exists an exact automaton #=(A,I',B) and let u=(eA,sr,v) be the
unique homomorphism from Atma(A,F) to A (see Proposition 2.3). Let us

denote by o and * operations of the automaton Atma(A,F) and by o and *

as we usually do, operations of #A. Then (a:w)u=(;?;)v=a'7. If in the
automaton Atm3(A,F) for all aeA the equalities acy =aey, a;yl=a;12
71,726F are satisfied, then similar equalities a071=ao72 and a*71=a*72
hold for A (as (a;v)v=a*7). Since the automaton # is exact it implies
that A and consequently the automaton Atms(A,F] is exact.

The second statement is verified in a similar way.

It is a natural question, whether there exists a representation

(A,T) such that either
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a) the automaton Atma(A,F) (and thus, any automaton (A,I',B)) is not
exact, or

b) the automaton Atma(A,F) and also any automaton (A,I',B) is not
left reduced.

A positive answer to these questions is given in the following
examples.

Examples.a) Let the set A and semigroup I' be given. Suppose that
the semigroup I' is not a semigroup of the right zeros. Define the repre-
sentation (A,I') by the rule: aoy=a for all aeA, yel'. Let this represen-
tation be arbitrarily extended to the automaton (A,I',B). This automaton
cannot be exact. Indeed, let f:I — S(A,B) be the mapping of T' to S(A,B)
defined by this automaton, and 7f=(u,¢). As aoy=a, then 7f=(e,w), where
€ is an identical transformation of the set A. Since (g,¢)(e,y)=(g,y¥),
then the image Ff of the semigroup I' in S(A,B) is a semigroup of the
right zeros. But by the condition I' is not a semigroup of the right
zeros. Hence, f cannot be a monomorphism and the automaton (A,I,B) is
not an exact one. In particular, the automaton Atma(A,F) is also not
exact.

b) Let T be a semigroup with a unit and (A,I') be such a represen-
tation that the unit does not act in A identically. Then any automaton
(A,I',B) extending this representation cannot be left reduced. Indeed,
take the element aeA for which aol#a. For all yel, a*y=a*l-y=(acl)wy.
This means that different elements a and aol from A act on I' in the same
way, that is that the automaton (A,T',B) is not left reduced. Consequent-
ly, Atm>(A,T) is not left reduced also.

Define the automaton (A,S(A,B),AxB) assuming ao(t,p)=at, a*(t,¢)=

(at,ap) for all aeA, (t,¢)eS(A,B).

Proposition 2.5. The automaton Atm>(A,S(A,B)) is isomorphic to
the automaton (A,S(A,B),AxB).

Proof. In virtue of the remark to the propositions 2.1-2.3 it
suffices to show that for any automaton #A=(A,S(A,B),C) there exists
unique homomorphism in output signals from (A,S(A,B),AxB) to 4.

Let us define the mapping p:AxB — C for an arbitrary automaton
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(A,S(A,B),C). Each element (a,b)eAxB can be represented in the form
(a,b)=(ao,ap), where waeA, (o,9)eS(A,B). Suppose that (a,b)“=(a0',atp)#=
a*(o,9). This definition is correct, i.e. it does not depend on the
manner of the representation of the element (a,b) in the form (ac,ap).

Indeed, let (a,b)=(a1¢r1,a1qp1)=(a2¢rz,achz) be such two different

representations. Hence, w o =0, (2.1)

o =ep, (2:2)

5 B_ K
It is necessary to show that (ocla'l,al(pl) (ocza'z,oczqaz) . Denote by
Ca the transformation of the set A which sends each element of A to ae€A,

and by d_, the mapping of A to B which carries each element of A to the

B

element B of B. The following equalities are immediate:

ao(c ,p)=ac =a , aeA , aeA
- “ (2.3)

c o=cC , if oeS

o oo A

cacp=d(w , if ¢eFun(A,B) (2.4)

The first of these equalities, in particular, means that
oc1=alo(ca1.qp1). So,
al'(al,¢1)=(o¢1°(cal,fpl))'(ol,qpi)= al'((cal,«>l)-(0'1,wl))=
ax.(ca 71" Y w1)=oc1'(ca o ’da @ o
1 1 171 14

Similarly,

az'(cz,qu)wz'(ca ,d ). (2.5)

si ; ] i 1o =
ince according to (2.3) @ =, (cal,(pl), then ocl"(a'l,qol)

» = = .
% (ca o 'doc @ ) (azo(ca '¢1))‘(ca o 'doc )—az'((coz ’wxj
11 151 1 ; bl B 1

(c ,d ) = az-(ca S o ' Co da v Y= az'(ca - ’da ¥ )= (according to
11 171 e ot M s | 11 Tdd
(2.1) and (2.2))=a _*(c ,d )=(according to (2.5))=a_*(c_,¢ ).

2 a0 e g, 2 2'Vs
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Th = = " i
us, al'(vl.wl)—az'(az,wz) or (a1¢1’a1w1) (azaé,azya) , that is
K is correctly defined. The homomorphism in output signals of the auto-
maton (A,S(A,B),AxB) into automaton (A,S(A,B),C) corresponds to this

M:AxB — C. Simple arguments show that such homomorphism is unique.

1.2.3. Universal connection of the semiautomaton and input-output

type automaton

Let ﬂl=(A,X1) be a semiautomaton with an arbitrary set of input
signals X1 and 32=(A,X2,B) the input-output type automaton (*-
automaton). Consider the triplet (X,a,B8) with X being a certain set with
the power not less than the powers of the sets X1 and X2 and «,B are the
mappings of X on the sets X1 and Xz, respectively.

The automaton (A,X,B) with the operations o and *
B

o
aox=aox , a*x=a*x ,

is said to be the connection of the semiautomaton 81=(A.Xl) and input-
output type automaton ﬂz by the triplet (X,«,B).

This automaton is denoted by A(X,«,B). To each triplet (X,e,B)
corresponds its connection #A(X,w,B).

Let us fix the semiautomaton El and the *-automaton Bz. Consider
the category J whose objects are the given triplets (X,a,B) and mor-
phisms are the mappings p:X — X' such that for triplets (X,a,8) and

(X;a,B’) the following diagrams are commutative

This p we shall call a homomorphism of triplets p:(X,«,8) = (X’,a’,B’).

Now consider the category & whose objects are all possible con-
nections A(X,«,B) of the semiautomaton ﬂl and the #-automaton Hz and
whose morphisms are homomorphisms of the automata. The mapping which

assigns to each triplet (X,«,B) the automaton A(X,o,B) is a functor from
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the category of triplets to the category € of connections of the auto-
mata Bl and 212. Consider the triplet (X'"1’"2) where )(=)(1><X2 is a Car-
tesian product of the sets X1 and XZ; L and n, are projections of the
set X on X1 and Xz, respectively. It is a terminal object of the cate-

gory of triplets, and the automaton ﬁ(XlxXZ,n ,1:2) is a terminal object

1
in the category € of the given connections of the automata ﬂl and Hz.
Proposition 2.6. For each connection A(X,x,B) of the semiautoma-
ton (A,Xi) and input-output type automaton (A,XZ,B) there exists an
unique homomorphism in input signals of this automaton into the automa-

ton A(X xX ,m ,m ).
K- s U

Proof. It is necessary to define the homomorphism (wl,wz,wz) of
the automaton A&A(X,«,B)=(A,X,B) to the automaton H(Xlxxz,nl,n2)=
A,XlxXZ,B). As e, and 9, we take identity mappings of the sets A and B.

(4
The mapping qp2:X - X1><X2 is defined as follows: x 2=(xm,x‘3). The trip-
let of mappings (wl,wz,wa) is a homomorphism of automata. Indeed, if
a€A, xeX, then

T ¢ p, 4 ¢
(aox) 1=aox=aox°L=a°(xoc,xB) 1oa Yo(x 1

(a*x)¢3=a*x=a'x3=a*(xa,xﬂ)n2=a 1'(xwz)"2=a«’1'x«’2
From these equations also follows the uniqueness of the given homomor-
phism.

A similar problem of connection can be considered for semigroup
automata as well. In this case ﬁl=(A,X1) is a semigroup automaton and
B;(A,XZ,B) is an arbitrary #*-automaton. We have to assume that the
semigroup X1 acts left-hand on the set Xz’ i.e. X2 is the left
Xl—polygon. Such situation, for example, occurs if X1 is a subsemigroup
from SA and X2 is a subset from Fun(A,B) closed under the natural left-
hand action (multiplication) of the elements from Xl. In this case the
triplet (X,«,B) where X is a semigroup, « is a homomorphism from X to
X1' B is a mapping from X to Xz, defines (similarly to the case of abso-
lutely pure automata) the automaton #(X,a,B)=(A,X,B) satisfying the

conditions (1.1) of a semigroup automaton. Let’s call it a semigroup
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connection of the semiautomaton El with the input-output type automaton
Ha' For the fixed Hl and Hz a class of the semigroup connection form a
category with homomorphisms of the semigroup automata as morphisms. Let
us construct a terminal object in this category. Define a multiplication
on the set X=X1><X2 by the rule: (x X, )(x x )= (xlx1 xlx ). Then,X i$ a
semigroup with respect to this multiplication. As before, denote the
projections of the set X on X1’X2 by LA respectively. The semigroup
automaton E(Xlxxz,nl,uz) which is a terminal object in the category of
the semigroup connections of the automata 81 and EZ corresponds to the
triplet (Xlxxz,ul,nz).

Proceed to the case when (A,Xl) is a semigroup semiautomaton, but
the action of X1 on X2 is not defined, or )(2 in not closed under the
action of Xl. In this situation the above definition of the connection
does not lead to the semigroup automaton. Consider an example: let
X1CSA’ chFun(A,B) and an action of the elements of SA on the elements
from Fun(A,B) is defined by the rule: if xleSA, x € Fun(A,B), then XX,
is such element from Fun(A,B) that ax1x2=(axl)x2, aeA. Let X2 be not
closed under action of the elements from X1 and X ,X, are such elements
from X1’Xz respectively, that xlxaﬁxz. Let now X be a semigroup, oa:X —
X be a homomorphism of the semigroups, B:X — X be a mapping and
(A X,B) be a union of the semiautomaton (A, X ) and *-automaton (A, X ,B).
Take such elements x and x’ from X, that x* =x, and (x’ )B—xz. The automa—
ton (A,X,B) is not a semigroup one; indeed, if for all a€A the condition
of the semigroup automaton a*xx’=(aox)*x’ 1is satisfied, then a*xx’=
a(xx’ )B=(aox)'x’ =ax™ (x’ )B, (xx’ )B=xa(x’ )B. Since x*(x’ )B=x1x2¢)(2 and
(xx’ )BEX , the latter equality contradicts the choice of x and x’.

Ifx order the considered connection to be a semigroup automaton we
must extend the *—automaton (A,Xz,B) to an automaton (A,)?Z,B) whose set
iz is a closure of )(2 under the action of X1' Note that )(2 is
Xl—polygon with the set of generators )(2 and if ae€A, xlxzex then
a*x x2=(aox )*xz. In this way we come to the following definition: the
automaton @A is called a semigroup connection of the semiautomaton

=(A,X1) and *-automaton 82=(A,X2,B) if it is a connection of the semi-

automaton (A’X1) and some *-automaton (A,Z,B) whose Z is a Xl—polygon
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with the set of generators Xz, and the actions o in (A,Xl) and * in
(A,Z2,B) satisfy the condition: a*x1x2=(aox1)*x2 for all aeA, xlexv
XZEXZ, z=x1x262.

According to this definition the semigroup connection is defined
not only by the triplet (X,«,B8) but also by the choice of the =-
automaton (A,Z,B). If the automaton (A,Z,B) is fixed, then, as it has
been already mentioned, the automaton H(X1xz'"1’"2) appears to be a ter-
minal object in the category of all connections of (A,Xl) and (A,Z,B).
Let us call the automaton H(Xlxz,nl,nz) a p-universal connection of
(A,Xl) and (A,XZ,B). If we deduce from all possible (A,Z,B) then we
obtain the category of p-universal connections of the semiautomaton EI
with the *-automaton ﬂz. It is natural to define morphisms in this cate-
gory as such homomorphisms in states (el,wz,ea) in which mapping wz:Xle
- Xle’ is identical on the component )(1 of the Cartesian product. Con-
struct a initial object in this category. Let Y be a free Xi—polygon
over Xz' It is a set of all possible formal expressions XX, xieXL
xzeX2 (Here Xi is the semigroup X1 with the adjoined external unit).
Action of X1 in Y is defined by the rule: x;(x1x2)=(x;x1)x2. Further-
more, consider the automaton (A,Y,B) with the following operation *
a*x1x2=(aox1)*x2; aeA, xleXi, xzeXZ. The semigroup connection
E(Xle,nl,nz) of the semiautomaton (A’X1) and the *-automaton (A,Y,B) is
an initial object in the given category, i.e, for any p-universal con-
nection Q(Xlxz,nl,nz) there exists a  homomorphism in inputs
(81,¢2,83):E(X1XY,n1,n2) - E(Xle,nl,nz) whose mapping ¢_:X xY = X x2Z
is identical on Xl‘ The proof of this statement is easy. It is based on
the fact that the free Xl—polygon Y over X2 is an initial object in the
category of Xl—polygons.

1.3. Moore automata
1.3.1. Definition and some properties

The automaton defined in the item 1.1.1 is called a Mealy automa-
ton. An automaton (A,X,B) is called a Moore automaton if there exists
the mapping ¢:A — B, such that a'x=(aox)w The mapping ¢ is called a

determining mapping of the Moore automaton. The condition a'x=(aox)w
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means that in the Moore automaton operation * is modeled by the opera-
tion o and the mapping y. Therefore, Moore automata are simpler for

investigation.

Proposition 3.1. The automaton A=(A,X,B) is a Moore automaton if

and only if the equality a, °X =a_ox, implies al'xl=az*x2

Proof. The necessity of this condition is obvious. Let
a, °x =a_ox, implies al'x1=az¢x2. Consider the subset AoX= {aox, aeA,
xeX} in the set of states A. Define the mapping y¥:A — B in the follo-
wing way: if aeAoX, i.e. a=a, ox for some aleA and xeX, then aw=alﬁx; if
agAoX, define the mapping ¢ arbitrarily. Since a, °x =a oX, implies
a1~x1=a2*x2, this definition is correct - it does not depend on the rep-
resentation of the element a in the form a= a, oxX. By the definition of y,
a*x-(aox)w Hence, A is a Moore automaton.

Let us denote by rt the semigroup, which is a result of adjoining

the external unit to the semigroup TI.

Proposition 3.2. The semigroup automaton A=(A,I',B) is a Moore
automaton if and only if it can be extended to the automaton (A,FI,B).

Proof. Since the semigroup r' contains a unit, the automaton

{Z

(A,FI,B) is a Moore automaton. Indeed, denote by ¥ the mapping a"=a*1.
Then a*7=a*71=(a07)~1=(a°7)w. that is (A,FI,B) is a Moore automaton. So,
(A,T',B) is also a Moore automaton as a subautomaton of (A,FI,B). On the
other hand, let #=(A,I',B) be a Moore automaton with the determining map-
ping ¥. Then the automaton # can be extended to the automaton

Z

ﬂl=(A,F1,B) assuming acl=a, a*l=a’. Axioms (1.1) of the semigroup auto-
maton for a' are immediately verified.

Note that from the definitions of the Moore automaton and the
automaton #F(A) it follows: if #A=(A,X,B) is a Moore automaton, then
F(4)=(A,F(X),B) is also a Moore automaton with the same determining map-
ping.

Remarks. 1) On the exactness of the Moore automaton. Recall that
the automaton #A=(A,I',B) is exact, if the kernel of the automaton repre-
sentation f:I' — S(A,B) is trivial. Generally speaking, the exactness of

the automaton @ does not mean the exactness of the associated represen-
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tation a:T' — SA. Really, Kerf=KeranKerf where B is a mapping of I' into
Fun(A,B) corresponding to the given automaton. However, if KeracKerf,
then Kerf=Kero and the exactness of the automaton # is equivalent to the
exactness of the representation (A,I'). By the definition of Moore auto-
mata the inclusion KeracKerf holds. Therefore, the exactness of the
Moore automaton (A,I',B) is equivalent to the exactness of the represen-
tation (A,T).

2) On the uniqueness of the determining mapping.

If A=(A,T',B) is a Moore automaton, then on the elements of the
form aoy the determining mapping ¢ is uniquely defined by the condition
(aov)w=a*7. Beyond the set AoI' the mapping Y can be taken arbitrarily.
Hence, if AoI'#A, then the Moore automaton may have many determining map-

pings but they differ only on the set A\AoI.

1.3.2. Moore automata and universal automata

Proposition 3.3. If the set B is not one-element, then for any A

the automaton Atml(A.B) is not a Moore automaton.

Proof. For a semigroup automaton #A=(A,I',B) and an arbitrary map-
ping Y:A — B, denote by A=A(y) the set of all elements &€l for which
a*8=(ao6)w, aeA is satisfied. A is a left ideal in I', i.e ydeA for any
vel' and 8eA. Indeed, a*yd= (aoy)*6=((aow)oa)w=(aoya)w. The subautomaton
(A,A,B) is a Moore part of the initial automaton under the given y:A—B.
Consider the Moore part of the automaton Atml(A,B)=(A,S(A,B),B). For any
aeA holds a-7=a¢=(ao7)w=aaw, where Y:A — B, y=(0,9)eS(A,B) and yeA(y).
It means that ¢=o0y and the semigroup A(y) consists of all elements
¥€S(A,B) of the form y=(o,0¥) where o-eSA From this follows that A(y) is
less than S(A,B) and that the automaton Atml(A.B) is not a Moore automa-
ton for any ¢ . Moreover, it is possible to pick the elements of S(A,B)
not belonging to any A(y).

The second universal automaton Ath(F,B) may be a Moore automaton
(for example, if I contains a unit) or may be not.

Let us consider an example of the automaton Atmz(F,B) which is
not a Moore automaton. Let I' be a semigroup containing two different

elements v, and 72, such that 71x=72x for all xel'. (This condition means
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that the regular left-hand action of I' on itself is not exact). Such
semigroups exist. Show that if the set B contains more than one element,
then for the given semigroup I' the automaton Atmz(F,B) is not a Moore
one. Take the function aeFun(I',B) with the condition a(wl)ta(yz). Then
a*71=a(71)$a(72)=a'72. At the same time acy =acy,, since (aoyl)(x)=
a(le)=a(72x)=(aowz)(x) is fulfilled under any xeI'. By the Proposition
3.1. it follows that the given automaton Atmz(F,B) is not a Moore one.

An unexpected at first sight fact follows from the existence of
the non-Moore automaton Atmz(F,B): the automaton Atmz(F,B) may not be
embedded into the automaton Atm°(T’,B). Indeed, if Atm’(I,B) is not a
Moore automaton, then it cannot be a subautomaton of the Moore automa-
ton.

The following Lemma gives a construction suitable to produce of

the examples.

Lemma 3.4. Given set Z and semigroup I', let H=ZxF1. Define the
representation (H,T'): if h=(z,o0)eH, zeZ, oel* and yel', then hey=(z,0%).
Then

a) The representation (H,T') is freely generated by the set 2Z,
i.e. for any representation (A,I') and the mapping v:Z —> A there is an
unique extension to the mapping v:H —> A which commutates with the
action of T in H and A;

b) If the representation (H,I') is extended to the automaton

(H,T',B), then this automaton is a Moore one.

Proof. a) Define the mapping v:H — A by the rule: if h=(z,7)eH,
then hv=(z,7)v=zvoreA. Then for any element 71er holds (howl)v=
(2,77, )"=zvonl=(2"°7) 011=h"°71-

We can assume that ZcH, identifying elements zeZ with the ele-
ments (z,1)eH. Since the action of I' in H and A commutes with the map-
ping v, the extended mapping v is unique. Indeed, if (z,y)erFl, then
(z,20)7=((2,1) o) =(2, 1) oy=2" o1

b) Define the mapping y:H — B in the following way: if h=(z,7),
yel' , then hw=(z,1)*7 ; if h=(z,1) then hw is supposed to be arbitrary.
In this case for h=(z,y)eH, and for 7IEF holds (howl)w=(z,771)w=
(z,l)'v?l. On the other hand, h*71=(z,7)*71=(z,17)'71=((z,1)07)*71=
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(2.1)'73'1 Hence, (ho;yl)w=h*3r1 and therefore (H,I',B) is a Moore automa-

ton.
1.3.3. Homomorphisms of Moore automata

Proposition 3.5. Each automaton is « homomorphic (in states)

image of the Moore automaton.

Proof. Let us construct a new automaton §=(AxB,X,B) by the auto-
maton @A=(A,X,B) setting: (a,b)ox=(aox,a*x); (a,b)*x= asx. Define the
mapping y:AxB — B as (a,b)w=b. Then ((a,b)ox)¢=(aox,a*x)w=a'x=(a,b)’x.
Hence, # is a Moore automaton. The triplet of mappings (u,ex,sB) with
the mapping p:AxB —> A defined by the rule (a,b)“=a, is a homomorphism
of the automaton & on 4:

€
((a,b)ox)“=(a°x,a'x)“=a°x=(a,b)“°x x

(a,b)'x)€B=(a,b)'x=a*x=(a,b)u*xEx
Proposition 3.5 means that each automaton is equivalent in states
to a Moore automaton and therefore, any automaton can be modeled by a
Moore automaton. It is essential that in this case the number of states
of the automaton increases.
Since not every automaton is a Moore automaton (Proposition 3.3),

then from Proposition 3.5 follows:

Corollary. A homomorphic image of the Moore automaton may not be

a Moore automaton.

In view of the Corollary the question arises, when a homomorphic

image of the Moore automaton is again a Moore automaton.

Proposition 3.6. Let @ be a Moore automaton with the determining
mapping ¢ and p=(p1,p2,p3) be a congruence of #, such that pcherw. Then

the quotient automaton @/p is also a Moore automaton.

Proof. Let u=(u1,u2,u3) be a natural homomorphism of the automa-
ton @ on A/p. Since pcherw, then the mapping ¢:A — B induces a mapping
|/J':A/p1 — B and w=p1¢’ Take the mapping ¢=¢’u3:A/p1 d B/p3
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Y

———> B
A

A
ull v
e

a/p~———B/p,

K, o=yl (3.1)

and show that ﬂ/p=(A/p1,F/p2,B/p3) is a Moore automaton with the deter-
mining mapping ¢.

Indeed,
M [ [T TRV
lal*lyl=[asy]=(a*y) >=((asx)¥) 3=(aoy) ‘=(acy) * 3=

1
=lacy] ’=lacy]¥=(lalo[y])?,

where [a]EA/pl, [7]eF/p2, aeA, yel.
We have shown that #A/p is a Moore automaton and that the determi-

ning mapping y of #/p can be "passed" through B.

Corollary. If there exists a homomorphism u=(cA,p2,u3) of the
Moore automaton #A=(A,I',B) on the automaton A’=(A,I"’,B’) such that €, is
an identity mapping, in particular, if pu is an epimorphism in inputs or

outputs, then A' is a Moore automaton.

Let p=(p1,p2,p3) be a congruence of the Moore automaton #@ and let
M=(u1,u2,u3) be a natural homomorphism of @ on #/p. The congruence p is
called a Moore congruence (corresponding to it homomorphism p is called

a Moore homomorphism) if for a certain determining mapping ¢ holds
picKeeri
Proposition 3.7. If p is a Moore congruence of the Moore automa-

ton A, then 8/p is also a Moore automaton.

Proof. According to Proposition 1.1 the homomorphism p of the
automaton & on A’=(A’,I'",B’)=A/p admits the decomposition of the form

~ o~ o~

by

Hy By By

(A,',B)—™ (A,T',B’)—/ (A’,T',B’)—™ (A’,T’,B’)

The automaton (A,I',B’) is an image of the Moore automaton under the epi-
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morphism in outputs ﬁa' Hence, by the Corollary of Proposition 3.6 it is

also a Moore automaton with the determining mapping W1=WH;
v
_—

Yu (3.2)

|

™
>
Pe—p
p‘S
We——w
=
[A)
HS
]

The automaton 82=(A',F,B’)=(A/p1,F,B/p3) is a homomorphic image of the
automaton Sl=(A,F,B’). Since pcherwu3=Kerw1, by Proposition 3.6 32 is a

Moore automaton

V=, (3.3)

with the determining mapping wz
Finally, the automaton A’'=#/p is an epimorphic in inputs image of

the Moore automaton HZ and consequently it is Moore automaton.

Proposition 3.8. The homomorphism p of the Moore automaton
A=(A,T',B) with the determining mapping Y on the automaton #A’=(A’,T’',B’)
Is a Moore homomorphism, if and only if there exists a mapping J:A' -

B’ with the commutative diagram

A——— B

u fiy w P=yu, (3.4)

S ?

Proof. Let p be a Moore homomorphism, i.e. p1=](eru1 satisfies the
condition pcherw“a. Arguing as above, we represent pu in the form of
MMM By the equalities (3.2) and (3.3) we have p1w2=p1w'=w1=¢u3. Thus
M1¢2=W#3, that is, taking the mapping wz as Y, we get the required equa-

lity p =y
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Conversely, if for some mapping J:A’ —> B’ the equality WH3=M1$
holds, then p1=Kerucheru1$=Kerwu3, that is p is a Moore homomorphism.

Corollary. If the homomorphism p of the Moore automaton @ on @&’
satisfies conditions (3.4), then A’ is a Moore automaton with the deter-
mining mapping J.

The inverse statement is not true: from the fact that pu:@—> 4’ is
a homomorphism of the Moore automata does not follow that p is a Moore
homomorphism.

Consider the case when the homomorphism pu:# —> &’ of the Moore
automata is a Moore homomorphism.

1) If the automaton #A=(A,I',B) satisfies the condition AoI'=A and
u=(u1,u2,u3):ﬂ —> A’ is a homomorphism of the Moore automata, then p is
a Moore homomorphism.

Indeed, let #A’=(A’,I’,B’), ¢ and Y’ be the determining mappings

of the automata A and A’, respectively. Take an arbitrary element aIEA.

Since Aol'=A, then for some a€A, yerl, a1=a°7. Then
v, i T By By’

a, =(acy) “=(a*y) =a "*y °; on the other hand, a, =(aoy) =
”1 “2 " “1 “2

(a "oy “)7 =a "y °. Hence, WH3=M1W' and i is a Moore homomorphism.

2) Assume that Ao is less than A. Take aeA\AoI' and suppose that

TR
E ! belongs to the image of the set B under the mapping My (in parti-

cular, it takes place when p is the homomorphism of the automaton & on

the automaton #A’). Let us denote by b an arbitrary fixed element from B

Moy

for which b 3=a ! . Since the determining mapping y¥:A — B beyond the
v = R T

set Aol can be defined arbitrarily, let a"=b Thus, a =a .

T
If a 'gA’ol’, then by the arbitrariness of the determining map-

By
ping ¢’ beyond the set A’e[’ one can assume that a eB 7. If
[T TR T A N By R,
a tea tor 2, then for some aleA, wler, a 1=a1 °Y, and a =a, *71 =
[T’
(a *r.) 3B 3. It is left to consider the occasion, when for some ele-

11

K [

ment a€A\AoI' its image a ! lies in A’oI’\A 'sr 2. In this case it is

possible to construct an example of the homomorphism of the Moore auto-
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mata which is not a Moore homomorphism.

2
(A’,I’) where I'" is a semigroup SA, of all transformations of the set A’.

Example. Let A’={a1,a ,...,an}, n>1. Consider the representation

Take the set B'={b1,b2,...,bn} and extend the representation (A’,I’) to
the automaton #A’=(A’,I’,B’') by setting a1*7=bj, if a or=a,. The axioms
of the semigroup automata are evident. @A’ is a Moore automaton with the
determining mapping ¥’ - a?’=b1 Take the subautomaton (A,T',B)c#’ as the
automaton A. In this subautomaton A=A’, I is a subsemigroup of I’ con-

sisting of all mappings of A to the set (az,...,an}; B=(b2, bn) 4 is

also a Moore automaton with the following determining mapping: af bi, if
i>1; af can be defined arbitrarily. The identity mapping of the automa-
ton A on itself is a homomorphism @ — A’, but it is not a Moore homo-
ny’ By
morphism, since the element a =b1 does not belong to the set B and,

i

therefore, it cannot be equal to a 3

1.3.4. Moore semigroups

The example of the automaton Atm®(I',B) shows that the property of
being a Moore automaton depends on the properties of the semigroup T.
The next theorem 3.10 gives the necessary and sufficient conditions for
the semigroup I' under which the automaton (A,I',B) is a Moore automaton

Let T be an arbitrary semigroup, WEF Consider the mapplng 7 r -
', defined by the rule: for every xel, 7(x)—7x Let p—p(y)—Kerv By the
definition of ;, xp(y)y, x,yel, is equivalent to yx=yy. For each pair of
elements 71,726F denote by p(wl,yz) the equivalence generated by the
equivalences p(yl) and p(z?). Let us call the semigroup I' a Moore semi-
group, if each pair of its elements v, and v, has the right-hand units x
and y (i.e. ¥ X= 72y=72) which are equivalent by p(Vl.Vz). For
example, each semigroup with a unit is a Moore semigroup. Given the
automaton Atmz(F,B)=(Fun(F,B),F,B). the element geFun(I',B) is called
divisible by yeI', if there is such element ¢eFun(Il',B), that g=gpoy.

Lemma 3.9. The element geFun(I',B) is divisible by yel' if and only
if xp(y)y implies g(x)=g(y).

Indeed, let g=poy and xp(¥)y. Then g(x)=(poy) (x)=p(¥yx)=(poy)(y)=
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g(y). Inversely, let function g satisfies the assertion of the Lemma.
Let us find ¢. For each element zel' of the form z=yx (for some x) take
¢(z)=g(x). Here, ¢(z) does not depend on the choice of x. Beyond the set
of all yx define ¢ arbitrarily. Then (poy)(x)=p(yx)=g(x), that is poy=g.

Theorem 3.10. [89]

a) If in the semigroup automaton A=(A,T',B) the semigroup T is a
Moore semigroup, then @ is a Moore automaton.

b) If Ath(I‘,B) is a Moore automaton, then the semigroup T' is a

Moore semigroup.

Proof. a) It suffices to show that the equality a oy, =a oy,
implies Aa1'71=az‘72' Let 31°Z1=a2°72=a' We assocmiie with this a the
mapping a:I' — B defined by a(x)=a*x, and let t=Kera. Then xty is equi-
valent to that a*x=a*y. Show that for the given v, and L p(71) and
p('a‘z) belong to T. Let xp(z’l)y, x,yell (i.e. 71x=71y). Then

arx= (a1 °7, )*"x=a1*'*3r1x=al*'*ar1y=(a1 7, )*y=ary,
Hence, xty and p(?l)ct. Similarly, p(?/z)cr. Thus, p(wl,wz)cr.
Now let x and y be right-hand units for 7, and v, respectively,

which are equivalent by p(eri,afz) (they exist, as I' is a Moore semi-

group). Since p(wl,'yz)cr, then xty, i.e. a*x=a*y. Then

a %y =a "y x= ( a e, )"x=a*y=(azowz)*y=a2*12y=a2w2.
So, a1'71=a2'72 and @ is a Moore automaton.

b) Let Atmz(l",B) be a Moore automaton and the semigroup I' be a
non-Moore semigroup. Then there are elements ',)‘1 and 72 of I', such that
the corresponding property is not satisfied. This means that either for
one of the elements, say for 71, there is no right-hand unit, or any
pair x,y of the right-hand units for v, and v, respectively, is not
equivalent by p('a’l.vz).

At first assume that 7, does not have a right-hand unit. Take an
arbitrary function geFun(I,B), divisible by both v, and v, It is
obvious that these functions exist. Let g=p°7, and g=¢1°a'2 The function
¢ may be chosen in such a way that ﬂl’(?'l)*!/l(?'z)- Indeed, (see Lemma 3.9)

its value beyond the set of the elements of the form ¥ X was def ined
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arbitrarily. Since 7, does not have the right unit, that is, for all xel’
holds LIRS the value of ¢(71) can be chosen arbitrarily. In particu-
lar, we can take w(71)$W(72). Then ¢'71=¢(71)¢W(72)=W'72. Since g=pe°y =
¢°72, the inequality w*71¢$*72 contradicts that Atmz(F,B) is a Moore
automaton.
Now let x,y be the right units for 7, and 7, respectively, and x

and y are not equivalent by p=p(71,12). Then the classes [x]p and [y]p
are different. Take the function geFun(I',B) satisfying the following
conditions:

1) if u,vel' and upv, then g(u)=g(v),

2) gx)=#gly).
Such function exists, since [x]p#[y]p and it is divisible by ¥ and by
7, Indeed, if up v (or upzv), then upv and g(u)=g(v). By Lemma 3.9 this
implies, that g is divisible by 7, (and by 72). Let g=p°7, and g=¢oyz
Then

pry =p(y )=p (7 x)=(pey ) (x)=g(x);

Yy S )=u(r y)= (Yer,) (y)=g(y).

We get w*71¢w*72, contradicting to the fact that Atmz(r,B) is a

Moore automaton. The theorem is proved.

Corollary. All semigroup automata A=(A,T',B) are Moore automata if

and only if T is a Moore semigroup.
1.3.5. Cyclic Moore automata

Let us observe the case when the cyclic automaton is a Moore
automaton. It is clear that Atm(I')=(I"",I,[') is a Moore automaton with
the determining mapping w:l"1 — I identical on I' and arbitrary on the
external unit. Not every cyclic automaton is a Moore automaton. For
example, the universal automaton Atml(A,B) is cyclic, but it is not a
Moore automaton. Each cyclic automaton is a homomorphic image of the
automaton Atm(I'). Hence, not every quotient automaton Atm(T')/p is a

Moore automaton.

Proposition 3.11. Let p=(p1,p2,p3) be a congruence of the automa-

ton Atm(I'). The cyclic automaton Atm(I')/p is a Moore automaton if and



47

only if p is a Moore congruence.

Proof. Atm(I') is a Moore automaton. By Proposition 3.7, if p is a
Moore congruence, then Atm(I')/p is also a Moore automaton.

On the other hand, let Atm(I')/p be a Moore automaton with the
determining mapping ¥’; u=(n1,u2,u3) be a natural homomorphism corres-
ponding to the congruence p.

1 “1"1, s

Since (I'') cl"/p3=l“ , then the homomorphism p is a Moore homo-
morphism (and p is a Moore congruence).

Proposition 3.11 gives necessary and sufficient conditions for an
arbitrary cyclic automaton to be a Moore automaton. The following Propo-

sition gives such conditions for a reduced cyclic automaton.

Proposition 3.12. E(v;:r —> B) is a Moore automaton, if and only
if for 71,7261" the equality (le)¢=(72x)w for all xel' implies the equa-

<

; ¥

lity ¥ =v,
Proof. Let Atm(y:I — B)=(I'"/p,T,B) be a Moore automaton with the
determining mapping go:l"l/p —> B. Denote by '?=(t,cr,ca) the homomorphism

of the automaton Atm (y:I' — B)=(I'',I,B) on Atm(y:T — B) and consider
the mapping 'cq):l'1 - I‘l/p — B. Then,

€

£ £
7y P=(5)P=((10y)T)P=(1%0y T)P=(1%09)P=1Tay=1ny T=(1%) P=1ey=(109)¥=p".

So, 7'//=,JT§0 for any yel.

Now let (3' x)w=(7 x)w (i.e. e »x) for all xel'. Since E(w:

T
I' = B) is a reduced automaton then ¥ -ar From the equalities 7¢=7 g

T
1

T
and 7 -7 follows that v —7"’ Really, "r'f 33 —(7 )‘p—(er )1!’_3, L= 'I'
Conversely, let for any ¥.,7, el from the equallty ('y x)w—(r x)'p
v_ V‘

xel’ (and hence, from ¥ p'y ) follows the equality 'a‘ It 1s necessary

to show that Atm(w:l" —> B) is a Moore automaton.

*
First let us consider the automaton Atm (y:T —> B). It is a Moore
automaton. As a determining mapping of this automaton one can take any

extension of the mapping y:I' —> B to the mapping r' — B. Denote it also

= . -
by y. The automaton Atm(y:T —> B)=Atm (y:T — B)/p is a homomorphic
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image of the Moore automaton Atm'(w:r — B); here 5=(p1,p2,p3)=KerE. By
the Proposition 3.6 it suffices to show that pcherw.
As it was mentioned in the Remark before Proposition 1.6 (Section

1) the condition Y P, and the equality (71x)w=(72x)w for all xel are
]
2
ments, say 7, is equal to 1 and the class [1]p contains elements from T,

equivalent. This implies that 7=y for 71,725F. But if one of the ele-
then using the arbitrariness of the extension of the mapping y:T — B to
w:F1 — B, set 1w=7¢, where wé[l]p This definition of 1W does not
depend on the choice of yeI', since, if yl,yzelllp, then 71p72 and thus
]

71¢=7ﬁ Now the condition 7,P7, implies the equality 71=72

for all 11,72
from r' This means that pcKery, and Atm(y:T — B) is a Moore automaton.

If the semigroup I' has a unit, then Atm(y:I' — B) is a Moore

automaton (see Proposition 3.2). Using Proposition 3.12 construct an

example of non-Moore automaton Atm(y:I" — B).

Example. Let the semigroup F={71,72,13,74) has the Cayley table

X 71 72 1"‘ 74
7l 3’1 72 73 74
72 74 73 12 71
73 71 72 13 74
74 74 13 72 71

with the natural order of multiplication (it is a semigroup of inputs of
the semigroup automaton ¥(#A) generated by the automaton A from the

Ve .
i

example in 1.1.1). Take the set B=(b1,b2,b3,b4) and assume v

i=1,2,3,4. For I',B and y thus defined consider the automaton Atm(y:I—
B). From the Cayley table we can see that ¥ X=Y X for all xeI’, then of
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course (71x)w=(73x)w. At the same time b1=yf¢7£=b3. By Proposition 3.12
this means that KEE(W:F —> B) is not a Moore automaton.
1.4. Free pure automata
1.4.1. Definition. Implementation

Let us consider the category of pure I'-automata, whose objects
are pure automata with the fixed semigroup of inputs I' and morphisms are

the homomorphisms of the form (”1'°r'“3)’ where £ is an identity map-

ping of the semigroup I'. An automaton (A,F,;; is called a free
I'-automaton with a free system of generators (Z,Y), ZcA,YcB if for any
I-automaton #’=(A’,I'’,B’) and every mappings “1:2 —> A, ;.13:\"“> B’ there
exists a unique extension of these mappings to the homomorphism p=
(pl,cr,ua):ﬂ —> #A’. From the uniqueness of the extension follows the
uniqueness (up to the isomorphism) of the free I'-automaton @ with the
system of free generators (Z,Y).

For each semigroup I' and each pair of sets (Z,Y) it is possible
to construct a free over (Z,Y) automaton with the semigroup of input
signals I'. For this purpose take a Cartesian product H=2x'' and define
(as in Lemma 3.4) the action of the elements of I' in H by the rule: if
h=(z,0)eH, yeI', then hoy=(z,0y). By Lemma 3.4 the representation (H,I') is
freely generated by the set Z, that is, for any representation (A,T') and
mapping v:Z — A there is a unique extension to the mapping v:H—> A per-
mutable with the action of ' in H and A. Let us assume that the set Z is
included into H by identification of the elements zeZ with the elements
(z,1)eH. Then elements (z,7)=(z,1)ey are identified with zey. Correspon-
dingly, the set H=ZxI'' can be identified with the set ZoI''. Take Yu(2ZxI')
as the set ® of output signals and define the operation * according to
the rule: if h=(z,c)eH, yel, then h*y=(z,0y)ed. Then it is possible to
identify elements of the form (z,y)e® with the elements z*y. Denote the
set Zx'cd by Z*I'. We obtain the automaton (H,T,®).

Let us verify that this automaton is free and has the free system
of I'-generators (Z,Y). Take an arbitrary automaton (A,I,B) and mappings

K :Z —> A, uazY —> B. The representation (H,I') is freely generated by
1
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the set Z, therefore the mapping ul:Z —> A is uniquely extended to the
mapping u1:H —> A in such a way that for all heH and yel' holds

LT By By
(hoy) "=h "oy. For the element (z,y)eZxI’ set (z,y) "=z *y. Together

with ua:Y — B this gives the mapping u3:¢ —> B; and if h=(z,0)eH, 7e€l,

My By M ! ®y ’y
then (h*y) “=(z,0%) "=z *0y=(z oo )*y=(z,0) *y=h "#y. Thus, the pair

of mappings (ul,us) is extended to the homomorphism of the automata
(4,T,®) — (A,I',B). The uniqueness of this extension follows from the
freeness of the representation (H,I') and from the axioms of the homomor-
phism of automata. So the automaton (H,I',®) is freely generated by the
pair of sets (Z,Y). Denote this automaton by Ath(Z,Y).

Our next aim is to consider the category of the automata with a
variable semigroup of input signals. Objects of this category are arbit-
rary pure semigroup automata while morphisms are the homomorphisms of
these automata. In the given case the system of free generators of a
free automaton consists of the three sets Z,X, and Y. The automaton & is
free with the system of generators (Z,X,Y), if for any automaton
A’=(A’,T’,B’) of the given category and for any triplet of the mappings
uI:Z — A’, uZ:X - I, u3:Y —> B’ there exists a unique extension of
these mappings to the homomorphism p:# —> A’'. Such automaton is denoted
by Atm(Z,X,Y). To construct such automaton it is necessary to take the
free semigroup F=F(X) with the free system of generators X and then the
automaton Ath(Z,Y). It is easy to see that the constructed automaton is

actually free.
1.4.2. Criterion of freeness

The following proposition gives the criterion of freeness of an
arbitrary automaton. Let us consider the automaton @=(A,I',B). The ele-
ment a€A is called the divisor of the element beA if for a certain ele-

ment yel’ holds b=aoy.

Theorem 4.1. The automaton @&A=(A,T,B) is free, that is,
A=Atm(Z,X,Y), if and only if the following conditions are satisfied:
1) for any yeI' and a€A the element aoy is not a divisor of a;

2) for any a,beA, ¥ ,7,9€l the equality acy=bey implies a=b and the
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equality ao']1=ao'3'2 implies 71=72;

3) from the equality ao71=boz'2 it follows that either a=b or a is a
divisor of b; or b is a divisor of a;

4) each element aeA may have only a finite number of divisors;

5) the equality a¢71=b";2 implies a071=b072.

Proof. Recall first the well-known theorem on the structure of a
free semigroup (see, for example, [53], chapter IX). The semigroup F is
free if and only if the following conditions are satisfied:

() F does not have a unit,

(B) F is a semigroup with two-sided cancellation,

(¥) the equality f1f2=f3f4, where fl,fz,f3,f4el:‘ implies that either
f1=f3 or f1 is left-divided by f3, or f3 is left divided by f1’

(8) each element of the semigroup F may have only a finite number of
different left divisors.

Now let A=Atm(Z,X,Y)=(H,F,®). Show that conditions 1-5 are satis-
fied.

1) Let a=(z,f)eH=Z><F1 and yleF. Assume that aoyl=(z,f)oyl=(z,f71)
is a divisor of a. This means that a=(aoyl)o';2 for a certain ',)‘ZEF, that
is, (z,f)=(z,fyla*2). Therefore, f=f7172, which contradicts the condition
that the semigroup F is free.

2) Let a=(zl,f1) and b=(22,f2) belong to H, 71,72,7EF and aoy=
bey. Then (21.f11)=(22,f27). This means that z =z, and f17=f27. Since
the free semigroup is a semigroup with the cancellation, then f1=f2_
Thus, (21,f1)=(22,f2), that is, a=a,.

If aql:aogrz, then (zl,f171)=(zl,f172). Therefore, f171=f172.
Cancelling by f1 we get ¥,

3) Let aoarl=boa'2, that is, (zl,f171)=(zz,fzwz). Then z,=z,
f171=f272. Since the semigroup F is free, then from the latter equality
it follows that either f1=f2 or f1=f2x, or f2=f1y for certain x,yeF. If
f1=f2. then a=b; if f1=f2x, then a=(z1’f1)=(z1’f2X)=(Zz’fZX)=(zz'f2)°x=
box, that is, b is a divisor of a; if f2=f1y, then b=aoy, i.e., a is a
divisor of b.

4) If b=(zz,f2) is a divisor of a=(zl,f1), that is, a=box for a

certain xeF, then zl=z2 and f1=f2x; f2 is a left divisor of f1' Since in
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the free semigroup each element may have only a finite number of diffe-
rent left divisors, then for the given f1 there exist only a finite num-
ber of different f2 such that f1=f2x and therefore, only a finite number
of the elements b=(zz,f2) which are divisors of the element a.

5) Satisfaction of the given condition immediately follows from
the definition of the operations o and * for the automaton Atm(Z,X,Y).

Conversely, let the automaton #=(A,T',B) satisfies conditions 1-5.
First verify that I' is a free semigroup. It suffices to check the condi-
tions («)-(8).

() From condition 1 it follows, in particular, that for all aeA
and 71,7ZEF, (aoyl)o72¢ae71, that 1is aozlvztaoyl. Therefore 7172¢71 and
there is no unit in T.

(B) Let ¥ =N Take an arbitrary aeA. Then (a071)°7=(a072)07.
By the condition 2 it follows that acy =acy, and ¥, If 771=772, then
(a°7)°71=(a°7)072 and again v, Thus, I' satisfies cancellation law.

() Let L is satisfied in T. For aeA holds
(a071)°72=(a°73)°74. By the condition 3 either acy =acy, Or aey, is a
divisor of aoyS,or aoy3 is a divisor of aoyl. It a071=a073, then 71=7f
if aey, is a divisor of acy then a073=(aowl)ox=a°71x and (S R i.e.
7, is a divisor of L if aoy, is a divisor of aoy,, then 7, is a divi-
sor of 7{

(8) Verify that each yel' has only a finite number of left divi-
sors in I'. Let ¥=0y; o,yel'. Then acy=(acc)oy and acc is a divisor of
aoy. By the condition 4 there is a finite number of different acoc. Howe-
ver, in virtue of the condition 2, U}*UZ implies aovl¢ao¢2. Therefore
there is also a finite number of different o.

Show now that the representation (A,I') is freely generated by a
certain set Z, that is, A=Z><l"1 and the operation o is defined by the
rule: if a=(z,y)eA and xel', then aox=(z,yx). An element aeA is defined
to be prime if it does not have proper divisors. Denote the set of all
prime elements of A by Z. This set is not void in virtue of the condi-
tion 4. Let z be a fixed element of Z and zel'={zoy,yel'} be a set of all
zoy, ye€l. By the condition 2 all zoy are different. Besides, show that

if z1 and z2 are different elements of Z, then the sets zloF and z_oI'
2
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are disjoint. Indeed, let z1°71=zz°72' Since 21*22' by the condition 3
either Z,2,°x or z, =z oy for certain x,yel'. This contradicts the fact

that the elements z1 and z2 are prime. Thus, if zloyltzzoyz, z ,zzeF,

1
then Z1=Z and 71=72. Moreover, A is a union of the set Z and sets zol,

zeZ. Hen;i, A=2xT'!. So we can write now zoy also in the form (z,y) as
for Cartesian products. Then (z,y)ox=(zoy)ox=zoyx=(z,¥x).

Denote the set of "actually observed" output signals by Qo (00
being the set of such output signals b, that b=a*y under certain a€A and
7€l’'), and the set of all the remaining output signals of B by Y. To com-
plete the proof it is necessary to show that ¢°=2xr holds and that the
operation * is defined by the rule: if a=(2,7)EA=Z><l"1 and xel, then
a*x=(z,yx). Let z*I'={z*y,yel'}, zeZ. By the condition 5 and inasmuch as
all zoy differ, it follows that all z*y are also different. Arguing as
above, we conclude that 21'F and zZ*F, zlaez2v are disjoint and ¢o is a
union of the sets z*I' on all zel. It means that ®0=Zxr. So, along with
z*y we can write (z,y), and for any a=(z,y)eA and xel we have
a*x=(z, y )*x=(zoy ) *x=z*yx=(z,¥x).

Thus, it is shown that if the automaton A=(A,I',B) satisfies con-
ditions 1-5, then the semigroup I' is free, the representation (A,I') is
freely generated by certain set Z, B=(ZxI')uY for a certain set Y and the
operations o and * are defined according to the given rules, i.e. the
automaton @ is an automaton of the Atm(Z,X,Y) type.

If the set Z consists of one element and the set Y is empty, then
Atmr(Z,Y) is a free cyclic automaton and it can be identified with the
automaton Atm(T)=(r!,r,T).

1.4.3. Some properties

By Lemma 3.4 each free automaton is a Moore one. It is clear that
each free automaton Atmr(Z,Y) is an exact automaton. However, the next
Proposition 4.2 shows that not every free automaton Atmr(Z,Y) is left-
reduced.

Consider left regular action of the semigroup i on the semigroup
I given by the rule: if werl,xer, then yox=yx. Denote its kernel by p,

i.e. 71p72, vl,wzerl means that 71x=72x for all xel'. A semigroup TI' is
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called exact if the kernel p is trivial. Exactness of the semigroup r
implies that for any elements 71,725F1, 71=72 there exists such xel that
71x:72x.
Proposition 4.2. Let T be the kernel of reduction of the automa-
= = = H-
ton Atmr(Z,Y) (H,T,®) and h1 (21,71), h2 (22,72) be the elements of
Then hlrh2 if and only if 2,7z, and 7,PY,

Proof. hlrh2 implies that (zl,rl)'x=(22,72)'x is satisfied for
all xel, that is (21,71x)=(22,72x). The latter is possible only if 21=22
and 71x=72x, i.e., if zl=z2 and 71p72. The inverse statement is verified

in a similar way.

Corollary. The automaton Atmr(Z,YJ is (left) reduced if and only
if the semigroup I' is exact. In particular, Atm(Z,X,Y) is a reduced

automaton.

We have considered free semigroup automata. It is possible to
define the automaton, which is free in the class of the automata with
the arbitrary set X of the input signals. In order to construct such
free automaton it is necessary to take Atm(Z,X,Y)=(H,F,®) and reduce it

to the automaton (H,X,®).

Proposition 4.3. If the automaton (H,X,®) is free in the class of
automata with an arbitrary set of input signals, then each subautomaton

in (H,X,®) is also free.

Proof. Let (Hl,Xl,él) be a subautomaton in (H,X,®) and (Z,X,Y) be
a free generator system for (H,X,®). Consider the automata
ﬂ=(H1,F(X1),®1) and (H,F(X),®)=Atm(Z,X,Y). Since (Hi,Xl,Ql) is a rest-
riction of the automaton @ then it suffices to show that the semigroup
automaton & is free. Conditions 1,2,4,5 of the Theorem 4.1 are satisfied
in # since they are satisfied in Atm(Z,X,Y). It is left to verify the
fulfillment of the condition 3 in A. Let a071=b072 be given in A and let
a be a divisor of b in Atm(Z,X,Y), that is b=acy for a certain yeF(X).
It is necessary to show that 7€F(X1). From aoyl=b072 and b=aoy follows
acy =acyy,. By the condition 2 we have 7 =yy,. Since 71,725F(X1), then

7EF(X1). Therefore, condition 3 is satisfied and # turns to be a free
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semigroup automaton.

Appendix. Since a subsemigroup of a free semigroup is not neces-
sarily free, the statement similar to statement 4.3 is not true for the
semigroup automata.

In the appendix let us consider automata of the type (H,T,B)
which are partially free: it is assumed that the action of the semigroup
I in H (the representation (H,I')) is freely generated by a certain set Z
and the operation * is an arbitrary one. Show that such automata can be
defined by the system of mappings of the type wz:F — B by all zeZ. At
the beginning of Section 1 it was noted that if the representation (H,T)
is freely generated by the set Z, then H can be written in the form le‘1
and the action o is defined by the rule: if h=(z,t)erF1, vell, then
hoy=(z, T7).

By Lemma 3.4 (H,I,B) is a Moore automaton and the determining
mapping Y:H — B is uniquely defined on the set ZxI': (z,y)w=z*7. In its
turn, given the free representation (H,I') and the mapping y:H —> B, the
operation * in the automaton (H,I',B) is uniquely defined. Let us fix a

mapping Y:H — B. To each zeZ corresponds the mapping wz defined by the

rule: 7 z=(z,7)w=z*7. Using all these wz it is possible to reconstruct
Y. Therefore the automaton of the type (H,I',B) can be defined by the
sets of the mappings wz:F —> B for all zeZ. The notation Atm(wz:r —> B,
zeZ) is accepted for such automaton #=(H,T,B).

Each automaton (A,I',B) is a homomorphic in states image of the
automaton of the type Atm(wz:r —> B, zeZ)=(H,T,B).

1.5. Generalizations
1.5.1. Automata in an arbitrary variety

In the previous Sections pure automata, i. e. automata whose sets
of states and outputs do not have an additional structure, have been
considered. Now, let us define automata with sets of states and outputs
being the elements of a certain variety 6 of Q-algebras. We shall study
an important particular case of such automata, namely, linear automata.

Let 8 be a certain variety of Q-algebras. A triplet (A,X,B) with

the operations o:AxX —> A and *:AxX —> B is said to be an automaton in
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the variety 6 if A,B are algebras of 6 and for each xeX the mappings
a — aex and a — a*x, a€A are homomorphism of algebras of 6.

Semigroup automata in the variety 6 is obtained in a similar way.
If u=(#1,M2,u3) is a homomorphism of the automata in the variety 6, then
B,p, are supposed to be homomorphisms of the corresponding algebras of
6. As in Section 1, we can introduce special kinds of homomorphisms of
automata (in inputs, in outputs, in states), establish for them a cano-
nical decomposition, and construct the corresponding universal automata.
To the pair A,B of the Q-algebras corresponds the automaton Atml(A,B)=
(A,End(A,B),B) which differs from the similar pure one by End(A,B)=
EndAxHom(A,B), where EndA is a set of all endomorphisms of the algebra A
and Hom(A,B) is a set of all homomorphisms of A into B. Multiplication
in End(A,B) is defined as in S(A,B) (see 1.1.2). The operations o and *
are defined as in the automaton Atml(A,B) for the pure case. For each
automaton #=(A,I',B) in the variety @ there is only one homomorphism in
input signals # — Atm'(A,B), that is Atmi(A,B) is a terminal object in
the category of automata in 6 with given A and B and with homomorphisms
in input signals as morphisms.

Define now the universal automata Atmz(F,B) and Atm3(A,F). Let
the semigroup I' and Q-algebra BeB be given. The set Fun(T,B) of all map-
pings from I' into B is a Cartesian power Br; since 6 is a variety of
aléebras, then Bree. If w is an n-ary operation of Q, then this opera-
tion in Fun(I',B) is defined as follows: if wl,wz...,wnEFun(F,B). xel’,
then

(Wl,wz---,wnw)(x)=wl(x)...¢n(x)w.

Take the algebra Fun(I',B)ef as an algebra of states of the automaton
Ath(F,B)=(Fun(F,B),F,B) in which operations o and * are defined by the
following way: if yeFun(T,B), 7,xel, then (Yoy) (x)=p(¥yx); yrr=p(y). It

is easy to verify that
(wl' . .wnw)o'J:(\[Jloa’). B (Vln°’l)0h (\01 E -lﬁnw)"l:(wl'?)- v ('/Jn"l)w:

that is, the mappings ¢ —> Yoy, Y — yY*y are homomorphisms of algebras,

and that axioms of the semigroup automata are satisfied:
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Vor ¥, =Wor oy i ¥y 7 =Yy o7
The automaton Atmz(F,B) is a terminal object in the category of
automata (in the variety 8) with fixed I' and B and with homomorphisms in
states as morphisms.
If the homomorphism of the automaton (A,I',B) to Atm?(l’,B) is an
isomorphism, then (A,I',B) is called a reduced automaton.

The homomorphism of an arbitrary automaton (A,I',B) to Atml(A,B)
means a transition to the corresponding exact automaton while its homo-
morphism to Atmz(F,B) means a transition to the corresponding reduced
automaton.

Both these transitions provide a compression of the information
about input signals or states without loss of the information in output.

Let us introduce the universal automaton Atm3(A,F) related to the
elimination of the "extra" output signals. Let Q-algebra Ae®, the semi-
group I' and the representation I' = EndA, defining the action of I' in A,
be given. Denote by H a 6-free algebra with a set of generators AxI.
Consider the binary relation p on the set H: (a,7172)p(a071,72) on all
aeA and 71,725F, and ((al,y)...(an,y))wp(al,....anw,w) on all sets of
the elements al,az,...,an of A, (n=0,1,...) and on the n-ary operations
we); yel. By this relation generate the congruence p of the algebra H.
Denote the quotient algebra H/S by AeI'. If heH, then the corresponding
element of AeI' denote by [h]. Now define Atma(A,F) as the automaton
(A,T,Ael’) with the operation o defined by the given representation (A,I)
and the operation * defined by the rule: a*y=[(a,y)]. These conditions
provide that (A,I',Ael') is really an automaton in the given variety of
algebras. It is easy to see that the automaton Atm®(A,T) is an initial
object in the category of automata (in the variety 6) with the given
representation (A,I') and with homomorphisms in output signals as mor-

phisms.
1.5.2. Automata in categories

In the previous item we have discussed the automata in arbitrary

varieties. Generalizing further, it is possible to consider automata
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whose sets of states and outputs are replaced by the objects of an
arbitrary category K. For a fixed pair of the objects A,B of K consider
the set End(A,B)= EndAxHom(A,B) where EndA is a set of all the morphisms
from A into A and Hom(A,B) is a set of all the morphisms from A to B.
Multiplication in End(A,B) is defined in a usual way: if (wl,wl) and
(wz,wz) are the elements of End(A,B), then (”1'W1)(¢2'¢%’=(¢1¢2'¢1wz"
End(A,B) is a semigroup with respect to this multiplication. The automa-
ton over K is defined as a triplet (A,X,B) in which A,B are the objects
of K and X is a set with the mapping f:X — End(A,B). If X=I is a semi-
group and the mapping f:I' — End(A,B) is a homomorphism of semigroups,
then (A,I',B) is a semigroup automaton in the category K. The homomor-
phism f is called an automaton representation of the semigroup I'. The
mapping f:X — End(A,B) defines two mappings a«:X — EndA and B:X —
Hom(A,B); if xeX and xf=(¢,W), then xa=¢, xB=w. For the semigroup auto-

maton (A,I',B), o is homomorphism and B satisfies the condition: (7172)B=

vag; 7172er-

The operations ¢ and * in this general case are not defined.
However, e.g. in the case if the category K is a variety of Q-algebras,
these operations can be defined by the rule aox=ap, a*x=ay.

Let #=(A,X,B) and &’=(A’,X’,B’) be automata over K. A triplet
u=(M1,u2,u3) where uI:A —> A, u3:B — B’ are morphisms in the category
K and uZ:X — X’ is a mapping of sets, such that for automata represen-

tations
f:X —> End(A,B) and f’:X’ — End(A’,B’)

holds

TR,
x“u1=u1(x 5,
B M )B’ (5.1)

2
X =g (x

is called a homomorphism of the automata @ —> #A’'. Here xeX, and the
pairs («,B) and («a’,B') are defined by the representations f and f’.

Conditions (5.1) imply the commutativity of the following diagrams
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x* P
A— > 2 A—— 5 B
My o Ky i Ky
(x 2)(1' i% Z)Bn
Alm—— A A'——— B'

This generalizes the conditions (1.2) defined before.
1.5.3. Linear automata

We have already introduced automata in the arbitrary variety 6.
Taking a variety of the linear spaces over a certain field K or a varie-
ty of modules over a certain commutative ring as 6, we get a linear
automaton. In other words, an automaton (A,X,B) is a linear one if A and
B are linear spaces over the field K (or modules over some ring) and the
mappings A into A and A into B defined by the operations o and * are
linear mappings. As.a rule, we shall consider the automata in the cate-
gory of the linear spaces.

An automaton is called finite-dimensional if the spaces A and B
are finite-dimensional. If, moreover, the field K is finite, then the
sets A and B are also finite and the automaton is called finite.

Examples. 1. Let A and B be the spaces of n-dimensional and m-
dimensional rows over a certain field K, X be a set whose elements are
pairs of matrices x=(Mx,Nx), with Mx being nxn matrix and Nx being nxm
matrix. The operations o and * are defined in the following way: if
aeA, xeX, then a'x=aMx, a*x=aNx. The linear automaton (A, X,B) obtained in
such a way is called a matrix automaton. It is clear, that each exact
linear finite-dimensional automaton is isomorphic to a certain matrix

automaton.

If d4=(A,X,B) is an exact linear automaton, then the elements of X
« ¢
can be represented as generalized matrices of the form [ 00 ], where

acEnd A, geHom(A,B); in this case aoy=awa, a*y=aep.

2. Let L=K[x] be the ring of polynomials of one variable x over
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the field K, U and V ideals in L, such that UcV. The quotient rings L/U
and L/V one can consider as vector spaces over K; denote these spaces by
A and B. Let, further, X be a certain set of the polynomials of L.
Define the operations o and *: if ¢el, a=[pl=(p+U)eA and geX, then
assume that aog=pg+U, a*g=pg+V. The condition UcV provides the indepen-
dence of the operation * from the choice of the representative ¢ for the
given a. The obtained linear automaton (A,X,B) is called a polynomial
automaton.

Let A=(A,T',B) be a linear semigroup automaton. Its congruence is
a triplet p=(p1,p2,p3) in which P,,P, are congruences of the linear spa-
ces A,B respectively and e, is a congruence of the semigroup I'. The con-
ditions (1.5) should be satisfied: if ap.a, ¥.PI, aleA, 1leF, then
(alowl)pl(azowz) and (al*yl)pa(az*yzL

Since the congruence of the linear space is determined by its
subspace containing zero, the congruence of the linear automaton @ can
be defined as the triplet p=(A0,p2,BO), where AD,B0 are the subspaces in

A and B respectively, p_ is a congruence of the semigroup I' such that:

2
AooFcAo, AO*I"o:B0 and if aeA, wlpzya, 7leF, then aoyl—aoyzer,
a*yl-a*zzeBo

As for pure automata, the quotient automaton A/p=

(A/pl,F/pz,B/p3)=(A/AO,F/p2,B/Bo) can be constructed.
1.5.4. Affine automata

In practice one has to consider automata, which are more general
than linear ones. These are the automata whose input signals act on the
states as compositions of the linear transformations and transformations
of the special form, which are called translations. In order to consider
this case define the affine automata.

Let A be a vector space, a€A. A mapping ;:A —> A defined by the

rule: if xeA, then xa=x+a, is called a translation a of the space A cor-

responding to the element a. The relation a1a2=a1+a2 is obvious; thus
the translations constitute a group isomorphic to the additive group of
the space A. Denote this group by A. It is easy to see that the transla-

tion is not a linear transformation.
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Consider vector spaces A and B. A mapping of the form og, where o
is a linear mapping from A into B and B is a translation of the space B
corresponding to a certain element beB is called an affine mapping from
A into B. The set of all affine mappings from A into B is denoted by
Aff(A,B). Elements of Aff(A,A) are called affine transformations of the
space A. If aﬁ is an affine mapping from A into B and ¢; from B into
C, then their product is also an affine mapping from A into C, and holds

~ ~ -~
(ob) (pc)=0p (bp+c). (5.2)

Associativity of this multiplication is easily verified.

Linear spaces with affine mappings as morphisms form a category.
Automata in this category are called affine automata. In other words, an
affine automaton is a system (A,X,B,f) where A,B are vector spaces, X is
a set, f is a representation: X —> Aff(A,A)xAff(A,B). As before, defi-
ning of f is equivalent to that of two representations wa:X—>Aff(A,A) and
B:X — Aff(A,B). These representations define the corresponding opera-
tions o and *. From now on we shall omit the symbol f in the automaton
notation. The semigroup affine automaton #=(A,T',B) is defined in a simi-
lar way, but the representations o«:I' —> Aff(A,A) and B:I —> Aff(A,B)

have to satisfy the following additional conditions

1) o is a homomorphism of the semigroups;

2) if 7,96, then (rx)P=% 3 fF; (5.3)

In contrast to linear automata, affine ones cannot be considered
as the automata in a certain variety, since affine mappings are not
homomorphisms of the linear spaces.

A linear automaton can be associated with each affine automaton.
Consider this correspondence. Let the semigroup affine automaton
A=(A,[,B) be defined by the representations o:T —> Aff(A,A),
B:T' —> Aff(A,B). Aff(A,A) is a semidirect product (see [60]) of the
semigroups EndA and R; Aff(A,B) is Cartesian product of Hom(A,B) and é.
In accordance with this the following four mappings al,az,Bl,Bz corres-

pond to the mappings « and B: if yeTl, 7u=da, 7B=¢b, o€EndA, ae€A,

peHom(A,B), beB, then aI:F — EndA and aZ:F —> A are defined by
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¢X1 0,2
¥y =0, ¥ =a, (543.)

and B.:I' — Hom(A,B) and B_:I' — B are defined by
1 2

B1 Bz
¥ =p, ¥ =b. (5.4b)
By the definition of these mappings we have:
o o o B, a« B
1 11 1 171
= : = ; 5.5
p) = v, 5 ) = 7, (5.5)
[- SR S S 4 B. a_ B, B
2.2 1 2, 2_ 2 "1 2
(r2,) "=y "7, 47,5 (r,7,) =2 "7, *v, . (5.6)

Indeed,

a o« o o a .o o o o o o o A
(r2,) =v 7,=(07,)) 1(7172) 2=(711712)(721722)=711721(712721+722)-

(The latter equality follows from the equality (5.2)). Similarly for B

too.

Equalities (5.5) mean that the mappings uI:F —> EndA and BI:F g
Hom(A,B) define the linear automaton H£=(A,F,B) with the same basic sets
as in the automaton # and with new operations o’ and *’. Using these
notations we can write

s “2 Bz
aoy=ao y+y ; ary=a*’y+y ;
Conversely, a linear automaton and two mappings of the form (5.4) with
conditions (5.6) define the affine automaton.

If u=(u1,p2,u3) is a homomorphism of affine automata: (A1’r1'B1)
=% (Az‘rz’Bz)’ then the same triplet of mappings (ul,uz,uz) is a homo-
morphism of the corresponding linear automata. Indeed, let aeA, yel.

Then

[ o« p [T
(acy) '=(ao’y+r %) '=(ac’y) +(zy ) !
By BB, M

. 4 Nz M, @
On the other hand, (aecy) "=a "oy “=a

2

lo'y +(y %) 2 Thus,

T O S TSN I
(ao'y) +(y 2) '=a o'y Z+(y O 2
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o [ T2
Assuming in this equality that a=0, we get (¥ 2) =(y 2y 2 Therefore,

S (TR

(ae'y) lea , M2 ™ e YL O
=a o'y °, milarly, (a*’y) "=a *y

2

1.5.5. Stochastic and fuzzy automata

We shall define such automata using the category approach out-
lined in the second item of the current Section.

Let us start with the stochastic automata and consider the cate-
gory of sets with random mappings. Objects of this category are the sets
A,B,C,... and for the simplicity confine ourselves to the finite sets.
The morphisms p:A —> B are random mappings. They can be interpreted as
stochastic matrices. Rows of the matrix p are enumerated by the elements
of the set A while columns by the elements of the set B. Each element
p(a,b) of the matrix p is a real number from the segment I=[0,1]. This
number is interpreted as a probability of taking aeA to beB by the map-
ping p. Clearly, for each a€A the natural condition

Zp(a,b)=1
b
has to be satisfied. It means that a is transformed to a certain b.

A simple verification shows that if u:A —> B and v:B —> C are two
stochastic matrices, then their ordinary matrix product uv is again a
stochastic matrix corresponding to the random mapping pv. Thus we arrive
at the category. Units eA:A — A in this category are unit matrices.
Correspondingly, we have the sets of morphisms Hom(A,B) and the semi-
groups of random transformations EndA.

If, further, I' is a semigroup, then the automaton #A=(A,I',B) is

defined by the representation
f:T — EndAxHom(A, B)=End (A, B).

Here f is a pair («,B), «:I' = EndA and B:I — Hom(A,B). In this
case the representation a realizes each element y from I' as random tran-
sformation of the set A and the assignment B implements each y as the
random representation from A into B.

Note now, that stochastic automaton defined here is only a

special type of the stochastic automata. It would be possible to proceed
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from the situation when the representation f is also random in some
sense; there are some other possibilities too (see, for example, [201]).
One more approach to stochastic automata is presented below.

Now let us proceed to fuzzy automata and consider the category of
fuzzy sets.

Fuzzy sets are usually considered as the subsets of ordinary
sets. If M is an ordinary set and A its subset, then we have a characte-
ristic function pA:M — {0,1}, which determines A as an ordinary subset
in M. On the other hand, it is possible to consider the function of the
form pA:M —> [0,1] and in this case such P, is identified with the fuzzy
subset A in M. For each xeM the value pA(x) is a measure of membership
of the element x in the fuzzy subset A.

For example, if M is a set of components of a certain device,
then we can speak of the fuzzy subset A of serviceable components. Each
xeM belongs to A to a certain degree, which is somehow estimated.

Along with fuzzy subsets of ordinary sets it is quite natural to
consider fuzzy quotient sets. If M is a set and p is a usual equivalence
on M, then in the quotient set M/p elements of M are considered up to
the equivalence p, i.e the equivalence goes into equality. It is also
possible to consider a fuzzy equivalence. The fuzzy equivalence p on the
set M is the mapping of the type p:MxM — I=[0,1] satisfying the follo-

wing conditions:
1) p(x,y)=p(y,x) and 2) p(x,y)ap(y,z)=p(x,z).

Here we write A instead of min and p(x,y) is a measure of the
equivalence of the elements x and y. We say that fuzzy quotient set M/p
is a pair (M,p), M is a common set, p is a fuzzy equivalence on it. The
elements of the fuzzy quotient set M/p are identified by the measure p.

Let, for example, M be a set of the decimal fractions of the form
O,alaz...an, where n is fixed. Given x=0,a1a2...an and y=0,6132...8n,
assume p(x,y)=k/n, if x and y coincide on the first k digits and differ
further. It is clear that 1) and 2) are satisfied and we can pass to the
fuzzy quotient set M/p. In this example we have p(x,x)=1 and p(x,y)=0,
if x and y differ already in the first digit.

Fuzzy equalities in the fuzzy quotient sets allow us to consider
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fuzzy mappings of the latter. Therefore it is expedient to proceed from
the idea of the fuzzy quotient set. Fuzzy subsets in this case are natu-
rally realized as subobjects of the corresponding objects. (The concept
of the subobject of an object of category see, for example, in [42]).
Henceforth, speaking about fuzzy sets, we shall mean fuzzy quotient sets
of the ordinary sets.

Now we consider the category with fuzzy sets as its objects and
fuzzy mappings as its morphisms.

Let A=A/p1 and IB=B/p2 be fuzzy sets. The morphism f:A —> B is a
mapping f:AxB — I (a fuzzy subset in the Cartesian product) satisfying
the following conditions:

1) pl(x,x’)Af(x,y)Sf(x’,y)
2) f(x,y)Apz(y.y’)sf(x,y’)
3) f(x,y)Af(x,y')sz(y,y’)
4) pl(x,x)=u(f(x,y);yeB); x,%x"€A; y,y’ €B.

The first two conditions mean compatibility of the mapping with
the equality of the elements and the third imitates the property of
single-valuedness of the mapping. In the fourth condition the sign v
denotes the least upper bound of the set of elements in I and this con-
dition substitutes the requirement that each x should have a certain
f-image y. The notation f(x,y)=p2(f(x),y) is also used and by this the
degree of equality between the potential f(x) and y is shown.

Assume that the two morphisms f:A — B and g:A —> B coincide if
their fuzzy plots f:AxB — I and g:AxB — I also coincide.

It is easy to understand that if A and B are ordinary sets with
trivial P, and Py then their fuzzy mappings actually turn to be
ordinary mappings.

Let now f:A —> B and g:B —> C be morphisms. The morphism gf:A —>
C is defined as the function gf:AxC —> I specified by the following
equality:

gf(x,z)=u (f(x,y)agly,z)) xeA, zeC.
y€EB
This equality, as it is easy to see, substitutes the condition: there

exists such y, that f(x)=y and g(y)=z.
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Associativity of the multiplication is easily verified.

From the definition of the fuzzy mapping immediately follows that
the assignment (x,y) — p(x,y) using the fuzzy equality p in A is at the
same time a fuzzy mapping A —> A which we denote by €y It can be veri-
fied that eA:A —> A plays the role of a unit: if f:A —> B is a morphism,
then we have: fem=f and e f=f.

In this way we coﬁ; to the category of fuzzy sets. It is proved
that fuzzy subsets of the ordinary sets are implemented in the given
category as subobjects of the suitable objects.

The category of fuzzy sets constructed here enables us to consi-
der fuzzy automata. As before, for any fuzzy sets A and B and the semi-

group I' the corresponding automaton is defined by the representation:
f=(o,B): T — EndAxHom(A, B)

The representation a:I' —> EndA associates the elements of I with
fuzzy transformations of the fuzzy set A and B implementing each yel' as
the fuzzy mapping from A into B.

General arguments of the item 1.5.2 allow us to consider the
categories of fuzzy and stochastic automata and one can speak of certain
constructions in these categories. In particular, it is natural to bring
forth a problem of the universal fuzzy automata and stochastic automata,

to consider problems of decomposition, etc.
1.5.8. Another view on stochastic and fuzzy automata

Now we abandon consideration of the semigroup automata and consi-
der the automata in which all three domains belong to the defined cate-
gory. In this case we deal again with the operations o and * , which
were not present in the above consideration.

Define the notion of the product of two objects of the category.
Let A and B be the objects of the category K. Their product AxB is an
object of the category K considered together with the projections1t1:AxB
—> A and ﬂé:AxB — B. The following conditions have to be satisfied: if
oa:C —> A and B:C —> B are defined, then there exists an unique morphism
7:C —> AxB such that the diagrams
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B

are commutative.

It is possible to define arbitrary finite and non-finite products
of the objects of the category. Cartesian product in any variety of
algebras is a product in this sense. Not every category allows a const-
ruction of the objects product and we can distinguish, for example,
categories with finite products. The category of sets and the category
of fuzzy sets are such categories, but the category of sets with random
mappings does not possess the necessary property.

Now, if K is a category with finite products, then an automaton
in K can be understood as a triplet of objects #=(A,B,C) with two mor-
phisms o:AxB —> A and *:AxB —> C. This generalizes the initial defini-
tion of the pure automaton. Let us generalize also the notion of homo-
morphism of an automaton.

First, let us make a remark. Let a:A — A’ and B:B —> B’ be two
arrows. There are also projections nlexB —> A and nZ:AxB —> B. Further
take compositions a’=n1a:AxB —> A’ and B‘=nZB:AxB —> B’. These «’ and B’
uniquely define y:AxB — A’xB’. This y is denoted by axB.

Given two automata #=(A,B,C) and &’=(A’,B’,C’), a triplet of mor-
phisms u=(u1,u2,u3), where ule - A, u2=B —> B’ and M3=C —> C', is a
homomorphism u=(u1,u2,u3):ﬂ —> A’ if the following two diagrams are com-

mutative

AxB —— A BB ———p
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It is easy to understand that this definition of the homomorphism
actually generalizes the definition cited before.

In view of concept of fuzzy automata let us treat the category of
fuzzy sets. Together with finite products there are also other construc-
tions which make this category similar to the common category of sets.
This likeness has an exact sense, meaning that the category of fuzzy
sets is a topos (the definition of the topos see in [42]). We do not
cite here this definition but note that in each topos there exist finite
products and the operation of exponentiation.

Let A and B be the objects of the category. The exponent B is a
new object considered together with the arrow ev:B**A — B. It is
assumed that for any morphism g:CxA — B, where C is an object of the
category K there is an unique morphism é:C — B* with the commutative
diagram

A ev
B"xA——— B

A
gxe,
)

CxA

In the category of sets the object B* is, as usual, Fun(A,B) and
if (f,a)eB"xA, then ev(f,a)=f(a).

If in the category K the exponent B* exists for any pair of
objects A and B, then it is said that K allows exponentiation. Each
topos, in particular, the topos of fuzzy sets, allows exponentiation.

Consider further =*-automata, i.e. the automata with the only
operation *. Let K be a topos, B and C be its objects. Define the
=—automaton Atmz(B,C)=(CB,B,C), where morphism +.C°B — C coincides
with the corresponding mapping ev. It can easily be seen that if
A=(A,B,C) is also an =*-automaton, then by the definition we have the
unique morphism A — c? defining the homomorphism & — Ath(B,C)
identical on B and C. This means that Atmz(B,C) is a universal object in
the corresponding category.

Given A and B, we have Atm>(A,B)=(A, B, AxB) defined by the unit
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morphism €, 5 If #=(A,B,C) is another *-automaton defined by *:AxB—> C,
then the latter morphism naturally produces the unique homomorphism
Atma(A,B) —> @A, Thus, Atm>(A,B) has the required universal property.
Well-known duality [42] for exponentiation and multiplication defines
the duality of the automata Atm”(B,C) and Atm’(A,B).

Let us make remarks on the category of sets with random mappings
keeping in mind stochastic automata.

It is quite natural to construct a product in this category as a
usual Cartesian product. Let A and B be two sets and AxB be their Carte-
sian product with the projections nl:AxB —> A and nz:AxB —2 B, n and n,

are represented by stochastic matrices by the rule:
nl((a,b),a)=1 and nl((a,b),a' )=0 if a=#a’,
nz((a,b),b)=1 and nz((a,b).b’ )=0 if b#b’.

Given stochastic matrices a:C —> A and B:C — B, let us construct
¥:C — AxB in such a way, that 3'n1=oc and 7n2={3 are satisfied.
We get:
7n1(c,a)= = (e, (a’ .b))nl((a’ ,b),a)==y(c, (a,b)),
(a’,b) b
7n2(c,b)= z 7(c, (a,b’ ))nz((a,b' ),b)=Zy(c, (a,b)).
(a,b’) a
Take ¥ (c, (a,b))=a(c,a)B(c,b), then

ynl(c,a)=2a(c,a)B(c,b)=a(c.a)ZB(c,b)=a(c.a).
b b

ynz(c,b)=Zoc(c,a)B(c,b)=B(c.b)Za(c, a)=RB(c,b).
a a

(We use that Sa(c,a)=1, ZB(c,b)=1).
a b

Thus, the constructed y satisfies the required condition. But, as

we shall see, this y is not unique.

Let the sets A, B and C consist of two elements: A={a1,a2),
B={b ,b_} and C=(c1,cz}. The corresponding random mappings «:C —> A,
1’72

B:C —> B and y:C —> AxB are given by
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In this case,

Take further

Choose a,B8 and the number € so that all 71]

a a b b
1 2 1 2
o= ¢ o‘11 %2 B= ° Bx1 Blz
Col%21| %02 €2 Bz1 Bzz
(a1’b1) (a ,b2) (az,bl) (az,bz)
€l Y11 72 LE LE
"=
c, LET PP L LE
as before, we get:
+ + +
YT, YT, LEPRALT
IM = YT =
+ + +
! VT 75577, 2 LOTR P
= B +e B
T27% 4P [P 21B
PP PR
SV 12312 5 22622

12

22

+¥

+7

14

24

belong to the segment [0,1].

It is immediately verified that y satisfies the conditions of the sto-

chastic matrix and that the conditions ym = and 7n2=B are satisfied.

Changing € we obtain various suitable 7,

uniqueness of y is not satisfied.

and the condition of the

This negative result implies that the definition of the stochas-
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tic automata is not subject to the common category scheme and one can
act only by analogy.

Using this analogy define the stochastic automaton as a triplet
of sets #A=(A,B,C) with the two random operations o:AxB—>A and *: AxB—> C.
Here AxB is an usual Cartesian product of sets.

Let stochastic matrices a:A — A’ and B:B —> B’ be given. Define
axfB: AxB —> A’ xB’, assuming (axB)((a,b), (a’,b’))=a(a,a’)B(b,b’). The tri-
plet of random mappings "(“1'“2'“3):(A'B'C) — (A’,B’,C’) is a homomor-

phism of stochastic automata, if the following diagrams are commutative

AxB — 5 A AxB —— C

(e pxu,) M, (uyxu ) M

Aty —2 5 B Aol "y

It is easy to understand that this definition agrees with the
definition in the deterministic case. However, this algebraic approach
to stochastic automata doesn’t comprise the general situation, consi-

dered in [20].
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CHAPTER 2
CONSTRUCTIONS AND DECOMPOSITION OF PURE AUTOMATA

For the given automaton # the problem of decomposition can be
formulated as the problem of its representation by means of the automata
(divisors), in some way simpler than d.

There are various types of decomposition, which differ by the
choice of divisors, as well as by the used constructions. Decomposition
theory for pure automata is based on the construction of cascade connec-
tion of automata and on its universal variant wreath product of auto-
mata.

This construction, in particular, has the property that informa-
tion at the input of the decomposition component does not depend on the
result, obtained at the output of this component at the previous step.
In other words, it is a construction without feedback (without loops).
It is known (see, for example, [5]) that if we allow arbitrary construc-
tions with the feedback, then each automaton can be constructed only by
modules - the automata with one state.

There are various types of relations between the components of
decomposition and the initial automaton:

1. Each component is a homomorphic image of the subautomaton of the ini-
tial automaton (divides the initial automaton).

2. The semigroup of inputs of each component divides the semigroup of
inputs of the initial automaton (i.e. is a homomorphic image of its
subsemigroup).

Finally, we can consider the following case:

3. No conditions of connection with the initial automaton are imposed on
the components.

The more free choice of the components implies in some sense more

rational decomposition of the automaton (say from the point of view of
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the automaton complexity, its reliability etc.). On the other hand,
decomposition being used for automaton analysis frequently requires more
close connection of the components with the initial automaton. In the
algebraic theory of automata the basic result on the decomposition of
the automata without loops is well-known theorem of Krohn-Rhodes.

In this Chapter we introduce various automata constructions, con-
sider the decomposition problem for automata (in particular, theorem of

Krohn-Rhodes is proved) and treat indecomposable group automata.
2.1. Constructions

Some automata constructions have been already discussed in the
previous Chapter. For example, in the Section 1.2 the constructions of
the connection of semiautomaton and automaton of the input-output type
have been discussed. In the given Section the main emphasis should be
given to the constructions of the cascade connection and the wreath pro-
duct of the automata as well as to the construction of the wreath pro-

duct of the automaton and the semigroup.
2.1.1. Cascade connections of the absolutely pure automata

First define the Cartesian product of the automata. Let
aa=(Aa’Xa'Ba) be an automata system, where a belongs to a certain set I.
The automaton #A=(A,X,B) is called a Cartesian product of the automata
Ba, ael, if A,B,X are Cartesian products of all Aa,Ba,Xa respectively,
while the operations o and * are defined componentwise: if aeA, xeX,

a€l, then
(aox) (a)=a(a)ox(a), (a*x)(a)=alo)*x(a).

It is clear that if all ﬂa are semigroup automata, then their
Cartesian product is also a semigroup automaton.
In particular, the Cartesian product of two automata is an auto-

maton & x# =(A xA_,X xX_,B xB_) with the operations o and *
1772 12T T e

a,a )o(x ,x )=(a ox ,a_ox_),
( 1’ 2) ( 1’ 2) ( 1 71" 72 T2

a_, *(x ,x )=(a *x_,a_*x
( . az) ( N 2) ( X, 2).
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wher
e (al, az)EA1XAz’ (Xl' xz)exixxz.

The Cartesian product of the automata realizes their parallel
connection

The automaton (A1XA2’X2’B1XB2) with actions defined in the follo-

wing way:
- ]
(al.az)oxz—(alo(a2~x2) ,azoxz),

7]
a ,a )*x =(a *(a_*x a_*x
(1,2)2(1(22),22),

is called a serial connection of the automata ﬂl and ﬁ? with the connec-

tion mapping w:B2 —2 Xf

B
—i—

L

In the given construction an output signal of the automaton ﬁz is
transformed into an input signal of the automaton Hl by means of the
mapping ¥. The parallel (Cartesian product) and serial connections can

be defined in this way also for the case of the semigroup automata.
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Serial and parallel connections of the automata are particular
cases of the important construction of the cascade connection of the
automata. Define this construction.

Let A =(A,X,B) and A _=(A_,X ,B_) be absolutely pure automata.

11" 2 2’722
Assume that a set X and two mappings a:XxA2 i X1 and B:X — X2 are de-
fined. The automaton H1x582=(A1xA2,X,B1xBZ) with operations o and * de-

fined by the rule:

(a ,a_)ox=(a_ calx,a_),a_oB(x)),
1 2 1 2 2 (1.1)

(al,az)‘x=(a1*a(x, a?),az’ﬁ(x) )

where (a1’a2)EA1XA2’ xeX, B(x)exz, oc(x,az)EX1 is called a cascade con-
nection of the automata ﬂl and ﬂz by the triplet (X,a,RB).
It is possible to present a cascade connection of automata by the

following design

Different cascade connections of the automata Hl and ﬂz correspond to
different triplets (X,a,B). For example, if we take a Cartesian product
X1><X2 as X and define the mappings « and 3 as corresponding projections
a(x,ag=a((x1,x2),a2)=xl, B(x)=f3(x1,x2)=x2 where x=(x1,x2)ex, then the
cascade connection corresponding to such a triplet is a parallel connec-
tion of the automata.

Let a mapping |/1:B2 = X1 be defined. Setting X=X2 and defining
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mappings a:XxA2 b d X1 and B:X — X2 by the rule a(x,a2)=W(a£x), B(x)=x;
azeAz. xeX=X2, we get that the corresponding cascade connection is a
serial connection of the automata ﬂl and Ez.

Remark. If the automaton #=(A,X,B) is presented as the cascade
connection ﬂlxzﬂz, then it is possible to say that the states and out-
puts of the automaton A have two coordinates: a=(a1,a2), b=(b1,b2). The
second coordinate of the new state (output) depends on the second (but
not on both) coordinate of the previous state. The similar situation is
in the case when an automaton is represented by cascade connection of
several automata. This property can be called a weakened dependence.
Presence of such dependence has a certain importance at the automata
implementation (see [33]).

Let XI.XZ,A2 be the sets. Consider some special category
K=K(X1,X2,A2). Objects of this category are triplets (X,«,B), where X is
a set, a« and B are mappings, oc:XxA2 = Xl, B:X —> XZ. Morphisms of such
triplets p: (X,«,8) —> (X’,a’,B’) are mappings of the sets u:X —> X’ for

which the following two diagrams are commutative:

X'xA
2

The mapping u:XxA2 - X’xA2 in the first of these diagrams is
defined by the rule: (x,a)“=(x“,a), xeX, aeAi

As it was mentioned above, a cascade connection of the automata
4 =(A ,X ,B ) and Hz=(A2,X2,B2) corresponds to each triplet (X,«,B).

1 171" 1

Moreover, to each morphism of the triplets u:(X,a,8) —
(X’ ,a’',B’) corresponds a homomorphism in input signals of the respective
cascade connections of the automata ﬂl and 92. Really, if (a1’az)EA1XAi
xeX then

B = = : oB’ =

((a,a,)ox)=(a,a ) ox=(a,ca(x,a,),a,08(x))=(a ox 2,808 ()

(al,az)ox”.



78

The same for the operation *.
Consequently, the cascade connection is a functor on the category

of triplets of the form (X,«,B) to the category of automata.
A
Further, consider a special triplet. Take a set XQ=X12><)(2 for X.

Let us define mappings o, and BO by the rules:

¢>¢o(x1,x2,a)=x1(a),A
B(;(,x)=x;)_(eX2, x e€X_, a€A._.
071’727 T2’ T 2 2 2
Proposition 1.1. (XO,aO,Bo) is a terminal object in the category

of triplets J((Xl, Xz' Az) .

Proof. It is necessary to show that for an arbitrary triplet

(X,,B) there exists a unique morphism p: (X,e,B) — (Xo,ao,Bo). Define
A
2 - -
X — X = ; = . = =
u.AX Xo X1 ><X2 by setting xl(az) a(x,az), X, B(x) for xeX, & (xl,xz)e
X12XX2' The diagrams

X
XxA
2 \\\\gN \\\\fN
u X1 u xz
///1;: . ////7;1
X xA 0
o] 2

are commutative. Really,
cco(x,az)n)=oco(x“,a2)=oco(x1,x2,a2)=xl(a2)=a(x,a2);
B, (x")=B (%, x )=x =B (x).

Automaton corresponding to the universal triplet (Xo,ao,Bo) we
shall call a wreath product of the automata El and ﬂz and denote it by
lerﬂz. In accordance with the definition of the cascade connection by
the triplet (XO,aO,BO), the wreath product of ﬂl and HZ is an automaton

A
B wrdl =(A xA, xlzxxz, B,xB,)

A
: . - 2
with the following operations and *: if (a1’a2)EA1XA2' (xl,xz)ex1 xxz,
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then
(al.az)o(xl,x2)=(alox1(a2),a20x2L

_ B (1.2)
(al,az)‘(xl,x2)=(a1‘x1(az).a2'x2L

Since a cascade connection is a functor on the category of trip-

lets into the category of automata, from Proposition 1.1 it follows

Proposition 1.2. For each cascade connection H=ﬂlxgﬁz of the
automata ﬂl and 92 there exists the homomorphism in input signals & —>
ﬂlwrﬂa

Since for exact automata (see Section 1.1) homomorphism in input

signals is a monomorphism, then:

Corollary. Each exact cascade connection of the automata Hl and

Hz is isomorphic to a certain subautomaton of the wreath product lerﬂz.

2.1.2. Cascade connections and wreath products of pure semigroup

automata

Consider two semigroup automata E1=(A1,F1,B1) and 82=(A2,F2,B2L
a semigroup I' and the mappings oc:l"xA2 - l"1 and B:I' — Fz, satisfying
supplementary conditions:
1. B:I" = F2 is a semigroup homomorphism.

2, a(wlyz,a)=a(vl.a)-a(vz.anﬁ(vl)); ¥, 7,€0, aeA, (1.3)

A cascade connection of the semigroup automata by the given trip-

let (I',«,B) is defined in the same way as for absolute pure automata.

Proposition 1.3. If the triplet (I',«,B) satisfies the conditions
(1.3), then a cascade connection of the semigroup automata E=H1xgﬂz is a

semigroup automata.

Given semigroup automata ﬁl and 92, consider the category of
triplets (I',a,B), satisfying the conditions (1.3). Morphisms in this
category are defined as earlier but there is an additional requirement
that the mapping u:I' — I’ must be a homomorphism of semigroups.

Construct the universal object (Fo,ao,Bo) in this category. For
A A
I' take the wreath product Flw%F2=F12xF2 of the semigroups Fl and Fz by
0
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the set Az’ Mappings o and Bo are defined in the same way as in the

previous item. Verify that this triplet satisfies the conditions (1.3).

It is evident that Bo:l"0 =2 FZ is the homomorphism of the semigroups.

Let y,yel, ¥=(¥,,7,), ¥'=(v,7,), aeA, Then

a vy ,a)=0c0((71,72)'(71,72).a)=oc0(’a'1'('3’2°2’1),7272.a)=(3’1'(72°71))(a)=

71(a)-(72071)(a)=71(a)'71(aozz)=ao(71.72.a) a (v),7,,3B(r,7,)).
Proposition 1.4. The triplet (Fo,ao,BO) is a terminal object in

the category of triplets satisfying the conditions (1.3).

A cascade connection of the automata 81 and ﬂz corresponding to
the universal triplet is denoted by lergz and is called a wreath pro-
duct of the semigroup automata ﬁ1 and 82:

A
A wrd =(A xA ,T “x'_,B. xB_).
1 2 1721 T2’ e
The operations o and * in lerﬂz are defined by the formulas (1.2). Sta-
tements, similar to Proposition 1.2 and its Corollary hold also for

wreath product.
2.1.3. Properties of cascade connections
Proposition 1.5. Let
w:ﬂ1=(Al,F1,B1) - B1=(A1’21’Bi)
w:ﬂz=(A2,F2,B2) g Bz=(A2'zz'Bz)

be homomorphisms in input signals of the semigroup automata. Then, there

is a corresponding homomorphism in input signals

uw: 83 wrd_ —> B wrB
1 2 17 72

Proof. Dealing with homomorphisms in input signals, we denote
homomorphisms of the input semigroups by the same letters as the homo-
morphisms of the corresponding automata. It is necessary to construct

the following mapping
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A A
. -
u.l"l ><l"2 21 XZZ.
This mapping must be a homomorphism of the semigroups, which defines the

homomorphism of the wreath product of the automata.
A A

First, define the mapping ﬁ:l‘l2 - 212, assuming ;lu(a)=(§1(a'))¢
A A
s 2 -
for 7151"1 and aeAz. If (71,72) is arbitrary element of Flle"z, then
A A

define the required mapping u:l"fxl"2 = Elzxzz in the following way:

(;1,72)51:(;1#'72'/1)_ Show that p is a semigroup homomorphism. Let
A

= =51 . 2

(71.72), (71,72) be elements in r, xT,. Then

- ot ’ ll_ o ’ ”’_ _"_" » 'll
(o )G, ) =0 7)) =00, (v x))7), (1.4)
where ';=;1(72°;'1).
M (@)=(r(a)) =7 (a) 7 (a2 ))%=(7 () 3] (aen )P,

On the other hand,

o T TR TR NN TR v A2
(71,2'2) -(71,72) =(71,72)-(71 7 )=(6,(7272) ), aezl (1.5)

where 6(a)=§‘1‘(a)-;’lu(aovlﬁh(;l(a))w-(';’l(aow'g))w. aeAZ.

As ¢y is a homomorphism of the automata in input signals, then

ao'y'/zl=a°72, aEAz’ a'zel'z. So, the equalities (1.4) and (1.5) imply that

= =L, oSy sl . .
((71,72)(71,72) (71,72) (71,72) . Therefore, p is a homomorphism of the
corresponding semigroups.

A
; = 2
Besides, if (a1’a2)EA1XA2’ (71,72)51"1 ><1"2 then

Y

2

~ ”— O—“ = 0_‘1 Ov’: 0— ¢ ow=
(a1’az)°(71’72) _(ax’az) (11,7 )—(a1 7{1(a2).a2 72) (a1 71(a2)) 3, 72)

(alowl(az),a2o72)=(al,a2)°(71,72).

- o M_ = " §
Similarly, (al,az)*('zl,wz) —(al,az)"(?rl,arz). Hence, p is a homomorphism
in input signals of the automaton Blwrﬁz to B1erz'

Corollary. Let the exact automata ﬂ;, ﬁ’z correspond to the auto-

mata ﬂl and ﬂz, Then ﬁ’lwrﬂ'z is an exact automaton for ﬁlwrﬂz.
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Really, if ulzﬂl - H’l and uzzﬂz =2 ﬁ’z are homomorphisms in input
signals mapping the automata 81 and HE into corresponding exact automa-
ta, then by Proposition 1.5 there is homomorphism in input signals
u:ﬂlwrﬁz =2 H;wrﬂ'z. Since the wreath product of the exact automata is
again an exact automaton (this immediately follows from the defini-
tions), then H'lwrﬂ’z is an exact automaton corresponding to the automaton
lerﬁz.

It is quite natural to ask whether arbitrary cascade connection
of the exact automata (and, respectively, of reduced ones) be exact (or

reduced). The answer is given by the following statements.

Proposition 1.6. In order that the cascade connection of the
exact automata A =(A ,I' ,B.) and 4 =(A_,I_,B_) by the triplet (I',a,B) be
1 1’7 1" 2 2’22

an exact automaton it is necessary and sufficient that the homomorphism
A
pu:IL — I"12><1"2 corresponding to the mapping of the automaton 31’(5’52 into

the wreath product lerﬂz (see Proposition 1.1) be a monomorphism.

A
Proof. If the homomorphism p:I — Flle'z given by the condition

is a monomorphism, then the automaton Elxgﬂz is isomorphic to the sub-
automaton of the wreath product ﬂlwrﬂz and, consequently, it is exact.

On the other hand, if the homomorphism p is not a monomorphism, the ele-
A
ments v, and 7, from I' having the same image in l"lle‘z, act equally as

input elements of the automaton Elxgaa. Therefore this automaton is not
exact.

Proposition 1.7. If the automata ﬂl=(A1,F1,B1) and 82=(A2,F2,B2)
are reduced automata and the triplet (I',«,B) is such that for each a€A
the mapping ot:l'xA2 - I‘1 is a mapping onto I‘1 and B:T — 1"2 is a mapping
onto I"z, then the cascade connection ﬂ=(A1xA2,I‘,BixBZ) by (,«,B) is
also a reduced automaton.

Proof. Recall that the automaton (A,[,B) is called a reduced
automaton if the equality a*y=a’*y for all yel implies the equality
a=a’. Let now (al,aa)*3'=(a'1,a'2)*7 be fulfilled under any yel By the
definition of the cascade connection (al,az)‘7=(al'a("r,aa),aZOB(Z«))_

Therefore,



(al-a(y.az),az~6(7))=(a;'a(w.a;),a;*ﬁ(7)) and
a1~a(7.a2)=a’1’a(7,a'2); aZ'B(w)=a’2*B(7).

Since B(y) runs through the whole semigroup Fa and the second automaton

is reduced, then a2=a;. Similar arguments for a(y,dz) and F1 imply

a1=a;. Thus (a_ ,a_)=(a’,a’), that is the automaton #& xBﬁ is reduced.
1’72 1’72 170 2
Finally we would like to point out two rather simple but impor-

tant facts:

1. Wreath product of the automata has the associative property:

ler(szrﬂ3)=(ﬂ1wrﬂz)wrﬂ3.

2. Cascade connection of Moore automata is again a Moore automaton.
2.1.4. Cascade connection and transition to semigroup automata

We have seen (Section 1.1), that each automaton #=(A,X,B) has an
associate semigroup automaton F(#A)=(A,F(X),B), where F(X) is a free se-
migroup over the set X. Now we shall discuss the relation of this cor-
respondence with the constructions of Cartesian product and cascade con-

nection of automata.

Proposition 1.8. Let the automaton A be a Cartesian product of
the automata Eu, acl. Then there exists an isomorphic embedding of the

automata F(A) into Cartesian product n?a(ﬂ), o€l. Besides, ¥(#&) is not
a

isomorphic to n@a(ﬁ), ael.
o

Proof. Our aim is to construct a monomorphism of ¥(&) into

N#(A ), ael and to show that this monomorphism is not an isomorphism.
[
o

Let A=(A,X,B), Ha=(Aa,Xa,Ba), H=Eﬁa, acl. Denote F=F(X), Fa=F(Xa). Let
n
m :X > X be a projection: x “=x(a)ex for each xeX. As X cF(X ), then
o o o [ o
m_ is a mapping of X into ?(Xa). Since F=F(X) is a free semigroup gene-
o

rated by the set X, this mapping is uniquely extended to the homomor-
Mo Mo "
phism ua:F - Fa: if u=x1...xneF(X), then u =X X =x1(a)...xn(a).

Homomorphisms Mo define the homomorphism of the semigroup F into n?(ﬂa),
o
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n
acl: if ueF, then u!(a)=u *. Show that i is a monomorphism. It suffices
to check that the kernel p of the homomorphism p is the minimal congru-

ence of the semigroup F. Denote pa=Kerua It is clear that p=npa. Let
o

u, veF, u=x1...xn, v=y1...ym; xl,yleX and upv. Since p=£P“, then upav for

all ael. This implies that u o‘=v“m. Taking into account the definition
of u, and the notation u,v we get: xl(a)...xn(a)=y1(a)...ym(a). Both
parts of this equality are elements of the free semigroup Fa, Therefore
m=n and xl(a)=yi(a), i=1,...,n. This holds for any a€l, therefore, xl=y1

and u=v. Hence, p is a trivial congruence and u:F — nFa, acl, is a mo-
o

nomorphism.
It is obvious that ¢=(eA,u,cB), where €,,e_ are identity mappings

of the sets A and B, is a monomorphism of F(&) into nF(Ha), ael. Let us
a

check that ¢ is not an isomorphism. Let u=x ...X eF, xlEX. Number n is
n

called the length of the element u. By the definition of mappings “a:F

1]
= Fa’ u a=x1(a)...xn(a)EFa, Hence, the length of the element u % in the
free semigroup Fa is also equal to n. This implies that the image of the
semigroup F under the mapping p (denote it by F“) in the Cartesian pro-
duct nFa, o€l consists of the functions with values having the same
o
length for all a. It is clear that this image is less than nFa, o€l and,
«

moreover, it is not isomorphic to nFa, a€l. Therefore, the automaton
o

F(4) is not isomorphic to nF(Ha), ael.
a
From this Proposition it follows:

Proposition 1.9. If B=(A,I',B) is an exact automaton corresponding

to the automaton ¥F(&), A=q@ , oael and B=(A ,I' ,B ) are exact automata
a ¢ o« o o e
corresponding to F(Qu), then B is isomorphically embedded into Cartesian

product EBa, ael.

Proof. Let wh(cA,wz,cB) be a homomorphism taking the automaton
F(A)=(A,F,B) into the corresponding exact automaton (A,I',B). Denote by
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€ _an identity transformation of the sets X, and by pw the kernel of

the homomorphism . Further, let 1‘”oc=(eA .fz,eB ) be a homomorphism, ta-

o
king the automaton (Aoc’Fa’Boc) into the corresponding exact automaton

(A, ,B ). The homomorphism
o o
f=(e,,f ,e.): (A . TIF,-TIB,) = (AL TIT o TIB )=(A, TIT . B), ael
naturally corresponds to the homomorphisms fa, a€l. As in Proposition

1.8, ¢=(eA,u,eB) is a monomorphism of the automaton (A,F,B) into the

automaton (A,q|F ,B), ael.
a®
Consider the homomorphism ¢f: (A,F,B) — (A,n[‘a,B) and denote its
o

kernel by pv,f. Show that pwf=pw. From this follows the assertion of the
Proposition.
Indeed, B=F(ﬂ)/pw while the 1image of %(4) in nBa is
o
ef of

((F(&A)) 2ff(ﬂ)/pqn‘.. If p(pf=pw, then B~(F(4)) CL[Ba, that is B is isomor-
phically embedded into Cartesian product of the automata Ba. It is left

1 2 3 y - |
to show that =p,. Let =( , ) and =( ). Here
° Por ™y Por™ Por Por, Por Py™"Py, Py, Py

p;f=p;, is a trivial equivalence of the set A, and p;f=plz - of the set B.
It is necessary to show that p;f=p; on F.
2 ”fz Mfz
Let u,veF and qu;fV' that is u "=v ". This equality implies

m

that u'l and v act equally in the automaton (A,]']Fa,B), ael. Since

o

<p=(eA,p,eB) is a monomorphism of the automaton (A,F,B) into (A,nFa,B)
o

which acts identically on A and B, then " also acts as u and VW acts as

v. Therefore, up;fv is equivalent to the fact that u and v act equally

in the automaton #(#&). The latter implies that up:lv. Therefore, p;f=pjJ

d thus, =P, .
an us pwf pw
Let ﬂ=ﬂlxﬁﬂz be a cascade connection of the automata
= = ,B ) by the triplet (X,«,B):
ﬂl (A1’x1’B1) and Ha (Aa,)(2 2) y the triplet (X,«,fB

= P a - X X
i (A1><A2,X,Bl><B2), oc.XxA2 Xl, B:X X2
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By Proposition 1.2 @ is homomorphically embedded into the wreath
A
product of the automata ﬂlwrﬁ;(Alez,X z)xXZ,Bisz) by the homomorphism

¢=(8A,w2,eB), A=A1xA2, B=leB2, with the mapping s defined as follows:

if xeX, then x 2=(f,x2), where x2=f3(x) while f is such a function f:l\2
—> X, that f(a_)=a(x,a_) for all a_eA_.
1 2 2 2 2

Let us proceed from this mapping ?, Since it is possible to con-
A A
sider Xlzx)(2 as a subset in F(Xl) 2><F(X2), then ¢, is a mapping goZ:X i

A
F(X1) sz(XZ). This mapping can be extended to the homomorphism y:F(X)

A A
—> F(X1) 2><F(X2). Homomorphism ¢ defines two mappings \ﬂl:F(X) —> F(X1) 2

A '}
and y_:F(X) = F(X): if veF(X) and ¥ =(f,v)eF(X) *xF(X,), then u '=f,
v
2

u “=v.

Proposition 1.10. If E=Hix532 is a cascade connection of the
automata by the triplet (X,a«,B), then ¥(#) is a cascade connection of
the automata ?f"(ﬂl) and .“i(ﬂz) by the triplet (F(X),a,B), where the homo-
morphism B:F(X) — F‘(Xz) is induced by the mapping B:X —> XZ, and the
mapping ot:l-“()()xA2 - F(Xz) is defined by the rule: if ueF(X), aZEAa,

= RS
then a(u,uz)-u (az).

Proof. First note that the mappings &,EI satisfy the conditions
(1.3) and therefore, the cascade connection of the automata ?(ﬂl) and
?(ﬂz) corresponding to the triplet (F(X),a«,B) is a semigroup automaton.
Clearly, we have to check only the second condition. Since y is a homo-

morphism of the semigroups and

B=y_:a( =taw) e e eu )
{3=¢2.a uu,u)=(uu, aJ=u "(a )u, (a ou,

€ n

ull(az)u 1(..'-1L2<»{§(u1))=5L(u1,az)&(u2,a\_‘)aé(ul)).

N

the second condition is immediate.
The automaton F(d) and corresponding cascade connection
B

?(ﬂl)x_?(ﬁz) are defined on the same set (A1XA2’F(X)'B1XB2)' We must

R

verify that the corresponding actions o and * coincide. Moreover, it
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suffices to verify it only for elements xe€X. Since operations o and * in
cascade connections are defined by the corresponding mappings « and B:
(al,a2)°x=(a1°a(x,az),azoB(x)), (al,az)'x=(a1~ a(x.az).aZ'B(x)), the
coincidence of the actions o and * in both automata follows from the
equalities a(x,a)=a(x,a); B(x)=B(x). These equalities are either given

by the definition (B(x)=B(x)), or they immediately follow from them:

- e _
a(x.az)-x (az)—a(x.az).

The proposition means that the automaton 9(81wrﬂ2) is a cascade
connection of the automata 9(%1) and ?(82). Therefore, there is a uni-

quely defined homomorphism in input signals ?(ﬂlwrﬂz) - ?(Hi)wr?(ﬁz).
2.1.5. Wreath product of automata and representations

Let us consider two constructions of wreath product of automaton
and representation. Their particular cases will be constructions of the
wreath product of automaton and semigroup.

Let (A,Z,B) be a semigroup automaton and let (C,®) be a right
representation of the semigroup ¢ by transformations of the set C. The
automaton (C,®,C) one-to-one corresponds to the representation (C,®). In
this automaton the operation * coincides with the operation o . The
wreath product of the automata (A,Z,B)wr(C,@,C)=(AxC,ZCx¢,BxC) is deno-
ted by (A,Z,B)wr(C,®) and called a right wreath product of the automaton
and representation. If, in particular, (®,®) is a right regular repre-
sentation of the semigroup ®, then the wreath product (A,Z,B)wr(®,®)=
(Ax@,2¢x@,Bx¢) is called a right wreath product of the automaton (A,Z,B)
with the semigroup ®. It is denoted by (A, E,B)wrd.

Now, let (®#,C) be a left representation of the semigroup & by
transformations of the set C. It induces the right representation
(A%,8): if aeA®, ¢ped, then acp is such function from A° that
(aop) (c)=a(poc). Define the left wreath product of the representation
(#,C) and the automaton (A,Z,B) as the automaton (w,C)wi(A,Z,B)=
(A%, @%r ,B), where oW Z=exz" is the left wreath product of the cor-
responding semigroups and the operations o and * are defined in the fol-

lowing way: if EEAC, (w,;)EQxZC, then 50(¢,%)=(50w)o;, 5*(¢,%)=(50¢)*§.



Recall that acpeA’, aeTeA’, a*teB are the following functions:
(acp) (c)=alpc), (aeT)(c)=alc)ot(c); (a*t)(c)=alc)*T(c), ceC. From the
definition of acp and aoT follows the equality (ao;)o¢=(ao¢)°(%°w).
Indeed, if ceC, then
((aet)op) (c)=(aeT) (poc)=alpoc) ot (poc)=((acp)(c))o(Top) ((c))=

((acp)s(Top))(c).
Now, direct calculations show that the introduced automaton sati-

sfies the axioms of semigroup automaton:
(ae (wl,rl) )o((pz,'rz)=( ((acp ) orl)oq)z)or;( ( (a°¢1)°¢2)°(‘rl°¢2))°‘rz=
(acp ¢ )eo(T o9 )T =ac(p 0., (t 09, )T )=ac ((p, T ) (g, 7))
The latter equality follows from the definition of the multipli-

cation in the 1left wreath product of the semigroups. Therefore,

ao((wl,tl)(wz,tz))=(ao(¢l,11))°(w2,12). Validity of the second axiom is
verified in a similar way: a*((wi,tl)(wz,rz))=(ao(¢1,rl))*(¢2,12L

If (®,®) is a left regular representation of the semigroup &,

then the wreath product (@,@)wre(A,E,B)=(A®,¢xZ¢

,B®) denoted Qwre(A,E,B)
is called a left wreath product of the semigroup ® with the automaton

(A,2,B).
2.1.6. Induced automata

In the Section 1.2, and in item 2.1.1 automata construction
having universal properties were discussed. Now we shall introduce a
construction of induced automaton which also has a certain universal
property.

Let #=(A,Z,B) be an automaton and £ be a subsemigroup in I'. The
automaton ar=(K,r,§) is called induced by A, if @ is isomorphic to a

subautomaton from ﬂr; this isomorphism T is identical on X, and for any

automaton B=(A’,I',B’) and monomorphism v:d —> B identical on X, there

exists a unique homomorphism u:ﬂr —> B identical on I', such that the

diagram
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is commutative. It follows from the definition that the induced automa-
ton is unique.

Construct such an automaton. As usual, denote by rt the semigroup
obtained from I' by adjoining of external unit element. First consider
the automaton =(AxI'",[',Bu(AxI')), whose actions of o and * are defined

in the following way:
(a, 7)oy’ =(a,77"); (a,7)%’=(a,97’); (a,y)eAxI"’, y’el.

Generate an equivalence «, on the set AxI'' and an equivalence o,
on the set BuU(AxI') by the relations o, and oy (a,t)vl(aot.l);
(a,r)oa(a*r), a€A, Te€X. Denote by o, the trivial congruence on I'. It is
clear that the triplet a=(a1,a2,a3) is a congruence of the automaton .

Quotient automaton §=D/a=(x,r,§) is a desired automaton.

2.2 Decomposition of finite pure automata

2.2.1. Krohn-Rhodes Decomposition Theorem

In this Section we confine ourselves to the discussion of the
decomposition of the input-state type finite automata (semiautomata). To
do this, we first develop the necessary definitions. Since in a Moore
automaton the operation * is expressed by the operation o and a determi-
ning mapping, the-decomposition of Moore automata is reduced to the de-
composition of the input-state type automata.

The semigroup Fl is called a divisor of the semigroup Fz, if l"1
is a homomorphic image of a certain subsemigroup from FZ. Similarly, the
automaton ﬂ1=(A1,F1) is called a divisor of the automaton Hz=(A2,F2), if
ﬁl is a homomorphic image of the subautomaton from BZ, If in this case
the automaton ﬁl is not isomorphic to ﬁz, it is called a proper divisor
of the automaton ﬂz. We shall use the notations: Fllrz; ﬂilﬂz. Represen-

tation of the automaton A as the divisor of the cascade connection
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(wreath product) of other automata is called decomposition of the auto-
maton 4.

Let a be a state. An input element (denote it by wa) acting by
the rule: xowa=a for any state x of the given automaton, is called an
input constant corresponding to the state a.

The automaton €=(C,P) is called a flip-flop if the set of its
states contains two elements: C={co,cl}, and the semigroup of inputs P

consists of the identically acting element and input constants P P -
o 1
Denote a flip-flop by €. The automaton (A,I') is called a group automaton

if T is a group.

Theorem 2.1. (Krohn-Rhodes, [55], see also [56] [29]). Each
finite exact automaton @#A=(A,S) admits decomposition of the form
Hlﬁlwrﬂzwr...wran, whose components ﬁl satisfy the conditions:

1. Each Hl is either flip-flop or group automata.

2. If the automaton ﬁ1=(Al,Sl) is a group one, then SlIS.

Krohn-Rhodes Theorem also describes indecomposable in a certain sense
automata. We shall discuss this problem in the next item.

To prove the theorem we need a number of statements. Consider an
automaton #A=(A,S). Denote by QA the set of all its input constants
®A=(wa,aEA}. It is a semigroup with respect to the multiplication

e, 0 =¢a Define multiplication of elements from S by elements from ¢A
12
by the rule: 50, =0, 0,50, g a€A, se€S. Then the set S=Su¢A acquires

the structure of a semigroup. Now the automaton #=(A,S) is defined in a

natural way and called a constant extension of the automaton 4.

Lemma 2.2. Let A=(A,S), A°S#A be an exact automaton and x be such
an element from A that AOSCA\{X}=A1. Then HI?wrGo, where Y=(A1,Sl) is an
exact automaton corresponding to (Al,S) and €O=(C,(¢c}) is a subautoma-

ton of the flip-flop €.

Proof. It is necessary to show that the automaton #=(A,S) is a

homomorphic image of a certain subautomaton B from ?wr@o=(A1xC,§§x{¢c)L

To each element seS we associate the element (f.wc ) from §fx{wc }. The
s} [5}



9N

component fe§;: is defined by the rule f(co)=s’, where s’ is the image of
the element s under the natural homomorphism of S onto Sl, f(ci)=¢ on’
x°s

The set of such elements forms a subsemigroup in §:x{qpc }. Really, if

()
(fa'wc ) and (fz,wc ) correspond to the elements s, and s, respectively,
o 0
then (f1’¢c )-(fz,goc )=(f1(goc <>t”2),«>c )=(f,¢c) where
0 (i o o o

f(c0)=f1((co)-fz(coowco)=fl(co)-fz(co)=s’ls'2=(s1sz)’
(2.1)
f(c1)=f1(cl)-f2(ciolpc )=f1(c1)-f2(c0)=¢px°s s’ =¢p

0 1 12

Consequently, (1’1.q7C )(fz,qpc )=(f, e ) is an element from §fx{¢c } cor-
0 o [¢}
responding to the element s,S, from S. Denote the obtained semigroup by

V and the subautomaton (AGC,V) from \.{wr(io by B. Define the mapping

p=(u1,u2):5 — A by the rule:

”1 a, 1i=0
(a,ci) = (a,cl)eAGC.

x, 1i=1

if (f,q:c ) is an element from §(1:x(wc } associated with seS, then
0 ("
Ky
let (f,{pc) =s.
o

First of all, it is necessary to verify that the mappings Bk,
are correctly defined. It 1is clear for M Let the element
(f,wc )e§;:x(<pc } corresponds to sl,szeS. Then, on the one hand, f(c°)=s’1

0 o
and f(c1)=¢>x051; on the other hand, 1"(co)=s2 and f(cl)=¢x°s2. It implies
that, first, s;=s;, i.e. that elements s, and s, act equally on Al, and

that ¢xos?¢xos2
on the whole A. Since the automaton (A,S) is exact, then sl=sz. Verified

(i.e. that Xosl=xosz). Thus, s, and S, act identically

feature of u, and equalities (2.1) imply that ", is a semigroup homomor-

phism. It remains to show that if (a,ul)eA{C, (f,(pc )eV, then
(¢}
M M M,
((a,c )o(f,q)c )) =(a,ci) o(f,goc) , i=1,2. The validity of this equa-
1
(¢} 0
lity means that # is a homomorphic image of the automaton B.
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Let (A,S) be an exact automaton and C be a subsemigroup in S.
Denote by C‘ the semigroup coinciding with C if C contains 1A - identi-

cal transformation of the set A, and equal to C1=Cu1A otherwise.

Lemma 2.3. If the semigroup S of the exact automaton @=(A,S) con-
tains such left ideal L and subsemigroup T, that LuT=S, then the automa-
- -
ton A admits the following decomposition ﬂlﬂlwrﬂz, where ﬁ1=(A,L ),
»
52=(T gl Yoo

L 3
Proof. By the definition, lerﬁzf-(A,L')wr(T','T')=(A><T..(I..‘)T xT).
It is required to find such subautomaton B=(Q,V) of this wreath product
and such homomorphism #=(M1,M,)13 — 4, that a=p"  Assume Q=AxT'. As V

-
take a union of the set of all the elements (y,t) from (L‘)T xT such

that teT and w(x)=1A for all xeT’, with the set of all the elements of

the form (fs,wt)e(L‘)T xT, seL, teT for which fs(x)=xs. Equalities

(w,t)(w,t1)=(w,tt1); (y, t)(f 0, )=(f ,¢ ),
s 1 s 1 (2.2)

(F Lo )Wt D=(f 0. )i (0 )(f 0 )=l .0 )
1 1 1 1 1
following from the definition of the wreath product (L')T xT, imply that
V is a semigroup.

The homomorphism p=(u1,u2):B —> & can be defined as follows:

M AxT. — A; pl(a,t)=aot, aeA, teT‘,

1l

»
e . = . =
2 V) 5; ua(w,t) t, teT; “z(fe'wt) st, sel, teT

From the definition of u, and equalities (2.2) it follows that M,
is a homomorphism of the semigroups. It is clear that B, is a surjective

homomorphism of V onto S. Thus, it is left to verify that the conditions
n
(1.2) (Chapter 1) are valid. Let (a,t )eAxT" Then ((a,t")o(y,t)) '=

n M n m
(asp(t™),t't) '=(a,t"t) '=act’t. On the other hand, (a,t") ‘o(y,t) 2=

1

» * » “’1 . M “-2
(act )ot=aot t. Therefore, ((a,t )e(y,t)) "=(a,t ) "o(y,t) °. Similarly,
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» M u 2
(a,t)o(f_0,)) 1=(aofs(t'),t‘oq>t) lo(aot’s, t) '=aot’st,

m m
»
(a,t ) 1°(fs'¢c) 2=(aot‘)ost=aot'st.

» Hy « My My
Therefore in this case ((a,t )o(f ,{pt)) =(a,t ) “olf ,tpt) too. Final-
a s
ly, note that from the definition of the homomorphism u=(u1,u2) it fol-
lows immediately that p is an epimorphism of B on 4.

The following lemma is proved similarly to Lemma 2.3.

Lemma 2.4. Let (A,S) be an exact automaton with a monoid S, T be
a subgroup of inverse elements of S; L=S\T be an ideal in S. Then
(A,S)| (A, L™ )wr (T, T).

Corollary. For the group automaton A=(A,S) holds
&l (A 1,)wr(s,s). (2.3)

Really, §=(A,SUQA), where <I5A is a set of all input constants of
the automaton #A; S is subgroup of inverse elements of the monoid SutbA.

Applying Lemma 2.4 we get (2.3).
Lemma 2.5. If Hlﬂlwrﬂz, then ﬁlﬁlwrﬁz.

Proof. Let A=(A,S), ﬂ1=(A‘,Sl), i=1,2. Then Eiwrﬁz=
A
(A1XA2’S12X82)' Consider an epimorphism u=(u1,u2):(Q,V) — @, where

(Q,V) is a subautomaton from 81‘"32' Let a be an arbitrary element from

1

A and (al,az) its certain inverse image from QC(AI'AZ): (al,az) 1=a; let

further ¢ be an input constant from S. Take the element
a

iy o - - K
w =(F,¢p )eS 2xS_ with f(x)=p for all xeA_ . Let V=Vu{w ,a '€Q}. The
a a2 1 2 a\1 2 a

homomorphism ﬁz:V — S is determined by the homomorphism uZ:V —> S and

[ - - ~ _
by the mappings (wa) 2=«pa. In this case the pair u=(p1,p2): (Q,v) > 4

satisfies the conditions of the homomorphism of automata.
Lemma 2.6. (A, lA) |Cwr. ..wrG.

Lemma 2.7. If (A,S) is an exact semigroup automaton, then

(s*,S)1(A,S)x...x(A,S).
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The proofs of Lemmas 2.6 and 2.7 are rather simple. It is sug-

gested to the reader as an exercise (see also [2]).

Proof of Theorem 2.1. To given automaton #A=(A,S) we assign a pair
of integers (m,n) where m=|A| and n=|S|. This pair is called a power of
the automaton #A=(A,S). The set of all pairs is ordered by the rule:

. _ o
(ml,n1)<(m2,n2) if m1<m2 or m =m_, and n <n,
By induction on the introduced ordering show first that each

exact automaton & admits decomposition of the form

A8 wrd wr...wrd (2.4)
1 2 Kk

where Hl are either flip-flops or group automata dividing the automaton
4.

Let the automaton #=(A,S) has the power (m,n) and each automaton
with the power less than (m,n) admits decomposition (2.4). It is known
(see, for example, [53]) that for every finite semigroup S one of the
three following conditions has to be satisfied:

1) the semigroup S is monogenic (cyclic);
2) the semigroup S does not contain proper left ideals;
3) in the semigroup S there are such proper left ideal L

and subsemigroup T, that LuT=S.

Consider each case separately.

1) Let the semigroup S be monogenic with the generator element 7.
Then either Aoy={acy|a€A} is contained in A (we denote Aocy<A) or Aocy=A.
Let first Aoy<A. Then for any natural £ holds A072<A and thus AoS<A.
Then Lemma 2.2 yields the decomposition @|Ywr€ in which the power of the
automaton Y is less than the power of the automaton # and the automaton
€ is a flip-flop. By assumption of the induction, Yl?lwr...wr?n, where
Y1 are either flip-flops or group automata dividing Y. Since Y is a di-
visor of @, then these group components also divide #A. It is necessary
to note that in this case the automaton Y is exact. Let now Aey=A. Then
7 is a permutation on the set A, and since S is a cyclic semigroup with
the generator 7y, it follows that S is a group.

2) Consider the case when the semigroup S does not have proper

left ideals. If AoS={aos|a€A,seS}<A, then as in the first case, we can
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apply Lemma 2.2 and the induction.

Let AoS=A. Denote by At’Az"""Ak all such Aosl=(aosi|aeA),
s‘eS, i=1...k, that Aosl does not belong to Aot for any teS (ttsl). If
k=1 (i.e. exists unique A1 with this property), then Aosl=A. Indeed, if
Aosi=A1<A, then there would be AoS<A (otherwise A2 with the given pro-
perty would exist), but this contradicts the assumption AoS=A. Therefore
Aosl=A, where s, is a permutation on the set A. Then there exists a na-
tural number n, such that s? acts identically on the elements of A. The
element s: is a unit in S. It is known that semigroup without left
ideals containing a left unit is a group [53].

If k>1, then Ll=(S|seS,AoscAl} is a non-trivial left ideal in S.
This contradicts the assumption that the semigroup S does not have pro-
per left ideals.

3) Let now the semigroup S contain a non-trivial left ideal L and
semigroup T satisfying the condition LuT=S. Then in virtue of Lemma 2.3
the automaton #A=(A,S) admits the decomposition: #|XwrZ where I=(A,L‘L
2=(T",T).

By Lemma 2.7 the automaton (T',T) divides the automaton
(A, T)x...x(A,T) embedded into (A,T)wr...wr(A,T). Powers of automata
(A,L) and (A, T) are less than the power of the automaton #. We can again
use the assumption of induction. (Here one should bear in mind that if
(A,L)Iilwr...wrln and the semigroup of inputs in all ii is a monoid,
then (A,L.)Illwr...wrin). Thus, decomposition (2.4) is proved. If ﬁl are
flip-flops, then ﬂi=ﬂl. Let B=(B,Q) be a group automaton. Then by the

corollary of Lemma 2.4 El(B,lB)wr(Q,Q). In its turn by Lemma 2.6 holds

(B,1)|6wr...wr€, where € is a flip-flop, and by Lemma 2.7 holds
(Q,Q) ] (B,Q)wr...wr(B,Q). Using the decomposition (2.3), from the above
it follows that

AlX wr...wr¥
1 n

where Il are either flip-flops or group automata dividing the initial

automaton.
In fact, the result which has been proved can be formulated in
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the following way:

Theorem 2.1’. Each finite exact automaton @ admits decomposition
of the form ﬂlﬁlwr.‘.wrﬁn. Its components ﬂl are either flip-flops or

group automata dividing the initial automaton 4.
2.2.2. Indecomposable automata

Performing decomposition of the finite automaton several times we
come to the automata which are, in a certain sense, indecomposable ones.
Note that we deal only with indecomposable group automata. In the work
by Krohn, Rhodes and Tilson [56] the decomposition theorem has been pro-
ved in semigroup terms with indecomposable automata being defined cor-
respondingly. In accordance with this work, indecomposable automata are
the automata with a simple acting group. In the present book we empha-
size consideration of the automaton as many-sorted algebraic system; re-
formulation of theorem 2.1 in the form of theorem 2.1’ as well as the
following definition of indecomposable automata, correspond to this
point of view.

Let us call the automaton (A,I') non-trivial if the set A is not a
one-element set.

An automaton # is called indecomposable if decomposition
ﬁ|ﬂ1wr...wrﬂn with ﬂl being non-trivial automata and ﬂllﬁ, i=1,...n,
implies that # divides certain Hi

An automaton @A is called s-indecomposable or simple if Hlﬁlwrﬂz
implies, that # divides ﬁl ar Hz. These two definitions correspond to
different approaches pointed above, namely, whether components of decom-
position are divisors of the initial automaton or not. Simple or s-
indecomposable automata are considered in the book [60]. It has been
proved that the automaton # is simple if and only if it is a regular
automaton of the form ﬂ=(Zp,Zp] where Zp is a cyclic group of the simple
order p. In the present item indecomposable group automata will be con-
sidered.

Recall that for the input-state automaton (A,S) (i.e. for semi-
automaton), congruence is a pair of equivalences (pl,pa) (p1 is an equi-
valence on the set A and p2 is a congruence of the semigroup S), satis-

fying the condition: if apla’, spzs' then (aos)pl(a'os’). Congruence
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p=(p1,p2) of the automaton (A,S) is called trivial in one of the follo-
wing cases:

1) if classes of the equivalences by P, and P, consist of individual
elements of the sets A and S correspondingly (i.e. P, and p, are minimal
congruences on A and S);

2) if there is the unique class of equivalence by P, equal to A,
and the unique class of equivalence by P, equal to S (i.e. P, and p, are
maximal congruences on A and S);

3) if P, is a maximal congruence on A and P, is a minimal congruence
on S.

The automaton #=(A,S) is called transitive if for any elements al,aaeA
there exists se€S such that a2=alos, in other words, if for any a€A holds
aoS=A,

Proposition 2.8. The group automaton (A,I') does not have non-
trivial congruences if and only if it is isomorphic to the automaton of
the form (I'/Z,T') with I being a simple group, £ a maximal subgroup in T,
I'/S a set of the right cosets by ¥ and with the action defined as fol-
lows: Zyoy =Zyy'; ¥,y €l.

Proof. If the automaton #A=(A,I') is not transitive and A1=a1or are
I-trajectories in A, then the equivalence p=(p1,p2), for which A1 are
classes of the equivalence by P, and P, is the minimal equivalence of
the group I', is a non-trivial congruence of the automaton A. Therefore,
the automaton without non-trivial congruences is a transitive one. Any
transitive automaton (A,I') is isomorphic to the automaton (I'/Z,I') where
'/ is a set of the right cosets of the group I' by a certain subgroup Z
and the action o is defined in a way stated in the condition. Indeed,
having fixed an arbitrary element a€A we have aoIl'=A, that is, for any
element a’e€A under certain yel', holds aoy=a’.

Let E={cel|aco=a} be a centralizer of the element a; this is a
subgroup of the group I'. Assigning the right coset Zy of I'/Z to the ele-
ment a’€A we get the isomorphism of the automata (I'/%Z,I) and (A,I') iden-
tical on the group I'. Each subgroup H of the group I' defines the non-
trivial congruence T=(Tl,12) of the regular automaton (I',T') where T is

an equivalence of the group I', classes of which are right cosets corres-
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ponding to the subsemigroup H, and T, is the minimal equivalence of T.
Then, if Ic<H, the congruence of the automaton (I',I') defined by H con-—
tains the congruence defined by the subgroup Z. This implies that if the
subgroup £ is not a maximal one, then the automaton (I'/Z,I') has a non-
trivial congruence.

It is easy to prove that, conversely, the automaton (I'/Z,I') has

no nontrivial congruences.

Proposition 2.9. If the finite simple group T divides the wreath
product of the groups FlwrFZ, then it divides one of the components of
the wreath product 1"1 or F?

Proof. Let us denote l"lwrl"2 by T. Let T be a homomorphic image of

r
the subgroup Acl'. Since Flz is an invariant subgroup in I', then it is

possible to construct in T a normal series
1=2cZc ... ¢z =T (2.5)
o 1 n

with factors 21/21_1 isomorphic either to Fl or to Fz. Let Z;=An£l. Then

the series
1=2'c¥’c ... cT’=A (2.6)
o 1 n

is a normal series in A. From Zassenhaus’s lemma ([58]) follows that the
quotient group (Z‘nA)/(ZbdnA) is isomorphic to the subgroup of the quo-
tient group ZI/Zbd. Therefore, each factor of the series (2.6) is iso-
morphic to a certain subgroup of one of the groups Fl or Fz

Let P be a kernel of the homomorphism of the group A on I', that

is A/P is isomorphic to I'. Consider one more normal series in A
1cPcA. (2.7)

By Schreier’s theorem ([58]) normal series (2.6) and (2.7) have isomor-
phic refinements. Factors of the refined series are divisors of the fac-
tors of initial series. Since the factor A/P is isomorphic to the simple
group I', it is not refinable. Hence, it is isomorphic to a certain fac-
tor of the refinement of series (2.6), which in its turn is a divisor of
the corresponding factor of series (2.5). Thus, I' is a divisor either of
Fl or of Fz



99

Recall that there is one-to-one correspondence between the cong-
ruences of groups and their invariant subgroups. Therefore each congru-
ence (pl,pa) of the group automaton (A,I') can be written in the form of

(pl.pH) where H is an invariant subgroup associate to the congruence pz

Proposition 2.10. (Kaluzhnin-Krasner’s theorem). Let (A,T') be a
group automaton and (pl,pH) be such a congruence of this automaton that
the quotient automaton (A/p,I'/H) is transitive. Denote by B an arbitrary
coset of the congruence p and by Z the normalizer of the set B in T.

Then the automaton (A,T') divides the wreath product (B,Z)wr(A/p,T/H).
Proof. Denote the quotient group I'/H by I. The transitive automa-

ton (A/p,I/H)=(A/p,T') is isomorphic to the automaton (I/Z,['). In its

turn, this automaton is isomorphic to the automaton (I'/Z,['/H) with the

operation §o§=§%, ;EF/Z, ;eF/H, xel',yell. Therefore the statement of the
theorem is equivalent to the following: (A,T')|(B,Z)wr(I'/Z,T/H). It is
necessary to find the subautomaton (Q,V) of the wreath product

(BxF/Z,Er/sz), whose homomorphic image is (A,T).

Fix a certain complete system T=(tr...,tn) of the representa-
tives of the right cosets I' by . Denote by ¥ a mapping which takes each
coset to its representative in T. Since (A/p,I') is transitive we get

A=U Boy=u BoXt=u Bot. So each element a€A can be uniquely represented in
yer teT tEeT
the following form: a=bet, beB, teT. If now we shall take BxI'/Z as Q,

~ M
then the mapping p:BxI'/Z —> A defined by the rule (b,x) 1=bo§w, beB,

Xel'/T is a mapping of BxI'/Z on the set A.
Take as V the set of elements of Zr/sz having the form (fw,;),
v€l' such that ; is an image of the element ¥ under the natural homomor-

phism of T on F, while the function f7 of zF/Z is defined in the follo-

wing way: if %X lies in I'/Z, then
f, )=y (Gop)¥) ez,

From the definition it follows that
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(f, 7 ), 7 )=(f _ ,77). (2.8)
71 1 72 2 7172 172
This, in particular, implies that V is a semigroup. Define uZ:V —> T by
. _ -
the rule (fy,y) 2=y. This definition is correct: if (f% ,71)=(f7 ,th
- _ 1 2
then v, Indeed, if (fv ,71)=(f7 ,72) then for the arbitrary xel/Z

1 2
the equality

~ oo WY Zor ¥yt
X 71((x071) ) =x 12((x 72) ) )

is satisfied. Since ;1=;2, then §o;l=;o;2 and ;w71=;w72. Therefore
L From the equality (2.8) it follows that B, is a homomorphism of
the semigroup V. It remains to verify that u=(u1,u2):(Q,V) —> (A, T) sa-
tisfies the condition (1.2) from Chapter 1 of the homomorphisms of auto-

mata.

Let (b, X)eQ=BxI'/Z, (f?{,;)ev. Then
. _u Lk SO 11
(0,50 (£,,7)) '=(bef, (), %e7) = (e (%e7)¥) Y %og) 1=
bostly ((%e7 1)1 (Ro7 100y
~ M - Hs 4 Y L - M
On the other hand, (b,x) °(f7,7) =(box' )oy=boex"y. Thus (b,x)o(fy,w) =

~ M - M
(b, x) o(fv,'y) , as required.

Corollary. If X is an invariant subgroup of the group I', then
(r,T) I (£, 2)wr (T/Z,T/Z).

Indeed, Z defines the congruence p and one of the cosets by p is
Z itself. ¥ also coincides with its normalizer in the representation
(T/z,T).

The key statement in this item is

Theorem 2.11. In order the exact finite group automaton @=(A,I)
to be indecomposable it is necessary and sufficient that it would not

have non-trivial congruences.

Proof. Show first that if the automaton # has a non-trivial cong-
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ruence, then it is decomposable. This is equivalent to the fact that an
indecomposable automaton does not have non-trivial congruences. Let
(p,p2)=(p1,pH) be non-trivial congruence of the automaton #&. Assume
first that this automaton is not transitive and that Al,Az,...,Ak are
I'-trajectories in A, Al=alor, 1=1, .50 aleA. The automaton (A,I') divi-
des the Cartesian product (A,1)x(I,I')=(AxI,1xI'). The homomorphism
u=(u1.u2), ulexF —> A, ul(a,7)=aow; M 1IxT —> T u2(1,7)=7 maps the
automaton (A, 1)x(I,I') on (A,T).

Let further 1, be a kernel of (AI,F). i=1,...,k. By Lemma 2.7.
(F/}i,F/al)l(Al,F/al)wr - wr(Al,r/al) (2.9)
k

Since ) ﬂ=1' then by Remak’s theorem the group I' is isomorphi-
1=1

k
cally embedded into the direct product nl'/ai and the automaton (I,T)
1=1

k k Kk
into the automaton ( [j F/;l, n F/al)g n (F/al,r/a‘). Taking into account
i=1 1=1 1=1
decomposition (2.9) this implies that the automaton A divides the wreath

product of certain automata Ii, i=1,2,...,2, such that each Il divides 4
and is not isomorphic to it.

If the automaton A is a transitive one and (pi,pH) is such its
congruence that P, is a non-trivial equivalence of the set A, then by
Kaluzhnin-Krasner’s theorem (A,T')|(B,Z) wr(A/pl,F/H), where B is a cer-
tain class of the equivalence P, and ¥ is a normalizer of this class in
' It is evident, that both components are proper divisors of (A,TI),
thus the automaton A is decomposable.

Consider the following situation: the automaton (A,I') is transi-
tive and allows only such non-trivial congruences (pl,pH) that P, is a
trivial equivalence on the set A. From the definition of the automaton
congruence follows that H acts identically on the set A/pl. If the co-
sets by P, consist of the separate elements of the set A, this would
imply that H belongs to the kernel of the representation (A,I'), which
contradicts the exactness of the automaton #A. Note that H#1, otherwise
the congruence (pl,pH) would be trivial. Thus, P, is a maximal equiva-

lence with the unique class equal to A, and H a non-trivial invariant
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subgroup of the group I'. Show that in the given case the automaton & is
also decomposable.

Denote by Z the centralizer of the arbitrary element aOeA;
Z=(6€F1a006=a0}. Since the automaton (A,I') 1is transitive, then
(A, T)=(I'/Z,T), where I'/Z is a set of the right cosets by the subgroup Z.
Subsets in A of the form aOO(Ay), vel' define a non-trivial I'-congruence
on A for the arbitrary subgroup A containing ¥. This contradicts the
assumption on non-trivial congruences of the automaton (A,I'). Therefore,
Z is a maximal subgroup in T.

If the invariant subgroup H belongs to £, then H lies in the ker-
nel of the automaton (I'/Z,I'). However, (I'/Z,I')=(A,T') and (A,T') is an
exact automaton. Therefore, H does not belong to £ and in virtue of ma-
ximality of the subgroup I the equality HZ=I' takes place. Consequently,
I'/H=HE/H=X/HNZ.

The automaton (I'/Z,I') is a divisor of the automaton (I',I’). There-
fore, (A,[)|(I,T). In its turn, by the corollary of the statement 2.10

(T, T) | (H,H)wr (T/H,T/H)=(H, H)wr (Z/HNZ, Z/HNZ) .

The latter automaton is a homomorphic image of the automaton (£,XZ). Thus
(A,T)|(H,H)wr(Z,Z). Since H,Z are subgroups in I, then by Lemma 2.7
(H,H) | (A,H)wr...wr(A,H). Finally we get

(A,T) | (A,H)wr...wr (A, H)wr(A,Z)wr...wr(A,2).

This implies that the automaton (A,I') is decomposable.

Prove the converse statement. Let #A=(A,I') be the automaton with-
out non-trivial congruences. In accordance with proposition 2.8 it is
isomorphic to the automaton (I'/Z,T'), where the group I' is simple and T
is a maximal subgroup in I'. Assume that this automaton divides the
wreath product of the automata (Al,rl)wr...wr(An,Fn), where each (Al,rl)
is exact and divides the initial automaton #. Then the group I' divides
the wreath product of the groups Flwr...wrrn By proposition 2.9 the
simple group I' divides certain component l"i of this wreath product. By
the condition the automaton (Al,Fl) divides the initial automaton 4.

Therefore, the group Fl is isomorphic to the group I'. So, the automaton
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(A‘,Fl) defines the isomorphic automaton (Al,F). The initial automaton
(A,T) 1is transitive. The automaton (Al,F), dividing it and having the
same group of inputs I', is also transitive. The automaton (AI,F) is a
homomorphic image of a certain subautomaton of (A,I'). Since these auto-
mata are transitive and have one group of inputs, then actually (AI,F)
is a homomorphic image of the automaton (A,T'). Since the latter does not
have non-trivial congruences, this means that the automata (A, T) and
(AI.F), and consequently the automata (A,I') and (Al,rl) are also isomor-
phic. Thus, the automaton (A,I') is indecomposable.

Joining the results of Theorem 2.11 and Proposition 2.8 we comp-

lete the description of the indecomposable group automata.

Corollary. The finite group automaton (A,T') is indecomposable if
and only if it is isomorphic to the automaton of the form (I'/Z,T') where
I' is a simple group, I'/Z is a set of the right cosets by the maximal

subgroup £ and with the action defined by: Zyoy =Zyy'; %,¥ €rl.
2.2.3. Decomposition of Mealy automata

From Krohn-Rhodes theorem for Moore automata it follows that each
Mealy automaton ®#A=(A,S,B) also allows decomposition of the form
Hlﬁlwr...wrﬁx, where Hl are either flip-flops or simple group automata
whose groups of inputs divide the semigroup of inputs of the initial
automaton.

Indeed, the automaton #=(A,S,B) is homomorphic in states image
of Moore automaton #A’=(AxB,S,B).

By Krohn-Rhodes theorem the Moore automaton @’ admits a required
decomposition and besides, the automata @ and @’ have the same semigroup
of inputs.

Consider one more reduction to a Moore automaton which may prove
to be more efficient for decomposition of the automata with great number
of the output signals and small number of the input ones. Lemmas 2.11-
2.14 are similar to the corresponding ones for Moore automata.

The automaton with two states A1={a0,a1}, with three outputs

Alu(b)={ao,a1,b}, and the semigroup of inputs consisting of the input
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constants @A and the element £ acting in the following way: aloe=af
1
a *e=a, is called a flip-flop (Mealy). The flip-flop will be denoted by

G=(A1,®Alus,Alu(b}).
Recall that a semigroup automaton (S,S,S) is called regular if

the operations o and * are defined by the rules: S,°8=8,5; sl*s=sls;

sles, seS.

Lemma 2.12. If the automaton #A=(A,S,B) satisfies the condition
AoS=A, then Elﬂiwrﬂz, where ﬁ1=(A,£.AuB) is an automaton with the opera-

tions aoc=a, a*c=a, ae€A, and ﬁz is a regular automaton (S,S,S).
Lemma 2.13. Let the automaton (A,S,B) be given and x be such an

element of A that AoScA1=A\x¢z. Then @|3urG, where 3 is an exact automa-
ton corresponding to (AI,S,B) and € is a flip-flop.

Lemma 2.14. The automaton (A,e,AUB) of Lemma 2.12 divides the
direct product of flip-flops.

Applying Lemma 2.13 several times we obtain that Slfiwrﬁwr...wrﬁ,
where the automaton ¥=(A’,T,D) is a divisor of & and satisfies A’oT=A’.
By Lemma 2.12 Ilflwriz, where Il=(A’,e,A’uD) and I2=(T,T,T) and T divi-
des S. By Lemma 2.14 Il divides the product of the flip-flops and besi-
des, IZ is a Moore automaton. Thus, we came to the decomposition of the
Moore automaton.

Having a consistent approach to the automaton as to the three-
sorted algebraic system it is quite natural to study a decomposition of
Mealy automata, components of which divide the initial automaton and to

describe automata indecomposable in this sense.
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CHAPTER 3
LINEAR AUTOMATA

3.1. Basic concepts

In this Chapter we consider the general theory of linear automa-
ta, introduce various constructions (in particular, the construction of
the triangular product), and apply them to decomposition of such automa-
ta.

3.1.1. Linear automata, linearization, universal linear automata

Linear automata (A,X,B,), i.e. automata whose state and output
sets are linear spaces (or modules over commutative rings) with actions
o and * being linear operations, were introduced in 1.5.3. Linear semi-
group automata were defined in the same item. In the similar way, as in
the case of pure automata, to each linear automaton (A,X,B) can be as-
signed a semigroup linear automaton (A,F(X),B), where F(X) is a free
semigroup over its set of generators X. The assigning is a functor on
the category of all linear automata to the category of semigroup linear
automata.

A linear automaton can be associated with to each pure one. Let
(Z,X,Y) be an absolutely pure automaton. Fix a field K and consider vec-
tor spaces A and B defined over sets Z and Y respectively. Operations o:
ZxX — X and *:ZxX — Y are extended by linearity to the corresponding
operations AxX — A, AxX — B. The result is the linear automaton
(A,X,B). Since homomorphisms of linear automata correspond to homomor-
phisms of pure ones, the linearization is a functor on the category of
pure automata to the category of linear automata (over the given field
K).

If (Z,X,Y) is an exact finite automaton, then linearizing it, we

get an automaton, which is isomorphic to a matrix one. It turns to be
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convenient that matrices can be transtormed to different canonical
forms. We show how matrix forms of an automaton can be changed.

Let A=(A,X,B) be an exact linear automaton, XcEnd(A,B), x=(c,¢)eX.
Take a pair of automorphisms: B, of the space A, By of the space B, and

define a mapping B, of the set X in the following way:

My -1
if x=(o,p)eX, then set x =(u1 oM K ous).

The image of X under H, is denoted by X1' chEnd(A,B). The mapping u, is
one-to-one, and the triplet u=(u1,u2,u3) satisfies the conditions (1.2),
Ch. 1. This means that p is an isomorphic mapping of the automaton
(A,X,B) onto the automaton (A,XI,B). By suitable choice of K .k, one can
change the matrix form of the initial automaton.

Along with linear semigroup automata, it is advisable to consider
also ring automata. In the case of linear automata, the set End(A,B)=
EndAxHom(A,B) is a ring, the multiplication in which is defined in the
same way, as in the general case (see Section 1.5), while the addition
is defined componentwise, i.e. if (¢1'¢1) and (wz,wz) are the elements
of End(A,B), then

(00,1000 )=(0 0,04 ), (9, )+(p,, ¥ )=(p +¢ .y + ).

The linear automaton (A,R,B), such that R is a ring and opera-
tions o and * are determined by the ring homomorphism of R into
End(A,B), is called a ring automaton.

If (I,I,I') is a regular pure semigroup automaton, then as the
result of the linearization, we get a regular linear semigroup automaton
(KI',T,KI'). The operations o and * in this automaton are defined as fol-
lows:

n
if yel, u=Y% alyleKr, aIEK, 7ier, then
1=1
n
Uoy=u*y=uy=y) «r.
1=1
For ‘the linear automaton (A,I',B) the operations o and * defined

for elements of I' can be extended by linearity to corresponding opera-
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tions on elements of KI:
n
if u=y} alglexr, aleK, 7ler; a€A then
1=1

n n
aou= Y} al(aoyl), a*u= Y} ul(aﬂylL
1=1 1=1

In this way the automaton (A,KI,B) whose set of inputs is a semi-
group algebra is defined. This automaton is a particular case of the
ring automaton defined above.

A linear automaton (A,I',B) is called a cyclic one, if there
exists an element aeA, such that A=aocKI', B=a*KI'. In this case a is cal-
led a generating element.

Any cyclic automaton (A,I',B) is the homomorphic image of a regu-
lar one (KI,T,KI). Indeed, let uekl' be a state, and veK' be an output
signal of a regular automaton. Let a be a generating element of a cyclic

automaton. Define linear mappings ul:KF — A and u3=KF — B according to

) ®
the rule: u 1=aou, v l=a'u, and let pa:r —> I be the identity mapping.

Then u=(ul.yz,u3) is a homomorphism of the regular automaton onto a cyc-
lic one.

Three types of the universal automata Atm'(A,B), Atm*(I',B),
Atma(A,F) were defined for automata in arbitrary varieties in Section
1.5. We preserve this notation in the case of linear automata. Let
(A,T',B) be a linear automaton. Each element a€A defines a mapping fa of
the set of inputs into the set of outputs, fa:F — B, according to the
rule fa(7)=a'7.7er. Assignment of the mapping fa to each element aeA
defines a homomorphism in states of the automaton (A,I'B) into
Atmz(F,B). The automaton is a reduced one, if the homomorphism is a mo-

nomorphism, i.e. if the equality fa =fa implies a1=a2, In the case of
1 2
linear automata reduction is equivalent to the fact that the subspace

A1={aeA|a*7=0,7EF) of elements of A, mapped by each element of I' to zero
of the space B, equals zero.

Return to the definition of the universal automaton Atma(A,F). By
the definition of Atma(A,F) in arbitrary variety, it follows that in the

case of linear automata, H is a linear space with the free set of gene-
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rators AxI'. Congruence p of this space is determined by the subspace Ho

generated by all elements of the form
(a,7 7, )-(aey ,7,) and ala ,¥)+B(a,,v)-(aa +Ba ,¥),

where al,az,a3eA; o,BeK; yel. Finally A®F=H/HO. The quotient space H/Hd
can be regarded as the tensor product of the linear spaces A and KI' over

the ring KT.

3.1.2. Linear Moore automata

A linear automaton (A,I',B) is called a Moore automaton if there
exists a linear mapping ¥:A — B such that for any elements a€A, and yel
the equality a*7=(a07)w holds.

In this case Y is called the determining mapping. A number of
statements formulated and proved in Section 1.3 for pure Moore automata,
holds also for linear automata. For instance: a linear automaton (A,I,B)
is a Moore automaton, if and only if it can be extended to the automaton
(A,Fl,B). The same, as in the case of pure automata (statement 3.7,

Chapter 1), is the proof of the following

Proposition 1.1. If p=(p1,p2,p3) is a congruence of a linear
Moore automaton #A=(A,I',B), with Y being the determining mapping for
which the condition pcher¢ is true then the quotient automaton A/p is

also a Moore automaton.

Theorem 1.2. In order that a linear automaton A=(A,I',B) over the

field K be a Moore automaton, it is necessary and sufficient that the
n n

equality Y Al(a1°71)=0, aleA, 7leF, AIEK, implies Y Al(al*71)=0.
1=1 1=1

Proof. Let # be a linear Moore automaton with the determining

n
mapping yY:A —> B and let Y} Al(aiovl)=0. Then
1=1

n o2
1E:lhi(aioy‘) =1§1Al(a"71)=0.

In order to prove the inverse statement, denote by AeI' the linear

hull of all the elements of the form aoy, ae€A, yeI', and by Ao the direct

complement of AeI' in A. Then A=AO@A0F. Each element h of AeI' can be
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n
written in the form h=} hl(a!ovl) (Clearly, this form is not unique).
i=1
n

Define the mapping y¥:A — B by the rule: if aoeA0 and h=} al(aloyl)EAor,
we set

n n
a¥=0 and h¥=(F « (a oy 1)Y= « (a.* ).
0 A (s R |
y=1 1=1
By virtue of the condition, the definition does not depend on the form
of presentation of the element h. Obviously, the mapping ¥ is a linear
one, and (aow)w=a‘7 holds for each aeA, yel'. Thus, (A,I',B) is a Moore

automaton.

Theorem 1.3. If K is a field and semigroup I' is finite then the
following conditions are equivalent:
1. Semigroup algebra KI' has a right unit €.
2. Every linear automaton (A,I',B) is a Moore automaton
3. If |B|>1 then Atmz(F,B) is a Moore automaton.

Proof. 1 = 2. Extending any automaton (A,I',B) to automaton

J

(A,KI,B) one can define the determining mapping by the rule a"=a*e, aeA.

Clearly, 2 implies 3.

33 1. Let Atmz(F,B)=(Br,F,B) be a Moore automaton. We can consi-
der the case of one-dimensional space B. One can identify Br with the
linear space Hom(KI[,B). Let y: Hom(KI,B) — B be the determining mapping
of automaton Ath(F,B). With each element ueKI' we associate an element
ueHom (Hom (KT", B), B) by the rule u(g)=¢(u) for any geHom(KI',B). The map-
ping u ™ u is an injective one. Since B is one-dimensional linear spa-
ce, dim(KI')=dim(Hom(Hom(KI',B),B)). It follows that mapping u — u is an

isomorphism. Take an element veKI' such that ¢=V. Then
o (3)=p*y=v(poy)=(poy) (v)=p(yv), for all peHom(KI',B), yeT.

If yv#y then there is geHom(KI,B) that ¢(yv)#p(y). It follows that yv=y,
hence v is a right unit in KI.

Similar to the case of pure automata one can show that for linear
Moore automaton (A,I',B) the kernel of automaton representation of the

semigroup I' coincides with the kernel of the representation (A,T).
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Linear group automata, i.e. the automata with their input sets
being groups, are a particular case of linear Moore automata.

Let A=(A,I',B) be a group automaton, and the mapping B:I' —
Hom(A,B) be determined by the automaton representation of the group T.
We denote by & the set of all the elements yel such that a*y=a*ec for
each aeA. Show that ® is a subgroup of I', and that it does not have to
be a normal subgroup of the group T.

Denote by Ao the kernel of a linear mapping of A to B, defined by
the unit € of the group T: A0=(aEAIa*e=O}, and by ¥ the normalizer of
the subspace Ao in the representation (A,T): Z={¢eF|AOoU=AOL

Let pe®. Then for each aeA it is true that a*p=a*e and a*p-a*e=0.
Since a*p=a*pe=(acp)*e, then it follows from the above that

(acp)*c—a*e=0 and (ao-p-a)*c=0. It means that
aow—aeAO (1.1)

Now, if e, and ¢, are two elements of ®, then

(aowlwz-a)*e=(ao¢1¢2—aow1)+(ao¢1—a))*e=
=(aow1¢2—aowl)*e+(aowl—a)*e=(aowz-a)*e+(aowl—a)*e.

The first summand of the sum equals zero, since aeA and ¢2e¢. In
its turn, it follows from the inclusion wle® that the second summand
equals zero. Thus (a°¢1¢2‘a)‘8=0 and wlwzeﬁ. In a similar way, if ¢ed
then also w-leé. So, ® is a subgroup in I'.

If p=KerB, then, by the definition of ®, it is a coset of this
relation containing e€: ¢=[e]p. Inclusion (1.1) means, in particular,
that ® belongs to X, and that ¢ is the kernel of the representation
(A/AD,Z). Thus, ® is a normal subgroup in . However, ® can be non-
invariant in I Consider a corresponding

Example. Let A be an n-dimensional vector space over the field of
real numbers, I' is the group of all the automorphisms of the space, Ao a
subspace in A, and B = A/A0 is the quotient space of A by AO_ If aeA,yel
then aoy is defined as the image of the automorphism y. Further, assume
a*e=5, where a is the image of a under the natural homomorphism A onto
B=A/Ao. Finally, a*y is defined according to the rule a*y=(ao-y)*c. We

get a group automaton (A,I',B). It is easy to show that in this automaton
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® is not an invariant subgroup in I'. To do that, it suffices to choose a
basis of the space A passing through AO' to consider the matrix forms of
elements of ® and to select elements yel' and ped such that ye#¢'y for no

one ¢’ from &. The subspace Ao can be taken one-dimensional.

3.1.3. Biautomata

The concept of biautomaton is another generalization of the con-
cept of a semigroup linear automaton. We speak about the situation when
input signals act not only on states of an automaton, but also on its
outputs.

A biautomaton is a system consisting of three basic sets A,T',B
where A,B are vector spaces over field K (modules over a ring), I' is a
semigroup, and of three representations alzr — EndA, B:I' — Hom(A,B),
az:r — EndB. Operations defined by the representations « and B will be
denoted by the symbols o and *. We denote by < the operation defined by
the representation o Upon this, the following conditions should be

fulfilled: if aeA, beB, yi,wzer, then

a°1172=(a°71)072; b-7172=(b-71)'7£
(1.2)

= * .
a% .7, (aowl)‘72+(a el

An automaton is a particular case of biautomaton: it is sufficient to
suppose that elements of I' act in B as zeros, i.e.for each beB, yerl,
holds bey=0.

A coautomaton is another special case of biautomata: elements of

' act in a zero way in A.
As well as an automaton, a biautomaton (A,I',B) is called finite-

dimensional, if A and B are finite-dimensional linear spaces.

A homomorphism of biautomata
w:8=(A,I',B) = &'=(A",T’,B")
is a collection of three mappings ule —> A, u2:F —» T, “3:8 =2 B,
where “1’“3 are linear mappings, ®, is a homomorphism of semigroups. The

following consistency conditions
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m "

[ K 3] L M
(ao'a') 1=g-), 107 2, (a#v) 3=a lura« 2' (b+y) 3=b oy 2

must be satisfied. One can consider separately homomorphisms in states,
in input and output signals. As in the case of automata, here the cano-
nical decomposition also takes place.

Consider the universal biautomaton Atml(A,B). Let us take the

Cartesian product
End” (A, B)=EndAxHom (A, B) xEndB
and define multiplication according to the rule
(o‘A,go ,cB)(crA,w ,O'B)=(cer'A,¢rAgo +p ¢rB,a-Ba-B) (1.3)

with o;,vx from EndA; ¢’ ,¢" from Hom(A,B) and cé,wg from EndB. Assosia-
tivity of the multiplication is easily verified, hence Endb(A,B) is a
semigroup. If, further, 7=(ok,¢,¢B)EEndb(A,B), a€A, beB, we set acy=ac,
a*y=agp, b'7=b08. It follows from the definitions of the operations that

conditions (1.2) are satisfied. In this way, we get the biautomaton
Atm' (A, B)=(A, End’ (A, B),B).

It is a terminal object in the category of biautomata, with fixed A,B
and homomorphisms in inputs as morphisms.

It is easy to understand that to define an arbitrary biautomaton
(A,I',B), it is sufficient to point out a homomorphism t©:I —> Endb(A,B)
determining all the actions of the semigroup I'. This homomorphism is
called the biautomaton representation of the semigroup I'. It is interes-
ting to notice that while the semigroup End(A,B) has no unit, the semi-
group Endb(A,B) has one, (sA,O,cB), and there are many inverse elements
in it. It is precisely the set of elements of the form 7=(nA,¢,nB) with
the inverse n, and .

If in Endb(A,B) the addition and multiplication by a scalar of
the field K are defined componentwise, then Endb(A,B) becomes a linear
associative algebra over K. The homomorphism t:I' — Endb(A,B) can be
extended up to the homomorphism t:KI — End(A,B), and this extends the
biautomaton (A,T',B) to the biautomaton (A,KI,B) with the semigroup alge-
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bra of the input signals.

The universal biautomaton Atmz(F,B) is being constructed on the
same sets Br,F,B, as the corresponding linear automaton (see item
3.1.1), but it is supposed that the representation (B,I') is defined.
This fact changes the definition of the operation I' in Br. For any weBr;

¥, Xel' , we set:
(pox) (x)=p(yx)-p(¥) x (1.4)

In this way, a representation (Br,F) is defined. The operation * is de-
fined as follows: ¢*y=p(y). We get the biautomaton Atmz(F,B) which is
the terminal object in the category biautomata having the representation
(B,T) and homomorphisms with respect to states as morphisms.

Originally, the universal biautomaton Atma(A,F) with the given
representation (A,T') is constructed similarly to an universal linear
automaton of the third form (see 3.1.1). Take a free object over the
Cartesian product AxI', i.e. the vector space H with the basis AxI' (when
we deal with modules over a commutative ring, we take a free module over
the ring, which is generated by the set AxI'), then take a subspace (sub-

module) Ho’ generated by all the elements of the form
a(ai,7)+B(a2,7)—(aa1+6a2,7), «,BeK, a ,a_eA, yeT. (1.5)

It can be proved that the corresponding quotient space H/H0 is
isomorphic to the tensor product of linear K-spaces A and KI. Indeed,
assign to each free generator (a,y) the element a®y in AeKI. This gives
the canonical epimorphism p:H — AeKI'. Let H1 be the kernel of u. Show,
that H1=Ho' It is clear, that HocHl. Let h1={px(al,71)eH1. This element
can be rewritten in the form h1=Z(ai,71)+ho, where h eH and all y are
different. Then, hT=Zai®71=O. Since the elements 71 form a basis of KT,
it follows that always a1=0' Hence, hleH0 and H1=HO. Denote H/HO=A?KF.
Its elements can be written as Ea|®ui,aieA,u‘EKF. Define the operation *

a*y=a@y. Finally, define the operation of T in A%KF: if aleA, uleKF,
yel, §a1®uieA%Kr then

(a®u) *y=aeuy-(a-u)ey. (1.6)

Conditions (1.2) are easily verified: we obtain the biautomaton
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Atma(A,r)=(A,r.A§»Kr), which is an initial object in the category of bi-
automata with the given representation (A,I') and homomorphisms in out-
puts as morphisms. If, while constructing A%KF, the subspace Hj is gene-
rated not only by the elements of form (1.5), but by all the elements of

the form (a,ylyz)(aowl,yz), as it was done in 3.1.1, then we get A® KI'
Kr

instead of A%KF. The operation + in it becomes the zero one, and the
universal biautomaton Atm3(A,F) will be transformed into a corresponding
universal linear automaton.

The definition of the congruence of the biautomaton #=(A,T,B) is
obtained from the corresponding definition of the linear automaton. Add

the condition:

if 7,PY b1p3b2’ bleB, leF, i=1,2 then (bl'wl)p3(b2'72L
A quotient automaton is being constructed on the basis of the congruence
p=(p1,p2,p3)=(Ao,p2,Bo). We use here the term "quotient automaton", not
the "quotient biautomaton". The latter is less convenient. Just in the

same way, we will speak about a subautomaton of a biautomaton, not about

a subbiautomaton.

3.1.4. Automata, biautomata and representations

Each automaton @=(A,I',B) comprises a representation (A,I'). Here
we mean to consider another, one-to-one relation. Let the initial cate-
gory K be the variety of Q-algebras, and # an automaton over K. The Car-
tesian product AxB is an algebra in K. For each yel' and (a,b)eAxB, we
set: (a,b)dy=(acy,a*y). It is easy to verify that it defines a represen-
tation (AxB,I'). Let, on the other hand, (AxB,I') be such a representa-
tion, that if (a,b)o’y=(a’,b’) then a’ and b’ depend only on a and 7.
Denote a’=acy and b’=a*y. This defines the automaton (A,I',B). In this
way we come to one-to-one correspondence between automata over K and
representations of a special form.

Let K be the category of vector spaces (modules) and #=(A,I,B) a

biautomaton over K. Define the action of I' in the direct sum AeB :

if a+beAe®B,yel' then (a+b)o’y=acy+a*y+b-y.
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This defines a representation (AeB,I') and obviously, B is invariant with
respect to action of I'. Inversely, if the action o’ of the semigroup I'
in AeB is specified, and the subspace B is invariant in this representa-
tion, we get the biautomaton (A,T',B). The operations in it are defined
in a following way: if ao’y=a’+b’, a,a’eA,b’eB,yel’ then aoy=a’', a%*y=b’,
b+y=bo’y, beB.

For the universal biautomaton Atml(A,B) the corresponding repre-
sentation (A@B.Endl(A,B)) can be illustrated by the following matrix

picture:

EndA Hom(A,B)

0 End B

3.1.5. Moore biautomata

Let (A,T,o) and (B,T,+) be two representations and y:A — B be a
linear mapping. For arbitrary a€A and yel we set:

)w-aw-y

a*y=(aoy

It can be shown directly that in such a way we always get a biautomaton
, called Moore biautomaton. It is clear, that if ¥ commutates with the
action of I', the corresponding operation * becomes a zero one.

Let #=(A,I',B) be an arbitrary biautomaton and y:A — B be a linear
mapping. By M¢ we denote the set of all yeI' for which a‘7=(aoy)w—aw-7,
aeA is satisfied. A straightforward calculation shows that MW is a sub-
semigroup; by this, the Moore part (A,Mw,B) with the given Y is selec-
ted. We apply this to Atml(A,B). For given Y the element 7=(¢f¢’°é)
belongs to Mw, if a¢=a¢1w—aw¢2; ¢=¢IW—WG2 Thus, neither yY:A — B does

make Atml(A,B) a Moore biautomaton.
Proposition 1.4. Any biautomaton #=(A,T',B) is a homomorphic in
states image of a Moore biautomaton.

Proof. Take the corresponding triangular representation (AeB,T).

Together with (B,I') and the projection y:AeB —> B compose the Moore bi-
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automaton (AeB,I',B). Take further the projection v:AeB — A. We have:

((a+b)07)v=(a°7+a*w+b'7)v=ao7=(a+b)"oy;
((a+b)*)=((a+b) o7)¥- (a+b)¥ cy=asy+bey-bey=asy=(a+b) 7.

Corollary. Homomorphisms in states do not preserve the Moore pro-
perty of biautomata.

However, it is easy to verify that homomorphisms in output sig-
nals do preserve the property. Indeed, if A=(A,I',B) is a Moore biautoma-
ton with the mapping Y:A — B, and v:B — B’ defines a homomorphism in
output signals: #=(A,I,B) — #A’=(A,I,B’), then the mapping yv:A — B’

makes the second biautomaton a Moore one:
a;7=(a'7)v=((a°7)w—aw'z)v=(a°7)wv-awu'7
Here * is the operation in &’

Proposition 1.5. If A=(A,I',B) is a biautomaton with free over the
set Z representation (A,I'), then A is a Moore biautomaton.

Proof. Take an arbitrary mapping ¢:Z — B. For each zou, uekr!
set: (zou)w=z*u+zw-u. Here, if u=1 then assume z*u=0, beu=b, and the
given ¥y extends the initial mapping y. We got a linear mapping of each
zKI"1 into B, which is extended up to the linear mapping yY:A — B. The

definition of the Moore condition can be rewritten in the form

(a°7)¢=a*7+awow. Take now a=zou; then
(a°7)w=(20uw)w=2~uw+zw°uz=(zou)*w+(z'u)-w+zw-u7=
=a'7+((zou)w-z¢°u)-7+zw-u1=a*7+aw-7, as required.

Now we will generalize this statement in the form of the follo-

wing sign of a Moore biautomaton.

Proposition 1.6. The biautomaton A=(A,T',B) is a Moore one if and
only if there exists a system Z of Krigenerators of A and the mapping
Y:Z2 —> B, such that
= v
?zl u=0 = %(zl'ul+zi

-ul)=0

for any zlEZ and u‘eKF{
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Proof. The if direction will be obtained, if we take Z=A and the
corresponding ¥ defining a Moore automaton. One should keep in mind that
not only a KI', but also a Krl—biautomaton corresponds to the biautomaton
with the semigroup I'. If (A,I',B) is a Moore biautomaton with the mapping
Y:A — B, then (A,KFI,B) is a Moore biautomaton: for each aeA and ueKFﬂ
a'u=(aou)¢—aw~u holds.

Let us verify the sufficiency. Let Z and y:Z — B be given. Each

a€eA can be written in the form a=Zzloui, uleKl"1 Set a¢=2(ziﬂﬂ+z?-ulL
i 1
It follows from the conditions that mapping Y is correctly defined, and

that it is a linear one. A direct calculation yields

(a°7)w=§(ziouly)w=§(zl'u17+z?-ulw)=Z(zloul)*7+Z(z"ul)'7+

1 1
+Ezw-u y=a*y+(L(z *u w2
[ ik e

-ul))q=a*7+a¢-7.

Note the following problem.

Is it possible to find, in terms of semigroups or semigroup alge-
bras, a class of semigroup I', for which all the biautomata over the gi-
ven field K are the Moore biautomata?

A similar problem for automata is solved in Section 1.3 and in

item 2 of the current Section.

Proposition 1.7. Each biautomaton (A,I',B) can be isomorphically

embedded as a subautomaton in output signals into Moore biautomaton.

Proof. First of all, note that for each biautomaton (A,I',B) there

exists the representation (AeB,I') defined by the formula
(a+b)oy=acy-a*y+b-y.

Now take a copy A’ of the space A with the isomorphism y:A — A’ and
consider also a biautomaton (A’,I',B) copying the initial one, (A,T,B).
Here aw07=(a07)w and aw*7=a'7. Using the biautomaton (A’,I',B) construct
the representation (A’eB,I') according to the rule just mentioned. We
combine the two representations (A,I') and (A’eB,I') into a biautomaton
(A,T,A’®B), defining the operation * as in the case of the given
(A,T,B). (A,T,B) is a subautomaton in (A,I',A’®B). We show now that the
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latter satisfies the Moore condition, with the mapping y:A — A’cA’eB.
Indeed,

aw-7=a¢'°7-aw'7r=(aoar )w—am

a'7=(aoy)w—aw-1.

Corollary. A subautomaton in output signals of a Moore biautoma-

ton is not necessary a Moore one.

On the other hand, it is obvious that a subautomaton in states

keeps the Moore property.
3.1.6. Free linear automata and biautomata

The definitions of a free linear TI'-automaton and a free
I-biautomaton with the system of generators (Z,Y) are submitted to the
general definition of free algebra in a variety of many-sorted algebras
(see, for instance, the corresponding definitions in the pure case). We
will denote the free linear I'-automaton and TI'-biautomaton by Atm#(Z,Y)
and Atm?(Z,Y), respectively. In the places where it is clear what is the
matter, indices ¢ and b can be omitted.

Construct a free linear I'-automaton with the system of free gene-
rators (Z,Y). Denote by H the linear space over the field K generated by
the Cartesian product ZxFl, by ¢ the linear space generated by the set
(Zx')uY. The automaton (H,I',®) with operations o and * , defined accor-

ding to the rules

(X (z,7 ))er=Fx (2,7 7)
1 i

(Y (z,,7 ))*y=Ya (z ,7 7); o €K, z €Z, ¥ erl, yerl',
R R 1 i 1

is a free linear I'-automaton with the system of free generators (Z,Y).
Indeed, let #=(A,I',B) be an arbitrary linear I'-automaton and u1:2 —> A,
M31Y —> B an arbitrary pair of mappings. Extensions of these mappings u1

and By to linear ones ﬁl:H — A and ﬁ3:¢ —> B is defined as follows: if

h=§ﬁi(zl,71), ¢=§ﬁl(zl.7l)+§BJyJ then we set
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My By My ! My
h —?ocl(zl 071), 3 —?xi(zl ~7l)+§]3]yJ

The triplet (ﬁi,er,ﬁ3) where £ is the identity mapping of the semigroup

', is homomorphism of the aug;maton (H,I',®) into the automaton #. The
uniqueness of the homomorphism is obvious.

The linear space H can be regarded as a Kri—module with the basis
2, i.e H=ZKr;
the set of generators Z and of the linear space with the basis Y,

$=ZKI'eKY. In the latter case, the element heH can be written in the form

the linear space ® as the direct sum of a KI[-module over

h=Zzlul, zlez, ulekrl, while the element ¢e® in the form
i

w=(§z‘v1+alyl)=Zzivl+§ﬁlyl, z,€2, v eKl, « ek, y €Y.

Then the operations o and * have the form
(Eljzlul ) 07/=le2l (u7)

(Zziul)*7=Zzl(u17), uleKFI, zleZ. yel.
1 1

Now we construct a realization of a free I'-biautomaton with the
system of free generators (Z,Y). As in the previous case, we take first
the 1linear space H=K(Zxr1)=ZKF1. Then, consider the tensor product
¢O=H®KF of linear spaces H and KI', and the linear space K(YxF1)=YKF1=¢f

By ® we denote the direct sum
¢=¢0@¢1=(H®Kr)@m‘.
In the triplet (H,I',®) we introduce the following operations ., *, =« :
o : (Zzlul)ow=zzl(uly),
1 1
LI (?zlul)*7=(§z‘ui)®7,

. (Zylui)-7=2yl(uiw); (Zhl®ui)-7=Z(hI®u17—h1u‘®7),
1 1 1 1

where uleKr " z!ez, verl, yleY.
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(H,T',®) is a biautomaton, with respect to the introduced opera-
tions, and this biautomaton is free, with the free system of generators
(Z2,Y). If the set Y is empty, the constructed biautomaton, (H,[,®), is
an universal biautomaton of the third type Atma(H,F). A free linear au-
tomaton with variable semigroup of input signals and the system of free
generators (Z,X,Y) is constructed in the following way: first we take a
free Semigroup F=F(X) with the system of free generators X, and then the
automaton Atm (z, Y) The required free automaton is thus obtained and it
is denoted by Atm (Z,X,Y). Correspondingly, a free biautomaton with the
system of free generators (Z,X,Y) is the biautomaton Atm (Z2,Y), where

F=F(X). This biautomaton is denoted by Atm (Z2,X,Y).

3.2. Constructions. Decomposition of automata
3.2.1. Constructions. Triangular product

We consider the basic construction, called the triangular product
of automata, playing the role in the theory of linear automata, which is
similar to that of wreath product in the theory of pure automata.

First define the triangular product of exact linear semiautomata
(representations). Let (Al,Fl) and (Az’rz) be two such semiautomata.
Denote by ¢=Hom(A2,A1) the set of all linear mappings from A2 to A1
which is considered as an additive Abelian group, and by I' the semigroup

of generalized matrices of the form

R ylerl,yzerz, ¢eHom(A2,A1) (2.1)

with the usual matrix product

, ¥ g
v 0 ¢71

Then the semiautomaton (A1®A2,F) is defined by the natural actions of
elements of I' on elements of A1®A2: if (al,az)e A1®A2, and yel is an
element of the form (2.1), then (al,a2)°7=(a1°71+a2¢,azoy2). The semi-

automaton thus obtained is called the triangular product of the semiau-



121

tomata (A1.r1) and (Az,rz). It is denoted as
(Al'rl)V(Az'rz)'

The semigroup I' can be presented in the form of a Cartesian pro-
duct leHom(Az,Al)xFZ, with the multiplication:

(vl.w,wz)(wl,w ,72)=(7171,72¢ Y1)
7‘,716r1;1=1,2;¢,w e0=Hom(A2,A1L

Correspondingly, the operation o in the triangular product (A1@A2,F)=

(A,®A_,T x®xI' ) can be written as
1 2t 1 2
(al,a2)°(Wl,w,72)=(a1071+azw,azovz). (2.2)

We defined the triangular product of exact semiautomata. In order
to define the triangular product of arbitrary semiautomata, one should
indicate how the “products" v,00 and 9oy should be understood;
wlerl,i=1,2, ¢ed. Define actions of Fl on & from the right and Fz on ¢
from the left according to the rule: if we@,wlerl,yzer,aeAz, then ¢071
is an element of ® such that

alpey )=(ap)ey , (2.3)
and 7,00 is an element of ® such that
3(72°¢)=(a°72)¢- (2.4)
Now the triangular product of arbitrary semiautomata is defined in a
manner similar to that in the case of exact automata
(Al,rl)V(Az,T2)=(A1@A2,le¢xra)=(A1@A2,F),
where ¢=Hom(A2,A1). F=F1x¢xF2 is a semigroup with the multiplication:
(07,000 ot B R
and the action of I on A1©A2 is defined by (2.2).
Let us define triangular products of automata and biautomata. Con-

sider linear automata ﬂj=(A1,F1,B1) and a2= (Az’rz'Bz); let Q=Hom(A2,A1)
and W=Hom(A2,B1). Action of semigroups Fl and Fz on & is defined by
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(2.3) and (2.4), as in the case of semiautomata. Besides, define the
action of Fz on ¥ from the left:

a2(72°w)=(a2°72)¢

and the action of Fl on & to ¥: if ¢e¢,7erl, then ¢*y is an element of §
such that
a2(¢'7)=(a2¢)*7 for each azeAi

The Cartesian product lewxWxF2=F is a semigroup with respect to the

multiplication operation:
(vl,w,w.va)(vl,w W)= 7 Y007 oY 0N Y oY ,7272).

where 71,1; are elements of Fi; 72,7; of FZ; @,9’ of ®&;y,y’ of V.
An automaton Hlvﬂ2=(A1®A2,F,B1®BZ) in which the operations o and

* are defined in the following way
(a,,a )eor=(a o7 *a 9,2, °7,),
(a,a)v=(a * +ay,a % ),

where (al,a2)€A1®A2,7=(71,¢,¢y72)er=rlx¢xWxF2, is called the triangular
product of automata Hl and az.
If A=(A,T ,B) and A =(A_,T"_,B ) are the exact linear automata,
A A R g gt tg
the triangular product alva? is the automaton (A1®A2,F,Bl®B2) for which
I' can be considered as the semigroup of generalized matrices of the

form:

0 0O 0 O

where (au,wll) is the image of an element of [, under the automaton
representation, (azz’wzz) is the image of an element of T 2under the
automaton representation, a, and ¢, are any elements of Hom(Az,Al) and

Hom(Az,Bl) respectively, and the operations o and * are defined as fol-
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lows:

a,a )oy=(a o +a o ,a o
( 17377 111 221" 2 22)'

*y=
(ai'az) ¥ (a1¢11+a2¢21.a2¢22).

As it was pointed out, the role of triangular products of linear
automata is similar to that of wreath products in the category of pure
automata. A wreath product Elwrﬂ2 of pure automata is a terminal object
in the category of cascade connections of the automata Hl and Sz (see
Section 2.1.). Let us define a cascade connection of linear automata ﬂ1
and SZ. Suppose that a semigroup I' and the homomorphisms al:r - Ff
az:F =3 Fz are given. Let there be mappings B:I' — Hom(Az,A1L
8 :I' > Hom(Az,Bl) satisfying the relations: for ¥,y el holds

o T
ar' PP Y e D &8, (2.5)

o v o

1 ”z ,8

B ) M+ B %0

Gy =P

here (ul,ul):q - EndAxHom(Al,Bl) is the automaton representation of the
semigroup Fl, and (ua,vz) is the automaton representation of the semi-
group F:

An automaton H=(A1@A2,F,B1@Bz) with the following operations o

and *
o B o
(a,a )oy=(a oy ‘+ay , a_ey 2);
1 2 1 2 2

o 3 o

1 2
*y=(a_*y "+a a_¥* ; a €A, a_eh
(al,az) r=( 17 27 0 %7 )i 11" 22

is called a cascade connection of linear automata ﬂ1 and ﬁz correspon-
ding to a given semigroup I' and to a set of mappings o, o, B, 7.

From the definition of the triangular product and of the cascade
connection of automata ﬂl and ﬂz it follows that the triangular product
of ﬂl and EZ is the terminal object in the category of cascade connec-
tions of these automata. In other words, for any cascade connection of

the automata ﬂl and ﬁa there exists the unique homomorphism of this con-
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nection to the triangular product Elvﬂz.
= = i t 3
Finally, let H1 (Al’r1'B1)’ ﬂz (Az’rz’Bz) be biautomata;
® =Hom(A_,A ), & =Hom(B_,B ), U=Hom(A ,B ) are considered as additive
1 2" 2 2t 2"

Abelian groups. Let 7‘sr1, ¢1€¢1’ i=1,2, ye¥. As above, one can define
actions of Fl and Fz on @1: P00 Y005 action of Fl from @1 to ¥
* - . R . * *
wl 716W. Similarly, we define the elements wz 71, wz 72, 7] 71, 72 wz,

acting according to the rules: if azeAz, bzeB2 then

bz(‘°2°71)=(b2‘02)'7’1; b2(72°wz)=(b2'72)¢2;
(2.6)
az(w*71)=(azw)'71; a2(72’¢2)=(a2*72)¢2.

All these actions are compatible with the linear operations in Q1,¢2,W.
It is easy to verify that
*, L ° ¥ ? *, ’
\CRALA (w1 B(1) 71+(¢1 71)°71’

™ - - oy * (!
77,79, 2’20(3(2 ¢2) 7, (72°¢2)'

The Cartesian product F=F1x®1xWx®2xF2 turns out to be a semigroup I' with

respect to the multiplication
P I : 5 i i R g B 3

(COR Y A SR NG AL NS SO LC AN ST R Sy ST SR SR ST

Hn s ’ ’

LA I SR SN S SRR

The biautomaton Hlvﬁ2=(A1®A2,F,B1®Bz), with the operations defined as

follows: if (al,az)eA1®A2, (bl,bz)eB1®B2, 7=(71,¢1,w,¢2,72)er then
(al,a2)°7=(a1°7rl+a2w1,azovz);

*o = * * F ’

(a,a )%y (a, v, *ay,a ty,); (2.7")
(bl.b2)'7=(b1-11+b2¢2,b2-72),

is called the triangular product of biautomata Hlvand ﬁz. (The fulfill-
ment of the biautomaton axioms is easily verified).

The comparatively voluminous definition of the triangular product
of biautomata becomes more clear and visible, if one uses the matrix

t . = = i
erms. Let Hl (AI,FI,BI) and 82 (Az'rz'Bz) be exact biautomata. Their
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triangular product is the biautomaton glvg2=(A1©A2’r’51©Bz)' in which I'

is the semigroup of the generalized matrices of the form

a22 wZZ a21 ¢21
” - Bzz . BZI (2.7)
g o oLl 1 ‘pl 1

o« ¢

where T are images of elements of Fl, i=1,2 under the biautomaton
9 Bx:

representation,

a21€¢1=Hom(A2,A1). lee¢2=Hom(Bz,B1), ¢215W=Hom(A2,81L
The operations ¢, * and + are defined in the following way: if
(a ,a_)eA ®A_, (b ,b_)eB @B_ then
1" 2 17727771 2

a,a )Joy=(a a +a a a_o 5
( 1! 2) r=( 111 221 2 zzL

¥y — .
(a1’az) ¥ (a1¢11+a2w21, 32¢22), (2.8)

(b1’b2)'7=(b1311+b2621’ bzﬁzz)

This biautomaton is isomorphic to the biautomaton (AleAz,l_‘, B,@B,) with r

being the semigroup of generalized matrices of the form:

o o
22 21 ‘p22 ¢21

¥ = - (2.8")
9 o BZZ BZI

0 0 0 B11

while the operations v, * and ¢ are defined by the formula of (2.8).
As it was mentioned in the previous Section, the linear automaton

(A,T,B) can be considered as biautomaton satisfying the condition: for
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any elements beB and yel' the equality bey=0 is valid. The triangular
product of such biautomata no longer satisfies the condition mentioned
(since 321 is an arbitrary element of Qz in the matrix of (2.7)). This
fact means that the triangular product of automata cannot be considered
as a particular case of the triangular product of biautomata. On the
other hand, it is obvious that the triangular product of biautomata with
zero outputs, i.e. semiautomata, is again a semiautomaton, hence the
triangular product of semiautomata is a particular case of triangular
multiplication of biautomata.
Without proof, note that
1) The triangular multiplication of automata (biautomata) is asso-

ciative:
A V(A VA _)=(A vd_)Vd_.
1 2 3 12 3
2) If 4=, A =A’, then A VA =8’V4’ .
11 2 2 12 1 2

Note also that the representation corresponding to the universal biauto-
maton Atml(A,B) is the triangular product of semigroup representations,
namely (B,EndB)V(A,EndA)=(AeB, End”(A,B))

Consider two constructions which are close to the triangular pro-
duct.

Let A=(A,T,B) be a biautomaton and €=(X,XZ) the right representa-
tion of the semigroup ¥ by transformations of the set X. The“iautomaton

X
(A®KX,errZ,B®KX)=(A',F',B’)

where KX is the linear space over K with the basis X, A®KX, B®KX are
X

tensor products of corresponding linear spaces, and I'wr £ is the right
r

(corresponding to the right representation (X,Z)) wreath product of se-
migroups I' and X over the set X, is called the tensor wreath product of
the biautomaton @ with the right representation €. To define o, * and -
operations of the semigroup T’ on spaces A’ and B’ it is sufficient to

define these operations on generating elements of the spaces, i.e., on
X

elements of the form aex, bex, aeA, beB, xeX:if (y,o)elwr Z, we set:
8
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(aex) o (7,0)=(acy (x) )oxc;
(a®x)*(;,¢)=(a*;(x))®xv;

(bex) -« (7,0)=(bey (x))exc.

The operations thus introduced satisfy axioms (1.2), i.e.
X
(A@KX,errZ,B®KX) is indeed a biautomaton. Denote the tensor wreath pro-

duct of the biautomaton @ with the right representation € by #wr €. The-
r

re is the following associative property:
err(Giwrr62)=(ﬂwrr€)wrr€2
Define another construction of wreath product of biautomata with
representations. Let #=(A,I',B), as before, be a biautomaton, and €=(Z,X)
be the left representation of the semigroup £ by transformations of the

set X. The full wreath product of the biautomaton A and the left repre-

sentation € is the biautomaton

X
(Hom(KX,A),erZZ,Hom(KX,B)).

X
where erlz is the left wreath product of the semigroups I' and £, (i.e.

corresponding to the left representation (Z,X)).

The operations ¢, * and e are defined as follows: if geHom(KX,A),
_ X
yeHom (KX, B), (0,7)erwrgz, then

¢°(¢,;) is an element of Hom(KX,A) such that for each xeX
(o (0,7) () =p (o) o7 (x);

w'(a,;) is an element of Hom(KX,B) such that for each xeX
(Y (0, 7)) )=y (ox) o7 (x);

w*(w,;) is an element of Hom(KX,X) such that for each xeX

(p* (0, 7)) (x)=p (%) *7 (x).

Define, finally, Cartesian and discrete direct product of automa-
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ta. Let nAa, aeJ, be a Cartesian product of linear spaces Aa (see Carte-
sian product of w-algebras). A subspace in nAa, consisting of all func-
tions taking nonzero values only on the finite sets of elements from J,
is called a discrete direct product of linear spaces.

Let Ha=(Aa'ra’Ba)’ oweJ be a set of biautomata. Their Cartesian
product H=nﬂa=(Aa,Fa,Ba), aeJ, is defined componentwise. If instead of
Cartesian product of linear spaces we take their discrete direct pro-
duct, we obtain a biautomaton, called a discrete direct product of bi-
automata Ha. If the set J is finite, the obtained biautomaton is called

a finite direct product of biautomata Ha
3.2.2. Decomposition of biautomata

A biautomaton #=(A,I',B) is called a simple biautomaton, if it

satisfies one of the following conditions:

1) A=0, while (B,T') is an irreducible representation.

2) B=0, while (A,T) is an irreducible representation.
A biautomaton A is called a divisor of the biautomaton B, if the
corresponding exact automaton & is a homomorphic image of a subautomaton
of B. A divisor @ is called a prime divisor of the automaton B if & is a
simple biautomaton. The biautomaton decomposition is understood to be a
representation of it in the form of a divisor of a construction made of
other biautomata, which are called the components of a decomposition. In
the given case, the triangular product is being taken as a construction
and it is demanded that the components of the decomposition be divisors
of the initial biautomaton. Now we shall prove a theorem that each
biautomaton can be embedded into a triangular product of its
subautomaton and the quotient automaton by it. Iterating the embedding
process, we will get a decomposition whose components are simple

biautomata.

Theorem 2.1. [80] (on embedding). Let A=(A,T',B) be an exact auto-
maton, S;=(A1,F,B1) its subautomaton, H;= (A/Al,F,B/Bl) the correspon-
ding quotient automaton. Let ﬂ1= (A1'r1'B1)’ a2=(A/A1,F2,B/B1) be the
exact automata associated with H; and ﬂ; respectively. Then the biauto-

maton @ is isomorphically embedded into triangular product Hlvﬂz,
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The sketch of the proof is as follows. Denote by A2 a complement
of A in A, by B the complement of B in B: A—A @A B=BleBZL First the
biautomaton ﬂ —(A F B ) which is isomorphlc to E is constructed, and
8 ve = va —(A T, B) After that, the biautomaton (A,z,B)e(A,F,B), such
that (A,F,B)c (A,Z,B), is constructed. Then

~ *
(A,T,B)c(A,Z,B)=(A,T, B)=a1vazsﬂlva2,

as is required.

In order to construct the biautomaton H:, one should suitably
define operations +,*.- in the triplet of sets (Az’rz’Bz)' Denote the
natural homomorphism of the linear space A=A1®A2 onto A/A1 by v, and by
v its restriction to A2; v:A2 = A/Al, which is the isomorphism of 1li-
near spaces. Let ;_I:A/A1 = A2 be an inverse to v mapping. It is clear
that vw ! is a projection of A onto Az' Basing on actions of elements of

Fz in A/Al, we define actions of elements of Fz in Az’ by the rule:
5 g
if dzEAz, 726F2 then a2°72=(32°72)
Similarly, let p be a natural homomorphism B=B1®B2 onto B/B1’ ﬁ be its

restriction to BZ: ﬁ_I:B/B1 —F B2 be the inverse to ﬁ mapping. Define

~—q

a (av*v e

~—1
wy = “. L
R (b v, ) ; azEAz’ bzeBZ, 725r2
*
The biautomaton thus constructed, ﬁz=(AyI},B2), is isomorphic to bi-
automaton ﬂ2=(A/A1,F2,B/B1) and the triangular product ﬂ1VE2 is isomor-
phic to

* ~
ﬁlvﬂ2=(A1®A2,FixHom(Az,Al)xHom(AZ,Bl)xHom(Bz,Bl)xFZ,BleBZ)—(A,F,B).

It remains to construct the group £ and the biautomaton (A,Z,B) contai-
ning (A,[,B) such that (A,Z,B) is isomorphic to (A,T,B).
Since (A1'r1’B1) and (Az'ra’Bz) are exact biautomata, one can

assume that
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b p—
FicEnd (Al,Bl)—EndAleom(Al,Bl)xEndBf
I cEnd®(A_,B_)=EndA_xHom(A_, B_)xEndB
2 2 2 2 2 2 2

The semigroups l"l and I‘2 are embedded in Endb(A,B) in a natural way,
according to the rule:

to any element 71=(c',¢1,11) of FlcEndb(Al,Bi) is assigned the element

;1=(El,al,;1) of EndbEA,B), with components ;1,51,;1 acting in Al and B1
as vl,wl,rl respectively. The element Fl acts as the identity in Az’ the
element 61 maps A2 to the zero of the space Bz’ the element T, acts as
the identity in Bz' The set of such elements 7, corresponding to ele-
ments L of Fl forms a semigroup Fl included in Endb(A,B) and isomorphic
to Ff

The semigroup F2 is embedded into Endb(A,B) in a similar way: to
any element 72=(cé,¢2,rz) of FZ is assigned the element 72=(aé,¢2,rzh
with components 0,0, T, acting in A2 and B2 as 0,97, respectively.

Besides, 52 in Aland T_in B2 act as the identities, and the element 52

maps A1 into zero of t:; space Bl. The elements ;2 corresponding to ele-
ments 72eF2 form a semigroup fa included into Endb(A,B) and isomorphic
to F[

Further, to each element Yy of Hom(AZ,Al) is assigned the element
Y of EndA acting by the rule: if a=(al,a2)sA=A1®A2 then aw=(a2w,0); to
each element 8 of Hom(Bz,Bl) is assigned the element 8 of EndB such that
if b=(b1,b2)EB=BlaB2, then b6=(b26,0) and, finally, to each m of
Hom(Az,Bl) the element 1 of Hom(A,B) such that an=(a2n,0). Consider the
set T of elements of End”(A,B) of the form

(Elézﬂz, RN %1?2+S), (2.9)

where (51.51,;1)EF1, (52,62,;2)Ef2, and ﬁ,g,ﬁ are elements corresponding
under the specified rule to the elements weHom(Az,Al), 6EHom(BZ,B1) and
neHom(Az,Bl) respectively. It is easy to verify that £ is a semigroup,
and, since it 1lies in Endb(A,B), (A,Z,B) is a subautomaton in

(A,End®(A,B),B). If v=(y,¥,7,8,7,) is an element of

F=leHom(A2,Al)xHom(A2,Bl)xHom(Ba,Bl)xFZ; 7i=(01,w1,11); i=1,2
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then the mapping assigning to it the element (2.9) of £ is an isomor-
phism of semigroups r - Z, which, in its turn, defines an isomorphism
in inputs of the biautomata alva:=(A.F,B)5(A,2,B).

It remains only to prove that I'cZ. In order to do so, it is suf-
ficient to show that any element of the semigroup I' can be represented
in the form (2.9).

Let ¥=(0,¢,T) be an element of the semigroup T; 11=(a'1.q>1,1:1).
72=(0‘2,¢2,12) be images of the element ¥ in l"1 and Fz under mappings of
I' into l"1 and l"z, originated upon respective transitions from the bi-
automata (Al,l",Bl) and (A/Al,l",B/Bl) to exact biautomata (Al'r1'B1) and
(A/Abi,l"z,B/Bl). Let 71=(o-1,¢1,1:1) and 72=(a'2,qp2,1:2) be elements of
End (A,B) corresponding to 7 and under the embedding of I"1 and l"2
into Endb(A,B). Consider the difference 0'—5'152. It is an element of EndA

acting as follows: if a eAl. azeA then

QN

1
a (0-0 0 )=a 0-a o o =a o0-a o =a o-a o =0;
1 12771 “112% “11 %1 %1

a_(o-0 0 _)=a 0-a o0 0 _=a_0-a_0_=a_0-a_o
g 12 %2 “212°2 “22°2 “22

Consider the last difference. Let a20'=(a;,a’2), a'leAi, a;eAz, Then, by the

definition of the automaton (Aa’rz'Bz) holds a20'2=a'2. Finally,
az((r-clc'z)=azc'-—aza'2=(al.az—az)=(al,0) and
(al,az)(o'-clcrz)=(a1.0).

Thus, 0'-5'15'2 is an element of the form ‘/_J, corresponding to some Y of
Hom(Az,Al), and o———;lc;zﬂl_l. In a similar manner the possibility of repre-
senting of ¢ in the form 61+1_1+J)2, and T in the form 1_:1::-2+5 is proved. By
this, it is shown that I'cZ and (A,l",B)«:(A,):,B)EEIVH2

Theorem 2.2. [80] (on decomposition of biautomata). An exact fi-
nite dimensional biautomaton A=(A,[,B) is isomorphically embedded into
the triangular product of biautomata whose components are prime divi-
sors of 4.

Proof. First we prove that & can be embedded into the triangular

product of biautomata with components (Ai,l'l.Bl) such that the represen-

tations (A‘.l"l) and (Bl,l"l) are irreducible ones. Denote by £ the length
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of I'-compositional series in A, i.e. a series OcAic...Al=A with each
A1—1 being the maximal I'-invariant subspace in Ax' ie{1,2,...,2}; by m
the length of I'-compositional series in B. The compositional length of
the biautomaton A is k=f+m and we shall use the induction by it. If k=0
or k=1, the validity of the statement is obvious. Assume that the state-
ment is proved for k=n-1 and let k=n. Denote by A’ the maximal
I'-invariant subspace in A, and by B’ the maximal I'-invariant subspace in
B containing A'*I'={a*y|aeA’,yel'}. Then (A’,I',B’) is a subautomaton in
(A,T,B), its compositional length is less than n, and the quotient bi-
automaton (A/A’,I',B/B’) satisfies the condition of irreducibility of
representations (A/A’,I') and (B/B’,I'). The automaton (A,I',B) is embedded
into the triangular product (A‘,Fl,B’)V(A/A’,FZ,B/B’), where (A’,Fl,B')
and (A/A',FZ,B/B’) are exact biautomata corresponding respectively to
biautomata (A’,I,B’) and (A/A’,I',B/B’). Since the compositional length
of (A’,Fl,B’) is less than n, the induction assumption is valid for it.
Hence, the statement is valid also for k=n. Now the theorem follows from
the proved fact and from the simple remark that any biautomaton
(A,T,B) is embedded into the triangular product (0,I,B)V(A,T,0).

In view of the proved theorem it is natural to ask whether the
decomposition above is in some sence unique. We say that the biautomaton
A uncancellably lies within the triangular product of simple biautomata
glv...van, if it does not lie in the triangular product of these biauto-
mata in the same order, in which at least one factor is absent. It can
be proved ([80]) that if a biautomaton # incancellably lies within the
triangular products of its prime divisors alv...vﬂn and H;V...Vﬂ;, then

m=n and triangular products differ only in orders.
3.2.3. Decomposition of the linear automata

In this item we consider decomposition of linear automata by
means of the triangular product and its further reduction using the ope-
ration of the wreath product of linear automaton and pure one (see
[911).

Let identify the automaton (0,0,B) with the linear space B and

automaton (A,I',0) with the representation (A,I'). Consider the triangular
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product (0,0,B)V(A,I',0) and in this way define the multiplication of the

space B by the automaton (A,I'). We have the automaton
BV(A,T')=(A,Hom(A,B)xI',B) with

W, )W " )=(yoy’ 27" ),
where 7,y €l’, ¢,y eHom(A,B); ae(y,7)=acy, a*(y,r)=ay, yoy’ eHom(A,B) such
that for aeA holds a(yoy’ )=(acy)y’

Lemma 2.3. Any linear automaton A=(A,I',B) is embedded into the

triangular product BV(A,T).

Proof. The embedding is defined by the identity mappings on spa-
ces A,B and by mapping p:I' — Hom(A,B)xI', p:y — (y,7), where aeA, yel,
yYeHom(A,B) and ¢ is specified by the rule ay=a*y. This mapping is the

monomorphism of semigroups:
MoK =l o . M
V=LY YWy )= oY,y v )=( )

It is easy to see that we have also the automata homomorphism.

Lemma 2.4. Let the automata ﬂl,ﬁz,ﬂ;,ﬂ; be given and Hl|ﬂ;,
@ |#). Then & VA |& VA .

Proof. Let E?,Eg be subautomata in ﬂ;,ﬂé respectively, such that
there are epimorphisms “1:ﬂ$ =2 ﬂl, uzzﬂg —> ﬂz. Then there is an epi-
morphism u:SSVS; =P alva; Besides that there exists subautomaton
Bcﬂlva; such that there is an epimorphism v:B — a1Vﬂz ([82], proposi-
tion 7.1.3). The coimage of the automaton in respect to p gives the ne-
cessary subautomaton in EIVEZ,

It follows from the theorem of biautomata decomposition that a
similar statement for linear automata is valid. Indeed, any linear auto-
maton (A, T,B) is embedded into triangular product BV(A,T)=
(0,0,B)V(A,T,0). Now, we can apply the theorem 2.2 to automaton (biauto-
maton) (A,I',0). Hence, the biautomaton (A,T',0) is embedded into triangu-
lar product (AI,FI,O)V...V(Ak,Fk,O), whose  components (AI,F‘,O),
i=1,2,...,k are irreducible representations. Thus every linear automaton

can be embedded into the triangular product
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(0,0,B )V...V(0,0,B )V(A ,I' ,0)V...V(A ,[ ,0)
1 m 1”1 k' k

where the spaces B1 are one-dimensional, B1©“’@B =B, and the represen-
m
tations (Al.Fl) are irreducible. Therefore, taking into account the

identifications of (0,0,B) and (Al,Fl,O) with B and (A‘,Fl) respective-

ly, we get
(A,T,B)[BV...VB V(A ,l )V...V(A,T) (2.10)
or
m k
(A,T,B)[(VB)V( VY (A,T). (2.10")
i=1 1 j=1 L

Let introduce now the operation of wreath product of linear auto-
maton with pure one and consider the further reduction of the decomposi-
tion 2.10 in the case of finite completely O-simple acting semigroup T.

Take linear automaton ﬂ=(A,F1,B) and pure automaton A=(X,F2,YL

The linear automaton
ﬂer=(A®Kx,rfxr2,B@KY), with
(aex)e(y,7,)=(acy, (x))e(x07,), (aox)* (7 ,7,)=(a%y (x))e(x*7,),

where aeA, xeX, ;IEFT, 725F2, KX is the linear space over X, is called
the wreath product of # and A. Thus defined actions o and * are the 1li-
near actions of the semigroup forz. Indeed, since X is the basis of the

linear space KX then AeKX= @) (A®x) and linear actions defined on the
xX€X
summands of the direct sum are extended to the linear actions on A®KX.

For the wreath product of the linear automaton and pure one the

following associative condition

(A wrA_)wrA_ =A wr (A_wrA_)

1 2 3 1 23
is satisfied.
In order to verify this property, take a linear automaton
ﬂ1=(A1,F1,B1) and pure automata A2=(X2,F2,Y2), A3=(X3,F3,Y3). Then,
X2 X3
(A wrA_)wrA_=(A oKX @KX_, (I “xI"_) “xI'_,B eKY eKY ),
1 2 3 1 2 3 1 2 3’ 2 3

XX

X X
_ 2773 3
(glwr(l\zwrl\a))-(A1®K(X2><X3),l"1 x(F2 xr3),Bl®K(Y2xY3).
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For linear spaces there is a canonical isomorphism
A1®KX2®KX3=A1®K(X2xX3), defined by the mapping: a1®(x2,x3) d a ox ox,

(the same for B). Acting semigroups are also isomorphic. Really, setting

X_XX X X X
c(r,7 - (¢ v 23 = 3 = 2 3
m (71 72.73) (v,za). where 715F1 ‘ 72e2? : waera, 0E(F1 sz) and

o(x) i ir (0,7 o & y
( 3) s a pair (rl,yz(xa)), such that clerl and cl(x2)=71(x2.x3), we
have the necessary isomorphism. Starting from these mappings we get the

automata isomorphism:

- (= K_ a5 = M_
(31‘8’("2"‘3)"(71’ (72,73)) ((a Vl(xz.x3))®((x2.x3)o(12.73))) =
(alowl(xz,xs))@(xzoyz(x3))®(xaog3L

K= = M_ o (o _ = —
(a1®(x2.x3)) 0(11.(7/2,73)) —(alangxa) (cr,qrz)—((aiaxz)w(x3))@(x3o73)—
((al®x2)°(01,72(x3)))®(x3°73)=(a1061(x3)®(x2°72(x3))@(x3°73)=
(aioyl(xz,xa))@(xzowz(xa))e(xaowa).

The proved associative means, in other words, that the semigroup of pure
automata acts on the class of linear automata.

Note without proving connection between triangular products and

wreath products. The following inclusions take place

A V(A wrA)c (A VE_)wrA,
1 2 12

(ﬂlvﬂz)wrhc(lerA)V(szrA).

Besides that, if S1|ﬂ2 and A1|A2, then aler1|a2eri

Finally, one more remark. Wreath product of the representation
(A,T)=(A,T',0) and certain A is again the representation. Wreath product
of the space and pure automaton is not a space.

Semigroup I' is called O-simple if it has a zero element, which is
the unique proper two-sided ideal and besides, r’20. If the set of idem-
potents of O-simple semigroup contains a primitive element then the se-
migroup is said to be completely O-simple semigroup. (The set of idempo-
tents is ordered according to the rule: else2 if and only if
e1e2=e2e1=e1). For finite semigroups both these notions coincide.

According to Rees theorem each completely O-simple semigroup I' is

isomorphic to Rees matrix semigroup I'=(X,G,Y, [X,Y]), where X,Y are the
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sets, G is the group with zero, and P=[X,Y] is the sandwich matrix with
elements from G and without zero rows. P defines the multiplication in
I'. Elements from I' are represented as triplets (x,g,y), xe€X, geG, yeY,

with the multiplication:
(xl,gl,yl)(xz,gz,y2)=(x1,g1[y1.x2]g2,yz),

where xl,xzex, g1'ngG’ yl,yZEY, [yl,leeG.
Let M be a set. Define an associative operation on the set M

assuming mm=m, m ,mzeM. The obtained semigroup is called the semi-

group of left ;ero; on the set M and is denoted by Me. Similar, if
mm=m, m,m eM, we get the semigroup of right zeros on the set M which
is denoted by M Sometimes we shall identify elements of the set M and
of the semigroups Me or M*

For Rees semigroup I' there is an inclusion
wT = x5Gury) =xb GxvY),
_.n
where G=G' (see [29]). Recall it.

Lemma 2.5. The mapping u:(x,g,y) —> (x,g,y), where iexe, §ev“,
— ,1 = -
geG=GY and g is defined by the formula g(y')=[y’,xlg, is a monomorphism

of semigroups I' — sz(Gern).

Proof. We have
H_ = G )
[x.8,y,)(x,,8,y,)1"=(x g ly .x lg.y )
H B o = = F 5 U h=tE 3 (7 L E =y,
(x, 8,y )" (x,8,y) =(x,g,v),8,v,) (x.g (y o8 )y )
But
(gl(ylcgz))(y)=g1(y)(ylogz)(y)=g1(y)g2(y1)=[y,x1]g1[yi,x2]g2=
gllyl,legz(y). So, p is a homomorphism.
) Let (xl,ﬁl,y1)=(x2,g2,y2). Then, evidently, X =, Y=Y, and
gl(y)=[y,x1]g1, gz(y)=[y,x2]g2 Since sandwich matrix has no zero rows,
there exists y such that [y,x]#0. Taking into account that G is a group,
we get g1=g?
Let us consider the inclusion G — T defined by the rule
g 2 (1,g,1) (with the units of sets X,Y respectively). Construct now an

induced automaton from the automaton (A,G) in respect to inclusion
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G —T. Given automaton (A,I'), one can define the automaton E=(A®KY“.F)

by the rule: (a@y)O(x,g,y1)= (ao[y,x]g)@yf

Lemma 2.6. The automaton #A=(AeKY,I') is the induced automaton for
the automaton ﬂ1=(A,G).

Proof. Let us introduce an automaton #=(A,I'). Consider formal
expressions of the form Ay=Ao(1,e,y), yeY, where e is the unit of group

G. The automaton &=(A,I') is defined as follows:

(K,F)=(®ZAy,I‘), (ac(1,e,y))eo(x, 8,y )=(acly,x]g)e(1,e,y ).
y

This automaton is a semigroup one. Indeed:
(ao(l.e,y)Jo(x,gl,yl)(xl.gz,y2)=(a°(1,e,y)]o(xl,gl[yl,legz.y2)=
(ao([y,x]gl[yl.xllgz))0(1,e,y2);
((ao(1,e.y))o(x,gi,yl))o(xl,gz,y2)=((ao[y,x]gl)o(l,e,yl))o(xl,gz.y2)=
((ao[y.x]gl)o([yl,xilgz))o(l.e,y2)= (ao[y.x]gllyl,xllgz)(l,e,yz)-

(A,G) is naturally embedded into (A,T') by the mapping p=(p1,p2):a
— ao(l,e,1), g = (1,g,1). This mapping is the monomorphism of automa-
ta:

Py Py Py
(acg) =(acg)o(l,e,1); a og “=(ac(l,e,1))o(1,g,1)=(aog)o(1l,e,1).

Show, that #=(A,T') is the induced automaton for Hl=(A,G), that is
for any automaton (Al,F) and homomorphism v there is homomorphism p,

such that the following diagram is commutative:

(A,G) —— (A, T)

\ /
a0

Define pu by the rule: (ao(l,e,y))“=avo(1,e,y). It is clear that p
is the automata homomorphism. It remains to observe that automata
#A=(A,T') and S=(A®KY“,F) are isomorphic. The isomorphism is defined by
the identity mapping on G and by €:A — AeKY acting as follows:
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(as(1,e,y)) =any.

Lemma 2.7. Let (Al,F) be irreducible automaton (representation)
with the Rees semigroup I' and (A,G) be its irreducible subautomaton.
Then

(A, D) | (A,Gwr (Y, Y")

Proof. Let consider the following mapping u=(u1,u2) of the indu-
ced automaton #=(AeKY,I') onto B=(A, G)wr(Y,YQ)= (A@KY,Gern): By is the
identity mapping on AeKY; B :T — GurY? is the product of the mapping p
of Lemma 2.5 and of the projection v:X x(Ger ) — Ger This p is the

automata homomorphism:

((asy)o(x,g,y,))"=((ac [y, x]g)ey W=(acly, xIg)ey,;
(a@y)“o(x,g,yi)“=(a®y)o(§,§1)=(a®é(y))®y§l=(ac[y,x]g)@y1

Denote the image of the automaton & by (AGKY,T). Let p=Keru{

Then, obviously, (A®KY,F/p)5(A®KY,F). It is easy to verify that p coin-
cides with the kernel of the automaton (AeKY,I'). Therefore, (AeKY,I[/p)
belongs to (A.G)wr(Y,Y“).

Automaton (A®KY,I') is the induced one for (A,G)C(AI,F). So, there
is a homomorphism u: (A®KY, ') — (Al,F). Since (Al,F) is irreducible au-
tomaton, p is the epimorphism. This implies that the kernel of the auto-
maton (Ae®KY,I’') lies in the kernel of the automaton (AI.F). Therefore p
defines epimorphism p’: (Ae€KY,[/p) — (AI,F/p). Thus, the automaton
(Al,r/p) and every its homomorphic image is a homomorphic image of the
automaton (AeKY,I'/p). The latter lies in the wreath product and finally
(Al,F) is a divisor of wreath product.

From the proof of the last Lemma it follows that if a semigroup I'
admits an exact irreducible representation then the inclusion
(A@KY,F)C(A,G)wr(Y,Yn) takes place. In particular, Rees semigroup I is
embedded into GwrY'

Let us move to the main result.

Theorem 2.8. Let #=(A,I',B) be a linear semigroup automaton, I' be
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a completely O-simple semigroup. Then
#|BVY (& wr (Y ,Y])),
1
where each H1=(A|'G1) is an irreducible group automaton being a divisor
of the automaton #=(A,T",B), Y? are the semigroups of right zeros.

Proof. Each linear automaton admits decomposition 2.10. Compo-
nents (AI,FI) of the decomposition are irreducible divisors of (A,I).
All semigroups Fl are also completely O-simple semigroups (as homomor-
phic images of TI').

Let us consider multiples ﬁ‘=(Al,F‘). We have (Lemma 2.7), that

(AT (8,6 wr (YY),

where (A;,G‘) is an irreducible group automaton. Therefore, by Lemma 2.3
it follows

(A,T,B) [BVV((A?,G Jur (Y ,¥Y1)).
1
All the automata (A;,Gl) are subautomata in (Al,Fl) and, consequently,
divisors of the initial #=(A,T,B).
Theorem 2.8 reduces any semigroup automaton with completely O-

simple semigroup to group automata and pure automata. We show that there

is further reduction to irreducible automata with simple acting group.

Lemma 2.9. Let (A,G) be an irreducible group automaton and the

space A is finite dimensional. Then
(A,T)| (V(A ,H)ur(X,8),
i

where (Ax‘H) is irreducible simple group automaton, (X,®) is pure group

automaton.
Proof. Take in G a composition series
GDHID...:Hn_len=1
Given H1’ we have [90]:
(A,G)| (A,H wr (X ,G ),

where G =G/H1 is a simple group and X1 is a group G/H1’ considered as a
1
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set. The same arguments for H1 yeild (A,H1)|(A,H2)wr(X2,G2), etc. As a

result we obtain the decomposition
(A,G)|(A,Hn_l)wr(Xn_l,Gn_l)wr...wr(Xl,G1)=(A,Hn_1)wr(X ,G’)

It is known that if a group is completely reducible then its normal sub-
group is also completely reducible [81]. Therefore, (A,Hn_l) is comple-

tely reducible. Then (A,Hn_l)cV(Ai,Hn_l), where components (Ai,Hn_l) are
1
irreducible. Denote H=Hn_1 This is a simple group. Finally,

(A,G)| (V(A ,Hwr (X’ ,G).
i
Recall, that for pure automaton (X',G’) there exists a decomposi-

tion into wreath product of simple group components:
(X’',G )=(Xn_1,Gn_1)wr...wr(Xl,Gl)

where all Gl are simple groups.

Now, we can generalize the Theorem 2.8.

Theorem 2.10. Let A=(A,T',B) be a linear semigroup automaton, T' be

a completely O-simple semigroup. Then
H|BVV(((Vgij)erls)er;).
1 ]

where Hlj - linear irreducible semigroup automata, Als - pure group au-
tomata with simple acting group, A; pure semigroup automata in which
acting semigroups are the semigroups of right zeros. Besides, all linear
automata HIJ are divisors of the initial automaton 4.

At last, in order to find out the structure of decomposition it

remains to describe the form of indecomposable automata.

3.2.4. Indecomposable linear automata

Lemma 2.11. An automaton A=(A,I',B) is indecomposable into trian-
gular product, if and only if A is an irreducible representation or
one-dimensional linear space.

Proof. Since (A,F,B)](0,0,B)V(A,F,O), then in order A to be inde-
composable, either (A,F,B)|(0,0,B) or (A,F,B)|(A,F,0). In the first case

(A,I',B) is obviously equal to (0,0,Bl), dimB1=1; in the second one imme-
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diately B=0 and it follows from Theorem 2.1 that (A,I') has to be an ir-
reducible representation.

Conversely. It is obvious that one-dimensional space B is inde-
composable. Let irreducible representation (A,I') divide the triangular
product of automata ﬁ1=(A1,F1) and ﬂ2=(A2,F2). This means that #A=(A,T)
is a homomorphic image of subautomaton aA’'=(A’,T) of
E1V82=(A1®A2,F1xﬁom(A2,Al)xF2)=(X,F). Denoting by (A;,p) the kernel of
this homomorphism we get (A’/AO,F’/p)E(A,F). Take in A=A1@A2 two series
OcAch, OCAOCA’CA invariant with respect to I'’. According to Jordan-
Holder theorem [58], this series can be extended to I'’-invariant compo-
sitional ones with isomorphic factors. Since the representation
(A’/AO,F’/p)E(A,F) is irreducible then I'’-factor A'/A0 is a divisor of
one of the factors of OcAch. If it divides I'’-factor A1’ then (A,T) is
a divisor of (A1’r1)' If it divides the second factor then (A,T') is a
divisor of (Az’rz)' This means that (A,I') is indecomposable.

Linear automaton (A,I') is called decomposable in wreath product

if it can be represented in the form
(A,T)| (B, Z)wr(X,H),

where (A,I') is not a divisor of (B,Z), and I' is not a divisor of H.
Otherwise an automaton is called indecomposable in wreath product. The
definition of automaton indecomposable in triangular product has been
given earlier. Joining these two notions we speak of indecomposable 1li-

near automaton.

Proposition 2.12. Linear automaton (A,T') where I' is a completely
O-simple semigroup is indecomposable if and only if (A,T') is an irredu-

cible simple group automaton.

Proof. Let (A,I') be an indecomposable automaton. Then by Lemma
2.11 (A,T') is an irreducible representation. According to Lemma 2.7 I' is
a group. If the group is not a simple one, then by Lemma 2.9 the automa-
ton (A,I') is decomposable. So, T is a simple group.

Conversely, let (A,T) be an irreducible simple group automaton.
Since (A,T') is an irreducible representation then by Lemma 2.11 (A, T) is

indecomposable in triangular product.
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Let now (A,T') is decomposable in wreath product, i.e.
(A,F)I(B,Z)wr(X,H),

and (A,T') is not a divisor of (B,Z), I' is not a divisor of H. Since
(A,F)|(B,Z)wr(X,H) then in (B@KX,ZXXF) there exists a subautomaton (C,®)
and an epimorphism g such that (C,8)"=(A,T). Consider ¢1=¢n2x Since =%
is an invariant subgroup in (ZxxH), then @1 is invariant subgroup in &.
Take ¢T It is invariant in oM=r subgroup and since I' is a simple group
then either ¢T=F or ¢T=1.

1. Let ok=r. Then (C,8)¥=(A,1) or in other words (A,I)|(BeKX,Z").
Show, that in this case (A,T')|(B,Z). Let X be a finite set (this assump-
tion is quite natural for automata, but it is not necessary). Then

(BeKX,£)=(e L(Bex),£), i=1,...,k; k=|X|.
X€X i

The group [[Z acts componentwise. Consider more general situation. Let
1

(D,G)=j(B,, £ )=(eFB ,[E,), i=1,...,k; k=IXI|
i 1 1

and (A,F)|(D,G). Then if (A,I') is exact irreducible automaton then (A,T)
divides one of the summands. Setting B!=B, 21=2 we get that (A,F)|(B,Z).

Take (C,®)c(D,G) such that (C,¢)”=(A,F), Then (A,F)E(C/Co,¢/¢oL
where (CO,®O) is the kernel of epimorphism p. Denote

D1=B1, D2=B1®B2,...,Dn=(B1®B2@...@Bn)=D.

We have a series of ®-modules Ochchc...ch=D with the factors isomor-
phic to Bl

Let us consider some other series of ®-invariant subspaces, con-
taining COCC. Since ¢ acts irreducibly in C/C0 then according to Jordan-

Holder theorem, C/C0 is isomorphic to a factor of certain B‘ (as

®-module). Let Go= nZJ. Since GO acts componentwise, it lies in the ker-
J#1
nel (Bn’G) and, therefore, GonQ lies in kernels (BI,G) and (C/Co,¢).

Furthermore, (Bl,G/GO)%(Bl,Z‘), But
(B,,= )=(B ,G/G )>(B ,8G /G )=(B ,&/8nG ).

Since (A,F)=(C/C0,¢/¢0) is an exact automaton, the kernel (C/CO,Q) is
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equal to Qo. Thus Gonmcto. Therefore, there exists a homomorphism
_)
(C,ﬁ/énGo) (C/Co,¢/¢o)s(A,F).
We get (A,F)l(B,Z) that contradicts indecomposability of the automaton

(A,T).
2. @'1‘=1. Then

HeHE'/2'o0x" /2" (08" /2" M (e/2"ne) 2 (0/0 )T,
i.e. FIH, that also contradicts indecomposability of the automaton
(A,T).

Thus, all linear components of the decomposition 2.10 are inde-

composable automata.
3.2.5. Triangular products and homomorphisms of biautomata

The results described in this item ([41]) will be used in Chapter
4 in the proof of the Theorem of freeness of semigroup of biautomata

varieties.

Proposition 2.13. Let (A,F,B)=(A1,Zl,Bl)V(AZ,Zz,BZ) be triangular
product of biautomata and (A’,T',B’) be subautomata in (A,T,B), AicA',
Bch’. Then there is an epimorphism in input signals:

’ ’ _) » ’
(A’,I',B) (A1’21’B1)V(AznA ,Zz,anB )

Proof. By the definition of triangular product, F=le¢1xWx¢2x2z
® =Hom(A_,A ), ¥=Hom(A_ ,B ), & =Hom(B_,B ). Denote A_NA’=A’, BB’ =B’
1 2" 2" 2 2’1 2 2 2 2
Consider biautomaton (Ai,zl,Bl)V(A;,ZZ,B;)=(A’,T’,B'), where
[’=% x®’ x¥’ xd’x=_, &' =Hom(A’,A ), ¥’ =Hom(A’,B ), & =Hom(B!,B ).

1771 2772 1 2% i 2’1 2 2’1

Take the mapping u1:Q1 == @;, assigning to the element
weHom(Az,Al) the element of Hom(A;,Al) which is the restriction of ¢ on
A; The mappings uzzw — ¥ and p3:¢2 i @; are defined similarly. Iden-
tity mappings of 21 and 22 together with mentioned mappings Bl By
define epimorphism ' on I'". The latter in its turn defines the epimor-

phism in input signals.
Proposition 2.14. Let
= . a ’ ’ ’
p=(p o, p): (A,Z,B) (A),Z),B))

be an automata homomorphism and (AZ,Zz,Bz) be an arbitrary automaton.
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Then there exists identical on (Aa’z?’Bz) homomorphism
_. _) ’ ’ ’
[TH (A1’z1’B1)V(A2’22’Bz) (A1'E1’B1 )V(AZ,ZZ,BZ).
If p is monomorphism (epimorphism) then ;._t is also monomorphism

(epimorphism).
Proof. Denote
(A,F,B)=(A1,21,Bl)V(Az,ZZ,Bz)=(A1+A2,le(lilx\l'x<1>2x22,B1+B2),
(A’,T’,B )=(A1,21,Bl)V(Az,ZZ,BZ)=(A1+A2,Z1>@1X\I’ XQZXZZ,Bl‘*BZ).

Define the homomorphism ﬁ=(ﬁ1,5_12,513) by the rule: if a1+aZEA, where

=

1 1 =
i= = ; f .
aleAl, i=1,2, then (a1+a2) a, +a2 The same for By

Now define the mapping u21:®1=Hom(A2,A1) - <I>'1=Hom(A2,A'1) by the
I

rule: if ged , a €A, then a g >'=(a )ul
: ) B 4SA 240 zﬁp

; the mapping p22:d>2=Hom(B2,B1)

— ¢’=Hom(B_,B’) by the rule: if ¢e®, b eB, then b u22=(b '3 and
7 om B} y e rule: if ¢ > SR 2£0 2¢

the mapping uza:\II=Hom(A2,B1) —F \Il’=Hom(A2,B'1) by the rule: if yeV¥,

[ 3
23_ 1
aZEAZ, then azw —(az\ll)

The last three mappings together with the mapping ;12:211 - 2’1 and
identity mapping »::5‘.,2 —> 22 define homomorphism ;_12:1" —> I’. It is easy
to verify that ﬁ=(ﬁ1,ﬁz,;_13] is the desired homomorphism of biautomata.

The kernel of this homomorphism p=(p1,p2,p3) has the form:
p1=Keru1, p2=Keru2xHom(A2,Kerul)xHom(Bz,Kerua)xHom(Aa, _Kerua), p3=Keru3.
Therefore, if g is a monomorphism (epimorphism) then p is also monomor-

phism (epimorphism).
Proposition 2.15. Let (A,I‘,B)=n(Aa,1"a,Ba), ocl and let (G,I'",H)
a

be an arbitrary biautomaton. Then there exists an embedding
. ’ _) ’
u: (A,T,B)V(G, T’ ,H) E«Aa,ra,Ba)V(G,F , H)

Proof. Let
(A, T,B)V(G, T, H)=(ZAOL+G, ]'[Faxélx\llxd)axr’ ) ZB“+H) s
o o o
L[( (Aa, FOL, Ba)V(G. r’,H) )=(§(AQ+G) , gl‘axg@wxg\l/ax?mxgr' ,E(Baﬂ-{) ) where

¢1=Hom(G,§Aa), \Il=Hom(G,§B(x), <l>2=Hom(H.§Ba). <I>m=Hom(G,Aa), \Ila=Hom(G.Ba).
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®_ =Hom(H,B ).
200 o
Mapping u=(u1,p2,u3) is defined in the following way: if aEZAu,
o

=, © _ _ _ o _
geG, then (a+g) '(a)=al(a)+g; if beB , heH, then (b+h) («)=b(a)+h. Besi-
des that let

m
Y . E 22 - )
u22.¢1 Dwia. if ¢1E°1' geG, then g(w1 (o)) (gwi)(a),

m
L B L[\Ila: if Ye¥, geG, then gy >>(a))=(gy) (a);

m
e > . 2 - ;
u24.¢2 EQZ“. if ¢25¢2' heH, then h(go2 (a)) (h¢2)(a),

m
“zs:r‘_é Mr’: if yel’, then v 25(«)=7; ael.
o

These mappings together with identity mapping nfa - nFa define a homo-
o o
morphism of the acting semigroups. It remains to verify that the cons-

tructed u=(u1,u2,u3) is a homomorphism of biautomata.
Corollary. Given biautomata (A1’r1’B1)' (Az'rz’Bz) and the set I,
there exists an embedding:
p: (AT ,B)YV(A T ,B) = (a,T B )V(A,T B ).
R S R | 2" 2" 2 1’1" "1 2’ 2'"2
The following propositions can be established.

Proposition 2.16. Given biautomata (Al,Fl,Bl), (AZ,FZ.BZ) and the

set I, there exists an embedding:

I I
: -
”'(Al’r1’B1)V(A2'rz’Bz) ((A,T,B)V(A,T_,B))

Proposition 2.17. Let (A,F,B)=(A1,Zl,B1)V(A2,22,B2) and let
(A;,ZZ,B;) be a subautomaton in (Az’za’Bz)' Then there exists an epimor-

phism in input signals:

, vy = , ,
(A1+A2,F,B1+B2) (Ai’zl’Bl)V(Az'zz’Ba)

Proposition 2.18. Let (A,F,B)=(A1,21,BI)V(A2,22,B2) and let A;,B;
be subspaces in A1’B2 respectively, such that Alozchl, BZ-ZZCBZ. Then

there exists an epimorphism in input signals:
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(A],T,B +B)) — (A,Z,B)V(0,%,,B))

Note, finally, that in [80] is introduced the construction of
triangular product of affine automata and the problem of their decompo-
sition is considered. In [32] the same problem for ring automata is re-

garded.

3.3. Automorphisms of linear automata and biautomata

Automorphisms of a mathematical structure determine it in many
aspects. It is by this, in particular, that the constant interest in the
groups of automorphisms is explained. Our aim in this section is to
consider automorphism of linear automata and biautomata, and to describe
then for the corresponding universal objects and constructions (see

[16], [17]).
3.3.1. Definitions and basic lemmas

An automorphism of a linear representation (A,I') is a pair of
mappings (cA,a), where “, is an automorphism of the space A, a is an

automorphism of the semigroup I' and the condition

(aow)ok=aerya , aeA , yel (3.1)

is satisfied. An automorphism of the linear automaton #=(A,I,B) is a
triplet of mappings (UA,a,vB) satisfying the following conditions:
1) (a},a) is an automorphism of the linear representation (A,T), o
is an automorphism of the space B ;
(3.2)
2) (a*7)08=aak*7a , aeA, yel.
In definition of an automorphism of a biautomaton, the third con-
dition is added to the above ones:
3) (GB,a) is an automorphism of the linear representation
(B,T). (3.3)
Since a linear automaton can be considered as a particular case
of a biautomaton with bey=0, beB, yel, the definition of an automorphism
of a linear automaton can be considered as a particular case of defini-
tion of an automorphism of a biautomaton. Due to this, we shall consider

mainly the automorphisms of biautomata, if necessary, making correc-
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tions.

If d@=(A,I,B) 1is an exact biautomaton, the representation
wr — I"cEndb(A.B) defines an isomorphism of the automata #=(A,I',B) and
ﬁ'=(A,l"’,B)cAtm1(A.B). Since the symmetries of the isomorphic objects
are identical, the automorphisms of one of the objects can be described
by the automorphisms of the other. Thus, not violating the generality of
considerations, one can assume, if necessary, that I"cEndb(A,B).

Now we shall prove that in order to define automorphisms of an
exact biautomaton, it is sufficient to point out automorphisms of the

linear spaces A and B, satisfying an additional condition.

Lemma 3.1. 1) If (o‘ o0 ) is an automorphism of an exact linear
automaton @A=(A,I',B), o= (goA,llJ) is an element of l"cE.nd (A, B)=End
AxHom(A,B), then

-1 -1
zroc-(trA 9,0, T, q/JO‘B).

2) If (cr a, o-) is an automorplusm of an exact biautomaton #=(A,T,B),
7= ((0 W, U ) is an element of l"cEnd (A, B)=EndAxHom(A, B)xEndB, then

7a=(clx LN 'TA wUB'o-B {oaaa)'

Proof. 1) Let 1a=(qp’A,¢/' )eI' and aeA. Then, by the definition of an
automorphism of an automaton (aoy)c'A=ac'Aoa'ot. Since acy=agp,, then
(a°7)0'A=a¢Ac-A, and since 'yoc=(q>;,\ﬂ’ )_1 then acerzra=a¢rAqJ’A. Hence,
aqutrA=ao'A<p"\, ¢A0A=0'Aq>;, and finally qp:\=a'k 9,0, Similarly, from the con-
dition (a*’a’)a'A=a<rA*70c it follows w’=¢r;1wchA

The validity of the second statement of the lemma is proved in
the same way.

Denote by ZA,EB the groups of all the automorphisms of the linear

spaces A and B respectively. Let consider the Cartesian product Z=ZAXZ
and define the action of X on Endb(A,B): if (q)A,w,th)eEndb(A,B),

(o ,0 )€z, then
A''B

-1 -1 -1
(wk.!/lytoah(ok,a‘B)-(a'A €99, n//rrB,ch goBch).

Lemma 3.2. Let #=(A,I',B) be an exact biautomaton, I'cEnd(A,B), and
(o0 ,00) be an element of ZAx}:B such that for all elements 7=(¢A,w,¢a)el‘
A B
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the inclusion (¢ .y, )e(o,,0 )€l is valid. Then the mapping o:I —> T
defined according to the rule: (¢A’w'ws)“=(WA'w'¢a)°(°}”s)' is an auto-
morphism of the semigroup T', and the triplet (ok,a,rB) is an automor-

phism of the biautomaton 4.

This simple lemma means that the element (c},cB) of £ determines
an automorphism of the biautomaton, if (GA,GB) satisfies the conditions

of Lemma 3. 2.
3.3.2. Automorphisms of universal biautomata

Let Atml(A,B)=(A,Endb(A,B),B) be an wuniversal biautomaton. It
follows from the obvious inclusion (wA»¢,¢B)°(OA,FB)EEndb(A,B) and from

Lemma 3.2 that the following is true:

Proposition 3.3. The group of automorphisms of an universal bi-
automaton Atml(A,B) is isomorphic to the Cartesian product ZAxZB of the
groups of automorphisms of linear spaces A and B.

Consider automorphisms of the universal biautomaton Ath(F,B).

Proposition 3.4. The group of automorphisms of an universal bi-
automaton Atmz(F,B) is isomorphic to the group of automorphisms of the

representation (B,T).

Proof. Let (cB,a) be an automorphism of the representation (B,T)

and (ok,a,UB) be an automorphism of the universal biautomaton

Atmz(F,B)=(Br,F,B) having the same « and oy By the definition of an

automorphism of a biautomaton, if ¢EBF, Y€l', beB, then
(¢°7)0A=¢UA°7a s
(p*y)o =0 *7x ,
(b-7)¢B=bvB-7a .
We write the second of equalities in a more involved form
(prr)o =p(y)o;  ¢o *ya=go (ya),
Hence

¢(7)6B=wc}(7a).

Denote ya=x, then 7=xa_1; thus,
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wok(x)=¢(xa-1)¢3. (3.4)

The last of equalities determines the automorphism o, of the linear spa-
ce A=Br. Thus if (ak,a,vs) is an automorphism of the biautomaton
Atmz(F.B), then 2 should be defined by the equality (3.4). Verify that
a triplet (UA,a,GB), with o thus defined, is indeed an automorphism of
the biautomaton. The fact of 0 being a linear transformation of the
space A=Br is clear.The condition (3.3) follows from the initial condi-
tion. Equality (3.2) is fulfilled, since o, was chosen in an appropriate
way. It remains to check the condition (3.1), namely one should show

that (w°7)0A=waona:

((por)o,) ()= (per) (xa” ))o =(p (7 (xa ))=p(7) +xa "o =
=(p(y(xa 1) Jo - (p(7) xo ! )trB=so(7/(xoc_1 Mo -p(y)o,: (xa o=
=p (¥ (xa ) Jo ¢ (7)o x.

On the other hand,
(wvAowa)(x))=¢ck(7ax)—¢ak(7a)-x=¢((7ax)a_1)UB—w(vaa_l)GB-x=
—-— —1 i -

= (¥ (xa ))o"s w(w)o*B X.

Hence

(pey)o,=po oyc.

Finally, it is easy to verify that the correspondence, uniquely assig-
ning to each automorphism (cb,a) of the representation (B,I') an automor-
phism (ol,a,ob) of the automaton Atmz(F,B), preserves the multiplica-
tion, and hence defines an isomorphism of the groups of automorphisms

mentioned in the conditions of the Proposition.

Proposition 3.5. The group of automorphisms of an universal biau-
tomaton Atm3(A.F) is isomorphic to the group of automorphisms of the

representation (A,T).

Proof. Let (0}’“) be an automorphism of the representation (A,I')
and (ok,a,ca) be an automorphism of the biautomaton Atma(A,F)=
(A,F,A%KF). We remind that the operations * and ¢ in the automaton are

defined as follows: if aeA, yel', then a*y=ae®y; if a@ueA%Kr, vel', then
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(a®u) *y=a®uy-(acu)ey.

Since (ok,a,aa) is an automorphism of a biautomaton, the equality

(a’7)¢B=a¢A'ra should be held, from which

(a®1)¢B=ack®7a. (3.5)

The latter equality defines the action of o, on generating elements of
the space A?KF, which by linearity is extended to the whole of the spa-
ce A%KF. We verify that the triplet (cA,a,GB) with the given o and
oo defined by the equality (3.5), is indeed an automorphism of the bi-
automaton Atma(A,F). By the condition, (UA,a) is an automorphism of the
representation (A,I') and the validity of the condition (3.2) is determi-
ned by the construction of Oy It remains to show the validity of the

condition (3.3): (b-7)0h=bah-7a, where b=a®ueA?KF.

(b-w)ah=((a@u)'7)ob=(a@uy—(aou)®7)08=(a®u7)05—((aou)®7)¢8=

=aok®(u7)a-(aou)ok®7a=aak®ua-ya—(aonua)wqa.

On the other hand,
bﬁB-7a=(a®u)ob-7u=(ack®ua)-7a=a¢A®ua-7&—(aokoua)®7a.

Thus, (b'w)cB=b¢B~7a.

The one-to-one correspondence, assigning in such a way to each
automorphism (ol,a) of the representation (A,I') an automorphism
(o;,a,oh) of the universal biautomaton Atma(A,F) is an isomorphism of
the groups of automorphisms of the representation (A,I') and of the bi-
automaton Atma(A,F).

Note that the groups of automorphisms of universal pure automata
and universal linear automata are described in a similar way [17], and
that groups of automorphisms of the universal biautomaton Atml(A,B) and
the corresponding universal linear automaton of the first type are iso-
morphic. The groups of automorphisms of an universal biautomaton
Atma(A,F) and the universal linear automaton of the third type are also

isomorphic.
3.3.3. Automorphisms of the triangular product of biautomata

Lemma 3.6. If (ok,a,ch) is an automorphism of the triangular pro-
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duct of biautomata EIVS;(Al@AZ,F,81@B2)=(A.I‘,B), then the elements o

and o-B allow the matrix form:

oc”eHom(Al,AJ) % BUeHom(B‘, BJ), i, j=1,2.

Proof. It follows from the definition of the triangular product
that, if A’ is I-invariant subspace of A1®A2, then either A’:Al, or
A'cAl.

T s “a %8
Consider (A1 ,l",Bl )=(A1 ,l",B1 ), the image of the biautomaton

(Al,r‘,Bl)cﬂ under the automorphism (crA,oc,o'B) of the biautomaton #A. Since
o o o
AlA is a I'~invariant subspace, either AlkcAl, or AlADA1 It follows that
o
AlA=A1 (since o, is automorphism of space A, and A is a finite-
dimensional space). The proved fact means that the element o, has the
required matrix form. Similarly the statement of the lemma for % is
proved.

Along with the matrix form of the elements °, and L it is con-

venient to use the following notations:

01\:(“22'“21’“11)' O-B=(322'321'Bll)'

Let H1=(A1,1"1,B1) and ﬂ2=(A2,1"2,B2) be the exact biautomata. Not
restricting generality, one can assume that F1CEnd(A1’B1)' i=1,2. A des-
cription of automorphisms of the triangular product is given by follo-
wing:

Theorem 3.7. An element (a‘A,O'B)=((x22,oc21,(x“;322,821,{3“)EZA><ZB
defines an automorphism of the triangular product of exact biautomata

ﬂlvﬁz, if and only if the element (azz'Bzz) of ZAZXZBZ defines an auto-
morphism of the biautomaton ﬂ2=(A2,I’2,B2), while the element (au,Bu)

of ZA xZB defines an automorphism of the biautomaton ﬁ1=(A1,l‘1,Bl).

1 1
Proof. The semigroup I' of inputs of the triangular product of

biautomata can be considered (item 3.2.1) as a semigroup of matrices of

the form
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Vaz 922 Y21 921
0O 8_0 o
22 21
(3.6)
S Vir P10
0O 0 0 &
11
7lJEHom(Al,AJ); leeHom(Al,BJ); BljeHom(Bl,BJ);
satisfying the condition
(u22,¢22,522)er2, (vll,w11,611)€F1 (3.7)

Consider the biautomaton representation u:I' — End(A1@A2'B1®B2)' The
image of I under this representation p will be denoted by I’. If
x=(v,¢,8)el’’, then

o v ¢ P
v= 2 2 v ) o=| 2 % [=(o_,0..0 )
g2’ “gn? "ma” ° 22" V21’ V1a
0 v 0 ¢
11 11
6zz 521
& =(622’ 21’ 11)
0 &

Thus, the elements of the semigroup I'’ can be regarded as matrices of

the form

0 0 &__39o (3.8)

A matrix of form (3.8) belongs to I'" if and only if the corres-
ponding matrix of the form (3.6) belongs to I', i.e. when the conditions

(3.7) are fulfilled.
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If x=(u.qp,6)=(u22,v (0.9 ,9 ;8 _,8 ,8 ) 1is an arbit-

¥ H »
21" 11’ V22" 21’ 11’ 22" 21”11
rary element of I'" and

c'=(a'A,ch)=(oc22,oc21,a“;[322,{321,B“) of ZAXZB then,

according to the definition, xoo'=(¢r;1u0‘A,tr;lqwa,a-:&ra). Simple calcula-
tion shows that

-1 -1 -1
(o vo ,0 "o ,0 80 )=’ _,v’ ,v’ ! ! ’,8 ,8 .8’
AV %, P9 %5 °% ( 22'V21Y11" %22/ %217 %11 22 21’ 11)

where, in particular,

-1 -1
v =a_v__a v =« v o

22 22 22 22 11 11 11 11

) =a-1 B , =a_1 B

‘022 22¢22 22 qp“ 11¢11 11 (3.9)

5 =8 's B 5 =g's B

22 22 22 22 11 11 11 11

In order the element xoo belongs to I'', it is necessary and suf-
ficient that the condition (3.7) be fulfilled, i.e. that
(vzz"ozz'vzz)erz and (v“,qzu,au)el"l. With accounting for the equali-

ties (3.9), we have

(v22, ¥ 622) (azzuzzazz 22<p221322 322622822
ofi 0 v o 0
_ 22 2 Y2 ] 22 ]=
-1
q 822 @ 622 9 Bzz

_1 _ 5
=(a22’322) (vzz"paa’azz)(azz’Bzz)—("22’¢22’622) (azz’Baz)
Similarly, (u“,q)“,6“)=(v“,q>“,6“)o(oc“,Bu). Thus, in order that

the element xoo lie in I'", it is necessary and sufficient that

("22'w22’622)°(azz’Bzz)erz and ("11’“’11’611)°(a11’311)er

The latter inclusions mean that (oc22,[322) determines an automorphism of
the biautomaton Hz and (oc“,B“) an automorphism of the biautomaton 81,
as required.

Note that there are papers on groups of automorphisms of other
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automata constructions. In particular, automorphisms of wreath products
of pure automata are being studied in [16]. Some description of such
wreath products has been given, while the problem of their complete des-

cription remains.
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CHAPTER 4
VARIETIES OF AUTOMATA

Identities of automata give the important invariant, which des-
cribes automaton functioning. Using the language of varieties and iden-
tities we can classify various automata. Automata, free in certain
variety, are of special interest from this point of view. We study the
corresponding theory for pure automata, as well as for linear automata

and biautomata.
4.1. Identities of pure automata

4.1.1. Defining and identical relations

Let us consider the automaton #A=(A,I',B) with a certain system of
generators Z,X,Y. The given automaton is a homomorphic image of the free
automaton Atm(Z,X,Y): natural embeddings 2 —2 A, X = T and Y — B are
uniquely extended to the epimorphism p:Atm(X,Y,Z2) —> &. Let p=(pl,p2,p3)
be a kernel of this epimorphism. Then #A=zAtm(Z,X,Y)/p.

The congruence p is called the complete system of defining rela-
tions of the automaton & Three sets Z,X,Y of generators together with
defining relations p=(p1,p2,p3) completely determine the automaton 4.
However, it is not necessary to proceed from the complete system of de-
fining relations in order to define #. One may confine to a certain ge-
nerating triplet of relations. Let #=(A,[',B) be an automaton and
t=(t1,12,13) be three binary relations on A,I',B respectively. This trip-
let is called the relation on the automaton 4.

Given the relation T=(T1,T2,T3) on the automaton #A=(A,I',B), des-
cribe the congruence p=(p1,p2,p3) generated by T. As p2 take the congru-
ence of the semigroup I' generated by the relation T, Define the rela-

tion t; on A by the rule: if ae€A; 11,726F, then (aozl)t;(aoyz) if and
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only if vlpzyz Let us call the equivalence & in A invariant with res-
pect to I', if alaa2 implies (aloy)a(azow). Now, for P, take equivalence
on A containing tlur;, which is minimal invariant with respect to T.
Let, further, the relation r; on the set B be defined in the following

: ) i § ,v €. A
way: (al*yl)ra(azﬁzz), if arp.a, and L . where al,azeA, 7Y, s

P, take the equivalence generated by the relation T3UT; Then
p=(p1,p2,p3) is a congruence. Indeed, let alpia2 and ylpzyz. Hence
(a1°71)p1(31°72)' since p >T) and 7P, In its turn, (alowz)pl(azoyz),

since a1p1az' and P, is invariant with respect to TI. Finally,
(alovl)pl(azvvz). Since POTLs then ((al'wl)pa(az'wz). It is clear that
p is the minimal congruence containing <.

If the automaton #A=(A,I',B) is isomorphic to Atm(Z,X,Y)/p and the
congruence p=(p1,p2,p3,) on Atm(Z,X,Y) is generated by a certain rela-

tion T=(Tl,T ,13), then @ is said to be defined by the system of genera-

tors (Z,X,Y)zand by the system of defining relations r=(Tl,12,13).

Now consider the identical relations of automata. Along with de-
fining relations, they describe each given automaton by means of free
automaton.

Let Atm(Z,X,Y)=(H,F,®) be a free automaton and #&=(A,I',B) be a
certain automaton. Take a pair of elements hl,hzeH. We say that the
identical relation, or briefly, the identity in the states h15h2‘ is

fulfilled in the automaton @A, if for any homomorphism u=(u1,u2,u3):
TR
Atm(Z,X,Y) — 4, the equality h11=h21 holds. (Recall that defining rela-

tions are associated with a definite homomorphism). Identical relations
in input signals (they have the form f1Ef2. f1’f2€F) and in output sig-
nals (lewz, ¢1,¢26¢) are defined in a similar way. The system of all
identical relations of the automaton can be understood as a union of
identities in states, in inputs and in outputs.

Let us consider the identical relations of the given automaton A.
Define relations pl.pz,p3 on the sets H,F and & of the free automaton
Atm(Z,X,Y)=(H,F,®) by the rules: h p h_ if the identity in states hlzh2

171 2

is fulfilled in 4; flpzf2 if there is the identity in inputs f1Ef2 in 4;
P.PP, if the identity in outputs ¢, =0, is satisfied.

It is natural to call p=(Pl.P2,Pa) the system of identical rela-
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tions of the given automaton. The congruence 9=(61,62,93) of the automa-
v v
ton A is called completely characteristic if a191az implies a1191a
v v v v
o 2 2 .
7.0 _¥_ implies v, 627 § b193b2 implies b1393b23, for any endomorphism

1
)

2

1 2°2

v=(v1,v ,vs): # — @. In other words the congruence is said to be comple-

2
tely characteristic if it preserves all endomorphisms of the automaton

4.

Proposition 1.1. The system of all identical relations
p=(p1p2,p3) of the given automaton @ is a completely characteristic con-

gruence of the free automaton Atm(Z,X,Y).

Proof. Let “a be a certain homomorphism of Atm(Z,X,Y) to & and
pa=Kerua. Then, evidently, p is the intersection of all pa on all pos-
sible ua. Therefore, p is a congruence. It is left to verify that this
congruence is completely characteristic. Take an arbitrary endomorphism
v=(v1,vz,v ) of the free automaton Atm(Z,X,Y) and let the identities
hzshz' flzf " ¢15¢2 be fulfilled in #A. We must check that the identities

2

ViV P2 V2 Vs Vs
h1 Ehz s f1 Efz s e, = hold. Let u=(u1,u2,u3) be an arbitrary homo-

w

v
1“1

Vil o UM VB
morphism Atm(Z,X,Y) — #A. Then (h1 ) "=h = h

1 .

) 5 —(h2 ) Similarly,
v_u v_u vy v

(£,%) 2=(£,%) ? and (¢, ) =t

On the other hand, it is clear that each completely characteris-

Hs The Proposition is proved.

tic congruence p is the system of all identical relations of the automa-
ton Atm(Z,X,Y)/p. Together with the Proposition 1.1 it implies that the
problem of description of identical relations of automata is equivalent
to that of completely characteristic congruences of the automaton
Atm(Z,X,Y).

It is necessary to remark, that speaking about all the identities
of the automaton #, we consider them in the given free automaton
Atm(Z,X,Y). This free automaton changes whenever the sets Z,X,Y change.
In order to avoid this uncertainty proceed to the free automaton
Atm(Z,X,Y) whose all three sets are countable. One can consider the
identities of any automaton in this one. Indeed, every separate identity

contains only a finite set of variables, while their number may inc-
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rease.

Identities of the automaton #=(A,I',B), considered here, are the
identities from the point of view of the free automaton Atm(Z,X,Y). Ke-
eping in view the category of the automata with fixed semigroup of in-
puts I', let us introduce the concept of I'-identity. I'-identity in states
hlEh2 is defined in a way similar to the identity in states, but in this
case h1 and h2 are the elements of the set of states of the automaton
Atmr(Z,Y), and p=(u1,u2,u3) is an arbitrary homomorphism of Atmr(Z,X) to
A, identical on I'. The definition of I'identities in outputs is analo-
gous to that of I'-identities in states. The system of all I'-identities
of the automaton @ is the union of I-identities in states and of
I'-identities in outputs. In order to emphasize the difference between
identities and I'-identities the first ones are sometimes called the
absolute identities.

I-congruence of the automaton #=(A,I',B) is a congruence of the

form (pl,ar,pz), where 8. is a trivial (minimal) congruence of the semi-

r
group I'. The next statement is similar to Proposition 1.1.

Proposition 1.2. The system of all TI-identities of the
F-automaton @ is a completely characteristic I'-congruence of the automa-

ton Atmr(Z,Y).

4.1.2. Compatible tuples and identities of I'-automata

Our aim in this item is to examine completely characteristic
[-congruences of the free automata of the type Atmr(Z,X) and to provide
the description of I'-identities.

Let us assign to each automaton #=(A,I',B) the following four in-
variants. Denote by m the kernel of action of the semigroup r! in A:
71"72' if for any aeA holds a071=a072; 71,725F1 It is a congruence of
the semigroup rt. Denote by T the kernel ot the external action (exter-
nal kernel) of the semigroup T: v, if for any ae€A holds a‘71=a'72
71,726F. T is the left congruence of the semigroup I' It is clear that
the intersection wnt is a kernel of the corresponding automaton repre-
sentation of the given I'. Denote by U the set of all elements of yerl

such that for any a, and a, from A holds a, °y=a,oy. U is a two-sided
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ideal of the semigroup r! called the annihilator of the action I' in A.
Denote by V the set of all elements yel' such that for any a and a, from
A, a1‘7=a2'7 takes place. V is the left ideal of the semigroup I' called
the annihilator of the external action of this semigroup. The sequence
(m,U,T,V) thus defined is called a tuple of kernels and annihilators
corresponding to the automaton 4.

Let T be a semigroup, m a certain congruence in Fl, T a left con-
gruence in I', U an ideal in Fl, V a left ideal in I'. The sequence
(tuple) (n,U,7,V) is called a compatible tuple of the semigroup I' if it
satisfies the following conditions:

1) U is a union of certain cosets of the congruence 7.
2) Each coset of the congruence n belonging to U is a left

ideal in I,

3) V is a union of certain cosets of the equivalence T.
4) Each coset of the equivalence T belonging to V is a

left ideal in T.

5) If v, 71,725F, then for each yel' holds (717)1(727).
6) If oeU, then oyeV for any yerl.

Proposition 1.3. The tuple (n,U,T,V) consisting of kernels and

annihilators, corresponding to the automaton @A, is a compatible tuple.

Proof. 1) Let a1 and a2 be arbitrary elements in A, 3€U and 3'7é.
Then a1o5’=a106=a206=a06' Therefore, &8’ belongs to U and the whole co-
set [8] of the congruence m containing 8, belongs to U

2) Let S be a coset of the congruence n lying in U; &8e€S, yel.
Then for each element a€A the equality (aecy)od=aoéd takes place. Hence
aoyd=(aocy)oed=aod, i.e. (¥8)nd and y8eS. Thus, S is the left ideal in rt.

3) Now assume that &€V, &'t and al,a2 from A. Then
a1*6'=51'6=a2*6=a2*6'. Hence, &8’€V and the whole coset [8] of the equi-
valence T belongs to V.

4) If S is a coset of the equivalence T lying in V, 8€S and yerl,
then for any a€A holds a*yd=(aoy)*6=a*$. Hence, (¥8)td and y8€S. There-
fore, S is the left ideal in T.

5) Let v, yel'. Then for any aeA, a~717=(a°71)‘7=(a072)'7
=a%y 7y, i.e. (717)1:(727).
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6) Take 8eU, yel Then for any a,a, from A, a1'67=(a1°5)'7=
(azoa)*7=a2*67.

This implies that &yeV.

Note further that since in a Moore automaton from a071=a°72 and
a107=a2°7 follows a*yl=a'72 and a1*7=a2*1 respectively, then tuples of
kernels and annihilators corresponding to the Moore automata additional-
ly satisfy the conditions: nct, UcV.

The importance of compatible tuples is based on the fact that
completely characteristic I'-congruence of the free automaton
Atmr(Z,Y)=(H,F,¢) corresponds to each of them. Moreover, there is one-
to-one correspondence between these congruences which satisfy a certain
additional condition of non-triviality (the condition will be formulated
below) and compatible tuples. Let us construct this correspondence.

Given a compatible tuple (»,U,T,V) of the semigroup I', define
binary relations P, in H and [ in ®. Let h1=(21’71)=21°7y
h=(22,72)=22°12 be the elements from H=ZxI'" Set h1p1hz’ if z,=z, and
71"’2' or 21$22, but 71,72 from U and Wlnvz. Remind that the set & is a
free union of the sets Y and 2ZxI. If now ¢1=(Z1’71)=21*7f
w2=(22,72)=22*72, then assume $.PP, if z,=z, and ¥, or zl¢22, but
71,72 from V and 71172. All elements from Y are considered as indepen-

dent cosets by P

Theorem 1.4. The system p=(p1,6r,p3) where PP, are constructed
relations in H and ® respectively, and 6F is the minimal congruence of
the semigroup I', is completely characteristic I'-congruence of the auto-

maton Ath(Z,Y).

Let us call the completely characteristic TI'-congruence
p=(pl,6r,p3] of the automaton Atmr(Z,Y) trivial by e, if for certain
elements yeY and ¢zy (¢ed), ve_¢ is fulfilled. This means that all ele-
ments from ¢ form one coset by the equivalence Py Really, for each ele-

ment ®, from ¢ one can take such endomorphism (ul.sr,ua) of the automa-
u K
ton Atmr(Z,Y), that vy 3=¢1, @ 3=¢. As the congruence p is completely
K K
characteristic, then yP implies y 3p3¢ 3, from which ®.PP Since ®,

is an arbitrary element from ¢, this means that the whole & forms one
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coset by the equivalence Py

Theorem 1.5. If the set Z contains more than one element, then
all non-trivial completely characteristic T'-congruences of the free
automaton Atmr(Z,Y) are in one-to-one correspondence with the compatible

tuples of the semigroup T.

Not proving the Theorem, show the required correspondence. Let
(n,U,T,V) be a compatible tuple of the semigroup I' and p=(p1,6r,p3) be
the constructed above corresponding completely characteristic
'-congruence of the automaton Atmr(Z,Y). This congruence is non-trivial.

On the other hand, if p=(p1,6r,p is a non-trivial completely characte-

ristic congruence of the automa€ZL Ath(Z.Y), then the tuple of the se-
migroup I' composed of the kernels and annihilators of the automaton
Atmr(Z,Y)/p=(H/p,F,@/p3) corresponds to it. To prove the Theorem one
must check that this assignment is one-to-one.

Now let us pass to I'-identities of the automata.

Theorem 1.6. Let A=(A,I',B) be an automaton with the set B contai-
ning more than one element and let (m,U,T,V) be the corresponding tuple
of kernels and annihilators in T. Then all T-identities of the automaton
A have the form

1. zoylEzoyz for elements 71,726F1, such that 71"72
2 zloy=zzoy for all yeU.

3. 2'71=Z‘ﬂé for elements 7,7ZEF, such that 71172

4

21*7=22‘7 for all yeV.

Proof. All I'-identities of the given automaton constitute a com-
pletely characteristic congruence p=(p1,6r,p2) in Atmr(Z.Y)=(H.F,¢).
This congruence is non-trivial. Really, let p be a complete system of
the defining relations of the automaton #, i.e. ﬂsAtmr(Z,Y)/E. It is
clear that pcp. Therefore #=(A,I',B) is a homomorphic image of the auto-
maton Atmr(Z,Y)/p=(H/p1,F,@/p3). If the congruence p were trivial, then
the set <I>/p3 and together with it the set B would consist of one ele-
ment, but this contradicts the condition of the Theorem. From the Theo-
rem 1.5 follows that if (n’,U’,T’,V’) is a tuple of kernels and annihi-

lators corresponding to the automaton (H/pl,F,Q/pa), and p’=(p;,6r,p;)
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is a congruence of the automaton Atmr(Z,Y) corresponding to this tuple,
then p=p’. In accordance with the definition:
(zoy Jp) (z07) if

1) z,=z =z and 71"’72 or

2) z,*2,, but 7,7, belong to U’ and 71n'72;
(21'71)p;(22*72) &

3) 2,52, =2 and 711'72 or

4) 21¢22 but 77, belong to V' and 711'72

Since p=p’, then the identities of the automaton & have

the form:
, 1
1) zoy Szoy; where LA 71,72€F 3
2) zluyzzzo']; where yeU’, (1.1)

3) z*y Sz*y; where ¥y 'y, ¥ .7 €I,
4) 21*7522'7; where yeV’.

To complete the proof of the theorem it is necessary to show that
the tuples (n’,U’,t’,V’) and (n,U,T,V) coincide. If ¥, then for any
yel', 771n77?, It means that for all aeA aoyy, =acyy . Thus the identity
zoyy =207y, is fulfilled in A, which is equivalent to (20771)p1(20772L
Since 20771=(zoy)071= hoyl, then for arbitrary heH holds (hovl)pl(hosz
Therefore, 71n’72 and ncn’ On the other hand, let 11n’72. Then
(zoyl)pl(zowz): the identity zoy =207, is fulfilled in @&. Hence,
a071=a072 for all aeA, that implies 71"72' From this follows the inverse
inclusion n’cn and the equality n=7¢’.

Show that U=U’ If yeU, then for arbitrary 71,7ZEF. 717 and 727
belong to U and (717)n(727). Then for arbitrary elements al,aZEA.
a10717=a10727 and a c¥ y=aor y. From this follows a10717=a20721. Thus,
for arbitrary fixed v, and v, in A holds the identity 2107175220727,
which is equivalent to (zlowly)pl(zzewzw). Since 21071=h1 and 25072=hi
then for arbitrary h1'h2 from H holds (hlow)pl(hzoy). This means that
y€U’ and, consequently UcU’. Conversely, if yeU’, then (Z1°7)p1(zz°7)‘
Hence the identity 210752207 is fulfilled in #A. Therefore for all
al,aZEA, a107=a201 holds. So €U and U’cU. Thus, U=U’ The equalities

T=t’ and V=V’ are verified in a similar way. The Theorem is proved.

Remark. Automaton operations are not explicitly included into the
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definition of the I'-identity given at the beginning of this item. It is
proved then that the identities of the automaton can be represented in
the form (1.1). Here the identities of the automaton are the identities
of the action.

It must be noted that to make a notation of the identities of an
arbitrary I'~automaton, it is sufficient that the set Z contains two ele-

ments.
4.1.3. Identities of arbitrary automata

Now, we consider completely characteristic congruences of absolu-
tely free automata Atm(Z,X,Y)=(H,F,®).

Let #@=(A,T',B) be an automaton and let (»,U,T,V) be the correspon-
ding tuple of kernels and annihilators in I'. Let F=F(X) be a free semi-
group over the set X. Define in F corresponding to the automaton & tuple
(’nF,UF,EF,‘L'F,VF):

n, is the following binary relation in Fh: flanz (fi,fzeFi), if
for any homomorphism p:F1 - Fl, transferring a unit into a wunit,
f?nfg is fulfilled. It is easy to understand that n. is a completely
characteristic congruence of the semigroup Fl, namely a congruence of
all identities of the semigroup I''/n;

EF is a completely characteristic congruence of all identities of
the semigroup I' in F.

T is a binary relation in F defined by the rule: flthz if for
any homomorphism u:F —=> T, ffrfg is fulfilled. T is a completely cha-
racteristic left congruence in F: for each endomorphism v of the semi-
group F from flthz follows thFfZ It can be shown that T, may not be a
two-sided congruence.

UF is a set of all feF for which ffeU for any homomorphism
w:F —=>T;

VF is a set of all feF for which eV for any homomorphism
u:F —>T.

UF is a two-sided completely characteristic ideal in F! and VF is
a left completely characteristic ideal in F. It is obvious from the de-

finition that (nF,UF,rF,VF) is a compatible (in the sense defined ear-
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lier) tuple in F and that the inclusion EFanntF holds. The constructed
tuple (nF,UF,gF,rF,VF) is called an external tuple of the automaton &.

Remark. Show that the left completely characteristic congruence
is not necessary a two-sided one. As an example take a free semigroup
F=F(X) and denote by L the left ideal generated by the squares of all
elements from F. This ideal is completely characteristic but not two-
sided; for example, it does not contain the element xfx2 where xl,x2
from X. Now take Rees congruence by the ideal L. This will be a left
completely characteristic but not two-sided congruence.

Let us consider the tuple (n,U,€,t,V) in which » and § are com-
pletely characteristic (two-sided) congruences of the semigroup F=F(X),
T is a left completely characteristic congruence of this semigroup, U is
a two-sided and V is a left completely characteristic ideal in F. Let us
call it a completely characteristic tuple in F if (n,U,T,V) is a compa-

tible tuple and €cnnt.

Theorem 1.7. All non-trivial completely characteristic congruen-
ces of the free automaton Atm(Z,X,Y)=(H,F,®) are in one-to-one corres-

pondence with the completely characteristic tuples (n,U,€,T,V) in F.

Theorem 1.8. Let A=(A,I',B) be an automaton with the set B contai-
ning more than one element and let (nF,UF,gF,tF,VF) be its external
tuple. Then all identities (absolute) of the automaton #@ have the form:

1) zof =zof for the elements f ,f EF1 such that fn f ;
1 2 1’72 1°F 2
2) z ofsz of for all feU ;
1 2 F
3) z*f =z*f_ for the elements f_ ,f_e€F such that f T f ;
1 2 17 2 1 F 2
4) z *f=z *f for all feV
1 2 F
5) @ for all eeEr

4.1.4. Identities of universal automata

a) Take first the universal automaton Atml(A,B)=(A,S(A,B),B).
where S(A,B)=S(A)xFun(A,B). In order to describe identities of the auto-
maton it is necessary to know its external tuple (nF,UF,ﬁF,rF,VF). It is
clear that the congruence nF coincides with the identities of the semi-
group S, The congruence T, is the following: fT ¢ (f,¢ from F=F(X)) if
and only if f=f1x, P=p, x and f}npwl. Indeed, let fTFw, i.e. for any ho-
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momorphism p:F — S(A,B) holds a’f#=a‘go“ Assume that f=f x, w-ga x

X0 X, €X. Then a*f”—(aof“)"x“—a*go —(aotp”)*x“ Since x x“ can be any ele-
ments from Fun(A,B), the latter equality holds only under the condition
aof‘:=aow‘:, x1=x2=x. For the same reason, if f or ¢ is equal to xeX, then
f=p. Thus, f=f1x, $=p x and flanl The inverse statement is evident.
From this follows that T is a congruence (since n. is a congruence)
defined by n. and it is less than nF‘ It is clear that the sets Ur and
VF are empty. It remains to consider €F There is the following fact: if

the automaton (A,F,B) is exact, then §F=nl__nr Really, if fléj}_fz, then

F

f‘:=f’2‘ for any homomorphism p:F — T'; therefore aof‘l‘=aof42‘ and a'f‘:=a'f‘2‘
for all aeA, that is t’lan2 and flrFfz On the other hand, if
fl(nFm'F)fz, then for all aeA and for any homomorphism pu:F — I hold

aof’:=aaf’21 and a'"f';=a"1‘42l Since the automaton (A,I',B) is exact, then

f‘:=f‘2‘, therefore, f1€r-'f2 The automaton Atml(A,B) is exact, then as fol-

lows §'=nm:F=-tF. Thus, all the identities of the automaton Atml(A,B)
are defined by the identities of the semigroup S

b) Identities of the universal automaton Atm (r',B)= (B r,B). Show
that in this case n. coincides with the identities of the left regular
action of the semigroup I' in I'. Let f1nrf2’ and p be an arbitrary homo-
morphism of F to I'. Then for any element ael® the equality Eotf=aof‘2‘
holds. By the definition of the action o in Atmz(l",B) this means that
5([“7)=5(f‘2‘7) for all yel. Since this is fulfilled for all functions
aeB , then f‘:'y:fgy. Therefore, fIEfz is an identity of the left regular
representation (I',T'). Inverse statement is proved in a similar way.

The congruence T, coincides with EF, i.e. identities of I'. Let

f'tha. Then 5'{‘:=5'f2 By the definition of the action * in Atmz(l",B)
1

hold 5*1‘"‘:=5(f‘:), 5'f§=5(f§). Thus, 5(f’;‘)=5(f‘2‘) for any z-_xeBr. Therefore,
f‘:=f‘21. that is f1Ef2 is the identity of I'. Inverse statement is proved
in a similar way. The sets UF and VF are empty.

c) Identities of the universal automaton Atma(A,l"). In this case
the representation (A,I') is given and we can proceed from the definite
n., U_  and EF. We must find TF,VF. Show that TN and VFCUF. Construct

F° F
the following Moore automaton (A,I',H) by the representation (A,I'). Take
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the set AoI'={aoy|aeA,yel'} and repeat it by a certain set H. Denote by ¥
one-to-one correspondence between AoI’ and H. Extend this y arbitrarily
up to the mapping Y’:A — H and by this define the Moore automaton
(A,T,H) with the determining mapping y’. Consider its external tuple
(nF’UF’gr'T;’V;)'

By the construction of this automaton n;t;, and UF=V;. Really,

for any Moore automaton nFcr; and UFCV;. Let, on the other hand, 7 T'7%

1 F 2’
and p.:F1 - F1 be an arbitrary homomorphism of F into F1 conversing the
unit of the semigroup F! into the unit of the semigroup r'. Then 7?ryg

M_

and for any a€A holds a*y a*wg From this by the construction of the

1_

automata follows aoy“—aoqg. Hence, ¥ n7_, r;an and T;=nF. The equality

1 1 F'2

UF=V; is verified in a similar way. Since (A,I'JH) is an epimorhic in
outputs image of the automaton Atma(A,F), then TFCT; and VFCV;. Thus, we
have inclusions TFan, VFCUF for the automaton Atma(A,F). In particular,

if ' is a Moore semigroup, then TF=nF, VFCUr
4.2. Varieties of pure automata
4.2.1. Definitions. Basic properties

A class of all the automata satisfying a certain set of identi-
ties is called a variety of the automata. Such varieties are sometimes
called the varieties with variable semigroup of input signals in cont-
rast to the variety of I'-automata, which is a class of I'—automata satis-
fying a given set of I'-identities.

In the automata theory varieties can be applied for typical in
algebra purposes. First of all, it is a classification of the automata
by their identical relations. Each automaton is a homomorphic image of
the suitable free automaton in the variety generated by the given auto-
maton. Therefore free automata of different varieties are the matter of
special interest.

To each variety correspond a special congruence in individual
automaton, called a verbal congruence. Such congruences may be of
important significance in the structural theorems, in the problem of
automata decomposition, in particular. Perhaps all this may become

useful also in the various technical applications. Let’s consider
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several simple examples of the automata varieties.

Examples

1) The identity 2'7172=z~7271, 71,726F defines the variety of
l-automata in which the external action of the two given elements 71 and
72 is permutable.

2) The identity z*x1x2=z*x2x1, xl,xzeF=F(X) defines the variety
of the automata with the variable I' in which the external action of any
two input elements is permutable.

3) The identity 21'x=22'x defines the variety of automata in
which the result in output does not depend on the state of the automaton
but depends only on the input signal.

4) Two identities z'x1=z'x2 and zl¢x=22*x define the variety of
automata, in which output signals do not depend neither on the state of
the automaton nor on the signal on its input.

5) The identity Vi Vs assigns the automata with the unique output
signal.

The following Theorem is a particular case of the classic theorem
of Birkhoff which is true for the arbitrary many-sorted (heterogeneous)
algebras and gives a description of varieties as closed classes of auto-

mata.

Theorem 2.1. A class 0 of automata is a variety if and only if it
is closed under taking subautomata, homomorphic images and Cartesian

products of automata.

Observe that Cartesian products can be naturally defined in the
category of automata with the fixed semigroup I' and for the varieties of
[-automata there exists the theorem similar to Theorem 2.1.

As it has already been mentioned it is convenient to define the
identities of the automata in the free automaton Atm(Z,X,Y) with coun-
table sets Z, X and Y. Therefore in defining of the varieties of automa-
ta one proceeds from the automaton Atm(Z,X,Y) with countable sets Z,X,Y.
If now @ is a certain class of automata, then to each automaton Sa from
0 corresponds the completely characteristic congruence Py in the given

automaton Atm(Z,X,Y), namely, the congruence of all identities of the
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given ﬁa in Atm(Z,X,Y). The intersection P=Mp, ©on all ﬂa from 6 is also
a completely characteristic congruence, and it gives all identities of
the class 6. In particular, to each variety of automata @ corresponds
the completely characteristic congruence p of the identities which are
fulfilled for all automata from 8. On the other hand, each completely
characteristic congruence in Atm(Z,X,Y) can be regarded as the set of
identities which defines the variety of automata. If we consider only
completely characteristic congruences in Atm(Z,X,Y) then this correspon-
dence between the varieties of automata and such congruences is a one-

to-one correspondence, i.e.:

Theorem 2.2. There is one-to-one correspondence between varieties
of automata and completely characteristic congruences of a free automa-

ton.

Bearing in mind Theorem 1.7 it follows that the correspondence
between varieties of automata and completely characteristic tuples of
the free semigroup F is one-to-one.

Let 6 be a certain class of automata, p be a completely characte-
ristic congruence of all identities of this class, ep be a variety cor-
responding to this congruence. Then ecep and it is clear that ep is the
minimal variety containing 6. This variety is denoted by Vare.

Introduce the following operators on the classes of the automata:

C is a Cartesian product operator: if @ is a class of automata,
then C6 is a class of all Cartesian products of the automata from 6;

S is an operator of the transition to subautomata: S6 is a class
of all subautomata of the automata from 6;

Q is a homomorphic image operator: Q@ is a class of all homomor-
phic images of the automata from 6;

V is a saturation operator: (A,I',B)eVe if there exist a homomor-

phism in input signals ¢ such that (A,Fw,B)EG.
Theorem 2.3. Var6=QSCs.

This theorem is proved in a similar way to those for varieties of
groups and of representations of groups ([78], [90]). In this case theo-

rem 2.1 and well known relations between introduced operators are used.
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The variety of the automata ¥ is called saturated if it is closed
under the saturation operator, that is, if VX¥=X.

The saturated variety generated by the class 6 coincides with
VQSCe. There are the automata with arbitrary I' in the saturated varie-
ties: considering such varieties we pay attention not so much on the
construction of the semigroup of the input signals I' but on its action.
The identities of the semigroup I' are not present in the set of identi-
ties of the saturated varieties.

Let ¥ be a variety of the automata, and (nF,UF,EF,tF,VF) be the
corresponding external tuple. Associate with the given variety ¥ the
saturated variety of the automata J})=VX¥, and the variety of the semi-
groups 6 satisfying the identities from EF In this case the following
condition is satisfied:

if (A,I',B) is an exact automaton from %), then I'eB. (*)

On the other hand, assign to each pair (J,0) with ) and 6 being
the saturated variety of automata and variety of semigroups respective-
ly, satisfying the condition (*), the variety of the automata
¥={(A,T',B)| (A, T',B)eY, Teb}.

It is easy to show that this correspondence is a one-to-one.
Thus, consideration of varieties of automata is reduced to that of satu-
rated varieties of automata and of varieties of the semigroups.

Let us introduce the notion of a free union of the automata. Gi-
ven the set of the automata ﬁu=(Aa,Fa,Ba), acl, an automaton #A=(A,T',B)
is called a free union of these ﬁa if A is a free union of the sets Aa’
B is a free union of the sets Ba' the semigroup I' is a Cartesian product

of the semigroups Fa and the operations o and * are defined by the ru-
n n
les: if aeA , then aoy=aoy a; ar*y=a*y u, where L denotes projection of
o

I' on Fa It is clear, that # is an automaton.

Remark. If @A=(A,I',B) is a free union of certain automata ﬂl and
ﬁz, then for such automaton # annihilators UF and VF defined in 1.3 are
empty. Really, if the element ye€l belongs to UF, then a107=a2o7 takes

place for any elements al,a2 from A. However, for aleA1 and aaeA2 hold
n
a_ oy=a_ oy 1eAl, azoyeAz. This contradicts the fact that the sets A1 and
1 1

A are disjoint. It is also easy to see that the set VF is empty.
2
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Variety of automata is called special if it is closed with res-

pect to free unions.

Proposition 2.4. The variety © is special if and only if among
its determining identities there are no identities of the types

z1°szz°f and zl'szz'f (i.e. annihilator kind identities).

Proof. Let 8 be a special variety and @ a free union of the auto-
mata H1’H2 from 6. Then Ae6. By the above Remark, U and V are empty sets
for A. It means that among the identities of this automaton and conse-
quently, also among the identities of the variety 6 there are no identi-
ties of the type zloszzof, erF; zl*fEZZOf, fEVF. On the other hand, if
there are no identities of the given type among the identities of the
variety 6, then it is closed with respect to free unions. Indeed, it is
clear that if the identities of the type Zoflzzofz and z'flszﬂf2 are
fulfilled for the automata Ha' «€l, then they are also fulfilled for the
free union of these automata. Besides, it is known that if a certain
identity is fulfilled for the semigroups Fa, acl, then it is fulfilled
for a Cartesian product of these semigroups.

Remark. Proposition 2.4 means that if (n,U,&,T,V) is a completely
characteristic tuple of the free semigroup F corresponding to the spe-
cial variety 6, then the ideals U,V are empty.

The following theorem is a version of the theorem of Remak for

automata.

Theorem 2.5. Let pa, a€l be a certain set of the congruences of
the automaton A=(A,I',B) and let P=MP,- Then the quotient automaton #A/p

is isomorphically embedded into the Cartesian product nﬂ/pa of the auto-
o«
mata H/pa.

Proof. Denote by B, 2 natural homomorphism of the automata
2 — i = .
u“.ﬂ H/pa. The homomorphism u (“1’“2'“3)'H i Bﬂ/pa defined by the
o

. « o o By Hy
rule: if u“=(u1,u2,u3) and ae€A, yel, beB, then a (a)=a (a);
o

M, M, My My
7 “(a)=y “(¢); b “(a)=b ~(a), uniquely corresponds to the set of all

these My From the definition of p it follows that Keru=nKerua=fpa=p. i
a o
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means that the automaton #A/p is isomorphically embedded into the automa-

ton Eﬂ/pa.

A congruence p equal to the intersection of all such congruences
Py’ that ﬂ/paee, is called a verbal congruence of the automaton @ by the
variety 6. Denote the verbal congruence by e‘(ﬂ). This congruence is a

completely characteristic one.

Proposition 2.6. 9.(ﬂ) is minimal among the congruences with the
property ﬂ/paee.

Proof. By the definition, 9"(ﬂ)=npoc where p, are all congruences
o

with the property H/paee. Therefore the statement is equivalent to
ﬁ/e.(ﬁ)ee. By Remak’s theorem a/e'(a) is isomorphically embedded into
Eﬂ/pa. Since all ﬂ/paea, then by Birkhoff’s theorem, L]ﬁ/poc is also con-

tained in 6. By the same theorem each subautomaton of the given product

is also contained in @. Therefore, E/B‘(S)EG.

Corollary. If p is a congruence of the automaton @, then #/pef is

equivalent to pze‘(ﬂ).

Along with the automaton which is free in the variety of all au-
tomata (or simply with a free automaton) consider the automaton which 1s
free in the variety of the automata 6. It is such automaton #e®, that
for a certain system of its generators (Z,X,Y) any mapping of this sys-
tem into an arbitrary automaton &’ from 6 is uniquely extended up to the
homomorphism of & to &’.

Denote such automaton by Atme(Z,X,Y). By contrast to it the auto-
maton Atm(Z,X,Y) is an absolutely free one, i.e. a free automaton in the

variety of all automata.

Proposition 2.7. If p is a verbal congruence of the absolutely
free automaton Atm(Z,X,Y) by a variety @, then Atm(Z,X,Y)/p is the auto-
maton, free in this variety 6.

Proof. Let #A=(A,[,B) be an arbitrary automaton in 6 and let the
mappings p1:2 =¥ Ky pz:X =T, ua:Y — B be given. It is necessary to

verify that these mappings are uniquely extended up to the homomorphism
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u:Atm(Z,X,Y)/p —> A. First take the extension of the mappings Bk, Hy
up to the homomorphism v:Atm(Z,X,Y) —> @. Since @He6, then also
Atm(Z,X,Y)/Kervee. By the Corollary of the previous proposition pcKerv.
Therefore, there exists the homomorphism u:Atm(Z,X,Y)/p — @, extending

the given mappings.

Proposition 2.8. Let 6 be a class of automata, Varé be a variety
generated by it. Consider the homomorphisms (T Atm(Z,X,Y) —> 4 for all
A from 6. Let pa=Kerua, PP, Then Atm(Z,X,Y)/p=Athar6(Z,X,Y).

Indeed, from the theorems of Remak and Birkhoff follows that
Atm(Z,X,Y)/peVare. From the definition of p it is clear that p is a com-
pletely characteristic congruence of all the identities of the class 6
which, in its turn, coincides with the congruence of all the identities
of the variety Var8. This exactly means that Atm(Z,X,Y)/p=
Athare(Z,X,Y].

Recall that the automaton (A,I',B) is called a finite one, if A, T,

B are finite sets.

Theorem 2.9. If the class 0 contains a finite number of finite
automata and sets 2Z,X,Y are finite, then the free automaton

Atm (Z2,X,Y) is also finite.
Varf

Proof. Let ﬁl=(A‘,F1,BX), i=1,2,...,n be all the automata of the
class 6. Take a homomorphism ua:Atm(Z.X,Y) —> @A, #Aed and let pa=Kerpa.
Then Atm(Z,X,Y)/pa is a finite automaton. By virtue of finiteness of the
sets Z, X, Y there is only a finite number of different mappings of the
type 2 — Ax' X—> Fi, Y —» B:’ and therefore, a finite number of diffe-
rent ”a and pa If p=rpa, then by Proposition 2.8 the automaton
Atmvare(Z.X,Y) is equal to Atm(Z,X,Y)/p. By Remak’s Theorem the latter
is isomorphic to the subautomaton of the Cartesian product

nAtm(Z,X,Y)/pa, which is a finite one.
a

4.2.2. Varieties of group automata

Let (A,I,B) be a group automaton, that is, an automaton with se-
migroup I' being a group. By Proposition 3.1 from Chapter 1, a group au-

tomaton is always a Moore automaton. As it was noted, the kernel (the
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kernel congruence) of the Moore automaton (A,T',B) coincides with the
kernel of the representation (A,I'). Any congruence of the group I' is
uniquely defined by the coset containing unit element €. This coset is
an invariant subgroup of the group I'. Let us denote it by £ and call a
kernel of the automaton. The automaton is exact if its kernel is tri-
vial, that is, if Z={e}. Together with the kernel of the automaton
(A,T,B) the external kernel t of (A,T',B) is defined: 7, 71,72er, if
and only if a~71=a*72 for each element aeA. Denote by 21 the class [c]T
of the equivalence t which contains the unit € of the group I'; in other
words, 21 is a set of all yel' satisfying the condition a*y=a*e for all
ae€A. 21 is a subgroup in I'. Indeed, if cl,vz are the elements from 21,
then a*¢1W2=(a001)*¢2=(a°¢1)*e=a*¢1=a*e; if aezl, then a*e=a%o ‘o=

-1 -1 -1
(aco " )*o=(acoc ~)*e=a*c

It is evident that ZCZI. Consider the set
¢=n7_1217, y€l. This set is a maximal invariant subgroup from I' contai-
ned in Z]. The external kernel T uniquely defines this invariant sub-
group. Therefore, let us call ® also an external kernel of the automaton
(A,T,B). It is clear that Zc®. The automaton is called absolutely exact,
if o={e}.

The following propositions [79] set the connection between the
varieties of group automata and the triplets of the varieties of groups

91, 62. 63, satisfying the condition 91:92393.

Theorem 2.10. Let X be a variety of group automata, 91 a class of
groups which are the groups of input signals of the automata from X
(allowing a representation in X), 0, a class of groups allowing an exact
representation in X, 93 a class of groups allowing an absolutely exact
representation in X. Then 91' 92, 93 are varieties of groups and
61392393.

Proof. By Birkhoff’s theorem, the class of groups is a variety of
groups if it is closed with respect to taking of subgroups, homomorphic
images and Cartesian products, i.e. it is closed under the operators S,
Q and C.

Let us take the group I' from 91 and the subgroup A from I Since
Feﬂl, then there exists the automaton (A,I',B)eX. (A,A,B) is a subautoma-

ton in (A,I',B) and therefore it also belongs to X. Hence, Ae(-)1 and the
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class 9l is closed with respect to the operator S. Consider an arbitrary
homomorphism of the groups v:r¥ —> A, Fee1, (A, T,B)eX. Take the elements
ao,b0 and define the automaton (AO,A,BO) with A°=(ao), Bo=(b0) and
a006=ao, a0*6=bo for each S8eA. It is easy to see that (Ao’A’Bo) is a
homomorphic image of the automaton (A,I',B). Therefore, (AO,A.BO) also
belongs to X, Aee1 and the class 91 is closed with respect to the opera-
tor Q. Let now Fa be a set of groups from 91 (¢ runs through a certain
set I) and let ﬂa=(Aa,Fa,Ba)eI be a set of the automata. The Cartesian
product of these automata nﬂa=(A,"Fa,B). ael, also belongs to ¥, and
therefore, the Cartesian product of the groups Fu belongs to 91; this
means that the class 91 is closed with respect to the operator C. Thus,
the class 91 is a variety of groups.

Let Feez. It means that there exists an exact automaton
(A,T',B)eX. Since the automaton (A,I',B) is a group one, then its exact-
ness is equivalent to the exactness of the representation (A,I'). From
this immediately follows that the class 92 is closed under the operators
S and C. Show that the class 92 is closed with respect to the operator
Q. Take an arbitrary element bO and consider the automaton (A,F,Bo) in
which Bo={bo}, the operation o is defined as in the automaton (A,T,B)
and a*7=b0 for any elements acA and yel'. This automaton is a homomorphic
image of the automaton (A,I',B) and therefore it belongs to X. Its subau-
tomaton (aoF,F,BO) also lies in X (here, as earlier, aoI'={aocy,yel'}). The
representation (ao[,I') is isomorphic to the quotient representation
(F/pa,r) of the regular representation (I,I'). In this case ¥,p,¥, means
that acy =acy,, and the automaton (aoF,F,Bo) is isomorphic to the auto-
maton (F/pa,F,Bo) with the following operation *: w'x=b0, 7eF/pa, xel.
Since the representation (A,I') is exact, the intersection of all P aeA
is a congruence, classes of which are individual elements of the group
I'' By Remak’s theorem the automaton (F,F,Bo)s(r/npa,F,Bo), a€A, 1is a
subautomaton of the Cartesian product of the automata (F/pa,F,Bo)eI.
Therefore, (F,F,Bo)eI. If now A is a homomorphic image of the group T,
then (A,A,Bo) is a homomorphic image of the automaton (F,F,BO) and the-
refore it also belongs to X¥. Besides, the automaton (A.A,BO) is exact.

Hence, Aeez.
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In order to prove that the class 93 is a variety of groups let us
introduce a class 63={FI(F,F,F)EI) and show that 53 is a variety of
groups which coincides with the class 93. We leave to the reader the
verification of the first statement, i.e. that the class 53 is closed
under the operators S, Q, C, and check the second one. Let Feaa. Hence,
an absolutely exact automaton (I',I',I') lies in X and Feea. Thus, 53c63.
Conversely, let Feea. Then there exists the absolutely exact automaton
A=(A,T,B)eX. Take an arbitrary element aeA; (aoI,T',a*') is a subautoma-
ton in (A,T',B) and therefore it also belongs to X¥. Let us introduce the
equivalences pa and Ta on I': 71pa72 if and only if a071=a072; Y. T ¥y if

1 a2

and only if a*71=a*72. Denote by &8_. the trivial equivalence on I', clas-

ses of which are individual elemenis. Then (pa,ar,ra) is a congruence of
the regular automaton (I',I',I') and (aoF,F,a*F)E(F/pE,F,F/Ta)eI. The in-
tersection e a€A is a kernel of the automaton (A,I',B). The intersec-
tion nta, a€A is an external kernel of this automaton. Since the automa-
ton (A,I',B) is an absolutely exact one, these intersections are equal to
8.. By Remak’s theorem the automaton (F,F,F)g(F/rpa,F,F/rFa) is isomor-

r
phically embedded into the Cartesian product of the automata

(r/p ,I,T/t ) and therefore it also lies in ¥; it means that Fega, and
a a

93=§3, that proves the Proposition.
On the other hand, note the following statement without being
proved. Denote by 9.(F) a verbal subgroup of the group I', i.e. a minimal

»
invariant subgroup of I', such that I'/6 (I') lies in 6.

Theorem 2.11. Let 91:92363 be varieties of groups. Define the
class of the automata ¥ by the rule: the automaton #=(A,T',B) belongs to

X if the following three conditions are satisfied

1) Teb ;
1

2) GC(F)CZ, where £ is the kernel of the automaton 4;

[\

3) 6'(F)c¢, where ® is the external kernel of the automaton 4.
3

Then X is a variety of automata.
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Theorem 2.10 assigns to each variety of group automata three em-
bedded into each other varieties of groups. Theorem 2.11 to each such
triplet of the varieties of groups assigns a variety of group automata.
The following statement shows that this assignment has the properties of

closeness.

Theorem 2.12. Let elseﬂ:ea be varieties of groups, ¥ be a corres-
ponding to them (by Theorem 2.11) variety of group automata, 9;39;:9; be
varieties of groups corresponding to the variety of the automata ¥ by

Theorem 2.10. Then 8’=0 , 6’=0_, 06’=0_.
101 2 2 3 3

Proof. Let l"ee1 Denote A2=9;(F) and A3=9;(F) and consider the
automaton (F/AZ,F,F/A3) with the following operations o and * - if xel,
[7]2, [7]3 are cosets containing ¥ in F/A2 and F/A3 respectively, then
[7]20x=[7x]2, [7]2*x=[7xl3. Clearly, the operation o is correct. The
operation * is correctly defined due to the condition 92393 and its con-
sequence 6;(F)39;(F). The kern?} of this automaton contains A2=6;(F) and
the external kernel contains 93(F)=A3. Hence, this automaton belongs to
the variety X¥. From the definition of 9; it follows that Fee;. Therefo-
re, elcei. On the other hand, let Fee;. It means that there exists the
automaton (A,I',B) with the given group of inputs I', belonging to X. Then
by the definition of X the group I' belongs to 91 Hence, 9;c91 and
9'1=91.

Take Fee;_ Then thfre exists an exact automaton (A,I',B) from X.
By the definition of X, BZ(F) belongs to £ - the kernel of this automa-

*
ton, but since the automaton is exact, then OZ(F)=ﬁc). Hence, Feez. On
the other hand, let Feea. Denote, as before, A3=93(F) and define the
automaton H=(F,F,F/A3) with the operation o being a multiplication in I'
and the operatiin »: W*x=[7x]3,*7.xeF. This automaton belongs to ¥,
since Feezcel, 92(F)=(e}c2 and 93(F)c¢. (Recall that =, ® are respec-
tively the kernel and the external kernel of the automaton). Besides
the automaton @ is exact, hence, Fee; and 9;=92

Show that 93=9;. It has been proved (Theorem 2.10) that 9;=53

where 63=(r|(r,r,r)ei}. Demonstrate that 63=93. Let reés, then (I,T,I)e
X¥. By the definition of X, 9;(F) belongs to ® - an external kernel of
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this automaton, equal to a unit. Hence, 6;(F)=(e) and Fees. On the other
»
hand, let Fee3cezc91. Then 62(F)=1 and 6;(F)=1. Therefore, the automaton

(r,r,r) lies in X. Thus, re§3, as required.

If the variety of automata X is generated by one automaton, then
each group variety of the corresponding triplet elcezce3 is generated by
one group. The following theorem specifies the generating groups of the

varieties ef

Theorem 2.13. Let X=Var#@ be a variety generated by the automaton
A=(A,T,B); 61:92:93 be varieties of groups corresponding to X according
to Theorem 2.10. Then 91=Varr, 92=VarF/Z, 63=Varr/¢, where £ and & are a

kernel and an external kernel of the automaton @, respectively.

Proof. a) By the definition Feel, therefore Varl‘ce1 On the other
hand, let the group G belong to the variety 91 It implies that G admits
a representation in ¥, that is, there exists the automaton (A’,G,B’)
belonging to X¥=QSCA. Therefore, there is such an automaton (A,G,B) lying
in a certain Cartesian power A% of the automaton A=(A,T',B), that the
automaton (A’,G,B’) is a homomorphic image of this automaton: (A’,G,B’)=
(K,&,ﬁ)w. Hence, acFaEVarF, and G=§¢ also belongs to Varl'. Thus, elcVarF
and, finally, 91=VarF.

b) Since (A,I'/Z,B) is an exact automaton of X, then F/Zeez, and
VarF/Zcez. On the other hand, let w(zl,...,zn) be a certain identity of
the group I'/Z. Then xo¢(zf...,zn)5x is an identity of the automaton
(A,T/Z,B) and therefore, of the automaton (A,I',B), and since
¥=Var(A,I",B), of the variety X¥. If Geez, then there exists the exact
automaton (A,G,B)eX. Hence, the automaton (A,G,B) and the representation
(A,G) satisfy the identity x0¢(zl,...,zn)5x. The representation (A,G) is
exact, hence, the identity w(zl,...,zn) is also satisfied in the group
G. Thus, any identity of the variety VarI'/Z is satisfied in the variety
92. Therefore, echarF/Z. Taking into consideration the inverse inclu-
sion, we get 92=VarF/Z.

c) First show that the group I'/®, and therefore the variety

VarT'/®, belongs to 93. To do this it suffices to construct an absolutely
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exact automaton with the acting group I'/® from ¥. Denote by p a split-
ting of the set A into ®-orbits, that is, into the sets of the form
aob=(aow|¢e®}, a€A. Since ® is an invariant subgroup in I', the equiva-
lence p is invariant with respect to I'. Really, apa’ means that for a
certain element @ed, a’=acp. Then a’oy=acpy=aocyp’, ¢'ed (since ® is a
invariant subgroup in TI'). The equality (a’ey)=(aoy)op’ means that
(a’oy)p(acy), i.e. p is invariant with respect to I'. By virtue of this

property it is possible to consider the representation (A/p,I') in which

the action o is defined by the rule: 507=a07, where a is a coset of the
equivalence p containing the element a. ¢ belongs to the kernel of this
representation. Now consider the automaton (A/p,T,B) in which the action
o is defined by the representation (A/p,I') while the operation * is de-
fined by the equality: a*y=a%y. This definition is correct: if 51=£Z
then a,=a,°9, pe®, and
a *r=a *y=(aop)*r=a *py=a "¢’ =(aoy)*’ =(a o0 )*e=a,"r=a_".

The group ® belongs to the kernel of the constructed automata, since
this kernel coincides with the kernel of the representation (A/p,T).
Therefore, it is possible to consider the automaton (A/p,F/&,B)=§. Show
that it is a required automaton. It lies in ¥ as a homomorphic image of
the automaton (A,I',B) from X. It remains to check that the automaton
(A/p,T/%,B) is absolutely exact, that is, its external kernel is equal
to a unit. This is equivalent to the fact that the external kernel of
the automaton (A/p,I',B) coincides with ®. The latter is quite evident,
since by the definition 5'7=a*7. Thus, I'/® allows an absolutely exact

representation in ¥, that is F/@eea, and VarF/%cei

Conversely, let w(zl,...,zn) be an identity of the group I/%.
Since ¢ is an external kernel of the automaton (A,I',B), the
x*w(zl,...,zn)=x'e is an identity of this automaton and consequently, is

an identity of the variety X¥. Let now Geea, and (A,G,B) be an absolutely
exact automaton from X¥. Since this automaton lies in X, it satisfies
the identity x'w(zl,...,zn)=x*e; and since it 1is absolutely exact,
¢(ZV""£n) is an identity of the group G. Thus, we have the inverse

inclusion 63cVarF/¢ and therefore the equality 93=VarF/¢.
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4.3. Identities of linear automata and biautomata

4.3.1. Identities of biautomata

Let Fl, as before, be a result of the external adjoining of the
unit element to the semigroup I', K be a field. Consider the tensor pro-
duct ¥=KI'eKI' and define the structure of KI'-bimodule on it: if
u@veKF1®KF, u’ eKI', then set u’ (uev)= u’uev, (uev)-.u’=uevu’ -uveu'.

The action, thus defined, (from the left and from the right) of
the element u’ ek on the elements of the form ueveKI'eKT are extended by
linearity to the action of the element u’ on the arbitrary elements w of
KF1®KF. All the axioms of bimodule are satisfied; in particular, if
u,u’ ekl, weKFleKF, then

u’ (uw)=uu’w,

u(weu’ )=uw-u’

An arbitrary biautomaton #=(A,I’, B) is uniquely extended up to
the biautomaton (A,KI,B). Proceeding from the operations ., * of this
biautomaton it is possible to define one more operation the action of

the elements w of KF1®KF on the elements aeA. Namely, if
w=§hljyiayjeKF1®Kr, then by the definition: aw=a%pljvl®7j=%plj(aowl)'WJ,
i,3=1,...,n. This operation has a number of useful properties, in parti-
cular:

1) a — aw is a linear mapping;

2) a(w1+w2)=aw1+aw2

3) aaw=oaw;
n 1 n
i = th =Y (aou )*v ;
4) if wlgrl@vl, uleKF . vleKF, en aw ?i? ul) ¥,

5) this operation agrees with the structure of the bimodule
a(uw)=(acu)w; a(weu)=(aw)-u.

Now, define the regular biautomaton (Krl,F,KF1®KF) in the following way:
01 XoY=XY,

*: X*y=x®y, xeKFl, yel.
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The action + is determined by defining of Kr1®KF as a right KI'-module.
It is easy to verify that it is really a biautomaton.

In the Section 3.1, the free I'-biautomaton
Atmr(z,V)=(H,r,G)=(ZKr’,r, (ZKT'eKI)eYKI'') was introduced. It is conve-

nient to consider tensor product ZKF1®KF=W as a K-module of the formal
n n n

sums of the form } zwW, 2z¢€Z wleKF1®KF (in this case } z W+ ¥ lel
1=1 1=1 1=1

is defined as Y zi(wl+w;)) and denote it by Z(KI'eKr). Then operations
1=1
in the free I'-biautomaton (H,I',G) are written in the following way: if
n

n n
1
h= Y} zlouleH, 8= ¥ zlwleZ(KrlaKF), g,= Y yl-uieYKF , vel', then
1=1 1=1 1=1

n n
hoy=( ¥ zloul)o'a‘= ¥ 210(111’3’),
1=, i=1

n n
h*y=( } zicui)*7= Y zl(ui®7),
1=1 1=1

n n
g1'7=( L wai)'7= L zl(wl.v)'
1=1 1=1

n n
g,s¥=( Ly ula=Yy (uy).
1=1 1=1

Let Atmr(Z,Y)=(H,F,G) be a free I'-biautomaton. As in the pure
case, we say that in the arbitrary biautomaton #=(A,I’,B) I-identity in
states h1Eh2' h‘eH, is fulfilled if for each I'-homomorphism p:Atmr(Z,Y)
— & the equality h‘::h‘; holds. T-identity in outputs is defined in a
similar way. A completely characteristic I'-congruence (i.e. trivial on
r) p=(p1,6r,p3) of the free biautomaton Atmr(Z,Y) is in one-to-one cor-
respondence with the system of all I'-identities of the biautomaton. This

congruence can be defined by the subspaces M=[0] cH and T=[0] <G which
1 3
are the classes of the congruences Py Py respectively, containing zeros

of the spaces H, G. Proceeding from this, an element h of H is called
[-identity in states of the biautomaton @&=(A,I,B) if for any
'-homomorphism u:Atmr(Z, Y) = 4, " is the zero of the space A. In this



181

case we say that the identity in states h=0 is satisfied in A. A similar

remark can be made with respect to the identities in outputs.
n
The element heH of the form h=} Zl°u1’ ziez, uleKrl, is an iden-
i=n
tity in states if and only if each zloul, i=1,...,u is an identity in
n

states. Indeed, let h=Y} z ou be an identity in states of the biautoma-
1=1
ton A and u=(u1,er,u3) be an arbitrary homomorphism from Atmr(Z,Y) to 4.

Let us fix i and consider the homomorphism u=(ﬁl,er,u3):Atmr(2, Y) > 4

for which
z = (3.1)

The fact that ﬁl is really a homomorphism is evident. Since h is

an identity in states, then
u

h =

1

My My By By Wy 1
z ou "=z ou "=z ou =(z ou) =0.
A 1 1 1 i 1 1ot

1™ s

m
Thus for any homomorphism g, (zloul) 1=O, that is, for each

1, & S ., |} Y z ou, is the identity of the automaton A. Similarly, the
n n

element g= } zw+ T ¥y from G is an identity in outputs if this also
1=1 1=1

true for each zw, of Z(KF1®KF) and for each yl-wleYKrl, i=1,...,k. Sta-

ted above implies that for the description of I'-identities of the biau-

tomata it is sufficient to take a free cyclic I'-biautomaton (in the

sense that the sets Z and Y contain one element: Z={z}, Y={y}), and the

identities of I'-biautomata in states and in outputs are reduced to the

identities of the form
zou=0, ueKI‘1
zw=0, weKI'' oKI (3.2)
y+u=0, ueKI‘1

These identities are defined by the operations ., *, + of the automaton
A. The current item is aimed to description of I'-identities of the bi-
automaton @ in terms of the semigroup algebra KI.

Let (pl,ar,pa) be the system of all I'-identities of the biautoma-
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ton 4, 61=[0]p cH, T=[0]p cG. Then (GI,F.T) is a completely characteris-
1 3
tic subautomaton of the free biautomaton (H,I',G) holding all the endo-

morphisms of Atmr(Z,Y) identical on I' (Such subautomata we shall call
I'-completely characteristic). On the other hand, each biautomaton of
that type defines the system (pl,ar,pa) of I'-identities of action of the
automaton (H/Ul,F,G/T). Thus, there is a one-to-one correspondence bet-
ween I'-identities of biautomata and I'-completely characteristic subauto-
mata of the type (GI,F,T) of the free biautomaton. In this case G1 and T
can be written in the form Gl=zU1, UchFI, T=zW@yU2, WCKF1®KF=W, UZCKFR
so that (UI,F,T)=(ZU1,F,ZW®yU2L

In the given case U1 is a set of all elements u of KI'* for which
the identity zouIEO is satisfied in #A; W is a set of all elements ue®v of
KoK for which the identity zw=(zou)*v=0 is satisfied in A and U2 is
the set of all elements u, of KI'' for which the identity y-u250 is sa-
tisfied in #. Thus, the tuple (UI,W,UZ) of its I'-identities is associa-
ted with the biautomaton #A. The tuple for the class of biautomata is
defined in a same way. It is easy to verify that this tuple satisfies

the conditions:

1) UI,U2 are two-sided ideals in KF%

2) W is a submodule of the bimodule ¥=KI''eKT; (3.3)
3) U, eKIcW;

4) ¥-U_cW.

An arbitrary tuple (Ul,w,UZ) satisfying the given conditions
(3.3) is called a compatible I'-tuple.
The tuple of the biautomaton '-identities (or of the class of the

biautomata I'-identities), in particular, is a compatible one.

Theorem 3.1. The subautomaton B=(ZU1,F,2W©yU2) of the free cyclic
I'-biautomaton (H,I',G) is a I'-completely characteristic one if and only

if the tuple (Ul,w,Uz) is compatible.

Proof. Let B be a I'-completely characteristic subautomaton. An
arbitrary endomorphism of the free I'-biautomaton is induced by the map-
pings u1:2 ~» H, va:Y — G. Show that U1 is a two-sided ideal in KI''.
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Really, if uleU1 and yel', then ulyeUl, since (zoul)oy=zou17er1. In or-

der to show that 7/u1eU1 let us take such endomorphism v=(v1.cr,u3) of
v v. v
the free I'-biautomaton, that z 1=zow. Then (zoul) 1=z 1ou1=zwu1ez U and

7u1eU1. Thus, U1 is a two-sided completely characteristic ideal in KFI.
A similar statement for U2 also can be verified.
Show that W is a submodule in ¥, that is, that Gwew and weueW for
all weW, GEKFI. ueKF1. Take such endomorphism u=(v1,er,
v
biautomaton that z 1=zou1 and L8 is induced by the identity mapping of

va) of the free

the set Y onto itself. Since the subautomaton B is a completely charac-
v v v
teristic one, then (zw) 3=((zou)~v) 3~(2 1ou)~v=(zﬁlou)'v=z(t~11w)ezw and

leew.
Inclusions weueW and U1®KFCW follow from the fact that B is sub-
automaton.

Finally, show that W-Uzcw. Let uevey, uzeuz. Take such endomor-
v
phism v=(v2,er.v3) of the free automaton that y 3=zu®v and u1 is defined

by the identity mapping of the set Z onto itself. Since the subautomaton

B is '-completely characteristic, then
V. v
(y-uz) 3=y 3-u2=(21.1®v)-uzezw, and (u@v)-uzew as required.

Let now (UI,W,UZ) be a compatible tuple. It is easy to verify
that (zUl,F,ZWQyUZ) is a subautomaton in (H,I,G). Show that this subau-
tomaton is a completely characteristic one. Take the endomorphism

v=(v1,er,v3) of the free biautomaton (H,I',G) defined by the mappings
v v
vl:{z} — H, vz:{y} —> G, and let z 1=zu, ueKFi, y 3=zq>’+yv, ¢’ el,

1
veKI' .

It 1is necessary to show that BYcB. If zuleul, then
v, v

(zul) e 1ou1=zuou1=zouu1. Since U1 is an ideal, then uuleUI, therefo-
v

re, (zui) 1erl. Let w=ueveW. Then

v . .V LN £ o . .
(zw) 3=((zou)'v) 3=(z ou)*v=z (uev)=z (uev)=zu(uev)=(zuou)*v=
(zouﬁ)';=z(uﬁ®;)=z(u(5®;)).

v
Since W is a subbimodule, then u(uev)eW and (zw) 3=z (u(uev))ezW. Take

now yuzeyUz. Then
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v, v,
= u = ’ u = " Je oy = ' i W,U
(yuz) y Teu, (zg’ +yv) u, (zp') utyveu, z(¢p u2)+yvu2. Since (Ul, 2)

is a compatible tuple, then w’-uzew (statement 4 of the definition) and
v
vuzeU2 (statement 1 of the definition). Hence, (yuz) 3EzW@yUZ. The theo-

rem is proved.

Thus, I-identities of action of the automaton #A=(A,I’,B) are the
identities of the form (3.2) and tuples of the identities of action are
compatible tuples of the form (Ul,W,UZL

We have considered I'-identities of biautomata. Now consider the
identities of arbitrary biautomata.

Let ?b=(H,F,¢) be a free biautomaton (automaton). As earlier, the
identity in states hlEhz, hieH, is said to be satisfied in the biautoma-
ton (automaton) #A=(A,I',B) if for any homomorphism u:?b — @ the equality
h7=hg holds. Identities in inputs and outputs are defined in a similar
way. Identities in states and in outputs are identities of the action;
identities in inputs are identities of the semigroup I'' In the sequel
under the identities of the biautomaton (automaton) we shall understand
only the identities of the action, i.e. identities in states and in out-
puts. I'-identity in states of the biautomaton #@=(A,T',B) is an element of
the free Krl—module, while an identity in states of the same biautomaton
is an element from ZKF1 which is transformed into zero under any homo-
morphism p: Atm(Z,X,Y) — @A (recall, that F is a free semigroup with the
set of free generators X). A similar remark is true for the identity in
outputs of the biautomaton #A. The same arguments as for I-identities
yield:

for the description of the biautomata identities it is sufficient
to proceed from the free biautomata cyclic in inputs and outputs;

identities of biautomata (of the class of biautomata) are reduced

to the identities of the form
zou=0, zw=0, y-u=0, ueKF', weKF'eKF;

a completely characteristic subautomaton in Atm({z},X, {y}) of
the type (onl,F.zw+y-U2), where Ul,UacKF1 and WCKF1®KF, corresponds to
the set of all biautomaton identities;

a biautomaton of the type (onl,F,zW+y-U2) from %° is a comple-
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tely characteristic one if and only if the tuple (U1’W'Uz) satisfies the

conditions:

1) Ul, U2 are completely characteristic ideals in KF&
2) W is a completely characteristic submodule of
bimodule KF'eKF,
3) U1®Kch, (3.4)
4) (KF'eKF)-U_cW.

The tuple (UI,W,UZ) satisfying these conditions is called compatible.

Let @A=(A,T,B) be a biautomaton and let U1={ucKF|zouEOL
W={w€KF1®KF|szO}, U2=(uEKF|y'uEO). Denote by V the set of elements
veKF, such that for any element a€A and for any homomorphism
p:Atm(Z,X,Y) — A the equality a*vM=0 takes place. Elements of U1 are
identities of the operation o , elements of V are identities of the ope-
ration * , elements of U2 are identities of the operation * . The tuple
(U1’w’Uz) of all identities of a biautomaton (class of biautomata) is a
compatible one. By the definition of the compatible tuple WDUleKF and
W>(KF'eKF)+U . It is also verified that W>KF'eV and W>(KF'eV)-KF. Denote
ﬁ=U1®KF+KF’®v+(KF1®V)-KF+(KF1®KF)-U2. The tuple (U,W,U)) 1s also compa-
tible. It is constructed according to the identities of the form zou=0,
z*u=0, z+u=0. Show that this tuple may not describe all the identities
of the original biautomaton (the class of biautomata). For this purpose
let us construct an example of the biautomaton & for which W<H.

Example. Let F=F(X) be a free semigroup over countable set X. The
regular biautomaton (KF}F,KF1®KF) is extended naturally up to the biau-
tomaton (KF',KF,KF'eKF). Let U be equal to KF® where F°=FF (it is a com-
pletely characteristic ideal of the semigroup algebra KF), and
C=(U®U)+(KF1®U2) be a subspace in KF'eKF. This subspace is invariant
with respect to the action < of the elements of U, i.e. if ceC, ueU,

then ceueC. Denote by B the quotient space
(KF'KF) /C= (KF'6KF )/ ( (UsU) + (KF'oU?) )
and define the action ¢ of the elements ueU on the elements beB by the

rule: if b=(vew)eB (vew is an arbitrary representative of the coset
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(vew)), ueU, then beu=(vew)-u=(vew)-u. Since C is invariant with respect
to U, the action beu is defined correctly. Denote now KF1=A and consider

the biautomaton #=(A,U,B) with the following operations o , * , * : if

aeKF1=A, ueu, b=f;5;)eB then acu=au, a*u=;ga, beu=(vew) su= (vew)-u. We
consider U in this biautomaton as a semigroup of inputs and it is easy
to see that @A=(A,U,B) is really a semigroup biautomaton. Before we pro-
ceed to computation of the modules W and W let us make one remark.

Let U be an associative algebra over a commutative ring. Consider
U only as a semigroup and let KU be the semigroup algebra of this semi-
group. Denote by o the homomorphism of the algebra KU into the algebra
U, 1induced by the identity mapping of U into U. In this case

(Zoaiul)a=zplul; here Zu“,“l is the sum in the algebra KU and {klul is
1 1 1 1=1
the sum in the algebra U.

If (A,U) is a representation of the algebra U (which is conside-
red as a semigroup) and (A,KU) is a corresponding extension, then for
aeA, xeKU holds aox=aoxa

The linear mapping p:KFeKF —> KUeKU corresponds to the linear

n n n
mapping p:KF — KU. If Zﬁl®vleKF®KF then ( Zui®vl)“= ZuT@vlF
i=1 1=1 1=1

Denote by p an arbitrary homomorphism of the free cyclic biauto-
maton in 4.
n
By the definition W={WEKF1®KF|ZWEO). If w= Eu‘@wl is an arbitrary

1=1
element of KF®KF and xeA=KF1, then

n n
xwh'= Z(xou?)‘VT= Z(qua)®v7“eU®U.
1=1 1=1

Therefore, W>KFeKF. Let us proceed now to the calculation of W.

U1={ueKF|zouEO), that is the ideal U1 consists of such elements
u=xouua=xu“a=0. If we take, in particular,
x=1, we get that u‘m=0, and U‘lm=0.

We have V=(UEKF|Z'VEO). If wueV, then for all xeA=KFa

ueKF that for any xeA=KF1, Xou

x'u”=x*u“a=x®u“aeC=U®U+KFl®U2. Since this inclusion is true for any ele-
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ment xeKFl, choosing x=1, we get u“anz. Hence, V“acU%

U2={ueKF|y-uEO}. It is clear that UZDUZ. Really, if erz, then
x’meu2 and b-x““=;5;-x“a=v®wx““—vw®x“a=0, that is XEUZ

If ueUz, then b-u”a=v®w-u“a=V®wu“a—vw®u”“=0, that 1is v@wuua—

vweu"*eUsU+KF'eU®. 1f, 1in particular, v=1, then lewu"®-weu"*cUsU+KF'eU?
and 1®wu“aEKF1®U2.This means that KFUZ“cUi

By the definition
ﬁ=U1®KF+KF1®V+(KF1®V)'KF+(KF1®KF)~U2=U1®KF+KF®V+1®V+(KF@V)'KF+(1@V)-KF+
+(KF®KF)°U2+(1®KF)-UZ
In its turn, (1®KF)-U2«:1®U2+KF®U2 and (1eV)+-KFc1@KF+VeKF. Then
Wn(KFaKF)culaKF+KF®V+(KF@V)-KF+KF®U2+V®KF.

If it is possible to find such homomorphism p that (Wn(KFeKF))M*
will be less than (Wn(KFekKF))M*=(kFekF)"*, this will imply that
Wn (KFeKF ) <Wn (KFeKF) and W<W.

We have
(ﬁn(KF@KF))““cuf“@KF““+KF”“®V““+(KF““wv”“)-KF““+KF““®UZ“+V”“®KF““.
Since Uf“=o and V"*cU?, then

(i (KFKF) )H% kP eU” U ekrH sk FH Ul .
Now denote by p the mapping X={xl) — U defined by x7=xf, as well as
corresponding homomorphisms p:F — U and p:KF — KU. Then kKF** is the
algebra of all the polynomials with the generators xf, i=1,2,... Since,
according to the construction, U=KF2 is an algebra of all polynomials
over X with powers greater or equal to two, then V? is an algebra of all
polynomials over X with powers greater or equal to four. It has been
proved that KFUgacUZ, therefore Uga lies in the algebra P3 of all poly-

nomials with powers greater or equal to three. Thus
(W (kFekF) ) “ckF*eP_+P _okF!".

It is clear that the elements of the form xf@xj from KF““@KF““,

1,j=1,2,... do not lie in KF"%eP +P ekF"">(fin(KFekF))*".  Thus,
(W (KFeKF) )H*< (Wn (KFeKF) )** and W<w.

Certainly, it is possible to cite a number of examples when W=W.



Example. Let Z,X,Y be three sets. Denote, as usual, a free semi-
group with the set of generators X by F=F(X) and a linear space KZ by A.
Take the biautomaton €=(A,F, (AeKF)®YKF') with the following operations:
if aeA, uEKFl, yeY, veKF, feF, then aof=0 (i.e. € is a coautomaton),
a*f=aef, yu-f=yuf, (aev):f=aevf. (Biautomaton axioms are easily veri-
fied). Given biautomaton €, define sets UI,V,Uz,w,ﬁ.

Since aof=0 for any elements a€A and feF, then U1=KF. If ueKFH
veKF, then a(uev)=(aou)*v=0 if and only if ueKF. Therefore, W=KFeKF.

If now a*f=aef=0 holds for any element ae€A, then f=0. It means

that V=0. It is also clear that U2=0. Then

fi=U @KF+KF'V+ (KF'@V) -KF+ (KF 6KF) +U_=KFekF .
Thus, W=W.
It is useful to mention that any coautomaton (A,T',B) with the
generator system (Z,X,Y) is a homomorphic image of the coautomaton €

considered in the given example.
4.3.2. Identities of linear automata

Let ?E=(H,F,¢)=(2KF1,F,ZKF@KY) be a free linear automaton. By the
definition, the identity in states of a linear automaton # is an element
from H transformed into zero under any homomorphism ?e —> d; the identi-
ty in outputs is a corresponding element from ®. Arguing as in the pre-
vious item one can see that:

- for the description of the identities of a linear automaton it
is sufficient to proceed from the free linear automaton, cyclic in sta-
tes and in outputs;

- lidentities of a linear automaton are reduced to the identities
of the form zou=0, z*v=0, ueKFl, veKF;

- a completely characteristic subautomaton of the type
(zoU,F,2*V) of ?e where U={ueKF1|zouEO}, V={veKF|z*v=0} corresponds to
the set of all identities (of action) of the linear automaton;

- an arbitrary subautomaton of the type (zoU,F, z*V) of 98 is
completely characteristic if and only if the tuple (U,V) satisfies the
conditions:

1) U is a completely characteristic two-sided ideal in KF%
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2) V is a completely characteristic left ideal in KF;
3) UKFcV.
Such tuple is also called compatible. The following theorems describe

the identities of the universal linear automata.

Theorem 3.2. [79] If (U,V) is a tuple of the identities of the

universal linear automaton Atml(A,B), then V=UKF.

Proof. The inclusion UKFcV is evident. Show that VCUKF. Since
VcKF, F=F(X), then the arbitrary element veV can be written in the form
v=):?\lxixl...xl , AieK, xleX. Let us group the summands by the last

1 1 2
ni 3

multiple and write v in the form v=2ulx‘. Using the definitions of the
1
ideals U, V show that ulEU, which implies the required inclusion VcUKT.

Show first that each u, is not empty. Take such element
peHom(A,B) that ap#0 under a certain aeA and consider the following map-
ping «:X — End(A,B)

(0, 0), if j#i
X =
I, @), if j=i, j=1,2,..., x <X
Since the semigroup F is free, this mapping can be extended up to the
homomorphism «:F — End(A,B) and further to the homomorphism of the
algebras a:KF —> End(A,B). If u were empty, then under an appropriate
a€A, a*va=a*xT=a¢$0 would be satisfied. This contradicts the definition
of V. Hence, each u, is not empty.

Now show that ulxlEV for each i. It is necessary to show that for
the extension of any homomorphism p:F —> End(A,B) to the homomorphism of
the algebras ﬁ:KF —> End(A,B) holds the equality a*hﬂxi)”=0 for any
element aeA. Assign the mappings ul:X —> End(A,B) to the given p by the
rule: if xJeX and xﬁ=(6},¢}) then

M, (6],0) , if j#i
s e
4 3,9,), if J=1, J=1,2,...
These mappings are extended up to the homomorphism ﬁlz KF — End(A,B).

n
By the definition of the mapping (T for each aeA, a'xj1=0 if =i,
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Hy Hy u
a'xl =a*x7 and for any ueKF aou '=aou” Subject to this we have:

i R N m ﬁ ﬁ ﬁ ﬁ
a* (u x M=asusH=(aout) ext'=(acu ')ex 1=Z(aou Yyex =
171 171 t 1 1 1 3 J ]
51 Hy By
Ya*(u x ) =a*(fu x ) "=a*v
3] 1)
J B
Hy " .

Since veV, then a*v =0. Thus, a'(ulxl) =0, that is, ulxleV.

As the final step show that uleU. Suppose that uieU, that is the-

re exists such homomorphism v:F —> End(A,B) and such element aeA, that

~ ~

aout#O. Denote aeuf by a’'; a’#0; take such mapping »’:X — End(A,B) that

for each x holds aox’ =aox’ and that a'-xT #20. Then for the homomorphism

p’:KF —> End(A,B) which is an extension of the given mapping v’ holds:
o 2 - 5 =,

v * v’ v’ v’
)'x1 =(aou1 )'x1

v’ 'p v
a*(u x ) =a*u_ x =(aou
i1 171 1

=d-xl'¢0. This contradicts the
fact that ulxlEV. Hence, uleU and VcUKF. Thus, V=UKF.

Theorem 3.3. [79] If (U,V) is a tuple of the identities of the
universal linear over the field K automaton Atmz(F,B), then U coincides
with the ideal U0 of the identities of the left regular representation
(KI',KI'), and V coincides with the set of KF-identities of the semigroup
algebra KI'. (An element veKF is assumed to be a KF-identity if for any
homomorphism pu:F —> I' and its extension ﬁ:KF —> KI' holds the equality

o).

Proof. By the definition Atm®(T',B)=(A,T,B)=(Hom(KT,B),T,B); if
acHom (KT, B), ¥el', then (aey)(x)=a(yx), xeKI', a*y=a(y). Take an arbitrary
homomorphism u:F —> TI'. It can be extended up to the homomorphism of the

semigroup algebras ﬁ:KF —> KI'. Then aou"'=0 for any aeA, ueU. This imp-

lies that for any xeKI' (aout) (x)=a(u"x)=0. Since a is an arbitrary func-

tion of Hom(K[,B), then u"x=0. It follows that if we consider the left

regular representation (K[,K[), then for any element xeKI' and for the

~ ~

extension ﬁ of an arbitrary homomorphism pu:F —> I' holds xou“=u“x=0, that
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is u is an identity of the left regular representation of the semigroup
algebra KI', and hence, UcUo. The inverse inclusion is verified in a si-
milar way.

Let, as before, p be an arbitrary homomorphism F = T, ﬁ its ex-

tension to the homomorphism KF —> KI'. Take the element veV. Then for any

EeA=Hom(Kr,B) holds Eivu=5(v”)=0. Hence, wW=0 and v is an identity of
the semigroup algebra KI'. On the other hand, if v is such identity, then

for each fL of the given form, holds v#*=0 and 5(v“)=5*v”=0, that is veV.

In conclusion of the Section we shall make the following remark.
Let (A,T',B) be a biautomaton. As earlier, assign to it the representa-
tion (AeB,I') with the action defined by the rule: if a+beAeB, yeI', then
(a+b)y=aoy+a*y+bey.

Proposition 3.4. Let Ul,V,U2 be the sets of lidentities of the
biautomaton (A,I',B). Then U=U1nVnU2 is the set of all identities of the

representation (AeB,TI').

Proof. Denote by U’ all the identities of the given representa-
tion. It is clear that UcU’. On the other hand, let ueU’. Then under any
homomorphism pu:F — I' the equality (a+b)u“=0 takes place for any a€A and
beB. By the definition (a+b)uf=acut+asut+b+u”. If b=0, then aout+asut'=0.
Since it is a direct sum, then aou“=0 and a'u“=0, that is , ueU1 and
ueV. If a=0, then b-u"=0, i.e. usU2 Thus, ueUannU2=U. Therefore U’cU,

and U’ =U.

4.4, Varieties of biautomata

4.4.1. Definitions and examples

Class ¥ of all the biautomata satisfying the given set of identi-
ties is called a variety of biautomata. Each variety is closed under
Cartesian products, homomorphic images, and subautomata. As well as for
the other algebraic systems, theorem of Birkhoff is valid, that is the
class closed with respect to the given operations is a variety of biau-
tomata. Moreover, it is possible to prove that if 6 is a certain class

of biautomata, then the variety generated by this class (denoted, as
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usual, by Var@) is determined by the formula Var8=QSCe where Q,S,C are
the operators of taking of homomorphic images, subautomata and Cartesian
products respectively.

If the set of identities defining the variety of biautomata does
not contain the identities of acting semigroup, then the variety of bi-
automata is called a saturated one. Saturation of the variety is equiva-
lent to the fact that if the variety contains a biautomaton @=(A,T',B),
it contains also any biautomaton B such that there is a homomorphism in
inputs u:B — A. We will consider only the saturated varieties. Therefo-
re, a saturated variety generated by the class of biautomata 6 we shall
also denote by Var6. Denote by V the saturation operator: if 6 is a
class of biautomata, then VO is a class of biautomata whose homomorphic
in inputs images lie in 6. Then for an arbitrary class 6 of biautomata

holds
Vare=vQsce

We do not present proofs of numerous facts since they are very
close to analogous proofs for group representations (see the book [90]).

A class of biautomata closed under the operators V,Q,S,D (D is
the operator of discrete direct products) is called a radical class of
biautomata.

To each variety of biautomata X can be assigned the following
function on ¥: if A is an arbitrary biautomaton, then f'(ﬁ) is the in-
tersection of all the biautomata Bc#H, such that #A/BeX. It is clear that
#/%" (A)eX. This function is called verbal function or simply verbal. To
each radical class X corresponds a function ¥’: if @ is an arbitrary
biautomaton, then ¥’ () is a subautomaton in @ generated by all the bi-
automata Bcl, such that BeX. This function is called radical function or
simply radical. By the definition of radical class, ¥’ (#)eX.

As usually, biautomaton ?I is called free in the variety X if
there exists a system of generators Z, X, Y of this biautomaton such
that for any #=(A,I',B)eX a triplet of mappings Z —> A, X > T, Y & B

can be uniquely extended to the biautomata homomorphism ¥, —> &. If

X
X={x}, Y={y} then ?I is called a free cyclic biautomaton.
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Theorem 4.1. Let ¥=(H,F,G) be an (absolutely) free biautomaton
with the free system of generators (2,X,Y), ¥ an arbitrary variety of
biautomata, (Ul,w,Uz) - a tuple of identities corresponding to X. Then

the biautomaton
(H/ZUI,F,G/ZWQYUZ)
is free in the variety X.

Consider examples of biautomata varieties.

Each linear automaton (A,I',B) can be considered as a biautomaton
with the following operation + : if beB, yel, then bey=0. The class of
all linear automata considered as biautomata forms a variety of biauto-
mata. If (U1’w’Uz) is a tuple of identities of this variety, then U1=0,
U2=KF. Since WoW, then, in particular, W:(KF1®KF)°U2=(KF1®KF)-KF. By
Theorem 4.1 a free biautomaton with generators (Z,X,Y) of the given va-
riety has the form (H/ZU ,F,G/(ZWeYU))), where H=ZKF', G=(ZKF'eKF)eYKF".
Then,

(H/2U ,F, G/ (ZWeYU ) )= (ZKF', F, (ZKF' 6KF)/ZWoYKF' /YKF )=

(zKF', F, (ZKF1®KF)/ZWQ)KY)=?ea,

where ?ea is a free biautomaton of the variety of all linear automata.
Since (KF1®KF)-KF is a linear space generated by all elements of the
form uevw-uvew, ueKFl, v,weKF and since WD(KF1®KF)-KF, then the quotient
space (ZKF1®KF)/ZW is a homomorphic image of the space ZKF, and the bi-
automaton ?ea is a homomorphic image of the biautomaton (ZKF', F, ZKFoKY)
with the following operations: zuof=zuf, zu*f=zuf, zv-f=0, b-f=0, where
ueKFl, feF, veKF, beKY; that is ?la is a homomorphic image of the auto-
maton. Since a free object with the given system of generators is uni-
quely determined up to isomorphism, then (ZKFI,F,ZKF@KY) is a free auto-
maton in the variety of linear automata. Stated above implies that, in
particular, W=h=(ZKF'eKF)-KF.

The class of all coautomata considered as biautomata, is also a
variety of biautomata. The biautomaton (KZ,Y, AeKFe YKF') considered in
the example at the end of the item 3.1 is a free biautomaton of this

variety. The tuple of the identities of the variety coincides with the
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tuple of its free biautomaton. The tuple of the identities of the latter

(as shows the mentioned example) is the following:

U1=KF, W=KFeKF, U2=0.

4.4.2. Varieties and compatible tuples

To each compatible tuple corresponds the variety of biautomata
for which the given tuple is a tuple of identities and each variety of
biautomata defines the compatible tuple of identities of this variety.
It can be proved that the given correspondence between the varieties of
biautomata and the compatible tuples 1is one-to-one. Actually, the
connection between the varieties and the compatible tuples is even more
close. Now we shall introduce the concepts of the product of varieties
and the product of compatible tuples. These products satisfy the asso-
ciative law and the resulting semigroups of varieties and compatible
tuples are antiisomorphic.

Let Il and IZ be varieties of biautomata; their product I1I2 is
defined in the following way: a biautomaton #=(A,I',B) belongs to Iliz if
and only if there exists a subautomaton ﬂl=(Al,F,Bl)cH such that 81€I1
and ﬂ/ﬁl=(A/A1,F,B/Bl)eIZ. Thus defined product of varieties is associa-
tive.

Let us introduce the concept of the product of compatible tuples.
Let T'=(U;,W',U;) and t"=(U;’,W",U2”) be compatible tuples. Define

)

the product of tuples T=t't’’ by the rule:

T=T’T”=(U ,w,U )=(U’U",U’W' ' 4! ‘U”,U'U”)
1 2 171 1 2 272
Verify that the tuple T=t’t’’ is also compatible, that is the conditions
(3.4) are satisfied. Since U:,U;’,U;,U;' are completely characteristic
ideals, the same property is valid for the products
u=uy, u=uryr’
1 11 2 22
Show that W=U;W"+W’-U;’ is a submodule of the bimodule KF'eKF.
1
Let heKF', Wsw=w +w_, ='W, =’ ew’’ ' N yo s
e E) w1 w2 where w1 ulw w2 W u2 uleul. weW, w'eW
u;'eU;’. Since U; is an ideal, hw1=h(u;w")=(hu;)w"eU;W"‘ Further,

hw2=h(w’-u;')=(hw’)-u;’. Since W' is a bimodule, then hw’eW’. Thus,
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hw =(hw’ )+u’’eW’ -U’’.
2 2 2
Therefore,

hw=hw +hw_eU’W’’+W’ +U’'=W.
1 21 2

This means that W is a left KF'-module.

Let now £eKF, and w=w1+w2=u’lw”+w' -u;'ew. Then w-e=w1-l+w2-£;
w1-£=(u;w”)-£=u; (w’’+2). Since W’ is a right KF-module, then
w'’+feW’’. Therefore, w1°ZEU’1W”. Similarly, w2'£=(w'~u2")-£=w’-u’2’£e
W’ °U'2’. Thus, w'ZeU;W”+W'-U’2'. Hence, W is a right KF-module. Since
KF1®KF is a bimodule and since it has been proved that W is a left
KFl—module and a right KF-module, then W is also bimodule. U’l, W, U’z',
W'’ are completely characteristic, therefore the bimodule w=U'1N' T W’ -U'z'
is also completely characteristic.

If u1=u'1u’1'EU'1U;’=U1, veKF, then u1®v=u'1u;’®v=u;(u;'®v). Since
u;’aveU;’eKFCW”, then u1®v=u;(u;'®v)eU;W"cw, that is, the third condi-
tion of (3.4) is satisfied.

Finally, if weKF1®KF, u2=u'2u’2'eU2, then w-u2=w-u;‘u2

—(w-u )'u €
W -U'z'cw. Thus, the tuple T=t’t’’ is compatible.

The defined product of the compatible tuples 1is associative.
1)

Really, let T -(U“) (”,U;”), i=1,2,3 be compatible tuples. Then
T(I)T(2)=(U(1)U( ,U W +W(1)'U(2),U(1)U(2));
R 1 2 2 2

(1)_(2) (3)_ (1), (2), . (3) (1),.(2),,(3) 1), (2) ,(3) (1) ,(2)(3)
(7't )T -(Ul U1 U1 ’U1 U1 W +U1 W U2 +W U2 U2 5
U(“U(Z)U(a)). On the other hand,
1(2)1(3)=(U:2)U(3),U:Z)W(a)ﬂl(z’ U U U(a))
1.'“)(1:'(2)‘:(3))=(U(1)U(2)U U U(Z)w U(“W( ).U(3)+w(1).u(2)u(3),

1 01 2 2 2

U(“U(Z)U(a)).

2 2 2
Thus, (1:(1)1:(2))1(3)=1:(“(r(2)1:(3)), as was to be shown.

Theorem 4.2. [41]. The semigroup of varieties of biautomata is

antiisomorphic to the semigroup of the compatible tuples.

Proof. One-to-one correspondence of the biautomata varieties and

compatible tuples was stated before. It is necessary to show that if
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I(l) are varieties of automata, r(l)=(U(l),w(l),U(l)) i=1,2 are the

1 2
corresponding tuples of identities, I=f(1)I(2K =t @7 and lt is a

variety of biautomata defined by the compatible tuple T, then

X —I“)I(Z) By the definition 7= (U U‘“ U‘z’w“’+w‘2’ U“’ U‘Z’U“’)

Denote U W(l) w‘ )-U;1)=w and consider a free cyclic blautomaton of

the varlety xr:
a=(KF1/U;2’U JF, (KF'eKFeKF")/ (WoU, U“’))

and the subautomaton

(2)

‘“-(U /U U VR, WP eu )/(wu U‘”))

. 2 1 2 1
in  it. If u:J)eUU) wPew™, g5=1,2 then u®u ’eU: ’U;’ and

uIZ)w(l)eUIZ)W(”cW. Furthermore,

1 2 1 (2 1
(0w @ 0@ ) 0D ey Py @ ey D 4y @y D ey @y D
2 2 2 2 2 2 2 2

s 1 1 1 1 (1) 3
These inclusions mean that if u:)eU;), w()ew(), u2 eU;), then

identities

1 1 1)
zou; )EO, zw( )EO, y-u; =0

(1)

are satisfied in the biautomaton & Therefore, H(“

Ef(l)

Take a quotient automaton

(2) (2)

F,((KF1®KF)@KF1)/(W+W(2)®U2 )).

Arguing as above, we can check that a/a'Vex® Therefore, #AeX

and I cxWx (2%

asaM . (kr! /8

1) (2)

Let us verify the inverse inclusion. Take a biautomaton #@=(A,T,B)
from ¥g® (1)=(A1,F,B1)e£1 in &
that A/4 (A/A r, B/B JeX

ties of the tuple T are satisfied in A, that is, that Seft.

Hence, there is such subautomaton &

(1) (2)

It is necessary to show that the identi-

Let u be an arbitrary homomorphism of the free cyclic biautomaton
into #@, aeA, beB. Since (A/A,T,B/B)eX®, then ao(u®)f=aea,
a(w(Z))“=b'1EB1 and be(u'®)*-b eB . In 1ts turn, since the biautomaton
(Al,F,Bl) belongs to I(l), then a °(u(1))“—0 al(w(l))“=0, (u(l))“—O

and b;-(uél))“=0. Consequently,
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(1)

(2)
as(u®y, )u=(a°(u:2))“)°(u;1))“=a1o(u1(”)“=0:

(

(@) (1) 2
( )u:.) )“=(ao (u1

a(u1 W Hw 2))“)(w(“)“+(a(w(2))“)-(u“))“=
2

ai(w(l))“+b'-(u;1))“=0 and, finally, b-(u(Z)

PCUNS
b1 (u2 )7=0.

O IN RN ) I TIPAN C DN T
u, ) =(b (u2 )7) (u2 )

Thus, the biautomaton # satisfies the identities of the tuple T,
that is, it belongs to IT

This proves the inverse inclusion as well as the equality
IT=1(“I(2’

4.4.3. Theorem of freeness of semigroup of biautomata varieties

In this item we prove two theorems [13] which play a significant
role in biautomata varieties research.

Let 91,02 be biautomata classes. Denote by elvez the class of
biautomata consisting of all triangular products of biautomata from e1

by biautomata from 92. Then

Theorem 4.3. The product of varieties of biautomata generated by
the classes 91,92 respectively, 1is equal to variety generated by the

class 6 VO _, i.e.
12

Var@ +Var8 =Var(e Ve _).
1 2 12

Biautomata variety X is called left unproper if the class of all
representations (A,I') such that there exists a biautomaton (A,T,B)eX,
coincides with the class of all representations. Right unproper biauto-
mata variety is defined in a similar way. A biautomata variety X is cal-
led unproper if it is left or right unproper. Finally, biautomata varie-
ty ¥ is called trivial if it consists only of biautomata of the form
(o,r,0).

The theorem 4.3 lies in the base of the proof of the biautomata

varieties semigroup freeness.

Theorem 4.4. The semigroup of non-trivial proper varieties of

biautomata is free.

To prove the theorem we need several lemmas.
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Lemma 4.5. Let Il,iz be the varieties of biautomata, H1EIV
A €X_. Then
22
4 VA X X .
1 2 172
Proof. let A =(A,I ,B) i=1,2 and #=A VA =(A®A_,[',B®B_). The
1 [ 172 1 2 1 2
automaton ﬁ1EI1 is a homomorphic on inputs image of the subautomaton
ﬂ;=(A1,F,B1) from #A. Since the variety Il is saturated then ﬁ; also be-
longs to If
Consider the quotient automaton ﬂ/ﬂ;=(A/A1,F,B/B1). It suffices
to verify that it belongs to Iz. This implies that a=ﬂ1va2 belongs to
lez. Take first an automaton (A/A1’rz’B/B1)C(A/A1’F'B/B1)’ One-to-one
correspondence 52=a2+A1 ad a, and 52=b2+B1 - b2 defines the isomorphism
of automaton (A/ArI},B/Bl) on (Az'rz'Bz)' Therefore it belongs to fz
In its turn the automaton (A/Al,FZ,B/Bl) is an epimorphic in inputs ima-
ge of the automaton (A/Al,l",B/Bl). Since the variety Iz is saturated,

this means that the latter automaton also belongs to IZ.

Lemma 4.6. Let 6 be a class of biautomata, X=Var®. Then all free

biautomata from X belong to VSCQ.

Proof. Let #A=(A,I',B) be an arbitrary biautomaton from 6, and
¥=(H,F,G) be an absolutely free biautomaton with the system of free ge-
nerators (Z,X,Y). Mappings v1:Z —> A, v2:X —> T, u3:Y — B are uniquely
extended to homomorphism v=(u1,vz,v3):f’¥ — 4. Let pg=Kerv, and p=npﬂ.
Ae6. Then ?/p=(H/p1,F/p2,G/p3) is a free biautomaton in X. Therefore
(H/pl,F,G/pa) is free in ¥. By Remak’s theorem ¥/p is embedded into pro-
duct nfi/pg, Aeo. Thus F/peSCO and biautomaton (H/pl,F,G/pa)EVSCB.

Lemma 4.7. Let Ia’ i=1,2 be varieties of biautomata, 5‘1 be a free
in f1 biautomaton with the countable set of generators, 82 - free cyclic

biautomaton of the variety Iz. Then
Var (¥ VA _)=X X .
12" 172

) (1)

Proof. Let ri=(U:”,w ,U"") be the tuples of identitles of

varieties xl, i=1,2. By the theorem 4.2
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_ (2), (1) (2),,(1) (2), (1) (2),.(1)
T, =02 Uyt @yt
is the tuple of the variety ¥ X . Denote uiz’w“’w‘z’ué” by W. Varie-
ties Il are generated by the biautomata
a=xr' /) F, (kP ekFokF")/ (W oU(")), 1=1,2

and the variety illz by the biautomaton

a=(1<1=1/u:2’u ,F, (KF'eKFoKF' )/(W@U U‘“))
Consider a subautomaton @’ in &

(2)

"(U /U U JF, (w(Z) (2)

)/ (Wl U u‘”))

Quotient automaton #A/A’ is isomorphic to the automaton Ea. Denote by
ﬁl,ﬂ,ﬁ' the exact biautomata corresponding to El,ﬁ,ﬂ’ respectively. The
automaton A is isomorphically embedded into triangular product @A’VA/&’
belonging to IIIZ (by the theorem of embedding). Since Varﬂ=1112, then
Var(ﬁ’Vﬂ/ﬂ’)=i1f2. By virtue of isomorphism E/ﬂ’gﬁz we get
Var(ﬂ’Vﬂ2)=.’£112. It is clear that Var(ﬁ’vﬂ2)=I1I2 also.

Since ?1 is a free in il biautomaton with the countable set of
generators then there is an epimorphism u:?l i 32. By the proposition
2.14 of the previous chapter this epimorphism induces an epimorphism
?IVHZ - ﬁ’VHZ. Therefore Var(91Vﬂ2)=I112.

Lemma 4.8. Given biautomaton B, let I1=VarB and Bz be a free cyc-

lic biautomaton of the variety Iz. Then
Var (BVE_)=X X
2" 172

Proof. Let 9’1 be a free in Il biautomaton with the countable set
of generators and ? be the corresponding exact biautomaton. By Lemma
4.7, .“? Vﬂ (and also F Vﬁ) generates the varlety I I Since ¥ eQSCB
then for some set I there is a biautomaton B’CB whlch is eplmorphlcally
mapped onto F. Let X= Var(BVS ). By the proposition 2.15 (Chapter 3) the-
re is the embedding B VS —> (BVH) Therefore BIVEZEI. Since B'CBI
then B’ VﬂzeI. By the proposltlon 2.14 (Chapter 3) there is the epimor-
phism L'S’Vﬂ2 - ?Vﬂz. Thus i‘WﬂzeI. So ilfzc.’f. On the other hand,
Bvﬂzexliz by Lemma 4.5. Thus fcilfz and £=f1.¥2.
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Lemma 4.9. Let 6 be a class of biautomata, ¥=Var® and ?I=(A,F,B)

be a free biautomaton in X¥. Let a,...,a and bf""b be systems of
n n

linear independent elements of A and B respectively. Then there exists

such biautomaton B=(C,F,T)ED09 and homomorphism u:?i —> 4 that az,...,a:

and bZ,...,bp are the systems of linear independent elements also.
n

Proof. Let I be a set and vector space H be a direct sum of spa-

ces Hu' i.e. H= JH . Take McI and consider projections ¢H:H - ZHa' If
oel oEM
hf""hk are linear independent elements in H then for some finite M
Py Py
the system of elements h1""’hk is also linear independent. Indeed,
let HocH be a subspace generated by h1""'hk It is finite-dimensional,

so there exists McI such that HonKeer=O. Thus restriction ¢, on H0 is a

® P
monomorphism for every such M and the elements hln,...,hkH are linear

independent.

?chSCG by Lemma 4.6. Let @ =(A ,I’ ,B ) be such biautomata from 6
o oo

that §I=(A,f,B) the exact biautomaton, isomorphically embedded into

- - s . . % et . s L
nﬂa. Let p be an epimorphism in inputs, u.?I ?Ic nﬂa. Consider fini
ael ael
te subsets MI'MZCI such that elements
Py Ag" Py Py
1 1 2

a ',...,a Yand b 2...,b
n 1

1 n

are linear independent in ZA«’ ZBa respectively. Take M=M UM and
oM aeM 12

A=(C,I',T)= . It is clear that under projections ¢ : — 4=
a M « (3

oEM ael 0EM
Py Py Py M
elements al,...,ak and bl,...,bk are linear independent in C and T

respectively. Since the set M is finite then ﬂEDOG, and v=u¢H:9I —> 4 is

a desired homomorphism.
Before the next 1lemma let us make some calculations. Let
A,T,B)=(A ,Z_, VZ, =] =]
( )=( X 21 Bl)V(H 22 G) where r le¢1xWx¢2x22, ¢1 Hom(H.A1L
W=Hom(H,B1), ¢2=Hom(G,B1). Consider an arbitrary element u=u(x1,...,x )
n
from the semigroup algebra KF1 over free semigroup F=F(X). It may be

written in the form
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u= ¥ o, P KpreeX o @ <K
RTRTE S N N NEEERE

We need to calculate elements of the form U(71,---,'a’) where
n

'a’l=(0’“,¢“,wl,¢21,0'21)El". Consider projections o:I' — 21' dl:l' —3 @1.

&:r — v, dzzl" g @2, B:r — 22. It is clear that oc('arl...a' )=

n
0L(2'1)~ . .a(z’n)=o'u. LI and 3(71. . .7n)=[3(71). . .[3(7“)=0'21. SO Induc-
tively one can verify the following formulas:

P

o 6w 0
11 1i+1 in

d (7, .. .’yn)=§i]3(71. A e ‘Vn)=§°'21' oy

12

o FN .
i 21721 11+1 in

dz(a'l. . .Vn)=§ﬁ(71. L.y _1)d2(71)oc(3'“1. . .arn)=)i:o'21. ..o
Further,

¥, ...y, =le, ..., ,d(y ...7v ),8(y ...v ),d(y ... ), ...0_ )
1 1 1 g 4 ’
" . 8 u Ty L 4 (- e 21

u(yl,...,7n)=(u(crn,...,¢rln), Y @ d (y 7 ),

Lemma 4.10. Let ﬂ1=(A1,21,B1) be a biautomaton and 6 be a class

of biautomata, such that 9=I)OB. Let I1=Varﬁ1 and I2=Var9. Then
Var (4 Vve)=¥X¥ X
1 172

Proof. Let 572=(H,F,G) be a cyclic free biautomaton in 352. By Lem-
ma 4.8 the triangular product alwz generates .’fllz. Then, any identity
zou=0, 2zw=0, y+u=0 which holds in 31\7?2, holds also for biautomaton
alvaz, for each ﬂzea .

Conversely, let the identity  zou=0 is not hold in
SIV?2=(A1@H,I‘.BI®G). This means that there exist the elements a1+heA1+H
and ¥ ,..,y from I', such that (a +h)cu(71,..,7n)¢0. One can assume that
ueUi(”nUiZ), where (Ul‘”,w‘”,ué”) is the tuple of identities of the

varieties .'fl, i=1,2.
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We have
(a1+h)ou(71....,yn)=alou(a1,....o;)+hd1(71,...,7n)+hou(¢21,...,02nL
o_€F.
21
y @) ..(2) 3 _
Since ueU, nU then aou(o. ,...,o. )=0 and hou(o_,...,o_ )=0.
1 1 11 in 21 2n
Thus
(a1+h)°u(71....,7n)=hdl(7l,...,7n)=
L Zhl R ((hanl T )¢11 )0011 s
ST O | k 1 Jj-1 ] J+1
1 Kk
Denote by V the linear space in H generated by all the elements
ho¢2i...¢2‘ . Since the set of such elements is finite and (H,F,G) is
1 3-1

a free biautomaton in the variety I2=Var9 then by Lemma 4.9 there are
such biautomaton Hz=(A2,22,BZ)66=D09 and such homomorphism
u:?;'—> (AZ,ZZ,BZ) that the linear spaces V and V" have one and the same
dimension. Consider a homomorphism V:A2 — H, inverse to p on the space

V and arbitrary beyond it, and the homomorphism w;l ¢, from A2 to

)
A1 Then

o “ ] = o uv - o
(h A ) @ (h o, %y ) ®, (h L )w11‘
1 J-1 j 1 j-1 j 1 =i ]

Take the triangular product B1V32=(A10A2,f,BIGBZ), an arbitrary
element a €A, element a =h“eA and elements ; =(o. ,¢’ ,0,0,A_) such
1 - i 11" 711 21

1
that A_ =o* €5 . Then
21 21 2

(a1+a2)°u(71.  di ,7n)=hou(arl. T .7n)==0.

The identity zou=0 is not held in HIVHZ, where ﬁzee by the construction.
Thus the biautomaton ﬁ1V?2 and the class of biautomata HIVB satisfy one
and the same identities of the form zou=0. In a similar way one can ve-
rify that it is also true for identities of the form zw=0 and y-u=0. So,
S1V92 and alve generate the same variety.

The following lemma asserts that the condition 9=D09 in Lemma

4.10 is not essential.

Lemma 4.11. Let ﬂ1=(A1,21,B1) be an arbitrary biautomaton and 6
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be a class of biautomata. Let Il=Varﬁl, I2=Var6. Then
X X =Var(4 ve).
172 1

Proof. Let e'=D°9. Denote I=Var(E1V9). Since Vare’=Var9=I2 then
according to the previous Lemma I1I2=Var(ﬂlve’). It is clear that
XcX X _.

172

Verify the inverse inclusion. Let A=(A,T, B)=HIVEI2 where

ﬂz=(A2,22,B2) is a biautomaton from 6’. Since 9’=fD09 then there exists

h finit t i = =
suc inite set of biautomata azx (A21’221’521)€e' iel, that 32 12?21.

It is easy to check that a triplet (A1+A21.F,BI+B2‘) is biautomaton.
Construct the epimorphism in input signals
my: (A1+A21’F’B1+B21) i E1V521=(A1+A21,1"1,B1+BZI)

where l"‘=21><<b“><\lllx¢21><221, <b“=Hom(A21,A1), \I/‘=Hom(A21,B1), ¢21=
Hom(Bm,Bl).

Let cr“l=¢r if o €X; for ¢ eb ,pe¥,acA let (pul(a)=q> (a),
", 1 1 11 ", 101 21 1 1
Y (a)=y(a); for gozediz,beBZ‘ let e, (b)=§02(b); finally let #1122 e d 221
be the projections. By this the epimorphism I' —> 1"l is defined. This
epimorphism together with the identity mappings on A1+A21 and B1+321
defines in its turn the epimorphism of biautomata in input signals. The-
refore, since EIVEIZlEI, the biautomata (A1+A21,I‘,BI+B2x) belong to %,
iel. The biautomaton (A,F,B)=81V82 is generated by the biautomata
(A1+A2‘,I‘,B1+Bm). Since the variety X is simultaneously a radical class
then (A,T',B)eX. Therefore IIIZcI and I1x2=x.

Proof of the theorem 4.3. Take some exact biautomaton Hl, genera-
ting variety Il. By Lemma 4.10 Var(81V62)=I1I2. Since I1=Var61 then
HleQSCBI. This means that there exist a set of biautomata ﬂusel, iel,

and subautomaton A’c nﬂ“, such that ﬂl is an epimorphic image of A’.
1€1

Denote Var(elvaz) by ¥ and let ﬂzeﬁz. Then there exists an inclu-
sion (]'[ﬁ“)VSZ i n(H“Vﬁz)EI. Therefore (]'[ﬁ“)VHZEI. Since 4 cl'[ﬂl

1€1 1€1 1€1 1€1
then E’Vﬂzef. According to the Proposition 2.14 from Chapter 3 there

exists an epimorphism E’VHZ onto alvaz So, Hlvﬁze.{. Thus illzcl.
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On the other hand, by Lemma 4.5 elve2c£1x2 and Icilxz This pro-
ves the Theorem.

The similar Theorem for varieties of automata is not true. Let us
show the corresponding example.

Take the automaton (O,Fl,B). The tuple of its identities has the
form (KFI,KF). Therefore c=Var(O,F1,B) is the unit of the semigroup of
automata varieties. Take this € as Il. As Iz we take variety generated
by the automaton (A,FZ,A) with the identities zox=z and z*x=z, xeX. The
tuple of identities of this automaton has the form (U,U), where U=AF is
the augmentation ideal in KF'  The product I112=8I2=I2 is associated
with the tuple (U,U).

On the other hand, (O,FI,B)V(A,FZ.A)=(A,leHom(A,B)xFZ,A+B)
=(A,T,A+B). It is clear, that for each aeA and some yel' holds
a*y=a+ay#a. Thus the tuple of identities of the variety Var(A,T, A+B)
differs from (U,U) and

X ¥ #Var((0,T_ ,B)V(A,T_,A)).
12 1 2

Proceed to the proof of the Theorem 4.4. At the beginning we pro-

ve some propositions which are also interesting by themselves.

Lemma 4.12. Let (A’,I'B’) be a subautomaton of the triangular
product of biautomata (A’r'B)=(A1'z1’B1)V(A2’22'B2)' Then either Ach’
and Bch’, or A’cA1 and B’cB1 or A’:A1 and B1cB'.

Proof. Let A’ does not belong to A1 Take arbitrary elements
a €A and a_€A’\A . Write a_ in the form a’+a’’ where a’eA, a’’eA..

174 2 1 2 2 "2 21 2 2
Denote by 7=(0},¢1,w,¢2,02) such element from I' that e, satisfies the

o0 _=a’ oo +a +a’’oeo_. Since
2 2520 A B 2

A’ is TI'-invariant subspace then azozeA' Consider an element

condition a2 p,=a . Then a207=a2°¢1+a2 w1+a
70=(01,0,w,¢2,02). It is clear that WOEF, and a2o70=a200‘1+a2 002 lies in
A’ Then azow—a270=aleA’ Since a, is an arbitrary element from A1 then
A cA’
1
Let now Ach’. Then A’=A1+A;, where A’acA2 Take an arbitrary
aZEA; For any bleB1 there exists wEHom(Az,Bl) such that a2w=b1. Consi-

der 7=(cl,w1.w,¢2,a2)eF with arbitrary components Ulezl, wleHom(Aa,A1L
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€H : = 5 -
e, om(Bz,Bl) Then a_*y b1+a2*¢2. Consider also 7, (01,¢1,0,¢2,oé)er.
Elements a*y and a*70=a*02 belong to B’ Therefore bl=a*7—a*7oeB’, and
B cB’.
1
The rest inclusions can be verified in a similar way.
Lemma 4.13. Let (A,F,B)=(A1,21,B1)V(A2,22,B2) be a triangular
product of biautomata and ¥ be a variety. Let
E 3
X (AZ,ZZ.Bz)=(H1.ZZ,H2)¥(0,22,0) and

¥ (Al,Zl,B1)=(G1,21,G2)¢(A1,21,Bl).

Then
. (A +H ,T,B +H)), if H #0
X (A,T,B)= !
(A’,T,B +H_ ), where A’cA , if H =0, H #0
1 2 1 1 2
(Gl.r,Gz)‘ if G2$B1
X' (A, T,B)=

(G,,I',G_+B’), where B'cB_, if G =B, G_=#A
1 2 2 272 2 17 11

*
Proof. 1) Let X (A, I',B)=(A’,I',B’). Consider epimorphism of pro-
jection u: (A,T',B) — (AZ'ZZ’BZ)' Since verbal is permutable with epimor-

phism, we get
, Y L B_y* H_y* =
(A’,I,B")"=(¥ (A, T,B)) =X (A,T,B) =X (Az'zz'Bz) (Hl,ZZ,HZL

According to previous Lemma only the following cases are possible

a) A'cA, B'cB_,

1 1
b) A cA’, B cB’,
1 1

c) A’cAl, Bch’.

a) Let A’cAl, B'CB1 Then (A’,F,B’)“=(O,22,O). Therefore
I‘(AZ,ZZ,B2)=(O,22,O), which contradics the assertion of the Lemma.

b) Let Ach', Bch'. Then (A’,I',B’) is the inverse image of
(Hi’zz’Hz) with respect to p. Therefore A’=A1+H1, B’=B1+Hz

c) Let A’cA, B cB’. Then (A',I,B’ )#=(0,2,H) and B’ is the in-
verse image of H2 with respect to u. Therefore B’=B1+H2 and the first

statement is proved.
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2) Let (AI,F.BI)C(A,F,B). It is clear that if
X’ (A1,21.B1)=(G1,21,G2) then ¥’ (AI,F,B1)=(G1,1",G2).
Let ¥’ (A,I',B)=(A’,['B’). By Lemma 4.12 three cases are possible. Let
consider them separately.

a) Let A'cAi, B'CB1 Then I’(AI,ZI,B1)=(A',21,B’)=(G1,21,G2) and
I'(A,F,B)=(G1,F,GZ).

b) Let Ach', Bch'. Then I’(Al,F,Bl)=(A1,F,B1) and x,(A1’z1'Bx)=
(A1'21’B1)’ that contradicts the assumption.

c) Let A’cAl, BICB’. Then (A',F,Bl)ei as subautomaton of
(A’,T,B’). Therefore I’(AI,F,B1)=(A',F,B1)=(G1,F,G2). Since B’:B1 then
B'=BI+B’2=G2+B’2, where B;CBz‘ Thus ¥’ (A,F,B)=(G1,F,G2+B’2).

Lemma 4.14. Let Il, Iz' 91, Ez be non-trivial varieties of bi-
automata such that x112=91y2 and IZ does not belong to 92. Then there

exist non-trivial varieties I3 and x;cil such that
I1I3yz=g1gz=f1iz'

Proof. Take free biautomata (Ax’F’Bx) in Xl, i=1,2. By the as-
s?mption, (AZ,F,Bz)eﬂz. Let (A,F,B)=(A1,F,Bl)V(Az,F,BZ). Consider
DZ(AZ,F,B2)=(H,F,L). From the condition (AZ,F,BZ)E?)2 it follows that
(H,F,L)#(0,F,0). According to Lemma 4.13

. (A +H,T,B +L), if H#0
9,(AT,B)=

(A’,F,B1+L), where A’cAl, if H=0, L=0

Assume that H#0. Then B;(A,F,B)=(A1+H,F,B1+L). Since the triangu-
lar product (A,I',B) belongs to III2=9192 then E;(A,F,B)eyf
By Proposition 2.17 (Chapter 3) there exists an epimorphism in

input signals:
(A +H,T,B +L) —> (A,F,B)V(H,F,L).
Let I3=Var(H,F,L). By the Theorem 4.3,

Var((Al,F,Bl)V(H,F,L))=f113.
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Hi =
ence, Var(A1+H,l‘,Bl+L) Ilfa. Since (A1+H1,l",B1+L)eI)1 then X1I3c1)1. So,
I1‘1:3”2':”192' 8

On the other hand, since DZ(A,F,B)=(A1+H,F,B1+L)61113, then
(A,F,B)eillaﬁ)z, and Var(A,F,B)=I1I2=9192c11£392. Thus we get illsv;
I1£2=1)1D2’ .

Let now H=0 and L#0. Then DZ(A,I‘,B)=(A’,I‘,Bl+L), where A’CAI. Let
x;=Var(A’,I‘,Bi) and 13=Var(0,F,L). By Proposition 2.18 (Chapter 3) there

exists an epimorphism in input signals
(A',I‘,B1+L) - (A’,F,BI)V(O,F.L).

The product of varieties I’lf3 is generated by this triangular product.
Therefore 1’113=Var(A’,F,B1+L). Since (A’,F,B1+L)eyl, then I;Iacml and
x;xsyzcglgz. On the other hand, (A,F,B)ei;.’fayz and consequently
!)12)20:1'1.{3!)2. Finally we have

£XD =9

1 372

Lemma 4.15. Let Il, 1'2, X be varieties of biautomata and X dif-
fers from the variety of all biautomata. Then
1) If XX =XX_then X =X_;
1 2 1 "2
2) If X X=X X then X =X_.
1 2 1 72
Proof. Consider the first case: 1‘11:112. Assume that Il does not
lie in Ia. Take free automata (A,F,B) from X and (A1’F’B1) from I1'
Their triangular product (X,l",§)=(A,F,B)V(A1,F,B1) generates I£1=£I2.
& ’  _, -
Let Iz(Al,F,B1)=(A1,F.B1). If A1-0 and B1 0, then (Al,l-“,Bl)EI2 and
flclz, that contradicts the assumption. Thus either A;:to or B’1==O. By

Lemma 4.13

.~ o [(A+A},T,B+B]), if A}=0
i (AT, B)=
2 (A’,T,B+B), A'cA, if A’=0, B0

a) Let A%0. Then x;(K,r,§)=(A+A;,F,B+B;). since (&,T,Blexx,,
then I;(X,l",ﬁ)el.

By Proposition 2.17 (Chapter 3) there exists an epimorphism in
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inputs: (A+A;,F,B+B;) - (A,F,B)V(A;,F.B;). Thus,
(A.F,B)V(A;,F,B;)EI.

Let I0=Var(A;,F,B;), A;#O. Then Var((A,F,B)V(A;,F,B;))=IIO. Thus
IIOCI and II°=I, Denote the tuples associated with varieties X and xo by
(Ul,w,Uz) and (UT,WO,UO) respectively. The product IIO is defined by the
product of tuples (U‘l’,wt’,u‘z’)(ul,w,uz). Hence UTUIZUI' that is impos-
sible. So we have the inclusion Ilcfz. In a similar way one can show
that IZCII, and thus 11=I2. . 3

b) Let now A;=O, B;to. Then IZ(A,F,B)=(A’,F,B+B;) where A’cA. It
is clear that I;(X,F,ﬁ)ei. Since (A,T,B)eX and (A"F,B+B;)EI, then
(A+A',F,B+B;)=(A,F,B+B;)ef. By the Proposition 2.18 from the Chapter 3
there is an epimorphism on inputs: (A,F,B+B;) = (A,F,B)V(O,F,B;). Hence
(A,F,B)V(O,F,B;)EI. Denote by Io variety Var(O,F,B;). Then Ixoci and
Ii0=I. Considering tuples corresponding to the given varieties we get
the equality I1=12 as in the case a).

The proof of the second statement of the Lemma is similar to this
one and uses the description of the radical of biautomaton given in Lem-
ma 4.13.

A variety of automata is called indecomposable if it cannot be

represented as a product of non-trivial biautomata.

Lemma 4.16. Let varieties fl, Bl be indecomposable ones and va-
rieties Iz’ ”2 are different from the variety of all biautomata. Then
x111=9132 implies Il=91, I2=D2

Proof. Suppose that IZ does not belong to DZ. By Lemma 4.14 there
exist non-trivial varieties I3 and I;cIl, such that I;1332=3132. This
implies f;I3=Dl that contradicts the indecomposability of 31. Thus
IZCDZ By similar arguments chfz and I2=DZ. So, Il=®1

Proof of the theorem 4.4. The latter result implies that indecom-
posable non-trivial proper varieties generate a free semigroup. To com-
plete the proof of the Theorem it remains to verify that each non-
trivial variety of biautomata X can be represented as a finite product

of indecomposable ones.
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Let us introduce the notion of the weight of an ideal. It is

0
known [66] that (KF)"=0. Hence, for any nonzero ideal U of KF there
n=1

exists such integer n that Uc(KF)", while U does not belong to (KF)™".
This n is called the weight of the ideal U. If U=KF' then the weight of
U is assumed to be zero. A sum of weights of ideals U1 and U2 is called
a weight of a tuple (ul,w,uz) and of the corresponding variety X. Let X
be a non-trivial proper variety of biautomata, T=(U1,W,U2) be a tuple of
identities of the variety X. Let the weight of ¥ be equal to m. Since
U1¢0, U2$0 and one of them differs from KFI, then m>0. If X cannot be
represented as a product of finite number of indecomposable varieties

then it can be represented in the form

=X ¥.. .%
172 m+1

where Il are non-trivial proper varieties. Since the weight of the pro-
duct is greater or equal to the sum of the weights of the factors, the
weight of the given product is greater than m, that contradicts the
assumption.

It must be mentioned that the semigroup of varieties of automata
is not a free semigroup. Define the product of compatible tuples asso-

ciated with linear automata by the rule

(Ul,Vl)(Uz,V2)=(U1U2.U1V?).
It is easy to show that the compatible tuples form a semigroup with res-
pect to this multiplication. This semigroup is antiisomorphic to the

semigroup of varieties of linear automata. It is not a free one because,

for example, holds the equality
(U1’v1)(U2'v2)=(U1'V1)(U?'Vz)
which is not true in free semigroup.
The free semigroup of varieties of biautomata can be naturally
homomorphically mapped onto the semigroup of varieties of linear automa-
ta. In particular, we can construct the canonical homomorphism, which

associates a class of linear automata %° to each variety of biautomata X

by the rule: (A,F.B)EIO if (A,T,B)e¥ and (A,I',B) is a linear automaton,
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that is if in (A,l,B) for each uekF' holds the identity y-u=0. It can be
verified that ¥° is the variety of automata and (!112)°=ISI2. This means
that the above mapping is homomorphism. It is clear that this homomor-

phism is actually epimorphism.
4.4.4. Indecomposable varieties

Since the semigroup of the biautomata varieties is free, the
study of indecomposable varieties of biautomata is specially interes-
ting. Now we shall consider several series of such varieties [14]. It is

easy to prove the following

Proposition 4.17. If 1° is an indecomposable variety of represen-
tations, then the variety X generated by all the biautomata of the type
(A,T',0) where (A,F)efo is also indecomposable. The variety generated by
all the biautomata of the type (0,I',B) where (B,F)efc is indecomposable

in a similar way.

From this Proposition and statement 19.2.1 of [90], in particu-

lar, follows,

Proposition 4.18 1) If the class 6 consists of the biautomata of
the type (A,I',0) where (A,T') is an irreducible representation, then Var®
is an indecomposable variety of biautomata.

2) if © consist of the biautomata (0,T,B) with the irreducible represen-

tation (B,I'), then Var® is also indecomposable.

The varieties discussed in these Propositions in a certain sense
are degenerate varieties. There are also non-degenerate indecomposable

varieties of biautomata.

Theorem 4.19. Let A=(A,I',B) be a Moore biautomaton with irredu-
cible representations (A,I') and (B,I') and non-degenerate operation *.
Then the variety Var(A,I',B) is indecomposable. (Non-degeneracy of the
operation * means that the identity z*x=0 is not satisfied in the auto-

maton (A,I,B)).

Proof. Assume that the variety ¥=Var(A,T',B) is decomposable, that

is I=III2 where the varieties Il, 12 are non-trivial. Then in the
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biautomaton #=(A,I',B) there exists the subautomaton ﬂ1 from 11. such
that H/ﬁl lies in 12~ Since the representations (A,I’) and (B,I’) are
irreducible, the biautomaton ﬂl coincides with one of the following
automata: (0,r,0), (0,I',B), (A,T,0), (A,I',B). The cases H1=(0,l",0) or
ﬂl=(A,l‘,B) fail away, since the varieties Il and fz must be nontrivial.

If ﬁl=(A,I‘,O), then ﬁ/ﬂlé(O,F.B). In the triangular product
(A,T,0)V(0,T,B) the operation * is a degenerate one. Since the biautoma-
ton (A,T',B) is embedded into this product, then the operation * is dege-
nerate also in (A,I,B), that contradicts the assumption.

Let, finally, ﬁ1=(O,F,B). Then ﬂ/EIE(A,I‘,O). Consider the trian-
gular product (O,l".B)V(A,F,O)=(A,Z,B)el1f2. If the element ueKF' lies in
the intersection of the ideals of identities of the representations
(A,I') and (B,T'), then the identity z*u=0 is satisfied in the biautomaton
(A,T,B) (since (A,I',B) is a Moore biautomaton with a certain determining
mapping ¥ and by the definition of such automaton a*y=(aoy)y-ay-y).
Hence, this identity is also satisfied in the variety X¥=Var(A,I',B). On
the other hand, it is clear that it is not satisfied in the automaton
(A,Z,B) (it suffices to consider the matrix representation of the trian-
gular product). The obtained contradiction implies that ¥ is indecompo-

sable.

Proposition 4.20. If #A=(A,I',B) is a biautomaton with (A,T) or
(B,I') being an exact representation of the finite group of exponent n
over the field of the characteristic zero, then the variety Varf is

indecomposable.

Proof. To prove the theorem we first develop one general idea.

Let f15f2 be an identity of the semigroup I', (A,I') a certain
exact representation and #A=(A,I',B) a biautomaton with operation o de-
fined by the representation (A,T'); naturally, it is also exact. Let the
variety X¥ generated by this biautomaton be decomposable: i=£1§2. Then
there is such subautomaton ﬂlcﬂ, SIEI, that E/H1 lies in Iz' Denote by
(Al,Fl,Bl) and (Az'rz'Bz) exact biautomata, corresponding to Hl and H/Hl
respectively. (It is clear that in this case A1©AZEA, Bl@BZEB). Consi-

der, finally, the triangular product (A1,I"1,BI)V(AZ,1'2,B2)=(A,ZZ,B)52£1I2
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where Z=F1xHom(A2,A1)x Hom(AZ,Bl)xHom(Bz,Bl)xF?

If (C,®,D) is an exact biautomaton from Var(A,I',B), then the
semigroup & should also satisfy the identity fIEfz; this, in particular,
relates to the considered biautomaton (A,Z,B) and semigroup X. On the
other hand, if the identity f15f2 is satisfied in X, then, since the
biautomaton (A,I,B) is embedded as a subautomaton in (A,Z,B) (Theorem
2.1, Chapter 3), it must be satisfied also in I', that is, I' and £ gene-
rate the same semigroup variety.

It follows that if I' and ¥ generate different varieties of the
semigroups, then the variety of biautomata X is indecomposable.

Return to the statement of the Proposition taking into account
the above considerations.

The group I' has the exponent n, hence, the identity x"=1 is sati-
sfied in it. On the other hand, this identity is not satisfied in the
group £, since I contains a subgroup consisting of all elements of the
form (1,@1,w,¢2,1), where wleﬂom(AZ,Al), wzeHom(Bz,Bl), weHom(Az,BlL
This subgroup is isomorphic to a certain subgroup of the group of trian-
gular matrices with the units on the main diagonal (over the field of
characteristic zero). The latter is a nilpotent group without torsion.

Thus, the identity x"=1, satisfied in the group I', is not satis-
fied in X, hence, they generate different varieties. In accordance with
the remark made above this implies that the variety ¥ is indecomposable.

From the last Proposition follows, in particular, that if (A,T)
and (B,I') are the representations given in this Proposition, then
Var(Ath(A,F)) and Var(Atmz(F,B)) are indecomposable.

For comparison it is useful to note that since the first univer-
sal biautomaton Atml(A,B)=(A,End(A,B),B) can be represented in the form

of the triangular product
Atm' (A, B)=(0, EndB, B)V (A, EndA, 0),
the variety Var[Atm'(A,B)] is always decomposable:

Var(Atml(A,B)=Var(0,EndB,B)Var(A,EndA,O).
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4.4.5. Example

Let us apply results of this item for the description of the
tuple of identities of the universal biautomaton Atml(A,B). Repeat once
more that the biautomaton Atml(A,B)=(A,EndA@Hom(A,B)@EndB,B) is a trian-
gular product azva1 of the biautomata a1=(A,EndA,O) and ﬂ2=(0,EndB,B).

It is evident that the tuple of identities of a biautomaton coin-
cides with the tuple of identities of a biautomata variety generated by
it. By Theorem 4.3 the variety of biautomata generated by the triangular
product of arbitrary biautomata 51V52 is equal to the product of the
varieties Illz generated by the biautomata 51 and Bz, respectively. By

‘“,U;“) and (U WP, U?) are tuples of iden-

Theorem 4.2 if (UV,W
tities of the biautomata Bl and Bz (or, what is equivalent, are the tup-
les of identities of the varieties Il and 12), then the tuple of identi-
ties of the variety szl, and, hence, of the biautomaton BZVB1 has the
form
_e(1) () (1) (@) () (2) (1) (2)
(U1’w'U2)_(U1 U1 ’U1 W7 +W U2 ’Uz u=).

Now denote by U1’U2 the ideals of identities of the representations
(A,EndA), (B,EndB) respectively. Then the tuples of identities of the

biautomata ﬂl and ﬂz will have the form

(1)

(1)
w,

,W(“,U
2

)=(u,, KF'eKF, KF'),

(uf’ e u;“ )=(KF1,KF1®KF,U2).

Taking into account the previous passage we get that the tuple of iden-
tities of the biautomaton Atm'(A,B)=# VA has the form
1
(Ul,U1®KF@(KF ®KF) UZ,UZL
In particular, for the biautomaton Atm'(A,B) the set W of the elements t
for which there is an identity of the form zt=0, is equal to
w=(U1®K.F)®(KF1®KF) . (4.1)

Let X be a variety of biautomata. A completely characteristic
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subautomaton (Ul,F,w+U2) of the free cyclic biautomaton corresponds to
the tuple (UI,W,UZ) of identities of this variety. Denote, as earlier,
by V the set of the elements ueKF, for which the identity z*u=0 is sati-
sfied, and by W the following subspace of the tensor product KF1®KF

ﬁ=u1®KF+KF1®v+ (KF'®V) +F+ (KF'KF) . (4.2)

It 1is clear, that WcW. The least completely characteristic F-
subautomaton in the free cyclic biautomaton generated by the sets Uch,
1®VcKF1®KF and Uch, is a biautomaton (Ul,F,ﬁ@Uz). Since this automaton
is a completely characteristic one, then (UI,W,UZ) is a tuple of identi-
ties for a certain variety X. As we know (see Section 4.3), W can be
less than W. The equalities (4.1) and (4.2) show that for the biautoma-
ton Atml(A,B) the equality W=W takes place. It means, in particular

that (U1,1®V,U2) is the basis of identities of the given biautomaton,
that is, the set of identities defining the given variety. Consider in
more detail the construction of V and prove that in the given case
V=U1U2,

Since VcKF, F=F(X), then arbitrary element veV has the form
1

1 2 n k
i

Grouping the summands by the last factor it is possible to write v in

v=§7\1xi X X ,AFK, X, eX (4.3)

the form v=Zu‘xl. At first show that each u, is not empty. For this u

take such element ¢ of Hom(A,B), that ap#0 under a certain a€A, and con-
sider the mapping «:X — End(A,B)

(0,0,0), if j=#i

X =
(0,9,0), if j=i, xjeX

Since the semigroup F is free, this mapping can be extended up to

the homomorphism F —> End(A,B) and further to homomorphism of algebras

«:KF — End(A,B). If u were empty then under the appropriate aeA,

a*va=a'x?=a¢¢0, but it contradicts the definition of V. Hence, each u

is not empty. Now show that for any homomorphism u:F —2 End(A,B) and any
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a€eA the equality (aou‘:)*x‘:=0 takes place. Let x‘j‘=(¢>),6),|ﬁj). By u and
fixed i construct the mapping uI:X — End(A,B):

X =

M, {(qoj,o,o) , if j=i
J

(4 ,5 ;0 ’ if =
Then

1 By By By By By By My By
a*v "=a*(Ju x ) =Ya*(ux ) =F((acu )*x +(a*u ')+x )=(aecu )ex '=
3 J ) 3 1) ) J ] J J 1 i
TR M,
(aoul)'xl. Since veV, then a*v =(aou‘:)'x‘:=0.

Finally, show that uleUI. Suppose that ulcEU1 and that aou'::#o

under certain a and p. Denote aou':=a'. Let again x‘j=(¢},5j,¢)). Take

p:X —> End(A,B), such that x"‘=(¢],5,0), where a’$#0. Then (aou‘:)*x':=

(aou‘;l)*xi:=a'*x':=a'6==0 that contradicts to what has been proved in the
previous passage. Thus, each u1€U1' and since U1 is a two-sided ideal,
then also veUl.
In order to prove the inclusion veU2 group the summands of the
element v in the notation (4.3) by the first factor: V=ZX1V1‘ The same
1

arguments as above imply that all v, are not empty; using constructions
dual relatively to the previous ones it is possible to show that for any
homomorphism pu:F —> End(A,B) and for any a€A the equality (a'x‘f)*v‘:=0 is
valid. Since a*x’: can be arbitrary element of B, the latter equality
implies that vleUZ. Therefore, veUZL It has been proved that VcUanZ. By
Lemma 3.4 it means that the set of identities of the representation
(AeB,End(A,B)) is equal to V. Using this fact, show that V=U1U2.

The representation (AeB,End(A,B)) is a triangular product HZVH1
of the representations ﬁ1=(A,EndA) and HZ=(B,EndB); U1’U2 are ideals of
identities of the representations El and ﬂz respectively. If Hl and Sz
are representations of semigroups, then Var(92V81)=Varﬂ2Varﬁl. Since
Ul,U2 are ideals of identities of the representations ﬂl,ﬂz, and hence,
of the varieties Varﬂl, Varﬁz, then ([90]) U1U2 is an ideal of identi-
ties of the variety VarﬂZVarﬂfVar(EZVBl). and therefore, also of the
representation ﬂzvﬂ1=(A®B,End(A,B)). Thus, V=U1U2.
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Finally, we have that the basis of identities of the universal

biautomaton Atml(A,B) has the form (U1,1®U1U2,U2L
4.5. Quasivarieties of automata
4.5.1. Quasiidentities and quasivarieties

Along with varieties a great attention in algebra is paid to the
quasivarieties. In particular, together with varieties of automata the
quasivarieties of automata can be considered. For instance, such impor-
tant class of automata as a class of Moore automata is a quasivariety of
automata.

Let ¥=(H,F,®) be a free pure or linear automaton. Elements u,v
are called the elements of the same sort if they both lie in one and the
same set of H, F or ¢. Let u, v, be the elements of the same sort for

each i=1,...,n+1. We say that a quasiidentity

U =V AU =V A...AU=V = U =V (5.1)
1 1 2 2 n n n+1 n+1

is satisfied in the arbitrary automaton #=(A,I,B), if for any homomor-
phism p:F —> & the simultaneous fulfillment of the equalities u7=v7 for
all i=1,...,n, implies the equality uﬁ+1=vﬁ+l This definition relates
both to pure and linear automata. A class of automata satisfying a cer-
tain set of quasiidentities is called quasivariety of automata.

Examples: 1) The quasiidentity Z,°X,=Z, 0%, = zl'x1=zzix2 defines
the quasivariety of Moore pure automata.

2) Quasiidentities of the form Eﬁlzlox1=0 > Eﬁlzl'xi=0 define the
quasivariety of Moore linear automataﬂ It is clea; that the number of
such quasiidentities is infinitely great. The question of interest is
whether the quasivariety of Moore linear automata is defined by a finite
set of quasiidentities.

Note that Moore biautomata do not constitute a quasivariety.

Similar to varieties of automata, quasivarieties of automata
allow the definition not connected with free objects. First cite the
necessary notions. Let K be a certain category of automata. Its terminal

object, that is, such automaton &eX, that for any automaton #AeX there
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exists a unique homomorphism from & into & is called a unit element of
this category. It is evident that for K being a category of linear semi-
group automata, &=(0,{1},0).
Let J be an arbitrary set, D be a set of non-empty subsets of J
satisfying the conditions:
1) the intersection of two elements of D is again an element of D,
2) if A is a subset of J, A>B, and B belongs to D, then A also
belongs to D.
This D is called a filter on J. Let gx=(A1'F1’B1)’ ieJ be a set of auto-
mata. Define the filtered product of these automata by the filter D.
Take a Cartesian product of the automata E=(A,F,B)=n H1=
1=J
m Al, m F:' m B‘); associate to the filter D the congruence
1=J  1€J  1€J
p=(p1,p2,p3) of the automata #A: if a €A, y e, b eB, k=1,2 then
apa, e {ila (i)=a (i)}eD,
v,py, © {ify (1)=r,(i)}eD, (5.2)
bpb e (1|b1(1)=b2(1))eD.

The quotient automaton ﬂ/p=(A/p1,F/p2,B/p3) is called a filtered
product of the automata ﬂl, ieJ by the filter D; it is denoted by
n SI/D.
1€J

Recall that the class ¥ of automata is called hereditary if each
subautomaton of the automaton of ¥ also lies in X. The following theorem

presents an invariant characteristic of a quasivariety of automata.

Theorem 5.1. A class of automata is a quasivariety if and only if
it is closed with respect to filtered products, is a hereditary one and

contains a unit automaton.

The further considerations of this Section are devoted to quasi-
varieties of the automata saturated in input and output signals, as well
as to some relations between quasivarieties of automata and quasivarie-
ties of semigroups. Under the term "automaton" in this Section we shall

understand a linear semigroup automaton, but it is necessary to note
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that most of the facts remain true also for pure automata.
4.5.2. Quasivarieties of automata saturated in input signals

The class X¥ of automata is called saturated in input signals if
for each epimorphism in inputs (A,Fl,B) - (A,FZ,B) the inclusion
(A,Fl,B)eI is equivalent to the inclusion (A,FZ,B)ei.

Consider at first the category of I'-automata. A unit automaton in
this category is the automaton (0,I',0), and a free automaton with the
generators Z,Y has the form ?r=(ZoKF1,F,Z'KF®KY). Modifying the expres-
sion (5.1), we can say, that '-quasiidentity of the linear I'-automaton #

is a formula
u_ =0Au_=0A...Au =0 = v=0 (5.3)
1 2 n

where u‘,v belong either to ZoKI‘1 or to Z*KI'eKY, and for any homomor-
phism u:?r — @& identical on I' (i.e. I'-homomorphism) the simultaneous
fulfillment of u“=0 implies v“=0. Quasivariety of T automata is a class
of I-automata satisfying a certain set of I'-quasiidentities. A filtered
product of I-automata is defined similar to that of automata; as P, in
p=(p1.p2,p3) we must take a trivial (minimal) congruence of the semi-
group I' The theorem analogous to Theorem 5.1 holds for quasivarieties
of I'-automata: a class of I'-automata is a quasivariety if and only if it
is closed with respect to the filtered products, contains a unit
l'-automaton and is hereditary on I'-subautomata.

For an arbitrary class of automata ¥ and arbitrary semigroup I'

denote by Ir the class of all the '-automata from X.

Theorem 5.2. If X is a quasivariety of automata saturated in
inputs, then for any semigroup I' the class Xr is a quasivariety of
I-automata. Conversely, if each class Ir of hereditary and saturated in
inputs class of automata X is a quasivariety, then X is a quasivariety

of automata.

Proof. Let ¥ be a quasivariety of automata saturated in inputs.
By Theorem 5.1 it contains a unit automaton (0,1,0). For an arbitrary
group I' the mapping (0,I',0) — (0,1,0) is an epimorphism in inputs.

Hence, (0,I',0) belongs to ¥, and therefore, to Ir. Thus, Ir contains a
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unit T-automaton. Closeness of the class ir. in respect to I'-automata
immediately follows from the heredity of the class X. It remains to
verify the closeness of Il.. with respect to filtered products of
F-automata. Let J be a set, D a filter on J, & =(A F B ), ieJ, auto-

mata of lr. The filtered product of the automata (nJA /p1 I‘/p i nJB /p )
1€ 1€
belongs to X since the quasivariety is closed with respect to filtered

products. Here r= n I‘ l" =I'. By virtue of the saturation of the quasi-
1eJ
variety ¥ in inputs, the automaton ( mA /p T, B /p ) also belongs to
1eJ 1eJ
X. For each yel' consider the function ',rel" such that ¥(i)=y for any ielJ.

Thus, the semigroup I' is embedded into T as a semigroup of the constant
functions. As a result the filtered ©product of TI'-automata

n A/p r,nm B/p) belongs to X as a subautomaton of the automaton
1eJ 1€J

(nAi/p T, nB/p) from ¥ and, therefore, it also belongs to ir.
1€J 1eJ
Thus, the class 1'1.. is closed with respect to the filtered products of

Il'-automata. Hence, IF is a quasivariety of I'-automata.

Conversely. Since for each I' the class .’ir is a quasivariety of
Il'-automata, then Il.. contains the automaton (0,I,0), and by virtue of
saturation of X, it contains its epimorphic image (0,1,0), that is, a
unit automaton. Heredity of the class X is given by the condition of the
theorem. It remains to verify the closeness of ¥ with respect to fil-

tered products. Let (A /p , T /p , T B /p ), 1ieJ, be a filtered
1eJ ieJ 1eJ
product of automata ﬂ‘-(Al,r“,Bi) by a filter D and let Tj l" =I. For
1eJ

each ieJ the projection r - l"1 defines the automaton (Al,l",Bl) with the
epimorphism in inputs (Ax'f’Bl) - (Al,l"l,Bl). By virtue of saturation

we get (A‘,f,Bl)eI. Consider the class If' Since ¥_ is a quasivariety of

l:—automata, then the filtered product of I-automata (1 A/p l"
1€J

nB /p ) belongs to .I— and thus also to X. The filtered product of the

1eJ

automata [ & /D=( 1 A/p l"/p, I B/p) is an epimorphic in inputs
1€J 1eJ 1eJ

image of the last automaton and due to saturation of the class X, be-

longs to it. The Theorem is proved.
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Let us say that the quasiidentity of the form (5.1) does not con-
tain a semigroup part if for each ie{1,2,...,n+1} elements ul,vl do not
belong to F. It will be shown now that quasivarieties saturated in in-

puts are defined by the quasiidentities without the semigroup part.

Theorem 5.3. A quasivariety of automata X can be defined by the
quasiidentities without the semigroup part if and only if it is satura-

ted in inputs.

Proof. Sufficiency. Let ¥ be a quasivariety of automata saturated
in inputs and F=F(X) be a free semigroup over a countable set X. By
Theorem 5.2 the class IF is F-quasivariety. Its quasiidentities are F-
quasiidentities; they are associated with the free F-automaton

?=(ZOKF1,F,Z*KF®KY): each of them has the form
(ul=0)A(u2=O)A...A(un=O) s v=0 (5.4)

where ul,v1 are elements of ZoKF or Z*KFeKY. Recall that the F-
quasiidentity (5.4) is satisfied on the F-automaton if for any F-
homomorphism p:¥ —> A from the equalities u7=0, i=1,...,n follows the
equality v"=0. Show that if we consider (5.4) as quasiidentities (not as
F-quasiidentities) then the same set defines the quasivariety X. Preli-
minary make one remark.

Let the automaton (A,I',B) and arbitrary mappings ul:Z —> A, uZ:X

) i u3:Y—9 B be given. Extend them to the homomorphism p:% —> (A,I,B).
Ha
Denote F =F0. Then we get the subautomaton (A,FO,B) in (A,T,B). By B,

define the automaton (A,F,B): aof=aof“2; a'f=a“f”2 The mapping (A,F,B)
“— (A,FO,B) is an epimorphism in inputs. The mapping u’=(u1,s.u3) of
F-automaton ¥ in (A,F,B) is a homomorphism. In this case the equality
u“=u”' is satisfied for each element u of ZoKF’ or of Z+KF eKY.

Let us return to the proof of sufficiency. Let (A,I',B)eX. Verify
that each quasiidentity of the form (5.4) is satisfied in this automa-
ton. We use the notations from the given remark. The subautomaton
(A,FO,B) is contained in the class ¥ together with (A,I',B). By virtue of

saturation the corresponding F-automaton (A,F,B) belongs to ¥, to be
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more precise, to the class iF and, therefore, the F-quasiidentities of
the form (5.4) are satisfied in this automaton. Let, as before, p be an
arbitrary homomorphism ¥—> (A,I,B) and p’ be a homomorphism ¥ —> (A,F,B)
corresponding to it. Assume that there are the equalities

(u‘:=0)/\(u‘2‘=0)/\. . ./\(u':=0). Then by virtue of the remark we have the equa-

lities (u‘l"=0)/\(u'2"=0)/\ .../\(u':'=o). Since the F-automaton (A,F,B) be-
lox,xgs to the F-quasival:iety fl__, then from the latter equalities follows
v' =0. But then vM=v" =0. Thus, for an arbitrary homomorphism pn the
equalities u‘:=0, iel,...,n imply the equality vu=0, that is, quasiiden-
tities of the form (5.4) are satisfied in the class X. Conversely, let
quasiidentities of the form (5.4) be satisfied in (A,I',B). Show that
(A,T',B)eX. Take an epimorphism v:F — I'. Then as earlier, it can be
shown that F-quasiidentities of the form (5.4) are satisfied in (A,F,B)
and, therefore, (A,F,B)etiI.

The mapping (cA,v,eB):(A,F,B) —> (A,T,B) is an epimorphism in
inputs and by virtue of the saturation of ¥ we have (A,I,B)eX.

Necessity. Let the quasivariety ¥ be defined by the quasiidenti-
ties of the form (5.4) without the semigroup part. Prove its saturation

in inputs. Define an arbitrary epimorphism in inputs
v=(e,,v,e ): (A,T,B) —> (A,L,B).

Let (A, I',B)eX. By the homomorphism p=(n1,u2,u3):?f —> (A,Z,B) construct
the homomorphism u'zzF —> I' with the property u2=u’2v. For arbitrary xeX

choose such element yel, that x 2=7v. Denote x 2='a'. Thus we define the
mapping u’Z:X —> I' which can be uniquely extended up to the necessary
homomorphism u’zzF —> I'. From the definition of u’z follows that p’'=
(ul,u’z,pg):? —> (A,T',B) is a homomorphism and that the following diagram

is commutative

§———(A,Z,B)

N, S

(A, T',B)



It is clear that for any element u from ZoK.'F‘1 or Z*KFaeKY, the
equality w=u"  takes place.
If now the assumptions of the implications (5.4) hold in (A,Z,B):

(M=0)A(W*=0)A. . . A(uH=0)
1 2 n
then in (A,T,B) the equalities
(M=0)A(WM=0)A. . . A(uM=0)
1 2 n

are satisfied. From these equalities follows =0 (since (A,T,B)eX).
Then vM=v"=0 in (A,Z,B); therefore, (A,Z,B)eX.
Let now (A,Z,B)eX. Defining the homomorphism p’':¥ —> (A,I,B) by
M_ p
=u'

the rule u'=p; we get the equality u for any u from ZoKF1 or

Z*KFeKY. Arguing as above, we obtain (A,I',B)eX. The Theorem is proved.
4.5.3. Quasivarieties of automata saturated in output signals

The class of automata ¥ is called saturated in output signals if
it satisfies the condition: for the arbitrary automaton (A,I,B) and its
subautomaton of the form (A,F,Bo) the inclusion (A,I',B)eX is equivalent
to the inclusion (A,F,BO)EI.

The condition of saturation in output signals is connected with
the exclusion of variables of the set Y from the quasiidentities (recall

that (Z,X,Y) is a system of free generators of the free automaton ¥).

Proposition 5.4. If in quasiidentities defining the quasivariety
of automata X variables of Y are absent, then this quasivariety is satu-

rated in output signals.

Proof. Let X be defined by the quasiidentities without variables
of Y, (A, I',B) be a certain automaton in which there is a subautomaton
(A,F,Bo) belonging to X. Show that (A,I',B)eX. For this, it is necessary
to verify that each quasiidentity

U=V AU =VA...AU=V =3 U =V
1 1 2 2 n n n+l n+1

without variables of Y, defining the class X, is satisfied also in
(A,T,B). Define the homomorphism p:¥ —> (A,I,B) and let in (A,T',B) the

equalities uT=vT, ug=vg bl @ 5 n“=v” take place. Since variables of Y are
n n
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not present in u, V. then the latter equalities are valid already in
the subautomaton (A,F,BD), and since the latter lies in ¥ then we also
M ®

et U =v
g n+l n+1

The Proposition is proved.

Theorem 5.5. If a quasivariety of automata ¥ contains such auto-
maton (A,T,B) that |B|>1 (in particular, if X is saturated in output
signals), then this quasivariety can be defined by quasiidentities

without variables of Y.

Proof. In order to prove the theorem we consider the cases of
quasivarieties of pure and of linear automata separately. Clearly, it
suffices to consider only irreducible quasiidentities that is quasiiden-
tities without iteration transitive equalities.

Proof for the case of pure automata. Recall that the free object
with generators Z,X,Y in the category of pure automata has the form
?=(2oF1,F,(Z~F)uY). Show that each quasiidentity satisfied in the varie-
ty ¥ is equivalent to the quasiidentity without variables of Y. Consider

the quasiidentity (5.1):
U =V AU_=V_A...AU =V 3 U=V
1 1 2 2 n n

Denote the antecedent of this quasiidentity by & and divide it on three

groups:

Al is a conjunction of the equalities u =V, not containing variables
of Y;

Az is a conjunction of the equalities of the form =y

43 is a conjunction of the equalities of the form yl=yf

Then quasiidentity (5.1) can be represented in the form (5.1"):
d Ad A > u=v
1 2 3

The corollary u=v can also belong to one of these three groups. Consider
the given cases separately.

1. The equality u=v does not contain variables of Y. Show that
under this condition quasiidentity (5.1) is equivalent to the quasiiden-

tity
B 3 u=v (5.5)
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where the antecedent B is a conjunction of Al and of all the equalities
u=v, not containing yeY and satisfying the condition:

either the equalities u =y, and v =y, are involved in the group 42,

or the equalities u =y, and v =y, are involved in 342 while the
equality ¥ %, is involved in &1

Take an automaton #=(A,I',B) satisfying the quasiidentity (5.5),

an arbitrary homomorphism p:¥ —> @ and assume that the conjunction
£“=£TAdgAAg is true. Then B" is also true. Really, AT is common for "

and 8" Further, if u=v, is involved in B, u =y, and v =y, are involved

in ﬂz, then u?=y7 and v7=y?, from which u7=v7. Finally, if ul=vl is in-

volved in B, u =y, and vi=yk are involved in 42, and y,=y, are involved
in da, then u7=v7, v7=yt and yT=yﬁ whence u?=v?. Thus, the truth of du

in (A,T',B) implies the truth of 8" and therefore, =" is also true.
Conversely, let quasiidentity (5.1) be satisfied in (A,T,B). It is
necessary to show that quasiidentity (5.5) is valid. Let the antecedent
8" be true in (A,T,B). Denote by V¥ ¥, all the variables of Y
involved in the antecedent «. Since variables of Y are not involved in
(5.5), then the values of yﬁ can be taken arbitrarily. Choose yﬁ,...,yﬁ
such that the antecedent of quasiidentity (5.1) is satisfied.

It is clear, that yl,yz,...,yn are involved in 42 and da' If for
a certain yl,ie{l,Z,...,n} there exists v, such that v=y1 is involved in
AZ, then assume y7=v“. If in &2 there is also the equality yl=v' then
the equality v=v’ is involved in the antecedent B of quasiidentity (5.5)
H=v'#. This implies that the

definition of yT does not depend on the choice of v.

and since the antecedent B is true, then v

If there is no such v, that vy, but can be found y satisfying
the conditions (yl=yj)eda, (v=yJ)e£2, then assume yﬁ=v“. By the same
reasons as above the definition of yﬁ in this case also does not depend
on the choice of yj and v. For all the rest y, we assume that yT are
arbitrary and coincide between themselves. Under such definition of the
mapping p on the set Y, antecedent (5.1) will be evidently satisfied

and, therefore, also the corollary M=t s also valid. Thus, quasiiden-



225

tity (5.5) is satisfied in (A,I',B);, hence, quasiidentities (5.1) and
(5.5) are equivalent.

2. The equality u=v belongs to the second group, that is, it has
the form u=y, ueZ+*F, yeY. In this case (5.1) takes the form

4=41A42A43 > u=y (5.6)

Consider all possible subcases.
2.1) dz contains the equality w=y.
Replacing of the corollary (5.6) by u=w we obtain the quasiidentity

4 3 u=w (5.7)

which is equivalent to (5.6).

Really, let (A, T,B)ek, u  be an arbitrary homomorphism
M — (A,T',B) and the antecedent 4 be valid. Then, (5.6) implies u“=y“,
and since # contains the equality w=y, we get u“=y“=w“, which means that
quasiidentity (5.7) is satisfied.

Conversely, if in (A,I',B) is satisfied (5.7), then u“=w“, and
w“=y"l that is, (5.6) is true. Replacing quasiidentity (5.6) by equiva-
lent quasiidentity (5.7), we obtain the case 1.

2:2) 43 contains the equality Y=y, while Aé contains W=y, As
above, we can see that in this case (5.1) is equivalent to the quasi-
identity &£ = u=w without variables of Y.

2.3) 43 contains V=Y while ¥, does not belong to 42. Since (5.6)
is irreducible in 43. there are no equalities y=yJ for j#i. Delete the

equality V¥ from 4 and show that thus obtained quasiidentity

4 3 u=y (5.8)

is equivalent to (5.6).

Let quasiidentity (5.6) be satisfied in (A,T',B) and under a cer-
tain homomorphism u:¥ —> (A,I,B) the antecedent «’ of quasiidentity
(5.8) is valid. The variable y‘ is not involved in #' and, therefore,
the value of yf can be chosen arbitrarily. Let y7=y“. Then the antece-
dent (5.6) will be satisfied and, therefore, also the corollary u“=y“.

common with (5.8) is valid. The converse case is evident.
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Thus, we come to the case when 4 = u=y, and 4 does not contain y.
Show that this is impossible. Take the automaton (A,I',B), |B|>1 and the
homomorphism u:¥ — (A,I,B) under which the antecedent # is true. Then
the equality u“=y“ has to be satisfied. Let b be an arbitrary element of
B. Along with p define the homomorphism p’ coinciding with p on all the
elements except y; i.e. y”;b¢y“. Since 4 does not contain y, then the
validity of 4 is equivalent to the validity of d#,; by the same reason
u”=u“' Since the quasiidentity & = u=y is satisfied in (A,I,B), then
from the validity of d“' the equalities u“'=y#'=u”=b follow. So, T can
be equal to any element of B. But it is impossible since B contains more
than one element.

3. The equality u=v belongs to the third group, that is, it has
the form yl=yJ. Then quasiidentity (5.1) takes the form

d = Y=, (5.9)

The following subcases are possible:

3.1) At least one of the variables Yy yJ is contained in 41
say, the equality v=yJ is contained in AZ.

Then (5.9) is equivalent to the quasiidentity 4 = v=yJ and we
have the case 2.

3.2) yi.yJ are not involved in &2, while the equality ¥, Y is
contained in Aa

If yk=yj, then (5.9) is satisfied trivially: the corollary is
contained in the antecedents. Therefore, it is necessary to consider the
case yj:tyk when Y=Y is not involved in #z, otherwise we have the sub-
case 3.1. Then yJ may be also involved in Aa, say, 1in the equality
(y)=y£)6a43 Assume that this is true. Then by removing the equality
yj=y2 from 4 we get the quasiidentity

4 = ¥ Y, (5.10)
where &'’ already does not contain the variable yJ Show that (5.10) is
equivalent to (5.9).

Let quasiidentity (5.9) be satisfied in the automaton (A,T,B)eX
and under the homomorphism p the antecedent &'’ of quasiidentity (5.10)
is valid. Assuming ¥#=%“ we make true the antecedent & for (5.9). Thus
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its corollary y7=yﬁ. which is also a corollary for (5.10), is true. The
converse case is evident.

Since yJ is not contained in #’’ and does not coincide with Yy
then yﬁ can be any element of B. Since |B|>1, we get a contradiction
with the equality yT=y7. By this the proof of the theorem for the case
of pure automata is completed.

Proof for the case of linear automata. As in the previous case we
show that each quasiidentity valid in ¥ is equivalent to a quasiidentity

without variables of Y. Each quasiidentity can be written in the form

d Ad_ 5 u=v (5.11)
1772

where Al does not contain variables of Y, while Az contains such
variables.

Recall that ?=(ZoKF1,F,Z*KF@KY) is a free linear automaton and
consider the following cases:

1. The equality u=v does not contain elements of Y. Write out all

the components of the conjunction of 42:

n

1§1A1‘yl=v1

n

i§:17‘siyl=v

n

lgzl;\mlyl:\'m
where vk=§z"vkl, k=1,...,m, ZlEZ, vkleKF, AjkeK, y‘eY. Denote

n
=y’ j=1,...,m. Let the elements ', ...,y  among the elements
?t“yi vy J=l....m Le e R v, g
y;,...,y',...,y; of the vector space KY set up the maximal system of
-

linearly independent vectors.

Thus we get a certain linear system
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Transforming this system on the elements

=, VvV _t..
1 1

11

Vs

Lo v
1s s

=0 A" S [ 2 v
m-s1 1 m-ss s

we obtain

(5.12)

Conjunction of all the equalities of the system (5.12) denote by A; and

show that the quasiidentity

is equivalent to (5.11).

A4 A’ 3 u=v
172

(5.13)

Take an arbitrary automaton (A,T,B) for which

the quasiidentity (5.13) is satisfied, and a homomorphism p:¥% — (A,T',B)

for which the antecedent of the quasiidentity (5.11) is true,

that is

ATAAg is valid. By virtue of the validity of Ag the following system of

equalities is satisfied

Besides,

and, due to (5.14),

the equalities

K
]ys+1—a ce .

the equalities

» M_ =
Yy L ny’\l_vp
1=1
M n
y< _z hsly7=vg
1=1
B M
ym =Z Amly7= m
1=1
K
llyl * +alsy
M
m—slyl * '+am

(5.14)

(5.15)
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..................... (5.16)

are also satisfied. But in this case in (A,I',B) all the equalities in-
volved in 4; and the whole antecedent dlAA; of the formula (5.13) are
true, hence the equality u=v" which is a corollary for (5.11) is also
true. Thus since quasiidentity (5.11) holds on (A,I',B) then (5.13) is
satisfied.

Conversely, let (5.11) be satisfied in (A,I',B). The system of
vectors y;,...,y; can be complemented arbitrarily to the basis Y’ of the
linear space KY. Take the arbitrary homomorphism u:¥ — (A,I',B) for
which antecedent (5.13) is true. Since in (5.13) variables of Y are not
contained, then only the values of the homomorphism p on the variables
of X and Z are essential, while on the variables of Y it can be defined
arbitrarily. Define the mapping v:Y —> B by the rule: y;v=
VT“..,y;v=vg. Define v on the remaining basic elements of Y’ in an
arbitrary way. Now 1let wus proceed from the new homomorphism
n:¥ — (A, T,B) which differs from p only on the variables of Y accor-
ding to the given rule. Prove that in this ?ase quﬂg is true, that is,
the antecedent (5.11) is true. Really, AT is common for antecedents
(5.11) and (5.13). Further, take from 42 an arbitrary component of the

conjunction

Vo=
i

"™~z

Ajlyl=yj, J=1,...m
1
and show that the equality
» n ,
m_
vJ =Y AJ‘yT
1=1

takes place. Consider two cases.

’

1

1.1) j=s. By the definition of u’, in this case y} coincides

’ v n
with VT . Since p' is a homomorphism, then y}“ =VT =y Ajlyf .
1=1

1.2) s<j=m. Let j=s+k. Then we have the equality
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y y 4 ’
yj—ak1y1+" aksys

At the same time the component of the conjunction vj=ak1vl+...+ocksvs is
involved in the antecedent &; and therefore, the equality

vz VM ve W
3 k11

ks s
is satisfied. The latter equality does not contain variables of Y, the-
refore, p can be replaced by p’ in it

T M
11”1 +"'+aksys '

e s o=
J ki1 ks s

Since y3=l§1A1Jyl=akly;+...+aksy;, then using p’ at the left and at the
right we get the required equality.

Thus, in Ag, all the equalities are true and the antecedent
ﬂ?kﬁg, is satisfied. Therefore, u”;v“: and u =v“, since u, v does not
contain variables of Y. Thus, (5.13) is satisfied in (A,T,B).

2. The equality u=v contains variables of Y. In this case (5.11)

can be written in the form

n
4=41A£2 > u=l§1Alyl=y (5.17)
Consider the following two possibilities:

2.1) y' is involved in the linear hull of the vectors y;,...,y;.
Then y’=a1y;+...+asy;. As in the case of pure automata, it can be proved
that the quasiidentity 4 = usa v o+ Vo is equivalent to (5.17) and
we come to the case 1.

2.2) y' 1is not involved in the linear hull of the vectors
y;,...,y;. Let (A,I',B), |B|>1 be an automaton and let u:¥ — (A,I,B) be
an arbitrary homomorphism for which the antecedent (5.17) is satisfied.

Then, the equalities
eyt (5.18)

take place. The corollary u“=y'u also has to be satisfied. Since y’' is

not contained in the linear hull of the vectors y;....,y;, then it is

possible to define the homomorphism p’ coinciding with p on the variab-
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les of XuZu(y;,....y;) and different from p on t?e variable y'. (It can
be done, since |B|>1). Then A? coincides with df and dg with Ag: since
(5.18) is satisfied under replacement of p by p’. Hence, under the homo-
morphism p’ the antecedent (5.17) and the corollary “,=y’“, are satis-
fied. Besides, u“’=u“ and u“=y'u. On the other hand, by the construc-
tion, y'“*y’“.. The obtained contradiction implies that case 2.2 cannot
take place. The theorem is proved.

From the proof of the theorem follows that if the quasivariety ¥
considered in the theorem is defined by the finite set of quasiidenti-
ties, then it can be also defined by the finite set of
quasiidentities, which do not contain variables of Y.

4.5.4. Quasivarieties of automata and quasivarieties of

semigroups

First introduce the following operators on the classes of automa-

ta: if @ is a certain class of automata, then

o Oe denotes the result of the anointment to @ of a unit automaton;
- SO, as usual, is the class of all the subautomata of automata of 6;

- (% denotes the class of all the filtered products of automata of 6.

It is possible to prove ([47]) that the least quasivariety gene-
rated by the class of automata 6 is SCwae. Along with mentioned above

introduce the saturation operators V, V’:

Ve is the class consisting of all the automata being the epimorphic
in inputs images and coimages of the automata of 6;
- V'@ is the class consisting of all the automata (A,I',B) containing

certain subautomaton (A,F,Bo) from 6.

It is immediately verified that if 6 is a quasivariety of automa-
ta, then V@ is a quasivariety saturated in inputs and V’6 is saturated
in outputs. Thus, the class VSCwBe is a quasivariety saturated in inputs
generated by the class 6, and the class V'SCwee is a quasivariety satu-
rated in outputs generated by the class 6.

Similarly, as it was done for the linear representations ([90]),

define the relation between the quasivarieties of automata and of semi-
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-

groups. If X is a class of semigroup automata, then denote by ¥ a class
of semigroups I' for which there exists an exact automaton (A,I',B) from

X.

>

Theorem 5.6. If X is a quasivariety of automata, then X is a qua-

sivariety of semigroups.
Proof. A unit automaton (0,1,0) belongs to X¥. Therefore, a one-

p
element semigroup belongs to the class X.
-

Let I'eX¥, and £ be a subsemigroup in I'. Then there exists an exact
automaton (A,I',B)eX. The automaton (A,Z,B) belongs to ¥ as a subautoma-

ton of the automaton from the quasivariety ¥. It is also exact, there-
> >

fore, Zc¥, hence, the class ¥ is hereditary.

Prove the closeness of ¥ by filtered products. Take a system of
>

the semigroups FieI, iel, the filter D over I and set up the filtered

product nl}/ﬁ. By the condition, for each iel there exists the exact
1€1
automaton gl=(Al,F1,Bi)eI. Then, &=y HI/D=( n Ai/pl, m Fx/pz' m Bi/p3)=
o 1€1 1€1 1€1 1€1
(A,T',B) belongs to ¥ since ¥ is a quasivariety. The semigroup n Fl/p2
1€1
coincides with |y Fl/D and it is a semigroup of the input signals for the
1€1
automaton @ of ¥. Verify that the automaton @ is exact.

Together with the automaton & consider the automaton

A =( n Al/pl,F, Il Bl/pa) where I'= |1 Fl and the operations o and * are
1€1 1€1 _ 1€1 _
defined by the rule: if ae ] A!/pl, ¥ is an element of T, ¥ is its image
1€
in F/pz, then

acy=acy, asy=asy. (5.19)

Introduce the congruence t on TI':

vy, e 1(71,72)550, (5.20)

where 1(71,72)=(ieI|(aowi(i)=a072(i))A(a*yl(i)=a*72(i)) for all aeAl}
Verify that Tt satisfies the following two conditions:

1) T coincides with the kernel of the automaton ﬁ’;
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2) P,CT; if all the automata Hl, iel are exact, then T=p,.
This means that the automaton & is an exact one.
1) Denote the kernel of the automaton &’ by p’ and first show
that Tcp’. Let 711:72. It is necessary to show that 71p’72, that is, for
any element a enAl/p1=A the equalities a071=a°72 and a*71=a'12 hold. By

the definition of the automaton ﬁ’, 507=Eo;=a07 and 5~1=a*7. Thus, we

must check that the equalities aey =acy, and a~71=a‘72 hold for any aeA.

By the definition of P, the equality Efa"'a’z implies that the
set J1 of the elements i, for which (aoarl)(i)=(a072)(i), belongs to D.

Similarly, the equality Efa—';z implies that the set J2 of the ele-
ments i, for which (a'wl)(i)=(a’72)(i), belongs to D. Thus, it is neces-
sary to show that for each a both J1 and J2 belong to D. The condition
7,7, implies, by (5.20), that the set 1(71.72) belongs to D. It is
clear that 1(71.72)=J1nJ2 Hence, 1(2'1,72)CJ1 and 1(71,72)cJ2 and since
D is a filter, then JleiD and JzefD what was required.

Conversely, show that if 71 and 72 are not in the relation =,
then they are not in the relation p’. Let 1(71,72)69 and 151\1(71,72).
Then in A1 can be found the element a, for which a1°71(1)$a1°72(i) or

al"(l(i#al"yz(i). Take such element ae ]'[Al that a(i)=a‘ for all
1€1

1&1\1(71,72). For this element either 5071#;072 or 5'71=§*72 (a2 is an

image of the element a in nAi/pl). Indeed, by the construction of a all
1€I
i for which the equalities

(aey ) (i)=(aey_ ) (i)=a(i)oey (i)=a(i)ey_(i)
1 2 1 2 (521)
(a'wl)(i)=(a'72)(i)=a(i)'71('1)=a(i)'72(i)

hold, lie in I(y.7,). If acy =acy, and a*y,=a%7,, then the set of all
i, for which the equalities (5.21) are satisfied, belongs to D. Then
1(71,72) also belongs to D that contradicts the assertion. Thus, either
5071#_1»72 or 5*71*5172, that is, 71 and 72 are not in the relation p’.

2) Show that pcT. Let LA that is Jp =('1|71('1)=72(i)}€D. It
2
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is evident that Jp CI(71,72). Since D is a filter, then 1(71.72) also
2
belongs to D. Therefore, ¥,

Let now all the automata ﬂl be exact and v, The latter imp-
lies that 1(71,72) belongs to D. If iel(yl,vz), then for any element a
of A1 the equalities aoyl(i)=aoyz(i) and a-71(i)=a'72(i) are satisfied.
Since the automaton H: is exact, then 71(1)=72(i). Hence,

Jp231(71,72)eD. Therefore, Jp2 also belongs to D, that is 71p272. Thus,

TP, and =P, This proves that the automaton fl is exact and that ¥ is
closed with respect to the filtered products. The theorem is proved.
Theorem 5.6 assigns to each quasivariety of automata a quasivari-

ety of semigroups. The following statement solves the converse problem.

Theorem 5.7. Let J) be a quasivariety of semigroups, fo be a class
of such exact automata (A,I',B) that TI'el), and let ¥ be a quasivariety of

automata generated by the class X . Then

Proof. Let Te€)). Then we have the exact regular automaton
(Krl.F,KF). This automaton belongs to the class IO and hence, to the

- -

quasivariety X. By virtue of its exactness, I'eX. Thus, JcX.

-»

Conversely, let I'eX, and (A,I',B) be an exact automaton belonging
to the class I=SC¢IO; it is a subautomaton of certain automaton
(A,T,,B) in the class c“’io By the definition of the operator C? we
have that (A1'r1'B1) is a filtered product of the automata of I&

(AI,FI,Bl)=aE§A1a,Fla,Bla)/1L where D is a filter over I. Since Flaeﬂ

for all «ael, then the filtered product F1= n Fla/D also belongs to the
aEI

quasivariety J). The subsemigroup I' of the semigroup r1 also belongs to J

-

and, therefore, XcJ). The theorem is proved.

Note that, for example, for linear automata there may not exist

-

such a variety X for which ¥ coincides with the defined quasivariety of
semigroups J).

The system of quasivarieties of automata forms a semigroup with
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respect to the multiplication of the classes of automata. This semigroup
has not been studied yet. The theory of quasivarieties of biautomata has

not been considered too.
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CHAPTER 5
AUTOMATA MODEL OF DATABASE

The present chapter is in great extend of expository, survey
character and some of the problems are only outlined. For detailed

information we refer to the book [86].
5.1. *-automata
5.1.1. *-automata and databases

Our aim in this Chapter is to introduce a class of algebraic
structures which may serve as adequate algebraic models of real data-
bases. This will be done in several successive steps.

In the first instance, a database is treated as a *-automaton of
the form

A=(F,Q,R),

where F is a set of states, Q,R are algebras of queries and replies res-
pectively, both of the same similarity type. Moreover, Q and R are sup-
posed to be algebras of certain variety ¥£. This variety which a priori
is arbitrary, is associated with the fixed logical tools, allowing to
determine a query and the reply to it. We shall specify the choice of £
later, but at the moment it is assumed to be arbitrary. Let us denote by
f*q the reply to the query q in a given state f. It is supposed that the
mapping }:Q —> R defined by the formula ;(q)=f*q is a homomorphism of
algebras. This natural assumption means merely that the structure of
every reply reflects that of the corresponding query.

Since the concept of #*-automaton is a framework of database
model, the enriching of latter is withheld momentary in order to consi-
der *-automata in more detail.

In each such automaton (F,Q,R) algebra of queries Q and and alge-

bra of replies R lie in one and the same variety £. In the =-automata
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considered earlier (Chapter 1) algebra of states and algebra of input
signals belonged to one variety of algebras. We could combine both the
approaches swapping the roles of F and Q. However, taking into account
database semantics, it will be more convenient to use the approach, con-
sidered in the current Section. Let us consider some generalizations of
it.

Let £ be a category. *-automaton in £ is a triplet (F,Q,R) where

Q,R are objects of ¥, and F is a set with the representation
~:F — Hom(Q,R).

F is treated as a set of states, Q and R as objects of queries and rep-
lies to queries. Morphism }:Q —> R corresponds to each feF. We speak
about =*-automaton, although there may be no operation *. The operation *
appears if £ is a variety of one-sorted algebras £. It is defined by the

Tule:
f*q=f(q), feF, qeQ.

Further let R be an arbitrary algebra of ¥, and F an arbitrary
set. Construct the specific *—automaton Atm(F,R). Take as Q the Carte-
sian power RF, which is the algebra of £ and define the representation
~:F — Hom(Q,R) by the rule: for each feF and qu=RF homomorphism
}:Q —> R is defined by }(q)=q(f). Verify that for each feF element
}:Q — R is actually the homomorphism of algebras.

Let w be n-ary operatlon in the varlety £ and - d be the
elements of Q. The equality f(q -q w) f(q ). f(q Jw follows directly

from definitions. Indeed,
f(ql...qnw)=(q1...qnw)(f)=q1(f)...qn(f)w=f(q1)...f(qn)w.

Show that any #*-automaton (F,Q,R) can be naturally defined by the const-
ructed Atm(F,R).

Proposition 1.1. Let #=(F,Q,R) be a *-automaton. Define a mapping
w:Q = RF assuming:

" (f)=f+q, feF, qeqQ.
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Then p is a homomorphism in £ and there is one-to-one correspondence

between the operations of the kind * and homomorphisms of the kind .

Proof. Verify first that p is a homomorphism in £. In notations
above we must check that (ql...qnw)“=q‘:...q‘:w. Really, for each feF
holds

(ql‘ . .qnw)”(f)=f*q1. : .qnw=f(q1. . .qnw)=}(q1). . .}(qn)w,

o qoO)=d (). .. (u=(rrq)). . frq Jo=r(q).. f(q )o.

Conversely, given homomorphism u:Q — RF define operation
*»FxQ — R assuming f*q=q“(f). Show that for each feF the mapping
f:Q = R is a homomorphism in £. We have:

f(ql. s .qnw)=f*q1. ; .qnw=(q1. . ,qnw)”(f)=q‘:. . .q‘:w(f)=
d (£)... L (Flu=(£rq,). .. f2q Ju=f(q,). . f(q )o.

The considered assignment is obviously bijective.

Thus, defining of *-automaton (F,Q,R) is equivalent to defining
of the homomorphism pu:Q — R This remark as well as the next one in
fact was mentioned earlier: the set of states F can be treated as the
set of input signals and the algebra Q can be regarded as the algebra of
states.

Let A=(F,Q,R) be a *-automaton. For every feF the kernel of the
homomorphism ;‘:Q —> R is denoted by Kerf. This is the kernel equivalence
on Q. The kernel of =»-automaton & is the intersection of all Kerf and it
is denoted by Kerd. If Kerd is trivial then # is called an exact =*-
automaton. Therefore, *-automaton # is exact if and only if for any pair
of distinct queries q,,9, of Q there exists some state feF such that
f*q1==f~q2

The following remark is easily verified. Let #=(F,Q,R) be a =*-
automaton and v:Q — Q' an epimorphism of algebras in £, such that
KervcKer@. Then there is *-automaton #’'=(F,Q’,R) with the operation:
f*q’ =f*q, where feF, q'=qveQ', geQ. This definition of operation * in &’
is correct and @’ is really =-automaton. In particular, if Q’=Q/Ker# and

v:Q —> Q' is the natural homomorphism then #A’=(F,Q’,R) is the exact =*-
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automaton defined by 4.

F
Proposition 1.2. Let @=(F,Q,R) be a »-automaton and p:Q —> R the

corresponding homomorphism. Then Kerp=Kerd,
Proof. If qlKeruqz, then qT=qg and for each feF holds
=" (F)=a"(£)=
f'q1 ql(f) qz(f) f*qz
Thus qlKerﬂqz. Conversely, if q, and qa, act in A in the same way then
for each feF holds

=f*q = =a£): o=
qT(f)-f q, f'q2 qz(f), q qg.

1

5.1.2. Dynamic *-automata

A *-automaton A=(F,Q,R) is called a dynamic *-automaton if there
is a semigroup I acting on the set of states F and on the algebra of
queries Q. We assume that the action is right-hand on F and left-hand on

Q. The elements of £ act on Q as endomorphisms and the equality
froq=(foo)*q, gqeQ, oeZX

has to be satisfied.

The latter equality means that the query oq in the state f produ-
ces the same reply as the query q in the state foo. In this case queries
are of dynamic character, i.e. various changes of states can be reflec-
ted in queries. We shall see later that the concept of dynamic =*-
automaton is associated with the definition of dynamic database.

Consider the example of dynamic #*-automaton. Take Atm(F,R)=
(F,QF,R). Assume that X is an arbitrary semigroup with the given repre-
sentation as a semigroup of transformations of F. Define the action of I

on Q=RF For any oeZ, §ERF set

(0€) (F)=€(fo0).
Then T acts in R" as a semigroup of endomorphisms. Indeed, for feF and

El,-..,EneRF holds:
C(€,. . £ W) (£)=(E .. .€ w) (fo0)=E (fo).. € (foo)u=

(0&1)(f)..‘(cﬁn)(f)w=0£1...0€nw(f).
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It’s left to note that feof€=(foo)*€. Really,
f20€=0€ (f)=E(fo0)=(fo0)*E.

Let #=(F,Q,R) be a dynamic *-automaton with semigroup =. Then the

»-automaton Atm(F,R) has the following universal property:

Proposition 1.3. Homomorphism u:Q —> R is coordinated with the
action of £ in Q and RF. Each dynamic *-automaton is defined in such a

way.
Proof. We must check that (0q)“=0q“ For any feF holds
(cq)“(f)=f*¢q=(fo¢)*q=q“(fec)=¢q“(f).

Let now semiautomaton (F,X), algebras Q and R of £ and homomor-
phism p:Q —> RF be given. Let X acts on Q as a semigroup of automor-
phisms and p is coordinated with the action of Z. Assume f'q=q“(f). It
is easy to verify that this defines dynamic *-automaton (F,Q,R).

Note finally that certain semigroup automaton corresponds to dy-
namic *-automaton (F,Q,R) with the semigroup Z£. Define the multiplica-
tion on S=ZxQ by the rule (o,gq)(c’,q’ )= (00’,0q’'). Then it follows that

S is a semigroup. For s=(o,q) and feF let
fos=fo0; f*s=f*c.

These operations define on the triplet (F,S,R) the structure of semi-

group automaton.
5.2. Database scheme, Halmos algebras
5.2.1. Database scheme

In the previous Section we had considered the first step of data-
base model definition, having discussed its *-automaton framework.
Henceforth, we should accomplish the following program. Actually, a
database must be founded on some data algebra D that is many-sorted in
general: D=(D1’ iel'), where I' is the set of sorts, and Dl are the
domains of D. Moreover, D is connected with certain variety 6 which rea-
lizes the idea of data type. This leads to concept of database scheme,

the emphasis of this item. Then one has to make the choice of a variety
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£ of algebras of replies and queries. Finally, with each De® will be
associated definite universal #*-automaton AtmD=(?D,U,VD) and database
model is defined via the representation of *-automata.

A database scheme consists of:

a) a set I' of sorts (interpreted also as names of domains),

b) a set 2 of symbols of basic operations on data (the signature).
Every weQl has a definite type r=(11,...,1n; 3, 1k,JeF,

c) a variety @ of Q-algebras D=(Dl,ier) (data algebras). Each w of
the type t=(11,...,1n;J) defines an operation

(«\:D1 X"'XD1 d DJ.
1 n

d) a set X of varlables (or names of variables) together with a
function n:X —> I'. The splitting n gives rise to a family of sets,
or complex, X=(Xl.1eF). We assume that no X‘ is void,

e) a set & of symbols of relations, which are realized in algebras
of 6. Every ¢e® has a definite type T=(11,...,1n), 1k€F.
Realization (interpretation) is made by some function f defined

on the set ®, which for each ¢e® of the type T=(11,...,in) chooses some

subset in Dl x...xDl . The function f will be also treated as a state of
1 n

database. Any realization f allows to speak about a model (D,®,f) in the
sense as this notion is used in mathematical logic.

The items a)-d) make up the main part of the scheme. In what fol-
lows, let ¥=(I',Q,6,X,n,®,A) be a fixed database scheme.

5.2.2. Halmos algebras

In this item we specify the choice of the variety £. The algebras
Q and R are connected with a certain query language. In relational data-
bases queries are usually written by means of language of first order
logic and any query is represented as a class of equivalent formulas.
Therefore, one must choose the appropriate algebraization of first order
calculus. If we proceed from the pure first order calculus, both P and Q
may be chosen to be Halmos algebras (they are usually called polyadic),

though it is possible to start also from cylindric algebras or some
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other algebraic equivalent of first order logic. These algebras are in
the same relation to first order logic as Boolean algebras to proposi-
tional calculus. However, it is very significant for applications to
develop the extended notion of « specialized Halmos algebra, which is
connected with an arbitrary but fixed variety of algebras 6, where 6
plays the role of an abstract data type in programming. Hence, we will
take the algebraic counterpart of that version of first order logic
which is oriented to @ (i.e. enriched by 6-terms).

Specialized Halmos algebras are defined relatively to the main
part of the scheme. Let w=(wl,1er) be a free algebra in 6 generated by
the complex X.

Consider Boolean algebra H. A mapping 3:H — H is called an exis-
tential quantifier of the Boolean algebra H if the following three con-
ditions are fulfilled:

1) 30=0,
2) h<3h,
3) 3(h1A3h2)=3h1A3hz
Here O denotes zero element in H, and hl,hz,heH.

Let H be a Boolean algebra and YcX. H is called a quantifier
algebra over X, if an existential quantifier 3(Y) corresponds to each
subset YcX and holds

1) 3(2)h=h,
2) 3(Y1uY2)h=3(Y1)3(Y2)h, heH.

Suppose further, that the semigroup S=EndW acts on quantifier
algebra H as a semigroup of Boolean endomorphisms. There are two more
axioms controlling the interaction of quantifiers with these endomor-
phisms (here, heH, o, seEndW):

a«) o3(Y)=s3(Y)h,
if o and s are two elements of S, which act in the same way on those
variables of X, which do not belong to the subset Y.

) 3(Y)oh=c3(c 'Y)h,
if o is one-to-one on a_l(Y), and, for all xeX with ¢(x)gY, no variable

occurring in o(x) belongs to Y.
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A quantifier algebra H over X with acting semigroup EndW is
called Halmos (polyadic) algebra in the given scheme if the conditions
a) and B) are fulfilled.

Halmos algebras in the given scheme are also called specialized
Halmos algebras. Since all the enumerated axioms are the identities,
these algebras form a variety.

Consider the algebras of queries and replies as the examples of
specialized Halmos algebras. Remember that we are working in the fixed
scheme ¥. It was already noted that queries in relational databases are
written in terms of such version of first order calculus, which takes
into account the variety 6. Define elementary formulas of first order
language as ones of the form qp(wl,....wn), where ¢ed has the type

=(i ,...,1 ) and w eW .
1 n kL
Arbitrary formulas are constructed from elementary ones in a

standard way, using Boolean operations Vv,A, and quantifiers of the form
3x, xeX. Denote by 5 the set of all formulas. Fs can be regarded as a
free algebra over the set of elementary formulas, in respect to Boolean
operations and existential quantifiers of the form 3x, xe€X. We should
define interpretations of the formulas of 3.

To every algebra DeB there corresponds a certain Halmos algebra
that is a derived structure of D. It is defined as follows.

The semigroup EndW naturally acts in Hom(W,D) - the set of homo-
morphisms of W into D. Its power set !mD is a Boolean algebra with res-
pect to the set-theoretic operations. Let, further, A be a subset in
Hom(W,D). Setting pe3(Y)A, if there exists veA such that p(x)=v(x) for
all xeY, we get the mapping 3(Y):me = !]ILD. It is easy to understand that
these 3(Y) are the existential quantifiers in the sense of the defini-
tion above. In particular, in the Boolean algebra MID act existential
quantifiers of the form 3x (and dually, universal quantifiers Vx).

For any AemD, seEndW assume that pesA if puseA. Then the semigroup
S=End¥ acts in UII:D as a semigroup of endomorphisms of Boolean algebra CIIID.
Moreover, one can verify that WD with S turns out to be a Halmos

algebra.



245

Now, we might go back to interpretation of formulas of &. If f is
a state of symbols of relations of & in D then the interpretation, i.e.

mapping

18 = W,
is defined as follows.
Let u=¢(w1,...,wn) be an elementary formula. Suppose that ue?(u)
if a sequence wT,...,wﬁ belongs to the set f(g)c Dix...xDl The map-

1 n
ping f is defined for elementary formulas and since P is a free algebra
over the set of elementary formulas, it is extended up to the homomor-
phism of algebras.

In this case, if formula u is treated as a notation of a query
then f(u) is considered as the reply to the query u. One and the same
reply can correspond to different notations of a query. Therefore, two
formulas u and v are defined to be equivalent in 3 if for any state f
holds f(u)=f(v). Denote the given equivalence on 3 by p.

We say that by the definition a query is a class of its equiva-
lent notations and thus the universal set of queries is the set U=$/p.

It was shown that the algebra of replies mD have the structure of
Halmos algebra. Our next goal is to provide U by the same structure.

Boolean operations and existential quantifiers of the form 3x
are defined on the set of formulas & in the usual way. We ought to
define action on & of the quantifiers of the form 3(Y) and of the ele-
ments seEndW. We define these actions as many-valued operations on 5,
transformed to one-valued ones in 5/p.

First, introduce the notion of a support of a formula ued.
Roughly speaking, one can determine a finite subset of variables YocX to
be a support of the formula ued, if u=u(x1,..,xn), xleYo. In other
words, it is the set of variables, which are included in the notation of
the formula u. One can verify, that if Yo is a support of an element u
and f is a state of the model (D,®,f) then in ﬂHD the equality 3(Y0)f(u)=
f(u) is fulfilled.

For arbitrary YcX the set 3(Y)u is defined as follows. Let an
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element v belong to 3(Y)u if there exists a support Yo of u such that

v=3xl...3x u, where X oo a X, are the elements of YnY0 taken in the
n

definite order.

Define inductively a set su, seEndW. Take u=w(w1,.,,wn). Then set
su=¢(sw1,..,swnL
Let su and sv be defined for u,v and all se€S. Assume:
s(uvv)=(uo | uo=u'vv', u’ esu, V’'esv},
s(u)={u’ | u’ =u", u"esu},
s(u/\v)={u0 | u0=u’Av’, u’esu, v’esv}.

It remains to define s3xu. Let Y0 be a support of u. According to s,
consider a set X of elements ceEndW such that oy=sy, for y=#x, erO; oxeX
and does not belong to supports of the elements oy, y#X, yEYO. Let
vesdxu if there exists some oe€X and v=3oxu’, u’e€ou. Thus, all su for ued

and se€EndW are defined.

Proposition 2.1. [81] Let upv, u’esu, v’ esv hold for equivalence
p of 3. Then wpv’. Similarly, if u’e€3(Y)u and v'e3l(Y)v then upv implies
u' pv’.

Hence, all the operations 3(Y) and s are correctly defined and
one-valued on the quotient set U=$/p. Moreover, evéry f induces a homo-
morphism }:U —> anD , so it follows that U turns out to be a Halmos
algebra.

The support of an element can be defined also for an arbitrary
Halmos algebra H. Namely, we say that YcX is a support of heH if 3(Y)h=h
holds. The locally finite part of H is a subalgebra consisting of all
the elements heH with the finite support. U is always locally finite
Halmos algebra while UHD is not. The locally f}nite part of ﬂHD is denoted
by VD' The restriction of the homomorphism f:U — 9HD gives rise to a

~

homomorphism f:U — VD'
Remark. A few words on kernels of homomorphisms of Halmos algeb-
ras. If f:H —> H' is a homomorphism of Halmos algebras then its kernel

can be considered as inverse image of unit or inverse image of zero. In
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the first case we get a filter and in the second one an ideal.

A subset T of a Halmos algebra H is called a filter if it is
closed with respect to products of elements, action of a universal quan-
tifiers and for aeT, beH holds avbeT. Dually, a subset R of H is called
an ideal if it is closed with respect to sums of elements, action of an
existential quantifiers and for aeR, beH holds aAbeR.

It is easy to show that the filter associated as a kernel with
the homomorphism }:U - VD is the elementary theory (see [23]) of the
model (D,®,f).

5.2.3. Equality in Halmos algebras

Equality in a Halmos algebra H in a given scheme is a function
which assigns to each pair of elements w and w' of one and the same wv
iel', an element d(w,w’) of H. This function has to satisfy some condi-
tions, which imitate the axioms of usual equality. Namely,

1) sd(w,w’ )=d(sw,sw’), seEndW;

2) d(w,w)=1 for each weWﬁ

3) d(wl,w;)A...Ad(wn,w;)sd(wl...wnw,w;...w;w), w is the operation
from Q of the corresponding type;

4) s* had(w ,w )=s* h, where xeX, heH, w ,w eW , if n(x)=i and s is
Hl 12w2 12 1 w
the endomorphism of W which takes x into w and does not change

y#X.

It is shown [86], [48] that the equality on H can be defined in
the unique way. Moreover, it can be proved that each Halmos algebra in
the given scheme is embedded into the Halmos algebra with the equality.

In the Halmos algebras of the kind ﬂnD the equality d is defined
by the rule: an element peHom(W,D) belongs to d(wl,wz) if wf=wg It is

obvious that all such elements d(wl,wz) lie in the subalgebra VD'
5.3. Database model
5.3.1. Universal database

At the next step of the definition of an abstract database we

shall associate a universal *-automation
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AtmD=(?D,U,VD)
with every Ded.

We have already constructed the algebras U and VD' The set of
states ?D of AtmD might be defined in an invariant way to be the set of
homomorphisms Hom(U,VD). However, we prefer to consider the set ?ﬂ as
the set of states f - interpretations of & in D i.e. functions which

realize every ¢ed of type T=(11""'in) as a subset of D1 x...xD
1 n
Boolean operations on such f are defined componentwise that makes ?D to

be a Boolean algebra. To complete the construction of AtmD, we define
the operation * by the rule
f*u=f(u).
The triplet AtmD=(?®,U,VD) is obviously a #*-automaton, which
plays the role of universal database in the given scheme.
Consider a functor property of AtmD=(?D,U,Vﬂ). Every homomorphism

8:D —> D’ induces a mapping

3:Hom(W,D) — Hom(W,D’)

defined by the rule: if peHom(W,D) then u6=u5. In its turn & implies a

homomorphism of Boolean algebras

8,: me, - UT(D.

Proposition 3.1. [81] If 6:D — D’ is a surjective homomorphism

then & is also a sur jection and BJUBD, —*ﬂHD IS a monomorphism of Halmos

algebras.

The homomorphism & induces also a monomorphism of Boolean algeb-

ras 6':?D, - 9D. It is easy to verify that
I}

(f*u) .=(5.f)*u. feF,, uel.

o
Thus, the surjection 8:D —> D’ induces an automata monomorphism:
8, AtmD’ —> AtmD,

identical on U.
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5.3.2. Automata model of database

Let #A=(F,Q,R) be an abstract *-automaton in the given scheme ¢
and AtmD=(?D,U,VD) be an universal automaton in the given scheme.
The final step in the algebraic definition of a database presents

the latter as a representation
p: (F,Q,R) — AtmD

of an abstract *-automaton into the universal one. More specifically, a
database over the scheme ¥ is a triplet p=(«,B,7), where
o is a mapping F — 99 which transforms the abstract states into real
ones from ?D "
B is a homomorphism U — Q which connects the abstract queries with
formulas,
¥ is a homomorphism R —> VD which associates a relation from VD with
any abstract reply,

and the following axiom holds:
(f'uﬁ)7=fa*u.

Consider the particular case of the definition. In the automaton
AtmD=(?D,U,VD) take a subautomaton (F,U,R) where F is a subset of 9D and
R is a subalgebra of VD' Define a congruence T on U by the rule: u Ty,
if for every feF holds f'u1= f'uz. So we obtain a database (F,Q,R) where
Q=U/t, B is the natural homomorphism U — U/t, and «,y are the inclu-
sions. Such databases with compressed set of queries will be called spe-
cific databases.

One more point f) is usually added to the database scheme a)-e):

f) a set of axioms A which are satisfied for all admittable states.

Then each state feF has to satisfy the axioms of A, i.e. f@*u=l,

feF, ueA hold true.

Henceforth,
A=(F,Q,R;U,D,p)

will denote database in the scheme ¢, associated with automaton

#=(F,Q,R), algebra D and representation p. Algebra U presents the scheme
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# in the notation of U.

We have a precise definition of a database as an algebraic struc-
ture. Consequently, we may naturally define homomorphisms, isomorphisms
and automorphisms of databases. This allows us to define accurately the
important concept of informational equivalence of two databases. More-
over, various constructions for databases (a wreath product, for
example) can be defined, and the problem of decomposition of a database
may be considered. We provide also a classification of databases with a
fixed data algebra on the ground of Galois theory of databases [85],
[86]. Here a group G is considered to be the group of automorphisms of

data algebra D.
5.3.3 Dynamic databases

Dynamic databases are associated with dynamic *-automata. A semi-
group X which regulates updating of states must be added to the =*-
automaton constituting the database. Variation of states is taken into
account also in the notation of queries.

In order to pass from dynamic *-automaton to dynamic database the
universal dynamic *-automaton has to be defined. So we must define a
dynamic Halmos algebra in the given scheme.

Let a semigroup Z act on the set ® of symbols of relations pre-
serving the type of a relation, i.e. tT(op)=t(p), 0€X, ¢ped. It is proved
that the action of £ on ¢ is uniéuely extended to the representation of
the semigroup £ as the semigroup of endomorphisms of the algebra U. This
means that U becomes a dynamic Halmos algebra with respect to Z.

In a general case it is not assumed that ¥ acts on ® and we
expand the set of relations. Suppose that ¥ is the semigroup with the
unit and consider a set Z& of the formal expressions of the kind op,
oeX, ¢eb. Identifying ¢ with 1¢, we get ®cZ®. The set Z® is considered
as a new set of symbols of relations where <T(op)=t(p). Setting
ogo(0’¢)=00’ ¢ we have the free left action of the semigroup T on the set
Z9. The transition from & to X® changes the database scheme. Therefore,
the universal algebra of queries is also transformed into a new one (de-

noted by UZ) which is a Z-dynamic Halmos algebra, as well as arises the
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new set of states ?%. However, the algebra of replies VD is not changed.
An action of the semigroup X in %% is defined by the rule:

foo (o’ @)=f(o0’p). So we come to *-automaton
b
(#5305, Vg),

but it is not yet quite what we are looking for. The desired universal
dynamic *-automaton AtmD arises if we replace the semigroup T by a free
semigroup © over a set of generators Y and adjoin the unit element.

The representation p:# — AtmD of an abstract dynamic Z-automaton
A=(F,Q,R) in the dynamic 6G-automaton Atm®=(9g,U6,VD) is the tuple
p=(a,B,7,m) where the first three components are defined as above and

n:© —> % is a homomorphism of monoids subject to following conditions:
(fovn)a=faoa; (au)B=¢nuB, feF, oe6, ueU.

A dynamic database is a dynamic #*-automaton together with its
representation in the universal dynamic *-automaton AtmD, Deo.

The transition to the free semigroup 6 allows to specify the
notation of a dynamic query.

Henceforth we confine the subject only by static databases.
5.4. Homomorphisms of databases
5.4.1. Homomorphisms in the fixed scheme

First of all recall that each homomorphism of algebras &:D’ —> D

generates two homomorphisms of Boolean algebras 6*:VD i VD' and
: -

5_.?D ?D,.

injection of Halmos algebras. Both 8  induce injection of automata:

If the initial 8 is a surjection, then 6.:VD — VD' is the

8, AtmD —> AtmD’,

which does not change queries.

Let #=(F,Q,R;U,D,p) and A’=(F’,Q’,R’;U,D’,p’) be two databases
with p=(e,B,7) and p’=(a’,B’,7").

A homomorphism of databases u:@ —> @’ is a pair of homomorphisms
p=(v,8), where v is a homomorphism of #*-automata v=(vl,u2,v3h

(F,Q,R) —> (F',Q’,R’) and & 1is a homomorphism of data algebras
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8:D’ — D, subject to two conditions:

1) the natural diagram

B/N?

Q —) 9

is commutative,

2) second condition is described by the diagram

F—2 4 9D
Vll l 3,
F'___TET___+ 9D'
va oad
with weakened commutativity: f Vo<r * for any feF. )
The second condition means merely that transition fP 2 =3 fg

together with 8:D’ — D is a homomorphism of the corresponding models,
i.e. of algebras D’ and D with relations of ¢ realized there.

It can be’ checked, that if p=(v,8):# — A’ is an isomorphism of
databases, then the second diagram becomes commutative diagram in the

v.o ad
usual sense, that is f 1 =f * Moreover, in this case it is possible

to add the third commutative diagram to the definition:

Thus, in the definition of isomorphism we can obtain a natural symmetry,
which is absent in the definition of an arbitrary database homomorphism.
We now examine connections between homomorphisms of models and

homomorphisms of databases. For fixed 6 and ® we consider models



253

(D,®,f), Ded. A database A=(F,Q,R) where F consists of a unique state f,
R is the image of the homomorphism ;:U — VD . d.e R=Im}, is a subbase
in AtmD and it can be assigned to every such model. Denote Kerf by T. It
is a filter in U, which coincides with elementary theory of the model f.
Then an algebra Q of # is determined by Q=U/T. The operation in AtmD
gives rise to the operation * in A. The question is to what extent this
transition (D,®,f) — (F,Q,R) from models to databases enjoys the func-
torial properties.

Let (D’,®’,f’) be another model and #A’=(F’,Q’,R’) be its data-
base. It follows directly from definitions, that every database homomor-
phism p=(v,8):d — A’ induces a model homomorphism. On the other hand,
assume, that the transition f — f’ defines the homomorphism of models
8: (D’,9',f') = (D,d,f) so as we could reconstruct the homomorphism of
databases u=(v,6)=((v1,v2,va),6). In fact 8 is already determined by u
and v, is defined by the transition f — f’. It is natural to define
va:R —> R’ by a homomorphism, induced by the injection 6*:VD - VD" v,
is determined according to the condition of commutativity of the corres-
ponding first diagram.

However, we have not obtained a database homomorphism yet. The
fact is that the homomorphism &, does not always inject algebra R into
algebra R’, there is no correlation with the operation, the second diag-
ram is fulfilled trivially, but the commutativity of the first diagram
does not hold because there is no connection between the elementary

theories for f and f’. The situation significantly changes if we take
3 3
f * as f’. Elementary theories for f and f * coincide, thus Q=Q', and v

is a trivial homomorphism. Besides, we have

"
(Imf) =Imf .
As a result we get a homomorphism of databases, which is simultaneously
an isomorphism of corresponding *-automata @ and #’. This is true, in
particular, in the case, when &:D’ —> D is an isomorphism of models

Thus isomorphisms of databases imply isomorphisms of models.
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5.4.2 Homomorphisms with the modification of the scheme

Now we consider homomorphisms of databases with variable set of
symbols of relations ®. To the two given sets of symbols of relations &
and ®’ correspond different Halmos algebras U and U’. We assume that
there is the homomorphism £:U’ — U which determines the scheme modifi-
cation. Now, for every 8:D’ —> D we shall give the new definition of the
mapping 6‘:?® - ?D, which is associated with this £.

Let us note first that the mapping ":?D i Hom(U,VD) which con-
nects states and homomorphisms, is a bijection [81]. We consider the
composition of homomorphisms }:U —-> VD and & VD - VD" For a fixed &

we have

3

. ®
£ =f8,:U = Vg,

For variable scheme and given £:U’ — U we define

s, R

FO=Ef8 U > Vg,

Now we can define homomorphisms of databases in the case of variable set

®. Let &=(F,Q,R;U,D,p) and &’=(F’,Q’,R’;U’,D’,p’) be two databases.
Homomorphism p:# —*> &’ of databases with modification of the

scheme is a triplet p=(v,£€,8) where v=(u1,v ,va) is a homomorphism of

automata, £:U’ — U is a homomorphism of alg;;ras of queries, 6:D' — D
is a homomorphism of data algebras. For symmetry, it is convenient to
direct the mapping v, opposite to the mappings v, and v, that 1is
vz:Q’ — Q. The mapping pu=(v,£,8) should satisfy the following diagrams:

1) Commutative diagram

2) Weakened commutative diagram
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The second diagram guarantees that the correspondence of the
states is a homomorphism of models with the variable scheme.

Now we deal with specific databases, i.e. the case when the map-
pings « and ¥ in the representation p=(«,B,7) are trivial.

A homomorphism p=(v,£,8) is called a replacement of the scheme if
data algebras and replies algebras in databases A and A’ coincide, and

the mappings v, and 8 are trivial.

Theorem 4.1. Every homomorphism p=(v,€,8):8 —> @A’ where
vz:Q’ —> Q is a surjection, admits a canonical decomposition in to a
product of two homomorphisms B and Ky The first of them does not
change the scheme, and the second one is connected only with the rep-

lacement of the scheme.

This proposition is used in the problem of reconstruction of
databases, i.e. replacement of a database by an equivalent one which is

more convenient to use.
5.5. Constructive databases
5.5.1. General notes

Real database model has to be connected with the programming
means. The intermediate step in this direction is the database construc-
tivization i.e. study of existence of algorithms Databases with the
finite D always admit constructivization, thus we face a problem of
effective algorithms and programs. The situation is essentially diffe-
rent in the case of infinite D.

The well-known definition of a constructive algebraic structure
[30], [69] may be applied to models of databases as well. However, there

arise some fundamental difficulties because of which the constructiviza-
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tion never can be carried out completely.

According to A.I.Malcev, algebraic system is constructive, if all
its domains consist of constructive elements and are constructively de-
fined as sets, and all main operations and relations are also construc-
tive, i.e. the required algorithms do exist. This general definition is
applied to the various components of databases, for example to data
algebra D or #*-automaton (F,Q,R). However, its application to a whole
database faces conceptual difficulties and leads to very strong and
rarely fulfilled conditions. Therefore, as far as this is possible under
given conditions, we must strive for a reasonable constructivization,
taking into account the main problem: how to calculate a reply to a
given query.

Each reply to a query q in the state f looks like f*q and one
needs an algorithm which checks if pef*q for arbitrary peHom(W, D). There
are a number of approaches here. For example, we can speak of algorithms
for various fixed f and q or we can fix f and search for an algorithm,
enclosing all q from a certain class. However we apply the strongest
form of constructivization for specific databases.

Let 4=(F,Q,R;U,D,p) be such database. Database @ is constructive
if there exists an algorithm, which checks up the inclusion pef*q for
all peHom(W, D), feF, qeQ.

The existence of such algorithm leads to the restrictions on
database and we will discuss some of them.

We consider Halmos algebras with the equality. Hence, there arise
the queries of a type xl...xnw=y, where weQ have the type
t=(il,...,in;j) and X;» «-e0X Y are the variables of corresponding
sorts. The reply to such a query is independent from the state f. It is
easy to understand that the existence of required algorithm implies that
all operations of D are constructive. Thus, it makes sense to include
the constructiveness of data algebra D into every definition of const-
ructive database.

Let now, ¢e€d be a relation of type T=(il,...,in). Let g be de-

fined by the elementary formula w(xl,...,x ). Given f, the existence of
n



257

algorithm for calculation of reply to such query means that the state f
defines the constructive realization of all relations, i.e. (D,®,f) is a
constructive structure. Moreover, if algebra D is constructive, then for
constructive f one can calculate the replies to the queries of the type
¢(w1,...,wn), where wlewl are the 8-terms of corresponding sorts. So, it
1s quite reasonable to claim that all states feF should be constructive.

A query q is called an opened query if it can be written without
quantifiers. Hence, we can assert, that if the algebra D and the state f
are constructive then there is an algorithm for calculating replies to
any opened query in the state f.

Constructiveness of database, as defined above, actually implies
the uniform constructiveness for all states feF. Moreover, the required
possibility to get reply to any query means that every state feF is not
only constructive, but also has a decidable elementary theory.

Now, we consider one more natural definition of constructive spe-
cific database.

Database #=(F,Q,R;U,D,p) is constructive, if

1) Data algebra D is constructive.
2) The automaton (F,Q,R) is a constructive one, in particular,

Halmos algebras Q and R are constructive.

3) Every state feF is constructive and every reR is a L&qstructive
relation. \

Some connections between these two definitions have been discus-
sed, but it would be of great interest to study them in detail. In par-
ticular, the investigation of constructive Halmos algebras becomes very
important, while constructive Boolean algebras have been studied before
[43].

Let us note the following question: how should a model (D,®,f)
look so that Halmos algebra Im;=R is constructive. It is also interes-
ting to study filters T in U, for which quotient algebra U/T allows con-

structivization.
5.5.2. Introduction of data into language

We would like to point out that it is often convenient to intro-
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duce the data algebras D=(Dl,ieF) into the language and algebra of que-
ries for the constructivization of databases. Description of D by gene-
rators and defining relations may be used here.

Let M=(Ml,ieF) be the set of generators of D, and let T be the
set of defining relations of D. We associate a variable y, with each
aEMl. Therefore, a set of variables Yi corresponds to every set Ml, and
we obtain a complex Y=(Y‘,ieF). Furthermore, let Wz)be an algebra over Y
free in 6. The transition Ya — a for all a gives rise to an epimorphism
v:WD —> D. Its kernel p is generated by the set T, and we have an iso-
morphism WD/p — D.

We also associate a symbol of nullary operation w, with every
aEMl, iel, and denote by Q' the union of the set of all these symbols
with Q. Let 8’ be the variety of Q’-algebras defined by the identities

of @ together with the defining relations of D. Now, if

w(ya SRR )=w (ya ST A )
1 n 1 n

is one of such relations, it must be rewritten as

w(wa RN )=w’(wa e ).
1 n 1 n

There are no variables in the latter equality, therefore it may be con-
sidered as an identity.

Let W be the free algebra over the complex X in 8, and W’ be such
an algebra in 6’ All w  are elements of W’ and generate a subalgebra in
it. We denote it by D’.

Proposition 5.1. The algebra D’ is isomorphic to D. Let
A=(A1,ieF) be any algebra from 6’, and B=(B1,ier) be the subalgebra of A

generated by the nullary operations. Then B is a homomorphic image of D.

The initial scheme ¥ together with the algebra D determine the
universal database

AtmD=(F, U, Vp).

Let ¥ be the scheme corresponding to 6’ D may be considered as an

algebra from 8', too. So, the set of all states for the same set of



259

symbols of relations ® is not changed. Obviously, we may identify the
set of homomorphisms Hom(W’,D) with Hom(W,D); hence the algebra VD also
is not changed. Only the algebra U must be replaced by a new algebra of
queries U’. There exists a canonical mapping U — U’, which allows us to
consider elements from U as elements from U’. Therefore, we have

obtained an automaton
Atm’ fD=(.°¥D,U’ 'V:D)'

Now, we shall consider an application of such transition.

Let ueU, peHom(W,D), and let Y=(y1,...,yn) be the support of u.
We denote yf=a1, s y‘:=an Let us extend the homomorphism pu: %W — D up
to the homomorphism u: W’ — D and then consider a restriction u: D’ — D.
The mapping p is an isomorphism, and by 01 we denote the image of y? in
D', i=1,...,n. Finally, let v=vu be the element of U determined by the

formula

((y1=01)A...A(yn=On) > u)=v.

Proposition 5.2. Let f be a state. Then pef*u if and only if the
equality f'v“=1 holds true.

Let (D,®,f) be a model with decidable elementary theory in the
expanded algebra of queries U’, and R=ImU under the homomorphism

iy —» VD' Then we have the corollary:

Proposition 5.3. Each element from Halmos algebra R is a const-

ructive subset in Hom(W,D).

Proposition 5.3 shows that the verification of the inclusion
pef*u is reduced, in the extended scheme, to the verification whether
the definite proposition v is true in the model (D,%,f). In model
theory, such questions of effective verification were considered long
ago [72].

It is supposed that there is a good finite description of the
entity domain, i.e. of the model (D,®,f), allowing us to reduce the
problem of validity of sentences to a suitable problem of derivability

of formulas in pure first order language. Namely, if a set of elements
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u,u,,...,u in U’ serves as a description of this model , and v is a
n

sentence the truth of which is verified on this model, then we construct

a new proposition

UA...AU >V
1 n

and verify its absolute truth in U’, i.e. whether it is equal to 1 in
U’ Furthermore, if the variety @ has a finite description, then one can
pass to the first order calculus. Thus, there arises a possibility to
apply methods of proof theory and mechanical theorem proving.

Generally speaking, a computer should act like a human. If there
is some hypothesis, one has to act in two parallel directions: to search
for its possible proofs on the one hand, and the possible counter-
examples on the other hand. Both these parallel lines ought to be well
formalized for the computer. Of particular importance is the case when
one construct counter-examples in finite models. The ideas of McKinsey’s
well-known work [72] are based on these remarks.

In applications to databases all this is connected with the ideas
of logical programming and the PROLOG language. This language is desig-
ned for the special type propositions, the so-called Horn clauses. There
is some optimal strategy of proofs searching for them but there does not
exist methods which would lead us to counter it

The main idea of logical programming is that the possible corol-
laries are derived from the given description of entity domain. As to
queries, their derivability from the description is verified. As a rule,
the entity domain is finite and there is no problem of algorithm exis-
tence, the main efforts should be directed to the looking for effective
algorithms.

There is no set of symbols of operations Q in PROLOG. Such set is
associated with functional programming and LISP language. The explora-
tion of combination of logical and functional programming based on
A-calculus, do hold.

Now we consider the situation, when data algebras are approxima-
ted by finite algebras.

As it was mentioned, the computer can construct counter-examples,
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if they may be picked out among finite models. This remark inspires the
following definition [72]: a closed element ueU is called finite-reduced
in respect to class of models K, if falsehood of u on some model from K
implies its falsehood on a finite model from K.

This definition can be applied also to open elements, using its
enclosing on universal quantifiers. In particular, it may be applied to
the formulas of the kind V=VM from proposition 5.2.

We consider below a similar notion, which can be applied to arbi-
trary queries u.

Given D, let 6a:D =¥ Da , ael be a system of homomorphisms . The
set I is assumed to be ordered, and every o and B of I are covered by
some y. Suppose that if B>a, then there is a surjective homomorphism
aaB:DB - D“ with commutative diagram

ﬂ&—éﬂ

N

Such a diagram defines the commutative diagram for automata

E)
AtmD % AtnD,

5o g

AtmD
"“g

In particular, the following diagrams hold:

6 5
D FHN. - D D — ﬂ

B\/ B\/

where all the homomorphlsms are injections.
Denote by Ra the image of 6a¢:VDa g VD' All the subalgebras Ra

form a local system in VD , and therefore R=uRa is a subalgebra in VD .
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Proposition 5.4. If algebra D is countable, all Da are finite and
homomorphisms Ba:D — Da are computable, then all elements from algebra

R are constructive subsets in Hom(W,D).

In database theory it is important to consider subalgebras RCVD
containing equalities. Unlike the proposition 5.4, in the proposition
5.5 the algebra R is, as a rule, without equality. In accordance with
general theory of Halmos algebras the diagonal Dw’w,cHom(W,D) corres-
ponds to the equality w=w’ in VD' It consists of all pu:W — D for which
w=u'" holds.

The next proposition describes the structure of diagonal in Vg'
Let the set of homomorphisms Ba:D - Da’ ol be complete, i.e. if a and
b are two different elements of the same sort in D, then there exists

ael such that 8 (a)®3 (b).
« o

Proposition 5.5. The following equality takes place

D ,=n(d* ,)*
W, W W, W
a
We generalize it in proposition 5.6.
Along with injections aa':?ﬂ => ?D we consider mappings

o«
F. > F which are defined as follows: if (D,®,f) is a model, then

D D
a

*

S

(Da,O,f %) is a model defined by the natural transition to the corres-
-

) )
ponding quotient model. For simplicity we write f ® instead of f .

Let fE?D and peHom(W,D). The query u in state f is said to be

compatible with the given system of homomorphisms, if for any
3
peHom (W, D), upe¢f*u implies that usaef %su for some ael. The query u is

called co-compatible with the given system of homomorphisms if from
8
pef*u it follows that uaaef oL'u, for some ael.

It is easy to verify, that if u is compatible, then its negation
u is co-compatible, and vice versa. Coordination of equations with the

given set of homomorphisms means the completeness of this set.
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Proposition 5.6. If u is a positive query, compatible with the

<]
set of homomorphisms in state f, then f*u= n(f a'u) a‘. If u is negative
o
a aa*
and co-compatible query, then f*u=u(f *u) .
a

Here positive query is a query which is constructed from primi-
tive ones without negations. Negative query is a negation of the posi-
tive query.

This proposition may be useful for the calculation of reply to
the query if the set of homomorphisms Ba:D - Du' a€l defines the finite
approximation of algebra D.

Finally, we formulate the proposition, devoted to the conditions
of compatibility. Fix a state f and consider elements of algebra u, com-

patible with the given set of homomorphisms of algebra D.

Proposition 5.7.

1) If u and v are compatible, then uAv is compatible too.

2) If u is compatible, then V(Y)u is compatible for any YeX.

3) If u is compatible, then su is compatible for any seEndW.

4) If u and v are positive and compatible, then uvv is also compa-
tible.

5) If u is a positive element and v is compatible, then u = v is
compatible.

The existential quantifiers can break the coordination property.
5.6. Constructions in database theory

We will consider only specific databases. In this case the algeb-
ra of replies is always a simple Halmos algebra, and therefore, all
homomorphisms of the kind y:R — R’ turn out to be monomorphisms.

Let D=®1xDZ be a Cartesian product of algebras and nlzﬂ —> Dy
n2:D - Dz the natural projections. Take the corresponding injections of

5 — 5 -
Halmos algebras 1t1..V1)1 VD and nz‘.VDz VD' The algebra, generated
by Halmos algebras "1(VD1) and nz(sz) is denoted by V31®VD2. We desc-
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ribe the structure of v.‘D1®VfDZ

First of all, the set Hom(W,D) may be canonically represented as
a Cartesian product Hom(W,fDl)xHom(W,Dz). For AcHom(W,l)l), BcHom(W,DZ)
their Cartesian product AxB may be represented as AxB=ul.(A)mt2.(B). If

the supports of A and B are finite, then AxB also has a finite support.

Proposition 6.1. The subalgebra VfD ®VD in VD consists of the
1 2
finite unions of elements AxB, AGVfD' BeVD If fD1 and Dz are finite,
1 2
then V_ eV =V

DD D
1 T2

It is easy to verify that if D, D1 and D2 are the diagonals in D,
5D1 and Dz respectively, then for any w,w’ holds

1 2
D ,=D oK .
w,W  OW,W W, W

and this means, that the algebra VD @VD contains all equalities. This
1 2
D1®VD2 where R1 is a subalgebra in VfDl

Our next goal is to define the product of databases. Let the

is also true for R1® RZCV

scheme of database ¥ be fixed. This defines the universal algebra of
queries U. Consider algebras 1)1, 5D2 and D=1)1x‘.02 of 6. The automata
AtmD=(i‘¥D,U,VD), AtmD1=(?ﬂl,U,VD1) and AtmD;(?DZ,U,VDz) correspond to
them. Projections nlzD g Dl and n2:5D - sz give rise to the injections

of automata 1[1:1\tm1)1 —> AtmD; 1[2:AtmI)2 —> AtmD. In particular, we have

the homomorphisms of Boolean algebras

. — . -
1[1. ?@ S‘:D, L ??D f’}D.
1 2
Let FD «839ﬁ be a subalgebra of the Boolean algebra ?f’D generated
1 2
by the algebras 1!1*(9

) and L (F.. ).

D * "D
1 2

Take fle?:l)i, fZE?DZ and let (’Dl,¢1,f1), (Dz,(’z,fz) be the rela-
tive models. We can define the product f1sz in accordance with the

definition of Cartesian product of the models: (D1><5DZ,<I>,f1xf2). It can
be checked that if u is an element of U, defined by elementary formula,
then
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(flez)*u=(f1xu)*(f2xu)

Hence, f1><f2="1¢(f1)nnz-(fz) and it is proved that the Boolean algebra

91)1@?:02 consists of all sums of elements f1Xf2’ with f E?D ; fze?DZ. As

a result, we have a subautomaton AtmelaAtmiD2 in AtmD generated by the

copies of automata Atmi)1 and AtmDZ:

(591@? U, VD @VD )—AthD1®Atsz

Let now ﬂ1=(F1,U,R1;U,D1) and 82=(F2,U,R2;U,®2) be two data bases with
one ‘and the same algebra of queries U. Construct the product Elaaz

First, let us take the product of automata

Atme ®AtmD —(?f ®?D U, Vﬂ cz>VD )
and then consider the subset F1XF2 in ?D @?D consisting of all f1Xfy
1 2
f eF , f eF i
11
Let R ®R be a subalgebra in VD Then, for any ueU holds

(flea)'u=(fixu)*(fzxu)ER1®Rz

So, we ‘obtain an automaton (leFZ,U,R1®R2). The associated with this

automaton database
A=A ®d =(F xF_,U,R eR_;U,D xD_)
1 2 12 1 2 1772
is called the product of databases 81 and 32.
Thus defined product of databases is coordinated with the product

of models.

A union of databases is defined in a similar way, as a database
(F,Q, R1®R2; u, D1XD2) s

associated with the subautomaton (F,U,R1®R2)cAtmD1®Atsz, where F is the
union of the copies of the sets F1 and Fz

Both these operations, multiplication and union of databases, can
be defined also for variable set ®. In this case we must take into
account that in Hl and 82 algebras of queries U1 and U2 are different.

The definitions of cascade connections and wreath products in the
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database theory are complicated. These constructions are based on the
cascade connections and wreath products of the models, which, in their
turn, generalize similar notions of the automata theory (see Chapter 2).
We refer to [86] for the general definitions and consider here only some
remarks.

Let M=M1><M2 be Cartesian product of sets, and MM, ﬂh, ﬂna be the
corresponding power sets. Consider an arbitrary mapping x:M2 ad ﬂh and a
set BCMZ' Then the set (x,B) is defined by the rule: (a,b)e(x,B) if and
only if beB and aex(b).

Take a set A of M and define x=K:M2 g WH by the rule: aex(b), if

T

(a,b)eA, where beMz, aeMl. Then A=(A, A 2), where nz:M = M2 is the pro-
Jjection.

Consider two applications of this simple remark. Let Dl, Dz be

the algebras of 6, $=E1xD2 and R1’R2 be subalgebras in VD and VD . Evi-
1 2
dently, Hom(W,D)=Hom(W,D1)xHom(W,D2). In accordance with the definition

above, let x:Hom(W,ﬂz) — R1 The subset (yx,B), BER2 is an element of
VDlxpz. Then n=(u1.u2)eHom(W,®) belongs to (x,B) if pzeB and ulex(MZL

The wreath product of R1 and R2 is the subalgebra in VD <D ' generated

1772
by all these (x,B) . It is denoted by R=R1er2

This wreath product is used in an arbitrary cascade connection of
databases as an algebra of replies.

We study now the decomposition of symbols of relations. Let
D=(Dl,ier) be an algebra, and ¢ a symbol of relation of the type

T=(TI,T2)=(11,...1n,J1,...Jm). Then M1=D| x...xDl § M2=DJ x...DJ;

1 n 1 m
M=M_ xM
1772
Let ¢, be a symbol of type 12=(j1,...jm) and for each beMz, wb be
a set of symbols of relations of the type T1=(11""i ). Thus, we have
n
b
three sets ®={p}, ¢1=(¢ ,beMz}, ¢2={¢2). Take the states f'f1’f2 connec-—
ted with these symbols of relations.

Let f(p)=AcM and x=X:M2 g MH be the corresponding mapping. Set

14
b ~ Ao
£,(97)=k(b), £ (p,)=A 2. The equality A=(A,f,(p,)) means that
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(a,b)ef(¢) if and only if befz(wz)Aaefi(wa

and this decomposition of f(p) is associated with the general idea of
cascade connections of data algebras.

As we have seen, constructions in databases are associated with
the respective constructions for the corresponding models, i.e. data-
bases states. The same for the problem of decomposition. In its turn,
decomposition of models supposes, that there is some decomposition of
data algebra D. We founded on decomposition D in Cartesian product, but
it is also possible to start from the approximation of D by some I&,
acl. Then the above notion is useful. It can be proposed, that for some
special 6 there exist another "good" constructions. On the other hand,
probably the main attention must be paid to the decomposition of rela-
tions (may be under the fixed data algebra D).

Perhaps, instead of searching for a good universal theory of
decomposition of databases, it is more useful to obtain the sufficient
amount of constructions and in each specific case to apply the suitable

construction.
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