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Preface

Substantial progress had been made in the last two decades in the theory of
nonlinear systems of partial differential equations. Much of the developments
are motivated by applications to the natural sciences of biology, physics and
chemistry. There is a considerable amount of results concerning positive solu-
tions for the study of ecological and medical sciences. Other applications involve
reactor dynamics, fluid, plasma, display technology etc. There are several excel-
lent books published in such topics in the last decade; however, due to numerous
recent developments of new methods and results there is a need for a book to
collect them for convenient reference and study. The gathering of many exist-
ing theorems enhances the understanding of the subject and leads to directions
for further research or applications. In the mean time, the demand for reliable
applications encourages deeper understanding of the underlying mathematical
methods of nonlinear partial differential equations. Many of the problems were
introduced in my first book in 1989. In the last twenty years, there is tremen-
dous progress in the mathematical formulation for studies in cancer, cardiology,
epidemiology and cell development etc., leading to larger systems of nonlinear
partial differential equations. More thorough understanding of the interaction
between a few components is crucial for building to large systems. Serious efforts
are made to make this book self-contained. Although many theorems used in
the book are presented in other books or papers, we include their explanations
in the Appendices so that this book is more readable to many graduate students
and researchers who are not specialists in these topics.

For the study of positive solutions, several methods are used extensively in
this book. Topological degree theory method is extremely fruitful in proving the
existence of positive equilibrium for several coupled elliptic systems. One of the
most important tools in nonlinear analysis is the Leray-Schauder degree. Due
to the fact that the positive cone is a retract of a Banach space, it is possible
to define a fixed point index for compact maps as introduced by H. Amann.
The fixed point index is equivalent to Leray-Schauder degree. Many existence
theorems follow from the property of homotopic invariance of degree. Another
powerful method in nonlinear analysis is the use of bifurcation theory as devel-
oped by Crandall and Rabinowitz. Bifurcation of solutions may occur at points
where the implicit function theorem does not apply. Estimation of solutions by
means of maximum principle combined with global bifurcation theory provides
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convenient analysis of the behavior of positive equilibria as various parameters
changes. Many diagrams are included describing the range of parameters so
that coexistence can occur. Through the use of maximum principle for W 2,p

solutions, the book considers the theory of non-classical solutions for interact-
ing species. By means of weak upper-lower solutions, it studies solutions with
discontinuous and highly spatially varying growth rates.

For the study of parabolic time-dependent problems, we use both semigroup
methods and the classical Schauder’s theory. The semigroup method provides
existence of solution of initial value problems in various function spaces. Com-
bined with the spectral analysis of the related linearized parabolic system, we
obtain many time-stability results for positive equilibria. Comparison theorems
for parabolic systems under various boundary conditions also provide estimates
of solutions by means of upper and lower solutions.

A significant part of the book is devoted to the study of optimal control of
systems of nonlinear partial differential equations as developed by J. L. Lions.
They are systems motivated by applications involving equilibrium or time de-
pendent problems. The object is to control the coefficients of the systems so
that certain properties of the subsequent solutions are maximized. Both the
theories of weak and classical solutions are used. A larger optimality system
of equation is deduced for the optimal control. Combined with the method of
upper-lower solutions, we construct monotone sequences converging to estimates
of the optimality system.

The book also describes results concerning systems of nonlinear wave equa-
tions and traveling wave solutions for parabolic systems. The system of wave
equations is analyzed by semigroup method. In contrast to the popular method
of finding traveling wave solutions by means of dynamical system theory, we
carefully explain the method of finding traveling solutions for parabolic sys-
tems by using upper-lower solution in an unbounded domain. Other topics
studied include invariant manifolds for coupled parabolic-hyperbolic systems,
cross-diffusion for elliptic systems, persistence, blow-up due to boundary inflow,
coupled elliptic-parabolic system related to display technology, degenerate dif-
fusive systems and other related topics. Although the systems are motivated by
applications, the techniques of analyzing such types of problems are carefully ex-
plained. They involve extensions of methods described in the above paragraphs.

Chapter 1 considers systems of two coupled nonlinear elliptic or parabolic
equations. The nonlinear terms incorporate the interactions between two life
species occupying a common domain. The cases of competition, cooperation or
prey-predator relationship are covered in detail in separate sections. The bound-
ary values are given in the Dirichlet type. The trivial vector function is always
a solution of the systems. The major concern is the additional possibility of
coexistence solutions when both species survive together. We use the methods
described in the last few paragraphs to find coexistence states under various con-
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figuration of interaction parameters, diffusion rates and size of the environment.
Many results are related to the principal eigenvalues of various scalar problems
induced by the original larger system. The time-stability of the coexistence
states for all the three cases are discussed in the last section of the chapter.
Some other long-time behavior of the corresponding reaction-diffusion systems
are also studied. Most of the results are published by many researchers in the
nineties or afterwards, and cannot be found in other books. Chapter 2 extends
our discussion of problems in the first chapter to larger systems of equations.
The species components may now be classified into groups inside which they
interact in competition, cooperative or food-chain manner, while the different
groups interact in various ways. The conditions for coexistence becomes more
complex. However, we see the methods developed in the first chapter can be
extended to cover many different cases. For practical applications, we consider
analysis of epidemics, fission reactor engineering and other problems.

Chapter 3 studies the optimal control of nonlinear systems analyzed in the
first two chapters. We control the interaction parameters or boundary conditions
in order to optimize an expression involving the solutions of the systems. Using
the understanding of the uncontrolled systems in the last chapters, we deduce
conditions when optimal control is possible. We consider the control of elliptic,
parabolic and time-periodic systems. For biological systems, we maximize the
economic return of species-harvesting; and for reactor problems, we optimize
the target temperature profile. From the original systems together with the
optimization criteria we deduce larger optimality systems which describe the
optimal controls. We further analyze the solution of the optimality systems by
means of monotone convergence schemes. So far, results for such systems have
not been gathered coherently in a book form.

Chapter 4 emphasizes on other aspects of the solutions of the reaction-
diffusion systems. We consider conditions on the equations when certain com-
ponents can persist indefinitely in time. We study the effect of diffusion rates
which may depend on the concentrations of other species. Such self and cross-
diffusion property can have significant effect on the coexistence problem. Ques-
tions concerning blow-up, extinction, degenerate diffusion rates and others are
also investigated by various methods described above. Chapter 5 first considers
traveling wave solutions for competitive parabolic systems. There had been nu-
merous results on such topics over two decades ago found by means of dynam-
ical systems technique. Here, we present some very new recent results found
by means of upper-lower solution method in an unbounded domain. We also
study a system of hyperbolic equations and the stability of their equilibrium.
We further discuss the problem of invariant manifold for solutions of coupled
Navier-Stokes and wave equations. Roughly speaking, we find a relationship be-
tween the fluid velocity field and the magnetic field so that it is invariant as time
changes. Finally, we consider a coupled elliptic-parabolic problem motivated by
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research on plasma display technology. We estimate whether the sizes of the ion
concentrations can reach a high enough level for light emission.

We painstakingly itemize in the Appendices those theories and theorems used
in deducing the results in Chapters 1 to 5. They include many standard the-
orems in scalar and systems of partial differential equations, methods in linear
and nonlinear functional analysis and topology. In real world applications, mod-
els are very complicated and they have to be continuously improved with deeper
investigation. It is therefore important to understand how the applicable results
in Chapters 1 to 5 are deduced from the more fundamental theories in the Ap-
pendices. With the standard tools conveniently displayed, one can then readily
modify the theorems in the first five chapters to forms more suitable for proper
utilization. The stress of this book is consequently different from others with
similar titles existing in the literature. On the other hand, the presentation of
the topics in the first five chapters are motivated by practical applications. Con-
sequently, the results can be applied to real world problems by non-specialists,
even if the rigorous proofs presented are not completely understood. Finally,
this book can only cover those topics which have interest me, my friends and
colleagues. Many other subjects concerning systems of nonlinear partial differ-
ential equations are beyond our present scope. I hope that this book is helpful
for researchers who will continue to explore on the subject.

I am grateful to many colleagues, students and friends who had discussed
various topics with me. They include in alphabetical order: G. Chen, R. Cantrell,
C. Cosner, E. Dancer, Q. Fan, F. He, X. Hou, P. Korman, A. Lazer, S. Lenhart,
L. Li, W. Ni, L. Ortega, C. Pao, S. Stojanovic, B. Villa, Q. Zhang, B. Zhang
and many others. Their inspirations and encouragements are valuable in the
development of the subject matter of this book. I would also like to thank my
wife, Soleda, for the design of the book cover and her joint preparation of some
figures in the book with Z. Kang. I also appreciate the help of R. Chalkley,
D. Mueller and L. F. Kwong for the efficient production of this manuscript.

Anthony W. Leung
Cincinnati, 2009
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Chapter 1

Positive Solutions for Systems
of Two Equations

1.1 Introduction

In this chapter, we consider a system of two partial differential equations de-
scribing two interacting population species. Each species diffuse from location
of higher to lower concentration, and they interact with each other in a prey-
predator, competing or cooperating relationship. We emphasize the situation
when the species must have zero concentration at the boundary of the envi-
ronment. These are known as reaction-diffusion equations with homogeneous
Dirichlet boundary condition. The boundary condition is known as “hostile” in
some ecological studies. We first consider the possibility of positive coexistence
equilibrium for the case of prey-predator in Section 1.2, competing species in
Section 1.3, and cooperating species in Section 1.4. They are thus systems of
elliptic partial differential equations of the form:

(1.1)




σ1∆u+ u(a1 + f1(u, v)) = 0
in Ω,

σ2∆v + v(a2 + f2(u, v)) = 0

u = v = 0 on ∂Ω.

In this chapter, we always assume that Ω is a bounded domain in RN , N ≥ 2,
unless otherwise stated. If N > 1, we assume that the boundary ∂Ω ∈ C2+α, 0 <
α < 1; that is, the boundary has local representation whose second order partial
derivatives are Hölder continuous with exponent α. The symbol ∆ denotes the
Laplacian operator:

N∑
i,j=1

∂2

∂xi∂xj
.

1



2 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

The constants a1, a2 are respectively the intrinsic growth rates of the species
whose population concentrations at the position x are denoted by u = u(x)
and v = v(x). The parameters σ1, σ2 are positive diffusion coefficient constants.
The reaction functions f1(u, v), f2(u, v) involve many other parameters reflecting
interaction rates and self-crowding effects of the species. We shall investigate
the ranges of these parameters and their sizes relative to that of the size of
the environment domain Ω so that coexistence states are possible. We shall
use various methods of nonlinear analysis to study these problems, including
upper-lower solutions, monotone schemes, bifurcation, degree theory and their
generalizations. We usually begin with the simplest cases in order to illustrate
how the various methods are used in obtaining the results.

In Section 1.5, we consider the time dependent parabolic system associated
with system (1.1):

(1.2)




ut = σ1∆u+ u(a1 + f1(u, v))
in Ω× (0,∞),

vt = σ2∆v + v(a2 + f2(u, v))

u = v = 0 on ∂Ω.

The main emphasis is to analyze the long time behavior of the system, and to
find whether the solutions are tending to the equilibria described in the previous
sections.

We now proceed to introduce some symbols which will be used repeatedly
in this and later chapters. For any real q(x) in Cα(Ω̄) and σ > 0, the linear
eigenvalue problem:

(1.3) −σ∆u+ q(x)u = ρu in Ω, u = 0 on ∂Ω

has an infinite sequence of eigenvalues, ρ1 < ρ2 < ρ3 < . . . , which are bounded
below. It is also known that the first eigenvalue:

(1.4) ρ = ρ1 = ρ1(−σ∆ + q(x))

is simple, and all solutions of (1.3) with ρ = ρ1(−σ∆ + q(x)) are multiples of a
particular eigenfunction, which does not change sign on Ω and has its normal
derivatives never vanish on the boundary ∂Ω.

For convenience, we define

(1.5) λ1 := ρ1(−∆),

and denote by ω(x), a positive eigenfunction of the operator −∆ on Ω with
boundary condition u = 0 on ∂Ω. Similarly, for any real q̂(x) in Cα(Ω̄) and
σ > 0, the linear eigenvalue problem:

(1.6) σ∆u+ q̂(x)u = ρ̂u in Ω, u = 0 on ∂Ω
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has an infinite sequence of eigenvalues, ρ̂1 > ρ̂2 > ρ̂3 > . . . , which are bounded
above. We denote the largest eigenvalue by:

(1.7) ρ̂ = ρ̂1 = ρ̂1(σ∆ + q̂(x)),

which is simple. As shown in Sections 1.4 and 1.5 below, most of the results
in this chapter are valid if the Laplacian operator is replaced with the uniform
elliptic operator:

L ≡
N∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

N∑
i,j=1

bi(x)
∂

∂xi
+ c(x),

where aij(x), bi(x), c(x) are in Cα(Ω̄), 0 < α < 1, c(x) ≤ 0 in Ω̄, and

N∑
i,j=1

aij(x)ξiξj ≥ µ0

N∑
i=1

ξ2i , µ0 > 0,

for all x ∈ Ω̄, all (ξ1, ..., ξN ) ∈ RN . For simplicity, we present most of the results
using the Laplacian.

For convenience, we state a simple direct consequence of the maximum prin-
ciple, which will be used repeatedly to assert that in many instances non-negative
non-constant solutions in Ω̄ are actually strictly positive in Ω.

Lemma 1.1. Let u ∈ C2(Ω̄) be a non-negative non-constant solution of:

Lu+ h(x)u = 0 in Ω, u = 0 on ∂Ω,

where L is the operator described above and h(x) is bounded, then u must satisfy
u(x) > 0 for all x ∈ Ω.

Proof. Let P be a positive constant such that h(x)− P ≤ 0 for all x ∈ Ω, and
define v = −u. Then we have

Lv + [h(x) − P ]v = −Pv ≥ 0 in Ω, v = 0 on ∂Ω.

From the maximum principle, we obtain v(x) < 0 in Ω, since v(x) is not a
constant function. This means u(x) > 0 in Ω.

In this chapter, we avoid the consideration of zero outward normal derivative:

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω.

Such homogeneous Neumann boundary condition, which represents no flux of
species across the boundary, has been studied more extensively in other books
in the literature, e.g. Smoller [209] and Leung [125].
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1.2 Strictly Positive Coexistence for Diffusive Prey-
Predator Systems

Let u(x) and v(x) be respectively the density of prey and predator at the point
x in a bounded domain Ω. We first consider an earliest result concerning coex-
istence equilibrium when both species are restricted to vanish on the boundary.
We consider the following homogeneous Dirichlet boundary value problem for
the coupled Volterra-Lotka type reaction-diffusive system.

(2.1)




σ1∆u+ u(a− bu− cv) = 0
in Ω,

σ2∆v + v(e+ fu− gv) = 0

u = v = 0 on ∂Ω.

Here, σ1, σ2, a, b, c, e, f, g are positive constants. The parameters a, e are the
intrinsic growth rates and b, c, f, g are interaction rates. Note that the prey-
predator relation is reflected by the signs of −c and +f .

Part A: Early Results via Upper-Lower Solutions and Bifurcation.

The following theorem concerning the coexistence of both species can be
readily deduced by means of upper-lower solutions method for a system of elliptic
equations.

Theorem 2.1. The boundary value problem (2.1) under hypotheses:

(2.2)




a > σ1λ1, e > σ2λ1,

cf < gb, and

a > σ1gb
gb−cf [λ1 + ce

gσ1
]

has a solution with each component strictly positive in Ω. Here λ1 is defined in
(1.5).

Proof. The last two inequalities of hypotheses (2.2) imply that a(1 − cf
gb ) >

σ1(λ1 + ce
gσ1

); hence a > σ1λ1 + c
g (e + f ab ). It follows that for each fixed v,

0 ≤ v ≤ 1
g (e + f ab ), the function u1 := δω(x) > 0 is a lower solution of the first

equation in (2.1), for δ > 0 sufficiently small. (Here ω(x) is described in Section
1.1.) That is, we have for each such v:

(2.3)
σ1∆u1 + u1(a− bu1 − cv) ≥ 0 in Ω, and

u1 ≤ 0 on ∂Ω.
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On the other hand, the function u2(x) :≡ a/b is an upper solution for the first
equation in (2.1). That is,

σ1∆u2 + u2(a− bu2 − cv) ≤ 0 in Ω, and

u1 ≥ 0 on ∂Ω.

Similarly, for each fixed u, 0 ≤ u ≤ a/b, the functions v1 := δω(x), for sufficiently
small positive δ and v2(x) :≡ 1

g (e+f ab ) are respectively lower and upper solutions
for the second equation in (2.1). By means of an intermediate-value type theorem
(see Tsai [221] or Theorem 1.4-2 in Leung [125]), we assert that there exists a
solution (u∗(x), v∗(x)) of (2.1) satisfying u1(x) ≤ u∗(x) ≤ u2, v1(x) ≤ v∗(x) ≤ v2
for all x ∈ Ω̄. Note that since v1 > 0, we have (2.3) valid for all v satisfying
v1 < v < v2.

Remark 2.1. The proof of Theorem 2.1 is simple. However, it uses an
intermediate-value type theorem, whose proof requires Leray-Schauder degree
theory. Observe also that the inequalities in (2.2) are more readily satisfied for
large domains, because λ1 will then be small.

We next use a more sophisticated procedure to see how the various sizes of
the parameters a and e lead to different results of existence and non-existence
of positive solutions. We first consider the boundary value problem:

(2.4) −σ∆u+ q(x)u = u(a− bu) in Ω, u = 0 on ∂Ω,

where σ > 0, q(x), a and b are as described above. Suppose that a ≤ ρ1(−σ∆ +
q(x)). Let φ(x) > 0 be an eigenfunction for (2.4) with ρ = ρ1(−σ∆ + q(x)).
Using the family of upper solutions εφ(x), ε > 0, for (2.4) and the sweeping
principle described in Theorem 1.4-3 [125] one readily deduces that u = 0 is
the only non-negative solution of (2.4) if a ≤ ρ1(−σ∆ + q(x)). On the other
hand, suppose a > ρ1(−σ∆ + q(x)). We use large constant as upper solution
and small multiple of φ(x) as lower solution for (2.4) to deduce the existence of
a solution which is positive in Ω. Furthermore, such positive solution is unique,
when a > ρ1(−σ∆ + q(x)). (See Lemma 5.2-2 in [125].) We will state the above
observation in a slightly more general situation, which will be used repeatedly
in many chapters.

Lemma 2.1. Let q(x) be in Cα(Ω̄), 0 < α < 1; G ∈ C1([0,∞)), G′ < 0 in
(0,∞) and there exists some c0 > 0 such that G(c0) < 0. Consider the boundary
value problem

(2.5) −σ∆u+ q(x)u = uG(u) in Ω, u = 0 on ∂Ω.

(i) If G(0) ≤ ρ1(−σ∆ + q(x)), then u ≡ 0 is the only non-negative solution of
the problem.
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(ii) If G(0) > ρ1(−σ∆ + q(x)), then the problem has a unique strictly positive
solution in Ω.

We consider the problem (2.1) under the simplest situation when the growth
rate a of the prey is small. In such situation, no prey population can survive as
described below.

Theorem 2.2. Suppose a ≤ ρ1(−σ∆) and (u, v) is a non-negative solution of
(2.1). Then the following are true:
(i) u ≡ 0 in Ω̄.
(ii) If e ≤ ρ1(−σ2∆), then we also have v ≡ 0 in Ω̄; if e > ρ1(−σ2∆), then
either v ≡ 0 in Ω̄ or v is the unique positive solution of

(2.6) σ2∆v + v(e− gv) = 0 in Ω, v = 0 on ∂Ω.

Proof. Multiplying the first equation of (2.1) by u, and integrating over Ω, we
obtain

(2.7) −σ1

∫
Ω
u∆udx ≤ a

∫
Ω
u2dx− b

∫
Ω
u3dx.

On the other hand, the characterization of the first eigenvalue gives

(2.8) ρ1(−σ1∆)
∫

Ω
u2dx ≤

∫
Ω
σ1|∇u|2dx = −σ1

∫
Ω
u∆udx.

Inequalities (2.7) and (2.8) imply that
∫
Ω u

2dx < a
ρ1(−σ1∆)

∫
Ω u

2dx if u �≡ 0.
Thus we must have u ≡ 0 in Ω̄. Consequently, assertion (ii) follows from the
discussion for single equation above analogous to (2.4), with q ≡ 0, and σ, a, b
respectively replaced by σ2, e, f .

We next use bifurcation technique to analyze problem (2.1) as the parameters
e or a varies. This will eventually lead to Theorem 2.3 and Theorem 2.4. The
approach involves decoupling the two equations in (2.1). We write the first
equation in (2.1) in the form;

(2.9) −σ1∆u+ cvu = u(a− bu) in Ω, u = 0 on ∂Ω,

which can be regarded as a special case of (2.4) with σ = σ1, q(x) = cv(x).
Thus, if a ≤ ρ1(−σ1∆ + cv(x)), then (2.9) has no positive solution; while if
a > ρ1(−σ1∆ + cv(x)), then (2.9) has a unique positive solution in Ω. Let v be
an arbitrary function in C1(Ω̄), we define u(v) as a function on Ω̄ by:

(2.10) u(v) =




0 if a ≤ ρ1(−σ1∆ + cv),

unique solution of problem (2.9) if a > ρ1(−σ1∆ + cv).
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Clearly, if v satisfies the single equation:

(2.11) −σ2∆v = v(e− gv + fu(v)) in Ω, v = 0 on ∂Ω,

then the pair (u(v), v) will be a solution of (2.1). To analyze (2.11), we first
obtain the following properties of the mapping v → u(v).

Lemma 2.2.(i) The mapping: v → u(v) defined by (2.10) considered as a
function from C1(Ω̄) to C1(Ω̄) is continuous;
(ii) if v1 ≥ v2 in Ω̄, then u(v1) ≤ u(v2) in Ω̄.

The proof of this lemma can be found in Brown [15] or p. 360 in Leung [125].

To study more interesting situations, we now suppose that

(2.12) a > ρ1(−σ1∆).

In the following Theorem 2.3, we let the parameter e varies, while all other
parameters are held fixed. Problem (2.1) has two non-negative solutions (0, 0)
and (u(0), 0) for all values of e. We consider the global bifurcations as e varies in
the decoupled equation (2.11). This leads to bifurcation from the line of solution
(u(0), 0) to solution of (2.1) with both components positive in Ω. Let L be the
operator defined by

Lv = −σ2∆v − fu(0)v.

Without loss of generality, we may assume that ρ1(−σ2∆− fu(0)) �= 0. Other-
wise, we replace L by L+k for an appropriate constant k. For each h in C1(Ω̄), let
Kh denote the unique solution of the problem: Lu = h in Ω, u = 0 on ∂Ω. The
map K : C1(Ω̄)→ C1(Ω̄) is a compact linear operator. Let F : C1(Ω̄)→ C1(Ω̄)
be defined by

F (v) = −gv2 + f [u(v)− u(0)]v.

By Lemma 2.2, F is continuous and ||F (v)|| = o(||v||) as v → 0 in C1(Ω̄), where
|| · || denotes the norm in C1(Ω̄). We now write (2.11) in the form:

(2.13) v − eKv −KF (v) = 0.

Since ||KF (v)|| = o(||v||) as v → 0 in C1(Ω̄), we can apply the global bifurcation
results of Rabinowitz [190] as the parameter e varies. We can also apply results
concerning bifurcation from simple eigenvalues described in Crandall and Ra-
binowitz [33], Blat and Brown [11] or [125] to obtain properties concerning the
local behavior of the bifurcation solutions. It is shown that in a neighborhood
of the bifurcation point (ρ1(−σ2∆− fu(0)), 0), all non-trivial solutions (e, v) of
(2.13) lie on a curve of the form {(ē(α), φ(α)) : −δ ≤ α ≤ δ} in R×C1(Ω̄), where
ē(0) = ρ1(−σ2∆− fu(0)) and φ(α) = αφ1+ terms of higher “order” in α. Here,
φ1 is a positive principal eigenfunction for the eigenvalue ρ1(−σ2∆ − fu(0)).
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From the fact that ∂φ1

∂ν < 0 on ∂Ω where ν is the outward unit normal at the
boundary, we thus conclude that for α sufficiently small and positive, the corre-
sponding non-trivial solution v lies in the cone

P = {v ∈ C1(Ω̄) : v(x) > 0 for x ∈ Ω,
∂v

∂ν
(x) < 0 for x ∈ ∂Ω}.

Moreover, the closure of the set of non-trivial solutions (e, v) of (2.13) contains
a component S (i.e. a maximal connected subset) such that either S joins
(ρ1(−σ2∆ − fu(0)), 0) to ∞ in R × C1(Ω̄) or S joins (ρ1(−σ2∆ − fu(0)), 0) to
(ρ̄, 0), where ρ̄ is some other eigenvalue of L. More precisely, we can further
deduce (see [125] or [11]) the following properties for the set S.

Lemma 2.3. The component S contains a connected subset S+ ⊂ S − {(ē(α),
φ(α)) : −δ ≤ α ≤ 0} with the following properties:
(i) S+ is contained in R× P ;
(ii) {ρ ∈ R : (ρ, v) ∈ S+} = (ρ1(−σ2∆− fu(0)),+∞).

Let (u, v) be any solution of (2.1) with each component non-negative in Ω̄.
Suppose that v is not the trivial function, then v is the unique positive solution
of the equation

(2.14) −σ2∆v − fuv = v(e− gv) in Ω, v = 0 on ∂Ω.

Let λ1 and ω1 be the principal eigenvalue and the corresponding eigenfunction
with max{ω1(x) : x ∈ Ω} = 1. It is readily checked that if e > σ2λ1, then
the function g−1(e− σ2λ1)ω1 is a lower solution of the problem (2.14), and that
any sufficiently large positive constant is an upper solution. Since v must be
between the upper and lower solutions, we conclude that if e > σ2λ1 we have
v ≥ g−1(e − σ2λ1)ω1 := k(e)ω1 in Ω̄, where k(e) := g−1(e − σ2λ1) → ∞ as
e→∞. Now, consider the eigenvalue problem

(2.15) −σ1∆u+ ck(e)ω1u = λu in Ω, u = 0 on ∂Ω.

The least eigenvalue λ = λ̂1(e) has the characterization:

λ̂1(e) = inf. {
∫

Ω
σ1|∇u|2 + ck(e)ω1u

2dx : u ∈W 1,2
0 (Ω),

∫
Ω
u2dx = 1}.

Thus from the limit of k(e), we can deduce that λ̂1(e)→∞ as e→∞. Conse-
quently, we have λ̂1(e) > a, if e is large enough.

Next, from the characterization of first eigenvalue and comparing with (2.15),
we find that the first eigenvalue of

−σ1∆w + cvw = λw in Ω, w = 0 on ∂Ω
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is greater that a. Hence the only non-negative solution of

−σ1∆u+ cvu = u(a− bu) in Ω, u = 0, on ∂Ω

is the zero function. We have proved that if e is large enough and v is not the
trivial function, then u ≡ 0. From Lemma 2.3, we see that the only way the
continuum of solutions S+ can join the bifurcation point (ρ1(−σ2∆− fu(0)), 0)
on the (e, v) plane to ∞ is by u(v) becoming equal to zero for e sufficiently
large. However, when u(v) ≡ 0, then clearly v satisfies (2.6). If we consider
the bifurcation diagram on the e − (u, v) plane, the continuum of solutions
{(e, u(v), v) : (e, v) ∈ S+} for (2.1) must join up with the continuum of solu-
tions {(e, 0, v) : (e, v) is a solution of (2.6)}, Solutions of (2.6) are discussed in
Theorem 2.2(ii). From the above arguments, we obtain the following theorem.

Theorem 2.3. (i) Suppose:

(2.16) a > σ1λ1.

Then there exists λ∗ > σ2λ1 = ρ1(−σ2∆) such that if e satisfies: ρ1(−σ2∆ −
fu(0)) < e < λ∗, that is:

(2.17) ρ̂1(σ2∆ + e+ fu(0)) > 0 and e < λ∗,

the boundary value problem (2.1) has a solution with each component strictly
positive in Ω. Moreover, there exists λ̃ ≥ λ∗ such that if e > λ̃, then any non-
negative solution (u,v) of problem (2.1) with v �≡ 0 must have u ≡ 0. (Recall the
definition of ρ̂1 in (1.7).)
(ii) Suppose:

(2.18) a < σ1λ1.

Then any non-negative solution (u,v) of problem (2.1) must have u ≡ 0.

In the following theorem, we let the parameter a varies, while all other
parameters are held fixed. We write the second equation in (2.1) in the form of
(2.14). Analogous to Lemma 2.2, we define a map from C1(Ω̄) to C1(Ω̄) by:

(2.19) v(u) =




0 if e ≤ ρ1(−σ2∆− fu),

unique solution of problem (2.14) if e > ρ1(−σ2∆− fu).

We can show as in Lemma 2.2 that u → v(u) is a continuous function from
C1(Ω̄) to C1(Ω̄) and that u→ v(u) is an increasing function.

Theorem 2.4. (i) Suppose:

(2.20)



e > σ2λ1 and

ρ̂1(σ1∆ + a− cv(0)) > 0,
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then the boundary value problem (2.1) has a solution with each component strictly
positive in Ω.
(ii) Suppose that e ≤ σ2λ1. Then, provided that a is sufficiently large, the
problem (2.1) has a solution with each component strictly positive in Ω.

Proof. Let e > σ2λ1, then problem (2.1) has a solution (u, v) = (0, v(0)) with
v(0) non-trivial. We write the first equation of (2.1) as:

(2.21) −σ1∆u+ cv(0)u = au− bu2 − c[v(u) − v(0)]u in Ω, u = 0 on ∂Ω,

and bifurcate with the parameter a at a = ρ1(−σ1∆ + cv(0)) when (u, v) =
(0, v(0)). As in Lemma 2.3, we can show that there exists a continuum of
solutions S+ of (2.21) contained in R×P , i.e. u ≥ 0 whenever (a, u) ∈ S+, and
that {a : (a, u) ∈ S+} = (ρ1(−σ1∆ + cv(0)),∞). If (a, u) ∈ S+, then u ≥ 0 and
so v(u) ≥ v(0), i.e. v(u) is not the trivial function. Consequently, the continuum
of solutions {(a, u, v(u)) : (a, u) ∈ S+} for the system (2.1) cannot connect with
the continuum of solutions {(a, u(0), 0) : a > σ1λ1}. This leads to the assertion
of part (i).

For part (ii), suppose that e ≤ σ1λ1. We have u(0) satisfies

−σ1∆u = au− bu2 in Ω, u = 0 on ∂Ω.

Let λ1 and ω1 be the principal eigenvalue and the corresponding eigenfunction
with max{ω1(x) : x ∈ Ω} = 1. Using a/b and b−1(a−σ1λ1)ω1 for a large enough
as upper and lower solutions respectively, we find that b−1(a−σ1λ1)ω1 ≤ u(0) ≤
ab−1. Comparing the least eigenvalue of

(2.22) −σ2∆w − fu(0)w = λw in Ω, w = 0 on ∂Ω,

with that of

−σ2∆v − fb−1(a− σ1λ1)ω1v = λv in Ω, v = 0 on ∂Ω,

by means of Rayleigh’s quotient, we conclude that the first eigenvalue ρ1(−σ2∆−
fu(0)) of (2.22) tends to −∞ as a→ +∞. That is we have ρ1(−σ2∆−fu(0)) ≤
e ≤ σ2λ1 for a sufficiently large. Thus by Theorem 2.3(i), we assert that problem
(2.1) has a solution which is positive in both components.

Part B: General Results via Degree Theory.

We next consider a prey-predator system with more general type of interac-
tion than quadratic (or Lotka-Volterra type). Moreover, we will obtain some-
what sharper results, and find necessary and sufficient conditions for the exis-
tence of positive solutions. We shall use degree theory method of cone index to
prove that the conditions in parts (ii) and (iii) of the following Theorem 2.5 is
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sufficient for the existence of positive solution. More precisely, for a constant
d > 0, we will consider the boundary value problem:

(2.23)




∆u+ uM(u, v) = 0
in Ω,

d∆v + v(h(u) −m(v)) = 0
u = v = 0 on ∂Ω,

where M(u, v) and its first partial derivatives are continuous in the first closed
quadrant. Moreover, it satisfies

(2.24) Mv(u, v) < 0 for u, v ≥ 0; Mu(u, 0) < 0 for u ≥ 0,

(2.25)
M(0, 0) > 0; there exists a constant C0 > 0 such that M(u, 0) < 0 for u > C0.

(2.26)
The functions h and m belong to C1([0,∞)),
with each function strictly increasing in [0,∞).

A solution (u, v) of problem (2.23) is called a positive solution if both com-
ponents are ≥ 0 and �≡ 0 on Ω. A common assumption in ecological studies is to
set the rate M(u, v) = σ−1

1 (a−bu− vc
k+u) where σ1, a, b, c, k are positive constants

or other rates involving ratios of u and v. Such type of growth rate is called
Holling’s type. From the smoothness of M,h and m, the positive solutions of
(2.23) are classical solutions with components in C2(Ω̄), if they exist.

Theorem 2.5. Assume hypotheses (2.24) to (2.26) and there exists a positive
number B0 such that

(2.27) m(B0) > h(C0).

Then all positive solutions (u, v) of (2.23) must satisfy 0 ≤ u ≤ C0, 0 ≤ v ≤ B0.
Moreover:
(i) Suppose M(0, 0) ≤ λ1, and h(0) ≤ λ1d + m(0), then (0,0) is the only non-
negative solution of (2.23).
(ii) Suppose h(0) < λ1d+m(0), then problem (2.23) has a positive solution (u,v)
iff:

(2.28) M(0, 0) > λ1; and ρ̂1(d∆ + (h(u0)−m(0))) > 0.

(iii) If h(0) > λ1d+m(0), and M(0, v) ≥M(u, v) for u, v ≥ 0. Then (2.23) has
a positive solution (u,v) iff

(2.29) M(0, 0) > λ1; and ρ̂1(∆ +M(0, v0)) > 0.
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(Note that the assumption on h(0) in case (iii) already implies that the second
inequality in (2.28) is true.) Furthermore, from the boundedness of the posi-
tive solution of (2.23), we have each component of the positive solution strictly
positive in Ω, by Lemma 1.1.

Remark 2.2. In (ii) above, the function u0 is the unique positive solution
of ∆u + uM(u, 0) = 0 in Ω, u = 0 on ∂Ω. Such solution exists provided
M(0, 0) > λ1, by Lemma 2.1. In (iii) above, the function v0 is the unique
positive solution of d∆v+ v(h(0)−m(v)) = 0 in Ω, v = 0 on ∂Ω. Such solution
exists provided h(0) > λ1d+m(0), by Lemma 2.1.

Example 2.1. In the usual Volterra-Lotka model, we let

(2.30) M(u, v) = σ−1
1 (a− bu− cv), d = σ2, h(u) = e+ fu, m(v) = gv,

where σ1, σ2, a, b, c, f, g are positive constants and e is any constant, then The-
orem 2.5 readily leads to the following corollary.

Corollary 2.6. Consider problem (2.23) with M(u, v), d, h(u),m(v) as given in
(2.30).
(i) If a ≤ σ1λ1, e ≤ λ1σ2, then (0,0) is the only non-negative solution of (2.23).
(ii) If e < σ2λ1, then problem (2,23) has a positive solution iff

(2.31) a > σ1λ1 and ρ̂1(σ2∆ + e+ fu0) > 0.

(iii) If e > σ2λ1, then (2.23) has a positive solution iff

(2.32) ρ̂1(σ1∆ + a− cv0) > 0.

(Note that part (ii) is closely related to Theorem 2.4(ii). When a is sufficiently
large, the second inequality in (2.31) will be satisfied. Note also part (iii) above
is closely related to Theorem 2.4(i) and Theorem 2.3(i); when e is large enough,
(2.32) cannot hold.)

The following lemma is very useful for proving Theorem 2.5.

Lemma 2.4. Assume a(x) ∈ L∞(Ω). Let u be an arbitrary function satisfying
u ≥ 0, �≡ 0 in Ω with u = 0 on ∂Ω.
(i) If 0 �≡ (∆ + a(x))u ≥ 0 in Ω, then ρ̂1(∆ + a(x)) > 0.
(ii) If 0 �≡ (∆ + a(x))u ≤ 0 in Ω, then ρ̂1(∆ + a(x)) < 0.
(iii) If (∆ + a(x))u ≡ 0 in Ω, then ρ̂1(∆ + a(x)) = 0.

Proof. (i) Let θ(x) > 0 in Ω be an eigenfunction corresponding to the principal
eigenvalue ρ̄ = ρ̂1(∆ + a(x)). Then 0 <

∫
Ω(∆ + a(x))uθ dx = ρ̄

∫
Ω uθ dx, hence

we must have ρ̄ > 0.
(ii) We simply reverse the sign in the argument in part (i) involving the integral.
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(iii) We have 0 = ρ̄
∫
Ω uθ dx with u ≥ 0, u �≡ 0, θ > 0 in Ω. This implies that

ρ̄ = ρ1(∆ + a(x)) = 0.

Proof (of Part (i) and necessity part of (ii), (iii) of Theorem 2.5 for the
existence of positive solution). We first prove the existence of an a-priori
bound for all non-negative solutions of (2.23). For any given v ≥ 0 in Ω̄, we
have by (2.24) and (2.25) a family of upper solutions w ≡ C̄ in Ω, C̄ ≥ C0 for
the first equation in (2.23), i.e.

∆w + wM(w, v) < 0 in Ω, w ≥ 0 on ∂Ω.

By the sweeping principle,any positive solution of problem (2.23) must have
0 ≤ u ≤ C0. Let (ũ, ṽ) be a positive solution of (2.23). Suppose x0 ∈ Ω
such that ṽ(x0) = maxx∈Ω̄ṽ(x) > 0. Then from the second equation in (2.23),
ṽ(x0)[h(ũ(x0)) − m(ṽ(x0))] = −d∆ṽ(x0) ≥ 0 at the interior maximum point.
Thus we must have

(2.33) m(ṽ(x0)) ≤ h(ũ(x0)) ≤ h(C0).

By the increasing property of the function m, we must have ṽ(x0) < B0.
We now prove the necessity assertion for part (ii) and (iii) of Theorem 2.5.

Suppose h(0) < λ1d+m(0), and (ũ, ṽ) is a positive solution of (2.23). Since ṽ ≥ 0
in Ω, and d∆ṽ + ṽ(h(ũ)−m(ṽ)) = 0 in Ω, ṽ = 0 on ∂Ω, we can obtain by max-
imum principle that ṽ cannot have a nonpositive minimum in Ω. Consequently,
we must have ṽ > 0 in Ω (cf. Lemma 1.1). Next, consider the scalar problem:
∆w+wM(w, 0) = 0 in Ω, w = 0 on ∂Ω. The constant function C0 + ε is a upper
solution. On the other hand, the fact that ∆ũ+ũM(ũ, 0) ≥ ∆ũ+ũM(ũ, ṽ) = 0 in
Ω, implies the function ũ is a lower solution. We conclude that ũ ≤ u0 ≤ C0 + ε.
By Lemma 1.1, we have u0 > 0 in Ω, and Lemma 2.1(i) implies M(0, 0) > 0.
The fact that u0 ≥ ũ implies that

d∆ṽ + ṽ(h(u0)−m(0)) ≥ d∆ṽ + ṽ(h(ũ)−m(ṽ)) = 0

in Ω. By Lemma 2.4(i), the above inequalities implies the second inequality in
(2.28).

Next, suppose h(0) > λ1d + m(0). Consider the scalar problem: d∆w +
w(h(0) −m(w)) = 0 in Ω, w = 0 on ∂Ω. We can verify readily as above that
ṽ and δω are respectively upper and lower solutions, where δ > 0 is sufficiently
small and moreover ṽ > δω in Ω. (Recall the definition of ω in (1.5).) The
uniqueness of positive solution of this scalar problem leads to δω ≤ v0 ≤ ṽ in Ω.
Consequently, we have ∆ũ+ ũM(0, v0) ≥ ∆ũ+ ũM(ũ, v0) ≥ ∆ũ+ ũM(ũ, ṽ) = 0.
By Lemma 2.4(i) again, we conclude that the second inequality of (2.29) is valid.

Before we begin to prove the sufficiency part of Theorem 2.5, we need to
introduce some concepts in cone index method. Roughly speaking, we will apply
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the theory to compact operators on the cone of positive vector functions. Let E
be a Banach space, W ⊂ E is called a wedge in E if W is a closed convex set and
αW ⊆ W for every real α ≥ 0. A wedge is called a cone if W ∩ {−W} = {0}.
For y ∈W , define

Wy = {x ∈ E : y + θx ∈W, for 0 ≤ θ ≤ γ, for some γ > 0}.

One readily verifies that Wy is convex, and Wy ⊇ {y}∪ {−y}∪{W}. Moreover,
the set W̄y,(the closure of Wy), is also a wedge. Let Sy = {x ∈ W̄y : −x ∈ W̄y};
we easily see that Sy is a linear subspace of E.

A nonempty subset A of a metric space X is called a retract of X if there
exists a continuous map r : X → A (called a retraction), such that r|A = idA.
By a theorem of Dugundji [53], [54], every nonempty closed convex subset of a
Banach space E is a retract of E. Let X be a retract of a Banach space E. For
every open subset U of X and every compact map f : Ū → X which has no
fixed points on ∂U , there exists an integer iX(f, U) defined by

iX(f, U) = iE(f ◦ r, r−1(U)) = deg(id − f ◦ r, r−1(U), 0),

where iE(f ◦r, r−1(U)) is the well-known Leray-Schauder degree. This definition
is independent of the choice of the retraction. The integer iX(f, U) is called the
fixed point index of f (over U with respect to X). This index satisfies the
normalization, additivity, homotopic invariance and permanence properties as
the Leray-Schauder degree (cf. Theorem A2-1 in Chapter 6). If x0 ∈ U is an
isolated fixed point of f , and x0 is the only fixed point of f in x0 + ρB, ρ > 0,
where B is the open unit ball of E. We define the fixed point index by

indexX(f, x0) := iX(f, x0 + ρB).

Definition 2.1. Let L : E → E be a compact linear operator such that L(W̄y) ⊆
W̄y. L is said to have property (α) on W̄y if the following holds:

(α) There exists t ∈ (0, 1) and a w ∈ W̄y\Sy such that w − tLw ∈ Sy.
Remark 2.3. If I−L is invertible in W̄y, an important consequence of property
(α) on W̄y is given below in Lemma 2.5, asserting that there exists z ∈ W̄y such
that the equation x − Lx = z has no solution for x in W̄y. Under appropriate
circumstances, this in turn leads to indexW (A, y0) = 0, by Lemma 2.6(i), where
L is the Fréchet derivative of A at y0 in W .

Lemma 2.5. Let L : E → E be a compact linear operator such that L(W̄y) ⊆
W̄y. Assume I−L is invertible in W̄y (in the sense that h �= Lh if h ∈ W̄y\{0}).
If L has property (α) on W̄y, then there exists z ∈ W̄y such that the equation
x− Lx = z has no solution for x in W̄y.
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Proof. Since L has property (α), there exists v ∈ W̄y\Sy and t ∈ (0, 1) such
that v − tLv = h ∈ Sy. Thus −v /∈ W̄y,−h ∈ Sy and −v − L(−v) = −v + Lv =
−v+tLv+(1−t)Lv = −h+(1−t)Lv ∈ W̄y. Let z := −h+(1−t)Lv = −(v−Lv).
If there exists q ∈ W̄y such that q − Lq = z. Then we have v + q − L(v + q) =
v −Lv+ q −Lq = −z + z = 0. This implies v + q = 0, and −v = q ∈ W̄y. Thus
we have v ∈ Sy, which is a contradiction.

Lemma 2.6. Let W be a wedge in Banach space E, EW := W −W is dense in
E, and D is an open set in W . Suppose that A : D̄ → W is a compact map with
fixed point y0 = Ay0 ∈ D, and the Fréchet derivative of A at y0 in W , denoted
by L = A′

+(y0), is compact on E. Then L maps W̄y0 into itself. Moreover:
(i) Assume that I − L is invertible in W̄y0(in the sense that h �= Lh if h ∈
W̄y0\{0}). If there exists an element z ∈ W̄y0 such that the equation x−Lx = z
has no solution for x in W̄y0, then indexW (A, y0) = 0.
(ii) Assume I −L is invertible in W̄y0. If L does not have property (α) on W̄y0,
then indexW (A, y0) = indexSy0 (L, 0) = (−1)σ(y0) = ±1. Here, σ(y0) is the sum
of multiplicities of the eigenvalues of L in Sy0 which are greater than one.

Proof. The proof can be found in Dancer [37] and Li [148]. More explanations
are found in Remark 2.1(i) and (ii) in Ruan and Feng [194]. Remark 2.1(ii) in
[194] is same as Theorem A2-3 in Chapter 6 (Appendices).

From Lemmas 2.5 and 2.6, we obtain the following lemma.

Lemma 2.7. Under the hypotheses of Lemma 2.6, let I − L be invertible on
W̄y0 as described in Lemma 2.6.
(i) If L has property (α) on W̄y0 , then indexW (A, y0) = 0.
(ii) If L does not have property (α) on W̄y0 , then indexW (A, y0) = indexSy0 (L, 0)
= ±1.

We are now ready to prove the sufficiency part (ii) and (iii) of Theorem
2.5. Let [C0(Ω̄)]2 := {(u1, u2) : ui ∈ C(Ω̄), and ui = 0 on ∂Ω, for i = 1, 2}.
Let [C+

0 (Ω̄)]2 := {(u1, u2) : ui ∈ C0(Ω̄), ui ≥ 0 in Ω, for i = 1, 2}, B1 =
max.{C0, B0}, and [E(B1)]2 := {(u1, u2) : ui ∈ C(Ω̄), |ui| < B1 in Ω, for i =
1, 2}, with closure [Ē(B1)]2. For each (u1, u2) ∈ [C(Ω̄)]2, θ ∈ [0, 1], define the
operator Aθ : [C0(Ω̄)]2 ∩ [Ē(B1)]2 → [C0(Ω̄)]2 by Aθ(u1, u2) = (v1, v2) where

(2.34)

{
v1 = (−∆ + P )−1[θu1M(u1, u2) + Pu1]
v2 = (−∆ + P )−1[θd−1u2(h(u1)−m(u2)) + Pu2].

Here, the inverse operator is taken with homogeneous Dirichlet boundary con-
dition on ∂Ω, and P > 0 is a large enough constant such that the operator
Aθ is positive, compact and Fréchet differentiable on [C+

0 (Ω̄)]2 ∩ [Ē(B1)]2. For
convenience, let K denotes the cone K := [C+

0 (Ω̄)]2, as described above, and
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D := [C+
0 (Ω̄)]2 ∩ [E(B1)]2. The bound on the solution implies that the oper-

ators Aθ has no fixed point on the boundary ∂D in the relative topology, i.e.
on the intersection of boundary of [E(B1)]2 with K. We can further use a fa-
miliar cut-off procedure (see Li [148]) to extend Aθ to be defined outside D as
a compact positive mapping from the cone K into itself. For convenience, we
will denote A := A1. We will denote the fixed point index of Aθ over D with
respect to the cone K by iK(Aθ,D). By homotopy invariance principle, we ob-
tain iK(A,D) = iK(A1,D) = iK(A0,D). From definition, the i-th component
of A0(u1, u2) is (−∆ + P )−1(Pui). One readily verifies by maximum principle
that A0(u) �= λu for every u = (u1, u2) ∈ ∂D and λ ≥ 1. Hence, by Theo-
rem A2-4 in Chapter 6 (Appendices), we conclude by contraction argument that
iK(A,D) = iK(A0,D) = 1.

Let y be an isolated fixed point of the map Aθ in K, we denote the lo-
cal index of Aθ at y with respect to K by indexK(Aθ, y).We now show that
indexK(A, (0, 0)) = 0 for both cases (ii) and (iii). For y ∈ K, define

Ky := {p ∈ [C(Ω̄)]2 : y + sp ∈ K for some s > 0}, and

Sy := {p ∈ K̄y : −p ∈ K̄y}.

Here K̄y denotes the closure of Ky. We have K̄(0,0) = K,S(0,0) = {(0, 0)}. Let
A′

+((0, 0)) be the Fréchet derivative of A at (0, 0) in K. The first component of
A′

+((0, 0))(u1 , u2) is (−∆ + P )−1(M(0, 0) + P )u1. Hence [I − A′
+((0, 0))]u = 0

for u = (u1, u2) ∈ K implies that [∆ + M(0, 0)]u1 = 0, u1 ∈ C+
0 (Ω̄). Thus the

assumption M(0, 0) > λ1 in (2.28) or (2.29) implies that u1 = 0. Similarly, we
have for the second component [d1∆ + h(0) −m(0)]u2 = 0, u2 ∈ C+

0 (Ω̄). Thus
the assumption h(0) �= λ1d + m(0) in (2.28) or (2.29) implies that u2 = 0. We
thus conclude I − A′

+((0, 0)) is invertible in K̄(0,0). Further, the assumption
M(0, 0) > λ1 implies that ρ̂1(∆ + tM(0, 0) + (t − 1)P ) is positive when t = 1
and negative when t = 0. From the continuity in t ∈ [0, 1] for the eigenvalue
ρ̂1(∆ + tM(0, 0) + (t − 1)P ), there must exist some t ∈ (0, 1) and a nontrivial
function ū ∈ C+

0 (Ω̄) such that (−∆ + P )ū = t(M(0, 0) + P )ū or ū − t(−∆ +
P )−1(M(0, 0) + P )ū = 0 in Ω. We thus have [I − tA′

+((0, 0))](ū, 0) = (0, 0) ∈
S(0,0), with (ū, 0) ∈ K̄(0,0)\S(0,0). We thus conclude by Lemma 2.7(i), with W̄y0

replaced by K̄(0,0), that indexK(A, (0, 0)) = 0.
We will show that for both cases (ii) and (iii), we have indexK(A, (u0, 0)) =

indexK(A, (0, v0)) = 0.
Consider case (ii) when h(0) < λ1d + m(0), and assume (2.28). Let

L = A′
+((u0, 0)) be the Fréchet derivative of A at (u0, 0) in K. Suppose that
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(I −L)(u1, u2) = 0, for some u1 ≥ 0, u2 ≥ 0 in Ω̄, and u1 = u2 = 0 on ∂Ω. Then

(2.35)




∆u1 + [M(u0, 0) + u0Mu(u0, 0)]u1 + u0Mv(u0, 0)u2 = 0
in Ω,

d∆u2 + [h(u0)−m(0)]u2 = 0

u1 = u2 = 0 on ∂Ω.

Thus the second assumption in (2.28) and the second equation above imply
that u2 ≡ 0. We then consider the first equation above again. Since ρ̂1(∆ +
M(u0, 0)) = 0, and u0Mu(u0, 0) < 0 by (2.24), we have ρ̂1(∆ + M(u0, 0) +
u0Mu(u0, 0)) < 0. Hence, all the eigenvalues ρ of the problem:

∆u+ [M(u0, 0) + u0Mu(u0, 0)]u = ρu in Ω, u = 0 on ∂Ω,

satisfy ρ < 0. However, u1 satisfies this problem with ρ = 0. Thus u1 ≡ 0. That
is the operator (I − L) is invertible on K̄(u0,0).

We next show that the operator L has property (α) on K̄(u0,0). Let P > 0;
observe that the eigenvalue ρ̂1(d∆−dP + t[h(u0)−m(0)+dP ]) is negative when
t = 0, and is positive when t = 1. By continuity, there exists some t∗ ∈ (0, 1),
such that ρ̂1(d∆ − dP − t∗[h(u0) −m(0) + dP ]) = 0. There exists u∗2 > 0 in Ω,
vanishing on ∂Ω such that (−d∆ + dP )u∗2 − t∗[h(u0)−m(0) + dP ]u∗2 = 0 in Ω.
Since S(u0,0) = C0(Ω̄)×{0}, we can readily verify that if we let w = (0, u∗2), then
we have w − t∗Lw ∈ S(u0,0) with w ∈ K̄(u0,0)\S(u0,0). Consequently, by Lemma
2.7(i), with W̄y0 replaced by K̄(u0,0), we conclude that indexK(A, (u0, 0)) = 0.

Next, consider the case (iii) when h(0) > λ1d + m(0), and assume (2.29).
Let L = A′

+((u0, 0)) and (u1, u2) be as described above for case (ii), and thus
obtain (2.35) again. The assumption h(0) > λ1d+m(0) and increasing property
of the function h imply the validity of the second assumption in (2.28). Thus
we obtain u2 ≡ 0 as before. We then follow the same argument as before to
conclude that I − L is invertible in K̄(u0,0). We then prove the operator L has
property (α) on K̄(u0,0) exactly as in case (ii) above. Thus we conclude that
indexK(A, (u0, 0)) = 0.

We now consider the point (0, v0). For case (ii), that is, h(0) < λ1d+m(0),
we must have v0 ≡ 0. Thus (0, v0) = (0, 0), and the index of A at this fixed
point has been shown to be 0.

For case (iii) when h(0) > λ1d + m(0), let L̃ = A′
+((0, v0)) be the Fréchet

derivative of A at (0, v0).Suppose that (I− L̃)(u1, u2) = 0, for some u1 ≥ 0, u2 ≥
0 in Ω̄, and u1 = u2 = 0 on ∂Ω. Then



∆u1 +M(0, v0)u1 = 0
in Ω,

d∆u2 + v0h
′(0)u1 + [h(0) − v0m′(v0)−m(v0)]u2 = 0

u1 = u2 = 0 on ∂Ω.
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The second assumption in (2.29) implies that ρ̂1(∆ + M(0, v0)) �= 0; thus we
conclude from the first equation above that u1 ≡ 0. Since ρ̂1(d∆ + h(0) −
m(v0)) = 0 and m′(v0) ≥ 0 is not the trivial function, we have ρ̂1(d∆ + h(0) −
v0m

′(v0) −m(v0)) < 0. We thus deduce from the second equation above that
u2 ≡ 0. We thus conclude that the operator I − L̃ is invertible in K̄(0,v0).

From the second assumption in (2.29), we deduce that for P > 0, the eigen-
value ρ̂1(∆ − P + t[M(0, v0) + P ]) is negative if t = 0 and is positive if t = 1.
Hence, there exist t∗ ∈ (0, 1) and a non-trivial, non-negative function u∗1 vanish-
ing on ∂Ω, such that

−∆u∗1 + Pu∗1 − t∗(M(0, v0) + P )u∗1 = 0 in Ω.

Since S(0,v0) = {0}×C0(Ω̄), we can readily verify that if we let w̃ = (u∗1, 0), then
we have w̃ − t∗L̃w̃ ∈ S(0,v0) with w̃ ∈ K̄(0,v0)\S(0,v0). Consequently, by Lemma
2.7(i), we conclude that indexK(A, (0, v0)) = 0.

From the above paragraphs, we thus have

iK(A,D) = 1, indexK(A, (0, 0)) = indexK(A, (u0, 0)) = indexK(A, (0, v0)) = 0.

If one component of a solution of (2.23) in K is identically zero, there are at most
three solutions (0, 0), (u0 , 0) and (0, v0) in K. In order to avoid contradicting the
additive property of the indices of the map on disjoint open subsets, there must
be at least another fixed point of A in D. (See Theorem A2-1(ii) in Chapter 6.)
This complete the proof of Theorem 2.5(ii) and (iii).

In some interesting applications, the predator v may have no crowding effect
on its own growth rates. This lead to the following theorem.

Theorem 2.7. Let N = 1, 2 or 3. Assume hypotheses (2.24) to (2.26) except
that here m ≡ 0. Moreover

h(0) < 0; and there exists θ > 0, such that Mv(u, v) < −θ for 0 ≤ u ≤ C0, v > 0.

Then all positive solutions (u, v) of (2.23) must satisfy 0 ≤ u ≤ B1, 0 ≤ v ≤ B2,
for some positive constants B1, B2. Moreover

(i) If M(0, 0) ≤ λ1, then (0,0) is the only non-negative solution of (2.23).

(ii) Problem (2.23) has a positive solution iff

(2.36) M(0, 0) > λ1; and ρ̂1(d∆ + h(u0)) > 0.

Proof. We first prove the existence of an a-priori bound for all non-negative
solutions of (2.23). For any given v ≥ 0 in Ω̄, we have by (2.24) and (2.25) a
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family of upper solutions w ≡ C̄ in Ω, C̄ ≥ C0 for the first equation in (2.23),
i.e.

∆w + wM(w, v) < 0 in Ω, w ≥ 0 on ∂Ω.

By the sweeping principle, any positive solution of problem (2.23) must have
0 ≤ u ≤ C0. Suppose there is no a-priori bound for v. Then there exists a
sequence of positive solutions (un, vn) for (2.23) satisfying:

||vn||L∞ →∞, as n→∞, 0 ≤ un ≤ C0 in Ω̄.

Let v̄n = vn/||vn||L∞ ; it satisfies 0 ≤ v̄n ≤ 1 and:

(2.37) d∆v̄n + h(0)v̄n = −[h(un)− h(0)]v̄n in Ω.

By W 2,p(Ω) estimates and appropriate embedding, we can find subsequence,
again denoted as {v̄n} such that v̄n → v̄0 ∈ C1,α(Ω̄) uniformly for some α ∈
(0, 1), and v0(x) ≥ 0, �≡ 0 in Ω̄.

Next, let ũn = un/||un||L2 ≥ 0 in Ω. Divide the first equation satisfied by
(un, vn), multiply by ũn, and integrate over Ω, we obtain:
(2.38)

−M(0, 0) <
∫

Ω
|∇ũn|2dx−

∫
Ω
M(0, 0)ũ2

ndx =
∫

Ω
[M(un, vn)−M(0, 0)]ũ2

ndx ≤ 0.

The last inequality above is due to assumption (2.24) on Mv,Mu. From (2.38),
we obtain a uniform bound on the W 1,2(Ω) norm on ũn. We can select subse-
quence, denoted the same way, such that ũn converge weakly in W 1,2(Ω) and
strongly in Lq(Ω), q < 2N(N −2)−1 to a non-negative function ũ0 ∈W 1,2(Ω), if
N > 2 (by Rellich-Kondrachov Compactness Theorem, see e.g. p. 272 in Evans
[57]). If the space dimension N = 3, the inequality q < 2N(N − 2)−1 is satisfied
if we choose q = N = 3. If the space dimension N = 2, using pN(N−p)−1 →∞
as p→ N−, we can also assume ũn converge to ũ0 in Lq(Ω), q = 2. We also have
||ũ0||L2 = limn→∞||ũn||L2 = 1, and we may assume ||un||L2 → k ≥ 0, as n→∞.
Taking limit in (2.37), and using W 2,q theory, we find v̄0 ∈ W 2,q

0 = W 2,N
0 is a

strong solution of

(2.39) d∆v̄0 + h(0)v̄0 = −[h(kũ0)− h(0)]v̄0

for N = 3 or 2. Moreover the increasing property of h(u) and equation (2.37)
implies that

(2.40) d∆v̄0 + h(0)v̄0 ≤ 0 in Ω.

Since h(0) < 0, we obtain by maximum principle for the strong solution that
v̄0(x) > 0 for all x ∈ Ω. (See e.g. Gilbarg and Trudinger [71] or Theorem A3-1
in Chapter 6.) For the case N = 1, the convergence on the right of (2.37) to
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(2.39) is valid in C0,γ(Ω̄), γ = 1− N
2 , by Morrey’s inequality (see e.g. p. 266 in

[57]). Thus the solution v̄0 of (2.39) is in C2(Ω̄) by Schauder’s theory. Therefore
we can also conclude that v̄0(x) > 0 for all x ∈ Ω by means of (2.40).

Consider the integral on the right side of (2.38). We use (2.24) and the
assumption concerning Mv in the statement of Theorem 2.7 to obtain

(2.41)

∫
Ω[M(un, vn)−M(0, 0)]ũ2

n dx ≤
∫
Ω−θvnũ2

n dx

= −θ||vn||L∞
∫
Ω v̄nũ

2
n dx.

However, we have

(2.42)
∫

Ω
v̄nũ

2
n dx→

∫
Ω
v̄0ũ

2
0 dx > 0, as n→∞.

Taking limit as n → ∞ in (2.38) and using (2.41) and (2.42), we obtain the
contradiction −M(0, 0) ≤ −∞ if ||vn||L∞ →∞. Consequently, we must have an
a-priori bound for all positive solutions of problem (2.23).

Parts (i) and (ii) of this Theorem follow readily from parts (i) and (ii) of
Theorem 2.5 respectively, with the role of C0 and B0 respectively replaced by
B1 and B2.

Example 2.2. Let M(u, v) = σ−1
1 (a − bu − cv), d = σ2, h(u) = u − γ.m ≡ 0,

where σ1, σ2, a, b, c, γ are positive constants. Note that h(0) = −γ < 0. This is a
very common model, when the predator has negative intrinsic growth rate, and
there is no crowding effect of the population of predator on itself. Here, we can
apply Theorem 2.7. The conditions in (2.36) becomes

(2.43) a > σ1λ1; and ρ̂1(σ2∆ + u0 − γ) > 0.

Example 2.3. We can also apply Theorem 2.7 to models not of Volterra-Lotka
type reaction. The popular Holling’s type of growth rate assumption may be
assumed. Let M(u, v) = σ−1

1 (a− bu− vc
δ+u), d = σ2, h(u) = ku c

δ+u − γ, m ≡ 0,
where σ1, σ2, a, b, c, d, k, γ, δ are positive constants.

Part C: Coexistence Regions in Parameter Space.

We now return to the diffusive Volterra-Lotka model, and describe a region
on the (a, e) intrinsic growth rate parameter plane when positive solutions always
exist while the other parameters are fixed. This leads to Theorem 2.8, Fig. 1.2.1
and Fig. 1.2.2. More precisely, consider problem (2.1) with σ1 = σ2 = 1 for
simplicity. Let the parameters b, c, f and g be fixed positive constants. We can
readily use Theorem 2.5(i) and (ii) to obtain a region in the (a, e) plane between
certain lines or curves so that positive solutions will always exist. Here, we have
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(2.23) with σ1 = σ2 = d = 1. The conditions h(0) < λ1d + m(0) and (2.28) in
Theorem 2.5(ii) are the same as

(2.44) λ1 > e > ρ1(−∆− fu0), a > ρ1(−∆ + cv0), v0 ≡ 0.

The conditions h(0) > λ1d + m(0) and (2.29) in Theorem 2.5(iii) are the same
as

(2.45) e > λ1 := ρ1(−∆) > ρ1(−∆− fu0), a > ρ1(−∆ + cv0).

Consequently, if σ1 = σ2 = 1, a �= λ1, e �= λ1, and

(2.46) a > ρ1(−∆ + cv0), e > ρ1(−∆− fu0),

then Theorem 2.5(ii) and (iii) imply that problem (2.1) has a solution with
each component strictly positive in Ω. We next use (2.44) to (2.46) and the
characterization of principal eigenvalue to obtain very simple description, in
terms of the interaction parameters and the size of Ω, of a region on the (a, e)
plane where positive solutions always exist. By avoiding the reference to u0 and
v0, the description is easier to use.

Theorem 2.8. Consider the boundary value problem (2.1), under the assump-
tions σ1 = σ2 = 1, a �= λ1, e �= λ1,
(i) Suppose c ≥ g and

(2.47) a > λ1 + (e− λ1)
c

g
, e > λ1 − (a− λ1)

f

b
.

Then (2.1) has a solution with each component strictly positive in Ω.
(ii) Suppose c < g and

(2.48)



e > λ1, a > min{λ1 + ec

g , e[1− (1− c
g )(1 − λ1

e )3K]}; or

λ1 > e > λ1 − (a− λ1)fb , a > λ1,

where K := |Ω|−1
∫
Ω φ

3dx, |Ω| = measure of Ω and φ is the positive principal
eigenfunction of −∆ with maxΩφ = 1. Then problem (2.1) has a positive solu-
tion with each component strictly positive in Ω.

Proof. (i) Suppose c ≥ g. First, assume e > λ1. We now show that in this case

(2.49) λ1 + (e− λ1)
c

g
≥ ρ1(−∆ + cv0).

By the characterization of principal eigenvalue, we have

ρ1(−∆ + cv0) = infu∈S{
∫

Ω
|∇u|2dx+ cv0u

2dx},
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where S := {u ∈ H1
0 (Ω),

∫
Ω u

2dx = 1}. Consequently,

(2.50) ρ1(−∆ + cv0) ≤ ||v0||−2
L2(Ω)

{
∫

Ω
|∇v0|2dx+ c

∫
Ω
v3
0dx}.

From the equation satisfied by v0, we have

(2.51) g

∫
Ω
v3
0dx = e

∫
Ω
v2
0dx−

∫
Ω
|∇v0|2dx.

From (2.50) and (2.51), we obtain

(2.52) ρ1(−∆ + cv0) ≤ ||v0||−2
L2(Ω)

{(1− c

g
)
∫

Ω
|∇v0|2dx+ e

c

g

∫
Ω
v2
0dx}.

Since 1− c
g ≤ 0, we obtain (2.49) as follows:

ρ1(−∆ + cv0) ≤ (1− c

g
)λ1 + e

c

g
= λ1 + (e− λ1)

c

g
.

Thus by (2.45) and (2.49), we find that strictly positive solutions must exist for
(a, e) satisfying:

(2.53) e > λ1 and a > λ1 + (e− λ1)
c

g
.

Next, let e < λ1. We obtain from Theorem 2.5(ii) above that (2.44) is suf-
ficient for existence of positive solutions. By the characterization of principal
eigenvalue, we find
(2.54)
ρ1(−∆ − fu0) = infu∈S{(1 + f

b )
∫
Ω |∇u|2dx− f

b [
∫
Ω |∇u|2dx+ b

∫
Ω u0u

2dx]}

≤ infu∈S{(1 + f
b )
∫
Ω |∇u|2dx} − f

b infu∈S{
∫
Ω |∇u|2dx+ b

∫
Ω u0u

2dx}

= (1 + f
b )λ1 − f

b ρ1(−∆ + bu0)

= (1 + f
b )λ1 − f

b a = λ1 − f
b (a− λ1).

Thus by (2.44) and (2.54), if e < λ1, we find that strictly positive solutions
must exist for (a, e) satisfying

(2.55) λ1 > e > λ1 − f

b
(a− λ1), a > λ1.

The assertion of part (i) follows from (2.53) and (2.55). (See Fig. 1.2.1.)
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Λ1

Λ1
e � Λ1 � �a�Λ1�

f

b

a � Λ1 � �e�Λ1�
c

g

a

e

Figure 1.2.1: Coexistence Region in (a, e) Parameter Space, for case c ≥ g.

We next consider part (ii) and assume c < g. Suppose e > λ1, then Theorem
2.5(iii) asserts that if a satisfies (2.45) then problem (2.1) has positive solutions.
It suffices to show that

(2.56) ρ1(−∆ + cv0) ≤ min{λ1 +
ec

g
, e[1− (1− c

g
)(1− λ1

e
)3K]}.

By the characterization of the principal eigenvalue and the fact that v0 ≤ e/g
we find

(2.57)

ρ1(−∆ + cv0) = infu∈S{
∫
Ω |∇u|2dx+

∫
Ω cv0u

2dx}

≤ infu∈S{
∫
Ω |∇u|2dx+ ec

g

∫
Ω u

2dx}

= λ1 + ec
g .
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Next, observe that (2.52) remains valid in the present case c < g, i.e. 1− cg−1 >
0. Thus using (2.51) and (2.52) we obtain

(2.58) ρ1(−∆ + cv0) ≤ [1− c

g
][e− (g

∫
Ω
v3
0dx)(

∫
Ω
v2
0dx)−1] +

ec

g
.

Using the fact that g−1(e− λ1)φ is a lower solution for the problem satisfied by
v0, we have

(2.59) (
e− λ1

g
)3
∫

Ω
φ3dx ≤

∫
Ω
v3
0dx.

From v0 ≤ eg−1, we also have

(2.60)
∫

Ω
v2
0 dx ≤ (

e

g
)2|Ω|.

Letting K = |Ω|−1
∫
Ω φ

3dx, we deduce readily from (2.58) to (2.60) that

(2.61)
ρ1(−∆ + cv0) ≤ [1− c

g ][e− (e− λ1)3e−2K] + ec
g

= e[1− (1− c
g )(1 − λ1

e )3K].

Thus, from (2.57) and (2.61), we conclude that if (a, e) satisfy the first line of
the inequalities in (2.48), there must exist positive solutions to problem (2.1).

Next, assume e < λ1, we obtain the inequalities in the second line of (2.48)
as sufficient condition for the existence for positive solution of (2.1) in exactly
the same way as obtaining the second inequality of (2.47) as sufficient condition
in part (i).

Remark 2.4. If we define

â(e) = e[1− (1− c

g
)(1− λ1

e
)3K],

where K is defined in Theorem 2.8. It can be shown by calculus that
(1) The graph of (â(e), e) and (λ1 + (e− λ1) cg , e) do not intersect when e > λ1.
(2) The graphs of (â(e), e) and (λ1 + ec

g , e) intersect at one point (a0( cg ), e0( cg )),
when e > λ1, and

lim
c/g→1

a0(
c

g
) =∞, lim

c/g→1
e0(

c

g
) =∞;

lim
c/g→0

a0(
c

g
) = λ1, lim

c/g→0
e0(

c

g
) = λ1.

(3) limc/g→1[â(e) − (λ1 + (e − λ1) cg )] = 0 uniformly on compact subsets of e ∈
[λ1,∞).
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Figure 1.2.2: Coexistence Region in (a, e) Parameter Space, for case c < g.

The situation is illustrated in Fig 1.2.2 above. The details can be found in
J. López-Gómez and R. Pardo San Gil [162].

Notes.

Theorem 2.1 was first proved in Leung [123], and Theorem 2.2 to Theorem
2.4 are due to Blat and Brown [11]. Theorem 2.5 and Corollary 2.6 are found in
Li [148]. Lemmas 2.5 to 2.7 concerning indices of fixed point are obtained from
Dancer [37] and Li [148]. Theorem 2.7 is a modification of a theorem in [148].
Theorem 2.8 is obtained from López-Gómez and Pardo San Gil [162]. More
recent extension of the theory in this section for the case of ratio-dependent
interaction rates can be found in Ryu and Ahn [197].
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1.3 Strictly Positive Coexistence for Diffusive Com-
peting Systems

In this section we study problem (1.1) when the functions f1(u, v) and f2(u, v)
simulate competition between the two species populations u(x) and v(x) in a
bounded domain Ω, with conditions as described in Section 1.1. More precisely,
we first assume:

(3.1)




fi(0, 0) = 0, i = 1, 2,

∂fi
∂u ,

∂fi
∂v < 0, for u ≥ 0, v ≥ 0, i = 1, 2, and

ai > σiλ1, i = 1, 2.

Part A: General Results.

The following theorem can be readily obtained by the method of upper and
lower solution for a system of semilinear elliptic equations.

Theorem 3.1. Assume that fi, i = 1, 2, are in C1([0,∞) × [0,∞)) and hy-
potheses (3.1) are valid. Suppose there exist positive constants k1, k2 such that
the following inequalities:

(3.2)




a1 − σ1λ1 + f1(0, k2) > 0,

a2 + f2(0, k2) < 0,

a2 − σ2λ1 + f2(k1, 0) > 0,

a1 + f1(k1, 0) < 0

are satisfied. Then problem (1.1) has a positive solution (ū(x), v̄(x)) with ū(x) >
0, v̄(x) > 0 in Ω.

Proof. Let ω(x) be the positive principal eigenfunction in Ω for the eigen-
value problem ∆u + λu = 0 in Ω, u = 0 on ∂Ω. For r1 > 0 small enough, we
have σ1∆(r1ω) + r1ω[a1 + f1(r1ω, v)] = r1ω[a1 − σ1λ1 + f1(r1ω, v)] > 0, and
σ1∆k1 + k1[a1 + f1(k1, v)] < 0 for 0 ≤ v ≤ k2. Also, for r2 > 0 small enough,
we have σ2∆(r2ω) + r2ω[a2 + f2(u, r2ω)] = r2ω[a2 − σ2λ1 + f2(u, r2ω)] > 0,
and σ2∆k2 + k2[a2 + f2(u, k2)] < 0 for 0 ≤ u ≤ k1. The pair of functions
(r1ω(x), k1), (r2ω(x), k2) form a coupled upper-lower solution for the system
(1.1). Thus by e.g. Theorem 1.4-2 in Leung [125], there exists a solution
(ū(x), v̄(x)) to (1.1) with r1ω(x) ≤ ū(x) ≤ k1, r2ω(x) ≤ v̄(x) ≤ k2 in Ω̄.
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The above theorem applies immediately to the following Volterra-Lotka com-
petition system.

(3.3)




σ1∆u+ u(a− bu− cv) = 0
in Ω,

σ2∆v + v(e− fu− gv) = 0

u = v = 0 on ∂Ω,

where σ1, σ2, a, b, c, e, f and g are positive constants.

Corollary 3.2. Suppose that

(3.4) a > σ1λ1 + c
e

g
, and e > σ2λ1 + f

a

b
.

Then the boundary value problem (3.3) has a positive solution (ū(x), v̄(x)) with
ū(x) > 0, v̄(x) > 0 in Ω.

Proof. Identify a, e respectively with a1, a2 and let f1(u, v) = −bu−cv, f2(u, v) =
−fu− gv. Consider (3.3) as a special case of (1.1) under hypotheses (3.1) and
(3.2). Choose k1 = a

b − ε and k2 = e
g − ε, for ε > 0 sufficiently small, then we

can verify that (3.2) is satisfied. The results follows from Theorem 3.1.

Remark 3.1. If a > σ1λ1, e > σ2λ1, then the inequalities in (3.4) are readily
satisfied when competition between the two species are relatively weak, in the
sense of small c and f . The conditions in (3.4) are very easy to verify.

By using bifurcation method, we can follow the procedures as in Theorem
2.3(i) to obtain positive solutions as the growth rate of the second species e
varies.

Theorem 3.3. Suppose

(3.5) a > σ1λ1.

Then there exist µ1, µ2, µ3 satisfying σ1λ1 < µ1 ≤ µ2 < µ3 with the following
properties:

(i) If µ1 ≤ e ≤ µ2, then the boundary value problem (3.3) has at least one
solution with each component strictly positive in Ω.

(ii) If e > µ3, then every non-negative solution of the boundary value problem
(3.3) has at least one component identically equal to zero.
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Proof. The proof is analogous to that of Theorem 2.3. Let (3.5) be satisfied.
For any v ∈ C1(Ω), define u(v) as in (2.9) and (2.10). Then, for all values e,
problem (3.3) has the solution (u, v) = (u(0), 0). We consider the bifurcation of
solution as the parameter e varies in the problem:

(3.6) −σ2∆v = ev − gv2 − fu(v)v in Ω, v = 0 on ∂Ω.

Bifurcation occurs when e = ρ1(−σ2∆+fu(0)). As in the proof of Theorem 2.3,
we can show that there exists a continuum S+ of solutions (e, v) of (3.6) such
that v > 0 for all v ∈ S+ and S+ intersects with the curve corresponding to
the zero solution only when e = ρ1(−σ2∆ + fu(0)). Multiplying (3.6) by v and
integrating by parts, we find e > ρ1(−σ2∆) for all e such that (e, v) ∈ S+. By
means of sweeping principle argument, we find v ≤ e/f for all v with (e, v) ∈ S+.
Thus for all v such that (e, v) ∈ S+, there exists a bound in C1(Ω̄) which is
dependent on e. Since S+ connects (ρ1(−σ2∆ + fu(0)), 0) with ∞ in C1(Ω̄), it
follows that {e : (e, v) ∈ S+} ⊇ (ρ1(−σ2∆ + fu(0)),∞). (More details can be
found in Blat and Brown [11].)

As in Theorem 2.3, we can show that there exists a constant µ3 > 0 such that
if e > µ3, then all solutions of (3.3) have at least one component identically equal
to zero. As in the proof of Theorem 2.3, we will need to obtain a lower bound
for v in terms of e. For this purpose, we need a slight change in the definition
of k(e) for analyzing (2.15). The eigenvalue λ1 and eigenfunction ω1 will be
respectively replaced with the least eigenvalue and principal eigenfunction of

−σ2∆φ+ fu(0)φ = λφ in Ω, φ = 0 on ∂Ω.

The remaining part of the proof follows the argument in the last part for the
proof of Theorem 2.3(i).

One can obtain similar bifurcation results as above, when the growth rate
parameter a varies. For competitive system more general than Volterra-Lotka
type, we can obtain the following existence theorem by cone-index method. The
conditions are in terms of the signs of principal eigenvalues of appropriate related
scalar equations. The results are analogous to the sufficiency part of Theorem
2.5 in the last section.

Theorem 3.4. Assume that fi, i = 1, 2, are in C1([0,∞) × [0,∞)). Consider
the boundary value problem (1.1), under assumptions:

(3.7)




(i) fi(0, 0) = 0, limu→∞f1(u, 0) = −∞, limv→∞f2(0, v) = −∞,

(ii) ∂fi/∂u < 0, ∂fi/∂v < 0 for u ≥ 0, v ≥ 0, i = 1, 2.
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Suppose that

(3.8) a1 > ρ1(−σ1∆), a2 > ρ1(−σ2∆),

and one of the following two situations hold:

(i) ρ̂1(σ1∆ + a1 + f1(0, v0)) > 0, and ρ̂1(σ2∆ + a2 + f2(u0, 0)) > 0;

(ii) ρ̂1(σ1∆ + a1 + f1(0, v0)) < 0, and ρ̂1(σ2∆ + a2 + f2(u0, 0)) < 0;

Then the boundary value problem (1.1), has a positive solution with each com-
ponent strictly positive in Ω.

Remark 3.2. In Theorem 3.4, u0 is the unique positive solution of σ1u +
u[a1 + f1(u, 0)] = 0 in Ω, u = 0 on ∂Ω; v0 is the unique positive solution of
σ2v + v[a2 + f2(0, v)] = 0 in Ω, v = 0 on ∂Ω.

Proof. Let B1, B2 be positive numbers such that f1(B1, 0) = −a1, f2(0, B2) =
−a2. Using assumption (ii) in (3.7), we can show by applying sweeping principle
to each scalar equation of (1.1) for a fixed positive function assigned to the other
component to conclude that all positive solutions of (1.1) satisfy 0 ≤ u ≤ B1 and
0 ≤ v ≤ B2 in Ω̄. Let [C+

0 (Ω̄)]2 := {(u1, u2) : ui ∈ C(Ω̄), ui ≥ 0 in Ω, and =
0 on ∂Ω, for i = 1, 2}, B = max.{B1, B2}, and [E(B)]2 := {(u1, u2) : ui ∈
C(Ω̄), |ui| < B in Ω, for i = 1, 2}, with closure [Ē(B)]2. For each (u1, u2) ∈
[C(Ω̄)]2, θ ∈ [0, 1], define the operator Aθ : [C0(Ω̄)]2 ∩ [Ē(B)]2 → [C0(Ω̄)]2 by
Aθ(u1, u2) = (v1, v2) where

(3.9)

{
v1 = (−σ1∆ + P )−1[θu1(a1 + f1(u1, u2)) + Pu1]

v2 = (−σ2∆ + P )−1[θu2(a2 + f2(u1, u2)) + Pu2].

Here, the inverse operator is taken with homogeneous Dirichlet boundary con-
dition on ∂Ω, and P > 0 is a large enough constant such that the operator
Aθ is positive, compact and Fréchet differentiable on [C+

0 (Ω̄)]2 ∩ [Ē(B)]2. Let
K be the cone K := [C+

0 (Ω̄)]2 := {(u1, u2) : ui ∈ C(Ω̄), ui ≥ 0 in Ω, and =
0 on ∂Ω, for i = 1, 2}, and D := [C+

0 (Ω̄)]2 ∩ [E(B)]2. The bound on the solu-
tion implies that the operators Aθ has no fixed point on the boundary ∂D in the
relative topology, i.e. on the intersection of boundary of [E(B)]2 with K. We
can further use a familiar cut-off procedure to extend Aθ to be defined outside
D as a compact positive mapping from the cone K into itself. For convenience,
we will denote A := A1. We will denote the fixed point index of Aθ over D with
respect to the cone K by iK(Aθ,D). As in the proof of Theorem 2.5(ii), (iii),
we obtain iK(A,D) = iK(A0,D) = 1.
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Let y be an isolated fixed point of the map Aθ in K, we denote the local
index of Aθ at y with respect to K by indexK(Aθ, y). We now show that
indexK(A, (0, 0)) = 0 for each case (i) and (ii). For y ∈ K, define

Ky := {p ∈ [C(Ω̄)]2 : y + sp ∈ K for some s > 0}, and

Sy := {p ∈ K̄y : −p ∈ K̄y}.
Here K̄y denotes the closure of Ky. We have K̄(0,0) = K,S(0,0) = {(0, 0)}. Let
A′

+((0, 0)) be the Fréchet derivative of A at (0, 0) in K. The first component
of A′

+((0, 0))(u1 , u2) is (−σ1∆ + P )−1(a1 + P )u1. Hence [I − A′
+((0, 0))]u = 0

for u = (u1, u2) ∈ K implies that [σ1∆ + a1]u1 = 0, u1 ∈ C+
0 (Ω̄). Thus the

assumption a1 > ρ1(−σ1∆) implies that u1 = 0. Similarly, we have for the
second component [σ2∆ + a2]u2 = 0, u2 ∈ C+

0 (Ω̄). Thus the assumption a2 >
ρ1(−σ2∆) implies that u2 = 0. We thus conclude I −A′

+((0, 0)) is invertible in
W(0,0). Further, the assumption a1 > ρ1(−σ1∆) and the continuity in t ∈ [0, 1]
for the eigenvalue ρ1(σ1∆+ta1 +(t−1)P ) imply that there exists some t ∈ (0, 1)
and a nontrivial function ū ∈ C+

0 (Ω̄) such that (−σ1∆ + P )ū = t(a1 + P )ū or
ū− t(−σ1∆ + P )−1(a1 + P )ū = 0 in Ω. We thus have [I − tA′

+((0, 0))](ū, 0) =
(0, 0) ∈ S(0,0), with (ū, 0) ∈ K̄(0,0)\S(0,0). We thus conclude by Lemma 2.7(i)
that indexK(A, (0, 0)) = 0.

We next show that for case (i), we have

indexK(A, (u0, 0)) = indexK(A, (0, v0)) = 0.

Let L = A′
+((u0, 0)) be the Fréchet derivative of A at (u0, 0). Suppose that

(I −L)(u1, u2) = 0, for some u1 ≥ 0, u2 ≥ 0 in Ω̄, and u1 = u2 = 0 on ∂Ω. Then

(3.10)


σ1∆u1 + [a1 + f1(u0, 0) + u0
∂f1
∂u (u0, 0)]u1 + u0

∂f1
∂v (u0, 0)u2 = 0

in Ω,
σ2∆u2 + [a2 + f2(u0, 0)]u2 = 0

u1 = u2 = 0 on ∂Ω.

Thus the second equation above and the second assumption in situation (i)
implies that u2 ≡ 0. We then consider the first equation above again. Since
ρ̂1(σ1∆ + a1 + f1(u0, 0)) = 0, and u0

∂f1
∂u (u0, 0) < 0 by (3.7), we have ρ̂1(σ1∆ +

a1 + f1(u0, 0) + u0
∂f1
∂u (u0, 0)) < 0. Hence, all the eigenvalues ρ of the problem:

σ1∆u+ [a1 + f1(u0, 0) + u0
∂f1

∂u
(u0, 0)]u = ρu in Ω, u = 0 on ∂Ω,

satisfy ρ < 0. However, u1 satisfies this problem with ρ = 0. Thus u1 ≡ 0. That
is the operator (I − L) is invertible on K̄(u0,0).
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We next show that the operator L has property (α) on W̄(u0,0). Let P > 0;
observe that the eigenvalue ρ̂1(σ2∆−P + t[a2 + f2(u0, 0) +P ]) is negative when
t = 0, and is positive when t = 1. By continuity, there exists some t∗ ∈ (0, 1),
such that ρ̂1(σ2∆ − P + t∗[a2 + f2(u0, 0) + P ]) = 0. There exists u∗2 > 0 in Ω,
vanishing on ∂Ω such that (−σ2∆ + P )u∗2 − t∗[a2 + f2(u0, 0) + P ]u∗2 = 0 in Ω.
Since S(u0,0) = C0(Ω̄)×{0}, we can readily verify that if we let w = (0, u∗2), then
we have w − t∗Lw ∈ S(u0,0) with w ∈ K̄(u0,0)\S(u0,0). Consequently, by Lemma
2.7(i), we conclude that indexK(A, (u0, 0)) = 0.

We now consider the point (0, v0) and let L̃ = A′
+((0, v0)) be the Fréchet

derivative of A at (0, v0) in K. Suppose that (I − L̃)(u1, u2) = 0, for some
u1 ≥ 0, u2 ≥ 0 in Ω̄, and u1 = u2 = 0 on ∂Ω. Then




σ1∆u1 + [a1 + f1(0, v0)]u1 = 0
in Ω,

σ2∆u2 + v0
∂f2
∂u (0, v0)u1 + [a2 + f2(0, v0) + v0

∂f2
∂v (0, v0)]u2 = 0

u1 = u2 = 0 on ∂Ω.

From the first equation above and the first assumption in situation (i), we obtain
u1 ≡ 0. Since ρ̂1(σ2∆ + a2 + f2(0.v0)) = 0 and v0 ∂f2∂u2

(0, v0) ≤ 0 is not the trivial
function, we have ρ̂1(σ2∆ + a2 + f2(0, v0) + v0

∂f2
∂v (0, v0)) < 0. We thus deduce

from the second equation above that u2 ≡ 0. We thus conclude that the operator
I − L̃ is invertible in K̄(0,v0).

From the first assumption in (i), we deduce that for P > 0, the eigenvalue
ρ̂1(σ1∆ − P + t[a1 + f1(0, v0) + P ]) is negative if t = 0 and is positive if t = 1.
Hence, there exist t∗ ∈ (0, 1) and a nontrivial, non-negative function u∗1 vanishing
on ∂Ω, such that

−σ1∆u∗1 + Pu∗1 − t∗(a1 + f1(0, v0) + P )u∗1 = 0 in Ω.

Since S(0,v0) = {0}×C0(Ω̄), we can readily verify that if we let w̃ = (u∗1, 0), then
we have w̃ − t∗L̃w̃ ∈ S(0,v0) with w̃ ∈ K̄(0,v0)\S(0,v0). Consequently, by Lemma
2.7(i), we conclude that indexK(A, (0, v0)) = 0.

We thus have

iK(A,D) = 1, indexK(A, (0, 0)) = indexK(A, (u0, 0)) = indexK(A, (0, v0)) = 0.

In order to avoid contradicting the additive property of the indices of the map
on disjoint open subsets, there must be at least another fixed point of A in
D. Hence for case (i), there must be more positive solution in D other than
(0, 0), (u0, 0) or (0, v0).
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We next consider the proof of case (ii). Let L = A′
+((u0, 0)) be the Fréchet

derivative of A at (u0, 0). Suppose that (I − L)(u1, u2) = 0, for some u1 ≥
0, u2 ≥ 0 in Ω̄, and u1 = u2 = 0 on ∂Ω. Then (u1, u2) satisfies (3.10) again. The
second equation in (3.10) and the second assumption in (ii) implies that u2 ≡ 0.
We then obtain from the second equation in (3.10) that u1 ≡ 0 in the same way
as in case (i) above. Hence the operator (I − L) is invertible on K̄(u0,0).

We next show that the operator L does not have property (α) on K̄(u0,0).
We have S(u0,0) = C0(Ω̄) × {0}, and W̄(u0,0)\S(u0,0) = C0(Ω̄) × {C+

0 (Ω̄)\{0}}.
Suppose the operator L has property (α) on K̄(u0,0). Then there exists some
t∗ ∈ (0, 1) and (u∗1, u

∗
2) ∈ K̄(u0,0)\S(u0,0), such that

u∗1 − t∗(−σ1∆ + P )−1([a1 + f1(u0, 0) + u0
∂f1
∂u (u0, 0) + P ]u∗1

+u0
∂f1
∂v (u0, 0)u∗2) ∈ C0(Ω̄),

u∗2 − t∗(−σ2∆ + P )−1( [a2 + f2(u0, 0) + P ]u∗2 ) = 0.

The first equation above is always satisfied. The second equation above implies
that

Tu∗2 =
1
t∗
u∗2 > u∗2 in C0(Ω̄),

where T := (−σ2∆+P )−1[a2+f2(u0, 0)+P ]. By Theorem A2-6(i) in Chapter 6,
we obtain r(T ) > 1 for the spectral radius r(T ). On the other hand the second
assumption in (ii) implies that there exists a positive eigenfunction φ for the
negative eigenvalue β := ρ̂1(σ2∆ + a2 + f2(u0, 0)) such that

(−σ2∆ + P )φ− (a2 + f2(u0, 0) + P )φ = −βφ > 0 in Ω.

We thus have φ − Tφ > 0 in C0(Ω̄). Thus by Theorem A2-6(ii) in Chapter 6,
we obtain r(T ) < 1. From this contradiction we conclude that L cannot have
property α. Consequently, using Lemma 2.7, we have

indexK(A, (u0, 0)) = indexC0(Ω̄)×{0}(L, (0, 0)) = ±1.

In order to calculate indexC0(Ω̄)×{0}(L, (0, 0)), we use Theorem A2-3 in Chapter
6 to find indexC0(Ω̄)×{0}(L, (0, 0)) = (−1)m, where m is the sum of multiplicities
of eigenvalues of L greater than 1. Suppose (φ,ψ) ∈ C0(Ω̄)×{0} is an eigenvector
of L with λ as eigenvalue. Then

(−σ1∆ + P )−1[a1 + f1(u0, 0) + u0
∂f1

∂u
(u0, 0) + P ]φ = λφ.
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Let T̃ := (σ1∆+P )−1[a1 +f1(u0, 0)+u0
∂f1
∂u (u0, 0)+P ]. We have β̃ := ρ̂1(σ1∆+

a1 + f1(u0, 0) + u0
∂f1
∂u (u0, 0)) < 0, and

(−σ1∆ + P )φ̃− (a1 + f1(u0, 0) + u0
∂f1

∂u
(u0, 0) + P )φ̃ = −β̃φ̃ > 0 in Ω

for some positive eigenfunction φ̃ for the eigenvalue β̃. We thus have φ̃− T̃ φ̃ > 0,
and by Theorem A2-6(ii) in Chapter 6 again we obtain r(T̃ ) < 1. Consequently
λ < 1 and m = 0. Thus we have indexK(A, (u0, 0)) = (−1)0 = 1. Similarly, we
can show that indexK(A, (0, v0)) = 1.

We thus have

iK(A,D) = 1, indexK(A, (0, 0)) = 0,

indexK(A, (u0, 0)) = indexK(A, (0, v0)) = 1.

In order to avoid contradicting the additive property of the indices (Theorem
A2-1(ii) in Chapter 6), there must exist a positive solution of problem (1.1) in
D other than (0, 0), (u0, 0) or (0, v0).

For each case (i) or (ii), the positive solution (u(x), v(x)) in D, other than
(0, 0), (u0, 0) or (0, v0), has each component �≡ 0,≥ 0 in Ω̄. From the boundedness
of the coefficients [ai+fi(u(x), v(x))], we obtain from each equation in (1.1) and
Lemma 1.1 that each component of (u(x), v(x)) is strictly positive in Ω.

For necessary conditions, we consider the special case when the intrinsic
growth rates a1 and a2 of each species are the same

(3.11) σ1 = σ2 = σ, a1 + f1(u, v) = p(u)− q(v), a2 + f2(u, v) = r(v)− s(u),

where p(0) = a1 = a2 = r(0), q(0) = s(0) = 0, p, r,−q,−s are C1([0,∞)) non-
increasing functions, and p′ < 0, r′ < 0. Moreover, there exist constants c1, c2
such that

(3.12) p(u) < 0 for u > c1; r(v) < 0 for v > c2.

Theorem 3.5. Consider the boundary value problem (1.1), under the special
conditions (3.11) and (3.12). Suppose further that both p′ + s′, r′ + q′ have the
same constant sign on (0, c) where c = max.{c1, c2}. If the boundary value
problem has a positive solution, then p(0) > λ1, r(0) > λ1, and one of the
following three situations must hold:

(i) ρ̂1(σ∆ + p(0)− q(v0)) > 0, and ρ̂1(σ∆ + r(0)− s(u0)) > 0;

(ii) ρ̂1(σ∆ + p(0) − q(v0)) < 0, and ρ̂1(σ∆ + r(0)− s(u0)) < 0;

(iii) ρ̂1(σ∆ + p(0)− q(v0)) = 0, and ρ̂1(σ∆ + r(0)− s(u0)) = 0.
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Proof. First assume that

(3.13) p′ + s′ > 0, r′ + q′ > 0.

Let (ũ, ṽ) be a positive solution of the boundary value problem (1.1), (1.3) under
the hypotheses of this theorem. The function ũ is a positive lower solution to
the scalar problem:

(3.14) σ∆u+ up(u) = 0 in Ω, u = 0 on ∂Ω;

and the constant function u ≡ c1 is an upper solution for (3.14). Thus problem
(3.14) has a positive solution, and Lemma 2.1 implies that p(0) > σλ1. Moreover,
we have r(0) = a2 = a1 = p(0) > σλ1, and we have a positive solution u0 for
(3.14) and a positive solution v0 for σ∆v + vr(v) = 0 in Ω, v = 0 on ∂Ω. We
have

p(0)− q(v0) = r(0)− q(v0) = r(0) + q(0)− q(v0) < r(v0),

where the last inequality is due to the second part of (3.13). Similarly, from the
first inequality in (3.13), we obtain

r(0)− s(u0) < p(u0).

From the two inequalities above, we find

ρ̂1(σ∆ + p(0)− q(v0)) < ρ̂1(σ∆ + r(v0)) = 0,

ρ̂1(σ∆ + r(0)− s(u0)) < ρ̂1(σ∆ + p(u0)) = 0.

That is, we obtain the second conclusion (ii) of the statement of the theorem.
If we reverse both inequalities in (3.13), the arguments above lead to conclusion
(i) of the theorem. If both inequalities in (3.13) are changed to equality, then
we obtain conclusion (iii).

Remark 3.3. When (3.13) holds, there are strong competitions between the
two species, we obtain case (ii) in Theorem 3.5 when both eigenvalues involved
are negative. If both inequalities in (3.13) are reversed, there are weaker com-
petitions, and we obtain case (i) above when both eigenvalues involved are pos-
itive. The assumptions in Theorem 3.5 are very restrictive. In Theorem 3.11 to
Theorem 3.13 below, we will consider cases when one species is much stronger
than the other.

For fixed fi(u, v), i = 1, 2, satisfying (3.7) and suppose a1, a2 satisfy (3.8),
we now utilize Theorem 3.4 and comparison method to deduce a more detailed
description of the set:
(3.15)

Λ := {(a1, a2)| ai > ρ1(−σi∆), i = 1, 2; the boundary value problem (1.1)
has a strictly positive solution in Ω.}
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The analysis here is more general than that for the Volterra-Lotka prey-predator
case given in the last section. By assumption (3.8), there exist positive solutions
u = u0(a1), v = v0(a2) respectively satisfying the following:

σ1∆u+ u[a1 + f1(u, 0)] = 0 in Ω, u = 0 on ∂Ω,

σ2∆v + v[a2 + f2(0, v)] = 0 in Ω, v = 0 on ∂Ω.

Define v, ū,u, v̄ to be the maximal non-negative solutions of the following scalar
boundary value problems:

(3.16)




σ2∆v + v(a2 + f2(u0(a1), v)) = 0 in Ω, v = 0 on ∂Ω;

σ1∆ū+ ū(a1 + f1(ū, v)) = 0 in Ω, ū = 0 on ∂Ω;

σ1∆u + u(a1 + f1(u, v0(a2)) = 0 in Ω, u = 0 on ∂Ω;

σ2∆v̄ + v̄(a2 + f2(u, v̄)) = 0 in Ω, v̄ = 0 on ∂Ω.

The four functions are not always nontrivial, and are completely determined by
the two constants a1 and a2. For each fixed v, v ≤ v ≤ v0(a2), the functions ū
and 0 are respectively upper and lower solutions of

(3.17) σ1∆u+ u(a1 + f1(u, v)) = 0 in Ω, u = 0 on ∂Ω.

For each fixed u, 0 ≤ u ≤ ū, the functions v0(a2) and v are respectively upper
and lower solutions of

(3.18) σ2∆v + v(a2 + f2(u, v)) = 0, in Ω, v = 0 on ∂Ω.

Similarly, for each fixed v, 0 ≤ v ≤ v̄, the functions u0(a1) and u are respectively
upper and lower solutions of problem (3.17). For each fixed u, u ≤ u ≤ u0(a1),
the functions v̄ and 0 are respectively upper and lower solutions of problem
(3.18). Let (u1(x, t), v1(x, t)) and (u2(x, t), v2(x, t)) be respectively solutions of
the initial boundary value problem (1.2) with initial conditions:

(3.19) (u1(x, 0), v1(x, 0)) = (ū, v), and (u2(x, 0), v2(x, 0)) = (u, v̄).

One can show by comparison that as t→ +∞, u1(x, t) and v1(x, t) respectively
tend from above and below to some ūs(x) and vs(x) in Ω̄, since the initial
conditions are upper and lower solutions for the steady state problem. Similarly
as t→ +∞, u2(x, t) and v2(x, t) respectively tend from below and above to some
us(x) and v̄s(x) in Ω̄, since the initial conditions are lower and upper solutions
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for the steady state problem. Note that ūs, vs,us, v̄s are completely determined
by the parameters a1, a2. Next, we define

(3.20)
G1(a1, a2) := ρ1(−σ2∆− f2(us, 0)) > ρ1(−σ2∆),

G2(a1, a2) := ρ1(−σ1∆− f1(0, vs)) > ρ1(−σ1∆).

For given (a1, a2) satisfying (3.8) and let (u, v) be a corresponding solution of
the steady state problem (1.1), we can readily deduce by comparison that:

(3.21) us ≤ u ≤ ūs, vs ≤ v ≤ v̄s.

If (a1, a2) ∈ Λ, then we have ūs ≥ u > 0 in Ω. Taking limit as t→ +∞, we also
find that ūs is a positive solution of:

σ1∆ūs + ūs(a1 + f1(ūs, vs)) = 0 in Ω, ūs = 0 on ∂Ω.

Comparing with (3.20), we must have:

a1 > G2(a1, a2).

Similarly v̄s is a positive solution of:

σ2∆v̄s + v̄s(a2 + f2(us, v̄s)) = 0 in Ω, v̄s = 0 on ∂Ω.

We conclude that
a2 > G1(a1, a2).

Define
H1(a1) := inf.{β > ρ1(−σ2∆) : β > G1(a1, β)},
H2(a2) := inf.{α > ρ1(−σ1∆) : α > G2(α, a2)}.

Using comparison arguments as given in the last paragraph and more careful
analysis by means of Theorem 3.4, one can obtain a more precise description of
the set Λ as follows.

Theorem 3.6. Consider problem (1.1) under assumptions (3.7) and (3.8). The
set Λ defined in (3.15) is a connected region bounded by the two curves:

Γ1 : a1 = H2(a2), Γ2 : a2 = H1(a1)

in the following sense: for each a2 > ρ1(−σ2∆), the horizontal slice {a1 :
(a1, a2) ∈ Λ} is a nonempty interval whose left endpoint is on Γ1; and for
each a1 > ρ1(−σ1∆), the vertical slice {a2 : (a1, a2) ∈ Λ} is a nonempty interval
whose lower endpoint is Γ2.
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Details of the proof can be found in Ruan and Pao [195]. Moreover, the
theorem is actually true for more general boundary conditions for the functions
u, v respectively of the form Bi = αi(x) ∂

∂ν + βi(x), i = 1, 2. Here, αi and βi are
non-negative functions in C1+α(∂Ω), 0 < α < 1, with either αi = 0, βi > 0 or
αi > 0, βi ≥ 0. The set Λ is illustrated in Fig. 1.3.1 below.

Ρ1��Σ2��

Ρ1��Σ1��

a2 � H1�a1�

a1 � H2�a2�

	

a1

a2

Figure 1.3.1: Coexistence Region in (a1, a2) Parameter Space.

Applying the results of Theorem 3.4 to system the Volterra-Lotka system
(3.3), we see that when the interaction rates c and f are small, we will have case
(i) when both of the related principal eigenvalues are positive. Thus Theorem
3.4 asserts the existence of positive coexistence solution. Actually, we can also
obtain the existence of such solution when both c and f are small from the
result in Corollary 3.2. On the other hand, when c and f are both large, we
have strong competition between the species. In this case, we will have case (ii)
in Theorem 3.4 when both related principal eigenvalues are negative. Thus we
have coexistence positive solution again.
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Part B: Extreme Strong Competition.

We now make a more careful study of the situation when both competition
interaction parameters c and f are large. We shall see that the species may
tend to segregate from each other as they coexist. For simplicity we restrict to
σ1 = σ2 = 1, a > λ1, e > λ1, b = g = 1 and Dirichlet boundary condition. That
is, we consider:

(3.22)




∆u+ u(a− u− cv) = 0
in Ω,

∆v + v(e − v − fu) = 0

u = v = 0 on ∂Ω.

Recall that by Lemma 2.1, there cannot be any non-negative solution of the
above problem with u �≡ 0 if a < λ1 (or v �≡ 0 if e < λ1). When both c and f are
large, there is one type of positive solution to the problem (3.22) closely related
to the positive solutions of the reduced problem:

(3.23)




∆u+ u(a− v) = 0
in Ω,

∆v + v(e− u) = 0

u = v = 0 on ∂Ω,

with a > λ1, e > λ1. Moreover, the existence of positive solution of the reduced
problem (3.23) is related to the trivial solution of the problem:

(3.24) ∆w + aw+ + ew− = 0 in Ω, w = 0 on ∂Ω.

We will find that if (3.24) has only the trivial solution which has nonzero index,
then (3.23) has a positive solution. Moreover, for each isolated positive solution
(û, v̂) of (3.23), there is a positive solution (u, v) of (3.22) with c, f large, fu
close to û and cv close to v̂.

There is another type of positive solution of (3.22) when c, f → ∞, c−1f →
α ∈ (0,∞). Here, the corresponding positive solution (u, v) of (3.22) has the
property that c||u||∞, f ||v||∞ both tending to infinity. More precisely, if there is
an isolated solution w0 of the problem:

(3.25) ∆w + w+(a− α−1w+) + w−(e+ w−) = 0 in Ω, w = 0 on ∂Ω

which changes sign in Ω and has non-zero index, then (3.22) has a positive
solution near (α−1w+

0 ,−w−
0 ) for c, f large. In this situation, one species is

segregated to near where w+
0 �= 0 and the other species is segregated to near
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where −w−
0 �= 0 in Ω. We now describe more carefully the first type of positive

solution of (3.22).

Theorem 3.7 (Extreme Strong Competition for Both Species, I). Sup-
pose (û, v̂) is an isolated positive solution of (3.23) with non-zero index. Then
for any ε > 0, there exists a large M > 0, such that for any c, f ≥ M , problem
(3.22) has at least one positive solution (u, v) satisfying:

(3.26) ||fu− û||∞ < ε, ||cv − v̂||∞ < ε.

By the index of (û, v̂), we mean the fixed point index denoted by indexP (B, (û, v̂)),
where P represents the natural positive cone in C(Ω̄) × C(Ω̄), and B : C(Ω̄) ×
C(Ω̄)→ C(Ω̄)× C(Ω̄) is defined by

B(u, v) = (−∆ + k)−1(ku+ au− uv, kv + ev − uv),

with homogeneous Dirichlet boundary condition. Here, k is a large positive con-
stant so that B maps some neighborhood N of (û, v̂) in P into P . (Recall the
definition of fixed point index in Part B of Section 1.2.)

Proof. Let ū = fu, v̄ = cv. We readily verify that (u, v) is a positive solution
of (3.22) if and only if (ū, v̄) solves:

(3.27)




∆u+ u(a− v)− f−1u2 = 0
in Ω,

∆v + v(e− u)− c−1v2 = 0

u = v = 0 on ∂Ω.

Consequently, in order to prove this theorem, it suffices to prove (3.27) has
a positive solution near (û, v̂) when f and c are large. Comparing (3.27) with
(3.23), we see that this can be achieved readily by homotopy invariance of degree
argument.

Theorem 3.8. Suppose problem (3.24) has only the trivial solution w ≡ 0 with
indexC1

0 (D̄)(B̃1, 0) �= 0, where B̃1w = (−∆)−1(aw+ + ew−). Then the problem
(3.23) has at least one positive solution. Moreover, there exists a constant M > 0
such that any solution (u, v) of problem (3.23) satisfies:

||u||∞ + ||v||∞ ≤M ;

and the sum of the indices of all the positive solutions of (3.23) is equal to
indexC1

0 (Ω̄)(B̂1, 0). Here, C1
0 (Ω̄) denotes the functions in C1(Ω̄) with zero bound-

ary value on ∂Ω.
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Proof. The proof of this theorem can be divided into three steps.
Step 1. We first show that there exists M > 0 such that any positive solution
(u, v) of the problem:

(3.28)




−∆u = tau+ (1− t)a(u− v)+ − uv
in Ω,

−∆v = tev + (1 − t)e(v − u)+ − uv

u = v = 0 on ∂Ω,

0 ≤ t ≤ 1,

must satisfy

(3.29) ||u||∞ + ||v||∞ < M.

Observe that neither component of a non-negative solution of (3.28) can
vanish identically unless both components vanish identically.

Suppose, by contradiction, there exist tn ∈ [0, 1] and positive solutions
(un, vn) of (3.28) with t = tn such that

||un||∞ + ||vn||∞ →∞.
Then from the equation we find

(3.30) −∆ũn ≤ aũn, −∆ṽn ≤ eṽn, ũn|∂Ω = ṽn|∂Ω = 0,

where
ũn = (||un||∞)−1un, ṽn = (||vn||∞)−1vn.

From (3.30), we obtain∫
Ω
|∇ũn|2dx ≤ a

∫
Ω
ũ2
ndx ≤ a mes.(Ω),

∫
Ω
|∇ṽn|2dx ≤ e

∫
Ω
ṽ2
ndx ≤ e mes.(Ω).

Here mes.(Ω) is the measure of the domain Ω. Thus {ũn}, {ṽn} are bounded
in W 1,2

0 (Ω), which is a Hilbert space. By compact embedding in L2(Ω), we can
choose a subsequence such that

ũn → ũ, ṽn → ṽ weakly in W 1,2
0 (Ω) and strongly in L2(Ω).

Moreover, we can deduce by taking (−∆)−1 with Dirichlet boundary conditions
on both sides of (3.30) that if ũ = 0, then ũn → 0 in C(Ω̄). This contradicts
||ũn||∞ = 1. Therefore we have ũ �= 0. Similarly, ṽ �= 0.
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Since ||un||∞+ ||vn||∞ →∞, without loss of generality we suppose ||vn||∞ →
∞. From (3.28), we find

−∆ũn = tnaũn + (1− tn)a(ũn − vn
||un||∞ )+ − ||vn||∞ũnṽn.

Multiplying both sides by φ ∈ C∞
0 (Ω) and integrating over Ω, we obtain

∫
Ω
ũn(∆φ)dx+ tn

∫
Ω
aũnφdx+ (1− tn)

∫
Ω
a

(
ũn − vn

||un||∞

)+

φdx

= ||vn||∞
∫

Ω
ũnṽnφdx.

Since
∫
Ω ũnṽnφdx →

∫
Ω ũṽφdx, ||vn||∞ → ∞ and the left side of the above

equation is uniformly bounded, we obtain
∫
Ω ũṽφdx = 0. Since φ is arbitrary,

we conclude ũṽ = 0 a.e. in Ω.
Let αn = ||un||∞/||vn||∞. Without loss of generality we may assume αn →

α ∈ [0,∞) (otherwise, we consider ||vn||∞/||un||∞). We also assume tn → t̄ ∈
[0, 1]. From the equations in (3.28), we obtain

−∆(αnũn− ṽn) = tn[a(αnũn)− eṽn] + (1− tn)[a(αnũn− ṽn)+− e(ṽn−αnũn)+].

Multiplying the above equation by φ ∈ C∞
0 (Ω), integrating over Ω and passing

to the limit, we obtain∫
Ω
∇(αũ−ṽ)∇φdx = t̄

∫
Ω

[a(αũ)−eṽ]φdx+(1−t̄)
∫

Ω
[a(αũ−ṽ)+−e(ṽ−αũ)+]φdx.

Since ũ, ṽ ≥ 0 and ũṽ = 0, we have

(αũ− ṽ)+ = αũ, (ṽ − αũ)+ = ṽ;

and hence ∫
Ω
∇(αũ− ṽ)∇φdx =

∫
Ω

[a(αũ)− eṽ]φdx.

Let w0 = αũ− ṽ. We have w+
0 = αũ,w−

0 = −ṽ and so∫
Ω
∇w0∇φdx =

∫
Ω

(aw+
0 + ew−

0 )φdx, for all φ ∈ C∞
0 (Ω).

This means w0 = αũ − ṽ is a bounded weak solution of (3.24) and hence a
classical solution. Since w0 �≡ 0, we arrive at a contradiction. This completes
the proof of step 1.
Step 2. Let BM denotes the ball in C(Ω̄) × C(Ω̄) centered at 0, with radius
M as described in (3.29). Let P be the natural positive cone in C(Ω̄) × C(Ω̄),
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and the operator B be defined as in Theorem 3.7. Here, we assume the positive
constant k has been chosen sufficiently large for the definition of B so that B
maps P ∩BM to P . We will show

(3.31) degP (I −B,P ∩BM , 0) = indexC1
0 (Ω̄)(B̃1, 0),

where B̃1 is the mapping defined in the statement of this theorem.
First, by means of (3.29), the homotopy

Ht(u, v) = (−∆ + k)−1( tau+ (1− t)a(u− v)+ − uv + ku,

tev + (1− t)e(v − u)+ − uv + kv)

with k > 0 leads to

(3.32) degP (I −B,P ∩BM , 0) = degP (I −H0, P ∩BM , 0).

Next, we consider another homotopy

(3.33)




−∆u = a(u− v)+ − tuv + (1− t)ε0
in Ω,

−∆v = e(v − u)+ − tuv + (1− t)ε0

u = v = 0 on ∂Ω,

where t ∈ [0, 1]. Here, ε0 is a fixed positive number. If (u, v) is a non-negative
solution of (3.33), then u− v satisfies

−∆(u− v) = a(u− v)+ + e(u− v)− in Ω, (u− v)|∂Ω = 0.

Thus, by the assumption of the theorem we obtain u = v; and hence u satisfies

(3.34) −∆u = (1− t)ε0 − tu2 in Ω, u|∂Ω = 0.

Using an upper and lower solution argument and noting that the right hand
side of (3.34) is concave with respect to u, we see that (3.34) has a unique non-
negative solution ψt for t ∈ [0, 1], 0 ≤ ψt ≤ (1− t)ε0(−∆)−1(1) and ψt > 0 in Ω
for 0 ≤ t < 1. Here, (−∆)−1 is taken with zero Dirichlet boundary condition.
Thus (3.33) has a unique non-negative solution (u, v) = (ψt, ψt). Define

H̃t(u, v) = (−∆+k)−1(a(u−v)+−tuv+(1−t)ε0+ku, e(v−u)+−tuv+(1−t)ε0+kv)

with k > 0 large and ε0 chosen sufficiently small so that ||ψ0||∞ < M/2. Then
we obtain by homotopy invariance of degree that

degP (I − H̃1, P ∩BM , 0) = degP (I − H̃0, P ∩BM , 0) = indexP (H̃0, (ψ0, ψ0)).
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Since H̃1 = H0, we combine with (3.32) to find

(3.35) degP (I −B,P ∩BM , 0) = indexP (H̃0, (ψ0, ψ0)).

Let P̃ denote the natural positive cone in C1
0 (Ω̄)×C1

0 (Ω̄) and j : P̃ → P denote
the inclusion. Since H̃0 maps a neighborhood of (ψ0, ψ0) in P continuously into
P̃ , the commutativity property of the fixed point index (see Nussbaum [178])
leads to

(3.36) indexP (H̃0, (ψ0, ψ0)) = indexP (jH̃0, (ψ0, ψ0)) = indexP̃ (H̃0j, (ψ0, ψ0)).

Since (ψ0, ψ0) ∈ int(P̃ ), due to maximum principle, we further find that

(3.37) indexP̃ (H̃0j, (ψ0, ψ0)) = indexẼ(H̃0j, (ψ0, ψ0)),

where Ẽ denotes C1
0 (Ω̄)× C1

0 (Ω̄).
Now consider the homeomorphism h : Ẽ → Ẽ defined by h(u, v) = (u, u−v).

Clearly h−1 = h and h maps a neighborhood of (ψ0, ψ0) into a neighborhood
of (ψ0, 0). Since (ψ0, ψ0) is an isolated fixed point of H̃0j, (ψ0, 0) is an isolated
fixed point of h−1H̃0jh. By the commutativity of the fixed point index, we have

(3.38) indexẼ(H̃0j, (ψ0, ψ0)) = indexẼ(h−1H̃0jh, (ψ0, 0)),

where one readily verifies that

h−1H̃0jh(u,w) = (−∆ + k)−1(aw+ + ε0 + ku, aw+ + ew− + kw).

Since by assumption the problem −∆w = aw+ + ew− in Ω, w|∂Ω = 0
has only the trivial solution, we can use the homotopy Ĥt(u,w) = (−∆ +
tk)−1(taw+ + ε0 + tku, aw+ + ew− + tkw), 0 ≤ t ≤ 1 to find

(3.39) indexẼ(h−1H̃0jh, (ψ0, 0)) = indexẼ(Ĥ0, (ψ0, 0)).

Now Ĥ0(u,w) = ((−∆)−1(ε0), (−∆)−1(aw+ + ew−)), and by the product theo-
rem of degree, (cf. [75] or [178]), we find
(3.40)
indexẼ(Ĥ0, (ψ0, 0))

= indexC1
0 (Ω̄)((−∆)−1(ε0), ψ0)) · indexC1

0 (Ω̄)((−∆)−1(aw+ + ew−), 0)

= indexC1
0 (Ω̄)(B̃1, 0).

From (3.35) to (3.40), we obtain

degP (I −B,P ∩BM , 0) = indexC1
0 (Ω)(B̃1, 0).
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This proves the validity of (3.31).
Step 3. This last step will complete the proof of the theorem. By taking t = 1
in (3.28), the argument in step 1 above shows that any positive solution (u, v) of
(3.23) satisfies ||u||∞ + ||v||∞ ≤M . Since a, e > λ1, one can show as in Theorem
2.5 or 3.4 that (0,0) is a solution of (3.23) with

indexP (B, (0, 0)) = 0.

Choose a small ball Br such that

degP (I −B,Br ∩ P, 0) = indexP (B, (0, 0)).

Then by the additivity of degree (cf. Theorem A2-1 in Chapter 6) and (3.31)
we obtain

degP (I −B, (BM\B̄r) ∩ P, 0) = indexC1
0 (Ω̄)(B̃1, 0) �= 0.

Hence (3.23) has at least one non-negative solution in (BM\B̄r)∩P , and the sum
of the indices of all such solutions is equal to indexC1

0 (Ω̄)(B̃1, 0). Since a, e > λ1,
(3.23) has no non-negative solution (u, v) with only one component identically
zero. Since any non-negative solution of (3.23) must be in BM ∩P by step 1, and
Br is chosen so small that (3.23) has only the trivial solution in Br, we see that
all solutions with each component strictly positive in Ω of (3.23) are contained
in (BM\B̄r) ∩ P . Consequently, the sum of indices of such positive solutions of
(3.23) is equal to indexC1

0 (Ω̄)(B̃1, 0). This completes the proof of the theorem.

Corollary 3.9. Suppose problem (3.24) has only the trivial solution w ≡ 0 with
indexC1

0 (D̄)(B̃1, 0) �= 0, where B̃1w = (−∆)−1(aw+ + ew−). Then there exist
large positive constants M and N such that for any f, e ≥ N , problem (3.22)
has at least one positive solution (u, v) satisfying:

f ||u||∞ + c||v||∞ ≤M.

The next Theorem describes the second type of positive solution of (3.22)
mentioned above.

Theorem 3.10 (Extreme Strong Competition for Both Species, II). Let
α ∈ (0,∞). Suppose problem (3.25) has an isolated solution w0 in L2(Ω), which
changes sign and has non-zero index. Then there exist respectively very large
and small positive constants N and ε such that for any c, f satisfying

c ≥ N, |c−1f − α| ≤ ε,
the problem (3.22) has a positive solution (u, v) near (α−1w+

0 ,−w−
0 ) in L2(Ω)×

L2(Ω).
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(The question of uniqueness and stability of the steady-state will be considered
in Theorems 5.10 and 5.11 in Section 1.5 below).

Outline of Proof. The proof is similar to that of Theorem 3.8, thus we will
only outline the main ideas. First, we consider the homotopy:
(3.41)


−∆u = tau+ (1− t)a(u− α−1v)+ − tu2 − (1− t)((u− α−1v)+)2 − cuv
in Ω,

−∆v = tev + (1− t)e(v − αu)+ − tv2 − (1− t)((v − αu)+)2

−(tβ + (1− t)α)cuv

u = v = 0 on ∂Ω,

where 0 ≤ t ≤ 1. Here β > 0 is fixed. If (u, v) is any non-negative solution of
(3.41), we can readily show that

−∆u ≤ a2

4
, −∆v ≤ d2

4
in Ω, u = v = 0 on ∂Ω,

since the function g(s) := λs− s2 is bounded by λ2/4 for s > 0. We thus obtain
that if (u, v) is any non-negative solution of (3.41), then

(3.42) 0 ≤ u ≤M, 0 ≤ v ≤M

for some M > 0. For simplicity, we next denote the right hand side of the first
equation in (3.41) by f1(u, v, t), and that for the second equation by f2(u, v, t).
Let

uM = min.{u,M}, vM = min.{v,M}.
Define

f̃1(u, v, t) = f1(uM , vM , t), f̃2(u, v, t) = f2(uM , vM , t).

Choose δ > 0 so small such that in the neighborhood Nδ(w0) in L2(Ω), w0 is the
only solution of (3.25). Then choose δ1 > 0 so that (u, v) ∈ ∂Nδ1(α−1w+

0 ,−w−
0 )

implies that u �= 0, v �= 0 and αu−v ∈ Nδ(w0). Here ∂Nδ1(α−1w+
0 ,−w−

0 ) denotes
the boundary of the δ1-neighborhood Nδ1(α−1w+

0 ,−w−
0 ) of (α−1w+

0 ,−w−
0 ) in

L2(Ω) × L2(Ω). We then show there exist positive N1 large and ε small such
that problem (3.41), with the first and second line on right hand side respectively
replaced by f̃1(u, v, t) and f̃2(u, v, t), has no non-negative solution (u, v) with
(u, v) ∈ ∂Nδ1(α−1w+

0 ,−w−
0 ) whenever c ≥ N1, |β − α| ≤ ε and 0 ≤ t ≤ 1.

For any c ≥ N1, let Mc > 0 be large enough such that

f̃1(u, v, t) +Mcu ≥ 0, f̃2(u, v, t) +Mcv ≥ 0,
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for any u, v ≥ 0 and t ∈ [0, 1]. Define the mapping

At(u, v) = (−∆ +Mc)−1(f̃1(u, v, t) +Mcu, f̃2(u, v, t) +Mcv)

which is completely continuous and maps the natural positive cone P in L2(Ω)×
L2(Ω) into itself. We show that for large c, the problem with t = 0:

(3.43)




−∆u = a(u− α−1v)+ − ((u− α−1v)+)2 − cuv
in Ω,

−∆v = e(v − αu)+ − ((v − αu)+)2 − αcuv

u = v = 0 on ∂Ω,

has a unique non-negative solution in Nδ1(α−1w+
0 ,−w−

0 ), and the solution de-
noted by (uc, vc) = (uc, αuc − w0) tends to (α−1w+

0 ,−w−
0 ) in L2(Ω)× L2(Ω) as

c→∞.
As in the proof of Theorem 3.8, we use the regularity of A0, the homeomor-

phism h(u, v) = (u, αu − v) in Ẽ = C1
0 (Ω̄) × C1

0 (Ω̄), the commutativity of the
fixed point index and the product formula (cf. [75] or [178]) to obtain:

degP (I −A1, P ∩Nδ1(α−1w+
0 ,−w−

0 ), 0)

= degP (I −A0, P ∩Nδ1(α−1w+
0 ,−w−

0 ), 0)

= indexP (A0, (uc, vc))

= indexẼ(A0, (uc, vc))

= indexC1
0 (Ω̄)(B̃2, w0) · indexC1

0 (Ω̄)(B,uc)

= indexC1
0 (Ω)(B̃2, w0) �= 0.

Here, B̃2w = (−∆)−1[w+(a−α−1w+) +w−(e+w−)], Bu = (−∆)−1[aα−1w+
0 −

(α−1w+
0 )2 − cu(αu − w0)], and we can obtain from uniqueness property that

indexC1
0 (Ω̄)(B,uc) = 1.

This shows that (u, v) = A1(u, v) has at least one solution in the set P ∩
Nδ1(α−1w+

0 ,−w−
0 ) for c ≥ N > N1 and |β − α| ≤ 1. The solution of (3.22) will

satisfy (3.41) for t = 1. For more details, see Dancer and Du [41].

Part C: One Much Stronger Competitor.

In the remaining part of this section, we finally consider the case of existence
of positive solution for problem (3.22) when none of the conditions (i) or (ii) of
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Theorem 3.4 is satisfied. (Here, in the notation of Theorem 3.4, f1(u, v) :=
−u− cv, f2(u, v) := −fu− v, a1 = a > ρ1(−∆), a2 = e > ρ1(−∆), σ1 = σ2 = 1.
Also recall the definition of u0 and v0 in Remark 3.2.)

Define c̄, f̄ to be positive constants when

(3.44) ρ̂1(∆ + a− c̄v0) = 0, ρ̂1(∆ + e− f̄u0) = 0.

For convenience, we define coexistence parameter sets as follows:

T+ := {(c, f) : c > c̄, 0 ≤ f < f̄ ,
and problem (3.22) has a strictly positive solution},

T− := {(c, f) : f > f̄ , 0 ≤ c < c̄,
and problem (3.22) has a strictly positive solution}.

Let:

(3.45) g1(c) =
∫

Ω
h3 dx− f̄ c

∫
Ω
h2(−∆− (a− 2u0))−1(u0h) dx,

where h is the positive eigenfunction which spans the kernel of −∆− (e− f̄u0)
and normalized so that ||h||L2(Ω) = 1. Similarly, define

(3.46) g2(f) =
∫

Ω
k3 dx− c̄f

∫
Ω
k2(−∆− (e− 2v0))−1(v0k) dx,

where k is the positive eigenfunction which spans the kernel of −∆ − (a− c̄v0)
and normalized so that ||k||L2(Ω) = 1.

The coefficients c and f in (3.22) can be interpreted as coefficients of com-
petition. The following theorem describes situations of coexistence when the
competition coefficient of one species is relatively large compared with the other.

Theorem 3.11 (Positive Solution with One Competitor much Stronger).
Consider problem (3.22) with a > ρ1(−∆), e > ρ1(−∆) and c̄, f̄ as defined in
(3.44). The coexistence parameter set described above has the following proper-
ties.
(i) The set T+ is nonempty if either g1(c̄) > 0 or g2(f̄) < 0.
(ii) For almost all (a, e) in (λ1,∞) × (λ1,∞), either T+ is nonempty or T− is
nonempty.
(Here, g1, g2 are defined in (3.45) and (3.46).)
Proof. Linearizing equations (3.22) at (u0, 0) leads to the system:

(3.47)




−∆y + (2u0 − a)y = −cu0z
in Ω,

−∆z + fu0z = ez

y = z = 0 on ∂Ω.
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Since u0 > 0 in Ω, by comparison we have ρ1(−∆ + (2u0− a)) > ρ1(−∆ + (u0−
a)) = 0. Thus by [3], the operator [−∆ + (2u0 − a)]−1 exists and is a compact
positive operator on C1,α

0 (Ω̄), 0 < α < 1. Equation (3.47) is thus equivalent to
the system:

(3.48)
y = [−∆ + (2u0 − a)]−1(−cu0z),

z = f [∆ + e]−1(u0z).

For convenience, let A1 = [∆ + e]−1,Maz = u0z,A2 = [−∆ + (2u0 − a)]−1,
Mcaz = −cu0z, and q = (y, z)T then (3.48) can be written as

q = fB1q +B2q,

where

B1 =
[

0 0
0 A1Ma

]
, B2 =

[
0 A2Mca

0 0

]

are compact operators on the Banach space [C1,α
0 (Ω)]2. Thus I − fB1 − B2 is

a Fredholm operator on [C1,α
0 (Ω)]2, with index 0. Furthermore, since ker(I −

f̄B1−B2) has dimension 1, f̄ will be a simple eigenvalue of the pair (I−B2, B1)
provided

(3.49) B1φ /∈ Range(I −B2 − f̄B1),

where φ is any element in the ker(I − f̄B1 −B2) (cf. Chow and Hale [28]). To
verify (3.49), let φ = (y, z)T and

(3.50)
y = [−∆ + (2u0 − a)]−1(−cu0z),

z = f̄ [∆ + e]−1(u0z),

with z �= 0. Then the second component of B1φ is [∆ + e]−1u0z = f̄−1z. For
any φ∗ = (y∗, z∗) ∈ [C1,α

0 (Ω)]2, the second component of (I − B2 − f̄B1)φ∗

is I − f̄ [∆ + e]−1(u0z
∗). Hence if B1φ ∈ Range(I − B2 − f̄B1), then z ∈

Range(I− f̄ [∆+e]−1Ma). However, by (3.50), the kernel ker(I− f̄ [∆+e]−1Ma)
is spanned by z, leading to a contradiction.

The analysis above justifies the application of the bifurcation theorem of
Crandall and Rabinowitz [33], with fixed a > λ1, e > λ1, c > 0, while the param-
eter f varies across f̄ . For all f near f̄ , (u0, 0) is a solution of problem (3.22).
There exists δ0 > 0 and smooth functions f : (−δ0, δ0) → R, u : (−δ0, δ0) →
C1,α

0 (Ω̄), v : (−δ0, δ0)→ C1,α
0 (Ω̄) such that:

f(0) = f̄ , u(s) = u0 + sy0 + ỹ(s), v(s) = sz0 + z̃(s),
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where
z0 spans the ker(I − f̄ [∆ + e]−1Ma),

z0(x) > 0, for x ∈ Ω,
∫

Ω
z2
0 dx = 1,

y0 = [−∆ + (2u0 − a)]−1(−cu0z0);

||ỹ(s)||C1,α
0 (Ω) = o(|s|), ||z̃(s)||C1,α

0 (Ω) = o(|s|), as s→ 0.

Moreover, in a sufficiently small neighborhood of (f̄ , u0, 0) in R × C1,α
0 (Ω̄) ×

C1,α
0 (Ω̄), the triples (f(s), u(s), v(s)), |s| ≤ δ0 are the only solutions to (3.22)

other than (f, u0, 0). In particular, we have positive solutions to (3.22) when
s > 0.

We now let λ(s) = f(s)−f̄ and calculate λ′(0). For this purpose, we consider
the equation

−∆v(s) = ev(s)− v2(s)− f(s)u(s)v(s),

which is equivalent to:
(3.51)

(−∆ + f̄u0 − e)(sz0 + z̃(s)) = −λ(s)(u0 + sy0 + ỹ(s))(sz0 + z̃(s))
− (sz0 + z̃(s))2 − f̄(sy0 + ỹ(s))(sz0 + z̃(s)).

Differentiating (3.51) with respect to s yields
(3.52)

(−∆ + f̄u0 − e)(z̃′(s))
= λ′(s)(u0 + sy0 + ỹ(s))(sz0 + z̃(s))− λ(s)(y0 + ỹ′(s))(sz0 + z̃(s))
−λ(s)(u0 + sy0 + ỹ(s))(z0 + z̃′(s))− 2(sz0 + z̃(s))(z0 + z̃′(s))
− f̄(y0 + ỹ′(s))(sz0 + z̃(s))− f̄(sy0 + ỹ(s))(z0 + z̃′(s)).

If we differentiate with respect to s once more and evaluate at s = 0, we obtain

(3.53)
(−∆ + f̄u0 − e)(z̃′′(s)) = −2λ′(0)u0z0 − 2(z0 + z̃′(0))2

− 2f̄(y0 + ỹ′(0))(z0 + z̃′(0)).

We deduce z̃′(0) = ỹ′(0) = 0 and obtain from (3.53)

(3.54)
∫

Ω
z0(−∆ + f̄u0 − e)(z̃′′(s)) dx =

∫
Ω

[−2λ′(0)u0z
2
0 − 2(z0)3 − 2f̄ y0z

2
0 ] dx.

Integrating by parts, we obtain

(3.55) λ′(0) = −[
∫

Ω
u0z

2
0 dx]−1[

∫
Ω

(z3
0 + f̄y0z

2
0) dx].

Identifying z0 with h in (3.45), and noting that y0 = [−∆+(2u0−a)]−1(−cu0z0),
we find

(3.56) λ′(0) = −[
∫

Ω
u0z

2
0 dx]−1g1(c),
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where g1(c) is given in (3.45). Suppose g1(c̄) > 0, then g1(c) changes sign at some
c̃ > c̄, and for c = c1 ∈ (c̄, c̃), we have g1(c1) > 0, and λ′(0) < 0. Consequently
for δ > 0 sufficiently small, (3.22) has a positive solution if (c, f) = (c1, f̄ − δ).
That is T+ is non-empty.

If g1(c̄) > 0 and c0 is slightly less than c̄, positive solution bifurcates to the
left of f̄ at (c0, f̄). If g1(c̄) < 0, then positive solution bifurcates to the right of
f̄ at (c0, f̄). By symmetry, if g2(f̄) < 0 and f0 is slightly less than f̄ , positive
solution bifurcates to the right of c̄ at (c̄, f0). Thus T+ is also nonempty. This
proves part (i).

We shall not show the proof of part (ii), which can be found in Dancer [40].

The following lemma can be proved readily, and can be used for applying
part (i) of Theorem 3.11 to find positive coexistence states.

Lemma 3.1. Consider problem (3.22) with a > λ1, e > λ1 and c̄, f̄ , g1(c̄), g2(f̄)
be as described in Theorem 3.11. If e is sufficiently large, then g1(c̄) > 0 and
g2(f̄) < 0.
Proof. We first deduce a more convenient expression for g1(c̄) and g2(f̄). By
definition in (3.45)

−∆h = eh− f̄u0h in Ω, h = 0 on ∂Ω.

We have
−∆h− (a− 2u0)h = (e− a)h+ (2− f̄)u0h in Ω.

That is

(3.57) h = (e− a)Lh+ (2− f̄)L(u0h)

where L is the operator [−∆ − (a − 2u0)]−1, under zero Dirichlet boundary
conditions. Using (3.57), we can rewrite g1(c̄) by means of (3.45) as:

(3.58) g1(c̄) = (2− f̄)−1(2− f̄ − f̄ c̄)
∫

Ω
h3 dx− (2− f̄)−1(a− e)f̄ c̄

∫
Ω
h2Lhdx,

if f̄ �= 2. Note that h is positive and L is a positive operator. Similarly, we
obtain:

k = (a− e)L2k + (2− c̄)L2(v0k),

where L2 is the operator [−∆ − (e − 2v0)]−1, under zero Dirichlet boundary
conditions. Moreover from (3.46), we have

(3.59) g2(f̄) = (2− c̄)−1(2− c̄− c̄f̄)
∫

Ω
k3 dx− (2− c̄)−1(e− a)c̄f̄

∫
Ω
k2Lk dx.

It is easy to see that g2(f̄) < 0 if c̄ < 2, 2 − c̄ − f̄ c̄ < 0 and e > a. For fixed
a > λ1, equations (3.44) indicate that if e is large, then both f̄ and v0 are
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increased. This in turn leads to smaller c̄. We thus have to carefully estimate
f̄ c̄ as e becomes large.

Let ṽ = e−1v0. Then ṽ is a solution of

−e−1∆ṽ = ṽ(1− ṽ) in Ω, ṽ = 0 on ∂Ω.

It can be shown that as e→∞, we have ṽ → 1 in Lp(Ω) for each p ∈ (1,∞) (see
e.g. Dancer [38] or similar proof in Theorem 5.2 in Section 1.5). Let ĉ = ec̄. Note
that c̄ depends on e, and the spectral radius satisfies r((−∆)−1(a − ĉṽ)I) = 1.
Now, if c > 0, r((−∆)−1(a−cṽ)I)→ r((−∆)−1(a−c)I) = λ−1

1 (a−c) as e→∞,
since ṽ → 1 in Lp(Ω). Suppose ĉ = ec̄ is unbounded as e→∞. Let ei →∞ and
ĉ(ei) := eic̄ > c∗ for some c∗ > a− λ1. Then

1 = r((−∆)−1(a− ĉṽ)I) < r((−∆)−1(a− c∗ṽ)I)→ λ−1
1 (a− c∗)

as ei → ∞. This implies c∗ < a − λ1, contradicting the assumption on c∗. We
may thus assume ĉ = ec̄ → α for some α as e → ∞. Since 1 = r((−∆)−1(a −
ĉṽ)I)→ λ−1

1 (a− α) as e→∞. We must have ec̄→ a− λ1 as e→∞.
We next consider the change of f̄ for large e. Let r̃ > 0 be an arbitrary

number. We will show that if e is large, then

(3.60) r((−∆)−1(e− r̃eu0)I) > 1, that is ρ̂1(∆ + (e− r̃eu0)I) > 0.

Thus, from the definition of f̄ in (3.44) and comparison, we must have f̄ > r̃e.
Since r̃ is arbitrary, it follows that e−1f̄ → ∞ as e → ∞. To prove (3.60), it
suffices to find a µe > 1 and a non-negative nontrivial function w = se ∈W 1,2

0 (Ω)
which is a weak lower solution (as described in Section 9.3 in Chapter 9 of Evans
[57]) for the problem:

(3.61) −∆w = µ−1
e (e− reu0)w in Ω, w = 0 on ∂Ω.

This follows because a simple calculation shows that this implies that (−∆ +
KI)−1(e + K − r̃eu0)se ≥ βse for some β > 1. Here, K > r̃eu0 is chosen to
ensure the operator acting on se is positive. Thus by p. 265, in Schaefer [205]
or a theorem similar to Theorem A2-6 in Chapter 6, we find the spectral radius
satisfies

r((−∆ +KI)−1(e+K − r̃eu0)I) ≥ β > 1.

In order to construct the weak lower solution as described above, we choose a
neighborhood N of ∂Ω in Ω such that u0(x) ≤ (2r̃)−1 in N . Let z denote the
principal non-negative eigenfunction of (−∆) on N , with zero Dirichlet boundary
conditions on ∂N . Define se(x) to be z(x) on N and to be zero otherwise. Then
se ∈W 1.2

0 (Ω). Since e− r̃eu0(x) ≥ (1/2)e on N , we have

(3.62) −∆se ≤ µ−1
e (e− r̃eu0)se
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pointwise in N if e is large. Moreover (3.62) is trivially valid in Ω\N̄ pointwise.
We can then deduce as in Section 4.4 of Chapter 4 or Lemma 1.1 in Berestyki
and Lions [7] that se is a weak lower solution for (3.61). This completes the
proof that e−1f̄ → ∞ as e → ∞. It follows that f̄ c̄ → ∞ as e → ∞. Since
c̄→ 0 as e→∞, the comments after (3.59) imply that g2(f̄) < 0 for large e.

By means of further analysis of the asymptotics for f̄ , c̄ as e → ∞ using
formula (3.58), we can deduce as above that g1(c̄) > 0 as e → ∞. For more
details see Dancer [40].

The following theorem provides more information concerning the coexistence
states as the parameters (c, f) changes near (c̄, f̄) as described in (3.44).

Theorem 3.12. Consider problem (3.22) with hypotheses as described in Theo-
rem 3.11. Assume that (c1, f1) ∈ T+. Suppose further that 0 ≤ c ≤ c1, f1 ≤ f <
f̄ and either c < c1 or f1 < f , then problem (3.22) has a strictly positive solu-
tion which is an “asymptotically stable” solution of the corresponding parabolic
problem.
Remark 3.4. Here, by an “asymptotically stable” solution, we mean a solution
(u, v) such that the spectral radius satisfies r(A′(u, v)) ≤ 1, (u, v) is an isolated
solution and has index 1 in

D = {(u, v) : C0(Ω̄)× C0(Ω̄), 0 ≤ u ≤ a, 0 ≤ v ≤ e in Ω},
where A is the map whose fixed points are solutions of (3.22), described in (3.65)
below. A′(u, v) denotes the Fréchet derivative of A at (u, v).
Proof. We first prove the existence of a strictly positive solution. Since
(c1, f1) ∈ T+, there exists a strictly positive solution (u1, v1) satisfying



−∆u1 = u1(a− u1 − c1v1)
in Ω,

−∆v1 = v1(e− v1 − f1u1)

u1 = v1 = 0 on ∂Ω.

By comparison, we have 0 ≤ u1 ≤ u0 ≤ a, 0 ≤ v1 ≤ v0 ≤ e in Ω̄. Since c ≤ c1,
we have

−∆u1 ≤ u1(a− u1 − cv1) in Ω.

Moreover, strict inequality holds in Ω if c < c1, since u1 > 0 and v1 > 0 in Ω.
Thus

(3.63) u1 ≤ (−∆ + k̂I)−1(u1(a+ k̂ − u1 − cv1)),

and equality does not hold if c < c1. Similarly

(3.64) v1 ≥ (−∆ + k̂I)−1(v1(e+ k̂ − v1 − fu1)),
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and equality does not hold if f > f1. Here k̂ is a positive constant satisfying
k̂ ≥ max.{a+ ce, e + fa} such that the mapping:

(3.65) A(u, v) = (−∆ + k̂)−1(u(a+ k̂ − u− cv), v(e + k̂ − v − fu))

is monotone on the set:

D = {(u, v) ∈ C0(Ω̄)× C0(Ω̄) : 0 ≤ u ≤ a, 0 ≤ v ≤ e in Ω̄}.
If we define (u2, v2) = A(u1, v1), we see from (3.63) and (3.64) that

u0 ≥ u2 ≥ u1, 0 ≤ v2 ≤ v1.
Defining (un+1, vn+1) = A(un, vn), n = 2, 3, 4 . . . , we have

u0 ≥ un+1 ≥ un, 0 ≤ vn+1 ≤ vn, n = 2, 3, 4 . . .

By theory explained in Leung [125], the function (ũ, ṽ) = limn→∞(un, vn) is a
strictly positive solution of (3.22), unless ṽ = 0. In this case (ũ, ṽ) = (u0, 0). It
is also shown in Dancer [40] that

ũ ≤ û
in Ω̄,

ṽ ≥ v̂
if (û, v̂) is any solution of (3.22) satisfying:

u1 ≤ û ≤ u0

in Ω̄.
0 ≤ v̂ ≤ v1

Let C = {(u, v) ∈ D : u1 ≤ u ≤ u0, 0 ≤ v ≤ v1}. If the limit is such that
(ũ, ṽ) = (u0, 0), then (u0, 0) is the only fixed point of the mapping A in C. The
set C is closed and convex (thus contractible); and AC ⊆ C by monotonicity.
Hence by basic properties of fixed point index, the sum of the indices of fixed
points of A in C (counted relative to C) is 1, see Amann [3]. If (u0, 0) is the
only fixed point in C, then we must have indexC(A, (u0, 0)) = 1. On the other
hand, by using Theorem 1 and Lemma 2 in Dancer [37] and part of Proposition
1 in Dancer [39], we can show that indexC(A, (u0, 0)) = 0, provided we have
(3.66)
r(A′(u0, 0)) > 1, and A′(u0, 0)(h, k) �= (h, k) if (h, k) ∈ (C+

0 (Ω̄)×C+
0 (Ω̄))\{0, 0}.

Note that the first property above is related to property (α) of Definition 2.1,
as indicated in the proof of case (ii) in Theorem 3.4. In order to analyze the
spectral radius indicated in (3.66), we note that

A′(u0, 0)(h, k) = (−∆ + k̂I)−1(a+ k̂ − 2u0)h− cu0k, (e + k̂ − fu0)k).
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We thus have the following relationship for the various spectrum

σ(A′(u0, 0)) = σ((−∆ + k̂I)−1(a+ k̂ − 2u0)I) ∪ σ((−∆ + k̂I)−1(e+ k̂ − fu0)I).

It follows that

r(A′(u0, 0)) ≥ r((−∆ + k̂I)−1(e+ k̂ − fu0)I) > 1.

The last inequality above is due to the fact that f < f̄ . The second property
of (3.66) can be proved by procedures as in the proof of Theorem 3.4. We can
thus conclude that we also have indexC(A, (u0, 0)) = 0, contradicting the fact
that indexC(A, (u0, 0)) = 1 deduced above. Consequently, we must have (ũ, ṽ)
is a strictly positive solution of (3.22).

The details of the proof of the “asymptotic stability” of the solution as
described in the above remark will be given later in Section 1.5 of this chapter.
By applying Remark 4 on p. 58 of Dancer [39], with E = Lp(Ω) × Lp(Ω) for
large p, we can deduce that the solution is actually asymptotically stable with
respect to the corresponding parabolic problem in the space Xα × Xα, where
Xα is a fractional power space in the sense of p. 29 in Henry [84] (cf. Section
6.4 in Chapter 6). For more explanations, see Dancer [40].

By means of Theorem 3.12, we can obtain the following more detailed infor-
mation.

Theorem 3.13. Consider problem (3.22) with hypotheses described in Theorem
3.11. Assume T+ is nonempty. Then there exist µ > c̄, ν ∈ (0, f̄ ) and a
continuous strictly increasing function g+ : [c̄, µ] → (0, f̄ ] such that g+(c̄) =
ν, g+(µ) = f̄ , and T+ = {(c, f) : c > c̄, 0 < f < f̄ , f ≥ g+(c)}. Moreover,
if (c, f) ∈ int T+, then problem (3.22) has at least two solutions, at least one
of which is “asymptotically stable”. Furthermore, problem (3.22) has a strictly
positive asymptotically stable solution if c = c̄, ν < f < f̄ , and a strictly positive
solution if f = f̄ , c̄ < c < µ.

Notes.

Theorem 3.1 and Corollary 3.2 are found in Leung [121] and Pao [182].
Theorem 3.3 is due to Blat and Brown [11]. Theorems 3.4 and 3.5 are obtained
from Li and Logan [151]. Theorem 3.6 is due to Ruan and Pao [195]. Theorems
3.7, 3.8, Corollary 3.9 and Theorem 3.10 are results in Dancer and Du [41].
Theorem 3.11 is given in Dancer [40] and the proof of part (i) follows an argument
in Cantrell and Cosner [18]. Lemma 3.1, Theorem 3.12 and Theorem 3.13 are
obtained from Dancer [40].
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1.4 Strictly Positive Coexistence for Diffusive Coop-
erating Systems

In this section we study problem (1.1) when the functions f1(u, v) and f2(u, v)
simulate cooperation or mutualism between the two species populations u(x)
and v(x) in a bounded domain Ω, with conditions as described in Section 1.1.
For simplicity, we first consider the Volterra-Lotka type of interaction when f1

and f2 are linear. More precisely, we consider

(4.1)




σ1∆u+ u(a− bu+ cv) = 0
in Ω,

σ2∆v + v(e+ fu− gv) = 0

u = v = 0 on ∂Ω,

where a, b, c, e, f and g are all positive constants. The signs of the interaction
coefficients +c and +f indicate mutualism. The first theorem shows that when
each species can survive by itself (i.e. they satisfy (4.2)), and the cooperation
coefficients are not very large (i.e. they satisfy (4.3)), then there will be coexis-
tence equilibrium state. The main idea in the proof is that condition (4.3) will
impose a bound on both populations.

Theorem 4.1. Suppose

(4.2) a > σ1λ1 and e > σ2λ1,

then the boundary value problem (4.1) has a solution with each component strictly
positive in Ω if and only if

(4.3) cf < bg.

Proof. By hypothesis (4.3), there exists (x0, y0) in the first open quadrant
where

a− bx0 + cy0 ≤ 0, e+ fx0 − gy0 ≤ 0.

Define (ū(x), v̄(x)) ≡ (x0, y0) for x ∈ Ω. Let ω(x) > 0 be the principal eigen-
function for the operator (−∆) on Ω with principal eigenvalue λ1 > 0 and zero
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Dirichlet boundary conditions. We readily verify that for δ > 0 sufficiently small,
(4.4)


σ1∆ū+ ū(a− bū+ cv) ≤ 0 in Ω, for δω(x) ≤ v ≤ v̄,

σ2∆v̄ + v̄(e+ fu− gv̄) ≤ 0 in Ω, for δω(x) ≤ u ≤ ū,

σ1∆(δω) + δω(a − bδω + cv)
= δω(−σ1λ1 + a− bδω + cv) ≥ 0 in Ω, for δω(x) ≤ v ≤ v̄,

σ2∆(δω) + δω(e + fu− gδω)
= δω(−σ1λ1 + e+ fu− gδω) ≥ 0 in Ω, for δω(x) ≤ u ≤ ū.

Thus the functions (ū(x), v̄(x)) and (δω(x), δω(x)) form a pair of coupled ordered
upper-lower solutions for the boundary value problem (4.1). By Theorem 1.4-2
in Leung [125], the problem (4.1) has a solution (u(x), v(x)) satisfying

δω(x) ≤ u(x) ≤ x0, δω(x) ≤ v(x) ≤ y0 for x ∈ Ω̄.

To prove the converse, suppose (4.1) has a nontrivial positive solution (ũ, ṽ)
and cf ≥ bg. Choose k such that

b

c
≤ k ≤ f

g
.

Define (uα(x), vα(x)) = (αω(x), αkω(x)) for x ∈ Ω̄. Considering the equations
(4.1) in a neighborhood of the boundary, we readily obtain by maximum prin-
ciple that the outward normal derivative of ũ and ṽ are strictly negative at the
boundary. Thus we have

(4.5) ũ(x) ≥ uα0(x), ṽ(x) ≥ vα0(x), x ∈ Ω̄ for some α0 > 0.

By the choice of k, we readily verify that

(4.6)



σ1∆uα + uα(a− buα + cvα) ≥ 0 in Ω,

σ2∆vα + vα(e+ fuα − gvα) ≥ 0 in Ω

for all α ≥ α0. Using (4.5), (4.6) and the sweeping principle for quasimonotone
nondecreasing system by means of a family of lower solutions, we assert that

ũ(x) ≥ uα(x), ṽ(x) ≥ vα(x), x ∈ Ω̄ for all α > α0.

(The sweeping principle is an extension of Theorem 1.4-2 for the scalar case
described in Leung [125]. The extension to quasimonotone nondecreasing system
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is described in Theorem A3-9 in Chapter 6.) We thus obtain a contradiction by
letting α→∞. Consequently, we must have (4.3).

We next consider the more general cooperating system:

(4.7)




∆u+ uM(u, v) = 0
in Ω,

∆v + vN(u, v) = 0

u = v = 0 on ∂Ω,

where M,N ∈ C1(R ×R),

(4.8) Mv(u, v) > 0, Nu(u, v) > 0 for u, v ≥ 0.

(4.9)
For u, v ≥ 0,−D ≤Mu ≤ 0, −D ≤ Nv ≤ 0, for some D > 0;
moreover, either Mu orNv is not identically zero.

Let ΓM and ΓN be points on the open uv-plane defined respectively by the
equations M(u, v) = 0 and N(u, v) = 0. For convenience, define the functions
M1(u, v) = M(u, v)−M(0, 0), N1(u, v) = N(u, v)−N(0, 0); and let ΓM1 and ΓN1

be points on the open uv-plane defined respectively by the equations M1(u, v) =
0 and N1(u, v) = 0. We will assume that

(4.10)
ΓM and ΓN are two distinct curves; and the set ΓM1 and ΓN1are represented
by two distinct positive functions u = φ1(v), u = ψ1(v) respectively for v ≥ 0.

Theorem 4.2. Under hypotheses (4.8) to (4.10), suppose M(0, 0) > ρ1(−∆) =
λ1, and N(0, 0) > ρ1(−∆) = λ1.

(i) If ΓM and ΓN intersect at a point (x0, y0) in the first open quadrant,
then problem (4.7) has a solution with each component strictly positive in Ω.

(ii) If the problem (4.7) has a positive solution (with each component strictly
positive in Ω), then

(4.11) supx>0
ψ1(x)
x

> infx>0
φ1(x)
x

.

Proof. We have M(x0, y0) = N(x0, y0) = 0. Define (ū(x), v̄(x)) ≡ (x0, y0) for
x ∈ Ω̄. Let ω(x), λ1 be as defined in the proof of Theorem 4.1. For δ > 0
sufficiently small, we have:



58 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

(4.12)


∆ū+ ūM(ū, v) = x0M(x0, v) ≤ x0M(x0, y0) = 0 in Ω, for δω(x) ≤ v ≤ v̄,

∆v̄ + v̄N(u, v̄) = y0N(u, y0) ≤ y0N(x0, y0) = 0 in Ω, for δω(x) ≤ u ≤ ū,

∆(δω) + δωM(δω, v) ≥ ∆(δω) + δωM(δω, 0) in Ω, for δω(x) ≤ v ≤ v̄,
= −λ1δω + δωM(δω, 0)

> −λ1δω + δωλ1 = 0 in Ω, for δ > 0 sufficiently small,

∆(δω) + δωN(u, δω) ≥ ∆(δω) + δωN(0, δω) in Ω, for δω(x) ≤ u ≤ ū,
= −λ1δω + δωN(0, δω)

> −λ1δω + δωλ1 = 0 in Ω, for δ > 0 sufficiently small.

Thus the functions (ū(x), v̄(x)) and (δω(x), δω(x)) form a pair of coupled ordered
upper-lower solutions for the boundary value problem (4.7). By Theorem 1.4-2
in [125], the problem (4.7) has a solution (u(x), v(x)) satisfying

δω(x) ≤ u(x) ≤ x0, δω(x) ≤ v(x) ≤ y0 for x ∈ Ω̄.

This proves (i). For part (ii), suppose (4.7) has a positive solution (ũ(x), ṽ(x))
in Ω̄ and (4.11) is false. That is, assume

infx>0
φ1(x)
x
≥ supx>0

ψ1(x)
x

.

Then there exists a constant τ > 0 such that φ1(σω(x)) ≥ τσω(x) ≥ ψ1(σω(x))
for all x ∈ Ω, and all σ > 0. Note that by definition and (4.9), we have
0 = M(φ1(σω(x)), σω(x)) − M(0, 0) ≤ M(τσω(x), σω(x)) − M(0, 0). Thus,
M(0, 0) ≤ M(τσω(x), σω(x)) for x ∈ Ω. Similarly, we obtain N(0, 0) ≤
N(τσω(x), σω(x)) for x ∈ Ω. We thus arrive at the following inequalities for
x ∈ Ω, all σ > 0:

(4.13)



−∆(τσω) = τλ1σω < τσωM(0, 0) ≤ τσωM(τσω, σω),

−∆(σω) = λ1σω < σωN(0, 0) ≤ N(τσω, σω).

Moreover, by means of maximum principle at the boundary, we can verify that
ũ ≥ σ0τω, ṽ ≥ σ0ω, for x ∈ Ω̄, σ0 > 0 sufficiently small. Thus using the family of
lower solutions (στω, σω), σ ≥ σ0 for the quasimonotone nondecreasing system
(4.7), we obtain a contradiction, ũ ≥ στω, ṽ ≥ σω, as σ →∞.
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For a simple special case for (4.7), we consider

(4.14)




∆u+ u(m1(v)−m2(u)) = 0
in Ω,

∆v + v(n1(u)− n2(v)) = 0

u = v = 0 on ∂Ω.

Here m1,m2, n1, n2 ∈ C2(R);m2(0) = n2(0) = 0. As in (4.8) and (4.9), we
assume

(4.15) m′
i > 0, n′i > 0, for i = 1, 2.

(4.16) |m′
2| ≤ D, |n′2| ≤ D, for some constantD > 0.

Theorem 4.3. Assume the hypotheses on mi, ni above and (4.15) and (4.16).
Suppose m1(0) > ρ1(−∆), and n1(0) > ρ1(−∆), and further

(4.17) m′′
1, n

′′
1 ≤ 0, m′′

2 , n
′′
2 ≥ 0.

Then the problem (4.14) has a solution with each component strictly positive in
Ω if and only if the two simultaneous equations: m1(v) = m2(u), n1(u) = n2(v)
has a solution in the first open quadrant in the uv-plane.
Proof. Hypotheses (4.15) to (4.17) ensures that conditions (4.8) to (4.10) are
satisfied for problem (4.7) with M(u, v) = m1(v) − m2(u), N(u, v) = n1(u) −
n2(v),(except that the function ψ1(v) may possibly be only defined in a bounded
subinterval of v ≥ 0). If the simultaneous equations: m1(v) = m2(u), n1(u) =
n2(v) have a solution in the first open quadrant, then we can apply the same
proof as the first part of Theorem 4.2 to assert that problem (4.14) has a positive
solution.

Next, assume that (4.14) has a positive solution. Recall that M1(u, v) =
m1(v) − m1(0) − m2(u), N1(u, v) = n1(u) − n1(0) − n2(v). We verify φ1(v) =
m−1

2 (m1(v) −m1(0)), ψ1(v) = n−1
1 (n2(v) + n1(0)). The functions φ1 is concave

down and ψ1 is concave up. Therefore, φ1(x)
x is nonincreasing and ψ1(x)

x is non-
decreasing. Note also that both φ1 and ψ1 are increasing functions. For v ≥ 0,
let φ(v) = m−1

2 (m1(v)), ψ(v) = n−1
1 (n2(v)), we have φ(0) = m−1

2 (m1(0)) >
m−1

2 (0) = 0 > n−1
1 (0) = ψ(0). If the limu→∞n1(u) is finite, then ψ(v) tends

to ∞ as v tends to a finite number. Then there must be a number x∗ where
ψ(x∗) > φ(x∗). Hence ψ and φ must be equal at some positive number, and the
simultaneous equations must have a solution in the first open quadrant.

If limu→∞n1(u) = ∞, then ψ1(x) is defined for all x > 0, and by Theorem
4.2, we have (4.11):

supx>0
ψ1(x)
x

> infx>0
φ1(x)
x

.
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The last inequality implies that there exist x0 > 0 such that ψ1(x0) > φ1(x0).
Since ψ1(0) = 0 = φ1(0), there must be a x1 ∈ (0, x0) at which ψ′

1(x1) > φ′1(x1).
This can be written as

(4.18)
n′2(x1)

n′1(n−1
1 (n2(x1) + n1(0)))

>
m′

1(x1)
m′

2(m−1
2 (m1(x1)−m1(0)))

.

Since n′′2 ≥ 0, n′2 ≥ n′2(0) > 0, we must have n2(x) → ∞ as x → ∞. Conse-
quently, there must exists x2 ∈ (x1,∞) such that n2(x) > n2(x1) + n1(0) and
m1(x) > m1(x1)−m1(0) for x > x2. It then follows readily from (4.18) that

(4.19)

n′
2(x)

n′
1(n−1

1 (n2(x)))
≥ n′

2(x1)

n′
1(n−1

1 (n2(x1)+n1(0)))

>
m′

1(x1)

m′
2(m−1

2 (m1(x1)−m1(0)))
≥ m′

1(x)

(m′
2(m−1

2 (m1(x)))
.

for x ≥ x2. This means

d

dx
n−1

1 (n2(x)) >
d

dx
m−1

2 (m1(x))

for x ≥ x2. Note that d
dxn

−1
1 (n2(x)) is nondecreasing in x while d

dxm
−1
2 (m1(x))

is nonincreasing. Consequently, we must have n−1
1 (n2(x̃)) ≥ m−1

2 (m1(x̃)) for
some x̃ > x2; i.e. ψ(x̃) ≥ φ(x̃). We can then conclude the proof as in the last
paragraph.

We next consider a generalization of Theorem 4.1, when the interaction co-
efficients b, c, f and g may change with position, and the Laplacian is replaced
by two second order uniformly elliptic operators as follow:

(4.20) Lk =
N∑

i,j=1

aijk(x)∂i∂j +
N∑
j=1

bjk(x)∂j − ck(x), k = 1, 2

with

(4.21) aijk ∈ C(Ω̄), bjk, ck ∈ L∞(Ω), i, j = 1, ..., N, k = 1, 2,

We will consider the problem:

(4.22)




L1u+ u[a− b(x)u+ c(x)v] = 0
in Ω,

L2v + v[e+ f(x)u− g(x)v] = 0

u = v = 0 on ∂Ω,
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where b, c, f, g ∈ C(Ω̄) satisfy b(x) > 0, g(x) > 0 for each x ∈ Ω̄, and c ≥ 0, f ≥ 0
in Ω, c �≡ 0, f �≡ 0; the parameters a, e ∈ R are constants. For any function
h ∈ L∞(Ω), we denote

hL := ess infΩ h, hM := ess supΩ h.

We will consider solutions of (4.22) with u, v in W 2,p(Ω), p > N , and the
equations are satisfied almost everywhere. By the Sobolev embedding, we
have W 2,p(Ω) ⊂ C2−N/p−ε for any small ε > 0. Moreover, the functions
u, v ∈ W 2,p(Ω) is twice classically differentiable almost everywhere in Ω. Actu-
ally, many of the theorems in the last two sections can be extended in analogous
fashions as below. For convenience, we will let w = θ[−Lk,p(x),q(x)] denote the
positive solution of

−Lkw = w[p(x)− q(x)w] in Ω, w = 0 on ∂Ω,

if ρ̂1(Lk + p(x)) > 0. Otherwise, let θ[−Lk,p(x),q(x)] ≡ 0 in Ω̄. (Here, we assume
q(x) > 0 in Ω̄.) Recall the definition of the principal eigenvalues, ρ1(−σ∆+p(x))
and ρ̂1(σ∆ + p̃(x)), given in (1.4) and (1.7) in Section 1.1. We now extend the
definitions naturally when σ∆ is replaced by a second order uniformly elliptic op-
erator. Moreover, for the corresponding Dirichlet problem in a different domain
G, the principal eigenvalues are denoted by ρG1 (−Lk + p(x)) and ρ̂G1 (Lk + p̃(x)).
For more detailed description of the properties of such solutions, the maximum
and comparison theorems in W 2,p(Ω) theory, the reader is referred to Theorems
A3.1 to A3.5 in Section 6.3 in Chapter 6. The following theorem is an extension
of Theorem 4.1 of this section.

Theorem 4.4 (Positive Solution under Weak Cooperation). Suppose

(4.23)



cMfM < bLgL; and

ρ̂1(L1 + a+ c(x)θ[−L2,e,g(x)]) > 0, ρ̂1(L2 + e+ f(x)θ[−L1,a,b(x)]) > 0,

then the boundary value problem (4.22) has a solution with each component
strictly positive in Ω.
Proof. From (4.22), we see that if (u, v) is a positive solution of problem (4.22),
then

u = θ[−L1,a+cv,b(x)], v = θ[−L2,e+fu,g(x)].

By comparison, we readily deduce

θ[−L1,a+cv,b(x)] ≤ θ[−L1,a+cMvM ,bL] ≤
a+ cMvM − (c1)L

bL
.

Thus,

(4.24) uM ≤ a+ cMvM − (c1)L
bL

.
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Similarly, we deduce

(4.25) vM ≤ e+ fMuM − (c2)L
gL

.

From (4.24) and (4.25) we obtain a bound of any positive solution of problem
(4.22) in terms of a and e as follows:

(4.26)



uM ≤ (a−(c1)L)gL+(e−(c2)L)cM

bLgL−cMfM ,

vM ≤ (e−(c2)L)bL+(a−(c1)L)fM
bLgL−cMfM .

As in (2.14) we consider the problem:

(4.27) −L2v − f(x)uv = v(e− g(x)v) in Ω, v = 0 on ∂Ω.

Define the map v(u) from C1(Ω̄) to C1(Ω̄) as in (2.19) with ρ1(−σ2∆ − fu)
replaced by ρ1(−L2 − f(x)u).

Note that if both a ≤ ρ1(−L1) and e ≤ ρ1(−L2), then the second and third
inequality of assumptions (4.23) cannot be satisfied. Suppose e > ρ1(−L2), we
write the first equation of (4.22) as

(4.28) −L1u−c(x)v(0)u = au−b(x)u2+c(x)[v(u)−v(0)]u in Ω, u = 0 on ∂Ω

and bifurcate with increasing parameter a at a = ρ1(−L1 − c(x)θ[−L2,e,g(x)])
when (u, v) = (0, θ[−L2,e,g(x)]). From the bound (4.26) of positive solutions in
terms of a, we can show as in Lemma 2.3 that there exists a continuum of
solutions S+ of (4.28) contained in R× P , i.e. u ≥ 0 whenever (a, u) ∈ S+ and
{a ∈ R : (a, u) ∈ S+} = (ρ1(−L1 − c(x)θ[−L2,e,g(x)],+∞).

If (a, u) ∈ S+, then u ≥ 0 and so v(u) ≥ v(0), i.e. v(u) is not the trivial so-
lution. Consequently, the continuum of solutions {(a, u, v(u)) : (a, u) ∈ S+} for
system (4.22) cannot be connected with the continuum of solutions {(a, u(0), 0) :
a > ρ1(−L1)}. Thus both components of the solutions of (4.22) on the contin-
uum {(a, u, v(u)) : (a, u) ∈ S+} are positive in Ω; and by comparison, both the
second and third inequality in (4.23) are satisfied.

Similarly, suppose a > ρ1(−L1), we bifurcate with e to obtain a solution
of problem (4.22) with both components positive in Ω for each e > ρ1(−L2 −
g(x)θ[−L1,a,b(x)]). This completes the proof

Remark 4.1. From the methods in the previous two sections, we can deduce
that the last two inequalities in (4.23) imply that the related indices of both
solutions (0, θ[−L2,e,g(x)]) and (θ[−L1,a,b(x)], 0) of (4.22) are zero.

The previous theorems in this section essentially concentrate on finding
steady states when cooperative interaction coefficients between the different
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species are relatively small. These are reflected for instance in assumptions
(4.3) and the first part of (4.23). We next concentrate on situations when the
cooperative coefficients are relatively large. For simplicity, we will assume

(4.29) L1 = L2 = L.

The conditions on large cooperative coefficients will be imposed in the form:

(4.30) cLfL − bMgM > bMcM − bLcL,
or

(4.31) cLfL − bMgM > gMfM − gLfL.
In the next theorem, we will see for instance that under condition (4.30), for
any given fixed a < ρ1(−L), there exists a constant e(a) such that for e > e(a),
the problem (4.22), (4.29) cannot have positive equilibrium. Roughly speaking,
the cooperation rates and growth rate of one species is too large for any possible
coexistence equilibrium.

Theorem 4.5 (Nonexistence under Strong Cooperation). Assume (4.29)
for problem (4.22).
(i) Suppose (4.30) holds, then for any fixed a < ρ1(−L), there exists a number
e = e(a) such that a > ρ1(−L− c(x)θ[−L,e(a),g(x)]), and problem (4.22) does not
have any coexistence positive solution if e > e(a).
(ii) Suppose (4.31) holds, then for any fixed e < ρ1(−L), there exists a number
a = a(e) such that e > ρ1(−L− f(x)θ[−L,a(e),b(x)]), and problem (4.22) does not
have any coexistence positive solution if a > a(e).

Before proving this theorem, we first consider the following two lemmas which
estimate the sizes of the solutions, and will be used to prove the theorem.

Lemma 4.1. Assume (4.29), and let (u, v) be any positive coexistence solution
of (4.22). Then,
(i) If e ≥ a, then

(4.32) u ≤ cM + gM
fL + bL

v.

(ii) If a ≥ e, then

(4.33) v ≤ fM + bM
cL + gL

u.

Proof. Assume (4.29), e ≥ a, and let (u, v) be any coexistence positive solution
of (4.22). Define

(4.34) w = (cM + gM )v − (fL + bL)u.
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We can deduce from (4.22) that we have in Ω,

(4.35) (−L− a+ bLu+ gMv)w ≥ 0.

Moreover, from the second equation of (4.22), we find

(4.36) e = ρ1(−L− fu+ gv).

Thus the monotonic dependence of the principal eigenvalue on the potential
implies that

a ≤ e ≤ ρ1(−L− fLu+ gMv).

This gives ρ1(−L− a− fLu+ gMv) ≥ 0, and

(4.37) ρ1(−L− a+ bLu+ gMv) > ρ1(−L− a− fLu+ gMv) ≥ 0.

Consequently, (4.35), (4.37), the strong maximum principle (cf. Theorem A3-1
in Chapter 6), and the argument for strong maximum principle for Theorem 3.5
in p. 35 of [71] imply that w ≥ 0. This completes the proof of part (i) of this
Lemma. Part (ii) is proved similarly.

Lemma 4.2. (i) For a fixed a < ρ1(−L1), let e0(a) > ρ1(−L2) be such that

(4.38) a > ρ1(−L1 − c(x)θ[−L2,e,g]) for each e > e0(a).

Assume that there exists a sequence of positive coexistence solutions (en, un, vn)
of (4.22), n ≥ 1, such that en > max{e0(a), 0} for each n ≥ 1 and limn→∞en =
∞. Then, for any compact subset K ⊂ Ω there exists a positive constant α =
α(K) > 0 such that for each n ≥ 1

(4.39)
vn
en
≥ α in K.

(ii) Similarly, for a fixed e < ρ1(−L2), let a0(e) > ρ1(−L1) be such that

(4.40) e > ρ1(−L2 − f(x)θ[−L1,a,b]) for each a > a0(e).

Assume that there exists a sequence of positive coexistence solutions (an, un, vn)
of (4.22), n ≥ 1, such that an > max{a0(e), 0} for each n ≥ 1 and limn→∞an =
∞. Then, for any compact subset K ⊂ Ω there exists a positive constant β =
β(K) > 0 such that for each n ≥ 1

(4.41)
un
an
≥ β in K.

Proof. We first prove the existence of e0(a) with property as stated in inequality
(4.38). Since c ∈ C(Ω̄), c ≥ 0, c �≡ 0, there exists a ball B with B̄ ⊂ Ω such that

c̃L := minBc > 0.



1.4. DIFFUSIVE COOPERATING SYSTEMS 65

On the other hand, by Theorem 3.4 in [45] or Theorem A3-4 in Chapter 6

lime→∞
θ[−L2,e,g]

e
= g−1 uniformly in B̄;

and hence, there exists ê such that for e > ê, we have

θ[−L2,e,g] >
e

2maxB̄g
in B̄.

Consequently, by comparison of principal eigenvalues (Theorem 2.3 in [45] or
Theorem A3-5 in Chapter 6), we obtain

ρ1(−L1 − cθ[−L2,e,g]) < ρB1 (−L1 − cθ[−L1,e,g]) < ρB1 (−L1)− cL
2maxB̄g

e

for each e > ê. Thus, for a fixed a < ρ1(−L1), there must exists e0(a) > ρ1(−L2)
such that inequality (4.38) is satisfied.

Let (en, un, vn), n ≥ 1, be a sequence of positive solutions of (4.22) with
en > max{e0(a), 0} and limn→∞en = ∞. Then, from the second equation of
(4.22), we find

−L2vn = envn − gv2
n + funvn ≥ envn − gv2

n in Ω,

with f �≡ 0; thus vn is a strict positive upper solution of

−L2w = enw − gw2 in Ω, w = 0 on ∂Ω.

By Lemma 3.2 in Delgado, López-Gómez and Suarez [45] (cf. Theorem A3-3 in
Chapter 6), we find

(4.42) vn ≥ θ[−L2,en,g].

Substituting (4.42) into the first equation of (4.22) and repeating the previous
arguments, we obtain

(4.43) un ≥ θ[−L1−c(x)θ[−L2,en,g]
,a,b(x)].

Note that the function on the right of the above inequality is well defined and
positive because of (4.38). From (4.43) we find

(4.44) lim infn→∞
un
en
≥ lim infn→∞

θ[−L1−c(x)θ[−L2,en,g]
,a,b(x)]

en
.

We now show that

(4.45) lim infn→∞
θ[−L1−c(x)θ[−L2,en,g]

,a,b(x)]

en
≥ cL
bMgM
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uniformly in compact subsets of Ω. Let Ω1,Ω2 be two arbitrary subdomains of
Ω such that

Ω̄1 ⊂ Ω2, Ω̄2 ⊂ Ω.

Define

Θn :=
θ[−L1−c(x)θ[−L2,en,g]

,a,b(x)]

en
,

which is the unique positive solution of

(4.46) − 1
en
L1w = (

a

en
+ c

θ[−L2,en,g]

en
)w − bw2 in Ω, w = 0 on ∂Ω.

By Theorem 3.4 in [45] or Theorem A3-4 in Chapter 6,

limn→∞
θ[−L2,en,g]

en
= g−1 uniformly in Ω̄2.

Thus, for any ε > 0, there exists n0 = n0(ε) such that for each n ≥ n0 we have

(4.47)
a

en
+ c

θ[−L2,en,g]

en
≥ cL
gM
− ε in Ω2.

Since Θn is the unique positive solution of (4.46), it follows from (4.47) that for
each n ≥ n0, the function Θn is a strict positive upper solution of the problem:

(4.48) − 1
en
L1w = (

cL
gM
− ε)w − bw2 in Ω2, w = 0 on ∂Ω2.

Suppose that ε > 0 is sufficiently small such that cL
gM
− ε > 0, then for n

sufficiently large, we have

cL
gM
− ε > ρΩ2

1 (
−1
en
L1) =

ρΩ2
1 (−L1)
en

→ 0 as n→∞.

Consequently (4.48) has a unique positive solution, say ΘΩ2
n ; and by comparison

we have
Θn ≥ ΘΩ2

n in Ω2

for all n sufficiently large. Moreover, from (4.48) we obtain from Theorem 3.4
in [45] or Theorem A3-4 in Chapter 6 that

limn→∞ΘΩ2
n =

cL
bgM

− ε

b
uniformly in Ω1.

Thus,
lim infn→∞Θn ≥ cL

bMgM
− ε

bL
uniformly in Ω1.
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Since the above is valid for any ε > 0, we obtain (4.45) uniformly in any compact
subset of Ω. We then obtain from (4.44) that

(4.49) lim infn→∞
un
en
≥ cL
bMgM

uniformly in any compact subset of Ω, and in particular in Ω̄1. We next define

ûn :=
un
en
, v̂n :=

vn
en
,

and obtain from the second equation of (4.22) that

−1
en
L2v̂n = v̂n − gv̂2

n + fûnv̂n.

Consequently, from (4.49) we see that for any ε > 0, there exists n0 = n0(ε)
such that v̂n is a strict positive upper solution of the problem

(4.50)
−1
en
L2w = (1 +

fLcL
bMgM

− ε)w − gw2 in Ω1, w = 0 on ∂Ω1

for each n ≥ n0. Choose ε > 0 sufficiently small so that 1 + fLcL
bM gM

− ε > 0.
then we see that for n sufficiently large, problem (4.50) has a unique positive
solution, which we denote by Θ̂Ω1

n . Moreover, by Lemma 3.2 in [45] or Theorem
A3-3 in Chapter 6, we find

(4.51) v̂n =
vn
en
≥ Θ̂Ω1

n ,

for sufficiently large n.
Let K be an arbitrary compact subset of Ω, we choose subdomains Ω1 ⊂ Ω2

as described above, and K ⊂ Ω1. Then by Theorem 3.4 in [45] or Theorem A3-4
in Chapter 6,

lim
n→∞ Θ̂Ω1

n = (1 +
fLcL
bMgM

− ε)g−1 uniformly in K.

Since the limit above is bounded away from zero in K, we obtain (4.39) as
described in part (i). Part (ii) is proved similarly.

Proof of Theorem 4.5.

Assume (4.29), (4.30) and fix a < ρ1(−L). Suppose there exists a sequence
of positive coexistence solutions of (4.22), (en, un, vn), n ≥ 1, such that en >
max{e0(a), 0} and limn→∞en = ∞. Let Ω1 ⊂ Ω be an arbitrary subdomain of
Ω with Ω̄1 ⊂ Ω. By Lemma 4.2, there exists α = α(Ω1) > 0 such that for each
n ≥ 1

vn
en
≥ α in Ω1.
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Moreover, by Lemma 4.1, we have for each n ≥ 1

un
en
≤ cM + gM

fL + bL

vn
en
.

Thus by (4.30), there exists ε > 0 such that for each n ≥ 1

un
en
≤ cLvn
bMen

− ε in Ω1.

That is, for all n ≥ 1, we have

(4.52) bMun − cLvn ≤ −εbMen in Ω1.

On the other hand, we find from the first equation in (4.22) that

a = ρ1(−L+ bun − cvn) ≤ ρΩ1
1 (−L+ bMun − cLvn).

Consequently, we find from (4.52) that

a ≤ ρΩ1
1 (−L)− εbMen → −∞ as n→∞.

This contradiction shows that problem (4.22) cannot have any positive coexis-
tence state for e large enough. This completes the proof of Theorem 4.5.

The following theorem concerning a-priori uniform bound for positive solu-
tions of (4.22) will lead to sufficient conditions for coexistence state in the case
of large cooperative coefficients.

Theorem 4.6. Assume (4.29) for problem (4.22) and N ≤ 5. Suppose that

cLfL > bMgM ,

and for some α > 0
max{|a|, |e|} ≤ α;

then there exists a constant C = C(α,Ω, b, c, f, g) such that

||u||L∞(Ω) ≤ C, ||v||L∞(Ω) ≤ C,

for any positive coexistence solution (u, v) of problem (4.22).

Proof. We shall prove this theorem under the condition a ≥ e. By symmetry,
the result can be proved similarly if e ≥ a. Suppose that the conclusion of the
theorem is false, and there exists a sequence of positive coexistence solutions
(ak, ek, uk, vk), k ≥ 1 with −α ≤ ek ≤ ak ≤ α, such that

(4.53) lim supk→∞(||uk||L∞(Ω) + ||vk||L∞(Ω)) =∞.
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We claim that

(4.54) lim supk→∞||uk||L∞(Ω) = lim supk→∞||vk||L∞(Ω) =∞.
Otherwise, if {||vk||L∞(Ω)}k≥1 is bounded by a positive constant β, then the first
equation in (4.22) leads to

−Luk ≤ (α+ cMβ)uk − bu2
k in Ω;

and by comparison, we deduce that {||uk||L∞(Ω)}k≥1 is also bounded. How-
ever, this contradicts (4.53). Similarly, if {||uk||L∞(Ω)}k≥1 is bounded, then
{||vk||L∞(Ω)}k≥1 is also bounded. Consequently, (4.54) must hold. By choosing
a subsequence, if necessary, we may assume that

(4.55) limk→∞||uk||L∞(Ω) =∞, limk→∞(ak, ek) = (a∞, e∞),

for some (a∞, e∞) ∈ R2 satisfying −α ≤ e∞ ≤ a∞ ≤ α. From Lemma 4.1(ii),
we obtain

(4.56) vk ≤ fM + bM
cL + gL

uk, for all k ≥ 1.

For each k ≥ 1, let xk ∈ Ω be such that

(4.57) u(xk) = Mk := ||uk||L∞(Ω).

Since Ω is bounded, we may assume without loss of generality that

(4.58) limk→∞xk = x∞ ∈ Ω̄.

We now consider the two different cases where (i) x∞ ∈ Ω, or (ii) x∞ ∈ ∂Ω.
For case (i), denote

δ := d(x∞, ∂Ω)/2 > 0, εk := M
−1/2
k , k ≥ 1.

Since limk→∞Mk =∞, we have limk→∞εk = 0. The change of variables

(4.59) y :=
x− xk
εk

, (zk, wk) := ε2k(uk, vk), k ≥ 1,

transforms the system (4.22) into

(4.60)



Akzk = ε2kakzk − b(xk + εky)z2

k + c(xk + εky)zkwk,

Akwk = ε2kekwk − g(xk + εky)z2
k + f(xk + εky)zkwk,

where

(4.61) Ak = −ΣN
i,j=1aij1(xk+εky)∂i∂j−εkΣN

j=1bj1(xk+εky)∂j+ε2kc1(xk+εky),
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provided xk + εky ∈ Ω. If y ∈ RN satisfies |y| ≤ δ
εk

, then x = xk + εky ∈ Ω, and
thus (4.60) holds. For any ρ > 0, let Bρ be the ball of radius ρ centered at the
origin, we have Bρ ⊂ Bδ/εk for k sufficiently large, since limk→∞εk = 0. From
definition (4.59) we have zk = uk/Mk, thus

(4.62) ||zk||L∞(Bρ) = 1, zk(0) = 1, for all k ≥ 1.

Moreover, from (4.56) and (4.62), we have

(4.63) ||wk||L∞(Bρ) ≤
fM + bM
cL + gL

, for all k ≥ 1.

Using compactness argument as in Section 5.1 or Section A.3 in [125], we can
choose subsequence, again labeled by k, such that there exists non-negative
functions z,w ∈W 2,p(Bρ) ∩C1,ν(Bρ), 0 < ν < 1, p > N sufficiently large, with

limk→(zk, wk) = (z,w) in (W 2,p(Bρ) ∩C1,ν(Bρ))2.

We thus have z(0) = 1, and passing to limit as k →∞ in (4.60), we find (z,w)
satisfies:

(4.64)



−ΣN

i,j=1aij1(x∞)∂i∂jz = −b(x∞)z2 + c(x∞)zw,
in Bρ.

−ΣN
i,j=1aij1(x∞)∂i∂jw = −g(x∞)z2 + f(x∞)zw.

Since ρ is arbitrary, by a standard diagonal sequence argument we can assert
that z,w ∈ W 2,p

loc (RN ) and (4.64) holds in the whole RN . Moreover, standard
elliptic regularity theory implies that z,w ∈ C2(RN ). Furthermore, by a linear
change of coordinates, (4.64) can be reduced to

(4.65)



−∆z = −b(x∞)z2 + c(x∞)zw

in RN .
−∆w = −g(x∞)w2 + f(x∞)zw

From (4.65), we obtain

(4.66) (−∆ + b(x∞)z + g(x∞)w)(w − f(x∞) + b(x∞)
c(x∞) + g(x∞)

z) = 0 in RN .

Since the functions z,w are non-negative and z(0) = 1, the potential coefficient
V := b(x∞)z + g(x∞)w of the above equation has the property:

V ≥ 0, V �≡ 0 in RN .

By a Liouville type Theorem (see Lemma 7.5 in [45] or Theorem A3-6 in Chapter
6), the bounded solution in RN of (4.66) must satisfy:

(4.67) w − f(x∞) + b(x∞)
c(x∞) + g(x∞)

z = 0 in RN .
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Using the relation (4.67), the first equation in (4.65) becomes

(4.68) −∆z =
c(x∞)f(x∞)− b(x∞)g(x∞)

c(x∞) + g(x∞)
z2 in RN .

Since cLfL > bMgM , we have c(x∞)f(x∞) > b(x∞)g(x∞). By Theorem 1.1 in
Gidas and Spruck [70] or Theorem A3-7 in Chapter 6, the non-negative solution
of the above equation must satisfy z = 0 in RN , because N ≤ 5. This contradicts
the fact that z(0) = 1; therefore we must have case (ii) with x∞ ∈ ∂Ω.

For case (ii), we use the same argument as in the second part of the proof of
Theorem 1.1 in [70] or Theorem A3-7 in Chapter 6 to show that the problem:

(4.69)



−∆z = −b(x∞)z2 + c(x∞)zw

in RN+ ,
−∆w = −g(x∞)w2 + f(x∞)zw

where RN+ = {x ∈ RN : xN ≥ 0}, has a non-negative solution (z,w) with
z(0) = 1. Then, using the same argument as above with RN replaced with
RN+ , we arrive again at a contradiction. We thus conclude that there must exist
a-prior bound for the positive coexistence solution of (4.22) as described in the
statement of this Theorem.

Theorem 4.7 (Positive Solution under Strong Cooperation). Consider
problem (4.22) with L1 = L2 and N ≤ 5.
(i) Suppose
(4.70)


cLfL − bMgM > bMcM − bLcL, and

ρ̂1(L1 + a+ c(x)θ[−L2,e,g(x)]) < 0, i.e. a < ρ1(−L1 − c(x)θ[−L2,e,g(x)]);

then the boundary value problem (4.22) has a solution with each component
strictly positive in Ω.
(ii) Suppose
(4.71)


cLfL − bMgM > gMfM − gLfL; and

ρ̂1(L2 + e+ f(x)θ[−L1,a,b(x)]) < 0, i.e. e < ρ1(−L2 − f(x)θ[−L1,a,b(x)]);

then the boundary value problem (4.22) has a solution with each component
strictly positive in Ω.
(Outline of Proof.) LetG(e) := ρ1(−L1−cθ[−L,e,g]), G(e) is a decreasing function
of e. For a fixed a < ρ1(−L1), we find from Theorem 4.5 above that there exists
a number e(a) such that if a > ρ1(−L1 − c(x)θ[−L2,e(a),g(x)]) = G(e(a)), then
there is no coexistence state, and if e > e(a) there is no coexistence. Since
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θ[−L2,e,g(x)] = 0 if e = 0 and a < ρ1(−L1 − c(x)θ[−L2,e,g(x)]) when e = 0, there
is a number ea such that a = G(ea). Theorem 4.6 above gives uniform bound
for all solutions under first inequality in (4.70). Hence with e as the bifurcation
parameter, the branch of unbounded curve of solutions has to connect e to
minus infinity. That is bifurcating (e, u, v) at (ea, 0, θ[−L2,ea,g(x)]), the branch of
positive solutions connects e from ea to minus infinity. However, if e < ea, then
G(e) > G(ea) = a. This means the second inequality in (4.70) is satisfied. This
proves part (i). The second part is proved in the same way by symmetry. (See
Fig. 1.4.1 and Theorem 4.9 below for clarification, we allow both e and a to be
≤ ρ1(−L1) simultaneously.)

Ρ1��L�

Ρ1��L�

e�a0�

a0

a � G�e�:� Ρ1��L�c Θ��L,e,g��

e � Ρ1��L� f Θ��L,a,b��

a � G�e�

or

Ρ
�

1�L�a�c Θ��L,e,g�� � 0

a � G�e�

or

Ρ
�

1�L�a�c Θ��L,e,g�� � 0

e � Ρ1��L� f Θ��L,a,b��

or

Ρ
�

1�L�e� f Θ��L,a,b�� � 0

a

e

Figure 1.4.1: (For large c, f) Curves bounding regions of coexistence on (a, e)
plane when b, c, f, g are fixed, and L = L1 = L2.
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Remark 4.2. Roughly speaking, suppose

(4.72) cLfL − bMgM > max.{bMcM − bLcL, gMfM − gLfL}

and some of the semitrivial positive solution is “linearly stable” (with index 1),
then there exists positive coexistence state to (4.22).

The following theorems describe more carefully the set of parameters a, e
when one or more coexistence state may occur. For fixed a, we define interval
for the parameter e so that there exist coexistence solution(s) by Ia2 . For fixed e,
define interval for parameter a so that there exist coexistence solution(s) by Ie1 .
The following theorem first considers the case when the cooperative coefficients
are relatively small.

Theorem 4.8. Assume the first inequality in (4.23) for problem (4.22), and let
Ie1 , I

a
2 be defined as above.

(i) Suppose e > ρ1(−L2), then either Ie1 = (ρ1(−L1 − c(x)θ[−L2,e,g(x)],∞) or
there exists a∗ ≤ ρ1(−L1 − c(x)θ[−L2,e,g(x)]) such that Ie1 = [a∗,∞). If a∗ <
ρ1(−L1−c(x)θ[−L2,e,g(x)]), then there exists at least two positive coexistence states
for a ∈ (a∗, ρ1(−L1 − c(x)θ[−L2,e,g(x)])).

(ii) Suppose a > ρ1(−L1), then either Ia2 = (ρ1(−L2 − f(x)θ[−L1,a,b(x)],∞) or
there exists e∗ ≤ ρ1(−L2 − f(x)θ[−L1,a,b(x)]) such that Ia2 = [e∗,∞). If e∗ <
ρ1(−L2 − f(x)θ[−L1,a,b(x)]), then there exists at least two positive coexistence
states for e ∈ (e∗, ρ1(−L2 − f(x)θ[−L1,a,b(x)])).

Remark 4.3. The details of the proof of the above theorem can be found in
Theorems 8.8 and 8.14 in Delgado, López-Gómez and Suarez [45]. The idea
of the proof of part (i) is as follows. In case Ie1 is larger than (ρ1(−L1 −
c(x)θ[−L2,e,g(x)],∞), then there exists a coexistence state (u∗, v∗) when a = a∗.
Moreover for such e there will be a maximal coexistence state (ue, ve) satisfying
u∗ ≤ ue ≤ K1, v∗ ≤ ve ≤ K2 for some large constants K1,K2. Using degree
theory method as in the last chapter, it can be shown that the index of this
maximal coexistence solution is 1. In order to satisfy the homotopy invariance
of degree in an appropriate set of positive functions, there must be at least one
more positive coexistence solution.

Similar multiplicity results can also be obtained in the case for large coop-
erative coefficients. In this case, we use homotopy invariance and show that the
index of an appropriate minimal coexistence state is 1 to conclude that there
must be another positive coexistence solution.

Theorem 4.9. Consider problem (4.22) with L1 = L2 = L and N ≤ 5.
(i) Assume the first inequality in (4.70) and a < ρ1(−L). Then either Ia2 =
(−∞, ea) or Ia2 = (−∞, e∗] for some e∗ ≥ ea where ea is the unique value of
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e satisfying a = ρ1(−L − c(x)θ[−L,ea,g(x)]). If Ia2 = (−∞, e∗] with e∗ > ea, then
problem (4.22) has at least two coexistence state for each e ∈ (ea, e∗).
(ii) Assume the first inequality in (4.71) and e < ρ1(−L). Then either Ie1 =
(−∞, ae) or Ie1 = (−∞, a∗] for some a∗ ≥ ae where ae is the unique value of a
satisfying e = ρ1(−L − f(x)θ[−L,ae,b(x)]). If Ie1 = (−∞, a∗] with a∗ > ae, then
problem (4.22) has at least two coexistence state for each a ∈ (ae, a∗).

The details of the proof of the theorem above can be found in Theorems 8.9
and 8.10 in [45].

Notes.
Theorem 4.1 is due to Korman and Leung [107]. Theorems 4.2 and 4.3 are

found in Li and Ghoreishi [149]. Theorems 4.4 to 4.9 are obtained from Delgado,
López-Gómez and Suarez [45].

1.5 Stability of Steady-States as Time Changes

In this section, we discuss the stabilities of the steady states found in the previous
sections. Here, stability can be interpreted slightly differently in various cases.
We might prove directly that certain smooth solutions of the corresponding
parabolic problem stay close and tend to the steady state. Sometimes, only
linearized stabilities are considered, and the steady states are stable or unstable
with respect to solutions of the corresponding parabolic problem in appropriate
functions spaces by means of applying standard stability theorems. In case that
the linearized problem has zero as its eigenvalue, more sophisticated theorem
will be applied. We will call nontrivial non-negative steady-state solutions with
one component identically zero semi-trivial solutions.

Part A: Prey-Predator Case.

We first consider the prey-predator case discussed in Section 1.2. Before
discussing the stability of the coexistence states, we note a very remarkble nec-
essary and sufficient condition relating the existence of positive coexistence state
and the linearized stability of the trivial and semi-trivial non-negative solutions.

Theorem 5.1. Consider problem (2.23) under hypotheses (2.24) to (2.27) and
additionally:

h(0) −m(0) �= λ1d, and Mu(u, v) ≤ 0 if u, v ≥ 0.

Then problem (2.23) has a positive solution iff the point spectrum of the lin-
earized system at each of its trivial and semi-trivial non-negative solutions con-
tains a positive number.
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Proof. We first prove necessity, and assume (2.23) has a positive solution (ū, v̄).
The possible trivial or semi-trivial non-negative solutions are (0, 0), (u0, 0), (0, v0).
We thus have to consider the linearization of the operator:

(5.1) F :
[
u
v

]
→

[
∆u+ uM(u, v)

d∆v + v(h(u) −m(v))

]

at these three solutions. By comparison, we have u0 ≥ ū; thus by Lemma 2.1,
we have M(0, 0) > λ1. That is, ρ̂1(∆ + M(0, 0)I) > 0. The Fréchet derivative
F ′(0, 0) is given by:

(5.2) F ′(0, 0) =
[

∆ +M(0, 0)I 0
0 d∆ + (h(0) −m(0))I

]
.

Hence, the spectrum of F ′(0, 0) contains a positive real number. We next con-
sider the Fréchet derivative F ′(u0, 0):

(5.3) F ′(u0, 0)
(
w
z

)
=
[

∆w + (M(u0, 0) + u0Mu(u0, 0))w + u0Mv(u0, 0)z
d∆z + (h(u0)−m(0))z

]
.

We see that F ′(u0, 0) has only pure point spectrum σp given by σp = {ξ1, ξ2, . . . }∪
{θ1, θ2, . . . }where {ξ1, ξ2, . . . } is the point spectrum of the operator ∆+(M(u0, 0)+
u0Mu(u0, 0)), while {θ1, θ2, . . . } is the point spectrum of the operator d∆ +
(h(u0)−m(0)). By Theorem 2.5 (ii), (iii) we have θ1 = ρ̂1(d∆+(h(u0)−m(0)) >
0. This means σp contains a positive number.

In case the solution (0, v0) of (2.23) exists with v0 nontrivial, then Lemma
2.1 implies h(0) > λ1d + m(0). We apply Theorem 2.5(iii) to assert ρ̂1(∆ +
M(0, v0)) > 0. We then consider the Fréchet derivative: F ′(0, v0)

(5.4) F ′(0, v0)
(
w
z

)
=
[

∆w +M(0, v0)w
v0h

′(0)w + d∆z + (h(0) −m(v0)− v0m′(v0))z

]
.

As in the above case, we deduce that the spectrum of F ′(0, v0) contains a positive
number.

We next prove the sufficiency part of this Theorem, and assume the point
spectrum of the linearized system at each of the trivial and semi-trivial solu-
tions contains a positive number. First, consider the point (0, 0). From the
representation (5.2) for F ′(0, 0), we must have either ρ̂1(∆ + M(0, 0)I) > 0
or ρ̂1(d∆ + (h(0) − m(0))I) > 0. There are thus three possible cases (a)
M(0, 0) > λ1, h(0) < λ1d + m(0); (b)M(0, 0) > λ1, h(0) > λ1d + m(0); or
(c) M(0, 0) ≤ λ1, h(0) > λ1d+m(0).

We first consider case (a). Since M(0, 0) > 0, we have a solution (u0, 0) with
u0 nontrivial. Consider the linearization of the operator u :→ ∆u + uM(u, 0)
at u0. The principal eigenvalue for the operator ∆ + M(u0, 0) is zero. By
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comparison, the principal eigenvalue ξ1 of the corresponding linear operator
∆ + [M(u0, 0) + u0Mu(u0, 0)] must have ξ1 < 0. From (5.3), the spectrum σp of
F ′(u0, 0) satisfies σp = {ξ1, ξ2, . . . } ∪ {θ1, θ2, . . . } where {ξ1, ξ2, . . . } is the point
spectrum of the operator ∆ + [M(u0, 0) +u0Mu(u0, 0)], while {θ1, θ2, . . . } is the
point spectrum of the operator d∆ + (h(u0)−m(0)). Thus ξ1 < 0 implies that
the principal eigenvalue θ1 of the operator d∆ + (h(u0) −m(0)) must be > 0.
From Theorem 2.5(ii), we conclude that problem (2.23) has a positive solution.

We next consider case (b). Since h(0) > λ1d + m(0), we have a solution
(0, v0) with v0 nontrivial. Consider the linearization of the operator v :→
d∆v + v(h(0) −m(v)) at v0. By comparison, the principal eigenvalue ξ̃1 of the
corresponding linear operator d∆ + [h(0)−m(v0)− v0m′(v0)] must have θ̃1 ≤ 0.
From (5.4), the spectrum σp of F ′(0, v0) satisfies σp = {ξ̃1, ξ̃2, . . . }∪ {θ̃1, θ̃2, . . . }
where {ξ̃1, ξ̃2, . . . } is the point spectrum of the operator ∆ + M(0, v0)I, while
{θ̃1, θ̃2, . . . } is the point spectrum of the operator d∆+[h(0)−m(v0)−v0m′(v0)].
Thus θ̃1 ≤ 0 implies that the principal eigenvalue ξ̃1 of the operator ∆+M(0, v0)I
must be > 0. From Theorem 2.5(iii), we conclude that problem (2.23) has a pos-
itive solution.

Finally, we now show that case (c) cannot occur. Since h(0) > λ1d+m(0), we
have a solution (0, v0) with v0 nontrivial. As in the last paragraph, the principal
eigenvalue ξ̃1 of the linear operator ∆ + [h(0) − m(v0) − v0m′(v0)] must have
θ̃1 ≤ 0, and the principal eigenvalue ξ̃1 of the operator ∆ + M(0, v0)I must be
> 0. However, by assumption M(0, 0) ≥ M(0, v0); thus ρ̂1(∆ + M(0, 0)) > 0.
This contradicts the condition M(0, 0) ≤ λ1 of case (c).

This completes the proof of Theorem 5.1

The problem of uniqueness and stability of positive solutions of (2.23) is
usually quite difficult. We now consider the uniqueness and stability of positive
solution for a special case of (2.23) when the diffusion parameters are small.
This is a singular perturbation problem. The result can also be used to study
the situation when the space domain is large. We will see that the effect of the
boundary condition will become less significant. More precisely, consider

(5.5)




ε∆u+ u(a− bu− cv) = 0
in Ω,

ε∆v + d−1v(h(u) −m(v)) = 0

u = v = 0 on ∂Ω.

(5.6)
The functions h and m belong to C1(R),with h′ > 0 and m′ ≥ 0;
a, b, c, d and ε are positive constants.

For convenience, we denote

(5.7) F (u, v) = (u(a− bu− cv), d−1v(h(u) −m(v)),
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X = Lp(Ω)× Lp(Ω), p > 1, A = diag(∆,∆) is an operator on X.

Theorem 5.2 (Uniqueness near Constant Equilibrium). Assume that the
equation F (u, v) = 0 has an isolated root w0 = (û, v̂) in the first open quadrant
in R2, and there exists a constant B0 such that m(B0) > h(a/b). Then the
problem (5.5) has a unique solution wε in a neighborhood N(w0) of the constant
function w0 in X for sufficiently small ε > 0. Moreover, ||wε − w0||X → 0 as
ε→ 0+.
Proof. From the proof of Theorem 2.5. we have an a-priori bound on the
values of all positive solutions of (5.5), independent of ε > 0. We can modify
the function F (u, v) for large |u|+ |v|, and for u < 0 or v < 0, without affecting
the equilibrium positive solutions we are seeking. We may thus assume without
loss of generality that F (u, v) and all its first partial derivatives are bounded for
all (u, v) ∈ R2, and the first or second component of F is zero when u ≤ 0 or
v ≤ 0 respectively. By comparison and sweeping principle argument for scalar
equations, we can readily justify that the solutions we found will be positive
solutions of the original problem.

Let p be a large positive number greater that max{2, dimΩ}, and consider
the operator A on Lp(Ω)× Lp(Ω):

(5.8) A =
[

∆ 0
0 ∆

]

with domain D(A) = (W 2,p(Ω) ∩ W 1,p
0 (Ω)) × (W 2,p(Ω) ∩ W 1,p

0 (Ω)). We may
consider the functions F to be a mapping from Lp(Ω) × Lp(Ω) into L∞(Ω) ×
L∞(Ω), and thus into Lr(Ω) × Lr(Ω) for any r ∈ [1,∞). Due to the structure
of F , we can assert that the operator is continuous from Lp(Ω) × LP (Ω) into
Lr(Ω)×Lr(Ω). (See Theorem 19.2 in Vainberg [222] or Theorem A4-1 in Chapter
6). Let F ′ be the Jacobian matrix of F , we can similarly obtain the mapping
from Lp(Ω) × Lp(Ω) into the entries of F ′ in Lr(Ω) is continuous. Moreover,
using Hölder’s inequality i.e.||fg||q ≤ ||f ||p||g||r for 1/q = 1/p + 1/r, and the
argument in Section 20 in [222], we can show that F maps Lp×Lp into Lq ×Lq
with continuous Gateaux derivatives expressible by means of F ′ ∈M2

r where M2
r

denotes 2× 2 matrices with entries in Lr(Ω). Since its Gateaux derivative F ′ is
continuous, the map F is Fréchet differentiable as a mapping from Lp(Ω)×Lp(Ω)
into Lq(Ω) × Lq(Ω) (cf. Theorem 3.3 in Vainberg [222] or Theorem A4-2 in
Chapter 6). More precisely, we obtain

(5.9)
F (w) − F (w1) = F ′(w1)(w − w1) + θ̃(w),

with F ′(w1) ∈M2
r , ||θ̃(w)||q = o(||w − w1||p),

where w,w1 are elements of Lp(Ω)×Lp(Ω). Note that r can be chosen arbitrarily
large so that q can be made large and satisfies q > max{2, dimΩ}. Moreover we
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have q < p and Lq ⊃ Lp. The operator A defined in (5.8) can be extended from
Lp(Ω)×Lp(Ω) into Lq(Ω)×Lq(Ω), with domain D(A) = (W 2,q(Ω)∩W 1,q

0 (Ω)×
(W 2,q(Ω) ∩W 1,q

0 (Ω)). We will denote by A as operator in both Lp(Ω) × Lp(Ω)
and Lq(Ω)× Lq(Ω) without causing confusion.

The function w0 is a constant function in Ω, and thus F ′(w0) is a constant
matrix which commutes with the operator A. We have:

(5.10) F ′(w0) =
[ −bû −cû
d−1v̂h′(û) −d−1v̂m′(v̂)

]
.

Let µ1, µ2 be eigenvalues of the matrix F ′(w0). Then we have

µ1 + µ2 = −bû− d−1v̂m′(v̂) < 0,

µ1 · µ2 = bd−1ûv̂m′(v̂) + cd−1ûv̂h′(û) > 0.

This implies that Reµ1 < 0 and Reµ2 < 0. Thus we have the spectrum
σ(F ′(w0)) ⊂ {z : z ∈ C, Re z ≤ −c̄ < 0} for some constant c̄.

The C0 semigroup U(t) generated by the bounded operator F ′(w0) satisfies
||U(t)|| ≤ Me−c̄t for some constant M > 0. For each ε > 0, the operator
εA generate a C0 semigroup Tε with ||Tε|| ≤ M0, where M0 ≥ 1. Since εA
commutes with F ′(w0), we have Tε(t)U(t) = U(t)Tε(t), and ||(Tε(t)U(t))n|| =
||(Tε(nt)U(nt))|| ≤ M0Me−c̄nt. Let Sε(t) be the C0 semigroup generated by
εA + F ′(w0), then the Trotter product formula (Corollary 5.5, in Chapter 3 of
Pazy [184] or Theorem A4-6 in Chapter 6) yields for all x ∈ Lq(Ω)× Lq(Ω):

(5.11) Sε(t)x = limn→∞(Tε(t/n)U(t/n))nx = limn→∞(Tε(t)U(t))x.

We thus have

(5.12) ||Sε(t)|| ≤M0Me−c̄t,

which is independent of ε > 0. We can thus assert that 0 is not an element of
σ(εA+ F ′(w0)), and the resolvent operator satisfies:

(5.13) ||(εA+ F ′(w0))−1|| ≤ MM0

c̄

by using the general version of Hille-Yosida Theorem or Theorem A4-3 in Chap-
ter 6.

For a small δ > 0, let Nδ(w0) = {w ∈ Lp(Ω) × Lp(Ω) : ||w − w0||p < δ} be
the δ-neighborhood of w0 in Lp(Ω) × Lp(Ω). We can consider problem (5.5) as
finding a solution of

(5.14) −εAw = F (w)
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in a neighborhood Nδ(w0) of X = Lp(Ω)× Lp(Ω). Since F (w0) = 0, we can set
w1 to be w0 in (5.9) to rewrite (5.14) as

(5.15) (εA+ F ′(w0))w = F ′(w0)w0 + θ(w),

where ||θ(w)||q = o(||w−w0||p) (Here, the function θ is determined by w0). For
w ∈ X, let

(5.16) Qε(w) := (εA+ F ′(w0)−1[F ′(w0)w0 + θ(w)].

We now show that for ε > 0 sufficiently small, Qε maps Nδ(w0) into itself. Note
that θ(w) ∈ Lq(Ω)×Lq(Ω), and thus θ1(w) := (εA+F ′(w0))−1θ(w) ∈W 2,q(Ω)×
W 2,q(Ω), by the regularity theory of elliptic equations. Since q > dimΩ, we
obtain by Sobolev embedding that ||θ1(w)||p ≤ c1||θ1(w)||W 2,q ≤ c2||θ(w)||q =
o(||w − w0||p, for some constants c1, c2. Hence, for δ > 0 sufficiently small, we
have

(5.17) ||θ1(w)||p < δ/2 for w ∈ Nδ(w0).

We next consider the term (εA+F ′(w0)−1F ′(w0)w0 in (5.16). The C0 semigroup
generated by εA+F ′(w0) satisfies (5.12), and (εA+F ′(w0))x→ F ′(w0)x as ε→ 0
for any x ∈ D(A), where D(A) is the domain of A, which is dense in X. By the
The Trotter-Neveu-Kato Semigroup Convergence Theorem (see Theorem 7.2, on
p. 44 in Goldstein [74] or Theorem A4-7 in Chapter 6), we find Sε(t)x→ U(t)x
for all t ≥ 0, x ∈ X. Moreover, the resolvent satisfies R(λ, εA + F ′(w0))x →
R(λ, F ′(w0))x for any x ∈ X as ε→ 0 with λ > −c̄, where R(λ,A) denotes the
operator (λ − A)−1. Putting λ = 0, we find (εA + F ′(w0))−1x → (F ′(w0))−1x.
In particular

(5.18) (εA+ F ′(w0))−1F ′(w0)z → z for any z ∈ X,

as ε → 0. Thus for sufficiently small ε, we have ||(εA + F ′(w0))−1F ′(w0)w0 −
w0||p < δ/2. Since

||Qε(w)− w0||p ≤ ||(εA+ F ′(w0))−1F ′(w0)w0 − w0||p + ||θ1(w)||p,

we find from (5.17) and the last inequality that Qε maps Nδ(w0) into itself. Note
that for w1, w2 ∈ Nε(w0), we have

Qε(w1)−Qε(w2) = (εA+ F ′(w0))−1(θ(w1)− θ(w2)).

By means of Sobolev embedding and elliptic W 2,q estimates, we find

||Qε(w1)−Qε(w2)||p ≤ K||θ(w1)− θ(w2)||q,
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for some constant K. Using the continuity of Gateaux derivative F ′, Lagrange’
formula, and Hölder’s inequality as mentioned above, we deduce:

||θ(w1)− θ(w2)||q ≤ β||w1 − w2||p
where β is arbitrarily small if w1, w2 are close enough to w0 in X (cf. [222]).
From the last two inequalities we find that Qε is a contraction in Nδ(w0) for
sufficiently small δ. We thus obtain in the neighborhood a unique fixed point
wε, which is the solution of the problem.

Remark 5.1. The solution in [W 2,p(Ω)∩W 1,p
0 (Ω)]2 found in the above theorem

is actually a classical solution. However, it converges to the constant solution
as ε→ 0 only in Lp(Ω)×Lp(Ω). The fact that the product of the eigenvalues of
F ′(w0) is positive is a consequence of the prey-predator interaction. It leads to
the fact that all eigenvalues have negative real parts.

In order to study the stability of the steady-state found for (5.5), we now
consider the parabolic problem:

(5.19)




ūt(x̄, t) = R−2∆ū+ ū(a− bū− cv̄)
(x̄, t) ∈ Ω× (0, t),

v̄t(x̄, t) = R−2∆v̄ + d−1v̄(h(ū)−m(v̄))

ū = v̄ = 0 (x̄, t) ∈ ∂Ω× {0},

(5.20) (ū(x̄, 0), v̄(x̄, 0)) = (ū0(x̄), v̄0(x̄)) x̄ ∈ Ω.

For R > 0 sufficiently large, we have an equilibrium solution (ūR(x̄), v̄R(x̄)) of
(5.19), which is in an arbitrary small neighborhood of w0 in X. Here, we may
define (uR(x), vR(x)) := (ūR(x̄), v̄R(x̄)) for x ∈ RΩ where x̄ = x/R ∈ Ω.

Let

(5.21) B := {(ū, v̄) : (ū, v̄) ∈ C(Ω̄)× C(Ω̄), ū = v̄ = 0 on ∂Ω}.
The operator A1 := diag.(R−2∆, R−2∆) is an infinitesimal generator of an an-
alytic semigroup on B for t ≥ 0, with domain D(A1) = {(ū1, ū2) : ūi ∈W 2,p(Ω)
for all p, ūi = 0 and ∆ūi = 0 on ∂Ω, i = 1, 2}. If (ū0, v̄0) ∈ B, we can
consider the solution of the initial boundary value problem (5.19), (5.20) as a
function

(5.22) (ū(·, t), v̄(·, t)) ∈ C([0, T ], B) ∩ C1((0, T ], B),

with (ū(·, 0), v̄(·, 0)) ∈ B, (ū(·, t), v̄(·, t)) ∈ D(A1) for all t ∈ (0, T ]. We have the
following stability theorem.
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Theorem 5.3 (Asymptotic Stability under Small Diffusion). Assume all
the hypotheses concerning F (u, v) in Theorem 5.2. For R > 0 sufficiently large,
the equilibrium solution (ūR(x̄), v̄R(x̄)) of (5.19) is asymptotically stable in the
sense that any solution of the initial boundary value problem (5.19), (5.20), with
initial condition in B, considered as a function described in (5.22) will satisfy:

(5.23) ||ū(·, t), v̄(·, t) − (ūR(x̄), v̄R(x̄))||B → 0, as t→ +∞,

provided that ||(ū0, v̄0)− (ūR(x̄), v̄R(x̄))||B is sufficiently small, where

(5.24) (ū(x̄, 0), v̄(x̄, 0) = (ū0(x̄), v̄0(x̄)) x̄ ∈ Ω.

Proof. (Outline) To prove the asymptotic stability of (ūR, v̄R), we apply a
stability result of Mora [176] or Theorem A4-9 in Chapter 6. We see that it
suffices to show that the spectrum of the linearization AR + BR of the elliptic
system corresponding to (5.19) at (ūR, v̄R) is in a subset of {z : Rez ≤ −c1} for
some c1 > 0 where

AR =
[
R−2∆ 0

0 R−2∆

]
,

BR =
[
aūR − 2būR − cv̄R −cūR
d−1v̄Rh

′(ūR) d−1(h(ūR)− v̄Rm′(v̄R)−m(v̄R))

]

are operators on B given in (5.21). Let SM := {z : Rez ≤ −M}. For any large
M > 0, the spectrum of the operator AR is contained in SM for all large enough
R > 0. Since the functions ūR and v̄R are uniformly bounded for all R, the
norms of the operators BR are uniformly bounded as operators on the Banach
space B. Moreover, the operators AR and BR commute. We thus obtain from
the semicontinuity of the spectrum of closed operator (see Sections 3.1-3.2 of
Chapter 4 in Kato [102] or Theorem A4-10 in Chapter 6.) that the spectrum of
(AR +BR) is contained in a closed subset of the left open complex plane of the
form {z : Rez ≤ −c1}, for some c1 > 0, provided R is sufficiently large.

The last theorem gives the stability of a steady-state for only a very special
situation. More general theorem will be more elaborate. In view of Theorems 5.2
and 5.3, one is interested in conditions which insure the uniqueness of positive
solutions for certain prey-predator systems. In the case of Volterra-Lotka type
of interaction, there are some simple conditions. Without loss of generality, we
consider problem (2.1) with σ1 = σ2 = 1 as follows:

(5.25)




∆u+ u(a− bu− cv) = 0
in Ω,

∆v + v(e+ fu− gv) = 0

u = v = 0 on ∂Ω,
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where a, b, c, e, f and g are positive constants.

Theorem 5.4 (Uniqueness under Weak Interaction). Consider the bound-
ary value problem (5.25) under hypotheses:

(5.26)




a > λ1, e > λ1,

cf < gb, and

a > gb(gb − cf)−1[λ1 + ce/g].

There exists a positive constant k < 1 such that if

(5.27) cf < k(bg),

then (5.25) has a unique coexistence solution with each component strictly posi-
tive in Ω, and in C2+α(Ω̄).
Proof. Let C,F be positive constants such that c ≤ C, f ≤ F and

(5.28) CF < gb, a > gb(gb − CF )−1[λ1 + Ce/g].

Let Û , Ũ , V̂ , Ṽ ∈ C2+α(Ω) be strictly positive functions in Ω satisfying the fol-
lowing scalar problems:

(5.29)

∆Û + Û(a− bÛ) = 0 in Ω, Û = 0 on ∂Ω,

∆V̂ + V̂ (e+ Fa
b − gV̂ ) = 0 in Ω, V̂ = 0 on ∂Ω,

∆Ũ + Ũ(a− bŨ − CV̂ ) = 0 in Ω, Ũ = 0 on ∂Ω,

∆Ṽ + Ṽ (e− gṼ ) = 0 in Ω, Ṽ = 0 on ∂Ω.

Note that Û , V̂ , Ṽ exist because a, e, e+Fa/b are > λ1; and Û , V̂ , Ṽ are ≥ δφ > 0
in Ω for sufficiently small δ > 0. One can readily deduce by upper lower solutions
method that V̂ (x) ≤ 1

g (e + Fa
b ), hence a − CV̂ ≥ a − C

g (e + Fa
b ) > λ1 for all

x ∈ Ω̄. Consequently, we obtain

0 < δφ ≤ Ũ ≤ Û , 0 < δφ ≤ Ṽ ≤ V̂

for x ∈ Ω, δ > 0 sufficiently small. Since the outward normal derivatives of φ
are negative on the boundary, there must exist a constant K̄ > 0 such that

(5.30) Û ≤ K̄Ũ , V̂ ≤ K̄Ṽ , Û ≤ K̄Ṽ , V̂ ≤ K̄Ũ
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for all x ∈ Ω̄.
Define u1 := Û . Let v1 be the positive solution of

∆v1 + v1(e+ fu1 − gv1) = 0 in Ω, v1 = 0 on ∂Ω,

and ui, vi, i = 2, 3, . . . be defined inductively by:

(5.31)

∆ui + ui(a− bui − cvi−1) = 0
in Ω,

∆vi + vi(e+ fui − gvi) = 0

ui = vi = 0 on ∂Ω.

As described in Leung [123] or Section 5.3 in [125], the sequence satisfies:

(5.32)
Ũ ≤ u2 ≤ u4 ≤ u6 ≤ · · · ≤ u5 ≤ u3 ≤ u1 ≤ Û ,

Ṽ ≤ v2 ≤ v4 ≤ v6 ≤ · · · ≤ v5 ≤ v3 ≤ v1 ≤ V̂

for all x ∈ Ω̄. From (5.31), we find for i ≥ 1:

0 =
∫

Ω
(u2i+2∆u2i+1 − u2i+1∆u2i+2)dx

= −
∫

Ω
u2i+1u2i+2[b(u2i+2 − u2i+1) + c(v2i+1 − v2i)]dx,

which implies

(5.33) b

∫
Ω

(u2i+1 − u2i+2)u2i+1u2i+2dx = c

∫
Ω

(v2i+1 − v2i)u2i+1u2i+2dx.

Also for i ≥ 1, we have

0 =
∫

Ω
(v2i+1∆v2i − v2i∆v2i+1)dx

= −
∫

Ω
v2iv2i+1[f(u2i − u2i+1) + g(v2i+1 − v2i)]dx,

which implies

(5.34) g

∫
Ω

(v2i+1 − v2i)v2iv2i+1dx = f

∫
Ω

(u2i+1 − u2i)v2iv2i+1dx.

Moreover, for i ≥ 1

0 =
∫

Ω
(u2i∆u2i+1 − u2i+1∆u2i)dx
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= −
∫

Ω
u2iu2i+1[b(u2i − u2i+1) + c(v2i−1 − v2i)]dx,

0 =
∫

Ω
(v2i−1∆v2i − v2i∆v2i−1)dx

= −
∫

Ω
v2i−1v2i[f(u2i − u2i−1) + g(v2i−1 − v2i)]dx,

respectively gives

(5.35) b

∫
Ω

(u2i+1 − u2i)u2iu2i+1dx = c

∫
Ω

(v2i−1 − v2i)u2iu2i+1dx,

(5.36) g

∫
Ω

(v2i−1 − v2i)v2i−1v2idx = f

∫
Ω

(u2i−1 − u2i)v2i−1v2idx.

Using (5.33), (5.34) and (5.30), (5.32) we deduce that:

(5.37)

∫
Ω(u2i+1 − u2i+2)u2i+1u2i+2dx = c

b

∫
Ω(v2i+1 − v2i)u2i+1u2i+2dx

≤ c
b

∫
Ω K̄

2(v2i+1 − v2i)v2iv2i+1dx = K̄2 cf
bg

∫
Ω(u2i+1 − u2i)v2iv2i+1dx.

Then, we use (5.35), (5.36) and (5.30), (5.32) again to obtain:

(5.38)

∫
Ω(u2i+1 − u2i)u2iu2i+1dx = c

b

∫
Ω(v2i−1 − v2i)u2iu2i+1dx

≤ c
b

∫
Ω K̄

2(v2i−1 − v2i)v2i−1v2idx = K̄2 cf
bg

∫
Ω(u2i−1 − u2i)v2i−1v2idx.

Combining (5.37), (5.38) and (5.30), (5.32) once more, we obtain:

(5.39)
∫

Ω
(u2i+1 − u2i+2)u2i+1u2i+2dx = K̄8(

cf

bg
)2
∫

Ω
(u2i−1 − u2i)u2i−1u2idx

for each integer i ≥ 1. From (5.39), we conclude that if

cf < (K̄)−4(bg),

then limi→∞
∫
Ω(u2i+1 − u2i+2)u2i+1u2i+2dx = 0. By dominated convergence,

and limi→∞u2i+1 = u∗ > 0 in Ω, limi→∞ui+2 = u∗ > 0 in Ω, limi→∞(u2i+1 −
u2i+2) = u∗ − u∗ ≥ 0 in Ω, we conclude that u∗ = u∗ for all x ∈ Ω. Similarly,
from limi→∞(v2i+1 − v2i+2) = v∗ − v∗ ≥ 0 in Ω, we deduce v∗ = v∗. By [125],
the solution of (u, v) of (5.25) satisfies u∗ ≤ u ≤ u∗, v∗ ≤ v ≤ v∗ in Ω. We thus
obtain (5.27) by choosing k = K̄−4.
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Part B: Competing Species Case.

We next discuss some stability results for the competing species case, and
consider system (1.2) with initial conditions:

(5.40) u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω.

We assume that
(5.41)

The functions fi have Hölder continuous partial derivatives up to second
order in compact sets, i = 1, 2; a1, a2, σ1 and σ2 are positive constants.

Moreover

(5.42)



fi(0, 0) = 0, i = 1, 2;

∂fi
∂u ,

∂fi
∂v < 0, i = 1, 2 for (u, v) in the first open quadrant.

Under appropriate conditions, we will prove the local asymptotic stability of
steady states by the method of upper lower solutions for the corresponding
parabolic problem. The main assumption essentially means the competitions
between the species are relatively small. The method of proof here avoids the
problem of locating the spectrum of the linearized equation. It may not be
readily justified that the spectrum is on the right half plane as in proof of
Theorem 5.3 above.

Theorem 5.5 (Asymptotic Stability under Weak Competition). Con-
sider the initial-boundary value problem (1.2), (5.40), under hypotheses (5.41),
(5.42) and

(5.43) ai > σiλ1, i = 1, 2.

Suppose (u, v) = (ū1(x), ū2(x)) is an equilibrium solution of (1.2) with each ūi
in C2+α(Ω̄), ūi(x) > 0 in Ω, ∂ūi/∂ν < 0 on ∂Ω, for i = 1, 2, and

(5.44)
supx∈Ω| ūi(x)·(∂fj/∂ui)(ū1(x),ū2(x))

ūj(x)·(∂fj/∂uj)(ū1(x),ū2(x)) |

< infx∈Ω| ūi(x)·(∂fi/∂ui)(ū1(x),ū2(x))
ūj(x)·(∂fi/∂uj)(ū1(x),ū2(x)) | <∞

for each 1 ≤ i, j ≤ 2, i �= j, then (ū1(x), ū2(x)) is asymptotically stable. Here
asymptotically stable means that if (u, v) = (u1(x, t), u2(x, t)) is a solution of
(1.2), (5.40) with ui ∈ C2+α,1+α/2(Ω̄ × [0, T ]), each T > 0, i = 1, 2, then
ui(x, t) → ūi(x) uniformly as t → +∞, i = 1, 2 in Ω̄, provided that (u1(x, 0),
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u2(x, 0)) = (u0(x), v0(x)) and its first partial derivatives are close enough to that
of ūi(x) respectively for all x ∈ Ω̄, i = 1, 2.

Remark 5.2. Recall that in Section 1.3, there are many theorems giving suf-
ficient conditions for the existence of positive equilibrium. For (3.3) with suffi-
ciently small c and f , one can show that there exists equilibrium with property
as described in (5.44).

Proof. Hypothesis (5.44) implies that there are constants ρ1, ρ2 close enough
to 1, with ρ1 < 1 < ρ2 such that for each x ∈ Ω,

(5.45)

0 < ūi(x)·maxρ1≤s,τ≤ρ2 |(∂fj/∂ui)(sū1(x),τ ū2(x))|
ūj(x)·minρ1≤s≤1|(∂fj/∂uj)(sū1(x),ū2(x))|

< infx∈Ω
ūi(x)
ūj(x)
{minρ1≤s,τ≤ρ2 |(∂fi/∂ui)(sū1(x),τ ū2(x))|

maxρ1≤s≤1|(∂fi/∂uj)(sū1(x),ū2(x))| } − ε1 <∞

for each 1 ≤ i, j ≤ 2, i �= j, where ε1 is a small positive number. We will
construct appropriate lower and upper solutions vi, wi, and apply a comparison
theorem to obtain the results here. Let

G(x) =
ū2(x)minρ1≤s≤τ≤ρ2 | ∂f2∂u2

(sū1(x), τ ū2))|
ū1(x)maxρ1≤s≤1| ∂f2∂u1

(sū1(x), ū2(x))| ,

for x ∈ Ω; and let α be a number, 1 < α < ρ2 such that (1 − ρ1) > (α −
1)infx∈ΩG(x). Define w2(x, t) = p(x, t)ū2(x), p(x, t) = 1+(α−1−ε4ū2(x))e−mt,
where ε4 and m are positive constants to be determined later(one condition on
ε4 is ε4maxx∈Ω̄ū2(x) < α−1). On the other hand, define v1(x, t) = q(x, t)ū1(x),
q(x, t) = 1 − (1 − β(x))e−mt, where β(x) = 1 − (α − 1)infx∈ΩG(x) + ε2(α −
1) + ε3(α − 1)ū1(x), ε2 and ε3 are small positive constants satisfying ε2 +
ε3maxx∈Ω̄ū1(x) < ε1 < infx∈ΩG(x). (Observe that ρ1 < β(x) < 1). We have
(5.46)
σ2∆w2[a2 + f2(v1, w2)]− ∂w2

∂t

= p(x, t)ū2[f2(v1, w2)− f2(v1, ū2) + f2(v1, ū2)− f2(ū1, ū2)]

+ e−mt[m(α − 1− ε4ū2(x))ū2 − ū2σ2ε4∆ū2 − 2σ2ε4
∑n

i=1 ū
2
2xi

]

≤ p(x, t)ū2[max1≤τ≤ρ2{ ∂f2∂u2
(v1, τ ū2)}{(α − 1)ū2e

−mt − ε4ū2
2e

−mt}

−minρ1≤s≤1{ ∂f2∂u1
(sū1, ū2)} · {(1 − β̂)ū1e

−mt − ε3(α− 1)ū2
1e

−mt}] + e−mt[· · · ]

where [· · ·] represents the terms inside the brackets immediately before the
inequality sign ≤, and β̂ = 1− (α− 1)infx∈ΩG(x) + ε2(α− 1). Set ε4 = m = ε3;
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thus

|p(x, t)ū2[max1≤τ≤ρ2{ ∂f2∂u2
(v1, τ ū2)}{(−ε4ū2

2e
−mt)

+minρ1≤s≤1{ ∂f2∂u1
(sū1, ū2)}ε3(α− 1)ū2

1e
−mt]

+ e−mt[m(α− 1− ε4ū2(x))ū2 − ū2σ2ε4∆ū2]| ≤ ε4e−mtū2(x)K1

for all x ∈ Ω, where K1 is some positive constant. In a neighborhood Ø of ∂Ω
in Ω, we have −2σ2ε4

∑n
i=1 ū

2
2xi
e−mt + ε4e

−mtū2(x)K1 < 0, for all t ≥ 0, since
ū2 = 0 on ∂Ω. Further,

max1≤τ≤ρ2{ ∂f2∂u2
(v1(x, t), τ ū2(x))}(α − 1)ū2(x)

−minρ1≤s≤1{ ∂f2∂u1
(sū1(x), ū2(x))}(1 − β̂)ū1(x)

≤ max1≤s≤τ≤ρ2{ ∂f2∂u2
(sū1(x), τ ū2(x))}(α − 1)ū2(x)

+maxρ1≤s≤1| ∂f2∂u1
(sū1(x), ū2(x))|((α − 1)G(x) − ε2(α− 1))ū1(x)

= −min1≤s≤τ≤ρ2| ∂f2∂u2
(sū1(x), τ ū2(x))|(α − 1)ū2(x)

+ ū2(x)minρ1≤s≤τ≤ρ2| ∂f2∂u2
(sū1(x), τ ū2(x))|(α − 1)

− ε2(α− 1)ū1(x)maxρ1≤s≤1| ∂f2∂u1
(sū1(x), ū2(x))| < 0,

for all x ∈ Ω, t ≥ 0. Consequently, we have σ2∆w2 + w2[a2 + f2(v1, w2)] −
∂w2/∂t < 0, for x ∈ Ø, , t ≥ 0. For x ∈ Ω\Ø, two terms in (5.46) satisfy the
inequality:

p(x, t)ū2[max1≤τ≤ρ2{ ∂f2∂u2
(v1, τ ū2)}(α − 1)ū2e

−mt

−minρ1≤s≤1{ ∂f2∂ū1
(sū1, ū2)} · (1− β̂)ū1e

−mt] < −ε2K2e
−mt,

for some K2 > 0, all t ≥ 0; and for such (x, t), the sum of all the other re-
maining terms after the inequality sign ≤ in (5.46) can be reduced to less than
(1/2)ε2K2e

−mt in absolute value, by choosing ε4 = m = ε3 sufficiently small. We
therefore have σ2∆w2 +w2[a2 +f2(v1, w2)]−∂w2/∂t < 0, for (x, t) ∈ Ω× [0,∞),
and w2(x, t) is an upper solution.
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For v1, we have the inequality:
(5.47)
σ1∆v1[a1 + f1(v1, w2)]− ∂v1

∂t

= q(x, t)ū1[f1(v1, w2)− f1(v1, ū2) + f1(v1, ū2)− f1(ū1, ū2)]

+ e−mt[−m(1− β(x))ū1 + ū1σ1ε3(α− 1)∆ū1 + 2σ1ε3(α− 1)
∑n

i=1 ū
2
1xi

]

≥ q(x, t)ū1[min1≤τ≤ρ2{ ∂f1∂u2
(v1, τ ū2)}{(α − 1)ū2e

−mt − ε4ū2
2e

−mt}

−maxρ1≤s≤1{ ∂f1∂u1
(sū1, ū2)} · {(1− β̂)ū1e

−mt − ε3(α− 1)ū2
1e

−mt}] + e−mt[· · · ]

where [· · ·] represents the terms inside the brackets immediately before the
inequality sign ≥. Due to the choice of ε4 = m = ε3 made previously, one has
the inequality

| q(x, t)ū1[min1≤τ≤ρ2{ ∂f1∂u2
(v1, τ ū2)}(−ε4ū2

2e
−mt)

−maxρ1≤s≤1{ ∂f1∂u1
(sū1, ū2)}(−ε3(α− 1)ū2

1e
−mt)]

+ e−mt[−m(1− β(x))ū1 + ū1σ1ε3(α− 1)∆ū1]| ≤ ε4e−mtū1K3

for all x ∈ Ω, where K3 is some positive constant. In a neighborhood Ø̃ of ∂Ω
in Ω, we have 2σ1ε3(α − 1)

∑n
i=1 ū

2
1xi
e−mt − ε4e−mtū1(x)K3 > 0, for all t ≥ 0,

since ū1 = 0 on ∂Ω. Further,

min1≤τ≤ρ2{ ∂f1
∂u2

(v1, τ ū2)}{(α− 1)ū2 −maxρ1≤s≤1{ ∂f1
∂u1

(sū1, ū2)}(1− β̂)ū1

≥ −maxρ1≤s,τ≤ρ2 | ∂f1
∂u2

(sū1, τ ū2)|(α− 1)ū2 +minρ1≤s≤1| ∂f1
∂u1

(sū1, ū2)|(1 − β̂)ū1

≥ − (α− 1)ū1minρ1≤s≤1| ∂f1
∂u1

(sū1, ū2)|(infx∈ΩG(x) − ε1)

+minρ1≤s≤1| ∂f1
∂u1

(sū1, ū2)|(1 − β̂)ū1

= −ū1(x)minρ1≤s≤1| ∂f1
∂u1

(sū1, ū2)| · (ε2 − ε1)(α − 1) > 0,

for all x ∈ Ω, t ≥ 0. The second ≥ sign in the last sentence is due to hypothesis
(5.45). Consequently, we have σ1∆v1 + [a1 + f1(v1, w2)] − ∂v1/∂t > 0, for
x ∈ Ø̃, t ≥ 0. For x ∈ Ω\Ø̃, two terms in (5.47) satisfies the inequality:

q(x, t)ū1[min1≤τ≤ρ2{ ∂f1∂u2
(v1, τ ū2)} · (α− 1)ū2e

−mt

−maxρ1≤s≤1{ ∂f1∂u1
(sū1, ū2)}(1 − β̂)ū1e

−mt] > (ε1 − ε2)K4e
−mt
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for some K4 > 0, all t ≥ 0; and for such (x, t), the sum of all the other remaining
terms after the inequality sign ≥ in (5.47) can be reduced to less than (1/2)(ε1−
ε2)K4e

−mt in absolute value, by reducing the size of ε4 = m = ε3. We therefore
have σ1∆v1 + [a1 + f1(v1, w2)]− ∂v1/∂t > 0, for (x, t) ∈ Ω× [0,∞), and v1(x, t)
is a lower solution.

Since all the first partial derivatives of f1 and f2 have the same sign, we can
interchange the role of ū1, f1 with ū2, f2 respectively and construct lower and
upper solutions v2, w1 in exactly the same manner as before. Here v2, w1 are
of the form v2 = q̃(x, t)ū2, w1 = p̃(x, t)ū1(x) with p̃(x, t), q̃(x, t) analogous to
p(x, t), q(x, t) respectively. (p̃(x, t)→ 1+, q̃(x, t)→ 1−, as t→∞, all x ∈ Ω̄).

Finally, we have vi(x, t) → ūi(x) from below, and wi(x, t) → ūi(x) from
above, as t → ∞, uniformly for x ∈ Ω̄, i = 1, 2. When the initial conditions
ui(x, 0) and their partial derivatives are close to that of ūi(x) in the sense de-
scribed in the theorem, we have vi(x, 0) ≤ ui(x, 0) ≤ wi(x, 0), x ∈ Ω̄. (Note that
we have ∂ūi/∂ν < 0 on ∂Ω). Applying appropriate comparison or differential
inequalities as in Section 1.2 in [125], we obtain

vi(x, t) ≤ ui(x, t) ≤ wi(x, t) for (x, t) ∈ Ω̄× [0,∞),

and thus we have (ū1(x), ū2(x)) as an asymptotically stable equilibrium solution.

In the situation when the intrinsic growth rate of one species is small, we
can prove the following theorem in a similar fashion.

Theorem 5.6. Consider the initial-boundary value problem (1.2), (5.40), under
hypotheses (5.41), (5.42) and

(5.48) a1 < σ1λ1, a2 > σ2λ1;

and u∗2(x) ∈ C2+α(Ω̄) is a solution of

(5.49) σ2∆v + v[a2 + f2(0, v)] = 0 in Ω, v = 0 on ∂Ω,

with u∗2(x) > 0 for x ∈ Ω. Let (u, v) = (u1(x, t), u2(x, t)) be a solution of (1.2),
(5.40) with ui ∈ C2+α,1+α/2(Ω̄× [0, T ]), each T > 0, i = 1, 2, where u0(x), v0(x)
are both non-negative functions in C2+α(Ω̄) satisfying compatibility conditions
as described in Ladyzhenskaya, Solonnikov and Ural’ceva [113] or Section 1.3
in [125]. Then (u1(x, t), u2(x, t)) → (0, u∗2(x)) as t → ∞, uniformly for x ∈ Ω̄,
provided that u0, v0 and all their first partial derivatives are close enough to 0, u∗2
respectively and their corresponding first partial derivatives.

Under the stronger assumption of uniqueness of positive steady state, we can
obtain a global stability result as follows. (We shall discuss the problem of such
uniqueness in later theorems in this section.)
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Theorem 5.7 (Global Asymptotic Stability in case of Uniqueness).
Consider problem (3.3) restricted to σ1 = σ2. Assume condition (3.4) is satis-
fied and that problem (3.3) only has a unique solution (u∗(x), v∗(x)) with both
components strictly positive in Ω. Let (u(x, t), v(x, t) be a solution of the initial
boundary value problem:

(5.50)




ut = ∆u+ u(a− bu− cv)
in Ω× [0,∞),

vt = ∆v + v(e− fu− gv)

u = v = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω

with both u0, v0 ≥ 0, �≡ 0 in Cα(Ω̄), 0 < α < 1, and vanishing on ∂Ω, then

(u(x, t), v(x, t)) → (u∗(x), v∗(x)), as t→∞

uniformly in Ω̄.

Proof. We first choose numbers a1 and e1 such that

(5.51) a1 > a, e1 > e

and

(5.52) a > λ1 +
ce1
g
, e > λ1 +

fa1

b
.

By hypothesis (3.4), such a1, e1 must exist.
For convenience, we introduce the following notation: If w ∈ C1(Ω̄), w(x) >

0 for all x ∈ Ω, and ∂w/∂ν < 0 everywhere on ∂Ω, we write w >> 0. If
w, z ∈ C1(Ω̄),we write w << z if z−w >> 0. We first prove the theorem under
the additional conditions u0, v0 ∈ C1(Ω̄),

(5.53) u0 >> 0, v0 >> 0,

and for all x ∈ Ω̄,

(5.54) u0(x) ≤ θa1
b
, v0(x) ≤ θe1

g
.

Here, for any A > λ1, the symbol θA denotes the unique positive solution of

∆Z + Z[A− Z] = 0 in Ω, Z|∂Ω = 0.
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Let φ1 be the positive principal eigenfunction for the Laplacian on Ω with Dirich-
let boundary condition. Choose ε > 0 so small such that

(5.55) εφ1(x) ≤ u0(x), εφ1(x) ≤ v0(x)

and

(5.56)
a > λ1 + ce1

g + bεφ1(x),

e > λ1 + fa1
b + gεφ1(x),

for all x ∈ Ω̄. If we set ū = θa1/b, v̄ = θe1/g and u = v = εφ1, then

∆ū+ ū[a− bū− cv] = (a− a1)ū− cūv < 0

for x ∈ Ω; and since ū ≤ a1/b,

∆v + v[e− fū− gv] = v[e− λ1 − fū− gv]

≥ v[e− λ1 − fa1/b− gv] > 0

on Ω. Similarly, we have

∆u + u[a− bu− cv̄] > 0,

∆v̄ + v̄[e− fu− gv̄] < 0.

The conclusion of the theorem follows from the uniqueness assumption, the
inequalities u(x) ≤ u0(x) ≤ ū(x), v(x) ≤ v0(x) ≤ v̄(x), x ∈ Ω̄, and comparison
with solutions of the differential system (5.50) with initial conditions replaced at
the steady-state upper lower solutions (ū(x), v(x)). Solutions with such initial
conditions converges monotonically to a maximum-minimum pair of steady -
state. (See Pao [183] or Theorem 1.3 in [32].)

We next remove condition (5.54) on the initial functions u0(x), v0(x). First,
observe that there exists large K > 1, such that

u0(x) <
Kθa(x)

b
, v0(x) <

Kθe(x)
g

on Ω. Define (Ū (x, t),V(x, t)) to be the solution of problem (5.50) with initial
conditions replaced with

(Ū(x, 0),V(x, 0)) = (
Kθa(x)

b
, 0).

It is clear that V ≡ 0, Ū is non-negative in Ω× [0,∞) and

(5.57) limt→∞Ū(x, t) =
θa(x)
b

.
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Moreover, the convergence above is monotone, because Ū(x, 0),V(x, 0) satisfies

∆Ū(x, 0) + Ū(x, 0)[a − bŪ(x, 0) − cV(x, 0)] = b(Ū (x, 0))2[K−1 − 1] < 0,

∆V(x, 0) + V[e− fŪ − gV] = 0.

The convergence in (5.57) is also in C1(Ω̄) norm by using W 2,p estimates, com-
pact embedding and equations (5.50). (See e.g. pp. 87–89 in Fife [59]). Similarly,
define (U(x, t), V̄ (x, t)) to be the solution of problem (5.50) with initial condi-
tions replaced with

(U(x, 0), V̄ (x, 0)) = (0,
Kθe(x)

g
).

We have U ≡ 0, V̄ is non-negative in Ω × [0,∞) and the monotone C1(Ω̄)
convergence

(5.58) limt→∞V̄ (x, t) =
θe(x)
g

.

On the other hand, one readily verifies that the functions U(x, t), Ū (x, t),V(x, t),
V̄ (x, t) satisfies:

(5.59)

∆Ū + Ū [a− bŪ − cV]− ∂Ū/∂t < 0

∆V + V[e− fŪ − gV]− ∂V/∂t ≥ 0

∆V̄ + V̄ [e− fU− gV̄ ]− ∂V̄ /∂t < 0

∆U + U[a− bU− cV̄ ]− ∂Ū/∂t ≥ 0

for (x, t) ∈ Ω× (0,∞), and

(5.60)
0 = U(x, 0) ≤ u0(x) ≤ Ū(x, 0) = Kθa(x)

b

0 = V(x, 0) ≤ v0(x) ≤ V̄ (x, 0) = Kθe(x)
g

for x ∈ Ω̄. From comparison theorems (cf. pp. 24–26 in [125]), we assert that

(5.61) 0 = U(x, t) ≤ u(x, t) ≤ Ū(x, t), 0 = V(x, t) ≤ v(x, t) ≤ V̄ (x, t)

for (x, t) ∈ Ω× [0,∞). We next observe that ∆ū+ ū[a− bū] = (a− a1)ū < 0 in
Ω, ū|∂Ω = 0, thus ū = θa1/b is a strict upper solution of the problem

∆z + z[a− bz] = 0 in Ω, z|∂Ω = 0.
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Similarly, θe1/g is a strict upper solution of the problem

∆z + z[e− gz] = 0 in Ω, z|∂Ω = 0.

By monotone iteration and comparison, we obtain

(5.62)
θa
b
<<

θa1
b
,

θe
g
<<

θe1
g
.

For s > 0, let us(x) = u(x, s), vs(x) = v(x, s) for x ∈ Ω̄. We obtain from (5.57),
(5.58), (5.61) and (5.62) that for s > 0 sufficiently large

(5.63) us(x) ≤ θa1(x)
b

, vs(x) ≤ θe1(x)

g

for x ∈ Ω̄. On the other hand for s > 0, we obtain from the theory of parabolic
equations and strong maximum principle that us, vs are in C1(Ω̄) and

(5.64) us >> 0, vs >> 0.

Comparing (5.63) and (5.64) respectively with (5.54) and (5.53), we obtain the
conclusion of this theorem by using the beginning part of the proof.

When the intrinsic growth rates of both species are the same, the following
theorem gives sufficient conditions for uniqueness of coexistence solution. It
reflects the situation when the crowding effect of each species on itself is greater
than its competing effecting on the growth rate on the other species.

Theorem 5.8 (Uniqueness under Weak Competition). Consider problem
(3.3) with σ1 = σ2 = 1. Suppose that

(5.65) a = e > λ1, b > f, and c < g,

then (3.3) has a unique coexistence solution with each component in C2+α(Ω̄)
and strictly positive in Ω.
Proof. Suppose σ1 = σ2 = 1, (5.65) holds and (u, v) is a solution of (3.3) with
each component in C2+α(Ω̄) and strictly positive in Ω. We claim that if z is a
function in C1(Ω̄) satisfying

(5.66) ∆z + z[a− bu− gv] = 0 in Ω, z = 0 on ∂Ω,

then z ≡ 0 in Ω. Note that the eigenvalue problem

(5.67) ∆w + w[a− bu− cv] + λw = 0 in Ω, w = 0 on ∂Ω,

had eigenvalue λ = 0 with eigenfunction w = u which is strictly positive in Ω.
It follows that λ = 0 is the smallest eigenvalue of the problem (5.67). Thus from
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Rayleigh’s quotient, we find that for any nontrivial function ψ ∈ C1(Ω̄) which
vanishes at ∂Ω, we have

(5.68) 0 ≤
∫
Ω |∇ψ|2 − [a− bu− cv]ψ2)dx∫

Ω ψ
2ds

.

Suppose z satisfies (5.66), we integrate by parts and obtain from (5.68) that

0 =
∫
Ω(−z∆z − z2[a− bu− gv])dx

=
∫
Ω(|∇z|2 − z2[a− bu− cv])dx+

∫
Ω v(g − c)z2dx ≥ ∫Ω v(g − c)z2dx.

Since g > c and v > 0 in Ω, we justify the claim that z ≡ 0 in Ω̄.
The differential equations in (3.3) can be written as:


∆u+ u[a− bu− gv] + (g − c)uv = 0

in Ω.
∆v + v[a− bu− gv] + (b− f)uv = 0

Multiplying the first and second equation above respectively by (b − f) and
(g − c) and subtracting, we obtain ∆ψ + ψ[a − bu − gv] = 0 in Ω, where ψ =
(b−f)u−(g−c)v. We thus have ψ ≡ 0; that is v ≡ ru, where r = (b−f)/(g−c).
From the first equation in (3.3), we obtain

∆u+ u[a− bg − cf
g − c u] = 0 in Ω, u = 0 on ∂Ω.

Hence the function θ = bg−cf
g−c u satisfies

(5.69) ∆θ + θ[a− θ] = 0 in Ω, θ = 0 on ∂Ω.

Consequently (u, v) must satisfy

(u, v) = (
g − c
bg − cf θ,

b− f
bg − cf θ) in Ω̄.

where θ is uniquely defined as the solution of problem (5.69).

Other sufficient conditions for unique positive coexistence state even for a �= e
can also be found.

Theorem 5.9 (Uniqueness under Weak Competition). Consider problem
(3.3) with σ1 = σ2 = 1 and assume (3.4) is satisfied. Suppose that

(5.70) 4bg >
gc2θa

bθ(e−af/b)
+ 2cf +

bf2θe
gθ(a−ec/g)

,
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then (3.3) has a unique coexistence solution with each component in C2+α(Ω̄)
and strictly positive in Ω.
Remark 5.3. Here, for any A > λ1, θA denotes the unique positive solution
of (5.69) where a is replaced by A. Thus, by (3.4), θ(e−af/b) and θ(a−ec/g) are
positive functions in Ω. For fixed a, b, e and g, hypothesis (5.70) will be satisfied
for c, f sufficiently small. This is true because θ(e−af/b)(or θ(a−ec/g)) increases

as f (or c) decreases for x ∈ Ω. Thus gc2θa
bθ(e−af/b)

(or bf2θe
gθ(a−ec/g)

) decreases as f (or
c) decreases.
Proof. Assume all the hypotheses of this theorem, and (u1, v1), (u2, v2) are two
strictly positive solutions of (3.3) in Ω. Let p = u1 − u2, q = v1 − v2, then

(5.71)




∆p+ [a− bu1 − cv1]p− bu2p− cu2q = 0
in Ω,

∆q + [e− fu2 − gv2]q − fv1p− gv1q = 0

p = q = 0 on ∂Ω.

Since u1 is a strictly positive solution of

(5.72)




∆ψ + [a− bu1 − cv1]ψ + αψ = 0 in Ω,

ψ = 0 on ∂Ω,

with α = 0, the number α = 0 must be the smallest eigenvalue of the above
problem. Moreover, by variational properties, we have

(5.73)
∫

Ω
z(−∆z − [a− bu1 − cv1]z)dx ≥ 0,

for any z ∈ C2(Ω̄) which vanishes on ∂Ω. Similarly, since v2 is a strictly positive
solution of

(5.74)




∆ψ + [e− fu2 − gv2]ψ + αψ = 0 in Ω,

ψ = 0 on ∂Ω,

with α = 0, the number α = 0 must be the smallest eigenvalue of the above
problem. Moreover,

(5.75)
∫

Ω
z(−∆z − [e− fu2 − fv2]z)dx ≥ 0,

for any z ∈ C2(Ω̄) which vanishes on ∂Ω. Multiplying the first equation of (5.71)
by −p, the second by −q, integrating over Ω and adding, we deduce from (5.73)
and (5.75) that

(5.76)
∫

Ω
(bu2p

2 + (cu2 + fv1)pq + gv1q
2)dx ≤ 0.
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By comparison of scalar equations using upper and lower solutions we can readily
obtain for i = 1, 2, x ∈ Ω,

(5.77)
(1
b )θ(a−ec/g) ≤ ui ≤ (1

b )θa,

(1
g )θ(e−af/b) ≤ vi ≤ (1

g )θe.

From (5.77), we have

(5.78)
c2gθa

bθ(e−af/b)
+ 2cf +

f2bθe
gθ(a−ec/g)

> c2
u2

v1
+ 2cf + f2 v1

u2

in Ω. Thus by hypothesis (5.70), the quadratic expression in the integrand of
(5.76) is positive definite for each x ∈ Ω. Consequently, we must have p and q
identically equal to zero in Ω. That is (u1, v1) ≡ (u2, v2) in Ω̄.

Theorem 5.9 is relevant for weak competition (i.e. small c, f). In case of
strong competition, we consider problem (3.22) in Section 1.3 with large c, f .
With a modification of the proof of Theorem 3.10 and more carefully analysis
of the indices we can extend Theorem 3.10 to obtain the following “uniqueness”
result.

Theorem 5.10 (Local Uniqueness of Segregated Coexistence under
Strong Competition). Suppose w0 ∈ C1

0 (Ω̄) is a non-degenerate solution
of (3.25) which changes sign. Let max{2, N/2} < p < ∞, then there exist
respectively very large and small positive constants Ñ and ε such that for any
c, f satisfying

(5.79) c ≥ Ñ , |cf−1 − α| ≤ ε,

the problem (3.22) has a “unique” positive solution (u, v) near (α−1w+
0 ,−w−

0 )
in Lp(Ω)× Lp(Ω). (Recall that α is any fixed number satisfying α ∈ (0,∞).)

We now discuss the stability of the “unique” positive solution described in
Theorem 5.10. Consider the problem:

(5.80)



ut = ∆u+ u(a− u− cv)

in Ω× [0,∞),
τut = ∆v + v(e− v − fu)

u = v = 0 on ∂Ω.

where a > λ1, e > λ1 and τ > 0. The stability problem of the positive steady-
state solution of the system is reduced by the following theorem to the study of
the stability of the steady-state w0 with non-zero index of the scalar problem
(3.25) described in Theorem 3.10 of Section 1.3, Part B.



1.5. STABILITY OF STEADY-STATES 97

Theorem 5.11 (Stability of the Segregated Coexistence Solution). As-
sume that the hypotheses of Theorem 5.10 are valid. Then the “unique” positive
solution (u, v) for problem (3.22) found in Theorem 5.10 is a stable steady state
solution for the parabolic problem (5.80) if w0 described in Theorem 5.10 is a
stable solution of (3.25) (for the corresponding parabolic problem); and it is un-
stable if w0 is unstable. (Here, stable or unstable is interpreted as in Theorem
A4-11 or Theorem A4-12 in Chapter 6 for solutions in the fractional power space
Xα̃ ×Xα̃, 0 ≤ α̃ < 1,X = Lp(Ω)).

Proof. Suppose w0 is a stable solution, and there exist i → ∞ such that the
unique positive solution (ui, vi) of problem (3.22) with (c, f) = (ci, fi) satis-
fying (5.79) and ui → α−1w+

0 , vi → (−w−
0 ) in Lp(Ω) for p > max{2, N/2} is

unstable. (Recall in Theorem 3.10, we consider the solution (u, v) for (3.22)
near (α−1w+

0 ,−w−
0 ) in L2; however, by Lemma 1.4 in Dancer and Guo [42],

convergence in L2 together with || · ||∞ bound imply convergence in Lp, p > 2).
Consider the eigenvalues for linearized problem of (3.22) at (ui, vi) with the
second equation multiplied by τ−1:

(5.81)




∆hi + (a− 2ui − civi)hi − ciuiki = λhi
in Ω,

∆ki − fivihi + (e− 2vi − fiui)ki = λτki

hi = ki = 0 on ∂Ω.

If we let wi = −ki, (5.81) becomes:

(5.82)




∆hi + (a− 2ui − civi)hi + ciuiwi = λhi
in Ω,

∆wi + fivihi + (e− 2vi − fiui)wi = λτwi

hi = ki = 0 on ∂Ω.

By the stability theorems in Henry [84] (cf. Theorem A4-11 in Chapter 6), and
the assumption that (ui, vi) is unstable, we deduce that the principal eigenvalue
λ̃i of (5.82) must satisfy

λ̃i ≥ 0.

Let the eigenfunctions corresponding to λ = λ̃i in (5.82) be (h̃i, w̃i) ∈ K\{0, 0)},
where K is the cone of non-negative functions in Lp(Ω)×Lp(Ω), ||h̃i||p+||w̃i||p =
1. We first show that {λ̃i} is uniformly bounded. Suppose λ̃i → ∞ as i → ∞,
we obtain from (5.82)

(5.83) −∆(βih̃i + w̃i) = (a− 2ui)βih̃i + (e− 2vi)w̃i − λ̃i(βih̃i + τw̃i) in Ω,
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where βi = fi/ci. Hence,

(5.84)

∫
Ω |∇(βih̃i + w̃i|2dx =

∫
Ω[βi(a− λ̃i)h̃i + (e− λ̃iτ)w̃i](βih̃i + w̃i)dx

− 2
∫
Ω(βiuih̃i + viw̃i)(βih̃i + w̃i)dx < 0.

Here, we use a − λ̃i < 0, e − λ̃iτ < 0 for large i and h̃i, w̃i ≥ 0, �≡ 0. This is
a contradiction, and thus {λ̃i} is uniformly bounded. Consequently, we may
assume without loss of generality that limi→∞λ̃i = λ̃ with λ̃ ≥ 0. Note that the
Lp(Ω) norm of the expression on the right of (5.83) is uniformly bounded, we
thus assert by regularity theory that {||βih̃i + w̃i||2,p} is uniformly bounded. By
compact embedding, there exists a subsequence (still denoted as {βih̃i + w̃i})
such that βih̃i + w̃i → y in Lp(Ω) as i → ∞, and y ≥ 0. We must have y �≡ 0;
otherwise it follows readily from 0 ≤ βih̃i ≤ βih̃i + w̃i, 0 ≤ w̃i ≤ βih̃i + w̃i that
||h̃i||p + ||w̃i||p → 0 as i → ∞, contradicting ||h̃i||p + ||w̃i||p = 1. We also know
that there exist h̃, w̃ ∈ Lp(Ω) such that h̃i → h̃, w̃i → w̃ weakly in Lp(Ω). Hence,
we have y = αh̃ + w̃. Note that by Sobolev embedding, ||h̃i||∞ and ||w̃i||∞ are
also uniformly bounded. Let φ be a C2 function with compact support in Ω, and
multiply the first equation in (5.81) by φ when (hi, ki, λ) = (h̃i, k̃i, λ̃i), k̃i = −w̃i,
and integrate by parts, we find

(5.85) (h̃i,−∆φ) = (a− 2ui − civi − λ̃i, h̃iφ)− (ciui, k̃iφ),

where (·, ·) denotes the integral of the product over Ω. Dividing both sides above
by ci, we find

(5.86)
1
ci

(h̃i,−∆φ) = (
a

ci
− 2
ci
ui − vi − λ̃i

ci
, h̃iφ)− (ui, k̃iφ).

Passing to the limit as i→∞ and noting that ci →∞, ui → α−1w+
0 , vi → −w−

0

in Lr(Ω) for any r > 2, we obtain

(5.87) (w−
0 h̃− α−1w+

0 k̃, φ) = 0,

where k̃ = w̃. Since the C2 functions φ satisfying (5.87) are dense in Lq(Ω) for
1/q + 1/p = 1, we obtain

(5.88) w−
0 h̃ = α−1w+

0 k̃ in Ω.

Let
D1 = {x : w0(x) < 0}, D2 = {x : w0(x) > 0}.

Since w0 ∈ C1
0 (Ω̄) and w0 changes sign on Ω, both D1 and D2 are not empty we

must have the property

(5.89) h̃ ≡ 0 in D1, w̃ ≡ 0 in D2.
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Let φ be a C2 function with compact support in Ω, if we multiply (5.83) by φ
and integrate by parts, we obtain

(5.90)
(βih̃i + w̃i,−∆φ) = ((aβih̃i + ew̃i), φ)

−2((βiuih̃i + viw̃i), φ) − λ̃i(βih̃i + τw̃i), φ),

where (·, ·) denotes the integral of the product over Ω. Since ui → α−1w+
0 , vi →

(−w−
0 ) in Lγ(Ω) for any γ ∈ (2,∞), we can pass to the limit above as i→∞ to

obtain

(5.91)
(βih̃+ w̃,−∆φ) = ((aαh̃ + ew̃), φ)

−2((w+
0 h̃+ (−w−

0 )w̃), φ)− λ̃(αh̃+ τw̃), φ).

Note that y = αh̃ + w̃, and since C2 functions φ in (5.91) above are dense in
Lq(Ω), where 1/q + 1/p = 1, we find by means of property (5.89) that

(5.92)

−∆y = (aαh̃ + ew̃)− 2(w+
0 h̃+ (−w−

0 )w̃)− λ̃(αh̃ + τw̃)

= [(a− 2α−1w+
0 )sgn+w0 + (e+ 2w−

0 )sgn−w0

− λ̃(sgn+w0 + τsgn−w0)]y ≡ B(λ̃)y,

and y = 0 on ∂Ω. Here, sgn+w0 (or sgn−w0) is the function with value 1 (or
0) and 0 (or 1) respectively at points where w0 is positive or negative. The
expression (B(λ)y, y) defined above is decreasing in λ for λ real. Hence by
(5.91) and the fact that λ̃ ≥ 0, we deduce (∆y + B(0)y, y) ≥ 0. It follows
from the characterization of eigenvalues that ∆ +B(0)I has a non-negative real
eigenvalue. By our non-degeneracy assumption, this eigenvalue must be positive.
Thus by Theorem A4-12 in Chapter 6, we find w0 is not stable as a solution of
the corresponding parabolic equation. This contradicts the assumption in the
beginning that w0 is stable, unless the unique positive solutions (ui, vi) for large
i are all stable.

We next prove the converse part of the theorem, and assume w0 is unstable.
Suppose the conclusion is false; then there exists a sequence of stable solutions
(ui, vi) with corresponding ci →∞, c−1

i fi → α, and principal eigenvalues λ̃i for
corresponding linearized problem (5.82) satisfying λ̃i ≤ 0. Hence, there exists
(h̃i, w̃i) ∈ K\{(0, 0)} with ||h̃i||p + ||w̃i||p = 1 such that (h̃i, w̃i, λ̃i) satisfies
(5.82). We first show {λ̃i} is uniformly bounded. Suppose, not, there exists
a subsequence, denoted again by {λ̃i} such that λ̃i → −∞ as i → ∞. Let
βi = fi/ci, then

(5.93) −∆(βih̃i + w̃i) = (a− 2ui)βih̃i + (e− 2vi)w̃i − λ̃i(βih̃i + τw̃i) in Ω.
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Therefore, from the non-negativity of h̃i, w̃i, we find

(5.94) −∆(βih̃i + w̃i) ≥ (−θi − λ̃iα1)(βih̃i + w̃i) in Ω,

where θi = max{||(a− 2ui)||∞, ||(e − 2vi)||∞}, α1 = min{1, τ}. From the proof
of Theorem 3.10, we have uniform bound for {||ui||∞}, {||vi||∞}, and thus {θi}
is uniformly bounded. Thus −θi − λ̃i → +∞ as i → ∞. Let φ1 be a positive
principal eigenfunction of the ∆, we obtain from (5.94)

(5.95) λ1

∫
Ω

(βih̃i + w̃i)φ1dx ≥ (−θi − λ̃iα1)
∫

Ω
(βih̃i + w̃i)φ1dx.

This is impossible as i→∞. Thus {λ̃i} is uniformly bounded; then, we use the
same argument as in the proof of the stable case to obtain:

βih̃i + w̃i → y in Lp(Ω), y �≡ 0 in Lp(Ω) and y ≥ 0,

since h̃i ≥ 0, w̃i ≥ 0. Moreover, we have λ̃i → λ̃, λ̃ ≤ 0, and y = αh̃+ w̃ satisfies

(5.96)




−∆y = [(a− 2α−1w+
0 )sgn+w0 + (e+ 2w−

0 )sgn−w0

−λ̃(sgn+w0 + τsgn−w0)]y in Ω,

y = 0 on ∂Ω.

Since y ≥ 0, �≡ 0, the characterization of eigenvalues implies that the eigenvalue
problem for λ in

(5.97)




−∆h = [(a− 2α−1w+
0 )sgn+w0 + (e+ 2w−

0 )sgn−w0

−λ̃(sgn+w0 + τsgn−w0) + λ]h in Ω,

h = 0 on ∂Ω.

has principal eigenvalue equal to zero. Moreover, since−λ̃(sgn+w0+τsgn−w0) ≥
0, we obtain by comparison that the principal eigenvalue λ = λ̄ of the problem

(5.98)



−∆h = [(a− 2α−1w+

0 )sgn+w0 + (e+ 2w−
0 )sgn−w0 + λ]h in Ω,

h = 0 on ∂Ω,

must have λ̄ ≥ 0. However, from the fact that w0 is non-degenerate, we have
λ̄ �= 0. Consequently we have λ̄ > 0. This implies that w0 is stable, contradicting
the assumption of the second half of the proof. This completes the proof of this
theorem.
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We now come to the discussion of the case when the competition coefficients
c, f for system (3.22) are not both small or both large. Recall that in Theorem
3.12 in Section 1.3, we find the existence of positive solutions when c and f are
such that ρ̂1(∆+a−cv0) and ρ̂1(∆+e−fu0) are of different signs, where (u0, 0)
and (0, v0) are the semi-trivial solutions. We shall now prove the “asymptotic
stability” of the positive solution asserted by Theorem 3.11.

Recall that for Theorem 3.12, we set

D = {(u, v) : C0(Ω̄)× C0(Ω̄), 0 ≤ u ≤ a, 0 ≤ v ≤ e in Ω},
where A is the map given by (3.65) whose fixed points are solutions of (3.22).
By an “asymptotically stable” solution (u, v) in Theorem 5.12 below, we mean
the spectral radius satisfies
(5.99)

r(A′(u, v)) ≤ 1, (u, v) is an isolated solution, and indexD(A, (u, v)) = 1.

Note that the case when r(A′(u, v)) = 1 is usually undetermined. However,
if we also find that the index is 1 and the solution is isolated, then we can
use a relevant theorem involving stability on the “center manifold” to obtain
the solution is asymptotically stable with respect to flows in an appropriate
function subspace Xα×Xα of X×X,X = Lp(Ω). This will be explained in the
proof of the following theorem.

Theorem 5.12. Under the hypotheses of Theorem 3.12, one of the positive
solution for (3.22) found in Theorem 3.12 is asymptotically stable in the sense
described in (5.99) if 0 ≤ c ≤ c1, f1 ≤ f < f̄ and either c < c1 or f1 < f . Here
(c1, f1) ∈ T+ is defined for Theorem 3.11, so that positive solution exist.
Proof. (Outline) For convenience, we define the cone K̃ = {(u, v) ∈ C0(Ω̄) ×
C0(Ω̄) : u ≥ 0 in Ω, v ≤ 0 in Ω} and denote the corresponding induced order
by ≥S. Recall that in the proof of Theorem 3.12, we choose k to be a positive
constant satisfying k ≥ max.{a+ ce, e+ fa}, and define that the mapping:

A(u, v) := (−∆ + k)−1(u(a+ k − u− cv), v(e + k − v − fu))

on the set:

D := {(u, v) ∈ C0(Ω̄)× C0(Ω̄) : 0 ≤ u ≤ a, 0 ≤ v ≤ e in Ω̄}.
For (c1, f1) ∈ T+, we have a strictly positive solution (u1, v1) satisfying



−∆u1 = u1(a− u1 − c1v1)
in Ω,

−∆v1 = v1(e− v1 − f1u1)

u1 = v1 = 0 on ∂Ω.



102 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

We can write C := {(u, v) ∈ D : u1 ≤ u ≤ u0, 0 ≤ v ≤ v1} as an order interval
C = [(u1, v1), (u0, 0)] in D with order ≥S induced by K̃. The mapping A is
increasing on the order interval C.

We have shown in the proof of Theorem 3.12 that A(u1, v1) >S (u1, v1)(where
>S means ≥S and equality does not hold). Let w = A(u1, v1) − (u1, v1) >S 0.
Since A is increasing, the map At defined by At(u, v) = A(u, v) − tw, for 0 <
t < 1, is an increasing C1 map of C into itself. Let xt denote its minimal fixed
point in C, which can be obtained by iterating from (u1, v1). Moreover, by
iteration, xt increases as t decreases. Since {xt : t ∈ (0, 1)} lies in a compact
set (by the boundedness of C and the compactness of A), we readily see that
x0 = limt→0+ xt exists, is in C, and is a fixed point of A.

We will prove the solution x0 is an “asymptotically stable” solution. Since
xt ≥S (u1, v1), the first component of xt is positive in Ω. Since, xt = Axt−tw ≤S
A(u0, 0) − tw = (u0, 0) − tw, and both components of w are positive in Ω, we
find that the second component of xt must be positive in Ω. By argument
as in the proof of the last theorem A′(xt) is a demi-interior operator to K̃.
That is, for any y ∈ K̃\{(0, 0)}, we have f(A′(xt)y) > 0 for all f ∈ K̃∗\{0},
where K̃∗ = {g ∈ (C0(Ω̄) × C0(Ω̄))∗ : g(z) ≥ 0 for all z ∈ K̃}. (Note that
this is true by using the Riesz representation of linear functional, and the fact
that such A′(xt)y is positive in Ω by the maximum principle applied to the
linearized system of the form (5.82)). However, as described in p. 50 of Dancer
[39], if A′(xt) is a demi-interior operator, then (λI−A′(xt))−1 is a demi-interior
operator for some λ > r(A′(xt)). Then, using the geometric expansion for
(λI − A′(xt))−1 as described in the appendix of Schaefer [205], we can obtain
f(y) > 0 if y ∈ K̃\{(0, 0)} for any f ∈ K̃∗\{0}, which is an eigenfunction
corresponding to the eigenvalue r(A′(xt)). Moreover, we have r(A′(xt)) is a
simple eigenvalue of A′(xt) and is the only non-zero eigenvalue to which there
corresponds a positive eigenfunction (cf. Lemma 2.4 in Dancer and Guo [42] or
Theorem 3.2 on p.632 of Amann [3], or equivalently Theorem A3-8 in Chapter
6). Then, applying a variant of the remark on p. 143 of Dancer [37] to the
increasing mapping At : C → C with minimal solution xt in C and the fact that
f(xt) > 0 as deduced above, we find r(A′(xt)) ≤ 1. Further, from the continuity
of spectral radius, we obtain r(A′(x0)) ≤ 1 as t→ 0+.

From Theorem 3.12, we have indexC(A, (u0, 0)) = 0 and r(A′(u0, 0)) > 1.
Thus, from the conclusion of the above paragraph, x0 �= (u0, 0). Hence, x0

is a strictly positive solution. By the arguments given in the last paragraph,
we find A′(x0) is a demi-interior operator. If r(A′(x0)) < 1, then we can use
Theorem A2-3 in Chapter 6 to obtain indexC(A,x0) = 1. Moreover, this implies
that the principal eigenvalue of the linearized equation at x0 is negative. By
the first theorem in Chapter 5 in Henry [84] or Theorem A4-11 in Chapter 6,
we obtain asymptotic stability with respect to solutions of parabolic problems
corresponding to (3.22) with initial conditions in the subspace Xα × Xα, 0 ≤
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α < 1, with X = Lp(Ω), for large p.
On the other hand, suppose r(A′(x0)) = 1. Then all fixed points xt of At

in a neighborhood of (x, t) = (x0, 0) are represented by (xt, t) = (x0 + αh +
z(α), φ(α)), where z and φ are C1 functions, with φ : (−ε, ε) → R,φ(0) =
0, z(0) = 0, h spans N(I − A′(x0)), f spans N(I − A′(x0)∗) and f(w(α)) = 0,
for all small α (cf Dancer [37]). Moreover, we have φ(α) > 0 when α ∈ (−ε, 0).
We choose a number α0 < 0, with τ := φ(α0) > 0 where φ′(α0) �= 0, I −A′(xτ )
is invertible. Since we also have r(A′(xτ )) ≤ 1 and by Krein-Rutman theorem
r(A′(xτ )) is in the spectrum of A′(xτ ), thus r(A′(xτ )) < 1 (cf. Theorem A2-5
in Chapter 6), and we obtain indexC(Aτ , xτ ) = 1. We next deduce that x0 is
isolated. Suppose not, then we obtain from the analyticity of A that φ(α) = 0
for all small α. Thus, any solution of x = A(x) − tw near (x0, 0) must has
t = 0, contradicting (xt, t) are solutions. To calculate the indexC(A,x0), we
can construct a neighborhood V containing xt, 0 ≤ t ≤ τ so that by homotopy
invariance:

(5.100) degC(Aτ , V ) = degC(A,V ) = indexC(A,x0).

Then, by means of the functional f and the isolated property of x0, we can
construct appropriate neighborhood to show:

(5.101) degC (Aτ , V ) = indexC(Aτ , xτ ) = 1.

By means of (5.100) and (5.101), we obtain indexC(A,x0) = 1. For more details,
see the arguments for proving Proposition 3 in p. 144 and Remark 4 in p. 146
of Dancer [37].

We next observe that the indexC(A,x0) is the same as indexD(A,x0), when
we assume ∂Ω is smooth. To see this, we use the space V × V where V de-
notes the space of functions u in C0(Ω̄) for which φ−1

1 u extends to a continuous
function on Ω̄ with the norm ||u|| := supx∈Ω|φ−1

1 (x)u(x)|, where φ1 denotes
the positive eigenfunction corresponding to the principal eigenvalue for −∆ on
Ω with Dirichlet boundary condition. The set V is a Banach space under the
norm || · ||. The functions u for which infx∈Ωφ

−1
1 u(x) > 0 are interior elements

of the cone K ∩V , where K is the usual cone in C0(Ω̄). In particular, this holds
for u ∈ C1(Ω̄) with u(x) > 0 in Ω and ∂u/∂ν < 0 on ∂Ω. The mapping A is
completely continuous from E := C0(Ω̄) × C0(Ω̄) into V × V . Moreover, if x0

is an isolated fixed point of A in E, the commutativity theorem for degree (see
Granas [75] or Nussbaum [178]) ensures that indexE(A,x0) = indexV×V (A,x0).
Similarly, if x0 ∈ C, the index of x0 in C is the same as that in C ∩ (V × V ).
That is, we only need to prove our results for indices in the space V ×V . In this
case, we simply have to prove that the fixed point is interior to C ∩ (V × V ) or
D ∩ (V × V ), and the result then follows. This can be readily justified by using
maximum principle for the corresponding system as explained before.
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Next, suppose (i) r(A′(x0)) = 1, (ii) the fixed point x0 is isolated and (iii)
the index indexD(A,x0) = 1. From (i) we have the principal eigenvalue of the
corresponding linearized system at x0 is = 0; then we justify as in above that
the eigenspace (center manifold) is one dimensional. From Theorem 6.2.1 in
Chapter 6 of Henry [84], we assert that if x0 is asymptotically stable in the
center manifold, then it is asymptotically stable in Xα × Xα. We can use the
argument in Theorem 9.3.2 of Chow and Hale [28] to assert the stability of x0

on the manifold is determined by Liapunov Schmidt reduction since the related
function F there is C2. In particular, x0 is stable if 0 has index 1 for the
Liapunov Schmidt reduction. The Liapunov Schmidt reduction for I − A is
equivalent to that for L− F . Moreover, by Theorem 24.2 in Krasnosel’skii and
Zabrieko [109], we can relate the indexLp×Lp(A,x0) or indexD(A,x0) with the
index of the 0 of the bifurcation equation, and find they are equal in this simple
case. Thus by property (iii), the index of 0 of the bifurcation equation is 1, and
x0 is asymptotically stable on the manifold and Xα×Xα in Lp×Lp. The details
are too technical to be included here (cf. Dancer [40]).

Part C: Cooperative Species Case.

We now come to the discussion of the stability of some of the positive steady
states (i.e. coexistence states) for cooperating species found in Section 1.4. We
will use the operators L1 and L2 as defined in (4.20) and (4.21). Recall the
general cooperative system (4.22), and the part concerning weak cooperation in
assumptions (4.23). Also, recall the symbol θ[−L,a,b] defined immediately before
Theorem 4.4, denoting the solution for the related scalar problem. Under some
further restrictive conditions, we have the following uniqueness and stability
theorem.

Theorem 5.13 (Uniqueness under Weak Cooperation and Asymptotic
Stability). Assume hypotheses (4.23),

c(x) > 0, f(x) > 0 for x ∈ Ω,

and that any coexistence state (u∗, v∗) of problem (4.22) satisfies

(5.102) supΩ(u∗/v∗) · supΩ(v∗/u∗) < infΩ(b/c) · infΩ(g/f).

Then the boundary value problem (4.22) possesses a unique coexistence solution.
Moreover, it is asymptotically stable.
Proof. (Outline) Under the assumptions (4.23), we can obtain uniform a-priori
bound for all non-negative solutions of (4.22). Thus we can use the fixed point
cone index method to study non-negative solutions as in Sections 2 and 3. As
in Theorem 2.5 and part (i) of Theorem 3.4, we can show that both semi-trivial
positive solutions (θ[−L1,a,b], 0) and (0, θ[−L2,e,g]) have zero local index. Moreover,
the solution (0, 0) has index zero and the global index of the related mapping
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equals one. Consequently, it suffices to show that under condition (5.102), all
the eigenvalues of the corresponding linearized problem at (u∗, v∗) have real
parts less than some negative constant. By Theorem A2-3 in Chapter 6, we can
then infer that the solution (u∗, v∗) has local index one; and by the additivity
of indices, such positive solution must be unique. The linearized problem at
(u∗, v∗) is given by:

(5.103)




L1h+ (a− 2bu∗ + cv∗)h+ cu∗k = λh
in Ω,

L2k + fv∗h+ (e+ fu∗ − 2gv∗)k = λk

h = k = 0 on ∂Ω.

By Theorem A3-8 in Chapter 6 (or Theorem 8.3 and 8.4 in [45]), the principal
eigenvalue of problem (5.103) is negative if we can find functions h∗ > 0, k∗ > 0
in Ω satisfying
(5.104)
L1h

∗ + (a− 2bu∗ + cv∗)h∗ + cu∗k∗ < 0, L2k
∗ + fv∗h∗ + (e+ fu∗− 2gv∗)k∗ < 0

in Ω. Then, by Theorem A3-8 in Chapter 6 again, the real parts of all other
eigenvalues of problem (5.103) are less than some negative number. In order to
construct h∗, k∗ satisfying (5.104), we first find positive constants α, β such that

(5.105)
infΩ(b/c)
supΩ(v∗/u∗)

>
β

α
>
supΩ(u∗/v∗)
infΩ(g/f)

.

Such constants exist due to assumption (5.102). Then, define

h∗ := αu∗, k∗ := βv∗.

We have

(5.106) L1h
∗ + (a− 2bu∗ + cv∗)h∗ + cu∗k∗ = u∗(βcv∗ − αbu∗).

Moreover, for each x ∈ Ω, we obtain from (5.105)

(5.107)
(βcv∗ − αbu∗) 1

cu∗ = β v
∗
u∗ − α bc

≤ βsupΩ( v
∗
u∗ )− α infΩ( bc) < 0.

Thus we obtain the first inequality in (5.104) from (5.106) and (5.107). Similarly,
we can verify the second inequality in (5.104). The assertion on asymptotic
stability of the solution (u∗, v∗) can be deduced from Theorem A4-11 in Chapter
6. This completes the proof of Theorem 5.13.
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The following corollary is more readily applicable, using only information
from the coefficients of the system (4.22). Recall the definitions of cM , gM , bL
and gL etc. for Theorem 4.4.

Corollary 5.14. Assume L1 = L2, c(x) > 0, f(x) > 0 for each x ∈ Ω,

(5.108) cMfM < bLgL, ρ1(−L1) > 0, a > ρ1(−L1), e > ρ1(−L2),

and
(5.109)

bMgM
16bLgL(bLgL − cMfM )2

· (gLa2 + cMe
2)(bLe2 + fMa

2)
(a− ρ1(−L1))(e− ρ1(−L1))

· (supΩ
φ

ψ
)2 <

1
cMfM

,

where φ > 0 is the principal eigenfunction associated with ρ1(−L1), normalized
so that ||φ||∞ = 1 and ψ > 0 is the unique solution of

−L1ψ = 1, in Ω, ψ|∂Ω = 0.

Then the boundary value problem (4.22) has exactly one coexistence solution.
Furthermore, it is asymptotically stable.
Proof. We first show that the family of functions (ūt, v̄t), t ≥ 1, defined by

(5.110) ūt :=
t(gLa2 + cM b

2)
4(bLgL − cMfM )

ψ, v̄t :=
t(bLe2 + fMa

2)
4(bLgL − cMfM )

ψ,

are upper solutions to problem (4.22). To verify this, it suffices to show for
x ∈ Ω,

(5.111)
1 ≥ ψ · [a− t(b(x)K1 − c(x)K2)ψ],

1 ≥ ψ · [e− t(g(x)K2 − f(x)K1)ψ],

where

K1 :=
(gLa2 + cMe

2)
4(bLgL − cMfM)

, K2 :=
(bLe2 + fMa

2)
4(bLgL − cMfM )

.

For positive A and B, we have supξ≥0(A−Bξ)ξ = A2/(4B). Thus we find that
for each t ≥ 1,
(5.112)

ψ · [a− t(b(x)K1 − c(x)K2)ψ] ≤ a2

4t(b(x)K1 − c(x)K2)
≤ a2

4(bLK1 − cMK2)
.

Similarly, we find

(5.113) ψ · [e− t(g(x)K2 − f(x)K1)ψ] ≤ e2

4(bLK2 − cMK1)
.
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From the definition of K1 and K2, we have:

(5.114) a2 = 4(bLK1 − cMK2), e2 = 4(bLK2 − cMK1).

We thus obtain (5.111) from (5.112), (5.113) and (5.114). From the generalized
sweeping principle or Theorem A3-9 in Chapter 6, substituting at t = 1 in
(5.110) we obtain the estimates:

(5.115) u∗ ≤ (gLa2 + cMb
2)

4(bLgL − cMfM)
ψ, v∗ ≤ (bLe2 + fMa

2)
4(bLgL − cMfM)

ψ,

for any positive solution (u∗, v∗) of (4.22). By comparison with the scalar equa-
tions, we readily obtain

(5.116) u∗ ≥ θ[−L1,a,b] ≥
a− ρ1(−L1)

bM
ψ, v∗ ≥ θ[−L2,e,g] ≥

e− ρ1(−L1)
gM

ψ.

We can readily verify that (5.102) is satisfied by using (5.109), (5.115) and
(5.116). Consequently, we can apply Theorem 5.13 to complete the proof of this
corollary.

As in the above corollary, we can apply the generalized sweeping principle
and Theorem 5.13 to deduce other uniqueness and asymptotic stability results
as follows. (Since the technique is similar, we will omit the details which is given
in Corollary 9.5 in [45].)

Corollary 5.15. Assume L1 = L2, c(x) > 0, f(x) > 0 for each x ∈ Ω,

cMfM < bLgL, a ≥ e > ρ1(−L1),

and

(5.117)
N1

M2
· N2

M1
· (supΩ̄

θ[−L1,a,b(x)]

θ[−L2,e,g(x)]
)2 <

bLgL
cMfM

.

Then problem (4.22) has a unique coexistence state, which is asymptotically
stable. Here

N1 =
bM (gL + cM )
bLgL − cMfM , N2 =

bM (bL + fM)
bLgL − cMfM ,

M1 = max{ gL(cL + gM )
bMgM − cLfL ,

(cL + gL)[gM (bM + fM)− fLgL]
bM [gM (bM + fM)− fL(cL + gL)]

},

M2 = max{ gL(fL + bM )
bMgM − cLfL ,

gM (bM + fM)
gM (bM + fM )− fL(cL + gL)

}.

In the Volterra-Lotka model (4.1) for cooperating species with constant co-
efficients, we may perform stretching of variables in u and v to attain without
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loss of generality σ1 = σ2 = b = g = 1. In this case, Corollary 5.15 simplifies
into the following result as in Theorem 3.3 and 3.4 in Korman and Leung [107].

Corollary 5.16. Consider problem (4.1) with

(5.118) σ1 = σ2 = b = g = 1.

Suppose

cf < 1, a ≥ e > ρ1(−∆),

and

(5.119) (supΩ̄

θ[−∆,a,1]

θ[−∆,e,1]
)2 <

1
cf
.

Then problem (4.1) has a unique coexistence state, which is asymptotically stable.

Proof. Under the assumptions of this corollary, the constants M1,M2, N1 and
N2 of Corollary 5.15 satisfies

N1 = M1 =
1 + c

1− cf , N2 = M2 =
1 + f

1− cf .

Consequently hypothesis (5.117) becomes (5.119). The result follows from Corol-
lary 5.15.

There are some results for global attractivity of positive solution. In the
situation when we have uniform a-priori bound as in Theorem 5.13, we can
apply the following topological result in Hirsch [86] to the parabolic system
associated with (4.22).

Theorem 5.17. Assume that T is a strongly positive monotone continuous dy-
namical system on X where the cone K has non-empty interior and X is sepa-
rable. Moreover, assume that the closure of the positive semi-orbit O(x) of x is
compact for each x ∈ X. Then, there exists a dense subset A of X such that if
x ∈ A, then ω(x) (the ω-limit of x), is contained in the set of stationary points.

Due to excessive technicalities, we will omit the details of the above theorem.
As a consequence of the theorem, we have the following result.

Theorem 5.18 (Global Attractivity). Assume that cMfM < bLgL, a >
ρ1(−L1), e > ρ1(−L2), c(x) > 0, f(x) > 0 for each x ∈ Ω, and that prob-
lem (4.22) has a unique coexistence state, say (u∗, v∗). Consider the following
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corresponding parabolic problem:

(5.120)




ut = L1u+ u[a− b(x)u+ c(x)v]
in Ω× (0,∞),

vt = L2v + v[e+ f(x)u− g(x)v]

u = v = 0 on ∂Ω× (0,∞),

u(x, 0) = û0(x), v(x, 0) = v̂0(x) x ∈ Ω,

where û0, v̂0 ∈ C(Ω̄). Then the solution of (5.120) is defined for all t > 0
and there exists a dense subset A of (C(Ω̄))2 such that if û0 > 0, v̂0 > 0 and
(û0, v̂0) ∈ A, then

(5.121) limt→∞||u(x, t)− u∗||∞ = limt→∞||v(x, t) − v∗||∞ = 0.

The idea of the proof is as follows. If (û0, v̂0) ∈ A, we first show by means
of Theorem 5.17 that the solution of the parabolic problem (5.120) converges to
some steady state. Then we use comparison method to show that if û0 > 0 and
v̂0 > 0, the solution converges to a positive coexistence state. Finally, (5.121)
follows from the assumption on uniqueness of positive coexistence state. More
details can be found in the proof of Theorem 9.8 in [45]. They are omitted in
order to condense the length of this section.

Notes.
Theorem 5.1 and Theorem 5.2 can be found respectively in Li [148] and Li

and Ghoreishi [149]. Theorem 5.3 is obtained from Li and Ramm [152], and
Theorem 5.4 is adopted from methods in Leung [123]. Theorem 5.5 is found
in Leung [122]; Theorem 5.7 to Theorem 5.9 are due to Cosner and Lazer [32].
Theorems 5.10 and 5.11 are found in Dancer and Guo [42]. Theorem 5.12 is
obtained from Dancer [40]. Theorem 5.13, Corollaries 5.14 to 5.16 and Theorem
5.18 are due to Delgado, López-Gómez and Suarez [45]. Theorem 5.17 is obtained
by Hirsch [86].



Chapter 2

Positive Solutions for Large
Systems of Equations

2.1 Introduction

Most practical or real world reaction-diffusion problems involve more than two
interacting species. It is therefore crucial to extend the results in the last chap-
ter to various cases which arise in applicable problems. The challenge is to use
sophisticated methods to obtain rigorous reliable results which are useful for
fundamental understanding and application. An example for study is the mi-
gration of numerous North American mammals to interact with those of South
American origin (see, e.g. Darlington [43] and Young [240]). Will all species
coexist in the same environments? This leads to the study of the Section 2.2
where we study the coexistence of all species when various subgroups of species
are mixed together. Within each subgroup, the species may have mutualistic,
competing or food-chain relationship. It is shown that appropriate properties of
the subsystems will insure that the full system has a steady-state solution which
is strictly positive in each components. On the other hand, in a well-known
experiment, Paine [181] found that the removal of predator starfish Pisaster or-
chraceus from an area resulted in the reduction of a fifteen-species community
to an eight-species community. The question is how the presence of the starfish
enables the coexistence of all fifteen-species. As another example of application
for Section 2.4 concerning interaction of three species, we consider a problem
in neurochemistry. The process of inducing and suppressing pain in humans is
related to the interactions between certain biochemical substances distributing
along neuro-path nets. It is known that two neurotransmitters acetylcholine
and triethylcholine compete for chemical receptors. The first one induces pain
while the second one serves as an suppressor. These two are both predated
through deprivation of receptors by a third neuropeptide of a choline with a

111
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special structure (cf. Xu [237]). The positive coexistence of such three species
will affect the physiological sensitivity of an individual in response to pain stim-
ulation. In Section 2.3 we study the spread of several bacterial infections among
many interacting species. Conditions are found concerning the growth, infec-
tion, and interaction rates such that it is possible to attain positive coexistence
of the infected species and the various bacterias.

In Section 2.6, we consider applications of reaction-diffusion system to the
study the dynamics of nuclear fission reactors. The neutrons are divided into
m energy groups. The fission, removal, absorption and transfer rates of the
neutrons in different groups are dependent on temperature, which is described
by the (m+1)-st equation (see, e.g. Duderstadt and Hamilton [52] and Glasstone
and Sesonke [72]). We use bifurcation method to find critical size of reactor core
when positive steady-state can occur for the system which is not symmetric. The
asymptotic stability of the steady-state is also analyzed by means of a stability
theorem for sectorial operators.

Recently, various models are developed for the treatment of tumor growth
by means of drug and chemotherapy. They involve large systems of reaction-
diffusion equations with many interacting species (cf. Cui [35], Jackson [95], Cui
and Friedman [36], Friedman and Reitich [64], Ward and King [228] etc.). Such
new models in medical sciences necessitate systematic rigorous study of large
systems of nonlinear partial differential equations.

In every section in this chapter, Ω is a bounded domain in RN with bound-
ary ∂Ω belonging to C2+µ, 0 < µ < 1. The symbol ∆ denotes the Laplacian
operator. We have limit our discussion only on bounded domains, the extension
to unbounded domains (see e.g. Furusho [66]) is too lengthy for our present
purpose.

2.2 Synthesizing Large (Biological) Diffusive Systems
from Smaller Subsystems

In this section, large systems of steady-state reaction-diffusion equations describ-
ing many interacting species are studied. In every case, two uncoupled related
subsystems are first constructed and analyzed. We assume that all species of
each subgroup coexist among themselves when the other group is absent. The
problem is to determine whether all species can coexist when the two subgroups
are mixed together in the same environment. This section is motivated by studies
of many researchers on large ecosystem models (see e.g. Goh [73] and Simberloff
[207]). Here, we follow the presentations in Leung and Ortega [139]. It is shown
that appropriate properties of the subsystems will insure that the full system
has a steady-state solution which is strictly positive in each component. The
method of bifurcation and upper-lower solutions are used in the analysis. Bifur-
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cation theory is also used in the construction of lower solutions. More precisely,
we consider the system:

(2.1)




∆ui + ui[pi + Σm
j=1aijuj + Σn

j=1rijum+j] = 0 in Ω,

i = 1, ...,m,

∆um+i + um+i[qi + Σm
j=1sijuj + Σn

j=1bijum+j ] = 0 in Ω,

i = 1, ..., n,

ui = 0 on ∂Ω, i = 1, ...,m + n.

Here, Ω is a bounded domain in RN with boundary ∂Ω belonging to C2+µ, 0 <
µ < 1. The functions u1(x), ..., um(x) represent the concentrations of the first
group of m species, while the functions um+1(x), ..., um+n(x) denote those of
the second group of n species. The constants pi, qi, aij , rij , bij , sij are intrinsic
growth rates and interaction rates of the species. The system (2.1) describes the
m + n species in diffusive equilibrium while undergoing Volterra-Lotka type of
interaction.

It is convenient to introduce constant matrices:

A = {aij}, 1 ≤ i, j ≤ m, B = {bij}, 1 ≤ i, j ≤ n,

R = {rij}, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and

S = {sij}, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Letting ui = wi, i = 1, ...,m and um+i = zi, i = 1, ..., n, system (2.1) can be
written in the form:

(2.2)




∆wi + wi[pi + (Aw)i + (Rz)i] = 0 in Ω, i = 1, ...,m,

∆zi + zi[qi + (Sw)i + (Bz)i] = 0 in Ω, i = 1, ..., n;

wi = 0 on ∂Ω, i = 1, ...,m, and

zi = 0 on ∂Ω, i = 1, ..., n.

We will assume that the two groups of species, I and II, competes with each other,
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and each species inhibits its own growth rate. More precisely, we assume::

(2.3)




rij < 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

sij < 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

aii < 0 for 1 ≤ i ≤ m, and bii < 0 for 1 ≤ i ≤ n.

Assumption (2.3) will be made in Theorem 2.1 to Theorem 2.3 and all the
examples in this section. The following two uncoupled systems will serve as
starting points for analyzing the full system (2.1):

(2.4)




∆wi + wi[pi + (Aw)i] = 0 in Ω,

wi = 0 on ∂Ω, for i = 1, ...,m;

and

(2.5)




∆zi + zi[qi + (Bz)i] = 0 in Ω,

zi = 0 on ∂Ω, for i = 1, ..., n.

The methods of bifurcation and upper-lower solutions will be used in the anal-
ysis. The lower solutions are constructed by applying bifurcation theory at the
first eigenvalue of the Laplacian operator.

In the first theorem, we assume that within each of the two groups of species
the interactions among themselves are cooperative. That is, we assume:

(2.6) aij > 0, for i �= j, 1 ≤ i, j ≤ m;

and

(2.7) bij > 0, for i �= j, 1 ≤ i, j ≤ n.

For convenience, we define

p = min1≤i≤m pi and q = min1≤i≤n qi.

The principal eigenvalue for the operator −∆ on the domain Ω with zero Dirich-
let boundary data is denoted by λ0. We use λ0 in this section rather than the
usual λ1 to avoid possible confusion.

Theorem 2.1 (Synthesizing Competing Groups of Cooperative Species).
Assume hypotheses (2.3), (2.6) and (2.7). Suppose that there exist w̄ = (w̄1(x), ...,
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w̄m(x)), z̄ = (z̄1(x), ..., z̄n(x)) whose components are in Cα+µ(Ω̄), 0 < µ < 1, and
are positive for all x ∈ Ω such that

(2.8)




∆w̄i + w̄i[pi + (Aw̄)i] ≤ 0 in Ω,

w̄i = 0 on ∂Ω, for i = 1, ...,m;

and

(2.9)




∆z̄i + z̄i[qi + (Bz̄)i] ≤ 0 in Ω,

z̄i = 0 on ∂Ω, for i = 1, ..., n.

Further, assume

(2.10) c∗ + λ0 ≤ p and d∗ + λ0 ≤ q,

where
c∗ = max1≤i≤m{sup(−Rz̄(x))i : x ∈ Ω̄},
d∗ = max1≤i≤n{sup(−Sw̄(x))i : x ∈ Ω̄}.

Then there exist a solution (u1, u2, ..., um+n) ∈ [C2+µ(Ω̄]m+n of (2.1) such that
ui > 0 in Ω, i = 1, ...,m + n.

Remark 2.1. Hypotheses (2.8) and (2.9) can be rephrased vaguely as as-
suming that the subsystems (2.4) and (2.5) each has a positive upper solution.
Also note that, for hypotheses (2.10), c∗ and d∗ can be made arbitrarily small
by assuming −R and −S are small.

Before proving this theorem, we first observe the following lemma, which is
a direct result of the bifurcation Theorem A1-4 in Chapter 6.

Lemma 2.1. (a) For each i = 1, ...,m, the point (λ, v) = ([λ0 + c∗]p−1, 0) is a
bifurcation point for the scalar equation:

(2.11) −∆v + c∗v = v[λp + aii|v|] in Ω, v = 0 on ∂Ω.

(That is, in every neighborhood of ([λ0 + c∗]p−1, 0) in R × Cµ(Ω̄), there is a
solution to the equation with v �≡ 0).

(b) For each i = 1, ..., n, the point (λ, v) = ([λ0 + d∗]q−1, 0) is a bifurcation
point for the scalar equation:

(2.12) −∆v + d∗v = v[λq + bii|v|] in Ω, v = 0 on ∂Ω.

For convenience we will denote Cµ(Ω̄) by � in the rest of this section.
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Proof of Theorem 2.1. By the above lemma, there exist sequences {λik, wik)}∞k=1

and {λ̂ik, zik)}∞k=1 in R×�\{0}, with (λik, w
i
k)→ ([λ0 + c∗]p−1, 0) and (λ̂ik, z

i
k)→

([λ0 + d∗]q−1, 0) as k →∞, where

(2.13)



−∆wik + c∗wik = wik[λ

i
kp + aii|wik|] in Ω,

wki = 0 on ∂Ω, for i = 1, ...,m, and

(2.14)



−∆zik + d∗zik = zik[λ̂

i
kq + bii|zik|] in Ω,

zki = 0 on ∂Ω, for i = 1, ..., n.

Let ŵik = wik/||wik||�, ẑik = zik/||zik||�. Since (∆ + c∗)−1 and (∆ + d∗)−1 are
compact operators, there are subsequences of {ŵik}∞k=1, {ẑik}∞k=1, denoted by the
same symbols for convenience, and functions ŵ, ẑ in �, such that ||ŵik − ŵ||� →
0, ||ẑik − ẑ||� → 0 as k →∞, and ||ŵ||� = ||ẑ||� = 1. From (2.13) and (2.14), we
readily obtain −∆ŵ = λ0ŵ,−∆ẑ = λ0ẑ in Ω. Since λ0 is the first eigenvalue of
(−∆)−1, we must have ŵ > 0 or ŵ < 0 on Ω. The same is true for ẑ.

It follows that there exists k0 > 0 such that wik and zik have the same sign as
ŵ and ẑ respectively, for all k ≥ k0. Since the additive inverse of any solution
of (2.13) or (2.14) is also a solution of the same equation, we may assume that
wik > 0 and zik > 0 in Ω for all k ≥ k0. From hypothesis (2.10) and the limits of
λik and λ̂ik, we may also assume that 0 < λik ≤ 1 and 0 < λ̂ik ≤ 1 for all k ≥ k0.
Moreover, from the fact that ||wik||� → 0 and ||zik||� → 0 as k →∞, there exists
an integer k1 ≥ k0 such that

(2.15) wik ≤ w̄i, i = 1, ...,m and zik ≤ z̄i, i = 1, ..., n in Ω

for all k ≥ k1.
Define wi = wik1, i = 1, ...,m, zi = zik1 , i = 1, ..., n, in Ω̄. From (2.13) and

(2.14), we obtain

(2.16)
∆wi = −wi[λik1p + aiiwi − c∗]

≥ −wi[pi + (Aw)i + (Rz̄)i] in Ω,

for i = 1, ...,m; and

(2.17)
∆zi = −zi[λ̂ik1q + biizi − d∗]

≥ −zi[qi + (Bz)i + (Sw̄)i] in Ω,
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for i = 1, ..., n. Moreover, we have 0 ≤ wi ≤ w̄i for i = 1, ...,m and 0 ≤ zi ≤ z̄i
for i = 1, ..., n, for all x ∈ Ω̄. On the other hand, hypotheses (2.3), (2.8) and
(2.9) imply that

(2.18) ∆w̄i ≤ −w̄i[pi + (Aw̄)i + (Rz)i] in Ω, for i = 1, ...,m,

and

(2.19) ∆z̄i ≤ −z̄i[qi + (Bz̄)i + (Sw)i] in Ω, for i = 1, ..., n.

Thus the pair of functions (w1, ...,wm, z1, ..., zm) and (w̄1, ..., w̄m, z̄1, ..., z̄n) form
coupled lower and upper solutions for the system (2.1). Here we have used (2.16)-
(2.19) and hypotheses (2.3), (2.6) and (2.7) concerning the signs of the matrices
A,B,R and S. Consequently, by a well-known theorem (cf., e.g. Theorem 1.4-2
in [125] or Theorem 8-10.5 in [183], there is a solution (u1, u2, ..., um+n) of (2.1)
with 0 < wi ≤ ui ≤ w̄i, i = 1, ...,m and 0 < zi ≤ ui ≤ w̄i, i = 1, ..., n in Ω. This
proves the Theorem.

We next consider the situation when the species inside group I do not interact
cooperatively as in (2.6). We assume the other relations between the groups I
and II, and inside group II, remain unchanged. In group I, we assume that
there is one predator (i.e. the m-th species) with m− 1 competing preys. More
precisely, we suppose:

(2.20)
aij < 0 for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m;

amj > 0 for 1 ≤ j ≤ m− 1.

In this case we will not assume as before that the subsystem (2.4), i.e. the
subsystem for species inside group I, has an upper solution as given in (2.8). If
we have the hypothesis:

(2.21) λ0 < p,

we define positive functions y = (y1(x), ..., ym(x)) in Ω as follows:


−∆yi = yi[pi + aiiyi] in Ω,

yi = 0 on ∂Ω, for i = 1, ...,m − 1;

−∆ym = ym[pm + Σm−1
j=1 amjyj + ammym] in Ω

ym = 0 on ∂Ω.

From hypotheses (2.21) and the assumption on aii in (2.3), we see that small
positive multiples of an eigenfunction of the operator ∆ and large constant
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functions are respectively lower and upper solutions of each of the above scalar
equations successively. By means of Lemma 2.1 in Chapter 1 or Theorem 1.4-2
and Lemma 5.2-2 in [125], we can readily show that the above equations have a
solution y ∈ [C2+µ(Ω̄)]m, and each yi is a uniquely defined positive function in
Ω, i = 1, ...,m. For convenience, we define the matrix:

Ã = {ãij}, 1 ≤ i, j ≤ m,
where

ãij = aij if i �= j, and ãij = 0 if i = j

Theorem 2.2 (Synthesizing a Prey-Predator Group with a Coopera-
tive Group). Assume hypotheses (2.3), (2.7), (2.20) and (2.21). Suppose that
there exists z̄ = (z̄1(x), ..., z̄n(x)) whose components are in C2+µ(Ω̄), 0 < µ < 1,
and are positive for all x ∈ Ω such that

(2.22)




∆z̄i + z̄i[qi + (Bz̄)i] ≤ 0 in Ω,

z̄i = 0 on ∂Ω, for i = 1, ..., n.

Further, assume

(2.23) c̃+ λ0 ≤ p and d̃+ λ0 ≤ q,

where

c̃ := max{ sup{(Ãy(x)−Rz̄(x))i : x ∈ Ω̄}, i = 1, ...,m − 1;

sup{(−Rz̄(x))m : x ∈ Ω̄}},

d̃ := max1≤i≤n{sup(−Sy(x))i : x ∈ Ω̄}.
Then there exists a solution (u1, u2, ..., um+n) ∈ [C2+µ(Ω̄]m+n of (2.1) such that
ui > 0 in Ω, i = 1, ...,m + n.

Remark 2.2. (a) Note that y is constructed independent of the off-diagonal
entries of the first m−1 rows of the matrix A. On the other hand, the matrix Ã
is independent of the diagonal entries of A; and thus, the first inequality of (2.23)
is valid provided that −R and the absolute value of the off-diagonal entries of
the first m− 1 rows of A is sufficiently small.

(b) Hypothesis (2.21)is actually included in assumption (2.23).

Proof of Theorem 2.2. As in the proof of the last theorem, we consider the
following equations:

(2.24)



−∆w + c̃w = w[λp + aii|w|] in Ω,

w = 0 on ∂Ω, for i = 1, ...,m;
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and

(2.25)



−∆z + d̃z = z[λ̃q + bii|z|] in Ω,

z = 0 on ∂Ω, for i = 1, ..., n.

As in Lemma 2.1, we can show that (λ,w) = (|λ0 + c̃]p−1, 0) is a bifurcation
point of (2.24), and (λ̃, z) = (|λ0 + d̃]q−1, 0) is a bifurcation point of (2.25).
There exist sequences {(λik, wik)}∞k=1 and {(λ̃ik, zik)}∞k=1 in R×� with (λik, w

i
k)→

([λ0 + c̃]p−1, 0) and (λ̃ik, z
i
k) → ([λ0 + d̃]q−1, 0) as k → ∞, where wik > 0 and

zik > 0 are solutions of:

(2.26)



−∆wik + c̃wik = wik[λ

i
kp + aii|wik|] in Ω,

wik = 0 on ∂Ω, for i = 1, ...,m;

and

(2.27)



−∆zik + d̃zik = zik[λ̃

i
kq + bii|zik|] in Ω,

zik = 0 on ∂Ω, for i = 1, ..., n.

By hypothesis (2.23), we may assume that 0 < λik ≤ 1 and 0 < λ̃ik ≤ 1 for all
k ≥ k0, some k0.

Since ||wik||� → 0, ||zik||� → 0 as k → ∞, there exists a positive integer
k1 ≥ k0, such that 0 < wik ≤ yi, i = 1, ...,m, 0 < zik ≤ z̄i, i = 1, ..., n, in Ω, for all
k ≥ k1. Define wi = wik1 for i = 1, ...,m, zi = zik1 for i = 1, ..., n in Ω̄; and let
w = (w1, ...,wm), z = (z1, ..., zn). From (2.26) and (2.27), we obtain:

(2.28)
∆wi = −wi[λik1p + aiiwi − c̃]

≥ −wi[pi + aiiwi + (Ãy)i + (Rz̄)i] in Ω,

for i = 1, ...,m − 1; and

(2.29)
∆wm = −wm[λmk1p + ammwm − c̃]

≥ −wm[pi + ammwm + (Ãw)m + (Rz̄)m] in Ω.

Moreover, we have

(2.30)
∆zi = −zi[λ̂ik1q + biizi − d̃]

≥ −zi[qi + biizi + (Bz)i + (Sy)i] in Ω,
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for i = 1, ..., n, and 0 < wi ≤ yi, 0 < zi ≤ z̄i in Ω. On the other hand, from the
construction of y, hypotheses (2.20) and (2.22), we deduce that:

(2.31)

∆yi ≤ −yi[pi + aiiyi + (Ãw)i + (Rz)i] in Ω, for i = 1, ...,m − 1,

∆ym ≤ −ym[pm + ammym + (Ãy)m + (Rz)m] in Ω,

∆z̄i ≤ −z̄i[qi + (Bz̄)i + (Sw)i] in Ω, for i = 1, ..., n.

Thus, the pair of functions (w1, ...,wm, z1, ..., zn) and (y1, ..., ym, z̄1, ..., z̄n) form
lower and upper solutions for the system (2.1). Consequently, we conclude as
in the last theorem that problem (2.1) has a positive solution in Ω, between the
upper and lower solutions.

In the third case, we consider the situation when there is a competing relation
inside the first group of species and a food-chain relation inside the second group.
Again, the two groups compete against each other as before. More specifically,
we assume:

(2.32) aij < 0 for 1 ≤ i, j ≤ m;

(2.33)
bi,i+1 < 0 for 1 ≤ i ≤ n− 1,
bi,i−1 > 0 for 2 ≤ i ≤ n, and
bij = 0 for |i− j| > 1.

Positive solutions inside a food-chain group have been studied in López-Gómez
and Pardo San Gil [163]. Here, we will not need to assume the existence of
positive solution explicitly inside each group as in Theorem 2.1. For convenience,
we define

(2.34) C1 = q1/|b11|, Ci = (qi + Ci−1bi,i−1)/|bii| for i = 2, ..., n;

(2.35)
A∗
i = Σm

j=1,j 	=i|aijpj/ajj |+ Σn
j=1|rij |Cj for i = 1, ...,m; and

B∗
i = |bi,i+1|Ci+1 + Σm

j=1|sijpj/ajj| for i = 1, ..., n.

Theorem 2.3 (Synthesizing a Competing Group with a Food-Chain
Group). Assume hypotheses (2.3), (2.32) and (2.33). Suppose

(2.36)
A∗
i + λ0 < pi for i = 1, ...,m, and

B∗
i + λ0 < qi for i = 1, ..., n.
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Then there exists a solution (u1, u2, ..., um+n) ∈ [C2+µ(Ω̄)]m+n of problem (2.1)
such that ui > 0 in Ω, i = 1, ...,m + n.

Proof. First define w̄i ∈ C2+µ(Ω̄) for i = 1, ...,m to be the unique positive
solution of the problem:


−∆w̄i = w̄i[pi + aiiw̄i] in Ω,

w̄i = 0 on ∂Ω, w̄i > 0 in Ω.

It is clear that w̄i ≤ pi/aii in Ω̄.(See e.g. Chapter 5 in [125]). Further, define
z̄i ≡ Ci in Ω for i = 1, ..., n. From (2.34), we see that z̄i satisfies

−∆z̄i = 0 ≥ z̄i[qi + bi,i−1z̄i−1 + biiz̄i] in Ω, for i = 1, ..., n.

(Here, we denote z̄0 = 0, b1,0 = 0 for convenience.)
To construct a lower solution for system (2.1) in this theorem, we consider

the auxiliary problems:

(2.37)



−∆w +A∗

iw = w[λpi + aii|w|] in Ω,

w = 0 on ∂Ω, for i = 1, ...,m;

and

(2.38)



−∆z +B∗

i z = z[λ̂qi + bii|z|] in Ω,

z = 0 on ∂Ω, for i = 1, ..., n.

As in Theorem 2.1, the points (λ,w) = ([λ0 +A∗
i ]/pi, 0) ∈ R×� are bifurcation

points for equation (2.37), and (λ̂, z) = ([λ0 +B∗
i ]/qi, 0) ∈ R×� are bifurcation

points for equation (2.38). There exist sequences {(λik, wik)}∞k=1, {(λ̂ik, zik)}∞k=1,

with wik > 0 and zik > 0 in Ω, (λik, w
i
k) → ([λ0 + A∗

i ]/pi, 0), (λ̂ik , z
i
k) → ([λ0 +

B∗
i ]/qi, 0) in R×�, as k →∞. Moreover,

(2.39)



−∆wik +A∗

iw
i
k = wik[λ

i
kpi + aii|wik|] in Ω,

wik = 0 on ∂Ω, for i = 1, ...,m;

and

(2.40)



−∆zik +B∗

i z
i
k = zik[λ̂

i
kqi + bii|zik|] in Ω,

zik = 0 on ∂Ω, for i = 1, ..., n.

By hypotheses (2.36), we have 0 < [λ0 +A∗
i ]/pi < 1 and 0 < [λ0 +B∗

j ]/qj < 1 for
i = 1, ...,m and j = 1, ..., n, respectively. It follows that there exists a positive
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integer k0 such that 0 < λik0 < 1, 0 < λ̂jk0 < 1 and 0 < wik0 ≤ w̄i, 0 < zjk0 ≤ z̄j in
Ω̄ for i = 1, ...,m and j = 1, ..., n, respectively.

Finally, define wi = wik0 and zj = zjk0 in Ω in for i = 1, ...,m and j = 1, ..., n,
respectively. Set w̄ = (w̄1, ..., w̄m), w = (w1, ...,wm), z̄ = (z̄1, ..., z̄n) and z =
(z1, ..., zn) in Ω̄. From (2.39) and (2.35), we have for i = 1, ...,m,

(2.41)
−∆wi = −A∗

iwi + wi[λk0pi + aiiwi]

≤ wi[pi + aiiwi + (Ãw̄)i + (Rz̄)i] in Ω.

From (2.33), (2.40) and (2.35), we have for i = 1, ..., n,

(2.42)
−∆zi = −B∗

i zi + zi[λ̂k0qi + biizi]

≤ zi[qi + biizi + bi,i−1zi−1 + bi,i+1z̄i+1 + (Sw̄)i] in Ω.

Moreover, from hypotheses (2.32) and (2.33), we obtain for i = 1, ...,m,

(2.43)
−∆w̄i = w̄i[pi + aiiw̄i]

≥ w̄i[pi + aiiw̄i + (Ãw)i + (Rz)i] in Ω;

and we obtain for i = 1, ..., n,

(2.44)
−∆z̄i ≥ z̄i[qi + bi,i−1z̄i−1 + biiz̄i]

≥ z̄i[qi + bi.i−1z̄i−1 + biiz̄i + bi,i+1zi+1 + (Sw)i] in Ω.

Consequently, we find that the pair (w̄1, ..., w̄m, z̄1, ..., z̄n) and (w1, ...,wm,
z1, ..., zn) form upper and lower solutions for the system (2.1) under the hypothe-
ses of this theorem. We then conclude that there exists a solution
(u1, ..., um+n) between the pair, and it has the properties as stated in the
theorem.

In general, it is nontrivial to verify assumptions (2.8) to (2.10) in Theorem
2.1. However, in some cases, it is not difficult to express these hypotheses
directly in terms of the growth and interaction coefficients of the components,
as illustrated in the following example.

Example 2.1. Consider system (2.1) with m = 3, n = 2. Assume hypotheses
(2.3), (2.6) and (2.7). Let

D = det

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , D1 = det

∣∣∣∣∣∣
−1 a12 a13

−1 a22 a23

−1 a32 a33

∣∣∣∣∣∣ ,



2.2. SYNTHESIZING LARGE SYSTEMS 123

D2 = det

∣∣∣∣∣∣
a11 −1 a13

a21 −1 a23

a31 −1 a33

∣∣∣∣∣∣ , D3 = det

∣∣∣∣∣∣
a11 a12 −1
a21 a22 −1
a31 a32 −1

∣∣∣∣∣∣ ,

D4 = det

∣∣∣∣ b11 b12
b21 b22

∣∣∣∣ , D5 = det

∣∣∣∣−1 b12
−1 b22

∣∣∣∣ , D6 = det

∣∣∣∣ b11 −1
b21 −1

∣∣∣∣ .
Suppose that

(2.45) D,D1,D2 and D3 have the same sign;

(2.46) D4,D5 and D6 have the same sign; and

(2.47) p > λ0, q > λ0.

Then there exists a solution (u1, ..., u5) ∈ [C2+µ(Ω̄)]5 of problem (2.1) such that
ui > 0 in Ω, for i = 1, ..., 5, provided that all the entries of the matrices R and
S are sufficiently small in absolute value.

Remark 2.3. An example for aij and bij satisfying (2.45), (2.46), (2.6) and
(2.7) is given by a11 = −3, a12 = 2, a13 = 3, a21 = 1, a22 = −5, a23 = 2, a31 =
1, a32 = 1, a33 = −4 and b11 = −2, b12 = 1, b21 = 1, b22 = −1.

Proof. Let θ and ξ be respectively the unique positive solution of the boundary
value problems:

(2.48) −∆v = v[p̄− v] in Ω, v = 0 on ∂Ω,

and

(2.49) −∆ṽ = ṽ[q̄ − ṽ] in Ω, ṽ = 0 on ∂Ω,

where p̄ = max{p1, p2, p3} and q̄ = max{q1, q2}. For α = D1/D > 0, β =
D2/D > 0, γ = D3/D > 0, the function w = (w1, w2, w3) = (αθ, βθ, γθ) is a
solution of the problem

(2.50)



−∆wi = wi[p̄+ (Aw)i] in Ω,

wi = 0 on ∂Ω, for i = 1, 2, 3.

For ᾱ = D5/D4 > 0, β̄ = D6/D4 > 0, the function z = (z1, z2) = (ᾱξ, β̄ξ) is a
solution to the problem

(2.51)



−∆zi = zi[q̄ + (Bz)i] in Ω,

zi = 0 on ∂Ω, for i = 1, 2.
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Equations (2.50) and (2.51) imply that w = (w1, w2, w3) = (αθ, βθ, γθ) satisfies

(2.52)




∆wi + wi[pi + (Aw)i] ≤ 0 in Ω,

wi = 0 on ∂Ω, for i = 1, 2, 3,

and z = (z1, z2) = (ᾱξ, β̄ξ) satisfies

(2.53)




∆zi + zi[qi + (Bz)i] ≤ 0 in Ω,

zi = 0 on ∂Ω, for i = 1, 2.

Inequality (2.47) and the assumptions on the matrices R and S imply that
condition (2.10) in Theorem 2.1 is valid. Thus the existence of positive solution
in this example follows from Theorem 2.1.

Remark 2.4. Since 1/p̄ and 1/q̄ are upper bounds for the positive solutions in
(2.48) and (3.49), respectively, one can readily obtain an explicit condition on
the matrices R and S such that (2.10) is satisfied.

Further extentions of the theories in this section can be found in [139].

2.3 Application to Epidemics of Many Interacting
Infected Species

This section considers the application of systems of reaction-diffusion to epi-
demiology. Blat and Brown [12] model the spread of infections by a system of
two reaction-diffusion equations. Capasso and Maddalena [23], [24] use similar
models to investigate the spread of oro-faecal or other bacterial and viral dis-
eases. In this section, we consider large systems modeling the spread of several
bacterial infections among many interacting species, as described in Leung and
Villa [142]. More precisely, we consider
(3.1)


−∆ui + ai(x)ui = Σm
j=1bijvj for x ∈ Ω, i = 1, ..., n,

−∆vk + ãkvk = Σn
j=1fkj(uj) + vkΣm

j=1ckjvj for x ∈ Ω, k = 1, ...,m,

ui = vk = 0 for x ∈ ∂Ω, i = 1, ..., n, k = 1, ...,m,

where bij > 0 and ckj are any constant, fkj ∈ C1(R), and Ω is a bounded domain
in RN , with boundary ∂Ω of class C2+α, 0 < α < 1.

We will also consider the corresponding parabolic system, with ∂ui/∂t and
∂vk/∂t added to the first n and second m equations respectively on the left on
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(3.1). The functions ui represent n different kinds of bacterial population densi-
ties and the functions vk represent m different-type infected-species population
densities. The populations are assumed to diffuse in the space domain Ω. The
functions ai(x) are assumed to be positive, because the bacterial populations
tend to die in the absence of other factors; the term bijvj represent the growth
of the number of bacterial due to infected species. The functions ãk(x) are as-
sumed to be positive, because a certain proportion of the infected species recover
per unit time; the term fkj(uj) describe the rate at which the kth species be-
comes infected by uj , and the terms vkckjvj describe the interaction between the
kth and the jth infected species. The model can be more naturally interpreted
in the form of the corresponding parabolic system, with the positive solutions of
(3.1) considered as steady-states. The prototype form with m = n = 1, c11 = 0,
is introduced in e.g. [12] and [23]. We will consider the case when all cjk are
zero as well as other cases.

For convenience, we will adopt the following conventions. Let B and K0 be
respectively n×m and m× n constant matrices as follows:

(3.2) B =



b11 · · · b1m
· ·
· ·
· ·
bn1 · · · bnm


 , K0 =



f ′11(0) · · · f ′1n(0)
· ·
· ·
· ·

f ′m1(0) · · · f ′mn(0)


 .

For abbreviation, we write F̂ = col.(F1, ..., Fn+m), where Fj are operators from
[C1(Ω̄)]n+m into C1(Ω̄) defined by
(3.3)
Fi[col.(u1, ..., un, v1, ..., vm)] = Σm

j=1bijvj for i = 1, ..., n,

Fn+k[col.(u1, ..., un, v1, ..., vm)] = Σn
j=1fkj(uj) + vkΣm

j=1ckjvj for k = 1, ...,m.

We now label a few key assumptions, some or all of which will be used in
various theorems in this section:

(3.4)
The functions ai, ãk are members of Cα(Ω̄), 0 < α < 1 and satisfy
ai(x) > 0, ãk(x) > 0 for all x ∈ Ω̄, i = 1, ..., n, k = 1, ...,m.

(3.5)
The functions fkj ∈ C1(R) satisfy f ′kj(0) > 0 and fkj(0) = 0;
fkj(s) ≥ 0 for all s ≥ 0, k = 1, ...,m, j = 1, ..., n. For each k, there exists
at least one j such that 0 < fkj(s) for all s > 0.

(3.6)
The functions fkj satisfy fkj(s) ≤ K1s for all s > 0,
where K1 is some positive constant.
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(3.7)
There exists a constant vector �d = col.(d1, ..., dn), with di > 0,
i = 1, ..., n, such that BK0

�d > (λ1 + a∗)2 �d.

Here, the (strict) inequality between the two vectors are interpreted to be sat-
isfied for each component. The quantity λ1 is the principal eigenvalue for
−∆ as defined by (1.5) in Section 1.1, with principal eigenfunction φ where
||φ||∞ = 1. The symbols a∗ and a∗∗ are defined as a∗ = sup.{ai(x), ãk(x)|x ∈
Ω̄, i = 1, ..., n, k = 1, ...,m} and a∗∗ = inf.{ai(x), ãk(x)|x ∈ Ω̄, i = 1, ..., n, k =
1, ...,m}.

Another assumption which will sometimes be used concerning the interaction
of the infected species vk is as follows:

(3.8) ckk < 0, and |ckk| > Σm
j=1,j 	=k|ckj |, for each k = 1, ...,m.

In order to simplify writing, we introduce a few more notations. Let

E = {w = col.(w1, ..., wn+m)|wi ∈ C1(Ω̄), wi = 0 on ∂Ω, i = 1, ...,m + n},

with norm ||w||E = max.{||wi||C1(Ω̄)|i = 1, ...,m + n}; and P denotes the cone
P = {col.(w1, ..., wn+m) ∈ E|wi ≥ 0 in Ω̄, i = 1, ..., n +m}. Also, let

Y = {w = col.(w1, ..., wn+m)|wi ∈ C2+α(Ω̄), wi = 0 on ∂Ω}

with its norm denoted as ||w||Y = max.{||wi||C2+α(Ω̄)|i = 1, ...,m + n}. As
operators from C2+α(Ω̄) into Cα(Ω̄), we write

Li := −∆ + ai, i = 1, ..., n,

Ln+k := −∆ + ãk, k = 1, ...,m.

As an operator from Y into [Cα(Ω̄)]n+m, we write L = col.(L1, ..., Ln+m).
The system (3.1) can be abbreviated as

(3.9) L[w] = F̂ [w], where w ∈ Y,

To study this nonlinear problem, we consider the auxiliary problem:

(3.10) L[w] = λF̂ [w], w ∈ Y,

where λ is a parameter, and investigate the bifurcation from the trivial solution
w = 0 as the parameter λ passes through a certain value λ0. Under conditions
(3.4) and (3.5), we will see that this bifurcation actually occurs in Theorem 3.1.
Moreover, in Theorem 3.2, we will see that hypotheses (3.5), (3.6) and (3.7)
insure that λ0 < 1; and hypothesis (3.8) insures that the bifurcation curve of
nontrivial solutions connects to λ = +∞. Thus (3.10) has a nontrivial solution
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when λ = 1, i.e. (3.9) has a nontrivial solution under appropriate conditions.
For convenience, we let M0 denotes the (n+m)×(n+m) square constant matrix:

M0 =
[

0 B
K0 0

]

where the 0’s along the diagonal are zero matrices with appropriate dimensions.
Applying L−1 to both sides of (3.10), using zero Dirichlet boundary condition,
we obtain: w = λL−1F̂ [w]. Thus, (3.10) can be written as:

(3.11) Q(λ,w) = 0, (λ,w) ∈ R× E,

where Q : R× E → E is an operator given by

Q(λ,w) := w − λL−1F̂ [w]

(for this entire section the inverse operators L−1 or L−1
i will always mean finding

the solution using zero Dirichlet boundary condition).

Theorem 3.1.Under hypotheses (3.4) and (3.5), the point (λ0, 0) is a bifurca-
tion point for problem (3.11). Here λ = λ0 is the unique positive number so that
the problem:

(3.12) L[w] = λM0w in Ω, w = 0 on ∂Ω,

has a non-negative eigenfunction in E. (The nullspace for L−1M0 − 1
λ0
I is one

dimensional as described in Lemma 3.2 below.) Moreover, the component of S̄
containing the point (λ0, 0) is unbounded, where

S := {(λ,w) ∈ R+ ×P| Q(λ,w) = 0, λ > 0 and w ∈ P\{0}};

and it also has the property that S̄ ∩ (R+ × ∂P) = (λ0, 0).
We first state a sequence of lemmas which will lead to the proof of Theorem

3.1. The proof of the lemmas will be given afterwards.

Lemma 3.1. (Comparison) Let w, ŵ ∈ [C2(Ω)∩C1(Ω̄)]n+m, w �≡ 0, ŵi ≥ 0, ŵi �≡
0 in Ω, for i = 1, . . . , n +m, satisfy


Li[wi(x)] =

∑n+m
j=1 pij(x)wj(x), for x ∈ Ω, i = 1, . . . , n+m

w|∂Ω = 0, w = col.(w1, . . . , wn+m),



Li[ŵi(x)] ≥∑n+m

j=1 qij(x)ŵj(x), for x ∈ Ω, i = 1, . . . , n +m

ŵ = col.(ŵ1, . . . , ŵn+m)
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where pij and qij are bounded functions in Ω. Suppose that

qij ≥ pij in Ω̄ for i, j = 1, . . . , n+m,

and qij, pij ≥ 0 in Ω̄ for all i �= j,

then there exists an integer k, 1 ≤ k ≤ n+m and a real number δ such that

ŵk ≡ δwk, pkj ≡ qkj in Ω̄ for all j = 1, . . . , n+m,

and ŵj − δwj ≥ 0 for all j = 1, . . . , n+m.

Lemma 3.2. Under hypotheses (3.4) and (3.5), there exists (λ0, w
0) ∈ R × Y ,

λ0 > 0, such that

(3.13) L[w0] = λ0M0w
0 in Ω, w0 = 0 on ∂Ω

with each component w0
i > 0 in Ω, ∂w0

i /∂ν < 0 on ∂Ω for i = 1, . . . , n +
m. Furthermore, the eigenfunction corresponding to the eigenvalue 1/λ0 for
the operator L−1M0 : [C1(Ω̄)]n+m → [C1(Ω̄)]n+m is unique up to a multiple.
Also, the number λ = λ0 is the unique positive number so that the problem
w = λL−1M0w has a nontrivial non-negative solution for w ∈ P.

Lemma 3.3. Let G : E → E be the operator defined by:

G[w] = L−1[F̂ (w) −M0w],

then ||G[w]||E/||w||E → 0 as ‖w‖E → 0.

Proof of Theorem 3.1. The operator G described in Lemma 3.3 is completely
continuous, and the operator L−1M0 described in Lemma 3.2 is compact and
positive with respect to P. Equation (3.11) can be written as:

w − λL−1[M0w]− λG[w] = 0, for (λ,w) ∈ R+ × E.

By means of Lemma 3.3 and the existence and uniqueness part of Lemma 3.2, we
can apply Theorem 29.2 in Diemling [49] to conclude that (λ0, 0) is a bifurcation
point for problem (3.11), and the component of S containing the point (λ0, 0)
as described above is unbounded.

Let (λi, wi) ∈ S, i = 1, 2, ..., be a sequence tending to a limit point (λ̄, w̄) in
R+ × ∂P, and (λ̄, w̄) �= (λ0, 0). We now show that w̄ = col.(w̄1, ..., w̄n+m) must
satisfy w̄i ≡ 0 in Ω̄, for each i = 1, ..., n+m. Consider the first case when there
exists some x0 ∈ Ω and some j ∈ {1, ..., n} such that w̄j(x0) = 0. The equation
Lj[w̄j ] = λ̄Σm

k=1bjkw̄n+k ≥ 0 implies w̄j ≡ 0 in Ω̄; and subsequently the right
side of this equation implies that w̄n+k ≡ 0 in Ω̄ for each k = 1, ...,m. This leads
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to Li[w̄i] = 0 in Ω, for i = 1, ..., n, and thus w̄i ≡ 0 for such i too. Hence w̄ ≡ 0
in this case.

Consider the second case when w̄j > 0 in Ω for all j ∈ {1, ..., n}. For each
k = 1, ...,m, λ > 0, we introduce the problem

(3.14)



Lk[z] = λ

∑n
j=1 fkj(w̄j) + λz[

∑m
j=1,j 	=k ckjw̄n+j + ckkz] in Ω,

z = 0 on ∂Ω.

The function ω0 ≡ 0 is a lower solution of (3.14) due to the sign of fkj; and
w̄n+k ≥ 0 is a solution which is �≡ 0, due to (3.5). Since f ′kj(0)∂w̄j/∂ν < 0 on
∂Ω, there exists a small δ1 > 0 such that for 0 ≤ δ ≤ δ1, we have

(3.15) λ1δφ+ ãk(x)δφ < λΣn
j=1fkj(w̄j) +λδφ[Σm

j=1,j 	=kckjw̄n+j + ckkδφ] in Ω.

Consequently, the functions ωδ := δφ, 0 ≤ δ ≤ δ1, form a family of lower solutions
for problem (3.14), and w̄n+k �≡ ωδ for all δ ∈ [0, δ1]. By means of a sweeping
principle (cf. Theorem 1.4-3 in [125]), it follows that w̄n+k ≥ ωδ1 > 0 in Ω.
Moreover, for each k = 1, ...,m, the function w̄n+k satisfies

Lk[w̄n+k] ≥ λΣn
j=1fkj(w̄j) − λw̄n+k|Σm

j=1ckjw̄n+j | in Ω,

and thus

−∆w̄n+k + ãkw̄n+k + λ|Σm
j=1ckjw̄n+j|w̄n+k ≥ λΣn

j=1fkj(w̄j) ≥ 0 in Ω.

It follows from the maximum principle that ∂w̄n+k/∂ν < 0 on ∂Ω. We thus
obtain in this second case that w̄ ∈ Int(P), which is a contradiction. Hence,
only the first case can happen, and we must have w̄ ≡ 0.

Next define zi := wi/||wi||E , i = 1, 2, . . . ; they satisfy

(3.16) zi − λiL−1[M0zi]− λiG[wi]/||wi||E = 0.

Since L−1M0 is compact, there exists a subsequence of {zi}(again denoted by
{zi} for convenience) such that L−1M0zi converges in E. Since G[wi]/||wi||E
tends to zero in E, as ||wi||E → ||w̄||E = 0, Eq. (3.16) implies that {zi} converges
in E to a function z0 say, and

z0 = λ̄L−1M0z0.

Moreover, we have z0 ∈ P since wi ∈ P, and z0 �≡ 0 since ||zi|| = 1 for all i. The
uniqueness part of Lemma 3.2 thus implies that λ̄ = λ0. Consequently, we must
have (λ̄, w̄) = (λ0, 0). This completes the proof of Theorem 3.1.

For completeness, we will present the proofs of Lemmas 3.1 to 3.3.
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Proof of Lemma 3.1. Let K > 0 be a positive constant such that pii+K, qii+
K > 0 in Ω̄, for i = 1, ..., n +m. From the inequalities for Li[ŵi(x)] and qij, pij ,
we have

Li[ŵi] +Kŵi ≥ (qii +K)ŵi +
m+n∑
j=1, 	=i

qijŵj ≥ 0.

Thus the maximum principles imply the following properties

ŵi > 0 in Ω, and (∂ŵi/∂η)(x̄) < 0 if x̄ ∈ ∂Ω and ŵi(x̄) = 0.

Without loss of generality, we may assume that some component of w takes a
positive value somewhere. Otherwise, replace w by −w. Since w = 0 on ∂Ω,
we can readily obtain from properties just obtained that ŵi(x)− εwi(x) > 0 for
some ε > 0 and all x ∈ Ω, i = 1, ..., n + m. Let δi = sup{a : ŵi − awi > 0 in Ω}
for those i = 1, ..., n+m such that δi can be finitely defined. Define δ to be the
minimum of such δ′is. Thus δ = δk for some k, and 0 < δk <∞, ŵi − δwi ≥ 0 in
Ω for i = 1, ..., n+m. From the inequalities for Li[wi(x)] and Li[ŵi(x)], we find
the inequality

(Lk +K)(ŵk − δkwk) ≥ (K + pkk)(ŵk − δkwk) +
∑m+n

i=1, 	=k pki(ŵi − δkwi)

+
∑m+n

i=1 (qki − pki)ŵi ≥ 0 in Ω.

Consequently, the maximum principle implies that ŵk − δwk ≡ 0 in Ω. Then,
the last inequality above further implies that we must have qki ≡ pki for all
i = 1, ..., n +m.

Proof of Lemma 3.2. The operator L−1M0 as described in the Lemma is com-
pletely continuous and positive with respect to the cone P. Let z = col.(z1, ...,
zn+m) = col.(L−1

1 (1), ..., L−1
n+m(1)). The functions satisfy zi > 0 in Ω, zi|∂Ω = 0

for i = 1, ..., n + m. Define v = L−1M0z. The positivity of B,K0 and the
maximum principle imply that the components satisfy vi > 0 and ∂vi/∂ν < 0
on ∂Ω for i = 1, ..., n + m. Thus, there exists δ > 0 such that L−1M0z ≥ δz
with z ∈ P. Theorem 2.5 in Krasnosel’skii [108] or Theorem A3-10 in Chapter 6
asserts that there exists a nontrivial w0 = col.(w0

1 , ..., w
0
n+m) ∈ P and ρ0 ≥ δ > 0

such that L−1M0w
0 = ρ0w

0 (i.e. (3.13) with λ0 = 1/ρ0). Suppose w0
i �≡ 0 for

some 1 ≤ i ≤ n (or n+ 1 ≤ i ≤ n+m); using the maximum principle on each of
the last m (or first n) equations in (3.13), we obtain by means of the positivity of
K0 (or B) that for each j = n+1, ..., n+m (or j = 1, ..., n) we must have w0

j > 0
in Ω and ∂w0

j /∂ν < 0 on ∂Ω. Then, we use the first n (or last m) equations and
the positivity of B (or K0) to obtain by means of the maximum principle that
w0
j > 0 in Ω and ∂w0

j /∂ν < 0 on ∂Ω for each i = 1, ..., n (or j = n+1, ..., n+m.)
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Now, let ŵ0 = col.(ŵ0
1 , ..., ŵn+m) �≡ 0 be such that Lŵ0 = λ0M0ŵ

0. From
Lemma 3.1, there must exist δ∗ ∈ R and some k, 1 ≤ k ≤ m+ n, such that

(3.17) w0
k ≡ δ∗ŵ0

k and w0
j − δ∗ŵ0

j ≥ 0 in Ω̄ for all j = 1, ...,m + n.

If there is an integer r such that

(3.18) w0
r(x̄)− δ∗ŵ0

r(x̄) > 0 for x̄ ∈ Ω,

then Lr[w0
r − δ∗ŵ0

r ] ≥ 0 implies that w0
r − δ∗ŵ0

r > 0 in Ω. If 1 ≤ r ≤ n (or
n+ 1 ≤ r ≤ n+m), consider the i-th equation in (3.13) for n+ 1 ≤ i ≤ n+m
(or 1 ≤ i ≤ n). We obtain Li[w0

i − δ∗ŵ0
i ] > 0 in Ω, which implies w0

i − δ∗ŵ0
i > 0

in Ω, for each i = n + 1, ..., n + m (or i = 1, ..., n). We then consider the
other n (or m) equations to obtain w0

i − δ∗ŵ0
i > 0 in Ω for each i = 1, ..., n

(or i = n + 1, ..., n + m). This contradicts the existence of an integer k such
that (3.17) holds. This means that if (3.17) holds, there cannot exist an r such
that (3.18) holds. That is we have w0 ≡ δ∗ŵ0. Finally, suppose that there is
another λ1 > 0, λ1 �= λ0, such that Lw̃ = λ1M0w̃ for some w̃ ∈ P\{0}. We
can deduce as before that w̃i > 0 in Ω, ∂w̃i/∂ν < 0 on ∂Ω for i = 1, ..., n + m.
Then we can obtain from Lemma 3.1 that λ1 = λ0. This completes the proof of
Lemma 3.2.

Proof of Lemma 3.3. We use Schauder’s theory to deduce

||G[w]||E/||w||E ≤ k̄|| [F̂ (w)−M0w] ||∞/||w||∞
≤ k̄Σm

i=1

∑n
j=1 || [fij(wj)− f ′ij(0)wj ] ||∞/||wj ||∞ +

∑m
i=1

∑m
j=1 |cij |||wn+j ||∞

→ 0, as ||w||E → 0.

Theorem 3.2 (Coexistence of Bacteria and Infected Species). Under hy-
potheses (3.4) to (3.8), the problem (3.9) has a solution w = col.(w1, . . . , wn+m) ∈
Y , such that wi ≥ 0 in Ω̄ for each i and w �≡ 0 (i.e. w ∈ P\{0}).
Remark 3.1. By the property: S̄ ∩ (R+ × ∂P) = (λ0, 0), of the part S̄ of
the bifurcation curve described in Theorem 3.1, we must have wi > 0 in Ω, for
i = 1, ..., n +m.

In order to prove Theorem 3.2, we first show the following two lemmas.

Lemma 3.4.Under hypotheses (3.4), (3.5) and (3.7), the positive number where
bifurcation occurs described in Theorem 3.1 satisfies λ0 < 1.

Proof. By hypothesis (3.7), there exists a small enough ε > 0 such that
B[K0(λ1+a∗)−1 �d−col.(ε, ..., ε)] > (λ1+a∗)�d and K0(λ1+a∗)−1 �d > col.(ε, ..., ε).
Let �p = col.(p1, ..., pm) be the positive constant vector defined by �p := K0(λ1 +
a∗)−1d − col.(ε, ..., ε). We can readily verify that the positive constant vector



132 CHAPTER 2. POSITIVE SOLUTIONS FOR LARGE SYSTEMS

�g := col.(d1, ..., dn, p1, ..., pm) satisfies M0�g > (λ1 + a∗)�g. Thus there exists
r > 1 such that

(3.19) M0�g ≥ r(λ1 + a∗)�g.

Let ẑ := φ�g. Since Li[φ] ≤ (λ1 + a∗)φ in Ω for each i = 1, ..., n + m, a simple
calculation shows

L−1[M0ẑ] ≥ L−1[r(λ1 + a∗)ẑ]

= rL−1[(λ1 + a∗)φ]�g ≥ rφ�g = rẑ in Ω,

where r > 1. As in Lemma 3.2, we obtain by means of Theorem 2.5 in Kras-
nosel’skii [108] or Theorem A3-10 in Chapter 6 the existence of a nontrivial
function ŵ ∈ P such that L−1M0ŵ = ρ̂ŵ with ρ̂ ≥ r. The uniqueness part of
Lemma 3.2 implies that ρ̂ = 1/λ0. Thus we have λ0 ≤ 1/r < 1.

Lemma 3.5.Under the hypotheses (3.4) and (3.5), let (λ̄, w̄) ∈ S, where S
is described in Theorem 3.1. Suppose Rk are positive constants such that 0 ≤
w̄n+k(x) ≤ Rk for all x ∈ Ω̄, k = 1, . . . ,m. Then for each i = 1, . . . , n,

(3.20) 0 ≤ w̄i(x) ≤ λ̄(inf . ai)−1
m∑
k=1

bikRk for all x ∈ Ω̄.

Proof. For each i = 1, . . . , n, consider the scalar linear problem

(3.21) Li[z] = λ̄

m∑
k=1

bikw̄n+k in Ω, z = 0 on ∂Ω.

Since the trivial function and ẑ = λ̄(inf . ai)−1
∑m

k=1 bikRk are respectively lower
and upper solution of (3.21), the unique solution z = w̄i must satisfy (3.20).

Proof of Theorem 3.2. Let the component of S̄ containing the point (λ0, 0),
described in Theorem 3.1, be denoted by S+. Since λ0 < 1, by Lemma 3.4,
it suffices to show that the set I := {λ ∈ R+|(λ,w) ∈ S+ for some w} is
unbounded. For convenience, let

αk :=
n∑
i=1

bik(inf . ai)−1 > 0 for k = 1, . . . ,m,

βk := |ckk| −
m∑

j=1,j 	=k
|ckj | for k = 1, . . . ,m.
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Hypothesis (3.8) implies each βk > 0. Suppose that the set I is contained in the
interval [0, C], we will deduce a contradiction. Let N̂ > 0 be large enough such
that

(3.22) CK1(
m∑
j=1

αj)(θN̂)− βk(θN̂)2 < 0 for all θ ≥ 1, each k = 1, . . . ,m.

Here, the constant K1 is described in (3.6). We claim that if there exists λ such
that (λ,w) ∈ S+, then w = col.(w1, . . . , wn+m) must satisfy:

(3.23) 0 ≤ wi(x) ≤ N̂ for all x ∈ Ω̄, i = n+ 1, . . . , n+m.

Suppose (3.23) is not true. Let (λ̃, w̃) ∈ S+, such that w̃ does not satisfy the
corresponding (3.23). For each i = n + 1, . . . , n + m, let x∗i ∈ Ω̄ be the point
where w̃i attains its maximum value on Ω̄. Let r ∈ {n + 1, . . . , n + m} where
w̃r(x∗r) = max{w̃n+1(x∗n+1) . . . , w̃n+m(x∗n+m)}. By assumption on w̃, we must
have α∗ := w̃r(x∗r)/N̂ > 1; moreover, we have 0 ≤ w̃i(x) ≤ w̃r(x∗r) = α∗N̂ for all
x ∈ Ω̄, i = n + 1, . . . , n + m. Suppose we have x∗r ∈ Ω. Then (3.6), Lemma 3.5
and (3.22) imply that w̃r(x∗r) satisfies:

−∆w̃r(x∗r) + ãr−n(x∗r)w̃r(x∗r)

= λ̃
∑n

j=1 fr−n,j(w̃j(x
∗
r)) + λ̃w̃r(x∗r)

∑m
j=1 cr−n,jw̃n+j(x∗r)

≤ λ̃[K1
∑n

j=1 w̃j(x
∗
r)] + λ̃(α∗N̂)2 [−|cr−n,r−n|+

∑m
j=1,j 	=r−n |cr−n,j |]

≤ λ̃[K1C(
∑m

k=1 αk)(α
∗N̂)− (α∗N̂)2βr−n < 0.

Note that we have used the assumption that I is contained in [0, C] and α∗ > 1
in obtaining the last two inequalities above. This contradicts the fact that x∗r
is an interior maximum. Thus we must have x∗r ∈ ∂Ω. Then the boundary
conditions and Lemma 3.5 imply that w̃ ≡ 0; and we can conclude that (3.23)
must be true.

Finally, inequality (3.23), Lemma 3.5 and gradient estimates by means of
equation (3.10) imply that S+ cannot be unbounded if I is bounded. Conse-
quently, I must be unbounded, and this completes the proof of Theorem 3.2.

We next consider system (3.1), under the special situation when all ckj = 0,
for k, j = 1, . . . ,m; that is, we consider the problem:

(3.24)




−∆ui + ai(x)ui =
∑m

j=1 bijvj for x ∈ Ω, i = 1, ..., n,

−∆vk + ãk(x)vk =
∑n

j=1 fkj(uj) for x ∈ Ω, k = 1, ...,m,

ui = vk = 0 for x ∈ ∂Ω, i = 1, ..., n, k = 1, ...,m.
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In other words, the infected species vk will not interact among themselves. This
situation is a direct generalization of the theory in Blat and Brown [12]. Under
additional assumptions on fkj(uj) for large uj (see (3.28)), Theorem 3.3 shows
that problem (3.24) has a positive solution. Letting w = col.(w1, . . . ., wn+m) =
col.(u1, . . . , un, v1, . . . , vm), system (3.24) can be written as

(3.25) L[w] = F̃ [w], w ∈ E,
where F̃ is the same as F̂ described in (3.3) with the special restriction ckj = 0,
for all k, j = 1, . . . ,m. For convenience, we define

(3.26) f̂ij(η) :=

{
fij(η)/η if η �= 0

f ′ij(0) if η = 0
for i = 1, . . . ,m, j = 1, . . . , n.

Also define the m× n matrix

(3.27)
[
f̂ij(ηij)

]m,n
i,j=1

:=



f̂11(η11) · · · f̂1n(η1n)

...
...

f̂m1(ηm1) · · · f̂mn(ηmn)




where ηij are real numbers for i = 1, . . . ,m, j = 1, . . . , n. We will use the
following hypothesis:
(3.28)

There exist a real number η0 > 0, and a constant vector �q = col.(q1, . . . , qn),
with qi > 0, i = 1, . . . , n, such that:

�qTB
[
f̂ij(ηij)

]m,n
i,j=1

< (λ1 + a∗∗)2�qT for all ηij ≥ η0.

Under hypothesis (3.28), one can always choose a number ρ1 with 0 < ρ1 <
(λ1 + a∗∗) such that:

(3.29) �qTB
[
f̂ij(ηij)

]m,n
i,j=1

< ρ2
1�q
T < (λ1 + a∗∗)2�qT for all ηij ≥ η0.

The following theorem is the main result for case when the infected species do
not interact among each other.

Theorem 3.3 (Coexistence When Infected Species Do Not Interact).
Under hypotheses (3.4) to (3.7), and (3.28), the problem (3.25) (alternatively,
problem (3.24) with w = col.(u1, . . . , un, v1, . . . , vm)) has a solution w =
col.(w1, . . . , wn+m) ∈ Y , such that wi ≥ 0 in Ω̄ for each i and w �≡ 0 (i.e.
w ∈ P\{0}).

In this theorem, F̂ is considered with the special restriction ckj = 0, and
assumption (3.8) concerning ckj is not assumed. We are thus led to the problem:

(3.30) L[w] = λF̃ [w], w ∈ E,
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with F̃ as described above. Since F̃ is a special case of F̂ , Theorem 3.1 applies.
Under the assumptions of Theorem 3.3, let S be as defined in Theorem 3.1, and
S+ be the component of S̄ containing the point (λ0, 0). Recall that S+ is proved
to be unbounded in Theorem 3.1. The following Lemma will be needed in the
proof of Theorem 3.3.

Lemma 3.6. Assume all the hypotheses of Theorem 3.3. Suppose {(λ̃r, w̃r)},
r = 1, 2, . . . is a sequence in S+ with the property: λ̃r → λ̂, 0 < λ̂ < ∞, and
‖w̃r‖E → ∞, as r → ∞. Then there exists a subsequence {(λ̃r(j), w̃r(j))} such
that the first n components of w̃r(j) tend to +∞ uniformly in compact subsets
of Ω, as r(j)→∞.

Proof of Lemma 3.6. Let zri = ũri /||w̃r||E , yrk = ṽrk/||w̃r||E , ŵr = w̃r/||w̃r ||E =
col.(zr1 , . . . , z

r
n, y

r
1, . . . , y

r
m), for r = 1, 2, . . .. Dividing equation (3.30) for w̃r by

||w̃r||E , we obtain

(3.31)




−∆zri + ai(x)zri = λ̃r
∑m

j=1 bijy
r
j for x ∈ Ω, i = 1, ..., n,

−∆yrk + ãk(x)yrk = λ̃r
∑n

j=1 f̂kj(ũ
r
j)z

r
j for x ∈ Ω, k = 1, ...,m,

zri = yrk = 0 for x ∈ ∂Ω, i = 1, ..., n, k = 1, ...,m.

Since the right-hand side of (3.31) is bounded in || · ||∞- norm, using Schauder’s
estimates we obtain a subsequence of {ŵr}∞r=1, denoted again by {ŵr}∞r=1, which
converges in the ‖.‖E - norm to a function ŵ = col.(z1, . . . , zn, y1, . . . , ym) ∈ E.
Here, from the definition of S, we must have zi ≥ 0, yk ≥ 0 in Ω for i =
1, . . . , n, k = 1, . . . ,m, and ||ŵ||E = 1. Using Schauder’s theory, we see that ŵ
also satisfy (3.31) by taking limit as r →∞.

If yk ≡ 0 in Ω for all k = 1, . . . ,m, the first n equations in (3.31) imply by
maximum principle that zi ≡ 0 in Ω, for each i = 1, . . . , n. This contradicts
the fact that ||ŵ||E = 1. Thus, there must exists some l ∈ {1, . . . ,m}, such
that yl �≡ 0 in Ω. The first n equations in (3.31) then imply that zi(x) > 0
in Ω for all i = 1, . . . , n. The conclusion of Lemma 3.6 follows since uri (x) =
zri (x)||w̃r ||E , ||w̃r||E → ∞, and zri (x) → zi(x) > 0 in Ω (in C1(Ω)-norm) as
r →∞.

Proof of Theorem 3.3. Recall that Lemma 3.4 implies that λ0 < 1. To prove
this Theorem, it suffices to show that if there exists a sequence in S+ with
property as described in Lemma 3.6, then we must have λ̂ > 1. This leads to the
existence of (λ̃, w̃) in S+ with λ̃ = 1; that is, we obtain a solution of problem
(3.24).

If {λ : (λ,w) ∈ S+} is contained in a bounded interval, then there must
exists a sequence {(λ̃r, w̃r)}∞r=1 in S+ with property as described in Lemma
3.6; and (λ̃r, w̃r) satisfies (3.30) for each r. Denoting w̃r = col.(w̃r1, . . . , w̃

r
n+m) =
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col.(ũr1, . . . , ũ
r
n, ṽ

r
1, . . . , ṽ

r
m), the conclusion of Lemma 3.6 implies that we may as-

sume that ũri (x)→∞ uniformly in compact subsets of Ω, as r →∞, i = 1, . . . , n.
Let ψri = ũri /||w̃r||L2(Ω), ξ

r
k = ṽrk/||w̃r||L2(Ω),Ψr = col.(ψr1 , . . . , ψ

r
n, ξ

r
1, . . . , ξ

r
m).

Dividing the equation for (λ̃r, w̃r) by ||w̃r||L2(Ω), we obtain

(3.32)



−∆ψri + ai(x)ψri = λ̃r

∑m
j=1 bijξ

r
j for x ∈ Ω, i = 1, ..., n,

−∆ξrk + ãk(x)ξrk = λ̃r
∑n

j=1 f̂kj(ũ
r
j)ψ

r
j for x ∈ Ω, k = 1, ...,m.

Since the right side of (3.32) is bounded in || · ||L2(Ω)- norm, using Agmon-
Douglis-Nirenberg estimate, we obtain a subsequence of {Ψr}∞r=1, also denoted
by {Ψr}∞r=1, which converges to a function Ψ = col.(ψ1, . . . , ψn, ξ1, . . . , ξm) in
L2(Ω) at each component. Moreover we have ||Ψ||L2(Ω) = 1, and ψi ≥ 0, ξk ≥ 0
a.e. in Ω, for i = 1, . . . , n, k = 1, . . . ,m.

Let (q1, . . . , qn) be as described in hypothesis (3.28), and ρ1 be as chosen
in (3.29). Define ρ2 such that 0 < ρ1 < ρ2 < (λ1 + a∗∗), and let q̂T =
(q1, . . . , qn, qn+1, ..., qn+m), where qn+k = (1/ρ1)

∑n
j=1 qjbjk, k = 1, . . . ,m. (Note

that qn+k is the k-th component of (1/ρ1)�qTB). By the first inequality in (3.29),
we readily obtain from the definition of q̂T and ρ2 that

(3.33) q̂T


 0 B[

f̂ij(ηij)
]m,n
i,j=1

0


 < ρ2q̂

T for all ηij ≥ η0.

To simplify writing, for i = 1, . . . , n, denote hij(η) = 0 when j = 1, .., n and
hi,j+n(η) = bij when j = 1, . . . ,m. For i = 1, . . . ,m, denote hi+n,j(η) = f̂ij(η)
when j = 1, . . . , n and hi+n,j+n(η) = 0 when j = 1, . . . ,m. Inequality (3.33) can
then be rewritten as:

(3.34) q̂T ([hij(ηij)]
n+m,n+m
i,j=1 ) < ρ2q̂

T for all ηij ≥ η0.

(Note that hij are really constants for j > n, i = 1, . . . , n +m.)
Multiplying the first n equations of (3.32) by qiφ, i = 1, . . . , n, and the last

m equations of (3.32) by qn+kφ, k = 1, . . . ,m, we obtain, after integrating by
parts:

(3.35) 0 =
∫

Ω
[−ψri (λ1 + ai) + λ̃r

m∑
j=1

bijξ
r
j ]qiφdx, for i = 1 . . . , n,

(3.36) 0 =
∫

Ω
[−ξrk(λ1 + ãk) + λ̃r

n∑
j=1

f̂kj(ũrj)ψ
r
j ] qn+kφdx, for k = 1, . . . ,m.
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Adding the last n + m equations, and using the definitions of a∗∗ and hij , we
obtain:

(3.37) 0 ≤
∫

Ω
{−(λ1 + a∗∗)q̂TΨrφ+ λ̃r q̂

T [hij(w̃rj )]
n+m,n+m
i,j=1 Ψrφ} dx.

(Recall that hij are constants for j > n, and hij(w̃rj ) above actually depends
only on ũrj , j = 1, . . . , n.)

Let {Ωk}∞k=1 be a sequence of open subsets of Ω, such that Ωk ⊂ Ω̄k ⊂
Ωk+1 ⊂ Ω, for all k with Ω = ∪∞k=1Ωk; and let ε > 0 be an arbitrary small
constant. Since the quantities λ̃r, q̂T , hij are bounded, and Ψr → Ψ in L2(Ω),
we may assume that for l and r sufficiently large, we have:

(3.38)
∫

Ω\Ωl
λ̃r q̂

T [hij(w̃rj )]
n+m,n+m
i,j=1 Ψrφdx < ε.

We can thus obtain from (3.37) that:

(3.39) 0 ≤
∫

Ωl

{−(λ1 + a∗∗)q̂T + λ̃r q̂
T [(hij(w̃rj )]

n+m,n+m
i,j=1 }Ψrφdx+ ε.

By Lemma 3.6, we may assume that ũrj → ∞ uniformly in Ωl for each fixed l,
as r→∞, for j = 1, . . . , n.

Consequently, from (3.34) and (3.39), we obtain

(3.40) 0 ≤
∫

Ωl

{−(λ1 + a∗∗) + λ̃rρ2} q̂TΨrφdx+ ε

for all sufficiently large r. Letting r → ∞, we find that for all sufficiently large
l,

(3.41) 0 ≤
∫

Ωl

{−(λ1 + a∗∗) + λ̂ρ2} q̂TΨφdx+ ε.

Since ε is arbitrary, we conclude

0 ≤
∫

Ω
{−(λ1 + a∗∗) + λ̂ρ2} q̂TΨφdx.

This leads to λ̂ ≥ (λ1 + a∗∗)/ρ2 > 1. The proof of Theorem 3.3 is complete.

Remark 3.2. The global continuum of positive solutions of (3.30) and (3.10)
cannot cross λ = 0, because when λ = 0 the trivial solution is the only solution
by the maximum principle.

In the remaining part of this section, we will consider the stability of the
steady state solutions found in Theorem 3.2 as a solution of the corresponding
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parabolic system. It will be seen in Theorem 3.5 that if hypotheses (3.5) and
(3.8) are strengthened, then the bifurcating steady-states near the bifurcation
point are asymptotically stable in time. Before obtaining further results with
additional hypotheses, we first deduce a few more consequences of hypotheses
(3.4) and (3.5).

Lemma 3.7. Under hypotheses (3.4) and (3.5), the problem

(3.42) L[w] = λMT
0 w in Ω, w = 0 on ∂Ω,

has a solution (λ,w) = (λ0, ŵ
0), ŵ0 ∈ Y with each component ŵ0

i > 0 in
Ω, ∂ŵ0

i /∂ν < 0 on ∂Ω for i = 1, ..., n + m. (Here, λ0 is exactly the same
number as in Lemma 3.2.) Moreover, any solution of (3.42) with λ = λ0 is a
multiple of ŵ0.

Proof. The existence of a positive solution and the simplicity of the correspond-
ing eigenvalue is proved in exactly the same way as Lemma 3.2 with the role of
B and K0 interchanged. The fact that λ0 is exactly the same as in Lemma 3.2
follows exactly the same procedure as in the proof of Lemma 2.4 in Leung and
Villa [141] or Lemma 6.4 in Section 2.6, and will thus be postponed.

For convenience, we will define two operators L0 and L1 : E → E as follow:

(3.43) L0 := I − λ0L
−1M0,

(3.44) L1 := −L−1M0.

Lemma 3.8. Under hypotheses (3.4) and (3.5), the null space and range of L0,
denoted respectively by N(L0) and R(L0), satisfy:

(i) N(L0) is one-dimensional, spanned by w0,
(ii) dim[E/R(L0)] = 1, and

(iii) L1w
0 �∈ R(L0).

Proof. Part (i) was proved in Lemma 3.2. The remaining parts are proved in
the same way as in Lemma 2.5 in [141] or Lemma 6.5 in Section 2.6. For the
proof of part (iii), the positivity property of w0 and ŵ0 are used.

Theorem 3.4 (Local Bifurcation). Assume hypotheses (3.4), (3.5) and the
additional condition that fkj ∈ C2(R) for k = 1, ..., n, j = 1, ...,m. Then there
exists δ > 0 and a C1-curve (λ̂(s), φ̂(s)) : (−δ, δ) → R×E with λ̂(0) = λ0, φ̂(0) =
0, such that in a neighborhood of (λ0, 0), any solution of (3.11) is either of the
form (λ, 0) or on the curve (λ̂(s), s[w0 + φ̂(s)]) for |s| < δ. Furthermore, the set
S+\{(λ0, 0)} is contained in R+ × (IntP), where S+ is the component of the
closure of S (described in Theorem 3.1) containing the point (λ0, 0) in R+×E.
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Proof. Equation (3.11) can be written as

(3.45) Q(λ,w) := L0[w] + (λ− λ0)L1[w]− λG[w] = 0,

where the operator G : E → E is defined in Lemma 3.3. Under the additional
smoothness condition on fkj, we can show that Q ∈ C2(R+ × E,E) and the
Fréchet derivative of G is continuous on E. Moreover, we can readily deduce as
in Lemma 3.3 that L0 = D2Q(λ0, 0), L1 = D12Q(λ0, 0), and G[0] = D2G[0] = 0.
Hence we can apply the local bifurcation theorem in Crandall and Rabinowitz
[34] to obtain the C1-curve (λ̂(s), φ̂(s)) describing the nontrivial solution of
(3.11) near (λ0, 0) as stated above.

For s > 0 sufficiently small, the function s[w0 + φ̂(s)] is clearly in IntP.
Suppose (λi, wi) ∈ S, i = 1, 2 . . . is a sequence tending to a limit point (λ̄, w̄)
in R+ × ∂P; we can show as in Theorem 3.1 that (λ̄, w̄) = (λ0, 0). By means
of the local behavior of all the solutions (3.11) near (λ0, 0), we conclude that
S+\{(λ0, 0)} ⊂ R+ × (IntP). This completes the proof of Theorem 3.4.

We next consider the linearized and then the asymptotic stability of the
positive bifurcating solution described in Theorem 3.3, near (λ0, 0). Applying
the bifurcation theory in [34], and the fact that

(3.46)
∫

Ω
ŵ0 ·∆−1w0 dx �= 0,

(note that each component of both ŵ0 and w0 is strictly positive in Ω), we can
assert that there exist δ1 ∈ (0, δ) and two functions: (γ(·), z(·)) : (λ0 − δ1, λ0 +
δ1)→ R × E, (η(·), h(·)) : [0, δ1) → R × E, with (γ(λ0), z(λ0)) = (η(0), h(0)) =
(0, w0), such that

(3.47) D2Q(λ, 0)z(λ) = γ(λ)(−L)−1(z(λ)),

and

(3.48) D2Q(λ̂(s), s(w0 + φ̂(s))h(s) = η(s)(−L)−1(h(s)).

Here, (3.46) and the theory in [34] imply that γ(λ) and η(s) are respectively L−1-
simple eigenvalues of D2Q(λ, 0) and D2Q(λ̂(s), s(w0 + φ̂(s)) with eigenfunctions
z(λ) and h(s). Moreover, the theory in [34] further lead to the following lemmas.

Lemma 3.9. Assume all the hypotheses in Theorem 3.4. There exists ρ > 0
such that for each s ∈ [0, δ1), there is a unique (real) eigenvalue η(s) for the
linear operator

(3.49) Q∗
s ≡ −LD2Q(λ̂(s), s(w0 + φ̂(s))) : Y → [Cα(Ω̄)]m+n
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satisfying |η(s)| < ρ with eigenfunction h(s) ∈ Y . That is,

(3.50) Q∗
sh(s) ≡ −L[h(s)] + λ̂(s)Fw[s(w0 + φ̂(s))]h(s) = η(s)h(s).

The next few lemmas study the behavior of the eigenvalues λ̂(s) and η(s) for
small s ≥ 0, and γ(λ) near λ = λ0.

Lemma 3.10. Assume all the hypotheses of Theorem 3.4. Suppose further that

f ′′kj(0) < 0 for k = 1, ...,m, j = 1, ..., n;(3.51)

ckj < 0 for all k, j = 1, ...,m.(3.52)

Then the function λ̂(s) satisfies λ̂′(0) > 0.

Remark 3.3. Note that hypotheses (3.51) and (3.52) are respectively modifi-
cations of (3.6) and (3.8). Hypothesis (3.52) means the infected species compete
among each other.
Proof. Theorem 3.4 asserts that λ̂′(0) exists. Equation (3.11) implies that
s(w0 + φ̂(s)) is in Y ; and for s ∈ [0, δ), we have

L[s(w0 + φ̂(s))] = λ̂(s)F̂ [s(w0 + φ̂(s))].

Dividing by s and then differentiating with respect to s for s > 0, we find

L[φ̂′(s)] = λ̂′(s)(1/s)F̂ [s(w0 + φ̂(s))] + λ̂(s)
d

ds
{(1/s)F̂ [s(w0 + φ̂(s))]}.

Letting s→ 0+, we obtain

(3.53) L[φ̂′(0)] = λ̂′(0)M0w
0 + λ̂(0)M0φ̂

′(0) + λ̂(0)R0w
0,

where

(3.54) R0 =
[

0n×n 0n×m
H0 Z0

]
.

Here, H0 is the m × n matrix whose (i, j)-th entry is (1/2)f ′′ij(0)w0
j for i =

1, . . . ,m, j = 1, . . . , n; and Z0 is the diagonal m×m matrix col.(
∑m

j=1 c1jw
0
n+j ,

. . . ,
∑m

j=1 cmjw
0
n+j). We multiply (3.53) by (ŵ0)T and integrate over Ω. Then,

after integrating by parts on the left and canceling with the second term on the
right, we obtain

λ̂′(0) =
−λ̂(0)

∫
Ω(ŵ0)TR0w

0 dx∫
Ω(ŵ0)TM0w0 dx

> 0.

The last inequality is due to the additional assumptions (3.51) and (3.52).
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Lemma 3.11. Under all the hypotheses in Theorem 3.4, the function γ(λ)
satisfies γ′(λ0) > 0.

Proof. Note that D2Q(λ, 0) = I − λL−1M0. From (3.47), we have

(I − λL−1M0)z(λ) = γ(λ)(−L)−1z(λ), for λ ∈ (λ0 − δ1, λ0 + δ1).

Applying L, multiplying by (ŵ0)T , and integrating over Ω, we obtain∫
Ω

(ŵ0)TL[z(λ)] − λ(ŵ0)TM0z(λ) dx = [γ(λ0)− γ(λ)]
∫

Ω
(ŵ0)T z(λ) dx,

since γ(λ0) = 0. Integrating by parts, using the equation for (ŵ0)T , and letting
λ tends to λ0 after transposing, we obtain

γ′(λ0) =

∫
Ω(ŵ0)TM0w

0 dx∫
Ω(ŵ0)Tw0 dx

> 0.

Lemma 3.12. Under the hypotheses of Theorem 3.4, (3.51) and (3.52), there
exists δ2 ∈ (0, δ1) such that η(s) < 0 for all s ∈ (0, δ2).

Proof. From Theorem 1.16 in [34] or exposition in Smoller [209], we find
−sλ̂′(s)γ′(λ0) and η(s) have the same sign for s > 0 near 0. Hence Lemma 3.10
and Lemma 3.11 imply η(s) < 0 for small positive s.

The linearized eigenvalue problem for (3.10), (3.11) at the bifurcating solu-
tion w = s(w0 + φ̂(s)) is precisely (3.50). When λ = λ̂(0) = λ0, the eigenvalue
problem corresponding to (3.50) becomes

(3.55) −L[h] + λ0M0h = ηh h ∈ E,

where η is the eigenvalue. Under hypotheses (3.4) and (3.5), Theorem 3.1 asserts
that η = 0 is an eigenvalue for (3.55), with positive eigenfunction. Using this
property and the fact that the off diagonal terms of M0 are all non-negative, we
can proceed to show the following.

Lemma 3.13. Under hypotheses (3.4) and (3.5), all eigenvalues in equation
(3.55) except η = 0 satisfies Re(η) < −r for some positive number r.

The proof of this lemma is essentially the same as the proof of Lemma 2.8
in Leung and Ortega [138]. The details will be omitted here

Lemmas 3.9 to 3.12 above essentially shows the eigenvalue η = 0 correspond-
ing to (3.50) at s = 0 moves to the left as s increases. As to the other eigenvalues
with Re(η) < −r described in Lemma 3.13, one can show by perturbation argu-
ments that they should still be in the left open half plane for s > 0 sufficiently
small. More precisely, we have the following.
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Lemma 3.14. Under the hypotheses of Lemma 3.10, there exists a number
δ∗ ∈ (0, δ) and a positive function η(s) for s ∈ (0, δ∗) such that the real parts of
all the numbers in the point spectrum of the linear operator Q∗

s are contained in
the interval (−∞,−η(s)), for s ∈ (0, δ∗). (Here, δ is described in Theorem 3.4
and Q∗

s is described in (3.49) in Lemma 3.9.)

The proof of Lemma 3.14, using the assertions in Lemmas 3.9 to 3.13 are
exactly the same as the proof of Theorem 2.2 in [138]. The details are thus
omitted here.

For each s ∈ (0, δ∗), the function w̄s := s[w0+φ̂(s)] described in Theorem 3.4
can be considered as a steady-state solution of (3.10) with L replaced by ∂/∂t+L
and homogeneous boundary condition. We now consider the time asymptotic
stability of this steady-state as a solution of the corresponding parabolic prob-
lem. In order to obtain a precise statement, we let B1 and B2 be Banach spaces
as follow:

B1 = {u : u ∈ [C(Ω̄)]n+m, u = 0 on ∂Ω},
and

B2 = {u : u ∈ [Lp(Ω)]n+m} for p large enough such that N/(2p) < 1.

Let A1 be the operator L on B1 with domain D(A1) = {u : u ∈ [W 2,p(Ω)]n+m

for all p, ∆u ∈ [C(Ω̄)]n+m, u = 0 and ∆u = 0 on ∂Ω}; and A2 be the operator
L on B2 with domain D(A2) = {u ∈ B2 : u ∈ [W 2,p(Ω) ∩W 1,p

0 (Ω)]n+m}. For
w = col.(w1, . . . , wn+m), we consider the following nonlinear initial-boundary
value problem for each i = 1,2:

(3.56)
dw

dt
+Aiw(t) = λF̂ (w(t)), w(0) = w0 for t ∈ (0, T ].

A solution of (3.56) in Bi is a function w ∈ C([0, T ], Bi) ∩ C1((0, T ], Bi), with
w(0) = w0, w(t) ∈ D(Ai) for all t ∈ (0, T ]; and w(t) satisfies (3.56) for t ∈ (0, T ].
The operator A2 is an infinitesimal generator of an analytic semigroup, say S(t),
on B2 for t ≥ 0. It is well known that for α > 0,

(−A2)−α =
1

Γ(α)

∫ ∞

0
τα−1S(τ)dτ

defines a bounded linear operator on B2 (called fractional power of the oper-
ator A2). Moreover, [(−A2)−α]−1 := (−A2)α is a closed operator on B2 with
dense domain D((−A2)α) = (−A2)−α(B2). We denote by Xα the Banach space
(D(−A2)α, ‖·‖α) where ‖w‖α = ||(−A2)αw||Lp for all w ∈ D((−A2)α).

Using Lemma 3.14, we can use the theory by Mora [176] (Theorem A4-9 in
Chapter 6) or apply the stability Theorem 5.1.1 in Henry [84] (Theorem A4-11



2.4. COEXISTENCE RELATED TO EIGENVALUES 143

in Chapter 6) for sectorial operators to obtain the following asymptotic stability
theorem for the steady-state solution w̄s.

Theorem 3.5 (Local Stability of Coexistence Steady-State when the
Infected Species Compete). Assume all the hypotheses of Theorem 3.4,
(3.51) and (3.52). For each fixed s ∈ (0, δ∗), let λ = λ̂(s), w̄ = s[w0 + φ̂(s)].
Then, for each i = 1, 2, there exists ρ > 0, β > 0 and M > 1 such that equation
(3.56) has a unique solution in Bi for all t > 0 if w0 ∈ B1 and ||w0 − w̄||∞ ≤
ρ/(2M) for i = 1 (or w0 ∈ Xα and ||w0 − w̄||α ≤ ρ/(2M) for i = 2; here we
assume α ∈ (N/(2p), 1) for the space Xα). Moreover, the solution satisfies

(3.57) ||w(t)− w̄||∞ ≤ 2Me−βt ||w0 − w̄||∞ for all t ≥ 0, i = 1,

or

(3.58) ||w(t) − w̄||α ≤ 2Me−βt ||w0 − w̄||α for all t ≥ 0, i = 2.

2.4 Conditions for Coexistence in Terms of Signs of

Principal Eigenvalues of Related Single Equations,
Mixed Boundary Data

In the last two sections, the conditions for coexistence solutions are expressed
in terms of relationship of the coefficients with the principal eigenvalue of the
operator −∆. In Theorem 2.5 for prey-predator and Theorem 3.4 for competing
species studies in the last chapter, the conditions are expressed in terms of the
signs of the principal eigenvalues of appropriate operators on scalar equations
deduced from the original system. Such results are more direct and convenient.
In this section, we investigate extentions of such results to the case of a system
of three equations. Moreover, we consider the situation of mixed boundary
condition rather than Dirichlet type. The results of this section are mainly
adopted from Li and Liu [150] and Liu [160].

As described in Section 2.1, the study of three species diffusion-reaction
systems is applicable to many practical problems. As a further example from
immunology, we consider the interaction of viruses with different types of anti-
bodies. An external antigen (e.g viruses, called V) stimulates a large increase
in a type of immunoglobulin molecules (called antibody 1, Ab1), which then
induce the production of another type of antibody (called Ab2β). By binding
with V, Ab1 will act as a predator with V as its prey. Induced by Ab1 and then
neutralizing Ab1, Ab2β will be a predator with Ab1 as prey. Since some of the
idiotopes on Ab2β resemble the shape of the antigenic determinant on V, the
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interaction between V and Ab2β is competing for the binding sites on Ab1. (See
e.g. Linthicum and Faird [156] or Roitt, Brostoff and Male [193].)

Let Ω be a bounded domain in RN , N ≥ 2, and assume ∂Ω belongs to C2+α

for some 0 < α < 1. We define a boundary operator B by

(4.1) Bu = a(x)u+ b(x)∂u/∂η

where a, b ∈ C1+α(∂Ω). We assume that either b(x) > 0 and 0 �≡ a(x) ≥ 0 on
∂Ω, or b(x) ≡ 0 and a(x) > 0 on ∂Ω. Here, η is the outward unit normal at
the boundary. For a linear operator L, with +L (or −L) elliptic, we denote by
λ1(L,B), the largest (or smallest) eigenvalue for the problem:

Lu = λu in Ω, Bu = 0 on ∂Ω.

When the boundary condition is clear from the context, the eigenvalue is ab-
breviated as λ1(L). The spectral radius of a compact operator T is denoted
by r(T ). For a given boundary operator B as described above, we define for
convenience a class of function F(B) ⊂ C(Ω̄× R̄+) as follows:

Definition 4.1. A function f : Ω̄ × [0,∞) → R belongs to the class F(B),
denoted as f ∈ F(B), if

(i) f(x, z) ∈ Cα(Ω̄×[0,∞)), 0 < α < 1, and its partial derivative with respect
to the second component fz(x, z) are continuous in Ω̄× [0,∞);

(ii) −C < fz(x, z) < 0 in Ω× [0,∞) for some C > 0;
(iii) limsupz→+∞f(x, z) < λ1(−∆, B) uniformly for x ∈ Ω̄.

We first deduce an extention of Lemma 2.1 of Chapter 1 concerning the
existence of positive solution for scalar equations.

Lemma 4.1. Suppose f ∈ F(B). Consider the boundary value problem:

(4.2)

{−∆u = uf(x, u) in Ω,

Bu = 0 on ∂Ω.

(i) If λ1(∆ + f(x, 0)) > 0, then the problem (4.2) has a unique positive solution.
(ii) If λ1(∆ + f(x, 0)) ≤ 0, the u ≡ 0 is the only non-negative solution of (4.2).

Proof. (i) Assume λ1 = λ1(∆+f(x, 0)) > 0. Let φ(x) ≥ 0 be the corresponding
eigenfunction. We have ∆φ − Pφ ≤ 0 in Ω, for sufficiently large P > 0, and
Bφ = 0 on ∂Ω. The boundary condition (4.1), (4.2) implies φ is not a constant
function, and thus the Hopf Lemma implies that at the boundary minimum point
x0, we must have ∂φ/∂η < 0. The boundary condition (4.1), (4.2) again implies
that φ(x) ≥ φ(x0) > 0 for all x ∈ Ω̄, for the case b(x) �≡ 0. Let δ ∈ (0, λ1), and
ε > 0 be small enough such that |f(x, εφ(x)) − f(x, 0)| < δ for all x ∈ Ω̄. We
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have

(4.3)




∆εφ+ f(x, εφ)εφ

= ∆εφ+ f(x, 0)εφ+ [f(x, εφ)− f(x, 0)]εφ

≥ εφ(x)(λ1 − δ) > 0 in Ω,

B(εφ) ≤ 0 on ∂Ω.

Let b̃(x) = b(x) + σ with σ > 0, and λ̃1 = λ1(−∆, B̃) where B̃u = a(x)u +
b̃(x)∂u/∂η on ∂Ω. By the continuous dependence of eigenvalues on the boundary
conditions, we have λ̃1 is close enough to λ1(−∆, B) for sufficiently small σ so
that

limsupz→+∞f(x, z) < λ̃1 uniformly for x ∈ Ω.

Let ω(x) ≥ 0 be an eigenfunction for the eigenvalue λ̃1 = λ1(−∆, B̃). By the
same argument as in the last paragraph, we obtain ω(x) > 0 for all x ∈ Ω̄.
Thus, for K > 0 sufficiently large, we have ū := Kω > u := εφ in Ω̄, where ε
was chosen in the last paragraph to satisfy (4.3), and f(x, ū) < λ̃1 for all x ∈ Ω.
We thus have

(4.4)




∆ū+ ūf(x, ū) = ∆Kω +Kωf(x, ū)

= Kω(f(x, ū)− λ̃1) < 0 in Ω,

Bū ≥ 0 on ∂Ω.

The last inequality above is true because ∂ū/∂η = (−a/b̃)ū ≥ (−a/b)ū on ∂Ω.
Define u0 := ū in Ω̄, and inductively, for i = 1, 2, ..., ui to be the solution of

(4.5) −∆ui + Pui = ui−1f(x, ui−1) + Pui−1 in Ω, Bui = 0 on ∂Ω.

Here P > 0 is chosen sufficiently large so that the function z → zf(x, z) +Pz is
nondecreasing in z for x ∈ Ω̄, 0 ≤ z ≤ maxΩ̄ū. Using (4.3), (4.4) and (4.5), one
can show by means of Hopf Lemma and maximum principle (cf. Section 5.1 in
[125] for the case of Dirichlet boundary condition) that

(4.6) u ≤ · · · ≤ ui ≤ · · · ≤ u2 ≤ u1 ≤ ū in Ω̄.

The sequence {uk} is bounded in C(Ω̄). Using the mapping (−∆+P )−1(uf(x, u)
+ Pu) and Theorem 4.2 in Amann [3], we can choose subsequence {uk(i)} so
that it converges in C1(Ω̄). Then, we can use Lemma 9.2 in [3] to assert that
the sequence {uk(i)(x)f(x, uk(i)(x))} is bounded in Cα(Ω̄). Thus by Schauder’s
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theory and equations (4.5), the sequence {uk(i)+1} is bounded in C2+α(Ω̄), and
hence relatively compact in C2(Ω̄). We obtain another subsequence of {uk(i)+1}
converging to a C2(Ω̄) solution of (4.2).

The uniqueness part can be proved by modifying the proof for the case of
Dirichlet boundary condition as in Lemma 5.2-2 in [125]. We construct a solution
larger than or equal to two given ones by iterating from a large upper solution
as in the last paragraph. We then show by means of Green’s identity that both
given solutions are identically equal to this large solution.

(ii) Suppose λ1(∆+f(x, 0)) ≤ 0, and there is a positive solution u of problem
(4.2). Then by Theorem 3.2 in Amann [3], we must have λ1(∆ + f(x, u)) =
0. Since f(x, 0) > f(x, u) in Ω, we obtain by variational characterization of
principal eigenvalue that λ1(∆+f(x, 0)) > λ1(∆+f(x, u)) = 0. This contradicts
our assumption.

For a given f ∈ F(B), we will use uf to denote the unique positive solution of
problem (4.2) in case (i) of Lemma 4.1 ; and set uf ≡ 0 in case (ii) of Lemma 4.1.
The following continuity and comparison properties will be needed for further
considerations.

Lemma 4.2. (i) Let f and fn be functions in F(B), n = 1, 2, . . . , and fn → f
uniformly in each compact subset of Ω̄ × [0,∞) as n → ∞, then ufn → uf in
C1+ν(Ω̄), for any ν ∈ (0, 1).
(ii) Let f1, f2 ∈ F(B) and f1 ≥ f2, then uf1 ≥ uf2 .
Proof. (i) First assume λ1(∆+f(x, 0)) > 0. Then by means of variational char-
acterization of principal eigenvalue, we have λ1(∆ +fn(x, 0)) > 0 for sufficiently
large n. Let φ(x) > 0 be the eigenfunction corresponding to λ1(∆+f(x, 0)) > 0.
As described in Lemma 4.1, we obtain for sufficiently small ε > 0:

∆εφ+ f(x, εφ)εφ ≥ pφ(x) > 0 in Ω for some constant p > 0,

and B(εφ) ≤ 0 on ∂Ω. Thus for large n, we also have

∆εφ+ fn(x, εφ)εφ > 0 in Ω.

Thus the function εφ is a lower solution for problem (4.2) and all such problems
if f is replaced by fn for sufficiently large n. As in the proof of Lemma 4.1, we
find the function Kω is an upper solution for problem (4.2). By the uniform
convergence of fn on compact subsets, we can readily see that Kω is also an
upper solution for problem (4.2) if f is replaced with fn for sufficiently large n.
Consequently, we have

εφ ≤ uf ≤ Kω, εφ ≤ ufn ≤ Kω,
for all large n, ε > 0 sufficiently small. As in the proof of Lemma 4.1, we use
Theorem 4.2 and Lemma 9.2 in [3] to choose a subsequence of {ufn} convergent
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in C1(Ω̄), and a subsequence of {ufnfn(x, ufn)} bounded in Cα(Ω̄). This will
lead to a subsequence of {ufn} convergent in C2(Ω̄) to a function ũ ≥ εφ > 0,
and ũ is a positive solution of problem (4.2). By uniqueness part of Lemma 4.1,
we must have ũ ≡ uf . Since this can be done for any subsequence of {ufn}, we
conclude that the full sequence {ufn} converges to uf in C2(Ω̄), and hence in
C1+ν(Ω̄). In case λ1(∆+f(x, 0)) ≤ 0, we can argue similarly that ufn → uf = 0
in C1+ν(Ω̄).

(ii) Assume that f1 ≥ f2. If λ1(∆ +f1(x, 0)) ≤ 0, then uf1 ≡ uf2 ≡ 0 by Lemma
4.1, part (ii). If λ1(∆ + f1(x, 0)) > 0, then uf1 > 0. The usual upper-lower
solution argument and uniqueness of positive solution of part (i) of Lemma 4.1
leads to uf1 ≥ uf2.

For characterization of the principal eigenvalue and the property that the
principal eigenfunction does not change sign involving homongeneous boundary
condition for (4.1), the reader is referred to Chapter 11 in Smoller [209]. The
following is an extention of Theorem A2-6 in Chapter 6.

Lemma 4.3. Let c(x) ∈ C(Ω̄) and P is a positive constant such that P+c(x) > 0
in Ω. Then

(i) λ1(∆ + c) > 0 if and only if r[(−∆ + P )−1(P + c)] > 1,

(ii) λ1(∆ + c) < 0 if and only if r[(−∆ + P )−1(P + c)] < 1,

(iii) λ1(∆ + c) = 0 if and only if r[(−∆ + P )−1(P + c)] = 1.

(Here, (−∆ + P )−1(P + c) denotes the compact operator from C(Ω̄) into itself
subject to boundary condition Bu = 0 for the inverse, and r[(−∆+P )−1(P + c)]
denotes the spectral radius of the operator.)

Proof. Let φ > 0 be the corresponding eigenfunction of λ1 = λ1(∆ + c).
Consider the expression (−∆ + P )φ = (P + c)φ− λ1φ which leads to

φ+ λ1(−∆ + P )−1φ = (−∆ + P )−1(P + c)φ.

Let T be the compact operator (−∆ + P )−1(P + c(x)). Then Tφ is >,< or =
φ according to λ1 is >,< or = 0 respectively. From Theorem A2-5, we obtain
the forward implication in all three cases. Conversely, suppose that the spectral
radius satisfies r[−∆ + P )−1(P + c)] > 1, then from the forward implication
part of cases (ii) and (iii) we must have λ1(∆ + c) > 0 in order not to have any
contradiction on the sign of the spectral radius. The other parts of (ii) and (iii)
are proved the same way.

We consider the existence of positive solutions for the following nonlinear
elliptic homogeneous boundary value problem. (Here, positive means positive in
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each component; the boundary condition is sometimes known as Robin type.)

(4.7)




∆u+ uf1(x, u, v, w) = 0 in Ω,

∆v + vf2(x, u, v, w) = 0 in Ω,

∆w + wf3(x, u, v, w) = 0 in Ω,

B1u = B2v = B3w = 0 on ∂Ω.

The Bi, i = 1, 2, 3 are boundary operators as described in (4.1) with B, a, b
respectively replaced by Bi, ai, bi with corresponding properties. The following
hypotheses will be assumed:
(4.8)

The functions f1, f2, f3 and all their first partial derivatives with respect to
u, v,w are continuous on Ω̄× [0,∞) × [0,∞) × [0,∞).

We shall use index method to investigate this problem. One main difficulty
we encounter is that the number of semi-trivial non-negative solutions of the form
(u, v, 0), (u, 0, w) or (0, v, w) is unknown. In order to circumvent this handicap,
we evaluate the fixed point index of certain operator on a slice of the positive
cone. This slice contains all non-negative solutions of the form, say, (u, v, 0). We
will show that under appropriate situations, the homotopy invariance principle
can be applied on the slice so that index calculations can be readily simplified.
The existence of positive solutions will be characterized by the signs of the
principal eigenvalues of certain scalar linear operators. These operators are
determined by a-priori bound, the marginal densities, and some other functions
derived from marginal densities. Here, the marginal densities of a species means
the densities of the species when all the other species are absent.

Let C(Ω̄) be the ordered Banach space of continuous functions on Ω̄ with the
maximum norm. Let X = CB1(Ω̄) ⊕ CB2(Ω̄) ⊕ CB3(Ω̄), where CBi(Ω̄) denotes
the subspace of C(Ω̄) subject to boundary condition Biu = 0. For θi ∈ [0, 1], i =
1, 2, 3 and P > 0, define the operator Aθ1,θ2,θ3 : C(Ω̄) ⊕ C(Ω̄) ⊕ C(Ω̄) → X ⊂
C(Ω̄)⊕ C(Ω̄)⊕ C(Ω̄) by

(4.9) Aθ1,θ2,θ3(u, v,w) = (−∆ + P )−1



θ1uf1(x, u, v, w) + Pu

θ2vf2(x, u, v, w) + Pv

θ3wf3(x, u, v, w) + Pw



T

,

where (−∆ +P )−1 is taken componentwise. (Here, the boundary conditions are
taken as in (4.7)). Further, define A = A1,1,1.

Let K = C+
B1

(Ω̄) ⊕ C+
B2

(Ω̄) ⊕ C+
B3

(Ω̄), where C+
Bi

(Ω̄) denotes the subset of
non-negative functions in CBi(Ω̄). As in Section 1.2, we will be studying positive
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operators which map the cone K into K. For any C > 0, define [[0, C]] := {u ∈
C(Ω̄) : 0 ≤ u ≤ C in Ω̄}. Suppose (4.8) is satisfied, it can be shown (cf. Theorem
4.2 in Amann [3]) that the operator Aθ1,θ2,θ3 restricted to [[0, C]]⊕[[0, C]]⊕[[0, C]]
defined above is positive, compact, and Fréchet differentiable for large P ,where
P does not depend on θi, i = 1, 2, 3. In order to use the theory of positive cone
mapping, we will modifying the functions fi for large u, v,w so that Aθ1,θ2,θ3
maps K into K. If we know that the non-negative solutions of problem (4.7),
with fi changed to θifi, θi ∈ [0, 1] must have all components in [[0,M ]] for some
large M > 0, then we can further impose that the modifications of fi(u, v,w) will
not change their values for u, v,w in [0,M ]. Thus the fixed points of the altered
map for Aθ1,θ2,θ3 in [[0,M ]] ⊕ [[0,M ]] ⊕ [[0,M ]] will not be changed. Such fixed
points will be non-negative solutions of problem (4.7),with fi changed to θifi.
Let g ∈ C∞[0,∞) such that g = 1 on [0,M ], g ∈ (0, 1) on (M,M + 1) and g = 0
on [M + 1,∞). We may for instance change fi in the definition of Aθ1,θ2,θ3 to
f̃i(x, u, v, w) = fi(x, ug(u), vg(v), wg(w)). Therefore, we will explicitly assume
that the non-negative solutions of (4.7), with fi changed to θifi, will possess
a-priori bound M > 0; and thus without loss of generality, we may assume that
Aθ1,θ2,θ3 is an operator mapping K into K.

For convenience, for any t > 0, define E(t) := {u ∈ C(Ω̄) : |u(x)| < t for all
x ∈ Ω̄}, and define

D := K ∩ [E(M)]3,

where M is the a-priori bound described in the last paragraph. As explained
above, we assume that the operator Aθ1,θ2,θ3 : K → K satisfies:

(4.10) Aθ1,θ2,θ3 has no fixed point on ∂D for all θi ∈ [0, 1].

For the mapping A111, we will search in D for fixed points which has no iden-
tically zero component. These will be the coexistence solutions of the original
problem (4.7).

Remark 4.1. As an example, we can show readily that the following system
has an a-priori bound for all positive solutions:




∆u+ u[a− p1u
1+q1u

− p2v
1+q2v

− p3w
1+q3w

] = 0 in Ω, Bu = 0 on ∂Ω,

∆v + v[α1 + β1u− c11v + c12w] = 0 in Ω, v = 0 on ∂Ω,

∆w + w[α2 + β2u+ c21v − c22w] = 0 in Ω, w = 0, on ∂Ω,

where a > λ1(−∆, B) > a − p1
q1
, c11c22 > c21c12, and all parameter constants

a, pi, qi, αi, βi, cij are positive. We first deduce a bound for u in the first equation,
and then use the method in Section 1.4 to obtain a bound for v and w.



150 CHAPTER 2. POSITIVE SOLUTIONS FOR LARGE SYSTEMS

For a compact operator A : K → K, and an open subset U ⊂ K, define the
index(A, U,K) := iK(A, U) = deg(I −A ◦ r, r−1(U), 0), where I is the identity
map and r is a retraction of K into C(Ω̄)⊕C(Ω̄)⊕C(Ω̄). (Recall the definition
of such concepts in part B of Section 1.2). If y is an isolated fixed point of
A, then the fixed point index of A at y in K is defined by index(A, y,K) :=
index(A, U(y),K) = iK(A, U(y)), where U(y) is a small open neighborhood of
y in K. For convenience, we abbreviate i(A,D) = index(A,D,K), i(A, y) =
index(A, y,K). The following lemma will be needed for our main results.

Lemma 4.4. Suppose hypotheses (4.8) and (4.10) are satisfied, then i(A,D) =
1. (Here A = A111 as defined in (4.9).)

Proof. From hypothesis (4.10), we can use homotopy invariance of indices of the
mappings to obtain i(A,D) := i(A111,D) = i(A000,D). From definition, the i-th
component of A000(u1, u2, u3) is (−∆ + P )−1(Pui). If A000(u, v,w) = λ(u, v,w)
for λ ≥ 1, then −∆u + P (λ − 1)λ−1u = 0 in Ω, and B1u = 0 on ∂Ω. Thus if
λ ≥ 1 we must have u = 0, since λ1(−∆, B1) > 0. Similarly, we also deduce
v = w = 0. This means A000(u, v,w) �= λ(u, v,w) for all (u, v,w) ∈ ∂D and
every λ ≥ 1. Hence, by Theorem A2-4, we assert that i(A000) = 1.

For further study of problem (4.7) we need more hypotheses on the functions
fi.
(4.11)

For fixed non-negative functions u(x), v(x), w(x) in Cα(Ω̄), the functions
f1(x, ·, v(x), w(x)), f2(x, u(x), ·, w(x)), f3(u(x), v(x), ·) belong respectively
to the set F(Bi) of functions i = 1, 2, 3.

Before we state some of the main results, we define three operators Si : Cα(Ω̄)⊕
Cα(Ω̄)→ C2(Ω̄), i = 1, 2, 3 for convenience as follows. For given (p, q) ∈ Cα(Ω̄)⊕
Cα(Ω̄), u = S1(p, q) is the unique positive solution of the problem:

∆u+ uf1(x, u, p(x), q(x)) = 0 in Ω, B1u = 0 on ∂Ω,

if λ1(∆+f1(x, 0, p, q), B1) > 0 and S1(p, q) ≡ 0 otherwise. Similarly, v = S2(p, q)
or w = S3(p, q) are the unique positive solutions of:

∆v + vf2(x, p(x), v, q(x)) = 0 in Ω, B2v = 0 on ∂Ω, or

∆w + wf3(x, p(x), q(x), w) = 0 in Ω, B3w = 0 on ∂Ω,

if λ1(∆ + f2(x, p, 0, q), B2) > 0 or λ1(∆ + f3(x, p, q, 0), B3) > 0 respectively.
Otherwise S2(p, q) or S3(p, q) are the trivial functions. In particular we denote
u0 = S1(0, 0), v0 = S2(0, 0) and w0 = S3(0, 0). For i = 1, 2, 3, denote the
principal eigenvalues by

µi := λ1(∆ + fi(0, 0, 0), Bi).
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By Lemma 4.1, we have u0 is non-trivial if and only if µ1 > 0, v0 is non-trivial
if and only if µ2 > 0, and w0 is non-trivial if and only if µ3 > 0.

Theorem 4.1 and 4.2 deduce the indices for the trivial solution and those
solutions when two of the species are absent. For y ∈ K, as in Section 1.2, we
define Ky = {p ∈ CB1(Ω̄)⊕ CB2(Ω̄)⊕ CB3(Ω̄) : y + sp ∈ K for some s > 0}; K̄y

denotes the closure of Ky, and Sy = {p ∈ K̄y : −p ∈ K̄y}.
Theorem 4.1 (Index of the Trivial Solution). Assume hypotheses (4.8),
(4.10) and (4.11).

(i) If max(µ1, µ2, µ3) > 0 and at most one of the µ′is is zero, then i(A, (0, 0, 0)) =
0.

(ii) If µi ≤ 0 for i = 1, 2, 3 and at most one of them is zero, then i(A, (0, 0, 0)) =
1.

Proof. (i) Without loss of generality, we only have to consider two cases:
(a) Suppose µ1 > 0, µ2 �= 0, µ3 �= 0. We have K̄(0,0,0) = K, S(0,0,0) =

{(0, 0, 0)}. Denote the Fréchet derivative of A at (0, 0, 0) by:

L := A′(0, 0, 0)

= (−∆ + P )−1 ◦

 f1(0, 0, 0) + P 0 0

0 f2(0, 0, 0) + P 0
0 0 f3(0, 0, 0) + P


 ,

with boundary condition Bi on the i-th component. To show I −L is invertible
on K̄(0,0,0), it suffices to show that the only fixed point of L in K is zero. Let
[I−L](u, v,w)] = 0 with (u, v,w) ∈ K. Then [∆+f1(0, 0, 0)]u = 0, with u(x) ≥ 0
in Ω̄. Hence the assumption µ1 > 0 implies u = 0. Similarly, µ2 �= 0 and µ3 �= 0
imply that v = w = 0. We next show the operator L = A′(0, 0, 0) has property
(α) on K, and apply Lemma 2.7(i) to conclude i(A, (0, 0, 0)) = 0. For s ∈ R, let
φ(s) := λ1(∆+sf1(x, 0, 0, 0)+(1−s)(−P ), B1). Since φ(0) = λ1(∆−P ) < 0, (by
the characterization of principal eigenvalue), φ(1) = µ1 > 0 and φ is continuous
in s, there must exist t ∈ (0, 1) such that φ(t) = λ1(∆ + tf1(0, 0, 0) + (1 −
t)(−P )) = 0. The corresponding eigenfunction u satisfies (u, 0, 0) = tL(u, 0, 0),
with (u, 0, 0) ∈ K̄(0,0,0)\S(0,0,0). Thus L has property (α), and i(A, (0, 0, 0)) = 0.

(b) Suppose µ1 > 0, µ2 = 0 and µ3 �= 0. We modify f2 by letting f t2(x, u, v, w)
:= f2(x, u, v, w) − t and define the operator At in the same way as A with f2

replaced by f t2. Then we have A = A0 and λ1(∆ + f t2(x, 0, 0, 0), B2) < λ1(∆ +
f2(x, 0, 0, 0), B2) = µ2 = 0 for t > 0. From part (a), we have i(At, (0, 0, 0)) = 0
for t > 0. We next deduce that (0, 0, 0) is an isolated fixed point of At for all
t ≥ 0 by the following argument. Suppose there exist tn ≥ 0, (un, vn, wn) →
(0, 0, 0), and for each n,(un, vn, wn) is a fixed point of Atn in K. Then ∆un +
unf1(x, un, vn, wn) = 0. Since f1(x, un, vn, wn)→ f1(x, 0, 0, 0) and µ1 = λ1(∆ +
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f1(x, 0, 0, 0), B1) > 0, we find λ1(∆ + f1(x, un, vn, wn), B1) > 0 for all large n.
It follows that un = 0. Since µ3 �= 0, a similar argument shows that wn = 0 for
all large n. We next observe that for large n, vn is a non-negative solution of

∆v + vf tn2 (x, 0, v, 0) = 0 in Ω, B2v = 0 on ∂Ω.

From λ1(∆ + f tn2 (x, 0, 0, 0), B2) ≤ 0 and hypothesis (4.11), we conclude by
Lemma 4.1 that vn = 0 also, for large n. Hence (0, 0, 0) is an isolated fixed
point as claimed. Finally, by homotopy invariance, we obtain for some t > 0
that i(A, (0, 0, 0)) = i(A0, (0, 0, 0)) = i(At, (0, 0, 0)) = 0.
(ii) First assume µi < 0 for i = 1, 2, 3. We readily obtain r(L) < 1. Therefore
I − L is invertible on K̄(0,0,0). By comparison of principal eigenvalues and the
choice of large P we deduce that L does not have property (α). By Lemma 2.7 in
Chapter 1 and Theorem A2-3 in Chapter 6, we obtain i(A, (0, 0, 0)) = (−1)0 = 1.
If one of the µ′is is zero, we use a similar argument by modifying the correspond-
ing fi as in part(i)(b) above to deduce by homotopy that i(A, (0, 0, 0)) = 1.

Theorem 4.2 (Indices of Semi-Trivial Solutions). Assume hypotheses
(4.8), (4.10), (4.11) and µ1 > 0.

(i) If λ1(∆+f2(x, u0, 0, 0), B2) �= 0 and λ1(∆+f3(x, u0, 0, 0), B3) > 0, or λ1(∆+
f2(x, u0, 0, 0), B2) > 0 and λ1(∆ + f3(x, u0, 0, 0), B3) �= 0, then i(A, (u0, 0, 0)) =
0.

(ii) If λ1(∆ + f2(x, u0, 0, 0), B2) < 0 and λ1(∆ + f3(x, u0, 0, 0), B3) < 0,
then i(A, (u0, 0, 0)) = 1.
(Note that µ1 > 0 implies that u0 is non-trivial.)

Proof. (i) Without loss of generality, we assume λ1(∆ + f3(x, u0, 0, 0), B3) > 0
and λ1(∆ + f2(x, u0, 0, 0), B2) �= 0. Let y = (u0, 0, 0). Then

L := A′(y) = (−∆ + P )−1◦
 u0Duf1(x, y) + f1(x, y) + P u0Dvf1(x, y) u0Dwf1(x, y)

0 f2(x, y) + P 0
0 0 f3(x, y) + P


 .

One readily verifies that K̄y = CB1(Ω̄)⊕C+
B2

(Ω̄)⊕C+
B3

(Ω̄). and Sy = CB1(Ω̄)⊕
{0} ⊕ {0}. Let L(u, v,w) = (u, v,w) ∈ K̄y. As in the proof of Theorem 4.1(i),
we have v = w = 0. Therefore [∆ + u0Duf1(x, u0, 0, 0) + f1(x, u0, 0, 0)]u = 0 in
Ω, B1u = 0. From the sign of Duf1 and comparison of principal eigenvalues, we
obtain u ≡ 0. Thus I − L is invertible in K̄y.

Since λ1(∆ + f3(x, u0, 0, 0), B3) > 0, as in the proof of Theorem 4.1(i), we
obtain a number t ∈ (0, 1) and a non-trivial w ∈ C+

B3
(Ω̄) such that (−∆+P )w =

t(f3(x, u0, 0, 0) +P )w in Ω. Then (u, 0, w) ∈ K̄y\Sy and (u, 0, w)− tL(u, 0, w) ∈
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Sy for any u ∈ CB1(Ω̄). This implies that L has property (α) on K̄y. Thus
i(A, (u0, 0, 0)) = 0, by Lemma 2.7 in Chapter 1.
(ii) Let L be as defined above, we first show that no eigenvalue of L is greater
than one. Suppose L(u, v,w) = µ(u, v,w) for some (u, v,w) ∈ X with µ ≥ 1.
Then (−∆ + P )−1[f2(x, u0, 0, 0) + P ]v = µv. However, from Lemma 4.3 and
assumption λ1(∆ + f2(x, u0, 0, 0)) < 0, we know that r(H) < 1 where H :=
(−∆ + P )−1[f2(x, u0, 0, 0) + P ]. Therefore we obtain v = 0. Similarly, we
deduce w = 0. Thus (−∆ + P )−1[u0Duf1(x, u0, 0, 0) + f1(u0, 0, 0) + P ]u = µu.
This implies u = 0 again by Lemma 4.3 because λ1(∆ + u0Duf1(x, u0, 0, 0) +
f1(u0, 0, 0) < λ1(∆+f1(u0, 0, 0) = 0. Therefore we must have (u, v,w) = (0, 0, 0)
and such µ cannot be an eigenvalue of L.

Suppose that the operator L has property (α) on K̄y. Then there exist
(u, v,w) ∈ K̄y\Sy and t ∈ (0, 1) such that (u, v,w) − tL(u, v,w) ∈ Sy. Thus v
and w are non-negative solutions of (−∆ + P )−1[f2(x, u0, 0, 0) + P ]v = (1/t)v
and (−∆+P )−1[f3(x, u0, 0, 0)+P ]w = (1/t)w. If v is non-trivial, then (1/t) > 1
is an eigenvalue of the operator (−∆ + P )−1[f2(x, u0, 0, 0) + P ], contradicting
Lemma 4.3. Thus we must have v = 0. Similarly, we deduce w = 0. However,
this means (u, v,w) ∈ Sy, leading to another contradiction. Consequently, the
operator L cannot have property (α). We can thus use Lemma 2.7 in Chapter
1 and Theorem A2-3 in Chapter 6 to conclude that i(A, (u0, 0, 0) = (−1)0 = 1.

Let M be the a-priori bound for (4.7) defined above, and Êi(t) = {u ∈
C(Ω̄) : Biu = 0, 0 ≤ u < t in Ω̄}. Define Dε

1 = Ê1(t) ⊕ Ê2(M) ⊕ Ê3(M),
Dε

2 = Ê1(M) ⊕ Ê2(t) ⊕ Ê3(M), and Dε
3 = Ê1(M) ⊕ Ê2(M) ⊕ Ê3(t). Dε

1 is a
“slice” in D containing all fixed points of A of the form (0, v, w); similarly, Dε

2

and Dε
3 are different slices. The following theorem is concerned with the fixed

point index of A on such a slice.

Theorem 4.3 (Indices of Thin Slices of the Positive Cone). Assume
hypotheses (4.8), (4.10) and (4.11). Define:

t := inf.{||u|| : u �= 0, (u, v,w) is a fixed point of A1,θ,θ in D for some
v,w ≥ 0 and some θ ∈ [0, 1]}.

Suppose that t > 0 and ε is a positive number with ε ∈ (0, t). Then i(A,Dε
1) = 0

if µ1 > 0, and i(A,Dε
1) = 1 if µ1 ≤ 0.

Proof. First note that the assumption t > 0 means that if ε ∈ (0, t), all fixed
points of A1,θ,θ, for all θ ∈ [0, 1] in Dε

1 are of the form (0, u, w) and are thus
not on the boundary ∂Dε

1 in D. Hence we can use homotopy invariance in
the ’slice’ Dε

1 to obtain i(A,Dε
1) = i(A1,1,1,D

ε
1) = i(A1,0,0,D

ε
1). However, by

definition A1,0,0(u, v,w) = (−∆ + P )−1[uf1(x, u, v, w) + Pu), Pv, Pw]. We see
that A1,0,0(u, v,w) = (u, v,w) ∈ Dε

1 implies v = w = 0 and ||u|| < ε. Thus by the
choice of ε < t, we must have u = 0. This means the only fixed point of A1,0,0 in
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Dε
1 is (0, 0, 0). Therefore i(A1,0,0,D

ε
1) = i(A1,0,0, (0, 0, 0)). We can readily verify

from the proof of Theorem 4.1 that it still applies if we change f2 and f3 to be
the trivial functions with the new µ2 = λ1(∆, B2) < 0, µ3 = λ1(∆, B3) < 0, and
µ1 = λ1(f1(x, 0, 0, 0), B1) unchanged. That is the hypotheses of Theorem 4.1
can be modified so that it is applicable to the mapping A1,0,0. Thus we conclude
that i(A1,0,0, (0, 0, 0)) = 0 if µ1 > 0, and i(A1,0,0, (0, 0, 0)) = 1 if µ1 ≤ 0.

We next define Dε
1,2 = Dε

1 ∪Dε
2,D

ε
1,3 = Dε

1 ∪Dε
3, and Dε

2,3 = Dε
2 ∪Dε

3. Note
that the set Dε

12 contains all fixed points of A in D of the form (0, v, w) and
(u, 0, w), and ∂Dε

12 = {(u, v,w) ∈ D : min{||u||, ||v||} = ε or min{||u||, ||v||} ≤ ε
and ||w|| = M}. The following theorem consider the indices of these sets.

Theorem 4.4 (Indices for Unions of Thin Slices). Assume hypotheses
(4.8), (4.10) and (4.11). Define

t := inf.{||u||, ||v|| : (u, v,w) is a fixed point of A1,1,θ in D for some w ≥ 0

with both u �= 0, v �= 0 and some θ ∈ [0, 1]}.

Suppose t > 0 and ε is a number satisfying ε ∈ (0, t), then i(A,Dε
1,2) has the

following properties:

(i) Suppose µ1 > 0 and µ2 > 0.

If λ1(∆+f1(x, 0, v0, 0), B1) > 0 and λ1(∆+f2(x, u0, 0, 0), B2) > 0, then i(A,Dε
1,2)

= 0.
If λ1(∆+f1(x, 0, v0, 0), B1) > 0 and λ1(∆+f2(x, u0, 0, 0), B2) < 0, or vice versa,
then i(A,Dε

1,2) = 1.
If λ1(∆+f1(x, 0, v0, 0), B1) < 0 and λ1(∆+f2(x, u0, 0, 0), B2) < 0, then i(A,Dε

1,2)
= 2.

(ii) Suppose µ1 > 0 and µ2 ≤ 0.

If λ1(∆ + f2(x, u0, 0, 0), B2) > 0, then i(A,Dε
1,2) = 0.

If λ1(∆ + f2(x, u0, 0, 0), B2) < 0, then i(A,Dε
1,2) = 1.

(iii) Suppose µ1 ≤ 0 and µ2 > 0.

If λ1(∆ + f1(x, 0, v0, 0), B2) > 0, then i(A,Dε
1,2) = 0.

If λ1(∆ + f1(x, 0, v0, 0), B2) < 0, then i(A,Dε
1,2) = 1.

(iv) Suppose µ1 < 0 and µ2 ≤ 0, or µ1 ≤ 0 and µ2 < 0. Then i(A,Dε
1,2) = 1.

Proof. (i) Assume µ1 > 0 and µ2 > 0. By the choice of ε < t, we see that
the mapping A1,1,θ has no fixed point on ∂Dε

1,2. Hence, we can use homotopic
invariance to obtain i(A,Dε

1,2) = i(A1,1,0,D
ε
1,2). As in the proof of Theorem

4.3, we see that if A1,1,0(u, v,w) = (u, v,w) ∈ Dε
1,2, then w = 0 and either

||u|| < ε or ||v|| < ε. Again, by the choice of ε, we must further have either
u = 0 or v = 0. Consequently, we have u = 0 or u0, v = 0 or v0. This
means that (0, 0, 0), (u0 , 0, 0) and (0, v0, 0) are the only three fixed points of the
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mapping A1,0,0 in Dε
1,2. Hence, we obtain i(A1,1,0,D

ε
1,2) = i(A1,1,0, (0, 0, 0)) +

i(A1,1,0, (u0, 0, 0))+i(A1,1,0 , (0, v0, 0)). As described in the proof of Theorem 4.3,
we can apply a modification of Theorem 4.1(i) to find i(A1,1,0, (0, 0, 0)) = 0. If we
review the proof of Theorem 4.2(i), in the case when λ1(∆+f2(x, u0, 0, 0), B2) >
0 and (λ1(∆+f3(x, u0, 0, 0), B3) �= 0, the proof still applies if f3 is changed to the
trivial function. Thus we obtain i(A1,1,0, (u0, 0, 0)) = 0. By similar arguments,
we apply a modification of Theorem 4.2(i) to deduce i(A1,1,0, (0, v0, 0)) = 0. The
conclusion is obtained by adding the three indices.

Parts (ii), (iii) and (iv) of this theorem can be proved similarly.

Remark 4.2. Results analogous to Theorems 4.2, 4.3 and 4.4 are valid for
all their natural symmetric variations. For example, we can calculate the fixed
point indices of A on Dε

1,3 and Dε
2,3 in the same way as in Theorem 4.4.

Motivated by application to biological problems, we will assume some mono-
tone properties concerning the functions fi, i = 1, 2, 3.
(4.12)
The partial derivatives Dvf1,Dwf1,Duf2,Dwf2,Duf3,Dvf3 are all
non-negative or non-positive for all (x, u, v, w) ∈ Ω̄× [0,∞) × [0,∞)× [0,∞).

For convenience, we use the following symbols:

u→ v if u preys on v, i.e. Dvf1 ≥ 0 and Duf2 ≤ 0;

u ∼ v if u cooperates with v, i.e. Dvf1 ≥ 0 and Duf2 ≥ 0;

u↔ v if u competes with v, i.e. Dvf1 ≤ 0 and Duf2 ≤ 0.

For example, the diagram u ∼ v ↔ w ← u represent a model in which u, v
cooperate, v,w compete, and w, u is a prey-predator pair with w as the prey.
Consequently, each such model or diagram represents some hypotheses on the
signs of the partial derivatives of the various f ′is.

Recall a solution of problem (4.7) is called positive if each component is not
identically zero and non-negative in Ω̄). We now give sufficient conditions for
the existence of positive solutions of problem (4.7) under various combinations
of predation, competition and symbiosis (described by diagram models above).
The conditions are in terms of the signs of the principal eigenvalues of related
elliptic operators for single equation. They are thus convenient for applications.

Theorem 4.5 (Main Theorem for Coexistence of Three Species).
Assume hypotheses (4.8), (4.10), (4.11) and (4.12) for fi, i = 1, 2, 3. Suppose
that for each of the following models, the corresponding conditions are satisfied.
Then the problem (4.7) has a positive solution. (Here, M is the a-priori bound
used in the definition of the set D.)
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Model 1. u → v ← w ∼ u. Suppose λ1(∆ + f1(x, 0, 0, w0), B1) > 0, λ1(∆ +
f2(x,M, 0,M), B2) > 0, and λ1(∆ + f3(x, u0, 0, 0), B3) > 0.

Model 2. u ← v ← w ∼ u. Let µi > 0 for i = 1, 2, 3. Suppose either
both λ1(∆ + f1(x, 0, v0, 0), B1) > 0 and λ1(∆ + f2(x, u0, 0,M), B2) > 0, or both
λ1(∆ + f1(x, 0, v0, w0), B1) > 0 and λ1(∆ + f2(x, 0, 0,M), B2) > 0.

Model 3. u ← v → w ∼ u. Let µ1 > 0 and µ3 > 0. Suppose one of
λ1(∆ + f2(x, u0, 0, 0), B2) > 0 and λ1(∆ + f2(x, 0, 0, w0), B2) > 0 is positive.
Moreover, suppose λ1(∆+f1(x, 0, v2, 0), B1) > 0 and λ1(∆+f3(x, 0, v1, 0), B3) >
0, where v1 := S2(u0, 0) and v2 := S2(0, w0).

Model 4. u ↔ v ← w ∼ u. Let µ2 > 0 and µ3 > 0. Suppose λ1(∆ +
f1(x, 0, v0, w0), B1) > 0, and λ1(∆ + f2(x,M, 0,M), B2) > 0.

Model 5. u ← v ↔ w ∼ u. Let µi > 0 for i = 1, 2, 3. Suppose λ1(∆ +
f1(x, 0, v0, 0), B1) > 0. Define v1 := S2(u0, 0). Moreover, suppose either both
λ1(∆+f2(x, u0, 0,M), B2) > 0 and λ1(∆+f3(x, 0, v1, 0), B3) > 0, or both λ1(∆+
f2(x,M, 0, w0), B2) < 0 and λ1(∆ + f3(x,M, v0, 0), B3) < 0.

Model 6. u ↔ v ↔ w ∼ u. Let µi > 0 for i = 1, 2, 3. Suppose λ1(∆ +
f1(x, 0, v0, 0), B1) > 0, λ1(∆+f2(x,M, 0,M), B2) > 0, and λ1(∆+f3(x, 0, v0, 0),
B3) > 0.

Proof. For each model described in the statement, it suffices to show that
i(A, D̃) �= 0, where D̃ = {(u, v,w) ∈ D : u, v,w > 0 in Ω}.
Model 1. The assumption λ1(∆ + f2(x,M, 0,M)) > 0 implies µ2 > 0. Suppose
that both µ1 and µ3 are non-positive, then u0 ≡ w0 ≡ 0, contradicting the
assumptions λ1(∆ + f1(x, 0, 0, w0)) > 0 and λ1(∆ + f3(x, u0, 0, 0)) > 0. Hence,
we must have µ2 > 0 and at least one µ1, µ3 is positive. There are three cases
as follows.

(i) Let µ1 > 0, µ3 ≤ 0. Consider the mappings Aθ,1,θ, for θ ∈ [0, 1]. Since
λ1(∆ + f2(x,M, 0,M)) > 0, the problem:

(4.13) ∆v + vf2(x,M, v,M) = 0 in Ω, B2v = 0 on ∂Ω,

has a unique positive solution v̄ by Lemma 4.1. We have ||v̄|| ≥ δ > 0 for
some δ. Let (u, v,w) be a fixed point of Aθ,1,θ in D with v �= 0. We have
∆v + vf2(x, u, v, w) = 0 in Ω. Since f2(x, u, v.w) ≥ f2(x,M, v,M), Lemma
4.2(ii) implies that v ≥ v̄. Choose ε ∈ (0, δ), then by Theorem 4.3 (with th role
of first and second components interchanged) we obtain i(A,Dε

2) = 0. Here, we
have used hypothesis (4.12) and the interaction relation in model 1 to find that
the hypothesis t > 0 is satisfied in Theorem 4.3.

Next, consider the mappings A1,θ,1. Let (u, v,w) be a fixed point of A1,θ,1 in
D with u �= 0 and w �= 0. Since ∆u+uf1(x, u, v, w) = 0 in Ω and f1(x, u, v, w) ≥
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f1(x, u, 0, 0), by Lemma 4.2(ii), we have u ≥ u0 �= 0. Let w̄ be the unique positive
solution of:

(4.14) ∆w + wf3(x, u0, 0, w) = 0 in Ω, B3w = 0 on ∂Ω.

Since ∆w+ f3(x, u, v, w) = 0 and f3(x, u, v, w) ≥ f3(x, u0, 0, w), we obtain from
Lemma 4.2(ii) again that w ≥ w̄. Choose a positive ε < min{||u0||, ||w̄||}. We
obtain from Theorem 4.4, with the second and third components interchanged,
that i(A,Dε

1,3) = 0.
We next use Theorem 4.1(i) and Theorem 4.2(i) to deduce that i(A, (0, 0, 0))

= i(A, (u0, 0, 0)) = 0. Then, unless there is already positive solution to the
problem, we can obtain from the additivity of indices, Theorem A2-1(ii), that

i(A, D̃) = i(A,D) − i(A,Dε
1,3)− i(A,Dε

2) + i(A, (u0, 0, 0)) + i(A, (0, 0, 0))

= 1− 0− 0 + 0 + 0 = 1.

Note that (u0, 0, 0) and (0, 0, 0) are members of both Dε
1,3 and Dε

2.
(ii) µ1 ≤ 0, µ3 > 0. This is symmetric to case (i). The proof is the same

with the role of the first and third components interchanged.
(iii) Both µ1 > 0 and µ3 > 0, with both u0 and w0 non-trivial. As in the

proof above for case (i), we can show that i(A,Dε
i ) = 0 for sufficiently small

positive ε, i = 1, 2, 3, by means of Theorem 4.3. We can also similarly show by
means of Theorem 4.1 and Theorem 4.2 that i(A, (0, 0, 0)) = i(A, (u0, 0, 0)) =
i(A, (0, v0, 0)) = i(A, (0, 0, w0)) = 0. Again, by the additivity of indices, we
deduce for our problem that i(A, D̃) = i(A,D)−i(A,Dε

1)−i(A,Dε
2)−i(A,Dε

3)+
i(A, (u0, 0, 0)) + i(A, (0, v0 , 0)) + i(A, (0, 0, w0)) + 2i(A, (0, 0, 0)) = 1−0−0−0+
0 + 0 + 0 + 0 = 1.

Model 2. As in the proof in Model 1, we can use Theorem 4.3 to deduce
i(A,Dε

3) = 0. We can also use Theorem 4.1(i) to deduce i(A, (0, 0, 0) = 0, and use
Theorem 4.2(i) to deduce i(A, (u0, 0, 0)) = i(A, (0, v0, 0)) = i(A, (0, 0, w0) = 0

(i) Suppose both λ1(∆+f1(x, 0, v0, 0), B1) > 0 and λ1(∆+f2(x, u0, 0,M), B2)
> 0. We consider the mapping A1,1,θ in D; and assume that there exist fixed
points (un, vn, wn) of A1,1,θ with θn ∈ [0, 1], un �= 0, vn �= 0 and either un → 0
or vn → 0. First suppose un → 0. From the relation in the model, we have for
v ≥ 0, f2(x, un, v, wn) ≤ f2(x, un, v, 0) → f2(x, 0, v, 0). Thus by Lemma 4.2, we
have vn ≤ v̄n → v0 where v̄n is the unique positive solution of

∆v + vf2(x, un, v, 0) = 0 in Ω, B2v = 0 on ∂Ω.

Therefore the model relation and hypothesis (4.12) imply that λ1(∆+f1(x, 0, vn,
0), B1) ≥ λ1(∆ + f1(x, 0, v̄n, 0), B1) → λ1(∆ + f1(x, 0, v0, 0), B1) > 0. From
Lemma 4.2, we obtain the contradiction that un cannot tend to 0.
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Next, suppose vn → 0. Then for u ≥ 0, we have f1(x, u, vn, wn) ≥ f1(x, u, vn,
0) → f1(x, u, 0, 0). By Lemma 4.2, we have un ≥ ūn → u0, where ūn is the
unique positive solution of

∆u+ uf1(x, u, vn, 0) = 0 in Ω, B1u = 0 on ∂Ω.

Therefore the model relation and hypothesis (4.12) imply that λ1(∆+f2(x, un, 0,
wn), B2) ≥ λ1(∆ + f2(x, ūn, 0,M), B2)→ λ1(∆ + f2(x, u0, 0,M), B2) > 0. From
Lemma 4.2, we obtain the contradiction that vn cannot tend to 0.

From the arguments above, we see that for small ε > 0, A1,1,θ has no fixed
point on ∂Dε

1,2; and we obtain from Theorem 4.4 that i(A,Dε
1,2) = 0. Again, we

obtain from the additivity of indices, Theorem A2-1(ii), that i(A, D̃) = i(A,D)−
i(A,Dε

1,2)− i(A,Dε
3) + i(A, (u0, 0, 0)) + i(A, (0, v0, 0)) + i(A, (0, 0, 0)) = 1− 0−

0 + 0 + 0 + 0 = 1.
(ii) Suppose both λ1(∆+f1(x, 0, v0, w0), B1) > 0 and λ1(∆+f2(x, 0, 0,M), B2)

> 0. Using similar arguments as in case (i), we can consider the mappings A1,θ,1

and Aθ,1,1 to show that i(A,Dε
1,3) = i(A,Dε

2,3) = 0 for a small ε > 0. Then, we
use additivity of indices to obtain i(A, D̃) = i(A,D) − i(A,Dε

1,3)− i(A,Dε
2,3) +

i(A,Dε
3) + i(A, (0, 0, w0)) = 1− 0− 0 + 0 + 0 = 1.

Model 3. Using µ1 > 0, µ3 > 0 and the cooperating relation between u and w,
we obtain from Theorem 4.1(i) and 4.2(i) that i(A, (0, 0, 0)) = i(A, (u0, 0, 0)) =
i(A, (0, 0, w0)) = 0. We consider the following three cases.

(i) Suppose µ2 > 0. Assume there exist fixed points (un, vn, wn) of A1,θn,1 in
D with θn ∈ [0, 1], un �= 0, wn �= 0 and un → 0 or wn → 0. First suppose un → 0.
We can show as in the proof of Model 2(i) above that there are some w̄n such
that wn ≤ w̄n → w0. This would imply that there are v̄n such that vn ≤ v̄n →
v2. Therefore from the model relation, we have λ1(∆ + f1(x, 0, vn, wn), B1) ≥
λ1(∆ + f1(x, 0, v̄n, 0), B1) → λ1(∆ + f1(x, 0, v2, 0), B1) > 0. This leads to the
contradiction that un cannot tend to 0. In the same way, the assumption that
wn → 0 leads to a contradiction. This shows that there exists ε > 0 such
that A1,θ,1 has no fixed point on ∂Dε

1,3 and we obtain from Theorem 4.4 that
i(A,Dε

1,3) = 0. We can also readily show as in the proof of Model 1 that
i(A,Dε

2) = 0. Then using additivity of indices, we obtain i(A, D̃) = i(A,D) −
i(A,Dε

1,3)− i(A,Dε
2) + i(A, (u0, 0, 0)) + i(A, (0, 0, w0)) + i(A, (0, 0, 0)) = 1− 0−

0 + 0 + 0 + 0 = 1.
(ii) Suppose µ2 ≤ 0 and λ1(∆ + f2(x, u0, 0, 0), B2) > 0. Assume there exist

fixed points (un, vn, wn) of A1,1,θn in D with θn ∈ [0, 1], un �= 0, vn �= 0 and
un → 0 or vn → 0. Then we can show that un → 0 implies that there are
some v̄n such that vn ≤ v̄n → v2. This in turn implies from the assumption
λ1(∆ + f1(x, 0, v2, 0), B1) > 0 that un cannot really tend to zero. On the other
hand, we can show that vn → 0 implies that there are some ūn such that un ≥
ūn → u0. This in turn implies from the assumption λ1(∆+f2(x, u0, 0, 0), B1) > 0
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that vn cannot really tend to zero. Therefore we obtain from Theorem 4.4 that
i(A,Dε

1,2) = 0 for some ε > 0.
Assume there exist fixed points (un, vn, wn) of Aθn,θn,1 in D with θn ∈

[0, 1], wn �= 0, and wn → 0. We can show that wn → 0 implies that there
are some ūn such that un ≤ ūn → u0. This implies that there are some v̄n
such that vn ≤ v̄n → v1. This is turn implies by means of the assumption
λ1(∆ + f3(x, 0, v1, 0), B3) > 0 that wn cannot really tend to zero. Therefore
we obtain from Theorem 4.3 that i(A,Dε

3) = 0 for some ε > 0. Thus we ob-
tain i(A, D̃) = i(A,D)− i(A,Dε

1,2)− i(A,Dε
3) + i(A, (u0, 0, 0)) + i(A, (0, 0, 0)) =

1− 0− 0 + 0 + 0 = 1.
(iii) Suppose µ2 ≤ 0 and λ1(∆ + f2(x, 0, 0, w0), B2) > 0. This is symmetric

to case (ii) above with the role of u0 and w0 interchanged. We show that
i(A,Dε

2,3) = i(A,Dε
1) = 0 for some ε > 0. This leads to i(A, D̃) = 1, as above.

Model 4. Using the assumptions µ2 > 0 and λ1(∆ + f2(x,M, 0,M), B2) > 0 we
can show as in the proof of Model 1 that i(A,Dε

2) = 0. Since we also assume
µ3 > 0, we obtain i(A, (0, 0, w0)) = i(A, (0, 0, 0)) = 0.

We next show that i(A,Dε
1,3) = 0 for some small ε > 0. Assume (u, v,w) is

a fixed point of A1,θ,1 in D with u �= 0 and w �= 0. Using the model relation,
we obtain by comparison that v ≤ v0 and w ≥ w0, and therefore f1(x, u, v, w) ≥
f1(x, u, v0, w0). Let ū be the unique positive solution of

∆u+ uf1(x, u, v0, w0) = 0 in Ω, B1u = 0 on ∂Ω.

By Lemma 4.2, we have u ≥ ū. Choosing a positive ε < min{||w0||, ||ū||},
we can apply Theorem 4.4 to obtain i(A,Dε

1,3) = 0. Now if µ1 ≤ 0, then
i(A, D̃) = i(A,D) − i(A,Dε

1,3) − i(A,Dε
2) + i(A, (0, 0, w0)) + i(A, (0, 0, 0)) =

1−0−0+0+0 = 1. If µ1 > 0, then Theorem 4.2 also implies i(A, (u0, 0, 0)) = 0.
Consequently, we have i(A, D̃) = i(A,D)−i(A,Dε

1,3)−i(A,Dε
2)+i(A, (u0, 0, 0))+

i(A, (0, 0, w0)) + i(A, (0, 0, 0)) = 1− 0− 0 + 0 + 0 + 0 = 1.

Model 5. We only outline the procedures. As in the proof of the models above,
we use the model relations and assumptions here to first prove i(A,Dε

1) =
i(A, (u0, 0, 0)) = i(A, (0, v0, 0)) = i(A, (0, 0, 0)) = 0.

(i) Suppose both λ1(∆+f2(x, u0, 0,M), B2) > 0 and λ1(∆+f3(x, 0, v1, 0), B3)
> 0. Then we show that i(A,Dε

1,2) = i(A,Dε
1,3) = i(A,Dε

1) = i(A, (u0, 0, 0)) = 0.
Then, by the additivity of indices, we obtain i(A, D̃) = i(A,D) − i(A,Dε

1,2) −
i(A,Dε

1,3) + i(A,Dε
1) + i(A, (u0, 0, 0)) = 1− 0− 0 + 0 + 0 = 1.

(ii) Suppose that both λ1(∆+f2(x,M, 0, w0), B2) < 0 and λ1(∆+f3(x,M, v0,
0), B3) < 0. We use Theorem 4.4 to obtain i(A,Dε

2,3) = 2. We obtain i(A, D̃) =
i(A,D)− i(A,Dε

2,3)− i(A,Dε
1)+ i(A, (0, v0, 0))+ i(A, (0, 0, w0))+ i(A, (0, 0, 0)) =

1− 2− 0 + 0 + 0 + 0 = −1.

Model 6. We first show that i(A,Dε
1) = i(A,Dε

2) = i(A,Dε
3) = i(A, (u0, 0, 0)) =
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i(A, (0, v0, 0)) = i(A, (0, 0, w0)) = i(A, (0, 0, 0)) = 0. We thus obtain i(A, D̃) =
i(A,D)−i(A,Dε

1)−i(A,Dε
2)−i(A,Dε

3)+i(A, (u0, 0, 0))+i(A, (0, v0 , 0))+i(A, (0, 0,
w0)) + 2i(A, (0, 0, 0)) = 1− 0− 0− 0 + 0 + 0 + 0 + 0 = 1.

Remark 4.3. The results above are obtained from Liu [160]. In [160], the
following models are considered, and results are also obtained with similar proof.
Assume hypotheses (4.8), (4.10), (4.11) and (4.12) for fi, i = 1, 2, 3. Suppose
that for each of the following models, the corresponding conditions are satisfied.
Then the problem (4.7) has a positive solution. (Here, M is the a-priori bound
used in the definition of the set D.)

Model 7. u ∼ v → w ∼ u. Suppose λ1(∆ + f1(x, 0, v0, 0), B1) > 0, λ1(∆ +
f2(x, u0, 0, 0), B2) > 0, and λ1(∆ + f3(x, u0,M, 0), B3) > 0.

Model 8. u ∼ v ↔ w ∼ u. Let µi > 0 for i = 1, 2, 3. Suppose either both
λ1(∆ + f2(x, u0, 0,M), B2) > 0 and λ1(∆ + f3(x, u0,M, 0), B3) > 0, or both
λ1(∆ + f2(x,M, 0, w0), B2) < 0 and λ1(∆ + f3(x,M, v0, 0), B3) < 0.

Model 9. u ∼ v ∼ w ∼ u. Suppose at least one of λ1(∆ + f1(x, 0, v0, 0), B1)
and λ1(∆+f1(x, 0, 0, w0), B1) is positive, at least one of λ1(∆+f2(x, u0, 0, 0), B2)
and λ1(∆+f2(x, 0, 0, w0), B2) is positive, and at least one of λ1(∆+f3(x, u0, 0, 0),
B3) and λ1(∆ + f3(x, 0, v0, 0), B3) is positive.

Model 10. u ← v ← w ← u. Let µi > 0 for i = 1, 2, 3. Suppose
λ1(∆ + f1(x, 0, v0, 0), B1) > 0, λ1(∆ + f2(x, 0, 0, w0), B2) > 0, and λ1(∆ +
f3(x, u0, v0, 0), B3) > 0.

Model 11. u → v ← w ← u. Let µ2 > 0 and µ3 > 0. Define u1 =
S1(v0, 0) and u2 = S1(0, w0). Suppose λ1(∆ + f1(x, 0, 0, w0), B1) > 0, λ1(∆ +
f2(x, u2, 0, w0), B2) > 0 and λ1(∆ + f3(x, u1, 0, 0), B3) > 0.

Model 12. u↔ v ← w ← u. Let µ2 > 0 and µ3 > 0. Define u1 = S1(0, w0).
Suppose λ1(∆ + f1(x, 0, v0, w0), B1) > 0, λ1(∆ + f2(x, u1, 0, w0), B2) > 0, and
λ1(∆ + f3(x, u0, 0, 0), B3) > 0.

Model 13. u ↔ v → w ← u. Let µi > 0 for i = 1, 2, 3. Suppose λ1(∆ +
f3(x, u0, v0, 0), B3) > 0. Define u1 = S1(0, w0) and v1 = S2(0, w0). Suppose
either λ1(∆ + f1(x, 0, v1, 0), B1) > 0 and λ1(∆ + f2(x, u1, 0, 0), B2) > 0, or
λ1(∆ + f1(x, 0, v0, w0), B1) < 0 and λ1(∆ + f2(x, u0, 0, w0), B2) < 0.

Model 14. u → v ↔ w ← u. Let µi > 0 for i = 1, 2, 3. Define u1 =
S1(v0, 0) and u2 = S1(0, w0). Suppose λ1(∆ + f2(x, u2, 0, w0), B2) > 0, and
λ1(∆ + f3(x, u1, v0, 0), B3) > 0.

Model 15. u↔ v ↔ w← u. Let µi > 0 for i = 1, 2, 3. Define u1 = S1(0, w0).
Suppose λ1(∆ + f1(x, 0, v0, 0), B1) > 0, λ1(∆ + f2(x, u1, 0, w0), B2) > 0, and
λ1(∆ + f3(x, u0, v0, 0), B3) > 0.
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Model 16. u ↔ v ↔ w ↔ u. Let µi > 0 for i = 1, 2, 3. Suppose
λ1(∆ + f1(x, 0, v0, w0), B1) > 0, λ1(∆ + f2(x, u0, 0, w0), B2) > 0, and λ1(∆ +
f3(x, u0, v0, 0), B3) > 0.

Remark 4.4. In some of the models in Theorem 4.5 and the above remark,
the conditions for coexistence involve the knowledge of the a-priori bound M .
They are thus sometimes not very readily applicable. In the next section, we
consider many cases involving even more species when the a-priori bound M can
be obtained from the coefficients of the equations. Consequently, the conditions
for coexistence can be readily verified.

2.5 Positive Steady-States for Large Systems by
Index Method

This section considers the existence of positive solutions for various systems of
four nonlinear coupled elliptic partial differential equations subjected to zero
Dirichlet boundary condition. In applications, the four components can be in-
terpreted as concentrations of four interacting chemicals or populations. The
four species can interact nonlinearly in many different ways, leading to various
cases below. The positive solutions represent coexistence of all four species in
equilibrium with each other.

The species are divided into two groups, with a pair of species within each
group. In Theorems 5.1 and 5.2, we assume that the two groups interact with a
predator-prey relation. Each species in the first group is a predator for the prey-
species in the second group. Within each group, the pair of species interact with
each other in a competitive (or cooperative) manner. On the microscopic scale
of immunology, for example, killer and helper T lymphocytes stimulate each oth-
ers growth and proliferation through chemical mediators. They both directly or
indirectly eliminate bacteria or viruses, which may compete for resources such as
host cellular products and proteins (cf. DeLisi [44] and Kuby [111]). We prove
Theorems 5.1 and 5.2 using index calculation methods as in the previous section
for three species. The method for calculating the cone indices of the mappings
for three components in the last section does not apply immediately for the case
of four components in this present section. The methods of calculation of the
cone indices are extended to the case for four components in this section. The
extended methods are then applied to study the various cases. Sufficient con-
ditions are found for the existence of solutions with each component positive.
In other theorems, we assume that the two groups interact with a cooperating
relation. Within each group, the pair of species interact in a competing or coop-
erating manner. For simplicity in this section, we assume the interaction terms
are of Volterra-Lotka type, which is common in many biological applications.
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A systematic investigation of the existence of positive solutions by means
of cone index method for systems with more than three equations should be of
value in future research of complex biological models. The results give elegant
conditions, in terms of the spectral property of simpler appropriately related
operators on only one component, for the existence of positive coexistence states
for the full system. Furthermore, the method of analysis here can be extended
to include other boundary conditions and reactions more general than Volterra-
Lotka type as in the previous section. We also deduce the a-priori bounds of
the solutions directly in terms of the coefficients of the equations. Consequently,
the conditions of coexistence are expressed directly in terms of the coefficients
of the equations, and are thus much easier to apply. The presentation in this
section follows the results in Leung [129].

More precisely, we consider the system of elliptic equations:

(5.1) ∆ui + ui[ ei +
4∑
i=1

aijuj] = 0 in Ω; ui = 0 on ∂Ω,

where ei and aij are constants satisfying:

(5.2) aii < 0 and ei > 0 for i = 1, 2, 3, 4.

The constants ei and aii, i = 1, .., 4 represent the intrinsic growth rates and
crowding effects of the corresponding species. The constants aij , i �= j are the
interaction rates, whose signs will satisfying various assumptions according to
the cases considered by the particular theorems. Ω is a bounded domain in RN

with smooth boundary. A solution of problem (1.1) is called positive if each
component is not identically zero and non-negative in Ω̄.

We divide the species into two groups. Group I consists of the species m =
1, 2 and group II consists of species n = 3 and 4. In the first two theorems, we
assume that Groups I and II have a predator-prey relationship, with species in
I as predators and species in II as prey. More precisely, we assume that:

[C1] am3 and am4 are ≥ 0, for m = 1, 2,
an1 and an2 are ≤ 0, for n = 3, 4.

Within the two groups, we will consider 4 different cases. In the first case,
the species in group I form a cooperating pair, and in group II also form a
cooperating pair. More precisely, we assume

[A1] a12 and a21 are ≥ 0; a34 and a43 are ≥ 0.

In the second case, we assume species in group I form a cooperating pair, while
in group II form a competing pair. That is

[A2] a12 and a21 are ≥ 0; a34 and a43 are ≤ 0.
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In the third case, we assume species in group I form a competing pair, while in
group II form a cooperating pair. That is

[A3] a12 and a21 are ≤ 0; a34 and a43 are ≥ 0.

Finally in the fourth case, we assume species in group I form a competing pair,
while in group II also form a competing pair. That is

[A4] a12 and a21 are ≤ 0; a34 and a43 are ≤ 0.

Let c be a function defined on Ω̄, we will use the symbol λ1(∆ + c) to denote
the first eigenvalue for the eigenvalue problem: ∆u + cu = λu in Ω, u = 0 on
∂Ω. For each i = 1, ..., 4, if λ1(∆ + ei) > 0, we will use u0

i to denote the unique
positive solution of the problem: ∆u0

i + u0
i [ei + aiiu

0
i ] = 0 in Ω, u0

i = 0 on ∂Ω.
Moreover, let yi := (0, ..., u0

i , . . . , 0) where each of the four component is zero
except the i-th component as shown. For convenience, we define the following
expressions:

B1
4 = [a11a22 − a12a21]−1[(e1 + a14e4/|a44|)|a22|+ (e2 + a24e4/|a44|)a12],

B2
4 = [a11a22 − a12a21]−1[(e1 + a14e4/|a44|)a21 + (e2 + a24e4/|a44|)|a11|],

B1
3 = [a11a22 − a12a21]−1[(e1 + a13e3/|a33|)|a22|+ (e2 + a23e3/|a33|)a12],

B2
3 = [a11a22 − a12a21]−1[(e1 + a13e3/|a33|)a21 + (e2 + a23e3/|a33|)|a11|].

The following theorem gives sufficient conditions for the coexistence of positive
solution of problem (5.1) when the predators cooperate while the preys may
either cooperate or compete. In Theorem 5.1, we will see in the proof that for
each predator i = 1,2, Bi

4 or Bi
3 respectively represents a bound for the predator

ui when the prey u4 or u3 is the only one present.

Theorem 5.1 (Cooperating Predators with Preys which Cooperate or
Compete). (i) Assume interaction relations [C1] and [A1]. Suppose that

(5.3) a11a22 > a12a21 and a33a44 > a34a43,

then problem (5.1) has a positive solution if the following conditions are satisfied:

(5.4) λ1(∆ + e1) > 0, λ1(∆ + e2) > 0,

(5.5) λ1(∆ + e3 − (|a31|B1
4 + |a32|B2

4) > 0, and

(5.6) λ1(∆ + e4 − (|a41|B1
3 + |a42|B2

3) > 0.
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(ii) Assume interaction relations [C1] and [A2]. Suppose that

(5.7) a11a22 > a12a21,

then problem (5.1) has a positive solution if the following conditions are satisfied:

(5.8) λ1(∆ + e1) > 0, λ1(∆ + e2) > 0,

(5.9) λ1(∆ + e3 − (|a31|B1
4 + |a32|B2

4)− |a34|e4/|a44|) > 0, and

(5.10) λ1(∆ + e4 − (|a41|B1
3 + |a42|B2

3)− |a43|e3/|a33|) > 0.

The next theorem give sufficient conditions for the coexistence of positive
solution for problem (5.1) when the predators compete while the prey may co-
operate or compete. For convenience of stating the theorem, we define the
following expressions:

B̂1
4 = |a11|−1[e1 + a14e4/|a44|], B̂2

4 = |a22|−1[e2 + a24e4/|a44|],

B̂1
3 = |a11|−1[e1 + a13e3/|a33|], B̂2

3 = |a22|−1[e2 + a23e3/|a33|],
K3 = [a33a44 − a34a43]−1[e3|a44|+ e4a34],

K4 = [a33a44 − a34a43]−1[e3a43 + e4|a33|].

Theorem 5.2 (Competing Predators with Preys which Cooperate or
Compete). (i) Assume interaction relations [C1] and [A3]. Suppose that

(5.11) a33a44 > a34a43,

then problem (5.1) has a positive solution if the following conditions are satisfied:

(5.12) λ1(∆ + e1 − |a12a
−1
22 |[e2 + a23K3 + a24K4]) > 0,

(5.13) λ1(∆ + e2 − |a21a
−1
11 |[e1 + a13K3 + a14K4]) > 0,

(5.14) λ1(∆ + e3 − (|a31|B̂1
4 + |a32|B̂2

4)) > 0, and

(5.15) λ1(∆ + e4 − (|a41|B̂1
3 + |a42|B̂2

3)) > 0.
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(ii) Assume interaction relations [C1] and [A4]. Then problem (5.1) has a pos-
itive solution if the following conditions are satisfied:

(5.16) λ1(∆ + e1 − |a12a
−1
22 |[e2 + a23e3/|a33|+ a24e4/|a44|]) > 0,

(5.17) λ1(∆ + e2 − |a21a
−1
11 |[e1 + a13e3/|a33|+ a14e4/|a44|]) > 0,

(5.18) λ1(∆ + e3 − (|a31|B̂1
4 + |a32|B̂2

4)− |a34|e4/|a44|) > 0, and

(5.19) λ1(∆ + e4 − (|a41|B̂1
3 + |a42|B̂2

3)− |a43|e3/|a33|) > 0.

In the proofs of the two theorems stated above, we will use indices of various
mappings from the cone of non-negative functions into itself. In order to em-
phasize the main ideas of the proof of the theorems, the details for calculating
these indices are explained in later lemmas. However, in order to start proving
Theorem 5.1, we need the following lemma which gives a-priori bounds for two
cooperative species under appropriate conditions.

Lemma 5.1. Consider the following Dirichlet problem:

(5.20) ∆vi + vi(bi + gi(x) +
2∑
j=1

cijvj) = 0 in Ω, vi = 0 on ∂Ω, for i = 1, 2,

where gi(x) are non-positive continuous functions on Ω, and bi, cij are constants
satisfying bi > 0, cii < 0 for i = 1, 2, c12 ≥ 0, c21 ≥ 0. Suppose that c11c22 >
c12c21. Then any positive solution (v1, v2), with vi ∈ C2(Ω̄), i = 1, 2, must satisfy:

v1 ≤ [ b1|c22|+ b2c12] /[c11c22 − c12c21], and

v2 ≤ [ b1c21 + b2|c11|] /[c11c22 − c12c21] in Ω.

Proof. On the x − y plane, the two lines bi + ci1x + ci2y = 0, i = 1, 2, inter-
sect at (x0, y0) where x0 := (−b1c22 + b2c12)/(c11c22 − c12c21), y0 := (b1c21 −
b2c11)/(c11c22 − c12c21). The assumptions on bi and cij of this lemma implies
that x0 and y0 are positive. Let k be a positive number satisfying, c21/|c22| <
k < |c11|/c12. (Here, |c11|/c12 is replaced with +∞ if c12 = 0). For each
δ > 0, the pair of constant functions vδ1 := x0 + δ, vδ2 := y0 + kδ on Ω̄ sat-
isfy: ∆vδi + vδi [bi + gi(x) + ci1v

δ
1 + ci2v

δ
2] < 0 in Ω, vδi > 0 on ∂Ω, for i = 1, 2.

That is, they form a family of coupled upper solutions for problem (5.20). For
M > 0 sufficiently large, the positive solution (v1, v2) of problem (5.20) satisfies
vi(x) < vMi , i = 1, 2. Let J := {δ ∈ (0,M ]| for both i = 1, 2, vi(x) < vδi for all
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x ∈ Ω̄}. Suppose the set J has a positive glb δ̄ > 0; and let there be a point
x ∈ Ω where vi(x) = vδ̄i for some i. We may assume, without loss of generality,
that i = 1. For x ∈ Ω, u ≥ 0, define f1(x, u) = u(b1 + g1(x) + c11u); and let P
be a large positive constant such that|∂f1/∂u| < P for all x ∈ Ω̄, 0 ≤ u ≤ vM1 .
Consider the expression:

∆(v1(x)− vδ̄1)− P (v1(x)− vδ̄1)

= ∆v1(x) + v1(x)[b1 + g1(x) + c11v1(x) + c12v2(x)]

−{∆vδ̄1 + vδ̄1[b1 + g1(x) + c11v
δ̄
1 + c12v

δ̄
2}+ f1(x, vδ̄1) + vδ̄1c12v

δ̄
2

− f1(x, v1(x))− v1(x)c12v2(x)− P (v1(x)− vδ̄1) > 0 for all x ∈ Ω.

The last inequality is true due to the facts that (vδ̄1, v
δ̄
2) is a strict upper solution,

c12 ≥ 0, and the choice of large P. The maximum principle asserts that v1(x) ≡ vδ̄1
on Ω̄. This contradiction implies that the positive glb δ̄ can be reduced, and
cannot be positive. Thus, we must have v1(x) ≤ x0 and v2(x) ≤ y0 in Ω̄.

Remark 5.1. Note that the proof of the above lemma uses an extension
of a sweeping principle to quasimonotone nondecreasing elliptic systems (cf.
Theorem A3-9 in Chapter 6).

We will next prove Theorem 5.1(i) by the following procedure. Under the
hypotheses of this part, we use Lemma 5.1 to obtain a bound for all non-negative
solutions of (5.21) below. Let C+

0 (Ω̄) denotes the set of non-negative continuous
functions on Ω̄, vanishing on the boundary ∂Ω. We will construct a bounded
set D in [C+

0 (Ω̄)]4 containing all solutions of (5.21). Then we define various
subsets of D containing solutions with certain components identically zero. The
solutions will be fixed points of appropriate positive compact mappings on D.
We will show that the index of the mapping on D is equal to one, by homotopy
invariance and normalization property (cf. Theorem A2-1 in Chapter 6). By
appropriate deformations and homotopy invariance principle again we will show
that the indices are zero on the various subsets of D described above. By
the additive property of the indices of the maps on disjoint open subsets (cf.
Theorem A2-1 in Chapter 6), we will conclude by index formula (5.24) below
that there must exist a solution of (5.1) with each component positive.

Proof of Theorem 5.1(i). Assume [C1], [A1] and (5.3) to (5.6). Consider any
non-negative solutions of the problem:

(5.21) −∆ui = θiui[ei +
4∑
i=1

aijuj] in Ω, ui = 0 on ∂Ω, for i = 1, ..., 4,

for θi ∈ (0, 1]. By Lemma 5.1, the second part of [C1] and second part of (5.3),
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we have

(5.22)



u3 ≤ [e3|a44|+ e4a34]/[a33a44 − a34a43] := ū3,

u4 ≤ [e3a43 + e4|a33|]/[a33a44 − a34a43] := ū4.

For i = 1, 2, let bi = θi[ei+ai3ū3+ai4ū4], gi(x) ≡ θi[ai3u3+ai4u4−ai3ū3−ai4ū4] ≤
0 and cij = aij, we apply Lemma 5.1 again to obtain a uniform bound for u1

and u2, for θi ∈ (0, 1]. Note that we have made use of the second condition of
[C1] and first condition of (5.3). In case θ3(or θ4) is equal to zero, u3(or u4)
will be the trivial function, and u4(or u3) will be bounded above by e4/|a44|(or
e3/|a33|). The subsequent bound on u1 and u2 will be again established by
Lemma 5.1 as before if both θ1 and θ2 are positive. If one of the θ1 or θ2 is
zero, the corresponding u1 or u2 will be the trivial function, and the bound on
the other component can be established by the corresponding scalar equation
uniformly for θi ∈ [0, 1]. In any case, there is a constant M > 0 such that all
components of all non-negative solutions of (5.21) must have values in [0,M),
uniformly for θi ∈ [0, 1], i = 1, 2, 3, 4.

For any t > 0, let E(t) := {u ∈ C(Ω̄) : |u| < t}, and Ē(t) denotes its
closure. For θi ∈ [0, 1], i = 1, 2, 3, 4 and P > 0, define the operator Aθ1θ2θ3θ4 :
[C(Ω̄)]4 ∩ [Ē(M)]4 → [C0(Ω̄)]4 by

Aθ1θ2θ3θ4(u1, .., u4) = (v1, .., v4)

where vi := (−∆+P )−1(θiui[ei+
∑4

i=1 aijuj]+Pui). Here, the inverse operator
is taken with homogeneous Dirichlet boundary condition on ∂Ω. We can take P
sufficiently large so that the operator Aθ1θ2θ3θ4 is positive, compact and Fréchet
differentiable on [C+(Ω̄)]4 ∩ [Ē(M)]4. Let D := [C+

0 (Ω̄)]4 ∩ [E(M)]4, the bound
on the solutions implies that these operators has no fixed point on ∂D (in the
relative topology). We can further use a familiar cut-off procedure to extend
Aθ1θ2θ3θ4 to be defined outside D as a compact positive mapping from the cone
K := [C+

0 (Ω̄)]4 into itself (cf. Ladde, Lakshmikanthm and Vatsala [112]). For
convenience, we will denote i(Aθ1θ2θ3θ4, y) = index(Aθ1θ2θ3θ4 , y,K) for a fixed
point y of the map in K, and denote i(Aθ1θ2θ3θ4,D) = index(Aθ1θ2θ3θ4,D,K) =
iK(Aθ1θ2θ3θ4,D) as in Section 2.4 (cf. Section 6.2 in Chapter 6). Let A := A1111,
we obtain by homotopy invariance that the cone indices of the mappings satisfy
i(A,D) = i(A1111,D) = i(A0000,D). From definition, the i-th component of
A0000(u1, .., u4) is (−∆ + P )−1(Pui). One readily verifies that A0000(u) �= λu
for every u ∈ ∂D and every λ ≥ 1. Hence by Theorem A2-4 in Chapter 6, we
conclude that i(A,D) = i(A0000,D) = 1.

We will next define various subsets of D containing solutions with some
components identically zero, and then proceed to calculate the indices of the
mapping A on these subsets. For i = 1, .., 4, ε ∈ (0,M), let

Dε
i := {u = (u1, .., u4) : u ∈ K, 0 ≤ ui < ε, 0 ≤ uj < M for j �= i},
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which is a “slice” in D containing all fixed point of A with small i-th component.
Let

Dε
i,j := Dε

i ∪Dε
j , and D̂ε

i,j := Dε
i ∩Dε

j .

Note that ∂Dε
i,j = {u ∈ D : min {‖ui‖, ‖uj‖} = ε, or min {‖ui‖, ‖uj‖} ≤ ε and

max {‖uk‖ : 1 ≤ k ≤ 4} = M}, and ∂D̂ε
i,j = {u ∈ D : max {‖ui‖, ‖uj‖} = ε, or

max {‖ui‖, ‖uj‖} ≤ ε and max {‖uk‖ : k �= i and j} = M}. For convenience, we
will use the notation:

(5.23) fi(u1, u2, u3, u4) = ei +
4∑
i=1

aijuj for i = 1, 2, 3, 4.

Consider the mappingAθ11θ in D. Suppose there exists a sequence of fixed points
(un1 , u

n
2 , u

n
3 , u

n
4 ), n = 1, 2, 3..., of the map Aθn11θn in D, θn ∈ [0, 1], with un2 �≡ 0

or un3 �≡ 0. We have ∆un3 +un3f3(un1 , ..., u
n
4 ) = 0 in Ω, uni = 0 on ∂Ω, i = 1, ..., 4. If

both un2 and un3 → 0 in C(Ω̄), the equation for un4 implies that un4 ≤ [e4/|a44|]+δ
for any small δ > 0, provided n is sufficiently large. (Note that a41 and a42 are
≤ 0). The equations for un1 , u

n
2 and Lemma 5.1 then imply that un1 ≤ B1

4+δ, un2 ≤
B2

4 + δ for any small δ > 0, provided n is sufficiently large. Thus for δ > 0
sufficiently small, we have f3(un1 , . . . , u

n
4 ) > e3 − (|a31|B1

4 + |a32|B2
4) − δ for n

sufficiently large. By assumption (5.5), we find λ1(∆ + f3(un1 , u
n
2 , u

n
3 , u

n
4 )) > 0,

and the equation for un3 , which is in K, implies that un3 ≡ 0 for all large n.
(Note that (5.5) also implies that e3 > |a31|B1

4 + |a32|B2
4). Then, we have

∆un2 + un2f2(un1 , u
n
2 , 0, u

n
4 ) = 0 in Ω, and the second condition in (5.4) implies

that λ1(∆+f2(u1, u
n
2 , 0, u

n
4 )) > 0 for n sufficiently large. Thus we have un2 ≡ 0 for

large n too. This contradicts the assumptions above on un2 and un3 . Consequently,
the number t:= inf.{max.{‖u2‖, ‖u3‖} : (u2, u3) �≡ (0, 0), where (u1, u2, u3, u4)
is a fixed point of Aθ11θ in D for some θ ∈ [0, 1]} must satisfy t > 0. Choosing
ε ∈ (0, t), we obtain by Lemma 5.4 below that i(A, D̂ε

2,3) = 0. (The lemma
indicates that all the fixed points of Aθ11θ in D̂ε

2,3 have both their 2nd and 3rd
components identically zero, and A = A1111 can be deformed into A0110 by
homotopy in D̂ε

2,3. It then shows that the only fixed point of A0110 in D̂ε
2,3 is

(0,0,0,0), whose index is 0.)
Consider the mapping A11θθ in D. Suppose that there exists a sequence

of fixed points (vn1 , v
n
2 , v

n
3 , v

n
4 ), n = 1, 2, 3..., of the map A11θnθn in D, θn ∈

[0, 1], with both vn1 �≡ 0 and vn2 �≡ 0. The signs of a1j implies that λ1(∆ +
f1(0, vn2 , v

n
3 , v

n
4 )) > λ1(∆ + e1) which is > 0 by assumption (5.4). We can ob-

tain by comparison from the equation satisfied by vn1 that they are uniformly
bounded away from zero by a positive function, and thus cannot tend to zero as
n tends to infinity. Similarly, we find λ1(∆ +f2(vn1 , 0, v

n
3 , v

n
4 )) > λ1(∆ + e2) > 0,

and deduce vn2 also cannot tend to zero as n tends to infinity. Consequently, the
number t∗ := inf.{‖u1‖, ‖u2‖ : both u1 �≡ 0 and u2 �≡ 0, where (u1, u2, u3, u4) is
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a fixed point of A11θθ in D, some θ ∈ [0, 1]} must satisfy t∗ > 0. Further, the
signs of a1j, a2j and assumptions (5.4) imply that λ1(∆ +f1(0, u0

2, 0, 0)) > 0 and
λ1(∆ + f2(u0

1, 0, 0, 0)) > 0. Choosing ε ∈ (0, t∗), we can thus obtain by Lemma
5.3 below that i(A,Dε

1,2) = 0. (Lemma 5.3 shows that A can be deformed in
Dε

1,2 to A1100 which has in Dε
1,2 three fixed points, all with index zero.)

Consider the mapping Aθθ11 in D. Suppose there exists a sequence of fixed
points (wn1 , w

n
2 , w

n
3 , w

n
4 ), n = 1, 2, 3, . . . , of the map Aθnθn11 in D, θn ∈ [0, 1], with

both wn3 �≡ 0 and wn4 �≡ 0. If wn3 → 0, the equation for wn4 implies that wn4 ≤ e4/
|a44|+ δ for any small δ > 0 provided that n is large enough. The equations for
wn1 and wn2 and Lemma 5.1 then imply that wn1 ≤ B1

4 + δ, wn2 ≤ B2
4 + δ for any

small δ provided n is large enough. (Note that Bi
4 is a bound for ui, i = 1, 2,

with u4 as the only prey, i.e. with u3 absent). Thus for δ > 0 sufficiently small,
we have f3(wn1 , . . . , w

n
4 ) > e3 − (|a31|B1

4 + |a32|B2
4) − δ > 0, for n sufficiently

large. Hence we obtain λ1(∆ + f3(wn1 , w
n
2 , w

n
3 , w

n
4 )) > 0 by assumption (5.5),

and the equation for wn3 implies that wn3 ≡ 0 for all large n. This contradicts
wn3 �≡ 0, and thus wn3 cannot tend to zero as n tends to infinity. On the other
hand, if wn4 → 0, the equation for wn3 implies that wn3 ≤ e3/|a33| + δ for small
δ > 0 and n large enough. We continue to deduce in a symmetric way that
λ1(∆ + f4(wn1 , w

n
2 , w

n
3 , w

n
4 )) > 0 by assumption (5.6), leading to wn4 ≡ 0 for

all large n. We again conclude by contradiction that wn4 cannot tend to zero.
Consequently, the number t∗∗:= inf.{‖u3‖, ‖u4‖ :both u3 �≡ 0 and u4 �≡ 0, where
(u1, u2, u3, u4) is a fixed point of Aθθ11 in D, some θ ∈ [0, 1]} must satisfy
t∗∗ > 0. Further, the signs of a3j , a4j and assumptions (5.5), (5.6) imply that
λ1(∆ + f3(0, 0, 0, u0

4)) > 0 and λ1(∆ + f4(0, 0, u0
3, 0)) > 0. Choosing ε ∈ (0, t∗∗),

we obtain by Lemma 5.3 again that i(A,Dε
3,4) = 0.

Under the conditions of this part, the above paragraphs show that for suffi-
ciently small ε > 0, all the fixed points of A in D̂ε

2,3 must have both the 2nd and
3rd components identically zero. Because of the symmetry of relations between
u1 and u2 with respect to u3 and u4, analogous property can be obtained for
fixed points of A in D̂ε

1,3, D̂
ε
1,4 and D̂ε

2,4 (Here 1, 2 can be interchanged and 3,
4 can be interchanged). Also, the above paragraphs show that for sufficiently
small ε > 0, all the fixed points of A in Dε

1,2 must have either the 1st or 2nd
components identically zero; and those in Dε

3,4 must have either the 3rd or 4th
component identically zero. Let D̃ := {u ∈ D: each component of u is �≡ 0}.
Thus we obtain i(A, D̃) = i(A,D)− i(A,Dε

3,4 ∪Dε
1,2) for sufficiently small ε > 0.

Moreover, i(A,Dε
3,4 ∪Dε

1,2) = i(A,Dε
3,4) + i(A,Dε

1,2)− i(A,Dε
3,4 ∩Dε

1,2). Deduc-
ing from Venn diagrams, using the additive property of the indices of a map on
disjoint open sets (cf. Theorem A2-1 in Chapter 6), we also have:

i(A,Dε
3,4 ∩Dε

1,2) = i(A, D̂ε
1,3 ∪ D̂ε

2,3 ∪ D̂ε
1,4 ∪ D̂ε

2,4)

= i(A, D̂ε
1,3) + i(A, D̂ε

2,3) + i(A, D̂ε
1,4) + i(A, D̂ε

2,4)

− i(A, y4)− i(A, y2)− i(A, y1)− i(A, y3)− 3 i(A, (0, 0, 0, 0)).
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Note that each yi, i = 1, 2, 3, 4 is inside exactly two of the sets D̂ε
1,3, D̂ε

2,3, D̂
ε
1,4,

D̂ε
2,4 and (0,0,0,0) is inside all the four sets.

Combining the above formulas we find
(5.24)

i(A, D̃) = i(A,D)− i(A,Dε
3,4)− i(A,Dε

1,2) + i(A, D̂ε
1,3) + i(A, D̂ε

2,3)

+ i(A, D̂ε
1,4) + i(A, D̂ε

2,4)−∑4
i=1 i(A, yi)− 3i(A, (0, 0, 0, 0)).

We have proved i(A, D̂ε
2,3) = 0 above. Using the symmetry of the relations

between u1 and u2 with respect to u3 and u4, we can interchange the role of
u1 with u2 and the role of u3 with u4 to deduce i(A, D̂ε

1,3) = i(A, D̂ε
1,4) =

i(A, D̂ε
2,4) = 0.

In order to use (5.24), it remains to find i(A, yi) and i(A, (0, 0, 0, 0)). For
convenience, we let µi = λ1(∆ + fi(0, 0, 0, 0)), i = 1, .., 4. The first part of (5.4)
asserts that µ1 is positive. The equation for u0

1 implies u0
1 ≤ e1/|a11| < B1

4 ;
thus (5.5) implies λ1(∆ + f3(y1)) > 0. Similarly, we have u0

1 < B1
3 and (5.6)

implies λ1(∆ + f4(y1)) > 0. The second part of (5.4) and a21 ≥ 0 lead to
λ1(∆+f2(y1)) > 0. By part (ii) of Lemma 5.2 below, we obtain i(A, y1) = 0. The
symmetry of the relations among u1 and u2 would readily lead to i(A, y2) = 0.

Condition (5.5) and comparison show that µ3 is positive. Condition (5.4)
and ai3 ≥ 0 for i = 1, 2 imply that λ1(∆ + fi(y3)) > 0 for i = 1, 2. Condition
(5.6) and a43 ≥ 0 lead to λ1(∆+f4(y3)) > 0. By Lemma 5.2, part (ii), we obtain
i(A, y3) = 0. We deduce in a symmetric way that i(A, y4) = 0. Finally, conditions
(5.4) to (5.6) imply µi > 0 for each i. We conclude that i(A, (0, 0, 0, 0)) = 0 from
part (i) of Lemma 5.2 below.

Finally, we apply index formula (5.24). The above paragraphs show that
every term on the right of the formula is equal to zero, except i(A,D) = 1.
Consequently, we obtain i(A, D̃) = 1. That is there must exist at least one
positive solution for problem (5.1). This completes the proof of part (i) of
Theorem 5.1.

The proof of Theorem 5.1(ii) is similar to that of Theorem 5.1(i). The details
will thus be omitted.

Proof of Theorem 5.2(i). Assume [C1], [A3], and (5.11) to (5.15). Consider
the non-negative solutions of problem (5.21) in the present conditions. Since
(5.11) is the same as the second part of (5.3), we can apply Lemma 5.1 to
obtain inequalities (5.22). Note that ū3 = K3 and ū4 = K4 by definition.
We then compare the first equation of (5.22) with the scalar problem −∆z =
θ1z[e1+a13K3+a14K4] in Ω, z = 0 on ∂Ω, (using a11 and a12 are ≤ 0), we readily
obtain a bound for u1 on Ω̄. Similarly, we deduce a bound for u2. Thus, as in
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the proof of Theorem 5.1, we obtain a constant M > 0 such that all components
of all non-negative solutions of (5.21) must have values in [0,M), uniformly for
θi ∈ [0, 1], i = 1, 2, 3, 4. We define sets E(t),D,Dε

i ,D
ε
i,j , D̂

ε
i,j and the operators

Aθ1θ2θ3θ4 as compact positive mappings from the cone K := [C+
0 (Ω̄)]4 into itself,

with no fixed point on ∂D, exactly as in the proof of Theorem 5.1. Also we
obtain in the same way that i(A,D) = 1.

Consider the mapping Aθ11θ in D. Suppose there exists a sequence of fixed
points (un1 , u

n
2 , u

n
3 , u

n
4 ), n = 1, 2, 3..., of the map Aθn11θn in D, θn ∈ [0, 1], with

un2 �≡ 0 or un3 �≡ 0. We have ∆un3 + un3f3(un1 , ..., u
n
4 ) = 0 in Ω, uni = 0 on

∂Ω, i = 1, ..., 4. If both un2 and un3 → 0 in C(Ω̄), the equation for un4 implies
that un4 ≤ [e4/|a44| ] + δ for any small δ > 0, provided n is sufficiently large.
The equation for un1 then implies that un1 ≤ B̂1

4 + δ any small δ > 0, provided
n is sufficiently large. Similarly we obtain un2 ≤ B̂2

4 + δ. Thus for δ > 0 suf-
ficiently small, we have f3(un1 , . . . , u

n
4 ) > e3 − (|a31| B̂1

4 + |a32| B̂2
4) − δ > 0,

for n sufficiently large. Thus we have λ1(∆ + f3(un1 , u
n
2 , u

n
3 , u

n
4 )) > 0 by as-

sumption (5.14), and the equation for un3 implies that un3 ≡ 0 for all large n.
Then, we have ∆un2 +un2f2(un1 , u

n
2 , 0, u

n
4 ) = 0 in Ω. For any δ > 0, we verify that

λ1(∆+f2(un1 , u
n
2 , 0, u

n
4 )) > λ1(∆+e2− |a21a

−1
11 | ][e1+a14K4]+δ) for n sufficiently

large. Thus using (5.13) we obtain by comparison that un2 ≡ 0 for large n too.
This contradicts the assumptions above on un2 and un3 . We deduce by contradic-
tion as in the proof of Theorem 5.1 that i(A, D̂ε

2,3) = 0 for ε > 0 sufficiently small.
By symmetry, we also obtain i(A, D̂ε

1,3) = i(A, D̂ε
1,4) = i(A, D̂ε

2,4) = 0, as in the
proof of Theorem 5.1.

Consider the mapping A11θθ in D. Suppose there exists a sequence of fixed
points (vn1 , v

n
2 , v

n
3 , v

n
4 ), n = 1, 2, 3..., of the map A11θnθn in D, θn ∈ [0, 1], with

both vn1 �≡ 0 and vn2 �≡ 0. Using (5.22) to estimate vn3 and vn4 , we then deduce
from the second equation for vn2 that vn2 ≤| a−1

22 | [e2+a23K3+a24K4]. Hence, we
have λ1(∆+f1(0, vn2 , v

n
3 , v

n
4 )) > λ1(∆+e1− | a12a

−1
22 | [e2 +a23K3 +a24K4]) > 0,

by assumption (5.12). We can then compare with the equation satisfied by vn1
to deduce that vn1 cannot tend to zero as n tends to infinity. Similarly, we
deduce that λ1(∆ + f2(vn1 , 0, v

n
3 , v

n
4 )) > 0 by assumption (5.13), and find vn2

also cannot tend to zero as n tends to infinity. Consequently, the number t∗ :=
inf.{‖u1‖, ‖u2‖ : both u1 �≡ 0 and u2 �≡ 0, where (u1, u2, u3, u4) is a fixed point
of A11θθ in D, some θ ∈ [0, 1]} must satisfy t∗ > 0. Further, assumptions (5.12)
and (5.13) imply that λ1(∆ + f1(0, u0

2, 0, 0)) > 0 and λ1(∆ + f2(u0
1, 0, 0, 0)) > 0.

Choosing ε ∈ (0, t∗), we can thus obtain by Lemma 5.3 below that i(A,Dε
1,2) = 0.

Consider the mapping Aθθ11in D. Suppose there exists a sequence of fixed
points (wn1 , w

n
2 , w

n
3 , w

n
4 ), n = 1, 2, 3..., of the map Aθnθn11 in D, θ ∈ [0, 1], with

both wn3 �≡ 0 and wn4 �≡ 0. If wn3 → 0, the equation for wn4 implies that wn4 ≤
e4/|a44|+ δ for any small δ > 0 provided that n is large enough. The equation
for wn1 then imply that wn1 ≤ B̂1

4 + δ for any small δ provided n is large enough.
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Similarly, we have wn2 ≤ B̂2
4 + δ. Thus for δ > 0 sufficiently small, we have

f3(wn1 , . . . , w
n
4 ) > e3 − ( |a31| B̂1

4 + |a32| B̂2
4) − δ > 0, for n sufficiently large.

Hence we obtain λ1(∆ + f3(wn1 , w
n
2 , w

n
3 , w

n
4 )) > 0 by assumption (5.14), and the

equation for wn3 implies that wn3 ≡ 0 for all large n. This contradicts wn3 �≡ 0,
and thus wn3 cannot tend to zero as n tends to infinity. On the other hand,
if wn4 → 0, the equation for wn3 implies that wn3 ≤ e3/ |a33| + δ for small
δ > 0 and n large enough. We continue to deduce in a symmetric way that
λ1(∆ + f4(wn1 , w

n
2 , w

n
3 , w

n
4 )) > 0 by assumption (5.15), leading to wn4 ≡ 0 for

all large n. We again conclude by contradiction that wn4 cannot tend to zero.
Further, the assumptions (5.14), (5.15) imply that λ1(∆ + f3(0, 0, 0, u0

4)) > 0
and λ1(∆ + f4(0, 0, u0

3, 0)) > 0. Consequently, we obtain by Lemma 5.3 again
that i(A,Dε

3,4) = 0, for ε > 0 sufficiently small.
As in the proof of Theorem 5.1, we next use index formula (5.24). It re-

mains to show that under the conditions of the present theorem, we still have
i(A, (0, 0, 0, 0)) = i(A, yi) = 0, for i = 1, . . . , 4. They are all readily verified by
applying Lemma 5.2, using (5.12) to (5.15). For evaluating i(A, y1), we observe
λ1(∆ + f2(y1)) > λ1(∆ + e2− | a21a

−1
11 | e1) > 0 by (5.13), λ1(∆ + f3(y1)) >

λ1(∆ + e3− | a31| |e1a−1
11 |) > λ1(∆ + e3− | a31 | B̂1

4) > 0 by (5.14) and
λ1(∆ + f4(y1)) > λ1(∆ + e4− | a41e1a

−1
11 |) > λ1(∆ + e4− | a41 | B̂1

3) > 0 by
(5.15). Then we apply Lemma 5.2(ii) to verify that i(A, y1) = 0. The other cases
are similar or easier. Finally, applying formula (5.24), we obtain i(A, D̃) = 1,
and complete the proof of part (i) of Theorem 5.2.

The proof of Theorem 5.2(ii) is similar to the proof of the theorems above.
The details will thus be omitted here.

Remark 5.2. In order to complete the proof of Theorems 5.1 and 5.2, we now
carefully justify the method for calculating the indices of the fixed points and the
mappings over various sets used in the proofs above. They are described in detail
in Lemmas 5.2 to 5.4 below. Lemma 5.2 and Lemma 5.3 are generalizations of
results given in the last section, and Lemma 5.4 is different.

Consider the problem:

−∆ui = θiuifi(u1, u2, u3, u4) in Ω, ui = 0 on ∂Ω,

for i = 1, . . . , 4, θi ∈ [0, 1]. For θi ∈ [0, 1], i = 1, . . . , 4 and P > 0, define the op-
erator Aθ1θ2θ3θ4 : [C(Ω̄)]4 → [C0(Ω̄)]4 by: Aθ1θ2θ3θ4(u1, . . . , u4) = (v1, v2, v3, v4),
where vi := (−∆ + P )−1(θiuifi(u1, . . . , u4) + Pui). Here, the inverse operator
is taken with homogeneous Dirichlet boundary condition on ∂Ω. For simplicity,
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we use the abbreviations:

A = A1111,

Aijθ = Aθ1θ2θ3θ4 where θi = θj = 1, θk = θ for k �= i or j.

For convenience, we let λ = µi represent the first eigenvalue of the problem:

(5.25) ∆u+ fi(0, 0, 0, 0)u = λu in Ω, u = 0 on ∂Ω.

Remark 5.3. In the proofs of the main Theorems 5.1 and 5.2 above, it is shown
that under the hypotheses of the theorems, the positive solutions of (5.1), or the
fixed points of Aθ1θ2θ3θ4, are uniformly bounded for all θi ∈ [0, 1]. Let M be the
uniform bound, E(M) = {u ∈ C(Ω̄) : |u| < M.} and D = [C+

0 (Ω̄)]4 ∩ [E(M)]4.
It is shown that Aθ1θ2θ3θ4 has no fixed point on ∂D, and can be extended to
be defined as a compact, Fréchet differentiable mapping from the cone K =
[C+

0 (Ω̄)]4 into itself. We will assume these properties for all such operators in
Lemmas 5.2 to 5.4 below.

Let j be an integer between 1 to 4. For simplicity, we denote yj = (0, .., u0
j , ..0)

where every component is the zero function except the j-th component. Also,
recall the definitions of the sets Dε

i ,D
ε
i,j , D̂

ε
i,j given in the proof of Theorem 5.1(i)

above.

Lemma 5.2 (Indices for the Trivial and Semi-trivial Solutions).
(i) If max.{µ1, ..., µ4} > 0, and at most one of µi, i = 1, ..., 4, is zero, then
i(A, (0, 0, 0, 0)) = 0.
(ii) Suppose that µj > 0. If there exists k �= j such that λ1(∆ + fk(yj)) > 0, and
λ1(∆ + fr(yj)) �= 0 for all r �= j and k, then i(A, yj) = 0.

Proof of (i). The proof is the same as Theorem 4.1 in Section 2.4. We outline
the main idea again for convenience.

Suppose µj > 0 and µi �= 0 for all other i’s. For y ∈ K, define Ky :=
{p ∈ [C(Ω̄)]4 : y + sp ∈ K for some s > 0}, and Sy := {p ∈ K̄y : −p ∈ K̄y},
as in Section 2.4. We have K̄(0,0,0,0) = K, S(0,0,0,0) = {(0, 0, 0, 0)}. The k-
th component of A′(0, 0, 0, 0)u is (−∆ + P )−1[fk(0, 0, 0, 0) + P ]uk. Hence [I −
A′(0, 0, 0, 0)]u = 0 for u ∈ K implies that [∆ + fj(0, 0, 0, 0)]uj = 0, uj ∈ C+

0 (Ω̄).
Thus the assumption µj > 0 implies that uj = 0. Similarly the assumption µi �= 0
implies that ui = 0 for all other i’s. Further, the assumption µj > 0 and the
continuity in t ∈ [0, 1] for λ1(∆ + tfj(0, ..., 0) + (t− 1)P ) imply that there exists
a nontrivial function ū ∈ C+

0 (Ω̄) such that (−∆+P )ū = t(fj(0, 0, 0, 0)+P )ū, or
ū− t(−∆ + P )−1(fj(0, 0, 0, 0) +P )ū = 0 ∈ S(0,0,0,0), for some t ∈ (0, 1). Thus it
follows from Lemma 2.7(i) in Section 1.2 of Chapter 1 that i(A, (0, 0, 0, 0)) = 0.

Next, suppose µj > 0, µr = 0 for some 1 ≤ j, r ≤ 4, and µi �= 0 for all other
i’s. Define an operator At by modifying the r-th component of the operator A
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by changing fr(u1, u2, u3, u4) to fr(u1, u2, u3, u4)− t. From the last paragraph,
we obtain i(At, (0, 0, 0, 0)) = 0 for t > 0. Then by means of comparison and the
nonincreasing property of fr with respect to the r-th component, we show that
(0,0,0,0) is an isolated fixed point of At uniformly for t ≥ 0. We finally conclude
that i(A, (0, 0, 0, 0)) = i(At, (0, 0, 0, 0)) = 0 by homotopy invariance of degree.
See Theorem 4.1 in Section 2.4 for more details. This proves part (i)

Proof of (ii). Let u = (u1, . . . , u4) be any element in [C(Ω̄)]4. For i �= j, the i-th
component ofA′(yj)u is (−∆+P )−1{[fi(yj)+P ]ui}; the j-th component is (−∆+
P )−1{∑i	=j [u

0
j(∂fj/∂ui)(yj)ui] + [u0

j(∂fj/∂uj)(yj) +fj(yj) +P ]uj}. One readily
checks that K̄yj = C+

0 (Ω̄)⊕..⊕C0(Ω̄)..⊕C+
0 (Ω̄) and Syj = {0}⊕..⊕C0(Ω̄)..⊕{0}

where C0(Ω̄) appear in the j-th component in both cases. Let [I −A′(yj)]û = 0
for û ∈ K̄yj . As in part (i), the assumption that λ1(∆ + fi(yj)) �= 0 for i �= j
implies that ûi = 0 for i �= j. Thus the j-th component can be written as
∆ûj + (ej + 2ajju0

j )ûj = 0. Since λ1(∆ + (ej + 2ajju0
j)) < 0 by comparison, we

must have ûj = 0. Thus we have û = 0.
As in the proof of part (i), the assumption λ1(∆ + fk(yj)) > 0 implies

that there exists a nontrivial function ūk ∈ C+
0 (Ω̄) satisfying (−∆ + P )ūk −

t(fk(y) + P )ūk = 0. Let w be the column vector function on Ω̄ with ūk as its
k-th component and zero function as all other components. Then w has the
properties: w ∈ K̄yj\Syj and [I− tA′(yj)]w ∈ Syj . Thus the operator A′(yj) has
the properties as described in Lemma 2.7(i) in Section 1.2, and we assert that
i(A, yj) = 0. This completes the proof of part (ii).

Lemma 5.3 (Indices for Unions of Two Thin Slices). Suppose i �= j are
integers with 1 ≤ i, j ≤ 4 with µi > 0 and µj > 0. Let t := inf. {‖ui‖, ‖uj‖ :
both ui �≡ 0 and uj �≡ 0 , where col. u = (u1, u2, u3, u4) is a fixed point of Aijθ
in D with uk ≥ 0 for k = 1, 2, 3, 4, some θ ∈ [0, 1]}. Let yk ∈ [C+

0 (Ω̄)]4 with the
k-th component as u0

k and all other components as the trivial function. Assume
t > 0, and further that

λ1(∆ + fi(yj)) > 0, λ1(∆ + fj(yi)) > 0;

then for any ε ∈ (0, t), we have i(A,Dε
ij) = 0. (Recall that Dε

ij is defined in the
proof of Theorem 5.1(i)).

Proof. Since 0 < ε < t, the operator Aijθ in D has no fixed point on ∂Dε
ij . By

homotopy invariance, i(A,Dε
ij) = i(Aij0 ,D

ε
ij). Let (û1, û2, û3, û4) be a nontrivial

fixed point of Aij0 in Dε
ij . Then (−∆ + P )−1[Pûk] = 0, for k �= i and j, implies

that such ûk = 0. The condition on ε implies either ûi = 0 or ûj = 0. Thus
Aij0 has three fixed points in Dε

ij , namely, (0, 0, 0, 0), yi and yj. Moreover, we
find i(Aij0 ,D

ε
ij) = i(Aij0 , (0, 0, 0, 0)) + i(Aij0 , yi) + i(Aij0 , yj). Applying a natural

modification of Lemma 5.2(i) for the operator Aij0 , we find i(Aij0 , (0, 0, 0, 0)) = 0.
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Also, applying a natural modification of Lemma 5.2(ii) for the operator Aij0 , we
obtain i(Aij0 , yj) = 0 and i(Aij0 , yi) = 0. This proves Lemma 5.3.

Lemma 5.4 (Indices for Intersections of Two Thin Slices). Let i �= j be
integers, 1 ≤ i, j ≤ 4, and t := inf.{max.{‖ui‖, ‖uj‖}, (ui, uj) �≡ (0, 0),, where
(u1, u2, u3, u4) is a fixed point of Aijθ in D with uk ≥ 0 for k = 1, 2, 3, 4, for some
θ ∈ [0, 1]}. Suppose that t > 0, and further assume: either µi > 0 or µj > 0.
Then for any ε ∈ (0, t), we have i(A, D̂ε

ij) = 0. (Recall that D̂ε
ij is defined in the

proof of Theorem 5.1(i)).

Proof. The assumption that 0 < ε < t implies that all fixed points û =
(û1, û2, û3, û4) of Aijθ in D contained in D̂ε

ij must satisfy ûi = ûj = 0; and
they are bounded away from the other non-negative fixed points in D by ∂D̂ε

ij .
Applying homotopy invariance principle on the set D̂ε

ij , we find i(A, D̂ε
ij) =

i(Aij1 , D̂
ε
ij) = i(Aij0 , D̂

ε
ij). Note that for k �= i and j, the k-th component of

Aij0 (u1, .., u4) is of the form (−∆ +P )−1[Puk]; thus any fixed point of Aij0 in D̂ε
ij

must have all the k-th component identically zero for k �= i and j too. Hence
(0,0,0,0) is the only fixed point of Aij0 in D̂ε

ij, and i(Aij0 , D̂
ε
ij) = i(Aij0 , (0, 0, 0, 0)).

We then apply a modification of Lemma 5.2(i) to the operator Aij0 with µk
changed to µ̂k, where µ̂k = λ1(∆) < 0 for k �= i and j, and µ̂i = µi, µ̂j = µj .
Since at least one of µ̂i and µ̂j is positive, we conclude as in Lemma 5.2(i) that
i(Aij0 , (0, 0, 0, 0)) = 0.

Theorems 5.1 and 5.2 only consider the special situation when the two groups
of species interact in prey-predator relationship. The two groups can of course
interact in many different ways. We next consider the coexistence of positive
solutions for problem (5.1) when the two groups of species cooperate with each
other. As before, there are two groups with a pair of species within each group.
The cooperation between the groups means that the assumption [C1]is replaced
by:

[C2] am3 and am4 are ≥ 0 for m = 1, 2;

an1 and an2 are ≥ 0 for n = 3, 4.

This will always be assumed in the next Theorem 5.3. Within each group, the
species may compete or cooperate as expressed in [A4] and [A2] in Theorems
5.1 and 5.2. The case of [A3] is the same as [A2] if we interchange species 1
and 2 with 3 and 4. The case of [C2] together with [A1] would mean all species
cooperate. It will then be unnecessary to classify the species into two groups for
study.
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Theorem 5.3 (Cooperating Groups with Competition or Cooperation
within Each Group). (i) Assume interaction relations [C2] and [A4]. Suppose
that

(5.26) |amm| > am3 + am4 for m = 1, 2, and |ann| > an1 + an2 for n = 3, 4.

then the problem (5.1) has a positive solution if the following conditions are
satisfied:

(5.27)
λ1(∆ + e1 + a12Q̂2) > 0,where Q̂2 = max.{|e2/k2|, |e3/k2|, |e4/k2|},

k2 = min.{|a22| − a23 − a24, |a33| − a32, |a44| − a42},
(5.28)

λ1(∆ + e2 + a21Q̂1) > 0,where Q̂1 = max.{|e1/k1|, |e3/k1|, |e4/k1|},
k1 = min.{|a11| − a13 − a14, |a33| − a31, |a44| − a41},

(5.29)
λ1(∆ + e3 + a34Q̂4) > 0,where Q̂4 = max.{|e4/k4|, |e1/k4|, |e2/k4|},

k4 = min.{|a44| − a41 − a42, |a11| − a14, |a22| − a24},
(5.30)

λ1(∆ + e4 + a43Q̂3) > 0,where Q̂3 = max.{|e3/k3|, |e1/k3|, |e2/k3|},
k3 = min.{|a33| − a31 − a32, |a11| − a13, |a22| − a23},

(ii) Assume interaction relations [C2] and [A2]. Suppose

(5.31)
|a11| > a12 + a13 + a14, |a22| > a21 + a23 + a24,

|ann| > an1 + an2 for n = 3, 4,

then problem (5.1) has a positive solution if the following conditions are satisfied:

(5.32) λ1(∆ + e1) > 0, λ1(∆ + e2) > 0,

(5.33)
λ1(∆ + e3 + a34R4) > 0 where R4 = max.{|e4/ρ4|, |e1/ρ4|, |e2/ρ4|},

ρ4 = min.{|a44| − a41 − a42, |a11| − a12 − a14, |a22| − a21 − a24},
(5.34)
λ1(∆ + e4 + a43R3) > 0 where R3 = max.{|e3/ρ3|, |e1/ρ3|, |e2/ρ3|},

ρ3 = min.{|a33| − a31 − a32, |a11| − a12 − a13, |a22| − a21 − a23}.
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The proof of Theorem 5.3 uses the methods as described in the proof of
Theorems 5.1 and 5.2. It can be found in [129], and thus the details will be
omitted.

Remark 5.4. In Theorems 5.1 and 5.2 we consider the situation when species
in group I consists of predators with species in group II as preys. The species
within each group are assumed to cooperate or compete with each other. We
have omitted the case when there may be further prey-predator relationship
within one group. For example, species in group I are cooperative and the species
in group II form a prey-predator pair. More generalizations of Theorems 5.1 and
5.2 can also be done for prey-predator groups when prey-predator relations occur
within each group, or prey-predator within one group and cooperating relation
within another. Other cases can be treated similarly. Some of the theorems may
conceivably be proved by other methods. However, if we consider the first case,
i.e. Theorem 5.1(i), it does not seem that one can readily prove the theorem by
other methods. Note that Bi

3 or Bi
4 may not be a bound for predator species i

when all the prey species 3 and 4 are present. Thus the condition in (5.5) and
(5.6) may not be strong enough for proving the result by using other methods.
Generalization of Theorem 5.3 is also possible for cooperative groups with prey-
predator relations within each group. Since the methods are similar for these
cases, the details will be omitted here. There is also the situation of a group of
3 interacting with a fourth species in the same way.

When there is a large number of m species in group I, each of which competes
with n species in group II, existence of positive solutions is studied in Section
2.2 with bifurcation and upper-lower solutions methods. Within each group,
there may be various types of structures. There are, however, limitations to the
amount of interactions between the groups in order to prove the existence of
positive solutions in Section 2.2. In order to use the technique of this section
when there are groups of large numbers of m and n species, the methods in
this section have to be extended more systematically. More interesting results
remain to be found.

Remark 5.5. Further research should also address the issue of time stability
and persistence of the systems. Some stability problems are considered in earlier
sections. The problem of persistence will be considered in Chapter 4. Under the
hypotheses that the various related principal eigenvalues are positive, it should
be possible to obtain some information about the dynamics when the boundary
equilibria are repellers relative to the positive cone. Some conclusions concerning
persistence are possible, as explained in Chapter 4. It would also be interesting
to treat the cases where some of the principal eigenvalues are negative.
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2.6 Application to Reactor Dynamics with
Temperature Feedback

In this section, we consider applications to a physical and engineering problem.
Our methods of analysis will readily lead to useful results, as in the previous
biological problems. We study a system of reaction-diffusion equations describ-
ing the dynamics of fission reactor with temperature feedback. There are m
equations for the neutrons in m energy groups and a last temperature equation.
Basic theory of reactor dynamics can be found in Duderstat and Hamilton [52]
and Kasterberg [101]. We use the bifurcation method to find positive steady-
states for the system which is not symmetric. We then analyze the linearized
stability of the steady-state as a solution of the full system of m + 1 parabolic
equations. The asymptotic stability of the steady-state solution is proved by
means of a stability theorem for sectorial operators. In the study of steady
states and dynamics of nuclear fission reactors, it is crucial to understand the
effect of temperature-dependent feedback, fission rates and reactor size on the
behavior of the system. In Leung and Chen [131], [132] and Ortega [180], various
nonlinear models concerning multigroup neutron fission reaction-diffusion with
temperature feedback are investigated. In these articles, it is always assumed
that the scattering and reaction rates are in some sense larger than the principal
eigenvalue of the domain representing the reactor core. In Leung and Ortega
[137], the scattering and reaction rates are only assumed to be positive, and
the emphasis is on the bifurcation of a positive steady state at certain critical
size of the reactor core. The stability of the bifurcating solution has also been
investigated in [137]. The only important drawback in [137] is that the tempera-
ture is first expressed in terms of neutron-fluxes, and then substituted back into
the first m equations for the m energy groups of neutron-fluxes. The model is
thus implicitly assuming that the temperature is changing in a faster time-scale.
This section treats the m+ 1 equations simultaneously, without eliminating the
last temperature equation as in [137]. Here, we follow the presentation in Leung
and Villa [141]. The stability of the positive steady-state here is considered for
the full system of m + 1 equations. Thus the theory is more elegant and less
restrictive. It will be found that the decreasing property of the reaction coeffi-
cients with respect to temperature is crucial for the stability of the system (cf.
hypothesis [H6] below). Such property may be achieved by means of control
rods in the reactor.

More precisely, we first consider the following elliptic system with Dirichlet
boundary conditions on a domain with various sizes:
(6.1)


∆ûi(x) +
∑m+1

j=1 Ĥij(x, ûm+1)ûj(x) = 0 for all x ∈ kΩ, i = 1, ...,m + 1,

ûi(x) = 0 for all x ∈ ∂(kΩ), i = 1, ...,m + 1,
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where kΩ = {x = ky : y ∈ Ω}, k > 0,Ω is a fixed domain in RN , and m ≥ 2. The
domain kΩ represents the reactor core; ûj(x), j = 1, ...,m is the neutron-flux of
the j-th energy group; and ûm+1(x) denotes the temperature. Ĥij, i, j = 1, ...,m
represent the temperature-dependent fission and scattering rates of various en-
ergy groups; ∆ is the Laplacian operator with x as independent variable. The
function Ĥm+1,m+1 denotes the cooling coefficient, and Ĥm+1,j, j = 1, ...,m, de-
notes the rate of temperature increase due to neutrons in group j. Consequently,
we should have Ĥm+1,m+1 ≤ 0 and Ĥij ≥ 0 for all (i, j) �= (m + 1,m + 1). We
will determine the parameter k when positive steady-state will bifurcate from
the trivial solution, and will thus find the critical size of the reactor core.

With the change of variable x = ky, the problem (6.1) is transformed into
(6.2)


∆yui(y) + λ
∑m+1

i=1 Hij(y, um+1(y))uj(y) = 0, for y ∈ Ω, i = 1, . . . ,m+ 1.

ui(y) = 0, for y ∈ ∂Ω, i = 1, . . . ,m+ 1,

which is the Dirichlet problem for a fixed domain Ω, where λ = k2 > 0. Here,
ui(y) = ûi(x) = ûi(ky), and

Hij(y, um+1(y)) = Ĥij(x, ûm+1(x)) = Ĥij(ky, ûm+1(ky));

∆y is the Laplacian on the y-variable; and for convenience, we will not display
this variable in the following context. We will obtain a positive steady state for
(6.2) for certain value of λ; and consider the stability of this steady state as a
solution of the nonlinear parabolic system:
(6.3)


∂ui/∂t = ∆ui + λ
∑m+1

j=1 Hij(y, um+1(y, t))uj(y, t) for (y, t) ∈ Ω× (0,∞),

ui(y, t) = 0 for (y, t) ∈ ∂Ω× (0,∞), i = 1, ...,m + 1,

ui(y, 0) = ui0(y) for y ∈ Ω̄, i = 1, ...,m + 1.

To fixed ideas, we assume Ω is a bounded domain in RN , N ≥ 1, with boundary
∂Ω of class C2+µ for some µ ∈ (0, 1). For convenience, we denote

J = {1, . . . ,m+ 1}, Bij(x) := Hi,j(x, 0), forx ∈ Ω̄, i, j ∈ J.

We will assume

[H1] Hij(., η) ∈ Cµ(Ω̄) uniformly for η in bounded subsets of R1, i, j ∈ J ;
Bij(x) ≥ 0 in Ω̄, for all (i, j) �= (m + 1,m + 1);

[H2] Bij �≡ 0, for i �= j, i, j = 1, ...,m;Bm+1,j �≡ 0, j = 1, . . . ,m;Bi,m+1 ≡ 0 for
i = 1, ...,m.
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Note that in (6.3), the coefficients Hij depends on temperature um+1. More-
over, the last part in [H2], (Bi,m+1 ≡ 0, i = 1, . . . ,m), means that the effect of
temperature on the system enters only through changes in the fission and scat-
tering coefficients Bij , j < m+ 1. Also, note that so far, the crucial assumptions
are made only at temperature um+1 = 0, which can be normalized as the exterior
temperature. More hypotheses will be added later when stability is investigated.

For convenience, we will use the following notations:

E = {u = col.(u1, . . . , um+1)|ui ∈ C2+µ(Ω̄), ui|∂Ω = 0, i = 1, . . . ,m+ 1},

F = {u = col.(u1, . . . , um+1)|ui ∈ Cµ(Ω̄), ui|∂Ω = 0, i = 1, . . . ,m+ 1},

F1 = {u = col.(u1, . . . , um+1)|ui ∈ C1(Ω̄), ui|∂Ω = 0, i = 1, . . . ,m+ 1},

|| · ||E = || · ||C2+µ(Ω̄), || · ||F = || · ||Cµ(Ω̄), || · ||F1 = || · ||C1(Ω̄);

H(x, η) = [Hij(x, η)] is a (m + 1) × (m + 1) matrix for (x, η) in Ω̄ × R1, and
P = {u = col.(u1, . . . , um+1) ∈ F1|ui ≥ 0 on Ω̄}. Throughout this section we
will use the symbol ∆−1

D f , for f ∈ F or F1, to denote the function w ∈ E such
that ∆w = f in Ω. Applying ∆−1

D to (6.2), it can be written as:

(6.4) u+ λ∆−1
D [H(., um+1)u] = 0

where u = col.(u1, . . . , um+1). We will use the bifurcation method to find a
positive solution to (6.4). Then, we analyze the linearized stability of this solu-
tion as a steady-state solution of (6.3). Finally, the asymptotic stability of the
steady-state solution will be proved.

In order to find a positive solution bifurcating from zero for equation (6.4),
we will first consider the corresponding linearized eigenvalue problem. We will
need the following comparison Lemma 6.1 in order to prove the main theorems in
this section. For convenience we let J = {1, 2, ..,m+1}, and define the operator:

Li = −∆ + ci(x)

for i ∈ J where ci(x) ≥ 0 are functions in Cµ(Ω̄), 0 < µ < 1.

Lemma 6.1 (Comparison). Let u, v ∈ [C2(Ω)
⋂
C1(Ω̄)]m+1, u �≡ 0, vi ≥ 0, �≡ 0

in Ω, for i ∈ J , satisfy:

(6.5)



Li[ui(x)] =

∑m+1
j=1 pij(x)uj(x), for x ∈ Ω, i ∈ J,

u|∂Ω = 0, u = col.(u1, . . . , um+1);
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(6.6)



Li[vi(x)] ≥∑m+1

j=1 qij(x)vj(x), for x ∈ Ω, i ∈ J,

v = col.(v1, ..., vm+1),

where pij and qij are bounded functions in Ω. Suppose that

(6.7)
qij ≥ pij in Ω̄ for i, j ∈ J, and

qij, pij ≥ 0 in Ω̄ for all i �= j;

then there exists k ∈ J and a real number δ such that:

(6.8)
vk ≡ δuk, pkj ≡ qkj in Ω̄ for all j ∈ J,
and vj − δuj ≥ 0 for all j ∈ J.

Proof. Let K > 0 be a positive constant such that pii + K, qii + K > 0 in Ω̄,
for i ∈ J. From (6.6) and (6.3), we have

Li[vi] +Kvi ≥ (qii +K)vi +
m+1∑

j=1,j 	=i
qijvj ≥ 0.

Thus the maximum principles imply that

(6.9) vi > 0 in Ω, and (∂vi/∂η)(x̄) < 0 if x̄ ∈ ∂Ω and vi(x̄) = 0.

Without loss of generality, we may assume that some component of u takes a
positive value somewhere. Otherwise, replace u by −u. Since u = 0 on ∂Ω, we
can readily obtain from properties (6.9) that vi(x) − εui(x) > 0 for some ε > 0
and all x ∈ Ω, i ∈ J . Let δi = sup{a : vi − aui > 0 in Ω} for those i ∈ J such
that δi can be finitely defined. Define δ to be the minimum of such δ′is. Thus
δ = δk for some k, and 0 < δk <∞, vi − δui ≥ 0 in Ω for i ∈ J. From (6.5) and
(6.6), we find

(6.10)
(Lk +K)(vk − δkuk) ≥ (K + pkk)(vk − δkuk) +

∑m+1
i=1, 	=k pki(vi − δkui)

+
∑m+1

i=1 (qki − pki)vi ≥ 0 in Ω.

Consequently, the maximum principle implies that vk − δuk ≡ 0 in Ω. Then,
(6.10) further implies that we must have qki ≡ pki for all i ∈ J .

For convenience, we define the following operators with m+ 1 components:

L̃q ≡ (−∆, . . . ,−∆,−∆ + q(x)), where q(x) ≥ 0 is a function in Cµ(Ω̄);

T ≡ L̃−1
q (B) : [C1(Ω̄)]m+1 → [C1(Ω̄)]m+1, so that for u ∈ [C1(Ω̄)]m+1,

w = Tu is the function which satisfies L̃qw = Bu and w|∂Ω = 0.
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We first prove the existence of positive eigenfunction for an appropriate linear
system related to (6.4), under the restrictive condition Bm+1,m+1 ≡ 0. This
restriction will be modified later in Theorem 6.2.

Theorem 6.1. Suppose that B satisfies [H1], [H2] and Bm+1,m+1 ≡ 0 then
there exists (λ0, u

0) ∈ R× E , λ0 > 0 such that

(6.11) L̃q[u0] = λ0Bu
0 in Ω, u0 = 0 on ∂Ω,

with each component u0
i > 0 in Ω and ∂u0

i /∂η < 0 on ∂Ω for i ∈ J . Furthermore,
the eigenfunction corresponding to the eigenvalue 1/λ0 for the operator T is
unique up to a multiple. Also, The number λ = λ0 is the unique positive number
so that the problem u = λTu has a nontrivial non-negative solution for u ∈ P.
(Recall that B is the matrix whose (i, j) entries are defined as Bij(x) := Hij(x, 0)
for i, j = 1, ...,m + 1).

Proof. The operator T : [C1(Ω̄)]m+1 → [C1(Ω̄)]m+1 is completely continu-
ous and positive with respect to the cone P. Let z = col.(z1, . . . , zm+1) =
col.((−∆D)−1(1), . . . , (−∆D)−1(1)). The functions zi satisfies zi(x) > 0 in
Ω, zi|∂Ω = 0 for i ∈ J . Define v = T (z). Hypotheses [H1], [H2] and the maxi-
mum principles imply that the components vi > 0 in Ω, ∂vi/∂η < 0 on ∂Ω for
i ∈ J . Thus, there exists δ > 0 such that T (z) ≥ δz with z ∈ P. Theorem A3-10
in Chapter 6 asserts that there exists a nontrivial u0 = col.(u0

1, . . . , u
0
m+1) ∈ P

and ρ0 ≥ δ > 0 such that Tu0 = ρ0u
0 (i.e. (6.11) with λ0 = 1/ρ0.) The last

component of (6.11) implies that we cannot have u0
i ≡ 0 in Ω̄ for all i = 1, . . . ,m.

The maximum principle further implies that if u0
j �≡ 0, for j ∈ J , then u0

j (x) > 0
for all x ∈ Ω. We can then obtain from hypotheses [H1], [H2] and the maximum
principle that u0

i > 0 in Ω and ∂u0
i /∂η < 0 on ∂Ω for all i ∈ J .

Now, let w = col.(w1, . . . , wm+1) �≡ 0 be such that L̃q[w] = λ0Bw. From
Lemma 6.1, there must exist δ∗ ∈ R and some k ∈ J such that

(6.12) u0
k ≡ δ∗wk and u0

j − δ∗wj ≥ 0 in Ω̄ for all j ∈ J.

If there is an integer r ∈ J such that

(6.13) u0
r(x̄)− δ∗wr(x̄) > 0 for some x̄ ∈ Ω,

then −∆[u0
r − δ∗wr] = λ0

∑m+1
j=1 Brj(u0

j − δ∗wj) ≥ 0 implies that u0
r − δ∗wr > 0

in Ω for the case r �= m+ 1. For the case r = m+ 1, we have (−∆ + q)(u0
m+1 −

δ∗wm+1) ≥ 0, which also implies that u0
r−δ∗wr > 0 in Ω. We then consider the i-

th equation in (6.11), for i �= r; the hypothesis [H2] implies that −∆(u0
i−δ∗wi) �≡

0 if i �= m + 1 also, or (−∆ + q)(u0
i − δ∗wi) �≡ 0 if i = m + 1. Consequently,

u0
i − δ∗wi �≡ 0 for each i �= r. This contradicts the existence of an integer k ∈ J

such that (6.12) holds. This means that if (6.12) holds, there cannot exist an
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r ∈ J such that (6.13) holds. That is, we have u0 ≡ δ∗w. Finally, suppose that
there is another λ1 > 0, λ1 �= λ0 so that ũ = λ1T ũ for some ũ ∈ P, ũ �≡ 0. We
can deduce as before that ũi > 0 in Ω, ∂ũi/∂η < 0 on ∂Ω for i ∈ J . Then we
can obtain from comparison Lemma 6.1 that λ1 = λ0. This completes the proof
of the Theorem.

As described in the beginning of this section, the last component um+1 de-
notes the temperature in the reactor, and the term Hm+1,m+1(x, 0) = Bm+1,m+1

denotes the cooling coefficient. It is therefore physically reasonable to impose
the hypothesis:

[H3] Hm+1,m+1(x, 0) = Bm+1,m+1(x) ≤ 0 for all x ∈ Ω̄.

To insure the existence of positive eigenfunction, we further assume that:

[H4] There exists some k ∈ J such that Bkk(x) > 0 for some x ∈ Ω.

The following theorem remove the restrictive assumption that Bm+1,m+1 ≡ 0
in Theorem 6.1, and the entries of B are no longer all non-negative.

Theorem 6.2 (Positive Eigenvalue for the Linear Part). Suppose B
satisfies all the hypotheses [H1] to [H4]; then there exists (λ̂0, v

0) ∈ R×E , λ̂0 > 0,
such that

(6.14) −∆[v0] = λ̂0Bv
0 in Ω, v0 = 0 on ∂Ω,

with each component v0
i > 0 in Ω, ∂v0

i /∂η < 0 on ∂Ω for i ∈ J . Furthermore,
1/λ̂0 is an eigenvalue of the operator (−∆D)−1B : [C1(Ω̄)]m+1 → [C1(Ω̄)]m+1,
with an one-dimensional nullspace for (−∆D)−1B − (1/λ̂0)I.

We will use Theorem 6.1 to prove this Theorem. For convenience, define B̃
to be the (m + 1)× (m+ 1) matrix function on Ω̄ as follows:

(6.15)
B̃ij(x) = Bij(x) for (i, j) ∈ J, (i, j) �= (m + 1,m+ 1), x ∈ Ω̄,

B̃m+1,m+1 ≡ 0.

For each λ ≥ 0, define the m+ 1 component vector operator:

L̃λ ≡ (−∆, . . . ,−∆,−∆− λBm+1,m+1);

and consider the eigenvalue problem

(6.16) L̃λu = ρB̃u in Ω, u|∂Ω = 0,

with eigenvalue ρ. Since B̃ satisfies the conditions in Theorem 6.1, problem
(6.16) has a unique positive eigenvalue ρ = ρ̂(λ) with corresponding eigenfunc-
tion u = uλ = col.((uλ)1, . . . , (uλ)m+1), with (uλ)i > 0 in Ω, ∂(uλ)i/∂η < 0 on
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∂Ω, for i ∈ J . The proof of Theorem 6.2 will follow readily from the next two
lemmas.

Lemma 6.2. Under the hypotheses of Theorem 6.2, the function ρ̂(λ) is bounded
for all λ ∈ [0,∞).

Proof. Let G be an open bounded set in Ω with its closure contained in Ω,
and Bkk(x) > 0 for all x ∈ G. (Here, k is the integer described in [H4]). Let
Φ �≡ 0 be a C∞ function with compact support contained in G. We clearly have∫
GBkkΦ

2dx > 0. Let uλ be as described above, and set wλ(x) = ln(uλ)k(x) for
x ∈ Ω. Thus, we have in G that:

(6.17) −∆wλ −
N∑
i=1

(
∂(wλ)
∂xi

)2 =
ρ̂(λ)
(uλ)k

m∑
j=1

B̃kj(uλ)j ≥ Bkkρ̂(λ).

Multiplying by Φ2 and integrating over G, we obtain

(6.18)
∫
G

[−∆wλ −
N∑
i=1

(
∂(wλ)
∂xi

)2]Φ2dx ≥ ρ̂(λ)
∫
G
Bkk(x)Φ2dx.

Integrating by parts gives

(6.19)
∫
G
< Φ∇wλ, 2∇Φ− Φ∇wλ > dx ≥ ρ̂(λ)

∫
G
BkkΦ2dx.

Note that in G, we have

< Φ∇wλ, 2∇Φ − Φ∇wλ > = − < ∇Φ− Φ∇wλ,∇Φ− Φ∇wλ > + < ∇Φ,∇Φ >

≤ < ∇Φ,∇Φ > .

Hence, (6.19) gives

(6.20) 0 < ρ̂(λ) ≤
∫
G < ∇Φ,∇Φ > dx∫

GBkkΦ
2dx

for all λ ∈ [0,∞).

Lemma 6.3. Under the hypotheses of Theorem 6.2, the function ρ̂(λ) is con-
tinuous on λ ∈ [0,∞).

Proof. Let λ∗ ≥ 0 and λi be a sequence with λi → λ∗. By Lemma 6.2, we may
assume without loss of generality that ρ̂(λi)→ d for some d ≥ 0. From Theorem
6.1, for each i there exists an eigenfunction ui ≥ 0, normalized to ‖ ui ‖∞= 1
satisfying

(6.21) L̃λiui = ρ̂(λi)B̃ui in Ω, u|∂Ω = 0.
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Schauder’s theory implies that {ui} is bounded in the C1+µ(Ω̄) norm. Using an
embedding theorem we obtain without loss of generality that ui → v for some
v ∈ [C1(Ω̄)]m+1 and v �≡ 0,≥ 0 in Ω̄. In the limit, we obtain

(6.22) L̃λ∗v = dB̃v in Ω, v|∂Ω = 0.

From the maximum principle, we must have v > 0 in Ω. On the other hand, for
λ = λ∗, Theorem 6.1 implies that there exists v∗ ∈ [C2+µ(Ω̄)]m+1, v∗ > 0 in Ω,
and a number ρ̂(λ∗) satisfying

(6.23) L̃λ∗v
∗ = ρ̂(λ∗)B̃v∗ in Ω, v∗|∂Ω = 0.

Using the comparison Lemma 6.1, (6.22) and (6.23), we can readily deduce by
contradiction that ρ̂(λ∗) = d.

Proof of Theorem 6.2. By Lemma 6.3, the function ω(λ) := ρ̂(λ) − λ is
continuous on [0,∞). From Theorem 6.1, we have ω(0) > 0; and from Lemma
6.2, we have ω(λ) < 0 for large λ > 0. Thus, there exists λ̄ such that ρ̂(λ̄) = λ̄
and (6.16) becomes

(6.24) L̃λ̄v
0 = ρ̂(λ̄)B̃v0 in Ω, v0|∂Ω = 0

for some v0, with v0
i > 0 in Ω and ∂v0

i /∂η < 0 on ∂Ω, i ∈ J . Comparing with
(6.14), we clearly see that it is the same as (6.24) with λ̂0 = ρ̂(λ̄) = λ̄. Finally,
the dimension of the nullspace of (−∆D)−1B − (1/λ̂0)I follows from (6.24) and
Theorem 6.1. This completes the proof of Theorem 6.2.

In order to apply Crandall-Rabinowitz’s bifurcation theorem to obtain posi-
tive solution for the nonlinear problem (6.4) we will have to analyze the range of
the operator: I − λ̂0(−∆D)−1B. This leads to the study of the adjoint problem:

(6.25) (−∆)v = λBT v in Ω, v|∂Ω = 0.

Lemma 6.4. Let B satisfies [H1] to [H4]. Then problem (6.25) has a nontrivial
solution when λ = λ̂0 with the corresponding eigenfunction v(λ̂0) ≡ v̂0satisfying
v̂0
i > 0 for i = 1, ...,m, and v̂0

m+1 ≡ 0 in Ω. Moreover, the solution v(λ̂0) is
unique up to a multiple. (Here, λ̂0 is the same as that defined in Theorem 6.2).

Proof. Let k̄ be a positive constant such that k̄ + Hm+1,m+1 > 0 in Ω. Let
D∗ = BT + k̄I and consider the problem (−∆ + λ̂0k̄)u = λD∗u in Ω, u|∂Ω = 0.
As in the proof of Theorem 6.1, we can show that there exists (λ̃0, u

∗) such that

(6.26) (−∆ + λ̂0k̄I)u∗ = λ̃0D
∗u∗ = λ̃0(BT + k̄I)u∗ in Ω, u∗|∂Ω = 0,
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with u∗ ≥ 0, �≡ 0 in Ω, λ̃0 > 0. Hypotheses [H1] and [H2] imply that u∗i > 0 in
Ω for i = 1, . . . ,m. Recall that from (6.14), v0 satisfies:

(6.27) (−∆ + λ̂0k̄I)v0 = λ̂0(B + k̄I)v0 in Ω, v0|∂Ω = 0.

Multiplying both sides of (6.27) by u∗ and integrating over Ω, we obtain

(6.28)

λ̂0 < (B + k̄I)v0, u∗ > = < (−∆ + λ̂0k̄I)v0, u∗ >

= < v0, (−∆ + λ̂0k̄I)u∗ >

= λ̃0 < v0, (BT + k̄I)u∗ >

= λ̃0 < (B + k̄I)v0, u∗ > .

This implies that λ̃0 = λ̂0, and (6.26) becomes

(6.29) (−∆)v̂0 = λ̂0B
T v̂0 in Ω, v̂0|∂Ω = 0,

where we label v̂0 = u∗. The (m + 1)-th equation in (6.29) clearly implies that
v̂0
m+1 ≡ 0 in Ω, since the last row of BT is ≡ 0 except the diagonal entry, which

is ≤ 0. Applying Lemma 6.1 to the first m equations of (6.29), (i.e with m
replacing m+ 1), we obtain the uniqueness of u∗ = v̂0 = v(λ̂0) up to a multiple.

As described above, we can consider a solution of problem (6.2) as a solution
of (6.4). For convenience, we define an operator F : R+ ×F1 → F1 by

(6.30) F (λ, u) = u− λ(−∆D)−1H(., um+1)u for (λ, u) ∈ R+ ×F1.

Problem (6.4) can be written in the form

(6.31) F (λ, u) = 0.

Defining

(6.32)

L0 : F1 → F1 by L0 = I − λ̂0(−∆D)−1B,

L1 : F1 → F1 by L1 = (∆D)−1B, and

G : R+ ×F1 → F1 by G(λ, u) = −λ(−∆D)−1([H(., um+1)−B]u),

equation (6.31) becomes

(6.33) F (λ, u) := L0u+ (λ− λ̂0)L1u+G(λ, u) = 0, for (λ, u) ∈ R+ ×F1.

We clearly have F (λ, 0) = 0, for all λ ∈ R+. Let N(L0) and R(L0) respectively
denote the null space and range of L0. We will show that they have the following
properties:
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Lemma 6.5. Assume that B satisfies hypotheses [H1] to [H4] then
(i) N(L0) is one-dimensional, spanned by v0;
(ii) dim[F1/R(L0)] = 1;
(iii) L1v

0 �∈ R(L0).

Proof. Part (i) was proved in Theorem 6.2. The operator L0 can be extended
naturally to L̃0 with the set [L2(Ω)]m+1 as its domain. The range of L̃0 can be
described by

{z ∈ [L2(Ω)]m+1 :
∫
Ω g · zdx = 0, for all g satisfying ∆g + λ̂0B

T g = 0 in Ω,
g|∂Ω = 0}.

By Lemma 6.4, all the g described above have to be a multiple of v̂0. Thus, by
means of the mapping u → ∫

Ω v̂
0 · udx from F1 onto R1, we conclude that (ii)

must be true.
To prove (iii), we first assume the contrary that L1v

0 ∈ R(L0). Then there
exists w ∈ [F1]m+1 such that

[I − λ̂0(−∆D)−1B]w = (∆D)−1Bv0, i.e. −∆w − λ̂0Bw = −Bv0.

Multiplying both sides by v̂0 (cf. equation (6.9)), and integrate over Ω, we obtain

< −∆w − λ̂0Bw, v̂
0 > = < −Bv0, v̂0 >,

and thus

0 = < w, 0 > = < w, (−∆ − λ̂0B
T )v̂0 > = < −Bv0, v̂0 > .

However, the assumptions on B, and the fact that v0
i > 0 for i = 1, . . . ,m + 1,

and v̂0
i > 0 for i = 1, . . . ,m imply that the expression on the right above is

strictly negative. This contradiction implies that (iii) is valid.

In order to have enough smoothness for the function G given in (6.32), we
now impose further hypotheses on the smoothness of H(., η):

[H5] (∂Hij/∂η)(., η) and (∂2Hij/∂η
2)(., η) are in Cµ(Ω̄) uniformly in η in

bounded subsets of R1, for each i, j ∈ J.

Lemma 6.6. (i) Assume hypotheses [H1] to [H5]; then the Fréchet derivatives
D2G,D1G,D12G exist and are continuous on R1 ×F1. Moreover, we have

(6.34) D2G(λ, u)w = λ(∆D)−1[H(., um+1)w + H̃(., um+1)uwm+1 −Bw]

for all (λ, u) ∈ R+ × F1, w ∈ F1 where H̃(., um+1) = (∂Hij/∂η)(., um+1) is an
(m+ 1)× (m + 1) matrix function;
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(ii) ||G(λ, u)||F1/||u||F1 → 0 as ||u||F1 → 0 uniformly in λ near λ0.

Proof. Direct calculation and estimating the range of (−∆)−1 gives

||G(λ,w) −G(λ, u) − λ(∆D)−1[H(., um+1)(w − u)

+H̃(., um+1)u(wm+1 − um+1)−B(w − u)]||F1

≤ kλ||H(., wm+1)w −H(., um+1)u−H(., um+1)(w − u)

−H̃(., um+1)u(wm+1 − um+1)||∞
≤ kλ∑m+1

i,j=1 ||Hij(., wm+1)wj −Hij(., um+1)wj
−∂Hij/∂η(., um+1)uj(wm+1 − um+1)||∞

≤ kλ∑m+1
i,j=1{||[Hij(., wm+1)−Hij(., um+1)

−∂Hij/∂η(., um+1)(wm+1 − um+1)]uj ||∞
+||[Hij(., wm+1)−Hij(., um+1)][wj − uj]||∞}

≤ kλ∑m+1
i,j=1{||∂Hij/∂η(., um+1 + sij(wm+1 − um+1))

−∂Hij/∂η(., um+1)||∞||wm+1 − um+1||∞||u||∞
+||Hij(., wm+1)−Hij(., um+1)||∞||w − u||∞}

≤ c(λ, ρ)||w − u||2∞
for ||w||F1 , ||u||F1 ≤ ρ, where sij above is a number between 0 and 1 and c(λ, ρ)
is a constant which depends on (λ, ρ). This inequality proves (6.34) and G ∈
C1(R+×F1,F1). One can then similarly show the existence of D12G and D1G.

For part (ii), we use Schauder’s theory to obtain

||G(λ,u)||F1
||u||F1

≤ k̄ ||[H(.,um+1)−B]u||∞
||u||∞

≤ k̄∑∞
i,j=1 ||Hij(., um+1)−Hij(., 0)||∞ → 0, as ||u||F1 → 0.

Continuing as in Lemma 6.6, one can show F ∈ C2(R+ ×F1,F1). Using (6.34)
and Lemma 6.6 again, we obtain

L0 = D2F (λ̂0, 0), L1 = D12F (λ̂0, 0),

G(λ, 0) ≡ 0, D2G(λ̂0, 0) = D12G(λ̂0, 0) = 0.

Consequently, by means of Lemma 6.5, we can apply a local bifurcation theorem
of Crandall-Rabinowitz (Theorem A1-3 in Chapter 6) to the equation F (λ, u) =
0 to obtain a C1 curve (λ(s), θ(s)) of solutions as described in the following
theorem. (See also Diemling [49]).
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Theorem 6.3 (Bifurcating Positive Steady-State). Under the hypotheses
[H1] to [H5], the point (λ̂0, 0) is a bifurcation point for the problem (6.33) (or
equivalently for the problem (6.2)). Here, λ̂0 > 0, with corresponding eigenfunc-
tion v0, is the eigenvalue described in Theorem 6.2. More precisely, there exists
an interval [0, δ), δ > 0, and a C1-curve (λ(s), θ(s)) : [0, δ)→ R×F1 such that:
λ(0) = λ̂0, θ(0) = 0, and the solution û(x) = u(y) = u(x/k) of (6.33) is of the
form

u(x/k) = s(v0 + θ(s))(x/k) for x ∈ kΩ, k =
√
λ(s).

The corresponding solution û(x) = u(x/k) of (6.1) is positive in kΩ and is in
C2+µ(kΩ̄).

Note that λ(s) and u(x/k) satisfy

(6.35) F (λ(s), s(v0 + θ(s)) = 0 for s ∈ [0, δ).

Remark 6.1. The above number λ̂0, which is first defined in the statement of
Theorem 6.2, is unique.

Proof of Remark. Suppose λ̂1 is any number so that there exists v1 ∈ E (with
each component v1

i > 0 in Ω, i ∈ J) satisfying

(6.36) (−∆)v1 = λ̂1Bv
1, in Ω, v1 = 0 on ∂Ω,

where B satisfies hypotheses [H1] to [H4]. Let v̂0 be as defined in Lemma 6.4.
Taking inner product on both sides of (6.36) with v̂0, we obtain

λ̂1 < Bv1, v̂0 > = < −∆v1, v̂0 > = < v1,−∆v̂0 >

= λ̂0 < v1, BT v̂0 > = λ̂0 < Bv1, v̂0 > .

Since v̂0
m+1 ≡ 0, the hypotheses [H1] to [H4] on B implies that < Bv1, v̂0 > �= 0.

This shows that λ̂1 = λ̂0.

For the rest of this section, we will always assume hypotheses [H1] to [H5].
We will investigate the linearized and asymptotic stability of the positive bi-
furcating solution found in Theorem 6.3. For this purpose, we will introduce
more assumptions on the derivative of Hij below. Applying the theory in [34]
(Theorem A1-3 in Chapter 6), and the fact that

(6.37)
∫

Ω
v̂0 ·∆−1

D v0dx �= 0

(note that v̂0
i > 0 for i = 1, . . . ,m, v̂0

m+1 = 0, and v0
i > 0 for i = 1, . . . ,m + 1),

we can assert that there exist δ1 ∈ (0, δ) and two functions

(γ(.), z(.)) : (λ̂0 − δ1, λ̂0 + δ1)→ R×F1,
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(η(.), w(.)) : [0, δ1)→ R×F1,

with (γ(λ̂0), z(λ̂0)) = (η(0), w(0)) = (0, v0), such that

(6.38) D2F (λ, 0)z(λ) = γ(λ)∆−1
D (z(λ)), and

(6.39) D2F (λ(s), s(v0 + θ(s)))w(s) = η(s)∆−1
D (w(s)).

Here, (6.37) and the theory in [34] implies that γ(λ) and η(s) are respectively
∆−1
D -simple eigenvalues of D2F (λ, 0) and D2F (λ(s), s(v0 +θ(s)), with eigenfunc-

tions z(λ) and w(s). Moreover, the theory in [34] further leads to the following
lemmas.

Lemma 6.7. Assume hypotheses [H1] to [H5]. There exists ρ > 0 such that for
each s ∈ [0, δ1) there is a unique (real) eigenvalue η(s) for the linear operator

(6.40) F ∗
s := ∆D2F (λ(s), s(v0 + θ(s))) : E → F

satisfying |η(s)| < ρ with eigenfunction w(s) ∈ E. That is
(6.41)

F ∗
sw(s) := ∆w(s) + λ(s)H(., (us)m+1)w(s) + λ(s)H̃(., (us)m+1)uswm+1

= η(s)w(s),

where us := s(v0 + θ(s)).

The next few lemmas study the behavior of the eigenvalues λ(s), η(s) for
small s ≥ 0, and γ(λ) near λ = λ0. In order to obtain stability we will need the
following additional hypotheses:

(∂Hij/∂η)(., 0) ≤ 0 in Ω, for all i = 1, ..,m, j = 1, ..,m + 1;
[H6]

(∂Hij/∂η)(x̄, 0) < 0 for some x̄ ∈ Ω, some i = 1, . . . ,m,
and some j = 1, . . . ,m+ 1.

For all the remaining part of this section, we will always assume hypotheses [H1]
to [H6].

Lemma 6.8. The function λ(s) defined in Theorem 6.3 satisfies λ′(0) > 0.

Proof. Theorem 6.3 asserts that λ′(0) exists. Equation (6.35) implies that
s(v0 + θ(s)) is in E ; and for s ∈ [0, δ), we have

∆(s(v0 + θ(s)) + λ(s)H(., s((v0)m+1 + θm+1(s)))s(v0 + θ(s)) = 0.

Dividing by s, then differentiating with respect to s and setting s = 0, we obtain

∆(θ′(0)) + λ′(0)H(., 0)v0 + λ̂0H(., 0)θ′(0) + λ̂0H̃(., 0)(v0)m+1v
0 = 0.
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Multiplying by (v̂0)T and integrating over Ω, we obtain∫
Ω
{(v̂0)T∆θ′(0) + λ′(0)(v̂0)TBv0 + λ̂0(v̂0)TBθ′(0)

+ λ̂0(v̂0)T H̃(., 0)(v0)m+1v
0}dx = 0.

Integrating by parts, we find∫
Ω
λ′(0)(v̂0)TBv0dx = −λ̂0

∫
Ω

(v̂0)T H̃(., 0)v0(v0)m+1dx.

Consequently, we obtain

(6.42) λ′(0) =
−λ̂0

∫
Ω(v̂0)T H̃(., 0)v0(v0)m+1dx∫

Ω(v̂0)TBv0dx
> 0.

Note that the sign of the numerator above is determined by hypotheses [H6].

Lemma 6.9. The function γ(λ) in (6.38) satisfies γ′(λ̂0) > 0.

Proof. Note that D2F (λ, 0) = I + λ∆−1
D B. From (6.38), we have

(I + λ∆−1
D B)z(λ) = γ(λ)∆−1

D z(λ), for λ ∈ (λ̂0 − δ1, λ̂0 + δ1).

We can thus readily obtain

∆z(λ) + λBz(λ) = γ(λ)z(λ),

∫
Ω(v̂0)T∆z(λ) + λ(v̂0)TBz(λ)dx = [γ(λ)− γ(λ̂0)]

∫
Ω(v̂0)T z(λ)dx,

since γ(λ̂0) = 0. Integrating the first term on the left above by parts, using the
equation satisfied by v̂0, factoring and cross multiplying, we deduce

γ(λ)− γ(λ̂0)
λ− λ̂0

=

∫
Ω(v̂0)TBz(λ)dx∫
Ω(v̂0)T z(λ)dx

.

Taking limit as λ tends to λ̂0, we obtain

γ′(λ̂0) =

∫
Ω(v̂0)TBv0dx∫
Ω(v̂0)T v0dx

> 0.

The strict inequality above is due to hypothesis [H4].

Lemma 6.10. There exists δ2 ∈ (0, δ1), such that η(s) < 0 and us ≡ s(v0 +
θ(s)) > 0 in Ω for all s ∈ (0, δ2). Here, η(s) and us are defined in Lemma 6.7.
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Proof. From Theorem 1.16 in [34], we find −sλ′(s)γ′(λ̂0) and η(s) have the
same sign for s > 0 near 0. Hence Lemmas 6.8 and 6.9 imply that η(s) < 0
for small positive s. Since v0 is positive in Ω with negative outward normal
derivative on the part of ∂Ω where it is zero, and θ(s)→ 0 in C1 as s → 0, we
must have us ≡ s(v0 + θ(s)) > 0 in Ω for s > 0 sufficiently small.

It remains to investigate the other eigenvalues of F ∗
s . Let b > 0 be a large

enough constant such that

(6.43)
m+1∑
j=1

λ̂0Hij(x, 0) − b < 0 for all x ∈ Ω, i = 1, . . . ,m+ 1.

For convenience, let M0 be the complex extension of the operator from E into
F defined by

(6.44) M0w = ∆(w) + λ̂0B(w)− bI(w),

for w ∈ E , where I is the identity operator.

Lemma 6.11. (i) The inverse of M0 can be defined as M−1
0 ∈ L(F), i.e. a

bounded linear operator F → F , and it is compact.
(ii) If λ �= 0 is an eigenvalue of M0 + bI (i.e. ∆ + λ̂0B), then Re(λ) < −r

for some positive number r.

The proof uses the sign of the off-diagonal terms of B, (6.43) and the max-
imum principle for the corresponding systems. It is essentially the same as the
proof of Lemma 2.8 in [137]. The details will be omitted here.

For convenience, we let σs denote the point spectrum of F ∗
s . The next

linearized stability theorem follows from Lemmas 6.7 to 6.11.

Theorem 6.4 (Linearized Stability of Bifurcating Positive Steady-
State). Under hypotheses [H1] to [H6], there exists a number δ∗ ∈ (0, δ) where
δ is described in Theorem 6.3, and a positive function η(s) for s ∈ (0, δ∗) such
that the point spectrum σs satisfies:

(6.45) Reσs ⊂ {w ∈ R1|w ≤ −η(s)} for s ∈ (0, δ∗).

Here, Reσs denotes the set of real numbers which are real parts of numbers in
σs.

The proof of Lemmas 6.8 to 6.10 are given in detail above, and they are
the consequences of [H1] to [H6]. They are different from the model in [137].
However, the proof of Theorem 6.4, using assertions in Lemmas 6.7 to 6.11 are
exactly the same as the proof of Theorem 2.2 in [137]. The details are thus
omitted here.
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For each fixed s̄ ∈ (0, δ∗), the function us̄ = s̄(v0 + θ(s̄)) is a steady- state
solution of problem (6.3) with λ = λ(s̄) given by Theorem 6.3. We now proceed
to investigate the time asymptotic stability of this steady state as a solution of
the parabolic system (6.3). Let B1 and B2 be Banach spaces as follows:

(6.46)
B1 = {u : u ∈ [C(Ω̄)]m+1, u = 0 on ∂Ω}, and

B2 = {u : u ∈ [Lp(Ω)]m+1} for p large enough such that N/(2p) < 1.

Let A1 be the ∆ operator on B1 with domain D(A1) = {u : u ∈ [W 2,p(Ω)]m+1

for all p, ∆u ∈ [C(Ω̄)]m+1, u = 0 and ∆u = 0 on ∂Ω}; and A2 be the ∆ operator
on B2 with domain D(A2) = {u ∈ B2 : u ∈ [W 2,p(Ω) ∩W 1,p

0 (Ω)]m+1}. For u
= col.(u1, . . . , um+1), and f(u) = λH(·, um+1)u, we can consider the following
nonlinear initial-boundary value problem for each i = 1, 2 corresponding to
(6.3):

(6.47)
du

dt
−Aiu(t) = f(u(t)) for t ∈ (0, T ]

with u(t) ∈ D(Ai), t > 0, respectively for i = 1, 2. Here, we suppress writing the
dependence of f on λ(s̄), since it is fixed for some s̄ ∈ (0, δ∗).

Definition 6.1. A solution of an initial value problem corresponding to (6.47)
in Bi is a function

u(t) ∈ C([0, T ], Bi) ∩C1((0, T ], Bi),

with u(0) = u0, u(t) ∈ D(Ai) for all t ∈ (0, T ]; and u(t) satisfies (6.47) for
t ∈ (0, T ].

The operator A2 is an infinitesimal generator of an analytic semigroup M(t),
t ≥ 0, on B2. It is well-known that for α > 0

(−A2)−α =
1

Γ(α)

∫ ∞

0
τα−1M(τ)dτ

defines a bounded linear operator on B2. Moreover, [(−A2)−α]−1 = (−A2)α is a
closed linear operator on B2 with dense domain D((−A2)α) = (−A2)−α(B2). We
denote by Xα the Banach space (D(−A2)α), ||·||α), where ||u||α = ||(−A2)αu||Lp
for all u ∈ D((−A)α). Moreover, for N/(2p) < α < 1, there exists a constant
C(α) > 0 such that ||u||∞ ≤ C(α)||u||α for all u ∈ Xα. (See Definition A4-6 to
A4-8 in Chapter 6 or Pazy [184]).

For further discussion of solutions in these spaces, we will make the following
additional assumptions for i, j = 1, . . . ,m+ 1:

Hij(x, η) and (∂Hij/∂η)(x, η) are bounded for all (x, η) ∈ Ω×R1,
[H7]

|∂Hij∂η (x, η1)− ∂Hij
∂η (x, η2| ≤ C|η1 − η2)| for all η1, η2 ∈ R1,

for some constant C > 0.
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For the function f described above, the hypotheses [H1] and [H7] lead to the
following Lipschitz properties in B1 and B2: There exists C̄ > 0 and ρ > 0, such
that
(6.48)
‖ f(u)− f(w) ‖∞≤ C̄ ‖ u− w ‖∞ for all u,w ∈ B1 with ‖ u ‖∞, ‖ w ‖∞≤ ρ,

and
(6.49)
‖ f(u)− f(w) ‖Lp≤ C̄ ‖ u− w ‖α for all u,w ∈ Xα with ‖ u ‖α, ‖ w ‖α≤ ρ.

Here C̄ depends on α and ρ. From the Lipschitz properties (6.48) and (6.49), we
obtain local existence for solutions of (6.47) in B1 and B2 respectively. (See e.g.
[184]). Moreover, Corollary 3.3.5 in Henry [84] implies that solutions of (6.47)
are global. From hypotheses [H1] and [H7], we can further deduce:

(6.50) ‖ f(w)− f(u)− dfu(w − u) ‖∞= o(‖ w − u ‖∞)

for all u,w ∈ B1, ||u||∞ ≤ ρ, as ||w − u||∞ → 0, and

(6.51) ‖ f(w)− f(u)− dfu(w − u) ‖Lp= o(‖ w − u ‖α)

for all u,w ∈ Xα, ||u||α ≤ ρ, as ||w − u||α → 0. Here,

dfuz = λH(·, um+1)z + λ[
∂H

∂η
(·, um+1)]uzm+1.

Note that the operator Ai+dfū, ū := us̄, on Bi can be written as F ∗̄
s as in (6.41).

Thus the point spectrum of Ai + dfū lies in {λ ∈ C : Reλ < −η(s̄)} by Theorem
6.4. Moreover, the spectrum of F ∗̄

s is the set {1/µ : µ is in the spectrum of
(F ∗̄

s )−1}, and thus consists only of eigenvalues. (See e.g. pp. 51 and 79 in [184]).
By means of (6.50), (6.51) and Theorem 6.4, we can apply the stability Theorem
5.1.1 in [84] or Theorem A4-11 in Chapter 6 for sectorial operators to obtain
(6.53) in the following theorem for the asymptotic stability of the steady state
solution.

Theorem 6.5 (Local Asymptotic Stability of Positive Steady-State).
Assume hypotheses [H1] to [H7], and let ū := us̄, λ = λ(s̄) for a fixed s̄ ∈
(0, δ∗), α ∈ (N/(2p), 1). Then, for each i = 1, 2, there exist ρ > 0, β > 0 and
M > 1 such that equation (6.47) has a unique solution in Bi for all t > 0 if u0 ∈
B1 and ‖ u0 − ū ‖∞≤ ρ/(2M) for i = 1 (or u0 ∈ Xα and ‖ u0 − ū ‖α≤ ρ/(2M)
for i = 2). Moreover, the solution satisfies:

(6.52) ‖ u(t)− ū ‖∞≤ 2Me−βt ‖ u0 − ū ‖∞ for all t ≥ 0, i = 1, or

(6.53) ‖ u(t)− ū ‖α≤ 2Me−βt ‖ u0 − ū ‖α for all t ≥ 0, i = 2.
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Note: the condition on α is only assumed for solutions in B2.

The details of the proof are the same as that for Theorem 3.1 in [137], and
will be omitted here. For (6.52), we can use the theories in Theorems A4-8 and
A4-9 in Chapter 6 by Mora [176] or results in Stewart [211].

Note that hypotheses [H1] to [H5] are sufficient to insure the existence of
the steady-state ū, by Theorem 6.3. The addition of hypotheses [H6] and [H7]
leads to asymptotic stability.

Notes.
Theorem 2.1 to Theorem 2.3 are due to Leung and Ortega [139]. Theorems

3.1 to 3.5 are obtained from Leung and Villa [142]. Theorems 4.1 to 4.5 are
found in Liu [160], and Theorems 5.1 to 5.3 are due to Leung [129]. Theorems
6.1 to 6.5 are obtained from Leung and Villa [141].



Chapter 3

Optimal Control for Nonlinear
Systems of Partial Differential
Equations

3.1 Introduction and Preliminary Results for Scalar
Equations

The last two chapters study the basic properties concerning the existence and
stability of positive solutions of reaction-diffusion systems. This chapter is con-
cerned with the control of these systems with various definite purposes in mind.
We summarize some recent results concerning the optimal control of nonlinear
partial differential equations related to those studied in previous chapters. We
control the interaction parameters or boundary conditions in order to optimize
expressions involving the solutions of the systems. For example, in Section 3.2
we consider the optimal control of harvesting effort for a prey-predator system
in an environment. Such problems arise naturally in fisheries and agriculture
when various species are harvested for economic profit. We first assume that
the species are in steady-state under diffusion and Volterra-Lotka type interac-
tion. They are harvested for economic return, leading to reduction of growth
rate. The problem is to control the costly spatial distribution of harvesting ef-
fort in the habitat so as to maximize the profit. In Section 3.5, we assume the
control is imposed on the boundary of the habitat. The study leads to better
understanding of the relationship between the growth of the species and the
economic cost of maintaining an ecologically favorable boundary environment.
In many ecological systems, progressive deterioration of the surrounding of the
habitat may lead to pattern of species extinction in remnant patches, as de-
scribed in Bierregarrd et al. [9]. It is also suggested in Angelstam [4] that as

197
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human activities make the habitat surrounding more dissimilar, there is an in-
crease in the severity of predation impact on Swedish forest birds by predators
(e.g. corvids and foxes) residing in the habitat. Application of similar model
is also made in wildlife damage management for controlling population of diffu-
sive small mammal species such as beavers, raccoons and muskrats (see Lenhart
and Bhat [116]). Since there are natural seasonal environmental variations, we
consider time-periodic optimal harvesting control of competing populations in
Section 3.3. In Section 3.4, we consider the optimal control of nuclear fission
reactors modeled by parabolic differential equations. The neutrons are divided
into fast and thermal groups with two equations describing their interaction and
fission, while the third equation describes the temperature in the reactor. The
coefficient for fission and absorption of the thermal neutron is assumed to be
controlled by a function through the use of control rods in the reactor. The
object is to maintain a target neutron flux shape, while a desired power level
and adjustment costs are taken into consideration. For other applications to
medical and physical sciences, one can find examples in e.g. Kirschner, Lenhart
and Serbin [104], and Lasiecka and Triggiani [114].

In this section, we first consider a simple preliminary problem concerning the
steady-state control of one species, whose growth is governed by the diffusive
Volterra-Lotka equation with no-flux boundary condition:

(1.1) ∆u+ u[(a(x)− f(x))− bu] = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

Here, u is the species concentration. The function a(x) describes spatially de-
pendent intrinsic growth rate, and b designates crowding effect which is assumed
to be constant for simplicity. The function f(x) denotes spatially dependent con-
trol harvesting effort on the biological species. The optimal control criteria is to
maximize the difference between economic revenue and cost. This is expressed
by the payoff functional

(1.2) J(f) =
∫

Ω
{Kuf −Mf2}dx,

where K and M are constants describing the price of the species and the cost of
the control. Here

∫
Ω ufdx is a measure of the total harvest, and u itself depends

on f through (1.1). Such a model is certainly only a prototype, and various
other variations can be made. In this section, we follow the presentations in
Leung and Stojanovic [140].

To fixed ideas, we assume Ω is a bounded domain in Rn with ∂Ω ∈ C2; ∆
and ∂

∂ν respectively denote the Laplacian and outward normal derivative. K, M
and b are positive constants. We also assume that

a(x) ≥ 0, f(x) ≥ 0 a.e. in Ω, and
a ∈ L∞(Ω), f ∈ L∞(Ω).
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For convenience, we denote

L∞
+ (Ω) = {f |f ∈ L∞(Ω), f ≥ 0 a.e. in Ω};

and for δ > 0

(1.3) Cδ = {f ∈ L∞
+ (Ω)|0 ≤ f ≤ δ a.e. in Ω}.

We define an optimal control (if it exists) to be an f∗ ∈ Cδ such that

(1.4) J(f∗) = sup
f∈Cδ

J(f).

Before investigating the optimal control, we first note that for each fixed f ∈
Cδ, problem (1.1) has a unique positive solution under appropriate assumptions.

Theorem 1.1 (Positive Solution for a Given Control). Suppose that a(x)
and δ satisfy hypothesis

[H1] 0 < δ < infΩ a(x).

Then for each f ∈ Cδ, the problem (1.1) has a unique strictly positive solution
u := u(f) ∈W 2,p(Ω), for any p ∈ [1,∞). Furthermore, the estimate

(1.5) ‖u(f)‖2,p ≤ const.

is valid, uniformly for all f ∈ Cδ.
Proof. Let C > 0 be a constant large enough so that

(1.6) ||a||∞C − bC2 ≤ 0.

Then choose a constant P > 0 so that

(1.7) δ + 2bC − P < 0.

Define an initial iterate

(1.8) u0 ≡ C;

and then inductively define uk, k = 1, 2, . . . as solutions in W 2,p(Ω) of the linear
problem

(1.9)




∆uk − Puk = −(a(x)− f(x))uk−1 + bu2
k−1 − Puk−1 in Ω,

∂uk
∂ν = 0 on ∂Ω.
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One readily verifies that (1.9) implies

(1.10)




∆(C − u1)− P (C − u1) = (a− f)C − bC2 ≤ 0 in Ω,

∂
∂ν (C − u1) = 0 on ∂Ω.

By means of maximum principle and boundary condition, we can use e.g. The-
orem 9.6 and arguments in Lemma 3.4 in Gilbarg and Trudinger [71] to deduce

(1.11) u1 ≤ C = u0 in Ω.

The choice of P in (1.7) implies that the function

h(x, u) ≡ −(a(x)− f(x))u+ bu2 − Pu

is decreasing in u ∈ [0, C] a.e. in Ω. Using the same argument as above, we
readily obtain

(1.12) uk ≤ uk−1 in Ω

for each k = 2, 3, . . . On the other hand, hypothesis [H1] implies that for ε > 0
sufficiently small

(1.13)

∆(uk − ε)− P (uk − ε) = h(x, uk−1) + Pε

≤ h(x, uk−1) + Pε+ (a(x)− f(x))ε− bε2
= h(x, uk−1)− h(x, ε) in Ω.

Thus assuming ε < C = u0, and starting from k = 0, we can inductively deduce
that ∆(uk − ε)− P (uk − ε) ≤ 0 in Ω for each k. Consequently, we have

(1.14) uk(x) ≥ ε > 0 a.e. in Ω

for each k = 0, 1, 2, . . .
From the uniform bounds for uk, and W 2,p(Ω) estimate, we conclude from

(1.9) that for any p ∈ [1,∞), we have

||uk||2,p ≤ const.,

uniformly for f ∈ Cδ. Passing to limit as k → ∞ in (1.9), and using W 2,p(Ω)
estimate again, we obtain a solution u = u(f) of (1.1) in W 2,p(Ω).

Moreover, we have

(1.15) 0 < ε ≤ u(f) ≤ C,

and (1.5) holds for all f ∈ Cδ.
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It remains to prove uniqueness. Suppose that w is another bounded strictly
positive solution of (1.1). Let

(1.16) l = max{C, ||w||∞};

and start iterating from an initial constant function l. We can construct as in
the first part of the proof another solution of (1.1), say v, such that

(1.17) 0 < u ≤ v, 0 < w ≤ v a.e in Ω.

(Note that (1.17) is deduced by comparing u and w with successive iterates
starting from l.) However, we have from the equations for u and v

(1.18)

0 =
∫
Ω(u∆v − v∆u)dx

=
∫
Ω [uv2b− uv(a− f)− vu2b+ vu(a− f)]dx

=
∫
Ω buv(v − u)dx.

Thus from the first inequality in (1.17), we obtain from the last equation u = v
in Ω. Similarly, replacing the role of u by w in (1.18), we deduce that w = v in
Ω.

Remark 1.1. From the proof of the above theorem we see that the unique
strictly positive solution satisfies (1.15). From (1.13), one sees that the lower
bound ε can be chosen as

(1.19) ε =
1
b

[
inf
Ω
a(x)− δ

]
> 0.

From (1.6) in the proof, we also see that we can choose

(1.20) C = sup
Ω
{a(x)/b}

to be the upper bound for all u = u(f), f ∈ Cδ.
Since there are upper and lower bounds for all solutions of (1.1) uniformly

for all f ∈ Cδ, we next show that we can find a maximizing sequence fn ∈ Cδ
and prove in the usual manner that there exist a subsequence which converges
weakly in L2(Ω) to an optimal control f∗ ∈ Cδ.
Theorem 1.2 (Existence of Optimal Control). Let δ and a(x) satisfy hy-
pothesis [H1], then an optimal control does exist in the sense of (1.4).

Proof. From (1.15), it follows that

sup
f∈Cδ

J(f) <∞.
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Let fn ∈ Cδ be a maximizing sequence. Then, there exists a subsequence, again
denoted by fn for convenience, so that

fn → f∗ ∈ Cδ weakly in L2(Ω),

un ≡ u(fn)→ u∗ strongly in W 1,2(Ω)

(by using (1.5)). Passing to the limit as n→∞ in∫
Ω
{∇un · ∇φ− (a− fn)unφ+ bu2

nφ}dx = 0 ∀φ ∈W 2,p(Ω) ∩ L∞(Ω),

and noting that ∫
Ω
fnunφdx→

∫
Ω
f∗u∗φdx ∀φ ∈ L∞(Ω),

we conclude from the two limits as n→∞ above that

u∗ = u(f∗).

But then

J(f∗) =
∫
Ω{Ku∗f∗ −M(f∗)2}dx

≥ limn→∞
∫
ΩKunfndx− lim infn→∞

∫
ΩMf2

ndx

= lim supn→∞ J(fn) = supf∈Cδ J(f),

and consequently, f∗ is an optimal control in Cδ.
In order to characterize the optimal control, we next find a slightly stronger

condition than [H1] to obtain differentiability of u(f) with respect to f as de-
scribed in the following lemma.

Lemma 1.1 (Differentiability with Respect to Control). Suppose δ and
a(x) satisfy

[H2] 0 < δ ≤ 1
3{2 infΩ a(x)− supΩ a(x)}.

Then, the mapping
Cδ � f �→ u(f) ∈W 1,2(Ω)

is differentiable in the following sense:

(1.21)
u(f + βf̄)− u(f)

β
→ ξ weakly in W 1,2(Ω)
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as β → 0, for any f ∈ Cδ and f̄ ∈ L∞(Ω) such that f + βf̄ ∈ Cδ. Further, ξ is
the unique solution of

(1.22) ∆ξ + (a− f − 2bu(f))ξ = f̄u(f) in Ω,
∂ξ

∂ν
= 0 on ∂Ω.

(Note that [H2] implies that [H1] is satisfied.)

Proof. From (1.1), we deduce that

(1.23) ξβ :=
u(f + βf̄)− u(f)

β

satisfies

(1.24)




∆ξβ + (a− f)ξβ − b(u(f + βf̄) + u(f))ξβ = f̄u(f + βf̄) in Ω,

∂ξβ
∂ν = 0 on ∂Ω.

Consequently, we have∫
Ω{|∇ ξβ |2 + [b(u(f + βf̄) + u(f))− a+ f ] ξ2β} dx

=
∫
Ω−f̄u(f + βf̄)ξβ dx.

From Remark 1.1, we obtain

(1.25) b(u(f + βf̄) + u(f))− a+ f ≥ 2
[

inf
Ω
a− δ

]
− sup

Ω
a ≥ δ,

where the last inequality is due to [H2]. Consequently

||ξβ||21,2 ≤ const.||f̄ ||∞||u(f + βf̄)||2||ξβ ||2.

and thus

(1.26) ||ξβ ||1,2 ≤ const.,

where the constant is independent of β.
Thus, using (1.26), we choose a sequence β → 0 and deduce, as in Theorem

1.2, that the weak limit satisfies (1.22). From the uniqueness of solution to
(1.22) we conclude that ξβ → ξ weakly in W 1,2(Ω) as β → 0, for a full sequence.

Remark 1.2. Hypothesis [H2] ensures the positivity of the expression on the
left of (1.25). If

(1.27) 2b inf
Ω
{u(f)(x)|f ∈ Cδ} − a(x) ≥ σ > 0,
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for all x ∈ Ω, then Lemma 1.1 can be proved in the same way. Hence if δ > 0 is
such that (1.27) holds, then Lemma 1.1 is true without assuming [H2].

We now obtain a characterization of the optimal control as follows

Theorem 1.3 (Characterization of the Optimal Control). Suppose a(x)
and δ satisfy hypothesis [H2]; and the constant K,M have the property:

(1.28) M ≥ [K sup
Ω

a]/(2bδ).

Then for any optimal control f ∈ Cδ, there exists (u, p) with b−1[infΩ a − δ] ≤
u ≤ b−1 supΩ a, 0 ≤ p ≤ K, such that

(1.29) f =
u

2M
(K − p) in Ω,

and (u, p) is a solution of the optimality system

(1.30)




∆u+ au− (b+ K−p
2M )u2 = 0

∆p+ (a− 2bu)p + (K−p)2u
2M = 0 in Ω,

∂u
∂ν = ∂p

∂ν = 0 on ∂Ω.

Proof. The existence of an optimal control in Cδ has been justified by Theorem
1.2. Let f ∈ Cδ be an optimal control. For ḡ ∈ L∞

+ (Ω), ε > 0, set

f̄ = f̄ε =

{
ḡ if f ≤ δ − ε‖ḡ‖∞
0 elsewhere.

Then, for β > 0 small enough, we have

(1.31) J(f) ≥ J(f + βf̄).

Dividing by β, we obtain

(1.32)
∫

Ω
{K[

u(f + βf̄)− u(f)
β

(f + βf̄) + u(f)f̄ ]−Mf̄(2f + βf̄)} dx ≤ 0.

Letting β → 0, we use Lemma 1.1 and (1.32) to obtain

(1.33)
∫

Ω
Kfξ +Ku(f)f̄ − 2Mff̄dx ≤ 0.

Now, define p to be the solution of

(1.34) ∆p+ [a− f − 2bu(f)]p = −Kf in Ω,
∂p

∂ν
= 0 on ∂Ω.
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Note that from the lower bound for u(f) described in Remark 1.1, we have
a− f − 2bu(f) ≤ supΩ a− 2 infΩ a + 2δ ≤ −3δ + 2δ = −δ. Hence, the problem
(1.34) has a unique solution p, and moreover

(1.35) 0 ≤ p ≤ K.

Combining (1.33) and (1.34), we integrate by parts and use Lemma 1.1 to
obtain

(1.36)
∫

Ω
f̄ε[u(f)(K − p)− 2Mf ]dx ≤ 0.

Letting ε→ 0, (1.36) leads to

(1.37)
∫

Ω∩{x∈Ω|f(x)<δ}
ḡ[u(f)(K − p)− 2Mf ]dx ≤ 0 ∀ḡ ∈ L∞

+ (Ω).

Consequently, we must have

(1.38) f ≥ u(f)
2M

(K − p) in Ω ∩ {x ∈ Ω|f(x) < δ}.

On the other hand, for −ḡ ∈ L∞
+ (Ω), ε > 0, we set

f̄ = f̄ε =

{
ḡ if f ≥ ε‖ḡ‖∞
0 elsewhere.

We deduce in the same way as above that (1.36) holds for such f̄ε. Passing to
the limit as ε→ 0, we obtain

(1.39)
∫

Ω∩{x∈Ω|f(x)>0}
−ḡ[u(f)(K − p)− 2Mf ]dx ≥ 0 ∀(−ḡ) ∈ L∞

+ (Ω).

Consequently we must have

(1.40) f ≤ u(f)
2M

(K − p) in Ω ∩ {x ∈ Ω|f(x) > 0}.

Hence, combining (1.38) and (1.40), we conclude that

(1.41) f =
u(f)
2M

(K − p) in Ω ∩ {x ∈ Ω|0 < f(x) < δ}.

Since by (1.38) we have

(1.42) f ≥ u(f)
2M

(K − p) in Ω ∩ {x ∈ Ω|f(x) = 0};
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and by (1.40) we have
(1.43)

f ≤ u(f)
2M

(K − p) ≤ u(f)
2M

K ≤ (sup
Ω
a K)/(2Mb) ≤ δ in Ω ∩ {x ∈ Ω|f(x) = δ}.

Consequently, from (1.41), (1.42), (1.35), and (1.43) we obtain

(1.44) f =
u(f)
2M

(K − p) in Ω.

From (1.1), (1.34), and (1.44) we easily derive (1.30). This completes the proof
of Theorem 1.3.

Theorem 1.3 expresses an optimal control in terms of (u, p) which is a solution
of the system (1.30) with the property that

b−1[infΩ a(x)− δ] ≤ u(x) ≤ b−1 supΩ a(x)

in Ω.
0 ≤ p(x) ≤ K.

We now provide a much better approximation for (u, p). We construct monotone
sequences converging from above and below to upper and lower estimates for
(u, p). These sequences are found by solving scalar equations rather than the
larger system (1.30). In case where the limits of the upper and lower iterates
agree, then the optimal control problem is completely solved.

For convenience we denote

ã = inf
Ω
a(x), ā = sup

Ω
a(x).

In the remaining part of this section, we will always assume [H2] and (1.28).
Let R1, R2 be positive constants so that the expressions

(1.45)
−p(a(x)− 2bu) −R1p, and

−(K−p)2u
2M −R2p

are decreasing in p in the interval 0 ≤ p ≤ K for all x ∈ Ω, (ã− δ)/b ≤ u ≤ ā/b.
Choose R ≥ R1 +R2 so that the expression

(1.46) −u[a(x)− (b+
K

2M
)u+

pu

2M
]−Ru

is also decreasing in u in the interval (ã− δ)/b ≤ u ≤ ā/b, for all x ∈ Ω, 0 ≤ p ≤
K.
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For convenience, we define the following constant functions in Ω:

(1.47)
u−1 ≡ ā/b, u0 ≡ ã−δ

b ,

p−1 ≡ K, p0 ≡ 0.

We can readily verify that they satisfy

∆u−1 −Ru−1 ≤ −u−1[a− (b+
K

2M
)u−1 +

p−1u−1

2M
]−Ru−1 in Ω,(1.48)

∆u0 −Ru0 ≥ −u0[a− (b+
K

2M
)u0 +

p−1u0

2M
]−Ru0 in Ω;(1.49)

and that

∆p−1 −Rp−1 ≤ −p−1(a− 2bu0)− (K − p−1)2u
2M

−Rp−1 in Ω,(1.50)

∆p0 −Rp0 ≥ −p0(a− 2bu0)− (K − p0)2u
2M

−Rp0 in Ω(1.51)

for each u in the interval [u0, u−1].
We now inductively define sequences of functions ui(x), pi(x) in Ω, i = 1, 2, . . .

as solutions of the following scalar problems:
(1.52)
∆ui −Rui = −ui−2[a− (b+ K

2M )ui−2 + pi−2ui−2

2M ]−Rui−2 in Ω, ∂ui∂ν = 0 on ∂Ω;

∆pi −Rpi = −pi−2(a− 2bui−1)− (K−pi−2)
2ui

2M −Rpi−2 in Ω, ∂pi∂ν = 0 on ∂Ω.

Theorem 1.4 (Approximation Scheme for the Optimal Control).
Assume [H2] and (1.28). The sequences of functions ui(x), pi(x), defined above
satisfy the order relation:

(1.53)
u0 ≤ u2 ≤ · · · ≤ u2r ≤ u2r−1 ≤ · · · ≤ u1 ≤ u−1,

p0 ≤ p2 ≤ · · · ≤ p2r ≤ p2r−1 ≤ · · · ≤ p1 ≤ p−1

for all x ∈ Ω. Moreover, any solution (u, p) of problem (1.30) with the property

(1.54) u0 ≤ u ≤ u−1, p0 ≤ p ≤ p−1 in Ω

must satisfy

(1.55) u2r ≤ u ≤ u2r−1, p2r ≤ p ≤ p2r−1 in Ω,

for all positive integer r.



208 CHAPTER 3. CONTROL FOR NONLINEAR SYSTEMS

Proof. Using the equation satisfied by ui and inequality (1.48), we obtain
∆(u−1−u1)−R(u−1−u1) ≤ 0 in Ω, (∂/∂ν)(u−1−u1) = 0 on ∂Ω. Hence u1 ≤ u−1

in Ω. Similarly using (1.49) and the decreasing property of the expression (1.46),
we deduce that ∆(u0 − u1)−R(u0 − u1) ≥ 0 in Ω, (∂/∂ν)(u0 − u1) = 0 on ∂Ω.
Thus we have u0 ≤ u1 in Ω.

Inequality (1.50) is satisfied with u replaced by u1 on the right hand side.
Then subtracting equation (1.52) for p1, we obtain ∆(p−1−p1)−R(p−1−p1) ≤ 0
in Ω, (∂/∂ν)(p−1 − p1) = 0 on ∂Ω. We therefore have p1 ≤ p−1 in Ω. Inequality
(1.51) is satisfied with u replaced by u1 on the right. Then subtracting (1.52)
for p1 and using the decreasing property of the second expression in (1.45), we
obtain ∆(p1−p0)−R(p1−p0) ≤ 0 in Ω, (∂/∂ν)(p1−p0) = 0 on ∂Ω. We therefore
have p0 ≤ p1 in Ω.

From (1.52) we obtain

∆u2 −Ru2 ≥ −u0[a− (b+
K

2M
)u0 +

p−1u0

2M
]−Ru0 in Ω.

Subtracting the equation for u1, and using the decreasing property of (1.46), we
deduce as above that u2 ≤ u1 in Ω. From the property M ≥ Kā/(2bδ), we find
that

∆u0 −Ru0 ≥ −u0[a− (b+
K

2M
)u0 +

p0u0

2M
]−Ru0 in Ω.

Thus, subtracting the equation for u2, we obtain ∆(u0 − u2) − R(u0 − u2) ≥ 0
in Ω and deduce that u0 ≤ u2 in Ω. So far, we have

(1.56) u0 ≤ u2 ≤ u1 ≤ u−1 in Ω.

From (1.52), we obtain

∆p1 −Rp1 ≤ −p−1(a− 2bu1)− (K − p−1)2u2

2M
−Rp−1 in Ω.

Subtracting the equation for p2, and using the decreasing property of expressions
in (1.45), we deduce that ∆(p1 − p2) − R(p1 − p2) ≤ 0 in Ω and hence p2 ≤ p1

in Ω. From (1.51), we have

∆p0 −Rp0 ≥ −p0(a− 2bu1)− (K − p0)2u2

2M
−Rp0 in Ω.

Subtracting the equation for p2 in (1.52), we thus deduce that p0 ≤ p2 in Ω. So
far, we have

(1.57) p0 ≤ p2 ≤ p1 ≤ p−1 in Ω.
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Inequalities (1.56) and (1.57) show that

(1.58)
u2n ≤ u2n+2 ≤ u2n+1 ≤ u2n−1

in Ω
p2n ≤ p2n+2 ≤ p2n+1 ≤ p2n−1

are true for n = 0.
For convenience, let the expression in (1.46) be denoted as h(u, p). From the

equation in (1.52), we deduce that

∆(u1 − u3)−R(u1 − u3)

= [h(u−1, p−1)− h(u1, p−1)] + [h(u1, p−1)− h(u1, p1)] in Ω.

From the decreasing property of h in u and p, we find that

∆(u1 − u3)−R(u1 − u3) ≤ 0,

and thus u3 ≤ u1 in Ω. Similarly,

∆(u2 − u3)−R(u2 − u3)

= [h(u0, p0)− h(u1, p0)] + [h(u1, p0)− h(u1, p1)] ≥ 0 in Ω,

and thus u2 ≤ u3 in Ω. We have now obtained u2 ≤ u3 ≤ u1 in Ω.

We then follow the arguments as in the above paragraphs to deduce in turn
that p2 ≤ p3 ≤ p1, u2 ≤ u4 ≤ u3, and p2 ≤ p4 ≤ p3 in Ω. Therefore we obtain
the validity of (1.58) for n = 1. Following the same procedures as in the above
paragraphs, we prove by induction that (1.58) is true for all positive integers n.
Consequently, we obtain the order relation (1.53).

To prove the second part of the theorem, we first assume the validity of
(1.54). From the equations for u and u1, we deduce that

∆(u− u1)−R(u− u1)

= [h(u, p) − h(u−1, p)] + [h(u−1, p)− h(u−1, p−1)] ≥ 0 in Ω,

and hence u ≤ u1 in Ω. We next prove in turn in the same way that p ≤ p1,
u2 ≤ u, and p2 ≤ p in Ω. We thus obtain (1.55) for r = 1.

Following the same arguments, we prove (1.55) by induction.

Remark 1.3. From Theorems 1.3 and 1.4, we find that if

(1.59) lim
r→∞u2r = lim

r→∞u2r−1 and lim
r→∞ p2r = lim

r→∞ p2r−1,
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then the optimal control problem is determined. In other words, if the upper
and lower bounds resulting from the limits of the two monotone sequences of
the functions are the same, the optimality system has a unique solution with the
property (ã− δ)/b ≤ u ≤ ā/b, 0 ≤ p ≤ K, and hence the unique optimal control
is determined.

Remark 1.4. On the other hand, if the optimality system has more than one
solution satisfying (ã − δ)/b ≤ u ≤ ā/b, 0 ≤ p ≤ K, some solution(s) might
not provide optimal control(s). However, at least one solution gives the optimal
control.

The following examples illustrate some practical values for the application
of Theorem 1.3 and Theorem 1.4.

Example 1.1. Consider the optimal control problem (1.1) to (1.4), with

(x, y) ∈ Ω := (0, 1) × (0, 1), a = 7 + sin(2πxy),

b = 1, K = 4, M = 13, δ = 4/3.

One readily verifies that hypotheses [H2] and (1.28) are satisfied; thus Theorems
1.3 and 1.4 are both applicable. Numerical experiments indicate that we have
the situation as described in Remark 1.3. The sequences constructed by (1.52)
practically provides a complete solution of the optimal control problem.

Example 1.2. Consider the optimal control problem (1.1) to (1.4), with Ω, b
and K as given in Example 1.1, while a,M and δ are modified to

a = 7 + 4 sin(2πxy), M = 5, δ = 2.5.

Both hypotheses [H2] and (1.28) are violated. However, numerical experiments
indicate that (1.59) in Remark 1.3 still holds. The proof that the optimal control
can be described by Remark 1.4 remains open.

3.2 Optimal Harvesting-Coefficient Control of

Steady-State Prey-Predator Diffusive
Volterra-Lotka Systems

This section considers the optimal harvesting control of two interacting popula-
tions. The species concentrations satisfy a prey-predator Volterra- Lotka system
under diffusion. When they are in steady state situation, they are assumed to
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satisfy the following system, with no-flux boundary conditions.

(2.1)




∆u+ u[(a1(x)− f1(x))− b1u− c1v] = 0 in Ω,

∆v + v[(a2(x)− f2(x)) + c2u− b2v] = 0 in Ω,

∂u
∂ν = ∂v

∂ν = 0 on ∂Ω.

The functions u(x), v(x) respectively describe prey, predator population con-
centrations with intrinsic growth rates a1(x), a2(x). The functions f1(x), f2(x)
respectively denote distribution of control harvesting effect on the biological
species. Such problem arises naturally in ecological systems, e.g. fisheries and
agriculture, when various species are harvested for economic return. The param-
eters bi, ci, i = 1, 2 designate crowding and interaction effects which are assumed
constant for simplicity. The optimal control criteria is to maximize profit, which
is the difference between economic revenue and cost. This is expressed by the
payoff functional

(2.2) J(f1, f2) =
∫

Ω
{K1uf1 +K2vf2 −M1f

2
1 −M2f

2
2 } dx

where K1,K2 are constants describing the price of the prey and predator species,
and M1,M2 are constants describing the costs of the controls f1, f2. Here∫
Ω uf1dx and

∫
Ω vf2dx represent the total harvest of respectively u, v which

depends on fi through (2.1). Roughly speaking, the object is to maximize (2.2)
through controlling f1, f2 which determine the solution u, v of (2.1). Many anal-
ogous models of this nature had appeared in the literature, see e.g. Clark [30],
and Okubo and Levin [179].

The case of competing species under control will be considered in Section 3.3.
Here, the species are under prey-predator type of interaction which are usually
more difficult to analyze than the competing or cooperative case, because the
relation between the species is not symmetric. Nevertheless, Section 3.3 con-
siders the time-dependent parabolic case which gives rise to other concerns. In
this section for the prey-predator steady-state case, we will find explicit condi-
tions for rigorous characterization of the optimal control. We also justify the
existence of solution for the resulting nonlinear optimality system of four equa-
tions. The conditions on the various coefficients are elaborate, and some of them
seem incompatible with each other. However, Example 2.1 shows that they can
all be simultaneously satisfied. Our results will provide framework for further
investigation to consider whether some of the hypotheses can be successively
relaxed for more practical applications. In the last part of this section, we will
further solve the optimality system by an iterative scheme. Due to the fact that
the nonlinear terms for prey-predator case are not really monotonic in the same
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direction in each component, it requires special treatment to find a particular
scheme so that an oscillatory sequence is obtained for approximating each com-
ponent of the solution. We have assumed that the cost in the payoff functional
depends quadratically on the control in the form Mif

2
i in a customary way in

(2.2). One can certainly modify the condition to obtain a new payoff functional
for J(f1, f2), leading to a new system for investigation. Our prototype prob-
lem here can provide a guideline for the analysis of many other concrete similar
problems which are beyond the scope of this present study. The materials in
this section are mainly obtained from Leung [126].

To fix ideas, we assume Ω is a bounded domain in RN with δΩ ∈ C2; ∆ and
∂
∂ν respectively denote the Laplacian and outward normal derivative. Ki,Mi, bi
and ci, i = 1, 2 are positive constants. We also assume that

(2.3)
ai(x) ≥ 0, fi(x) ≥ 0 a.e. in Ω,

ai ∈ L∞(Ω), fi ∈ L∞(Ω), i = 1, 2.

For convenience, we denote

(2.4) L∞
+ (Ω) := {f |f ∈ L∞(Ω), f ≥ 0 a.e. in Ω},

and for δi > 0, i = 1, 2

(2.5) C(δ1, δ2) := {(f1, f2)|0 ≤ fi ≤ δi a.e. in Ω, i = 1, 2}.

Finally, we denote an optimal control (if it exists) to be an (f∗, f∗) ∈ C(δ1, δ2)
such that

(2.6) J(f∗1 , f
∗
2 ) = sup{J(f1, f2)|(f1, f2) ∈ C(δ1, δ2)}.

We discuss the existence and uniqueness of positive solutions (2.1). Then we
show the existence of optimal control for our problem (2.1), (2.2), (2.6). We
find stronger conditions which enables the characterization of an optimal con-
trol in terms of solution of an elliptic optimality system of 4 equations. Several
theorems and corollaries are given with increasingly more stringent hypothe-
sis and consequently giving rise to increasingly simpler optimality systems and
results. In last part, we construct monotone sequences closing in to all appropri-
ate solutions of an optimality system by methods analogous to that described in
Chapter V of Leung [125]. If the monotone increasing and decreasing sequences
(i.e. oscillatory sequence) converge to the same function, then the optimal con-
trol is unique. An example satisfying all the hypotheses is given at the end of
the section. For our prey-predator control problem, we thus obtain very precise
conditions on the interspecies relation and control constraints etc. so that the
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problem can be rigorously solved, together with a method for approximating the
optimal control. For convenience, we will denote

āi = ess sup
x∈Ω

ai(x), ãi = ess inf
x∈Ω

ai(x), for i = 1, 2.

As a start, we first consider the existence of positive solution of (2.1) for
an arbitrary fixed control (f1, f2) ∈ C(δ1, δ2). This is established in Theorem
2.1 under hypotheses [H1] and [H2]. Furthermore, a uniform estimate is given
for all solutions under such controls. However, in Theorem 2.1, the solution
may not be unique. Under the further hypothesis [H3], Theorem 2.2 shows
the uniqueness of solution in the appropriate range, under each given control
in C(δ1, δ2). Theorem 2.3 shows the existence of optimal control when solutions
are uniquely defined for each fixed given control.

Theorem 2.1 (Positive Solution for Given Control). Suppose that ai(x), bi,
ci and δi satisfy the hypothesis:

[H1] ã1 − c1
b2

(ā2 + c2ā1/b1) > δ1 > 0,

[H2] ã2 > δ2 > 0.

Then for each pair (f1, f2) ∈ C(δ1, δ2) problem (2.1) has a strictly positive solu-
tion (u, v) = (u(f1, f2), v(f1, f2)), i.e. u, v > 0 in Ω̄, and with each component
in W 2,p(Ω) for any p ∈ (1,∞). Moreover, the estimate

(2.7) ‖ u(f1, f2) ‖2,p, ‖ v(f1, f2) ‖2,p ≤ constant

is valid uniformly for (f1, f2) ∈ C(δ1, δ2).

Proof. Define constant functions

(2.8)

ψ1(x) ≡ ā1
b1
, ψ2(x) ≡ 1

b2
(ā2 + c2ā1

b1
),

φ1(x) ≡ 1
b1

[ã1 − c1
b2

(ā2 + c2ā1
b1

)− δ1], and

φ2(x) ≡ 1
b2

[ã2 − δ2 + c2
b1
{ã1 − c1

b2
(ā2 + c2ā1

b1
)− δ1}]

for all x in Ω̄. It is clear from [H1], [H2] that ψi, φi, i = 1, 2, are strictly positive
in Ω̄. One can readily see that

(2.9)
∆ψ1 + ψ1[(a1(x)− f1(x)))− b1ψ1 − c1v]

= ā1
b1

[(a1(x)− f1(x)) − ā1 − c1v] ≤ 0,

for all φ2 ≤ v ≤ ψ2, z ∈ Ω. Moreover, we have

(2.10)
∆φ1 + φ1[(a1(x)− f1(x))− b1φ1 − c1v]

= φ1[(a1(x)− ã1) + (δ1 − f1(x)) + c1b
−1
2 (ā2 + c2ā1b

−1
1 )− c1v] ≥ 0
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for all φ2 ≤ v ≤ ψ2, 0 ≤ f1 ≤ δ1, x ∈ Ω. Similarly, we obtain

(2.11) ∆ψ2 + ψ2[(a2(x)− f2(x)) − b2ψ2 + c2u] ≤ 0,

(2.12) ∆φ2 + φ2[(a2(x)− f2(x))− b2φ2 + c2u] ≥ 0,

for all φ1 ≤ u ≤ ψ1, 0 ≤ f2 ≤ δ2, x ∈ Ω.
Let Xi = {w ∈ C(Ω̄), φi ≤ w ≤ ψi}, i = 1, 2. Define the map T : X1 ×X2 →

X1×X2 as T (y1, y2) = (z1, z2) for (y1, y2) ∈ X1×X2, where z1, z2 ∈W 2,p(Ω), p >
1 and (z1, z2) is determined uniquely as the solution of the decoupled linear
system

∆z1 −Qz1 + y1[a1(x)− f1(x)− b1y1 − c1y2] +Qy1 = 0 in Ω,

∆z2 −Qz2 + y2[a2(x)− f2(x) + c2y1 − b2y2] +Qy2 = 0 in Ω,

∂z1
∂ν

=
∂z2
∂ν

= 0 on δΩ.

Here Q > 0 is a fixed constant. Using (2.9) to (2.12) and the maximum principle
for W 2,p(Ω) solution with Neumann boundary condition we can show as in
Theorem 3.1 in Leung and Fan [135] (or Theorem 4.2 in Chapter 4) that indeed
(z1, z2) ∈ X1×X2. Using Theorem 15.1 in Agmon, Douglas and Nirenberg [1], we
can obtain a bound for the W 2,p(Ω) norms of z1, z2 in terms of the LP (Ω) norms
of y1[a1(x) − f1(x) − b1y1 − c1y2] + Qy1, y2[a2(x) − f2(x) + c2y1 − b2y2] + Qy2.
Since y1, y2 are all bounded functions in X1 or X2, we can obtain a uniform
bound for the W 2,p(Ω) norm of z1, z2. Following the proof of Theorem 4.2 in
Chapter 4, we can then use such bound to show that the mapping T is compact
and eventually obtain a fixed point. Such fixed point is a solution of (1.1) in
X1 × X2, and the uniform bound for the W 2,p(Ω) norm gives precisely (2.7).
For more details, see Theorem 4.2 in Chapter 4; the later part is completely
analogous and is thus omitted.

Theorem 2.2 (Unique Positive Solution for Given Control). Assume
hypotheses [H1] and [H2]. Define

(2.13) S := min.{b2
b1

[ã1 − c1
b2

(ā2 +
c2ā1

b1
)− δ1](ā2 +

c2ā1

b1
)−1, (ã2 − δ2)

b1
ā1b2

}.

Suppose further that

[H3] c1c2
b1b2

< S4

is satisfied. Then for each pair (f1, f2) ∈ C(δ1, δ2), problem (2.1) has a unique
solution (u, v), u, v ∈W 2,p(Ω) for any p ∈ (1,∞), with the property that

(2.14) φ1 ≤ u(x) ≤ ψ1, φ2 ≤ v(x) ≤ ψ2 in Ω̄.
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Here φi, ψi, i = 1, 2 is given in (2.8).

Remark 2.1. Hypotheses [H1] and [H2] imply that S is positive. Hypothesis
[H3] is readily satisfied if c1 or c2 is reduced to a sufficiently small positive
number.

Proof. For convenience, let

G1 = b1b
−1
2 [ã1 − c1

b2
(ā2 +

c2ā1

b1
)− δ1]−1(ā2 +

c2ā1

b1
)

and
G2 = (ã2 − δ2)−1b−1

1 ā1b2.

We now define Û(x), V̂ (x), Ũ (x) and Ṽ (x) to be respectively solutions of the
scalar problems:

(2.15) ∆Û + Û [(a1(x)− f1(x))− b1Û ] = 0 in Ω,
∂Û

∂ν
= 0 on ∂Ω,

(2.16) ∆V̂ + V̂ [(a2(x)− f2(x)) +
c2ā1

b1
− b2V̂ ] = 0 in Ω,

∂V̂

∂ν
= 0 on ∂Ω,

(2.17) ∆Ũ + Ũ [(a1(x)− f1(x))− b1Ũ − c1V̂ (x)] = 0, in Ω,
∂Ũ

∂ν
= 0 on ∂Ω,

(2.18) ∆Ṽ + Ṽ [(a2(x)− f2(x))− b2Ṽ ] = 0 in Ω,
∂Ṽ

∂ν
= 0 on ∂Ω.

Using the constant functions ā1/b1 and (1/b1)[ã1 − δ1] as upper and lower so-
lutions for (2.15), we can readily obtain by means of monotone iterations from
the upper solution as in Section 5.1 in [125] that a unique solution Û of (2.15)
exists in W 2,p(Ω) for any p ∈ (1,∞); and (1/b1)(ã1 − δ1) ≤ Û(x) ≤ ā1/b1 for all
x ∈ Ω̄. Similarly, we obtain the unique positive solutions in W 2,p(Ω),

b−1
2 (ã2 − δ2) ≤ V̂ (x) ≤ b−1

2 (ā2 +
c2ā1

b1
),

b−1
1 [ã1 − δ1 − c1

b2
(ā2 +

c2ā1

b1
)] ≤ Ũ(x) ≤ b−1

1 (ã1 − δ1),

b−1
2 (ã2 − δ2) ≤ Ṽ (x) ≤ b−1

2 ā2,

respectively for (2.16), (2.17) and (2.18). We thus have the comparison,

(2.19) Û(x) ≤ G2Ṽ (x), V̂ (x) ≤ G1Ũ(x), in Ω̄.
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We next inductively define ui, vi to be strictly positive functions in W 2,p(Ω),
starting with u1 = Û , v1 satisfying

∆v1 + v1[(a2(x)− f2(x)) + c2Û(x)− b2v1] = 0 in Ω,
∂v1
∂ν

= 0 on ∂Ω,

and ui, vi, i = 2, 3, . . . satisfying
(2.20)


∆ui + ui[(a1(x)− f1(x))− b1ui − c1vi−1] = 0 in Ω, ∂ui
∂ν = 0 on ∂Ω,

∆vi + vi[(a2(x)− f2(x)) + c2ui − b2vi] = 0 in Ω, ∂vi
∂ν = 0 on ∂Ω.

Using the maximum principle that a function u ∈W 2,p(Ω), p ≥ N , satisfying

∆u− cu ≤ 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

where c > 0 is a constant, must have the property that u > 0 in Ω̄ or u ≡ 0, we
can deduce as in Sections 5.2 and 5.3 in [125] that

(2.21)
Ũ ≤ u2 ≤ u4 ≤ u6 · · · ≤ u5 ≤ u3 ≤ u1 ≤ Û ,

Ṽ ≤ v2 ≤ v4 ≤ v6 · · · ≤ v5 ≤ v3 ≤ v1 ≤ V̂ .
for all x ∈ Ω̄. Using the Green’s identity and the equations (2.20), we obtain for
i ≥ 1

(2.22)
0 =

∫
Ω(u2i+2∆u2i+1 − u2i+1∆u2i+2) dx

= − ∫Ω u2i+1u2i+2[b1(u2i+2 − u2i+1) + c1(v2i+1 − v2i)] dx,

(2.23) 0 =
∫

Ω
v2iv2i+1[c2(u2i − u2i+1) + b2(v2i+1 − v2i)] dx,

(2.24) 0 =
∫

Ω
u2iu2i+1[b1(u2i − u2i+1) + c1(v2i−1 − v2i)] dx,

(2.25) 0 =
∫

Ω
v2i−1v2i[c2(u2i − u2i−1) + b2(v2i−1 − v2i)] dx.

Using (2.22), (2.23), and (2.19), (2.21) we deduce that

(2.26)

∫
Ω(u2i+1 − u2i+2)u2i+1u2i+2dx = c1

b1

∫
Ω(v2i+1 − v2i)u2i+1u2i+2 dx

≤ c1
b1

∫
ΩG

2
2(v2i+1 − v2i)v2iv2i+1 dx

= G2
2
c1c2
b1b2

∫
Ω(u2i+1 − u2i)v2iv2i+1 dx.
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Then, we use (2.24), (2.25) and (2.19), (2.21) again to obtain

(2.27)

∫
Ω(u2i−1 − u2i)u2iu2i+1dx = c1

b1

∫
Ω(v2i−1 − v2i)u2iu2i+1 dx

≤ c1
b1

∫
ΩG

2
2(v2i−1 − v2i)v2i−1v2i dx

= G2
2
c1c2
b1b2

∫
Ω(u2i−1 − u2i)v2i−1v2i dx.

Combining (2.26), (2.27) and using (2.19), (2.21) once more, we obtain

(2.28)

∫
Ω(u2i+1 − u2i+2)u2i+1u2i+2 dx

≤ G4
2G

4
1( c1b1 )2( c2b2 )2

∫
Ω(u2i−1 − u2i)u2i−1u2i dx

for each integer i ≥ 1.
By means of (2.28), we conclude that if [H3] is satisfied then limi→∞

∫
Ω(u2i+1

−u2i+2)u2i+1u2i+2 dx = 0. By (2.21), the limits

lim
i→∞

u2i+1 := u∗ > 0 and lim
i→∞

u2i+2 := u∗ > 0

must exist. The argument above shows that u∗ = u∗ a.e. in Ω. Further, using the
maximum principle described above and the subsequently modified comparison
theorem as in Theorem 5.2-1 in [125], with homogeneous Neumann boundary
condition, we can show as in Section 5.2 in [125] that any solution (u, v) of (2.1)
with Ũ ≤ u ≤ Û , Ṽ ≤ v ≤ V̂ in Ω̄, u, v ∈W 2,p(Ω) must satisfy

u∗ ≤ u ≤ u∗, lim
i→∞

v2i := v∗ ≤ v ≤ v∗ := lim
i→∞

v2i+1, x ∈ Ω̄.

(For more details, see Theorem 5.2-4 in [125]). Since u∗ = u∗, we can show
that v∗ and v∗ satisfy the same equation and use comparison again as above to
conclude that v∗ = v∗ (see Theorem 5.2-3 in [125]). Comparing φi, ψi, i = 1, 2
with the estimates for Ũ , Û , Ṽ , V̂ , we conclude that any solution (u, v) of (2.1)
satisfying (2.14) must have u = u∗ = u∗, v = v∗ = v∗ in Ω̄. The existence part
follows from Theorem 2.1.

Remark 2.2. In Theorem 2.2, uniform ‖ · ‖2,p bound for u, v can be obtained
for all (f1, f2) ∈ C(δ1, δ2), p > 1, as in Theorem 2.1.

Remark 2.3. Under the hypotheses of Theorem 2.2, the payoff functional
J(f1, f2) is uniquely defined, if (u, v) is chosen as the one solution satisfying
(2.14).

Theorem 2.3 (Existence of Optimal Control). Assume hypotheses [H1],
[H2] and that (u(f1, f2), v(f1, f2)) is defined uniquely so that (2.14) and (2.7)



218 CHAPTER 3. CONTROL FOR NONLINEAR SYSTEMS

are satisfied uniformly for all (f1, f2) ∈ C(δ1, δ2). Then (f∗1 , f∗2 ) ∈ C(δ1, δ2) exists
such that J(f∗1 , f∗2 ) is the optimal control for all (f1, f2) ∈ C(δ1, δ2).

Remark 2.4. By theorem 2.2 and Remark 2.3, the addition of hypothesis [H3]
to [H1] and [H2] ensures that (u(f1, f2), v(f1, f2)) can be chosen uniquely in a
way as described in Theorem 2.3. Hence, under hypotheses [H1] to [H3], an
optimal control does exist.

Proof. The uniform boundedness of (u(f1, f2), v(f1, f2)) for all (f1, f2) ∈ C(δ1, δ2)
implies that sup{J(f1, f2)|(f1, f2) ∈ C(δ1, δ2)} < ∞. Let (f1n, f2n) ∈ C(δ1, δ2)
be a maximizing sequence. Then there exists a subsequence, again denoted as
(f1n, f2n) for convenience, so that

fin → f∗i weakly in L2(Ω), with (f∗1 , f
∗
2 ) ∈ C(δ1, δ2),

and

un ≡ u(f1n, f2n)→ ū∗, vn ≡ v(f1n, f2n)→ v̄∗ strongly in W 1,2(Ω)

(by using (2.7)). Passing to the limit as n→∞ in∫
Ω

(∇un∇ϕ− (a1 − f1n)unϕ+ b1u
2
nϕ+ c1unvnϕ) dx = 0

and ∫
Ω

(∇vn∇ϕ− (a2 − f2n)vnϕ− c2vnunϕ+ b2v
2
nϕ) dx = 0,

for all ϕ ∈W 1,2(Ω) ∩ L∞(Ω), and noting that, for example,∫
Ω
f1nunϕdx→

∫
Ω
f∗1 ū

∗ϕdx for all ϕ ∈ L∞(Ω),

we conclude that (ū∗, v̄∗) is a solution of (2.1) with (f1, f2) replaced by (f∗1 , f
∗
2 ).

Since (un, vn) are uniquely defined in a certain range of values, hence its limit
(ū∗, v̄∗) is within the same bounds. Consequently, (2.1) implies that ‖ u ‖2,p, ‖
v ‖2,p is bounded by the same constant as in (2.7). By assumption, u(f∗1 , f∗2 )
is uniquely defined so that such properties are satisfied. We thus conclude that
(ū∗, v̄∗) = (u(f∗1 , f∗2 ), v(f∗1 , f∗2 )). Finally, the conclusion follows from semiconti-
nuity of J ; that is we have J(f∗1 , f∗2 ) = sup{J(f1, f2)|(f1, f2) ∈ C(δ1, δ2)}.

In order to further describe the optimal control, we will need stronger as-
sumptions on the intrinsic growth rate functions ai(x), i = 1, 2. When [H1], [H2]
are respectively strengthened to [H1∗], [H2∗] and additional assumptions are
made on the interaction rates between the species, Lemma 2.1 below shows the
differentiability of u(f1, f2) and v(f1, f2) with respect to (f1, f2). The additional
assumptions are satisfied, for instance, when the interspecies interactions are
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small compared with the intraspecies interactions. Theorem 2.4 gives a charac-
terization of an optimal control in terms of solutions of an elliptic system of 4
equations. The optimal control is related to the solution of the systems in terms
of various inequalities. Corollary 2.5 shows that under further assumptions on
the cost and price parameters Mi,Ki, i = 1, 2, the optimal control can be exactly
characterized by a solution of the optimality system of 4 equations. Under the
additional assumption [H5], Corollary 2.6 shows that the optimality system has
solutions with all four components non-negative. In this last case, the solutions
can be more readily found or approximated, and this last topic will be described
at the end of the section.

Lemma 2.1 (Differentiability with Respect to Control). Assume that
there exist δ1, δ2 such that

[H1∗] 0 < δ1 ≤ (1/3){2ã1 − ā1 − (2c1/b2)(ā2 + c2ā1/b1)},

[H2∗] 0 < δ2 ≤ (1/3){2ã2 − ā2 − c2ā1/b1},
and that u(f1, f2), v(f1, f2) is uniquely defined for all (f1, f2) ∈ C(δ1, δ2) in the
sense described in Theorem 2.3. Further suppose

[H4] c1ā1/b1 + (c2/b2)(ā2 + c2ā1/b1) < 2 min{δ1, δ2, 1}.
Then the mappings C(δ1, δ2) � (f1, f2) → u(f1, f2), v(f1, f2) ∈ W 1,2(Ω) are dif-
ferentiable in the following sense:

(2.29)
(u(f1+βif̄1,f2)−u(f1,f2)

βi
, v(f1+βif̄1,f2)−v(f1,f2)

βi
)→ (ξ, η),

(u(f1,f2+βif̄2)−u(f1,f2)
βi

, v(f1,f2+βif̄2)−v(f1,f2)
βi

)→ (ξ̃, η̃),

componentwise weakly in W 1,2(Ω) for some βi → 0, for any given (f1, f2) ∈
C(δ1, δ2) and f̄1, f̄2 ∈ L∞(Ω) such that (f1 +βif̄1, f2 +βif̄2) ∈ C(δ1, δ2). Further,
(ξ, η) is a solution of

(2.30)


∆ξ + [(a1 − f1)− 2b1u(f1, f2)− c1v(f1, f2)]ξ − c1u(f1, f2)η = u(f1, f2)f̄1

in Ω,
∆η + c2v(f1, f2)ξ + [(a2 − f2)− 2b2v(f1, f2) + c2u(f1, f2)]η = 0

∂ξ
∂ν = ∂η

∂ν = 0 on ∂Ω;

and (ξ̃, η̃) is a solution in Ω of
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(2.31)


∆ξ̃ + [(a1 − f1)− 2b1u(f1, f2)− c1v(f1, f2)]ξ̃ − c1u(f1, f2)η̃ = 0

∆η̃ + c2v(f1, f2)ξ̃ + [(a2 − f2)− 2b2v(f1, f2) + c2u(f1, f2)]η̃ = v(f1, f2)f̄2

∂ξ̃
∂ν = ∂η̃

∂ν = 0 on ∂Ω.

Here, ξ, η, ξ̃, η̃ are in W 2,2(Ω).

Proof. From (2.1), we deduce that

(2.32) ξβ =
u(f1 + βf̄1, f2)− u(f1, f2)

β
, ηβ =

v(f1 + βf̄1, f2)− v(f1, f2)
β

satisfy
(2.33)


∆ξβ + [(a1 − f1)− b1u(f1 + βf̄1, f2)− b1u(f1, f2)− c1v(f1, f2)]ξβ

−c1u(f1 + βf̄1, f2)ηβ = u(f1 + βf̄1, f2)f̄1 in Ω,

∆ηβ + c2v(f1 + βf̄1, f2)ξβ + [(a2 − f2)− b2v(f1 + βf̄1, f2)− b2v(f1, f2)

+ c2u(f1, f2)]ηβ = 0 in Ω,

∂ξβ
∂ν = ∂ηβ

∂ν = 0 on ∂Ω,

if (f1, f2) and (f1 + βf̄1, f2) ∈ C(δ1, δ2). The lower bounds in (2.14) imply that

(2.34)
b1[u(f1 + βf̄1, f2) + u(f1, f2)]− a1 + f1 + c1v(f1, f2)

≥ 2ã1 − 2c1
b2

(ā2 + c2ā1
b1

)− 2δ1 − a1 + c1φ2 ≥ δ1 in Ω̄,

where the last inequality follows from [H1∗]. The first equation in (2.33), and
inequality (2.34) give

(2.35) min{δ1, 1} ‖ ξβ ‖21,2≤‖ u(f1 + βf̄1, f2) ‖∞‖ ξβ ‖2 [c1 ‖ ηβ ‖2 + ‖ f̄1 ‖2].

The bounds in (2.14) and [H2∗] also imply that

b2[v(f1 + βf̄1, f2) + v(f1, f2)]− a2 + f2 − c2u(f1, f2) ≥ δ2 in Ω̄.

The last inequality and the second equation in (2.33) give

(2.36) min{δ2, 1} ‖ ηβ ‖21,2≤ c2 ‖ v(f1 + βf̄1, f2) ‖∞‖ ξβ ‖2‖ ηβ ‖2 .
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Since ‖ u(f1+βf̄1, f2) ‖∞≤ ā1/b1 and ‖ v(f1+βf̄1, f2) ‖∞≤ (1/b2)(ā2+c2ā1/b1),
inequalities (2.35), (2.36) and [H4] yield

(2.37)
min{δ1, 1} ‖ ξβ ‖21,2 + min{δ2, 1} ‖ ηβ ‖21,2

≤ kmin{δ1, δ2, 1} ‖ ξβ ‖2‖ ηβ ‖2 + const. ‖ ξβ ‖2

for some k ∈ (0, 2). Inequality (2.37) hence leads to

(2.38) k̂(‖ ξβ ‖21,2 + ‖ ηβ ‖21,2) ≤ const. ‖ ξβ ‖1,2

for some k̂ > 0. This gives a uniform bound for ‖ ξβ ‖1,2 and ‖ ηβ ‖1,2 for
all (f1, f2), (f1 + βf̄1, f2) ∈ C(δ1, δ2) with f̄1 fixed. We can therefore choose a
sequence βi → 0 such that we have a weakly convergent sequence as described
in (2.29).

Since c1u(f1, f2)η + u(f1, f2)f̄1 is a function in L2(Ω), the first equation in
(2.30) and the results in Agmon, Douglis and Nirenberg [1] imply that ξ ∈
W 2,2(Ω). Similarly, the second equation in (2.30) implies that η ∈W 2,2(Ω).

Analogously, we obtain the result involving the second part of (2.29) and the
solution (ξ̃, η̃) of (2.31). This proves the lemma.

For convenience, we next denote constants

(2.39) E1 = E1(ā1, ã1, ā2, b1, b2, c1, c2) = 2ã1 − ā1 − 2c1
b2

(ā2 +
c2ā1

b1
),

(2.40) E2 = E2(ā2, ã2, ā1, b1, c2) = 2ã2 − ā2 − c2ā1

b1
.

In order to obtain better characterization of the optimal control of the problem,
we need to strengthen hypotheses [H1∗] and [H2∗] to

[H1∗∗] 0 < δ1 ≤ min{(1/4)E1, (1/3)[E1 + c1ā2
b22 − c2

b2
(ā2 + c2ā1

b1
) K2
2K1

]},

[H2∗∗] 0 < δ2 ≤ (1/4)[E2 − 8c21c2K1

b21b2K2
ā2

1(ā2 + c2ā1
b1

)E−1
1 E−1

2 ].

Note that the right hand sides of [H1∗] and [H2∗] are respectively 1
3E1 and

1
3E2. We will not be looking for the best possible sufficient condition for the
characterization; the hypotheses [H1∗∗] and [H2∗∗] will be used because they
can be readily satisfied if c1 and/or c2 are sufficiently small.

Theorem 2.4 (Characterization of the Optimal Control). Assume hy-
potheses [H1∗∗], [H2∗∗], [H4] and that (u(f1, f2), v(f1, f2)) is uniquely defined
for all (f1, f2) ∈ C(δ1, δ2) in the sense described in Theorem 2.3. Suppose
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(f∗1 , f∗2 ) ∈ C(δ1, δ2) is an optimal control. Then, let (u, v, p1, p2) be any solu-
tion of

(2.41)




∆u+ (a1 − f∗1 )u− b1u2 − c1uv = 0 in Ω,

∆v + (a2 − f∗2 )v + c2uv − b2v2 = 0 in Ω,

∆p1 + (a1 − f∗1 )p1 − (2b1u+ c1v)p1 + c2vp2 = −K1f
∗
1 in Ω,

∆p2 + (a2 − f∗2 )p2 − (2b2v − c2u)p2 − c1up1 = −K2f
∗
2 in Ω,

∂u
∂ν = ∂v

∂ν = ∂p1
∂ν = ∂p2

∂ν = 0 on Ω,

with u, v, p1, p2 ∈ H2,2(Ω), satisfying

(2.42)

φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2 in Ω,

−4ā1c1c2K1(ā2 + c2ā1
b1

)(b1b2E1E2)−1 ≤ p1 ≤ K1 in Ω,

−2ā1c1K1(b1E2)−1 ≤ p2 ≤ K2
2 in Ω,

then the control (f∗1 , f∗2 ) must satisfy, for i = 1, 2,

(2.43) f∗i (x) ≥ (Ki − pi(x))ui(x)
2Mi

in {x ∈ Ω|f∗i (x) < δi} a.e.,

(2.44) f∗i (x) ≤ (Ki − pi(x))ui(x)
2Mi

in {x ∈ Ω|f∗i (x) > 0} a.e.,

(2.45) f∗i (x) =
(Ki − pi(x))ui(x)

2Mi
in {x ∈ Ω|0 < f∗i (x) < δi} a.e.,

(Here, we denote (u, v) = (u1, u2) for convenience. Recall φi, ψi, i = 1, 2 are
defined in (2.8).)

Proof. Since hypotheses [H1∗∗] and [H2∗∗] imply [H1] and [H2], Theorem 2.3
insures the existence of an optimal control (f∗1 , f∗2 ) ∈ C(δ1, δ2).

For f̄1 ∈ L∞
+ (Ω), ε > 0, define

(2.46) f̄ ε1 =

{
f̄1 if f∗1 ≤ δ1 − ε||f̄1||∞,
0 elsewhere.
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Then for β > 0 small enough, we have J(f∗1 , f∗2 ) ≥ J(f∗1 + βf̄ ε1, f̄
∗
2 ). Dividing by

β, and letting β tend to zero appropriately as in Lemma 2.1, we obtain

(2.47)
∫

Ω
K1f

∗
1 ξ +K1u(f∗1 , f

∗
2 )f̄ ε1 +K2f

∗
2 η − 2M1f

∗
1 f̄

ε
1 dx ≤ 0,

where (ξ, η) is a solution of (2.30) with f1, f2, f̄1, respectively replaced by f∗1 , f∗2 , f̄ ε1.
Let (p1, p2) be any solution in Ω of

(2.48)


−∆p1 − (a1 − f∗1 )p1 + (2b1u(f∗1 , f∗2 ) + c1v(f∗1 , f∗2 ))p1 − c2v(f∗1 , f∗2 )p2 = K1f
∗
1 ,

−∆p2 − (a2 − f∗2 )p2 + (2b2v(f∗1 , f
∗
2 )− c2u(f∗1 , f

∗
2 ))p2 + c1u(f∗1 , f

∗
2 )p1 = K2f

∗
2 ,

∂p1
∂ν = ∂p2

∂ν = 0 on ∂Ω.

Replacing K1f
∗
1 andK2f

∗
2 in (2.47) by the left-hand side of (2.48) and integrating

by parts, we obtain by means of the equation for (ξ, η) that

(2.49)
∫

Ω
f̄ ε1[p1u(f∗1 , f

∗
2 )−K1u(f∗1 , f

∗
2 ) + 2M1f

∗
1 ] dx ≥ 0.

Letting ε→ 0+, (2.49) leads to

(2.50) f∗1 (x) ≥ (K1 − p1(x))u(f∗1 , f∗2 )
2M1

in {x ∈ Ω|f∗1 (x) < δ1}.

This proves (2.43) for i = 1. The rest of the proof for (2.44) and (2.45) is
analogous to that of Theorem 1.3 in Section 3.1, the details are thus omitted here.
Comparing (2.48) with (2.41) and noting the definition of u(f∗1 , f∗2 ), v(f∗1 , f∗2 ),
we see that it remains to show that (u, v, p1, p2) as described in the statement
of the theorem actually exists.

The proof of the existence of solution with range of values as described in
(2.42) is carried out as in Theorem 2.1 by using upper and lower solutions for
system. For convenience, we denote

(2.51)
ψ3(x) = K1, φ3(x) = −4ā1c1c2K1(ā2 + c2ā1

b1
)(b1b2E1E2)−1,

ψ4(x) = K2/2, φ4(x) = −2ā1c1K1(b1E2)−1

for x ∈ Ω̄. Consider for all φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2, φ4 ≤ p2 ≤ ψ4, that the
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expression

∆ψ3 + (a1 − f∗1 )ψ3 − (2b1u+ c1v)ψ3 + c2vp2 +K1f
∗
1

≤ ā1K1 − 2[ã1 − c1
b2

(ā2 + c2ā1
b1

)− δ1]K1 − c1 1
b2

(ã2 − δ2)K1

+ c2
b2

(ā2 + c2ā1
b1

)K2
2 +K1δ1

≤ K1[ā1 − 2ã1 + 2c1
b2

(ā2 + c2ā1
b1

)]− c1ā2
b22

K1 + c2
b2

(ā2 + c2ā1
b1

)K2
2 + 3K1δ1

is true in Ω, since δ2 ≤ (1/2)E2 implies ã2 − δ2 ≥ ā2/2. Thus we have for such
situations,

(2.52) ∆ψ3 + (a1 − f∗1 )ψ3 − (2b1u+ c1v)ψ3 + c2vp2 +K1f
∗
1 ≤ 0

provided

δ1 ≤ 1
3

[E1 +
c1ā2

b22
− c2
b2

(ā2 +
c2ā1

b1
)
K2

2K1
],

which is assumed in [H1∗∗].
For all φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2, φ3 ≤ p1 ≤ ψ3, x ∈ Ω, consider the

expression

∆ψ4 + (a2 − f∗2 )ψ4 − (2b2v − c2u)ψ4 − c1up1 +K2f
∗
2

≤ ā2K2
2 − 2(ã2 − δ2)K2

2 + c2
ā1K2
b12

+ c1
ā1
b1

4ā1c1c2K1(ā2 + c2ā1
b1

)(b1b2E1E2)−1 +K2δ2.

The above expression is ≤ 0 provided that

[
ā2

2
− ã2 +

c2ā1

2b1
+ 2δ2]K2 +K14ā2

1c
2
1c2(ā2 +

c2ā1

b1
)(b21b2E1E2)−1 ≤ 0.

Consequently, hypothesis [H2∗∗] implies that

(2.53) ∆ψ4 + (a2 − f∗2 )ψ4 − (2b2v − c2u)ψ4 − c1up1 +K2f
∗
2 ≤ 0

in Ω for the appropriate u, v, p1 described above.
For φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2, φ4 ≤ p2 ≤ ψ4, x ∈ Ω, we have

∆φ3 + (a1 − f∗1 )φ3 − (2b1u+ c1v)φ3 + c2vp2 +K1f
∗
1

≥ −4ā1c1c2K1(ā2 + c2ā1
b1

)(b1b2E1E2)−1

×{ā1 − 2[ã1 − c1
b2

(ā2 + c2ā1
b1

)− δ1]− c1ā2
2b2
}

− c2
b2

(ā2 + c2ā1
b1

) · 2ā1c1K1(b1E2)−1
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is valid because δ2 ≤ (1/2)E2 implies v ≥ (ã2− δ2)/b2 ≥ ā2/(2b2). Consequently

(2.54) ∆φ3 + (a1 − f∗1 )φ3 − (2b1u+ c1v)φ3 + c2vp2 +K1f
∗
1 ≥ 0

in the described region provided that

2δ1 ≤ 2ã1 − ā1 − 2
c1
b2

(ā1 +
c2ā2

b1
) +

ā2c1
2b2
− E1

2
=
E1

2
+
ā2c1
2b2

,

which is clearly true due to [H1∗∗].
For φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2, φ3 ≤ p1 ≤ ψ3, x ∈ Ω, we have

∆φ4 + (a2 − f∗2 )φ4 − (2b2v − c2u)φ4 − c1up1 +K2f
∗
2

≥ 2ā1c1K1(b1E2)−1{−ā2 + 2[ã2 − δ2]− ( c2ā1b1
)} − c1 ā1b1K1.

Hypotheses [H2∗∗] implies that δ2 < E2/4, and thus

−ā2 + 2[ã2 − δ2]− c2ā1

b1
>

1
2

[2ã2 − ā2 − c2ā1

b1
] =

1
2
E2.

Consequently, we have

(2.55)
∆φ4 + (a2 − f∗2 )φ4 − (2b2v − c2u)φ4 − c1up1 +K2f

∗
2

> 2ā1c1K1(b1E2)−1 · 1
2E2 − c1ā1

b1
K1 = 0

in the region described.
Since the first two equations of (2.41) are independent of p1, p2, we can show

∆ψ1 + (a1 − f∗1 )ψ1 − b1ψ2
1 − c1vψ1 ≥ 0,∆φ1 + (a1 − f∗1 )φ1 − b1φ2

1 − c1vφ1 ≤ 0
for all φ2 ≤ v ≤ ψ2, φ3 ≤ p1 ≤ ψ3, φ4 ≤ p2 ≤ ψ4, x ∈ Ω in exactly the same
way as in Theorem 2.1. Similarly, we show ∆ψ2 + (a2− f∗2 )ψ2 + c2uψ2− b2ψ2

2 ≤
0,∆φ2 + (a2 − f∗2 )φ2 + c2uφ2 − b2φ2

2 ≥ 0 for all φ1 ≤ u ≤ ψ1, φ3 ≤ p1 ≤ ψ3, φ4 ≤
p2 ≤ ψ4, x ∈ Ω. Then we follow the same method in the last part of the proof
of Theorem 2.1 to construct a natural mapping T from X1×X2×X3×X4 into
itself, where Xi = {w ∈ C(Ω̄) : φi ≤ w ≤ ψi}, i = 1, 2, 3, 4. Following the same
arguments, the fixed point of T gives a solution of (2.41) with each component
in H2,2(Ω).

Corollary 2.5. Assume all the hypotheses of Theorem 2.4; and moreover

M1 >
K1ā1

2b1δ1
[1 + 4ā1c1c2(ā2 +

c2ā1

b1
)(b1b2E1E2)−1],(2.56)

M2 >
1

2b2δ2
(ā2 +

c2ā1

b1
)[K2 + 2ā1c1K1(b1E2)−1],(2.57)
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where

E1 = 2ã1 − ā1 − 2c1
b2

(ā2 +
c2ā1

b1
), E2 = 2ã2 − ā2 − c2ā1

b1
.

Let (f∗1 , f
∗
2 ) ∈ C(δ1, δ2) be an optimal control. Then

(2.58) f∗1 =
(K1 − p1)u

2M1
, f∗2 =

(K2 − p2)v
2M2

,

where (u, v, p1, p2) is a solution of the optimality system:

(2.59)




∆u+ [(a1 − (K1−p1)u
2M1

)− b1u− c1v]u = 0 in Ω,

∆v + [(a2 − (K2−p2)v
2M2

) + c2u− b2v]v = 0 in Ω,

∆p1 + a1p1 + (K1−p1)2u
2M1

− (2b1u+ c1v)p1 + c2vp2 = 0 in Ω,

∆p2 + a2p2 + (K2−p2)2v
2M2

− (2b2v − c2u)p2 − c1up1 = 0 in Ω,

∂u
∂ν = ∂v

∂ν = ∂p1
∂ν = ∂p2

∂ν = 0 on Ω,

with u, v, p1, p2 ∈ H2,2(Ω), satisfying (2.42).

Proof. By Theorem 2.4, (f∗1 , f∗2 ) must satisfy (2.43) to (2.45), where (u, v, p1, p2)
is a solution of (2.41) with conditions (2.42).

From (2.43), in the set {x ∈ Ω|f∗1 (x) = 0} we have

(2.60) 0 = f∗1 (x) ≥ (K1 − p1(x))u(x)
2M1

≥ 0.

Thus the first inequality in (2.58) must hold in this set. From (2.44), in the set
{x ∈ Ω|f∗1 (x) = δ1}, we have

(2.61)
δ1 = f∗1 (x) ≤ (K1−p1(x))

2M1
u(x)

≤ ā1
2M1b1

[K1 + 4ā1c1c2K1(ā2 + c2ā1
b1

)(b1b2E1E2)−1] < δ1

due to (2.42) and (2.56). Thus there are no x ∈ Ω where f∗1 (x) = δ1. From
(2.45) and (2.60), the first equality in (2.58) holds for all x ∈ Ω.

From (2.43), in the set {x ∈ Ω|f∗2 (x) = 0}, we have

(2.62) 0 = f∗2 (x) ≥ (K2 − p2(x))v(x)
2M2

≥ 0.
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Thus the second inequality in (2.58) must hold in this set. From (2.44), in the
set {x ∈ Ω|f∗2 (x) = δ2}, we have

(2.63)
δ2 = f∗2 (x) ≤ (K2−p2(x))

2M2
v(x)

≤ 1
2M2b2

(ā2 + c2ā1
b1

)[K2 + 2ā1c1K1(b1E2)−1] < δ2

due to (2.42) and (2.57). Thus there are no x ∈ Ω where f∗2 (x) = δ2. From
(2.45) and (2.62), the second inequality in (2.58) holds for all x ∈ Ω. Combining
(2.41) and (2.58), we conclude that (u, v, p1, p2) satisfies (2.59). This completes
the proof.

Remark 2.5. If some additional conditions are made, we can show with a
little more care that the solution (u, v, p1, p2) of (2.59), which characterizes the
optimal control, is actually positive. More precisely, assume all the hypotheses
of Corollary 2.5, and further

[H5] c1 ≤ K2
2b1ā2

8K1b2ā1M2
.

Let (f∗1 , f∗2 ) ∈ C(δ1, δ2) be an optimal control. Then (f∗1 , f∗2 ) satisfies (2.58),
where (u, v, p1, p2) is a solution of the optimality system (2.59) with each com-
ponent in H2,2(Ω) satisfying

(2.64)
φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2 in Ω,

0 ≤ p1 ≤ K1, 0 ≤ p2 ≤ K2/2 in Ω.

The arguments are the same as in Theorem 2.4 and Corollary 2.5, redefining
φ3, φ4 in (2.51) as the trivial function. Details can be found in Corollary 3.2 in
Leung [126].

In the remaining part of this section, we further deduce a constructive
method of approximating or computing the positive solution (u, v, p1, p2) of the
optimality system. We will now always assume all the hypotheses of Corollary
2.5 together with [H5] as in Remark 2.5, so that a positive solution of the op-
timality system (2.59) can be found with the property (2.64). We proceed to
construct monotone sequences converging from above and below to give upper
and lower estimates for (u, v, p1, p2). In the case when the limits of the upper and
lower estimates agree, then the optimal control problem is completely solved.
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Choose a large constant R > 0 so that the following four expressions:

−[a1(x)− (K1−p1)u
2M1

− b1u− c1v]u−Ru,

−[a2(x)− (K2−p2)v
2M2

+ c2u− b2v]v −Rv,

−[a1(x)p1 + (K1−p1)2u
2M1

− (2b1u+ c1v)p1 + c2vp2]−Rp1, and

−[a2(x)p2 + (K2−p2)2v
2M2

− (2b2v − c2u)p2 − c1vp1]−Rp2

are decreasing respectively in the four corresponding variables u, v, p1, p2 for all
x ∈ Ω, φ1 ≤ u ≤ ψ1, φ2 ≤ v ≤ ψ2, 0 ≤ p1 ≤ K1, 0 ≤ p2 ≤ K2/2, when the other
three variables are all fixed. (Recall the definitions of φi, ψi, i = 1, 2 in (2.8)).
For convenience, let

(2.65)
u0 ≡ φ1, u−1 ≡ ψ1; v0 ≡ φ2, v−1 ≡ ψ2;

p1,0 ≡ 0, p1,−1 ≡ K1; p2,0 ≡ 0, p2,−1 ≡ K2/2.

We can readily verify that these constant functions satisfy
(2.66)

∆u−1 −Ru−1 ≤ −u−1[a1(x)− (K1 − p1,−1)u−1

2M1
− b1u−1 − c1v0]−Ru−1 in Ω

and

(2.67) ∆u0 −Ru0 ≥ −u0[a1(x)− (K1 − p1)u0

2M1
− b1u0 − c1v]−Ru0 in Ω

for each v, p1 respectively in the intervals [v0, v−1], [p1,0, p1,−1]. The last inequal-
ity is true because

a1(x)− (K1−p1)u0

2M1
− b1u0 − c1v ≥ a1 − K1

2M1
φ1 − b1φ1 − c1ψ2

≥ a1 − δ1
ā1
ã1 − ã1 + δ1 > 0

by using (2.56). Moreover, we have

(2.68) ∆v−1−Rv−1 ≥ −v−1[a2(x)− (K2 − p2)v−1

2M2
+c2u−b2v−1]−Rv−1 in Ω

for each u, p2 respectively in the interval [u0, u−1], [p2,0, p2,−1], since

a2(x)− (K2−p2)v−1

2M2
+ c2u− b2v−1 ≤ a2(x) + c2ψ1 − b2ψ2

= a2(x)− ā2 ≤ 0.



3.2. HARVESTING OF STEADY-STATES 229

On the other hand,

(2.69) ∆v0 −Rv0 ≥ −v0[a2(x)− (K2 − p2)v0
2M2

+ c2u− b2v0]−Rv0 in Ω

for each u ∈ [u0, u−1], p2 ∈ [p2,0, p2,−1], since

a2(x)− (K2−p2)v0
2M2

+ c2u− b2v0 ≥ a2(x)− K2
2M2

φ2 − b2φ2 + c2φ1

> a2(x)− K2
2M2b2

(ā2 + c1ā1
b1

)− ã2 + δ2

> a2(x)− δ2 − ã2 + δ2 ≥ 0.

(Here, we have used the hypothesis (2.57).) Further, we verify
(2.70)

∆p1,−1 −Rp1,−1

≤ −[a1(x)p1,−1 + (K1−p1,−1)2u
2M1

− (2b1u0 + c1v0)p1,−1 + c2vp2]−Rp1,−1 in Ω

for each u ∈ [u0, u−1], v ∈ [v0, v−1], p2 ∈ [p2,0, p2,−1], since

a1(x)p1,−1 + (K1−p1,−1)2u
2M1

− (2b1u0 + c1v0)p1,−1 + c2vp2

≤ K1[ā1 − 2ã1 + 2δ1 + 2c1
b2

(ā2 + c2ā1
b1

)− ā2c1
2b2

] + c2
b2

(ā2 + c2ā1
b1

)K2
2 ≤ 0.

The last inequality is true due to hypothesis [H1∗∗]. We also have

(2.71)
∆p1,0 −Rp1,0

≥ −[a1(x)p1,0 + (K1−p1,0)2u
2M1

− (2b1u+ c1v)p1,0 + c2vp2]−Rp1,0 in Ω

for each u ∈ [u0, u−1], v ∈ [v0, v−1], p2 ∈ [p2,0, p2,−1], since

a1(x)p1,0 +
(K1 − p1,0)2u

2M1
− (2b1u0 + c1v0)p1,0 + c2vp2 ≥ K2

1u0

2M1
> 0 in Ω.

For the last component, we have
(2.72)
∆p2,−1 −Rp2,−1

≤ −[a2(x)p2,−1 + (K2−p2,−1)2v
2M2

− (2b2v0 − c2u)p2,−1 − c1u0p1,0]−Rp2,−1 in Ω

for each u ∈ [u0, u−1], v ∈ [v0, v−1], since

a2(x)p2,−1 + (K2−p2,−1)2v
2M2

− (2b2v0 − c2u)p2,−1 − c1u0p1,0

≤ ā2K2
2 + K2

2
δ2
2 −K2ã2 +K2δ2 + c2

ā1
b1
K2
2 < 0.
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In the last line, we use hypotheses (2.57) and [H2∗∗]. Moreover, we have

(2.73)
∆p2,0 −Rp2,0

≥ −[a2(x)p2,0 + (K2−p2,0)2v
2M2

− (2b2v − c2u)p2,0 − c1up1]−Rp2,0 in Ω

for each u ∈ [u0, u−1], v ∈ [v0, v−1], p1 ∈ [p1,0, p1,−1], since

a2(x)p2,0 + (K2−p2,0)2v
2M2

− (2b2v − c2u)p2,0 − c1up1

≥ K2
2

2M2
φ2 − c1ψ1K1 >

2K1ā1c1
b1φ2

φ2 − c1ψ1K1 = K1ā1
b1

c1 > 0 in Ω.

(Here, we use [H1∗∗], [H2∗∗] and [H5]).
We now inductively define sequences of functions uk(x), vk(x), p1,k(x), p2,k(x)

in Ω, k = 1, 2, . . . , as solutions of scalar problems in Ω as follows:
(2.74)

∆uk −Ruk = −uk−2[a1 − (K1−p1,k−2)uk−2

2M1
− b1uk−2 − c1vk−1]−Ruk−2,

∆vk −Rvk = −vk−2[a2 − (K2−p2,k−2)vk−2

2M2
+ c2uk − b2vk−2]−Rvk−2,

∆p1,k −Rp1,k = −[a1p1,k−2 + (K1−p1,k−2)
2uk

2M1
− (2b1uk−1 + c1vk−1)p1,k−2

+c2vkp2,k−2]−Rp1,k−2,

∆p2,k −Rp2,k = −[a2p2,k−2 + (K2−p2,k−2)
2vk

2M2
− (2b2vk−1 − c2uk)p2,k−2

− c1uk−1p1,k−1]−Rp2,k−2,

∂uk
∂ν = ∂vk

∂ν = ∂p1,k
∂ν = ∂p2,k

∂ν = 0 on Ω.

Theorem 2.6 (Approximation Scheme for the Optimal Control). Assume
all the hypotheses of Corollary 2.5 and [H5]. The sequences of functions uk(x),
vk(x), p1,k(x), p2,k(x), defined above satisfy the order relations:

(2.75)

u0 ≤ u2 ≤ · · · ≤ u2r ≤ u2r−1 ≤ · · · ≤ u1 ≤ u−1,

v0 ≤ v2 ≤ · · · ≤ v2r ≤ v2r−1 ≤ · · · ≤ v1 ≤ v−1,

pi,0 ≤ pi,2 ≤ · · · ≤ pi,2r ≤ pi,2r−1 ≤ · · · ≤ pi,1 ≤ pi,−1, i = 1, 2,
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for all x ∈ Ω. Moreover, any solution (u, v, p1, p2) of problem (2.59) with the
property

(2.76) u0 ≤ u ≤ u−1, v0 ≤ v ≤ v−1, pi,0 ≤ pi ≤ pi,−1, i = 1, 2 in Ω,

must satisfy

(2.77) u2r ≤ u ≤ u2r−1, v2r,≤ v ≤ v2r−1, pi,2r ≤ pi ≤ pi,2r−1, i = 1, 2 in Ω,

for all positive integer r.

Proof. Using the equation satisfied by u1 and inequality (2.66), we obtain
∆(u−1 − u1) − R(u−1 − u1) ≤ 0 in Ω, (∂/∂ν)(u−1 − u1) = 0 on ∂Ω. Hence
u1 ≤ u−1 in Ω. Similarly, using (2.67) and the choice of R, we deduce that
∆(u0 − u1)−R(u0 − u1) ≥ 0 in Ω, (∂/∂ν)(u0 − u1) = 0 on ∂Ω. Thus, we have

(2.78) u0 ≤ u1 ≤ u−1 in Ω.

Using the equation for v1, inequalities (2.68), (2.69), (2.78), and the choice
of R, we obtain

(2.79)
∆(v−1 − v1)−R(v−1 − v1) ≤ 0 in Ω, ∂

∂ν (v−1 − v1) = 0 on ∂Ω,

∆(v0 − v1)−R(v0 − v1) ≥ 0 in Ω, ∂
∂ν (v0 − v1) = 0 on ∂Ω,

and

(2.80) v0 ≤ v1 ≤ v−1 in Ω.

Again, using the equations for p1 and p2, the inequalities above, and the choice
of R, we deduce similarly that

(2.81) pi,0 ≤ pi,1 ≤ pi,−1, i = 1, 2 in Ω.

Next, we show

(2.82)
∆(u1 − u2)−R(u1 − u2) ≤ 0 in Ω, ∂

∂ν (u1 − u2) = 0 on ∂Ω,

∆(u0 − u2)−R(u0 − u2) ≥ 0 in Ω, ∂
∂ν (u0 − u2) = 0 on ∂Ω,

(Here, we use (2.67) at v = v1, p1 = p1,0.) Thus we obtain

(2.83) u0 ≤ u2 ≤ u1 in Ω.

Similarly, comparing the related equations and using the inequalities above, we
deduce successively that

(2.84) v0 ≤ v2 ≤ v1 in Ω,
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(2.85) p1,0 ≤ p1,2 ≤ p1,1 and p2,0 ≤ p2,2 ≤ p2,1 in Ω.

From the above inequalities we have the validity of the inequalities
(2.86)
u2n ≤ u2n+2 ≤ u2n+1 ≤ u2n−1, v2n ≤ v2n+2 ≤ v2n+1 ≤ v2n−1 in Ω,

p1,2n ≤ p1,2n+2 ≤ p1,2n+1 ≤ p1,2n−1, p2,2n ≤ p2,2n+2 ≤ p2,2n+1 ≤ p2,2n−1 in Ω,

for n = 0. We then use the comparison method as above to prove the validity
of (2.86) for any positive integer n by induction. This proves (2.75).

To prove the second part of the theorem, we use the comparison method on
the appropriate equations as above, and proceed by induction on r in proving
inequality (2.77). For more details of analogous procedures, see Theorem 5.5-1
in [125].

The following example indicates that when the intrinsic growth rates ai(x, y)
various only moderately in different locations and the interaction parameters are
relatively small, i = 1, 2, then all the theorems in this section are applicable.

Example 2.1. Let Ω be any bounded domain on the (x, y) plane with C2

boundary, with {(x, y)| 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} ⊂ Ω. Consider the system (2.1)
with

ai(x, y) = 16 + 2 sin(2πxy), āi = 18, ãi = 14 for i = 1, 2, b1 = 12, b2 = 7.8,

c1 = 0.35, c2 = 0.5.

The problem is to maximize (2.2) with

K1 = 0.5, K2 = 1, M1 = 0.5, M2 = 1

for all fi ∈ L∞(Ω) in (2.5), where δ1 = 2.079, δ2 = 2.308.

We can verify that the hypotheses [H1∗∗], [H2∗∗], [H3] and [H4] are all satis-
fied, thus Theorem 2.4 applies. Moreover, conditions (2.56), (2.57) and [H5] are
also valid; hence Corollary 2.5, Remark 2.5 and Theorem 2.6 are all applicable
to this example. The optimal solution can be characterized by positive solutions
of the elliptic system of four equations (2.59). Moreover, the approximation
Theorem 2.6 applies.

3.3 Time-Periodic Optimal Control for Competing
Parabolic Systems

Optimal control models for reaction-diffusion systems are used for agriculture
and environmental problems. Since the growth rates of life species change sea-
sonally, one needs to analyze such models whose coefficients are periodic in time.
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In this section, we consider time-periodic Voterra-Lotka diffusive competing sys-
tems whose growth and interaction rates are periodic functions of time. We will
show that such systems has a unique positive periodic solution. We then search
for optimal harvesting control of the systems in order to maximize certain pay-
off.

Let Ω be a bounded domain in RN with C2 boundary, G := Ω× [0, T ), S :=
∂Ω× [0, T ) for some T > 0, and bi, ci some positive constants, i = 1, 2. Through-
out this section we will always assume that f(x, t), g(x, t) and ai(x, t), i = 1, 2
are functions in L∞

+ (Ω× (−∞,∞)) := {h ∈ L∞(Ω× (−∞,∞)|h ≥ 0 in G}, and
they are periodic functions of t with period T for (x, t) ∈ Ω× (−∞,∞). For any
constant δ = (δ1, δ2), δi > 0, i = 1, 2, we let

Bδ,T = {(f, g)|f, g ∈ L∞
+ (Ω× (−∞,∞)),

f and g are periodic functions of t with periodT and f ≤ δ1, g ≤ δ2}.

For any (f, g) ∈ Bδ,T , we define (u, v) = (u(f, g), v(f, g)) as a solution of the
problem:

(3.1)




ut −∆u− u[(a1(x, t)− f(x, t))− b1u− c1v] = 0 in G,

vt −∆v − v[(a2(x, t)− g(x, t)) − b2v − c2u] = 0 in G,

∂u
∂ν = ∂v

∂ν = 0 on S,

u(x, 0) = u(x, T ), v(x, 0) = v(x, T ), for x ∈ Ω.

We will show that such (u(f, g), v(f, g)) is uniquely defined when δi, ai, bi, ci, i =
1, 2 satisfy appropriate conditions (cf. [H1], [H2] below in this section).

Let Ki,Mi, i = 1, 2 be positive constants; we define the pay-off functional by

J(f, g) =
∫
G

[K1u(f, g)f +K2v(f, g)g −M1f
2 −M2g

2] dxdt,

which describes the economic profit of harvesting the competing species u, v.
The problem is to find periodic control (f∗, g∗) ∈ Bδ,T such that

J(f∗, g∗) = sup(f,g)∈Bδ,T J(f, g).

In practical terms, we are searching for optimal harvesting of two competing
biological species whose growth are governed by diffusive Volterra-Lotka system
(3.1). The functions f, g denote the distributions of control harvesting effort on
the biological species. The optimal control criterion is to maximize the pay-off
functional, where K1 and M1 are constants describing the market price of species
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u and the cost of control f , and similarly K2 and M2 are constants related to v
anf g. The results of this section are obtained from He, Leung and Stojanovic
in [82] and [83].

We first consider the basic preliminary problem of existence of t-periodic
solution of scalar linear parabolic problem with L∞ coefficients rather than the
usual Cα coefficients.

Theorem 3.1. Let f ∈ Lp+(G) and c ∈ L∞(Ḡ) with minGc(x, t) ≥ λ > 0.
Suppose further that f and c are periodic functions of t with period T in Ω ×
[0,∞). Then the problem

(3.2)



ut −∆u+ c(x, t)u = f in G,

∂u
∂ν = 0 on S,

u(x, 0) = u(x, T ) for all x ∈ Ω

has a unique non-negative solution u in W 2,1
p (G), for p > 1, satisfying the

estimate

(3.3) ||u||W 2,1
p (G) ≤ C||f ||p,G.

Here, C is a constant independent of f and dependent on ||c||∞,G; λ is any
positive constant.

Proof. First suppose that c ∈ Cα(Ḡ), 0 < α < 1. Let fm ∈ Lp+(G) ∩ Cα(Ḡ) be
periodic about t with period T such that

fm → f in Lp(G).

(The existence of such sequence {fm} can be found in e.g. Gilbarg and
Trudinger [71].) Then by Fife’s results in [58] (cf. Theorem 5.6.1 in Leung
[125]), there exists a unique solution um ∈ C2+α(Ḡ) of problem (3.2) with f
replaced by fm. Multiplying both sides of the equation

∂um
∂t
−∆um + cum = fm,

by up−1
m and integrating on G, we obtain∫

G

1
p

d

dt
upmdxdt + (p− 1)

∫
G
up−2
m |∇um|2dxdt +

∫
G
cupmdxdt =

∫
G
fum−1

m dxdt.

Since um is periodic with period T, we have∫
G

1
p

d

dt
upmdxdt = 0.
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Using Young’s inequality (see e.g. p. 622 in [57]) and the fact that∫
G
up−2
m |∇um|2dxdt = (2/p)2

∫
G
|∇up/2m |2dxdt ≥ 0,

we deduce that

(3.4) λ||um||pLp(G) ≤ ε−[1/(p−1)]||fm||pLp(G) + ε||um||pLp(Ω) for all ε > 0.

Hence, by choosing ε small enough, we obtain

(3.5) ||um||Lp(G) ≤ C||fm||Lp(G).

Here, C is a constant independent of m and fm, and um ∈ C2+α(G). Since
fm ≥ 0, the maximum principle implies that um ≥ 0. Since fm → f in Lp(G),
we obtain by (3.5) that

(3.6) ||um||p,G ≤ C.
Here C is independent of m. Using Theorem A5-1 in Chapter 6 (with T1 = T/2
and T2 = 2T ), and the periodic property of um, we obtain

(3.7) ||um||W 2,1
p (G)

≤ C1||fm||p,G + C2||um||p,G ≤ C||fm||p,G.

We thus readily deduce that

um → u0 strongly in W 2,1
p (G),

where u0 ∈W 2,1
p (G) is a solution of (3.2) and

(3.8) ||u0||W 2,1
p (G)

≤ C||f ||p,G.

In order to complete the proof of this theorem when c ∈ L∞(Ḡ) in general, we
need the following lemma.

Lemma 3.1. Assume all the hypotheses of Theorem 3.1, with f, c replaced by
fi, ci, here fi ∈ Lp(Ω× [0,∞)) and ci ∈ Cα(Ω× [0,∞)), i = 1, 2 and p > 1. Let
ui, i = 1, 2 be the non-negative solutions of problem (3.2) with f, c replaced by
fi, ci, respectively. If f1 ≥ f2 and c2 ≥ c1 in G, then u1 ≥ u2 in G.

Proof. By using mollifiers, we may assume without loss of generality that
fi ∈ Cα(G) for i = 1, 2. The function w = u1 − u2 satisfies


wt −∆w + c1w = f1 − f2 + (c2 − c1)u2 in G,

∂w
∂ν = 0 on S,

w(x, 0) = w(x, T ) for all x ∈ Ω.
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Suppose w(x0, t0) is a negative minimum of w, then the fact that (c2−c1)u2 ≥ 0
and f1 − f2 ≥ 0, implies that (x0, t0) cannot be in the interior of G. Moreover,
w(x, 0) = w(x, T ) and the maximum principle implies that t0 �= 0, T ; unless w
is a negative constant, which is a contradiction to the equation. Thus, we have
x0 ∈ ∂Ω, and ∂w/∂ν > 0 at x0, by maximum principle. This again contradicts
the boundary condition. Hence, we must have w ≥ 0, i.e. u1 ≥ u2 in G.

We now continue to prove Theorem 3.1 when c ∈ L∞(Ω× [0,∞)). Choose a
constant P so that P ≥ ||c||∞,G. Let u0 and u∗ be, respectively, the non-negative
solution of the problems (3.2)λ and (3.2)P which are (3.2) with c replaced by λ
and P respectively. Lemma 3.1 implies that

(3.9) 0 ≤ u∗ ≤ u0 in G.

We then define uk as the non-negative solution of the problems

(3.10)




∂uk
∂t −∆uk + Puk = f − cuk−1 + Puk−1 in G,

∂uk
∂ν = 0 on S,

uk(x, 0) = uk(x, T ) for all x ∈ Ω.

The first part of the proof of Theorem 3.1 implies that u1 ≥ 0 is uniquely
defined in G. Using the equations satisfied by u∗, u1 and u0, we obtain readily
from Lemma 3.1 that

0 ≤ u∗ ≤ u1 ≤ u0 in G.

Denoting h(u) = f − cu+Pu, we find h is increasing since P ≥ c. Suppose that
we have proved

0 ≤ u∗ ≤ uk ≤ uk−1 ≤ · · · ≤ u1 ≤ u0 in G.

Since uk+1 satisfies problem (3.10) with k replaced with k + 1, and h(0) ≤
h(uk) ≤ h(uk−1), Lemma 3.1 implies that

u∗ ≤ uk+1 ≤ uk.

We thus obtain a monotone increasing sequence {uk} with u0 ≥ uk ≥ u∗ for
all k = 1, 2, 3, . . . . Using the first part of the proof (cf.(3.7)), and applying
estimates (3.8) to (3.10) we obtain the estimate

||uk||W 2,1
p (G)

≤ C||f ||p,G(1 + ||c||∞,G).

Applying (3.8) to (3.10) again, we obtain a subsequence unk converging to a
solution in W 2,1

p (G). Further, applying the above estimate to unk , and taking
limit as k →∞, we obtain (3.3).
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It remains to prove the uniqueness of solution. Suppose that (3.2) has two
solutions u and v, then u− v is a solution of problem (3.2) with f replaced by
0. Multiplying both sides of the equation by u − v and integrating over G, we
obtain

(3.11)
∫
G

(u− v)t(u− v)dxdt +
∫
G
|∇(u− v)|2dxdt+

∫
G
c(u− v)2dxdt = 0.

From the periodic property of u, v, we deduce

∫
G

(u− v)t(u− v)dxdt =
∫
G

∫ T

0

1
2
d

dt
(u− v)2dtdx = 0.

Consequently, we can complete the proof of Theorem 3.1 by mean of (3.11).

In order to prepare for the consideration of the competitive system (3.1), we
next consider the following scalar periodic nonlinear problem:

(3.12)



ut −∆u− (a(x, t) − f(x, t))u+ bu2 = 0 in G,

∂u
∂ν = 0 on S,

u(x, 0) = u(x, T ) for all x ∈ Ω.

Theorem 3.2 (Periodic Solution for Scalar Nonlinear Problem). Let
a(x, t), f(x, t) be both in L∞

+ (Ω× [0,∞)) and f(x, t) ∈ Bδ,T , where δ satisfies

(3.13) 0 < δ ≤ infG a(x, t).

Suppose a(x, t) is also a t-periodic function with period T in Ω× [0,∞), then the
problem (3.12) has a positive t-periodic solution u(x, t) ∈ W 2,1

p (G) of period T ,
for all p ∈ (1,∞), satisfying the estimate

(3.14) ||u||W 2,1
p (G) ≤ C̃,

where C̃ is a constant determined by ||a||∞,G. Moreover, if δ further satisfies
the condition

(3.15) 0 < δ <
1
3
{2 infG a(x, t)− supG a(x, t)},

then the positive solution is unique.

Proof. Let C1 > 0 be a constant such that

(3.16) ||a||∞,GC1 − bC2
1 ≤ 0,
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and choose another positive constant P so that

(3.17) δ + 2bC1 − P < 0.

Define an initial iterate

(3.18) u0 ≡ C1;

and then inductively define uk, k = 1, 2, . . . , as the unique non-negative solutions
in W 2,1

p (G) of the problem:

(3.19)




∂uk
∂t −∆uk + Puk = (a− f)uk−1 + Puk−1 − bu2

k−1 in G,

∂uk
∂ν = 0 on S,

uk(x, 0) = uk(x, T ) for all x ∈ Ω.

The existence of uk has been proved by Theorem 3.1.
By (3.16), (3.18) and Lemma 3.1, one can easily verify that

(3.20) u1 ≤ C1 ≡ u0 in G.

By the choice of P in (3.17), the function

(3.21) h(x, t, u) = [a(x, t) − f(x, t)]u− bu2 + Pu

is increasing in u for 0 < u ≤ C1. Again, Lemma 3.1 implies

(3.22) uk ≤ uk−1 in G for each k = 2, 3, . . .

On the other hand, hypothesis (3.13) implies that for ε > 0 small enough, we
have
(3.23)

∂
∂t(uk − ε)−∆(uk − ε) + P (uk − ε) = h(x, t, uk−1)− Pε

≥ h(x, t, uk−1)− Pε− (a− f)ε+ bε2

= h(x, t, uk−1)− h(x, t, ε).

Thus, assuming ε < C1 is sufficiently small, we can deduce inductively starting
from k = 1 that

∂

∂t
(uk − ε)−∆(uk − ε) + P (uk − ε) > 0.

Consequently, we have

C1 = u0 ≥ u1 ≥ u2 ≥ · · · uk ≥ · · · ≥ ε > 0.
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From Theorem 3.1, we have

(3.24) ||uk||W 2,1
p (G)

≤ C(||(a− f)uk−1 + Puk−1 − bu2
k−1||p,G).

Hence, combining with the uniform bound for uk, we obtain

(3.25) ||uk||W 2,1
p (G)

≤ C̃,

where C̃ is determined by C1 and ||a||∞,G, independent of k. Passing to the
limit as k →∞ in (3.19) and using the a-priori estimate (3.24) again, we obtain
a solution of problem (3.12) in W 2,1

p (G) and the estimate (3.14).
We next prove the uniqueness part of this theorem. First, we note that from

(3.23) we can choose the lower bound ε as

(3.26) ε = (1/b)(infG a(x, t)− δ).

From (3.16) above, we also see that we can choose C1 as

(3.27) C1 = {supG a(x, t)}/b.

Suppose w is another positive solution, let k̄ = max{C1, ||w||∞} and start it-
erating from an initial constant function k̄. We construct as in the proof of
existence above another solution, say v, such that

(3.28) 0 < ε ≤ u ≤ v and 0 ≤ w ≤ v a.e. in G.

By the choice of ε and using the same argument as above for proving u ≥ ε, we
can prove w ≥ ε. Thus we have

0 < ε ≤ w ≤ v.

We now prove u ≡ v in G. Since u and v both satisfy (3.12), the function
U := v − u satisfies



Ut −∆U − (a(x, t) − f(x, t))U + b(u+ v)U = 0 in G,

∂U
∂ν = 0 on S,

U(x, 0) = U(x, T ) for all x ∈ Ω.

From (3.28) we have

(3.29) u+ v > 2ε.
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Using (3.15), (3.26) and (3.29), we deduce that

a− f ≤ 2 infG a(x, t)− 3δ

< 2 infG a(x, t) − 2δ ≤ 2εb ≤ b(u+ v).

That is, we have
(a− f)− b(u+ v) < 0 in G.

We can then use the same methods as in the proof of uniqueness as in Theorem
3.1 to prove U ≡ 0, i.e. u ≡ v in G. (Here, the role of c is replaced by
b(u + v) − (a − f).) Similarly, we can show w ≡ v in G. This completes the
proof of Theorem 3.2.

We now return to consider the existence of periodic positive solution for the
competitive system (3.1), for a fixed given (f, g) ∈ Bδ,,T . This will be established
in Theorem 3.3 with the hypotheses

[H1] 0 < δi <
1
3{2 ãi − âi − 2 ci

âj
bj
}, i = j = 1, 2 and i �= j.

Here ãi = infG ai(x, t) and âi = supG ai(x, t) for i = 1, 2. To obtain the existence
theorem (Theorem 3.3), we will construct two sequences by means of iteration.
Let u0 be the solution of the problem

(3.30)




ut −∆u− (a1(x, t)− f(x, t))u+ b1u
2 = 0 in G,

∂u
∂ν = 0 on S,

u(x, 0) = u(x, T ) for all x ∈ Ω;

and let v0 be the solution of the problem

(3.31)




vt −∆v − (a2(x, t)− g(x, t) − c2u0)v + b2v
2 = 0 in G,

∂v
∂ν = 0 on S,

v(x, 0) = v(x, T ) for all x ∈ Ω.

From Theorem 3.2 and its proof, we see that hypotheses [H1] imply that u0 and
v0 exist in W 2,1

p (G) for p > 1, and

â1

b1
≥ u0 ≥ ã1 − δ1

b1
> 0,

â2

b2
≥ v0 ≥ ã2 − c2â1/b1 − δ2

b2
> 0.

Note that in (3.30) and (3.31), the derivatives are taken in the weak sense,
and the equations are satisfied a.e. in G. For i = 1, 2, . . . , we define ui and vi
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as the solutions of the following problems (3.32) and (3.33) respectively:

(3.32)




∂ui
∂t −∆ui − (a1 − f − c1vi−1)ui + b1u

2
i = 0 in G,

∂ui
∂ν = 0 on S,

ui(x, 0) = ui(x, T ) for all x ∈ Ω;

and

(3.33)




∂vi
∂t −∆vi − (a2 − g − c2ui)vi + b2v

2
i = 0 in G,

∂vi
∂ν = 0 on S,

vi(x, 0) = vi(x, T ) for all x ∈ Ω.

Inductively, from (3.32) and (3.33), and using Theorem 3.2 we obtain
(3.34)

0 <
ã1 − c1(â2/b2)− δ1

b1
≤ uk ≤ â1

b1
, 0 <

ã2 − c2(â1/b1)− δ2
b2

≤ vk ≤ â2

b2
.

Moreover, uk and vk are in W 2,1
p (G), for p > 1, k = 1, 2, . . . . By means of a slight

extension of the comparison Lemma 3.1, we can prove the following monotone
properties.

Lemma 3.2. Assume hypotheses [H1], then the sequences defined by (3.30) to
(3.33) satisfy

(3.35) u0 ≥ u1 ≥ u2 ≥ · · · ≥ uk ≥ · · · , in G,

and

(3.36) v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ · · · , in G.

Proof. We first extend the comparison Lemma 3.1 to include the case for a
fixed c ∈ L∞

+ (Ω× (−∞,∞)), while all the other assumptions are unchanged. In
fact, suppose that wi is the solution of the problem

(3.37)




wt −∆w + c(x, t)w = f in G,

∂w
∂ν = 0 on S,

w(x, 0) = w(x, T ) for all x ∈ Ω
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for i = 1, 2, where c ∈ L∞
+ (Ω × (−∞,∞)). We need to prove that f1 ≥ f2, fi ∈

Lp(G) for i = 1, 2, implies w1 ≥ w2 in G. Let cn ∈ Cα(Ω×(−∞,∞)), n = 1, 2, ..,
be positive functions periodic in t with period T such that

cn → c in Lp(G), as n→∞.

Moreover, let win be the solution of problem (3.37) with c replaced by cn for
i = 1, 2. Then, Lemma 3.1 asserts that

(3.38) w1n ≥ w2n in G, n = 1, 2, 3, . . . .

Moreover, Theorem 3.1 implies that {win} is uniformly bounded in W 2,1
p (G) for

each i = 1, 2. Hence, by extracting appropriate subsequences, we can readily
obtain win → wi a.e. in G as n→∞ for i = 1, 2. Consequently, from (3.38), we
obtain w1 ≥ w2.

Now we are ready to prove (3.35) and (3.36). Let w = u0 − u1; then w
satisfies the inequality

(3.39) wt −∆w + [b1(u0 + u1)− (a1 − f) + c1v0]w ≥ 0, in G.

The hypothesis [H1] and (3.34) imply that

b1(u0 + u1)− (a1 − f) + c1v0 ≥ δ > 0, in G.

Then by the extension of Lemma 3.1 mentioned above, we conclude that w ≥ 0,
i.e.

u0 ≥ u1, in G.

From this we deduce that (v1 − v0) satisfies the inequality

(v1 − v0)t −∆(v1 − v0) + [b2(v1 + v0)− (a2 − g) + c2u0](v1 − v0) ≥ 0,

in G. The same argument as above implies that v1 ≥ v0 in G. By iterating and
induction in k, we deduce by the same argument that (3.35) and (3.36) hold.

By (3.34)-(3.36) and Theorem 3.2, we obtain the estimates

(3.40) ||uk||W 2,1
p (G) ≤ R1, ||vk||W 2,1

p (G) ≤ R2,

where R1 and R2 are constants independent of k.
By a similar argument as in Theorem 3.2, taking limit as i → ∞ in (3.35)

and (3.36) and using a-priori estimates (3.40), we finally conclude that there
exists a solution (u, v) of problem (3.1) in W 2,1

p (G)×W 2,1
p (G) and the estimates

(3.40) for u and v hold. Hence, we have proved the following theorem.
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Theorem 3.3 (Periodic Solution for Competitive Systems). Suppose
hypothesis [H1] holds. Let (f, g) ∈ Bδ,T , then problem (3.1) has a solution in
W 2,1
p (G)×W 2,1

p (G) for p > 1 with u, v satisfying

(3.41) 0 < ε1 ≤ u ≤ â1/b1, 0 < ε2 ≤ v ≤ â2/b2.

Here εi = [ãi − ci(âj/bj)− δi]/bi, i = 1, 2 and i �= j. Moreover, (u, v) satisfies

(3.42) ||u||
W 2,1
p (G)

≤ R1, ||v||W 2,1
p (G)

≤ R2.

Here, Ri is a constant determined by ||ai||∞,G, i = 1, 2 respectively.

In order to obtain uniqueness of solution to problem (3.1), we introduce the
following hypothesis:

[H2] ci
â2
b2

+ cj
â1
b1
≤ 2min{δ1, δ2}, for i, j = 1, 2 and i �= j.

Theorem 3.4 (Uniqueness). Let δi, ai, ci and bi, i = 1, 2, satisfy [H1] and
[H2]. Let (f, g) ∈ Bδ,T , then the problem (3.1) has a unique solution (u, v) in
W 2,1
p (G)×W 2,1

p (G) for p > 1 with u, v > 0.

Proof. We first prove that if (u, v) is a solution of problem (3.1) with u, v > 0,
then u and v satisfy (3.41). In fact, we can use the same comparison lemma
described in the proof of Lemma 3.2 to prove u0 ≥ u, and then v0 ≤ v. Similarly,
we can show uk ≥ u and vk ≤ v for all k = 0, 1, 2, . . . . Finally, we obtain the
inequalities u ≤ limk→∞uk ≤ â1/b1 and v ≥ limk→∞vk ≥ ε2. Interchanging the
role of u and v, we can show by means of symmetry that u ≥ ε1 and v ≤ â2/b2.

Suppose that there exist two solutions (u1, v1) and (u2, v2) of problem (3.1)
with ui, vi > 0 for i = 1, 2; then (u1 − u2, v1 − v2) satisfies

(3.43)




(u1 − u2)t −∆(u1 − u2) + [b1(u1 + u2)− (a1 − f)](u1 − u2)

+ c1v1(u1 − u2) + c1u2(v1 − v2) = 0 in G,

(v1 − v2)t −∆(v1 − v2) + [b2(v1 + v2)− (a2 − g)](v1 − v2)

+ c2u1(v1 − v2) + c2v2(u1 − u2) = 0 in G.

By hypothesis [H1] and (3.41), we have

(3.44) b1(u1 + u2)− (a1 − f) + c1v1 ≥ δ1, b2(v1 + v2)− (a2 − g) + c2u1 ≥ δ2.

By hypothesis [H2] when i = 1, j = 2 and (3.41), we find

(3.45) c1u2 + c2v2 ≤ 2min{δ1, δ2}.
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From (3.43), (3.44), (3.45) and the periodic property of the solutions, we obtain

(3.46)∫
G[|∇(u1 − u2)|2 + |∇(v1 − v2)|2] dxdt +

∫
G[δ1(u1 − u2)2 + δ2(v1 − v2)2] dxdt

−2min{δ1, δ2}
∫
G |(u1 − u2)||(v1 − v2)| dxdt ≤ 0.

From (3.46), we finally obtain

u1 = u2, v1 = v2, in G.

Having proved the existence and uniqueness of problem (3.1), we can now
consider the problem of existence of an optimal control (f∗, g∗) ∈ Bδ,T , such
that

(3.47) J(f∗, g∗) = sup(f,g)∈Bδ,T J(f, g),

where

(3.48) J(f, g) =
∫
G

[K1u(f, g)f +K2v(f, g)g −M1f
2 −M2g

2] dxdt,

as described in the beginning of this section.

Theorem 3.5 (Existence of Periodic Optimal Control). Let δi, ai, ci and
bi, i = 1, 2, satisfy the hypotheses [H1] and [H2]. Then there exists an optimal
control (f∗, g∗) ∈ Bδ,T for the problem (3.47), (3.48). Here, (u(f, g), v(f, g))
denotes the unique positive solution of (3.1) as described in Theorem 3.4.

Proof. From (3.42), it follows that

sup(f,g)∈Bδ,T J(f, g) <∞.
Let (fn, gn) be a maximizing sequence. Then, there exists a subsequence, again
denoted by (fn, gn) for convenience, so that

fn → f∗, gn → g∗, weakly in L2(G) with (f∗, g∗) ∈ Bδ,T ,
and

un(fn, gn)→ u∗, vn(fn, gn)→ v∗, strongly in W 1,0
p (G) and weakly in W 2,1

p (G).

Since 


unt −∆un − un[(a1 − fn)− b1un − c1vn] = 0 in G,

vnt −∆vn − vn[(a2 − gn)− b2vn − c2un] = 0 in G,

∂un
∂ν = ∂vn

∂ν = 0 on S,

un(x, 0) = un(x, T ), vn(x, 0) = vn(x, T ), for x ∈ Ω,
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we have∫
G
{−unφt +∇un · ∇φ− (a1 − fn)unφ+ b1u

2
nφ+ c1unvnφ} dxdt = 0

and ∫
G
{−vnφt +∇vn · ∇φ− (a2 − gn)vnφ+ b2v

2
nφ+ c2unvnφ} dxdt = 0,

for any φ ∈ W 1,1
p (G) ∩ L∞(G) with φ(x, T ) = φ(x, 0). Passing to the limits as

n→∞ in the two inequalities above, and noting that∫
G
fnunφ dxdt→

∫
G
f∗u∗φ dxdt and

∫
G
gnvnφ dxdt→

∫
G
g∗v∗φ dxdt,

for all φ ∈ L∞(G), we find that (u∗, v∗) is a weak solution of (3.1) with (f, g)
replaced by (f∗, g∗). Since (u∗, v∗) ∈ W 2,1

p (G) × W 2,1
p (G), the uniqueness of

positive solution of problem (3.1) (Theorem 3.4) implies that

u∗ = u∗(f∗, g∗) and v∗ = v∗(f∗, g∗).

Moreover, we have

J(f∗, g∗) =
∫
G{K1u

∗f∗ +K2v
∗g∗ −M1(f∗)2 −M2(g∗)2} dxdt

≥ limn→∞
∫
G{K1unfn +K2vngn} dxdt

− lim infn→∞
∫
G{M1f

2
n +M2g

2
n} dxdt

= lim supn→∞ J(fn, gn) = sup(f,g)∈Bδ,T J(f, g).

Consequently, (f∗, g∗) is an optimal control in Bδ,T , and this completes the
proof.

In the remaining part of this section, we will deduce an optimal system which
characterizes the optimal control described in Theorem 3.5. We first consider
the differentiability property of the solutions of (3.1) with respect to the control.

Lemma 3.3 (Differentiability with Respect to Control). Suppose that
δi, ai, ci and bi, i = 1, 2, satisfy hypotheses [H1] and [H2]; then we have

(3.49)

u(f+βf̄ ,g+βḡ)−u(f,g)
β → ξ, weakly in W 2,1

2 (G),

v(f+βf̄ ,g+βḡ)−u(f,g)
β → η, weakly in W 2,1

2 (G),
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as β → 0 for some subsequences, for any given (f, g) ∈ Bδ,T , and (f̄ , ḡ) ∈ L∞(G)
such that (f+βf̄ , g+βḡ) ∈ Bδ,T . Furthermore, (ξ, η) is a solution of the problem

(3.50)
ξt −∆ξ − [a1 − f − 2b1u(f, g)− c1v(f, g)]ξ + c1ηu = −f̄u(f, g) in G,

∂ξ
∂ν = 0 on S,

ξ(x, 0) = ξ(x, T ) for all x ∈ Ω;

(3.51)
ηt −∆η − [a2 − g − 2b2v(f, g)− c2u(f, g)]η + c2ξv = −ḡv(f, g) in G,

∂η
∂ν = 0 on S,

η(x, 0) = η(x, T ) for all x ∈ Ω.

(For the uniqueness of solution to problem (3.50) and (3.51), see Remark 3.1
below.)

Proof. Let

ξβ =
u(f + βf̄ , g + βḡ)− u(f, g)

β
, ηβ =

u(f + βf̄ , g + βḡ)− u(f, g)
β

;

then by (3.1), (ξβ, ηβ) satisfies

(3.52)


ξβt −∆ξβ − (a1 − f)ξβ + b1(ū+ u)ξβ + c1v̄ξβ + c1uηβ = −f̄ ū in G,

ηβt −∆ηβ − (a2 − g)ηβ + b2(v̄ + v)ηβ + c2ūηβ + c2vξβ = −ḡv̄ in G,

∂ξβ
∂ν = ∂ηβ

∂ν = 0 on S,

ξβ(x, 0) = ξβ(x, T ) and ηβ(x, 0) = ηβ(x, T ), for all x ∈ Ω.

Here, we denote ū = u(f + βf̄ , g + βḡ), v̄ = v(f + βf̄ , g + βḡ). Since ξβ and
ηβ ∈W 2,1

p (G) are periodic with period T , we can readily prove by approximation
that

(3.53)
∫
G
ξβξβt dxdt =

∫
G
ηβηβt dxdt =

∫
G
ξβt∆ξβ dxdt =

∫
G
ηβt∆ηβ dxdt = 0.

In fact, the inequalities are all proved similarly, and we will only prove one of
them here. Let {rm} be a sequence of C∞(G)-periodic functions of t with period
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T , and ∂rm/∂ν = 0 for all (x, t) ∈ ∂Ω× [0, T ),m = 1, 2, . . . such that

rm,t → ξβ,t, ∆rm → ∆ξβ, in �L2(G), as m→∞.

(Since ξβ ∈W 2,1
p (G), the existence of such {rm} is given in Chapter 7 of [113]).

Then we have∫
G ξβ,t∆ξβ dxdt = limm→∞

∫
G rm,t∆rm dxdt

= limm→∞
∫
G−1

2
d
dt |∇rm|2 dxdt = 0.

Here, the second equality is due to the divergence theorem; and the last one is
due to the periodic property of rm.

Multiplying the first and second equations of (3.52) by ξβ, ηβ respectively
and integrating both over G, we obtain∫

G |∇ξβ|2 dxdt+
∫
G[b1(ū+ u) + c1v̄ − (a1 − f)]ξ2β dxdt +

∫
G c1uξβηβ dxdt

= − ∫G f̄ ūξβ dxdt,
and∫

G |∇ηβ|2 dxdt +
∫
G[b2(v̄ + v) + c2ū− (a2 − g)]η2

β dxdt+
∫
G c2vηβξβ dxdt

= − ∫G ḡv̄ηβ dxdt.
From Theorem 3.3 and [H1], we find

(3.54) b1(ū+ u)− (a1 − f) ≥ δ1, b2(v̄ + v)− (a2 − ḡ) ≥ δ2.

Moreover, by [H2] when i = 1, j = 2, we have

(3.55) c1u+ c2v ≤ 2min{δ1, δ2}.

Consequently we obtain the inequality

(3.56)
∫
G

[∇ξβ|2 + |∇ηβ|2 + ξ2β + η2
β ] dxdt ≤ const.

where the constant is independent of β.
By transposing all the terms of the first equation in (3.52) except ξβt −∆ξβ

to the right-hand side and using (3.56), we can use parabolic estimates to obtain
the following inequality

||ξβ ||W 2,1
2 (G) ≤ C,
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where the constant C is independent of β. Similarly, from the second equation
of (3.52) and (3.56), we obtain

||ηβ ||W 2,1
2 (G)

≤ C,

where C is independent of β. Consequently, there exist subsequences (denoted
again by ξβ and ηβ), such that

ξβ → ξ and ηβ → η,

strongly in W 1,0
2 (G) and weakly in W 2,1

2 (G). Moreover, taking limits as β →∞
in (3.52), we conclude that the limit (ξ, η) satisfies (3.50) and (3.51). This
completes the proof of the Lemma.

Remark 3.1. Under the same hypotheses as Lemma 3.3, we can prove as
in Theorem 3.4 that problem (3.50), (3.51) has only one solution, which is in
W 2,1

2 (G) ×W 2,1
2 (G). Therefore we can actually conclude that (3.49) holds for

the full sequence. The proof of uniqueness under hypotheses [H1] and [H2] is
nearly the same as that for Theorem 3.4, and will be omitted.

Theorem 3.6 (Characterization of the Optimal Control). Let p > 1 be
any positive number. Suppose ai(x, t), δi, bi, ci, i = 1, 2, satisfy hypotheses [H1]
and [H2]; and the positive constants Ki,Mi, i = 1, 2, satisfy the hypotheses

[H3] Mi ≥ Ki supG ai(x,t)
2biδi

, for i = 1, 2.

For any optimal control (f, g) ∈ Bδ,T of problem (3.1), (3.47), (3.48), let (u, v)
be the solution of problem (3.1) with

0 < ε1 ≤ u ≤ â1/b1, 0 < ε2 ≤ v ≤ â2/b2,

and suppose (z,w) is a solution of

(3.57)




zt + ∆z − [2ub1 + c1v − a1 + f ]z − c2vw = −K1f in G,

wt + ∆w − [2vb2 + c2u− a2 + g]w − c1uz = −K2g in G,

∂z
∂ν = ∂w

∂ν = 0 on S,

z(x, 0) = z(x, T ) and w(x, 0) = w(x, T ), for all x ∈ Ω.

satisfying

(3.58) − c2K2â2

δ1b2 + c1â2
≤ z ≤ K1, − c1K1â1

δ2b1 + c2â1
≤ w ≤ K2.
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Then the optimal control (f, g) satisfies

(3.59) f =
u(x, t)
2M1

(K1 − z) and g =
v(x, t)
2M2

(K2 − w), in G.

Here u, v, z and w are in W 2,1
p (G) and εi, i = 1, 2 are defined in (3.41).

Proof. Theorem 3.5 implies that the conditions of this theorem suffice to ensure
the existence of an optimal control in Bδ,T . Let (f, g) ∈ Bδ,T be an optimal
control, i.e. there exists a solution (u, v) of the problem (3.1) for (f, g) such that

J(f, g) = sup(f̂ ,ĝ)∈Bδ,T J(f̂ , ĝ).

For arbitrary f̃ , g̃ ∈ L∞
+ (G), ε > 0, set

f̄ = f̄ε =



f̃ , if f ≤ δ1 − ε||f̃ ||∞,G,

0, elsewhere;

similarly we define g = ḡε.
For β > 0 small enough (say β < ε), such that (f + βf̄ , g + βḡ) ∈ Bβ,T , the

optimality of (f, g) implies that

(3.60) J(f, g) ≥ J(f + βf̄ , g + βḡ),

that is∫
G(K1uf +K2vg −M1f

2 −M2g
2) dxdt

≥ ∫G[K1u(f + βf̄ , g + βḡ)(f + βf̄) +K2v(f + βf̄ , g + βḡ)(g + βḡ)

−M1(f + βf̄)2 −M2(g + βḡ)2] dxdt.

Dividing by β and letting β → 0, we obtain from Lemma 3.3,

(3.61)
∫
G

[K1ξf +K1uf̄ +K2ηg +K2vḡ − 2M1f f̄ − 2M2gḡ] dxdt ≤ 0.

Since (z,w) is a solution of problem (3.57) satisfying (3.58), we deduce from
(3.61), (3.57), (3.50), (3.51) and integrating by parts that∫

G
{f̄ε[(K1 − z)u− 2M1f ] + ḡε[(K2 − w)v − 2M2g]} dxdt ≤ 0.

Now, letting g̃ = 0, ε→ 0+, and using argument as in the proof of Theorem 2.4
in Section 3.2, we deduce from hypothesis [H3] and the above inequality that

f =
K1 − z
2M1

u(x, t), in G.
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Similarly, letting f̃ = 0, we obtain

g =
K2 − w

2M2
v(x, t), in G.

This completes the proof of the theorem.

Remark 3.2. Suppose (f, g) ∈ Bδ,T is any optimal control, we see from The-
orem 3.6 that if (u, v) and (z,w) are the unique solutions of problem (3.1) and
(3.57), respectively, then (u, v, z, w) is a solution of the following optimal system:

(3.62)


ut −∆u− a1u+ (b1 + K1−z
2M1

)u2 + c1uv = 0 in G,

vt −∆v − a2v + (b2 + K2−w
2M2

)v2 + c2uv = 0 in G,

zt + ∆z − [2b1u− a1 + c1v]z + (K1−z)2
2M1

u− c2vw = 0 in G,

wt + ∆w − [2b2v − a2 + c2u]w + (K2−w)2

2M2
v − c1uz = 0 in G,

∂u
∂ν = ∂v

∂ν = ∂z
∂ν = ∂w

∂ν = 0 on S,

u(x, 0) = u(x, T ), v(x, 0) = v(x, T ), for all x ∈ Ω,

z(x, 0) = z(x, T ), w(x, 0) = w(x, T ), for all x ∈ Ω.

Thus if (3.62) can be solved for (u, v,w, z), then the optimal control (f, g) can
be found by using (3.59).

We next prove problem (3.57), described in Theorem 3.6, indeed has a unique
solution satisfying (3.58)

Theorem 3.7. Under the assumptions of Theorem 3.6, problem (3.57) has a
unique solution (z,w) ∈W 2,1

p (G) ×W 2,1
p (G) with

−D1 ≡ − c2K2â2

δ1b2 + c1â2
≤ z ≤ K1 and −D2 ≡ − c1K1â1

δ2b1 + c2â1
≤ w ≤ K2.

Here (u, v) satisfies (3.1) and (3.41).

Proof. We can readily show that (−D1,−D2), (K1,K2) are respectively lower
and upper solutions of problem (3.57) in the region −D1 ≤ z ≤ K1,−D2 ≤ w ≤
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K2, i.e.,


(−D1)t + ∆(−D1) + [2b1u+ c1v − a1 + f ]D1 − c2vK2 ≥ −K1f in G,

(−D2)t + ∆(−D2) + [2b2v + c2u− a2 + g]D2 − c1uK1 ≥ −K2g in G,

K1t + ∆K1 − [2b1u+ c1v − a1 + f ]K1 − c2v(−D2) ≤ −K1f in G,

K2t + ∆K2 − [2b2v + c2u− a2 + g]K2 − c1u(−D1) ≤ −K2g in G.

To prove the existence of solution for (3.57), we first define

(p0, q0) = (−D1,−D2), (p−1, q−1) = (K1,K2),

and pi, qi, i = 1, 2, 3, ..., to be solutions of
(3.63)


−pit −∆pi + [2b1u− a1 + f + c1v]pi−2 = K1f − c2vqi−1 in G,

−qit −∆qi + [2b2v − a2 + g + c2u]qi−2 = K2g − c1upi−1 in G,

∂pi
∂ν = ∂qi

∂ν = 0 on S,

pi(x, 0) = pi(x, T ) and qi(x, 0) = qi(x, T ), for all x ∈ Ω.

The existence of solutions for each of the scalar problems in (3.63) are ensured by
Theorem 3.1. In fact, if we denote φ0(x, s) = φ(x,−s) for any function φ(x, t),
then p0

i satisfies the parabolic problem
(3.64)


p0
it −∆p0

i + [2b1u0 − a0
1 + f0 + c1v

0]p0
i−2 = K1f

0 − c2v0q0i−1 in Ω× [−T, 0],

∂p0i
∂ν = 0, on S̃ = ∂Ω × [−T, 0],

p0(x,−T ) = p0(x, 0), for all x ∈ Ω.

Theorem 3.1 implies that the above parabolic problem has a unique solution.
Therefore problem (3.63) has a unique solution pi(x, s) = p0

i (x,−s). The same
argument applies to qi.

For a given positive number R, (x, t) ∈ G we define two functions:

(3.65)

h1(x, t, p, q) = K1f(x, t)− c2v(x, t)q − [2b1u(x, t)− a1(x, t) + f(x, t)

+ c1v(x, t)]p +Rp,

h2(x, t, p, q) = K2g(x, t) − c1u(x, t)p − [2b2v(x, t)− a2(x, t) + g(x, t)

+ c2u(x, t)]q +Rq.
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We choose R to be sufficiently large such that h1 and h2 are increasing in p and q
respectively in the domain ε1 ≤ u(x, t) ≤ â1/b1, ε2 ≤ v(x, t) ≤ â2/b2,−D1 ≤ p ≤
K1 and −D2 ≤ q ≤ K2. Moreover, it is obvious that h1 and h2 are decreasing
in q and p respectively in the above domain.

Using h1 and h2 we modify (3.63) into

(3.66)




−pit −∆pi +Rpi = h1(x, t, pi−2, qi−1) in G,

−qit −∆qi +Rqi = h2(x, t, qi−2, pi−1) in G,

∂pi
∂ν = ∂qi

∂ν = 0 on S,

pi(x, 0) = pi(x, T ) and qi(x, 0) = qi(x, T ), for all x ∈ Ω.

From the monotone properties of h1 and h2, the maximum principle of linear
parabolic equations and the fact that (p0, q0), (p−1, q−1) are lower and upper
solutions, we can prove by means of (3.66) and induction that

p0 ≤ p2 ≤ · · · ≤ p2i ≤ · · · ≤ p2i+1 ≤ · · · ≤ p1 ≤ p−1 in G

and

q0 ≤ q2 ≤ · · · ≤ q2i ≤ · · · ≤ q2i+1 ≤ · · · ≤ q1 ≤ q−1 in G.

(See Section 5.5 in [125] for details of the scheme). Moreover, we have

||pi||W 2,1
p (G) ≤ C and ||qi||W 2,1

p (G) ≤ C,

where C is a constant independent of i. Consequently, (3.66) implies that the
limits

limr→∞ q2r, limr→∞ q2r−1, limr→∞ p2r, limr→∞ p2r−1

exist in W 2,1
p (G), say q∗, q∗, p∗ and p∗, respectively. Moreover, we have q∗ ≤ q∗

and p∗ ≤ p∗. It remains to prove that q∗ = q∗ and p∗ = p∗. Taking limit as
i→∞ in (3.66), we find (q∗, q∗, p∗, p∗) satisfies the problem
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(3.67)


−p∗t −∆p∗ + [2b1u− a1 + f + c1v]p∗ + c2vq
∗ = K1f in G,

−p∗t −∆p∗ + [2b1u− a1 + f + c1v]p∗ + c2vq∗ = K1f in G,

−q∗t −∆q∗ + [2b2v − a2 + g + c2u]q∗ + c1up
∗ = K2g in G,

−q∗t −∆q∗ + [2b2v − a2 + g + c2u]q∗ + c1up∗ = K2g in G,

∂p∗
∂ν = ∂p∗

∂ν = ∂q∗
∂ν = ∂q∗

∂ν = 0 on S,

p∗(x, 0) = p∗(x, T ), p∗(x, 0) = p∗(x, T ), q∗(x, 0) = q∗(x, T ), and

q∗(x, 0) = q∗(x, T ), x ∈ Ω.

Equation (3.67) consists of actually two separate systems, each with two equa-
tions. Moreover, (p∗, q∗) and (p∗, q∗) satisfy the same system of two equations.
From hypotheses [H1] and [H2] and the fact that

2b1u− a1 + f + c1v ≥ δ1 + c1v ≥ δ1, 2b2v − a2 + g + c2u ≥ δ2 + c2u ≥ δ2,
we can prove as in Theorem 3.4 that

(p∗, q∗) = (p∗, q∗).

Hence, we have proved the existence part. The uniqueness of solution in the
prescribed range is proved by using the property that (−D1,−D2) and (K1,K2)
are lower and upper solutions of problem (3.63) and by showing

p2r ≤ z ≤ p2r+1, and q2r ≤ w ≤ q2r+1, for r = 1, 2, ..,

with similar arguments. This proves Theorem 3.7.

In the final part of this section we describe a method to find approxima-
tions for the solution (u, v, z, w) of problem (3.62). We construct monotone se-
quences converging from above and below, providing upper and lower estimates
for (u, v, z, w). In the case when the limits of upper and lower iterates agree,
then the optimal control problem is completely solved. That is, the optimal
control is given by (3.59) in terms of (u, v, z, w), which is calculated iteratively.
We will need the following additional conditions:

[H4] εiKi
2Mi
≤ δi for i = 1, 2 and

[H5] cj âjbi
bj
≤ K2

i δi
KjMi

for i, j = 1, 2 and i �= j,

where ε1, ε2 are positive numbers defined by (3.41).
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Remark 3.3. Under the additional conditions [H4] and [H5], together with
[H1]-[H3], we can prove that (u0, v0, p0, q0) := (ε1, ε2, 0, 0) is a lower solution of
(3.62). This implies that the proofs of Theorems 3.6 and 3.7 still hold if we
replace (−D1,−D2) with (0, 0). Then we can use the same arguments to show
that the conclusions of Theorems 3.6 and 3.7 are still true. Consequently, there
exists one solution (u, v, z, w) of problem (3.59) such that the functions u, v, z
and w are positive.

Assume all the hypotheses [H1] to [H5] in the remaining part of this section;
define

(u0, v0, p0, q0) := (ε1, ε2, 0, 0) and (u−1, v−1, p−1, q−1) := (â1/b1, â2/b2,K1,K2).

For (x, t) ∈ G, and a given positive number Q, we define four functions as
follows:

ĥ1(x, t, p, u1, u2, v) = p[a1(x, t)− 2b1u1 − c1v] +
(K1 − p)2

2M1
u2 +Qp,

ĥ2(x, t, q, v1, v2, u) = q[a2(x, t)− 2b2v1 − c2u] +
(K2 − q)2

2M2
v2 +Qq,

ĥ3(x, t, u, v, p) = u[a1(x, t)− (b1 +
K1

2M1
)u+

pu

2M1
− c1v] +Qu,

ĥ4(x, t, v, u, q) = v[a2(x, t) − (b2 +
K2

2M2
)v +

qv

2M2
− c2u] +Qv.

We choose Q large enough such that ĥi, i = 1, 2, 3, 4 have the following corre-
sponding properties.

(S1) ĥ1 is increasing in p for p ∈ [p0, p−1] with fixed u1, u2 ∈ [u0, u−1] and
v ∈ [v0, v−1]; moreover, ĥ1 is increasing in u2 but decreasing in u1, v with the
other variables fixed in the same intervals.

(S2) The properties of ĥ2 in terms of q, v1, v2, u are the same as ĥ1 in terms
of p, u1, u2, v respectively.

(S3) ĥ3 is increasing in u for u ∈ [u0, u−1] with fixed p ∈ [p0, p−1] and
v ∈ [v0, v−1]; moreover, ĥ3 is increasing in p but decreasing in v with the other
variables fixed in the same intervals.

(S4) The properties of ĥ4 in terms of v, u, q are the same as ĥ3 in terms of
u, v, p respectively.

We can readily verify that (u0, v0, p0, q0) and (u−1, v−1, p−1, q−1) satisfy

(3.68) u−1t −∆u−1 +Qu−1 ≥ ĥ3(x, t, u−1, v0, p−1) in G,
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v−1t −∆v−1 +Qv−1 ≥ ĥ4(x, t, v−1, u0, q−1) in G,(3.69)

p−1t + ∆p−1 −Qp−1 ≤ −ĥ1(x, t, p−1, u0, u−1, v0) + c2v0q0 in G,(3.70)

q−1t + ∆q−1 −Qq−1 ≤ −ĥ2(x, t, q−1, v0, v−1, u0) + c1u0p0 in G,(3.71)

p0t + ∆p0 −Qp0 ≥ −ĥ1(x, t, p0, u−1, u0, v−1) + c2v−1q−1 in G,(3.72)

q0t + ∆q0 −Qq0 ≥ −ĥ2(x, t, q0, v−1, v0, u−1) + c1u−1p−1 in G,(3.73)

u0t −∆u0 +Qu0 ≤ ĥ3(x, t, u0, v−1, p0) in G,(3.74)

v0t −∆v0 +Qv0 ≤ ĥ4(x, t, v0, u−1, q0) in G,(3.75)

Inequalities (3.68)-(3.71) can be readily verified using [H1]. We next show that
(3.72) holds. Since p0 = 0, proving (3.72) is equivalent to proving the inequality

0 ≥ −(
K2

1

2M1
)ε1 + c2(

â2

b2
)K2.

From [H1], we have

ε1 =
ã1 − c1(â2/b2)− δ1

b1
≥ 2δ1

b1
.

Thus, in order to prove (3.72), we only need to show

K2
1δ1

M1K2
≥ c2â2b1

b2
,

which is our hypothesis [H5]. Inequality (3.73) is completely analogous to (3.72).
Similarly, using [H1] and [H4], we can prove (3.74) and (3.75).

Now, we inductively define sequences of functions ui, vi, pi and qi for i =
1, 2, . . . as solutions of the following problems:

(3.76)




uit −∆ui +Qui = ĥ3(x, t, ui−2, vi−1, pi−2) in G,

∂ui
∂ν = 0 on S,

ui(x, 0) = ui(x, T ) for all x ∈ Ω;



256 CHAPTER 3. CONTROL FOR NONLINEAR SYSTEMS

(3.77)




vit −∆vi +Qvi = ĥ4(x, t, vi−2, ui−1, qi−2) in G,

∂vi
∂ν = 0 on S,

vi(x, 0) = vi(x, T ) for all x ∈ Ω;

(3.78)


pit + ∆pi −Qpi = −ĥ1(x, t, pi−2, ui−1, ui−2, vi−1) + c2vi−1qi−1 in G,

∂pi
∂ν = 0 on S,

pi(x, 0) = pi(x, T ) for all x ∈ Ω;

(3.79)


qit + ∆qi −Qqi = −ĥ2(x, t, qi−2, vi−1, vi−2, ui−1) + c1ui−1pi−1 in G,

∂qi
∂ν = 0 on S,

qi(x, 0) = qi(x, T ) for all x ∈ Ω.

The existence of solutions follows from Theorem 3.1. By using the induction ar-
gument, the monotone properties of ĥi, i = 1, 2, 3, 4 and the maximum principle,
(cf. Section 5.5 in [125]), we can show that

(3.80)

u0 ≤ u2 ≤ · · · ≤ u2i ≤ · · · ≤ u2i−1 ≤ · · · ≤ u1 ≤ u−1 in G,

v0 ≤ v2 ≤ · · · ≤ v2i ≤ · · · ≤ v2i−1 ≤ · · · ≤ v1 ≤ v−1 in G,

p0 ≤ p2 ≤ · · · ≤ p2i ≤ · · · ≤ p2i−1 ≤ · · · ≤ p1 ≤ p−1 in G,

q0 ≤ q2 ≤ · · · ≤ q2i ≤ · · · ≤ q2i−1 ≤ · · · ≤ q1 ≤ q−1 in G.

Furthermore, we can readily prove the following theorem by repeated applica-
tions of Lemma 3.1.

Theorem 3.8 (Approximation Scheme for the Optimal Control).
Assume hypotheses [H1] − [H5]. The sequences ui, vi, pi and qi defined above
by (3.76)-(3.79) satisfy relation (3.80) for all positive integer i and (x, t) ∈ G.
Moreover, any solution (u, v, z, w) of problem (3.62) with properties

(3.81) u0 ≤ u ≤ u−1, v0 ≤ v ≤ v−1, p0 ≤ z ≤ p−1, q0 ≤ w ≤ q−1, in G,

must satisfy the inequalities
(3.82)
u2i ≤ u ≤ u2i−1, v2i ≤ v ≤ v2i−1, p2i ≤ z ≤ p2i−1, q2i ≤ w ≤ q2i−1, in G,

for any positive integer i.
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Remark 3.4. From Theorems 3.7 and 3.8, we find that if

limi→∞ u2i = limi→∞ u2i−1, limi→∞ v2i = limi→∞ v2i−1,

limi→∞ p2i = limi→∞ p2i−1, limi→∞ q2i = limi→∞ q2i−1,

then the optimal control problem (3.47), (3.48) for the competitive system (3.1)
is completely solved (cf. Remark 3.2).

For an example of the control problem: (3.1), (3.47) and (3.48), which sat-
isfies all the hypotheses [H1] to [H5], we consider the following:

Example 3.1. Let Ω = {(x, y)|x2 + y2 < 1} and Ḡ = Ω̄× [0, 2π]. Define

a1(x, y, t) = [14(x2 + y2)]cos t + 16, b1 = 4, c1 = 0.4,

a2(x, y, t) = sin(πx)sin(πy)sin t+ 25, b2 = 6, c2 = 0.5,

K1 = 8, K2 = 7, M1 = 4, M2 = 5.

We thus have

ã1 = 16− 1
4
, â1 = 16 +

1
4
, ã2 = 24, â2 = 26.

Choosing δ = (δ1, δ2) = (11, 17), we can easily verify that the hypotheses [H1]-
[H5] are all satisfied. For instance, we have

ε1 =
ã1 − c1(â2/b2)− δ1

b1
=

19
16
− 13

30
< 2;

thus [H4] holds for i = 1 because

ε1K1

2M1
< 2 < δ1 = 11.

Similarly, [H4] holds for i = 2. Moreover, [H5] holds for i = 1, j = 2 or i = 2, j =
1.

Remark 3.5. Let A1(x, t) and A2(x, t) be given continuous t-periodic functions
for x ∈ Ω, t ∈ (−∞,∞), where Ω is any bounded domain with C2 boundary.
Consider problem (3.1), (3.47) and (3.48) with fixed ci, bi,Mi and Ki for i = 1, 2.
From the previous example, we see that we can always find large enough con-
stants B and δi such that if we define ai = Ai +B, i = 1, 2, then the hypotheses
[H1]-[H5] are readily satisfied. Consequently, our results are applicable to a large
family of problems.
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3.4 Optimal Control of an Initial-Boundary Value
Problem for Fission Reactor Systems

To illustrate the diversity of applications of the method in the last sections, we
consider a different type of problem related to engineering physics. We will be
concerned with the mathematical theory for the optimal control of nuclear fission
reactors modeled by parabolic differential equations. The neutrons are divided
into fast and thermal groups with two equations describing their interaction and
fission, while a third equation describes the temperature in the reactor. The
coefficient for the fission and absorption of the thermal neutron is assumed to
be controlled by a function through the use of control rods in the reactor. The
object is to maintain a target neutron flux shape, while a desired power level
and adjustment costs are taken into consideration. Dividing the neutrons into
two energy groups and taking into account of the temperature feedback, the
two-group neutron diffusion reactor equations become:

(4.1)




ν−1
1 ∂u1/∂t− σ1∆u1 = a11u1 + a12u2

ν−1
2 ∂u2/∂t− σ2∆u2 = a21u1 + (a22 − f)u2 for x ∈ Ω, t > 0,

∂u3/∂t− σ3∆u3 = a31u1 + a32u2 + a33u3,

(4.2)



u1(x, t) = u2(x, t) = u3(x, t) = 0 for x ∈ ∂Ω, t > 0,

ui(x, 0) = ri(x) for i = 1, 2, 3, x ∈ Ω.

Here, u1(x, t) and u2(x, t) are the fast and thermal neutron fluxes respectively,
and u3(x, t) is the temperature function. Ω represents the reactor domain, and
t is the time variable. The coefficients a12 and a21 are positive constants, repre-
senting group-transfer “cross-sections” between the two neutron groups. The pa-
rameter a33 is negative, representing the cooling constant; the constants a31, a32

are positive, related to rate of energy released due to fission in the two neutron
groups. The constants a11 and a22 can be any sign, and are related to fission and
absorption rates of each neutron group. The coefficient for the thermal neutron
is assumed to be controlled by the function f through the use of control rods
in the reactor. The parameter σi, νi, i = 1, 2 are positive constants related to
diffusion rate and average number of fast neutrons released during fission. (See
e.g. Christensen, Soliman and Nieva [29], Lewins [146], Lin, Lin and Jiang [154],
and Terney and Wade [218] for more details.) We are thus making the following
assumptions concerning the signs of the constants aij:

(4.3)
a12, a21, a31, a32 are positive and a33 is negative;
a11 and a22 can be any sign.
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We will assume Ω to be a bounded domain in RN , N ≥ 2, with C2 smooth
boundary ∂Ω. The control function f = f(x, t) will be assumed to be in the set

Cδ = {f ∈ L2(Ω× (0, T ))| − δ ≤ f ≤ δ}

where T and δ are some positive constants. One method for the control of such
a reactor is to maintain a target neutron flux shape, so that a desired power
level and adjustment cost are taken into consideration. For simplicity, we thus
define the cost functional J by

(4.4) J(f) =
∫

ΩT

{
3∑
i=1

Ki[ui(f)− ei]2 +Mf2}dxdt

for each f ∈ Cδ. Here, ΩT = Ω × [0, T ], ei = ei(x, t) are the target profiles
for the two neutron fluxes and temperature with corresponding weight factor
Ki, and M is related to the cost of the control f . Moreover, Ki and M are
constants; and (u1(f), u2(f), u3(f)) denotes the solution of the problem (4.1),
(4.2) with the corresponding control function f = f(x, t) in ΩT . The target
functions ei are all assumed to be in the class L2(Ω × (0, T )), and the initial
functions are in W 2

p (Ω), p = 2 with ri|∂Ω = 0 throughout this section. The
solutions of (4.1), (4.2) will be considered in W 2,1

2 (ΩT ) for each component; and
the equations in (4.1) are satisfied almost everywhere. Here, W 2,1

2 (ΩT ) denotes
the set of measurable functions in ΩT with weak partial derivatives with respect
to x up to second order, and weak first order partial derivative with respect to
t in L2(ΩT ).

An optimal control (if it exists) for the problem (4.1), (4.2) corresponding
to the cost functional (4.4) is a function f∗ ∈ Cδ such that

(4.5) J(f∗) = inf
f∈Cδ

J(f).

We will consider the existence of an optimal control and the differentiability
of the cost functional with respect to the control. We then characterize the
optimal control and derive an optimality system of equations. The optimality
system is solved by an iterative procedure, which can be implemented into a
computer algorithm. The iterative procedure is shown to be a contraction for
small enough time interval. The optimal control can then be synthesized from
the solution of the optimality system. The theory in this section is obtained
from Leung and Chen [133], it can be extended to include the effects of delayed
neutrons, e.g. xenon and iodide. It is known in practice that these delayed
neutrons do have significant effect in the dynamics of the reactor. More details
can be found in [133].
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We first show the existence of optimal control for our problem in the set Cδ.
Then, we consider the differentiability of the mapping

Cδ � f → (u1(f), u2(f), u3(f)).

We characterize the derivative of the mapping as the solution of the linear system
(4.6), (4.7) below.

Lemma 4.1. There exists an optimal control satisfying (4.5) for the control
problem (4.1), (4.2) with cost functional J defined by (4.4).

From the boundedness of the set of admissible controls and the subsequent
a-priori W 2,1

2 (ΩT ) bound on the solutions, we can find a subsequence fn of the
minimizing sequence such that:

fn → f∗ weakly in L2(ΩT ),

and

ui(fn)→ u∗i , i = 1, 2, 3, strongly in W 1,0
2 (ΩT ) and weakly in W 2,1

2 (ΩT ),

as n→∞. We can then deduce J(f∗) satisfies (1.5) by the usual semicontinuity
argument. See e.g. Theorem 1.2 in Section 3.1, Theorem 2.3 in Section 3.2, and
Theorem 3.5 in Section 3.3 for details of similar problem.

Lemma 4.2 (Differentiability with Respect to Control). For i = 1, 2, 3,
the mapping

Cδ � f → ui(f) ∈W 2,1
2 (ΩT )

is differentiable in the following sense:

[ui(f + βf̄)− ui(f)]/β → ξi weakly in W 2,1
2 (ΩT )

as β → 0, for any f ∈ Cδ and f̄ ∈ L∞(ΩT ) such that f + βf̄ ∈ Cδ. Further,
(ξ1, ξ2, ξ3) is the unique solution of

(4.6)




ν−1
1 ∂ξ1/∂t− σ1∆ξ1 = a11ξ1 + a12ξ2,

ν−1
2 ∂ξ2/∂t− σ2∆ξ2 = a21ξ1 + (a22 − f)ξ2 − f̄u2(f) in Ω× (0, T ),

∂ξ3/∂t− σ3∆ξ3 = a31ξ1 + a32ξ2 + a33ξ3,

(4.7) ξi(x, t) = 0 in (Ω× {0}) ∪ (∂Ω× (0, T )), for i = 1, 2, 3.

Proof. Let
ξβi = [ui(f + βf̄)− ui(f)]/β for i = 1, 2, 3.
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By (4.1), (ξβ1 , ξ
β
2 , ξ

β
3 ) satisfies

(4.8)




ν−1
1 ∂ξβ1 /∂t− σ1∆ξβ1 = a11ξ

β
1 + a12ξ

β
2 ,

ν−1
2 ∂ξβ2 /∂t− σ2∆ξβ2 = a21ξ

β
1 + (a22 − f)ξβ2 − f̄u2(f + βf̄),

∂ξβ3 /∂t− σ3∆ξβ3 = a31ξ
β
1 + a32ξ

β
2 + a33ξ

β
3 , in Ω× (0, T ),

ξβi (x, t) = 0 in (Ω× {0}) ∪ (∂Ω× (0, T )), for i = 1, 2, 3.

Let ξ̃βi = ξβi e
−λt, i = 1, 2, 3; (ξ̃β1 , ., ξ̃

β
3 ) satisfies the same equations (4.8), with ξβi

replaced by ξ̃βi and diagonal coefficients aii replaced by aii − λ, i = 1, 2, 3. By
choosing λ > 0 large enough, the diagonal coefficients in the equations for ξ̃βi are
all negative and large in absolute value compared with aij, i �= j. Multiplying the
i-th equation by ξ̃βi and integrating over ΩT , we obtain the following estimates
after adding the three equations and using the Green’s identity:

(4.9)

∑3
i=1{||∇ξ̃βi ||2L2(ΩT ) + ||ξ̃βi ||2L2(ΩT )}

≤ const.||f̄ ||∞||u2(f + βf̄)||L2(ΩT )||ξ̃β2 ||L2(ΩT ).

This implies that the expression on the left above must be bounded for all small
β > 0. Applying parabolic estimates to the equations satisfied by ξ̃βi , we obtain:

(4.10)
3∑
i=1

||ξ̃βi ||W 2,1
2 (ΩT ) ≤ constant

for all small β > 0. The inequality (4.10) is readily satisfied also with ξ̃βi replaced
by ξβi , since λ is chosen fixed.

Consequently, there exist subsequences (for convenience denoted again by
ξβi , i = 1, 2, 3) such that

ξβi → ξi, i = 1, 2, 3, as β → 0,

strongly in W 1,0
2 (ΩT ) and weakly in W 2,1

2 (ΩT ). Taking limit as β → 0, we con-
clude that the limit ξ′is satisfy (4.6) and (4.7). From the uniqueness of solution
ξi to (4.6), (4.7) we conclude that ξβi → ξi, i = 1, 2, 3, weakly in W 2,1

2 (ΩT ) as
β → 0, for a full sequence.

We now proceed to characterize the optimal control in Theorem 4.1 in terms
of solutions of (4.1), (4.2) and its adjoint problem (4.13), (4.14) below. From
this, we will obtain an optimality system (4.23) together with initial and terminal
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conditions (4.2), (4.14) respectively. In Theorem 4.2, we show that for small
enough time interval, the solution of the optimality system can be obtained by
a contractive iterative procedure. The solution of the optimality system within
a certain range is also shown to be unique because the solution is the fixed point
of a contraction. After the optimality system is solved, an optimal control can
be readily constructed by means of formula (4.12).

For convenience, we adopt the following notations for the differential
operators:

(4.11)

L1 := ν−1
1 ∂/∂t− σ1∆, L∗

1 := −ν−1
1 ∂/∂t− σ1∆;

L2 := ν−1
2 ∂/∂t− σ2∆, L∗

2 := −ν−1
2 ∂/∂t− σ2∆;

L3 := ∂/∂t− σ3∆, L∗
3 := −∂/∂t− σ3∆.

The following theorem gives a characterization of any optimal control in Cδ.

Theorem 4.1 (Characterization of the Optimal Control). For M > 0
sufficiently large, any optimal control f ∈ Cδ must satisfy:

(4.12) f = qu2/M in Ω× [0, T ],

where (u1, u2, u3) is the solution of (4.1), and (p, q, w) is the solution of

(4.13)




L∗
1[p] = a11p+ a21q + a31w +K1(u1 − e1),

L∗
2[q] = a12p+ (a22 − f)q + a32w +K2(u2 − e2),

L∗
3[w] = a33w +K3(u3 − e3)

in Ω× (0, T ), with terminal and boundary conditions:

(4.14)



p(x, T ) = q(x, T ) = w(x, T ) = 0 for x ∈ Ω,

p(x, t) = q(x, t) = w(x, t) = 0 for (x, t) ∈ ∂Ω× [0, T ].

Proof. Let f ∈ Cδ be an optimal control, i.e., the corresponding solution of the
problem (4.1) for f satisfies the property:

J(f) = inf
f̃∈Cδ

J(f̃).

For arbitrary ḡ ∈ L∞
+ (ΩT ), ε > 0, set

f̄ = f̄ε =
{
ḡ if f ≤ δ − ε||ḡ||∞,
0 otherwise.
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For β > 0 small enough (say β < ε), such that f + βf̄ε ∈ Cδ, the optimality of
f implies that J(f) ≤ J(f + βf̄ε), that is

0 ≤ 1
2

∫
ΩT

∑3
i=1{Ki[ui(f + βf̄ε)− ei]2 −Ki[ui(f)− ei]2}

+M [(f + βf̄ε)2 − f2] dxdt.

Dividing by β and letting β → 0, we obtain

(4.15) 0 ≤
∫

ΩT

{
3∑
i=1

Ki[ui(f)− ei]ξi +Mf̄εf} dxdt,

where ξi, i = 1, 2, 3, are defined in (4.6), (4.7). For convenience, we define the
matrix function:

(4.16) A =



a11 a12 0

a21 (a22 − f) 0

a31 a32 a33


 ,

and let AT denotes the transpose of A. Inequality (4.15) can be written as:

(4.17)

0 ≤ ∫ΩT {[ξ1, ξ2, ξ3] · (



L∗

1p

L∗
2q

L∗
3w


−AT



p

q

w


) +Mff̄ε} dxdt

=
∫
ΩT
{[p, q, w] · (



L1ξ1

L2ξ2

L3ξ3


−A



ξ1

ξ2

ξ3


) +Mff̄ε} dxdt.

From Lemma 4.2, (4.17) leads to:

0 ≤
∫

ΩT

{q(−f̄εu2) +Mf̄εf} dxdt =
∫

ΩT

f̄ε[−qu2 +Mf ] dxdt.

Letting ε→ 0, we obtain:

0 ≤
∫

ΩT∩{(x,t)|f<δ}
ḡ[−qu2 +Mf ] dxdt.
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This implies that:

(4.18) f ≥ qu2/M in ΩT ∩ {(x, t)|f < δ}.

On the other hand, for arbitrary −h̄ ∈ L∞
+ (ΩT ), ε > 0, set

f̄ = fε =
{
h̄ if f ≥ −δ + ε||h̄||∞,
0 otherwise.

Using the same argument as above, and letting ε→ 0, we obtain

0 ≤
∫

ΩT∩{(x,t)|−δ<f}
(h̄)[−qu2 +Mf ] dxdt.

This implies that

(4.19) f ≤ qu2/M in ΩT ∩ {(x, t)| − δ < f}.

Hence, from (4.18) and (4.19) we obtain

(4.20) f = qu2/M in ΩT ∩ {(x, t)| − δ < f < δ}.

In the set ΩT ∩ {(x, t)|f = δ}, we find from (4.19) that

(4.21) δ = f ≤ qu2/M ≤ δ. provided that M is sufficiently large.

This means f = qu2/M there, under these conditions. (Note that q and u2 are
uniformly bounded in [0, T ], for all M > 0.) Similarly, in the set ΩT ∩{(x, t)|f =
−δ}, we find from (4.18) that

(4.22) −δ = f ≥ qu2/M ≥ −δ provided that M is sufficiently large.

Combining (4.20), (4.21) and (4.22), we conclude that (4.12) must hold for
fδ ∈ C. This proves the Theorem.

Remark 4.1. Note again that since f ∈ Cδ, the functions q and u2 in the above
theorem are uniformly bounded in [0, T ], independent of M > 0. This leads to
the last inequality in (4.21), (4.22) and the conclusion of the theorem.

Remark 4.2 (The Optimality System). Combining equations (4.1), (4.13)
and equality (4.12), we obtain the following optimality system of six equations,
from which the optimal control f in Cδ can be found by means of the formula
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(4.12), when M is sufficiently large:

(4.23)




ν−1
1 ∂u1/∂t− σ1∆u1 = a11u1 + a12u2,

ν−1
2 ∂u2/∂t− σ2∆u2 = a21u1 + (a22 − u2q/M)u2,

∂u3/∂t− σ3∆u3 = a31u1 + a32u2 + a33u3,

−ν−1
1 ∂p/∂t− σ1∆p = a11p+ a21q + a31w +K1(u1 − e1),

−ν−1
2 ∂q/∂t− σ2∆q = a12p+ (a22 − u2q/M)q + a32w +K2(u2 − e2),

−∂w/∂t− σ3∆w = a33w +K3(u3 − e3)

in Ω×(0, T ). The components (u1, u2, u3) satisfy initial conditions (4.2) at t = 0,
and the components (p, q, w) satisfy terminal conditions (4.14) at t = T . Here
all a′ijs are constants, with all off-diagonal constants a12, a21, a31, a32 > 0, the
cooling constant a33 < 0, and a11, a22 arbitrary.

For simplicity, we assume the following additional hypotheses on the smooth-
ness on the target and initial functions. The assumptions are convenient for the
use of Hölder space theory and estimates by mean’s of Green’s function.

[H] Each ei(x, t) is in Cα,α/2(Ω̄ × [0, T ]), for some 0 < α < 1, ei(x, T )|∂Ω =
0, i = 1, 2, 3; ri(x) is in C2+α(Ω̄), ri(x)|∂Ω = 0, and ∆ri(x)|∂Ω = 0, for i = 1, 2, 3.

Theorem 4.2 (Solution of the Optimality System). Assume hypotheses
[H]. For T := t∗ > 0 sufficiently small, problem (4.23) with boundary, initial and
terminal conditions (4.2) and (4.14) respectively, has a unique solution with the
property that each component of the solution is in the space C2+α,1+α/2(Ω̄ ×
[0, t∗]), 0 < α < 1.

Remark 4.3. The existence part is not really needed because it can be ob-
tained by the existence of optimal control. However, the proof further gives a
constructive method to approximate the optimal control. It can also be adapted
to obtain bounds of the solution. An iterative scheme is described in Remark
4.4. The convergence of the scheme is ensured by contraction argument in the
proof of this theorem.

Proof. For convenience, we will denote the operators L∗
i , i = 1, 2, 3 above by:

L∗
1 = L4, L∗

2 = L5, L∗
3 = L6.

We will also denote the expressions on the right hand side of equations (4.23)
successively by fi(u1, u2, u3, p, q, w), i = 1, . . . , 6. Let C be the set of continuous
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functions y = (y1(x, t), . . . , y6(x, t)) for (x, t) ∈ Ω̄ × [0, t∗], (t∗ > 0 to be deter-
mined); and let Gi(x, t;x0, t0); i = 1, 2, 3, be Green’s functions for the equations
Li[u] = f̂ . For functions y ∈ C, define a mapping H for functions y ∈ C → C by:

(4.24)


z = H[y], where z = (z1(x, t), . . . , z6(x, t)), (x, t) ∈ Ω× [0, t∗],

zi(x, t) =
∫ t
0 dτ

∫
ΩGi(x, t, ξ, τ)fi(y1(ξ, τ), . . . , y6(ξ, τ))dξ

+
∫
ΩGi(x, t, ξ, 0)ri(ξ)dξ for i = 1, 2, 3,

zi(x, t) =
∫ t∗−t
0 dτ

∫
ΩGi−3(x, t∗ − t, ξ, τ)fi(y1(ξ, t∗ − τ), . . . , y6(ξ, t∗ − τ))dξ

for i = 4, 5, 6.

It is well known that the functions z will be in C. If the integrand fi as a
function of (ξ, τ) ∈ Ω × (0, t∗) is Hölder continuous in ξ uniformly in τ , then
zi satisfies Li[zi] = fi in Ω × (0, t∗), (see e.g. Friedman [63]). The functions
(z1, z2, z3) satisfy corresponding initial boundary conditions (4.2); and the func-
tions (z4, z5, z6) satisfy corresponding terminal boundary condition (4.14) with
t∗ = T . Moreover, for x, ξ ∈ Ω, 0 ≤ τ ≤ t ≤ t∗, we have

(4.25) |Gi(x, t; ξ, τ)| ≤ K

(t− τ)µ|x− ξ|n−2+µ
, i = 1, 2, 3.

for some constant K > 0, 0 < µ < 1.
We next show that the mapping H is a contraction in C, with t∗ chosen

sufficiently small. Let ŷ = (ŷ1, ..., ŷ6) and ỹ = (ỹ1, ..., ỹ6) ∈ C, then for i = 1, 2, 3,
we obtain from (4.24),

(4.26) ẑi(x, t)− z̃i(x, t) =
∫ t

0

∫
Ω
Gi(x, t; ξ, τ)[fi(ŷ1, ..., ŷ6)− fi(ỹ1, ..., ỹ6)] dξdτ

for (x, t) ∈ Ω× [0, t∗]. Since the functions fi are Lipschitz for ŷ and ỹ in C, one
can thus readily obtain, from (4.25) and (4.26)

(4.27) |ẑi(x, t)− z̃i(x, t)| ≤ K̄t1−µ
6∑
i=1

maxΩ×[0,t∗] |ŷi − ỹi|

for all (x, t) ∈ Ω̄ × [0, t∗], i = 1, 2, 3, some K̄ > 0. For i = 4, 5, 6 in (4.24), the
corresponding differential equation is changed to a parabolic type by using the
variable τ = t∗ − t, 0 ≤ t ≤ t∗, and one can deduce in the same way that

(4.28) |ẑi(x, t)− z̃i(x, t)| ≤ K̂(t∗ − t)1−µ
6∑
i=1

maxΩ×[0,t∗] |ŷi − ỹi|
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for all (x, t) ∈ Ω̄× [0, t∗], i = 4, 5, 6, some K̂ > 0. By (4.26) and (4.27), one can
readily see that if t∗ > 0 is chosen to be sufficiently small, then the mapping
H : C → C is a contraction with respect to the uniform norm. The contraction
mapping H has a unique fixed point in C. As an image of the mapping H, the
fixed point in C is Hölder continuous in Ω̄ × [0, t∗]. Applying the mapping H
again, we find that the fixed-point function is actually a classical solution of
(4.23). By the smoothness and compatibility assumptions in hypotheses [H], we
conclude that the fixed point is a solution to problem (4.23), (4.2), and (4.14),
with components in C2+α,1+α/2(Ω̄×[0, t∗]). Since any solution of problem (4.23),
(4.2), and (4.14) with components in C2+α,1+α/2(Ω̄ × [0, t∗]) is a fixed point of
the mapping H in C, we conclude that such a kind of solution must be unique.

Remark 4.4. We may define (y0
1, ..., y

0
6) = (r1(x), r2(x), r3(x), 0, 0, 0) for (x, t) ∈

Ω̄× [0, t∗], and define iteratively (yj1, ..., y
j
6) = H[(yj−1

1 , ..., yj−1
6 )] as functions in

C as described in (4.24), j = 1, 2, . . . ; that is


Li[y
j
i ] = fi(y

j−1
1 , ..., yj−1

6 ) in Ω× (0, t∗), i = 1, ..., 6, j = 1, 2, . . .

yji (x, 0) = ri(x) in Ω, i = 1, 2, 3,

yji (x, t
∗) = 0 in i = 4, 5, 6.

Then the functions (yj1, ..., y
j
6) will tend to the unique solution (u1, u2, u3, p, q, w)

as described in Theorem 4.2, as j tends to infinity.

Remark 4.5. Due to the signs of the coefficients of the optimality system
(4.23), its solutions has a tendency to blow up quickly. More specifically, the
coefficient a22 may be positive; moreover, q can possibly be negative and thus
the nonlinear term −u2

2q/M in the second equation in (4.23) can be positive.
This causes the solution u2 to grow quickly and makes it difficult to define an
iterative scheme for functions on the whole interval [0, T ]. The nature of the
opposite time orientation of the last three equations in (4.23) also gives rise
to additional difficulty. Thus we are able to obtain a constructive scheme for
calculating a solution only for small intervals of time. Such restrictive condition
is partly alleviated by Corollary 4.4 and system (4.32) below. Similar optimal
control problem for other applications are studied in Section 3.3 and Stojanovic
[213]. However, these other kinds of systems do not tend to blow up as in our
present situation. The signs of the coefficients in these other problems ensure
that the problems can be conveniently treated once in the entire interval [0,T].

In Theorem 4.1 the constant M is assumed to be large. If no assumption
is made on the size of the positive constant M , we can follow exactly the same
argument as in the proof of the theorem up to (4.20), to obtain the following
result.
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Theorem 4.3. For a given fixed δ > 0, any optimal control f ∈ Cδ must satisfy

(4.29) f(x, t) =
q(x, t)u2(x, t)

M
in ΩT ∩ {(x, t)| − δ < f(x, t) < δ},

where (u1, u2, u3) is the solution of (4.1) and (4.2), while (p, q, w) is the solution
of (4.13)and (4.14).

Let f ∈ Cδ as described in Theorem 4.3 or 4.1. At those (x, t) in ΩT where
f(x, t) = δ, the arguments in the proof of Theorem 4.1 show that we must also
have f(x, t) ≤ q(x, t)u2(x, t)/M . That is, at such (x, t), f = δ also satisfies

(4.30) f = max {−δ, min{qu2/M, δ}}.

Here, q and u2 is as described in Theorem 4.3. At those (x, t) in ΩT where
f(x, t) = −δ, the arguments in the proof of Theorem 4.1 show that f(x, t) ≥
q(x, t)u2(x, t)/M . That is, at such (x, t), f = −δ also satisfies (4.30). Combining
with the statement of Theorem 4.3, we see that (4.30) is satisfied for all (x, t)
in ΩT . We can summarize as follows.

Corollary 4.4 (General Formula for the Optimal Control). Let f ∈ Cδ
be an optimal control and let q, u2 be as described in Theorem 4.3, then

(4.31) f(x, t) = max{−δ, min{q(x, t)u2(x, t)/M, δ}} for all (x, t) ∈ ΩT .

Consequently, the function (u1, u2, u3, p, q, w) in ΩT , described in Theorem
4.1 or 4.3, also satisfies system

(4.32)


ν−1
1 ∂u1/∂t− σ1∆u1 = a11u1 + a12u2,

ν−1
2 ∂u2/∂t− σ2∆u2 = a21u1 + (a22 −max{−δ,min{qu2/M, δ}})u2 ,

∂u3/∂t− σ3∆u3 = a31u1 + a32u2 + a33u3,

−ν−1
1 ∂p/∂t− σ1∆p = a11p+ a21q + a31w +K1(u1 − e1),

−ν−1
2 ∂q/∂t− σ2∆q = a12p+ (a22 −max{−δ,min{qu2/M, δ}})q + a32w

+K2 (u2 − e2),

−∂w/∂t− σ3∆w = a33w +K3(u3 − e3)
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in Ω × (0, T ). The components (u1, u2, u3) satisfy initial-boundary conditions
(4.2), and the components (p, q, w) satisfy terminal-boundary conditions (4.14).
One readily sees that if f ∈ Cδ is an optimal control, then there exists a solution
(u1, u2, u3, p, q, w) of (4.32) in Ω×(0, T ) satisfying initial and terminal conditions
(4.2) and (4.14) such that f satisfies (4.31) for the functions u2(x, t) and q(x, t).
Letting [H] be as described before Theorem 4.2, we can prove the following
theorem by exactly the same method as Theorem 4.2.

Theorem 4.5. Assume hypotheses [H]. For T := t∗ > 0 sufficiently small,
problem (4.32) with boundary, initial, and terminal conditions (4.2) and (4.14),
respectively, has a unique solution with the property that each component of the
solution is in the space C2+α,1+α/2(Ω̄× [0, t∗]), 0 < α < 1.

Although the existence part of the theorem is ensured by the existence of
optimal control f , the usefulness of this theorem is justified by Remark 4.3. The
convenience of hypotheses [H] is also explained before.

3.5 Optimal Boundary Control of a Parabolic
Problem

In the previous sections, we analyze elliptic and parabolic systems with control
in the interior of the domain. We now consider a simple optimal control of a
parabolic equation with the control of coefficient at the boundary. Such problem
is related to natural applications to environmental boundary preservations (cf.
Friesen, Eagles and MacKay [65] , and Doa [51]), and to heat transfer studies
(cf. Lenhart and Wilson [119]). We first consider the heat equation with convec-
tive boundary condition, and use the boundary heat transfer coefficient as the
control. The objective is to maintain a target interior temperature profile and
reduce the cost of the control, as in the last section. However, in our present
case of boundary control, it will be convenient to obtain rigorous theory by us-
ing different type of function spaces and solutions. Our intention is to illustrate
how the proofs can be adapted for a simple problem. More elaborate and larger
systems can then be considered as in previous applications. In this section,
our development for the control of scalar temperature problem (5.1)-(5.2) is ob-
tained from [119], and for the more complex prey-predator system (5.21)-(5.21)
is obtained from Lenhart, Liang and Protopopescu [117].

Part A: Scalar Problem.

We consider the heat equation in a bounded domain Ω with smooth boundary
in RN , and a finite time interval [0, T ]. In order to avoid restricting to a small
interval, we define a dependent variable u(x, t) = e−λtT̃ (x, t), where T̃ (x, t) is
the temperature function and λ > 0 is a large constant to be chosen later. The
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initial-boundary value problem for the variable u becomes

(5.1)




ut − α∆u+ λu = 0 in Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

∂u
∂ν = −hu on ∂Ω× (0, T ),

where h ∈ L∞(∂Ω × (0, T )) is a non-negative heat transfer coefficient under
control, and α is a positive constant. The boundary relations above is known as
Newton’s law of cooling. (Note that T̃ (x, t) satisfies (5.1) with λ = 0). In this
section, we assume that the initial function satisfies u0 ∈ L∞(Ω), and u0 ≥ 0
a.e. in Ω. We define the cost functional J by:

(5.2) J(h) =
1
2
{β
∫

ΩT

[u(h)− Zd]2 dxdt + γ

∫
∂ΩT

h2dsdt}.

Here, ΩT = Ω × (0, T ), ∂ΩT = ∂Ω × (0, T ), and Zd ∈ L∞(ΩT ) is the desired
temperature distribution. The symbol u(h) denotes the weak solution of the
initial-boundary value problem (5.1) with corresponding control h = h(x, t)
on ∂ΩT described below. The positive constants β and γ are per unit costs
associated with deviation from desired temperature profile and with controlling
the heat transfer coefficient. The control functions will be restricted to the set:

CM = {h|h ∈ L2(∂Ω × (0, T )); 0 ≤ h(x, t) ≤M a.e.}.

The underlying state space is given by

V = H1(Ω);

and define
W = L2(0, T ;H1(Ω)).

For Φ and Ψ ∈ V , we define a time dependent functional ah by

ah(t; Φ,Ψ) =
∫

Ω
[α∇Φ∇Ψ + λΦΨ]dx+

∫
∂Ω
hΦΨds.

Definition 5.1. A function u is a weak solution of problem (5.1) provided that:

(5.3)




u ∈W ∩ L∞(0, T ;L2(Ω)),

∫ T
0 [< u′(t), v(t) > +ah(t;u(t), v(t))] dt = 0 for all v ∈W,
du
dt ∈ L2(0, T ;V ′), u(0) = u0,
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where V ′ is the dual space of H1(Ω), and the bracket < > in the integral denotes
V ′ − V duality.

Remark 5.1. Under the assumptions on the domain Ω, the initial function u0,
and the control set CM described above, we readily obtain:

k0||v||2V ≤
∫ T

0
ah(t; v(t), v(t))dt ≤ K0||v||2V for all v ∈W,

where k0 and K0 are positive constants independent of h ∈ CM . Consequently,
for each h ∈ CM , the existence of a unique solution u(h) ∈W ∩L∞(0, T ;L2(Ω))
for (5.3) is given by standard theory from Chapter 3 of Lions and Magenes [159]
(cf. Theorem A5-2 in Chapter 6). Note that by choosing suitable test functions
in (5.3), we can deduce that

du/dt ∈ L2(0, T ;V ′), and thus u ∈ C([0, T ], L2(Ω)).

Hence it makes sense for the initial condition in (5.3) (see e.g. Section 5.9 in
[57]).

We will assume that in (5.2) the function Zd is in L2(Ω). An optimal control
(if it exists) for problem (5.1) (or (5.3)) corresponding to the functional (5.2) is
a function h∗ ∈ CM such that

(5.4) J(h∗) = infh∈CM J(h).

Theorem 5.1 (Existence of Optimal Control). There exists an optimal
control satisfying (5.4) for the problem (5.1) (or (5.3)) corresponding to the
functional (5.2).

Proof. Let {hn} be a minimizing sequence in CM . From the above remark,
the functions un := u(hn) are uniquely defined for each n. Using (5.3) with
u = v = un and the time variable from 0 to t, t ∈ (0, T ) we obtain:

(5.5)

1
2

∫
Ω[(un(x, t))2 − (u0(x))2] dx

+
∫ t
0{
∫
Ω α|∇un|2 + |λun|2dx+

∫
∂Ω×(0,t) hn|un|2ds}dt = 0.

Since an(t, un(·, t), un(·, t)) ≥ 0, we have∫
Ω

(un(x, s))2dx ≤
∫

Ω
(u0(x))2dx for all s ∈ (0, T ).

Hence, from above and (5.5) we find

(5.6)

∫ t
0

∫
Ω(un(x, s))2 dxds ≤ T ∫Ω(u0(x))2dx, and

α
∫ t
0

∫
Ω |∇un(x, s)|2 dxds ≤ 1

2

∫
Ω(u0(x))2dx,
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for t ∈ (0, T ]. Thus, un ranges in a bounded subset of W . By using appropriate
test functions for un in (5.3), we deduce that dun/dt = ah(t, un(t), v) ∈ V ′

for each t. Consequently, the boundedness of un in W implies that dun/dt
ranges in a bounded subset of L2(0, T, V ′). Since H1(Ω) ⊂ H

1
2
+ε(Ω) ⊂ V ′,

for 0 ≤ ε < 1/2, we can apply a compact embedding theorem of the space
H1(0, T ;H1(Ω), V ′) into L2(0, T ;H

1
2
+ε(Ω)) (see Theorem A5-3 in Chapter 6),

to extract a subsequence,(again labeled as {un}), with the following properties:

(5.7)

un → u∗ weakly in W,

dun
dt → du∗

dt weakly in L2(0, T ;V ′),

un → u∗ strongly in L2(0, T ;H
1
2
+ε(Ω)).

We can also obtain a subsequence {hn} such that

(5.8) hn → h∗ weakly in L∞(∂ΩT );

and h∗ ∈ CM , since CM is closed in this topology. From the continuity of the
restriction mapping of H

1
2
+ε(Ω) into L2(∂Ω), we find

(5.9) un → u∗ strongly in L2(0, T ;L2(∂Ω)).

Finally, passing to the limit with u replaced with un, n → ∞ in (5.3), we
obtain a weak solution u∗ of (5.1) with h∗ as the heat transfer coefficient. By
the usual lower semi-continuity property of the cost functional as in the earlier
sections or [159], we conclude by means of (5.8) that h∗ is the optimal control
in CM .

Remark 5.2. Note that by (5.6), the function u = u(h) for h ∈ CM , satisfies
||u||W ≤ C, for some constant C independent of M .

We will proceed to characterize the optimal control by an optimality system
which consists of the coupling of the state equation (5.1) with an adjoint equa-
tion. For this purpose, we first consider the differentiation of the solution u(h)
of (5.3) with respect to the control h in CM .

Lemma 5.1 (Differentiability of Optimal Control). The mapping

CM � h→ u(h) ∈W := L2(0, T ;H1(Ω))

is differentiable in the following sense:

u(h+ ρh̄)− u(h)
ρ

→ U weakly in W
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as ρ → 0, for any h ∈ CM and h̄ ∈ CM such that h + ρh̄ ∈ CM . Further,
U = U(h, h̄) is the unique weak solution of the problem

(5.10)




Ut − α∆U + λU = 0 in ΩT ,

U(x, 0) = 0 in Ω,

∂U
∂ν = −hU − h̄u(h) in ∂ΩT .

Proof. From (5.1) and (5.3), we deduce that

(5.11) ξρ ≡ u(h+ ρh̄)− u(h)
ρ

satisfies∫
Ω×{T}

1
2
ξ2ρdx+

∫
ΩT

α|∇ξρ|2 + λξ2ρ dxdt+
∫
∂ΩT

hξ2ρ + h̄u(h+ ρh̄)ξρ dsdt = 0.

This implies that

(5.12)
∫

ΩT

α|∇ξρ|2 + λξ2ρ dxdt ≤
∫
∂ΩT

h̄|u(h+ ρh̄)ξρ| dsdt.

This leads to

||ξρ||2W ≤ C||h̄||L∞(∂ΩT )||u(h + ρh̄)||W ||ξρ||W ,

and thus

(5.13) ||ξρ||W ≤ const,

where the constant is independent of ρ. Thus, we can choose a sequence ρ→ 0
and deduce that the weak limit satisfies (5.10). From the uniqueness of solution
to (5.10), we conclude that ξρ → U weakly in W as ρ→ 0, for a full sequence.

Theorem 5.2 (Characterization of the Optimal Control for the Single
Heat Equation). Let h∗ be an optimal control for problem (5.1), (5.2), (5.4),
and u∗ = u∗(h∗) be the corresponding solution of (5.1). Then there exists a
solution p∗ of the adjoint equation:

(5.14)




−p∗t − α∆p∗ + λp∗ = (u∗ − Zd) in ΩT ,

p∗(x, T ) = 0 in Ω,

∂p∗
∂ν = −h∗p∗ on ∂ΩT ,
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with h∗ satisfying

(5.15) h∗ = min {max{0, αβ
γ
p∗u∗},M} on ∂ΩT .

Proof. Let h∗ + ρh̄ be another control in CM with the corresponding solution
uρ := u(h∗ + ρh̄). We obtain

(5.16)

0 ≤ limρ→0
J(h∗+ρh̄)−J(h∗)

ρ

= limρ→0β
∫
ΩT

(uρ−u
∗

ρ )(uρ+u
∗

2 − Zd)dxdt + γ
∫
∂T

(h̄h∗ + ρ h̄
2

2 )dsdt

= β
∫
ΩT

U(u∗ − Zd)dxdt + γ
∫
∂T
h̄h∗dsdt.

Here, U = U(h, h̄) is the weak solution of (5.10) as described in Lemma 5.1. Let
p∗ be the solution of the adjoint problem (5.14). Then, integrating by parts in
the last line and using (5.10), we obtain from above

0 ≤ β ∫ΩT U(−p∗t − α∆p∗ + λp∗)dxdt + γ
∫
∂ΩT

h̄h∗dsdt

=
∫
∂ΩT

[βα(p∗ ∂U∂ν − U ∂p∗
∂ν ) + γh̄h∗]dsdt

=
∫
∂ΩT

h̄(γh∗ − αβp∗u∗)dsdt.

Standard arguments as in the previous sections in this chapter shows that h∗

satisfies equation (5.15).

Note that since the initial function in (5.1) is non-negative and bounded,
the zero and large positive constant functions are respectively lower and upper
solutions for problem (5.1) for all h ∈ CM independent of M . We can compare
different solutions by maximum principle of parabolic equations by smoothing
out the coefficient h and take limit as in Section 3.3. Thus we deduce that
there exists a constant B independent of M such that all solutions of (5.1) with
h ∈ CM satisfies

0 ≤ u(h) ≤ B a. e. in ΩT .

Choose
B̃ = max{B, ||Zd||∞}.

Let p be the solution of


−pt − α∆p+ λp = B̃ − Zd in ΩT ,

∂p
∂ν = 0 on ∂ΩT ,

p|T = 0 in Ω.
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By comparison, we obtain p ≥ 0 in ΩT . Moreover, p is an upper solution to
problem (5.14) in the sense that it satisfies (5.14) with all the three equalities
replaced by ≥. Again, by comparison we have

p ≥ p∗ in ∂ΩT ,

where p∗ = p∗(h∗), h∗ ∈ CM , independent of M . Since by comparison there
exists a constant K independent of M such that K ≥ p in ΩT , we obtain a
constant K such that

p∗ ≤ K,
h∗ ∈ CM , independent of M . Consequently, we can choose M sufficiently large
such that

αβ

γ
p∗u∗ ≤M,

and h∗ is independent of M . Since u∗ > 0 in ΩT , we have

h∗ =
αβ

γ
(p∗)+u∗.

From (5.14) and (5.15), we find that provided that M is sufficiently large for the
set of admissible control CM , the optimality system satisfied by u∗ and p∗ is:

(5.17)




ut − α∆u+ λu = 0 in ΩT ,

u(x, 0) = u0(x) in Ω,

∂u
∂ν = −αβ

γ p
+u2 on ∂ΩT ,

−pt − α∆p+ λp = (u− Zd) in ΩT ,

p(x, T ) = 0 in Ω,

∂p
∂ν = −αβ

γ u(p+)2 on ∂ΩT .

Remark 5.3 (The Optimality System). In case the optimality system (5.17)
has a unique solution, the optimal control problems (5.1), (5.2), (5.4) is com-
pletely solved by finding the solution (u, p) = (u∗, p∗) of problem (5.17). Then,
we set the optimal control h∗ as

(5.18) h∗ =
αβ

γ
p+u =

αβ

γ
(p∗)+u∗.

Note that the existence of solution for (5.17) is ensured by means of Theorems
5.1, 5.2 and the uniform bound arguments above. The question of uniqueness is
considered in the next theorem.
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Theorem 5.3 (Uniqueness of Solution for the Optimality System). For
λ > 0 sufficiently large, the optimality problem (5.17) has at most one solution.

Proof. Suppose (u1, p1) and (u2, p2) are two solution pairs for the system (5.17).
Using the test functions:

φ1 = u1 − u2, in the equation for u1,

φ2 = p1 − p2, in the equation for p1,

φ3 = u2 − u1, in the equation for u2, and

φ4 = p2 − p1, in the equation for p2;

and adding all the four equations together, we obtain after integrating and
transposing:
(5.19)∫ ∫

ΩT
(u1 − u2)(p1 − p2)dxdt

= 1
2

∫
Ω(u1 − u2)2(x, T )dx+ 1

2

∫
Ω(p1 − p2)2(x, 0)dx + α

∫ ∫
ΩT
|∇(u1 − u2)|2dxdt

+α
∫ ∫

ΩT
|∇(p1 − p2)|2dxdt + λ

∫ ∫
ΩT

(p1 − p2)2 + (u1 − u2)2)dxdt

+
∫
∂ΩT

αβ
γ (p+

1 u
2
1 − p+

2 u
2
2)(u1 − u2)dsdt

+
∫
∂ΩT

αβ
γ (u1(p+

1 )2 − u2(p+
2 )2(p1 − p2)dsdt.

We estimate one of the boundary integral on the right above as follows:∫
∂ΩT

αβ
γ (p+

1 u
2
1 − p+

2 u
2
2)(u1 − u2)dsdt

=
∫
∂ΩT

αβ
γ (p+

1 u
2
1 − p+

1 u
2
2 + p+

1 u
2
2 − p+

2 u
2
2)(u1 − u2)dsdt

≤ C
∫
∂ΩT

(u1 − u2)2 + (p+
1 − p+

2 )2dsdt

≤ C ∫∂ΩT
(u1 − u2)2 + (p1 − p2)2dsdt

≤ C1

∫ ∫
ΩT

(u1 − u2)2 + (p1 − p2)2dxdt

+ α
2

∫ ∫
ΩT
|∇(u1 − u2)|2 + |∇(p1 − p2)|2dxdt,

for some large constant C1, using continuous embedding of H1(Ω) into L2(∂Ω)
and Young’s inequality with ε (cf. p. 258 in [57]) in the last line. The other



3.5. OPTIMAL BOUNDARY CONTROL 277

boundary integral term can be estimated in the same way. We also have∫ ∫
ΩT

(u1 − u2)(p1 − p2)dxdt ≤ 1
2

∫ ∫
ΩT

[(u1 − u2)2 + (p1 − p2)2]dxdt.

Rearranging all the terms in (5.19) and using the above estimates, we obtain

(5.20)

1
2

∫
Ω(u1 − u2)2(x, T )dx + 1

2

∫
Ω(p1 − p2)2(x, 0)dx

+(λ− C1)
∫ ∫

ΩT
[(u1 − u2)2 + (p1 − p2)2]dxdt ≤ 0.

Substituting a large enough λ in (5.20), we conclude

u1 = u2, and p1 = p2 in ΩT .

Remark 5.4. By means of an iterative scheme, we can construct sequences of
functions by solving scalar problems, converging to upper and lower estimates of
the solution of (5.17), as in Sections 3.2 and 3.3. The upper and lower estimates
are solutions of a larger modified system. However, since this is an initial-
boundary value problem, we can show that the upper and lower estimates are
equal by means of large λ in a variable change as above. Consequently, the
sequences actually converge monotonically to the solution of the original problem
(5.17).

Part B: Prey-Predator System.

The second half of this section extends the method in the first half to study
the optimal boundary control for the following prey-predator system:

(5.21)




ut = α1∆u+ u[a1(x, t)− b1(x, t)u− c1(x, t)v] in ΩT ,

vt = α2∆v + v[−a2(x, t) + c2(x, t)u] in ΩT ,

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω,

α1
∂u
∂ν + β(x, t)u = 0, α2

∂v
∂ν + β(x, t)v = 0 on ∂ΩT .

As in the first half of this section, we set the class of admissible control as:

CM = {β|β ∈ L2(∂Ω × (0, T )); 0 ≤ β(x, t) ≤M a.e.}.

We prescribe our payoff functional as

(5.22) J(β) =
∫ ∫

ΩT

(A1u+A2v)dxdt − 1
2

∫
∂ΩT

(M − β)2dsdt,
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with positive constants A1, A2. This functional combines the control on the
boundary and its effect on the populations. It reflects the relationship between
the growth of the species and the economic cost of maintaining an ecologically
favorable boundary environment. The cost could include a loss of profit to the
neighboring industries. To make the most favorable boundary environment, we
would take β = 0 and incur the largest cost, (M − 0)2. We seek to maximize
the functional over the admissible class above, i.e. to find β∗ such that

(5.23) J(β∗) = maxβ∈CMJ(β).

We clarify the assumptions for our problem (5.21) to (5.23) for the remainder
of this section. The set Ω is a bounded domain in RN with smooth boundary ∂Ω.
The coefficient functions ai(x, t), ci(x, t), i = 1, 2 and b1(x, t) are non-negative in
ΩT , and are all in L∞(ΩT ). The parameters αi > 0, i = 1, 2, are constants. The
initial functions u0(x), v0(x) ∈ L∞(Ω) satisfy 0 ≤ u0(x) ≤ B, 0 ≤ v0(x) ≤ B a.e.
in Ω for some constant B > 0. As before, we let

V = H1(Ω), W = L2(0, T ;V ), V ′ = H−1(Ω)

is the dual space of V ; and <,> denotes the duality between V ′ and V .

Definition 5.2. A pair of functions (u, v) is a weak solution of problem (5.21)
provided that:

(5.24)




u, v ∈W, ut, vt ∈ L2(0, T ;V ′),

∫ T
0 < ut, φ > dt+ α1

∫ T
0

∫
Ω∇u∇φdxdt

=
∫ T
0

∫
Ω u[a1 − b1u− c1v]φdxdt− ∫ T0 ∫∂Ω βuφdsdt,∫ T

0 < vt, ψ > dt+ α2

∫ T
0

∫
Ω∇v∇ψ dxdt

=
∫ T
0

∫
Ω v[−a2 + c2u]ψ dxdt− ∫ T0 ∫∂Ω βvψ dsdt

for all φ,ψ ∈W, and

u(x, 0) = u0(x), v(x, 0) = v0(x).

Theorem 5.4 (Solution of Initial-Boundary Value Problem). For each
β ∈ CM , there exists a unique solution (u, v) for problem (5.21) (i.e. (5.24)).

Remark 5.5. Note that there are much fewer restrictions on the relative sizes
of the coefficients ai, ci and b1 here compared with those on Sections 3.2 and 3.3
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concerning positive steady states and time periodic solutions, because we are
now only concerned with an initial value problem.

Proof. Let Ū and V̄ be respectively the solutions of the following linear prob-
lems:

(5.25)




ut − α1∆u = a1u in ΩT ,

α1
∂u
∂ν + βu = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω; and

(5.26)




vt − α2∆v = c2Ūv in ΩT ,

α2
∂v
∂ν + βv = 0 on ∂Ω × (0, T ),

v(x, 0) = v0(x) for x ∈ Ω.

By comparison, the functions Ū and V̄ are in L∞(ΩT ), with:

(5.27)
0 ≤ Ū ≤ ||u0||L∞(ΩT )e

γT ,

0 ≤ V̄ ≤ ||v0||L∞(ΩT )e
ηT ,

where γ = ||a1||L∞(Ω) and η = ||c2||L∞(Ω)||u0||L∞(Ω)e
γT . Define u1 = Ū , v2 =

V̄ , u0 = 0 and v1 = 0, where the superscript denotes the iterative step which we
will set up presently. Choose a large constant R such that

R > supΩT {a2 + 2b1Ū + c1V̄ },

and for convenience, write

f1(x, t, u, v) = Ru+ u[a1(x, t)− b1(x, t)u − c1(x, t)v],

f2(x, t, u, v) = Rv + v[−a2(x, t) + c2(x, t)u].

For i = 2, 3, . . . , define ui, vi+1 inductively as the solutions of the following
problems:

(5.28)




uit − α1∆ui +Rui = f1(x, t, ui−2, vi) in ΩT ,

α1
∂ui

∂ν + βui = 0 on ∂Ω× (0, T ),

ui(x, 0) = u0(x) for x ∈ Ω; and
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(5.29)




vit − α2∆vi +Rvi = f2(x, t, ui−1, vi−2) in ΩT ,

α2
∂vi

∂ν + βvi = 0 on ∂Ω× (0, T ),

vi(x, 0) = v0(x) for x ∈ Ω.

Since the problems (5.28) and (5.29) are linear, solutions ui, vi, i = 0, 1, 2 . . .
exist. By comparison, for i = 1, 2, . . . , we have 0 ≤ ui ≤ Ū , 0 ≤ vi ≤ V in ΩT .
(See e.g. p. 54 [183] for comparison of classical solutions and extension to weak
solutions in Section 3.3). Also note that for (x, t) ∈ ΩT , i = 1, 2, . . .

f1(x, t, ui−2, vi) is increasing in ui−2, decreasing in vi,

f2(x, t, ui−1, vi−2) is increasing in ui−1 and vi−2.

We have v1 = 0, and from (5.29)

(v3 − v1)t − α2∆(v3 − v1) +R(v3 − v1) = c2u
2v1 ≥ 0,

we find v1 ≤ v3. Similarly, we deduce u3 ≤ u1, v2 ≥ v4, u0 ≤ u2. Moreover, we
obtain u2 ≤ u3 and v4 ≥ v3. We can then inductive show that

0 = u0 ≤ u2 ≤ · · · ≤ u2i · · · ≤ u2i+1 ≤ · · · ≤ u3 ≤ u1 = Ū

0 = v1 ≤ v3 ≤ · · · ≤ v2i+1 · · · ≤ v2i ≤ · · · ≤ v4 ≤ v2 = V̄

in ΩT as in Sections 3.2, 3.3 or Chapter 5 in [125]. From the boundedness of
ui, vi and the monotone properties, we obtain the pointwise convergence of the
odd and even iterates. Since the right-hand side of (5.28) is bounded in L∞(ΩT ),
we can use uk as its own test function to obtain:

(5.30)

sup0≤t≤T (
∫
Ω(uk)2(x, t)dx) +

∫ T
0

∫
Ω |∇uk|2dxdt +

∫ T
0

∫
∂Ω β(uk)2dsdt

≤ C3

∫
Ω u

2
0dx+ C4

∫ T
0

∫
Ω[f1(x, t, uk−2, vk)]2 + (uk)2dxdt

≤ C3

∫
Ω u

2
0dx+ C5T

for some constants C3, C4 and C5. Thus, the functions u2i, u2i+1 are uniformly
bounded in W . Similarly, we deduce that v2i, v2i+1 are also uniformly bounded
in W . Consequently, without loss of generality, or by relabeling, we can select
subsequences so that:

u2j → u, u2j+1 → ū, v2j → v̄, v2j+1 → v weakly in W.
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From the W boundedness of u2i, u2i+1, v2i, v2i+1 and the equations (5.28), (5.29),
we deduce that u2i

t , u
2i+1
t , v2i

t and v2i+1
t are bounded in L2(0, T ;V ′). Thus by

weak compactness again, we may assume by relabeling

u2j
t → ut, u

2j+1
t → ūt, v

2j
t → v̄t, v

2j+1
t → vt weakly in L2(0, T, V ′).

Since L2(0, T ;H1
0 (Ω)) compactly embeds into L2(0, T ;H1/2+ε(Ω)), 0 ≤ ε < 1

2 ,
we may extract subsequences and assume

u2j → u, u2j+1 → ū, v2j → v̄, v2j+1 → v strongly in L2(0, T ;H1/2+ε(Ω)).

The above assertion can also be obtained by applying Theorem A5-3 in Chapter
6. Using the continuous mapping from H1/2+ε(Ω) into L2(∂Ω), we also have

u2j → u, u2j+1 → ū, v2j → v̄, v2j+1 → v strongly in L2(0, T ;L2(∂Ω)).

Passing to the limit with u2i+1, u2i, v2i and v2i+1 in (5.28) and (5.29), we find
that the limits satisfy:
(5.31)


ūt − α1∆ū+Rū = f1(x, t, ū, v), ut − α1∆u +Ru = f1(x, t,u, v̄) in ΩT ,

α1
∂ū
∂ν + βū = α1

∂u
∂ν + βu = 0 on ∂ΩT ,

ū(x, 0) = u(x, 0) = u0(x) for x ∈ Ω;

v̄t − α2∆v̄ +Rv̄ = f2(x, t, ū, v̄), vt − α2∆v +Rv = f2(x, t,u, v) in ΩT ,

α2
∂v̄
∂ν + βv̄ = α2

∂v
∂ν + βv = 0 on ∂ΩT ,

v̄(x, 0) = v(x, 0) = v0(x) for x ∈ Ω.

In order to show ū = u and v̄ = v, we substitute ū = eλtw̄,u = eλtw, v̄ =
eλtz̄, v = eλtz where λ > 0 is to be chosen. Note that, we have




w̄t − α1∆w̄ + λw̄ = a1w̄ − b1eλtw̄2 − c1eλtw̄z in ΩT ,

wt − α1∆w + λw = a1w− b1eλtw2 − c1eλtwz̄ in ΩT ,

z̄t − α2∆z̄ + λz̄ = −a2z̄ + c2w̄z̄ in ΩT ,

zt − α2∆z + λz = −a2z + c2wz in ΩT .
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By the weak formulations of the equations for w̄,w, z̄ and z, we find∫
ΩT
{(w̄ − w)t(w̄ − w) + α1|∇(w̄ − w)|2 + λ(w̄ − w)2

+ (z− z̄)t(z− z̄) + α2|∇(z− z̄)|2 + λ(z− z̄)2}dxdt

+
∫
∂ΩT
{β(w̄ − w)2 + β(z − z̄)2}dsdt

=
∫
ΩT
{a1(w̄ − w)2 − b1eλt(w̄2 − w2)(w̄ − w)− c1eλt(w̄z−wz̄)(w̄ − w)}dxdt

+
∫
ΩT
{−a2(z− z̄)2 − c2eλt(wz− w̄z̄)(z− z̄)}dxdt.

Since ū,u, v̄, v, ai, ci, i = 1, 2, and b1 are all L∞ bounded in ΩT , we can use
Cauchy’s inequality to obtain
(5.32)
1
2

∫
Ω[w̄(x, T )− w(x, T )]2 + [z̄(x, T )− z(x, T )]2dx

+
∫
ΩT

[α1|∇(w̄ − w)|2 + α2|∇(z̄ − z)|2]dxdt

+ (λ−C)
∫
ΩT

[(w̄ − w)2 + (z̄ − z)2]dxdt +
∫
∂ΩT

β(w̄ − w)2 + β(z̄ − z)2dsdt ≤ 0,

where C depends only on the coefficients, T and ||u1||L∞ , ||v2||L∞ . By choosing
λ > C, we see that inequality (5.32) holds if and only if

w̄ = w and z̄ = z a.e. in ΩT .

Consequently, ū = u, v̄ = v in ΩT , and the solution of problem (5.31) becomes
the solution of problem (5.21) with (u, v) = (ū, v̄) = (u, v).

As in the above paragraphs, we can show by comparison and iteration that
a solution (u, v) of (5.21) must satisfy

u ≤ u ≤ ū, v ≤ v ≤ v̄ in ΩT .

Since ū = u and v̄ = v, we must have uniqueness.

We have the following existence theorem for the optimal control problem
(5.21)-(5.23).

Theorem 5.5 (Existence of Optimal Control). There exists an optimal
control satisfying (5.23) for the problem (5.21) corresponding to the functional
(5.22).

Proof. Since the controls are bounded, there exists a maximizing sequence
{βn} ⊂ CM . From the last theorem, the corresponding solutions of problem
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(5.21): un = u(βn), vn = v(βn) are uniquely defined for each n. From (5.21) for
(un, vn) we deduce readily

sup0≤t≤T {
∫
Ω[u2

n(x, t) + v2
n(x, t)] dx} +

∫ T
0

∫
Ω[|∇un|2 + |∇vn|2]dxdt

≤ C1(
∫
Ω[u2

0 + v2
0 ]dx+ 1),

for some constant C1. Using this bound, we then select subsequence and pass
to the limit, by means of the same compactness arguments as in the proof of
Theorem 5.1, to obtain the optimal control β∗.

The following theorem is concerned with the differentiability of the solution
of (5.21) with respect to the control.

Theorem 5.6 (Differentiability with Respect to Control). The mapping
CM � β → (u, v) = (u(β), v(β)) ∈ W × W is differentiable in the following
sense:

u(β+ρβ̄)−u(β)
ρ → ξ weakly in W,

v(β+ρβ̄)−v(β)
ρ → η weakly in W,

as ρ → 0 for any β ∈ CM , β̄ ∈ L∞(ΩT ) such that β + ρβ̄ ∈ CM . Also ξ =
ξ(β, β̄), η = η(β, β̄) satisfy

(5.33)




ξt − α1∆ξ = a1ξ − 2b1uξ − c1vξ − c1uη in ΩT ,

ηt − α2∆η = −a2η + c2uη + c2vξ in ΩT ,

α1
∂ξ
∂ν = −βξ − β̄u on ∂ΩT ,

α2
∂η
∂ν = −βη − β̄v on ∂ΩT ,

ξ(x, 0) = η(x, 0) = 0 for x ∈ Ω.

Proof. Define uρ = u(β + ρβ̄), vρ = v(β + ρβ̄). Let uρ = eλtwρ, u = eλtw, vρ =
eλtzρ, v = eλtz where λ > 0 is to be determined. Estimating by means of the
differential equations satisfied by (wρ − w)/ρ, (zρ − z)/ρ, and using the bounds
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(5.27) for the solutions, we obtain

(5.34)

1
2

∫
Ω[(w

ρ(x,t)−w(x,t)
ρ )2 + (z

ρ(x,t)−z(x,t)
ρ )2]dx

+
∫
Ω×(0,t)[α1|∇(w

ρ−w
ρ )|2 + α2|∇(z

ρ−z
ρ )|2]dxdt

+λ
∫
Ω×(0,t)[(

wρ−w
ρ )2 + (z

ρ−z
ρ )2]dxdt

≤ C
∫
ΩT

[(w
ρ−w
ρ )2 + (z

ρ−z
ρ )2]dxdt

+
∫
∂ΩT
{|β̄wρ(wρ−wρ )|+ |β̄zρ(zρ−zρ )|}dsdt

where C depends on the coefficients and the final time T . Continuing to estimate
using the continuous mapping of H1(Ω) into L2(∂Ω) and Cauchy’s inequality
with ε, we deduce

1
2

∫
Ω[(w

ρ(x,t)−w(x,t)
ρ )2 + (z

ρ(x,t)−z(x,t)
ρ )2]dx

+
∫
ΩT

[α1
2 |∇(w

ρ−w
ρ )|2 + α2

2 |∇(z
ρ−z
ρ )|2]dxdt

+ (λ− C1)
∫
ΩT

[(w
ρ−w
ρ )2 + (z

ρ−z
ρ )2]dxdt

≤ C2

∫
∂ΩT

β̄2dsdt,

where C1, C2 are constants depending on the bounds of the coefficients and
u, v, uρ and vρ. Choosing λ > C1, we conclude

‖w
ρ − w
ρ
‖2W + ‖z

ρ − z
ρ
‖2W ≤ C2

∫
∂ΩT

β̄2dsdt.

This bound leads to the existence of ξ, η in W , such that

uρ − u
ρ

→ ξ,
vρ − v
ρ

→ η weakly in W.

As in Theorem 5.4, we also have

(
uρ − u
ρ

)t → ξt, (
vρ − v
ρ

ρ)t → ηt weakly in L2(0, T ;V ′).

These lead to (uρ − u)/ρ→ ξ and (vρ − v)/ρ→ η strongly in L2(ΩT ). Also, we
have (uρ − u)/ρ → ξ and (vρ − v)/ρ → η strongly in L2(∂ΩT ). Taking limit in
the differential equations satisfied by (uρ−u)/ρ and (vρ− v)/ρ, we obtain (ξ, η)
satisfy (5.33).
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Using the above theorem, we can characterize the optimal control in terms
of the adjoint system for (5.21) as in the following theorem. The proof is similar
to that for Theorem 5.2. The details will thus be omitted.

Theorem 5.7 (Characterization of Optimal Control for the Prey-
Predator System). Let β∗ be an optimal control satisfying (5.23) for problem
(5.21), (5.22), and (u∗, v∗) ∈ W ×W be the corresponding solution, then there
exists a unique solution (p, q) ∈W ×W satisfying the adjoint system:

(5.35)




−pt − α1∆p = A1 + a1p− 2b1u∗p− c1v∗p+ c2v
∗q in ΩT ,

−qt − α2∆q = A2 − c1u∗p− a2q + c2u
∗q in ΩT ,

α1
∂p
∂ν + β∗p = 0, α2

∂q
∂ν + β∗q = 0 on ∂ΩT ,

p(x, T ) = q(x, T ) = 0 for x ∈ Ω,

with the property,

(5.36) β∗ = min.{(M − pu∗ − qv∗)+,M}.

Combining (5.21), (5.35) and (5.36), we obtain the optimality system:

(5.37)




ut − α1∆u = u[a1 − b1u− c1v] in ΩT ,

vt − α2∆v = v[−a2 + c2u] in ΩT ,

−pt − α1∆p = A1 + a1p− 2b1up− c1vp+ c2vq in ΩT ,

−qt − α2∆q = A2 − c1up− a2q + c2uq in ΩT ,

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω,

p(x, T ) = q(x, T ) = 0 for x ∈ Ω,

α1
∂u
∂ν +min.{(M − pu− qv)+,M}u = 0 on ∂ΩT ,

α2
∂v
∂ν +min.{(M − pu− qv)+,M}v = 0 on ∂ΩT ,

α1
∂p
∂ν +min.{(M − pu− qv)+,M}p = 0 on ∂ΩT ,

α2
∂q
∂ν +min.{(M − pu− qv)+,M}q = 0 on ∂ΩT ,
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Here, A1, A2,M,α1 and α2 are arbitrary given positive constants; and the func-
tions ai(x, t), ci(x, t), i = 1, 2, b1(x, t), u0(x) and v0(x) satisfy the assumptions as
in Theorems 5.4 to 5.7 above. We know that weak solution of (5.37) exists by
Theorem 5.4 and Theorem 5.7. Once the solution of (5.37) is found, then the
optimal control for (5.21)-(5.23) can be expressed by:

β∗ = min.{M − pu− qv)+,M}.

For T > 0 sufficiently small, we can further deduce the uniqueness of solution
for problem (5.37) as follows.

Theorem 5.8 (Uniqueness of Optimal Control) Consider the optimality
system (5.37) with hypotheses on the coefficients and parameters described above.
For T sufficiently small, the optimality system (5.37) has a unique solution
(u, v, p, q) ∈W ×W ×W ×W .

Proof. From the proof of Theorem 5.4, the solution components u and v of the
state system part of (5.37) are bounded in L∞(ΩT ). The bounds are independent
of M,A1 and A2. Thus the adjoint system can be interpreted as linear inside
the domain with bounded coefficients, and appropriate sign for the coefficients
on the boundary. We can deduce by comparison that

||p||L∞(ΩT ) ≤ C(A1 +A2),

||q||L∞(ΩT ) ≤ C(A1 +A2).

The constant C may depend on M , the coefficients of the adjoint system, and
the bounds of the solution (u, v) of the state system.

Suppose (u, v, p, q) and (ũ, ṽ, p̃, q̃) are two weak solutions of (5.37), we define
new functions by

u = eλtw, ũ = eλtw̃, v = eλtz, ṽ = eλtz̃,

p = eλty, p̃ = eλtỹ, q = eλtξ, q̃ = eλtξ̃,

β = min.{(M − pu− qv)+,M}, β̃ = min.{(M − p̃ũ− q̃ṽ)+,M},

where λ > 0 is to be determined. Subtracting the equations for the new variables,
multiplying with the appropriate test functions as in the proof of Theorem 5.3
and integrate, we obtain:
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(5.38)
1
2

∫
Ω{[w(x, T ) − w̃(x, T )]2 + [z(x, T )− z̃(x, T )]2

+ [y(x, 0) − ỹ(x, 0)]2 + [ξ(x, 0) − ξ̃(x, 0)]2}dx

+
∫
ΩT
{α1|∇(w − w̃)|2 + α2|∇(z − z̃)|2 + α1|∇(y − ỹ)|2 + α2|∇(ξ − ξ̃)|2}dxdt

+
∫
ΩT

λ[(w − w̃)2 + (z − z̃)2 + (y − ỹ)2 + (ξ − ξ̃)2] dxdt

≤ ∫
ΩT
{a1[(w − w̃)2 + (y − ỹ)2]− a2[(z − z̃)2 + (ξ − ξ̃)2]

− (w − w̃)c1eλt(wz − w̃z̃) + (y − ỹ)[−2b1eλt(wy − w̃ỹ)− c1eλt(zy − z̃ỹ)

+ c2e
λt(zξ − z̃ξ̃)] + (z − z̃)c2eλt(wz − w̃z̃)

+ (ξ − ξ̃)[c1eλt(wy − w̃ỹ) + c2e
λt(wξ − w̃ξ̃)]} dxdt

− ∫∂ΩT
eλt[(βw − β̃w̃)(w − w̃) + (βz − β̃z̃)(z − z̃)

− (βy − β̃ỹ)(y − ỹ)− (βξ − β̃ξ̃)(ξ − ξ̃)] dsdt.
As an illustration, we can use the L∞ bound of z, z̃, w, and w̃ to obtain an
estimate of a typical integral term on the right as follows:

(5.39)

∫
ΩT

(w − w̃)c1eλt(wz − w̃z̃)dxdt

≤ C1e
λT
∫
ΩT
|wz − w̃z + w̃z − w̃z̃||w − w̃|dxdt

≤ Ĉ1e
λT
∫
ΩT

[(w − w̃)2 + (z − z̃)2]dxdt,

for some constants C1, Ĉ1. We can use the fact that |β−β̃|2 ≤ (w̃ỹ−wy+z̃ξ̃−zξ)2
and the trace theorem to estimate a typical boundary term on the right as in
Theorem 5.3 to obtain:
(5.40)∫
∂ΩT

eλt(βy − β̃ỹ)(y − ỹ) dsdt

≤ C2e
2λT

∫
∂ΩT

[(w − w̃)2 + (y − ỹ)2 + (z − z̃)2 + (ξ − ξ̃)2] dsdt

≤ C2εe
2λT

∫
ΩT

[|∇(w − w̃)|2 + |∇(y − ỹ)|2 + |∇(z − z̃)|2 + |∇(ξ − ξ̃)|2] dxdt

+C2C(ε)e2λT
∫
ΩT

[(w − w̃)2 + (z − z̃)2 + (y − ỹ)2 + (ξ − ξ̃)2] dxdt,
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for some constant C2, ε is a small constant to be chosen, and C(ε) is a large
constant determined by ε. By means of (5.39) and (5.40), we deduce from (5.38)
that

(5.41)

1
2

∫
Ω{[w(x, T ) − w̃(x, T )]2 + [z(x, T ) − z̃(x, T )]2

+ [y(x, 0)− ỹ(x, 0)]2 + [ξ(x, 0) − ξ̃(x, 0)]2}dx

+
∫
ΩT
{(α1 − C3εe

2λT )|∇(w − w̃)|2 + (α2 − C3εe
2λT )|∇(z − z̃)|2

+ (α1 − C3εe
2λT )|∇(y − ỹ)|2 + (α2 −C3εe

2λT )|∇(ξ − ξ̃)|2}dxdt

+
∫
ΩT

(λ− C4e
2λT − C5C(ε)e2λT )[(w − w̃)2 + (z − z̃)2

+ (y − ỹ)2 + (ξ − ξ̃)2] dxdt ≤ 0

where Ci, i = 1, 2, ..., 5 depend only on the coefficients and the L∞ bounds of
z,w, p and q. Let α = min.{α1, α2}. If we choose ε, λ and T such that

ε < α
C3
, λ > C4 +C5C(ε), and

T < 1
2λmin.{ln( λ

C4+C5C(ε)), ln( α
C3ε

)},

then we find from (5.41) that w = w̃, z = z̃, y = ỹ and ξ = ξ̃. Consequently, we
have u = ũ, v = ṽ, p = p̃ and q = q̃.

Remark 5.6. In Part A of this section, Theorem 5.1, Lemma 5.1 and Theorem
5.2 are all valid even if λ = 0. However, for Theorem 5.3, if λ = 0, then we can
only show that the optimality system (5.17) has at most one solution for small
time interval [0, T ], with T sufficiently small, as in Theorem 5.8.

Notes.
Theorem 1.1 to Theorem 1.4, for the control of scalar equations, are due

to Leung and Stojanovic [140]. For the control and steady-state prey-predator
systems, Theorems 2.1 to 2.6 are obtained from Leung [126]. For the control
of periodic competitive systems, Theorems 3.1 to 3.8 are summarized from the
two articles [82] and [83] by He, Leung and Stojanovic. Theorems 4.1 to 4.5,
concerning the target profile control for fission reactors, are found in Leung and
Chen [133]. For boundary controls, Theorems 5.1 to 5.3 are results in Lenhart
and Wilson [119]. Theorems 5.4 to 5.8, concerning the boundary control of
prey-predator systems, are due to Lenhart, Liang and Protopopescu [117].



Chapter 4

Persistence, Upper and Lower
Estimates, Blowup,
Cross-Diffusion and
Degeneracy

4.1 Persistence

In Chapters 1 and 2, we are mostly concerned with finding positive coexistence
steady-states for systems of reaction-diffusion equations. We also investigate
whether these steady-states are stable locally or even globally as time changes.
In other words, we study whether the steady-states attract other solutions of
the parabolic systems as time tends to infinity. We developed very complicated
theories, which are sometimes difficult to apply. Moreover, in many situations
in population dynamics or environmental studies, we do not need to obtain such
detailed information for the system. We may be only concerned whether all
species under consideration will survive in the long term. Conditions for glob-
ally attracting steady-state will be too strong because it excludes possibilities of
periodic solutions or other steady-states. In many occasions, it will be practi-
cal enough to find criteria to insure all components which are positive initially
must eventually enter and remain inside a fixed set of positive states which are
strictly bounded away from zero in each component. This property of the sys-
tem is called persistence or permanence. It may not require to obtain excessive
knowledge of the dynamics of the system, and is thus sometimes more mathemat-
ically tractable. An exposition of the idea of permanence in genetics, population
dynamics and evolutionary theory is given in Hofbauer and Sigmund [87]. Re-
lated criteria for coexistence are discussed in Bhatia and Szego [8] and Butler,
Freedman and Waltman [16]. In the context of reaction-diffusion systems, we

289
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will follow the rigorous methods in Hale and Waltman [81], Cantrell, Cosner
and Hutson [21] and [22] in this section. In part of the next section, we will fur-
ther enhance the theory of persistence by estimating, by means of comparison
method, the location of the set which attracts solutions whose components are
positive initially.

Part A: Chains and Uniform Persistence.

We first introduce some topological concepts which will be used to analyze
the reaction-diffusion systems. Let X be a complete metric space (with metric
d) and suppose that T (t) : X → X, t ≥ 0, is a C0-semigroup on X; that is,
T (0) = I, T (t + s) = T (t)T (s) for t, s ≥ 0, and T (t)x is continuous in t, x. The
positive orbit through x is defined as γ+(x) := ∪t≥0{T (t)x}. The ω-limit set is
defined as

ω(x) := ∩τ≥0Cl ∪t≥τ {T (t)x}.
(Here Cl denotes the closure). This is equivalent to saying that y ∈ ω(x) if and
only if there is a sequence tn →∞ as n→∞ such that T (tn)x→ y as n→∞.
If B is a subset of X, we define the ω-limit set of B as

ω(B) := ∩τ≥0Cl ∪t≥τ T (t)B, where T (t)B = ∪x∈B{T (t)x}.

If the point x or the sets B have negative orbits, we can define the α-limit set
α(x) of x and α-limit set α(B) of B in a similar manner taking into account the
possibility of multiple backward orbits. A set B in X is said to be invariant if
T (t)B = B for t ≥ 0; that is, the mapping T (t) takes B onto B for each t ≥ 0.
This implies, in particular, that there is a negative orbit through each point of
an invariant set. When the points or sets belong to an invariant set A, we will
restrict the backward orbits to those remaining in the invariant set and denote
this by αA(x). Sometimes it is convenient to have the alpha limit set of a specific
full orbit, γ(x) through a point x. We denote this by αγ(x).

A nonempty invariant subset M of X is called an isolated invariant set if it
is the maximal invariant set of a neighborhood of itself. The neighborhood is
called an isolating neighborhood. The stable (or attracting) set of a compact
invariant set A is denoted by W s and is defined as

W s(A) := {x|x ∈ X,ω(x) �= Φ, ω(x) ⊂ A}.

(Here, Φ denotes the empty set.) The unstable (or repelling) set, W u is defined
by

W u(A) = {x|x ∈ X, there exists a backward orbit γ−(x)
such that αγ(x) �= Φ, αγ ⊂ A}.

A set A in X is said to be a global attractor if it is compact, invariant and,
for any bounded set B in X, δ(T (t)B,A) → 0 as t → ∞, where δ(B,A) is the
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distance from the set B to the set A:

δ(B,A) = supy∈Binfx∈A d(y, x).

In particular, this implies ω(B) exists and belong to A. A global attractor is
always a maximal compact invariant set. The semigroup T (t) is said to be point
dissipative in X if there is a bounded nonempty set B in X such that, for any
x ∈ X, there is a t0 = t0(x,B) such that T (t)x ∈ B for t ≥ t0. By Theorem
A4-13 in Chapter 6, if T (t) is point dissipative in X and there is a t0 ≥ 0 such
that T (t) is compact for t > t0, then there is a nonempty global attractor A in
X.

In order to study the problem of persistence, we will now assume that the
metric space X satisfies X = X0 ∪ ∂X0, where X0 is open in X, which is the
closure of X0. ∂X0 (assumed to be nonempty) is the boundary of X0. We
suppose that the C0-semigroup T (t) on X satisfies

(1.1) T (t) : X0 → X0, T (t) : ∂X0 → ∂X0

and let T0(t) = T (t)|X0 , T∂(t) = T (t)|∂X0 . The set ∂X0 is a complete metric
space. If T (t) satisfies the conditions of Theorem A4-13 in Chapter 6, then T∂
will satisfy the same conditions in ∂X0. Thus, there will be a global attractor
A∂ in ∂X0. However, if T (t) satisfies Theorem A4-13 in Chapter 6 in X, it does
not follow that the semigroup T0(t) must have a maximal compact invariant set
in X0. There may be points x in X0 for which ω(x) ∩ ∂X0 �= φ. In order to
analyze such problem, we give the following definition.

Definition 1.1. Let X be a metric space, and X = X0 ∪ ∂X0 as described
above. Let T (t) be a C0 semigroup on X with properties as described in (1.1).
We say the semigroup T (t) is persistent if lim inft→∞d(T (t)x, ∂X0) > 0 for any
x ∈ X0. The semigroup T (t) is said to be uniformly persistent if there is an
η > 0 such that for any x ∈ X0, lim inft→∞ d(T (t)x, ∂X0) ≥ η.

In order study uniform persistence by means of the behavior of the semigroup
on ∂X0, we introduce a few more definitions. Let M,N be isolated invariant
sets (not necessarily distinct). M is said to be chained to N , denoted by M →
N , if there exist an element x, x /∈ M ∪ N , such that x ∈ W u(M) ∩W s(N).
A finite sequence M1,M2, ...,Mk of isolated invariant sets is called a chain if
M1 → M2 → · · · → Mk(M1 → M1, if k = 1). The chain is called a cycle if
Mk = M1. A special invariant set of interest is the following:

(1.2) Ã∂ := ∪x∈A∂ ω(x).

(Here, A∂ is the global attractor in ∂X0 described above.) The set Ã∂ is isolated
if there exists a covering M = ∪ki=1Mk of Ã∂ by pairwise disjoint, compact,
isolated invariant sets M1,M2, ...,Mk for T∂ such that each Mi is also an isolated
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invariant set for T . M is called an isolated covering. Ã∂ is called acyclic if there
exists some isolated covering M = ∪ki=1Mi of Ã∂ such that no subset of the M ′

is
form a cycle. An isolated covering satisfying this condition is called acyclic.

The following topological theorem is very important for analyzing the prob-
lem of persistence.

Theorem 1.1 (Abstract Persistence Theorem). Let the C0-semigroup T (t)
on X = X0 ∪ ∂X0 satisfy conditions as described in (1.1). Suppose that

(i) There exists t0 ≥ 0 such that T (t) is compact for t > t0,
(ii) T (t) is point dissipative in X, and
(iii) The set Ã∂, defined by (1.2), is isolated and has an acyclic covering M

as described above.
Then T (t) is uniformly persistent if and only if each Mi of the covering has the
property:

(1.3) W s(Mi) ∩X0 = Φ.

Roughly speaking, condition (iii) above states that there are no cycle in the
boundary which links up various of the limits; and the final condition states
that no solution orbit from the interior converges to one of the boundary limits
in forward time. With the aid of the above abstract theorem, we are now
ready to return to the analysis of reaction-diffusion systems. We consider the
following reaction-diffusion system for three interacting populations involving
one predator with two competing preys, for (x, t) ∈ Ω× [0,∞).

(1.4)




∂u1/∂t = σ1∆u1 + u1(a1 − u1 − c12u2 − c13u3),

∂u2/∂t = σ2∆u2 + u2(a2 − c21u1 − u2 − c23u3),

∂u3/∂t = σ3∆u3 + u3(a3 + c31u1 + c32u2 − u3),

ui(x, t) = 0, i = 1, 2, 3 for (x, t) ∈ ∂Ω× [0,∞)

where σi, ai, cij are all constants, with σi > 0, i = 1, 2, 3; cij > 0, i, j =
1, 2, 3, i �= j.

We will discuss solutions of (1.4) such that each component as a function of
x, at a given t, is in Ck(Ω̄), for some integer k. For this section, we assume Ω is
a bounded domain in RN , with boundary ∂Ω uniformly C3+α for some α > 0.
The norm in [Ck(Ω̄)]3 will be denoted by || · ||k, and the closed subspaces of
functions vanishing on ∂Ω by [Ck0 (Ω̄)]3. [Ck+(Ω̄)]3 will denote the positive cones
with respect to the usual ordering; and let Ck0,+(Ω̄) = Ck0 (Ω̄)∩Ck+(Ω̄). From the
theory of semigroup of solutions of reaction-diffusion equations in Ck(Ω̄), and
the structure of the quadratic reaction terms in (1.4), we see that [C2

0,+(Ω̄)]3 is
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invariant on the maximal interval of existence. From the signs of the coefficients
in (1.4), we will show in Lemma 1.1 below that the solution of (1.4) satisfy:

[H1] (Uniform boundedness in [C0
0,+(Ω̄)]3). For given β > 0, there exists a

number B(β) such that if ||(u1(·, 0), ., u3(·, 0)||0 ≤ β, then ||u1(·, t), ., u3(·, t)||0 ≤
B(β) for t > 0.

[H2] (Point dissipativity in [C0
0,+(Ω̄)]3). There exists γ such that for any u0 =

(u1(·, 0), .., u3(·, 0)) ∈ [C0
0,+(Ω̄)]3, there exists a t(u0) such that the solution of

(1.4) with initial condition u0 satisfies ||u1(·, t), ., u3(·, t)||0 ≤ γ for t ≥ t(u0).

By the smoothing properties of parabolic equations, it is known from general
theory (cf. [113]) that the following is true.

Theorem 1.2. Suppose the solutions of (1.4) satisfy [H1], [H2], then the
solutions of (1.4) generates a semigroup on [C0

0,+(Ω̄)]3, and its restriction to
[C1

0,+(Ω̄)]3 is also a semigroup. Point dissipativity in [C1
0,+(Ω̄)]3 will also hold.

Moreover, the solution operator T (t) is compact on [C1
0,+(Ω̄)]3 for every t > 0.

There is a bounded set U2 in [C2
+(Ω̄)]3 such that if U ⊂ [C1

0,+(Ω̄)]3 is bounded,
then T (t)U ⊂ U2 for t ≥ 1.

In view of Theorem A4-13 and Theorem 1.2, we will take X0 to be functions
in [C1

0,+(Ω̄)]3 with each component non-negative and not identically zero in Ω.
The functions in ∂X0 are those with at least one component identically zero.
We will show that under further conditions of the coefficients in (1.4), we can
study the uniform persistence of the semigroup of solutions T (t) by means of
Theorem 1.1, choosing X = [C1

0,+(Ω̄)]3. We now consider problem (1.4) under
the following hypotheses:

[C1] ρ̂1(σi∆+ai) > 0, for i = 1, 2. (From Chapter 1, for each i = 1, 2, the scalar
problem wit = σi∆wi + (ai − wi)wi has a corresponding equilibrium ūi > 0 in
Ω, which is a stable global attractor of all non-negative nontrivial solutions.)

[C2] ρ̂1(σ1∆+a1−c12ū2) > 0, and problem (1.4) has no non-negative equilibrium
solution of the form (u∗1, u∗2, 0) with both u∗i �≡ 0, i = 1, 2 in Ω̄.

[C3] ρ̂1(σ2∆ + a2 − c21ū1) < 0.

[C4] There are unique globally attracting equilibria P1(û1, 0, û3) in the interior
of the u1 − u3 face and P2(0, ũ2, ũ3) in the interior of the u2 − u3 face. The
equilibria P1 and P2 are also stable with respect to solutions in C0

0,+(Ω̄) on the
u1−u3 and u2−u3 face respectively, if initial conditions are close to the equilibria
in C1

0,+(Ω̄).

[C5] ρ̂1(σ1∆ + a1 − c12ũ2 − c13ũ3) > 0, and ρ̂1(σ2∆ + a2 − c21û1 − c23û3) > 0.

(Recall the definition of the first eigenvalue ρ̂1 for an elliptic operator in Section
1.1.)



294 CHAPTER 4. PERSISTENCE, CROSS-DIFFUSION

Theorem 1.3 (Persistence Theorem for a Prey-Predator System of 3
Species). Assume hypotheses [C1]-[C5], then the semigroup T (t) of solutions
of (1.4) in X = X0 ∪ ∂X0 = [C1

0,+(Ω̄)]3 is uniformly persistent.

We will first prove the following Lemmas 1.1 to 1.4 and apply Theorems 1.1
and 1.2 in order to prove Theorem 1.3. The hypotheses [C1] to [C5] impose
properties on solutions of subsystems of (1.4) on the boundary faces and on the
dynamical behavior near the boundary. These properties will lead to the fact
that the corresponding set Ãδ in Theorem 1.1 will be isolated and has an acyclic
covering satisfying (1.3).

Lemma 1.1. Under hypothesis [C1], the semigroup of solutions of (1.4) is
point dissipative in [C0

0,+(Ω̄]3. It is also uniformly bounded in [C0
0,+(Ω̄]3. As a

consequence of Theorem 1.2, these properties are also valid in [C1
0,+(Ω̄]3.

Proof. For each i = 1, 2, the i-th component of the solution of (1.4) is a lower
solution of the scalar problem: wit = σi∆wi + (ai − wi)wi subject to the same
initial and boundary conditions. Thus by comparison, we have ui ≤ wi as long
as they exist. Since wi(·, t) tends to the corresponding steady state solution in
C1

0 (Ω̄), (see e.g. proof of Theorem 5.7 in Chapter 1), and the steady state is
< ai in Ω̄ with strictly negative outward normal derivative on ∂Ω, we obtain
wi(x, t) < ai in Ω̄ for t sufficiently large. Similarly, since u3 is a lower solution
for w3t = σ3∆w3 + (a3 + c31a1 + c32a2−w3)w3 for sufficiently large t, eventually
we have u3(x, t) ≤ w3(x, t) < a3 + c31a1 + c32a2 in Ω̄ for t sufficiently large. The
last statement follows from semigroup theory, integral representation formula
and Theorem 1.2 above.

Lemma 1.2. Under hypotheses [C1], [C2], any solution of (1.4) of the form
(u1, u2, 0), with ui(x, 0) ≥ 0, i = 1, 2 and u1(x, 0) �≡ 0, must → (ū1(x), 0, 0) as
t→∞ in Ω̄.

Proof. Let (u1, u2, 0) be a solution of (1.4) with non-negative initial condition
and u1(x, 0) �≡ 0 in Ω̄. Then by maximum principle, we have u1 > 0 in Ω
and ∂u1/∂ν < 0 on ∂Ω for any t > 0. Moreover, u2 is a lower solution of
wt = σ2∆w + (a2 − w) with the same initial boundary condition; and for any
ε > 0, we have u2 ≤ (1 + ε)ū2 for t sufficiently large. By [C2], we can choose
ε > 0 sufficiently small such that the eigenvalue ρ̂1(σ1∆ + a1− c12(1 + ε)ū2) > 0
with a positive principal eigenfunction φ1; and let t0 be sufficiently large such
that u2 < (1 + ε)ū2 for t ≥ t0. Next, let δ > 0 be sufficiently small so that
u1(x, t0) ≥ δφ1(x) in Ω̄; and define w1 = δφ1, w̄2 = (1 + ε)ū2. One can readily
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verify that

(1.5)




σ1∆w1 + (a1 − w1 − c12w̄2)w1 ≥ 0 in Ω,

σ2∆w̄2 + (a2 − w̄2 − c21w1)w̄2 ≤ 0 in Ω,

u1(x, t0) ≥ w1(x), u2(x, t0) ≤ w̄2(x) in Ω.

Finally, let w2 ≡ 0 and w̄1 = (1+C)ū1 for some large C so that u1(x, t0) ≤ w̄1(x)
in Ω̄. We thus have

(1.6)




σ1∆w̄1 + (a1 − w̄1 − c12w2)w̄1 ≤ 0 in Ω,

σ2∆w2 + (a2 − w2 − c21w̄1)w2 ≥ 0 in Ω,

w1(x) ≤ u1(x, t0) ≤ w̄1(x), w2(x) ≤ u2(x, t0) ≤ w̄2(x) in Ω.

Let (v1(x, t), v2(x, t)) be a solution of

(1.7)




vit = σ1∆vi + (ai − vi − cijvj)vi, j �= i, i = 1, 2in Ω× (0,∞),

vi(x, t) = 0 (x, t) ∈ ∂Ω× (0,∞),

v1(x, 0) = w1(x), v2(x, 0) = w̄2(x), x ∈ Ω.

By the special monotone property of the reaction term of the competing relation,
we can deduce by comparison, as in [125] or [183] that

v1 ≤ u1 ≤ w̄1, v2 ≥ u2 ≥ w2 ≡ 0, for (x, t) ∈ Ω̄×∞;

and further v1 ↑ v∗1, v2 ↓ v∗2 as t → ∞ where (v∗1 , v
∗
2) is an equilibrium solution

of (1.7) without initial condition. By hypothesis [C2], we must have v∗2 ≡ 0 and
v∗1 = ū1.

Lemma 1.3. Assume hypotheses [C1]. Suppose that there exists a global at-
tractor (u∗1, u∗3) for solutions (with each component nontrivial and non-negative)
of

(1.8)




∂u1/∂t = σ1∆u1 + u1(a1 − u1 − c13u3),

∂u3/∂t = σ3∆u3 + u3(a3 + c31u1 − u3),

ui(x, t) = 0, i = 1, 3 for (x, t) ∈ ∂Ω × [0,∞),

where σi, ai, cij satisfy conditions for problem (1.4); and each u∗i �≡ 0 in Ω̄, for
i = 1, 3. Then, the eigenvalue with homogeneous Dirichlet boundary condition
satisfies

(1.9) ρ̂1(σ3∆ + (a3 + c31ū1)) > 0.
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If the system (1.8) has a positive equilibrium (0, ū3), ū3 �≡ 0 in Ω̄, then we also
have

(1.10) ρ̂1(σ1∆ + (a1 − c13ū3)) > 0.

Proof. Observe that ū1 is a strict upper solution of the scalar homogeneous
boundary value problem for σ1∆u1 + (a1 − c13u∗3 − u1)u1 = 0, which has the
solution u∗1. By means of scalar upper-lower solution theory, we obtain ū1 > u∗1
in Ω and ∂ū1/∂ν < ∂u∗1/∂ν on ∂Ω. Since (u∗1, u

∗
3) is a global attractor for

nontrivial non-negative solutions, we must have u1 ≤ ū1 for large enough t for
any solution (u1, u3) of (1.8) with each component non-negative and nontrivial.
(Recall that we can consider the semigroup of solutions with components in
C1

0,+(Ω̄)). Suppose contrary to (1.9), we have ρ̂1(σ3∆ + (a3 + c31ū1)) := σ0 ≤ 0,
with the corresponding eigenfunction φ0 > 0 in Ω. Let (u1, u3) be any non-
negative nontrivial solution of (1.8), so that ui → u∗i as t→∞ for i = 1, 3. We
consider the expression:

d
dt

∫
Ω φ0u3dx =

∫
Ω φ0[σ3∆u3 + (a3 + c31u1 − u3)u3] dx

=
∫
Ω[σ3∆φ0 + (a3 + c31ū1)φ0]u3 dx+

∫
Ω[c31(u1 − ū1)− u3]φ0u3 dx

=
∫
Ω σ0φ0u3 + c31(u1 − ū1)φ0u3 − φ0u

2
3 dx.

We have σ0φ0u3 ≤ 0 in Ω̄. Moreover, since ui → u∗i as t → ∞ and u∗1 < ū1 on
Ω, ∂u∗1/∂ν > ∂ū1/∂ν on ∂Ω, there must exist large T0 > 0 such that we have
u1− ū1 ≤ 0, and u3 ≥ (1/2)u∗3 in Ω̄ for t > T0. Consequently, for t > T0, we find

(1.11)
d

dt

∫
Ω
φ0u3 dx ≤ −1

4

∫
Ω
φ0(u∗3)2 dx := −δ0 < 0.

From (1.11), we readily deduce the fact that
∫
Ω φ0u3dx < 0 for all large t.

However, this fact is impossible because both φ0 and u3 are non-negative in Ω̄.
We thus conclude the validity of (1.9) in order to avoid contradiction.

Suppose the system (1.8) has a positive equilibrium (0, ū3), ū3 �≡ 0 in Ω̄.
Then u∗3 is a strict upper solution for the problem σ3∆w + (a3 − w)w = 0 in
Ω, w = 0 on ∂Ω; and thus u∗3 > ū3 in Ω. Hence a1 − c13u∗3 < a1 − c13ū3 in Ω,
and the characterization of principal eigenvalues gives ρ̂1(σ1∆ + (a1− c13u∗3)) <
ρ̂1(σ1∆ + (a1 − c13ū3)). However, the fact that u∗1 is a positive solution of
σ1∆w + (a1 − c13u∗3 − w) = 0 with homogeneous boundary condition implies
that ρ̂1(σ1∆ + (a1 − c13u∗3)) > 0. Consequently, (1.10) must hold.

Lemma 1.4. Suppose f ∈ C2(Ω̄, R) and σ > 0. Let ρ = ρ̂1(σ∆ + f(x)) be the
principal eigenvalue for the problem:

(1.12) σ∆w + f(x)w = ρw in Ω, φ = 0 on ∂Ω;
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and assume ρ̂1 > 0 with corresponding positive eigenfunction φ. Suppose that
there exist some constants k > 0 and ε ∈ (0, ρ̂1), so that u(x, t) satisfies the
following in a neighborhood U of 0 in C1

0,+(Ω̄):

(1.13)




∂u
∂t ≥ σ∆u+ [f(x)− ε]u for x ∈ Ω, t > 0,

u(x, t) = 0 for x ∈ ∂Ω, u(x, 0) ≥ kφ(x) for x ∈ Ω̄,

as long as it exist. Then as long as u(x, t) ∈ U , the following inequality is
satisfied

(1.14) u(x, t) ≥ ke(ρ̂1−ε)tφ(x)

for x ∈ Ω̄.

Proof. For (x, t) ∈ Ω̄× [0,∞), define v(x, t) = ke(ρ̂1−ε)tφ(x). We readily verify

(1.15)




∂v
∂t = σ∆v + [f(x)− ε]v for x ∈ Ω, t > 0,

v(x, t) = 0 for x ∈ ∂Ω, v(x, 0) = kφ(x) for x ∈ Ω̄.

By comparison of scalar parabolic equations, we obtain (1.14) from (1.13) and
(1.15). (We are considering a neighborhood in C1

0,+, but the result is still valid
in C0

0,+(Ω̄).)

Proof of Theorem 1.3. Since point dissipativity in C1
0,+(Ω̄) follows from

Lemma 1.1, we can prove this theorem by applying Theorem 1.1 accordingly, by
choosing X = X0 ∪ ∂X0 = [C1

0,+(Ω̄)]3. The hypotheses of this theorem imply
that the ω-limit set of the boundary consists exactly of the equilibria: © =
(0, 0, 0), A1 = (ū1, 0, 0), A2 = (0, ū2, 0), P1 = (û1, 0, û3), P2 = (0, ũ2, ũ3) and
Q = (0, 0, ū3) (if this exists). We thus proceed to take the isolated covering ∪Mi

(as described above) to be these points themselves. In order to apply Theorem
1.1, we need to show that: (i) this covering is isolated, (ii) W s(Mi) ∩X0 = Φ,
and (iii) the covering is acyclic. We now consider properties (i) and (ii) for each
equilibrium. The proof for each equilibrium is the same, and we illustrate the
detail arguments for the point A1. In order to show that A1 is isolated, we must
show that there is a neighborhood of A1 which does not contain a full orbit
(other than A1) itself. Suppose the contrary; that is, every neighborhood of A1

contains a full orbit.
First, assume such an orbit lies in the u1 axis in a small neighborhood of

A1. The first half of hypothesis [C1] implies that A1 is a stable equilibrium
which is a global attractor for nontrivial positive orbits on the axis. The α-limit
set of this orbit is nonempty by compactness; and the set is either A1 itself or
contains a point other than A1. Since all points are attracted to A1, the α-limit
set must then include a forward orbit tending to A1. Let q �= A1 be a point
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on the full orbit first considered, the stability of the solution A1 implies that
there is a small neighborhood N of A1 such that any orbit starting inside N can
never reach as far as q from A1 in forward time. Choose a large enough negative
time so that the orbit first considered is inside N , then the forward orbit cannot
contain the point q. This shows that the full orbit on the u1 axis cannot contain
a point other than A1. Next, by [C1],[C3] and ρ̂1(σ1∆ + (a1 − 2ū1)) < 0, we
can deduce by the linearized system at A1 and Theorem A4-11 in Chapter 6
that the equilibrium A1 is stable in C1

0,+(Ω̄) on the u1 − u2 face. Thus, [C1],
[C2],[C3] and Lemma 1.2 together imply that on the u1−u2 face, A1 is a C1

0,+(Ω̄)
stable equilibrium which is a global attractor for non-negative solutions not on
the u2 axis. We can therefore use the same argument above to assert that the
full orbit in a neighborhood of A1 on the u1 − u2 face cannot contain a point
other than A1. Consequently, if the full orbit in the neighborhood contains
a point other the A1, we must have u3 > 0 for x ∈ Ω. We now show that
such an orbit must leave every sufficiently small neighborhood U of A1. By
maximum principle, any orbit with u3 ≥ 0 and u3 �≡ 0 must satisfy u3(x, t0) ≥
kφ̃(x) for some t0 > 0 and k > 0. (Here, φ̃ is the positive eigenfunction for
the operator and principal eigenvalue described in (1.9). Note that hypothesis
[C4] and Lemma 1.3 imply that ρ̂1(σ3∆ + a3 + c31ū1) > 0). From the third
equation in (1.4), we see that for any ε > 0, there is a neighborhood U of
A1 = (ū1, 0, 0) so that in U , ∂u3/∂t− σ3∆u3 − u3(a3 + c31ū1 − ε) ≥ 0. Choose
ε ∈ (0, ρ̂1(σ3∆ + (a3 + c31ū1)), and U to be such a corresponding neighborhood.
From Lemma 1.4, the component u3 must increase until (u1, u2, u3) leaves U ,
so that U cannot contain a full orbit. We thus conclude that A1 is isolated.
A similar argument shows that W s(A1) ∩ X0 = Φ, since at any point of X0

sufficiently close to A1, the component u3 must increase so that (u1, u2, u3)
cannot approach A1 along W s(A1). (Note that in order to show that Pi, i = 1, 2
is isolated and W s(Pi) ∩X0 = Φ, we will need to use hypotheses [C5]).

It remains to show that there does not exist any cycle in the boundary as
defined above. We first consider the case when the equilibrium Q exists. Since
P1 and P2 are attracting and stable as described in [C4], they cannot form part
of any cycle on the boundary faces. Also, by [C1]-[C4]and Lemma 1.2, the
solutions starting near the origin on the faces are all attracted away to other
equilibria, thus the origin cannot form part of a cycle too. Therefore we only
need to consider the equilibria A1, A2 and Q. On the u1−u3 face (apart from the
axes), all solutions are attracted to P1, thus A1 cannot be chained to itself, Q to
itself, nor can A1 and Q be chained by an orbit on the u1 − u3 face. Similarly,
on the u2 − u3 face, we find A2, Q cannot be chained to themselves or each
other. The only other possibilities are that A1, A2 are cyclic or Ai is chained
to itself on the u1 − u2 face. However, by Lemma 1.2, all solutions on this face
are attracted to A1. Moreover, by [C3] and ρ̂1(σ1∆ + (a1 − 2ū1)) < 0, we can
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deduce by the linearized system at A1 and Theorem A4-11 in Chapter 6 that the
equilibrium A1 is stable on this face. Thus, both possibilities cannot happen.
We thus conclude that there cannot be any cycle on the boundary faces. Finally,
in the situation when Q does not exist, there are even fewer possible cycles to
consider. They can all be shown to be impossible by exactly the same arguments
just given. This completes the proof of Theorem 1.3.

In order to see how Theorem 1.3 can be readily applied, we consider various
situations when condition [C4] concerning dynamics for the reduced problem on
the boundary faces can be satisfied. This will be studied in Theorems 1.4 and
1.5 below. Recall that in Theorem 5.4 of Chapter 1, we consider

(1.16)




∆u+ u(a− bu− cv) = 0
in Ω,

∆v + v(e+ fu− gv) = 0

u = v = 0 on ∂Ω.

We found that the boundary value problem (1.16) under hypotheses:

(1.17)




a > λ1, e > λ1,

cf < gb, and

a > gb(gb − cf)−1[λ1 + ce/g]

has a unique coexistence solution with each component strictly positive in Ω,
and in C2+α(Ω̄), provided that

(1.18) cf < k(bg),

for some sufficiently small constant k ∈ (0, 1). Note that by reducing cf while
holding all other parameters fixed, all the inequalities in hypotheses (1.17) re-
main valid.

Let a, b, C, e, F, g be positive constants such that (1.17) holds with c, f re-
spectively replaced by C,F . Define Û , Ũ , V̂ , Ṽ ∈ C2+α(Ω) be strictly positive
functions in Ω satisfying the following scalar problems:

(1.19)

∆Û + Û(a− bÛ) = 0 in Ω, Û = 0 on ∂Ω,

∆V̂ + V̂ (e+ Fa
b − gV̂ ) = 0 in Ω, V̂ = 0 on ∂Ω,

∆Ũ + Ũ(a− bŨ − CV̂ ) = 0 in Ω, Ũ = 0 on ∂Ω,

∆Ṽ + Ṽ (e− gṼ ) = 0 in Ω, Ṽ = 0 on ∂Ω.
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Note that Û , V̂ , Ṽ exist because a, e, e+Fa/b are > λ1; and Û , V̂ , Ṽ are ≥ δφ > 0
in Ω for sufficiently small δ > 0. Here φ is a positive eigenfunction for the
principal eigenvalue λ1 of the Laplacian with zero Dirichlet boundary data. One
can readily deduce by upper lower solutions method that V̂ (x) ≤ 1

g (e + Fa
b ),

hence a− CV̂ ≥ a− C
g (e+ Fa

b ) > λ1 for all x ∈ Ω̄. Consequently, we obtain

0 < δφ ≤ Ũ ≤ Û , 0 < δφ ≤ Ṽ ≤ V̂
for x ∈ Ω, δ > 0 sufficiently small. It is shown in the proof of Theorem 5.4 of
Section 5.5 that if c ∈ (0, C) and f ∈ (0, F ) and cf satisfies (1.18), then the
unique positive solution (u, v) = (u∗, v∗) for (1.16) described above must have
the property:

(1.20) Ũ(x) < u∗(x) < Û(x), Ṽ (x) < v∗(x) < V̂ (x),

for all x ∈ Ω. Note that since the outward normal derivatives of φ are negative
on the boundary, there must exist a constant K̄ > 0 such that

(1.21) Û ≤ K̄Ũ , V̂ ≤ K̄Ṽ , Û ≤ K̄Ṽ , V̂ ≤ K̄Ũ
for all x ∈ Ω̄. The proof of Theorem 5.4 uses contraction argument, and is
accomplished by choosing

(1.22) k = (
1
K̄

)4.

We now consider the corresponding parabolic problem for (1.16)

(1.23)



ut = ∆u+ u(a− bu− cv)

in Ω× [0,∞),
vt = ∆v + v(e+ fu− gv)

u(x, t) = v(x, t) = 0 on ∂Ω × [0,∞).

Theorem 1.4 (Attractor for Reduced Problem). Let a, b, C, e, F, g satisfy
the conditions in (1.17) described above with c, f replaced respectively by C,F ;
and let Ũ(x), Ū (x), Ṽ (x), V̄ (x) be functions defined by (1.19). Suppose that

(1.24) c ∈ (0, C), f ∈ (0, F ), and cf < k(bg),

where k described in (1.24) satisfies (1.22), ensuring (1.16) has a unique positive
equilibrium solution as described above. Let (u(x, t), v(x, t)) be a solution of
(1.23) with u(x, 0) ≥ 0, �≡ 0 and v(x, 0) ≥ 0, �≡ 0 in Ω̄. Then for any ε > 0, there
exists a tε > 0 such that for t ≥ tε, we have:

(1.25) (1−ε)Ũ(x) ≤ u(x, t) ≤ (1+ε)Û (x), (1−ε)Ṽ (x) ≤ v(x, t) ≤ (1+ε)V̂ (x),

for all x ∈ Ω.
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Proof. The first component of the solution of (1.23) is a lower solution of
wt = ∆w + w(a− bw) in Ω, with w(x, 0) = u(x, 0) on Ω̄ and zero homogeneous
boundary condition. Thus by the C1(Ω̄) convergence of w(·, t) to Û(x) and
comparison, we find that for any ε > 0, we have

u(x, t) ≤ (1 + ε)Û(x)

in Ω̄ for t sufficiently large. Hence for t large, z = v is a lower solution of
zt = ∆z+z[e+f(1+ ε)Û(x)−gz] in Ω, with homogeneous boundary conditions.
Moreover for small enough ε > 0, we have f(1 + ε)Û(x) ≤ Fa/b in Ω̄. Thus by
comparison again, we obtain

v(x, t) ≤ (1 + ε)V̂ (x)

in Ω̄ for t sufficiently large. For small enough ε > 0 and for t large, w = u is an
upper solution of wt = ∆w+w[a− bw−CV̂ ] in Ω. Since Ũ is a global attractor,
we obtain by comparison that

u(x, t) ≥ (1− ε)Ũ(x)

in Ω̄ for t sufficiently large. Finally, z = v is an upper solution of zt = ∆z +
z(e− gz in Ω for any ε > 0, we obtain by comparison that

v(x, t) ≥ (1− ε)Ṽ (x)

in Ω̄ for a large t.

Theorem 1.5 (Globally Asymptotically Stable Equilibrium for
Reduced Problem). Let a, b, C, e, F, g be as described in Theorem 1.4. Then
there exist δ1 ∈ (0, C) and δ2 ∈ (0, F ) such that if c, f satisfies hypotheses (1.24)
in Theorem 1.4, and furthermore

(1.26) c ∈ (0, δ1), f ∈ (0, δ2),

then the unique coexistence positive equilibrium (u∗, v∗) of (1.16) is a global at-
tractor for all nontrivial non-negative solutions of (1.23). Here, (u(x, t), v(x, t)) →
(u∗, v∗) in [C1

0 (Ω̄)]2; and (u∗, v∗) is a stable equilibrium in [C0
0 (Ω̄)]2, if initial

conditions are close to the equilibrium in [C1
0 (Ω̄)]2.

Proof. Recall that under conditions (1.24), the system (1.16) has a unique
coexistence positive solution (u∗, v∗) which always satisfy (1.20) for any such
small c and f . Moreover, for any solution (u(x, t), v(x, t)) of (1.23) with each
component nontrivial non-negative in C0(Ω̄) at t = 0, and any ε > 0, it must
satisfy (1.25) for large enough t. Let

p(x, t) := u(x, t)− u∗(x) q(x, t) := v(x, t) − v∗(x).
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We have

(1.27)



pt = ∆p+ (a− bu∗ − cv∗)p− bup− cuq

qt = ∆q + (e+ fu∗ − gv∗)q + fvp− gvq

in Ω × (0,∞), p = q = 0 on ∂Ω × (0,∞). Since u∗ > 0 is a solution of the
eigenvalue problem: ∆ψ + (a − bu∗ − cv∗)ψ = ρψ with ρ = 0, we must have
ρ = 0 as the principal eigenvalue. Thus by characterization of eigenvalues, we
have

(1.28)
∫

Ω
[|∇ψ|2 + (a− bu∗ − cv∗)ψ2]dx ≤ 0

for any ψ ∈W 1,2
0 (Ω), and similarly,

(1.29)
∫

Ω
[|∇ψ|2 + (e+ fu∗ − gv∗)ψ2]dx ≤ 0.

Multiplying the first and second equation in (1.27) respectively by p and q,
adding and using (1.28) and (1.30) we deduce

(1.30)
d

dt
(
1
2

∫
Ω

(p2 + q2)dx) ≤ −
∫

Ω
[bup2 + (cu− fv)pq + gvq2]dx.

The quadratic expression inside the integral on the right above is positive definite
if (cu− fv)2 − 4bugv < 0, or equivalently

(1.31) c2(
u

v
)2 − (2cf + 4bg)(

u

v
) + f2 < 0.

Thus at any t > 0, if
(1.32)

(2cf + 4bg)−√16bg(bg + cf)
2c2

<
u(x, t)
v(x, t)

<
(2cf + 4bg) +

√
16bg(bg + cf)

2c2

for all x ∈ Ω̄, then the expression in (1.30) is negative, unless p(x, t) ≡ q(x, t) ≡ 0
for x ∈ Ω̄. For fixed b > 0, g > 0, denote

K1(c, f) := (2cf+4bg)−
√

16bg(bg+cf)

2c2 = 2f2

(2cf+4bg)+
√

16bg(bg+cf)
,

K2(c, f) := (2cf+4bg)+
√

16bg(bg+cf)

2c2 .

We see K1(c, f) → 0 as f → 0, and K2(c, f) → +∞ as c → 0. Consequently,
from (1.25) and (1.21), we must have (1.32) holds for all large enough t, provided
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(1.26) is valid for some small enough δ1, δ2. By (1.30), we deduce that (p, q)→
(0, 0) in [L2(Ω)]2 as t → ∞. By W 2,p estimates for parabolic equations, we
obtain (p, q) → (0, 0) in [C1

0 (Ω̄)]2. The last assertion concerning stability in
[C0

0 (Ω̄)]2 follows from (1.30) again.

In order to find a simple example so that condition [C2] of Theorem 1.3
applies, we consider:

(1.33)




∆u1 + u1(a− u1 − c12u2) = 0
in Ω,

∆u2 + u2(a− c21u1 − u2) = 0

u = v = 0 on ∂Ω

where a, c12, c21 are constants satisfying

(1.34)
a > λ1,

0 < c12 < 1 < c21.

Lemma 1.5 (Non-Coexistence for Another Reduced Problem). The
problem (1.33) under hypotheses (1.34) does not have any coexistence positive
solution such that both components are non-negative and �≡ 0 in Ω̄. Moreover,
let ū denote the solution of ∆ū+ ū(a− ū) = 0 in Ω with homogeneous Dirichlet
boundary condition, then the principal eigenvalue for the operator ∆ + a− c12ū
satisfies

(1.35) ρ̂1(∆ + a− c12ū) > 0.

Proof. We have ρ̂1(∆+a− ū) = 0, because ū is a positive solution of ∆ū+ ū(a−
ū) = 0 in Ω with homogeneous Dirichlet boundary condition. By comparison
of principal eigenvalues with Rayleigh’s quotient and (1.34), we have ρ̂1(∆ +
a − c12ū) > 0 and ρ̂1(∆ + a − c21ū) < 0. By Theorem 3.5 of Chapter 1, this
difference in sign implies that problem (1.33) does not have any coexistence
positive solution such that both components are non-negative and �≡ 0 in Ω̄.

Example 1.1 (Application of Persistence Theorem 1.3 to Full System).
Consider the problem for (x, t) ∈ Ω× (0,∞):

(1.36)




∂u1/∂t = ∆u1 + u1(a− u1 − c12u2 − ε1u3),

∂u2/∂t = ∆u2 + u2(a− c21u1 − u2 − ε2u3),

∂u3/∂t = ∆u3 + u3(e+ δ1u1 + δ2u2 − u3),

ui(x, t) = 0, i = 1, 2, 3 for (x, t) ∈ ∂Ω× [0,∞)
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where a, c12, c21, ε1, ε2, δ1 and δ2 are positive constants satisfying

(1.37) e > λ1, 0 < c12 < 1 < c21

(1.38) a >
λ1 +

√
λ2

1 + 4c21
2

.

From Theorem 1.3, we can readily deduce that the non-negative solutions of this
problem are uniformly persistent provided that εi and δi are sufficiently small,
for i = 1, 2. We simply verify all the conditions [C1] to [C5] for Theorem 1.3.
The assumptions here on a, e imply [C1]. The hypotheses in [C2] are valid due
to the second part of (1.37) and Lemma 1.5. [C3] is true due to the assumption
1 < c21. Theorem 1.5 implies [C4] is valid for sufficiently small εi, δi, i = 1, 2.
(Note that the last inequality in (1.17) will be satisfied if a > λ1 and εi are
small enough). From (1.36), we readily obtain the components û1(x) and ũ2(x)
defined in [C4], [C5] satisfy û1(x) < 1

a and ũ2(x) < 1
a for all x ∈ Ω̄. Thus

assumption (1.38) and the roots of quadratic equations imply that [C5] is valid
for sufficiently small εi, i = 1, 2 by comparing principal eigenvalues.

Part B: Average Liapunov Functions.

We now introduce another useful tool for analyzing persistence or perma-
nence for reaction-diffusion systems. Recall we assume the metric space X
satisfies X = X0 ∪ ∂X0 where X0 is open in X, which is the closure of X0.
∂X0 (assumed to be nonempty) is the boundary of X0. We suppose that the
C0-semigroup T (t) on X satisfies

(1.39) T (t) : X0 → X0, T (t) : ∂X0 → ∂X0

and let T0(t) = T (t)|X0 , T∂(t) = T (t)|∂X0 . Let U, V be subsets of X, we denote
the distances

d̄(U, V ) = supu∈U d(u, V ), d(U, V ) = infu∈U d(u, V ).

The following terminology is commonly used for T (t) with the above properties:

Definition 1.2. The semigroup T (t) is said to be permanent if there exists a
bounded set U with d(U, ∂X0) > 0 such that limt→∞ d(T (t)v, U) = 0 for all
v ∈ X0.

Note that if the boundedness condition on U above is removed, then T (t)
is uniformly persistent as defined earlier. Consequently, uniform persistence is
less stringent than permanent. However, we have actually proved the following
stronger result in the proof of Theorem 1.3.
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Remark 1.1. Assume hypotheses [C1]-[C5], then the semigroup T (t) of solu-
tions of (1.4) in X = X0 ∪ ∂X0 = [C1

0,+(Ω̄)]3 is permanent.

We next introduce another abstract permanence theorem which is based on
the constructive use of a so called ’average’ Liapunov function P. The method
can be applied to systems for which we cannot rule out the possibility of a cycle,
and thus unable to find an acyclic cover of ω(∂X0) for application of Theorem
1.3. We construct a function P whose value depends on the size of the solution
ui(x, t) of the system, and study its variations as t changes. We analyze the
behavior of the function starting at different initial states, in particular near the
attractor of the semigroup and the boundary of the positive cone of functions.
The system will tend to be permanent if the boundary of the positive cone acts
as a repeller for the system.

More precisely, let X = X0 ∪ ∂X0 be a complete metric space, and a semi-
group T (t) is point dissipative in X with properties (1.39) as described. Assume
there is a t0 ≥ 0 such that T (t) is compact for t > t0, then by Theorem A4-
13 in Chapter 6, there is a nonempty global attractor A in X. Let B(A, ε)
be an ε neighborhood of A, and define the closure Y := Cl T (B(A, ε), [1,∞)),
S := Y ∩ ∂X0.

Theorem 1.6 (Abstract Permanence Theorem). Let X, T (t), Y and S be
as described in the last paragraph. (Note the point dissipative and compactness
condition on T (t)). Suppose that Y, S are compact and for u ∈ S, t > 0, we
define

α(t, u) = lim infv→u, v∈Y \S
P (T (t)v)
P (v)

,

where P : Y \S → R+ is a continuous, strictly positive and bounded function. If
the function α(t, u) has the property:

(1.40)



supt>0 α(t, u) > 1 if u ∈ ω(S),

supt>0 α(t, u) > 0 if u ∈ S,

then the semigroup T (t) is permanent.

We will apply this theorem in the context of parabolic systems with X =
[C1

0,+(Ω̄]n. Note that the theorem assumes that the semigroup is dissipative.
This can be established by showing the solutions satisfy uniform bound of the
form 0 ≤ ui ≤ Ki for large t. The smoothing properties of the semigroup
imply dissipativity in C1(Ω̄). That is, we will have Y and S are compact. The
theorem do not require any special assumptions concerning monotonicity of the
interaction terms, uniqueness of coexistence states or a globally defined Liapunov
function. However to construct the average Liapunov function, we must have a
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detailed knowledge of the semigroup generated on the boundary of the positive
cone of functions.

Example 1.2. Consider the following system for (x, t) ∈ Ω× (0,∞),

(1.41)




∂u1/∂t = σ∆u1 + u1(1− u1 − αu2 − βu3),

∂u2/∂t = σ∆u2 + u2(1− βu1 − u2 − αu3),

∂u3/∂t = σ∆u3 + u3(1− αu1 − βu2 − u3),

ui(x, t) = 0, i = 1, 2, 3 for (x, t) ∈ ∂Ω × [0,∞),

where σ, α, β are all positive constants, satisfying the following

(1.42) 0 < σ <
1
λ1
, 0 < α < 1 < β,

where λ1 is the principal eigenvalue for the operator −∆ on Ω. The domain
Ω ⊂ RN is bounded and open, with ∂Ω uniformly C3+ν for some ν > 0. Here,
we have three competing species. Each species is more competitive to one and
less competitive to another in a cyclic fashion, as indicated by the sizes of α and
β. By the assumption on σ, there exists a unique positive function ū > 0 in Ω
satisfying:

(1.43) σ∆ū+ ū(1− ū) = 0 in Ω, ū = 0 on ∂Ω.

Let ρ = ρ̂1 and φ > 0 be the principal eigenvalue and a corresponding positive
eigenfunction to the eigenvalue problem

(1.44) σ∆φ+ (1− αū)φ = ρφ in Ω, φ = 0 on ∂Ω.

From the assumption that 0 < α < 1 and comparison with problem (1.43),
we must have ρ̂1 = ρ̂1(σ∆ + 1 − αū) > 0. We will proceed to construct an
average Liapunov function for the problem (1.41) and apply Theorem 1.6 to
analyze the relative sizes of ρ̂1, α, and β which can ensure permanence for the
system. As in the analysis of problem (1.4), the problem (1.41) is considered
in the first quadrant of functions [C1

0,+(Ω̄)]3. By comparison, we can show that
the solutions are bounded as described above. We may choose Y so that the
set S for Theorem 1.6 consists essentially of part of the three ’faces’ obtained
by setting successively u1 = 0, u2 = 0 and u3 = 0. For the average Liapunov
function, we define for v = (v1, v2, v3):

(1.45) P (v) =
3∏
i=1

∫
Ω
φ vi dx = exp {

3∑
i=1

log

∫
Ω
φvi dx},



4.1. PERSISTENCE 307

where φ is the eigenfunction defined in (1.44). Direct computation shows

d

ds
(logP (v · s)) =

3∑
i=1

∫
Ω φvis dx∫
Ω φvi dx

,

(1.46)
P (v · t)
P (v)

= exp{
∫ t

0
ds

3∑
i=1

[
∫

Ω
(φvisdx)/(

∫
Ω
φvidx)]}.

In order to apply Theorem 1.6, we have to take limits as v tends to points in ω(S).
We will only perform the formal calculations here. In view of the smoothness
of solutions of the parabolic systems, the rigorous analytic justification can be
done readily. More details can be found in [21]. Since ρ̂1(σ∆ + 1−αū) > 0, and
ρ̂1(σ∆ + 1−βū) < 0 are of different sign, we see from Theorem 3.5 in Chapter 1
that on the u1 − u2 face there is no coexistence solution with both components
positive. Similarly we have the same situation on the u2− u3 and u3− u1 faces.
That is the set ω(S) consists only of the equilibrium at the origin, and the three
other equilibria (ū, 0, 0), (0, ū, 0), (0, 0, ū) on the axes (cf. Lemma 1.2).

For (ū, 0, 0), we calculate the first limit in sum on the right of (1.46) by using
the first equation in (1.41) and (1.43):

lim inf(v1,v2,v3)→(ū,0+,0+){
∫
Ω φv1tdx/

∫
Ω φv1dx}

= lim inf(v1,v2,v3)→(ū,0+,0+){
∫
Ω φ[σ∆v1 + v1(1− v1 − αv2 − βv3)]dx/

∫
Ω φv1dx}

= 0.

For the second term in the sum on the right of (1.46), we obtain by means of
(1.44):

(1.47)
lim inf(v1,v2,v3)→(ū,0+,0+){

∫
Ω φv2tdx/

∫
Ω φv2dx}

= lim inf(v1,v2,v3)→(ū,0+,0+){
∫
Ω φ[σ∆v2 + v2(1− v2 − αv3 − βv1)]dx/

∫
Ω φv2dx}

= lim inf(v1,v2,v3)→(ū,0+,0+){
∫
Ω v2[σ∆φ+ φ(1− v2 − αv3 − βv1)]dx/

∫
Ω φv2dx}

= lim infv2→0+{∫Ω v2[σ∆φ+ φ(1− βū)]dx/
∫
Ω φv2dx}

= ρ̂1 + lim infv2→0+{(α− β)
∫
Ω φv2ūdx/

∫
Ω φv2dx}.

Here, we denote ρ̂1 = ρ̂1(σ∆ + 1− αū). The second term on the last line above
is the same as

(α− β) lim supv2→0+{
∫

Ω
φv2ūdx/

∫
Ω
φv2dx}.
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The lim sup term cannot be larger than ||ū||0. Moreover, the maximum value can
be attained by choosing v2 to tend to 0+ through a sequence of smooth functions
with successively smaller supports in a neighborhood of a point where ū achieves
its maximum. Thus the expression in (1.47) is exactly ρ̂1 − (β − α)||ū||0. As in
(1.47), we deduce

lim inf(v1,v2,v3)→(ū,0+,0+){
∫

Ω
φv3tdx/

∫
Ω
φv3dx} = ρ̂1.

Consequently, we have
(1.48)

lim inf(v1,v2,v3)→(ū,0+,0+)

3∑
i=1

[
∫

Ω
(φvitdx)/(

∫
Ω
φvidx)] = 2ρ̂1 − (β − α)||ū||0.

From the symmetry of the system (1.41), we readily see that the calculations
for the limits at the equilibria on the other two axes are the same. The origin
(0, 0, 0) also lies on the set ω(S), and direct calculations as above show that the
limit there is positive. As mentioned above, we can show by means of comparison
as in the analysis of system (1.4), that hypotheses [H1] and [H2] (for uniform
boundedness and dissipativity) also hold for problem (1.41). Theorem 1.2 also
apply with system (1.41) as well as (1.4). We can thus apply Theorem 1.6, using
(1.46) and (1.48), to obtain permanence in the following.

Theorem 1.7 (Permanence for 3 Competing Species). The semigroup
T (t) of solutions of problem (1.41) under hypothesis (1.42) is permanent in
X = X0 ∪ ∂X0 = [C1

0,+(Ω̄)]3 provided that

(1.49) 2ρ̂1 − (β − α)||ū||0 > 0,

where ū and ρ̂1 are defined in (1.43) and (1.44) respectively.

Finally, using some more topological results, we can obtain sharper descrip-
tion of the permanent semigroups for reaction diffusion systems (1.4) and (1.41)
as described in Remark 1.2 below. The following definition and Theorem 1.8 can
be found in [81]. A set U ⊂ X0 is said to be strongly bounded if it is bounded
and d(U, ∂X0) > 0. A0 is said to be a global attractor relative to strongly
bounded sets if it is a compact invariant subset of X0 and d̄(T (t)U,A0) = 0 for
all strongly bounded sets.

Theorem 1.8. Let X be complete and T (t) be point dissipative in X. Assume
that there is a t0 ≥ 0 such that T (t) is compact for t > t0. Let X0, ∂X0 be as
described above. Suppose T (t) is permanent, then there are global attractors A,
A∂ for T∂(t), and a global attractor A0 relative to strongly bounded sets.

The above Theorem is an extension of Theorem A4-13 in Chapter 6. If we
apply Theorem 1.8 and the permanence in [C1

0,+(Ω̄)]3, for the semigroup T (t)
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in Theorem 1.3 or Theorem 1.7, we can readily show that the solutions of (1.4)
under hypotheses [C1]-[C5] or solutions of (1.41) under hypotheses (1.42) have
the properties in the following remark.

Remark 1.2. There exists an ε > 0 and functions v,w ∈ C2(Ω, R3
+) with

vi, wi in C1(Ω̄), > 0 on Ω and outward normal derivatives ∂vi/∂ν < −ε on ∂Ω,
and a corresponding region Z = {z ∈ C1(Ω̄, R3) : vi ≤ zi ≤ wi, i = 1, 2, 3}
such that all solutions u = (u1(x, t), u2(x, t), u3(x, t)) with each component
initially non-negative and nontrivial are attracted to Z in C1(Ω̄). That is
limt→∞ d(u(·, t), Z) = 0 where d is the metric in [C1(Ω̄)]3.

In order to prove the remark, we first note that the set A0 defined in Theorem
1.8 is invariant. Thus for each û ∈ A0, there is a ũ such that T (t)ũ = û. Using
the maximum principle for parabolic equations and the boundedness of A0 in
[C1(Ω̄)]3, we then show that there exist positive constants c1, c2, γ and a function
e ∈ C2(Ω̄) with e(x) > 0 in Ω and ∂e/∂ν < −γ on ∂Ω, such that for each û ∈ A0,
we must have

c1e(x) ≤ ûi(x) ≤ c2e(x), for all x ∈ Ω̄, i = 1, 2, 3.

Then we use convergence in C1(Ω̄) to show that there exists a β > 0 such that for
all solutions u(x, t) with each component non-negative and nontrivial initially,
there is t(u) with the property

ui(x, t) ≥ βe(x) for t ≥ t(u), x ∈ Ω̄, and i = 1, 2, 3.

For more description of the history of the development of persistence theory
and its relation with dynamical system method, the readers should refer to
Hofbauer and Sigmund [88] and Hutson and Schmitt [94]. Further explanations
concerning the application of such spatial theory to ecology can be found in
Cantrell and Cosner [20].

4.2 Upper-Lower Estimates, Attractor Set, Blowup

Throughout many sections in this book, solutions of elliptic and parabolic sys-
tems are estimated by comparison method, using coupled upper and lower so-
lutions. Such techniques are explained in various books, e.g. Leung [125] and
Pao [183]. Moreover, they have been developed to very general forms including
coupled nonlinear boundary conditions. We review some of these results here in
Part A, since they can be applied to many related problems. In Part B, we will
use comparison method as in the first part to enhance the persistence theory of
the last section. We will further construct the set which attracts all non-negative
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solutions by comparison scheme. This set can be calculated numerically in prac-
tice. In Part C, we discuss a case when there is no upper estimate. We study
the problem when the solution of the parabolic system blow up due to exces-
sive nonlinear boundary inflow. Note that the theories in this section are not
restricted to Dirichlet type of boundary condition

Part A: General Monotone Schemes.

We consider the elliptic problem:

(2.1)



−Liui = fi(x, u1, ..., un) in Ω,

Biui = gi(x, u1, ..., un) on ∂Ω, (i = 1, ..., n);

and the corresponding parabolic problem:

(2.2)




(ui)t − Liui = fi(x, t, u1, ..., un) in Ω× (0, T ],

Biui = gi(x, t, u1, ..., un) on ∂Ω× (0, T ], (i = 1, ..., n)

ui(x, 0) = ui,0(x) in Ω.

Here, Li and Bi are linear operators of the form:

(2.3)
Liui :=

∑N
j,l=1 a

(i)
j,l (x)∂2ui/∂xj∂xl +

∑N
j=1 b

(i)
j (x)∂u/∂xj ,

Biui := αi(x)∂u/∂ν + βi(x)u.

Ω is a bounded domain in RN with smooth boundary ∂Ω. For each i = 1, ..., n, Li
is a uniformly elliptic operator in Ω with coefficients in Cµ(Ω) for some µ ∈ (0, 1).
The functions αi and βi are respectively in Cµ and C1+µ, and are non-negative
functions satisfying αi +βi > 0 on ∂Ω. The functions ui,0(x) are in Cµ(Ω̄). The
functions fi and gi are assumed to be in Cµ(Ω̄) or Cµ,µ/2(Ω̄× [0, T ]) as functions
of x or (x, t), and are continuously differentiable in u = (u1, ..., un). In order to
construct a monotone iteration process, we express u in the form

u ≡ (ui, [u]ai , [u]bi) or u ≡ (ui, [u]ci , [u]di),

where ai, bi, ci and di are non-negative integers satisfying

ai + bi = ci + di = n− 1, for each i = 1, ..., n.

A vector function f = (f1, ..., fn) is said to have a quasimonotone property with
respect to u = (u1, ..., un), if for each i = 1, ..., n, there exist non-negative
integers ai, bi, with ai + bi = n − 1, such that fi(ui, [u]ai , [u]bi) is monotone
nondecreasing in the [u]ai components, and monotone nonincreasing in the [u]bi
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components. When ai = 0 or bi = 0, f is quasimonotone nonincreasing or
nondecreasing respectively. Similar definitions are made for the vector function
g with respect to the components [u]ci and [u]di . When f and g have such
quasimonotone properties, we write problems (2.1) and (2.2) respectively in the
form:

(2.4)



−Liui = fi(x, ui, [u]ai , [u]bi) in Ω,

Biui = gi(x, ui, [u]ci , [u]di) on ∂Ω, (i = 1, ..., n),

and
(2.5)


(ui)t − Liui = fi(x, t, ui, [u]ai , [u]bi) in Ω× (0, T ],

Biui = gi(x, t, ui, [u]ci , [u]di) on ∂Ω × (0, T ], (i = 1, ..., n)

ui(x, 0) = ui,0(x) in Ω.

We will construct monotone convergent sequences to find approximate solutions
for system (2.4) and (2.5).

Definition 2.1. Let f = (f1, ..., fn),g = (g1, ..., gn) be quasimonotone func-
tions with respect to u = (u1, ..., un) as described above. A pair of functions
û = (û1, ..., ûn), ũ = (ũ1, ..., ũn) in [C2(Ω̄)]n are called (coupled) upper-lower
solutions of (2.4) if ûi ≥ ũi in Ω̄, for i = 1, ..., n, and

(2.6)




−Liûi ≥ fi(x, ûi, [û]ai , [ũ]bi) in Ω,

−Liũi ≤ fi(x, ũi, [ũ]ai , [û]bi) in Ω,

Biûi ≥ gi(x, ûi, [û]ci , [ũ]di) on ∂Ω, (i = 1, ..., n)

Biũi ≤ gi(x, ũi, [ũ]ci , [û]di) on ∂Ω.

Let û, ũ be a pair of coupled upper-lower solutions for (2.4). Define

(2.7)

< ũ, û >≡ {u ∈ [C(Ω̄)]n; ũi ≤ ui ≤ ûi, i = 1, ..., n},

c̄i(x) ≡ max{max{− ∂fi
∂ui

(x,u);u ∈< ũ, û >}, 0},

b̄i(x) ≡ max{max{− ∂gi
∂ui

(x,u);u ∈< ũ, û >}, 0},

where [C(Ω̄]n denotes the set of continuous functions u in Ω̄. Letting

(2.8)
Fi(x, ui, [u]ai , [u]bi) = c̄iui + fi(x, ui, [u]ai , [u]bi),

Gi(x, ui, [u]ci , [u]di) = b̄iui + gi(x, ui, [u]ci , [u]di),
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we may write (2.4) in the form

(2.9)



−Liui + c̄iui = Fi(x, ui, [u]ai , [u]bi) in Ω,

Biui + b̄i = Gi(x, ui, [u]ci , [u]di) on ∂Ω (i = 1, ..., n).

A monotone approximating sequence to the solution of (2.9) can be constructed
by the following scheme:

(2.10)


−Liū(k)
i + c̄iū

(k)
i = Fi(x, ū

(k−1)
i , [ū(k−1)]ai , [u

k−1]bi) in Ω,

Biū
(k)
i + b̄iū

(k)
i = Gi(x, ū

(k−1)
i , [ū(k−1)]ci , [u

(k−1)]di) on ∂Ω, (i = 1, ..., n);

−Liu(k)
i + c̄iu

(k)
i = Fi(x,u

(k−1)
i , [u(k−1)]ai , [ū

k−1]bi) in Ω,

Biu
(k)
i + b̄

(k)
i u(k)

i = Gi(x,u
(k−1)
i , [u(k−1)]ci , [ū

(k−1)]di) on ∂Ω, (i = 1, ..., n)

for k = 1, 2, . . . , where we choose ū
(0)
i = ûi and u(0)

i = ũi, i = 1, .., n. The
following existence-comparison theorem is well-known.

Theorem 2.1. Let f = (f1, ..., fn),g = (g1, ..., gn) be quasimonotone functions
with respect to u = (u1, ..., un) with smoothness properties as described above,
and û = (û1, ..., ûn), ũ = (ũ1, ..., ũn) are (coupled) upper-lower solutions of (2.4).
Then the sequences constructed by the recursive relation (2.10) satisfies the fol-
lowing monotonic properties for each i = 1, ..., n:

(2.11) ũi ≤ u(k)
i ≤ u(k+1)

i ≤ ū(k+1)
i ≤ ū(k)

i ≤ ûi in Ω̄, for k = 1, 2, . . . .

Moreover, any solution u∗ = (u∗1, ..., u∗1) of (2.4) which satisfies ũi ≤ u∗i ≤ ûi in
Ω̄ for i = 1, ..., n must also satisfy
(2.12)
ũi ≤ u(k)

i ≤ u(k+1)
i ≤ ui ≤ u∗i ≤ ūi ≤ ū(k+1)

i ≤ ū(k)
i ≤ ûi in Ω̄, for k = 1, 2, . . . ,

where for each i = 1, ..., n, x ∈ Ω̄:

(2.13) ūi(x) := lim
k→∞

ū
(k)
i (x) and ui(x) := lim

k→∞
u(k)
i (x).

From (2.10), it can be shown that ū = (ū1, ..., ūn), and u = (u1, ...,un)
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satisfy:

(2.14)




−Liūi = fi(x, ūi, [ū]ai , [u]bi) in Ω,

−Liui = fi(x,ui, [u]ai , [ū]bi) in Ω,

Biūi = gi(x, ūi, [ū]ci , [u]di) on ∂Ω, (i = 1, ..., n)

Biui = gi(x,ui, [u]ci , [ū]di) on ∂Ω.

Thus, the limiting functions ū and u are in general not always a solution of
problem (2.4). However, if f and g are both quasimonotone nondecreasing C1-
functions in < ũ, û >, then the ū and u are indeed solutions. In fact, they
are respectively maximal and minimal solutions of (2.4) in the sense that any
solution u∗ = (u∗1, .., u

∗
n) in < ũ, û >, must satisfy ui ≤ u∗i ≤ ūi in Ω̄ for each

component. (For more details, see e.g. Chapter 8 and 9 in [183] or Chapter 5 in
[125] where the notations are slightly different).

In the general case when f or g is not quasimonotone, there is also a more
general definition of upper-lower solutions for system (2.4).

Definition 2.2. A pair of functions û = (û1, ..., ûn), ũ = (ũ1, ..., ũn) in [C2(Ω̄)]n

are called (coupled) upper-lower solutions of the system (2.4) if ûi ≥ ũi in Ω̄,
for i = 1, ..., n, and

(2.15)




−Liûi ≥ fi(x,v) in Ω,
for all v ∈< ũ, û >, with vi = ûi

Biûi ≥ gi(x,v) on ∂Ω,
(i = 1, ..., n)

−Liũi ≤ fi(x,v) in Ω,
for all v ∈< ũ, û >, with vi = ũi

Biûi ≤ gi(x,v) on ∂Ω.

In case when f and g are quasimonotone, Definition 2.2 becomes Definition 2.1.
The following theorem by Tsai [221] is well-known (see e.g. Chapter 1 in [125]
or Chapter 9 in [183].

Theorem 2.2. Suppose there exists a pair of (coupled) upper-lower solutions
û, ũ for problem (2.4) as described in Definition 2.2, where f and g are C1-
functions in < ũ, û > and x ∈ Ω̄. Then there is at least one solution u∗ of (2.4)
satisfying u∗ ∈< ũ, û >.

For problem (2.4) with f quasimonotone and g = (0, ..., 0), there are some
variations to the scheme described in (2.10) found in the literature. For each
component i of the quasimonotone function f = (f1, ..., fn), we divide those
components in [u]ai into two groups [u]ai1 and [u]ai2 , where the first group
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consists of those components before the i-th and the second consists of those
after the i-th. The scheme can be up-dated as follows:
(2.16)


−Liū(k)
i + c̄iū

(k)
i = Fi(x, ū

(k−1)
i , [ū(k)]ai1 , [ū

(k−1)]ai2 , [u
k−1]bi) in Ω,

Biū
(k)
i = 0 on ∂Ω,

−Liu(k)
i + c̄iu

(k)
i = Fi(x,u

(k−1)
i , [u(k)]ai1 , [u

(k−1)]ai2 , [ū
k−1]bi) in Ω,

Biu
(k)
i = 0 on ∂Ω, (i = 1, ..., n)

for k = 1, 2, . . . , where we choose ū(0)
i = ûi and u(0)

i = ũi, i = 1, ..., n.

Theorem 2.3. Let f = (f1, ..., fn) be quasimonotone functions with respect
to u = (u1, ..., un) as described in Theorem 2.1, and û = (û1, ..., ûn), ũ =
(ũ1, ..., ũn) are (coupled) upper-lower solutions of (2.4) with g = (0, ..., 0). Then
the sequences constructed by the recursive relation (2.16) satisfies the following
monotonic properties for each i = 1, ..., n:

(2.17) ũi ≤ u(k)
i ≤ u(k+1)

i ≤ ū(k+1)
i ≤ ū(k)

i ≤ ûi in Ω̄, for k = 1, 2, ..., .

Moreover, any solution u∗ = (u∗1, ..., u∗1) of (2.4) which satisfies ũi ≤ u∗i ≤ ûi in
Ω̄ for i = 1, ..., n must also satisfy (2.12) and (2.13).

In the study of population equations, the functions fi in (2.1) and (2.2) are
usually of the form:

(2.18) fi(·, u1, ..., un) = uif̃i(·, u1, ..., un), i = 1, ..., n,

where f̃i are quasimonotone with respect to u for ui ≥ 0, i = 1, .., n, and has the
same smoothness properties as fi described before. Assume there exist coupled
upper-lower solutions with all components non-negative in Ω and g ≡ 0.. In such
instance, we can replace the linear scheme in (2.10) and (2.14) by the following
nonlinear scheme:

(2.19)




−Liū(k)
i = ū

(k)
i f̃i(x, ū

(k)
i , [ū(k)]ai1 , [ū

(k−1)]ai2 , [u
k−1]bi) in Ω,

Biū
(k)
i = 0 on ∂Ω,

−Liu(k)
i = u(k)

i f̃i(x,u
(k)
i , [u(k)]ai1 , [u

(k−1)]ai2 , [ū
k−1]bi) in Ω,

Biu
(k)
i = 0 on ∂Ω, (i = 1, ..., n)



4.2. ATTRACTOR SET, BLOWUP 315

for k = 1, 2, . . . , where we choose ū(0)
i = ûi and u(0)

i = ũi, i = 1, .., n. Here, at
each step k, ūki is a uniquely defined positive function or is the trivial function
depending on the principal eigenvalue ρ for
(2.20)
Liw + wf̃i(x, 0, [ū(k)]ai1 , [ū

(k−1)]ai2 , [u
k−1]bi) = ρw in Ω, Biw = 0 on ∂Ω,

is > 0 or ≤ 0 respectively. Similarly, uki is a uniquely defined positive function
or is the trivial function depending on the principal eigenvalue ρ for
(2.21)
Liw + wf̃i(x, 0, [u(k)]ai1 , [u

(k−1)]ai2 , [ū
k−1]bi) = ρw in Ω, Biw = 0 on ∂Ω,

is > 0 or ≤ 0 respectively. These estimates have been used in many situations
in the earlier sections and chapters in analyzing the uniqueness and stability of
positive coexistence states for 2 or 3 species.

Theorem 2.4. Let f = (u1f̃1, ..., unf̃n) be quasimonotone functions as described
above with respect to u = (u1, ..., un), and û = (û1, ..., ûn), ũ = (ũ1, ..., ũn) are
coupled upper-lower solutions of (2.4) with ũi ≥ 0, g = (0, ..., 0) in Ω̄. Then
the sequences constructed by the nonlinear recursive relation (2.19) satisfies the
following monotonic properties for each i = 1, ..., n:

(2.22) ũi ≤ u(k)
i ≤ u(k+1)

i ≤ ū(k+1)
i ≤ ū(k)

i ≤ ûi in Ω̄, for k = 1, 2, . . . .

Moreover, any solution u∗ = (u∗1, ..., u∗1) of (2.4) which satisfies ũi ≤ u∗i ≤ ûi in
Ω̄ for i = 1, ..., n must also satisfy (2.12) and (2.13).

In case the principal eigenvalue of (2.20) or (2.21) is positive, the positive
equilibrium for the related nonlinear scalar problem is a global attractor for the
corresponding scalar parabolic problem. For 2 or 3 species, we have used this
property to study the time asymptotic behavior for the corresponding parabolic
system in Chapter 1 and the last section. We construct a region which attracts
all non-negative orbits of the corresponding system (2.5) by means of the ap-
proximates obtained from (2.19). We will describe another such application for
a system of n equations in Theorem 2.7 below. Before we study this situation,
we first state the Theorems for the parabolic case corresponding to Theorem
2.1.

Definition 2.3. Let f = (f1, ..., fn),g = (g1, ..., gn) be quasimonotone functions
with respect to u = (u1, ..., un) as described above. A pair of functions û =
(û1, ..., ûn), ũ = (ũ1, ..., ũn) in C2,1(Ω̄ × [0, T ]) are called (coupled) upper-lower
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solutions of (2.5) if ûi ≥ ũi in Ω̄× [0, T ], for i = 1, ..., n, and
(2.23)


(ûi)t − Liûi ≥ fi(x, t, ûi, [û]ai , [ũ]bi) in Ω× (0, T ],

(ũi)t − Liũi ≤ fi(x, t, ũi, [ũ]ai , [û]bi) in Ω× (0, T ],

Biûi ≥ gi(x, t, ûi, [û]ci , [ũ]di) on ∂Ω × (0, T ], (i = 1, ..., n)

Biũi ≤ gi(x, t, ũi, [ũ]ci , [û]di) on ∂Ω × (0, T ],

ûi(x, 0) ≥ ui,0(x) ≥ ũi(x, 0) in Ω.

We replace (2.7) and (2.8) with

(2.24)

< ũ, û >≡ {u ∈ [C(Ω̄× [0, T ])]n; ũi ≤ ui ≤ ûi, i = 1, ..., n},

c̃i(x, t) ≡ max{− ∂fi
∂ui

(x, t,u);u ∈ <ũ, û>},

b̃i(x, t) ≡ max{− ∂gi
∂ui

(x, t,u);u ∈ <ũ, û>},

(2.25)
Fi(x, t, ui, [u]ai , [u]bi) ≡ c̃iui + fi(x, t, ui, [u]ai , [u]bi),

Gi(x, t, ui, [u]ci , [u]di) ≡ b̃iui + gi(x, t, ui, [u]ci , [u]di).

We may write (2.5) in the form

(2.26)




Liui = Fi(x, t, ui, [u]ai , [u]bi) in Ω× (0, T ],

Biui = Gi(x, t, ui, [u]ci , [u]di) on ∂Ω × (0, T ], (i = 1, ..., n)

ui(x, 0) = ui,0(x) in Ω,

where

Liui ≡ (ui)t − Liui + c̃iui,

Biui ≡ Biui + b̃i (i = 1, ..., n).

A monotone approximating sequence to the solution of (2.26) can be constructed
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by the following scheme:
(2.27)
Liū(k)

i = Fi(x, t, ū
(k−1)
i , [ū(k−1)]ai , [u

k−1]bi) in Ω× (0, T ],

Biū(k)
i = Gi(x, t, ū

(k−1)
i , [ū(k−1)]ci , [u

(k−1)]di) on ∂Ω× (0, T ], (i = 1, ..., n)

Liu(k)
i = Fi(x, t,u

(k−1)
i , [u(k−1)]ai , [ū

k−1]bi) in Ω× (0, T ],

Biu(k)
i = Gi(x, t,u

(k−1)
i , [u(k−1)]ci , [ū

(k−1)]di) on ∂Ω× (0, T ], (i = 1, ..., n)

ū
(k)
i (x, 0) = u(k)(x, 0) = ui,0(x) in Ω

for k = 1, 2, . . . , where we choose ū
(0)
i = ûi and u(0)

i = ũi, i = 1, ..., n. The
following existence-comparison result is given in Chapter 9 of [183].

Theorem 2.5. Let f = (f1, ..., fn),g = (g1, ..., gn) be quasimonotone func-
tions with respect to u = (u1, ..., un), and û = (û1, ..., ûn), ũ = (ũ1, ..., ũn) are
(coupled) upper-lower solutions of (2.5). Then the sequences {ūk} = {(ūk1 , ...,
ūkn)}, {uk} = {(uk1 , ..., ukn)}, constructed by the recursive relation (2.27) with
ū0 = û and u0 = ũ converge monotonically to a unique solution u∗ = (u∗1, ..., u

∗
n)

of (2.5). Moreover, for each i = 1, ..., n:
(2.28)
ũi ≤ u(k)

i ≤ u(k+1)
i ≤ u∗i ≤ ū(k+1)

i ≤ ū(k)
i ≤ ûi in Ω̄× [0, T ], for k = 1, 2, . . . .

If f and g are not quasimonotone, we have the following more general defi-
nition of upper-lower solutions.

Definition 2.4. A pair of functions û = (û1, ..., ûn), ũ = (ũ1, ..., ũn) in [C2,1(Ω̄)×
[0, T ])]n are called (coupled) upper-lower solutions of the system (2.5) if ûi ≥ ũi
in Ω̄× [0, T ], for i = 1, ..., n, and
(2.29)
(ûi)t − Liûi ≥ fi(x, t,v) in Ω× (0, T ],

for all v ∈< ũ, û >, with vi = ûi
Biûi ≥ gi(x, t,v) on ∂Ω× (0, T ],

(i = 1, ..., n)
(ũi)t − Liũi ≤ fi(x, t,v) in Ω× (0, T ],

for all v ∈< ũ, û >, with vi = ũi
Biûi ≤ gi(x, t,v) on ∂Ω.

ũi(x, 0) ≤ ui,0(x) ≤ ūi(x, 0) in Ω̄.

We also have the following general existence Theorem, which is a direct extension
of a theorem in Chapter 9 of [183], where g does not depend on u.
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Theorem 2.6. Suppose there exists a pair of (coupled) upper-lower solutions
û, ũ for problem (2.5) as described in Definition 2.4, where f and g are C1-
functions in < ũ, û >, (x, t) ∈ Ω× [0, T ]. Then there exists a unique solution u∗

of (2.5) satisfying u∗ ∈< ũ, û >.

Part B: Construction Scheme for Set of Attraction.

We now apply the constructive method described in Part A above to ob-
tain preliminary estimates of the solutions of reaction-diffusion systems. They
can enhance the description of the long-term behavior concerning persistence,
survival and extinction of particular components. Motivated by studies in eco-
logical problems, we consider parabolic systems with time periodic coefficients.
We consider
(2.30)


(ui)t − L̂iui = f̂i(x, t, u1, ..., un)ui in Ω× (0,∞),

B̂iui = 0 on ∂Ω × (0,∞), (i = 1, ..., n).

Here, Ω is a bounded domain in RN with smooth boundary; L̂i are uniformly
elliptic linear operators of the form:
(2.31)

L̂iui :=
∑N

j,l=1 â
(i)
j,l (x, t)∂

2ui/∂xj∂xl +
∑N

j=1 b̂
(i)
j (x, t)∂ui/∂xj + ĉi(x, t)ui

with
∑N

j,l=1 â
(i)
j,l ξjξl ≥ a(i)

0 |ξ|2 for some constant a(i)
0 > 0, where all the coefficients

are T -periodic in t and Hölder continuous in x, t, lying in Cα,α/2(Ω̄×R) for some
α > 0 with âij,l = âil,j and ĉi ≤ 0. (Note that there need not actually be any
t-dependence). The boundary operator B̂i is of the form

B̂iu = u or B̂iu =
∂u

∂ν
+ β(x)u,

with β(x) of class C1+α and β ≥ 0. From the theory of second-order periodic
parabolic equations, we know that for given R(x, t) ∈ Cα,α/2(Ω̄, R), the problem

(2.32)




L̂iφ+R(x, t)φ− φt = ρφ in Ω×R,

B̂iφ = 0 on ∂Ω×R,

φ is T -periodic,

has a principal (largest) eigenvalue ρ = ρ̂1, with positive eigenfunction. (See
Castro and Lazer [25], Lazer [115] and Hess [85] for more details).
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For the purpose of comparison, we shall use the solutions to diffusive logistic
equations of the form

(2.33)



ut = L̂iu+ u(R− Cu) in Ω× (0,∞),

B̂iu = 0 on ∂Ω× (0,Ω),

where C = C(x, t) is T -periodic, C(x, t) ≥ C0 > 0, and C ∈ Cα,α/2(Ω̄, R).
One can use upper-lower solution method for periodic parabolic equations to
obtain positive periodic solution for (2.33) as explained in [85] and [125]. If
the principal eigenvalue ρ̂1 for (2.32) is positive, we can use the corresponding
eigenfunction to construct lower solution. On the other hand, since C is strictly
positive, any large enough constant is an upper solution of (2.33). Moreover,
by standard arguments based on maximum principle, any solution with non-
negative nontrivial initial data will be strictly positive in Ω for t > 0, with u > 0
on Ω̄ in the case for Neumann or mixed boundary data, and ∂u/∂ν < 0 on ∂Ω
in the case of Dirichlet boundary data. The following lemma is presented in
Theorem 28.1 in [85].

Lemma 2.1 The problem (2.33) has a positive T -periodic solution (denoted by
θ(L̂i, R,C)) if and only if the principal eigenvalue ρ̂1 in (2.32) satisfies ρ̂1 > 0.
In this case, the solution θ(L̂i, R,C) is a global attractor for solutions of (2.33)
with non-negative nontrivial initial data.

Remark 2.1. If ρ̂1 ≤ 0, then the non-negative solutions of (2.33) tend to 0 as
t → ∞. By the smoothing properties of parabolic equations, the convergence
to θ(L̂i, R,C) in the above theorem can be taken in C1+α,α/2(Ω̂ × (0,∞)) (cf.
[85]).

We now assume that the interacting species form a food pyramid structure.
Such problems are studied in William and Chow [231], Alikakos [2], and Leung
[125]. Here, we present some results in Cantrell and Cosner [19]. We relabel the
species so that u1 represent the species at the bottom of the food pyramid, while
un is the one at the top. Each species can only be the food supply or competitor
of those species above (with higher index). That is , for each k, uk can only be
the prey or competitor for those species with higher index i.e. uj, j > k; and uk
can only be predator or competitor for species with lower index i.e. uj, j < k.
The scheme first estimate the asymptotic upper bound for u1, at the bottom of
the food pyramid. Using this upper bound, we estimate the asymptotic upper
bound for u2. Continuing this way, we reach an asymptotic upper bound for un.
Having upper bound for all the possible predators u2, ..., un, we can estimate the
asymptotic lower bound for u1. Then we can use the lower bound for u1 and
the upper bounds for u3, ..., un to deduce the lower bound for u2. Continuing in
this fashion, we finally obtain an asymptotic lower bound for un.
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More precisely, we make the following assumption for f̂i(x, t, u1, ..., un). For
ui ≥ 0, i = 1, ..., n, and any positive constants Ki > 0, i = 1, ..., n, we assume
that

(2.34)
f̂1(x, t, u1, ..., un) ≤ R1(x, t)− C1(x, t)u1; and for k = 2, ..., n,

f̂k(x, t, u1, ..., un) ≤ Rk(x, t,K1, ..,Kk−1)− Ck(x, t)uk for ui ≤ Ki,

i = 1, ..., k− 1, for all (x, t) ∈ Ω̄× [0, T ]. Here Rk(x, t,K1, ...,Kk−1) and Ck(x, t)
are some T -periodic functions in t for x ∈ Ω̄ in the class Cα,α/2. Moreover Rk
is monotone nondecreasing in K1, ...,Kk−1, and Ck(x, t) ≥ C0 > 0 in Ω̄× [0, T ].

We assume that the principal eigenvalue for the problem:

(2.35)



L̂1φ+R1φ− φt = ρφ,

B̂1φ = 0, φ is T -periodic,

is positive, and by Lemma 2.1 we define θ̄1 ≡ θ(L̂1, R1, C1) to be the unique
globally attracting positive T -periodic solution of

(2.36)



wt = L̂1w + (R1 − C1w)w,

B̂1w = 0.

For any sufficiently small ε > 0, define θ̄k (inductively) to be θ̄k ≡ θ(L̂k, Rk(x, t,
(1 + ε)θ̄1, ..., (1 + ε)θ̄k−1), Ck), where we suppose that for ε > 0 the principal
eigenvalue of

(2.37)



L̂kφ+Rk(x, t, (1 + ε)θ̄1, ..., (1 + ε)θ̄k−1)φ− φt = ρφ,

B̂kφ = 0, φ is T -periodic,

is positive for each k so that θ̄k > 0 inside Ω. Here w = θ̄k is the unique globally
attracting positive T -periodic solution of (2.36) with L̂1, C1, B̂1, R1 respectively
replaced by L̂k, Ck, B̂k and Rk(x, t, (1 + ε)θ̄1, ..., (1 + ε)θ̄k−1).

Theorem 2.7 (Construction of Set of Attraction). Consider problem (2.30)
where f̂i, i = 1, ..., n satisfy (2.34) to (2.37). Let u = (u1, ..., un) be a solution of
(2.30) with ui(x, 0) ≥ 0, ui(x, 0) �≡ 0 for i = 1, ..., n. Then the solution to (2.30)
exists globally in time. Moreover, for t sufficiently large, we have

(2.38) ui(x, t) ≤ (1 + ε)θ̄i(x, t) for x ∈ Ω̄, i = 1, .., n.

Suppose further, for each k = 1, ..., n, there is an index j(k) ∈ {0, 1, ..., k − 1}
and a function rk(x, t,K1, ..,Kk−1,Kk+1, ..,Kn) with the same periodicity and
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smoothness hypotheses as Rk in (2.34), such that rk is monotonic nondecreasing
in Kj for j ≤ j(k) and monotonic nonincreasing in Kj for j > j(k),(j �= k), and
a T -periodic Hölder Cα,α/2, 0 < α < 1, continuous function ck(x, t) ≥ c0 > 0 so
that

(2.39) f̂k(x, t, u1, ..., un) ≥ rk(x, t,K1, ..,Kk−1,Kk+1, ...,Kn)− ck(x, t)uk
whenever uj ≥ Kj for j ≤ j(k) and uj ≤ Kj for j > j(k), j �= k. We assume
that the principal eigenvalue for

(2.40)



L̂1φ+ r1(x, t, (1 + ε)θ̄2, ..., (1 + ε)θ̄n)φ− φt = ρφ,

B̂1φ = 0, φ is T -periodic,

is positive for ε > 0 sufficiently small and define θ̃1 ≡ θ(L̂1, r1(x, t, (1 + ε)θ̄2, ...,
(1 + ε)θ̄n), c1); then define θ̃k ≡ θ(L̂k, rk(x, t, (1 − ε)θ̃1, ..., (1 − ε)θ̃j(k), (1 +
ε)θ̄j(k)+1, ..., (1 + ε)θ̄k−1, (1 + ε)θ̄k+1, ..., (1 + ε)θ̄n), ck), where we suppose that
for ε > 0 sufficiently small, the principal eigenvalue of
(2.41)


L̂kφ+ rk(x, t, (1 − ε)θ̃1, ..., (1 − ε)θ̃j(k), (1 + ε)θ̄j(k)+1, ...,

(1 + ε)θ̄k−1, (1 + ε)θ̄k+1, ..., (1 + ε)θ̄n)φ− φt = ρφ,

B̂kφ = 0, φ is T -periodic,

is positive. Here, w = θ̃k is the unique globally attracting positive T -periodic
solution of (2.36) with L̂1, C1, B̂1, R1 respectively replaced by L̂k, ck, B̂k and
rk(x, t, (1− ε)θ̃1, ..., (1− ε)θ̃j(k), (1 + ε)θ̄j(k)+1, ..., (1 + ε)θ̄k−1, (1 + ε)θ̄k+1, ..., (1 +
ε)θ̄n), ck). Then, for any sufficiently small ε > 0, we have

(2.42) ui(x, t) ≥ (1− ε)θ̃i(x, t) x ∈ Ω̄, i = 1, ..., n

for t sufficiently large.

Proof. We first prove that any solution must be bounded in its interval of
existence. This would imply by the general theory for parabolic systems (cf.
e.g. Amann [3]) that the solution must exist globally for t > 0. Since the i-th
component in (2.30) is zero when ui = 0, it follows from maximum principles
that the set {u ∈ Rn : ui ≥ 0, i = 1, ..., n} is positively invariant (see e.g.
Smoller [209]). More precisely, if ui ≥ 0, ui �≡ 0 at t = 0, then ui > 0 for all
t > 0. Moreover, under Dirichlet boundary conditions, we have ∂ui/∂ν < 0 on
∂Ω, and under Neumann and mixed case, we have ui > 0 on Ω̄. Assume that a
solution of (2.30) exists on [0, τ). From (2.34), we have

(u1)t = L̂1u1 + f̂1(x, t, u1, ..., un)u1

≤ L̂1u1 + (R1(x, t)− C1(x, t)u1)u1 in Ω× (0, τ);
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so that by comparison we find u1 ≤ v1, where v1 is the solution of

(2.43)




(v1)t = L̂1v1 + (R1(x, t)− C1(x, t)v1)v1 in Ω× (0, τ),

B̂1v1 = 0 on ∂Ω× (0, τ),

v1(x, 0) = u1(x, 0) in Ω̄.

Since C1(x, t) is larger than a positive constant, any sufficiently large constant is
an upper solution for problem (2.43). Thus v1 exists globally and v1(x, t) ≤ V1

on [0, τ) for some constant V1 which is dependent on u1(x, 0). We thus have
0 ≤ u1 ≤ V1 on [0, τ). From (2.34) again, we have

(u2)t = L̂2u2 + f̂2(x, t, u1, ..., un)u2

≤ L̂2u2 + (R2(x, t, V1)− C2(x, t)u2)u2

in Ω× [0, τ). By comparison, we find u2 ≤ v2 on [0, τ), where v2 is the solution
of 



(v2)t = L̂2v1 + (R2(x, t, V1)−C2(x, t)v2)v2 in Ω× (0, τ),

B̂2v2 = 0 on ∂Ω× (0, τ),

v2(x, 0) = u2(x, 0) in Ω̄.

As in the case for v1, we deduce that v2 ≤ V2 where V2 is a constant which
depends on V1 and u2(x, 0). We thus obtain 0 ≤ u2 ≤ V2 on [0, τ). Continuing
with this argument, we deduce that 0 ≤ uk ≤ Vk on [0, τ) for k = 1, ..., n. Since
sup |u| does not tend to infinity as t → τ−, the interval (0, τ) cannot be the
maximal interval of existence. Since τ > 0 is arbitrary, we can conclude that
the solution exists globally for all t > 0.

We next refine our estimate for the upper bound to deduce (2.38). Again,
we observe that u1 is a lower solution for (2.43); and by Lemma 2.1, v1 → θ̄1 ≡
θ(L̂1, R1, C1) as t→∞, with convergence in C1+α,α/2(Ω, (0,∞)). Thus for any
ε > 0, we have u1 ≤ v1 ≤ (1 + ε)θ(L̂1, R1, C1) for sufficiently large t. It follows
that for sufficiently large t, we have

(u2)t ≤ L̂2u2 + [R2(x, t, (1 + ε)θ̄1)− C2u2]u2,

under boundary condition B̂2. Hence, u2 is a lower solution of

(v̂2)t = L̂2v̂2 + [R2(x, t, (1 + ε)θ̄1)− C2v̂2]v̂2,
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with the same initial-boundary conditions. By assumption (2.37) with k = 2
and Lemma 2.1, we have v̂2 → θ̄2 ≡ θ(L̂2, R2(x, t, (1 + ε)θ̄1), C2) as t → ∞.
Consequently, we have u2 ≤ v̂2 ≤ (1 + ε)θ̄2 for t sufficiently large. Continuing
with this argument, we conclude that the we have uk ≤ (1+ ε)θ̄k for k = 1, ..., n.
Here θ̄k is the unique positive globally attracting periodic solution for


vt = L̂kv + [Rk(x, t, (1 + ε)θ̄1, ..., (1 + ε)θ̄k−1)−Ckv]v,

B̂kv = 0.

This proves inequalities (2.38).
We next proceed to prove the lower bounds (2.42). We define w1 to be the

solution of

(2.44)




(w1)t = L̂1w1 + [r1(x, t, (1 + ε)θ̄2, ..., (1 + ε)θ̄n)− c1(x, t)w1]w1,

B̂1w1 = 0,

w1(x, t0) = u1(x, t0),

with t0 to be determined. From (2.38) and hypothesis (2.39), we find that
for t0 sufficiently large, u1 is an upper solution for problem (2.44) for t ≥ t0.
Also, u1 is positive on Ω̄ under Neumann and mixed boundary conditions, and
positive on Ω with ∂u/∂ν < 0 on ∂Ω under Dirichlet boundary condition. From
the hypothesis that the principal eigenvalue of (2.40) is positive, we have θ̃1 ≡
θ(L̂1, r1(x, t, (1 + ε)θ̄2, ..., (1 + ε)θ̄n), c1) as a global attractor for nontrivial non-
negative solutions. Hence, w1 → θ̃1 as t → ∞; and for t > t1 sufficiently large,
we have u1 ≥ (1− ε)θ̃1. Next, define w2 to be the solution of the problem:
(2.45)


(w2)t = L̂2w2 + [r2(x, t, (1 − ε)θ̃1, (1 + ε)θ̄3, ..., (1 + ε)θ̄n)− c2(x, t)w2]w2,

B̂1w2 = 0,

w2(x, t1) = u2(x, t1),

if j(2) = 1; or
(2.46)


(w2)t = L̂2w2 + [r2(x, t, (1 + ε)θ̄1, (1 + ε)θ̄3, ..., (1 + ε)θ̄n)− c2(x, t)w2]w2,

B̂1w2 = 0,

w2(x, t1) = u2(x, t1),

if j(2) = 0. In either case, the assumption on the sign of the principal eigenvalue
of (2.41) and Lemma 2.1 imply that w2 is positive inside Ω for t ≥ t1 and w2 → θ̃2
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as t → ∞. Again, by (2.38), (2.39) and comparison, we obtain u2 ≥ w2 ≥
(1 − ε)θ̃2 for t sufficiently large. We can continue with this argument to obtain
the lower bounds (2.42) for u3, ..., un. The different choices of wk for comparison,
analogous to (2.45) or (2.46), depend on the value of j(k), k = 3, ..., n. They are
taken into consideration in the definition of θ̃k.

Note that in Theorem 2.7, the upper bounds are used to construct the lower
bounds. It is therefore more convenient and simpler to replace the upper bounds
with constant bounds, although the estimate may not be as sharp. This is the
object of the following corollary.

Corollary 2.8. (i) Consider problem (2.30). Suppose f̂i satisfies (2.34) and
(2.35), and define θ̄1 ≡ θ(L̂1, R1, C1) to be the unique globally attracting positive
T -periodic solution of (2.36) as in Theorem 2.7. Let M1 be a constant such that
M1 > θ̄ (By maximum principle, we may choose any M1 > sup(R1/C1)). Define
Mk inductively to be a constant such that Mk > θ(L̂k, Rk(x, t,M1, ...,Mk−1), Ck),
where we assume that the principal eigenvalue of

(2.47)



L̂kφ+Rk(x, t,M1, ...,Mk−1)φ− φt = ρφ,

B̂kφ = 0, φ is T -periodic,

is positive for each k = 1, ..., n. Then, for t sufficiently large, we have

(2.48) ui(x, t) ≤Mi for x ∈ Ω̄, i = 1, ..., n.

(ii) Assume all the above hypotheses in this Corollary and further f̂k, k =
1, ..., n satisfy (2.39). Suppose the principal eigenvalue in (2.40) remain positive
with (1+ε)θ̄i replaced with Mi, i = 2, ..., n. Let θ̃∗1 ≡ θ(L̂1, r1(x, t,M2, ...,Mn), c1);
and define inductively:

θ̃∗k ≡ θ(L̂k, rk(x, t, (1− ε)θ̃∗1, ..., (1− ε)θ̃∗j(k),Mj(k)+1, ...,Mk−1,Mk+1, ...,Mn), ck),

where we assume that for ε > 0 sufficiently small the principal eigenvalue of

(2.49)

L̂kφ+ rk(x, t, (1 − ε)θ̃∗1, ..., (1 − ε)θ̃∗j(k),Mj(k)+1, ...,

Mk−1,Mk+1, ...,Mn)φ− φt = ρφ,

B̂kφ = 0, φ is T -periodic,

is positive, for ε > 0 sufficiently small. Then for any sufficiently small ε > 0
and t sufficiently large, we have

(2.50) ui(x, t) ≥ (1− ε)θ̃∗i (x, t) for x ∈ Ω̄, i = 1, ..., n.
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Example 2.1. We consider the case when u3 represents a predator preying on
two competing preys u1 and u2 in Ω× (0,∞). More precisely, consider

(2.51)




(u1)t = σ1∆u1 + (a1 − b11u1 − b12u2 − b13u3)u1,

(u2)t = σ2∆u2 + (a2 − b21u1 − b22u2 − b23u3)u2,

(u3)t = σ3∆u3 + (a3 + b31u1 + b32u2 − b33u3)u3,

u1 = u2 = u3 = 0 on ∂Ω× (0,∞).

The coefficients ai, bij may depend on x, t and u. We assume that there are
constants ai, āi,bij , b̄ij with ai ≤ ai ≤ āi and bij ≤ bij ≤ b̄ij, where a1, a2 and
bii, i = 1, 2, 3 are strictly positive, and bij ≥ 0 for all i, j. In order to apply
Corollary 2.8 to problem (2.51), we may choose the following constant functions
for the estimates (2.34):

R1 = ā1, R2 = ā2, R3 = ā3 + b̄31K1 + b̄32K2, and Ci = bii.

The conditions for k = 1, 2 in (2.47) are satisfied if

(2.52) ā1 > σ1λ1, ā2 > σ2λ1,

where λ = λ1 is the principal eigenvalue for the eigenvalue problem −∆φ = λφ
on Ω, with φ = 0 on ∂Ω. Under conditions (2.52), we have u1 ≤ M1 :=
ā1/b11, u2 ≤M2 := ā2/b22 for sufficiently large t. Hypothesis (2.47) with k = 3
is satisfied if

(2.53) ā3 + b̄31
ā1

b11

+ b̄32
ā2

b22

> σ3λ1.

Then, we may choose the upper bound for u3 as

M3 = b−1
33 [ā3 + b̄31

ā1

b11

+ b̄32
ā2

b22

].

To obtain lower bounds, we choose for (2.39),

r1 = a1 − b̄12K2 − b̄13K3, r2 = a2 − b̄21K1 − b̄23K3, r3 = a3 + b31K1 + b32K2.

Here, we have j(1) = j(2) = 0, and j(3) = 2. The hypotheses corresponding to
(2.40) and (2.49) become

(2.54)
a1 − b̄12M2 − b̄13M3 > σ1λ1,

a2 − b̄21M1 − b̄23M3 > σ2λ1.
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From Corollary 2.8, we find that for any ε > 0 and t sufficiently large we have

(2.55)
u1 ≥ (1− ε)θ(σ1∆, a1 − b̄12M2 − b̄13M3, b̄11) ≡ (1− ε)θ̃∗1,

u2 ≥ (1− ε)θ(σ2∆, a2 − b̄21M1 − b̄23M3, b̄22) ≡ (1− ε)θ̃∗2.

From (2.55) we obtain the lower estimate

(2.56) u3 ≥ (1− ε)θ(σ3∆, a3 + b31(1− ε)θ̃∗1 + b32(1− ε)θ̃∗2, b̄33)

for any ε > 0 and t sufficiently large, provided the principal eigenvalue for

(2.57)



σ3∆φ+ (a3 + b31(1− ε)θ̃∗1 + b32(1− ε)θ̃∗2)φ = ρφ in Ω,

φ = 0 on ∂Ω

is positive. Note that conditions (2.54) imply conditions (2.52), which can thus
be removed.

Example 2.2. Consider the case of n competing species.

(2.58)




(ui)t = σi∆u+ (ai −
∑n

j=1 bijuj)uj in Ω× (0,∞),

ui = 0 on ∂Ω× (0,∞),

i = 1, ..., n, where ai ≤ ai(x, t,u) ≤ āi and bi ≤ bi(x, t,u) ≤ b̄i, with all the
constants ai, āi,bi, b̄i positive. We can again apply Corollary 2.8 and choose
Ri = āi, Ci = bi, ri = ai−

∑
j 	=i b̄ijKj , ci = b̄ii. As before, we find that, for large

t, the upper estimates ui ≤Mi = āi/bii. From (2.49) and (2.50), we find that if

(2.59) ai −
∑
j 	=i

(b̄ij āj/bjj) > σiλ1, i = 1, ..., n.

then, we have the following lower estimates for x ∈ Ω as t→∞:

(2.60)
ui(x, t) ≥ (1− ε)θ(σi∆, ai −

∑
j 	=i(b̄ij āj/bjj), b̄ii)

≥ (1− ε)[(ai −
∑

j 	=i(b̄ij āj/bjj)− σiλ1)/b̄ii]φ1(x),

for i = 1, ..., n, ε > 0 small enough. Here, λ1 is the principal eigenvalue for the
operator −∆ on Ω with homogeneous Dirichlet boundary data; and φ1(x) is the
corresponding positive eigenfunction with supx∈Ω̄φ(x) = 1.

Since λ1 and φ1 can be explicitly computed for simple geometries and there
are well-known methods for computing them in general situations, formula (2.60)
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provides very convenient lower estimate for practical purposes. More examples
can be found in [19].

Part C: Finite-Time Blowup caused by Boundary Inflow.

We next consider reaction-diffusion systems when there does not exist a
any simultaneous upper and lower estimates for the solution of the system.
Moreover, when the interior reaction are dominated by boundary feedback in an
appropriate way, one can construct lower solution of the problem blowing up in
finite time. This implies that the solution of the problem blow up in finite time.
We first consider a simple scalar problem:

(2.61)




ut −∆u = f(u) in Ω× (0, T ),

∂u
∂ν = g(u) on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where f(u), g(u) are continuously differentiable functions for u ≥ 0, and

(2.62) g(u) > 0 for all u > 0.

Here the interior reaction may be negative, i.e. f(u) ≤ 0 for u > 0, suppressing
the growth of the species. The species is flowing into the region, as indicated
by the sign of g(u), and ∂/∂ν is the outward normal derivative. The next
theorem indicates that if the boundary inflow dominates in appropriate amount,
the species will blowup in the interior in finite time, even the species may be
decaying inside. In this part, we assume that Ω is a bounded domain in RN with
smooth boundary. Substantial amount of early work appeared in the literature
for such kind of problem when f(u) ≡ 0. Levine and Payne [145] showed that
if g(u) = |u|1+εh(u) with ε > 0 and h(u) increasing, then there cannot be any
global solution. Later, Walter [225] generalized to the case when g(u) and g′(u)
are continuous, positive and increasing, then the solution will blow up in finite
time when

∫∞
ds/gg′ <∞. Moreover, the solution exists globally provided that∫∞

ds/gg′ = ∞. Hu and Yin [91] studied the blow up properties for g(u) = up

with p > 1. They obtained many estimates concerning the blow-up rate of the
solution. Many other related work can be found in e.g. Filo [61], Sperb [210]
and Wang and Wu [227]. When f(u) �≡ 0, Chipot, Fila and Quittner [27] and
Quittner [189] studied some properties of global solutions when f(u) = aup and
g(u) = uq. Theorem 2.9 is a modification of a theorem in Leung and Zhang
[143], which extends some of the results just mentioned above.

Theorem 2.9 (Scalar Case). Let u(x, t) ∈ C2,1(Ω× (0, T )) ∩ C1,0(Ω̄ × [0, T ])
be a positive solution of (2.61), under assumptions (2.62).
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(i) Suppose there exists a continuously differentiable function m(u) for 0 ≤ u <
∞ such that m(0) = 0,m′(u) ≥ 0 and

(2.63)
−1
ε
f(u) ≤ m(u) ≤ (

|∂Ω|
(1 + ε)|Ω| )g(u)

for some positive constant ε. Then the solution will blow up in finite time if
u0(x) > 0 is large enough for all x ∈ Ω̄, and

(2.64)
∫ ∞ 1

m(s)
ds <∞,

∫ 1

0

1
m(s)

ds =∞.

(Here, |∂Ω| and |Ω| are respectively the measures of ∂Ω and Ω. Note that if
f(u) ≥ 0, then the first part of inequalities (2.63) is always satisfied.).
(ii) Suppose f(u) ≥ 0 for u ≥ 0; g(u) is continuously differentiable for 0 ≤ u <
∞ such that g(0) = 0, g′(u) ≥ 0 and∫ ∞ 1

g(s)
ds <∞.

Then the solution will blow up in finite time if u0(x) > 0 is large enough for all
x ∈ Ω̄.
Proof. We seek lower solution for problem (2.61) of the form u(x, t) = v(t +
h(x)) where v = v(s), s > 0 satisfies:

dv

ds
= m(v) and v(0) = c0.

Here, c0 is some positive constant and h(x) is an unknown positive function to
be determined. Denoting t+ h(x) by s, we find

dv

ds
> 0 and

d2v

ds2
= m

′
(v)

dv

ds
≥ 0

when v is > 0. We then compute the derivatives of u(x, t) as follows:

ut = dv
ds , uxi = dv

dshxi ,

uxixi = d2v
ds2

(hxi)
2 + dv

dshxixi .

Hence, we have

(2.65) ut −∆u− f(u) =
dv

ds
(1−∆h)− d2v

ds2
|∇h|2 − f(v).
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Choose h to be the solution of the Neumann problem

∆h = 1 + ε for x ∈ Ω, and
∂h

∂ν
= β for x ∈ ∂Ω,

where β = (1+ε)|Ω|/|∂Ω| and minx∈Ω̄h(x) = 0. Note that such h(x) is uniquely
determined. Since m(0) = 0, it follows from the second condition in (2.64) that
we can define c0 small enough such that v(maxx∈Ω̄h(x)) <∞. By choosing h(x)
in this manner, we find from (2.65) that

(2.66) ut −∆u− f(u) ≤ dv

ds
(−ε)− f(v) = −εm(v)− f(v) ≤ 0.

The last inequality is due to (2.63). On the boundary, we compute

(2.67)
∂u
∂ν
− g(u) =

dv

ds

∂h

∂ν
− g(v) = m(v)β − g(v) ≤ 0.

Combining (2.66) and (2.67), we find that u is a lower solution for problem
(2.61) under the assumptions in part (i) provided u0(x) ≥ v(h(x)). Thus for
large enough u0(x) (it suffices to have u0(x) ≥ v(maxx∈Ω̄h(x)) for all x ∈ Ω̄),
then u = v(t + h(x)) is a lower solution. Since v(s) blow up in finite time (due
to the first condition in (2.64)), we conclude from standard comparison theory
(see e.g. [125] or [183]) that u(x, t) blows up in finite time. This proves part (i).

For part (ii), we define m(u) = (1/(1 + ε))(|∂Ω|/|Ω|)g(u) for any ε > 0. The
inequalities in (2.63) are trivially satisfied with m(u) replaced by ρm(u) with any
ρ ∈ (0, 1]. Note that since f(u) > 0, the first part of (2.63) must be valid. We
can then apply nearly the same proof as part (i) to obtain a lower solution and
conclude with the finite time blowup property as before. The only change needed
is to replace all m(v) that appear in the proof by ρm(v) where ρ is to be chosen
in (0, 1). We finally choose ρ > 0 sufficiently small so that v(maxx∈Ω̄h(x)) <∞.
This is possible because it would take longer for the solution of

dv

ds
= ρm(v), v(0) = c0,

to blow up by reducing ρ. Thus there is no need to assume
∫ 1
0 (1/m(s))ds =∞

as in part (i).

We next study a system of reaction-diffusion equations with nonlinear bound-
ary inflow. We obtain sufficient conditions for finite-time blowup when the inflow
is sufficiently strong, even the species are depleted in the interior. Consider the
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problem:

(2.68)




ut − σ1∆u = f1(u, v) for (x, t) ∈ Ω× (0, T ),

vt − σ2∆v = f2(u, v) for (x, t) ∈ Ω× (0, T ),

∂u
∂ν = g1(u, v) for (x, t) ∈ ∂Ω× [0, T ),

∂v
∂ν = g2(u, v) for (x, t) ∈ ∂Ω× [0, T ),

u(x, 0) = u0(x) > 0 for x ∈ Ω,

v(x, 0) = v0(x) > 0 for x ∈ Ω.

Here σ1, σ2 are positive constants, and fi(u, v), gi(u, v) are smooth functions for
u, v ≥ 0, i = 1, 2. We assume the following for any u, v ≥ 0:

(2.69)

(i) fi(u, v) < 0, gi(u, v) > 0 for i = 1, 2 and u, v > 0,

(ii) f1(0, v) = f2(u, 0) = 0,

(iii) f1,v(u, v) ≥ 0 and f2,u(u, v) ≥ 0,

(iv) gi,u(u, v) ≥ 0 and gi,v(u, v) ≥ 0 for i = 1, 2.

We say a solution of (2.68) blows up in finite time in the sense that there exists
a finite positive time T such that the solution is classical for 0 < t < T and
limt→T− maxx∈Ω̄(|u(x, t)| + |v(x, t)|) =∞.

Theorem 2.10 (Finite-time Blowup for Systems with Nonlinear Bound-
ary Conditions). Let (u, v) be a positive solution of (2.68) under assumptions
(2.69i-iv) with u, v ∈ C2,1(Ω× (0, T )) ∩C1,0(Ω̄× [0, T ]). Further, suppose there
exists a positive number λ > 1 such that

(2.70) λ
|Ω|

σ1|∂Ω| |f1(u, v)| ≤ g1(u, v) and λ
|Ω|

σ2|∂Ω| |f2(u, v)| ≤ g2(u, v)

for all u, v ≥ 0. Let (A(s), B(s)) be the solution of the following system of
ordinary differential equations:

(2.71)




dA
ds = cσ1g1(A,B) for s ≥ 0,

dB
ds = cσ2g2(A,B) for s ≥ 0,

A(0) = A0 > 0 and B(0) = B0 > 0,
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where c = ((λ− 1)/λ) · |∂Ω|/|Ω|, and A0, B0 are some positive constants. Then
if (A(s), B(s)) blows up in finite time, the solution (u, v) of (2.68) blows up in
finite time for large initial data.

Proof. We construct a pair of lower solutions for the system, with finite time
blow up property, and then use a comparison theorem. Let (A(s), B(s)) be the
solution of (2.71) above. Define u(x, t) = A(t+ Ψ(x)) and v = B(t+ Φ(x)) with
Ψ(x) and Φ(x) to be determined later. They will be chosen so that u and v
form a pair of lower solutions for problem (2.68). As in Theorem 2.9, we first
calculate

ut − σ1∆u− f1(u, v) = dA
ds (1− σ1∆Ψ)− σ1

d2A
ds2
|∇Ψ|2 − f1(A,B),

∂u
∂ν = dA

ds · dΨ∂ν ,

where s = t+ Ψ(x). We choose Ψ(x) to be a solution of the following problem:

σ1∆Ψ = α for x ∈ Ω, and
∂Ψ
∂ν

= β for x ∈ ∂Ω,

with α to be determined later and β = α|Ω|/(σ1|∂Ω|). From linear theory we
know such Ψ exists and it can be chosen such that Ψ > 0 in Ω̄. With such choice
of Ψ, we have

(2.72)




ut − σ1∆u− f1(u, v) ≤ 0 in Ω× (0, T ),

∂u
∂ν ≤ g1(u, v) in ∂Ω× (0, T ),

provided the following holds:

(2.73)
dA

ds
(α− 1) ≥ −f1(A,B), and

dA

ds
β ≤ g1(A,B) for s > 0.

Let λ > 1, such that

λ
|Ω|

σ1|∂Ω| |f1(u, v)| ≤ g1(u, v),

for any u, v ≥ 0 as described in (2.70), and choose α = λ/(λ−1). We see that the
two inequalities in (2.73) are true from the definitions of A(s), B(s). Therefore
(2.72) is valid. Similarly, we can choose Φ such that v satisfies corresponding
inequalities so that (u, v) forms a lower solution pair for problem (2.68). Note
that if (2.70) holds for certain λ > 1, then it still holds by reducing λ to be closer
to 1, with λ > 1. Then the parameter c in (2.71) can be reduced to as small
as possible, and the blow up time for the solution of (2.71) will be expanded.
This insures that A(Ψ(x)) = u(x, 0) and B(Φ(x)) = v(x, 0) are defined for all
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x ∈ Ω̄. Since the solution (A(s), B(s)) blow up in finite time, we conclude by
using comparison theorem (see e.g. [125]) that the solution of problem (2.68)
blows up in finite time for large initial data. This completes the proof of the
theorem.

For more specific systems of the form (2.68), we can readily verify that
Theorem 2.10 can be applied to the following two examples.

Example 2.3.

f1(u, v) = − uk

v+c , f2(u, v) = − vl

u+c ,

g1(u, v) = um + uvp, g2(u, v) = vn + vuq,

where k, l, c,m, n, p, q are positive constants with m,n > 1 and further m > k >
0, n > l > 0.

Example 2.4.

f1(u, v) = −u, f2(u, v) = −v,

g1(u, v) = ku(v + 1), g2(u, v) = kv(u + 1)

for some large positive constant k.

It is interesting to note that in Example 2.4, any single equation does not
blow-up in finite time if we set the other variable to be a constant. However, the
coupled system does have a finite time blow-up solution for large initial data.
To apply Theorem 2.10, it may take some effort to verify that the corresponding
ordinary differential equations (2.71) have finite time blow-up solutions. In some
situations, the following theorem is more readily applicable because it is easier
to verify the hypotheses.

Theorem 2.11. Consider problem (2.68) under hypotheses (2.69i-iv), with σ1 =
σ2. Let (u, v) be a solution with u, v ∈ C3(Ω̄ × [0, T ]). Further, suppose that
there exists a continuously differentiable function m(s) for 0 ≤ s <∞ such that
m(0) = 0,m′(s) ≥ 0,

∫∞
ds/m(s) <∞,

∫ 1
0 ds/m(s) =∞; and for any u, v ≥ 0,

there exists a constant λ > 1 such that

(2.74) g1(u, v) + g2(u, v) ≥ m(u+ v) ≥ λ |Ω|
σ1|∂Ω|(|f1(u, v)| + |f2(u, v)|).

Then the solution (u, v) of (2.68) blows up in finite time for large initial condi-
tions.
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Corollary 2.12. Assume σ1, σ2 > 0 and all the other hypotheses of Theorem
2.11, except that σ1 in (2.74) is replaced by min{σ1, σ2}. Furthermore, we as-
sume the initial data satisfy

(2.75)



−σ1∆u0(x) < f1(u0(x), v0(x)),

−σ2∆v0(x) < f2(u0(x), v0(x)),

for x ∈ Ω̄. Then if u0(x) and v0(x) are large enough, the positive solution of
(2.68) as described in Theorem 2.11 blows up in finite time.

We can readily verify that Theorem 2.11 can be applied to the following
example.

Example 2.5.




ut −∆u = −(up + c(u, v)) in Ω× (0, T ),

vt −∆v = −(vq + d(u, v)) in Ω× (0, T ),

∂u
∂ν = vm, ∂v

∂ν = ul in ∂Ω× (0, T ),

with initial data u0(x) and v0(x) where 0 ≤ c(u, v), d(u, v) ≤ M for some con-
stant M , and cv(u, v), du(u, v) ≤ 0. If 0 < p < l, 0 < q < m and m > 1, l > 1,
then the solution blows up in finite time for large initial data.

Proof of Theorem 2.11 and Corollary 2.12. Let w = u+ v, we find from
(2.68) and assumption (2.74) that w satisfies



wt − σ1∆w = f1(u, v) + f2(u, v) ≥ −σ1|∂Ω|

λ|Ω| g(w) in Ω× (0, T ),

∂w
∂ν = g1(u, v) + g2(u, v) ≥ g(w) in ∂Ω× (0, T ).

Applying a slight modification of Theorem 2.9 for σ1 �= 1 we obtain the blow-up
result for Theorem 2.11.

For the proof of Corollary 2.12, we will first use assumptions (2.69) and
the conditions on the initial data to show that ut, vt > 0 for all 0 ≤ t < T .
Differentiating the equations in (2.68), we find that w := ut and z := vt satisfy
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the following:


wt − σ1∆w = f1u(u, v)w + f1v(u, v)z in Ω× (0, T ),

zt − σ2∆z = f2u(u, v)w + f2v(u, v)z in Ω× (0, T ),

∂w
∂ν = g1u(u, v)w + g1v(u, v)z on ∂Ω× (0, T ),

∂z
∂ν = g2u(u, v)w + g2v(u, v)z on ∂Ω× (0, T ),

w(x, 0) = ut(x, 0) = σ1∆u0 + f1(u0, v0) > 0 for x ∈ Ω,

z(x, 0) = vt(x, 0) = σ2∆u0 + f2(u0, v0) > 0 for x ∈ Ω.

From the signs of the off diagonal terms in the parabolic system above, we can
use comparison or maximum principle (see e.g. Protter and Weinberger [188])
to obtain the positivity of w = ut and z = vt. This leads to the fact that
σ1∆u = ut − f1(u, v) ≥ 0 and σ2∆v = vt − f2(u, v) ≥ 0. Consequently, we
obtain the following inequalities:


ut − σ0∆u ≥ f1(u, v) in Ω× (0, T ),

vt − σ0∆v ≥ f2(u, v) in Ω× (0, T ),

where σ0 = min{σ1, σ2}. By means of comparison theorem as before and the
result of Theorem 2.11, we obtain the conclusion of Corollary 2.12.

4.3 Diffusion, Self and Cross-Diffusion with No-Flux
Boundary Condition

In this section we study reaction-diffusion models when the diffusion rate of
a particular species at a point may depend on the concentration and gradient
of another species at the point. Such property is called cross-diffusion. For
example, we expect a species tends to diffuse in the direction of lower concen-
tration of its predator or competitor. Kerner [103] and Jorné [96] examined
such prey-predator models when they have spatially constant solutions, and for-
mally studied their linearized stability. Gurtin [76] developed some models that
include cross-diffusion and self-diffusion, and showed that the effect of cross-
diffusion may give rise to segregation of two species. For more explanation of
such theories, the reader is referred to Okubo and Levin [179] for further read-
ing. We will consider special cases of such models involving competing species
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proposed by Shigesada, Kawasaki and Teramoto [206]. Here, we will carefully
describe some rigorous results developed in Lou and Ni [164]. We will only dis-
cuss the corresponding steady-state equation under no-flux boundary condition,
and investigate the possibility of non-constant steady states. More precisely, we
consider the following system:

(3.1)




∆[(d1 + α11u1 + α12u2)u1] + u1(a1 − b1u1 − c1u2) = 0 in Ω,

∆[(d2 + α21u1 + α22u2)u2] + u2(a2 − b2u1 − c2u2) = 0 in Ω,

∂u1
∂ν = ∂u2

∂ν = 0 on ∂Ω, u1 > 0, u2 > 0 in Ω.

Here Ω is a bounded domain in RN , N ≥ 1, with smooth boundary; ν is the
outward unit normal vector on the boundary ∂Ω. The parameters ai, bi, ci and di,
i = 1, 2 are all positive constants; and αij , i, j = 1, 2 are non-negative constants.
For convenience, we denote

(3.2)
u = (u1, u2), f(u) = (f1(u1, u2), f2(u1, u2)),

f1(u1, u2) = a1 − b1u1 − c1u2, f2(u1, u2) = a2 − b2u1 − c2u2.

The system (3.1) is the steady-state diffusive competing species system with
no-flux boundary condition. The constants ai are the intrinsic growth rates,
b1, c2 are the crowding effect (intra-species competition) coefficients, and b2, c1
are the (inter-species) competition coefficients. The constants di are the usual
diffusion rates. The parameters α11, α22 are referred as self-diffusion pressures,
and α12, α21 are cross-diffusion pressures. The objective of this section is to
indicate and prove how these self-diffusion and cross-diffusion pressures may
give rise to spatial segregation of the species, while usual diffusion alone will not
have such effect under Neumann boundary condition.

It is convenient to consider the relative configuration of the two straight lines
fi(ui, u2) = 0, i = 1, 2 in the first quadrant by classifying into four cases:

(I) b1/b2 > a1/a2 > c1/c2, (Weak Competition),
(II) b1/b2 < a1/a2 < c1/c2, (Strong Competition),
(III) a1/a2 > max{b1/b2, c1/c2},
(IV) a1/a2 < min{b1/b2, c1/c2}.

In cases (I) and (II) the two straight lines intersect at a point in the interior
of the first quadrant; and in cases (III) and (IV), there is no intersection in the
first quadrant. If one considers the system of ordinary differential equations:


du1
dt = u1f1(u1, u2),

du2
dt = u2f2(u1, u2).
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In case (I), the point of intersection in the first quadrant is a stable equilibrium;
while in case (II) it is unstable. Consider the corresponding parabolic problem
with the usual diffusion assumptions:

(3.3)




∂u1
∂t = d1∆u1 + u1(a1 − b1u1 − c1u2) in Ω× (0,∞),

∂u2
∂t = d2∆u2 + u2(a2 − b2u1 − c2u2) in Ω× (0,∞),

∂u1
∂ν = ∂u2

∂ν = 0 on ∂Ω× (0,∞),

u1(x, 0) = u1,0(x) > 0, u2(x, 0) = u2,0(x) > 0 in Ω.

In case (I), the solution of (3.3) (u1(x, t), u2(x, t)) → (u∗1, u
∗
2) which is the spa-

tially constant positive steady-state, as t → ∞. In case (II), (u∗1, u∗2) is un-
stable, and (a1/b1, 0) and (0, a2/c2) are both locally stable. However, Matano
and Mimura [167], Mimura, Ei and Fang [171], and Kan-on and Yanagida [100]
showed that for certain dumb-bell shaped domain, it is possible to have a sta-
ble non-constant positive steady-state. If the domain Ω is convex, Kishimoto
and Weinberger [105] found that there cannot be any stable positive steady
state. In cases (III) and (IV), the solutions respectively tends to (a1/b1, 0) or
(0, a2/c2). More general studies concerning constant steady-state solutions and
their stabilities for the Neumann problem with larger systems and more elabo-
rate interactions were investigated by Redheffer and Zhou [192], using Lyapunov
method and graph theory. The results are explained in Chapter 7 in Leung [125].

The theories in the above paragraph provide directions for investigating
problem (3.1) under the various cases. Recall that we are presently concerned
with the possibility of non-constant steady-state under various self-diffusion and
cross-diffusion pressures. For case (I), early results are found by Mimura and
Kawasaki [172] for N = 1, α11 = α21 = α22 = 0. They showed that there
exist small amplitude solutions of (3.1) bifurcating from the constant positive
coexistence steady-state. Under similar assumptions as in [172], Mimura [170]
established the existence of large amplitude solutions of (3.1) when α12 is large.
Other early results concerning the existence of non-constant steady-states when
N = 1, α11 = α21 = α22 = 0 for cases (II), (III) and (IV) are obtained by
Mimura, Nishiura, Tesei and Tsujikawa [173]. The stability of some of these
solutions are obtained in Kan-on [97]. For Dirichlet boundary condition, (3.1)
was investigated by Wu [236] for N = 1.

Part A: Non-existence of Spatially Inhomogeneous Solutions.

We first show that all solutions of (3.1) must be spatially constant when one
of the self-diffusion pressures α11, α22 is large or one of the diffusion rates d1, d2
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is large (while the self-diffusion pressures are both positive), under all cases (I),
(II), (III) or (IV).

Theorem 3.1 (Conditions Prohibiting Non-constant Solutions).
Consider problem (3.1) under the assumptions

(3.4)
a1

a2
�= b1
b2
, and

a1

a2
�= c1
c2
.

(i) There exists a positive constant C1 = C1(di, ai, bi, ci, α12, α21), i = 1, 2,
such that if

(3.5) max{α11, α22} ≥ C1,

then problem (3.1) does not have any non-constant solution.
(ii) There exists a positive constant C2 = C2(ai, bi, ci, αij), i, j = 1, 2, such

that if

(3.6) max{d1, d2} ≥ C2,

and both α11 and α22 are positive, then problem (3.1) does not have any non-
constant solution.

Proof. We will use the abbreviations given in (3.2) for the proof of this theorem.
Assumption (3.4) implies that the two lines f1(u1, u2) = 0 and f2(u1, u2) = 0
do not intersect at any point on the two axes u1 = 0 or u2 = 0. We will now
proceed to prove part (i).

First, consider the case when the two lines intercept at a point (û1, û2)
in the first open quadrant. We will show that for every small ε > 0, there
exists a constant K(ε) such that if max{α11, α22} ≥ K(ε), then for any solution
u = (u1, u2) of (3.1), we must have

(3.7) ||u1 − û1||∞ + ||u2 − û2||∞ ≤ ε.

Suppose not, then there exists a constant ε0 > 0 and a sequence {α11,k, α22,k}∞k=1

with say α11,k →∞, such that

(3.8) ||u1,k − û1||∞ + ||u2,k − û2||∞ ≥ ε0,

where (u1,k, u2,k) is a solution of

(3.9)




∆[(d1 + α11,ku1,k + α12u2,k)u1,k] + u1,kf1(u1,k, u2,k) = 0 in Ω,

∆[(d2 + α21u1,k + α22,ku2,k)u2,k] + u2,kf2(u1,k, u2,k) = 0 in Ω,

∂u1,k

∂ν = ∂u2,k

∂ν = 0 on ∂Ω, u1,k > 0, u2,k > 0 in Ω.
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We now show that there exists a subsequence of {u1,k}∞k=1, denoted again by
{u1,k}∞k=1 for convenience, which converges uniformly to a constant as k → ∞.
For this purpose, let

(3.10) ψ1,k = u1,k(u1,k +
d1

α11,k
+

α12

α11,k
u2,k),

which satisfies

(3.11) α11,k∆ψ1,k + u1,kf1(uk) = 0 in Ω,
∂ψ1,k

∂ν
= 0 on ∂Ω.

Let
ψ1,k(x0,k) = maxΩ̄ ψ1,k.

Suppose that x0,k ∈ ∂Ω, and f1(u1,k(x0,k), u2,k(x0,k)) < 0. We can deduce from
Hopf boundary lemma that this contradicts ∂ψ1,k

∂ν = 0 on ∂Ω. Thus, we have

(3.12) f1(u1,k(x0,k), u2,k(x0,k)) ≥ 0.

Suppose x0,k ∈ Ω, then equation (3.11) also leads to (3.12). By (3.12), we have

a1 = f1(0, 0) ≥ f1(0, 0) − f1(u1,k(x0,k), u2,k(x0,k)) = b1u1,k(x0,k) + c1u2,k(x0,k).

Thus

(3.13) u1,k(x0,k) ≤ a1

b1
and u2,k(x0,k) ≤ a1

c1
.

From (3.10) and (3.13), we obtain
(3.14)
(d1 + α11,kmaxΩ̄u1,k)maxΩ̄u1,k ≤ α11,kmaxΩ̄ψ1,k ≤ a1

b1
(α11,k

a1

b1
+ d1 + α12

a1

c1
).

By considering each case when α11,k ≤ d1 or α11,k ≥ d1, we deduce from (3.14)
that

(3.15) maxΩ̄ u1,k ≤ C(1 +
α12

d1
)

for each k, where C = C(a1, b1, c1). Similarly, letting

ψ2,k = u2,k(u2,k +
d2

α22,k
+

α21

α22,k
u1,k),

and using the equation satisfied by ψ2,k, we deduce by means of (3.13) that

(3.16) maxΩ̄ u2,k ≤ C(1 +
α21

d2
)
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for each k, where C = C(a2, b2, c2). By (3.10), (3.15), (3.16) and the fact that
α11,k → ∞, we see that ||ψ1,k||∞ ≤ K for some constant K. Again, by (3.10),
(3.11), standard Lp estimates and Sobolov embedding, we obtain a uniform
bound for ||ψ1,k||C1,α(Ω̄) for some α ∈ (0, 1). Thus there exists a subsequence,
denoted again by {ψ1,k}∞k=1, which converges to some non-negative function ψ1

in C1(Ω̄), and ψ1 satisfy the following equation weakly

(3.17) ∆ψ1 = 0 in Ω,
∂ψ1

∂ν
= 0 on ∂Ω,

since α11,k →∞. From standard elliptic regularity theory, we find ψ1 ∈ C2(Ω̄),

and (3.17) implies that ψ1 ≡ ψ̂ is a non-negative constant. Setting ũ1 =
√
ψ̂1,

we obtain

u2
1,k − ũ2

1 = (ψ1,k − ψ̂1)− d1

α11,k
u1,k − α12

α11,k
u1.ku2.k → 0

as k → ∞. Consequently, we have u1,k → ũ1 uniformly, where ũ1 is a non-
negative constant.

We next show that there exists a subsequence of {u2,k}∞k=1, denoted again by
{u2,k}∞k=1 for convenience, such that u2,k → ũ2 uniformly as k →∞, where ũ2 is
also a non-negative constant. Suppose {α22,k}∞k=1 is unbounded. We can choose
a subsequence denoted again by {α22,k}∞k=1 tending to∞, and prove in the same
manner as before to show that u2,k → ũ2 for some non-negative constant ũ2.
On the other hand, if {α22,k}∞k=1 is bounded, we may assume without loss of
generality that α22,k → α22 ∈ [0,∞). Set

ψ̃2,k = (d2 + α21u1,k + α22,ku2,k)u2,k.

Since {α22,k}∞k=1 is bounded, from (3.15) and (3.16), we see that ||ψ̃2,k||∞ ≤ K.
Furthermore, ψ̃2,k satisfies

(3.18) ∆ψ̃2,k + u2,kf2(u1,k, u2,k) = 0 in Ω,
∂ψ̃2,k

∂ν
= 0 on ∂Ω.

By means of Lp estimate and Sobolev embedding, we obtain ||ψ̃2,k||C1,α(Ω̄) ≤ K
for some α ∈ (0, 1). Then by selecting to a subsequence if necessary, we may
assume that ψ̃2,k → ψ2 ≥ 0 in C1(Ω̄). From the definition of ψ̃2,k and the fact
that u1,k → ũ1, we find

(3.19) (d2 + α21ũ1 + α22,ku2,k)u2,k − ψ2 → 0

in C1(Ω̄).
We first consider the case when α22 > 0. We readily see from the quadratic

formula that u2,k → ū2 in C1(Ω̄), where

ū2 = [−(d2 + α21ũ1) +
√

(d2 + α21ũ1)2 + 4α22ψ2]/2α22 ≥ 0.
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Thus, by letting k → ∞ in (3.18), we find ψ2 satisfies the following equation
weakly

(3.20) ∆ψ2 + ū2f2(ũ1, ū2) = 0 in Ω,
∂ψ2

∂ν
= 0 on ∂Ω.

From regularity theory, we have ψ2 ∈ C2(Ω̄) and is a classical solution of (3.20).
Note that ψ2 ≥ 0. If ψ2 ≡ 0, then we have u2,k → 0 in C(Ω̄). From (3.9), we
deduce f(ũ1, 0) = 0 and ũ1 ≥ 0. This contradicts assumption (3.4), as explained
in the beginning of the proof of this theorem. Therefore ψ2 ≥ 0 and is not
identically zero in Ω. Since ψ2 = (d2 +α21ũ1 +α22ū2)ū2, we may write (3.20) as

(3.21) ∆ψ2 + [f2(ũ1, ū2)/(d2 +α21ũ1 +α22ū2)]ψ2 = 0 in Ω,
∂ψ2

∂ν
= 0 on ∂Ω.

From the maximum principle, (see e.g. [125]) we find ψ2 > 0 and thus ū2 > 0
in Ω̄. Since ū2 is a solution of
(3.22)

∆[d2 + α21ũ1 + α22ū2(x))ū2(x)] + ū2f2(ũ1, ū2) = 0 in Ω,
∂ū2

∂ν
= 0 on ∂Ω,

we can deduce as before at the point of maximum, that we have f2(ũ1,maxΩ̄ū2) ≥
0. Thus from the formula of f2, we find

f2(ũ1, ū2(x)) ≥ f2(ũ1,maxΩ̄ū2) ≥ 0, for all x ∈ Ω.

Integrating (3.22), we obtain

(3.23)
0 =

∫
Ω ū2(x)f2(ũ1, ū2(x))dx ≥ ∫Ω ū2(x)f2(ũ1,maxΩ̄ū2)dx

= f2(ũ2,maxΩ̄ū2)
∫
Ω ū2(x)dx ≥ 0.

From (3.23), we deduce ū2(x) ≡ maxΩ̄ū2 := ũ2 must be a positive constant, and
f2(ũ1, ũ2) = 0. That is, if α22,k → α22 > 0, then there exists a subsequence of
{u2,k}∞k=1 which converges to some positive constant ũ2.

In case α22 = 0, then by (3.19) we have

u2,k → ū2 =
ψ2

d2 + α21ũ1

in C1(Ω̄) as k →∞. The argument that a subsequence of {u2,k}∞k=1 converges to
some positive constant denoted again by ũ2 is the same as the case for α22 > 0
above with obvious modifications.

We have now obtained a subsequence {(u1,k, u2,k)}∞k=1 such that (u1,k, u2,k)→
(ũ1, ũ2) uniformly as k →∞, where ũ1 and ũ2 are non-negative constants.
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Integrating the system (3.9) in Ω, we find

(3.24)
∫

Ω
u1,kf1(u1,k, u2,k)dx =

∫
Ω
u2,kf2(u1,k, u2,k)dx = 0.

From this, we will obtain fi(ũ1, ũ2) = 0, i = 1, 2 and ũi = ûi, i = 1, 2. For,
suppose f1(ũ1, ũ2) �= 0. Without loss of generality assume f1(ũ1, ũ2) > 0. Since
ui,k → ũi, i = 1, 2, uniformly as k → ∞, we must have f1(u1,k,, u2,k) > 0 for k
large, and therefore ∫

Ω
u1,kf1(u1,k, u2,k)dx > 0

for large k since u1,k is always positive. This contradicts (3.24). Similarly we
deduce that f2(ũ1, ũ2) �= 0 leads to a contradiction. Thus from the assumption
on f(u), we obtain (ũ1, ũ2) = (û1, û2) and ûi > 0, i = 1, 2. This contradicts the
existence of ε0 > 0 as described in (3.8). This leads to the validity of assertion
(3.7) for every small ε > 0, under conditions described.

We next use (3.7) to show that if max{α11, α22} is large enough, then
equations (3.1) imply that ∇ui ≡ 0 for i = 1, 2, in Ω. For convenience, let
δ = min{û1, û2}. By (3.7), there exists positive constant K(δ/2) such that if
max{α11, α22} ≥ K(δ/2), then any solution (u1, u2) of (3.1) satisfies

(3.25) δ/2 ≤ u1(x), u2(x) ≤ K̂, for all x ∈ Ω,

for some positive constant K̂. Without loss of generality, we may assume α11 is
sufficiently large. Let u0

i be the average of ui in Ω, and u0 = (u0
1, u

0
2). Multiplying

the first equation of (3.1) by u1 − u0
1 and integrating over Ω, we find

(3.26)

∫
Ω(d1 + 2α11u1 + α12u2)|∇u1|2 dx + α12

∫
Ω u1∇u1 · ∇u2 dx

=
∫
Ω(u1 − u0

1)u1f1(u) dx

=
∫
Ω(u1 − u0

1)[u1f1(u)− u0
1f1(u0)] dx

=
∫
Ω(u1 − u0

1)[(u1 − u0
1)f1(u) + u0

1(f1(u)− f1(u0))] dx

≤ K̂1
ε

∫
Ω |u1 − u0

1|2dx+ ε
∫
Ω |u2 − u0

2|2dx

for some positive constant K̂1, and ε can be chosen arbitrarily small. Moreover,
we have

(3.27) |α12

∫
Ω
u1∇u1 · ∇u2 dx| ≤ K

ε

∫
Ω
|∇u1|2 dx+ ε

∫
Ω
|∇u2|2 dx.
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for some positive constant K. From (3.26), (3.27) and Poincare’s inequality, we
deduce

(3.28) (α11δ − K2

ε
)
∫

Ω
|∇u1|2 dx ≤ εK3

∫
Ω
|∇u2|2 dx,

for some positive constants K2,K3. Here, ε is arbitrarily small, provided α11 is
sufficiently large. (Note that u1 and u2 depend on α11).

We next multiply the second equation of (3.1) by u2− u0
2 and integrate over

Ω to obtain as in (3.26)

(3.29)

α21

∫
Ω u2∇u1∇u2 dx+

∫
Ω(d2 + α21u1 + 2α22u2)|∇u2|2 dx

=
∫
Ω(u2 − u0

2)u2f2(u) dx

≤ K̂2
ε

∫
Ω |u1 − u0

1|2dx+ ε
∫
Ω |u2 − u0

2|2dx,

for some positive constant K̂2. Moreover, we have

(3.30) |α21

∫
Ω
u2∇u1 · ∇u2 dx| ≤ K̄

ε

∫
Ω
|∇u1|2 dx+ ε

∫
Ω
|∇u2|2 dx,

for some positive constant K̄. From (3.29), (3.30) and Poincare’s inequality, we
find

(3.31)

d2

∫
Ω |∇u2|2 dx

≤ α21

∫
Ω u2|∇u1||∇u2| dx+ K̂2

ε

∫
Ω |u1 − u0

1|2 dx+ ε
∫
Ω |u2 − u0

2|2dx

≤ K4ε
∫
Ω |∇u2|2 dx+ K5

ε

∫
Ω |∇u1|2 dx,

for some positive constants K4 and K5. Summing (3.28) and (3.31) we obtain

(3.32) (α11δ − K2 +K5

ε
)
∫

Ω
|∇u1|2 dx+ (d2 − ε(K3 +K4))

∫
Ω
|∇u2|2 dx ≤ 0.

Choosing ε < d2(K3 +K4)−1, and then α11 sufficiently large, we conclude from
(3.32) that ∇ui ≡ 0, that is ui ≡ constant for i = 1, 2. This completes the proof
of part (i) when f(u) = 0 has a root in the first open quadrant.

In the case when f(u) = 0 does not has a root in the first quadrant. Suppose
there exists a sequence {u1,k, u2,k}∞k=1 of solutions of (3.1) with say α11,k →∞,
we follow the first part of the proof up to (3.24) to find a constant root (ũ1, ũ2) of
f(u) = 0, with both ũi ≥ 0, i = 1, 2. This is thus a contradiction, and completes
the proof of part (i).
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For the proof of part (ii), first assume that the equation f(u) = 0 has a
root (û1, û2) in the first open quadrant. We then show that for every small
ε > 0, there exists a constant K̃(ε) such that if max{d1, d2} ≥ K̃(ε), then for
any solution u = (u1, u2) of (3.1), we must have

(3.33) ||u1 − û1||∞ + ||u2 − û2||∞ ≤ ε,

as in (3.7) for the proof of part (i). The rest of the proof follows the same
arguments as in the proof of part (i) above, with the natural modifications. The
details can be found in [164], and will be omitted here.

In the last theorem we see that if only one diffusion rate or self-diffusion
pressure is large, there cannot any non-constant solution in all cases (I) to (IV).
In the next theorem involving only the weak competition case (I), we see that
if self-diffusion and cross-diffusion pressures are relatively small in relation to
diffusion rate, there still cannot be any non-constant solution.

Theorem 3.2 (Other Conditions Prohibiting Non-Constant Solutions
for Weak Competition Case). Suppose that

(3.34)
b1
b2
>
a1

a2
>
c1
c2
.

Then there exists a positive constant C3 = C3(ai, bi, ci), i = 1, 2 such that the
constant u∗ := ((a1c2 − a2c1)/(b1c2 − b2c1), (b1a2 − b2a1)/(b1c2 − b2c1)) is the
only solution of problem (3.1), provided

(3.35) max{αij/di | i, j = 1, 2} ≤ C3.

Proof. For convenience, we rewrite (3.1) as

(3.36)




d1∆[(1 + r11u1 + r12u2)u1] + u1f1(u) = 0 in Ω,

d2∆[(1 + r21u1 + r22u2)u2] + u2f2(u) = 0 in Ω,

∂u1
∂ν = ∂u2

∂ν = 0 on ∂Ω, u1 > 0, u2 > 0 in Ω,

where f1(u) and f2(u) are defined in (3.2), and

rij =
αij
di
, 1 ≤ i, j ≤ 2.

We now transform problem (3.36) into a semilinear elliptic system. Define a
mapping G by

(3.37) G(u) = (u1(1 + r11u1 + r12u2), u2(1 + r21u1 + r22u2)),
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where u = (u1, u2), and denote R2
+ := {(u1, u2) |u1 > 0, u2 > 0}. The mapping

G ∈ C(R2
+, R

2
+), and G−1(K) is compact in R2

+ for any compact subset K in
R2

+. The Fréchet derivative of G is given by

(3.38) DG(u) =
[

1 + 2r11u1 + r12u2 r12u1

r21u2 1 + r21u1 + 2r22u2

]
.

Thus for any non-negative constants rij , i, j = 1, 2, the determinant of DG(u)
is positive for all u ∈ R2

+. It follows from the implicit function theorem that
G is locally invertible in R2

+. Since R2
+ is also arcwise and simply connected,

by Theorem A5-4 in Chapter 6 we assert that G is a homeomorphism from R2
+

onto itself. From the smoothness of G and the implicit function theorem again,
we see that the inverse G−1 of G is also smooth in R2

+. That is G is a smooth
diffeomorphism from R2

+ onto itself.
Define ψ = (ψ1, ψ2) ≡ G(u) and

H(ψ) = (h1(ψ), h2(ψ)) ≡ G−1(ψ),

system (3.36) can be written as

(3.39)




d1∆ψ1 + h1(ψ)f1(H(ψ)) = 0 in Ω,

d2∆ψ2 + h2(ψ)f2(H(ψ)) = 0 in Ω,

∂ψ1

∂ν = ∂ψ2

∂ν = 0 on ∂Ω, ψ1 > 0, ψ2 > 0 in Ω.

Since G is a diffeomorphism, we see that (3.36) has a non-constant solution if
and only if (3.39) has a non-constant solution.

We next show that there exist positive constants K1 and K2 such that any
solution ψ = (ψ1, ψ2) of (3.39), must satisfy

(3.40) maxΩ̄ ψi ≤ K2, i = 1, 2, provided that r := max{rij| i, j = 1, 2} ≤ K1.

Let ψ1(x0) = maxΩ̄ ψ1, then from the first equation in (3.39), we have
f1(u1(x0), u2(x0)) ≥ 0. Hence

a1 = f1(0, 0) ≥ [f1(0, 0) − f1(u1(x0), 0)] + [f1(u1(x0), 0) − f1(u1(x0), u2(x0))]

≥ b1u1(x0).

Consequently, we have u1(x0) ≤ a1/b1, and

(3.41) maxΩ̄ ψ1 ≤ a1

b1
(1 + r11

a1

b1
+ r12maxΩ̄ ψ2).
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Similarly, we deduce

(3.42) maxΩ̄ ψ2 ≤ a2

c2
(1 + r21maxΩ̄ ψ1 + r22

a2

c2
).

From (3.41) and (3.42), we obtain

maxΩ̄ ψ1 ≤ a1

b1
(1 + r11

a1

b1
+ r12

a2

c2
+ r12r22

a2
2

c22
+
a2

c2
r12r21maxΩ̄ ψ1),

which then implies

maxΩ̄ ψ1 ≤ (a1/b1)(1 + r11(a1/b1) + r12(a2/c2) + r12r22(a2
2/c

2
2))

1− (a1a2/b1c2)r12r21

provided that r12r21 < (b1c2)/(a1a2). Thus there exist constants K1,K2 such
that the inequality in (3.40) is valid for i = 1. Similarly, we can deduce that
(3.40) is also true for i = 2.

The remaining part of the proof uses a Lyapunov function for the parabolic
problem corresponding to (3.39):

(3.43)




∂ψ̂1

∂t = d1∆ψ̂1 + h1(ψ̂)f1(H(ψ̂)) in Ω× (0,∞),

∂ψ̂2

∂t = d2∆ψ̂2 + h2(ψ̂)f2(H(ψ̂)) in Ω× (0,∞),

∂ψ̂1

∂ν = ∂ψ̂2

∂ν = 0 on ∂Ω× (0,∞),

ψ̂1(x, 0) = ψ̂1,0(x), ψ̂2(x, 0) = ψ̂2,0(x) in Ω.

We use the same Lyapunov function as the usual one for the Volterra-Lotka
model (see e.g. [125]). That is, for any positive continuous functions ψ̃1, ψ̃2,
define

(3.44) E(ψ̃) =
∫

Ω
{b2(ψ̃1 − ψ∗

1 − ψ∗
1 log

ψ̃1

ψ∗
1

) + c1(ψ̃2 − ψ∗
2 − ψ∗

2 log
ψ̃2

ψ∗
2

)}dx,

where ψ̃ = (ψ̃1, ψ̃2) and ψ∗ = (ψ∗
1 , ψ

∗
2) = G(u∗). If ψ̂ = (ψ̂1(x, t), ψ̂2(x, t)) is

positive solution of (3.43), we obtain

d
dt

∫
Ω(ψ̂1 − ψ∗

1 − ψ∗
1 log

ψ̂1

ψ∗
1
) dx

= −d1ψ
∗
1

∫
Ω

|∇ψ̂1|2
ψ̂2

1

dx+
∫
Ω(ψ̂1 − ψ∗

1)h1(ψ̂)

ψ̂1
f1(H(ψ̂)) dx.
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Since f1(H(ψ∗)) = 0, we have

f1(H(ψ̂)) = [f1(H(ψ̂))− f1(u∗1, h2(ψ̂))] + [f1(u∗1, h2(ψ̂))− f1(H(ψ∗))]

= ∂f1
∂u1
· (h1(ψ̂)− h1(ψ∗)) + ∂f1

∂u2
· (h2(ψ̂)− h2(ψ∗)),

and

f1(H(ψ̂)) =
2∑

i,j=1

∂f1

∂ui

∂hi
∂ψj

(ψ̂j − ψ∗
j ),

where ∂h1
∂ψ1

is evaluated at (η1, ψ̂2), with η1(x, t) between ψ̂1(x, t) and ψ∗
1 , and ∂h1

∂ψ2

is evaluated at (ψ∗
1 , η2), with η2(x, t) between ψ̂2(x, t) and ψ∗

2 . Similar convention
is used for ∂h2

∂ψj
.

Thus we have

(3.45)

d
dt

∫
Ω(ψ̂1 − ψ∗

1 − ψ∗
1 log

ψ̂1

ψ∗
1
)dx

= −d1ψ
∗
1

∫
Ω

|∇ψ̂1|2
ψ̂2

1

dx+
∑2

i,j=1

∫
Ω
h1(ψ̂)

ψ̂1

∂f1
∂ui

∂hi
∂ψj

(ψ̂1 − ψ∗
1)(ψ̂j − ψ∗

j ) dx,

and similarly

d
dt

∫
Ω(ψ̂2 − ψ∗

2 − ψ∗
2 log

ψ̂2

ψ∗
1
)dx

= −d2ψ
∗
2

∫
Ω

|∇ψ̂2|2
ψ̂2

2

dx+
∑2

i,j=1

∫
Ω
h2(ψ̂)

ψ̂2

∂f2
∂ui

∂hi
∂ψj

(ψ̂2 − ψ∗
2)(ψ̂j − ψ∗

j ) dx.

From the above formula and (3.45), we obtain

dE
dt ≤ b2

∑2
i=1

∫
Ω
h1(ψ̂)

ψ̂1

∂f1
∂ui

∂hi
∂ψ1

(ψ̂1 − ψ∗
1)2 dx

+ c1
∑2

i=1

∫
Ω
h2(ψ̂)

ψ̂2

∂f2
∂ui

∂hi
∂ψ2

(ψ̂2 − ψ∗
2)2 dx

+
∑2

i=1

∫
Ω(ψ̂1 − ψ∗

1)(ψ̂2 − ψ∗
2)(b2

∂f1
∂ui

∂hi
∂ψ2

h1(ψ̂)

ψ̂1
+ c1

∂f2
∂ui

∂hi
∂ψ1

h2(ψ̂)

ψ̂2
) dx.

From (3.38), we find

DH(ψ) = (DG(u))−1 =
1

detDG(u)

[
1 + r21u1 + 2r22u2 −r12u1

−r21u2 1 + 2r11u1 + r12u2

]
.

If there is some K > 0 such that maxΩ̄ ψ̂i ≤ K for all t > 0, i = 1, 2, then for
small r we have 

 ∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2


 =

[
1 +O(1)r O(1)r
O(1)r 1 +O(r)

]
,
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and hi/ψ̂i = 1 +O(1)r. Moreover, we find that for such solution ψ̂

(3.46)

dE
dt (ψ̂) ≤ ∫Ω {(−b1b2 +O(1)r)(ψ̂1 − ψ∗

1)2

+ (2b2c1 +O(1)r)|ψ̂1 − ψ∗
1 ||ψ̂2 − ψ∗

2 |

+ (−c1c2 +O(1)r)(ψ̂2 − ψ∗
2)2} dx.

From the assumption b1/b2 > c1/c2, we see that there exists a positive constant
r̄ = r̄(K) such that if r ≤ r̄, then dE(ψ̂(t))/dt ≤ 0 for all t > 0. Furthermore,
dE(ψ̂(t0))/dt = 0 if and only if ψ̂(x, t) ≡ ψ∗ for all t ≥ t0. Consequently,
inequality (3.46) and property (3.40) for all equilibrium solutions imply that u∗

is the only solution of problem (3.1) for small enough r as described in (3.35).

The following corollary is a slight modification of Theorem 3.2. It shows that
if cross-diffusion is weak relative to diffusion, there is no non-constant solution
for problem (3.1) in case (I).

Corollary 3.3. Suppose that

(3.47)
b1
b2
>
a1

a2
>
c1
c2
.

Then there exists a positive constant C4 = C4(ai, bi, ci), i = 1, 2 such that the
constant u∗ := ((a1c2 − a2c1)/(b1c2 − b2c1), (b1a2 − b2a1)/(b1c2 − b2c1)) is the
only solution of problem (3.1), provided

(3.48) max{(α21/d1)(1 + α12/d1), (α12/d2)(1 + α21/d2)} ≤ C4,

or

(3.49) max{(α21/
√
d1d2)(1 + α12/d1), (α12/

√
d1d2)(1 + α21/d2)} ≤ C4.

Corollary 3.3 is proved by the same method as Theorem 3.2, with slight
modifications. Note that it is known that Theorem 3.2 and Corollary 3.3 can
fail if the weak competition condition b1/b2 > a1/a2 > c1/c2 is dropped (cf.
[100], [167] and [171]).

Remark 3.1. Roughly speaking, Theorems 3.1, 3.2 and Corollary 3.3 assert
that problem (3.1) has no non-constant solution if diffusion or self-diffusion is
strong, or if cross-diffusion is weak.

The above theorems and methods lead to consequences concerning steady-
state solutions of (3.3) as follows.

Theorem 3.4. Consider problem (3.1) with αij ≡ 0, i, j = 1, 2. The constant
function u = u∗ = ((a1c2 − a2c1)/(b1c2 − b2c1), (b1a2 − b2a1/(b1c2 − b2c1)) is the
only solution if
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(i) b1/b2 > a1/a2 > c1/c2, or
(ii) b1/b2 < a1/a2 < c1/c2 and max{d1, d2} ≥ C∗ for some constant C∗.

Note that part (i) follows directly from Theorem 3.2. Part (ii) is proved in the
same way as part (ii) in Theorem 3.1. The details can be found in [164], and
will be omitted here. Also, note that in (ii) we only assume one diffusion rate
to be large in order to insure there is no non-constant equilibrium; while earlier
well-known results (cf. e.g. [80]) assume both diffusion rates are large.

Part B: Spatial Inhomogeneity caused by Cross-Diffusion.

We will next study the existence of positive non-constant solution of (3.1)
when cross-diffusion is strong. For f(u) as described in (3.2), we will assume
f(u) = 0 has a solution in the first open quadrant. Thus both components of
u = u∗ = (u∗1, u∗2) = ((a1c2 − a2c1)/(b1c2 − b2c1), (b1a2 − b2a1/(b1c2 − b2c1)) are
positive. We will then assume

(3.50)
a1

a2
>

1
2

(
b1
b2

+
c1
c2

),

which is equivalent to
−c2u∗2 + b2u

∗
1 > 0.

For the purpose of the next theorem, we define

d(l) =
−c2u∗2 + b2u

∗
1

(1 + 2r22u∗2)µl

for l ≥ 1, where 0 = µ0 < µ1 < · · · < µk < · · · are the eigenvalues of the negative
Laplace operator in Ω under homogeneous Neumann boundary condition on ∂Ω.
Under assumption (3.50), we thus have

(3.51) d(1) > d(2) > · · · > d(l) → 0+

as l → ∞. Let ml denote the algebraic multiplicity of µl, then the following
result gives the existence of non-constant solution for problem (3.36) for large
r12.

Theorem 3.5 (Non-Constant Solution under Weak or Strong Compe-
tition). Consider problem (3.36), with the assumption that equation f(u) = 0
having a unique root in the first open quadrant, and hypothesis (3.50). Let
r11, r21 and r22 be arbitrarily given non-negative constants, d2 ∈ (d(k+1), d(k))
for some k ≥ 1 with

∑k
l=1 ml being odd. Then there exists a positive constant

Λ = Λ(d1, d2, r11, r21, r22, f) such that if r12 ≥ Λ, problem (3.36) has at least
one non-constant solution provided that one of the following conditions hold:

(i) b1/b2 > a1/a2 > c1/c2, or
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(ii) b1/b2 < a1/a2 < c1/c2 and d1 ≥ Ĉ where Ĉ is some constant larger
than C∗ in part (ii) of Theorem 3.4.

Remark 3.2. Note that d(l), l = 1, 2, .. are independent of d1, d2 and r12. If we
adjust d2 so that d2 ∈ (d(k+1), d(k)) as described above, then Theorem 3.5 (i) and
(ii) claim that there must be non-constant solution provided r12 is sufficiently
large.

Theorem 3.5 will be proved by using the following Lemmas 3.1 to 3.3. In
order to present these lemmas, we recall that the system (3.36) is transformed
in (3.39) by the mapping G(u) of (3.37) and its inverse H(ψ). Here, we write
G = G(u; rij) and H = H(u; rij) in order to indicate their dependence on rij .
To study the solutions of (3.39), we will deform the problem by homotopy to
the situation when rij = 0. For each s ∈ [0, 1], we consider the following system:

(3.52)




d1∆ψ1 + h1(ψ; srij)f1(H(ψ; srij)) = 0 in Ω,

d2∆ψ2 + h2(ψ; srij)f2(H(ψ; srij)) = 0 in Ω,

∂ψ1

∂ν = ∂ψ2

∂ν = 0 on ∂Ω, ψ1 > 0, ψ2 > 0 in Ω.

Note that for s = 1, (3.52) is the same as (3.39); and for s = 0, it reduces to the
steady-state of (3.3) with si,j ≡ 0, i, j = 1, 2. For convenience, define

E = C(Ω̄)× C(Ω̄), P = {u = (u1, u2) ∈ E|u1, u2 ≥ 0}.
For each s ∈ [0, 1], let Ts : P → E be the operator defined by

(3.53) Ts(ψ) =

[
(−d1∆ + I)−1[ψ1 + h1(ψ; srij)f1(H(ψ; srij)]

(−d2∆ + I)−1[ψ2 + h2(ψ; srij)f2(H(ψ; srij)]

]
,

where (−di∆ + I)−1, i = 1, 2, is the inverse of −di∆ + I subject to homogeneous
Neumann boundary condition, and I is the identity map on C(Ω̄). By Lp esti-
mates and Sobolev embedding, we know that Ts is a continuous and compact
operator for each s ∈ [0, 1]. Moreover, ψ is a fixed point of Ts if and only if ψ is
a solution of (3.52). In particular, u∗ is a fixed point of T0.

In order to use homotopy invariance, we need uniform bound for solutions
of (3.52) for all s ∈ [0, 1]. For this purpose, we will use the following lemma.

Lemma 3.1. Assume the hypotheses of Theorem 3.5 for problem (3.36). For
any η > 0, if

min{d1, d2} ≥ η, and max{r12, r21} ≤ 1
η
,

then there exist two positive constants C(η) < C̄(η), which are independent of
di and rij, (i, j = 1, 2), such that any solution of (3.36) must satisfy

C(η) ≤ ui(x) ≤ C̄(η)

for all x ∈ Ω̄ and i = 1, 2.
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In order not to distract the main idea of the proof of Theorem 3.5, we
postpone the proof of the above lemma, and first consider the next two lemmas
concerning the indices of the maps T0 and T1 at the fixed points u∗ and ψ∗ =
G(u∗; rij) respectively. They are denoted as index(T0, u

∗) and index(T1, ψ
∗).

Lemma 3.2. Let f(u) as described in (3.2), and suppose that the equation
f(u) = 0 has a solution in the first open quadrant. Let the mapping T0 be
as defined in (3.53) with fixed point u∗.

(i) If b1/b2 > a1/a2 > c1/c2, then index(T0, u
∗) = 1.

(ii) If b1/b2 < a1/a2 < c1/c2 then there exists a positive constant C inde-
pendent of d1, d2 such that for max{d1, d2} ≥ C, index(T0, u

∗) = −1.

Proof. Since H(ψ, 0) ≡ ψ, from (3.53) we have

T0(ψ) =

[
(−d1∆ + I)−1[ψ1 + ψ1f1(ψ)]

(−d2∆ + I)−1[ψ2 + ψ2f2(ψ)]

]
.

Direct calculations gives

DT0(u∗)(ψ) =

[
(−d1∆ + I)−1[(1− b1u∗1)ψ1 − c1u∗1ψ2]

(−d2∆ + I)−1[−b2u∗2ψ1 + (1− c2u∗2)ψ2]

]
.

If u∗ is an isolated fixed point of T0, by Leray-Schauder degree theory (cf. The-
orem A2-3) in Chapter 6, we have

(3.54) index(T0, u
∗) = (−1)σ ,

where σ is the number of negative eigenvalues of I−DT0(u∗) (counting algebraic
multiplicity). If −ρ ≤ 0 is an eigenvalue of I − DT0(u∗), then there exists a
nontrivial ψ = (ψ1, ψ2) such that

(3.55)




−d1(1 + ρ)∆ψ1 + ρψ1 = −b1u∗1ψ1 − c1u∗1ψ2 in Ω,

−d2(1 + ρ)∆ψ2 + ρψ1 = −b2u∗2ψ1 − c2u∗2ψ2 in Ω,

∂ψ1

∂ν = ∂ψ2

∂ν = 0 on ∂Ω.

For each eigenvalue −µl of the Laplacian as described above, we define the
matrix

Ml(ρ) =

[
d1(1 + ρ)µl + ρ+ b1u

∗
1 c1u

∗
1

b2u
∗
2 d2(1 + ρ)µl + ρ+ c2u

∗
2

]
.
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Problem (3.55) has a non-trivial solution if and only if the determinant satisfies
detMl(ρ) = 0 for some ρ ≥ 0 and l ≥ 0. We readily obtain the determinant

(3.56)
det Ml(ρ) = [d1(1 + ρ)µl + ρ][d2(1 + ρ)µl + ρ] + b1u

∗
1[d2(1 + ρ)µl + ρ]

+ c2u
∗
2[d1(1 + ρ)µl + ρ] + u∗1u∗2(b1c2 − b2c1).

Thus, for all ρ ≥ 0 and l ≥ 0, we must have detMl(ρ) > 0 if b1/b2 > c1/c2. This
implies that I −DT0(u∗) has no non-positive eigenvalues. By Theorem A2-3 in
Chapter 6, we find that u∗ is an isolated fixed point, σ = 0 and index(T0, u

∗) = 1
for case (i).

For case (ii), b1/b2 < c1/c2, we readily see that detM0(0) �= 0 and the
equation detM0(ρ) = 0 has a unique positive root. If l ≥ 1 and ρ ≥ 0, we obtain
from (3.56)

detMl(ρ) > b1u
∗
1µ1d2 + c2u

∗
2µ1d1 + u∗1u

∗
2(b1c2 − b2c1).

Thus, we find detMl(ρ) > 0 for all ρ ≥ 0 and l ≥ 1 provided that:

max {d1, d2} ≥ C := max{u
∗
2(b2c1 − b1c2)

b1µ1
,
u∗1(b2c1 − b1c2)

c2µ1
} > 0.

Consequently, u∗ is isolated and I −DT0(u∗) has a unique negative eigenvalue
which is simple, i.e. σ = 1. We then conclude from (3.54) that index(T0, u

∗) =
−1.

The following lemma concerning the indices of the mapping T1 in (3.53) will
also be needed.

Lemma 3.3. Assume f(u) satisfies the condition described in Lemma 3.2 and
hypothesis (3.50). Let d1 > 0, r11 ≥ 0, r21 ≥ 0, r22 ≥ 0 be arbitrary given
constants and d2 ∈ (d(k+1), d(k)) for some k ≥ 1. Then there exists a positive
constant Λ = Λ(d1, d2, r11, r21, r22) such that if r12 ≥ Λ,

index(T1, ψ
∗) =

{
(−1)

∑k
l=1ml if b1c2 − b2c1 > 0;

(−1)
∑k
l=1ml+1 if b1c2 − b2c1 < 0,

where T1 is defined in (5.53).

We first prove Theorem 3.5 before we complete the proof of Lemma 3.1 and
Lemma 3.3 below.

Proof (of Theorem 3.5). Let d1 > 0, r11 ≥ 0, r21 ≥ 0, r22 ≥ 0 and d2 ∈
(d(k+1), d(k)). Assume r12 ≥ Λ, where Λ is described in Lemma 3.3. Choose
η > 0 small enough so that

min {d1, d2} ≥ η, max {r12, r21} ≤ 1/η.
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By Lemma 3.1 there exist two positive constants P(η) < P̄ (η) such that

(3.57) P(η) ≤ ψi(x) ≤ P̄ (η), for all x ∈ Ω, i = 1, 2,

for any positive solution ψ = (ψ1, ψ2) of (3.52). Let

S = {ψ = (ψ1, ψ2) ∈ E | P(η)
2
≤ ψi(x) ≤ 2P̄ (η), i = 1, 2, for all x ∈ Ω̄}.

Since Ts has no fixed point on the boundary of S for all s ∈ [0, 1], by homotopy
invariance, we have

(3.58) deg(I − T1, S, 0) = deg(I − T0, S, 0).

Suppose that (3.39) has no non-constant solution, i.e. T1 has a unique fixed
point ψ∗ in S. Then by Lemma 3.3 and the assumption that

∑k
l=1ml is odd,

we obtain

(3.59)

deg(I − T1, S, 0) = index(T1, ψ
∗)

=

{
(−1)

∑k
l=1ml = −1 if b1c2 − b2c1 > 0;

(−1)
∑k
l=1ml+1 = 1 if b1c2 − b2c1 < 0.

Under the assumptions of this theorem, Theorem 3.4 implies T0 has a unique
fixed point in S. From Lemma 3.2, we obtain

deg(I − T0, S, 0) = index(T0, u
∗)

=

{
1 if b1c2 − b2c1 > 0,

−1 if b1c2 − b2c1 < 0 and d1 is large enough.

This contradicts (3.58) and (3.59), and completes the proof of Theorem 3.5.

Proof (of Lemma 3.3). To calculate index(T1, ψ
∗), we need to consider the

Fréchet derivative

DT1(ψ∗)
[
ψ1

ψ2

]
=

[
(−d1∆ + I)−1[(1 + u∗1(−b1 ∂h1

∂ψ1
(ψ∗)− c1 ∂h2

∂ψ1
(ψ∗)))ψ1]

(−d2∆ + I)−1[(1 + u∗2(−b2 ∂h1
∂ψ2

(ψ∗)− c2 ∂h2
∂ψ2

(ψ∗)))ψ2]

]

+

[
(−d1∆ + I)−1[u∗1(−b1 ∂h1

∂ψ2
(ψ∗)− c1 ∂h2

∂ψ2
(ψ∗))ψ2]

(−d2∆ + I)−1[u∗2(−b2 ∂h1
∂ψ1

(ψ∗)− c2 ∂h2
∂ψ1

(ψ∗))ψ1]

]
.

As in the proof of Lemma 3.2, −ρ ≤ 0 is an eigenvalue of I − DT1(ψ∗) if and
only if the matrix

Nl(ρ) =

[
d1(1 + ρ)µl + ρ 0

0 d2(1 + ρ)µl + ρ

]

+

[
u1b1 u1c1

u2b2 u2c2

]
u=u∗

[ ∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2

]
ψ=ψ∗
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is singular for some ρ ≥ 0 and some l ≥ 0. We are thus led to the quadratic
equations in ρ for each l ≥ 0:

(3.60) detNl(ρ) = 0.

To analyze this equation, we note that for large r12, we have

(3.61)


 ∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2



ψ=ψ∗

=


 o(1) −u∗1

u∗2(1+2r22u∗2) + o(1)

o(1) 1
1+2r22u∗2

+ o(1)


 ,

and

(3.62) det

[ ∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2

]
ψ=ψ∗

= o(1).

Thus for l = 0 and large r12, (3.60) can be simplified into
(3.63)

ρ2 + ρ[
−u∗1b2 + u∗2c2

1 + 2r22u∗2
+ o(1)] + u∗1u

∗
2(b1c2 − b2c1) · (det

[ ∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2

]
ψ=ψ∗

) = 0.

If (b1c2 − b2c1) > 0, then from hypothesis (3.50) and the fact that

0 < det

[ ∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2

]
ψ=ψ∗

= o(1),

we can readily obtain from the quadratic formula that equation (3.63) has ex-
actly two positive roots, denoted by ρ0,1, ρ0,2. If (b1c2− b2c1) < 0, then equation
(3.63) has exactly one positive root.

For l ≥ 1, solving (3.60) is equivalent to solving the equation

(3.64) gl(ρ) = d2,

where we define
(3.65)
gl(ρ) := − ρ

µl(1+ρ)

+

[d1(1+ρ)µl+ρ]u
∗
2·det


−b2

∂h2
∂ψ2

c2
∂h1
∂ψ2



ψ=ψ∗

−u∗1u
∗
2(b1c2−b2c1)·det



∂h1
∂ψ1

∂h1
∂ψ2

∂h2
∂ψ1

∂h2
∂ψ2



ψ=ψ∗

µl(1+ρ)


d1(1+ρ)µl+ρ−u∗1·det


−b1

∂h2
∂ψ1

c1
∂h1
∂ψ1



ψ=ψ∗




.

From (3.61), (3.62) and (3.65), we obtain for large r12

(3.66) gl(ρ) =
−ρ

µl(1 + ρ)
+

[d1(1 + ρ)µl + ρ][µld(l) + o(1)] + o(1)
µl(1 + ρ)[d1(1 + ρ)µl + ρ+ o(1)]

,
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where the o(1) terms are independent of ρ. From (3.66) we find

(3.67)
dgl
dρ

(ρ) =
−1− µld(l) + o(1)

µl(1 + ρ)2
< 0.

From (3.66) and (3.67), we readily obtain the following properties for the func-
tions gl(ρ) for all l ≥ 1: There exists Λ1 = Λ1(d1, r11, r21, r22) such that if
r12 ≥ Λ1, then

(3.68)
|gl(0)− d(l)| ≤ C

r12
, dgl

dρ (ρ) < 0 for all ρ ≥ 0; and

limρ→+∞ gl(ρ) = − 1
µl

where C is a positive constant independent of d2 and r12.
As in the proof of Lemma 3.2, we see that if 0 is an eigenvalue of I−DT1(ψ∗),

then detNl(0) = 0 for some l ≥ 0. For the case l = 0, we note that (3.63) is not
valid for ρ = 0, implying detN0(0) �= 0. For the case l ≥ 1, we see from (3.60)
and (3.64) that 0 is an eigenvalue of I − DT1(ψ∗) if and only if gl(0) = d2 for
some l. Thus from the first property of (3.68), we must have for r12 ≥ Λ1, the
inequality

|d2 − d(l)| ≤ C

r12
,

for some l ≥ 1, where C is some positive constant independent of d2 and r12.
Since d2 ∈ (d(k+1), d(k)) by assumption, we must have

min {|d2 − d(k)|, |d2 − d(k+1)|} ≤ C

r12

in order that gl(0) = d2 for some l ≥ 1. However, the above inequality is
impossible if we choose r12 ≥ Λ2, where

Λ2 :=
C

min {|d2 − d(k)|, |d2 − d(k+1)|} + Λ1.

Thus we conclude that if r12 ≥ Λ2, ψ∗ is an isolated fixed point of T1 and
index(T1, ψ

∗) is well-defined.
We next proceed to show that

(3.69) σ =

{∑k
l=1 ml + 2 if b1c2 − b2c1 > 0,∑k
l=1 ml + 1 if b1c2 − b2c1 < 0,

where σ is the number negative eigenvalues of I −DT1(ψ∗) (counting algebraic
multiplicity).

First consider the case b1c2− b2c1 > 0. Recall that from (3.63), the equation
detN0 = 0 has exactly two positive roots ρ0,1, ρ0,2. That is, −ρ0,1 and −ρ0,2
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account for two negative eigenvalues of I−DT1(ψ∗). We now claim that for each
l ∈ {1, 2, ..., k}, the equation gl(ρ) = d2 has at least one positive root, which we
shall denote by ρl. To see this, we note that by the first property in (3.68), the
monotonicity of {dl}∞l=1, and the choice of Λ2 described above, we have

gl(0) ≥ d(l) − C

r12
≥ d(k) − C

r12
> d2

if 1 ≤ l ≤ k and r12 ≥ Λ2. On the other hand, from the third property in (3.68),
we find

gl(ρ) < 0 < d2

for large ρ and each l ≥ 1. By the Intermediate Value Theorem, there exists
at least one positive root, ρl to the equation gl(ρ) = d2 for each l ∈ {1, 2, ..., k}
as claimed above. Since the multiplicity of µl is ml for each l ∈ {1, 2.., k}, the
multiplicity of −ρi as an eigenvalue of I−DT1(ψ∗) is at least mi. Consequently,
we have

(3.70) σ ≥ 2 +
k∑
l=1

ml if b1c2 − b2c1 > 0.

We next show that the inequality for σ in (3.70) is also valid in reverse. We will
see that if −ρ̃ < 0 is an eigenvalue of I − DT1(ψ∗), then ρ̃ must be equal to
one of ρ0,1, ρ0,2, ρ1, ..., ρk. We know that the equation detN0(ρ) = 0 has exactly
two positive roots ρ0,1, ρ0,2. We next claim that if gl(ρ) = d2 for some l ≥ 1,
then we must have l ∈ {1, 2, ..., k}. Since gl(ρ) is strictly decreasing for positive
ρ, from the second property of (3.68), it suffices to show that if r12 ≥ Λ2, then
d2 > gl(0) for all l ≥ k + 1. From (3.68) and the definition of Λ2, we have

d2 ≥ d(k+1) +
C

r12
≥ gl(0) + (d(l) − gl(0) +

C

r12
) > gl(0)

provided that l ≥ k + 1. This shows that the claim is valid.
Again, since gl is strictly decreasing for l ≥ 1, the equation gl(ρ) = d2 can

have at most one positive root ρ = ρl for some l ∈ {1, 2, ..., k}. Moreover, from
the equation for Nl and (3.65), we find

d

dρ
(detNl(ρ))|ρ=ρl = −dgl

dρ
(ρl)µl(1 + ρl)[d1(1 + ρl)µl + ρl + o(1)] �= 0.

Thus ρl is a simple eigenvalue of the matrix Nl(ρ). From the discussion above,
we see that the multiplicity for −ρl as an eigenvalue of I −DT1(ψ∗) is exactly
ml. Therefore, we obtain

(3.71) σ ≤ 2 +
k∑
l=1

ml if b1c2 − b2c1 > 0.
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We thus obtain the first half of the formula (3.69) from (3.70) and (3.71), and
we find from Leray-Schauder degree theory that

index(T1, ψ∗) = (−1)σ = (−1)
∑k
l=1ml , if b1c2 − b2c1 > 0,

under the assumptions of the lemma, for r12 ≥ Λ2.
In case b1c2 − b2c1 < 0, we can calculate σ in a similar manner. The only

difference is that we have now exactly one positive root rather than two for the
equation detN0(ρ) = 0. We thus show that there exists a positive constant
Λ3 = Λ(d1, r11, r21, r22) such that if r12 ≥ Λ3, then

σ =
k∑
l=1

ml + 1, if b1c2 − b2c1 < 0.

Finally, the proof of the Lemma 3.3 is complete by choosing Λ = max {Λ2,Λ3}.
Proof (of Lemma 3.1). From (3.15) and (3.16) in the proof of Theorem 3.1,
we have

maxΩ̄ u1 ≤ C(1 +
α12

d1
) ≤ C(1 +

1
η2

), maxΩ̄ u2 ≤ C(1 +
α21

d2
) ≤ C(1 +

1
η2

),

for any solution (u1, u2) of (3.36), where C = C(ai, bi, ci), i = 1, 2. Choosing

C̄(η) := C(1 +
1
η2

),

we obtain the upper bound in the statement of Lemma 3.1.
To deduce a positive lower bound, we let ψ1 = u1(1 + r11u1 + r12u2), and

note that ψ1 satisfies

∆ψ1 + c(x)ψ1 = 0 in Ω,
∂ψ1

∂ν
= 0 on ∂Ω,

where
c(x) :=

f1(u(x))
d1(1 + r11u1(x) + r12u2(x))

.

Using the upper bound for u and the assumption on di, we have

||c||∞ ≤ 1
η
max0≤u1,u2≤C̄(η)|f1(u)|.

Thus by the Harnack type inequality in Theorem A5-5 of Chapter 6, there exists
a positive constant C1(η) such that

(3.72) minΩ ψ1 ≥ C1(η)maxΩ ψ1.
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From the definition of ψ1, we have

maxΩ̄ ψ1 ≥ (1 + r11maxΩ̄ u1)maxΩ̄ u1, and

minΩ̄ ψ1 ≤ (1 + r11minΩ̄ u1 + r12maxΩ̄ u2)minΩ̄ u1.

Thus from the (3.72) and the upper bound of u2, we obtain

(3.73) (1 + r11maxΩ̄ u1)maxΩ̄ u1 ≤ C2(η)(1 + r11minΩ̄ u1)minΩ̄ u1

for some positive constant C2(η). If r11 ≤ 1, then

(3.74) maxΩ̄ u1 ≤ C2(η)(1 + C̄(η))minΩ̄ u1.

In case r11 ≥ 1, then by (3.73) again we have

(3.75)
(maxΩ̄ u1)2 ≤ C2(η)( 1

r11
+minΩ̄ u1)minΩ̄ u1

≤ C2(η)(1 + C̄(η))minΩ̄ u1.

From (3.74) and (3.75), we find

(3.76) minΩ̄ u1 ≥ C̃(η)min {maxΩ̄ u1, 1}maxΩ̄ u1

for some positive constant C̃(η). Similarly, we show

(3.77) minΩ̄ u2 ≥ C̃(η)min {maxΩ̄ u2, 1}maxΩ̄ u2.

In view of (3.76) and (3.77), in order to establish Lemma 3.1, it suffices to
show

(3.78) maxΩ̄ ui ≥ C3(η), i = 1, 2

for some positive constant C3(η). Suppose (3.78) is not true for some constant
η0. Then there exist sequences {di,k}∞k=1, {rij,k}∞k=1 and {ui,k}∞k=1 with i, j = 1, 2
and

di,k ≥ η0, r12,k ≤ 1
η0
, r21,k ≤ 1

η0

such that either maxΩ̄ u1,k → 0 or maxΩ̄ u2,k → 0, where uk = (u1,k, u2,k)
satisfies

(3.79)




d1,k∆[(1 + r11,ku1,k + r12,ku2,k)u1,k] + u1,kf1(uk) = 0 in Ω,

d2,k∆[(1 + r21,ku1,k + r22,ku2,k)u2,k] + u2,kf2(uk) = 0 in Ω,

∂u1,k

∂ν = ∂u2,k

∂ν = 0 on ∂Ω, u1,k > 0, u2,k > 0 in Ω.
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Integrating the first equation of (3.79) in Ω, we find∫
Ω
u1,kf1(uk) dx = 0.

Since f1(0, 0) > 0, the above equation implies that we cannot have both
maxΩ̄ u1,k → 0 and maxΩ̄ u2,k → 0 simultaneously. We may thus without loss
of generality assume that maxΩ̄ u1,k → 0 and maxΩ̄ u2,k → ū2, where ū2 is a
positive constant. Thus, we obtain from (3.77),

(3.80) minΩ̄ u2,k ≥ C̃(η0)min{ ū2

2
, 1} ū2

2
> 0

for sufficiently large k.
We now consider the following two cases:

Case 1. {r22,k}∞k=1 is bounded. Define

(3.81) ψ2,k = u2,k(1 + r21,ku1,k + r22,ku2,k).

From the uniform upper bound for uk, we have ||ψ2,k||∞ ≤ C for all k ≥ 1. Since
ψ2,k satisfies

∆ψ2,k +
f2(uk)

d2,k(1 + r21,ku1,k + r22,ku2,k)
ψ2,k = 0 in Ω,

∂ψ2,k

∂ν
= 0 on ∂Ω,

we obtain by Lp estimates and Sobolev embedding that

||ψ2,k||C1,α(Ω̄) ≤ C||ψ2,k||W 2,p(Ω) ≤ C
for some α ∈ (0, 1). Choosing a subsequence if necessary, we may thus assume
that ψ2,k → ψ̂2 in C1(Ω̄), r22,k → r̂22 ∈ [0,+∞) and d2,k → d̂2 ∈ [η0,+∞].

We next show that u2,k converges uniformly to a positive constant. For this
purpose, we consider the following two situations:(a) r̂22 ∈ (0,∞), or (b) r̂22 = 0.

Consider situation (a), when r̂22 ∈ (0,∞). From definition (3.81), we obtain
by means of the quadratic formula and the fact that u1,k → 0 that

u2,k → û2 :=
−1 +

√
1 + 4r̂22ψ̂2

2r̂22
in C(Ω̄).

Thus ψ̂2 satisfies the following equation weakly

∆ψ̂2 +
f2(0, û2)

d̂2(1 + r̂22û2)
ψ̂2 = 0 in Ω,

∂ψ̂2

∂ν
= 0 on ∂Ω.

By standard elliptic regularity theory, we conclude that ψ̂2 ∈ C2(Ω̄), and is
a classical solution of the above problem. If d̂2 = +∞, we readily see that
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ψ̂2 ≡ constant, and consequently we have û2 ≡ constant. On the other hand, if
d̂2 ∈ [η0,∞), then û2 is a non-negative solution of

d̂2∆[(1 + r̂22û2)û2] + f2(0, û2)û2 = 0 in Ω,
∂û2

∂ν
= 0 on ∂Ω.

We can next use the arguments following equation (3.22) in the proof of Theorem
3.1 to show that û2 ≡ ū2, where ū2 is a non-negative constant, which must be
positive by (3.80).

For situation (b) r̂22 = 0, observe that

u2,k − ψ̂2 = −u2,k(r21,ku1,k + r22,ku2,k) + (ψ2,k − ψ̂2)→ 0.

We can thus follow the same arguments as in situation (a) above to show that
u2,k converges to a positive constant ū2.

Consequently, in Case 1 when {r22,k}∞k=1 is bounded, we have shown that
(u1,k, u2,k)→ (0, ū2) uniformly as k →∞. We can then use the same arguments
as in the proof of Theorem 3.1 to show that f(0, ū2) = 0. However, we have
ū2 > 0, which contradicts the assumption on the functions f(u1, u2).

Case 2. {r22,k}∞k=1 is unbounded. Define

(3.82) ψ̃2,k = u2,k(
1

r22,k
+
r21,k
r22,k

u1,k + u2,k).

By choosing subsequence if necessary, we may assume r22,k → ∞ as k → ∞.
Using arguments similar to that in Case 1, we deduce that by passing to a
subsequence, ψ̃2,k → ψ̃2 in C1(Ω̄), where ψ̃2 satisfies

∆ψ̃2 = 0 in Ω,
∂ψ̃2

∂ν
= 0 on ∂Ω,

which implies that ψ̃2 ≡ ψ̄2, a non-negative constant. From (3.82), we have

u2
2,k − ψ̄2 = (ψ̃2,k − ψ̃2)− u2,k(

1
r22,k

+
r21,k
r22,k

u1,k)→ 0.

It follows that u2,k → ū2 :=
√
ψ̄2, and we then obtain a contradiction as in

Case 1.
We have thus established inequality (3.78), and the proof of Lemma 3.1 is

complete. This also finish the proof of Theorem 3.5.

Recall that 0 = µ0 < µ1 < · · · < µk < · · · are the eigenvalues of the negative
Laplace operator in Ω under homogeneous Neumann boundary condition on ∂Ω.
Note that any of the two conditions b1/b2 > a1/a2 > c1/c2 or b1/b2 < a1/a2 <
c1/c2 implies that the equation f(u) = 0 has a unique root in the first open
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quadrant as described in the hypothesis in Theorem 3.5. Theorem 3.5 can be
rephrased more conveniently from a different viewpoint for application in the
following two corollaries. We note that there will be non-constant solution in
case (i) when the cross-diffusion pressure α12 is large, and in case (ii) when the
cross diffusion pressure α21 is large.

Corollary 3.6 (Non-Constant Solution in Weak Competition Case).
Consider problem (3.1) with b1/b2 > a1/a2 > c1/c2. Suppose that for some
k̃ ≥ 1, the eigenvalue µk̃ of the operator −∆ on Ω has odd multiplicity.

(i) If a1/a2 >
1
2 [(b1/b2) + (c1/c2)], then there exist positive constants K1 =

K1(ai, bi, ci) < K2 = K2(ai, bi, ci) and Λ1 = Λ1(di, ai, bi, ci, α11, α21, α22) such
that for any d1 > 0, α11 ≥ 0, α21 ≥ 0, the problem (3.1) has at least one non-
constant solution provided that α12 ≥ Λ1 and d2 + 2u∗2α22 ∈ (K1,K2).

(ii) If a2/a1 >
1
2 [(b2/b1) + (c2/c1)], then there exist positive constants K̂1 =

K̂1(ai, bi, ci) < K̂2 = K̂2(ai, bi, ci) and Λ̂1 = Λ̂1(di, ai, bi, ci, α11, α12, α22) such
that for any d2 > 0, α12 ≥ 0, α22 ≥ 0, the problem (3.1) has at least one non-
constant solution provided that α21 ≥ Λ̂1 and d1 + 2u∗1α11 ∈ (K̂1, K̂2).

Proof. As noted above, the hypothesis concerning the location of the root of
f(u) = 0 for Theorem 3.5 is satisfied. We now consider case (i). Observe that
here we are also assuming (3.50) stated for Theorem 3.5. Furthermore, the
assumption that µk̃ has odd multiplicity for some k̃ ≥ 1 implies that there exists
some k ≥ 1 such that

∑k
l=1 ml is odd. Hence in order to apply Theorem 3.5(i),

it suffices to have d2 satisfying d2 ∈ (d(k+1), d(k)). This condition is satisfied if

b2u
∗
1 − c2u∗2
µk+1

< d2 + 2u∗2α22 <
b2u

∗
1 − c2u∗2
µk

.

Thus we obtain the conclusion in part (i) by applying Theorem 3.5(i), and
choosing K1 = (b2u∗1 − c2u∗2)/µk+1 and K2 = (b2u∗1 − c2u∗2)/µk.

Part (ii) can be proved in the same way as part (i) by applying an analog of
Theorem 3.5(i), interchanging the role of the first and second equation of (3.1).

Corollary 3.7 (Non-Constant Solution in Strong Competition Case).
Consider problem (3.1) with b1/b2 < a1/a2 < c1/c2. Suppose that for some
k̃ ≥ 1, the eigenvalue µk̃ of the operator −∆ on Ω has odd multiplicity.

(i) If a1/a2 <
1
2 [(b1/b2) + (c1/c2)], then there exist positive constants K3 =

K3(ai, bi, ci) < K4 = K4(ai, bi, ci),K5 = K5(ai, bi, ci) and Λ2 = Λ2(di, ai, bi, ci,
α11, α21, α22) such that for any d1 ≥ K5, α11 ≥ 0, α21 ≥ 0, the problem (3.1)
has at least one non-constant solution provided that α12 ≥ Λ2 and d2 +2u∗2α22 ∈
(K3,K4).

(ii) If a2/a1 <
1
2 [(b2/b1) + (c2/c1)], then there exist positive constants K̂3 =

K̂3(ai, bi, ci) < K̂4 = K̂4(ai, bi, ci), K̂5 = K̂5(ai, bi, ci) and Λ̂2 = Λ̂2(di, ai, bi, ci,
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α11, α12, α22) such that for any d2 ≥ K̂5, α12 ≥ 0, α22 ≥ 0, the problem (3.1)
has at least one non-constant solution provided that α21 ≥ Λ̂2 and d1 +2u∗1α11 ∈
(K̂3, K̂4).

Proof. Part (i) is proved by applying Theorem 3.5(ii). Part (ii) is proved by
using an analog of Theorem 3.5(ii), interchanging the role of the first and second
equation in (3.1).

The study of cross-diffusion has been made rigorously for larger systems. For
example, Wang [226] considers the following 3-species problem of two preys with
one predator. The cross-diffusions are included in such a way that the predator
chases the prey and the prey runs away from the predator.

(3.83)




−(K11(u)u1x +K13(u)u3x)x = u1(1− u1 − cu2 − u3),

−(K22(u)u2x +K23(u)u3x)x = u2(a− bu1 − u2 − ku3), 0 < x < l,

−(−∑2
i=1K3i(u)uix +K33(u)u3x)x = qu3(u1 + ρku2 − r),

u1x = u2x = u3x = 0, x = 0, l.

(3.84)
Kii(u) = di + biui + ui

∑3
j=1 αijuj, i = 1, 2, 3,

K13(u) = β13u1u2, K23(u) = β23u2u1, K31(u) = β31u3u2, K32(u) = β32u3u1,

where di, bi, αij and βij , i, j = 1, 2, 3 are positive constants, u = (u1, u2, u3). The
parameters a, b, c, k, q, ρ and r are also positive constants. Here, ui, i = 1, 2 are
the concentrations of the two preys, and u3 is the concentration of the predator.
(We can interpret K12(u) = K21(u) ≡ 0). In this model, J1 = −K11(u)u1x −
K13(u)u3x, J2 = −K22(u)u2x−K23(u)u3x and J3 =

∑2
i=1K3i(u)uix−K33(u)u3x

indicate the population fluxes of u1, u2 and u3 respectively. The terms K11(u),
K22(u) and K33(u) represent the self-diffusion, and they are positive for u ≥ 0.
The terms Kij(u), i �= j represent cross-diffusion. The fact that −Ki3(u) ≤
0, i = 1, 2 in Ji means that the prey ui, i = 1, 2 is directed toward decreasing
population of predator u3. On the other hand, K3i(u) ≥ 0, i = 1, 2 in J3 means
that the predator u3 is directed toward increasing population of prey ui. That
is, we have the prey running away from the predator, and the predator chasing
the prey.

We assume that problem (3.83) has a unique positive constant solution u∗ =
(u∗1, u

∗
2, u

∗
3), and define constants kij = Kij(u∗), i, j = 1, 2, 3. (Note that this

assumption is valid if we assume, for example, the parameters in the right hand
side of the system (3.83) satisfy:

k < a <
1
c
< b, ck + bρk < 1 + ρk2,

ρk(a− k)
1− ck < r <

a− k
b− k
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as in biological studies by Kan-on [98] and Kan-on and Mimura [99], without
cross-diffusion.) From (3.84), we have kij ≥ 0. Assume bρk − 1 > 0, and set

b13 := q(bρk − 1)u∗2u∗3 > 0, a13 := (k31 − bk32)u∗2,

µ(k22) :=
√
a213+4k22k31b13−a13

2k22b31
> 0.

It is shown in Wang [226], by means of above methods in this section and
bifurcation techniques as in earlier chapters, that non-constant equilibrium can
exist under large enough cross-diffusion effect. More precisely, the following
theorem is proved.

Theorem 3.8. Assume that µ(k22) ∈ ((nπ/l)2, ((n+ 1)π/l)2) for some k22 > 0,
and n ≥ 1. If n is odd, then there exists a positive constant C such that problem
(3.83) has at least one positive non-constant solution provided that k13 > C.

Note the similarity between Theorem 3.8 and Theorem 3.5. Many more
general results are found in [226]. The details are too lengthy to be presented
here. More developments on the problem (3.1) when cross-diffusion pressures
are extremely large can be found in Lou and Ni [165]. Other recent study on
cross-diffusion with more general coupling terms and boundary conditions using
index theory are found in Ryu and Ahn [196].

4.4 Degenerate and Density-Dependent Diffusions,
Non-Extinction in Highly Spatially Heterogenous

Environments

Part A: Weak Upper and Lower Solutions for Degenerate or Non-
Degenerate Elliptic Systems.

We first consider positive solutions for the following degenerate elliptic sys-
tems with homogeneous Dirichlet boundary conditions.

(4.1) ∆ψ(wi) + fi(x,w1, w2) = 0 in Ω, wi = 0 on ∂Ω, i = 1, 2.

Here, the function ψ(s) satisfies the conditions ψ ∈ C1[0,∞), ψ(0) = 0 and
ψ′(s) > 0 for s > 0. The equations become degenerate in the sense that we may
also allow ψ′(0) = 0. Problems of this nature are of interest in reaction-diffusion
processes in biology and chemistry. For example, the case for ψ(u) = um,m > 1
or m ∈ (0, 1) for single parabolic equations (i.e. ut = ∆um + f(x, u)) has been
studied for porous medium analysis and population dynamics (cf. Peletier [185]
and Pozio and Tesei [186]). As t → ∞ these solutions may tend to a solution
of the corresponding elliptic scalar equation. They can also lead to the study
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of free boundary as in Diaz and Hernandez [47]. In various other problems (see
e.g. early works in Aronson, Crandall and Peletier [5], DeMottoni, Schiaffino
and Tesei [46], Schatzman [204] and Pozio and Tesei [187]), the function um

is replaced with ψ(u) satisfying conditions described above. For more general
applications, we will allow the functions fi in (4.1) to be discontinuous in x, and
not necessarily Lipschitz in wi.

We first discuss some existence and uniqueness theorems for the scalar equa-
tion:

(4.2) ∆ψ(w) + f(x,w) = 0 in Ω, w = 0 on ∂Ω.

Monotone iteration is used to obtain a sequence which converges in W 2,p(Ω) ∩
W 1,p

0 (Ω) to a maximal solution. We then deduce an existence theorem for sys-
tems of the form (4.1). We use Schauder’s fixed point theorem to find a positive
solution in W 2,p(Ω) ∩W 1,p

0 (Ω) for the system between appropriate weak upper
and lower solutions. We will apply the results to simple ecological prey-predator
models. Comparing the results here with those for nondegenerate case (m=1)
in earlier chapters, we find here a much less stringent sufficient condition for
coexistence. For example, we do not assume that the intrinsic growth rates of
the species are larger than the principal eigenvalue of the domain. We allow
the intrinsic growth rate a(x) to be discontinuous and to have negative values
somewhere. Again, note that when ψ(u) = u, the results in this section include
the case of nondegenerate diffusion. In part A of this section, we essentially
follow the results in Leung and Fan [135].

More precisely, in this section Ω is a bounded domain in RN (N ≥ 2) with
boundary ∂Ω ∈ C2. The functions ψ : [0,∞) → [0,∞), f : Ω × [0,∞)→ R1 are
assumed to satisfy some of the following hypotheses:

[H1] ψ ∈ C1[0,∞), ψ(0) = 0 and ψ′(s) > 0 for s > 0.

[H2] There is a bounded interval [0, b] such that

(i) f ∈ L∞(Ω× [0, b]);
(ii) for any fixed x ∈ Ω a.e. the function f(x, y) is continuous in y for all

y ∈ [0, b];
(iii) there is a constant M > 0 such that f(x, y2) − f(x, y1) ≥ −M(ψ(y2)−

ψ(y1)) for x ∈ Ω a.e., 0 ≤ y1 ≤ y2 ≤ b.
[H3] For each fixed x ∈ Ω a.e, the function f(x, y)/ψ(y) is a strictly monotonic
increasing or decreasing function in y for y ∈ [0, b].

Definition 4.1. A function w ∈ C(Ω̄) is called a non-negative solution of (4.2)
if w(x) ≥ 0 in Ω and u = ψ(w) ∈W 2,p(Ω) ∩W 1,p

0 (Ω), (p > N), satisfies

(4.3) ∆u+ f(x, ψ−1(u)) = 0 a.e. in Ω, u = 0 on ∂Ω,
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where the derivatives of u are taken in the weak sense. A function w is called a
positive solution of (4.2) if, in addition w(x) > 0 in Ω.

We first prove an existence result for a non-negative solution as defined above
between the “upper” and “lower” solutions in the sense of (4.4) below.

Lemma 4.1. Suppose that [H1], [H2,i] to [H2,iii] are satisfied. Assume that
there are functions w, w̄ in C(Ω̄) with 0 ≤ w ≤ w̄ ≤ b in Ω̄ and that ψ(w), ψ(w̄)
are in W 1,p(Ω), (p > N), satisfying the inequalities

(4.4)
− ∫Ω∇ψ(w)∇φdx+

∫
Ω f(x,w)φdx ≥ 0, w = 0 on ∂Ω,

− ∫Ω∇ψ(w̄)∇φdx+
∫
Ω f(x, w̄)φdx ≤ 0

for all φ ∈ C1
0 (Ω), φ ≥ 0. Then there exists at least one non-negative solution w

of (4.2) satisfying w ≤ w ≤ w̄ in Ω̄.

Proof. For any given u ∈ C(Ω̄) with 0 ≤ u ≤ ψ(b), by hypothesis [H1], we
have 0 ≤ ψ−1(u) ≤ b, ψ−1(u) ∈ C(Ω̄); and f(x, ψ−1(u)) ∈ L∞(Ω) by hypothesis
[H2,i]. Since Ω is a bounded domain, we obtain L∞(Ω) ⊂ Lp(Ω) for all 1 ≤ p <
∞, and Mu+ f(x, ψ−1(u)) ∈ Lp(Ω). Here M is given in hypothesis [H2,iii]. It
follows from linear elliptic Lp-theory that the problem

(4.5) ∆v −Mv +Mu+ f(x, ψ−1(u)) = 0 a.e. in Ω, v = 0 on ∂Ω

has a unique solution v, say S(u), in W 2,p(Ω) ∩W 1,p
0 (Ω) ⊂ C(Ω̄) satisfying

(4.6) ||S(u)||2,p ≤ C̄||Mu+ f(x, ψ−1(u))||p,

where C̄ is a positive constant which depends only on Ω and p.
Letting u = ψ(w), ū = ψ(w̄), we have by hypothesis [H1] that 0 ≤ u ≤

ū ≤ ψ(b) in Ω̄, and u, ū ∈ C(Ω̄). Hence, as above, we obtain S(u), S(ū) in
W 2,p(Ω) ∩ W 1,p

0 (Ω) as the unique solution of (4.5) corresponding to u and ū
respectively

We now construct a monotone sequence {ui} which will converge in W 2,p(Ω)
to a solution of (4.3). First, define u0 = ū in Ω̄. From the arguments above, we
can define ui+1, i = 1, 2, . . . iteratively as the solution of

(4.7) ∆v −Mv +Mui + f(x, ψ−1(ui)) = 0 a.e. in Ω, v = 0 on ∂Ω

provided that each successive ui ≥ 0 in Ω so that f(x, ψ−1(ui)) is defined. We
then have ui+1 = S(ui) ∈W 2,p(Ω) ∩W 1,p

0 (Ω) ⊂ C(Ω̄) for i = 1, 2, . . . .
We first show that these ui are properly defined and that

(4.8) 0 ≤ u ≤ · · · ≤ u2 ≤ u1 ≤ u0 = ū in Ω̄.
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Since u0 ≥ 0, equation (4.7) is meaningful for i = 0. Multiplying (4.7) by
φ ∈ C1

0 (Ω) and integrating on Ω, we obtain for i = 0 that

(4.9)
∫

Ω
(∆ui+1 −Mui+1)φdx+

∫
Ω

[Mui + f(x, ψ−1(ui))]φdx = 0

for all φ ∈ C1
0 (Ω). Since∫

Ω
∆ui+1φdx = −

∫
Ω
∇ui+1∇φdx for all φ ∈ C1

0 (Ω),

(4.9) yields

(4.10) −
∫

Ω
∇ui+1∇φdx+

∫
Ω

[−Mui+1 +Mui + f(x, ψ−1(ui))]φdx = 0

for all φ ∈ C1
0 (Ω). From the definition of u0 = ū = ψ(w̄) and the second

hypothesis in (4.4), we have

(4.11) −
∫

Ω
∇u0∇φdx+

∫
Ω
f(x, ψ−1(u0))φdx ≤ 0

for all φ ∈ C1
0 (Ω) with φ ≥ 0. Setting i = 0 in (4.10) and subtracting (4.11), we

obtain

(4.12) −
∫

Ω
∇(u1 − u0)∇φdx−M

∫
Ω

(u1 − u0)φdx ≥ 0

for all φ ∈ C1
0 (Ω) with φ ≥ 0. It follows from the weak maximum principle for

weak solutions (see e.g [71], p. 179) that

supΩ (u1 − u0) ≤ sup∂Ω (u1 − u0)+ = 0,

hence, u1 ≤ u0 = ū in Ω. Similarly, using (4.10) with i = 0 and the first
hypothesis in (4.4), we deduce that u ≤ u1. We next inductively assume that

(4.13) u ≤ uj ≤ uj−1 ≤ ū in Ω̄

for j ≥ 1. Thus equations (4.7), (4.9) and (4.10) are meaningful for i = j and
j − 1. Letting i = j and j − 1 in (4.7), we subtract to obtain

(4.14)




∆(uj+1 − uj)−M(uj+1 − uj) +M(uj − uj−1) + f(x, ψ−1(uj))

−f(x, ψ−1(uj−1)) = 0 a.e. in Ω,

uj+1 − uj = 0 on ∂Ω.
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Since 0 ≤ ψ−1(uj) ≤ ψ−1(uj−1) ≤ b, we obtain from [H2,iii] that

M(uj−1 − uj) + f(x, ψ−1(uj−1))− f(x, ψ−1(uj)) ≥ 0 a.e. in Ω,

and (4.14) yields

(4.15) ∆(uj+1 − uj)−M(uj+1 − uj) ≥ 0 a.e. in Ω, uj+1 − uj = 0 on ∂Ω.

It follows from maximum principle (see [71], p. 225 or Theorem A3-1 in Chapter
6) that uj+1 ≤ uj in Ω̄. Analogously, using (4.10) for i = j and the first
hypothesis of (4.4) as before, we obtain by the maximum principle that u ≤ uj+1

in Ω̄. By induction, we have

u ≤ · · · ≤ ui+1 ≤ ui ≤ · · · ≤ u2 ≤ u1 ≤ u0 in Ω̄.

We can therefore define by pointwise convergence in Ω̄

u(x) = lim
i→∞

ui(x) in Ω̄.

By the Lebesgue Convergence Theorem, {Mui+f(x, ψ−1(ui))}must be a Cauchy
sequence in Lp(Ω). From the equations satisfied by ui+1 − uj+1, we obtain the
estimate as in (4.6) that

(4.16) ||ui+1 − uj+1||2,p ≤ C̄||M(uj − ui) + f(x, ψ−1(uj))− f(x, ψ−1(ui))||p.
Consequently, {ui} is a Cauchy sequence in W 2,p(Ω), and ui → u in W 2.p(Ω) as
i→∞. Passing to the limit in (4.7), we have

∆u+ f(x, ψ−1(u)) = 0 a.e. in Ω, u = 0 on ∂Ω,

where the derivatives are taken in the weak sense and u ∈ W 2,p(Ω) (Note that
v = ui+1 in (4.7)). Furthermore, since the ui are in W 1,p

0 (Ω), which is a closed
subspace of W 1,p(Ω), and ui → u in W 1,p(Ω), we must also have u ∈ W 1,p

0 (Ω).
Letting w = ψ−1(u), we obtain w as a non-negative solution of (4.2) with w ≤
w ≤ w̄.

With the addition of hypothesis [H3] and the assumption that the lower
solution w is positive in Ω we now deduce a uniqueness result.

Lemma 4.2. Assume all the hypotheses of Lemma 4.1. In addition, suppose
that [H3] is valid and that w > 0 in Ω. Then there exists a unique positive
solution w∗ of (4.2) with the property:

0 < w ≤ w∗ ≤ w̄ in Ω.

Proof. Let w be the solution of (4.2) obtained from the monotonic sequence
in Lemma 4.1. Now w > 0 in Ω, since w ≥ w > 0 in Ω. Let z be any positive
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solution of (4.2) with w ≤ z ≤ w̄ in Ω. Then u = ψ(w), v = ψ(z) are two positive
solutions of (4.3) in W 2,p(Ω) ∩W 1,p

0 (Ω) with 0 < u ≤ u ≤ ū, 0 < u ≤ v ≤ ū in
Ω. By applying the same argument as that used in the proof of Lemma 4.1, we
obtain u ≤ v ≤ ui ≤ ū in Ω for each i = 0, . . . . Hence, we have the inequality

(4.17) 0 ≤ u ≤ v ≤ u ≤ ū in Ω.

It remains to show that v = u in Ω̄. Since both u, v are in W 1,p
0 (Ω), there are two

sequences {un}, {vn} in C∞
0 (Ω) which converge to u, v, respectively, in W 1,p(Ω).

Since u, v are solutions of (4.3) in W 2,p(Ω), and {un}, {vn} have compact support
in Ω, we use the definition of weak derivative to obtain

(4.18)

∫
Ω u∆vn dx+

∫
Ω f(x, ψ−1(u))vn dx = 0,

∫
Ω v∆un dx+

∫
Ω f(x, ψ−1(v))un dx = 0

for n = 1, 2, . . . . Subtracting the two previous equations, we obtain

(4.19)
∫

Ω
[v∆un − u∆vn] dx =

∫
Ω

[f(x, ψ−1(u))vn − f(x, ψ−1(v))un] dx.

It follows from the definition of the weak derivative and u ∈ W 1,p(Ω), un, vn ∈
C∞

0 (Ω) that we have ∫
Ω u∆vn dx = − ∫Ω∇u∇vn dx,∫
Ω v∆un dx = − ∫Ω∇v∇un dx.

Hence, the left hand side of (4.19) becomes

(4.20)

∫
Ω[v∆un − u∆vn] dx =

∫
Ω[∇u∇vn −∇v∇un] dx

=
∫
Ω∇u(∇vn −∇v) dx− ∫Ω∇v(∇un −∇u) dx.

From the Schwarz inequality, we have∫
Ω
|∇u(∇vn −∇v)| dx ≤ ||∇u||L2(Ω)||∇(vn − v)||L2(Ω).

Since vn → v in W 1,p(Ω), p > N ≥ 2, it follows that∫
Ω
∇u(∇vn −∇v) dx→ 0, as n→∞.

Similarly, one also has∫
Ω
∇v(∇un −∇u) dx→ 0, as n→∞.
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Consequently, it follows from (4.20) that

(4.21)
∫

Ω
[v∆un − u∆vn] dx→ 0, as n→∞.

Equation (4.21) and (4.19) lead to the property that

(4.22)
∫

Ω
[f(x, ψ−1(u))vn − f(x, ψ−1(v))un] dx→ 0, as n→∞.

On the other hand, from Sobolev’s Imbedding Theorem, un and vn are uniformly
bounded in Ω̄, so the Dominated Convergence Theorem leads to
(4.23)∫

Ω
[f(x, ψ−1(u))vn−f(x, ψ−1(v))un] dx→

∫
Ω

[f(x, ψ−1(u))v−f(x, ψ−1(v))u] dx,

as n→∞. From (4.22) and (4.23), we deduce that

(4.24)
∫

Ω
[f(x, ψ−1(u))v − f(x, ψ−1(v))u] dx = 0.

Suppose that v is not identically equal to u in Ω̄. The set

Ω1 := {x ∈ Ω| v(x) < u(x)}

then has measure greater than zero. From assumption [H3], we have

(4.25)
f(x, ψ−1(u))v − f(x, ψ−1(v))u

= uv[f(x,ψ−1(u))
u − f(x,ψ−1(v))

v ] > 0 (or < 0) a.e. in Ω1

(recall that v(x) ≥ ψ(w(x)) > 0 for all x in Ω). This lead to

(4.26)
∫

Ω
[f(x, ψ−1(u))v − f(x, ψ−1(v))u] dx > 0 (or < 0),

which contradicts (4.24), since

(4.27)
0 =

∫
Ω[f(x, ψ−1(u))v − f(x, ψ−1(v))u] dx

=
∫
Ω1

[f(x, ψ−1(u))v − f(x, ψ−1(v))u] dx �= 0.

This completes the proof of the Lemma.

Remark 4.1. As mentioned above, Definition 4.1, Lemmas 4.1 and 4.2 apply
also for the usual non-degenerate case ψ(u) = u.
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From the above remark, we can apply Lemmas 4.1 and 4.2 to the problem

(4.28) ∆w + w(a(x) − bw) = 0 a.e. in Ω, w = 0 on ∂Ω.

Here we will not make the strong assumption that the growth rate satisfies
a(x) > λ1 for all x ∈ Ω, where λ1 is the principal eigenvalue for the operator
−∆ on the domain Ω under homogeneous Dirichlet boundary condition. In a
highly spatially heterogeneous habitat in ecological problems, a(x) is relatively
large in part of Ω, and may be small or even negative in other parts of Ω.
Furthermore, it may be discontinuous. This motivates the following example.

Example 4.1 (Highly Spatially Heterogeneous Environment). Let Ωs

be a subdomain of Ω, with boundary ∂Ωs ∈ C2; and let λs be the principal
eigenvalue for Ωs, i.e. the first eigenvalue of ∆u+ λu = 0 in Ωs, u = 0 on ∂Ωs.
Consider (4.28), where b is a positive constant, a(x) ∈ L∞(Ω) and

(4.29) a(x) =

{
a1(x) in Ωs,

a2(x) in Ω\Ωs,

with

(4.30) a1(x) > λs, a.e. for x ∈ Ωs.

Then the Dirichlet problem (4.28) has one and only one non-negative nontrivial
solution w (in the sense of Definition 4.1 with ψ(w) = w) satisfying 0 ≤ w ≤ ā/b.
Here ā := ess supx∈Ω a(x). Moreover, w > 0 in Ω. (Note that a(x) can possibly
have negative values somewhere in Ω.)

(Proof of assertion of Example 4.1.) Let ψ(s) = s for s ≥ 0 and f(x,w) =
w(a(x) − bw). One readily verifies that [H1], [H2, i −H2, iii] are satisfied. We
will apply Lemma 4.1 to prove the existence of solution. Let w̄,w be defined as

(4.31) w̄ :=
ā

b
in Ω̄, w :=

{
δθ(x) x ∈ Ωs,

0 x ∈ Ω̄\Ωs;

where θ(x) is a positive principal eigenfunction associated with the principal
eigenvalue λs of the domain Ωs, and δ > 0 is to be determined. For δ > 0
sufficiently small, we clearly have 0 ≤ w ≤ w̄ in Ω. The constant function w̄ is
in W 1,p(Ω), and we now verify that w ∈ W 1,p(Ω). By the definition of w, we
have, for |α| = 1, φ ∈ C1

0 (Ω),

(4.32) −
∫

Ω
wDαφdx = −

∫
Ωs

δθ(x)Dαφdx.

Integrating by parts, we obtain

(4.33) −
∫

Ω
wDαφdx =

∫
Ωs

δDαθ(x)φdx,
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since θ(x) ≡ 0 on ∂Ωs. Hence the α-th weak derivative of w is

(4.34) Dαw(x) =

{
δDαθ(x), x ∈ Ωs,

0, x ∈ Ω̄\Ωs.

Since Dαw ∈ Lp(Ω), we obtain w ∈ W 1,p(Ω). To see whether the second in-
equality in (4.4) holds, we calculate

(4.35) −
∫

Ω
∇w̄∇φdx+

∫
Ω
w̄(a(x)− bw̄)φdx =

∫
Ω

ā

b
(a(x) − b ā

b
)φdx ≤ 0

for all φ ∈ C1
0 (Ω), φ ≥ 0. To verify the first inequality in (4.4), one has

(4.36)

− ∫Ω∇w∇φdx+
∫
Ω w(a(x)− bw)φdx

= − ∫Ωs δ∇θ∇φdx+
∫
Ωs
δθ(x)(a1 − bδθ(x))φdx

=
∫
Ωs
δ∆θ φ dx− ∫∂Ωs

δ ∂θ∂νφds +
∫
Ωs
δθ(x)(a1 − bδθ(x))φdx

=
∫
Ωs

[−λs + a1 − bδθ(x)]δθφ dx− ∫∂Ωs
δ ∂θ∂νφds

which is positive for δ > 0 sufficiently small, by hypothesis (4.30) and the fact
that ∂θ/∂ν ≤ 0 on ∂Ωs. Applying Lemma 4.1, we conclude that (4.28) has a
non-negative solution w in W 2,p(Ω)∩W 1,p

0 (Ω) with 0 ≤ w ≤ ā/b in Ω and w > 0
in Ωs.

To prove that w > 0 in Ω, let u(t, x) = ectw(x) for (t, x) ∈ [0,+∞) × Ω̄,
where c is a positive constant such that c ≥ ess supx∈Ω(bw(x) − a(x)). Thus,
since w satisfies (4.28) a.e., we also have ∆u + u(a(x) − bw(x)) = 0 a.e. in
[0,+∞)× Ω; hence

(4.37)
ut = cu = cu+ ∆u+ u(a(x) − bw(x))

= ∆u+ u(c+ a(x)− bw(x)) ≥ ∆u a.e. in (0,+∞)× Ω,

by the choice of c. Thus u is an upper solution (in the weak sense as described
in Definition A5-1 for Theorem A5-6 in Chapter 6) to the problem

(4.38)




vt = ∆v in (0,+∞) ×Ω,

v = 0 on (0,+∞) × ∂Ω,

v(0, x) = w(x) in Ω.

By means of semigroup and Schauder’s theory, we know that problem (4.38)
has a classical solution. Thus, if v is the classical solution of (4.38), we have
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u(t, x) ≥ v(t, x) > 0 in (0,+∞) × Ω (the fact that v(x, t) > 0 in (0,+∞) × Ω
follows from the strong maximum principle). Thus w(x) > 0 in Ω, by the
definition of u. (Here, we have used the comparison Theorem A5-6 for upper
solutions in the weak sense for problem (5.3), with f ≡ 0 and η(u) = u in
Chapter 6.)

Finally, we prove that such a w is unique. Let w∗ be the solution of (4.28)
obtained from the monotonic convergence sequence as in Lemma 4.1, using w0 =
ā/b as the first iterate and defining wj+1 = S(wj), (recall ψ(s) = s). Using the
fact that w ≤ w0; we can prove that w ≤ wj in Ω by using the maximum
principle as in (4.15) with uj+1 and uj respectively replaced by w and wj. This
leads to the fact that 0 < w ≤ w∗ in Ω. Let z be any non-negative (nontrivial)
solution of (4.28) with z ≤ ā/b in Ω. As above, we have z ≤ w∗ in Ω. Let
f(x,w) = w(a(x)− bw). We follow the proof of Lemma 4.2, with the role of u, v
respectively replaced by w∗, z until (4.24). Then (4.24) implies that

(4.39)
0 =

∫
Ω[f(x,w∗)z − f(x, z)w∗] dx =

∫
D1

[f(x,w∗)z − f(x, z)w∗] dx

=
∫
D2

[f(x,w∗)z − f(x, z)w∗] dx,

where D1 = {x ∈ Ω | z(x) < w∗(x)} and D2 = {x ∈ Ω | 0 < z(x) < w∗(x)}. The
last equality follows from the fact that f(x, 0) = 0 for x a.e. in Ω. However,

(4.40) f(x,w∗)z − f(x, z)w∗ < 0 in D2.

We therefore conclude that w∗ = z in the set D = {x ∈ Ω | 0 < z(x)}. We
observe that the set D is open in Ω. Moreover, the set D is also closed in Ω for
the following reason: Let xn ∈ D,xn → x ∈ Ω. Then

(4.41) z(x) = lim
n→∞ z(xn) = lim

n→∞w∗(xn) = w∗(x);

however, w∗(x) > 0 in Ω, therefore z(x) > 0, and x ∈ D. Consequently, we must
have D = Ω. In D, we have concluded that w∗ = z. Thus every non-negative
nontrivial solution bounded above by ā/b must be identically equal to the same
w∗ in Ω. This completes the proof for the assertions of the example.

So far in Example 4.1, we have assumed Ω to be connected. However, if Ω is
not connected, we do not have φ > 0 in Ω but rather φ ≥ 0 and φ not identically
zero in Ω. Thus we have the following conclusion.

Theorem 4.1. In Example 4.1, suppose that Ω is not connected and that Ωs is
connected. Assume that a(x) ∈ L∞(Ω), and that hypotheses (4.29) and (4.30)
hold. Then the Dirichlet problem (4.28) has at least one non-negative solution
w (in the sense of Definition 4.1 with ψ(w) = w) satisfying 0 ≤ w ≤ ā/b in
Ω and w > 0 in the component of Ω which contains Ωs. Furthermore, if there
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is a positive solution v of (4.28), with 0 < v ≤ ā/b in Ω, then it is the unique
non-negative (nontrivial) solution of (4.28) satisfying 0 < w ≤ ā/b in Ω.

The proof of the part of the above theorem concerning uniqueness follows
the method of proving Lemma 4.2.

Remark 4.2. If the function a(x) is in Cα(Ω), 0 < α < 1, and we have
a(x) < λ1 in Ω, then we know from earlier chapters that the only non-negative
solution of (4.28) is the trivial solution. (Here, λ1 is the principal eigenvalue
of the operator −∆ on the domain Ω). More general results for the degenerate
case corresponding to (4.28) with ∆w replaced by ∆ψ(w) can be found in e.g.
[187].

With the help of the Lemmas 4.1 and 4.2 above concerning scalar equations,
we are now ready to study the existence of positive solutions for elliptic systems
of the form:

(4.42)




∆ψ(w1) + f1(x,w1, w2) = 0 a.e. in Ω,

∆ψ(w2) + f2(x,w1, w2) = 0 a.e. in Ω,

w1 = w2 = 0 on ∂Ω,

where the derivatives are taken in the weak sense; The functions ψ : [0,∞) →
[0,∞), fi : Ω × [0,∞) × [0,∞) → R1 are assumed to satisfy the following hy-
potheses:

[H̃1] ψ ∈ C1[0,∞), ψ(0) = 0 and ψ′(s) > 0 for s > 0.

[H̃2] There are two positive constants b1, b2 such that

(i) fi ∈ L∞(Ω× [0, b1]× [0, b2]) for i = 1, 2;
(ii) for any fixed x ∈ Ω a.e. the functions fi(x, y1, y2) are continuous in

(y1, y2) for all (y1, y2) ∈ [0, b1]× [0, b2], i = 1, 2;
(iii) there is a constant M > 0 such that

f1(x, ξ, y2)− f1(x, η, y2) ≥ −M(ψ(ξ)) − ψ(η))
for x ∈ Ω a.e., y2 ∈ [0, b2], 0 ≤ η ≤ ξ ≤ b1;

f2(x, y1, ξ)− f2(x, y1, η) ≥ −M(ψ(ξ)) − ψ(η))
for x ∈ Ω a.e., y1 ∈ [0, b1], 0 ≤ η ≤ ξ ≤ b2.

Definition 4.2. A pair of continuous functions (w1, w2) in C(Ω̄) × C(Ω̄),
with wi(x) > 0 in Ω, i = 1, 2, is called a positive solution of (4.42) if ψ(wi) ∈
W 2,p(Ω) ∩W 1,p

0 (Ω) (p > N), and (4.42) holds.
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Theorem 4.2 (Main Existence Theorem). Assume hypotheses [H̃1] and
[H̃2]. Suppose that there are functions wi(x), w̄i(x) (i = 1, 2) in C(Ω̄) with
ψ(wi), ψ(w̄i) (i = 1, 2) in W 1,p(Ω) (p > N) satisfying the inequalities:
(4.43)

− ∫Ω∇ψ(w1)∇φdx+
∫
Ω f1(x,w1, w2)φdx ≥ 0 for w2 ≤ w2 ≤ w̄2,

− ∫Ω∇ψ(w̄1)∇φdx+
∫
Ω f1(x, w̄1, w2)φdx ≥ 0 for w2 ≤ w2 ≤ w̄2,

− ∫Ω∇ψ(w2)∇φdx+
∫
Ω f2(x,w1,w2)φdx ≥ 0 for w1 ≤ w1 ≤ w̄1,

− ∫Ω∇ψ(w̄2)∇φdx+
∫
Ω f2(x,w1, w̄2)φdx ≥ 0 for w1 ≤ w1 ≤ w̄1

for all φ ∈ C1
0 (Ω), φ ≥ 0. Here wi = wi(x) are assumed to be continuous in Ω̄,

and 0 ≤ wi ≤ wi ≤ w̄i ≤ bi in Ω̄, wi > 0 in Ω, and wi = 0 on ∂Ω. Then there
exists at least one positive solution (w∗

1, w
∗
2) of (4.42) satisfying wi ≤ w∗

i ≤ w̄i
in Ω̄.

Proof. Let ui = ψ(wi), ūi = ψ(w̄i),Xi = {u ∈ C(Ω̄),ui ≤ ui ≤ ūi in Ω̄}, i = 1, 2,
and let M be described as in [H̃2, iii]. The set X1 × X2 is a bounded closed
convex set in C(Ω̄)× C(Ω̄). We define the map T : X1 ×X2 → X1 ×X2 as

T (u1, u2) = (v1, v2) for (u1, u2) ∈ X1 ×X2,

where v1, v2 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) ⊂ C(Ω̄) (p > N), and (v1, v2) is uniquely

determined as the solution of the (decoupled) system

(4.44) ∆vi −Mvi + fi(x, ψ−1(u1), ψ−1(u2)) +Mui = 0 in Ω, i = 1, 2.

(Here the derivatives are meant in the weak sense.)
We first show that (v1, v2) ∈ X1×X2. From equation (4.44), and hypotheses

[H̃1], [H̃2, iii] and the second line in (4.43), we have, for any φ ∈ C1
0 (Ω), φ ≥ 0,

(4.45)
− ∫Ω∇(ū1 − v1)∇φdx−M ∫

Ω(ū1 − v1)φdx ≤ − ∫Ω[f1(x, ψ−1(ū1), ψ−1(u2))

−f1(x, ψ−1(u1), ψ−1(u2))]φdx−M ∫
Ω(ū1 − u1)φdx ≤ 0.

Hence the weak maximum principle implies that ū1 ≥ v1. Analogously, since
(4.46)
− ∫Ω∇(u1 − v1)∇φdx−M ∫

Ω(u1 − v1)φdx ≥ − ∫Ω[f1(x, ψ−1(u1), ψ−1(u2))

−f1(x, ψ−1(u1), ψ−1(u2))]φdx −M ∫
Ω(u1 − u1)φdx ≥ 0

for any φ ∈ C1
0 (Ω), φ ≥ 0, we deduce that u1 ≤ v1. We apply the same procedure

to prove that v2 ∈ X2.
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We next show that T is a continuous operator from X1 ×X2 into itself. Let
(u(n)

1 , u
(n)
2 ) be a sequence in X1 ×X2, which converges to (u1, u2) in X1 ×X2.

Define (v(n)
1 , v

(n)
2 ) = T (u(n)

1 , u
(n)
2 ) and (v1, v2) = T (u1, u2) as in (4.44). By the

classical Lp-estimate for the linear problem (4.44), we have

(4.47) ||v(n)
i ||2,p ≤ C̄i||fi(x, ψ−1(u(n)

1 ), ψ−1(u(n)
2 )) +Mu

(n)
i ||p

with ui ≤ v(n)
i ≤ ūi for n = 1, 2, . . . , where C̄i are positive constants. By [H̃2, i],

there exist constants Mi > 0 such that

(4.48) |fi(x, y1, y2)| ≤Mi for almost all (x, y1, y2) ∈ Ω× [0, b1]× [0, b2].

Since Ω is a bounded domain, (4.48) implies that {fi(x, ψ−1(u(n)
1 ), ψ−1(u(n)

2 )},
i = 1, 2, are bounded sequences in Lp(Ω). It follows from (4.47) that {v(n)

i }
is a bounded sequence in W 2,p(Ω) ∩W 1,p

0 (Ω)(Ω) (p > N). Applying Sobolev’s
Theorem, we can select a subsequence {v(nk)

i } from {v(n)
i } such that {v(nk)

i }
converges in C(Ω̄) to say, v∗i . To see whether {v(nk)

i } actually converges to v∗i in
W 2,p(Ω), we first deduce from [H̃2, ii] that

(4.49) fi(x, ψ−1(u(nk)
1 ), ψ−1(u(nk)

2 ))→ fi(x, ψ−1(u1), ψ−1(u2))

pointwise in Ω. Since Ω is bounded, the Lebesgue Convergence Theorem implies
that the convergence in (4.49) is true in the Lp(Ω) norm (N < p < ∞). The
estimate (4.47) hence implies that {v(nk)} converges to v∗i in W 2,p(Ω). By the
definition of {v(nk)}, we have, for k = 1, 2, . . . that
(4.50)
∆v(nk)

i −Mv
(nk)
i + fi(x, ψ−1(u(nk)

1 ), ψ−1(u(nk)
2 )) +Mu

(nk)
i = 0 in Ω, i = 1, 2.

Passing to the limit in (4.50), we obtain

(4.51) ∆v∗i −Mv∗i + fi(x, ψ−1(u1), ψ−1(u2)) +Mui = 0 in Ω, i = 1, 2.

From (4.44) and (4.51), we see that both (v∗1 , v∗2) and (v1, v2) are positive so-
lutions of the same linear problem. We conclude by uniqueness of the positive
solution of the linear problem (4.44) that (v∗1 , v

∗
2) = (v1, v2). Hence we have

{v(nk)
i } → vi in C(Ω̄). Finally, we claim that the full sequence {v(n)

i } → vi in
C(Ω̄) as i → ∞. Suppose not; then there exist a subsequence {v(nj )

i } and a
constant ε0 > 0 such that

(4.52) ||v(nj )
i − vi|| ≥ ε0 for j = 1, 2, . . . .

Here the norm is taken in C(Ω̄). Using the same argument as that used above,
by replacing {v(n)

i } with {v(nj)
i }, we can select a subsequence of {v(nj)

i } which
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converges to vi in C(Ω̄). This contradicts the inequality (4.52). Consequently,
{v(n)
i } converges to vi in C(Ω̄) as i→∞. This leads to the conclusion that T is

a continuous operator from X1 ×X2 into itself.
We finally show that T is a compact operator. From (4.47), T maps a

bounded set in X1 ×X2 into a bounded set in W 1,p
0 (Ω)×W 1,p

0 (Ω). By Sobolev
Compact Imbedding Theorem, the identity map from W 1,p

0 (Ω) to C(Ω̄) is com-
pact. Hence, we can view T as a composition of a bounded map form X1×X2 to
W 1,p

0 (Ω)×W 1,p
0 (Ω) followed by a compact identity map from W 1,p

0 (Ω)×W 1,p
0 (Ω)

to X1 ×X2; and we conclude that T is a compact operator form X1 ×X2 into
itself. Schauder’s fixed point theorem asserts that T has a fixed point (u∗1, u

∗
2)

in X1 ×X2. It follows from (4.44) that

(4.53)




∆u∗1 + f1(x, ψ−1(u∗1), ψ−1(u∗2)) = 0 a.e. in Ω,

∆u∗2 + f2(x, ψ−1(u∗1), ψ−1(u∗2)) = 0 a.e. in Ω,

u∗ = u∗2 = 0 on ∂Ω.

The fact that (u∗1, u
∗
2) is in X1 × X2 implies that (u∗1, u

∗
2) is in W 2.p(Ω) ∩

W 1,p
0 (Ω) and that u1 ≤ u∗i ≤ ūi is in Ω̄ for i = 1, 2. Consequently, (w∗

1 , w
∗
2) =

(ψ−1(u∗1), ψ−1(u∗2)) is a positive solution of (4.42) with wi ≤ w∗
i ≤ w̄i in Ω̄.

The following corollary is sometimes more readily applicable than Theorem
4.2.

Corollary 4.3. Assume hypothesis [H̃1] and [H̃2]. Suppose that there are func-
tions wi(x), w̄i(x) (i = 1, 2) in C(Ω̄) with ψ(wi), ψ(w̄i) (i = 1, 2) inW 2,p(Ω) (p >
N) satisfying the inequalities

(4.54)




∆ψ(w1) + fi(x,w1, w2) ≥ 0 a.e in Ω, for w2 ≤ w2 ≤ w̄2,

∆ψ(w̄1) + fi(x, w̄1, w2) ≤ 0 a.e in Ω, for w2 ≤ w2 ≤ w̄2,

∆ψ(w2) + f2(x,w1,w2) ≥ 0 a.e in Ω, for w1 ≤ w1 ≤ w̄1,

∆ψ(w̄2) + f2(x,w1, w̄2) ≤ 0 a.e in Ω, for w1 ≤ w1 ≤ w̄1,

where the derivatives are taken in the weak sense. Here wi = wi(x) are assumed
to be continuous in Ω̄, and 0 ≤ wi ≤ wi ≤ w̄i ≤ bi in Ω̄, wi > 0 in Ω and
wi = 0 on ∂Ω. Then there exists at least one positive solution (w∗

1, w
∗
2) of (4.42)

satisfying wi ≤ w∗
i ≤ w̄i in Ω̄.

Proof. This is an immediate result of Theorem 4.2 since (4.54) implies (4.43).
To see this, we let φ ∈ C1

0 (Ω), φ ≥ 0, and multiply the first equation in (4.54)
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by φ. We integrate over Ω to find

(4.55)
∫

Ω
∆ψ(w1)φdx +

∫
Ω
f1(x,w1, w2)φdx ≥ 0 for w2 ≤ w2 ≤ w̄2.

It follows from the definition of the weak derivative that

(4.56) −
∫

Ω
∇ψ(w1)∇φdx+

∫
Ω
f1(x,w1, w2)φdx ≥ 0 for w2 ≤ w2 ≤ w̄2.

Similarly, we can verify the rest of the inequalities in (4.43). By application of
Theorem 4.2, the proof is completed.

We now apply Corollary 4.3 to the following prey-predator ecological model
with degenerate density-dependent diffusion.

Example 4.2 (Degenerate Prey-Predator Model).

(4.57)




∆um + u(a(x)− buk − cv) = 0 in Ω,

∆vm + v(e(x) + fu− gvk) = 0 in Ω,

u = v = 0 on ∂Ω.

Here Ω is a bounded domain in RN , N ≥ 2 with boundary ∂Ω ∈ C2, and
m,k, b, c, f, g are positive constants with 1 + k > m > 1. We assume that
a(x), e(x) are two positive functions in L∞(Ω) with

(4.58) a := ess infx∈Ω a(x) > 0, and e(x) := ess infx∈Ω e(x) > 0.

For convenience, we denote ā := ess supx∈Ω a(x) > 0 and ē(x) := ess supx∈Ω e(x)
> 0. The following theorem gives sufficient conditions for the coexistence of two
species. If one compares them with the results in Chapter 2 concerning nonde-
generate case, we see that the conditions here are much more readily satisfied.
For example. there is no need for the intrinsic growth rates a(x) and e(x) to be
larger than the principal eigenvalue for the domain Ω.

Theorem 4.4. Assume 1 + k > m > 1, hypothesis (4.58) and

(4.59) g(
a
c

)k > ē+ f(
ā

b
)1/k.

Then there exists a positive solution (u, v) of (4.57) with u, v ∈ C(Ω̄) and u, v ∈
W 2,p(Ω) ∩W 1,p

0 (Ω) (p > N). Moreover, the solution satisfies

(4.60) 0 < u ≤ (
ā

b
)1/k, 0 < v ≤ [g−1(ē+ f(

ā

b
))1/k]1/k in Ω.
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Proof. We will apply Corollary 4.3. Let b1 = (ā/b)1/k, b2 = [g−1(ē +
f(ā/b))1/k]1/k. Define

ψ(s) = sm for s ≥ 0

and

f1(x, y1, y2) = y1(a(x)− byk1 − cy2),

f2(x, y1, y2) = y2(e(x) + fy1 − gyk2 ) for (x, y1, y2) ∈ Ω× [0,∞)× [0,∞).

Then one can immediately verify that [H̃1] and [H̃2, i − H̃2, ii] are satisfied.
Since

f1(x, ξ, y2)− f1(x, η, y2) = ξ(a(x)− bξk − cy2)− η(a(x)− bηk − cy2)

= (a(x)− cy2)(ξ − η)− b(ξk+1 − ηk+1)

≥ (a− cb2)(ξ − η)− b(ξk+1 − ηk+1)

for x ∈ Ω a.e., y2 ∈ [0, b2], 0 ≤ η ≤ ξ ≤ b1,

we can verify the first part of [H̃2, iii] by showing that there is a constant M > 0
such that

(4.61) (a− cb2)(ξ − η)− b(ξk+1 − ηk+1) > −M(ξm − ηm), 0 ≤ η ≤ ξ ≤ b1.

From hypothesis (4.59), we have a− cb2 > 0; thus (4.61) is satisfied if

(4.62) M(ξm − ηm) ≥ b(ξk+1 − ηk+1) for 0 ≤ η ≤ ξ ≤ b1.

However, (4.62) can be readily verified if we note that the function h(ξ) =
Mξm − bξk+1 is increasing in [0, b1] by choosing M > (b/m)(k + 1)bk+1−m

1 .
Similarly, we verify the second part of [H̃2, iii],

f2(x, y1, ξ)− f2(x, y1, η) = ξ(e(x) + fy1 − gξk)− η(e(x) + fy1 − gηk)

≥ e(ξ − η)− g(ξk+1 − ηk+1)

≥ −M(ψ(ξ)− ψ(η)),

for x ∈ Ω a.e., y1 ∈ [0, b1], 0 ≤ η ≤ ξ ≤ b2 if M > (g/m)(k + 1)bk+1−m
2 .

To construct upper and lower solutions (u, v) and (ū, v̄), we let λ1 > 0 be
the principal eigenvalue for the problem: ∆w+ λw = 0 in Ω, w = 0 on ∂Ω, and
φ(x) be a positive principal eigenfunction. We define u = v = (δφ)1/m in Ω for
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a small δ > 0 to be determined. Thus they satisfy u = v = 0 on ∂Ω, u = v >
0 in Ω. Also, we define ū = b1, v̄ = b2. We verify that

∆ūm + ū(a(x)− būk − cv) ≤ ū(a(x)− būk)

= (ā/b)1/k(a(x)− b(ā/b)) ≤ 0 a.e. in Ω, for all v ≤ v ≤ v̄,

∆v̄m + v̄(e(x) + fu− gv̄k) ≤ v̄(ē+ fū− gv̄k) = 0 for all u ≤ u ≤ ū.
Moreover, we have

∆um + u(a(x)− buk − cv) = −λ1(δφ) + (δφ)1/m(a(x)− b(δφ)k/m − cv)

≥ (δφ)1/m(−λ1(δφ)1−1/m + a− b(δφ)k/m − cv̄) ≥ 0

for all x a.e. in Ω and all v ≤ v ≤ v̄, when δ is sufficiently small, since a− cv̄ >
0 by assumption (4.59). Finally

∆vm + v(e(x) + fu− gvk) = −λ1(δφ) + (δφ)1/m(e(x) + fu− g(δφ)k/m)

≥ (δφ)1/m(−λ1(δφ)1−1/m + e + fu− g(δφ)k/m) ≥ 0

for x a.e. in Ω all u ≤ u ≤ ū, when δ is sufficiently small, since e+fu > 0. From
Corollary 4.3, the four inequalities above imply that there is a positive solution
(u, v) of ( 4.57) with u, v in C(Ω̄);um, vm ∈ W 2,p(Ω) ∩W 1,p

0 (Ω); and (4.60) is
satisfied.

Many other results are found recently for systems with degenerate diffusion.
Suppose that there are smoother density-dependence on diffusion, and smoother
dependence on reaction. More specifically, assume

[P1] For i = 1, 2, ϕi(s) is C2 in [0,∞), with ϕi(0) = 0, and ϕ′
i(s) > 0 for all

s > 0.

[P2] f̃(u, v), g̃(u, v) are in C1([0,∞)× [0,∞)), and f̃u < 0, g̃v < 0 for all (u, v) ∈
[0,∞) × [0,∞).

In Ryu and Ahn [196], classical positive solutions are found for the following
degenerate system with homogeneous Dirichlet boundary condition.

(4.63)




∆[ϕ1(u)u] + uf̃(u, v) = 0 in Ω,

∆[ϕ2(v)v] + vg̃(u, v) = 0 in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary.
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Theorem 4.5. Consider problem (4.63) under hypotheses [P1] and [P2].

(I) (Prey-Predator case) Suppose: (a) f̃v < 0 and g̃u > 0 for all (u, v) ∈
[0,∞) × [0,∞); (b) there exist positive constants C1, C2 such that f̃(C1, 0) ≤
0, g̃(C1, C2) ≤ 0; and (c) if min{f̃(0, C2), g̃(0, 0)} > 0, then problem (4.63) has
a positive coexistence solution.

(II) (Competing case) Suppose: (a) f̃v, g̃u < 0 for all (u, v) ∈ [0,∞)× [0,∞);
(b) there exist positive constants C3, C4 such that f̃(C3, 0) ≤ 0, g̃(0, C4) ≤ 0; and
(c) if min{f̃(0, C4), g̃(C3, 0)} > 0, then problem (4.63) has a positive coexistence
solution.

(III) (Cooperating case) Suppose: (a) f̃v, g̃u > 0 for all (u, v) ∈ [0,∞) ×
[0,∞); (b) there exist positive constants C5, C6 such that f̃(C5, C6) = g̃(C5, C6) =
0; and (c) if min{f̃(0, 0), g̃(0, 0)} > 0, then problem (4.63) has a positive coex-
istence solution.

Here, the solutions (u, v) are in C2(Ω̄)× C2(Ω̄), and u, v > 0 in Ω.

The proof of the above theorem is based on a combination of bifurcation
and index method, as explained in Chapter 1. We obtain classical solutions
because the system is smoother by assumption. The details of the proof are too
lengthy to be presented in this section. Note that, as in Theorem 4.4, we need
much smaller intrinsic growth rates for coexistence compared with problems
with nondegenerate diffusion.

Part B: Lower Bounds for Density-Dependent Diffusive Systems with
Regionally Large Growth Rates.

For the remaining part of this section, we consider some time dependent be-
havior of reaction-diffusive systems involving nonlinear density-dependent diffu-
sion. We only restrict discussion to the non-degenerate case. Moreover, in order
to avoid excessive technicalities, we assume more smoothness in the system than
the beginning part of this section. More precisely, we assume for each i = 1, ..., n

[C1] σi(0) > 0, σ′i(s) ≥ 0 in [0,∞), σ′′i (s) is continuous in (−∞,∞).

[C2] The functions hi : Rn → R have Hölder continuous partial derivatives up
to second order in compact sets.

[C3] ãi(x) ∈ C1+α(Ω̄) for some α ∈ (0, 1), and ãi(x) ≥ 0 in Ω̄.

We consider the following initial Dirichlet boundary value problem for i =
1, ..., n, (x, t) = (x1, ..., xN , t):
(4.64)


∂ui
∂t = div(σi(ui)∇ui) + ui[ãi(x) + hi(u1, ..., un)], (x, t) ∈ Ω× (0, T ], T > 0;

ui(x, 0) = φi(x), x ∈ Ω̄; ui(x, t) = Φi(x), (x, t) ∈ ∂Ω× [0, T ].
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Here, Ω is a bounded domain in RN with boundary ∂Ω belonging to C2+α for the
remaining part of this section. For simplicity, we limit ourselves to application
of system (4.64) to competing interacting species. That is, we assume for each
i, j = 1, ..., n

(4.65)




∂hi
∂uj

< 0 in {(u1, ..., un) |ui ≥ 0, i = 1, ..., n}, hi(0, , , , 0) = 0, and

sups≥0
∂hi
∂ui

(0, ..0, s, 0, ..0) := ri < 0,

where s ≥ 0 above occurs at the i-th component. The last assumption is the
usual one concerning the crowding effect of each species on its own growth rate.
In the earlier chapters, conditions for existence of positive coexistence steady-
states were usually of the nature that growth rates of the species are uniformly
larger than certain positive constants related to the first eigenvalue. Here, we
will assume that the intrinsic growth rate, ãk(x), of a particular k-th species
is locally high in a subdomain Ωs of Ω. We will obtain a criteria on ãk which
ensures that the population uk(x, t) will be bounded below by a positive constant
in compact subsets of Ωs for all t. Such criteria can thus be interpreted as a non-
extinction condition for the k-th species. Such condition is much more realistic,
because the growth rate does not have to be large on the entire domain. One
only needs regionally large growth rates to sustain survival. Before we formulate
such conditions, we first consider the existence problem of non-negative classical
solution in arbitrary finite interval [0, T ] for the initial-boundary value problem.
For convenience, we let ΩT = Ω× (0, T ).

Theorem 4.6 (Existence of Solution for Initial-Boundary Value
Problem). Consider problem (4.64) under smoothness conditions [C1]-[C3],
and reaction assumptions (4.65). Let the initial boundary functions φi,Φi sat-
isfy: φi(x) = Φi(x) for x ∈ ∂Ω, φi(x) ≥ 0 in Ω̄, φi has all third derivatives
continuous in Ω̄, and

(4.66) {div(σi(φi)∇φi) + φi[ãi(x) + hi(φ1(x), ..., φn(x)]}|x∈∂Ω = 0

for i = 1, ..., n. Then for any T > 0, in the class of functions in C2+α,1+α/2(Ω̄T ),
there exists a unique solution for the initial-boundary value problem (4.64).
Proof. Let di be positive numbers satisfying

di ≥ |ri|−1max{ã(x) |x ∈ Ω̄}, and 0 ≤ φi(x) ≤ di, x ∈ Ω̄

for i = 1, ..., n. Define ci(x, u1, ..., un), i = 1, ..., n, (x, u1, ..., un) ∈ Ω̄×Rn by

ci(x, u1, ..., un) = ki(ui)[ãi(x) + hi(k1(u1), ..., kn(un)],

where ki(s) =

{
s if |s| ≤ di
ρi(s) if |s| > di
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with ρi(s) a twice continuously differentiable function for |s| ≥ di, and |ρi(s)| ≤
2di, ρi(±di) = ±di, ρ′i(±di) = 1 and ρ′′(±di) = 0. Extend σ̃i(s) positively to
(−∞, 0) by letting σ̃i(s) = σi(s) for s ∈ [0,∞), with σ̃i(s) twice continuously
differentiable for s ∈ (−∞,∞), and σ̃i(s) ≥ (σi(0)/2) > 0 for s ∈ (−∞, 0), i =
1, ..., n.

We consider the initial boundary value problem:
(4.67)
∂zi
∂t (x, t) = σ̃i(ki(zi + φi(x))∆zi + σ̃′i(ki(zi + φi))

∑n
j=1[(zi)xj + 2(φi)xj ] · (zi)xj

+ σ̃i
′(ki(zi + φi))

∑n
j=1(φi)2xj + σ̃i(ki(zi + φi))∆φi + ci(x, z1 + φ1, ..., zn + φn)

for (x, t) ∈ Ω× (0, T ], i = 1, ..., n;

(4.68) zi(x, 0) = 0 in Ω̄ and zi(x, t) = 0 for (x, t) ∈ ∂Ω× [0, T ].

(Note that if we let ui(x, t) = zi(x, t) + φi(x) and if 0 ≤ ui(x, t) ≤ di, i = 1, ..., n
then ui(x, t) satisfies:

(4.69)
∂ui
∂t

= σi(ui)∆ui + σ′i(ui)|∇ui|2 + ui[ãi + hi(u1, ..., un)].

Moreover, ui satisfies the initial boundary conditions of (4.64)). Apply Theorem
7.1 on p. 596 of [113]. The positivity of σ̃i and the boundedness of the last three
terms of (4.67) imply that the condition (a) in Theorem 7.1 is satisfied. (6.3)
of (b) in [113] is satisfied by letting P (|p|, |u|) = C(1 + |p|)−2 for some large
constant C and ε(|u|) = 0. The smoothness of φi, σ̃i and ki ensure that (c) is
satisfied. Compatibility condition (4.66) gives (d). Consequently, Theorem 7.1
on p. 586 of [113] gives a unique solution z = (z1(x, t), ..., zn(x, t)) to (4.67),
(4.68) for (x, t) ∈ Ω̄× [0, T ] in the class C2+α,1+α/2(Ω̄T ).

We next show that 0 ≤ zi(x, t) + φi(x) ≤ di, i = 1, ..., n. Let α̂i(x, t) ≡ 0 and
β̂i(x, t) ≡ di, i = 1, ..., n. We clearly have in Ω× (0, T ],

(4.70) div(σi(α̂i)∇α̂i) + α̂i[ãi(x) + hi(β̂1, ..., β̂i−1, α̂i, β̂i+1, ..., β̂n)]− ∂α̂i
∂t
≥ 0,

for each i. Each function β̂i satisfies

(4.71)

div(σi(β̂i)∇β̂i) + β̂i[ãi(x) + hi(α̂1, ..., α̂i−1, β̂i, α̂i+1, ..., α̂n)]− ∂β̂i
∂t

= di[ãi(x) + hi(0, ..., 0, di , 0, ..., 0)]

= di[ãi(x) +
∫ di
0

∂hi
∂si

(0, ..., 0, si, 0, ..., 0) dsi ]

≤ di[ãi(x) + ridi] ≤ di[ãi(x)−max{ãi(x)|x ∈ Ω̄}] ≤ 0
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in Ω× (0, T ]. For i = 1, .., n, (x, t) ∈ Ω̄× [0, T ], the function

ui(x, t) := zi(x, t) + φi(x)

satisfies (4.69) for x ∈ Ω, 0 < t ≤ t1 ≤ T as long as α̂i ≤ ui(x, t) ≤ β̂i for
(x, t) ∈ Ω̄ × [0, t1]. From (4.70) and (4.71), we obtain from a generalization
of the comparison Theorem 1.2-6 in [125] to density-dependent diffusion case,
that α̂i ≤ ui ≤ β̂i for all (x, t) ∈ Ω̄ × [0, T ], i = 1, ..., n. (The same arguments
for the generalization will be used in proving the next comparison Theorem 4.7
for a even more difficult case involving non-smooth lower solution. Note that
our present situation is simpler because α̂i ≡ 0, and less argument is needed to
justify uj ≥ α̂j .) The a-priori bound, α̂i ≤ ui ≤ β̂i in Ω̄ × [0, T ], consequently
implies that u(x, t) is the unique solution of the initial-boundary value problem
(4.64), in C2+α,1+α/2(Ω̄T ).

When the competing reaction relation (4.65) is replaced by prey-predator,
cooperating or the general food-pyramid condition, the existence Theorem 4.6
can be generalized and proved similarly by changing the upper solution to be
time-dependent. The procedure is similar to the case when diffusion does not
depend on density as described in Theorem 2.1-1 in [125] or [231].

As in Example 4.1 and Theorem 4.1 above, when the intrinsic growth rate
is highly heterogeneous, one is led to the use of non-smooth lower solution to
show the existence of positive solutions. We are thus motivated to prove the
following comparison Theorem, using nonsmooth lower bound for the smooth
time-dependent problem (4.64) as well.

Theorem 4.7 (Comparison). Let Ωs ⊆ Ω be a subdomain, ∂Ωs ∈ C2, with λs
as its principal eigenvalue for the operator −∆ on Ωs with Dirichlet boundary
condition, and θ(x) is a positive eigenfunction in Ωs. Let j be an integer, 1 ≤
j ≤ n;αi(x, t) ≡ 0 in ΩT if i �= j, 1 ≤ i ≤ n, and

αj(x, t) =

{
δθ(x) if (x, t) ∈ Ωs × [0, T ]
0 if (x, t) ∈ (Ω̄\Ωs)× [0, T ]

where δ > 0 is a constant. For i = 1, ..., n, let βi(x, t) be a non-negative function
in C2+α,1+α/2(Ω̄T ). Suppose that αi, βi satisfy:

αi(x, t) ≤ βi(x, t) for (x, t) ∈ Ω̄T ;

(4.72) div(σi(αi)∇αi) + αi[ãi(x) + hi(β1, ..., βi−1, αi, βi+1, ..., βn)]− ∂αi
∂t
≥ 0,

(4.73) div(σi(βi)∇βi) + βi[ãi(x) + hi(α1, ..., αi−1, βi, αi+1, ..., αn)]− ∂βi
∂t
≤ 0



4.4. DEGENERACY, EXTINCTION AND HETEROGENEITY 383

for (x, t) ∈ Ω × (0, T ], i = 1, ..., n, except for i = j in (4.72) valid only for
(x, t) ∈ (Ω\∂Ωs)×(0, T ]. (Here, we assume conditions [C1-C3] and (4.65) for the
equations). Let (u1, ..., un), ui ∈ C2+α,1+α/2(Ω̄T ), be a solution of the differential
equation in (4.64) with initial boundary conditions satisfying

(4.74)
αi(x, 0) ≤ ui(x, 0) ≤ βi(x, 0), x ∈ Ω̄,

αi(x, t) ≤ ui(x, t) ≤ βi(x, t), (x, t) ∈ ∂Ω× [0, T ]

for i = 1, ..., n. Then we have

(4.75) αi(x, 0) = αi(x, t) ≤ ui(x, t) ≤ βi(x, t)

for (x, t) ∈ Ω̄× [0, T ], i = 1, ..., n.

Proof. Since ui, αi and βi ∈ C2+α,1+α/2(Ω̄T ), there are constants K and M such
that |αi| ≤ K, |βi| ≤ K, |ui| ≤ K, |∆ui| ≤M, |∇ui|2 ≤M for all (x, t) ∈ Ω̄T , i =
1, ..., n. The assumption on hi, ãi and σi imply that there are constants R and B
so that for each i = 1, ..., n, we have |σ′i(s)| ≤ R, |σ′′i (s)| ≤ R for −2K ≤ s ≤ 2K,
and |ãi(x) + hi(s1, ..., sn)| ≤ B for x ∈ Ω̄,−2K ≤ s ≤ 2K, i = 1, ..., n.

Let 0 < ε < K[1+3(B+2MR+KLn)T ]−1, where (1/2)L is a bound for the
absolute values of all first partial derivatives of hi(s1, ..., sn), 0 ≤ si ≤ 2K, i =
1, ..., n. Define, for (x, t) ∈ Ω̄T , i = 1, ..., n,

(4.76)
u+
i (x, t) = ui(x, t) + ε[1 + 3(B + 2MR +KLn)t],

u−i (x, t) = ui(x, t)− ε[1 + 3(B + 2MR +KLn)t].

By hypothesis (4.74), we have

(4.77) αi(x, t) < u+
i (x, t) and u−i (x, t) < βi(x, t)

for x ∈ Ω̄, t = 0, i = 1, ..., n. Suppose one of these inequalities fails at some point
in Ω̄ × (0, τ1), where τ1 = min{T, 1/(3(B + 2MR + KLn))}; and (x1, t1) is a
point in Ω̄ × (0, τ1) with minimal t1 where (4.77) fails. At (x1, t1), αi = u+

i or
u−i = βi for some i. Assume the former is the case; a similar proof holds for the
latter case.

Suppose further that at (x1, t1), αj = u+
j (a similar proof will work if αi = u+

i

at (x1, t1) for i �= j), we consider separately the situations for x1 ∈ (Ω\Ωs) or
x1 ∈ Ωs. If x1 ∈ Ω\Ωs, we have u+

j (x, t) > 0 for t < t1, x ∈ Ω̄ and u+
j (x1, t1) = 0.

Observe that x1 �∈ ∂Ω because u+
j (x, t1) > uj(x, t1) ≥ 0 for x ∈ ∂Ω, by (4.74).

However, for (x, t) ∈ Ω× (0, T ]:
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(4.78)

∂
∂t(−u+

j ) = − ∂
∂t(uj)− ε3(B + 2MR +KLn)

= −σj(uj)∆uj − σ′j(uj)|∇uj |2 − uj [ãj(x) + hj(u1, ..., un)]

− ε3(B + 2MR+KLn)

= −σj(u+
j )∆uj + [σj(u+

j )− σj(uj)]∆uj − σ′j(uj)|∇uj |2

+ [u+
j − uj][ãj + hj(u1, ..., un)]− u+

j [ãj + hj(u1, ..., un)]

− ε3(B + 2MR+KLn).

Recalling that σj(u+
j ) > 0, and at (x1, t1) we have ∇uj = ∇u+

j = 0, ∆uj
= ∆u+

j ≥ 0, (4.78) implies

(4.79)
∂
∂t(−u+

j )|(x1,t1) ≤ Rε[1 + 3(B + 2MR+KLn)t1]M

+ ε[1 + 3(B + 2MR+KLn)t1]B − ε3(B + 2MR +KLn)

≤MRε2 +Bε2− ε3[B + 2MR +KLn] < 0,

contradicting the definition of (x1, t1).
If x1 ∈ Ωs, we have u+

j (x, t) > αj(x, t) for t < t1, x ∈ Ω̄; and u+
j (x1, t1) =

αj(x1, t1) = δθ(x1). But for (x, t) ∈ Ωs × (0, T ]

(4.80)
∂
∂t(αj − u+

j ) ≤ div(σj(αj)∇αj) + αj[ãj + hj(β1, ..., βj−1, αj , βj+1, ..., βn)]

− div(σj(uj)∇uj)− uj [ãj + hj(u1, ..., un)]− ε3(B + 2MR +KLn)

= σj(αj)∆αj + σ′j(αj)|∇αj |2 + αj [ãj + hj(β1, ..., βj−1, αj , βj+1, ..., βn)]

−σj(u+
j )∆uj + [σj(u+

j )− σj(uj)]∆uj + [σ′j(u
+
j )− σ′j(uj)]|∇uj |2

−σ′j(u+
j )|∇uj |2 + (u+

j − uj)[ãj + hj(u1, ..., un)]− u+
j [ãj + hj(u1, ..., un)]

− ε3(B + 2MR+KLn).

At (x1, t1). we have u+
j = αj,∇uj = ∇u+

j = ∇αj ,∆(αj−uj) = ∆(αj−u+
j ) ≤ 0,

thus (4.80) gives
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(4.81)
∂
∂t(αj − u+

j )|(x1,t1) = σj(αj)∆(αj − uj) + αj[hj(β1, ..., βj−1, αj , βj+1, ..., βn)

−hj(u1, ..., un)] + [σj(u+
j )− σj(uj)]∆uj + [σ′j(u

+
j )− σ′j(uj)]|∇uj |2

+ (u+
j − uj)[ãj + hj(u1, ..., un)]− ε3(B + 2MR+KLn).

Moreover, at (x1, t1) we have

(4.82)

hj(β1, ..., βj−1, αj , βj+1, ..., βn)− hj(u1, ..., un)

≤ hj(ũ−1 , ..., ũ−j−1, u
+
j , ũ

−
j+1, ..., ũ

−
n )− hj(u1, ..., un)

≤ Lε[1 + 3(B + 2MR+KLn)t1]n

where ũ−i (x1, t1) = max{u−i (x1, t1), αi(x1, t1)}, because |ui − ũ−i | ≤ |u+
i − u−i |.

Consequently (4.81) gives
(4.83)

∂
∂t(αj − u+

j )|(x1,t1) ≤ KLnε[1 + 3(B + 2MR +KLn)t1]

+(2MRε +Bε)[1 + 3(B + 2MR+KLn)t1]− ε3(B + 2MR +KLn)

≤ KLnε2 + 4MRε+ 2Bε− ε3(B + 2MR +KLn) < 0,

contradicting the definition of (x1, t1). From these contradictions we conclude
that u+

j (x, t) > αj(x.t) for (x, t) ∈ Ω̄ × [0, τ1). Passing to the limit as ε → 0+,
we obtain uj(x, t) ≥ αj(x, t) in Ω̄× [0, τ1].

If at (x1, t1), we have αm = u+
m for m �= j, then u+

m(x, t) > 0 for t < t1, x ∈ Ω̄
and u+

m(x1, t1) = 0, with x1 �∈ ∂Ω. For x ∈ Ω, we repeat the arguments in (4.78)
to (4.79), with j replaced by m. (There is no need for arguments analogous
to (4.80) to (4.83)). We obtain u+

m > αm = 0 for (x, t) ∈ Ω̄ × [0, τ1), and
consequently um ≥ αm = 0 for (x, t) ∈ Ω̄× [0, τ1].

If at (x1, t1), u−i = βi for some i, we show that

∂

∂t
(βi − u−i )|(x1,t1) > 0

by means of (4.73), in a way similar to the arguments that led to (4.80) to (4.83),
but with inequalities reversed. Passing to the limit as ε→ 0+, we obtain ui ≤ βi
for (x, t) ∈ Ω̄× [0, τ1].

If τ1 < T , we repeat the above arguments by starting to define u+
i , u

−
i with

(4.76), with t in the square brackets on the right side of the formulas replaced
by (t − τ1). This leads to αi ≤ ui ≤ βi for x ∈ Ω̄, τ1 ≤ t ≤ min{T, (2/3)(B +
2MR+KLn)−1} etc. Eventually, we obtain (4.75) in Ω̄× [0, T ].
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Remark 4.3. Note that the assumption σ′i(s) ≥ 0, in [0,∞), i = 1, ..., n has
never been used in the proof of Theorem 4.7. However, σ′k ≥ 0 is essential
for establishing the positivity of expression (4.91), in the proof of Theorem 4.8
below.

We next assume that the intrinsic growth rate ãk of a particular k-th species
is locally high in a subdomain Ωs of Ω. We will obtain a criteria on ãk(x) which
ensures that the population uk(x, t) will be bounded below by a positive constant
in compact subsets of Ωs for all t. Such criteria can thus be interpreted as a
non-extinction condition for the k-th species. Such result is more realistic than
those in earlier chapters because the growth rate can be very small in parts of
the entire domain.

Theorem 4.8 (Non-Extinction of Certain Species with Regionally High
Growth Rate). Let k be an integer, 1 ≤ k ≤ n, Let u = (u1, ..., un) be a solu-
tion of (4.64), under assumptions [C1-C3] and (4.65), in the class
C2+α,1+α/2(Ω̄T ), T > 0 satisfying

(4.84) 0 ≤ ui(x, 0) ≤ bi, x ∈ Ω̄, i = 1, ..., n

where bi are positive numbers satisfying bi ≥ |ri|−1max{ãi(x) x ∈ Ω̄}. Suppose
that there exists a subdomain Ωs ⊆ Ω (with smooth boundary and principal
eigenvalue λs > 0 for the operator −∆ with homogeneous Dirichlet condition on
∂Ωs) with the properties

(4.85)
0 < uk(x, 0), x ∈ Ω̄s,

ãk(x)− σk(0)λs + hk(b1, ..., bk−1, 0, bk+1, ..., bn) > 0

for all x ∈ Ω̄s. Then the solution satisfies:

(4.86) 0 < uk(x, t) for (x, t) ∈ Ωs × [0, T ].

Moreover, uk(x, t) ≥ δ > 0 for all x in any compact set contained in Ωs, 0 ≤ t ≤
T (where δ is some constant which depends on the compact set, independent of
T ); and

(4.87) 0 ≤ ui(x, t) ≤ bi for (x, t) ∈ Ω̄T , i = 1, ..., n.

Proof. We shall construct lower and upper solutions vi, wi satisfying differential
inequalities (4.72), (4.73), with vi, wi replacing αi, βi respectively. Then, we
apply comparison Theorem 4.7 above to conclude uk(x, t) ≥ vk(x, t) in Ω̄T . The
function vk will be positive for x in the interior of Ωs, thus implying the survival
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of the k-th species. Let θ(x) be a positive eigenfuction in Ωs associated with the
principal eigenvalue λs. Define vi(x, t) ≡ 0 in Ω̄T for i �= k, 1 ≤ i ≤ n; and

(4.88) vk(x, t) =

{
εθ(x) if x ∈ Ωs

0 if x ∈ Ω̄\Ωs

in Ω̄T . Here ε is a sufficiently small positive constant to be determined later.
For i = 1, ..., n, define wi(x, t) ≡ bi in Ω̄T . By the relation (4.65) and the size of
bi, we can readily obtain

(4.89) div(σi(wi)∇wi) + wi[ãi + hi(v1, ..., vi−1, wi, vi+1, ..., vn)]− ∂wi
∂t
≤ 0

for (x, t) ∈ Ω× [0, T ]. For i �= k, clearly we have

(4.90) div(σi(vi)∇vi) + vi[ãi + hi(w1, ..., wi−1, vi, wi+1, ..., wn)]− ∂vi
∂t

= 0

for (x, t) ∈ Ω× [0, T ]. For i = k, (4.90) is clearly valid for (x, t) ∈ (Ω\Ω̄s)× [0, T ].
If (x, t) ∈ Ωs × [0, T ], we have
(4.91)
div(σk(vk)∇vk) + vk[ãk + hk(w1, ..., wk−1, vk, wk+1, ..., wn)]− ∂vk

∂t

= σk(vk)∆vk + σ′k(vk)|∇vk|2 + εθ(x)[ãk(x) + hk(w1, ..., vk, ..., wn)]

= εθ(x)[ãk(x)− σk(εθ(x))λs + hk(b1, ..., bk−1, εθ, bk+1, ..., bn)] + σ′k(εθ)|∇vk|2.
Now, choose ε > 0 sufficiently small so that the expression in (4.91) is positive in
Ωs× [0, T ]. (This is possible due to hypotheses [C1] and (4.85)). Let (u1, ..., un)
be a solution of (4.64) satisfying (4.84) and (4.85) as stated. Reduce the choice
of ε > 0, if necessary, so that uk(x, 0) > vk(x, 0) = εθ(x) for x ∈ Ω̄s (note that
this will not affect the sign of the expression in (4.91)). Utilizing inequalities
(4.89) to (4.91) and Theorem 4.7 above, we conclude that

0 ≤ vi ≤ ui(x, t) ≤ wi = bi, i = 1, ..., n

for (x, t) ∈ Ω̄ × [0, T ]. From the definition of vk in (4.88), we have (4.86) and
the strict positivity of uk in compact subsets of Ωs as stated in the theorem.

The following is an immediate consequence of Theorem 4.8. It gives a suffi-
cient condition for the long term survival of r species, 0 < r ≤ n.

Corollary 4.9 (Different Species Surviving in Different Regions). Let
bi ≥ |ri|−1max{ãi(x) |x ∈ Ω̄}, i = 1, ..., n. Suppose there are subdomains
Ωk1, ...,Ωkr , (0 < r ≤ n, k1, .., kr are distinct positive integers ≤ n) in Ω, with
the property

(4.92) ãki(x)− σki(0)λki + hki(b1, ..., bki−1
, 0, bki+1

, ..., bn) > 0
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for x ∈ Ωki , i = 1, ..., r. (Here, λ = λki > 0 is the first eigenvalue for the problem
∆φ+λφ = 0 in Ωki , φ = 0 on ∂Ωki). Let (u1, ..., un) be a solution of (4.64), under
assumptions [C1-C3] and (4.65), with each component in C2+α,1+α/2(Ω̄T ), T >
0, and assume initially that

(4.93)
0 ≤ ui(x, 0) ≤ bi, x ∈ Ω̄, i = 1, ..., n,

0 < uki(x, 0), x ∈ Ω̄ki , i = 1, ..., r.

Then the solution satisfies

(4.94) 0 < uki(x, t), (x, t) ∈ Ω̄ki × [0, T ], i = 1, ..., r.

Moreover uki(x, t) ≥ δ > 0 for all x in any compact set contained in Ωki , 0 ≤
t ≤ T (where δ is some constant which depends on the compact set, independent
of T ); and

(4.95) 0 ≤ ui(x, t) ≤ bi, (x, t) ∈ Ω̄T .

Note that the ki-th species will have, for all time under consideration, its con-
centration bounded below by positive constants in compact subset od Ωki . The
simplest situation happens when Ωk1 = Ωk2 · · · = Ωkr ; otherwise, the different
species will primarily survive at different subregions in Ω.

We finally discuss some criteria for the extinction of a certain k-th species
(that is, the situation when uk tends to zero as t→∞).

Theorem 4.10 (Exitinction of Certain Species). Consider problem (4.64)
under all the hypotheses of Theorem 4.6. Suppose further that Φk(x) ≡ 0, x ∈ ∂Ω
for a particular k-th component, and

(4.96) ãk(x) < σk(0)λ1, for all x ∈ Ω̄

(where λ = λ1 is the first eigenvalue of ∆w + λw = 0 in Ω, w = 0 on ∂Ω). Let
Ci > 0, i = 1, ..., n be such that for x ∈ Ω̄

(4.97) ãi(x) + hi(0, ..., 0, Ci , 0, ..., 0) ≤ 0

(here Ci appears in the i-th component), and let C̄i := max{Ci, supx∈Ωφi(x)}.
Then there exists a (small) constant q > 0 so that, provided

(4.98) σ′k(s) ≤ q for all 0 ≤ s ≤ C̄k,
any solution (u1, ..., un) of (4.64), under the stated hypotheses, with each com-
ponent in C2+α,1+α/2(Ω̄T ), T > 0 must satisfy

(4.99) 0 ≤ uk(x, t) ≤ Ke−εt in Ω̄T ,
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where K, ε are positive constants dependent on q and independent of T . More-
over, we have

0 ≤ ui(x, t) ≤ C̄i, i = 1, ..., n in Ω̄T .

Note that by assumptions (4.65), the constants Ci defined above must exist.
Theorem 4.10 is proved by means of comparison with appropriately constructed
upper and lower solutions as in the earlier theorems. In order that the k-th
component of the upper solution decays as described in right of inequality (4.99),
the conditon on σ′k(s) described in (4.98) is used. The details of the proof can
be found in Leung [124] and is too lengthy to be included here.

Notes.
Theorem 1.1 is proved in Hale and Waltman [81]. Theorems 1.2 to 1.5 and

Theorem 1.7 are obtained from Cantrell, Cosner and Hutson [22]. Theorem 1.6 is
found in Hutson [92]. Theorem 1.8 is given in Hale and Waltman [81]. Theorem
2.1 to Theorem 2.4 are adopted from Leung [125] and Pao [183]. Theorems 2.5
and 2.6 can be found in Pao [183]. Theorem 2.7 and Corollary 2.8 are obtained
from Cantrell and Cosner [19]. Theorems 2.9 to 2.11 and Corollary 2.12 are
obtained from Leung and Zhang [143]. Theorems 3.1 to 3.5 and Corollaries 3.6
to 3.7 are proved in Lou and Ni [164]. Theorem 3.8 is found in Wang [226].
Theorems 4.1 to 4.4 are presented in Leung and Fan [135]. Theorem 4.5 is due
in Ryu and Ahn [198]. Theorems 4.6 to 4.10 are obtained from Leung [124].



Chapter 5

Traveling Waves, Systems of
Waves, Invariant Manifolds,
Fluids and Plasma

5.1 Traveling Wave Solutions for Competitive and
Monotone Systems

Many results concerning traveling wave solutions for ecological reaction-diffusion
systems are published in the last seventies and eighties. Early results are ob-
tained by Tang and Fife [215], Gardner [68], Conley and Gardner [31], Dunbar
[55] [56], Mischaikow and Hutson [174]. These results were deduced by dynamical
systems and ordinary differential equations methods, using theories concerning
stable and unstable manifolds. On the other hand, Volpert et al. [224] use
comparison method of parabolic systems and upper-lower solutions to find trav-
eling wave solutions. One can find many interesting results related to competing
species, prey-predator and interacting populations in the review article by Gard-
ner [69]. This section describes some more recent results concerning competing
populations and monotone systems. We use the method of upper-lower solu-
tions for elliptic systems to prove the existence of traveling wave solutions. Such
methods are used by Volpert et al. [224], Ye and Wang [238], and Zou and Wu
[243]. The techniques have been extended to finding traveling wave solutions for
delayed equations (see e.g. Wu and Zou [234] and Boumenir and Nguyen [14]).
More specifically, we first consider traveling wave solutions of the system:

(1.1)



ut = duxx + u(a1 − b1u− c1v),

(x,t) ∈R× [0,∞),
vt = dvxx + v(a2 − b2u− c2v)

391
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where u = u(x, t), v = v(x, t); and d, ai, bi, ci are positive constants. The system
describes two interacting species with diffusive effects. The quantities u and
v are the concentrations of two competing populations. The parameters ai,
i = 1, 2 are the intrinsic growth rates of the species; b1, c2 are the crowding-effect
coefficients. The parameters c1 and b2 are the coefficients describing competition
between the species; and d is the diffusion constant.

In the Part A of this section, we will always assume the following hypotheses:

[P1]
a1

b1
<
a2

b2
; and

[P2]
a2

c2
<
a1

c1
.

Under conditions [P1] and [P2], Tang and Fife [215] proved the existence of
traveling wave solutions moving from (0, 0) to the positive coexistence equilib-
rium. In each of [215], [31] and [68], dynamical system and ordinary differential
equation methods are used to prove the existence of various traveling wave so-
lutions for competing species models. More recently, Li, Weinberger and Lewis
[147] considers a special example of (1.1) satisfying [P1],[P2], and the existence of
traveling wave connecting a mono-culture (i.e semi-trivial) state to co-existence
state is proved by taking limit for recursion monotone maps as in Lui [166]. The
presentation and method in this section is different and more readily applicable.

It is a general belief among biologists that if the two competing species
have different preferences in resource usage, then the intra-specific competi-
tion between the two species is stronger than the inter-specific competition,
therefore, the co-existence of the two species is possible. We will show rig-
orously that under some mild conditions, there can be traveling waves mov-
ing from monoculture (i.e. semi-trivial) steady state to coexistence steady-
state. Moreover, the traveling wave solution has certain speed and a par-
ticular shape. More precisely, The traveling wave solutions have the form
(u(
√

a1
d x + ca1t), v(

√
a1
d x + ca1t)), c ≥ 2

√
b1(a1c2−a2c1)
a1(b1c2−b2c1) and join the equilibria

(0, a2c2 ) and (a1c2−a2c1b1c2−b2c1 ,
a2b1−a1b2
b1c2−b2c1 ) as

√
a1
d x+ ca1t moves from −∞ to +∞. This

means that the first species move from extinction to the positive co-existence
state, while the second species move from carrying capacity state to co-existence
state.

In Theorem 1.1 and Corollary 1.2, we use the method of upper-lower solutions
to prove the existence of traveling wave solutions. In order to simplify the
proof, we make a change of variable in the second equation of (1.1) by reversing
order so that the resulting system becomes monotone (with respect to the other
component). For such system, we can utilize available theorems in [224] to
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simplify the proof of our present theorem. In order to apply the theorem, we
simply need to construct upper solution with appropriate limiting values for the
system. The construction of upper solution for the system is made by using
traveling wave solutions with appropriate dichotomy properties for the scalar
KPP (Kolmogorov, Petrovskii and Piskunov [106]) equations. The use of such
method avoids the difficulty of analyzing the stable and unstable manifolds used
in dynamical system method in [215] and [31]. The proof of Volpert’s theorem
obtains the traveling wave solution from the limit of a subsequence chosen from
shifts of solutions of an appropriate elliptic system of one independent variable.
Further, the solutions of the elliptic system are obtained from limits of solutions
of corresponding parabolic system as time tends to infinity. There is no need to
explicitly construct a non-trivial lower solution. The presentation of Part A of
this section is obtained from the beginning part of Hou and Leung [90].

In Part B of this section, the traveling wave solution is constructed by an
iterative scheme of solutions of elliptic systems, without using any theory from
parabolic equations. The results of this part is adopted from Wu and Zou [234],
[235] and Boumenir and Nguyen [14]. The results of this method are applied to
study system (1.1) for the case:

[P2]
a2

c2
<
a1

c1
; and

[P3]
a2

b2
<
a1

b1
.

Under some more mild conditions in this case, the traveling waves (u(
√

a1
d x +

ca1t), v(
√

a1
d x + ca1t)) connects the steady state (0, a2/c2) and (a1/b1, 0) as√

a1
d x + ca1t moves from −∞ to +∞. That is, the first species move from

extinction to carrying capacity, while the second species move from carrying
capacity to extinction. Although both upper and lower solutions have to be
constructed, the lower solution is not required to satisfy the stringent limiting
conditions at ±∞. Moreover, one obtains more precise estimate of the asymp-
totic behavior of the traveling waves at ±∞. The two methods in Part A and
B serve to supplement each other when one of them does not apply because of
various additional constraint conditions.

Part A: Existence of Traveling Wave Connecting a Semi-Trivial Steady-
State to a Coexistence Steady-State.

Letting:

(1.2) τ = a1t and x =
√
a−1

1 d x̃,
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equation (1.1) can be written as:

(1.3)



uτ = ux̃x̃ + u(1− a−1

1 b1u− a−1
1 c1v),

(x̃, τ) ∈ R×R+

vτ = vx̃x̃ + v(a−1
1 a2 − a−1

1 b2u− a−1
1 c2v).

Let

(1.4) u = kw, v = qz,

where k = a1b
−1
1 and q is a constant satisfying:

(1.5) a2c
−1
2 < q < a1c

−1
1 .

System (1.3) becomes

(1.6)



wτ = wx̃x̃ + w(1− w − rz),

zτ = zx̃x̃ + z(ε1 − bw − ε1(1 + ε2)z)

where

(1.7)
r = a−1

1 c1q , ε1 = a−1
1 a2,

b = b2b
−1
1 , ε2 = a−1

2 c2q − 1.

We will study system (1.6) which is related to (1.1) by the change of variables
(1.2) and (1.4).

Recall that in Part A of this section we will always assume the following
hypotheses:

[P1]
a1

b1
<
a2

b2
; and

[P2]
a2

c2
<
a1

c1
.

We first consider the system of ordinary differential equations corresponding
to (1.1), i.e. d = 0. Under conditions [P1] and [P2], The points (0, a2c2 ) and
(a1c2−a2c1b1c2−b2c1 ,

a2b1−a1b2
b1c2−b2c1 ) are equilibria, with the first equilibrium being unstable

and the second stable. (See Figure 5.1.1.)
We will prove in this section the existence of traveling wave solution of system

(1.6), with d > 0, of the form (u(
√

a1
d x + ca1t), v(

√
a1
d x + ca1t)) joining the

equilibria (0, a2c2 ) and (a1c2−a2c1b1c2−b2c1 ,
a2b1−a1b2
b1c2−b2c1 ) as

√
a1
d x + ca1t moves from −∞ to

+∞.
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Figure 5.1.1: Nullclines for ODE system corresponding to (1.1) under hypotheses
[P1] and [P2]; the symbols · and ◦ represent stable or unstable equilibrium
respectively.

As mentioned above, the changes of variables described from (1.2) to (1.5)
transform system (1.1) into system (1.6) with parameters given in (1.7). Note
that hypotheses [P1] and (1.5), lead to the relation

(1.8) 0 < b < ε1, 0 < r < 1, ε2 > 0.

Observe that by choosing q close to a2c
−1
2 in (1.5), ε2 can be made arbitrarily

small. We now summarize the transformations in the following lemma.

Lemma 1.1. Consider system (1.1) under hypotheses [P1] and [P2]. The
change of variables (1.2), (1.4) with q satisfying (1.5) transforms (1.1) into
system (1.6). The parameters in (1.6) are related to those in (1.1) by (1.7).
The parameters r, ε1, ε2 and b satisfy the inequalities in (1.8).

One can readily verify that if (w(x̃, τ), z(x̃, τ)) is a solution of (1.6), then
(1.9)

(u(x, t), v(x, t)) = (u(
√

d

a1
x̃, a−1

1 τ), v(
√

d

a1
x̃, a−1

1 τ)) = (kw(x̃, τ), qz(x̃,τ))

is a solution of (1.1), where k, q are described in (1.4), (1.5). We will look for
solution of (1.6) with the form (w(x̃, τ), z(x̃, τ)) = (w(ξ), z(ξ)), ξ = x̃+cτ , where
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c > 0 satisfying:

(1.10)




limξ→−∞(w(ξ), z(ξ)) = (0,
1

1 + ε2
),

limξ→∞(w(ξ), z(ξ)) = (
ε1(1 + ε2 − r)
ε1(1 + ε2)− br ,

ε1 − b
ε1(1 + ε2)− br ).

Relating back to (1.6), we are thus looking for solutions of

(1.11)
−wξξ + cwξ = w(1 − w − rz),

−∞ < ξ <∞
−zξξ + czξ = z(ε1 − bw − ε1(1 + ε2)z),

with boundary conditions (1.10).

Theorem 1.1 (Traveling Waves Connecting Semi-Trivial to Coexis-
tence State). Under hypotheses [P1] and [P2], system (1.1) has a traveling
wave solution of the form:

(1.12) (u(x, t), v(x, t)) = (kw(
√
a1

d
x+ ca1t), qz(

√
a1

d
x+ ca1t))

for any c ≥ 2
√

b1
a1

(a1c2−a2c1b1c2−b2c1 ). Here (w, z) is a function of one single variable ξ
satisfying (1.11) for −∞ < ξ < ∞, and (1.10) as ξ → ±∞. Moreover, w(ξ)
and z(ξ) are positive monotonic functions for −∞ < ξ <∞.

Remark 1.1. The function (w, z) in (1.12) now satisfies (1.11) with parameters
satisfying (1.7), (1.8) as described above. Moreover, we have

(1.13)

limt→−∞(u(x, t), v(x, t)) = (0, a2/c2),

limt→+∞(u(x, t), v(x, t)) = (
a1c2 − a2c1
b1c2 − b2c1 ,

a2b1 − a1b2
b1c2 − b2c1 ).

Proof. Note that by (1.7), we always have relation

(1.14)
(1 + ε2 − r)ε1
ε1(1 + ε2)− rb =

b1
a1

(a1c2 − a2c1)
(b1c2 − b2c1)

> 0.

The last inequality above is due to [P1] and [P2]. After transforming (1.1)
into (1.6) and (1.11) as described above, we next introduce the transformation

(1.15)



u1(ξ) = w(ξ),

u2(ξ) =
1

1 + ε2
− z(ξ)
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Figure 5.1.2: Nullclines for system (1.16); A = (1, 1
1+ε2

), B = ( (1+ε2−r)ε1
ε1(1+ε2)−rb ,

b(1+ε2−r)
(1+ε2)(ε1(1+ε2−rb)). I and II represent the nullclines 1− r

1+ε2
−u1 + ru2 = 0 and

bu1 − ε1(1 + ε2)u2 = 0 respectively.

for −∞ < ξ <∞. This transforms (1.11) into

(1.16)



−(u1)ξξ + c(u1)ξ = u1(

1 + ε2 − r
1 + ε2

− u1 + ru2),

−(u2)ξξ + c(u2)ξ = (
1

1 + ε2
− u2)(bu1 − ε1(1 + ε2)u2)

for −∞ < ξ < ∞, which is monotone (with respect to the other component)
for 0 ≤ u1, 0 ≤ u2 ≤ 1

1+ε2
. We illustrate the transformed system (1.16) by the

above Fig. 5.1.2.
Note that the two expressions on the right of (1.16) now vanish simultane-

ously at (u1, u2) = ( (1+ε2−r)ε1
ε1(1+ε2)−rb ,

b(1+ε2−r)
(1+ε2)(ε1(1+ε2)−rb)) in the first quadrant. The

second component satisfies

(1.17)
b(1 + ε2 − r)

(1 + ε2)(ε1(1 + ε2)− rb) <
1

1 + ε2

because 0 < b < ε1. We now construct a pair of coupled upper solutions for sys-
tem (1.16). Let uρ(ξ),−∞ < ξ <∞, be the monotone solution of the following
KPP equation:

(1.18) u′′ρ − cu′ρ + uρ(
(1 + ε2 − r)ε1
ε1(1 + ε2)− rb − uρ) = 0,
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with limξ→−∞ uρ(ξ) = 0, and limξ→∞ uρ(ξ) = (1+ε2−r)ε1
ε1(1+ε2)−rb . From [106], such

solution uρ(ξ) exists for c ≥ 2
√

(1+ε2−r)ε1
ε1(1+ε2)−rb = 2

√
b1
a1

(a1c2−a2c1)
(b1c2−b2c1) .

Define

ū1(ξ) = uρ(ξ), ū2(ξ) =
b

ε1(1 + ε2)
uρ(ξ).

Observe that the system (1.16) is monotone in the region:

(1.19)

0 < u1 <
(1 + ε2 − r)ε1
ε1(1 + ε2)− rb := u∗1 = limξ→∞ ū1(ξ),

0 < u2 <
b(1 + ε2 − r)

(1 + ε2)(ε1(1 + ε2)− rb) := u∗2 = limξ→∞ ū2(ξ).

(That is, the expressions on the right of (1.16) are nondecreasing in the off
diagonal variables.)

For 0 ≤ u2 ≤ ū2(ξ), one readily verifies that

(1.20)

−(ū1)ξξ + c(ū1)ξ − ū1(
1 + ε2 − r

1 + ε2
− ū1 + ru2)

≥ ū1(
(1 + ε2 − r)ε1
ε1(1 + ε2)− rb − ū1 − 1 + ε2 − r

1 + ε2
+ ū1 − rū2)

≥ ū1(
(1 + ε2 − r)(1 + ε2)ε1 − ε1(1 + ε2 − r)(1 + ε2) + rb(1 + ε2 − r)

(ε1(1 + ε2)− rb)(1 + ε2)

− rb

ε1(1 + ε2)
u∗1)

= ū1
(1 + ε2 − r)(1 + ε2)(ε1 − ε1)

(ε1(1 + ε2)− rb)(1 + ε2)
= 0.

For 0 ≤ u1 ≤ ū1(ξ), one verifies

(1.21)

−(ū2)ξξ + c(ū2)ξ − (
1

1 + ε2
− ū2)(bu1 − ε1(1 + ε2)ū2)

≥ b

ε1(1 + ε2)
uρ(

(1 + ε2 − r)ε1
ε1(1 + ε2)− rb − uρ)

−(
1

1 + ε2
− b

ε1(1 + ε2)
uρ)(buρ − ε1(1 + ε2)ū2)

=
b

ε1(1 + ε2)
uρ(

(1 + ε2 − r)ε1
ε1(1 + ε2)− rb − uρ) > 0.
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The pair of functions defined by:

ρ̄1(ξ) = ū1(−ξ) , ρ̄2(ξ) = ū2(−ξ)(1.22)

form a pair of upper solutions for the monotone system

(1.23)




(ρ1)ξξ + c(ρ1)ξ + ρ1(
1 + ε2 − r

1 + ε2
− ρ1 + rρ2) = 0,

(ρ2)ξξ + c(ρ2)ξ + (
1

1 + ε2
− ρ2)(bρ1 − ε1(1 + ε2)ρ2) = 0

for −∞ < ξ <∞, in the sense that

(1.24)




(ρ̄1)ξξ + c(ρ̄1)ξ + ρ̄1(
1 + ε2 − r

1 + ε2
− ρ̄1 + rρ2) ≤ 0,

(ρ̄2)ξξ + c(ρ̄2)ξ + (
1

1 + ε2
− ρ̄2)(bρ1 − ε1(1 + ε2)ρ̄2) ≤ 0

for −∞ < ξ < ∞, all 0 ≤ ρ2 ≤ ρ̄2(ξ), 0 ≤ ρ1 ≤ ρ̄1(ξ). (Note that the
system (1.23) is monotone (with respect to the other component) in the region:
0 ≤ ρ1 ≤ u∗1, 0 ≤ ρ2 ≤ u∗2, where u∗1, u∗2 are defined in (1.19). In particular,
(1.24) is true when ρ1 = ρ̄1(ξ) in the first equation, ρ2 = ρ̄2(ξ) in the second
equation for all −∞ < ξ <∞. Let

F1(ρ1, ρ2) = ρ1(
1 + ε2 − r

1 + ε2
− ρ1 + rρ2),

F2(ρ1, ρ2) = (
1

1 + ε2
− ρ2)(bρ1 − ε1(1 + ε2)ρ2).

We clearly have for i = 1, 2 that

Fi(s,
sb

2ε1(1 + ε2)
) > 0

for s > 0 sufficiently small. We now apply Theorem 4.2 in Volpert [224],
p. 176, (or Theorem A5-7 in Chapter 6), with

→
F = (F1, F2), −→w+ = (0, 0),

−→w− = ( (1+ε2−r)ε1
ε1(1+ε2)−rb ,

b(1+ε2−r)
(1+ε2)(ε1(1+ε2)−rb)) and K the class of vector-valued func-

tions →ρ (ξ) = (ρ1(ξ), ρ2(ξ)), ρi(ξ) ∈ C2(−∞,∞), i = 1, 2, decreasing mono-
tonically and satisfying limξ→±∞→ρ (ξ) = −→w±. The existence of the function→ρ (ξ) = (ρ̄1(ξ), ρ̄2(ξ)) satisfying (1.24) implies that

w∗ := inf→ρ ∈K
{sup
ξ,k

ρ′′k + Fk(→ρ (ξ))
−ρ′k(ξ}

}
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is finite, and we have c ≥ w∗. We can thus apply Theorem 4.2 in [224] described
above to assert that the system (1.23) has a solution (ρ̂1(ξ), ρ̂2(ξ)) with each com-
ponent monotonically decreasing for −∞ < ξ <∞ and limξ→±∞(ρ̂1(ξ), ρ̂2(ξ)) =−→w±. (See Fig. 5.1.3 below.)

0 � w

�

I

II

B � w

� � �u1

� ,u2
� �

Ρ

�Ξ �

u1

u2

Figure 5.1.3: Traveling wave connecting w− = (u∗1, u
∗
2) with w+ = (0, 0).

The function

(1.25) (û1(ξ), û2(ξ)) := (ρ̂1(−ξ), ρ̂2(−ξ))

is then a solution of the system (1.16). Finally, setting w(ξ) = û1(ξ), z(ξ) =
1

1+ε2
− û2(ξ) for −∞ < ξ < ∞ as in (1.15), then (u(x, t), v(x, t)) as defined in

(1.12) is a traveling wave solution of system (1.1) for −∞ < x < ∞, −∞ <
t < ∞, satisfying (1.13) as described in Remark 1.1 following the statement of
Theorem 1.1.

Remark 1.2. The wave speed of the solution (u(x, t), v(x, t)) for system (1.1)
described in (1.12) in the original space variable is c

√
a1d.

Interchanging the roles of a1, b1 and c1 respectively with a2, c2 and b2, we
obtain readily the following corollary from Theorem 1.1.
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Corollary 1.2. Assume hypotheses [P1] and [P2]. Then for any c ≥
2

√
c2
a2

(a2b1 − a1b2)
(c2b1 − c1b2)

, system (1.1) has a traveling wave solution of the form:

(1.26) (u(x, t), v(x, t)) = (ũ(
√
a2

d
x+ ca2t), ṽ(

√
a2

d
x+ ca2t)).

Here ũ, ṽ ∈ C2(−∞,∞) are monotonic functions of one single variable, and

(1.27)




limt→−∞(u(x, t), v(x, t)) = (a1/b1, 0),

limt→+∞(u(x, t), v(x, t)) = (
a1c2 − a2c1
b1c2 − b2c1 ,

a2b1 − a1b2
b1c2 − b2c1 ).

Remark 1.3. The wave speed of the solution (u(x, t), v(x, t)) for system (1.1)
described in (1.26) in the original space variable is c

√
a2d.

Part B: Iterative Method for obtaining Traveling Wave for General
Monotone Systems.

As we see in part A, the existence of traveling wave solution of parabolic
systems can be reduced to the study of a system of ordinary differential equations
of the form:

(1.28) Dρ′′(t)− cρ′(t) + F̃ (ρ(t)) = 0, t ∈ R
where ρ ∈ Rn,D = diag.(d1, ..., dn) with di > 0, i = 1, ..., n. Here, we assume
that F̃ : Rn → Rn is continuous, and c > 0 is a positive constant corresponding
to the wave speed. We will discuss the existence of solutions of (1.28) with as-
signed limits at ±∞, under quasimonotone condition on F̃ = (F̃1, ..., F̃n)T , using
the method of upper and lower solution. It is sometimes difficult to construct
C2(R,Rn) upper and lower solutions of (1.28) with appropriate limits at ±∞.
We are thus led to the following concept.

Definition 1.1. A function ρ ∈ C1(R,Rn) is called a quasi-upper solution of
(1.28) if
(1) supt∈R||ρ(t)|| <∞, supt∈R||ρ′(t)|| <∞,
(2) ρ′′(t) exists and is continuous on R\{0}, and

supt∈R\{0}||ρ′′(t)|| <∞,
(3) limt→0− ρ

′′(t) and limt→0+ ρ′′(t) exist,
(4) ρ(t) satisfies

Dρ′′(t)− cρ′(t) + F̃ (ρ(t)) ≤ 0, for all t ∈ R\{0}.
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A quasi-lower solution of (1.28) is defined in the same way by reversing the
inequality in the line immediately above.

We will look for solutions of (1.28) in the family of functions Γ as follows:

Γ := {ϕ ∈ C(R,Rn) : ϕ is non-decreasing, and
limt→−∞ϕ(t) = 0, limt→+∞ϕ(t) = K},

where K = (K1, ...,Kn)T is given fixed, with Ki > 0 for i = 1, ..., n. Here,
ϕ is non-decreasing is interpreted componentwise. For comparing two vectors
y = (y1, ..., yn)T , z = (z1, ..., zn)T ∈ Rn, we write y ≥ z if and only if yi ≥ zi
for i = 1, ..., n; and if there is at least one i such that yi > zi, we write y > z.
We will assume that F̃ has the following properties concerning its zeros and
quasi-monotonicity:

[A1] F̃ (0) = F̃ (K) = 0 and F̃ (u) �= 0 for u ∈ Rn with

0 < u < K, where K = (K1,K2, ...,Kn)T , Ki > 0, for i = 1, ..., n.

[A2] There exists a matrix β = diag(β1, ..., βn) with βi ≥ 0 such that

H(φ)−H(ψ) ≥ 0, for all φ,ψ ∈ Rn, satisfying 0 ≤ ψ ≤ φ ≤K, where

(1.29) H(v) = F̃ (v) + βv for v ∈ Rn.
We will be iterating from a quasi-upper solution of (1.28), and will be led to
solve the linear problem

Dx′′(t)− cx′(t)− βx(t) +H(φ(t)) = 0, t ∈ R
for given φ(t). Let

(1.30) λ1i :=
c−

√
c2 + 4βidi
2di

< 0, λ2i :=
c+

√
c2 + 4βidi
2di

> 0

which are the real roots of the equation

diλ
2 − cλ− βi = 0, i = 1, 2, ..., n, with βi > 0.

The solution of the above linear problem leads to the following operator:

(1.31) G(H(φ))(t) = (G1(H1(φ))(t), ..., Gn(Hn(φ))(t))T ,

where H = (H1, ...,Hn)T ,

(1.32)
Gi(Hi(φ))(t) := 1

di(λ2i−λ1i)
(
∫ t
−∞ eλ1i(t−s)Hi(φ(s))ds

+
∫ +∞
t eλ2i(t−s)Hi(φ(s))ds).
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Before solving (1.28), we first review some basic definition and theorem con-
cerning scalar linear nonhomogeneous second order ordinary differential equa-
tion. Consider

(1.33) u′′(t) + αu′(t)− β̂u(t) + f(t) = 0, t ∈ R, u(t) ∈ R

where f(t) is a continuous and bounded function on R\{0} with left and right
limits at t = 0, f(0−) and f(0+). The parameters α and β̂ are real with β̂ > 0.
The characteristic equation

λ2 + αλ− β̂ = 0

has two distinct roots of opposite signs, λ1 < 0 and λ2 > 0. Since we will allow
f to have jump discontinuity at t = 0 (cf. (1.39) below), we need to clarify our
terminology.

Definition 1.2. Suppose that f is bounded and continuous on R\{0}, and both
f(0−) and f(0+) exist. A function u defined on R is said to be a generalized C1

bounded solution of (1.33) if
(1) u satisfies (1.33) on R\{0},
(2) u and u′ are bounded and continuous on R,
(3) u′′ exists and is continuous on R\{0}, and both u′′(0−) and u′′(0+) exist.

Lemma 1.2.Consider equation (1.33) with β̂ > 0. Suppose that f is bounded
and continuous on R\{0}, and both f(0−) and f(0+) exist. Then (1.33) has a
unique generalized C1 bounded solution (in the sense of Definition 1.2) which is
given by

(1.34) û(t) =
1

λ2 − λ1
(
∫ t

−∞
eλ1(t−s)f(s)ds+

∫ +∞

t
eλ2(t−s)f(s)ds).

Proof. The function û(t) define by formula (1.34) is well-defined and is bounded
on R. Direct calculation shows that it is continuously differentiable on R and
û′(t) is bounded on R. Moreover, û′′(t) exists on the whole R except possibly
at t = 0, while û′′(0−) and û′′(0+) exist. In fact û(t) is a classical solution of
(1.33) on each of the two intervals (−∞, 0) and (0,+∞). It remains to show
uniqueness, that is u(t) = û(t) for any generalized C1 bounded solution u(t) of
(1.33). Since the function u(t) − û(t) is a classical solution of (1.33) on (0,∞),
we have

u(t)− û(t) = c1e
λ1t + c2e

λ2t, for t > 0,

where c1, c2 are constants. From the boundedness of u and û, we deduce c2 = 0,
i.e.

u(t)− û(t) = c1e
λ1t, for t > 0.
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Similarly, since u − û is a bounded classical solution of (1.33) on (−∞, 0), we
find

u(t)− û(t) = c2e
λ2t, for t < 0.

Since u− û is continuous at t = 0, the last two formulas yield

(1.35) c1 = c2.

Similarly, since u− û has continuous derivative at t = 0, we obtain

(1.36) λ1c1 = λ2c2.

Since λ1 < 0 and λ2 > 0, (1.35) and (1.36) imply that c1 = c2 = 0.

We now begin to find solution of (1.28) in the family of non-decreasing func-
tions Γ with appropriate limits at ±∞.

Lemma 1.3. Suppose [A1] and [A2] hold. Then for any φ ∈ Γ, we have

(i) H(φ(t)) ≥ 0, for t ∈ R,

(ii) H(φ(t)) is non-decreasing in t ∈ R,
(iii) H(ψ(t)) ≤ H(φ(t)) for all t ∈ R, if ψ ∈ C(R,Rn) is given so that 0 ≤
ψ(t) ≤ φ(t) ≤ K for t ∈ R.

Proof. Assertion (i) follows readily from assumptions [A1] and [A2] since
F̃ (0) = 0. Assertion (iii) is a direct consequence of [A2]. To prove (ii), let
t ∈ R and s > 0 be given. Then, since φ ∈ Γ, we have

0 ≤ φ(t) ≤ φ(t + s) ≤ K.

Consequently [A2] implies that H(φ(t + s))−H(φ(t)) ≥ 0. This completes the
proof.

Lemma 1.4. Assume [A1] and [A2]. Let ρ̃(t) and ρ̄(t) be quasi-lower and
quasi-upper solutions of (1.28), with ρ̄ ∈ Γ and additional properties

[H1] 0 ≤ ρ̃(t) ≤ ρ̄(t) ≤ K, t ∈ R,

[H2] ρ̃(t) �≡ 0, t ∈ R.

Suppose that λi1 and λi2, i = 1, ..., n are given by (1.30) with βi > 0, and define

(1.37) φ1 := G(H(ρ̄))(t), for t ∈ R,

where G(H) is given in (1.31) and (1.32). Then

(i) φ1 ∈ C2(R,Rn), and satisfies

(1.38) Dφ′′1(t)− cφ′1(t)− βφ1(t) +H(ρ̄(t)) = 0 for t ∈ R,



5.1. TRAVELING WAVES FOR COMPETITIVE SYSTEMS 405

(ii) φ1 ∈ Γ,
(iii) ρ̃(t) ≤ φ1(t) ≤ ρ̄(t), t ∈ R; and
(iv) φ1 is an upper solution of (1.28), i.e. (1.28) is satisfied for all t ∈ R with
“=” replaced by “≤”.

Proof. Since F̃ is continuous in Rn and ρ̄ is in C1(R,Rn), direct computation
shows that φ1 ∈ C2(R,Rn) and satisfies (1.38) for all t ∈ R. To show (ii), we
first consider the limits of φ1(t) := (φ11(t), ..., φ1n(t))T as t → ±∞. Applying
L’Hospital’s rule to the formula (1.37) and (1.32), and using [A1] and ρ̄ ∈ Γ, we
obtain

limt→−∞ φ1i(t) = 1
di(λ2i−λ1i)

limt→−∞[Hi(ρ̄(t))−λ1i
− Hi(ρ̄(t))

−λ2i
]

= 1
di(λ2i−λ1i)

[ 0
−λ1i

+ 0
λ2i

] = 0, i = 1, .., n,

and
limt→+∞ φ1i(t) = 1

di(λ2i−λ1i)
limt→+∞[Hi(ρ̄(t))−λ1i

− Hi(ρ̄(t))
−λ2i

]

= 1
di(λ2i−λ1i)

[βiKi−λ1i
+ βiKi

λ2i
]

= βiKi
−λ1iλ2idi

= βiKi
βi

= Ki, i = 1, .., n.

Thus, we obtain limt→−∞ φ1(t) = (0, ..., 0)T = 0 and limt→+∞ = (K1, ...,Kn)T =
K.

We next show that each component of φ1 is non-decreasing in R. Let t ∈ R
and s > 0 be given. Then

φ1i(t + s)− φ1i(t)

= 1
di(λ2i−λ1i)

[
∫ t+s
−∞ eλ1i(t+s−θ)Hi(ρ̄(θ))dθ +

∫∞
t+s e

λ2i(t+s−θ)Hi(ρ̄(θ))dθ]

− 1
di(λ2i−λ1i)

[
∫ t
−∞ eλ1i(t−θ)Hi(ρ̄(θ))dθ +

∫∞
t eλ2i(t−θ)Hi(ρ̄(θ))dθ]

= 1
di(λ2i−λ1i)

[
∫ t
−∞ eλ1i(t−θ)[Hi(ρ̄(θ + s))−Hi(ρ̄(θ))]dθ

+ 1
di(λ2i−λ1i)

[
∫∞
t eλ2i(t−θ)[Hi(ρ̄(θ + s))−Hi(ρ̄(θ))]dθ

≥ 0.

The last inequality is due to Lemma 1.3(ii). This completes the proof of part
(ii) of this lemma.

To show part (iii), we denote

wi(t) := φ1i(t)− ρ̄i(t) for t ∈ R, i = 1, ..., n.
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From (1.38), we find for each i = 1, ..., n,

(1.39)

diw
′′
i (t)− cw′

i(t)− βiwi(t) = −diρ̄′′i (t) + cρ̄′i(t) + βiρ̄i(t)−Hi(ρ̄(t))

= −diρ̄′′i (t) + cρ̄′i(t)− F̃i(ρ̄(t))

= −ri(t),

where ri(t) := diρ̄
′′
i (t) − cρ̄′i(t) + F̃i(ρ̄(t)) ≤ 0 for all t ∈ R\{0}, since ρ̄ is a

quasi-upper solution of (1.28). Thus wi(t) is a generalized C1 bounded solution
of (1.39) in the sense of Definition 1.2. By Lemma 1.2, we have

(1.40) wi(t) =
1

di(λ2i − λ1i)
[
∫ t

−∞
eλ1i(t−s)ri(s)ds+

∫ +∞

t
eλ2i(t−s)ri(s)ds].

Since ri ≤ 0 in R\{0}, we find from (1.40) that φ1i(t) − ρ̄i(t) = wi(t) ≤ 0 for
t ∈ R. This proves φ1i(t) ≤ ρ̄i(t), for t ∈ R. Similarly, we show that ρ̃(t) ≤ φ1(t)
for t ∈ R, since ρ̃ is a quasi-lower solution. This proves assertion (iii).

To show that φ1 is an upper solution of (1.28), we verify for all t ∈ R,

Dφ′′1(t)− cφ′1(t) + F̃ (φ1(t)) = Dφ′′1(t)− cφ′1(t)− βφ1(t) +H(φ1(t))

= Dφ′′1(t)− cφ′1(t)− βφ1(t) +H(ρ̄(t)) + [H(φ1(t))−H(ρ̄(t))]

= H(φ1(t))−H(ρ̄(t)) ≤ 0.

The last inequality is true by means of Lemma 1.3(iii) and 0 ≤ φ1(t) ≤ ρ̄(t) ≤ K
for t ∈ R. This proves Lemma 1.4.

We next inductively define for t ∈ R

(1.41) φm(t) := G(H(φm−1(t)), m = 2, 3, ...

We can inductively prove as in the last lemma the following.

Lemma 1.5. Assume all the hypotheses of Lemma 1.4. The function φm(t),m =
2, 3, . . . defined by (1.41) satisfies:

(i) φm is the classical C2(R,Rn) solution of

(1.42) Dφ′′m(t)− cφ′m(t)− βφm(t) +H(φm−1(t)) = 0, t ∈ R, m = 2, 3, ..., ;

(ii) φm ∈ Γ;

(iii) ρ̃(t) ≤ φm(t) ≤ φm−1(t) ≤ ρ̄(t), t ∈ R; and

(iv) each φm is an upper solution of (1.28).
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Theorem 1.3 (Main Existence Theorem). Assume [A1] and [A2]. Let ρ̃(t)
and ρ̄(t) be quasi-lower and quasi-upper solutions of (1.28), with ρ̄ ∈ Γ and
additional properties

[H1] 0 ≤ ρ̃(t) ≤ ρ̄(t) ≤ K, t ∈ R,

[H2] ρ̃(t) �≡ 0, t ∈ R.
Suppose that λi1 and λi2, i = 1, ..., n are given by (1.30) with βi > 0; let φ1(t)
be defined by (1.37), and φm(t),m = 2, 3, . . . be defined by (1.41). Then the
function φ(t) := limm→∞φm(t) exists and satisfies

(1.43) ρ̃(t) ≤ φ(t) ≤ ρ̄(t), t ∈ R.
Further, the function φ(t) is non-decreasing for t ∈ R with the property

(1.44) lim
t→−∞φ(t) = 0, lim

t→+∞φ(t) = K,

and is a classical solution of (1.28) for t ∈ R. (Note that the quasi-lower solution
ρ̃(t) may not belong to the family Γ of functions.)

Proof. Since φm(t) is non-decreasing by Lemma 1.5(ii), we have the limit
function φ(t) non-decreasing for t ∈ R. Similarly, (1.43) follows from Lemma
1.5(iii). Denote the i-th component of φ(t) and φm(t) by (φ(t))i and φmi(t)
respectively for i = 1, .., n. From (1.41) and Lebesgue’s dominated convergence
theorem, we have
(1.45)

(φ(t))i = limm→∞ φmi(t)

= 1
di(λ2i−λ1i)

limm→∞[
∫ t
−∞ eλ1i(t−s)Hi(φm−1(s))ds

+
∫ +∞
t eλ2i(t−s)Hi(φm−1(s))ds]

= 1
di(λ2i−λ1i)

[eλ1it
∫ t
−∞ e−λ1isHi(φ(s))ds + eλ2it

∫ +∞
t e−λ2isHi(φ(s))ds]

for t ∈ R, i = 1, 2, ..., n. Direct calculation gives

(1.46)
(φ′(t))i = λ1ie

λ1it
∫ t
−∞

e−λ1is

di(λ2i−λ1i)
Hi(φ(s))ds

+λ2ie
λ2it

∫ +∞
t

e−λ2is

di(λ2i−λ1i)
Hi(φ(s))ds,

and

(1.47)

(φ′′(t))i = λ2
1ie

λ1it
∫ t
−∞

e−λ1is

di(λ2i−λ1i)
Hi(φ(s))ds

+λ2
2ie

λ2it
∫ +∞
t

e−λ2is

di(λ2i−λ1i)
Hi(φ(s))ds + Hi(φ(t))

di(λ2i−λ1i)
[λ1i − λ2i].
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Thus, from (1.46) and (1.47), we obtain

di(φ′′(t))i − c(φ′(t))i − βi(φ(t))i

= (diλ2
1i − cλ1i − βi)eλ1it

∫ t
−∞

e−λ1is

di(λ2i−λ1i)
Hi(φ(s))ds

+ (diλ2
2i − cλ2i − βi)eλ2it

∫ +∞
t

e−λ2is

di(λ2i−λ1i)
Hi(φ(s))ds −Hi(φ(t))

= −Hi(φ(t)), t ∈ R, i = 1, ..., n.

From the above equation, we find

Dφ′′(t)− cφ′(t)− βφ(t) = −H(φ(t)) = −F̃ (φ(t))− βφ(t), t ∈ R.

That is φ(t) is a solution of (1.28). From [H1], (1.43) and the fact that
limt→−∞ ρ̄(t) = 0, we obtain limt→−∞ φ(t) = 0. On the other hand, φ(t) is
non-decreasing and bounded from above by K. We must have limt→+∞ φ(t) =
Q := (Q1, ..., Qn) exists and Qi ≤ Ki, i = 1, ..., n. From [H2] and (1.43), we
obtain Q �= 0. Applying l’Hospital’s rule to (1.45), we obtain

(1.48)

Qi = limt→+∞(φ(t))i = limt→+∞ 1
di(λ2i−λ1i)

[Hi(φ(t))
−λ1i

+ Hi(φ(t))
λ2i

]

= F̃i(Q)+βiQi
−diλ2iλ1i

= F̃i(Q)+βiQi
βi

= F̃i(Q)
βi

+Qi, i = 1, ..., n.

This leads to F̃ (Q) = 0. By assumption [A1], we must have Q = K. That is
limt→+∞ φ(t) = K. This completes the proof of the theorem.

We now use a variant of Theorem 1.3 to investigate the competitive system
(1.1), under different assumptions on the parameters as in Part A. We will
assume:

[P2]
a2

c2
<
a1

c1
,

[P3]
a2

b2
<
a1

b1
.
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Figure 5.1.4: Traveling wave connecting (0, a2c2 ) and (a1b1 , 0).

Recall [P2] was introduced in Part A. Under conditions [P2] and [P3], the two
straight lines ai−biu−civ = 0, i = 1, 2 do not intersect in the first quadrant. Un-
der another additional assumption, we will use a variant of Theorem 1.3 to prove
the existence of traveling wave solution of the form (u(

√
a1
d x+ ca1t), v(

√
a1
d x+

ca1t)) connecting the steady-states (0, a2c2 ) and (a1b1 , 0) as
√

a1
d x+ca1t moves from

−∞ to ∞. This means that the first species move from extinction to carrying
capacity, while the second species move from carrying capacity to extinction.
(See Fig. 5.1.4.) We call such traveling waves exclusive in Theorem 1.4 below.

Lemma 1.6. Consider system (1.1) under hypotheses [P2] and [P3]. The
change of variables (1.2), (1.4) with q satisfying (1.5) transforms (1.1) into
system (1.6). The parameters in (1.6) are related to those in (1.1) by (1.7).
The parameters r, ε1, ε2 and b satisfy the inequalities in (1.49) below:

(1.49) 0 < ε1 < b, 0 < r < 1, ε2 > 0.

Note that the relation between ε1 and b is now different from (1.8) because of
the different hypotheses. One can readily verify that if (w(x̃, τ), z(x̃, τ)) is a
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solution of (1.6), then
(1.50)

(u(x, t), v(x, t)) = (u(
√

d

a1
x̃, a−1

1 τ), v(
√

d

a1
x̃, a−1

1 τ)) = (kw(x̃, τ), qz(x̃,τ))

is a solution of (1.1), where k, q are described in (1.4), (1.5). We will look for
solution of (1.6) with the form (w(x̃, τ), z(x̃, τ)) = (w(ξ), z(ξ)), ξ = x̃+cτ , where
c > 0, satisfying

(1.51)




limξ→−∞(w(ξ), z(ξ)) = (0,
1

1 + ε2
),

limξ→∞(w(ξ), z(ξ)) = (1, 0).

Relating back to (1.6), we are thus looking for solutions of

(1.52)
−wξξ + cwξ = w(1 − w − rz),

−∞ < ξ <∞
−zξξ + czξ = z(ε1 − bw − ε1(1 + ε2)z),

with boundary conditions (1.51).

Theorem 1.4 (Exclusive Traveling Waves for Competing Species).
Under hypotheses [P2], [P3] and

[P4] b2
b1

+ c1a2
c2a1
≤ 1 + a2

a1
,

system (1.1) has a traveling wave solution of the form:

(1.53) (u(x, t), v(x, t)) = (kw(
√
a1

d
x+ ca1t), qz(

√
a1

d
x+ ca1t))

for any c ≥ 2
√

1− c1a2
c2a1

. Here (w, z) is a function of one single variable ξ

satisfying (1.52) for −∞ < ξ < ∞, and (1.51) as ξ → ±∞. Moreover, w(ξ)
and z(ξ) are positive monotonic functions for −∞ < ξ <∞.

Remark 1.4. Note that in Theorem 1.4, we have

(1.54)
limt→−∞(u(x, t), v(x, t)) = (0, a2c2 ),

limt→+∞(u(x, t), v(x, t)) = (a1b1 , 0).

Proof. First, we note that from (1.7), no matter how q is chosen in the interval
described in (1.5), we always have the relation:

1− r

1 + ε2
= 1− c1a2

a1c2
.
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We begin by transforming (1.11) or (1.52) into (1.16) by the change of variable
(1.15) as in the proof of Theorem 1.1. The system (1.16) is now monotone for
0 ≤ u1, 0 ≤ u2 ≤ 1

1+ε2
. We now modify the proof of Theorem 1.1 by defining

Y (ξ) to be the increasing function satisfying:

(1.55) −Yξξ + cYξ = (1− r

1 + ε2
)Y (1− Y )

for −∞ < ξ < ∞ with limξ→−∞ Y (ξ) = 0, limξ→∞ Y (ξ) = 1. Such solution
Y (ξ) exists for c ≥ 2

√
1− c1a2

a1c2
, by the choice of 1− r

1+ε2
as explained above and

the results in [106]. We now construct a new pair of coupled upper solutions for
the system (1.16). Define

ū1(ξ) = Y (ξ) , ū2(ξ) =
1

1 + ε2
Y (ξ).(1.56)

For 0 ≤ u2 ≤ ū2(ξ), we readily verify that

(1.57)

−ū′′1(ξ) + cū′1(ξ)− ū1(
1 + ε2 − r

1 + ε2
− ū1 + ru2)

= (1− r

1 + ε2
)ū1(1− ū1)− ū1(1− r

1 + ε2
− ū1 + ru2)

= ū1

{
(1− r

1 + ε2
)(1 − ū1)− 1 +

r

1 + ε2
+ ū1 − ru2

}

= ū1

{
r

1 + ε2
ū1 − ru2

}

≥ ū1

{
r

1 + ε2
ū1 − rū2

}
≡ 0

for all −∞ < ξ <∞. For 0 ≤ u1 ≤ ū1(ξ), one verifies

(1.58)

−ū′′2(ξ) + cū′2(ξ)− (
1

1 + ε2
− ū2)(bu1 − ε1(1 + ε2)ū2)

=
1

1 + ε2
{−Y ′′ + cY ′ − (1− Y )(bu1 − ε1Y )}

=
1

1 + ε2

{
(1− r

1 + ε2
)Y (1− Y ) + (1− Y )(ε1Y − bu1)

}

≥ 1
1 + ε2

(1− Y )
{

(1− r

1 + ε2
)Y + ε1Y − bY

}

=
1

1 + ε2
(1− Y )Y

{
1− r

1 + ε2
+ ε1 − b

}
≥ 0.
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The last inequality is true provided b < 1 − r
1+ε2

+ ε1, which is valid due to
hypothesis [P4].

We next construct quasi-lower solution for the system (1.16) in the sense
described in Definition 1.1. Actually the quasi-lower solution will even be in
C2(R), and is really a lower solution. We define Z(ξ) to be the increasing
function satisfying:

(1.59) −Zξξ + cZξ = (1− r

1 + ε2
)Z(1− 1− lr

1+ε2

1− r
1+ε2

Z)

for −∞ < ξ < ∞ with limξ→−∞Z(ξ) = 0, limξ→∞Z(ξ) =
1− r

1+ε2

1− lr
1+ε2

. Here l is

some number in the interval (0, 1) to be determined. One can readily verify that
the solutions of (1.55) and (1.59) are related by the following

(1.60) Z(ξ) =
1− r

1+ε2

1− lr
1+ε2

Y (ξ), ξ ∈ R.

Since 0 < l < 1, we have

(1.61) Z(ξ) < Y (ξ), ξ ∈ R.

We define the quasi-lower solutions of (1.16) by setting

(1.62) ũ1 = Z, ũ2 =
l

1 + ε2
Z,

where l ∈ (0, 1) is to be determined. We readily verify that they satisfy

(1.63)

−ũ′′1(ξ) + cũ′1(ξ)− ũ1(
1 + ε2 − r

1 + ε2
− ũ1 + rũ2)

= Z

{
(1− r

1 + ε2
)− (1− lr

1 + ε2
)Z − (

1 + ε2 − r
1 + ε2

) + Z − rl

1 + ε2
Z

}

= 0.

Moreover, we have
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(1.64)

−ũ′′2(ξ) + cũ′2(ξ)− (
1

1 + ε2
− ũ2)(bũ1 − ε1(1 + ε2)ũ2)

=
l

1 + ε2
Z

{
1− r

1 + ε2
− (1− lr

1 + ε2
)Z
}
− (

1
1 + ε2

− l

1 + ε2
Z) {bZ − ε1lZ}

=
l

1 + ε2
Z

{
(1− Z)− r( 1

1 + ε2
− l

1 + ε2
Z)
}

−(
1

1 + ε2
− l

1 + ε2
Z) {bZ − ε1lZ}

≤ (
1

1 + ε2
− l

1 + ε2
Z)
{
− rl

1 + ε2
Z − bZ + ε1lZ

}
+ (1− lZ)

lZ

1 + ε2

= (
1

1 + ε2
− l

1 + ε2
Z)
{
− rl

1 + ε2
− b+ ε1l + l

}
Z

≤ 0.

The last inequality is valid provided that

(1.65) 0 < l ≤ min. {1, b

1 + ε1 − r
1+ε2

}.

Now we apply a slight variant of Theorem 1.3, with

(1.66)



F̃1(ρ1, ρ2) = ρ1(1+ε2−r

1+ε2
− ρ1 + rρ2),

F̃2(ρ1, ρ2) = ( 1
1+ε2

− ρ2)(bρ1 − ε1(1 + ε2)ρ2)

for equation (1.28), β = diag.(δ, δ), δ any positive constant for (1.29), K =
(1, 1

1+ε2
), ρ̃(t) = (Z(t), l

1+ε2
Z(t)), and ρ̄(t) = (Y (t), 1

1+ε2
Y (t)), t ∈ R, as de-

scribed above. A slight variant is needed because [A1] is not true, with the
additional zero of F̃ at (0, 1

1+ε2
) between 0 and K. By means of the iter-

ative procedure in the proof of Theorem 1.3 we obtain a solution of (1.16)
φ(t) := (u1(t), u2(t)), satisfying the inequality (1.43). From the comparison
argument with ρ̄(t) in the proof of Theorem 1.3, we have

lim
t→−∞u1(t) = lim

t→−∞u2(t) = 0.

Again, by the limit and comparison argument in the proof of Theorem 1.3, we
obtain

(1.67) lim
t→∞ui(t) = Qi, i = 1, 2, and F̃ (Q1, Q2) = 0,
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where
(1.68)

0 < lim
t→∞Z(t) ≤ Q1 ≤ K1 = 1, 0 < lim

t→∞
l

1 + ε2
Z(t) ≤ Q2 ≤ K2 =

1
1 + ε2

.

From (1.66), (1.67) and (1.68), we conclude that we must have

(1.69) Q1 = K1 = 1, Q2 = K2 =
1

1 + ε2
.

Relating the solutions of (1.16), (1.11) and (1.1), we obtain the assertions of the
theorem.

Example 1.1. Note that by hypotheses [P2] and [P3], we have 1 − c1a2
a1c2

> 0.
In case [P2] and [P3] are satisfied for the system (1.1), the additional hypothesis
[P4] will always be satisfied by reducing all the coefficients (except d) of the
second equation by the same factor, while holding the first equation unchanged.
As an indication, the system

ut = duxx + u(5− 3u− 3v), vt = dvxx + v(0.15 − 0.1u− 0.1v)

satisfies all the hypotheses [P2],[P3] and [P4]. From Theorem 1.4, we obtain
traveling waves with wave speed c ≥ 2/

√
10.

From the comparison relation (1.43) in Theorem 1.3, used in proving Theo-
rem 1.4, we actually obtain the following result with more accurate description
of the asymptotic behavior of the traveling wave solution for system (1.1) at
±∞.

Corollary 1.5 (Asymptotic Rates of the Traveling Waves). Under hy-
potheses [P2], [P3] and [P4], system (1.1) has a traveling wave solution of the
form (1.53) for any c ≥ 2

√
1− c1a2

c2a1
. Here (w, z) is a function of one single

variable ξ satisfying (1.11) or (1.52) for −∞ < ξ <∞, and (1.51) as ξ → ±∞.
Moreover, w(ξ) and z(ξ) are positive monotonic functions for −∞ < ξ < ∞,
satisfying

(1.70)
0 < Z(ξ) ≤ w(ξ) ≤ Y (ξ),

0 < l
1+ε2

Z(ξ) ≤ 1
1+ε2

− z(ξ) ≤ 1
1+ε2

Y (ξ).

Here Y (ξ) is the solution of (1.55) with limξ→−∞ Y (ξ) = 0, limξ→∞ Y (ξ) = 1;

and Z(ξ) is a solution of (1.59) with limξ→−∞Z(ξ) = 0, limξ→∞Z(ξ) =
1− r

1+ε2

1− lr
1+ε2

,

with l satisfying (1.65).

Remark 1.5. Recently, correction for [234] is published in [235]. It is found
that the “lower” solution require more stringent smoothness than just continuity
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(i.e. C0), as initially described in [234]. Such correction has been included in
the presentation for Theorem 1.3 in Part B above. Note that we assume in
Theorem 1.3 that the “quasi-lower” solution is in C1. Unfortunately, the original
result in [234] was used to obtain upper and lower bound of the traveling wave
solutions in [136] and [90]. Such bounds lead to asymptotic estimate of the
traveling wave at ±∞, and eventually to the stability (with a shift) result in
an appropriate weighted Banach space in [136]. The needed correction for [234]
would necessitate modification of proof in [136] in order to obtain stability (with
a shift) result. In order to retain the upper and lower estimate and the stability
result just mentioned for [136], it suffices to re-construct a C1 lower-solution
or one with some additional condition of its derivative at t = 0 as described
in [235]. So far this problem remains unsolved. Note that although we have
C2 upper-lower solutions above in Theorem 1.4 and Corollary 1.5, Part B, the
hypothesis [P4] in Theorem 1.4 is different from the additional hypothesis called
[H3] in Corollary 2.3 of [136], used for stability analysis of traveling wave in [136].
Theorem 1.4 is thus an adjustment of the result in [136]. On the other hand,
the theory presented in Part A does not use any nonsmooth lower solution, and
no correction from the original is necessary.

5.2 Positive Solutions for Systems of Wave Equations

and Their Stabilities

Nonlinear hyperbolic systems of partial differential equations arise in the study
of physics and mechanics as the coupled sine-Gordon equations (see e.g. Temam
[217]). In Salvatori and Vitillaro [199], recent study is made by energy method
concerning the decay of the solutions for similar damped systems. This section
considers a system of nonlinear damped wave equations with symmetric linear
part. This can be called a coupled system of many vibrating strings. We will find
that a positive steady-state bifurcates from the trivial solution as a parameter
changes. The spectrum of the linearized operator is studied. Then the stability
of the positive steady-state is considered as a solution of the nonlinear hyperbolic
system. Asymptotic stability results are found for solutions in RN , for some N ≥
1. Bifurcation methods are used to find the steady-states; semigroup methods
and local bifurcation analysis are used to study stability. Stability results are
obtained although the semigroup is not analytic.

More precisely, we consider the positive steady-state solutions and their sta-
bilities for the following nonlinear system of damped wave equations:

(2.1)



utt + βut = ∆u+ λB(x)u+ λG(u)u for (x,t) ∈ Ω× [0,∞),

u = 0 for (x,t) ∈ ∂Ω× [0,∞).
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Here, u = col.(u1, . . . , un), β > 0, λ is a real parameter, G = [gij ] is an n × n
matrix function with each entry in C2(Rn) and gij(0, . . . , 0) = 0 for i, j =
1, . . . , n. Ω is a bounded domain in RN , with boundary ∂Ω of class C2+µ, 0 <
µ < 1. The n× n matrix B(x) = [bij(x)] is assumed to satisfy

[H1] B(x) is a real symmetric matrix, with each entry bij(x) in Cµ(Ω̄),
0 < µ < 1, and non-negative in Ω̄.

[H2] There is a permutation {r1, r2, . . . , rn} of {1, 2, . . . , n} such that br1r2 �≡
0, br2r3 �≡ 0, ..., brn−1rn �≡ 0, and brnr1 �≡ 0 in Ω̄.

(The hypothesis [H1] will be modified to [H1∗] below such that the diagonal
entries of B(x) may change sign). Nonlinear hyperbolic systems of similar nature
arise in the study of physics and mechanics as the coupled sine-Gordon equations.
This section follows the presentation in Leung [127]. The development can
be considered as an extension of the scalar results in Webb [230], where both
n = N = 1, to systems with symmetric linear part.

We first show that a positive steady-state bifurcates from the trivial solution
as the parameter λ changes. Moreover, the corresponding elliptic system is
linearized at the positive steady-state and the spectrum of the linear operator
is investigated under appropriate conditions on the nonlinear terms. Next, the
stability of the positive steady-state is considered as a solution of hyperbolic
problem (2.1). Note that the corresponding semigroup here is not analytic, and
the stability theorem in Henry [84] (i.e. Theorem A4-11 in Chapter 6) does not
apply. The stability results here will be shown to be applicable to solutions in
R1 by means of Morrey’s inequality, and to solutions in R3 or R4 by means
of Gagliardo-Nirenberg-Sobolev inequality (cf. Evans [57]). Finally, positive
steady-state is found for λ = 1 by means of global bifurcation, under further
assumptions.

For convenience, we will adopt the following conventions. Let E := {w
= col.(w1, . . . , wn) : wi ∈ C1(Ω̄), wi = 0 on ∂Ω, i = 1, . . . , n}, P := {w =
col.(w1, . . . , wn) ∈ E : wi ≥ 0 in Ω̄, i = 1, . . . , n}, and Y := {w = col.
(w1, . . . , wn) : wi ∈ C2+α(Ω̄), wi = 0 on ∂Ω, i = 1, . . . , n}.

We first proceed to show that as the parameter λ passes a certain eigenvalue
of the linearized system, a positive steady-state bifurcates from the trivial solu-
tion, using the theory of Crandall and Rabinowitz [33] Then, we will analyze the
spectrum of the elliptic part of the operator equation linearized at the positive
steady-state. The spectral analysis is quite different from those in Chapter 2,
because the system (2.1) here involves two time derivatives.

For convenience, we define the operator Lq with n components as: Lq ≡
(−∆ + q1(x), . . . ,−∆ + qn(x)), where qi(x), i = 1, . . . , n are any non-negative
functions in Cµ(Ω̄).
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Theorem 2.1. Under hypotheses [H1] and [H2], there exists (λ0, u
0) ∈ R× Y,

such that

(2.2) Lq[u0] = λ0Bu
0 in Ω, u0 = 0 on ∂Ω,

with λ0 > 0, and each component u0
i > 0 in Ω, ∂u0

i /∂ν < 0 on ∂Ω for i =
1,...,n. Furthermore, the eigenfunction corresponding to the eigenvalue 1/λ0 for
the operator L−1

q B : [C1(Ω̄)]n → [C1(Ω̄)]n is unique up to a multiple. Also, the
number λ = λ0 is the unique positive number so that the problem u = λL−1

q Bu
has a nontrivial non-negative solution for u ∈ P.
Proof. The operator L−1

q B is completely continuous and positive with respect
to the cone P . By means of Theorem 2.5 in Krasnosel’skii [108] (i.e. Theorem
A3-10 in Chapter 6) we can obtain a nontrivial u0 ∈ P such that L−1

q Bu0 = ρ0u
0

for some ρ0 > 0 (i.e. (2.2), with λ0 = 1/ρ0). By the nonnegativity of all entries
of B and hypothesis [H2], we show with maximum principle that u0

i > 0 in Ω
and ∂u0

i /∂ν < 0 on ∂Ω for each i = 1, . . . , n. By using a comparison principle for
systems (Lemma 6.1 in Section 2.6), we can show in the same way as Theorem
6.1 in Section 2.6 that eigenfunctions corresponding to the eigenvalue 1/λ0 for
the operator L−1

q B is unique up to a multiple, and λ0 is the unique positive
number with a non-negative eigenfunction as described above.

For a more general situation, we will allow the diagonal entries of B(x)
to change sign. For i = 1, . . . , n, let bii(x) = b+ii (x) + b−ii (x), where b+ii (x) =
max{bii(x), 0} and b−ii (x) = min{bii(x), 0}. We introduce following hypothesis:

[H1∗] B(x) is a real symmetric matrix with each entry bij(x) in Cµ(Ω̄). For
all i �= j, bij is non-negative in Ω̄, and there exists an integer k, 1 ≤ k ≤ n,
such that b+kk(x) �≡ 0 in Ω̄.

The following is an extension for Theorem 2.1.

Theorem 2.2. Under hypotheses [H1∗] and [H2], there exists (λ̂0, v
0) ∈ R× Y

such that

(2.3) −∆v0 = λ̂0B(x)v0 in Ω, v0 = 0 on ∂Ω,

with λ̂0 > 0, each component v0
i > 0 in Ω and ∂v0

i /∂ν < 0 on ∂Ω for i =
1, ..., n. Furthermore, the eigenfunction corresponding to the eigenvalue 1/λ̂0 for
the operator (−∆)−1B : [C1(Ω̄)]n → [C1(Ω̄)]n is unique up to a multiple..

Proof. We will use Theorem 2.1 to prove this theorem. For convenience, define
B̃ = {b̃ij(x)} to be the n× n matrix function on Ω̄ as follows:
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b̃ij(x) = bij(x) if i �= j, b̃ii(x) = b+ii (x)

for i, j = 1, . . . , n, x ∈ Ω̄. For each λ ≥ 0, define the n component vector operator

L̃λ ≡ (−∆− λb−11(x),−∆− λb−22(x), . . . ,−∆− λb−nn(x)),

and consider the eigenvalue problem

(2.4) L̃λu = ρB̃u in Ω, u|∂Ω = 0,

with eigenvalue ρ. Since B̃ satisfies the conditions in Theorem 2.1, the problem
(2.4) has a unique positive solution ρ = ρ̂(λ), with corresponding eigenfunction
uλ whose components are all positive in Ω.

To proceed with the proof, we need the following two lemmas.

Lemma 2.1. Under the hypotheses of Theorem 2.2, the function ρ̂(λ) is bounded
for all λ ∈ [0,∞).

Proof. By hypothesis [H1∗], there is an open set D in Ω with its closure in Ω,
such that bkk = b+kk in D for some k. Let Φ be a nontrivial C∞ function with
compact support contained in D. We clearly have

∫
D bkkΦ

2dx > 0. Let uλ be as
described above, and set wλ(x) = ln(uλ)k(x) for x ∈ Ω. Thus we have in D that

−∆wλ −
N∑
i=1

(∂(wλ)/∂xi)2 = [1/(uλ)k][−∆(uλ)k − b−kk(x)(uλ)k]

= [ρ̂(λ)/(uλ)k]
n∑
j=1

b̃kj(x)(uλ)j ≥ bkk(x)ρ̂(λ).

Multiplying by Φ2 and integrating over D by parts on the left, we obtain
∫
D
< Φ∇wλ, 2∇Φ − Φ∇wλ > dx ≥ ρ̂(λ)

∫
D
bkkΦ2dx.

From this we deduce
∫
D < ∇Φ,∇Φ > dx∫

D bkkΦ
2 dx

≥ ρ̂(λ) > 0

for all λ ∈ [0,∞).

Lemma 2.2. Under the hypotheses of Theorem 2.2, the function ρ̂(λ) defined
for problem (2.4) is continuous for λ ∈ [0,∞).
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The proof of the two lemmas above are similar to that for Lemmas 6.2 and 6.3
in Section 2.6. Further details will thus be omitted.

To complete the proof of Theorem 2.2, we solve the equation ρ̂(λ) − λ = 0
for λ = λ̂0 as described in (2.3). The solution of the equation must exist due
to the properties of ρ̂(λ) described in Lemmas 2.1 and 2.2. The uniqueness of
eigenfunction up to a multiple for the eigenvalue 1/λ̂0 follows from (2.4) and
Theorem 2.1.

Note that the pair (λ̂0, v
0) in Theorem 2.2 also satisfies

(2.5) −∆v0 = λ̂0B
T (x)v0,

since B = BT . For convenience, we define an operator F : R+ × E → E by

(2.6) F (λ, u) := u− λ(−∆)−1[B +G(u)]u for (λ, u) ∈ R+ × E.

The steady-state solution of (2.1) can be written as

(2.7) F (λ, u) = 0.

Defining operators

L0 : E → E by L0 := I − λ̂0(−∆)−1B,

L1 : E → E by L1 := ∆−1B, and

G̃ : R+ × E → E by G̃(λ, u) := λ∆−1[G(u)u],

equation (2.7) becomes

(2.8) L0u+ (λ− λ̂0)L1u+ G̃(λ, u) = 0, for (λ, u) ∈ R+ × E.

As in Section 2.6, we readily obtain the following.

Lemma 2.3. Under the hypotheses of Theorem 2.2, the null space and range of
L0, denoted respectively by N(L0) and R(L0), satisfy:
(i) N(L0) is one-dimensional, spanned by v0;
(ii) dim[E/R(L0)] = 1;
(iii) L1v

0 �∈ R(L0).

Applying the bifurcation theorem in Crandall and Rabinowitz [33] or Theo-
rem A1-3 in Chapter 6, we obtain the following.
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Theorem 2.3 (Bifurcation of Steady-States). Assume hypotheses [H1∗],
[H2] and each entry of G is in C2(Rn). Then the point (λ̂0, 0) is a bifurcation
point for the problem (2.7). Moreover, there exists a δ > 0 and a C1-curve
(λ̂(s), φ̂(s)) : (−δ, δ)→ R×E with λ̂(0) = λ̂0, φ̂(0) = 0, such that in a neighbor-
hood of (λ̂0, 0), any solution of (2.7) is either of the form (λ, 0) or on the curve
(λ̂(s), s[v0 + φ̂(s)]) for |s| < δ, where s[v0 + φ̂(s)] > 0 in Ω. (Here, (λ̂0, v

0) is
described in Theorem 2.2).

We next investigate the spectrum of the linearized equation at the solution
on the bifurcation curve described in Theorem 2.3. We observe that by further
application of the theory in Crandall and Rabinowitz [33], we can assert that
there exists δ1 ∈ (0, δ) and two functions (σ(.), z(.)) : (λ̂0− δ1, λ̂0 + δ1)→ R×E,
and (η(.), h(.)) : [0, δ1)→ R×E with (σ(λ̂0), z(λ̂0)) = (η(0), h(0)) = (0, v0) such
that

D2F (λ, 0)z(λ) = σ(λ)∆−1(z(λ)), and

D2F (λ̂(s), s[v0 + φ̂(s)])h(s) = η(s)∆−1(h(s)).

Here, σ(λ) and η(s) are respectively ∆−1-simple eigenvalues with eigenfunctions
z(λ) and h(s). The theory in [33] leads to the following.

Lemma 2.4. Assume all the hypotheses in Theorem 2.3. There exists ρ > 0
such that for each s ∈ [0, δ1), there is a unique (real) eigenvalue η(s) for the
linear operator

(2.9) F ∗
s := ∆D2F (λ̂(s), s[v0 + φ̂(s)]) : Y → [Cµ(Ω̄)]n

satisfying |η(s)| < ρ with eigenfunction h(s) ∈ Y. That is,

(2.10) F ∗
s h(s) ≡ ∆[h(s)] + λ̂(s)[B +G(us) +Gu(us)us]h(s) = η(s)h(s),

where us := s[v0 + φ̂(s)]. Here Gu(us)us denotes the n × n matrix whose i-th
column is {∂G/∂ui}(us)us.

In order to determine the signs of the real part of the eigenvalues we need
additional assumptions.

Lemma 2.5. Assume all the hypotheses of Theorem 2.3. Suppose further that

[H3] {∂gij/∂uk}(0) ≤ 0 for all i, j, k = 1, ..., n with at least one
inequality being strict.

Then the function λ̂(s) satisfies λ̂′(0) > 0.
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Proof. Theorem 2.3 asserts that λ̂′(0) exists; moreover, for s ∈ [0, δ), we have

∆s[v0 + φ̂(s)] + λ̂(s)B(x)s[v0 + φ̂(s)] + λ̂(s)G(s[v0 + φ̂(s])s[v0 + φ̂(s)] = 0.

Dividing by s, then differentiating with respect to s and setting s = 0, we obtain

∆φ̂′(0) + λ̂′(0)B(x)v0 + λ̂0B(x)φ̂′(0) + λ̂0
d

ds
G(s[v0 + φ̂(s)])|s=0v

0 = 0.

Multiplying by (v0)T and integrating by parts over Ω, we find

λ̂′(0) =
−λ̂0

∫
Ω(v0)T d

dsG(s[v0 + φ̂(s)])|s=0v
0dx∫

Ω(v0)TBv0dx

=
−λ̂0

∫
Ω(v0)T [

∑n
i=1 v

0
i
∂G
∂ui

(0)]v0dx

(1/λ0)
∫
Ω |∇v0|2dx > 0.

The last inequality is due to hypothesis [H3].

Lemma 2.6. Under all the hypotheses of Theorem 2.3. The function σ(λ)
satisfies σ′(λ̂0) > 0.

The proof of the last lemma is similar to that for Lemma 6.3 in Section 2.6,
while using the additional fact that B = BT here. The details will be omitted.

Lemma 2.7. Under all the hypotheses of Theorem 2.3, and [H3], there exists
δ2 ∈ (0, δ1) such that η(s) < 0 for all s ∈ (0, δ2).

Proof. From Theorem 1.16 in [33], we find −sλ̂′(s)σ′(λ̂0) and η(s) have the
same sign for s > 0 near 0. The conclusion follows from Lemmas 2.5 and 2.6
above.

The linearized eigenvalue problem for (2.7) at the bifurcating solution u =
s[v0 + φ̂(s)] is precisely (2.10). When s = 0, λ = λ̂(0) = λ̂0, the eigenvalue
problem corresponding to (2.10) becomes

(2.11) ∆[h] + λ̂0Bh = ηh, h ∈ Y,
where η is the eigenvalue. Under hypotheses [H1∗] and [H2], Theorem 2.2 asserts
that η = 0 is an eigenvalue for (2.11) with positive eigenfunction. Using this
property and the fact that the off-diagonal terms of B are all non-negative, we
can show the following, as in Leung and Ortega [138].

Lemma 2.8. Under hypotheses [H1∗] and [H2], all eigenvalues in equation
(2.11) except η = 0 satisfies Re(η) < −r for some positive number r.

Theorem 2.4. Under the hypotheses of Theorem 2.3 and [H3], there exists
a number δ∗ ∈ (0, δ) and a positive function η̂(s) for s ∈ (0, δ∗) such that the
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real parts of all the numbers in the point spectrum of the linear operator F ∗
s are

contained in the interval (−∞,−η̂(s)), for s ∈ (0, δ∗). (Here, δ is described in
Theorem 2.3 and F ∗

s is described in (2.9) in Lemma 2.4).

The proof of Lemma 2.8 is the same as the proof of Lemma 2.8 in [138];
and the proof of Theorem 2.4, using the assertions in Lemmas 2.4 to 2.8 and
perturbation arguments, is the same as Theorem 2.2 in [138]. The details are
thus omitted. More details of proof of lemmas and theorems similar to those in
this section can also be found in Section 2.6.

We are now ready to discuss the stability of the positive steady-states found
in Theorem 2.3 with respect to the original system (2.1) of damped wave equa-
tions. For each s ∈ (0, δ∗), the function us := s[v0 + φ̂(s)] described in Theorem
2.3 and Lemma 2.4 can be considered as a steady-state solution of (2.1) with
λ = λ̂(s). We now consider the time asymptotic stability of this steady state as
a solution of the system of hyperbolic equations (2.1). We convert (2.1) into a
first order system by letting

(2.12)



∂ui/∂t = vi i = 1, . . . , n,

∂vi/∂t = ∆ui − βvi + λ
∑n

j=1[bij(x) + gij(u1, . . . , un)]uj .

Let J(us(x)) be the linearization of G(u)u (i.e. ∂[G(u)u]/∂u) evaluated at u =
us. For convenience, define B̄(us(x)) := B(x) + J(us(x)) and let b̄ij denotes the
ij-th entry of B̄(us(x)). The system (2.12) linearized at us and λ = λ̂(s) can be
written in the form

(2.13) ∂ξ/∂t = Asξ

where ξ = col.(û1, v̂1, . . . ., ûn, v̂n), and As is the differential linear operator on
the 2n components of ξ as follows:

As =



As11 . . . . . . A

s
1n

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
Asn1 . . . . . . A

s
nn


 , where Asij are 2× 2 blocks,

Asii =

[
0 1

∆ + λ̂(s)b̄ii −β

]
, Asij =

[
0 0

λ̂(s)b̄ij 0

]

for i �= j, i, j = 1, ..., n. Here, each Asij can be considered as an operator from
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[H2(Ω)
⋂
H1

0 (Ω)]×H1
0 (Ω) into H1

0 (Ω)×L2(Ω). Direct calculation shows that if
θ is an eigenvalue of As, then θ2 + βθ is an eigenvalue of F ∗

s . That is, if

Asξ̄ = θξ̄ for some ξ̄ ∈ ([H2(Ω)
⋂
H1

0 (Ω)]×H1
0 (Ω))n, then

∆ū+ λ̂(s)B̄(us)ū = (θ2 + βθ)ū

where ξ̄ = col(ū1, v̄1, . . . , ūn, v̄n) and ū = col(ū1, . . . , ūn). In order to obtain the
stability of the steady-state us, we will impose an additional assumption:

[H4] B̄(us(x)) is symmetric in Ω̄ for each s ∈ (0, δ∗).

By Theorem 2.4 and hypotheses [H4], as an operator on Y , the eigenvalues of
F ∗
s = ∆ + λ̂(s)B̄(us) are all strictly negative for s ∈ (0, δ∗). However, the eigen-

values of ∆+ λ̂(s)B̄(us) are the same, as an operator on Y or [H2(Ω)
⋂
H1

0 (Ω)]n.
Consequently, the eigenvalues θ of As, s ∈ (0, δ∗), satisfies

θ2 + βθ − η = 0,

where η are negative real numbers. Thus, the real parts of θ are all strictly
negative. The operator As generates a strongly continuous semigroup Ts(t) on

X := [H1
0 (Ω)× L2(Ω)]n,

with domain D(As) := ([H2(Ω)
⋂
H1

0 (Ω)]×H1
0 (Ω))n, (see e.g. [184]). Using the

fact that the real parts of θ are negative, we now show the following stability
result for the linearized system (2.13).

Theorem 2.5 (Stability of the Linearized Equations). Assume hypothe-
ses [H1∗], [H2], [H3] and each entry of G is in C2(Rn). Suppose further that
B̄(us(x)) is symmetric as described in [H4], then the semigroup of bounded lin-
ear operator Ts(t), 0 ≤ t <∞ , on X ( generated by As ) satisfies

‖ Ts(t) ‖≤Me−kt

for some positive constants M and k, which may depend on s.

Proof. Let p be a large enough positive constant such that

yT [λ̂(s)B̄(us(x)) − pI]y ≤ −ω(yT .y)

for all s ∈ (0, δ∗), x ∈ Ω̄, where ω is a positive constant. Define the operator
S := −(∆ + λ̂B̄ − pI)−1 from [L2(Ω)]n into [L2(Ω)]n as follows. For each f ∈
[L2(Ω)]n, let g := S[f ] where g ∈ [H1

0 (Ω)]n ∩ [H2(Ω)]n, and << ∇g,∇h >>
+
∫
Ω h

T (−λ̂B̄ + pI)gdx =
∫
Ω h

T fdx for all h ∈ [H1
0 (Ω)]n. Here << >> is
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the real inner product in [L2(Ω)]nN . The operator S : [L2(Ω)]n → [L2(Ω)]n is
well-defined and compact by means of the Lax-Milgram Theorem and Sobolev
imbedding (cf. [57]). From the symmetric property of B̄, we can readily verify
that the operator S is symmetric as follows. Let f, h ∈ [L2(Ω)]n, g = S[f ], q =
S[h], and < > denotes the real inner product in [L2(Ω)]n. Then we have

< Sf, h > = < g,−(∆ + λ̂B̄ − pI)q > = < −∆g, q > + < g,−(λ̂B̄ − pI)q >

= < −∆g, q > + < −(λ̂B̄ − pI)g, q > = < f, q > = < f, Sh > .

From the theory of compact symmetric operators, we assert that there exists a
countable orthonormal basis of [L2(Ω)]n consisting of eigenfunctions of S. Direct
computation shows that if η is an eigenvalue of (∆ + λ̂B̄), then 1/(p − η) is an
eigenvalue of S. Theorem 2.4 and the additional assumption that B̄ is symmetric
thus imply that all the eigenvalues of S are of the form 1/(p+αi), with 0 < α1 <
α2 < . . . ,(note that αi depends on s). There exist corresponding eigenfunctions
{φm}∞m=1, which form an orthonormal basis in [L2(Ω)]n.

Let [H̃1
0 (Ω)]n denotes the real Hilbert space of functions in [H1

0 (Ω)]n with
inner product J̃ [g, q] := << ∇g,∇q >> +

∫
Ω q

T [−λ̂B̄+pI]g dx. We verify that

J̃ [φj , φk] =< −∆φj , φk > +
∫

Ω
φTk [−λ̂B̄ + pI]φj dx =< (αj + p)φj , φk > .

Thus {φm/(αm + p)1/2}∞m=1 form an orthonormal set in [H̃1
0 (Ω)]n. Further, the

identity

J̃ [φj , g] =
∫

Ω
gT [−∆φj − λ̂B̄ + pI]φj dx =< (αj + p)φj , g >

implies that if J̃ [φj , g] = 0 for each j = 1, 2 . . ., then we also have < φj, g >= 0.
This implies that {φm/(αm + p)1/2}∞m=1 form an orthonormal basis in [H̃1

0 (Ω)]n.
If û ∈ [H̃1

0 (Ω)]n, we can assert that the series

û =
∞∑
m=1

< û, φm > φm converges in [L2(Ω)]n,

and further

û =
∑∞

m=1 J̃ [û, φm/(αm + p)1/2]{φm/(αm + p)1/2}

=
∑∞

m=1(αm + p)1/2 < û, φm > {φm/(αm + p)1/2} =
∑∞

m=1 < û, φm > φm

actually converges in [H̃1
0 (Ω)]n.
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For φ ∈ D(As), let ŵ = ŵ(t;φ) := Ts(t)φ ∈ D(As), we know from semigroup
theory that dŵ/dt ∈ X for t > 0. That is, if we let ŵ = (û1, v̂1, . . . , ûn, v̂n), and
consider ûi as functions from [0,∞) into X, then dûi/dt ∈ H0

1 (Ω), and d2ûi/dt
2 ∈

L2. This implies that if we let û = col. (û1, . . . , ûn), v̂ = col (v̂1, . . . , v̂n) and
rm(t) := < û(t), φm >, then the series

dû/dt =
∞∑
m=1

r′m(t)φm converges in [H0
1 (Ω)]n, and

d2û/dt2 =
∞∑
m=1

r′′m(t)φm converges in [L2(Ω)]n,

for t > 0, where r′m(t) and r′′m(t) are the first and second derivatives of rm(t).
From semigroup theory and the structure of the operator As, we find that û(t)
satisfies

d2û/dt2 + βdû/dt = [∆ + λ̂(s)B̄(us)]û, for t > 0.

Taking inner product with φm, we obtain

(2.14) r′′m(t) + βr′m(t) = −αmrm(t) for t > 0, m = 1, 2, . . .

Denote φ := col.(g1, h1, . . . , gn, hn) ∈ D(As) = [(H2 ∩H1
0 )×H1

0 ]n, with

g =
∑∞

m=1 < g, φm > φm

=
∑∞

m=1(αm + p)1/2 < g, φm > [φm/(αm + p)1/2] in [H1
0 (Ω)]n,

h =
∑∞

m=1 < h, φm > φm in [L2(Ω)]n.

Let Ts(t)φ := col (û1, v̂1, . . . , ûn, v̂n). From (2.14), we find

rm(t) =< g, φm > ym(t) + < h, φm > zm(t),

r′m(t) =< g, φm > y′m(t) + < h, φm > z′m(t)

where ym(t) and zm(t) satisfy the same equations for rm(t) in (2.14), with initial
conditions:

ym(0) = 1, y′m(0) = 0 and zm(0) = 0, z′m(0) = 1.

For those m with 4αm > β2, we have

(2.15)



ym(t) = e−βt/2 cos(4αm − β2)1/2t/2,

zm(t) = 2(4αm − β2)−1/2e−βt/2 sin(4αm − β2)1/2t/2.
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Expanding û in [H̃1
0 (Ω)]n, and using (2.15) for all large m, we find

‖ û ‖H̃1=
∞∑
m=1

[< g, φm > ym(t) + < h, φm > zm(t)]2(αm + p)

≤ K̂e−εt{
∞∑
m=1

< g, φm >2 (αm + p) +
∞∑
m=1

< h, φm >2},

‖ v̂ ‖L2=
∑∞

m=1[< g, φm > y′m(t) + < h, φm > z′m(t)]2

≤ K̂e−εt{
∞∑
m=1

< g, φm >2 (αm + p) +
∞∑
m=1

< h, φm >2},

for some positive constants K̂ and ε. Since [H̃1
0 (Ω)]n and [H1

0 (Ω)]n are equiva-
lent, we obtain

‖ Ts(t)φ ‖X ≤Me−εt ‖ φ ‖X
for all φ in D(As). Since D(As) is dense in X, the proof of Theorem 2.5 is
complete.

If (u1(t), v1(t), . . . , un(t), vn(t)) is a solution of (2.12), then its difference with
the steady-state, i.e. col.(w1(t), w2(t), . . . , w2n(t)):= col.(u1(t), v1(t), . . . , un(t),
vn(t))− col.((us)1, 0, . . . , (us)n, 0), can be interpreted as a solution of:

(2.16)
dw

dt
= Asw + λ̂(s)γ(w), w = col.(w1, w2, . . . , w2n),

where γ(w) := col.(0, z1(w̃), 0, z2(w̃), . . . , 0, zn(w̃)), w̃ = col.(w̃1, w̃2, . . . , w̃n) :=
col.(w1, w3, . . . , w2n−1), z = (z1(w̃), z2(w̃), . . . , zn(w̃)) := [G(us + w̃)(us + w̃) −
G(us)us − J(us)w̃].

We now clarify some terminologies and hypotheses which we will be using.
A function h : X → X is said to satisfy a local Lipschitz condition if for every
constant c ≥ 0, there is a constant L(c) such that

‖ h(w∗)− h(w∗∗) ‖X ≤ L(c) ‖ w∗ − w∗∗ ‖X
holds for all w∗, w∗∗ ∈ X with ‖ w∗ ‖X ≤ c and ‖ w∗∗ ‖X ≤ c. The function
γ(w) described above is said to satisfy property [P ] if

[P ] ‖ z(w̃) ‖L2(Ω)]n = o(‖ w̃ ‖H1(Ω)]n), as ‖ w̃ ‖H1(Ω)]n tends to 0.

Remark 2.1. Since the norm in X uses the L2-norm of the even components
and the entries of G(u) is in C2(Rn), it can be readily verified by using Sobolev
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embedding or Morrey’s inequality that the function γ : X → X satisfies a local
Lipschitz condition, in the case N = 1. By Theorem 1.4 of Chapter 6 in Pazy
[184], equation (2.16) has a unique mild solution w on [0, tmax), for every given
initial condition: w(0) = w0 ∈ X. Moreover, if tmax < ∞ then ‖ w(t) ‖X→ ∞,
as t→∞.

Remark 2.2. Using the assumption that the entries of G are in C2 and Sobolev
embedding again, we can readily verify that in the case N = 1, the function γ(w)
described above satisfies property [P ].

Remark 2.3. The even components of γ(w) are expressed by z(w̃), where w̃ is
an n-vector function consisting of the odd components of w. Careful calculations
shows that the j-th component, 1 ≤ j ≤ n, of z(w̃) can be written as:∑n

k=1(us)k < ∇gjk(us + τ∗jkw̃)−∇gjk(us), w̃ >

+
∑n

k=1 w̃k(gjk(us + w̃)− gjk(us))

=
∑n

k=1(us)k
∑n

i=1 < (∇(∂gjk/∂ui)(us + τ∗∗jk w̃), τ∗jkw̃ > w̃i

+
∑n

k=1 w̃k < (∇gjk)(us + τ̂jkw̃), w̃ >,

where 0 < τ∗∗jk < τ∗jk < 1, 0 < τ̂jk < 1. When the space dimension N is 3 or 4,
Gagliardo-Nirenberg-Sobolev inequality asserts that the L4 norm of a function
in Ω ⊂ RN is bounded by a constant multiple of its H1(Ω) norm. If we assume
all the first and second partial derivatives of gjk, 1 ≤ j, k ≤ n, are bounded in
Rn, then from the above formula, we can readily obtain

‖ γ(w) ‖X = ‖ z(w̃) ‖[L2(Ω)]n ≤ K(‖ w̃ ‖[L4(Ω)]n)2

for all w ∈ X = [H1
0 (Ω) × L2(Ω)]n. Thus property [P ] is satisfied. The local

Lipschitz condition of γ : X → X can be verified similarly. In short, if all
the entries of G(u) are in C2(Rn) and has bounded first and second partial
derivatives in Rn, then the function γ satisfies the local Lipschitz condition and
property [P ] described above, provided the space dimension N of Ω is 3 or 4.

Using Gronwall inequality type argument, we then use semigroup theory as
in [84] or [184] to prove the following asymptotic stability theorem by means of
Theorem 2.5.

Theorem 2.6 (Asymptotic Stability in Semigroup Formulation).
Assume hypotheses [H1∗], [H2], [H3], G is in C2(Rn), and B̄(us)is symmetric
for each s ∈ (0, δ∗) as described in [H4]. Suppose that in equation (2.16), the
function γ satisfies a local Lipschitz condition and property [P ], then the trivial
steady-state solution w = 0 of equation (2.16) is locally asymptotically stable.
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That is, there exist positive constants ε, M̂ , k̂ such that if the initial condition
w(0) := (w1(0), w2(0), . . . , w2n(0)) satisfies ‖ w(0) ‖X ≤ ε, then the unique mild
solution of (2.16) satisfies

(2.17) ‖ w(t) ‖X ≤ M̂e−k̂t ‖ w(0) ‖X .

Proof. The local Lipschitz condition of γ insures the existence of a unique mild
solution w(t) ∈ X of (2.16) as described in Theorem 1.4 in Chapter 6 in [184].
The mild solution w(t) can be expressed by:

(2.18) w(t) = Ts(t)w(0) +
∫ t

0
Ts(t− τ)λ̂(s)γ(w(τ))dτ, w(0) ∈ X,

where Ts is the strongly continuous semigroup generated by As. Let M and k
be the positive constants given by Theorem 2.5 for Ts, we obtain for t > 0 inside
the interval of existence of w(t):

(2.19) ‖ w(t) ‖X ≤Me−kt ‖ w(0) ‖X +
∫ t

0
Me−k(t−τ) ‖ λ̂(s)γ(w(τ)) ‖X dτ.

Without loss of generality, we may assume M > 1. By property [P ] for γ, there
exist ρ > 0 so small such that

(2.20) ‖ λ̂(s)γ(w) ‖X ≤ [k/(2M)] ‖ w̃ ‖[H1]n ≤ [k/(2M)] ‖ w ‖X

as long as ‖ w ‖X ≤ ρ. Let ‖ w(0) ‖X ≤ ρ/M , the solution will satisfy ‖ w(t) ‖X
≤ ρ for sufficiently small t > 0. For such small t > 0, (2.19) and (2.20) lead to

(2.21) ekt ‖ w(t) ‖X ≤M ‖ w(0) ‖X +(k/2)
∫ t

0
ekτ ‖ w(τ) ‖X dτ.

Thus Gronwall’s inequality gives

(2.22) ‖ w(t) ‖X ≤ M ‖ w(0) ‖X e−(k/2)t ≤ ρe−(k/2)t

as long as ‖ w(t) ‖X ≤ ρ. Thus w(t) exists for all t > 0, if we choose w(0)
to satisfy ‖ w(0) ‖X ≤ ρ/M ; and (2.20) is valid for all t > 0 in such cases.
Consequently, Theorem 2.6 is valid by choosing ε = ρ/M, M̂ = M , and k̂ = k/2.

We now return to equation (2.12), which is the first order system form of
(2.1). Equation (2.12) can be written as:

(2.23)
∂y

∂t
= Ãsy + λ̂(s)q(y)
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where y = col. (y1, y2, . . . , y2n) = col.(u1, v1, . . . , un, vn), Ãs is the same as As
with all b̄ij replaced by the corresponding bij , and q(y) := col.(0, q̂1(ŷ), . . . , 0,
q̂n(ŷ)), ŷ = col.(y1, y3, . . . , y2n−1), col.(q̂1(ŷ), . . . , q̂n(ŷ)) := G(ŷ)ŷ. We will ex-
press the results in Theorem 2.6 in terms of the mild solutions in X of the
semigroup form of (2.23), that is:

(2.24)
dy

dt
= Ãsy + λ̂(s)q(y), y(t) ∈ X, t ≥ 0.

The constant function η(t) := col.((us)1, 0, . . . , (us)n, 0) is a strong solution of

(2.25)
dη

dt
= Asη + λ̂(s)h(us)

where h(us) = col.(0, ĥ1(us), . . . , 0, ĥn(us)), and col.(ĥ1(us), . . . , ĥn(us)) =
G(us)us − J(us)us. Thus η(t) satisfies

η(t) = Ts(t)η(0) +
∫ t

0
Ts(t− τ)λ̂(s)h(us)dτ.

If w(t) is a mild solution of (2.16), then w(t) + η satisfies

(2.26) w(t) + η = Ts(t)[w(0) + η] +
∫ t

0
Ts(t− τ)λ̂(s){γ(w(τ)) + h(us)}dτ.

If w(0) ∈ D(As), then y = w(t) + η is a strong solution of

dy

dt
= Asy + λ̂(s)[γ(w) + h(us)]

= Ãsy + λ̂(s)[γ(w) + h(us) + r(y)]

where r(y) = col.(0, r̂1(ŷ), . . . , 0, r̂n(ŷ)), col.(r̂1(ŷ), . . . , r̂n(ŷ)) = J(us)ŷ. Thus,
if w(0) ∈ D(As), we also has

(2.27)
w(t) + η = T̃s(t)[w(0) + η]

+
∫ t
0 T̃s(t− τ)λ̂(s){γ(w(τ)) + h(us) + r(w(τ) + η)}dτ

where T̃s is the continuous semigroup generated by Ãs. By the density of D(As)
in X and the strong continuity of Ts and T̃s, the right-hand sides of both (2.26)
and (2.27) are still equal for all cases with w(0) ∈ X. Since γ(w) +h(us) + r(w+
η) = q(w+η), we obtain from (2.27) that w(t) +η is a mild solution of equation
(2.24).
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Theorem 2.6 and the above arguments lead to the following conclusion con-
cerning solutions of (2.1) or (2.12).

Theorem 2.7 (Asymptotic Stability of Bifurcating Steady-States).
Assume all the hypotheses of Theorem 2.6 (including those concerning γ). Then
if the initial condition (y1(0), y2(0), . . . , y2n(0)) := (u1(0), v1(0), . . . , un(0), vn(0))
is given sufficiently close to ((us)1, 0, . . . , (us)n, 0) in X, the unique mild solution
y(t) = (u1(t), v1(t), . . . , un(t), vn(t)) of the initial value problem corresponding to
(2.24) exists for all t > 0. Moreover, there exist positive constants ε, M̂ , k̂ such
that if

‖ (u1(0), v1(0), . . . , un(0), vn(0))− ((us)1, 0, . . . , (us)n, 0) ‖X ≤ ε,

then the mild solution of (2.24) satisfies

‖ (u1(t), v1(t), . . . , un(t), vn(t)) − ((us)1, 0, . . . , (us)n, 0) ‖X ≤

M̂e−k̂t ‖ (u1(0), v1(0), . . . , un(0), vn(0)) − ((us)1, 0, . . . , (us)n, 0) ‖X
for all t > 0. Recall that (2.24) is the semigroup form of (2.1) or (2.12)).

For applications of the theorems above, consider the following examples.

Example 2.1. Let Ω = {x = (x1, x2, x3) : x2
1 + x2

2 + x2
3 < 1}. Consider (2.1),

with β = 1, u = col.(u1, u2, u3),

B(x) =


 sin 2π(x2

1 + x2
2 + x2

3) 1 2
1 cos 2π(x2

1 + x2
2 + x2

3) 3
2 3 −(x2

1 + x2
2 + x2

3)


 ,

G(u)u =


 −u1 −u1 0
−u1/2 − sinu2 0

0 0 0




u1

u2

u3


 =


 −u2

1 − u1u2

−(1/2)u2
1 − u2 sinu2

0


 .

It is clear that B(x) satisfies [H1∗] and [H2], G(u) satisfies [H3] with every entry
in C2, and

B̄(us(x)) = B(x) +


−2(us)1 − (us)2 −(us)1 0

−(us)1 −(us)2 cos(us)2 − sin(us)2 0
0 0 0




is symmetric as specified in [H4]. Since the first and second partial derivatives
of G(u) are bounded, by Remark 2.3 the function γ satisfies the local Lipschitz
condition and property [P ]. Thus all assumptions of Theorem 2.7 are satisfied,
and the steady-state ((us)1, 0, (us)2, 0, (us)3, 0) is locally asymptotically stable
in the sense described by Theorem 2.7 for the equation (2.24), which is the
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semigroup form for (2.1). Here, we are considering those λ = λ̂(s) close to the
right of λ̂0, s ∈ (0, δ∗), as described in Theorem 2.4.

Example 2.2. Let Ω = [0, π], consider (2.1) with β = 1, u = col.(u1, u2, u3),

B(x) =


 5 6 7

6 10 4
7 4 −1


 ,

G(u)u =


 −u1 − sin(u1u2) 0
− sin(u1u2) −u2

2 0
0 0 0




u1

u2

u3


 =


−u

2
1 − u2 sin(u1u2)

−u1 sin(u1u2)− u3
2

0


 .

It can be verified readily that B̄(us(x)) is symmetric and all the hypotheses
of Theorem 2.7 are satisfied. Here, N = 1, by Remarks 2.1 and 2.2 we find γ
satisfies the local Lipschitz condition and [P ], without requiring the boundedness
of the first and second partial derivatives of G.

We finally discuss some results and examples involving global (rather than
local) bifurcation. We consider the global behavior of the bifurcation curve of
positive solution of equation (2.7). We find conditions so that equation (2.1) has
a positive steady-state solution with λ = 1. We now introduce a few notation and
hypotheses. Let G := {(λ,w) ∈ R+×P : F (λ,w) = 0, λ > 0 and w ∈ P\{0}}, Ḡ
denotes the closure of G ; and define the following conditions:

[A1] There exists an integer m, 1 ≤ m ≤ n such that bmj(x) > 0, bjm(x) > 0 in
Ω̄ for all j �= m, and the m-th component of G(u)u is ≡ 0 in Ω̄.

[A2] For each j �= m, the j-th component of G(u)u is expressible as
kj(u1, . . . , un)uj with kj(u1, . . . , un) ∈ C0 for ui ≥ 0, i = 1, . . . , n.

Theorem 2.8 (Global Bifurcation). Under hypotheses [H1], [H1∗], [H2], [A1],
and [A2], the component of Ḡ containing the point (λ̂0, 0) is unbounded, and
Ḡ⋂(R× ∂P ) = (λ̂0, 0). (Recall that (λ̂0, 0) is defined in Theorems 2.2 and 2.3.)

Proof. Theorems 2.1, 2.2 and (2.6) imply by means of Theorem 29.2 in Diemling
[49] that the component of Ḡ containing the point (λ̂0, 0) is unbounded. Let
(λi, wi) ∈ G, i = 1, 2, .. be a sequence tending to a limit point (λ̄, w̄) in R× ∂P ,
and (λ̄, w̄) �= (λ0, 0). We now show w̄ = col.(w̄1, . . . , w̄n) must satisfy w̄i ≡ 0,
for each i, if λ̄ > 0. Consider the first case when there exists some x0 ∈ Ω where
w̄m(x0) = 0. The equation −∆w̄m = λ̄

∑n
j=1 bmjw̄j ≥ 0 implies that w̄m ≡ 0 in

Ω̄; and subsequently, the right hand side of this equation and [A1] imply that
w̄j ≡ 0 for each j �= m too. Hence, w̄ ≡ 0 in this case.
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Consider the second case when w̄m(x) > 0 for all x ∈ Ω. For each j �= m,
consider the problem:

(2.28)




−∆z(x) = λ̄bjmw̄m + λ̄
∑

k 	=m,j bjkw̄k + λ̄bjjz(x)

+ λ̄kj(w̄1, .., w̄j−1, z(x), w̄j+1, .., w̄n)z in Ω,

z = 0 on ∂Ω.

The function z ≡ 0 is a lower solution. From [A1], [A2] and ∂w̄m/∂ν < 0 on ∂Ω,
we have

λ1δφ(x) < λ̄bjm(x)w̄m + λ̄
∑

k 	=m,j bjkw̄k + λ̄bjjδφ

+ λ̄kj(w̄1, . . . , w̄j−1, δφ, w̄j+1, . . . , w̄n)δφ in Ω

for δ > 0 sufficiently small. Thus z = δφ is a family of lower solution for problem
(2.28) for such δ. Hence the solution of (2.28) satisfies w̄j(x) > δφ(x) in Ω. This
contradicts the fact that w̄ ∈ ∂P . We must thus have w̄ ≡ 0 in Ω in any case,
for λ̄ ≥ 0.

Next, define zi := wi/ ‖ wi ‖E , i = 1, 2, . . .; they satisfy

(2.29) zi + λi∆−1[Bzi] + λi∆−1[G(wi)wi]/ ‖ wi ‖E = 0.

Since ∆−1B is compact, there exists a subsequence (again denoted by {zi} for
convenience) such that ∆−1[Bzi] converges in E. Since ∆−1[G(wi)wi]/ ‖ wi ‖E
tends to zero in E, as ‖ wi ‖E→‖ w̄ ‖E= 0, equation (2.29) implies that {zi}
converges in E to a function z0 say, and

z0 = −λ̄∆−1[Bz0].

Moreover, we have z0 ∈ P , since wi ∈ P ; and z0 �≡ 0 since ‖ zi ‖E= 1. Hence, we
must have λ̄ > 0. The uniqueness part Theorem 2.1 implies that λ̄ = λ̂0. Con-
sequently, we must have (λ̄, w̄) = (λ̂0, 0). This completes the proof of Theorem
2.8.

Let −λ1 be the principal eigenvalue of the Laplace operator on Ω with zero
Dirichlet boundary data, and φ > 0 be a positive eigenfunction.

Theorem 2.9 (Steady-State for Given λ = 1). Assume all the hypotheses
in Theorem 2.8 and bmm(x) ≡ 0 in assumption [A1]. Suppose further that:

[A3] There exists constant vector �g = col.(g1, ..., gn), gi > 0, such that
B(x)�g > λ1�g for all x ∈ Ω .

[A4] For each j �= m, the function kj described in [A2] has the property
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lim supN→∞N−1 max{kj(u1, .., uj−1, N, uj+1, ..., un) : 0 ≤ uτ ≤ N,
τ �= j} < 0.

Then (2.1) has a steady-state solution in P for λ = 1.

Proof. Let ẑ = φ�g, [A3] implies that there exists µ > 1 such that Bẑ ≥ µλ1ẑ
in Ω̄. Hence, (−∆)−1(Bẑ) ≥ µλ1(−∆)−1(φ�g) = µφ�g = µẑ. By Theorem 2.5
in [108] or Theorem A3-10 in Chapter 6, we have 1/λ̂0 ≥ µ > 1, that is λ̂0 <
1. (Here, λ̂0 is defined in Theorem 2.8.)

The equation for um and bmm ≡ 0 imply that if λ ∈ [0, C] for some C, and if
all the components uj , j �= m of a steady state solution of (2.1) have the property
|uj | ≤ M , then um must satisfy |um| ≤ KM for some constant K independent
of M . We now show that there must indeed exist some constant M , such that if
λ ∈ (0, C] and (λ, u) ∈ G, then 0 ≤ uj ≤M for all j �= m. Otherwise, there exists
ur, r �= m, and a point x∗ ∈ Ω where ur(x∗) = maxj 	=m{supx∈Ω̄ uj(x)} > M .
Let p = ur(x∗)/M > 1, then we have the property: 0 ≤ uj(x) ≤ pM for all
x ∈ Ω̄, j �= m Consider the equation satisfied by ur at the point x∗ ∈ Ω.

−∆ur(x∗) =
∑

j 	=m,r λbrjuj + λbrmum

+λkr(u1, .., ur−1(x∗), pM, ur+1(x∗), .., un)ur(x∗)

≤ λ [
∑

j 	=m,r brjpM + brmKpM +

max{(pM)−1kr(u1, .., ur−1, pM, ur+1, .., un) : 0 ≤ uτ ≤ pM, τ �= r}(pM)2]

< 0.

The last inequality is satisfied for M sufficiently large due to hypothesis [A4].
This contradicts the definition of x∗. We thus assert that if λ ∈ [0, C], then |ui|
are bounded for each i = 1, . . . , n, if (λ, u) ∈ G. Finally, using gradient estimates
by means of (2.7), we conclude that G cannot be unbounded if λ ∈ [0, C], for
some C. Thus a solution of (2.7) must exist for λ = 1.

Example 2.3. We consider Example 2.2 with only a single modification. We
change the entry b33 of B from −1 to 0. Clearly, condition [A1] is satisfied with
m = 3. For [A2], we define

k1(u1, u2) =



−u1 − (u2/u1) sin(u1u2) if u1 �= 0

−u2
2 if u1 = 0,
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k2(u1, u2) =



−(u1/u2) sin(u1u2)− u2

2 if u2 �= 0

−u2
1 if u2 = 0,

then k1 and k2 are continuous for ui ≥ 0. Condition [A3] is satisfied by choosing
�g = col.(1,1,1). Using the formulas for k1 and k2, we can verify [A4] is satisfied.
Thus Theorem 2.9 can be applied, and we conclude that (2.1) has a steady-state
solution for λ = 1 in this case. As for Example 2.2, we also find the bifurcating
positive steady-state is asymptotically stable for λ close to λ̂0 for this example.
The stability of the steady-state when λ = 1 remains to be considered.

5.3 Invariant Manifolds for Coupled Navier-Stokes
and Second Order Wave Equations

This section considers the dynamics of a coupled system of incompressible Navier-
Stokes equations with second order wave equations. The system may be used to
approximate the interaction of ionized plasma particles with an electromagnetic
field. Under appropriate assumptions and provided that the viscosity of the fluid
is sufficiently large, we prove the existence of an invariant manifold as described
in Definition 3.1 below. Moreover, the manifold is attractive as t→ +∞ for all
close neighboring solutions.

More precisely, we consider the coupled parabolic-hyperbolic system:

(3.1)




ut = ε−1∆u− (u · ∇)u−∇p+ f(u,v) in Ω× (0,∞),

div u(x, t) = 0 in Ω× (0,∞),

vtt + µvt = ∆v +B(x)v + g(u,v) in Ω× (0,∞),

u = h, v = q on ∂Ω × [0,∞).

The system applies to the study of physical problems involving the interac-
tions of fluid motion with other forms of waves. As an example, the vector u
may describe the three components of the velocity of ionized plasma particles
in position x and time t. The vector v may describe the three components
of a magnetic field in position x and time t interacting with the ionized par-
ticles there. The scalar p denotes the pressure function of x and t. In the
dynamic theory of plasma physics, one studies the motion of a conducting fluid
interacting with electric and magnetic fields. This leads to the coupling of the
Navier-Stokes equation for the ionized particles with the Maxwell’s equations
for the electromagnetic force fields. In many investigations, the term ε−1∆u
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is omitted. However, in order to include the viscosity effect of the fluid, it is
sometimes introduced to obtain the Navier-Stokes equation (cf. p. 131-134 or
p.89 in Thompson [219]). In Chapter 4 of [219], we assume that the current j
satisfies j = σ(E+c−1u×v), where E is the electric field; while the magnetic and
electric fields satisfy the Maxwell equations ρ−1curl v = 4πc−1j + δc−1∂E/∂t
and curl E = −c−1∂v/∂t. Here, σ, c, ρ, and δ are physical constants. It is
shown that explicit dependence on the electric field E can be eliminated from
the Maxwell’s equations. Hence, we obtain first-order time and second-order
space differential equations in the magnetic field v, coupling with the effects of
the velocity field u. Observe at p. 44 or 47-48 of [219] the author makes the
simplifying assumption that for slow motions, the displacement current involv-
ing ∂E/∂t can be neglected. Thus, even after eliminating the dependence on the
electric field, the first order time derivative of v only will appear in the equa-
tions of magnetohydrodynamics. However, in the more general situations, one
would obtain three equations for the three components of the particle motion,
coupled with three second order wave equations for the three components of the
magnetic field as described in (3.1) above. For simplicity, we restrict ourselves
to the case of incompressible fluid, which leads to the divergence-free condition
on the second equation in (3.1). In the study of plasma physics, one is interested
in the large-time asymptotic behavior of the system as well as the existence and
stabilities of steady-states and invariant manifolds. The search for a stable con-
fining configuration is a major challenge. For further investigations, one may
impose also div v = 0, or a more precise description of the nonlinear terms f
and g. Conceivably, the system (3.1) may be adapted to analyze other physical
problems as well.

We let Ω be a bounded domain in Rn with smooth boundaries. We will
denote L2 := L2(Ω, R3),H1,2 := H1,2(Ω, R3) and H1,2

0 := H1,2
0 (Ω, R3). For φ =

(φ1, φ2, φ3)T ∈ L2, define the norm ‖φ‖L2 := (
∑3

i=1 ‖φi‖2L2)1/2; and for ψ =
(ψ1, ψ2, ψ3)T ∈ H1,2 , let ‖ψ‖H1,2 := (

∑3
i=1 ‖ψi‖2H1,2)1/2. (Note that H1,2(Ω)

is denoted as W 1,2(Ω) in some other sections). The parameter ε is a positive
constant with ε−1 representing the viscosity of the fluid. The parameter µ for
the wave equations is a constant which can have any sign. We do not make any
restriction on the sign of µ until the last Theorem 3.3, even though it should be
positive in application to magnetohydrodynamics. The symbols ∆ and ∇ denote
the Laplacian and gradient operators respectively. B(x) is a 3 by 3 matrix with
each entry in L∞(Ω). The following symbols and notations will also be used
throughout this section for the three fluid components:

H̃1,2
0 := H̃1,2

0 (Ω, R3) := {u ∈H1,2
0 (Ω, R3) : div u = 0 in Ω},

X := L̃2 := L̃2(Ω, R3) is the closure of H̃1,2
0 in L2 = L2(Ω, R3),

X⊥ = {w ∈ L2 : w = ∇p for some p ∈ H1,2(Ω)}.
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We will use the Helmholtz-Weyl orthogonal decomposition of vector fields (cf.
Galdi [67] or McOwen [169]), which may be expressed as:

L2 = X⊕X⊥ = L̃2 ⊕X⊥.

We will also use the following Banach spaces for the magnetic field components:

Y = [H1,2
0 (Ω)× L2(Ω)]3, Ỹ = H1,2

0 × L2.

Here, the norm for y = (y1, .., y6)T ∈ Y is defined as ‖y‖Y = (‖(y1, y3, y5)T ‖2H1,2+
‖(y2, y4, y6)T ‖2L2)1/2, and the norm for y = (y1, .., y6)T ∈ Ỹ is defined as ‖y‖Ỹ =
(‖(y1, y2, y3)T ‖2H1,2 + ‖(y4, y5, y6)T ‖2L2)1/2. For any y = (y1, y2, y3, y4, y5, y6)T ∈
Y, for convenience we will denote by y0 = (y1, y3, y5)T the triplet of the odd
components of y.

For any u ∈ L2, we denote by Pu the projection of u into X. The op-
erator A := −ε−1∆ is an unbounded operator on X with domain D(A) =
H̃1,2

0

⋂
H2,2(Ω, R3). In Lemma 1 at p. 328 of [169], it is shown that A : D(A)→

X is a densely defined, closed linear operator on X with compact inverse. More-
over, A is the infinitesimal generator of a linear semigroup on X, and A admits
a complete orthonormal set of eigenfunctions on X. Thus, for 1 ≥ α ≥ 0, we can
use the eigenfunction expansion to define an operator Aα on X with domain Xα

in the usual manner. (See e.g. Section 11.2 in [169], or more details in Part A
below, or Section 6.4 for Xα in Chapter 6.) It is well known that Xα is a Banach
space equipped with the graph norm ‖·‖α. Note that we have D(A) ⊂ Xα ⊂ X.

In applications, the nonlinear terms f and g in (3.1) should include first
spatial derivatives of the u and v. Consequently, throughout this section we
restrict α to the interval:

3/4 < α < 1.

More precisely, the function f : (Xα,H1,2)→ L2 in (3.1) will satisfy the hypoth-
esis:

(3.2) ‖f(u,v) − f(y, z)‖L2 ≤ Ĉ(ρ)(‖u − y‖α + ‖v − z‖H1,2)

for all u,y in Xα with ‖u‖α, ‖y‖α ≤ ρ, and all v, z in H1,2, where Ĉ(ρ) is a
constant which depends on ρ. The function g : (Xα,H1,2) → L2 in (3.1) will
satisfy:

(3.3) ‖g(u,v)− g(y, z)‖L2 ≤ K(‖u− y‖α + ‖v − z‖H1,2)

for all u,y in Xα, and all v, z in H1,2, where K is a positive constant. For each
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constant R > 0, there exists N(R) > 0, such that:

(3.4) ‖f(u,v)‖L2 ≤ N(R)

for all u in Xα with ‖u‖α ≤ R and all v in H1,2. Note that in (3.2)−(3.4)
we consider v, z in H1,2. Thus, one spatial derivative for v is allowed in the
nonlinear terms f and g in (3.1).

In Part A, we will prove that for ε sufficiently small, there exists an invariant
manifold for system (3.1). Roughly speaking, there exists a relationship between
the vector fields u, v and vt, such that if the relationship is satisfied by a
solution (u(·, t),v(·, t)) of (3.1) at some time t, then it will be satisfied for all
t ∈ (−∞,+∞). In Part B, it will be shown that the invariant manifold is
asymptotically stable, i.e. an attractor for neighboring solutions. Solutions of
(3.1) which start close to the invariant manifold will tend to the manifold as
t → +∞. Finally as an application to a special situation, we show that if the
trivial solution is an asymptotically stable equilibrium on the invariant manifold,
it will be asymptotically stable for the full system (3.1). That is, if the origin
attracts neighboring solutions on the manifold, it will attract all neighboring
solutions of the full system. The study of the relationship of the full initial-
boundary value problem with that of the reduced problem on the manifold is
analogous to the study of an invariant manifold for coupled parabolic partial
differential equations as in Hale [79] and Henry [84]. It is also analogous to the
study of reduced problem for singularly perturbed ordinary differential equations
as in Hoppensteadt [89], Tihonov [220] and Wasow [229]. Here, we extend
the method for analyzing invariant manifolds for prototype coupled parabolic-
hyperbolic equations in Leung [128] to the situation of coupled Navier-Stokes and
other nonlinear wave systems. Many theories on Navier-Stokes and nonlinear
wave equations can be found in Galdi [67], Strauss [214] and Temam [216].
Hopefully, more satisfactory results for system (3.1) will be obtained in the
future under less restrictive assumptions than (3.2)−(3.4). In remark 3.7, we
illustrate how the results here may be adapted to the case when condition (3.4)
on f is removed. The presentation of this section follows the results found in
Leung [130].

Part A: Main Theorem for the Existence of Invariant Manifold.

We now proceed to prove the Main Theorem for the existence of invariant
manifold. Problem (3.1) will be converted by semigroup method into a system
of equations in Xα×H1,2

0 , or (u,v,vt) in Xα×H1,2
0 ×L2. This will be described

in system (3.9) below and clarified in remark 3.3. A solution of (3.1) will thus
be interpreted in semigroup setting as described in remark 3.3 below.

Definition 3.1. A set S ⊂ R×Xα×Ỹ = R×Xα×H1,2
0 ×L2 is a local invariant

manifold for problem (3.1) provided that, for any (t0,u0, (η01,η02)) ∈ S, there
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exists a solution (u(·, t),v(·, t)) of (3.1) on an open interval (t1, t2) containing
t0 with u(·, t0) = u0,v(·, t0) = η01,vt(·, t0) = η02 and (t,u(t), (v(t).vt(t))) ∈ S
for t1 < t < t2. S is an invariant manifold if we can always choose (t1, t2) =
(−∞,∞). Since the problem (3.1) is autonomous, we may call S1 an invariant
manifold when S = R× S1.

We will show the existence of an invariant manifold for problem (3.1) under
appropriate assumptions. We first impose some smoothness conditions on the
boundary functions h and q, and then transform problem (3.1) into a convenient
formulation. We assume that h is the trace of some ĥ ∈ H1,2 with div ĥ = 0
in Ω. The problem:

(3.5)




ε−1∆w + ε−1∆ĥ = ∇p̂ in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω,

uniquely defines w ∈ X, while p̂ = p̂(x) is only unique up to an additive constant.
(See e.g. [67] or [169].) The function u0 := w + ĥ in Ω is a function in H1,2,
with div u0 = 0 in Ω, and u0 = h on ∂Ω. If u0

i = wi + ĥi, i = 1, 2, are the
two functions with wi and ĥi having the corresponding properties for w and ĥ
above, then z := u0

1 − u0
2 would satisfy: ε−1∆z = ∇p̃ in Ω for some p̃, with div

z = 0 in Ω, and z = 0 on ∂Ω. By the same uniqueness reason as above, we
obtain z = 0 in Ω. Thus the function u0 = w + ĥ is uniquely defined in Ω by
using (3.5) if there is any divergence-free ĥ in H1,2 with the same trace h on
∂Ω.

We next consider the problem:

(3.6) ∆z +B(x)z + g(u0, z) = 0 in Ω, z = q on ∂Ω.

We assume that problem (3.6) has a solution z = v0 ∈ H1,2. (Here, there may
exist more than one v0.)

We will look for solution of problem (3.1) with the u components in a
smoother subspace of X. The operator A = A(ε) := −ε−1∆ on X admits a
complete orthonormal set of eigenfunctions ψ1,ψ2, . . . , with their correspond-
ing eigenvalues 0 < λ1 ≤ λ2 ≤ . . .. We define Aαψ := Aα(

∑∞
j=1 ajψj) =∑∞

j=1 λ
α
j ajψj whenever ψ =

∑∞
j=1 ajψj is in D(Aα). Here, we have D(Aα) =

Xα := {ψ =
∑∞

j=1 ajψj ∈ X : Aαψ ∈ X}. We thus consider Xα as a Banach
space with the graph norm ‖ψ‖α = ‖ψ‖X+‖Aαψ‖X. We have D(A) ⊂ Xα ⊂ X.
(See [169] or [84]).

Let the semigroup of bounded linear operators on X generated by −A(ε) be
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denoted by {e−A(ε)t}. We can express

(A(ε))αe−A(ε)tψ =
∞∑
j=1

λαj e
−λjtajψj.

For a fixed r ∈ (0, 1), and each j ≥ 1, t > 0, consider the expression:

λαj e
−λjt = t−α[(λjt)αe−rλ1te(−λjt+rλ1t)]

≤ t−αe−rλ1t[(λjt)αe−(1−r)λj t].

We thus obtain

‖(A(ε))αe−A(ε)tψ‖L2 ≤ M̂t−αe−rλ1t‖ψ‖L2 for t > 0,

for some constant M̂ . Since λ1 = λ1(ε) depends on ε, and tends to +∞ as
ε → 0+, we find the operator norms of {e−A(ε)t} and {(A(ε))αe−A(ε)t} on X
satisfy:

(3.7) ‖e−A(ε)t‖ ≤ M̂e−β(ε)t, ‖(A(ε))αe−A(ε)t‖ ≤ M̂t−αe−β(ε)t for t > 0.

Here, β(ε) is a positive constant with β(ε) → +∞ as ε → 0+, and M̂ is inde-
pendent of ε. (See also e.g. Section 2.6 or 8.4 in [184], or Remark 2.1 in [128].)
By slightly increasing M̂ and reducing β(ε), we may assume without loss of
generality that:

(3.8) ‖e−A(ε)tθ‖α ≤ M̂t−αe−β(ε)t‖θ‖X for all t > 0, θ ∈ X,

where β(ε) and M̂ still have all the properties described above. We are now
ready for the following existence theorem.

Theorem 3.1 (Existence of Invariant Manifold). Consider system (3.1)
under hypotheses (3.2)-(3.4). Let u0,v0 be determined by the boundary functions
h,q by means of problems (3.5), (3.6) as described above. For ε > 0 sufficiently
small, there exists an invariant manifold for system (3.1) of the form:

S = {(t,u,v,vt) : u = u0 + σ∗(v − v0,vt),−∞ < t <∞, (v − v0,vt)T ∈ Ỹ},
with σ∗ : Ỹ → Xα satisfying ‖σ∗(y)‖α ≤ K1, and ‖σ∗(y) − σ∗(ŷ)‖α ≤ K2‖y −
ŷ‖Ỹ. (Here, K1 and K2 are arbitrary given positive constants which determine
the size of ε such that S exists.)

Remark 3.1. Roughly speaking, there exists a relationship σ∗ between the
vector fields u, v and vt, such that if the relationship is satisfied by a so-
lution (u(·, t),v(·, t)) of (3.1) at some time t, then it will be satisfied for all
t ∈ (−∞,+∞).
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Remark 3.2. In Remark 3.7, we will illustrate situations when the theorem
can still be applied when the boundedness condition (3.4) on f is removed.

Before proving Theorem 3.1, we will first show three preliminary lemmas.
For convenience, let ũ = u−u0, ṽ = v−v0, and define functions F : Xα×H1,2

0 →
L2, G : Xα ×H1,2

0 → L2 by:

F(w̃, z̃) := f(w̃ + u0, z̃ + v0)− ((w̃ + u0) · ∇)(w̃ + u0),

G(w̃, z̃) := g(w̃ + u0, z̃ + v0)− g(u0,v0)

for any (w̃, z̃) ∈ Xα ×H1,2
0 .

Problem (3.1) can be converted into a system of equations for (ũ, ṽ) ∈ Xα×
H1,2

0 as follows:

(3.9)




ũt = −Aũ + P [F(ũ, ṽ)] for ũ(t) ∈ Xα,

ṽtt + µṽt = ∆ṽ +B(x)ṽ + G(ũ, ṽ) for ṽ(t) ∈ H1,2
0 .

We next deduce a Lipschitz condition for the nonlinear terms in (3.9) corre-
sponding to (3.2) and (3.3).

Lemma 3.1. The functions F and G defined above satisfy:

(3.10) ‖PF(ũ, ṽ)− PF(ỹ, z̃)‖X ≤ C(ρ)(‖ũ − ỹ‖α + ‖ṽ − z̃‖H1,2)

for all ũ, ỹ in Xα with ‖ũ‖α, ‖ỹ‖α ≤ ρ and all ṽ, z̃ in H1,2
0 ;

(3.11) ‖G(ũ, ṽ)−G(ỹ, z̃)‖L2 ≤ L(‖ũ− ỹ‖α + ‖ṽ − z̃‖H1,2)

for all ũ, ỹ in Xα and all ṽ, z̃ in H1,2
0 . Here, C(ρ) is a positive constant which

depends on ρ, and L is another positive constant.

Proof. Let ũ = (ũ1, ũ2, ũ3)T , ỹ = (ỹ1, ỹ2, ỹ3)T and u0 = (u0
1, u

0
2, u

0
3)T . In addi-

tion to terms involving f , the components of F(ũ, ṽ)−F(ỹ, z̃) consist of sums of
terms of the forms: ũi(ũj)xk−ỹi(ỹj)xk , (ũi−ỹi)(u0

j )xk , and u0
j((ũi)xk−(ỹi)xk), for

i, j = 1, 2, 3, k = 1, 2, ..., n. The terms of the first type are estimated as follows:

‖ũi(ũj)xk − ỹi(ỹj)xk‖L2 = ‖ũi((ũj)xk − (ỹj)xk) + (ũi − ỹi)(ỹj)xk‖L2

≤ ‖ũi‖L∞‖ũ− ỹ‖H1,2 + ‖ũi − ỹi‖L∞‖ỹ‖H1,2 .
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Since 3/4 < α < 1, the embedding theorems imply that Xα ⊂ L∞(Ω, R3) and
Xα ⊂ H1,2, with

(3.12) ‖ · ‖L∞ ≤ C‖ · ‖α, ‖ · ‖H1,2 ≤ C‖ · ‖α
for some positive constant C (see, e.g., Chapter 11 in [169]). We can thus obtain
that the first type terms are locally Lipschitz in Xα. The other two types of
terms can be treated similarly. The terms involving f and inequality (3.11)
can be estimated by using (3.2), (3.3) and relationship (3.12) above. Using the
Cauchy and Hölder inequalities, we obtain (3.10) and (3.11).

In order to prove Theorem 3.1, we will need some results from linear systems
of second order hyperbolic equations. Consider the system of three equations
for w(x, t) = (w1, w2, w3)T :

(3.13)




wtt + µwt = ∆w +B(x)w for (x, t) ∈ Ω×R,

w(x, t) = 0 for (x, t) ∈ ∂Ω×R.
Here, µ is any real constant and B(x) is a 3 × 3 matrix with each entry bij
bounded in L∞. Let Ξ be the operator on Y defined by:

(3.14)
Ξ{(y1, .., y6)T } = (y2,∆y1, y4,∆y3, y6,∆y5)T for y = (y1, .., y6)T ∈ Y,

with domain D(Ξ) = [(H2,2(Ω)
⋂
H1,2

0 (Ω))×H1,2
0 (Ω)]3 dense in Y. Define B̃(x)

to be the 6× 6 matrix:

B̃(x) =




0 0 0 0 0 0
b11 −µ b12 0 b13 0
0 0 0 0 0 0
b21 0 b22 −µ b23 0
0 0 0 0 0 0
b31 0 b32 0 b33 −µ



.

Here, the entries of B̃(x) are described above in terms of those of B(x). The
multiplication operator B̃ defined by y → B̃y is a bounded linear operator on
Y. If we set w1 = y1, (w1)t = y2, w2 = y3, (w2)t = y4, w3 = y5, (w3)t = y6,
the system (3.13) can be written in the form of a differential equation in Y as
follows:

(3.15) yt = Ξy + B̃y, for t ∈ R.



442 CHAPTER 5. TRAVELING WAVES, INVARIANT MANIFOLDS

To analyze (3.15), we deduce the following properties:

Lemma 3.2. The operator Ξ + B̃ with domain D(Ξ + B̃) = [(H2,2
⋂
H1,2

0 ) ×
H1,2

0 ]3 is an infinitesimal generator of a C0 group of bounded linear operators T (t)
on Y satisfying ‖T (t)‖ ≤ Mek|t|,−∞ < t < +∞, for some positive constants
M ≥ 1 and k > 0.

Proof. Let λ > 0, and f = (f1, . . . , f6)T ∈ Y be arbitrary. Consider the
equation:

(3.16) λy−Ξy = f , or

(3.17)



λyi − yi+1 = fi,

λyi+1 −∆yi = fi+1

for i = 1, 3, 5. These lead to λ2yi−∆yi = λfi+fi+1, which has a unique solution
yi ∈ H2,2

⋂
H1,2

0 for each i = 1, 3, 5. Define yi+1 = λyi− fi ∈ H1,2
0 . We obtain a

unique y ∈ D(Ξ) satisfying (3.16), which can also be expressed in terms of the
resolvent as y = R(λ,Ξ)f . Multiplying the second equation in (3.17) by yi+1 we
obtain for i = 1, 3, 5:

λ‖yi+1‖2L2 +
∫

Ω
∇yi+1 · ∇yi dx =

∫
Ω
fi+1yi+1 dx.

Substituting yi+1 = λyi − fi in the second integral, we find

λ(‖yi+1‖2L2 + ‖∇yi‖2L2) =
∫
Ω(∇fi∇yi + fi+1yi+1) dx

≤ ‖∇fi‖L2‖∇yi‖L2 + ‖fi+1‖L2‖yi+1‖L2

≤ (‖∇fi‖2L2 + ‖fi+1‖2L2)1/2(‖∇yi‖2L2 + ‖yi+1‖2L2)1/2.

For λ < 0, we deduce analogously that:

λ(‖yi+1‖2L2 + ‖∇yi‖2L2) ≥ −(‖∇fi‖2L2 + ‖fi+1‖2L2)1/2(‖∇yi‖2L2 + ‖yi+1‖2L2)1/2.

Defining |y| := (‖∇y1‖2L2 + ‖y2‖2L2 + ‖∇y3‖2L2 + ‖y4‖2L2 + ‖∇y5‖2L2 + ‖y6‖2L2)1/2,
from above we obtain the following:

|y| = |R(λ,Ξ)f | ≤ |λ|−1|f | for all λ �= 0.
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This leads to:

(3.18) |R(λ,Ξ)nf | ≤ |λ|−n|f | for all λ �= 0, n = 1, 2, . . .

Using (3.18) and the Poincaré inequality, we obtain for λ �= 0,

(3.19) ‖R(λ,Ξ)nf‖Y ≤ M |R(λ,Ξ)nf | ≤ M |λ|−n|f | ≤ M |λ|−n‖f‖Y,

n = 1, 2, 3 . . ., for some constant M > 0. From Theorem 6.3, Chapter 1 in
[184] (i.e. Theorem A4-4 in Chapter 6 below), (3.19) implies that Ξ is the
infinitesimal generator of a C0 group of bounded linear operators T̂ (t) on Y
satisfying ‖T̂ (t)‖ ≤ M,−∞ < t < +∞. Here, the norm is the usual operator
norm for bounded linear operators on Y. Further, by the perturbation Theorem
1.1 of Chapter 3 in [184] (i.e. Theorem A4-5 in Chapter 6 below), we can assert
that the operator Ξ+ B̃ is an infinitesimal generator of a semigroup of bounded
linear operators T (t) on Y satisfying ‖T (t)‖ ≤ M exp{M‖B̃‖t}, for t > 0. By
Theorem 5.3 of Chapter 1 in [184] (i.e. Theorem A4-3 in Chapter 6), this implies
that the operator norm of its resolvent satisfies

(3.20) ‖R(λ,Ξ + B̃)n‖ ≤M(λ−M‖B̃‖)−n for λ > M‖B̃‖, n = 1, 2, . . .

For λ > 0, f ∈ Y, one readily find R(λ,−Ξ)f = R(−λ,Ξ)(−f), and

R(λ,−Ξ)nf = R(−λ,Ξ)n((−1)nf), for n = 1, 2 . . .

Thus from (3.19), we obtain:

(3.21) ‖R(λ,−Ξ)n‖ ≤Mλ−n, for λ > 0, n = 1, 2, . . .

Theorem A4-3 in Chapter 6 thus implies that −Ξ generates a semigroup of
bounded linear operators Ŝ(t) satisfying ‖Ŝ(t)‖ ≤M for t > 0. By means of the
aforementioned perturbation Theorem A4-5 and of the converse part of Theorem
A4-3 in Chapter 6 again, we obtain:

(3.22) ‖R(λ,−Ξ− B̃)n‖ ≤M(λ−M‖B̃‖)−n for λ > M‖B̃‖, n = 1, 2, . . .

For λ < −M‖B̃‖, f ∈ Y, consider the relation:

R(λ,Ξ + B̃)n(f) = R(−λ,−Ξ− B̃)n((−1)nf).
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Thus we obtain from (3.22) that for λ < −M‖B̃‖ ( or −λ > M‖B̃‖),

(3.23)
‖R(λ,Ξ + B̃)n(f)‖Y = ‖R(−λ,−Ξ− B̃)n((−1)nf)‖Y

≤M(|λ| −M‖B̃‖)−n‖f‖, for n = 1, 2, . . . .

From (3.20) and (3.23), we deduce from Theorem A4-4 in Chapter 6, that
the operator Ξ+ B̃ is an infinitesimal generator of a C0 group of bounded linear
operators T (t) as described in the statement of Lemma 3.2 with k = M‖B̃‖.

We will need some estimates concerning solutions of nonlinear equations
related to (3.13). For a given continuous function z : (−∞, τ ]→ Xα, θ ∈ H1,2

0 ,
and θ̃ ∈ L2, consider the problem with three components w = (w1, w2, w3)T :

(3.24)




wtt + µwt = ∆w +B(x)w + G(z,w) for t ≤ τ, x ∈ Ω,

w(x, t) = 0 for t ≤ τ, x ∈ ∂Ω,

w(x, τ) = θ(x),wt(x, τ) = θ̃(x) for x ∈ Ω.

Let η = (η1, η2, η3, η4, η5, η6)T := (θ1, θ̃1, θ2, θ̃2, θ3, θ̃3)T , where θ = (θ1, θ2, θ3)T ,
θ̃ = (θ̃1, θ̃2, θ̃3)T . Denote the solution of problem (3.24) by:

φ(t; τ,η, z(·, t)) = (w1, ∂w1/∂t, w2, ∂w2/∂t, w3, ∂w3/∂t)T , for t ≤ τ.

Lemma 3.3. For t ≤ τ , the solution φ(t; τ,η, z(·)) of problem (3.24) satisfies:

(3.25)
‖φ(t; τ,η, z(·)) − φ(t; τ, η̂, ẑ(·))‖Y ≤Me(k+ML)(τ−t)‖η − η̂‖Y

+ML
∫ τ
t e

(k+ML)(r−t)‖z(r)− ẑ(r)‖αdr.

Here L,M and k are the constants described in Lemmas 3.1 and 3.2 above.

Proof. For simplicity, we denote φ(t; τ,η, z) and φ(t; τ, η̂, ẑ) respectively by
φ(t) and φ̂(t). We will consider φ(t) as a mild solutions of

φt = Ξφ+ B̃φ+ G̃(z,φ) t ≤ τ,

φ(τ) = η,

where G̃ = (0, G1, 0, G2, 0, G3)T , and G = (G1, G2, G3)T . We use Lemma 3.2 to
obtain an integral representation of φ(t) in terms of the group T (t), and estimate
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by means of Lemma 3.1. We also use the fact that the odd components of G̃
are zero. We thus obtain for t ≤ τ :

‖φ(t)− φ̂(t)‖Y ≤ Mek(τ−t)‖η − η̂‖Y

+ML

∫ τ

t
e−k(t−s)[‖z(s)− ẑ(s)‖α + ‖φ(s)− φ̂(s)‖Y] ds.

From the Gronwall’s inequality (cf. [13]), we obtain:

ekt‖φ(t)− φ̂(t)‖Y ≤ Mekτ‖η − η̂‖Y +ML

∫ τ

t
eks‖z(s)− ẑ(s)‖αds

+
∫ τ

t
MLeML(s−t)[ Mekτ‖η − η̂‖Y +ML

∫ τ

s
ekr‖z(r) − ẑ(r)‖αdr ]ds.

Interchanging the order of integration and canceling some terms, we obtain
(3.25).

Proof of Theorem 3.1. Recall the definition of the operator A = A(ε) =
−ε−1∆ on X and the related inequalities (3.7) and (3.8). We will construct
the function σ∗, which represents the invariant manifold, as a fixed point of an
appropriate mapping on a class of functions. For this purpose, we will use the
estimates in Lemma 3.3 above to deduce that the mapping is a contraction.

Let K1 and K2 be arbitrary positive constants. Let Λ be the class of contin-
uous functions σ : Y→ Xα satisfying:

(3.26) ‖σ(y)‖α ≤ K1, ‖σ(y) − σ(ŷ)‖α ≤ K2‖y − ŷ‖Y,

for all y, ŷ ∈ Y. For η = (η1, η2, η3, η4, η5, η6)T ∈ Y, let ω(t) = ω(t; 0,η, σ) =
(w1, ∂w1/∂t, w2, ∂w2/∂t, w3, ∂w3/∂t)T be the solution of:

(3.27)




wtt + µwt = ∆w +B(x)w + G(σ(ω(t)),w) for t ≤ 0, x ∈ Ω,

w(x, t) = 0 for t ≤ 0, x ∈ ∂Ω,

w(x, 0) = (η1, η3, η5)T ,wt(x, 0) = (η2, η4, η6)T for x ∈ Ω,

where w = (w1, w2, w3)T . As in Lemma 3.3, the growth of ω(t) for each t ≤ 0
can be estimated, and we can assert that the solution exists for all t ≤ 0 (cf.
[184]). For a given σ ∈ Λ, define Q(σ) : Y → Xα by:

(3.28) Q(σ)(η) :=
∫ 0

−∞
eA(ε)sPF(σ(ω(s)),w(s))ds,
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where ω(s) = ω(s; 0,η, σ) is defined above for s ≤ 0. Observe that:

F(σ(ω(s)),w(s)) = f(σ(ω(s))+u0,w(s)+v0)−(σ(ω(s))+u0)·∇(σ(ω(s))+u0).

Let K̂1 = K1 + ‖u0‖α. By hypothesis (3.4) and inequalities (3.12) above, we
find

(3.29) ‖PF(σ(ω(s)),w(s))‖X ≤ ‖F(σ(ω),w)‖L2 ≤ N(K̂1) + 4K̂2
1C

2

for ‖σ(ω)‖α ≤ K1. Inequalities (3.7) and (3.29) imply that formula (3.28) is
well-defined. Moreover, for ε > 0 sufficiently small, we have:

‖Q(σ)(η)‖α ≤
∫ 0

−∞
M̂(−s)αeβ(ε)s[N(K̂1) + 4K̂2

1C
2] ds ≤ K1.

We next prove that the function Q(σ) also satisfy the second property in
(3.26), and will thus belong to the class Λ of functions. Let ϑ(t) := ω(t; 0,η, σ(ϑ)),
ϑ̂(t) := ω(t; 0, η̂, σ̂(ϑ̂)) be solutions of problem (3.27) as described above. By
Lemma 3.3, we find that for t ≤ 0, we have

‖ϑ(t)− ϑ̂(t)‖Y

≤Me−(k+ML)t‖η − η̂‖Y +ML
∫ 0
t e

(k+ML)(s−t)‖σ(ϑ(s))− σ̂(ϑ̂(s))‖αds

≤Me−(k+ML)t‖η − η̂‖Y

+ML
∫ 0
t e

(k+ML)(s−t){K2‖ϑ(s)− ϑ̂(s)‖Y + ‖σ − σ̂‖Λ}ds

≤Me−(k+ML)t‖η − η̂‖Y +ML(k +ML)−1[e−(k+ML)t − 1]‖σ − σ̂‖Λ

+ML
∫ 0
t e

(k+ML)(s−t)K2‖ϑ(s)− ϑ̂(s)‖Yds,
where ‖σ − σ̂‖Λ := sup{‖σ(y) − σ̂(y)‖α : y ∈ Y}. For convenience, let λ =
(k +ML); we obtain from above, by means of Gronwall’s inequality:

(3.30)

‖ϑ(t)− ϑ̂(t)‖Y ≤M‖η − η̂‖Ye−(λ+MLK2)t

+ e−(λ+MLK2)tML(MLK2 + λ)−1‖σ − σ̂‖Λ

−ML(MLK2 + λ)−1‖σ − σ̂‖Λ.

For ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6)T and ϑ̂ = (ϑ̂1, ϑ̂2, ϑ̂3, ϑ̂4, ϑ̂5, ϑ̂6)T as above, we
define for convenience the odd components ϑ0(t) := (ϑ1, ϑ3, ϑ5)T and ϑ̂0(t) :=
(ϑ̂1, ϑ̂3, ϑ̂5)T . From (3.8), (3.10), (3.28) and (3.30) we deduce the following:
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(3.31)
‖Q(σ)(η)−Q(σ̂)(η̂)‖α

≤ ∫ 0
−∞ M̂ (−s)−αeβs‖PF(σ(ϑ(s)),ϑ0(s))− PF(σ̂(ϑ̂(s)), ϑ̂0(s))‖Xds

≤ ∫ 0
−∞ M̂ (−s)−αeβsC(K1){‖σ − σ̂‖Λ +K2‖ϑ(s)− ϑ̂(s)‖Y

+‖ϑ0(s)− ϑ̂0(s)‖H1,2}ds

≤ M̂C(K1)
∫∞
0 u−αe−βudu‖σ − σ̂‖Λ

+M̂C(K1)[K2 + 1]
∫ 0
−∞(−s)−αeβs[Me−(λ+MLK2)s‖η − η̂‖Y

+ML(MLK2 + λ)−1‖σ − σ̂‖Λ{e−(λ+MLK2)s − 1} ] ds

= M̂C(K1)[K2 + 1]M ‖η − η̂‖Y θ2 + M̂C(K1)‖σ − σ̂‖Λ [ θ2(1 +K2)ML·

(MLK2 + λ)−1 + θ1{1− (1 +K2)ML(MLK2 + λ)−1} ]

≤ M̂C(K1)[K2 + 1]M‖η − η̂‖Y θ2 + M̂C(K1)‖σ − σ̂‖Λ θ2,
where

(3.32) θ1 =
∫ ∞

0
u−αe−βudu, θ2 =

∫ ∞

0
u−αe−βue(λ+MLK2)udu.

The last inequality in (3.31) is justified by 0 < θ1 < θ2. Moreover, in view of
the properties of β stated for (3.7), θ2 → 0+ as ε → 0+. Hence, for sufficiently
small ε > 0, we have

(3.33) M̂C(K1)[K2 + 1]Mθ2 < K2, and M̂C(K1)θ2 < 1.

The mapping Q(σ) is thus a contraction in the class of functions Λ with norm
‖ · ‖Λ; and there exists a fixed point σ0 where Q(σ0) = σ0.

We now prove that if ω̃(t) is a solution of (3.27) for −∞ < t < ∞ with
σ replaced by σ0, then (σ0(ω̃(t)), w̃(t)) satisfies (3.9) for −∞ < t < ∞, with
w̃(t) := ω̃0(t), which consists of the odd components of ω̃(t). From (3.28) and
the autonomous property of (3.27), we have

σ0(ω̃(t)) = Q(σ0)(ω̃(t))

=
∫ 0
−∞ eAsPF(σ0(ω̃(s+ t)), w̃(s+ t))ds

=
∫ t
−∞ eA(τ−t)PF(σ0(ω̃(τ)), w̃(τ))dτ.
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This shows that ũ = σ0(ω̃(t)) is a bounded solution in Xα of:

(3.34) ũt = −Aũ + PF(σ0(ω̃(t), w̃(t)), −∞ < t <∞.

(Note that the nonhomogeneous linear system (3.34) cannot have more than one
bounded solution for −∞ < t < ∞, since 0 is not in the spectrum of ε−1∆).
Finally for (z1, z2, z3)T ∈ H1,2

0 and (z4, z5, z6)T ∈ L2, define

(3.35) σ∗((z1, z2, z3, z4, z5, z6)T ) = σ0(y),

where y = (y1, y2, y3, y4, y5, y6)T := (z1, z4, z2, z5, z3, z6)T . Then we have the
existence of an invariant manifold as described by S in the statement of Theorem
3.1. Moreover,
the function σ∗ has the boundedness and Lipschitz property as described. This
completes the proof of Theorem 3.1.

Remark 3.3. The local existence and continuation of solution of (3.9) in semi-
group setting with (ũ, ṽ, ṽt) in Xα×H1,2

0 ×L2 under the conditions of Lemma 3.1
for arbitrary initial conditions can be proved by fixed point methods similar to
that in the proof of Theorem 3.1 or in [84] and [184]. Since the emphasis in this
section is not on this issue, the details will be omitted. A solution (u(·, t),v(·, t))
of (3.1) in this section will always be interpreted as u = ũ + u0,v = ṽ + v0,
where (ũ, ṽ, ṽt) is a semigroup solution of (3.9) in Xα ×H1,2

0 × L2.

Remark 3.4. Under the hypotheses of Theorem 3.1, the size of small ε for
the existence of the invariant manifold is determined by the two inequalities in
(3.33).

Part B: Dependence on Initial Conditions, Asymptotic Stability of
the Manifold, and Applications.

We next proceed to estimate the dependence of the solutions on initial con-
ditions, and study the asymptotic stability of the manifold. We first inves-
tigate the dependence of solutions on initial conditions and the relationship
between solutions of the original problem (3.1) and solutions on the manifold
found in Part A of this section. In Theorem 3.2, we will consider the asymp-
totic stability of the manifold. Let (u(·, t),v(·, t)) be a solution of (3.1), and
ũ = u− u0, ṽ = v− v0 = (ṽ1, ṽ2, ṽ3)T be the corresponding of solution of (3.9).
Define:

(3.36) γ(·, t) := (ṽ1, ∂ṽ1/∂t, ṽ2, ∂ṽ2/∂t, ṽ3, ∂ṽ3/∂t)T .

Recall that for any y = (y1, y2, y3, .., y6)T ∈ Y, we denote y0 = (y1, y3, y5)T ∈
H1,2 to be the odd components of y. For 0 ≤ s ≤ t, let ψ(s; t) := (ψ1, ψ2, ψ3, . . .
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ψ6)T ∈ Y such that ∂ψi/∂s = ψi+1, for i = 1, 3, 5, and ψ0(s; t) = ψ0(s; t, (ṽ(·, t),
ṽt(·, t)), σ0(ψ(s; t)) described above satisfy:

(3.37)


∂2ψ0/∂s
2 + µ∂ψ0/∂s = ∆ψ0 +B(x)ψ0 + G(σ0(ψ),ψ0) for s ≤ t, x ∈ Ω,

ψ0(s; t)|x∈∂Ω = 0 for s ≤ t,

ψ0(t; t) = ṽ(·, t), (∂ψ0/∂s)(t; t) = ṽt(·, t) for x ∈ Ω.

The function γ(s) describes the components in Y for a solution of (3.9), which is
converted from (3.1). The function ψ(s; t) is the Y components of a solution on
the manifold. For s = t, we have ψ(t; t) = γ(t). We now compare the solutions
ψ(s; t) with γ(s) for s ≤ t. They will be related to the function:

(3.38) ξ(t) := ũ(·, t)− σ0(γ(·, t)).

Lemma 3.4. For 0 ≤ s ≤ t, the functions ψ(s; t) and γ(s) described above
satisfy:

(3.39) ‖ψ(s; t)− γ(s)‖Y ≤ML

∫ t

s
exp{[k +ML(K2 + 1)](r − s)}‖ξ(r)‖αdr.

Moreover, for s ≤ 0 ≤ t,ψ satisfies:

(3.40) ‖ψ(s; 0)−ψ(s; t)‖Y ≤M2L

∫ t

0
exp{[k+ML(K2 +1)](r−s)}‖ξ(r)‖αdr.

Recall that L, M, k and K2 are the constants described in Lemmas 3.1, 3.2 and
Theorem 3.1.

Proof. For 0 ≤ s ≤ t, we obtain from Lemma 3.3:

‖ψ(s; t)− γ(s)‖Y ≤ML
∫ t
s e

(k+ML)(r−s)‖σ0(ψ(r; t))− ũ(·, r)‖α dr

≤ML
∫ t
s e

(k+ML)(r−s){‖σ0(ψ(r; t))− σ0(γ(r))‖α + ‖σ0(γ(r))− ũ(·, r)‖α} dr.
Letting ξ(r) = ũ(·, r)−σ0(γ(r)), we obtain the following inequality for 0 ≤ s ≤ t:

e(k+ML)s‖ψ(s; t)−γ(s)‖Y ≤ML

∫ t

s
e(k+ML)r{‖ξ(r)‖α+K2‖ψ(r; t)−γ(r)‖Y} dr.

By the Gronwall’s inequality, we find

e(k+ML)s‖ψ(s; t)− γ(s)‖Y ≤ML
∫ t
s e

(k+ML)r‖ξ(r)‖α dr

+MLK2

∫ t
s exp{MLK2(r − s)}[ML

∫ t
r e

(k+ML)τ‖ξ(τ)‖αdτ ] dr

=
∫ t
s exp{MLK2(r − s)}MLe(k+ML)r‖ξ(r)‖α dr.
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This yields inequality (3.39) for 0 ≤ s ≤ t.
For s ≤ 0 ≤ t, we use Lemma 3.3 again to obtain:

‖ψ(s; 0) −ψ(s; t)‖Y ≤Me−(k+ML)s‖ψ(0; 0) −ψ(0; t)‖Y

+ML
∫ 0
s e

(k+ML)(r−s)‖σ0(ψ(r; 0))− σ0(ψ(r; t))‖α dr.

This gives

e(k+ML)s‖ψ(s; 0)−ψ(s; t)‖Y ≤M‖γ(0) −ψ(0; t)‖Y

+ML
∫ 0
s e

(k+ML)rK2‖ψ(r; 0)−ψ(r; t)‖Y dr.

Gronwall’s inequality gives for s ≤ 0 ≤ t,

e(k+ML)s‖ψ(s; 0) −ψ(s; t)‖Y ≤M‖γ(0)−ψ(0; t)‖Y

+MLK2

∫ 0
s exp{MLK2(r − s)}M‖γ(0) −ψ(0; t)‖Y dr

= M‖γ(0)−ψ(0; t)‖Y exp{−MLK2s}

≤M exp{−MLK2s}ML
∫ t
0 exp{[k +ML(K2 + 1)]r}‖ξ(r)‖α dr.

(Note that the last line above is due to (3.39), with s = 0.) This leads to
inequality (3.40), and completes the proof of this Lemma.

We now prove that solutions of (3.1), which start close to the invariant
manifold described in Theorem 3.1 at t = 0, will tend to the manifold as t→ +∞.
For convenience, we define

(3.41) q(ε) := (C(2K1)M̂{1 +
M2L(1 +K2)

β(ε)− k −ML(1 +K2)
}Γ(1− α) )1/(1−α),

where Γ is the Gamma function, and K1, K2 are the constants defined in the
proof of Theorem 3.1. Also, recall the definition of β(ε) and M̂ in (3.7). We will
use Lemma 3.4 to prove the following asymptotic stability theorem.

Theorem 3.2 (Asymptotic Stability of the Invariant Manifold). Under
hypotheses (3.2)−(3.4), suppose that ε > 0 is small enough for Theorem 3.1
to hold. Let (u(·, t),v(·, t)) be a solution of (3.1) such that (u(t),v(t),vt(t)) ∈
Xα × Ỹ for t ≥ 0 and, possibly taking a smaller ε, assume that:

(3.42) q(ε) < β(ε).
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Then the invariant manifold through

(0,u0 + σ∗(v(·, 0) − v0,vt(·, 0)), (v(·, 0),vt(·, 0)))

is asymptotically stable in the sense that

(3.43)
‖u(·, t)− [u0 + σ∗(v(·, t) − v0,vt(·, t))]‖α ≤

M̂R̂‖u(·, 0) − [u0 + σ∗(v(·, 0) − v0,vt(·, 0))]‖αe(q−β)t

for t ≥ 0, provided that the norm of the initial data ‖u(·, 0) − [u0 + σ∗(v(·, 0) −
v0,vt(·, 0))]‖α is small enough. Here R̂ is a constant depending on α. (Note that
(3.42) is always satisfied for ε sufficiently small, since β(ε) → +∞ as ε → 0+;
also, recall 3/4 < α < 1.)

Proof. Using (3.38) and the integral representation of ũ(·, t), we deduce for
t ≥ 0 that:

(3.44)
ξ(t) = e−Atξ(0) +

∫ t
0 e

−A(t−s)[PF(ũ(·, s), ṽ(·, s))− PF(σ0(ψ(s, t)),ψ0(s, t))]ds

+
∫ t
0 e

−A(t−s)PF(σ0(ψ(s, t)),ψ0(s, t))ds − σ0(γ(·, t)) + e−Atσ0(γ(·, 0)).

Using the autonomous property

σ0(γ(·, t)) = Q(σ0(γ(·, t)) =
∫ t

−∞
e−A(t−s)PF(σ0(ψ(s, t)),ψ0(s, t))ds

and

e−Atσ0(γ(·, 0)) = e−At
∫ 0

−∞
eAsPF(σ0(ψ(s, 0)),ψ0(s, 0))ds,

we can rewrite the last three terms of (3.44) to obtain:

(3.45)
ξ(t) = e−Atξ(0) +

∫ t
0 e

−A(t−s)[PF(ũ(·, s), ṽ(·, s))− PF(σ0(ψ(s, t)),ψ0(s, t))]ds

+
∫ 0
−∞ e−A(t−s)[PF(σ0(ψ(s, 0)),ψ0(s, 0)) − PF(σ0(ψ(s, t)),ψ0(s, t))]ds.

As long as ‖ũ(·, s)‖α ≤ 2K1, we can use (3.8), (3.10), (3.39) and the fact that
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σ0 ∈ Λ to estimate:

(3.46)∫ t
0 ‖e−A(t−s)[PF(ũ(·, s), ṽ(·, s)) − PF(σ0(ψ(s; t),ψ0(s; t))]‖α ds

≤ M̂ ∫ t
0 (t− s)−αe−β(t−s)C(2K1)[‖ũ(·, s)− σ0(ψ(s; t))‖α+

ML
∫ t
s exp{[k +ML(K2 + 1)](r − s)}‖ξ(r)‖αdr] ds

≤ M̂ ∫ t
0 (t− s)−αe−β(t−s)C(2K1)[‖ξ(s)‖α+

ML(K2 + 1)
∫ t
s exp{[k +ML(K2 + 1)](r − s)}‖ξ(r)‖αdr] ds

= M̂
∫ t
0 C(2K1)(t− s)−αe−β(t−s)‖ξ(s)‖αds

+ M̂C(2K1)ML(K2 + 1)
∫ t
0 exp{[k +ML(K2 + 1)](r − t)}‖ξ(r)‖α·

∫ t
t−r z

−αexp{−(β − k −ML(K2 + 1))z}dz dr.

Moreover, from inequality (3.40), we can estimate:

(3.47)∫ 0
−∞ ‖e−A(t−s)[PF(σ0(ψ(s; t)),ψ0(s; t))− PF(σ0(ψ(s; 0)),ψ0(s; 0))]‖α ds

≤ M̂ ∫ 0
−∞(t− s)−αe−β(t−s)C(2K1)[‖σ0(ψ(s; t)− σ0(ψ(s; 0))‖α

+‖ψ(s; t)−ψ(s; 0)‖Y ]ds

≤ M̂ ∫ 0
−∞(t− s)−αe−β(t−s)C(2K1)M2L(K2 + 1)·

∫ t
0 exp{[k +ML(K2 + 1)](r − s)}‖ξ(r)‖αdr ds

= M̂C(2K1)M2L(K2 + 1)
∫ t
0 exp{[k +ML(K2 + 1)](s − t)}‖ξ(s)‖α·

∫∞
t z−αexp{−(β − k −ML(K2 + 1))z}dz ds.

Combining (3.45) to (3.47), we obtain:

‖ξ(t)‖α ≤ M̂e−βt‖ξ(0)‖α + M̂C(2K1)
∫ t

0
‖ξ(s)‖αI(s, t)ds,
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where

I(s, t) = (t− s)−αe−β(t−s) +M2L(K2 + 1)exp{[k +ML(K2 + 1)](s − t)}·
∫∞
t−s z

−αexp{−[β − k −ML(K2 + 1)]z} dz

≤ (t− s)−αe−β(t−s) +M2L(K2 + 1)exp{[k +ML(K2 + 1)](s − t)}·

(t− s)−α ∫∞
t−s exp{−[β − k −ML(K2 + 1)]z} dz

= (t− s)−αe−β(t−s){1 + M2L(K2+1)
β−k−ML(K2+1)}.

We obtain

(3.48) eβt‖ξ(t)‖α ≤ M̂‖ξ(0)‖α + b

∫ t

0
(t− s)−αeβs‖ξ(s)‖α ds,

where b = M̂C(2K1){1 + M2L(K2 + 1)[β − k −ML(K2 + 1)]−1}. Inequality
(3.48) holds as long as ‖ũ(·, s)‖α ≤ 2K1 for 0 ≤ s ≤ t. Hence, inequality
(3.43) follows from (3.48) and the generalized Gronwall inequality (cf. [84]), as
long as ‖ũ‖α ≤ 2K1. Here R̂ depends on K1, α and b. Recall that ‖σ∗‖α ≤
K1 by Theorem 3.1. Consequently, (3.43) holds for all t ≥ 0, provided that
‖u(·, 0) − [u0 + σ∗(v(·, 0) − v0,vt(·, 0))]‖α ≤ K1(M̂R̂)−1.

Remark 3.5. For the reader’s convenience, the generalized Gronwall’s inequal-
ity can be found in Theorem 7.1.1 of [84]. Let w(t) := eβt‖ξ(t)‖α, which satisfies
inequality (3.48). Then the generalized Gronwall’s inequality implies that w(t)
satisfies:

w(t) ≤ M̂‖ξ(0)‖αCeθt for t ≥ 0,

where C is a constant which depends on α and b, and θ = (bΓ(1 − α))1/(1−α).
Here Γ is the Gamma function.

We finally consider some special cases when the theories of the last two
theorems can be readily applied. We will restrict the damping constant to be
positive, i.e. µ > 0, in the remaining part of this article. Such sign condition is
appropriate for application of (3.1) to most physical problems.

Theorem 3.3 (Asymptotic Stability for Equilibrium on the Invariant
Manifold). Assume all the hypotheses of Theorem 3.2 and h = q = 0,u0 =
v0 = 0, µ > 0. Suppose that the origin is on the invariant manifold and is
asymptotically stable with respect to flows on the manifold as t → +∞, then it
is asymptotically stable with respect to solutions of the full system (3.1).
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Remark 3.6. Roughly speaking, if the origin attracts neighboring solutions on
the invariant manifold, then it will attract all neighboring solutions of the full
system. The theorem will be proved by means of Lyapunov’s method.

Proof. The evolution on the manifold is described by the system:
(3.49)


ztt + µzt = ∆z +B(x)z + G(σ∗(z, zt), z) for x ∈ Ω,−∞ < t <∞,

z(x, t) = 0 for x ∈ ∂Ω,−∞ < t <∞.
Let χ0 = (χ1

0, χ
2
0, χ

3
0, ..., χ

6
0)T ∈ Y, and χ̃(t; t0,χ0) := (z(t; t0, (χ1

0, χ
3
0, χ

5
0, χ

2
0, χ

4
0,

χ6
0)T , zt(t; t0, (χ1

0, χ
3
0, χ

5
0, χ

2
0, χ

4
0, χ

6
0)T )) has its first three components as the so-

lution of (3.49) with initial conditions (z(t0), zt(t0)) = (χ1
0, χ

3
0, χ

5
0, χ

2
0, χ

4
0, χ

6
0)T .

Let χ(t; t0,χ0) := (z1(t), ∂z1(t)/∂t, z2(t), ∂z2(t)/∂t, z3(t), ∂z3(t)/∂t)T for con-
venience. There exists a small r0 > 0 such that for ‖χ0‖Y ≤ r0, we have
‖χ(t; 0,χ0)‖Y ≤ θ(t)→ 0 as t→ +∞. We may assume that θ(t) has continuous
negative derivative, thus it has continuous inverse T (ε), 0 < ε < θ(0) so that
T (θ(t)) = t, with T (ε)→ +∞ as ε→ 0+. From (3.3), Lemma 3.2 and the repre-
sentation by semigroup, we can show that the mapping χ0 → χ(t; 0,χ0), t ≥ 0
has Lipschitz constant JeDt for some constants J and D, if ‖χ0‖Y ≤ r0. As in
Theorem 19.3 in Yoshizawa [239], define g(ε) = exp{−1(1 +D)T (ε)}, g(0) = 0;
and for k = 1, 2, 3, . . .

Qk(z) = max{0, z − k−1},

Vk(χ0) = g(1/(k + 1))supt≥0{etQk(‖χ(t; 0,χ0)‖Y} for ‖χ0‖Y ≤ r0.
(Note that the supremum may be taken only on 0 ≤ t ≤ Tk := T (1/(k + 1)).)
One can verify that 0 ≤ Vk(χ0) ≤ g(1/(k + 1))eTkθ(0), and

Vk(χ(h; 0,χ0)) = e−hg(1/(k + 1))supt≥h{etQk(‖χ(t; 0,χ0)‖Y)} ≤ e−hVk(χ0)

for small h ≥ 0. Defining V (χ0) = Σ∞
k=12−kVk(χ0), for ||χ0‖Y ≤ r0, we can

show as in [239] that

(3.50) |V (χ1)− V (χ2)| ≤ J‖χ1 − χ2‖Y,

(3.51) V̇ (χ0) := lim sup
h→0+

h−1[V (χ(h; 0,χ0))− V (χ0)] ≤ −V (χ0),

(3.52) a(‖χ0‖Y) ≤ V (χ0) ≤ J‖χ0‖Y,
where a(s) is a continuous and strictly increasing function for 0 ≤ s ≤ r0, with
a(0) = 0. Moreover (3.51) and the comparison Theorem 4.1 in [239] imply that

V (χ(T ; 0,χ0)) ≤ e−TV (χ0).
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For ‖χ0‖Y ≤ r0, ‖u0 − σ0(χ0)‖α small, define

W (u0,χ0) := V (χ0) + P̂‖ξ0‖α, where ξ0 = u0 − σ0(χ0),

and P̂ is a large positive constant to be chosen below. Let T > 0 be a large
number such that:

e−T ≤ 1/2 and M̂R̂e(q−β)T ≤ 1/4,

where M̂, R̂, q and β are described in Theorem 3.2 above. Let (u(·, t),v(·, t)) be a
solution of (3.1) satisfying u(·, 0) = u0, (v(·, 0),vt(·, 0)) = (χ1

0, χ
3
0, χ

5
0, χ

2
0, χ

4
0, χ

6
0)T .

Denote ω(·, t) := (v1(·, t), ∂v1(·, t)/∂t, v2, ∂v2/∂t, v3, ∂v3/∂t)T , ξ(t) = u(·, t) −
σ0(ω(·, t)), and consider the following:

W (u(·, T ),ω(·, T )) = V (ω(·, T )) + P̂‖ξ(T )‖α

≤ e−TV (χ(0;T,ω(·, T ))− e−TV (ω(·, 0)) + e−TV (ω(·.0))

+P̂ M̂R̂e(q−β)T ‖ξ(0)‖α

≤ e−TJ‖χ(0;T,ω(·, T ))− ω(·, 0)‖Y + 2−1V (ω(·, 0)) + (1/4)P̂ ‖ξ(0)‖α

≤ e−TJMLM̂R̂[k +ML(K2 + 1) + q − β]−1(e[k+ML(K2+1)+q−β]T − 1)‖ξ(0)‖α

+ 2−1V (ω(·, 0)) + (1/4)P̂ ‖ξ(0)‖α.
The last inequality is due to (3.39) and (3.43). Thus by choosing

P̂ ≥ 4e−TJMLM̂R̂[k +ML(K2 + 1) + q − β]−1(e[k+ML(K2+1)+q−β]T − 1),

we obtain
W (u(·, T ),ω(·, T )) ≤ (1/2)W (u(·, 0),ω(·, 0)).

Estimating by (3.43) the norm ‖ξ(t)‖α for t ∈ [0, T ], and possibly reducing
‖ξ(0)‖α, we obtain

W (u(·, t),ω(·, t)) ≤ Q2−t/T , for all t ≥ 0,

where Q is some positive constant. This proves the asymptotic stability of the
origin for the full system (3.1).

Remark 3.7. Consider system (3.1) under hypotheses (3.2) to (3.3), without
the boundedness assumption (3.4) on f . Suppose that B(x) is symmetric, µ > 0
and g satisfies the additional condition:

‖g(u,v)‖L2 ≤ K̂‖u‖α
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for all (u,v) ∈ Xα × H1,2 where K̂ is a positive constant. Let Q1 and Q2

be arbitrary positive constants. We can show by integral representation using
semigroup as in [128], that there exists Q̂2 (which depends on Q1 and Q2) such
that ‖(v(·, t),vt(·, t))‖Ỹ ≤ Q̂2 for all t ≥ 0, as long as both ‖(v(·, 0),vt(·, 0))‖Ỹ ≤
Q2 and ‖u(·, t)‖α ≤ 2Q1 for all t ≥ 0. Define fQ̂2

(u,v) = f(u,vψ(v/Q̂2)) for

u ∈ Xα,v ∈ H1,2
0 , where ψ : H1,2

0 → [0, 1] is a Lipschitzian function satisfying
ψ(ṽ) = 1 if ‖ṽ‖H1,2 ≤ 1 and ψ(ṽ) = 0 if ‖ṽ‖H1,2 ≥ 2. Let (3.1 − Q̂2) denote
the system (3.1) with only f(u,v) replaced with fQ̂2

(u,v). System (3.1 − Q̂2)
satisfies hypotheses (3.2)-(3.4). For sufficiently small ε > 0, we can thus apply
Theorem 3.1 to obtain an invariant manifold for (3.1−Q̂2) represented by σ∗ ∈ Λ,
satisfying ‖σ∗(v − v0,vt)‖α ≤ Q1 for all (v,vt) ∈ Ỹ. If ‖(v(·, 0),vt(·, 0))‖Ỹ ≤
Q2 and (u(·, 0),v(·, 0),vt(·, 0)) is close enough to the manifold represented by
σ∗, Theorem 3.2 and the above consideration imply that ‖u(·, t)‖α ≤ 2Q1 and
‖(v(·, t),vt(·, t))‖Ỹ ≤ Q̂2 for t ≥ 0. From the bound on v we conclude that such
(u(·, t),v(·, t)) is actually a solution of the original problem (3.1) for t > 0. Such
solution of (3.1) thus tends to the part of the manifold represented by σ∗ for
(3.1 − Q̂2) with ‖(v,vt)‖Ỹ ≤ Q̂2 and ‖σ∗‖α ≤ Q1, as t→ +∞.

5.4 Existence and Global Bounds for Fluid Equations

of Plasma Display Technology

This section considers the fluid model for the discharge of plasma particle species
in display technology. The fluid equations are coupled with Poisson’s equation,
which describes the effect of the charged particles on the electric field. The
diffusion and mobility coefficients for the positive ion particles depend on the
electric field, while those for the electrons depend on the electron mean en-
ergy. The reaction rates are proportional to the products of the densities of the
reacting particles involved in the particular ionization, conversion or recombi-
nation reactions. The ionization and discharge reactions are described by an
initial-boundary value problem for a system of coupled parabolic-elliptic partial
differential equations. The model is adopted from the various investigations on
discharges in plasma display panels by Raul and Kushner [191], Hagelaar [77],
Hagelaar, Klein et al. [78], Veronis and Inan [223]. The system is first analyzed
by upper-lower solution method. By means of the a-priori bounds obtained
for an arbitrary time, the existence of solution for the initial-boundary value
problem is proved in an appropriate Hölder space. The rigorous analytical de-
velopment in this section follows the presentation in Leung and Chen [134].
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Part A: Model Introduction, Upper and Lower Estimates.

Many types of plasma particles occupy the cells between the front and rear
glass panels. The voltage in the cell is influenced by the electrodes attached
to the front and rear glass panels, while the electric field inside the cell is also
affected by the charged particles. The space and time variation of the densi-
ties of the plasma particles, electrons and electron energy are described by the
fluid equations. The fluid equations are coupled with the Poisson’s equation
which describes the effect of the charged particles on the electric field, which
is the gradient of the voltage in the cell. We will take only four key positively
charged particles into consideration. They are the two xenon ions Xe+,Xe+2 and
the two neon ions Ne+, Ne+2 . Let n1(x, t), ..., n4(x, t) respectively represent the
densities of the particles Xe+,Xe+2 , Ne

+, Ne+2 . Let n5(x, t), n6(x, t) respectively
represent the densities of electron e and electron energy; and V(x,t) represents
the voltage in the cell. We obtain the following seven coupled parabolic-elliptic
equations for the 4 positively charged particles, electrons, energy and voltage.
(4.1)


∂n1/∂t−∇ · (D1(|∇V |2)∇n1) + (µ1(|∇V |2)/ε)[
∑4

i=1 qini − q5n5]n1

−µ1(|∇V |2)[(∇V ) · ∇n1] = c11n5 − c12n1,

∂n2/∂t−∇ · (D2(|∇V |2)∇n2) + (µ2(|∇V |2)/ε)[
∑4

i=1 qini − q5n5]n2

−µ2(|∇V |2)[(∇V ) · ∇n2] = c21n1 − c22n5n2,

∂n3/∂t−∇ · (D3(|∇V |2)∇n3) + (µ3(|∇V )|2/ε)[∑4
i=1 qini − q5n5]n3

−µ3(|∇V |2)[(∇V ) · ∇n3] = c31n5 − c32n3,

∂n4/∂t−∇ · (D4(|∇V |2)∇n4) + (µ4(|∇V |2)/ε)[
∑4

i=1 qini − q5n5]n4

−µ4(|∇V |2)[(∇V ) · ∇n4] = c41n3 − c42n5n4,

∂n5/∂t−∇ · (D5(n6/n5)∇n5)− (µ5(n6/n5)/ε)[
∑4

i=1 qini − q5n5]n5

+µ5(n6/n5)[(∇V ) · ∇n5] = c11n5 + c31n5 − c22n2n5 − c42n4n5,

∂n6/∂t− (5/3)∇ · (D5(n6/n5)∇n6)

−(5/3)(µ5(n6/n5)/ε)[
∑4

i=1 qini − q5n5]n6 + (5/3)µ5[(∇V ) · ∇n6]

= eµ5(∇V · ∇V )n5 − eD5[∇V · ∇n5]− n5[
∑5

i=1 dini],

∆V = ε−1(
∑4

i=1 qini − q5n5),
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for (x, t) ∈ Ω× [0,∞). The quantities Di and µi for i = 1, ..., 5 are the diffusion
and mobility coefficients for the corresponding i-th species. For i = 1, .., 4, they
will be assumed to be functions of grad V (x, t) = ∇V , and are thus coupled
nonlinearly with the seventh equation. The product of ε−1µi(|∇V |2) with the
quadratic terms on the left of the equations expresses part of the influence of
the electric field (i.e. grad V (x, t)) on the evolution of the particles. Note that
this quadratic expression is exactly µidiv(grad V)ni as described in the seventh
equation. The parameter ε represents dielectric permitivitty, e represents the
elementary charge, and qi are positive constants for i = 1, ..., 5. For i = 5, we will
assume the diffusion and mobility coefficients to depend on the so called electron
mean energy η6/η5. The right-hand side of the six parabolic equations describes
the reaction among the ions. The reaction rates are proportional to the products
of the densities of the reacting particles involved in the particular ionization,
conversion or recombination reactions. In the first equation for Xe+ density, the
reactions are due to ionization from Xe to Xe+, i.e. e+Xe→ 2e+Xe+, and ion
conversions from Xe+ to Xe+2 or other particles e.g. Xe+ + 2Xe→ Xe+2 +Xe
and Xe+ + 2Ne → NeXe+ + Ne. Note that we assume the densities of Xe
and Ne to be constants. In the second equation for Xe+2 density, the reactions
are due to ion conversion to Xe+2 (this includes e.g. Xe+ + 2Xe → Xe+2 + Xe
or Xe+ + Xe + Ne → Xe+2 + Ne), and recombination e + Xe+2 → Xe∗∗ +
Xe. In the third equation for Ne+ density, the reactions are due to ionization
e + Ne → 2e + Ne+ and ion conversion e.g. Ne+ + 2Ne → Ne+2 + Ne, and
Ne+ +Ne+ Xe→ NeXe+ +Ne. In the fourth equation for Ne+2 density, the
reactions are due to ion conversion Ne+ +2Ne→ Ne+2 +Ne and recombination
e+Ne+2 → Ne∗∗ +Ne. In the fifth equation for electron density, the reactions
are due to ionizations e+Xe→ 2e+Xe+, e+Ne→ 2e+Ne+, recombinations
e + Xe+2 → Xe∗∗ + Xe and e + Ne+2 → Ne∗∗ + Ne. In the sixth equation for
energy, the first two source terms on the right-hand side are due to heating by
electric field, and the last term is due to energy loss in collisions. The terms
involving diffusion and mobility on the left-hand side are due to appropriate
approximation of drift-diffusion, contributing to the electron energy flux.(See
e.g. [77], [78] and [191] for more detailed explanations).

To fix ideas, we assume Ω is a bounded domain in Rm, with boundary ∂Ω in
the Hölder space C2+α, 0 < α < 1. As described above, we assume in (4.1), for
i = 1, .., 4, that Di = Di(|∇V )|2), µi = µi(|∇V |2) and D5 = D5(η6/η5), µ5 =
µ5(η6/η5). We will assume that, for i = 1, ..., 5, Di(z) and µi(z) are respectively
positive C1+α and Cα functions in compact subsets of all real numbers; and
further, µi(z) are bounded for all real z, i = 1, ..., 5. All the parameters cij
in (4.1) are assumed to be constants. We will consider the system (4.1) with
prescribed initial-boundary conditions:
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(4.2)

ni(x, 0) = gi(x, 0) ≥ 0 for x ∈ Ω, i = 1, ..., 6,

ni(x, t) = gi(x, t) ≥ 0 for (x, t) ∈ ∂Ω× [0,∞), i = 1, ..., 6,

V (x, t) = φ(x, t) for (x, t) ∈ ∂Ω× [0,∞).

In Theorem 4.1, we show that if appropriate coupled upper-lower solutions for
problem (4.1) and (4.2) exist in a certain time interval, they will serve as a-
priori upper and lower bounds for the solutions of the initial-boundary value
problem. We will give examples to show that under appropriate ranges of the
reaction rates cij , Theorem 4.1 can establish bounds for the densities of the
charged particles. Such bounds can determine whether the reaction rates will
lead the densities of the particles to generate light through discharge. Under
more stringent conditions on the coefficients Di and µi, the a-priori bounds will
also be used in Main Theorem 4.4 to prove the existence of the solutions of (4.1),
(4.2) in appropriate Hölder space on the time interval involved. These methods
can be used to study more elaborate systems involving more particles. They
are however too lengthy for this present analysis. Better understanding of these
problems is beneficial for further study of the control of light distribution on the
display panel.

We now define convenient coupled upper-lower solutions for problem (4.1)
and (4.2). They will be used as upper and lower bounds for solutions of the
initial-boundary value problem.

Definition 4.1. A pair of vector functions (n̂1(x, t), ..., n̂5(x, t)) and (ñ1(x, t), ...,
ñ5(x, t)) with each component in C21(Ω̄× [0, T ]), where ñi ≤ n̂i, i = 1, ..., 5, with

(4.3)

0 ≤ ñi(x, t) ≤ gi(x, t) ≤ n̂i(x, t), i = 1, ..., 5, and

0 < ñ5(x, t) for (x,t)∈ (Ω× {0})∪(∂Ω× [0, T ]),

are called coupled upper-lower solutions for problem (4.1), (4.2), if (n̂1, ..., n̂5)
satisfies in Ω× (0, T ):
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(4.4)


∂n̂1/∂t−∇ · (D1(|∇W |2)∇n̂1) + (µ1(|∇W |2)/ε)[ q1n̂1

+
∑4

i=1,i	=1 qizi − q5z5]n̂1 − µ1(|∇W |2)[(∇W ) · ∇n̂1] ≥ c11z5 − c12n̂1,

∂n̂2/∂t−∇ · (D2(|∇W |2)(∇n̂2) + (µ2(|∇W |2)/ε)[ q2n̂2

+
∑4

i=1,i	=2 qizi − q5z5]n̂2 − µ2(|∇W |2)[(∇W ) · ∇n̂2] ≥ c21z1 − c22z5n̂2,

∂n̂3/∂t−∇ · (D3(|∇W |2)∇n̂3) + (µ3(|∇W |2)/ε)[ q3n̂3

+
∑4

i=1,i	=3 qizi − q5z5]n̂3 − µ3(|∇W |2)[(∇W ) · ∇n̂3] ≥ c31z5 − c32n̂3,

∂n̂4/∂t−∇ · (D4(|∇W |2)∇n̂4) + (µ4(|∇W |2)/ε)[ q4n̂4

+
∑4

i=1,i	=4 qizi − q5z5]n̂4 − µ4(|∇W |2)[(∇W ) · ∇n̂4] ≥ c41z3 − c42z5n̂4,

∂n̂5/∂t−∇ · (D5(Z)∇n̂5)− (µ5(Z)/ε)[
∑4

i=1 qizi − q5n̂5]n̂5

+µ5(Z)[(∇W ) · ∇n̂5] ≥ c11n̂5 + c31n̂5 − c22z2n̂5 − c42z4n̂5,

while (ñ1, ..., ñ5) satisfy (4.4) with corresponding n̂i replaced by ñi and all the
inequalities reversed, at all (z1, ..., z5) with ñi ≤ zi ≤ n̂i, i = 1, ..., 5. Here, for
i = 1, ..., 4,Di = Di(|∇W |2), µi = µi(|∇W |2) and W is any C21 function in
Ω̄× [0, T ]. In the 5-th inequality, D5 and µ5 are allowed to be evaluated at any
C21(Ω̄× [0, T ]) function Z.

Theorem 4.1 (Searching for A-priori Bounds). Consider the initial-
boundary value problem (4.1), (4.2). Let (n̂1, ..., n̂5) and (ñ1, ..., ñ5) be a pair
of coupled upper-lower solutions as described in Definition 4.1, with n̂i > ñi in
Ω̄ × [0, T ], i = 1, ..., 5; and (n1, ..., n6, V ) be a solution of the initial-boundary
value problem with components in C21(Ω̄× [0, T ]). Then the following inequali-
ties are satisfied:

(4.5) ñi(x, t) ≤ ni(x, t) ≤ n̂i(x, t), i = 1, ..., 5

for all (x, t) ∈ Ω̄× [0, T ].
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Proof. For convenience, let fi = fi(x, t, w1, w2, ..., w5), i = 1, ..., 5 be defined by
(4.6)

f1 = c11w5 − c12w1 − ε−1µ1(|∇V (x, t)|2)[
∑4

i=1 qiwi − q5w5]w1,

f2 = c21w1 − c22w5w2 − ε−1µ2(|∇V (x, t)|2)[
∑4

i=1 qiwi − q5w5]w2,

f3 = c31w5 − c32w3 − ε−1µ3(|∇V (x, t)|2)[
∑4

i=1 qiwi − q5w5]w3,

f4 = c41w3 − c42w5w4 − ε−1µ4(|∇V (x, t)|2)[
∑4

i=1 qiwi − q5w5]w4,

f5 = c11w5 − c31w5 − c22w2w5 − c42w4w5

+ ε−1µ5(n6(x, t)/n5(x, t))[
∑4

i=1 qiwi − q5w5]w5.

Since the functions µi are assumed bounded for i = 1, ..., 5, the functions fi
satisfies:

(4.7) |fi(x, t, wα1 , ..., wα5 )− fi(x, t, wβ1 , ..., wβ5 )| ≤ K(
5∑
j=1

[wαj − wβj ]2)1/2

for some K > 0, for all (x, t) ∈ Ω̄× [0, T ] and (wα1 , ..., w
α
5 ), (wβ1 , ..., w

β
5 ) with both

w = wαi and wβi satisfying

min{ñi(x, t)|(x, t) ∈ Ω̄× [0, T ]} ≤ w ≤ max{n̂i(x, t)|(x, t) ∈ Ω̄× [0, T ]},

i = 1, ..., 5. Let k = min1≤i≤5{n̂i(x, t)− ñi(x, t)|(x, t) ∈ Ω̄× [0, T ]}. For 0 < σ <
(k/2)[1 + 3K51/2T ]−1, i = 1, ..., 5, define

n±σi (x, t) = ni(x, t)± [1 + 3K51/2t]σ for (x, t) ∈ Ω̄× [0, T ].

By hypothesis, at t = 0 for i = 1, ..., 5, we have

(4.8) ñi(x, t) < n+σ
i (x, t) and n−σi (x, t) < n̂i(x, t) for (x, t) ∈ Ω̄× [0, T ].

Suppose one of these inequalities fails at some point in Ω̄ × (0, τ1), where τ1 =
min{T, 1/(3K51/2)}; and (x1, t1) is a point in Ω̄× (0, τ1), with minimal t1 where
(4.8) fails. At (x1, t1), ñi = n+σ

i or n−σi = n̂i for some i. Assume that the latter
is the case; a similar proof hold for the former case. (Also, assume that i = 1;
same arguments hold for other cases of i). First, let n̂1(x1, t1) = n−σ1 (x1, t1) with
x1 ∈ Ω. In the differential inequality (4.4) for upper solution, we evaluate W at
the function V (x, t) and Z at the function n6(x, t)/n5(x, t), which are obtained
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from the components of the solution itself. At (x1, t1), we deduce:

(4.9)

(∂/∂t)(n̂1 − n−σ1 )|(x1,t1) = ∂n̂1/∂t− ∂n1/∂t + 3σK51/2

≥ ∇ · (D1(|∇V |2)∇(n̂1 − n1)) + µ1(|∇V |2)[(∇V ) · ∇(n̂1 − n1)]

−µ1(|∇V |2)ε−1(q1n̂1 +
∑4

i=2 qizi − q5z5)n̂1

+µ1(|∇V |2)ε−1(
∑4

i=1 qini − q5n5)n1

+ c11z5 − c12n̂1 − c11n5 + c12n1 + 3σK51/2

= f1(x1, t1, n
−σ
1 , z2, ..., z5)− f1(x1, t1, n1, ..., n5) + 3σK51/2,

where zi = max{n−σi (x1, t1), ñi(x1, t1)} or min{n+σ
i (x1, t1), n̂(x1, t1)} for i =

2, ..., 5. (Here, we apply the inequality (4.4).) Since |n−σ1 −n1| and |zi −ni|, i =
2, ..., 5 are ≤ (1 + 3K51/2t1)σ ≤ 2σ, we obtain

(∂/∂t)(n̂1 − n−σ1 )|(x1,t1) ≥ σK51/2 > 0,

contradicting the definition of (x1, t1). Hence, we must have x1 ∈ ∂Ω. However,
by (4.3), we must have n−σ(x, t) < n̂i(x, t) for (x, t) ∈ ∂Ω × [0, T ]. Thus (4.8)
must hold for (x, t) ∈ Ω̄×(0, τ1). Passing to the limit as σ → 0+, we obtain (4.5)
for i = 1, ..., 5, (x, t) ∈ Ω̄×[0, τ1]. If τ1 < T , we repeat the above arguments in the
shifted time interval [τ1, τ2], where τ2 = min{T, τ1 + 1/(3K51/2)}. Eventually,
we obtain (4.5) in Ω̄× [0, T ] for i = 1, ..., 5.

Corollary 4.2. Assume that µ̃i and µ̂i are constants such that

0 < µ̃i ≤ µi(ξ) ≤ µ̂i for all ξ ∈ R, i = 1, ..., 5.

Suppose there exist positive constants δ and Ci, i = 1, ..., 5 with δ < C5,
∑4

i=1 qiCi
< q5C5 satisfying:

(4.10)




−(µ̂1/ε)(q1C1 − q5C5)C1 + c11C5 − c12C1 < 0,

−(µ̂2/ε)(q2C2 − q5C5)C2 + c21C1 − c22δC2 < 0,

−(µ̂3/ε)(q3C3 − q5C5)C3 + c31C5 − c32C3 < 0,

−(µ̂4/ε)(q4C4 − q5C5)C4 + c41C3 − c42δC4 < 0,

+(µ̃5/ε)(q1C1 + q2C2 + q3C3 + q4C4 − q5C5)C5 + c11C5 + c31C5 < 0,



5.4. PLASMA DISPLAY FLUID EQUATIONS 463

and

(4.11) −(µ̂5/ε)q5δ + c11 + c31 − c22C2 − c42C4 > 0.

Moreover, suppose that the initial-boundary functions in (4.2) satisfy:

(4.12)
0 ≤ gi(x, t) ≤ Ci, i = 1, ..., 4,

δ ≤ g5(x, t) ≤ C5 for (x, t) ∈ (Ω× {0}) ∪ (∂Ω× [0, T ]);

and (n1, ..., n6, V ) is a solution of the initial-boundary value problem (4.1), (4.2)
with each component in C21(Ω̄× [0, T ]). Then the following inequalities:

(4.13)
0 ≤ ni(x, t) ≤ Ci for i = 1, ..., 4, and

δ ≤ n5(x, t) ≤ C5

are satisfied for all (x, t) ∈ Ω̄×[0, T ]. (Note that V (x, t) can be readily estimated
by using the bounds for ni(x, t), i = 1, ..., 5 in (4.13) and the last equation in
(4.1).)

Proof. Choose ñi(x, t) := 0, n̂i(x, t) := Ci, for i = 1, ..., 4, and ñ5(x, t) :=
δ, n̂5(x, t) := C5 for (x, t) ∈ Ω̄ × [0, T ]. Then the inequalities in (4.13) follow
readily from Theorem 4.1.

Remark 4.1. Under further assumptions, we will also deduce bounds for
n6(x, t) in Ω̄× [0, T ] in Part B below.

Example 4.1. Suppose that:

q1 = q2 = q3 = q4 = q5 = 1.6 × 10−19 coulombs,
c11 = c31 = 6× 10−9 sec−1, c12 = c32 = 2.5 × 10−8 sec−1,

c21 = c41 = 10−16 sec−1, c22 = c42 = 5× 10−14 cm3/sec,
µ̃i/ε = µ̂i/ε = 1 cm3/coulomb-sec, for i = 1, 2, 3, 4,
µ̃5/ε = 0.8× 107 cm3/coulomb-sec, µ̂5/ε = 107 cm3/coulomb-sec.

Then, the inequalities (4.10) and (4.11) are satisfied by choosing:

C1 = C2 = C3 = C4 = 105 cm−3; C5 = 4.1× 105 cm−3; δ = 1 cm−3.

Consequently, Corollary 4.2 can be applied to obtain bounds for solutions of
(4.1), (4.2). (Here, some of the rates are similar to those in e.g. [78].)
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Example 4.2 (Relation of Bounds with Glow Discharge). From exper-
imental observations, glow discharge occurs when the ions reach concentration
level of the order 1014. This example shows that when the boundary concentra-
tions of electrons are above a certain sufficient level for δ, one will need large
constants of the order 1014 for upper solutions for the five concentration com-
ponents. Suppose that:

q1 = q2 = q3 = q4 = q5 = 1.6× 10−19,

c11 = c31 = 6× 10−3, c12 = c32 = 2.5× 10−2,

c21 = c41 = 10−7, c22 = c42 = 5× 10−17

µ̃i/ε = µ̂i/ε = 1, for i = 1, 2, 3, 4, µ̃5/ε = 0.8× 104, µ̂5/ε = 104.

Then, the inequalities (4.10) and (4.11) are satisfied by choosing:

C1 = C2 = C3 = C4 = 1014; C5 = 4.1 × 1014; δ = 1012.

Consequently, Corollary 4.2 can be applied to obtain bounds for solutions of
(4.1), (4.2). (Here, the units for corresponding quantities are the same as those
in the last example.)

Remark 4.2. In [134], some of the parameters cij are allowed to depend on
|∇V |2; and the examples there are slightly more complicated.

Part B: Existence of Classical Solutions for the Initial-Boundary Value
Problem.

We now consider the existence of solution for the initial-boundary value
problem (4.1), (4.2) for an arbitrary time interval. We will need additional
assumptions concerning the dependence of diffusivity and mobility of the species
on the electric field and mean electron energy. In the problem (4.1), (4.2), we
assume that for i = 1, ..., 5:

(4.14) Di = Di(z, λ) = αi + λfi(z), µi = µi(z, λ) = βi + λf̃i(z)

where αi and βi are positive constants, and λ is a non-negative real parameter.
For i = 1, 2, 3, 4, the functions fi(z) and their first two derivatives are continuous
and bounded on bounded subsets in R; the function f5(z) and its first two
derivatives are bounded for all real z. The functions f̃i(z), i = 1, ..., 5 and its first
derivative are bounded for all real z. We will assume that the initial-boundary
functions gi(x, t) defined on (∂Ω× [0, T ])∪(Ω×{0}), i = 1, ..., 6, can be extended
to be functions ĝi in the Hölder space C2+α,(2+α)/2(Ω̄ × [0, T ]), 0 < α < 1. The
boundary function φ(x, t) will be assumed to be in the class C2+α,(2+α)/2(∂Ω̄T ).
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We will search for solutions of problem (4.1), (4.2) so that the functions ni(x, t)−
ĝi(x, t), i = 1, ..., 6 are inside sets of the form:

(4.15)
S(Q) := {u ∈ C1+α,(1+α)/2(Ω̄× [0, T ]) : ui = 0 on (∂Ω × [0, T ]) ∪ (Ω× {0}),

‖ui‖1+α < Q+ 1, i = 1, ..., 6}

for some large constant Q. Deforming Di, i = 1, ..., 5 in (4.14) by 0 ≤ s ≤ 1:

(4.16) Ds
i = Ds

i (z, λ) = αi + λsfi(z),

and accordingly transforming problem (4.1), (4.2), we will consider a family of
problems for 0 ≤ s ≤ 1:

(4.17)


∂ns1/∂t−∇ · (Ds
1(|∇V s|2)∇ns1) + s(µ1(|∇V s|2)/ε)[

∑4
i=1 qin

s
i − q5ns5]ns1

− sµ1(|∇V s|2)[(∇V s) · ∇ns1] = (c11ns5 − c12ns1)s,

∂ns2/∂t−∇ · (Ds
2(|∇V s|2)∇ns2) + s2(µ2(|∇V s|2)/ε)[

∑4
i=1 qin

s
i − q5ns5]ns2

− sµ2(|∇V s|2)[(∇V s) · ∇ns2] = c21n
s
1s

2 − c22ns5ns2s,

∂ns3/∂t−∇ · (Ds
3(|∇V s|2)∇ns3) + s(µ3(|∇V s|2)/ε)[

∑4
i=1 qin

s
i − q5ns5]ns3

− sµ3(|∇V s|2)[(∇V s) · ∇ns3] = (c31ns5 − c32ns3)s,

∂ns4/∂t−∇ · (Ds
4(|∇V s|2)∇ns4) + s2(µ4(|∇V s|2)/ε)[

∑4
i=1 qin

s
i − q5ns5]ns4

− sµ4(|∇V s|2)[(∇V s) · ∇ns4] = c41n
s
3s

2 − c42ns5ns4s,

∂ns5/∂t−∇ · (Ds
5(ns6/n

s
5)∇ns5)− s(µ5(ns6/n

s
5)/ε)[

∑4
i=1 qin

s
i − q5ns5]ns5

+ sµ5(ns6/n
s
5)[(∇V s) · ∇ns5] = (c11ns5 + c31n

s
5 − c22ns2ns5 − c42ns4ns5)s,

∂ns6/∂t− (5/3)∇ · (Ds
5(ns6/n

s
5)∇ns6)

−s(5/3)(µ5(ns6/n
s
5)/ε)[

∑4
i=1 qin

s
i − q5ns5]ns6 + s(5/3)µ5[(∇V s) · ∇ns6]

= (eµ5(∇V s · ∇V s)ns5 − eDs
5[∇V s · ∇ns5]− ns5[

∑5
i=1 din

s
i ])s,

∆V s = ε−1(
∑4

i=1 qin
s
i − q5ns5),
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with prescribed initial-boundary conditions:

(4.18)

nsi (x, 0) = gsi (x, 0) ≥ 0 for x ∈ Ω, i = 1, ..., 6,

nsi (x, t) = gsi (x, t) ≥ 0 for (x, t) ∈ ∂Ω× [0,∞), i = 1, ..., 6,

V s(x, t) = φ(x, t) for (x, t) ∈ ∂Ω× [0,∞).

We will assume that the initial-boundary functions gsi (x, t) defined on (∂Ω ×
[0, T ])∪ (Ω×{0}), i =, 1, ..., 6, can be extended to be functions ĝsi in the Hölder
space C2+α,(2+α)/2(Ω̄ × [0, T ]). We will let g0

i (x, t) = 0, g1
i (x, t) = gi(x, t) for

(x, t) ∈ (Ω × {0}) ∪ (∂Ω × [0, T ]), i = 1, ..., 6. Further, for 0 ≤ s ≤ 1, (x, t) ∈
(Ω× {0}) ∪ (∂Ω× [0, T ]), the functions will be assumed to satisfy:

(4.19)
0 ≤ gsi (x, t) ≤ Ci, i = 1, ..., 4,

s(1− σ)δ ≤ gs5(x, t) ≤ C5

for a small positive constant σ. For convenience, we will denote:

ΓT := (∂Ω × [0, T ]) ∪ (Ω̄ × {0}), Ω̄T := Ω̄× [0, T ].

To simplify writing, we will not display the dependence of Ds
i , µi on the param-

eter λ in (4.17) and some following formulas. Let λ̄ > 0, and for this part we
assume:

0 < µ̃i ≤ µi(z, λ) ≤ µ̂i
for all 0 ≤ λ ≤ λ̄, z ∈ R, i = 1, ..., 5.

In order to deform problem (4.1), (4.2) to a simple form, we first deduce
bounds for the spatial derivatives of the solutions for the family of problems
(4.17), (4.18) by the methods presented in Ladyzhenskaya et al. [113].

Lemma 4.1. Suppose that there exist positive constants δ, Ci, i = 1, ..., 5, with
δ < C5,

∑4
i=1 qiCi < q5C5 satisfying (4.10), (4.11); and the initial-boundary

functions gsi satisfy (4.19), for 0 ≤ s ≤ 1. Let (ns1, ..., n
s
6, V

s), be a solution of
problem (4.17), (4.18) with components in C21(Ω̄×[0, T ]), and nsi−ĝsi ∈ S(Q) for
i = 1, ..., 6. Then for each Q > 0 there exists λ̂ ∈ (0, λ̄] sufficiently small, so that
for 0 ≤ λ < λ̂, the solution must satisfy for 0 ≤ s ≤ 1, i = 1, ..., 5, j = 1, ...,m:

(4.20) max(x,t)∈ΓT |∂nsi/∂xj | ≤ M̃1,

where M̃1 is a constant independent of Q, determined by δ, and Ci, i = 1, ..., 5.

Proof. In (4.10), the second and fourth inequalities can be modified to:

(4.21)



−(µ̂2/ε)(q2C2 − q5C5)C2 + c21C1 − c22(1− σ)δC2 < 0,

−(µ̂4/ε)(q4C4 − q5C5)C4 + c41C3 − c42(1− σ)δC4 < 0
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provided σ is a sufficiently small positive number. For each 0 ≤ s ≤ 1, define the
coupled upper-lower solution pair for problem (4.17), (4.18) to be (C1, ..., C5)
and (0, 0, 0, 0, s[1 − σ]δ) as described in Definition 4.1, modified by appropriate
scaling with s or s2 as in (4.17). By (4.10), (4.11) and (4.21), one readily verifies
that the pair indeed satisfies the appropriate inequalities described in (4.4) for
an upper-lower solution pair. Consequently, using condition (4.19) and Theorem
4.1 we assert that:

0 ≤ nsi (x, t) ≤ Ci, i = 1, 2, 3, 4, s(1− σ)δ ≤ ns5(x, t) ≤ C5

for (x, t) ≤ Ω̄T . These bounds and the last equation in (4.17) then give a bound
for the first spatial derivatives of V s in Ω̄T by means of W 2p estimates and em-
bedding theorem. In the first 5 equations in (4.17), the first spatial derivatives of
nsi are multiplied by (∂Ds

i /∂z)(|∇V s|2)V s
xjV

s
xjxk

or (∂Ds
5/∂z)(n

s
6/n

s
5)(ns6/n

s
5)xk ,

and also by the first spatial derivatives of V s. The last equation in (4.17) gives
estimate of V s

xjxk
in terms of the Hölder norm of nsi , i = 1, .., 5, which are, by

hypotheses of this lemma, limited by Q. Consequently, using the assumptions
on Ds

i , for 0 ≤ λ ≤ λ̂ sufficiently small, the factors multiplying with the first
spatial derivatives of nsi in the first five equations in (4.17) are bounded by a
constant independent on Q, determined by Ci, i = 1, ..., 5 and δ. Moreover, the
assumption on fi implies that for sufficiently small positive λ, we have Ds

i ≥ αi/2
whenever they are evaluated in the equations.

Using the growth estimate of the terms in the i-th equation with respect to
∇nsi and the lower estimate of the ellipticity, we can apply Lemma 3.1, Chapter
VI, on p. 535 of [113], to obtain the estimate (4.20) in this Lemma. The method
of S.N. Bernstein is used to estimate the gradient on the boundary in proving
the Lemma 3.1 referred in [113].

Lemma 4.2 (Bounds for Spatial Derivatives). Assume all the hypotheses
of Lemma 4.1, and (ns1, ..., n

s
6, V

s) is a solution of (4.17), (4.18) with properties
as described there. Then for each Q > 0 there exists λ̂ > 0 sufficiently small, so
that for 0 ≤ λ < λ̂, the solution must satisfy for 0 ≤ s ≤ 1, i=1,...,5, j=1,...,m :

(4.22) max(x,t)∈Ω̄T
|∂nsi/∂xj | ≤ M̃2,

where M̃2 is a constant independent of Q, determined by M̃1, δ, and Ci, i =
1, ..., 5.

Proof. As in Lemma 4.1, the first spatial derivatives of V s are bounded by
constants dependent on δ and Ci, i = 1, ..., 5. Moreover, we have ns5 ≥ s(1− σ)δ
in Ω̄T ; and for each 1 ≥ s > 0, |ns6/ns5| is bounded by a constant dependent on Q
and s. In each of the first five equations in (4.17), we interpret ∇V s and ns6/n

s
5

to be given functions on (x, t) substituted into Ds
k, k = 1, ..., 4 and Ds

5 respec-
tively. We will apply Theorem 4.1 in p. 443 of [113]. In relation to the notations
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of that Theorem, we identify u with nsk, p with (nsk)xi , and ai(x, t, u, p) with
Ds
k(|∇V s|2)(x, t)(nsk)xi or Ds

5(ns6/n
s
5)(x, t)(ns5)xi . For instance, the derivative

∂Ds
k(|∇V s|2)(x, t)/∂xi involves terms of the form (∂Ds

k(|∇V s|2)/∂z)V s
xjV

s
xjxi ,

while as explained in the previous lemma the quantities V s
xjxi are bounded by a

constant determined by Q. Consequently, by assumption (4.16), we can readily
verify that for 0 < λ < λ̂ sufficiently small, the expressions |Ds

k(|∇V s|2)(x, t)|,
|∂Ds

k(|∇V s|2)(x, t)/∂xi|, |Ds
5(ns6/n

s
5)(x, t)| and |∂Ds

5(ns6/n
s
5)(x, t)/∂xi| are all

bounded by a constant independent of Q. On the other hand, the growth of
the other terms in the each of the equations with respect to nsk and (nsk)xi are
bounded by K1 +K2|∇nsk| for some constants K1,K2, since nsi are bounded for
i = 1, ..., 5. Thus for each equation in (4.17), k = 1, ..., 5, we can apply Theorem
4.1 on p. 443 in [113], to assert that max(x,t)∈Ω̄T

|∂nsi/∂xj | can be estimated in
terms of δ, Ci, i = 1, ..., 5 and maxΓT |∂nsk/∂xj |. Finally, by Lemma 4.1, we
obtain inequality (4.22).

Lemma 4.3 (Bounds for Electron Energy). Assume all the hypotheses of
Lemma 4.1, and (ns1, ..., n

s
6, V

s) is a solution of (4.17), (4.18) with properties as
described there. Then for each Q > 0 there exists λ̂ > 0 sufficiently small, so
that for 0 ≤ λ < λ̂, the solution must satisfy for 0 ≤ s ≤ 1, j=1,. . . ,m:

(4.23) max(x,t)∈Ω̄T
|ns6| ≤ K1, max(x,t)∈Ω̄T

|∂ns6/∂xj | ≤ K2,

where K1,K2 are constants independent of Q, determined by M̃1, M̃2, δ, and
Ci, i = 1, ..., 5.

Proof. Consider the 6-th equation in (4.17). The function z = ns6 can be viewed
as a solution of the linear nonhomogeneous parabolic problem:

(4.24)




∂z/∂t − (5/3)∇ · (Ds
5(ns6/n

s
5)∇z)

−s(5/3)(µ5(ns6/n
s
5)/ε)[

∑4
i=1 qin

s
i − q5ns5]z + s(5/3)µ5[(∇V s) · ∇z]

= (eµ5(∇V s · ∇V s)ns5 − eDs
5[∇V s · ∇ns5]− ns5[

∑5
i=1 din

s
i ])s

for (x, t) ∈ Ω× (0, T );

z(x, t) = gs6(x, t) for (x, t) ∈ ΓT .

By Lemmas 4.1, 4.2 and formula (4.14), the coefficients and nonhomogeneous
terms are all bounded independent of Q, for 0 ≤ λ ≤ λ̂ sufficiently small. Let
B1, B2, Y0,W0 be constants such that for (x, t) ∈ Ω̄T ,
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(4.25)




|s(5/3)(µ5(ns6/n
s
5)/ε)[

∑4
i=1 qin

s
i − q5ns5]| ≤ B1,

|(eµ5(∇V s · ∇V s)ns5 − eDs
5[∇V s · ∇ns5]− ns5[

∑5
i=1 din

s
i ])s| ≤ B2;

Y0 ≤ |gs6(x, t)| ≤W0 for (x, t) ∈ ΓT .

Define Y (x, t) := Y (t), W (x, t) := W (t), for (x, t) ∈ Ω̄T , to be functions respec-
tively satisfying:

(4.26)



dY/dt = B1Y −B2, Y (0) = Y0;

dW/dt = B1W +B2, W (0) = W0.

The functions Y,W are respectively lower and upper solutions of problem (4.24)
as described in [125] and [183]. Thus we find:

(4.27) Y (t) ≤ ns6(x, t) ≤W (t) for (x, t) ∈ Ω̄T .

We obtain the first inequality in (4.23). The second inequality follows by apply-
ing Lemma 3.1 on p. 535 and Theorem 4.1 on p. 443 in [113], as in the proof of
Lemma 4.1 and Lemma 4.2 above.

By means of the lemmas above, we can now deduce estimates for the time
derivatives of the functions ηsi .

Theorem 4.3 (Bounds for Time Derivatives). Suppose that there ex-
ist positive constants δ, Ci, i = 1, ..., 5 satisfying (4.10), (4.11) as described in
Lemma 4.1; and the initial-boundary functions gsi satisfy (4.19), for 0 ≤ s ≤ 1.
Let (ns1, ..., n

s
6, V

s), be a solution of problem (4.17), (4.18) with components in
C21(Ω̄ × [0, T ]), and nsi − ĝsi ∈ S(Q) for i = 1, ..., 6. Then for each Q > 0 there
exists λ̂ > 0 sufficiently small, so that for 0 ≤ λ < λ̂, the solution must satisfy
for 0 ≤ s ≤ 1, i=1,. . . 6 :

(4.28) max(x,t)∈Ω̄T
|∂nsi/∂t| ≤ M̃3,

where M̃3 is a constant independent of Q, determined by δ, and Ci, i = 1, ..., 5.

Proof. For (x, t) ∈ Ω̄× [0, T ), i = 1, . . . 6, 0 ≤ s ≤ 1 and h > 0 small, let:

(4.29) ns,hi (x, t) = h−1[nsi (x, t + h)− nsi (x, t)].

For convenience, we denote:

q̃i = qi, i = 1, ..., 4; q̃5 = −q5.
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Using the first equation of (4.17) at (x, t + h) and (x, t), and writing e.g.

(4.30)

[Ds
1(|∇V s|2)(x, t + h)−Ds

1(|∇V s|2)(x, t)]h−1

= [
∫ 1
0 (Ds

1)′(τ |∇V s|2(x, t + h) + (1− τ)|∇V s|2(x, t))dτ ]

× [
∑m

i=1(V s
xi(x, t + h) + V s

xi(x, t))(V
s
xi(x, t + h)− V s

xi(x, t))h
−1],

we deduce that ns,h1 (x, t) satisfy:
(4.31)
∂ns,h1 /∂t−∇ · {Ds

1(|∇V |2(x, t))∇ns,h1

+∇ns1(x, t + h)[
∫ 1
0 (Ds

1)′(τ |∇V s|2(x, t + h) + (1− τ)|∇(V s)|2(x, t))dτ ]

× [
∑m

i=1(V s
xi(x, t + h) + V s

xi(x, t)][
∫
Ω ε

−1Gxi(x, ξ)
∑5

k=1 q̃kn
s,h
k (ξ, t)dξ]}

+ sε−1
∫ 1
0 µ

′
1(τ |∇V s|2(x, t + h) + (1− τ)|∇V s|2(x, t))dτ

× [
∑m

i=1(V s
xi(x, t + h) + V s

xi(x, t))
∫
Ω ε

−1Gxi(x, ξ)
∑5

k=1 q̃kn
s,h
k (ξ, t)dξ]

× [
∑5

k=1 q̃kn
s
k(x, t + h)]ns1(x, t + h)

+ sε−1µ1(|∇V s|2(x, t))[
∑5

k=1 q̃kn
s,h
k (x, t)]ns1(x, t+ h)

+ sε−1µ1(|∇V s|2(x, t))[
∑5

k=1 q̃kn
s
k(x, t)]n

s,h
1 (x, t)

− s ∫ 1
0 µ

′
1(τ |∇V s|2(x, t + h) + (1− τ)|∇V s|2(x, t))dτ

× [
∑m

i=1(V s
xi(x, t + h) + V s

xi(x, t)][
∫
Ω ε

−1Gxi(x, ξ)
∑5

k=1 q̃kn
s,h
k (ξ, t)dξ]

× [∇V s(x, t + h) · ∇ns1(x, t + h)]

− sµ1(|∇V s|2(x, t))[(
∫
Ω

∑5
k=1 q̃kn

s,h
k (ξ, t)∇G(x, ξ)dξ) · ∇ns1(x, t + h)

+∇V s(x, t) · ∇ns,h1 (x, t)]

= (c11n
s,h
5 (x, t)− c12ns,h1 (x, t))s.

The integral terms over Ω above arise from expressing V s
xi by means of Newtonian

potential and the derivative of the Green’s function G using the last equation in
(4.17), (see e.g. p. 54 in Gilbarg and Trudinger [71]).
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From the first equation in (4.17), we find that ns1(x, t) is a solution of a linear
nonhomogeneous parabolic equation with the coefficients and nonhomogeneous
terms dependent on nsk(x, t). Thus using the fact that nsk − ĝsk are in S(Q), we
can obtain by Schauder’s estimate that |∆ns1| is bounded. Note that |V s

xixj | can
also be shown to have a bound dependent on Q by using Schauder’s estimate
with the last equation in (4.17). Consequently, from (4.31) and similar equations
for ns,hi , i = 2, ..., 6, we can verify that zi(x, t) = ns,hi (x, t) satisfy in Ω× [0, T ):

(4.32)
∂zi(x,t)
∂t − σsi (x, t)∆zi + [Rsi1 (x, t) + λRsi2 (x, t)] · ∇zi +

∑6
j=1R

si
3j(x, t)zj(x, t)

+
∑5

j=1

∫
Ω

∑m
k=1[Rsi4k(x, t) + λRsi5k(x, t)]Gxk(x, ξ)q̃jzj(ξ, t)dξ

+λ
∑5

j=1

∫
Ω

∑m
r=1

∑m
k=1H

si
rk(x, t)Gxrxk(x, ξ)q̃j [zj(ξ, t)− zj(x, t)]dξ

+λ
∑5

j=1 q̃jzj(x, t)
∫
∂Ω

∑m
r=1

∑m
k=1H

si
rk(x, t)Gxr (x, ξ)νk(ξ)dξ = 0,

where σsi (x, t), R
si
1 (x, t), Rsi3j(x, t), R

si
4k(x, t),Hsi

rk(x, t) are bounded continuous
functions in Ω̄T . Rsi2 (x, t), Rsi5k(x, t) are also bounded continuous functions in
Ω̄T , however with bounds determined by Q; they are multiplied by the factor λ
which arises from differentiating the functions Ds

1 and µ1. Here, νk denotes the
k-th component of the outward unit normal. The last two expressions in (4.32)
arise from applying the operator ∇ in the second term of (4.31) on the integral
over Ω. Here, we have also used Lemma 4.1 to Lemma 4.3, and the assumptions
on Di and µi in (4.14) in the assertion concerning the bounds of the coefficients.
We also have the coefficient in (4.32) satisfying σsi (x, t) > 0 in Ω̄T for 0 ≤ λ < λ̂
sufficiently small.

In order to simplify writing for equation (4.32), we denote:

(4.33)
F̃ si (x, t, z1(x, t), ..., z6(x, t); z1(·, t), ..., z5(·, t), λ) =

∑6
j=1R

si
3jzj(x, t)

+
∑5

j=1

∫
Ω

∑m
k=1[Rsi4k(x, t) + λRsi5k(x, t)]Gxk (x, ξ)q̃jzj(ξ, t)dξ,

(4.34)

F si (x, t, z1(x, t), ..., z6(x, t); z1(·, t), ..., z5(·, t), λ) = F̃ si (x, t, ..., λ)

+λ
∑5

j=1

∫
Ω

∑m
r=1

∑m
k=1H

si
rk(x, t)Gxrxk(x, ξ)q̃j [zj(ξ, t)− zj(x, t)]dξ

+λ
∑5

j=1 q̃jzj(x, t)
∫
∂Ω

∑m
r=1

∑m
k=1H

si
rkGxr(x, ξ)νk(ξ)dξ
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for i = 1, ..., 6. The function F̃ si satisfies:

(4.35)

|F̃ si (x, t, z̄1(x, t), ..., z̄6(x, t); z̄1(·, t), . . . z̄5(·, t), λ)

− F̃ si (x, t, z̃1(x, t), ..., z̃6(x, t); z̃1(·, t), . . . z̃5(·, t), λ)|

≤ L1 ·maxξ∈Ω(
∑6

j=1 |z̄j(ξ, t)− z̃j(ξ, t)|2)1/2

for some constant L1 > 0, for all (x, t) ∈ Ω̄T , 0 ≤ λ < λ̂. Let

L2 = λ̂6−1/2
5∑
j=1

m∑
r=1

m∑
k=1

maxΩT |
∫
∂Ω
Hsi
rkGxr(x, ξ)νk(ξ)dξ|q̃j .

The proof of Theorem 4.3 is complete by using the following lemma to obtain
bounds for the difference quotients in (4.29). The parameter λ is fixed in [0, λ̂).

Lemma 4.4. Let zj(x, t), vj(x, t), wj(x, t), j = 1, . . . 6 be functions in C21(Ω̄ ×
[0, T ]), and has wj(x, t) − vj(x, t) > 0 for all (x, t) ∈ Ω̄T . Suppose that the
functions zj satisfy for (x, t) ∈ Ω× (0, T ]:

(4.36)
∂zj(x, t)/∂t − σsj (x, t)∆zj + [Rsj1 (x, t) + λRsj2 (x, t)] · ∇zj

+F sj (x, t, z1(x, t), ..., z6(x, t); z1(·, t), ..., z5(·, t), λ) = 0,

and

(4.37) vj(x, t) < zj(x, t) < wj(x, t) for (x, t) ∈ (Ω× {0}) ∪ (∂Ω× [0, T ]).

Moreover, the functions vj(x, t) and wj(x, t), j = 1, ..., 6 satisfy:

(4.38)
∂vj(x, t)/∂t − σsj (x, t)∆vj + [Rsj1 (x, t) + λRsj2 (x, t)] · ∇vj

+F sj (x, t, ṽ1(x, t), ..., ṽ6(x, t); ṽ1(·, t), ..., ṽ5(·, t), λ) < 0

for (x, t) ∈ Ω× (0, T ], where for each k = 1, ..., 6,

(4.39)
ṽk(·, t) := zk(·, t) + σ[1 + 3(L1 + L2)61/2t], provided

vr(x, τ) ≤ ṽr(x, τ) ≤ wr(x, τ) + σ[1 + 3(L1 + L2)61/2T ]

for all τ ∈ [0, t), x ∈ Ω̄, 1 ≤ r ≤ 6. (Here, σ is any constant satisfying 0 < σ
< min1≤i≤6{wi(x, t)− vi(x, t)|(x, t) ∈ Ω̄× [0, T ]}(1/2)[1 + 3(L1 + L2)61/2T ]−1);
and

(4.40)
∂wj(x, t)/∂t− σsj (x, t)∆wj + [Rsj1 (x, t) + λRsj2 (x, t)] · ∇wj

+F sj (x, t, w̃1(x, t), ..., w̃6(x, t); w̃1(·, t), ..., w̃5(·, t), λ) > 0
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for (x, t) ∈ Ω× (0, T ], where for each k = 1, ..., 6,

(4.41)
w̃k(·, t) := zk(·, t) − σ[1 + 3(L1 + L2)61/2t], provided

vr(x, τ)− σ[1 + 3(L1 + L2)61/2T ] ≤ w̃r(x, τ) ≤ wr(x, τ)

for all τ ∈ [0, t), x ∈ Ω̄, 1 ≤ r ≤ 6. Then the following is satisfied:

(4.42) vj(x, t) ≤ zj(x, t) ≤ wj(x, t) for all (x, t) ∈ Ω̄T , j = 1, ..., 6.

Proof of Lemma 4.4. For (x, t) ∈ Ω̄T , define

z±σi (x, t) = zi(x, t)± [1 + 3(L1 + L2)61/2t]σ.

Note that
(4.43)
F si (x, t; z1(x, t), ..., z6(x, t); z1(·, t), ..., z5(·, t))

−F si (x, t, z−σ1 (x, t), ..., z−σ6 (x, t); z−σ1 (·, t), ..., z−σ5 (·, t))

= F̃ si (x, t; z1(x, t), ..., z6(x, t); z1(·, t), ..., z5(·, t))

− F̃ si (x, t, z−σ1 (x, t), ..., z−σ6 (x, t); z−σ1 (·, t), ..., z−σ5 (·, t))

+σ[1 + 3(L1 + L2)61/2t]λ
∑5

j=1 q̃j
∫
∂Ω

∑m
r=1

∑m
k=1H

si
rkGxr(x, ξ)νk(ξ)dξ.

By hypotheses, at t = 0 for i = 1, ..., 6, we have

(4.44) vi(x, t) < z+σ
i (x, t) and z−σi (x, t) < wi(x, t) for (x, t) ∈ Ω̄T .

Suppose one of these inequalities fails at some point in Ω̄ × (0, τ1) where τ1 =
min{T, (3(L1 + L2)61/2)−1}; and (x1, t1) is a point in Ω̄ × (0, τ1) with minimal
t1 where (4.44) fails. At (x1, t1), vi = z+σ

i or z−σi = wi for some i. Assume
that the latter is the case; a similar proof holds for the former case.(Also assume
that i = 1, while the same arguments hold for other cases of i). First, let
w1(x1, t1) = z−σ1 (x1, t1) with x1 ∈ Ω. At (x1, t1), we deduce
(4.45)
(∂/∂t)(w1 − z−σ1 )|(x1,t1) = ∂w1/∂t− ∂z1/∂t + 3σ(L1 + L2)61/2

≥ σs1∆(w1 − z1) + [Rs11 + λRs12 ] · ∇(w1 − z1)

+F s1 (x1, t1, z
−σ
1 (x1, t1), ..., z−σ6 (x1, t1); z−σ1 (·, t1), ..., z−σ5 (·, t1))

−F s1 (x1, t1, z1(x1, t1), ..., z6(x1, t1); z1(·, t1), ..., z5(·, t1)) + 3σ(L1 + L2)61/2.
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We have

(4.46)

|F s1 (x1, t1, z
−σ
1 (x1, t1), ..., z−σ6 (x1, t1); z−σ1 (·, t1), ..., z−σ5 (·, t1))

−F s1 (x1, t1, z1(x1, t1), ..., z6(x1, t1); z1(·, t1), ..., z5(·, t1))|
≤ (L1 + L2)61/2σ[1 + 3(L1 + L2)61/2t1] ≤ (L1 + L2)61/2σ2.

Thus from (4.45) and (4.46), we have

(∂/∂t)(w1 − z−σ1 )|(x1,t1) ≥ σ(L1 + L2)61/2 > 0,

contradicting the definition of (x1, t1). The remaining part of the proof of Lemma
4.4 is the same as the last part of the proof of Theorem 4.1, and will thus be
omitted. The dependence on λ is suppressed in the writing. The lemma is
actually true for each λ ∈ [0, λ̂), 0 ≤ s ≤ 1.

The proof of Theorem 4.3 will be complete by choosing appropriate vi and
wi for the solution zi = ns,hi of equation (4.32), and then apply Lemma 4.4 to
obtain the bound (4.28). For i = 1, .., 6, (x, t) ∈ Ω̄T , define

vi(x, t) := −KePt, wi(x, t) := KePt,

where the constants K and P will now be chosen. The assumptions on gsi implies
that (4.37) is satisfied by choosing K sufficiently large. In order to verify (4.38)
and (4.40), we first note that one term in (4.34) satisfies:

λ
∑5

j=1

∫
Ω

∑m
r=1

∑m
k=1H

si
rk(x, t)Gxrxk(x, ξ)q̃j [zj(ξ, t)− zj(x, t)]dξ

≤ λ
∑5

j=1

∫
Ω

∑m
r=1

∑m
k=1H

si
rk(x, t)Gxrxk(x, ξ)q̃jK̄|ξ − x|α/2dξ ≤ R̂

for some constant R̂, where K̄ is some Hölder constant for the functions zj =
ns,hj . We are able to find such a K̄ for all ns,hj under consideration by using the
fact that (nsj − ĝsj ) ∈ S(Q), and thus

|ns,hj (ξ, t)− ns,hj (x, t)| = (∂/∂t)(nsj(ξ, t
∗)− nsj(x, t∗)| ≤ K̄|ξ − x|α/2.

Here, t∗ depends on the pair (x, ξ), and it satisfies t∗ ∈ (t, t + h). The con-
stant K̄ depends on Q. We have used the fact that nsj are solutions of linear
equations related to (4.17), (cf. (4.47) below), so that the bound on the Hölder
norms of the coefficients give rise to a bound to the C2+α,(2+α)/2 norms of the
solutions by means of Schauder’s estimates. We may then reduce the size of λ̂
so that R̂ is independent of Q for all λ ∈ [0, λ̂). Estimating the other terms of
F sj (x, t, ṽ1(x, t), ..., ṽ6; ṽ1(·, t), ..., ṽ5(x, t), λ), we obtain by means of (4.33), (4.34)
and the second inequality in (4.39) that

|F sj (x, t, ṽ1(x, t), ..., ṽ6; ṽ1(·, t), ..., ṽ5(·, t), λ)|
≤ B̄[KePt + σ(1 + 3(L1 + L2)61/2T )] + R̂,
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where B̄ is a constant independent of Q, as long as λ ∈ [0, λ̂). Here, λ̂ is
determined by Q, and we have used the boundedness properties of Rsijk(x, t) as
described for (4.32). Thus (4.38) is satisfied if

−PKePt + B̄[KePt + σ(1 + 3(L1 + L2)61/2T )] + R̂ < 0,

for 0 ≤ t ≤ T , which is true by choosing sufficiently large P . Inequality (4.40)
can be verified in the same way as (4.38). This completes the proof of Theorem
4.3.

In order to investigate the solutions for (4.17) and (4.18), we will search for
fixed points of the following related mappings: Ts : (ñs1, ..., ñ

s
6) −→ (n̂s1, ..., n̂

s
6),

with (ñs1− ĝs1, ..., ñs6− ĝs6) ∈ S(Q), where nsi = n̂si , i = 1, ..., 6, 0 ≤ s ≤ 1 is defined
to be the solution in Ω× (0, T ) of the linear system:

(4.47)


∂ns1/∂t−∇ · (Ds
1(|∇ñs7|2)∇ns1) + s(µ1(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ns1

− sµ1(|∇ñs7|2)[(∇ñs)7 · ∇ns1] + sc12n
s
1 = c11ñ

s
5s,

∂ns2/∂t−∇ · (Ds
2(|∇ñs7|2)∇ns2) + s2(µ2(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ns2

− sµ2(|∇ñs7|2)[(∇ñs7) · ∇ns2] + sc22ñ
s
5n

s
2 = c21ñ

s
1s

2,

∂ns3/∂t−∇ · (Ds
3(|∇ñs7|2)∇ns3) + s(µ3(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ns3

− sµ3(|∇ñs7|2)[(∇ñs7) · ∇ns3] + sc32n
s
3 = c31ñ

s
5s,

∂ns4/∂t−∇ · (Ds
4(|∇ñs7|2)∇ns4) + s2(µ4(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ns4

− sµ4(|∇ñs7|2)[(∇ñs7) · ∇ns4] + sc42ñ
s
5n

s
4 = c41ñ

s
3s

2,

∂ns5/∂t−∇ · (Ds
5(ñs6/ñ

s
5)∇ns5)− s(µ5(ñs6/ñ

s
5)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ns5

+ sµ5(ñs6/ñ
s
5)[(∇ñs7) · ∇ns5]− s(c11 + c31 − c22ñs2 − c42ñs4)ns5 = 0,

∂ns6/∂t− (5/3)∇ · (Ds
5(ñs6/ñ

s
5)∇ns6)

− s(5/3)(µ5(ñs6/ñ
s
5)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ns6 + s(5/3)µ5[(∇ñs7) · ∇ns6]

= (eµ5(∇ñs7 · ∇ñs7)ñs5 − eDs
5[∇ñs7 · ∇ñs5]− ñs5[

∑5
i=1 diñ

s
i ])s,

∆ñs7 = ε−1(
∑4

i=1 qiñ
s
i − q5ñs5);

nsi (x, t) = gsi (x, t), for (x, t) ∈ (∂Ω × [0, T ]) ∪ (Ω× {0}, i = 1, . . . 6,

ñs7(x, t) = φ(x, t) for (x, t) ∈ ∂Ω× [0, T ].
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Defining ẑsi = n̂si − ĝsi Then zsi = ẑsi is the solution in Ω × (0, T ) of the linear
system:
(4.48)


∂zs1/∂t−∇ · (Ds
1(|∇ñs7|2)∇zs1) + s(µ1(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]zs1

− sµ1(|∇ñs7|2)[(∇ñs7) · ∇zs1] + sc12z
s
1

= −∂ĝs1/∂t +G1(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs1]),

∂zs2/∂t−∇ · (Ds
2(|∇ñs7|2)∇zs2) + s2(µ2(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]zs2

− sµ2(|∇ñs7|2)[(∇ñs7) · ∇zs2] + sc22ñ
s
5z
s
2

= −∂ĝs2/∂t +G2(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs2]),

∂zs3/∂t−∇ · (Ds
3(|∇ñs7|2)∇zs3) + s(µ3(|∇ñs7|2)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]zs3

− sµ3(|∇ñs7|2)[(∇ñs7) · ∇zs3] + sc32z
s
3

= −∂ĝs3/∂t +G3(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs3]),

∂zs4/∂t−∇ · (Ds
4(|∇ñs7|2)∇zs4)

+ s2(µ4(|∇ñs7|2)/ε)[
∑4

i=1 qiñ
s
i − q5ñs5]zs4

− sµ4(|∇ñs7|2)[(∇ñs7) · ∇zs4] + sc42ñ
s
5z
s
4

= −∂ĝs4/∂t +G4(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs4]),

∂zs5/∂t−∇ · (Ds
5(ñs6/ñ

s
5)∇zs5)− s(µ5(ñs6/ñ

s
5)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]zs5

+ sµ5(ñs6/ñ
s
5)[(∇ñs7) · ∇zs5]− s(c11 + c31 − c22ñs2 − c42ñs4)zs5

= −∂ĝs5/∂t +G5(s, ñs1, ..., ñ
s
4, [ñ

s
5], [ñs6],∇ñs7, [ĝs5]),

∂zs6/∂t− (5/3)∇ · (Ds
5(ñs6/ñ

s
5)∇zs6)

− s(5/3)(µ5(ñs6/ñ
s
5)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]zs6

+ s(5/3)µ5[(∇ñs7) · ∇zs6]

= −∂ĝs6/∂t +G6(s, ñs1, ..., ñ
s
4, [ñ

s
5], [ñs6],∇ñs7, [ĝs6]),

∆ñs7 = ε−1(
∑4

i=1 qiñ
s
i − q5ñs5);

zsi (x, t) = 0, for (x, t) ∈ (∂Ω × [0, T ]) ∪ (Ω× {0}, i = 1, . . . 6,

ñs7(x, t) = φ(x, t) for (x, t) ∈ ∂Ω× [0, T ],
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where

(4.49)
G1(s, ñs1, ..., ñ

s
5, [∇ñs7], [ĝs1]) = c11ñ

s
5s+∇ · (Ds

1(|∇ñs7|2)∇ĝs1)

− s(µ1(|∇ñs7|2)/ε)[
∑4

i=1 qiñ
s
i − q5ñs5]ĝs1 + sµ1(|∇ñs7|2)[(∇ñs7) · ∇ĝs1]− sc12ĝs1,

G2(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs2]) = c21ñ

s
1s

2 +∇ · (Ds
2(|∇ñs7|2)∇ĝs2)

− s2(µ2(|∇ñs7|2)/ε)[
∑4

i=1 qiñ
s
i − q5ñs5]ĝs2

+ sµ2(|∇ñs7|2)[(∇ñs7) · ∇ĝs2]− sc22ñs5ĝs2,

G3(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs3]) = c31ñ

s
5s+∇ · (Ds

3(|∇ñs7|2)∇ĝs3)

− s(µ3(|∇ñs7|2)/ε)[
∑4

i=1 qiñ
s
i − q5ñs5]ĝs3 + sµ3(|∇ñs7|2)[(∇ñs7) · ∇ĝs3]− sc32ĝs3,

G4(s, ñs1, ..., ñ
s
5, [∇ñs7], [ĝs4]) = c41ñ

s
3s

2 +∇ · (Ds
4(|∇ñs7|2)∇ĝs4)

− s2(µ4(|∇ñs7|2)/ε)[
∑4

i=1 qiñ
s
i − q5ñs5]ĝs4

+ sµ4(|∇ñs7|2)[(∇ñs7) · ∇ĝs4]− sc42ñs5ĝs4,

G5(s, ñs1, ..., ñ
s
4, [ñ

s
5], [ñs6],∇ñs7, [ĝs5]) = ∇ · (Ds

5(ñ6/ñs5)∇ĝs5)

+ s(µ5(ñs6/ñ
s
5)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ĝs5 − sµ5(ñs6/ñ

s
5)[(∇ñs7) · ∇ĝs5]

+ s(c11 + c31 − c22ñs2 − c42ñs4)ĝs5,

G6(s, ñs1, ..., ñ
s
4, [ñ

s
5], [ñs6],∇ñs7, [ĝs6]) = (eµ5(∇ñs7 · ∇ñs7)ñs5 − eDs

5[∇ñs7 · ∇ñs5]

− ñs5[
∑5

i=1 diñ
s
i ])s+ (5/3)∇ · (Ds

5(ñs6/ñ
s
5)∇ĝs6)

+ s(5/3)(µ5(ñs6/ñ
s
5)/ε)[

∑4
i=1 qiñ

s
i − q5ñs5]ĝs6 − s(5/3)µ5[(∇ñs7) · ∇ĝs6].

In order to obtain existence of a solution in the appropriate class, we will
need to clarify the assumptions on the initial and boundary functions gi(x, t) in
(4.2) for (x, t) ∈ ΓT . We will assume that gi(x, t) is the restriction of a family
of functions gsi (x, t) := gi(x, t, s), 0 ≤ s ≤ 1 with:

gi(x, t, 1) = gi(x, t); gi(x, t, 0) = 0, for (x, t) ∈ ΓT .

Moreover, the functions gi(x, t, s) has extentions ĝi(x, t, s) to be defined as a
member of C2+α,(2+α)/2(Ω̄ × [0, T ]) for each s ∈ [0, 1]; and as a function of
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s ∈ [0, 1] into the Banach space C2+α,(2+α)/2(Ω̄ × [0, T ]), the function ĝi is
continuous in s. We will also assume the following usual compatibility condition
at x ∈ ∂Ω, t = 0.

(4.50)
∂ĝi
∂t (x, 0, s)|x∈∂Ω = Gi(s, ñs1(x, 0), .., ñs5(x, 0), [∇ñs7(x, 0)], [ĝi(x, 0, s)])|x∈∂Ω

for i = 1, .., 4,

∂ĝ5
∂t (x, 0, s)|x∈∂Ω

= G5(s, ñs1(x, 0), .., [ñs5(x, 0)], [ñs6(x, 0)],∇ñs7(x, 0), [ĝ5(x, 0, s)])|x∈∂Ω,

∂ĝ6
∂t (x, 0, s)|x∈∂Ω

= G6(s, ñs1(x, 0), .., [ñs5(x, 0)], [ñs6(x, 0)],∇ñs7(x, 0), [ĝ6(x, 0, s)])|x∈∂Ω.

Remark 4.3. Note that ñs1(x, 0), ..., ñs6(x, 0),∇ñs7(x, 0) above actually only de-
pends on ĝi(x, 0, s) because zsi (x, 0) = 0 for x ∈ Ω. They do not depend on the
preimage of Ts as in appearance. Moreover, the conditions are only imposed for
x ∈ ∂Ω at t = 0, and can be readily satisfied in numerous occasions.

Main Theorem 4.4 (Existence of Classical Solution). Let T > 0 be
arbitrary, and assume there exist positive constants δ, Ci, i = 1, ..., 5 satisfy-
ing (4.10), (4.11) as described in Corollary 4.2. Let σ > 0 be small enough
so that (4.21) remains true, and suppose that the initial-boundary functions
gsi , i = 1, ..., 5 satisfy (4.19), with extention properties as described above sat-
isfying compatibility conditions (4.50) for i = 1, ..., 6. Then for λ ∈ (0, λ̂), λ̂
sufficiently small, the initial-boundary value problem (4.1), (4.2) has a solution
with ni ∈ C2+α,(2+α)/2(Ω̄T ), i = 1, ..., 6. Moreover, we have

0 ≤ ni(x, t) ≤ Ci, i = 1, ..., 4, (1− σ)δ ≤ n5(x, t) ≤ C5 for (x, t) ∈ Ω̄T .

(Recall that the coefficient and boundary functions Di(z, λ), µi(z, λ), φ(x, t) re-
spectively are assumed to satisfy properties as described at the first paragraph of
Part B. The dependence of Di and µi on λ in (4.1) is not explicitly displayed.)

Proof. Let B be the Banach space:

B := {u ∈ C1+α,(1+α)/2(Ω̄T ) : ui = 0 on ΓT , i = 1, ..., 6}

with norm ‖u‖ =
∑6

i=1 ‖ui‖1+αΩT
. For ξ = (ξ1, ..., ξ6) ∈ B, define the mapping:

T̂s : B −→ B, 0 ≤ s ≤ 1, by T̂s(ξ) = ẑs := (ẑs1, ..., ẑ
s
6) where zi = ẑsi , i = 1, ..., 6 is
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the solution of (4.48) with

(4.51) ñsi = ξi + ĝsi in Ω̄T , i = 1, ..., 6.

Thus the function

(4.52) n̂si := ẑsi + ĝsi , in Ω̄T , i = 1, ..., 6,

is a solution of (4.47). In case ξ = T̂s(ξ) = ẑs, then (4.51), (4.52) give ñsi = n̂si , for
i = 1, .., 6. We thus have (ns1, ..., n

s
6) = (n̂s1, ..., n̂

s
6) as a solution of (4.17), (4.18).

Under the assumptions of δ and Ci of this Theorem, the proof of Corollary 4.2
gives:

(4.53) 0 ≤ n̂si (x, t) ≤ Ci, i = 1, 2, 3, 4, s(1− σ)δ ≤ n̂s5(x, t) ≤ C5

for σ > 0 sufficiently small, (x, t) ∈ Ω̄T . Moreover, if the solution is in S(Q),
for some Q > 0, we can apply Lemma 4.1 to obtain a bound independent of Q
for maxΓT |∂n̂si/∂xj | for i = 1, ..., 5, for 0 ≤ λ < λ̂, λ̂ sufficiently small. Subse-
quently, we can apply Lemma 4.2, Lemma 4.3 and Theorem 4.3 to obtain bounds,
independent of Q, (determined only by δ and Ci, i = 1, .., 5) for maxΩ̄T

|n̂s6|,
maxΩT

|∂n̂si/∂xj |, i = 1, ..., 6 for each j, and maxΩT
|∂n̂si/∂t|, i = 1, ..., 6. By

Theorem 4.3, on p. 448 in [113], these bounds determine a bound for the norm
of the function (n̂s1, ..., n̂

s
6) in B. Since they are independent of Q, we conclude

that the solution (n̂s1, ..., n̂
s
6) cannot be on the boundary of the set S(Q̃) in B for

Q̃ > 0 sufficiently large, for all s ∈ [0, 1]. Consider the map H : [0, 1]×B −→ B
defined by:

H(s, ξ) := ξ − T̂s(ξ).
The mapping T̂s(ξ) is compact, and the equation H(0, ξ) = 0 has a unique
solution ξ = 0. Thus, by the homotopic invariance principle due to Leray-
Schauder, we conclude that the equation H(1, ξ) = 0 must have a solution in
the interior of S(Q̃). (See e.g. [113], [3] or [125].) Since the solution (n1

1, ..., n
1
6)

is a solution of the linear problem (4.47) for s = 1, Schauder’s theory asserts
that ni = n1

i is in C2+α,(2+α)/2(Ω̄T ).

Notes.
Theorem 1.1 and Corollary 1.2 are obtained from the beginning of Hou and

Leung [90]. Lemmas 1.2 to 1.5 and Theorem 1.3 are gathered from Wu and Zou
[234], [235] and Boumenir and Nguyen [14]. Theorem 1.4 and Corollary 1.5 are
modifications of part of Leung, Hou and Li [136]. Theorems 2.1 to 2.9 can be
found in Leung [127]. Theorems 3.1 to 3.3 are proved in Leung [130]. Theorem
4.1 to Theorem 4.4 are obtained from Leung and Chen [134].



Chapter 6

Appendices

6.1 Existence of Solution between Upper and Lower

Solutions for Elliptic and Parabolic Systems, Bi-
furcation Theorems

In the first part of this section, we describe two theorems concerning the exis-
tence of solution between upper and lower solutions for elliptic and parabolic
systems used in various chapters in this book. Let Ω be a bounded domain in
RN with boundary ∂Ω ∈ C2+α, 0 < α < 1, and

L ≡
N∑

j,k=1

ajk(x)∂2/∂xj∂xk +
N∑
j=1

bj(x)∂/∂xj + c(x)

is an uniformly elliptic operator in Ω̄, where ajk, bj , c are all in Cα(Ω̄), with
c(x) ≤ 0 in Ω̄. We consider the boundary value problem

(1.1) Lu = f(x, u) in Ω, u = φ(x) on ∂Ω,

with u = (u1, ..., um), f = (f1, ..., fm), φ = (φ1, ..., φm) and the operator L is
applied componentwise. For each i we assume fi ∈ C1(Ω̄ × Rm) and φi ∈
C2+α(∂Ω). The following theorem was found by Tsai in [221], and is presented
as Theorem 1.4-2 in [125].

Theorem A1-1. Let L, f and φ be as described above. Suppose that there
exist α(x) = (α1(x), ..., αm(x)) and β(x) = (β1(x), ..., βm(x)), αi(x), βi(x) in
C2(Ω̄), i = 1, ...,m. such that for each i, αi(x) < βi(x) in Ω̄,

(1.2)




0 ≤ Lαi(x)− fi(x, u1, ..., ui−1, αi(x), ui+1, ..., um),

0 ≥ Lβi(x)− fi(x, u1, ..., ui−1, βi(x), ui+1, ..., um),

481
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for all x ∈ Ω̄, αj(x) ≤ uj ≤ βj(x), j �= i; and

(1.3) αi(x) ≤ φi(x) ≤ βi(x) on ∂Ω.

Then the boundary value problem (1.1) has a solution u with ui ∈ C2+α(Ω̄)
satisfying

αi(x) ≤ ui(x) ≤ βi(x) in Ω̄, for each i = 1, ...,m.

The following theorem considers quasimontone systems. It shows the exis-
tence of steady-state when the components of the initial condition of the corre-
sponding parabolic system are upper and lower solution of the elliptic problem.
As t → ∞, the solution of the parabolic problem converges monotonically to a
max-min pair of steady state. The result can be found in Pao [182] and Sattinger
[200], p. 998-999. We define

Li ≡
N∑

j,k=1

aij,k(x)∂2/∂xj∂xk +
N∑
j=1

bij(x)∂/∂xj for i = 1, 2,

where the operators Li are uniformly elliptic in Ω̄, and its coefficients are in
Cα(Ω̄), 0 < α < 1. We consider the following two related systems

(1.4)




ut − L1u = f1(x, u, v)
in Ω× [0,∞),

vt − L2v = f2(x, u, v)

u = v = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(here, we assume u0(x) = v0(x) = 0 for x ∈ ∂Ω);

(1.5)




−L1u = f1(x, u, v)
in Ω,

−L2v = f2(x, u, v)

u = v = 0 on ∂Ω.

Theorem A1-2. Let (û(x), v̂(x)) and (ũ(x), ṽ(x)) be ordered upper and lower
solutions of (1.5) with each component in C2(Ω̄) and vanishing on the boundary
∂Ω, i.e. ũ ≤ û and ṽ ≤ v̂ in Ω̄, and let (f1, f2) be a quasimonotone nonincreasing
C1 function between (ũ, ṽ) and (û, v̂). That is, assume



−L1û ≥ f1(x, û, ṽ), −L2v̂ ≥ f2(x, ũ.v̂)
for x ∈ Ω,

−L1ũ ≤ f1(x, ũ, v̂), −L2ṽ ≤ f2(x, û.ṽ)

û = ũ = v̂ = ṽ = 0 for x ∈ ∂Ω.
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Then the solution (Ū(x, t),V(x, t)) of (1.4) with initial condition (u(x, 0), v(x, 0))
= (u0(x), v0(x)) = (û(x), ṽ(x)) converges monotonically from above and below
respectively as t→ +∞ in each component to a solution (Ūs(x),Vs(x)) of (1.5);
and the solution (U(x, t), V̄ (x, t)) of (1.4) with initial condition (u(x, 0), v(x, 0)) =
(ũ(x), v̂(x)) converges monotonically as t → +∞ from below and above respec-
tively to a solution (Us(x), V̄s(x)) of (1.5). Moreover, Ūs ≥ Us,Vs ≤ V̄s in Ω̄,
and if (u∗, v∗) is any solution of (1.5) between (ũ, ṽ) and (û, v̂), then it satisfies

Us ≤ u∗ ≤ Ūs, Vs ≤ v∗ ≤ V̄s in Ω̄.

Many more theorems analogous to the two above can be found in e.g. Leung
[125] and Pao [183].

In the remaining part of this section we present a few bifurcation theorems
which are used in many chapters in the book in order to obtain positive solu-
tions in addition to the trivial solution. When the hypotheses of the implicit
function theorem fail at a certain point, one might have more than one solu-
tion in its neighborhood. These theorems discuss sufficient conditions for such
phenomenon to occur.

Let X,Y be Banach spaces and let f ∈ C(O,Y ) where O is an open subset
of X. (Here, C(O,Y ) denotes the set of continuous function from O into Y ).
We say f is (Fréchet) differentiable at a ∈ O if there exists a bounded linear
transformation dfa : X → Y (denoted by dfa ∈ L(X,Y )) such that

||f(a+ ξ)− f(a)− dfaξ|| = o(||ξ||) as ||ξ|| → 0.

(Here || · || denotes both the norms in Y or X, whichever is appropriate). The
linear transformation dfa is called the (Fréchet) derivative of f at a. We say
f ∈ C1(O,Y ) if the map a→ dfa is continuous form O into L(X,Y ).

We denote the second derivative d2fa of f ∈ C(O,Y ) at a point a ∈ O to be
the continuous bilinear form d2fa : X ×X → Y which satisfies

||f(a+ ξ)− f(a)− dfaξ − (1/2)d2fa(ξ, ξ)|| = o(||ξ||2) as ||ξ|| → 0.

Here d2fa can also be interpreted as a bounded linear transformation from X
into L(X,Y ), i.e. d2fa ∈ L(X,L(X,Y )). We say f ∈ C2(O,Y ) if the map
a→ d2fa is continuous from O → L(X,L(X,Y )).

Let B1, B2, B3 be Banach spaces and U be open in B1 × B2. Suppose f :
U → B3 and (u1, u2) ∈ U . We say f is differentiable with respect to the first
variable at (u1, u2) if the function g(x) = f(x, u2) is differentiable at x = u1.
We write dgu1 = D1f(u1, u2). Similarly we define D2f(u1, u2) as the derivative
with respect to the second variable.

The following local bifurcation theorem is due to Crandall and Rabinowitz
in [34].
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Theorem A1-3. Let X and Y be Banach spaces and f ∈ C2(U, Y ), where U =
S× V is an open subset of R×X containing (λ0, 0). Let L0 = D2f(λ0, 0), L1 =
D1D2f(λ0, 0); and N(L0), R(L0) denotes the null space and range of L0 respec-
tively. Suppsoe that:
(i) f(λ, 0) ≡ 0 for all λ ∈ S,
(ii) N(L0) is one-dimensional, spanned by u0,
(iii) dim[Y/R(L0)] = 1,
(iv) L1u0 �∈ R(L0).
Then there is δ > 0 and a C1−curve (λ, φ) : (−δ, δ) → R × Z (here, Z is a
closed subspace of X with the property that any x ∈ X is uniquely representable
as x = αu0 + z for some α ∈ R, z ∈ Z) such that:
(a) λ(0) = λ0, φ(0) = 0, and
(b) f(λ(s), s(u0 + φ(s)) = 0 for |s| < δ.
Moreover, there is a neighborhood of (λ0, 0) such that any solution of f(λ, u) = 0
is either on this curve or is of the form (λ, 0).

Note that using Taylor’s Theorem, we may write

f(λ, u) = L0u+ (λ− λ1)L1u+ r(λ, u),

where L0 = D2f(λ0, 0), L0 = D1D2f(λ0, 0) and r ∈ C2 satisfies

r(λ, 0) = 0,D2r(λ0, 0) = D1D2r(λ0, 0) = 0.

The next two theorems lead to bifurcation results which are more general
and nonlocal. Theorem A1-4 is due to Krasnosel’skii and Theorem A1-5 is the
general bifurcation theorem of Rabinowitz [190]. More detailed exposition can
be found in Smoller [209] and López-Gómez [161].

Theorem A1-4.Let B be a Banach space and f ∈ C(U,B), where U is an open
subset of R×B. Assume that f is expressible as

(1.6) f(λ, u) = u− λLu+ h(λ, u), where

(a) L : B → B is a compact, linear operator,
(b) the equation Lv = ρv has ρ = 1/λ0 as an eigenvalue of odd multiplicity,
(c) h : U → B is a compact,
(d) h(λ, u) = o(||u||) as u→ 0, uniformly on bounded λ−intervals.
Then (λ0, 0) is a bifurcation point of f(λ, u) = 0.

To be specific, let Γ : (λ, u(λ)) be a curve of solutions of f(λ, u) = 0 with
(λ0, u0) as an interior point on Γ. We say (λ0, u0) is a bifurcation point with
respect to Γ if every neighborhood of (λ0, u0) in R × B contains solutions of
f(λ, u) = 0 not on Γ.
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Theorem A1-5. Suppose that all the hypotheses (a) to (d) of Theorem A1-4
are satisfied. Let G denotes the closure of the set of solutions of f(λ, u) = 0 with
u �= 0. Then G contains a component S which meets (λ0, 0), and either
(i) S is noncompact in U (Hence, if U = R × B, the compactness of L and h
together with formula (1.6) imply that S is unbounded), or
(ii) S meets u = 0 in a point (λ̄, 0), where λ̄ �= λ0 and 1/λ̄ is an eigenvalue of
L.

6.2 The Fixed Point Index, Degree Theory and Spec-
tral Radius of Positive Operators

In the first part of this section, we introduce some basic theory involving fixed
point index of a compact map f with respect to a cone. A nonempty subset
A of a metric space X is called a retract of X if there exists a continuous map
r : X → A (called a retraction), such that r|A = idA. It is easily seen that
every retract is a closed subspace of X. By a theorem of Dugundji [54], every
nonempty closed convex subset of a Banach space E is a retract of E. There is
a theory of fixed point index of compact map over an open subset U of a retract
X of a Banach space, with respect to X. The index can be expressed in terms
of the well known Leray-Schauder degree as given below in (2.1).

Theorem A2-1. Let X be a retract of a Banach space E. For every open subset
U of X and every compact map f : Ū → X which has no fixed points on ∂U ,
there exists an integer iX(f, U) satisfying the following conditions:
(i) (Normalization) For every constant map f mapping Ū into U , iX(f, U) = 1;
(ii)(Additivity) For every pair of disjoint open subsets U1, U2 of U such that f
has no fixed points on U\(U1 ∪ U2),

iX(f, U) = iX(f, U1) + iX(f, U2),

where iX(f, Uk) := iX(f |Ūk, Uk), k = 1, 2;
(iii)(Homotopy invariance) For every compact interval Λ ⊂ R, and every com-
pact map h : Λ× U → X such that h(λ, x) �= x for (λ, x) ∈ Λ× ∂U , the integer
iX(h(λ, ·), U) is well-defined and independent of λ ∈ Λ;
(iv)(Permanence) If Y is a retract of X and f(Ū) ⊂ Y , then

iX(f, U) = iY (f, U ∩ Y ),

where iY (f, U∩Y ) = iY (f |U ∩ Y ,U∩Y ). The family {iX(f, U)|X retract of E,
Uopen inX, f : Ū → X compact without fixed points on ∂U} is uniquely de-
termined by the properties (i)-(iv), and iX(f, U) is called the fixed point index
of f (over U with respect to X).
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Remark A2-1. In the Theorem above, the topological notions (open, closed,
boundary, etc) refer to relative topology of X as a subspace of E.
Outline of Proof. Let {iX(f, U)} be any family satisfying conditions (i)-
(iv). Then by choosing X = E, conditions (i)-(iii) are precisely the properties
characterizing the Leray-Schauder degree. Consequaently, we have

iE(f, U) = deg(id − f, U, 0),

where deg(id − f, U, 0) denotes the Leray-Schauder degree with respect to zero
of the compact map (id− f), defined on the closure of the open set U ⊂ E.

Next, suppose X is an arbitrary retract of E, and denote by r : E → X an
arbitray restraction. it is readily seen that due to the permanence property, we
have

iX(f, U) = iE(f ◦ r, r−1(U)) = deg(id − f ◦ r, r−1(U), 0).

Thus every fixed point index of f over U with respect to X is equal to deg(id−
f ◦ r, r−1(U), 0). We might thus define

(2.1) iX(f, U) = deg(id − f ◦ r, r−1(U), 0),

where r : E → X is an arbitrary retraction. It can be readily verified by the
excision property of the Leray-Schauder degree (see e.g. Schwartz [205] and
Amann [3]) that this definition is indepedent of the choice of the retraction r,
and (2.1) is well-defined. By means of (2.1) and the basic properties of Leray-
Schauder degree, we can also readily verify the properties (i)-(iv).

From the above Theorem, one can readily deduce the following properties of
the fixed point index.

Corollary A2-2. The fixed point index defined in the last Theorem has the
following further properties:
(iv)(Excision) For every open subset V ⊂ U such that f has no fixed point in
U\V ,

iX(f, U) = iX(f, V );

(v) (Solution property) If iX(f, U) �= 0, then f has at least one fixed point in U .

Suppose U is an open subset of X, and is also open in E. Assume x0 ∈ U is
an isolated fixed point of some compact map f : Ū → X. Then there exists a
positive number ρ0 such that x0 + ρB̄ ⊂ U for all ρ ∈ [0, ρ0], where B denotes
the open unit ball of E. Moreover ,we may assume x0 is the only fixed point of
f in x0 + ρ0B. Consequently, by the excision property,

i(f, x0) := iX(f, x0 + ρB),



6.2. FIXED POINT INDEX, DEGREE THEORY, . . . 487

is the local index of f at x0, is well-defined and independent of ρ ∈ [0, ρ0].
Moreover, we can show by means of the permanence property that the local
index i(f, x0) coincides with the local index as defined by

limρ→0 deg(id − f, x0 + ρB, 0),

which is the standard definition of the local index in the Leray-Schauder degree
theory.

Using the theory presented above and the classical Leray-Schauder theory,
we obtain the following theorem concerning diffferentiable compact maps.

Theorem A2-3. Let X be a retract of some Banach space E, U be an open
subset of X, and f : Ū → X be a compact map. Suppose that x0 ∈ U is a fixed
point of f , and that there exists a positive number ρ such that x0 + ρB ⊂ U ,
where B denotes the open unit ball of E. Further, assume that f is differentiable
at x0, such that 1 is not an eigenvalue of the derivative f ′(x0). Then x0 is an
isolated fixed point of f and

i(f, x0) = (−1)m,

where m is the sum of the multiplicities of all the eigenvalues of f ′(x0) which
are greater than one.

Let E be a ordered Banach space, with ordering denoted by ≥, and P :=
{x ∈ E|x ≥ 0}. For any ρ > 0, let Pρ be the positive part of the ball ρB,
that is Pρ := ρB

⋂
P = ρB+. Observe that Pρ is an open neighborhood of 0 in

P . Due to the convexity of B and P , the closure P̄ρ of Pρ in P coincides with
ρB̄
⋂
P . Hence the boundary S+

ρ in P is the same as ρS
⋂
P , where S is the

unit sphere in E. Since the positive cone is a closed convex subet of E, we know
by Dungundji’s theorem that it is a retract of E. Consequently, by Theorem
A2-1 above, for any open subset U of P and any compact map f : Ū → P , the
fixed point index iP (f, U) is well-defined, provided that f has no fixed points on
∂U . The following is a very simple useful consequence of the Theroem A2-1.

Theorem A2-4. Let f : P̄ρ → P be a compact map such that f(x) �= λx for
every x ∈ S+

ρ and every λ ≥ 1. Then iP (f, Pρ) = 1.
Proof. Define a compact map h : [0, 1]×P̄ρ → P by h(τ, x) := τf(x),. Then, by
the homotopy invariance and the normalization properties, we have iP (f, Pρ) =
iP (0, Pρ) = 1.

More details of the theories presented in Theorem A2-1 to Theorem A2-4
can be found in Amann [3]. The following theorem is concerned with standard
properties of positive operators and the general Krein-Rutman Theorem. Recall
that an eigenvalue λ of a linear operator T is called simple if

(2.2) dim(∪∞k=1 ker(λ− T )k) = 1.
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Theorem A2-5. Let E be a Banach space ordered by a cone P = {x ∈ E|x ≥
0}, where P is closed with nonempty interior. Suppose T : E → E is a strongly
positive compact bounded linear operator. Then the following are true:
(i) The spectral radius r(T ) := limk→∞||T k||1/k is positive;
(ii) r(T ) is a simple eigenvalue of T having a positive eigenvector (i.e. in P\{0})
and there is no other eigenvalue with a positive eigenvector;
(iii) For every y ∈ P\{0}, the equation

λx− Tx = y

has exactly one positive solution if λ > r(T ), and no positive solution for λ ≤
r(T ). The equation r(T )x − Tx = −y has no positive solution. (Here, T is
strongly positive means T (P\{0}) is contained in the interior of P .)

The theorem is proved by applying results in Kranosel’skii [108] or Krein-
Rutman [110], as explained in Amann [3]. Let Ω be a bounded domain in RN

with C2+µ, 0 < µ < 1, boundary. In the situation when T : Cµ(Ω̄)→ C2+µ(Ω̄) is
the solution operator denoting for every f ∈ Cµ(Ω̄), by Tf the unique solution
of the problem

−∆u = f in Ω, u = 0 on ∂Ω,

the theorem above does not apply immediately to the extension to C(Ω̄). For
an application of the previous theorem, we let e be the unique solution of the
problem

−∆e = 1 in Ω, e = 0 on ∂Ω.

Define the subspace Ce(Ω̄) to consist of u ∈ C(Ω̄) such that there exists a positive
constant so that −αe ≤ u ≤ αe. This space is given the natural ordering and
topology defined by means of the norm

||u||e := inf{α > 0| − αe ≤ u ≤ αe}.

It can be shown that the solution operator T has a unique extension, again
denoted by T , to a compact, strongly positive linear operator from C(Ω̄) into
Ce(Ω̄). Moreover, the restriction of T to Ce(Ω̄) is a compact, strongly positive
bounded linear operator on Ce(Ω̄). Theorem A2-5. above can then be applied
to this solution operator.

The following theorem provides a convenient method to deduce the spectral
radius of some positive linear operators. It can be found in [151].

Theorem A2-6. Let E be a Banach space ordered by a cone P with properties
as described in the above theorem, and T is a strongly positive compact bounded
linear operator on E. Suppose there exists a positive element u > 0 (i.e. u ∈
P\{0}) with one of the following properties:
(i) Tu > u, then the spectral radius of T satisfies r(T ) > 1;
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(ii) Tu < u, then the spectral radius of T satisfies r(T ) < 1;
(iii) Tu = u, then the spectral radius of T satisfies r(T ) = 1.

Proof. (iii) Tu = u implies that 1 is an eigenvalue of T with positive eigenvector
u. The conclusion that r(T ) = 1 follows from the theorem above.
(i) Suppose Tu > u for some u > 0. Assume that r(T ) = 1, then for some y > 0
the equation r(T )x−Tx = −y has a positive solution x = u. This contradicts the
above theorem; thus r(T ) �= 1. Suppose 1 > r(T ), then y := (−u)− T (−u) > 0,
and the equation 1x − Tx = y has exactly one positive solution by the above
theorem. Moreover, the equation 1x− Tx = y has a unique solution because all
eigenvalues are less than r(T ), which is < 1. Consequently the solution x = (−u)
is positive, and we have u < 0. This contradiction implies that we cannot have
1 > r(T ) also. Thus r(T ) > 1.
(ii) The proof is the same as in part (i), by reversing the inequality > to <,
obtaining r(T ) < 1.

6.3 Theorems Involving Maximum Principle, Com-

parison and Principal Eigenvalues for Positive
Operators

In this section we assume that Ω is a bounded domain in RN with boundary of
class C2. Recall the definition of eigenvalues denoted by ρ̂1(L) and ρ1(−L) for
an elliptic operator L in Chapter 1. The first theorem in this section involves
maximum pricinple for W 2,p(Ω) solution of elliptic scalar equation. The details
can be found in Theorem 2.2 in Delgado, López-Gómez and Suarez [45].

Theorem A3-1. Consider a uniformly elliptic operator of the form

(3.1) L =
N∑

i,j=1

aij(x)∂i∂j +
N∑
j=1

bj(x)∂j + c(x),

with

(3.2) aij ∈ C(Ω̄), bj , c ∈ L∞(Ω), i, j ∈ {1, ..., N}.

Suppose that
ρ̂1(L) < 0.

Let p > N and u ∈ W 2,p(Ω) satisfies Lu ≤ 0 a.e. in Ω and u ≥ 0 in ∂Ω; then,
unless u(x) ≡ 0 in Ω̄, it must satisfy u(x) > 0 for x ∈ Ω, and for those x ∈ ∂Ω
with u(x) = 0 its outward normal derivative satisfies (∂u/∂ν)(x) < 0.
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The next three theorems concern properties of W 2,p(Ω) solution of Volterra-
Lotka scalar equation and comparison with upper solutions. Let L be the uni-
formly elliptic operator of the form (3.1) with coefficients satisfying (3.2) in a
domain as described in Theorem A3-1. Consider the equation

(3.3)



−Lw = γw − f(x)w2 in Ω,

w = 0 on ∂Ω,

where γ ∈ R and f ∈ C(Ω̄) satisfies f(x) > 0 in Ω̄. By means of the maximum
principle above, we readily prove the following theorem by iteration and upper-
lower solution method.

Theorem A3-2. If p > N , then the problem (3.3) has a positive solution in
W 2,p(Ω)∩W 1,p

0 (Ω) if and only if γ > ρ1(−L). Moreover, it is unique if it exists.
Let the solution be denoted by θ[−L,γ,f ], then

limγ→ρ1(−L)+ θ[−L,γ,f ] = 0

uniformly in Ω̄.
More details of the above theorem can be found in Theorem 3.1 in [45]. The

next Theorem can be found in Lemma 3.2 of [45].

Theorem A3-3. Consider the problem (3.3) above. Suppose γ > ρ1(−L) and
w̄ ∈ W 2.p(Ω), p > N , is a positive strict upper solution of the above problem,
i.e. Lw̄ + γw̄ − f(x)w̄2 ≤ 0 a.e. in Ω, w̄ ≥ 0 on ∂Ω, w̄ �≡ θ[−L,γ,f(x)] in Ω̄;
then w̄− θ[−L,γ,f(x)] > 0 for x ∈ Ω, and (∂/∂ν)(w̄− θ[−L,γ,f(x)])(x) < 0 for those
x ∈ ∂Ω, where w̄(x) = 0.

Proof. We have

[L− f(x)(w̄ + θ[−L,γ,f ]) + γ](w̄ − θ[−L,γ,f ]) ≤ 0 a.e. in Ω,

w̄ − θ[−L,γ,f ] ≥ 0 on ∂Ω.

Moerover, we have

ρ̂1(L− f(x)(w̄ + θ[−L,γ,f ]) + γ) < ρ̂1(L− fθ[−L,γ,f ] + γ) = 0.

Thus the conclusion follows from Theroem A3-1 above with L and u respectively
replaced by [L− f(x)(w̄ + θ[−L,γ,f ]) + γ] and (w̄ − θ[−L,γ,f ]).

Theorem A3-4. Let L and Ω be as described in Theorem A3-1 and θ[−L,a,b(x)]
be defined as Theorem A3-2, where we assume b ∈ C(Ω̄) and b(x) > 0 for each
x ∈ Ω̄. Then the following holds

lima→∞
θ[−L,a,b(x)]

a
=

1
b(x)

uniformly in compact subsets of Ω.
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The above theorem concerning the limit of the solution of the diffusive
Volterra-Lotka equation as the growth rate tends to infinty can be found in
Theorem 3.4 in [45]. The next theorem involves comparison of eigenvalues, and
can be found in e.g. Theorem 2.3 in [45].

Theorem A3-5. Let the operator L be as described in Theorem A3-1. Let
V1, V2 ∈ L∞(Ω) such that V1 ≤ V2 and V1 < V2 on a set of positive measure.
Then

ρ1(−L+ V1) < ρ1(−L+ V2).

The next two theorems concern the solution of scalar equations on RN or RN+ .
The following is a variant of Liouville type theorem asserting that a bounded
solution has to be exactly zero, and can be found in Lemma 7.5 in Delgardo,
López-Gómez and Suarez [45].

Theorem A3-6. Assume that D = RN or D = RN+ , where

RN+ = {x ∈ RN : xN ≥ 0}.

If V ∈ L∞(D)∩Cα(D), 0 < α < 1, V ≥ 0, V �≡ 0, then θ = 0 is the only bounded
solution of

(−∆ + V )θ = 0 in D.

Theorem A3-7. Let u(x) be a non-negative C2 solution of

∆u+ uα = 0 in RN , N > 2,

with 1 < α < N+2
N−2 . Then u(x) ≡ 0.

The above theorem can be found in Theorem 1.1 in Gidas and Spruck [70].
The following two theorems involve cooperative quasimonotone systems.

Let Lk, k = 1, 2, be uniformly elliptic operators as described for L in (3.1)
and (3.2). Let α(x), β(x), γ(x) and ρ(x) be functions in C(Ω̄) with the two
functions β(x) and γ(x) positive almost everywhere in Ω. Consider the linear
eigenvalue problem for λ in the following cooperative system; that is those λ
such that

(3.4)




L1u+ α(x)u+ β(x)v = λu
in Ω,

L2v + γ(x)u+ ρ(x)v = λv

u = v = 0 on ∂Ω,

has some solution (u, v) ∈W 2,p
0 (Ω)×W 2,p

0 (Ω), (u, v) �= (0, 0), p > N .
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Theorem A3-8. (i) There exists a largest eigenvalue of problem (3.4), denoted
by λ∗ and is called the principal eigenvalue of the problem. This eigenvalue is
simple and has a unique positive eigenfunction, up to a multiplicative constant,
called principal eigenfunction. Moreover, each component of the principal eigen-
function is strictly positive in Ω; and λ∗ is the only eigenvalue of (3.4) with
such positive eigenfunction. Furthermore, any other eigenvalue λ of (3.4) must
satisfy:

Re λ < λ∗.

(ii) The principal eigenvalue λ∗ of (3.4) is negative if and only if there exists
(ū, v̄) ∈W 2,p(Ω)×W 2,p(Ω) such that




L1ū+ α(x)ū + β(x)v̄ ≤ 0
in Ω,

L2v̄ + γ(x)ū+ ρ(x)v̄ ≤ 0

ū ≥ 0, v̄ ≥ 0 on ∂Ω,

where at least one of the four inequalities above is not identically zero almost
everywhere.

The above theorem can be found in Theorem 8.3 and 8.4 in [45]. The next
theorem is a generalization of the sweeping principle to cooperative quasimon-
tone systems. It can be found in e.g. McKenna and Walter [168] or Lemma 9.3
of [45]

Theorem A3-9. Let z = (u, v) ∈ W 2,p
0 (Ω) ×W 2,p

0 (Ω), p > N , be a solution of
the problem

(3.5)




−L1u = f(x, u, v)
in Ω,

−L2v = g(x, u, v)

u = v = 0 on ∂Ω,

where f and g are two continuous functions in x and of class C1 in (u, v), f is
increasing in v, and g increasing in u. For each t ∈ (t0, t1], let z̄t := (ūt, v̄t) ∈
W 2,p

0 (Ω) × W 2,p
0 (Ω) be a strict upper solution of problem (3.5). Assume that

z̄t is continuous and strictly increasing in t ∈ [t0, t1]. Moreover, suppose that
each component of z̄t1 − z is strictly positive for all x ∈ Ω, and the outward
normal derivative ∂z̄t/∂ν at ∂Ω is continuous in t. Then we have the following
inequality componentwise:

z ≤ z̄t0 in Ω̄.
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We now present a few more general theorems concerning eigenvalues for
positive operators. Let E be a Banach space with a cone K. An operator A
acting in the space E is called completely continuous if it is continuous and if it
maps every bounded set into a compact set. It is called positive if it maps the
cone K into itself.

Theorem A3-10. Let A be a completely continuous linear positive operator
acting on the real Banach space E with cone K. Let the relation

Apu ≥ αu (α > 0)

be satisfied for some non-zero element u such that −u �∈ K,u = v − w, (v,w ∈
K) where p is some natural number. Then the operator A has at least one
eigenvector x0 in K:

Ax0 = λ0x0,

where the positive eigenvalue λ0 satisfies the inequality

λ0 ≥ (α)1/p.

A cone K in the real Banach space E is called reproducing if every element
x ∈ E can be represented in the form

x = u− v for some u, v ∈ K,

where the elements u and v are not defined uniquely in the representation above.
Let u0 be some fixed non-zero element of K. We call a linear positive operator
A u0−bounded below if for every non-zero x ∈ K a natural number n and a
positive number α can be found such that

αu0 ≤ Anx.

Analogously, we call the positive operator A u0−bounded above if for every
non-zero x ∈ K an m and a β can be found such that

Amx ≤ βu0.

Finally, if for every non-zero x ∈ K

αu0 ≤ Anx ≤ βu0

for some n, then we call the operator A u0−positive.

Theorem A3-11. Let φ0 ∈ K and φ0 be an eigenvector of a u0−positive linear
operator A:

Aφ0 = λ0φ0.
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Suppose that K is a reproducing cone. Then λ0 is a simple eigenvalue of the
operator A. (Recall the definition of simple eigenvalue in (2.2) of Section 6.2.)

Theorem A3-12. Let the conditions of Theorem A3-11 be satisfied. Then the
positive eigenvalue corresponding to a positive eigenvector φ ∈ K is greater than
the absolute magnitudes of the remaining eigenvalues.

Theorems A3-10, A3-11 and A3-12 correspond respectively to Theorem 2.5,
Theorems 2.10 and 2.13 in Chapter 2 of Krasnolsel’skii [108].

6.4 Theorems Involving Derivative Maps, Semigroups
and Stability

We first present a theorem concerning mappings between Lp spaces and then
a theorem relating the Fréchet and Gauteau derivatives of mappings between
Banach spaces.

Let gi(u1, ..., un, x), i = 1, ..., n be continuous with respect to (u1, ..., un)
for almost all x ∈ Ω̄, and measurable with respect to x in Ω̄ for every fixed
(u1, ..., un), ui ∈ (−∞,+∞). Let ũi(x), i = 1, ..., n, be n real functions in Lp(Ω),
p > 0. Consider the operator h = (h1, ..., hn) defined for ũ = (ũ1, ..., ũn) by:

(4.1) hi[ũ] = gi(ũ1(x), ..., ũn(x), x), for i = 1, ..., n,

to give n measurable scalar functions in Ω.

Theorem A4-1. The operator h = (h1, ..., hn) in (4.1) maps [Lp(Ω)]n into
[Lp1(Ω)]n if and only if the the functions g1, ..., gn described above satisfy for
each i = 1, ..., n:

|gi(u1, ..., un, x)| ≤ ai(x) + b

n∑
k=1

|uk|r,

where ai(x) ∈ Lp1(Ω), p1 > 0, b > 0, r = p/p1.
The above theorem is given in Theorem 19.2 of Vainberg [222].

Let X and Y be Banach spaces and F is an operator where F : X → Y . The
operator is said to have a Gateaux deriviative at the point x0 ∈ X if there exists
a bounded linear operator denoted by DF (x0, h) such that h→ DF (x0, h) ∈ Y
for all h ∈ X and

limt→0
F (x0 + th)− F (x0)

t
= DF (x0, h).

The following theorem relates the Gateaux and Fréchet derivatives, and is pre-
sented in Theorem 3.3 in Vainberg [222].
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Theorem A4-2. If the operator F : X → Y has Gateaux derivatives for all
points in a neighborhood of x0 ∈ X and the Gateaux derivative DF (x, h) is
continuous at x = x0, then F has a Fréchet derivative at x0, denoted by F ′(x0),
and

DF (x0, h) = F ′(x0)h

for all h ∈ X.
Semigroup theory is used throughout this book to study parabolic and hy-

perbolic systems. An excellent exposition on the semigroup theory of linear
operators and application to partial differential equations can be found in Pazy
[184]. Here, we review a few basic definitions.

Definition A4.1(a). Let X be a Banach space. A one parameter family
T (t), 0 ≤ t < ∞, of bounded linear operators from X into X is a semigroup of
bounded linear operators on X if
(i) T (0) = I, (I is the identity operator on X),
(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0.

The linear operator A defined by

A(x) = limt→0+
T (t)x−x

t = d+T (t)x
dt |t=0 for x ∈ D(A), where

D(A) = {x ∈ X : limt→0+
T (t)x−x

t exists} is the domain of A,

is called the infinitesimal generator of the semigroup T (t).

Defintion A4.2. A semigroup T (t), 0 ≤ t <∞ of bounded linear operators on
X is a strongly continuous semigroup of bounded linear operators if

limt→0+T (t)x = x for every x ∈ X.

A strongly continuous semigroup of bounded linear operators on X will be called
a semigroup of class C0 or simply C0 semigroup.

If A is a linear, not necessarily bounded, operator on X, the resovlent set of
A is the set of all complex numbers λ for which λ−A is invertible, i.e. (λ−A)−1

is a bounded linear operator in X. The family R(λ : A) = (λ−A)−1 of bounded
linear operators, for all λ in the resolvent set of A, is called the resolvent of A.

The following four well-known theorems in semigroup theory are used in
various parts of this book.

Theorem A4-3. (Hille-Yosida) A linear operator A is the infinitesimal gen-
erator of a C0 semigroup T (t) on the Banach X satisfying ||T (t)|| ≤ Meωt, if
and only if
(i) A is closed and its domain D(A) is dense in X,
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(ii) the resolvent set of A contains the interval (ω,∞), and the resolvent (λI −
A)−1 satisfies

||(λI −A)−n|| ≤ M

(λ− ω)n
for λ > ω, n = 1, 2, . . . .

Definition A4.1(b). Let X be a Banach space. A one parameter family
T (t),−∞ < t <∞, of bounded linear operators from X into X is a C0 group of
bounded linear operators on X if
(i) T (0) = I, (I is the identity operator on X),
(ii) T (t+ s) = T (t)T (s) for −∞ < t, s <∞,
(iii) limt→0T (t)x = x for x ∈ X.

The infinitesimal generator A of the group T (t) is defined by

A(x) = lim
t→0

T (t)x− x
t

whenever the limit exists; the domain of A is the set of all elements x ∈ X for
which the above limit exists.

Theorem A4-4. A linear operator A is the infinitesimal generator of a C0

group T (t) on the Banach X satisfying ||T (t)|| ≤Meω|t|, if and only if
(i) A is closed and its domain D(A) is dense in X,
(ii) every real λ, |λ| > ω, is in the resolvent set ρ(A) of A and for such λ

||R(λ : A)n|| ≤ M

(|λ| − ω)n
for λ > ω, n = 1, 2, . . . .

Theorem A4-5. Let X be a Banach space and let A be the infinitesimal gener-
ator of a C0 semigroup T (t) on X, satisfying ||T (t)|| ≤Meωt. If B is a bounded
linear operator on X then A+B is the infinitesimal generator of a C0 semigroup
S(t) on X, satisfying ||S(t)|| ≤Me(ω+M ||B||)t.

Theorem A4-6. For each i = 1, ..., k, let Ai be an infinitesimal generator with
domain D(Ai) of a C0 semigroup Si(t) on Banach space X satisfying ||Si(t)|| ≤
Mie

ωit. Suppose that ∩ki=1D(Ai) is dense in X and

||(S1(t)S2(t) · · ·Sk(t))n|| ≤Meωnt, n = 1, 2, . . . .

for some constant M ≥ 1 and ω ≥ 0. If for some λ with Reλ > ω the range of
λ− (A1 +A2 + · · ·+Ak) is dense in X, then the closure of A1 +A2 + · · ·+Ak is
an infinitesmal generator of a C0 semigroup, denoted by S(t), on X satisfying
||S(t)|| ≤Meωt. Moreover, we have

S(t)x = limn→∞(S1(t/n)S2(t/n) · · ·Sk(t/n))nx for x ∈ X,
and the limit is uniform on bounded t intervals.
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Theorems A4-3 and A4-4 are respectively Theorem 5.3 and Theorem 6.3 in
Chapter 1 of Pazy [184]. Theorems A4-5 and A4-6 are respectively Theorem
1.1 and Corollary 5.5 in Chapter 3 in Pazy [184]. Theorem A4-6 involves the so
called Trotter product formula. The following theorem is known as the Trotter-
Neveu-Kato semigroup convergence theorem and can be found in Th. 7.2 of
Chapter 1 in Goldstein [74].

Theorem A4-7. Let An, n = 0, 1, 2, . . . , generate a C0 semigroup Tn on the
Banach space X, satisfying the condition:

(4.2) ||Tn(t)|| ≤Meωt, for n = 0, 1, 2, ..., t ≥ 0,

where M and ω are independent of n and t. Let D be a subspace of X, such that
A0 is the closure of its restriction to D. Assume that for each f ∈ D, we have

f ∈ lim infn→∞D(An), and limn→∞Anf = A0f.

Then limn→∞Tn(t)g = T0(t)g for each g ∈ X, uniformly for t in compact subsets
of [0,∞). Moreover the resolvents satisfy limn→∞R(λ : An)f = R(λ : A0)f for
each f ∈ X, uniformly for λ in compact subsets of (ω,∞).

For more sophisticated use of the semigroup theory, we need the following
definitions.
Definition A4-3. Let T (t) be a C0 semigroup on a Banach space X. The
semigroup T (t) is called differentiable for t > t0 if for every x ∈ X, t → T (t)x
is differentiable for t > t0. T (t) is called differentiable if it is differentiable for
t > 0.
Definition A4-4. Let II = {z : ψ1 < argz < ψ2, ψ1 < 0 < ψ2} and for z ∈ II,
let T (z) be a bounded linear operator. The family T (z), z ∈ II is analytic
semigroup in II if

(i) z → T (z) is analytic in II,
(ii) T (0) = I and limz→0,z∈II T (z)x = x for every x ∈ X,
(iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ II.

The semigroup T (t) will be called analytic if it is analytic in some sector II
containing the non-negative real axis.

We next present some useful theory concerning semigroup of linear opera-
tors generated by a system of elliptic linear operator on the m-vector space of
continuous functions. Let Ω be a bounded domain in RN , N ≥ 1; if N > 1
we assume that Ω is uniformly of class C1+α for some α > 0 (See for example
Ladyzhenskaya, Solonnikov and Ural’ceva [113], section 4 in Chapter IV). We
define the operators

Li ≡
N∑

j,l=1

aij,l(x)∂2/∂xj∂xl +
N∑
j=1

bij(x)∂/∂xj for i = 1, ...,m,
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where the boundary ∂Ω is uniformly of class C2+α if N > 1; aij,l and bil are all
in the class Cα(Ω̄), 0 < α < 1, and each Li is uniformly elliptic for x ∈ Ω̄. We
first consider the linear problem:

(4.3)




∂ui
∂t = Liui in Ω× [0,∞), i = 1, ...,m,

ui(x, t) = 0 for (x, t) ∈ ∂Ω × [0,∞), i = 1, ...,m.

We have the following theorem from Theorem 2.4 of Mora [176].

Theorem A4-8. The solution of the linear problem (4.3) determines an analytic
semigroup on the Banach space [Ĉ(Ω̄)]m := {u = (u1, ..., um)|ui ∈ C(Ω̄), ui|∂Ω =
0, i = 1, ...,m.}, with generator A; and its domain is given by D(A) = {u ∈
[Ĉ(Ω̄)]m| (L1u1, ..., Lmum) ∈ [Ĉ(Ω̄)]m}.

We next consider the nonlinear problem:

(4.4)




∂ui
∂t = Liui + fi(x, u1, ..., un), in Ω× [0,∞), i = 1, ...,m,

ui(x, t) = 0 for (x, t) ∈ ∂Ω × [0,∞), i = 1, ...,m.

Here, the functions fi(x, ui, ..., um) has partial derivatives Dβ
ujfi for |β| ≤ 1 and

Dβ
uj (x, u1, ..., um) ∈ C(Ω̄) for all (u1, ..., um) ∈ Rm. Moreover, The functions

Dβ
uj (x, u1, ..., um) are locally Hölder continuous with respect to (u1, ..., um) ∈

Rm, with Hölder constants independent of x ∈ Ω. The following stability result
is given in Theorem 4.2 in Mora [176].

Theorem A4-9. Under the conditions on Ω, Li and fi, i = 1, 2, ...,m described
above, the nonlinear problem (4.4) determines a semiflow of class C1 on the
Banach space [Ĉ(Ω̄)]m described in the last Theorem. Suppose w0 is a stationary
(or steady) state of this semiflow, and let L̂ := A + DF (w0) be the linearized
operator for (4.4) at w0 on [Ĉ(Ω̄)]m, where A is defined in the last Theorem.
Let σ∗ := supReσ(L̂) where σ(L̂) denotes the spectrum of L̂. If σ∗ > 0, then
the stationary state is unstable in the semiflow on [Ĉ(Ω̄)]m; if σ∗ < 0, then the
stationary state is asymptotically stable in the same flow.

Here F = (f1, ..., fm), and DF (w0) : [Ĉ(Ω̄)]m → [Ĉ(Ω̄)]m can be given by
ū→ DuF (x,w0)ū, where DuF (x,w0) is the Jacobian matrix for F = (f1, ..., fm)
with respect to u evaluated at u = w0. From the boundedness of Ω, we find that
the spectrum of L̂ consists only of eigenvalues. For the definition of stability and
asymptotic stability, refer to the clarification below immediately before Remark
4.1, with the Banach space Xα replaced by [Ĉ(Ω̄)]m. The system in (4.3) above
is diagonal; actually the theory in Mora [176] is given in much more general
system which is not diagonal.
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In order to estimate the location of the spectrum for the linearized equation,
the following theorem related to the semicontinuity of the spectrum of closed
operator is useful. It can be found in Chapter 4, Theorem 3.6 in p. 209 of Kato
[102].

Theorem A4-10. Let T be a closed linear operator on a Banach space B, and
S be a bounded linear operator on B, such that S commutes with T . Then the
distance between the spectrum σ(T ) and σ(T + S) does not exceed the spectral
radius of S, and a fortiori, ||S||.

Stabilities of steady states of the parabolic systems (or semiflows) are also
considered in function spaces other than the continuous functions. We now
define some spaces induced by certain linear operators A.

Definition A4-5. A linear operator A in a Banach space X is called a sectorial
operator if it is a closed densely defined operator such that, for some φ in (0, π/2)
and some M ≥ 1 and a real a, the sector

Sa,φ = {λ| φ ≤ |arg(λ− a)| ≤ π, λ �= a}

is in the resolvent set of A and

||(λ −A)−1|| ≤M/|λ− a| for all λ ∈ Sa,φ.

Definition A4-6. Let A be a sectorial operator in a Banach space X and
Reσ(A) > 0; then for any α > 0

A−α =
1

Γ(α)

∫ ∞

0
tα−1e−Atdt.

Here, {e−At}t≥0 denotes the analytic semigroup generated by −A, where

e−At =
1

2πi

∫
C

(λ+A)−1eλtdλ,

where C is the contour in ρ(−A) with arg λ = ±θ as |λ| → ∞ for some θ in
(π/2, π).

It can be shown that if A is a sectorial operator in X with Reσ(A) > 0,
then for any α > 0, A−α is a bounded linear operator on X which is one-one
and satisfies A−αA−β = A−(α+β) whenever α > 0, β > 0.

Definition A4-7. Let A be a sectorial operator in a Banach space X and
Reσ(A) > 0, then for α > 0, Aα is defined as the inverse of A−α, with domain
D(Aα) as the range of A−α; A0 is defined as the identity operator on X.
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Definition A4-8. Let A be a sectorial operator in a Banach space X. For each
α ≥ 0 define Xα to be the domain of Aα1 with the graph norm

||u||α = ||Aα1u||, u ∈ Xα,

where A1 = A + aI with a chosen so that Reσ(A1) > 0. Different chioces of a
give equivalent norms on Xα, so the dependence on the choice of a is supressed
in writing.

Let A be a sectorial linear operator in a Banach space X, and f : Ũ → X
where Ũ is a cylindrical neighborhood in R × Xα (for some 0 ≤ α < 1) of
(τ,∞)× {u0}. We say u0 is an equilibrium point if u(t) ≡ u0 is a solution of

(4.5)
du

dt
+Au = f(t, u), t > t0,

i.e. if u0 ∈ D(A) and Au0 = f(t, u0) for all t > t0.
A solution ū(·) on [t0,∞) is stable (in Xα) if, for any ε > 0, there exists

δ > 0 such that any solution u with ||u(t0) − ū(t0)||α < δ exists on [t0,∞) and
satisfies ||u(t)− ū(t)||α < ε for all t ≥ t0; that is, if û0 → u(t; t0, û0) is continuous
(in Xα) at û0 = ū(t0), uniformly in t ≥ t0. The solution ū is uniformly stable if
u1 → u(t; t1, u1) is continuous as u1 → ū(t1), uniformly for t ≥ t1 and t1 ≥ t0.

The solution ū(·) is uniformly asymptotically stable if it is uniformly stable
and u(t; t1, u1)−ū(t)→ 0 as t−t1 →∞, uniformly in t1 ≥ t0 and ||u1−ū(t1)||α <
δ, for some constant δ > 0.

Remark 4.1. It is shown in Henry [84] or Chapter 7 in Pazy [184], that the
operator −L := diag.(−k∆, ...,−k∆), k > 0, is a sectorial operator on X =
Lp(Ω) × · · · × Lp(Ω), 1 < p < ∞, and L := diag.(k∆, ..., k∆) generates an
analytic semigroup on X. Here, Ω is a bounded domain in RN with smooth
boundary. Consequently, we can apply the theory for (4.5) with A replaced by
−L for parabolic systems. The following two theorems concerning stability of
solutions in Xα are used throughout this book. Note that by choosing p large
and α close to 1, we can obtain information concerning the spatial derivatives
of the solutions.

Theorem A4-11.Let A, f be as described above for (4.5), and further f(t, u)
is locally Hölder continuous in t, t > τ , locally Lipschitzian in u, on Ũ . Let u0

be an equilibrium point, and

f(t, u0 + z) = f(t, u0) +Bz + g(t, z)

where B is a bounded linear map from Xα, 0 ≤ α < 1, to X and ||g(t, z)|| =
o(||z||α) as ||z||α → 0, uniformly in t > τ .
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If the spectrum of A−B lies in {Reλ > β} for some β > 0, or equivalently
if the linearization

dz

dt
+Az = Bz

has the zero solution uniformly asymptotically stable, then the problem (4.5) has
the solution u0 uniformly asymptotically stable in Xα. More precisely, there exist
ρ > 0,M ≥ 1 such that if t0 > τ and ||u1 − u0||α ≤ ρ/(2M) then there exists a
unique solution of (4.5) with initial condition u(t0) = u1 defined on t0 ≤ t <∞
and satisfying for t ≥ t0

||u(t; t0, u1)− u0||α ≤ 2Me−β(t−t0)||u1 − u0||α.

Theorem A4-12.Let A, f satisfy properties described in Theorem A4-11. As-
sume Au0 = f(t, u0) for t ≥ t0 > τ ,

f(t, u0 + z) = f(t, u0) +Bz + g(t, z), g(t, 0) = 0,

||g(t, z1)− g(t, z2)|| ≤ k(ρ)||z1 − z2||α for ||z1|| ≤ ρ, ||z2||ρ ≤ ρ

with k(ρ)→ 0 as ρ→ 0+, and B is a bounded linear map from Xα to X.
If the spectrum of L = A − B has the property that σ(L) ∩ {Reλ < 0} is

a nonempty set. Then the equilibrium solution u0 is unstable. More precisely,
there exist ε0 > 0 and {un, n ≥ 1} with ||un − u0||α → 0 as n → ∞, such that
for all n,

supt≥t0 ||u(t; t0, un)− u0||α ≥ ε0 > 0.

Here the supremum is taken over the maximal interval of existence of u(·; t0, un).

Theorems A4-11 and A4-12 above can be found respectively as Theorems
5.1.1 and 5.1.3 in Henry [84].

The following theorem which can be found in Billoti and LaSalle [10], is used
for the study of persistence in Chapter 4. Let X be a complete metric space and
T (t) be a C0 semigroup on X. The semigroup T (t) is called point dissipative in
X if there is a bounded nonempty set B in X such that for any x ∈ X, there is
a t0 = t0(x,B) such that T (t)x ∈ B for t ≥ t0.

Theorem A4-13. If

(i) T (t) is point dissipative in X,
(ii) there is a t0 ≥ 0 such that T (t) is compact for t > t0,

then there is a nonempty global attractor A in X. (Here, global attractor is
defined in Part A of Section 4.1 in the familiar way.)
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6.5 W 2,1
p Estimates, Weak Solutions for Parabolic

Equations with Mixed Boundary Data, Theorems
Related to Optimal Control, Cross-Diffusion and

Traveling Wave

For the convenience of the reader, we present in this section a few theorems used
in Chapters 3 to 5. The following theorem provides estimates for an arbitrary
W 2,1
p solution of a parabolic problem on a given time interval. The theorem is

found in Ladyzhenskaya, Solonnikov and Ural’ceva [113]. It is used to deduce
the existence of time periodic solution of a parabolic problem in Chapter 3. Let
Ω be a bounded domain in RN with C2 boundary ∂Ω.

Theorem A5-1. Let T1, T2 be any two numbers satisfying 0 < T1 < T2, f ∈
Lp(Ω × (0, T2]), and c ∈ Cα(Ω̄ × [0, T2]). Suppose that u ∈ W 2,1

p (Ω × (0, T2])
satisfies 


ut −∆u+ cu = f in Ω× (0, T2),

∂u
∂ν = 0 on ∂Ω× (0, T2),

then we have

||u||
W 2,1
p (Ω×(T1,T2)

) ≤ C1||f ||Lp(Ω×(0,T2]) + C2||u||Lp(Ω×(0,T2]).

Here p > 1 is any positive number and 0 < α < 1.

The following two theorems are used for the theory of optimal control of
parabolic systems with mixed boundary data.

Consider the operator:

Ay := −
N∑

i,j=1

∂

∂xi
(aij(x, t)

∂y

∂xj
),

where aij(x, t) ∈ C(Ω̄ × [0, T ]), and −A is uniformly elliptic operator on the
bounded domain Ω with smooth boundary ∂Ω in RN . We consider the problem

(5.1)




∂yh
∂t +Ayh = f in Ω× (0, T ), f ∈ L2(Ω× (0, T )),

∂yh
∂νA

+ hyh = 0 on ∂Ω× (0, T ), h ∈ L2(∂Ω× (0, T )),

yh(x, 0) = y0(x), y0 ∈ L2(Ω)

where h is prescribed in an admissible set S := {h|0 < β ≤ ξ0(x, t) ≤ h(x, t) ≤
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ξ1(x, t) a.e. on ∂Ω × (0, T ), ξ0, ξ1 ∈ L∞(∂Ω × (0, T ))}; and

∂u
∂νA

=
∑

i,j aij
∂u
∂xj

cos(ν, xj) on ∂Ω,

cos(ν, xj) is the j-th direction cosine of the outward normal ν on ∂Ω.

Problem (5.1) is solved in the following sense: we set

V := {ψ|ψ ∈ H1(Ω)},

ah(t;φ,ψ) :=
N∑

i,j=1

∫
Ω
aij(x, t)

∂φ

∂xj

∂ψ

∂xi
dx+

∫
∂Ω
hφψds.

Theorem A5-2. There exists one and only one function yh such that

(5.2)




yh ∈ L2(0, T ;H1(Ω)),

yh|∂Ω×(0,T ) ∈ L2(∂Ω× (0, T )),

d
dt(yh, ψ) + ah(t; yh(t), ψ) = (f(t), ψ) for all ψ ∈ V,

yh(0) = y0.

From the first three lines of (5.2), we obtain the first two lines of (5.1). Then

∂

∂t
yh ∈ L2(0, T ;H−1(Ω)),

and thus we can deduce that u ∈ C([0, 1], L2(Ω)), and consequently the fourth
line concerning initial condition in (5.2) makes sense. Therefore it is reasonable
to define yh as the solution of (5.1) by means of the above theorem.

The above theorem can be found in Section 15.4 of Chapter 3 in Lions [158].
The next theorem concerns compact embedding involving u, du/dt is given in
Proposition 4.2 of Chapter 4 in Lions [157].

Let V and H be real Hilbert spaces. Assume that V ⊂ H and the injection of
V into H is continuous. If V ′ denotes the dual space of V , H may be identified
with a subspace of V ′, and we may write

V ⊂ H ⊂ V ′.

Let H1(−∞,+∞;V, V ′) denotes the normed linear space consisting of elements
of u ∈ L2(−∞,+∞;V ) such that |τ |û(τ) ∈ L2(−∞,+∞;V ′), with the norm

||u||H1(−∞,+∞;V,V ′) = (||u||2L2(−∞,+∞;V ) + |||τ |û(τ)||2L2(−∞,+∞;V ′))
1/2,
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where û(t) is the Fourier transform of u(t). Let H1(0, T ;V, V ′) denotes the space
formed by restriction of elements in H1(−∞,+∞;V, V ′) to (0, T ), with norm

||u||H1(0,T ;V,V ′) = inf.||v||H1(−∞,+∞;V,V ′) such that v = u a.e. in (0, T ).

Theorem A5-3. Suppose that the injection of V into H is compact. Then the
injection of H1(0, T ;V, V ′) into L2(0, T ;H) is also compact.

The following two theorems are used for the study of positive steady-states
in elliptic systems with cross-diffusion. Theorem A5-4 can be found in Zeidler
[241].

Theorem A5-4. Let M and N be two metric spaces and a mapping G ∈
C(M,N) satisfies the following two conditions:
(i) G−1(K) is compact in M for any compact subset K of N ;
(ii) G is locally invertible on M .
Suppose also that M is arcwise connected and N is simply connected, then G is
a homeomorphism from M onto N .

Theorem A5-5. Let Ω be a bounded smooth domain in RN , N ≥ 1. Suppose
that w ∈ C2(Ω) ∩ C1(Ω̄) is a positive solution to ∆ + c(x)w = 0 in Ω subject to
homogeneous Neumann boundary condition with c ∈ C(Ω̄). Then there exists a
positive constant C∗ = C∗(N,Ω, ||c||∞) such that

maxΩ̄ w ≤ C∗minΩ̄w.

The Harnack type inequality in the theorem above is obtained by Lin, Ni
and Takagi [155], Lemma 4.3.

We now consider a parabolic equation with degenerate diffusion. We first
give the definition of solution and upper or lower solution. Then we state a
comparison result in Theorem A5-6.

For Ω = (−L,L), QT = Ω× (0, T ], Q = Ω×R+, we consider the problem:

(5.3)




ut = η(u)xx + f(u) (x, t) ∈ Q,

u(±L, t) = 0 t ∈ (0,∞),

u(x, 0) = u0(x) x ∈ Ω,

where η, f and u0 satisfy the following assumptions:
A1. η : R→ R is locally Lipschitz continuous, nondecreasing and η(0) = 0,
A2. f : R→ R is locally Lipschitz continuous,
A3. u0 ∈ L∞(Ω).



6.5. MIXED BOUNDARY DATA, OPTIMAL CONTROL, . . . 505

Definition A5-1. A solution u of (5.3) on [0, T ] is a function u with the
following properties:
(i) u ∈ C([0, T ] : L1(Ω)) ∩ L∞(QT ),
(ii)

∫
Ω u(t)φ(t) dx− ∫ ∫Qt(uφt+η(u)φxx) dxdt =

∫
Ω u0φ(0) dx+

∫ ∫
Qt
f(u)φdxdt

for all φ ∈ C2(Q̄T ) such that φ ≥ 0, φ = 0 at x = ±L and 0 ≤ t ≤ T . A solution
on [0,∞) means a solution on each [0, T ], and a lower solution (upper solution)
is defined by (i), and (ii) with equality replaced by ≤ (≥).

Theorem A5-6.Let u be lower solution and û be an upper solution of problem
(5.3) in [0, T ] with initial conditions u0 and û0 respectively. Suppose u0 ≤ û0 in
Ω, then u ≤ û in QT .

The theory here is valid if Ω is a bounded domain in RN and η(u)xx is
replaced by ∆η(u) or Eη(u) where E is a suitable elliptic operator. The above
theorem can be found in Aronson, Crandall and Peletier [5].

The following theorem considers the existence of solution with prescribed
limits at ±∞ for second order ODE monotone systems in R. They are used for
finding traveling wave solutions for parabolic systems with prescribed limits at
±∞.

Let w+
i < w−

i , i = 1, ..., n, and G := (w+
1 , w

−
i )× · · · × (w+

n , w
−
n ). Let F (u) =

(F1(u), ..., Fn(u)); and for each i, assume Fi is continuously differentiable in Ḡ
with

∂Fi
∂uk

> 0 in G, for k = 1, ..., n, k �= i.

Moreover, for w+ := (w+
1 , ..., w

+
n ), w− := (w−

1 , ..., w
−
n ), we suppose

F (w+) = F (w−) = 0.

We consider finding montonically decreasing solution of the problem

(5.4) Dw′′ + cw + F (w) = 0,

where D is a given diagonal n× n matrix with positive diagonal elements, with
the conditions at the infinities

(5.5) limx→±∞w(x) = w±,

and c is a constant. Here c is the wave speed of traveling wave solution of the
form

u(x, t) = w(x− ct)
for the monotone system

∂u

∂t
= D

∂2u

∂x2
+ F (u).
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We introduce a functional ω∗; with the aid of this functional we may determine
the minimum speed of a wave. Let K be the class of vector-valued functions
ρ(x) ∈ C2(−∞,∞), decreasing montonically and satisfying the conditions at
±∞:

limx→±∞ ρ(x) = w±.

We set

(5.6) ψ∗(ρ) = supx,k
dkρ

′′
k(x) + Fk(ρ(x))
−ρ′k(x)

,

(5.7) ω∗ = infρ∈K ψ∗(ρ).

Here dk and Fk are the diagonal elements of the matrix D and the elements of
the vector F appearing in system (5.4).

Theorem A5-7. Assume that there exists a vector p ≥ 0, p �= 0 such that

(5.8) F (w+ + sp) ≥ 0 for 0 < s ≤ s0,

where s0 is a positive number.(Here, all vector inequalities are interpreted com-
ponentwise). Furthermore, suppose that in the interval [w+, w−] (i.e. for w+ ≤
w ≤ w−) the vector-valued function F (w) vanishes only at the points w+ and
w− in Ḡ. Then for all c ≥ ω∗ there exists a montonically decreasing solution
of system (5.4) satisfying the conditions (5.5). When c < ω∗, such solutions do
not exist.

The above result is shown in Theorem 4.2 of Chapter 3 in Volpert, Volpert
and Volpert [224].
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Jorné, J., 335

Kan-on, Y., 336, 361
Kasterberg, W., 178
Kato, T., 81, 499
Kawasaki, K., 335, 336
Kerner, E., 335
Kishimoto, K., 336
Klein, M., 456
Kolmogorov, A., 393
Korman, P., 74, 108
Krasnosel’skii, M., 104, 130, 132, 417,

484, 494
Krein, M., 488
Krein-Rutman, 103, 487
Kuby, J., 161
Kushner, M., 456
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