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Preface

Problems linking the shape of a domain or the coefficients of an elliptic operator
to the sequence of its eigenvalues are among the most fascinating of mathematical
analysis. One of the reasons which make them so attractive is that they involve
different fields of mathematics: spectral theory, partial differential equations, ge-
ometry, calculus of variations . . . . Moreover, they are very simple to state and
generally hard to solve! In particular, one can find in the next pages more than 30
open problems!

In this book, we focus on extremal problems. For instance, we look for a
domain which minimizes or maximizes a given eigenvalue of the Laplace operator
with various boundary conditions and various geometric constraints. We also con-
sider the case of functions of eigenvalues. We investigate similar questions for other
elliptic operators, like Schrödinger, non-homogeneous membranes or composites.

The targeted audience is mainly pure and applied mathematicians, more
particularly interested in partial differential equations, calculus of variations, dif-
ferential geometry, spectral theory. More generally, people interested in properties
of eigenvalues in other fields such as acoustics, theoretical physics, quantum me-
chanics, solid mechanics, could find here some answers to natural questions. For
that purpose, I choose to recall basic facts and tools in the two first chapters
(with only a few proofs). In chapters 3, 4 and 5, we present known results and
open questions for the minimization problem of a given eigenvalue λk(Ω) of the
Laplace operator with Dirichlet boundary conditions, where the unknown is here
the domain Ω itself. In chapter 6, we investigate various functions of the Dirichlet
eigenvalues, while chapter 7 is devoted to eigenvalues of the Laplace operator with
other boundary conditions. In chapter 8, we consider the eigenvalues of Schrödinger
operators: therefore, the unknown is no longer the shape of the domain but the
potential V . Chapter 9 is devoted to non-homogeneous membranes and chapter
10 to more general elliptic operators in divergence form. At last, in chapter 11, we
are interested in the bi-Laplace operator.

Of course no book can completely cover such a huge field of research. In mak-
ing personal choices for inclusion of material, I tried to give useful complementary
references, in the process certainly neglecting some relevant works. I would be
grateful to hear from readers about important missing citations.
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Chapter 1

Eigenvalues of elliptic operators

1.1 Notation and prerequisites

In this section, we recall the basic results of the theory of elliptic partial differential
equations. The prototype of elliptic operator is the Laplacian, but the results that
we state here are also valid for more general (linear) elliptic operators. For the basic
facts we recall here, we refer to any textbook on partial differential equations and
operator theory. For example, [36], [58], [75], [83] are good standard references.

1.1.1 Notation and Sobolev spaces

Let Ω be a bounded open set in R
N . We denote by L2(Ω) the Hilbert space

of square summable functions defined on Ω and by H1(Ω) the Sobolev space of
functions in L2(Ω) whose partial derivatives (in the sense of distributions) are in
L2(Ω):

H1(Ω) := {u ∈ L2(Ω) such that
∂u

∂xi
∈ L2(Ω), i = 1, 2, . . . , N}.

This is a Hilbert space when it is endowed with the scalar product

(u, v)H1 :=
∫

Ω

u(x)v(x) dx +
∫

Ω

∇u(x).∇v(x) dx

and the corresponding norm:

‖u‖H1 :=
(∫

Ω

u(x)2 dx +
∫

Ω

|∇u(x)|2 dx

)1/2

.
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In the case of Dirichlet boundary conditions, we will use the subspace H1
0 (Ω) which

is defined as the closure of C∞ functions compactly supported in Ω (functions in
C∞

0 (Ω)) for the norm ‖ ‖H1 . It is also a Hilbert space. At last, H−1(Ω) denotes
the dual space of H1

0 (Ω). For some non-linear problems, for example when we are
interested in the p-Laplace operator, it is more convenient to work with the spaces
Lp, p ≥ 1 instead of L2. In this case, the Sobolev spaces, defined exactly in the
same way, are denoted by W 1,p(Ω) and W 1,p

0 (Ω) respectively. These are Banach
spaces.

When Ω is bounded (or bounded in one direction), we have the Poincaré
inequality:

∃C = C(Ω) such that ∀u ∈ H1
0 (Ω),

∫
Ω

u(x)2 dx ≤ C

∫
Ω

|∇u(x)|2 dx . (1.1)

Actually the constant C which appears in (1.1) is closely related to the eigenvalues
of the Laplacian since we will see later (cf (1.36)) that the best possible constant C
is nothing other than 1/λ1(Ω) where λ1(Ω) is the first eigenvalue of the Laplacian
with Dirichlet boundary conditions.

By definition, H1
0 (Ω) and H1(Ω) are continuously embedded in L2(Ω), but

we will need later a compact embedding. This is the purpose of the following
theorem.

Theorem 1.1.1 (Rellich).

• For any bounded open set Ω, the embedding H1
0 (Ω) ↪→ L2(Ω) is compact.

• If Ω is a bounded open set with Lipschitz boundary, the embedding H1(Ω) ↪→
L2(Ω) is compact.

Remark 1.1.2. We can weaken the assumption of Lipschitz boundary but not too
much, see e.g. the book [148] for more details.

1.1.2 Partial differential equations

Elliptic operator

Let aij(x), i, j = 1, . . . , N be bounded functions defined on Ω and satisfying the
usual ellipticity assumption:

∃α > 0, such that ∀ξ = (ξ1, ξ2, . . . , ξN ) ∈ R
N , ∀x ∈ Ω∑N

i,j=1 aij(x)ξiξj ≥ α|ξ|2 (1.2)

where |ξ| =
(
ξ2
1 + ξ2

2 + · · · + ξ2
N

)1/2 denotes the euclidean norm of the vector ξ.
We will also assume a symmetry assumption for the aij namely:

∀x ∈ Ω, ∀i, j aij(x) = aji(x) . (1.3)
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Let a0(x) be a bounded function defined on Ω. We introduce the linear elliptic
operator L, defined on H1(Ω) by:

Lu := −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a0(x)u (1.4)

(derivatives are to be understood in the sense of distributions). The prototype of
elliptic operator is the Laplacian:

−∆u := −
N∑

i=1

∂2u

∂x2
i

(1.5)

which will be considered in the main part of this book (chapters 3 to 7). In chapter
8, we consider the Schrödinger operator LV u = −∆u+V (x)u where V (the poten-
tial) is a bounded function, while chapters 9 and 10 deal with more general elliptic
operators. In that case, we will keep the notation L when we want to consider
general operators given by (1.4). At last, in chapter 11, we consider operators of
fourth order.

Remark 1.1.3. Let us remark that, since we are only interested in eigenvalue
problems, we do not put any sign condition on the function a0(x) which appears
in (1.4). Indeed, since a0(x) is bounded, we can always replace the operator L by
L+(‖a0‖∞ +1)Id, i.e. replace the function a0(x) by a0(x)+ ‖a0‖∞ +1 if we need
a positive function in the term of order 0 of the operator L. For the eigenvalues,
that would just induce a translation of ‖a0‖∞ + 1 to the right.

Dirichlet boundary condition

Let f be a function in L2(Ω). When we call u a solution of the Dirichlet problem

Lu = f in Ω,
u = 0 on ∂Ω,

(1.6)

we actually mean that u is the unique solution of the variational problem{
u ∈ H1

0 (Ω) and ∀v ∈ H1
0 (Ω),∑N

i,j=1

∫
Ω

aij(x) ∂u
∂xi

∂v
∂xj

dx +
∫
Ω

a0(x)u(x)v(x) dx =
∫
Ω

f(x)v(x) dx .
(1.7)

Existence and uniqueness of a solution for problem (1.7) follows from the Lax-
Milgram Theorem, the ellipticity assumption (1.2) and the Poincaré inequality
(1.1). Note that, according to Remark 1.1.3, we can restrict ourselves to the case
a0(x) ≥ 0. In the sequel, we will denote by AD

L (or AD
L (Ω) when we want to

emphasize the dependence on the domain Ω) the linear operator defined by:

AD
L : L2(Ω) → H1

0 (Ω) ⊂ L2(Ω),
f 
→ u solution of (1.7).

(1.8)
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Neumann boundary condition

In the same way, if f is a function in L2(Ω), we will also consider u a solution of
the Neumann problem

Lu = f in Ω,∑N
i,j=1 aij

∂u
∂xj

ni = 0 on ∂Ω (1.9)

(where n stands for the exterior unit normal vector to ∂Ω and ni is its ith coor-
dinate). For example, when L = −∆, the boundary condition reads (formally)

∂u

∂n
= 0 .

It means that u is the unique solution in H1(Ω) of the variational problem{
u ∈ H1(Ω) and ∀v ∈ H1(Ω),∑N

i,j=1

∫
Ω

aij(x) ∂u
∂xi

∂v
∂xj

dx +
∫
Ω

a0(x)u(x)v(x) dx =
∫
Ω

f(x)v(x) dx .
(1.10)

Existence and uniqueness of a solution for problem (1.10) follows from the Lax-
Milgram Theorem, the ellipticity assumption (1.2) and the fact that we can assume
that a0(x) ≥ 1 (according to Remark 1.1.3). In the sequel, we will denote by AN

L

the linear operator defined by:

AN
L : L2(Ω) → H1(Ω) ⊂ L2(Ω),

f 
→ u solution of (1.10).
(1.11)

Remark 1.1.4. We will also consider later, for example in chapter 7, other kinds
of boundary conditions like Robin or Stekloff boundary conditions.

1.2 Eigenvalues and eigenfunctions

1.2.1 Abstract spectral theory

Let us now give the abstract theorem which provides the existence of a sequence
of eigenvalues and eigenfunctions. Let H be a Hilbert space endowed with a scalar
product (., .) and recall that an operator T is a linear continuous map from H into
H . We say that:

• T is positive if, ∀x ∈ H, (Tx, x) ≥ 0,

• T is self-adjoint, if ∀x, y ∈ H, (Tx, y) = (x, T y),

• T is compact, if the image of any bounded set is relatively compact (i.e. has
a compact closure) in H .
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Theorem 1.2.1. Let H be a separable Hilbert space of infinite dimension and T a
self-adjoint, compact and positive operator. Then, there exists a sequence of real
positive eigenvalues (νn), n ≥ 1 converging to 0 and a sequence of eigenvectors
(xn), n ≥ 1 defining a Hilbert basis of H such that ∀n, T xn = νn xn.

Of course, this theorem can be seen as a generalization to Hilbert spaces of the
classical result in finite dimension for symmetric or normal matrices (existence of
real eigenvalues and of an orthonormal basis of eigenvectors).

1.2.2 Application to elliptic operators

Dirichlet boundary condition

We apply Theorem 1.2.1 to H = L2(Ω) and the operator AD
L defined in (1.8).

• AD
L is positive: let f ∈ L2(Ω) and u = AD

L f be the solution of (1.7). We get

(f, AD
L f) =

∫
ω

f(x)u(x) dx =
N∑

i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
dx +

∫
Ω

a0(x)u2(x) dx .

Now, we recall that a0(x) can be taken as a positive function and then the
ellipticity condition (1.2) yields the desired result. Moreover, we see that
(f, AD

L f) > 0 as soon as f �= 0 (strict positivity).

• AD
L is self-adjoint: let f, g ∈ L2(Ω) and u = AD

L f, v = AD
L g. We have:

(f, AD
L g) =

∫
ω

f(x)v(x)dx =
N∑

i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx+

∫
Ω

a0(x)u(x)v(x)dx.

(1.12)
Now, according to the symmetry assumption (1.3) and the equation (1.7)
satisfied by v, the right-hand side in (1.12) is equal to

∫
Ω

u(x)g(x) dx =
(AD

L f, g).

• AD
L is compact: it is an immediate consequence of the Rellich Theorem 1.1.1.

As a consequence of Theorem 1.2.1, there exists (un) a Hilbert basis of L2(Ω) and
a sequence νn ≥ 0, converging to 0, such that AD

L un = νn un. Actually, the νn are
positive, since the strict positivity of AD

L yields νn‖un‖L2 = (un, AD
L un) > 0.

Coming back to (1.7), we see that un satisfies, ∀v ∈ H1
0 (Ω):

νn

⎛⎝ N∑
i,j=1

∫
Ω

aij(x)
∂un

∂xi

∂v

∂xj
dx +

∫
Ω

a0(x)un(x)v(x) dx

⎞⎠ =
∫

Ω

un(x)v(x) dx

which means
L un =

1
νn

un .

Setting λn = 1
νn

, we have proved:
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Theorem 1.2.2. Let Ω be a bounded open set in R
N . There exists a sequence of

positive eigenvalues (going to +∞) and a sequence of corresponding eigenfunctions
(defining a Hilbert basis of L2(Ω)) that we will denote respectively 0 < λD

1 (L, Ω) ≤
λD

2 (L, Ω) ≤ λD
3 (L, Ω) ≤ . . . and uD

1 , uD
2 , uD

3 , · · · satisfying:{
LuD

n = λD
n (L, Ω)uD

n in Ω,

uD
n = 0 on ∂Ω .

(1.13)

Remark 1.2.3. For uniformly elliptic operators (those satisfying (1.2)), the com-
pactness of the operator AD

L follows simply from Rellich’s Theorem 1.1.1. In
some other cases, particularly for degenerate operators, one generally needs to
use weighted Sobolev spaces. For example, if the operator is Lu := −div(σ∇u)
with σ ≥ 0 allowed to vanish into Ω, one needs to introduce the space H1

σ(Ω)
(endowed with the norm ‖u‖2 =

∫
Ω u2 dx +

∫
Ω σ|∇u|2 dx). Then, it happens that

the previous theory works as soon as the function 1/σ belongs to some Lp(Ω)
space with p > N/2. We refer e.g. to [155] or [205]. At last, there is an interesting
alternative to prove compactness. Thanks to the Green function, one can usually
write the operator AD

L (or AN
L ) with an integral representation. Then, it suffices

to prove that it is a Hilbert-Schmidt operator. We will see an example of this
strategy in section 10.2.3.

When L = −∆ is the Laplacian, we will simply denote the eigenvalues by
λn(Ω) (or λn when no confusion is possible) and the corresponding eigenfunctions
by un.

Since the eigenfunctions are defined up to a constant, we decide to normalize
the eigenfunctions by the condition∫

Ω

un(x)2 dx = 1 . (1.14)

Of course, it can occur that some eigenvalues are multiple (especially when
the domain has symmetries). In this case, the eigenvalues are counted with their
multiplicity.

Remark 1.2.4. When Ω is non-connected, for example if Ω has two connected com-
ponents Ω = Ω1 ∪Ω2, we obtain the eigenvalues of Ω by collecting and reordering
the eigenvalues of each connected components

λD
1 (L, Ω) = min(λD

1 (L, Ω1), λD
1 (L, Ω2)),

λD
2 (L, Ω) = min(max(λD

1 (L, Ω1), λD
1 (L, Ω2)), λD

2 (L, Ω1), λD
2 (L, Ω2)),

...

(1.15)

More generally, we can always choose every eigenfunction of a disconnected open
set Ω to vanish on all but one of the connected components of Ω. In particu-
lar, when the two connected components are the same, we will have λD

1 (L, Ω) =
λD

2 (L, Ω), i.e. λ1 is a double eigenvalue.
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That cannot happen when Ω is connected:

Theorem 1.2.5. Let us assume that Ω is a regular connected open set. Then the
first eigenvalue λD

1 (L, Ω) is simple and the first eigenfunction uD
1 has a constant

sign on Ω. Usually, we choose it to be positive on Ω.

Actually, this theorem is a consequence of the Krein-Rutman Theorem which
is an abstract result that we recall here (see [181] for a proof).

Theorem 1.2.6 (Krein-Rutman). Let E be a Banach space and C be a closed convex
cone in E with vertex at O, non-empty interior Int(C) and satisfying C ∩ (−C) =
{O}. Let T be a compact operator in E which satisfies T (C \ {O}) ⊂ Int(C);
then the greatest eigenvalue of T is simple, and the corresponding eigenvector is
in Int(C) (or in −Int(C)).

To prove Theorem 1.2.5, we apply the Krein-Rutman Theorem with E =
C0(Ω), T = AD

L and C = {v ∈ C0(Ω), such that v(x) ≥ 0.}. Then, the assumption
T (C \ {O}) ⊂ Int(C) comes from the strong maximum principle. The fact that T
can be defined as an operator from E to E and the fact that it is compact comes
from classical regularity results (if the right-hand side of f is continuous, the
solution u of (1.6) is also continuous and even Hölderian (De Giorgi-Stampacchia
Theorem, see [36], [94]).

Remark 1.2.7. We will see two other proofs of the non-negativity of the first
eigenfunction (and simplicity of the first eigenvalue) in section 1.3.3. In particular,
no regularity assumptions are actually needed for this result.

Neumann boundary condition

In the same way, when Ω is a bounded Lipschitzian open set in R
N , we can

prove the following theorem (the Lipschitz regularity of Ω is necessary to have the
compact embedding H1(Ω) ↪→ L2(Ω)):

Theorem 1.2.8. Let Ω be a bounded open Lipschitzian set in R
N . There exists a se-

quence of non-negative eigenvalues (going to +∞) and a sequence of corresponding
eigenfunctions (defining a Hilbert basis of L2(Ω)) that we will denote respectively
0 ≤ µN

1 (L, Ω) ≤ µN
2 (L, Ω) ≤ µN

3 (L, Ω) ≤ · · · and uN
1 , uN

2 , uN
3 , . . . satisfying:{

LuN
n = µN

n (L, Ω)uN
n in Ω,

∂uN
n

∂n = 0 on ∂Ω .
(1.16)

When L = −∆ is the Laplacian, we will simply denote the eigenvalues by
µn(Ω) (or µn when no confusion is possible) and the corresponding eigenfunctions
by un.

We observe that, for the Laplacian and, more generally in the case a0(x) = 0,
the first eigenvalue is always µ1 = 0 and a corresponding eigenfunction is a non-
zero constant (on a connected component of Ω).
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In the case of Neumann boundary condition, we also decide to normalize the
eigenfunctions by the condition∫

Ω

un(x)2 dx = 1 . (1.17)

At last, when Ω is non-connected, we have the same property as described in
Remark 1.2.4.

1.2.3 First Properties of eigenvalues

In this section, we only consider the eigenvalues of the Laplacian operator. It is
well known that this operator is invariant for translations and rotations. More
precisely, let us denote by τx0 the translation of vector x0: τx0(x) = x + x0. If v is
a function defined on a set Ω, we define the function τx0v on τx0(Ω) by the formula
τx0v(x) := v(x − x0). Then, it is clear that

τx0 ◦ ∆ = ∆ ◦ τx0

from which we can deduce

λn(τx0(Ω)) = λn(Ω) . (1.18)

In the same way, denoting by R any isometry, we have

λn(R(Ω)) = λn(Ω) . (1.19)

Let us also look at the effect of homothety. Let k > 0 and Hk be a homothety of
origin O and ratio k: Hk(x) = kx. If v is a function defined on Ω, we define the
function Hkv on Hk(Ω) by the formula Hkv(x) := v(x/k). Since Hk◦∆ = k2∆◦Hk,
we deduce

λn(Hk(Ω)) =
λn(Ω)

k2
. (1.20)

An important consequence of (1.20) is the following. In the sequel, we will often
consider minimization problems with a volume constraint, such as

min{λn(Ω), |Ω| = c} . (1.21)

Then , it could be convenient to replace Problem (1.21) by:

min |Ω|2/N λn(Ω) . (1.22)

Proposition 1.2.9. Problems (1.21) and (1.22) are equivalent.

By equivalent, we just mean that there exists a bijective correspondence
between solutions of these two problems. Actually, since the functional Ω 
→
|Ω|2/N λn(Ω) is invariant by homothety (thanks to (1.20)), the correspondence
is simply:
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• every solution of (1.21) is a solution of (1.22),

• if Ω is a solution of (1.22) with volume c′, then Hk(Ω), with k = (c/c′)1/N ,
is a solution of (1.21).

Of course, the result of Proposition 1.2.9 is also true when we add most of the
supplementary geometric constraints. For functions of eigenvalues, it will obviously
depend on the homogeneity of the function.

1.2.4 Regularity of eigenfunctions

Interior regularity

Due to the hypo-ellipticity of the Laplacian, the eigenfunctions of the Laplacian
are known to be analytic inside the domain, see e.g. [75], [58]. For more general
operators, it depends on the regularity of the coefficients of the operator L. A
good reference to handle such cases is [94].

Regularity up to the boundary

To have some regularity up to the boundary, we need to assume enough regularity
of the domain. Standard results are the following, see [94] or [96]:

Theorem 1.2.10 (Sobolev regularity). Let us assume that Ω is C1,1 or convex and
the coefficients aij are C0 and a0 ∈ L∞. Then each eigenfunction u of (1.13)
belongs to the Sobolev space H2(Ω).

Remark 1.2.11. One can also get Lp regularity results. For example, using The-
orem 9.15 in [94] together with a bootstrap argument, one can prove that the
eigenfunctions are in W 2,p(Ω) with p > N . In particular, thanks to Sobolev em-
bedding, the eigenfunctions are in C1(Ω) as soon as the boundary of Ω is C1,1.

Theorem 1.2.12 (Hölderian regularity). Let us assume that Ω is C2,α for some
α > 0 and the coefficients aij are C1,α and a0 in C0,α. Then each eigenfunction
u of (1.13) belongs to C2,α(Ω).

1.2.5 Some examples

In this section, we are interested in the eigenvalues of the Laplacian for some
very simple domains. In one dimension, one can also choose explicit eigenvalues of
some specific Sturm-Liouville operators. This leads to the huge theory of special
functions; we refer e.g. to [3], [139] for examples of such functions.
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Rectangles

In the 1-D case, i.e. for an interval like Ω = (0, L), it is very easy to solve at hand
the differential equation { −u′′ = λu, x ∈ (0, L),

u(0) = u(L) = 0,
(1.23)

and the only non-trivial solutions are

λn =
n2π2

L2
, un(x) = sin

(nπx

L

)
, n ≥ 1. (1.24)

Now, for rectangles, using the classical trick of separation of variables, we prove

Proposition 1.2.13. Let Ω = (0, L)×(0, l) be a plane rectangle; then its eigenvalues
and eigenfunctions for the Laplacian with Dirichlet boundary conditions are:

λm,n = π2
(

m2

L2 + n2

l2

)
um,n(x, y) = 2√

Ll
sin(mπx

L ) sin(nπy
l )

m, n ≥ 1, (1.25)

while its eigenvalues and eigenfunctions for the Laplacian with Neumann boundary
conditions are:

µm,n = π2
(

m2

L2 + n2

l2

)
vm,n(x, y) = 2√

Ll
cos(mπx

L ) cos(nπy
l )

m, n ≥ 0. (1.26)

It is immediate to check that the pair (λm,n, um,n) given by (1.25) are eigen-
value and eigenfunction for the Laplacian with Dirichlet boundary condition. Of
course, the difficulty is to prove that there are no other possibilities. Actually, it
is due to the fact that the functions sin(mπx

L ) sin(nπy
l ) m, n ≥ 1 form a complete

orthogonal system in L2(Ω), see [58].

Disks

Let us consider the disk BR of radius R centered at O. In polar coordinates (r, θ),
looking for an eigenfunction u of D of the kind u(r, θ) = v(r)w(θ) leads us to solve
the ordinary differential equations:

w′′(θ) + kw(θ) = 0 , w 2π-periodic,

v′′(r) +
1
r

v′(r) + (λ − k

r2
)v(r) = 0 , v′(0) = 0, v(R) = 0 .

The periodicity condition for the first one implies that k = n2 where n is an integer
and w(θ) = an cosnθ + bn sin nθ. Then, replacing k by n2 in the second equation
allows us to recognize the classical Bessel differential equation. We can state
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Proposition 1.2.14. Let Ω = BR be a disk of radius R; then its eigenvalues and
eigenfunctions for the Laplacian with Dirichlet boundary conditions are:

λ0,k =
j2
0,k

R2 , k ≥ 1,

u0,k(r, θ) =
√

1
π

1
R|J′

0(j0,k)|J0(j0,kr/R), k ≥ 1,

λn,k =
j2
n,k

R2 , n, k ≥ 1, double eigenvalue

un,k(r, θ) =

√
2
π

1
R|J′

n(jn,k)|Jn(jn,kr/R) cosnθ√
2
π

1
R|J′

n(jn,k)|Jn(jn,kr/R) sin nθ
, n, k ≥ 1,

(1.27)

where jn,k is the k-th zero of the Bessel function Jn.
For the Laplacian with Neumann boundary conditions, the eigenvalues and

eigenfunctions of the disk BR are:

µ0,k = j′0,k
2

R2 , k ≥ 1,

v0,k(r, θ) =
√

1
π

1
R|J0(j′0,k)|J0(j′0,kr/R), k ≥ 1,

µn,k =
j′n,k

2

R2 , n, k ≥ 1, double eigenvalue

vn,k(r, θ) =

√
2
π

j′n,k

R
q

j′
n,k

2−n2|Jn(j′
n,k

)|
Jn(j′n,kr/R) cosnθ√

2
π

j′n,k

R
q

j′n,k
2−n2|Jn(j′n,k)|

Jn(j′n,kr/R) sin nθ
, n, k ≥ 1,

(1.28)

where j′n,k is the k-th zero of J ′
n (the derivative of the Bessel function Jn).

Here is an array of the first values of jn,k (left) and j′n,k (right):

n\k 1 2 3 4
0 2.405 5.520 8.654 11.791
1 3.832 7.016 10.173 13.324
2 5.136 8.417 11.620 14.796
3 6.380 9.761 13.015 16.223

n\k 1 2 3 4
0 0 3.832 7.016 10.173
1 1.841 5.331 8.536 11.706
2 3.054 6.706 9.969 13.170
3 4.201 8.015 11.346 14.586

Remark 1.2.15. Similarly, in dimension N ≥ 3, the eigenvalues of the ball BR of
radius R involve the zeros of the Bessel functions JN/2−1, JN/2, . . .. For example

λ1(BR) =
j2
N/2−1,1

R2
λ2(BR) = λ3(BR) = · · · = λN+1(BR) =

j2
N/2,1

R2
. (1.29)

1.2.6 Fredholm alternative

Let L be an elliptic operator and λ one of its eigenvalues. Then, by definition, the
linear operator L− λId has a non-trivial kernel. Nevertheless, in some situations,
we need to solve an equation like (L − λId)v = f . It is remarkable that we have
the same result as in finite dimension.
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Theorem 1.2.16 (Fredholm alternative). Let L be an elliptic operator on a bounded
open set Ω and λ one of its eigenvalues for Dirichlet boundary conditions. Let
f ∈ L2(Ω), then the problem

Lv − λv = f in Ω,
v = 0 on ∂Ω (1.30)

has a solution if and only if f is orthogonal (for the L2 scalar product) to any
eigenfunction associated to λ.

For the proof, see e.g. [58], [36]. It is clear that if problem (1.30) has a solution
v0, we obtain all the solutions by adding any eigenfunction associated to λ: v0+tu.

1.3 Min-max principles and applications

1.3.1 Min-max principles

One very useful tool is the following variational characterization of the eigenvalues,
known as the Poincaré principle or Courant-Fischer formulae, see [58]. Let us define
the Rayleigh quotient of the operator L to be:

RL[v] :=

∑N
i,j=1

∫
Ω aij(x) ∂v

∂xi

∂v
∂xj

dx +
∫
Ω a0(x)v2(x) dx∫

Ω
v(x)2 dx

. (1.31)

Then, we have

λD
k (L, Ω) = min

Ek ⊂ H1
0 (Ω),

subspace of dim k

max
v∈Ek,v �=0

RL[v] , (1.32)

µN
k (L, Ω) = min

Ek ⊂ H1(Ω),
subspace of dim k

max
v∈Ek,v �=0

RL[v] . (1.33)

In formulae (1.32) and (1.33), the minimum is achieved for choosing Ek the space
spanned by the k-th first eigenfunctions. In particular, assuming that we have
already computed u1, u2, . . . , uk−1 the k − 1-th first eigenfunctions, we also have:

λD
k (L, Ω) = min

v ∈ H1
0 (Ω),

v orthogonal to u1, u2, . . . , uk−1

RL[v] . (1.34)

For example, in the case of the Laplacian, formulae (1.32) becomes

λk(Ω) = min
Ek ⊂ H1

0 (Ω),
subspace of dim k

max
v∈Ek,v �=0

∫
Ω |∇v(x)|2 dx∫

Ω
v(x)2 dx

(1.35)
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and, in particular, for the first Dirichlet eigenvalue, we get

λ1(Ω) = min
v∈H1

0 (Ω),v �=0

∫
Ω
|∇v(x)|2 dx∫
Ω v(x)2 dx

, (1.36)

while the first non-zero Neumann eigenvalue for the Laplacian is given by

µ2(Ω) = min
v∈H1(Ω),v �=0,

R
Ω v=0

∫
Ω |∇v(x)|2 dx∫

Ω
v(x)2 dx

. (1.37)

In (1.36) and (1.37), the minimum is achieved by the corresponding eigenfunc-
tion(s).

There exist also similar variational characterizations for sums of consecutive
eigenvalues or sums of inverses of consecutive eigenvalues (see e.g. [19] pp. 98-99 or
[110]). We give here the case of the Laplacian with Dirichlet boundary conditions,
but any other case can be handled in the same way. Let us denote by u1, u2, . . . , uk

the k-th first eigenfunctions. Then,

k+n∑
i=k+1

λi(Ω) = min

{
k+n∑

i=k+1

∫
Ω

|∇vi(x)|2 dx

}
, (1.38)

where (vi) is an orthonormal family in L2(Ω) satisfying
∫
Ω viuj dx = 0, j =

1, 2, . . . , k. Similarly

k+n∑
i=k+1

1
λi(Ω)

= max

{
k+n∑

i=k+1

∫
Ω

vi(x)2 dx

}
, (1.39)

where (vi) is a family in H1
0 (Ω) satisfying

∫
Ω ∇vi.∇vj dx = δij and

∫
Ω viuj dx =

0, j = 1, 2, . . . , k.

1.3.2 Monotonicity

Let us consider two open bounded sets such that Ω1 ⊂ Ω2. This inclusion induces
a natural embedding H1

0 (Ω1) ↪→ H1
0 (Ω2) just by extending by zero functions in

H1
0 (Ω1). In particular, the min-max principle implies the following monotonicity

for inclusion of eigenvalues with Dirichlet boundary conditions:

Ω1 ⊂ Ω2 =⇒ λD
k (L, Ω1) ≥ λD

k (L, Ω2) (1.40)

(since the minimum is taken over a larger class for λD
k (L, Ω2)). Moreover, the

inequality is strict as soon as Ω2 \Ω1 contains a set of positive capacity (since the
first eigenfunction cannot vanish on such a set).

Let us also remark that this monotonicity formula is not valid in the Neumann
case. For example, Figure 1.1 gives an elementary counter-example with rectangles.
We use the fact that the first non-zero eigenvalue of a rectangle for the Neumann-
Laplacian is given by µ2(R) = π2

L2 where L is the length of the rectangle (see
(1.26)).
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Figure 1.1: Here Ω1 ⊂ Ω2 but µ2(Ω1) = π2
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< µ2(Ω2) = π2
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1.3.3 Nodal domains

Let us now have a look at the sign of eigenfunctions. We have already seen in
Theorem 1.2.5 that the first eigenfunction u1 is positive in Ω when Ω is connected.
More generally, u1 is non-negative (positive on one connected component and it
vanishes on the other ones). Actually, we can recover this result thanks to the
minimum formulae (1.32) for λ1. Indeed, using the fact that if u ∈ H1

0 (Ω) we also
have |u| ∈ H1

0 (Ω) and ∂|u|
∂xi

= sign(u) ∂u
∂xi

, we see that u and |u| have the same
Rayleigh quotient. Therefore, |u1| is also a minimizer of the Rayleigh quotient
and, therefore, an eigenfunction.

Concerning the other eigenfunctions, since they are all orthogonal to u1, they
have to change sign in Ω.

Definition 1.3.1. Let uk, k ≥ 2 be an eigenfunction of the elliptic operator L with
Dirichlet or Neumann boundary conditions. The connected components of the open
sets

Ω+ = {x ∈ Ω, uk(x) > 0} and Ω− = {x ∈ Ω, uk(x) < 0}
are called the nodal domains of uk.

The number of these nodal domains is bounded from above:

Theorem 1.3.2 (Nodal domains). Let uk, k ≥ 2 be the k-th eigenfunction of the
elliptic operator L with Dirichlet or Neumann boundary conditions. Then, uk has
at most k nodal domains.

The proof consists in assuming that uk has more than k nodal domains,
then constructing a test function, orthogonal to the (k−1)-th first eigenfunctions,
whose Rayleigh quotient has a value strictly less than λk to reach a contradiction
by applying (1.34), see e.g. [58]. Let us remark that Theorem 1.3.2 is also true
for k = 1 and that it gives an elementary proof of the non-negativity of the first
eigenfunction (see Theorem 1.2.5) without regularity assumptions. Moreover, it
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also implies that the first eigenfunction must be simple in the connected case
since two non negative and non zero functions cannot be orthogonal.

We will also frequently use the following property of a nodal domain:

Proposition 1.3.3. Let uk, k ≥ 2 be an eigenfunction of the elliptic operator L with
Dirichlet boundary conditions associated with the eigenvalue λk. Let ωk be one of
its nodal domains. Then

λ1(ωk) = λk .

Indeed, since uk satisfies Luk = λkuk in ωk and vanishes on ∂ωk, it is an
eigenfunction for L on ωk with Dirichlet boundary condition. Moreover, since uk

has a constant sign on ωk, it can only be the first one.
Let us be a little bit more precise for the second Dirichlet-eigenfunction u2

of the Laplacian. According to Theorem 1.3.2, u2 has at most two nodal domains.
So, it has exactly two nodal domains when Ω is connected. The set

N = {x ∈ Ω, u2(x) = 0}

is called the nodal line of u2. When Ω is a plane convex domain, this nodal line
hits the boundary of Ω at exactly two points, see Melas [150], or Alessandrini [2].
For general simply connected plane domains Ω, it is still a conjecture, named after
Larry Payne, the “Payne conjecture”.

1.4 Perforated domains

When a domain minimizes a given function of eigenvalues, we can classically get
some optimality conditions by letting the boundary of the domain vary and using
domain derivative formulae which will be presented in section 2.5. An alternative
way to get optimality conditions inside the domain is to use asymptotic expan-
sions of eigenvalues of domains with small holes (it is also related to the so-called
topological derivative, see e.g. [159]). There is a huge literature on that topic, see
e.g. [165], [88], [149] and the references therein. Let us give an example:

Theorem 1.4.1. Let Ω be an open set in R
N , x0 ∈ Ω and ε > 0 a small number.

Let us denote Ωε = Ω \ B(x0, ε) (the set where we have removed the ball centered
at x0 of radius ε). Then the eigenvalues of the Laplacian-Dirichlet operator satisfy
the following expansion:

λk(Ωε) = λk(Ω) + 2π
− log ε u2

k(x0) + o( 1
| log ε| ) if N = 2,

λk(Ωε) = λk(Ω) + εN−2SN−1 u2
k(x0) + o(εN−2) if N ≥ 3,

(1.41)

where, in the last formulae, SN−1 is the N − 1-dimensional measure of the unit
sphere in R

N .
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The previous formulae can be possibly used to prove non-existence of a min-
imizer for some function of eigenvalues. Let us be more precise. For example, if we
want to prove non-existence for a two-dimensional problem like

min
Ω⊂R2

F (λ1(Ω), λ2(Ω), . . . , λk(Ω)), (1.42)

we can assume that there exists a minimizer, say Ω. Let us denote by J(Ω) =
F (λ1(Ω), λ2(Ω), . . . , λk(Ω)). Introducing Ωε as above, we will have the expansion

J(Ωε) = J(Ω) +
2π

− log ε

k∑
i=1

∂F

∂xi
(λ1(Ω), λ2(Ω), . . . , λk(Ω))u2

i (x0) + o(
1

| log ε| ) .

Obviously, if we can find a point x0 in Ω where the first order term is negative, it
will imply non-existence.



Chapter 2

Tools

2.1 Schwarz rearrangement

The Schwarz rearrangement is the main tool used by G. Faber and E. Krahn to
prove their famous isoperimetric inequality (see Theorem 3.2.1). Let us present
briefly this rearrangement. In the next section, we also introduce Steiner sym-
metrization. The reader interested in other rearrangements and other applications
can read for example [19], [97], [122], [152], [174].

Definition 2.1.1. For any measurable set ω in R
N , we denote by ω∗ the ball of same

volume as ω. If u is a non-negative measurable function defined on a measurable
set Ω and vanishing on its boundary ∂Ω, we denote by Ω(c) = {x ∈ Ω /u(x) ≥ c}
its level sets. The Schwarz rearrangement (or spherical decreasing rearrangement)
of u is the function u∗ defined on Ω∗ by

u∗(x) = sup{c /x ∈ Ω(c)∗} .

In other words, u∗ is constructed from u by rearranging the level sets of u
in balls of the same volume. By construction, the following properties of u∗ are
obvious:

• u∗ is radially symmetric, non-increasing as a function of |x|,
• supΩ u = supΩ u∗,

• u and u∗ are equimeasurable (i.e. their level sets have the same measure).

As an immediate consequence of the last point, we have:

Theorem 2.1.2. Let Ω be a measurable set and u be a non-negative measurable
function defined on Ω and vanishing on its boundary ∂Ω. Let ψ be any measurable
function defined on R

+ with values in R, then∫
Ω

ψ(u(x)) dx =
∫

Ω∗
ψ(u∗(x)) dx . (2.1)
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Let us now state a deeper result, sometimes called the Pòlya inequality, which
gives a connection between the integrals of the gradients of u and u∗. Its proof
relies on the classical isoperimetric inequality, see the above references.

Theorem 2.1.3 (Pòlya’s inequality). Let Ω be an open set and u a non-negative
function belonging to the Sobolev space H1

0 (Ω). Then u∗ ∈ H1
0 (Ω∗) and∫

Ω

|∇u(x)|2 dx ≥
∫

Ω∗
|∇u∗(x)|2 dx . (2.2)

More generally, let g be a non negative, continuous function defined on R
+ and F

be a non negative, increasing, convex function defined on R
+ and such that there

exist p, 1 ≤ p < +∞ and c > 0 with F (x) ≤ c(1 + xp). Let u be a non-negative
function in the Sobolev space W 1,p

0 (Ω), then u∗ belongs to W 1,p
0 (Ω) and∫

Ω

g(u(x))F (|∇u(x)|) dx ≥
∫

Ω∗
g(u∗(x))F (|∇u∗(x)|) dx . (2.3)

For the equality cases in inequalities (2.2) and (2.3), we refer e.g. to [122] or
[56]. Another useful inequality is due to Hardy and Littlewood.

Theorem 2.1.4 (Hardy-Littlewood). Let u and v be two non-negative measurable
functions defined on Ω and u∗, v∗ their respective spherical decreasing rearrange-
ments. Then ∫

Ω

u(x)v(x)dx ≤
∫

Ω∗
u∗(x)v∗(x)dx . (2.4)

Let us also give a weighted isoperimetric inequality which will turn out to
be useful in section 7.3. It is due to F. Betta, F. Brock, A. Mercaldo and M.R.
Posteraro and can be found in [34].

Lemma 2.1.5. Let Ω be an open set and f be a continuous, non-negative, non-
decreasing function defined on [0, +∞). Let us assume moreover that

t 
→
(
f(t1/N ) − f(0)

)
t1−(1/N) is convex (for t ≥ 0) . (2.5)

Then ∫
∂Ω

f(|x|) dσ ≥
∫

∂Ω∗
f(|x|) dσ . (2.6)

Let us observe that (2.5) is satisfied for power functions like f(t) = tp with
p ≥ 1.

2.2 Steiner symmetrization

2.2.1 Definition

We now introduce another kind or rearrangement due to Steiner. It will be useful
for the problem of minimizing λ1 among polygons, see section 3.3. For the proofs
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and more details, we still refer to [122], [174]. Without loss of generality, we fix
the hyperplane of symmetry to be xN = 0.

Let N ≥ 2 and Ω ⊂ R
N be a measurable set. We denote by Ω′ the projection

of Ω on R
N−1:

Ω′ := {x′ ∈ R
N−1 such that there exists xN with (x′, xN ) ∈ Ω},

and, for x′ ∈ R
N−1, we denote by Ω(x′) the intersection of Ω with {x′} × R:

Ω(x′) := {xN ∈ R such that (x′, xN ) ∈ Ω}, x′ ∈ Ω′ .

Let us remark that if Ω is an open set, the sets Ω(x′) are also open and x′ → |Ω(x′)|
is lower semi-continuous.

Definition 2.2.1 (Steiner symmetrization of sets). Let Ω ⊂ R
N be measurable.

Then the set

Ω� :=
{

x = (x′, xN ) such that − 1
2
|Ω(x′)| < xN <

1
2
|Ω(x′)|, x′ ∈ Ω′

}
is the Steiner symmetrization of Ω with respect to the hyperplane xN = 0.

Roughly speaking, Ω� is obtained from Ω by putting the middle of each
segment orthogonal to the hyperplane (when there is only one such segment), on
the hyperplane. As a consequence of the definition, we see that Ω� is symmetric
with respect to xN = 0 and convex in the xN direction. Moreover, it is easy to
check that Ω� is an open set as soon as Ω is open.

x′ x′

Ω

Ω
(x

′ )

Ω*

Figure 2.1: The Steiner symmetrization: a set Ω (left), its symmetrization Ω� with
respect to the horizontal dashed line (right).

Definition 2.2.2. We will say that an open set Ω is Steiner symmetric with respect
to a hyperplane H if it coincides with its Steiner symmetrization Ω� w.r.t. H, i.e.
if it is symmetric w.r.t. H and convex in the orthogonal direction.
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Let us now consider a non-negative measurable function u defined on Ω which
vanishes on ∂Ω. We define, as in the case of Schwarz rearrangement, the Steiner
symmetrization of u.

Definition 2.2.3 (Steiner symmetrization of functions). Let u be a non-negative
measurable function defined on Ω, which vanishes on ∂Ω. We denote by Ω(c) =
{x ∈ Ω /u(x) ≥ c} its level sets. The Steiner symmetrization of u is the function
u� defined on Ω� by

u�(x) = sup{c /x ∈ Ω(c)�} .

We can also define the Steiner symmetrization of u thanks to the function
of distribution of u: for a.e. x′ ∈ R

N−1, this function is defined by mu(x′, c) :=
|{xN ∈ R; u(x′, xN ) > c}|, c > 0. It is non decreasing and continuous on the right
with respect to c. Then, we introduce the function y = Y (x′, c) := 1

2 mu(x′, c) and
its inverse function is nothing else but u� and it satisfies

c = u�(x′, y) = u�(x′,−y).

2.2.2 Properties

Let us gather in one theorem the main properties of the Steiner symmetrization
that we will use later. These properties are exactly the same as for the Schwarz
rearrangement.

Theorem 2.2.4. Let Ω ⊂ R
N be a measurable set, u a non-negative function defined

on Ω and vanishing on its boundary. Let Ω�, u� be their Steiner symmetrizations.
Then:

(i) |Ω| = |Ω�|.
(ii) If ψ is any measurable function from R+ to R, then∫

Ω

ψ(u(x)) dx =
∫

Ω�

ψ(u�(x)) dx. (2.7)

(iii) If Ω is open and if u belongs to the Sobolev space W 1,p
0 (Ω), with 1 ≤ p < +∞,

then u� ∈ W 1,p
0 (Ω�) and

Pòlya’s inequality

∫
Ω

|∇u(x)|p dx ≥
∫

Ω�

|∇u�(x)|p dx . (2.8)

(iv) If Ω is open and u, v belong to L2(Ω):

Hardy-Littlewood’s inequality

∫
Ω

u(x)v(x)dx ≤
∫

Ω�

u�(x)v�(x)dx . (2.9)
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2.2.3 Continuous Steiner symmetrization

Instead of putting the middle of each segment orthogonal to the hyperplane di-
rectly on the hyperplane, we can move it with a speed which is proportional to
its distance to the hyperplane. Of course, the mathematical definition of this con-
struction must be more precise.

In this section we give the definition of continuous symmetrization and some
of its properties which were investigated in [39], [40]. Let us denote by M(RN )
the set of measurable sets in R

N . Let us begin with the one-dimensional case:

Definition 2.2.5 (Continuous symmetrization of sets in R). A family of set trans-
formations

Et : M(R) −→ M(R), 0 ≤ t ≤ +∞,

satisfying the properties, (A, B ∈ M(R), 0 ≤ s, t ≤ +∞):

(i) |Et(A)| = |A|, (equimeasurability),

(ii) If A ⊂ B, then Et(A) ⊂ Et(B), (monotonicity),

(iii) Et(Es(A)) = Es+t(A), (semigroup property),

(iv) If I = [y1, y2] is a bounded closed interval, then Et(I) = [yt
1, y

t
2], where:

yt
1 = (1/2)

(
y1 − y2 + e−t(y1 + y2)

)
,

yt
2 = (1/2)

(
y2 − y1 + e−t(y1 + y2)

)
,

(2.10)

is called a continuous symmetrization.

If Ω is any measurable set, we will write Ωt := Et(Ω) for the symmetrized
sets. The existence, uniqueness and some further properties of the family {Et},
0 ≤ t ≤ +∞, are proved in [40], Theorem 2.1. In particular we have for every
Ω ∈ M(R),

Ω0 = Ω, Ω∞ = Ω�. (2.11)

Definition 2.2.6 (Continuous Steiner symmetrization in R
N ).

1) Let Ω ∈ M(RN ). The family of sets

Ωt :=
{
x = (x′, xN ) : xN ∈

(
Ω(x′)

)t

, x′ ∈ Ω′
}
, 0 ≤ t ≤ +∞, (2.12)

is called the continuous Steiner symmetrization of Ω. If Ω is open, then Ωt

is also open.

2) Let u be a non-negative function in an open set Ω vanishing on the boundary
∂Ω. The family of functions ut, 0 ≤ t ≤ +∞, defined on Ωt by

ut(x) := sup
{

c such that x ∈ {u > c}t
}
, x ∈ Ωt, (2.13)

is called the continuous Steiner symmetrization of u with respect to xN = 0.
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As in (2.11), we can prove that, for every Ω ∈ M(RN ) and u as above

Ω0 = Ω, Ω∞ = Ω� u0 = u, u∞ = u� . (2.14)

Let us summarize some properties of the continuous symmetrization which are
proved in [39],[40]. It is actually completely similar to Theorem 2.2.4.

Theorem 2.2.7. Let Ω ⊂ R
N be a measurable set, u be a non-negative function

defined on Ω and vanishing on its boundary. Let Ωt, ut be their continuous Steiner
symmetrizations. Then:

(i) |Ω| = |Ωt|.
(ii) If ψ is any measurable function from R+ to R, then∫

Ω

ψ(u(x)) dx =
∫

Ωt

ψ(ut(x)) dx. (2.15)

(iii) If Ω is open and if u belongs to the Sobolev space W 1,p
0 (Ω), with 1 ≤ p < +∞,

then ut ∈ W 1,p
0 (Ωt) and∫

Ω

|∇u(x)|p dx ≥
∫

Ωt

|∇ut(x)|p dx . (2.16)

In particular, applying (1.36), it is easy to deduce from (2.15), (2.16) that
the first eigenvalue of the Laplacian with Dirichlet boundary conditions decreases
under the continuous Steiner symmetrization. The behavior of all the remaining
eigenvalues under the continuous Steiner symmetrization is less simple! Neverthe-
less, in [46] we prove:

Theorem 2.2.8 (Bucur-Henrot). Let k ∈ N
∗ be fixed. The map t 
→ λk(Ωt) is lower

semi-continuous on the left and upper semi-continuous on the right. Moreover, we
have the following intermediate value property: if λk(Ωt) ≥ λk(Ω) for some t > 0,
then, for any λ ∈ [λk(Ω), λk(Ωt)], there exists tλ ∈ [0, t] such that λk(Ωtλ) = λ.

One of the main advantages of the continuous Steiner symmetrization is that
it allows us to look at what happens when t → 0. It is known that the map
t → ut is continuous in W 1,p(RN ) (we extend the functions by 0 outside Ωt). But
it is also very interesting to look at differentiability properties of functionals like
t → ∫

Ωt |∇ut(x)|p dx. Of course, thanks to (2.16), the derivative of such a map
must be non-positive. More precisely, let us give now a very nice result explaining
what happens if this derivative is zero. For the proof, see [40].

Theorem 2.2.9 (Brock). Let Ω be a bounded domain, u ∈ C1(Ω) ∩ C(Ω), u > 0
in Ω and u = 0 on ∂Ω. Furthermore, let G be a positive increasing and strictly
convex function on [0, +∞[ and suppose that

lim
t↘0

1
t

(∫
Ωt

G(|∇ut|) dx −
∫
Ω

G(|∇u|) dx

)
= 0. (2.17)
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Then we have the decomposition

{0 < u < sup u} =
m⋃

k=1

(
BRk

(zk) \ Brk
(zk)

)⋃
S, (2.18)

where

Rk > rk ≥ 0, zk ∈ {0 < u < sup u}, BR(z)is the ball of radius R and center z

∂u
∂ρ < 0 in BRk

(zk) \ Brk
(zk), ( ρ : radial distance from zk),

min
{
u(x) : x ∈ Brk

(zk)
}

= min
{

u(x) : x ∈ ∂Brk
(zk)

}
,

1 ≤ k ≤ m, and ∇u = 0 in S.
(2.19)

The sets on the right-hand side of (2.18) are disjoint and there can be a countable
number of annuli, i.e. m = +∞.

We will use this result in section 3.4.

2.3 Continuity of eigenvalues

2.3.1 Introduction

To prove existence of minimizers or maximizers for eigenvalues or functions of
eigenvalues, we obviously need continuity of eigenvalues with respect to the vari-
able. We are mainly concerned in this book with eigenvalues depending

• either on the domain

• or on the coefficients of the operator.

Therefore, we are going to study continuity of eigenvalues with respect to these
two kinds of variations. The second one is simpler and classical. The first one is
less classical and it will be related to the so-called γ-convergence. We will also
see that, for domain dependence, the theory is much more precise in the case of
Dirichlet boundary conditions. In order to be complete and self-contained, we give
the different steps which are useful to prove continuity and some proofs. We also
refer to [44], [104] for more details about domain-continuity of eigenvalues and
γ-convergence.

Let us begin with an elementary, but basic, result.

Theorem 2.3.1. Let T1 and T2 be two self-adjoint, compact and positive operators
on a separable Hilbert space H. Let µk(T1) and µk(T2) be their k-th respective
eigenvalues. Then

|µk(T1) − µk(T2)| ≤ ‖T1 − T2‖ := sup
f∈H

‖(T1 − T2)(f)‖
‖f‖ . (2.20)
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Proof. We use the min-max formulae which, in this case, can be written

µk(Ti) = min
Ek ⊂ H,

subspace of dim k

max
v∈Ek,v �=0

(Tif, f)
‖f‖2

. (2.21)

In formulae (2.21), the minimum is achieved for choosing Ek the space spanned
by the k-th first eigenvectors of Ti. So, let us fix E

(2)
k = Span(e(2)

1 , e
(2)
2 , . . . , e

(2)
k )

the vector space spanned by the k-th first eigenvectors of T2. Therefore, we have

µk(T1) − µk(T2) ≤ max
v∈E

(2)
k ,v �=0

(T1f, f)
‖f‖2

− max
v∈E

(2)
k ,v �=0

(T2f, f)
‖f‖2

.

Now, the first maximum is achieved for some vector f̂ . Then,

µk(T1) − µk(T2) ≤ (T1f̂ , f̂)

‖f̂‖2
− (T2f̂ , f̂)

‖f̂‖2
=

((T1 − T2)f̂ , f̂)

‖f̂‖2

which yields the desired result by Cauchy-Schwarz inequality. �

An immediate consequence of Theorem 2.3.1 is that strong convergence of
operators implies convergence of eigenvalues. We are now going to see that, in
our particular context, thanks to compactness properties of embeddings H1 ↪→
L2 and L2 ↪→ H−1, actually simple convergence of resolvant operators implies
convergence of eigenvalues.

We recall that we are concerned in this section with Dirichlet boundary
conditions. If L is any elliptic operator given by (1.4), we denote by AL (or AΩ

L

when we want to emphasize dependence on the domain Ω) its resolvant operator,
namely the operator from L2(Ω) into L2(Ω) such that AL(f) is the solution of the
Dirichlet problem u ∈ H1

0 (Ω), Lu = f . When we consider a sequence of domains
Ωn included in a fixed domain D, we decide to extend the operators AΩ

L to L2(D)
by setting

AΩ
L :

L2(D) → L2(D),
f 
→ ũ,

where u ∈ H1
0 (Ω) is the solution of Lu = f and ũ is its extension by zero outside

Ω. For sake of simplicity, we go on denoting by u the extension (instead of ũ).

Theorem 2.3.2. Let An, A be a sequence of resolvant operators from L2(D) to
L2(D), corresponding to a sequence of uniformly elliptic operators with Dirichlet
boundary conditions. We assume that, for every f ∈ L2(D), An(f) converges to
A(f) in L2(D). Then An converges to A strongly (i.e. for the operator norm). In
particular, the eigenvalues of An converge to the corresponding eigenvalues of A.



2.3. Continuity of eigenvalues 25

Proof. First of all, we remark that the resolvant operators An and A have a
bounded norm. Indeed, from (1.7) and uniform ellipticity of An, it follows that
(we set u = An(f))

α

∫
D

|∇u|2 ≤
N∑

i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
dx +

∫
Ω

c(x)u2(x) dx =
∫

Ω

f(x)u(x) dx

and, thanks to Poincaré inequality (1.1) for the left-hand side and Cauchy-Schwarz
inequality for the right-hand side, we have

α

C
‖u‖2

L2 ≤ ‖f‖L2‖u‖L2,

which shows that

‖An‖ := sup
f∈L2(D)

‖u‖L2

‖f‖L2
≤ C

α
. (2.22)

Now, we claim that it is possible (for fixed n) to find fn in the unit ball of L2(D)
achieving the supremum in

sup
‖f‖L2(D)≤1

‖An(f) − A(f)‖L2(D) = ‖An(fn) − A(fn)‖L2(D).

Indeed, if fk is a maximizing sequence, it is possible to extract a subsequence
which converges weakly to some fn which also belongs to the unit ball of L2(D).
Since the embedding from L2(D) into H−1(D) is compact (it is the adjoint of the
embedding from H1

0 (D) into L2(D)), and since An and A are continuous from
H−1(D) to H1

0 (D), the previous equality follows when we let k go to infinity.
Now, let us repeat this method with the sequence fn: there exists f in the

unit ball of L2(D) such that fn converge weakly in L2(D) and strongly in H−1(D)
to f . Let us fix an integer n1 such that for n ≥ n1, we have

‖fn − f‖H−1(D) ≤ εα

4C
and ‖An(f) − A(f)‖L2(D) ≤ ε

2
,

the second inequality coming from the assumption on the (simple) convergence of
An to A. Then

sup
‖g‖L2(D)≤1

‖An(g) − A(g)‖L2(D) = ‖An(fn) − A(fn)‖L2(D)

≤ ‖An(f) − A(f)‖L2(D) + ‖An(fn − f) − A(fn − f)‖L2(D)

≤ ε

2
+ ‖An − A‖L(H1

0 ,H−1)

εα

4C
≤ ε

2
+

2C

α

εα

4C
= ε,

which proves the desired result. �
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2.3.2 Continuity with variable coefficients

We can now state the continuity result for eigenvalues when the coefficients of the
elliptic operator vary. We consider a sequence of elliptic operators Ln defined by:

Lnu := −
N∑

i,j=1

∂

∂xi

(
an

ij(x)
∂u

∂xj

)
+ an

0 (x)u (2.23)

where the bounded functions an
i,j are assumed to satisfy the ellipticity condition

(1.2) uniformly, i.e. the positive constant α can be chosen independently of n.

Theorem 2.3.3. Let Ln be a sequence of uniformly elliptic operators defined on an
open set D by (2.23). We assume that, for fixed i, j, the sequence an

i,j is bounded
in L∞ and converge almost everywhere to a function ai,j; we also assume that the
sequence an

0 is bounded in L∞ and converges weakly-* in L∞ to a function a0. Let
L be the (elliptic) operator defined on D as in (2.23) by the functions ai,j and a0.
Then each eigenvalue of Ln converges to the corresponding eigenvalue of L.

Proof. According to Theorem 2.3.2, it suffices to prove that, for f fixed in L2(D),
the solutions un ∈ H1

0 (D) of Lnun = f converge to u ∈ H1
0 (D), a solution of

Lu = f . The variational formulation satisfied by un is written ∀v ∈ H1
0 (D):

N∑
i,j=1

∫
D

an
ij(x)

∂un

∂xi

∂v

∂xj
dx +

∫
D

an
0 (x)un(x)v(x) dx =

∫
D

f(x)v(x) dx . (2.24)

Plugging v = un in (2.24) and using the uniform ellipticity of the operators Ln

yields:

α‖un‖2
H1(D) ≤

∫
D

f(x)un(x) dx ≤ ‖f‖L2(D)‖un‖L2(D) ≤ ‖f‖L2(D)‖un‖H1(D)

for which we deduce that the sequence un is bounded in H1
0 (D). Therefore, we can

extract a subsequence, still denoted un, such that un converges weakly in H1
0 (D)

and strongly in L2(D) to some function ũ which belongs to H1
0 (D). It remains

to prove that ũ = u (solution of Lu = f in H1
0 (D)). For that, we want to pass

to the limit in (2.24). But point-wise convergence and uniform boundedness of
an

i,j implies strong convergence in L2(D) of an
ij(x) ∂v

∂xj
to aij(x) ∂v

∂xj
and therefore

convergence of the first integral in (2.24). In the same way, strong convergence of
un to u in L2(D) implies strong convergence of unv to uv in L1(D) which, together
with weak-* convergence of an

0 to a0, implies convergence of the second integral
in (2.24). Since the convergence of the right-hand side is obvious, we have proved
the desired result. At last, since u is the only accumulation point of the sequence
un, the whole sequence converges to u. �
Remark 2.3.4. The case of Neumann boundary conditions here is handled exactly
in the same way (just change H1

0 into H1 in the proof).
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Remark 2.3.5. Instead of assuming uniform ellipticity for the sequence of operators
Ln, we can assume a weaker assumption. Namely, if we assume that the functions
ai,j define an elliptic operator, we can deduce from point-wise convergence of an

i,j

to ai,j the uniform ellipticity of Ln. Indeed, in the inequality

N∑
i,j=1

an
ij(x)ξiξj ≥ αn|ξ|2

the ellipticity constant αn is actually a lower bound for all the eigenvalues of the
symmetric definite positive matrix Mn(x) = (an

ij(x))i,j . Now, if for (almost) all
x, an

ij(x) converge to aij(x), the eigenvalues λ1
n(x) ≤ λ2

n(x) ≤ · · · of Mn(x) will
converge to the eigenvalues λ1(x) ≤ λ2(x) ≤ · · · of M(x) = (aij(x))i,j . Since, by
assumption, we have λ1(x) ≥ α, we will have λ1

n(x) ≥ α/2 for n large enough.

In one dimension, we can prove the same continuity result with weaker as-
sumptions on the convergence of the aij = a11 = σ(x). Actually weak-* conver-
gence of the inverse is enough in this case:

Theorem 2.3.6. Let Ω = (0, L), 0 < α ≤ β, and σn(x) be a sequence of functions
satisfying α ≤ σn(x) ≤ β. We denote by λk(σ) the eigenvalues of the operator
− d

dx(σ(x) d
dx). Then, if 1/σn converges weak-* in L∞(Ω) to 1/σ, each eigenvalue

λk(σn) converges to λk(σ) and the corresponding eigenfunctions converge weakly
in H1(Ω) and strongly in L2(Ω).

Remark 2.3.7. Since α ≤ σn(x) ≤ β, we have 1/β ≤ 1/σn(x) ≤ 1/α and then,
there always exists a function σ(x) such that, for a subsequence, 1/σnk

converges
weak-* in L∞(Ω) to 1/σ.

Proof. We do the proof in the case of Dirichlet boundary conditions. The proof
would be exactly the same in the other cases (Neumann or mixed boundary condi-
tions). According to Theorem 2.3.2, it suffices to prove that, for f fixed in L2(Ω),
the solutions un ∈ H1

0 (Ω) of − d
dx (σn(x)dun

dx ) = f converge to u ∈ H1
0 (Ω), a

solution of − d
dx (σ(x)du

dx ) = f . From the variational formulation

∀v ∈ H1
0 (Ω),

∫ L

0

σnu′
nv′ dx =

∫ L

0

fv dx (2.25)

we see, taking v = un and using σn ≥ α that un is bounded in H1
0 (Ω). We extract

a subsequence, still denoted by un, which converges to a function u ∈ H1
0 (Ω),

weakly in H1(Ω) and strongly in L2(Ω). Let us introduce the sequence of functions
ξn := σnu′

n which is bounded in L2(Ω). From − d
dx (σnu′

n) = λk(σn)un, we see that
ξ′n is also bounded in L2(Ω) and therefore, ξn being bounded in H1(Ω), we can
extract a subsequence which converges strongly to a function ξ in L2(Ω). Now, by
assumption, the sequence of functions σ−1

n converges in L∞ weak-* to the function
µ = σ−1. It follows that ξnσ−1

n ⇀ ξµ in L2(Ω). But ξnσ−1
n = u′

n ⇀ u′ in L2(Ω),
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so ξµ = u′ or ξ = µ−1u′. Passing to the limit in (2.25) yields (thanks to weak
convergence of ξn to ξ, and strong convergence of un to u)

∀v ∈ H1
0 (Ω)

∫ L

0

ξv′ dx =
∫ L

0

σu′v′ dx =
∫ L

0

fv dx . (2.26)

This formulation (2.26) shows that u is the solution of − d
dx (σ(x)du

dx ) = f in
H1

0 (Ω). �

Remark 2.3.8. From the min formulae (1.34), we see that σ 
→ λk(σ) is upper-semi
continuous for the weak-* convergence (as infimum of continuous functions), but
the previous theorem shows that it is not continuous in general. More generally,
we will use later (even in higher dimension) this kind of result, see Proposition
8.1.3 as an example.

2.3.3 Continuity with variable domains (Dirichlet case)

As seen in Theorem 2.3.2, the convergence of eigenvalues for variable domains
is closely related to the continuity of the solution of the Dirichlet problem with
respect to the domain (the so-called γ-convergence). This question is now well
understood, beginning with the pioneering paper [124] by M. Keldyš and going
on with works by G. Dal Maso, U. Mosco, G. Buttazzo and the Italian school, D.
Chenais, J.P. Zolesio, D. Bucur and the French school, V. Šverak, D. Daners, W.
Arendt,... among others. For a complete study of this topic, we refer to [44], [104].

γ-convergence

Let us begin with the definition of γ-convergence (for the Laplacian).

Definition 2.3.9. Let D be a fixed ball, Ωn ⊂ D a sequence of open sets and Ω ⊂ D

an open set. We say that Ωn γ-converges to Ω (and we write Ωn
γ→ Ω) if, for every

f ∈ L2(D), the solution uf
Ωn

of the Dirichlet problem for the Laplacian (1.6) on
Ωn with right-hand side f converges (strongly) in L2(D) to uf

Ω, the solution on Ω
(as usual, every function in H1

0 (Ωn) is extended by zero outside Ωn).

In other words, using the notation of section 1.1.2, Ωn
γ→ Ω if, ∀f ∈ L2(D),

AD
∆(Ωn)(f) → AD

∆(Ω)(f) in L2(D). We gather in the following theorem different
characterizations of the γ-convergence. For the proof, we refer to [44], [104].

Theorem 2.3.10. The following properties are equivalent.

(i) Ωn γ-converges to Ω.

(ii) Šverak: AD
∆(Ωn)(1) → AD

∆(Ω)(1) in L2(D) (i.e. the convergence takes place
for f = 1).
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(iii) Mosco convergence: H1
0 (Ωn) converges in the sense of Mosco to H1

0 (Ω) i.e.

(M1) For every v ∈ H1
0 (Ω), there exists a sequence vn, vn ∈ H1

0 (Ωn) such
that vn → v (strong convergence in H1

0 (D)).

(M2) For every sub-sequence vnk
of functions in H1

0 (Ωnk
) which converges

weakly to a function v ∈ H1
0 (D), then v ∈ H1

0 (Ω).

(iv) Distance to H1
0 : ∀ϕ ∈ H1

0 (D), d(ϕ, H1
0 (Ω)) = lim

n→+∞ d(ϕ, H1
0 (Ωn)) (where

d(ϕ, X) denotes, as usual, the distance of ϕ to the convex set X).

(v) Projection on H1
0 : ∀ϕ ∈ H1

0 (D), projH1
0 (Ω)(ϕ) = lim

n→+∞ projH1
0 (Ωn)(ϕ) (where

projX(ϕ) denotes the projection of ϕ on the convex set X).

(vi) Γ-convergence: JΩn Γ-converge to JΩ where, for an open set ω ⊂ D, Jω is
defined by

Jω(v) =
1
2

∫
D

|∇v(x)|2 dx −
∫

D

fv(x) dx +
{

0 if v ∈ H1
0 (ω),

+∞ else,

and the Γ-convergence means:

(G1) ∀vn → v JΩ(v) ≤ lim inf JΩn(vn),

(G2) ∃vn → v JΩ(v) ≥ lim sup JΩn(vn).

(vii) (Strong) Convergence of resolvant operators: ‖AD
∆(Ωn) − AD

∆(Ω)‖ → 0.

Applying Theorem 2.3.2, we have:

Corollary 2.3.11. If any of the above items (i)–(vii) is true, then λk(Ωn) → λk(Ω).

Remark 2.3.12. Actually, each of the items (M1) and (M2) of the Mosco conver-
gence (see (iii)) ensures semi-continuity for eigenvalues (see [44]). More precisely,
we can prove:{

If (M1) holds, lim supn→+∞ λk(Ωn) ≤ λk(Ω) (upper semi-continuity).
If (M2) holds, lim infn→+∞ λk(Ωn) ≥ λk(Ω) (lower semi-continuity).

(2.27)

Hausdorff distance

Even if Theorem 2.3.10 gives many characterizations of the γ-convergence, and
therefore necessary and sufficient conditions for continuity of eigenvalues, none of
them is really simple and of practical use. Actually, in practice, we often have
sequences of domains defined by geometric means for which it can be hard to
decide whether one of above conditions (i)–(vii) is satisfied.

This is the reason why we will give simple sufficient conditions ensuring
continuity of eigenvalues. To study the convergence of a sequence of open sets, it
is often very convenient to use the Hausdorff distance. Let us recall its definition.
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Definition 2.3.13. Let K1, K2 be two non-empty compact sets in R
N . We set

∀x ∈ R
N , d(x, K1) := infy∈K1 |y − x|,

ρ(K1, K2) := supx∈K1
d(x, K2).

Then the Hausdorff distance of K1 and K2 is defined by

dH(K1, K2) := max(ρ(K1, K2), ρ(K2, K1)). (2.28)

We also have the two equivalent definitions:

dH(K1, K2) = inf{α > 0; K2 ⊂ Kα
1 and K1 ⊂ Kα

2 } (2.29)

where Kα = {x ∈ R
N ; d(x, K) ≤ α},

dH(K1, K2) = ‖dK1 − dK2‖L∞(RN ) = ‖dK1 − dK2‖L∞(K1∪K2) (2.30)

where, for any compact K, the function dK is defined by dK(x) = d(x, K).

K
1

K
2

ρ(K
1,K

2)

ρ(K 2
,K 1

)

Figure 2.2: Hausdorff distance of two compact sets: dH(K1, K2) :=
max(ρ(K1, K2), ρ(K2, K1)).

For open sets, we define the Hausdorff distance through their complementary:

Definition 2.3.14. Let Ω1, Ω2 be two open subsets of a (large) compact set B. Then
their Hausdorff distance is defined by:

dH(Ω1, Ω2) := dH(B \ Ω1, B \ Ω2). (2.31)

One of the most useful property of the Hausdorff distance is the following
compactness property (see [44], [104]):

Theorem 2.3.15. Let B be a fixed compact set in R
N and Ωn a sequence of open

subsets of B. Then, there exists an open set Ω ⊂ B and a subsequence Ωnk
which

converges for the Hausdorff distance to Ω.

Remark 2.3.16. If a sequence of open sets Ωn converges for the Hausdorff distance
to Ω, then it can be proved that the Mosco condition (M1) (see Theorem 2.3.10)
holds, see [44]. In other words, applying Remark 2.3.12, we see that the eigenvalues
are upper semi-continuous for the Hausdorff convergence of open sets.
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Sufficient conditions for continuity

The two first results we state show that there is continuity of eigenvalues for the
Hausdorff distance when the domains are uniformly regular, see [54] or [104].

Theorem 2.3.17 (convex case). Let B be a fixed compact set in R
N and Ωn be a

sequence of convex open sets in B which converges, for the Hausdorff distance,
to a (convex) set Ω. Then Ωn γ-converge to Ω and, in particular, for all k fixed,
λk(Ωn) → λk(Ω) .

Theorem 2.3.18 (Chenais). Let B be a fixed compact set in R
N and Ωn be a

sequence of open subsets of B. Assume that the sets Ωn are uniformly Lipschitz (it
means that the boundary of Ωn is locally the graph of a Lipschitz function and that
we can take a uniform Lipschitz constant L for all these Lipschitz functions and for
all the sets Ωn). Assume moreover that Ωn converges, for the Hausdorff distance,
to Ω. Then Ωn γ-converge to Ω and, in particular for all k fixed, λk(Ωn) → λk(Ω) .

In two-dimensions, there is a nice result due to V. Šverak which gives conti-
nuity with weaker assumptions, see [194], [104]. Roughly speaking, it says that if
the number of holes in the sequence Ωn is uniformly bounded and if Ωn converges
for the Hausdorff distance, then there is convergence of eigenvalues. To be more
precise, let us introduce, for any open set Ω (whose complementary is denoted by
Ωc):

�Ωc := number of connected components of Ωc .

Theorem 2.3.19 (Šverak). Let B be a fixed compact set in R
2 and Ωn a sequence

of open subsets of B. Let p be a given integer and assume that the sets Ωn satisfy
�Ωc

n ≤ p. Then, if the sets Ωn converge for the Hausdorff distance to a set Ω, they
γ-converge to Ω and, in particular, for all k fixed, λk(Ωn) → λk(Ω) .

As an example of application, let us now give a continuity result which will be
useful in several situations. In particular, it will show that adding a connectedness
constraint generally does not change anything in minimization problems.

Theorem 2.3.20. Let Ω1 and Ω2 be two disjoint open sets in R
N , N ≥ 2 and let

Σ be a segment joining Ω1 and Ω2. Let ε be a (small) positive number and let us
denote by Ωε the open set

Ωε =
⋃
x∈Σ

B(x, ε) ∪ Ω1 ∪ Ω2

obtained by joining the sets Ω1 and Ω2 by a small tube of width ε, see Figure 2.3.
Then, for every integer k,

λk(Ωε) → λk(Ω1 ∪ Ω2) when ε → 0 .

Proof. First of all, it is clear, coming back to the definition, that Ωε converge, for
the Hausdorff distance to Ω1 ∪Ω2. Therefore, the two-dimensional case is an easy
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Ω
1

Ω
2

<<

ε

Figure 2.3: The eigenvalues of the connected set Ωε converge to the eigenvalues of
Ω1 ∪ Ω2.

consequence of Šverak Theorem 2.3.19. The N -dimensional case requires more
analysis. In particular, it needs some tools related to capacity and fine properties
of Sobolev spaces (see also section 2.4). For that reason, we just give a sketch of
the proof, referring to [44] and [104] for more details. According to Remark 2.3.16,
we see that condition (M1) of the Mosco convergence already holds thanks to the
Hausdorff convergence. Therefore, it remains to prove (M2) of Mosco convergence
to be able to apply Theorem 2.3.10. Let vεk

be a sequence in H1
0 (Ωεk

) which
converges weakly to v in H1

0 (D) (D being a ball containing all the Ωε). According
to Mazur’s Lemma, there exists a sequence of convex combination of the vεk

which converges strongly to v in H1
0 (D) and then (up to a subsequence) quasi-

everywhere. Therefore, since all the functions vεk
, k ≥ k0 are equal to zero on Ωεk0

,
we first get that v vanishes quasi-everywhere on Ωεk0

(for all k0) and then on the
complementary of Ω1 ∪Ω2 ∪Σ. But, in dimension N ≥ 3, the segment Σ has zero
capacity, therefore v vanishes quasi-everywhere on the complementary of Ω1 ∪ Ω2

which implies, that v belongs to H1
0 (Ω1∪Ω2) what proves (M2) and the result. �

Remark 2.3.21 (Quantitative estimates). Up to now, we gave qualitative results
ensuring convergence of eigenvalues with respect to the domain. In some cases,
it could be interesting to get more precise quantitative estimates. Of course, it is
harder and generally needs some uniform regularity. For example, let us give here
such an estimate due to Cox-Ross for star-shaped domains, see [68]:

Proposition 2.3.22. Assume Ω1 and Ω2 are two open star-shaped domains in R
2

defined by two radial functions f1 and f2 satisfying f1, f2 ≥ ρ > 0 and ‖f1−f2‖∞ ≤
ρ; then

|λk(Ω1) − λk(Ω2)| ≤ (3/ρ)λk(Dρ)‖f1 − f2‖∞
where Dρ is a disk of radius ρ.

For other quantitative estimates, maybe the simpler is to come back to norm
of resolvant operators. Therefore, if Ω1 and Ω2 are two open sets, we have, thanks
to (2.20), ∣∣∣∣ 1

λD
k (L, Ω2)

− 1
λD

k (L, Ω1)

∣∣∣∣ ≤ ‖AD
L (Ω2) − AD

L (Ω1)‖
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which gives, if we assume moreover that Ω1 and Ω2 both contain a ball of radius
ρ: ∣∣λD

k (L, Ω2) − λD
k (L, Ω1)

∣∣ ≤ λ2
k(Dρ)‖AD

L (Ω2) − AD
L (Ω1)‖ .

Other operators

It is remarkable that γ-convergence for the Laplacian implies the same kind of
convergence for more general elliptic operators. It can be easily shown by using
characterization (iii) of Theorem 2.3.10. Actually, Mosco convergence of the under-
lying spaces is certainly the best concept to extend continuity results for general
elliptic operators. We refer as usual to [44], [104] for the following result.

Theorem 2.3.23. Let B be a fixed compact set in R
N and Ωn a sequence of open

subsets of B. Let L be an elliptic operator defined by (1.4). Then, if Ωn γ-converges
to a set Ω (in the sense of Definition 2.3.9 or Theorem 2.3.10), we have convergence
of eigenvalues:

for all k fixed λD
k (L, Ωn) → λD

k (L, Ω) .

We can state the same result for the linear elasticity operator. Let us recall
the definition of this operator in R

3.
Let Ω be an open set, we denote by H1

0 (Ω; R3) the space of vector functions
u = (u1, u2, u3) such that ui ∈ H1

0 (Ω) for i = 1, 2, 3. For u ∈ H1
0 (Ω; R3), we set

Du the Jacobian matrix of u with entries ∂ui

∂xj
and e(u) = 1

2 (Du +t Du). Then the
linear elasticity operator E is defined by

E(u) := −div(Ae(u))

where A is the (linear) elasticity tensor defined by

A := 2µId4 + λId2 ⊗ Id2

where λ, µ are the Lamé constants of the body Ω. Then, we can prove, see [48]:

Theorem 2.3.24. Let B be a fixed compact set in R
3 and Ωn a sequence of open

subsets of B. Let E be the linear elasticity tensor defined above. Then, if Ωn γ-
converges to a set Ω (in the sense of Definition 2.3.9 or Theorem 2.3.10), we have
convergence of the (Dirichlet) eigenvalues of E:

for all k fixed λD
k (E , Ωn) → λD

k (E , Ω) .

2.3.4 The case of Neumann eigenvalues

The Neumann case is much more complicated than the Dirichlet case. We can say
that it is not completely understood to this day, see nevertheless [49]. The difficulty
has several origins. The first one is that small perturbations of the boundary can
introduce low eigenvalues which “pollute” the spectrum. As an illustration, let
us recall the classical example of Courant-Hilbert, [58], see Figure 2.4. In this
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< <

ε3

< >l

< >ε

Ωε

Figure 2.4: The Neumann eigenvalues of the set Ωε do not converge to the eigen-
values of the unit square (although Dirichlet eigenvalues do).

example, Ω is the unit square and Ωε is obtained by joining the unit square to
a small square of length ε through a thin channel of (fixed) length l > 0 and
width ε3. Then, it is clear that Ωε converges for the Hausdorff distance to Ω, but
the Neumann eigenvalues do not converge to the corresponding one. Actually, we
choose a test function φε which is constant on each square, such as

φε(x, y) =

⎧⎨⎩
c1 := ε2 + lε3/2 on the unit square Ω = (−1, 0) × (−1, 0),

(c2−c1)
l x + c1 on the channel (x ∈ [0, l]),

c2 := −1 − lε3/2 on the small square.

We have
∫
Ωε

φε = 0, then according to (1.37):

µ2(Ωε) ≤
∫
Ωε

|∇φε|2∫
Ωε

φ2
ε

≤ (c2 − c1)2ε3/l

c2
1 + c2

2ε
2

and the right-hand side tends to 0 when ε → 0. This shows that µ2(Ωε) → 0 while
µ2(Ω) = π2 and convergence does not take place.

There are many other examples of the same kind in the literature and, more
generally, a study of domains composed of channels and rooms is considered, for
example in [101].

The above example shows another big difference with the Dirichlet case. In
this example, it can be proved that we would have some kind of γ-convergence
of Ωε to Ω, namely that the solutions of the Neumann problem on Ωε converge
to the solution of the Neumann problem on Ω, see e.g. [44], [52]. In other terms,
the resolvant operators AN

∆(Ωε) (corresponding to Neumann boundary conditions)
converge pointwise to AN

∆(Ω). But here, this pointwise convergence does not imply
convergence in norm as in Theorem 2.3.2.

To conclude this section, let us give some sufficient conditions which ensure
continuity or semi-continuity of Neumann eigenvalues.



2.4. Two general existence theorems 35

Theorem 2.3.25 (Chenais). Let B be a fixed compact set in R
N and Ωn a sequence

of open subsets of B. Assume that the sets Ωn are uniformly Lipschitz (see The-
orem 2.3.18). Assume moreover that Ωn converges, for the Hausdorff distance, to
Ω. Then, for all k fixed, µk(Ωn) → µk(Ω) .

Actually, in this “uniform” case, we can prove that pointwise convergence
of the resolvant operators implies strong convergence since we have uniformly
bounded extension operators from H1(Ωn) to H1(B), see [54]. Then the proof
follows by the same argument as in Theorem 2.3.2.

Let us finish by an upper-semi continuity result in R
2 for which we refer to

[44]. This kind of result could be useful for maximization problems which involve
Neumann eigenvalues, see chapter 7.

Theorem 2.3.26. Let B be a fixed compact set in R
2 and Ωn a sequence of open

subsets of B. Let p be a given integer and assume that the sets Ωn satisfy �Ωc
n ≤

p (the number of connected components of Ωc
n is uniformly bounded). Assume

moreover that the perimeter of Ωn is uniformly bounded. If the sets Ωn converge
for the Hausdorff distance to a set Ω and |Ωn| → |Ω| (the measure of Ωn converges
to the measure of Ω), then

for all k fixed lim sup
n→+∞

µk(Ωn) ≤ µk(Ω) .

2.4 Two general existence theorems

Let us come back to minimization problems for eigenvalues of the Dirichlet-
Laplacian. In that context, we state two general existence theorems. The first
one deals with convex domains, while the second one, due to G. Buttazzo and G.
Dal Maso in [50], is more general. Let us begin with the case of convex domains.

Theorem 2.4.1. Let c be a positive constant and k any integer. Then there exists
a convex domain Ω∗ such that

λk(Ω∗) = min{λk(Ω), Ω ⊂ R
N , Ω convex, |Ω| = c} .

Proof. We use the classical method of calculus of variations. Let Ωn be a mini-
mizing sequence. First of all, we claim that the diameters of the Ωn are bounded.
Indeed, let us define the width of Ωn as the maximum diameter of any section
of Ωn with a hyperplane orthogonal to the segment which realizes the diameter.
Then, by convexity property and the fact that all the domains Ωn have a given
volume, if the diameters of Ωn would not be bounded, the width of Ωn would
have to go to zero. Therefore, we could find a sequence of parallelepiped (or cylin-
ders), containing Ωn and with, at least, one dimension going to zero. But for such
parallelepiped, the value of λ1 is known (see section 1.2.5) and it goes to +∞.
Therefore, by the monotonicity property, we would have λk(Ωn) → +∞.
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Since the diameters are bounded, we can assume (up to a translation) that the
whole sequence is contained in a fixed ball, say B. By Theorem 2.3.15, there exists a
convex domain Ω∗ and a subsequence, still denoted by Ωn such that Ωn converges
to Ω∗ for the Hausdorff metric. Then, by Theorem 2.3.17, λk(Ωn) → λk(Ω∗).
Moreover, it is easy to see that the characteristic functions of Ωn converge to the
characteristic function of Ω∗ in L1(B). In particular, |Ωn| → |Ω∗| and |Ω∗| = c.
This finishes the proof. �
Remark 2.4.2. The previous existence theorem extends straightforwardly to func-
tions of eigenvalues like F (λ1, . . . , λk) provided F (λ1, . . . , λk) → +∞ when each
λi → +∞.

For the previous proof, we can also use the quantitative estimates stated in
Proposition 2.3.22. Now, let us consider the general existence Theorem due to G.
Buttazzo and G. Dal Maso, see [50], see also [44], [104]. This existence result is
not stated in the class of open sets, but in the wider class of quasi-open sets. This
is a good framework to make a precise study of the Dirichlet problem for elliptic
operators of second order. In this textbook, we do not want to enter too much into
the details. We just give the main definitions, referring for example to [44], [104]
for details, examples and proofs. Let us begin with the definition of the capacity.

Definition 2.4.3 (H1-capacity). Let D be a bounded open set in R
N , we define the

capacity capD(E) (relatively to D) of any subset E of D in the following way:
For any compact K into D, we set

capD(K) = inf{
∫

D

|∇v|2; v ∈ C∞
0 (D), v ≥ 1 sur K} < +∞. (2.32)

For ω an open subset of D, we set

capD(ω) := sup{capD(K); K compact , K ⊂ ω}. (2.33)

At last, if E is any subset of D, we set

capD(E) := inf{capD(ω); ω open , E ⊂ ω}. (2.34)

Roughly speaking, the capacity plays the same role for the Sobolev space
H1 as the Lebesgue measure for the space L2. Let us now give the definition of
quasi-open sets.

Definition 2.4.4. A subset Ω of D is quasi-open if there exists a decreasing sequence
of open sets ωn such that

lim
n→+∞ capD(ωn) = 0, ∀n and Ω ∪ ωn is open.

As a fundamental example, for every u ∈ H1(D) and for every α ∈ R, the
set

[u > α] := {x ∈ D, u(x) > α}
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is quasi-open. Moreover, the theory of elliptic operators and eigenvalues can be
extended to the framework of quasi-open sets.

We can now give the existence result of Buttazzo and Dal Maso. Let us
consider a fixed open set D and a positive number c with c < |D|. We will denote
by Ac the class:

Ac = {ω ⊂ D, ω quasi-open , |ω| = c} .

Theorem 2.4.5. Let p be an integer and F be a function, F : R
p → R. We assume

(i) F is lower semi-continuous,

(ii) F is non-decreasing with respect to each of its arguments.

Then the problem: find Ω ∈ Ac which minimizes J defined by

J(ω) := F (λ1(ω), λ2(ω), . . . , λp(ω)) (2.35)

has a solution.

Corollary 2.4.6. Let k be an integer, the problem: find Ω ∈ Ac such that

λk(Ω) = min{λk(ω), ω ∈ Ac} (2.36)

has a solution.

2.5 Derivatives of eigenvalues

2.5.1 Introduction

As soon as we want to write optimality conditions for extremum problems involv-
ing eigenvalues, we need formulae for derivatives of eigenvalues. The question of
differentiability of eigenvalues depending on a parameter has been widely studied.
A classical reference is [121]. A little bit less classical is the case where the param-
eter is the shape of the domain. Nevertheless, many papers are devoted to that
question, see e.g. [182], [190], [191], [193]. We will present the two aspects here,
giving classical formulae.

Of course, the differentiability of an eigenvalue (in a classical sense) can only
be proved when the eigenvalue is simple. We can easily understand that fact by
looking at a very simple finite-dimensional situation. Let At be the 2 × 2 matrix
defined by

At =

(
1 + t 0

0 1 − t

)
The matrix A0 = I has a double eigenvalue. The first eigenvalue of At (its smallest
one) λ1 is 1 − t if t ≥ 0 and 1 + t if t ≤ 0, and then

λ1(At) = 1 − |t| λ2(At) = 1 + |t|,
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we observe that t → λ1(At) is not differentiable at t = 0. This cannot happen for a
matrix with simple eigenvalues. Actually, when we look closer at the eigenvalues of
the matrix At, we see that there exist two “branches” (in this case two segments)
crossing at 1 and, on each of these branches, the function t → λ1(At) is differen-
tiable (and even analytic). In other words, we can re-number the eigenvalues in
order to get differentiability. This situation is actually general. We will discuss the
case of multiple eigenvalues in subsection 2.5.3. We give now the formulae for the
first and second derivatives of eigenvalues. For the proofs, we refer to the above
references and also to the more recent book, [104].

2.5.2 Derivative with respect to the domain

Let us begin with the derivative of an eigenvalue with respect to the domain. We
consider an open set Ω and a family of applications Φ(t) satisfying

Φ : t ∈ [0, T [→ W 1,∞(RN , RN ) differentiable at 0 with Φ(0)=I, Φ′(0)=V (2.37)

where W 1,∞(RN , RN ) is the set of bounded Lipschitz maps from R
N into itself,

I is the identity and V a vector field. For t small, Φ(t) is a diffeomorphism. For
example, it is classical to choose

Φ(t) = I + tV .

Let us denote by Ωt = Φ(t)(Ω) and by λk(t) = λk(Ωt) (resp. µk(t)) the k-th eigen-
value of the Laplacian on Ωt with Dirichlet (resp. Neumann) boundary conditions.
We assume that λk(t) (or µk(t)) is simple (for t small) and, since k is fixed in the
sequel of this section, we denote by ut an associated eigenfunction in H1

0 (Ωt) or
in H1(Ωt) according to the situation, with the normalization∫

Ωt

u2
t (x) dx = 1. (2.38)

Then, we have

Theorem 2.5.1 (First derivative of a Dirichlet eigenvalue). Let Ω be a bounded
open set. We assume that λk(Ω) is simple. Then, the functions t → λk(t), t →
ut ∈ L2(RN ) are differentiable at t = 0 with

λ′
k(0) := −

∫
Ω

div(|∇u|2V ) dx . (2.39)

If, moreover, Ω is of class C2 or if Ω is convex, then

λ′
k(0) := −

∫
∂Ω

(
∂u

∂n

)2

V.n dσ (2.40)
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and the derivative u′ of ut is the solution of⎧⎪⎨⎪⎩
−∆u′ = λku′ + λ′

ku in Ω,

u′ = − ∂u
∂n V.n on ∂Ω,∫

Ω
u u′ dσ = 0 .

(2.41)

Remark 2.5.2. If the Laplacian is replaced by the more general linear elliptic
operator L as defined in (1.4), the formulae for the first derivative becomes:

λ′
k(0) = −

∫
∂Ω

⎛⎝ N∑
i,j=1

ai,j
∂u

∂xj
ni

⎞⎠ V.n dσ . (2.42)

In the sequel, we will also use the formulae for the derivative of the volume.

Theorem 2.5.3 (Derivative of the volume). Let Ω be a bounded open set and
V ol(t) := |Ωt| the volume of Ωt. Then, the function t → V ol(t) is differentiable at
t = 0 with

V ol′(0) :=
∫

Ω

div(V ) dx . (2.43)

Moreover, if Ω is Lipschitz,

V ol′(0) :=
∫

∂Ω

V.n dσ . (2.44)

Corollary 2.5.4. Let Ω be a convex or C2 domain in R
N which minimizes an

eigenvalue λk among all open sets of given volume. Assume that the eigenvalue
λk(Ω) is simple. Then, there exists a constant c such that the eigenfunction uk

satisfies ∣∣∣∣∂uk

∂n

∣∣∣∣ = c on ∂Ω . (2.45)

Indeed, if Ω minimizes λk under the constraint V ol(Ω) = A, there exists a
Lagrange multiplier C such that λ′

k(0) = CV ol′(0) which reads

−
∫

∂Ω

(
∂uk

∂n

)2

V.n dσ = C

∫
∂Ω

V.n dσ

for any vector field V in W 1,∞(RN ) (we know that the eigenfunction uk belongs
to the Sobolev space H2(Ω) by classical regularity results, see section 1.2.4). But
this implies − (

∂u
∂n

)2
= C which gives the desired result with c =

√−C.

Remark 2.5.5. It is easy to see that the above constant c cannot be zero (for
example using the classical formulae λk = 1

2

∫
∂Ω

(
∂u
∂n

)2
X.n dσ). Therefore, for a

minimizer of λk:

• either λk is double (see Open problem 1)
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• or no nodal line of uk hits the boundary (otherwise we would have c = 0).

In some situations, we also need the second derivative of an eigenvalue. This
is the case, for example, when we want to express that a shape is a true minimum
by looking at the positivity of the quadratic form expressing the second derivative
with respect to the domain. Conversely, it could be useful to prove that a critical
point (i.e. a shape for which the above first derivative vanishes) is not a minimum.
We give the formulae for the second derivative in this particular case of a critical
point. The general formulae is more complicated, we refer to [182] or [104] for the
general case and for proofs.

Theorem 2.5.6 (Second derivative of a Dirichlet eigenvalue). Let Ω be a bounded
open set of class C3. We assume that λk(Ω) is simple and that Ω is a critical
point for λk. We denote Ωt = (I + tV )(Ω) and λk(t) = λk(Ωt). Then, the function
t → λk(t), is twice differentiable at t = 0 with

λ′′
k(0) :=

∫
∂Ω

2w(ϕ)
∂w(ϕ)

∂n
+ ϕ2 H

(
∂u

∂n

)2

dσ , (2.46)

where H is the mean curvature of ∂Ω, ϕ = V.n and w(ϕ) is the solution of{
−∆w(ϕ) = λkw(ϕ) − u

∫
∂Ω

(
∂u
∂n

)2
ϕdσ in Ω,

w(ϕ) = −ϕ ∂u
∂n on ∂Ω,

∫
Ω

u w(ϕ) dx = 0.

The existence of w(ϕ) is a consequence of the Fredholm alternative, see sec-
tion 1.2.6.

Let us now consider the Neumann case. Since the boundary condition is more
complicated, we only give the formulae for the first derivative and for the Laplacian
operator.

Theorem 2.5.7 (First derivative of a Neumann eigenvalue). Let Ω be a bounded
open set. We assume that µk(Ω) is simple. Then, the functions t → µk(t), t →
ut ∈ L2(ω) with ω an open set such that ω ⊂ Ω, are differentiable at t = 0 with

µ′
k(0) :=

∫
Ω

div
(
(|∇u|2 − µku2)V

)
dx . (2.47)

If, moreover, Ω is of class C3, then

µ′
k(0) :=

∫
∂Ω

(|∇u|2 − µku2
)

V.n dσ (2.48)

and the derivative u′ of ut is the solution of⎧⎪⎨⎪⎩
−∆u′ = λku′ + λ′

ku in Ω,

∂u′
∂n = − ∂2u

∂n2 V.n + ∇u.∇Γ(V.n) on ∂Ω,

2
∫
Ω u u′ dx +

∫
∂Ω u2V.n dσ = 0 ,

(2.49)

where ∇Γ denotes the tangential gradient.
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2.5.3 Case of multiple eigenvalues

As we have seen in the Introduction of this section, a multiple eigenvalue is no
longer differentiable in a classical sense. Therefore, two strategies can be consid-
ered.

• We use the sub-differential.

• We look at directional derivatives.

The first strategy is explained, for example, in [53], [62] where the sub-differential
is computed. We choose here to present the second strategy, since it will be useful
in the sequel. The following result is proved in [180] or [153].

Theorem 2.5.8 (Derivative of a multiple eigenvalue). Let Ω be a bounded open set
of class C2. Assume that λk(Ω) is a multiple eigenvalue of order p ≥ 2. Let us
denote by uk1 , uk2 , . . . , ukp an orthonormal (for the L2 scalar product) family of
eigenfunctions associated to λk. Let Φ(t) satisfy (2.37) with V fixed and Ωt =
Φ(t)(Ω). Then t → λk(Ωt) has a (directional) derivative at t = 0 which is one of
the eigenvalues of the p × p matrix M defined by:

M = (mi,j) with mi,j = −
∫

∂Ω

(
∂uki

∂n

∂ukj

∂n

)
V.n dσ i, j = 1, . . . , p . (2.50)

Of course, this theorem contains the case of a simple eigenvalue, since the
matrix M has then a single entry which is exactly (2.40). When λk is a multiple
eigenvalue, the directional derivative depends on the choice of the vector field V :
changing V makes a shift from one eigenvalue to the other of the matrix M. This
means that V 
→ λ′

k(0) is no longer a linear form which is another way to express
the non-differentiability of t → λk(t) at t = 0.

Let us give an important consequence of this theorem concerning the sim-
plicity of eigenvalues for optimal domains. We begin by a lemma.

Lemma 2.5.9. Let Ω be an open set of class C1,1. We assume that Ω has a multiple
eigenvalue of order m:

λk+1(Ω) = λk+2(Ω) = · · · = λk+m(Ω) k ≥ 1.

Then, we can always find a deformation field V ∈ C1,1(RN , RN ), preserving the
volume and such that, if we set

Ωt = (Id + tV )(Ω),

we have, for t > 0 small enough,

λk+1(Ωt) < λk+1(Ω) = λk+m(Ω) < λk+m(Ωt) .
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Proof. We use Theorem 2.5.8. We know that the directional derivatives of t 
→
λk+p(Ωt) are to be chosen among the eigenvalues of the m × m matrix

M =
(
−
∫

∂Ω

∂ui

∂n

∂uj

∂n
V.n dσ

)
k+1≤i,j≤k+m

(2.51)

where ∂ui

∂n denotes the normal derivative of the i-th eigenfunction ui and V.n is
the normal displacement of the boundary induced by the deformation field V .

Let us now choose two points A and B located on ∂Ω. Let us consider a
deformation field V such that V.n = 1 in a small neighborhood of A (on the
boundary of Ω) of size ε, V.n = −1 in a small neighborhood of B (with the
same measure) and V regularized outside in a neighborhood of size 2ε in such
a way that |Ωt| = |Ω| (it is always possible since the derivative of the volume
is given by dVol =

∫
∂Ω V.n dσ which vanishes with an appropriate choice of the

regularization). According to the above-mentioned results about the directional
derivatives, the lemma will be proved if we can find two points A, B such that
the symmetric matrix M has both positive and negative eigenvalues. Now, when
ε goes to 0, it is clear that the matrix M behaves like the m × m matrix

MA,B =
(
−∂ui

∂n
(A)

∂uj

∂n
(A) +

∂ui

∂n
(B)

∂uj

∂n
(B)

)
k+1≤i,j≤k+m

. (2.52)

Let us denote by φA (resp. φB) the vector of components ∂ui

∂n (A), (resp. ∂ui

∂n (B)),
i = k+1, . . . , k+m. A straightforward computation gives, for any vector X ∈ R

m:

XT MA,B X = (X.φB)2 − (X.φA)2 .

Therefore, the signature of the quadratic form defined by MA,B is (1, 1) as soon
as the vectors φA and φB are non-collinear. Now, assuming these two vectors to
be collinear for every choice of points A, B would give the existence of a constant
c such that, on a part γ of ∂Ω:

∂uk+1

∂n
= c

∂uk+2

∂n
.

But, uk+1 − c uk+2 would satisfy⎧⎪⎨⎪⎩
−∆(uk+1 − c uk+2) = λk+1(uk+1 − c uk+2) in Ω,

uk+1 − c uk+2 = 0 on ∂Ω ∩ γ,
∂(uk+1−c uk+2)

∂n = 0 on ∂Ω ∩ γ .

Now, by the Hölmgren uniqueness theorem, the previous p.d.e. system is solvable
only by uk+1 − c uk+2 = 0 (first in a neighborhood of γ and then in the whole
domain by analyticity) which gives the desired contradiction. �

The previous result has the following consequence for minimization of eigen-
values:
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Theorem 2.5.10. Let Ω∗ be an open set of class C1,1 minimizing the k-th eigenvalue
(with a volume constraint) and assume that λk(Ω∗) is not simple; necessarily we
have

λk−1(Ω∗) = λk(Ω∗). (2.53)

Indeed, if λk(Ω∗) is not simple, let us assume that λk−1(Ω∗) < λk(Ω∗) =
λk+1(Ω∗). Then, according to Lemma 2.5.9, we can find a perturbation of Ω∗

which diminishes λk(Ω∗): a contradiction.

Actually, numerical experiments seem to show that this relation holds in
every case, see [164]: the domain which minimizes λk(Ω) , k ≥ 2 (with a volume
constraint) always satisfies (2.53).

Open problem 1. Let k ≥ 2 and Ω∗ be an open set minimizing the k-th eigenvalue
of the Laplacian-Dirichlet (with a volume constraint). Prove that λk(Ω∗) is not
simple (and therefore λk−1(Ω∗) = λk(Ω∗)).

2.5.4 Derivative with respect to coefficients

Instead of moving the domain, we can change the coefficients. It will be the sit-
uation in chapters 8, 9 and 10 where the unknown is no longer the shape of the
domain, but the potential a0(x) or some coefficients in the equation. Since the
result is different in the two cases, we give two statements which take into account
each of these situations. We refer e.g. to [121] for the proofs. This formulae can
easily be obtained through a formal computation.

Theorem 2.5.11. Let Ω be a bounded open set in R
N , L the second order elliptic

operator defined by (1.4) and Lt the new operator obtained by replacing a0 by
a0 + tϕ in L (where ϕ is bounded). We assume that λD

k (L, Ω) is simple and we
denote by λk(t) := λD

k (Lt, Ω). Then, t → λk(t) is derivable at t = 0 and

λ′
k(0) :=

∫
Ω

ϕu2 dx (2.54)

where u is a normalized eigenfunction associated to λk.

Remark 2.5.12. In the case of a Neumann boundary condition, formulae (2.54) is
still valid.

When the eigenvalue is degenerate, a result similar to Theorem 2.5.8 holds:

Theorem 2.5.13. Let Ω be a bounded open set in R
N , L the second order ellip-

tic operator defined by (1.4) and Lt the new operator obtained by replacing a0

by a0 + tϕ in L (where ϕ is bounded). We assume that λD
k (L, Ω) is degenerate:

λk = λk+1 = · · · = λk+m−1 and we denote by uk,1, uk,2, . . . , uk,m a set of or-
thonormalized eigenfunctions associated to λk. Then, t → λD

k (Lt, Ω) is derivable
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at t = 0 and its derivative is one of the eigenvalues of the m×m matrix M whose
entries are

Mi,j =
∫

Ω

ϕuk,iuk,j dx .

Remark 2.5.14. Another way to see the differentiability of multiple eigenvalues is
to look at each branch of the spectrum. Indeed, a degenerate eigenvalue λk can split
into a cluster of eigenvalues λk,j which can be considered as a set of differentiable
functions near t = 0, but those functions do not ordinarily correspond to the
ordering of eigenvalues. In that case, another possible expression for the derivative
is

dλk(a0 + tϕ)
dt

=
∫

Ω

ϕu2
k,j dx at t = 0 (2.55)

where uk,j is one of the family uk,i of orthonormal eigenfunctions chosen so that∫
Ω

uk,iϕuk,j dx = 0 for i �= j . (2.56)

We now consider the case where the variation takes place in the coefficients
aij :

Theorem 2.5.15. Let Ω be a bounded open set in R
N , L the second order elliptic

operator defined by (1.4) and Lt the new operator obtained by replacing ai0j0 by
ai0j0 + tϕ in L (where ϕ is bounded). We assume that λD

k (L, Ω) is simple and we
denote it by λk(t) := λD

k (Lt, Ω). Then, t → λk(t) is derivable at t = 0 and

λ′
k(0) :=

∫
Ω

ϕ
∂u

∂xi0

∂u

∂xj0

dx (2.57)

where u is a normalized eigenfunction associated to λk.

Remark 2.5.16. In the particular case L = div(σ∇u) and we look at the differen-
tiability of t 
→ λk(σ + tϕ), formulae (2.57) is written

λ′
k(0) :=

∫
Ω

ϕ|∇u|2 dx . (2.58)



Chapter 3

The first eigenvalue of the
Laplacian-Dirichlet

3.1 Introduction

Historically, the minimization of λ1 is probably the first such problem which ap-
peared in the scientific literature. Indeed, in his famous book “The theory of
sound” (first edition in 1877), Lord Rayleigh, thanks to some explicit computa-
tions and physical evidence, claimed that the disk should be the plane domain
which minimizes the first eigenvalue of the Laplacian with Dirichlet boundary
conditions (among domains of same area). The musical interpretation of this re-
sult could be: among all drums of given area, the circular drum is the one which
produces the deepest bass note. The proof of this conjecture came almost 30 years
later, simultaneously (and independently) by G. Faber and E. Krahn, see section
3.2. Nevertheless, the story of the minimization of λ1 is not finished! Later, G.
Pólya considered the same problem in the class of polygons with a given number
of sides. He obtained easily the expected result for triangles and quadrilaterals,
but unfortunately his proof does not work for a larger number of sides, see section
3.3. We will also consider in section 3.4, the problem of minimizing λ1 among sets
constrained to lie in a box. At last, we will also consider in section 3.5, the case of
multi-connected domains: how to place an obstacle to minimize or maximize the
first eigenvalue. As we will see, many problems remain open, even in this simple
context.

3.2 The Faber-Krahn inequality

For the first eigenvalue, the basic result is (as conjectured by Lord Rayleigh):
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Theorem 3.2.1 (Faber-Krahn). Let c be a positive number and B the ball of volume
c. Then,

λ1(B) = min{λ1(Ω), Ω open subset of R
N , |Ω| = c}.

Proof. The classical proof makes use of the Schwarz (spherical decreasing) rear-
rangement described in section 2.1. Let Ω be a bounded open set of measure c
and Ω∗ = B the ball of same volume. Let u1 denote an eigenfunction associated
to λ1(Ω) and u∗

1 its (Schwarz) rearrangement. From (2.1) and (2.2), we get∫
Ω∗

u∗
1(x)2 dx =

∫
Ω

u1(x)2 dx and
∫

Ω∗
|∇u∗

1(x)|2 dx ≤
∫

Ω

|∇u1(x)|2 dx . (3.1)

Now, according to (1.36), we have

λ1(Ω∗) ≤
∫
Ω∗ |∇u∗

1(x)|2 dx∫
Ω∗ u∗

1(x)2 dx
and λ1(Ω) =

∫
Ω |∇u1(x)|2 dx∫

Ω u1(x)2 dx
. (3.2)

Then, (3.1) together with (3.2) yields the desired result. �

Remark 3.2.2. We can wonder whether the ball is the unique minimizer of λ1 (up
to displacements). Actually no, for example, in R

2 a disk where we remove a finite
number of points has the same λ1, so is also a minimizer. More generally, since the
Sobolev space H1

0 (Ω) does not change if we remove from Ω a set of zero capacity
(see section 2.4), any domain of the kind Ω∗ \K, with K a set with zero capacity,
minimizes λ1. Actually, if we do not allow these kinds of irregularity, the ball is
the unique minimizer. We refer to the discussion in [122] or to the more recent
paper [56].

Remark 3.2.3. The first eigenvalue of the p-Laplace operator is usually defined by:

λp
1(Ω) := inf

v∈W 1,p
0 (Ω),v �=0

∫
Ω
|∇v(x)|p dx∫
Ω

v(x)p dx
(3.3)

where p is a real number 1 ≤ p < +∞. Following exactly the same proof (using
(2.3) instead of (2.2)) as Faber-Krahn inequality, we have:

∀p ∈ [1, +∞[, λp
1(Ω

∗) ≤ λp
1(Ω) . (3.4)

In other words the ball minimizes the first eigenvalue of the p-Laplace operator.

3.3 The case of polygons

We can ask the same question of minimizing λ1 in the class of polygons with a
given number N of sides. We denote by PN the class of plane polygons with at
most N edges.
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3.3.1 An existence result

We begin first by an existence result.

Theorem 3.3.1. Let a > 0 and N ∈ N be fixed. Then the problem

min{λ1(Ω), Ω ∈ PN , |Ω| = a} (3.5)

has a solution. This one has exactly N edges. Moreover, if we denote by mN the
minimum value defined by (3.5), the sequence mN is (strictly) decreasing.

Proof. We follow the direct method of calculus of variations. Let Ωn be a minimiz-
ing sequence in PN for λ1. We first prove that we can assume that the diameter
D(Ωn) is bounded. Indeed, if it is not the case, we would have some “pick” of
length going to +∞ but with a width, for example at its basis AnBn going to 0
(otherwise the area constraint could not be satisfied). We are going to prove that
we get another minimizing sequence Ω̃n by cutting the pick at its basis. Let us
denote by Ω̃n the polygon we obtain by replacing the pick by the segment AnBn.
Obviously, we have |Ω̃n| ≤ |Ωn|, so if we prove that λ1(Ω̃n) − λ1(Ωn) → 0, it will
show that Ω̃n is also a minimizing sequence for the product |Ω|λ1(Ω). Since, the
number of possible picks is bounded by N/2, this will prove that we can consider a
minimizing sequence with bounded diameter. We denote by ηn = AnBn the width
of the basis of the pick (ηn → 0) and ωn = Ωn ∩ B(An+Bn

2 , 3ηn). We choose now
a cut-off function χn which satisfies:

• χn ≡ 1 outside B(An+Bn

2 , 3ηn),

• χn = 0 on the segment AnBn,

• χn is C1 on Ω̃n,

• ∃C > 0 (independent of n) such that |∇χn| ≤ C
ηn

.

Let un be the first (normalized) eigenfunction of Ωn. By construction χnun ∈
H1

0 (Ω̃n) and, therefore, is admissible in the min formulae (1.36) defining λ1. Now,
for any C1 function v, we have

|∇(vun)|2 = |un∇v + v∇un|2 = u2
n|∇v|2 + ∇un.∇(unv2)

or
|∇(vun)|2 = u2

n|∇v|2 + div (unv2∇un) + λ1(Ωn)u2
nv2 .

Replacing v by χn and integrating on Ω̃n yields∫
eΩn

|∇(χnun)|2 =
∫

eΩn

u2
n|∇χn|2 + λ1(Ωn)

∫
eΩn

χ2
nu2

n . (3.6)

Then, the variational definition of λ1(Ω̃n) (1.36) reads:

λ1(Ω̃n) ≤ λ1(Ωn) +

∫
eΩn

u2
n|∇χn|2∫

eΩn
χ2

nu2
n

. (3.7)
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Now, using |∇χn| ≡ 0 outside B(An+Bn

2 , 3ηn), |∇χn|2 ≤ C
η2

n
in ωn and

∫
eΩn

χ2
nu2

n ≥
1
2 , we get from (3.7)

λ1(Ω̃n) ≤ λ1(Ωn) +
2C

η2
n

∫
ωn

u2
n ≤ λ1(Ωn) + C′ sup

ωn

u2
n .

But, since supωn
u2

n → 0 the result is proved.

Since λ1 is invariant by translation, we can assume that all the domains Ω̃n

are included in a fixed ball B. By compactness of the Hausdorff convergence (The-
orem 2.3.15), there exists an open set Ω and a subsequence Ω̃nk

which converge to
Ω for the Hausdorff distance. Moreover, since the vertices Aj

n, j = 1 . . .M, M ≤ N

of Ω̃n stay in B, we can also assume (up to a subsequence still denoted by Ω̃nk
)

that each Aj
nk

converges to some point Aj in B. Then, it is easy to verify, thanks
to properties of the Hausdorff convergence, that Ω is a polygon with vertices Aj .
At last, it is clear that any polygon in the class PN has at most N/3 holes, there-
fore the Šverak Theorem 2.3.19 applies which proves convergence of λ1(Ω̃nk

) to
λ1(Ω). To conclude, we need to prove that Ω has exactly N edges. Actually, it
will be a consequence of the following lemma which also implies the last claim
of the theorem. We recall that it is equivalent to minimize λ1(Ω) under an area
constraint or to minimize the product |Ω|λ1(Ω) without any constraint (see Propo-
sition 1.2.9). �
Lemma 3.3.2. Let M ∈ N and Ω a polygon with M edges. Then, Ω cannot be a
(local) minimum for |Ω|λ1(Ω) in the class PM+1.

By local, we mean for the Hausdorff distance. In other words, for any ε >
0, we can find a polygon Ωε with M + 1 edges and dH(Ω, Ωε) < ε such that
|Ωε|λ1(Ωε) < |Ω|λ1(Ω).

Proof. Let us consider a vertex x0 of Ω with an angle α less than π. Without loss
of generality, we can assume that x0 is the origin. We are going to prove that
we can decrease the product |Ω|λ1(Ω) by cutting a small cap of size ε. Let us
introduce the following notation, see Figure 3.1. We denote by η the (normalized)
inward bisector, Cε is the cap defined as Cε = {x ∈ Ω, x.η ≤ ε}, Ωε is the
polygon that we obtain in removing the cap Cε: Ωε = Ω \ Cε. We will also need
Bε = {x ∈ Ω, ε < x.η ≤ 2ε}, C2ε = Cε∪Bε and Ω2ε = Ωε\Bε = Ω\C2ε. We denote
by u1 the first normalized eigenfunction of Ω. The key point is the following: by
classical barrier arguments (comparison with the eigenvalue of a circular sector),
it is well known that u1 has a gradient which vanishes at the corner:

lim
x→0,x∈Ω

|∇u1(x)| = 0 . (3.8)

Let β > 0 be a small number (which will be chosen at the end); according to (3.8)
and the mean value theorem, we can choose ε small enough such that

∀x ∈ C2ε |u1(x)| ≤ β|x| . (3.9)
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Figure 3.1: Removing a cap.

In particular:∫
C2ε

|u1(x)|2 dx ≤ β2

∫
C2ε

|x|2 dx =
8
3

tan
α

2
(3 + tan2 α

2
)β2ε4 := c1β

2ε4 . (3.10)

We now introduce a C1 cut-off function χε with⎧⎨⎩
χε(x) = 1 if x ∈ Ω2ε,

0 ≤ χε(x) ≤ 1 if x ∈ Bε,
χε(x) = 0 if x ∈ Cε,

and the function u1
ε := χεu1 which belongs to the Sobolev space H1

0 (Ωε). Accord-
ing to formulae (1.36), we have

λ1(Ωε) ≤
∫
Ωε

|∇u1
ε|2 dx∫

Ωε
(u1

ε)2 dx
.

Now, we have:∫
Ωε

(u1
ε)

2 dx ≥
∫

Ω2ε

u2
1 dx = 1 −

∫
C2ε

u2
1 dx ≥ 1 − c1β

2ε4 (3.11)

the last inequality coming from (3.10). We estimate now the integral with the
gradient: ∫

Ωε

|∇u1
ε|2 dx ≤

∫
Ω

|∇u1|2 dx +
∫

Bε

|∇χε|2u2
1 dx .

As usual, from the construction of a cut-off function, there exists a constant c2

such that |∇χε|2 ≤ c2
ε2 and therefore, using one more time (3.10)∫

Ωε

|∇u1
ε|2 dx ≤ λ1 + c1c2β

2ε2 . (3.12)
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Taking into account (3.11), (3.12), we get

λ1(Ωε) ≤ λ1 + β2ε2c1c2

1 − c1β2ε4
.

At the same time, |Ωε| = |Ω| − |C2ε| = |Ω| − 4ε2 tan(α/2) + o(ε2) and therefore

|Ωε|λ1(Ωε) ≤ |Ω|λ1 + ε2
(
β2c1c2|Ω| − 4λ1 tan(α/2)

)
+ o(ε2) .

Then it is clear that, for ε small enough, we will have |Ωε|λ1(Ωε) < |Ω|λ1 as soon
as β2 < 4λ1 tan(α/2)

c1c2|Ω| what gives the desired result. �

3.3.2 The cases N = 3, 4

After the existence result, we would like to identify the minimizer in PN . According
to the Faber-Krahn inequality, it is natural to conjecture that it is the N -regular
polygon. Actually, the result is known only for N = 3 and N = 4:

Theorem 3.3.3 (Pólya). The equilateral triangle has the least first eigenvalue among
all triangles of given area. The square has the least first eigenvalue among all
quadrilaterals of given area.

Proof. The proof relies on the same technique as the Faber-Krahn Theorem with
the difference that is now used the Steiner symmetrization. Since this symmetriza-
tion has the same properties (2.1) and (2.2) as the Schwarz rearrangement, it is
clear that any Steiner symmetrization decreases (or at least do not increase) the
first eigenvalue. By a sequence of Steiner symmetrization with respect to the me-
diator of each side, a given triangle converges to an equilateral one. More precisely,
let us denote by hn and an the height and the length of the basis of the triangle Tn

that we get at step n and An one of the basis angle (see Figure 3.2). Elementary
trigonometry yields

hn

an+1
= sin An ,

hn+1

an
= sin An . (3.13)

Let us denote by xn := hn

an
. Relation (3.13) reads

xn+1 =
sin2 An

xn
=

sin2(arctan(2xn))
xn

=
4xn

1 + 4x2
n

.

Now, an elementary study of the sequence xn+1 = 4xn

1+4x2
n

shows that it converges

to the fixed point of f(x) = 4x
1+4x2 which is

√
3

2 i.e. the value characteristic of equi-
lateral triangles. Moreover, with the same argument as above (Šverak Theorem),
the sequence of triangles γ-converges to the equilateral one, say T̂ , so we have
proved, if T denotes the triangle we started with:

λ1(T̂ ) = limλ1(Tn) ≤ λ1(T ) .



3.3. The case of polygons 51

h
n

<
>

a
n< >

A
n

<

>

h
n+1

<

>

a n+
1

T
n

T
n+1

Figure 3.2: The triangle Tn and its Steiner symmetrization Tn+1.

With a more careful study, we can prove that the above inequality is strict if T is
not equilateral.

Curiously, the proof is a little bit simpler for quadrilaterals. Indeed a se-
quence of three Steiner symmetrizations allows us to transform any quadrilateral
into a rectangle, see Figure 3.3. Therefore, it suffices to look at the minimization
problem among rectangles. But it is elementary to prove that the square is the
best rectangle for λ1, use section 1.2.5. �

3.3.3 A challenging open problem

Unfortunately, for N ≥ 5 (pentagons and others), the Steiner symmetrization
increases, in general, the number of sides, see Figure 3.4. This prevents us from
using the same technique. So a beautiful (and hard) challenge is to solve the

Open problem 2. Prove that the regular N -gone has the least first eigenvalue
among all the N -gones of given area for N ≥ 5.

This conjecture is supported by the classical isoperimetric inequality linking
area and length for regular N -gones, see e.g. Theorem 5.1 in Osserman, [162].

Another kind of result that can be proved on polygons has been stated by J.
Hersch in [107]:

Theorem 3.3.4 (Hersch). Among all parallelograms with given distances between
their opposite sides, the rectangle maximizes λ1.
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Figure 3.3: A sequence of three Steiner symmetrizations transforms any quadri-
lateral into a rectangle.

Figure 3.4: The Steiner symmetrization of a pentagon has, in general, six edges.

3.4 Domains in a box

Instead of looking at open sets just with a volume constraint, we can consider
open sets constrained to lie in a given box D (and also with a given volume). In
other words, we could look for the solution of

min{λ1(Ω), Ω ⊂ D, |Ω| = A (given)}. (3.14)

According to Theorem 2.4.6 of Buttazzo-DalMaso, the problem (3.14) has always
a solution in the class of quasi-open sets. Of course, if the constant A is small
enough in such a way that there exists a ball of volume A in the box D, it will
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provide the solution (since it is the global minimum). Therefore, the interesting
case is when the ball of volume A is “too big” to stay in D. Actually, we can prove
the following.

Theorem 3.4.1. Let Ω∗ ⊂ R
2 be a minimizer for the problem (3.14). Assume that

there is no disk of area A in the box D. Then:

(i) Ω∗ touches the boundary of D.

(ii) The free parts of the boundary of Ω∗ (i.e. those which are inside D) are
analytic.

(iii) The free boundary of Ω∗ does not contain any arc of the circle.

D

Ω*

Figure 3.5: Ω∗ solves the problem (3.14): the free components of ∂Ω∗ are not arcs
of circles.

Proof. We will not prove here point (ii) for which we refer to [37]. Let us now prove
point (iii) (see also [103]). Let us denote by u the first (normalized) eigenfunction
of Ω∗. Let us assume that ∂Ω∗ contains a piece of circle γ. According to Corollary
2.5.4, Ω∗ satisfies the optimality condition

∂u1

∂n
= c on γ . (3.15)

We put the origin at the center of the corresponding disk and we introduce the
function

w(x, y) = x
∂u

∂y
− y

∂u

∂x
.

Then, we easily verify that

−∆w = λ1w in Ω∗,
w = 0 on γ,

∂w
∂n = 0 on γ.

Now we conclude, using the Hölmgren uniqueness theorem, that w must vanish
in a neighborhood of γ, so in the whole domain by analyticity. Now, it is classical
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that w = 0 implies that u is radially symmetric in Ω∗. Indeed, in polar coordinates,
w = 0 implies ∂u

∂θ = 0. Therefore Ω∗ is a disk.
For point (i), let us assume, for a contradiction, that Ω∗ is strictly included

in D. In particular, if we perform any continuous Steiner symmetrization of Ω∗

(see section 2.2.3), the set Ω∗
t will stay in D for t small and, therefore, λ1(Ω∗) ≤

λ1(Ω∗
t ). But since, the continuous Steiner symmetrization does not increase the

first eigenvalue, we also have λ1(Ω∗
t ) ≤ λ1(Ω∗). Therefore, λ1(Ω∗) = λ1(Ω∗

t ). Let
us denote by ut the continuous Steiner symmetrization of u. From the chain

λ1(Ω∗) = λ1(Ω∗
t ) ≤

∫
Ω∗

t
|∇ut|2∫

Ω∗
t
u2

t

≤
∫
Ω∗ |∇u|2∫

Ω∗ u2
= λ1(Ω∗)

we deduce
∫
Ω∗

t
|∇ut|2 =

∫
Ω∗ |∇u|2. Consequently, Brock’s Theorem 2.2.9 applies.

But, in the decomposition (2.18), the set S has zero measure since u is analytic.
Let B1 = BR1(z1) be the first ball in (2.18) and x1 a point of its boundary where
u reaches its minimum. According to point (iii), there is another disk, say B2

touching B1 at x1 tangentially (from the exterior). But, if n denotes the exterior
normal to B1, by Hopf’s maximum principle we would have ∂u

∂n (x1) < 0 while,
looking from B2 and applying (2.19) − ∂u

∂n (x1) ≤ 0: a contradiction. More precisely,
this argument shows that no disks can touch B1 on the arc of circle where ∂u

∂n < 0,
but this would imply that this arc of circle belongs to the boundary of Ω∗: a
contradiction with point (iii). �

Remark 3.4.2. Since we know, according to (ii), that the boundary of Ω∗ is regular,
we can also prove (i) using a different argument. Indeed, the relation (3.15) (which
would hold on the entire boundary if this one were included in D) together with the
p.d.e. defining u yields a well-known overdetermined problem whose only solution,
according to J. Serrin cf [186], is a ball: a contradiction with the assumption.

Remark 3.4.3. The previous theorem partly generalizes in higher dimension. Ac-
tually, points (i) and (iii) can be proved exactly in the same way. For example, for
point (iii) we use the functions

wi,j := xi
∂u

∂xj
− xj

∂u

∂xi
, i, j = 1, . . . , N

instead of w and we prove that all these functions wi,j vanish in Ω∗ which implies
that Ω∗ is a ball. The regularity is not known.

Open problem 3. Let Ω∗ ⊂ R
N be a minimizer for the problem (3.14). Prove that

Ω∗ is regular (for example analytic) when N ≥ 3.

We can also consider open questions related to the geometry of the minimizer:

Open problem 4. Let Ω∗ ⊂ R
N be a minimizer for the problem (3.14). Prove that

D convex (resp. star-shaped) implies that Ω∗ is convex (resp. star-shaped).
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3.5 Multi-connected domains

This section could also be entitled “How to place an obstacle” (see [99]). Let
us consider a doubly-connected set Ω with one hole. We denote by Γ0 the outer
boundary of Ω and by Γ1 its inner boundary. We can consider several extremum
problems, letting the boundary conditions vary on the outer boundary and/or the
hole. Most of the known results were obtained in the sixties by Payne, Weinberger
and Hersch, see [171], [105], [106]. Let us begin with a result where a Dirichlet
boundary condition is assumed on the outer boundary and a Neumann boundary
condition on the inner boundary.

Theorem 3.5.1 (Payne-Weinberger). Let OL0,A be the class of doubly-connected
plane domains Ω of area A with outer boundary Γ0 of length L0 and inner boundary
γ. Let us denote by λM

1 the first eigenvalue of the mixed problem⎧⎨⎩
−∆u = λM

1 u in Ω,
u = 0 on Γ0,
∂u
∂n = 0 on γ.

(3.16)

Then, the annular ring (with concentric circles) maximizes λM
1 in the class OL0,A.

Proof. The main ingredient of the proof is an upper bound for λ1 which is obtained
thanks to the method of interior parallels, see [146], [171]. Let us consider a doubly-
connected set Ω with outer boundary Γ of length L0 (and inner boundary γ). We
denote by dΓ the distance function to Γ: dΓ(x) = d(x, Γ) = inf{|x − y|, y ∈ Γ}.
Now let us define the interior parallel of Γ at distance δ > 0 as

Lδ = {x ∈ Ω, dΓ(x) = δ}

which is the inner boundary of the open set

Aδ = {x ∈ Ω, dΓ(x) < δ} .

Let us introduce a(δ) as the area of Aδ and l(δ) as the length of Lδ. It is known
(see e.g. [158], [87]), that δ 
→ a(δ) is a.e. derivable with d a

d δ = l(δ). Moreover, we
have the sharp bound

l(δ) ≤ L0 − 2πδ . (3.17)

By integration, we deduce from (3.17) that a(δ) ≤ L0δ − πδ2 and then

l(δ)2 ≤ L2
0 − 4πa(δ) . (3.18)

Now, to compute the first eigenvalue λM
1 we can use, as in section 1.3.1, the min

formulae which is written in this case

λM
1 = inf

v∈H1(Ω)\{0},v=0 on Γ0

∫
Ω |∇v(x)|2 dx∫

Ω v(x)2 dx
. (3.19)
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Now, choosing any (regular) function φ : R+ → R satisfying φ(0) = 0, we can plug
into (3.19) the admissible function v(x) = φ(dΓ(x)) which gives

λM
1 ≤

∫
Ω |φ′(δΓ(x)|2|∇δΓ(x)|2 dx∫

Ω
φ(dΓ(x))2 dx

. (3.20)

Integrating along the interior parallels and using |∇δΓ(x)| = 1, estimate (3.20)
becomes

λM
1 ≤

∫ δM

0 |φ′(δ)|2 l(δ) dδ∫ δM

0
φ(δ)2 l(δ) dδ

(3.21)

where δM denotes the maximum value of δ. Now, we know that δ 
→ a(δ) is one-
to-one, so let us introduce φ̂(α) = φ(a−1(α)). The change of variable δ = a−1(α)
in the right-hand side of (3.21) yields

λM
1 ≤

∫ A

0 l2(a−1(α))|φ̂′(α)|2 dα∫ A

0
φ̂(α)2 dα

. (3.22)

At last, estimate (3.18) gives

λM
1 ≤

∫ A

0 (L2
0 − 4πα)|φ̂′(α)|2 dα∫ A

0
φ̂(α)2 dα

. (3.23)

This inequality being true for every function φ̂ satisfying φ̂(0) = 0, we can deduce
the following upper bound for λM

1 :

λM
1 ≤ λout(L0, A) (3.24)

where λout(L0, A) is the quantity (only depending on L0 and A) given by

λout(L0, A) = min
ϕ/ϕ(0)=0

∫ A

0
(L2

0 − 4πα)|ϕ′(α)|2 dα∫ A

0
ϕ(α)2 dα

. (3.25)

Now, let us consider the particular case where Ω∗ is the (unique) annular ring
which belongs to the class OL0,A. The first eigenfunction of Ω∗ is radial (it is
given by a combination of Bessel functions of the first and second kind J0(ω1r) and
Y0(ω1r) with ω1 solution of some transcendental equation): u1 = u1(r). Therefore,
u1 is admissible in the variational definition of λout(L0, A). Moreover, for Ω∗ the
inequality (3.17) is an equality. Then, for Ω∗, the equality holds in (3.24):

λM
1 (Ω∗) = λout(L0, A)

which proves the desired result. �
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In [105], J. Hersch adapts the previous proof to the case with the Dirichlet
boundary condition on the inner boundary Γ1 of length L1 and the Neumann
boundary condition on the outer boundary γ. He proves a similar upper bound

λM
1 ≤ λin(A, L1) (3.26)

which turns out to be an equality in the case of an annular ring. This implies:

Theorem 3.5.2 (Hersch). Let OA,L1 be the class of doubly-connected plane domains
Ω of area A with inner boundary Γ1 of length L1 and outer boundary γ. Let us
denote by λM

1 the first eigenvalue of the mixed problem⎧⎨⎩
−∆u = λM

1 u in Ω,
∂u
∂n = 0 on γ,
u = 0 on Γ1.

(3.27)

Then, the annular ring (with concentric circles) maximizes λM
1 in the class OA,L1 .

For similar results for several holes, we refer to [128].

Open problem 5. Generalize Theorems 3.5.1 and 3.5.2 to the N -dimensional case.

At last, let us consider the case where Dirichlet boundary conditions are
assumed on each boundaries.

Theorem 3.5.3 (Hersch). Let O be the class of doubly-connected plane domains Ω
of area A satisfying:

• the outer boundary has length L0,

• the inner boundary has length L1,

• L2
0 − L2

1 = 4πA.

Then, the annular ring (with concentric circles) maximizes λ1 in the class O.

Proof. Let Ω be fixed in the class O. We denote by Γ0 its outer boundary and by
Γ1 its inner one. The main ingredient of the proof is the fact, established by H.
Weinberger in [208], that we can find a curve γ “between” Γ1 and Γ0 such that
the first eigenfunction u1 of Ω satisfies

∂u1

∂n
= 0 on γ .

In particular, if we denote by Ω0 (resp Ω1) the open set delimited by Γ0 and γ,
of area A0 (resp γ and Γ1 of area A1), the first Dirichlet eigenvalue λ1(Ω) is also
the first mixed eigenvalue of Ω0 and Ω1 in the sense of Theorems 3.5.1 and 3.5.2.
Therefore bounds (3.24) and (3.26) provide the following inequalities:

λ1(Ω) = λM
1 (Ω0) ≤ λout(L0, A0) and λ1(Ω) = λM

1 (Ω1) ≤ λin(A1, L1) .
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Consequently
λ1(Ω) ≤ min(λout(L0, A0), λin(A1, L1))

and hence

λ1(Ω) ≤ max
Â0 ≥ 0, Â1 ≥ 0
Â0 + Â1 = A

min(λout(L0, Â0), λin(Â1, L1)) . (3.28)

Now, each function A 
→ λout(L0, A) and A 
→ λin(A, L1) is decreasing, so the
max-min in (3.28) is attained when Â0, Â1 are chosen such that λout(L0, Â0) =
λin(Â1, L1) (otherwise we could decrease the greater one and increase the smaller
one in such a way that the maximum increases).

Now, thanks to the assumption L2
0 − L2

1 = 4πA, there exists a circular ring
Ω∗ in the class O. Moreover, for Ω∗ the line γ is precisely the circle where the first
eigenfunction u1 is maximum. According to Theorems 3.5.1 and 3.5.2, we have

λ1(Ω∗) = λM
1 (Ω0) = λout(L0, A0) and λ1(Ω∗) = λM

1 (Ω1) = λin(A1, L1)

which shows that we have equality in (3.28) for the annular ring: that is the desired
result. �

This result implies, in particular, that for a domain Ω of the kind Ω =
B1 \ B0 (difference of two disks of given radii), λ1 is maximal when the disks
are concentric. This particular result was rediscovered later and extended to the

Ω Ω

ω

ω

Figure 3.6: Position of the hole which maximizes λ1(Ω \ ω) (left); one position
which minimizes λ1(Ω \ ω) (right).

N -dimensional case by several authors: M. Ashbaugh and T. Chatelain in 1997
(private communication), E. Harrell, P. Kröger and K. Kurata in [99], Kesavan,
see [127]. They also proved that λ1(B1 \ B0) is minimum when B0 touches the
boundary of B1. Actually this result was generalized in [99] in the following way:

Theorem 3.5.4 (Harrell-Kröger-Kurata). Let Ω be a convex domain in R
N and B

a ball contained in Ω. Assume that Ω is symmetric with respect to some hyperplane
H. We are interested in the position of B which maximizes or minimizes the first
Dirichlet eigenvalue λ1(Ω \ B). Then:
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• at the minimizing position B touches the boundary of Ω,

• at the maximizing position B is centered on H.

Proof. First of all, existence of a minimizing or maximizing position is not difficult
to get here. Indeed the only variable is the center of the ball (which stays in a
compact set) and the continuity of the eigenvalue w.r.t. the center follows for
example from Theorem 2.3.18 (except for the case where the ball touches the
boundary for which a more careful analysis is needed).

Let us assume that the ball is not in one of the positions described above:
it does not touch the boundary and it is not centered on H . The result will be
established if we prove that λ1(Ω \ B) decreases when B moves away from H .
Without loss of generality, we can assume that e1 is the normal direction to H . If
B(X0, ρ) is the initial position of the ball, we look at the function

t 
→ λ(t) := λ1(Ω \ B(X0 + te1, ρ)) .

Using the results of section 2.5 and more precisely formulae (2.40), we can see that
t 
→ λ(t) is derivable at 0 and

λ′(0) = −
∫

∂B

(
∂u

∂n

)2

n1 (3.29)

where u is the normalized eigenfunction associated to λ1(Ω\B(X0, ρ)) and n1 the
first coordinate of the exterior normal vector. So it suffices to prove that λ′(0) < 0.
For that purpose, we use some kind of moving plane method. Let T : {x = x1}

X′ X

x=x
1

T
H

ω+

X
0

B

Figure 3.7: The moving plane method applied to prove that the derivative of λ1

is negative.

denote a hyperplane parallel to H passing by X0 and ω+ = {x ∈ Ω \ B; x > x1}
(see Figure 3.7). By assumption on Ω, the reflection of ω+ through T is strictly
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included in Ω \ B (this is the crucial point). For any X ∈ ω+, we denote by
X ′ its reflection through T . We introduce w(X) = u(X) − u(X ′) defined on ω+.
By construction, this function w vanishes on T and on ∂B ∩ ∂ω+ and w < 0 on
∂Ω∩∂ω+. Moreover, −∆w = λ1w where λ1 = λ1(Ω\B). Since λ1(Ω\B) < λ1(ω∗)
(by the monotonicity property of eigenvalues), the generalized maximum principle
applies and w < 0 in ω+. Moreover, since w attained its maximum at X ∈ ∂B∩∂ω+

(which is C2 except at points of T ∩ ∂B ∩ ∂ω+), the Hopf boundary point lemma
applies and:

∂w(X)
∂n

=
∂u(X)

∂n
− ∂u(X ′)

∂n
> 0 .

This property with ∂u(X)
∂n < 0 on ∂B implies(

∂u(X)
∂n

)2

<

(
∂u(X ′)

∂n

)2

which gives λ′(0) < 0 thanks to (3.29) and a decomposition of the integral in a
sum of integrals over the two hemispheres. �

With more assumptions and in two dimensions, one can state a more precise
result:

Theorem 3.5.5 (Harrel-Kröger-Kurata). Let Ω be a C2 convex domain in R
2.

Assume that Ω is symmetric with respect to two perpendicular lines, say Ox and
Oy. Assume, moreover, that in each quadrant of the plane, the curvature of the
boundary of Ω is monotonic as a function of x. Now, let B be a ball of radius ρ
with ρ less than the maximum of the curvature of ∂Ω (attained at a point which
is called a vertex of Ω). Then:

• λ1(Ω \ B) is minimum when B is in contact with a vertex,

• λ1(Ω \ B) is maximum when B is centered at the origin.

For the proof, see [99].

An interesting open question is to generalize the previous theorems of Harrel-
Kröger-Kurata:

Open problem 6. Let Ω be a fixed domain in R
N and B0 a ball of fixed radius.

Prove that λ1(Ω \ B0) is minimal when B0 touches the boundary of Ω (where?)
and is maximum when B0 is centered at a particular point of Ω (at what point?).

Actually, It seems that the optimal center of B0 depends on the radius and
is not fixed (apart from the case of symmetries). When the radius of B0 goes to
zero, classical asymptotic formulae for eigenvalues of domains with small holes, see
(1.41) and the review paper [88], lead one to think that the ball must be located
at the maximal point of the first eigenfunction of the domain without holes. Of
course, we can state the same question with a non-circular hole of given measure:
in such a case, we have to find not only the location but also the shape of the hole
in order to minimize or maximize the first eigenvalue.
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The second eigenvalue of the
Laplacian-Dirichlet

4.1 Minimizing λ2

We are now interested in minimizing the second eigenvalue of the Laplacian-
Dirichlet among open sets of given volume. As we are going to see, the mini-
mizer is no longer one ball, but two! This result is sometimes attributed to G.
Szegö, cf [172], but actually it was already contained (more or less explicitly) in
one of Krahn’s paper, [132]. Actually, it was also rediscovered independently by a
Japanese mathematician, Imsik Hong in the 1950s, see [111] (M. Ashbaugh kindly
draws my attention to this reference).

4.1.1 The Theorem of Krahn-Szegö

Theorem 4.1.1 (Krahn-Szegö). The minimum of λ2(Ω) among bounded open sets
of R

N with given volume is achieved by the union of two identical balls.

Proof. Let Ω be any bounded connected open set (if Ω is not connected, see below).
Let us denote by Ω+ and Ω− its nodal domains, see section 1.3.3. We already know
(Proposition 1.3.3) that λ2(Ω) is the first eigenvalue for Ω+ and Ω−:

λ1(Ω+) = λ1(Ω−) = λ2(Ω) . (4.1)

We now introduce Ω∗
+ and Ω∗−, balls of the same volume as Ω+ and Ω− respectively.

According to the Faber-Krahn inequality,

λ1(Ω∗
+) ≤ λ1(Ω+), λ1(Ω∗

−) ≤ λ1(Ω−) . (4.2)

Let us introduce a new open set Ω̃ defined as

Ω̃ = Ω∗
+ ∪ Ω∗

− .
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Since Ω̃ is disconnected, we obtain its eigenvalues by gathering and reordering the
eigenvalues of Ω∗

+ and Ω∗
−. Therefore,

λ2(Ω̃) ≤ max(λ1(Ω∗
+), λ1(Ω∗

−)) .

According to (4.1), (4.2) we have

λ2(Ω̃) ≤ max(λ1(Ω+), λ1(Ω−)) = λ2(Ω) .

If Ω would not be connected at the beginning, Ω = Ω1∪Ω2, the proof would be the
same by applying the argument to Ω1 and Ω2 instead of Ω+ and Ω−. This shows
that, in any case, the minimum of λ2 is to be sought among the union of balls. But,
if the two balls would have different radii, we would decrease the second eigenvalue
by shrinking the largest one and dilating the smaller one (without changing the
total volume). Therefore, the minimum is achieved by the union of two identical
balls. �

Let us denote by λ∗,c
2 the minimal value of λ2(Ω) for open sets of volume c.

For example, in two dimensions, we get according to (1.27)

λ∗,c
2 =

2πj2
0,1

c
. (4.3)

Remark 4.1.2. As we did for the Faber-Krahn inequality, we can wonder whether
the union of two identical balls is the unique (up to displacements) minimizer for
λ2. It is a consequence of the proof and Remark 3.2.2, that it is true if we neglect
sets of zero capacity.

Remark 4.1.3. There are other problems of minimization of eigenvalues whose
solution is the union of two identical balls. For example, this is the case for

• the twisted eigenvalue problem: it is defined as

λT
1 (Ω) := min

v ∈ H1
0 (Ω), v �= 0∫

Ω v dx = 0

∫
Ω |∇v(x)|2 dx∫

Ω
v(x)2 dx

,

see [25] and [90].

• another eigenvalue problem occurring in nonlinear p.d.e. It is defined as

λ1(Ω) := min
v ∈ H1(Ω), v �= 0

v = const. on ∂Ω,
∫
Ω

v dx = 0

∫
Ω
|∇v(x)|2 dx∫
Ω v(x)2 dx

,

see [95].



4.2. A convexity constraint 63

4.1.2 Case of a connectedness constraint

If we are disappointed with the solution of our minimization problem, since it is
not connected, we could think to look at the following problem:

min{λ2(Ω), Ω connected open subset of R
N , |Ω| = c} . (4.4)

Unfortunately, this problem has no solution:

Proposition 4.1.4. The problem (4.4) has no solution. More precisely

inf{λ2(Ω), Ω connected open subset of R
N , |Ω| = c} = λ∗,c

2 .

Proof. Let us consider the set Ωε obtained by joining the two identical balls B1∪B2

(each of volume c/2) by a thin pipe of width ε (see Figure 4.1). According to

<

<Ωε

ε

Figure 4.1: A minimizing sequence of connected domains for λ2.

Theorem 2.3.20, λ2(Ωε) → λ2(B1∪B2). Of course, Ωε does not satisfy the volume
constraint. But, if we remember that it is equivalent to minimizing the product
λ2(Ω)|Ω|2/N (see Proposition 1.2.9), it is clear that

λ2(Ωε)|Ωε|2/N → λ2(B1 ∪ B2)|B1 ∪ B2|2/N = λ∗,c
2 c2/N

and therefore, Ωε is a minimizing sequence. According to Remark 4.1.2, there is
no connected open set Ω of volume c such that λ2(Ω) = λ∗,c

2 and the result is
proved. �

4.2 A convexity constraint

Now, the problem becomes again interesting if we ask how to find the convex
domain, of given volume, which minimizes λ2. Existence of a minimizer Ω∗ is
proved in Theorem 2.4.1. Of course, the difficulty is to find it! For sake of simplicity,
we restrict ourselves here to the two-dimensional case.

In a paper of 1973 [204], Troesch did some numerical experiments which
led him to conjecture that the solution was a stadium: the convex hull of two
identical tangent disks. It is actually the convex domain which is the closest to
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the solution without convexity constraint. In [103], we refute this conjecture, see
Theorem 4.2.5 below. Nevertheless, the minimizer looks very much like a stadium!
In sections 4.2.3 and 4.2.2, we give the following properties of the minimizer:

Regularity. The minimizer Ω∗ is at least C1 and at most C2.

Geometry. If we assume Ω∗ of class C1,1, then it has two (and only two) straight
lines in its boundary and these lines are parallels.

4.2.1 Optimality conditions

First of all, we claim that Theorem 2.5.10 remains true with a convexity constraint
(there are minor changes in the proof, see [103]). A consequence is

Theorem 4.2.1. Let Ω∗ be a convex domain minimizing the second eigenvalue λ2

(among convex domains of given volume). Assume that Ω∗ is of class C1,1. Then
λ2(Ω∗) is simple.

Indeed, for a convex domain Ω∗ minimizing λ2, we know that λ1(Ω∗) is simple
and therefore (2.53) cannot hold.

We want to derive some optimality condition like |∇u2| = c on ∂Ω∗ as es-
tablished in Corollary 2.5.4 for the general case. Now, it is not so obvious here
due to the convexity constraint. The difficulty is to take care of the convexity
constraint when deforming the original domain Ω∗ by a vector field V . Indeed,
if we perform a small deformation of a strictly convex part of the boundary of
Ω∗, this part will not remain necessarily convex, but we can use the fact that the
difference between the deformed boundary and its convex hull is so small, that
for first order terms, the formulae of the derivative still holds (see below for more
details). On the contrary, for segments included in the boundary, it is no longer
true. Therefore, we need to make a distinction between the strictly convex parts
of the boundary and the segments included in the boundary. Let us mention that
the first part of the following theorem holds for any dimension while the second
part is strictly two-dimensional.

Theorem 4.2.2.

• There exists a positive constant α such that the gradient of the eigenfunction
u is constant on every strictly convex part of the boundary of Ω∗:

for every γ, strictly convex part of ∂Ω∗ , ∀x ∈ γ |∇u(x)| = α . (4.5)

Moreover α is given by

α2 =
λ2

|Ω∗| . (4.6)

• If Σ is a segment included in the boundary of Ω∗, let t, t ∈ [a, b], a parametri-
zation of the segment (the boundary is assumed to be oriented in the clockwise
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sense), then there exists a non-negative function w defined on [a, b] with triple
roots at a and b, such that

|∇u(t)|2 = α2 + w′′(t) . (4.7)

Proof. We begin by considering γ a strictly convex part of the boundary of Ω∗.
We assume that γ is parametrized by a strictly convex function ϕ defined on an
interval I. We fix a regular function h compactly supported on a sub-interval J and
we denote by Ωε the domain (not necessarily convex) whose boundary is (locally)
bounded by the graph of the function ϕε := ϕ + εh. Let us introduce ϕ∗∗

ε , the
convex regularization of ϕε (it is the largest convex function less than or equal to
ϕε) and Ω∗

ε the convex domain whose boundary is (locally) bounded by the graph
of the function ϕ∗∗

ε . The key point of the following proof is an estimate given in
Lemma 2 of [135], when the function ϕ is strictly convex :

‖ϕ∗∗
ε − ϕε‖∞ = o(ε) when ε → 0 . (4.8)

We now use the quantitative estimate between eigenvalues given in Proposition
2.3.22:

|λ2(Ω∗
ε) − λ2(Ωε)| ≤ C‖ϕ∗∗

ε − ϕε‖∞ = o(ε) (4.9)

(with C a positive constant). Moreover, according to Hadamard’s formula for
simple eigenvalues, see Theorem 2.5.1 and, in particular, (2.40):

λ2(Ωε) = λ2(Ω) − ε

∫
γ

|∇u(σ)|2h(σ)n2(σ) dσ + o(ε) (4.10)

(n2(σ) is the second component of the exterior unit normal vector). From (4.9),
(4.10) we get:

λ2(Ω∗
ε) = λ2(Ω) − ε

∫
γ

|∇u(σ)|2h(σ)n2(σ) dσ + o(ε) . (4.11)

In the same way,

||Ω∗
ε| − |Ωε|| ≤

∫
J

|ϕ∗∗
ε − ϕε| = o(ε)

while, by Hadamard’s formula (2.44) for areas,

|Ωε| = |Ω| + ε

∫
γ

h(σ)n2(σ) dσ + o(ε) .

Therefore, we also have

|Ω∗
ε| = |Ω| + ε

∫
γ

h(σ)n2(σ) dσ + o(ε) . (4.12)
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Finally (4.11), (4.12) give

λ2(Ω∗
ε)|Ω∗

ε | = λ2(Ω)|Ω| + ε

∫
γ

[λ2(Ω) − |Ω||∇u(σ)|2]h(σ)n2(σ) dσ + o(ε) .

In the previous relation, we can use either h or −h, therefore the minimality of
Ω∗ gives the desired result (4.5), (4.6).

Now, let us consider the case of a segment Σ. We recall that the general
formula, for the derivative of the function Ω 
→ λ2(Ω)|Ω| at “point” Ω∗, according
to a perturbation field V is (see Theorem 2.5.1 and (2.40), (2.44))

d(λ2(Ω)|Ω|), (Ω∗, V ) =
∫

∂Ω∗
[λ2(Ω) − |Ω||∇u(σ)|2]h(σ)n2(σ) dσ . (4.13)

In formula (4.13), the only perturbations V which are allowed are such that the
deformed domain (Id + τV )(Ω∗) is still convex (for small τ). It is the case if and
only if t 
→ V.n(t) is a concave function on [a, b]. Let us denote by v = V.n such a
concave function. Replacing in (4.13) and using (4.5), (4.6) yields on the segment
Σ: ∫ b

a

(
λ2 − |∇u(σ)|2A(Ω∗)

)
v dt ≥ 0 . (4.14)

Introducing w2(t) = |∇u(t)|2 − α2 it can also be rewritten:∫ b

a

w2(t)v(t) dt ≤ 0 . (4.15)

This relation (4.15) must be true for every (regular) concave function v. In par-
ticular, in the case v(t) = 1 and v(t) = t, both functions v and −v are concave,
therefore ∫ b

a

w2(t) dt = 0
∫ b

a

tw2(t) dt = 0 . (4.16)

Now, let us introduce the functions

w1(t) =
∫ t

a

w2(s) ds and w(t) =
∫ t

a

w1(s) ds =
∫ t

a

(t − s)w2(s) ds .

According to (4.16), we have w1(a) = w1(b) = w(a) = w(b) = 0. Integrating twice
by parts, it turns out that∫ b

a

w2(t)v(t) dt =
∫ b

a

w(t)v′′(t) dt;

this last integral must be non-positive (according to (4.15)) for every function v
concave, i.e. for every function v such that v′′ ≤ 0, this yields w ≥ 0. At last a and
b are triple roots of w because w′′(a) = w2(a) = 0 by continuity of the gradient
(|∇u|2 − α2 vanishes identically on the strictly convex parts of ∂Ω∗). �
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Remark 4.2.3. • Actually, using an analyticity argument, we can prove that
w is positive, but we will only use later that it is non-negative and cannot
vanish identically (at least when the nodal line of u touches the segment,
since on such a point |∇u| = 0).

• Since w ≥ 0 and w(a) = w′(a) = w′′(a) = 0, we must have w′′′(a) ≥ 0
and similarly w′′′(b) ≤ 0. Therefore, |∇u|2 ≥ α2 near the extremities of the
segment.

4.2.2 Geometric properties of the optimal domain

We begin by proving that the minimizer is C1: it cannot have a corner. We give
the proof for the second eigenvalue, but it is clear that this proof can be extended
to the problem of minimizing other eigenvalues with a convex constraint. Indeed,
it is a particular case of a more general result as it is shown in [43]. Actually, the
proof of the following theorem is just a generalization of the one given in Lemma
3.3.2. We refer to [103] for details.

Theorem 4.2.4. The minimizer Ω∗ is (at least) C1.

In the sequel, we need to assume that the minimizer Ω∗ is a little bit more
regular. Let us mention that we will prove below that it is at most C2.

(H) We assume the minimizer Ω∗ to be of class C1,1.

By classical regularity results, see Remark 1.2.11 or [94], this will imply that the
eigenfunction u is C1 up to the boundary.

Our next result concerns Troesch’s conjecture that we stated in the intro-
duction of this section. It was natural to think that a good candidate to be the
minimizer would be the convex hull of two identical disks (the so-called stadium).
Actually, we prove thanks to the same argument as in Theorem 3.4.1 that it is not
true:

Theorem 4.2.5 (Henrot-Oudet). The minimizer Ω∗ has no arc of a circle in its
boundary. In particular, the stadium, convex hull of two identical tangent disks,
does not realize the minimum of λ2 among plane convex domains of given area.

Proof. Adapt proof of (iii) in Theorem 3.4.1. �

Remark 4.2.6. The previous result holds in every dimension: the minimizer cannot
contain any piece of a sphere. The proof is the same using the functions xi

∂u
∂xj

−
xj

∂u
∂xi

since u is radially symmetric as soon as all these functions vanish.

Numerical experiments (see E. Oudet’s thesis and the following table) show
that the minimizer Ω∗ is very close to a stadium. In particular, we have the fol-
lowing array of numerical values for the second eigenvalue of convex sets of area 1:
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Domain exact value numerical value
Square 5π2 49.348
Disc j2

1,1π 46.124
Best rectangle 4π2 39.478
Best ellipse 39.317
Stadium 38.001
Best convex 37.980

We recall that the value for two disks (optimal domain without constraint) is
2j2

0,1π � 36.336.
Actually, the optimal domain is close to the stadium not only from a numer-

ical point of view, but also from a geometrical point of view:

Theorem 4.2.7. The minimizer Ω∗ has two segments in its boundary and these
segments are parallels.

Proof. At least one segment: otherwise the normal derivative of u would be zero
on the whole boundary, because it is constant (by optimality condition (4.5)) and
it has to be zero where the nodal line hits the boundary. But this would contradict
(4.6).
At least two segments: if there was only one segment, according to the previous
argument, the nodal line would have to hit ∂Ω∗ twice on the same segment. We
can now follow step by step the proof of Theorem 3.1 page 258 in Melas [150]. In
this theorem, he proves that the nodal line cannot intersect the boundary at only
one point. We can use this proof with minor changes.
At most two segments: let us assume that there exists a third segment in ∂Ω∗.
We consider here the segment Σ which is far from the nodal line of u. We choose
the coordinate axes so that the x-axis is on Σ (and Σ = [−A, A]) and the y-axis is
in the direction of the inward normal to ∂Ω∗. Without loss of generality, we can
assume that u > 0 in a neighborhood of Σ. We define the function ϕ(x) = ∂u

∂y (x)
on Σ. By classical regularity results u is C∞(Ω∗ ∪Σ), so ϕ is C∞ on Σ. According
to the optimality condition on a segment (4.7) and our construction (see Remark
4.2.3), the function ϕ satisfies:

• ϕ is positive on [−A, A] (by Hopf’s boundary point Lemma).

• ϕ′ (−A) ≥ 0 and ϕ′ (A) ≤ 0.

• ϕ is not constant (use an analyticity argument: if ϕ was constant, i.e. if u
satisfies ∂u

∂y = α on [−A, A] a straightforward computation (compute any
term in the series expansion of u) would show that u only depends on the
variable y, which is impossible).

• ϕ′ = ∂2u
∂y∂x vanishes (at least) three times on [−A, A] with change of sign.

Let us denote by x1, x2 and x3 the three first zeros of ϕ′. The function ϕ′ is
negative on (x1, x2). We define y1 as a point in (x1, x2) where ϕ′ is minimum.
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Now, for t > 0, we introduce the function

vt = tu +
∂u

∂x
.

In particular, if we denote by ψt the restriction at Σ of ∂vt

∂y , i.e.
ψt(x) := ∂vt

∂y (x) = tϕ(x) + ϕ′(x), then ψt satisfies for t > 0 small:

ψt (−A) > 0,

ψt (y1) = tϕ (y1) + ϕ′ (y1) < 0,

ψt (x2) = tϕ (x2) > 0.

Therefore, ψt vanishes at least two times on (−A, x2) for t small enough.
We introduce

t∗ = sup
T>0

{ψt vanishes at least two times on [−A, x2] for all t ∈ [0, T [} .

Obviously t∗ < +∞ since ψt = tϕ + ϕ′ is positive for t large enough on Σ. Now,
by construction, the function ψt∗ has a double zero at some point x0 ∈ Σ. We can
assume, without loss of generality, that x0 is the origin. Let us expand the function
vt∗ , which is analytic up to Σ, in series in a small neighborhood V of 0 contained
in the closed upper half-plane. The fact that vt∗ = 0 identically on Σ = {y = 0}
yields:

vt∗(x, y) = a1y + a2xy + a3y
2 + V (x, y)

with V (x, y) containing only terms of order larger than or equal to 3. Since 0 is a
double zero of ∂vt∗

∂y , we have a1 = a2 = 0. Now, ∆vt∗ = −λ2vt∗ in V and therefore

• a3 = 0,

• V (x, y) = 0 by induction.

Obviously this last point leads to a contradiction since we would have vt∗ = 0 in
V and therefore in Ω∗ by analyticity.
The two segments are parallels: In this section, we fix coordinates such that the
first segment Σ1 is on the horizontal axis and the second one Σ2 makes an angle
of β ≥ 0 with the horizontal. We introduce the numbers (0 <)y1 ≤ y2 < d which
are respectively the ordinates of the lower point of Σ2, the upper point of Σ2, the
upper point of ∂Ω∗. At last, for each y ∈ [0, d], we will denote by x1(y) ≤ x2(y)
the abscissas of the intersection of ∂Ω∗ with the horizontal line of ordinate y.

We recall the classical Rellich-type identity proved in [175]. For every eigen-
function u of −∆u = λu in a domain Ω with Dirichlet boundary condition and for
every C1 vector field h = (h1, h2, . . . , hN) in R

N , we have

1
2

∫
∂Ω

|∇u|2h.n dσ = −1
2

∫
Ω

(|∇u|2 − λu2) divh +
N∑

i=1

N∑
j=1

∫
Ω

∂u

∂xj

∂u

∂xi

∂hj

∂xi
. (4.17)
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We apply this identity for the second eigenfunction u of Ω∗ with a vector field
h = (h1(y), 0) in R

2. It turns out that (divh = 0):

1
2

∫
∂Ω∗

|∇u|2h1n1 dσ =
∫

Ω∗
h′

1(y)
∂u

∂x

∂u

∂y
dxdy .

Now, we compute the boundary integral thanks to the optimality conditions (4.5),
(4.7) (h1n1 = 0 on Σ1 while h1n1 = − sinβ h1(t sin β) on Σ2):

1
2

∫
∂Ω∗

|∇u|2h1n1 dσ =
1
2

∫
∂Ω∗

α2h1n1 dσ − sin β

2

∫
Σ2

w′′
Σ2

(t)h1(t sin β) dt .

Now, ∫
∂Ω∗

h1n1 dσ =
∫

Ω∗

∂h1

∂x
dX = 0

while, integrating twice by parts and using the fact that wΣ2 and w′
Σ2

vanish at
the extremities of Σ2, we get∫

Σ2

w′′
Σ2

(t)h1(t sin β) dt = sin2 β

∫
Σ2

wΣ2 (t)h
′′
1 (t sin β) dt .

Therefore, we finally have

− sin3 β

2

∫
Σ2

wΣ2 (t)h
′′
1 (t sin β) dt =

∫
Ω

h′
1(y)

∂u

∂x

∂u

∂y
dxdy . (4.18)

Now, we can choose a function h1 defined on [0, d] such that

• h′′
1 > 0 on [y1, y2],

• ∫
Ω

h′
1(y)∂u

∂x
∂u
∂y dxdy =

∫ d

0
h′

1(y)
(∫ x2(y)

x1(y)
∂u
∂x

∂u
∂y dx

)
dy = 0 .

For this function, we have sin3 β
∫
Σ2

wΣ2(t)h′′
1 (t sin β) dt = 0 with h′′

1 > 0 and wΣ2

non-negative (and not identically 0) by (4.7). Therefore, sinβ = 0 which gives the
desired result. �

Remark 4.2.8. In the proof of Theorem 4.2.7, we only use the optimality condi-
tions. In other words, Theorem 4.2.7 is valid for any critical point of the domain
functional λ2(Ω)|Ω|.

Of course, we believe that the optimal domain Ω∗ has more symmetries:

Open problem 7. Prove that a plane convex domain Ω∗ which minimizes λ2

(among convex domains of given area) is C1,1 and has two perpendicular axes
of symmetry.
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4.2.3 Another regularity result

We recall that we proved in the previous subsection that the minimizer Ω∗ was
at least C1. We prove here the counterpart of this regularity result: the minimizer
Ω∗ is at most C2!

Theorem 4.2.9. The minimizer Ω∗ cannot be C2,ε, for any ε > 0.

Here by C2,ε, we mean classical Hölder regularity: the second derivative of
the local maps would be Hölderian of ratio ε.

Proof. Let us assume that Ω∗ is C2,ε, for some ε > 0. Then, by classical Schauder
regularity results for elliptic p.d.e., see Theorem 1.2.12, this will imply that the
eigenfunction u is C2 up to the boundary. We choose the coordinates axes so that
the x-axis is parallel to the two segments. Consequently the function ∂u

∂x vanishes
on the two segments. We want to look more precisely at the nodal lines of ∂u

∂x .
According to Hopf’s Lemma, each boundary point X , located on the segments
where ∂2u

∂x∂y vanishes, is a starting point of such a nodal line (e.g. if ∂u
∂x > 0 in a

neighborhood of X , since −∆∂u
∂x = λ2

∂u
∂x > 0, we have ∂

∂n

(
∂u
∂x

)
< 0). Now, if u is

C2, ∂2u
∂x∂y has to vanish at the extremities of the segments by continuity: if A is

such an extremity

∂2u

∂x∂y
(A) =

∂2u

∂τ∂n
(A) = lim

B→A

∂2u

∂τ∂n
(B) = 0

where B is taken on a strictly convex part of ∂Ω∗. Moreover, according to the
optimality conditions (4.7), ∂2u

∂x∂y = ∂
∂x

(
∂u
∂y

)
has to vanish at least twice inside

the segments. Consequently, there are four nodal lines of ∂u
∂x starting on each

segment. Closing these nodal lines, we define at least three nodal domains of ∂u
∂x

strictly contained in Ω∗. Now ∂u
∂x being an eigenfunction associated to λ2, the

nodal domains in Theorem 1.3.2 would lead to the fact that λ2 is at least the
third eigenvalue of a strict subdomain of Ω∗, which is a contradiction with the
monotonicity of eigenvalues. �



Chapter 5

The other Dirichlet eigenvalues

5.1 Introduction

The purpose of this chapter is to investigate the existence of a domain which
minimizes λk over sets of fixed volume in R

N for k ≥ 3. We recall that this
problem received a partial solution in Corollary 2.4.6, where it is proved that a
minimizer exists in the class of quasi-open sets (see the exact definition in section
2.4) of fixed measure contained in a bounded “design region”. More precisely, the
Buttazzo-Dal Maso Theorem states that, for any bounded open set D ⊂ R

N , the
problem

min
A⊂D,|A|=c

λk(A) (5.1)

has a solution. Of course, the minimizer depends a priori on the choice of the
design region D.

In order to prove the existence of a global minimizer, the main difficulty is the
passage from the bounded set D to R

N . The main reason for which the previous
result fails if D = R

N is the lack of compactness of the injection H1(RN ) ↪→
L2(RN ).

In section 5.3, we prove the existence of a solution for problem (5.1) with
D = R

N , and k = 3. We follow the scheme of the direct method of the calculus
of variations: we consider a minimizing sequence of domains, and construct the
optimum as limit in some sense precise below. The main tool we use when studying
the behavior of a minimizing sequence is a concentration-compactness result for
the γ-convergence proved in [42], see Theorem 5.3.1. Unfortunately, the minimizer
is not known. The conjecture is presented in Open problem 8. For k ≥ 4, in section
5.4, we give a result asserting the existence of a minimizer, if for any j = 3, k − 1
a bounded minimizer exists. We also give some conjectures.

Before these existence questions, we present a result (essentially due to Wolff
and Keller), about the connectedness of the (possible) minimizers.
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5.2 Connectedness of minimizers

In this section, we assume that problem (5.1) has a solution for any eigenvalue
and we denote by Ω∗

n a (quasi-) open set which minimizes λn (among open sets of
volume 1) and λ∗

n = λn(Ω∗
n) the minimal value of λn. We will also denote by tΩ

the image of Ω by a homothety of ratio t. The following result is, in some sense, a
generalization of Krahn-Szegö’s Theorem 4.1.1. Roughly speaking, it asserts that
if a minimizer of λn is not connected, each connected component is a minimizer
for a lower eigenvalue. These results come from [213].

Theorem 5.2.1 (Wolf-Keller). Let us assume that Ω∗
n is the union of (at least) two

disjoint sets, each of them with positive measure. Then

(λ∗
n)N/2 = (λ∗

i )
N/2 +

(
λ∗

n−i

)N/2 = min
1≤j≤(n−1)/2

(
(
λ∗

j

)N/2 +
(
λ∗

n−j

)N/2) (5.2)

where, in the previous equality, i is a value of j ≤ (n − 1)/2 which minimizes the
sum

(
λ∗

j

)N/2 +
(
λ∗

n−j

)N/2. Moreover,

Ω∗
n =

[(
λ∗

i

λ∗
n

)1/2

Ω∗
i

]⋃[(
λ∗

n−i

λ∗
n

)1/2

Ω∗
n−i

]
(disjoint union). (5.3)

Proof. Let us write Ω∗
n = Ω1 ∪ Ω2 (disjoint union) with |Ω1| > 0, |Ω2| > 0 and

|Ω1| + |Ω2| = 1. Let u∗
n be an eigenfunction of the Laplacian-Dirichlet on Ω∗

n,
corresponding to the eigenvalue λ∗

n. Then u∗
n is not zero on one of the compo-

nents of Ω∗
n, for example Ω1. In particular λ∗

n is an eigenvalue (see (1.15)) of Ω1:
λ∗

n = λi(Ω1) for some integer i ≤ n and we denote precisely by i the largest
one. If we had i = n, we could decrease λ∗

n by enlarging Ω1 contradicting the
minimality of λ∗

n, so i ≤ n − 1. Since λ∗
n is the n-th eigenvalue of Ω∗

n, we can
count at least n − i eigenvalues of Ω2 which are smaller than λ∗

n. It means that
λn−i(Ω2) ≤ λ∗

n. Moreover, if we would have λn−i(Ω2) < λ∗
n, we could decrease

λ∗
n = max{λi(Ω1), λn−i(Ω2)} by enlarging Ω1 and shrinking Ω2 (keeping the total

volume equal to 1) which would again contradict the minimality of λ∗
n. So, finally

λn−i(Ω2) = λi(Ω1) = λ∗
n.

Now, we still get a minimum for λ∗
n by replacing Ω1 by |Ω1|1/NΩ∗

i (which has
same volume and better λi) and by replacing Ω2 by |Ω2|1/NΩ∗

n−i. Consequently,
we have

λi(Ω1) = |Ω1|−2/Nλ∗
i = λ∗

n = |Ω2|−2/Nλ∗
n−i = λn−i(Ω2).

Finally, the constraint |Ω1| + |Ω2| = 1 yields (λ∗
n)N/2 = (λ∗

i )
N/2 +

(
λ∗

n−i

)N/2.
Let us now consider the set Ω̃j defined for j = 1, . . . , n − 1 by

Ω̃j =

⎡⎢⎣
⎛⎝ (

λ∗
j

)N/2(
λ∗

j

)N/2+
(
λ∗

n−j

)N/2

⎞⎠1/N

Ω∗
j

⎤⎥⎦⋃
⎡⎢⎣
⎛⎝ (

λ∗
n−j

)N/2(
λ∗

j

)N/2+
(
λ∗

n−j

)N/2

⎞⎠1/N

Ω∗
n−j

⎤⎥⎦ . (5.4)
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Each Ω̃j has a volume equal to 1, the j-th eigenvalue of its first component and
the (n − j)-th eigenvalue of its second component are equal to((

λ∗
j

)N/2 +
(
λ∗

n−j

)N/2
)2/N

.

It follows that λn(Ω̃j) is also given by this common value. Since λ∗
n ≤ λn(Ω̃j) and

λ∗
n = λn(Ω̃i) for some index i, λ∗

n is the minimum value of λn(Ω̃j). Moreover, Ω̃i

is optimal for any index i which realizes the minimum in (5.2). This finishes the
proof. �

Up to now, the value of λ∗
n is not known unless for n = 1 or 2. The previous

theorem has an important consequence for the optimal domain Ω∗
3 in dimension 2

or 3.

Corollary 5.2.2 (Wolff-Keller). Let Ω∗
3 be an open set minimizing λ3 (i.e. solution

of problem (5.1) with c = 1) in dimension 2 or 3. Then, Ω∗
3 is connected.

Proof. Assume that Ω∗
3 is not connected. Then, according to Theorem 5.2.1, we

should have λ∗
3 = λ∗

1 + λ∗
2 (i = 1 is the only possible value here). Let us make

explicit these values first in dimension 2. From Theorem 3.2.1 λ∗
1 = πj2

0,1 � 18.168
(we recall that j0,1 is the first zero of the Bessel function J0 and the radius of
the disk of area 1 is R0 = 1√

π
, see (1.27)) while, according to Theorem 4.1.1,

λ∗
2 = 2λ∗

1 � 36.336. Therefore λ∗
1+λ∗

2 � 54.504. But since λ∗
3 is, by definition, lower

than or equal to the third eigenvalue of the unit disk λ3(D1) = πj2
1,1 � 46.125, we

see that it cannot be equal to λ∗
1 + λ∗

2.
In dimension 3, the situation is exactly the same. We use the values of the

eigenvalues for a ball given in (1.29). Since the ball must have volume 1, its radius
is here R0 =

(
3
4π

)1/3, then

λ∗
1 =

(4π)2/3j2
1/2,1

32/3
� 25.646 λ∗

2 = 22/3λ∗
1 � 40.711

and

(λ3(BR0))
3/2 =

(
j2
N/2,1

R2
0

)3/2

� 380.029 < (λ∗
1)

3/2 + (λ∗
2)

3/2 � 389.636

with the same conclusion. �

Remark 5.2.3. In dimension 4 and higher, this computation does not give anything.
For example, we get in dimension 4:

R0 =
21/4

√
π

λ∗
1 =

j2
1,1

R2
0

� 32.615 λ∗
2 =

√
2λ∗

1 � 46.125
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while

(λ3(BR0))
2 =

(
j2
2,1

R2
0

)2

� 3432.67 > (λ∗
1)

2 + (λ∗
2)

2 � 3191.25

which cannot lead to a conclusion. Actually, the conjecture is that in dimension
N ≥ 4, Ω∗

3 is not connected and, more precisely, that it is given by the union of
three balls, see Open problem 8.

Remark 5.2.4. In dimension 2, numerical computations show that the optimal
domain Ω∗

n is sometimes connected (this is the case for n = 1, 3, 5, 6, sometimes
not, n = 2, 4, 7, see [164] and Figure 5.1.

5.3 Existence of a minimizer for λ3

5.3.1 A concentration-compactness result

As we explain in the introduction of this chapter, the difficulty of proving existence
of a minimizer is to take care of minimizing sequences which could go to infinity
(more precisely whose diameter could go to infinity since the eigenvalues are in-
variant under translations). A good tool to take care of this kind of situation is a
concentration-compactness argument as introduced by P.L. Lions in [141]. Before
stating the theorem introducing the concentration-compactness in our situation,
we need to generalize the notion of resolvant operators and eigenvalues introduced
in sections 1.1.2 and 1.2.2.

A relaxed domain is a positive Borel measure µ which vanishes on sets of zero
capacity, see [73, 30] and section 2.4; the family of all these measures is denoted
M0(RN ). We recall that a property p(x) is said to hold quasi-everywhere on E
(shortly q.e. on E) if the set of all points x ∈ E for which p(x) does not hold has
zero capacity. In this chapter, we are working only with measures µ, for which the
largest (in the sense of inclusion q.e.) countable union of sets of finite µ-measure
has its Lebesgue measure less than or equal to c. This set is called the regular set
of the measure µ and is denoted by Ωµ.

The resolvent operator associated to the measure µ is Aµ : L2(RN ) →
L2(RN ) and Aµ(f) = u where u is the weak variational solution of⎧⎪⎨⎪⎩

u ∈ H1(RN ) ∩ L2
µ(RN ),∫

RN

∇u.∇φdx +
∫

RN

uφdµ =
∫

RN

fφdx ∀φ ∈ H1(RN ) ∩ L2
µ(RN ).

(5.5)
Here, by H1(RN ) ∩ L2

µ(RN ) we denote the set

{u ∈ H1(RN ) :
∫

RN

u2dµ < +∞}.
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If u ∈ H1(RN ) ∩ L2
µ(RN ) we have u = 0 q.e. on R

N \ Ωµ. Indeed, supposing the
contrary, there exists a set of positive capacity U ⊆ R

N \ Ωµ such that u �= 0 on
U , hence there exists ε > 0 such that

cap(U ∩ {|u| > ε}) �= 0.

Since µ has to be finite on the set {|u| > ε} we see that

cap((Ωµ ∪ {|u| > ε}) \ Ωµ) > 0,

which contradicts the maximality of the regular set Ωµ.
If we denote for every k ∈ N, λk(µ) = 1

λk(Aµ) , we deduce from the previous
embedding (H1(RN )∩L2

µ(RN ) ⊂ H1
0 (Ωµ)) and the classical min-max formulae of

section 1.3.1, the following inequality between the eigenvalues:

λk(µ) ≥ λk(Ωµ).

We now recall the following theorem from [42] on the concentration-compactness
of a sequence of open sets, with respect to the resolvent operators (we follow here
the terminology introduced by P.L. Lions in [141]).

Theorem 5.3.1 (Bucur). Let {Ωn}n∈N be a sequence of open (or quasi-open) sets
such that |Ωn| ≤ c. There exists a subsequence still denoted with the same index
such that one of the following situations occurs:
Compactness: There exists a sequence of vectors {yn}n∈N ⊂ R

N and a positive
Borel measure µ, vanishing on sets of zero capacity, such that Ayn+Ωn converges
in the uniform operator topology of L2(RN ) to Aµ. Moreover |Ωµ| ≤ c.

Dichotomy: There exists a sequence of subsets Ω̃n ⊂ Ωn, such that

‖AΩn − AΩ̃n
‖2 → 0, and Ω̃n = Ω1

n ∪ Ω2
n

with d(Ω1
n, Ω2

n) → ∞ and lim inf
n→+∞ |Ωi

n| > 0 for i = 1, 2.

5.3.2 Existence of a minimizer

In this section, we want to prove that the problem

min
Ω∈Ac(RN )

λ3(Ω) (5.6)

has a solution where, for every open set D ⊂ R
N , and for every c > 0, we denote

Ac(D) = {Ω ⊂ D : Ω quasi-open , |Ω| ≤ c}.
Let us begin with a lemma which generalizes, in some sense, Wolff-Keller’s Theo-
rem 5.2.1.
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Lemma 5.3.2. For N ≥ 2, one of the following situations occurs.

1. If for every ε > 0, the following strict inequality holds:

inf{λ3(Ω1 ∪ Ω2) : |Ω1 ∪ Ω2| = c, |Ω1| > ε, |Ω2| > ε, cap(Ω1 ∩ Ω2) = 0}
> inf{λ3(Ω) : |Ω| = c},

(5.7)

then if a solution Ω∗ of (5.6) exists, it is connected.

2. If there exists ε > 0, such that

inf{λ3(Ω1 ∪ Ω2) : |Ω1 ∪ Ω2| = c, |Ω1| > ε, |Ω2| > ε, cap(Ω1 ∩ Ω2) = 0}
= inf{λ3(Ω) : |Ω| = c},

(5.8)
then the optimum exists and is the union of three disjoint balls of volume c

3 .

Proof. Using the following remark of [45]

if cap(Ω1 ∩ Ω2) = 0, then H1
0 (Ω1 ∪ Ω2) = H1

0 (Ω1) ∪ H1
0 (Ω2),

the arguments of Wolf and Keller remain valid in the quasi-open frame.
In order to prove the first assertion, suppose that for every ε > 0 inequality

(5.7) holds and that problem (5.6) has a solution Ω∗. If Ω∗ is not connected, we can
write Ω∗ = Ω1∪Ω2 with cap(Ω1∩Ω∗) > 0, cap(Ω2∩Ω∗) > 0, and cap(Ω1∩Ω2) = 0.
Then |Ω1| > 0 and |Ω2| > 0, hence choosing ε = 1

2 min{|Ω1|, |Ω2|} the strict
inequality (5.7) fails.

Suppose that equality (5.8) holds for some ε > 0. Then we can consider
a minimizing sequence for problem (5.6) of the form Ωn = Ω1

n ∪ Ω2
n with |Ω1

n| ≥
ε, |Ω2

n| ≥ ε, |Ω1
n|+ |Ω2

n| = c, cap(Ω1
n∩Ω2

n) = 0. Then one of the following situations
occurs (up to a re-enumeration and for a subsequence still denoted with the index
n).

• λ3(Ω1
n ∪ Ω2

n) = λ3(Ω1
n) if λ3(Ω1

n) ≤ λ1(Ω2
n),

• λ3(Ω1
n ∪ Ω2

n) = λ2(Ω1
n) if λ1(Ω2

n) ≤ λ2(Ω1
n) ≤ λ2(Ω2

n),

• λ3(Ω1
n ∪ Ω2

n) = λ1(Ω1
n) if λ2(Ω2

n) ≤ λ1(Ω1
n) ≤ λ3(Ω2

n).

In fact, the first situation can not occur. Indeed, since |Ω1
n| ≤ c − ε, we would

obtain that infΩ∈Ac(RN ) λ3(Ω) = infΩ∈Ac−ε(RN ) λ3(Ω). This is false, since

inf
Ω∈Ac(RN )

λ3(Ω) = (
c − ε

c
)2/N inf

Ω∈Ac−ε(RN )
λ3(Ω) > 0.

If the second situation occurs, then replacing Ω1
n with two disjoint balls of measure

|Ω1|
2 and Ω2 with a ball of measure |Ω2|, the third eigenvalue diminishes. If the

third situation occurs, then replacing Ω1 with a ball of measure |Ω1| and Ω2 with
two disjoint balls of measure |Ω2|/2, the third eigenvalue diminishes.
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In both these situations, the optimum is clearly attained for a set which is
the union of three disjoint balls, one of measure greater than or equal to ε and
two of measures greater than or equal to ε/2. Classical arguments (as in the proof
of Theorem 5.2.1) lead to the fact that the minimum for problem (5.6) is attained
for three equal balls. �

Consequently, we give now the main result of this section.

Theorem 5.3.3 (Bucur-Henrot). Problem (5.6) has at least one solution.

Proof. Let us consider {Ωn}n∈N a minimizing sequence for problem (5.6). Applying
Theorem 5.3.1, two situations may occur for the sequence RΩn .

If compactness occurs, there exists a measure µ∈M0(RN ) such that AΩnk
+yk

converges uniformly in L2(RN ) to Aµ. Hence λ3(Ωnk
) → λ3(µ). Denoting Ωµ the

regular set of the measure µ we have by monotonicity that λ3(µ) ≥ λ3(Ωµ). Since
Ωµ ∈ Ac(RN ) we get that Ωµ is a solution for problem (5.6).

If dichotomy occurs, there exists a subsequence (still denoted with the same
index) of {Ωn}n∈N and a sequence of subsets Ω̃n ⊂ Ωn, such that

‖AΩn − AΩ̃n
‖2 → 0, and Ω̃n = Ω1

n ∪ Ω2
n

with d(Ω1
n, Ω2

n) → ∞ and lim inf
n→∞ |Ωi

n| > ε > 0 for i = 1, 2, and for some ε > 0.

From (2.20), the following inequality holds:

| 1
λ3(Ωn)

− 1
λ3(Ω̃n)

∣∣∣ ≤ ‖AΩn − AΩ̃n
‖2 .

Since for the minimizing sequence {Ωn}n∈N, we have λ3(Ωn) → λ∗
3 = inf λ3 > 0 we

get that {Ω̃n}n∈N is also a minimizing sequence. Following the second assertion of
Lemma 5.3.2, we get that the minimum is attained for three equal balls of measure
c/3.

We previously used inequality λ3(Ωn) → λ∗
3 > 0 which comes from λ3(Ωn) ≥

λ1(Ωn) and the fact that the first eigenvalue is minimized for the ball, hence is
strictly positive. �

From the previous proof, we see that the optimal set Ω∗
3 is

1. either connected,

2. or the union of three disjoint balls of volume c/3.

We already know that, in dimension 2 and 3, it is connected, see Corollary 5.2.2.
Moreover, in dimension 2, Wolff and Keller have proved in [213] that the disk
is a local minimizer for λ3. They use a perturbation argument. More precisely,
they show that the third eigenvalue of a domain Ωε given in polar coordinates by
r = R(θ, ε) where R has an expansion like

R(θ, ε) = 1 + ε
∞∑

n=−∞
aneinθ + ε2

∞∑
n=−∞

bneinθ + O(ε3) (5.9)
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is given by
λ3(Ωε) = πj2

1,1(1 + 2|ε||a2|) + O(ε2).

In the case where a2 �= 0, we immediately get the result. When a2 = 0 it is
necessary to look at the following term in the expansion, but the conclusion is the
same.

So, it is natural to state the following open problem:

Open problem 8. Prove that the optimal domain for λ3 is a ball in dimension 2
and 3 and the union of three identical balls in dimension N ≥ 4.

5.4 Case of higher eigenvalues

In order to investigate the existence of a solution for problem

min
Ω∈Ac(RN )

λk(Ω) (5.10)

for k ≥ 4, one can invoke an induction argument. As in Theorem 5.3.3, the idea is to
consider a minimizing sequence to which we apply the concentration-compactness
Theorem 5.3.1. If compactness occurs, the existence of a minimizer follows. If di-
chotomy occurs, the existence of a minimizer is reduced to the study of minimizers
for eigenvalues of strictly lower order.

Thus, we formulate the following lemma which gives an extension of Wolff-
Keller’s Theorem 5.2.1 to minimizing sequences.

Lemma 5.4.1. Let us fix k ≥ 4. If Ωn = Ω1
n ∪ Ω2

n is a minimizing sequence for
problem (5.10) such that lim infn→∞ |Ω1

n| > 0, lim infn→∞ |Ω2
n| > 0, cap(Ω1

n ∩
Ω2

n) = 0 and Ωn bounded, then there exists 1 ≤ j ≤ k−1 and there exist c1, c2 > 0
with c1 + c2 = c, such that for a subsequence (still denoted with the same index)
we have

lim
n→∞λk−j(Ω1

n) = inf
Ω∈Ac1 (RN )

λk−j(Ω), (5.11)

lim
n→∞λj(Ω2

n) = inf
Ω∈Ac2 (RN )

λj(Ω). (5.12)

Proof. The proof follows the same ideas as Lemma 5.3.2. There exists an index
1 ≤ j ≤ k − 1 such that for a subsequence still denoted with the same index we
have

λk(Ω1
n ∪ Ω2

n) = λk−j(Ω1
n) if λj(Ω2

n) ≤ λk−j(Ω1
n) ≤ λj+1(Ω2

n).

There exists c1, c2 > 0, c1 + c2 = c such that for a subsequence still denoted
with the same index we have |Ω1

n| → c1 and |Ω2
n| → c2. Then, if relation (5.11) is

not true we can replace {Ω1
n}n∈N by a minimizing sequence for λk−j in Ac1(RN )

consisting of bounded sets. Suppose that this sequence is denoted by {Ω1∗
n }n∈N.



5.4. Case of higher eigenvalues 81

Then there exists t > 0 such that choosing the new sequence {tΩ1∗
n ∪ 1

t Ω
2
n}, we

get that

lim inf
n→∞ λk(tΩ1∗

n ∪ 1
t
Ω2

n}) < lim
n→∞λk(Ω1

n ∪ Ω2
n),

in contradiction with the choice of {Ω1
n ∪Ω2

n}n∈N. Here tΩ denotes the expansion
of ratio t of the set Ω with respect to the origin. Since Ω1∗

n and Ω2
n are bounded,

one can translate Ω2
n such that Ω1∗

n ∩ Ω2
n = ∅.

Relation (5.12) is obtained analogously.
We moreover remark as in Theorem 5.2.1, that c1 and c2 are such that

inf
Ω∈Ac1 (RN )

λk−j(Ω) = inf
Ω∈Ac2 (RN )

λj(Ω). �

Roughly speaking, Lemma 5.4.1 asserts that a minimizing sequence for λk,
is either quasi-connected, or if it has more than one connected component, each
one is minimizing an eigenvalue of strictly inferior rank over sets of prescribed
measure.

Theorem 5.4.2. For k ≥ 3, let us suppose that a bounded minimizer exists for
λ3, ..., λk−1, λk in Ac(RN ). Then, at least one minimizer (bounded or unbounded)
exists for λk+1 in Ac(RN ).

Proof. Let us suppose that a minimizer exists for λ3, ..., λk−1, λk in Ac(RN ). Let us
consider a minimizing sequence {Ωn}n∈N for λk+1 in Ac(RN ). Without restricting
the generality, for every n ∈ N the set Ωn can be chosen bounded. Indeed, we
can replace Ωn by its intersection with a ball large enough depending on n, such
that |λk+1(Ωn) − λk+1(Ωn ∩ Brn)| ≤ 1

n . Following Theorem 5.3.1, there are two
possibilities.

If compactness occurs, then (for a subsequence still denoted with the same
index) we have that Ayn+Ωn converges in the uniform operator topology of L2(RN )
to Aµ. Then, as in Theorem 5.3.3, Ωµ is a minimizer for λk+1 in Ac(RN ).

If dichotomy occurs, then the sequence given by Theorem 5.3.1, Ω̃n ⊆ Ωn,
such that Ω̃n = Ω1

n ∪ Ω2
n, with d(Ω1

n, Ω2
n) → ∞ and lim inf

n→∞ |Ωi
n| > 0 for i = 1, 2 is

also minimizing. Using Lemma 5.4.1, there exists 1 ≤ j ≤ k
2 and cj

1, c
j
2 > 0, cj

1 +
cj
2 = c such that the sequence {Ω1

n}n is minimizing for λj in the class Acj
1
(RN ) and

{Ω2
n}n is minimizing for λn−j in the class Acj

2
(RN ). Using the hypothesis on the

existence and boundedness of the optimum for λj and λk+1−j in the corresponding

classes, denoted respectively Ωcj
1

j and Ωcj
2

k+1−j , the optimum for λk+1 is τΩcj
1

j ∪
Ωcj

2
k+1−j . Since these sets are bounded, we can translate them such that Ωcj

1
j ∩

Ωcj
2

k+1−j = ∅, where τΩcj
1

j denotes a translation of Ωcj
1

j such that τΩcj
1

j ∩ Ωcj
2

k+1−j =
∅. �
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Remark 5.4.3. Following the previous theorem, if there exists a connected (or
quasi-connected) set Ω in Ac(RN ) and ε > 0 such that

λk(Ω) < inf{λk(Ω1 ∪ Ω2), cap(Ω1 ∩ Ω2) = 0, |Ω1| + |Ω2| = c, |Ω1| > ε, |Ω2| > ε},
(5.13)

then problem (5.10) has at least one solution.
Let us take as example λ4. Either the minimizer exists and is quasi-connected

(if inequality (5.13) holds), or it is the union of a minimizer for λ3 with a ball, or
it is the union of four balls. If it is the union of a minimizer for λ3 say Ω and a
ball B, the optimum for λ4 is Ω ∪ B, provided that cap(Ω ∩ B) = 0. If Ω is dense
in R

N it wouldn’t be possible to place the ball B such that cap(Ω∩B) = 0. Thus,
a sufficient condition is to suppose that Ω is bounded. Intuitively the minimizer
for λ3 should be bounded, but the proof of this assertion is not known.

For the fourth eigenvalue, the conjecture is the following:

Open problem 9. Prove that the optimal domain for λ4 is the union of two balls

whose radii are in the ratio
√

j0,1/j1,1 in dimension 2, where j0,1 and j1,1 are
respectively the two first zeros of the Bessel functions J0 et J1.

Looking at the previous results and conjectures, P. Szegö asked the following
question:
Is it true that the minimizer of any eigenvalue of the Laplace-Dirichlet operator is
a ball or a union of balls?
The answer to this question is NO. For example, Wolff and Keller in [213] remarked
that the thirteenth (!) eigenvalue of a square is lower than the thirteenth eigenvalue
of any union of disks of the same area. Actually, it is not necessary to go to the
13th eigenvalue. Numerical experiments, cf [164] and Figure 5.1, show that for the
n-th eigenvalue with n larger than or equal to 5 the minimizer is no longer a ball or
a union of balls. More precisely, Figure 5.1 obtained by E. Oudet, see [164] shows
what are the candidates to be the minimizers for λk, 3 ≤ k ≤ 10. Let us remark
that, in all cases, the eigenvalue at the optimum is multiple (at least numerically)
confirming Open problem 1.

Let us finish this chapter with some other open problems:

Open problem 10. Prove that there exists a minimizer for λk(Ω) among open sets
Ω of given volume (see Theorem 5.4.2).

Open problem 11. Assuming existence of such a minimizer, study the regularity
and the geometric properties (e.g. symmetries) of such a minimizer.

A generalization of problem 8:

Open problem 12. Prove that the N -ball minimizes λN+1 among sets of given
volume in R

N .
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No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62

Figure 5.1: A table showing, for each eigenvalue λk, 3 ≤ k ≤ 10, the optimal union
of disks (left) and the optimal shape (right) this one is obtained numerically.



Chapter 6

Functions of Dirichlet
eigenvalues

6.1 Introduction

In 1955, L. Payne, G. Pólya and H. Weinberger in [168] considered the problem
of bounding ratios of eigenvalues. In particular, they proved that the ratio λ2/λ1

is less than or equal to 3 (in dimension 2). They were led to conjecture that the
optimal domain for this ratio is a disk. After many attempts, and improvements
of the bound 3, this conjecture was proved 35 years later by M. Ashbaugh and
R. Benguria, see [9] for the two-dimensional case and [10] for the N -dimensional
case. This proof is explained in section 6.2.1. After this success, M. Ashbaugh and
R. Benguria applied this isoperimetric inequality to some other ratios which are
considered in section 6.2.2. Nevertheless, many open problems remain for similar
ratios. Some of them are presented in section 6.2.3, in particular those stated by
Payne, Pólya and Weinberger in [168].

In section 6.3, we investigate some other kinds of functions of eigenvalues,
namely sums or sums of inverses. A very few things are known in that context.

At last, section 6.4 is completely devoted to functions of the two first Dirichlet
eigenvalues λ1 and λ2. Thanks to a beautiful description of the range, in the plane
(λ1, λ2), of the possible values for the two first eigenvalues of a domain of given
area, D. Bucur, G. Buttazzo and I. Figueiredo were able to prove a very general
existence result, see Theorem 6.4.4 in section 6.4.2
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6.2 Ratio of eigenvalues

6.2.1 The Ashbaugh-Benguria Theorem

Theorem 6.2.1 (Ashbaugh-Benguria). The ball maximizes the ratio
λ2

λ1
.

Proof. We give the main ingredients of the proof. We follow, in particular, the
presentation of the authors in [9] and [14]. Let Ω be any open set in R

N ; we
denote by λ1, λ2 its two first eigenvalues for the Laplacian with Dirichlet boundary
conditions and by u1, u2 the corresponding normalized eigenfunctions.

First step: the min principle. We start with the min formula for λ2 (1.34) which
is written here

λ2 = min
v ∈ H1

0 (Ω),∫
Ω vu1 dx = 0

∫
Ω |∇v(x)|2 dx∫

Ω v(x)2 dx
. (6.1)

We apply (6.1) with v = Pu1 where P is any regular function such that the
orthogonality condition ∫

Ω

Pu2
1 dx = 0 (6.2)

is satisfied. This gives

λ2 ≤
∫
Ω |∇Pu1|2 dx∫

Ω
P 2u2

1 dx
=

∫
Ω u2

1|∇P |2 dx +
∫
Ω P 2|∇u1|2 dx + 2

∫
Ω u1P∇u1.∇P dx∫

Ω
P 2u2

1 dx
.

Now, multiplying the eigenvalue equation by P 2u1 and integrating on Ω yields

λ1

∫
Ω

u1P
2u1 dx = −

∫
Ω

∆u1P
2u1 dx =

∫
Ω

∇u1.∇(P 2u1) dx

and so
λ1

∫
Ω

P 2u2
1 dx = 2

∫
Ω

u1P∇u1.∇P dx +
∫

Ω

P 2|∇u1|2 dx . (6.3)

Finally, (6.1) and (6.3) give

λ2 − λ1 ≤
∫
Ω u2

1|∇P |2 dx∫
Ω

P 2u2
1 dx

(6.4)

for any C1 function P satisfying (6.2).
To get the isoperimetric result out of inequality (6.4) we need to make very

special choices of the function P , in particular choices for which (6.4) is an equality
if Ω is a ball. We are going to choose functions Pi defined by

Pi(x) = g(r)
xi

r
where r = (x2

1 + · · · + x2
N )1/2 (6.5)
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with a non-negative function g(r) which will be chosen later. Of course, the main
difficulty is to prove that we can fix the origin in such a way that (6.2) is satisfied
for any i. This is due to H. Weinberger in [207] and we give it as an independent
Lemma since we will also use it in the next chapter.
Second step: a center of mass result

Lemma 6.2.2 (Weinberger). Let Ω ⊂ R
N , u1 a continuous function defined on Ω

and g a non-negative continuous function be given. Then, we can fix the origin in
some point such that

∫
Ω g(r)xi

r u2
1 dx = 0 for i = 1, . . . , N .

Proof. Let us consider a (large) ball D, centered at O and which strictly contains
Ω. We introduce the function F : D → R

N defined by its i-th component fi given
by

fi(x1, x2, . . . , xN ) =
∫

Ω

g(|Y − X |) yi − xi

|Y − X | u2
1(Y ) dY .

F is a continuous function (since the integrand is continuous as a function of X
for almost every Y and is bounded on Ω which is itself bounded). Moreover, let
us take X on the boundary of D. The inward normal at X is given by n = − X

|X|
and we have

F (X).n = −
N∑

i=1

fi(X)
xi

|X | =
∫

Ω

g(|Y − X |) |X |2 − X.Y

|X ||Y − X | u2
1(Y ) dY .

This means that F points inward on the boundary of D. It follows, by the Brouwer
fixed point theorem, that F vanishes at least once within D which gives the desired
result. �

Third step: a special choice of the functions Pi. We can now apply (6.4) with Pi

given in (6.5). Summing for i = 1 to N yields

λ2 − λ1 ≤
∫
Ω u2

1

(∑N
i=1 |∇Pi|2

)
dx∫

Ω
u2

1

(∑N
i=1 P 2

i

)
dx

.

Now, from the definition of Pi,

N∑
i=1

P 2
i = g(r)2

and
N∑

i=1

|∇Pi|2 = (g′(r))2 + (N − 1)g(r)2/r2 .

Then, we finally get

λ2 − λ1 ≤
∫
Ω[g′(r)2 + (N − 1)g(r)2/r2]u2

1 dx∫
Ω g(r)2u2

1 dx
. (6.6)
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The idea is now to choose the trial function g in such a way that inequality (6.6)
becomes an equality when Ω is a ball. This leads to the following choice:

g(r) = w(γr)

where

w(x) :=

{
Jn/2(βx)

Jn/2−1(αx) for 0 ≤ x < 1 ,

w(1) = limx→1− w(x) for x ≥ 1 ,
(6.7)

with α = jN/2−1,1 (the first zero of the Bessel function JN/2−1), β = jN/2,1 and
γ =

√
λ1/α. Substituting into (6.6), we arrive at

λ2 − λ1 ≤ λ1

∫
Ω

B(γr)u2
1 dx

α2
∫
Ω w(γr)2u2

1 dx
(6.8)

where

B(x) := w′(x)2 + (N − 1)
w(x)2

x2
.

The following technical lemma is proved (in two different manners) in [9] and [11].
We omit the proof here.

Lemma 6.2.3. • w(x) is increasing for x ∈ [0, 1],

• B(x) is decreasing for x ∈ [0, 1].

Fourth step: spherical rearrangements. We define, in section 2.1, the spherical
decreasing rearrangement f∗ (or Schwarz rearrangement) of a function f . Ex-
actly in the same way, we can define its spherical increasing rearrangement f∗ (by
f∗(x) = inf{c /x ∈ Ω−(c)∗} . where Ω−(c) := {y ∈ Ω : f(y) ≤ c}). We recall that
Ω∗ denotes the ball (centered at O) of same volume as Ω.

Then, the following properties of these rearrangements are well known (see
[122], [97]):

(i) If f is a radially symmetric function (f = f(|x|) defined on Ω, non-negative
and decreasing (resp increasing) as a function of r = |x|, then f∗(r) ≤ f(r)
(resp f∗(r) ≥ f(r)) for r between 0 and the radius of Ω∗.

(ii) If f and g are non-negative functions, then∫
Ω∗

f∗g∗ dx ≤
∫

Ω

fg dx ≤
∫

Ω∗
f∗g∗ dx .

Applying these two properties to the functions B (decreasing) and w (increasing)
gives the inequalities∫

Ω

B(γr)u2
1 dx ≤

∫
Ω∗

B(γr)∗u∗
1
2 dx ≤

∫
Ω∗

B(γr)u∗
1
2 dx (6.9)
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and ∫
Ω

w(γr)2u2
1 dx ≥

∫
Ω∗

w(γr)2∗u
∗
1
2 dx ≥

∫
Ω∗

w(γr)2u∗
1
2 dx . (6.10)

Fifth step: a Chiti’s comparison result. We now state a comparison result due to
Chiti, see [55]. Let B1 be the ball of radius R1 = 1/γ. Its first eigenvalue is (see
(1.29)) j2

N/2−1,1/R2
1 = α2γ2 = λ1 associated to the eigenfunction

z(r) = cr1−N/2JN/2−1(
√

λ1r) . (6.11)

Let us remark that the Faber-Krahn Theorem 3.2.1 implies that B1 is contained
in Ω∗ (since this last ball has a least eigenvalue), and the inclusion is strict as soon
as Ω is not a ball.

Lemma 6.2.4 (Chiti). Let us assume that the normalization constant c in (6.11)
is chosen so that ∫

Ω

u2
1 dx =

∫
Ω∗

u∗
1
2 dx =

∫
B1

z2 dx . (6.12)

Then, there exists a point r1 ∈ (0, 1/γ) such that{
u∗

1(r) ≤ z(r) for 0 ≤ r ≤ r1,
u∗

1(r) ≥ z(r) for r1 ≤ r ≤ 1/γ .
(6.13)

This lemma follows from the work of G. Talenti, [199] which makes use of
rearrangement results, Faber-Krahn inequality and isoperimetric inequality.

Let us take now for f any increasing function and let us denote by R∗ the
radius of Ω∗. Denoting by CN the volume of the unit ball in R

N (its surface area
is then NCN ), we have the following chain of equalities and inequalities:∫

B1

f(r)z2 dx −
∫

Ω∗
f(r)u∗

1
2 dx

= NCN

[∫ 1/γ

0

f(r)(z2 − u∗
1
2)rN−1 dr −

∫ R∗

1/γ

f(r)u∗
1
2rN−1 dr

]

≤ NCNf(r1)

[∫ 1/γ

0

(z2 − u∗
1
2)rN−1 dr −

∫ R∗

1/γ

u∗
1
2rN−1 dr

]

= f(r1)
[∫

B1

z2 dx −
∫

Ω∗
u∗

1
2 dx

]
= 0,

the last equality coming from (6.12). So, we finally get that, for any increasing
function f : ∫

B1

f(r)z2 dx ≤
∫

Ω∗
f(r)u∗

1
2 dx . (6.14)
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In particular, introducing this inequality in (6.9) (with f(r) = −B(γr)) and in
(6.10) (with f(r) = w(γr)2), we get∫

Ω

B(γr)u2
1 dx ≤

∫
B1

B(γr)z2 dx (6.15)

and ∫
Ω

w(γr)2u2
1 dx ≥

∫
B1

w(γr)2z2 dx . (6.16)

Combining these two inequalities with (6.8) gives

λ2 − λ1 ≤ λ1

∫
B1

B(γr)z2 dx

α2
∫

B1
w(γr)2z2 dx

=
λ1

∫ 1

0 B(r)J2
N/2−1(αr)r dr

α2
∫ 1

0 w(r)2J2
N/2−1(αr)r dr

=
λ1

α2
[(λ2 − λ1) for the ball of radius 1] =

λ1

α2
(β2 − α2)

which immediately gives the desired inequality, namely

λ2

λ1
≤ β2

α2
=

j2
N/2,1

j2
N/2−1,1

. �

Remark 6.2.5. As in previous situations (Theorems 3.2.1 and 4.1.1), it can be
proved that the ball is the unique maximizer, up to a set of zero capacity. To see
this, we can remark that equality in inequalities (6.6) or (6.15), (6.16) holds only
in the case of a ball.

6.2.2 Some other ratios

We can now apply the previous result to another ratio:

Theorem 6.2.6 (Ashbaugh-Benguria). The maximum of the ratio λ4(Ω)/λ2(Ω)
among bounded open sets of R

N is achieved by the union of two identical balls or,
more generally, by any set of the kind Ω = B1 ∪ Ω2 (disjoint union) where B1 is
a ball and Ω2 is any open set such that λ1(Ω2) ≤ λ1(B1) ≤ λ2(Ω2) ≤ λ2(B1) ≤
λ3(Ω2).

Proof. Let us begin with the case Ω connected. As in Theorem 4.1.1, we denote by
Ω+ and Ω− the nodal domains of u2 the second eigenfunction of Ω. We introduce
the two first (normalized) eigenfunctions for each nodal domain: u+

1 , u+
2 , u−

1 , u−
2 .

We assume that these functions are extended by 0 outside their natural domain of
definition. By construction, these four functions are orthogonal for the L2-scalar
product on Ω.

Let us now consider a trial function v, (nontrivial) linear combination of
these four functions: v = c+

1 u+
1 + c+

2 u+
2 + c−1 u−

1 + c−2 u−
2 . We always can choose the
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coefficients in order that v is orthogonal to u1, u2, u3, the three first eigenfunctions
of Ω. Then, by min formulae (1.34):

λ4(Ω) ≤
∫
Ω
|∇v(x)|2 dx∫
Ω v(x)2 dx

=
c+
1

2
λ1(Ω+) + c+

2

2
λ2(Ω+) + c−1

2
λ1(Ω−) + c−2

2
λ2(Ω−)

c+
1

2
+ c+

2

2
+ c−1

2
+ c−2

2

(6.17)
the last equality coming from the orthogonality of the four functions. Now, let us
denote by γ = j2

N/2,1/j2
N/2−1,1 the ratio λ2/λ1 for the ball. According to Theorem

6.2.1, we have λ2(Ω+) ≤ γλ1(Ω+) and obviously λ1(Ω+) ≤ γλ1(Ω+), and similarly
for Ω−. Therefore, (6.17) becomes:

λ4(Ω) ≤ γ
c+
1

2
λ1(Ω+) + c+

2

2
λ1(Ω+) + c−1

2
λ1(Ω−) + c−2

2
λ1(Ω−)

c+
1

2 + c+
2

2 + c−1
2 + c−2

2 . (6.18)

Now we know (Proposition 1.3.3) that λ2(Ω) is the first eigenvalue for Ω+ and
Ω−: λ1(Ω+) = λ1(Ω−) = λ2(Ω). Therefore, (6.18) yields λ4(Ω) ≤ γλ2(Ω) or

λ4(Ω)
λ2(Ω)

≤
j2
N/2,1

j2
N/2−1,1

. (6.19)

Looking at the equality case in (6.17), (6.18), we see that it can occur only if Ω+

and Ω− are balls, which is impossible for a connected domain. So inequality (6.19)
is strict for any connected open set.

Now, if Ω has exactly two connected components Ω1 and Ω2, we can assume
that λ1(Ω2) ≤ λ1(Ω1). Now we investigate four different cases.

(i) λ1(Ω2) ≤ λ1(Ω1) ≤ λ2(Ω2) ≤ λ2(Ω1), then

λ4(Ω)
λ2(Ω)

≤ λ2(Ω1)
λ1(Ω1)

≤
j2
N/2,1

j2
N/2−1,1

with equality if and only if Ω1 is a ball which gives the maximum announced
in the theorem.

(ii) λ1(Ω2) ≤ λ1(Ω1) ≤ λ2(Ω1) ≤ λ2(Ω2), then

λ4(Ω)
λ2(Ω)

≤ λ2(Ω2)
λ1(Ω1)

≤ λ2(Ω2)
λ1(Ω2)

≤
j2
N/2,1

j2
N/2−1,1

with equality if and only if Ω2 is a ball and λ1(Ω1) = λ1(Ω2): so we recover
case (i).

(iii) λ1(Ω2) ≤ λ2(Ω2) ≤ λ1(Ω1) ≤ λ3(Ω2), then

λ4(Ω)
λ2(Ω)

≤ λ3(Ω2)
λ2(Ω2)

≤ λ4(Ω2)
λ2(Ω2)

<
j2
N/2,1

j2
N/2−1,1

the last inequality coming from the beginning of the proof.
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(iv) λ1(Ω2) ≤ λ2(Ω2) ≤ λ3(Ω2) ≤ λ1(Ω1), then

λ4(Ω)
λ2(Ω)

≤ λ4(Ω2)
λ2(Ω2)

<
j2
N/2,1

j2
N/2−1,1

the last inequality still coming from the beginning of the proof.

At last, the case of more than two connected components follows thanks to induc-
tion. �

Using the trivial inequalities λ2 ≤ λ3 and λ3 ≤ λ4 and looking at the equality
cases yields:

Corollary 6.2.7. The maximum of the ratio λ3(Ω)/λ2(Ω) among bounded open
sets of R

N is achieved by the union of two identical balls or, more generally, by
any set of the kind Ω = B1 ∪ Ω2 (disjoint union) where B1 is a ball and Ω2 is
any open set such that λ1(Ω2) ≤ λ1(B1) ≤ λ2(Ω2) = λ2(B1) ≤ λ3(Ω2). The
maximum of the ratio λ4(Ω)/λ3(Ω) among bounded open sets of R

N is achieved
by the union of three identical balls or, more generally, by any set of the kind
Ω = B1 ∪ Ω2 (disjoint union) where B1 is a ball and Ω2 is any open set such that
λ1(Ω2) ≤ λ1(B1) = λ2(Ω2) ≤ λ2(B1) ≤ λ3(Ω2).

6.2.3 A collection of open problems

For ratios of eigenvalues, many problems remain open. A good overview and dis-
cussion is given in [4]. Below, some of them are listed.

Open problem 13. (see [168] and [12] where the following maximization result
is proved with some symmetry assumptions) Prove that the disk maximizes the

quotient
λ2 + λ3

λ1
among plane domains.

Prove that the ball maximizes the quotient
∑N+1

i=2 λi

λ1
among domains of R

N .

Open problem 14. Prove that the disk maximizes the quotient
λ4

λ1
among plane

domains.
Prove that the ball maximizes the quotient

λN+2

λ1
among domains of R

N .

Open problem 15. (see [12]) Prove that the disk minimizes the quantity
1

λ2 − λ1
+

1
λ3 − λ1

among plane domains.

Prove that the ball minimizes the quantity
1

λ2 − λ1
+

1
λ3 − λ1

+ · · · +
1

λN+1 − λ1

among domains of R
N .
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Open problem 16. Prove existence of a domain which maximizes the following ra-
tios, study the geometric properties of such maximizers (symmetries,. . . ), if pos-
sible identify it:

• λ3

λ1
(in the plane this is not the disk, see [140] for numerical studies and

conjectures),

• λm+1

λm
,

• λ2m

λm
.

6.3 Sums of eigenvalues

6.3.1 Sums of eigenvalues

Very little is known about sums of eigenvalues. Of course, Theorem 2.4.5 applies,
which means that we always have existence of a minimizer in the class Ac of
(quasi-)open sets Ω ⊂ D of given volume (|Ω| ≤ c) for any sum of eigenvalues.

In particular, it is natural to state the two following open problems which
can be seen as “the next Faber-Krahn” inequality:

Open problem 17. • Prove that the disk minimizes λ2 + λ3 among plane do-
mains of given area.

• Prove that the ball minimizes λ2 + λ3 + · · · + λN+1 among domains in R
N

with a given volume.

Some support of these conjectures is given by the fact that

the disk is a critical point for the functional Ω 
→ λ2(Ω) + λ3(Ω).

This is not completely obvious since λ2 = λ3 is a double eigenvalue for the disk. Ac-
tually, in this situation, we can apply Theorem 2.5.8: for any deformation induced
by a mapping Φ(t) satisfying (2.37) with V fixed and Ωt = Φ(t)(Ω), t → λ2(Ωt)
and t → λ3(Ωt) have (directional) derivatives at t = 0 which are the two eigenval-
ues of the 2 × 2 matrix M defined by:

M =

(
− ∫

∂Ω

(
∂u2
∂n

)2
V.n dσ − ∫

∂Ω

(
∂u2
∂n

∂u3
∂n

)
V.n dσ

− ∫
∂Ω

(
∂u2
∂n

∂u3
∂n

)
V.n dσ − ∫

∂Ω

(
∂u2
∂n

)2
V.n dσ

)
. (6.20)

In particular, t → λ2(Ωt) + λ3(Ωt) has a derivative which is the trace of the
previous matrix i.e.,

d

dt
(λ2(Ωt) + λ3(Ωt))|t=0 = −

∫
∂Ω

[(
∂u2

∂n

)2

+
(

∂u3

∂n

)2
]

V.n dσ .
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Now, since we can choose u2 and u3 to be respectively (see Proposition 1.2.14)

u2(r, θ) = βJ1(αr) cos θ, u3(r, θ) = βJ1(αr) sin θ ,

(where β is the normalization constant and α = j1,1/R), we get
(

∂u2
∂n

)2
+
(

∂u3
∂n

)2
=

α2β2J ′
1
2(α) = constant and it follows that the derivative of t → λ2(Ωt) + λ3(Ωt)

is proportional to the derivative of the area which characterizes the critical sets
here.

6.3.2 Sums of inverses

Our first result is due to Luttinger, see [143]:

Theorem 6.3.1 (Luttinger). The unit disk maximizes the sum
∞∑

j=1

1
λj(Ω)

among

plane open sets of given area.

Proof. We only give a sketch of the proof. The main ingredient is the general
inequality (6.23) involving the Green function of a domain Ω. We will denote by
GΩ(x, t; x′) this Green function defined as the solution of{

∂G
∂t − ∆G = 0 for t > 0 and x ∈ Ω,
limt→0 G(x, t; x′) = δx−x′ (the usual Dirac distribution) .

(6.21)

In particular, it is classical that this Green function has the following expansion
in the basis of eigenfunctions of Ω:

GΩ(x, t; x′) =
∞∑

j=1

e−λjtuj(x)uj(x′) . (6.22)

Now, let us consider two non-negative functions F and f . We denote by F ∗ and
f∗ their decreasing rearrangement as defined in Definition 2.1.1, and Ω∗ is the ball
of same volume as Ω. Then, the inequality is∫

Ω×Ω

GΩ(x, t; x′)F (x′−x)f(x) dxdx′ ≤
∫

Ω∗×Ω∗
GΩ∗(x, t; x′)F ∗(x′−x)f∗(x) dxdx′ .

(6.23)
In particular, choosing f ≡ 1 and letting F (x′ − x) approach the Delta function
δx−x′, we obtain ∫

Ω

GΩ(x, t; x) dxdx ≤
∫

Ω∗
GΩ∗(x, t; x) dxdx .

Replacing in the above inequality GΩ and GΩ∗ by their expressions given in (6.22)
yields, using normalization of the eigenfunctions,

∞∑
j=1

e−λj(Ω)t ≤
∞∑

j=1

e−λj(Ω
∗)t (6.24)
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and Theorem 6.3.1 follows by integrating (6.24) between t = 0 and t = +∞. �
Remark 6.3.2. By integrating (6.24) several times between t = s and t = +∞, we
easily get the generalization

∀n ∈ N
∗,

∞∑
j=1

1
λn

j (Ω)
≤

∞∑
j=1

1
λn

j (Ω∗)
.

For our next results (that we give without proofs), we need to work with
plane domains conformally equivalent to the unit disk D. For that purpose, let us
define the following class of plane open sets:

C := {Ω; Ω = f(D) with f a conformal mapping such that |f ′(0)| = 1}. (6.25)

This is the class of simply connected domains which are the conformal image of
the unit disk through a normalized conformal mapping. In this class, G. Pólya and
M. Schiffer proved the result in [173]

Theorem 6.3.3 (Pólya-Schiffer). Let n be any integer. The unit disk minimizes the

sum
n∑

j=1

1
λj(Ω)

in the class C.

Later, R.S. Laugesen and C. Morpurgo in [137] proves the following general-
ization (see also B. Dittmar [77] for another proof when Φ(x) = x2). They simply
use a majorization result about sums of values of a convex function essentially due
to Hardy, Littlewood and Pólya.

Theorem 6.3.4 (Laugesen-Morpurgo). Let n be any integer and Φ be any func-
tion which is convex and increasing on R+, then the unit disk minimizes the sum

n∑
j=1

Φ
(

1
λj(Ω)

)
in the class C.

6.4 General functions of λ1 and λ2

6.4.1 Description of the set E = (λ1, λ2)

Let D be a (large) ball in R
N which is fixed throughout this section. We are

interested in describing the set

E = {(x, y) ∈ R
2; (x, y) = (λ1(Ω), λ2(Ω)), Ω ⊂ D, |Ω| ≤ c}.

This set is represented in Figure 6.1.

Remark 6.4.1. Instead of considering an inequality constraint |Ω| ≤ c, we could
have chosen an equality one |Ω| = c. Actually, it will not change the set E . Indeed,
we have an obvious inclusion between the two sets. On the other hand, let us
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horizontal convexity

vertical convexity

λ
1

λ
2

λ
2
=λ

1

λ
2
=2.53..λ

1

A

B

Figure 6.1: Range, in the plane (λ1, λ2), of the possible values for the two first
eigenvalues of a domain of given area.

consider a set Ω with |Ω| ≤ c, and (x, y) = (λ1(Ω), λ2(Ω)). Now, consider the new
set Ω̃ which is the disjoint union of Ω with a collection of several (small) balls in
order that

• λ1(Ω̃) = λ1(Ω) and λ2(Ω̃) = λ2(Ω) (for that, it suffices that the first eigen-
value of any small ball is larger than λ2(Ω)),

• |Ω̃| = c.

This proves the reverse inclusion.

First properties of the set E
• The set E obviously lies above the first bisector y = x.

• The set E lies on the right of the line x = j2
N/2−1,1ω

2/N
N /c2/N , where ωN is

the volume of the unit ball. Indeed, the above number is the first eigenvalue
of a ball of volume c (point B on the figure), and this property is simply the
Faber-Krahn inequality (Theorem 3.2.1).

• The set E lies above the line y = j2
N/2−1,1(2ωN )2/N/c2/N . Indeed, the above

number is the second eigenvalue of the union of two balls of volume c/2 (point
A on the figure), and this property is simply the Krahn-Szegö Theorem 4.1.1.

• The set E lies below the line y =
j2
N/2,1

j2
N/2−1,1

x: this is the Ashbaugh-Benguria

Theorem 6.2.1.
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• The set E is conical with respect to the origin: if (x, y) ∈ E , then (tx, ty) ∈ E
for all t ≥ 1. It follows immediately by considering the image of a set Ω
corresponding to (x, y) by a homothety of ratio 1/

√
t.

In the following, we denote by γ = j2
N/2,1/j2

N/2−1,1 the value of the ratio λ2/λ1

for a ball.

A convexity and closedness property of the set E
In an interesting paper [45], D. Bucur, G. Buttazzo and I.Figueiredo proved the
following convexity property of E (see Figure 6.1):

Theorem 6.4.2 (Bucur, Buttazzo, Figueiredo).

(i) The set E is convex in the x-direction, namely:

∀(x, y) ∈ E , ∀t ∈ [0, 1], ((1 − t)x + ty, y) ∈ E .

(ii) The set E is convex in the y-direction, namely:

∀(x, y) ∈ E , ∀t ∈ [0, 1], (x, (1 − t)y + tγx) ∈ E .

Proof. We just give here the main ideas of the proof, for the details we refer to
[45] and [44]. Let (x, y) = (λ1(Ω), λ2(Ω)). For the horizontal convexity, one can
construct a decreasing continuous sequence (or homotopy) Ω1 ⊂ Ωt ⊂ Ω, t ∈ [0, 1]
such that

• Ω0 = Ω,

• λ2(Ωt) = λ2(Ω),

• λ1(Ω1) = λ2(Ω1).

Roughly speaking, Ωt is obtained from Ω by removing an increasing portion of
the nodal line of u2 and Ω1 = {x ∈ Ω, u2(x) �= 0} is the open set Ω without the
whole nodal line for which we already know that λ1(Ω1) = λ2(Ω1) = λ2(Ω) (see
Proposition 1.3.3 and (1.15)).

The vertical convexity relies on properties of Steiner symmetrization and
continuous Steiner symmetrization introduced in section 2.2.3. We consider a point
(x, y) = (λ1(Ω), λ2(Ω)) in E . We denote by B the ball of volume |Ω|. We want to
prove that the segment (x, (1− s)y + sγx), s ∈ [0, 1] is included in E . If y ≥ λ2(B)
the result is obvious using horizontal convexity, so we can assume y < λ2(B). Let
us fix α ∈ (λ2(Ω), λ2(B)). We can construct a sequence of Steiner symmetrizations
of Ω, say Ωn, n ∈ N such that Ωn converges to B. Moreover, we assume that we
go from Ωn to Ωn+1 thanks to a continuous Steiner symmetrization. We denote
by Ωt, t ∈ R+ this family of sets. According to Theorem 2.2.7, λ1(Ωt) decreases
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with t. Now, the sequence λ2(Ωt) has possibly discontinuities, but converges to
λ2(B), therefore there exists n0 such that λ2(Ωn0) ≥ α. We introduce

t∗ = sup{t ∈ [0, n0] : λ2(Ωt) ≤ α} .

By Theorem 2.2.8 (lower semi-continuous on the left and upper semi-continuous
on the right), we have λ2(Ωt∗) = α. We conclude by using one more time the
horizontal convexity between the points (λ1(Ωt∗), α) and (α, α) (which belong to
E); the point (λ1(Ω), α) is on this segment, so belongs to E . �

As a consequence, they also proved:

Theorem 6.4.3 (Bucur, Buttazzo, Figueiredo). The set E is closed in R
2.

Proof. The idea of the proof is the following. Let us consider (x, y) ∈ E and
a sequence Ωn such that λ1(Ωn) → x and λ2(Ωn) → y. Then, we can find a
subsequence, still denoted by Ωn, and a set Ω such that

λ1(Ω) ≤ lim inf λ1(Ωn) = x and λ2(Ω) ≤ lim inf λ2(Ωn) = y .

This is a consequence of the so-called compactness for the weak γ-convergence,
see [45] and [44] for more details.

Let us assume first that y ≥ λ2(B) where B is the ball of volume c. Then,
there is a homothetic ball B′ of volume smaller than c such that y = λ2(B′). The
horizontal convexity of E proved in Theorem 6.4.2 shows that the segment joining
the points (λ1(B′), λ2(B′)) and (λ2(B′), λ2(B′)) is contained in E . Therefore, (x, y)
which belongs to this segment lies in E .

Now, if y < λ2(B), from the vertical convexity, the segment joining the points
(λ1(Ω), λ2(Ω)) and (λ1(Ω), γλ1(Ω)) is contained in E and the point (λ1(Ω), y)
belongs to this segment. We conclude, as above, by using the horizontal convexity
between (λ1(Ω), y) and (y, y). �

On Figure 6.1 it seems clear that the set E is convex. As of now, it has not
been yet proved.

Open problem 18. Prove that the set E is convex.

6.4.2 Existence of minimizers

We have already mentioned in Theorem 2.4.5 that any function of the kind Ω 
→
Φ(λ1(Ω), λ2(Ω)) with Φ non-decreasing with respect to each argument, admits a
minimizer among (quasi)-open sets of given volume. Using the closedness of the
set E , we can immediately extend this result.

Theorem 6.4.4 (Bucur, Buttazzo, Figueiredo). Let Φ : R
2 → R be a lower semi-

continuous function, D a given set and c a given constant. Then the problem

min{Φ(λ1(Ω), λ2(Ω)), Ω ⊂ D, |Ω| ≤ c}
has always a solution.
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A more precise statement could be: either an optimal domain exists or for
the minimizing sequence Ωn we have Φ(λ1(Ωn), λ2(Ωn)) → −∞. In this last case,
we can choose as a minimizer the empty set. This is the case, for example for the
gap function Φ(λ1, λ2) = λ1 − λ2. Indeed, if we consider a sequence of domains

Ωε = B(0, ε) ∪Nε

i=1 B(xi, aεε)

where aε < 1 and Nε are chosen such that |Ωε| = A and λi(Ωε) = λi(B(0, ε)) for
i = 1, 2, then

λ1(Ωε) − λ2(Ωε) → −∞.

Nevertheless, if we add a convexity constraint, the problem becomes again inter-
esting. We must quote that some bounds have been obtained for the gap, in the
more general context of Schrödinger operators when Ω is assumed to be convex,
see e.g. [192], [214] and chapter 8. Therefore, it could be interesting to look at the
following open problems.

Open problem 19. Prove existence of a convex domain which maximizes the gap
λ2(Ω) − λ1(Ω) among convex domains of given volume. If possible, identify it.

The same question for the possible minimizer is not really interesting, neither
in the class of open sets (since the “absolute” minimizer is the union of two disjoint
identical sets for which λ2(Ω)−λ1(Ω) = 0), nor in the class of convex sets. Indeed,
in this case, the sequence of rectangles ΩL = (0, L) × (0, 1/L) satisfies λ2(ΩL) −
λ1(ΩL) = 3π2/L2 → 0 when L → +∞.

Since there is a conjecture stating that

λ2(Ω) − λ1(Ω) ≥ 3π2

d2

for any convex domain, where d is the diameter of Ω, the interesting problem
consists in minimizing the gap among open convex sets of given diameter. So, the
problem could be

Open problem 20. Is there existence of a convex domain which minimizes the gap
λ2(Ω)−λ1(Ω) among convex domains of given diameter d? If yes, identify it. If no,
prove that the sequence of rectangles (in two dimension) Ωε = (0,

√
d2 − ε2)×(0, ε)

is a minimizing sequence (indeed, we have λ2(Ωε) − λ1(Ωε) → 3π2/d2).

Among various combinations of the two first eigenvalues, we can also consider
for example λ1 + λ2: what is the set which minimizes the sum of the two first
eigenvalues? It is not the disk, since it does not satisfy the generalized optimality
conditions (see e.g. [62], [53]). More generally, we can ask this question for any
convex combination of the two first eigenvalues of the kind tλ1 + (1 − t)λ2 . This
question has a simple geometric interpretation: the desired minimizer is indeed
the first point of E we reach when making a line of equation tx + (1 − t)y = a
approach the set E (by increasing a). In particular, for t = 1 the solution is a ball
while for t = 0 it is given by two balls. It is proved in [213] that the case t = 0 is
the only one for which the optimal set is not connected.
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Open problem 21. Let Ω∗
t , 0 < t < 1 be a plane open set which minimizes tλ1 +

(1 − t)λ2 among sets of prescribed area.

(i) Prove that Ω∗
t has always two axes of symmetry.

(ii) Prove that Ω∗
t is always simply connected.

(iii) For what value of t is Ω∗
t no longer convex?



Chapter 7

Other boundary conditions for
the Laplacian

7.1 Neumann boundary condition

7.1.1 Introduction

The eigenvalues of the Laplacian with Neumann boundary conditions are also
called the eigenvalues of the free membrane (in the case of Dirichlet boundary
conditions, we speak about the fixed membrane). We recall that we denote it by
0 = µ1(Ω) ≤ µ2(Ω) ≤ µ3(Ω) ≤ · · · (the first eigenvalue is zero, corresponding to
constant functions). They solve (at least in a weak sense when Ω is not regular){ −∆uk = µk(Ω)uk in Ω,

∂uk

∂n = 0 on ∂Ω .
(7.1)

Minimizing the eigenvalues of the Laplacian with Neumann boundary conditions,
with a volume constraint, is a trivial problem. Indeed, if we consider a long thin
rectangle like (0, L) × (0, l), its n-th eigenvalue will be (for L large enough) µn =
(n − 1)2π2

L2
. Therefore, letting L → +∞, we see that

inf{µn(Ω), |Ω| = A} = 0 .

Moreover, the infimum is attained for any open set which has at least n connected
components. This shows that limiting the diameter of Ω does not improve the
interest of the question! Now, if we assume that the domains must be convex and
with a given diameter, then the infimum is not zero, but it is not achieved! For
example, L. Payne and H. Weinberger proved in [170] the following inequality for
convex domains Ω in R

N with given diameter d:

µ2(Ω) ≥
(π

d

)2

.
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This lower bound is optimal but not attained: any domain shrinking to a one-
dimensional segment [0, d] has its second eigenvalue which converges to the lower
bound.

If we want to get a really interesting problem for eigenvalues of the Laplacian
with Neumann boundary conditions, we must consider the problem of the maxi-
mization instead of the minimization. Indeed in Proposition 7.1.4, we show that
the supremum (among open sets of given volume included in some fixed box) is
finite. For the second eigenvalue µ2, it has been conjectured by E.T. Kornhauser
and I. Stakgold in [130] that the disk maximizes µ2 among plane domains of given
area. This result has been proved by P. Szegö in [196]. It has been generalized to
any dimension by H. Weinberger in [207]. His proof is presented in section 7.1.2.
The last subsection is devoted to some ratios and open problems.

One could also consider mixed boundary conditions: Dirichlet on one part
and Neumann on the other part. In that direction, one can read the paper by S.
Cox and P. Uhlig, [70] where the problem of minimizing or maximizing the first
eigenvalue is studied.

7.1.2 Maximization of the second Neumann eigenvalue

Theorem 7.1.1 (Szegö,Weinberger). The ball maximizes the second Neumann ei-
genvalue among (Lipschitz) open sets of given volume. Moreover, it is the only
maximizer in this class.

Proof. Let Ω be a given Lipschitz domain and Ω∗ the ball of same volume. Let
us denote by R the radius of Ω∗ and µ∗

2 its second Neumann eigenvalue. It has
multiplicity N and is associated to the N eigenfunctions

g(r)xi

r
, i = 1, 2, . . . , N (7.2)

where g is given by the Bessel function JN/2:

g(r) = JN/2(j′N/2,1r/R) with j′N/2,1 is the first zero of J ′
N/2

and µ∗
2 =

j′N/2,1
2

R2 . In particular, let us observe that R is the first zero of g′. We will
also use the fact that g satisfies the ordinary differential equation

g′′(r) +
N − 1

r
g′(r) +

(
µ∗

2 −
N − 1

r2

)
g(r) = 0 . (7.3)

Let us define the continuous extension of g:

G(r) =
{

g(r) r ≤ R,
g(R) r > R .

(7.4)
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According to the min principle (1.37), µ2(Ω) is given by

µ2(Ω) = inf
v∈H1(Ω),v �=0,

R
Ω v=0

∫
Ω
|∇v(x)|2 dx∫
Ω v(x)2 dx

. (7.5)

We introduce the functions fi(x) = G(r)xi/r and we use Lemma 6.2.2 (with u1 =
1) to claim that it is possible to fix the origin in such a way that

∫
Ω G(r)xi

r dx = 0
for i = 1, . . . , N . In other words, with this choice of the origin, the functions fi

become admissible in the variational formulation (7.5). From

∂fi

∂xj
=

G′(r)xjxi

r2
− G(r)xjxi

r3
+ δij

G(r)
r

(where δij = 1 if i = j, 0 else), we get for i = 1, . . . , N :

µ2(Ω) ≤
∫
Ω[G′2(r)x2

i /r2 + G2(r)(1 − x2
i /r2)/r2] dx∫

Ω[G2(r)x2
i /r2] dx

.

Multiplying each of these inequalities by the denominator on the right and sum-
ming the resulting inequalities yields

µ2(Ω) ≤
∫
Ω
[G′2(r) + (N − 1)G2(r)/r2] dx∫

Ω G2(r) dx
. (7.6)

Let us now denote by Ω1 the intersection of Ω with the ball Ω∗ (of course, we
assume that Ω∗ is centered at the origin which has been chosen above). Since R
is the first zero of g′, G(r) is non-decreasing for r > 0. Thus,∫

Ω

G2(r) dx =
∫

Ω1

G2(r) dx +
∫

Ω\Ω1

G2(r) dx ≥
∫

Ω1

G2(r) dx + G2(R)
∫

Ω\Ω1

dx

(7.7)
and∫

Ω∗
G2(r) dx =

∫
Ω1

G2(r) dx+
∫

Ω∗\Ω1

G2(r) dx ≤
∫

Ω1

G2(r) dx+G2(R)
∫

Ω∗\Ω1

dx .

(7.8)
Since Ω and Ω∗ have same volume, (7.7) and (7.8) yield∫

Ω

G2(r) dx ≥
∫

Ω∗
G2(r) dx =

∫
Ω∗

g2(r) dx . (7.9)

Differentiating the integrand in the numerator of (7.6), we have

d

dr

[
G′2(r) + (N − 1)

G2(r)
r2

]
= 2G′G′′ + 2(N − 1)(rGG′ − G2)/r3 .
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For r > R this is clearly negative since G is constant there. For r ≤ R we use the
differential equation (7.3) to show that

d

dr

[
G′2(r) + (N − 1)

G2(r)
r2

]
= −2µ∗GG′ − (N − 1)(rG′ − G)2/r3 < 0 .

Thus, the integrand in the numerator is decreasing for r > 0 and we prove in the
same way as we proved (7.9) that∫

Ω

[
G′2(r) + (N − 1)

G2(r)
r2

]
dx ≤

∫
Ω∗

[
g′2(r) + (N − 1)

g2(r)
r2

]
dx . (7.10)

The equality holds only if Ω is a ball (except for a set of measure zero). Integration
by parts yields ∫

Ω∗

[
g′2(r) + (N − 1)

g2(r)
r2

]
dx = µ∗

2

∫
Ω∗

g2 dx .

Inserting this together with (7.10) and (7.9) in (7.6) yields µ2(Ω) ≤ µ∗
2 which is

the desired inequality. Moreover, we see that equality holds (if Ω is Lipschitz) only
when Ω is a ball. �

7.1.3 Some other problems

Sums of reciprocals

In his proof of Theorem 7.1.1 in two dimensions, see [196], P. Szegö proved actually
a stronger result:

Theorem 7.1.2 (Szegö). The disk minimizes the quantity 1
µ2

+ 1
µ3

among simply
connected open sets of given volume in R

2.

His proof leans heavily upon conformal mapping and hence cannot be ex-
tended to higher dimension.

In the same spirit, let us quote some recent results obtained by B. Dittmar for
the sum of reciprocal eigenvalues, see [77], [78], [79]. The last result, in particular,
is similar to Pólya-Schiffer’s Theorem 6.3.3.

Theorem 7.1.3 (Dittmar). Let C denote the class of plane open sets defined in
(6.25). Then:

• The disk minimizes the quantity |Ω|2
∞∑

j=2

1
µ2

j(Ω)
in the class C.

• For any n ≥ 2, the disk minimizes the quantity
|Ω|
π

n∑
j=2

1
µj(Ω)

in the class C.



7.1. Neumann boundary condition 105

Some open problems

A general existence result, even in the case of domains included in some ball, does
not yet exist. Nevertheless, we are able to prove that the supremum is finite:

Proposition 7.1.4. Let D be a regular domain in R
N and c a positive constant. Let

Ac(D) be the class of Lipschitz open subsets of D with volume c. Then, for any k,

sup
Ω∈Ac(D)

µk(Ω) < +∞ .

Proof. (This proof has been kindly suggested by D. Bucur). Let g1, g2, . . . , gk be
k (regular) functions defined on ∂D that we assume to be linearly independent.
Let ui, i = 1, . . . , k be the harmonic functions in D whose trace on ∂D is gi. By
construction and properties of harmonic functions, the functions ui, i = 1, . . . , k
are also linearly independent on any open subset of D. Therefore, for any Ω ⊂ D,
they span a subspace Ek of H1(Ω) of dimension k. Thanks to min-max formulae
(1.33), we have

µk(Ω) ≤ max
v∈Ek,v �=0

R[v] = max
α1, . . . , αk

α2
1 + · · ·α2

k = 1

∫
Ω
|α1∇u1(x) + · · · + αk∇uk(x)|2 dx∫
Ω
(α1u1(x) + · · · + αkuk(x))2 dx

.

(7.11)
Therefore, (7.11) implies

sup
Ω∈Ac(D)

µk(Ω) ≤ sup
Ω ∈ Ac(D)

(α1, . . . , αk) ∈ R
k

α2
1 + · · ·α2

k = 1

∫
Ω |α1∇u1(x) + · · · + αk∇uk(x)|2 dx∫

Ω
(α1u1(x) + · · · + αkuk(x))2 dx

.

(7.12)
Let (Ωn, αn

1 , . . . , αn
k ) be a maximizing sequence for the right-hand side of (7.12).

We can extract a subsequence (still denoted with the same indices) such that

• χΩn ⇀ γ in L∞(D) weak-*,

• αn
i → αi in R for i = 1, . . . , k.

Then, passing to the limit in the right-hand side of (7.12), we get

sup
Ω∈Ac(D)

µk(Ω) ≤
∫

D
γ|α1∇u1(x) + · · · + αk∇uk(x)|2 dx∫
D

γ(α1u1(x) + · · · + αkuk(x))2 dx
. (7.13)

Now, the right-hand side of (7.13) will be finite if and only if∫
D

γ(α1u1(x) + · · · + αkuk(x))2 dx �= 0.
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Assume that this integral is zero. Since |{x ∈ D; γ(x) > 0}| ≥ c > 0, this would
imply that the harmonic function α1u1(x) + · · · + αkuk(x) vanishes on a set of
positive measure. Therefore it would vanish everywhere, contradicting the linear
independence of the ui’s. �

About existence of a maximizer, some partial results have been obtained. For
example, the existence of a convex domain which maximizes the n-th Neumann
eigenvalue µn (with given volume) has been proved in [69]. In two dimensions, a
more general partial result is given in [44]:

Theorem 7.1.5 (Bucur-Buttazzo). Let D ⊂ R
2 be a fixed ball, c, l, M positive

constants, and let us introduce

Uad = {Ω ⊂ D, Ω open, |Ω| = c, �Ωc
n ≤ p, |∂Ω| ≤ M}

(here �Ωc
n denotes the number of connected components of Ωc

n and |∂Ω| the perime-
ter of Ω). Let F : R

k 
→ R be an upper semi-continuous function which is increasing
in each variable. Then, the problem

max
Ω∈Uad

F (µ1(Ω), µ2(Ω), . . . , µk(Ω))

has at least one solution.

To prove a general existence result, an idea could be to use Theorem 2.3.26
by studying carefully the behavior of maximizing sequences. This kind of work is
still in progress. So, we are also led to the following open problem(s):

Open problem 22. Prove that there exists an open set (of given volume) which
maximizes the n-th Neumann eigenvalue µn, for n ≥ 3. If possible, identify this
maximizer.

A possible generalization of Szegö’s Theorem (see also Theorem 7.3.3):

Open problem 23. In N dimensions, prove that

N+1∑
i=2

1
µi(Ω)

is minimal for the ball among all domains with a given volume.

7.2 Robin boundary condition

7.2.1 Introduction

The eigenvalues of the Laplacian with Robin boundary conditions are called the
eigenvalues of the elastically supported membrane. We will denote them by 0 <
ν1(α, Ω) ≤ ν2(α, Ω) ≤ ν3(α, Ω) ≤ · · · where α is a parameter, 0 < α < 1; (the
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cases α = 0 or α = 1 correspond to Neumann or Dirichlet boundary conditions)
or possibly a function. The p.d.e. system is{ −∆uk = νk(α, Ω)uk in Ω,

αuk + (1 − α)∂uk

∂n = 0 on ∂Ω .
(7.14)

The first eigenvalue is characterized, as usual, by the variational formulation

ν1(α, Ω) = inf
v∈H1(Ω),v �=0

∫
Ω
|∇v(x)|2 dx +

∫
∂Ω

α
1−α v2(σ) dσ∫

Ω v(x)2 dx
. (7.15)

We are going to recover the Faber-Krahn inequality: the ball minimizes the first
eigenvalue ν1(α, Ω). This result has been proved first in two-dimensions by M.H.
Bossel in her phD thesis, see [35]. Recently, it has been extended to any dimension
by D. Daners in [74]. Previously, the conjecture appeared (and some partial results
were obtained) in a paper of M. Bareket, [26]. We present Bossel’s proof in section
7.2.2. The proof of Daners relies on the same principle but is more sophisticated.
At last, in section 7.2.3, we look at the problem of minimizing λ1(Ω, α) with respect
to α which is here a function allowed to vary. This last problem is connected to
the question of optimal insulation of conductors.

7.2.2 The Bossel-Daners Theorem

Theorem 7.2.1 (Bossel-Daners). The ball minimizes the first eigenvalue of the
Robin problem among open sets with a given volume (for every value of α ∈ (0, 1]).

Proof. The proof uses a new variational method, see [35], [74]. This method is
inspired by that of extremal length. We follow the proof of M.H. Bossel valid in
dimension 2. We recall that Daners’ proof is similar.

Let Ω be a bounded plane open set. Let us denote by ν1 = ν1(α, Ω) its first
Robin eigenvalue and by u, u > 0 the first corresponding eigenfunction, normalized
here by max u = 1. We will denote by um ≥ 0 the minimum of u on Ω. Since α �= 0,
we will rewrite the boundary condition in (7.14),

∂u

∂n
+ ku = 0 where k =

1 − α

α
. (7.16)

For any value u0 such that um < u0 < 1, let us denote by Du0 the level set

Du0 := {x ∈ Ω; u(x) > u0}
and by Au0 = |Du0 | its area. The boundary of Du0 is made of two parts; ∂Du0 =
γu0 ∪ βu0 with γu0 = Ω ∩ ∂Du0 is the level line {u = u0} and βu0 = ∂Ω ∩ ∂Du0 .

A function ρ defined in Ω will be called admissible if ρ is continuous, non-
negative on Ω and satisfies

lim sup ρ ≤ k for every point on ∂Ω. (7.17)
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For such an admissible function, we define the quantity

H(u0, ρ) :=
1

Au0

{
k|βu0 | +

∫
γu0

ρ ds −
∫

Du0

ρ2 dx

}
, (7.18)

where |βu0 | denotes the length of βu0 . At last, we will denote ρ̃ := |∇u|/u in Ω.
We now use the following lemma:

Lemma 7.2.2. For any admissible function ρ,

ν1 ≥ inf
u0

H(u0, ρ) .

Let us admit temporarily this lemma and finish the proof of the theorem. Let
D be the disk (of radius R) of same area as Ω. Its first eigenfunction is radially
symmetric: v(r) = J0(ω0r) with ω2

0 = ν1(α, D) characterized as the first zero of
the transcendental equation in t:

αtJ ′
0(tR) + (1 − α)J0(tR) = 0 .

To each set Du0 , we associate the disk of same area D∗
u0

which is actually a level
set of v, say Dv0 . The line γv0 is the level line v = v0. Now, the function

ρ̂ = ρ̂(r) :=
|∇v|

v
= −vr

r
= ω0

J1

J0

is a non-decreasing function of r in the interval [0, R]. Therefore, ρ̂(r) is less than
its value for r = R, that is k, according to (7.16). In particular, ρ̂ is admissible in
D. Then, we can construct an admissible function ρ in Ω, which is equimeasurable
to ρ̂ by setting ρ \ γu0 = ρ̂ \ γv0 . In particular, we have∫

Du0

ρ2 dx =
∫

Dv0

ρ̂2 dx.

Moreover, since the sets Du0 and Dv0 have the same area, the (classical) isoperi-
metric inequality yields

|∂Du0 | = |βu0 | + |γu0 | ≥ |γv0 | = |∂Dv0 | .
Therefore

k|βu0 | +
∫

γu0

ρ ds −
∫

Du0

ρ2 dx ≥
∫

γv0

ρ̂ ds −
∫

Dv0

ρ̂2 dx . (7.19)

Now, since −∆v = ν1(α, D)v in D, we have by integration by parts:

ν1(α, D)|Dv0 | = −
∫

Dv0

∆v

v
dx =

∫
γv0

|∇v|
v

ds +
∫

Dv0

∇v.∇
(

1
v

)
and we recover the right-hand side of (7.19). Finally, (7.19) together with Lemma
7.2.2 yields ν1 ≥ infu0 H(u0, ρ) ≥ ν1(α, D) which is the desired result. �
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It remains to prove Lemma 7.2.2:

Proof. We recall that we have introduced ρ̃ = |∇u|/u in Ω. Let us set w = ρ − ρ̃
(or ρ = ρ̃ + w). In particular,

k|βu0 | +
∫

γu0

ρ ds = k|βu0 | +
∫

γu0

ρ̃ ds +
∫

γu0

w ds .

But, since k = − ∂u
∂n/u on βu0 ,

k|βu0 |+
∫

γu0

ρ̃ ds = −
∫

∂Du0

1
u

∂u

∂n
ds =

∫
Du0

div
(
−∇u

u

)
dx = ν1Au0+

∫
Du0

|∇u|2
u2

dx .

In the same way,∫
Du0

ρ2 dx =
∫

Du0

ρ̃2 dx + 2
∫

Du0

|∇u|
u

w dx +
∫

Du0

w2 dx .

Integrating on the level lines, the co-area formulae yields (together with the pre-
vious computations)

Au0H(u0, ρ) = ν1Au0 +
∫

γu0

w ds − 2
∫ 1

t=u0

dt

t

∫
γt

w ds −
∫

Du0

w2 dx . (7.20)

Let us assume, for a contradiction, that

Au0H(u0, ρ) > ν1Au0 for every u0 ∈ [um, 1]. (7.21)

Then, (7.20), (7.21) provide∫
γu0

w ds − 2
∫ 1

t=u0

dt

t

∫
γt

w ds >

∫
Du0

w2 dx ∀u0 ∈ [um, 1] . (7.22)

Let us set

F (u0) :=
∫ 1

t=u0

dt

t

∫
γt

w ds .

From (7.22), we get

− d

du0

[
u2

0F (u0)
]

= u0

[∫
γu0

w ds − 2
∫ 1

t=u0

dt

t

∫
γt

w ds

]
> u0

∫
Du0

w2 dx ≥ 0 .

Therefore, u0 
→ u2
0F (u0) is decreasing, and since it is 0 for u0 = 1, it is positive

for u0 < 1. Consequently, there exists a constant K > 0 such that F (u0) > K in a
neighborhood of u+

m and, by (7.22),
∫

γu0
w ds has the same property. Let us show
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that it leads to a contradiction. We know that u = um only on ∂Ω, but on this
boundary, according to (7.17):

lim sup ρ ≤ k =
1
u

(
−∂u

∂n

)
≤ |∇u|

u
= ρ̃ ,

therefore, when u0 → um, lim sup w = lim sup(ρ− ρ̃) ≤ 0, which is a contradiction.
�

Open problem 24. (see [169]) For what values of α does the ratio
λ2

λ1
achieve its

maximum for the disk?

7.2.3 Optimal insulation of conductors

Let us consider a homogeneous conductor filling an open set Ω which is assumed
to be smooth, bounded and connected. We want to coat this conductor with a
thin layer of insulator. To describe the insulated conductor, we consider a (small)
positive number ε and a non-negative function h defined on the boundary ∂Ω and
we set (see Figure 7.1)

Ωε(h) := Ω ∪ {x + δh(x)n(x); x ∈ ∂Ω, 0 < δ < ε} .

If the conductivity of Ω is 1, while that of Ωε(h) \Ω is ε, then a good measure of

ε h(x)
Ω

Ωε(h)

Figure 7.1: A conductor Ω insulated by a thin layer of variable width.

the rate at which Ωε(h) dissipates heat is given by the first eigenvalue λ1(Ω, ε, h)
of the following problem:{ −div ((χΩ + ε(1 − χΩ))∇u) = λu in Ωε(h),

u = 0 on ∂Ωε(h) (7.23)
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where χΩ denotes the characteristic function of Ω. This problem was considered
by A. Friedman in [92] where the author proves, in particular, that when ε goes
to 0, λ1(Ω, ε, h) converges to the first eigenvalue ν1(h, Ω) of the Robin problem{ −∆u1 = ν1(h, Ω)u1 in Ω,

u1 + h∂u1
∂n = 0 on ∂Ω .

(7.24)

We can consider that the total amount of insulator is given, which gives a con-
straint on

∫
∂Ω

h(σ) dσ. Then, the interesting question becomes: the conductor Ω
and the total amount of insulator c being given, find the thickness h of the in-
sulator which minimizes ν1(h, Ω) among all non-negative functions h such that∫

∂Ω
h(σ) dσ = c. This question is studied in [63]. More precisely, the authors con-

sidered the minimization problem on the class

Aδ0,c := {h ∈ L1(∂Ω); 0 < δ0 ≤ h(x),
∫

∂Ω

h(σ) dσ = c} . (7.25)

They first prove an existence result:

Theorem 7.2.3 (Cox-Kawohl-Uhlig). Let Ω be a smooth, bounded and connected
open set in R

N , then there exists h∗ minimizing the first eigenvalue ν1(h, Ω) in
the class Aδ0,c defined in (7.25).

Proof. The proof follows the classical method of calculus of variations. From
(7.15), we obviously have ν1(h, Ω) ≥ λ1(Ω) (the first eigenvalue of the Laplacian-
Dirichlet). Let ν∗ denote the infimum of ν1(h, Ω) and hn be a minimizing sequence
in Aδ0,c. We also introduce un, the first associated eigenfunction normalized by∫
Ω

u2
n(x) dx = 1. By the pointwise lower bound, h−1

n is uniformly bounded in
L∞(∂Ω) and then converges, up to a subsequence that we neglect to relabel, to
some positive function g in L∞ weak-*. We set h = g−1. Now, the variational char-
acterization (7.15) shows that un is bounded in H1(Ω). Therefore, there exists a
function u in H1(Ω) such that un converges weakly to u in H1(Ω) and strongly in
L2(Ω). Moreover, the traces un\∂Ω converge to u\∂Ω strongly in L2(∂Ω). So, we
can pass to the limit in the variational formulation of the p.d.e. (7.14):∫

Ω

∇un.∇v dx +
∫

∂Ω

h−1
n unv dσ = ν1(hn, Ω)

∫
Ω

unv dx

to get ∫
Ω

∇u.∇v dx +
∫

∂Ω

h−1uv dσ = ν∗
∫

Ω

uv dx,

which shows that ν∗ is an eigenvalue associated to h. Since u is positive, it is
the first eigenvalue. It remains to check that h belongs to the class Aδ0,c. The
pointwise lower bound is obvious. For the integral constraint, we observe that the
convexity of t 
→ t−1 allows us to use Theorem 1.1 in [71] which implies∫

∂Ω

h dσ =
∫

∂Ω

g−1 dσ ≤ lim inf
∫

∂Ω

(h−1
n )−1 dσ = c .
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But (7.15) implies clearly the monotonicity of the map h 
→ ν1(h, Ω): h1 ≤ h2 =⇒
ν1(h1, Ω) ≥ ν1(h2, Ω). Since, it is obviously possible to find a function h∗ in Aδ0,c

with h ≤ h∗, the result is proved. �

For a general Ω, only a numerical approach seems possible to determine the
optimal h. For that, the use of optimality conditions given in [63] can be useful.
See also a numerical algorithm described in this paper. Nevertheless, there is a
special (foreseeable) case where it is possible to give explicitly the minimizer:

Theorem 7.2.4 (Cox-Kawohl-Uhlig). If Ω is a ball, the minimizer h∗ is constant.

Proof. We begin with the following consequence of the Cauchy-Schwarz inequality:∫
∂Ω

h−1 u2(σ) dσ ≥
(∫

∂Ω

u(σ) dσ

)2 /∫
∂Ω

h(σ) dσ . (7.26)

Therefore, (7.26) together with (7.15) yields the following lower bound for ν1:

ν1(h, Ω) ≥ inf
v∈H1(Ω),v �=0

∫
Ω |∇v(x)|2 dx + 1

c

(∫
∂Ω u(σ) dσ

)2∫
Ω

v(x)2 dx
. (7.27)

If we denote by ξ1(h, Ω) the value of the infimum in the right-hand side of (7.27),
it is easy to see that is actually the first eigenvalue of the non-local problem{ −∆v = ξ1(h, Ω)v in Ω,

c ∂v
∂n +

∫
∂Ω v(σ) dσ = 0 on ∂Ω .

(7.28)

Note that the bound (7.27) is valid for any domain. Now, specializing to a ball
Ba of radius a, we can look for all the eigenfunctions of problem (7.28). First of
all, every non-radial Neumann eigenfunction of a ball satisfies

∫
∂Ω v(σ) dσ = 0 (see

(1.28)) and therefore is an eigenfunction for (7.28). Now, if v is an eigenfunction for
(7.28) which is not a non-radial Neumann eigenfunction, it is orthogonal to each
of these and, hence has to lie in the span of the radial Neumann eigenfunction.
Consequently, v is radial. But it is easy to show that every radial eigenfunction
is of the kind v(r; ζ) = (

√
ζr)1−N/2JN/2−1(

√
ζr) where ζ is a zero of the function

z 
→ v(a; z)|∂Ba| + cdv/dr(a; z). Finally, by comparing the first zero of the above
function with the least eigenvalue corresponding to a non-radial Neumann eigen-
function, we see that the first eigenfunction of (7.28) is always radial. But, when
h is constant, (7.24) and (7.28) have the same radial eigenfunctions. Therefore,
when h is constant

ν1(h, Ba) = ξ1(h, Ba) . (7.29)

The result follows immediately by comparison with (7.27). �
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7.3 Stekloff eigenvalue problem

The Stekloff eigenvalue problem is the following:{
∆u = 0 in Ω,
∂u
∂n = pu on ∂Ω ,

(7.30)

where Ω is a bounded Lipschitz open set. Exactly as in chapter 1, we can prove
existence of a sequence of eigenvalues for problem (7.30) and min-max formulae.
We will denote the eigenvalues by 0 = p1(Ω) ≤ p2(Ω) ≤ p3(Ω) ≤ · · · (the first
eigenvalue is zero, corresponding to constant functions). For Stekloff eigenvalues,
the min formulae (or variational characterization) reads:

pk(Ω) = min
{∫

Ω
|∇v(x)|2 dx∫

∂Ω v(σ)2 dσ
; v ∈ H1(Ω),

∫
∂Ω

vuj dσ = 0, j = 1, . . . , k − 1
}

.

(7.31)

Remark 7.3.1. If Ω = BR is a ball of radius R, an easy calculation gives

p2(BR) = p3(BR) = · · · = pN+1(BR) =
1
R

(7.32)

associated to the N eigenfunctions xi, i = 1, 2, . . . , N .

As in the Neumann case, it is the problem of maximization of the eigenvalues
which is interesting here. Inspired by Szegö’s proof for the free membrane problem
in two dimensions (see Theorem 7.1.1), R. Weinstock in 1954 proved that the disk
maximizes the second Stekloff eigenvalue, see [209]. It was only about fifty years
later that the result was generalized by F. Brock to the N -dimensional case in
[41]. We give his proof below.

Theorem 7.3.2 (Weinstock, Brock). The ball maximizes the second Stekloff eigen-
value among open sets of given volume.

Actually, Theorem 7.3.2 will appear as an immediate consequence of the
following theorem (also due to Brock in [41]) together with (7.32).

Theorem 7.3.3 (Brock). The ball minimizes the following sum of inverse Stekloff
eigenvalues:

N+1∑
i=2

1
pi(Ω)

among open sets of given volume.

Proof. Let Ω ⊂ R
N be given and BR = Ω∗ the ball of same volume. We can

always choose the origin such that
∫

∂Ω xi dσ = 0 for i = 1, . . . , N . We recall the
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variational characterization for sums of inverses of eigenvalues (see (1.39) and [19];
it is also an easy consequence of (7.31)):

k+n∑
i=k+1

1
pi(Ω)

= max
k+n∑

i=k+1

∫
∂Ω

v2
i dσ (7.33)

the above max being taken on the set {vi ∈ H1(Ω) ,
∫
Ω ∇vi.∇vj dx = δij i, j =

k+1, . . . , k+n,
∫
Ω ∇vi.∇um dx = 0, m = 1, 2, . . . , k}. Choosing k = 1, n = N and

vi(x) = |Ω|−1/2xi−1, i = 2, . . . , N + 1 in (7.33), we get

N+1∑
i=2

1
pi(Ω)

≥ 1
|Ω|

∫
∂Ω

|x|2 dσ .

We now use Lemma 2.1.5 and (2.6) with f(x) = x2, which yields

N+1∑
i=2

1
pi(Ω)

≥ 1
|Ω|

∫
∂BR

|x|2 dσ =
R2|∂BR|
|BR| = NR =

N+1∑
i=2

1
pi(BR)

,

the last equality coming from (7.32). This gives the desired result. �
We must also mention that J. Hersch and L. Payne have already proved the

previous Theorem 7.3.3 in two-dimensions in [108] and that they have also proved
a sharper result, together with M.M. Schiffer in [109], namely:

Theorem 7.3.4 (Hersch-Payne-Schiffer). The disk maximizes the product
p2(Ω)p3(Ω) among plane open sets of given area.

Proof. Let Ω ⊂ R
2 be a bounded open Lipschitz set and let us denote by L the

length of its boundary (and by s the curvilinear abscissa) . Let us denote by
Ω∗ = BR the disk of same area as Ω. Let u = u(s) be any function defined on ∂Ω.
We still denote by u = u(x, y) the harmonic function in Ω with the boundary values
u(s). Let us introduce ũ as its conjugate harmonic function, satisfying

∫
∂Ω ũ dσ = 0

(this fixes the choice of the additive constant for ũ). Using Cauchy’s relations for
holomorphic functions, we get∫

Ω

|∇u|2 dx =
∫

Ω

|∇ũ|2 dx =
∫

∂Ω

ũ
∂ũ

∂n
= −

∫
∂Ω

ũ
∂u

∂s
,

hence by Cauchy-Schwarz’s inequality∫
Ω

|∇u|2 dx

∫
Ω

|∇ũ|2 dx ≤
∫

∂Ω

ũ2 dσ

∫
∂Ω

u′2 dσ . (7.34)

Let us denote by R[u] the Rayleigh quotient R[u] =
R
Ω |∇u(x)|2 dxR
∂Ω u(σ)2 dσ

. Then (7.34)
yields

R[u]R[ũ] ≤
∫

∂Ω u′2 dσ∫
∂Ω u2 dσ

. (7.35)
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Let us remark that minimizing the right-hand side of (7.35) corresponds to look-
ing for eigenvalues of a periodic string of length L. Now, since we have chosen ũ
such that

∫
∂Ω ũ dσ = 0, its Rayleigh quotient satisfies (according to (7.31) and the

fact that the first eigenfunction is constant) R[ũ] ≥ p2(Ω). We now choose u to be
a combination of cosine and sine functions like u(s) = c1 cos(2πx

L ) + c2 sin(2πx
L ).

Obviously, u is orthogonal (for the L2 scalar product on ∂Ω) to constant functions.
Moreover, it is always possible to choose c1 and c2 in such a way that u is orthog-
onal to u2, the second Stekloff eigenfunction. Therefore, according to (7.31), we
have R[u] ≥ p3(Ω). Now, this choice of u corresponds to the second eigenfunction
of a periodic string of length L. In particular, for this function u, the right-hand
side of (7.35) is

(
2π
L

)2. Therefore

p2(Ω)p3(Ω) ≤
(

2π

L

)2

≤
(

2π

2πR

)2

,

the last inequality being simply the classical isoperimetric inequality. Since, ac-
cording to (7.32), 1/R2 = p2(Ω∗)p3(Ω∗) the result follows. �
Remark 7.3.5. In two dimensions, Theorem 7.3.4 implies Theorem 7.3.3. Indeed,
it follows from the chain of inequalities and equalities:

p2(Ω)−1 + p3(Ω)−1

2
≥
√

p2(Ω)−1p3(Ω)−1 ≥
√

p2(Ω∗)−1p3(Ω∗)−1

√
p2(Ω∗)−1p3(Ω∗)−1 = R =

p2(Ω∗)−1 + p3(Ω∗)−1

2
(the first inequality is the classical inequality relying arithmetic and geometric
mean).

Open problem 25. Study the maximization problem for other Stekloff eigenvalues.

Open problem 26. Prove that the N -ball maximizes the product ΠN+1
k=2 pk(Ω) among

open sets in R
N with given volume.

Remark 7.3.6. For a related optimization problem with a Stekloff boundary con-
dition on a part of the boundary and a Neumann one on the remaining part, we
refer to a work by B.A. Troesch, [203]. In this paper, the author was interested in
the so-called sloshing problem, see also section 10.2.3.



Chapter 8

Eigenvalues of Schrödinger
operators

8.1 Introduction

8.1.1 Notation

A Schrödinger operator is an elliptic differential operator of the form LV = −�∆+
V (x) where � is the so-called Planck’s constant and V (x) a potential which will
be our main subject of interest in this chapter. Of course, mathematicians usually
decide to scale the Planck’s constant and we will do it also here. Another question
would consist in examining the behavior of the spectrum when we let � → 0. This
is the so-called semi-classic limit. Therefore, in this chapter, we are interested
in the eigenvalues λk(Ω, V ) (or λk(V ) since Ω will be a fixed bounded Lipschitz
domain in all this chapter and there is no possible confusion) of the system:{ −∆uk + V (x)uk = λk(V )uk in Ω,

uk = 0 on ∂Ω .
(8.1)

Remark 8.1.1. In quantum mechanics, these eigenvalues correspond to the energy
levels, in atomic units, of a quantum particle in the potential energy V imagined
as +∞ outside Ω. The first eigenvalue λ1(V ) is generally referred as the ground
state, the second λ2(V ) is the first excited state and the difference λ2(V )−λ1(V ) is
the fundamental gap. We could also replace the Laplacian by any elliptic operator
of the second order of the kind

∑N
i,j=1

∂
∂xi

(
aij(x) ∂u

∂xj

)
as in chapter 1. Most of

the results that we are going to state in this chapter would remain valid.

The potentials V that we will consider will generally be non-negative, but we
recall that it is an assumption which is not really indispensable, see Remark 1.1.3.
In this chapter, we are interested in extremum problems involving the eigenvalues
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of Schrödinger operators. We will not think in terms of Ω but in terms of V here.
Of course, it will generally be necessary to put some constraints on the potentials
V since, otherwise, the problem would become ill-posed or would have possibly
trivial solutions. This is the case, for example, if we want to minimize λ1(V ) among
non-negative V . Since, according to (1.32),

λ1(V ) = inf
y∈H1

0(Ω),y �=0

∫
Ω
|∇y(x)|2 + V y2(x) dx∫

Ω y(x)2 dx
(8.2)

we obviously have λ1(V ) ≥ λ1(0) = λ1(Ω) and therefore, the minimum would be
achieved by V = 0. In the sequel, we will consider constraints like

a ≤ V (x) ≤ b a.e. and/or
∫

Ω

V p(x) dx = c or ≤ c

for some positive constants a, b, c, p.
In the sequel, we will denote by R[y; V ] the Rayleigh quotient which appears

in the right-hand side of (8.2). Let us begin with simple properties of the map
V 
→ λk(V ):

Theorem 8.1.2. The map V 
→ λk(V ) is continuous on L∞(Ω) for the weak-*
topology and is concave.

Proof. The continuity result follows from Theorem 2.3.3 while the concavity comes
from the fact that V 
→ R[y; V ] is affine and from the minimum formulae (1.34).

�

For the first eigenvalue, we can also state an upper-semi continuity result.

Proposition 8.1.3. Let V be a potential and assume that the first eigenfunction
belongs to some Lp(Ω) space. Assume that a sequence of potentials Vn converge
weakly to V in Lq(Ω), with q = p/(p− 2). Then

λ1(V ) ≥ lim sup λ1(Vn) .

Proof. Let us denote by u1 the first eigenfunction associated to the potential
V . Then, by assumption and definition of the weak-convergence

∫
Ω

Vnu2
1 dx →∫

Ω Vnu2
1 dx. Therefore, thanks to (8.2)

λ1(V ) = R[u1; V ] = lim
n→+∞R[u1; Vn] ≥ lim sup λ1(Vn),

which is the desired result. �

Remark 8.1.4. If Ω is C1,1, the first eigenfunction u1 belongs to C1(Ω) (see Remark
1.2.11) and therefore to all Lp spaces.
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8.1.2 A general existence result

Let 0 ≤ a ≤ b be two given constants and let us introduce the two classes

Va,b := {V ∈ L∞(Ω) ; a ≤ V (x) ≤ b a.e.}, Va,b,c := {V ∈ Va,b,

∫
Ω

V (x) dx = c} .

(8.3)
Then, using compactness of these classes and continuity of the eigenvalues for the
weak-* topology, we have the following existence result.

Theorem 8.1.5. Let F : R
k → R be a continuous function and V one of the classes

defined in (8.3). Then the problem

min
V ∈V

F (λ1(V ), λ2(V ), . . . , λk(V )) (8.4)

has a solution.

8.2 Maximization or minimization of the first

eigenvalue

8.2.1 Introduction

The problem of maximizing the first eigenvalue of a Schrödinger operator among
potentials V of given Lp norm seems to have its origin in a question posed by
A. Ramm in [176]. Then, several authors gave, independently, an answer to this
query. Let us quote for example, M. Essen in [84], G. Talenti [201] for the one-
dimensional case, E. Harrell and M. Ashbaugh in [98], [17] and H. Egnell in [81]
for the N -dimensional case. Later Y. Egorov and S. Karaa in [82], [118] were also
interested in the topic. We also refer to C. Bennewitz and E. Veling, see [206], [33]
for the case of an unbounded interval. The problem of minimizing eigenvalues of
Schrödinger operators on manifolds is considered for example in [85] or [89].

8.2.2 The maximization problem

Let us begin with a general existence and uniqueness result (see [17]).

Theorem 8.2.1. Let Ω be a C1,1 bounded open set, p > 1 and V be a closed bounded
convex subset of Lp(Ω). Then, there exists a unique V ∗ which maximizes λ1(V )
in the class V.

Proof. Existence follows immediately from the fact that V is compact for the
weak convergence (it is closed because it is convex) and V 
→ λ1(V ) is upper-semi
continuous according to Proposition 8.1.3. We will denote by λ∗

1 the maximum
value.

For the uniqueness, let V1 and V2 be two maximizing potentials. According to
Theorem 8.1.2, their average V3 = (V1+V2)/2 is also a maximizer. Let us introduce
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u1, u2 and u3 as the corresponding first eigenfunctions. We observe that, unless
u1 = u2 = u3,

λ∗
1 = λ1(V3) = R[u3; V3] =

1
2

(R[u3; V1] + R[u3; V2]) >
1
2

(λ1(V1) + λ1(V2)) = λ∗
1 .

Therefore, u1 = u2. But, from the equation (8.1) we get V1u1 = V2u2 a.e. Since
the first eigenfunctions are positive in Ω, it follows that V1 = V2 a.e., which gives
uniqueness. �

We now look at the more specific case where the class is the unit ball (we
could obviously take any other centered ball with only minor changes):

Vp = {V ∈ Lp(Ω), V (x) ≥ 0,

∫
Ω

V p(x) dx ≤ 1}.

Remark 8.2.2. For the maximization problem, it is equivalent to work with the
equality constraint

∫
Ω V p(x) dx = 1 or with the inequality

∫
Ω V p(x) dx ≤ 1 because

we have the obvious relation (due to (8.2)) V1 ≤ V2 ⇒ λ1(V1) ≤ λ1(V2).

The case p > 1

Theorem 8.2.3. Let us assume that p > 1 and let us denote by p′ its conjugate ( 1
p +

1
p′ = 1). Then the maximum of λ1(V ) in the class Vp is achieved by the function

V0 := ‖y2
0‖1−p′

p′ y
2p′/p
0 where y0 is the (unique) minimizer in H1

0 (Ω) ∩ L2p′
(Ω) of

Jp(y) :=

∫
Ω
|∇y|2 dx +

(∫
Ω
|y|2p′

dx
)1/p′

∫
Ω

y2 dx
.

The function y0 can also be characterized as the first eigenfunction of the (non-
linear) eigenvalue problem:

−∆y +
(∫

Ω

|y|2p′
dx

)1/p′−1

|y|2(p′−1)y = µy (8.5)

and µ, the first eigenvalue of (8.5) is also the maximal value of λ1(V ) in Vp.
At last, V0 is the unique maximizer.

For the proof, we follow mainly the ideas of Talenti and Egnell, see [201], [81].
Another approach would consist in explicit optimality conditions, see e.g. [12].

Proof. Hölder’s inequality yields, for any V ∈ Vp, and y ∈ H1
0 (Ω) ∩ L2p′

(Ω):

∫
Ω

V (x)y2(x) dx ≤
(∫

Ω

V p(x) dx

) 1
p
(∫

Ω

(y2)p′
(x) dx

) 1
p′
≤
(∫

Ω

|y|2p′
(x) dx

) 1
p′
.
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Therefore, we have for any V ∈ Vp and y ∈ H1
0 (Ω) ∩ L2p′

(Ω),

∫
Ω
|∇y(x)|2 + V y2(x) dx∫

Ω
y(x)2 dx

≤
∫
Ω
|∇y(x)|2 dx +

(∫
Ω
|y|2p′

(x) dx
)1/p′

∫
Ω

y(x)2 dx
= Jp(y) .

(8.6)
Let us remark that if y ∈ H1

0 (Ω) \L2p′
(Ω), the right-hand side of (8.6) is +∞ and

the inequality still holds. This last inequality implies

λ1(V ) ≤ inf
y∈H1

0∩L2p′
Jp(y) . (8.7)

Now, it is well-known (by standard compactness arguments) that the above infi-
mum, say µ, is finite and attained by the solution y0 of the (nonlinear) eigenvalue
problem

−∆y +
(∫

Ω

|y|2p′
dx

)1/p′−1

|y|2(p′−1)y = µy . (8.8)

Moreover, it is also known that y0 is non-negative in (Ω) (replace y0 by |y0| in
G(y)). Then taking the supremum in V in (8.7) one gets

Mp := sup
V ∈Vp

λ1(V ) ≤ Jp(y0) . (8.9)

Now, let us define the potential V0 = ‖y2
0‖1−p′

p′ y
2(p′−1)
0 . First of all∫

Ω

V p
0 (x) dx =

(∫
Ω

y
2p/(p−1)
0 dx

)−1 ∫
Ω

y
2p/(p−1)
0 dx = 1

so V0 is an admissible potential. Moreover, equation (8.8) shows that y0 is an
eigenfunction of the Schrödinger operator LV0 associated to the eigenvalue µ. But,
since y0 is non-negative, it is the first eigenfunction and λ1(V0) = µ = Jp(y0). This
last equality together with (8.9) shows that the maximum Mp is achieved by V0.
At last, uniqueness has been proved in Theorem 8.2.1 �

The case p = 1

In this case, the maximum is attained for a bang-bang function.

Theorem 8.2.4. The maximum of λ1(V ) in the class V1 is achieved by the function
V0 := 1

|ω| χω where ω is the set ω := {x ∈ Ω; y0(x) = 1} and y0 is the (unique up
to the sign) minimizer in H1

0 (Ω) ∩ L∞(Ω) of

J1(y) :=

∫
Ω |∇y|2 dx + ‖y‖2∞∫

Ω y2 dx

normalized by ‖y0‖∞ = 1. Moreover J1(y0) is also the maximal value of λ1(V )
and it is also equal to 1/|ω|.
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Proof. We have immediately, for any V ∈ V1 and y ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω
|∇y(x)|2 + V y2(x) dx∫

Ω y(x)2 dx
≤

∫
Ω
|∇y(x)|2 dx + ‖y‖2

∞∫
Ω y(x)2 dx

= J1(y) . (8.10)

Let us remark that if y ∈ H1
0 (Ω)\L∞(Ω), the right-hand side of (8.10) is +∞ and

the inequality still holds. This last inequality implies, for all V ∈ V1:

λ1(V ) ≤ inf
y∈H1

0∩L∞(Ω)
J1(y) . (8.11)

Classical calculus of variations now imply existence of a non-negative minimizer
for J1. If we normalize it with ‖y0‖∞ = 1, this one solves the variational inequality{

y ∈ K := {y ∈ H1
0 (Ω); ‖y‖∞ ≤ 1} and ∀z ∈ K,∫

Ω
∇y.∇(z − y) dx − J1(y0)

∫
Ω

y(z − y) dx ≥ 0.
(8.12)

It is also possible (we refer to [81]) to prove that the solution of (8.12) is in
H2(Ω)∩C1,α(Ω), for some α, as soon as Ω is C2. Now, let us define the coincidence
set as ω = {x ∈ Ω; y0(x) = 1}, ω is closed. Outside ω, we can perform variations
in every direction without changing the infinite norm (I mean that ‖y0 + tz‖∞ = 1
if z is compactly supported in ωc and t small enough). It means that, outside ω,
y0 satisfies the usual differential equation

−∆y0 = µy0 for x /∈ ω, where µ = J1(y0) . (8.13)

Now, since y0 belongs to H2
loc(Ω), its Laplacian vanishes a.e. on the set ω where

it is constant, see e.g. [104], chap 3. Therefore, y0 satisfies

−∆y0 + µy0 = µy0 for x ∈ ω . (8.14)

Finally, grouping (8.13) and (8.14), we get that y0 satisfies

−∆y0 + µχωy0 = µy0 in Ω . (8.15)

Now, multiplying by y0 and integrating on Ω yields∫
Ω

|∇y0|2 dx + µ

∫
ω

y2
0 dx = µ

∫
Ω

y2
0 dx

or ∫
Ω
|∇y0|2 dx + µ|ω|∫

Ω y2
0 dx

= µ = J1(y0) =

∫
Ω
|∇y0|2 dx + 1∫

Ω y2
0 dx

so we can deduce that µ = 1/|ω|. Finally, since y0 is non-negative, according
to (8.15) it is the first eigenvalue of the potential V0 = χω/|ω| and therefore
λ1(V0) = J1(y0) = minJ1 which gives the desired result together with (8.10). At
last, uniqueness can be proved exactly as in Theorem 8.2.1. �
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It can be interesting to get more information about the set ω. For example,
it is simple to prove: if Ω is Steiner symmetric w.r.t. some hyperplane H (see
Definition 2.2.2), then ω is also symmetric w.r.t. H . Indeed, for any y ∈ H1

0 (Ω) ∩
L∞(Ω), if we introduce its Steiner symmetrization y�, we have immediately, thanks
to Theorem 2.2.4, that J1(y�) ≤ J1(y). Therefore, y0 = y�

0 and the result follows.
We can also deduce such symmetry results from the uniqueness of the maximizer
V0.

In the one-dimensional case, we can be more precise (see [84], [201] [81]). If
Ω = (−L, L), then

λ∗
1 =

( π

2L

)2
[

1
2

+

√
1
4

+
2L

π2

]2

and ω = [−α, α] with α = (2λ∗
1)

−1. It comes easily from the differential equation
satisfied by y0 and the compatibility conditions at −α and α. For results when
Ω = (0, +∞) or Ω = R, or with other boundary conditions, we refer e.g. to [206],
[33], [17].

8.2.3 The minimization problem

For the minimization problem, we need to consider some supplementary con-
straints. Actually, even in the class Vp = {V ∈ Lp(Ω);

∫
Ω V p dx = 1}, the minimum

is not achieved. Indeed, since λk(V ) ≥ λk(Ω) (thanks to (1.32)), according to The-
orem 2.3.3, it suffices to find a sequence in Vp which converges weakly-* to 0 to
see that the infimum of λk(V ) in the class Vp is λk(Ω). Now, it is easy to exhibit
such a sequence. For example, this is the case for

• Vn(X) = n1/pχBn(X) where χBn is the characteristic function of a ball Bn

of volume 1/n, in the case p > 1,

• any oscillating function like Vn(x) = π
2 sin(πx) in the case p = 1 (if Ω =

(0, 1)).

Even if we allow the potential V to become negative and we put a constraint
on the L1 norm of its negative part, the minimum of λ1(V ) is not achieved in this
class but in the wider class of Borel measures. Let us quote a result by G. Talenti
in this direction, see [201]:

Theorem 8.2.5 (Talenti). Let BA denote the class of Borel measures on the interval
I = (−L, L) whose negative part is of total mass A. Then the minimum of λ1 in
this class is achieved by −Aδ where δ is the Dirac measure at 0.

Obviously, in this case, equation (8.1) is to be understood in the sense of
distributions.

Adding one more constraint allows us to get another positive result. Let us
state it in one dimension:
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Theorem 8.2.6. Let I = (−L, L) and VA,B be the class

VA,B = {V ∈ L1(I); 0 ≤ V (t) ≤ B a.e.,

∫ L

−L

V (t) dt = A} (8.16)

(with B > A/2L). Then the minimum of λ1(V ) in the class VA,B is achieved by
the potential

V ∗(t) =
{

0 A
2B − L < t < L − A

2B ,
B −L < t < −L + A

2B and L − A
2B < t < L.

The situation for the minimizer is therefore exactly in contrast with the one
for the maximizer, see Figure 8.1.

−L −A/2 A/2 L −L −L+A/2 L−A/2 L

Figure 8.1: The potential which maximizes λ1(V ) (left), which minimizes λ1(V )
(right).

Proof. First of all, we have existence of a minimizer according to Theorem 8.1.5.
The set VA,B is convex and its extremal points are exactly B times a character-
istic function (it is classical, see e.g. [104] chapter 7). Moreover, we know that
V 
→ λ1(V ) is concave, see Theorem 8.1.2. Therefore, the minimizer has to be an
extremal point.

Another key point is that λ1(V ) decreases under increasing rearrangement.
Indeed, let V be any potential, u its first eigenfunction, and denote by V∗ and u∗
their increasing rearrangement respectively. We have, thanks to properties of this
rearrangement:

λ1(V ) =

∫
I
|∇u(x)|2 + V u2(x) dx∫

I
u(x)2 dx

≥
∫

I
|∇u∗(x)|2 + V∗u2

∗(x) dx∫
I
u∗(x)2 dx

≥ λ1(V∗) .

Since the increasing rearrangement of any characteristic function of a set of
total length A/B is the characteristic function of the two intervals [−L,−L +
A/2B] ∪ [L − A/2B, L] the result follows. �
Remark 8.2.7. In higher dimension, for a domain Ω ⊂ R

N , we have an analogous
result. Actually, the beginning of the above proof is valid in any dimension. So
there always exists a minimizer of λ1(V ) in the class VA,B (or its generalization)
and this minimizer is B times a characteristic function χω. Now, it seems probable
that ω is a neighborhood of ∂Ω, but it remains to locate it more precisely. If Ω is
a ball, the same rearrangement argument shows that ω is an annulus touching the
boundary of the ball.
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8.3 Maximization or minimization of other eigenvalues

When looking at the maximization problem for a higher eigenvalue, say λk(V ),
the results are less precise. In particular, one needs some compactness and then
it gives some restrictions on the exponent p and the dimension N . Let us begin
with an existence result with such assumptions as one can find in [17].

Theorem 8.3.1. Let Ω be a bounded C1,1 domain in R
N , N ≤ 3 and p > max(1, N

2 )
be fixed. Let S be a closed, bounded convex set in Lp(Ω). Then, λk(V ) attains its
maximum (and its minimum) in S.

Proof. We will use the classical Sobolev-Rellich embedding theorem: H1
0 (Ω) ↪→

Lq(Ω), with q = +∞ if N = 1, for any q < +∞ if N = 2 and for any q <
2N/(N−2) if N ≥ 3 and the embedding is compact. From this theorem and Hölder
inequality, we deduce that for all y ∈ H1

0 (Ω) and V ∈ Lp(Ω), then
∫
Ω

V y2 dx is
bounded from above by ‖V ‖p‖‖y‖2

2p′, where p′ is the conjugate exponent of p.
Indeed, since p′ = p/(p−1) and p > N/2, we have 2p′ < 2N/(N −2) in dimension
N ≥ 2 (the case N = 1 is obvious). Now using the min-max formulae, it is easy
to see that λk(V ) is uniformly bounded on S.

Let Vn be a maximizing sequence (the proof is the same for a minimizing
sequence). Let us denote by λn = λk(Vn) and un the sequence of corresponding
eigenvalues and eigenfunctions. As usual, un is normalized by ‖un‖2 = 1. Up to a
subsequence, for which we keep the index n, we can assume that

Vn ⇀ V∞ in Lp(Ω), un ⇀ u∞ in L2(Ω), λn → λ∞ .

Now, since λn =
∫
Ω |∇un(x)|2 + Vnu2

n(x) dx is bounded, un is also bounded in
H1

0 (Ω) and we can assume that un converges weakly to u∞ in H1
0 (Ω) and strongly

in Lq(Ω) for all the q allowed by Rellich’s theorem. Actually, we can prove that
the convergence is uniform. It is obviously true in dimension N = 1. In dimension
N = 2, since Vnun is bounded in some Lq for q > 1, we see, thanks to the equation
that ∆un is also bounded. Classical regularity results imply that un is bounded in
W 2,q(Ω) for some q and the result follows. At last, in dimension N = 3, we get by
Hölder inequality that Vnun is bounded in Lq for some q > 6

5 and we deduce that
∆un is bounded in the same space, and therefore un is bounded in some W 2,q(Ω).
We cannot conclude immediately but a classical “bootstrap” argument will provide
the uniform convergence which is needed. This uniform convergence implies that
Vnun − λnun converges weakly in Lp(Ω) to V∞u∞ − λ∞u∞ and therefore, we can
pass to the limit in the equation which shows that u∞ is the first eigenfunction
associated to the potential V∞ and the eigenvalue λ∞. Then V∞ is the desired
maximizer. �

We can also look at the more particular case S = Vp = {V ; ‖V ‖p ≤ 1}. It
is noticeable that we get the same result as in Theorem 8.2.3 but with a different
method.



126 Chapter 8. Eigenvalues of Schrödinger operators

Theorem 8.3.2. Assume that assumptions of Theorem 8.3.1 are fulfilled. Assume
moreover that λk is simple at the extremum. Let y0 be a solution of the nonlinear
eigenvalue problem { −∆y0 + |y0|2/(p−1)y0 = λ∗

ky0 in Ω,
y0 = 0 on ∂Ω,

(8.17)

where λ∗
k is the maximum value of λk on Vp = {V ; ‖V ‖p ≤ 1}. Then V0 =

|y0|2/(p−1)/‖y2/(p−1)
0 ‖p is a maximizer of λk.

Reciprocally, if V0 is a maximizer of λk, then the corresponding eigenfunction y0

satisfies
y2
0 = V p−1

0 (8.18)

and therefore also (8.17).

Proof. First, let V0 be any maximizer as given by Theorem 8.3.1. Let us consider
perturbations of the form

V0 +
τχT1(x)∫

T1
V p−1

0 dx
− τχT2 (x)∫

T2
V p−1

0 dx

where T1 and T2 are disjoints subsets of Ω. At order 1, it still satisfies the con-
straint. Using perturbation theory like in Theorem 2.5.11, we get

0 =
dλk

dτ
\τ=0 =

∫
T1

y2
0(x) dx∫

T1
V p−1

0 dx
−
∫

T2
y2
0(x) dx∫

T2
V p−1

0 dx

for which we get y2
0 = cV p−1

0 . Actually, it is a necessary condition of optimality.
But, since y0 is defined up to a constant, we can obviously choose c = 1 which
yields (8.18). Reciprocally, replacing V0 by |y0|2/(p−1) in the eigenvalue problem
satisfied by y0 gives (8.17). �

Note that we have no uniqueness of the maximizer in general. One can find
such examples of non-uniqueness in [17] or in [84].

In one dimension, due to the compact embedding H1
0 (Ω) ↪→ L∞(Ω), the

previous existence results remain valid for p = 1. We let the reader adapt the
proof. Moreover, we can be more precise by giving the explicit maximizer:

Theorem 8.3.3 (Essen). The maximum of λk(V ) in the class VB := {V ∈ L1(0, 1),
V ≥ 0,

∫ 1

0 V (t) dt = B} is achieved by the periodic function Vk of period 1/k defined
by

Vk(t) =
{

Λk ηk < t < 1
k − ηk,

0 0 < t < ηk and 1
k − ηk < t < 1

k ,

where Λk =
k2

4

(
π +

√
π2 +

4B

k2

)2

is the maximum value of λk(V ) and ηk =

π

2
√

Λk

.
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For the proof, we refer to [84]. Let us remark that Vk restricted to each
sub-interval J of periodicity of length 1/k is the maximizer of λ1(V ) on such an
interval. Actually, it is the main ingredient in the proof of Theorem 8.3.3: using the
fact that an eigenfunction associated to the k-th eigenvalue has exactly k nodal
domains in 1 − D, roughly speaking we can look at the situation on each nodal
domain separately.

Remark 8.3.4. Analogously, we can be interested in minimizing λk(V ) in the class
VA,B defined in (8.16). Following the beginning of the proof of Theorem 8.2.6, we
obtain existence of a minimizer and this one is B times a characteristic function.
Then, using the same idea as above, we are able to prove that the minimizer is
the periodic function Wk such that on [0, 1/k], Wk = B on [0, A/(2Bk)] ∪ [1/k −
A/(2Bk)] and 0 elsewhere.

8.4 Maximization or minimization of the fundamental

gap λ2 − λ1

8.4.1 Introduction

In quantum mechanics, the fundamental gap λ2 − λ1 and, in particular, its size
if very important. If it is small enough, it can product the well-known tunnelling
effect which has found many applications in modern science and technology. There-
fore, the question consisting of minimizing the fundamental gap appears as very
pertinent. Below, we will see that the smallest possible gaps are due to double-
well type tunnelling. The maximization problem is certainly less interesting from
a physical point of view, but the mathematical question has sense and we will also
consider it.

8.4.2 Single-well potentials

We first consider the one-dimensional case. Without loss of generality, we can
choose I = [0, π] as the interval of work. The results that we are going to state
remain valid for any other interval by re-scaling. Our first result is due to M.
Horváth in [112]. He was inspired by a previous paper of M. Ashbaugh and R.
Benguria [6] where they assumed a supplementary symmetry that M. Horváth
succeeded to remove. It deals with single-well potentials:

Definition 8.4.1. A bounded function V defined on I = [0, π] is said to be single-
well if there exists c ∈ [0, π] such that V is non-increasing for x ≤ c and is
non-decreasing for x ≥ c.

Theorem 8.4.2 (Horváth). The constant potentials minimize the gap λ2(V )−λ1(V )
in the class of single-well potentials with transition point c = π/2.
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Actually, the assumption that the transition point is at the middle seems
important since, in the case c �= π/2, M. Horváth was able to exhibit a potential
V with a smaller gap than a constant potential.

We begin with two lemmas. The first one is technical and we refer for the
proof to [112].

Lemma 8.4.3. Let m > 0 and let us consider the function of one variable f(t) =√
t cot(π

√
t/2). Then the first two real solutions of the equation f(t) = −f(t−m)

satisfy t2 − t1 > 3.

Lemma 8.4.4. Let V be any potential and u1, u2 be the two normalized eigenfunc-
tions associated to λ1(V ), λ2(V ). Let x0 be the (unique) point where u2 vanishes.
Then, there exist two points x−, x+ such that 0 ≤ x− < x0 < x+ ≤ π satisfying

u2
2 > u2

1 on (0, x−) ∪ (x+, π), u2
2 < u2

1 on (x−, x+) (8.19)

(and the two above sets are non-empty).

Proof. Without loss of generality we can assume u1 and u2 positive near 0. Let us
begin to prove that the quotient u2/u1 is decreasing on (0, π). For 0 < x < x0, we
have (

u2(x)
u1(x)

)′
= u1(x)−2[u′

2(x)u1(x) − u2(x)u′
1(x)]

=
1

u2
1(x)

∫ x

0

(λ1 − λ2)u1(s)u2(s) ds < 0 .

In the same way, for x0 < x < π, we have(
u2(x)
u1(x)

)′
= − 1

u2
1(x)

∫ π

x

(λ1 − λ2)u1(s)u2(s) ds < 0 .

Therefore, the function u2
2/u2

1 is decreasing from 0 to x0 and increasing from x0

to π. The result follows (we use the normalization to prove that each set is non-
empty). �
Proof of Theorem 8.4.2. For any M > 0, let us introduce the class

AM = {V ∈ L∞(0, π), 0 ≤ V ≤ M, V is single-well with transition point at π/2}.
According to Theorem 8.1.5, we know the existence of a minimizer for the gap, say
V ∗, in the class AM (it is clear that this class is closed for the weak-* convergence).
We just have to show that V ∗ is constant for large M since any single-well potential
is in a class AM for some M large enough. We go on denoting by u1 and u2 the
two first eigenfunctions associated to V ∗. Let us first consider the case:

A) x− ≤ π/2 < x+ (the case x+ = π/2 is similar). Let us introduce the
potential

V1(x) =
{

V ∗(x−) on (0, π/2),
V ∗(x+) on (π/2, π),
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V1 is in the class AM and

V1 ≤ V ∗ on (0, x−) ∪ (x+, π), V1 ≥ V ∗ on (x−, x+) . (8.20)

Let us define the potential Vt = tV1 + (1 − t)V ∗ (which also belongs to AM ).
Thanks to formulae (2.54), the derivative of λ2(Vt) − λ1(Vt) at t = 0 is given by

d

dt
|t=0(λ2(Vt) − λ1(Vt)) =

∫ π

0

(V1 − V ∗)(u2
2 − u2

1) dx .

On the one hand, this derivative must be non-negative by optimality of V ∗. On the
other hand, the product under the integral is non-positive by (8.19) and (8.20).
Therefore, the only possibility is that the integral is zero and V1 = V ∗. So, we
have proved that in this case A), the minimizer V ∗ has to be a step function with
the only possible jump at π/2.

B) Let us now consider the second case x− > π/2 (which is similar to x+ <
π/2) and let us prove that it cannot happen. Introducing the new potential V2

defined as

V2(x) =
{

V ∗(π/2) on (0, x−),
V ∗(x+) on (x−, π),

we can prove exactly as above that V2 = V ∗. Now, let us consider another candi-
date:

V3(x) =
{

0 on (0, x−),
M on (x−, π) .

From the normalization and the definition of x−, we get∫ x−

0

(u2
2 − u2

1) dx > 0,

∫ π

x−
(u2

2 − u2
1) dx < 0 . (8.21)

This implies, by optimality of V ∗, that (we also use the fact that V ∗ = V2)

0 ≤ (λ2 − λ1)′ =
∫ π

0

(V3 − V ∗)(u2
2 − u2

1) dx

= −V ∗(
π

2
)
∫ x−

0

(u2
2 − u2

1) dx + (M − V ∗(x+)
∫ π

x−
(u2

2 − u2
1) dx .

Now, using (8.21), we see that the previous inequality is only possible if V ∗(π
2 ) = 0

and M = V ∗(x+) (i.e. V ∗ = V3). But for such a potential, the second eigenfunction
is given by

u2(x) =
{

c sin(
√

λ2x) on (0, x−),
d sin(

√
λ2 − M(π − x)) on (x−, π) .

We know that the only zero x0 of u2 is between x− and x+, therefore, according
to the case B, we would have here u2 �= 0 on (0, π/2). This is only possible when√

λ2π/2 < π i.e. when λ2 < 4. Now, for M ≥ 4 we would have λ2 − M < 0
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and then 0 = u2(x0) = d sin(
√

λ2 − M(π − x0)) is impossible. Therefore, the only
possible case (for M ≥ 4) is A) for which the optimal potential V ∗ is given by

V ∗(x) =
{

0 on (0, π/2),
m on (π/2, π), or V ∗(x) =

{
m on (0, π/2),
0 on (π/2, π)

for some m ≥ 0 (the proof we did above to get V ∗ = V3 is still valid in case A).
Since the two potentials have the same eigenvalues, it is enough to consider the
first one. In this case, an eigenfunction corresponding to an eigenvalue λ is given
by

u(x) =
{

c sin(
√

λx) on (0, π/2),
d sin(

√
λ − m(π − x)) on (π/2, π) .

The constants c and d have to be chosen such that u is C1 at π/2. This can be
done if and only if the quotients u′/u are the same at π/2 from both sides, i.e.
when √

λ cot(
√

λπ/2) = −√
λ − m cot(

√
λ − m π/2) . (8.22)

So, the eigenvalues are the real solutions of the equation (8.22). But Lemma 8.4.3
states that, in this case, λ2 −λ1 > 3 if m �= 0. Hence, since 3 is precisely the value
of λ2 − λ1 for a constant potential, the result is proved. �

Remark 8.4.5. By changing V to −V , we prove: The constant potentials maximize
the gap λ2(V )−λ1(V ) in the class of single-barrier potentials with transition point
at π/2 (a single-barrier potential is a function which is first non-decreasing, then
non-increasing).

Remark 8.4.6. For an extension of Theorem 8.4.2 to double-well potentials (i.e.
functions V which are non-increasing, then non-decreasing, then non-increasing),
we refer to [1].

Let us quote, without proof, another result due to R. Lavine in [138]. The
idea of the proof is similar. Let us remark that the following theorem is also valid
in the case of a Neumann boundary condition.

Theorem 8.4.7 (Lavine). The constant potentials minimize the gap λ2(V )−λ1(V )
in the class of convex potentials.

Let us now give, in the same spirit, a result in the case of a ball. It is due to
M. Ashbaugh and R. Benguria. The proof is similar to the previous one, although
more technical because of spherical coordinates. We will not give it here, we refer
to [6].

Theorem 8.4.8. Let B be a ball of radius R and V be the class of radial potentials V
which satisfy [rV (r)]′′ ≥ 0 for 0 < r < R. Then, the constant potentials minimize
the gap λ2(V ) − λ1(V ) in the class V.
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Remark 8.4.9. Theorem 8.4.8 applies in particular to all smooth convex spherically
symmetric potentials since such a potential is obviously non-decreasing on lines
starting at the origin and satisfies V ′′(r) ≥ 0. Thus [rV (r)]′′ = rV ′′(r)+2v′(r) ≥ 0
and the assumption is satisfied.

8.4.3 Minimization or maximization with an L∞ constraint

In this section, we work with potentials V in the class

V∞,M = {V ∈ L∞(Ω); 0 ≤ V ≤ M a.e.} .

We recall that we have proved in Theorem 8.1.5 existence of a minimizer or a
maximizer for the gap Γ(V ) := λ2(V ) − λ1(V ) in this class. We are now going to
characterize such extrema. The following theorems are due to M. Ashbaugh, E.
Harrell and R. Svirsky in [18]. For similar results in the class V∞,p,M,H = {V ∈
L∞(Ω); 0 ≤ V ≤ M a.e.;

∫
Ω V p(x) dx = H}, we refer to [119].

Theorem 8.4.10. Let V∗ be a minimizer of the gap Γ(V ) in the class V∞,M . Then:

(i) λ2(V∗) is non-degenerate.

(ii) There exists a connected subset ω ⊂ Ω such that V∗ = Mχω.

(iii) Moreover ω = {x ∈ Ω; u∗
1(x) ≥ |u∗

2(x)|} where u∗
1 and u∗

2 are the two first
eigenfunctions.

We have a similar result for the maximizer:

Theorem 8.4.11. Let V ∗ be a maximizer of the gap Γ(V ) in the class V∞,M . Then
either λ2(V ∗) is degenerate or

(i) There exists a subset ω ⊂ Ω such that V ∗ = Mχω and ωc is connected.

(ii) Moreover Int(ω) = {x ∈ Ω; u∗
1(x) < |u∗

2(x)|} where u∗
1 and u∗

2 are the two
first eigenfunctions.

We give the proof only for the minimizer. We follow [18]. The case of the
maximizer is very similar. For an analogous analysis, but for the problem consisting
in minimizing the energy instead of the gap, we refer to [102].

Proof. Let us begin with (ii) of Theorem 8.4.10. We consider the set T = {x ∈
Ω; 0 < V∗(x) < M} and we want to prove that it has zero measure. We write it
T = ∪∞

k=1Tk where

Tk = {x ∈ Ω;
1
k

< V∗(x) < M − 1
k
} .

Let x0 be any point in Tk and Gk,j ⊂ Tk be any measurable sequence of subsets
containing x0. Then, perturbations of the form P = χGk,j

are admissible (in the
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sense that V + tP is still in V∞,M for all sufficiently small t). We recall that,
according to Theorem 2.5.11, if λk(V ) is non-degenerate, then

dλk(V + tP )
dt

=
∫

Ω

Pu2
k dx at t = 0 . (8.23)

In particular, for the gap functional, we have

0 =
dΓ(V + tP )

dt
=
∫

Ω

P (u2
2 − u2

1) dx =
∫

Gk,j

(u2
2 − u2

1) dx at t = 0 .

Dividing by |Gk,j | and letting Gk,j shrink to x0 as j → ∞, we find by the Lebesgue
Density Theorem that

u2
2(x) = u2

1(x) on Tk and therefore on T . (8.24)

We are going to prove that this can not occur on a set of positive measure. If it
would be the case, let us assume that T+ := {x ∈ T ; u2(x) > 0} is of positive
measure (if it was the set T− := {x ∈ T ; u2(x) < 0} we could multiply u2 by
−1). Since u1 does not vanish in Ω and u2

1 = u2
2 on T , this implies that T =

T+ ∪ T−. On T+, we have u1 − u2 = 0 and since (u1 −u2) ∈ H2(Ω), the Laplacian
∆(u1−u2) vanishes almost everywhere on T+ (see e.g. [104] chap 3). Substituting
into the eigenvalue equation (8.1), we find that (λ2 − λ1)u1 = 0 a.e. on T+ which
is impossible since u1 > 0 on Ω. Therefore, if we denote by ω the support of V∗
(in the sense of distributions), we necessarily have V∗ = Mχω.

We can now prove that u1(x) ≥ |u2(x)| on ω using the same perturbation
argument. Indeed, if x ∈ ω and Gj is a sequence of sets shrinking to x, we get the
result from

0 ≥ dΓ(V + tP )
dt

=
∫

Gj

(u2
2 − u2

1) dx at t = 0

and the Lebesgue Density Theorem. A similar argument shows that u2
1(x) ≤ u2

2(x)
on ωc. Moreover, the inequality on ωc must be strict; indeed suppose that u2

1(x0) =
u2

2(x0) for some x0 in ωc. Consider a ball B centered at x0 and contained in ωc.
Without loss of generality, we can assume that u2 > 0 in B. Now, we know that
the minimizing potentials V∗ satisfy V∗ = 0 on B. The function w = u1 − u2 is
non-positive on B and attains its maximum at x0. But it is subharmonic (since
∆w = λ2u2 − λ1u1 > 0 on B) and therefore u2 = u1 on B by the maximum
principle. This, however, is impossible as for (8.24).

Let us now prove the non-degeneracy of λ2(V∗). If λ2(V∗) were m-fold degen-
erate, then for any particular admissible perturbation P (x), the cluster of eigen-
values λ2,k(t) into which λ2(V∗) would split could be arranged to be analytic in t
at t = 0, and likewise for the associated orthonormalized eigenfunctions {u2,k} de-
pending on P (see Remark 2.5.14). Let us denote Γk = λ2,k(V∗+tP )−λ1(V∗+tP ).
If

dΓk

dt
< 0 at t = 0
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for any k, then we would have Γ(t0) ≤ Γk(t0) < Γ(0) for some t0 > 0, which is
impossible since Γ(0) is a minimum. In the same way, we get a contradiction by
assuming

dΓk

dt
> 0 at t = 0

for any k (take now t0 < 0). Therefore

dΓk

dt
=
∫

Ω

P (u2
2,k − u2

1) dx = 0 at t = 0 (8.25)

for all admissible perturbations P and for all k. Suppose now u is any normalized
vector in the eigenspace for λ2, so that

u =
m∑

j=1

cju2,j,

m∑
j=1

|cj |2 = 1 .

Because of (2.56),∫
Ω

P (x)(u2−u2
1) dx =

∫
Ω

P (x)(
m∑

j=1

|cj |2u2
2,j−u2

1) dx =
m∑

j=1

|cj |2
∫

Ω

P (x)(u2
2,j−u2

1) dx

(8.26)
this last quantity being 0 by (8.25). We may now argue as in the previous steps
of the proof, restricting first to sets Tk to conclude that, for some set ω, V∗(x) =
Mχω(x) a.e. We prove exactly in the same way that,

on ω, u2
1(x) ≥ u2(x) and on ωc, u2(x) ≥ u2

1(x) (8.27)

as before, and that this holds for each and every normalized vector u in the
eigenspace of λ2.

Suppose, finally, that there are two orthonormal vectors u2,a and u2,b in
the second eigenspace and that x0 is a point on ∂ω ∩ Ω; so that we may take
u2,a(x0) = u2,b(x0) = u1(x0) �= 0. Then the vector

u(x) =
1√
2

(u2,a(x) − u2,b(x)) = 0 when x = x0 .

It would follow that u2
1(x) > u2(x) in a neighborhood of x0, so in particular on

some part of ωc, contradicting (8.27).
It remains to prove that ω is connected. Clearly the nodal set {x ∈ Ω; u2(x) =

0} belongs to a connected component of ω. The nodal set separates Ω into two
nodal domains (see section 1.3.3), so suppose that ω were to contain two disjoint
regions Ω1 and Ω2, one of which, say Ω1, includes the nodal set, while Ω2 lies within
one of the nodal domains. Without loss of generality, we assume that u2 > 0 on
Ω2. We have established that u1 > u2 a.e. on Ω2 and u1 = u2 on ∂Ω2. We use
u(x) := u1(x) − u2(x) as a trial function for the Dirichlet eigenvalue problem for
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−∆ + V∗ restricted to Ω2, noting that the lowest eigenvalue of this restriction lies
above λ2(V∗) because Ω2 lies within a nodal domain, see Proposition 1.3.3. Hence
the min-max variational characterization of eigenvalues would imply that

λ2

∫
Ω2

(u1 − u2)2 dx ≤ ∫
Ω2

(u1 − u2)(−∆ + V∗)(u1 − u2) dx

=
∫
Ω2

(u1 − u2)(λ1u1 − λ2u2) dx

= λ1

∫
Ω2

(u1 − u2)2 dx − (λ2 − λ1)
∫
Ω2

(u1 − u2)u2 dx

< λ1

∫
Ω2

(u1 − u2)2 dx ,

which would contradict λ2 > λ1. �

The one-dimensional case

In one dimension, we can be more precise. Let us assume, without loss of generality,
that Ω = (−L, L).

Theorem 8.4.12. Let Ω = (−L, L) and V∗ be a minimizer of the fundamental gap
in the class V∞,M . Then, V∗ = Mχω where ω = [−a, a] for some a ∈ (0, L).

Actually, we already know that V∗ = Mχω with ω = {x; |u2(x)| ≤ u1(x)}
which is connected. So, what is left to show is that ω is symmetric. We cannot
use a rearrangement technique here, nevertheless it can be shown thanks to the
Sturm comparison and separation theorem. We suggest that the interested reader
consult [18].

8.4.4 Minimization or maximization with an Lp constraint

We also give some results taken from [18]. Let p be a real number such that
N/2 < p < +∞ when the dimension N satisfies N ≥ 2 and Vp,M denotes the class

Vp,M = {V ∈ Lp(Ω); ‖V ‖p ≤ M} .

In dimension 1, we will consider all possible values p > 1 (we could also consider
the set of bounded real Borel measures of total mass M).

Theorem 8.4.13. There exists a minimizer V∗ of the gap Γ(V ) in the class Vp,M .
Moreover, it satisfies

(i) λ2(V∗) is non-degenerate.

(ii) supp(V∗) = Ω and V∗ and its eigenfunctions u1, u2 are related by

u2
2 − u2

1 = −c|V∗|p−2V∗ (8.28)

for some constant c > 0. In particular, |u2| ≤ u1 on Ω+ := supp(V∗+) where
V∗+ = max(V∗, 0) and |u2| ≥ u1 on Ω− := supp(V∗−).

(iii) Ω+ is connected.
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(iv) V∗ is continuous and ∫
Ω

|V∗|p−2V∗ dx = 0 . (8.29)

We have a similar result for the maximizer:

Theorem 8.4.14. There exists a maximizer V ∗ of the gap Γ(V ) in the class Vp,M .
Moreover, it satisfies: either λ2(V ∗) is degenerate or

(i) supp(V ∗) = Ω and V ∗ and its eigenfunctions u1, u2 are related by

u2
2 − u2

1 = +c|V ∗|p−2V ∗ (8.30)

for some constant c > 0. In particular, |u2| ≥ u1 on Ω+ := supp(V ∗
+) and

|u2| ≤ u1 on Ω− := supp(V ∗−).

(ii) Ωc
+ is connected.

(iii) V ∗ is continuous and ∫
Ω

|V ∗|p−2V ∗ dx = 0 . (8.31)

Sketch of the proof for the minimizer: (for more details we refer to [18]). The
existence of a minimizer follows exactly as in the proof of Theorem 8.3.1. The
proof of the non-degeneracy of λ2 is similar to the one given in the case p = +∞.
It is clear that the minimizing potential satisfies ‖V∗‖p = M , as otherwise every
bounded perturbation would be admissible, and we would find as in the first step of
the proof of Theorem 8.4.10 that u2

1(x) = u2
2(x) throughout Ω, which is impossible.

In addition, any bounded, measurable perturbation such that

supp(P ) ⊂ Ω \ supp(V∗)

is admissible, so the same argument implies that supp(V∗) = Ω. The characteri-
zation of the minimizer follows the main lines of the proof of Theorem 8.3.2. The
regularity result for V∗ comes directly from the relation (8.28) and the continuity
of eigenfunctions. Moreover, relation (8.29) results from integrating (8.28) and us-
ing the fact that u1 and u2 are normalized. At last connectedness of Ω+ is proved
as in the L∞ case.

The one-dimensional case

In one dimension, for Ω = (−L, L), it follows from the general result and a careful
study that Ω+ := supp(V∗+) = [a, b] for some −L ≤ a < b ≤ L. It can be proved,
more precisely, that V∗ is a double-well potential, see [18]: there exists a, b : −L <
a < b < L such that supp(V∗−) = [0 − L, a] ∪ [b, L] and supp(V∗+) = [a, b]. In
other words, V∗ consists of two wells separated by a barrier. For a maximizer, we
get the reverse: V ∗ consists of two barriers with a single well in between.

Concerning the symmetry of the supports and of the minimizer (i.e. −a = b),
it is actually known for p = 2 but unknown for other values of p.



136 Chapter 8. Eigenvalues of Schrödinger operators

Open problem 27. Prove that the minimizer V∗ and the maximizer V ∗ are even
functions when Ω = (−L, L) for any value of p > 1.

8.5 Maximization of ratios

8.5.1 Introduction

The main results in this section are due to M. Ashbaugh and R. Benguria. We are
going to study ratios of the kind λn(V )/λ1(V ). In subsection 8.5.2, we consider the
one-dimensional case and we prove that λ2(V )/λ1(V ) always achieves its maximum
for V = 0, see [5]. This result has been then generalized by the same authors for
any n in [8]. We give their result in subsection 8.5.3 where we also consider more
general ratios like λn(V )/λm(V ). At last, in Remark 8.5.7, we consider again the
ratio λ2(V )/λ1(V ) in dimension N and we re-introduce the domain Ω to show (in
the spirit of Theorem 6.2.1) that the maximum of such a ratio is achieved when
Ω is a ball and V = 0. This result appeared in [10].

In all this section, we keep the same notation, the potentials V are assumed
to be non-negative and in L1(Ω).

8.5.2 Maximization of λ2(V )/λ1(V ) in one dimension

Theorem 8.5.1 (Ashbaugh-Benguria). Let Ω = (a, b) be a finite interval. Then the
ratio λ2(V )/λ1(V ) achieves its maximum among non-negative potentials in L1(Ω)
for V = 0. Moreover, it is the unique maximizer.

This theorem is contained in the next one, but its proof is much simpler and
interesting in itself. This is the reason why we give it here.

Proof. Let u1 be the first eigenfunction associated to V . By the commutation
formula, see [76], the operators L = − d2

dx2 +V (x) and L̃ = − d2

dx2 +V (x)−2 (u′
1/u1)

′

have the same spectrum except for λ1. Thus we can obtain an upper bound for λ2

by using the min-max formula for L̃. Taking u2
1 as our trial function, we find

L̃u2
1 = −4u1u1” + V u2

1 = 4λ1u
2
1 − 3V u2

1 .

Hence

λ2 ≤ 4λ1 − 3

∫ b

a V u4
1 dx∫ b

a
u4

1 dx
. (8.32)

This shows that λ2/λ1 ≤ 4 for non-negative potentials, with equality if and only
if V = 0 (because u1 is continuous and positive on [a, b]). �

Remark 8.5.2. The choice of u2
1 as the trial function is motivated by the fact that

u2
1 is the first eigenfunction of the operator L̃ when V = 0.
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Remark 8.5.3. A classical limiting argument allows us to extend the previous result
to an unbounded interval if the potential V is assumed to satisfy V (x) → +∞
when |x| → ∞, see [5].

8.5.3 Maximization of λn(V )/λ1(V ) in one dimension

Theorem 8.5.4 (Ashbaugh-Benguria). Let Ω = (a, b) be a finite interval. Then, for
any integer n, the ratio λn(V )/λ1(V ) achieves its maximum among non-negative
potentials in L1(Ω) for V = 0. Moreover, it is the unique maximizer.

Proof. Without loss of generality, we can assume that Ω = (0, 1) (use translation
and rescaling). Of course, since the eigenvalues when V = 0 are given by λk = k2π2,
it suffices to prove that λn(V )/λ1(V ) ≤ n2 with equality if and only if V = 0.
The proof will be by contradiction. Fix n and suppose that λn(V )/λ1(V ) > n2 for
some potential V ∈ L1(Ω).

The idea consists in introducing modified Prüfer variables r(x) and θ(x)
defined by the two relations

u(x) = r(x) sin
(√

λθ(x)
)

,

u′(x) =
√

λr(x) cos
(√

λθ(x)
) (8.33)

where u denotes one of the two eigenfunctions u1 or un and λ the corresponding
eigenvalue. Of course, if we want the second relation in (8.33) to hold, it implies
that

r′(x) sin
(√

λθ(x)
)

=
√

λr(x) cos
(√

λθ(x)
)

(1 − θ′(x)) . (8.34)

Now, we have

u′′(x) =
√

λr′(x) cos
(√

λθ(x)
)
− λr(x)θ′(x) sin

(√
λθ(x)

)
. (8.35)

Therefore, replacing r′(x) by its value given in (8.34) and using (8.35) in the
eigenvalue equation −u′′+V (x)u = λu shows that θ is a solution of the differential
equation

θ′(x) = 1 − V (x)
λ

sin2
(√

λθ(x)
)

:= F (x, θ, λ) . (8.36)

We define θ1 (respectively θn) to be the solution of equation (8.36) with λ =
λ1 (respectively, λ = λn) and satisfying the initial condition θ(0) = 0. Since
these solutions correspond to the eigenfunctions u1 and un which satisfy Dirichlet
boundary conditions and which have respectively 1 and n nodal domains, it follows
(the function r(x) does not vanish) that

θ1(1) =
π√
λ1

and θn(1) =
nπ√
λn

. (8.37)
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Let us now prove that the inequality

F (x, θ, λn) ≥ F (x, θ, λ1) (8.38)

holds for (x, θ) ∈ [0, 1] × [0, nπ/
√

λn]. Indeed, if (8.38) is true, it will imply by a
simple comparison argument for ordinary differential equations that θn(t) ≥ θ1(t)
for all t ∈ [0, 1] and this would contradict the fact that θn(1) = nπ/

√
λn <

π/
√

λ1 = θ1(1).
So, it remains to prove (8.38). This is obviously equivalent to showing

sin2
(√

λnθ
)

λn
≤ sin2

(√
λ1θ

)
λ1

for θ ∈ [0, nπ/
√

λn] or, more simply, to showing

| sin ns| ≤
√

λn

λ1
sin[ns/

√
λn/λ1]

for s ∈ [0, π]. This last inequality is easily seen to hold by a straightforward
analysis.

Finally, to see that λn/λ1 = n2 implies that V must be identically zero we
observe that we can make the same comparison argument in this case and the
inequality θn(x) ≥ θ1(x) will become strict as soon as V is positive on a set
of positive measure. But then we would obtain λn/λ1 < n2 by evaluating the
inequality at x = 1 which gives a contradiction. �
Theorem 8.5.5 (Ashbaugh-Benguria). Let Ω = (a, b) be a finite interval. Let n and
m be two integers such that m divides n. Then the ratio λn(V )/λm(V ) achieves
its maximum among non-negative potentials in L1(Ω) for V = 0. Moreover, it is
the unique maximizer (when m �= n).

Proof. Let us write n = km. Then, the proof is by induction on m. For m = 1,
this is the content of Theorem 8.5.4 above. Suppose now that λkm/λm ≤ k2 (with
equality for V = 0) and that we want to prove the corresponding inequality for
m + 1. We let um+1 and uk(m+1) denote the eigenfunctions for λm+1 and λk(m+1)

respectively, and let w1 be the first zero of um+1 in the interior of the interval Ω
and w2 the k-th zero of uk(m+1). In addition, with u(x, λ) defined as the solution
to

−u′′ + V (x)u = λu, x ∈ Ω

obeying the initial conditions

u(a, λ) = 0, u′(a, λ) = 1 ,

we let zl(λ) denote the l-th zero of u(x, λ) in (a, b). It is a well-known fact (see, for
example [58], vol.1 pp. 454-455) that zl(λ), for each l = 1, 2, 3, . . ., is a monotone
decreasing function of λ for λ ≥ λ1. Clearly, w1 = z1(λm+1) and w2 = zk(λk(m+1)).
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Now suppose, for a contradiction, that V is a potential for which we have
λk(m+1)/λm+1 > k2. We consider the consequences in the two cases w2 ≥ w1

and w2 < w1 in turn. If w2 ≥ w1 we consider the Dirichlet problem on the
interval [a, w1]. Let its eigenvalues be denoted λ̃n (n = 1, 2, 3, . . .). Since zk(λ)
is decreasing in λ and zk(λk(m+1)) = w2 ≥ w1 it follows that λ̃k ≥ λk(m+1).
Because λ̃1 = λm+1 this yields a problem for which λ̃k/λ̃1 ≥ λk(m+1)/λm+1 > k2

contradicting Theorem 8.5.4.
If w2 < w1 we consider the other part of the interval, [w1, b]. By considera-

tions similar to those given above (working now from the initial point x = b) we can
arrive at a problem where λ̃km/λ̃m > k2 contradicting our induction hypothesis.

So the inequality λkm/λm ≤ k2 is proved. To characterize the cases where
equality occurs one can make the analogous arguments to those above (now as-
suming λkm/λm = k2) to see inductively that V = 0 a.e. both in [a, w1] and [w1, b]
and hence in Ω = [a, b]. This induction uses the uniqueness of the maximizer given
in Theorem 8.5.4. �
Remark 8.5.6. When m does not divide n, the following inequality holds:

λn(V )
λm(V )

<
[ n

m

]2
where [x] denotes the least integer greater than or equal to x (the ceiling func-
tion), see [8]. The right-hand side is nevertheless the supremum of λn(V )/λm(V ).
Therefore, it is a situation where there are no maximizers. The previous inequality
has been recently improved for single-well potentials by M. Horváth and M. Kiss
in [113]. Namely, they prove that one can replace [n/m] by n/m in the right-hand
side. For similar results with Neumann boundary conditions, we refer to [115].

Remark 8.5.7. Let us consider that the domain Ω is also allowed to vary, so we
denote the eigenvalues of the Schrödinger operator λk(Ω, V ). We are interested in
the problem of maximizing the ratio λ2(Ω, V )/λ1(Ω, V ). The following result is
proved in [10] in a similar way as Theorem 6.2.1. We will not give the proof here.

Theorem 8.5.8 (Ashbaugh-Benguria). Let λk(Ω, V ) denote the k-th eigenvalue of
the Schrödinger operator −∆ + V (x) on the bounded domain Ω ⊂ R

N . Then the
ratio λ2(Ω, V )/λ1(Ω, V ) achieves its maximum when Ω is a ball and V = 0.



Chapter 9

Non-homogeneous strings and
membranes

9.1 Introduction

In this chapter, we will study non-homogeneous membranes. So, we consider a
membrane Ω (in one dimension Ω is called a string) which will not vary in this
chapter. The non-homogeneity of this membrane is characterized by a density
function ρ(x). Of course, we will assume ρ to be non-negative (see below). Then,
the eigenvalues λk(ρ) and eigenfunctions uk we are interested in are solutions of
the following problem: { −∆uk = λk(ρ)ρ(x)uk in Ω,

uk = 0 on ∂Ω .
(9.1)

Each eigenvalue can also be characterized by the usual min-max formulae:

λ1(ρ) = inf
y∈H1

0 (Ω),y �=0

∫
Ω
|∇y(x)|2∫

Ω ρ(x)y(x)2 dx
(9.2)

and

λk(ρ) = min
Ek ⊂ H1

0 (Ω),
subspace of dim k

max
v∈Ek,v �=0

∫
Ω |∇v(x)|2 dx∫
Ω

ρ(x)v(x)2 dx
. (9.3)

As usual, we are looking for minimizers or maximizers of a given eigenvalue λk(ρ)
among density ρ satisfying some natural constraints. For example, let α, β and c
be three real numbers such that 0 ≤ α < β and α|Ω| ≤ c ≤ β|Ω|. We introduce
the class of admissible ρ defined by

A := {ρ ∈ L∞(Ω); α ≤ ρ(x) ≤ β a.e. in Ω,

∫
Ω

ρ(x) dx = c}. (9.4)
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If we want to emphasize the dependence of A with respect to its parameters, we
will denote the class Aα,β,c(Ω). We recall that A is a convex subset of L∞(Ω), that
it is compact for the weak-* convergence and that its extremal points are precisely
of the kind βχω + αχΩ\ω for some subset ω of Ω (see e.g. [104], [91], [202]).

In one dimension, the problem of maximizing and minimizing λk(ρ) had been
completely solved by M.G. Krein in [133]. His results are presented in section
9.3. Before, in section 9.2, we gave some general existence results. They show, in
particular, that Krein’s results are not specific to the dimension 1. More precisely,
we will see that, under mild assumptions, the minimizers of ρ 
→ λk(ρ) are always
extremal points of the set A. In control theory, such functions are generally called
bang-bang controls.

Remark 9.1.1. In this chapter, we will only consider the problems maxρ λk(ρ) or
minρ λk(ρ). We could also consider the problem of maximizing the ratio λ2/λ1. As
in Theorems 6.2.1 and 8.5.8, M. Ashbaugh and R. Benguria have proved in [10]
that the maximum of λ2(ρ, Ω)/λ1(ρ, Ω) is achieved when Ω is a ball and ρ(x) = 1.

Remark 9.1.2. It is also possible to mix in some sense chapters 8 and 9 by consid-
ering eigenvalue problems like −∆u + V (x)u = λρ(x)u. It is done, for example, in
[28] or [118]. Roughly speaking, the results obtained there are natural extensions
of those presented here.

We first begin by a continuity result, in the spirit of section 2.3.2. See also
[65].

Theorem 9.1.3. The map ρ 
→ λk(ρ) is continuous on A for the weak-* conver-
gence. Moreover, the map ρ 
→ 1/λk(ρ) is convex.

Proof. The eigenvalue problem (9.1) is not exactly of the kind considered in chap-
ter 1. Nevertheless, existence of a sequence of eigenvalues and eigenfunctions can
be obtained exactly in the same way by considering, instead of (−∆)−1, the op-
erator Rρ := (−∆)−1Mρ where Mρ is the linear continuous operator from L2(Ω),
in itself defined by Mρ(u) = ρu. In particular, it is easy to check that Rρn(f)
converges to Rρ(f) in L2(Ω) as soon as ρn converges weak-* to ρ. Therefore, the
continuity result follows immediately by applying Theorem 2.3.2.

At last, the max formulae for µk(ρ) = 1/λk(ρ):

1
λk(ρ)

= µk(ρ) = max
v ∈ H1

0 (Ω),
v ∈ [u1, u2, . . . , uk−1]⊥

∫
Ω ρ(x)v(x)2 dx∫
Ω |∇v(x)|2 dx

(9.5)

implies that the function ρ 
→ 1/λk(ρ) is convex as supremum of linear functions.
�
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9.2 Existence results

9.2.1 A first general existence result

The previous continuity result together with the compactness of the set A of
admissible ρ for the weak-* topology immediately yields:

Theorem 9.2.1. Let F : R
k → R be a continuous function. Then the problem

min
ρ∈A

F (λ1(ρ), λ2(ρ), . . . , λk(ρ)) (9.6)

where A is defined in (9.4) has a solution. The same result holds for a similar
maximization problem.

Remark 9.2.2. The same existence result holds true when A is replaced by the
larger class {ρ ∈ L∞(Ω); α ≤ ρ(x) ≤ β a.e. in Ω}.

For a functional F , we will be mainly concerned in the sequel (in particular
in sections 9.3 and 9.4) with F (x1, . . . , xk) = xk, i.e. we will be interested in
minimizing (or maximizing) λk(ρ). So an immediate consequence of the convexity
of ρ 
→ 1/λk(ρ) is the following. Since a maximizer of 1/λk(ρ) (i.e. a minimizer of
λk(ρ)) is to be sought among extremal points of the convex set A:

Theorem 9.2.3. There exists a function ρ∗ minimizing λk(ρ) in the class A defined
in (9.4) and it is of the form ρ∗ = βχω + αχΩ\ω for some subset ω of Ω.

We give a generalization of this result in the next section.

9.2.2 A more precise existence result

When we assume some monotonicity for the function F , one can generalize the
previous result by proving that the optimum solutions are always bang-bang. The
following Theorem is due to S. Friedland in [91].

Theorem 9.2.4 (Friedland). Let F : R
k → R be a continuous function, increasing

with respect to its arguments. Then the problem

min
ρ∈A

F (λ1(ρ), λ2(ρ), . . . , λk(ρ)) (9.7)

where A is defined in (9.4) has a solution ρ∗ which is of the kind

ρ∗ = βχω + αχΩ\ω (9.8)

where ω is some subset of Ω.
The same result holds for a maximization problem with a function F decreas-

ing with respect to its arguments.



144 Chapter 9. Non-homogeneous strings and membranes

Remark 9.2.5. For general functionals F , the optimal solution is not necessarily
a bang-bang function as in (9.8). For example, as pointed out in [211], if ρ̂ is
any function in the class A and λ̂k = λk(ρ̂), it is clear that a minimizer of the
functional F (λ1(ρ), λ2(ρ), . . . , λk(ρ)) :=

∑k
i=1(λi(ρ) − λ̂i)2 will be ρ̂. We refer to

[93], [211], [212] for a complete analysis in the one-dimensional case. One of the
important technical points which occurs in the variational analysis is the following
question: can a linear combination of the squares of the first k eigenfunctions be
a constant (zero or non-zero) over some measurable subset which has non-zero
measure? Actually, in [145], the authors prove that it can happen. For a similar
question, but in a completely different context, we refer to [100].

Nevertheless, it seems that generically, the optimum must be of the kind
(9.8). Assuming that the gradient of the functional F does not vanish on the
range of possible values for (λ1(ρ), λ2(ρ)), T. Mahar and B. Willner in [212] (see
also [93], [211]) proved that the extremizers ρ∗ have necessarily one of the following
form:

ρ∗(x) = α or β, or
{

α or β 0 < x < x0,
β or α x0 < x < 1,

or

⎧⎨⎩
α or β 0 < x < x0,
β or α x0 < x < x1,
α or β x1 < x < 1.

For example, the ratio F (λ1, λ2) = λ2/λ1 has been studied in several papers. In
[126], [144], the authors find that the extremizers in the class A are of the third
kind as above. For more general Sturm-Liouville operators, we refer to [13], [115]
and for other constraints on the density, we refer to [114], [112].

For the proof of Theorem 9.2.4, we need a preliminary result, the so-called
Convoy Principle, which allows us to compare the eigenvalues of our problem to
the eigenvalues of some symmetric matrix, see [91] or [173]. Let us fix the notation.
We recall that we denote by AD

L , or more simply A, the inverse of the Laplacian
defined in (1.8). Then, the eigenvalues λk(ρ) satisfy

1
λk(ρ)

:= µk(ρ) = max

∫
Ω

ρA(f)2 dx∫
Ω |∇A(f)|2 dx

(9.9)

where the maximum is taken over the functions f orthogonal to the (k − 1)-th
first eigenfunctions uj , j = 1, . . . , k − 1. Moreover, the maximum is achieved only
if f is an eigenfunction corresponding to λk(ρ).

Let us now consider a family of functions f1, f2, . . . , fk in L2(Ω) which satisfy∫
Ω

∇(A(fi)).∇(A(fj)) dx = δij (9.10)

i.e. they are orthonormal for the inner product ((f, g)) :=
∫
Ω
∇(A(f)).∇(A(g)) dx.

Then, we introduce the k×k matrix A(ρ, f1, . . . , fk) whose general term is given by∫
Ω

ρA(fi)A(fj) dx. We denote by λj(ρ, f1, . . . , fk) and ξj(ρ, f1, . . . , fk) its eigen-
values and eigenvectors respectively, assuming

λ1(ρ, f1, . . . , fk) ≥ · · · ≥ λk(ρ, f1, . . . , fk) .
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Then, we have

Lemma 9.2.6 (Convoy Principle). Let (f1, . . . , fk) be functions in L2(Ω) satisfying
(9.10). Then

1
λj(ρ)

= µj(ρ) ≥ λj(ρ, f1, . . . , fk) j = 1, 2, . . . , k . (9.11)

Proof. Let us introduce fa :=
∑k

i=1 aifi where a = (a1, . . . , ak) is chosen such
that

k∑
i=1

ai(fi, uj) = 0 , j = 1, . . . , k − 1,
k∑

i=1

a2
i = 1

(where uj are the eigenfunctions associated to λj(ρ)). Thus, according to (9.9),∫
Ω

ρA(fa)2 dx ≤ µk(ρ) .

Now, the minimal characterization of λk(ρ, f1, . . . , fk) is

λk(ρ, f1, . . . , fk) = min
b,

Pk
i=1 b2i =1

k∑
i,j=1

bibj

∫
Ω

ρA(fi)A(fj) dx . (9.12)

So we have
λk(ρ, f1, . . . , fk) ≤

∫
Ω

ρA(fa)2 dx ≤ µk(ρ) . (9.13)

This proves (9.11) for j = k. For j < k, we proceed by induction by reducing our
case to the k − 1 dimensional problem. Let

f̂i =
k∑

j=1

ξi
jfj, i = 1, . . . , k − 1 .

A straightforward calculation shows that
∫
Ω
∇(A(f̂i)).∇(A(f̂j)) dx = δij and

λj(ρ, f̂1, . . . , f̂k−1) = λj(ρ, f1, . . . , fk), j = 1, . . . , k − 1 .

In this way, we establish (9.11). �
Remark 9.2.7. If we choose fj = uj (the eigenfunctions associated to λj(ρ)), the
equality sign holds in (9.11). Reciprocally, if the equality holds for some j, then
the eigenvectors ξj can be chosen such that

ρA

(
k∑

i=1

ξj
i fi

)
= λj(ρ)

k∑
i=1

ξj
i fi ,

see [91] for more details.
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Proof of Theorem 9.2.4. First, we consider a function F increasing in each of
its arguments, and we are interested in maximizing F (µ1(ρ), µ2(ρ), . . . , µk(ρ))
in the class A. We already know, according to Theorem 9.2.1, the existence of
a maximizer, say ϕ. Let u1, u2, . . . , uk be the first eigenfunctions of the oper-
ator MϕA, i.e. they satisfy ϕA(uj) = µj(ϕ)uj associated to the eigenvalues
λ1(ϕ), λ2(ϕ), . . . , λk(ϕ) or µ1(ϕ), µ2(ϕ), . . . , µk(ϕ). We assume that (ui, uj) =
δij , i, j = 1, . . . , k. Let us now introduce the set A′ defined by

A′ := {ρ ∈ A;
∫

Ω

ρ(x)A(ui)(x)A(uj)(x) dx = µi(ϕ)δij , i, j = 1, . . . , k} . (9.14)

This set A′ is not empty since it contains ϕ. Moreover, it is convex. Let ρ∗ be an
extreme point in A′. It is classical to see that it must satisfy ρ∗ = βχω + αχΩ\ω

where ω is some subset of Ω, see [91], [104]. Now, the condition defining the set A′

in (9.14) means that A(ρ∗, u1, . . . , uk) is a diagonal matrix diag(µ1(ϕ), . . . , µk(ϕ)).
So

λj(ρ∗, u1, . . . , uk) = µj(ϕ), j = 1, . . . , k .

From the Convoy Principle (9.11), we have

µj(ρ∗) ≥ µj(ϕ) . (9.15)

Since F (x1, . . . , xk) is an increasing function of each of its arguments, (9.15) implies
that

F (µ1(ρ∗), . . . , µk(ρ∗)) ≥ F (µ1(ϕ), . . . , µk(ϕ)) . (9.16)

Since ρ∗ ∈ A, (9.16) shows that ρ∗ is also a maximizer.
Now, let us assume that we want to maximize F (λ1(ρ), . . . , λk(ρ)) with

F a decreasing function of each of its arguments. By looking at the function
F̃ (µ1(ρ), . . . , µk(ρ)) := F (1/µ1(ρ), . . . , 1/µk(ρ)), we are led to the same problem,
so the same result holds.

Finally, assume that F (x1, . . . , xk) is a function, increasing in each of its
arguments, and we want to minimize F (λ1(ρ), . . . , λk(ρ)). Let us fix a constant
a > 0 chosen so that F (λ1(ρ), . . . , λk(ρ)) + a > 0 for any ρ ∈ A. Then,

[F (λ1(ρ), . . . , λk(ρ)) + a]−1 = [F (µ−1
1 (ρ), . . . , µ−1

k (ρ)) + a]−1

and clearly F̃ (x1, . . . , xk) := [F (x−1
1 , . . . , x−1

k ) + a]−1 is a continuous function
increasing in each of its arguments, so we can apply the first part of the proof to
this situation. This finishes the proof. �

9.2.3 Nonlinear constraint

Instead of considering the L1 constraint
∫
Ω

ρ(x) dx = c for the density ρ, one could
also consider an Lp constraint like

∫
Ω ρp(x) dx = c (as we did for the potential V

in chapter 8). This is interesting, in particular, for the classical problem of the
strongest column with simply supported ends, see section 11.4.2. Actually, this
case is simpler. For example, let us prove the following result:
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Theorem 9.2.8. Let Ω be a bounded Lipschitz domain in R
N and let us fix a real

number p > 1 in dimension N = 1 and p > N/2 in dimension N ≥ 2. Let us
introduce Ap the class of non-negative measurable functions ρ defined on Ω and
satisfying

∫
Ω ρp(x) dx = 1. Then, there exists a minimizer ρ∗p of λ1(ρ) in the class

Ap. Moreover, the minimizer is given by ρ∗p = kpu
1/(p−1)
p where u is the minimizer

on H1
0 (Ω) of the functional G defined by

G(y) :=

∫
Ω
|∇y(x)|2(∫

Ω y(x)α dx
)2/α

(9.17)

with α = 2p/(p − 1) and the constant kp is defined by the integral condition∫
Ω

ρ∗p
p(x) dx = 1. We can also characterize up as the solution of the nonlinear

p.d.e. {
−∆u = µ

(∫
Ω, u(x)α dx

)2/α−1
uα−1 in Ω

u = 0 on ∂Ω,
(9.18)

where µ = infH1
0 (Ω) G(y).

Proof. The proof of Theorem 9.2.8 looks like the proof of Theorem 8.2.3, but is in
some sense simpler. Actually, Hölder inequality yields∫

Ω

ρy2(x) dx ≤
(∫

Ω

ρp(x) dx

)1/p (∫
Ω

yα(x) dx

)2/α

=
(∫

Ω

yα(x) dx

)2/α

(9.19)

where α = 2p/(p − 1). Moreover equality holds in (9.19) if and only if ρp and yα

are proportional. Therefore, we have the inequality∫
Ω
|∇y(x)|2 dx∫

Ω ρ(x)y(x)2 dx
≥ G(y) =

∫
Ω
|∇y(x)|2 dx(∫

Ω
yα(x) dx

)2/α
. (9.20)

Now, it is classical, using standard compactness arguments, to prove that the
functional G possesses a minimum on H1

0 (Ω). Indeed, the main point is Rellich’s
Theorem ensuring compact embedding of H1

0 (Ω) into Lα(Ω) (this is always true
in dimension N = 1, 2 and if 2p/(p − 1) = α < 2N/(N − 2) in dimension N ≥ 3
which explains restriction on p in this case). Let up be defined as a minimizer of
the functional G on H1

0 (Ω). Therefore, taking the minimum in y in the right-hand
side of (9.20) yields ∫

Ω
|∇y(x)|2 dx∫

Ω ρ(x)y(x)2 dx
≥ G(up) (9.21)

with equality for ρ such that ρp and uα
p are proportional (or ρ = ku

α/p
p ). Let us

consider such a function belonging to the class Ap, which is exactly ρ∗p. Now, we
take the infimum in y in the left-hand side of (9.21), which implies λ1(ρ) ≥ G(up)
for all ρ. Moreover, if we choose y = up and ρ = ρ∗p, equality holds in (9.21), so
variational characterization (9.2) of λ1 yields G(up) ≥ λ1(ρ∗p). The result follows.
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At last, we get the other expression of up in a classical way; this is just the
Euler-Lagrange characterization of the minimizer of G. �

Remark 9.2.9. In general, there is no maximizer of λ1(ρ) in the class Ap (in the
sense that supAp

λ1(ρ) = +∞). Let us prove it, for example, in one dimension
for Ω = (0, L) (we follow an idea of [83]). We start from the classical Hardy’s
inequality ∫ +∞

0

z2(x)
x2

dx ≤ 4
∫ +∞

0

z′2(x) dx, (9.22)

valid for every absolutely continuous function z vanishing at 0. Let y be a function
in H1

0 (0, L) and ε > 0 be given. We extend y by 0 outside (0, L) and we apply
(9.22) to z(x) := y(x − ε), then∫ +∞

0

y2(x − ε)
x2

dx =
∫ +∞

0

y2(t)
(t + ε)2

dt ≤ 4
∫ +∞

0

y′2(x − ε) dx = 4
∫ +∞

0

y′2(t) dt .

(9.23)
Now, we consider the function ρε defined by

ρε(x) :=
cε

(x + ε)2
with cε = ε2−1/p

⎧⎪⎨⎪⎩ (2p − 1)

1 −
(

ε
L+ε

)2p−1

⎫⎪⎬⎪⎭
1/p

(the constant cε is obviously chosen in order that ρε belongs to the class Ap).
Applying (9.23) to the first eigenfunction associated to ρε, it follows that

λ1(ρε) ≥ 1
4cε

→ +∞ when ε → 0,

which shows the claim.

For more precise results in the one-dimensional case (for example, the com-
putation of the constant µ and a discussion about other values of p), we refer the
interested reader to Theorem 23 in chapter 5 of [83].

9.3 Minimizing or maximizing λk(ρ) in dimension 1

All the results that we are giving in this section are due to M.G. Krein, [133]. Our
presentation is somewhat simpler, because of the tools we have already introduced.
Without loss of generality, we consider here the one-dimensional interval Ω =
(0, L).
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9.3.1 Minimizing λk(ρ)

Theorem 9.3.1 (Krein). (i) The (unique) minimizer of λ1(ρ) in the class Aα,β,c

defined in (9.4) is the function ρ1(x) defined by

ρ1(x) =

⎧⎨⎩
α for x ∈ (0, L

2 − δ),
β for x ∈ (L

2 − δ, L
2 + δ),

α for x ∈ (L
2 + δ, L),

(9.24)

where δ = (c − αL)/2(β − α).

(ii) The (unique) minimizer of λk(ρ) in the class Aα,β,c is the function ρk(x)
which is L/k-periodic and which is defined on each interval

(jL/k, (j + 1)L/k), j = 0, . . . , k − 1

by
ρk(x) = ρ1 (kx − jL) .

Proof. We already know, by Theorem 9.2.3, that the minimizer exists and that it
is of the form

ρ = βχω + αχΩ\ω . (9.25)

Let us begin with k = 1. The proof is similar to the one of Faber-Krahn’s
Theorem 3.2.1. Let ρ∗ be the decreasing rearrangement of ρ (see section 2.1) with
respect to the center of the interval (0, L). Since ρ is given by (9.25), ρ∗ = ρ1 is the
function defined in (9.24). Now, let us denote by u1 the first (normalized) eigen-
function associated to λ1(ρ) and by u∗

1 its decreasing rearrangement. According
to Pòlya inequality (2.2) and Hardy-Littlewood inequality (2.4)∫ L

0

du∗

dx

2

≤
∫ L

0

du

dx

2

,

∫ L

0

ρ∗u∗2(x) ≥
∫ L

0

ρu2(x).

The main point in the previous chain of inequality is the fact that u∗2 is the de-
creasing rearrangement of u2; for a more general result in this direction, see e.g.
[59], Theorem 1. Plugging these two inequalities into the variational characteriza-
tion of λ1(ρ∗) (9.2), we get immediately λ1(ρ∗) ≤ λ1(ρ). For uniqueness, one can
use the analysis of the equality case for example for the Pòlya inequality.

For the proof of the general case k, we just give the main idea. Exactly as in
the proof of Theorem 8.3.3, we use that the eigenfunction uk has k nodal domains
and that λk(ρ) is the first eigenfunction of each nodal domain. Therefore, the
restriction of ρ on each nodal domain has to be of the form of ρ1. At last, the fact
that the eigenvalue is the same on each sub-interval shows that these intervals
have to be of the same length. We refer to [133] for the details. �

Remark 9.3.2. One could be interested in studying what happens when the upper
limit β is removed (or goes to +∞). In this case, passing to the limit (in the sense
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of measures or distributions), we can prove that the minimum of λk is achieved
when the string is uniformly loaded with a density α, and bears in addition k point
Dirac masses of magnitude (c−αL)/k placed as follows: the string is divided into
k parts equal in length, and at the center of each part is placed the point mass in
question.

9.3.2 Maximizing λk(ρ)

Theorem 9.3.3 (Krein). (i) The (unique) maximizer of λ1(ρ) in the class Aα,β,c

defined in (9.4) is the function ρ1(x) defined by

ρ1(x) =

⎧⎨⎩
β for x ∈ (0, L

2 − δ),
α for x ∈ (L

2 − δ, L
2 + δ),

β for x ∈ (L
2 + δ, L),

(9.26)

where δ = (βL − c)/2(β − α).

(ii) If α > 0, the (unique) maximizer of λk(ρ) in the class Aα,β,c(Ω) is the
function ρk(x) which is L/k-periodic and which is defined on each interval
(jL/k, (j + 1)L/k), j = 0, . . . , k − 1 by

ρk(x) = ρ1 (kx − jL) . (9.27)

(iii) If α = 0, the maximizers of λk(ρ) in the class Aα,β,c(Ω) are all the functions
defined in the following way. Let δ0 = c/2β and 0 = x0 < x1 < x2 <
· · · < xk−1 < xk = L be any sequence of points satisfying the conditions
xi − xi−1 ≥ 2δ0/k (i = 1, 2, . . . , k). Then, the maximizers are the functions
ρ defined by:

ρ(x) =

⎧⎨⎩
β for x ∈ (xi−1, xi−1 + δ0/k),
0 for x ∈ (xi−1 + δ0/k, xi − δ0/k),
β for x ∈ (xi − δ0/k, xi).

(9.28)

Proof. We begin with the first eigenvalue. First of all, let us prove that we may
confine our attention to functions which are symmetric w.r.t. L/2 when looking
for a maximizer. Indeed, let ρ be any function in Aα,β,c and let us denote by

ρs(x) := ρ(L − x)

the function which is symmetric to it. Obviously,

λ1(ρs) = λ1(ρ)

and ρ∗ := (ρ + ρs)/2 is symmetric w.r.t. L/2. By convexity of ρ 
→ 1/λ1(ρ) (see
Theorem 9.1.3), we get

1/λ1(ρ∗) = 1/λ1((ρ + ρs)/2) ≤ 1
2
(1/λ1(ρ) + 1/λ1(ρs)) = 1/λ1(ρ)
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or
λ1(ρ∗) ≥ λ1(ρ) . (9.29)

Now, let us denote by u1 the first (positive) eigenfunction associated to the
function ρ1 defined in (9.26). By the equation −u1

′′ = λ1(ρ1)u1, we see that u1 is
concave, symmetric w.r.t. L/2 and non-decreasing on (0, L/2). Now, let ρ be any
symmetrical function in the class Aα,β,c. We write∫ L

0

u1
2ρ dx −

∫ L

0

u1
2ρ1 dx = 2

∫ L/2

0

u1
2(ρ − ρ1) dx

= 2
∫ L/2−δ

0

u1
2(ρ − β) dx + 2

∫ L/2

L/2−δ

u1
2(ρ − α) dx

≥ 2u1
2(L/2 − δ)

∫ L/2−δ

0

(ρ − β) dx + 2u1
2(L/2 − δ)

∫ L/2

L/2−δ

(ρ − α) dx = 0,

the last equality coming from
∫ L/2

0 ρ dx = c/2 = β(L/2 − δ) + αδ. It follows that∫ L

0

u1
2ρ dx ≥

∫ L

0

u1
2ρ1 dx (9.30)

and from the variational characterization of λ1:

1
λ1(ρ)

≥
∫ L

0
u1

2ρ dx∫ L

0
u′

1
2 dx

≥
∫ L

0
u1

2ρ1 dx∫ L

0
u′

1
2 dx

=
1

λ1(ρ1)

which shows that ρ1 achieves the maximum of λ1(ρ). Moreover, the equality sign
can hold only if we have equality in the above chain of inequalities. But, this is
possible if and only if ρ = β on (0, L/2 − δ) and ρ = α on (L/2 − δ, L/2), i.e. if
ρ = ρ1.

Now, we look at the case of the k-th eigenvalue. The idea is still the same.
As usual, the nodes of the eigenfunction associated to λk(ρ) divide the string
into k parts. Moreover, λk(ρ) will be the first eigenvalue of each nodal domain.
In particular, according to the first part of the proof, we must choose ρ in each
nodal domain with the form of ρ1 if we want to maximize it. This leads to (9.27)
when α > 0 (uniqueness comes from the fact that the intervals must have all the
same length in this case if we want that first eigenvalue of each nodal domains to
coincide). When α = 0, the length of the unloaded central part of the segment
(xi−1, xi) has no effect at all on the value of the first frequency. This explains why
we get an infinite set of solutions in this case. �
Remark 9.3.4. One could be interested in studying what happens when the upper
limit β is removed (or goes to +∞). In this case, passing to the limit, we can prove
that the maximum is achieved when the string is uniformly loaded with a density
α (assumed to be positive), and the remaining mass c− αL is placed at the fixed
ends of the string.
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Remark 9.3.5. P. Nowosad in [160] is able to generalize Krein’s results with an
algebraic approach, see also the work of S. Karlin [120].

Remark 9.3.6. Among various works on this topic, let us quote the following. B.
Schwarz in [184] has considered the problem of minimizing or maximizing λk(ρ)
among equimeasurable ρ. He obtains that the minimum (resp. maximum) is at-
tained (uniquely) for the function which is L/k periodic and which, in each interval,
is symmetrically decreasing (resp. increasing). In a series of papers, D.O. Banks
see [21], [22], [23] looks at the problem of maximizing or minimizing the first eigen-
value λ1(ρ) with monotonicity, convexity or Lipschitz constraints on the density
ρ. In [27], D.C. Barnes looks at similar problems of minimizing and maximizing
λk(ρ) when the density ρ has its average value P (x) := 1

x

∫ x

0 ρ(t) dt restricted in
some manner (he assumes for example P to be decreasing or concave). In [29],
E.R. Barnes considers more general boundary conditions like a1y(0)− b1y

′(0) = 0
and a2y(L) − b2y

′(L) = 0 and studies the maximization problem for λ1(ρ). He
also replaces the mass condition

∫ L

0 ρ(x) dx = c by a more general one of the form∫ L

0 f(x, ρ(x)) dx = c where f is a given continuous function. His approach consists
in exploiting the optimality conditions. In such a general framework, it is not pos-
sible to get an explicit maximizer. Some examples like f(x, ρ) = ρn are considered
and detailed (see also [125], [197] for this particular constraint which corresponds
to the strongest column problem, see also section 11.4.2). In this case, they found
a maximizer which is similar to the one given in (9.26). We refer also to [28] for a
similar approach for the more general eigenvalue equation −y′′ = λg(x, ρ(x))y. In
this paper, D.C. Barnes looks also for maximizing or minimizing the eigenvalues
λk(ρ) and gets some explicit solutions for particular choices of the function g.

9.4 Minimizing or maximizing λk(ρ) in higher
dimension

9.4.1 Case of a ball

When Ω = BR is a ball of radius R, several arguments that we used in section 9.3
remain valid. In particular, one can prove

Theorem 9.4.1 (Krein). Let Ω = BR be a ball of radius R. Then

(i) The minimum of λ1(ρ) in the class Aα,β,c(BR) defined in (9.4) is attained
uniquely for the function ρ1 given by

ρ1(x) =
{

β for |x| ≤ δ,
α for δ < |x| < R,

(9.31)

where δ is defined by the equality (β − α)|Bδ | + α|BR| = c.
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(ii) The maximum of λ1(ρ) in the class Aα,β,c(BR) is attained uniquely for the
function ρ1 given by

ρ1(x) =
{

α for |x| ≤ δ,
β for δ < |x| < R,

(9.32)

where δ is defined by the equality (α − β)|Bδ| + β|BR| = c.

The proof is straightforward using the methods and ideas of the proofs of
Theorems 9.3.1 and 9.3.3.

9.4.2 General case

Let Ω be a bounded Lipschitz open subset of R
N which is fixed in all this section.

We recall that we already know (thanks to Theorem 9.2.1) that there exists a
minimizer (resp. a maximizer) of λk(ρ) in the class A, say ρk (resp. ρk). Moreover,
according to Theorem 9.2.4 the minimizer is of the kind

ρk = βχω + αχΩ\ω .

We want now to give more information about these extrema.
A way to get some information about the minimizer or the maximizer is to

write down optimality conditions. Using the techniques of section 2.5.4, we can
easily prove that ρ 
→ λ1(ρ) is differentiable on L∞(Ω) with its derivative given by

dλ1(ρ + tξ)
dt

\t=0 = −λ1(ρ)
∫

Ω

ξu2
1 dx (9.33)

where u1 is the first eigenfunction associated to λ1(ρ) normalized by
∫
Ω ρu2

1 dx = 1.
Now, using the same kind of arguments as in the proof of Theorem 8.4.10,

we can prove (we leave the details to the reader) the following theorem. We also
refer to [65] for a different approach using Auchmuty’s principle and min-max
techniques or to section 6 of [198] for another approach using rearrangement, see
also [61] for a synthetic presentation.

Theorem 9.4.2 (Cox-McLaughlin). (i) Let ρ1 be a minimizer of λ1(ρ) in the
class A defined in (9.4) and u1 be the associated first eigenfunction. Then,
there exists l > 0 such that, for each x ∈ Ω,

ρ1(x) = β ⇒ u1(x) ≥ l,
ρ1(x) = α ⇒ u1(x) ≤ l,

(9.34)

and ρ1 = βχω + αχΩ\ω where ω is the level set ω = {x ∈ Ω, u1(x) ≥ l}.
(ii) Let ρ1 be a maximizer of λ1(ρ) in the class A and u1 be the associated first

eigenfunction. Then, there exists l > 0 such that, for each x ∈ Ω,

ρ1(x) = β ⇒ u1(x) ≤ l,
ρ1(x) = α ⇒ u1(x) ≥ l,

(9.35)
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and ρ1 = βχω + αχΩ\ω where ω is the level set ω = {x ∈ Ω, u1(x) ≤ l}.
Moreover, the maximizer is unique.

Uniqueness of the maximizer comes directly from the fact that ρ 
→ 1/λ1(ρ)
is convex (see Theorem 9.1.3) and the maximizer has to be an extreme point of
the convex A. Indeed the only convex set of extreme points is a singleton.

Remark 9.4.3. If uniqueness holds for the maximizer, it seems that it is not the
case for the minimizers. Indeed, if we consider a domain Ω composed of two disks
joined by a long thin rectangle (like Figure 2.3) a limiting argument seems to give
at least two minimizers, each of them concentrated on the center of one disk.

Remark 9.4.4. The previous result seems difficult to generalize to other eigenval-
ues. To write formulae (9.33), we obviously need the fact that the first eigenvalue
is simple. It is absolutely not guaranteed for the other eigenvalues (we can even
think that they should be multiple at the optimum as in Open problem 1).

Nevertheless, S. Cox and J. McLaughlin in [65] were able to generalize in
some sense the result about minimizers of λk assuming that the corresponding
eigenfunction has exactly k nodal domains. In this case, they obtain that ρk min-
imizes the first eigenvalue of each of these nodal domains and the minimization of
λk is reduced to the earlier problem of minimizing λ1.

Now, we can look at geometric properties of the set ω or Ω \ ω when the
optimum ρ is given by Theorem 9.4.2. First of all, adapting the beginning of the
proof of Theorem 9.3.1, we are able to prove for the minimizer of λ1(ρ):

Theorem 9.4.5. Let us assume that Ω is Steiner symmetric with respect to some
hyperplane H (in the sense of Definition 2.2.2). Then, there exists a minimizer
ρ1 of λ1(ρ) in the class A which is symmetric with respect to H. In particular,
ρ1 = βχω + αχΩ\ω with ω Steiner symmetric w.r.t. H.

For the proof, use Pòlya inequality (2.8) and Hardy-Littlewood inequality
(2.9) as in the proof of Theorem 9.3.1.

In the paper [59], using standard regularity theory for free boundary problems
together with the optimality conditions, S. Cox was able to get some more precise
results about ω and its boundary Γ.

Theorem 9.4.6 (Cox). Let Ω be a bounded connected set in R
2.

• If Ω is Steiner symmetric with respect to some line L, then Γ is an analytic
curve except possibly at those points that it shares with the line L.

• If Ω is Steiner symmetric in two distinct directions, then Γ is an analytic
Jordan curve.

For the maximizer, it is also possible to get some symmetry and convexity
result by using some moving plane method. Writing the eigenvalue equation

−∆u = λ1f(u) with f(t) := βtH(t) + (α − β)tH(t − l)
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where l is the number given in Theorem 9.4.2 and H is the standard Heaviside
function, S. Cox and J. McLaughlin were able to use classical results by Gidas-
Ni-Nirenberg (together with a clever approximate argument since the function f
which has been introduced above is not continuous) to get the following:

Theorem 9.4.7 (Cox-McLaughlin). Let us assume that Ω is convex and symmetric
in N orthogonal directions, and let us consider the maximizer ρ1 = βχω + αχΩ\ω

given by Theorem 9.4.2. Then the set Ω \ ω is convex and symmetric in these
directions, and is star-shaped with respect to the center of symmetry.

9.4.3 Some extensions

Instead of looking at the eigenvalue problem −∆u = λρu corresponding to a non-
homogeneous string, we are interested here in a more general eigenvalue problem
containing, in particular, some important applications in mechanics.

Let us consider a bounded Lipschitzian connected open set Ω in R
N and a

function a(x, t) defined on Ω × R+ satisfying a(x, t) ≥ a0 > 0 for some constant
a0. We are interested here in the eigenvalue problem:{ −∆u = λa(ρ)a(x, ρ(x))u in Ω,

u = 0 on ∂Ω (9.36)

and, more precisely, in its first eigenvalue λa
1(ρ) associated to the eigenfunction u1.

We want to maximize λa
1(ρ) in the class Aα,β,c(Ω) defined in (9.4). All the results

in this section are due to R. Tahraoui, see [198].
Let us first state an existence and uniqueness result in the case where a does

not depend on x: a(x, t) = a(t).

Theorem 9.4.8 (Tahraoui). Let us assume that a does not depend on x and that
the minimum of a(t) in the interval [α, β] is attained only in one point. Then there
exists a unique ρ∗ maximizing λa

1(ρ) in the class Aα,β,c(Ω).

If the function a is convex, then we can prove exactly as in Theorem 9.1.3
that ρ 
→ 1/λa

1(ρ) is convex; then the existence result becomes classical, see for
example [117]. Therefore, to prove existence, the strategy of R. Tahraoui consists
in introducing the convexification a∗∗ of the function a and to prove that the
problem of maximizing the first eigenfunction of system (9.36) with a or a∗∗ are
equivalent. For that purpose, he shows, thanks to the optimality condition, that
a(ρ∗∗(x)) = a∗∗(ρ∗∗(x)) a.e. on Ω, where ρ∗∗ is the maximizer for a∗∗.

To prove uniqueness, one starts with two distinct maximizers, say ρ1 and ρ2.
We use the fact that ρ := (ρ1 + ρ2)/2 is still a maximizer for a∗∗. A technical
lemma allows to prove that

a∗∗(ρ(x)) <
1
2

(a∗∗(ρ1(x)) + a∗∗(ρ2(x)))
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on the set {x ∈ Ω, ρ1(x) �= ρ2(x)} assuming this set to have positive measure.
Then, the convexity of a∗∗ and the max formulae (9.5) for 1/λ1 yields

1
λ1(ρ)

<
1
2

(
1

λ1(ρ1)
+

1
λ1(ρ2)

)
=

1
max λ1

contradicting the optimality of ρ1 and ρ2.

Remark 9.4.9. In [198] is also considered in the previous theorem the case where
a depends on x. Thanks to a supplementary assumption, the existence result is
obtained in a similar way, but uniqueness remains to be proved.

Finally, let us give sufficient conditions ensuring that the maximizer is bang-
bang as in the simple case a(t) = t described above. For that, we need to introduce
some notation. Let ν1, ν2 be the functions defined on Ω by{

ν1(x) = inf a(x, t) t ∈ [α, β],
ν2(x) = sup a(x, t) t ∈ [α, β] (9.37)

and λ1(ν1), λ1(ν2) denote the first eigenvalues of (9.1) with density ν1 and ν2

respectively. We also introduce the function θ(x) by

θ(x) :=
a(x, β) − a(x, α)

β − α
. (9.38)

We can now state the result:

Theorem 9.4.10 (Tahraoui). Let us suppose that the following assumptions hold
true:

There exists a function s(x) and a constant L0 > 0 such that
∀(x, t) ∈ Ω × [α, β], a(x, t) ≥ L(x, t) := θ(x)t + s(x) ≥ L0,

(9.39)

∀x ∈ Ω, a(x, α) = L(x, α) and a(x, β) = L(x, β), (9.40)

∀λ ∈ [λ1(ν2), λ1(ν1)] , ∀x ∈ Ω
−∆(1/

√
θ(x))

1/
√

θ(x)
/∈ [a(x, α), a(x, β)], (9.41)

θ(x) ≥ 0 and |{x ∈ Ω, θ(x) = 0}| = 0 . (9.42)

Then, there exists a unique maximizer ρa∗ of λa
1(ρ) in the class Aα,β,c(Ω) defined

in (9.4). This maximizer is bang-bang, i.e. there exists a subset ω of Ω such that

ρa
∗ = αχω + βχΩ\ω .

Moreover, there exists a number t0 > 0 such that

{x ∈ Ω, θ(x)u2
1(x) > t0} ⊆ ω ⊆ {x ∈ Ω, θ(x)u2

1(x) ≥ t0}
where u1 is an eigenfunction associated to λ1(ρa

∗).
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For the proof, we refer to [198]. It consists in a clever exploitation of the
optimality conditions. Let us quote that in this paper, some other generalizations
are considered. Instead of assuming α ≤ ρ(x) ≤ β with two constants, the author
was able to handle the case α(x) ≤ ρ(x) ≤ β(x). He also discusses the case where
the function θ(x) is not assumed to be non-negative. He is also able to replace the
“mass condition”

∫
Ω ρ(x) dx = c by a more general one of the type

∫
Ω f(ρ(x)) dx =

c with f convex and increasing. At last, he also shows that conditions (9.39) and
(9.40) are, in some sense, necessary to get a bang-bang maximizer.



Chapter 10

Optimal conductivity

10.1 Introduction

In this chapter, we are interested in an eigenvalue problem of the kind:{ −div(σ(x)∇u) = λ(σ)u in Ω,
u = 0 on ∂Ω,

(10.1)

where σ is now the unknown. We assume σ to be positive and bounded in Ω
(see below for more precise assumptions). The case where σ possibly vanishes is
considered in section 10.2.3. Each eigenvalue can also be characterized by the usual
min-max formulae:

λ1(σ) = min
y∈H1

0 (Ω),y �=0

∫
Ω σ(x)|∇y(x)|2 dx∫

Ω y(x)2 dx
(10.2)

and

λk(σ) = min
Ek ⊂ H1

0 (Ω),
subspace of dim k

max
y∈Ek,y �=0

∫
Ω

σ(x)|∇y(x)|2 dx∫
Ω y(x)2 dx

. (10.3)

As first easy properties of λk(σ), we can state

Theorem 10.1.1. The map σ 
→ λk(σ) is concave, continuous for the convergence
a.e. and upper-semi continuous for the weak-* topology.

Proof. Concavity is clear as infimum of affine functions, the continuity result fol-
lows from Theorem 2.3.3 and the upper-semi continuity is due to the fact that
λk(σ) is an infimum of functions which are continuous for the weak-* topology. �
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Let us remark that σ 
→ λk(σ) is not continuous for the weak-* topology
according to Theorem 2.3.6. It is also obvious that σ 
→ λk(σ) is increasing: σ1 ≤
σ2 ⇒ λ1(σ1) ≤ λ1(σ2). It follows immediately that minimization or maximization
problems for λk(σ) in a class like

A := {σ ∈ L∞(Ω); α ≤ σ(x) ≤ β a.e. in Ω}

has no interest since the obvious solution would be σ(x) ≡ α or σ(x) ≡ β. There-
fore, we will generally consider here minimization or maximization problems for
λk(σ) in the class

Aα,β,p,c := {σ ∈ L∞(Ω); 0 < α ≤ σ(x) ≤ β a.e. in Ω;
∫

Ω

σp(x) dx = c} (10.4)

where p > 0 and c are given.
In section 10.2, we investigate the one-dimensional case for which we are able

to give complete results. One of the tricks is to do a change of variable which allows
us to transfer the variable into the lower-order term. Then, we can apply results
of chapter 9. In section 10.3, we study the maximization problem of λk in general
dimension. For a similar analysis, but with the energy instead of the eigenvalues,
we refer to [51]. For the minimization problem, existence, in general, does not hold
and one must consider the framework of homogenization theory.

10.2 The one-dimensional case

We consider here the one-dimensional interval Ω = (0, L) and we are interested in
the eigenvalue problem{ − d

dx (σ(x)du
dx ) = λ(σ)u in Ω = (0, L),

u(0) = u(L) = 0.
(10.5)

10.2.1 A general existence result

In one dimension, one can give a general existence result without dealing with
homogenization theory.

Theorem 10.2.1. Let Ω = (0, L) and Aα,β,p,c be the class of functions defined
in (10.4). Let F : R

k → R be a continuous function, increasing in each of its
arguments. Then, the problem

max
σ∈Aα,β,p,c

F (λ1(σ), λ2(σ), . . . , λk(σ))

has a solution.
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Proof. We use the standard method of calculus of variations. Let σn be a maxi-
mizing sequence in the class Aα,β,p,c. Since 1/σn is uniformly bounded in L∞(Ω),
we can extract a subsequence such that 1/σn converges weakly-* to some function
denoted 1/σ and satisfying 1/β ≤ 1/σ(x) ≤ 1/α. According to Theorem 2.3.6,
λk(σn) → λk(σ). It remains to prove that the integral constraint is satisfied by
the function σ. For that we use Theorem 1.1 in [71]. Let us consider the con-
vex real function f(t) = t−p. We have that ϕ 
→ ∫ L

0 f(ϕ(x)) dx is weak-* lower
semi-continuous on L∞(Ω). Therefore∫ L

0

σp(x) dx =
∫ L

0

f(σ−1) dx ≤ lim inf
∫ L

0

f(σ−1
n ) dx =

∫ L

0

σp
n(x) dx = c .

(10.6)
But since the function σ 
→ F (λ1(σ), λ2(σ), . . . , λk(σ)) is increasing with respect
to σ, we see that we necessarily have equality in (10.6). �

10.2.2 Minimization or maximization of λk(σ)

We want to look for functions σ which minimize or maximize the first eigenvalue
λ1(σ) of (10.5). In the case of Dirichlet boundary conditions, we are able to give
the exact minimizers and maximizers, thanks to a change of variable together with
Krein’s Theorems 9.3.1 and 9.3.3.

Theorem 10.2.2. (i) The (unique) minimizer of λ1(σ) in the class Aα,β,p,c de-
fined in (10.4) is the function σ1(x) defined by

σ1(x) =

⎧⎨⎩
α for x ∈ (0, L

2 − δ),
β for x ∈ (L

2 − δ, L
2 + δ),

α for x ∈ (L
2 + δ, L),

(10.7)

where δ = (c − αpL)/2(βp − αp).

(ii) The (unique) maximizer of λ1(σ) in the class Aα,β,p,c(Ω) is the function
σ1(x) defined by

σ1(x) =

⎧⎨⎩
β for x ∈ (0, L

2 − δ),
α for x ∈ (L

2 − δ, L
2 + δ),

β for x ∈ (L
2 + δ, L),

(10.8)

where δ = (βpL − c)/2(βp − αp).

Proof. We follow the same idea as in [64]: a simple change of variable allows us to
transfer the variable into the lower-order term. Let (u, λ) be an eigenfunction and
an eigenvalue of (10.5) associated to a function σ belonging to the class Aα,β,p,c(Ω).
Since σ > 0 in (0, L), the function x 
→ ∫ x

0
dt

σ(t) is increasing. So, we can introduce
the change of variable and the new function

y =
∫ x

0

dt

σ(t)
and v(y) = u(x) . (10.9)



162 Chapter 10. Optimal conductivity

Let us denote by L1 the maximum value attained by y: L1 =
∫ L

0
dt

σ(t) . We also
denote by x(y) the inverse function of x 
→ y(x) which is defined on [0, L1]. From
dy
dx = 1/σ(x), we immediately obtain that v satisfies{

− d2

dy2 v = λσ(x(y)) v(y) in Ω1 = (0, L1),
u(0) = u(L1) = 0.

(10.10)

Let us introduce the function ρ(y) = σ(x(y)). This function satisfies

α ≤ ρ(y) ≤ β (10.11)

and the integral condition∫ L1

0

ρ(y) dy =
∫ L

0

σ(x) dx

σ(x)
= L . (10.12)

From (10.10), (10.11), (10.12) we see from Theorems 9.3.1 and 9.3.3 that λ1 is
minimum (resp. maximum) if ρ(y) is the step function defined by (9.24) (resp.
(9.26)).

We want now to prove that the optimal σ has to be symmetric with respect to
L/2. In the case of a maximization problem, we can use the concavity of σ 
→ λ1(σ).
Indeed, let us denote by

σs(x) := σ(L − x)

the function which is symmetric to it. Obviously,

λ1(σs) = λ1(σ)

and σ∗ := (σ + σs)/2 is symmetric w.r.t. L/2. By concavity of σ 
→ λ1(σ), we get

λ1(σ∗) = λ1((σ + σs)/2) ≥ 1
2
(λ1(σ) + λ1(σs)) = λ1(σ).

In the minimization case, we use another argument. Since σ(x(y)) = ρ(y) is the
step function defined by (9.24), there exists x1 < x2 such that σ(x) = α for
0 < x < x1, x2 < x < L and σ(x) = β for x1 < x < x2. So, it is easy to deduce
from (10.9) that

y(x) =

⎧⎨⎩
x/α for 0 < x < x1,

x1/α + (x − x1)/β for x1 < x < x2,
x1/α + (x2 − x1)/β + (x − x2)/α for x2 < x < L .

(10.13)

Now expressing that y(x1) (resp. y(x2)) must coincide with (L1 − δ1)/2 (resp
(L1 + δ1)/2) which are the two discontinuity points of ρ(y), we get immediately
δ1 = (x2 − x1)/β and x1 + x2 = L. This last equality shows that σ has to be
symmetric with respect to L/2. At last, expressing the constraint

∫ L

0 σp(x) dx = c,
we get formulae (10.7) and (10.8). �
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One can state exactly the same theorem in the case of the k-th eigenvalue. For
example, the minimizer of λk(σ) in the class Aα,β,p,c(Ω) will be the function σk(x)
which is L/k-periodic and which is defined on each interval (jL/k, (j + 1)L/k),
j = 0, . . . , k − 1 by

σk(x) = σ1 (kx − jL)

with σ1 defined in (10.7). We leave the details to the reader.

Remark 10.2.3. One cannot completely relax the assumption 0 < α ≤ σ(x). For
example, the minimization and maximization problem is studied in chapter 5 of
[83] in the class Ap := {σ ∈ L∞(Ω); 0 < σ(x);

∫ L

0
σp(x) dx = 1}. For example,

their Theorem 25 shows that there are no minimizers in this class.

10.2.3 Case of Neumann boundary conditions

In this section, we study the eigenvalue problem (10.5) but with Neumann bound-
ary conditions. Of course, the first eigenvalue is zero, so we are interested in the
second one µ2(σ). This problem has been studied by B.A. Troesch in [203] who
was interested in the sloshing of liquids in a container. For that purpose, he consid-
ers functions σ(x) satisfying the constraint

∫ L

0
σ(x) dx = c. He assumes σ(x) > 0

inside the interval I = (0, L), but the novelty here is that σ is allowed to vanish at
its extremities. Therefore, the operator − d

dx (σ(x)du
dx ) is not uniformly elliptic and

the existence of eigenvalues and eigenfunctions does not follow in a classical way
using Theorem 1.2.2 (see Remark 1.2.3). So, let us first give conditions on σ(x) in
order that the eigenvalue problem is well posed.

Theorem 10.2.4. Let I = (0, L) ⊂ R be a (non-empty) finite interval and σ(x) a
function satisfying:

1. σ ∈ L∞(0, L),

2. there exists k > 0 and p > 0 such that σ(x) ≥ k (x(L − x))p for a.e. 0 < x <
L.

Then, the operator − d
dx (σ(x)du

dx ) possesses a sequence of eigenvalues and eigen-
functions (as in the classical case) as soon as

• p < 1 in the case of Dirichlet boundary conditions,

• p < 2 in the case of Neumann boundary conditions.

Proof. We are going to use an integral representation of the inverse of the operator
− d

dx (σ(x)du
dx ) as in [66]. Actually, this integral representation is given thanks to

the Green function which can be found explicitly in the one-dimensional case. We
begin with the case of Dirichlet boundary conditions: it is easy to check that, in
this case, the solution of − d

dx (σ(x)du
dx ) = f is given by

u(x) =
∫ L

0

g(x, y)f(y) dy with g(x, y) =

∫min(x,y)

0
dt

σ(t)

∫ L

max(x,y)
dt

σ(t)∫ L

0
dt

σ(t)

. (10.14)
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We first observe that the kernel g(x, y) is well defined if σ(x) ≥ k (x(L − x))p with
p < 1. Moreover, the integral operator defined by (10.14) is a Hilbert-Schmidt
operator (and then is compact) if the kernel g(x, y) belongs to L2(I × I). In this
case, Theorem 1.2.1 applies and shows existence of eigenvalues and eigenfunctions.
So, to prove the theorem it suffices to show that g(x, y) ∈ L2(I × I). We use
symmetry of the kernel g:∫ L

0

∫ L

0

g(x, y)2 dxdy = 2
∫ L

0

∫ x

0

g(x, y)2 dxdy

= 2
∫ L

0

⎧⎨⎩
(∫ L

x

dt

σ(t)

)2 ∫ x

0

(∫ y

0

dt

σ(t)

)2

dy

⎫⎬⎭ dx

/(∫ L

0

dt

σ(t)

)2

.

Now to prove that the previous integral is finite, it is better to write the condition
on the function σ slightly differently:

σ(x) ≥ k1x
p for x ∈ (0, L/2) and σ(x) ≥ k2(L − x)p for x ∈ (L/2, L) .

A straightforward computation gives (where c, c′, c′′ are some constants):

∫ L

0

∫ L

0

g(x, y)2 dxdy ≤ c

⎛⎝∫ L/2

0

[∫ L

L/2

dt

σ(t)
+

1
k1

((L/2)1−p − x1−p)

]2

x3−2p dx

+
∫ L

L/2

(L − x)2−2p

[
c′ +

∫ x

L/2

(c′′ + (L − y)1−p)2 dy

]
dx

)
.

It is easy to convince oneself that the right-hand side of the above inequality is
finite if p < 1.

For the Neumann case, the procedure is exactly the same. Now, the inverse
of the operator − d

dx (σ(x)du
dx ) with the boundary conditions σu′(0) = σu′(L) = 0

is given by the integral representation:

u(x) =
∫ L

0

g(x, y)f(y) dy with g(x, y) =
∫ min(x,y)

0

tdt

σ(t)
+
∫ L

max(x,y)

(L − t)dt

σ(t)
.

(10.15)
Actually, the map f 
→ u is well defined only for those f satisfying

∫ L

0
f(x)dx = 0,

but it suffices to consider the quotient by constants to get a one-to-one operator.
We see on the formula giving the kernel g that it is well defined as soon as p < 2.
Finally, a simple calculation also shows that g(x, y) belongs to L2(I × I) under
the same condition on p. �
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Theorem 10.2.5 (Troesch). Let I = (0, L), c ∈ R+ and Ac be the class of functions
defined by

Ac := {σ ∈ L∞(Ω); σ satisfies (10.16);
∫ L

0

σ(x) dx = c},

∃k > 0, p < 2 such that σ(x) ≥ k (x(L − x))p for a.e. 0 < x < L . (10.16)

Let µ2(σ) denote the second eigenvalue of − d
dx (σ(x)du

dx ) with Neumann boundary
conditions. Then, the function σ∗(x) := 6c

L3 x(L − x) is the unique minimizer of
µ2(σ) in the class Ac.

Proof. First, observe that the function σ∗ belongs to the class Ac. Now, let σ be
any function in Ac and take the test function x−L/2 (which has mean value zero
and therefore is admissible) in the variational characterization of µ2:

µ2(σ) = min
v ∈ H1(I), v �= 0∫ L

0 v(x) dx = 0

∫ L

0
σ(x)v′(x)2 dx∫ L

0
v(x)2 dx

≤
∫ L

0
σ(x) dx∫ L

0
(x − L/2)2 dx

=
12c

L3
.

(10.17)
Moreover, equality holds in (10.17) only if the test function v(x) = x−L/2 is the
eigenfunction associated to σ. Now, σ = σ∗ is precisely the function σ for which
the second Neumann eigenfunction is u(x) = x − L/2 (the Neumann boundary
conditions are satisfied here since σ vanishes at the extremities of the interval).
Therefore, the theorem is proved. �
Remark 10.2.6. The previous result has been generalized by C. Bandle in [20] to
the nonlinear constraint

∫ L

0
σp(x) dx = c , p ≥ 1 and with possible lower and upper

bound on σ. Other constraints can also be considered. J.F. Kuzanek in [134] looks
at functions σ satisfying

∫ L

0

√
1 + σ′2 dx = const.

10.3 The general case

10.3.1 The maximization problem

Let us begin with a first existence result. Since the class

A := {σ ∈ L∞(Ω); 0 < α ≤ σ(x) ≤ β a.e. in Ω;
∫

Ω

σ(x) dx = c} (10.18)

is compact for the weak-* topology on L∞(Ω), an immediate consequence of The-
orem 10.1.1 yields

Theorem 10.3.1. Let A be the class defined in (10.18); then, for any k, the problem

max
σ∈Aα,β,1,c

λk(σ)

has a solution.
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Let us denote by σ∗ a solution of the maximization problem as given by
the previous theorem. We want to write down the optimality conditions. For that
purpose, let us assume that λk(σ∗) is simple (this is certainly the case for example
for λ1). We recall (see Theorem 2.5.15 and Remark 2.5.16) that σ 
→ λk(σ) is
differentiable with its derivative at σ∗ given by

< dλk(σ∗), h >=
∫

Ω

h(x)|∇uk(x)|2 dx (10.19)

where uk is the associated eigenfunction normalized by
∫
Ω uk(x)2 dx = 1.

Let us now introduce the three following subsets of Ω:⎧⎪⎨⎪⎩
Ω0 = {x ∈ Ω, σ∗(x) = α},
Ω∗ = {x ∈ Ω, α < σ∗(x) < β},
Ω1 = {x ∈ Ω, σ∗(x) = β}.

(10.20)

Of course, these subsets are only defined up to a set of zero measure since σ∗

is only in L∞(Ω). So, the above equalities and inequalities are to be understood
a.e. Since we try to write the optimality conditions satisfied by σ∗, we need to
characterize the tangent cone T ′(σ∗) to A at point σ∗ in L∞(Ω). Let us recall that
it is defined as follows: an element h ∈ T ′(σ∗) if, for any sequence tn decreasing
to 0, there exists a sequence hn ∈ L∞(Ω) converging (uniformly) to h such that,
for any n, σ∗ + tnhn ∈ A.

Lemma 10.3.2. The tangent cone T ′(σ∗) to the convex set A at point σ∗ is the set
of functions h in L∞(Ω) such that

(i)
∫
Ω

h(x) dx = 0,

(ii) ‖χQα
n
h−‖∞ → 0 when n → ∞, where Qα

n = {x ∈ Ω, σ∗(x) ≤ α + 1/n},
(iii) ‖χQβ

n
h+‖∞ → 0 when n → ∞, where Qβ

n = {x ∈ Ω, σ∗(x) ≥ β − 1/n}.
For the proof, we refer to [31] or [57]. Let us observe that the condition

h(x) ≥ 0 in Ω0 and h(x) ≤ 1 in Ω1,

∫
Ω

h = 0, (10.21)

is clearly necessary for an element h to belong to the tangent cone T ′(σ∗), but it
is not sufficient, see above references or [104].

Therefore, the optimality condition of the first order is written

∀h ∈ T ′(σ∗), < dλk(σ∗), h >=
∫

Ω

h|∇u∗
k|2 dx ≤ 0. (10.22)

Since σ 
→ λk(σ) is concave, the necessary optimality condition is also a sufficient
one and (10.22) is therefore a characterization of the maxima of λk. Let us make
explicit this characterization in terms of the sets Ω0, Ω∗ and Ω1 that we have
introduced.
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Theorem 10.3.3. Let σ∗ ∈ A and let us assume that the eigenvalue λk(σ∗) is
simple. Let u∗

k be the corresponding (normalized) eigenfunction. Let Ω0, Ω1, Ω∗ be
defined in (10.20). Then, σ∗ is a maximizer of λk(σ) if and only if:

(i) |∇u∗
k| is constant on Ω∗.

(ii) ∀(x0, x
∗, x1) ∈ Ω0 × Ω∗ × Ω1, we have |∇u∗

k(x0)| ≤ |∇u∗
k(x∗)| ≤ |∇u∗

k(x1)|.
In the sequel, we will denote by c∗ the value taken by |∇u∗

k| on Ω∗.

Proof. Let us first assume that σ∗ is a maximizer of λk(σ) and let us introduce

Ω∗
n = {x ∈ Ω, 1/n ≤ σ∗ ≤ 1 − 1/n}.

We want to show that |∇u∗
k| is constant on Ω∗

n. Since Ω∗ =
⋃
n>0

Ω∗
n it will prove

(i). Let us assume, for a contradiction, that |∇u∗
k| is not constant on Ω∗

n. It is
therefore possible to find two measurable subsets ω1 and ω2 in Ω∗

n such that

|ω1| = |ω2| and
∫

ω1

|∇u∗
k|2 dx <

∫
ω2

|∇u∗
k|2 dx. (10.23)

Let us now choose h defined by

h(x) =

⎧⎨⎩
−1 in ω1,
+1 in ω2,
0 elsewhere.

Using Lemma 10.3.2, we see that h belongs to the tangent cone T ′(σ∗), but thanks
to (10.23), we have

< dλk(σ∗), h >=
∫

Ω

h|∇u∗
k|2 dx =

∫
ω2

|∇u∗
k|2 dx −

∫
ω1

|∇u∗
k|2 dx > 0

contradicting the optimality condition (10.22).
(ii) is proved in a similar way, assuming that there exists a set of positive

measure, say ω0 in Ω0 such that

|∇u∗
k|/ω0 > |∇u∗

k|/Ω∗ = c∗.

We choose then ω∗ in Ω∗
n, with |ω0| = |ω∗| and we conclude using a function h

which satisfies h = 1 in ω0, h = −1 in ω∗.
Conversely, let us assume that the couple (σ∗, u∗

k) satisfies (i) and (ii) of the
theorem. Let h be in the tangent cone T ′(σ∗). According to (10.21), h is non-
negative on Ω0 and non-positive on Ω1, and so∫

Ω

h|∇u∗
k|2 dx =

∫
Ω0

h|∇u∗
k|2 dx +

∫
Ω∗

h|∇u∗
k|2 dx +

∫
Ω1

h|∇u∗
k|2 dx

≤
∫

Ω0

hc∗
2
+
∫

Ω∗
hc∗

2
+
∫

Ω1

hc∗
2

= c∗
2
∫

Ω

h = 0.
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Consequently, σ∗ satisfies the optimality condition (10.22) and, by concavity of
σ 
→ λk(σ) it is a maximizer of λk. �
Remark 10.3.4. In general, we cannot prove uniqueness of the maximizer. Nev-
ertheless, for the first eigenvalue, we can prove uniqueness of the eigenfunction!
Indeed, let us denote by λ∗

1 the maximum value of λ1(σ) and let us assume that
there exist two maximizers σ1 and σ2. Let us denote by u1 and u2 the associated
eigenfunctions. It is clear that the function σ2 − σ1 belongs to T ′(σ1), therefore,
according to (10.22),

∫
Ω σ1|∇u2|2 dx ≤ ∫

Ω σ2|∇u2|2 dx. Therefore∫
Ω

σ1|∇(u1 − u2)|2 dx =
∫

Ω

σ1|∇u1|2 dx − 2
∫

Ω

σ1∇u1.∇u2 dx +
∫

Ω

σ1|∇u2|2 dx

≤ λ∗
1

∫
Ω

u2
1 dx − 2λ∗

1

∫
Ω

u1u2 dx + λ∗
1

∫
Ω

u2
2 dx = λ∗

1

∫
Ω

(u1 − u2)2 dx,

which shows that u1 − u2 (and then u2) is an eigenfunction associated to the pair
(σ1, λ

∗
1). In particular, since λ∗

1 is simple, we get u2 = u1.

10.3.2 The minimization problem

In general, the minimization problem has no solution. One needs to consider a
relaxation of the problem to get a solution in a wider class. More precisely, the
classical homogenization theory, see for example [154] or [142], tells us that we
need to consider the minimization problem on the set

A∗ = {(σ, A∗); σ ∈ A, A∗ ∈ Mσ, }
where

Mσ := {G − limits of σnId, with σn
∗
⇀ σ} (10.24)

and the G-convergence is defined by:

Definition 10.3.5. One says that the sequence of conductivity σn G-converges to a
homogenized conductivity A∗ (which is an N × N matrix in general) if, for every
f ∈ H−1(Ω), the solution un of{ −div(σn∇un) = f in Ω,

un = 0 on ∂Ω (10.25)

converges weakly in H1
0 (Ω) to u∗, solution of{ −div(A∗∇u∗) = f in Ω,

u∗ = 0 on ∂Ω.
(10.26)

In fact, in the set A∗, one can prove existence of an optimal pair (σ∗, A∗)
thanks to compactness properties of this set and continuity of eigenvalues with
respect to G-convergence (this last point follows immediately using the same proof
as Theorem 2.3.3). In [64], the authors write the optimality conditions in this
framework.



Chapter 11

The bi-Laplacian operator

11.1 Introduction

This chapter deals with the so-called bi-Laplacian operator ∆2 = ∆ ◦∆. This is a
model of a fourth-order operator. It appears in various problems of linear elasticity,
for example when looking at small displacements of a plate (whereas the Laplacian
describes the behavior of a membrane). Let Ω be a bounded Lipschitzian open set
in R

N . The two eigenvalue problems that we are considering here are:
The clamped plate eigenvalue problem:{

∆2u = λ(Ω)u in Ω,
u = ∂u

∂n = 0 on ∂Ω .
(11.1)

The buckled plate eigenvalue problem:{ −∆2u = Λ(Ω)∆u in Ω,
u = ∂u

∂n = 0 on ∂Ω .
(11.2)

In both cases, it has been conjectured that the ball is the domain which mini-
mizes the first eigenvalue of problems (11.1) and (11.2) among open sets with a
given volume. In the case of the clamped plate, this conjecture was proved by
N. Nadirashvili for N = 2 and M. Ashbaugh-R. Benguria for N = 3. It is dis-
cussed in section 11.2. For the buckling of a plate, the problem is still open; some
partial results are given in section 11.3. In the last section, some results about
non-homogeneous plates are also discussed.

11.2 The clamped plate

11.2.1 History

For the clamped plate, the conjecture (that the disk minimizes the first eigenvalue)
was enunciated by Lord Rayleigh in his book The theory of sound, see [179]. A
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partial answer was given by P. Szegö in [195] where he proves the conjecture,
thanks to a rearrangement argument, provided that the first eigenfunction u is
non-negative. Unfortunately, we know nowadays that many domains do not fulfill
this assumption, see e.g. [80], [210]. Later, G. Talenti in [200] was able to prove
estimates like λ1(Ω) ≥ cNλ1(Ω∗) (Ω∗ is the ball of same volume as Ω) where
cN < 1 is a constant depending only on the dimension N , for example c2 = 0.978.
Then, E. Mohr in [151], assuming existence and regularity of a minimizer was
able to prove that this one has to be a disk. For that, he used the optimality
conditions obtained thanks to domain derivative as described in section 2.5. At
last, in 1992, N. Nadirashvili announced in [156] a proof of Rayleigh’s conjecture
in two dimensions. The full proof appears in [157]. It is based on the previous
work of G. Talenti: it relies on a delicate rearrangement argument involving ∆u
on the sets where u is positive and then negative. Roughly speaking, his method
consists in introducing several auxiliary constrained minimization problems like
(11.23). Following this work, M. Ashbaugh and R. Benguria were able, in [15], to
show another method of proof which generalizes Nadirashvili’s result to the three
dimensional case. Their technique is also a refinement of Talenti’s method. Since
it contains both cases N = 2 and N = 3, we choose to present this proof here.

11.2.2 Notation and statement of the theorem

Let us recall that the first eigenvalue of problem (11.1) is also characterized by
the min formulae:

λ1(Ω) = min
v∈H2

0 (Ω),v �=0

∫
Ω(∆v(x))2 dx∫

Ω
v(x)2 dx

(11.3)

where H2
0 (Ω) denotes the closure of C∞ functions compactly supported in Ω into

the Sobolev space H2(Ω) of functions in L2(Ω) whose first and second derivatives
lie in L2(Ω). In (11.3) the minimum is attained by the first eigenfunction that we
will denote by u in all this section. We recall that, for general domains, the first
eigenfunction is not necessarily positive. We will denote by u+ and u− the positive
and negative parts of u respectively defined by

u+ = max(u, 0), u− = max(−u, 0)

and we will call Ω+ (resp. Ω−) the support of u+ (resp. u−). At last, as in section
2.1, we will introduce,

• for any open set ω let ω∗ be the ball of same volume as ω,

• for any function v defined on ω, let v∗ be the spherical decreasing rearrange-
ment or Schwarz rearrangement of v.

Following [200], we will denote by L (resp. a, resp. b) the radius of the ball Ω∗

(resp. Ω∗
+, resp. Ω∗−). Of course, we have

aN + bN = LN . (11.4)
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As usual, BR will denote the ball of radius R centered at the origin. Let us now
state the main result of this section.

Theorem 11.2.1 (Nadirashvili-Ashbaugh-Benguria). In dimension N = 2 and N =
3, the ball minimizes the first eigenvalue of the clamped problem (11.1) among open
sets of given volume.

11.2.3 Proof of the Rayleigh conjecture in dimension N = 2, 3

We follow [15] and [200]. The function ∆u is not necessarily positive in Ω. We
denote by (∆u)+ and (∆u)− the positive and negative parts of ∆u respectively.
Now any s between 0 and |Ω| = |Ω∗| can be written s = CNrN where r ∈ [0, L]
and CN = πN/2/Γ(N/2 + 1) is the volume of the unit ball in R

N . We introduce
the two radially symmetric functions

for s = CNrN ∈ [0, |Ω|], g(s) := (∆u)∗+(r) − (∆u)∗−(L − r) , (11.5)

for s = CNrN ∈ [0, |Ω|], f(s) := −g(|Ω| − s) . (11.6)

Since (∆u)∗+ and (∆u)∗− are decreasing functions, both functions f and g are
decreasing functions of s. Moreover, since

∫
Ω

∆u dx =
∫

∂Ω
∂u/∂n dσ = 0, we have

that∫ |Ω|

0

g(s) ds =
∫

Ω∗
(∆u)∗+ dx −

∫
Ω∗

(∆u)∗− dx =
∫

Ω

(∆u)+ dx −
∫

Ω

(∆u)− dx = 0 .

(11.7)
In the same way,

∫ |Ω|
0 f(s) ds = 0. This in turn implies that

∫ s

0 g(t) dt ≥ 0 and∫ s

0 f(t) dt ≥ 0 for all s ∈ [0, |Ω|].
Finally, let us define the two spherically symmetric functions v and w on Ω∗:

v(x) :=
1

N2C
2/N
N

∫ CN aN

CN |x|N
s−2(N−1)/N

(∫ s

0

f(t) dt

)
ds (11.8)

and

w(x) :=
1

N2C
2/N
N

∫ CN bN

CN |x|N
s−2(N−1)/N

(∫ s

0

g(t) dt

)
ds . (11.9)

From the definition of v and w and the properties of f and g, we have (here r = |x|)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v(x) ≥ 0 for 0 ≤ |x| ≤ a,

w(x) ≥ 0 for 0 ≤ |x| ≤ b,

v(a) = w(b) = 0,
∂v
∂r (0) = ∂v

∂r (L) = 0,
∂w
∂r (0) = ∂w

∂r (L) = 0 .

(11.10)
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Moreover, if we abuse notation and consider v and w as functions of the measure
s = CN |x|N , (11.6) becomes

v(s) = −w(|Ω| − s) . (11.11)

Let us also remark that by computing ∆v = ∂2v
∂r2 + N−1

r
∂v
∂r , we observe that

−∆v = f(CN |x|N ) in Ω∗
+, (11.12)

with v = 0 on ∂Ω∗
+ (i.e. v(a) = 0). In the same way, w satisfies

−∆w = g(CN |x|N ) in Ω∗−, (11.13)

with w = 0 on ∂Ω∗
− (i.e. w(b) = 0). We assume that we extend v for |x| ≥ a and

w for |x| ≥ b using (11.11). From equations (11.12), (11.13) and (11.6) it follows
that

∆v(a) + ∆w(b) = −(f(|Ω∗
+|) + g(|Ω∗

−|)) = −(f(|Ω∗
+|) + g(|Ω| − |Ω∗

+|)) = 0 .

Now, from
∫ |Ω|
0

g(s) ds = 0 (see (11.7) and (11.6)), we deduce

0 =
∫ |Ω∗

−|

0

g(s) ds +
∫ |Ω∗|

|Ω∗
−|

g(s) ds =
∫ |Ω∗

−|

0

g(s) ds −
∫ |Ω∗

+|

0

f(s) ds

or ∫
|x|≤a

f(CN |x|N ) dx =
∫
|x|≤b

g(CN |x|N ) dx

which in turn implies together with (11.12), (11.13)∫
|x|≤a

∆v dx =
∫
|x|≤b

∆w dx . (11.14)

Green formulae applied to (11.14) finally yields

aN−1 ∂v

∂r
(a) = bN−1 ∂w

∂r
(b) . (11.15)

In [200], G. Talenti proved the following comparison theorem between the four
radial functions u∗

+, v, u∗−, w:

Theorem 11.2.2 (Talenti). Let u∗
+, v, u∗−, w be defined as above. Then

u∗
+ ≤ v in Ω∗

+ , (11.16)

u∗
− ≤ w in Ω∗

− , (11.17)∫
Ω

(∆u)2 dx =
∫

Ω∗
+

(∆v)2 dx +
∫

Ω∗
−

(∆w)2 dx , (11.18)∫
Ω

(∆u)2 dx =
∫
|x|≤L

(∆v)2 dx =
∫
|x|≤L

(∆w)2 dx . (11.19)
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Let us go on to the proof of Theorem 11.2.1. By classical properties of rear-
rangement, see (2.1), we have∫

Ω

u2 dx =
∫

Ω+

u2
+ dx +

∫
Ω−

u2
− dx =

∫
Ω∗

+

(u∗
+)2 dx +

∫
Ω∗

−

(u∗
−)2 dx . (11.20)

Equation (11.20) together with (11.16), (11.17) yields:∫
Ω

u2 dx ≤
∫

Ω∗
+

v2 dx +
∫

Ω∗
−

w2 dx (11.21)

which in turn, with (11.18) gives

λ1(Ω) =

∫
Ω(∆u(x))2∫
Ω

u(x)2 dx
≥

∫
Ω∗

+
(∆v)2 dx +

∫
Ω∗

−
(∆w)2 dx∫

Ω∗
+

v2 dx +
∫
Ω∗

−
w2 dx

. (11.22)

Let us remark that if u has one sign then (11.22) and the variational character-
ization (11.3) of λ1(Ω∗) imply Rayleigh’s conjecture. In this sense, as quoted by
G. Talenti, this is another proof of P. Szegö’s result, [195].

We now introduce a new minimization problem based upon the right-hand
side of (11.22). For any fixed pair of numbers (α, β) such that 0 ≤ α ≤ β ≤ L and
αN + βN = LN , define

Jα,β := min
ϕ,ψ

∫
|x|≤α(∆ϕ)2 dx +

∫
|x|≤β(∆ψ)2 dx∫

|x|≤α ϕ2 dx +
∫
|x|≤β ψ2 dx

(11.23)

where the minimum is taken over all pairs of radial functions (ϕ, ψ), where ϕ ∈
H2(Bα) ∩ H1

0 (Bα) and ψ ∈ H2(Bβ) ∩ H1
0 (Bβ) are such that

αN−1 ∂ϕ

∂r
(α) = βN−1 ∂ψ

∂r
(β) (11.24)

and where (ϕ, ψ) is non-trivial in the sense that the denominator in (11.23) does
not vanish. We now state two lemmas.

Lemma 11.2.3. There exists a classical solution (ϕ̂, ψ̂) of the minimization problem
(11.23). Moreover, the minimizers satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆2ϕ̂ = µϕ̂ in |x| ≤ α,

∆2ψ̂ = µψ̂ in |x| ≤ β,

ϕ̂(α) = ψ̂(β) = 0,

αN−1 ∂ϕ̂
∂r (α) = βN−1 ∂ψ̂

∂r (β),

∆ϕ̂(a) + ∆ψ̂(b) = 0,

where the number µ is precisely the minimal value Jα,β.
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Lemma 11.2.4. In dimension N = 2 and N = 3 the minimal value of Jα,β (defined
in (11.23)) for all pairs α, β satisfying 0 ≤ α ≤ β ≤ L and αN + βN = LN is
attained for α, β = (0, L).

From Lemma 11.2.4 and inequality (11.22), we deduce immediately

λ1(Ω) ≥ J0,L = min
ψ

∫
|x|≤L(∆ψ)2 dx∫

|x|≤L ψ2 dx
= λ1(Ω∗)

which prove Rayleigh’s conjecture.

For the proofs of the two lemmas, we refer the reader to [10]. The proof of
Lemma 11.2.3 is easy using the classical method of calculus of variations. The
proof of Lemma 11.2.4 is much more technical, it relies on fine properties of Bessel
functions. Indeed, it is easy to see that the minimizers given by Lemma 11.2.3 are
both of the kind

[AJν(kr) + BIν(kr)]r−ν

where ν = (N/2)− 1 and k = µ1/4. Then it follows that the number k = µ1/4 is a
zero of the transcendental equation

fν(ka) + fν(kb) = 0

where fν(x) := xN−1
[

Jν+1
Jν

(x) + Iν+1
Iν

(x)
]
.

Remark 11.2.5. The fact that Lemma 11.2.4 holds only for N = 2, 3 comes from
the inequality kν ≤ 21/N jν,1 (where kν is the first positive zero of fν and jν,1 the
first positive zero of Jν) which is necessary in the proof.

Open problem 28. Prove Rayleigh’s conjecture for the first eigenvalue of the clam-
ped problem in dimension N ≥ 4.

11.3 Buckling of a plate

11.3.1 Introduction

Here we consider the eigenvalue problem (11.2) and more particularly its first
eigenvalue Λ1(Ω). As usual, this one can be characterized by the variational prin-
ciple:

Λ1(Ω) = min
v∈H2

0 (Ω),v �=0

∫
Ω(∆v(x))2∫

Ω
|∇v(x)|2 dx

(11.25)

where the Sobolev space H2
0 (Ω) is defined as in (11.3). In (11.25) the minimum

is attained by the first eigenfunction that will we denote by u in all this section.
The following conjecture is due to G. Pólya and G. Szegö in [174]:
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Open problem 29 (Pólya-Szegö). Prove that the ball minimizes Λ1(Ω) among open
sets of given volume.

Only partial results are known about this conjecture. G. Szegö in [195], see
also [174], was able to prove it in the case where the first eigenfunction does not
change sign. We present, in section 11.3.2, his proof based on a rearrangement
technique. Unfortunately, as for the case of the clamped plate, we know that
this property of the first eigenfunction does not hold in general. If one cannot
use rearrangement techniques, the other approach consists in the following three
steps:

1. prove existence of a minimizer, say Ω,

2. prove that Ω is regular enough (for example C2,α) in order to be able to
compute the derivative of the eigenvalue with respect to the domain (in the
sense of section 2.5),

3. exploit the optimality conditions, which gives in general an overdetermined
condition on the boundary of Ω, to prove that this one must be a ball.

Actually, for this problem of buckling of a plate, step 1 can be obtained in the
spirit of Buttazzo-Dal Maso’s Theorem 2.4.5 together with Theorem 5.3.1, see
section 11.3.3 below. For step 3, we present in section 11.3.4 a successful and
tricky approach due to N.B. Willms and H.F. Weinberger. They did not publish
it, but one can find it in the paper of B. Kawohl in [123]. We reproduce it here
since we believe that this piece of proof is very nice and worth being advertised.

Therefore to complete the proof of Pólya-Szegö’s conjecture, it remains to
prove that the minimizer Ω is regular enough. Of course, it is a difficult question.
Nevertheless, let us note that some progress in that type of regularity question
for solutions of shape optimization problems have been recently obtained, see e.g.
[37], [38].

11.3.2 The case of a positive eigenfunction

Theorem 11.3.1 (G. Szegö). If Ω is a regular domain in R
N such that the first

eigenfunction of (11.2) does not change sign in Ω, then Λ1(Ω) ≥ Λ1(Ω∗) where
Ω∗ is the ball of same volume as Ω.

Proof. The proof follows the same idea as the classical proof of Theorem 3.2.1
by Faber and Krahn. Nevertheless, the rearrangement used is not Schwarz’s rear-
rangement but a new one built for this purpose:

Lemma 11.3.2. Let u be a non-negative bounded function defined on Ω which van-
ishes on ∂Ω. Then, there exists a radially symmetric function u∗ defined on Ω∗,
rearrangement of u and satisfying∫

Ω

(∆u(x))2 dx =
∫

Ω∗
(∆u∗(x))2 dx, (11.26)
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Ω

|∇u(x)|2 dx ≤
∫

Ω∗
|∇u∗(x)|2 dx, (11.27)

∫
Ω

u(x)2 dx =
∫

Ω∗
u∗(x)2 dx . (11.28)

Applying this lemma to u, the first eigenfunction of Ω, by combining (11.26),
(11.27) and the variational characterization of Λ1(Ω), we get

Λ1(Ω) =

∫
Ω
(∆u(x))2∫

Ω
|∇u(x)|2 dx

≥
∫ ∗
Ω
(∆u∗(x))2∫ ∗

Ω |∇u∗(x)|2 dx
= Λ1(Ω∗)

which gives the desired result. �

Remark 11.3.3. The construction of u∗ is realized in the following way, see [174]
for the two-dimensional case. Without loss of generality, we can assume 0 ≤ u ≤ 1.
For all ρ ∈ (0, 1), we introduce the sets

Dρ := {x ∈ Ω : 0 < u(x) < ρ} and Sρ := {x ∈ Ω : u(x) = ρ} .

We denote by V (ρ) = |{x ∈ Ω : u(x) ≥ ρ}| the volume of the set Ω \ Dρ. The
map ρ 
→ V (ρ) is continuous, monotonically decreasing, a.e. differentiable.

Then, we set

Q(ρ) :=
∫

Sρ

(∆u)2 dσ ,

g(ρ) :=
|V ′(ρ)|
γ2

NV (ρ)

∫ ρ

0

√
Q(t)|V ′(t)| dt

where γN is the constant, depending on the dimension, which occurs in the classical
(geometric) isoperimetric inequality between surface area S and volume V : S ≥
γNV (N−1)/N . Finally, the rearrangement u∗ is defined as

u∗(r) :=
∫ ρ

0

g(t) dt

where r is the radius of the ball of volume V (ρ). For example, if R denotes the
radius of the ball Ω∗ (which corresponds to the volume V (0)), we have u∗(R) = 0.

Remark 11.3.4. As quoted above, using (11.26), (11.28) and the variational char-
acterization of the first eigenvalue of the clamped plate (11.3), G. Szegö was able
to prove, in [195], the Rayleigh conjecture under the same assumption about the
first eigenfunction.
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11.3.3 An existence result

We begin with an existence result proved by M. Ashbaugh and D. Bucur in [16].

Theorem 11.3.5 (Ashbaugh-Bucur). There exists an open set Ω∗ minimizing the
first eigenvalue of the buckling problem Λ1(Ω) among simply connected open sets
of given measure.

For the proof, we refer to [16]. Actually, it has many similarities with the
proof of Theorem 5.3.3. Indeed, one of the main arguments is the concentration-
compactness property applied to the sequence of eigenfunctions associated to a
minimizing sequence. Using this principle, one can prove that compactness must
occur. The other important tool in the proof is to introduce a “relaxed” problem.
Namely, instead of using the space H2

0 (Ω) (which is defined as the closure of C∞

functions compactly supported in Ω into the Sobolev space H2(Ω)) in the definition
(11.25) of Λ1(Ω), one can use the following Sobolev-like space (here D is any ball
containing Ω)

H̃2
0 (Ω) := {u ∈ H2(D) such that u ∈ H1

0 (Ω),
∂u

∂xi
∈ H1

0 (Ω)} . (11.29)

When Ω is regular (e.g. Lipschitz), this set H̃2
0 (Ω) coincides with H2

0 (Ω), but in
some less regular cases (e.g., Ω is a disk where we remove a finite number of points),
they could be different. Then, the “eigenvalue” Λ̃1(Ω) is defined as in (11.25) with
H̃2

0 (Ω) instead of H2
0 (Ω). The authors begin to prove existence of a minimizer for

Λ̃1(Ω) in the class of (quasi)-open sets of given measure and then come back to
the general case for simply-connected open sets of given measure.

Let us also remark that, in this situation, one can also apply the general
existence theorem due to G. Buttazzo and G. Dal Maso, see [50] which implies
Theorem 2.4.5. Namely a domain functional J which is

(i) non-increasing with respect to domain inclusion,

(ii) lower-semi continuous for the γ-convergence (see Definition 2.3.9 and Theo-
rem 2.3.10)

has a minimizer in the class Ac = {Ω ⊂ D, Ω quasi-open, |Ω| = c}. First, it is clear
from formulae (11.25) that Ω 
→ Λ̃1(Ω) is non-increasing with respect to domain
inclusion. Point (ii) requires a little more work. The γ-convergence of a sequence of
sets Ωn to Ω is equivalent to the Mosco convergence of the Sobolev spaces H1

0 (Ωn)
to H1

0 (Ω) (see Theorem 2.3.10). Now, let us prove that it implies the property
(M2) of the Mosco convergence for the pseudo-Sobolev spaces H̃2

0 (Ωn) and H̃2
0 (Ω).

Indeed, let vn be a sequence of functions in H̃2
0 (Ωn) which converges weakly to

a function v ∈ H̃2
0 (D). By γ-convergence, (M2) is true for the spaces H1

0 , hence
v ∈ H1

0 (Ω). In the same way, ∂vn

∂xi
belongs to H1

0 (Ωn) and converges weakly to ∂v
∂xi

,

therefore ∂v
∂xi

∈ H1
0 (Ω). Hence, v ∈ H̃2

0 (Ω). Finally, according to Remark 2.3.12,
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the property (M2) implies lower-semi continuity of the eigenvalues, which allows
us to prove lower-semi continuity of Ω 
→ Λ̃1(Ω) for the γ-convergence.

Remark 11.3.6. In [123], B. Kawohl gives another existence result, for a more
general problem containing this one, but in the class of convex plane domains of
prescribed area.

11.3.4 The last step in the proof

Theorem 11.3.7 (Weinberger-Willms). Let Ω be a minimizer of Λ1(Ω) (among
plane domains of prescribed area) given by Theorem 11.3.5. Assume that Ω is
C2,α for some α > 0. Then Ω is a disk.

For the proof, we first write the optimality conditions. Since Ω is regular, we
can differentiate Ω 
→ Λ1(Ω) with respect to the domain in the sense of section
2.5.

Lemma 11.3.8. Let Ω be a bounded open set of class C2,α. We denote Ωt = Φ(t)(Ω)
where Φ is a C2 diffeomorphism defined by (2.37). Then, the function t → Λ1(t) =
Λ1(Ωt)is differentiable at t = 0 with a derivative given by

Λ′
1(Ω) = −

∫
∂Ω

(∆u)2 V.n dσ (11.30)

where u is the first eigenfunction normalized by
∫
Ω |∇u(x)|2 dx = 1.

In particular, if Ω is a C2,α open set which minimizes Λ1(Ω) among open
sets of prescribed area, its first eigenfunction satisfies

∆u = constant on ∂Ω . (11.31)

Proof. Following results of section 2.5, in particular Theorems 2.5.1 and 2.5.7, we
can prove that the first eigenfunction is differentiable and that its derivative u′ is
a solution of (we refer to [104] for proofs, we just do a formal computation here)⎧⎨⎩

∆2u′ + Λ1∆u′ + Λ′
1∆u = 0 in Ω,

u′ = − ∂u
∂n (V.n) on ∂Ω,

∂u′
∂n = − ∂2u

∂n2 V.n + ∇u.∇Γ(V.n) on ∂Ω.

(11.32)

Since the eigenfunction u verifies u = |∇u| = 0 on ∂Ω, the boundary conditions
satisfied by u′ are actually

u′ = 0 and
∂u′

∂n
= −∂2u

∂n2
V.n on ∂Ω. (11.33)

Multiplying equation (11.32) by u and integrating by parts on Ω yields∫
Ω

∆u′∆u dx − Λ1

∫
Ω

∇u′.∇u dx = Λ′
1

∫
Ω

|∇u(x)|2 dx . (11.34)
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In the same way, multiplying the eigenvalue equation (11.2) by u′ and integrating
by parts on Ω yields∫

∂Ω

[
u′ ∂(∆u)

∂n
− ∆u

∂u′

∂n

]
dσ +

∫
Ω

∆u∆u′ dx − Λ1

∫
Ω

∇u.∇u′ dx = 0 . (11.35)

By using boundary conditions (11.33) and inserting (11.35) in (11.34), we finally
get

Λ′
1

∫
Ω

|∇u(x)|2 dx =
∫

∂Ω

∆u
∂u′

∂n
dσ = −

∫
∂Ω

∆u
∂2u

∂n2
dσ . (11.36)

Now, we use the classical decomposition of the Laplacian (valid on ∂Ω for any C2

function)

∆u = ∆∂Ωu + H
∂u

∂n
+

∂2u

∂n2

where ∆∂Ω is the Laplace-Beltrami operator and H the mean curvature. Here,
since u = 0 and ∂u

∂n = 0 on ∂Ω, this relation reduces to ∆u = ∂2u
∂n2 . Formulae

(11.30) follows immediately from (11.36) and the normalization of u.
Finally, formulae (11.31) comes, exactly as Corollary 2.5.4, from the existence

of a Lagrange multiplier connecting the derivative of Λ1 with the derivative of the
volume. �
Proof of Theorem 11.3.7. We denote by c the constant on the right-hand side of
(11.31). We now introduce the function z := ∆u + Λ1u. From the equation (11.2)
and the boundary conditions satisfied by u, z is a solution of

∆z = 0 in Ω, z = c on ∂Ω,

so that z ≡ c by the maximum principle for harmonic functions. We can use the
substitution v(x) = u(x) − c/Λ1 so that (11.2) and (11.31) are transformed into
the overdetermined boundary value problem⎧⎨⎩

∆v + Λ1v = 0 in Ω,
v = − c

Λ1
on ∂Ω,

∂v
∂n = 0 on ∂Ω.

(11.37)

By translation of Ω we can always assume that the origin O is contained in Ω, and
that v has a critical point at the origin. Then, we follow the same idea as for the
proof of (iii) in Theorem 3.4.1 or Theorem 4.2.5 by introducing the function

w(x, y) := x
∂v

∂y
− y

∂v

∂x
.

This function w satisfies {
∆w + Λ1w = 0 in Ω,

w = 0 on ∂Ω,
(11.38)
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so, either w = 0 or Λ1 = λk is a Dirichlet eigenvalue of the Laplacian for Ω. If
w = 0, the result is proved since it is well known that it implies that u is radially
symmetric in Ω. So let us consider that we are in the other case. First w(O) = 0,
and since

∂w

∂x
=

∂v

∂y
+ x

∂2v

∂x∂y
− y

∂2v

∂x2

we also have ∂w
∂x (O) = 0 and similarly for ∂w

∂y (O). This implies that

• the origin lies on a nodal line of the eigenfunction w,

• (at least) two nodal lines intersect at the origin.

This is possible only if these nodal lines divide Ω into at least three nodal domains.
Of course, we can assume that one of these nodal domains, say ω, has an area less
than or equal to |Ω|/3. Therefore, we have

Λ1(Ω) = λk(Ω) = λ1(ω) (according to Proposition 1.3.3).

Now, by Faber-Krahn inequality,

λ1(ω) ≥ λ1(ω∗).

Let us denote by Da a disk of area a. By monotonicity of the Dirichlet eigenvalues,
we have λ1(ω∗) ≥ λ1(D|Ω|/3) . By (1.20), λ1(D|Ω|/3) = 3λ1(D|Ω|), so all previous
equalities and inequalities give

Λ1(Ω) ≥ 3λ1(D|Ω|) .

We use now the inequality between zeros of Bessel functions, 3j2
0,1 > j2

1,1 which
yields 3λ1(D|Ω|) > λ2(D|Ω|). At last, the well-known fact that the first eigenvalue
Λ1 for a disk of radius R is given by j1,1/R2 = λ2(D|Ω|) shows that we finally get
Λ1(Ω) > Λ1(D|Ω|) which contradicts the minimality of Ω, so we were in the first
case and the theorem is proved. �
Remark 11.3.9. Note the fact that 3λ1 > λ2 is not specific to a disk. Actually, it
is a consequence of the Ashbaugh-Benguria’s Theorem 6.2.1 that the inequality
2.539λ1 > λ2 always holds where the number 2.539 is slightly larger than the ratio
λ2/λ1 = j2

1,1/j2
0,1 for a disk.

Remark 11.3.10. The over-determined problem (11.37) looks like the well-known
Pompeiu problem which is still open. It consists in proving that a domain Ω for
which the problem ⎧⎨⎩

−∆v = λkv in Ω,
v = constant on ∂Ω,

∂v
∂n = 0 on ∂Ω

has a solution is necessarily a disk (or a ball in higher dimension). For some
references for this problem, see e.g. [215].
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11.4 Some other problems

11.4.1 Non-homogeneous rod and plate

As we did in chapter 9 for the Laplacian, we can look at extremum problems for
eigenvalues of ∆2u = λρu (with various boundary conditions), where ρ is a non-
negative function subject to some supplementary constraints. Of course, the main
known results are in one dimension for the case of a non-homogeneous rod. In
that context, we will present here some results by D.O. Banks (see [21], [24]), B.
Schwarz (see [185]) which are in some sense a generalization of Krein’s Theorems
9.3.1 and 9.3.3. As in chapter 9, for any open set Ω in R

N , we introduce the class

Aα,β,c(Ω) := {ρ ∈ L∞(Ω); α ≤ ρ(x) ≤ β a.e. in Ω,

∫
Ω

ρ(x) dx = c} (11.39)

where α, β and c are three real numbers such that 0 ≤ α < β and α|Ω| ≤ c ≤ β|Ω|.
We begin by the result of minimization and maximization of the first eigenvalue
of a clamped rod in dimension 1 (Ω = (0, L)). We also refer to chapter 6 of [83]
for similar results with an Lp constraint on ρ of the kind

∫ L

0
ρp(x) dx = c.

Theorem 11.4.1 (Banks, Beesack, Schwarz). Let Λ1(ρ) be the first eigenvalue of
the problem {

u(4) = Λ1(ρ)ρ(x)u for x ∈ (0, L),
u(0) = u′(0) = u(L) = u′(L) = 0 .

(11.40)

Then,

(i) the (unique) minimizer of Λ1(ρ) in the class Aα,β,c(Ω) is the function ρ1(x)
defined by

ρ1(x) =

⎧⎨⎩
α for x ∈ (0, L

2 − δ),
β for x ∈ (L

2 − δ, L
2 + δ),

α for x ∈ (L
2 + δ, L),

(11.41)

where δ = (c − αL)/2(β − α).

(ii) The (unique) maximizer of Λ1(ρ) in the class Aα,β,c(Ω) is the function ρ1(x)
defined by

ρ1(x) =

⎧⎨⎩
β for x ∈ (0, L

2 − δ),
α for x ∈ (L

2 − δ, L
2 + δ),

β for x ∈ (L
2 + δ, L),

(11.42)

where δ = (βL − c)/2(β − α).

The proof consists in two steps:

1. First a simple rearrangement argument together with the variational charac-
terization of the first eigenvalue:

Λ1(ρ) = min
v∈H2

0 (0,L),v �=0

∫ L

0 v′′2 dx∫ L

0 ρv2 dx
(11.43)
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implies the double inequality Λ1(ρ∗) ≤ Λ1(ρ) ≤ Λ1(ρ∗) where ρ∗ is the
symmetric decreasing rearrangement of ρ (in the sense of section 2.1) while
ρ∗ is the symmetric increasing rearrangement of ρ. See [32] for more details.

2. Then, a comparison theorem can be used. Namely, if ρ1 and ρ2 are two
symmetric (w.r.t. L/2) functions such that there exists a point a with

ρ2(x) ≥ ρ1(x) for 0 ≤ x ≤ a and ρ2(x) ≤ ρ1(x) for a ≤ x ≤ L,

then Λ1(ρ2) ≤ Λ1(ρ1). This inequality is obtained by proving that, under the
above assumptions, we have∫ L

0

ρ1u
2 dx ≤

∫ L

0

ρ2u
2 dx

where u is the first eigenfunction associated to ρ1, see [185] for more details.
Since the functions ρ∗ and ρ∗ satisfy ρ∗ ≤ ρ ≤ ρ∗ for any symmetric function
in the class Aα,β,c(Ω), the theorem follows with point 1.

In Theorems 9.3.1 and 9.3.3, M.G. Krein was able to extend the minimization
and maximization results to the n-th eigenvalue λn. The fundamental argument
was that, for a string (i.e. for the Laplacian), λn is the first eigenvalue of each nodal
domain of the corresponding eigenfunction, so we can apply the result for λ1 to
each nodal domain. It is generally wrong for the n-th eigenvalue of the clamped
problem, which explains why the result is not known for Λn, see Open problem 30
below.

Remark 11.4.2. For the analogous problem in higher dimension (i.e. for a clamped
plate), if we assume that the first eigenfunction is non-negative, one can eas-
ily prove, thanks to the same symmetrization introduced in Lemma 11.3.2, that
Λ1(ρ, Ω) ≥ Λ1(ρ∗, Ω∗). In other words, if we want to minimize Λ1(ρ, Ω) by letting
both ρ and Ω vary (into the class of pairs (ρ, Ω) such that the first eigenfunction
is non-negative), the solution is given by the ball Ω∗ and the function ρ∗ is equal
to β on a centered ball and α elsewhere.

D.O. Banks in [24] proves similar results for a non-homogeneous “hinged”
rod hold (hinged means here that the bar is supported at its endpoints):

Theorem 11.4.3 (Banks). Let λ1(ρ) be the first eigenvalue of the problem{
u(4) = λ1(ρ)ρ(x)u for x ∈ (0, L),
u(0) = u′′(0) = u(L) = u′′(L) = 0 .

(11.44)

Then, conclusions of Theorem 11.4.1 about minimization and maximization of
λ1(ρ) hold with the same solutions. Moreover, the (unique) minimizer of λn(ρ) in
the class Aα,β,c(Ω) is the periodic function ρn(x) defined by

ρn(x) =

{
ρ1(nx) for x ∈ [0, L

n ],
ρn(x − kL

n ) for x ∈
[

kL
n , (k+1)L

n

]
,

(11.45)
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(k = 1, 2, . . . , n − 1) where ρ1 is defined in (11.41).

Here the proof uses the same symmetrization introduced in Lemma 11.3.2
to prove Szegö’s Theorem 11.3.1. Actually, in one dimension, it is classical that
the first eigenfunction of such a problem is positive (see e.g. [116], or chapter 6 of
[83]).

Open problem 30. (i) Is it true that the minimizer of Λn(ρ) (the n-eigenvalue
of the clamped problem) in the class Aα,β,c(0, L) is the function ρn(x) defined
by (11.45), where ρ1 is defined in (11.41)?

(ii) Is it true that the maximizer of Λn(ρ) (the n-eigenvalue of the clamped prob-
lem) in the class Aα,β,c(0, L) is the function ρn(x) defined as in (11.45),
where ρ1 is replaced by ρ1 defined in (11.42)?

(iii) Is it true that the maximizer of λn(ρ) (the n-eigenvalue of the hinged problem)
in the class Aα,β,c(0, L) is the same function ρn(x) as above?

11.4.2 The optimal shape of a column

This problem has a very long and controversial story starting with J.L. Lagrange
in 1773 (see [136]) and produces a huge amount of literature, especially after
the famous paper by L. Tadjbakhsh and J.B. Keller, [197] which sparked off the
controversy. For review of works on this problem, we refer e.g. to [60], [83], [187],
[189]. In terms of extremum eigenvalue problems, searching for the optimal shape
of a column consists in looking for a function σ which maximizes the first eigenvalue
of the following fourth-order problem{

(σy′′)′′ + λy′′ = 0 for x ∈ (0, 1)
plus boundary conditions, (11.46)

subject to an integral constraint of the kind∫ 1

0

σp(x) dx = c (11.47)

(the values p = 1/2 or p = 1/3 being the most important in practice). As boundary
conditions, one can study

clamped-clamped y(0) = y′(0) = y(1) = y′(1) = 0,

clamped-hinged (or clamped-simply supported) y(0) = y′(0) = y(1) = σy′′(1) =
0,

hinged-hinged y(0) = σy′′(0) = y(1) = σy′′(1) = 0.

The “hinged-hinged” problem is simpler, since introducing v = σy′′, we are im-
mediately led to the following second-order eigenvalue problem{ −v′′ = λσ−1v for x ∈ (0, 1),

v(0) = v(1) = 0,
(11.48)
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which comes under chapter 9 (in particular, see Theorem 9.2.8).
The controversial discussion mainly has its origin in the two following (basic)

points:

1. Is there existence of an optimal σ?

2. Can we simply derive optimality conditions?

Actually, concerning point 1, several authors (among them L. Tadjbakhsh and
J.B. Keller) neglected to consider this fundamental question. It seems that one
can prove existence of a maximizer only in a smaller class of functions: see V.
Komkov in [129] for an argument that the original problem of Lagrange cannot
have a solution and S. Cox-M. Overton in [67] for an existence result in a restricted
class.

About point 2, optimality conditions can be easily obtained assuming (obvi-
ously as well as existence) that the first eigenvalue is simple (as did L. Tadjbakhsh
and J.B. Keller). This is the so-called unimodal optimal solution. This is correct in
the clamped-hinged and hinged-hinged boundary conditions cases, but seems to
fail in the clamped-clamped case, see Olhoff-Rasmussen’s paper [161]. Therefore,
in this case it is necessary to consider a bimodal optimal solution and to get op-
timality conditions taking into account this lack of differentiability of σ 
→ λ1(σ).
This has been done in different papers, thanks to different techniques, see [161],
[187], [147], [67].

The controversy seems not completely closed as of now. Another aspect of the
debate is the definition of the quantity we want to maximize. Since the “optimal”
(unimodal) solution σ∗, found by L. Tadjbakhsh and J.B. Keller and revivified
in the book of Y. Egorov and V. Kondratiev, has the property to vanish at two
interior points, it is not clear that the eigenvalue problem (11.46) is well posed
for σ = σ∗! We are in fact in some degenerate case, as in Theorem 10.2.4 (but
it is worse here since the singularities are now inside the domain). Therefore, it
seems reasonable to define the first buckling load of the column, which has to be
maximized, by its Rayleigh quotient. For example, in the clamped-clamped case,
one can take as a definition:

λ1(σ) := inf
y∈H2

0 (Ω),y �=0

∫ 1

0 σ(x)y′′(x)2 dx∫ 1

0
y′(x)2 dx

. (11.49)

Now, a natural question occurs: is the above infimum always attained? Obviously,
it depends on the way the function σ is allowed to vanish. Exactly as in Theorem
10.2.4, it cannot vanish too strongly. In Lemma 24 (chapter 6) of [83], the authors
prove the following result:

Theorem 11.4.4. Let σ(x) be a continuous non-negative function defined on (0, 1).
Assume that σ vanishes only at a finite number of points x1, x2, . . . , xk with the
following behavior in the neighborhood of these points:

σ(x) = O(|x − xi|γ) with γ < 2 . (11.50)
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Then, the infimum is achieved in (11.49).

The unimodal solution of Tadjbakhsh-Keller is defined by

σ∗(x) = 4 sin2 θ(x)/3

where θ(x) is the solution of the equation θ − sin(2θ)/2 = 2πx − π/2. It satisfies
(11.50) with γ = 4/3 at points x1 = 1/4 and x2 = 3/4, so it fulfills conditions of
this theorem and the infimum is attained in (11.49). In chapter 6 of their book,
Y. Egorov and V. Kondratiev, show that this function σ∗ provides the maximum
possible value of λ1(σ) amongst non-negative functions σ satisfying

∫ 1

0

√
σ(x) dx =

1. So, is the story finished? No! Since this optimal column possesses points of
vanishing cross-section (and zero bending moments), many authors think that
these points must be treated as internal hinges. This assumption seems reasonable
from a mechanical point of view. From a mathematical point of view, it means that,
when σ = σ∗, the infimum in (11.49) should be taken not on the Sobolev space
H2

0 (0, 1), but on the space of functions in H1(0, 1) whose restrictions on (0, 1/4),
(1/4, 3/4) and (3/4, 1) have second derivatives in L2. In other terms, discontinuities
of the slope are allowed. Using this rule, A. Seyranian and O. Privalova in [189]
were able to prove that the unimodal solution is not optimal. For that purpose,
they chose a test function which consists in taking an eigenfunction of the problem
clamped-hinged on each segment (0, 1/4) and (3/4, 1) and then linking them by a
straight line.

We do not aspire to conclude the debate here. Our purpose was just to give a
short introduction and we prefer to refer to the papers and books which are cited
above. We also believe that the story is not yet finished.
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[97] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Reprint of the 1952 edi-
tion, Cambridge Mathematical Library, Cambridge University Press, Cambridge,
1988.

[98] E.M. Harrell, Hamiltonian operators with maximal eigenvalues, J. Math. Phys.,
25 (1984), no. 1, 48-51 and 27 (1986), no. 1, 419.
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[154] F. Murat, L. Tartar, Calcul des variations et homogénéisation, Homogenization
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[173] G. Pólya, M. Schiffer, Convexity of functionals by transplantation, J. Analyse
Math., 3 (1954), 245-346.
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[195] G. Szegö, On membranes and plates, Proc. Nat. Acad. Sci., 36 (1950), 210-216.
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