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Preface to the second edition

This book is intended as a primer in harmonic analysis at the upper
undergraduate or early graduate level. All central concepts of har-
monic analysis are introduced without too much technical overload.
For example, the book is based entirely on the Riemann integral in-
stead of the more demanding Lebesgue integral. Furthermore, all
topological questions are dealt with purely in the context of metric
spaces. It is quite surprising that this works. Indeed, it turns out
that the central concepts of this beautiful and useful theory can be
explained using very little technical background.

The first aim of this book is to give a lean introduction to Fourier
analysis, leading up to the Poisson summation formula. The sec-
ond aim is to make the reader aware of the fact that both principal
incarnations of Fourier theory, the Fourier series and the Fourier
transform, are special cases of a more general theory arising in the
context of locally compact abelian groups. The third goal of this
book is to introduce the reader to the techniques used in harmonic
analysis of noncommutative groups. These techniques are explained
in the context of matrix groups as a principal example.

The first part of the book deals with Fourier analysis. Chapter 1
features a basic treatment of the theory of Fourier series, culminating
in L2-completeness. In the second chapter this result is reformulated
in terms of Hilbert spaces, the basic theory of which is presented
there. Chapter 3 deals with the Fourier transform, centering on
the inversion theorem and the Plancherel theorem, and combines
the theory of the Fourier series and the Fourier transform in the
most useful Poisson summation formula. Finally, distributions are
introduced in chapter 4. Modern analysis is unthinkable without this
concept that generalizes classical function spaces.

The second part of the book is devoted to the generalization of the
concepts of Fourier analysis in the context of locally compact abelian
groups, or LCA groups for short. In the introductory Chapter 5 the
entire theory is developed in the elementary model case of a finite
abelian group. The general setting is fixed in Chapter 6 by introduc-
ing the notion of LCA groups; a modest amount of topology enters
at this stage. Chapter 7 deals with Pontryagin duality; the dual is
shown to be an LCA group again, and the duality theorem is given.
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The second part of the book concludes with Plancherel’s theorem in
Chapter 8. This theorem is a generalization of the completeness of
the Fourier series, as well as of Plancherel’s theorem for the real line.

The third part of the book is intended to provide the reader with a
first impression of the world of non-commutative harmonic analysis.
Chapter 9 introduces methods that are used in the analysis of matrix
groups, such as the theory of the exponential series and Lie algebras.
These methods are then applied in Chapter 10 to arrive at a classi-
fication of the representations of the group SU(2). In Chapter 11 we
give the Peter-Weyl theorem, which generalizes the completeness of
the Fourier series in the context of compact non-commutative groups
and gives a decomposition of the regular representation as a direct
sum of irreducibles. The theory of non-compact non-commutative
groups is represented by the example of the Heisenberg group in
Chapter 12. The regular representation in general decomposes as a
direct integral rather than a direct sum. For the Heisenberg group
this decomposition is given explicitly.

Acknowledgements: I thank Robert Burckel and Alexander Schmidt
for their most useful comments on this book. I also thank Moshe
Adrian, Mark Pavey, Jose Carlos Santos, and Masamichi Takesaki
for pointing out errors in the first edition.

Exeter, June 2004 Anton Deitmar
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Notation We write N = {1, 2, 3, . . . } for the set of natural numbers
and N0 = {0, 1, 2, . . . } for the set of natural numbers extended by
zero. The set of integers is denoted by Z, set of rational numbers by
Q, and the sets of real and complex numbers by R and C, respectively.
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Chapter 1

Fourier Series

The theory of Fourier series is concerned with the question of whether
a given periodic function, such as the plot of a heartbeat or the signal
of a radio pulsar, can be written as a sum of simple waves. A simple
wave is described in mathematical terms as a function of the form
c sin(2πkx) or c cos(2πkx) for an integer k and a real or complex
number c.

The formula
e2πix = cos 2πx + i sin 2πx

shows that if a function f can be written as a sum of exponentials

f(x) =
∑
k∈Z

cke
2πikx,

for some constants ck, then it also can be written as a sum of simple
waves. This point of view has the advantage that it gives simpler
formulas and is more suitable for generalization. Since the expo-
nentials e2πikx are complex-valued, it is therefore natural to consider
complex-valued periodic functions.

1.1 Periodic Functions

A function f : R → C is called periodic of period L > 0 if for every
x ∈ R,

f(x + L) = f(x).

5
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If f is periodic of period L, then the function

F (x) = f(Lx)

is periodic of period 1. Moreover, since f(x) = F (x/L), it suffices to
consider periodic functions of period 1 only. For simplicity we will
call such functions just periodic.

Examples. The functions f(x) = sin 2πx, f(x) = cos 2πx, and
f(x) = e2πix are periodic. Further, every given function on the half-
open interval [0, 1) can be extended to a periodic function in a unique
way.

Recall the definition of an inner product 〈., .〉 on a complex vector
space V . This is a map from V × V to C satisfying

• for every w ∈ V the map v �→ 〈v, w〉 is C-linear,

• 〈v, w〉 = 〈w, v〉,
• 〈., .〉 is positive definite, i.e., 〈v, v〉 ≥ 0; and 〈v, v〉 = 0 implies

v = 0.

If f and g are periodic, then so is af + bg for a, b ∈ C, so that the set
of periodic functions forms a complex vector space. We will denote
by C(R/Z) the linear subspace of all continuous periodic functions
f : R → C. For later use we also define C∞(R/Z) to be the space of
all infinitely differentiable periodic functions f : R → C. For f and
g in C(R/Z) let

〈f, g〉 =
∫ 1

0
f(x)g(x)dx,

where the bar means complex conjugation, and the integral of a
complex-valued function h(x) = u(x) + iv(x) is defined by linearity,
i.e., ∫ 1

0
h(x)dx =

∫ 1

0
u(x)dx + i

∫ 1

0
v(x)dx.

The reader who has up to now only seen integrals of functions from
R to R should take a minute to verify that integrals of complex-
valued functions satisfy the usual rules of calculus. These can be
deduced from the real-valued case by splitting the function into real
and imaginary part. For instance, if f : [0, 1] → C is continuously
differentiable, then

∫ 1
0 f ′(x) dx = f(1) − f(0).



1.2. EXPONENTIALS 7

Lemma 1.1.1 〈., .〉 defines an inner product on the vector space
C(R/Z).

Proof: The linearity in the first argument is a simple exercise, and
so is 〈f, g〉 = 〈g, f〉. For the positive definiteness recall that

〈f, f〉 =
∫ 1

0
|f(x)|2dx

is an integral over a real-valued and nonnegative function; hence it
is real and nonnegative. For the last part let f �= 0 and let g(x) =
|f(x)|2. Then g is a continuous function. Since f �= 0, there is
x0 ∈ [0, 1] with g(x0) = α > 0. Then, since g is continuous, there is
ε > 0 such that g(x) > α/2 for every x ∈ [0, 1] with |x − x0| < ε.
This implies

〈f, f〉 =
∫ 1

0
g(x)dx ≥

∫
|x−x0| < ε

α

2
dx ≥ εα > 0.

�

1.2 Exponentials

We shall now study the periodic exponential maps in more detail.
For k ∈ Z let

ek(x) = e2πikx;

then ek lies in C(R/Z). The inner products of the ek are given in the
following lemma.

Lemma 1.2.1 If k, l ∈ Z, then

〈ek, el〉 =
{

1 if k = l,
0 if k �= l.

In particular, it follows that the ek, for varying k, give linearly inde-
pendent vectors in the vector space C(R/Z). Finally, if

f(x) =
n∑

k=−n

ckek(x)

for some coefficients ck ∈ C, then

ck = 〈f, ek〉 for each k.
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Proof: If k = l, then

〈ek, el〉 =
∫ 1

0
e2πikxe−2πikxdx =

∫ 1

0
1 dx = 1.

Now let k �= l and set m = k − l �= 0; then

〈ek, el〉 =
∫ 1

0
e2πimxdx

=
1

2πim
e2πimx

∣∣∣∣1
0

=
1

2πim
(1 − 1) = 0.

From this we deduce the linear independence as follows. Suppose
that we have

λ−ne−n + λ−n+1e−n+1 + · · · + λnen = 0

for some n ∈ N and coefficients λk ∈ C. Then we have to show that
all the coefficients λk vanish. To this end let k be an integer between
−n and n. Then

0 = 〈0, ek〉
= 〈λ−ne−n + · · · + λnen, ek〉
= λ−n 〈e−n, ek〉 + · · · + λn 〈en, ek〉
= λk.

Thus the (ek) are linearly independent, as claimed. In the same way
we get ck = 〈f, ek〉 for f as in the theorem. �

Let f : R → C be periodic and Riemann integrable on the interval
[0, 1]. The numbers

ck(f) = 〈f, ek〉 =
∫ 1

0
f(x)e−2πikxdx, k ∈ Z,

are called the Fourier coefficients of f . The series
∞∑

k=−∞
ck(f)e2πikx =

∞∑
k=−∞

ck(f)ek(x),

i.e., the sequence of the partial sums

Sn(f) =
n∑

k=−n

ck(f)ek,
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is called the Fourier series of f . Note that we have made no assertion
on the convergence of the Fourier series so far. Indeed, it need not
converge pointwise. We will show that it converges in the L2-sense,
a notion to be defined in the sequel.

Let R(R/Z) be the C-vector space of all periodic functions f : R →
C that are Riemann integrable on [0, 1]. Since every continuous
function on the interval [0, 1] is Riemann integrable, it follows that
C(R/Z) is a subspace of R(R/Z). Note that the inner product 〈., .〉
extends to R(R/Z), but it is no longer positive definite there (see
Exercise 1.2).

For f ∈ C(R/Z) let
||f ||

2
=
√

〈f, f〉.
Then ||.||

2
is a norm on the space C(R/Z); i.e.,

• it is multiplicative: ||λf ||
2

= |λ| ||f ||
2

λ ∈ C,

• it is positive definite: ||f ||
2

≥ 0 and ||f ||
2

= 0 ⇒ f = 0,

• it satisfies the triangle inequality: ||f + g||
2

≤ ||f ||
2
+ ||g||

2
.

See Chapter 2 for a proof of this. Again the norm ||.||
2

extends to
R(R/Z) but loses its positive definiteness there.

1.3 The Bessel Inequality

The Bessel inequality gives an estimate of the sum of the square
norms of the Fourier coefficients. It is of central importance in the
theory of Fourier series. Its proof is based on the following lemma.

Lemma 1.3.1 Let f ∈ R(R/Z), and for k ∈ Z let ck = 〈f, ek〉 be its
kth Fourier coefficient. Then for all n ∈ N,∣∣∣∣∣

∣∣∣∣∣f −
n∑

k=−n

ckek

∣∣∣∣∣
∣∣∣∣∣
2

2

= ||f ||2
2
−

n∑
k=−n

|ck|2.

Proof: Let g =
∑n

k=−n ckek. Then

〈f, g〉 =
n∑

k=−n

ck 〈f, ek〉 =
n∑

k=−n

ckck =
n∑

k=−n

|ck|2,
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and

〈g, g〉 =
n∑

k=−n

ck 〈g, ek〉 =
n∑

k=−n

|ck|2,

so that

||f − g||2
2

= 〈f − g, f − g〉
= 〈f, f〉 − 〈f, g〉 − 〈g, f〉 + 〈g, g〉

= ||f ||2
2
−

n∑
k=−n

|ck|2 −
n∑

k=−n

|ck|2 +
n∑

k=−n

|ck|2

= ||f ||2
2
−

n∑
k=−n

|ck|2,

which proves the lemma. �

Theorem 1.3.2 (Bessel inequality) Let f ∈ R(R/Z) with Fourier
coefficients (ck). Then

∞∑
k=−∞

|ck|2 ≤
∫ 1

0
|f(x)|2dx.

Proof: The lemma shows that for every n ∈ N,

n∑
k=−n

|ck|2 ≤ ||f ||2
2
.

Let n → ∞ to prove the theorem. �

1.4 Convergence in the L2-Norm

We shall now introduce the notion of L2-convergence, which is the
appropriate notion of convergence for Fourier series. Let f be in
R(R/Z) and let fn be a sequence in R(R/Z). We say that the se-
quence fn converges in the L2-norm to f if

lim
n→∞ ||f − fn||

2
= 0.

Note that if a sequence fn converges to f in the L2-norm, then it
need not converge pointwise (see Exercise 1.4). Conversely, if a se-
quence converges pointwise, it need not converge in the L2-norm (see
Exercise 1.6).
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A concept of convergence that indeed does imply L2-convergence is
that of uniform convergence. Recall that a sequence of functions fn

on an interval I converges uniformly to a function f if for every ε > 0
there is n0 ∈ N such that for all n ≥ n0,

|f(x) − fn(x)| < ε

for all x ∈ I. The difference between pointwise and uniform con-
vergence lies in the fact that in the case of uniform convergence the
number n0 does not depend on x. It can be chosen uniformly for all
x ∈ I.

Recall that if the sequence fn converges uniformly to f , and all the
functions fn are continuous, then so is the function f .

Examples.

• The sequence fn(x) = xn on the interval I = [0, 1] converges
pointwise, but not uniformly, to the function

f(x) =

{
0 x < 1,

1 x = 1.

However, on each subinterval [0, a] for a < 1 the sequence con-
verges uniformly to the zero function.

• Let fn(x) =
∑n

k=1 ak(x) for a sequence of functions ak(x), x ∈
I. Suppose there is a sequence ck of positive real numbers such
that |ak(x)| ≤ ck for every k ∈ N and every x ∈ I. Suppose
further that ∑

k∈N

ck < ∞.

Then it follows that the sequence fn converges uniformly to the
function f(x) =

∑∞
k=1 ak(x).

Proposition 1.4.1 If the sequence fn converges to f uniformly on
[0, 1], then fn converges to f in the L2-norm.

Proof: Let ε > 0. Then there is n0 such that for all n ≥ n0,

|f(x) − fn(x)| < ε for all x ∈ [0, 1].
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Hence for n ≥ n0,

||f − fn||2
2

=
∫ 1

0
|f(x) − fn(x)|2dx < ε2,

so that ||f − fn||
2

< ε. �

A key result of this chapter is that the Fourier series of every f ∈
R(R/Z) converges to f in the L2-norm, which we shall now prove.
The idea of the proof is to find a simple class of functions for which
the claim can be proved by explicit calculation of the Fourier coef-
ficients and to then approximate a given function by those simple
ones. In order to carry out these explicit calculations we shall need
the following lemma.

Lemma 1.4.2 For 0 ≤ x ≤ 1 we have

∞∑
k=1

cos 2πkx

k2 = π2
(

x2 − x +
1
6

)
.

Note that as a special case for x = 0 we get Euler’s formula

∞∑
k=1

1
k2 =

π2

6
.

Proof: Let α < a < b < β be real numbers and let f : [α, β] → R be a
continuously differentiable function. For k ∈ R let

F (k) =
∫ b

a

f(x) sin(kx)dx.

Claim: lim|k|→∞ F (k) = 0 and the convergence is uniform in a, b ∈ [α, β].

Proof of claim: For t �= 0 we integrate by parts to get

F (k) = −f(x)
cos(kx)

k

∣∣∣∣
b

a

+
1
k

∫ b

a

f ′(x) cos(kx) dx.

Since f and f ′ are continuous on [α, β], there is a constant M > 0 such that
|f(x)| ≤ M and |f ′(x)| ≤ M for all x ∈ [α, β]. This implies

|F (k)| ≤ 2M

|k| +
M(b − a)

|k| ,

which proves the claim.
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We employ this as follows: Let x ∈ (0, 1). Since

2π

∫ x

1
2

cos(2πkt)dt =
sin(2πkx)

k

and
n∑

k=1

cos(2πkx) =
sin((2n + 1)πx)

2 sin(πx)
− 1

2
,

we get
n∑

k=1

sin(2πkx)
k

= 2π

∫ x

1
2

sin((2n + 1)πt)
2 sin(πt)

dt − π

(
x − 1

2

)
.

The first summand on the right-hand side tends to zero as n → ∞ by the claim.
This implies that for 0 < x < 1,

∞∑
k=1

sin(2πkx)
k

= π

(
1
2

− x

)
,

and this series converges uniformly on the interval [δ, 1 − δ] for every δ > 0. We
now use this result to prove Lemma 1.4.2. Let

f(x) =
∞∑

k=1

cos(2πkx)
k2 .

We have just seen that the series of derivatives converges to π2(2x − 1) and that
this convergence is locally uniform, so for 0 < x < 1 we have

f ′(x) = π2(2x − 1),

i.e., f(x) = π2(x2 − x) + c. We are left to show that c = π2

6 . Since the series
defining f converges uniformly on [0, 1] and since

∫ 1
0 cos(2πkx)dx = 0 for every

k ∈ N, we get

0 =
∞∑

k=1

∫ 1

0

cos(2πkx)
k2 dx =

∫ 1

0
f(x)dx =

π2

3
− π2

2
− c,

which implies that c = π2

2 − π2

3 = π2

6 . �

Using this technical lemma we are now going to prove the convergence
of the Fourier series for Riemannian step functions (see below) as
follows.

For a subset A of [0, 1] let 1A be its characteristic function, i.e.,

1A(x) =
{

1, x ∈ A,
0, x /∈ A.

Let I1, . . . , Im be subintervals of [0, 1] which can be open or closed
or half-open. A Riemann step function is a function of the form

s(x) =
m∑

j=1

αj1Ij (x),
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for some coefficients αj ∈ R.

Recall the definition of the Riemann integral. First, for a Riemann
step function s(x) =

∑m
j=1 αj1Ij (x) one defines∫ 1

0
s(x)dx =

m∑
j=1

αj length(Ij).

Recall that a real-valued function f : [0, 1] → R is called Riemann
integrable if for every ε > 0 there are step functions ϕ and ψ on [0, 1]
such that ϕ(x) ≤ f(x) ≤ ψ(x) for every x ∈ [0, 1] and∫ 1

0
(ψ(x) − ϕ(x)) dx < ε.

As ε shrinks to zero the integrals of the step functions will tend to a
common limit, which is defined to be the integral of f . Note that as a
consequence every Riemann integrable function on [0, 1] is bounded.
A complex-valued function is called Riemann integrable if its real
and imaginary parts are.

Lemma 1.4.3 Let f : R → R be periodic and such that f |[0,1] is a
Riemann step function. Then the Fourier series of f converges to f
in the L2-norm, i.e., the series

fn = Sn(f) =
n∑

k=−n

ckek

converges to f in the L2-norm, where for k ∈ Z,

ck =
∫ 1

0
f(x)e−2πikxdx.

Proof: By Lemma 1.3.1 it suffices to show that ||f ||2
2

=
∑∞

k=−∞ |ck|2.
First we consider the special case f |[0,1] = 1[0,a] for some a ∈ [0, 1].
The coefficients are c0 = a, and

ck =
∫ a

0
e−2πikxdx =

i

2πk

(
e−2πika − 1

)
for k �= 0. Thus in the latter case we have

|ck|2 =
1

4π2k2 (e2πika − 1)(e−2πika − 1) =
1 − cos(2πka)

2π2k2 .
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Using Lemma 1.4.2 we compute

∞∑
k=−∞

|ck|2 = a2 +
∞∑

k=1

1 − cos(2πka)
π2k2

= a2 +
∞∑

k=1

1
π2k2 − 1

π2

∞∑
k=1

cos(2πka)
k2

= a2 +
1
6

−
(

(1 − 2a)2

4
− 1

12

)
= a

=
∫ 1

0
|f(x)|2dx

= ||f ||2
2
.

Therefore, we have proved the assertion of the lemma for the function
f = 1[0,a]. Next we shall deduce the same result for f = 1I , where I
is an arbitrary subinterval of [0, 1]. First note that neither the Fourier
coefficients nor the norm changes if we replace the closed interval by
the open or half-closed interval. Next observe the behavior of the
Fourier coefficients under shifts; i.e., let ck(f) denote the kth Fourier
coefficient of f and let fy(x) = f(x+ y); then fy is still periodic and
Riemann integrable, and

ck(fy) =
∫ 1

0
fy(x)e−2πikxdx

=
∫ 1

0
f(x + y)e−2πikxdx

=
∫ 1+y

y
f(x)e2πik(y−x)dx

= e2πiky

∫ 1

0
f(x)e−2πikxdx

= e2πikyck(f),

since it doesn’t matter whether one integrates a periodic function
over [0, 1] or over [y, 1 + y]. This implies |ck(fy)|2 = |ck(f)|2. The
same argument shows that ||fy||

2
= ||f ||

2
, so that the lemma now

follows for f |[0,1] = 1I for an arbitrary interval in [0, 1]. An arbitrary
step function is a linear combination of characteristic functions of
intervals, so the lemma follows by linearity. �
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Theorem 1.4.4 Let f : R → C be periodic and Riemann integrable
on [0, 1]. Then the Fourier series of f converges to f in the L2-norm.
If ck denotes the Fourier coefficients of f , then

∞∑
k=−∞

|ck|2 =
∫ 1

0
|f(x)|2dx.

The theorem in particular implies that the sequence ck tends to zero
as |k| → ∞. This assertion is also known as the Riemann-Lebesgue
Lemma.

Proof: Let f = u + iv be the decomposition of f into real and
imaginary parts. The partial sums of the Fourier series for f satisfy
Sn(f) = Sn(u) + iSn(v), so if the Fourier series of u and v converge
in the L2-norm to u and v, then the claim follows for f . To prove
the theorem it thus suffices to consider the case where f is real-
valued. Since, furthermore, integrable functions are bounded, we can
multiply f by a positive scalar, so we may assume that |f(x)| ≤ 1
for all x ∈ R.

Let ε > 0. Since f is Riemann integrable, there are step functions
ϕ, ψ on [0, 1] such that

−1 ≤ ϕ ≤ f ≤ ψ ≤ 1

and ∫ 1

0
(ψ(x) − ϕ(x))dx ≤ ε2

8
.

Let g = f − ϕ then g ≥ 0 and

|g|2 ≤ |ψ − ϕ|2 ≤ 2(ψ − ϕ),

so that ∫ 1

0
|g(x)|2dx ≤ 2

∫ 1

0
(ψ(x) − ϕ(x))dx ≤ ε2

4
.

For the partial sums Sn we have

Sn(f) = Sn(ϕ) + Sn(g).

By Lemma 1.4.3 there is n0 ≥ 0 such that for n ≥ n0,

||ϕ − Sn(ϕ)||
2

≤ ε

2
.
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By Lemma 1.3.1 we have the estimate

||g − Sn(g)||2
2

≤ ||g||2
2

≤ ε2

4
,

so that for n ≥ n0,

||f − Sn(f)||
2

≤ ||ϕ − Sn(ϕ)||
2
+ ||g − Sn(g)||

2
≤ ε

2
+

ε

2
= ε.

�

1.5 Uniform Convergence of Fourier Series

Note that the last theorem does not tell us anything about pointwise
convergence of the Fourier series. Indeed, the Fourier series does
not necessarily converge pointwise to f . If, however, the function f
is continuously differentiable, it does converge, as the next theorem
shows, which is the second main result of this chapter.

Let f : R → C be continuous and periodic. We say that the function
f is piecewise continuously differentiable if there are real numbers
0 = t0 < t1 < · · · < tr = 1 such that for each j the function f |[tj−1,tj ]
is continuously differentiable.

Theorem 1.5.1 Let the function f : R → C be continuous, periodic,
and piecewise continuously differentiable. Then the Fourier series of
f converges uniformly to the function f .

Proof: Let f be as in the statement of the theorem and let ck denote
the Fourier coefficients of f . Let ϕj : [tj−1, tj ] → C be the continuous
derivative of f and let ϕ : R → C be the periodic function that for
every j coincides with ϕj on the half-open interval [tj−1, tj). Let γk

be the Fourier coefficients of ϕ. Then
∞∑

k=−∞
|γk|2 ≤ ||ϕ||2

2
< ∞.

Using integration by parts we compute∫ tj

tj−1

f(x)e−2πikxdx =
1

−2πik
f(x)e−2πikx

∣∣∣∣tj
tj−1

− 1
−2πik

∫ tj

tj−1

ϕ(x)e−2πikxdx,
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so that for k �= 0 we obtain

ck =
∫ 1

0
f(x)e−2πikxdx =

1
2πik

∫ 1

0
ϕ(x)e−2πikxdx =

1
2πik

γk.

For α, β ∈ C we have 0 ≤ (|α| − |β|)2 = |α|2 + |β|2 − 2|αβ| and thus
|αβ| ≤ 1

2(|α|2 + |β|2), so that

|ck| ≤ 1
2

(
1

4π2k2 + |γk|2
)

,

which implies
∞∑

k=−∞
|ck| < ∞.

Now, the final step of the proof is of importance in itself, and there-
fore we formulate it as a lemma.

Lemma 1.5.2 Let f be continuous and periodic, and assume that
the Fourier coefficients ck of f satisfy

∞∑
k=−∞

|ck| < ∞.

Then the Fourier series converges uniformly to f . In particular, we
have for every x ∈ R,

f(x) =
∑
k∈Z

ckek(x).

Proof: The condition of the lemma implies that the Fourier series∑∞
k=−∞ cke

2πikx converges uniformly. Denote the limit function by g.
Then the function g, being the uniform limit of continuous functions,
must be continuous. Since the Fourier series also converges to f in
the L2-norm, it follows that

||f − g||
2

= 0.

Since f and g are continuous, the positive definiteness of the norm
implies f = g, which concludes the proof of the lemma and the
theorem. �
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1.6 Periodic Functions Revisited

We have introduced the space C(R/Z) as the space of continuous
periodic functions on R. There is also a different interpretation of it,
as follows. Firstly, on R establish the following equivalence relation:

x ∼ y ⇔ x − y ∈ Z.

For x ∈ R its equivalence class is [x] = x + Z = {x + k|k ∈ Z}. Let
R/Z be the set of all equivalence classes. This set can be identified
with the half-open interval [0, 1). It also can be identified with the
unit torus

T = {z ∈ C : |z| = 1},

since the map e : R → T that maps x to e(x) = e2πix gives a bijection
between R/Z and T.

A sequence [xn] is said to converge to [x] ∈ R/Z if there are repre-
sentatives x′

n ∈ R and x ∈ R for the classes [xn] and [x] such that the
sequence (x′

n) converges to x′ in R. In the interval [0, 1) this means
that either xn converges to x in the interval [0, 1) or that [x] = 0
and the sequence xn decomposes into two subsequences one of which
converges to 0 and the other to 1.

The best way to visualize R/Z is as the real line “rolled up” by either
identifying the integers or by using the map e2πix or by gluing the
ends of the interval [0, 1] together.

Given the notion of convergence it is easy to say what a continuous
function is. A function f : R/Z → C is said to be continuous if for
every convergent sequence [xn] in R/Z the sequence f([xn]) converges
in C.

Each continuous function on R/Z can be composed with the natural
projection P : R → R/Z to give a continuous periodic function on R.
In this way we can identify C(R/Z) with the space of all continuous
functions on R/Z, and we will view C(R/Z) in this way from now
on.

1.7 Exercises

Exercise 1.1 Let f : R → C be continuous, periodic, and even, i.e.,
f(−x) = f(x) for every x ∈ R. Show that the Fourier series of f has
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the form

FN (f) = c0 +
N∑

k=1

2ck cos(2πkx).

Exercise 1.2 Show by giving an example that the sesquilinear form 〈., .〉
is not positive definite on the space R(R/Z).

Exercise 1.3 Let f ∈ C(R/Z). For y > 0 let

ω(y) =
∫ 1

0
|f(t + y) − f(t)|dt.

Show that the Fourier coefficients ck of f satisfy

|ck| ≤ 1
2
ω

(
1
2k

)
for k �= 0.

(Hint: Use the fact that ck = − ∫ 10 f(t)e−2πik(t− 1
2k )dt.)

Exercise 1.4 Show by example that a sequence fn of integrable functions
on [0, 1] that converges in the L2-norm need not converge pointwise.

(Hint: Define fn to be the characteristic function of an interval In. Choose
these intervals so that their lengths tend to zero as n tends to infinity and
so that any x ∈ [0, 1] is contained in infinitely many of the In.)

Exercise 1.5 For n ∈ N let fn be the continuous function on the closed
interval [0, 1] that satisfies fn(0) = 1, fn( 1

n ) = 0, fn(1) = 0 and that is
linear between these points. Show that fn converges to the zero function
pointwise but not uniformly on the open interval (0, 1).

Exercise 1.6 Show by example that there is a sequence of integrable func-
tions on [0, 1] that converges pointwise but not in the L2-norm.

(Hint: Modify the example of Exercise 1.5.)

Exercise 1.7 Compute the Fourier series of the periodic function f given
by f(x) = |x| for − 1

2 ≤ x ≤ 1
2 .

Exercise 1.8 Compute the Fourier series of the periodic function that on
[0, 1) is given by f(x) = x.
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Exercise 1.9 Compute the Fourier series of the function given by

f(x) = | sin(2πx)|.

Exercise 1.10 A trigonometric polynomial is a function of the form

g(x) =
N∑

k=−N

cke2πikx

for some N ∈ N and some coefficients ck ∈ C.

(a) Show that every f ∈ C(R/Z) can be uniformly approximated by
continuous functions that are piecewise linear.

(b) Conclude from part (a) that every f ∈ C(R/Z) can be uniformly
approximated by trigonometric polynomials.

Exercise 1.11 Let f ∈ C∞(R/Z) and let ck be its Fourier coefficients.
Show that the sequence ck is rapidly decreasing; i.e., for each N ∈ N there
is dN > 0 such that for k �= 0,

|ck| ≤ dN

|k|N .

(Hint: Compute the Fourier coefficients of the derivatives of f .)

Exercise 1.12 Let ck, k ∈ Z be a rapidly decreasing sequence as in Exer-
cise 1.11. Show that there is a function f ∈ C∞(R/Z) such that the ck are
the Fourier coefficients of f .

Exercise 1.13 Let f, g be in R(R/Z) and define their convolution by

f ∗ g(x) =
∫ 1

0
f(x − y)g(y)dy.

Show that for every f ∈ R(R/Z) and every k ∈ Z we have ek ∗f = ck(f)ek.
Deduce from this that with

Dn =
n∑

k=−n

ek

we have Dn ∗ f = Sn(f).

Exercise 1.14 Let f ∈ R(R/Z) and let

σnf =
1

n + 1
(S0(f) + · · · + Sn(f)).
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For s ∈ R let

f∗
s (x, y) =

1
2
(f(x + y) + f(x − y) − 2s).

Show that

σnf(x) =
∫ 1

0
f∗

s (x, y)Fn(y)dy + s,

where
Fn =

1
n + 1

(D0 + · · · + Dn).

Exercise 1.15 Let f ∈ R(R/Z) and assume that for each x ∈ R the limit

f(x + 0) + f(x − 0) = lim
y→0

(f(x + y) + f(x − y))

exists. Show that for every x ∈ R,

lim
n→∞ σnf(x) =

1
2
(f(x + 0) + f(x − 0)).

(Hint: Use Exercise 1.14 with s = 1
2 (f(x + 0) + f(x − 0)). Show that

Fn(x) =
1

n + 1

(
sin((n + 1)πx)

sin πx

)2

and that
∫ 1
0 Fn(x) dx = 1. Then show that Fn is small away from 0.)

Exercise 1.16 Let f : Rn → C be infinitely differentiable and suppose
that f(x + k) = f(x) for every k = (k1, . . . , kn) ∈ Zn. Show that

f(x) =
∑

k∈Zn

cke2πi〈x,k〉,

where 〈x, k〉 = x1k2 + · · · + xnkn and

ck =
∫ 1

0
· · ·
∫ 1

0
f(y)e−2πi〈y,k〉dy1 · · · dyn.

Exercise 1.17 Let k : R2 → C be smooth (i.e., infinitely differentiable)
and invariant under the natural action of Z2; i.e., k(x + k, y + l) = k(x, y)
for all k, l ∈ Z and x, y ∈ R. For ϕ ∈ C(R/Z) set

Kϕ(x) =
∫ 1

0
k(x, y)ϕ(y)dy.

Show that K satisfies

||Kϕ||2
2

≤ ||ϕ||2
2

∫ 1

0

∫ 1

0
|k(x, y)|2dx dy.
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Show that the sum
tr K =

∑
k∈Z

〈Kek, ek〉

converges absolutely and that

tr K =
∫ 1

0
k(x, x)dx.



Chapter 2

Hilbert Spaces

In this chapter we shall reinterpret the results of the previous one in
terms of Hilbert spaces, since this is the appropriate setting for the
generalizations of the results of Fourier theory, that will be given in
the chapters to follow.

2.1 Pre-Hilbert and Hilbert Spaces

A complex vector space V together with an inner product 〈., .〉, is
called a pre-Hilbert space. Other authors sometimes use the term
inner product space, but since our emphasis is on Hilbert spaces, we
shall use the term given.

Examples. The simplest example, besides the zero space, is V = C
with 〈α, β〉 = αβ̄.
A more general example is V = Ck for a natural number k with

〈v, w〉 = vtw̄,

where we consider elements of Ck as column vectors, and where vt

is the transpose of v and w̄ is the vector with complex conjugate
entries. Using coordinates this means

〈v, w〉 =

〈⎛⎜⎝ v1
...

vk

⎞⎟⎠ ,

⎛⎜⎝ w1
...

wk

⎞⎟⎠〉 = v1w1 + v2w2 + · · · + vkwk.

It is a result of linear algebra that every finite-dimensional pre-
Hilbert space V is isomorphic to Ck for k = dimV .

25
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Given a pre-Hilbert space V we define

||v|| =
√

〈v, v〉, for v ∈ V.

Lemma 2.1.1 (Cauchy -Schwarz inequality) Let V be an arbitrary
pre-Hilbert space. Then for every v, w ∈ V ,

| 〈v, w〉 | ≤ ||v|| ||w|| .
This implies that ||.|| is a norm, i.e.,

• it is multiplicative: ||λv|| = |λ| ||v|| λ ∈ C,

• it is positive definite: ||v|| ≥ 0; and ||v|| = 0 ⇒ v = 0,

• it satisfies the triangle inequality: ||v + w|| ≤ ||v|| + ||w||.

Proof: Let v, w ∈ V . For every t ∈ R we define ϕ(t) by

ϕ(t) = ||v||2 + t2 ||w||2 + t(〈v, w〉 + 〈w, v〉).
We then have that

ϕ(t) = 〈v + tw, v + tw〉 = ||v + tw||2 ≥ 0.

Note that 〈v, w〉+ 〈w, v〉 = 2Re 〈v, w〉. The real-valued function ϕ(t)
is a quadratic polynomial with positive leading coefficient. Therefore
it takes its minimum value where its derivative ϕ′ vanishes, i.e., at
the point t0 = −Re 〈v, w〉/‖ w ‖2. Evaluating at t0, we see that

0 ≤ ϕ(t0) = ||v||2 +
(Re 〈v, w〉)2

||w||2 − 2
(Re 〈v, w〉)2

||w||2 ,

which implies (Re 〈v, w〉)2 ≤ ||v||2 ||w||2. Replacing v by eiθv for a
suitable real number θ establishes the initial claim.

We now show that this result implies the triangle inequality. We use
the fact that for every complex number z we have Re(z) ≤ |z|, so

||v + w||2 = 〈v + w, v + w〉
= ||v||2 + ||w||2 + 2Re(〈v, w〉)
≤ ||v||2 + ||w||2 + 2| 〈v, w〉 |
≤ ||v||2 + ||w||2 + 2 ||v|| ||w||
= (||v|| + ||w||)2.

Taking square roots of both sides gives the triangle inequality. The
other conditions for ||.|| to be a norm are obviously satisfied. �
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Lemma 2.1.2 For every two v, w ∈ V ,∣∣ ||v|| − ||w|| ∣∣ ≤ ||v − w|| .

Proof: The triangle inequality implies

||v|| = ||v − w + w|| ≤ ||v − w|| + ||w|| ,
or

||v|| − ||w|| ≤ ||v − w|| .
Interchanging v and w gives

||w|| − ||v|| ≤ ||w − v|| = ||v − w|| .
Taken together, these two estimates prove the claim. �

A linear map T : V → W between two pre-Hilbert spaces is called
an isometry if T preserves inner products, i.e., if for all v, v′ ∈ V ,〈

T (v), T (v′)
〉

=
〈
v, v′〉 ,

where the inner product on the left-hand side is the one on W , and
on the right-hand side is the one on V . It follows that T must be
injective, since if T (v) = 0, then

〈v, v〉 = 〈T (v), T (v)〉 = 〈0, 0〉 = 0,

which implies v = 0. Furthermore, if T is surjective, then T has a
linear inverse T−1 : W → V , which also is an isometry. In this case
we say that T is a unitary map or an isomorphism of pre-Hilbert
spaces.

Let (V, 〈., .〉) be a pre-Hilbert space. The property that makes a pre-
Hilbert space into a Hilbert space is completeness. (Recall that it is
completeness that distinguishes the real numbers from the rationals.)
We will formulate the notion of completeness here in a similar fashion
as in the passage from the rationals to the reals, i.e., as convergence
of Cauchy sequences.

We say that a sequence (vn)n in V converges to v ∈ V , if the sequence
||vn − v|| of real numbers tends to zero; in other words, if for every
ε > 0 there is a natural number n1 such that for every n ≥ n1 the
estimate

||v − vn|| < ε
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holds. In this case the vector v is uniquely determined by the se-
quence (vn) and we write

v = lim
n→∞ vn.

A subset D of a pre-Hilbert space H is called a dense subset , if every
h ∈ H is a limit of a sequence in D, i.e., if for any given h ∈ H
there is a sequence dj in D with limj→∞ dj = h. For example, the
set Q + iQ of all a + bi with a, b ∈ Q, is dense in C.

A Cauchy sequence in V is a sequence vn ∈ V such that for every
ε > 0 there is a natural number n0 such that for every pair of natural
numbers n, m ≥ n0, we have

||vn − vm|| < ε.

It is easy to see that if (vn), (wn) are Cauchy sequences, then their
sum (vn + wn) is a Cauchy sequence. Further, if (vn) converges to
v and (wn) converges to w, then (vn + wn) converges to v + w (see
Exercise 2.5).

Lemma 2.1.3 Every convergent sequence is Cauchy.

Proof: Let (vn) be a sequence in V convergent to v ∈ V . Let ε > 0
and let n1 be a natural number such that for all n ≥ n1 we have

||v − vn|| <
ε

2
.

Let n, m ≥ n1. Then

||vn − vm|| = ||vn − v + v − vm||
≤ ||vn − v|| + ||vm − v|| <

ε

2
+

ε

2
= ε.

�

We call the space V a complete space or a Hilbert space if the con-
verse of the above lemma is true, i.e., if every Cauchy sequence in V
converges.

Actually, the notion of a Cauchy sequence and completeness only
depends on the norm and does not directly relate to the inner prod-
uct. A normed space is a complex vector space V together with a
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norm ||.|| : V → [0,∞), i.e. the map ||.|| satisfies the three axioms in
Lemma 2.1.1. A normed space (V, ||.||) is called a Banach space if it
is complete, i.e., if every Cauchy sequence in V converges.

Proposition 2.1.4 A pre-Hilbert space that is finite-dimensional, is
complete, i.e., is a Hilbert space.

Proof: We prove this result by induction on the dimension. For a
zero-dimensional Hilbert space there is nothing to show. So let V be
a pre-Hilbert space of dimension k+1 and assume that the claim has
been proven for all spaces of dimension k. Let v ∈ V be a nonzero
vector of norm 1. Let W = Cv and let U be its orthogonal space,
i.e., the space of all u ∈ V with 〈u, v〉 = 0. Then V is the orthogonal
direct sum of W and U (see Exercise 2.10) and the dimension of U
is k, so this space is complete by the induction hypothesis.

Let (vn) be a Cauchy sequence in V ; then for each natural number
n,

vn = λnv + un,

where λn is a complex number and un ∈ U . For m, n ∈ N we have

||vn − vm||2 = |λn − λm|2 + ||un − um||2 ,

so it follows that |λn − λm| ≤ ||vn − vm|| and since (vn) is a Cauchy
sequence we derive that (λn) is a Cauchy sequence in C, and thus is
convergent. Similarly we get that (un) is a Cauchy sequence in U ,
which then also is convergent. Thus (vn) is the sum of two convergent
sequences in V , and hence is also convergent. �

2.2 �2-Spaces

We next introduce an important class of Hilbert spaces that gives
universal examples. These are called the �2-spaces. Let S be an
arbitrary set. Let �2(S) be the set of functions f : S → C satisfying

||f ||2 =
∑
s∈S

|f(s)|2 < ∞.

The fact that the sum is finite actually means that all but countably
many of the f(s) are zero, and that the sum over those countably
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many converges absolutely. Another way to read the sum (see Exer-
cise 2.6) is ∑

s∈S

|f(s)|2 = sup
F⊂S
F finite

∑
s∈F

|f(s)|2.

Note that if S is a finite set, then the convergence condition is vac-
uous, and so �2(S) then consists of the finite-dimensional complex
vector space of all maps from S to C. By Proposition 2.1.4 it there-
fore follows that �2(S) is a Hilbert space.

Theorem 2.2.1 Let S be any set. Then �2(S) forms a Hilbert space
with inner product

〈f, g〉 =
∑
s∈S

f(s)g(s), f, g ∈ �2(S).

Proof: Let S be a set. First we must show that the inner product
actually converges, i.e., we have to show that for every f, g ∈ �2(S)
we have ∑

s∈S

|f(s)g(s)| < ∞.

Once this has been established, the proof of the Cauchy -Schwarz
inequality applies. From this one then infers the triangle inequality:
||f + g|| ≤ ||f || + ||g||, which means that f, g ∈ �2(S) implies f + g ∈
�2(S), so that �2(S) is a complex vector space. The fact that it is a
pre-Hilbert space is then immediate.

Let us first prove the convergence of the scalar product. Since
|f(s)g(s)| = |f(s)||g(s)|, it suffices to prove the claim for real-valued
nonnegative functions f and g. Let F be a finite subset of S. There
are no convergence problems for �2(F ); hence the latter is a Hilbert
space and the Cauchy -Schwarz inequality holds for elements of �2(F ).
Let f, g ∈ �2(S) be real-valued and nonnegative and let fF and gF

be their restrictions to F , which lie in �2(F ). We have ||fF || ≤ ||f ||
and the same for g. We have the estimate∑

s∈F

f(s)g(s) = | 〈fF , gF 〉 | ≤ ||fF || ||gF || ≤ ||f || ||g|| .

This implies∑
s∈S

f(s)g(s) = sup
F⊂S
F finite

∑
s∈F

f(s)g(s) ≤ ||f || ||g|| < ∞.
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So the convergence of the inner product is established, and by what
was said above it follows that �2(S) is a pre-Hilbert space.

We are left to show that �2(S) is complete. For this let (fn) be a
Cauchy sequence in �2(S). Then for every s0 ∈ S,

|fn(s0) − fm(s0)|2 ≤
∑
s∈S

|fn(s) − fm(s)|2 = ||fn − fm||2 ,

which implies that fn(s0) is a Cauchy sequence in C, and hence is
convergent to some complex number, f(s0) say. This means that the
sequence of functions (fn) converges pointwise to some function f on
S.

Let ε > 0 and let N ∈ N be so large that for m, n ≥ N we have
||fn − fm||2 < ε. For n ≥ N and F ⊂ S finite,∑

s∈F

|fn(s) − f(s)|2 = lim
j→∞

∑
s∈F

|fn(s) − fj(s)|2

≤ sup
j≥N

||fn − fj ||2 ≤ ε.

Therefore, for n ≥ N ,

||fn − f ||2 = sup
F⊂S, finite

∑
s∈F

|fn(s) − f(s)|2 ≤ ε.

This implies that f ∈ �2(S) and that fn → f in �2(S), so this space
is complete. �

It can actually be shown that every Hilbert space is isomorphic to one
of the form �2(S) for some set S and that two spaces �2(S) and �2(S′)
are isomorphic if and only if S and S′ have the same cardinality.
However we will not go into this here, since we are interested only
in separable Hilbert spaces, a notion to be introduced in the next
section.

2.3 Orthonormal Bases and Completion

A complete system in a pre-Hilbert space H is a family (aj)j∈J of
vectors in H such that the linear subspace span(aj) spanned by the
aj is dense in H. A pre-Hilbert space is called separable if it contains
a countable complete system. (Here countable means either finite or
countably infinite.)
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Examples.

• For a finite dimensional Hilbert space any family that contains
a basis is a complete system.

• To give an example of an infinite-dimensional separable Hilbert
space consider the space �2(N). For j ∈ N let ψj ∈ �2(N) be
defined by

ψj(k) =
{

1 if k = j,
0 otherwise.

Then for every f ∈ �2(N) we get

〈f, ψj〉 = f(j),

which implies that (ψj)j∈N is indeed a complete system.

An orthonormal system in a pre-Hilbert space H is a family (hj)j∈J

of vectors in H such that for every j, j′ ∈ J we have
〈
hj , hj′
〉

= δj,j′ ,
where δj,j′ is the Kronecker delta:

δj,j′ =
{

1, j = j′,
0, otherwise.

An orthonormal system is called orthonormal basis, if it is also a
complete system.

Example. The system (ψj) above forms an orthonormal basis of
the Hilbert space �2(N).

Proposition 2.3.1 Every separable pre-Hilbert space H admits an
orthonormal basis.

The assertion also holds for nonseparable spaces, but the proof of
that requires set-theoretic methods, and will not be given here.

Proof: The method used here is called Gram -Schmidt orthonor-
malization. For finite-dimensional spaces this is usually a feature of
a linear algebra course.

Let (aj)j∈N be a complete system. If some aj can be represented as
a finite linear combination of the aj′ with j′ < j, then we can leave
this element out and still keep a complete system. Thus we may
assume that every finite set of the aj is linearly independent. We
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then construct an orthonormal basis out of the aj by an inductive
procedure. First let

e1 =
a1

||a1|| .

Next assume that e1, . . . , ek have already been constructed, being
orthonormal and with Span(e1, . . . , ek) = Span(a1, . . . , ak). Then
put

e′
k+1 = ak+1 −

k∑
j=1

〈ak+1, ej〉 ej .

For j = 1, . . . , k then
〈
e′
k+1, ej

〉
= 0. Further, the linear indepen-

dence implies that e′
k+1 cannot be zero, so put

ek+1 =
e′
k+1∣∣∣∣e′
k+1

∣∣∣∣ .
Then e1, . . . , ek+1 are orthonormal.

If H is finite-dimensional, this procedure will produce a basis (ej)
in finitely many steps and then stop. If H is infinite-dimensional, it
will not stop and will thus produce a sequence (ej)j∈N.

By construction we have span(ej)j = span(aj)j , which is dense in H.
Therefore (ej)j∈N is an orthonormal basis. �

Theorem 2.3.2 Suppose H is an infinite-dimensional separable pre-
Hilbert space; and let (ej) be an orthonormal basis of H. Then every
element h of H can be represented in the form

h =
∞∑

j=1

cjej ,

where the sum is convergent in H, and the coefficients cj satisfy

∞∑
j=1

|cj |2 < ∞.

The coefficients are unique and are given by cj = cj(h) = 〈h, ej〉. The
map h �→ (cj)j∈N gives an isometry from H to �2(N). For h, h′ ∈ H
we have 〈

h, h′〉 =
∞∑

j=0

cj(h)cj(h′),

so in particular, ||h||2 =
∑∞

j=1 |cj |2.
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Proof: Let h ∈ H, define cj(h) = 〈h, ej〉, and for n ∈ N let sn(h) =∑n
j=1 cjej ∈ H. We now repeat the calculation of the proof of Lemma

1.3.1:

0 ≤ ||h − sn(h)||2

=

〈
h −

n∑
j=1

cjej , h −
n∑

j=1

cjej

〉

= ||h||2 −
n∑

j=1

|cj |2.

This implies
∑n

j=1 |cj |2 ≤ ||h||2 for every n and therefore
∑∞

j=1 |cj |2 <
∞.

We therefore obtain a linear map T : H → l2(N) mapping h to the
sequence (cj(h))j . Since

∑n
j=1 |cj(h)|2 ≤ ||h||2 we infer that ||Th|| ≤

||h|| for every h ∈ H. For h in the span of (ej)j we furthermore have
||Th|| = ||h||. Since this subspace is dense, the latter equality holds
for every h ∈ H and so T is an isometry. In particular, 〈h, h′〉 =
〈Th, Th′〉 =

∑∞
j=1 cj(h)cj(h′). �

The preceding theorem has several important consequences. Firstly,
it shows that there is, up to isomorphism, only one separable Hilbert
space of infinite dimension, namely �2(N). Secondly, it reduces all
computations in a Hilbert space to computations with elements of an
orthonormal basis. Finally, it allows us to embed a pre-Hilbert space
as a dense subspace into a Hilbert space. To explain this further: A
dense subspace of a pre-Hilbert space H is a subspace V such that
for every h ∈ H there is a sequence (vn) in V converging to h.

Theorem 2.3.3 (Completion) For every separable pre-Hilbert space
V there is a Hilbert space H such that there is an isometry T :
V → H, called completion, that maps V onto a dense subspace of
H. The completion is unique up to isomorphism in the following
sense: If T ′ : V → H ′ is another isometry onto a dense subspace
of a Hilbert space H ′, then there is a unique isomorphism of Hilbert
spaces S : H → H ′ such that T ′ = S ◦ T . We illustrate this by the
following commutative diagram:
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V H

H ′

�T

�
�

���T ′
�
S

It is customary to consider a pre-Hilbert space as a subspace of its
completion by identifying it with the image of the completion map.

Again this theorem also holds for nonseparable spaces, but we prove
it only for separable ones.

Proof: Let V be a separable pre-Hilbert space. If V is finite-
dimensional, then V is itself a Hilbert space, and we can take T
equal to the identity. Otherwise, choose an orthonormal basis (ej),
let H = �2(N), and let T : V → �2(N) be the isometry given in The-
orem 2.3.2. We have to show that T (V ) is dense in H = �2(N). Let
f ∈ �2(N), and for n ∈ N let fn ∈ �2(N) be given by

fn(j) =

{
f(j) if j ≤ n,

0 if j > n.

Then
||f − fn||2 =

∑
j>n

|f(j)|2,

which tends to zero as n tends to infinity. So the sequence (fn)
converges to f in �2(N). For j = 1, 2, . . . , n let λj = f(j). Then

fn = T (λ1e1 + · · · + λnen),

so fn lies in the image of T , which therefore is dense in H. This
concludes the existence part of the proof.

For the uniqueness condition assume that there is a second isometry
T ′ : V → H ′ onto a dense subspace. We define a map S : H → H ′

as follows: Let h ∈ H; then there is a sequence (vn) in V such that
T (vn) converges to h. Since T is an isometry it follows that (vn) must
be a Cauchy sequence in V , and since T ′ is an isometry the sequence
(T ′(vn)) is Cauchy in H ′. It therefore converges to some h′ ∈ H ′.
We define S(h) = h′. It is easy to see that S(h) does not depend
on the choice of the sequence (vn) and is therefore well-defined. To
see that S is an isometry we let v, w be elements of H and choose
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sequences (vn) and (wn) in V such that T (vn) converges to v and
T (wn) converges to w. We then compute

〈S(v), S(w)〉 =
〈
lim
n

T ′(vn), lim
n

T ′(wn)
〉

= lim
n

〈vn, wn〉

=
〈
lim
n

T (vn), lim
n

T (wn)
〉

= 〈v, w〉 .

By construction S satisfies T ′ = S ◦ T . �

Corollary 2.3.4 Let V be a pre-Hilbert space with completion H,
and let H ′ be a Hilbert subspace of H containing V . Then H ′ = H.

Proof: Let h ∈ H. Then there is a sequence vn in V converging to
h. It follows that (vn) must be a Cauchy sequence in V ⊂ H ′, which
is therefore convergent in H ′, and hence its limit h lies in H ′. �

2.4 Fourier Series Revisited

In the previous chapter we saw that the space C(R/Z) with the inner
product 〈f, g〉 =

∫ 1
0 f(x)g(x)dx is a pre-Hilbert space. This space is

not complete (see Exercise 2.12). Let

L2(R/Z)

denote its completion. Some of the main results of the first chapter
can be summarized in the following theorem.

Theorem 2.4.1 The exponentials ek(x) = e2πikx, k ∈ Z, form an
orthonormal basis (ek)k∈Z of the Hilbert space L2(R/Z).

Proof: The orthonormality, i.e., 〈ek, ek′〉 = δk,k′ , is given in Lemma
1.2.1. Hence the (ek) form an orthonormal system. Let H be the
space of all series of the form

∑
k∈Z

ckek with
∑

k∈Z
|ck|2 < ∞,

which therefore converges in L2(R/Z). Then the map
∑

k∈Z
ckek �→

(ck)k∈Z gives an isomorphism to �2(Z), and hence H is a Hilbert
subspace of L2(R/Z). As a consequence of Theorem 1.4.4 it contains
C(R/Z), and hence by Corollary 2.3.4 it equals L2(R/Z). So we
have shown that every element of L2(R/Z) is representable as a sum
h =
∑

k∈Z
ckek. It follows that ck = 〈h, ek〉, and thus it emerges that

(ek) is complete. �
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The space L2(R/Z) can also be described as a space of (classes of)
functions on R/Z (see [20]). However, this requires techniques be-
yond the scope of this book, and it will not be pursued further.

2.5 Exercises

Exercise 2.1 Let H be a Hilbert space. Prove the following polarization
identity for every x, y ∈ H:

4 〈x, y〉 = ||x + y||2 − ||x − y||2 + i ||x + iy||2 − i ||x − iy||2 .

Exercise 2.2 Let T : H → H be a linear map which is continuous on a
separable Hilbert space H. Show that the following are equivalent.

(a) T is unitary.

(b) For every orthonormal basis (ej) the family (Tej) is an orthonormal
basis again.

(c) There is an orthonormal basis (ej) such that the family (Tej) is an
orthonormal basis.

Exercise 2.3 Let H,H ′ be Hilbert spaces and let T : H → H ′ be a linear
mapping such that ||Tx|| = ||x|| for every x ∈ H. Show that T is an isometry,
i.e., that for every x, y ∈ H:

〈Tx, Ty〉 = 〈x, y〉 .

Exercise 2.4 Let T : �2(N) → �2(N) be defined by

Tf(n) def
=

{
f(n − 1) n > 1,

0 n = 0.

Show that T is an isometry but not unitary.

Exercise 2.5 Show that if (vn), (wn) are Cauchy sequences, then their
sum (vn + wn) is a Cauchy sequence. Further, if (vn) converges to v, and
(wn) converges to w, then (vn + wn) converges to v + w.

Exercise 2.6 Let S be a set and f a nonnegative function on S. Suppose
that f(s) is zero except for s in a countable subset {s1, s2, . . . } ⊂ S. Show
that ∞∑

j=1

f(sj) = sup
F ⊂S
F finite

∑
s∈F

f(s).

Note that both sides may be infinite.
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Exercise 2.7 Let S be a set. Let l1(S) denote the set of all functions
f : S → C such that ∑

s∈S

|f(s)| < ∞.

Show that
||f ||

1
=
∑
s∈S

|f(s)|

defines a norm on l1(S).

Exercise 2.8 For which s ∈ C does the function f(n) = n−s belong to
�2(N)? For which does it belong to l1(N)?

Exercise 2.9 For T > 0 let C([−T, T ]) denote the space of all continuous
functions f : [−T, T ] → C. Show that the prescription

〈f, g〉 =
∫ T

−T

f(x)g(x)dx

for f, g ∈ C([−T, T ]) defines an inner product on this space.

Exercise 2.10 Let V be a finite-dimensional pre-Hilbert space and let
W ⊂ V be a subspace. Let U be the orthogonal space to W , i.e., U is the
space of all u ∈ V such that 〈u,w〉 = 0 for every w ∈ W . Show that V is
the direct sum of the subspaces W and U .

Exercise 2.11 Let H is a Hilbert space and let (aj)j∈J be a family of
elements of H. Show that (aj) is a complete system if and only if its
orthogonal space

(aj)⊥ def
= {h ∈ H : 〈h, aj〉 = 0 for every j ∈ J}

is the zero space.

Exercise 2.12 Show that the pre-Hilbert space C(R/Z) is not complete.

(Hint: For n ∈ N construct a function fn ∈ C(R/Z) that takes values in
[0, 1] and satisfies fn ≡ 0 on

[
0, 1

2 − 1
n+1

)
as well as fn ≡ 1 on

[ 1
2 , 1
)
.)

Exercise 2.13 Let E be a pre-Hilbert space and let (vn) be a sequence in
E. Show that (vn) can converge to at most one element in E; i.e., show
that if (vn) converges to v and to v′, then v = v′.
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Exercise 2.14 Let (V, 〈., .〉) be a pre-Hilbert space. Show that the inner
product is continuous; i.e., show that if the sequence (vn) converges to v in
V and the sequence (wn) converges to w in V , then the sequence 〈vn, wn〉
converges to 〈v, w〉.

Exercise 2.15 Let (vn) be a Cauchy sequence in some pre-Hilbert space
V . Show that the sequence of norms (||vn||) forms a Cauchy sequence in C.

Exercise 2.16 Let H be a Hilbert space and v, w ∈ H. Show that

||v + w||2 + ||v − w||2 = 2 ||v||2 + 2 ||w||2 .

This equality is known as the parallelogram law.

Exercise 2.17 Let H be a Hilbert space and let T : H → H be a map.
Assume that T has an adjoint, i.e., there is a map T ∗ on H such that

〈Tv,w〉 = 〈v, T ∗w〉
for all v, w ∈ H. Show that T and T ∗ are both linear.

Exercise 2.18 Let V be a finite-dimensional Hilbert space. A linear op-
erator A : V → V is called self-adjoint if for any two vectors v, w ∈ V we
have

〈Av, w〉 = 〈v, Aw〉 .

Show that if A is self-adjoint, then A is diagonalizable, i.e., that V has a
basis consisting of eigenvectors of A.

(Hint: Show that if A leaves stable a subspace W of V , then it also leaves
stable its orthogonal space W⊥. Next make an induction on the dimension
of V .)

Exercise 2.19 Let C([0, 1]) be the pre-Hilbert space of all continuous func-
tions on the interval [0, 1] with the inner product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

Let V be the subspace of all functions vanishing identically on
[
0, 1

2

]
. Show

that V ⊥ is the space of all functions vanishing on
[ 1

2 , 1
]
.

Exercise 2.20 Let F be a pre-Hilbert space, and let E be a dense subspace
of F . Show that their completions coincide; i.e., show that every completion
of F is a completion of E and that F can be embedded into every completion
of E to make it a completion of F as well.



Chapter 3

The Fourier Transform

In the chapter on Fourier series we showed that every continuous
periodic function can be written as a sum of simple waves. A sim-
ilar result holds for nonperiodic functions on R, provided that they
are square integrable. In the periodic case the possible waves were
cos(2πkx) and sin(2πkx) where k has to be an an integer, which
means that the possible “wave lengths” are 1, 1

2 , 1
3 , . . . . In the non-

periodic case there is no restriction on the wavelengths, so every
positive real number can occur. Consequently, the sum in the case
of Fourier series will have to be replaced by an integral over R, thus
giving the Fourier transform.

3.1 Convergence Theorems

Before we arrive at the Fourier transform on R we will need two
invaluable technical tools: the dominated convergence theorem and
the monotone convergence theorem. We will here give only rather
weak versions of these results. The interested reader is referred to
[20] for more information on the subject.

Recall that a sequence of continuous functions fn on R is said to
converge locally uniformly to a function f if for every point x ∈ R
there is a neighborhood on which fn converges uniformly. This is
equivalent to saying that the sequence converges uniformly on every
closed interval [a, b] for a, b ∈ R (see Exercise 3.10).

41
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Lemma 3.1.1 (This is a special case of the dominated convergence
theorem.) Let fn be a sequence of continuous functions on R that
converges locally uniformly to some function f . Suppose that there
is a nonnegative function g on R satisfying

∫∞
−∞ g(x)dx < ∞ and

|fn(x)| ≤ g(x) for every x ∈ R and every n ∈ N. Then the integrals∫∞
−∞ fn(x)dx and

∫∞
−∞ f(x)dx exist and

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
f(x)dx.

Proof: For every T > 0 the sequence fn converges uniformly on
[−T, T ]. Therefore,∫ T

−T
|f(x)|dx = lim

n→∞

∫ T

−T
|fn(x)|dx ≤

∫ T

−T
g(x)dx

≤
∫ ∞

−∞
g(x)dx < ∞,

and for each n,∫ T

−T
|fn(x)|dx ≤

∫ T

−T
g(x)dx ≤

∫ ∞

−∞
g(x)dx < ∞,

which implies that the integrals exist. Let gn = fn − f . We have
|gn| ≤ 2g, and we have to show that

∫∞
−∞ gn(x)dx tends to zero. For

this let ε > 0. Then there is T > 0 such that∫
|x|>T

2g(x)dx <
ε

2
.

Next, since gn tends to zero uniformly on [−T, T ], there is n0 ∈ N
such that for all n ≥ n0 we have∫ T

−T
|gn(x)|dx <

ε

2
.

For n ≥ n0 we get∫ ∞

−∞
|gn(x)|dx =

∫ T

−T
|gn(x)|dx +

∫
|x|>T

|gn(x)|dx

≤
∫ T

−T
|gn(x)|dx + 2

∫
|x|>T

g(x)dx

<
ε

2
+

ε

2
= ε.

This concludes the proof of the lemma. �



3.2. CONVOLUTION 43

Lemma 3.1.2 (This is a special case of the monotone convergence
theorem.) Let fn be a sequence of continuous nonnegative functions
on R and assume that there is a continuous function f such that fn →
f locally uniformly and monotonically from below, i.e., fn+1(x) ≥
fn(x) for every n ∈ N and x ∈ R. Then

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
f(x)dx.

Proof: If
∫∞
−∞ f(x)dx < ∞, then the claim follows from the domi-

nated convergence theorem, so let us assume that
∫∞
−∞ f(x)dx = ∞.

For every C > 0 there is T > 0 such that∫ T

−T
f(x)dx > C.

By locally uniform convergence there then is n0 ∈ N such that for
n ≥ n0, ∫ ∞

−∞
fn(x)dx ≥

∫ T

−T
fn(x)dx > C,

which implies the claim. �

3.2 Convolution

Convolution is a standard technique that can be used, for example,
to find smooth approximations of continuous functions. For us it is
an essential tool in the proof of the main theorems of this chapter.
Let L1

bc(R) be the set of all bounded continuous functions f : R → C
satisfying

||f ||
1

def
=

∫ ∞

−∞
|f(x)| dx < ∞.

It is easy to see that ||.||
1

satisfies the axioms of a norm, i.e., that for
f, g ∈ L1

bc(R) and λ ∈ C we have

• ||λf ||
1

= |λ| ||f ||,

• ||f ||
1

= 0 ⇔ f = 0, and

• ||f + g||
1

≤ ||f ||
1
+ ||g||

1
.



44 CHAPTER 3. THE FOURIER TRANSFORM

The last item, the triangle inequality, ensures that if f and g are in
L1

bc(R), then so is their sum f + g, so L1
bc(R) is actually a vector

space.

Theorem 3.2.1 Let f, g ∈ L1
bc(R). Then the integral

f ∗ g(x) =
∫ ∞

−∞
f(y)g(x − y)dy

exists for every x ∈ R and defines a function f ∗ g ∈ L1
bc(R). The

following equations hold for f, g, h ∈ L1
bc(R):

f ∗g = g∗f, f ∗(g∗h) = (f ∗g)∗h, and f ∗(g+h) = f ∗g+f ∗h.

The function f ∗ g is called the convolution, or convolution product,
of the functions f and g.

Proof: Assume |g(x)| ≤ C for every x ∈ R. Then∫ ∞

−∞
|f(y)g(x − y)|dy ≤ C

∫ ∞

−∞
|f(y)|dy = C ||f ||

1
,

which implies the existence and boundedness of f ∗ g. Next we shall
prove that it is continuous. Let x0 ∈ R. Assume |f(x)|, |g(x)| ≤ C
for all x ∈ R and assume g �= 0. For a given ε > 0 there is T > |x0|
such that ∫

|y|>T
|f(y)|dy <

ε

4C
.

Since a continuous function on a bounded closed interval is uniformly
continuous, there is δ > 0 such that

|x| ≤ 2T, |x − x′| < δ ⇒ |g(x) − g(x′)| <
ε

2 ||g||
1

.

Then for |x − x0| < δ we have∣∣∣∣∫ T

−T
f(y)g(x − y)dy −

∫ T

−T
f(y)g(x0 − y)dy

∣∣∣∣
≤
∫ T

−T
|f(y)||g(x − y) − g(x0 − y)| dy

≤ ε

2 ||f ||
1

∫ T

−T
|f(y)|dy ≤ ε

2
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and∫
|y|>T

|f(y)||g(x − y) − g(x0 − y)| dy ≤ 2C

∫
|y|>T

|f(y)|dy <
ε

2
.

Together these results imply that for |x − x0| < δ we have

|f ∗ g(x) − f ∗ g(x0)| < ε,

so f ∗ g is continuous at x0.

To see that ||f ∗ g||
1

< ∞ we compute

||f ∗ g||
1

=
∫ ∞

−∞
|f ∗ g(x)|dx

=
∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
f(y)g(x − y)dy

∣∣∣∣ dx

≤
∫ ∞

−∞

∫ ∞

−∞
|f(y)g(x − y)|dy dx

=
∫ ∞

−∞

∫ ∞

−∞
|f(y)g(x − y)|dx dy

=
∫ ∞

−∞
|f(y)|dy

∫ ∞

−∞
|g(x)|dx = ||f ||

1
||g||

1
.

Next we show that f ∗ g = g ∗ f . The substitution y �→ x − y gives

f ∗ g(x) =
∫ ∞

−∞
f(y)g(x− y)dy =

∫ ∞

−∞
f(x− y)g(y)dy = g ∗ f(x).

Further, since all integrals converge absolutely, we are allowed to
change the order of integration in

f ∗ (g ∗ h)(x) =
∫ ∞

−∞
f(y)
∫ ∞

−∞
g(z)h(x − y − z) dz dy

=
∫ ∞

−∞
g(z)
∫ ∞

−∞
f(y)h(x − y − z) dy dz

=
∫ ∞

−∞

∫ ∞

−∞
f(y)g(z − y)h(x − z) dy dz

= (f ∗ g) ∗ h(x).

The distributive law f ∗ (g + h) = f ∗ g + f ∗ h is immediate. �
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3.3 The Transform

For f ∈ L1
bc(R) define its Fourier transform by

f̂(y) =
∫ ∞

−∞
f(x)e−2πixydx.

By the estimate

|f̂(y)| ≤
∫ ∞

−∞
|f(x)e−2πixy|dx =

∫ ∞

−∞
|f(x)|dx < ∞

it emerges that the Fourier transform f̂ is bounded for every f ∈
L1

bc(R). We will now derive the first properties of the Fourier trans-
form.

Theorem 3.3.1 Let f ∈ L1
bc(R).

(a) If g(x) = f(x)e2πiax for a ∈ R, then ĝ(y) = f̂(y − a).

(b) If g(x) = f(x − a), then ĝ(y) = f̂(y)e−2πiay.

(c) If g ∈ L1
bc(R) and h = f ∗ g, then ĥ(y) = f̂(y)ĝ(y).

(d) If g(x) = f(x
λ) for λ > 0, then ĝ(y) = λf̂(λy).

(e) If g(x) = −2πixf(x) and g ∈ L1
bc(R), then f̂ is continuously

differentiable with f̂ ′(y) = ĝ(y).

(f) Let f be continuously differentiable and assume that the func-
tions f and f ′ lie in L1

bc(R). Then f̂ ′ (y) = 2πiyf̂(y), so in
particular, the function yf̂(y) is bounded.

(g) Let f be two times continuously differentiable and assume that
the functions f, f ′, f ′′are all in L1

bc(R). Then f̂ ∈ L1
bc(R).
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Proof: The points (a), (b) and (d) are direct consequences of the
definition. For (c) we compute

ĥ(y) =
∫ ∞

−∞
h(x)e−2πixydx

=
∫ ∞

−∞

∫ ∞

−∞
f(x − z)g(z)dz e−2πixydx

=
∫ ∞

−∞

∫ ∞

−∞
f(x − z)e−2πixydx g(z)dz

=
∫ ∞

−∞

∫ ∞

−∞
f(x)e−2πixydx g(z)e−2πizydz

= f̂(y)ĝ(y).

For (e) note that

f̂(y) − f̂(z)
y − z

=
∫ ∞

−∞
f(x)e−2πizx e−2πix(y−z) − 1

y − z
dx.

Let ϕ(x, u) = (e−2πixu−1)
u . Then |ϕ(x, u)| ≤ 2π|x| for all u �= 0 and

ϕ(x, u) → −2πix as u → 0,

and the convergence is locally uniform in x. By dominated conver-
gence the claim follows.

For (f) recall that by the integrability of |f | there exist sequences
Sn, Tn → ∞ such that f(−Sn), f(Tn) → 0. Then we compute

f̂ ′ (y) = lim
n→∞

∫ Tn

−Sn

f ′(x)e−2πixydx

= lim
n→∞
[
f(Tn)e−2πiyTn − f(−Sn)e2πiySn

]
+ lim

n→∞

[
2πiy

∫ Tn

−Sn

f(x)e−2πixydy

]
= 2πiy

∫ ∞

−∞
f(x)e−2πixydx.

Finally, for (g) apply (f) twice to get that y2f̂(y) is bounded. Since
f̂ is continuous, it is therefore integrable. �

Lemma 3.3.2 (Riemann-Lebesgue Lemma)
Let f ∈ L1

bc(R). Then lim|x|→∞ f̂(x) = 0.
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Proof: We compute

f(x) =
∫ ∞

−∞
f(y) e−2πixy dy

= −
∫ ∞

−∞
f(y) e−2πix(y+ 1

2x) dy

= −
∫ ∞

−∞
f

(
y − 1

2x

)
e−2πixy dy.

So we get

f̂(x) =
1
2

∫ ∞

−∞

(
f(y) − f

(
y − 1

2x

))
e−2πixy dy.

By dominated convergence and the continuity of f it follows that
lim|x|→∞ f̂(x) = 0. �

Let S = S(R) be the space of Schwartz functions; i.e., S consists of
all infinitely differentiable functions f : R → C such that for every
m, n ≥ 0 we have

σm,n(f) = sup
x∈R

|xmf (n)(x)| < ∞.

An example for a Schwartz function is given by f(x) = e−x2
.

Proposition 3.3.3 We have S ⊂ L1
bc(R), and the Fourier trans-

form maps S to itself; i.e., if f ∈ S, then f̂ ∈ S.

Proof: Let f ∈ S. Then f is bounded and continuous and (1 +
x2)f(x) is bounded, say by C > 0, so∫ ∞

−∞
|f(x)|dx ≤ C

∫ ∞

−∞
1

1 + x2 dx < ∞,

and therefore f indeed lies in L1
bc(R). An iteration of Theorem 3.3.1

(e) gives that for every f ∈ S we have that f̂ is infinitely differentiable
and that

((−2πix)nf )̂ = f̂ (n)

for every n ∈ N. Next, an iteration of Theorem 3.3.1 (f) shows that
for every f ∈ S,

f̂ (n)(y) = (2πiy)nf̂(y)
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for every n ∈ N. Taking these together, we see that for every f ∈ S
and every m, n ≥ 0 the function

ymf̂ (n)(y)

is a Fourier transform of a function in S, and hence it is bounded.
�

3.4 The Inversion Formula

In this section we will show that the Fourier transform is, up to a
sign twist, inverse to itself. We will need an auxiliary function as
follows: For λ > 0 and x ∈ R let

hλ(x) =
∫ ∞

−∞
e−λ|t|e2πitxdt.

Note that 0 < e−λ|t| ≤ 1 and that e−λ|t| converges to 1 locally uni-
formly as λ → 0.

Lemma 3.4.1 We have

hλ(x) =
2λ

4π2x2 + λ2 and
∫ ∞

−∞
hλ(x)dx = 1.

In particular, it follows that hλ(x) = 1
λh1(x

λ) for every λ > 0.

Proof: We write

hλ(x) =
∫ ∞

0
e2πitx−λtdt +

∫ 0

−∞
e2πitx+λtdt

=
e2πitx−λt

2πix − λ

∣∣∣∣∞
0

+
e2πitx+λt

2πix + λ

∣∣∣∣0
−∞

=
1

λ − 2πix
+

1
λ + 2πix

=
2λ

λ2 + 4π2x2 .

Using Exercise 3.1 we get∫ ∞

−∞
hλ(x)dx =

2
λ

∫ ∞

−∞
1

1 +
(2πx

λ

)2 dx

=
1
π

∫ ∞

−∞
1

1 + x2 dx = 1. Q.E.D.
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Lemma 3.4.2 If f ∈ L1
bc(R), then for every λ > 0,

f ∗ hλ(x) =
∫ ∞

−∞
e−λ|t|f̂(t)e2πixtdt.

Proof: We compute

f ∗ hλ(x) =
∫ ∞

−∞
f(y)hλ(x − y) dy

=
∫ ∞

−∞
f(y)
∫ ∞

−∞
e−λ|t|e2πit(x−y) dt dy

=
∫ ∞

−∞
e−λ|t|e2πixt

∫ ∞

−∞
f(y)e−2πity dy dt.

The claim follows. �

Lemma 3.4.3 For every f ∈ L1
bc(R) and every x ∈ R we have

lim
λ→0

f ∗ hλ(x) = f(x).

Proof: Since
∫∞
−∞ hλ(x)dx = 1, we calculate

f ∗ hλ(x) − f(x) =
∫ ∞

−∞
f(y)hλ(x − y) dy −

∫ ∞

−∞
f(x)hλ(y) dy

=
∫ ∞

−∞
(f(x − y) − f(x))hλ(y)dy

=
∫ ∞

−∞
(f(x − y) − f(x))

1
λ

h1(y/λ)dy

=
∫ ∞

−∞
(f(x − λy) − f(x))h1(y)dy.

If |f(x)| ≤ C for all x ∈ R, then the integrand is dominated by
2Ch1(y). As λ → 0 we have that f(x − λy) tends to f(x) locally
uniformly in y. By the dominated convergence theorem we get the
claim. �

Theorem 3.4.4 (Inversion formula) Let f ∈ L1
bc(R) and assume

that f̂ also lies in L1
bc(R), then for every x ∈ R,

̂̂
f (x) = f(−x).
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Another way to write this formula is

f(x) =
∫ ∞

−∞
f̂(y)e2πixydy,

which means that f equals an integral over the plane waves e2πixy.

Proof: By Lemma 3.4.2 we have for λ > 0,

f ∗ hλ(x) =
∫ ∞

−∞
e−λ|t|f̂(t)e2πixtdt.

The left-hand side tends to f(x) as λ → 0 by Lemma 3.4.3. The
integrand on the right-hand side is dominated by |f̂(t)|. The claim
now follows by the dominated convergence theorem. �

Corollary 3.4.5 The Fourier transform restricted to S gives a bi-
jection of the set S.

Proof: Since S is mapped to itself, the corollary follows from the
inversion theorem. �

It will be useful later to have the following example at hand:

Proposition 3.4.6 Let f(x) = e−πx2
. Then f ∈ S and

f̂ = f.

Proof: According to Exercise 3.3 the function f is, up to scalar
multiples, the unique solution of the differential equation

f ′(x) = −2πxf(x).

By induction one deduces that for every natural number n there is
a polynomial pn(x) such that f (n)(x) = pn(x)e−πx2

. Since e−πx2

decreases faster than any power of x as |x| → ∞, it follows that f
lies in S. Then f̂ also lies in S, and we compute

(f̂)′(y) =
∫ ∞

−∞
(−2πix)e−πx2

e−2πixydx

= i

∫ ∞

−∞
(e−πx2

)′e−2πixydx

= −2πyf̂(y),
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where we have used integration by parts. Thus we conclude that
f̂(y) = ce−πy2

for some constant c. Since ˆ̂
f(x) = f(−x), it follows

that c2 = 1, so c = ±1. Now f̂(0) =
∫∞
−∞ e−πx2

dx > 0; therefore,
c = 1. �

Corollary 3.4.7 We have∫ ∞

−∞
e−x2

dx =
√

π.

Proof: The proposition implies∫ ∞

−∞
e−πx2

dx = 1,

from which the corollary follows by a simple substitution. �

3.5 Plancherel’s Theorem

Plancherel’s theorem says that the Fourier transform preserves L2-
norms as follows. Let L2

bc(R) be the set of all continuous, bounded
functions f : R → C with

||f ||2
2

def
=

∫ ∞

−∞
|f(x)|2dx < ∞.

If f has this last property, we say that it is square integrable.

Lemma 3.5.1 For any two functions f, g ∈ L2
bc(R) the integral

〈f, g〉 =
∫ ∞

−∞
f(x)g(x)dx

converges and defines an inner product on the vector space L2
bc(R).

The space L1
bc(R) is a subspace of L2

bc(R).

Proof: For T > 0 the space C([−T, T ]) of continuous functions is a
pre-Hilbert space with the inner product

〈f, g〉T =
∫ T

−T
f(x)g(x)dx
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(see Exercise 2.9). We write ||.||
2,T

for the norm on this space. For
f, g ∈ L2

bc(R) their restrictions to the interval [−T, T ] give elements
of C([−T, T ]), and the same holds for their absolute values |f | and
|g|.
Since the Cauchy inequality holds for elements of the vector space
C([−T, T ]), we may estimate∫ T

−T
|f(x)g(x)|dx = |〈|f |, |g|〉T | ≤ ||f ||

2,T
||g||

2,T

=

√∫ T

−T
|f(x)|2dx

∫ T

−T
|g(x)|2dx

≤
√∫ ∞

−∞
|f(x)|2dx

∫ ∞

−∞
|g(x)|2dx

= ||f ||
2
||g||

2
.

Thus the integral is bounded by a constant not depending on T ,
which implies that the integral converges as T tends to infinity. The
properties of an inner product are easily established.

For the last part let f ∈ L1
bc(R). Then f is bounded; say, |f(x)| ≤ C

for every x ∈ R. Then

|f(x)|2 ≤ C|f(x)|,
which implies that∫ ∞

−∞
|f(x)|2dx ≤ C

∫ ∞

−∞
|f(x)|dx = C ||f ||

1
,

and thus the former integral is finite, i.e., f ∈ L2
bc(R). �

By the lemma we see that L1
bc(R) is a pre-Hilbert space. We write

L2(R) for its completion.

Theorem 3.5.2 (Plancherel’s theorem) For every f ∈ L1
bc(R) we

have that f̂ ∈ L2
bc(R) and

||f ||
2

= ||f̂ ||2 .

In particular, the Fourier transform f �→ f̂ extends to a unitary map
L2(R) → L2(R).
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Proof: Let f̃(x) = f(−x) and let g = f̃ ∗ f . Then

g(x) =
∫ ∞

−∞
f(y − x)f(y)dy,

so that
g(0) = ||f ||2

2
.

Now ĝ(t) = ̂̃f(t)f̂(t) = f̂(t)f̂(t) = |f̂(t)|2. Therefore, we get

||f ||2
2

= g(0) = lim
λ→0

g ∗ hλ(0)

= lim
λ→0

∫ ∞

−∞
e−λ|t|ĝ(t)dt

= lim
λ→0

∫ ∞

−∞
e−λ|t||f̂(t)|2dt = ||f̂ ||2

2
,

by the monotone convergence theorem. �

3.6 The Poisson Summation Formula

In this central section we bring together Fourier analysis on R and
on R/Z to derive the beautiful and expedient Poisson summation
formula.

Let f : R → C be continuous and assume that for every x ∈ R the
sum

g(x) =
∑
l∈Z

f(x + l)

converges absolutely. Then g defines a periodic function. Assume
that its Fourier series converges pointwise to the function g; then

g(x) =
∑
k∈Z

ck(g)e2πikx,

so that for x = 0 we get∑
l∈Z

f(l) = g(0) =
∑
k∈Z

ck(g)

=
∑
k∈Z

∫ 1

0
g(y)e−2πikydy

=
∑
k∈Z

∫ 1

0

∑
l∈Z

f(y + l)e−2πikydy.
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Assuming that we may interchange summation and integration, this
equals∑

k∈Z

∑
l∈Z

∫ l+1

l
f(y)e−2πikydy =

∑
k∈Z

∫ ∞

−∞
f(y)e−2πikydy =

∑
k∈Z

f̂(k).

This is a formal computation, valid only under certain assumptions.
We will now turn it into a theorem by giving a set of conditions that
ensures the validity of those assumptions.

Theorem 3.6.1 Let f ∈ L1
bc(R) and assume that f is piecewise

continuously differentiable with the possible exception of finitely many
points. Let

ϕ(x) =

{
f ′(x) if it exists,
0 otherwise,

and assume that x2f(x) and x2ϕ(x) are bounded. Then the Poisson
summation formula ∑

k∈Z

f(k) =
∑
k∈Z

f̂(k)

holds.

Proof: Since x2f(x) is bounded, the series g(x) =
∑

k∈Z
f(x + k)

converges uniformly to give a continuous function g. Likewise, the
sum
∑

k∈Z
ϕ(x + k) converges to a piecewise continuous function g̃.

Since f(x) = c +
∫ x
0 ϕ(t)dt, it follows that∫ x

0
g̃(t)dt =

∫ x

0

∑
k∈Z

ϕ(t + k)dt =
∑
k∈Z

∫ x

0
ϕ(t + k)dt

=
∑
k∈Z

∫ k+x

k
ϕ(t)dt =

∑
k∈Z

f(k + x) − f(k)

= g(x) − g(0),

where we were allowed to interchange integration and summation
because the sum converges uniformly. It follows that g is piecewise
continuously differentiable, and so the Fourier series converges point-
wise.

The integration and summation may be interchanged, since the sum
converges uniformly on the interval [0, 1]. This finishes the proof of
the Poisson summation formula. �
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3.7 Theta Series

As an application of the Poisson summation formula we give a proof
of the functional equation of the classical theta series. In Appendix
A this is employed to derive the analytic continuation and the func-
tional equation of the Riemann zeta function. Since this is a result
of utmost importance to many areas of mathematics, it is included
in this book. It requires, however, knowledge of complex analysis,
which is why it appears only in the appendix.

Theorem 3.7.1 For t > 0 let

Θ(t) =
∑
k∈Z

e−tπk2
.

Then for every t > 0 we have

Θ(t) =
1√
t
Θ
(

1
t

)
.

Proof: Let ft(x) = e−tπx2
. Then by Proposition 3.4.6 we have

f̂1 = f1, and therefore by Theorem 3.3.1 d),

f̂t(x) =
1√
t
f1/t(x).

Since ft is in S, Theorem 3.6.1 applies to give∑
k∈Z

ft(k) =
∑
k∈Z

f̂t(k).

�

3.8 Exercises

Exercise 3.1 Show that ∫ ∞

−∞

1
1 + x2 dx = π.

Exercise 3.2 Let a < b be real numbers and let

g(x) =
{

1 if a ≤ x ≤ b,
0 otherwise.

Compute the Fourier transform ĝ(x).
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Exercise 3.3 Let g : R → C be continuously differentiable and satisfy the
differential equation

g′(x) = −2πxg(x).

Show that there is a constant c such that g(x) = ce−πx2
.

(Hint: Set u(x) = g(x)eπx2
and deduce that u′(x) = 0.)

Exercise 3.4 Let D = d
dx be the ordinary differential operator on R. Let

f and g be n-times continuously differentiable on R. Show that

Dn(fg) =
n∑

k=0

(
n

k

)
DkgDn−kf.

Exercise 3.5 Let f(x) = e−x2
. Prove that for every n ≥ 0 there is a

polynomial pn(x) such that Dnf(x) = pn(x)f(x), and conclude from this
that f(x) lies in S.

Exercise 3.6 Let f(x) = e−x2
. Compute f ∗ f .

Exercise 3.7 Let f ∈ L1
bc(R), f > 0. Prove that

∣∣f̂(y)
∣∣ < f̂(0) for every

y �= 0.

Exercise 3.8 A function f on R is called locally integrable if f is integrable
on every bounded interval [a, b] for a < b in R. Show that if g ∈ C∞

c (R)
and f is locally integrable, then f ∗ g exists and is infinitely differentiable
on R.

Exercise 3.9 Show that for every T > 0 there is a smooth function with
compact support χ : R → [0, 1] such that χ ≡ 1 on [−T, T ].

(Hint: Choose a suitable g ∈ C∞
c (R) and consider f ∗ g, where f is the

characteristic function of some interval.)

Exercise 3.10 Show that a sequence (fn) of functions on R converges
locally uniformly to the function f if and only if it converges uniformly on
every bounded interval [a, b], a, b ∈ R, a < b.

Exercise 3.11 Prove that for a > 0 the following holds:

1 + e−2πa

1 − e−2πa
=

1
π

∞∑
n=−∞

a

a2 + n2 .

(Hint: Apply the Poisson summation formula to f(x) = e−2πa|x|.)
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Distributions

We have seen that the Fourier transform extends to a unitary map
from L2(R) to itself. However, it is also defined for functions that are
unbounded and integrable but not in L2(R). So the question arises
as to the ultimate domain of definition for the Fourier transform
that contains all these spaces. A possible answer will be given in this
chapter, since we will see that the Fourier transform extends nicely
to the space of tempered distributions.

4.1 Definition

Let C∞(R) be the vector space of all infinitely differentiable functions
on R. We say that a function f : R → C has compact support if f ≡ 0
outside a bounded interval. Let C∞

c (R) be the complex vector space
of all infinitely differentiable functions on R with values in C that
have compact support. It is not a priori clear that this space it not
the zero space. So we give a construction of a nonzero element. Let

f(x) =

⎧⎪⎨⎪⎩
0, x ≤ 0,

e− 1
x e− 1

1−x , 0 < x < 1,

0, x ≥ 1.

Then f is a function that is zero outside the interval [0, 1]. To see
that it actually is smooth, it suffices to show that the function

h(x) =

{
0, x ≤ 0,

e− 1
x , x > 0,
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is infinitely differentiable. For this, one has only to consider the point
x0 = 0, since h is clearly smooth everywhere else. One finds that any
derivative h(n)(x), x �= 0, tends to zero as x → 0. This implies the
smoothness at x0 = 0.

Having one nonzero function f in C∞
c (R), we now can take linear

combinations and products of functions of the form f(ax+ b), a �= 0,
to see that C∞

c (R) actually is a rather large space.

We say that a sequence (gn)n∈N in C∞
c (R) converges1 to g ∈ C∞

c (R)
if there is a bounded interval I such that gn ≡ 0 outside I for every
n, and every derivative (g(k)

n )n∈N converges uniformly to g(k).

A distribution on R is a linear map

T : C∞
c (R) → C

such that
lim

n→∞ T (gn) = T (g)

whenever gn converges to g in C∞
c (R).

Examples.

• The delta distribution

δ(f) def
= f(0),

also called Dirac distribution or Dirac delta.

• The integral

I(f) def
=

∫ ∞

−∞
f(x) dx.

• A function φ on R is called locally Riemann integrable if it is
Riemann integrable on every bounded interval. A given locally
Riemann integrable function φ defines a distribution Iφ by

Iφ(f) def
=

∫ ∞

−∞
f(x) φ(x) dx.

1The reader should be aware that this notion does not fully describe the topol-
ogy on C∞

c (R), which is an inductive limit topology. As long as one considers
only linear maps to C, however, it suffices to consider sequences as given here.
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We denote the complex vector space of all distributions on R by
C∞

c (R)′. Motivated by the mapping φ �→ Iφ, we sometimes call
distributions generalized functions. A distribution T in general is not
a function, so it does not make sense to write T (x), but nevertheless,
it is convenient to write

T (f) =
∫ ∞

−∞
T (x)f(x) dx.

For instance, the distribution T (x − a), a ∈ R, is defined by∫ ∞

−∞
T (x − a)f(x) dx def

=

∫ ∞

−∞
T (x)f(x + a) dx.

So T (x − a) applied to f equals T applied to x �→ f(x + a). For
example,∫ ∞

−∞
δ(x − a)f(x) dx =

∫ ∞

−∞
δ(x)f(x + a) dx = f(a).

Via the map φ �→ Iφ we can also identify the space L2
bc(R) with a

subspace of C∞
c (R)′.

Many authors use the symbol D for C∞
c (R) and D′ for C∞

c (R)′.

4.2 The Derivative of a Distribution

Distributions have many nice analytic properties. We will illustrate
this by the fact that unlike functions, distributions are always differ-
entiable. This is motivated as follows.

Let φ be a continuously differentiable function on R. Integration by
parts implies that for g ∈ C∞

c (R),

Iφ′(g) =
∫

R

φ′(x)g(x) dx = −
∫

R

φ(x)g′(x) dx = −Iφ(g′).

This opens the way to generalize differentiation to the space of distri-
butions as follows. Let T be a distribution. We define its derivative
T ′ ∈ C∞

c (R)′ by

T ′(g) def
= − T (g′).
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As an example, consider a function φ that is continuously differen-
tiable; then I ′

φ = Iφ′ . As another example, let φ be the characteristic
function of the unit interval [0, 1]. Then for g ∈ C∞

c (R),

I ′
φ(g) = −Tφ(g′) = −

∫ 1

0
g′(x) dx = g(0) − g(1),

so that we can write I ′
φ(x) = δ(x) − δ(x − 1).

4.3 Tempered Distributions

Recall the space of Schwartz functions S = S(R) consisting of all
C∞ functions f on R such that for all m, n ≥ 0 we have

σm,n(f) = sup
x∈R

|xmf (n)(x)| < ∞.

By Proposition 3.3.3 we know that S is stable under the Fourier
transform. We say that a sequence (fj)j∈N in S converges to f ∈ S
if for every pair of integers m, n ≥ 0 the numbers σm,n(fj − f) tend
to zero.

Lemma 4.3.1 The space S is a subspace of L2
bc(R), and for every

sequence (fj) in S that converges to f ∈ S we have limj ||fj − f ||
2

=
0.

Proof: Suppose fj → f in S. Then in particular the sequences
σ0,0(fj − f) and σ1,0(fj − f) tend to zero. Set C =

∫∞
−∞

1
(1+|x|)2 dx

and let ε > 0. Then there is j0 ∈ N such that for all j ≥ j0,

sup
x∈R

|fj(x) − f(x)|(1 + |x|) = σ0,0(fj − f) + σ1,0(fj − f) <
√

ε/C.

Let j ≥ j0. Then |fj(x) − f(x)| <

√
ε/C

1+|x| for every x ∈ R. This
implies

||fj − f ||2
2

=
∫ ∞

−∞
|fj(x) − f(x)|2 dx <

∫ ∞

−∞
ε/C

(1 + |x|)2 dx = ε.

�

A tempered distribution is a linear map

T : S → C
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such that
lim

k→∞
T (fk) = T (f)

for every convergent sequence (fk) in S with limit f . It is easy to
see that if gj ∈ C∞

c (R) converges to g in C∞
c (R), then T (gj) →

T (g) for every tempered distribution T , and so for every tempered
distribution T the restriction T |C∞

c (R) is a distribution. The space of
all tempered distributions is denoted by S ′.

Proposition 4.3.2 The restriction

S ′ → C∞
c (R)′,

T �→ T |C∞
c (R),

is injective. So we can consider the space of tempered distributions
as a subspace of the space of all distributions.

Proof: Let T be a tempered distribution with T |C∞
c (R) = 0. Let

f ∈ S. We have to show that T (f) = 0. For this let η be a smooth
function from R to the unit interval [0, 1] with η(x) = 0 for x ≤ 0
and η(x) = 1 for x ≥ 1. For n ∈ N set

χn(x) def
= η(n + x)η(n − x).

Then χn has compact support and χn(x) = 1 for |x| ≤ n − 1. Set
fn(x) = χn(x)f(x). Then each fn lies in C∞

c (R), and the sequence fn

converges to f in S. (See Exercise 6.6.) Hence T (f) = limn T (fn) =
0. �

Let φ be a locally integrable function on R. Then under mild restric-
tions the distribution Iφ extends to a tempered distribution, as the
following lemma shows.

Lemma 4.3.3 Let φ be a locally integrable function on R such that
there is a natural number n with∫ ∞

−∞
|φ(x)| 1

1 + x2n
dx < ∞.

Then the integral Iφ(f) =
∫∞
−∞ φ(x)f(x) dx converges for every f ∈ S

and defines a tempered distribution f �→ Iφ(f).



64 CHAPTER 4. DISTRIBUTIONS

Proof: The convergence of the integral is clear, so that it remains to
show that it indeed defines a tempered distribution. Let φ and n be
as in the lemma. Let C =

∫∞
−∞ |φ(x)| 1

1+x2n dx and assume without
loss of generality that C > 0. Suppose the sequence (fk) converges
to f in S. Let ε > 0. Then there is k0 such that for k ≥ k0 we have
supx∈R |fk(x) − f(x)| < ε

C(1+x2n) . Then, for k ≥ k0,

|Iφ(fk) − Iφ(f)| ≤
∫ ∞

−∞
|φ(x)| |fk(x) − f(x)| dx

<
ε

C

∫ ∞

−∞
|φ(x)|

1 + x2n
dx = ε.

�

Proposition 4.3.4 The map φ �→ Iφ from L2
bc(R) to S ′ is injective

and extends to a natural embedding L2(R) ↪→ S ′.

Proof: Let φ ∈ L2
bc(R) with Iφ = 0. For f ∈ S we then have

0 = Iφ(f̄) = 〈φ, f〉, where f̄(x) = f(x) is the complex conjugate.
Since S is dense in L2(R), this implies that φ = 0, and thus we have
established the injectivity of the map φ �→ Iφ.

To see that it extends, let (φn)n∈N be a Cauchy sequence in L2
bc(R)

with limit φ ∈ L2(R). Let f ∈ S. Since S is a subset of L2
bc(R), we

can write

Iφn(f) =
∫

R

φn(x)f(x) dx =
〈
φn, f
〉
.

For m, n ∈ N we have

|Iφn(f) − Iφm(f)| = | 〈φn − φm, f
〉 | ≤ ||φn − φm||

2
||f ||

2
.

This implies that Iφn(f) is a Cauchy sequence. Define

Iφ(f) def
= lim

n→∞ Iφn(f).

Since this works for any sequence with limit φ, it follows that this
definition does not depend on the choice of the sequence φn. It finally
remains to show that the limit obtained indeed is a distribution, i.e.,
satisfies the requirement of continuity. So suppose (fj) converges to



4.4. FOURIER TRANSFORM 65

f in S. We compute

|Iφ(fj) − Iφ(f)| = |Iφ(fj − f)|
= lim

n
|Iφn(fj − f)|

= lim
n

| 〈φn, fj − f
〉 |

≤
(
lim
n

||φn||
2

)
||fj − f ||

2

= ||φ||
2
||fj − f ||

2
.

The latter tends to zero by Lemma 4.3.1. This implies that Iφ(fj)
converges to Iφ(f) as j → ∞, so Iφ is indeed a tempered distribution.

�

4.4 Fourier Transform

For f ∈ S we write f∨(x) = f(−x). Then the Fourier inversion

theorem tells us that ̂̂f = f∨. Now for φ, f ∈ S we have

Iφ̂(f) =
〈
φ̂, f
〉

=
〈̂̂

φ , f̂

〉
=
〈
φ∨, f̂
〉

=
〈

φ, f̂
∨〉

.

Further,

f̂(x) =
∫ ∞

−∞
f(y)e−2πixy dy =

∫ ∞

∞
f(y)e2πixydy = f̂(−x).

We conclude that f̂
∨

= f̂ and so

Iφ̂(f) = Iφ(f̂).

Again we turn this into a definition for all tempered distributions.
We define the Fourier transform of a tempered distribution T by

T̂ (f) def
= T (f̂).

Examples.

• Let I(f) =
∫∞
∞ f(x) dx. Then

Î(f) =
∫ ∞

−∞
f̂(x) dx =

∫ ∞

−∞
f̂(x) dx = f(0).

So we get Î = δ.
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• Likewise, we compute the Fourier transform of the delta distri-
bution to be

δ̂(f) = δ(f̂) = f̂(0) =
∫ ∞

−∞
f(x) dx = I(f).

The following lemma shows that there is a systematic reason for this.

Lemma 4.4.1 For every tempered distribution T and every f ∈ S
we have ̂̂

T (f) = T (f∨).

Proof: We have

̂̂
T (f) = T̂ (f̂∨) = T ((̂f̂∨)

∨
).

Now

(̂f̂∨)
∨
(x) = (̂f̂∨)(x)

=
∫ ∞

−∞
f̂∨(y)e2πixydy

=
∫ ∞

−∞
f̂(y)e−2πixydy

= ˆ̂
f(x) = f(−x) = f∨(x).

We say that a smooth function f has moderate growth if for every
k ≥ 0 there is l ∈ N such that

sup
x∈R

|f (k)(x)|
1 + x2l

< ∞.

In other words, this means that every derivative of f grows at most
like a polynomial.

Lemma 4.4.2 Let f be of moderate growth and g ∈ S. Then the
pointwise product fg lies in S again. If the sequence (gj) converges
to g in S, then fgj converges to fg.
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Proof: Let m, n ≥ 0. Then

∣∣∣xm(fg)(n)(x)
∣∣∣ =

∣∣∣∣∣xm
n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x)

∣∣∣∣∣
≤ |x|m

n∑
k=0

(
n

k

)
|f (k)(x)| |g(n−k)(x)|

≤ C|x|m(1 + x2M )
n∑

k=0

(
n

k

)
|g(n−k)(x)|

for some C > 0, M ∈ N depending on f and n. Therefore, we get

σm,n(fg) ≤ C

n∑
k=0

(
n

k

)
(σm,n−k(g) − σm+2M,n−k(g)) .

It follows that fg ∈ S. Next suppose that the sequence (gj) converges
to g in S. Let m, n ≥ 0 and let ε > 0. Then there is j0 ∈ N such
that for j ≥ j0,

C

n∑
k=0

(
n

k

)
(σm,n−k(gj − g) − σm+2M,n−k(gj − g)) < ε.

This implies that
σm,n(fgj − fg) < ε

for j ≥ j0. �

For a function f of moderate growth and a tempered distribution T
we define their product fT by

fT (g) def
= T (fg)

for g ∈ S.

Theorem 4.4.3 Let T be a tempered distribution.

(a) If S(x) = −2πixT (x), then (T̂ )′ = Ŝ.

(b) (̂T ′)(y) = 2πiyT̂ (y).
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Proof: Let S(x) = −2πixT (x). Then for f ∈ S,

(T̂ )′(f) = −T̂ (f ′) = −T (f̂ ′)
= −T (2πiyf̂)
= S(f̂) = Ŝ(f).

For the second part compute

T̂ ′(f) = T ′(f̂) = −T (f̂ ′)

= T ( ̂2πixf(x)) = T̂ (2πixf(x))
= 2πiyT̂ (f).

�

4.5 Exercises

Exercise 4.1 Show that the Hilbert space completion L2(R) of L2
bc(R)

is also the Hilbert space completion of the space C∞
c (R) of all infinitely

differentiable functions with compact support.

Exercise 4.2 Let T be a tempered distribution and let S(x) = e2πiaxT (x)
for some a ∈ R. Show that Ŝ(y) = T (y − a).

Exercise 4.3 Let T be a tempered distribution and let S(x) − T (x − a).
Show that Ŝ(y) = e−2πiayT (y).

Exercise 4.4 Show that C∞
c (R) is dense in S. More precisely, show that

for every f ∈ S the sequence fn = χnf as in the proof of Proposition 4.3.2
converges to f in S.

Exercise 4.5 For f ∈ S let

T (f) def
=
∑
k∈Z

f(k).

Show that T is a tempered distribution and that T̂ = T .

Exercise 4.6 A distribution T is said to have compact support if there is
a bounded interval I such that T (g) = 0 for every g that vanishes on I.
Choose ψ ∈ C∞

c (R) with ψ ≡ 1 on I.
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(a) Show that the linear map

C∞(R) → C,

f �→ T (ψf),

does not depend on the choice of I or ψ. By abuse of notation this
linear map is also called T .

(b) Let T be a distribution with compact support. Show that the Fourier
transform of T is a function. More precisely,

T̂ (x) = Ty(e−2πixy),

where the notation Ty indicates that T is applied to the function of
the variable y.



Part II

LCA Groups

71



Chapter 5

Finite Abelian Groups

In this chapter we present the complete theory developed in this
book for the simplest case to which it can be applied, that of a finite
abelian group. In this case no analytic tools are required, and only a
small amount of group theory is needed in order to understand the
concept of the duality and the Plancherel theorem.

5.1 The Dual Group

Let A be a finite abelian group. The group A is called cyclic if it
is generated by a single element, i.e., if there is τ ∈ A, called a
generator of A, such that A =

{
1, τ, τ2, . . . , τN−1

}
, where N = |A| is

the cardinality of the set A. We will make use of the following result.

Theorem 5.1.1 (Main theorem on finite abelian groups) Any finite
abelian group A is isomorphic to a product A1 × A2 × · · · × Ak of
cyclic groups.

Proof: [17], Theorem 10.1. �

Let A be a finite abelian group. A character χ of A is a group
homomorphism χ : A → T to the unit torus, so χ is a map satisfying

χ(ab) = χ(a)χ(b)

for every a, b ∈ A. Let Â be the set of all characters of A.

73
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Lemma 5.1.2 The pointwise product (χ, η) �→ χη with

χη(a) = χ(a)η(a)

makes Â an abelian group. We call Â the dual group, or Pontryagin
dual, of A.

Proof: We have to show that χη is a character when χ and η are.
For this we let a, b ∈ A and compute

χη(ab) = χ(ab)η(ab) = χ(a)χ(b)η(a)η(b)
= χ(a)η(a)χ(b)η(b) = χη(a)χη(b).

In the same way we establish that χ−1 is a character when χ is one,
where χ−1(a) = χ(a)−1. This shows that Â is a subgroup of the
group of all maps from A to T. �

Lemma 5.1.3 Let A be cyclic of order N . Fix a generator τ of A,
i.e., A =

{
1, τ, τ2, . . . , τN−1

}
and τN = 1. The characters of the

group A are given by

ηl(τk) = e2πikl/N , k ∈ Z,

for l = 0, 1, . . . , N − 1. The group Â is again cyclic of order N .

Proof: Let η be a character of A. Then η(τ) is an element t of
T that satisfies tN = η(τN ) = 1. Therefore, there is a unique l ∈
{0, 1, . . . , N − 1} such that

η(τ) = e2πil/N .

For every k ∈ Z we get

η(τk) = η(τ)k = e2πikl/N .

This shows that every character is of the form ηl for some l ∈
{0, 1, . . . , N − 1}. It is easy to see that ηl �= ηl′ if l �= l′, so the
lemma follows. �

We conclude that for every finite cyclic group A its dual Â is also
a cyclic group of the same order. This then implies that those two
groups must be isomorphic. In general, there will be several isomor-
phisms and no naturally preselected, or canonical, one. One gets
a canonical isomorphism when one goes one step further; i.e., one
considers the bidual, which is the dual of the dual.
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Theorem 5.1.4 Let A be a finite abelian group. There is a canonical

isomorphism to the bidual A → ̂̂A given by a �→ δa, where δa is the
point evaluation at a, i.e.,

δa : Â → T,
χ �→ χ(a).

Proof: The map a �→ δa is a homomorphism, since

δab(χ) = χ(ab) = χ(a)χ(b) = δa(χ)δb(χ).

Moreover, the following lemma shows that this map is injective.

Lemma 5.1.5 Let A be a finite abelian group and let a ∈ A. Suppose
that χ(a) = 1 for every χ ∈ Â. Then a = 1.

Proof: Lemma 5.1.3 shows that the claim holds for cyclic groups.
In the light of the main theorem on finite abelian groups it remains
to show that if the claim holds for the groups A and B, then it also
holds for A×B. For this let (a0, b0) ∈ A×B with η(a0, b0) = 1 for all
η ∈ Â × B. For every χ ∈ Â the map χ(a, b) = χ(a) is a character of
A × B, and therefore χ(a0) = 1, which implies a0 = 1 and similarly
b0 = 1. The lemma is proven.

The lemma implies that the map a �→ δa is injective from A to ˆ̂
A.

Since the cardinality |A| is the same as the cardinality |Â| of the
dual (Exercise 5.2), and by iteration the same as the cardinality of
the bidual, the theorem follows. �

5.2 The Fourier Transform

Let A be a finite abelian group. The Hilbert space �2(A) coincides
with the space CA of all maps from A to C. In particular, the char-
acters χ : A → T ⊂ C are elements of �2(A).

Lemma 5.2.1 Let χ, η be characters of A; then

〈χ, η〉 =

{
|A| if χ = η,

0 otherwise.
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Proof: First consider the case where χ = η; then

〈χ, η〉 =
∑
a∈A

χ(a)η(a) =
∑
a∈A

|χ(a)|2 =
∑
a∈A

1 = |A|.

Next assume χ �= η; then the character α = χη−1 is different from 1
and

〈χ, η〉 =
∑
a∈A

χ(a)η(a)−1 =
∑
a∈A

α(a).

Let b ∈ A with α(b) �= 1. Then

〈χ, η〉 α(b) =
∑
a∈A

α(a)α(b) =
∑
a∈A

α(ab).

Replacing the sum index a by ab−1, which also runs over the entire
group, we see that this yields∑

a∈A

α(ab) =
∑
a∈A

α(a) = 〈χ, η〉 .

Thus (α(b) − 1) 〈χ, η〉 = 0, which implies 〈χ, η〉 = 0. �

For f ∈ �2(A) we define its Fourier transform f̂ : Â → C by

f̂(χ) =
1√|A| 〈f, χ〉 =

1√|A|
∑
a∈A

f(a)χ(a).

The presence of the normalizing factor 1/
√|A| needs explanation,

in particular since no such factor shows up in the Fourier transform
on R. This factor is needed here because of the normalization of
the inner products on �2(A) and �2(Â). In the case of the Fourier
transform on R no such factor appeared, since by writing the char-
acters of R as e2πixy instead of eixy we already implicitly included a
normalizing factor of 2π in the inner product on the dual. Without
this normalization the Fourier transform over R would have had a
normalizing factor of 1/

√
2π.

Theorem 5.2.2 The map f �→ f̂ is an isomorphism of the Hilbert
spaces �2(A) → �2(Â). This can also be applied to the group Â, and

the composition of the two Fourier transforms gives a map f �→ ˆ̂
f .

For the latter map we have

ˆ̂
f(δa) = f(a−1).
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Proof: Let f, g ∈ �2(A). We have to show that
〈
f̂ , ĝ
〉

= 〈f, g〉,
where the inner products are taken on Â and A respectively. For
this we compute〈

f̂ , ĝ
〉

=
∑
χ∈Â

f̂(χ)ĝ(χ)

=
1

|A|
∑
χ∈Â

∑
a∈A

∑
b∈A

f(a)g(b)χ(a)χ(b)

=
1

|A|
∑

a,b∈A

f(a)g(b)
∑
χ∈Â

δa(χ)δb(χ)

=
1

|A|
∑

a,b∈A

f(a)g(b) 〈δb, δa〉

=
∑
a∈A

f(a)g(a)

= 〈f, g〉 ,

where we have applied Lemma 5.2.1 to the group Â. Next

ˆ̂
f(δa) =

1√|A|
∑
χ∈Â

f̂(χ)δa(χ)

=
1

|A|
∑
χ∈Â

∑
b∈A

f(b)χ(b)χ(a)

=
1

|A|
∑
χ∈Â

∑
b∈A

f(b−1)χ(b)χ(a)

=
1

|A|
∑
b∈A

f(b−1) 〈δb, δa〉

= f(a−1).

�

5.3 Convolution

For functions on a finite abelian group there is a convolution product
that resembles the convolution on the reals. Let f and g be in �2(A);
we define their convolution product by

f ∗ g(a) =
1√|A|
∑
b∈A

f(b)g(b−1a).
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Theorem 5.3.1 For f, g ∈ �2(A) we have

f̂ ∗ g = f̂ ĝ,

where on the right-hand side we have the pointwise product.

In particular, it follows that the convolution product is associative,
distributive, and commutative; i.e.,

(f ∗ g) ∗ h = f ∗ (g ∗ h), f ∗ (g + h) = f ∗ g + f ∗ h, f ∗ g = g ∗ f

holds for f, g, h ∈ �2(A).

Proof: We have

f̂ ∗ g(χ) =
1√|A|
∑
b∈A

f ∗ g(b)χ(b) =
1

|A|
∑
a∈A

∑
b∈A

f(a)g(a−1b)χ(b).

Replacing b by ab gives

f̂ ∗ g(χ) =
1

|A|
∑
a∈A

f(a)χ(a)
∑
b∈A

g(b)χ(b) = f̂(χ)ĝ(χ).

�

5.4 Exercises

Exercise 5.1 Let A be a finite abelian group. Show that the Fourier
transform of a character χ equals

χ̂(η) =

{√|A| if η = χ,

0 otherwise.

Exercise 5.2 Show that for A and B finite abelian groups we have Â × B
isomorphic to Â × B̂. Conclude that for every finite abelian group A we
have |A| = |Â|.

Exercise 5.3 Let A, B be finite abelian groups and let ψ : A → B be a
group homomorphism. Show that the prescription

ψ∗(χ) = χ ◦ ψ

defines a group homomorphism ψ∗ : B̂ → Â.
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Exercise 5.4 Let A be a finite abelian group and B a subgroup. The
restriction of characters gives a homomorphism res : Â → B̂, χ �→ χ|B .
Show that the kernel of res is isomorphic to the dual group Â/B of the
quotient A/B, and conclude that res is surjective.

Exercise 5.5 Give an example of a finite abelian group A and a subgroup
B such that there is no group C with A ∼= B × C.

Exercise 5.6 Let 1 → A → B → C → 1 be an exact sequence of finite
abelian groups. Use Exercises 5.3 and 5.4 to show that it induces an exact
sequence

1 → Ĉ → B̂ → Â → 1.

Exercise 5.7 Let χ1, χ2, . . . , χn be distinct characters of the finite abelian
group A. Show that χ1, χ2, . . . , χn are linearly independent in the complex
vector space of all maps from A to C.



Chapter 6

LCA Groups

In this chapter we are going to set out the basic terminology of
abstract harmonic analysis. This will require a modest amount of
topology, which is introduced in the first section below.

6.1 Metric Spaces and Topology

For the reader’s convenience we will briefly recall the basic properties
of metrics, and the notions of continuity and topology.

Let X be a set. Recall that a metric on X is a map

d : X × X → [0,∞)

such that

• d is definite, i.e.,

d(x, y) = 0 ⇔ x = y

holds for every x, y ∈ X;

• d is symmetric, i.e.,

d(x, y) = d(y, x)

for every x, y ∈ X; and

81
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• d satisfies the triangle inequality, i.e.,

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X.

A set X together with a metric d is called a metric space.

Examples.

• X = R with d(x, y) = |x − y| is a metric space.

• Let X = H be a Hilbert space; then d(x, y) = ||x − y|| gives a
metric on X (see Exercise 6.1).

• Let X = R/Z; then d(x, y) = |e2πix − e2πiy| defines a metric on
X.

• On any set X we can establish the discrete metric as follows.
Set

d(x, y) =

{
0 if x = y,

1 if x �= y.

Lemma 6.1.1 For three points x, y, z in a metric space X we have

|d(x, y) − d(x, z)| ≤ d(y, z).

Proof: Since d(x, y) ≤ d(x, z) + d(y, z) we get d(x, y) − d(x, z) ≤
d(y, z). Changing the roles of y and z gives d(x, z)−d(x, y) ≤ d(y, z).
Together this implies the claim. �

For a metric d, the geometric meaning of d(x, y) is that of a distance
between the points x and y. Let (X, d) be a metric space. A sequence
(xn) in X is said to converge to x ∈ X if the sequence of distances
d(xn, x) tends to zero. In other words, xn tends to x if for every
ε > 0 there is a natural number n0 such that for all n ≥ n0,

d(xn, x) < ε.

If xn tends to x, then x is uniquely determined by the sequence xn

(Exercise 6.2), so it is justified to write

lim
n→∞ xn = x.
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Whenever the notation limn→∞ xn is used, it is implicitly stated that
the limit exists, i.e., that the sequence (xn) indeed converges.

Let X and Y be metric spaces. A map f : X → Y is called continuous
if f maps convergent sequences to convergent sequences and preserves
their limits, i.e., if

lim
n→∞ f(xn) = f

(
lim

n→∞ xn

)
for every convergent sequence xn in X. For functions f : R → R this
notion coincides with the notion of continuity from analysis.

Examples.

• If X is discrete, then every map f : X → Y is continuous
(Exercise 6.4).

• The natural projection R → R/Z is continuous.

Let X be a set; then two metrics d1 and d2 on X are called equivalent
if they define the same set of convergent sequences, i.e., d1 ∼ d2 if
for all sequences (xn),

(xn) converges in d1 ⇔ (xn) converges in d2.

The following proposition describes an instance where this happens.

Proposition 6.1.2 Let (X, d) be a metric space. Let f : X → X
be a homeomorphism; i.e., f is continuous, bijective, and the inverse
f−1 also is continuous. Then the metric

d′(x, y) = d(f(x), f(y))

is equivalent to d.

Proof: The proof of the fact that d′ is a metric is left to the reader
(Exercise 6.6). Assume, then, that xn is a sequence that converges
in the metric d. Then f(xn) converges in d, since f is continuous,
which means that xn converges in d′. The inverse direction follows
similarly by the fact that f−1 is continuous. �

Examples.
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• The metric
d(x, y) =

∣∣x3 − y3∣∣
is equivalent to the standard metric on R.

• The discrete metric on R is not equivalent to the standard
metric on R (see Exercise 6.9).

Let (X, d) be a metric space. The diameter of (X, d) is defined to be

diam(X) def
= sup

x,y∈X
d(x, y).

The diameter can be a real number ≥ 0 or infinity. The next lemma
shows that every metric is equivalent to one of finite diameter.

Lemma 6.1.3 Let X be a set. For every metric d on X there is an
equivalent metric d′ with values in [0, 1].

Proof: Let d be a metric on X. We claim that

d′(x, y) =
d(x, y)

d(x, y) + 1

is an equivalent metric. First we have to show that it is a metric at
all. The map f(x) = x/(x + 1) is a monotonic homeomorphism of
[0,∞) to [0, 1). Since f(x) = 0 is equivalent to x = 0, the positive
definiteness of d′ is clear. To see that the triangle inequality holds,
let a, b, c ≥ 0 satisfy a ≤ b + c. We now have to show that then
f(a) ≤ f(b) + f(c). If a ≤ b, then f(a) ≤ f(b) ≤ f(b) + f(c), so
the claim follows. The same holds if a ≤ c. So assume that a ≥ b, c.
Then a ≤ b + c implies

a

a + 1
≤ b

a + 1
+

c

a + 1
≤ b

b + 1
+

c

c + 1
.

Since f is a homeomorphism, it follows that a sequence an in [0,∞)
tends to zero if and only if f(an) tends to zero. This implies that d
and d′ are equivalent. �

A set X together with an equivalence class of metrics [d] is called a
metrizable space or a metrizable topological space.

Let (X, [d]) be a metrizable space. A dense subset of X is a subset
D ⊂ X such that for every x ∈ X there is a sequence yn ∈ D such
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that yn converges to x. The standard example of this is the subset
Q of R, which is a dense subset, since every real number can be
approximated by rationals. If the dense subset is countable, we can
choose a sequence yn in D such that for every point x ∈ X there is
a subsequence of yn that converges to x. Such a sequence is called a
dense sequence.

Lemma 6.1.4 Let X,Y be metrizable spaces. Let f, g be continuous
maps from X to Y . If f and g agree on a dense subset D of X, then
they are equal.

Proof: Let x ∈ X; then there is a sequence dn ∈ D with limit x.
Therefore, since f and g are continuous,

f(x) = f(lim
n

dn) = lim
n

f(dn) = lim
n

g(dn) = g(lim
n

dn) = g(x).

�

For the purposes of this book the notion of a metrizable space is quite
satisfactory, but for the convenience of the reader who may consult
other sources we are obliged to give the connection of this concept
to the more general notion of a topological space.

Let (X, d) be a metric space. A subset U ⊂ X is called open if for
every u ∈ U there is a positive real number r > 0 such that the open
ball of radius r around u,

Br(u) = Bd
r (u) = {x ∈ X|d(x, u) < r},

is fully contained in U . The triangle inequality ensures that every
open ball Br(u) is itself an open set, and thus the open sets are
precisely the unions of open balls.

Let O be the set of all open sets in X, so O is a subset of the power
set P(X). The following properties are immediate:

(a) ∅, X ∈ O,

(b) U, V ∈ O ⇒ U ∩ V ∈ O, and

(c) if Uj ∈ O for all j in some index set J , then the union
⋃

j∈J Uj

also lies in O.
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A subset O of P(X) satisfying (a), (b), and (c) is called a topology
on X. So we see that a metric d gives rise to a topology on X.

Lemma 6.1.5 Two metrics d1 and d2 on a set X are equivalent if
and only if they define the same topology on X.

Proof: Let d1 and d2 be equivalent. We have to show that they
define the same topology. Therefore, let U ⊂ X be open with respect
to d1 and let u ∈ U .

Assume that there is no r > 0 such that the d2-ball of radius r is
contained in U . Then for every n ∈ N there is xn ∈ X � U such
that d2(xn, u) < 1/n, which means that the sequence xn converges
in d2 to u. Since d1 ∼ d2 it also converges in d1. Since U was open in
d1, there is r > 0 such that d1(x, u) < r ⇒ x ∈ U for every x ∈ X.
Since xn tends to u in d1, there is n ∈ N such that d1(xn, u) < r,
which implies xn ∈ U , a contradiction!

Hence the assumption must be false, so U indeed contains some open
d2-ball around u, and since u was arbitrary, this implies that U is
open with respect to d2. By obvious symmetry the similar argument
from d2 to d1 is also clear. Thus we have established that if d1 ∼ d2,
then the topologies agree.

For the inverse direction assume that d1 and d2 define the same open
sets. Let xn be a sequence that converges to x in d1. The definition
of convergence can be read as follows: For every r > 0 there is n0
such that for n ≥ n0 we have xn ∈ Bd1

r (x). Thus for every open set
U containing x there is n0 such that for n ≥ n0 we have xn ∈ U . The
d2-balls of arbitrary radius r > 0 are open. Hence for every r > 0
there is n0 such that for n ≥ n0 we have xn ∈ Bd2

r (x), which implies
that xn converges to x in d2. Again the direction from d2-convergence
to d1-convergence follows by symmetry of the argument. �

A set X together with a topology O will be called a topological space.
The subsets U ⊂ X that appear in the topology O are called open
sets. The space (X, O) is called metrizable if there is a metric d on
X defining O. So a metrizable space is either a set with a class of
metrics or with a topology that is induced by a metric.1

1There are many topological spaces whaich are not metrizable. We only give
one example: Let X be an infinite set and let O be the system of subsets U of X

such that either U = ∅ or the complement X � U is finite. Then O is a topology
which is not derived from a metric.



6.1. METRIC SPACES AND TOPOLOGY 87

Let X be a topological space and x a point in X. An open neighbor-
hood of x is an open set U ⊂ X that contains x. A neighborhood of
x is a set U ⊂ X that contains an open neighborhood of x.

Examples. The open interval (−1, 1) is an open neighborhood of
zero in R. The intervals [−1, 1), (−1, 1], and [−1, 1] are neighbor-
hoods of zero in R.

A subset A ⊂ X of a topological space is called closed if its comple-
ment X � A is open.

Lemma 6.1.6 A subset A of a metrizable space X is closed if and
only if for every sequence an in A that converges in X, the limit also
lies in A.

Proof: Let A be closed in X and let an be a convergent sequence
lying in A. Assume that the limit x of the sequence does not lie in
A; then it lies in the open set U = X � A. Then all but finitely
many of the an must lie in the open set U , which is a contradiction.
Hence the assumption is false, and thus x ∈ A.

For the other direction let A ⊂ X be such that every sequence in A
that converges in X already converges in A. Let B = X � A be the
complement of A. We have to show that B is open. So let b ∈ B and
assume that there is no ball Br(b) fully contained in B. Then, for
every n ∈ N there is xn ∈ A = X � B such that xn ∈ B1/n(b). This
implies that the sequence xn converges to b, and thus b must lie in
A, a contradiction. So the assumption must be false, i.e., B indeed
contains an open ball around b. Since b was arbitrary, B in fact is
open, so A is closed. �

Let A ⊂ X be an arbitrary subset of the metrizable space X. The
closure Ā of A is by definition the set of all limits of sequences in A
that converge in X. It follows that Ā is the smallest closed subset
containing A (see Exercise 6.17).

Examples. The closure of the interval (0, 1) in R is the interval
[0, 1]. The closure of the set Q in R is R.

When A ⊂ X is an arbitrary subset of a metrizable space, then
every metric on X can be restricted to a metric on A, so A natu-
rally becomes a metrizable space. Thus all notions connected with
metrizable spaces can be applied to arbitrary subsets as well.
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A metrizable space (X, [d]) is called compact if every sequence xn in
X has a convergent subsequence.2

Examples. Let a < b be real numbers; then the interval [a, b] is com-
pact since we know from analysis that every sequence in this interval
has a convergent subsequence. More generally, bounded closed sub-
sets in Rn are compact (Exercise 6.11). A discrete space is compact
if and only if it is finite (see Exercise 6.10).

Lemma 6.1.7 Continuous images of compact sets are compact sets.
In other words, if X and Y are compact metrizable spaces and the
map f : X → Y is continuous, then the image f(X) is a compact
subset of Y .

Proof: Let yn be a sequence in f(X). For each n choose a preimage
xn ∈ X of yn, i.e., an xn such that f(xn) = yn. The sequence xn then
has a convergent subsequence xnk

. Since f is continuous, it follows
that ynk

= f(xnk
) is a convergent subsequence of yn. �

A metrizable space X is called σ-compact if there is a sequence Kn ⊂
Kn+1 of compact subsets such that X =

⋃
n Kn. Such a sequence is

called a compact exhaustion of X.

Examples.

• The real line is σ-compact, since R is the union of the compact
intervals [−n, n], n ∈ N.

• Let X be a discrete space that is countable. Then X is σ-
compact, since there are finite sets Kn ⊂ Kn+1 such that X =⋃

n Kn.

Finally, a metrizable space X is called locally compact if every point
x ∈ X has a compact neighborhood. This can be rephrased as fol-
lows: X is locally compact if given a metric d for X, for every point
x ∈ X there is an r > 0 such that the closed ball

B̄r(x) = {y ∈ X|d(x, y) ≤ r}
2For a general topological space there is a different notion of compactness,

which is discussed in Exercise 6.18.
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is compact. Examples are Rn and discrete spaces. An example of
a space that fails to be locally compact is an infinite-dimensional
Hilbert space (see Exercise 6.21).

A space that is locally compact and σ-compact is also called σ-locally
compact.

Examples. The spaces R and R/Z are σ-locally compact, as is any
countable discrete space.

6.2 Completion

In this section we will see that a general metric space can be com-
pleted in the same way as a separable pre-Hilbert space. As a con-
sequence all pre-Hilbert spaces can be completed.

A Cauchy sequence in a metric space (X, d) is a sequence (xn)n∈N

such that for every ε > 0 there is n0 ∈ N with

m, n ≥ n0 ⇒ d(xn, xm) < ε.

Example. The sequence xn = 1
n is a Cauchy sequence in R. To see

this let ε > 0 and choose n0 ∈ N with n0 > 3/ε. Then for n, m ≥ n0,

|xn − xm| = | 1
n

− 1
m

| ≤ 1
n

+
1
m

≤ 2
n0

< ε.

Lemma 6.2.1 Every convergent sequence is a Cauchy sequence.

Proof: Let (xn) be a sequence in X, convergent to x ∈ X. Let ε > 0
and choose n0 ∈ N such that for every n ≥ n0,

d(xn, x) <
ε

2
.

Then, for any two m, n ≥ n0 we have

d(xn, xm) ≤ d(xn, x) + d(xm, x)

<
ε

2
+

ε

2
= ε.

Hence (xn) is a Cauchy sequence. �

The point about the definition of a Cauchy sequence becomes clear
in the example xn = 1

n . This sequence already is a Cauchy sequence
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in the subspace Y = R � {0} but it does not converge in this sub-
space, since Y does not contain its limit zero. So Cauchy sequences
detect “holes” in metric spaces. If such holes exist like in the case
R � {0}, they can be filled by plugging in new elements like zero in
the example. So, completion means the construction of a new metric
space X̄ and an embedding X ↪→ X̄ in a way that X̄ has no holes
and the new points X̄ � X fill the holes of X. For this we first need
to make clear what we mean by embedding X into another space.

Let X,Y be metric spaces. An isometry from X to Y is a map
f : X → Y with

d(x, x′) = d(f(x), f(x′))

for any two elements x, x′ ∈ X. An isometry is continuous. A map
g : X → Y is called and isometric isomorphism if g is an isometry and
g is bijective. In that case the inverse map g−1 also is an isometry.

A metric space X is called complete if every Cauchy sequence in X
converges.

Theorem 6.2.2 (Completion)
Let X be a metric space. Then there exists an isometry ϕ : X → X̄
into a complete metric space X̄ such that the image ϕ(X) is dense
in X̄. The pair (X̄, ϕ) is called a completion of X.

The completion is uniquely determined in the following sense If ψ :
X → Y is another isometry onto a dense subspace of a complete
space Y , then there is a unique isometric isomorphism α : X̄ → Y
such that ψ = α ◦ ϕ. We illustrate this by the following commutative
diagram:

X X̄

Y

�ϕ

�
�

���
ψ

�
α

Proof: Let (X, d) be a given metric space. We will first construct
X̄. Let X̃ be the set of all Cauchy sequences in X. We get a natural
map ϕ̃ : X → X̃ mapping x ∈ X to the constant sequence xn = x.

On X̃ we introduce an equivalence relation as follows. We say that a
sequence (xn) is equivalent to (yn) and we write this as (xn) ∼ (yn),
if the sequence of numbers d(xn, yn) tends to zero. Note that if (yn)
is a subsequence of (xn) ∈ X̃, then (yn) ∼ (xn).
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Now we define

X̄ def
= X̃/ ∼,

so X̄ is the set of equivalence classes in X̃.

We say that a Cauchy sequence (xn) is a strong Cauchy sequence if

d(xm, xn) <
1

min(m, n)

holds for all m, n ∈ N. Every Cauchy sequence has a subsequence
which is strong.

Lemma 6.2.3 Let (xn) and (yn) be in the space X̃, then the se-
quence d(xn, yn) converges in R and its limit remains the same if
(xn) and (yn) are replaced by equivalent sequences.

Assume in particular that (xn) and (yn) are strong Cauchy sequences.
Then for every k ∈ N,

d(xk, yk) ≤ 2
k

+ lim
n

d(xn, yn)

Proof of the lemma. For m, n ∈ N we use Lemma 6.1.1 to estimate

|d(xn, yn) − d(xm, ym)|

= |d(xn, yn) − d(xn, ym) + d(xn, ym) − d(xm, ym)|
≤ |d(xn, yn) − d(xn, ym)| + |d(xn, ym) − d(xm, ym)|
≤ d(yn, ym) + d(xn, xm).

So if (xn) and yn) are Cauchy sequences it follows that d(xn, yn)
is a Cauchy sequence in R and since every Cauchy sequence in R
converges, this sequence indeed converges. It is a simple consequence
of the triangle inequality that each sequence can be replaced with an
equivalent one. The last assertion follows from the estimate above.

�

We define a metric d̄ on X̄ as follows. Let [xn] denote the class of
the Cauchy sequence (xn) in X̄. We define

d̄([xn], [yn]) def
= lim

n→∞ d(xn, yn).
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This limit exists and is unique by Lemma 6.2.3.

The proof that d̄ indeed is a metric is perfectly straightforward. For
instance, the triangle inequality is shown as follows,

d̄([xn], [yn]) = lim
n

d(xn, yn)

≤ lim
n

d(xn, zn) + d(zn, yn)

= d̄([xn], [zn]) + d̄([zn], [yn]).

We define ϕ : X → X̄ by

ϕ(x) def
= [ϕ̃(x)].

So we get ϕ(x) = [xn] with xn = x for every n ∈ N. It follows

d̄(ϕ(x), ϕ(y) = lim
n

d(x, y) = d(x, y),

so ϕ is an isometry. To see that the image of ϕ is dense in X̄ pick
[xn] ∈ X̄ and let ε > 0. Choose n0 ∈ N such that for m, n ≥ n0 we
have d(xn, xm) < ε/2. Let x = xn0 . Then

d̄(ϕ(x), [xn]) = lim
n

d(xn0 , xn) ≤ ε/2 < ε.

Since ε > 0 is arbitrary this implies that ϕ(X) is dense in X̄.

We next have to show that X̄ is complete. For this let ([xk])k∈N =
([xk

n])k∈N be a Cauchy sequence in X̄ indexed by k. That means that
for each k ∈ N we have a Cauchy sequence (xk

n)n∈N in X. Replacing
(xk

n)n∈N by a subsequence if necessary we can assume that (xk
n)n is

a strong Cauchy sequence. Further, replacing ([xk]) with a subse-
quence we may assume that it is a strong Cauchy sequence as well.
Set yj = xj

j , by Lemma 6.2.3 we have

d(yi, yj) = d(xi
i, x

j
j)

≤ d(xi
i, x

j
i ) + d(xj

i , x
j
j)

<
2
i

+ d̄([xi], [xj ]) +
1

min(i, j)

<
2
i

+
2

min(i, j)
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So (yj) is a Cauchy sequence in X. hence it defines an element [y]
of X̄. We want to show that the sequence [xk] converges to [y]. This
follows from

d̄([xk], [y]) = lim
j

d(xk
j , x

j
j)

≤ lim
j

2
j

+
1

min(j, k)

=
1
k
.

To finish the proof of Theorem 6.2.2 assume now that we have a
second completion ψ : X → Y as in the theorem. For X̄ ∈ X̄ choose
a sequence xn ∈ X such that ϕ(xn) converges to X̄. Define

α(X̄) def
= lim

n
ψ(xn).

This needs explanation. First, since ϕ is isometric the sequence xn

is Cauchy and thus ψ(xn) is Cauchy, hence convergent, so the limit
exists. It is easy to see that the limit does not depend on the choice
of the sequence xn. Hence α is well defined. Further, it is straightfor-
ward to see that that α is isometric. The inverse map α−1 is defined
in the same way with reversed roles, so

α−1(y) def
= lim

n
(ϕ(xn),

where xn is an arbitrary sequence in X with ψ(xn) → y. Then
αα−1 = Id and α−1α = Id. By density arguments the map α is
uniquely determined. �

If the metric space X carries additional structure, this is often pre-
served in its completion X̄. For example the completion of a pre-
Hilbert space is a Hilbert space. Also consider L1

bc(R) with the metric

d(f, g) def
= ||f − g||1 . Then its completion

L1(R) def
= L1

bc(R)

preserves the structure of a vector space. For example if f, g ∈ L1(R)
and (fn) and (gn) are sequences converging to f and g resp., then
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their sum can be defined by

f + g def
= lim

n
(fn + gn).

Also the norm ||.||1 extends to L1(R) and makes it a complete normed
vector space.

6.3 LCA Groups

A metrizable abelian group is an abelian group A together with a
class of metrics [d] (or a topology that comes from a metric) such
that the multiplication and inversion,

A × A → A,
(x, y) �→ xy,

and
A → A,
x �→ x−1,

are continuous. In other words, we insist that when xn is a sequence
converging to x and yn converges to y, then the sequence xnyn con-
verges to xy and the sequence x−1

n converges to x−1.

Examples.

• Any group with the discrete metric is a metrizable group.

• We write R× for the set R � {0}. The groups (R, +) and
(R×, ∗) with the topology of R are examples of metrizable
groups, since if xn, yn are sequences of real numbers converging
to x and y, respectively, then xn + yn converges to x + y, and
−xn converges to −x. A similar result holds for R×.

• The group R/Z with the metric given in the previous section
is a metrizable group.

A metrizable σ-locally compact abelian group is called an LCA group.

Examples.

• Any countable abelian group with the discrete metric is an
LCA group (see Exercise 6.15).

• The groups R and R/Z are LCA groups.
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Lemma 6.3.1 An LCA group contains a countable dense subset.

Proof: This result is a consequence of the σ-compactness. Let A =⋃
n∈N

Kn be a compact exhaustion of A and choose a metric for A.
By Exercise 6.18, K1 can be covered by finitely many open balls of
radius 1. Let a1, . . . , ar1 be their centers. Next, K2 can be covered by
finitely many open balls of radius 1/2 with centers ar1+1, . . . , ar2 and
so on, so Kj can be covered by finitely many open balls of radius 1/j
with centers arj−1+1, . . . , arj . The sequence (ak) thus constructed is
dense in A. �

Let A be an LCA group. A compact exhaustion (Kn) of A is called
absorbing if for every compact set K ⊂ A there is an index n ∈ N
such that K ⊂ Kn; i.e., the exhaustion absorbs all compact sets.

Examples.
The exhaustion Kn = [−n, n] of R is absorbing, since every compact
subset of R is bounded. The exhaustion Kn = [−n, n] � (0, 1

n) is
not absorbing, since no Kn contains the compact interval [0, 1].

Lemma 6.3.2 Let A be an LCA group; then there exists an absorb-
ing exhaustion.

Proof: Let A be an LCA group and let U be an open neighborhood
of the unit such that its closure V = Ū is compact. Let Ln be a given
compact exhaustion. Then for each n, the set Kn = V Ln = {vl|v ∈
V, l ∈ Ln} is compact again, since it is the image of the compact
set V ×Ln under the multiplication map, which is continuous. Since
Ln ⊂ Kn we infer that the sequence (Kn) again forms a compact
exhaustion. To show that it is absorbing let K ⊂ A be a compact
subset.

Assume that for each n ∈ N there is xn ∈ K that is not in Kn. Since
K is compact the sequence xn has a convergent subsequence. We
may replace xn by this subsequence to assume that xn → x. Since
(Ln) is an exhaustion, there is n0 ∈ N such that x ∈ Ln0 . The set Ux
is an open neighborhood of x, so there exists n1 such that xn ∈ Ux
for n ≥ n1. For n ≥ n0, n1 we infer

xn ∈ Ux ⊂ ULn ⊂ V Ln = Kn,

which is a contradiction. Hence the assumption is wrong, so K ⊂ Kn

for some n, i.e., the exhaustion Kn is absorbing. �
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6.4 Exercises

Exercise 6.1 Let V be a vector space with a norm ||.||. Show that d(x, y) =
||x − y|| defines a metric on V .

Exercise 6.2 Let xn be a sequence in the metric space X that converges
to x ∈ X and to y ∈ X. Show that x = y.

Exercise 6.3 Let X be a discrete metric space, i.e., the metric is the
discrete metric. Show that a sequence (xn) in X converges to x if and only
if it becomes stationary, i.e., if there is n0 ∈ N such that for all n ≥ n0 we
have xn = x.

Exercise 6.4 Let X be a discrete space. Let Y be a metric space and
f : X → Y an arbitrary map. Show that f is continuous.

Exercise 6.5 Show that every finite subgroup of R/Z is cyclic.

Exercise 6.6 Let (X, d) be a metric space. Let f : X → X be an injective
map. Show that

d′(x, y) = d(f(x), f(y))

defines a metric on X.

Exercise 6.7 Let X,Y, Z be metric spaces and let g : X → Y and f :
Y → Z be continuous maps. Show that the composition f ◦ g : X → Z is
continuous.

Exercise 6.8 Let X be a metrizable space. Show that the following are
equivalent:

(a) X is locally compact.

(b) Every x ∈ X has an open neighborhood U such that the closure Ū
is compact.

(c) Every x ∈ X has an open neighborhood U such that there is a
compact subset C of X that contains U .

Exercise 6.9 Show that the discrete metric is not equivalent to the stan-
dard metric on R.

Exercise 6.10 Show that a discrete space is compact if and only if it is
finite.



6.4. EXERCISES 97

Exercise 6.11 On the real vector space Rn, for a natural number n, we
define the Euclidean norm by

||a||2 =
√

a2
1 + a2

2 + · · · + a2
n, a ∈ Rn.

Show that

(a) d(a, b) = ||a − b||2 defines a metric on Rn,

(b) a sequence (a(j))j∈N in Rn converges if and only if every entry a
(j)
k

for k = 1, . . . n converges,

(c) a subset A ⊂ Rn is compact if and only if A is closed and bounded,
i.e., there is a C > 0 such that ||a||2 ≤ C for every a ∈ A.

Exercise 6.12 Let X be an infinite set. Define a subset O of the power
set P(X) by

A ∈ O ⇔ A = ∅ or X � A is finite.

Show that O is a topology.

Exercise 6.13 Let (xn) be a Cauchy sequence in a metric space (X, d).
Let (xnk

)k∈N be a subsequence. Show that (xn) converges if and only if
(xnk

) converges. and in that case the limits agree.

Exercise 6.14 Let X be a metric space and ϕ : X → X̄ its comple-
tion. Show that for every complete metric space Y and every isome-
try/continuous map ψ : X → Y there exists a unique isometry/continuous
map α : X̄ → Y such that ψ = α ◦ ϕ.

Exercise 6.15 Show that every countable discrete group is an LCA group.

Exercise 6.16 For f, g ∈ S(R) let

d(f, g) =
∞∑

m,n=0

1
2m+n

σm,n(f − g)
1 + σm,n(f − g)

.

Show that d is a metric on the space S(R) and that a sequence (fj) converges
to f ∈ S in this metric iff for every two m, n ≥ 0 the sequence σm,n(f − fj)
tends to zero as j → ∞.

Exercise 6.17 Show that the closure of a subset A ⊂ X of a metric space
is the smallest closed subset containing A; i.e., show that Ā is closed and
that each closed set B that contains A also contains Ā.
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Exercise 6.18 Let X be a topological space. An open covering of X is
a family (Uj)j∈J of open sets such that X =

⋃
j∈J Uj . A subcovering is a

subfamily (Uj)j∈F that still is a covering; i.e., X =
⋃

j∈F Uj , where F is
a subset of the index set J . A subcovering is called a finite subcovering, if
F is a finite set. Now X is called a compact space if every open covering
of X admits a finite subcovering. Show that for a metrizable space X this
definition of compactness coincides with the one given in the text; i.e., show
that every sequence in X has a convergent subsequence if and only if every
open covering has a finite open subcovering.

Exercise 6.19 For j ∈ N let Aj be a nontrivial compact abelian group.
Let

A =
∏
j∈N

Aj .

Let dj be a metric on Aj such that Aj has diameter 1 and define

d(x, y) =
∑
j∈N

1
2j

dj(xj , yj).

(a) Show that d(x, y) defines a metric on A that makes A a compact
LCA group.

(b) Show that for each j ∈ N the projection A → Aj is a continuous
group homomorphism.

(c) Show that if each Aj is finite, then every continuous group homo-
morphism R → A is trivial.

Exercise 6.20 For j ∈ N let Aj be a compact group. Suppose that for
i < j there is a continuous group homomorphism ϕj

i : Aj → Ai. Suppose
that ϕk

i ◦ϕj
k = ϕj

i whenever i < k < j. Let lim← Aj be the set of all x ∈∏j Aj

such that xi = ϕj
i (xj) for all i < j.

(a) Show that lim← Aj is a closed subgroup of
∏

j Aj . This group is called
the projective limit of the Aj .

(b) Show that the projections induce continuous group homomorphisms

pi : lim← Aj → Ai

for i ∈ N that satisfy ϕk
i ◦ pk = pi whenever k > i.

(c) Suppose there is a compact abelian group A and a sequence of con-
tinuous group homomorphisms qi : A → Ai such that ϕk

i ◦ qk = qi

whenever k > i. Show that there is a unique continuous group ho-
momorphism α : A → lim← Aj such that for each i the diagram
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lim← Aj
� Ai

pi

�
qi

A
	

	
	
α

is commutative. This property is called the universal property of the
projective limit.

Exercise 6.21 Show that an infinite-dimensional separable Hilbert space
fails to be locally compact.

(Hint: Let (en)n∈N be an orthonormal system. Show that no subsequence
of (en) can be convergent.)

Exercise 6.22 Show that every open subgroup of a metrizable group is
also closed.

(Hint: Let H be an open subgroup of G. Write G as a union of left cosets
of H.)

Exercise 6.23 For j ∈ N let Bj be a discrete group. Suppose that for
i < j there is a group homomorphism ψj

i : Bi → Bj such that ψk
j ◦ψi

k = ψi
j

whenever i < k < j. For b ∈ Bj and k ≥ j let bk = ψk
j (b), so b defines a

sequence (bk)k≥j . Indeed, the union ∪jBj can be identified with the set of
all these sequences. For b ∈ Bj and b′ ∈ Bj′ define b ∼ b′ if and only if
there is a k ≥ j, j′ with bk = b′

k.

(a) Show that ∼ is an equivalence relation on ∪jBj . Show that the
quotient

lim→ Bj =
⋃
j

Bj

/ ∼

becomes an abelian group with the multiplication [(bk)][(b′
k)] =

[(bkb′
k)]. This group is called the direct limit of the Bj .

(b) Show that the maps ei : Bi → lim→ Bj given by ei(b) = [(bk)] are

group homomorphisms satisfying ek ◦ ψk
i = ei whenever k > i.

(c) Suppose there is a discrete abelian group B and a sequence of group
homomorphisms fi : Bi → B such that fk ◦ ψk

i = fi whenever k > i.
Show that there is a unique group homomorphism β : lim→ Bj → B

such that for each i the diagram
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lim→ Bj
� Bi

ei

� fi

B

	
	

	�
β

is commutative. This property is called the universal property of the
direct limit.



Chapter 7

The Dual Group

In this chapter we further develop the general theory of LCA groups
in showing that the group of all characters of a given LCA group is
again an LCA group in a natural way. This then paves the way for
Pontryagin duality.

7.1 The Dual as LCA Group

Let A be an LCA group. Recall that this means that A is a σ-
compact, metrizable, locally compact abelian group.

A character of a metrizable abelian group A is a continuous group
homomorphism χ : A → T. The set of all characters of A is denoted
by Â.

Proposition 7.1.1 The characters of our standard examples are
given as follows.

(a) The characters of the group Z are given by k �→ e2πikx, where
x ∈ R/Z.

(b) The characters of R/Z are given by x �→ e2πikx, where k ∈ Z.

(c) The characters of R are given by x �→ e2πixy, where y ∈ R.

Proof: To prove (a), let ϕ : Z → T be a character. Then ϕ(1) =
e2πix for some x ∈ R/Z, and so for k ∈ Z arbitrary we get ϕ(k) =
ϕ(1)k = e2πikx.

101



102 CHAPTER 7. THE DUAL GROUP

For (c), let ϕ : R → T be a character. By continuity there is ε > 0
such that ϕ([−ε, ε]) ⊂ {Re(z) > 0}. Let y be the unique element of[− 1

4ε ,
1
4ε

]
such that ϕ(ε) = e2πiεy. Then we claim that

ϕ
(ε

2

)
= e2πi ε

2y.

To prove the claim note that ϕ( ε
2)2 = ϕ(ε) = e2πiεy, so ϕ( ε

2) =
±e2πi ε

2y, and −e2πi ε
2y does not have positive real part.

Iterating this argument gives ϕ
(

ε
2n

)
= e2πi ε

2n y, and so for k ∈ Z we
get

ϕ

(
k

2n
ε

)
= ϕ
( ε

2n

)k
= e2πi k

2n εy.

The set of all rational numbers of the form k/2n, k ∈ Z, n ∈ N, is
dense in R. Since ϕ is continuous, we conclude by Lemma 6.1.4 that
ϕ(x) = e2πixy for every x ∈ R as claimed. Finally, (b) follows from
the fact that the characters of R/Z are precisely the characters of R
that send Z to 1. �

Let A be an LCA group. Let Â be the set of all characters of A.

Lemma 7.1.2 The pointwise product χη(a) = χ(a)η(a) makes Â an
abelian group, called the dual group, or the Pontryagin dual, of A.

Proof: Let χ, η ∈ Â. As in the proof of Lemma 5.1.2 it can be
shown that χη and χ−1 are group homomorphisms. To see that χη
is a continuous map, let an be a sequence in A converging to a ∈ A.
Then χη(an) = χ(an)η(an). Since χ(an) converges to χ(a), and
likewise for η, it follows that χη(an) converges to χ(a)η(a) = χη(a).
Analogously one finds that χ−1 is continuous. This implies that Â is
an abelian group. �

Examples.

• The dual group of Z is isomorphic to R/Z.

• The dual group of R/Z is isomorphic to Z.

• The dual group of R is isomorphic to R.
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To prove these statements one has to show that the bijections given
in Proposition 7.1.1 are group homomorphisms. We treat only the
first case, since the others are similar. So let ϕ be the map from R/Z
to Ẑ given by

ϕ(x)(k) = ϕx(k) = e2πikx.

For every x, y ∈ R/Z we then have

ϕx+y(k) = e2πik(x+y) = e2πikxe2πiky = ϕx(k)ϕy(k),

which implies the claim.

We will now show that for a given LCA group A the dual Â is an
LCA group again.

Fix an absorbing compact exhaustion A =
⋃

n∈N
Kn. For χ, η ∈ Â

and n ∈ N set
d̂n(χ, η) = sup

x∈Kn

|χ(x) − η(x)|

and

d̂(χ, η) =
∞∑

n=1

1
2n

d̂n(χ, η).

Lemma 7.1.3 The function d̂ is a metric on the set Â.

As we have constructed it, this metric is bounded by 2.

Proof: We will show only the triangle inequality because the other
properties are obvious. For χ, η, α ∈ Â we compute

d̂n(χ, η) = sup
x∈Kn

|χ(x) − η(x)|
= sup

x∈Kn

|χ(x) − α(x) + α(x) − η(x)|
≤ sup

x∈Kn

|χ(x) − α(x)| + sup
x∈Kn

|α(x) − η(x)|

= d̂n(χ, α) + d̂n(α, η),

and so

d̂(χ, η) =
∞∑

n=1

1
2n

d̂n(χ, η) ≤
∞∑

n=1

1
2n

(
d̂n(χ, α) + d̂n(α, η)

)
= d̂(χ, α) + d̂(α, η).

�
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Theorem 7.1.4 With the metric above, the group Â is a topological
abelian group. A sequence χn converges in this metric if and only
if it converges locally uniformly, so the metric class or topology does
not depend on the exhaustion chosen. With this topology Â is an
LCA group.

Proof: First we have to show that the group operations on Â are
continuous. For this let χj and ηj be sequences in Â converging to
χ and η, respectively. Then, for every natural number n,

d̂n(χjηj , χη) = sup
x∈Kn

|χj(x)ηj(x) − χ(x)η(x)|
= sup

x∈Kn

|(χj(x) − χ(x))ηj(x) + χ(x)(ηj(x) − η(x))|
≤ sup

x∈Kn

|χj(x) − χ(x)| + sup
x∈Kn

|ηj(x) − η(x)|

= d̂n(χj , χ) + d̂n(ηj , η).

Multiplying this by 1/2n and summing over n gives

d̂(χjηj , χη) ≤ d̂(χj , χ) + d̂(ηj , η).

Thus χjηj tends to χη, and it follows that multiplication is contin-
uous. The inversion is dealt with in a similar fashion, so it follows
that (Â, [d]) is a metrizable abelian group. Now, a sequence χj in Â
converges if and only if it converges uniformly on each Kn. Since the
exhaustion (Kn) was absorbing, this means that the sequence con-
verges if and only if it converges uniformly on every compact subset
of A, which is equivalent to locally uniform convergence, since A is
locally compact.

It remains to show that Â is locally compact and σ-compact. Let
d be a metric on A giving the fixed topology. For r > 0 let Br =
Br(1) = {a ∈ A|d(a, 1) < r}. Set

Ln = {χ ∈ Â | χ(B 1
n
) ⊂ {Re(z) ≥ 0}}.

We will show that the Ln form a compact exhaustion.

Lemma 7.1.5 Let n ∈ N. For every ε > 0 there is δ > 0 such that
for every χ ∈ Ln,

χ(Bδ) ⊂ {z ∈ T : |z − 1| < ε}.
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Proof: Let n ∈ N and ε > 0. For k ∈ N and r > 0 let

(Br)k = {x1 · x2 · · · · xk ∈ A|x1, x2, . . . , xk ∈ Br}.

The space A × A is a metric space with the metric

d((a, a′), (b, b′)) = d(a, b) + d(a′, b′).

The ε-δ criterion of continuity for the multiplication map implies
that there is δ > 0 such that

d((a, 1), (b, 1)) < 2δ ⇒ d(ab, 1) <
1
n

,

which implies that
(Bδ)2 ⊂ B 1

n
.

Iteration of this argument gives that for each k ∈ N there is δk > 0
such that

(Bδk
)k ⊂ B 1

n
.

Let k ∈ N be so large that |e π
2k

i − 1| < ε. We claim that δk satisfies
the condition of the lemma. For this let x ∈ Bδk

; then the elements
x, x2, . . . , xk are all in B 1

n
, and therefore for every χ ∈ Ln the real

parts of χ(x), χ(x)2, . . . , χ(x)k are all nonnegative. This can be so
only if χ(x) = e

π
2k

it for some t ∈ [−1, 1], which implies |χ(x)−1| < ε.
So we have shown that

χ(Bδk
) ⊂ {z ∈ T : |z − 1| < ε}.

�

From this lemma we now deduce that Ln is compact. Let χj be a
sequence in Ln. We have to find a convergent subsequence, that is, a
locally uniformly convergent subsequence. Let aj be a dense sequence
in A as in Lemma 6.3.1. Since the sequence (χj(a1))j takes values
in the compact set T, there is a subsequence χ1

j of χj such that the
sequence χ1

j (a1) converges. Next there is a subsequence χ2
j of χ1

j such
that χ2

j (a2) converges. Iterating we find for each k ∈ N a subsequence
χk

j of χj such that χk
j (a1), . . . , χk

j (ak) all converge. The diagonal
sequence χj

j is a subsequence of χj , and all the sequences χj
j(ak) for

varying k converge. This defines a map χ : {ak|k ∈ N} → T given by

χ(ak) = lim
j→∞

χj
j(ak).
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Now let ε > 0 and δ > 0 as in Lemma 7.1.5. Assume a−1
k al ∈ Bδ.

Then by Lemma 7.1.5 we have

|χj
j(ak) − χj

j(al)| = |χj
j(a

−1
k al) − 1| < ε,

and therefore
|χ(ak) − χ(al)| ≤ ε.

This implies that χ, being the locally uniform limit of the sequence
χj

j , extends to a unique continuous map χ : A → T. Since all the
χj

j are group homomorphisms, then so is χ, which therefore is a
character. Being the limit of the χj

j , the character χ still lies in Ln,
and hence the latter is compact. The lemma and the theorem follow.

�

Proposition 7.1.6 The group isomorphisms R/Z → Ẑ, Z → R̂/Z,
and R → R̂ given in Proposition 7.1.1 are homeomorphisms; i.e.,
they are continuous and so are their inverse maps. So in particular,
we can say that R̂ is isomorphic to R as an LCA group.

Proof: We will consider only the case of the isomorphism ϕ : R → R̂,
x �→ ϕx, since the others are similar. To see that ϕ is continuous, let
xn be a sequence in R, convergent to, say, x ∈ R. Then, for every
y ∈ R, we have

|ϕxn(y) − ϕx(y)| = |e2πixny − e2πixy|
=
∣∣∣∣∫ xn

x
2πiy e2πitydt

∣∣∣∣ ≤ 2π|y| |xn − x|.

This implies that on every bounded interval the sequence of functions
ϕxn will converge uniformly to the function ϕx; hence we have that
ϕxn converges to ϕx locally uniformly on R. We conclude that the
map ϕ is continuous.

Next we prove that the inverse ϕ−1 is continuous. For this let xn be
a sequence in R such that ϕxn is convergent in R̂ to, say, ϕx. We
have to show that xn converges to x in R. Let y ∈ R, |y| ≤ 1. Then
ϕxn(y) = e2πixny converges to e2πixy uniformly in y. This implies that
there are kn ∈ Z such that (xn − x)y = kn + εn, where the sequence
εn tends to zero in R. Since this is true for every y �= 0, the sequence
xn must be bounded. Hence there is a convergent subsequence xnk

.
Let x′ be its limit. Then by the first part we know that ϕxnk

tends to
ϕx′ , which implies that x′ = x. Since this holds for every convergent
subsequence, it follows that xn converges to x as claimed. �
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7.2 Pontryagin Duality

In this section we state the result that every LCA group is canonically
isomorphic to its bidual, i.e., the dual of the dual.

Proposition 7.2.1 If A is compact, then Â is discrete. If A is
discrete, then Â is compact.

Proof: Suppose that A is compact. We then choose the exhaustion
to be K1 = K2 = · · · = A and the metric on Â to be

d(χ, η) = sup
x∈A

|χ(x) − η(x)|.

To show that Â is discrete, it suffices to show that for every two
characters χ and η, if d(χ, η) ≤ √

2, then χ = η. For this let α = χ−1η
and assume d(α, 1) ≤ √

2. This means that

α(A) ⊂ {Re(z) ≥ 0}.

Since α(A) is a subgroup of T, we infer that α(A) = {1}, so α = 1,
i.e., χ = η.

Now let A be discrete. Being σ-compact, A is countable. Let (ak)k∈N

be an enumeration of A. Let χj be a sequence in Â. As in the proof of
Theorem 7.1.4 we find a subsequence χj

j of χj such that all sequences
χj

j(ak) converge. But this just means that χj
j converges pointwise,

and hence locally uniformly. Thus the limit is a character again, and
so Â is compact. �

The examples of Proposition 7.1.1 suggest that the bidual ˆ̂
A should

coincide with A. Indeed, we have the following theorem.

Theorem 7.2.2 (Pontryagin Duality) Let A denote an LCA group.
Then the map

A → ˆ̂
A,

a �→ δa, δa(χ) = χ(a),

is an isomorphism of LCA groups.
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The proof relies on deep structure theorems on LCA groups and will
not be given here. The interested reader is referred to [11].

Note that the duality between Z and R/Z and the self-duality of R
proves the theorem for these groups.

7.3 Exercises

Exercise 7.1 Let K be a compact group. Show that there is no continuous
group homomorphism η : K → R except the trivial one.

Exercise 7.2 Let A and B be LCA groups. Show that there is an isomor-
phism of LCA groups

Â × B ∼= Â × B̂.

Exercise 7.3 Let C× denote the multiplicative group of the complex num-
bers without zero. Show that C× is an LCA group and show that

Ĉ× ∼= Z × R.

Exercise 7.4 Let A be an LCA group. Show that there is a sequence Vn

of neighborhoods of the unit element e such that

V 2
n+1 = {uv|u, v ∈ Vn+1} ⊂ Vn

and ⋂
n∈N

Vn = {e}.

(Hint: Show that the continuity of the multiplication implies that for every
neighborhood V of the unit there is a neighborhood U of the unit such that
U2 ⊂ V . Now choose a metric and consider balls around the unit.)

Exercise 7.5 For j ∈ N let Aj be a finite abelian group. Consider the
compact LCA group

∏
j Aj (Exercise 6.19). Show that

∏̂
j

Aj
∼=
⊕

j

Âj ,

where the direct sum on the right-hand side is the set of all χ ∈∏j Âj with
χj = 1 for all but finitely many j, endowed with the discrete metric.
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Exercise 7.6 Let ψ : A → B be a continuous homomorphism of LCA
groups. For χ ∈ B̂ define ψ∗(χ) : A → C by

ψ∗(χ)(a) = χ(ψ(a)).

Show that ψ∗ is a continuous group homomorphism B̂ → Â.

Exercise 7.7 A metric d on an abelian group A is called invariant if

d(a, b) = d(ac, bc)

for every a, b, c ∈ A. Show that for every LCA group A there is an invariant
metric in the metric class.

(Hint: Use the isomorphism A → ˆ̂
A.)

Exercise 7.8 Let B be a closed subgroup of the LCA group A. Show that
B again is an LCA group and so is the quotient A/B.

Let res : Â → B̂ be the restriction. Show that the kernel of res is isomorphic
to Â/B.

(Hint: To construct a metric on A/B take an invariant metric on A and
take the infimum of its B-translates.)

Exercise 7.9 Let 1 → A → B → C → 1 be a short exact sequence of
LCA groups with continuous homomorphisms. Show that this induces an
exact sequence

1 → Ĉ → B̂ → Â → 1.

Exercise 7.10 Let the notation be as in Exercise 6.20. Show that

l̂im← Aj
∼= lim→ Âj .

Exercise 7.11 Let the notation be as in Exercise 6.23. Show that

l̂im→ Bj
∼= lim← B̂j .



Chapter 8

Plancherel Theorem

In this chapter the general Plancherel theorem will be given. The
general Plancherel theorem is a simultaneous generalization of the
completeness of Fourier series and the Plancherel theorem for the
real line. Therefore, it shows how abstract harmonic analysis indeed
is a generalization of Fourier analysis. To be able to formulate the
general Plancherel theorem for LCA groups we first need the notion
of Haar integration.

8.1 Haar Integration

In this section we seek to generalize the Riemann integral on the reals
to a general LCA group. Indeed, it turns out that this construction
works equally well for nonabelian groups, so we may perform it on
an arbitrary metrizable, σ-locally compact group G, or an LC group
for short.

Example. Let G = GLn(R) be the group of invertible n×n-matrices
over R. Since GLn(R) ⊂ Matn(R) ∼= Rn2

, we have a natural locally
compact σ-compact topology on G. The group laws are given by
matrix multiplication and inversion and thus are continuous.

To generalize the Riemann integral we first have to give a different
description of it. So, let f be a real-valued continuous function with
compact support on R that is nonnegative, i.e., f(x) ≥ 0 for every x ∈
R. The Riemann integral of f is given by the infimum of the integrals
of Riemann step functions that dominate f . This can be stated as

111
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follows: For n ∈ N let 1n be the characteristic function of the interval[− 1
2n , 1

2n

]
. Then there are x1, . . . , xm ∈ R and c1, . . . , cm > 0 such

that

f(x) ≤
m∑

j=1

cj1n(xj + x).

Let (f : 1n) denote the following infimum

inf

⎧⎨⎩
m∑

j=1

cj

∣∣∣∣∣∣ c1, . . . , cm > 0, and there are x1, . . . , xm ∈ R
such that f(x) ≤∑m

j=1 cj1n(xj + x)

⎫⎬⎭ .

Then the Riemann integral can be described as∫ ∞

−∞
f(x)dx = lim

n→∞
1
n

(f : 1n).

On a general LC group G we replace the interval
[− 1

2n , 1
2n

]
by an

arbitrary neighborhood of the neutral element, but it is not imme-
diately clear what the replacement of the length factor 1/n might
be. Consequently, we have to alter the description of the Riemann
integral yet further. Let f0 denote the characteristic function of the
interval [0, 1]. Then

(f0 : 1n) = n

for each n ∈ N. Therefore,∫ ∞

−∞
f(x)dx = lim

n→∞
(f : 1n)
(f0 : 1n)

.

In the case of a general LC group G, we replace 1n by the character-
istic function of a compact neighborhood U of the neutral element
and fix a function f0 ≥ 0 that is nonzero. We let the neighborhood
U shrink to {e} and define∫

G
f(x)dx = lim

U→{e}
(f : 1U )
(f0 : 1U )

.

The difficulty here is to show that the limit exists.

This construction gives the existence of the so-called Haar integral.
To explain this notion let G denote an LC group. Recall the support
of a function f on a metric space X is the set

supp(f) def
= {x ∈ X | f(x) �= 0},



8.1. HAAR INTEGRATION 113

where the overline means the closure.

Let Cc(G) be the complex vector space of all continuous functions
from G to C that have compact support. For a given complex vector
space V , a linear map L : V → C is also called a linear functional on
V . We say that a function f ∈ Cc(G) is nonnegative, and we write
f ≥ 0, if f(x) ≥ 0 for every x ∈ G. A linear functional I on Cc(G)
is called an integral if for f ∈ Cc(G),

f ≥ 0 ⇒ I(f) ≥ 0.

Example. Let x ∈ G and let δx(f) = f(x), where f ∈ Cc(G). Then
δx is an integral, called the Dirac distribution at x.

If it is clear which integral to use, we will also write

I(f) =
∫

G
f(x)dx.

If f, g ∈ Cc(G) are real-valued, we write f ≥ g if f − g ≥ 0. It then
follows that

f ≥ g ⇒ I(f) ≥ I(g).

The following lemma is often used.

Lemma 8.1.1 For every integral on G we have∣∣∣∣∫
G

f(x)dx

∣∣∣∣ ≤
∫

G
|f(x)|dx.

Proof: Note first that since the integral is C-linear and maps real-
valued functions to R, we have Re

(∫
G f(x)dx

)
=
∫
G Re(f(x))dx.

Next, to prove the lemma, we may multiply f by a complex number
θ of absolute value 1 without changing either side of the inequality
in question. So we may assume that

∫
G f(x)dx is real. So assuming

that we have proven the claim for real-valued functions, we can argue
as follows:∣∣∣∣∫

G
f(x)dx

∣∣∣∣ =
∣∣∣∣Re
(∫

G
f(x)dx

)∣∣∣∣ =
∣∣∣∣∫

G
Re(f(x))dx

∣∣∣∣
≤
∫

G
|Re(f(x))|dx ≤

∫
G

|f(x)|dx,
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since |Re(f(x))| ≤ |f(x)|. So it remains to prove the claim for a
real-valued function f . Let

f± = max(±f, 0).

Then f± ∈ Cc(G), the function f± is nonnegative, one has f =
f+ − f−, and |f | = f+ + f−, so that∣∣∣∣∫

G
f(x)dx

∣∣∣∣ =
∣∣∣∣∫

G
f+(x)dx −

∫
G

f−(x)dx

∣∣∣∣
≤
∣∣∣∣∫

G
f+(x)dx

∣∣∣∣+ ∣∣∣∣∫
G

f−(x)dx

∣∣∣∣
=
∫

G
f+(x)dx +

∫
G

f−(x)dx =
∫

G
|f(x)|dx.

This finishes the proof of the lemma. �

Let s ∈ G and f ∈ Cc(G). For x ∈ G define

Lsf(x) = f(s−1x),

the left translation by s. Then the function Lsf again lies in Cc(G)
with Ls(Ltf) = Lstf for s, t ∈ G and L1f = f . Thus the group
G acts on Cc(G) by left translation. An integral I : Cc(G) → C is
called invariant or left invariant if

I(Lsf) = I(f)

holds for all f ∈ Cc(G) and all s ∈ G. Using the above notation
we note that an integral

∫
G dx is invariant if and only if for every

f ∈ Cc(G) and every y ∈ G we have∫
G

f(yx)dx =
∫

G
f(x)dx.

Consider the example G = R and the linear functional

I : Cc(R) → C,
f �→ I(f) =

∫∞
−∞ f(x)dx.

This gives an invariant integral on G = R, called the Riemann inte-
gral.

The aim of this chapter is to generalize this linear map I to the case
of an arbitrary G as follows.
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Theorem 8.1.2 There exists a non-zero invariant integral I of G.
If I ′ is a second non-zero invariant integral, then there is a number
c > 0 such that I ′ = cI. Any such invariant integral is called a Haar
integral.

For the uniqueness part of the theorem we say that the invariant
integral is unique up to scaling. A proof of this theorem is given in
Appendix B.

Corollary 8.1.3 For every non-zero invariant integral I and every
g ∈ Cc(G) with g ≥ 0 we have that I(g) = 0 implies g = 0.

Proof: Let g ∈ Cc(G) with g ≥ 0 and g �= 0. We have to show that
I(G) �= 0. For this choose f ∈ Cc(G) with f ≥ 0 and I(f) �= 0. Since
g �= 0 there exist x1, . . . xn ∈ G and c1, . . . cn > 0 such that

f ≤
n∑

j=1

cj Lxjg.

Therefore,

0 < I(f) ≤
n∑

j=1

cj I(Lxjg)

=

⎛⎝ n∑
j=1

cj

⎞⎠ I(g),

and hence I(g) �= 0. �

Lemma 8.1.4 The space Cc(G) is a pre-Hilbert space with the inner
product

〈f, g〉 =
∫

G
f(x)g(x)dx.

Proof: The only thing that needs to be established is the positive
definiteness. So assume that f ∈ Cc(G) with 〈f, f〉 = 0. Then the
function |f |2 ∈ Cc(G) is positive; hence Corollary 8.1.3 implies that
|f |2 = 0, which implies that f = 0. �

The Hilbert space completion of Cc(G) is called L2(G). It does not
depend on the choice of the Haar integral, since a different choice
only varies the inner product by a scalar.
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Examples of Haar integrals

• A Haar integral on R is given by

I(f) =
∫ ∞

−∞
f(x)dx.

• A Haar integral on R/Z is given by

I(f) =
∫ 1

0
f(x)dx.

• A Haar integral on the multiplicative group R×
+ is given by

I(f) =
∫ ∞

0
f(x)

dx

x
.

• The group GLn(R) of all invertible real n × n matrices is an
LC group. This will not be proven until Chapter 9, but we
nevertheless give the Haar integral here. It is

I(f) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
f

⎛⎜⎝ a1,1 · · · a1,n
...

...
an,1 · · · an,n

⎞⎟⎠ da1,1 · · · dan,n

|det(a)|n

(see Exercise 8.7).

8.2 Fubini’s Theorem

Let G and H be metrizable, σ-compact, locally compact groups.
Then the Cartesian product G × H is a group of the same type, so
it has a Haar integral. We will now show that the Haar integral of
G × H is given as a product of the Haar integrals of G and H.

Theorem 8.2.1 Let IG(g) =
∫
G g(x)dx be a Haar integral on G.

Then for every f ∈ Cc(G × H) the function

y �→ IG(f(., y)) =
∫

G
f(x, y)dx
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lies in Cc(H). Let IH(h) =
∫
H h(y)dy be a Haar integral on H. Then

a Haar integral on G × H is given by

I(f) =
∫

H

∫
G

f(x, y)dx dy.

This operation can also be performed in the opposite order, yielding
the same result, so∫

H

∫
G

f(x, y)dx dy =
∫

G

∫
H

f(x, y)dy dx.

Proof: We say that a sequence gn in Cc(G) converges1 to a function
g ∈ Cc(G) if gn converges to g uniformly on G and there is a compact
set K ⊂ G such that supp(gn) ⊂ K for every n ∈ N. It then follows
that the support of g is also contained in K.

Lemma 8.2.2 If a sequence gn converges to g in Cc(G), then the
sequence I(gn) converges to I(g).

Proof: Let K ⊂ G be compact with supp(gn) ⊂ K for every n, and
let χ ∈ Cc(G) be such that χ ≡ 1 on K and χ ≥ 0. Let c =

∫
G χ(x)dx.

Let ε > 0; then there is a natural number n0 such that for n ≥ n0
we have |gn(x) − g(x)| < ε/c for all x ∈ G. For n ≥ n0 we thus have∣∣∣∣∫

G
gn(x)dx −

∫
G

g(x)dx

∣∣∣∣ =
∣∣∣∣∫

G
gn(x) − g(x)dx

∣∣∣∣
≤
∫

G
|gn(x) − g(x)|dx

=
∫

G
χ(x)|gn(x) − g(x)|dx

<
ε

c

∫
G

χ(x)dx = ε.

This implies the lemma. �

Now let f ∈ Cc(G × H). Let yn be a sequence in H converging to y
and let gn(x) = f(x, yn). Since f is uniformly continuous, it follows

1The reader should be aware that this notion does not fully describe the usual
topology on Cc(G), which is an inductive limit topology. As long as one only
considers linear maps to C, however, it suffices to consider sequences as given
here.
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that gn converges to g(x) = f(x, y). This implies that the function

y �→ IG(f(., y)) =
∫

G
f(x, y)dx

is continuous.

The projection G×H → H is a continuous map, and so the image of
the support of f is compact in H. For y outside this image we have
f(x, y) = 0 for all x ∈ G, so IG(f(., y)) = 0, and hence the function
y �→ IG(f(., y)) lies in Cc(H). It thus makes sense to define

I1(f) =
∫

H

∫
G

f(x, y)dx dy.

Let s = (x0, y0) ∈ G × H. Then

I1(Lsf) =
∫

H

∫
G

f(x−1
0 x, y−1

0 y)dx dy =
∫

H

∫
G

f(x, y−1
0 y)dx dy

=
∫

H

∫
G

f(x, y)dx dy = I1(f),

so that I1 is a Haar integral. In the same way we see that

I2(f) =
∫

G

∫
H

f(x, y)dy dx

is a Haar integral, so these two integrals differ only by a scalar. To
see that this scalar actually is 1, it suffices to plug in one example of
a function that lies in C+

c (G × H) � {0}. Let g ∈ C+
c (G) and h ∈

C+
c (H) be nonzero and set f(x, y) = g(x)h(y); then f ∈ C+

c (G × H)
is nonzero and

I1(f) =
∫

G
g(x)dx

∫
H

h(y)dy = I2(f).

The theorem is proven. �

The general Fubini theorem says that on a measure space one may
interchange the order of integration in the case of absolute conver-
gence. We will prove only the special case of Haar integration that
suffices for our needs.

Let f : G → [0,∞) be continuous and define∫
G

f(x)dx = sup
ϕ∈Cc(G)
0≤ϕ≤f

∫
G

ϕ(x)dx ∈ [0,∞].
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Let g be another continuous function from G to [0,∞). For ϕ, ψ ∈
C+

c (G) with ϕ ≤ f and ψ ≤ g it follows that ϕ + ψ ≤ f + g, which
implies that

∫
G f(x)dx +

∫
G g(x)dx ≤ ∫G(f(x) + g(x))dx. Since, on

the other hand, every function η ∈ C+
c (G) such that η ≤ f +g can be

written as a sum η = ϕ + ψ as above, it follows that equality holds,
so ∫

G
(f(x) + g(x))dx =

∫
G

f(x)dx +
∫

G
g(x)dx.

Let L1
bc(G) be the set of all f : G → C that are bounded and con-

tinuous, and satisfy

||f ||
1

=
∫

G
|f(x)|dx < ∞.

Likewise, let L2
bc(G) be the set of all bounded and continuous f that

satisfy

||f ||2
2

=
∫

G
|f(x)|2dx < ∞.

Then L1
bc(G) is a subset of L2

bc(G), and both are complex vector
spaces. The latter is indeed a pre-Hilbert space with scalar product

〈f, g〉 =
∫

G
f(x)g(x)dx.

This notion, however, has to be defined. We do this as follows: Let
f ∈ L1

bc(G); then f = u + iv for real-valued functions u, v ∈ L1
bc(A).

Next let u+(x) = max(u(x), 0) and u−(x) = max(−u(x), 0). Then
the functions u± are nonnegative and continuous, and u± ≤ |f |, so
u± ∈ L1

bc(G). We have u = u+ − u−. Similarly, we get v = v+ − v−,
and so f = u+ − u− + i(v+ − v−). Now set∫

G
f(x)dx =

∫
G

u+dx −
∫

G
u−dx + i

(∫
G

v+dx −
∫

G
v−dx

)
.

Then
∣∣∫

G f(x)dx
∣∣ ≤ ∫G |f(x)|dx.

Now let H be another LC group; then the product G × H is also an
LC group. Fix a Haar integral on H.

Lemma 8.2.3 (Fubini’s theorem, weak version) Let f ∈ L1
bc(G×H)

and assume that the function y �→ ∫G f(x, y)dx lies in L1
bc(H), and

the same holds with G and H interchanged. Then∫
G

∫
H

f(x, y)dy dx =
∫

H

∫
G

f(x, y)dx dy.
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Proof: This follows directly from the definitions and Theorem 8.2.1.
�

8.3 Convolution

Back to abelian groups; let A be an LCA group. Fix a Haar integral∫
A dx. Let Â be the dual group, i.e., the group of all characters

χ : A → T. For f ∈ L1
bc(A) let f̂ : Â → C be its Fourier transform

defined by

f̂(χ) =
∫

A
f(x)χ(x)dx.

This definition of the Fourier transform fits well with the previous
one for the group R as in Section 3.3. To see this, let x ∈ R and
let ϕx be the character attached to x, i.e., ϕx(y) = e2πixy. Then for
f ∈ L1

bc(R) we have

f̂(ϕx) =
∫

R

f(y)ϕx(y)dy =
∫ ∞

−∞
f(y) e−2πixydy = f̂(x),

where the first f̂ is the new definition of the Fourier transform and
the second is the old one. This justifies the use of the same symbol
here.

For the group R/Z the dual is Z, so the Fourier transform f̂ is a
function on Z. For k ∈ Z we compute

f̂(k) =
∫

R/Z

f(y) e−2πikydy = ck(f).

So, in the case of R/Z the abstract Fourier transform is given simply
by taking the kth Fourier coefficient. In this way we see how the
theory of the abstract Fourier transform generalizes both the theory
of Fourier series and the theory of the Fourier transform on the reals.

Theorem 8.3.1 Let f, g ∈ L1
bc(A). Then the integral

f ∗ g(x) =
∫

A
f(xy−1)g(y)dy

exists for every x ∈ A and defines a function f ∗g ∈ L1
bc(A). For the

Fourier transform we have

f̂ ∗ g(χ) = f̂(χ)ĝ(χ)

for every χ ∈ Â.
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Note that for the group R this definition of the convolution coincides
with the one in Section 3.2 and that the second assertion of the
present theorem generalizes Theorem 3.3.1, part c.

Proof: Assume that |f(x)| ≤ C for every x ∈ A. Then∫
A

|f(xy−1)g(y)|dy ≤ C

∫
A

|g(y)|dy = C ||g||
1
,

so the integral exists and the function f ∗g is bounded. Next we shall
prove that it is continuous. Let x0 ∈ A. Assume |f(x)|, |g(x)| ≤ C
for all x ∈ A and assume g �= 0. For a given ε > 0 there is a function
ϕ ∈ C+

c (A) such that ϕ ≤ |g| and∫
A

|g(y)| − ϕ(y)dy <
ε

4C
.

On a compact set the function f is uniformly continuous, so there is
a neighborhood V of the unit element such that x ∈ V x0, y ∈ suppϕ
implies |f(xy−1)−f(x0y

−1)| < ε/2 ||g||
1
. It follows that for x ∈ V x0,∫

A
|f(xy−1) − f(x0y

−1)|ϕ(y)dy ≤ ε

2 ‖ g ‖1

∫
A

ϕ(y) dy ≤ ε

2
,

and on the other hand,∫
A

|f(xy−1) − f(x0y
−1)|(|g(y)| − ϕ(y))dy

is less than or equal to

2C

∫
A

|g(y)| − ϕ(y)dy <
ε

2
,

so that for x ∈ x0V ,

|f ∗ g(x) − f ∗ g(x0)| =
∣∣∣∣∫

A
(f(xy−1) − f(x0y

−1))g(y)dy

∣∣∣∣
≤
∫

A
|f(xy−1) − f(x0y

−1)||g(y)|dy

=
∫

A
|f(xy−1) − f(x0y

−1)|
×((|g(y)| − ϕ(y)) + ϕ(y))dy

≤ ε

2
+

ε

2
= ε.



122 CHAPTER 8. PLANCHEREL THEOREM

Thus the function f ∗g is continuous at x0. To see that ||f ∗ g||
1

< ∞
we compute

||f ∗ g||
1

=
∫

A
|f ∗ g(x)|dx =

∫
A

∣∣∣∣∫
A

f(xy−1)g(y)dy

∣∣∣∣ dx

≤
∫

A

∫
A

|f(xy−1)g(y)|dydx

=
∫

A

∫
A

|f(xy−1)g(y)|dxdy

=
∫

A
|f(x)|dx

∫
A

|g(y)|dy = ||f ||
1
||g||

1
,

where we have applied Fubini’s theorem and used the invariance of
the Haar integral. Finally, for the Fourier transform we compute

f̂ ∗ g(χ) =
∫

A
f ∗ g(x)χ(x)dx

=
∫

A

∫
A

f(xy−1)g(y)χ(x)dy dx

=
∫

A

∫
A

f(y−1x)g(y)χ(x)dx dy

=
∫

A

∫
A

f(x)g(y)χ(yx)dx dy

=
∫

A
f(x)χ(x)dx

∫
A

g(y)χ(y)dy

= f̂(χ)ĝ(χ).

The theorem is proven. �

8.4 Plancherel’s Theorem

The following lemma will be needed in the sequel.

Lemma 8.4.1 Let A be a compact abelian group. Fix a Haar inte-
gral such that ∫

A
1dx = 1.

Then, for every two characters χ, η ∈ Â we have∫
A

χ(x)η(x)dx =

{
1 if χ = η,

0 otherwise.
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Proof: If χ = η, then χ(x)η(x) = 1, so the claim follows in this
case. Now suppose χ �= η. Then α = χη = χη−1 �= 1, so there is
a ∈ A with α(a) �= 1. Then

α(a)
∫

A
α(x)dx =

∫
A

α(ax)dx =
∫

A
α(x)dx

by the invariance of the Haar integral. Therefore,

(α(a) − 1)
∫

A
α(x)dx = 0,

which implies ∫
A

α(x)dx = 0.

�

Theorem 8.4.2 Let A be an LCA group. There is a unique Haar
measure on Â such that for every f ∈ L1

bc(A),

||f ||
2

=
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

2
;

i.e., for f ∈ L1
bc(A) the Fourier transform f̂ lies in L2

bc(Â) and
the Fourier transform extends to a Hilbert space isomorphism of the
completions L2(A) → L2(Â).

This is the point at which it becomes transparent how abstract har-
monic analysis indeed generalizes the theory of Fourier series and the
Fourier transform on the reals. If we specialize the above theorem to
the case of the group R/Z, we get for f ∈ L1

bc(R/Z),∫ 1

0
|f(x)|2dx = ||f ||2

2
=
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣2

2
=
∑
k∈Z

|f̂(k)|2 =
∑
k∈Z

|ck(f)|2.

Modulo the easy Lemma 1.3.1 this result implies the completeness
of the Fourier series (Theorem 1.4.4). The present theorem also is a
generalization of Plancherel’s theorem for the real Fourier transform
(Theorem 3.5.2) in an even more obvious fashion.

Proof of the Theorem: The proof of this theorem in full generality
is beyond our scope. The interested reader is referred to [11]. We
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will here prove the result only for the special case of a discrete group
A. As Haar integral we choose∫

A
f(x)dx =

∑
a∈A

f(a).

For χ ∈ Â we then have f̂(χ) =
∑

a∈A f(a)χ(a). On Â we choose the
Haar integral normalized by the condition

∫
Â 1da = 1. Then Lemma

8.4.1 applies to Â.

Lemma 8.4.3 For every g ∈ L1
bc(A) the Fourier transform ĝ is in

C(Â) = L1
bc(Â), and we have, for every a ∈ A,

ˆ̂g(δa) = g(a−1).

Proof: We compute

ˆ̂g(δa) =
∫

Â
ĝ(χ)δa(χ)dχ =

∫
Â

∑
b∈A

g(b)δb(χ)δa(χ)dχ

=
∫

Â

∑
b∈A

g(b−1)δb(χ)δa(χ)dχ

=
∑
b∈A

g(b−1)
∫

Â
δb(χ)δa(χ)dχ = g(a−1)

according to Lemma 8.4.1, since the δa are precisely the characters
of Â by duality. The lemma follows. �

To prove the theorem in the discrete case, let f ∈ L1
bc(A) and set

f̃(x) = f(x−1). Set g = f̃ ∗ f . Then

g(x) =
∫

A
f(yx−1)f(y)dy,

so that g(e) = ||f ||2
2
, where e is the unit element in A. By Theorem

8.3.1 we have ĝ(χ) = ˆ̃
f(χ)f̂(χ) = f̂(χ)f̂(χ) = |f̂(χ)|2. We get

||f ||2
2

= g(e) = ˆ̂g(δe) =
∫

Â
ĝ(χ)χ(e)dχ

=
∫

Â
|f̂(χ)|2dχ =

∣∣∣∣∣∣f̂ ∣∣∣∣∣∣2
2
.

This proves the claim for A discrete. �
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8.5 Exercises

Exercise 8.1 Let G be a discrete group. Show that

I(f) =
∑
x∈G

f(x)

is well-defined for f ∈ Cc(G) and defines a Haar integral for G.

Exercise 8.2 Show that for every open set V ⊂ G there is a function
ϕ ∈ Cc(G) that is nonzero and satisfies supp(ϕ) ⊂ V . Show that for every
compact subset K ⊂ G there is a function χ ∈ Cc(G) such that χ ≡ 1 on
K.

(Hint: Fix a metric d and show that the function x �→ d(x0, x) is continuous
for given x0 ∈ G.)

Exercise 8.3 Show that every f ∈ Cc(G) is uniformly continuous; i.e., for
every ε > 0 there is a neighborhood V of the unit element such that for
each x, y ∈ G we have

x−1y ∈ V ⇒ |f(x) − f(y)| < ε.

Exercise 8.4 Let B be the subgroup of GL2(R) defined as

B =
{(

1 b
c

)∣∣∣∣ b, c ∈ R, c �= 0
}

.

Show that

I(f) =
∫

R×

∫
R

f

((
1 b

c

))
db

dc

c

is a Haar integral on B. Show that I is not right invariant; i.e., there are
z ∈ B and f ∈ Cc(B) such that I(Rzf) �= I(f), where Rzf(x) = f(xz).

Exercise 8.5 Let G be an LC group with Haar integral. Show that for
x ∈ G the map

f �→
∫

G

f(xy)dy

is also a Haar integral. Conclude from the uniqueness of the Haar integral
that there is a function ∆ : G → R×

+ such that∫
G

f(xy)dx = ∆(y)
∫

G

f(x)dx

holds for every f ∈ Cc(G). Show that ∆ is a continuous group homomor-
phism. The function ∆ is called the modular function of G. Show that ∆
is trivial if and only if the Haar integral of G is also right invariant. In this
case G is called unimodular.
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Exercise 8.6 Show that a compact group K is unimodular and infer that∫
K

f(k)dk =
∫

K

f(k−1)dk

for every f ∈ C(K).

(Hint: Show that the image of the modular function is trivial.)

Exercise 8.7 Show that a Haar integral for the group GL2(R) is given by

I(f) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f

(
x y
z w

)
dx dy dz dw

|xw − yz|2 .

Exercise 8.8 Prove that for a general LCA group A the convolution ∗
satisfies the following identities: f ∗ g = g ∗ f , f ∗ (g ∗ h) = (f ∗ g) ∗ h, and
f ∗ (g + h) = f ∗ g + f ∗ h for all f, g, h ∈ L1

bc(A).

Exercise 8.9 Show that the Hilbert space L2(A) is the completion of the
pre-Hilbert space L2

bc(A). Recall here that L2(A) is defined as the comple-
tion of Cc(A).
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Chapter 9

Matrix Groups

Matrix groups like GLn(C) and U(n) are the most important non-
commutative topological groups, since they occur naturally as trans-
formation groups in various contexts.

9.1 GLn(C) and U(n)

Let n be a natural number. On the vector space of complex n × n
matrices Matn(C) we define a norm:

||A||
1

=
n∑

i,j=1

|ai,j |,

where A = (ai,j). This norm gives rise to the metric d1(A, B) =
||A − B||

1
. On the other hand, on the vector space Matn(C) ∼= Cn2

we have a natural inner product that gives rise to a second norm,
called the Euclidean norm,

||A||
2

=

√√√√ n∑
i,j=1

|ai,j |2,

and we get a corresponding metric d2(A, B) = ||A − B||
2
.

Lemma 9.1.1 A sequence of matrices A(k) = (a(k)
i,j ) converges in d1

if and only if for each pair of indices (i, j), the sequence of entries
a

(k)
i,j converges in C. The same holds for d2, so the metrics d1 and

d2 are equivalent.

129
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Proof: Suppose the sequence A(k) = (a(k)
i,j ) converges in d1 to A =

(ai,j) ∈ Matn(C). Then for every ε > 0 there is k0 ∈ N such that for
all k ≥ k0 ∣∣∣∣∣∣A(k) − A

∣∣∣∣∣∣
1

< ε.

Let i0, j0 be in {1, 2, . . . , n}; then it follows that for k ≥ k0,

|a(k)
i0,j0

− ai0,j0 | ≤
∑
i,j

|a(k)
i,j − ai,j | =

∣∣∣∣∣∣A(k) − A
∣∣∣∣∣∣

1
< ε.

Therefore, each entry converges. Conversely, assume that a
(k)
i,j → ai,j

for each pair of indices (i, j). Then for a given ε > 0 there is k0(i, j)
such that for k ≥ k0(i, j),∣∣∣a(k)

i,j − ai,j

∣∣∣ <
ε

n2 .

Let k0 ∈ N be the maximum of all k0(i, j) as (i, j) varies. Then for
k ≥ k0, ∣∣∣∣∣∣A(k) − A

∣∣∣∣∣∣
1

=
∑
i,j

|a(k)
i,j − ai,j | <

∑
i,j

ε

n2 = ε,

so A(k) converges to A in d1. The case of d2 is similar. �

Proposition 9.1.2 With the topology or metric class given above,
the group of complex invertible matrices, GLn(C), is an LC group;
i.e., it is a metrizable, σ-compact, locally compact group.

Proof: First note that multiplication and inversion are given as
rational functions in the entries. Since polynomials are continuous,
it follows that GLn(C) is a topological group. Being an open subset
of the locally compact space Matn(C) it is locally compact. Finally,
to see that it is σ-compact, for n ∈ N let

Kn = {a ∈ GLn(C) : ||a||
1

≤ n,
∣∣∣∣a−1∣∣∣∣

1
≤ n}.

Then every sequence in Kn must have a convergent subsequence in
the finite-dimensional vector space Matn(C). This convergent sub-
sequence then must have a subsequence for which the inverses also
converge, so the limit is invertible. �
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For A ∈ Matn(C) let A∗ be its adjoint matrix; i.e., if A = (ai,j), then
A∗ = (aj,i), so A∗ = Āt, where the bar means the complex conjugate
and (.)t gives the transpose of a matrix. Let

U(n) = {g ∈ Matn(C)|g∗g = 1},

where 1 means the unit matrix.

Lemma 9.1.3 U(n) is a compact subgroup of GLn(C).

Proof: For g ∈ Matn(C) the equation g∗g = 1 implies that g is
invertible and g∗ = g−1, so in particular, U(n) is a subset of GLn(C).
Let a, b ∈ U(n). To see that U(n) is a subgroup we have to show that
ab ∈ U(n) and a−1 ∈ U(n). For the first part consider (ab)∗ab =
b∗a∗ab = b∗b = 1, so ab ∈ U(n). For the second part recall that
a∗ = a−1 implies 1 = aa∗ = (a∗)∗a∗, so a∗ = a−1 also lies in U(n).

To see that U(n) is compact, it suffices to show that the group U(n) is
closed in Matn(C) and bounded in the Euclidean norm (see Exercise
6.11). So let gj be a sequence in U(n) converging to g in Matn(C).
Then

1 = lim
j→∞

g∗
j gj =

(
lim

j→∞
gj

)∗
lim

j→∞
gj = g∗g.

This implies that U(n) is closed. Moreover it is bounded, since for
every a ∈ Matn(C) we have

tr (a∗a) =
n∑

k=1

(a∗a)k,k =
n∑

k=1

n∑
j=1

a∗
kjaj,k

=
n∑

k=1

n∑
j=1

aj,kaj,k =
n∑

k=1

n∑
j=1

|aj,k|2 = ||a||2
2
.

Therefore, ||g||
2

=
√

tr 1 =
√

n for g ∈ U(n), so U(n) is bounded.
�

9.2 Representations

The role of characters for LCA groups will in the case of noncommu-
tative groups be played by representations, a notion introduced in
this section. Let G be a (metrizable) topological group. Let (V, 〈., .〉)
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be a Hilbert space. Let GL(V ) be the set of all invertible linear maps
T : V → V . A representation of G on V is a group homomorphism
η : G → GL(V ) such that the map

G × V → V,

(x, v) �→ η(x)v,

is continuous. The representation η is called unitary if for every
x ∈ G the operator η(x) is unitary on V , i.e., if

〈η(x)v, η(x)w〉 = 〈v, w〉 for all v, w ∈ V, x ∈ G.

A closed subspace W ⊂ V is called invariant for η if η(x)W ⊂ W
for every x ∈ G. The representation η is called irreducible if there
is no proper closed invariant subspace, i.e., the only closed invariant
subspaces are 0 and V itself.

Example. The identity map ρ : U(n) → GL(Cn) = GLn(C) is a
unitary representation.

Lemma 9.2.1 ρ is irreducible.

Proof: By definition U(n) consists of all linear operators on Cn that
are unitary with respect to the standard inner product 〈v, w〉 = vtw̄.

Let V ⊂ Cn be a subspace which is neither zero nor the whole space.
Let W = V ⊥ be its orthogonal space, i.e.,

W = {w ∈ Cn| 〈w, v〉 = 0 for every v ∈ V }.

Then Cn = V ⊕ W . Let e1, . . . , el be an orthonormal basis of V and
el+1, . . . , en be an orthonormal basis of W ; then the operator T given
by

T (e1) = el+1, T (el+1) = e1,

T (ej) = ej for j �= 1, l + 1,

is unitary by Exercise 2.2. Thus T ∈ U(n), but T does not leave V
stable. So there is no nontrivial invariant subspace. �
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9.3 The Exponential

A series in Matn(C) of the form
∑∞

ν=0 Aν converges by definition if
the sequence of partial sums sk =

∑k
ν=1 Aν converges.

Proposition 9.3.1 For every A ∈ Matn(C) the series

exp(A) =
∞∑

ν=0

Aν

ν!

converges and defines an element in GLn(C). If A, B ∈ Matn(C)
satisfy AB = BA, then exp(A+B) = exp(A) exp(B). In particular,
it follows that

exp(−A) = exp(A)−1.

Proof: Recall the 1-norm on Matn(C):

||A||
1

=
n∑

i,j=1

|ai,j |

if A = (ai,j).

Lemma 9.3.2 For A, B ∈ Matn(C) we have

||AB||
1

≤ ||A||
1
||B||

1
.

In particular, for j ∈ N,
∣∣∣∣Aj
∣∣∣∣

1
≤ ||A||j

1
.

Proof: Let A = (ai,j) and B = (bi,j); then

||AB||
1

=
n∑

i,j=1

∣∣∣∣∣
n∑

k=1

ai,kbk,j

∣∣∣∣∣ ≤
n∑

i,j,k=1

|ai,kbk,j |

≤
n∑

i,j,k,l=1

|ai,k||bl,j | = ||A||
1
||B||

1
.

�

Lemma 9.3.3 Let (Aν)ν≥0 be a sequence of matrices in Matn(C).
Suppose that

∑∞
ν=0 ||Aν ||1 < ∞. Then the series

∑∞
ν=0 Aν converges

in Matn(C).
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Proof: Let Bk =
∑k

ν=0 Aν . We have to show that the sequence
(Bk) converges. It suffices to show that it is a Cauchy sequence
with respect to ||.||

1
. The sequence bk =

∑k
ν=0 ||Aν ||1 converges in R

and hence is Cauchy. So, for given ε > 0 there is k0 such that for
m ≥ k ≥ k0 we have

ε > |bm − bk| =
m∑

ν=k+1

||Aν ||1 ≥
∣∣∣∣∣
∣∣∣∣∣

m∑
ν=k+1

Aν

∣∣∣∣∣
∣∣∣∣∣
1

= ||Bm − Bk||1 .

Thus it follows that (Bk) is a Cauchy sequence in Matn(C) and hence
converges (see Exercise 9.4). �

To prove the proposition it remains to show that
∑∞

ν=0
||Aν ||

1
ν! < ∞.

We have ∞∑
ν=0

||Aν ||
1

ν!
≤

∞∑
ν=0

(||A||
1
)ν

ν!
< ∞,

since the exponential series converges in R. The first part of the
proposition follows from this. For the remainder let A, B ∈ Matn(C)
with AB = BA. Then

exp(A + B) =
∞∑

ν=0

(A + B)ν

ν!
=

∞∑
ν=0

1
ν!

ν∑
k=0

(
ν

k

)
AkBν−k

=
∞∑

ν=0

ν∑
k=0

1
k!(ν − k)!

AkBν−k = exp(A) exp(B).

This implies the lemma. �

Proposition 9.3.4 For every A ∈ Matn(C) we have

det(exp(A)) = exp(tr (A)).

Proof: Let S ∈ GLn(C). Then

det(exp(SAS−1)) = det(S exp(A)S−1) = det(exp(A))

and
exp(tr (SAS−1)) = exp(tr (A)),

so both sides in the statement of the proposition are invariant under
conjugation. By the Jordan normal-form theorem every square ma-
trix is conjugate to an upper triangular matrix, so it suffices to prove
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the proposition for an upper triangular matrix A. Suppose that

A =

⎛⎜⎝ a1 ∗
. . .

an

⎞⎟⎠ .

Then for ν ≥ 0,

Aν =

⎛⎜⎝ aν
1 ∗

. . .
aν

n

⎞⎟⎠ ,

so that

exp(A) =

⎛⎜⎝ ea1 ∗
. . .

ean

⎞⎟⎠ ,

which gives

det(exp(A)) = ea1 · · · ean = ea1+···+an = exp(tr (A)).

�

Let G ⊂ GLn(C) be a closed subgroup. The Lie algebra of G is by
definition

Lie(G) = {X ∈ Matn(C)| exp(tX) ∈ G for every t ∈ R}.

Examples.

• The special linear group SLn(C) is the group consisting of all
matrices A in Matn(C) satisfying det(A) = 1. Its Lie algebra
is

sln(C) = {X ∈ Matn(C)|tr (X) = 0}.

• The Lie algebra of the unitary group U(n) is

u(n) = {X ∈ Matn(C)|X∗ = −X},

where X∗ = X
t denotes the adjoint matrix.

In order to proceed we will need to establish some facts that are not
hard to prove but the proofs require some concepts from differential
geometry that are beyond the scope of this book. The following
proposition will therefore not be proved here.
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Proposition 9.3.5 Let G be a closed subgroup of GLn(C). Then
Lie(G) is a real sub-vector space of Matn(C). If X and Y are ele-
ments of Lie(G), then so is

[X,Y ] def
= XY − Y X.

this is called the Lie bracket of X and Y . Let π : G → GL(V ) be
a finite-dimensional representation. Then for every X ∈ Lie(G) the
map

t �→ π(exp(tX)), t ∈ R,

is infinitely differentiable. Set

π(X) =
d

dt

∣∣∣∣
t=0

π(exp(tX)) ∈ End(V ).

Then the map X �→ π(X) is linear on Lie(G) and satisfies

π([X,Y ]) = [π(X), π(Y )],

where on the right-hand side we take the commutator bracket in
End(V ). We say that π is a Lie algebra representation of Lie(G).

Proof: The proposition follows from the material in [9], Chapter II.
See also Exercise 9.14. �

A closed subgroup G of GLn(C) is called path connected if every two
points x, y ∈ G can be joined by a continuous curve, i.e., if there
is a continuous map γ : [0, 1] → G with γ(0) = x and γ(1) = y.
For example, the multiplicative group R× = GL1(R) is not path
connected.

Lemma 9.3.6 If the group G is path connected and if (π, V ) is ir-
reducible as a representation of the group G, then it is irreducible as
a representation of the Lie algebra Lie(G), i.e., there is no proper
subrepresentation. Further, if G is path connected and if π and π′

are isomorphic as representations of the Lie algebra, then they are
isomorphic as G-representations.

Proof: It is a consequence of Taylor’s formula that for each X in
the Lie algebra of G we have

π(exp(X)) = π

( ∞∑
ν=0

Xν

ν!

)
=

∞∑
ν=0

π(X)ν

ν!
= exp(π(X)).
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This implies that a nonzero subspace W of V that is invariant un-
der the Lie algebra is also invariant under the image of exp. The
differential equation

d

dt
exp(tX) = X exp(tX),

which follows from the series representation, implies that the differen-
tial of exp at zero is invertible, and hence the image of exp : Lie(G) →
G contains an open neighborhood of the unit. The subgroup gen-
erated by this neighborhood is an open subgroup that stabilizes W .
If G is path connected, there is only one open subgroup, namely G
itself (see Exercise 9.10), and hence W is stabilized by G. If π is
irreducible as a G-representation, it follows that W = V , and so π is
irreducible as a representation of the Lie algebra.

For the last point, assume that we are given two G-representations
π and π′ and a Lie(G)-isomorphism T : Vπ → Vπ′ ; i.e., we have

Tπ(X) = π′(X)T

for every X ∈ Lie(G). Since T is a linear map between finite-
dimensional spaces, it is continuous, so for X ∈ Lie(G),

Tπ(exp(X)) = T exp(π(X)) = T

( ∞∑
ν=0

π(X)ν

ν!

)

=
∞∑

ν=0

Tπ(X)ν

ν!
=

∞∑
ν=0

π′(X)νT

ν!

=

( ∞∑
ν=0

π′(X)ν

ν!

)
T = exp(π′(X))T

= π′(exp(X))T,

so T commutes with the action of the subgroup generated by the
image of exp, and again, if G is path connected, this is the entire
group G. Thus T is a G-isomorphism. �

A representation π : Lie(G) → End(V ) of the Lie algebra of G is
called a ∗-representation if for every X ∈ Lie(G) we have

π(X)∗ = π(−X),

where the ∗ refers to the adjoint in End(V ).
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Lemma 9.3.7 If the representation π : G → GL(V ) is unitary, then
the derived representation of the Lie algebra is a ∗-representation. If
G is path connected, then the converse is also true; i.e., if π is a
∗-representation the Lie algebra, then it is a unitary representation
of the group.

Proof: Suppose π is unitary. Then for every x ∈ G we have π(x)∗ =
π(x)−1 = π(x−1). Let X ∈ Lie(G). Then

π(X)∗ =
(

d

dt
π(exp(tX))|t=0

)∗
=

d

dt
π(exp(tX))∗|t=0

=
d

dt
π(exp(−tX))|t=0 = π(−X).

For the converse use the equation π(exp(X)) = exp(π(X)) to see
that if π is a ∗-representation, then π(x)∗ = π(x−1) for every x in the
image of exp. This equation then also holds for the group generated
by this image, and if G is path connected, this group equals G.

�

Matrix groups as featured in this chapter are special cases of Lie
groups. For a nice account of Lie groups for beginners see [24].

9.4 Exercises

Exercise 9.1 Let V be a finite-dimensional Hilbert space. A linear opera-
tor A : V → V with AA∗ = A∗A is called normal. Show that every normal
operator A on V is diagonalizable, i.e., there exists a basis of V consisting
of A-eigenvectors.

(Hint: Use induction on the dimension. Pick an eigenspace of A and show
that its orthocomplement is also invariant under A.)

Exercise 9.2 Show that the group R× is not path connected.

Exercise 9.3 Let (V, 〈., .〉) be a Hilbert space of finite dimension. Show
that every inner product on V can be written in the form (v, w) = 〈Sv, Sw〉
for some matrix S ∈ GL(V ).

Exercise 9.4 Show that in Matn(C) every Cauchy sequence with respect
to ||.||

1
or ||.||

2
converges.

(Hint: Show in either case that for a given Cauchy sequence all the entries
are Cauchy sequences in C.)
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Exercise 9.5 Let ρ : G → GL(V ) and τ : G → GL(W ) denote two finite-
dimensional representations. Let V ⊗ W denote the tensor product of V
and W . Show that

ρ ⊗ τ : G → GL(V ⊗ W ),
g �→ ρ(g) ⊗ τ(g),

defines a representation of G.

Exercise 9.6 Show that the commutator bracket in Matn(C) given by

[X,Y ] = XY − Y X

satisfies [X,Y ] = −[Y, X] and

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

(Jacobi identity).

Exercise 9.7 Show that for A ∈ Matn(C) the function f : R → Matn(C)
given by

f(t) = exp(tA)

is the unique solution of the matrix-valued differential equation

f ′(t) = Af(t)

with f(0) = 1 and f(t)A = Af(t).

Exercise 9.8 Let A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)
. Show that

exp(A + B) �= exp(A) exp(B).

Exercise 9.9 Show that for A ∈ Matn(C) with ||A − 1||
1

< 1 the series

log(A) = −
∞∑

n=1

(1 − A)n

n

converges, and that for such A we have

exp(log(A)) = A.

(Hint: Prove the second claim for diagonal matrices first.)

Exercise 9.10 Show that if the metrizable group G is path connected,
then it has no open subgroups other than itself. (Hint: Suppose that H is
an open subgroup and assume that there is x ∈ G � H. Choose a path
γ with γ(0) = 1 ∈ G and γ(1) = x. Let t0 be the infimum of the t with
γ(t) ∈ G � H. Use the fact that H and G � H are both closed (Exercise
6.22) to show that γ(t0) belongs to both of them, which is a contradiction.)
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Exercise 9.11 Let f(z) =
∑∞

n=0 anzn be a power series that converges
for every z ∈ C. Show that for every A ∈ Matn(C) the series

f(A) =
∞∑

n=0

anAn

converges to a matrix f(A) ∈ Matn(C). Show that the eigenvalues of f(A)
are all of the form f(λ) for an eigenvalue λ of A.

Exercise 9.12 Show that the group GLn(R) of real invertible n × n ma-
trices is not path connected.

Exercise 9.13 Show that the group

SO(2) =
{(

a b
−b a

)∣∣∣∣ a, b ∈ R, a2 + b2 = 1
}

is isomorphic to T.

Exercise 9.14 Let G be a closed subgroup of GLn(C). Let f : GLn(C) →
[0,∞) be a smooth function with compact support. Then f |G has compact
support on G. Let π : G → GL(V ) be a finite-dimensional representation
of G. Choose a Haar integral on G. For v ∈ V let

π(f)v =
∫

G

f(x)π(x)v dx.

(a) Show that if fn is a sequence of smooth functions as above such that∫
G

fn = 1 and such that the support of fn shrinks to {e} as n tends
to infinity, then π(fn)v tends to v for every v ∈ V . Deduce that there
is an f as above such that π(f)V = V .

(b) Show that for every v ∈ V and every X ∈ Lie(G) the map t �→
π(exp(tX))v is smooth.
(Hint: Write v = π(f)w for some w ∈ V .)

Exercise 9.15 Let G be an arbitrary locally compact group. Choose a
Haar measure and define the Hilbert space L2(G) as the completion of
Cc(G). For ϕ ∈ Cc(G) and x, y ∈ G define

L(y)ϕ(x) def
= ϕ(y−1x).

Show that L(y) is unitary and extends to a unitary representation of G on
L2(G), called the left regular representation. If G is unimodular, show that

R(y1, y2)ϕ(x) def
= ϕ(y−1

1 xy2)

defines a unitary representation of G × G on L2(R), called the regular
representation of G.



Chapter 10

The Representations of
SU(2)

For non-abelian groups, irreducible unitary representations play the
part that characters play for abelian groups. Therefore, an obvious
question is whether these representations can be classified. In the
case of a compact connected matrix group we already have all that
it takes to solve this problem.

In this chapter we are going to find all finite-dimensional irreducible
representations of the group

SU(2) = {A ∈ Mat2(C)|A∗A = 1, det(A) = 1}
=
{(

a b
−b̄ ā

)∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1
}

.

The second presentation shows that the group SU(2) is path con-
nected.

The following result will be useful later.

Lemma 10.0.1 Let K be a compact metrizable group and let ρ be a
representation on a finite-dimensional Hilbert space (V, 〈., .〉). Then
there is S ∈ GL(V ) such that the representation SρS−1 is unitary.

Proof: Suppose we can show that there is a second inner product
(., .) on V such that ρ is unitary with respect to (., .). Since every
inner product on V is of the form (v, w) = 〈Sv, Sw〉 for some S ∈
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GL(V ), (see Exercise 10.1) it then follows that SρS−1 is unitary. So
it remains to show that such an inner product exists. For v, w ∈ V ,
let

(v, w) =
∫

K

〈
ρ(k−1)v, ρ(k−1)w

〉
dk.

It is easy to see that (., .) is indeed an inner product. Moreover, the
representation ρ is unitary with respect to (., .), since for k0 ∈ K and
v, w ∈ V we have

(ρ(k0)v, ρ(k0)w) =
∫

K

〈
ρ(k−1)ρ(k0)v, ρ(k−1)ρ(k0)w

〉
dk

=
∫

K

〈
ρ((k−1

0 k)−1)v, ρ((k−1
0 k)−1)w

〉
dk

=
∫

K

〈
ρ(k−1)v, ρ(k−1)w

〉
dk

= (v, w),

which implies the lemma. �

10.1 The Lie Algebra

The Lie algebra of SU(2) is the algebra of all skew-adjoint trace zero
matrices; i.e., the Lie algebra is

su(2) = {X ∈ Mat2(C)|X∗ = −X, tr (X) = 0}.

We fix a standard basis of su(2) consisting of

X1 =
1
2

(
i

−i

)
, X2 =

1
2

(
1

−1

)
, X3 =

1
2

(
i

i

)
.

The following relations are easily verified by direct computation:

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

Let π : su(2) → End(V ) be a finite-dimensional ∗-representation of
the Lie algebra su(2). Let Lj = π(Xj) ∈ End(V ) for j = 1, 2, 3. It
then follows that [L1, L2] = L3, [L2, L3] = L1, [L3, L1] = L2, and
for j = 1, 2, 3,

L∗
j = π(Xj)∗ = π(X∗

j ) = π(−Xj) = −Lj ,
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so each Lj is a skew-adjoint operator. In particular, it follows that
Lj is diagonalizable (see Exercise 9.1). For every µ ∈ C let

Vµ = {v ∈ V |L1v = iµv}.

Then the space V decomposes into a direct sum of eigenspaces:

V =
⊕

iµ∈spec(L1)

Vµ,

where spec(L1) denotes the spectrum of L1, i.e., in this case the set
of eigenvalues, which is a subset of iR. Let

L+ = L2 − iL3, L− = L2 + iL3.

A computation shows that

[L1, L±] = ±iL±.

Proposition 10.1.1 The operator L± maps Vµ to Vµ±1. In partic-
ular, if iµ ∈ spec(L1), then either L+ is zero on Vµ or i(µ + 1) ∈
spec(L1).

Proof: Let v ∈ Vµ; then

L1(L+v) = L+L1v + iL+v = i(µ + 1)L+v.

This implies L+Vµ ⊂ Vµ+1. Similarly, it follows that also L−Vµ ⊂
Vµ−1. �

Let C = L2
1 + L2

2 + L2
3; then a computation shows that

CLj = LjC for j = 1, 2, 3.

Lemma 10.1.2 If π is irreducible, then there is a λ ∈ C such that
C = λId.

Proof: Let λ be an eigenvalue of C. Then, since the Lj commute
with C, they leave the corresponding eigenspace invariant, so this is
an invariant subspace. If π is irreducible, then this subspace must
be all of V . �
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Proposition 10.1.3 Let π be an irreducible representation of su(2)
on V . Then the spectrum of L1 is a sequence

{iµ0, i(µ0 + 1), . . . , i(µ0 + k) = iµ1}
with

L+ : Vµ0+j → Vµ0+j+1

an isomorphism for 0 ≤ j ≤ k − 1, and

L− : Vµ1−j → Vµ1−j−1

an isomorphism for 0 ≤ j ≤ k − 1. The situation is depicted as
follows:

• • • . . . • •
�

L+

L−

�

�

�

�

�

�

�

�

�

µ0 µ0 + 1 µ0 + 2 µ1 − 1 µ1

Moreover, the spaces Vµ0+j are one-dimensional for j = 0, 1, . . . , k,
and so dimV = k + 1. Finally, µ0 = −k/2, and so µ1 = k/2.
In particular, it follows that every two finite dimensional irreducible
representations of the Lie algebra of SU(2) are isomorphic if they
have the same dimension.

Proof: By Lemma 10.0.1 we may assume the representation to be
unitary. We compute

L−L+ = (L2 + iL3)(L2 − iL3) = L2
2 + L2

3 + i[L3, L2]
= C − L2

1 − iL1 = λ − L2
1 − iL1,

and
L+L− = C − L2

1 + iL1 = λ − L2
1 + iL1.

So on Vµ we have

L+L− = λ + µ(µ − 1),
L−L+ = λ + µ(µ + 1).
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Since L2 and L3 are skew-adjoint, we have

L∗
+ = (L2 − iL3)∗ = −L−.

This implies that the operators L+L− and L−L+ are self-adjoint.

Lemma 10.1.4 Let V be a finite-dimensional Hilbert space and let
A be a linear operator on V ; then we have

ker A = kerA∗A.

Proof: For v ∈ V we have

v ∈ ker(A) ⇔ Av = 0
⇔ 〈Av, Aw〉 = 0 ∀w ∈ V

⇔ 〈A∗Av, w〉 = 0 ∀w ∈ V

⇔ A∗Av = 0
⇔ v ∈ ker(A∗A).

The lemma is proven. �

The lemma implies

ker L− = ker L+L−,

ker L+ = ker L−L+.

Now let µ0, µ0 +1, . . . , µ0 +k = µ1 be a sequence of maximal length,
with Vµ0+j �= 0 for j = 0, . . . , k. Then it follows that L+Vµ0+k = 0,
and therefore

0 = λ + µ1(µ1 + 1) = λ + µ0(µ0 − 1),

or
µ0(µ0 − 1) = −λ = µ1(µ1 + 1).

This implies that

µ0(µ0 − 1) = (µ0 + k)(µ0 + k + 1),

or
−µ0 = µ0(2k + 1) + k(k + 1),

which implies µ0 = −k/2. Now let v ∈ Vµ0 and suppose v �= 0.
Let V ′

µ0+j = CLj
+v. The space V ′ = V ′

µ0
⊕ · · · ⊕ V ′

µ0+k is preserved
by L1, L2, and L3, and hence by Lie(G), so it is an invariant sub-
space. Since π is irreducible, it follows that V = V ′, and so in
particular, V ′

µ0+j = Vµ0+j for all j, and so the spaces Vµ0+j are all
one-dimensional. �
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10.2 The Representations

We shall now use our knowledge about the representations of the Lie
algebra to classify the representations of the group SU(2).

Lemma 10.2.1 Given a finite-dimensional representation ρ of the
group SU(2), suppose the subgroup T of diagonal matrices in SU(2)
acts by the characters χ−k, χ−k+2, . . . , χk, where

χj

(
ε 0
0 ε̄

)
= εj .

Assume that the eigenspaces for the χj are all one-dimensional. Then
ρ is irreducible.

Proof: This follows from the proposition, since ρ must already be
irreducible under the Lie algebra. �

Theorem 10.2.2 For each k ∈ {0, 1, 2, . . . } there is exactly one ir-
reducible representation of SU(2) of dimension k + 1.

Proof: Let k be in the set {0, 1, 2, . . . } and let Vk be the set of all
homogeneous polynomials of degree k in the two variables x, y. Then

Vk = Cxk ⊕ Cxk−1y ⊕ · · · ⊕ Cyk.

Let ρk : SU(2) → GL(Vk) be defined by

ρk(A)f(x, y) = f((x, y)A),

i.e.,

ρk

((
a b
c d

))
= f(ax + cy, bx + dy).

By Lemma 10.2.1 it follows that ρk is irreducible. By Proposition
10.1.3 it follows that ρk is the unique irreducible representation of
su(2) of dimension k + 1, and finally, by Lemma 9.3.6, ρk is the
unique SU(2)-representation of dimension k + 1. �
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10.3 Exercises

Exercise 10.1 Let (., .) denote an inner product on the vector space Cn.
Show that there exists a matrix S ∈ GLn(C) such that for all v, w ∈ Cn,

(v, w) = 〈Sv, Sw〉 ,

where 〈v, w〉 = vtw is the standard inner product on Cn.

Exercise 10.2 Show that for an LCA group A every irreducible finite-
dimensional unitary representation is one-dimensional.

Exercise 10.3 Show that U(1) ∼= T, and determine the set Û(1).

Exercise 10.4 Show that U(2) ∼= (U(1) × SU(2))/{±1}, and determine
Û(2).

Exercise 10.5 Let (τ, V ) and (ρ, W ) be finite-dimensional representations
of an LC group G. On the tensor product V ⊗ W define a representation
τ ⊗ ρ by τ ⊗ ρ(g) = τ(g) ⊗ ρ(g). For G = SU(2) show that

ρk ⊗ ρl
∼= ρk+l ⊕ ρk+l−2 ⊕ · · · ⊕ ρ|k−l|.



Chapter 11

The Peter -Weyl Theorem

The Peter -Weyl theorem generalizes the completeness of the Fourier
series, and so it is Plancherel’s theorem for compact groups. It states
that for a compact group K the matrix coefficients of the finite-
dimensional irreducible unitary representations give an orthonormal
basis of L2(K). We will prove it here only for matrix groups.

11.1 Decomposition of Representations

Lemma 11.1.1 Let (π, Vπ) be a finite-dimensional unitary repre-
sentation of the LC group G. Then π splits into a direct sum of
irreducible representations.

Proof: This is proven by induction on the dimension of Vπ. If Vπ is
one-dimensional, then the representation is clearly irreducible and we
are done. Now suppose the claim is proven for all spaces of dimension
lower than the dimension of Vπ. Then either Vπ is irreducible, in
which case we are finished, or it has a proper subrepresentation W .
But then the orthogonal space W⊥ = {v ∈ Vπ| 〈v, w〉 = 0 ∀w ∈ W}
is also G-invariant, as follows from the unitarity of π. So then Vπ is
the direct sum of the subrepresentation spaces W and W⊥, which are
both of smaller dimension, and hence decompose into irreducibles,
and so then does Vπ. �

149
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11.2 The Representation on Hom(Vγ, Vτ)

Let K be a compact matrix group, i.e., a compact subgroup of
GLn(C). Let τ and γ be irreducible finite-dimensional representa-
tions of K. Let H be the space of all linear maps from Vγ to Vτ . On
this space we define a new representation η of K by

η(k)T = τ(k)Tγ(k−1).

Let HomK(Vγ , Vτ ) be the space of K-homomorphisms, i.e., the space
of all linear maps T : Vγ → Vτ such that

Tγ(k) = τ(k)T

for every k ∈ K.

For every representation (σ, Vσ) of K let

V K
σ = {v ∈ Vσ|σ(k)v = v ∀k ∈ K};

i.e., V K
σ is the space of K-fixed vectors.

Lemma 11.2.1 The space

HK = HomC(Vγ , Vτ )K = HomK(Vγ , Vτ )

is at most one-dimensional.

Proof: Let T ∈ HK and assume that T �= 0. Then the kernel ker(T )
is an invariant subspace of Vγ , since v ∈ ker(T ) implies for every
k ∈ K that T (γ(k)v) = τ(k)Tv = 0. Therefore, γ(k)v again lies
in ker(T ), which is thus invariant. Since γ is irreducible, it follows
that if T �= 0, then T is injective. Likewise, the image of T is an
invariant subspace, and since τ is irreducible, too, it follows that T
is surjective, and hence is an isomorphism.

Finally, let T, S ∈ HK , and assume that both are nonzero. Then both
are invertible, and S−1T is in HomK(Vγ , Vγ). Let λ be an eigenvalue
of S−1T . Then the corresponding eigenspace Eig(λ) is invariant, so
by the irreducibility it follows that Eig(λ) = Vγ or S−1T = λId.
Hence T = λS, so the dimension of the space HK is at most one.

�
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Two unitary representations γ and τ of K are called isomorphic if
there is a unitary map T : Vγ → Vτ satisfying Tγ(k) = τ(k)T for
every k ∈ K. Let K̂fin be the set of all isomorphism classes of finite-
dimensional irreducible unitary representations of K.

Lemma 11.2.2 Two finite-dimensional irreducible representations
γ, τ of K are isomorphic if and only if

HomK(Vγ , Vτ ) �= 0,

regardless of the inner products.

Proof: If the two representations γ and τ are isomorphic, there
exists a K-homomorphism between them, so one direction is clear.
Conversely, suppose T �= 0 lies in HomK(Vγ , Vτ ). We will show
that there is λ ∈ C such that λT is unitary, i.e., (λT )∗(λT ) = Id,
or |λ|2T ∗T = Id. Now, T ∗T is a K-homomorphism and so is the
identity. Thus by Lemma 11.2.1 there is c ∈ C such that T ∗T = cId.
The operator T ∗T is positive self-adjoint, so c > 0. Therefore, there
is λ ∈ C such that c = 1/|λ|2. �

11.3 The Peter -Weyl Theorem

For each class in K̂fin choose a fixed representative (τ, Vτ ). Choose
an orthonormal basis e1, . . . , en of Vτ and let

τi,j(k) = 〈τ(k)ei, ej〉 .

The map τi,j : K → C is called the (i, j)th matrix coefficient of τ .

Theorem 11.3.1 (Peter -Weyl) Let τ �= γ in K̂fin. Then∫
K

τi,j(k)γr,s(k)dk = 0

for all indices i, j, r, s. Further,∫
K

τi,j(k)τr,s(k)dk = 0

unless i = r and j = s. In addition,∫
K

τi,j(k)τi,j(k)dk =
1

dim(Vτ )
.
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The family (
√

dim(Vτ )τi,j)τ,i,j forms an orthonormal basis of the
Hilbert space L2(K).

Proof: Assume first τ �= γ. Then for every T ∈ HomC(Vγ , Vτ ) we
have that

S =
∫

K
τ(k)Tγ(k−1)dk

satisfies τ(k)S = Sγ(k) for every k ∈ K, and therefore S = 0. Let
e1, . . . , en be the given basis of Vγ and let f1, . . . , fm be the given
basis of Vτ . Let T ∈ HomC(Vγ , Vτ ) be given by the matrix Ei,j with
a one at position (i, j) and zeros everywhere else. Then τ(k)Tγ(k−1)
is given by the following matrices γ(k−1):⎛⎜⎝ τ1,1 . . . τ1,m

...
...

τm,1 . . . τm,m

⎞⎟⎠
⎛⎝ 1

⎞⎠
⎛⎜⎝ γ̄1,1 . . . γ̄n,1

...
...

γ̄1,n . . . γ̄n,n

⎞⎟⎠

=

⎛⎜⎝ τ1,i
...

τm,i

⎞⎟⎠
⎛⎜⎝ γ̄1,1 . . . γ̄n,1

...
...

γ̄1,n . . . γ̄n,n

⎞⎟⎠
=

⎛⎜⎝ τ1,iγ̄1,j . . . τ1,iγ̄n,j
...

...
τm,iγ̄1,j . . . τm,iγ̄n,j

⎞⎟⎠ .

By varying i and j we get the first part of the theorem. For γ = τ
we have ∫

K
τ(k)Tγ(k−1)dk = λId

for some λ ∈ C, which implies the second assertion of the theorem.
To see that

∫
K |τi,j(k)|2dk = 1/dim(Vτ ), let T = Id and recall that

τ(k)τ(k)∗ = Id.

This implies ∑
r

τi,rτj,r(k) = δi,j ,

so that for i = j we have∑
r

|τi,r(k)|2 = 1,
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so ∑
r

∫
K

|τi,r(k)|2dk = 1.

Now the fact that
∫
K τ(k)Tτ(k−1)dk = λId applied in the case T =

Ei,i implies that ∫
K

|τr,i(k)|2dk =
∫

K
|τr′,i(k)|2dk

for every two r, r′. Finally, by Exercise 8.6∫
K

|τr,i(k)|2dk =
∫

K
|τr,i(k−1)|2dk =

∫
K

|τi,r(k)|2dk,

and so we get ∫
K

|τi,r(k)|2dk =
∫

K
|τi,r′(k)|2dk

for every two r, r′, which implies the theorem, save for the complete-
ness of the system (

√
dim(Vτ )τi,j).

To establish the completeness we will use the following weak version
of the Stone -Weierstrass theorem. Let X be a compact metrizable
space. On the space C(X) of all continuous complex-valued functions
on X we define a norm by

||f ||∞ = sup
x∈X

|f(x)|.

This gives a metric defined by d(f, g) = ||f − g||∞. The space C(X)
is a C-algebra by pointwise multiplication.

Lemma 11.3.2 (Stone -Weierstrass theorem) Let X be a compact
metrizable space and let A be a subalgebra of C(X) such that

• A is closed under complex conjugation, i.e., f ∈ A implies
f̄ ∈ A,

• A separates points, i.e., for every two distinct points x, y ∈ X
there exists f ∈ A such that f(x) �= f(y), and

• for every x ∈ X there is f ∈ A such that f(x) �= 0.

Then A is dense in C(X).
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Proof: See [21]. �

Now the Peter -Weyl theorem is easily deduced. Let A be the linear
span of all matrix coefficients τi,j ∈ C(K). Then A is closed under
complex conjugation, since the conjugate τ̄ of τ again is a represen-
tation of K. Next, A is closed under multiplication, since as we have
seen, the product of the coefficients τi,j and γr,s occurs as a coefficient
in the representation on HomC(Vγ̄ , Vτ ). Finally, A separates points,
since K is a matrix group, so it has an injective representation and
hence by Lemma 10.0.1 also an injective unitary representation; this
also means that the last condition in the statement of the theorem
is fulfilled. The Stone -Weierstrass theorem applies to show that A
is dense in C(K), and hence it is dense in L2(K), since C(K) is.
Therefore the system is complete. �

11.4 A Reformulation

Let K be a compact matrix group. The group K × K acts on the
space C(K) of all continuous functions on K by

(k1, k2).f(k) = f(k−1
1 kk2).

Fix a Haar integral on K. Then this action is unitary, and hence
extends to the L2-completion L2(K), which then becomes a K × K
unitary representation space. The matrix coefficients of representa-
tions in K̂fin give elements in L2(K), and so the Peter -Weyl theorem
can be restated as follows:

Theorem 11.4.1 The matrix coefficients define a K × K isomor-
phism

L2(K) ∼=
⊕

τ∈K̂fin

End(Vτ ),

where ⊕̂ means the Hilbert space completion of the algebraic direct
sum.

For f ∈ L1(K) ⊂ L2(K) the image of f under this isomorphism is
given by ∑

τ∈K̂fin

τ(f),
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where
τ(f) =

∫
K

f(k)τ(k)dk.

For a given irreducible unitary representation τ : K → GL(V ) the
matrix coefficients give an embedding V ↪→ L2(K), so by the Peter -
Weyl theorem we conclude that V must decompose into a direct sum
of finite-dimensional representations, which by irreducibility implies
that τ itself is finite-dimensional. This leads to the following result.

Theorem 11.4.2 Every irreducible unitary representation of a com-
pact matrix group K is finite-dimensional, and thus K̂fin coincides
with K̂, the set of all irreducible unitary representations of K modulo
isomorphism.

For noncompact groups the theorem does not hold, as the example
SL2(R) shows [14]. But a version of Plancherel’s theorem still holds
for a general matrix group G that is unimodular. It turns out that
the G × G representation space L2(G) is then isomorphic not to a
direct sum over the set Ĝ of all isomorphism classes of irreducible
unitary representations, but rather to a direct Hilbert integral; see
[3] for details.

11.5 Exercises

Exercise 11.1 Let (ρ, V ) be a finite-dimensional irreducible representa-
tion of the compact matrix group K. Show that any two K-invariant inner
products on V differ by a constant factor.

Exercise 11.2 Let K be a compact matrix group. For f, g ∈ C(K) define
their convolution by

f ∗ g(x) =
∫

K

f(y)g(y−1x)dy.

Show that f ∗ g ∈ C(K) and show that K is abelian if and only if the
convolution algebra C(K) is commutative, i.e., f ∗ g = g ∗ f holds for every
f, g ∈ C(K).

Exercise 11.3 Show that a compact matrix group K is abelian if and only
if every irreducible unitary representation of K is one-dimensional.
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Exercise 11.4 Let K be a compact matrix group. For τ ∈ K̂ the function
χτ : K → C defined by

χτ (k) = tr τ(k)

is called the character of τ . Show that for τη ∈ K̂,

〈χτ , χη〉 =

{
1 if τ = η,

0 otherwise.

Exercise 11.5 Let K be a compact matrix group, and let H ⊂ K be a
closed subgroup. Show that the unitary representation of K given by left
translation on the space L2(K/H) is isomorphic to⊕

τ∈K̂

dim(V H
τ )τ,

where V H
τ is the subspace of Vτ of H-invariants, i.e.,

V H
τ = {v ∈ Vτ | τ(h)v = v ∀h ∈ H}.



Chapter 12

The Heisenberg Group

In this chapter we give an example of a group that is neither abelian
nor compact. The general phenomenon in the harmonic analysis of
such groups G is that the regular representation on L2(G) can be
decomposed into a direct integral over the unitary dual Ĝ. This is
the most general form of a Plancherel theorem. We will not go into
the details of direct integrals here, but we will treat the example of
the Heisenberg group in some detail.

When we speak of a Hilbert space we usually mean an infinite-
dimensional separable Hilbert space.

12.1 Definition

The Heisenberg group H is defined to be the group of real upper
triangular 3 × 3 matrices with ones on the diagonal:

H def
=

⎧⎨⎩
⎛⎝ 1 x z

1 y
1

⎞⎠∣∣∣∣∣∣x, y, z ∈ R

⎫⎬⎭ .

It can also be identified with R3, where the group law is

(a, b, c)(x, y, z) def
= (a + x, b + y, c + z + ay).

The inverse of (a, b, c) is

(a, b, c)−1 = (−a,−b, ab − c).

157
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The center of H is Z(H) = {(0, 0, z) | z ∈ R}, and we have

H/Z(H) ∼= R2.

Lemma 12.1.1 A Haar integral on H is given by∫
H

f(h) dh def
=

∫
R

∫
R

∫
R

f(a, b, c) da db dc, f ∈ Cc(H).

This Haar integral is left- and right-invariant, so H is unimodular.

We will use this Haar measure on H for all computations in the
sequel.

Proof: Let (α, β, γ) ∈ H. For f ∈ Cc(H) we compute∫
H

f((α, β, γ)h) dh =
∫

R3
f((α, β, γ)(a, b, c)) da db dc

=
∫

R3
f(a + α, b + β, c + γ + αb) da db dc

=
∫

R2

(∫
R

f(a + α, b + β, c + γ + αb) dc

)
da db

=
∫

R2

(∫
R

f(a + α, b + β, c) dc

)
da db

=
∫

R3
f(a, b, c) da db dc.

The right translation is dealt with in a similar fashion. �

12.2 The Unitary Dual

For a locally compact group G, two unitary representations (π, Vπ)
and (η, Vη) are called isomorphic or unitarily equivalent if there exists
a unitary operator T : Vπ → Vη with

T π(g) = η(g) T

for every g ∈ G. Since this actually means that η = TπT−1, it follows
that π and η are indistinguishable as representations.
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Isomorphism is an equivalence relation on the class of unitary repre-
sentations. The set of equivalence classes

Ĝ def
= {π irreducible unitary }/isomorphy

is called the unitary dual of G. It is the substitute for the dual group
in the case of abelian groups. We will often write π ∈ Ĝ when we
actually mean the class of the representation π. If G is abelian, this
notation appears to be ambiguous, since the dual group was already
named Ĝ, but in this case the unitary dual can be identified with the
dual group (see Exercise 12.1).

In this section we are going to describe the unitary dual Ĥ of the
Heisenberg group H.

Let Ĥ0 denote the subset of Ĥ consisting of all classes π ∈ Ĥ such
that π(h) = 1 whenever h lies in the center Z(H) of H. Since
H/Z(H) ∼= R2, it follows that

Ĥ0 = Ĥ/Z(H) ∼= R̂2 ∼= R̂2,

and the latter can be identified with R2 in the following explicit way.
Let (a, b) ∈ R2 and define a character

χa,b : H → T,

(x, y, z) �→ e2πi(ax+by).

The identification is given by (a, b) �→ χa,b. In particular, it follows
that all representations in Ĥ0 are onedimensional. This observation
indicates the importance of the behavior of the center under a rep-
resentation.

Lemma 12.2.1 Let (π, Vπ) be an irreducible unitary representation
of a locally compact group G. Let Z(G) ⊂ G be the center of G.
Then for every z ∈ Z(G) the operator π(z) on Vπ is a multiple of the
identity.

Proof: Let z ∈ Z(G). Then π(z) : Vπ → Vπ is a unitary operator,
so its spectrum spec π(z) is contained in T = {w ∈ C | |w| = 1}.
According to the spectral resolution for unitary operators [25], there
are disjoint projections F (λ) for λ ∈ T such that

π(z) =
∫

T

λ dF (λ).
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Each of the projections F (λ) must commute with G, i.e., π(g)F (λ) =
F (λ)π(g) for every g ∈ G. Hence the image and kernel of F (λ) are
invariant subspaces. Since π is irreducible, it follows that F (λ0) = Id
for one λ0, and F (λ) = 0 for λ �= λ0. This implies that π(z) equals
λ0 times the identity. �

As a consequence of the lemma, for each π ∈ Ĝ there is a character
χπ : Z(G) → T with π(z) = χπ(z)Id for every z ∈ Z(G). This
character χπ is called the central character of the representation π.

For every character χ �= 1 of Z(H) we will now construct an irre-
ducible unitary representation of the Heisenberg group that has χ
for its central character. We will start with a particular character,
namely,

χ1(0, 0, c) = e2πic.

As it will turn out, the group of unitary operators on L2(R) generated
by

ϕ(x) �→ ϕ(x + a), ϕ(x) �→ e2πibxϕ(x),

where a and b vary in R, is isomorphic to H. With this in mind we
let (a, b, c) ∈ H and define the operator π1(a, b, c) on L2(R) by

π1(a, b, c)ϕ(x) def
= e2πi(bx+c)ϕ(x + a).

To verify that π1 is indeed a representation, one computes

π1(a, b, c)π1(α, β, γ)ϕ(x) = e2πi(bx+c)π1(α, β, γ)ϕ(x + a)
= e2πi(bx+c)e2πi(β(x+a)+γ)ϕ(x + a + γ)
= e2πi((b+β)x+c+γ+aβ)ϕ(x + a + α)
= π1(a + α, b + β, c + γ + aβ) ϕ(x)
= π1((a, b, c)(α, β, γ))ϕ(x).

It is immediate that the representation π1 is unitary.

Lemma 12.2.2 π1 is irreducible.

Proof: Let V ⊂ L2(R) be a closed invariant subspace with V �= 0.
If ϕ ∈ V , then π(a, 0, 0)ϕ(x) = ϕ(x + a) ∈ V , and so

ψ ∗ ϕ(x) =
∫

R

ψ(a)ϕ(x − a) da =
∫

R

ψ(a + x)ϕ(−a) da
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lies in V for every ψ ∈ S(R). Since these convolution products
are smooth functions, we infer that V contains a nonzero smooth
function ϕ0. It follows that π(0, b, 0)ϕ0(x) = e−2πibxϕ0(x) lies in V ,
and so

ψ̂(x)ϕ0(x) =
∫

R

ψ(b)e−2πibx dx ϕ0(x)

lies in V for every ψ ∈ S(R). Choose some interval where ϕ0 has no
zeros, so that we get C∞

c (I) ⊂ V . By translation and summation we
infer that C∞

c (R) ⊂ V , and since C∞
c (R) is dense in L2(R), we get

V = L2(R), so π1 is indeed irreducible. �

Next we construct irreducible unitary representations for all other
nontrivial characters. For this note that for t ∈ R× = R � {0} the
map

θt(a, b, c) def
= (a, bt, ct)

is a continuous automorphism of H, as is seen from

θt((a, b, c)(α, β, γ)) = θt(a + α, b + β, c + γ + aβ)
= (a + α, (b + β)t, (c + γ + aβ)t)
= (a, bt, ct)(α, βt, γt)
= θt(a, b, c)θt(α, β, γ)

and θ−1
t = θt−1 . Now set

πt
def
= π1 ◦ θt, t ∈ R, t �= 0.

Since the image of πt equals the image of π1, it follows that πt is
irreducible. Let χt be its central character. We compute

χt(0, 0, c) = χ1(θt(0, 0, c)) = χ1(0, 0, ct) = e2πict.

It can be shown [23] that up to isomorphy πt is the only irreducible
unitary representation of H with central character χt. Since this
result is not important for the Plancherel Theorem, we will not give
its proof. It yields, however, the following description of the unitary
dual:

Ĥ = R̂2 ∪ {πt | t ∈ R×}.
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12.3 Hilbert-Schmidt Operators

For a linear operator T : H → H on a Hilbert space H we define the
operator norm by

||T || def
= sup

||v||=1
||Tv|| .

We say that T is bounded if ||T || < ∞. Note that for every vector v
we have ||Tv|| ≤ ||T || ||v||, as can be seen by replacing v with 1

||v||v if
v �= 0.

Let B(H) be the set of all bounded linear operators. It is straight-
forward to see that the operator norm actually satisfies the axioms
of a norm, so B(H) is a normed vector space (see Exercise 12.2).

Lemma 12.3.1 The space B(H) is complete; i.e., it is a Banach
space.

Proof: Let (Tn) be a Cauchy sequence in B(H). We show first
that for every w ∈ H the sequence Tnw converges. So fix w ∈ H.
Replacing w by a scalar multiple if necessary, we can assume that
||w|| = 1. For m, n ∈ N we have

||Tmw − Tnw|| ≤ sup
||v||=1

||Tmv − Tnv|| = ||Tm − Tn|| .

It follows that the sequence (Tnw) is a Cauchy sequence in H, hence
convergent. We define

Tw def
= lim

n
Tnw.

This defines a linear operator T on H.

Let ε > 0 and choose n0 ∈ N such that for all m, n ≥ n0 we have
||Tm − Tn|| < ε. For n ≥ n0 and every w ∈ H with ||w|| = 1 we have

||Tw − Tnw|| = lim
m

||Tmw − Tnw|| ≤ ε.

Therefore, ||Tw|| ≤ ||Tw − Tnw|| + ||Tnw|| ≤ ε + ||Tn||, which implies
that T is bounded, so T ∈ B(H). Furthermore, the above estimate
being uniform in w implies that the sequence (Tn) actually converges
to T in B(H). �
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Lemma 12.3.2 A linear operator T on a Hilbert space is continuous
if and only if it is bounded.

Proof: A linear operator is continuous if and only if it is continuous
at zero, i.e., iff Tvn tends to zero whenever vn tends to zero. Suppose
T is continuous and assume that there is a sequence (vn)n∈N with
||Tvn|| → ∞. Suppose Tvn �= 0 for every n. Set

wn
def
=

1
||Tvn||vn.

Then wn tends to zero and hence Twn tends to zero. So

1 =
||Tvn||
||Tvn|| = ||Twn||

tends to zero, a contradiction! It follows that such a sequence vn

does not exist, and so ||T || < ∞.

Conversely, assume T is bounded. Then if vn → 0, we get ||Tvn|| ≤
||T || ||vn||, and this also tends to zero; so T is continuous. �

Lemma 12.3.3 Let α : H → C be linear and continuous. Then
there exists a unique w0 ∈ H such that

α(v) = 〈v, w0〉

for every v ∈ H.

Proof: We show uniqueness first. Suppose there is a second w′
0.

Then 〈v, w0 − w′
0〉 = 0 for every v ∈ H, so this holds in particular

for v = w0 − w′
0, which implies w0 − w′

0 = 0 as claimed.

Suppose α �= 0, because otherwise, the assertion will be trivial. Let
V = ker(α) = {v ∈ H | α(v) = 0} be the kernel of α. Then V is a
closed subspace of H. Let U = V ⊥ = {w ∈ H | 〈w, v〉 = 0 ∀v ∈ V },
the orthogonal space. Then α maps U isomorphically to C, so there
is a unique w ∈ U with α(w) = 1. Let v ∈ H be arbitrary. Let
λ = α(v) ∈ C. Then v − λw ∈ ker(α), and hence 〈v − λw, w〉 = 0 or

〈v, w〉 = λ 〈w, w〉 .

Set w0
def
=

1
〈w,w〉w. Then 〈v, w0〉 = λ = α(v). �
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Next let T ∈ B(H) and fix w ∈ H. Then the linear map α : H → C
given by α(v) = 〈Tv,w〉 is continuous; hence there exists a unique
T ∗w ∈ H such that 〈Tv,w〉 = 〈v, T ∗w〉. Since this holds for every
w ∈ H, we get a map w �→ T ∗w, and it is easy to see that this map
T ∗ is linear. It is called the adjoint of T . We will show that it is
bounded. For this let v, w ∈ H. Then

| 〈v, T ∗w〉 | = | 〈Tv,w〉 | ≤ ||Tv|| ||w|| ≤ C ||v|| ||w||

for C = ||T ||. In particular, if we choose v = T ∗w, we get

||T ∗w||2 ≤ C ||T ∗w|| ||w|| ,

which implies ||T ∗w|| ≤ C ||w||.

Proposition 12.3.4 The map T �→ T ∗ defines a norm-preserving
involution on B(H); i.e., for S, T ∈ B(H) and λ ∈ C we have

(a) (T ∗)∗ = T ,

(b) (S + T )∗ = S∗ + T ∗,

(c) (ST )∗ = T ∗S∗,

(d) (λT )∗ = λ̄T ∗,

(e) ||T || = ||T ∗|| .

Proof: The points (a), (b), and (d) are trivial. For (c) compute

〈v, (ST )∗w〉 = 〈STv,w〉 = 〈Tv, S∗w〉 = 〈v, T ∗S∗w〉 .

To see (e), note that we have shown ||T ∗|| ≤ ||T || above. Replacing
T with T ∗ implies the claim. �

Let T ∈ B(H) and let (ej) be an orthonormal basis of H. The
Hilbert-Schmidt norm ||T ||HS of T is defined by

||T ||2HS
def
=
∑

j

〈Tej , T ej〉 .

This number is ≥ 0 but can be +∞. We have to show that it does
not depend on the choice of the orthonormal basis. For this recall
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that Theorem 2.3.2 implies that for every orthonormal basis (φα)α

and all v, w ∈ H we have

〈v, w〉 =
∑
α

〈v, φα〉 〈φα, w〉 .

So let φα be another orthonormal basis. Not knowing the inde-
pendence yet, we denote the Hilbert-Schmidt norm attached to the
orthonormal basis (ej) by ||T ||HS,(e). Then

||T ||2HS,(e) =
∑

j

〈Tej , T ej〉

=
∑

j

∑
α

〈Tej , φα〉 〈φα, T ej〉

=
∑
α

∑
j

〈Tej , φα〉 〈φα, T ej〉

=
∑
α

∑
j

〈ej , T
∗φα〉 〈T ∗φα, ej〉

=
∑
α

〈T ∗φα, T ∗φα〉 = ||T ∗||HS,(φ) .

The interchange of order of summation is justified, since all sum-
mands are positive. For (φ) = (e) this in particular implies ||T ∗||HS,(φ) =
||T ||HS,(φ), so that

||T ||HS,(e) = ||T ∗||HS,(φ) = ||T ||HS,(φ) .

This gives the desired independence, so ||T ||HS is well-defined. We
say that the operator T is a Hilbert-Schmidt operator , if ||T ||HS < ∞.

Lemma 12.3.5 For every bounded operator T on H,

||T || ≤ ||T ||HS .

For every unitary operator U we have ||UT ||HS = ||TU ||HS = ||T ||HS.

Proof: Let v ∈ H with ||v|| = 1. Then there is an orthonormal basis
(ej) with e1 = v. We get

||Tv||2 = ||Te1||2 ≤
∑

j

||Tej ||2 = ||T ||2HS .
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The invariance under multiplication by unitary operators is clear,
since (Uej) is an orthonormal basis when (ej) is. �

The main example we are interested in is the following. Recall L2(R),
which is the Hilbert space completion of L2

bc(R) as well as that of
Cc(R). Let k be a continuous bounded function on R2 and suppose∫

R

∫
R

|k(x, y)|2 dx dy < ∞.

This double integral is to be understood as follows. We assume
that for every x ∈ R the integral

∫
R

|k(x, y)|2 dy exists and defines a
continuous function on R that is integrable, and the same with x and
y interchanged. Under these circumstances we call k an L2-kernel .

Proposition 12.3.6 Suppose k(x, y) is an L2-kernel on R. For ϕ ∈
Cc(R) define

Kϕ(x) def
=

∫
R

k(x, y)ϕ(y) dy.

Then Kϕ lies in L2
bc(R), and K extends to a Hilbert-Schmidt oper-

ator K : L2(R) → L2(R) with

||K||2HS =
∫

R

∫
R

|k(x, y)|2 dx dy.

Proof: The function Kϕ is clearly continuous and bounded. We use
the Cauchy-Schwartz inequality to estimate

||Kϕ||2 =
∫

R

|Kϕ(x)|2 dx

=
∫

R

∣∣∣∣∫
R

k(x, y)ϕ(y) dy

∣∣∣∣2 dx

≤
∫

R

∫
R

|k(x, y)|2 dx dy

∫
R

|ϕ(y)|2 dy

=
∫

R

∫
R

|k(x, y)|2 dx dy ||ϕ||2 .

So K extends to a bounded operator on L2(R). Let (ej) be an
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orthonormal basis of L2(R). Then

||K||HS =
∑

j

〈Kej , Kej〉

=
∑

j

∫
R

Kej(x)Kej(x) dx

=
∑

j

∫
R

∫
R

k(x, y)ej(y) dy

∫
R

k(x, y)ej(y) dy dx

=
∑

j

∫
R

〈k(x, .), ej〉 〈ej , k(x, .)〉 dx

=
∫

R

∑
j

〈k(x, .), ej〉 〈ej , k(x, .)〉 dx

=
∫

R

〈k(x, .), k(x, .)〉 dx

=
∫

R

∫
R

|k(x, y)|2 dx dy.

�

12.4 The Plancherel Theorem for H

Let G be a locally compact group and let f ∈ Cc(G). Fix a Haar
measure on G. For a unitary representation (π, Vπ) of G we define,
formally at first,

π(f) =
∫

G
f(x)π(x) dx

as the unique linear operator on Vπ that satisfies

〈π(f)v, w〉 =
∫

G
f(x) 〈π(x)v, w〉 dx

for all v, w ∈ Vπ. We claim that π(f) is bounded and that

||π(f)|| ≤ ||f ||1 =
∫

G
|f(x)| dx.
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To prove this we employ the Cauchy-Schwarz inequality to get

| 〈π(f)v, w〉 | ≤
∫

G
|f(x)| | 〈π(x)v, w〉 | dx

≤
∫

G
|f(x)| ||v|| ||w|| dx

= ||f ||1 ||v|| ||w|| .

For w = π(f)v this gives ||π(f)v||2 ≤ ||f ||1 ||v|| ||π(f)v||, which implies
the claim. �

We have an identification H ∼= R3. Now let S(R3) be the space of
Schwartz functions on R3. This is the space of all infinitely differ-
entiable functions f on R3 such that for all k, m, n ∈ N0 and every
polynomial P (x, y, z) the function

P (x, y, z)
(

∂

∂x

)k ( ∂

∂y

)m( ∂

∂z

)n

f(x, y, z)

on R3, is bounded.

Using the above identification, we interpret f ∈ S(R3) as a function
on H, and we write S(H) for this space of functions.

Theorem 12.4.1 (Plancherel theorem)
Let f ∈ S(H), For every t ∈ R× the operator πt(f) is a Hilbert-
Schmidt operator, and we have∫

R×
||πt(f)||2HS |t| dt =

∫
H

|f(h)|2 dh.

Note that the one-dimensional representations do not occur in the
Plancherel theorem. We say that they have Plancherel measure zero.

Proof: Let t ∈ R×, f ∈ S(H), and ϕ ∈ L2(R). Then

πt(f)ϕ(x) =
∫

R3
f(a, b, c)π1(a, bt, ct)ϕ(x) da db dc

=
∫

R3
f(a, b, c)e2πit(bx+c)ϕ(x + a) da db dc

=
∫

R3
f(a − x, b, c)e2πit(bx+c)ϕ(a) da db dc

=
∫

R

k(x, y)ϕ(y) dy,
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where

k(x, y) =
∫

R2
f(y − x, b, c) e2πit(bx+c) db dc

=
∫

R

F2f(y − x,−tx, c) e2πitc dc

= F3F2f(y − x,−tx,−t),

where F2 and F3 denote the Fourier transforms with respect to the
second and third variable, respectively. The kernel k is bounded and
continuous. The function g = F3F2f lies in S(H) again and we have∫

R

|k(x, y)|2dy =
∫

R

|g(y, −tx,−t)|2dy

as well as ∫
R

k(x, y)|2dx =
∫

R

|g(y − x,−tx,−t)|2dx,

which implies that k is an L2-kernel. By Proposition 12.3.6 the
operator πt(f) is Hilbert-Schmidt. The same proposition together
with the Plancherel theorem for the Fourier transform gives∫

R×
||πt(f)||1HS |t| dt =

∫
R×

∫
R2

|g(y, −tx,−t)|2dx dy |t| dt

=
∫

R×

∫
R2

|g(y, x, t)|2dx dy dt

=
∫

R×

∫
R2

|f(y, x, t)|2dx dy dt.

�

12.5 A Reformulation

The Plancherel Theorem for H provides a decomposition of the uni-
tary H × H representation on L2(H) given by

R(h1, h2)ϕ(h) def
= ϕ(h−1

1 hh2).

This representation will be decomposed not as a direct sum but as
a direct integral. The general concept of direct integrals [3] requires
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Lebesgue integration and is therefore beyond the scope of the book.
In the particular case of the Heisenberg group, however, we can give
a simplified construction that does the job.

For a given Hilbert space V we consider the space HS(V ) of all
Hilbert-Schmidt operators on V . We choose an orthonormal basis
(ej), and for S, T ∈ HS(V ) we define

〈S, T 〉 def
=
∑

j

〈Sej , T ej〉 .

Lemma 12.5.1 For S, T ∈ HS(V ) the sum defining 〈S, T 〉 con-
verges, and its value does not depend on the choice of the orthonormal
basis. This defines an inner product on HS(V ). The space HS(V ) is
complete with respect to this inner product, i.e., HS(V ) is a Hilbert
space.

Proof: The Cauchy-Schwarz inequality implies
∑

j | 〈Sej , T ej〉 | ≤∑
j ||Sej || ||Tej ||, and since the sequences (||Sej ||)j∈N and (||Tej ||)j∈N

are in �2(N), the latter sum converges. The independence of the
choice of the orthonormal basis is shown similar to the independence
of the norm. The axioms for an inner product are easily established.
It remains to show that HS(V ) is complete. To this end let (Sn) be
a Cauchy sequence in HS(V ). By Lemma 12.3.5 it follows that (Sn)
is a Cauchy sequence in B(V ) as well and thus has a limit S ∈ B(V ).

Let ε > 0 and let n0 ∈ N be such that for all m, n ≥ n0 we have
||Sn − Sm||2HS < ε. Let (ej) be an orthonormal basis of V . Then for
every n ≥ n0,

||Sn − S||2HS =
∑

j

||Snej − Sej ||2 =
∑

j

lim
m

||Snej − Smej ||2 .

For every j0 ∈ N we have∑
j≤j0

lim
m

||Snej − Smej ||2 = lim
m

∑
j≤j0

||Snej − Smej ||2

≤ lim sup
m

∑
j

||Snej − Smej ||2

= lim sup
m

||Sn − Sm||2HS ≤ ε.

By letting j0 tend to infinity we get ||Sn − S||2HS ≤ ε. Varying ε
implies that the sequence Sn tends to S in HS(V ). �
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Let (π, Vπ) be a unitary representation of a locally compact group
G. On the Hilbert space HS(Vπ) we can define a representation πHS
of G × G by

πHS(g1, g2)T
def
= π(g1)Tπ(g−1

2 ).

Since π(g1) and π(g−1
2 ) are unitary operators on Vπ, it follows that

πHS is a unitary representation of G × G on HS(Vπ). In particular,
for each t ∈ R× we get a representation πt,HS of H × H on the space
HS(L2(R)).

Let H be a Hilbert space. We are going to define the space

L2(R×, H, |t|dt).

We first define the space Cc(R×, H) as the space of all continuous
functions ϕ : R× → H with compact support. On this space we
introduce an inner product by

〈ϕ, ψ〉 def
=

∫
R×

〈ϕ(t), ψ(t)〉 |t|dt,

where the inner product on the right-hand side is that of the Hilbert
space H. Finally, L2(R×, H, |t|dt) is the Hilbert completion of Cc(R×, H)
This is an example of a direct integral of Hilbert spaces, the idea be-
ing that for each t ∈ R× one copy Ht of H is taken, and these are
integrated over R× to form a new Hilbert space.

We now consider this construction in the special case

H = HS(L2(R)).

Lemma 12.5.2 On the space L2(R×, HS(L2(R)), |t|dt) we have a
unitary representation Π of H × H given by

Π(h1, h2)ϕ(t) def
= πt,HS(h1, h2)ϕ(t) = πt(h1)ϕ(t)πt(h−1

2 ).

Proof: To show that Π is unitary, we compute

||Π(h1, h2)ϕ||2 =
∫

R×
||Π(h1, h2)ϕ(t)||2HS |t|dt

=
∫

R×

∣∣∣∣πt(h1)ϕ(t)πt(h−1
2 )
∣∣∣∣2

HS |t|dt

=
∫

R×
||ϕ(t)||2HS |t|dt = ||ϕ||2 .
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�

This representation is called the direct integral of the representations
πt,HS and is written

Π =
∫

R×
πt,HS |t|dt.

Theorem 12.5.3 The map

Ψ : S(H) → L2(R×, HS(L2(R), |t|dt),
f �→ Ψ(f),

with Ψ(f)(t) def
= πt(f) is H × H-equivariant, injective, and has a

dense image. It satisfies ||Ψ(f)|| = ||f ||. It extends to an isomor-
phism of Hilbert spaces

Ψ : L2(H) → L2(R×, HS(L2(R), |t|dt),

which satisfies Ψ(R(h1, h2)f) = Π(h1, h2)Ψ(f). In other words, the
regular representation R of H decomposes,

R ∼=
∫

R×
πt,HS |t|dt.

Proof: To see that Ψ is H × H equivariant we compute

Ψ(R(h1, h2)f)(t) = πt(R(h1, h2)f)

=
∫

G
R(h1, h2)f(x) πt(x) dx

=
∫

G
f(h−1

1 xh2) πt(x) dx

=
∫

G
f(x) πt(h1xh−1

2 ) dx

= πt(h1)
∫

G
f(x) πt(x) dx πt(h−1

2 )

= πt(h1)πt(f)πt(h−1
2 )

= Π(h1, h2)Ψ(f).

Further, since πt(f) has the kernel

kt(x, y) = F3F2f(y − x,−tx,−t),
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the assumption Ψ(f) = 0 implies kt(x, y) = 0 for all x, y, t, and this
implies f = 0. So Ψ is injective. The fact that Ψ preserves norms
is the Plancherel theorem. Finally, to see that Ψ has dense image,
note that the image contains all kernels kt(x, y) that are smooth and
compactly supported in R2 × R×. This implies the density. �

12.6 Exercises

Exercise 12.1 Show that for an LCA group A the unitary dual can be
identified with the dual group.

(Use Lemma 12.2.1 to see that every irreducible unitary representation
of A is one-dimensional. Identify its isomorphism class with its “central”
character.)

Exercise 12.2 Show that the operator norm satisfies the axioms of a norm
as in Lemma 2.1.1.

Exercise 12.3 Let H be a Hilbert space. An operator T on H is called a
finite rank operator if the image T (H) is finite-dimensional. Show that the
operators of finite rank form a dense subspace of HS(H).

Exercise 12.4 Let G be a locally compact group. For f, g ∈ Cc(G) define
their convolution by

f ∗ g(x) def
=

∫
G

f(y)g(y−1x) dy.

Let π be a unitary representation of G. Show that

π(f ∗ g) = π(f)π(g).

Exercise 12.5 Show that the set of (a, b, c), where a, b, c are integers,
forms a closed subgroup Γ of H. Show that the quotient H/Γ is compact.



Appendix A

The Riemann Zeta
Function

We now give the analytic continuation and the functional equation of
the Riemann zeta function, which is based on the functional equation
of the theta series. First we need the gamma function:

For Re(s) > 0 the integral

Γ(s) =
∫ ∞

0
ts−1e−tdt

converges and gives a holomorphic function in that range. We inte-
grate by parts to get for Re(s) > 0,

Γ(s + 1) =
∫ ∞

0
tse−tdt =

∫ ∞

0
sts−1e−tdt = sΓ(s),

i.e.,

Γ(s) =
Γ(s + 1)

s
.

In the last equation the right-hand-side gives a meromorphic func-
tion on Re(s) > −1, and thus Γ(s) extends meromorphically to that
range. But again the very same equation extends Γ(s) to Re(s) > −2,
and so on. We find that Γ(s) extends to a meromorphic function
on the entire plane that is holomorphic except for simple poles at
s = 0,−1,−2, . . . .

Recall from Section 3.6 the theta series

Θ(t) =
∑
k∈Z

e−tπk2
, for t > 0,
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which satisfies

Θ(t) =
1√
t
Θ
(

1
t

)
,

as was shown in Theorem 3.7.1. We now introduce the Riemann zeta
function:

Lemma A.1 For Re(s) > 1 the series

ζ(s) =
∞∑

n=1

1
ns

converges absolutely and defines a holomorphic function there. This
function is called the Riemann zeta function.

Proof: Since the summands 1/ns are entire functions, it needs to be
shown only that the series

∑∞
n=1 |n−s| converges locally uniformly in

Re(s) > 1. In that range we compute

1
Re(s) − 1

=
x−Re(s)+1

1 − Re(s)

∣∣∣∣∣
∞

1

=
∫ ∞

1
x−Re(s)dx

=
∫ ∞

2
(x − 1)−Re(s)dx ≥

∫ ∞

2
[x]−Re(s)dx

=
∞∑

n=2

n−Re(s) =
∞∑

n=2

∣∣∣∣ 1ns

∣∣∣∣ ,
where for x ∈ R the number [x] is the largest integer k that satisfies
k ≤ x. The lemma follows. �

Theorem A.2 (The functional equation of the Riemann zeta func-
tion)

The Riemann zeta function ζ(s) extends to a meromorphic function
on C, holomorphic up to a simple pole at s = 1, and the function

ξ(s) = π−s/2Γ
(s

2

)
ζ(s)

satisfies
ξ(s) = ξ(1 − s)

for every s ∈ C.
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Proof: Note that the expression dt/t is invariant under the substi-
tution t �→ ct for c > 0 and up to sign under t �→ 1/t. Using these
facts, we compute for Re(s) > 1,

ξ(s) = ζ(s)Γ
(s

2

)
π−s/2 =

∞∑
n=1

∫ ∞

0
n−sts/2π−s/2e−t dt

t

=
∞∑

n=1

∫ ∞

0

(
t

n2π

)s/2

e−t dt

t
=

∞∑
n=1

∫ ∞

0
ts/2e−n2πt dt

t

=
∫ ∞

0
ts/2 1

2
(Θ(t) − 1)

dt

t
.

We split this integral into a sum of an integral over (0, 1) and an
integral over (1,∞). The latter one,∫ ∞

1
ts/2 1

2
(Θ(t) − 1)

dt

t
,

is an entire function, since the function t �→ Θ(t) − 1 is rapidly
decreasing at ∞. The other summand is∫ 1

0
ts/2 1

2
(Θ(t) − 1)

dt

t
=
∫ ∞

1
t−s/2 1

2

(
Θ
(

1
t

)
− 1
)

dt

t

=
∫ ∞

1
t−s/2 1

2

(√
tΘ(t) − 1

) dt

t

=
∫ ∞

1
t−s/2 1

2

(√
t(Θ(t) − 1) +

√
t − 1
) dt

t
,

which equals the sum of the entire function∫ ∞

1
t(1−s)/2 1

2
(Θ(t) − 1)

dt

t

and
1
2

∫ ∞

1
t(1−s)/2 dt

t
− 1

2

∫ ∞

1
t−s/2 dt

t
=

1
s − 1

− 1
s
.

Summarizing, we get

ξ(s) =
∫ ∞

1

(
t

s
2 + t

1−s
2

) 1
2
(Θ(t) − 1)

dt

t
− 1

s
− 1

1 − s
.

�

Using the functional equation and knowing the locations of the poles
of the Γ-function, we can see that the Riemann zeta function has
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zeros at the even negative integers −2,−4,−6, . . . , called the trivial
zeros. It can be shown that all other zeros are in the strip 0 <
Re(s) < 1. The up to now unproven Riemann hypothesis states
that all nontrivial zeros should be in the set Re(s) = 1

2 . This would
have deep consequences about the distribution of primes through the
prime number theorem [13].

This technique for constructing the analytic continuation of the zeta
function dates back to Riemann, and can be applied to other Dirichlet
series as well.



Appendix B

Haar Integration

Let G be an LC group. We here give the proof of the existence of a
Haar integral.

Theorem B.1 There exists a non-zero invariant integral I of G. If
I ′ is a second non-zero invariant integral, then there is a number
c > 0 such that I ′ = cI.

For the uniqueness part of the theorem we say that the invariant
integral is unique up to scaling.

The idea of the proof resembles the construction of the Riemann
integral on R. To construct the Riemann integral of a positive func-
tion one finds a step function that dominates the given function and
adds the lengths of the intervals needed multiplied by the values of
the dominating function. Instead of characteristic functions of in-
tervals one could also use translates of a given continuous function
with compact support, and this is exactly what is done in the general
situation.

Proof of the Theorem: For the existence part, let C+
c (G) be the

set of all f ∈ Cc(G) with f ≥ 0. For f, g ∈ Cc(G) with g �= 0 there
are cj > 0 and sj ∈ G such that

f(x) ≤
n∑

j=1

cjg(s−1
j x).
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Let (f : g) denote

inf

⎧⎨⎩
n∑

j=1

cj

∣∣∣∣ c1, . . . , cn > 0 and there are s1, . . . , sn ∈ G
such that f(x) ≤∑n

j=1 cjg(sjx)

⎫⎬⎭ .

Lemma B.2 For f, g, h ∈ C+
c (G) with g �= 0 we have

(a) (Lsf : g) = (f : g) for every s ∈ G,

(b) (f + h : g) ≤ (f : g) + (h : g),

(c) (λf : g) = λ(f, g) for λ ≥ 0,

(d) f ≤ h ⇒ (f : g) ≤ (h : g),

(e) (f : h) ≤ (f : g)(g : h) if h �= 0, and

(f) (f : g) ≥ max f
max g , where max f = max{f(x)|x ∈ G}.

Proof: The items (a) to (d) are trivial. For item (e) let f(x) ≤∑
j cjg(sjx) and g(y) ≤ ∑k dkh(tky); then

f(x) ≤
∑
j,k

cjdkh(tksjx),

so that (f : h) ≤ ∑j cj
∑

k dk.

For (f) choose x ∈ G with max f = f(x); then

max f = f(x) ≤
∑

j

cjg(sjx) ≤
∑

j

cj max g.

�

Fix some f0 ∈ C+
c (G), f0 �= 0. For f, ϕ ∈ C+

c (G) with ϕ �= 0 let

J(f, ϕ) = Jf0(f, ϕ) =
(f : ϕ)
(f0 : ϕ)

.

Lemma B.3 For f, h, ϕ ∈ C+
c (G) with f, ϕ �= 0 we have

(a) 1
(f0:f) ≤ J(f, ϕ) ≤ (f : f0),
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(b) J(Lsf, ϕ) = J(f, ϕ) for every s ∈ G,

(c) J(f + h, ϕ) ≤ J(f, ϕ) + J(h, ϕ), and

(d) J(λf, ϕ) = λJ(f, ϕ) for every λ ≥ 0.

Proof: This follows from the last lemma. �

The function f �→ J(f, ϕ) does not give an integral, since it is not
additive but only subadditive. However, as the support of ϕ shrinks
it will become asymptotically additive, as the next lemma shows.

Lemma B.4 Given f1, f2 ∈ C+
c (G) and ε > 0 there is a neighbor-

hood V of the unit in G such that

J(f1, ϕ) + J(f2, ϕ) ≤ J(f1 + f2, ϕ)(1 + ε)

holds for every ϕ ∈ C+
c (G), ϕ �= 0 with support contained in V .

Proof: Choose f ′ ∈ C+
c (G) such that f ′ is identically equal to 1

on the support of f1 + f2. For the existence of such a function see
Exercise 8.2. Let δ, ε > 0 be arbitrary and set

f = f1 + f2 + δf ′, h1 =
f1

f
, h2 =

f2

f
,

where it is understood that hj = 0 where f = 0. It follows that
hj ∈ C+

c (G).

Choose a neighborhood V of the unit such that |hj(x)−hj(y)| < ε/2
whenever x−1y ∈ V . If supp(ϕ) ⊂ V and f(x) ≤∑k ckϕ(skx), then
ϕ(skx) �= 0 implies

|hj(x) − hj(s−1
k )| <

ε

2
,

and

fj(x) = f(x)hj(x) ≤
∑

k

ckϕ(skx)hj(x)

≤
∑

k

ckϕ(skx)
(
hj(s−1

k ) +
ε

2

)
,

so that
(fj : ϕ) ≤

∑
k

ck

(
hj(s−1

k ) +
ε

2

)
,
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and so
(f1 : ϕ) + (f2 : ϕ) ≤

∑
k

ck(1 + ε).

This implies

J(f1, ϕ) + J(f2, ϕ) ≤ J(f, ϕ)(1 + ε)
≤ (J(f1 + f2, ϕ) + δJ(f ′, ϕ))(1 + ε).

Letting δ tend to zero gives the claim. �

Let F be a countable subset of C+
c (G), and let VF be the complex

vector space spanned by all translates Lsf , where s ∈ G and f ∈ F .
A linear functional I : VF → C is called an invariant integral on VF

if I(Lsf) = I(f) holds for every s ∈ G and every f ∈ VF and

f ∈ F ⇒ I(f) ≥ 0.

An invariant integral IF on VF is called extensible if for every count-
able set F ′ ⊂ C+

c (G) that contains F there is an invariant integral
IF ′ on VF ′ extending IF .

Lemma B.5 For every countable set F ⊂ C+
c (G) there exists an

extensible invariant integral IF that is unique up to scaling.

Proof: Fix a metric on G. For n ∈ N let ϕn ∈ C+
c (G) be nonzero

with support in the open ball of radius 1/n around the unit. Suppose
that ϕn(x) = ϕn(x−1) for every x ∈ G.

Let F = {f1, f2, . . . }. Since the sequence J(f1, ϕn) lies in the com-
pact interval [1/(f0 : f1), (f1 : f0)] there is a subsequence ϕ1

n of ϕn

such that J(f1, ϕ
1
n) converges. Next there is a subsequence ϕ2

n of ϕ1
n

such that J(f2, ϕ
2
n) also converges. Iterating this gives a sequence

(ϕj
n) of subsequences. Let ψn = ϕn

n be the diagonal sequence. Then
for every j ∈ N the sequence (J(fj , ψn)) converges, so that the defi-
nition

If0,(ψn)n∈N
(fj) = lim

n→∞ J(fj , ψn)

makes sense. By Lemma B.4, the map I indeed extends to a linear
functional on VF that clearly is a nonzero invariant integral.

This integral is extensible, since for every countable F ′ ⊃ F in C+
c (G)

one can iterate the process and go over to a subsequence of ψn.
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This does not alter If0,ψn , since every subsequence of a convergent
sequence converges to the same limit.

We shall now establish the uniqueness. Let IF = If0,ψn be the invari-
ant integral just constructed. Let I be another extensible invariant
integral on VF . Let f ∈ F , f �= 0; then we will show that

If0,ψn(f) =
I(f)
I(f0)

.

The assumption of extensibility will enter our proof in that we will
freely enlarge F in the course of the proof. Now let the notation be
as in the lemma. Let ϕ ∈ F and suppose f(x) ≤∑m

j=1 djϕ(sjx) for
some positive constants dj and some elements sj of G. Then

I(f) ≤
m∑

j=1

djI(ϕ),

and therefore
I(f)
I(ϕ)

≤ (f : ϕ).

Let ε > 0. Since f is uniformly continuous, there is a neighborhood V
of the unit such that for x, s ∈ G we have x ∈ sV ⇒ |f(x)−f(s)| <
ε. Let ϕ ∈ C+

c be zero outside V and suppose ϕ(x) = ϕ(x−1). Let
C be a countable dense set in G. The existence of such a set is clear
by Lemma 6.3.1. Now suppose that for every x ∈ C the function
s �→ f(s)ϕ(s−1x) lies in F . For x ∈ C consider∫

G
f(s)ϕ(s−1x)ds = I(f(.)ϕ(.−1x)).

Now, ϕ(s−1x) is zero unless x ∈ sV , so∫
G

f(s)ϕ(s−1x)ds > (f(x) − ε)
∫

G
ϕ(s−1x)ds

= (f(x) − ε)
∫

G
ϕ(x−1s)ds

= (f(x) − ε)I(ϕ).

Therefore,

(f(x) − ε) <
1

I(ϕ)

∫
G

f(s)ϕ(s−1x)ds.

Let η > 0, and let W be a neighborhood of the unit such that

x, y ∈ G, x ∈ Wy ⇒ |ϕ(x) − ϕ(y)| < η.
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There are finitely many sj ∈ G and hj ∈ C+
c (G) such that the

support of hj is contained in sjW and

m∑
j=1

hj ≡ 1 on supp(f).

Such functions can be constructed using the metric (see Exercise 8.2).
We assume that for each j the function s �→ f(s)hj(s)ϕ(s−1x) lies in
F for every x ∈ C. Then it follows that∫

G
f(s)ϕ(s−1x)ds =

m∑
j=1

∫
G

f(s)hj(s)ϕ(s−1x)ds.

Now hj(s) �= 0 implies s ∈ sjW , and this implies

ϕ(s−1x) ≤ ϕ(s−1
j x) + η.

Assuming that the fhj lie in F , we conclude that∫
G

f(s)ϕ(s−1x)ds ≤
m∑

j=1

I(fhj)(ϕ(s−1
j x) + η).

Let cj = I(hjf)/I(ϕ); then
∑

j cj = I(f)/I(ϕ) and

f(x) ≤ ε + η

m∑
j=1

cj +
m∑

j=1

cjϕ(s−1
j x).

Let χ ∈ C+
c (G) be such that χ ≡ 1 on supp(f). Then

f(x) ≤
⎛⎝ε + η

m∑
j=1

cj

⎞⎠χ(x) +
m∑

j=1

cjϕ(s−1
j x).

This result is valid for x ∈ C in the first instance, but the denseness
of C implies it for all x ∈ G. As η → 0 it follows that

(f : ϕ) ≤ ε(χ : ϕ) +
I(f)
I(ϕ)

.

Therefore,

(f : ϕ)
(f0 : ϕ)

≤ ε
(χ : ϕ)
(f0 : ϕ)

+
I(f)

I(ϕ)(f0 : ϕ)
≤ ε

(χ : ϕ)
(f0 : ϕ)

+
I(f)
I(f0)

.
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So, as ε → 0 and as ϕ runs through the ψn, we get

If0,ψn(f) ≤ I(f)
I(f0)

.

Applying the same argument with the roles of f and f0 interchanged
gives

If,ψn(f0) ≤ I(f0)
I(f)

.

Now note that both sides of these inequalities are antisymmetric in
f and f0, so that the second inequality gives

If0,ψn(f) = If,ψn(f0)−1 ≥
(

I(f0)
I(f)

)−1

=
I(f)
I(f0)

.

Thus it follows that If0,ψn(f) = I(f)/I(f0) and the lemma is proven.
�

Finally, the proof of the theorem proceeds as follows. For every
countable set F ⊂ C+

c (C) with f0 ∈ F , let IF be the unique extensi-
ble invariant integral on VF with IF (f0) = 1. We define an invariant
integral on all Cc(G) as follows: For f ∈ C+

c (G) let

I(f) = I{f0,f}(f).

Then I is additive, since for f, g ∈ C+
c (G),

I(f + g) = I{f0,f+g}(f + g) = I{f0,f,g}(f + g)
= I{f0,f,g}(f) + I{f0,f,g}(g) = I{f0,f}(f) + I{f0,g}(g)
= I(f) + I(g).

Thus I extends to an invariant integral on Cc(G), with the invariance
being clear from Lemma B.5. �
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continuous map, 83
convergence in the L2-norm, 10
convergent sequence, 27, 82
convolution, 44, 176
convolution product, 78, 157
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cyclic group, 73

delta distribution, 60
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diameter, 84
Dirac delta, 60
Dirac distribution, 60, 113
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discrete metric, 82
distribution of compact support,
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dominated convergence theorem,
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Hilbert-Schmidt norm, 166
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homeomorphism, 83

inner product, 6
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invariant integral, 114
invariant metric, 109
invariant subspace, 132
involution, 166
irreducible representation, 132
isometric isomorphism, 90
isometry, 27, 90
isomorphic representations, 153
isomorphic unitary representations,
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Jacobi identity, 139

kernel of a linear map, 165
Kronecker delta, 32

LC group, 111
LCA group, 94
left regular representation, 141
left translation, 114
Lie algebra, 135
Lie algebra representation, 136
linear functional, 113
locally compact, 88
locally integrable, 58
locally integrable function, 60
locally uniform convergence, 41

matrix coefficient, 153

metric, 81
metric space, 82
metrizable abelian group, 94
metrizable space, 84
metrizable topological space, 86
moderate growth, 66
modular function, 126
monotone convergence, 43

neighborhood, 87
nonnegative function, 113
norm, 26
normal operator, 138

open covering, 98
open neighborhood, 87
open set, 85
open sets, 86
operator norm, 164
orthogonal space, 29, 165
orthonormal basis, 32
orthonormal system, 32

path connected, 136
periodic function, 6
Plancherel measure zero, 170
Pontryagin Dual, 74, 102
Pontryagin Duality, 107
pre-Hilbert space, 25
projective limit, 99

regular representation, 141
representation, 132
Riemann hypothesis, 180
Riemann integral, 14
Riemann step function, 13
Riemann zeta function, 178
Riemann-Lebesgue Lemma, 16, 47

Schwartz functions, 48, 170
separable Hilbert space, 31
smooth function, 23
square integrable functions, 52
Stone-Weierstrass theorem, 155
strong Cauchy sequence, 91
subcovering, 98
support, 112
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uniform convergence, 11
unimodular group, 126
unitary, 27
unitary dual, 161
unitary equivalence, 160
unitary representation, 132
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