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Preface

The main purpose of nonlinear functional analysis is to develop abstract
topological and variational methods to study nonlinear phenomena arising in
applications. Although this is a rather recent field, initiated about one hundred
years ago, remarkable advances have been made and there are now many res-
ults that are well established. The fundamental tools of the Leray–Schauder
topological degree, local and global bifurcation and critical point theory, can be
considered topics that any graduate student in mathematics and physics should
know.

This book discusses a selection of the most basic results dealing with the
aforementioned topics. The material is presented as simply as possible, in order
to highlight the main ideas. In many cases we prefer to state results under slightly
stronger assumptions, when this makes the exposition much more clear and
avoids some unnecessary technicalities.

The abstract tools are discussed taking into account their applications to
semilinear elliptic problems. In some sense, elliptic equations become like a
guiding thread, along which the reader will recognize how one method is more
suitable than another one, according to the specific feature of the nonlinearity.
This is the reason why we discuss both topological methods and variational
tools.

After a first chapter containing preliminary material, the book is divided
into four parts. The first part is devoted to topological methods and bifurcation
theory. Chapter 2 deals with the Lyapunov–Schmidt reduction method and the
bifurcation from a simple eigenvalue and connects with the previous book
A Primer of Nonlinear Analysis [20], of which the present book is a follow
up. Chapter 3 deals with the topological degree. First, we define the degree
in finite dimension using an analytical approach, which allows us to avoid
several technical and cumbersome tools. Next, the Leray–Schauder degree is
discussed together with some applications to elliptic boundary value problems.

ix
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Among the applications, we also prove the celebrated theorem by Krasnoselski
dealing with the bifurcation from an odd eigenvalue for operators of the type
identity-compact. In Chapter 4 global properties of the degree are discussed.
In particular, the global bifurcation result due to Rabinowitz is proved. Special
attention is also given to the existence of positive solutions of asymptotically
linear boundary value problems.

Parts I I and I I I are devoted to variational methods, namely to critical point
theory. After some introductory material presented in Chapters 5 and 6, we
discuss in Chapter 7 the main deformation lemmas and the Palais–Smale con-
dition. Chapter 8 deals with the mountain pass and linking theorems. The
Lusternik–Schnirelman theory and, in particular, the cases of even functionals
on symmetric manifolds are discussed in Chapters 9 and 10, respectively.

Further results on elliptic boundary value problems are presented in
Chapter 11, including the pioneering Brezis–Nirenberg result dealing with
semilinear equations with critical nonlinearities.

An account of Morse theory is given in Chapter 12 which also contains
applications to bifurcation for potential operators and to evaluation of the Morse
index of a mountain pass critical point.

Part I V collects a number of appendices which deal with interesting problems
that have been left out in the preceding parts because they are more specific
in nature, or more complicated, or else because they are objects of current
research and therefore are still in evolution. Here our main purpose is to bring
the interested reader to the core of contemporary research. In many cases, we
are somewhat sketchy, referring to original papers for more details.

Appendix 1 deals with the celebrated Gidas–Ni–Nirenberg symmetry res-
ult and with other qualitative results, such as the Liouville type theorem of
Gidas and Spruck.Appendix 2 is concerned with the concentration-compactness
method introduced by P. L. Lions and includes applications to problems with
lack of compactness. Appendix 3 is related to bifurcation theory and deals with
bifurcation problems in the absence of compactness, including bifurcation from
the essential spectrum. Appendix 4, deals with the classical problem of vortex
rings in an ideal fluid. In Appendix 5 we discuss some abstract perturbation
methods in critical point theory with their applications to elliptic problems on
R

n, to nonlinear Schrödinger equations and to singular perturbation problems.
Finally, in Appendix 6 we discuss some problems arising in differential geo-
metry, from the classical Yamabe problem to more recent problems, dealing
with fourth order invariants such as the Paneitz curvature.

The book is based on many sources. The first is the material taught in several
courses given in past years at SISSA. Some of this material is based on previous
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lectures delivered by by Giovanni Prodi at the Scuola Normale of Pisa in the
1970s. Very special thanks are due to this great mathematician and friend.

The second source is the papers that we have written on nonlinear analysis.
Most of them are works in collaboration with other people: we would like to
thank all of them warmly (see the authors of joint papers with A. A. or A. M.
listed in the references).

Another input has been discussions with many other friends, including
V. Coti Zelati, I. Ekeland, M. Girardi, M. Matzeu and C. Stuart.

A. A. & A. M.
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Preliminaries

In this chapter we will discuss some preliminary material we will use throughout
the book.

1.1 Differential calculus

Let us begin with an outline, without proofs, of differential calculus in Banach
spaces. For proofs and more details we refer to [20], Chapters 1 and 2.
The Fréchét derivative. Let X , Y be Banach spaces and let L(X, Y) denote the
space of linear continuous maps from X to Y . For A ∈ L(X, Y) we will often
write Ax or A[x] instead of A(x). Endowed with the norm

‖A‖L(X,Y) = sup{‖Ax‖Y : ‖x‖X ≤ 1}, A ∈ L(X, Y),

L(X , Y) is a Banach space. If U ⊂ X is an open set, C(U, Y) denotes the space
of continuous maps f : U → Y .

Definition 1.1 We say that f : U �→ Y is (Fréchét) differentiable at u ∈ U with
derivative df (u) ∈ L(X , Y) if

f (u+ h) = f (u)+ df (u)[h] + o(‖h‖), as h → 0.

f is said differentiable on U if it is differentiable at every point u ∈ U.

From the definition it follows that if f is differentiable at u ∈ U then f is
continuous at u.

In order to find the derivative of a map f one can evaluate, for all h ∈ X, the
limit

lim
ε→0

f (u+ εh)− f (u)

ε

def= Auh.

If Au ∈ L(X, Y) and if the map u �→ Au is continuous from U to L(X, Y), then f
is differentiable at u and df (u) = Au. We will often use f ′(u) instead of df (u).

1



2 Preliminaries

Let f : X × Y → Z , and consider the map fv : u �→ f (u, v), respectively
fu : v �→ f (u, v). The partial derivative of f with respect to u, respectively v, at
(u, v) ∈ X×Y is defined by ∂u f (u, v) = dfv(u), respectively ∂vf (u, v) = dfu(v).
In particular, ∂u f (u, v) ∈ L(X , Z) and ∂vf (u, v) ∈ L(Y , Z). It is easy to
see that if f : X × Y �→ Z is differentiable at (u, v), then f is partially
differentiable and ∂u f (u, v)[h] = dfv(u)[h] = df (u, v)[h, 0], respectively
∂vf (u, v)[k] = dfu(v)[k] = df (u, v)[0, k]. Furthermore, the following result
holds.

Proposition 1.2 If f possesses the partial derivative with respect to u and v in a
neighbourhood N of (u, v) and the maps u �→ ∂u f and v �→ ∂vf are continuous
in N , then f is differentiable at (u, v) and

df (u, v)[h, k] = ∂u f (u, v)[h] + ∂vf (u, v)[k].

In the sequel, if no confusion arises, we will write f ′u, f ′v instead of ∂u f , ∂vf ,
respectively.
Higher order derivatives. Let f be differentiable on U and the map X �→
L(X, Y), u �→ df (u), be differentiable at u ∈ U. The derivative of such a map
at u is a second derivative: d2f (u) ∈ L(X , L(X, Y)). From the canonical iso-
morphism between L(X , L(X , Y)) and L2(X, Y), the space of bilinear maps from
X to Y , we can and will consider d2f (u) belonging to L2(X, Y). By induction
on k we can define the kth derivative dkf (u) ∈ Lk(X, Y), the space of k-linear
maps from E into R. If f is k times differentiable at every point of U, we say
that f is k times differentiable on U.

We will use the following notation.

• Ck maps. If f is k times differentiable on U and the application
U �→ Lk(X, Y), u �→ dkf (u), is continuous, we say that f ∈ Ck(U, Y).

• C0,α maps. If f ∈ C(U, Y) satisfies

sup

[‖f (u)− f (v)‖Y

‖u− v‖αX
: u, v ∈ U, u �= v

]
< +∞,

for some α ∈ (0, 1], we say that f ∈ C0,α(U, Y). If α < 1, respectively
α = 1, these maps are nothing but the Hölder continuous maps,
respectively Lipschitz maps.
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• Ck,α maps. If f ∈ Ck(U, Y) and dkf (u) ∈ C0,α(U, Lk(X, Y)), we say that
f ∈ Ck,α(U, Y).

Let f ∈ Ck(U, Y) and suppose that u, h ∈ U be such that u + th ∈ U for all
t ∈ [0, 1]. Since one has

dr

dtr
f (u+ th) = dr f (u+ th)[h]r , [h]r = [h, . . . , h]︸ ︷︷ ︸

r times

, r = 1, . . . , k,

the Taylor formula for t �→ f (u+ th) yields

f (u+ h) = f (u)+ df (u)[h] + · · · + 1

k! dkf (u)[h]k + o(‖h‖k).

Local inversion and implicit function theorems. Let f ∈ C(U, Y), u∗ ∈ U
and v∗ = f (u∗) ∈ Y . We say that f is locally invertible at u∗ if there exist
neighbourhoods U∗ of u∗ and V∗ of v∗ and a map g ∈ C(V∗, U∗) such that

g(f (u)) = u, ∀ u ∈ U∗, f (g(v)) = v, ∀ v ∈ V∗.

The map g will be denoted by f−1.

Theorem 1.3 (Local inversion theorem) Suppose that f ∈ C1(U, Y) and that
df (u∗) is invertible (as a linear map in L(X , Y)). Then f is locally invertible at
u∗, f−1 is of class C1 and

df−1(v) = (df (u))−1, ∀ v ∈ V∗, where u = f−1(v).

Furthermore, if f ∈ Ck(U, Y) then f−1 is of class Ck, as well.

Let T , X be Banach spaces, � ⊂ T , U ⊂ X be open subsets.

Theorem 1.4 (Implicit function theorem) Let f ∈ Ck(� × U, Y), k ≥ 1,
and let (λ∗, u∗) ∈ � × U be such that f (λ∗, u∗) = 0. If f ′u(λ∗, u∗) ∈ L(X, Y)

is invertible, then there exist neighbourhoods �∗ of λ∗, U∗ of u∗ and a map
g ∈ Ck(�∗, X) such that

f (λ, u) = 0, (λ, u) ∈ �∗ × U∗ ⇔ u = g(λ).

Moreover one has that

g′(λ) = −(f ′u(p))−1 ◦ f ′λ(p), where p = (λ, g(λ)), λ ∈ �∗.
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1.2 Function spaces

We will deal with bounded domains� contained in the Euclidean n-dimensional
space R

n. We will mainly work in the following spaces of functions u : �→ R:

• Lp(�), Lebesgue spaces with norm ‖ · ‖Lp ;
• Hk,p(�), Sobolev spaces with norm ‖ · ‖Hk,p ;
• C∞0 (�), the space of functions u ∈ C∞(�) with compact support in �;
• H1

0 (�), the closure of C∞0 (�) in H1,2(�).

For functions in H1
0 (�) the Poincaré inequality holds:∫

�

|u|2dx ≤ c
∫
�

|∇u|2dx,

where c = c(�) is a constant (possibly depending on � but independent of u).
As a consequence of the Poincaré inequality it follows that

‖u‖ =
(∫

�

|∇u|2 dx

)1/2

is a norm equivalent to the standard one ‖u‖H1
0
.

Theorem 1.5 (Sobolev embedding theorem) Let � be a bounded domain in
R

n with Lipschitz boundary ∂� and let k ≥ 1, 1 ≤ p ≤ ∞.

(i) If kp < n, then Hk,p(�) ↪→ Lq(�) for all 1 ≤ q ≤ np/(n− kp); the
embedding is compact provided 1 ≤ q < np/(n− kp).

(ii) If kp = n, then Hk,p(�) ↪→ Lq(�) for all 1 ≤ q <∞, and the
embedding is compact.

(iii) If kp > n, then Hk,p(�) ↪→ C0,α(�), where

α =
{

k − n/p if k − n/p < 1
1 if k − n/p > 1.

If k − n/p = 1, the embedding holds for every α ∈ [0, 1).

When we deal with H1
0 (�) the requirement that ∂� is Lipschitz can be elimin-

ated. For future references let us state explicitely what Theorem 1.5 becomes
in such a case. We set

2∗ =
{

2n/(n− 2) if n > 2
+∞ if n = 2.
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Theorem 1.6 Let � be a bounded domain in R
n. Then

(i) if n > 2, then H1
0 (�) ↪→ Lq(�) for all 1 ≤ q ≤ 2∗; the embedding is

compact provided 1 ≤ q < 2∗;
(ii) if n = 2, then H1

0 (�) ↪→ Lq(�) for all 1 ≤ q <∞;

(iii) if n < 2, then H1,p
0 (�) ↪→ C0,α(�), where α = 1− n/2.

1.3 Nemitski operators

Let f : � × R → R. If u : � → R is a measurable real valued function, we
can consider the map u �→ f (u), where f (u) is the real valued function defined
on � by setting

f (u)(x) = f (x, u(x)).

Such a map is called the Nemitski operator associated to f and will be denoted
with the same symbol f . For a discussion of the continuity and differentiability
properties of Nemitski operators we refer to [20], Chapter 1, Section 2. Here
we want to recall the following result.

Theorem 1.7 Let α,β ≥ 1. Suppose that f : �× R → R satisfies

( f .0) f (x, t) is measurable with respect to x ∈ � for all t ∈ R and is
continuous with respect t ∈ R for a.e. x ∈ �,

and that there exists a1 ∈ Lβ(�) and a2 > 0 such that

| f (x, u)| ≤ a1(x)+ a2|u|α/β ∀ (x, u) ∈ �× R, (α,β ≥ 1). (1.1)

Then the Nemitski operator f is continuous from Lα(�) to Lβ(�).

Condition (f .0) is also called the Caratheodory condition and a function
f (x, t) satisfying (f .0) is usually called a Caratheodory function. In most of the
concrete applications we will deal with the functional space H1

0 = H1
0 (�). In

such a case, we shall suppose that f satisfies

( f .1) there exists a1 ∈ L2n/(n+2)(�) and a2 > 0 such that

| f (x, u)| ≤ a1(x)+ a2|u|p ∀ (x, u) ∈ �× R, (1.2)

where p < 2∗ − 1.
In some cases we will weaken (f .1) requiring

( f .1′) f satisfies (1.2) with p ≤ 2∗ − 1.
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The class of functions f which are locally Hölder continuous and satisfy (f .1)
or (f .1′), will be denoted by Fp.

Let us point out that, in many cases, we could deal with functions that satisfy
(f .0), instead of being locally Hölder continuous; see, for example, Remark 1.9
below. The advantage of working with the class Fp is that we get classical
solutions of elliptic equations we deal with, not merely weak solutions.

Moreover, in the sequel we also take n > 2. If n = 1, 2 one uses the stronger
forms of the Sobolev embedding theorem and the arguments below require
minor changes.

If (f .1′) holds then, according to Theorem 1.7, one has that

f ∈ C(L2∗ , L2n/(n+2)). (1.3)

Moreover, setting

F(x, u) =
∫ u

0
f (x, s) ds,

it follows that

|F(x, u)| ≤ a1|u| + a2|u|p+1,

with p+ 1 ≤ 2∗. Since H1
0 ↪→ L2∗ then F(·, u(·)) ∈ L1 provided u ∈ H1

0 and it
makes sense to consider the map 	 : H1

0 → R defined by

	(u) =
∫
�

F(x, u) dx. (1.4)

One can show, see Theorem 2.9 of [20], that 	 is of class C1 on H1
0 and

d	(u)[v] =
∫
�

f (x, u)v dx.

Let us point out that, as remarked before, f (x, u) ∈ L2n/(n+2) while v ∈ H1
0 ⊂

L2∗ ; hence f (x, u)v ∈ L1 so that the right hand side of the preceding formula
makes sense.

Next, suppose that f ∈ Fp with 1 < p < (n + 2)/(n − 2), and let un → u,
weakly in H1

0 . Since p+1 < 2∗, the embedding of H1
0 ↪→ Lp+1 is compact and

thus, up to a subsequence, un → u strongly in Lp+1. This immediately implies
that

	(un)→ 	(u),

and shows that 	 is weakly continuous. Similarly, from Theorem 1.7 we infer
that f (un)→ f (u) in Lα(�), with α = (p+ 1)/p. Using the Hölder inequality
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we get

|d	(un)[v]−d	(u)[v]| ≤
[∫

�

|f (x, un)−f (x, u)|αdx

]1/α [∫
�

|v|p+1dx

]1/(p+1)

= ‖f (un)− f (u)‖Lα‖v‖L p+1 .

Since p+1 < 2∗ we deduce that ‖v‖L p+1 ≤ c ‖v‖H1
0
, where c > 0 is a constant

independent of v. In conclusion, we infer that

‖d	(un)− d	(u)‖ ≤ c ‖ f (un)− f (u)‖Lα ,

and this shows that d	 is a compact operator. Let us collect the above results
in the following.

Theorem 1.8 Suppose that f ∈ Fp with 1 < p ≤ (n+ 2)/(n− 2) and let 	 be
defined on H1

0 (�) by (1.4). Then 	 ∈ C1(H1
0 , R).

Furthermore, if f ∈ Fp with 1 < p < (n + 2)/(n − 2), then 	 is weakly
continuous and d	 is a compact operator.

Remark 1.9 The first (respectively second) statement holds true if we suppose
that f satisfies (f .0) and (f .1′), respectively (f .0) and (f .1). Furthermore, if f is
Lipschitz, respectively of class Ck , with respect to u then it is easy to see that
	 is of class C1,1, respectively Ck+1, on H1

0 . �

1.4 Elliptic equations

Consider the linear Dirichlet boundary value problem (BVP in short){−
u(x) = h(x) x ∈ �

u(x) = 0 x ∈ ∂�
(1.5)

where h is a given function on �. If h ∈ L2(�), a weak solution of (1.5) is a
function u ∈ H1

0 (�) such that∫
�

∇u · ∇v dx =
∫
�

hv dx, ∀v ∈ C∞0 (�).

Hereafter c denotes a possibly different constant independent of u.

Theorem 1.10 Let � ⊂ R
n be a bounded domain.

(i) If h ∈ Lp(�), 1 < p < +∞, then (1.5) has a unique weak solution
u ∈ H1

0 (�) ∩ H2,p(�) such that

‖u‖H2,p ≤ c‖h‖Lp .
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(ii) (Schauder estimates) If � is of class C2,α and h ∈ C0,α(�) then
u ∈ C2,α(�) is a classical solution of (1.5) and

‖u‖C2,α ≤ c‖h‖C0,α .

The statement (i) of the preceding theorem allows us to define a linear selfadjoint
operator K : L2(�) → H1

0 (�), h �→ K(h) = u, where u denotes the unique
solution of (1.5). K is the Green operator of−
 on H1

0 (�). Since the embedding
of H1

0 (�) into L2(�) is compact, it follows that K is compact as a map from
L2(�) in itself. Similarly, we can consider K as an operator in X = C0,α(�).
From (ii) of Theorem 1.10 it follows that K(X) ⊂ {u ∈ C2,α(�) : u|∂� = 0}
and Ascoli’s theorem implies that K is still compact.

Remark 1.11
(i) We point out that, here and always in the sequel, we can substitute −


with any uniformly elliptic second order operator with smooth
coefficients and in divergence form.

(ii) The Schauder estimates stated before hold true when −
 is replaced by
any second order uniformly elliptic operator such as

−Lu = −
∑

aij(x)
∂2u

∂xi∂xj
+
∑

bi(x)
∂u

∂xi
+ c(x)u,

where aij, bi, c are of class C1(�), c ≤ 0 in � and ∃ κ > 0 such that∑
aij(x)ξiξj ≥ κ|ξ |2, ∀ x ∈ �, ξ ∈ R

n. �

1.4.1 Eigenvalues of linear Dirichlet boundary value problems

Consider the linear eigenvalue problem{−
u(x) = λu(x) x ∈ �

u(x) = 0 x ∈ ∂�.
(1.6)

From the preceding discussion, it follows that (1.6) is equivalent to u = λK(u),
u ∈ L2(�) or u ∈ C0,α(�).

It is convenient to recall the main general properties of operators A ∈ L(X)

of the type identity-compact, according to the Riesz–Fredholm theory.

(RF1) Ker(A) is finite dimensional, Range(A) is closed and has finite
codimension;

(RF2) Range(A) = [Ker(A∗)]⊥ = {u ∈ X : 〈ψ , u〉 = 0, ∀ψ ∈ Ker(A∗)};
(RF3) ∃m ≥ 1 such that Ker(Ak) = Ker(Ak+1), ∀ k ≥ m. Moreover, ∀ k ≥ m

one has that Range(Ak+1) = Range(Ak), X = Ker(Am)⊕ Range(Am)
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and the restriction of A to Range(Am) is a linear homeomorphism of
Range(Am) onto itself;

(RF4) Ker(A) = {0} ⇐⇒ Range(A) = X .

The preceding results apply to Aλ = I − λK , where K is the Green operator of
−
 with zero Dirichlet boundary conditions.

Definition 1.12 A real number λ such that Ker(Aλ) �= {0} is an eigenvalue
of (1.6). The integer m such that (RF3) holds (with Aλ = A) is called the
multiplicity of λ. When the multiplicity is equal to 1 we say that the eigenvalue
is simple.

The following result holds.

Theorem 1.13
(i) Equation (1.6) has a sequence of eigenvalues λk such that

0 < λ1 < λ2 ≤ λ3 ≤ . . . , λk ↗ +∞.

(Here we use the convention that multiple eigenvalues are repeated
according to their multiplicity.) The first eigenvalue λ1 is simple and the
corresponding eigenfunctions do not change sign in �. Moreover, λ1 is
the only eigenvalue with this property.
We will denote by ϕ1 the eigenfunction corresponding to λ1, such that
ϕ1(x) > 0 and ‖ϕ1‖L2 = 1. We will also denote by ϕi the eigenfunctions
corresponding to λi such that∫

�

ϕhϕkdx =
{

1 if h = k
0 if h �= k.

(ii) There holds

λ1 = min

{∫
�

|∇u|2dx : u ∈ H1
0 (�),

∫
�

u2dx = 1

}
.

(iii) Letting Wk = {u ∈ H1
0 (�) :

∫
�
∇u · ∇ϕhdx = 0} for h = 1, . . . , k − 1,

one has that

λk = min

{∫
�

|∇u|2dx : u ∈ Wk ,
∫
�

u2dx = 1

}
.

Properties (ii) and (iii) are the variational characterizations of eigenvalues, see
also Section 5.5. Let us also remark that from (ii) above we can deduce a more
precise form of the Poincaré inequality:

λ1

∫
�

u2dx ≤
∫
�

|∇u|2dx. (1.7)
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Concerning the nonhomogeneous problem{−
u(x) = λu(x)+ h(x) x ∈ �

u(x) = 0 x ∈ ∂�,
(1.8)

we can use the properties (RF2)–(RF4) to deduce the following.

Theorem 1.14
(i) If λ �= λk for all integer k ≥ 1, then (1.8) has a unique solution for any

h ∈ L2(�).
(ii) Let λk be an eigenvalue of (1.6) and let Vk denote the corresponding

kernel. Then, given any h ∈ L2(�), (1.8) has a unique solution if and only
if
∫
�

hv dx = 0, for all v ∈ Vk.

Remark 1.15 If we work in Hölder spaces, the results stated in Theorems 1.13
and 1.14 hold with L2(�) substituted by C0,α(�). �

Let a ∈ L∞(�) be such that a(x) ≥ 0 and a(x) > 0 in a set of positive measure
in �. We will denote by λk[a] the eigenvalues of{−
u(x) = λa(x)u(x) x ∈ �

u(x) = 0 x ∈ ∂�.

There exist infinitely many eigenvalues 0 < λ1[a] < λ2[a] ≤ λ3[a] ≤ . . .

satisfying properties similar to those listed in Theorem 1.13. In addition, the
following properties hold.

(EP-1) (Monotonicity property) If a ≤ b then λk[a] ≥ λk[b], for all k ≥ 1;
moreover, if a < b in a subset �′ ⊂ � with positive measure, then
λk[a] > λk[b], for all k ≥ 1.

(EP-2) (Continuity property) If am → a in Ln/2(�), then λk[am] → λk[a],
for all k ≥ 1.

1.4.2 Regularity

It is a general fact that weak solutions of the Dirichlet BVP{−
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�
(1.9)

are indeed classical solutions provided f ∈ Fp with 1 < p < (n+ 2)/(n− 2).
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Theorem 1.16 Let ∂� be smooth and suppose that f ∈ Fp, with 1 < p <

(n+ 2)/(n− 2).
Then every u ∈ H1

0 (�)which is a weak solution of (1.9) is a C2-solution of (1.9).

Proof. We first use the so-called bootstrap argument to show that u is Hölder
continuous on �. Let n > 2 and set κ p = (n+ 2)/(n− 2). Notice that κ > 1.

Step 1. By the Sobolev embedding theorem it follows that u ∈ L2n/(n−2).

Step 2. Using (1.3) with q = 2∗ we infer that f (x, u) ∈ Lβ with β = 2∗/p =
κ 2n/(n+ 2).

Step 3. Since −
u = f (x, u), Theorem 1.10(i) yields u ∈ H2,β .

If 2β > n then u ∈ C0,α(�). Otherwise, we can repeat steps 1–3:

(i) by the Sobolev embedding theorem 1.5(i) one has that u ∈ Lq′ , with

q′ = nβ

n− 2β
> κ

2n

n− 2
;

(ii) from (1.3) it follows that f (x, u) ∈ Lβ ′(�) with β ′ = q′/p > κβ;
(iii) Theorem 1.10(i) implies that u ∈ H2,β ′ .

In any case, after a finite number of times, one finds that u ∈ H2,γ with γ > n/2.
Then the Sobolev embedding theorem 1.5(iii) yields H2,γ ⊂ C0,α(�) with
α ≤ 1.

At this point we can apply point (ii) of Theorem 1.10. Actually, letting h(x) =
f (x, u(x)), u is a weak solution of−
u = h with h ∈ C0,ν(�) for some ν ≤ 1.
Hence u ∈ C2,ν(�) and is a classical solution of (1.9). �

Remark 1.17 From a result of Brezis and Kato [62] it follows that the same
regularity is true if p = (n+ 2)/(n− 2). �

In the sequel we will always deal with classical solutions.

1.4.3 Positive solutions

Dealing with equations like (1.9), one can use the maximum principle to obtain
positive solutions.
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Maximum Principle. Let � ⊂ R
n be a bounded domain with smooth

boundary and let λ < λ1. Suppose that u ∈ C2(�) ∪ C(�) satisfies{
−
u ≥ λu in � ,

u ≥ 0 on ∂�.

Then u ≥ 0 in �. Moreover, either u > 0 in � or u ≡ 0 in �.

In order to apply the maximum principle to obtain a positive solution of (1.9)
one can substitute f with its positive part f+(x, u) := max{f (x, u), 0)}. If{−
u(x) = f+(x, u(x)), x ∈ �,

u(x) = 0, x ∈ ∂�,

has a nontrivial solution u∗, namely such that u∗(x) �≡ 0, then u∗ > 0 in �.
Therefore f+(x, u∗(x)) = f (x, u∗(x)) and u∗ is a positive solution of (1.9).
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A primer on bifurcation theory

A specific feature of many nonlinear problems is the existence of multiple
solutions and often it is useful to introduce a parameter λ to detect when new
solutions arise. From the mathematical point of view, one is led to consider a
functional equation S(λ, u) = 0, depending on a parameter λ, and such that
S(λ, 0) ≡ 0. Bifurcation theory deals with the existence of values λ∗ at which
nontrivial solutions branch off from the trivial one, u = 0. A very interesting
survey on bifurcation theory is contained in the paper [145] by G. Prodi, which
also contains applications to elasticity and fluid dynamics.

In this chapter we will address the simplest situation, the bifurcation from a
simple eigenvalue. The material discussed in this chapter is closely related to
that contained in [20], Chapter 5.

2.1 Bifurcation: definition and necessary conditions

Let X , Y be Banach spaces. We will deal with an equation like

S(λ, u) = 0 (2.1)

where S : R× X → Y is such that

S(λ, 0) = 0, ∀ λ ∈ R.

The solution u = 0 will be called the trivial solution of (2.1). The set

�S = {(λ, u) ∈ R× X : u �= 0, S(λ, u) = 0}
will be called the set of nontrivial solutions of (2.1). When no confusion is
possible, we will omit the subscript S.

Many problems arising in applications can be modelled in this way. For
example, let us consider an elastic beam, with one hinged endpoint and length �,
which is compressed at the free edge by a force of intensity proportional to

15
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λ > 0. The corresponding equation is given by{
u′′(s)+ λ sin u(s) = 0 s ∈ [0, �]
u′(0) = u′(�) = 0

(2.2)

where s is the arc length, the prime denotes the derivative with respect to s
and u is the angle between the horizontal line and the tangent to the beam.
To frame such an equation in a form like (2.1), we set X = {u ∈ C2(0, �) :
u′(0) = u′(�) = 0}, Y = C(0, �) and S(λ, u) = u′′(s) + λ sin u(s). Let us
point out that the choice of the function spaces is made taking into account
the boundary conditions in (2.2). Clearly, u(s) ≡ 0 is a solution of (2.2) for
any λ ∈ R, corresponding to the unbended position of the beam. This is a
stable equilibrium if λ remains small and corresponds to the trivial solution of
our problem. When λ exceeds a certain critical threshold, the beam bends and
this corresponds to a nontrivial solution. The trivial solution, which still exists,
becomes unstable while the new solution is the stable one. Such a threshold is
a bifurcation point of (2.2).
Coming back to (2.1), let us give the precise definition of bifurcation point.

Definition 2.1 A bifurcation point for (2.1) is a number λ∗ ∈ R such that
(λ∗, 0) belongs to the closure of �. In other words, λ∗ is a bifurcation point if
there exist sequences λn ∈ R, un ∈ X \ {0} such that

(i) S(λn, un) = 0,
(ii) (λn, un)→ (λ∗, 0).

The main purpose of the theory of bifurcation is to estabilish conditions for
finding bifurcation points and, in general, to study the structure of �.

If S ∈ C1(R × X , Y) a necessary condition for λ∗ to be a bifurcation point
can be immediately deduced from the implicit function theorem.

Proposition 2.2 If λ∗ is a bifurcation point of (2.1) then S′u(λ∗, 0) ∈ L(X, Y)

is not invertible.
In particular, if S(λ, u) = λu−T(u), then any bifurcation point of (2.1) belongs
to the spectrum of T ′(0).

Proof. If S′u(λ∗, 0) is invertible, the implicit function theorem implies that,
locally near (λ∗, 0), the unique solution of S(λ, u) = 0 is u = 0.

If S(λ, u) = λu−T(u), then S′u(λ∗, 0) : v �→ λ∗v−T ′(0)v and hence S′u(λ∗, 0)
is not invertible if and only if λ∗ is in the spectrum of the linear map T ′(0). �

In the case of the beam equation (2.2), one has that

S′u(λ, 0) : v �→ v′′ + λv, v ∈ X.
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 �0  �1 �2 �k

Figure 2.1 Bifurcation diagram of (2.2).

Thus the values of λ such that S′u(λ, 0) is not invertible are the eigenvalues of
the linear problem {

u′′(s)+ λu(s) = 0, s ∈ [0, �]
u′(0) = u′(�) = 0.

which are given by λk = k2π2/�2, k = 1, 2, . . .. Hence these λk are the only
possible bifurcation points of (2.2). In this specific case, an elementary phase
plane analysis shows that each λk is in fact a bifurcation point.

However, in general, one cannot expect that every value λ such that S′u is not
invertible, is a bifurcation point. Actually, the following example shows that,
in general, the converse of Proposition 2.2 is not true.

Example 2.3 Let X = Y = R
2 and let S(λ, u) = λu−T(u), where u = (x1, x2)

and T : X �→ Y is defined by setting

T(x1, x2) = (x1 + x3
2 , x2 − x3

1).

The solutions of S(λ, u) = λu − T(u) = 0 are the pairs u = (x1, x2) ∈ R
2

such that {
λx1 = x1 + x3

2
λx2 = x2 − x3

1.

From this it follows that x4
1 + x4

2 = 0 and hence the only solution of λu = T(u)
is (x1, x2) = (0, 0). In other words, f = 0 has the trivial solution only and
there is no bifurcation point. On the other hand, the derivative T ′(0) is the
identity matrix in R

2 and hence λ∗ = 1 is an eigenvalue of T ′(0), indeed the
only one. �
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2.2 The Lyapunov–Schmidt reduction

In this section we will discuss an abstract procedure which turns out to be very
useful in many cases.

Let S ∈ C2(R× X , Y) and let λ∗ ∈ R be such that

L = S′u(λ∗, 0)

is not invertible. We will focus on the case in which this is due to the presence
of a nontrivial kernel. Let V = Ker(L) and let R denote the range of L. We
suppose

(V) V has a topological complement W in X.
(R) R is closed and has a topological complement Z in Y .

Remark 2.4 Any linear Fredholm operator L satisfies (V) and (R). Actually, in
this case, V is finite dimensional, R is closed and the dimension of Z is finite.
More precisely, if L is Fredholm with index zero, then dim(V) = dim(Z). �

If (V) and (R) hold then (W and Z are closed and) X = V ⊕W , Y = Z ⊕ R.
In particular, for any u ∈ X there exist unique v ∈ V and w ∈ W such that
u = v + w. Similarly, we can define conjugate projections P, Q on Y onto Z
and R, respectively.

Setting u = v + w and applying P and Q to (2.1) we obtain the following
equivalent system:

PS(λ, v + w) = 0, (2.3)

QS(λ, v + w) = 0. (2.4)

The latter is called the auxiliary equation.

Z0

X = V     W

w

v

W

V0 Py

P

Q

Y = Z     R

u = v + w y = Py + Qy

S(�, ·)

R

Qy

Figure 2.2
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Lemma 2.5 The auxiliary equation (2.4) is uniquely solvable in W, locally near
(λ∗, 0). Precisely, there exist neighbourhoods �∗ of λ∗, V0 of v = 0 in V, W0

of w = 0 in W, and a map w = w(λ, v) ∈ C2(�∗ × V0, W), such that

QS(λ, v + w) = 0, (λ, v, w) ∈ �∗ × V0 ×W0 ⇐⇒ w = w(λ, v).

Furthermore, one has that

w(λ, 0) = 0, ∀ λ ∈ �∗, (2.5)

w′v(λ∗, 0) = 0. (2.6)

Proof. Set φ(λ, v, w) = QS(λ, v + w). One has that φ ∈ C1(R × V × W , R)

and ∂wφ(λ∗, 0, 0) is the linear map from W to R given by

w �→ QS′u(λ∗, 0)[w] = QLw = (since Lw ∈ R) = Lw.

In other words, ∂wφ(λ∗, 0, 0) is the restriction of L to W , and thus it is obviously
injective and surjective (as a map from W to R). Since R is closed, it follows
that ∂wφ(λ∗, 0, 0) is invertible and a straight application of the implicit function
theorem yields the result. �

We can now substitute w = w(λ, v) into (2.3) yielding the bifurcation equation

PS(λ, v + w(λ, v)) = 0. (2.7)

Suppose that there exists a sequence of solutions of (2.7), (λn, vn) → (λ∗, 0),
with vn �= 0. From the preceding discussion it follows that, setting un = vn +
w(λn, vn), one has that S(λn, un) = 0. Moreover, according to (2.5), one has
that w(λn, vn)→ 0. Finally, if vn �= 0 then un = vn +w(λn, vn) �= 0 and hence
(λn, un) is a nontrivial solution of (2.1).

Summarizing, we have shown the following.

Theorem 2.6 Let S ∈ C1(R × X , Y) satisfy (V) and (R). Suppose that the
bifurcation equation (2.7) possesses a sequence of solutions (λn, vn)→ (λ∗, 0),
with vn �= 0. Then, setting un = vn + w(λn, vn), one has that (λn, un) ∈ �S,
un → 0 and thus λ∗ is a bifurcation point of (2.1).

2.3 Bifurcation from the simple eigenvalue

According to Theorem 2.6, we need to impose conditions in such a way that
the bifurcation equation (2.7) is solvable. The first case that we are going to
discuss is when V is one dimensional and the codimension of R is also one. For
this reason, this is called the case of the simple eigenvalue.
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Precisely, we will assume that (V) and (R) hold and

(V-1) there exists u∗ ∈ X , u∗ �= 0, such that V = span{u∗};
(R-1) there exists ψ ∈ Y∗, ψ �= 0, such that R = {y ∈ Y : 〈ψ , y〉 = 0}.
Remark 2.7 In the specific case in which X = Y and S(λ, u) = u−λAu−T(u),
with T smooth and such that T(0) = 0, T ′(0) = 0, and A ∈ L(X, X) is compact,
one has that L = I − λ∗A, where I denotes the identity in X. Suppose that λ∗ is
a simple characteristic value of A, in the sense that Ker(I − λ∗A) �= {0}. Then

(i) Ker[I − λ∗A] is one dimensional,
(ii) the codimension of Range[I − λ∗A] is one, and

Ker[I − λ∗A] ∩ Range[I − λ∗A] = {0}.
Then (i) and (ii) are obviously equivalent to (V-1) and (R-1), see also
Remark 2.4. �

Using the same notation as in the previous sections, we have that v = tu∗,
t ∈ R, and hence the solution of the auxiliary equation has the form w(λ, v) =
w(λ, tu∗). Moreover, one has that

PS(λ, v + w(λ, v)) = PS(λ, tu∗ + w(λ, tu∗)).

Then, according to assumption (R-1), the bifurcation equation PS = 0 becomes

β(λ, t)
def= 〈ψ , S(λ, tu∗ + w(λ, tu∗))〉 = 0. (2.8)

From property (2.5) of w we deduce:

β(λ, 0) = 〈ψ , S(λ, w(λ, 0))〉 = 〈ψ , S(λ, 0)〉.
Since S(λ, 0) ≡ 0 we infer

β(λ, 0) ≡ 0. (2.9)

Next, let us evaluate the partial derivative β ′t of β with respect to t:

β ′t (λ, t) = 〈ψ , S′u(λ, tu∗ + w(λ, tu∗))[u∗ + w′v(λ, tu∗)u∗]〉. (2.10)

For t = 0 we get

β ′t (λ, 0) = 〈ψ , S′u(λ, 0)[u∗ + w′v(λ, 0)u∗]〉. (2.11)

In particular, for λ = λ∗, (2.6) yields

β ′t (λ∗, 0) = 〈ψ , S′u(λ∗, 0)[u∗]〉 = 〈ψ , Lu∗〉 = 0. (2.12)
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Furthermore, from (2.11) we deduce that the second mixed derivative β ′′t,λ
satisfies

β ′′t,λ(λ∗, 0) = 〈ψ , S′′u,λ(λ
∗, 0)[u∗ + w′v(λ∗, 0)]u∗〉

+ 〈ψ , S′u(λ∗, 0)[w′′t,λ(λ∗, 0)u∗]〉
= 〈ψ , S′′u,λ(λ

∗, 0)[u∗]〉 + 〈ψ , L[w′′t,λ(λ∗, 0)u∗]〉.
Since L[w′′t,λ(λ∗, 0)u∗] ∈ R, then 〈ψ , L[w′′t,λ(λ∗, 0)u∗]〉 = 0 and thus we find

β ′′t,λ(λ∗, 0) = 〈ψ , S′′u,λ(λ
∗, 0)[u∗]〉. (2.13)

We are now in a position to state the main result of this section.

Theorem 2.8 Let (V-1) and (R-1) hold and suppose that

S′′u,λ(λ
∗, 0)[u∗] �∈ R. (2.14)

Then λ∗ is a bifurcation point for S.

Proof. Define

h(λ, t) =


β(λ, t)

t
if t �= 0

β ′t (λ, 0) if t = 0.

Clearly, h is of class C1 in a neighbourhood of (λ∗, 0) ∈ R
2. From (2.12) it

follows that h(λ∗, 0) = 0. Moreover, from (2.13) one infers that

h′λ(λ∗, 0) = β ′′t,λ(λ∗, 0) = 〈ψ , S′′u,λ(λ
∗, 0)[u∗]〉.

Then assumption (2.14) yields that h′λ(λ∗, 0) �= 0. Applying the implicit func-
tion theorem to h we find λ = λ(t), defined in an ε-neighbourhood of t = 0,
such that

λ(0) = λ∗, h(λ(t), t) = 0, ∀ − ε ≤ t ≤ ε.

Now, if h(λ(t), t) = 0, t �= 0, then β(λ(t), t) = 0 and thus the pair (λ(t), u(t))
with u(t) = tu∗ + w(λ(t), t) is a solution of the bifurcation equation PS = 0
such that (λ(t), u(t))→ (λ∗, 0) as t → 0. Let us point out that u(t) �= 0 when
t �= 0. Then we deduce that λ∗ is a bifurcation point for S. �

Remark 2.9
(a) The set of nontrivial solutions �S is a smooth curve which has a Cartesian

representation on the kernel V of L.
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(b) We can describe � in a more precise fashion. Actually, we have:

λ′(0) = − h′t(λ∗, 0)

h′λ(λ∗, 0)
.

We already know that

h′λ(λ∗, 0) = 〈ψ , S′′u,λ(λ
∗, 0)[u∗]〉 def= a.

In addition, one easily finds that

h′t(λ∗, 0) = 1
2β
′′
t,t(λ

∗, 0)
def= b.

With straight calculations one deduces

b = 1
2 〈ψ , S′′u,u(λ

∗, 0)[u∗]2〉.
Hence, if b �= 0 we get

λ(t) = λ∗ − b

a
t + o(t), as t → 0.

This implies that there are nontrivial solutions branching off from (λ∗, 0)
both for λ > λ∗ and for λ < λ∗ (transcritical bifurcation). If b = 0 the
structure of � depends on the higher order u-derivatives of S. For
example, if S is odd with respect to u, one gets

λ′′(0) = − 1

3a
〈ψ , S′′′u,u,u(λ

∗, 0)[u∗]3〉,
and thus, if λ′′(0) �= 0 one finds

u = ±
(
λ− λ∗

2c

)1/2

u∗ + O(λ− λ∗), c
def= λ′′(0).

Then, if c > 0 the nontrivial solutions branch off on the right of λ∗
(supercritical bifurcation), while if c < 0 the branching is on the left of
λ∗ (subcritical bifurcation). �

   0 0 0�* �* �*� � �

b ≠ 0 b = 0, c > 0 b = 0, c < 0

Figure 2.3
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For future reference, it is convenient to state explicitly the result in the case
introduced in Remark 2.7. Let X = Y and suppose that S has the form S(λ, u) =
u − λAu − T(u), where A ∈ L(X , X). In this case Theorem 2.8 becomes the
following.

Theorem 2.10 Let T ∈ C2(X , X) be such that T(0) = 0 and T ′(0) = 0.
Moreover, let A be compact. Then any simple characteristic value λ∗ of A is a
bifurcation point for S(λ, u) : u− λAu− T(u) = 0.

Proof. As anticipated in Remark 2.7, for any simple characteristic value of A the
assumptions (V-1) and (R-1) hold true. Moreover, one has that V = Ker[I−λ∗A]
verifies V ∩ R = {0}. Since

S′′u,λ(λ
∗, 0)[v] = Av,

assumption (2.14) follows immediately, too. �

Applications to nonlinear eigenvalue problems
As a first application of the preceding results, let us consider the beam
equation (2.2). We have already seen that the problem can be handled by
means of bifurcation theory, setting X = {u ∈ C2(0, �) : u(0) = u(�) = 0},
Y = C(0, �), S(λ, u) = u′′ + λ sin u, and S′u(λ, 0) : v �→ v′′ + λv. The eigen-
values λk = k2π2/�2, k = 1, 2, . . . of v′′ + λv = 0, v ∈ X, are all simple and
thus, according to Theorem 2.8, are bifurcation points. Similar results hold true
for nonlinear Sturm–Liouville eigenvalue problems like{−(p(x)u′)′ + q(x)u = λu+ f (x, u) x ∈ [a, b]

u(a) = u(b) = 0,

where p, q and f are smooth, p, q > 0 in [a, b] and f (x, 0) ≡ 0. For example, if
f ′u(x, 0) = 0 then all the eigenvalues of{−(p(x)u′)′ + q(x)u = λu x ∈ [a, b]

u(a) = u(b) = 0,

are bifurcation points.
Next, we will study the bifurcation for semilinear elliptic eigenvalue
problems like {−
u = λu+ f (x, u) x ∈ �

u = 0 x ∈ ∂�.
(Dλ)

Here � is a smooth bounded domain in R
N and f ∈ C2(�×R). We introduce

the Hölder spaces X = {u ∈ C2,α(�) : u|∂� = 0} and Y = C0,α(�), and define

S(λ, u) = 
u+ λu+ f (x, u).
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If (λ, u) ∈ R× X is a solution of S(λ, u) = 0 then u solves (Dλ).
Suppose that f (x, 0) = f ′u(x, 0) = 0. Then S(λ, 0) ≡ 0 and

S′u(λ, 0) : v �→ 
v + λv.

Let us take λ∗ = λk , an eigenvalue of the linear boundary value problem{−
u = λu x ∈ �

u = 0 x ∈ ∂�.
(2.15)

Then L = Lk : v �→ 
u + λku has a nontrivial kernel V = Vk . Assumption
(V-1) requires that Vk is one dimensional, namely that λk is simple. Let ϕk ,
with

∫
�
ϕ2

k dx = 1, be an eigenfunction corresponding to λk . Then u∗ = ϕk and
Vk = span{ϕk}. Moreover, according to Theorem 1.14, see also Remark 1.15,
one has that the range Rk of Lk has codimension one and is given by

Rk =
{

u ∈ Y :
∫
�

uϕk dx = 0

}
.

In other words, here Rk = Ker(ψ) where ψ is defined by setting 〈ψ , u〉 =∫
uϕk dx. Finally, S′′u,λ(λk , 0) : v �→ v and hence S′′u,λ(λk , 0)[ϕk] = ϕk �∈ Rk . In

conclusion, Theorem 2.8 applies and ensures that every simple eigenvalue of
(2.15) is a bifurcation point for S, namely for the semilinear Dirichlet boundary
value problem (Dλ).

Remark 2.11 We could also use a slightly different approach that leads to an
equation in the form considered in Theorem 2.10. Let us set X = C0,α

0 (�) =
{u ∈ C0,α(�) : u(x) = 0, ∀ x ∈ ∂�}, let K denote the Green operator of
−
 on X, see the discussion after Theorem 1.10, and let f be the Nemitski
operator associated to f (x, u). Let us recall that K ∈ L(X) is compact. With this
notation, (Dλ) is equivalent to the equation u = λK(u)− K(f (u)), which is in
the form addressed in Theorem 2.10, with A = K and T = K ◦ f . Of course,
the characteristic values of K are nothing but the eigenvalues of (2.15). �

Completing the above discussion we can establish whether the bifurcation is
transcritical, supercritical or subcritical. One has:

a = 〈ψ ,ϕk〉 =
∫
�

ϕ2
k dx = 1,

b = 1
2 〈ψ , S′′u,u(λk , 0)[ϕk]2〉 = 1

2

∫
�

f ′′u,u(x, 0)ϕ3
k dx.

Furthermore, if b = 0 and f is odd with respect to u, then

c = − 1
6

∫
�

f ′′′u,u,u(x, 0)ϕ4
k dx.
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Example 2.12 Consider the problem{−
u = λu± |u|p−1u x ∈ �

u = 0 x ∈ ∂�,

where p ≥ 2. Let us consider the case λ∗ = λ1, the first eigenvalue of (2.15).
We can take ϕ1 > 0.

(i) If p = 2 then b = ∫
�
ϕ3

1 dx > 0 and the bifurcation is transcritical.
(ii) If p = 3 then b = 0, while the sign of c depends on whether the

nonlinearity is +u3 or −u3. In the former case we have that

c = −
∫
�

ϕ4
1dx < 0,

while in the latter

c =
∫
�

ϕ4
1 dx > 0.

Therefore the bifurcation is subcritical if the nonlinearity is+u3, and supercrit-
ical if the nonlinearity is −u3. �

Remark 2.13 Let us point out that the solutions branching off from λ1 are
small in C2,α and hence the behaviour of f (x, u) as |u| → ∞ does not play any
role. In other words, bifurcation takes place whatever the exponent is and the
restriction | f (x, u)| ≤ c1+ c2|u|p, with 1 < p ≤ (n+ 2)/(n− 2) (n > 2) is not
required here. �
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Topological degree, I

The topological degree (in short, degree) of a map is a classical tool which is
very useful for solving functional equations. It was introduced by L. Brouwer for
finite dimension and extended by J. Leray and J. Schauder to infinite dimension.
There is a very broad literature dealing with degree. We limit ourselves to citing
the books [4, 68, 87, 95, 148, 160] which are most closely related to the topics
discussed here.

We divide the material into Chapters 3 and 4. The former is organized as
follows. First we give an account of the degree in a somewhat axiomatic way,
listing its main properties. The Brouwer fixed point theorem is discussed in
Section 3.2. In Section 3.3 we carry out the construction of the degree. The
Leray–Schauder degree is discussed in Section 3.4. Applications include the
Leray–Schauder fixed point theorem (Section 3.5), the Krasnoselski bifurcation
theorem (Section 3.7) as well as examples in which the degree is used to solve
elliptic differential equations (Section 3.6). Further theoretical tools, global
in nature, and their applications to bifurcation theory and elliptic BVP are
discussed in Chapter 4.

3.1 Brouwer degree and its properties

Let us assume that:

(a) � is an open bounded set in R
n, with boundary ∂�;

(b) f is a continuous map from � to R
n; the components of f will be

denoted by fi;
(c) p is a point in R

n such that p �∈ f (∂D).

To each triple (f ,�, p) satisfying (a)–(c), one can associate an integer
deg(f ,�, p), called the degree of f (with respect to � and p), with the following
basic properties.

26
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(P.1) Normalization: if IRn denotes the identity map in R
n, then

deg(IRn ,�, p) =
{

1 if p ∈ �

0 if p �∈ �.

(P.2) Solution property: if deg(f ,�, p) �= 0 then there exists z ∈ � such that
f (z) = p.

(P.3) deg(f ,�, p) = deg(f − p,�, 0).
(P.4) Decomposition: if �1 ∩�2 = ∅ then

deg(f ,�1 ∪�2, p) = deg(f ,�1, p)+ deg(f ,�2, p).

Below we will give an outline of the procedure usually followed to define
the degree, omitting the consistency of the definition and the verification of
(P.1–P.4). The complete construction, with proofs, will be carried out in Section
3.3. For details about the standard construction, see the references given at the
beginning of the chapter. First one considers a C1 map f and a regular value
p. Let us recall that, by definition, p is said to be a regular value for f , if the
Jacobian Jf (x) is different from zero for every x ∈ f−1(p). The Jacobian is the
determinant of the matrix f ′(x) with entries

aij = ∂fi
∂xj

.

If p is a regular value then the set f−1(p) is finite and one can define the degree
by setting

deg(f ,�, p) =
∑

x∈f−1(p)

sgn[Jf (x)], (3.1)

where, for b ∈ R \ {0}, we set

sgn[b] =
{

1 if b > 0

−1 if b < 0.

It is immediate to verify that the degree defined above satisfies the properties
(P.1)–(P.5).

In order to extend the preceding definition to any continuous function f and
any point p, one uses an approximation procedure. First, in order to approximate
p with regular values pk one applies the Sard theorem.

Theorem 3.1 (Sard theorem) Let f ∈ C1(�, Rn) and set Sf = {x ∈ � :
Jf (x) = 0}. Then f (Sf ) is a set of zero measure.

For a proof, see [95, Lemma 1.4]. The set Sf is called the set of singular points
of f . Any u such that f (u) = p is called a nonsingular solution of the equation
f = p, provided u �∈ Sf .
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According to the Sard theorem, there exists a sequence pk �∈ Sf , such that
pk → p. When pk is sufficiently close to p, pk verifies (c) and hence it makes
sense to consider the deg(f ,�, pk), given by (3.1). Moreover, one can show that,
for k � 1, deg(f ,�, pk) is a constant which is independent of the approximating
sequence pk . Hence one can define the degree of f ∈ C1(�, Rn) ∩ C(�, Rn)

at any p by setting deg(f ,�, p) = limk deg(f ,�, pk). Similarly, given f ∈
C(�, Rn), let fk ∈ C1(�, Rn)∩C(�, Rn) be such that fk → f uniformly on �.
If k � 1, then any (fk ,�, p) satisfies (a)–(c) and one can consider the degree
deg(fk ,�, pk). Once more, one can show that lim deg(fk ,�, p) does not depend
upon the choice of the sequence fk and thus one can define the degree of f by
setting deg(f ,�, p) = limk deg(fk ,�, p).

An important property of the degree defined above is the invariance by homo-
topy. An homotopy is a map h = h(λ, x) such that h ∈ C([0, 1] × �, Rn).
An homotopy is admissible (with respect to � and p), if h(λ, x) �= p for all
(λ, x) ∈ [0, 1] × ∂�.

One can prove that the degree defined before satisfies

(P.5) Homotopy invariance: if h is an admissible homotopy, then
deg(h(λ, ·),�, p) is constant with respect to λ ∈ [0, 1]. In particular, if
f (x) = h(0, x) and g(x) = h(1, x) then deg(f ,�, p) = deg(g,�, p).

As an immediate consequence of the homotopy invariance, we can deduce the
following.

Theorem 3.2 (Dependence on the boundary values) Let f , g ∈ C(�, Rn)

be such that f (x) = g(x) for all x ∈ ∂� and let p �∈ f (∂�) = g(∂�). Then
deg(f ,�, p) = deg(g,�, p).

Proof. Consider the homotopy

h(λ, x) = λg(x)+ (1− λ)f (x).

For all x ∈ ∂� one has that f (x) = g(x) and hence h(λ, x) = f (x) �= p. Thus h
is admissible and the homotopy invariance yields:

deg(f ,�, p) = deg(h(·, 0),�, p) = deg(h(·, 1),�, p) = deg(g,�, p),

proving the result. �

Let us list below (without proofs) some further properties of the degree.

(P.6) Continuity: if fk → f uniformly in �, then deg(fk ,�, p)→ deg(f ,�, p).
Moreover, deg(f ,�, p) is continuous with respect to p.

(P.7) Excision property: let �0 ⊂ � be an open set such that f (x) �= p, for all
x ∈ � \�0. Then deg(f ,�, p) = deg(f ,�0, p).
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The excision property allows us to define the index of an isolated solution
of f (x) = p. Let x0 ∈ � be such that f (x0) = p and suppose that there exists
r > 0 such that f (x) �= p for all x ∈ Br(x0) \ {x0}. Using the excision property,
with � = Br(x0) and �0 = Bρ(x0), ρ ∈ (0, r), we deduce that

deg(f , Bρ(x0), p) = deg(f , Br(x0), p), ∀ ρ ∈ (0, r).

This common value is, by definition, the index of f with respect to x0:

i(f , x0) = lim
ρ→0

deg(f , Br(x0), p), p = f (x0).

Moreover, if f−1(p) = {x1, . . . , xk}, xj ∈ �, then

(P.8) deg(f ,�, p) =
k∑
1

i(f , xj).

To see this, it suffices to take ρ > 0 such that Bρ(xi) ∩ Bρ(xj) for all i �= j.
Letting �0 = Bρ(x1) ∪ · · · ∪ Bρ(xk), using the excision property (P.7) and the
decomposition property (P.4), we find

deg(f ,�, p) = deg(f ,�0, p) =
k∑
1

deg(f , Bρ(xj), p) =
k∑
1

i(f , xj),

proving (P.8).
Let f ∈ C1 and let p be a regular value of f (i.e. Jf (x0) �= 0 for all x0 ∈ f−1(p)).
As already pointed out before, if p is a regular value of f then the set f−1(p)
is discrete. In particular, any solution x0 of f (x) = p is isolated and it makes
sense to consider the index i(f , x0).

Lemma 3.3 Suppose that f ∈ C1(�, Rn) ∩ C(�, Rn) and let x0 ∈ � be such
that p = f (x0) is a regular value of f . Then

i(f , x0) = (−1)β ,

where β is the sum of the algebraic multiplicities of all the negative eigenvalues
of f ′(x0).

Proof. Let r > 0 be such that the only solution of f (x) = p in Br = Br(x0)

is x0. Then i(f , x0) = deg(f , Br , p) and (3.1) yields i(f , x0) = sgn[Jf (x0)].
Using the Jordan normal form, we know that the Jacobian determinant Jf (x0) is
given by

Jf (x0) = λ1 · · · λn,
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where λj are the eigenvalues of f ′(x0) repeated according to their algebraic
multiplicity. Now, let us remark that:

• each λj is different from zero, because x0 is a regular value;
• if an eigenvalue is complex, say equal to a+ ib, then its complex conjugate

a− ib is also an eigenvalue of f ′(x0), and their product is a2 + b2 > 0.

From this it follows that sgn[Jf (x0)] = (−1)β , completing the proof. �

Remark 3.4 It has been shown in [7] that the topological degree deg(f ,�, p) ∈
Z is uniquely determined by properties (P.1), (P.4) and (P.5). �

3.2 Application: the Brouwer fixed point theorem

In this section we will assume that a degree deg(f ,�, p) satisfying the properties
listed in the previous section has been defined, and we will show how it can
be used to obtain the classical Brouwer fixed point theorem. We start with a
preliminary result.

Let B1 = {x ∈ R
n : |x| < 1} denote the unit ball in R

n.

Theorem 3.5 The unit sphere ∂B1 is not a ‘retract’ of the unit ball B1. Namely,
there is no continuous map f : B1 �→ ∂B1 such that f (x) ≡ x, for all x ∈ ∂B1.

Proof. Assuming the contrary, Theorem 3.2, with g(x) = x, implies

deg(f ,�, 0) = deg(g,�, 0) = 1.

Using the solution property we infer that there exists x ∈ B1 such that f (x) = 0
and this is in contradiction with the assumption that f (B1) ⊆ ∂B1. �

Remark 3.6 More in general, it is easy to see that, if � is any bounded open
convex set, or else if � is a bounded domain homeomorphic to a convex set,
then it is not possible to retract � onto its boundary ∂�. �

We are now ready to prove the Brouwer fixed point theorem.

Theorem 3.7 If f is a continuous map from the a bounded closed convex set
C ⊂ R

n into itself, then there exists z ∈ C such that f (z) = z.

Proof. First, let C be the closure of the unit ball B1 in R
n. If f (x) �= x for all

x ∈ B1, we can define a map f̃ : B1 �→ ∂B1 by letting f̃ (x) be the intersection
of ∂B1 with the half-line starting from f (x) and crossing x, see Figure 3.1.

It is easy to see that f̃ is continuous. Moreover, f̃ (x) = x for all x ∈ ∂B1, and
hence ∂B1 is a deformation retract of B1, a contradiction to Theorem 3.5. The
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x

0

B1

�B1

f (x)

f (x)
~

Figure 3.1

case in which C is a bounded closed convex set, follows similarly, by using
Remark 3.6. �

Remark 3.8
(a) According to Remark 3.6, one can extend the Brouwer fixed point theorem

proving that if � is a bounded domain homeomorphic to a convex set then
any continuous map from � into itself has at least a fixed point z ∈ �.

(b) Another proof of Theorem 3.7 can be carried out using the homotopy
invariance of the degree. Roughly, one shows that the homotopy
(λ, x) �→ x − λf (x) is admissible and thus
deg(I − f , B1, 0) = deg(I , B1, 0) = 1. Using the solution property, one
deduces that there exists zero of x − f (x), namely a fixed point of f .
For details, see the proof of Theorem 3.21 in the sequel. �

It is worth mentioning that there are several further topological results that
can be proved using the finite dimensional degree, see [95, Chapter 3]. Here
we limit ourselves to stating a result that we will need in the sequel, see
Theorem 10.5.

Theorem 3.9 (Borsuk–Ulam theorem) Let � ⊂ R
n be bounded, open, sym-

metric (namely x ∈ � ⇔ −x ∈ �) and such that 0 �∈ �. Suppose that
f ∈ C(�, Rn) is an odd map such that 0 �∈ f (∂�). Then deg(f ,�, 0) = 1
(mod 2).

3.3 An analytic definition of the degree

In this section we give a complete account of the topological degree and of
its properties. The definition we will give below is not the one sketched in
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Section 3.1. Instead, we prefer to follow a more analytical approach due to E.
Heinz [105] which is slightly simpler from the technical point of view.

3.3.1 Degree for C2 maps

We begin with the case of C2 maps. It is always understood that the preceding
conditions (a)–(c) are verified. Let f ∈ C2(�, Rn) and let Jf (x) denote the
Jacobian of f . From (c) one has that min{|f (x)− p| : x ∈ ∂�} > 0 and we can
choose α > 0 such that

α < min
x∈∂� |f (x)− p|.

Consider a real valued continuous function ϕ defined on [0,∞) and such that

(i) supp[ϕ] ⊂]0,α[ ,
(ii)

∫
Rn ϕ(|x|) dx = 1.

Definition 3.10 For f ∈ C1(�, Rn) we set

deg(f ,�, p) =
∫
�

ϕ(|f (x)− p|)Jf (x) dx.

Remark 3.11 Obviously, one has that deg(f ,�, p) = deg(f −p,�, 0), namely
property (P.3) holds. �

We shall justify the definition by showing that it is independent of the choice of
α and ϕ satisfying (i) and (ii) above. Precisely, let us show that if α1,ϕ1, α2,ϕ2

satisfy (i) and (ii), then∫
�

ϕ1(|f (x)− p|)Jf (x) dx =
∫
�

ϕ2(|f (x)− p|)Jf (x) dx. (3.2)

We can take p = 0. Setting ϕ̃ = ϕ1 − ϕ2, (3.2) becomes∫
�

ϕ̃(|f (x)|)Jf (x) dx = 0.

From (ii) we infer ∫ ∞

0
rn−1ϕ̃(r) dr = 0. (3.3)

Moreover, if supp[ϕi] ⊂]0,αi[, (i = 1, 2), then

supp[ϕ̃] ⊂]0,α[, (3.4)

where α = max{α1,α2}. We set

ψ(r) =
{

r−n
∫ r

0 sn−1ϕ̃(s) ds if r > 0
0 if r = 0.
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From (3.3) and (3.4) it follows that for r > α one has that

ψ(r) = r−n
∫ r

0
sn−1ϕ̃(s) ds = r−n

∫ ∞

0
sn−1ϕ̃(s) ds = 0.

Thus supp[ψ] ⊂]0,α[. Moreover, ψ is of class C1 and

ϕ̃(r) = rψ ′(r)+ nψ(r).

Let Aij denote the cofactor of aij = ∂fi/∂xj in the Jacobian Jf and consider the
vector field V ∈ C1(�, Rn) with components

Vi(x) =
n∑

j=1

Aji(x) ψ(|f (x)|)fj(x).

Taking into account the following property of the cofactors Aij

n∑
i=1

∂Aji

∂xi
= 0, ∀ j = 1, . . . , n,

a straight calculation yields

div(V(x)) =
n∑

i=1

∂Vi

∂xi

= Jf (x)(|f (x)|ψ ′(|f (x)|)+ nψ(|f (x)|)) = ϕ̃(|f (x)|)Jf (x).

Integrating on � we find∫
�

ϕ̃(|f (x)|)Jf (x) dx =
∫
∂�

V(x) · ν dσ , (3.5)

where ν denotes the unit outer normal at ∂�. Now, let us remark that for x ∈ ∂�

one has that |f (x)| ≥ min{|f (x)| : x ∈ ∂�} > α and thus

V(x) = 0, ∀ x ∈ ∂�. (3.6)

Using (3.6), we infer that the last integral in (3.5) is zero and hence∫
�

ϕ̃(|f (x)|)Jf (x) dx = 0.

This proves that (3.2) holds true.
We end this subsection by evaluating the degree in some specific cases.

Example 3.12 Let f = A ∈ L(Rn) with A nonsingular. Then

deg(A,�, p) =
∫
�

ϕ(|Ax − p|)JA(x) dx

=
∫
�

ϕ(|Ax − p|) det(A) dx =
∫

A(�)

ϕ(|y − p|) sgn[det(A)] dy.
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We can take α < min∂� |Ax − p| such that Bα(p) ⊂ A(�) if p ∈ A(�),
respectively Bα(p)∩� if p �∈ A(�). Since the support of ϕ(· − p) is contained
in the ball Bα(p), then one gets

deg(A,�, p) =
{

sgn[det(A)] if p ∈ A(�)

0 if p �∈ A(�).

In particular, we find

deg(IRn ,�, p) =
{

1 if p ∈ �

0 if p �∈ �,

namely (P.1) holds. �

As a second example, we consider the case in which p is a regular value of f .

Example 3.13 Let D be an open subset of R
n, consider f ∈ C2(D, Rn) and let

x0 ∈ D be such that p = f (x0) is a regular value of f . We know that f induces
a diffeomorphism between a ball Bε(x0), ε > 0 small enough, and its image
Uε = f (Bε(x0)). We can also assume that Jf has constant sign in Bε(x0). Let
us evaluate the degree deg(f , Bε(x0), p). With arguments similar to those used
in the preceding example, we get

deg(f , Bε(x0), p) =
∫

Bε(x0)

ϕ(|f (x)− p|)Jf (x) dx

= sgn[Jf (x0)]
∫

Bε(x0)

ϕ(|f (x)− p|)|Jf (x)| dx

= sgn[Jf (x0)]
∫

Uε

ϕ(|y − p|) dy.

In the definition of the degree we can take α such that Bα(p) ⊂ Uε. Since
ϕ(|y − p|) = 0 for |y − p| > α, then∫

Uε

ϕ(|y − p|) dy =
∫

Rn
ϕ(|y − p|) dy = 1,

and hence

deg(f , Bε(x0), p) = sgn[Jf (x0)]. �

In the above examples the degree is an integer. In general, we will show that the
degree, as defined in Definition 3.10, is always an integer. Moreover, at the end
of the section we will recover formula (3.1) for C1 maps and regular values,
see Corollary 3.15.
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3.3.2 Degree for continuous maps

We are now going to define the degree for any continuous f verifying the
conditions (a)–(c) stated at the beginning of Section 3.1. For this purpose, we
need the following lemma.

Lemma 3.14 For i = 1, 2, let fi ∈ C2(�, Rn) be such that

|fi(x)− p| > α > 0, ∀ x ∈ ∂�.

Given ε ∈]0,α/6[, we suppose that

|f2(x)− f1(x)| < ε, ∀ x ∈ �.

Then deg(f1,�, p) = deg(f2,�, p).

Proof. According to Remark 3.11 we can take p = 0. Let χ ∈ C1(0,∞) be a
nondecreasing function such that

χ(r) =
{

1 if 0 ≤ r ≤ 2ε
0 if r ≥ 3ε,

and define f3 ∈ C1(�, Rn) ∩ C(�, Rn) by setting

f3(x) = (1− χ(|f1(x)|))f1(x)+ χ(|f1(x)|)f2(x).
From the definition of χ we infer:

f3(x) = f1(x), ∀ x ∈ � : |f1(x)| > 3ε, (3.7)

f3(x) = f2(x), ∀ x ∈ � : |f1(x)| < 2ε. (3.8)

In particular, since |f1(x)| > α, for all x ∈ ∂�, and α > 6ε, then |f3(x)| =
|f1(x)| > α for all x ∈ ∂�. Furthermore, for all x ∈ � one has that

f3(x)− f1(x) = χ(|f1(x)|) · (f2(x)− f1(x)),

f3(x)− f2(x) = (1− χ(|f1(x)|)) · (f1(x)− f2(x)),

and therefore, for i = 1, 2

|f3(x)− fi(x)| < ε, ∀ x ∈ �. (3.9)

Choose two functions ϕi ∈ C(0,∞) with the following properties:∫
Rn

ϕi(|x|) dx = 1, i = 1, 2,

supp[ϕ1] ⊂]4ε, 5ε[,
supp[ϕ2] ⊂]0, ε[.
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According to Definition 3.10, the functions ϕ1 and ϕ2 can be used to evaluate
the degree of fi, i = 1, 2, 3. In particular, one has

deg(f3,�, 0) = ∫
�
ϕ1(|f3(x)|)Jf3(x) dx,

deg(f1,�, 0) = ∫
�
ϕ1(|f1(x)|)Jf1(x) dx.

(3.10)

Now, since supp[ϕ1] ⊂]4ε, 5ε[ we get:

ϕ1(|f3(x)|) �= 0 ⇐⇒ 4ε < |f3(x)| < 5ε.

Using (3.9), we deduce that 3ε < |f1(x)| < 6ε provided 4ε < |f3(x)| < 5ε and
then (3.7) yields f3(x) = f1(x) for all x ∈ � such that 4ε < |f3(x)| < 5ε. In
other words,

ϕ1(|f3(x)|)Jf3(x) = ϕ1(|f1(x)|)Jf1(x), ∀ x ∈ �

and this, jointly with (3.10), implies that deg(f3,�, 0) = deg(f1,�, 0).
Similarly, we see that

ϕ2(|f3(x)|)Jf3(x) = ϕ2(|f2(x)|)Jf2(x), ∀ x ∈ �

and we deduce that deg(f3,�, 0) = deg(f2,�, 0). In conclusion, one has
deg(f1,�, 0) = deg(f3,�, 0) = deg(f2,�, 0), proving the lemma. �

We are now in a position to define the degree for any continuous map f : � �→
R

n such that f (x) �= p for all x ∈ ∂�. By density, there exists a sequence of
functions fk ∈ C2(�, Rn)∩C(�, Rn) converging to f uniformly on �. Clearly,
for k � 1 we have that fk(x) �= p on ∂� and hence the degree deg(fk ,�, p) is
well defined. Moreover, Lemma 3.14 implies that deg(fk ,�, p) is constant for
k sufficiently large. This allows us to define the degree of f with respect to �

and p, by setting

deg(f ,�, p) = lim
k→∞ deg(fk ,�, p). (3.11)

3.3.3 Properties of the degree

In this subsection we will show that properties (P.1)–(P.7) hold. We have already
checked that (P.1) and (P.3) are verified. According to the definition and to
Lemma 3.14, it suffices to carry out the proofs under the additional assumption
that f ∈ C2. Let us point out that p �∈ f (∂�) implies that p �∈ fk(∂�) for
k � 1, as well as q �∈ f (∂�) for all q near p, so that it makes sense to consider
deg(fk ,�, p) and deg(f ,�, q).

Proof of (P.2). If f (x) �= p for all x ∈ �, then f (x) �= p on all the compact
set � and hence ∃ δ > 0, δ ≤ α, such that |f (x) − p| > δ, for all x ∈ �.
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Choose ϕ such that
∫
Rn ϕ(|x|) dx = 1 and supp[ϕ] ⊂]0, δ[. From this and the

fact that |f (x)− p| > δ in �, we infer that ϕ(|f (x)− p|) ≡ 0 in � and one finds

deg(f ,�, p) =
∫
�

ϕ(|f (x)− p|)Jf (x) dx = 0.

This is in contradiction with our assumptions. �

Proof of (P.4). Since �1 ∩�2 = ∅ one has∫
�1∪�2

ϕ(|f (x)− p|)Jf (x) dx =
∫
�1

ϕ(|f (x)− p|)Jf (x) dx

+
∫
�2

ϕ(|f (x)− p|)Jf (x) dx.

Then (P.4) immediately follows from Definition 3.10. �

Proof of (P.5). For any ε > 0 small, we can find δ(ε) > 0 such that |h(x, λ1)−
h(x, λ2)| < ε for all x ∈ � provided |λ1 − λ2| < δ. Using Lemma 3.14 we
infer

deg(h(·, λ1),�, p) = deg(h(·, λ2),�, p).

Covering the interval [0, 1] with a finite number of subintervals with length
smaller than δ, and applying the preceding equation, the result follows. �

Proof of (P.6). This follows immediately from Lemma 3.14. Since
deg(f ,�, p) = deg(f − p,�, 0) we also deduce the continuity of the degree
with respect to p. �

Proof of (P.7). Since f (x) �= p, ∀ x ∈ �\�0, then f (x) �= p, on the compact set
� \�0, and there exists α1 > 0 such that |f (x)− p| > α1, ∀ x ∈ � \�0. In the
definition of the degree, let us choose ϕ in such a way that supp[ϕ] ⊂]0,α1[.
Then ϕ(|f (x)− p|) ≡ 0 on � \�0 and this yields∫

�

ϕ(|f (x)− p|)Jf (x) dx =
∫
�0

ϕ(|f (x)− p|)Jf (x) dx.

Since, by definition, the former integral equals deg(f ,�, p) while the latter
equals deg(f ,�0, p), we conclude that deg(f ,�, p) = deg(f ,�0, p). �

Let us point out that the definition and properties of the index depend
on (P.1)–(P.7) only. In particular, (P.8) holds. Moreover, arguing as in
Example 3.13, we immediately deduce the following corollary, which is noth-
ing but the definition of the degree for regular values and C1 functions, given
in (3.1).
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Corollary 3.15 If p is a regular value of f ∈ C1(�, Rn) ∩ C(�, Rn), then

deg(f ,�, p) =
∑

x∈f−1(p)

sgn[Jf (x)].

We end this section by showing that deg(f ,�, p) defined in Definition 3.10,
is always an integer. As usual, it suffices to consider C1 maps. If p is a regular
value, the claim follows from the corollary above. Otherwise, let Sf denote the
set of points x ∈ � such that Jf (x) = 0. The Sard theorem ensures that f (Sf )

has zero Lebesgue measure. Hence, there exists a sequence of regular values
pk with pk → p. Since deg(f ,�, pk) is an integer then, by continuity, we infer
that deg(f ,�, p) is an integer too.

3.4 The Leray–Schauder degree

In this section we will define the Leray–Schauder degree, namely the degree for
maps f ∈ C(X, X), where X is a Banach space and f is a compact perturbation
of the identity I = IX . This extension is particularly important for applications
to differential equations.

3.4.1 Defining the Leray–Schauder degree

Let D be an open bounded subset of the Banach space X. We will deal with
compact perturbations of the identity, namely with operators S ∈ C(D, X) such
that S = I − T , where T is compact.

Let p �∈ S(∂D). It is easy to check that S(∂D) is closed and hence

r := dist(p, S(∂D)) > 0.

It is known, see [60, VI.1], that there exists a sequence Tk ∈ C(D, X) such that
Tk → T uniformly in D and

Tk(D) ⊂ Ek ⊂ X , with dim(Ek) <∞. (3.12)

We shall define the degree of I − T as the limit of the degrees of I − Tk , which
we are going to introduce. First, some preliminaries are in order.

Let us consider a map φ ∈ C(�, Rm), where � ⊂ R
n and m ≤ n. We will

identify R
m as the subset of R

n whose points have the last n − m components
equal to zero: R

m = {x ∈ R
n : xm+1 = · · · = xn = 0}. The above function φ

can be considered as a map with values on R
n by understanding that the last

n − m components are zero: φm+1 = · · · = φn = 0. Let g(x) = x − φ(x) and
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let gm ∈ C(� ∩ R
m, Rm) denote the restriction of g to � ∩ R

m. Let us show
that if p ∈ R

m \ g(∂�) then

deg(g,�, p) = deg(gm,� ∩ R
m, p). (3.13)

Let x ∈ � be such that g(x) = p. This means that x = φ(x)+p. Thus x ∈ �∩R
m

and so gm(x) = g(x) = p. This shows that g−1(p) ⊂ g−1
m (p). Since the converse

is trivially true, it follows that

g−1(p) = g−1
m (p). (3.14)

We can suppose that � ∩ R
m �= ∅, otherwise, g−1

m (p) = ∅ and by (3.14),
g−1(p) = ∅. As usual, we can suppose that φ is of class C1 and, moreover, that
p is a regular value of gm. Then, according to (3.1), we get

deg(g,�, p) =
∑

x∈g−1(p)

sgn[Jg(x)].

Now the Jacobian matrix g′(x) is in triangular form(
g′m(x) ·

0 IRn−m

)
,

and hence sgn[Jg(x)] = sgn[Jgm(x)]. From this and (3.14) we infer

deg(g,�, p) =
∑

x∈g−1(p)

sgn[Jg(x)] =
∑

x∈g−1
m (p)

sgn[Jgm(x)] = deg(gm,�∩R
m, p),

proving (3.13), provided p is a regular value. In the general case, we use the
Sard Lemma and argue as at the end of the previous section. This completes
the proof of (3.13).
The preceding discussion allows us to define the degree for a map g such that
g(x) = x − φ(x), where φ(D) is contained in a finite dimensional subspace E
of X. Let p ∈ X, p �∈ g(D). Let E1 be a subspace of X containing E and p. We
set g1 = g|D∩E1

and define

deg(g, D, p) = deg(g1, D ∩ E1, p). (3.15)

Let us show that the preceding definition is independent of E1. Let E2 be another
subspace of X such that E ⊂ E2 and p ∈ E2. Then E ⊂ E1∩E2 and p ∈ E1∩E2.
Applying (3.13) we infer:

deg(gi, D ∩ Ei, p) = deg(g|D∩E1∩E2
, D ∩ E1 ∩ E2, p), i = 1, 2.

This justifies the defintion given in (3.15).
Now, let us come back to the map S = I − T , with T compact. Let Tk → T

satisfy (3.12) and set Sk = I − Tk . Taking k such that

sup
x∈D

‖T(x)− Tk(x)‖ ≤ r/2, (3.16)
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we infer that p �∈ Sk(D) and hence it makes sense to consider the degree
deg(Sk , D, p) defined as in (3.15).

Definition 3.16 Let p �∈ S(∂D), where S = I − T with T compact. We set

deg(S, D, p) = deg(I − Tk , D, p),

for any Tk satisfying (3.12) and (3.16).

Once more, we have to justify the definition, by showing that the degree
does not depend on the approximation Tk . To prove this claim, let Ti, i = 1, 2,
be such that (3.12)–(3.16) hold. Let Ei be finite dimensional spaces such that
Ti(D) ⊂ Ei. If E is the space spanned by E1 and E2, we use the definition (3.15)
to get

deg(Si, D, p) = deg((Si)|D∩E , D ∩ E, p), i = 1, 2. (3.17)

Consider the homotopy

h(λ, ·) = λ(S1)|D∩E + (1− λ)(S2)|D∩E .

It is easy to check that h is admissible on D ∩ E and thus

deg((S1)|D∩E , D ∩ E, p) = deg((S2)|D∩E , D ∩ E, p).

This together with (3.17) proves that Definition 3.16 is justified.
The Leray–Schauder degree has the same properties (P.1)–(P.8) as the

finite dimensional degree (with � substitued by D). Precisely, as far as the
homotopy invariance (P.5) is concerned, one has to deal with homotopies
h(λ, x) ∈ C([0, 1] × D, X) such that, for every λ ∈ [0, 1], h(λ, ·) is a compact
perturbation of the identity.

Of course, one can also extend the notion of index of an isolated solution x0

of S(x) = x − T(x) = p by setting

i(S, x0) = lim
r→0

deg(S, Br(x0), p), p = S(x0),

Br(x0) = {x ∈ X : ‖x − x0‖ < r}.
We end this subsection by proving the counterpart of Lemma 3.3. First some
preliminaries are in order. Recall that µ �= 0 is a characteristic value of a
linear map A if and only if µ−1 is an eigenvalue of A. Moreover, if 1 is not a
characteristic value of T ′(x0), then S′(x0) is invertible. We will refer to these
solutions as nonsingular solutions of S = 0. In particular, the local inversion
theorem applies and hence x0 is an isolated solution of x − T(x) = p.
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Lemma 3.17 Let T ∈ C(X , X) be compact and differentiable at x0. Then
T ′(x0) is a linear compact operator, hence there are only a finite number
of characteristic values of T ′(x0) contained in ]0, 1[ and each has finite
multiplicity.

Proof. Setting for 0 < t < 1

Rt(x) = T(x0 + tx)− T(x0)

t
,

one has that Rt is compact and T ′(x0)[x] = limt→0 Rt(x). It follows that the set
T ′(x0)[Br(x0)] is precompact, for all r > 0. �

Lemma 3.18 Let T ∈ C1(D, X) be compact and suppose that 1 is not a char-
acteristic value of T ′(0). Set S(x) = x − T(x) and, let x0 ∈ X be such that
S(x0) = p. Then one has

i(S, x0) = deg(S′(x0), Br(x0), p), r � 1.

Proof. To simplify the notation we take x0 = 0 and p = 0. We have S(x) =
S′(0)[x] + R(x) = x − T ′(0)[x] + R(x), where R(x) = o(‖x‖) as ‖x‖ → 0.
Consider the homotopy

h(λ, x) = x − T ′(0)[x] + λR(x).

From Lemma 3.17 it follows immediately that h(λ, ·) is a compact perturbation
of the identity. Let us check that there exists r > 0 small enough such that h is
admissible on D = Br(0). Otherwise, there exist xi → 0 and λi ∈ [0, 1] such
that h(xi, λi) = 0, namely xi − T ′(0)[xi] + λiR(xi) = 0. Setting zi = ‖xi‖−1xi,
zi satisfies

zi = T ′(0)[zi] − λi
R(xi)

‖xi‖ .

Without relabelling the indices, we can assume that zi → z∗, weakly in X, and
λi → λ∗ ∈ [0, 1]. Since R(x) = o(‖x‖) and using the fact that T ′(0) and R are
compact, we infer that zi → z∗ strongly and there holds ‖z∗‖ = 1 as well as
z∗ = T ′(0)[z∗]. This is in contradiction with the assumption that µ = 1 is not
a characteristic value of T ′(0).

Using the homotopy invariance we get

deg(S, D, 0) = deg(h(1, ·), D, 0) = deg(h(0, ·), D, 0) = deg(S′(0), D, 0),

and the lemma follows. �
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Lemma 3.19 Let L be a linear, compact map in X and suppose that 1 is not a
characteristic value of L, Then

deg(I − L, Br(0), 0) = (−1)β , r > 0,

where β is the sum of the algebraic multiplicities of all the characteristic values
of L contained in ]0, 1[.

Proof. For each characteristic value µi of L, let us set

Ni =
∞⋃

m=1

Ker[(I − µiL)
m].

We also denote by qi = dim[Ni] the algebraic multiplicity of µi. Letting µi,
1 ≤ i ≤ k denote the characteristic values of L contained in ]0, 1[, and setting
N = ⊕∞k=1Ni, we have that dim[N] = q1 + · · · + qk = β (if there are no
characteristic values in ]0, 1[, we take N = ∅; in such a case β = 0). Let W
be such that X = N ⊕ W and let P, Q denote the projections on N and W ,
respectively. Consider now the homotopy

h(λ, x) = x − L[Px] − λL[Qx].
Clearly, for each λ, h is a compact perturbation of the identity. Moreover, if
there exist r > 0 and (λ, x) such that

x − L[Px] − λL[Qx] = 0, λ ∈ [0, 1], ‖x‖ = r,

one finds Px−L[Px] = λL[Qx]−Qx. Then Px−L[Px] ∈ N , λL[Qx]−Qx ∈ W
and N ∩W = ∅, imply

Px = L[Px]
Qx = λ L[Qx].

Since 1 is not a characteristic value of L, from Px = L[Px] it follows that
Px = 0. Then x = Qx and the second equation yields x = λL[x]. Obviously,
λ cannot be 0 nor 1, hence 0 < λ < 1. But, in such a case, λ must coincide
with one of the µi ∈]0, 1[ and thus x ∈ N , a contradiction to the fact that
x = Qx ∈ W .

Using the homotopy invariance, we infer that

deg(I − L, Br(0), 0) = deg(I − LP, Br(0), 0).

The latter is a finite dimensional perturbation of the identity and we can use
Lemma 3.3 to deduce that deg(I − LP, Br(0), 0) = (−1)β . �

We are now ready to prove the following.
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Theorem 3.20 Let T ∈ C1(D, X) be compact and such that 1 is not a charac-
teristic value of T ′(x0), for some x0 ∈ D. Then, setting S(x) = x − T(x) and
S(x0) = p, one has that x0 is an isolated solution of S(x) = p and there holds

i(S, x0) = (−1)β ,

where β is the sum of the algebraic multiplicities of all the characteristic values
of T ′(x0) contained in ]0, 1[.

Proof. It suffices to use Lemmas 3.18 and 3.19. �

3.5 The Schauder fixed point theorem

Before giving applications to differential equations, let us show how the degree
allows us to obtain a classical result on the existence of fixed points of a
compact map.

Theorem 3.21 Let D be a bounded, open convex subset of the Banach space
X such that 0 ∈ D and let T ∈ C(D, X) be compact and such that T(D) ⊂ D.
Then T has a fixed point in D, namely there exists x ∈ D such that T(x) = x.

Proof. Without loss of generality, we can assume that

T(x) �= x, ∀ x ∈ ∂D, (3.18)

otherwise we are done. Thus, we can define the degree deg(I−T , D, 0) and we
will prove the theorem by showing that deg(I − T , D, 0) �= 0. Define

h(λ, x) = x − λT(x), λ ∈ [0, 1], x ∈ D.

For each λ ∈ [0, 1] the map x �→ h(λ, x) is a compact perturbation of the
identity in X. We claim that

h(λ, x) �= 0, ∀ (λ, x) ∈ [0, 1] × ∂D. (3.19)

Otherwise, there exist x∗ ∈ ∂D and λ∗ ∈ [0, 1] such that h(λ∗, x∗) = 0, namely
x∗ = λ∗T(x∗). From (3.18) it follows that λ∗ < 1. Since T(D) ⊂ D, one has
that T(x∗) ∈ D. Then λ∗ < 1 and the convexity of D imply that λ∗T(x∗) ∈ D,
a contradiction with the fact that λ∗T(x∗) = x∗ ∈ ∂D. Since (3.19) holds, we
can use the homotopy invariance of the degree to find

deg(I − T , D, 0) = deg(I , D, 0) = 1,

because 0 ∈ D. Using the solution property, we infer that there exists x ∈ D
such that x − T(x) = 0. �
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Of course, if X = R
n Theorem 3.21 is nothing but the Brouwer fixed point

theorem.

3.6 Some applications of the Leray–Schauder degree to
elliptic equations

In this section we will discuss some first applications of the Leray–Schauder
degree to nonlinear elliptic boundary value problems such as{−
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.
(3.20)

The general strategy will be the following:

(1) to choose a Banach space X and convert the boundary value problem into
a functional equation like u = T(u), u ∈ X in such a way that T is
compact;

(2) to use the homotopy invariance of the degree to show that u = T(u) has a
solution. Usually, one takes the homotopy h(λ, u) = u− λT(u) and shows
that there exists R > 0 such that u �= λT(u) for all (λ, u) ∈ [0, 1] × X with
‖u‖ = R.

Dealing with (3.20), we can take X = L2(�) and denote by K the inverse of
−
 on H1

0 (�). According to the discussion after Theorem 1.10 in Section 1.4,
K , as a map from X into itself, is compact.

Remark 3.22 The Laplace operator −
 could be substituted by any second
order uniformly elliptic operator such as

−Lu = −
∑

aij(x)
∂2u

∂xi∂xj
+
∑

bi(x)
∂u

∂xi
+ c(x)u,

with smooth coefficients satisfying the same assumptions listed in
Remark 1.11(ii). If L is not variational, it is convenient to work in the Hölder
space C0,α(�). The arguments used below require minor changes and make
use of the Schauder estimates, see Theorem 1.10(ii) and Remark 1.11(ii). �

The results one can obtain mainly depend upon the asymptotic behaviour of f .
We first consider the easy case in which f is sublinear at infinity.
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3.6.1 Sublinear problems

Theorem 3.23 Suppose that f : �×R �→ R is locally Hölder continuous and
satisfies

lim|s|→∞
f (x, s)

s
= 0, (3.21)

uniformly with respect to x ∈ �. Then (3.20) has a (classical) solution.

Proof. From (3.21) it follows that, for all ε > 0, there exists Cε > 0 such that

|f (x, s)| ≤ Cε + ε|s|. (3.22)

Then, according to Theorem 1.7, f induces a Nemitski operator on X = L2(�),
still denoted by f . Setting T(u) = K f (u), T ∈ C(X , X) is compact and (3.20)
can be written in the form u = T(u), u ∈ X . Let us show that there exists R > 0
such that the homotopy h(t, u) = u − tT(u) is admissible in BR = {u ∈ X :
‖u‖ < R}. Otherwise, there exist uj ∈ X , with ‖uj‖ → ∞, and tj ∈ [0, 1] such
that uj = tjT(uj). This is equivalent to −
uj = tj f (x, uj), with uj ∈ H1

0 (�).
Taking uj as test function, using (3.22) and the fact that tj ≤ 1, we get∫

�

|∇uj|2 dx ≤ tj

∫
�

|f (x, uj)uj| dx ≤ Cε

∫
�

|uj| dx + ε

∫
�

|uj|2 dx.

Then, using the Hölder and Poincaré inequality (1.7), we deduce

λ1‖uj‖2
L2 ≤

∫
�

|∇uj|2 dx ≤ Cε‖uj‖L2 + ε‖uj‖2
L2 .

If we take ε such that ε < λ1, this equation implies that ‖uj‖L2 ≤ C, for some
C > 0, a contradiction. Thus the homotopy h(t, u) = u − tT(u) is admissible
on the ball BR. Using the homotopy invariance (P.5), it follows that deg(I −
T , BR, 0) = deg(I , BR, 0) = 1 and hence, by the solution property (P.2), there
exists u ∈ BR such that u = T(u), giving rise to a solution of (3.20). �

Remark 3.24 It is clear that the same existence result holds when the equation
in (3.20) is replaced by−
u = βu+ f (x, u), where β < λ1, the first eigenvalue
of −
 on � with zero Dirichlet boundary conditions. We first note that the
linear elliptic operator −
− β is invertible on H1

0 (�), with inverse Kβ which
is compact in X. Next, one repeats the preceding proof, with K substituted
by Kβ . �

It is worth recalling that, dealing with sublinear problems, one can also find
a solution by using variational methods or else by sub- and super-solutions.
Regarding the former, we refer to Section 5.4, see, in particular Theorem 5.9
and Remark 5.10. For the latter, we will outline the method below.
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Consider the equation{−
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.
(3.23)

We say that u ∈ C2(�) ∩ C1(�) is a sub-solution of (3.23) if{−
u(x) ≤ f (x, u(x)) x ∈ �

u(x) ≤ 0 x ∈ ∂�.

A super-solution u is defined by reversing the above inequalities1. It is well
known that if (3.23) has a sub-solution u and a super-solution u such that
u(x) ≤ u(x) in�, then it has a solution u with u(x) ≤ u(x) ≤ u(x). This solution
can be found by using a monotone iteration scheme, see [154], Theorem 2.3.1.

Let us show how one argues in the specific case of the problem

−
u = uq, x ∈ �, u = 0, x ∈ ∂�, 0 < q < 1. (3.24)

The general case is left to the reader as an exercise. Taking uε := εϕ1, one

finds that −
uε = ελ1ϕ1 while uq
ε = εqϕ

q
1 . For all ε < λ

1/(q−1)
1 ‖ϕ1‖−1∞ one

has ελ1ϕ1 < εqϕ
q
1 and thus uε is a sub-solution. On the other hand, let ψ

be such that −
ψ = 1 in � and ψ = 0 on ∂�. If M1−q > ‖ψ‖q∞ then
uM := Mψ satisfies −
uM > uq

M and thus is a super-solution of (3.24).
Choosing ε possibly smaller, one has that uε < uM in � and therefore (3.24)
has a (positive) solution u such that uε ≤ u ≤ uM . It is also possible to prove
that such a u is unique. For other results on sublinear problems, see Section 11.4
in Chapter 11.

3.6.2 Problems at resonance

In this subsection we will deal with a class of elliptic problems at resonance.
By a problem at resonance we mean an equation like{−
u(x) = λ∗u(x)+ f (x, u(x))− h(x) x ∈ �

u(x) = 0 x ∈ ∂�,
(3.25)

where f is a bounded function and λ∗ is an eigenvalue of−
 with zero Dirich-
let boundary conditions. In contrast with the cases discussed in the preceding
subsection, problem (3.25) might have no solution at all. Actually, if u is a

1 We consider smooth sub- and super-solutions, but it would be possible to deal with
weak (say H1) sub- and super-solutions.
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(classical) solution of (3.25), letting V∗ = {v ∈ H1
0 (�) : −
v = λ∗v} (the

eigenspace associated to λ∗), one has that

−
∫
�


u v dx = λ∗
∫
�

uv dx +
∫
�

f (x, u)v dx −
∫
�

hv dx, ∀ v ∈ V∗.

Integrating by parts, we find a necessary condition for the existence of solutions
of (3.25): ∫

�

f (x, u)v dx =
∫
�

hv dx, ∀ v ∈ V∗.

For example, if A < f < B, if λ∗ = λk is simple and if ϕk denotes a
corresponding eigenfunction, the above condition becomes

A
∫
ϕk>0

ϕk dx + B
∫
ϕk<0

ϕk dx <

∫
�

hϕk dx < B
∫
ϕk>0

ϕk dx + A
∫
ϕk<0

ϕk dx.

(3.26)
Problems at resonance have been broadly studied, beginning with the pioneering
paper by E. A. Landesman and A. C. Lazer [112].

We will show the following result.

Theorem 3.25 Suppose that f is bounded, locally Hölder continuous and
∃M > 0 such that |fu(x, u)| ≤ M. Moreover, suppose that f possesses limits at
±∞ and there holds

f−(x) = lim
u→−∞ f (x, u), f+(x) = lim

u→+∞ f (x, u).

Then (3.25) has a solution provided∫
�

hv dx <

∫
v>0

f+v dx +
∫

v<0
f−v dx, ∀ v ∈ V∗, ‖v‖ = 1. (3.27)

Proof. The proof will be carried out in two steps. First we use a Lyapunov–
Schmidt reduction and solve the auxiliary equation by means of the global
inversion theorem. Afterwards, we use the degree to solve the bifurcation
equation.

As usual, we denote by {λi}i≥1 the eigenvalues of −
 with zero Dirichlet
boundary conditions and by ϕi a corresponding orthonormal set of eigenfunc-
tions. For the sake of simplicity, we will further assume that{

(i) ∃ c1, c2 > 0 : c1 ≤ λ∗ + fu(x, u) ≤ c2, ∀ (x, u) ∈ �× R,
(ii) the interval [c1, c2] does not contain any λj �= λ∗. (3.28)

At the end of the proof we will indicate how one can handle the general case.
Let V = Ker[−
 − λ∗], let W denote the L2-orthogonal complement of V
in E = H1

0 (�) and let P, Q denote the corresponding orthogonal projections.
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Setting Pu = v and Qu = w, we have that u = v + w and (3.25) is equivalent
to the Lyapunov–Schmidt system{−
w = λ∗w+ Q f (v + w)− Qh

0 = P f (v + w)− Ph.

Using the global inversion theorem (see [20], Chapter 3, Theorem 1.8) it is
easy to check that the auxiliary equation has a unique solution w = w(v) and
‖w‖ ≤ constant. Actually, the map F(w) = −
w−λ∗w−Q f (v+w) is proper
and (3.28) implies that F ′(w) : ω �→ −
ω−λkω−Q fu(v+w)ω is invertible.
In order to solve the bifurcation equation we set 	(v) = P f (v+ w(v)). Let us
show that if (3.27) holds, then ∃R > 0 such that

deg(	− Ph, BR, 0) �= 0, where BR = {v ∈ V : ‖v‖ < R}. (3.29)

Clearly, if (3.29) holds, then the solution property of the degree implies that the
bifurcation equation 	(v) = Ph has a solution v̄, yielding a solution v̄ + w(v̄)
of (3.25).

In order to prove (3.29), we consider the homotopy

h(v, s) = s(	(v)− Ph)+ (1− s)v, v ∈ V , s ∈ [0, 1].
If there is R > 0 such that h is admissible on BR = {v ∈ V : ‖v‖ < R},
then deg(	− Ph, BR, 0) = deg(IV , BR, 0) = 1 and (3.29) follows. Arguing by
contradiction, let vj ∈ V , with ‖vj‖ → +∞, and sj → s̄ ∈ [0, 1], be such that

sj(	(vj)− Ph)+ (1− sj)vj = 0.

Remark that sj �= 0. Setting zj = ‖vj‖−1vj, we can assume (recall that V is
finite dimensional) that zj → z, where z ∈ V and ‖z‖ = 1. From the preceding
equation it follows that

sj

[∫
�

f (vj + wj)zj dx −
∫
�

hzj dx

]
= −(1− sj)

∫
�

vjzj dx ≤ 0, (3.30)

where wj = w(vj). Since ‖wj‖ ≤ c, we can assume that, up to a subsequence,
wj → w a.e. in �. Then, for almost every x ∈ {z > 0}, respectively x ∈ {z < 0},
one has that vj(x)+ wj(x)→ +∞, respectively vj(x)+ wj(x)→ −∞. Then,
using Fatou’s lemma we get

lim inf
∫
�

f (vj + wj)zj dx

≥ lim inf
∫

z>0
f (vj + wj)zj dx + lim inf

∫
z<0

f (vj + wj)zj dx

≥
∫

z>0
f+z dx +

∫
z<0

f−z dx.
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This and (3.30) yield∫
�

hz dx ≥
∫

z>0
f+z dx +

∫
z<0

f−z dx,

a contradiction to the assumption (3.27).
In the general case that (3.28) does not hold, we argue as follows. Let m ≥ 1

be such that

λ∗ + fu(x, u) ≤ c2 < λm+1, ∀ (x, u) ∈ �× R,

and set V∗ = 〈ϕ1, . . . ,ϕm〉. Letting P∗ denote the projection of V∗ on V and
letting L : V∗ → V∗ be defined by setting Lv = −
v−λ∗v, one still performs
a Lyapunov–Schmidt reduction and solves uniquely the auxiliary equation. To
prove that the bifurcation equation has a solution, one makes an homotopy
between 	− Ph and L − P∗. The details are left to the reader. �

Remark 3.26 If f−(x) < f (x, u) < f+(x) for all (x, u) ∈ � × R, then
(3.26) shows that (3.27) is also a necessary condition for the existence of a
solution. �

3.6.3 Exact multiplicity results

In our next application we will show how the degree can be used to find precise
multiplicity results. We consider the problem{−
u(x) = f (u(x)) x ∈ �

u(x) = 0 x ∈ ∂�,
(3.31)

under the following assumptions on f ∈ C2(R):

(a) f (0) = 0, uf ′′(u) > 0, ∀u �= 0,

(b) limu→±∞ f (u) = f±,

(c) λk−1 < f ′(0) < λk < f± < λk+1.

(3.32)

Theorem 3.27 If (3.32) holds, then (3.31) has exactly three solutions: the
trivial solution u ≡ 0 and two nontrivial ones.

Using the same notation as in the preceding theorem, we will look for solu-
tions of S(u) = 0, u ∈ X , with S = I − T and T = K f . We need first some
lemmas.



50 Topological degree, I

Lemma 3.28 Any u∗ ∈ X such that S(u∗) = 0 is a nonsingular solution,
namely S′(u∗) is invertible. Moreover there holds

i(S, u∗) =
{
(−1)k−1 if u∗ = 0

(−1)k if u∗ �= 0.

Proof. The equation S′(u∗)[v] = 0 is equivalent to the linearized problem

−
v = f ′(u∗)v, v|∂� = 0.

Denote by µj[a] the jth eigenvalue of 
a = µav with zero Dirichlet bound-
ary conditions. By the assumptions it follows that f ′(u) < λk+1 and thus the
monotonicity property of the eigenvalues (EP-1), see Section 1.4.1, yields

µk+1[f ′(u∗)] > µk+1[λk+1] = 1. (3.33)

Let us set f (u) = uψ(u). From (3.32) it follows that ψ is bounded and satisfies{
(a) ψ(u) < f ′(u), ∀u �= 0,
(b) λk−1 < ψ(u) < λk+1.

(3.34)

If u∗ �= 0, from −
u∗ = ψ(u∗)u∗ we infer that there exists an integer j ≥ 0
such that µj[ψ(u∗)] = 1. Then (3.34)(b) implies

µk−1[ψ(u∗)] < µk−1[λk−1] = 1, µk+1[ψ(u∗)] > µk+1[λk+1] = 1,

and thus µj[ψ(u∗)] = µk[ψ(u∗)] = 1. Furthermore, from (3.34)(a) it follows
that µk[f ′(u∗)] < µk[ψ(u∗)] = 1. This and (3.33) yield µk[f ′(u∗)] < 1 <

µk+1[f ′(u∗)], which proves that u∗ is nonsingular and i(S, u∗) = (−1)k . If u∗ =
0, the linearized equation S′(0)[v] = 0 becomes−
v = f ′(0)v = 0. Repeating
the previous arguments and using the assumption that λk−1 < f ′(0) < λk ,
see (3.32)(c), we immediately deduce that u∗ = 0 is also nonsingular and
i(S, 0) = (−1)k−1. �

Lemma 3.29 There exists R > 0 such that deg(S, BR, 0) = (−1)k.

Proof. Let us first show that ∃R > 0 such that

S(u) �= 0, ∀ u ∈ X , ‖u‖ = R. (3.35)

Arguing by contradiction, there exist {ui}i with ‖ui‖ → ∞, such that S(ui) = 0,
namely

−
ui = ψ(ui)ui, in �, ui = 0, on ∂�.

Setting zi = ‖ui‖−1ui, one finds

−
zi = ψ(ui)zi. (3.36)
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Since ‖zi‖ = 1, then zi → z∗ weakly (up to a subsequence). Using (3.36) and
the fact that ψ is bounded, elliptic regularity implies that zi → z∗ strongly in
X and uniformly in �. Taken any a ∈]λk , λk+1[, let us set

ψ∗(x) =


f+ if z∗(x) > 0

f− if z∗(x) < 0

a if z∗(x) = 0.

Taking into account that ui(x) = zi(x)‖ui‖ and that ‖ui‖ → ∞, it follows
that ψ(ui(x))zi(x) converges to ψ∗(x)z∗(x), a.e. in �. From (3.36) we get∫
�
∇zi · ∇ϕ dx = ∫

�
ψ(ui)ziϕ dx for all test function ϕ ∈ C∞0 (�) and, passing

to the limit, we find∫
�

∇z∗ · ∇ϕ dx =
∫
�

ψ∗z∗ϕ dx, ∀ ϕ ∈ C∞0 (�).

This implies that z∗ is a solution of −
z∗ = ψ∗z∗ in �, z∗ = 0 on ∂� and
thus λj[ψ∗] = 1 for some integer j ≥ 1. On the other hand, by the definition
of ψ∗ and from assumption (3.32)(c), it follows that λk < ψ∗ < λk+1. Using
the monotonicity property of the eigenvalues, see (EP-1) in Section 1.4.1, this
implies that λk[ψ∗], 1 < λk+1[ψ∗], a contradiction. This proves (3.35).

We can now use the homotopy invariance of the degree. Let us set

h(λ, u) = (1− λ)S(u)+ λ(u− K(ψ∗u)),

where v = K(ψ∗u) ⇐⇒ −
v = ψ∗u. Arguing as in the previous proof of
(3.35), one readily shows that h is admissible in BR and thus deg(S, BR, 0) =
deg(I − Kψ∗, BR, 0) = (−1)k . �

We are now ready to prove Theorem 3.27.

Proof of Theorem 3.27. S is a compact perturbation of the identity and thus it
is a proper map. Since every solution of S = 0 is nonsingular by Lemma 3.28,
the solution set S−1(0) is finite. Let m denote the number of nontrivial solutions
of S = 0. Using Lemmas 3.28 and 3.29 jointly with the property (P.8) of the
degree, we infer

(−1)k = deg(S, BR, 0) =
∑

u∗∈S−1(0)

i(S, u∗) = m(−1)k + (−1)k−1,

and this implies m = 2. �

The same arguments carried out before can be used to study the problem{−
u(x) = λu− g(u) x ∈ �

u(x) = 0 x ∈ ∂�.
(3.37)
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Theorem 3.30 Suppose that g ∈ C2(R) is such that g(0) = 0, g′(0) = 0,
g′(u)→+∞, respectively−∞, if u →+∞, respectively−∞, and ug′′(u) >
0 for all u �= 0. Then for all λ ∈]λ1, λ2[, problem (3.37) has precisely two
nontrivial solutions.

For some further results on (3.37), see also the exercises at the end of the chapter.

3.7 The Krasnoselski bifurcation theorem

In this section we will prove a remarkable bifurcation result due to
M. A. Krasnoselski [110].

Theorem 3.31 Let X be a Banach space and let T ∈ C1(X, X) be a com-
pact operator such that T(0) = 0 and T ′(0) = 0. Moreover, let A ∈ L(X)

also be compact. Then every characteristic value λ∗ of A with odd (algebraic)
multiplicity is a bifurcation point for u = λAu+ T(u).

Proof. Setting Sλ(u) = u−λAu−T(u), let us suppose by contradiction that λ∗
is not a bifurcation point. Then there exist ε0 > 0 such that for all r ∈ (0, ε0)

and ε ∈ (0, ε0) one has

Sλ(u) �= 0, ∀ λ ∈ [λ∗ − ε, λ∗ + ε], ∀ ‖u‖ = r. (3.38)

We can also choose ε0 in such a way that the interval [λ∗ − ε0, λ∗ + ε0] does
not contain other characteristic values of A but λ∗. Notice that Sλ is a compact

  �* + �
 Br

X

�* – �

��*

Figure 3.2 The line in bold is the solution set {(λ, u) ∈ [λ∗ − ε, λ∗ + ε] × Br :
Sλ(u) = 0}.
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perturbation of the identity. Then, taking into account also that (3.38) holds, it
follows that it makes sense to consider the Leray–Schauder topological degree
deg(Sλ, Br , 0) of Sλ on the ball Br = {u ∈ X : ‖u‖ < r}. By the property of the
invariance by homotopy, one has that

deg(Sλ∗−ε, Br , 0) = deg(Sλ∗+ε, Br , 0). (3.39)

On the other hand, taking ε0 possibly smaller, deg(Sλ, Br , 0) equals the Leray–
Schauder index i(Sλ, 0), which can be evaluated using Theorem 3.20. If β

denotes the sum of the algebraic multiplicities of the characteristic values µ of
A such that µ > λ∗ − ε, then Theorem 3.20 yields

deg(Sλ∗−ε, Br , 0) = i(Sλ∗−ε, 0) = (−1)β .

Similarly, if β ′ denotes the sum of the algebraic multiplicities of the character-
istic values µ of A such that µ > λ∗ + ε, we have

deg(Sλ∗+ε, Br , 0) = i(Sλ∗+ε, 0) = (−1)β
′
.

Since [λ∗−ε, λ∗+ε] contains only the eigenvalueλ∗, it follows thatβ = β ′+ν∗,
where ν∗ denotes the algebraic multiplicity of λ∗. As a consequence we get

deg(Sλ∗−ε, Br , 0) = (−1)β
′+ν∗ = (−1)ν

∗
deg(Sλ∗+ε, Br , 0).

Since ν∗ is an odd integer we infer

deg(Sλ∗−ε, Br , 0) = −deg(Sλ∗+ε, Br , 0),

in contradiction to (3.39). �

Theorem 3.31 applies to the nonlinear eigenvalue problem{−Lu = λu+ f (x, u), x ∈ �

u = 0 x ∈ ∂�,
(Dλ)

where L is the elliptic operator introduced in Remark 3.22. Using the notation
introduced in Remark 2.11, we set

• X = C0,α
0 (�),

• K = (−L)−1 on X,
• f , the Nemitski operator associated to f (x, u),
• T = K ◦ f ,
• Sλ(u) = u− λKu− T(u).

Then (Dλ) is equivalent to the equation Sλ(u) = 0. Since K is compact, then
also T is. A straight application of Theorem 3.31 with A = K yields that every
characteristic value of A with odd (algebraic) multiplicity is a bifurcation point
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for Sλ. Finally, since the characteristic values of A coincide with the eigenvalues
of −Lu = λu, u ∈ X , we have the following.

Corollary 3.32 Every eigenvalue with odd multiplicity of −L with Dirichlet
boundary conditions on � is a bifurcation point for (Dλ).

We anticipate that, using variational tools, it is possible to show that when
L is variational, say L = 
, every eigenvalue of −L with Dirichlet bound-
ary condition, is indeed a bifurcation point for (Dλ). See Theorem 12.20 in
Chapter 12.

3.8 Exercises

(i) Let f ∈ C(Rn, Rn) and suppose that ∃R > 0 such that (f (x) | x) > 0 for
all x ∈ R

n, |x| = R. Show that deg(f , BR, 0) = 1.
(ii) As in the preceding exercise, but suppose that ∃R > 0 such that

(f (x) | x) < 0 for all x ∈ R
n, |x| = R. Show that deg(f , BR, 0) = (−1)n.

(iii) Prove the Shaeffer fixed point theorem. Let T be a compact operator in
X and suppose that ∃ r > 0 such that u = λT(u), u ∈ X, λ ∈ [0, 1] ⇒
‖u‖ < r. Then T has a fixed point in Br(0).

(iv) Let T be a compact operator in X such that T(∂Br(0)) ⊂ Br(0), for
some r > 0. Then T has a fixed point in Br(0).

(v) Consider the problem at resonance (3.25) and assume that f and fu are
bounded, and that (3.28) holds. Furthermore, let f− = f+ = 0 and
suppose that lim|u|→∞ uf (x, u) = µ > 0. Show that there exists ε > 0
such that

(a) (3.25) has at least one solution, provided ‖Ph‖ < ε,
(b) if 0 < ‖Ph‖ < ε, then (3.25) has at least two solutions.

(vi) Give an alternative proof of (3.29) showing that (	(v) | v) > (Ph | v)
on ‖v‖ = R � 1.

(vii) Prove Theorem 3.30.
(viii) Consider (3.37) with g as in Theorem 3.30.

(a) Show that it has only the trivial solution for λ ≤ λ1.
(b) Extend Theorem 3.30 by proving that (3.37) has exactly two

nontrivial solutions for λ = λ2, too.
(c) Suppose that λ2 is simple and prove that there is ε > 0 such that

(3.37) has exactly four nontrivial solutions for all λ ∈]λ2, λ2 + ε[.
[Hint: use the behaviour of the branch bifurcating from λ2.]
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Topological degree, II: global properties

In this chapter we will exploit the global properties of the Leray–Schauder
topological degree to discuss the nonlocal structure of the solutions set of several
classes of elliptic equations and to prove the Rabinowitz global bifurcation
theorem.

As recalled before, another important bifurcation result dealing with the case
of variational operators will be discussed in Section 12.3.

4.1 Improving the homotopy invariance

The main purpose of this section is to prove a more general version of the
homotopy invariance property (P.5). This will be useful in several applications
later on.

Let X be a Banach space, U ⊂ [a, b] × X be open and bounded. We set
Uλ = {x ∈ X : (λ, x) ∈ U}, whose boundary is denoted by ∂Uλ.
Let us remark that one has to distinguish ∂Uλ from (∂U)λ: in general, one has
that ∂Uλ ⊂ (∂U)λ, see Figure ??.

Consider a map h(λ, x) = x − k(λ, x) such that k(λ, ·) is compact and 0 �∈
h(∂U). Such a map h will also be called an admissible homotopy on U. If h is
an admissible homotopy, for every λ ∈ [a, b] and every x ∈ ∂Uλ, one has that
hλ(x) := h(λ, x) �= 0 and it makes sense to evaluate deg(hλ, Uλ, 0).

Theorem 4.1 If h is an admissible homotopy on U ⊂ [a, b] × X, then
deg(hλ, Uλ, 0) is constant for all λ ∈ [a, b].

Proof. For fixed λ ∈]a, b[, let Hλ denote the set {x ∈ Uλ : h(λ, x) = 0}. Hλ is
compact and Hλ ∩ ∂(Uλ) = ∅ and thus there exists an open neighbourhood Oλ

of Hλ and ε > 0 such that

[λ− ε, λ+ ε] ×Oλ ⊂ U.

55
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a b 

X

U

U�

U�

U��

��� ??

Figure 4.1 Points marked with bold circles are points of ∂Uλ. The point marked
with an open circle belongs to (∂U)λ′ but not to ∂Uλ′ .

Let us show that, if ε is sufficiently small, there holds

{(�, x) : h(�, x) = 0, λ− ε ≤ � ≤ λ+ ε} ⊂ [λ− ε, λ+ ε] ×Oλ. (4.1)

Otherwise, there exist εi ↓ 0, �i ∈ [a, b], xi ∈ R
n such that

|�i − λ| ≤ εi, h(�i, xi) = 0, (�i, xi) �∈ [λ− εi, λ+ εi] ×Oλ.

By compactness, we can also assume that, up to a subsequence, (�i, xi) →
(λ, x∗). By continuity, h(�, x∗) = lim h(�i, xi) = 0 and hence x∗ ∈ Hλ. On
the other hand, this is not possible because one also has that x∗ �∈ Oλ, and
Hλ ⊂ Oλ. Equation (4.1) shows that h is an admissible homotopy on [λ −
ε, λ+ε]×Oλ, and hence we can use the (standard) homotopy invariance (P.5) to
deduce

deg(h�, Oλ, 0) = constant, ∀ � ∈ [λ− ε, λ+ ε].
Finally, since H� ⊂ Oλ, the excision property implies

deg(h�, U�, 0) = deg(h�, Oλ, 0), ∀ � ∈ [λ− ε, λ+ ε].
Small modifications allow us to handle the cases λ = a and λ = b. The
preceding arguments show that deg(hλ, Uλ, 0) is locally constant on [a, b]. Since
the degree is an integer, the conclusion follows. �
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O�

O�

�

� – � � + �

a b
[ ]

X

H

A�, �

Figure 4.2 H = {(λ, x) ∈ U : hλ(x) = 0}; Aε,λ = [λ− ε, λ+ ε] ×Oλ.

4.2 An application to a boundary value problem with
sub- and super-solutions

As a first application of Theorem 4.1 we will study a problem with sub- and
super-solutions. The definition of sub- and super-solution has been given in
Section 3.6.1 in the preceding chapter, where we also recalled that if{−
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�,
(4.2)

has a sub-solution u and a super-solution u such that u(x) ≤ u(x) in �, then it
has a solution u with u(x) ≤ u(x) ≤ u(x). We will show that when f = λ1u+ g
with g bounded, the assumption that u(x) ≤ u(x) is no longer necessary.

Theorem 4.2 Suppose that f (x, u) = λ1u + g(x, u) where λ1 is the first
eigenvalue of −
 on � with zero boundary conditions and g is bounded and
locally Hölder continuous. Then (4.2) has a solution provided it possesses a
sub-solution and a super-solution.

Proof. Setting, as above, X = L2(�), equation (4.2) with f = λ1u + g, can
be written in the form Lu = g(u), where L is the densely defined operator
given by Lu = −
u − λ1u. Let V denote the kernel of L: V is nothing but
the one-dimensional space spanned by the function ϕ1 > 0 satisfying−
ϕ1 =
λ1ϕ1 in �, ϕ1 = 0 on ∂�.



58 Topological degree, II: global properties

We will solve this equation by using the Lyapunov–Schmidt reduction, see
Section 2.2. Let W denote the orthogonal complement of V in X, so that X =
V⊕W . Letting P, Q denote the orthogonal projections on V and W , respectively,
one has that any u ∈ X can be written in the form u = v+w, with v = Pu ∈ V
and w = Qu ∈ W . With this notation, our equation becomes Lw = g(v + w).
Now, L is invertible on W , with compact inverse L−1 and, setting T = L−1g,
we get w = T(v + w) which is equivalent to the Lyapunov–Schmidt system{

w = QT(v + w),

0 = PT(v + w).

We will use the degree to solve the auxiliary equation, finding a connected set
of solutions. Putting v = tϕ1, let us consider the following set of solutions of
the auxiliary equation

� = {(t, w) ∈ R×W : w = QT(tϕ1 + w)}.
We need a preliminary lemma. If A ⊂ R ×W , we say that t ∈ projRA if and
only if (t, w) ∈ A for some w ∈ W . �

Lemma 4.3 For all α > 0 there exists �α ⊂ � which is connected and such
that projR�α ⊇ [−α,α].

Proof. Since g is bounded, then there exists r > 0 such that‖QT(tϕ1 + w)‖ < r
and thus � ⊂ R × Br . We introduce the following notation: K = � ∩([−α,α] × Br

)
and K± = � ∩ ({±α} × Br

)
. Suppose, by contradiction, that

there is no connected subset of K which joins K− and K+. Then there are two
closed sets C± ⊇ K± such that

C− ∩ C+ = ∅, K = C− ∪ C+.

In addition, we can find an open set U ⊂ ([−α,α] × Br
)

such that C− ⊂ U
while C+∩U = ∅. Since C−∪C+ = K = �∩([−α,α] × Br

)
and� ⊂ R×Br ,

then w �= QT(tϕ1+w) on (∂U)t for all t ∈ [−α,α]. Thus we can use the general
invariance property of homotopy, see Theorem 4.1, to get (here the homotopy
parameter is t ∈ [−α,α])

deg(I − QT(−αϕ1 + ·), U−α , 0) = deg(I − QT(αϕ1 + ·), Uα , 0).

Since Uα = ∅ we deduce

deg(I − QT(−αϕ1 + ·), U−α , 0) = 0. (4.3)
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Figure 4.3 K = C− ∪ C+, C− ∩ C+ = ∅.

On the other hand, using the homotopy (µ, w) �→ I − µQT(−αϕ1 + w) on Br

one easily finds that

deg(I − QT(−αϕ1 + ·), Br , 0) = 1.

Then, by the excision property, we find

deg(I − QT(−αϕ1 + ·), U−α , 0) = deg(I − QT(−αϕ1 + ·), Br , 0) = 1,

a contradiction to (4.3). �

Setting

G(t, w) =
∫
�

g(tϕ1 + w)ϕ1 dx,

the bifurcation equation QT(tϕ1 + w) = 0 can be written in the form
G(t, w) = 0.

Claim 4.4 If (t, w) ∈ � and G(t, w) ≥ 0, (respectively ≤ 0), then tϕ1 +w is a
sub-solution (respectively super-solution) of (4.2).

To prove this claim it suffices to remark that tϕ1 + w = 0 on ∂� and

−
(tϕ1 + w) = tλ1ϕ1 −
w = tλ1ϕ1 + λ1w+ Qg(tϕ1 + w)

= λ1(tϕ1 + w)+ g(tϕ1 + w)− G(t, w)ϕ1.

If G(t, w) ≥ 0, then the preceding equation implies that

−
(tϕ1 + w) ≤ λ1(tϕ1 + w)+ g(tϕ1 + w), in �,
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and thus tϕ1 + w is a sub-solution. Similarly, if G(t, w) ≥ 0 then tϕ1 + w is a
super-solution.

Proof of Theorem 4.2 completed. We have already pointed out that the solutions
of the auxiliary equation are bounded: ‖w‖ < r. Moreover, by regularity, w is
also bounded in the C1 norm. Then there is τ > 0 such that for every solution
w of the auxiliary equation there holds

−τϕ1(x) < w(x) < τϕ1(x), ∀ x ∈ �.

Let u and u denote a pair of sub- and super-solution, respectively, of (4.2). Take
α > τ such that {

(α − τ)ϕ1(x) ≥ u(x) ∀ x ∈ �

−(α − τ)ϕ1(x) ≤ u(x) ∀ x ∈ �.

Then one has (for every w solving the auxiliary equation)

−αϕ1(x)+ w(x) < −(α − τ)ϕ1(x) ≤ u(x), ∀ x ∈ �, (4.4)

αϕ1(x)+ w(x) > (α − τ)ϕ1(x) ≥ u(x), ∀ x ∈ �. (4.5)

For fixed α as above, let �α be the connected set given by Lemma 4.3. Consider
G restricted on �α . If G(t, w) > 0 for all (t, w) ∈ �α then, according to
Claim 4.2, all tϕ1 + w are sub-solutions. In particular, for all w ∈ W such
that (−α, w) ∈ �α , the function−αϕ1+w is a sub-solution of (4.2). By (4.4),
−αϕ1+w < u and hence there exists a solution u such that−αϕ1+w ≤ u ≤ u.
Similarly, if G(t, w) < 0 for all (t, w) ∈ �α then αϕ1 + w is a super-solution
such that u < αϕ1+w and there exists a solution u such that u ≤ u ≤ αϕ1+w.
It remains to consider the case in which G changes sign on �α . Since �α

is connected and G is continuous, then there exists (t0, w0) ∈ �α such that
G(t0, w0) = 0. Then t0ϕ1 + w0 is a solution of (4.2). �

Remark 4.5 An example shows that, in general, (4.2) can have no solution at
all if we do not assume that u ≤ u. See [5]. �

4.3 The Rabinowitz global bifurcation theorem

Throughout this section, X is a Banach space, A ∈ L(X) is compact and T ∈
C1(X, X) is compact and such that T(0) = 0 and T ′(0) = 0. We also set
Sλ(u) = u− λAu− T(u) and denote by � the set

� = {(λ, u) ∈ R× X , u �= 0 : Sλ(u) = 0}.
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If (λ∗, 0) ∈ � then λ∗ is a bifurcation point for Sλ = 0. A connected com-
ponent of � is a closed connected set C ⊂ � which is maximal with respect
to the inclusion. According to the Krasnoselski bifurcation theorem 3.31, if
λ∗ is an odd characteristic value of A, then λ∗ is a bifurcation point, namely
(λ∗, 0) ∈ �. Let C be the connected component of � containing (λ∗, 0). We are
going to discuss a celebrated paper [147] by P. Rabinowitz, which improves the
Krasnoselski result by showing that C is either unbounded in R × X or meets
another bifurcation point of Sλ = 0. The set of characteristic values of A will
be denoted by r(A).

We first need a topological lemma. See Figure 4.4.

Lemma 4.6 Let C be the connected component of � containing (λ∗, 0) and
suppose that C is bounded and does not contain any point (λ̂, 0) with λ̂ ∈ r(A),
λ̂ �= λ∗. Then there exists an open bounded set O ⊂ R× X such that

(i) C ⊂ O,
(ii) ∂O ∩� = ∅,

(iii) O ∩ (R× {0}) =]λ∗ − ε, λ∗ + ε[, with ε > 0 and smaller than δ, the
distance from C and (r(A) \ {λ∗})× {0},

(iv) ∃ α > 0 such that if (λ, u) ∈ O with |λ− λ∗| ≥ ε, then ‖u‖ ≥ α.

The proof of the lemma will make use of the following result in point set
topology. For a proof see for example [87], Lemma 29.1.

Lemma 4.7 Let C1, C2 be closed disjoint subsets of the metric compact space
K. If there are no connected components of K with nonempty intersection with
C1, C2, then K = K1∪K2 with K1, K2 closed, K1∩K2 = ∅, C1 ⊂ K1, C2 ⊂ K2.

Proof of Lemma 4.6. Let ε < δ, and let Uε be an ε-neighbourhood ofC. Such a Uε

satisfies (i) and (iii), but (ii) could possibly fail. To overcome this problem, we
will use the preceding lemma. We set C1 = C, C2 = ∂Uε∩� and K = Uε∩�.
Since C is bounded and A, T are compact, then C1, C2 and K are compact
and the preceding lemma applies. Let d = min{dist[K1, K2], dist[K1, ∂Uε]}
and let U ′ε be an ε-neighbourhood of K1, with ε < d/2. Let us check that
U ′ε satisfies (ii). This follows from the fact that C2 = ∂Uε ∩ � ⊂ K2,
C1 = C ⊂ K1 and K2 ∩ K1 = ∅. Taking ε possibly smaller, (i) and (iii)
hold true as well. As for the property (iv), we remark that the distance d′
between K and the set (R\]λ∗ − ε, λ∗ + ε[)× {0} is positive because U ′ε does
not contain any characteristic value of A, but λ∗. Then, taking α < d′ and
setting O = U ′ε \ [(R\]λ∗ − ε, λ∗ + ε[) × Bα], one readily verifies that O
satisfies (iv), too. �
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We are now in a position to prove the Rabinowitz global bifurcation theorem.

Theorem 4.8 Let A ∈ L(X) be compact and let T ∈ C1(X, X) be compact and
such that T(0) = 0 and T ′(0) = 0. Suppose that λ∗ is a characteristic value
of A with odd multiplicity. Let C be the connected component of � containing
(λ∗, 0). Then either

(a) C is unbounded in R× X, or
(b) ∃λ̂ ∈ ρ(A) \ {λ∗} such that (λ̂, 0) ∈ C.

Proof. The proof will be carried out by contradiction. If neither (a) nor (b)
holds, then Lemma 4.6 yields a bounded open set O satisfying (i–iv). We are
going to use the general homotopy invariance (see Theorem 4.1), applied to the
homotopy Sλ. We will split the arguments into several steps.
Step 1. Let us takeβ such that Oβ = ∅ and consider the interval J = [λ∗+2ε,β].
Taking ε possibly smaller, we can assume that no points of r(A) belong to
]λ∗, λ∗ + 2ε]. Using property (iv) of Lemma 4.6 one has that Oλ ∩Bα = ∅, for
all λ ∈ J . This and the other properties of O stated in Lemma 4.6 imply that
Sλ(u) �= 0 for all u ∈ ∂Oλ and all λ ∈ J . Hence by the homotopy invariance we
deduce that deg(Sλ, Oλ, 0) is constant for all λ ∈ J . In particular, since Oβ = ∅
we find

deg(Sλ+2ε, Oλ+2ε, 0) = 0. (4.6)

Step 2. Take ε′ ∈]0, ε[ and set J ′ = [λ∗ +ε′, λ∗ +2ε]. Since J ′ does not contain
any point in r(A), and C∩(J ′×X) is compact, there exists ρ0 > 0 (with ρ0 ≤ α)
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such that � ∩ (J ′ × Bρ) = ∅ for all 0 < ρ ≤ ρ0. Thus Sλ is admissible on the
set O′ = O ∩ (J ′ × (X \ Bρ)) and there holds

deg(Sλ+ε′ , O′λ∗+ε′ , 0) = deg(Sλ∗+2ε, O′λ∗+2ε, 0).

This, the fact that O′
λ∗+ε′ = Oλ∗+ε′ \ Bρ and O′λ∗+2ε = Oλ∗+2ε, jointly with

(4.6) imply

deg(Sλ∗+ε′ , Oλ∗+ε′ \ Bρ , 0) = 0, ∀ ρ ∈ (0, ρ0],
and thus

deg(Sλ∗+ε′ , Oλ∗+ε′ , 0) = deg(Sλ∗+ε′ , Bρ , 0), ∀ ρ ∈ (0, ρ0]. (4.7)

By a quite similar argument we find

deg(Sλ∗−ε′ , Oλ∗−ε′ , 0) = deg(Sλ∗−ε′ , Bρ , 0), ∀ ρ ∈ (0, ρ0]. (4.8)

Step 3. We use once more the homotopy invariance of Sλ on the set O∩ ([λ∗ −
ε′, λ∗ + ε′] × X) to infer

deg(Sλ∗−ε′ , Oλ∗−ε′ , 0) = deg(Sλ∗+ε′ , Oλ∗+ε′ , 0), ∀ ρ ∈ (0, ρ0]. (4.9)

Step 4. Putting together (4.7), (4.8) and (4.9) we deduce

deg(Sλ∗+ε′ , Bρ , 0) = deg(Sλ∗−ε′ , Bρ , 0), ∀ ρ ∈ (0, ρ0].
This means that the index i(Sλ∗+ε′ , 0) is equal to the index i(Sλ∗−ε′ , 0), and,
as we have seen in the proof of the Krasnoselski theorem, this cannot be true,
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because [λ∗ − ε′, λ∗ + ε′] ∩ r(A) = {λ∗} and λ∗ has odd multiplicity. The
contradiction proves the theorem. �

Remark 4.9 When applying Theorem 4.8 to differential equations it is import-
ant to rule out one of the two alternatives (a) and (b). Although often the
connected component containing (λ∗, 0) turns out to be unbounded, elementary
examples show that the alternative (b) of Theorem 4.8 can arise as well. See
Exercise 4.5(i). See also [79] for an elliptic problem where case (b) arises. �

Theorem 4.8 has many applications. Here we limit ourselves to citing a paper
by M. Crandall and P. Rabinowitz [83] dealing with nonlinear Sturm–Liouville
problems, of the form−u′′ = λu+ f (x, u, u′), x ∈ (0,π),

u(0) = u(π) = 0,
(4.10)

where f is Lipschitz and f (x, u, ξ) = o(
√

u2 + |ξ |2) as (u, ξ) → (0, 0), uni-
formly with respect to x ∈ [0,π ]. We already know (see the example in
Section 2.3 after Theorem 2.10) that the numbers k2, k ∈ N, are simple eigen-
values of the linearized problem −u′′ = λu, u(0) = u(π) = 0 and hence
are bifurcation points for (4.10). As an application of Theorem 4.8 we want
to show the following result, which is a particular case of a more general
one in [83].

Theorem 4.10 From each k2, k ∈ N, bifurcates an unbounded connected
component Ck ⊂ � of nontrivial solutions of (4.10). Moreover Ck ∩ Cj = ∅
if k �= j.

Proof. Under the preceding simplifying assumptions, the proof is not too com-
plicated and we will give an outline of the arguments, leaving the details as
an exercise. One works on E = {u ∈ C1(0,π) : u(0) = u(π) = 0} endowed
with the standard norm. First one shows that there exists a neighbourhood
Uk of (k2, 0) ∈ R × E such that if (λ, u) ∈ � ∩ Uk , then u has exactly
k − 1 simple zeros in (0,π). Moreover, by the uniqueness of the Cauchy
problem it follows that the nontrivial solutions of (4.10) have only simple
zeros in (0,π). These two properties, together with the fact that the branch
Ck ⊂ � emanating from (k2, 0) is connected, allow us to rule out the altern-
ative (b) of Theorem 4.8 and to show that Ck ∩ Cj = ∅ if k �= j, proving the
theorem. �

Finally, it is worth mentioning that the arguments carried out in Sections 4.2 and
4.3 can be adapted to prove a classical global result by Leray and Schauder [115].
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Theorem 4.11 Consider the equation u = λT(u), where T ∈ C(X, X) is
compact, let � = {(λ, u) ∈ R×X : u = λT(u)} and let C denote the connected
component of � containing (0, 0). Then C = C+ ∪ C− where C± ⊂ R

± × X
and C+ ∩ C− = {(0, 0)}. Moreover, C± are unbounded in R

± × X.

4.4 Bifurcation from infinity and positive solutions of
asymptotically linear elliptic problems

In this section we will discuss, following [16], the existence of positive solutions
of a class of asymptotically linear elliptic boundary value problems like{−
u = λf (u) x ∈ �

u = 0 x ∈ ∂�,
(4.11)

where f ∈ C(R+, R) is asymptotically linear. We will see that it is possible to
study in a rather precise way the global behaviour of the set of solutions of (4.11)
and this will allow us to obtain existence and multiplicity results. In carrying
out this analysis, a fundamental role will be played by suitable applications of
Theorem 4.8.

Let us start with an abstract setting. Let X be a Banach space and consider a
map S(λ, u) = u − λT(u), with T ∈ C(X , X) compact. We set � = {(λ, u) ∈
R× (X \ {0}) : S(λ, u) = 0}. To investigate the asymptotic behaviour of �, it
is convenient to give the following definition.

Definition 4.12 We say that λ∞ ∈ R is a bifurcation from infinity for S = 0 if
there exist λj → λ∞ and uj ∈ X, such that ‖uj‖ → ∞ and (λj, uj) ∈ �.

Let us now assume that T = A+ G, with A linear and G bounded on bounded
sets. Let us set z = ‖u‖−1u, and

�(λ, z) =


z − λ‖z‖2T

(
z

‖z‖2

)
if z �= 0

0 if z = 0.

(4.12)

For z �= 0 one has that

�(λ, z) = z − λAz − λ‖z‖2G

(
z

‖z‖2

)
,

and hence � is continuous at z = 0. Moreover, setting

� = {(λ, z) : z �= 0, �(λ, z) = 0},
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there holds

(λ, u) ∈ � ⇐⇒ (λ, z) ∈ �. (4.13)

In addition, ‖uj‖ → ∞ if and only if ‖zj‖ = ‖uj‖−1 → 0. This and (4.13)
immediately imply the following.

Lemma 4.13 λ∞ is a bifurcation from infinity for S = 0 if and only if λ∞ is a
bifurcation from the trivial solution for � = 0. In such a case we will say that
� bifurcates from (λ∞,∞).

Dealing with the bifurcation from the trivial solution for�, one has to be careful
because �(λ, ·) is not differentiable at z = 0. See Remark 4.17 later on.

We will suppose that

f (u)=mu+g(u), m>0, g∈C0,α(R+, R), |g(u)|≤constant, g(0)≥0.
(4.14)

It is convenient to consider a function f̃ ∈ C0,α(R) defined by setting f̃ (u) =
f (u) for u ≥ 0, such that 0 < f̃ (u) ≤ C1 for all u < 0. We will also write
f̃ (u) = mu+ g̃(u). Of course, g̃(u) = g(u) for all u ≥ 0. Consider the problem

−
u = λ̃f (u), in � u = 0, in ∂�. (4.15)

Letting X = L2(�), (4.15) be equivalent to the functional equation S(λ, u) =
u − λ(Au + G(u)), where Au = K(mu), G = Kg̃(u), and K is the inverse
of −
 with zero Dirichlet boundary conditions. For some λ > 0, let u be a
non-trivial solution of (4.15) and let x∗ ∈ � be such that u(x∗) = min� u(x). If
u(x∗) < 0, then, since f̃ (u) > 0 for u < 0, we have−
u(x∗) = λ̃f (u(x∗)) > 0,
a contradiction. This shows that u ≥ 0 in �, and hence is a solution of (4.11).
Furthermore, from (4.14) it follows that there exists δ > 0 such that f (u)+δu >

0 for all u > 0. Since −
u + λδu = λ(f (u) + δu), the maximum principle
implies that u > 0 in �.

As usual, we let λ1 denote the first eigenvalue of −
 with zero Dirichlet
boundary conditions. The corresponding positive (normalized) eigenfunction
will be indicated by ϕ1.

Theorem 4.14 Let (4.14) hold. Then λ∞ := λ1/m is a bifurcation from infinity
for S, and the only one. More precisely, there exists a connected component �∞
of � bifurcating from (λ∞,∞) which corresponds to an unbounded connected
component �∞ ⊂ � bifurcating from the trivial solution of �λ(u) = 0 at
(λ∞, 0).
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According to the preceding discussion, we will show that λ∞ is a bifurcation
from z = 0 for �(λ, z) = 0, and the only one. In the sequel we use the notation
�λ(u) to indicate the map �(λ, u) defined in (4.12). We need some preliminary
lemmas.

Lemma 4.15 Let J ⊂ R
+ be any compact interval such that λ∞ �∈ J. Then

(a) ∃ r > 0 such that Sλ(u) �= 0, ∀ λ ∈ J, ∀ ‖u‖ ≥ r,
(b) λ∞ is the only possible bifurcation from infinity,
(c) i(�λ, 0) = 1 for all λ < λ∞.

Proof. (a) Assuming the contrary, there are sequences λj → λ̄ ∈ J and
‖uj‖ → ∞, such that uj = λj(Auj + G(uj)). Setting vj = ‖uj‖−1uj, we find
vj = λj(Avj + G(vj)), by compactness, vj → v̄ strongly in X, and by elliptic
regularity vj → v̄ in C2. Since vj satisfy

−
vj = λj
f̃ (uj)

‖uj‖ ,

and f̃ (u) < 0 for u < 0, it follows that vj > 0. Thus, passing to the limit in the
preceding equation, one finds

−
v̄ = λ̄mv̄, v̄ ≥ 0, ‖v̄‖ = 1.

This implies that v̄ = ϕ1 and λ̄m = λ1, namely λ̄ = λ∞. This is a contradiction,
because λ̄ ∈ J , while J does not contain λ∞. This proves (a). Statement (b)
follows immediately from (a). Regarding (c), fix any λ < λ∞ and take J =
[0, λ]. For t ∈ [0, 1], the parameter tλ belongs to J and from (a) it follows that
u �= tλT(u) for all ‖u‖ ≥ r. This implies that �(tλ, z) �= 0 for all ‖z‖ ≤ 1/r.
Consider the homotopy h(t, u) = �(tλ, u). Using the homotopy invariance, we
get deg(h(1, ·), B1/r , 0) = deg(h(0, ·), B1/r , 0), namely

deg(�λ, B1/r , 0) = deg(I , B1/r , 0) = 1,

proving (c). �

Lemma 4.16 Let λ > λ∞. Then

(a) ∃ r > 0 such that Sλ(u) �= τϕ1, ∀ τ ≥ 0, ∀ ‖u‖ ≥ r,
(b) i(�λ, 0) = 0 for all λ > λ∞.

Proof. (a) By contradiction, there exist τj ≥ 0 and ‖uj‖ → ∞ such that
Sλ(uj) = τjϕ1, namely

−
uj = λ̃f (uj)+ τjλ1ϕ1.
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Since τjλ1ϕ1 ≥ 0, and f̃ (u) > 0 for u < 0, it follows as before that uj ≥ 0 and
thus f̃ (uj) = f (uj). Let us write uj = sjϕ1 + wj, with sj =

∫
�

ujϕ1 dx ≥ 0 and∫
�

wjϕ1 dx = 0. The function wj satisfies

−
wj + sjλ1ϕ1 = λf (uj)+ τjλ1ϕ1. (4.16)

We first claim that sj → +∞. Otherwise, ‖wj‖ → ∞ and setting vj =
‖wj‖−1wj, from (4.16) we get

−
vj + sjλ1ϕ1

‖wj‖ = λ
f (uj)

‖wj‖ + τjλ1
ϕ1

‖wj‖ .

From this equation we easily deduce that vj → v∗ strongly in X (and in
C2). In particular, ‖v∗‖ = 1. Moreover, from

∫
�

vjϕ1dx = 0 it follows that∫
�

v∗ϕ1 dx = 0. On the other hand, uj ≥ 0 implies that vj ≥ ‖wj‖−1sjϕ1 and,
passing to the limit, v∗ ≥ 0, which, jointly with ‖v∗‖ = 1, gives a contradiction
that proves the claim.

Next, we use (4.16) again to infer

sjλ1 = λ

∫
�

f (uj)ϕ1dx + τjλ1 ≥ λ

∫
�

f (uj)ϕ1dx.

Since f (u) = mu+ g(u), we get

sjλ1 ≥ λ

[∫
�

mujϕ1 dx +
∫
�

g(uj)ϕ1 dx

]
= λmsj +

∫
�

g(uj)ϕ1 dx.

Thus

λ1 ≥ λm +
∫
�

s−1
i g(uj)ϕ1dx.

Since g is bounded and sj → ∞ (by the claim), passing to the limit we find
λ1 ≥ λm, while λ has been chosen strictly greater than λ∞ = λ1/m. This
contradiction proves (a).

(b) Take τ = t‖u‖2, with t ∈ [0, 1]. By (a) it follows that Sλ(u) �= t‖u‖2ϕ1

for all ‖u‖ ≥ r. This implies

�λ(z) �= tϕ1, ∀ 0 < ‖z‖ ≤ 1

r
, ∀ t ∈ [0, 1]. (4.17)

Using the homotopy h(t, z) = �λ(z)− tϕ1 on the ball B1/r we find

deg(�λ, B1/r , 0) = deg(�λ − ϕ1, B1/r , 0).

The latter degree is zero because (4.17), with t = 1, implies that �λ(z) = ϕ1

has no solution on B1/r . This proves (b). �
Remark 4.17 The fact that the index i(�λ, 0) is zero for λ > λ∞, makes it
clear that �λ is not differentiable at z = 0. Compare with Lemma 3.19. �
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Proof of Theorem 4.14. We cannot apply directly the Rabinowitz Theorem 4.8
with Sλ = �λ andλ∗ = λ∞, because�λ is not differentiable at z = 0. However,
an inspection of the proof shows that such an assumption is used only to evaluate
the index of the map Sλ when λ crosses λ∗ proving that i(Sλ−ε, 0) �= i(Sλ+ε, 0).
In our case, the index has been evaluated in Lemmas 4.15 and 4.16 and it has
been shown that i(�λ, 0) = 1 for λ < λ∞, while i(�λ, 0) = 0 for λ > λ∞.
Since the two indices are different, one can repeat the arguments carried out
in the proof of Theorem 4.8, yielding the existence of a connected component
�∞ ⊂ �, bifurcating from (λ∞, 0). As a consequence of Lemma 4.15(b), there
are no other bifurcation points (from the trivial solution) for �λ, but (λ∞, 0)
and thus �∞ is unbounded. This �∞ corresponds to a connected component
�∞ ⊂ � emanating from (λ∞,∞). �

Using similar arguments one can study the bifurcation from the trivial
solution for Sλ = 0, to obtain the following theorem.

Theorem 4.18 Let (4.14) hold.

(a) If f (0) > 0 there exists an unbounded connected component �0 ⊂ �, with
�0 ⊂]0,∞)× X, such that (0, 0) ∈ �0. Moreover, (λ, 0) ∈ �0 ⇒ λ = 0.

(b) If f (0) = 0 and the right-derivative f ′+(0) exists and is positive, then
letting

λ0 := λ1

f ′+(0)
,

there exists an unbounded connected component �0 ⊂ � such that
(λ0, 0) ∈ �0 and (λ, 0) ∈ �0 ⇒ λ = λ0.

Remark 4.19 Since the components �∞ and �0 are connected and for λ = 0
the equation (4.14) has only the trivial solution, it follows that both �∞ and
�0 are contained in ]0,∞) × X and hence correspond to positive solutions
of (4.14). �

The next theorem studies the relationships between �∞ and �0.

Theorem 4.20 Suppose that the same assumptions made in Theorems 4.14 and
4.18 hold.

(a) If ∃α > 0 such that f (u) ≥ αu, ∀ u ≥ 0, then setting � = λ1/α one has
that �0 ⊂]0,�]. As a consequence, �0 = �∞.

(b) If ∃ s0 > 0 such that f (s0) ≤ 0, then Sλ(u) �= 0 for all u ∈ X with
‖u‖∞ = s0. As a consequence, �0 ∩�∞ = ∅.
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Proof. (a) If (λ, u) ∈ �, with λ > 0, then −
u = λf (u) ≥ λαu. Multiplying
by ϕ1 and integrating, we find

λ1

∫
�

uϕ1dx ≥ λα

∫
�

uϕ1dx.

Since u > 0 it follows that λ ≤ λ1/α = �. Moreover, when λ = 0 equation
(4.14) has only the trivial solution and this implies that there exists c(λ) > 0
such that λ ≥ c(λ) > 0 for all (λ, u) ∈ �0. Let us remark that c(λ) → 0 as
λ → 0+, while the fact that λ∞ is the only bifurcation from infinity for Sλ

yields the existence of c0 > 0 such that c(λ) ≥ c0 for all λ bounded away from
zero.

(b) Let (λ, u) ∈ �, with λ > 0 and ‖u‖∞ = s0. Then 0 ≤ u ≤ s0 in �. Let
m > 0 be such that f (u)+ mu is monotone increasing for u ∈ [0, s0]. From

−
u+ λmu = λ(f (u)+ mu)

and the fact that λms0 ≥ λ(f (s0)+ ms0), we get

(−
+ λm)(s0 − u) ≥ λ [f (s0)+ ms0 − f (u)− mu] ≥ 0, x ∈ �,

as well as s0 − u > 0 on ∂�. By the maximum principle, we deduce that
s0 − u > 0 in �. This implies ‖u‖∞ < s0, a contradiction, proving that
Sλ(u) �= 0 for all u ∈ X with ‖u‖∞ = s0. Now, let us point out that both �0

and �∞ are connected, �0 contains a sequence (λi, ui) with ‖ui‖∞ → 0 and
�∞ contains a sequence (λi, ui) with ‖ui‖∞ →∞. If �0 ∩�∞ �= ∅ then they
contain a point (λ, u) with ‖u‖∞ = s0, a contradiction. �

Finally, it is possible to give conditions that allow us to describe in a precise way
the behaviour of the branch bifurcating from infinity. They are the counterparts
of the conditions that provide a subcritical or a supercritical bifurcation from
the trivial solution, see Remark 2.9(b) in Chapter 2.

Lemma 4.21 Suppose that either

γ ′ := lim inf
u→+∞ g(u) > 0, (4.18)

or

γ ′′ := lim sup
u→+∞

g(u) < 0. (4.19)

Then �∞ bifurcates to the left, respectively to the right, of (λ∞,∞).

Proof. We will show that if (4.18) holds, then we can sharpen the statement (a)
of Lemma 4.15 by taking J = [λ∞, b]with b > λ∞ (the new feature here is that
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�

Σ0     = Σ∞

�     = �∞0

Figure 4.6 Bifurcation diagram in case of Theorem 4.21 (a), with f (0) > 0 and
λ∞ = �.

0

A

B

  

 Σ∞

 Σ0     

�� ∞

Figure 4.7 Bifurcation diagram in case of Theorem 4.21(b), with f (0) > 0. The
interval [A, B] is such that f (u) ≤ 0 if and only if u ∈ [A, B].

now we allow λ∞ to be the left end side of the compact interval J). Otherwise,
there exists λj ↓ λ∞ and ‖uj‖ → ∞ such that S(λj, uj) = 0. Repeating the
arguments carried out in Lemma 4.15, we would find a sequence vj = uj‖uj‖−1

which converges strongly to some v̄ such that

−
v̄ = λ∞mv̄ = λ1v̄, v̄ ≥ 0, ‖v̄‖ = 1.

This now implies v̄ = aϕ1 for some a > 0. Hence v̄ > 0 in � and uj(x) =
‖uj‖vj(x) → +∞, for all x ∈ �. Writing again uj = sjϕ1 + wj, one has
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� ∞ �

Σ0     = Σ∞

0

Figure 4.8 Bifurcation diagram when f (0) > 0 and γ ′′ < 0.

that sjλ1ϕ1 − 
wj = λj(muj + g(uj)) and therefore (we take ϕ1 such that∫
�
ϕ2

1 dx = 1)

sjλ1 = λjm +
∫
�

g(uj(x))ϕ1(x) dx.

Since λj > λ∞ then it follows that∫
�

g(uj(x))ϕ1(x) dx < 0.

Since uj(x)→+∞ on �, using the Fatou lemma we infer

γ ′
∫
�

ϕ1 dx ≤ lim inf
∫
�

g(uj(x))ϕ1(x) dx ≤ 0.

This is in contradiction to the assumption (4.18). In the case that (4.19) holds,
we take J = [0, λ∞] and repeat the preceding arguments. �

Remark 4.22 The preceding results have been extended in great generality by
D. Arcoya and J. Gamez [32], where the relationships between the bifurcation
from infinity and the anti-maximum principle are also investigated. �
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4.5 Exercises

(i) Let X = R
2, and consider the system{

x1 = λx1 − x3
2,

x2 = 2λx2 + x3
1.

Show that in this case the alternative (b) of the Rabinowitz global
bifurcation theorem holds true.

(ii) Consider the problem{
−u′′ = λu+ h(x)u3 x ∈ (0,π)

u(0) = u(π) = 0,

where h is Lipschitz such that h(x) > 0, respectively h(x) < 0, in [0,π ],
and let Ck be the unbounded connected components bifurcating from
λk = k2 (see Theorem 4.12).

(a) Prove that if (λ, u) ∈ Ck , λ > 0, then λ < k2, respectively λ > k2.
(b) Prove that the projection on R of Ck ⊂ R× E is (−∞, k2),

respectively (k2,+∞).
(c) Draw the bifurcation diagrams and evaluate the number of nontrivial

solutions of the equations −u′′ = u+ h(x)u3 in (0,π),
u(0) = u(π) = 0 in both the cases h > 0 and h < 0. [Hint: find the
intersections of Ck with {1} × E ⊂ R× E.]

(iii) Consider the problem{
−
u = λu− h(x)u3 x ∈ �

u(x) = 0 x ∈ ∂�,

where h is Lipschitz, h ≥ 0 in �, and suppose that there exists an open set
�0 ⊂ � such that h(x) = 0 if and only if x ∈ �0. Prove that there is a
connected component of positive solutions �0 such that (λ1, 0) ∈ �0

with the property that

(a) �0 ⊂ [λ1, λ1(�0)[×L2(�), where λ1(�0) denotes the first
eigenvalue of −
 on �0 with zero Dirichlet boundary conditions;

(b) �0 bifurcates from (λ1(�0),∞). [Hint: show that if (λj, uj) ∈ �0 and
‖uj‖ → ∞, then λj ↑ λ1(�0)].

(iv) Extend Lemma 4.21 to the case in which g = g(x, u),
γ ′(x) = lim inf u→+∞ g(x, u), γ ′′(x) = lim supu→+∞ g(x, u), assuming
that

∫
�
γ ′(x)ϕ1(x) dx > 0, or that

∫
�
γ ′(x)ϕ1(x) dx < 0.
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(v) Let u+ = u ∧ 0. Consider the problem{
−
u = (u− λ)+ in�

u = 0 on ∂�,

where λ ∈ R. The set of solutions (λ, u) with u �≡ 0 is denoted by �.
Prove that there exists an unbounded component �∗ ⊂ � such that
(0, 0) ∈ �

∗
.
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Critical points: extrema

In this chapter we will discuss the existence of maxima and minima for a
functional on a Hilbert or Banach space.

5.1 Functionals and critical points

Let E be a Banach space. A functional on E is a continuous real valued map
J : E → R.

More in general, one could consider functionals defined on open subsets
of E. But, for the sake of simplicity, in the sequel we will always deal with
functionals defined on all of E, unless explicitly remarked.

Let J be (Fréchet) differentiable at u ∈ E with derivative dJ(u) ∈ L(E, R).
Recall that (see Section 1.1):

• if J is differentiable on E, namely at every point u ∈ E and the map
E �→ L(E, R), u �→ dJ(u), is continuous, we say that J ∈ C1(E, R);

• if J is k times differentiable on E with kth derivative dkJ(u) ∈ Lk(E, R)

(the space of k-linear maps from E to R) and the application E �→ Lk(E, R),
u �→ dkJ(u), is continuous, we say that J ∈ Ck(E, R).

Definition 5.1 A critical, or stationary, point of J : E → R is a z ∈ E such that
J is differentiable at z and dJ(z) = 0. A critical level of J is a number c ∈ R

such that there exists a critical point z ∈ E with J(z) = c. The set of critical
points of J will be denoted by Z, while Zc will indicate the set of critical points
at level c: Zc = {z ∈ Z : J(z) = c}.

According to the definition, a critical point z satisfies

dJ(z)[v] = 0, ∀ v ∈ E.

We will see that, in the applications, critical points turn out to be weak solutions
of differential equations. Let us illustrate this claim immediately with a rather
elementary example.

77
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Let E = H1,2
0 (0, 1) = {u ∈ H1,2(0, 1) : u(0) = u(1) = 0} and define the

functional J : E �→ R by setting

J(u) =
∫ 1

0

[
1

2
u̇2 + 1

2
u2 − 1

4
u4
]

dt, u̇ := du

dt
.

One has that J ∈ C∞(E, R) and there holds

dJ(u)[v] =
∫ 1

0
[u̇v̇ + uv − u3v]dt.

Then a critical point of J on E is an element z ∈ E such that∫ 1

0
[żv̇ + zv − z3v]dt = 0, ∀ v ∈ H1,2

0 (0, 1)

and this means that z is a weak (and by regularity, see Theorem 1.16, classical)
solution of the two point problem

ü− u+ u3 = 0, u(0) = u(1) = 0. (5.1)

Let us remark that the boundary conditions z(0) = z(1) = 0 are automatically
satisfied because z ∈ H1,2

0 (0, 1). If we take E = H1,2(0, 1), respectively E =
{u ∈ H1,2(R) : u(t + 1) = u(t), ∀ t ∈ R}, then a critical point z of J on
E satisfies z̈ − z + z3 = 0 together with the Neumann boundary conditions
ż(0) = ż(1) = 0, respectively z is a 1-periodic solution of ü − u + u3 = 0.
Of course, the choice of Sobolev spaces like H1,2 is also related to the fact that
(5.1) is a second order equation and the term 1

2

∫
u̇2 dt makes sense.

The preceding example is a model of problems we will discuss later on.
Roughly, we will look for solutions of boundary value problems consisting of
a differential equation together with some boundary conditions. These equa-
tions will have a variational structure, namely they will be the Euler–Lagrange
equation of a functional J on a suitable space of functions E, chosen depending
on the boundary conditions, and the critical points of J on E will give rise to
solutions of these boundary value problems.

5.2 Gradients

Let J ∈ C1(E, R). If E is a Hilbert space, by the Riesz theorem there exists a
unique J ′(u) ∈ E such that

(J ′(u) | v) = dJ(u)[v], ∀ v ∈ E.

J ′(u) is called the gradient of J at u (in some cases we will also use the notation
∇J(u) to denote the gradient of J ′(u)). With this notation, a critical point of J
is a solution of the equation J ′(u) = 0.
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In a quite similar way, dealing with the second derivative d2J(u) (which is
a symmetric bilinear map : E × E → R), we can define the operator J ′′(u) :
E → E by setting

(J ′′(u)v | w) = d2J(u)[v, w], ∀ v, w ∈ E.

Example 5.2
(i) If J(u) = 1

2 (Au | u), where A ∈ L(E) is symmetric, then one has
dJ(u)[v] = (Au | v). Moreover, from

(J ′(u) | v) = (Au | v), ∀ v ∈ E,

we deduce that J ′ = A. In particular, if J(u) = 1
2‖u‖2 then J ′(u) = u.

Similarly, from d2J(u)[v, w] = (Av | w) we infer that J ′′(u) : v �→ Av.
(ii) Let � be a bounded domain in R

n with smooth boundary ∂� and set
E = L2(�). Given h ∈ E, consider the linear functional
J(u) = ∫

�
hu dx. Of course, J ∈ C∞(E, R) and

dJ(u)[v] =
∫
�

hv dx.

In this case the gradient J ′(u) verifies

(J ′(u) | v) =
∫
�

hv dx.

Hence J ′(u) = h.
(iii) Consider, as before, the same linear functional J(u) = ∫

�
hu dx, but let

us now take the Sobolev space E = H1
0 (�) endowed with the scalar

product and norm, respectively,

(u | v) = ∫
�
∇u · ∇v dx,

‖u‖2 = ∫
�
|∇u|2 dx.

In the present case w = J ′(u) verifies

(w | v) =
∫
�

hv dx, ∀ v ∈ E,

namely ∫
�

∇w · ∇v dx =
∫
�

hv dx, ∀ v ∈ E.

This means that, in contrast with the case discussed in point (ii) above, w
is not equal to h but is the weak solution of the Dirichlet boundary value
problem (BVP in short){−
w(x) = h(x) x ∈ �

w(x) = 0 x ∈ ∂�.



80 Critical points: extrema

In other words, letting K denote the Green operator of −
u in H1
0 (�),

one has that J ′(u) = K(h).
(iv) We use the notation introduced before as well as in Sections 1.2 and
1.3. Suppose that f ∈ Fp with 1 < p ≤ (n+ 2)/(n− 2), and let 	 denote
the functional defined on E = H1

0 (�) by setting 	(u) = ∫
�

F(x, u) dx,
where ∂uF = f . According to Theorem 1.8, 	 ∈ C1(E, R) and

d	(u)[v] =
∫
�

f (x, u)v dx.

Here the gradient 	′ becomes K ◦ f and satisfies

(	′(u) | v) =
∫
�

f (x, u)v dx.

Moreover, the functional

J(u) = 1
2‖u‖2 −	(u)

is of class C1(E, R) and there holds

dJ(u)[v] = (u | v)−
∫
�

f (x, u)v dx.

Therefore the critical points z of J satisfy∫
�

[∇z · ∇v − f (x, z)v]dx = 0, ∀ v ∈ E,

and hence are nothing but the weak solutions of the semilinear
Dirichlet BVP {−
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.

As for the gradient, one finds J ′(u) = u− Kf (u). If f is of class C1 with
respect to u, then 	 ∈ C2(E, R) and one finds J ′′(u) : v �→ v − Kf ′(u)v.
In particular, the kernel of J ′′(u) consists of the solutions of the linear
Dirichlet problem −
v = fu(x, u)v, v ∈ H1

0 (�). �

5.3 Existence of extrema

We say that z ∈ E is a local minimum, respectively maximum of the functional
J ∈ C(E, R) if there exists a neighbourhood N of z such that

J(z) ≤ J(u), respectively J(z) ≥ J(u), ∀ u ∈ N \ {z}. (5.2)
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If the above inequalities are strict we say that z is a strict local minimum
(maximum). If (5.2) holds for every u ∈ E, not merely on N \ {z}, z is a
global minimum (maximum). It is immediate to check that if z ∈ E is a local
minimum (maximum) and if J is differentiable at z, then z is a stationary point
of J , namely dJ(z) = 0 or else J ′(z) = 0.

Next, we state some results dealing with the existence of minima or maxima.
We begin with a classical result dealing with functionals which are coercive and
weakly lower semi-continuous (w.l.s.c. in short). Let us recall that J ∈ C(E, R)

is coercive if

lim‖u‖→+∞ J(u) = +∞.

J is w.l.s.c. if for every sequence un ∈ E such that un ⇀ u one has that

J(u) ≤ lim inf J(un).

Lemma 5.3 Let E be a reflexive Banach space and let J : E → R be coercive
and w.l.s.c.
Then J is bounded from below on E, namely there exists a ∈ R such that
J(u) ≥ a for all u ∈ E.

Proof. Arguing by contradiction, let un ∈ E be such that J(un)→−∞. Since
J is coercive it follows there is R > 0 such that ‖un‖ ≤ R. Hence there exists
u ∈ E such that (without relabelling) un ⇀ u. Since J is w.l.s.c. we infer that

J(u) ≤ lim inf J(un) = −∞,

a contradiciton, proving the lemma. �

Remark 5.4 The same arguments show that a w.l.s.c. functional is bounded
from below on any ball Br = {u ∈ E : ‖u‖ ≤ r}. �

Theorem 5.5 Let E be a reflexive Banach space and let J : E → R be coercive
and w.l.s.c.
Then J has a global minimum, namely there is z ∈ E such that J(z) =
min{J(u) : u ∈ E}. If J is differentiable at z, then dJ(z) = 0.

Proof. From the preceding lemma it follows that m ≡ inf {J(u) : u ∈ E} is
finite. Let un be a minimizing sequence, namely such that J(un) → m. Again,
the coercivity of J implies that ‖un‖ ≤ R′, and un ⇀ z for some z ∈ E. Since
J is w.l.s.c. it follows that

J(z) ≤ lim inf J(un) = m.
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Of course, J(z) cannot be strictly smaller than m and thus J achieves its infimum
at z: J(z) = m. �

Remark 5.6 Since z is a maximum for J if and only if it is a minimum for
−J , a similar result holds for the existence of maxima, provided−J is coercive
and w.l.s.c. �

Remark 5.7 Let E be a Hilbert space. Using Remark 5.4 and repeating the pre-
ceding arguments one shows that any w.l.s.c. functional J achieves its minimum
on the ball Br . It is worth pointing out that if J ∈ C1(E, R) and if the minimum
m is achieved at a point z on the boundary Sr = ∂Br of the ball, then z is not
necessarily a stationary point of J but there exists λ ≤ 0 such that J ′(z) = λz. In
fact, z is a constrained critical point of J on ∂Br . Since j(t) := J(tz), t ∈ [0, 1],
has a minimum at t = 1, then

j′(1) = (J ′(z) | z) ≤ 0,

and from λ = (J ′(z) | z) it follows that λ ≤ 0. The same argument holds for the
maximum of −J . In particular, if J is weakly continuous both the maximum
and the minimum are achieved. �

The easiest example of w.l.s.c. functional is the map u �→ ‖u‖2. Conditions
that imply the w.l.s. continuity of functionals are of great importance and have
been broadly studied, beginning with the pioneering works of L. Tonelli. But
this question is beyond the scope of this book and will not be discussed here.
The interested reader is referred for example to [84, 102].

5.4 Some applications

Here we show some applications of the preceding results. First of all, let us
consider the case that E is a Hilbert space and

J(u) = 1
2‖u‖2 −	(u). (5.3)

Theorem 5.8 Let J be of the form (5.3) and suppose 	 ∈ C1(E, R) is weakly
continuous (namely un ⇀ u ⇒ 	(un)→ 	(u)) and satisfies

|	(u)| ≤ a1 + a2‖u‖α ,

with a1, a2 > 0 and α < 2.
Then J achieves its global minimum at some z ∈ E and there holds J ′(z) = 0,
namely 	′(z) = z.
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Proof. One has

J(u) ≥ 1
2‖u‖2 − a1 − a2‖u‖α

and hence J is coercive, because α < 2. Since u �→ ‖u‖2 is w.l.s.c. and 	 is
weakly continuous, then J is w.l.s.c. and Theorem 5.5 yields the existence of a
global minimum z of J satisfying J ′(z) = 0, namely z −	′(z) = 0. �

Theorem 5.8 can be used, for example, to handle Dirichlet boundary value
problems, see Section 1.4 to which we refer for notation,{−
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�,
(D)

with f : �×R → R sublinear at infinity. Precisely, we assume that f is locally
Hölder continuous and that there exists a1 ∈ L2(�), a2 > 0 and 0 < q < 1
such that

|f (x, u)| ≤ a1(x)+ a2|u|q, ∀ (x, t) ∈ �× R. (5.4)

We set E = H1
0 (�), with norm ‖u‖2 = ∫

�
|∇u|2 dx. Taking into account that

E is compactly embedded in L2(�) and repeating the arguments carried out in
Theorem 1.8, one readily finds that

	(u) :=
∫
�

F(x, u) dx, where F(x, u) =
∫ u

0
f (x, s) ds

is C1(E) and is weakly continuous. We will show the following.

Theorem 5.9 Let f be locally Hölder continuous and suppose that (5.4) holds.
Then (D) has a solution.

Proof. Consider the functional J ∈ C1(E, R),

J(u) = 1
2 ‖u‖2 −	(u) = 1

2

∫
�

|∇u|2 dx −
∫
�

F(x, u) dx,

whose critical points are the solutions of (D). Using (5.4), we find constants
ai > 0 such that

|	(u)| ≤ a3‖u‖L2 + a4‖u‖q+1
Lq+1

≤ a5‖u‖ + a6‖u‖q+1.

Since q < 1 one infers that J is coercive on E. Furthermore, 	 is weakly
continuous and thusTheorem 5.8 applies yielding a minimum z such that J ′(z) =
z −	′(z) = 0, which gives rise to a solution of (D). �
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Remark 5.10 Small modifications of the preceding arguments allow us to
prove the existence of a solution of (D) provided that f is locally Hölder con-
tinuous and such that f (x, s)/s → 0 as |s| → ∞, uniformly with respect
to x ∈ �. �

Theorem 5.9 applies to the following example.

Example 5.11 Consider the BVP{−
u(x) = λu− f (u) x ∈ �

u(x) = 0 x ∈ ∂�,
(5.5)

where λ is a given real parameter (notice the difference with the eigenvalue
problems, where λ is an unknown) and f : [0,+∞) �→ R is locally Hölder
continuous and such that

lim
u→0+

f (u)

u
= 0, lim

u→+∞
f (u)

u
= +∞.

We want to show that (5.5) has a positive solution whenever λ > λ1, where
λ1 is the first eigenvalue of the Laplace operator with zero Dirichlet boundary
conditions.

From the assumption on f it follows that there exists ξ = ξλ > 0 such that
λξ = f (ξ) and λu − f (u) > 0 for all 0 < u < ξ . Let gλ : R �→ R denote the
function

gλ(u) =


0 if u < 0
λu− f (u) if 0 ≤ u ≤ ξ

0 if u > ξ .

�u – f(u)

u� 0  

g� (u)

Figure 5.1 Graph of gλ (in bold) versus the graph of λu− f (u).
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Consider the auxiliary boundary value problem{−
u(x) = gλ(u) x ∈ �

u(x) = 0 x ∈ ∂�.
(D)

By the maximum principle, any non-trivial solution u of (D) is positive.
Moreover, repeating the arguments of Theorem 4.19 (b), one finds that 0 <

u(x) < ξλ, for all x ∈ �, and hence is a positive solution of (5.5). Since gλ is
locally Hölder continuous and bounded, Theorem 5.9 applies to

Jλ(u) = 1
2‖u‖2 − λ

∫
�

Gλ(u) dx, Gλ(u) =
∫ u

0
gλ(s) ds.

If λ > λ1 we claim that min Jλ < 0. Actually, let ϕ1 ∈ E be such that ϕ1 > 0
in � and

−
ϕ1(x) = λ1ϕ1(x), x ∈ �,
∫
�

ϕ2
1 dx = 1.

For t > 0 small, one has that gλ(tϕ1) = λtϕ1 − f (tϕ1). Since f (u) = o(u), we
easily deduce that

Jλ(tϕ1) = 1
2 λ1 t2 − 1

2 λ t2 + o(t2).

Then, if λ < λ1, it follows that Jλ(tϕ1) < 0 for t > 0 small. This proves that
minE Jλ < 0 and that (5.5) has a positive solution. �

Remark 5.12 If f is defined on all R and limu→0 f (u)/u = 0,
lim|u|→+∞ f (u)/u = +∞, we can also find, in addition to the preceding pos-
itive solution, a negative solution. It suffices to consider the negative part of
λu− f (u) and argue as before. �

As a further application let us consider the nonlinear eigenvalue problem{−λ
u(x) = f (x, u) x ∈ �

u(x) = 0 x ∈ ∂�,
(EPλ)

where f ∈ Fp with 1 < p < (n+2)/(n−2), see Section 1.3, f is locally Hölder
continuous and satisfies the growth condition

|f (x, u)| ≤ a1(x)+ a2|u|p, ∀ (x, u) ∈ �× R, (5.6)

where 1 < p < (n+ 2)/(n− 2).
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Proposition 5.13 Let f ∈ Fp, 1 < p < (n+ 2)/(n− 2), satisfy

f (x, 0) = 0, uf (x, u) > 0, ∀ u �= 0. (5.7)

Then the nonlinear eigenvalue problem (EPλ) has a nontrivial solution z > 0,
with ‖z‖2 = ∫

�
|∇z|2 dx = 1 and λ = ∫

�
f (x, z)z dx > 0.

Proof. As usual, we set F(x, u) = ∫ u
0 f (x, s) ds and

	(u) =
∫
�

F(x, u(x)) dx.

Let us apply Remark 5.7, with E = H1
0 (�) and J(u) = 	(u). Since 	 is weakly

continuous, see Theorem 1.8 in Section 1.3, the supremum m = sup{J(u) :
u ∈ B1} is achieved at some z ∈ B1, see also Remark 5.7. Moreover m is
positive because uf (x, u) > 0 for any u �= 0. If ‖z‖ < 1 then 	′(z) = 0,
namely

∫
�

f (x, z)v dx = 0 for all v ∈ E and, in view of (5.7), this implies
z = 0. Hence m = 	(z) = 	(0) = 0, a contradiction. Thus the maximum is
achieved on the unit sphere ∂B1, so z is a constrained maximum of 	 on ∂B1

and J ′(z) = λz. It follows that z ∈ ∂B1 gives rise to a solution of (EPλ) with
λ = λ‖z‖2 = ∫

�
f (x, z)z dx > 0, because z ∈ ∂B1. Finally, using the maximum

principle, it is easy to see that z > 0 in �. �

5.5 Linear eigenvalues

Here we discuss the specific case of the linear eigenvalue problem

Au = µu, u ∈ E, µ ∈ R, (5.8)

where E is a Hilbert space and A ∈ L(E) is symmetric. Let us define the
quadratic functional

J(u) = 1
2 (Au | u),

whose gradient is given by J ′ = A, see Section 5.1.

Lemma 5.14 Suppose that A is compact and positive definite, namely
(Au | u) > 0 for all u �= 0.
Then J achieves its maximum on the unit ball B1 = {u ∈ E : ‖u‖ ≤ 1} at a
point z such that ‖z‖ = 1 and satisfying (5.8) with

µ = max{(Au | u) : u ∈ B} = (Az | z) > 0.
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Proof. It suffices to repeat, with obvious changes, the arguments carried out
in the proof of Proposition 5.13, taking into account that J(u) = 1

2 (Au | u) is
weakly continuous because A is compact. �

Remark 5.15 From the fact that µ = max{(Au | u) : u ∈ B} it immedi-
ately follows that µ is the largest eigenvalue of A. µ is called the principal
eigenvalue of A. �

Taking E = H1
0 (�), with scalar product (u | v) = ∫

�
(∇u · ∇v) dx and norm

‖u‖2 = (u | u), A = K , the Green operator of−
 with zero Dirichlet boundary
conditions, see Section 5.1, and J(u) = 1

2 (Ku | u) = 1
2

∫
�
|u|2 dx, the preceding

lemma yields the existence of µ1 > 0 and z = ϕ1 ∈ E, with ‖ϕ1‖ = 1, such that

K(ϕ1) = µ1ϕ1.

Setting λ1 = 1/µ1, we find that{−
ϕ1(x) = λ1ϕ1(x) x ∈ �

ϕ1(x) = 0 x ∈ ∂�,
(5.9)

namely that λ1 is an eigenvalue of −
 on H1
0 (�), with eigenfunction ϕ1.

Actually, from Remark 5.15 it follows that λ1 is the smallest eigenvalue of−


on H1
0 (�). Let us recall, see Theorem 1.13 in Section 1.4, that λ1 is a simple

eigenvalue, namely the geometric and the algebraic multiplicity of λ1 is one.
Furthermore, the eigenfunctions of−
 on H1

0 (�) do not change sign in � and
hence we can choose ϕ1 to be positive in �.

Let us conclude this subsection with some further remarks.

Remark 5.16
(i) A direct application of the regularity results discussed in Theorem 1.10

yields that the eigenfunctions ϕ of (5.9) are smooth (C∞).
(ii) By homogeneity one has that

1

λ1
= max

H1
0 (�)\{0}

∫
�

u2 dx

‖u‖2

and hence one infers∫
�

u2 dx ≤ 1

λ1

∫
�

|∇u|2 dx, ∀ u ∈ H1
0 (�),

which is nothing but the Poincaré inequality.
(iii) In the preceding application to (5.9) we can consider the equation

−
u(x) = λa(x)u(x) with a ∈ L∞(�) and a(x) > 0 in �. The case
that a changes sign has also been studied in [127].
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(iv) In all the preceding examples, the differential operator −
 can be
substituted by any second order uniformly elliptic operator in a
divergence form with smooth coefficients, see Section 1.4. �

5.6 Exercises

(i) Let A ∈ L(E) be symmetric and positive definite. For λ ∈ R, consider a
smooth functional Jλ : E �→ R such that J(u) = ‖u‖2 + C(u)− λ(Au | u),
where C : E �→ E is compact, positive and satisfies C(t u) = t4C(u), for
all u ∈ E, for all t ∈ R. Prove that Jλ has a minimum uλ �= 0 provided
λ > µ−1, where µ denotes the principal eigenvalue of A.

(ii) Prove the result claimed in Remark 5.10.
(iii) Consider the problem (see Example 5.11){−
u(x) = λu− u3, x ∈ �,

u(x) = 0, x ∈ ∂�,

and prove that it has exactly one positive and one negative solutions for all
λ1 < λ < λ2. [Hint: show that any nontrivial solution which does not
change sign in � has Leray- Schauder index equal to 1.] Extend the result
to λ = λ2.
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Constrained critical points

In this chapter we introduce the notion of critical points of a functional
constrained on a manifold.

6.1 Differentiable manifolds, an outline

This preliminary section is devoted to give an outline on differentiable man-
ifolds. The reader will find a more complete treatment of this topic in, for
example, [113, 160].

Let X be a Hilbert space and I a set of indices. A topological space M is a
Ck Hilbert manifold modelled on X , if there exist an open covering {Ui}i∈I of
M and a family ψi : Ui → X of mappings such that the following conditions
hold:

• Vi = ψi(Ui) is open in X and ψi is a homeomorphism from Ui onto Vi;
• ψj ◦ ψ−1

i : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj) is of class Ck .

Each pair (Ui,ψi) is called a chart. If p ∈ Ui, (Ui,ψi) is a chart at p. The
maps ψj ◦ ψ−1

i are the changes of charts. The pair (Vi,ψ
−1
i ) is called a local

parametrization of M. If X = R
n we say that M is n-dimensional.

If, in the preceding definition, X is a Banach space, we will say that M is a
Banach manifold modelled on X . Moreover, in more general situations, each
map ψi could map Ui in a possibly different Hilbert space Xi. However, on any
connected component of M, each Xi will be isomorphic to a given Hilbert space
X and we will still say that M is modelled on X .

For the applications we will discuss in the rest of this book, it suffices to
consider the very specific case in which M is a subset of a Hilbert space E and
is modelled on a Hilbert subspace X ⊂ E. We will limit ourselves to giving an
outline of this case, referring for more details to [113], p. 23 and following.

89
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Figure 6.1

We will suppose that for any point p ∈ M there are

• an open set Ũ ⊂ E, with p ∈ Ũ,
• an open set Ṽ ⊂ E,
• a Ck diffeomorphism ϕ̃ : Ṽ �→ Ũ,

such that, setting V = Ṽ ∩X , U := Ũ ∩M and denoting by ϕ the restriction of
ϕ̃ to V , one has that x := ϕ−1(p) ∈ V and ϕ(V) = U. Clearly, the pair (V ,ϕ)
is a local parametrization of M.

Definition 6.1 The tangent space TpM to M at p is defined as the image of X
through the linear map dϕ̃(x) ∈ L(X , E):

TpM = dϕ̃(x)[X]. (6.1)

In order to justify the preceding definition, let us show that (6.1) does not depend
on the choice of the local parametrization. Actually, let (Vi,ϕi), i = 1, 2, be two
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local parametrizations and consider the commutative diagram

M ⊂ E & M ⊂ E

−→ϕ̃1 −→ϕ̃2

Ṽ1 ⊂ E
ϕ̃−1

2 ◦ϕ̃1

−−−−→ Ṽ2 ⊂ E.

Recall that ϕ̃−1
2 ◦ ϕ̃1 is a diffeomorphism. Taking the derivatives, one

immediately finds that dϕ̃1[X] = dϕ̃2[X].
From the definition it immediately follows that TpM is a Hilbert space homeo-

morphic to X. We anticipate that TpM coincides with the space of ‘tangent
vectors’ at p to the smooth curves on M (see below for a precise statement).
Moreover, when M = G−1(c) with G ∈ C1(E, R), and G′(u) �= 0 for all u ∈ M
(see Section 6.3 later on), then

TpM = {v ∈ E : (G′(p) | v) = 0}.
Let Mi ⊂ Ei, i = 1, 2, be two C1 Hilbert manifolds modelled on Xi ⊂ Ei.

We want to define the differential of a map f : M1 �→ M2. Once more, we will
consider a special situation that suffices for our purposes. Precisely, we will
assume that there exist

• an open set U1 ⊂ E1 containing M1,
• a differentiable map f̃ : U1 �→ E2,

such that f = f̃ on M1.
Let p ∈ M1. It is easy to see that if f̂ is any other differentiable map which

coincides with f on M1, then d̃f (p)[v] = d̂f (p)[v] for all v ∈ TpM1. This allows
us to give the following definition.

Definition 6.2 The differential of f : M1 �→ M2 at p is the restriction to TpM1

of the linear map d̃f (p) ∈ L(E1, E2).

We use the notation dM1 f (p) to denote the differential of f at p. When there is no
possible misunderstanding, we will omit the subscript M1 writing simply df (p)
instead of dM1 f (p). We say that f : M1 �→ M2 is differentiable (on M1) if it is
differentiable at any point of M1 and we say that f ∈ C1(M1, M2) if f is differen-
tiable on M1 and the map df : M1 → L(TpM1, E2) is continuous. Similarly, if Mi

are Ck Hilbert manifolds, k ≥ 1, we can define higher differentials and Ck maps.
For example, let us consider a smooth local parametrization (V ,ϕ) of M at p.

Here, ϕ is the restriction to V ⊂ X of a smooth map ϕ̃ : Ṽ �→ E, where Ṽ ⊂ E,
and we are in the preceding situation, with E1 = E2 = E, M1 = X, M2 = M
and f = ϕ. Let x ∈ V be such that p = ϕ(x). Then dϕ(x) is the restriction of
dϕ̃(x) to X, and hence dϕ(x) ∈ TpM.
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More in general, let q = f (p) and let ϕi and Vi ⊂ Xi, i = 1, 2, be local
parametrizations with ϕ1(x1) = p and ϕ2(x2) = q. Consider the following
commutative diagram

M1 ⊂ E1
f

−−−−→ M2 ⊂ E2
−→ϕ1 −→ϕ2

V1 ⊂ X1
g

−−−−→ V2 ⊂ X2

where g = ϕ−1
2 ◦ f ◦ ϕ1. Taking the differentials we find the commutative

diagram

TpM1

dM1 f (p)

−−−−→ E2

−→dϕ1(x1) −→dϕ2(x2)

X1
dg(xi)−−−−→ X2

and this makes it clear that dM1 f (p) is a linear map from TpM1 into TqM2, with
q = f (p): dM1 f (p) ∈ L(TpM1, Tf (p)M2).

As an important example, consider a smooth functional J : E → R (or else
defined on an open subset of E containing M). In this case dMJ(p) is the linear
map from TpM to R defined as the restriction to TpM of dJ(p) ∈ L(E, R).
Similar to Section 5.2, dMJ(p) defines the constrained gradient of J at p by
setting

(∇MJ(p) | v) = dMJ(p)[v], ∀ v ∈ TpM.

Let us emphasize that the relationship between the free gradient J ′ and the
constrained gradient ∇MJ is given by

(∇MJ(p) | v) = (J ′(p) | v), ∀ v ∈ TpM.

Hence ∇MJ(p) is nothing but the projection of J ′(p) on TpM.
A final remark concerning the tangent space is in order. Consider a smooth

curve γ : [a, b] �→ M, with a < 0 < b, and let γ (0) = p. According to
the preceding discussion, dγ (t) is a linear map from R to the tangent space
Tγ (t)M. As usual, we will identify L(R, Tγ (t)M) with Tγ (t)M and write γ ′(t)
for dγ (t)[1]. The vector γ ′(t) is called the tangent vector to the curve γ at γ (t).
In particular, for any smooth curve γ on M, the tangent vector γ ′(0) at p belongs
to TpM. Conversely, let us show that for every v ∈ TpM there is a smooth curve
γ such that γ ′(0) = v. For this, let (V ,ϕ) be a local parametrization of M
at p with, say, ϕ−1(p) = 0, and let w = dϕ̃−1(p)[v] (we are using the same
notation employed before). Consider the straight line t �→ tw and the curve
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γ (t) = ϕ̃(tw). This γ is a smooth curve, γ (0) = p and

γ ′(0) = dϕ̃(0)[w] = dϕ̃[dϕ̃−1(p)[v]] = v.

In conclusion, we can say that TpM is nothing but the space of the tangent
vectors to the smooth curves on M.

Remark 6.3 It is worth pointing out explicitly that E induces on M a natural
Riemannian structure. More precisely, let vi ∈ TpM, i = 1, 2 and set

〈v1 | v2〉p = (v1 | v2)E ,

where (· | ·)E denotes the scalar product in E. Obviously, 〈· | ·〉p is a symmetric,
positive definite, bilinear form on TpM which defines a topology equivalent to
the one induced on TpM by the norm ‖ · ‖E . Furthermore, given any smooth
curve γ : [a, b] → M, we define the length of γ by

�(γ ) =
∫ b

a
〈γ ′(t) | γ ′(t)〉1/2

γ (t) dt.

If M is arcwise connected, for every p, q ∈ M there is a smooth curve γ joining
p and q and we can define a distance on M by setting

d(p, q) = inf �(γ ),

where the infimum is taken on the set of all the smooth curves γ joining p and
q. We will always assume that M is arcwise connected and complete under the
metric d defined above. �

6.2 Constrained critical points

Let J : E → R be a differentiable functional and let M ⊂ E be a smooth
Hilbert manifold. A constrained critical point of J on M is a point z ∈ M such
that dMJ(z) = 0, namely

dJ(z)[v] = 0, ∀ v ∈ TzM.

Using the constrained gradient, we can say that a constrained critical point z of
J on M satisfies

(∇MJ(z) | v) = 0, ∀ v ∈ TzM.

Since (∇MJ(z) | v) = (J ′(z) | v), for all v ∈ TzM, one finds that z is a
constrained critical point of J on M whenever (J ′(z) | v) = 0, for all v ∈ TzM,
namely whenever J ′(z) is orthogonal to TzM.

We will use the notation Z to denote the set of critical points of J constrained
on M; we also put Zc = {z ∈ Z : J(z) = c}. Once more, using the same notation
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for critical points of J on M and stationary points of J (with no constraints, see
the definition in Section 5.1) should not cause any misunderstanding.

Remark 6.4 Let γ : [−a, a] → M, a > 0, be any smooth curve such that
γ (0) = z and consider the real valued function φ(t) = J(γ (t)). One has that

φ′(0) = J ′(z)[γ ′(0)],
where γ ′(0) belongs to the tangent space TzM. Hence, if z is a critical point of
J constrained on M, t = 0 is a critical point of φ(t) = J(γ (t)), for any curve
γ on M. Conversely, let ϕ be a local parametrization of M such that ϕ(0) = z
and let v ∈ TzM. Then there exists w ∈ X such that v = dϕ(0)w and, setting
γ (t) = ϕ(tw), φ(t) = J(γ (t)), one has

φ′(0) = J ′(z)[γ ′(0)] = J ′(z)[v].
Thus, if t = 0 is a critical point for the real valued function φ(t) = J(γ (t)) for
every curve γ on M then J ′(z)[v] = 0 for all v ∈ TzM. This implies that z is a
critical point of J on M. �

Examples of constrained critical points are local constrained minima, respect-
ively maxima. Let M ⊂ E be a smooth manifold modelled on the Hilbert space
X ⊂ E and let J ∈ C(E, R). We say that z ∈ M is a local constrained minimum,
resp. maximum, of J on M if there exists a neighbourhood V of z such that

J(z) ≤ J(u), respectively J(z) ≥ J(u), ∀ u ∈ V ∩M. (6.2)

Let ϕ be a local parametrization of M with ϕ(0) = z. The above definition
is equivalent to saying that there exists a neighbourhood N ⊂ X of 0 ∈ X
such that

J(z) = J(ϕ(0)) ≤ J(ϕ(ξ)), respectively J(z) = J(ϕ(0)) ≥ J(ϕ(ξ)),

∀ ξ ∈ N .



6.3 Manifolds of codimension one 95

In other words, z ∈ M is a local constrained minimum, respectively maximum, if
and only if 0 ∈ X is a local minimum, respectively maximum, of J◦ϕ : N �→ R.
It follows that 0 ∈ X is a stationary point of J ◦ ϕ, namely d(J ◦ ϕ)(0)[ξ ] = 0
for every ξ ∈ X, or else:

dJ(z)[dϕ(0)[ξ ] ] = 0, ∀ ξ ∈ X.

Taking into account the definition of tangent space TzM, it follows that
dJ(z)[v] = 0, for all v ∈ TzM, namely that z is a constrained critical point
of J on M.

6.3 Manifolds of codimension one

If the manifold M ⊂ E is modelled on a subspace of codimension one in E, we
say that M is a manifold of codimension one in E. For our purposes, the case
M = G−1(0) where G ∈ C1(E, R), E is a Hilbert space and G′(u) �= 0 for all
u ∈ M, is particularly interesting. For example, if G(u) = ‖u‖2 − r2 then M
turns out to be the sphere Sr = {‖u‖ = r} in E.

Let p ∈ M and consider the linear subspace

Xp = {v ∈ E : (G′(p) | v) = 0}.
Setting w = ‖G′(p)‖−2G′(p), one has that E = Xp⊕〈w〉. Let us define the map
ψ : E → E by

ψ(u) = u− p− (G′(p) | u− p)w+ G(u)w.

It is easy to check that
(G′(p) | ψ(u)) = G(u)

and hence
ψ(u) ∈ Xp ⇐⇒ u ∈ M.

Moreover, ψ(p) = 0, ψ ∈ C1 and dψ(p) = Id. It follows that ψ is locally
invertible at p and that it induces a diffeomorphism between a neighbourhood
Ũ of p and a neighbourhood Ṽ of 0. Moreover, its inverse ϕ̃ = ψ−1 maps the
neighbourhood V = Ṽ∩Xp of 0 onto the neighbourhood U = Ũ∩M of p. Thus,
letting ϕ denote the restriction of ϕ̃ to V , it follows that M is a C1 manifold
with local parametrization at p given by (V ,ϕ), with V ⊂ Xp. Let us remark
that all the Xp are isomorphic to a fixed subspace X ⊂ E of codimension one
(i.e. E = X ⊕ 〈w∗〉, for some w∗ ∈ E \ {0}). Let us also point out that since
dϕ̃(0) = (dψ(p))−1 = Id, then the tangent space TpM is nothing but

TpM = dϕ̃(0)[Xp] = Xp.
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Let J be a C1 functional on E. Since TpM = {v ∈ E : (G′(p) | v) = 0}, a
constrained critical point is an element z ∈ M such that

(J ′(z) | v) = 0, ∀ v ∈ E such that (G′(z) | v) = 0,

and thus there exists λ ∈ R such that

J ′(z) = λG′(z).

This is nothing but the extension to the infinite dimensional case of the classical
Lagrange multiplier rule.

The constrained gradient (is the projection of J ′(u) on Xp and hence) has the
form

∇MJ(u) = J ′(u)− (J ′(u) | G′(u))
‖G′(u)‖2

G′(u).

So, if z ∈ M is a constrained critical point of J , from ∇MJ(z) = 0 it follows
that J ′(z) = λG′(z) with

λ = (J ′(z) | G′(z))
‖G′(z)‖2

.

The following examples highlight that, in applications, constrained critical
points correspond to solutions of eigenvalue problems.

Example 6.5
(i) If J ∈ C1(E, R) and M is the unit sphere in the Hilbert space E, then a

critical point of J on M is a solution of the eigenvalue problem

J ′(u) = λu, ‖u‖ = 1.

If z is such a critical point, there holds λ = (J ′(z) | z). In particular, if
J(u) = 1

2 (Au | u), where A is a symmetric linear operator, constrained
critical points on the Hilbert sphere become solutions of the linear
eigenvalue problem Au = λu.

(ii) Setting E = H1
0 (�) with scalar product (u | v) = ∫

�
∇u · ∇v dx, norm

‖u‖2 = ∫
�
|∇u|2 dx and M = S = {u ∈ E : ‖u‖ = 1}, let

J(u) = 1
2 (K(u) | u), where, as usual, K denotes the Green operator of

−
 on E. The solutions z of J ′(u) = λu satisfy K(z) = λz, namely
−λ
z = z, with ‖z‖ = 1 and λ = ∫

�
z2 > 0. Then 1/λ is an eigenvalue

with corresponding eigenfunction z of the Laplacian with zero Dirichlet
boundary conditions.

(iii) Setting again E = H1
0 (�) and M = S = {u ∈ E : ‖u‖ = 1}, let 	(u) be

the functional defined in Example 5.2(iv), see also Section 1.3. A critical
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point of 	 constrained on S is a point z ∈ S such that 	′(z) = λz, namely
(	′(z) | v) = λ(z | v) or else

λ

∫
�

∇z · ∇v dx =
∫
�

f (x, z)v dx, ∀ v ∈ E.

Thus z is a solution of the nonlinear eigenvalue problem{−λ
u(x) = f (x, u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.

Let us remark that if z is a solution of the preceding eigenvalue problem and
f (x, ·) is p-homogeneous (p > 1), then the function v(x) = λ1/(p−1)z(x) solves
the BVP {−
v(x) = f (x, v(x)) x ∈ �

v(x) = 0 x ∈ ∂�. �

6.4 Natural constraints

Let E be a Hilbert space and J ∈ C1(E, R). A manifold M is called a natural
constraint for J if there exists a functional J̃ ∈ C1(E, R) with the property that
every constrained critical point of J̃ on M is indeed a stationary point of J ,
namely

∇MJ̃(u) = 0, u ∈ M ⇐⇒ J ′(u) = 0.

The last remark in the previous section shows that the unit sphere in E = H1
0 (�)

is an example of natural constraint for J : E �→ R, J(u) = 1
2‖u‖2− (1/(p+1))∫

�
|u|p+1 dx.

Remark 6.6 When inf E J = −∞ and supE J = +∞, it might be convenient
to look for critical points of J on a natural constraint M, because it could happen
that J is bounded on M, see Example 6.8 below. In such a case, one can try to
find stationary points of J as minima (or maxima) of J constrained on M. �
Another example of a natural constraint is the so-called Nehari manifold1

M = {u ∈ E \ {0}; (J ′(u) | u) = 0}.
Precisely, let us show the following.

Proposition 6.7 Let J ∈ C2(E, R) and let M = {u ∈ E \ {0} : (J ′(u)|u) = 0}
be non-empty. Moreover, let us assume [formulas (6.3) and (6.4)]. Then

∃ r > 0 : Br ∩M = ∅, (6.3)

1 The name comes from Z. Nehari who first introduced this manifold.
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and that
(J ′′(u)u | u) �= 0, ∀ u ∈ M. (6.4)

M = {u ∈ E \ {0} : (J ′(u) | u) = 0} is non empty. Then M is a natural
constraint for J.

Proof. We will take J̃ = J and prove that the critical points of J constrained
on M are indeed stationary points of J . Set G(u) = (J ′(u) | u), in such a way
that M = G−1(0) \ {0}. Clearly, G ∈ C1(E, R) and for u ∈ M one has

(G′(u) | u) = (J ′′(u)u | u)+ (J ′(u) | u) = (J ′′(u)u | u) �= 0. (6.5)

Thus G′(u) �= 0 for all u �= 0 and this, jointly with (6.3), implies that M is a
C1 manifold of codimension one. If z is a critical point of J on M there holds

J ′(z) = λG′(z).
Taking the scalar product with z we find

(J ′(z) | z) = λ(G′(z) | z).

One has that (J ′(z) | z) = G(z) = 0, while (G′(z) | z) �= 0 by (6.5). Then
it follows that λ = 0 and hence that J ′(z) = 0. Conversely, it is obvious that
every stationary point u �= 0 of J belongs to M. �

Example 6.8 Let E = H1
0 (�) with norm ‖u‖2 = ∫

�
|∇u|2 dx and

J(u) = 1

2
‖u‖2 − 1

p+ 1

∫
�

|u|p+1 dx

with 1 < p+ 1 < 2∗. Here G(u) = ‖u‖2 − ∫
�
|u|p+1 dx and

M =
{

u ∈ E \ {0} : ‖u‖2 =
∫
�

|u|p+1 dx

}
.

It is easy to check that (6.3) holds. Moreover, (G′(u) | u) = 2‖u‖2 − (p + 1)∫
�
|u|p+1 dx and hence for u ∈ M one has (G′(u) | u) = (1 − p)‖u‖2 < 0.

Finally, J|M becomes J(u) = ( 1
2 − (1/p+ 1))‖u‖2. Let us point out that, if

2 < p+1 < 2∗, then J|M > 0, while inf E J = −∞ (it suffices to fix v ∈ E \{0}
and to remark that limt→+∞ J(tv) = −∞). �

6.5 Exercises

(i) Let Jλ denote the Euler functional corresponding the problem (see
Exercise (iii)) {−
u(x) = λu− |u|p−1u, x ∈ �,

u(x) = 0, x ∈ ∂�,



6.5 Exercises 99

where 1 < p < (n+ 2)/(n− 2), and consider its Nehari manifold
Mλ = {u ∈ H1

0 (�) \ {0} : (J ′λ(u) | u) = 0}.
(a) Show that Mλ = ∅ if and only if λ ≤ λ1.
(b) Show that Mλ is a natural constraint.
(c) Extend the discussion to the case in which |u|p−1u is replaced by a

general function f (u) ∼ |u|p−1u. Under which assumptions on f , is
Mλ a natural constraint?

(ii) Let J(u) = 1
2

∫
�
|∇u|2 dx + (1/α)

∫
�
|u|α dx − (1/β)

∫
�
|u|β dx, where

u ∈ H1
0 (�) and 2 ≤ α < β < 2∗. Find a natural constraint for J .

(iii) Consider the BVP{−
u(x) = λ|u|q−1u+ |u|p−1u, x ∈ �,
u(x) = 0, x ∈ ∂�,

where 1 < q < 2 < p < n+2
n−2 and set

Mλ =
{

u ∈ H1
0 (�) \ {0} : ‖u‖2 = λ

∫
�

|u|q+1 +
∫
�

|u|p+1
}

.

Show that there exists λ0 such that for 0 < λ < λ0 there holds

(a) Mλ is a natural constraint and there exists ρλ > 0 such that
u ∈ Mλ =⇒ ‖u‖ ≥ ρλ.

(b) Mλ is the union of two disjoint manifolds.
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Deformations and the Palais–Smale condition

The existence of constrained critical points is closely related to the deformation
of sublevels. On the other hand, to carry out deformations one needs some
compactness condition, like the Palais–Smale condition. These two basic tools
will be discussed in the present chapter.

7.1 Deformations of sublevels

In this section we will deal with some preliminary results that will be used
extensively in the rest of the book.

Let J : M ⊂ E �→ R and let a ∈ R. The set

Ma = {u ∈ M : J(u) ≤ a},
is a sublevel of J on M. The main goal is to carry out deformations of sublevels.
By deformation, we mean the following.

Definition 7.1 A deformation of A ⊂ M in M is a map η ∈ C(A, M) which is
homotopic to the identity: there exists H ∈ C([0, 1] × A, M) such that

H(0, u) = u, H(1, u) = η(u), ∀ u ∈ M.

Roughly, if A can be deformed in A′, then A and A′ have the same topological
properties. We will see that if the interval [a, b] does not contain any critical
point of J on M and M is compact, then Mb can be deformed into Ma. On the
other hand, the presence of critical levels in [a, b]might prevent the possibility
of deforming Mb into Ma. Before proving these statements, let us consider a
couple of elementary examples.

Let M be a compact hyper-surface in R
n and suppose that b is not a critical

level for J on M. Then the level set {p ∈ M : J(p) = b} is a smooth submanifold
Nb of M and at any point of Nb the vector −∇MJ(p) is different from zero. By
compactness, minp∈Nb |∇MJ(p)| > 0 and hence, by means of these gradient
vectors, Mb is ‘deformed’ into the level Mb−ε, for some ε > 0. We can repeat

100
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this procedure a finite number of times until we find a critical level and so, if
the interval [a, b] contains no critical levels, the sublevel Mb can be ‘deformed’
into Ma. As a consequence, the topological properties of the sublevels Ma do
not change when a does not cross a critical level. On the other hand, if p∗ ∈ M
is the minimum of J on M, with a∗ = J(p∗), we have that Ma �= ∅ if a > a∗,
while Ma = ∅ if a < a∗ so that they cannot be deformed one into the other.

As a second example, let M be a two dimensional torus in R
3 and let

J(x, y, z) = z. The critical points of J on M are the four points pi where the
gradient of J , namely the vector (0, 0, 1), is orthogonal to M.
For example, all the sublevels Mb are diffeomorphic to a cylinder S1 × [0, 1]
provided that b ∈ (c2, c3). On the other hand, if a ∈ (c1, c2) then Ma is dif-
feomorphic to the unit ball B1 ⊂ R

2. Hence Mb cannot be deformed into Ma.
Actually, Mb contains closed curves that cannot be contracted in a point on the
torus, while Ma does not.

7.2 The steepest descent flow

To extend the preceding procedure to the general case, we will use flows
of differential equations, in particular the steepest descent flow. First some
preliminaries are in order.
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Given a map W ∈ C0,1(E, E), let α(t) = α(t, u) denote the solution of the
Cauchy problem {

α′(t) = W(α(t)),
α(0) = u ∈ E.

(7.1)

Since W ∈ C0,1, a standard application of the contraction mapping theorem
shows that (7.1) has a unique solution α(t, u), defined for t in a neighbourhood
of t = 0 and depending continuously on u on the compact subsets of R. We
will denote by (t−u , t+u ) the maximal interval of existence of α; namely, t±u are
such that there are no solutions of (7.1) defined on an interval which contains
strictly (t−u , t+u ).

For what follows it is important that the solutions of (7.1) are globally
defined for positive t, namely that t+ = +∞. Let us begin with a well known
result.

Lemma 7.2 If t+u < +∞ (respectively t−u > −∞) then α(t, u) has no limit
points as t ↑ t+u (respectively t ↓ t−u ).
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Proof. If not, let v ∈ E be such that v = limt↑t+ α(t, u) and let β denote the
solution of the Cauchy problem{

β ′(t) = W(β(t)),
β(t+u ) = v ∈ E,

defined in a neighbourhood (t+−ε, t++ε) (the dependence on u is understood).
The function

α̃(t, u) =
{
α(t, u) for t ∈ (t−, t+)
β(t, v) for t ∈ [t+, t+ + ε)

is a solution of (7.1) defined in the interval (t−, t+ + ε), a contradiction. The
same argument holds for t−. �

Furthermore, one has the following result.

Lemma 7.3 Let A ⊆ E be closed and suppose there exists C > 0 such that
‖W(u)‖ ≤ C for all u ∈ A. Let u ∈ A be such that α(t, u) ∈ A for all t ∈ [0, t+u ).
Then t+u = +∞.

Proof. Suppose that t+ < +∞. For all ti, tj ∈ [0, t+) there holds

α(ti, u)− α(tj, u) =
∫ ti

tj

d

dt
α(s, u) ds =

∫ ti

tj
W(α(s, u)) ds.

Since ‖W‖ is bounded on A and α(s, u) ∈ A for all s ∈ [0, t+), it follows that

‖α(ti, u)− α(tj, u)‖ ≤
∫ ti

tj
‖W(α(s, u)‖ ds ≤ C|ti − tj|.
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Therefore, as ti ↑ t+, α(ti, u) is a Cauchy sequence that converges to some
point in A, in contradiction with the preceding lemma. �

We will now investigate more closely the specific case in which W(u) =
−∇MJ(u). Precisely, let us suppose that there exists G ∈ C1,1(E, R) such that

M = G−1(0), with G′(u) �= 0,∀ u ∈ M. (MMM)

Let J ∈ C1,1(E, R) and consider the function

W(u) = −
[

J ′(u)− (J ′(u) | G′(u))
‖G′(u)‖2

G′(u)
]

,

which is well defined in a neighbourhood of M, is of class C0,1 and coincides
with −∇MJ(u) for all u ∈ M.

The corresponding solution α(t, u) of (7.1) will be called the steepest descent
flow of J . Let us point out explicitly that α(t) = α(t, u) ∈ M for all t ∈ (t−u , t+u ),
whenever u ∈ M. Actually, one has that

d

dt
G(α(t)) = (G′(α(t)) | α′(t)) = (G′(α(t)) | W(α(t)))

= −(G′(α(t)) | J ′(α(t)))+ (J ′(α(t)) | G′(α(t)))
‖G′(α(t))‖2

× (G′(α(t)) | G′(α(t)))

= 0.

It follows that G(α(t)) is constant:

G(α(t)) = G(α(0)) = G(u), ∀ t ∈ (t−u , t+u ).

Then, G(α(t)) = 0 if and only if G(u) = 0, namely α(t) ∈ M whenever u ∈ M.

Lemma 7.4 Suppose that (MMM) holds and that J ∈ C1,1(E, R). Then the steepest
descent flow of J verifies:

(i) the function t �→ J(α(t, u)), t ∈ [0, t+u ), is nonincreasing;
(ii) for τ , t ∈ [0, t+u ) there holds

J(α(t, u))− J(α(τ , u)) = −
∫ t

τ

‖∇MJ(α(s, u))‖2 ds; (7.2)

(iii) if J is bounded from below on M, then t+u = +∞, for all u ∈ M.

Proof. One has (the dependence on u is understood):

d

dt
J(α(t)) = (J ′(α(t)) | α′(t)) = −(J ′(α(t)) | ∇MJ(α(t))).
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Since ∇MJ(α) is the projection of J ′(α) on TαM, then

(J ′(α(t)) | ∇MJ(α(t))) = ‖∇MJ(α(t))‖2

and (i) and (ii) follow immediately.
As for (iii), we argue by contradiction. Let u ∈ M be such that t+u < +∞.

Using (7.2) with τ = 0 we infer

J(α(t))− J(u) = −
∫ t

0
‖∇MJ(α(s))‖2 ds.

Since J is bounded from below on M and α(t) ∈ M, this implies that there
exists a > 0 such that∫ t

0
‖∇MJ(α(s))‖2 ds ≤ a < +∞. (7.3)

Let ti ↑ t+. As in the proof of Lemma 7.3 we have

‖α(ti)− α(tj)‖ ≤
∫ ti

tj
‖∇MJ(α(s))‖ ds.

Using the Hölder inequality and (7.3) we deduce

‖α(ti, u)− α(tj, u)‖ ≤ |ti − tj|1/2 ·
{∫ ti

tj
‖∇MJ(α(s, u)‖2 ds

}1/2

≤ √a |ti − tj|1/2.

Thus α(ti, u) is a Cauchy sequence, contrary to Lemma 7.2. �

Remark 7.5 We anticipate that the condition J ∈ C1,1 can be weakened by
requiring that J ∈ C1(E, R), only. For this, one uses the pseudo gradient vector
fields. This topic will be discussed in Section 8.1, see in particular the proof of
Lemma 8.4 and Section 8.1.1. �

7.3 Deformations and compactness

In this section it is understood that M = G−1(0), where (MMM) holds, and that
J ∈ C1,1(E, R), unless a different assumption is explicitly made.

The following lemma shows how the steepest descent flow allows us to
deform sublevels.

Lemma 7.6 Suppose there are δ > 0 and c ∈ R such that

‖∇MJ(u)‖ ≥ δ, ∀ u ∈ M for which |J(u)− c| ≤ δ. (7.4)
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Then there exists a deformation η in M such that

η(Mc+δ) ⊂ Mc−δ . (7.5)

Proof. Let us first suppose that J is bounded from below on M, Lemma 7.4(iii)
implies that the steepest descent flow α is globally defined on [0,+∞) for all
u ∈ M. Let T = 2/δ and consider the deformation η(u) := α(T , u). We claim
that J(η(u)) ≤ c−δ for all u ∈ Mc+δ . Otherwise, J(α(T , U)) > c−δ for some
u ∈ Mc+δ . Since J(α(s)) is not increasing, see Lemma 7.4(i), it follows that

c− δ < J(α(s, u)) ≤ c+ δ, ∀ s ∈ [0, T ].
Therefore (7.4) implies that

‖∇MJ(α(s, u))‖ ≥ δ, ∀ t ∈ [0, T ]. (7.6)

Using (7.2) with t = T and τ = 0 we infer

J(a(T , u))− J(u) = −
∫ T

0
‖∇MJ(α(s, u))‖2 ds.

From (7.6) and the choice of T = 2/δ it follows that

J(a(T , u)) ≤ J(u)− δ2T = J(u)− 2δ. (7.7)

Since J(u) ≤ c+δ we find that J(a(T , u)) ≤ c+δ−2δ = c−δ, a contradiction.
If J is not bounded from below, we substitute J with a truncated functional

Ĵ(u) = h(J(u)),

where h ∈ C∞(R, R) is strictly increasing, bounded from below and such that
h(s) = s if s ≥ c − d. Since Ĵ is bounded from below and Ĵ ≡ J(u) on
{u ∈ M : J(u) ≥ c − δ}, we can repeat the preceding arguments and the result
follows. �

When M is compact and c is not a critical level for J on M then (7.4) holds and
hence the preceding lemma allows us to deform Mc+δ into Mc−δ . On the other
hand, if M is not compact this might not be possible. For example, in Figure 7.4,
M = R, Mc+δ = (−∞,β]∪ [γ ,+∞) is disconnected while Mc−δ = (−∞,α]
is connected and hence the former cannot be deformed into the latter.
When M is not compact we need to make some further assumption that allows
us to perform deformations, avoiding situations like that shown in Figure 7.4.

The following compactness condition was first introduced by Palais and
Smale.
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Figure 7.4 M = R, Mc−δ = (−∞,α], Mc+δ = (−∞,β] ∪ [γ ,+∞).

7.4 The Palais–Smale condition

A sequence un ∈ M is called a Palais–Smale sequence on M (PS in short) if
J(un) is bounded and ∇MJ(un) → 0. If J(un) → c the PS-sequence will be
called a PSc-sequence.

Definition 7.7 We say that J satisfies the (PS), respectively (PS)c, condi-
tion on M, if every PS-sequence, respectively PSc-sequence, has a converging
subsequence.

Remark 7.8
(a) If J satisfies (PS)c then every PSc-sequence converges (up to a

subsequence) to some u∗ and, by continuity, one has that J(u∗) = c and
∇MJ(u∗) = 0. In other words, u∗ is a critical point of J on M and c is a
critical level of J . In particular, the set of critical points at level c,
{z ∈ M : J(z) = c, ∇MJ(z) = 0} is compact.

(b) If J ∈ C1(Rn, R) is bounded from below and coercive, then (PS) holds.
Actually, from J(uj)→ c it follows that |uj| ≤ constant and the
Bolzano–Weierstrass theorem implies that uj converges, up to a
subsequence. On the other hand, if J ∈ C1(E, R) and E is infinite
dimensional, J might be bounded from below and coercive without
satisfying the (PS) condition. For example, letting g : R

+ �→ R denote a
smooth function such that g(s) = 0 if s ∈ [0, 2] and g(s) = s if s ≥ 3, the
functional J(u) = g(‖u‖) is bounded from below and coercive but (PS)c
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does not hold at level c = 0. To see this, notice that any sequence uj ∈ E
with ‖uj‖ = 1 is such that J(uj) = 0 and J ′(uj) = 0. If (PS)0 holds then
the unit sphere in E would be compact.

(c) It is possible to show that if J ∈ C1(E, R) is bounded from below, satisfies
the (PS) condition and the set of its critical points is bounded, then J is
coercive, see [116].

(d) The fact that in order to verify the (PS) condition one has to consider
sequences uj which satisfy both J(uj)→ c as well as J ′(uj)→ 0 turns out
to be an important advantage when one deals with elliptic BVP. See also
Remark 8.12 in the next chapter. �

The next lemma shows that if c is not a critical level, the (PS)c condition
provides a uniform bound from below for the gradient of J , avoiding a situation
like that in Figure 7.4.

Lemma 7.9 Suppose that c ∈ R is not a critical level for J ∈ C1(E, R) and
that (PS)c holds. Then there exist δ > 0 such that ‖∇MJ(u)‖ ≥ δ for all u ∈ M
with |J(u)− c| ≤ δ.

Proof. Arguing by contradiction, there exists a sequence un ∈ M such that
J(un) → c and ∇MJ(un) → 0. Since J satisfies (PS)c then (up to a sub-
sequence) un converges to a critical point u∗ of J with J(u∗) = c, namely c is
a critical level of J , contrary to the assumption. �

We are now ready to prove the deformation lemmas we were looking for. The
first one is the counterpart of Lemma 7.6.

Lemma 7.10 Suppose that c ∈ R is not a critical level for J on M and that
(PS)c holds. Then there exists δ > 0 and a deformation η in M such that
η(Mc+δ) ⊂ Mc−δ .

Proof. It suffices to apply Lemma 7.6 taking into account that if c is not a
critical level for J and (PS)c holds, then (7.4) follows from Lemma 7.9. �

Similarly, we also get the following result.

Lemma 7.11 Let a, b ∈ R, b > a, be such that J has no critical levels in the
interval [a, b] and satisfies (PS)c for all c ∈ [a, b]. Then there is a deformation
η in M such that η(Mb) ⊂ Ma.

Proof. We can either apply the previous lemma a finite number of times or else
we can argue directly as in Lemma 7.6. It suffices to notice that the fact that
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(PS)c holds for all c ∈ [a, b] and that J has no critical level in [a, b], imply
there exists δ > 0 such that ‖∇MJ(u)‖ ≥ δ for all u ∈ M with a ≤ J(u) ≤ b.
Then using the steepest descent flow α(T , u) with T = (b− a)/δ2, we deduce
as in (7.7) that J(a(T , u)) ≤ J(u)− δ2T ≤ b− δ2T = a. �

7.5 Existence of constrained minima

We are now in a position to state a result concerning the existence of constrained
extrema. Actually, the preceding discussion allows us to prove the following
abstract result.

Theorem 7.12 Let J ∈ C1,1(E, R), and let (MMM) hold. Moreover, suppose that
J is bounded from below on M and satisfies (PS)m where

m := inf
u∈M

J(u) > −∞.

Then the infimum m is achieved. Precisely, there exists z ∈ M such that J(z) = m
and ∇MJ(z) = 0.

Proof. Let ui ∈ M be a minimizing sequence: J(ui)→ m. We can assume that
‖∇MJ(ui)‖ → 0, otherwise an application of Lemma 7.6 would yield a positive
δ and a deformationη in M such thatη(Mm+δ) ⊂ Mm−δ , a contradiction because
Mm−δ is empty while Mc+δ is not. Therefore ui is a (PS)m sequence and (up to
a subsequence) ui converges to some z ∈ M. Obviously one has that J(z) = m
and ∇MJ(z) = 0. �

Remark 7.13 Completing Remark 7.5, we point out that the assumption that J
is of class C1,1 can be weakend and one can handle functionals J ∈ C1(E, R), see
also Remark 10.11. Moreover, the preceding proof shows that if J ∈ C1,1(M, R)

is bounded from below on M then there exists a minimizing sequence ui ∈ M
such that ‖∇MJ(ui)‖ → 0. These sequences, even if J is not smooth, have been
studied by I. Ekeland [92]. �

7.6 An application to a superlinear Dirichlet problem

Following [9], we will apply the preceding theorem to prove the existence of a
positive solution of a class of superlinear Dirichlet boundary value problem:{−
u(x) = f (u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.
(DDD)
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Here � is a bounded domain in R
n and f ∈ C2(R, R) satisfies the following

assumptions: there exist a1, a2 > 0 and p ∈ (1, (n+ 2)/(n− 2)), such that

|f (u)| ≤ a1 + a2|u|p, (7.8)

|uf ′(u)| ≤ a1 + a2|u|p, |u2f ′′(u)| ≤ a1 + a2|u|p. (7.9)

Moreover, assume that f (u) = uh(u), where

(h1) h is convex,
(h2) uh′(u) > 0, ∀ u �= 0,
(h3) h(0) = 0,
(h4) limu→+∞ h(u) = +∞.

For example, h(u) = |u|p−1, 1 < p < (n+ 2)/(n− 2) satisfies (h1)–(h4).
Remark that in such a case a nontrivial solution of (DDD) can be found, after
rescaling, looking for the min

∫
�
|u|p+1 dx on the sphere {u ∈ H1

0 (�) : ‖u‖ =
1}, see Example 6.5(iii). The following theorem shows that this result can
be extended to handle (possibly nonhomogeneous) nonlinearities like uh(u)
satisfying the preceding assumptions.

Theorem 7.14 Suppose that f ∈ C2(R, R) satisfies (7.8), (7.9) and (h1)–(h4).
Then (DDD) has a positive solution.

The proof will make use of the method of the natural constraint. First, some
notation is in order. We take E = H1

0 (�) with scalar product (u | v) = ∫
�
∇u ·

∇v dx and norm ‖u‖2 = (u | u). Furthermore, we set

F(u) =
∫ u

0
f (s) ds =

∫ 1

0
f (su)u ds,

	(u) =
∫
�

F(u(x)) dx =
∫ 1

0
ds

∫
�

u(x)f (su(x)) dx,

�(u) = (	′(u) | u) =
∫
�

u(x)f (u(x)) dx.

Since f satisfies (7.8) and (7.9), Theorem 1.8 implies that 	 ∈ C3(E, R) and
� ∈ C2(E, R). Moreover, 	 and � are weakly continuous, while 	′ and � ′
are compact.

The solutions of (DDD) are the critical points of

J(u) = 1
2‖u‖2 −	(u).

Let us set
G(u) = (J ′(u) | u) = ‖u‖2 −�(u)
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and
M = {u ∈ E \ {0} : ‖u‖2 = �(u)}.

Our first goal is to show that M is a natural constraint for J , namely that there
exists a (smooth) functional J̃ such that

∇MJ̃(u) = 0, u ∈ M ⇐⇒ J ′(u) = 0.

Once this is proved, we will check that J̃ achieves a minimum on M, giving
rise to a solution of (DDD).

First of all, the following lemma holds.

Lemma 7.15 G ∈ C2(E, R). Moreover,

(i) M �= ∅,
(ii) ∃ ρ > 0 such that ‖u‖ ≥ ρ, for all u ∈ M,
(iii) (G′(u) | u) < 0, for all u ∈ M.

Proof. The regularity of G immediately follows from fact that � ∈ C2(E, R).
To prove (i) we take any u ∈ E with u > 0, ‖u‖ = 1 and evaluate

G(tu) = t2 − t2
∫
�

u2h(tu) dx.

Using (h3) and (h4) we find

lim
t→0

G(tu)

t2
= 1, lim

t→+∞
G(tu)

t2
= −∞.

Hence there exists t = t(u) > 0 such that tu ∈ M.
From (h3) it follows that

(G′′(0)v | v) = 2‖v‖2 −
∫
�

f ′(0)v2 dx = 2‖v‖2,

and this implies that (ii) holds.
For u ∈ M one finds

(G′(u) | u) = 2‖u‖2 − (� ′(u) | u) = 2�(u)− (� ′(u) | u). (7.10)

One also has

2�(u)− (� ′(u) | u) = 2
∫
�

uf (u) dx −
[∫

�

uf (u) dx +
∫
�

u2f ′(u) dx

]
=
∫
�

u2h(u) dx −
∫
�

u2(h(u)+ uh′(u)) dx

= −
∫
�

u3h′(u) dx.

Since 0 �∈ M, using (h2) we infer that (iii) holds true. �
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Let us remark explicitly that from (iii) it follows that M is a C2 submanifold of
codimension one in E.

Next, let us now introduce the functional J̃ ∈ C2(E, R), defined by setting

J̃(u) = 1
2�(u)−	(u).

Let us point out that, since �(u) = ‖u‖2 on M, it follows that J̃(u) = J(u) for
all u ∈ M. But it is more convenient to use J̃ instead of J because J̃ shares the
same properties as � and 	, namely J̃ is weakly continuous and J̃ ′ is compact.

Lemma 7.16 If z ∈ M is a constrained critical point of J̃ on M, then z is a
nontrivial critical point of J.

Proof. If z ∈ M is a constrained critical point of J̃ on M, then z �= 0 and there
exists λ ∈ R such that

J̃ ′(z) = λG′(z).
Taking the scalar product with z we get

(̃J ′(z) | z) = λ(G′(z) | z). (7.11)

On the other hand, we have (̃J ′(z) | z) = 1
2 (�

′(z) | z)−(	′(z) | z) = 1
2 (�

′(z) |
z)−�(z) and hence, using (7.10) we deduce

(̃J ′(z) | z) = − 1
2 (G

′(z) | z).

From this and (7.11) we infer that − 1
2 (G

′(z) | z) = λ(G′(z) | z) and since
(G′(z) | z) < 0, see Lemma 7.15(iii), then λ = − 1

2 . Finally, we have that
J̃ ′(z) = 1

2�
′(z) − 	′(z), and G′(z) = 2z − � ′(z). Thus, the equation J̃ ′(z) =

− 1
2 G′(z) becomes

1
2�

′(z)−	′(z) = −z + 1
2�

′(z).

Therefore z = 	′(z), namely J ′(z) = 0. �

It remains to show that J̃ achieves the minimum on M. In view of this, let us
first prove that J̃ is bounded from below on M.

Lemma 7.17 For all u ∈ M one has that J̃(u) ≥ 1
6‖u‖2.

Proof. With easy calculations we get

J̃(u) = 1

2

∫
�

uf (u) dx −
∫ 1

0
ds

∫
�

u(x)f (su(x)) dx

=
∫ 1

0
ds

∫
�

[suf (u)− uf (su)] dx =
∫ 1

0
ds

∫
�

su2[h(u)− h(su)] dx.
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Since h is convex, then h(u)− h(su) ≥ (1− s)h(u), 0 ≤ s ≤ 1, and hence

J̃(u) ≥
∫ 1

0
ds

∫
�

s(1− s)u2h(u) dx = 1

6

∫
�

u2h(u) dx = 1

6
‖u‖2. �

In order to prove that (PS)c holds for every c > 0, we collect some properties
of (PS)c sequences for J̃ on M.

Lemma 7.18 Let ui ∈ M be a (PS)c sequence for J̃ on M. Then

(i) ‖ui‖ is bounded and there exists u �= 0 such that, up to a subsequence,
ui ⇀ u;

(ii) there exists k > 0 (depending on c), such that ‖̃J ′(ui)‖ ≥ k.

Proof. Since J̃(ui) → c > 0 and ui ∈ M, Lemma 7.17 implies that ‖ui‖ ≤
constant and, up to a subsequence, ui ⇀ u. Moreover, one has that ‖ui‖2 =
�(ui). Using Lemma 7.15(ii), we get �(ui) ≥ ρ2 > 0. Passing to the limit we
find �(u) ≥ ρ2 > 0 and thus u �= 0, proving (i).

Arguing by contradiction, suppose that J̃ ′(ui)→ 0. Since J̃ ′ is compact, we
infer that J̃ ′(u) = lim J̃ ′(ui) = 0. This implies

0 = (̃J ′(u) | u) = 1

2
(� ′(u) | u)−�(u) = 1

2

∫
�

u3h′(u) dx > 0,

a contradiction, and (ii) follows. �

Lemma 7.19 The functional J̃ satisfies (PS)c on M, for every c > 0.

Proof. We have to show that any sequence ui ∈ M, for which

(a) J̃(ui)→ c > 0,
(b) ∇MJ̃(ui)→ 0,

has a converging subsequence. By Lemma 7.18(i) we infer that, up to a
subsequence ui ⇀ u. One has that

∇MJ̃(ui) = J̃ ′(ui)− αiG
′(ui), where αi = (̃J ′(ui) | G′(ui))

‖G′(ui)‖2
.

Since ‖G′(ui)‖ ≤ constant and ‖̃J ′(ui)‖ ≥ k > 0, see Lemma 7.18(ii), we
deduce that there exists α∗ > 0 such that |αi| ≥ α∗ for i � 1. Then we can
write, for i large,

G′(ui) = 1

αi
[̃J ′(ui)− ∇MJ̃(ui)],

namely

2ui = � ′(ui)+ 1

αi
[̃J ′(ui)− ∇MJ̃(ui)].
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Since � ′, 	′ are compact, ∇MJ̃(ui) → 0 (see (b) above) and |αi| ≥ α∗, we
deduce that, up to a subsequence, ui converges strongly. �

Proof of Theorem 7.14. Since J̃ is bounded from below on M and satisfies the
(PS)c condition for all c > 0, we can apply Theorem 7.12 yielding a z ∈ M
such that ∇MJ̃(z) = 0. By Lemma 7.16 such a z is a nontrivial solution of
(DDD). To find a positive solution, it suffices to substitute f with its positive part
f+. It is easy to check that all the preceding arguments can be carried out with
small modifications, yielding a z ∈ E, z �= 0, such that −
z = f+(z). By the
maximum principle, z > 0. �
Remark 7.20 Since J̃|M = J|M , and J̃(z) = minM J̃ , then J(z) ≤ J(u) for
any u ∈ M. In particular, since all the possible nontrivial critical points of J
belong to M, we infer that J(z) ≤ J(z′), for all nontrivial critical points z′ of J .
Moreover, the solution z found above is not a local minimum of J . Actually,

J ′′(z)[z, z] = ‖z‖2 −
∫
�

f ′(z)z2 dx

=
∫
�

[f (z)z − f ′(z)z2] dx = −
∫
�

z3h′(z) dx < 0. �
For other results that use the Nehari manifold, see for example [81].

7.7 Exercises

(i) Prove the result claimed in Remark 5.10.
(ii) (See Exercise 4.5(iv) in Chapter 4.) Consider the problem{−
u(x) = λu− u3 x ∈ �

u(x) = 0 x ∈ ∂�,

and prove that it has exactly three solutions for all λ1 < λ ≤ λ2. [Hint:
show that any nontrivial solution which does not change sign in � has
Leray–Schauder index equal to 1.]

(iii) We use the notation introduced in Section 7.2. Suppose that J is bounded
below on M and that (PS) holds. Let α(t, u) denote the steepest descent
flow of J on M. Prove that limt→+∞ α(t, u) exists and is a critical point
of J on M. Show an example in which this is not true when the (PS) fails.

(iv) Same notation as in the preceding exercise. In addition, suppose that J is
even and M is symmetric, namely u ∈ M ⇐⇒ −u ∈ M. Prove that
u �→ α(t, u) is odd.

(v) More in general, suppose there is a group G acting on E through
isometries such that J(gu) = J(u) for all g ∈ G and u ∈ E. Moreover, let
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M be such that gu ∈ M for all g ∈ G and u ∈ E. Prove that the steepest
descent flow α satisfies α(t, gu) = gα(t, u) for all g ∈ G and u ∈ E.

(vi) Completing Exercise 6-(i), prove that for λ > λ1, Jλ has a minimum on
the natural constraint Mλ. Compare this result with the one discussed in
Example 5.10.

(vii) Let E = W1,2(R) and define J : E �→ R by setting
J(u) = 1

2

∫
R
(|u′|2 + u2)dx − 1

4

∫
R

u4dx. Show that (PS) does not hold.
[Hint: take, for example, the level c = 4/3.]
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Saddle points and min-max methods

In this chapter we will discuss the existence of stationary points of a functional J
on a Hilbert space E different from minima or maxima, which are found
by means of appropriate min-max procedures. The results are particularly
important for functionals that are not bounded from below, nor from above.

Notation 8.1 In this and in the subsequent Chapters 9 and 10, the Sobolev space
E = H1

0 (�) will be endowed with the scalar product (u | v) = ∫
�
(∇u · ∇v) dx

and norm ‖u‖2 = ∫
�
|∇u|2 dx.

8.1 The mountain pass theorem

We have seen in the preceding chapter that the Dirichlet BVP{−
u = f (x, u), x ∈ �

u = 0, x ∈ ∂�,
(D)

has a positive solution z provided f ∼ |u|p−1u, 1 < p < (n + 2)/(n − 2). We
have already seen that this is the case when f = |u|p−1u (see Example 6.5(iii)) or
when f (u) = uh(u) and h satisfies suitable assumptions, including a convexity
condition (see Theorem 7.14). A natural question is to establish whether a
solution exists making only assumptions on the behaviour of f (u) at u = 0
and at infinity. For this purpose, it is convenient to consider the corresponding
functional

J(u) = 1
2 ‖u‖2 −

∫
�

F(u) dx, F(u) =
∫ u

0
f (x, s) ds u ∈ E = H1

0 (�).

The geometry of this functional is easily understood. If f ′(0) = 0 then (J ′′(0)v |
v) = ‖v‖2 and hence J has a proper local minimum at u = 0. Moreover, taking
a fixed u ∈ E \ {0} and assuming that F(u) ∼ |u|p+1 (1 < p < (n+2)/(n−2))
as |u| → +∞, one readily finds that

lim
t→+∞ J(tu) = lim

t→+∞

[
t2

2
‖u‖2 −

∫
�

F(tu) dx

]
= −∞.

116
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tu tu

J(tu)

Figure 8.1 Behaviour of J(tu), t > 0.

In particular, J is not bounded from below on E. Let us also remark that supE J =
+∞. Actually, one can easily find a sequence ui such that ‖ui‖ → +∞ while
| ∫

�
F(ui) dx| ≤ constant, so that J(ui)→+∞.

Let us make some more comments on the critical level J(z). Consider the
model case in which f (u) = |u|p−1u, with 1 < p < (n+ 2)/(n− 2). For each
u ∈ E \ {0} we have that

J(tu) = 1

2
t2‖u‖2 − 1

p+ 1
|t|p+1

∫
�

|u|p+1 dx.

Therefore, the real valued map t �→ J(tu) achieves its maximum at a unique
t = tu > 0. Let us remark that this tu is such that tuu ∈ M, where M =
{u ∈ E \ {0} : (J ′(u) | u) = 0} denotes the natural constraint introduced in
Section 7.6. Since J(z) = minM J , see Remark 7.20, then

J(z) = min
u∈E\{0}max

t∈R

J(tu).

The preceding discussion suggests a min-max procedure that will allow us to
find critical points of a wide class of functionals J , which can be found at a level
of mountain pass, namely the lowest level among all the paths leaving the well
around a local minimum. In the sequel, to fix the notation, we will suppose that
this local minimum arises at u = 0 and that J(0) = 0.

More precisely, we consider a class of functionals with the following
geometric features:

(MP-1) J ∈ C1(E, R) J(0) = 0 and ∃r, ρ > 0 such that J(u) ≥ ρ for all
u ∈ Sr = {u ∈ E : ‖u‖ = r};

(MP-2) ∃e ∈ E with ‖e‖ > r such that J(e) ≤ 0.



118 Saddle points and min-max methods

It is worth pointing out that J might be unbounded from below (this actually is
the case in most of the applications): what we require is only that it is bounded
below on Sr .
Let � denote the class of all paths joining u = 0 and u = e,

� = {γ ∈ C([0, 1], E) : γ (0) = 0, γ (1) = e}. (8.1)

Of course, � �= ∅ because γ (t) = te belongs to �. We set

c = inf
γ∈� max

t∈[0,1] J(γ (t)). (8.2)

Roughly, the level c is just the minimal level one has to reach to get out from
the well around u = 0. Precisely, since any path γ ∈ � crosses Sr then (MP-1)
implies

c ≥ min
u∈Sr

J(u) ≥ ρ > 0. (8.3)

However, elementary examples in finite dimension (see Remark 8.6 later on)
show that the level c might not be critical for J because, roughly speaking, the
points where the maxima in (8.2) are achieved are not necessarily bounded. To
overcome this problem, we will use the Palais–Smale compactness condition
(PS) introduced in Section 7.4.

Theorem 8.2 (Mountain pass) [21] Suppose that J ∈ C1(E, R) satisfies
(MP-1) and (MP-2). Let c be defined as in (8.2) and suppose that (PS)c holds.
Then c is a positive critical level for J, namely there exists z ∈ E such that
J(z) = c and J ′(z) = 0. In particular, z �= 0, e.

The level c given by (8.3) is called the mountain pass (MP in short) critical
level. Points on Zc = {z ∈ E : J ′(z) = 0, J(z) = c} will be called mountain
pass (MP in short) critical points.

Remark 8.3 For future reference, let us point out that the assumptions (MP-1)
and (MP-2) can be substituted by

(MP-1) J(0) = 0 and ∃ r, ρ > 0 such that J(u) > 0 for all u ∈ Br \ {0}, and
J(u) ≥ ρ for all u ∈ Sr ;

(MP-2) ∃ e ∈ E such that J(e) ≤ 0. �

For the proof we need a deformation lemma which is slightly different from
Lemma 7.10. We denote by Ja = {u ∈ E : J(u) ≤ a}, the sublevel of J on E.

Lemma 8.4 Let J ∈ C1(E, R). Suppose c ∈ R is not a critical level of J,
namely that Zc = ∅, and that (PS)c holds.
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Then there exists δ > 0, with c− 2δ > 0, and a deformation η in E such that

(i) η(Jc+δ) ⊂ Jc−δ;
(ii) η(u) = u for all u such that J(u) ≤ c− 2δ.

Proof. We will divide the proof into two parts. In the former we will assume
that J ∈ C1,1(E, R). In the latter we will drop this restriction by introducing a
pseudogradient vector field.

Step 1. The case J ∈ C1,1(E, R). Since Zc = ∅ and (PS)c holds then Lemma 7.9
yields the existence of δ > 0 such that

‖J ′(u)‖ ≥ δ, ∀ u ∈ E : |J(u)− c| ≤ δ.

Without loss of generality we can assume that c − 2δ > 0 (recall that c > 0,
see (8.3)). Let b ∈ C0,1(R+, R+) satisfy

b(ξ) = 1, for ξ ∈ [0, 1],

b(ξ) = t−1, for all ξ ≥ 1.

Moreover, we set

A = {u ∈ E : c− δ ≤ J(u) ≤ c+ δ},
B = {u ∈ E : J(u) ≤ c− 2δ} ∪ {u : J(u) ≥ c+ 2δ},

and define g ∈ C0,1(E, R) by setting

g(u) = dist(u, B)

dist(u, B)+ dist(u, A)
.

Let us remark that 0 ≤ g(u) ≤ 1 and

g(u) =
{

0 ∀ u ∈ B
1 ∀ u ∈ A.

Define W(u) = −h(u)J ′(u), where h(u) = g(u)b(‖J ′(u)‖) ≥ 0, and consider
the steepest descent flow α, see Section 7.1. From the definition of g and b it
follows that ‖W(u)‖ ≤ 1 and hence we can use Lemma 7.3 to infer that α(t, u)
is globally defined for all t ≥ 0. Take T = 2/δ and set η(u) = α(T , u). Property
(i) immediately follows as in Lemma 7.10. For the reader’s convenience, let
us repeat the outline of the argument. Let u ∈ Jc+δ . If J(η(u)) > c − δ, then
J(α(t, u)) ∈ (c− δ, c+ δ] and hence h(α(t, u)) = b(‖J ′(α(t, u))‖). Then

J(η(u))− J(u) = −
∫ T

0
b(‖J ′(α(t, u))‖)‖J ′(α(t, u)‖2 dt.
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Since ‖J ′(α(t, u)‖ ≥ δ and b(ξ)ξ2 ≥ δ2, we infer

J(η(u)) ≤ J(u)− Tδ2 ≤ c− δ.

Finally property (ii) follows directly because g(u) ≡ 0, and hence W(u) ≡ 0
on {u ∈ E : J(u) ≤ c− 2δ}. This completes the proof of step 1.

Step 2. The case J ∈ C1(E, R). In this case we cannot use directly the steep-
est descent flow of J ′. Following R. Palais [141], we introduce the notion of
pseudogradient vector field (PGVF in short). Let E0 = {u ∈ E : J ′(u) �= 0}. A
PGVF for J on E0 is a map X ∈ C1,1(E0, E) such that

‖X(u)‖ ≤ 2‖J ′(u)‖, ∀ u ∈ E0, (8.4)

(J ′(u) | X(u)) ≥ ‖J ′(u)‖2, ∀ u ∈ E0. (8.5)

It is possible to show that if J ∈ C1(E, R) then there exists a PGVF for J on E0.
The proof of this result is technical and is postponed to the end of this section.
Let us show how we can use the PGVF to find a deformation η satisfying (i) and
(ii). Let X be the PGVF on E0 and set W̃(u) = −g(u)b(‖J ′(u)‖)X(u). Since
E0 contains the set E \ B and g(u) ≡ 0 for u ∈ B, we can assume that W̃ is
defined on E. Of course W̃ ∈ C0,1(E, E). Consider the flow α defined as the
solution of the Cauchy problem α′ = W̃(α), α(0) = u. Since W̃ ≡ 0 on B, and
(from (8.4))

‖W̃(u)‖ ≤ b(‖J ′(u)‖)‖X(u)‖ ≤ 2b(‖J ′(u)‖)‖J ′(u)‖ ≤ 2, ∀ u ∈ E \ B,

we infer that α(t, u) is globally defined for all t ≥ 0, as before. Moreover, one
has that

d

dt
J(α(t, u)) = (J ′(α(t, u)) | α′(t, u))

= −g(α(t, u))b(‖J ′(α(t, u))‖)(J ′(α(t, u)) | X(α(t, u))) ≤ 0,

by (8.5). This shows that t �→ J(α(t, u)) is nonincreasing. Finally, take once
more T = 2/δ and set η(u) = α(T , u). As before, if J(η(u)) > c − δ one
has that

J(η(u))− J(u) = −
∫ T

0
b(‖J ′(α(t, u))‖)(J ′(α(t, u)) | X(α(t, u))) dt.

Using (8.5), we get

J(η(u))− J(u) ≤ −
∫ T

0
b(‖J ′(α(t, u))‖ )‖J ′(α(t, u))‖2 dt,

and the conclusion follows as in step 1. This completes the proof of the
lemma. �
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Remark 8.5 For future reference let us point out that the preceding proof
provides a deformation η satisfying (i) for some δ > 0 and

(ii′) η(u) = u for all u such that J(u) ≤ β, for any β < c.

Of course, we will take δ such that c− 2δ > β. �

Proof of Theorem 8.1. By contradiction, let c be a noncritical level and let η be
the deformation found in the preceding lemma. According to the definition of
c there exists γ ∈ � such that

max
t∈[0,1] J(γ (t)) ≤ c+ δ.

We claim that

(∗) η ◦ γ ∈ �, ∀ γ ∈ �.

Actually, one has that η ◦ γ ∈ C([0, 1], E). Moreover, since both 0, e ∈ J0 and
η(u) = u on J0 (see (ii) above) then

• η ◦ γ (0) = η(0) = 0,
• η ◦ γ (1) = η(e) = e.

This proves (∗). On the other hand, from (i) it follows that

max
t∈[0,1] J(η ◦ γ (t)) ≤ c− δ.

This is in contradiction with the fact that c is the infimum on � of
maxt∈[0,1] J(γ (t)). The proof of the theorem is complete. �

Remark 8.6 The following elementary example (due to Brezis and Nirenberg)
shows that the geometric assumptions (MP-1) and (MP-2) alone (i.e. without
any compactness condition) do not suffice for the existence of a MP critical
point. Consider E = R

2 and J(x, y) = x2 + (1− x)3y2. The graph of the level
curves of J is reported in Figure 8.2.
A straight calculation shows that (MP-1) holds with r = 1

2 and ρ = 1
32 ;

moreover, taking e = (2, 2) one has that J(e) = 0 and hence (MP-2) holds. But
the only critical point of J is (0, 0). See also Exercise 8.5(iv). �

In order to apply Theorem 8.2 one has to check that J satisfies

• a geometric property, namely the assumptions (MP-1) and (MP-2),
• the (PS) condition at level c.

Fortunately, both are quite general conditions and so the MP theorem applies
to a large variety of equations. Actually, many variational problems fit in the
abstract frame of the MP theorem.
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Figure 8.2 Level curves of the function J(x, y) = x2 + (1− x)3y2.

Remark 8.7
(a) It is clear that in order to prove the mountain pass theorem (as well as

Theorem 7.12) it suffices to show that if uj ∈ E is such that J(uj)→ c and
J ′(uj)→ 0, then Zc �= ∅.

(b) A different proof of the MP theorem and some generalizations, using the
Ekeland ε-variational principle, can be found in [93, Chapter IV,
Section 1]. �

8.1.1 Existence of pseudogradients

Here we prove the existence of a PGVF for J on E0. Given u ∈ E0, from
J ′(u) �= 0 and the definition of ‖J ′(u)‖ = sup‖v‖=1(J

′(u) | v), it follows that
there exists w = w(u) ∈ E such that

‖w‖ = 1, (J ′(u) | w) > 2
3‖J ′(u)‖. (8.6)

Set X̃(u) = 3
2‖J ′(u)‖w(u). Then, using again the fact that u ∈ E0, one finds

‖X̃(u)‖ = 3
2‖J ′(u)‖ < 2‖J ′(u)‖.

Moreover, using (8.6),

(J ′(u) | X̃(u)) = 3
2‖J ′(u)‖ (J ′(u) | w) > ‖J ′(u)‖.

Since J ′ is continuous, there exists a ball Br(u) with radius r = r(u) > 0
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such that

‖X̃(u)‖ < 2‖J ′(u)‖, ∀ z ∈ Br(u), (8.7)

(J ′(u) | X̃(u)) > ‖J ′(u)‖, ∀ z ∈ Br(u). (8.8)

Of course, ∪u∈E0 Br(u) ⊇ E0 and we can take a locally finite covering Ui :=
Bri(ui). For u ∈ E0 we set di(u) = dist(u, E \ Ui), X̃i = X̃(ui) and

X(u) =
∑

i

di(u)∑
j dj(u)

X̃i.

One has that X is of class C1,1. Moreover, using (8.7) and (8.8), a direct
calculation shows that X verifies (8.4) and (8.5) and hence it is a PGVF for
J on E0.

8.2 Applications

The MP theorem is well suited to semilinear elliptic boundary value problems.
We will show below a couple of such examples.

Our first application of the MP theorem is to find positive solutions of the
following superlinear BVP{−
u = f (x, u) x ∈ �

u = 0 x ∈ ∂�,
(D)

where f : �×R → R behaves like λu+ up as u ↘ 0 and as u →+∞. Since
we are interested in positive solutions of (D), we can assume without loss of
generality that f (x, u) ≡ 0 for all u < 0. We will suppose that f ∈ Fp with
1 < p < (n+ 2)/(n− 2), and that:

lim
u→0+

f (x, u)/u = λ > 0, for a.e. x ∈ �; (8.9)

∃ r > 0, θ ∈ (0, 1
2 ) : 0 < F(x, u) ≤ θuf (x, u) ∀ x ∈ �, u ≥ r. (8.10)

Here, as usual, F(x, u) = ∫ u
0 f (x, s) ds.

Remark 8.8 If f (u) = up, or else if f (u) = up1 + · · · + upk with 1 < pi <

(n+ 2)/(n− 2) for all i = 1, . . . , k, condition (8.10) is obviously satisfied with
θ = 1/(p+ 1), respectively θ = 1/(min pi + 1). In general, integrating (8.10)
it follows that

∃ c > 0 such that F(u) ≥ c · u1/θ ∀ u ≥ r. (8.11)

In this sense we say that f is superlinear. �
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As usual, we take E = H1
0 (�) and set 	(u) = ∫

�
F(x, u) dx. With this notation,

solutions of (D) are the critical points of the functional

J(u) = 1

2
‖u‖2 −	(u).

We first prove that J has the MP geometry.

Lemma 8.9 If (8.9) holds with λ < λ1, then J satisfies (MP-1).

Proof. Fix ε = 1
2 (λ1 − λ). Using (8.9) and the fact that f ∈ Fp, there exists

A ∈ L2(�) such that |F(x, u)| ≤ 1
2 (λ+ε) u2+A|u|p+1. From this it follows that

	(u) ≤ λ
2 (λ+ ε)

∫
�

|u|2 dx +
∫
�

A|u|p+1 dx.

Take r and s = r/(r − 1) such that r ≥ 2 and s(p+ 1) ≤ 2∗. Then the Hölder
inequality implies∫

�

A|u|p+1 dx ≤
(∫

�

Ar dx

)1/r (∫
�

|u|s(p+1) dx

)1/s

≤ c1

(∫
�

|u|s(p+1) dx

)1/s

.

Using this, the Poincaré inequality and the Sobolev embedding theorem we find

|	(u)| ≤ λ+ ε

2λ1
‖u‖2 + c2‖u‖p+1,

which implies

J(u) ≥
(

1

2
− λ+ ε

2λ1

)
‖u‖2 − c2‖u‖p+1 = λ1 − λ

4λ1
‖u‖2 − c2‖u‖p+1.

This immediately shows that (MP-1) holds provided λ < λ1. �

Lemma 8.10 Under the above assumptions, J satisfies (MP-2).

Proof. Fix any e ∈ E with e(x) > 0 in �. From (8.11) it follows that

J(te) = 1
2 t2 ‖e‖2 −

∫
�

F(x, te) dx

≤ 1
2 t2 ‖e‖2 − a3 t1/θ

∫
�

|e|1/θ − a4.

Since 1/θ > 2 we infer that limt→+∞ J(te) = −∞. �

It remains to show that (PS)c holds (actually, we will show that, more in general,
(PS) holds). For this, we first prove that
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(∗) every (PS) sequence is bounded.

Let un be a (PS) sequence. From (8.10) we deduce

	(un) =
∫

u(x)≤r
F(x, u) dx +

∫
u(x)≥r

F(x, u) dx

≤ a5 + θ

∫
u(x)≥r

f (x, u)u dx

≤ a6 + θ

∫
�

f (x, u)u dx. (8.12)

Since J(un) ≤ a7 it follows that

‖un‖2 ≤ 2a7 + 2	(un)

and hence (8.12) implies

‖un‖2 ≤ a8 + 2θ
∫
�

f (x, u)u dx. (8.13)

From ∣∣∣∣‖u‖2 −
∫
�

f (x, u)u dx

∣∣∣∣ = |(J ′(un) | un)| ≤ ‖J ′(un)‖‖un‖

it follows that ∫
�

f (x, u)u dx ≤ ‖u‖2 + ‖J ′(un)‖‖un‖. (8.14)

Combining (8.13) and (8.14) we have

‖un‖2 ≤ a8 + 2θ‖u‖2 + 2θ‖J ′(un)‖‖un‖.
Since 2θ < 1 this implies ‖un‖ ≤ constant, proving (∗). It is now standard to
prove that (PS) holds: up to subsequences, un ⇀ u as well as 	′(un)→ 	′(u)
and from J ′(un) = un−	′(un) it follows that un = J ′(un)+	′(un) converges
strongly to 	′(u).

From the MP Theorem it follows that (D) has a non-trivial solution u. Since
f (u) ≡ 0 for u < 0 it follows that u ≥ 0 in �. Finally, the assumptions made
on f allow us to find δ > 0 such that f (u) + δu > 0 for all u > 0. Then the
maximum principle applied to−
u+ δu = f (u)+ δu implies that u > 0 in �.

In conclusion we have the following theorem.

Theorem 8.11 Let f ∈ Fp with 1 < p < (n + 2)/(n − 2), satisfy (8.9) with
λ < λ1 and (8.10). Then (D) has a positive solution.
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Remark 8.12 The preceding proof highlights why the (PS) condition is quite
appropriate for applications to semilinear BVP in the case in which there is no a
priori bound. The reason is that in the (PS) condition we do not limit ourselves
to consider sequences such that J ′(un) → 0, but we also require that J(un) is
bounded. It is just the combination of the two properties that allows us to show
that the sequence un is bounded. For example, J(u) = 1

2‖un‖2 − ∫
�
|u|4 dx,

u ∈ H1
0 (�), has an unbounded sequence of critical points um, see Theorem 10.23

and Remark 10.24, such that J(um)→+∞. On the other hand, the (PS) holds,
as we have seen before. �

Remark 8.13 As we will see in Remark A1.11 one can give another proof of
Theorem 8.11 (under slightly different assumptions on f ) by using bifurcation
arguments jointly with some a priori estimates for positive solutions. �

Let us recall that in [2] the existence of positive solutions of BVP such as{−
u = λu+ b(x)f (u) in � ⊂ R
n

u = 0 on ∂�,
(8.15)

when b has a nontrivial positive and a negative part, has been studied. Roughly,
suppose that

f (u) ∼ |u|q−1u as u → 0, 1 < q <
n+ 2

n− 2

f (u) ∼ |u|p−1u as |u| → ∞, 1 < p <
n+ 2

n− 2

|f (u)u− pF(u)| ≤ c1|u|2 + c2 where F ′(u) = f (u),

and ∫
�

b(x)ϕq−1
1 (x) dx < 0, (8.16)

where ϕ1 denotes the positive, normalized eigenfunction associated to λ1. Then
there exists � > λ1 such that (see Figure 8.3)

(a) for all λ ∈ (λ1,�), (8.15) has at least two positive solutions;
(b) for λ ≤ λ1 and λ = �, (8.15) has at least a positive solution;
(c) for λ ≥ �, (8.15) has no positive solution.

The reader should notice that condition (8.16) implies that the branch C
bifurcating from λ1 is supercritical (see Remark 2.9 (b)).
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�1 �Λ0

Figure 8.3 Bifurcation diagram in the case of problem (8.15).

We conclude this section by discussing an application to the following model
problem: 

−
u = µ [us − up] x ∈ �

u > 0 x ∈ �

u = 0 x ∈ ∂�,
(8.17)

with 1 < s < p. As in Example 5.11, we consider

f (x, u) =


0 if u ≤ 0
us − up if 0 < u < 1
0 if u ≥ 1.

(8.18)

By the maximum principle, it follows that solutions of−
u = µ f (x, u) x ∈ �

u = 0 x ∈ ∂�,
(8.19)

satisfy 0 ≤ u(x) ≤ 1 and hence solve (8.17). Solutions of (8.17) are critical
points of

Jµ(u) = 1
2‖u‖2 − µ

∫
�

F(x, u) dx, u ∈ E = H1
0 (�), (8.20)

where F(x, u) = ∫ u
0 f (x, s) ds. Since f (u)/u → 0 as u → 0+, it follows

that Jµ satisfies (MP-1). It is also easy to check that Jµ is bounded from
below and coercive and the latter property readily implies that (PS) holds.
Moreover, fixing any smooth e ∈ E, e(x) > 0, from te(x) < 1 for t � 1,
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u

z

z

J�(u)

Figure 8.4 Behaviour of Jµ for µ > µ.

we get

Jµ(t e) = 1

2
t2‖e‖2 − µ

[
1

s+ 1
ts+1‖e‖s+1

Ls+1 − 1

p+ 1
t p+1‖e‖p+1

Lp+1

]
.

Since (1 <) s < p we infer that there exists t∗ > 0 sufficiently small and µ > 0
such that Jµ(t∗ e) < 0 for all µ > µ. As a first consequence, we infer that
min Jµ < 0 for µ > µ and hence a first solution z > 0 with Jµ(z) < 0 can be
found by taking the minimum of Jµ on E. Moreover, for µ > µ we can also
apply the mountain pass theorem yielding a second positive solution z such that
Jµ(z) > 0.

The preceding arguments can be carried out in greater generality to prove
the following.

Theorem 8.14 Suppose that f : � × R
+ �→ R is locally Hölder continuous,

f (x, 0) = 0, and that f satisfies:

(a1) limu→0+ f (x, u)/u = 0, uniformly with respect to x ∈ �,
(a2) f (x, u) > 0 for u > 0 in a deleted neighbourhood of u = 0,
(a3) there exists u > 0 such that f (x, u) < 0 for all x ∈ �.

Then there exists µ > 0 such that{−
u = µ f (x, u) x ∈ �

u = 0 x ∈ ∂�,
(8.21)

has a pair of positive solutions z, z.

The details are left to the reader.
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�N
N C

h(N)

Figure 8.5

8.3 Linking theorems

The MP theorem turns out to be a particular case of a more general result.
Roughly, suppose that J ∈ C1(E, R) and let C be a class of subsets of A ⊂ E
such that

• C �= ∅,
• c = inf A∈C supu∈A J(u) is finite,
• if η denotes a deformation obtained through the steepest descent flow of J

(or a PGVF of J), then η(A) ∈ C for all A ∈ C.

Then c is a critical level of J , provided (PS)c holds.
To construct such a class, let us give the following definition. Let

• N be a manifold with boundary ∂N ,
• C be a subset of E,
• H = {h ∈ C(N , E) : h(u) = u, ∀ u ∈ ∂N}.

Definition 8.15 We say that ∂N and C link if

C ∩ h(N) �= ∅, ∀ h ∈ H.

In other words, ∂N and C link if C meets every continuous surface spanned by
∂N , see Figure 8.5. To illustrate the preceding definition some examples are in
order.

Example 8.16 The case covered by the MPtheorem fits in this setting.Actually,
let C be the sphere Sr = {u ∈ E : ‖u‖ = r} and let ∂N = {0, e}, with e ∈ E.
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0

(a)

(b)

e u0 u1

Sr

C

Figure 8.6

Here the manifold N can be taken as the segment [0, e] = {u = te : 0 ≤ t ≤ 1}
and H = {h ∈ C([0, e], E) : h(0) = 0, h(e) = e} is nothing but the class
of paths � introduced in the preceding section. It is clear that ∂N and C link
whenever ‖e‖ > r. See Figure 8.6(a). �

Example 8.17 More in general, let C be a manifold of codimension one in E and
suppose that u0, u1 are points of E \ C belonging to two distinct connec-
ted components of E \ C. Taking ∂N = {u0, u1}, N = [u0, u1] and letting
H be the class of paths joining u0 and u1, one has that ∂N and C link. See
Figure 8.6(b). �

Example 8.18 Let E = V ⊕W , where V , W are orthogonal closed subspaces
and dim(V) = k < +∞. Given e ∈ W and R > 0 we consider the k + 1
dimensional manifold with boundary

N = {u = v + se : v ∈ V , ‖v‖ ≤ R, s ∈ [0, 1]}.
Let C = {w ∈ W : ‖w‖ = r} be the sphere of radius r on W , see Figure 8.7.
We claim that ∂N and C link provided ‖e‖ > r.

To prove this fact we will use the topological degree. We have to show that,
for every map h ∈ C(N , E) such that h(u) = u for every u ∈ ∂N , there exists
u∗ ∈ N such that ‖h(u∗)‖ = r. Let us identify N with the set {u = (v, s) ∈
V×[0, 1] : ‖v‖ ≤ R} and let P : N �→ V denote the projection onto V . Consider
the map h̃ ∈ C(N , V × R) defined by setting

h̃(v, s) = (Ph(u), ‖h(u)− Ph(u)‖ − r).
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Since for (v, s) ∈ ∂N we have that h(u) = u and Ph(u) = v, then

h̃(v, s) = (v, s‖e‖ − r), ∀ (v, s) ∈ ∂N .

Since ‖e‖ > r, it follows that h̃(v, s) �= (0, 0), ∀ (v, s) ∈ ∂N . In particular,
it makes sense to consider the topological degree deg(̃h, N0, 0), where N0 is
the interior of N and 0 := (0, 0) is the origin in V × R . Moreover, by
the properties of the degree, see Theorem 3.2, deg(̃h, N0, 0) is equal to the
degree of any continuous g ∈ C(N , V × R) which coincides with h̃ on ∂N .
Taking, for example, g(v, s) = (v, s‖e‖ − r) and using again the fact that
‖e‖ > r, we infer that deg(̃h, N0, 0) = deg(g, N , 0) = 1. By the solu-
tion property of the degree, there exists u∗ ∈ N such that h̃(u∗) = (0, 0),
namely {

Ph(u∗) = 0,

‖h(u∗)− Ph(u∗)‖ = r.

Thus one finds that ‖h(u∗)‖ = r, as required. �

Example 8.19 As before suppose that E = V ⊕ W , where V , W are closed
subspaces and dim(V) = k < +∞. Let C = W and ∂N = {v ∈ V : ‖v‖ = r},
see Figure 8.8. Here N is the ball of radius r in V and the sets h(N), h ∈ H, are
the k dimensional surfaces spanned by ∂N , the sphere of radius r in V . Using
arguments similar to those of Example 8.18, one can show that ∂N and C link.
The details are left to the reader. �
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Figure 8.8

8.3.1 Linking and critical points

Let J ∈ C1(E, R) and let N , C be two subsets of E such that ∂N and C link.
We will assume that

(L-1) J is bounded from below on C

ρ := inf
u∈C

J(u) > −∞,

(L-2) ρ > β := supu∈∂N J(u).

Remark 8.20 In the case discussed in Example 8.16 related to the MP theorem,
(L-1) and (L-2) are nothing but the assumptions (MP-1) and (MP-2) of the
preceding section (where sup∂N J(u) = 0). �

Let us set

c = inf
h∈H

sup
u∈N

J(h(u)). (8.22)

The level c is called the linking level of J (corresponding to N and C).

Lemma 8.21 If ∂N and C link and (L-1) holds then c ≥ ρ.

Proof. By the definition of linking one has that C ∩ h(N) �= ∅ for all h ∈ H.
Then it follows that

sup
u∈N

J(h(u)) ≥ inf
u∈C∩h(N)

J(u) ≥ inf
u∈C

J(u) = ρ.

Since this is true for any h ∈ H, the lemma follows. �
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Theorem 8.22 Let ∂N and C link and let J ∈ C1(E, R) satisfy (L-1) and (L-2).
Furthermore, letting c be defined as in (8.22), suppose that (PS)c holds. Then
c ≥ ρ is a critical level of J.

Proof. First of all, let us remark that from Lemma 8.21 and (L-2) it fol-
lows that c ≥ ρ > β. Suppose by contradiction that Zc = ∅. We can use
Lemma 8.4 and Remark 8.5 to get a deformation η satisfying (i) and (ii′) therein,
namely

(i) η(Jc+δ) ⊂ Jc−δ ,
(ii′) η(u) = u for all u such that J(u) ≤ β.

In particular from the latter property it follows that η ◦ h ∈ H for all h ∈ H.
Actually, if u ∈ ∂N one has that J(u) ≤ β and hence (ii′) implies η ◦ h(u) = u.
Let h ∈ H be such that

sup
u∈N

J(h(u)) ≤ c+ δ.

From (i) we infer that

sup
u∈N

J(η ◦ h(u)) ≤ c− δ.

Since η ◦ h ∈ H, this is in contradiction with the definition of the linking level
c and the proof is complete. �

The preceding theorem is a general result that contains as particular cases sev-
eral others, including the MP theorem (for the latter, see Example 8.16 and
Remark 8.20).

Below, we state some specific existence results following Examples 8.17–8.19.
The level c is the linking level.

Theorem 8.23 Let C be a manifold of codimension one in E and suppose that
u0, u1 are points of E \ C belonging to two distinct connected components of
E \ C. Let J ∈ C1(E, R) satisfy

(L-3) inf C J(u) > max{J(u0), J(u1)}
and (PS)c.
Then J has a critical point z at level c. In particular z �= u0, u1.

The following result is due to P. Rabinowitz [150, 151].
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Theorem 8.24 Let E = V ⊕ W, where V, W are closed subspaces and
dim(V) = k < +∞. Suppose J ∈ C1(E, R) satisfies

(L-4) there exist r, ρ > 0 such that

J(w) ≥ ρ, ∀w ∈ W , ‖w‖ = r,

(L-5) there exist R > 0 and e ∈ W, with ‖e‖ > r such that, letting
N = {u = v + te : v ∈ V , ‖v‖ ≤ R, t ∈ [0, 1]}, one has that

J(u) < 0, ∀ u ∈ ∂N .

Moreover, suppose that (PS)c holds.
Then J has a critical point z at level c > 0. In particular z �= 0.

Remark 8.25 The two preceding results improve the MP theorem. If in the
former we take C = Sr , u0 = 0 and u1 = e we just obtain the MP theorem. The
latter corresponds to the case that u = 0 is not a local minimum but a saddle
point with finite Morse index. If V = {0} we find the MP theorem. �

Remark 8.26 A result like Theorem 8.24, in which V can be infinite dimen-
sional, has been proved by V. Benci and P. Rabinowitz [52]. For further related
results, see for example [48, 51]. �

Theorem 8.27 Let E = V ⊕ W, where V, W are closed subspaces and 0 <

dim(V) = k < +∞. Suppose J ∈ C1(E, R) satisfies

(L-6) there exist ρ > 0 such that

J(w) ≥ ρ, ∀w ∈ W ,

(L-7) there exist r > 0,β < ρ such that

J(v) ≤ β, ∀ u ∈ V , ‖v‖ = r.

Moreover, suppose that (PS)c holds.
Then J has a critical point z at level c.

As a straight application of Theorem 8.24 we will improve Theorem 8.11. The
following result is essentially due to Ahmad, Lazer and Paul [1].

Theorem 8.28 Let f ∈ Fp with 1 < p < (n + 2)/(n − 2), and suppose f
satisfies (8.9) for any λ ∈ R, and (8.10). Then (D) has a nontrivial solution.

Remark 8.29 The new feature of the preceding result is that we do not require
λ < λ1. On the other hand, we will no longer find a positive solution. �
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Proof of Theorem 8.28. For simplicity, we will carry out the proof in the case
of the model problem{−
u = λu+ |u|p−1u x ∈ �

u = 0 x ∈ ∂�.
(8.23)

The general case requires only minor changes.
Using the same notation as in Section 8.2, let E = H1

0 (�) and

J(u) = 1

2
‖u‖2 − 1

2
λ

∫
�

u2 dx − 1

p+ 1

∫
�

|u|p+1 dx.

If λ < λ1 we have seen in Section 8.2 that J can be handled by the MP theorem.
Now we want to show that if λk ≤ λ < λk+1 we can apply Theorem 8.24
with V = span{ϕ1, . . . ,ϕk} and W = V⊥, the L2 complement of V . Indeed, if
w =∑∞

i=k+1 aiϕi ∈ W and ‖w‖ → 0, one finds:

J(w) = 1

2

∞∑
i=k+1

a2
i

(
1− λ

λi

)
+ o(‖w‖2) ≥ 1

2

(
1− λ

λk+1

)
‖w‖2 + o(‖w‖2)

and this shows that (L-4) holds. To prove (L-5) we first take any finite
dimensional subspace Ṽ of E. For ṽ ∈ Ṽ , ‖̃v‖ = 1 one has

J(R̃v) = 1

2
R2 − 1

2
λ2R2 |̃v|2L2 − 1

p+ 1
Rp+1 |̃v|p+1

Lp+1 .

Since p > 1 and Ṽ is finite dimensional it follows that there exists R > 0 such
that J(R̃v) < 0, for all ṽ ∈ Ṽ with ‖̃v‖ = 1. In particular, we can find R > r
and e ∈ W , with ‖e‖ = R, such that J(v + te) < 0 provided ‖v + te‖ ≥ R.
Then on the three sides of ∂N given by {u = v+ te : ‖v‖ = R} ∪ {u = v+Re}
one has that J(u) < 0. On the other hand for v = ∑k

1 aiϕi ∈ V we also have
|v|2

L2 =
∑k

1 λ
−1
i a2

i ≥ λ−1
k ‖v‖2 and thus

J(v) ≤ 1

2
‖v‖2 − 1

2
λ |v|2L2 ≤ 1

2

(
1− λ

λk

)
‖v‖2 ≤ 0.

This shows that (L-5) holds. The proof of (PS)c is the same as in the application
discussed in Section 8.2. In conclusion we can apply Theorem 8.24 obtaining
a solution of (8.23) for all λ ∈ R. �

8.4 The Pohozaev identity

This last section is devoted to proving a celebrated identity due to S. Pohozaev
[143], see also a remarkable extension due to P. Pucci and J. Serrin [146],
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dealing with solutions of nonlinear Dirichlet boundary value problems like{−
u = f (u) x ∈ �

u = 0 x ∈ ∂�.
(D)

Let F(u) = ∫ u
0 f (s) ds.

Theorem 8.30 Let � be a bounded domain in R
n and let ν denote the unit

outer normal at ∂�. If u is any classical solution (u ∈ H2(�) ∩ H1
0 (�) would

suffice see [54]) of (D) then the following identity holds

n
∫
�

F(u) dx − n− 2

2

∫
�

uf (u) dx = 1

2

∫
∂�

u2
ν(x · ν) dσ , (P)

where uν = ∂u/∂ν.

Proof. Setting !(x) = (x · ∇u(x))∇u(x), one has

div ! = 
u(x · ∇u)+
∑

k

∂u

∂xk

∂

∂xk

(∑
i

xi
∂u

∂xi

)

= 
u(x · ∇u)+
∑

k

(
∂u

∂xk

)2

+
∑
i,k

∂u

∂xk
xi

∂2u

∂xi∂xk

= 
u(x · ∇u)+ |∇u|2 + 1

2

∑
i

xi
∂

∂xi
|∇u|2.

Then an application of the divergence theorem yields∫
�


u(x · ∇u) dx +
∫
�

|∇u|2 dx + 1

2

∫
�

∑
i

xi
∂

∂xi
|∇u|2 dx

=
∫
∂�

(x · ∇u)(∇u · ν) dσ .

As for the boundary term, since u = 0 on ∂� one has that ∇u(x) = uν ν and
thus the preceding equation becomes∫
�


u(x · ∇u) dx +
∫
�

|∇u|2 dx + 1

2

∫
�

∑
i

xi
∂

∂xi
|∇u|2 dx =

∫
∂�

(x · ν)u2
ν dσ .

(8.24)

Next, let !1(x) = 1
2 |∇u|2x. Since

div !1 = n

2
|∇u|2 + 1

2

∑
i

xi
∂

∂xi
|∇u|2,
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another application of the divergence theorem yields

n

2

∫
�

|∇u|2 dx + 1

2

∫
�

∑
i

xi
∂

∂xi
|∇u|2 dx = 1

2

∫
∂�

(x · ν)u2
ν dσ . (8.25)

Substituting (8.25) into (8.24) we find∫
�


u(x · ∇u) dx + (1− n
2 )

∫
�

|∇u|2 dx = 1
2

∫
∂�

(x · ν)u2
ν dσ . (8.26)

As for the first integral in (8.26), using the fact that u solves (D), we find

−
∫
�


u (x · ∇u) dx =
∫
�

f (u)(x · ∇u) dx =
∫
�

f (u)
∑

i

xi
∂u

∂xi
dx

=
∫
�

∑
i

xi
∂F(u)

∂xi
dx.

Integrating by parts, we get∫
�

∑
i

xi
∂F(u)

∂xi
dx = −n

∫
�

F(u) dx

and thus ∫
�


u (x · ∇u) dx = n
∫
�

F(u) dx. (8.27)

Finally, from (D) one infers that∫
�

|∇u|2 dx =
∫
�

uf (u) dx.

Substituting this and (8.27) into (8.26) we find (P). �

As a consequence, we will find that, in general, the growth restriction p <

(n+ 2)/(n− 2) cannot be eliminated, if we want to find nontrivial solutions of{−
u = |u|p−1u x ∈ �

u = 0 x ∈ ∂�.
(8.28)

Actually the following corollary holds.
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Corollary 8.31 If � is star shaped with respect to the origin 0 ∈ R
n, i.e. if

x · ν > 0 on ∂�, then any smooth solution of (8.28) satisfies

n
∫
�

F(u) dx − n− 2

2

∫
�

uf (u) dx > 0.

In particular, if f (u) = |u|p−1u, then we find(
n

p+ 1
− n− 2

2

)∫
�

|u|p+1 dx > 0,

and hence u �= 0 implies that p < (n+ 2)/(n− 2).

The previous considerations highlight that the exponent (n + 2)/(n − 2) is
critical not only from the point of view of Sobolev’s embedding, but also from
that of the existence of nontrivial solutions to (D).

Remark 8.32 In contrast with Corollary 8.31, we will show that the equation
−
u = λu + u(n+2)/(n−2), u ∈ H1

0 (�), might have a positive solution for
any bounded domain � ⊂ R

n, for suitable values of λ > 0, see Section 11.2
later on. �

8.5 Exercises

(i) Let 	 ∈ C2(E, R) be such that 	(t u) = t4	(u), ∀ u ∈ E, ∀ t ∈ R. Show
that J(u) = 1

2‖u‖2 −	(u) satisfies (MP-1) and (MP-2). Denoting by c
the MP level (8.2), prove that c = inf M J , where
M = {u ∈ E \ {0} : ‖u‖2 = (	′(u) | u)} (the Nehari manifold).

(ii) Let k > 0 and consider the BVP (∗) −
u = λ(u− k)+, u ∈ H1
0 (�),

where λ ∈ R and v+ = max{v(x), 0}. Prove that if λ > λ1 then (∗) has a
positive solution whose maximum is greater than k, by showing:

(a) if λ > λ1, then the Euler functional Jλ corresponding to (∗) has the
MP geometry;

(b) if uj is any (PS) sequence, then, ‖uj‖ is bounded [hint: letting
zj = uj‖uj‖−1 one has that zj → z∗ strongly in H1

0 (�); hence, using
also the maximum principle it follows that z∗ > 0 and satisfies
−
z∗ = λ(z∗), a contradiction];

(c) (PS) holds.

(iii) Let 1 < p < (n+ 2)/(n− 2) and let β denote the conjugate exponent of
p+ 1. Consider in X = Lβ(�) the functional
Jλ(v) =

∫
�
|v|β dx − 1

2

∫
�

vAλv dx, where λ is not an eigenvalue of −
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with zero Dirichlet boundary conditions on �, and Aλ is defined by
setting Aλv = u if and only if u ∈ H2,β

0 (�) satisfies −
u− λu = v.

(a) Show that the MP theorem applies to Jλ.
(b) Let v ∈ X be a critical point of Jλ. Show that u = Aλv is a solution of

−
u = λu+ |u|α−2u, u ∈ H1
0 (�).

(iv) Consider the function J(x, y) = x2 + (1− x)3y2, (x, y) ∈ R
2 introduced

in Remark 8.6. Show that the MP level is c = 1 and that (PS) fails at
that level.
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Lusternik–Schnirelman theory

In this chapter we discuss an elegant theory, introduced by Lusternik and
Schnirelman, that allows us to find critical points of a functional J on a manifold
M, in connection with the topological properties of M. In particular, this theory
enables us to obtain multiplicity results.

General remark 9.1 In the sequel we will always understand that

M = G−1(0), where G ∈ C1,1(E, R), and G′(u) �= 0, ∀ u ∈ M. (M)

9.1 The Lusternik–Schnirelman category

The main ingredient of the Lusternik–Schnirelman (L-S, for short) theory is a
topological tool, the L-S category, that we are going to define.

Let M be a topological space. A subset A of M is contractible in M if the
inclusion i : A → M is homotopic to a constant p ∈ M, namely if there exists
H ∈ C([0, 1] × A, M) such that H(0, u) = u and H(1, u) = p.

Definition 9.2 The (L-S) category of A with respect to M (or simply the category
of A with respect to M), denoted by cat(A, M), is the least integer k such that
A ⊂ A1 ∪ . . . ∪ Ak, with Ai (i = 1, . . . , k) closed and contractible in M. We
set cat(∅, M) = 0 and cat(A, M) = +∞ if there are no integers with the above
property. We will use the notation cat(M) for cat(M, M).

Remark 9.3 From the definition it follows that cat(A, M) = cat(A, M).
Moreover, it is also clear that cat(A, M) ≥ cat(A, Y) provided A ⊂ M ⊂ Y . �

Example 9.4
(i) Let Sm−1 = {x ∈ R

m : |x| = 1} denote the unit sphere in the Euclidean m
dimensional space. Since Sm−1 is not contractible in itself but can be
covered by two closed hemispheres, then cat(Sm−1) = 2. Remark that,
obviously, cat(Sm−1, Rm) = 1.

143
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P

�

P P

P P

A2

A3

A1

A1

Figure 9.1

(ii) If S is the unit sphere in an infinite dimensional Hilbert space E then one
has that cat(S) = 1. Actually, S is contractible in itself, see [90].

(iii) If T2 = S1 × S1 denotes the two-dimensional torus in R
3 then

cat(T2) = 3. Actually, it is easy to see that cat(T2) ≤ 3 because
T2 ⊂ A1 ∪ A2 ∪ A3, each Ai being closed and contractible in T2, see
Figure 9.1 (the set A1 is nothing but a closed neighbourhood of the
point P).
It is possible to show (but it requires more work) that T2 cannot be
covered by two closed subsets of T2 contractible in T2. Thus
cat(T2) = 3. In general, for the k dimensional torus Tk = R

k/Zk one has
cat(Tk) = k + 1. See also (9.2) at the end of this section.

(iv) Suppose that there is a topological group G which acts on E through
isometries g. We say that A ⊂ E, respectively J : E → R, is G-invariant
if gu ∈ A, respectively J(gu) = J(u), for all u ∈ A, g ∈ G; a map
η : E → E is said to be G-equivariant if η(gu) = gη(u), for all u ∈ A,
g ∈ G. If M and J are G-invariant we can consider J as defined on M/G.
Usually, M/G has category greater than M since, roughly, the
contractible sets in M/G are much fewer than those contractible in M.
Actually, if A ⊂ M, the corresponding invariant set A/G might not be
contractible in M/G even though A is contractible in M. The reason is
that, working on M/G we can use G-equivariant deformations, only. In
the next chapter we will investigate in detail the specific case M = S
(the unit sphere in E) and G = Z2 & {IdE ,−IdE}. In such a case, an
invariant set is a set A ⊂ S such that u ∈ A if and only if −u ∈ A; J is
invariant if and only if J(−u) = J(u) and η : E → E is equivariant if
and only if η(−u) = −η(u). In other words A is symmetric, J is even and
η is odd. In particular, we anticipate that, letting P

m = Sm/Z2, then
cat(Pm) = m + 1. See Theorem 10.7 later on. Similarly, if E is infinite
dimensional and P

∞ = S/Z2, then cat(P∞) = +∞. �



9.1 The Lusternik–Schnirelman category 145

Remark 9.5 Fournier and Willem introduced the definition of relative category.
If A, Y ⊂ M are closed catM,Y (A) is the least integer k such that A ⊂ A0 ∪A1 ∪
· · · ∪ Ak , with Ai (i = 0, . . . , k) closed, A1, . . . , Ak contractible in M and A0

satisfies the following property: there exists h ∈ C([0, 1] × A, M) such that
h(0, u) = u, h(1, u) ∈ Y , ∀ u ∈ A and h(t, Y) ⊂ Y , ∀ t ∈ [0, 1]. When Y = ∅we
get catM,∅(A) = cat(A, M). For the properties of the relative category and its
application to critical point theory, we refer to [171] which also contains several
further references. Some properties of the relative category are also listed in
Exercise 9.3(iv). �

Let us now prove the main properties of the category.

Lemma 9.6 Let A, B ⊂ M.

(i) If A ⊂ B then cat(A, M) ≤ cat(B, M);
(ii) cat(A ∪ B, M) ≤ cat(A, M)+ cat(B, M);

(iii) suppose that A is closed and let η ∈ C(A, M) be a deformation, then

cat(A, M) ≤ cat(η(A), M). (9.1)

Proof. The first two statements follow in a straightforward manner from the
definition: (i) if A ⊂ B, any covering of B is a covering of A; (ii) if A ⊂ ∪h

1Ai

and B ⊂ ∪k
1Bi (if one of them is infinite, the result is trivial) then A ∪ B ⊂

(∪h
1Ai) ∪ (∪k

1Bi). For (iii), let cat(η(A)) = k (again, if it is infinite, there is
nothing to prove). Thenη(A) ⊂ C1∪· · ·∪Ck , where Ci is closed and contractible
in M. We set

Ai = η−1(Ci) = {x ∈ A : η(x) ∈ Ci}.
Each Ai is closed in A and hence in M because A is closed. Moreover, each Ai

is contractible in M because Ci = η(Ai) is. Since, obviously, A ⊂ A1∪· · ·∪Ak

it follows, by definition, that cat(A, M) ≤ k(= cat(η(A), M)). �

Remark 9.7 An example in which the strict inequality in (9.1) holds is the
following: M = S1 (the unit circle in R

2), A = S1+ : {eiθ ∈ S1 : θ ∈ [0,π ]}
and η(eiθ ) = H(1, θ) where H(t, θ) = ei(t+1)θ , t ∈ [0, 1]. Moreover, the
assumption that A is closed can be eliminated in (iii) provided we sup-
pose that the deformation η is defined on all M (the reader can give the
proof for an exercise). Otherwise, if A is not closed and η is defined on
A only, the claim can be false: it suffices to take M = S1, p ∈ S1 and
A = S1 \ {p}. �
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In the next lemma we require that M satisfies the extension property:

• for any metric space Y , any closed subset S of Y and any map f ∈ C(S, M),
there is a neighbourhood N of S and a map f̃ ∈ C(N , M) which is an
extension of f : f̃ (u) = f (u) for all u ∈ S.

Let us point out that, as a consequence of the extension property, any point
p ∈ M has a neighbourhood which is contractible in M. It is possible to see that
the Hilbert manifolds M we deal with have the above properties.

Lemma 9.8 Suppose that (M) holds or, more in general, that M has the
extension property and let A ⊂ M be compact. Then

(i) cat(A, M) < +∞,
(ii) there is a neighbourhood UA of A such that cat(UA, M) = cat(A, M).

Proof. Let us suppose that cat(A, M) = 1. Then there exist p ∈ M and an
homotopy H ∈ C([0, 1] × A, M) such that H(0, u) = u and H(1, u) = p for all
u ∈ A. First, we extend H to a map, still denoted by H, defined on

S = ({0} ×M) ∪ ([0, 1] × A) ∪ ({1} ×M)

by setting

H(t, u) =


u if t = 0, u ∈ M
H(t, u) if t ∈ [0, 1], u ∈ A
p if t = 1, u ∈ M.

The set S is a closed subset of Y = [0, 1] × M and H ∈ C(S, M). By the
extension property there exist a neighbourhood N of S in Y and H̃ ∈ C(N , M)

such that H̃(t, u) = H(t, u) for all (t, u) ∈ S. Since the set [0, 1]×A is compact
and has empty intersection with the closed set Y \N , then the distance between
these two sets is positive and thus we can find a neighbourhood UA in M such
that [0, 1] × UA is contained in N , see Figure 9.2.
Since H̃(0, u) = H(0, u) = u and H̃(1, u) = H(1, p) = p then UA is
contractible in M and hence cat(UA, M) = 1.

In particular, from the preceding proof it follows that any q ∈ M has a
contractible neighbourhood Uq, hence cat(Uq, M) = 1. Since A is compact,
there is a finite number of points q1, . . . , qk ∈ A such that A ⊂ Uq1 ∪ · · · ∪Uqk

and this implies that cat(A, M) ≤ k < +∞, proving (i).
To prove (ii) let cat(A, M) = k. Then A ⊂ ∪k

1Ai, with Ai closed and contract-
ible. Substituting Ai with A ∩ Ai, we can assume that the Ai are compact. For
each Ai we find neighbourhoods Ui of Ai such that Ui is contractible. Let
UA = ∪k

1Ui. Then UA ⊂ ∪k
1Ui and hence cat(UA, M) ≤ k = cat(A, M).
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0

1 M

M

UA

UA

[0,1] × A

Figure 9.2

Conversely, from A ⊂ UA it follows (see Lemma lem:catprop(i)) that
cat(A, M) ≤ cat(UA, M) and the proof is complete. �

Remark 9.9 In the preceding proof it has been shown that if M has the extension
property then every homotopy defined on a closed subset A of M can be extended
to a neighbourhood of A. �

Finally, it is worth mentioning an interesting lower bound of the category by
means of the cup length. The cup length of M is defined by

cup length(M) = sup{k ∈ N : ∃α1, . . . ,αk ∈ Ȟ∗(M) \ 1, α1 ∪ · · · ∪ αk �= 0}.
If no such class exists, we set cup length(M) = 0. Here Ȟ∗(M) is the Alexander
cohomology of M with real coefficients and ∪ denotes the cup product. It is
possible to show, see for example [160], Theorem 5.14, that

cat(M) ≥ cup length(M)+ 1. (9.2)

For example, if M is the two dimensional torus T2 it is easy to see that
cup length(T2) = 2 and then cat(T2) ≥ 3. This, together with the discussion
in Example 9.4(iii), proves that cat(T2) = 3.

We will not enter into more details, since these topics are beyond the scope
of this book.

9.2 Lusternik–Schnirelman theorems

Let us reconsider the two dimensional torus M = T2 in R
3 and the functional

J(x, y, z) = z, see Section 7.1. The sublevels Ma = {p ∈ M : J(p) ≤ a}
are indicated in Figure 9.3. If a < c1 then Ma = ∅ and cat(Ma, M) = 0.
If a = a1 ∈ [c1, c2), then Ma is a spherical cap which is contractible in M
and hence cat(Ma, M) = 1. If a = a2 ∈ [c2, c4), then Ma is not contractible
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Figure 9.4

in M but can be covered by two contractible sets. Therefore, in this case one
has cat(Ma, M) = 2. Finally, if a ≥ c4 then Ma = M and so cat(Ma, M) =
cat(M) = 3. Summarizing, one has:

cat(Ma, M) =


0 if a < c1

1 if c1 ≤ a < c2

2 if c2 ≤ a < c4

3 if c4 ≤ a.
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Consider any closed subset A of M such that cat(A, M) ≥ 2. For example, any
sublevel Ma with a ≥ c2 belongs to this class. Indeed, one has that

c2 = min{max
u∈A

J(u) : cat(A, M) ≥ 2}, (9.3)

because if maxA J < c2 for some A, then there is a < c2 such that A ⊂ Ma and
hence cat(A, M) ≤ cat(Ma, M) = 1. In a similar way, c1 = min{maxu∈A J(u) :
cat(A, M) ≥ 1} and c4 = min{maxu∈A J(u) : cat(A, M) ≥ 3}. Actually, in the
former case any point can be taken as A and c1 = minM J; in the latter the only
admissible set A is M itself and one finds that c4 = maxM J . Let us point out
that one can find c3 by reversing the procedure and taking max-min instead of
min-max in (9.3). In general, there are functionals which possess exactly three
critical points on the torus: the maximum, the minimum and one saddle point.

The preceding example is actually a particular case of a general fact: the L-S
category allows us to define min-max levels which are critical. Let (M) hold
and set

catk(M) = sup{cat(A, M) : A ⊂ M A compact}.
The notion of catk was introduced by F. Browder in [67]. Obviously, if M is
compact then catk(M) = cat(M). Moreover, this is also the case in all the applic-
ations we will deal with. Some specific properties of catk(M) are discussed in
Exercise 9.3(ii) at the end of the chapter.

Next, let us consider the class

Cm = {A ⊂ M : A is compact and cat(A, M) ≥ m}.
In the preceding definition, and always in the sequel, m is a positive integer
such that m ≤ catk(M), if catk(M) < +∞; otherwise, m can be any positive
integer.

Obviously one has that Cm �= ∅ for all such m. If J ∈ C(M, R) we set:

cm = inf
A∈Cm

max
u∈A

J(u). (9.4)

The following properties are immediate consequences of the definition:
(i) c1 = inf M J;
(ii) c1 ≤ c2 ≤ · · · ≤ cm−1 ≤ cm ≤ · · · (because Cm ⊂ Cm−1);
(iii) cm < +∞, ∀ m ≤ catk(M);
(iv) if inf M J > −∞ then any cm is finite: −∞ < c1 ≤ cm < +∞.

(9.5)

Moreover, the following property will be frequently used in the sequel. Let
η be a deformation in M. Then from Lemma 9.6(iii) it follows that

cat(η(A), M) ≥ cat(A, M) ≥ m
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and hence (remark that η(A) is compact because A is)

η(A) ∈ Cm, ∀A ∈ Cm. (9.6)

In Theorem 7.12, Section 7.5, we have shown that c1 is a critical level of J
provided (PS) holds. Let us recall the notation introduced before. Z denotes the
set of critical points of J on M: Z = {z ∈ M : ∇MJ(z) = 0} and Zc = {z ∈ Z :
J(z) = c}. Moreover c ∈ R is a critical level of J on M if Zc is not empty. Let
us also point out that if (PS)c holds, then Zc is compact.

Next, we are going to show that all the finite cm are critical levels of J . In
addition, if two of them coincide, then J has a continuum of critical points at
that level.

Theorem 9.10 Let (M) hold and let J ∈ C1,1(E, R) be bounded from below
on M and let J satisfy (PS).
Then J has at least catk(M) critical points on M. More precisely,

(i) any cm is a critical level of J,
(ii) let cm = cm+1 = · · · = cm+q for some integer q ≥ 1 and let c denote this

common value, then cat(Zc, M) ≥ q + 1.

Remark 9.11
(i) Since a discrete set has obviously category (with respect to M) equal to 1,

statement (ii) implies that J has infinitely many critical points at level c.
(ii) Using slightly different arguments it has been proved by F. Browder [67]

that J has at least catk(M) critical points on M, provided J is bounded
from below on M and (PS) holds. �

Proof of Theorem 9.10. We will prove separately the two statements. Actually,
(i) would also follow from (ii) with q = 0. Let us recall that cm is finite for all
m = 1, 2, . . . because J is bounded from below on M, see Equation (9.5)(iv).

(i) Let us suppose, by contradiction, that Zcm = ∅. Since inf M J > −∞ and
(PS) holds, we can apply Lemma 7.10: there exists δ > 0 and a deformation η

such that
η(Mcm+δ) ⊂ Mcm−δ . (9.7)

According to the definition of cm there exists A ∈ Cm such that maxA J ≤ cm+δ,
namely A ⊂ Mcm+δ . From (9.7) it follows that η(A) ⊂ Mcm−δ , a contradiction
because η(A) ∈ Cm, see (9.6).

(ii) We need to sharpen the deformation Lemma 7.10. Let α(t, u) denote the
steepest descent flow corresponding to the Vector field W(u) = −∇J(u).
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Lemma 9.12 For every neighbourhood U of Zc there exists δ > 0 and a
deformation η in M such that

η(Mc+δ \ U) ⊂ Mc−δ . (9.8)

Proof. First let us show

(∗) for every neighbourhood U of Zc there exists δ > 0 such that:

u �∈ U, |J(u)− c| ≤ δ =⇒ ‖∇J(α(t, u))‖ ≥ 2δ, ∀ t ∈ [0, 1].
Arguing by contradiction, we can find sequences tk ∈ [0, 1] and uk �∈ U such
that

|J(uk)− c| ≤ 1

k
, (9.9)

‖∇J(α(tk , uk))‖ → 0. (9.10)

Without relabelling, we can assume that tk → t̄. Consider the sequence vk =
α(tk , uk). From (9.9) and (9.10) it follows that

J(vk) ≤ J(uk) ≤ c+ 1

k
and ∇J(vk)→ 0.

Hence vk is a PS sequence and therefore vk → z (up to a subsequence). Obvi-
ously ∇J(z) = lim∇J(vk) = 0 and thus the solution of the Cauchy problem
that defines the steepest descent flow satisfies α(t, z) ≡ z. Furthermore, one
has uk = α(−tk , vk) and hence uk → α(t̄, z) = z. As a consequence we infer
J(z) = lim J(uk) = c. In other words, z ∈ Zc, a contradiction to the fact
that uk → z and uk �∈ U, proving the claim. Now (∗) allows us to repeat
the arguments of Lemma 7.6 yielding a deformation η(u) = α(1, u) such that
η(u) ∈ Mc−δ provided u ∈ Mc+δ \ U. �

Remark 9.13 The preceding proof makes it clear that if M = E, we can weaken
the regularity assumption on J by requiring that J ∈ C1(E, R). It suffices to
replace −∇J(u) with a pseudogradient vector field, see Section 8.1.1, and to
define the deformation η by using the corresponding flow. The proof requires
changes similar to those made in the proof of Lemma 8.4. �

Proof of Theorem 9.10 completed. First of all, let us complete the proof of
(ii). Suppose by contradiction that cat(Zc, M) ≤ q. As remarked before, Zc is
compact and hence, by Lemma 9.8(ii), there exists a neighbourhood U of Zc

such that
cat(U, M) = cat(Zc, M) ≤ q. (9.11)

In correspondence to U we use Lemma 9.12 to find δ > 0 and a deformation
η satisfying (9.8). By the definition of c = cm+q there is A ∈ Cm+q such that
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A ⊂ Mc+δ . Setting A′ = A \ U, the subadditivity property of the category, see
Lemma 9.6(ii), yields

cat(A′, M) ≥ cat(A, M)− cat(U, M) ≥ m + q − q = m,

namely A′ ∈ Cm. Then from (9.6) it follows that η(A′) ∈ Cm, while (9.8) yields
that η(A′) ⊂ Mc−δ . These two facts are in contradiction to the definition of cm.
The proof of (ii) is completed. �

Remark 9.14
(i) The proof of Theorem 9.10 highlights that we can weaken the

assumption that J satisfies (PS). If cm < b for any m, it suffices that J
satisfies (PS)c for all c < b. Indeed, to prove (i) one can merely suppose
that (PS)cm holds. See Theorem 10.12 below for a case when this
weakening is essential.

(ii) The fact that cm is a critical level is a particular case of a more general
statement. Let G denote a class of subsets of M with the property that
α(t, G) ∈ G for all G ∈ G and all t ≥ 0. Consider

b = inf
G∈G

sup
u∈G

J(u),

suppose that b is finite and that (PS)b holds. Then b is a critical level of
J . Each Cm defined above through the L-S category is a particular case of
the class G. Another example can be given considering a topological
space T and a homotopy class [h] of maps from T into M. Then
G = {h(T) : h ∈ [h]} is a class which can be used for defining a min-max
critical level. Let us point out that the main advantage one has using the
classes Cm, is that one can handle the degenerate case cm = cm+q.

(iii) Another approach to find a multiplicity result like Theorem 9.10 is to
consider the class

C̃m = {A ⊂ M : A is closed and cat(A, M) ≥ m}
instead of Cm. Statements (i) and (ii) can be proved in a quite similar
manner. In addition, one could show that if cm = +∞ for some m ∈ N,
then supZ J = +∞ and hence J has infinitely many critical points on M.
In this way one proves that J possesses on M at least cat(M) critical
points, see [159].

(iv) The critical points at level cm can possibly be degenerate. For example, if
M is the two dimensional torus, then any J ∈ C1(M, R) has at least three
critical points. An example of a functional that has precisely three critical
points on the torus is reported in Figure 9.5. The minimum of J is
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p3 p

Figure 9.5 The dashed area represents the set where J(p) < J(p3). The grey area
represents the set where J(p) > J(p3).

achieved at the point p1 and the maximum at p2. Moreover, J has a
saddle point at p3, which is degenerate. The degeneracy of p3 is a general
fact. Actually, if J has only non degenerate critical points z, namely J ′′(z)
has a trivial kernel, then Morse theory ensures that J has four critical
points, see Chapter 12. We anticipate that, in general, Morse theory
requires that the critical points are nondegenerate but gives rise to results
more precise than those found by the L-S construction. Unfortunately,
this a-priori assumption is not very appropriate for applications to
differential equations. The fact that we do not need to assume any
nondegeneracy hypothesis makes the L-S theory more suitable for
applications to analysis.

(v) Using the relative category, see Remark 9.5, one can prove that the
strip Mb \Ma contains at least catMb,Ma(Mb) critical points of J
constrained on M, provided that (M) holds, J ∈ C1,1(E, R) is bounded
from below on M and (PS)c is satisfied for all c ∈ [a, b]. See [171],
Theorem 5.19. �

We end this section with a result that highlights a relationship between the
category and the (PS) condition.

Theorem 9.15 Let (M) hold and let J ∈ C1,1(E, R) be bounded from below
on M. Furthermore, suppose there exists a ∈ R such that (PS)c holds for all
c ≤ a. Then cat(Ma) < +∞.

Proof. Step 1. From the assumptions it follows that Z∗ = Z ∩
Ma is compact and there exists a neighbourhood U of Z∗ such that
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Figure 9.6 The dashed line represents the steepest descent flow entering in V .

cat(U, Ma) = cat(Z∗, Ma) < +∞. By continuity, we can also assume that

‖∇J(u)‖ ≤ 1, ∀ u ∈ U. (9.12)

Step 2. We can also find a second neighbourhood V of Z∗ such that V ⊂ U and
d = dist(V , ∂U) > 0. Let us show that the steepest descent flow entering in V
can exit out of U only after a time greater than or equal to d. Precisely, one has

v ∈ V , α(τ , v) �∈ U =⇒ τ > d. (9.13)

Actually, let t̂ = sup{t ≥ 0 : α(s, v) ∈ U, ∀ s ∈ [0, t]}. Then (9.12) implies

d ≤ ‖α(t̂, u)− u‖ ≤
∫ t̂

0

∥∥∥∥ d

ds
α

∥∥∥∥ dt ≤
∫ t̂

0
‖∇J(α)‖ dt ≤ t̂.

Since τ ≥ t̂, (9.13) follows.
Step 3. Since (PS)c holds for all c ≤ a then there exists δ > 0 such that

‖∇J(u)‖ ≥ δ, ∀ u ∈ Ma \ V . (9.14)

Let a′ = a − inf M J , T > a′/δ2 and fix an arbitrary p ∈ Ma. If α(t, p) never
enters in V then (9.14) yields

J(α(T , u)) ≤ J(u)− T · δ2 < a− a′ = inf
M

J ,

a contradiction that shows:

∀ p ∈ Ma ∃t ∈ [0, 1] : α(t, p) ∈ V . (9.15)

Step 4. Let t0 = 0 < t1 < · · · < tn = T be such that |ti − ti−1| ≤ d/2.
From (9.15) there exists t̄ ∈ [0, T ] such that α(t̄, p) ∈ V . Taken ti such that
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|ti − t̄| ≤ d/2 and using (9.13) with v = α(t̄, u) and τ = ti, we infer that
α(ti, p) ∈ U. Setting Ai = {p ∈ Ma : α(ti, p) ∈ U}, we have shown that

Ma ⊂
⋃

0≤i≤n

Ai

and hence

cat(Ma) ≤
n∑
1

cat(Ai, Ma). (9.16)

On the other hand, each Ai can be deformed into U, so that cat(Ai, Ma) ≤
cat(U, Ma) < +∞. This and (9.16) prove the theorem. �

If supM J < +∞ we can take a > supM J . Hence Ma = M and Theorem 9.15
immediately yields the following corollary.

Corollary 9.16 If J is also bounded from above on M, then cat(M) < +∞.

Furthermore, we can also deduce the following.

Corollary 9.17 Let J be bounded from below on M and suppose that cat(M) =
+∞ and that (PS)a holds for all a < supM J.
Then cm → supM J and hence J has infinitely many critical points zm such that
J(zm)→ supM J.

Proof. For any a < supM J one has that cat(Ma, M) ≤ cat(Ma) < +∞. Taking
m > cat(Ma, M) one finds cm ≥ a. �

9.3 Exercises

(i) Prove that if A∩B = ∅ then cat(A∪B, M) ≤ max{cat(A, M), cat(B, M)}.
Moreover, if M has the extension property and A ∩ B is compact, show
that cat(A ∪ B, M) ≤ max{cat(A, M), cat(B, M)} + cat(A ∩ B, M).

(ii) Let X be a topological space. Recall that catk(X) is the
sup{cat(K , X) : K ⊂ X , K compact}. Show that catk(X) satisfies the
following properties.

(a) Let Xi be an increasing sequence of open subsets of X. If X = ∪Xi

then catk(X) ≤ lim inf catk(Xi).
(b) If X = X1 ∪ X2m, with Xi closed in X , then

catk(X) ≤ catk(X1)+ catk(X2).
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(c) Let Y ⊆ X and let η ∈ C(X , X) be homotopic to the identity and
such that η(X) = Y . Then catk(X) = catk(Y).

(iii) Let M ⊂ R
n be smooth and compact. Suppose that J ∈ C1,1(Rn, R) has

only isolated critical points on M. For a ∈ R we set
Ja = {u ∈ M : J(u) = a}.
(a) Let c be an (isolated) critical level of J on M. Prove that

cat(Jc−ε, M)− 1 ≤ cat(Jc+ε, M) ≤ cat(Jc−ε, M)+ 1.

(b) Using (a) prove that if the interval [a, b] contains exactly one critical
level, then cat(Mb

a , M) ≤ cat(Ja, M)+ 1, where
Mb

a = {u ∈ M : a ≤ J(u) ≤ b}.
(c) Take a finite sequence of noncritical levels a0 < a1 < · · · < am such

that a0 < minM J , am > maxM J and [a, b] contains exactly one
critical level of J on M. Prove that

cat(M) ≤ cat
(⋃

Jai , M
)

cat
(⋃

Mai+1−ε
ai+ε , M

)
,

provided ε > 0 is small enough, such that [ai − ε, ai + ε] does not
contain any critical level.

(d) Prove that there exists a noncritical level a such that
cat(Ja, M) ≥ 1

2 (cat(M)− 1). [Hint: use (c).]

(iv) Prove the following properties of the relative category, defined in
Remark 9.5:

(a) catM,Y (Y) = 0;
(b) catM,Y (A ∪ B) ≤ catM,Y (A)+ cat(B, M);
(c) if Y ⊂ A ∩ B and there exists h ∈ C([0, 1] × A, M) such that

h(0, u) = u, h(1, u) ∈ B, ∀ u ∈ A and h(t, Y) ⊂ Y , ∀ t ∈ [0, 1], then
catM,Y (A) ≤ catM,Y (B).
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Critical points of even functionals on symmetric
manifolds

In this chapter we will investigate the case that J is an even functional and M is
a symmetric set. The abstract results will apply to a class of nonlinear elliptic
problems with odd nonlinearities.

10.1 The Krasnoselski genus

Theorem 9.10 does not give any new result when M = S is the unit sphere
in a infinite dimensional Hilbert space E because cat(S) = 1 in such a case.
On the other hand, if A is a linear compact positive operator, the quadratic
functional J(u) = (Au | u) has infinitely many critical points zk , corresponding
to the solutions of the linear eigenvalue problem Au = λu. We will show that,
more in general, any even functional on an infinite dimensional Hilbert sphere,
satisfying the (PS) condition on S and bounded from below on S, possesses
infinitely many critical points on S. In order to obtain such a result one could
consider the projective space P

∞ = S/Z2 (see Example 9.4(iv)) and use the
L-S theory. On the contrary, we will use a topological tool, the genus, which will
substitute the category in the case of Z2 symmetry. The genus was introduced
by M. A. Krasnoselski [110]; we will follow [149].

Let A denote the class of all closed subsets A of E \{0}which are symmetric,
namely u ∈ A =⇒ −u ∈ A.

Definition 10.1 Let A ∈ A. The genus γ (A) of A is defined as the least integer
n such that there exists φ ∈ C(E, Rn) such that φ is odd and φ(x) �= 0 for all
x ∈ A. We set γ (A) = +∞ if there are no integers with the above property and
γ (∅) = 0.

Remark 10.2 An equivalent way to define γ (A) is to take the minimal integer n
such that there exists an odd map φ ∈ C(A, Rn \ {0}). Actually, such a φ can
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be extended by the Dugundij theorem [90], to a map φ̂ ∈ C(E, Rn). If φ∗ is the
odd part of φ̂, namely φ∗(u) = 1

2 (φ̂(u) − φ̂(−u)), φ∗ satisfies the properties
required in the above definition. �

Example 10.3 Given any closed A ⊂ E \ {0} we set −A = {u ∈ E : −u ∈ A}.
If A ∩ (−A) = ∅ then there exists an odd φ ∈ C(E, R) such that φ(u) =
a �= 0 for all u ∈ A. Then φ(u) �= 0 for all u ∈ A ∪ (−A) and hence
γ (A ∪ (−A)) = 1. �

The following lemma shows that the genus verifies properties similar to those
proved in Lemmas 9.6 and 9.8 for the category.

Lemma 10.4 Let A1, A2 ∈ A.

(i) If A1 ⊂ A2 then γ (A1) ≤ γ (A2);
(ii) γ (A1 ∪ A2) ≤ γ (A1)+ γ (A2);

(iii) if η ∈ C(A, E) is odd then γ (A) ≤ γ (η(A));
(iv) if A is compact then γ (A) < +∞ and there exists a symmetric

neighbourhood UA of A such that γ (UA) = γ (A).

Proof. Step 1. (i) is trivial.
Step 2. Let γ (A1) = n and γ (A2) = m. Then there exist φ1 ∈ C(E, Rn), φ2 ∈
C(E, Rm) odd and such that φi(x) �= 0 for all x ∈ Ai. Define ψ : E → R

n×R
m

by setting

ψ(x) = (φ1(x),φ2(x)).

Since ψ is odd and ψ(x) �= 0 for all x ∈ A1 ∪ A2, then γ (A1 ∪ A2) ≤ n + m,
proving (ii).

Step 3. If γ (η(A)) = n then there exists an odd φ ∈ C(E, Rn) such that
φ(x) �= 0 for all x ∈ η(A). Consider the composite map φ′ = φ ◦ η

A
η−−−→ η(A)

φ ◦ η ↘ ↓ φ

R
n \ {0}.

Since φ(x) �= 0 for all x ∈ η(A) then φ′ ∈ C(A, Rn \ {0}). Moreover, the
map φ′ is odd because η and φ are. This suffices (see Remark 10.2) to say that
γ (A) ≤ n = γ (η(A)) proving (iii).
Step 4. For all x ∈ A let ε > 0 be such that Bε(x) ∩ Bε(−x) = ∅. Then
Cx = Bε(x) ∪ Bε(−x) is such that γ (Cx) = 1, see Example 10.3. If A is
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compact we can find a finite set {x1, . . . , xk} such that A ⊂ ∪k
1Cxi . Then, using

(i) above we get

γ (A) ≤
k∑
1

γ (Cxi) = k.

Furthermore, if γ (A) = k there exists an odd φ ∈ C(E, Rk) such that φ(x) �= 0
for all x ∈ A. By continuity, there is ε > 0 such that φ(x) �= 0 for all x ∈ Nε(A),
the closed ε neighbourhood of A. Then γ (Nε(A)) ≤ k. On the other hand
A ⊂ Nε(A) implies by (i) that γ (A) ≤ γ (Nε(A)), proving (iv). �

An important property of the genus is that γ (Sm−1) = m (recall the notation
Sm−1 which stands for the unit sphere in Rm).

Theorem 10.5 Let E = R
m and let ∂� denote the boundary of � ⊂ R

m, an
open bounded symmetric neighbourhood of x = 0. Then γ (∂�) = m.

Proof. Since the identity map can be used in the definition ofγ thenγ (∂�) ≤ m.
Suppose, by contradiction, that γ (∂�) = k < m. Then there exists φ ∈
C(Rm, Rk) which is odd and such that φ(x) �= 0 for all x ∈ ∂�. We can
suppose that φ is a map from R

m into R
m by taking the last m− k components

of φ(x) equal to 0. Obviously, this extended map has still the property that
φ(x) �= 0 for all x ∈ ∂� and hence the topological degree deg(φ,�, 0) is well
defined. Since φ is odd, the Borsuk–Ulam theorem (see Theorem 3.9) applies
and yields that deg(φ,�, 0) = 1 (mod 2). By the continuity of deg(φ,�, ·) it
follows that there is ε > 0 such that

deg(φ,�, y) = 1 (mod 2) ∀ y ∈ Bε

where Bε = {y ∈ R
m : |y| < ε}. This means that φ(x) = y has a solution in �

for all y ∈ Bε, namely that Bε ⊂ φ(�), while φ(�) ⊂ R
k , with k < m. This

contradiction proves the theorem. �

Corollary 10.6 γ (Sm−1) = m. As a consequence, if E is infinite dimensional
and separable and S denotes the unit sphere in E, then γ (S) = +∞.

We conclude this section with a result that links the genus and the L-S category
in projective spaces, anticipated in Example 9.4(iv). If E is a Hilbert space,
S = SE = {u ∈ E : ‖u‖ = 1}, we set PS = S/Z2, where Z2 & {IdE ,−IdE}. If
E = R

m+1 we find PS = P
m, while if E is an infinite dimensional space then

PS = P
∞. Moreover, if A ⊂ S, we set A∗ = A/Z2.
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Theorem 10.7 Let A ⊂ S be (symmetric and) such that γ (A) < +∞. Then
γ (A) = cat(A∗, PS).

As a consequence, we find that cat(Pm, PS) = γ (Sm) = m+1 (more precisely,
one can show that cat(Pm) = γ (Sm) = m + 1), and when E is infinite dimen-
sional and separable, this implies that cat(P∞) = +∞. For more details and
proofs, we refer to [148], Theorem 3.7.

10.2 Existence of critical points

The genus can be used to prove existence results of critical points similar to
Theorem 9.10, provided J is even and M ∈ A. More precisely, we set

γk(M) = sup{γ (K) : K ⊂ M, K ∈ A and is compact}
and define, for all m ≤ γk(M)

Am = {A ⊂ M : A ∈ A, A is compact and γ (A) ≥ m}
and

σm = inf
A∈Am

max
u∈A

J(u). (10.1)

As for the critical levels defined through the category, here m is a positive
integer such that m ≤ γk(M), if γk(M) < +∞; otherwise, m can be any
positive integer. This will always be understood in the sequel.

Let us explicitly remark that σm < +∞ and σm ≤ σm+1. Moreover, if J is
bounded from below on M, then σ1 > −∞ and hence any σm is finite.

If we deal with problems without constraints, namely if we are looking for
stationary points of J ∈ C1(E, R) on E, we understand that A = {A ∈ E \ {0} :
A is symmetric}, that

Am = {A ⊂ A, A is compact and γ (A) ≥ m}
and that σm is defined as before.

One can easily show the following general result which holds both in the
case of critical points of J constrained on M and in the case without constraints.

Proposition 10.8 Each finite σm is a critical level for J ∈ C1(E, R) (or a
critical level for J on M) provided (PS)σm holds. Moreover, if σ := σm =
σm+1 = · · · = σm+q ∈ R for some integer q ≥ 1, then γ (Zσ ) ≥ q + 1.

Proof. It suffices to take into account the following facts:

• the genus verifies properties similar to those of category; in particular
compare Lemma 10.4 to Lemmas 9.6 and 9.10
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• if J is even and M is symmetric then the steepest descent flow gives rise to
odd deformations. Actually, in the present case the vector field −∇J(u) is
odd, or the pseudogradient vector field can be taken to be odd. Then
−α(t, u) solves the Cauchy problem

y′ = −∇J(y), y(0) = −u

and thus −α(t, u) = α(t,−u), namely α is odd in u.

In particular, the latter remark allows us to use Lemma 10.4(iii). �

An application of Proposition 10.8 will be given in Section 10.4 below.
More in general, taking into account the preceding observations, one can

repeat all the arguments used in Section 9.2 to prove the following.

Theorem 10.9 Let (M) hold and let J ∈ C1,1(E, R) be bounded from below
on M and satisfy (PS). Furthermore, suppose that J is even and that M ∈ A.
Then J has at least γk(M) critical points on M. More precisely, one has

(i) σm is a critical level of J;
(ii) let σm = σm+1 = · · · = σm+q for some integer q ≥ 1 and let σ denote

this common value, then γ (Zσ ) ≥ q + 1;
(iii) if there is b such that σm < b for any m, then it suffices to assume that J

satisfies (PS)c for every c < b.

As a direct application of Theorem 10.9 we can find a classical result due to
Lusternik and Schnirelman: any even functional J ∈ C1,1(Rm, R) has at least
m pairs of critical points on the sphere Sm−1 = {x ∈ R

m : |x| = 1}. Actually,
γk(Sm−1) = γ (Sm−1) = m, according to Corollary 10.6.

Furthermore, we can prove results similar to Theorem 9.15 and Corollaries
9.16 and 9.17.

Theorem 10.10 Let (M) hold, with M ∈ A and let J ∈ C1,1(E, R) be bounded
from below on M and even. Then

(i) if (PS)c holds for all c ≤ a then γ (Ma) < +∞;
(ii) if J is also bounded from above on M, then γ (M) < +∞;

(iii) if γ (M) = +∞ and (PS)a holds for all a < supM J, then J (has infinitely
many critical points and) σm → supM J.

Remark 10.11 Using pseudogradient vector fields one can extend the above
results to cover the case in which J ∈ C1(E, R) and M is a C1,1 Hilbert (or
Banach) manifold. Furthermore, it is worth mentioning that A. Szulkin [168]
proved some L-S theorems for even C1 functionals on a C1 manifold. �
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Theorems 10.9 and 10.10 together with Remark 10.11, apply to the nonlinear
eigenvalue problem

J ′(u) = λu. (10.2)

On the functional J ∈ C1(E, R) we assume the following conditions:

(a) J(0) = 0 and J(u) < 0, respectively J(u) > 0, for all u �= 0;
(b) J is weakly continuous and J ′ is compact;
(c) J ′(u) �= 0 for all u �= 0.

Theorem 10.12 Let E be a separable infinite dimensional Hilbert space and
suppose that J ∈ C1(E, R) satisfies (a)–(c) and is even.
Then (10.2) has infinitely many solutions (µk , zk) with ‖zk‖ = 1 and µk ↗ 0,
respectively µk ↘ 0.

Proof. We will carry out the proof in the case that J < 0 (in the case that
J(u) > 0 we take −J). We apply the preceding results with M = S. For this,
we will show

(i) J is bounded from below on S,
(ii) condition (PS)c holds, for every c < 0.

If inf S J = −∞ there exists a sequence uk ∈ S such that J(uk)→−∞. Up to
a subsequence, uk → u weakly in E. Since J is weakly continuous, it follows
that J(u) ≤ lim inf J(uk) = −∞, a contradiction that proves (i).

To prove (ii), let uk ∈ S be (PS)c sequence, with c < 0. Again we can assume
that uk → u weakly in E. From the weak continuity, one has that J(u) = c.
Since c < 0 then u �= 0. For brevity we write ∇J to indicate the gradient of J
on S. From

∇J(uk) = J ′(uk)− (J ′(uk) | uk) uk , (10.3)

we infer

(∇J(uk) | J ′(uk)) = ‖J ′(uk)‖2 − (J ′(uk) | uk)
2.

Recall that J ′ is compact and that‖∇J(uk)‖ → 0 because uk is a (PS)c sequence.
Then taking the limit as k →∞ we get

0 = ‖J ′(u)‖2 − (J ′(u) | u)2.

This and (c) imply (J ′(u) | u) �= 0. Then for n large we have that (J ′(uk) |
uk) �= 0 and hence from (10.3) we obtain

uk = 1

(J ′(uk) | uk)
[J ′(uk)− ∇J(uk)].
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Passing to the limit we finally find

uk → 1

(J ′(u) | u)
[J ′(u)− ∇J(u)].

This proves that (PS)c holds.
Since γk(S) = γ (S) = +∞ we find infinitely many critical points zk that

give rise to solutions of (10.2). Furthermore, one obviously has that supS J = 0
and hence, applying Theorem 10.10 (iii) (if J ∈ C1,1(E, R), otherwise we use
Remark 10.11) we find that J(zk) ↗ 0. Since J is weakly continuous, this
implies that zk → 0 weakly and hence µk = (J ′(zk) | zk)↗ 0. �

Remark 10.13 Let us emphasize that we have used the statement (iii) of
Theorem 10.9. Actually, the (PS)c condition does not hold at the level c = 0;
otherwise, Theorem 10.10 would imply that γ (S) < +∞, a contradiction. �

Theorem 10.12 applies to the nonlinear eigenvalue problem discussed in
Proposition 5.13 {

−λ
u = f (x, u) x ∈ �

u(x) = 0 x ∈ ∂�,
(EPλ)

where f (x, u) ∈ Fp, 1 < p < (n+ 2)/(n− 2), and f is odd with respect to u.
Take J(u) = 	(u) = ∫

�
F(x, u) dx, where F(x, u) = ∫ u

0 f (x, s) ds and remark
that:

• f odd in u =⇒ 	 is even on E = H1
0 (�);

• uf (x, u) < 0, respectively > 0, ∀ x ∈ �, ∀ u �= 0 =⇒ (J .1.1) holds.

A straight application of Theorem 10.12 yields zk ∈ S and µk ↗ 0, respectively
µk ↘ 0 such that 	′(zk) = µkzk . This proves the following theorem.

Theorem 10.14 Suppose that f ∈ Fp, 1 < p < (n+ 2)/(n− 2), and that f
is odd with respect to u. Moreover, let uf (x, u) < 0, respectively > 0, ∀x ∈ �,
u �= 0.
Then (EPλ) has infinitely many solutions (µk , zk) with ‖zk‖ = 1 and µk ↗ 0,
respectively µk ↘ 0.

The above theorem is the extension of Proposition 5.13 to odd nonlinearities.

Example 10.15 Let f = |u|p−1u with 1 ≤ p < (n+ 2)/(n− 2). Then the
nonlinear eigenvalue problem

−λ
u = |u|p−1u (x ∈ �), u = 0 (x ∈ ∂�),

has infinitely many solutions (µk , zk) ∈ R × H1
0 (�) such that ‖zk‖ = 1 and

µk ↘ 0. By scaling, we also find infinitely many solutions of−
u = |u|p−1u,
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u ∈ H1
0 (�), see Section 10.3. When p = 1 the preceding equation becomes

the linear problem −λ
u = u, u ∈ H1
0 (�) and µk = (λk)

−1 are characteristic
values of−
 with Dirichlet boundary conditions on ∂�. Actually, it is possible
to show that the characteristic values found using the genus coincide with those
found by the classical Courant–Fisher min-max procedure, see [82]. The reader
can fill in the details as an exercise. �

10.3 Multiple critical points of even unbounded functionals

The genus can be used to find multiple critical points of functionals which are
even and satisfy the assumptions of the mountain pass or linking theorem. First,
we will discuss an extension of the MP Theorem 8.2. In the sequel, the Hilbert
space E is assumed to be separable.

Let J ∈ C1(E, R) be even and set E+ = {u ∈ E : J(u) ≥ 0}. We suppose
that

(MP-1) J(0) = 0 and ∃ r, ρ > 0 such that

(i) J(u) > 0 ∀ u ∈ Br \ {0} and
(ii) J(u) ≥ ρ ∀ u ∈ Sr ;

(MP-2′) for any m dimensional subspace Em ⊂ E, Em ∩ E+ is bounded.

Let us remark that (MP-2′) is nothing but the natural extension of (MP-2). As
for (MP-1), see also Remark 8.3.

LetH∗ denote the class of maps h ∈ C(E, E)which are odd homeomorphisms
and such that h(B1) ⊂ E+. H∗ is not empty because the map hr : u → r u
belongs to H∗.

We set

�m = {A ⊂ A : A is compact, and γ (A ∩ h(S)) ≥ m, ∀ h ∈ H∗}
where, as usual, S = ∂B1, A = {A ⊂ E \ {0} : A is closed and symmetric}
and γ denotes the genus, see Section 10.1. The following lemma describes the
properties of �m.

Lemma 10.16 Let J ∈ C1(E, R) be even and satisfy (MP-1) and (MP-2′). Then

(i) �m �= ∅ for all m;
(ii) �m+1 ⊂ �m;

(iii) if A ∈ �m and U ∈ A, with γ (U) ≤ q < m, then A \ U ∈ �m−q;
(iv) if η is an odd homeomorphism in E such that η−1(E+) ⊂ E+, then

η(A) ∈ �m provided A ∈ �m.
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Proof. (i) By (MP-2′) there exists R > 0 such that

Em ∩ E+ ⊂ BR ∩ Em.

We will show that Bm
R := BR ∩ Em ∈ �m. For any h ∈ H∗ one has that

h(B1) ⊂ E+ and then Em ∩ h(B1) ⊂ Em ∩ E+ ⊂ Bm
R . This readily implies

that Em ∩ h(S) ⊂ Bm
R ∩ h(S). Since, obviously, one also has that Bm

R ∩ h(S) ⊂
Em ∩ h(S), we infer

Bm
R ∩ h(S) = Em ∩ h(S). (10.4)

Since h is an odd homeomorphism, then Em ∩ h(B1) is a symmetric neighbour-
hood � of 0. It is also easy to check that ∂� = ∂(Em ∩ h(B1)) is contained in
Em ∩ h(S). Then Theorem 10.5 implies that

γ (Bm
R ∩ h(S)) = γ (Em ∩ h(S)) ≥ γ (∂�) = m.

This shows that Bm
R ∈ �m.

(ii) This is a trivial consequence of the monotonicity property of the genus.
(iii) Obviously, A \ U ∈ A and is compact. Furthermore one has

[A \ U] ∩ h(S) = [A ∩ h(S)] \ U.

Then Lemma 10.4(ii) yields

γ ([A \ U] ∩ h(S)) = γ ([A ∩ h(S)] \ U) ≥ γ (A ∩ h(S))− γ (U) ≥ m − q,

whence A \ U ∈ �m−q.
(iv) The set A′ = η(A) is compact and belongs to A because η is an odd

homeomorphism. To prove that A′ ∈ �m we have to show that γ (A′∩h(S)) ≥ m
for any h ∈ H∗. There holds

A′ ∩ h(S) = η[A ∩ η−1(h(S))]. (10.5)

Moreover, if η satisfies the condition η−1(E+) ⊂ E+ then η−1 ◦ h ∈ H∗ for all
h ∈ H∗. Thus, if A ∈ �m one has

γ (A ∩ η−1(h(S))) ≥ m. (10.6)

Since η is odd, Lemma 10.4(iii) jointly with (10.5) and (10.6) imply

γ (A′ ∩ h(S)) = γ (η[A ∩ η−1(h(S))]) ≥ γ (A ∩ η−1(h(S))) ≥ m,

and hence A′ = η(A) ∈ �m. �

Remark 10.17 The condition required in (iv) is equivalent to asking thatη(u) ∈
E+ =⇒ u ∈ E+, namely

J(η(u)) ≥ 0 =⇒ J(u) ≥ 0.
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In particular, if η is a steepest descent flow, then J(η(u)) ≤ J(u) and hence
J(u) ≥ 0 provided J(η(u)) ≥ 0. �

The preceding properties of �n allow us to define min-max levels of J by setting

bm = inf
A∈�m

max{J(u) : u ∈ A}. (10.7)

Let us point out that each bm is finite because the sets A ∈ �m are compact.
Moreover one has

Theorem 10.18 Let J ∈ C1(E, R) be even and satisfy (MP-1) and (MP-2′).
Then

(i) for every positive integer m one has bm+1 ≥ bm ≥ ρ > 0;
(ii) each bm is a critical level of J, provided (PS)bm holds;

(iii) if b = bm = bm+1 = · · · = bm+q, then γ (Zb) ≥ q + 1, provided (PS)b

holds.

As a consequence if, in addition to the preceding assumptions, J satisfies (PS)c

for every c > 0, J possesses infinitely many critical points.

Proof. Recalling that hr ∈ H∗ and hr(B1) = Sr then A ∩ Sr �= ∅ for any
A ∈ �m. Therefore

bm ≥ inf {J(u) : u ∈ Sr} ≥ ρ > 0.

Moreover, Lemma 10.16(ii) implies that bm ≤ bm+1 and (i) follows.
Next, it suffices to prove the stronger statement (iii). By contradiction, sup-

pose that γ (Zb) ≤ q. Using Lemma 10.4(iv) there is a neighbourhood U of Zb

such that U ∈ A and
γ (U) = γ (Zb) ≤ q.

Applying the deformation Lemma 9.12, jointly with Remark 9.13 to take into
account that J ∈ C1(E, R), we find a homeomorphism η and a positive δ such
that (see Remark 10.17)

η−1(E+) ⊂ E+ (10.8)

and
J(η(u)) < b− δ, ∀ u ∈ Jb+δ \ U. (10.9)

Moreover η is odd because J is even. By the definition of b = bm+q, there
exists A ∈ �m+q such that A ⊂ Jb+δ . By Lemma 10.4(ii) it follows that Ã :=
A \ U ∈ �m. In view of (10.8), Lemma 10.16(iv) applies yielding η(Ã) ∈ �m.
Finally (10.9) implies

η(Ã) ⊂ Jb−δ ,
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a contradiction with the definition of b = bm. �

We will now deal with the case in which J is even and has the geometry of the
linking theorem 8.24. We assume that E = V ⊕ W , with d = dimV < +∞,
W = V⊥ and let J ∈ C1(E, R) satisfy (MP-2′) and

(L-4′) J(0) = 0 and ∃ r, ρ > 0 such that

(i) J(u) > 0, ∀ u ∈ (Br \ {0}) ∩W , and
(ii) J(u) ≥ ρ, ∀ u ∈ Sr ∩W .

Let us define the counterparts of H∗ and �m by setting

H̃ = {h ∈ C(E, E) : h is an odd homeomorphism, and h(B1) ⊂ E+ ∪ Br}
and

�̃m = {A ⊂ A : A is compact, and γ (A ∩ h(S)) ≥ m ∀ h ∈ H̃}.
As before, H̃ �= ∅ because hr ∈ H̃.

Lemma 10.19 If J is even and satisfies (L-4′) and (MP-2′) then

(i) �̃m �= ∅ for all m;
(ii) �̃m+1 ⊂ �̃m;

(iii) if A ∈ �̃m and U ∈ A, with γ (U) ≤ q < m, then A \ U ∈ �̃m−q;
(iv) if η is an odd homeomorphism in E such that η(u) = u for all u with

J(u) < 0 and η−1(E+) ⊂ E+, then η(A) ∈ �̃m provided A ∈ �̃m.

Proof. (i) As in Lemma 10.16, there exists R > 0, such that Bm
R := BR ∩Em ⊃

E+ ∩ Em. Taking R possibly larger, one also has that

Bm
R ⊃ (E+ ∪ Br) ∩ Em.

Then, according to the definition of H̃, one has

Bm
R ⊃ h(B1) ∩ Em, ∀ h ∈ H̃.

The rest of the proof is the same as that carried out in Lemma 10.16(i).
(ii)–(iii) These properties also follow reasoning as for the corresponding

claims in Lemma 10.16.
(iv) Let us show that η−1 ◦ h(B1) ⊂ E+ ∪ Br . For any u ∈ B1 let v be

such that η(v) = h(u). Since h ∈ H̃ it follows that η(v) = h(u) ∈ E+ ∪ Br .
Either η(v) ∈ E+ and then v ∈ E+ because η−1(E+) ⊂ E+ or η(v) = v. In
any case one has that v = η−1 ◦ h(u) ∈ E+ ∪ Br . Since η−1 ◦ h is an odd
homeomorphism, it follows that η−1 ◦ h ∈ H̃, whenever h ∈ H̃. Repeating the
arguments used to prove Lemma 10.16(iv), the result follows. �
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Let us define
b̃m = inf

A∈�̃m

{J(u) : u ∈ A}.

Theorem 10.20 Let J ∈ C1(E, R) be even and satisfy (L-4′) and (MP-2′).
Then, for all m > d, one has:

(i) b̃m+1 ≥ b̃m ≥ ρ > 0;
(ii) each b̃m is a critical level for J, provided (PS)̃bm

holds;

(iii) if b̃ = b̃m = · · · = b̃m+q, then γ (Z̃b) ≥ q + 1, provided (PS)̃b holds.

As a consequence, if, in addition to the preceding assumptions, J satisfies (PS)c

for every c > 0, J possesses infinitely many critical points.

Proof. Let A ∈ �̃m with m > d. Then, taking h = hr we find

γ (A ∩ hr(S)) = γ (A ∩ Sr) ≥ m > d. (10.10)

This implies that
(A ∩ Sr) ∩W �= ∅. (10.11)

To see this, we can argue by contradiction: if (A ∩ Sr) ∩W = ∅, then, denoted
by P the canonical projection onto V , one has that

P(A ∩ ∂Br) ⊂ V \ {0}.
Thus, such a P is an odd continuous map from A ∩ ∂Br to V , that does not
vanish on A ∩ ∂Br . Since dimV = d, then the definition of genus implies that
γ (A ∩ Sr) ≤ d, a contradiction to (10.10).
From (10.11) and (L-4′) it follows that

b̃m ≥ max{J(u) : u ∈ A ∩ Sr} ≥ ρ > 0.

The rest of the theorem is proved as Theorem 10.18, noticing that Lemma
10.19(iv) applies because the map η given by the deformation lemma can
obviously be taken to satisfy η(u) = u for all u such that J(u) < 0. �

The next result deals, roughly, with a functional J which has a strict local
minimum at 0, is bounded from below and has a negative global minimum.
According to the mountain pass theorem, such an f possesses a second, non-
trivial critical point at a positive level. We will show that if f is even and
{u : f (u) < 0} has genus d̃, then f has 2̃d pairs of nontrivial critical points.

Precisely, let us substitute (MP-2′) with the following statement.

(MP-2′′) There exist a subspace Ṽ of E with dim(Ṽ) = d̃ and a compact,
symmetric set K ⊂ Ṽ such that J < 0 on K and 0 lies in a bounded
component in Ṽof Ṽ −K.
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u

J(u)

Figure 10.1 Behaviour of J satisfying (MP-2′′). Notice that this is the symmetric
counterpart of Figure 8.2.

Theorem 10.21 Let J ∈ C1(E, R) be even and satisfy (MP-1), (MP-2′′) and
(PS). Then each b̃m, 1 ≤ m ≤ d̃, is a positive critical level for J, and J possesses
at least d̃ pairs of nontrivial critical points ±um, with J(±um) > 0.
If, in addition, J is bounded below on E, then J possesses at least other d̃ pairs
of nontrivial critical points ±vk, 1 ≤ k ≤ d̃, with J(±vk) < 0.

Proof. To prove the first statement, let us remark that the only role played
by (MP-2′) was to show that �m �= ∅. We shall prove that this is still the
case for 1 ≤ m ≤ d̃, whenever (MP-2′′) holds. Let again A = BR ∩ Em. For
R large and 1 ≤ n ≤ d̃, (MP-2′′) implies that A ⊃ K ∩ Em. Therefore the
component Q of E+ ∩ Em containing 0 lies in A. Thus, for all h ∈ H∗ one has
that A ∩ h(∂B1) ⊃ Q ∩ h(∂B1) and hence

γ (A ∩ h(∂B1)) ≥ γ (Q ∩ h(∂B1)) ≥ m.

The last inequality is due to the fact that Q∩h(∂B1) contains the boundary of a
symmetric, bounded, neighbourhood of 0 in E. Then, repeating the arguments
of Theorem 10.18, the result follows.

Let J be, in addition, bounded from below on E and consider the inf-sup
level

c̃k = inf
γ (A)≥k

max[J(u) : u ∈ A].
Since K contains the boundary of a symmetric, bounded neighbourhood of 0
in Ṽ , then γ (K) = d̃ and there holds

c̃̃d ≤ max[J(u) : u ∈ K] < 0.

As a consequence, for all 1 ≤ k ≤ d̃ one has c̃k ≤ c̃̃d < 0 and each c̃k carries a
pair of nontrivial critical points. This completes the proof of the theorem. �
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10.4 Applications to Dirichlet boundary value problems

In this final section, we will apply the preceding abstract results to find mul-
tiple solutions of semilinear Dirichlet BVPs with odd nonlinearities. To avoid
technicalities we will focus on model problems, only.

We first consider the sublinear problem{−
u = λu− |u|p−1u x ∈ �

u = 0 x ∈ ∂�,
(10.12)

where p > 1. We have shown, see Example 5.11, that (10.12) possesses at
least a (positive) solution for all λ > λ1, λ1 being the first eigenvalue of −


on E. We want to improve this result in the case of an odd nonlinearity. As in
Example 5.11, we perform a truncation, by setting

fλ(u) =
{
λu− |u|p−1u if −λ1/(p−1) ≤ u ≤ λ1/(p−1)

0 otherwise,

and consider the auxiliary boundary value problem{−
u(x) = fλ(u) x ∈ �

u(x) = 0 x ∈ ∂�.
(10.13)

The same arguments used in Example 5.11 show that any solution u of (10.13)
satisfies |u(x)| ≤ λ1/(p−1) for all x ∈ �, and hence is a solution of (5.5). For
u ∈ E = H1

0 (�), let

Jλ(u) = 1

2
‖u‖2 −

∫
�

Fλ(u) dx, Fλ(u) =
∫ u

0
fλ(s) ds.

Obviously, Jλ is even and of class C1. Moreover, we know that Jλ is bounded
from below on E, is coercive and that every (PS) sequence is bounded. This
immediately implies that (PS) holds. As in (10.1), we set

σλ,m = inf
γ (A)≥m

sup
u∈A

Jλ(u), A ∈ A.

We claim that if λ > λk , where λk is the kth eigenvalue of −
 on E, then
σλ,k < 0. Actually, let ϕi denote an eigenfunction corresponding to λi, with
‖ϕi‖ = 1 and (ϕi | ϕj) = 0 for i �= j, and let us consider the k − 1 dimensional
sphere

Sk,ε =
{

v =
k∑
1

aiϕi :
k∑
1

a2
i = ε2

}
.
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J�

Sk,

 

 

V=�
1, …,         k�

Sk,  

Figure 10.2 Behaviour of Jλ(u) with u ∈ V = 〈ϕ1, . . . ,ϕk〉 and λ > λk .

From Corollary 10.6 one infers that γ (Sk,ε) = k. Furthermore, for v ∈ Sk,ε and
ε small, one has that Fλ(v) = 1

2λv2 − 1/(p+ 1)|v|p+1 and hence

Jλ(v) = 1

2
ε2 − 1

2
λ

k∑
1

a2
i

∫
�

|ϕi|2 + o(ε2)

= 1

2
ε2 − 1

2
λ

k∑
1

a2
i λ
−1
i + o(ε2)

<
1

2
ε2 − 1

2

λ

λk
ε2 + o(ε2).

Thus if λ > λk we deduce for ε � 1

sup
v∈Sk,ε

Jλ(v) < 0,

and this implies that σλ,k < 0 provided λ > λk . A straight application of
Proposition 10.8 yields that Jλ has at least k pairs of nontrivial critical points
which give rise to k nontrivial solutions of (10.12). More in general one can
show

Theorem 10.22 Consider the problem{−
u = λu− f (u) x ∈ �

u = 0 x ∈ ∂�,
(D−

λ )
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J�

J� (r v)

V = �
1,  …,m�

R–R r v

Figure 10.3 Behaviour of Jλ(u) with u ∈ V = 〈ϕ1, . . . ,ϕm〉.

where f is locally Hölder continuous, odd and satisfies:

lim
u→0

f (u)

u
= 0, lim|u|→+∞

f (u)

u
= +∞, (10.14)

uniformly with respect to x ∈ �. Then (D−λ ) has at least k pairs of nontrivial
solutions, provided λ > λk.

Next, let us consider the model problem{−
u = λu+ |u|p−1u x ∈ �

u = 0 x ∈ ∂�,
(10.15)

where 1 < p < (n+ 2)/(n− 2). This is a superlinear problem like those
discussed in Theorems 8.11 and 8.28.

Now the corresponding functional Jλ is defined on E by

Jλ(u) = 1

2
‖u‖2 − 1

2
λ

∫
�

|u|2 dx − 1

p+ 1

∫
�

|u|p+1 dx.

As before, Jλ is even. Moreover Jλ satisfies (PS)c for every c > 0 and (MP-1),
respectively (L-4′), if λ < λ1, respectively λ ≥ λ1.
We claim that Jλ satisfies the assumption (MP-2′). If this is true, then
Theorem 10.18, respectively Theorem 10.20, applies and hence (10.15) has
infinitely many solutions for every λ ∈ R. To show that (MP-2′) holds, it suf-
fices to take any v ∈ span{ϕ1, . . . ,ϕm} (we use the same notation employed
before, when we discussed the problem (10.12)), v = ∑m

1 aiϕi, with ‖v‖ = 1
and consider Jλ(rv), r > 0. It is clear that

Jλ(rv) = 1

2
r2 − 1

2
λr2‖v‖2

L2 − 1

p+ 1
rp+1‖v‖p+1

Lp+1 .



10.4 Applications to Dirichlet boundary value problems 173

This immediately implies that there exists R > 0 such that Jλ(rv) < 0 for every
r ≥ R, proving that (MP-2′) holds.

More in general, quite similar arguments lead to the following theorem.

Theorem 10.23 Consider the problem{−
u = λu+ f (x, u) x ∈ �

u = 0 x ∈ ∂�,
(D+

λ )

where f ∈ Fp, 1 < p < (n+ 2)/(n− 2), is odd and satisfies (8.9)–(8.10),
namely

lim
u→0+

f (x, u)

u
= λ ∈ R, for a.e. x ∈ �;

∃ r > 0, θ ∈ (0, 1
2 ) : F(x, u) ≤ θuf (x, u), ∀ x ∈ �, |u| ≥ r.

Then, for every λ ∈ R, (D+λ ) has infinitely many pairs of (nontrivial) solutions.

The above theorem is the counterpart, for odd nonlinearities, of Theorem 7.14
(if λ < λ1) or Theorem 8.28 (if λ ≥ λ1).

Remark 10.24 (i) It is possible to show that the min-max critical levels bm,
defined in (10.7), or the corresponding b̃m when λ ≥ λ2, diverge at +∞ as
m →+∞. Moreover, from the equation it follows that

‖um‖2 =
∫
�

[λu2
m + f (x, um)um] dx.

This and (8.10) imply

J(um) =
∫
�

[
1
2 f (x, um)um − F(x, um)

]
dx ≤ c1‖um‖2 + c2,

and hence ‖um‖ → ∞.
(ii) A similar result can be proved for problems where the nonlinearity

is odd and satisfies the same assumptions as the nonlinearity discussed in
Theorem 7.14. �

Our last application deals with problems like{−
u = µ(|u|s−1u− |u|p−1u) x ∈ �

u = 0 x ∈ ∂�,
(10.16)

with 1 < s < p. Suppose first that p < (n+ 2)/(n− 2). The solutions of
(10.16) are critical points of

Jµ(u) = 1

2
‖u‖2−µ

∫
�

[
1

s+ 1
|u|s+1 − 1

p+ 1
|u|p+1

]
dx, u ∈ E = H1

0 (�).

(10.17)
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Let us show that Theorem 10.21 applies. Actually, u = 0 is a strict local
minimum of Jµ because 1 < s < p and thus (MP-1) holds. Take once more
any v =∑m

1 aiϕi, with ‖v‖ = 1. It is easy to check that there exists r > 0 such
that taking 0 < r < r, one has that∫

�

[
1

s+ 1
|rv|s+1 − 1

p+ 1
|rv|p+1

]
dx > 0.

Then there exists µm > 0 large enough such that for all µ > µm one has
that Jµ(rv) < 0. This implies that (MP-2′′) holds with Ṽ = span{ϕ1, . . . ,ϕm}
and K = {u = r

∑m
1 aiϕi : 0 < r < r}. Finally, it is easy to check as for

(D−
λ ), that Jµ is bounded from below on E and that (PS) holds. In conclusion,

an application of Theorem 10.21 yields, for any integer m > 0, the existence
of µm > 0 such that (10.16) possesses at least 2m pairs of nontrivial solu-
tions provided µ > µm. If p ≥ (n+ 2)/(n− 2), we perform a truncation by
setting

f̃ (u) =
{|u|s−1u− |u|p−1u if |u| ≤ 1

0 otherwise,

and consider the auxiliary functional

J̃µ(u) = 1

2
‖u‖2 − µ

∫
�

F̃(u) dx, F̃(u) =
∫ u

0
f̃ (s) ds.

Repeating the preceding arguments one shows that there exists µm > 0 such
that J̃µ possesses at least 2m pairs of critical points provided µ > µm which
give rise to solutions of −
u = µ̃f (u), u ∈ E. By the maximum principle,
these solutions satisfy (10.16).

More in general, one can use similar arguments to handle a problem such as{−
u = µ f (x, u) x ∈ �

u = 0 x ∈ ∂�.
(10.18)

Let F(x, u) = ∫ u
0 f (x, t) dt and set

Jµ(u) = 1

2
‖u‖2 − µ

∫
�

F(x, u) dx, u ∈ E.

Theorem 10.25 Suppose that f is locally Hölder continuous, is odd and
satisfies:

(a1) limu→0 f (x, u)/u = 0, uniformly with respect to x ∈ �,
(a2) f (x, u) > 0 in a deleted neighbourhood of u = 0,
(a3) there exists u > 0 such that f (x, v) < 0, for all x ∈ �.
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Then for any integer m > 0 there exists µm > 0 such that for all µ > µm,
(10.18) has at least 2m distinct pairs of solutions ±uj, ±uj with Jµ(±uj) <

0 < Jµ(±uj).

Of course, the preceding theorem is the counterpart of Theorem 8.14 for odd
functionals.

We conclude this section by summarizing, with some bifurcation diagrams, the
results found above. As usual, the figures are intended only to be suggestive.

0 u 0
  �1 �k �k + 1

�
 

 

�u – f (x, u)

behaviour of the nonlinearity in (D –
� ) bifurcation diagram of (D –

� )

Figure 10.4 Nonlinearity and solutions of (D−
λ ). The bold line denotes the branch

of positive solutions.

�1 �k �k + 1

�u + f (x, u)

behaviour of the nonlinearity in (D +
� ) bifurcation diagram of (D +

� )

0 u 0
 

 � �

Figure 10.5 Nonlinearity and solutions of (D+λ ). The bold line denotes the branch
of positive solutions.
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f (x, u)

behaviour of the nonlinearity in (10.18) bifurcation diagram of (10.18)

00 �1 �2 �m � u

Figure 10.6 Nonlinearity and solutions of (10.18).The bold line denotes the branch
of positive solutions.

10.5 Exercises

(i) Consider the superlinear BVP (D) discussed in Section 7.6 and suppose
that, in addition to the assumptions of Theorem 7.14, f is odd. Prove that
(D) has infinitely many pairs of solutions.

(ii) Consider a functional J ∈ C1(E, R) which satisfies the assumptions
(a)–(c) stated before Theorem 10.12 and let M be the unit sphere S in E.
Let Sm ⊂ S denote the m dimensional unit sphere and set
Ãm = {A ⊂ S : A = φ(Sm), φ ∈ C(Sm, S), φ odd}. Define

σ̃m = inf
A∈Ãm

max
u∈A

J(u).

(a) Show that σ̃m is a critical level for J on S.
(b) Show that σ̃m ↑ 0. [Hint: prove that σ̃m ≥ σm, where σm is defined

in (10.1).]

(iii) Let Em ⊂ E be an m-dimensional subspace and suppose that A ∈ A be
such that γ (A) > m. Prove that A ∩ Em �= ∅. (See the first part of the
proof of Theorem 10.20).
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Further results on elliptic Dirichlet problems

In this chapter we collect some further results on elliptic Dirichlet BVPs.
Section 11.1 is devoted to the existence of solitary waves. Section 11.2 deals
with an elliptic problem with critical nonlinearity, following a celebrated paper
by H. Brezis and L. Nirenberg [64]. In Section 11.3 equations with discon-
tinuous nonlinearities are studied and the final Section 11.4 is concerned with
problems with concave-convex nonlinearities.

11.1 Radial solutions of semilinear elliptic equation on R
n

In this section we will deal with the following semilinear elliptic equation in R
n

−
u+ u = up, u > 0, u ∈ W1,2(Rn), (11.1)

where n ≥ 3 and 1 < p < (n+ 2)/(n− 2). Similar results can be proved when
n = 2 and p > 1. Equation (11.1) arises, for example, when we look for a
solitary wave of the nonlinear Klein–Gordon equation

∂2ψ

∂t2
−
ψ + aψ = |ψ |p−1ψ , (a > 0). (11.2)

Above, (t, x) ∈ R×R
n and ψ = ψ(t, x) is a complex valued function. Making

the Ansatz ψ(t, x) = eiωtu(x) with 0 < ω < a, we find for u an equation
like (11.1) (to simplify the notation, we set a2 − ω2 = 1), where the condition
u ∈ W1,2(Rn) is required to obtain solutions with physical interest. We will
look for radial solutions of (11.1).

Let W1,2 denote the Sobolev space W1,2(Rn) endowed with scalar product

(u | v) =
∫

Rn
[∇u · ∇u+ uv] dx

and consider the functional J ∈ C2(W1,2, R),

J(u) = 1

2
‖u‖2 − 1

p+ 1

∫
Rn
|u|p+1 dx.

177



178 Further results on elliptic Dirichlet problems

Let us point out that the last integral makes sense because W1,2 ⊂ L p+1(Rn), for
1 < p < (n+2)/(n−2). We shall show that J has a MPcritical point which gives
rise to a radial solution of (11.1). Since it is clear that J has the MP geometry,
the main difficulty relies in the PS condition because, in general, W1,2 is not
compactly embedded in L p+1(Rn) even if 1 < p < (n+ 2)/(n− 2) (to check
this lack of compactness it suffices to take any function u ∈ W1,2, any sequence
ξk ∈ R

n such that |ξk| → ∞, and consider the translates uk(x) = u(x + ξk)).
This problem will be bypassed working with radial functions. Let W1,2

r denote
the space of functions in W1,2 which are radial. If u ∈ W1,2

r then u(x) = ũ(|x|)
for some ũ : R+ �→ R. In the sequel, to simplify the notation, we will identify
ũ with u, using the symbol u(r) for functions belonging to W1,2

r .
Below we collect some results dealing with properties of W1,2

r which are
interesting in themselves. We first prove the following lemma.

Lemma 11.1 Let n ≥ 3. There exists cn > 0, depending only on n, such that
for all u ∈ W1,2

r there holds

|u(r)| ≤ cnr(1−n)/2‖u‖, ∀ r ≥ 1. (11.3)

Proof. By density, we can suppose that u ∈ C∞0 (Rn). If the prime symbol
denotes the derivative with respect to r, we have (rn−1u2)′ = 2rn−1uu′ + (n−
1)rn−2u2, whence (rn−1u2)′ ≥ 2rn−1uu′. Integrating over [r,∞) we find

rn−1u2(r) ≤ −2
∫ ∞

r
rn−1uu′ dr ≤ c‖u‖2,

where c depends on n, only, proving (11.3). �

We can now state the key result for proving the PS condition.

Theorem 11.2 [164] The embedding of W1,2
r in Lq(Rn), n ≥ 3, is compact for

all 2 < q < 2∗.

Proof. Let uk ∈ W1,2
r be such that uk ⇀ 0. From (11.3) it follows that

|uk(r)| ≤ C1r(1−n)/2‖uk‖ ≤ C2r(1−n)/2.

Since q > 2 we deduce that, given ε > 0, there exists C3 > 0 and R > 0 such
that |uk(r)|q ≤ C3ε |uk(r)|2, for all r ≥ R. This implies∫

|x|≥R
|uk(x)|q dx ≤ C3ε

∫
|x|≥R

|uk(x)|2 dx ≤ C3ε ‖uk‖2 ≤ C4ε. (11.4)
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Moreover, from the standard Sobolev embedding theorem, we have that uk →
0, strongly in Lq(BR), for every 2 ≤ q < 2∗. Thus there exists k0 > 0 such that
for all k ≥ k0 one has ∫

|x|≤R
|uk(x)|q dx ≤ ε.

This and (11.4) imply that
∫
Rn |uk(x)|q dx ≤ C5ε for k ≥ k0, proving that

uk → 0, strongly in Lq(Rn), for every 2 < q < 2∗. �

Following W. Strauss [164], we are now in a position to prove the following
theorem.

Theorem 11.3 If 1 < p < (n + 2)/(n − 2), (11.1) has a classical radial
solution.

Proof. We will work in W1,2
r . Let c > 0 denote the MP level of J on W1,2

r .
Using Theorem 11.2 it is easy to check that c is a critical level which carries
a critical point u ∈ W1,2

r such that J ′(u) ⊥ W1,2
r . Let us show that u indeed

satisfies J ′(u) = 0. Let σ ∈ O(n) denote a generic rotation in R
n and define, for

all v ∈ W1,2, vσ (x) := v(σ−1x). One immediately verifies (that J(vσ ) = J(v)
and) that J ′(vσ ) = (J ′(v))σ . Since u is radial, then u = uσ and hence J ′(u) =
(J ′(u))σ , namely J ′(u) ∈ W1,2

r . Since one also has J ′(u) ⊥ W1,2
r , we infer that

J ′(u) = 0. By elliptic regularity, u ∈ C2 and then the usual argument implies
that u > 0 on R

n. This completes the proof. �

Remark 11.4
(a) The fact, proved above, that u is radial is a particular case of a more

general abstract result. More precisely, suppose that the topological group
G acts on the Hilbert space E through isometries and let J ∈ C1(E, R) be
G-invariant. Then any critical point of J on Fix(G) = {u ∈ E : gu = u,
∀ g ∈ G} is a critical point of J on E. This is called the symmetric
criticality principle by R. Palais [142].

(b) It is possible to show that any C2 radial solution u of (11.1) has an
exponential decay at infinity: namely there are C, δ > 0 such that

|u(r)| ≤ Cr(1−n)/2e−δr , r � 1.

We will be sketchy, leaving the details to the reader. Since u verifies
−(rn−1u′)′ = rn−1up then, setting w(r) = rn−1u2(r), one finds that
1
2 w′′ ≥ (1+ br−2 − up−1)w, where b = (n− 1)(n− 2)/2. Using (11.3),
it follows that w′′ ≥ mw, for some m > 0, for all r � 1. From this, an
elementary argument implies that w ≤ Ce−

√
m r , whence

|u(r)| ≤ Cr(1−n)/2e−
√

m r/2.
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(c) For further results dealing with more general equations like
−
u+ u = f (u), we refer to [53]. �

11.2 Boundary value problems with critical exponent

In this section we will study the BVP with critical exponent

−
u = λu+ u(n+2)/(n−2), u > 0, u ∈ H1
0 , (11.5)

where, as usual, n ≥ 3, � is a bounded domain in R
n with smooth boundary

∂� and H1
0 = H1

0 (�) is endowed with the norm ‖u‖2 = ∫
�
|∇u|2 dx.

Solutions of (11.5) are critical points of Jλ ∈ C∞(H1
0 , R),

Jλ(u) = 1

2
‖u‖2 − 1

2
λ|u|22 −

1

2∗
|u|2∗2∗ ,

where |u|p denotes the norm in Lp(�). Let us make a couple of remarks.

Remark 11.5
(a) For λ < λ1 (the first the eigenvalue of −
 on H1

0 ) the functional Jλ
satisfies (MP-1). Moreover, for any fixed u ∈ E \ {0}, one has that
Jλ(tu)→−∞ at t →∞ and then (MP-2) holds with, say, e = tu, t � 1.
As a consequence, if λ < λ1, then Jλ has the MP geometry.

(b) On the other hand, if � is star shaped, (11.5) has no solution for λ ≤ 0 (by
the Pohozaev identity). �

From these two remarks we deduce that Jλ does not satisfy the (PS) condition
for λ ≤ 0. Of course, the failure of the (PS) condition is related to the fact that
the embedding of L2∗(�) into H1

0 (�) is not compact. We want to investigate
what happens for λ > 0. The main result we are going to discuss is the following
one, contained in the aforementioned paper by Brezis and Nirenberg.

Theorem 11.6 If n ≥ 4 problem (11.5) has a solution for all λ ∈ ]0, λ1[.
If n = 3 there exists λ∗ ∈ [0, λ1[ such that (11.5) has a solution if and only if
λ ∈]λ∗, λ1[.

Remark 11.7 It might happen that λ∗ > 0. For example, if � is the unit ball
and n = 3, then one can show that λ∗ = λ1/4, see the paper by Brezis and
Nirenberg [64]. �

Remark 11.8 Let λ∗ = 0 and let us consider solutions uk of (11.5) corres-
ponding to a sequence λk ↓ 0. If � is star shaped, one has that ‖uk‖ → +∞.
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�1 �0

Figure 11.1 Bifurcation diagram of positive solutions of (11.5) when λ∗ = 0 and
� is star shaped (solid curve). The dashed line represents the branch of positive
solutions of the subcritical equation −
u = λu + up, u ∈ H1

0 (�), 1 < p <

(n+ 2)/(n− 2).

Otherwise one finds that, up to a subsequence, uk → u0, which is a solution of
(11.5) with λ = 0, in contradiction with the Pohozaev identity. �

Roughly, we will show two facts:

(i) the (PS)c condition holds for c smaller than a certain threshold involving
the best Sobolev constant, see below;

(ii) the MP critical level of Jλ lies below such a threshold, provided
λ ∈]0, λ1[, if n ≥ 4, respectively λ ∈]λ∗, λ1[, if n = 3.

To carry out this program, we first need some preliminaries. We denote by S
the best Sobolev constant for the embedding of H1

0 (�) into L∗(�), namely

S = inf {‖u‖2 : u ∈ H1
0 , |u|2∗ = 1}.

Recall that S does not depend on � and is never achieved, unless � = R
n

(otherwise there would be a positive solution u ∈ H1
0 of−
u = Su(n+2)/(n−2),

in contradiction with the Pohozaev identity). If � = R
n the best constant S is

achieved by the function

U(x) = c

(1+ |x|2)(n−2)/2
, c = (n(n− 2))(n−2)/4,

that satisfies

−
U = S U(n+2)/(n−2), x ∈ R
n.

Since this problem is dilation invariant, it turns out that also

Uε(x) := ε−(n−2)/2U(x/ε), ε > 0
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as well as the translated Uε(x − ξ), ξ ∈ R
n, satisfy −
Uε = S U(n+2)/(n−2)

ε

(x ∈ R
n) (actually it is possible to show that they are the only regular positive

solutions of this equation). Moreover, one has that

Uε ∈ L2∗(Rn), ∇Uε ∈ L2(Rn), and ‖Uε‖2 = |Uε|2∗2∗ = Sn/2.

As anticipated in the items (i) and (ii) before, we shall prove:

• Jλ satisfies the (PS)c condition for all c < 1
n Sn/2;

• if cλ denotes the MP critical level, one has that cλ < 1
n Sn/2 provided

λ ∈]0, λ1[ (respectively λ ∈]λ∗, λ1[) if n ≥ 4 (respectively if n = 3).

Let us begin with the (PS) condition. First we show a lemma, due to Brezis
and Lieb [63]. Let us point out explicitly that in this lemma � is any domain,
possibly unbounded, in R

n.

Lemma 11.9 Let um ∈ Lp(�), 1 ≤ p <∞ be such that

(a) |um|p ≤ constant
(b) um → u a.e. in �.

Then

lim |um − u|pp = lim |um|pp − |u|pp. (11.6)

Remark 11.10
(a) If, in addition to (a) and (b), one has also that |um|p → |u|p then um

converges to u strongly in Lp(�).
(b) If we replace Lp with any Hilbert space, one has that

‖um − u‖2 = ‖um‖2 + ‖u‖2 − 2(um|u). (11.7)

Hence if um converges weakly to u then (11.6) holds. �

Proof of the lemma. By the Fatou lemma,

|u|p ≤ lim inf
m→∞ |um|p ≤ constant

and this implies that u ∈ Lp(�). Now we use the following inequality: for all
ε > 0 there exists c(ε) > 0 such that∣∣|a+ b|p − |a|p − |b|p∣∣ ≤ ε|a|p + c(ε)|b|p, a, b ∈ R (11.8)

which, in turn, follows easily from

lim
t→+∞

|t + 1|p − |t|p − 1

|t|p = 0.
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Using (11.8) with a = um − u, and b = u we get∣∣∣∣∣∣|um|p − |um − u|p − |u|p︸ ︷︷ ︸
vm

∣∣∣∣∣∣ ≤ ε|um − u|p + c(ε)|u|p,

namely

|vm| − ε|um − u|p ≤ c(ε)|u|p.

By the dominated convergence theorem we infer

lim
m→∞

∫
�

(|vm| − ε|um − u|p) = 0. (11.9)

Moreover, from

|vm| ≤
(|vm| − ε|um − u|p)+ ε|um − u|p

we get ∫
�

|vm| ≤
∫
�

(|vm| − ε|um − u|p)+ ε

∫
�

|um − u|p.

Using (11.9) it follows that∫
�

|vm| ≤ o(1)+ c1ε, c1 = sup
m
|um − u|pp <∞.

In conclusion, we find∫
�

|vm| =
∫
�

∣∣|um|p − |um − u|p − |u|p∣∣→ 0,

proving the lemma.
We can now prove the next lemma.

Lemma 11.11 Jλ satisfies the (PS)c condition for all c < 1
n Sn/2.

Proof. Let Jλ(um)→ c and J ′λ(um)→ 0. As in the subcritical case one has that
‖um‖ is bounded and hence we can assume that um ⇀ u in H1

0 and in L2∗(�),
um → u in L2(�) and um → u a.e. in �. From J ′λ(um)→ 0 it follows that

(J ′λ(um)|ϕ) = (um|ϕ)− λ

∫
umϕ −

∫
|um|2∗−2umϕ = o(1), ∀ϕ ∈ H1

0 .

Then

(u|ϕ)− λ

∫
uϕ −

∫
|u|2∗−2uϕ = 0, ∀ϕ ∈ H1

0 .
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This means that u is a weak solution of (11.5). Taking ϕ = u we find

‖u‖2 − λ|u|22 = |u|2
∗

2∗ (≥ 0) (11.10)

and hence

Jλ(u) = 1

2
‖u‖2 − 1

2
λ|u|22 −

1

2∗
|u|2∗2∗ =

(
1

2
− 1

2∗

)
|u|2∗2∗ =

1

n
|u|2∗2∗ . (11.11)

After these preliminaries we can now prove that wm := um − u converges to 0
strongly in H1

0 . Using (11.7) we infer:

‖um‖2 = ‖wm‖2 + ‖u‖2 + o(1); (11.12)

|um|22 = |wm|22 + |u|22 + o(1) = |u|22 + o(1). (11.13)

Furthermore, using the Brezis–Lieb lemma we find

|um|2∗2∗ = |wm|2∗2∗ + |u|2
∗

2∗ + o(1). (11.14)

From (11.12), (11.13), (11.14) it follows that

Jλ(um) = 1

2
‖um‖2 − 1

2
λ|um|22 −

1

2∗
|um|2∗2∗

= Jλ(u)+ 1

2
‖wm‖2 − 1

2∗
|wm|2∗2∗ + o(1). (11.15)

Moreover, (J ′λ(um)|um)→ 0 implies

‖um‖2 − λ|um|22 − |um|2∗2∗ = o(1).

Then, using again (11.12), (11.13), (11.14) we find

‖wm‖2 + ‖u‖2 − λ|u|22 −
(
|wm|2∗2∗ + |u|2

∗
2∗
)
= o(1)

and hence

‖wm‖2 − |wm|2∗2∗ = −
(
‖u‖2 − λ|u|22 − |u|2

∗
2∗
)
+ o(1) = o(1),

because ‖u‖2 − λ|u|22 − |u|2
∗

2∗ = 0, see (11.10). It follows that

lim ‖wm‖2 = lim |wm|2∗2∗ (≡ α). (11.16)

By the Sobolev embeddings we know that S |wm|22∗ ≤ ‖wm‖2 and hence

S α2/2∗ ≤ α.

If α = 0 we are done. If α �= 0 then α ≥ Sn/2. In such a case, from Jλ(um)→ c
and using (11.15) and (11.16) we get

c = Jλ(u)+ 1

2
‖wm‖2 − 1

2∗
|wm|2∗2∗ + o(1) = Jλ(u)+

(
1

2
− 1

2∗

)
α + o(1).
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Since Jλ(u) ≥ 0, see (11.11),

c ≥ 1

n
α + o(1) ≥ 1

n
Sn/2 + o(1),

a contradiction, because c < 1
n Sn/2, by our assumption. So α = 0. �

To complete the proof of Theorem 11.6 it remains to show that the MP level cλ
is smaller than 1

n Sn/2 for λ ∈]0, λ1[ if n ≥ 4, respectively λ ∈]λ∗, λ1[ if n = 3.
We will prove this fact in the former case, only. The case n = 3 requires some
more technicalities and we refer to the original paper by Brezis and Nirenberg.

Without loss of generality, we assume that 0 ∈ �. Let ϕ ∈ C∞0 (�), ϕ(x) ≡ 1
in the ball |x| < ρ. We set

uε(x) = ϕ(x)Uε(x).

Lemma 11.12 For ε → 0 one has that ‖uε‖2 − λ|uε|22 < S|uε|22∗ .

Proof. We claim:

‖uε‖2 =
∫

Rn
|∇Uε|2 + O(εn−2) = Sn/2 + O(εn−2); (11.17)

|uε|2∗2∗ =
∫

Rn
U2∗

ε + O(εn−2) = Sn/2 + O(εn); (11.18)

|uε|22 =
{

constant ε2| log ε| + O(ε2) if n = 4

constant ε2 + O(εn−2) if n ≥ 5.
(11.19)

If the claim holds true, then for n ≥ 5,

‖uε‖2 − λ|uε|22
|uε|22∗

= Sn/2 − λε2 + O(εn−2)

(Sn/2 + O(εn))(n−2)/n
= S − λε2 + O(εn−2) < S,

provided |ε| is small enough. Similarly, for n = 4,

‖uε‖2 − λ|uε|22
|uε|22∗

= S − λε2| log ε| + O(ε2) < S as ε → 0,

and the lemma follows. It remains to prove the claim.

Proof of (11.17). Since, up to a constant,

uε(x) = ϕ(x) · ε(n−2)/2
(
ε2 + |x|2

)−(n−2)/2
,
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we find

∇uε(x) = ε(n−2)/2∇ϕ(x)(
ε2 + |x|2)(n−2)/2

− (n− 2)
ε(n−2)/2xϕ(x)(
ε2 + |x|2)n/2

.

Since ϕ(x) ≡ 1 on |x| < ρ, it follows that

‖uε‖2 = (n− 2)2εn−2
∫
�

|x|2(
ε2 + |x|2)n + O(εn−2)

= (n− 2)2εn−2
∫

Rn

|x|2(
ε2 + |x|2)n + O(εn−2).

Performing the change of variable x = εy we get

‖uε‖2 = (n− 2)2εn−2
∫

Rn

εn+2|y|2
ε2n

(
1+ |y|2)n + O(εn−2)

= (n− 2)2
∫

Rn

|y|2(
1+ |y|2)n + O(εn−2).

Now, the constant in the definition of U is such that

(n− 2)2
∫

Rn

|y|2(
1+ |y|2)n =

∫
Rn
|∇U(y)|2.

In conclusion we find:

‖uε‖2 =
∫

Rn
|∇U(y)|2 + O(εn−2) = Sn/2 + O(εn−2),

proving (11.17).

Proof of (11.18). There holds

|uε|2∗2∗ = εn
∫
�

ϕ2∗(x)(
ε2 + |x|2)n

= εn
∫
�

ϕ2∗(x)− 1(
ε2 + |x|2)n + εn

∫
�

1(
ε2 + |x|2)n

=
∫

Rn

1(
1+ |y|2)n + O(εn) = Sn/2 + O(εn).

Proof of (11.19). One has

|uε|22 = εn−2
∫
�

1(
ε2 + |x|2)n−2

+ O(εn−2). (11.20)
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Consider first the case n ≥ 5: one finds that∫
�

1(
ε2 + |x|2)n−2

=
∫

Rn

1(
ε2 + |x|2)n−2

+ O(1)

= ε4−n
∫
�

1(
1+ |y|2)n−2

+ O(1) = c1ε
4−n + O(1).

Substituting into (11.20) we find

|uε|22 = c1ε
2 + O(εn−2).

If n = 4 we get

|uε|22 = ε2
∫
�

1(
ε2 + |x|2)2

+ O(ε2).

We can choose R1 < R2 such that∫
|x|<R1

1(
ε2 + |x|2)2

≤
∫
�

1(
ε2 + |x|2)2

≤
∫
|x|<R2

1(
ε2 + |x|2)2

.

Since (below ω denotes the measure of the unit sphere in R
3)∫

|x|<R

1(
ε2 + |x|2)2

= ω

∫ R

0

r3dr(
ε2 + r2

)2
= ω| log ε| + O(1),

we get

|uε|22 = constant.ε2| log ε| + O(ε2).

This completes the proof of the lemma. �

We can finally complete the proof of Theorem 11.6 by showing the following.

Lemma 11.13 If cλ denotes the MP critical level, one has that cλ < 1
n Sn/2

provided λ ∈ ]0, λ1[ (respectively λ ∈ ]λ∗, λ1[) if n ≥ 4 (respectively if n = 3).

Proof. First, let us take in Remark 11.5(a) u = uε, with a fixed ε > 0 such that
Lemma 11.12 holds. Taking the half-line {tuε : t ≥ 0} as test curve for the MP
level, we have that

cλ ≤ max
t≥0

Jλ(tuε).

Since

Jλ(tuε) = 1

2
t2
(
‖uε‖2 − λ|uε|22

)
− 1

2∗
t2∗ |uε|2∗2∗ ,
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then maxt≥0 Jλ(tuε) is achieved at

τ =
(
‖uε‖2 − λ|uε|22

|uε|2∗2∗

)(n−2)/4

,

and

Jλ(τuε) = 1

n

(
‖uε‖2 − λ|uε|22

|uε|2∗2∗

)n/2

.

Then, using also Lemma 11.12, we find

cλ ≤ max
t≥0

Jλ(tuε) = Jλ(τuε) = 1

n

(
‖uε‖2 − λ|uε|22

|uε|2∗2∗

)n/2

<
1

n
Sn/2,

and this completes the proof. �

Remark 11.14 It is easy to see that cλ < 1
n Sn/2 is equivalent to the condition

Sλ < S, where Sλ := inf {‖uε‖2 − λ|uε|22 : u ∈ H1
2 , |uε|2∗ = 1}. �

11.3 Discontinuous nonlinearities

Here we consider the case in which the nonlinearity f has a discontinuity
with respect to u. Problems with this feature arise, for example, in plasma
physics.

11.3.1 A general result

Following [12], let us consider the following Dirichlet boundary value problem{−
u = f (u)+ h(x) x ∈ �

u = 0 x ∈ ∂�,
(11.21)

where h ∈ L2(�) and f satisfies:

(a) there is a ∈ R such that f ∈ C(R \ {a}, R) and f (a−) = limu→a− f (u),
f (a+) = limu→a+ f (u) exists and f (a−) < f (a+). Moreover f (a) ∈ Ta,
where Ta = [f (a−), f (a+)];

(b) lim inf u→+∞ f (u) > −∞ and lim supu→−∞ f (u) < +∞;
(c) there is m ≥ 0 such that u �→ mu+ f (u) is strictly increasing.

Remark 11.15 To avoid technicalities, we assumed that f has a discontinuity
at a single point a. More in general, the arguments that we will carry out can
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a

f(x) g(t)

Ta

Ta

Figure 11.2 The functions f and g.

be easily extended to cover the case in which f ∈ C(R \A, R), where A is a set
with no accumulation points. �

We use the same symbol f to denote the multivalued map which is equal to f (u)
for u �= a and such that f (a) = Ta. With this notation, by solution of (11.21)
we mean a function u ∈ H1

0 (�) ∩ H2,2(�) such that

−
u(x)− h(x) ∈ f (u(x)), a.e. in �.

Of course, defining

�a(u) = {x ∈ � : u(x) = a},
if |�a(u)| = 0 (|A| stands for the measure of the set A ⊂ R

n) then u satisfies
−
u(x) = f (u(x))+ h(x), for a.e. x ∈ �.

In order to find solutions of (11.21) we will transform such an equation in
an equivalent problem, involving a C1 functional.

From (b) and (c) it follows that there exists M > 0 such that u �→ Mu+ f (u)
is strictly increasing and such that Mu + f (u) → ±∞ as u → ±∞. Then the
function g defined by setting g(t) = u if and only if t ∈ Mu+ f (u), namely

g(t) =
{

a if t −Ma ∈ Ta

u such that Mu+ f (u) = t if t −Ma �∈ Ta,

is defined on all of R, is continuous and G(t) = ∫ t
0 g(s) ds is of class C1. Let

E = L2(�), let K : E �→ E be defined by

u = K(v) ⇐⇒ −
u+Mu = v, u ∈ H1
0 (�),

and set J : E �→ R,

J(v) =
∫
�

[
G(v)− 1

2 vK(v)− vK(h)
]

dx.

The following theorem shows the links between J and (11.21).
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Theorem 11.16 Let h ∈ L2(�) and let f satisfy (a) and (b).

(i) J ∈ C1(E, R); moreover, if J ′(w) = 0 then z = K(w+ h) is a solution of
(11.21), in the sense specified above.

(ii) If either −h(x) �∈ Ta a.e. in �a or if w is a local minimum of J, then
|�a(z)| = 0 and thus z satisfies (11.21) a.e. in �.

Proof. From (b) it follows that there is c > 0 such that |Mu+ f (u)| ≥ M |u|−c.
Setting t = Mu+ f (u) we get immediately that |g(t)| ≤ 1

M |t|+ c1 and |G(t)| ≤
c2t2 + c3. Using Theorem 1.7, it follows that J ∈ C1(E, R).

Let w ∈ E be such that J ′(w) = 0 and set z = K(w + h). Then z ∈
H1

0 (�) ∩ H2,2(�) and G′(w) = K(w)+ K(h). This implies g(w) = z or else

w−Mz ∈ f (z). (11.22)

On the other hand, from z = K(w+ h) it also follows that−
z+Mz = w+ h.
This and (11.22) imply that −
z − h ∈ f (z), a.e. in �, proving (i).

Next, a theorem by Stampacchia yields −
z(x) = 0 a.e. on �a and thus
−h(x) ∈ Ta a.e. on �a(z). This implies that |�a(z)| = 0 provided −h �∈ Ta.
Finally, suppose that (−h ∈ Ta a.e. on �a(z), and) w is a local minimum of J
and set

T+a = [f (a−), 1
2 (f (a−)+ f (a+)], T−a = T \ T+,

�± = {x ∈ � : −h(x) ∈ T±}.
Define

χ(x) =


1 x ∈ �+

−1 x ∈ �−

0 x ∈ � \�a.

For ε > 0 small enough one has that

−h(x)+ εχ(x) ∈ Ta, a.e. on �a. (11.23)

There holds

d

dε
J(w+ εχ) =

∫
�

g(w+ εχ)χ dx − ε

∫
�

χK(χ) dx −
∫
�

χK(w+ h) dx.

From w+ h = −
z +Mz it follows that w+ h = Ma a.e. on �a(z). This and
the definition of χ imply∫

�

g(w+ εχ)χ dx =
∫
�a(z)

g(w+ εχ)χ dx =
∫
�a(z)

g(Ma− h+ εχ)χ dx.
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Set t = Ma− h+ εχ . Using (11.23) we infer that t −Ma ∈ Ta and therefore,
by the definition of g we have g(t) = a. This and the preceding equation yield∫

�

g(w+ εχ)χ dx = a
∫
�a(z)

χ dx.

One also has∫
�

χK(w+ h) dx =
∫
�

χz dx =
∫
�a(z)

χz dx = a
∫
�a(z)

χ dx.

Moreover, setting K(χ) = η, we find −
η +Mη = χ and hence∫
�

χK(χ) dx =
∫
�

(|∇η|2 +Mη2) dx.

Putting together these calculations we deduce

d

dε
J(w+ εχ) = −ε

∫
�

χK(χ) dx = −ε

∫
�

(|∇η|2 +Mη2) dx. (11.24)

Since w is a local minimum of J , then η ≡ 0, which implies that χ ≡ 0. This
is equivalent to say that |�a(z)| = 0, and the proof is complete. �

Remark 11.17 The arguments above are inspired by Clarke’s dual vari-
ational principle [80], see also the book by Ekeland [93] for applications
to hamiltonian systems. The smoothing effect of this principle was first
highlighted in [12]. �

Let us indicate a simple case in which J has indeed a minimum on E and
Theorem 11.16 applies. Suppose that f satisfies

|f (u)| ≤ α|u| + k, α < λ1, k > 0. (11.25)

Lemma 11.18 If, in addition to (a)–(c), (11.25) holds, then J is bounded from
below and coercive.

Proof. If (11.25) holds, then repeating the previous argument, one finds

G(t) ≥ 1

2

t2

α +M
− c0|t|.

This yields ∫
�

G(v) dx ≥ 1

2

1

α +M
‖v‖2

L2 − c1 ‖v‖L2 . (11.26)

On the other hand, the definition of K easily implies∫
�

vK(v) dx ≤ 1

λ1 +M
‖v‖2

L2 ,
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and we find

J(v) ≥ 1

2

1

α +M
‖v‖2

L2 − 1

2

1

λ1 +M
‖v‖2

L2 − c2 ‖v‖L2 .

Since α < λ1 it follows that J is bounded below and coercive. �

Next, we prove the following form of the (PS) condition (see Remark 8.7)

Lemma 11.19 J satisfies (P̃S)c for all c ∈ R, namely if vj ∈ E is such that
J(vj) → c and J ′(vj) → 0, then there exists v∗ ∈ E such that J(v∗) = c and
J ′(v∗) = 0.

Proof. Here to simplify the notation we put M = 0 and h = 0. From J(vj)→ c
it follows that ‖vj‖L2 is bounded and hence vj ⇀ v∗ (up to a subsequence). Set
u∗ = K(v∗). From J ′(vj)→ 0 and the compactness of K , we infer that

g(vj)→ K(v∗) = u∗, strongly in E and a.e. in �. (11.27)

Let us first prove that vj → v∗ strongly in L2(�′), where �′ = � \ �a(u∗).
Since u∗(x) �= a in �′ and since f is continuous out of u = a, we get from
(11.27)

vj → f (u∗), a.e. in �′. (11.28)

From (11.25) it follows that |vj| ≤ c1|g(vj)| + c2 and this, jointly with (11.27),
implies that there exists φ ∈ L2(�) such that |vj| ≤ φ. Therefore, using also
(11.28), we find that vj → f (u∗) in L2(�′). Since vj ⇀ v∗, we deduce

vj → v∗, strongly in L2(�′). (11.29)

Since g is asymptotically linear, it follows that

g(vj)→ g(v∗), in L2(�′),
∫
�′

G(vj) dx →
∫
�′

G(v∗) dx. (11.30)

To complete the proof, it is necessary to analyse separately the cases 0 ∈ Ta

and 0 �∈ Ta.
First we claim that

0 �∈ Ta, =⇒ |�a(u
∗)| = 0. (11.31)

To prove the claim, let Ta = [b1, b2]with b1 > 0 (if Ta ⊂ (−∞, 0[ the argument
is quite similar), and let χa denote the characteristic function of �a(u∗). Since
vj ⇀ v∗ we find ∫

�a(u∗)
vj dx =

∫
�

vjχa dx →
∫
�a(u∗)

u∗ dx.
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As remarked before, one has that v∗ = −
u∗ = 0 a.e. in �a(u∗), and thus∫
�a(u∗)

vj dx → 0. (11.32)

We can also use (11.27) to find that g(vj(x))→ a for a.e. x ∈ �a(u∗). Since g
is continuous and increasing, it follows that lim inf vj(x) ≥ b1. Recalling that
|vj| ≤ φ ∈ L2(�), we use Fatou’s lemma and (11.32) to get

b1|�a(u
∗)| ≤ lim inf

∫
�a(u∗)

vj dx = 0,

proving the claim.
We are now ready to complete the proof of the lemma. If 0 �∈ Ta, then

|�a(u∗)| = 0 and this together with (11.30) immediately implies that g(vj)→
g(v∗) in L2(�) as well as

∫
�

G(vj) dx → ∫
�

G(v∗). Therefore

J(v∗) =
∫
�

[
G(v∗)− 1

2 v∗K(v∗)
]

dx

= lim
j

∫
�

[
G(vj)− 1

2 vjK(vj)
]

dx = lim
j

J(vj) = c,

and

J ′(v∗) = g(v∗)− K(v∗) = lim
j

[
g(vj)− K(vj)

] = lim
j

J ′(vj) = 0.

If 0 ∈ Ta then g(v∗(x)) = g(0) = a = v∗(x) for a.e. x ∈ �a(u∗) and once
more J ′(v∗) = 0. Moreover, G(t) = at for t ∈ Ta and one readily finds
|G(vj)− avj| → 0 a.e. in �a(u∗). Thus∫

�a(u∗)
|G(vj)− avj| dx → 0.

This, (11.30) and (11.32) imply∫
�

G(vj) dx =
∫
�′

G(vj) dx +
∫
�a(u∗)

G(vj) dx →
∫
�′

G(v∗) dx.

Finally, v∗ = 0 in �a(u∗) and G(0) = 0 yield
∫
�′ G(v∗) dx = ∫

�
G(v∗) dx, and

one finds that J(v∗) = c, as before. �

As pointed out in Remark 8.7 the condition (P̃S)c can replace the usual (PS)c

condition to find a critical point of a functional which is coercive and bounded
from below. Therefore we conclude with the following theorem.

Theorem 11.20 Suppose that, in addition to (a)–(c), f verifes (11.25). Then J
has a minimum on E which corresponds, through Theorem 11.16, to a function
z ∈ H1

0 (�) ∩ H2,2(�), satisfying (11.21) a.e. in �.
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Remark 11.21 Dealing with other specific nonlinearities, it could be conveni-
ent to work on a different space E. For example, if f (u) ∼ |u|p−1u as |u| tends to
0 and to∞, with 1 < p < (n+ 2)/(n− 2), it is convenient to take E = Lβ(�),
where β is the conjugate exponent of p+ 1. Actually, here G(t) ∼ |t|β and

J(v) ∼ ‖v‖β
Lβ −

∫
�

vK(v) dx.

Note that β < 2 and thus J has the mountain-pass geometry. For some fur-
ther examples in which Theorem 11.16 applies, we refer to [12]. See also
Exercises 8.5(iii) and 11.5(i). �

11.3.2 A problem with multiple solutions

Following [23], we now consider the problem{−
u = h(u− a)f0(u) x ∈ �

u = 0 x ∈ ∂�,
(11.33)

where a > 0, f0 is continuous and satisfies appropriate conditions at infinity
and h is the Heaviside function

h(t) =
{

0 t ≤ 0

1 t > 0.

The choice of this specific nonlinearity is motivated by applications arising
in plasma physics in which one deals with quantities v that satisfy −
v = 0
below a threshold a, and −
v = φ(v) for v > a. Setting u = v − u|∂� and
f0(u) = φ(u+ u|∂�), we get exactly (11.33).

We assume that f0 satisfies

(a′) f0 ∈ C(R), f0(u) ≥ 0, and is nondecreasing;
(b′) |f0(u)| ≤ α|u| + k, with α < λ1 and k > 0.

Note that (b′) is nothing but (11.25). We set f (u) = h(u−a)f0(u) and b = f0(a):
b = limu↓a f (u) is the size of the jump of f (u) at u = a.

Using the same arguments carried out in the preceding subsection, we take
m > 0, so that fm(u) := mu + f (u) is strictly increasing. As before, fm also
denotes the multivalued function obtained by filling up the jump at u = a.
Define gm and Gm(t) by

gm(t) = u ⇐⇒ t ∈ fm(u), Gm(t) =
∫ t

0
gm(s) ds.
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Figure 11.3 The function gm.

Note that, from (a′) and (b′) it follows that

1

2

t2

α + m
− c0|t| ≤ Gm(t) ≤ t2

2m
. (11.34)

Finally, let E = L2(�) and let Km : E �→ E be such that

Km(v) = u ⇐⇒ −
u+ mu = v, u ∈ H1
0 (�) ∩ H2,2(�).

According to Theorems 11.16 and 11.20, the functional J : E �→ R,

J(u) =
∫
�

Gm(u) dx − 1

2

∫
�

uKm(u) dx

is of class C1 and if u is a critical point of J then v = Km(u) is a solution of
(11.33). Moreover, from (11.34) it follows that J is bounded from below and
coercive. As in Lemma 11.19, it is also easy to see that J satisfies the (P̃S)c

condition, for all c ∈ R.
We are going to show that, for suitable values of the parameter a, b, J has

the same geometry as the functional studied in Theorem 8.14, see Figure 11.4,
and hence it possesses two nontrivial critical points: one minimum w1 with
J(w1) < 0 and a MP w2 such that J(w2) > 0. Let

θ = ‖ϕ1‖L1 ‖ϕ1‖−2
L2 ,

where ϕ1 is such that−
ϕ1 = λ1ϕ1 in �, ϕ1 = 0 on ∂�, and is normalized by
taking ‖ϕ1‖∞ = 1. Let us point out that, in general, θ depends upon �.

Lemma 11.22
(i) If b/a > 2λ1θ , then for all m � 1, J(e) < 0, with e = bϕ1.

(ii) There are r, ρ > 0, r < ‖e‖L2 , such that, for all m � 1, J(v) ≥ ρ for all
‖v‖L2 = r.
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u0

J

w2

w1

Figure 11.4 Behaviour of J for b/a > 2λ1θ .

Proof. (i) From 0 < bϕ1 ≤ b it follows that g(bϕ1) ≤ a. Then

J(bϕ1) ≤ ab
∫
�

ϕ1 dx − 1
2 b2

∫
�

ϕ1Km(ϕ1) dx

≤ ab‖ϕ1‖L1 − 1
2 b2(λ1 + m)−1‖ϕ1‖L2 ,

proving (i).
(ii) Take q = 2n/(n + 2) < 2, and let r be its conjugate exponent. Using

the Hölder inequality, the Sobolev embedding theorem and elliptic regularity,
we get∫

�

vKm(v) dx ≤ ‖Km(v)‖Lr‖v‖Lq ≤ c1‖Km(v)‖H2,q‖v‖Lq ≤ c2‖v‖2
Lq .

(11.35)

Let us point out that the constants c1, c2 can be chosen independent of m, for
m small. Next we can choose β > 0 such that, for m small,

g(v) ≥ min
{ v

m
,βqvq−1

}
, ∀ v > 0.

Then ∫
�

G(v) dx ≥
∫
|v|≥εm

[
β|v|q − γm

]
dx,

where εm > 0 is the solution of t/m = βqtq−1 and γm → 0 as m → 0. Since
εm → 0 as m → 0, we can find γ ′m → 0 as m → 0 such that∫

�

G(v) dx ≥ β‖v‖q
Lq − γ ′m.
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This and (11.35) imply

J(v) ≥ β‖v‖q
Lq − γ ′m − c2‖v‖2

Lq .

Since q < 2 and γ ′m → 0, (ii) follows. �

Theorem 11.23 Suppose that (a′)–(b′) hold and that b/a > 2λ1θ . Then J has
two nontrivial critical points w1, w2. The former is a minimum of J and the
latter is a MP critical point. The functions zi = Kmwi are positive solutions of
(11.33) such that ‖zi‖∞ > a. Moreover, |�a(z1)| = 0.

Proof. The existence of wi follows immediately from the properties of J lis-
ted before and from Lemma 11.22. By the maximum principle it follows
that wi exceed a in �. The property that |�a(z1)| = 0, has been proved in
Theorem 11.16(ii). �

Remark 11.24 It is possible to prove that, if � is a ball, w1, w2 are radially
symmetric and for the corresponding zi there holds

∂zi

∂r
< 0, ∀ r > 0, i = 1, 2. (11.36)

Let us give an outline of the proof. If � is a ball, the Schwarz symmetrization
of v ∈ L2(�), v ≥ 0, is the radially symmetric, radially nonincreasing function
v∗ such that

meas{x ∈ � : v∗(x) > s} = meas{x ∈ � : v∗(x) > s}, ∀ s > 0.

There holds, see for example [45],∫
�

Gm(v) dx =
∫
�

Gm(v∗) dx,
∫
�

vKm(v) dx ≤
∫
�

v∗Km(v∗) dx.

From these inequalities it readily follows that the minimum is symmetric. As
for the MP critical point w2, one can use the fact that the map v �→ v∗ is
continuous in L2(�), to substitute any path in the MP min-max scheme by
a path constituted by symmetric functions. This leads to a proof that J has a
symmetric MP critical point. Property (11.36) follows by applying a weak form
of the maximum principle ([101], Theorem 8.19) to ∂zi/∂r.

Similar arguments can be carried out if � is for example convex and sym-
metric with respect to the plane xj = 0, for some j = 1, . . . , n. In this case one
has that ∂zi/∂xj < 0.

From (11.36) it follows that |�a(z2)| = 0. We have seen before, see
Theorem 11.23(ii), that |�a(z1)| = 0, for any domain �. We do not know
whether, in this generality, such a property holds for z2 as well. �

Another problem with a discontinuous nonlinearity arising in fluiddynamics
will be discussed in Appendix .
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11.4 Problems with concave-convex nonlinearities

Even though, for expository reasons, we have discussed elliptic problems either
with topological theoretic methods or by means of variational tools, there are
circumstances in which it is convenient to study a specific problem using both
the abstract settings. For example, we have seen that, using topological methods,
a Dirichlet problem like

−
u = λuq, u ∈ H1
0 (�),

has a unique positive solution for all λ > 0 provided that 0 < q < 1, see
Section 3.6.1. On the other hand, we also know that a superlinear problem like

−
u = up, u ∈ H1
0 (�),

can be handled by variational methods, yielding a positive solution for all
1 < p < (n+ 2)/(n− 2), see Theorems 7.14 and 8.11. Below, we treat a case
involving a nonlinearity which is the sum of a concave term and a convex one.
We will see how combining topological and variational tools, it is possible to
prove existence and multiplicity results for such a class of equations. For sim-
plicity, we deal with the existence of solutions of the following model problem

−
u = λuq + up x ∈ �

u > 0 x ∈ �

u = 0 x ∈ ∂�,
(Dλ)

where 0 < q < 1 < p.
We first prove a result in which the concave term plays the main role.

Theorem 11.25 Let 0 < q < 1 < p. Then there exists � > 0 such that:

(i) for all λ ∈]0,�[, (Dλ) has a solution;
(ii) for λ = �, (Dλ) has at least a weak solution;

(iii) for all λ > �, (Dλ) has no solutions.

Proof. The proof is based on the method of sub- and super-solutions, see
Section 3.6.1. We will be sketchy. The details are easy and left to the reader. By
simple modifications of the arguments carried out to solve (3.24), one shows
that:

(a) for all ε > 0 small, εϕ1 is a sub-solution of (Dλ) for all λ > 0;
(b) if −
ψ = 1 in � and ψ = 0 on ∂�, then there exists M > 0 such that

Mψ is a super-solution of (Dλ) for all λ > 0 small enough;
(c) εϕ1 ≤ Mψ provided ε � 1.



11.4 Problems with concave-convex nonlinearities 199

From (a)–(c) it follows that for all λ > 0 small enough, (Dλ) has a solution u
such that εϕ1 ≤ u ≤ Mψ . Then, letting

� = sup{λ > 0 : (Dλ) has a solution},
it follows that � > 0. Next, let 0 < λ < �. Then there exists µ, with λ <

µ < �, such that (Dµ) has a solution uµ, which is a super-solution for (Dλ)
for all λ < µ. Taking ε such that εϕ1 ≤ uµ, we find a solution of (Dλ). This
proves (i). Statement (ii) follows immediately by a limiting procedure. Finally,
let λ̄ > 0 be such that λtq + tp > λ1t, for all t > 0 and all λ ≥ λ̄. Then (Dλ)
has no solution for λ ≥ λ̄, otherwise if λ ≥ λ̄ we get

λ1

∫
�

uϕ1 dx = −
∫
�

ϕ1
u dx =
∫
�

(
λuq + up)ϕ1 dx > λ1

∫
�

uϕ1 dx,

a contradiction. This implies that � < λ̄, proving (iii). �

Remark 11.26 Theorem 11.25 is a particular case of a more general result
proved in [24], where we also refer for more details. In particular, it is shown
that for all λ ∈ (0,�), (Dλ) possesses a minimal solution uλ. Moreover, this
minimal solution is increasing with respect to λ, in the sense that

0 < λ1 < λ2 < � =⇒ uλ1 ≤ uλ2 , uλ1 �≡ uλ2 .

This will be used in Theorem 11.27 below. �

Next, we prove the existence of a second solution. Here the main role is played
by the convex term up.

Theorem 11.27 Let 0 < q < 1 < p ≤ (n+ 2)/(n− 2). Then for all λ ∈ ]0,�[
(Dλ) has at least two positive solutions.

We shall use variational tools. Set

fλ(u) =
{

0 if u ≤ 0

λuq + up if u > 0
Fλ(u) =

∫ u

0
fλ(s) ds,

and denote by Jλ the functional on E = H1
0 (�) defined by

Jλ(u) = 1
2‖u‖2 −

∫
�

Fλ(u) dx.

One has that Jλ ∈ C1(E, R) and its critical points are solutions of (Dλ). Roughly,
we will first show that the minimal solution uλ found before (see Remark 11.26)
is a local minimum of Jλ; next, we will apply the MP theorem to find a second
solution.

We need a preliminary result.
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Lemma 11.28 For all 0 < λ < �, Jλ has a local minimum in the C1 topology.

Proof. According to Theorem 11.25(i) and Remark 11.26, if 0 < λ1 < λ <

λ2 < � (Dλ) has minimal solutions ui = uλi (i = 1, 2) such that u1 ≤ u2 and
u1 �≡ u2. Moreover,

−
(u2 − u1) > λ1(u
q
2 − uq

1)+ (up
2 − up

1), x ∈ �,

and thus the Hopf maximum principle yields u1 < u2 in � and
∂(u1 − u2)/∂ν < 0 on ∂� (ν denotes the unit outer normal at ∂�). We set

f̃λ(u) =


fλ(u1) if u ≤ u1

fλ(u) if u1 < u < u2

fλ(u2) if u ≥ u2,

F̃λ(u) =
∫ u

0 f̃λ(s) ds and J̃λ(u) = 1
2‖u‖2 − ∫

�
F̃λ(u) dx. It is clear that J̃λ

achieves the global minimum on E at some u satisfying −
u = f̃λ(u). Using
again the Hopf maximum principle, we get that u1 < u < u2 in �, as well as

∂

∂ν
(u− u1) < 0,

∂

∂ν
(u− u2) > 0, x ∈ ∂�.

If ‖v−u‖C1 ≤ ε then u1 ≤ v ≤ u2. Since J̃λ(v) = Jλ(v), the result follows. �

For fixed λ ∈]0,�[, we look for a second solution in the form u = ū+ v, where
v > 0 and ū = ūλ is the solution found in the preceding lemma. A straight
calculation shows that v satisfies

−
v = λ(ū+ v)q − λūq + (ū+ v)p − ūp.

Denote by gλ(v) the right hand side of the preceding equation (with gλ(z) ≡ 0
for z ≤ 0) and set

Jλ(v) = 1

2
‖v‖2 −

∫
�

Gλ(v) dx, Gλ(v) =
∫ v

0
gλ(s) ds.

Lemma 11.29 v = 0 is a local minimum of Jλ in E.

Proof. If v+ denotes the positive part of v, a straight calculation yields

Jλ(v) = 1
2‖v−‖2 + Jλ(ū+ v+)− Jλ(ū) ≥ Jλ(ū+ v+)− Jλ(ū).

This and Lemma 11.28 imply that Jλ(v) ≥ 0, provided ‖v‖C1 is sufficiently
small. We shall now prove that Jλ(v) ≥ 0, provided ‖v‖E � 1. We will use an
argument by Brezis and Nirenberg [65]. By contradiction, let us suppose that
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there exists a sequence wε → 0 in E such that Jλ(wε) < Jλ(0) = 0. Without
loss of generality, we can take wε to be such that

Jλ(wε) = min‖w‖≤ε
Jλ(w).

It follows that there exists µε ≤ 0 such that J ′
λ(wε) = µεwε. This readily

implies that wε ∈ E is a weak solution of

−
wε = 1

1− µε

gλ(wε), with 0 <
1

1− µε

< 1.

Since the right hand side converges weakly to 0 in E, by elliptic regularity it
follows that wε → 0 in C1 and this is not possible since we have shown that
v = 0 is a local minimum of Jλ in the C1 topology. �

Proof of Theorem 11.27. For fixed v1 ∈ E, v1 > 0, one easily checks that
Jλ(tv1) → −∞ as t → +∞. Thus Jλ has the MP geometry. It remains to
prove the (PS) condition. If p < (n+ 2)/(n− 2) one uses standard arguments.
Let us consider the case p = (n+ 2)/(n− 2). As before, one shows that (PS)c

holds for all c < 1
n Sn/2. Let us prove that the MP level cλ of J� is smaller

than 1
n Sn/2. We will modify the arguments used in Section 11.2, where we refer

for more details and notation. We evaluate Jλ on t ϕ Uε. Let n ≥ 4. From
(a+ b)p ≥ ap+ bp+αap−1b (a, b ≥ 0), we deduce that gλ(v) ≥ vp+αvūp−1.
This implies

Gλ(v) ≥ 1
p+1 vp+1 + 1

2 α v2ūp−1,

and hence

Jλ(tϕUε) ≤ 1
2 t2‖ϕUε‖2 − 1

p+1 tp+1
∫
�

(ϕUε)
p+1 dx − 1

2 α t2
∫
�

ūp−1ϕ2U2
ε dx.

Since on the support of ϕUε, ū ≥ constant > 0 we find

Jλ(tϕUε) ≤ 1
2 t2‖ϕUε‖2 − 1

p+1 tp+1
∫
�

(ϕUε)
p+1 dx − 1

2 α c1t2
∫
�

ϕ2U2
ε dx,

for some c1 > 0. We can now repeat the arguments carried out in Section 11.2
proving that for the MP level cλ there holds cλ < 1

n Sn/2. In the case n = 3 we
argue as follows. We use that (a + b)5 ≥ a5 + b5 + 5ab4 to infer, for some
constant c2 > 0,

Jλ(tϕUε) ≤ 1
2 t2‖ϕUε‖2 − 1

6 t6
∫
�

(ϕUε)
6 dx − c2t5

∫
�

(ϕεU)5 dx,

From 
Aε := ‖ϕUε‖2 = S3/2 + O(ε)

Bε := ∫
�
(ϕUε)

6 dx = S3/2 + O(ε3)

Cε := 1
5 c2

∫
�
(ϕUε)

5 dx = kε1/2 + O(ε5/2), k > 0,
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 0 Λ �

Figure 11.5 Bifurcation diagram of positive solutions of (Dλ). The bold,
respectively dashed, line represents the subcritical case 1 < p < (n+ 2)/(n− 2),
respectively critical case p = (n+ 2)/(n− 2). The lower part of the branch exists
for all 0 < q < 1 < p.

we deduce that maxt>0 Jλ(tϕUε) is achieved at t = t(ε) such that A = Bt4 +
Ct3. Taking into account the values of A, B, C we find that t = t(ε) satisfies

S3/2 + O(ε) = t4(S3/2 + O(ε3))+ t3(kε1/2 + O(ε5/2)).

From this it readily follows that

t(ε) = 1− k

4S3/2
ε1/2 + o(ε1/2).

A straight calculation shows that

max
t>0

Jλ(tϕUε) = Jλ(t(ε)ϕUε) = 1
3 S3/2 − 7

10 kε1/3 + o(ε1/2),

and this implies cλ ≤ maxt>0 Jλ(tϕUε) < 1
3 S3/2, provided ε > is

sufficiently small. Finally, an application of the MP theorem yields a second
solution of (Dλ). �

Remark 11.30 In [24] the problem{−
u = λ|u|q−1u+ |u|p−1u x ∈ �

u = 0 x ∈ ∂�,

is also considered. Taking advantage of the oddness of the nonlinearity, one can
show that ∃ λ∗ > 0 such that for all λ ∈ (0, λ∗) one has:

(i) if 0 < q < 1 < p ≤ (n+ 2)/(n− 2) the preceding problem has infinitely
many solutions with negative energy;

(ii) if 0 < q < 1 < p < (n+ 2)/(n− 2) the preceding problem has infinitely
many solutions with positive energy. �
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11.5 Exercises

(i) Prove that the problem

−
u = sgn(u)|u|q, x ∈ �, u = 0, x ∈ ∂�, 0 < q < 1,

has infinitely many solutions. [Hint: use the preceding method to deal
with a C1 functional on a suitable Lr(�), and apply the
Lusternik–Schnirelman theory.]

(ii) Consider the problem 
−
u = 0 if u ≤ δ

−
u = αu if u > δ

u = d on ∂�,

and prove that there exists a∗ > 0 such that the problem has two
nontrivial solutions for all 0 < δ − d < a∗. [Hint: perform the change of
variable u �→ u− d and apply Theorem 11.23 with a = δ − d.]
If z1, z2 denote the solutions corresponding to the minimum and the MP,
respectively, show that as a → 0+, z2 → 0 while z1 → z∗ in H1

0 (�),
where z∗ denotes the positive solution of −
u = α(u+ d) in �, u = 0
on ∂�. Moreover, prove that for δ > d + α(λ1 − α)−1 there are no
nontrivial solutions.

(iii) Referring to Remark 11.30 in the case 1 < q < p < (n+ 2)/(n− 2),
prove the following facts:

(a) Jλ has infinitely many critical points with negative energy, provided
λ > 0 is sufficiently small. [Hint: Show that there is a ball Br ⊂ E
where Jλ < 0 and is bounded from below and apply Theorem 10.10
with M = Br .]

(b) Jλ has infinitely many critical points with positive energy, provided
λ > 0 is sufficiently small. [Hint: Apply Theorem 10.20.]

(c) Give another proof of the same results by using the natural constraint
Mλ = {u ∈ H1

0 (�) \ {0} : ‖u‖2 = λ
∫
�
|u|q+1 + ∫

�
|u|p+1}

introduced in the Exercise 6 – (iii). [Hint: Use the fact that Mλ is the
disjoint union of two manifolds.]
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Morse theory

This chapter is devoted to the basic theory developed by M. Morse, which
relates the structure of the critical points of a regular function on a manifold to
its topology.

12.1 A short review of basic facts in algebraic topology

In this section we recall some basic notions and results in algebraic topology.
To keep the presentation short, we will introduce the concepts in an axiomatic
way, referring the interested reader to more complete treatments, like the books
[131, 162]. Then we will review briefly the explicit construction of the singular
homology theory, omitting most of the proofs.

12.1.1 The axiomatic construction

Definition 12.1 Let (Gi)i be a sequence of Abelian groups, and let (ϕi)i be a
sequence of homomorphisms

· · · −→ Gi
ϕi−→ Gi+1

ϕi+1−→ Gi+2 −→ · · ·
We say that the sequence is exact if for every i there holds im(ϕi) = ker(ϕi+1).

Example 12.2 (i) Let G1, G2 be Abelian groups, and consider the following
part of a sequence

0 −→ G1
ϕ−→ G2 −→ 0.

Then we have exactness if and only if ϕ is an isomorphism.
(ii) Let G1, G2, G3 be Abelian groups, and suppose the following part of the

sequence is exact

0 −→ G1
ϕ1−→ G2

ϕ2−→ G3 −→ 0.

204
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Then from the exactness it follows that ϕ1 is injective, and that the image of
ϕ1 (which is isomorphic to G1) is equal to the kernel of ϕ2. Still from exact-
ness, we have that ϕ2 is surjective. Therefore, by the fundamental theorem of
the homomorphism, we derive that G2 is isomorphic to ker(ϕ2) ⊕ im(ϕ2) &
G1 ⊕ G3. �

Definition 12.3 A pair of spaces (X , A) is a topological space X together with
a subset A ⊆ X. We will write that (X , A) ⊆ (Y , B) if X ⊆ Y and if A ⊆ B.
A map of pairs (X, A), (Y , B) is a continuous map f from X into Y such that
f (A) ⊆ B. Two maps of pairs f0, f1 : (X , A) → (Y , B) are homotopic if there
exists a map h : [0, 1]× (X , A)→ (Y , B) such that h(0, ·) = f0 and h(1, ·) = f1.

The homology groups. (a) To every relative integer q ∈ Z and for every pair
(X, A) is associated a group Hq(X , A), denoted by Hq(X) if A = ∅.

(b) To every map of pairs f : (X , A)→ (Y , B) is associated a homomorphism
f∗ : Hq(X, A)→ Hq(Y , B).

(c) To every q ∈ Z and every pair (X , A) is associated a homomorphism
∂ : Hq(X, A)→ Hq−1(A).
The following axioms are required.

Axiom 1 If f = Id|X , then f∗ = Id|Hq(X,A).

Axiom 2 If f : (X, A) → (Y , B) and g : (Y , B) → (Z , C) are maps of pairs,
then (g ◦ f )∗ = g∗ ◦ f∗.

Axiom 3 If f : (X, A)→ (Y , B) is a map of pairs, then ∂ ◦ f∗ = (f |A)∗ ◦ ∂ .

Axiom 4 Let i : A → X and j : (X ,∅) → (X , A) be inclusions, then the
following sequence is exact

· · · ∂−→ Hq(A)
i∗−→ Hq(X)

j∗−→ Hq(X , A)
∂−→ Hq−1(A) −→ · · · .

Axiom 5 If f , g : (X, A)→ (Y , B) are homotopic maps of pairs, then f∗ = g∗.

Axiom 6 (Excision) If U is an open set of X with U ⊆ int(A), and if i :
(X \ U, A \ U)→ (X, A) denotes the inclusion, then i∗ is an isomorphism

Axiom 7 If X consists of a single point p, then

Hq({p}) =
{

Z if q = 0
0 if q �= 0.
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We list next some of the basic properties which can be derived from the above
axioms.

Property 1 If (X , A) = ∪k
i=1(Xi, Ai) with (Xi)i closed and disjoint, then

Hq(X, A) = ⊕k
i=1Hq(Xi, Ai).

Property 2 (Mayer–Vietoris sequence) Let X = X1 ∪ X2, with X1, X2 open
sets, and let A1 ⊆ X1, A2 ⊆ X2 also be open sets. Then, if X1 ∩ X2 �= ∅, letting
A = A1 ∪ A2 and denoting by i : (X1, A1) → (X, A), j : (X2, A2) → (X, A),
l : (X1 ∩ X2, A1 ∩ A2) → (X1, A1), k : (X1 ∩ X2, A1 ∩ A2) → (X2, A2) the
natural inclusions, there exists an exact sequence

· · · −→ Hq(X1, A1)⊕ Hq(X2, A2)

�−→ Hq(X , A)

−→ Hq−1(X1 ∩ X2, A1 ∩ A2)

	−→ Hq−1(X1, A1)⊕ Hq−1(X2, A2) −→ · · · ,

where � = i∗ − j∗ and 	 = (k∗, l∗).

Property 3 If Hq(X) = Hq(A) for every q, then Hq(X, A) = 0 for every q ∈ Z.

Property 4 If A is a deformation retract of X (namely if there exists h : [0, 1]×X
such that h(0, ·) = Id|X , h(1, ·) ⊆ A and h(t, ·)|A = Id|A for every t), then
Hq(X, A) = 0 for every q ∈ Z.

Property 5 Suppose that A′ ⊆ A ⊆ X, and that A′ is a deformation retract of
A. Then Hq(X , A) is isomorphic to Hq(X, A′) for every q ∈ Z.

Property 6 If X is arcwise connected, then H0(X) is isomorphic to Z.

Property 7 Suppose that X1, X2 ⊆ X, and that (X, X1, X2) are a proper triad,
namely that the inclusions k1 : (X1, X1 ∩ X2) → (X1 ∪ X2, X2), k2 : (X2, X1 ∩
X2) → (X1 ∪ X2, X1) induce an isomorphism between the relative homology
groups in any dimension. Then the sequence of the triad

· · · −→ Hq(X1, X1 ∩ X2) −→ Hq(X, X2) −→ Hq(X, X1 ∪ X2)

∂−→ Hq−1(X1, X1 ∩ X2) −→ · · ·
is exact.
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Property 8 (Generalized excision property) Suppose that A ⊆ X and that
U, V are open sets with V ⊆ U ⊆ A and that (X\U, A\U) is a deformation
retract of (X\V , A\V). Then the inclusion (X\U, A\U) → (X, A) induces an
isomorphism between the relative homology groups in any dimension.
We treat next some basic examples of computations of homology (and relative
homology) groups of simple sets.

Example 12.4 Homology of Sn. We consider first the case n = 0, for which
the sphere consists of two points, denoted by p1 and p2. Using Property 1 and
Axiom 7 we find immediately that

Hq(S
0) &

{
Z

2 for q = 0
0 for q �= 0.

(12.1)

We are going to prove next, by induction on the dimension n, that

Hq(S
n) &

{
Z for q = 0, n
0 otherwise.

(12.2)

To show this, we embed Sn into R
n+1 as Sn = {(x1, . . . xn+1) :

∑n+1
i=1 x2

i = 1}
and use the Mayer–Vietoris sequence with X = Sn, X1 = Sn \ {PN } and X2 =
Sn\{PS}, where PN = (0, . . . , 0, 1) and PS = (0, . . . , 0,−1)denote respectively
the north and the south poles of the sphere. Clearly X1, X2 are open in X and
X1 ∪ X2 = X, so we have the exactness of the following sequence

· · · −→ Hq(X1)⊕ Hq(X2) −→ Hq(X)

∂−→ Hq−1(X1 ∩ X2) −→ Hq−1(X1)⊕ Hq−1(X2) −→ · · · .

We notice at this point that X1∩X2 can be deformed to the equator of Sn, namely
Sn ∩ {xn+1 = 0} & Sn−1, and that both X1 and X2 are contractible to a point.
Therefore by Property 4 the above exact sequence becomes

· · · −→ Hq({p})⊕ Hq({p}) −→ Hq(S
n)

∂−→ Hq−1(S
n−1) −→ Hq−1({p})⊕ Hq−1({p}) −→ · · · .

For q = 1, we have that Hq({p}) = Hq−1({p}) = 0 so we get the exactness of

0 −→ Hq(S
n)

∂−→ Hq−1(S
n−1) −→ 0,

which implies

Hq(S
n) & Hq−1(S

n−1), n ≥ 1, q > 1. (12.3)

On the other hand, for q = 1 we have the exactness of

0 −→ H1(S
n)

∂−→ H0(S
n−1)

	0−→ Z
2, (12.4)
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from which we get that

H1(S
n) & ker(	0), n ≥ 1. (12.5)

Taking n = 1 in (12.4), we have from (12.5) that H1(S1) & ker(	0). By
construction, 	0(α1,α2) = (α1+α2,α1+α2), where (α1,α2) ∈ H0(S0) & Z

2.
Therefore we deduce that H1(S1) & Z. On the other hand, from (12.3) and
Axiom 7 it follows that Hq(S1) & Hq−1(S0) = 0 for q ≥ 2.

Proceeding by induction, let us assume that (12.2) holds, and let us prove the
analogous formula for Sn+1. For q > 1 we can apply (12.3) to get

Hq(S
n+1) & Hq−1(S

n) &
{

Z if q − 1 = n
0 otherwise.

For q = 1 and n ≥ 1, we notice that Sn is arcwise connected, and hence the
action of 	0 is 	0(α) = (α,α), for α ∈ H0(Sn) & Z. Hence by (12.5) we
finally get that H1(Sn+1) & 0. This concludes the proof. �

Example 12.5 Relative homology of Euclidean balls relative to their boundary.
Let Bn = {x ∈ R

n : |x| ≤ 1}, and let us denote by Sn−1 the boundary of
Bn, by Sn−1± the sets {x ∈ Sn−1 : ±xn ≥ 0}, and by Sn−2 the equator
{x ∈ Sn−1 : xn = 0}.

We observe first that Bn, Sn−1± and (Bn, Sn−1± ) have trivial homology groups.
In fact, all the three sets are contractible to a point. To prove this fact for the
pair, it is sufficient to use Property 3 above.

We claim next that the triad (Bn, Sn−1+ , Sn−1− ) is proper. To see this, we con-
sider for example the inclusion k1 : (Sn−1+ , Sn−2) → (Sn−1, Sn−1− ) and show
that it induces an isomorphism between the corresponding relative homology
groups. The same will hold true for the other inclusion k2 : (Sn−1− , Sn−2) →
(Sn−1, Sn−1+ ). This fact indeed follows from Property 8, taking X = Sn−1,
A = Sn−1− , U = Sn−1− \ Sn−2, and V = {x ∈ Sn−1 : xn ≤ − 1

2 }.
We are now in a position to compute the relative groups Hq(Bn, Sn−1). By

the first observation we have that Hq(Bn, Sn−1) = 0 for all q. From the claim
and Property 7, taking X = Bn, X1 = Sn−1+ and X2 = Sn−1− , we then deduce the
exactness of the sequence

· · · −→ Hq(B
n, Sn−1− ) −→ Hq(B

n, Sn−1) −→ Hq−1(S
n−1+ , Sn−2)

−→ Hq−1(B
n−1, Sn−2− ) −→ · · · ,

from which we find that Hq(Bn, Sn−1) & Hq−1(S
n−1+ , Sn−2). On the other hand,

the pair (Sn−1+ , Sn−2) is homeomorphic to (Bn−1, Sn−2), so one has the iso-
morphism of the relative homology groups Hq(Bn, Sn−1) & Hq−1(Bn−1, Sn−2).
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Iterating this procedure we find that

Hq(B
n, Sn−1) & Hq−n(B

0,∅) &
{

Z for q = n
0 for q �= n. �

12.1.2 Singular homology groups

Singular homology groups provide an explicit and intuitive construction of a
homology theory. This is based on the notion of singular simplex, singular
chain and the boundary operator.

Definition 12.6 For r non-negative integer, we define the simplex sr ⊆ R
r+1 as

sr =
{

t0e0 + · · · + trer : t0, ti ≥ 0,
r∑

i=0

ti = 1

}
,

where e0 = (1, 0, . . . , 0), . . . , er = (0, . . . , 0, 1). A singular r-simplex of a
topological space X is a continuous map σr : sr → X.

We also denote by Cr(X) the Abelian group generated by formal linear com-
binations (with relative integer coefficients) of singular r-simplexes of X. The
elements of Cr(X) are called singular r dimensional chains of X .

On Cr(X) is defined naturally a boundary operator ∂r which is a linear map
into Cr−1(X). Given a singular r-simplex σr : sr → X, we define the jth face
of σr by σ

j
r−1 := σr |sj

r−1
, namely the restriction of σr to the set

sj
r−1 = {t0e0 + · · · + trer ∈ sr : tj = 0}.

Then ∂r is defined through the linear extension on the singular r-chains of
the map

∂rσr =
r∑

j=0

(−1)jσ
j
r−1. (12.6)

As one can easily verify, the boundary operator satisfies

∂r−1 ◦ ∂r = 0. (12.7)

The latter property turns out to be very important, indeed in this way the singular
chains form a homological complex

· · · −→ Cr+1
∂r+1−→ Cr

∂r−→ Cr−1 −→ · · ·C1
∂1−→ C0

∂0−→ 0,

in the sense that every map is a homomorphism, and that the composition of
two consecutive maps is the trivial one.
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The elements of the subgroup Zr(X) = ker(∂r) ⊆ Cr are called cycles, while
those of the subgroup Br(X) = im(∂r+1) are called boundaries. By (12.7), we
have clearly that Br(X) ⊆ Zr(X). The rth singular homology group of X is
defined as the quotient

Hr(X) = Zr(X)/Br(X).

The whole sequence (Hr(X))r is denoted by H∗(X), and is usually extended to
be zero for r < 0.

Example 12.7 We consider the simple case in which X consists of a single
point. For q ≥ 0 there exists a unique simplex σq : sq → X, which is a
constant map. For q even, using (12.6), we get that ∂qσq = σq−1 and hence
Zq = ker(∂q) = 0, from which we find Hq(X) = 0. For q ≥ 3 odd, and for
a singular q-simplex σq, we have from the previous case that σq = ∂q+1σq+1.
Therefore σq ∈ im(∂q+1) and hence Zq(X) = Bq(X), so Hq(X) & 0. Finally,
for q = 1 we still have ∂1σ1 = 0, so B0(X) & 0. It then follows that
H0(X) & Z. �

Let us now consider the case of a continuous map f from a topological space X
into a second space Y . Then f induces naturally a homomorphism f∗ : Cr(X)→
Cr(Y) via the composition f ◦σr . One can check that the map f∗ commutes with
the boundary operator, and therefore f∗(Zr(X)) ⊆ Zr(Y), with also f∗(Br(X)) ⊆
Br(Y). Passing to quotients, it follows that f induces also a homomorphism,
still denoted by f∗, from Hr(X) into Hr(Y).

We list now some of the properties of this class of homomorphisms. If f :
X → Y and g : Y → Z are continuous, then (g ◦ f )∗ = g∗ ◦ f∗. If f = Id on X,
then also f∗ is the identity on H∗(X). If two maps f and g are homotopic, then
f∗ = g∗. Moreover if two spaces X , Y are homotopically equivalent, namely
if there exist f : X → Y and g : Y → X for which g ◦ f is homotopically
equivalent to Id|X and f ◦ g is homotopically equivalent to Id|Y , then Hr(X) is
isomorphic to Hr(Y) for every r. This applies in particular to the case in which
Y is a deformation retract of X .

12.1.3 Singular relative homology groups

Let X be a topological space and A a subset of X. The inclusion i : A → X
induces a homomorphism i∗ : Cq(A) → Cq(X) which is clearly injective.
Therefore we can consider the quotient group

Cq(X, A) = Cq(X)/Cq(A).
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Since i∗ commutes with ∂ , then we have an induced homomorphism, still
denoted by ∂ , from Cq(X , A) into Cq−1(X , A). Then, letting Zq(X, A) = ker(∂q)

denote the relative cycles and Bq(X , A) = im(∂q+1) denote the relative
boundaries, we define the relative homology group

Hq(X , A) = Zq(X , A)/Bq(X , A).

Using the equivalence classes in Cq(X), a relative cycle is a family of elements
of the form (z+w)w∈Cq(A), with z such that ∂z ∈ Cq−1(A). A relative boundary
is a class (u+ w)w∈Cq(A) with u = ∂q+1s, s ∈ Cq+1(X).

Example 12.8 Consider a torus X & T
2 embedded in R

3 as in Figure 12.1
and let A = {x3 < 1

2 } ∩ X . The singular 1-simplex z depicted on the right is an
element of Z1(X, A) since its boundary lies in C0(A). The 1-cycle C depicted on
the left is homologous to zero because it is the relative boundary of a 2-chain
in X. In fact, considering a chain b with image X ∩ {x2 > 0}, we easily see that
∂b = c+ c1, where c1 ∈ C1(A). �

Consider a homology class of X , namely an element of Hq(X). This can be
represented as (z+ ∂u)u∈Cq+1(X), where z ∈ Cq(X) is such that ∂z = 0. This is
indeed also a relative homology class, if A ⊆ X , induced by the inclusion j :
(X,∅)→ (X, A). Let us apply the operator ∂ to a class of Hq(X, A), represented
as (z + ∂u+ w)w∈Cq(A). Then

∂(z + ∂u+ w)w∈Cq(A) = (∂z + ∂w)w∈Cq(A).

Since ∂∂z = 0, using representatives of the type Zq−1(X) + Cq−1(A) in
Hq−1(X, A), we can assume ∂z ∈ Zq−1(A) and ∂w ∈ Cq−1(A). Therefore
(∂z+∂w)w∈Cq(A) is a homology class in Hq−1(A), and we have a homomorphism
(still denoted by ∂)

∂ : Hq(X , A)→ Hq−1(A).

In this way, considering this operator and the natural inclusions i : A → X,
j : (X,∅)→ (X, A) we obtain a sequence of homomorphisms

· · · −→ Hq(A)
i∗−→ Hq(X)

j∗−→ Hq(X , A)
∂−→ Hq−1(A) −→ · · ·

which turns out to be exact. Moreover, with these definitions of homology and
relative homology, all the above axioms are verified.
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12.2 The Morse inequalities

We are now in a position to introduce the Morse inequalities, and we will
mainly follow the approach in [132]. We consider a smooth compact finite
dimensional manifold M (modelled on R

n according to the definition of Sec-
tion 6.1). It is well known (see for example [163]) that using a partition of unity
it is possible to construct on every such manifold a Riemannian metric, namely
a smooth positive-definite symmetric bilinear form on tangent vectors. This
clearly induces a scalar product on TpM for every p ∈ M, and hence by duality
also an identification between tangent vector fields and linear one-forms on M.
Below, we will simply use the notation (·, ·) to denote the scalar product of two
tangent vectors at a given point of M.

As we have seen in Section 5.2, the differential of a regular function f on
M generates the gradient vector field ∇f on M, and if f is of class C2 then the
negative gradient−∇f gives rise to a one-parameter family of diffeomorphisms
ϕt on M for which the value of f decreases as t increases. For a ∈ R, we let
Ma = {p ∈ M : f (p) ≤ a}. We have then the following result.

Proposition 12.9 Let M be a compact finite dimensional manifold, and let f :
M → R be a function of class C2. Let a, b ∈ R with a < b, and assume that {a ≤
f ≤ b} contains no critical points of f . Then Ma is a deformation retract of Mb.

Proof. Let us define the following vector field Y on the closure of Mb \Ma:

Y(p) = − ∇f (p)

‖∇f (p)‖2
.
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Indeed, since we are assuming that f has no critical points in {a ≤ f ≤ b},
this vector field is well defined, of class C1, and admits a C1 extension to a
neighbourhood of its domain. Let us now consider the initial value problem

dp

dt
= Y(p(t)),

p(0) = p0 ∈ Mb \Ma.

(12.8)

By the regularity of Y , problem (12.8) possesses a local solution ϕ(t, p0) and,
as long as this is defined, by the definition of gradient we have that

df (ϕ(t, p0))

dt
= df (p(t))[Y(p(t))] = − 1

‖∇f (p(t))‖2
(∇f (p(t)),∇f (p(t))) = −1.

If the maximal interval of definition of (12.8) contains [0, T), then integrating
the last equality one finds

f (p(0))− f (ϕ(T , p0)) = T , (12.9)

and hence if p0 ∈ Mb \Ma then ϕ(t, p0) is defined for t ∈ [0, f (p)− a]. We can
consider now the homotopy

h(t, p) =
{
ϕ(t(f (p)− a), p) for p ∈ Mb \Ma

p for p ∈ Ma.

As one can easily check, this is a continuous map and a deformation retract of
Mb onto Ma. This concludes the proof. �

We deal next with critical points of f . We recall that a critical point p of a
function f of class C2 is said to be nondegenerate if the second differential has
no kernel. Working in a local coordinate system (x1, . . . , xn) for which, say,
x(p) = 0, then the nondegeneracy condition is equivalent to the invertibility
of the Hessian matrix ((∂2f /∂xi∂xj)(0))ij. As one can easily see, this condition
is independent of the choice of coordinates, since we have vanishing of all the
first partial derivatives at x = 0. The number of negative eigenvalues of the
Hessian matrix, which is well-defined by the above comments, is called the
Morse index of f at p.1 In the next lemma we show that near a nondegenerate
critical point, every function assumes a simple and standard form.

Lemma 12.10 (Morse lemma) Let f : M → R be of class C2, and let p be a
nondegenerate critical point of f . Then there exists a local system of coordinates

1 This definition clearly extends to the infinite-dimensional case as well, with obvious
modifications.



214 Morse theory

(y1, . . . , yn) near p such that, in these coordinates one has

f (y) = f (p)− y2
1 − · · · − y2

λ + y2
λ+1 + · · · + y2

n, (12.10)

where λ denotes the Morse index of f at p.

Proof. First of all, we show that if f has the form in (12.10), then λ must
coincide with the Morse index of f . This is indeed rather easy to see, since the
Hessian of f at 0 is

∂2f

∂yi∂yj
(0) =



−2
. . . 0

−2
2

0
. . .

2


,

where the upper-left block has dimension λ, so the claim follows immediately.
Next, we claim that given a C1 function f̃ for which f̃ (0) = 0, one can write

that f̃ (x) =∑n
j=1 xjgi(x1, . . . , xn) for some continuous functions (gj)j such that

gj(0) = ∂f /∂xj(0). In fact, it is sufficient to notice that in a neighbourhood of
0 there holds

f̃ (x) =
∫ 1

0

d

dt
f̃ (tx) dt =

∫ 1

0

∑
j

∂ f̃

∂xj
(tx) dt,

so the claim is valid with gj =
∫ 1

0 ∂ f̃ /∂xj(tx) dt. We can apply this formula to
both f − f (p) and ∂f /∂xi, so that we deduce

f (x) = f (p)+
n∑

i,j=1

xixjhij(x), hij(0) = 1

2

∂2f

∂xi∂xj
(0).

Let us now prove the statement by induction on n, assuming that in some
coordinates u = (u1, . . . , un) we have

f (u) = f (p)± u2
1 ± u2

2 · · · ± u2
r−1 +

∑
i,j≥r

uiujHij(u1, . . . , un), (12.11)

for some continuous functions Hij = Hji. After a linear change of variables in
(ur , . . . , un), we can assume that Hrr(0) = 0. Therefore near zero we have a
well defined and continuous function g(u) = H1/2

rr (u). Now consider the new
coordinates

vi = ui, i �= r; vr(u) = g(u)

[
ur +

∑
i>r

uHir(u)

Hrr(u)

]
.
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At the origin we have ∂vr/∂ur = g(0), and hence it turns out that

∂v

∂u
(0) =



−1
. . . 0

−1
∗ g(0) ∗

1

0
. . .

1


,

and therefore the transformation u �→ v is locally invertible near the origin.
Moreover, collecting the indices in (12.11) which are strictly greater than r and
noticing that

v2
r = Hrr(u)

u2
r +

(∑
i>r

uHir(u)

Hrr(u)

)2

+ 2ur

∑
i>r

uHir(u)

Hrr(u)

 ,

we find immediately

f (v) = f (p)± v2
1 ± v2

2 · · · ± v2
r +

∑
i,j>r

H ′ij(v)vivj,

for some smooth functions H ′ij. This concludes the proof. �

Proposition 12.11 (Handle body decomposition) Suppose p is a
nondegenerate critical point of f with Morse index λ, and suppose there exists
ε > 0 such that f has no critical points with values between c − ε and c + ε

except for p, where we have set c = f (p). Then Mc+ε has the homotopy type of
Mc−ε with a λ dimensional cell attached.

Regarding the terminology, a topological space X with a λ-cell attached is a
topological space X̃ with an equivalence relation ˜ . The space X̃ is the union

of X and the closed λ-cell B
λ

1. We also define a continuous map h : ∂B
λ

1 into X,
which is a homeomorphism onto its image. The equivalence relation∼identifies

every point y ∈ ∂B
λ

1 with its image through the map h.

Proof. By the Morse lemma, we can choose a coordinate system φ : U → R
n,

q �→ (u1, . . . , un), near p such that

f (u) = c− u2
1 − u2

2 − · · · − u2
λ + u2

λ+1 + · · · + u2
n
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in a neighbourhood of 0. Now choose ε so small that the assumption holds for
this value of ε and such that the image ofφ contains the ball B̃ε = {(u1, . . . , un) :∑

i u2
i ≤ 2ε}. Now let eλ denote the set

eλ = {q ∈ U : u2
1(q)+ · · · + u2

λ(q) ≤ ε, u2
λ+1(q)+ · · · + u2

n(q) = 0},
(12.12)

which is homeomorphic to the λ dimensional Euclidean ball. Clearly, see
Figure 12.2, eλ ∩ Mc−ε is the boundary of eλ and eλ is attached to Mc−ε

according to the definition above.
We now construct a new function F : M → R defined in the following way.

First we choose a smooth cutoff function η : R+ → R which satisfies
µ(r) = 0 for r ≥ 2ε
µ(0) > ε

µ′(0) = 0
−1 < µ′(r) ≤ 0 for every r.

(12.13)

Let F coincide with f outside U, while

F = f − µ(u2
1 + · · · + u2

λ + 2u2
λ+1 + 2u2

n) in U.

It is convenient to define ξ , η : U → [0,+∞) by

ξ = u2
1 + · · · + u2

λ, η = u2
λ+1 + · · · + u2

n,
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so in this way we can write that

f (q)=c−ξ(q)+η(q), F(q)=c−ξ(q)+η(q)−µ(ξ(q)+2η(q)), q ∈ U.

We now proceed with some different steps.

Step 1. F−1((−∞, c+ ε]) coincides with f−1((−∞, c+ ε]). To prove this fact,
we notice that when µ(ξ + 2η) = 0, then F coincides with f , and this is true in
particular if ξ + 2η ≥ 2ε. On the other hand, when ξ + 2η ≤ 2ε, we have

F ≤ f = c− ξ + η ≤ c+ 1

2
ξ + η ≤ c+ ε,

which proves the claim.
Step 2. The critical points of F coincide with those of f . To see this, it is sufficient
to restrict our attention to the set U, namely to show that in U the only critical
point of F is p. In U indeed we have

∂F

∂ξ
= −1− µ′(ξ + 2η) < 0,

∂F

∂η
= 1− 2µ′(ξ + 2η) ≥ 1.

Since we have dF = ∂F/∂ξ dξ + ∂F/∂η dη, dξ = 2
∑λ

i=1 uidui and dη =
2
∑n

i=λ+1 uidui, then dF = 0 implies u = 0, so also step 2 is proved.
Step 3. F−1((−∞, c−ε)) is a deformation retract of Mc+ε. By step 1 and by the
fact that F ≤ f , it follows that F−1([c−ε, c+ε]) ⊆ f−1([c−ε, c+ε]).Therefore,
since F and f coincide outside U, in F−1([c−ε, c+ε]) there is no critical point
of F except for p. On the other hand we have that F(p) = c − µ(0) < c − ε,
so F−1([c− ε, c+ ε]) contains no critical points, and step 3 is proved.
We now write F−1((−∞, c − ε]) = Mc−ε ∪ H, where H is the closure of
F−1((−∞, c− ε]) \Mc−ε. We claim next that if eλ is defined in (12.12), then
eλ ⊆ H . In fact, since ∂F/∂ξ < 0 then F(q) ≤ F(p) < c − ε for any q ∈ eλ,
but also f (q) ≤ c− ε. Hence the claim follows.
Step 4. F−1((−∞, c− ε)) is a deformation retract of Mc+ε.

We have to prove that there exists a continuous map r : [0, 1]×(Mc−ε∪H)→
Mc−ε ∪ eλ such that r(0, ·) is the identity on Mc−ε ∪H, such that r(t, ·)Mc−ε∪eλ
is the identity for every t and such that r(1, ·) has values in Mc−ε ∪ eλ. We
divide the proof into three cases.

Case 1. ξ ≤ ε. We can use the coordinates given by the Morse lemma and
define rt by

rt(u1, . . . , un) = (u1, . . . , uλ, tuλ+1, . . . tun).

Since ∂F/∂η ≥ 0, we deduce that rt maps F−1((−∞, c− ε]) into itself.
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Case 2. B̃ε ∩ {ε ≤ ξ ≤ η + ε}. We can still use the above coordinates and
we set

rt(u1, . . . , un)=(u1, . . . , uλ, stuλ+1, . . . , stun), st= t + (1− t)

[
ξ−ε

η

]1/2

.

We notice that r1 maps this region into f−1(c− ε) and is a continuous map.
Case 3. {ξ ≥ η + ε} ∪ (M \ B̃ε). In this case we just take rt to be the identity
for every t ∈ [0, 1].

It is easy to check that rt is continuous through the three different regions,
and that it satisfies the required properties, so step 4 is also complete.
The conclusion of the proposition follows from the above four steps and the
deformation lemma. �

Corollary 12.12 Let p be a nondegenerate critical point of f with Morse
index λ. let c = f (p) and assume that Zc = {p}. Then for ε sufficiently small
we have that

Hq(M
c+ε, Mc−ε) &

{
Z for q = λ

0 for q �= λ
.

Remark 12.13 If a regular function f : M → R possesses only a finite number
of critical points z1, . . . , zm at the level c, and if all of them are nondegenerate
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and of Morse indices respectively λ1, . . . , λm, then Mc+ε has the homotopy type
of Mc−ε with k cells attached, of dimension respectively λ1, . . . , λm. Moreover,
for ε sufficiently small Hq(Mc+ε, Mc−ε) & Ziq where iq is the number of points
in {z1, . . . , zm} with Morse index equal to q. �

We introduce next some inequalities concerning the relative homologies of
pairs, beginning with a couple of definitions.

Definition 12.14 The rank of an Abelian group G is the maximal number k for
which

∑k
i=1 nigi = 0 with (ni)i ⊆ Z and (gi)i ⊆ G implies gi = 0 for every i.

For example, if G = Zp ⊕ Zq for some integers p and q, then rank G = p.

Definition 12.15 Given a pair of spaces (B, A) and an integer q we set

βq(B, A) = rank Hq(B, A), χ(B, A) =
∑

(−1)qβq(B, A).

Here we are assuming that all the ranks are finite, and for the second definition
that βq is nonzero except for a finite number of q. The number βq(B, A) is called
the q-th Betti number of (B, A), while χq(B, A) is called the Euler-Poincaré
characteristic of (B, A).

Lemma 12.16 If A ⊆ B ⊆ C and if q is an integer, then we have

βq(C, A) ≤ βq(C, B)+ βq(B, A).

Proof. Let us recall that, given a homomorphism ϕ : G → H between two
Abelian groups, by the fundamental theorem of homomorphism then G &
ker(ϕ)⊕ im(ϕ), and therefore rank G = rank ker(ϕ)+ rank im(ϕ).

Let us now consider the exact sequence

· · · ∂q+1−→ Hq(B, A)
ϕq−→ Hq(C, A)

ψq−→ Hq(C, B)
∂q−→ · · · ,

where ϕq and ψq are induced by natural inclusions. By the above observation
we have that rank Hq(C, A) = rank ker(ψq)+rank im(ψq), so by the exactness
of the sequence of the triple (C, B, A) it follows that

βq(C, A) = rank im(ϕq)+ rank im(ψq), (12.14)

from which we immediately deduce

rank im(ψq) ≤ rankHq(C, B) = βq(C, B). (12.15)
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Moreover, applying the above reasoning to G = Hq(B, A) and to ϕ = ϕq we
obtain that

rank im(ϕq) ≤ rank Hq(B, A) = βq(B, A). (12.16)

Therefore, from (12.14)–(12.16) we findβc(C, A) ≤ βq(C, B)+βq(B, A), which
concludes the proof. �

Lemma 12.17 Let A, B, C be as in Lemma 12.16. Then one has

χ(C, A) = χ(C, B)+ χ(B, A).

Proof. Let us consider the exact sequence

· · · ∂q+1−→ Hq(B, A)
ϕq−→ Hq(C, A)

ψq−→ Hq(C, B)
∂q−→ Hq−1(B, A) −→ · · · .

Then, recalling (12.14) we find

βq(C, B) = rank im(ψq)+ rank im(∂q),

βq(B, A) = rank im(∂q+1)+ rank im(∂q+1),

βq(C, A) = rank im(ϕq)+ rank im(ψq),

and hence

βq(C, A) = βq(C, B)+ βq(B, A)− rank im(∂q)− rank im(∂q+1).

Taking the sum in q with alternate signs we obtain

χ(C, A) =
∑

q

(−1)qβq(C, A) =
∑

q

(−1)qβq(C, B)+
∑

q

(−1)qβq(B, A)

−
∑

q

rank im(∂q)−
∑

q

rank im(∂q+1).

Summing over q, one easily checks that the last two terms cancel, and therefore
the last formula becomes

χ(C, A) =
∑

q

(−1)qβq(C, B)+
∑

q

(−1)qβq(B, A) = χ(C, B)+ χ(B, A),

so the proof is concluded. �

We have next an extension of Lemma 12.16.

Lemma 12.18 Given a pair of spaces (B, A), we set

Bq(B, A) = βq(B, A)− βq−1(B, A)+ · · · ± β0(B, A).
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Then, if A ⊆ B ⊆ C, we have the inequality

Bq(C, A) ≤ Bq(C, B)+ Bq(B, A).

Proof. Given an exact sequence

· · · ϕq+1−→ Gq
ϕq−→ Gq−1 −→ · · · ϕ1−→ G0

ϕ0−→ 0,

by the fundamental theorem of homomorphism we find

rank im(ϕq+1) = rank Gq − rank im(ϕq)

= rank Gq − [rank Gq−1 − rank im(ϕq−1)]
= rank Gq − rank Gq−1 + rank im(ϕq−1).

Continuing in this way from the last formula we deduce

rank im(ϕq+1) = rank Gq − rank Gq−1 + · · · ± rank G0, (12.17)

so clearly the right hand side is non-negative.
Applying this argument to the exact sequence of the triple (C, B, A)

· · · ∂q+1−→ Hq(B, A) −→ Hq(C, A) −→ Hq(C, B) −→ · · · ,

taking ϕq+1 = ∂q+1 we get

βq(B, A)− βq(C, A)+ βq(C, B)− βq−1(B, A)+ · · · ≥ 0.

Collecting the terms involving the pairs (B, A), (C, A) and (C, B) we obtain the
conclusion. �

Corollary 12.19 Suppose that we have the inclusion of spaces X0 ⊆
X1 ⊆ · · · ⊆ Xn. Then

βq(Xn, X0) ≤
n∑

i=1

βq(Xi, Xi−1), Bq(Xn, X0) ≤
n∑

i=1

Bq(Xi, Xi−1),

χ(Xn, X0) =
n∑

i=1

χ(Xi, Xi−1).

Proof. The proof follows immediately using Lemmas 12.16, 12.17, 12.18 and
an induction procedure on n. �

We can now state the main result of this chapter.
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Theorem 12.20 Suppose M is a compact finite dimensional manifold, and that
f : M → R is a function of class C2 whose critical points are all nondegenerate.
Then for any non-negative integer q we have the following relations

Cq(M) ≥ βq(M) (Weak Morse inequalities;)

∑
i≥0

(−1)q−iCi(M) ≥
∑
i≥0

(−1)q−iβi(M) (Strong Morse inequalities;)

∑
i≥0

(−1)iCi(M) = χ(M). (12.18)

In these formulas, Ci(M) denotes the number of critical points of f with Morse
index equal to i.

Proof. Let c1 < c2 · · · < ck denote the critical levels of f , which are
only finitely many according to our assumptions. Now choose real numbers
a0,α1, . . . , ak such that ai < ci+1 < ai+1 for every i = 0, . . . , k−1. In particu-
lar we have that Ma0 = ∅ and that Mak = M. By Proposition 12.9 we have that,
for any integers i, q and any small ε > 0 Hq(Mci+ε, Mci−ε) & Hq(Mai , Mai−1).
Then it is sufficient to apply Remark 12.13 and Corollary 12.19. �

Remark 12.21 (i) By subtraction the strong Morse inequalities immediately
imply the weak ones.

(ii) If a, b, with a < b are two regular values of f , then the Morse relations
still hold if we replace βq(M) with βq(a, b) := rank Hq(Mb, Ma) and count
only the critical points with values between a and b.

(iii) Under suitable assumptions on the function f , it is possible to cover also
the case of manifolds with boundary, see [134]. Precisely, a function f ∈ C2(M),
where M is a manifold with boundary, is said to satisfy the general boundary
conditions on M if both f and its restriction to ∂M are Morse functions, and
if it has no critical point on ∂M. In this case, at every critical point of f |∂M

the gradient of f is always nonzero and points either inward on M or outward.
Then, in the Morse relations, Cq(M) has to be substituted with Cq(M)+cq(M),
where cq(M) represents the number of critical points of f |∂M with Morse index
q and for which the gradient points inward. Results of this type, but in the
framework of the Lusternik–Schnirelman category, have been obtained by
P. Majer [121]. �

Example 12.22 (1) If β0(a, b) = 1 and βq(a, b) = 0 for every q > 0, then we
have C1 ≥ C0 − 1. In particular if f has two nondegenerate minima then there
exists at least a saddle point.
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(2) If Cq+1 = 0 then clearly βq+1 = 0. Using the strong inequalities with
index q + 1 we find that

−Cq + Cq−1 + · · · ± C0 ≥ −βq + βq−1 + · · · ± β0.

Similarly, the strong inequalities with index q imply the reversed inequality and
hence we get

Cq − Cq−1 + · · · ± C0 = βq − βq−1 + · · · ± β0.

Analogously, if Cq−1 = 0 we have βq−1 = 0 and as before we find

Cq−2 − Cq−3 + · · · ± C0 = βq−2 − βq−3 + · · · ± β0.

It follows that, if both Cq+1 and Cq−1 vanish then Cq = βq. �

We mention next some extensions of Theorem 12.20, which allow us to cover
both the infinite dimensional case, and the presence of degenerate (but still isol-
ated) critical points. We refer the reader to [72], where some further extensions
and several applications are given.

We consider now the case of a Banach (or Hilbert) manifold M, see
Section 6.1, and of a function f : M → R of class C1. Let also p ∈ M be
an isolated critical point of f . Then, if r is so small that Br(p) contains no
critical points of f except for p, one can define the critical groups of f at p by

Cq(f , p) := Hq(M
c ∩ Bε(p), (M

c \ {p} ∩ Bε(p))), q ≥ 0, (12.19)

where c = f (p). By the excision property of the relative homology groups, we
see that this definition is independent of r (taking this sufficiently small). If f
is of class C2 (on a Hilbert manifold) and p is a nondegenerate critical point
of f with Morse index λ, the Morse lemma still holds, and in suitable local
coordinates u (with u(p) = 0) one has f (u) = c − ‖u−‖2 + ‖u+‖2, where
u = u− + u+ with u± ∈ E± and E+ ⊕E− & TpM. This allows us to prove that
in this case: 2

Cq(f , p) &
{

Z q = λ

0 q �= λ.
(12.20)

In particular, if the index λ is infinite, then all the critical groups vanish.
Using pseudogradient vector fields and the Palais–Smale condition, one can

employ the deformation lemma to deal with noncritical levels, and the critical
groups for the critical ones. Then the following general result can be proved.

2 In finite dimension this follows from the construction in the proof of Proposition 12.11.
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Theorem 12.23 Let M be a Banach manifold and let f ∈ C1(M) satisfy
the (PS)c condition for every c ∈ [a, b], where a, b are regular values of f
with a < b. Assume that the critical points of f in Ma \ Mb are only finitely
many, denoted by {z1, . . . , zl}. Then, letting Mq(a, b) = ∑l

i=1 rank Cq(f , zi)

and βq(a, b) = rank Hq(Mb, Ma), for every integer q one has

q∑
j=0

(−1)q−jMj(a, b) ≥
q∑

j=0

(−1)q−jβq(a, b),

∑
j≥0

(−1)jMj(a, b) =
∑
j≥0

(−1)jβj(a, b).

Here we are assuming that all the numbers Mq(a, b),βq(a, b) are finite and that
the series converge.

12.3 An application: bifurcation for variational operators

In this section we apply Morse theory to prove a bifurcation theorem due to
Krasnoselski [110] and improved by R. Böhme [59] and A. Marino [128]. We
follow the proof given in [129].

We consider an equation of the form

λu− T(u) = 0, (12.21)

where u belongs to a Hilbert space X, λ is a real parameter and T is an operator
from a neighbourhood of zero in X with values in X and such that T(0) = 0.
Our main goal is to prove the following result.

Theorem 12.24 Let U ⊆ X be a neighbourhood of 0, and let a : U → X be a
function of class C2 with a(0) = 0. Letting T = ∇a, assume T is compact and
that T(0) = 0. Then every nonzero eigenvalue of T ′(0) is a bifurcation point
for (12.21).

Before beginning the proof, we need some preliminary notation and lemmas.
We set

bλ(u) = λ

2
‖u‖2 − a(u),

so that ∇bλ = λId−T . Therefore the solutions of (12.21) are critical points of
bλ. Without loss of generality we can assume that T has a positive eigenvalue
λ0. Let us also introduce the following subsets of R× U:

� = {(λ, u) ∈ R× (U \ {0}) : bλ(u) = 0};
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�γ = {(λ, u) : λ0 − γ ≤ λ ≤ λ0 + γ , u ∈ U \ {0}, bλ(u) = 0}.
Letting P denote the natural projection of R× X onto X, we also set

P(�γ ) = Mγ ,

and one can easily check that Mγ is relatively closed in U \ {0}. We next define

U−λ = {u ∈ U : bλ(u) ≤ 0}, Bδ = Bδ(0).

Lemma 12.25 In the above assumptions, suppose that λ0 is not a bifurcation
value for (12.21). Then there exist two positive numbers γ , δ such that in Mγ∩Bδ

the operator T satisfies

‖T(u)‖2‖u‖2 − (T(u)|u)2 > 0, (12.22)

namely there is no point u ∈ Bδ \ {0} with bλ(u) = 0, with |λ − λ0| ≤ γ and
with T(u) parallel to u.

Proof. Suppose by contradiction that there exist three sequences (un)n ⊆
U \ {0}, (λn)n, (µn)n ⊆ R such that

µnun − T(un) = 0,
λn

2
‖un‖2 − a(un) = 0,

lim
n→∞ un = 0, lim

n→∞ λn = λ0.

Taking the scalar product of the first equation with un we get ρ(un) = µn,
where ρ(u) is defined as

ρ(u) = (T(u)|u)
(u|u) .

Since (λn, un) ∈ � and since limn→∞(λn, un) = (λ0, 0), from the C2-continuity
of a we find that

µn = λn
(T(un)|un)

2a(un)
= λn

(a′′(0)un|un)+ o(‖un‖2)

(a′′(0)un|un)+ o(‖un‖2)
,

so that limn→∞ µn = λ0. This is clearly in contradiction to the assumption that
λ0 is not a bifurcation value. �

In the next lemma we obtain a uniform positive lower bound of the left hand
side of (12.22) in terms of ‖u‖.

Lemma 12.26 In the above assumptions (taking λ0 > 0), there exist two pos-
itive numbers γ , δ (with Bβ ⊆ U) and a real function σ : (0, δ] → R which
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is positive, continuous monotone, with σ(t) → 0 as t → 0 and such that in
Mγ ∩ Bδ we have

‖T(u)‖2‖u‖2 − (T(u), u)2 ≥ σ(‖u‖).
Proof. Let us take two small positive numbers γ , δ such that we have the
condition (12.22) in Mγ ∩ Bδ , by Lemma 12.25. By the C2-continuity of a we
can also assume that ρ(u) ≥ λ0/2 in this set.

At this point, we first prove that u �→ T(u)− ρ(u)u maps the closed sets of
Mγ ∩ Bδ into closed sets of X. Indeed, let (un)n be a sequence of points in a
closed set K of Mγ ∩ Bδ such that the image sequence yn = T(un)− ρ(un)un

converges to some point y∗. By compactness, we can extract a sequence, still
denoted by (un)n such that both T(un) and ρ(un) converge. Then we have

un = 1

ρ(un)
(T(un)− yn).

Since ρ(un) ≥ λ0/2, we deduce that un converges to some u∗ ∈ K such that
T(u∗)− ρ(u∗)u∗ = y∗. This proves our claim.

Therefore, the set Mγ ∩ Bδ is mapped onto a closed set which, by (12.22),
does not contain the origin and therefore has a positive distance σ̃ (γ ) from it.
The function σ̃ satisfies all the required properties in the statement except for
the continuity. But it is easy to construct a continuous function σ ≤ σ̃ which
also satisfies the last requirement. �

Let us now fix the numbers γ and δ from Lemma 12.26. Let 0 < ε < γ/2 and
let θ : R → R be a smooth function supported in (−γ /2, γ /2) and which is
identically equal to 1 in the interval [−ε, ε]. Let us define

ω(u) = θ

(
λ0

2
− a(u)

‖u‖2

)
, u ∈ U \ {0}.

Let us observe that if 0 < ‖u‖ ≤ δ and ω(u) �= 0, then −γ /2 < λ0/2 −
a(u)/‖u‖2 < γ/2, and hence there exists λ ∈ (λ0 − γ , λ0 + γ ) such that
λ/2− a(u)/‖u‖2 = 0, namely u ∈ Mγ ∩ Bδ .

Let us now consider the operator D : U → X defined as

D(u)

=
ω(u)

‖u‖2T(u)− (T(u)|u)u
‖u‖2‖T(u)‖2 − (T(u)|u)2

‖u‖2

2
for ‖u‖2‖T(u)‖2 − (T(u)|u)2 �= 0

0 otherwise.

One easily checks that D is of class C1 in an open set Ũ containing Bδ \ {0}.
Moreover one immediately verifies that

(u|D(u)) = 0 ∀ u, (T(u)|D(u)) = 1 ∀ u �= 0. (12.23)
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Lemma 12.27 In the above notation, consider the following ordinary differ-
ential equation

dη

dλ
= D(η), in Ũ. (12.24)

Then, for any choice of λ and of u ∈ Bδ \ {0} problem (12.24) has a unique
solution η(λ, u) with initial condition η(λ, u) = u. This solution is defined on
the whole real line and verifies

‖η(λ, u)‖ = ‖u‖ for any λ.

If in addition one has bλ(u) = 0 for some λ ∈ [λ0 − ε, λ0 + ε], then also
bλ(η(λ, u)) = 0 in the whole interval [λ0 − ε, λ0 + ε].

Proof. Since D is of class C1 in Ũ, we have local existence and uniqueness of
solutions. On the other hand, using the first of (12.23), we have that

d

dλ
‖η(λ, u)‖2 = 2

(
η(λ, u)|dη(λ, u)

dλ

)
= 2(η(λ, u)|D(η(λ, u))) = 0.

It follows that every solution has constant norm and hence the set {η(λ, u)}, when
λ varies in the interval of definition, has closure contained in Ũ. Moreover, since
ω(η(λ, u)) �= 0 only when η(λ, u) ∈ Mγ ∩ Bδ , we deduce from Lemma 12.26
and from the expression of D that D(η(λ, u)) stays bounded, so the solution is
indeed globally defined.

Let us now prove the second statement. Let bλ(u) = 0, namely λ/2 −
a(u)/‖u‖2 = 0. From the definition ofω we have thatω(u) = θ((λ0 − λ)/2) =
1 since we are assuming |λ0 − λ| ≤ ε. Moreover, since the argument of θ does
not exceed ε/2 in absolute value, there is a neighbourhood of u in which ω is
identically equal to 1. Therefore, in a neighbourhood of λ, the first definition
of D can be applied, with ω(u) = 1. It follows that

d

dλ
bλ(η(λ, u)) = (∇bλ(η) | D(η)) = λ(η | D(η))− (T(η) | D(η)).

Using (12.23) we get d/dλbλ(η(λ, u)) = 0, namely that λ �→ bλ(η(λ, u)) is
constant in [λ0 − ε, λ0 + ε]. This proves the lemma. �

Lemma 12.28 Under the above assumptions, suppose that λ0 is not a bifurca-
tion point for (12.21). Then, for sufficiently small ε and δ, the spaces U−λ0−ε∩Bδ

and U−λ0+ε ∩ Bδ are homeomorphic, and the homeomorphism maps the origin
into itself.

Proof. We let ψ : R
2 × Bδ → Bδ be such that if ‖u‖ > 0, then ψ(λ, λ, u) =

η(λ, u) (where η(λ, u), as above, denotes the solution of (12.24) with initial
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condition u(λ) = u), while ψ(λ, λ, 0) = 0 for every λ, λ. Next, one can easily
show that ψ(λ, λ, ·) is continuous for u �= 0, but since ‖ψ(λ, λ, u)‖ = ‖u‖ we
have continuity also at the origin. By Lemma 12.27, when λ ∈ [λ0− ε, λ0+ ε],
ψ preserves the sign of bλ in the whole interval [λ0 − ε, λ0 + ε]: then the
map u �→ ψ(λ0 − ε, λ0 + ε, u) admits the function u �→ ψ(λ0 + ε, λ0 − ε, u)
as inverse, and it gives the desired homeomorphism from U−λ0−ε ∩ Bδ onto

U−λ0+ε ∩ Bδ . �

We are now in a position to prove the main theorem.

Proof of Theorem 12.24. Let λ0 > 0 be an eigenvalue of T ′(0), and sup-
pose by contradiction that λ0 is not a bifurcation value for (12.21). Then by
Lemma 12.28 if ε and δ are chosen small enough, then we have a sequence of
isomorphisms

Hq(U
−
λ0−ε ∩ Bδ , U−λ0−ε ∩ Bδ \ {0}) & Hq(U

−
λ0+ε ∩ Bδ , U−λ0+ε ∩ Bδ \ {0}).

On the other hand, if λ0 is an eigenvalue of T ′(0), the Morse index of bλ at
u = 0 changes when λ crosses λ0. Thus, by (12.19) and (12.20), the preceding
isomorphism between homology groups cannot hold for every q. �

Remark 12.29 Under some further nondegeneracy conditions, it is possible to
show that the bifurcation set is (locally) a branch, see [11]. However, in general,
this might not be the case, see [59]. �

Remark 12.30 Following [145], we can reformulate the preceding arguments
in the following suggestive way. The stationary point u = 0 of bλ can be
associated, for any fixed λ, to a multi-index �λ := [m0, m1, . . . , mq, . . .], where
mq denote the Betti numbers of the homology groups Hq(U

−
λ ∩Bδ , U−λ ∩Bδ\{0}).

According to the previous calculation, if 0 is nondegenerate, one finds that
mq = δs

q, where δ is the Kronecker symbol and s is the number of eigenvalues
of T ′(0) greater that λ, counted with their multiplicity. Now, letting λ0 be an
isolated eigenvalue of T ′(0), the multi-index �λ changes as λ crosses λ0. On
the other hand, if λ0 is not a bifurcation point, then Lemma 12.28 implies that
�λ0−ε = �λ0+ε provided ε > 0 is small enough, getting a contradiction. It is
worth pointing out the difference between the multi-index �λ and the Leray–
Schauder index. The former changes when crossing any eigenvalue of T ′(0),
including those with even multiplicity. The latter, which equals (−1)s (see
Theorem 3.20), changes only when crossing an odd eigenvalue. �
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12.4 Morse index of mountain pass critical points

In this section we want to evaluate the Morse index of critical points found
using the MP theorem.

12.4.1 An abstract result

Let us consider a functional J ∈ C1(E, R) which has the mountain pass (MP,
in short) geometry, namely that satisfies the assumptions (MP-1) and (MP-2)
introduced in Section 8.1. With the same notation used there, let us set

� = {γ ∈ C([0, 1], E) : γ (0) = 0, γ (1) = e},
and

c = inf
γ∈� max

t∈[0,1] J(γ (t)).

According to the MP theorem 8.2, we know that if (MP-1) and (MP-2) and
(PS)c hold, then c > 0 is a critical level of J , namely there exists z ∈ Zc =
{u ∈ E : J(u) = c, J ′(u) = 0}.

The min-max characterization of the MP critical level c allows us to establish
some further properties of the MPcritical points. Let us introduce some notation.
If J ∈ C2(E, R) and z is a critical point of J , we set

• E0(z) = KerJ ′′(z),
• E−(z) = {v ∈ E : (J ′′(z)v | v) < 0},
• E+(z) = {v ∈ E : (J ′′(z)v | v) > 0}.
We say that z is nondegenerate if E0(z) = {0} and we denote the Morse index
by m(z).

Theorem 12.31 In addition to the assumptions of the MP theorem, let J ∈
C2(E, R) and suppose that Zc is discrete. Then there exists z ∈ Zc such that
m(z) ≤ 1. Furthermore, if Zc = {z} and z is nondegenerate, then m(z) = 1.

Let us give an outline of the proof in the case in which Zc = {z} and z is
nondegenerate. We follow [10]. For simplicity of notation, we take z = 0 and
write E± instead of E±(z).

Arguing by contradiction, let E = E− ⊕ E+ with dim(E−) ≥ 2. By the
Morse lemma, up to a smooth change of coordinates, we have that

J(u) = c− ‖u−‖2 + ‖u+‖2,
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where u = u− + u+, u± ∈ E±. Given β > α > 0, let Uα,β denote the
neighbourhood of z = 0

Uα,β = {u = u− + u+ : ‖u−‖ < α, ‖u+‖ < β}.
For any u ∈ Uα,β with ‖u+‖ = β, one finds that

J(u) ≥ c− α2 + β2.

Thus, given d > c, there exists ε > 0 such that if α < β ≤ ε one has

inf {J(u) : u ∈ Uα,β , ‖u+‖ = β} ≥ d.

Taking α,β possibly smaller, we can also suppose that

inf {J(u) : u ∈ Uα,β} > 0.

Let us point out that, in particular, this and the fact that J(0) = 0 and J(ε) ≤ 0
imply 0, e �∈ Uα,β . Let δ ∈ ]0, d − c[. By the definition of the MP critical level
c we can find γ ∈ � such that

sup{J(γ (t)) : t ∈ [0, 1]} ≤ c+ δ.

According to the deformation Lemma 9.12 and Remark 9.13, we can find a
deformation η such that

(a) η ◦ γ ∈ �,
(b) η(Ec+δ \ Uα,β) ⊂ Ec−δ .

0

  

�2





�1

�

v2

v2
–v1

–

v1

  

E +

E –

U�, 	

Figure 12.4 The modified part of γ , namely the path π1 ∪ σ ∪ π2, is in bold.
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If γ (t) ∩ Uα,β = ∅ ∀ t ∈ [0, 1], then we get a contradiction directly from (a)
and (b) above. Then, let us suppose that γ intersects Uα,β . Since γ (0) = 0 and
γ (1) = e and 0, e �∈ Uα,β (see before) we infer that there exist t1 < t2 �∈]0, 1[
such that vi := γ (ti), i = 1, 2, belong to ∂Uα,β , while γ (t) �∈ Uα,β for all t < t1
and t > t2. Since

J(vi) ≤ c+ δ < d ≤ inf {J(u) : u ∈ Uα,β , ‖u+‖ = β},
it follows that ‖v−i ‖ = α and ‖v+i ‖ < β, i = 1, 2. Let πi ⊂ ∂Uα,β denote the
segments joining vi and v−i . Since dim(E−) ≥ 2 we can connect v−1 and v−2
with an arc σ contained in ∂Uα,β ∩ E−. Finally, consider the path γ̃ defined as
follows

γ̃ (t) =
{
γ (t) if t ∈ [0, t1] ∪ [t2, 1]
π1 ∪ σ ∪ π2 if t ∈]t1, t2[.

Remark that γ̃ ∈ G. Since for v ∈ ∂Uα,β ∩ E− one has that ‖v−‖ = α and
‖v+‖ = 0, then

J(v) = c− α2, ∀ v ∈ ∂Uα,β ∩ E−.

Therefore, one has that

sup
σ

J(u) < c.

Moreover, one readily checks that supπi
J(u) ≤ c + δ. In conclusion, the path

γ̃ ∈ � is such that

sup
γ̃

J(u) ≤ c+ δ, γ̃ (t) ∩ U = ∅, ∀ t ∈ [0, 1].

Using (a) and (b)we infer thatη◦γ̃ ∈ � and sup{J(η◦γ̃ (t)) : t ∈ [0, 1]} ≤ c−δ.
This is in contradiction to the definition of c, and proves that m(z) ≤ 1. To rule
out that m(u) = 0 it suffices to remark that in such a case u is a local strict
minimum for J and E = E+. Now one can take Uα,β such that inf {J(v) : v ∈
∂Uα,β} ≥ d > c. Repeating the previous arguments one readily reaches again
a contradiction. �

Remark 12.32 The case of a degenerate MP critical point is investigated in
[97, 106]. The Morse index of a linking critical point has been studied in [114].
In this framework, we also recall a result by H. Amann [6] which asserts that
the Leray–Schauder index of a local minimum is 1. �
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12.4.2 Some applications

Theorem 12.31 can be used to prove multiplicity results. We will explicitly
discuss a couple of examples. The first one deals with the coercive Dirichlet
boundary value problem{−
u = λu− h(u) x ∈ �

u = 0 x ∈ ∂�,
(Dλ− )

with h(u) ∼ |u|p−1, p > 1, see also Theorem 10.22. Below λk , k = 1, 2, . . . ,
denote, as usual, the kth eigenvalue of −
 on E = H1

0 (�).

Theorem 12.33 Suppose that h is Hölder continuous, such that h(0) = 0 and
h(u) → +∞ as |u| → ∞. Then for every λ > λ2, (D−λ ) has at least three
nontrivial solutions.

Proof. (Sketch) We will prove this claim under the additional assumption that

λ− h(u) > f ′λ(u), ∀ u �= 0. (12.25)

The general case requires some more work and a Lyapunov–Schmidt reduction
(see [17]). By this assumption, there exist two positive numbers M1, M2 such
that λu − h(u) is negative (respectively positive) for u > M1 (respectively
for u < −M2) and positive in (0, M1) (respectively negative in (−M2, 0)).
Therefore, if we define the function f̃λ : R → R as

f̃λ(u) =
{
λu− h(u) for u ∈ [−M2, M1]
0 for u ∈ (−∞,−M2] ∪ [M1,+∞),

then it is easy to check that the solutions of (D−λ ) are the critical points of

Jλ(u) = 1

2
‖u‖2 −

∫
�

Fλ(u) dx, Fλ(u) =
∫ u

0
f̃λ(s) ds.

Hereafter, it is understood that we have carried out the same truncation made
in Section 10.4 dealing with (10.12), which is indeed a specific case of (D−λ ).

Let us first prove that, for λ > λ1, Jλ has two minima which give rise to a
positive and to a negative solution of (D−λ ). As in Example 5.11, let us consider
the positive part f̃+λ of f̃λ. Since h(u)→+∞ as |u| → ∞ then f̃+λ is bounded.
Then the functional

J+λ (u) = 1

2
‖u‖2 −

∫
�

F+λ (u) dx, F+λ (u) =
∫ u

0
f̃+λ (s) ds,

has a global minimum u+λ . Since

lim
u→0

f (u)

u
= λ > λ1,
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it follows that u+λ �= 0 and by the maximum principle one infers that u+λ > 0. Let
us now prove that u+λ is indeed a local minimum for Jλ, too. Since u+λ satisfies
(D−λ ) and u+λ �= 0, it follows that 1 is an eigenvalue of the linear problem

−
u+λ = aλ(x)u
+
λ , where aλ(x) = λ− h(u+λ (x)).

In other words, using the notation introduced in Section 1.4.1, there exists k ≥ 1
such that λk[aλ] = 1. Furthermore, since u+λ > 0 we have that λ1[aλ] = 1,
see Theorem 1.13(i). Using the monotonicity property of the eigenvalues (see
(EP-1) in Section 1.4.1), it follows that

λ1[f ′λ(u+λ )] > λ1[aλ] = 1.

This implies that u+λ is a strict minimum of Jλ and that it is nondegenerate with
Morse index m(u+λ ) = 0. Similarly, substituting f̃+λ with its negative part, one
finds that for λ > λ1, (Dλ) possesses a negative solution u−λ < 0 which is also
a nondegenerate minimum of Jλ. Applying the MP theorem, we find a third
critical point u∗λ, different from u±λ . If the MP critical point u∗λ coincides with
0 ∈ E and Jλ has no other critical point than u±λ and 0, then Theorem 12.31
applies yielding that m(0) ≤ 1. On the other hand, if λ > λ2 then the Morse
index of 0 is greater than or equal to 2, a contradiction. This completes the
proof. �

Remark 12.34 The last result (assuming in particular no upper bound on p)
can be extended to some cases in which the function h also depends on x. For
example, if there exists u > 0 such that for every x ∈ �one hasλu−h(x, u) < 0,
∀u ≥ u (and a similar condition for negative u), then the solutions of the
problem with truncated right hand side also solve the original problem, and the
multiplicity result will hold unchanged. �

As a second application, we consider a Dirichlet problem with a jumping
nonlinearity. By this we mean a boundary value problem like{−
u = βu+ − αu− + g(u)+ tϕ1 x ∈ �

u = 0 x ∈ ∂�,
(Dt)

where t ∈ R, α < λ1 < β, g : R −→ R is smooth and such that

lim|s|→∞
g(s)

s
= 0. (12.26)

Above u+ = max{u, 0}, u− = u+−u and ϕ1 > 0 is such that
ϕ1 = λ1ϕ1 in �,
ϕ1 = 0 on ∂�. The name ‘jumping nonlinearity’ is due to the fact that the limits
as u → ±∞ of the nonlinearity in (Dt) are different and the interval (α,β)
contains an eigenvalue of the Laplacian. For some results on these problems
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we refer to [20, Chapter 4, Section 2]. In particular, it is proved that there exists
T ∈ R such that

(i) if t < T , (Dt) has at least two solutions,
(ii) if t < T , (Dt) has at least one solution,

(iii) if t > T , (Dt) has no solution.

We shall prove the following.

Theorem 12.35 Suppose that α < λ1 < λk < β < λk+1 for some k ≥ 2.
Then, there exists T∗ ∈ R such that if t < T∗, (Dt) has at least three solutions.

The proof is based on the following lemma. Below we set f (x, u) = βu+ −
αu− + g(u).

Lemma 12.36 There exists T∗ ∈ R such that:

(i) if t < T1, (Dt) has a positive solution ut > 0 and a negative solution
vt < 0;

(ii) λ1[fu(vt)] > 1, while λk[fu(ut)] < 1 < λk+1[fu(ut)].

Proof. Consider the problem{−
u = βu+ g(u)+ t ϕ1 x ∈ �

u = 0 x ∈ ∂�.
(12.27)

Since β �= λj for all j ≥ 1, and g is sublinear, it follows from Theorem 3.23
and Remark 3.24 that (12.27) has a solution ut . Setting

ψt = ut − t

λ1 − β
ϕ1,

one checks that ψt solves−
ψt = βψt + g(ut). By elliptic regularity, one has
that ‖ψt‖C1 ≤ c, for some constant c > 0 independent of t. It follows that there
exists t1 < 0 such that ut > 0 provided t < t1 and therefore ut is a solution of
(Dt). In a similar way, considering the problem (12.27) with β substituted by α,
one shows that (Dt) possesses a negative solution vt , provided t is the smaller
of some t2 < 0. This proves that (i) holds, provided t < min{t1, t2}.

To prove (ii) we argue as follows. Since ut = ψt + t/(λ1 − β)ϕ1 and
‖ψt‖C1 ≤ c, we infer that fu(ut) → β in L∞(�), as t → −∞. We can
now use the continuity property of eigenvalues, see (EP-2) in Section 1.4.1, to
find that {

λk[fu(ut)] → λk[β] = λkβ
−1 < 1 (t →−∞),

λk+1[fu(ut)] → λk+1[β] = λk+1β
−1 > 1 (t →−∞).
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Similarly, fu(vt) → α in L∞(�), as t → −∞ and thus λ1[fu(vt)] → λ1[α] =
λ1α

−1 > 1. Thus there exists t3 < 0 such that (ii) holds provided t < t3. Taking
T∗ = min{t1, t2, t3}, the lemma follows. �

Proof of Theorem 12.35. Let Jt denote the Euler functional of (Dt) in E =
H1

0 (�). From Lemma 12.36(i) it follows that if t < T∗, Jt has two critical
points ut and vt . Furthermore, statement (ii) of the same lemma implies that ut

and vt are nondegenerate and the Morse index of ut , vt , is k, respectively 0. In
particular, vt is a strict local minimum of Jt . Evaluating Jt on the half-line rϕ1

one finds

Jt(rϕ1) = 1

2
r2
∫
�

|∇ϕ1|2 dx −
∫
�

F(rϕ1) dx − r t

≤ 1

2
r2λ1 − 1

2
r2β − r t.

Since β > λ1 it follows that Jt(rϕ1) → −∞ as r → +∞. Hence Jt satisfies
the geometric conditions of the MP theorem. Moreover, it is straight forward
to check that the (PS) condition holds. Thus Jt has a MP critical point u∗t �= vt .
If the only critical points of Jt are ut and vt , then u∗t = ut . Therefore, it is
nondegenerate and its Morse index is k. If k > 2, this is in contradiction with
Theorem 12.31. �

12.5 Exercises

(i) (a) Similarly to the proof of (12.2), use the exactness of the
Mayer-Vietoris sequence to show that Hq(T

n) & Z
dn,q , for n ≥ 0 and

q = 0, . . . , n, where

dn,q :=
(

n
q

)
stand for the binomial coefficients.

(b) Using Theorem 12.20, find the Euler characteristic of the two-
dimensional torus T = S1 × S1, the sphere Sn−1 ⊂ R

n and the
projective space RP

2 = S2/{−Id, Id}. Using the result in (i), show
that every Morse function on T

n possesses at least 2n critical points.
(ii) The Morse inequalities can also be found when f ∈ C2(Rn, R) has

critical manifolds. See e.g. R. Bott, Annals of Math. 60 (1954),
248-261. We say that N ⊂ R

n is a non-degenerate critical manifold for f
if every x ∈ N is a non-degenerate critical point for the restriction of f to
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the subspace orthogonal to TxN . The Morse index of x as a critical point
of f (which is independent of x ∈ N) is, by definition, the Morse index of
N . If Uε denotes an ε-neighborhood of N , and N has Morse index k, it is
possible to prove that the critical homology groups verify, for ε � 1,
Hq(Mc ∩ Uε, Mc ∩ Uε \ N) & Hq−k(N). Taking into account these facts,
prove the following statements, under the assumption that f has only
non-degenerate critical manifolds and N = S1.

(a) Hq(Mc ∩ Uε, Mc ∩ Uε \ N) = Z if q = k, k + 1, otherwise is 0.
(b) βq(M) = Cq(M)+ Cq−1(M).
(c) Cq(M) ≥∑q

j=0(−1)q−jβj(M).

(iii) (the Von Karman equations for a clamped plate) Let � ⊂ R
2 be

bounded, let E denote the closure of C∞0 (�) in W2,2(�) with respect to

(u | v)E =
∫
�

uv +
∑

DuDv +
∑
‖α|=2

DαuDαv

 dx

and define [f , g] = fxxgyy + fyygxx − 2fxygxy. Consider the non-linear
eigenvalue problem


2u = − 1
2 [v, v], x ∈ �,


2v = λ[h, v] + [u, v], x ∈ �,
u, v ∈ E,

(VK)

where 
2 denotes the bi-harmonic operator.

(a) Define the operator C : E �→ E by setting
(C(u, v) | w)E = −

∫
�
[u, v]wdx. Prove that C is compact, such that

C(tu, tv) = t2C(u, v) and that the form (C(u, v) | w)E is symmetric.
(b) Deduce that Lu := C(h, u) is selfadjoint and compact.
(c) Show that the weak solutions of (VK) are solutions of

Sλ(u) := u− λLu+ 1
2 C(u, C(u, u)) = 0, u ∈ E.

(d) Show that Sλ is the gradient of the functional

Jλ(u) = 1

2
‖u‖2

E −
1

2
λ(Lu | u)E + 1

8
‖C(u, u)‖2

E .

(e) Apply Theorem 12.24 to deduce that any characteristic value of L is a
bifurcation point for (VK).

(f) Carry out a global study of the critical point of Jλ, in dependence of
the parameter λ.

(iv) We consider the example introduced by Böhme in [59]. Let φ : R
2 → R

be a smooth function which is 2π -periodic in both its variables, with
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+

2�
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−

−

Figure 12.5

zero average on [0, 2π ] × [0, 2π ] and for which the positivity and
negativity are depicted as in Figure 12.5.
Consider the map 	 : R

2 → R defined by

	(t, s) =
∫ s

0
φ(t, z)dz, t, s ∈ R.

Then 	 is also smooth and 2π -periodic in both the variables. In polar
coordinates (r, θ), define the function f : R

2 → R by

f (x, y) =
{

	(r−1, θ)e−r−2
if r > 0,

0 if r = 0.

Show that λ = 0 is a bifurcation value for the equation

∇f (x, y)+ λ(x, y) = 0, (12.28)

but that there is no continuous curve of solutions to (12.28) branching
from λ = 0.
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Appendix 1

Qualitative results

In this appendix we discuss some results concerning symmetry, classification
and a priori estimates for solutions of some elliptic equations.

A1.1 The Gidas–Ni–Nirenberg symmetry result

We present here a result by Gidas, Ni and Nirenberg [99], concerning symmetry
of solutions to some elliptic equations on balls of R

n. The arguments rely on a
procedure called the moving plane method which goes back to Alexandrov [3]
and Serrin [161]. For simplicity we will treat only a simple example, omitting
further extensions in order to avoid technicalities. The result we want to discuss
is the following.

Theorem A1.1 Let � = BR(0) ⊆ R
n, and let u ∈ C2(�) be a solution of

−
u = f (u) in �

u = 0 on ∂�

u > 0 in �,
(A1.1)

where f : [0,+∞)→ R is of class C1. Then u is radially symmetric in � and
moreover, letting r = |x|, one has (∂u/∂r)(r) < 0 for r ∈ (0, R).

To prove this result, we need some preliminary lemmas. The first is a variant
of the classical Hopf lemma, where no restriction on the sign of the coefficient
c(x) is assumed.

Lemma A1.2 Let � be an open set of R
n, and let u ∈ C2(�), u ≥ 0 be a

solution of the differential inequality

L(u) ≡
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u ≤ 0 in �,

241



242 Appendix 1

where the coefficients of L are uniformly bounded, and L is uniformly elliptic, in
the sense that there exists c0 > 0 such that

∑n
i,j=1 aijξiξj ≥ c0|ξ |2 for all ξ ∈ R

n.
Suppose there exists a ball Br(Q) contained in �, and let P ∈ ∂Br(Q) ∩ ∂�.
Suppose u is continuous in �∪ P, and that u(P) = 0. Then, if u �≡ 0 in Br and
if ν is a unit outward normal to � at P, then one has (∂u/∂ν)(P) < 0.

Proof. Without loss of generality, we can assume that ν = (1, 0, . . . , 0).
Consider the function v(x) = e−αx1 u(x), for some α > 0. Then one has

0 ≥ L(u) = eαx1 L′(v)+ vL(eαx1),

where L′ is a suitable elliptic operator with no zero-order term. Hence,
computing L(eαx1) we find that

0 ≥ L′(v)+ (a11α
2 + b1α + c)v.

For α sufficiently large, the coefficient a11α
2 + b1α + c is positive and hence,

since v ≥ 0, we have L′(v) ≤ 0. Hence, by the classical Hopf lemma we have
that (∂v/∂x1)(P) < 0, so the conclusion follows from the fact that ∂u/∂x1 =
eαx1(∂v/∂x1). �

Lemma A1.3 Let �, f , u be as in Theorem A1.1, let P ∈ ∂�, and assume that
ν1(P) > 0, where ν1(P) is the first component of the outward unit normal ν to
∂� at P. Then there exists δ > 0 such that ∂u/∂x1 < 0 in � ∩ {|x − P| < δ}.

Proof. Since u ≥ 0 in�, we have clearly ∂u/∂ν ≤ 0 at the whole ∂�, and hence
∂u/∂x1 ≤ 0 in a neighbourhood of P in ∂�. Assuming by contradiction that the
conclusion of the lemma is false, there would be a sequence (Pn)n ⊆ �, with
Pn → P such that (∂u/∂x1)(Pn) ≥ 0. We write Pn = (Pn,1, P′n) ∈ R × R

n−1.
For n sufficiently large there exists a unique P̃n ∈ ∂� such that P′n = P̃′n with
P̃n → P as n → +∞. Since (∂u/∂x1)(P̃n) ≤ 0, by Lagrange’s theorem there
exists P̂n belonging to the segment [Pn, P̃n] such that (∂u/∂x1)(P̂n) = 0, see
Figure A1.1, and it also must be (∂2u/∂x2

1)(P̂n) ≤ 0.
Then, since (P̂n)n also converges to P as n → +∞, we have that

(∂u/∂x1)(P) = (∂2u/∂x2
1)(P) = 0.

Suppose now that f (0) ≥ 0. Then u satisfies 
u+ f (u)− f (0) ≤ 0, so using
Lagrange’s theorem with f we find that


u+ c1(x)u ≤ 0 (A1.2)

for some bounded function c1(x). Then, applying Lemma A1.2 we find that
(∂u/∂x1)(P) < 0, which is a contradiction to our assumptions.
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Figure A1.1

Suppose now that f (0) < 0. Still by our contradiction assumption we have
that (∂u/∂x1)(P) = 0, and since u is constant on ∂� it follows that∇u(P) = 0.
Let φ(x) = dist(x, ∂�): notice that, defining v(x) = u(x)/φ(x), one easily finds
that v ∈ C1(�) and that v is of class C2 inside�, at the points where the distance
from the boundary is smooth (and in particular near the boundary). By the
assumptions on u, with some elementary computations one finds that v(P) = 0
and that (∂2u/∂xi∂xj)(P) = νiνjδ for some constant δ. It is indeed possible
to determine this constant by noticing that −f (0) = 
u(P) = δ|ν|2 = δ.
Therefore we also find that (∂2u/∂x2

1)(P) = −f (0)ν2
1 > 0, which is again a

contradiction. This concludes the proof of the lemma. �

Before stating the next result, we introduce some notation. For λ > 0 we let

Tλ = {x1 = λ} �λ = {x ∈ � : x1 > λ},
and we also define

xλ = (2λ− x1, x2, . . . , xn), x ∈ �λ �′λ = {xλ : x ∈ �λ},
see Figure A1.2. Notice that xλ and �′λ are nothing but the reflections of the
point x and the set �λ through the plane Tλ.

Lemma A1.4 Let �, f , u be as in Theorem A1.1, and suppose that for some
λ ∈ (0, R) there holds

∂u

∂x1
(x) ≤ 0, u(xλ) ≤ u(x), x in �λ u(·) �≡ u(·λ) in �λ.

Then u(·) < u(·λ) in �λ and ∂u/∂x1 < 0 in � ∩ Tλ.
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Σ��
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Figure A1.2

Proof. In �′λ define the function v(x) = u(xλ) (notice that xλ ∈ �λ). Clearly v
satisfies 
v + f (v) = 0 and ∂v/∂x1 ≥ 0. Subtracting the equation satisfied by
u we find that


(v − u)+ f (v)− f (u) ≥ 0 in �′λ.

Using Lagrange’s theorem we find that w = v−u satisfies 
w(x)+c(x)w(x) ≥
0 for some bounded function c(x). Moreover we have that w ≤ 0, w �≡ 0.

Since w = 0 on Tλ ∩ �, from the maximum principle and Lemma A1.2 it
follows that w < 0 in �′λ and that ∂w/∂x1 > 0 on Tλ ∩�. But on Tλ we have
∂w/∂x1 = (∂v/∂x1)−(∂u/∂x1) = −2(∂u/∂x1), so the conclusion follows. �

Proof of Theorem A1.1. We consider the following conditions

∂u

∂x1
< 0, u(x) < u(xλ) in �λ. (Aλ)

From Lemma A1.3 we know that (Aλ) holds for λ ∈ (0, R) sufficiently close to
R. Let us now define

µ = inf {λ̃ ∈ (0, R) : (Aλ) holds for λ ∈ (λ̃, R)}.
Our aim is to show that µ = 0. Suppose by contradiction that µ > 0. By
continuity we have that

∂u

∂x1
≤ 0, u(x) ≤ u(xλ) in �µ.

For any point x0 ∈ ∂�µ \ Tµ (⊆ ∂�) we have that (x0)µ ∈ �, because we are
assuming µ > 0. Since u(x0) = 0 and u((x0)µ) > 0, it follows that u �≡ u(·λ)
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in �µ. Then we can apply Lemma A1.4 to obtain

u(x) < u(xµ) in �µ and
∂u

∂x1
< 0 in Tµ ∩�.

Therefore (Aµ) also holds. Since ∂u/∂x1 < 0 on Tµ ∩ �, from Lemma A1.3
we see that there exists ε > 0 such that

∂u

∂x1
< 0 in � ∩ {x1 > µ− ε}. (A1.3)

On the other hand, from our definition of µ then there exists a sequence
λj ↗ µ and a sequence (xj)j with xj ∈ �(λj) and u(xj) ≥ u((xj)λj ). We can

assume that, passing to a subsequence, xj → x ∈ �(µ). Then also (xj)λj → xµ,
and u(x) ≥ u(xµ). Since (Aµ) holds, it must be x ∈ ∂�µ. If x does not belong to
the plane Tµ, then xµ ∈ �, and hence 0 = u(x) < u(xµ), which is impossible.
Therefore x ∈ Tµ and x = xµ. On the other hand, for j sufficiently large the
segment [(xj)λj , xj] is contained in � and by Lagrange’s theorem there exists yj

in this segment such that ∂u/∂x1 ≥ 0. Since yj → x, we obtain a contradiction
to (A1.3). Therefore we have that µ = 0, so (Aλ) holds for every λ ∈ (0, R).

We claim next that if ∂u/∂x1 = 0 at some point of T0 ∩ �, then u must be
symmetric with respect to the plane T0. In fact, from Lemma A1.4 it follows
that u(x) = u(x0) for any x ∈ �(0), which is equivalent to our claim.

The conclusion of the theorem follows from the last result, since the above
arguments can be repeated reflecting through planes perpendicular to any
direction ν. �

Remark A1.5
(i) The above result can be extended to some nonautonomous case as well,

when f = f (r, u), assuming f , ∂f /∂u continuous and f nonincreasing
in r. A dependence on ∇u is also allowed, provided f stays monotone
when we reflect u with respect to a plane.

(ii) There is a version of Theorem A1.1 concerning solutions defined on the
whole R

n, see Theorem 2 in [100]. For example, this result applies to
positive solutions of −
u+ u = up in R

n for any p > 1, assuming that u
tends to zero at infinity.

(iii) The moving plane method can also be applied to more general domains,
assuming that the reflection �′λ of �λ stays inside the domain. In
particular, for convex domains, it is possible to consider reflections near
the boundary.

(iv) For other symmetry results using different methods, see for example
[140] and references therein. �
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A1.2 A Liouville type theorem by Gidas and Spruck

We next present a classification result due to Gidas and Spruck [98], following
the arguments of Chen and Li [78], which use crucially the moving plane
method.

Theorem A1.6 Consider the equation

−
u = up in R
n. (A1.4)

Suppose n ≥ 3, p < (n + 2)/(n − 2) and that u ∈ C2(Rn) is a non-negative
solution of (A1.4). Then u ≡ 0 on R

n.

For proving the theorem, we need some preliminaries. We let ũ denote the
Kelvin transform of u, namely the function defined by

ũ(x) = 1

|x|n−2
u

(
x

|x|
)

, x ∈ R
n \ {0}.

Then ũ satisfies


ũ+ 1

|x|n+2−p(n−2)
ũp = 0 in R

n \ {0}. (A1.5)

As in the previous section, for λ > 0 we define

�λ = {x ∈ R
n : x1 > λ}, Tλ = ∂�λ,

and again we set

xλ = (2λ− x1, x2, . . . , xn) if x = (x1, x2, . . . , xn).

Define the functions ũλ(x) = ũ(xλ), wλ(x) = ũλ(x) − ũ(x), and wλ(x) =
wλ(x)/g(x), where g(x) = log(−x1+3). Since ũ has a singularity at the origin,
wλ is singular at the point xλ = (2λ, 0, . . . , 0). Therefore, we consider wλ

defined on the set �̃λ = �λ \ {xλ}.

Lemma A1.7 For λ sufficiently large, if inf �̃λ
wλ < 0, then the infimum is

achieved. Moreover, there exists R0 > 0 (independent of λ) such that, if x0 is a
minimum point of wλ on �̃λ with wλ(x0) < 0 and if λ > 0, then |x0| < R0.

Proof. Let us prove the first assertion. Since ũ(x) > 0 for x �= 0 and since

ũ ≤ 0, in B1(0) we have (compare for example u to min∂B1(0)−γ /|x|n−2 for
γ > 0 arbitrarily small)

x ≥ min
∂B1(0)

ũ := ε0 > 0.
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Since ũ tends to zero at infinity, we can find λ sufficiently large such that
ũ(x) ≤ ε0 for every x ∈ B1(xλ). For such values of λ, we have clearly wλ ≥ 0
on B1(xλ)\xλ. Hence, if inf �̃ wλ < 0, then the infimum is attained in�λ\B1(xλ)
since wλ tends to zero at infinity and since wλ = 0 on Tλ.

To prove the second statement we notice that ũ satisfies


ũ(x)+ 1

|x|n+2−p(n−2)
ũp(x) ≤ 0 for x ∈ �λ and λ ≥ 0.

It follows from Lagrange’s theorem and some elementary computations that

wλ(x)+ c(x)wλ(x) ≤ 0, and


wλ + 2

g
∇g · ∇wλ +

(
c(x)+ 
g

g
(x)

)
wλ ≤ 0, (A1.6)

where c(x) = (p/|x|n+2−p(n−2))ψ(x)p−1, for some function ψ(x) between ũ(x)
and ũ(xλ). Since ũ(x) is asymptotic to |x|2−n for |x| → +∞ (and the same
holds for ũλ), it follows also that ψ has the same asymptotics, and hence c(x) is
asymptotic to |x|−4. This implies that c(x)+ (
g/g)(x) < 0 for x large. Hence
the conclusion follows from (A1.6). �

Proof of Theorem A1.6. By Lemma A1.7 we know that for λ sufficiently large
we have wλ ≥ 0 in �̃λ. Let µ denote the infimum of the non-negative λ such
that this property holds.

If µ > 0, we show that wµ ≡ 0 in �̃µ. Indeed, applying the maximum
principle to 
wλ(x) + c(x)wλ(x) ≤ 0, we obtain wµ > 0 in �̃µ. Let now
λk ↘ µ be such that wλk < 0 somewhere in �̃λk . To reach a contradiction, by
the second part of Lemma A1.7 it is sufficient to show that inf �̃λk

wλk can be

achieved at some point xk , and that the xk stay bounded from the singularities
xλk of wλk . But we notice that there exist ε > 0 and δ > 0 such that

(a) wµ ≥ ε in Bδ(xµ) \ {xµ}
(b) limλ→µ inf Bδ(xλ) wλ ≥ inf Bδ(xµ) wµ ≥ ε.

The second claim is trivial while, reasoning as before, we obtain (a) from the
fact that wµ > 0 in �̃µ and 
wµ ≤ 0. Therefore wµ ≡ 0.

If we have instead µ = 0, then we can repeat the above argument for λ near
−∞. If the procedure stops before reaching zero, we get symmetry of ũ in x1

by the last argument. If we again reach zero, we have both ũ ≥ ũ0 and ũ ≤ ũ0,
so the symmetry in x1 follows again.

Since we can repeat the procedure for any direction, it follows that ũ must be
symmetric around some point of R

n. From (A1.5), we see that either ũ ≡ 0, or
ũ must be symmetric around the origin, which means that also u is symmetric
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with respect to the origin. But since we can choose the origin arbitrarily, it must
be u ≡ 0. �

Remark A1.8 The above proof can also be applied to the case p =
n+ 2/n− 2, and yields a classification of the solutions of (A1.4) as functions
of the form

u(x) = (n(n− 2)λ2)(n−2)/4

(λ2 + |x − x0|2)(n−2)/2

for some λ > 0 and some x0 ∈ R
n. �

A1.3 An application

We apply the previous results to obtain existence and a priori estimates for some
nonlinear elliptic equation which is not variational.

Theorem A1.9 Let � ⊆ R
n be a convex, smooth bounded domain, and let

p ∈ (1, (n+ 2)/(n− 2)). Consider the following problem
−
u = up + f (u, |∇u|) in �

u = 0 on ∂�

u > 0 in �.
(A1.7)

Assume f is smooth in � × [0,∞] × R
n, bounded with bounded derivatives,

and that f (0, 0) > 0 for every x ∈ �. Then problem (A1.7) admits a solution.

Remark A1.10 We notice that, since the problem is not variational and since
the right hand side is unbounded (and also superlinear), neither the above min-
max methods nor a direct fixed point argument can be applied.

We also refer the interested reader to the paper [94] where some techniques
different from those we discuss are presented. �

Proof of Theorem A1.9. First of all, we claim that there exists δ > 0 depending
only on � such that for every solution of (A1.7)

u(x) = max
�

u ⇒ dist(x, ∂�) ≥ δ. (A1.8)

To see this, we notice that Lemma A1.3 and the reflection method apply also to
our case (near ∂�), see Remark A1.5 (i) and (ii). In particular, we obtain that
any solution of (A1.7) is strictly decreasing (while approaching the boundary)
in a suitable neighbourhood of ∂�. It follows that the maximum of any solution
to (A1.7) is attained at a distance greater than δ from the boundary.
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We want to show now that the solutions of (A1.7) satisfy an a priori bound
which depends only on �, p and f . In fact, assume by contradiction that there
exists a sequence of solutions (un)n for which Mn := sup� un → +∞. For
any integer n, let xn denote a point where the maximum of un is attained. Let
γ = (1/2)(p− 1), let �n := Mγ

n (�− xn), and let vn : �n → R be defined by

un(x) = Mnvn(M
γ
n (x + xn)).

We notice that vn(0) = 1 for every n, and that vn(x) ∈ [0, 1] for every x.
Moreover, since dist(xn, ∂�) ≥ δ, we have that �n invades the whole R

n. Also,
by the definition of γ , the functions vn satisfy the equation

−
vn = vp
n +

1

Mp
n

f (vn, M1+γ
n |∇vn|) in �n.

Since f is bounded, by elliptic regularity results, see [101], one can check that
vn converges locally in R

n to an entire non-negative solution of 
v + vp = 0,
so by Theorem A1.6 we obtain a contradiction.

We want to prove next also a bound from below on the solutions to (A1.7).
We claim that there exists a small constant σ > 0, depending only on �, p
and f such that every solution of (A1.7) is greater or equal to σϕ1, where
ϕ1 > 0 stands for the first eigenfunction of −
 in � (with Dirichlet boundary
conditions). In fact, assuming the contrary, suppose that there exists a sequence
(un)n of solutions to (A1.7) such that sup�(un/ϕ1) → 0 as n → +∞. Let
σn = max�(un/ϕ1) → 0. Then at a maximum point xn of this ratio (which
might also lie on ∂�), we have un = σnϕ1, ∇un = σn∇ϕ1, and 
un ≥ σn
ϕ1,
which implies

f (σnϕ1(xn), σn|∇ϕ1|) = −
un(xn)− un(xn)
p ≤ −σn
ϕ1 − σ p

n ϕ1(xn)
p

= σnλ1ϕ1(xn)− σ p
n ϕ1(xn)

p.

Since we are assuming σn → 0 as n → +∞, we get a contradiction since
f (0, 0) > 0. Therefore we also have an a priori bound from below on the
solutions to (A1.7).

We consider a smooth cutoff function χ : R → [0,∞) for which
χ(t) = 0 for t ≤ 0
χ(t) = 1 for t ≥ 1
χ(t) ∈ [0, 1] for every t.

Fix a large M ∈ R, and for s ∈ [0, 1], consider the family of problems{−
u = χ(u−M)Mp
+ + (1− χ(u−M))up

+ + fs(x, u,∇u) in �

u = 0 on ∂�,

(PM , s)
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where

fs(u,∇u) = sf (u,∇u)+ (1− s), s ∈ [0, 1].
From elliptic regularity estimates, we have that for any fixed value of M0 > 0,
the positive solutions to (PM,1) with M ≤ M0 are uniformly bounded from
above by a constant depending only on M0, p and �. Moreover, by the above
a priori estimates, if we choose M0 sufficiently large, all the positive solutions
to (PM , 1) with M ≥ M0 coincide with those of (A1.7).

Setting X = C2,α(�), problem (PM , s) can be written in the following
abstract form

u = KM,su, u ∈ X,

where KM,s is the solution operator of the Laplace equation with Dirichlet
boundary data and with right hand side equal to that in (PM , s).

We fix now the set AC,σ defined as

AC,σ = {u ∈ X : ‖u‖L∞(�) < C, u > σϕ1}.
From the above estimates, we know that Id − KM0,1 �= 0 on the boundary of
AC,σ if we choose C sufficiently large and σ sufficiently small.

We now consider the following homotopy, for t ∈ [0, 1]
u = Kt(M0+1)+(t−2),1u, u ∈ X.

From the comments after the definition of fs, and with a similar reasoning
concerning the a priori lower bounds on positive solutions, we have that also
Id − Kt(M0+1)+(t−2),1 �= 0 on the boundary of AC,σ for all t ∈ [0, 1], and in
particular for t = 0. Similarly, we can obtain a priori bounds, both from above
and from below, for positive solutions of u = K−2,su when s varies from 1 to 0,
so that also Id−K−2,s �= 0 on the boundary of AC,σ for all s ∈ [0, 1]. From the
homotopy invariance of the Leray–Schauder degree it then follows that

deg(Id − KM0,1, AC,σ , 0) = deg(Id − K−2,0, AC,σ , 0).

Notice that the operator Id − K−2,0 is affine (with K−2,0 compact in X, indeed
constant) and corresponds to the problem{−
u = 1 in �,

u = 0 on ∂�,

so if C is sufficiently large and σ sufficiently small it follows that the last
equation has a (unique) solution in AC,σ . Therefore we can apply Lemma
3.19 to find that deg(Id − KM0,1, AC,σ , 0) = 1, and hence problem (A1.7) is
solvable. �
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Remark A1.11 L∞ a priori bounds similar to the preceding ones, jointly
with degree theoretic arguments or global bifurcation results, can be used to
find positive solutions of superlinear equations. Consider a boundary value
problem like {−
u = λu+ f (u) in � ⊂ R

n

u = 0 on ∂�,
(A1.9)

where � is a bounded domain and, roughly, f is smooth, f (u) ∼ |u|p−1u,
1 < p < (n+ 2)/ (n− 2). Using the arguments of Section 4 it is possible
to show that from λ1 bifurcates an unbounded branch C0 of positive solutions
of (A1.9) such that C0 ⊂ (−∞, λ1) × C0,α(�̄). Moreover, arguing as before,
one can find L∞ a priori bounds for these positive solutions, for all λ in any
compact interval of R. This implies that C0 has a projection on R which covers
all (−∞, λ1), namely that (A1.9) has a positive solution for all λ < λ1. In
particular, C0 has to intersect the axis λ = 0, yielding a positive solution to the
problem −
u = f (u) in �. For results of such a type, we refer for example to
[66] and [94]. �
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The concentration compactness principle

In this appendix we discuss a celebrated result by P.-L. Lions, see [118] which
is useful in several contexts where some lack of compactness occurs. Below, we
recall the abstract result and then we discuss applications to semilinear elliptic
problems in R

n.

A2.1 The abstract result

We state now the main result reported in this appendix.

Theorem A2.1 Suppose (µl)l is a sequence of non-negative probability
(Radon) measures on R

n. Then, passing to a subsequence, one of the following
three alternatives holds.

(i) Compactness: for any ε > 0 there exists R > 0 and (xl)l ⊆ R
n such that∫

Rn\BR(xl)

dµl < ε.

(ii) Vanishing: for any R > 0 there holds

lim
l→+∞

(
sup

x∈Rn

∫
BR(x)

dµl

)
= 0.

(iii) Dichotomy: there exists λ ∈ (0, 1) such that the following property holds:
for any ε > 0 there exists R > 0 and (xl)l ⊆ R

n such that, given any
R > R, there exist two non-negative measures µl,1,µl,2 such that µl,1 is
supported in BR(xl), µl,2 is supported in R

n \ BR(xl), µl,1 + µl,2 ≤ µl

and such that

lim
l→∞

(∣∣∣∣∫
Rn

dµl,1 − λ

∣∣∣∣+ ∣∣∣∣∫
Rn

dµl,2 − (1− λ)

∣∣∣∣) < ε.

Roughly speaking, the theorem asserts that either the measures (µl)l stay con-
centrated near the points (xl)l, or that they do not concentrate near any point

252
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of R
n, or that some fraction λ ∈ (0, 1) concentrates near some (xl)l and that the

remaining part spreads away from these points.

Proof. Consider the functions Ml : [0,+∞)→ [0, 1] defined by

Ml(r) = sup
x∈Rn

∫
Br(x)

dµl, l = 1, 2, . . . .

We notice that the functions Ml are nondecreasing in r and that, since every
µl is a probability measure, there holds limr→+∞ Ml(r) = 1 for every l. It
follows that the Ml are locally bounded in BV([0,+∞)) and hence, passing
to a subsequence, they converge almost everywhere on [0,+∞) to a function
M(r) which is bounded (with values in [0, 1]), non-negative and nondecreasing.
Since M is nondecreasing, we can assume that it is continuous from the left, so
we have

M(r) ≤ lim inf
l→+∞ Ml(r) for every r ∈ [0,+∞). (A2.1)

We then set

λ = lim
r→+∞M(r) ∈ [0, 1].

We consider now three different cases.

Case 1: λ = 1. We prove that in this case we have concentration. In fact, let
ε > 0 be given, and let R be such that M(R) ≥ 1− ε/4. This and (A2.1) imply
that for l sufficiently large one has Ml(R) > 1 − ε/2. By the definition of Ml,
then there exists a point xl of R

n such that
∫

BR(xl)
dµl ≥ 1−ε. Since the integral

of µl over R
n is equal to 1 we obtain compactness.

Case 2: λ = 0. By (A2.1) we have lim inf l→+∞
∫

BR(x)
dµl = 0 for any R > 0,

which immediately implies the vanishing alternative.

Case 3: λ ∈ (0, 1). Given any ε > 0, we choose R > 0 such that M(R) >

λ− ε/4, so for l large enough we have that there exists xl ∈ R
n for which∫

BR(xl)

dµl > λ− ε

4
. (A2.2)

Let now R > R. Then, since Ml converges to M almost everywhere and since
M(r)↗r→+∞ λ, we can find Rl →+∞ such that

Ml(R) ≤ Ml(Rl) ≤ λ+ ε

4
for l sufficiently large. (A2.3)

Now we defineµl,1 = µl�BR(xl) andµl,2 = µl�(Rn\BRl (xl)). Clearly µl,1 and
µl,2 are non-negative measures supported respectively in BR(xl), Rn \ BR(xl)
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for l large, and satisfy µl,1 + µl,2 ≤ µl. Moreover by (A2.2) and (A2.3) we
have∣∣∣∣∫

Rn
dµl,1−λ

∣∣∣∣+∣∣∣∣∫
Rn

dµl,2−(1− λ)

∣∣∣∣= ∣∣∣∣∫
BR(xl)

dµl−λ

∣∣∣∣+
∣∣∣∣∣
∫

BRl (xl)

dµl−λ

∣∣∣∣∣<ε.

This concludes the proof. �

A2.2 Semilinear elliptic equations on R
n

We provide here some applications of Theorem A2.1 to classes of semilinear
elliptic equations on R

n. Consider the following problem{−
u+ u = a(x)up in R
n

u(x)→ 0 as |x| → +∞.
(A2.4)

We assume that p ∈ (1, (n + 2)/(n − 2)), and that a is positive, smooth and
such that

lim|x|→+∞ a(x) = 1. (a0)

We analyse two model cases, namely situations in which a satisfies one of the
following two properties

a(x) > 1 for every x ∈ R
n, (a1)

a(x) < 1 for every x ∈ R
n. (a2)

Solutions of (A2.4) can be found as critical points of the functional Ja : E → R,
E = H1(Rn), defined as

Ja(u) = 1

2

∫
Rn

(|∇u|2 + u2)− 1

p+ 1

∫
Rn

a(x)|u|p+1.

Since the embedding H1(Rn) ↪→ Lp+1(Rn) is not compact, the Palais–Smale
condition fails in general. In fact, if u0 denotes a positive (radial) ground state
constructed in Theorem 11.3 (corresponding to a(x) ≡ 1), and if |xn| → +∞,
then the sequence un = u0(· − xn) is a Palais–Smale sequence which does not
admit any (strongly) convergent subsequence. To see this we notice that, by
(a0) there holds clearly

Ja(un) = J(u0)+ 1

p+ 1

∫
Rn

(1− a(x))‖un‖p+1 → J(u0),
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where ‖ · ‖ stands for the standard norm of H1(Rn), and where J = Ja≡1, as
in Chapter 11. Moreover, given any v ∈ E, using some computations we have
that

|J ′a(un)[v]|=
∣∣∣∣∫

Rn
(a(x)− 1)unv

∣∣∣∣ ≤ ‖v‖ ‖(a(x + xn)− 1)u0‖L2(Rn)=o(1)‖v‖.

However, one can hope that still some specific Palais–Smale sequence might
admit converging subsequences. We are going to consider the two cases (a1)
and (a2) separately.

A2.2.1 An existence result under assumption (a1)

Throughout this subsection we assume that the coefficient a(x) satisfies (a1),
in addition to (a0). We are going to prove the following result.

Theorem A2.2 Suppose p ∈ (1, (n + 2)/(n − 2)), and let a : R
n → R be

smooth and satisfy (a0), (a1). Then problem (A2.4) admits a positive solution.

Proof. We will look for solutions as constrained maxima of some functional
over the manifold S = {u ∈ E : ‖u‖ = 1}, the unit sphere of E. We let
J̃a : S → R denote

J̃a(u) =
∫

Rn
a(x)|u|p+1.

Then, as in Example 6.5(iii), one finds that a constrained critical point of J̃a on
S, after a suitable rescaling, gives rise to a solution of (A2.4).

By the Sobolev embedding E ↪→ Lp+1(Rn) and by the boundedness of a,
the functional J̃a is bounded from above and from below on S. Indeed, letting
Sp,n denote the best Sobolev constant for which

‖u‖Lp+1(Rn) ≤ Sp,n‖u‖,
by (a0) (which implies ‖a‖∞ <∞) we have that

J̃a(u) ≤
(

max
Rn

a

)
Sp+1

p,n for every u ∈ S. (A2.5)

Furthermore, using as test in J̃a a function which realizes the optimal Sobolev
inequality we also find

sup
S

J̃a > Sp+1
p,n . (A2.6)
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We let un be a maximizing sequence, and we introduce the following sequence
of probability measures on R

n

µn = a(x)|un|p+1∫
Rn a(x)|un|p+1

dx.

We can apply TheoremA2.1, and we will show that the concentration alternative
occurs.

Suppose by contradiction that λ �= 1, and let us begin by considering the case
λ = 0, namely assuming that vanishing holds. We let δ be an arbitrary small
number, and we let R be such that |a(x)− 1| < δ for |x| > R. By the vanishing
assumption we have that

∫
BR

a(x)|un|p+1 → 0 as n → +∞, and hence by our
choice of R we deduce that

J̃a(un) =
∫

BR

a(x)|un|p+1 +
∫

Rn\BR

a(x)|un|p+1

≥ (1− δ)Sp+1
p,n + o(1) as n →+∞.

Since (un)n is a maximizing sequence, by the arbitrarity of δ, we reach a
contradiction to (A2.5).

We now consider the case λ ∈ (0, 1). We choose a small ε > 0, and we
let R, (xl)l be given by the dichotomy condition. We also choose R such that
|a(x) − 1| < ε for |x| > R/4. Then we have that either BR(xl) ⊆ R

n \ BR/4,
or R

n \ BR(xl) ⊆ R
n \ BR/4. Assume the former holds (the other alternative

requires only obvious changes): then we have that∫
BR(xl)

a(x)|un|p+1 < (1+ ε)

∫
BR(xl)

|un|p+1. (A2.7)

We consider now a new sequence of functions un defined as

un(x) = χn(x)un(x),

where χn(x) is given by

χn(x) =


0 for |x − xn| ≤ R

|x − xn| − R

R− R
for R ≤ |x − xn| ≤ R

1 for |x − xn| ≥ R.

Hence, since ∇χn tends to zero as R− R tends to infinity, it is easy to see that

‖un‖2 = ‖χnun‖2 + ‖(1− χn)un‖2 + oR−R(1)‖un‖2

= ‖un‖2 + ‖un − un‖2 + oR−R(1),
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since un ∈ S. Furthermore, by the dichotomy assumption we have that∫
BR(xn)\BR(xn)

a(x)|un|p+1 < 2ε,

and also

J̃(un) = λ sup
S

J̃+O(ε)+o(1), J̃(un − un) = (1− λ) sup
S

J̃+O(ε)+ o(1),

J̃(un) = J̃(un)+ J̃(un − un)+ O(ε),

where o(1)→ 0 as n →+∞. We now define ũn = (un − un)/‖un − un‖ ∈ S.
We notice that, since λ ∈ (0, 1), for ε sufficiently small we have J(un−un) �= 0,
so by the Sobolev embedding also un − un �= 0, so ũn is well defined.

Then, by the homogeneity of J̃ and the above formulas we have that

J̃(ũn) = J̃(un − un)

‖un − un‖ =
J̃(un)− J̃(un)+ O(ε)(‖un‖2 − ‖un‖2

)(p+1)/2

= (1− λ) sups J̃ + O(ε)+ o(1)(
1− ‖un‖2 + oR−R(1)

)(p+1)/2
.

By (A2.7), the Sobolev embedding and the dichotomy assumption it
follows that

J̃(ũn) ≥ (1− λ) sups J̃ + O(ε)+ o(1)(
1− λ2/(p+1) + oR−R(1)+ O(ε)

)(p+1)/2

= (1− λ)(
1− λ2/(p+1)

)(p+1)/2
sup

S
J̃ + oR−R(1)+ O(ε)+ o(1).

If we choose ε small, R − R and n large, we reach a contradiction because
the coefficient in front of supS J̃ is greater than 1. Therefore we have the
compactness alternative.

We prove next that, given any ε > 0 sufficiently small, if R and (xl)l are
given by Theorem A2.1 then (xl)l stays bounded. In fact, by (a0), if it were
|xl| → +∞ up to a subsequence, then by the Sobolev embedding theorem we
would have

J̃(un) =
∫

BR(xn)

a(x)|un|p+1 + O(ε) ≤ Sp,n + o(1)+ O(ε),

and this contradicts the fact that supS J̃ > Sp+1
p,n .
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Finally, letting u denote the weak limit of the un, since concentration holds
we have that∫

Rn
a(x)|un|p+1 =

∫
BR(xl)

a(x)|un|p+1 + O(ε)

=
∫

BR(xl)

a(x)|u|p+1 + O(ε)+ o(1),

by the compactness of the Sobolev embedding on bounded sets. Since ε is
arbitrary, by the Brezis–Lieb lemma we obtain that un → u strongly in E. Since
all the un can be taken to be non-negative (replacing un by |un| if necessary),
u also is non-negative, and hence positive by the maximum principle. This
concludes the proof. �

A2.2.2 An existence result under assumption (a2)

We give now another application of the concentration compactness theorem,
considering the case in which a(x) satisfies the assumption (a2). We discuss a
particular case of a result by D. Cao [69].

Theorem A2.3 Suppose p ∈ (1, (n + 2)/(n − 2)), and let a : R
n → R be

smooth, satisfy (a0), (a2), and also the following condition

a(x) > 2−(p−1)/2 for every x ∈ R
n. (A2.8)

Then problem (A2.4) admits a positive solution.

Proof. To prove this result we apply a reversed linking argument. We work
again on the constraint S = {u ∈ E : ‖u‖ = 1}. First of all, we characterize
the maximizing sequences for J̃ , proving that compactness holds, but that their
weak limit is zero. We notice first that, by (a0) and by (a2), supS J̃ = Sp+1

p,n .
Let (un)n be a maximizing sequence for J̃ , and let us apply Theorem A2.1 to

the sequence of measures

µn = a(x)|un|p+1∫
Rn a(x)|un|p+1

dx.

Let us suppose that dichotomy holds, let ε > 0 be a small number, let R, (xn)n

be given by Theorem A2.1, and let R > R. Then, if χn, un and ũn are as in the
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proof of Theorem A2.2, we can repeat the above arguments to find

J̃(ũn) ≥ (1− λ)(
1− λ2/(p+1)

)(p+1)/2
sup

S
J̃ + oR−R(1)+ O(ε)+ o(1) > sup

S
J̃

if we choose ε small, and R− R, n sufficiently large.
Assume now that vanishing holds. Then we can decompose R

n into a
sequence of disjoint unit cubes (Qi)i centred at the points with (relative) integer
coordinates. Then, by the Sobolev embedding (which holds with the same
constant Cp,n for every Qi) and by the normalization on the un we get

1 =
∑

i

∫
Qi

(
|∇un|2 + u2

n

)
≥ 1

Cp,n

∑
i

(∫
Qi

|un|p+1
)2/(p+1)

.

By the vanishing assumption, and since a(x) is bounded from above and from
below by positive constants, we have that each integral

∫
Qi
|un|p+1 tends to zero

as n tends to infinity uniformly with respect to the index i. Therefore from this
fact and the last formula we find∫

Rn
|un|p+1 =

∑
i

∫
Qi

|un|p+1 = o(1)

(∑
i

(∫
Qi

|un|p+1
)2/(p+1)

)
= o(1),

contradicting the fact that (un)n is a maximizing sequence for J̃ .
It follows that (µn)n satisfies the compactness alternative. Letting (xn)n

denote the sequence given by TheoremA2.1, we want to show that |xn| → +∞.
In fact, if xn stays bounded, we can reason as in the proof of Theorem A2.2 to
show that un converges strongly in E to some function u (with unit norm). On
the other hand, we have that a(x) < 1 for any x ∈ R

n, which implies

J̃(un)→n→+∞ J̃(u) < Sp+1
p,n ,

contradicting the facts that (un)n is maximizing and that supS J̃ = Sp+1
p,n .

Applying the Brezis–Lieb lemma, as for the end of the proof of TheoremA2.2,
one can show that, from the concentration alternative, un(· − xn) converges
strongly in E to some function ũ, which must be a maximizer of the Sobolev
quotient ‖u‖Lp+1/‖u‖E , and hence a ground state of (11.1) (which must be
positive and radial up to a translation). By a result of Kwong [111] we know
that ũ is unique, and we call this solution u0.

Consider now the following function β : E → R
n defined as

β(u) =
∫

Rn
|u|p+1 x

|x| arctan(|x|) dx.
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Since the coefficient of |u|p+1 in the last integral is bounded, the function
β is well defined on E. Furthermore, by the above discussion and from the
exponential decay of u0, we deduce that

(un) maximizing for J̃ ⇒ un(· − xn)→ u0 in E and β(un) �= 0 for n large.
(A2.9)

We now fix L > 0 and define

NL = {u0(· − y) : y ∈ BL(0)} , C = {u ∈ S : β(u) = 0}.
As L →+∞ one has that

β(u0(· − y)) = π

2
Sp+1

p,n
y

|y| + oL(1) for every y ∈ ∂BL(0),

where oL(1) tends to zero as L tends to infinity uniformly in y ∈ ∂BL(0).
Then, letting HL = {h ∈ C(NL , S) : h(u) = u,∀u ∈ ∂NL}, using the solution
property of the degree it follows that ∂NL and C link.

Then we define the max-min value

ρL = sup
h∈HL

inf
y∈NL

J̃(h(y)).

Since a(x) tends to 1 at infinity, with easy computations one finds that

inf
u∈∂NL

J̃(u)→ Sp+1
p,n as L →+∞.

Furthermore, from supS J̃ = Sp+1
p,n and (A2.9), since C and ∂NL link we have that

ρL < inf u∈∂NL J̃(u) < Sp+1
p,n for L sufficiently large. Moreover, using the map

h : y �→ u0(· − y) and the assumption (A2.8) we find that ρL > 2−(p−1)/2Sp+1
p,n .

Then the arguments of Chapter 8 yield the existence of a Palais–Smale sequence
(vn)n for J̃ at level ρL .

It is a standard fact, see for example [42] and references therein, that vn can
be written as vn = wn/‖wn‖, with

wn = w0 +
k∑

i=1

u0(· − xi,n)+ o(1), (A2.10)

where o(1) → 0 in E as n → +∞, where k is some non-negative integer,
where |xi,n|, |xi,n − xj,n| → +∞ as n for i, j = 1, . . . , k, i �= j, and where w0

is the weak limit of the wn and solves (A2.4). Furthermore, by the Brezis–Lieb
lemma one has that

J̃(vn) = 1

‖wn‖p+1

(̃
J(w0)+ kSp+1

p,n + o(1)
)

, (A2.11)
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with o(1)→ 0 as n →+∞, and also

‖wn‖2 = ‖w0‖2 + k‖u0‖2 + o(1). (A2.12)

Multiplying (11.1) by u0 and integrating by parts, we have that u0 satisfies
‖u0‖2 = Sp+1

p,n ‖u0‖p+1, which implies ‖u0‖ = S−(p+1)/(p−1)
p,n . Furthermore,

multiplying (A2.4) by w0 and integrating by parts, we also find that ‖w0‖2 =
J̃(w0).

Then, from the fact that ρL > 2−(p−1)/2Sp+1
p,n and from (A2.11), (A2.12) we

obtain

αSp+1
n,p

(
‖w0‖2 + kS−2(p+1)/(p−1)

n,p

)(p+1)/2
< ‖w0‖2 + kS−2(p+1)/(p−1)

n,p .

Using again (A2.4), the Sobolev inequality and the fact that a(x) ≤ 1, we find
also that ‖w0‖2 ≤ Sp+1

n,p ‖w0‖p+1. From the last formula we then deduce that
either w0 = 0 and

k(p+1)/2 < 2(p−1)/2k,

or that w0 �= 0 and

(1+ k)(p−1)/2 < 2(p−1)/2.

In the former case, we would have k = 1 and by (A2.10) also J̃(vn) → Sp+1
n,p ,

contradicting the fact that ρL < Sp+1
p,n . On the other hand in the second case, by

the last formula it has to be k = 0, so by (A2.10) we have strong convergence
of wn to w0 �= 0, a solution of (A2.4). Since in all this construction we can
work in the subset of non-negative functions without affecting the min-max
value, w0 turns out to be non-negative, and hence strictly positive by the strong
maximum principle. This concludes the proof. �

Bibliographical remarks We mention here other results related to problem
(A2.4). In [42], the authors prove the existence of solutions to (A2.4) under
assumption (a0) and requiring that a(x) > 1− Ce−(2+δ)|x| for |x| large, where
C and δ are two positive constants. The method is still based on a linking
argument, as in Theorem A2.3, but using a different scheme.

In [44], an improvement of this result is given, replacing the last condition
with a(x) > 1 − Ce−δ|x| near infinity. The proof is based on the method of
critical points at infinity developed by Bahri and Coron, see for example [38]
and [41].

For results concerning problems with the critical exponent, see for
example [49].
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Bifurcation for problems on Rn

In this appendix we will discuss some bifurcation problems on R
n that cannot

be handled by the theory developed in Chapters 2 and 4, because the linear part
has an essential spectrum. In Section A3.1 we will deal with a problem that
still possesses a principal eigenvalue; in Section A3.2 we will be concerned
with a case in which there are no eigenvalues and the bifurcation occurs from
the bottom of the essential spectrum. We anticipate that we will focus on some
specific problems which, however, highlight the main features of the theory.
The interested reader can find a broad discussion on these topics in the survey
paper [167] which also contains a wide list of references.

A3.1 Bifurcation for problems on R
n in the

presence of eigenvalues

Let us consider the following elliptic problem on R
n

−
u+ q(x)u = λu− up, u ∈ W1,2(Rn), (P)

where p > 1, q ∈ L2(Rn) and

lim inf|x|→∞ q(x) = 0.

It is well known [54] that the spectrum of the linear problem

−
u+ q(x)u = λu, u ∈ W1,2(Rn), (L)

contains eigenvalues if and only if

� := inf

{∫
Rn
[|∇u|2 + qu2] dx : u ∈ W1,2(Rn), ‖u‖L2 = 1

}
< 0. (A3.1)

Moreover, if � < 0 then � is the lowest eigenvalue of (L).
Problem (P) will be approximated by problems on balls BRk = {x ∈ R

n :
|x| < Rk},

−
u+ q(x)u = λu− up, u ∈ W1,2
0 (BRk ), Rk →∞. (Pk)

262
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In the sequel it is understood that the solutions uk of (Pk) are extended to all
of R

n by setting uk(x) ≡ 0 for |x| > Rk . Let λRk denote the first (lowest)
eigenvalues of

−
u+ q(x)u = λu, u ∈ W1,2
0 (BRk ),

given by

λRk = inf

{∫
BRk

[|∇u|2 + qu2] dx : u ∈ W1,2
0 (BRk ), ‖u‖L2 = 1

}
.

Let us remark that λRk ↓ � as Rk →∞. In particular, if (A3.1) holds, one has
that λRk < 0 provided Rk � 1.

Equation (Pk) can be written in the form u = λTk(u), u ∈ X = L2(BRk ),
with Tk compact. Let �k denote the set of (λ, u) with λ > 0 and u > 0 such
that u = λTk(u).

Equation (Pk) can be faced by means of the Rabinowitz global bifurcation
theorem, seeTheorem 4.8. Here, since we are dealing with positive solutions, the
arguments used in Section 4.4 allow us to say that the branch emanating from
(λRk , 0) is unbounded. In other words, there exists an unbounded connected

component �k
0 ⊂ �k such that (λRk , 0) ∈ �

k
0. Furthermore, the fact that the

nonlinearity has the specific form λu− up allows us to say that the bifurcation
is supercritical, see Example 2.12, and that (λ, u) ∈ V implies that λ > λRk ,
namely that the branch emanating from (λRk , 0) lies on the right of λRk , see also
Fig. A3.1.

In order to consider the limit of �k as k → ∞, we will use a topological
result by G. T. Whyburn [170]. First, some definitions are in order. Let Y be a
metric space and let Yk be a sequence of subsets of Y . We define lim inf Yk as the
set of y ∈ Y such that every neighbourhood of y has nonempty intersection with
all but a finite number of Yk . On the other hand, lim sup Yk is the set of y ∈ Y
such that every neighbourhood of y has nonempty intersection with infinitely
many of the Yk .

Lemma A3.1 Suppose that Yk are connected and such that

(i)
⋃

Yk is precompact,
(ii) lim inf Yk �= ∅.

Then lim sup Yk is precompact and connected.

In order to use this lemma, we take E = W1,2(Rn), endowed with the standard
norm

‖u‖2 =
∫

Rn
[|∇u|2 + u2] dx.
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Figure A3.1

Fix b < 0, let Y = [�, b] × E and let Yk be the connected component of

{(λ, u) ∈ �
k
0 : λ ∈ [�, b]} such that (λRk , 0) ∈ �

k
0.

We also let " : R × E be defined by setting "(λ, u) = λ. It is not difficult

to check that "(�
k
0) = [λRk ,+∞). Since (λRk , 0) ∈ �

k
0 and λRk → �, then

(�, 0) ∈ lim inf Yk and thus Lemma A3.1(ii) holds. Moreover, one has that

b ∈ "(�
k
0) for all k � 1. In order to prove that

⋃
Yk is precompact, we need

a preliminary lemma.

Lemma A3.2 Let (A3.1) hold. For all b < 0 there exists � = �b ∈ L2(Rn)∩
L∞(Rn), � > 0, such that u < � for all (λ, u) ∈ Yk, for all k � 1.

Proof. We will indicate the main ideas of the argument.

Step 1. Fix a with b < a < 0. Since lim inf |x|→∞ q(x) = 0 and a < 0, the
support of (q(x)−a)− (the negative part of q−a) is compact and is contained in
the ball Bρ , for some ρ > 0. We define a piecewise linear continuous function
γα(t), t ∈ R, such that

γα(t) =
{
−α t ≤ ρ

0 t ≥ ρ + 1.

Let

µα = inf

{∫
Rn
[|∇u|2 + γα(|x|)u2] dx : u ∈ E, ‖u‖L2 = 1

}
.

Since γα ≤ 0, it follows that µα ≤ inf {∫
Rn |∇u|2 dx : u ∈ E, ‖u‖L2 = 1} = 0.

Furthermore, consider a smooth function φ ∈ E with support contained in Bρ

and such that ‖φ‖L2 = 1. Then

µα ≤
∫

Bρ

[|∇φ|2 + γαφ
2] dx =

∫
Bρ

|∇φ|2 dx − α,
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and thus there exists α∗ > 0 such that µα < 0 for all α > α∗. This implies that
for α > α∗, µα is the principal eigenvalue of

−
u+ γα(|x|)u = µu, u ∈ E.

We denote by ϕα > 0 the (normalized) eigenfunction corresponding to µα < 0.
In addition, we notice that µα depends continuously upon α.
Step 2. From the preceding step it follows that we can find α0 > 0 such that
µ0 := µα0 verifies b− a < µ0 < 0. We define a function ψ ∈ C2(Rn) ∩ E by
setting ψ(x) = ϕα0(x) for all |x| ≥ ρ + 1; in the ball Bρ+1 ψ is arbitrary, but
positive. One shows that there exists C > 0 such that Cψ is a super-solution
of (Pk) for all k ≥ 1 and all λ ≥ b. Roughly, it is easy to check that for C > 0
sufficiently large one has that −
(Cψ) + q(Cψ) ≥ λ(Cψ) − (Cψ)p for all
|x| ≤ ρ + 1. For |x| > ρ + 1, one remarks that γα ≡ 0, so −
ψ = µ0ψ and
one finds−
ψ + qψ = (µ0+ q)ψ . The definition of ρ implies that q > a for
all |x| > ρ and thus −
ψ + qψ ≥ (µ0 + a)ψ ≥ bψ . Then for λ ≤ b we get
−
ψ + qψ ≥ λψ − ψp for all |x| > ρ + 1, and the claim follows.
Step 3. One proves that � = Cψ is such that u ≤ � for all (λ, u) ∈ Yk with
k large. For λ ≤ b, set f̃λ(u) := λu − qu − up and take M > 0 such that f̃λ is
strictly increasing for u ∈ [0, max �]. Let vk be the solution of{−
vk +Mvk = f̃b(�)+M� |x| < Rk

vk = 0 |x| = Rk .

We want to show that for all λ ≤ b, vk is a super-solution of (Pk) but not
a solution. Since f̃b(�) + M� ≥ 0 then vk ∈ Pk , where Pk denotes the
interior of the positive cone in C1

0(BRk ). From the preceding step we know that
−
� ≥ b� − q� −�p = f̃b(�). From this one easily infers{−
(� − vk)+M(� − vk) ≥ 0 |x| < Rk

� − vk > 0 |x| = Rk ,

and the maximum principle yields

�(x) > vk(x), ∀ |x| < Rk . (A3.2)

Since f̃λ+M is strictly increasing, it follows that f̃λ(�)+M� > f̃λ(vk)+Mvk .
This and the fact that f̃b ≥ f̃l provided λ ≤ b, imply

−
vk = f̃b(�)+M� −Mvk ≥ f̃λ(�)+M� −Mvk > f̃λ(vk), |x| < Rk .

This proves our claim.
Finally, let us prove that u < vk for all (λ, u) ∈ Yk . Consider the set Ỹk =

{(λ, vk − u) : (λ, u) ∈ Yk}. Since (λRk , 0) ∈ Yk then (λRk , vk) ∈ Ỹk , and thus
Ỹk ∩ ([�, b] × Pk) �= ∅. Let us check that Ỹk ⊂ [�, b] × Pk . Otherwise, there
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exists (λ∗, u∗) ∈ Yk such that vk − u∗ ∈ ∂Pk . Since vk is not a solution of (Pk)

it follows that vk ≥ u∗ but vk �≡ u∗ in BRk . This implies−
(vk−u∗)+M(vk−
u∗) ≥ f̃λ(vk)+Mvk − f̃λ(u∗)+Mu∗ ≥ 0. By the maximum principle we infer
that vk > u∗, namely vk − u∗ ∈ Pk , while vk − u∗ ∈ ∂Pk . This proves that
u < vk and thus, using (A3.2) we get u < vk < � for all |x| < Rk , and the
proof is completed. �

Let us point out that we do not know whether u < � for all (λ, u) ∈ �k
0, with

λ ∈ [�, b]. The proof only works for (λ, u) ∈ Yk .
The preceding lemma allows us to show the following.

Lemma A3.3
⋃

Yk is precompact.

Proof. Let (λj, uj) ∈ ⋃
Yk . We can assume that λj → λ, for some λ ∈ [�, b].

From Lemma A3.2 it follows there is c1 > 0 such that

‖uj‖L2 ≤ c1, ∀ j.

From (Pk) we also get∫
Rn
|∇uj|2 dx +

∫
Rn

qu2
j dx = λj

∫
Rn

u2
j dx −

∫
Rn

up+1
j dx. (A3.3)

Let us remark that, without loss of generality, we can suppose that p+ 1 < 2∗,
otherwise we can use (A3.2) jointly with a truncation argument. From (A3.3)
it follows that ∃ c2 > 0 such that ‖uj‖ ≤ c2 and hence, up to a subsequence,
uj ⇀ u in E. One immediately verifies that u satisfies∫

Rn
∇u · ∇φ dx+

∫
Rn

q uφ dx = λ

∫
Rn

uφ dx−
∫

Rn
upφ dx, ∀φ ∈ C∞0 (Rn).

(A3.4)
Set Gλ(u) = λu− qu− up. From (A3.3) we get

‖uj‖2 =
∫

Rn
u2

j dx +
∫

Rn
Gλj (uj)uj dx. (A3.5)

Moreover, by density, we can set φ = uj in (A3.4) yielding∫
Rn
∇uj · ∇u dx =

∫
Rn

Gλ(u)uj dx. (A3.6)

Similarly, letting φ = u, we get
∫
Rn |∇u|2u dx = ∫

Rn Gλ(u)u dx and hence

‖u‖2 =
∫

Rn
Gλ(u)u dx +

∫
Rn

u2 dx. (A3.7)
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Using (A3.5), (A3.6) and (A3.7), we infer

‖uj − u‖2 = ‖uj‖2 + ‖u‖2 − 2
∫

Rn
∇uj · ∇u dx − 2

∫
Rn

uju dx

=
∫

Rn
u2

j dx +
∫

Rn
Gλj (uj)uj dx +

∫
Rn

Gλ(u)u dx +
∫

Rn
u2 dx

− 2
∫

Rn
Gλ(u)uj dx − 2

∫
Rn

uju dx

=
∫

Rn
[Gλj (uj)− Gλ(u)]uj dx +

∫
Rn

Gλ(u)[u− uj] dx

+
∫

Rn
u[u− uj] dx +

∫
Rn

uj[uj − u] dx.

Since uj < � ∈ L2(Rn) we find

‖uj − u‖2 ≤
∫

Rn
|Gλj (uj)− Gλ(u)|� dx +

∫
Rn
|Gλ(u)||u− uj| dx

+
∫

Rn
|u||u− uj| dx +

∫
Rn

�|uj − u| dx.

Since

|Gλj (uj)− Gλ(u)| ≤ |λj − λ| |uj − u| + |q| |uj − u| + |up
j − up|,

also taking into account that uj ⇀ u in E, it readily follows that all the integrals
in the right hand side of the preceding equation tend to zero. Thus ‖uj−u‖2 → 0,
proving that uj → u strongly in E. �

We are now ready to prove the main result of this section.

Theorem A3.4 If (A3.1) holds, then there exists a connected set�0 = {(λ, u) ∈
R× E} such that

(a) u is a positive solution of (P),
(b) (�, 0) ∈ �0 and "�0 ⊃ [�, 0).

Proof. We set �0 = lim sup Yk \ {(�, 0)}. According to Lemma A3.1, �0

is connected and it is easy to check that any (λ, u) ∈ �0 is a non-negative
solution of (P). To prove (a) we need to show that u > 0. We have already
remarked that for each k ≥ 1, (λ, u) ∈ �k implies that λ > λRk , and this yields
that (λ, u) ∈ �0 ⇒ λ ≥ �. Suppose that there exist (λj, uj) ∈ Ykj such
that (λj, uj) → (λ, 0) as kj → ∞. Since λR ↓ � as R → ∞, given δ > 0
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Figure A3.2 Notation: �′0 refers to the case r ≤ n/(n − 2); �
′′
0 refers to the case

r > n/(n− 2).

there exists � ∈ N such that λRkj
< � + δ < λ, for all kj ≥ �. Then uj is a

super-solution of

−
u+ qu = (�+ δ)u− up, u ∈ W1,2
0 (BR�

). (A3.8)

One can also find εj � 1 such that εjϕ1 is a sub-solution of (A3.8) such
that εjϕ1 ≤ uj in BR�

and thus there exists a positive solution ũj of (A3.8).
Since uj → 0, then also ũj → 0 and therefore � + δ is a bifurcation point of
positive solutions of (A3.8). This is not possible, since the unique bifurcation
point of positive solutions of (A3.8) is λR�

< �+ δ. This contradiction proves
that u > 0.

Since (�, 0) ∈ lim sup Yk it follows immediately that (�, 0) ∈ �0. As

already remarked before, b ∈ "(�
k
0) for all k � 1 and all b ∈ (�, 0). Repeating

the arguments carried out in Lemma A3.3, it follows that b ∈ "(�0). Finally,
from the fact that �0 is connected one deduces that [�, 0) ⊂ "(�0). �

Remark A3.5 It is possible to complete the statement of Theorem A3.4 by
showing that as λ ↑ 0 the solutions uλ such that (λ, uλ) ∈ �0 satisfy:

(i) ‖uλ‖Lr ≤ constant if r > n/(n− 2),
(ii) ‖uλ‖Lr →∞ if r ≤ n/(n− 2). �
By similar arguments one can handle sublinear problems on R

n.

Theorem A3.6 Let ρ ∈ L∞, and suppose that ∃U ∈ L∞ ∩ L2 such that
−
U = ρ in R

n. Then, for all 0 < q < 1 the problem

−
u = λρ(x)uq, u ∈ W1,2(Rn),

possesses a branch � of positive solutions bifurcating from (0, 0) and such that
"(�) = [0,+∞).
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�0

Figure A3.3 Bifurcation diagram of −u′′ = λu+ |u|p−1u.

Theorem A3.4 is a particular case of results dealing with a more general class
of equations, see [15], where we refer to for more details and further results.
See also [91]. Theorem A3.6 is a particular case of a result by H. Brezis and
S. Kamin [61].

A3.2 Bifurcation from the essential spectrum

Consider the problem

−
u+ V(x)u = λu+ h(x)|u|p−1u, u ∈ W1,2(Rn), (A3.9)

where p > 1, V is bounded and h > 0. If we assume

V ∈ L∞, V(x) ≥ 0, lim|x|→∞V(x) = 0, (A3.10)

then the spectrum of the linearized problem

−
v + V(x)v = λv, v ∈ W1,2(Rn)

is the whole half-line [0,∞) and coincides with its essential spectrum, which is
the set of all points of the spectrum that are not isolated, jointly with the eigen-
values of infinite multiplicity. Clearly, none of the bifurcation results proved so
far apply to (A3.9). In order to have an idea of the results we can expect, let us
consider the elementary case in one dimension when V ≡ 0 and h ≡ 1:

−u′′ = λu+ |u|p−1u, u ∈ W1,2(R),

which can be studied in a straightforward way by a phase-plane analysis.
It follows that from λ = 0, the bottom of the essential spectrum of −v′′ =
λv, v ∈ W1,2(R), bifurcates a family of solutions (λ, uλ), λ < 0, of −u′′ =
λu+ |u|p−1u, with (λ, uλ)→ (0, 0) as λ ↑ 0.
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In order to prove a similar result for (A3.9) with V and h possibly depending
on x, we will follow [167] and use variational tools. Let V satisfy (A3.10) and
suppose that h verifies

h ∈ L∞, h(x) > 0, lim|x|→∞ h(x) = 0. (A3.11)

Let 1 < p < (n+ 2)/(n− 2) and set E = W1,2(Rn),

‖u‖2
λ =

∫
Rn
[|∇u|2 + V(x)u2 − λu2] dx, u ∈ E.

Consider the functional Jλ : E �→ R,

Jλ(u) = 1

2
‖u‖2

λ −
1

p+ 1

∫
Rn

h|u|p+1 dx.

Clearly, Jλ is of class C2 and its critical points give rise to (weak and, by
regularity results, strong) solutions of (A3.9) such that lim|x|→∞ u(x) = 0.
Moreover, for each fixed λ < 0, ‖ · ‖λ is a norm equivalent to the usual one
in W1,2(Rn). To find critical points of Jλ we can use, for example, the method
of the ‘natural constraint’, discussed in section 6.4 and used in section 7.6 to
prove the existence of solutions of a class of superlinear BVPs on a bounded
domain, see Theorem 7.14. Using the notation introduced there, we set

	(u) = 1

p+ 1

∫
Rn

h|u|p+1 dx, �(u) =
∫

Rn
h|u|p+1 dx,

Mλ = {u ∈ W1,2(Rn) \ {0}; ‖u‖2
λ = �(u)},

and

J̃λ(u) = 1

2
�(u)−	(u) = p− 1

p+ 1

∫
Rn

h|u|p+1 dx.

It is easy to check that, as for Theorem 7.14, Mλ �= ∅ is a smooth manifold
of codimension one in E and the critical points of J̃λ constrained on Mλ also
satisfy J ′λ = 0. One has the following result.

Lemma A3.7 If (A3.11) holds, then	 is weakly continuous and	′ is compact.

Proof. Let uk ⇀ u in E. Given ε > 0, from (A3.11) it follows that there exists
R > 0 such that ∫

|x|≥R
h(|uk|p+1 − |u|p+1) dx ≤ ε.

Since W1,2(BR) is compactly embedded in Lp+1(BR), we get∫
|x|<R

h(|uk|p+1 − |u|p+1) dx ≤ ε,
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provided k � 1. Putting together the two preceding inequalities, it follows that
	 is weakly continuous. The proof that 	′ is compact is similar and will be
omitted. �

The preceding lemma allows us to repeat the arguments carried out in the proof
of Theorem 7.14 yielding that

m(λ) = min{̃Jλ(u) : u ∈ Mλ}
is achieved.

In order to estimate m(λ) we strengthen assumptions (A3.10) by requiring

|x|2V(x) ∈ L∞, V(x) ≥ 0. (A3.12)

Moreover, we suppose that h verifies (A3.11) and ∃K > 0, y ∈ R
n, τ ∈ [0, 2[

such that

h(x) ≥ K|x|−τ , ∀ x ∈ C = {tx : t ≥ 1, |x − y| ≤ 1}. (A3.13)

Fix the function φ(x) = |x|e−|x| and set uα(x) = φ(αx). There holds

‖∇uα‖2
L2 = α2−nA1, A1 =

∫
Rn
|∇φ|2 dx,

‖uα‖2
L2 = α−nA2, A2 =

∫
Rn

φ2 dx,∫
Rn

Vu2
α dx ≤ α2−nA3, A3 = c1

∫
Rn
|x|2φ2 dx,

where c1 is such that |x|2 |V(x)| ≤ c1. Then one finds

‖uα‖2
λ ≤ A1α

2−n + A3α
2−n − λA2α

−n.

Putting λ = −α2 we get

‖uα‖2
λ ≤ A4α

2−n, −1 ≤ λ < 0, λ = −α

for some A4 > 0. Moreover, using (A3.13) we deduce

�(uα) ≥ K
∫

C
|x|−τ |uα|p+1 dx ≥ Kατ−n

∫
Cα

|ξ |−τ |φ(ξ)|p+1 dξ ,

where Cα = {ξ : ξ/α ∈ C}. Since C ⊂ Cα if 0 < α ≤ 1, it follows that there
exists A5 > 0 such that

�(uα) ≥ ατ−nA5, 0 < α ≤ 1.
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There holds

m(λ) = min

{
1

2
	(u)−�(u) : u ∈ Mλ

}
= min

{
p− 1

p+ 1
�(u) : u ∈ Mλ

}

= min

p− 1

p+ 1
�(u)

[
‖u‖2

λ

�(u)

](p+1)/(p−1)

: u ∈ E \ {0}


≤ p− 1

p+ 1
�(uα)

[
‖uα‖2

λ

�(uα)

](p+1)/(p−1)

= p− 1

p+ 1
‖uα‖(p+1)/(p−1)

λ (�(uα))
−2/(p−1).

Then, using the preceding calculation, we infer that, for some A6 > 0,

0 < m(λ) ≤ A6 α
(2−n)(p+1)/(p−1) · α−2(τ−n)/(p−1)

= A6 |λ|((2−n)(p+1)−2(τ−n))/2(p−1).

Thus, if 1 < p < 1 + 2(2− τ)/n, we find that m(λ)/|λ| → 0 as λ →
0−. Let uλ ∈ Mλ be such that J̃λ(uλ) = m(λ). Since 0 < J̃λ(uλ) =
(p− 1)/(p+ 1)‖u‖2

λ ≤ m(λ), it follows that ‖uλ‖λ → 0 as λ → 0−. In
conclusion, we can state the following theorem.

Theorem A3.8 Suppose that (A3.10), (A3.11) and (A3.12) hold. If 1 < p <

1+2(2− τ)/n, then the bottom of the essential spectrum,λ = 0, is a bifurcation
point for (A3.9). Precisely, for all λ < 0 there is a family of nontrivial solutions
uλ of (A3.9) such that ‖uλ‖λ → 0 as λ→ 0−.

The next result we are going to survey, deals with the problem

−u′′ = λu+ h(x)|u|p−1u, u ∈ W1,2(R). (A3.14)

We will assume that p > 1 and h satisfies

(h.1) ∃ b > 0 : h− b ∈ L1(R), and
∫
R
(h− b) dx �= 0.

In order to prove that λ = 0 is a bifurcation point for (A3.14), we will transform
this problem into a new one, which can be solved with the perturbation methods
discussed in Appendix 5.

Let us set v(x) = ε−2/(p−1)u
(x

ε

)
λ = −ε2.
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Then equation (A3.14) becomes

−v′′ + bv = h
(x

ε

)
|v|p−1v, v ∈ W1,2(R). (A3.15)

If (A3.15) has for all |ε| small a family of solutions vε �= 0, then the corres-
ponding uλ is a family of nontrivial solutions of (A3.14) branching off from
λ = 0. Moreover, since λ = −ε2, the bifurcation is on the left of λ = 0, the
infimum of the essential spectrum.

In view of the assumption (h.1), it is convenient to rewrite (A3.15) in the
following form

−v′′ + bv = |v|p−1v +
[
h
(x

ε

)
− b

]
|v|p−1v, v ∈ W1,2(R).

It is possible to show that (h.1) implies that h(x/ε)−b tends to zero in a suitable
sense as ε → 0, and hence (A3.15) can be viewed as a perturbation problem,
the unperturbed problem being

−v′′ + bv = |v|p−1v, u ∈ W1,2(R).

Using a modified version of Proposition A5.3 in Appendix 5, one can prove the
following.

Theorem A3.9 Let (h.1) hold. Then (A3.14) has a family of solutions (λ, uλ)

such that λ → 0− and uλ → 0 as λ → 0− in the C(R) topology. Moreover,
limλ→0− ‖uλ‖2

L2(R)
= 0 iff 1 < p < 5.

It is worth pointing out that condition (h.1) can be weakened. Moreover the
partial differential equation analogue of (A3.14) can be studied. For these and
further bifurcation results concerning problem (A3.14), we refer to [13, 36] or
to Chapter 3 of [19] and references therein.
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Vortex rings in an ideal fluid

A4.1 Formulation of the problem

We consider a fluid filling all of R
3 and we suppose it is cylindrically symmetric.

If the fluid is perfect, namely inviscid and with uniform density, denoting by q
its velocity, the continuity equation div q = 0 leads to the existence of a stream
function �(r, z) defined in the half-plane " = {(r, z) : r > 0, z ∈ R} such
that, in cylindrical coordinates,

q =
(
− �z

r
, 0 ,

�r

r

)
.

Moreover, letting

L� = r

(
1

r
�r

)
r
+�zz,

one has that curl q = (0,ω, 0) where ω(r, z), the vorticity function, is given by

ω = − 1

r
L�.

The momentum equations require that ω/r is constant on any surface � =
constant, and hence there is a vorticity function f such that

ω(r, z) = r f (�(r, z)).

A vortex is a toroidal region R, such that ω �= 0 if and only if (r, z) ∈ R. Thus
if A, the vortex core, denotes the cross section of the vortex R, we are led to
the equation

−L� =
{

r2f (�) in A

0 in " \ A.

The preceding equation is completed by suitable boundary conditions. The first
one prescribes the amount of fluid flowing between the stream surfaces r = 0
and ∂A. This leads to the requirement that

�(0, z) = −k, ∀ z ∈ R, and �(r, z) = 0, ∀ (r, z) ∈ ∂A,

274
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for some flux parameter k ≥ 0. The second boundary condition demands
that � approaches at infinity the uniform stream − 1

2 Wr2 − k for some given
propagation speed W > 0, and so

q → (0, 0,−W), as r2 + z2 →+∞.

Putting together the preceding equations we get the following elliptic prob-
lem on "{−L � = r2f (�) (r, z) ∈ A, L� = 0 (r, z) ∈ " \ A,

� = −k on r = 0, � = 0 on ∂A,


� →− 1

2 Wr2 − k as r2 + z2 →+∞
�r/r → 0 as r2 + z2 →+∞
�z/r → 0 as r2 + z2 →+∞.

It is worth pointing out that this is actually a free boundary problem, in the
sense that the vortex core A is unknown and must be determined together with
the function �. To circumvent this difficulty, it is convenient to introduce, as
in Section 11.3.2, the Heaviside function h(t),

h(t) =
{

0 t ≤ 0

1 t > 0.

Setting g(t) = h(t)f (t) and

ψ(r, z) = �(r, z)+ 1
2 Wr2 + k,

the preceding problem becomes
−L ψ = r2g(ψ − 1

2 Wr2 − k) (r, z) ∈ "

ψ = 0 on r = 0
ψ → 0 as r2 + z2 →+∞
|∇ψ |/r → 0 as r2 + z2 →+∞.

(A4.1)

By a solution of (A4.1) we mean a function ψ of class C1(") ∩ C2(" \ ∂A)
which solves (A4.1) almost everywhere. The requirement that ψ is C1 across
the boundary of the vortex core is a consequence of the fact that q has to be
continuous. Problem (A4.1) has the trivial solution ψ ≡ 0, corresponding to
the uniform stream � = − 1

2 Wr2 − k and to an empty vortex core, A = ∅, and
the aim is to find nontrivial solutions of (A4.1). On the other hand, if ψ is a
nontrivial solution of (A4.1), the maximum principle implies that ψ(r, z) > 0,
with nonempty vortex core:

A = {(r, z) ∈ " : ψ(r, z) > 1
2 Wr2 + k} = {(r, z) ∈ " : �(r, z) > 0} �= ∅.
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When g = h, the Heaviside function, and k = 0, Hill discovered an explicit
solution to (A4.1). Letting ρ2 = r2 + z2, and

2a2 = 15W ,

the Hill solution is given by

ψH(r, z) =


1

2
Wr2

(
5

2
− 3

2

ρ2

a2

)
0 ≤ ρ ≤ a,

1

2
Wr2 a3

ρ3
ρ ≥ a,

whose corresponding vortex is the solid ball ρ < a. Actually, it has been proved
that ψH is the unique solution of (A4.1) for k = 0 and g = h.

To cast the problem in a suitable functional setting, it is convenient to perform
a further change of variable, introduced by W.-M. Ni [136]. Consider in R

5

cylindrical coordinates (r, z), with

r2 =
√

x2
1 + · · · + x2

4, z = x5,

and set ψ(r, z) = r2u(r, z). Then we have

Lψ = r (
1

r
ψr)r + ψzz = r(2u+ rur)r + r2uzz

= r2urr + 3rur + r2uzz.

Thus

Lψ = r2(urr + 3

r
ur + uzz) = r2
u,

where 
 denotes the Laplacian in cylindrical coordinates in R
5. Therefore, the

new unknown u satisfies −
u = g(u − 1
2 Wr2 − k) in R

5. Moreover, we will
find solutions u which are bounded and have a decay at infinity of the order
of |x|−3. Then ψ(r, z) = r2u(r, z) is such that ψ(0, z) = 0 and satisfies the
conditions at infinity in (A4.1) provided u → 0 as |x| → ∞. In conclusion, the
problem (A4.1) is equivalent to{−
u = g(r2u− 1

2 Wr2 − k) in R
5

u → 0 as |x| → +∞.
(A4.2)

A4.2 Global existence results

In this section we will outline the main results of [22], where we refer for more
details.
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Assuming that g is bounded and nondecreasing, we will prove that, for given
parameters W and k, (A4.2) has a solution u ∈ W1,2(R5) which is cylindrically
symmetric (namely it depends only on r and z) and such that the corresponding
vortex core is bounded and not empty, see Theorem A4.2 later on. Roughly, the
proof of this existence result is divided into three steps.

(1) (A4.2) is approximated by problems (PR) on balls BR ⊂ R
5 which have a

pair of symmetric solutions vR and uR. The former is a local minimum of
the corresponding Euler functional, the latter is a mountain pass critical
point. This result is similar in nature to that discussed in Section 11.3.2.

(2) Uniform bounds for uR, and for the corresponding vortex core, are
provided.

(3) Passing to the limit as R →∞, one shows that uR converges to a solution
u of (A4.2) with the properties listed before.

It is worth mentioning that vR ‘blows up’ as R → ∞: the approximating
solutions which are stable for the convergence are the MP solutions, not the
minima.

To carry out this program, we begin by considering the problem on the ball
BR = {x ∈ R

5 : |x| < R} (to simplify notation, we take hereafter W = 2){−
u = g(r2u− r2 − k) x ∈ BR

u → 0 x ∈ ∂BR.
(PR)

We assume that

(g) g(t) = h(t)f (t), where f ∈ C(R), f > 0 and is not decreasing and
bounded,

and set

G(r, u) =
∫ u

0
g(r2s− r2 − k) ds.

We will work in the Sobolev space ER = H1
0 (BR) with scalar product and norm

given by

(u | v)R =
∫

BR

∇u · ∇v dx, ‖u‖2
R = (u | u)R.

Define the functional JR : E �→ R by setting

JR(u) = 1
2‖u‖2

R −
∫

BR

G(r, u) dx.

Remark that the functional JR is Lipschitz continuous, but not C1. This difficulty
is bypassed by using the dual variational principle, like in Section 11.3, or else



278 Appendix 4

by using critical point theory for Lipschitz functionals, see [72]. However,
as anticipated before, (PR) shares the same properties as Equation (11.33).
Actually, assumption (g) implies that (a′) and (b′) in Section 11.3.2 hold for all
R > 0. As for the latter, one has to remark that here λ1(R), the first eigenvalue
of−
 on ER, tends to zero as R →∞; neverthless, since g is bounded, we can
take α = 0 in (b’) and hence α < λ1(R) holds true for every R > 0, as well.

Essentially the same arguments used to prove Theorem 11.23 lead to show
that the following facts hold:

(i) for all R > 0, JR is bounded from below, coercive and satisfies the (PS)
condition;

(ii) there exists R0 > 0 such that for all R > R0, JR has the mountain pass
geometry.

This last property follows from (i) of Lemma 11.22 by taking R0 such that
b/a > 2λ1(R0)θ , see the notation in Section 11.3.2. Or else, directly, by taking
a fixed φ ∈ ER with R = 1 such that

∫
B1

G(r,φ) dx > 0 and evaluating JR on
the rescaled φR(x) = φ(x/R) ∈ ER:

JR(φR) = 1
2‖φR‖2

R −
∫

BR

G(r,φR(x)) dx

= 1
2 R3‖φ‖2

1 − R5
∫

B1

G(Rr,φ).

For R > 1 the monotonicity of g implies that G(Rr,φ) ≥ G(r,φ) and hence

JR(φR) ≤ 1
2 R3‖φ‖2

1 − R5
∫

B1

G(r,φ)→−∞, R →∞. (A4.3)

According to Theorem 11.23, it follows that for all R � 1, JR has a local
minimum vR > 0 and a MP critical point uR > 0.

Furthermore, as in Remark 11.24, one can show that vR, uR are cylindrically
symmetric and

∂uR

∂z
< 0,

∂vR

∂z
< 0, ∀ z > 0. (A4.4)

From (A4.4) we deduce that the boundary of the approximated vortex cores
{uR = 1+ k/r2} and {vR = 1+ k/r2} have zero measure and thus uR, vR solve
(PR) almost everywhere. This concludes the first step.

In view of (A4.3), one has that JR(vR)→−∞ and thus we focus on the MP
solutions uR. We shall show the following result.
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u0

JR JR

u0

(0 < R � 1) (R�1)

uR

vR

Figure A4.1 Behaviour of JR.

Lemma A4.1
(i) There exist c∗ > 0, a sequence Rm →∞ and a sequence of symmetric

solutions um of (PRm) such that ‖um‖Rm ≤ c∗.
(ii) Let Am = {(r, z) ∈ BRm : um(r, z) = 1+ k/r2}. There exists R∗ > 0 such

that Am ⊂ BR∗ for all m ∈ N.

Proof. (Sketch) To avoid technicalities, we will suppose that JR is C1. The case
of nonsmooth functional requires some changes, but the idea of the proof is the
same. For R ≥ R0, let c(R) denote the MP critical level of JR:

c(R) = inf
γ∈�R

max
t∈[0,1] JR(γ (t)),

�R = {γ ∈ C([0, 1], ER) : γ (0) = 0, JR(γ (1)) < 0}.
For R′ < R we can extend any u ∈ ER′ by setting u ≡ 0 for R′ < |x| ≤ R. As a
consequence, we have ER′ ⊂ ER as well as �(R′) ⊂ �(R). It follows that c(R)

is a nonincreasing function of R and hence c(R) is a.e. differentiable. Since∫ ∞

R0

|c′(R)| dR ≤ c(R0)− lim inf
R→∞ c(R) < +∞,

then there is a sequence Rm →∞ such that

lim
m→∞Rmc′(Rm) = 0. (A4.5)

We will use the min-max characterization of c(Rm) to find a sequence satisfying
(i). Let us begin by showing that, if c(R) is differentiable at a given R, there
exists a (PS)c(R) sequence uk ∈ ER such that

‖uk‖2
R ≤ c1, (A4.6)
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with c1 > 0 independent of R. This implies that there exists a MP solution ũR

such that ũR ≤ c2, with c2 independent of R, and (i) follows by taking um = ũRm .
One proves (A4.6) by contradiction. Set, for δ > 0,

Uδ = {u ∈ ER : ‖u‖2
R ≤ c1 + δ, |JR(u)− c(R)| ≤ δ},

and suppose that for some δ∗ > 0 and any u ∈ Uδ∗ there holds ‖J ′R(u)‖R ≥ δ∗.
Then there exists ε � 1 and a deformation η : ER �→ ER such that η(u) = u if
|JR(u)− c(R)| ≥ c(R) and

JR(η(u)) ≤ c(R)− ε, ∀ u ∈ Uδ∗ , JR(u) < c(R)+ ε. (A4.7)

For u ∈ ER, set us(x) = u(x/s) ∈ EsR. It is possible to show that for s < 1,
s ∼ 1, there holds c(sR) = inf γ∈�R maxu∈γ EsR(us). Therefore, we can find
γ ∈ �R such that

max
u∈γ JsR(us) ≤ c(sR)+ (1− s5). (A4.8)

Without loss of generality we can assume that

JR(u) ≥ c(R)− (1− s5), (A4.9)

for all u ∈ γ . We claim that u ∈ Uδ∗ , for any such u ∈ γ and s ∼ 1. It
is clear that if the claim is true, then applying the deformation η we find a
contradiction, yielding (A4.6) and (i). To prove the claim, we have to show that
∀ u ∈ γ satisfying (A4.8) and (A4.9) there holds

‖u‖R ≤ c1, (A4.10)

and

JR(u) ≤ c(R)+ ε. (A4.11)

We will be sketchy, referring for the precise estimates to Proposition 3.2 in the
aforementioned paper. First, (A4.8) and (A4.9) imply

JsR(us)− JR(u) ≤ c(sR)− c(R)+ 2ε(1− s5). (A4.12)

Since ‖us‖2
sR = s3‖u‖2

R and, roughly,
∫

BsR
G(us) ∼ s5

∫
BR

G(u), we get

JsR(us)− JR(u) ∼ 1
2 (s

3 − 1)‖u‖2
R + (1− s5)

∫
BR

G(u).

Substituting into (A4.7), dividing by (1− s5) and letting s ↑ 1 we deduce

− 3
10‖u‖2

R +
∫

BR

G(u) ≤ R|c′(R)| + 2ε.
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Then

1
5‖u‖2

R = JR(u)− 3
10 |u‖2

R +
∫

BR

G(u) ≤ JR(u)+ R|c′(R)| + 2ε.

Since, roughly, JR(u) ∼ JsR(us) ∼ c(sR) ∼ c(R) + Rc′(R) as s ∼ 1, we
finally find

‖u‖2
R ≤ 5

[
c(R)+ 2R|c′(R)| + 3ε

]
.

It is clear that this, the monotonicity of c(R) and (A4.5) yield a constant c1 > 0,
independent of R, such that (A4.10) holds, and (i) follows.

As for (ii), we first evaluate the measure of the set A0 = {z : um(r0, z) ≥ 1/2},
where r0 > 0 is fixed and um is extended to all R5 by setting um = 0 on |x| > Rm.
One has (C stands for possibly different constants, independent of m and r0)

|A0| ≤ C
∫

A0

u8/3
m (r0, z) dz ≤ C

∫ +∞

−∞
u8/3

m (r0, z) dz

≤ C
∫ +∞

r0

dr

∣∣∣∣ ∂∂r

∫ +∞

−∞
u8/3

m (r, z) dz

∣∣∣∣
≤ C

∫ +∞

r0

∫ +∞

−∞
|∇um| u5/3

m dr dz

≤ Cr−3
0

∫ +∞

r0

∫ +∞

−∞
|∇um| u5/3

m r3 dr dz

≤ Cr−3
0 ‖um‖Rm‖um‖5/3

L10/3(BRm )
≤ Cr−3

0 ‖um‖8/3
Rm

.

Using (i) we find a constant C > 0, independent of r0, such that

meas{z : um(r0, z) ≥ 1/2} ≤ C r−3
0 , ∀m. (A4.13)

Let rm be such that for all the points (r, z) in the vortex core Am there holds
r ≤ rm. Then um(rm, 0) > 1. Since |
um| ≤ sup g ≤ constant, uniformly with
respect to m, it follows from elliptic regularity that um(· + xm) is equibounded
in C1

loc(R
5) for any xm. In particular, this implies that um(rm, z0) ≥ 1

2 , for some
z0 independent of m. Then we use (A4.13) with r0 = rm to infer that z0 ≤ Cr−3

m

which implies the uniform bound for rm, rm ≤ Cz1/3
0 . Similarly, if zm is the

maximum of z such that (r, z) ∈ Am for some r, there exists r0 > 0 such that
um(r, z) ≥ 1/2 for all |r − rm| < r0 and (A4.13) yields zm ≤ Cr−3

0 for all
m. This proves that Am are uniformly bounded and completes the proof of the
lemma. �
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r

z

Π

A

∂A

Am

{r 2vRm > r2 + k2}

Figure A4.2 The bold line is the boundary of the vortex core A of the solution ψ .
Am is the core of the approximating mountain-pass solutions um. The dashed line
is the boundary of the core of the approximating minimal solutions vRm .

We are now in a position to carry out step 3, passing to the limit on um. From
the uniform bound |
um| ≤ sup g ≤ constant it follows that there exists u such
that um → u in C1+α

loc (R5) and u solves (A4.2). Such a u is strictly positive,
otherwise um < 1 for m � 1. This implies that r2um < r2 + k2 and thus
from (PR) it follows that um ≡ 0, a contradiction. Since u > 0, the vortex core
A = {(r, z) ∈ R

5 : um > 1 + k2/r2} is not empty. By Lemma A4.1 A ⊂ BR∗ .
Moreover, one can show that u is symmetric and ∂u/∂z < 0. From all these
remarks it follows that ψ = r2u is a solution of (A4.2) in the sense indicated
before. In conclusion, we can state the following existence result.

Theorem A4.2 Let (g) hold. Then there exists a symmetric u ∈ W1,2(R5)

such that

(i) ψ = r2u ∈ C2(") ∩ C1(" \ ∂A) solves (A4.1) a.e.,
(ii) ψ(r, z) = ψ(r,−z), ∂ψ/∂z < 0 for z > 0,
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(iii) the corresponding vortex core A = {(r, z) ∈ " : ψ(r, z) > r2 + k2} is
nonempty and bounded.

Remark A4.3
(i) The solution u is found as limit of the MP solutions um. As for the

minima vR of (PR), the properties of g imply that G(r, u) ≤ cu2,
whence ∫

BR

G(vR) ≤ c‖vR‖2
L2(BR)

.

From ∫
BR

G(vR) = 1
2‖vR‖2

R − JR(vR) ≥ −JR(vR),

and using the fact that limR→∞ JR(vR) = −∞, see (A4.3), we get

c‖vR‖2
L2(BR)

≥ −JR(vR)→+∞, R →∞.

(ii) The existence of a solution of (A4.2) can also be determined when f is
increasing and superlinear. In this case the approximating problems still
have the MP solution uR. Moreover, the proof of the a priori estimates of
uR can be obtained in a more direct way.

(iii) Theorem A4.2 holds for k = 0, too. In such a case the vortex is a solid
ball. Morover, if g = h, the Heaviside function, our solution u coincides
with the Hill solution, in view of the uniqueness results mentioned
before. �

A4.3 Other results

Here we briefly outline some further results on vortex theory.

A4.3.1 A result by Fraenkel and Berger

L. E. Fraenkel and M. Berger in a remarkable paper [96], addressed problem
(A4.1), but introducing a further vortex strength parameter λ ∈ R. They proved
the following theorem.

Theorem A4.4 Let f : R
+ �→ R be a locally Lipschitz, nondecreasing function

such that ∃ p > 0, and c1, c2 > 0, 0 < f (u) ≤ c1 + c2|u|p for all u > 0.
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Then there exist λ > 0 and ψ ∈ C2(") ∩ C1(" \ ∂A) such that

(i) ψ(r, z) = ψ(r,−z), ∂ψ/∂z < 0 for z > 0,
(ii) there holds

−L ψ = λr2g(ψ − 1
2 Wr2 − k), a.e. in ",

together with the boundary conditions as in (A4.1),
(iii) the corresponding vortex core A is nonempty and bounded.

The proof is also based on an approximating procedure with problems on balls
BR. Moreover, the fact that g is not continuous is surmounted by approximating
g with a continuous piecewise linear function gδ , with Lipschitz primitive Gδ .
Looking for

max

{∫
BR

Gδ(r
2u− r2 − k2) : u ∈ ER, ‖u‖2

R = η

}
,

one finds a uR,δ , where the maximum is achieved, satisfying −
u =
λR,δgδ(r2u − r2 − k2), for some Lagrange multiplier λR,δ ∈ R. Using the fact
that uR,δ has been found as a maximum, one shows that uR,δ is symmetric and
satisfies ∂uR,δ/∂z < 0 for z > 0. Furthermore, these properties and ‖u‖2

R = η

allow one to show that the approximated vortex core is uniformly bounded, like
in Lemma A4.1(ii). Then one can still pass to the limit as δ → 0 and R →∞,
yielding a pair (λ, u) satisfying (i)–(iii) of the theorem.

A4.3.2 Bifurcation from the Hill spherical vortex

Another interesting question is to see whether for k small there exists a vortex
ring that bifurcates from the Hill spherical one. Here, the constants λ and W are
supposed to be fixed and k plays the role of bifurcation parameter.Assuming that
g = h, the Heaviside function, local bifurcation has been proved for example
in [138], while the following global bifurcation result was established in [31].
Let � denote the set of (k,ψ) ∈ R × C2(") ∩ C1(" \ ∂A) such that ψ is a
positive solution of (A4.1).

Theorem A4.5 There exists an unbounded, connected component �0 ⊂ �

bifurcating from the Hill solution: (0,ψH) ∈ �0. Moreover, ψ satisfies (ii) and
(iii) of Theorem A4.2.

The proof relies once more on an approximation of (A4.2) with problems on
balls BR. We put W = 2 and λ = 1. Let HR denote the completion with respect
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to the norm induced by

〈u, v〉 = 1

2π2

∫
BR

∇u(x) · ∇v(x) dx,

of u ∈ C∞0 (BR) which are cylindrically symmetric and even in z. Then an
u ∈ HR satisfying (PR) is sought as a solution of

〈u, v〉 = 1

2π2

∫
BR

h(r2u− r2 − k2)v dx, ∀ v ∈ HR.

To transform this integral equation into a fixed point problem in HR it suffices to
define the nonlinear operator N(R, k; ·) : HR �→ HR by setting N(R, k : u) = w,
where w ∈ HR is the unique solution of

〈w, v〉 = 1

2π2

∫
BR

h(r2u− r2 − k2)v dx, ∀ v ∈ HR.

With this notation, (PR) is equivalent to the functional equation u = N(R, k; u).
As in Theorem A4.4, one needs a further approximation of h with smooth
nonlinearities hδ , yielding an equation of the form u − N(R, k, δ; u) = 0, with
N compact and of class C1. Taking advantage of the fact that the nonlinearity
is exactly the Heaviside function, one finds that for k = 0, the equation u −
N(R, 0, δ; u) = 0 has a solution uR,δ such that its local degree is −1. Then
the global properties of the topological degree yield, like in the Rabinowitz
global bifurcation theorem, a global branch �R,δ of nontrivial solutions of u =
N(R, k, δ; u) emanating from k = 0 and u = uR,δ . Finally, one can pass to the
limit by using, as in Section A3.1, the Whyburn topological Lemma A3.1. This
limiting procedure can be carried out because one proves that the solutions on
the approximating branches �R,δ possess properties similar to those established
in Lemma A4.1.

Remark A4.6 Although the branch �0 is proved to be unbounded, it is not
known what is its behaviour. It is conjectured that �0 is unbounded in the k
direction so that one could find a solution of (A4.1) for all k ≥ 0. Another
open problem is to extend Theorem A4.5 to any nondecreasing nonlinearity g,
possibly different from the Heaviside function. �
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Perturbation methods

In this appendix we discuss a general perturbation method which is useful
for treating problems of different natures. This relies on a combination of the
Lyapunov–Schmidt reduction together with variational techniques. In order to
keep the appendix short, we sketch only the main ideas of the construction,
and treat only a few examples. We refer the interested reader to the recent
monograph by the authors [19], where the subject is investigated in more detail
and several references are given.

A5.1 An abstract result

Given a Hilbert space E, we consider a class of functionals of the type

Iε(u) = I0(u)+ εG(u), (A5.1)

where I0 ∈ C2(E, R) is considered the unperturbed functional and G ∈
C2(E, R) the perturbation. Typically, we assume that the critical points of I0

correspond to solutions of some autonomous problem in R
n which possesses

some group of invariance, for example given by the translations in space or
sometimes also by dilation. For this reason critical points of I0 usually arise in
manifolds, and the present goal is to understand the effect of the perturbation
εG on the structure of such manifolds, and in particular the persistence of some
critical points.

We assume that there exists a d dimensional smooth manifold Z , with 0 <

d = dim(Z) < ∞, such that every z ∈ Z is a critical point of I0. The set Z is
called a critical manifold for I0.

Let TzZ denote the tangent space to Z at z. If Z is a critical manifold for I0,
then for every z ∈ Z one has I ′0(z) = 0. Differentiating this identity along Z ,
we also get

(I ′′0 (z)[v]|φ) = 0, ∀ v ∈ TzZ , ∀φ ∈ E,

and this shows immediately that TzZ ⊆ Ker[I ′′0 (z)]. In particular, I ′′0 (z) has a
nontrivial kernel (whose dimension is at least d) and hence every z ∈ Z is a

286
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degenerate critical point of I0. We shall require that the dimension of Ker[I ′′0 (z)]
is exactly d. Precisely we will assume the following condition

TzZ = Ker[I ′′0 (z)], ∀ z ∈ Z . (NNNDDD)

In addition to (NNNDDD) we will assume that

for all z ∈ Z , I ′′0 (z) is a Fredholm map1of index 0. (FFFrrr)

Definition A5.1 A critical manifold Z will be called nondegenerate, ND in
short, if (NNNDDD) and (FFFrrr) hold.

In the spirit of Chapter 2, and in particular Section 2.2, solutions of I ′ε = 0
will be found through a reduction to a finite dimensional problem. Let us define
W = (TzZ)⊥ and let (qi)1≤i≤d be an orthonormal set which spans TzZ . Below,
we will assume understood that Z admits a local C2 parametrization z = zξ ,
ξ ∈ R

d . Furthermore, we also suppose that qi = ∂ξi zξ /‖∂ξi zξ‖.
We look for critical points of Iε in the form u = z + w with z ∈ Z and

w ∈ W . If P : E → W denotes the orthogonal projection onto W , the equation
I ′ε(z + w) = 0 is equivalent to the following system{

PI ′ε(z + w) = 0 (auxiliary equation)
QI ′ε(z + w) = 0 (bifurcation equation)

(A5.2)

where Q = (Id−P). We show next that the auxiliary equation is solvable under
the above assumption.

Lemma A5.2 Let (NNNDDD) and (FFFrrr) hold. Given any compact subset Zc of Z there
exists ε0 > 0 such that: for all |ε| < ε0, for all z ∈ Zc, the auxiliary equation
in (A5.2) has a unique solution w = wε(z) such that:

(i) wε(z) belongs to W = (TzZ)⊥ and is of class C1 with respect to z ∈ Zc

and wε(z)→ 0 as |ε| → 0, uniformly with respect to z ∈ Zc, together
with its derivative with respect to z, w′ε;

(ii) more precisley one has that ‖wε(z)‖ = O(ε) as ε → 0, for all z ∈ Zc.

Proof. Let F : R× Z ×W → W be defined by setting

F(ε, z, w) = PI ′0(z + w)+ εPG′(z + w).

Clearly F is of class C1 and one has F(0, z, 0) = 0 for every z ∈ Z . Moreover,
letting DwF(0, z, 0) denote the partial derivative with respect to w evaluated at

1 A linear map A ∈ L(H, H) is Fredholm if the kernel is finite dimensional and the image
is closed and has finite codimension. The index of A is dim(Ker[A]) − codim(Im[A])
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(0, z, 0), from (NNNDDD) and (FFFrrr) one easily finds that DwF(0, z, 0) is invertible as
a map from W into itself.

Then, by the implicit function theorem for all z ∈ Zc we get a solution
wε = wε(z) ∈ W satisfying (i). Let us point out explicitly that w′ε (the derivative
of wε with respect to ξ ) for ε = 0 is zero. Actually w′ε satisfies

PI ′′0 (z + wε)[q + w′ε] + εPG′′(z + wε)[q + w′ε] = 0,

where q =∑d
i=1 αiqi ∈ TzZ . Then for ε = 0 we get PI ′′0 (z)[q+w′0] = 0. Since

q ∈ TzZ ⊆ Ker[I ′′0 (z)], then PI ′′0 (z)[q] = 0, and this implies w′0 = 0.
Let us now show (ii). Setting w̃ε = ε−1wε(z) we have to prove that ‖w̃ε‖ ≤

constant for |ε| small. Recall that wε satisfies PI ′ε(z + wε) = 0; using a Taylor
expansion we find

I ′ε(z + wε) = I ′0(z + wε)+ εG′(z + wε)

= I ′0(z)+ I ′′0 (z)[wε] + εG′(z)+ εG′′(z)[wε] + o(‖wε‖).
Since I ′0(z) = 0 we get I ′ε(z+wε) = I ′′0 (z)[wε]+εG′(z)+εG′′(z)[wε]+o(‖wε‖),
and the equation PI ′ε(z + wε) = 0 becomes

PI ′′0 (z)[wε] + εPG′(z)+ εPG′′(z)[wε] + o(‖wε‖) = 0. (A5.3)

Dividing by ε we infer that w̃ε verifies PI ′′0 (z)[w̃ε] + PG′(z) + PG′′(z)[wε] +
ε−1o(‖wε‖) = 0. Since ε−1o(‖wε‖) = o(‖w̃ε‖) we deduce PI ′′0 (z)[w̃ε] =
−PG′(z)− PG′′(z)[wε] + o(‖w̃ε‖). Recalling that wε → 0 as |ε| → 0, we get

PI ′′0 (z)[w̃ε] → −PG′(z), as ε → 0,

and this implies (ii). �

We next give a criterion for the solvability of the bifurcation equation in (A5.2).
If wε(z) is the function constructed in Lemma A5.2, we reduce the existence
of critical points of Iε to a finite dimensional problem by defining the reduced
functional 	ε : Zc → R as

	ε(z) = Iε(z + wε(z)). (A5.4)

Proposition A5.3 Let I0, G ∈ C2(E, R) and suppose that I0 has a smooth crit-
ical manifold Z which is nondegenerate, in the sense that (NNNDDD) and (FFFrrr) hold.
Given a compact subset Zc of Z, let us assume that 	ε has, for |ε| sufficiently
small, a critical point zε ∈ Zc. Then uε = zε + wε(zε) is a critical point of
Iε = I0 + εG.

Proof. We use the preceding notation and, to be short, we write below Di for
Dξi , etc. Let ξε be such that zε = zξε , and set qε

i = ∂z/∂ξi|ξε . Without loss of



A5.1 An abstract result 289

generality we can assume that zε → z∗ ∈ Zc as ε → 0. From Lemma A5.2 we
infer that there exists ε0 > 0 such that Lemma A5.2 holds. In particular, from
statement (i) of Lemma A5.2 and by continuity, one has

lim|ε|→0
(Diwε(zε) | qε

j ) = 0, i, j = 1, . . . , d.

Let us consider the matrix Bε = (bε
ij)ij, where

bε
ij = (Diwε(zε) | qε

j ).

From the above arguments we can choose 0 < ε1 < ε0, such that

|det(Bε)| < 1, ∀ |ε| < ε1. (A5.5)

Fix ε > 0 such that |ε| < min{ε0, ε1}. Since zε is a critical point of 	ε we get(
I ′ε(zε + wε(zε)) | qε

i + Diwε(zε)
) = 0, i = 1, . . . , d.

From PI ′ε(z + wε(zε)) = 0 we deduce that I ′ε(zε + wε(zε)) =∑
Ai,εqε

i , where

Ai,ε = (I ′ε(zε + wε(zε)) | qε
i ).

Then we find (∑
j

Aj,ε qε
j | qε

i + Diwε(zε)
)
= 0, i = 1, . . . , d,

namely

Ai,ε +
∑

j

Aj,ε(q
ε
j |Diwε(zε)) = Ai,ε +

∑
j

Aj,εbε
ij = 0, i = 1, . . . , d.

(A5.6)

Equation (A5.6) is a (d × d) linear system whose coefficient matrix IdRd + Bε

has entries δij+bε
ij, where δij is the Kronecker symbol and bε

ij are defined above
and satisfy (A5.5). Then, for |ε| < ε1, the matrix IdRd + Bε is invertible. Thus
(A5.6) has the trivial solution only: Ai,ε = 0 for all i = 1, . . . , d. Since the Ai,ε

are the components of 	ε(zε), the conclusion follows. �

Some sufficient conditions for finding critical points of 	ε are given in the next
proposition.

Proposition A5.4 Suppose Iε is as in (A5.1), and that I0, G, Z, Zc, wε(z) are as
in Proposition A5.3. Define the functional � : Z → R as �(z) = G(z) for every
z ∈ Z. Suppose z is a local strict maximum or minimum in the interior of Zc, or
that there exists an open set � in the interior of Zc such that deg(�′,�, 0) �= 0.
Then 	ε possesses a critical point in Zc.
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Proof. We have clearly 	ε(z) = I0(z + wε(z)) + εG(z + wε(z)): evaluating
each term separately, for the first we have

I0(z + wε(z)) = I0(z)+ (I ′0(z) |wε(z))+ o(‖wε(z)‖).
Since I ′0(z) = 0 we get

I0(z + wε(z)) = c0 + o(‖wε(z)‖), (A5.7)

where c0 = I0|Z . Similarly, one has

G(z + wε(z)) = G(z)+ (G′(z) |wε(z))+ o(‖wε(z)‖)
= G(z)+ O(‖wε(z)‖). (A5.8)

Putting together (A5.7) and (A5.8) we infer that

	ε(z) = c0 + ε [G(z)+ O(‖wε(z)‖)] + o(‖wε(z)‖).
Since ‖wε(z)‖ = O(ε), see Lemma A5.2(ii), we deduce that

	ε(z) = c0 + εG(z)+ o(ε), where c0 = I0(z). (A5.9)

Reasoning in a similar way, one can also prove that

∇ξ	ε(z) = ε∇ξG(z)+ o(ε), (A5.10)

where, we recall, the variables ξ are a local parameterization of Z near z. Then
the conclusion of the lemma follows immediately from (A5.9) and (A5.10), by
the stability properties of strict local maxima (or minima) and of the degree. �

Remark A5.5

(a) Suppose that the functional � possesses multiple strict maxima or
minima zi, or that there are different sets �i for which the degrees
deg(�,�i, 0) �= 0. Then 	ε, and hence Iε, possesses multiple critical
points, localized near the zi or near the �i.

(b) If the critical point z is an isolated local extremum of �, or if the index
i(�, z) �= 0, since we can use formulas (A5.9), (A5.10) on arbitrarily small
neighbourhoods of z, the corresponding critical points of 	ε, or of Iε,
converge to z as ε tends to zero. �

In the next sections we consider applications of the abstract method to some
elliptic problems in R

n or in a bounded domain with a nonlinear term which is
a subcritical power. These are only some examples of the possible applications
of this method, which is very versatile and allows us to treat a wide class of
problems, including cases where a dilation-invariance is present, for example
when the critical exponent appears or when the equations arise in a geometric
context.
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A5.2 Elliptic equations on R
n

We apply in this section the abstract method just derived to study some semi-
linear elliptic equations on R

n. As we shall see, these problems are of the form
of those considered in Appendix 2. Although the method applies only to some
special cases (namely those for which the corresponding functionals are as in
(A5.1)), the arguments are quite simple and there is no need of the Palais–Smale
condition. Furthermore, one can use a unified approach to find critical points
which might have different Morse indices, which is in striking contrast with
the methods discussed in the above appendix.

We will consider the elliptic problem{−
u+ u = (1+ εh(x))up,
u ∈ W1,2(Rn), u > 0,

(PPPε)

where n ≥ 3, 1 < p < (n+ 2)/(n− 2) and h is a continuous function on R
n

tending to zero at infinity. Let E = W1,2(Rn): solutions of (PPPε) are the critical
points of the Euler functional Iε : E �→ R, Iε = I0 + εG, where

I0(u) = 1

2
‖u‖2 − 1

p+ 1

∫
Rn

up+1
+ dx, G(u) = − 1

p+ 1

∫
Rn

h(x) up+1
+ dx.

The unperturbed problem I ′0(u) = 0 is equivalent to the elliptic equation

−
u+ u = up, u ∈ E, (A5.11)

which admits a positive radial solution u0, see Chapter 11. Since (A5.11) is
translation invariant, it follows that, for any ξ ∈ R

n, zξ (x) := u0(x− ξ) is also
a solution of (A5.11). In other words, I0 has a (noncompact) critical manifold
given by

Z = {zξ (x) : ξ ∈ R
n} & R

n.

It can be shown, see for example Chapter 4 in [19], that the properties (FFFrrr) and
(NNNDDD) hold in this particular case, so in order to find critical points of Iε we can
apply Propositions A5.3 and A5.4. Therefore, we are reduced to studying the
properties of the functional �, which is given by

�(ξ) = G(zξ ) = − 1

p+ 1

∫
Rn

h(x)up+1
0 (x − ξ) dx, ξ ∈ R

n.

We first show the following result.

Lemma A5.6 Assume h is continuous on R
n and that it tends to zero at infinity.

Then lim|ξ |→∞ �(ξ) = 0.
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Proof. Given ρ > 0 we set

�ρ(ξ) :=
∫
|x|<ρ

h(x)up+1
0 (x − ξ) dx, �∗ρ(ξ) =

∫
|x|>ρ

h(x)up+1
0 (x − ξ) dx,

in such a way that �(ξ) = −1/(p+ 1)[�ρ(ξ)+�∗ρ(ξ)]. Since u0 tends to zero
at infinity, it follows immediately that �ρ(ξ) tends to zero as |ξ | tends to infinity.
Furthermore, since also h tends to zero at infinity, we have that �∗ρ(ξ) = oρ(1),
where oρ(1) tends to zero as ρ tends to infinity. By the arbitrarity of ρ we obtain
immediately the conclusion. �

The previous lemma allows us to prove the existence of solutions of (PPPε),
provided � �≡ 0.

Theorem A5.7 Let h ∈ C0(R
n), and suppose that

∫
Rn h(x)u0(x−ξ)p+1(x) �= 0

for some ξ ∈ R
n. Then (PPPε) has a solution for |ε| small enough.

Proof. From Lemma A5.6 it follows immediately that � possesses either a
global maximum or minimum on R

n, so the conclusion follows immediately
from Proposition A5.4. �

Remark A5.8

(a) A condition which implies � �≡ 0 is that h has constant sign in R
n, in

accordance with Theorems A2.2 and A2.3.
(b) There are cases in which (PPPε) has multiple solutions. For example, if∫

Rn
h(x)up+1

0 (x) = 0,
∫

Rn
Dih(x)u

p+1
0 (x) �= 0, for some i = 1, 2, . . . , n,

then �(0) = 0 while Di�(0) �= 0. Thus � possesses both a positive
maximum and a negative minimum, which give rise to a pair of distinct
solutions of (PPPε), for |ε| small, see Remark A5.5(a). �

We state next a generalization of Theorem A5.7, where indeed no assumptions
on � are required.

Theorem A5.9 Let h ∈ C0(R
n). Then (PPPε) has a solution for |ε| small enough.

We do not discuss here the proof of this result, which requires some technicalit-
ies, but we limit ourselves to discussing the main ideas. First of all, in the proof
of LemmaA5.2 one can substitute the implicit function theorem by a fixed point
argument. The advantage is that under the assumption of Theorem A5.9 this can
be worked out uniformly in ξ ∈ R

n (for ε small), so we do not need to restrict
our attention to a fixed compact set of Z . Furthermore, this method also gives
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some quantitative estimates on wε(z), which now is globally defined on Z . It
is possible to prove that, for a fixed small ε, the norm of wε(zξ ) tends to zero
uniformly for |ξ | → +∞. As a consequence, one can prove that 	ε(ξ)→ c0

as |ξ | → +∞, where c0 = I0|Z . This implies that 	ε is either constant on R
n,

or it must possess a global maximum or minimum, so we can apply Proposition
A5.3 to deduce the existence of a critical point of Iε. The peculiarity of this
approach is that one uses the full strength of Proposition A5.3, bypassing the
expansions of 	ε in terms of �.

A5.3 Semiclassical states of nonlinear Schrödinger equations

We consider now the following equation{−ε2
u+ V(x)u = up in R
n

u > 0 u ∈ W1,2(Rn),
(A5.12)

where p > 1 is subcritical and V is a smooth bounded function. Problem (A5.12)
arises in the study of the nonlinear Schrödinger equation

i�
∂ψ

∂t
= −�

2
ψ + Ṽ(x)ψ − |ψ |p−1ψ in R
n,

where ψ : R × R
n → C is the wave function, Ṽ : R

n → R is the potential
and � is the Planck constant. Looking for standing wave solutions, namely
solutions of the form ψ(t, x) = e−iωt/�u(x), the function u is easily seen to
satisfy (A5.12), with V = Ṽ − ω and ε = �. Since ε = � is very small, one is
interested is the asymptotic behaviour of solutions in the limit ε → 0, the so-
called semiclassical limit. Typically, in this limit solutions concentrate at some
points of R

n, which turn out to be stationary for V , mimicking the behaviour of
classical particles at equilibria of the potential. Below, we assume the following
conditions on the potential V :

(V1) V ∈ C2(Rn), and ‖V‖C2(Rn) < +∞;
(V2) λ2

0 = inf Rn V > 0.

We say that a solution vε of (A5.12) concentrates at x0 (as ε → 0) provided

∀ δ > 0, ∃ ε0 > 0, R > 0 : vε(x) ≤ δ, ∀ |x − x0| ≥ ε R, ε < ε0.

(A5.13)

The main purpose of this section is to describe the following result. Again, we
only sketch the main ideas, referring to Chapter 8 in [19] for details and further
results.
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Theorem A5.10 Let (V1) and (V2) hold, and suppose x0 is a nondegenerate
critical point of V, namely for which V ′′(x0) is nonsingular. Then there exists a
solution v̄ε of (A5.12) which concentrates at x0 as ε → 0.

To simplify the notation (and without losing generality) we will suppose that
x0 = 0 and that V(0) = 1. To frame (A5.12) in the abstract setting, we first
make the change of variable x �→ εx and rewrite equation (A5.12) as{−
u+ V(εx)u = up in R

n

u > 0 u ∈ W1,2(Rn).
(A5.14)

If uε(x) is a solution of (A5.14) then vε(x) := uε(x/ε) solves (A5.14). We set
again E = W1,2(Rn) and consider the functional Iε ∈ C2(E, R),

Iε(u) = 1

2

∫
Rn

(|∇u|2 + V(εx)u2)− 1

p+ 1

∫
Rn
|u|p+1. (A5.15)

As usual, we endow E with the norm

‖u‖2 =
∫

Rn
(|∇u|2 + V(εx)u2) dx.

With this notation, for ε = 0 the functional Iε takes the form

I0(u) = 1

2
‖u‖2 − 1

p+ 1

∫
Rn
|u|p+1.

Let us highlight that I0 plays the role of the unperturbed functional by writing

Iε(u) = I0(u)+ 1

2

∫
Rn

(V(εx)− 1)u2 dx ≡ I0(u)+ G(ε, u).

Obviously, for any fixed u ∈ E, we have G(ε, u)→ 0 as ε → 0 and hence we
can still view Iε as a perturbation of I0.

We define u0 and Z as in the previous section. However, the abstract method
described before cannot be applied in a straightforward way. Notice that, in
general, G′′(ε, u) does not tend to zero as ε → 0. To see this, let us consider a
sequence vj ∈ E with compact support contained in {x ∈ R

n : |x| > 1/j}. If,
for example, the potential V is such that V(x)− 1 ≡ c > 0 for all |x| ≥ 1, then
evaluating G′′(ε, u)[vj]2 for ε = 1/j we find

G′′(ε, u)[vj]2 =
∫

Rn
(V(εx)− 1)v2

j dx = c‖vj‖2.

However, the first part of the abstract procedure can still be carried out. Denoting
by P the orthogonal projection onto W = (TzZ)⊥, we look for solutions u =
zξ + w, with zξ ∈ Z and w ∈ W , of the system{

PI ′ε(zξ + w) = 0,
(I − P)I ′ε(zξ + w) = 0,
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which is clearly equivalent to I ′ε(zξ + w) = 0. At this point, instead of
invoking the implicit function theorem, we write PI ′ε(zξ + w) = PI ′ε(zξ ) +
PD2Iε(zξ )[w] + R(zξ , w), where R(zξ , w) = o(‖w‖), uniformly with respect to
zξ ∈ Z for bounded |ξ |. Next, using (FFFrrr) and (NNNDDD) one can show that PI ′′ε (zξ )
is uniformly invertible for ξ belonging to a fixed bounded set of R

n. Setting
Aε,ξ = −(PI ′′ε (zξ ))−1, the equation PI ′ε(zξ +w) = 0 can be written in the form

w = Aε,ξ (PI ′ε(zξ )+ R(zξ , w)) := Nε,ξ (w).

It is also possible to show that Nε,ξ is a contraction in some ball of W provided
ε is sufficiently small. This allows us to solve the auxiliary equation finding
a solution wε(zξ ) which is of class C1 with respect to ξ . Furthermore, since
V ′(0) = 0, one finds that wε(zξ ) = O(ε2), uniformly with respect to ξ in a
bounded set. At this point we can repeat the expansion of 	ε obtaining again

	ε(ξ) = c0 + ε2 �(ξ)+ o(ε2),

where c0 = I0(U) and

�(ξ) = 1

2

∫
Rn
〈V ′′(0)x, x〉U2(x − ξ) dx.

A straight calculation yields

�(ξ) = 1

2

∫
Rn
〈V ′′(0)(y + ξ), (y + ξ)〉U2(y) dy

= 1

2

∫
Rn
〈V ′′(0)y, y〉U2(y) dy + 1

2

∫
Rn
〈V ′′(0)ξ , ξ〉U2(y) dy

= c1 + c2〈V ′′(0)ξ , ξ〉,
where

c1 = 1

2

∫
Rn
〈V ′′(0)y, y〉U2(y) dy, c2 = 1

2

∫
Rn

U2(x) dx.

Then ξ = 0 is a nondegenerate critical point of� and therefore, from the general
theory, it follows that for ε � 1, Iε has a critical point uε = zξε +wε(zξε ), with
ξε → 0 as ε → 0. In conclusion, coming back to the solutions vε of (A5.12) , we
find that this equation has a solution v̄ε(x) ∼ U((x − ξε)/ε) that concentrates
at x = 0, proving Theorem A5.10.
Theorem A5.10 admits several extensions. For example, with a generalization
of the previous abstract method, one can construct solutions concentrating at
multiple points of R

n. We do not give a precise definition concerning concen-
tration at multiple points, which can be stated with obvious modifications of
(A5.13).
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Theorem A5.11 [139] Let (V1) and (V2) hold, and suppose V possesses k
distinct nondegenerate critical points x1, . . . , xk. Then there exists a solution v̄ε
of (A5.12) which concentrates at {x1} ∪ · · · ∪ {xk} when ε → 0.

We conclude this section by mentioning a short list of other results in this
direction, which can be proved with suitable adaptations of the above method.
For example, one can treat the case of degenerate critical points of the potential,
or even when the critical points of V arise in manifolds, see for example [26].
Working in a class of weighed spaces, it is indeed also possible to treat the
case of potentials tending to zero at infinity: we refer for example to [30] (see
also [29]). Other results include more general nonlinearities f (u), for which
condition (NNNDDD) might fail. In this case, under some mild assumptions on f ,
one can use penalization techniques and find solutions concentrating at local
minima of V , see [88]. Recently, new types of solutions have been produced,
which concentrate at sets of positive dimensions, like spheres or curves. When
some symmetry is present, the abstract method can still be adapted to this case,
see for example [27, 35, 46, 50], but in general totally different techniques are
required. We refer the interested reader to the paper [89] and to the comments
at the end of the next section.

A5.4 Singularly perturbed Neumann problems

In this section we consider the following singularly perturbed Neumann
problem 

−ε2
u+ u = up in �
∂u

∂ν
= 0 on ∂�

u > 0 in �,

(NNNε)

where � is a smooth bounded domain of R
n, p > 1 is subcritical and ν denotes

the outer unit normal at ∂�. A problem like (NNNε) arises in the study of some
reaction-diffusion systems with chemical or biological motivation. Referring
to for example [136] for more details we simply mention that, according to the
so-called Turing instability, systems with different diffusivities may produce
stable nontrivial patterns. For example, the stationary Gierer–Meinhardt system
(consisting of two coupled equations) can be reduced in some circumstances
to (NNNε) when one of the diffusivity coefficients is very large and the other very
small.

Problems (NNNε) and (A5.12) share some common features, in the sense that
also (NNNε) admits solutions, called spike layers, concentrating at one or multiple
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points of the closure of the domain. We want to describe below the proof of the
following result.

Theorem A5.12 Suppose � ⊆ R
n, n ≥ 2, is a smooth bounded domain, and

that 1 < p < (n+ 2)/(n− 2) (1 < p < +∞ if n = 2). Suppose x0 ∈ ∂� is
a local strict maximum or minimum, or a nondegenerate critical point of the
mean curvature H of ∂�. Then for ε > 0 sufficiently small problem (NNNε) admits
a solution concentrating at x0.

Using a change of variables, problem (NNNε) can be reduced to the following
−
u+ u = up in �ε

∂u

∂ν
= 0 on ∂�ε

u > 0 in �ε,

(ÑNNε)

where �ε = 1/ε�, or equivalently to finding the existence of critical points of
the functional

Iε(u) = 1

2

∫
�ε

(|∇u|2 + u2)− 1

p+ 1

∫
�ε

|u|p+1

defined on E = W1,2(�ε). The functional Iε is not of the form (A5.1), and in
particular there is not a standard critical manifold Z . However, it is possible
to modify the above abstract approach in the following way. For ε small, one
defines the set

Zε = {zx := u0(· − x) : x ∈ ∂�ε},
which is a manifold in E diffeomorphic to ∂�ε. Zε turns out to be a pseudocrit-
ical manifold for Iε, in the sense that ‖I ′ε(z)‖ is small for every z ∈ Zε. Indeed,
all elements of Zε satisfy the first equation in (ÑNNε), but not the boundary condi-
tion, and hence some term in the expression of I ′ε(z) appears when integrating
by parts. One has indeed the following result.

Lemma A5.13 For ε sufficiently small there exists a constant C > 0 such that
‖I ′ε(z)‖ ≤ Cε for every z ∈ Zε.

As in the proof of Lemma A5.2 (but using the contraction mapping theorem
instead of the implicit function theorem), denoting Wz = (TzZε)

⊥, one can
show that PI ′′ε (z) : Wz → Wz is uniformly invertible, yielding the existence of
a function wε(z) such that I ′ε(z + wε(z)) ∈ TzZε. Therefore one also finds the
following result.

Lemma A5.14 For ε sufficiently small, let	ε : Zε → R be defined by	ε(z) =
Iε(z+wε(z)). Then if zε is critical for 	ε, zε+wε(zε) is a stationary point of Iε.
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The behaviour of 	ε is determined by the geometry of �: in fact, one can prove
the following expansion

	ε(zx) = 1
2 c0 − c1εH(εx)+ o(ε), (A5.16)

where c0 is as in Section A5.2, c1 is a positive constant and H(y) stands for the
mean curvature of ∂� at the point y. Then Theorem A5.12 follows reasoning
as in the proof of Proposition A5.4.
As for the nonlinear Shrödinger equation, there exist solutions of types different
from those discussed in Theorem A5.12. For example there are solutions which
concentrate at the interior of �, and their location is determined by the distance
function from the boundary. It is well known that problem (NNNε) also admits
multipeak solutions, which concentrate at multiple points of �. For example,
in [103] the authors prove the existence of solutions which have an arbitrarily
large number of peaks, both at the interior and at the boundary of the domain.

Solutions concentrating at higher dimensional sets exist for problem (NNNε) as
well, and some of them are known to concentrate at the whole ∂� or at some
minimal k dimensional submanifold of ∂�, see the papers [120, 123, 124, 125].
When some symmetry is present, it is possible to construct solutions which
have the profile of interior spikes, and which concentrate at some k dimensional
manifolds approaching the boundary when ε tends to zero. For these and related
questions (like the analogous problem with Dirichlet boundary conditions) see
for example the papers [28, 86, 126, 133]. These results suggest the possible
presence of these (and maybe other) types of solutions also in nonsymmetric
contexts.

A5.5 Perturbation of even functionals

The case of the perturbation of even functionals does not fit into the preceding
set-up but requires a different approach. In this section we will outline some
results on this interesting question.

In Theorem 10.12 we have shown that any even functional J satisfying (a)
J ∈ C1(E, R), J(0) = 0 and J(u) < 0, for all u �= 0, (b) J is weakly continuous
and J ′ is compact, and (c) J ′(u) �= 0 for all u �= 0, possesses infinitely many
critical points zk on unit sphere S of a separable Hilbert space E. A natural
problem is to see what happens if J is perturbed by a functional which is not
even. The first answer to this question has been given by Krasnoselski.

Theorem A5.15 [110], Theorem 4.6, Chapter VI. Suppose that (a)–(c) hold
and let J1 ∈ C1(E, R) be such that

sup
‖u‖≤1

|J(u)| + sup
‖u‖≤1

‖J ′(u)‖ ≤ constant.
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Then for any m ∈ N there exists εm > 0 such that for |ε| ≤ εm, the pertubed
functional Jε = J + εJ1 has at least m critical points on S.

The proof of Theorem A5.15 relies on the construction of critical levels of J on
S which are suitable for perturbation. Roughly, we consider the class

Ãm = {A ⊂ S : A = φ(Sm), φ ∈ C(Sm, S), odd},
where Sm ⊂ S denotes the m dimensional sphere, and define

σ̃m = inf
A∈Ãm

max
u∈A

J(u).

It is easy to check that σ̃m is a critical level for J on S. Moreover, since γ (A) ≥
γ (Sm) = m + 1 for all A ∈ Ãm, it follows that σ̃m ≥ σm+1 (the levels σm

have been defined in (10.1)). Therefore, using the fact that σm ↑ 0, we infer
that σ̃m ↑ 0 as well. Next, given a < 0, there exists m = m(a) ∈ N such that
σ̃m(a) ≤ a < σ̃m(a)+1. Let

Ma = {T ⊂ M : T = χ(A), A ∈ Ãm(a), χ ∈ C(A, S), sup
χ(A)

J ≤ a},

and define a new critical level of J on S by setting

d(a) = inf
T∈Ma

max
u∈T

J(u).

It is worth pointing out that the new feature here is that we do not require that
the maps χ in the definition of Ma are odd. For this reason, each level d(a) can
be perturbed. Moreover, one can prove that d(a) ↑ 0 as a ↑ 0 and this allows
us to find m critical points of Jε, provided |ε| ≤ εm.

Theorem A5.15 applies to nonlinear eigenvalue problems like{−λ
u = |u|p−1u+ εh(x, u) x ∈ �

u = 0 x ∈ ∂�.
(A5.17)

A result similar in nature to Theorem A5.15 can be proved for a functional like
the one studied in Section 7.6. Moreover, Morse theory has been used in [130]
to prove perturbation results in the above spirit. As a remarkable application, it
has been proved in [130] that the eigenvalue problem

−λ
2u = u+ h(x, u) x ∈ � ⊂ R
2

u = 0 x ∈ ∂�
∂u

∂ν
= 0 x ∈ ∂�,

has infinitely many solutions in H2(�) with unit norm, provided h is smooth
and such that

|h(x, u)| ≤ k|u|γ , γ > 3, k > 0.
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Here, one works on the unit sphere of H2 and the role of the unperturbed
functional is played by the quadratic functional

∫
u2. Its critical levels are

nothing but the (linear) eigenvalues λm of −λ
2u = u, u = 0, ∂u/∂ν = 0 on
∂� and it is known that λm ∼ m−2. This asymptotic behaviour and the growth
restriction on h allow us to show that near a sequence of those λm, m � 1,
there are critical levels of the functional

∫
�

u2 + ∫
�

dx
∫ u

0 h(x, s) ds. This is
the reason why the application deals with the bi-Laplacian 
2 in � ⊂ R

2. To
find infinitely many solutions of a more general class of nonlinear eigenvalue
problems is an open problem.

The interest of the preceding multiplicity result also relies on the fact that
there are examples of perturbed functionals Jε which have only a finite num-
ber of critical points on the unit sphere. The following example is due to
Krasnoselski. Let

J(u) = −
∞∑

m=1

1

m2
(u | em)2,

where em is an orthonormal system in E, whose critical levels on S are given
by −1/m2. For any ε > 0 we can take k(ε) ∈ N such that the functional

Jk(ε)(u) = −
k∑

m=1

1

m2
(u | em)2,

satisfies sup‖u‖≤1 |J(u)−Jk(ε)(u)|+sup‖u‖≤1 ‖J ′(u)−J ′k(ε)(u)‖ ≤ ε. Obviously,
the perturbed functional Jk(ε) has a only a finite number of critical points.

There are other specific, but important, classes of perturbed functionals which
possess infinitely many critical points. The model problem is given by the
functional J : H1

0 (�) �→ R,

J(u) = 1

2
‖u‖2 − 1

p+ 1

∫
�

|u|p+1 dx −
∫
�

h(x)u dx, h ∈ L2(�),

whose critical points are solutions of the superlinear Dirichlet BVP{−
u = |u|p−1u+ h(x) x ∈ �

u = 0 x ∈ ∂�.
(A5.18)

The following result is due to A. Bahri [37].

Theorem A5.16 Let 1 < p < (n+ 2)/(n− 2). Then (A5.18) has infinitely
many solutions for a residual set of h in H−1(�).

On the other hand, if one wants to have a result which is not generic, a restriction
on p is in order.
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Theorem A5.17 If 1 < p < n/(n− 2) then (A5.18) has infinitely many
solutions.

Theorem A5.17 is a particular case of a more general one due to Bahri and
Lions [43] and improves some previous results [39, 152, 165]. It is not known
whether the bound n/(n − 2) is optimal. It is worth pointing out that, though
the proofs rely on pertubation arguments, h is not required to be small. This is
due, roughly, to the fact that the critical levels σm of the unperturbed functional
(namely when h = 0) tend to infinity and the gaps between them increase
as m → ∞. It is also natural to ask whether some perturbation result can be
obtained for coercive problems like{−
u = λu− |u|p−1u+ εh(x) x ∈ �

u = 0 x ∈ ∂�,
(D−λ,ε)

where 1 < p < (n+ 2)/(n− 2). When ε = 0 the nonlinearity is odd and
Theorem 10.22 yields the existence of at least k pairs of nontrivial solutions to
(D−λ,0), provided λ > λk (λk denotes the kth eigenvalue of−
 on H1

0 (�)). The
question is whether these solutions persist under perturbation. The situation
here is very different from the superlinear problems (A5.18) or the nonlinear
eigenvalue problems (A5.17), and none of the preceding perturbation arguments
can be used to handle (D−λ,ε). The difference relies on the fact that the Euler

functional related to (D−λ,0) has a finite number of critical levels and two or
more of them could also coincide. This degeneracy allows Dancer [85] to show
that the result valid for ε = 0 cannot be extended in such a generality to the
case ε �= 0. A possible conjecture is to show that, given any k ∈ N, there exists
�(k) > 0 and ε(k) > 0 such that (D−λ,ε) has at least 2k solutions provided
λ > �(k) and |ε| < ε(k).
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Some problems arising in differential geometry

We treat here some problems motivated by differential geometry, which amount
to solving nonlinear elliptic equations involving the critical Sobolev exponent.
This is deeply related to one of the main features of these equations, namely
the lack of compactness. The latter is typical of geometric problems, since they
are usually characterized by some (at least asymptotically) scaling invariance.

A6.1 The Yamabe problem

We begin this section with a short list of notions in Riemannian geometry,
referring for example to [34] for detailed derivations of the geometric quantities,
their motivation and (more) applications.

Let (M, g) be a compact n dimensional manifold, endowed with a metric g.
Let (U, η), U ⊆ M, η : U → R

n, be a local coordinate system and let gij

denote the components of the metric g. We also denote with gij the elements of
the inverse matrix (g−1)ij, and with dVg the volume element, which is given by

dVg =
√

det g dx. (A6.1)

The Christoffel symbols are defined by �l
ij = 1

2 [Digkj + Djgki − Dkgij]gkl (Di

stands for the derivative with respect to xi) while the Riemann curvature tensor,
the Ricci tensor and the Scalar curvature are given respectively by

Rl
kij = Di�

l
jk − Dj�

l
ik + �l

im�m
jk − �l

jm�m
ik , Rkj = Rl

klj, Rg = Rkjg
kj.

(A6.2)

Hereafter, we use the standard convention that repeated (upper and lower)
indices are summed over all their range (usually between 1 and n). For n ≥ 3,
the Weyl tensor Wijkl is then defined as

Wijkl = Rijkl − 1

n− 2
(Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ R

(n− 1)(n− 2)
(gjlgik − gjkgil).

302
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For a smooth function u the components of its gradient ∇gu are

(∇gu)i = gijDju. (A6.3)

The Laplace–Beltrami operator, applied to a C2 function u : M → R, is given
by the following expression


gu = gij (D2
iju− �k

ij Dku) = 1

|dVg| Dm

(
|dVg|gmkDku

)
. (A6.4)

We say that two metrics g and g̃ on M are conformally equivalent if there is a
smooth function ρ(x) > 0 such that g̃ = ρ g. If n ≥ 3, using the (convenient)
notation g̃ = u4/(n−2) g, the scalar curvature Rg̃ of (M, g̃) is related to Rg by the
following formula

−2cn
gu+ Rgu = Rg̃u(n+2)/(n−2), cn = 2
(n− 1)

(n− 2)
. (A6.5)

For n = 2, the scalar curvature coincides with the Gauss curvature Kg, and if
one sets g̃ = e2u g, we have the analogous transformation rule

−
g u+ Kg = Kg̃ e2u. (A6.6)

In the spirit of the uniformization theorem for the two dimensional case (a clas-
sical result of Poincaré in which conformal metrics of constant Gauss curvature
are found), for n ≥ 3 the Yamabe problem consists in finding a conformal metric
g̃ with constant scalar curvature R on M. By (A6.5), the problem amounts to
looking for positive solutions of

−2cn
gu+ Rgu = Ru(n+2)/(n−2) on M. (A6.7)

The structure of equation (A6.5) is variational, and the presence of the exponent
(n+2)/(n−2) makes the study of (A6.7) a noncompact problem. This implies
in particular that the associated Palais–Smale sequences do not converge in
general, so the analytic study of (A6.5) is rather difficult.

One can try to find solutions of (A6.7) as minima of the Sobolev-type quotient

QM,g(u) :=
∫

M(|∇gu|2 + (1/2cn)Rg u2) dVg

(
∫

M |u|2∗)2/2∗
, u ∈ W1,2(M) \ {0}.

(A6.8)

Defining µM,g to be the infimum of the above quotient over all (nonzero) func-
tions u, one can check from (A6.5) that µM,g is a conformal invariant called
the Yamabe invariant, and is usually denoted by Y(M, [g]), where [g] stands
for the conformal class of g. A compact manifold is called of positive (respect-
ively of null, or of negative) type depending on whether Y(M, [g]) is positive
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(respectively null, or negative). One can easily check that if the Yamabe prob-
lem is solvable, then the constant R in (A6.7) necessarily has the same sign as
Y(M, [g]).

Trudinger [169] showed that one always has Y(M, [g]) ≤ Y(Sn, [g0]), where
g0 stands for the standard metric of Sn. Indeed, since the sphere (with one point
removed) is conformally equivalent to R

n through the stereographic projection,
it is possible to prove that Y(Sn, [g0]) coincides with the best Sobolev constant
S for the embedding of W1,2(Rn) into L2∗(Rn). Furthermore, if Y(M, [g]) < S
the infimum is attained, similarly to arguments of Section 11.2. In particular,
when Y(M, [g]) ≤ 0, solutions can be found rather easily.

A first result concerning manifolds of positive type was given by Th. Aubin
[33] for the case of dimension n greater than or equal to 6 and when M is
not locally conformally flat. In these dimensions (actually for n ≥ 4), for the
latter condition to hold it is necessary and sufficient that Wg �≡ 0. To verify
the condition Y(M, [g]) < S, Aubin used test functions uε highly concentrated
near a point x0 of M where Wg(x0) �= 0, and which are similar to those used in
Section 11.2. He proved the following estimates

QM,g(uε) =
{

S − anε
4|Wg(x0)|2 + o(ε4) for n > 6

S − anε
4| log ε||Wg(x0)|2 + o(ε4 log ε) for n = 6,

(A6.9)

where an is a dimensional constant. From the last formula, taking ε sufficiently
small, it follows immediately that Y(M, [g]) < S and therefore the minimizing
sequences for QM,g stay compact.

The complementary cases in the positive Yamabe class were considered by
R. Schoen in [155]. The proof is in the same spirit, except that the test functions
ũε have to take care of the global geometry of the manifold, and not only of
its local nature near the concentration point x0. Schoen’s test functions glue
together Uε (the notation is still from Section 11.2) and the Green function of
the conformal Laplacian, which is defined by −2cn
g + Rg. Choosing some
(in fact, special) coordinates near x0, the Green function GM,g(y, x0) with pole
x0 writes as

GM,g(y, x0) = 1

(n− 2)ωn−1

1

|y − x0|n−2
+ Ax0 + O(|y − x0|), y �= x0

where ωn−1 = Vol(Sn−1), and Ax0 is a suitable constant. It is a consequence
of the positive mass theorem by Schoen and Yau, see [157], that Ax0 > 0 if
Y(M, [g]) > 0. Using this result, Schoen proved that

QM,g(uε) = S − aεn−2 + o(εn−2), (A6.10)

where a is a positive constant, obtaining again that Y(M, [g]) < S, and hence
existence of a solution to the Yamabe problem.



A6.2 The scalar curvature problem 305

We also mention that in dimensions 3, 4 and 5 there is an alternative proof
of existence due to Bahri and Brezis [40] which bypasses the positive mass
theorem and uses instead the theory of critical points at infinity developed by
Bahri and Coron. Solutions found with this method in general are not minimizers
for the Sobolev type quotient. Furthermore, some multiplicity results are also
available, see for example [19, 55, 144, 156].

A6.2 The scalar curvature problem

The prescribed scalar curvature problem consists in deforming conformally the
standard metric g0 on the sphere Sn so that the new scalar curvature becomes a
given function f . By equation (A6.5), since the scalar curvature of the standard
sphere is n(n − 1), the problem amounts to finding a positive solution to the
equation

−2cn
g0 u+ n(n− 1)u = fu(n+2)/(n−2) on Sn. (A6.11)

As one can easily see using integration by parts, a necessary condition for the
solvability is that f should be positive somewhere. But a more subtle obstruction
is present. Indeed, with a slightly more involved integration by parts (which is
similar to that in the proof of Theorem 8.30) Kazdan and Warner [107] proved
that any solution of (A6.11) satisfies the identity∫

Sn
〈∇g0 f ,∇g0 xi〉dVg0 = 0, i = 1, . . . , n+ 1, (KW )

where xi stands for the ith coordinate function of R
n+1 restricted to Sn. For

example, this rules out the possibility of existence for functions f of the form
f = 2+ xi, which are positive everywhere on the sphere.

Concerning existence of solutions there are several results, and due to the
substantial dependence of the solvability on the datum f , they all require rather
sophisticated techniques. We are going to discuss briefly the following theorem
proved by Bahri and Coron [41].

Theorem A6.1 Suppose n = 3, and that f : S3 → R is a positive Morse
function for which 
g0 f (p) �= 0 at every critical point p of f . Then, if the
following formula holds ∑

{p : ∇g0 f (p)=0,
g0 f (p)<0}
(−1)ind(f ,p) �= −1, (A6.12)

problem (A6.11) is solvable.
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We present here a proof by Chang, Gursky and Yang [77], since it is easier for
us to describe it using the contents of the previous chapters (and the previous
sections in the appendix).

One first constructs a homotopy ft between the function f and the constant
n(n− 1), simply defined by

ft(x) = tf (x)+ (1− t)n(n− 1), x ∈ Sn, t ∈ [0, 1],
and considers the one-parameter family of problems

−2cn
g0 u+ n(n− 1)u = ftu
(n+2)/(n−2) on Sn. (A6.13)

Solutions of (A6.13) can be found as critical points of the functional It :
W1,2(Sn)→ R defined by

It(u) = cn

∫
Sn
|∇g0 u|2 dVg0 +

n(n− 1)

2

∫
Sn

u2 dVg0 −
1

2∗

∫
Sn
|u|2∗ dVg0 ,

where dVg0 stands for the volume element of Sn, so It has the form It = I0+ tG,
with

I0(u) = cn

∫
Sn
|∇g0 u|2 dVg0+

n(n− 1)

2

∫
Sn

u2 dVg0−
n(n− 1)

2∗

∫
Sn
|u|2∗ dVg0 ,

G(u) = 1

2∗

∫
Sn
[f (x)− n(n− 1)]|u|2∗ dVg0 .

When t is small, this functional fits in the abstract framework described in
Appendix 5. We will describe next what the unperturbed manifold Z is in this
case, and we will evaluate the effect of the perturbation G. To do this, we
introduce some preliminary notation.

For P ∈ Sn and for t ∈ [1,+∞) we define the point p ∈ Bn+1
1 (the unit ball of

R
n+1) by p = ((t−1)/t)P. We let πP : Sn → R

n denote the stereographic pro-
jection through the point −P, and in stereographic coordinates on Sn (induced
by πP) we define the map

ϕP,t(y) = ty, y ∈ R
n.

We then consider the metric gP,t = (ϕP,t)
∗g0, where (ϕP,t)

∗ stands for the
pull-back of g0 through ϕP,t (see for example [34] for the notation). Since
ϕP,t is conformal, there exists a positive function zP,t : Sn → R such that

z4/(n−2)
P,t g0 = (ϕP,t)

∗g0. We then define the manifold

Z = {
zP,t : P ∈ Sn, t ∈ [0,+∞)

}
.

Using the (one-to-one) correspondence (P, t) �→ (t − 1/t)P, we easily see
that Z is homeomorphic to Bn+1

1 , and indeed diffeomorphic. It turns out that
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the properties (FFFrrr) and (NNNDDD) are satisfied, so we can apply Propositions A5.3
and A5.4.

Therefore, we analyse next the behaviour of G|Z , especially near the boundary
of Bn+1

1 (through the above identification). It can be shown that
∫

Sn |zP,t |2∗ is
independent of (P, t) (in particular equal to |Sn| since zP,0 ≡ 1), and that |zP,t |2∗
converges weakly in the sense of measures to |Sn| times the Dirac delta at P
when t tends to +∞. As a consequence one finds that

G(zP,t)→ |Sn|
2∗

(f (P)− n(n− 1)) as t →+∞.

A more detailed analysis shows that

G(zP,t) = |Sn|
2∗

(f (P)− n(n− 1))+ c1
g0 f (P)

t2
+ o

(
1

t2

)
as t →+∞,

where c1 is a positive constant depending only on n. Using this expansion
one can check that, letting Bs = sBn+1

1 , the gradient of � := G|Z is never
zero on ∂Bs if s ∈ (0, 1) is sufficiently close to 1. In fact, the component of
∇� tangent to ∂Bs is (asymptotically) proportional to the gradient of f , while
the component normal to ∂Bs has the sign of 
g0(f ). By the assumptions of
Theorem A6.1, ∇g0 f and 
g0 f can never be zero simultaneously. This allows
us to define deg(�, Bs, 0) for s close to 1, and it is possible to show that

deg(�, Bs, 0) =
∑

{p : ∇g0 f (p)=0,
g0 f (p)<0}
(−1)ind(f ,p) + 1,

so under the assumption (A6.12) the degree is nonzero, and we can apply
Proposition A5.4 to obtain a solution of (A6.13) for t sufficiently small.

For α ∈ (0, 1), let now Lg0 : C2,α(Sn) → Cα(Sn) denote the operator
−2cn
g0 + n(n − 1). Then solutions of (A6.13) can also be found as fixed
points of the operator u �→ L−1

g0
(ftu(n+2)/(n−2)). By the results in [77] it turns

out that for t = t0 sufficiently small there exists a constant C(t0) such that

deg

(
u− L−1

g0
(ft0 u(n+2)/(n−2)),

{
1

C(t0)
<v<C(t0)

}
, 0

)
= − deg(�, Bs, 0).

Furthermore, under the assumption that f is Morse, there exists another constant,
which we still denote by Ct0 such that for t ∈ [t0, 1] every (positive) solution
v of (A6.13) satisfies 1/Ct0 < v < Ct0 . It follows that for t ∈ [t0, 1], u −
L−1

g0
(ftu(n+2)/(n−2)) is different from zero on the boundary of {1/Ct0 < v < Ct0}.

Hence, from the homotopy property of the degree, from (A6.12) and the last
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formulas, we have also

deg

(
u− L−1

g0
(f (n+2)/(n−2)

u ),

{
1

C(t0)
< v < C(t0)

}
, 0

)
�= 0.

As a conclusion, problem (A6.11) is solvable.
Some comments are in order. First of all, Theorem A6.1 has been extended
by Schoen and Zhang in [158], where the authors use the Morse inequalities
instead of the degree, so that more general conditions for solvability are given.

In general, the requirements for the existence of solutions strongly depend
not only on the datum f , but also on the dimension n. For example, still under
the assumption that f is Morse, for n = 4 there is another index formula of the
form (A6.12), but in which each summand involves multiple points at a time,
see [47] and the second part of [117]. If one wants to keep a formula similar to
(A6.12), the function f needs to be suitably flat near its critical points: naively,
for any critical point pi of f , the main term in the expansion f (p)− f (pi) should
be a homogeneous function of order β in p − pi, with β ∈ (n − 2, n), see the
first part of [117]. We also refer to the papers [74, 75] (which actually came
first) for the case n = 2, where the Gauss curvature on the sphere is prescribed,
solving equation (A6.6).

Also, there are other kinds of results which are based on different methods
and ideas. For example, in [56] (see also [57]) a suitable min-max scheme is
used, and the assumptions involve only critical points lying in certain levels
of f . Other contributions exploit some symmetry of the datum [58, 70, 104],
or the perturbative nature of the problem when f is close to a constant, see for
example [18, 25, 76].

Finally, we mention that there are several other problems arising from con-
formal geometry, which involve operators of higher order or fully nonlinear
equations. We refer to the recent monograph [73] for further details and recent
results.
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