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Preface

Substantial progress had been made in the last two decades in the theory of
nonlinear systems of partial differential equations. Much of the developments
are motivated by applications to the natural sciences of biology, physics and
chemistry. There is a considerable amount of results concerning positive solu-
tions for the study of ecological and medical sciences. Other applications involve
reactor dynamics, fluid, plasma, display technology etc. There are several excel-
lent books published in such topics in the last decade; however, due to numerous
recent developments of new methods and results there is a need for a book to
collect them for convenient reference and study. The gathering of many exist-
ing theorems enhances the understanding of the subject and leads to directions
for further research or applications. In the mean time, the demand for reliable
applications encourages deeper understanding of the underlying mathematical
methods of nonlinear partial differential equations. Many of the problems were
introduced in my first book in 1989. In the last twenty years, there is tremen-
dous progress in the mathematical formulation for studies in cancer, cardiology,
epidemiology and cell development etc., leading to larger systems of nonlinear
partial differential equations. More thorough understanding of the interaction
between a few components is crucial for building to large systems. Serious efforts
are made to make this book self-contained. Although many theorems used in
the book are presented in other books or papers, we include their explanations
in the Appendices so that this book is more readable to many graduate students
and researchers who are not specialists in these topics.

For the study of positive solutions, several methods are used extensively in
this book. Topological degree theory method is extremely fruitful in proving the
existence of positive equilibrium for several coupled elliptic systems. One of the
most important tools in nonlinear analysis is the Leray-Schauder degree. Due
to the fact that the positive cone is a retract of a Banach space, it is possible
to define a fixed point index for compact maps as introduced by H. Amann.
The fixed point index is equivalent to Leray-Schauder degree. Many existence
theorems follow from the property of homotopic invariance of degree. Another
powerful method in nonlinear analysis is the use of bifurcation theory as devel-
oped by Crandall and Rabinowitz. Bifurcation of solutions may occur at points
where the implicit function theorem does not apply. Estimation of solutions by
means of maximum principle combined with global bifurcation theory provides

vii
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convenient analysis of the behavior of positive equilibria as various parameters
changes. Many diagrams are included describing the range of parameters so
that coexistence can occur. Through the use of maximum principle for WP
solutions, the book considers the theory of non-classical solutions for interact-
ing species. By means of weak upper-lower solutions, it studies solutions with
discontinuous and highly spatially varying growth rates.

For the study of parabolic time-dependent problems, we use both semigroup
methods and the classical Schauder’s theory. The semigroup method provides
existence of solution of initial value problems in various function spaces. Com-
bined with the spectral analysis of the related linearized parabolic system, we
obtain many time-stability results for positive equilibria. Comparison theorems
for parabolic systems under various boundary conditions also provide estimates
of solutions by means of upper and lower solutions.

A significant part of the book is devoted to the study of optimal control of
systems of nonlinear partial differential equations as developed by J. L. Lions.
They are systems motivated by applications involving equilibrium or time de-
pendent problems. The object is to control the coefficients of the systems so
that certain properties of the subsequent solutions are maximized. Both the
theories of weak and classical solutions are used. A larger optimality system
of equation is deduced for the optimal control. Combined with the method of
upper-lower solutions, we construct monotone sequences converging to estimates
of the optimality system.

The book also describes results concerning systems of nonlinear wave equa-
tions and traveling wave solutions for parabolic systems. The system of wave
equations is analyzed by semigroup method. In contrast to the popular method
of finding traveling wave solutions by means of dynamical system theory, we
carefully explain the method of finding traveling solutions for parabolic sys-
tems by using upper-lower solution in an unbounded domain. Other topics
studied include invariant manifolds for coupled parabolic-hyperbolic systems,
cross-diffusion for elliptic systems, persistence, blow-up due to boundary inflow,
coupled elliptic-parabolic system related to display technology, degenerate dif-
fusive systems and other related topics. Although the systems are motivated by
applications, the techniques of analyzing such types of problems are carefully ex-
plained. They involve extensions of methods described in the above paragraphs.

Chapter 1 considers systems of two coupled nonlinear elliptic or parabolic
equations. The nonlinear terms incorporate the interactions between two life
species occupying a common domain. The cases of competition, cooperation or
prey-predator relationship are covered in detail in separate sections. The bound-
ary values are given in the Dirichlet type. The trivial vector function is always
a solution of the systems. The major concern is the additional possibility of
coexistence solutions when both species survive together. We use the methods
described in the last few paragraphs to find coexistence states under various con-



PREFACE ix

figuration of interaction parameters, diffusion rates and size of the environment.
Many results are related to the principal eigenvalues of various scalar problems
induced by the original larger system. The time-stability of the coexistence
states for all the three cases are discussed in the last section of the chapter.
Some other long-time behavior of the corresponding reaction-diffusion systems
are also studied. Most of the results are published by many researchers in the
nineties or afterwards, and cannot be found in other books. Chapter 2 extends
our discussion of problems in the first chapter to larger systems of equations.
The species components may now be classified into groups inside which they
interact in competition, cooperative or food-chain manner, while the different
groups interact in various ways. The conditions for coexistence becomes more
complex. However, we see the methods developed in the first chapter can be
extended to cover many different cases. For practical applications, we consider
analysis of epidemics, fission reactor engineering and other problems.

Chapter 3 studies the optimal control of nonlinear systems analyzed in the
first two chapters. We control the interaction parameters or boundary conditions
in order to optimize an expression involving the solutions of the systems. Using
the understanding of the uncontrolled systems in the last chapters, we deduce
conditions when optimal control is possible. We consider the control of elliptic,
parabolic and time-periodic systems. For biological systems, we maximize the
economic return of species-harvesting; and for reactor problems, we optimize
the target temperature profile. From the original systems together with the
optimization criteria we deduce larger optimality systems which describe the
optimal controls. We further analyze the solution of the optimality systems by
means of monotone convergence schemes. So far, results for such systems have
not been gathered coherently in a book form.

Chapter 4 emphasizes on other aspects of the solutions of the reaction-
diffusion systems. We consider conditions on the equations when certain com-
ponents can persist indefinitely in time. We study the effect of diffusion rates
which may depend on the concentrations of other species. Such self and cross-
diffusion property can have significant effect on the coexistence problem. Ques-
tions concerning blow-up, extinction, degenerate diffusion rates and others are
also investigated by various methods described above. Chapter 5 first considers
traveling wave solutions for competitive parabolic systems. There had been nu-
merous results on such topics over two decades ago found by means of dynam-
ical systems technique. Here, we present some very new recent results found
by means of upper-lower solution method in an unbounded domain. We also
study a system of hyperbolic equations and the stability of their equilibrium.
We further discuss the problem of invariant manifold for solutions of coupled
Navier-Stokes and wave equations. Roughly speaking, we find a relationship be-
tween the fluid velocity field and the magnetic field so that it is invariant as time
changes. Finally, we consider a coupled elliptic-parabolic problem motivated by
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research on plasma display technology. We estimate whether the sizes of the ion
concentrations can reach a high enough level for light emission.

We painstakingly itemize in the Appendices those theories and theorems used
in deducing the results in Chapters 1 to 5. They include many standard the-
orems in scalar and systems of partial differential equations, methods in linear
and nonlinear functional analysis and topology. In real world applications, mod-
els are very complicated and they have to be continuously improved with deeper
investigation. It is therefore important to understand how the applicable results
in Chapters 1 to 5 are deduced from the more fundamental theories in the Ap-
pendices. With the standard tools conveniently displayed, one can then readily
modify the theorems in the first five chapters to forms more suitable for proper
utilization. The stress of this book is consequently different from others with
similar titles existing in the literature. On the other hand, the presentation of
the topics in the first five chapters are motivated by practical applications. Con-
sequently, the results can be applied to real world problems by non-specialists,
even if the rigorous proofs presented are not completely understood. Finally,
this book can only cover those topics which have interest me, my friends and
colleagues. Many other subjects concerning systems of nonlinear partial differ-
ential equations are beyond our present scope. 1 hope that this book is helpful
for researchers who will continue to explore on the subject.

I am grateful to many colleagues, students and friends who had discussed
various topics with me. They include in alphabetical order: G. Chen, R. Cantrell,
C. Cosner, E. Dancer, Q. Fan, F. He, X. Hou, P. Korman, A. Lazer, S. Lenhart,
L. Li, W. Ni, L. Ortega, C. Pao, S. Stojanovic, B. Villa, Q. Zhang, B. Zhang
and many others. Their inspirations and encouragements are valuable in the
development of the subject matter of this book. I would also like to thank my
wife, Soleda, for the design of the book cover and her joint preparation of some
figures in the book with Z. Kang. I also appreciate the help of R. Chalkley,
D. Mueller and L. F. Kwong for the efficient production of this manuscript.

Anthony W. Leung
Cincinnati, 2009
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Chapter 1

Positive Solutions for Systems
of Two Equations

1.1 Introduction

In this chapter, we consider a system of two partial differential equations de-
scribing two interacting population species. Each species diffuse from location
of higher to lower concentration, and they interact with each other in a prey-
predator, competing or cooperating relationship. We emphasize the situation
when the species must have zero concentration at the boundary of the envi-
ronment. These are known as reaction-diffusion equations with homogeneous
Dirichlet boundary condition. The boundary condition is known as “hostile” in
some ecological studies. We first consider the possibility of positive coexistence
equilibrium for the case of prey-predator in Section 1.2, competing species in
Section 1.3, and cooperating species in Section 1.4. They are thus systems of
elliptic partial differential equations of the form:

o1Au+u(a; + fi(u,v)) =0
in €,
(1.1) o2 Av 4+ v(ag + fa(u,v)) =0

u=v=>0 on 0f).

In this chapter, we always assume that € is a bounded domain in RN, N > 2,
unless otherwise stated. If N > 1, we assume that the boundary 99 € C?*1*,0 <
a < 1; that is, the boundary has local representation whose second order partial
derivatives are Holder continuous with exponent «. The symbol A denotes the

Laplacian operator:

N 82

=1 8.1‘18.1‘3

2
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2 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

The constants aj,as are respectively the intrinsic growth rates of the species
whose population concentrations at the position x are denoted by u = u(z)
and v = v(x). The parameters o1, 09 are positive diffusion coefficient constants.
The reaction functions f1(u,v), fo(u,v) involve many other parameters reflecting
interaction rates and self-crowding effects of the species. We shall investigate
the ranges of these parameters and their sizes relative to that of the size of
the environment domain €2 so that coexistence states are possible. We shall
use various methods of nonlinear analysis to study these problems, including
upper-lower solutions, monotone schemes, bifurcation, degree theory and their
generalizations. We usually begin with the simplest cases in order to illustrate
how the various methods are used in obtaining the results.

In Section 1.5, we consider the time dependent parabolic system associated
with system (1.1):

up = o1Au+u(ar + fi(u,v))
in Q x (0,00),
(1.2) vy = oAv + v(ag + fa(u,v))

u=v=>0 on 0f).

The main emphasis is to analyze the long time behavior of the system, and to
find whether the solutions are tending to the equilibria described in the previous
sections.

We now proceed to introduce some symbols which will be used repeatedly

in this and later chapters. For any real ¢(z) in C*(Q2) and ¢ > 0, the linear
eigenvalue problem:

(1.3) —oAu+q(z)u=pu in Q, u=0 on I

has an infinite sequence of eigenvalues, p; < ps < p3 < ..., which are bounded
below. It is also known that the first eigenvalue:

(1.4) p=p1=pi(—0A+q(z))

is simple, and all solutions of (1.3) with p = p1(—0A + ¢(z)) are multiples of a
particular eigenfunction, which does not change sign on €2 and has its normal
derivatives never vanish on the boundary 0f2.

For convenience, we define

(15) A1 = pl(_A)a

and denote by w(z), a positive eigenfunction of the operator —A on Q with

boundary condition v = 0 on 0. Similarly, for any real ¢(x) in C*(Q2) and
o > 0, the linear eigenvalue problem:

(1.6) oAu+ ¢(x)u=pu in Q, u=0 on IN
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has an infinite sequence of eigenvalues, p; > p2 > p3 > ..., which are bounded
above. We denote the largest eigenvalue by:

(1.7) p= i1 = picA+q(x)),

which is simple. As shown in Sections 1.4 and 1.5 below, most of the results
in this chapter are valid if the Laplacian operator is replaced with the uniform
elliptic operator:

N
L= z_: 8332833] Z il o)

7]_

where a;;(z), bi(x),c(x) are in C*(0),0 < a < 1, ¢(z) <0 in £, and

N N
Y ay(@)& = po Yy & po >0,
=1 i=1

for all z € Q, all (&1, ...,6N) € RN, For simplicity, we present most of the results
using the Laplacian.

For convenience, we state a simple direct consequence of the maximum prin-
ciple, which will be used repeatedly to assert that in many instances non-negative
non-constant solutions in Q are actually strictly positive in €.

Lemma 1.1. Let u € C%*(Q) be a non-negative non-constant solution of:
Lu+h(z)u=0 inQ, u=0 on 09,

where L is the operator described above and h(z) is bounded, then u must satisfy

u(z) > 0 for all x € Q.

Proof. Let P be a positive constant such that h(z) — P < 0 for all z € 2, and
define v = —u. Then we have

Lv+[h(x) = Plv=—Pv>0 inQ, v=0 on 90.

From the maximum principle, we obtain v(x) < 0 in €, since v(z) is not a
constant function. This means u(x) > 0 in Q.
In this chapter, we avoid the consideration of zero outward normal derivative:

Ou  Ov
=0 9.
o v on
Such homogeneous Neumann boundary condition, which represents no flux of
species across the boundary, has been studied more extensively in other books
in the literature, e.g. Smoller [209] and Leung [125].
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1.2 Strictly Positive Coexistence for Diffusive Prey-
Predator Systems

Let u(x) and v(z) be respectively the density of prey and predator at the point
z in a bounded domain 2. We first consider an earliest result concerning coex-
istence equilibrium when both species are restricted to vanish on the boundary.
We consider the following homogeneous Dirichlet boundary value problem for
the coupled Volterra-Lotka type reaction-diffusive system.

o1Au+u(a —bu —cv) =0
in Q,
(2.1) ooAv +v(e+ fu—gv) =0

u=v=0 on 0f).

Here, 01,09,a,b,c,¢, f,g are positive constants. The parameters a,e are the
intrinsic growth rates and b,c, f,g are interaction rates. Note that the prey-
predator relation is reflected by the signs of —c¢ and +f.

Part A: Early Results via Upper-Lower Solutions and Bifurcation.

The following theorem concerning the coexistence of both species can be
readily deduced by means of upper-lower solutions method for a system of elliptic
equations.

Theorem 2.1. The boundary value problem (2.1) under hypotheses:
a > 0'1)\17 e > 0'2)\17

(2.2) cf < gb, and

o1gb ce
a > gb—cf[)\l + {FTl]

has a solution with each component strictly positive in 2. Here \1 is defined in
(1.5).

Proof. The last two inequalities of hypotheses (2.2) imply that a(1 — ;—J;) >
o1(A 4 557); hence a > o1A + £(e + f3). It follows that for each fixed v,
0<wv< %(e + f%), the function u; := dw(x) > 0 is a lower solution of the first
equation in (2.1), for § > 0 sufficiently small. (Here w(z) is described in Section
1.1.) That is, we have for each such v:

o1Au; +ui(a —buy —cv) >0 in Q, and
(2.3)
u <0 on 0.
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On the other hand, the function us(x) := a/b is an upper solution for the first
equation in (2.1). That is,

o1Aus + uz(a — bug — cv) <0 in Q, and

uy >0 on 0.

Similarly, for each fixed u, 0 < u < a/b, the functions v := dw(x), for sufficiently
small positive 0 and vy () := é(e—i— [%) are respectively lower and upper solutions
for the second equation in (2.1). By means of an intermediate-value type theorem
(see Tsai [221] or Theorem 1.4-2 in Leung [125]), we assert that there exists a
solution (u*(x),v*(x)) of (2.1) satisfying u1(z) < u*(z) < ug,v1(2) < v*(x) < vo

for all x € €. Note that since v; > 0, we have (2.3) valid for all v satisfying
v < v <.

Remark 2.1. The proof of Theorem 2.1 is simple. However, it uses an
intermediate-value type theorem, whose proof requires Leray-Schauder degree
theory. Observe also that the inequalities in (2.2) are more readily satisfied for
large domains, because A; will then be small.

We next use a more sophisticated procedure to see how the various sizes of
the parameters a and e lead to different results of existence and non-existence
of positive solutions. We first consider the boundary value problem:

(2.4) —oAu+ q(z)u =u(a —bu) in Q, u=0 on 0,

where o > 0,¢(z),a and b are as described above. Suppose that a < p1(—cA +
q(z)). Let ¢(x) > 0 be an eigenfunction for (2.4) with p = p1(—cA + ¢(x)).
Using the family of upper solutions ep(x),e > 0, for (2.4) and the sweeping
principle described in Theorem 1.4-3 [125] one readily deduces that u = 0 is
the only non-negative solution of (2.4) if a < pi(—0A + ¢g(z)). On the other
hand, suppose a > pi(—cA + q(z)). We use large constant as upper solution
and small multiple of ¢(z) as lower solution for (2.4) to deduce the existence of
a solution which is positive in 2. Furthermore, such positive solution is unique,
when a > p1(—0A+¢q(x)). (See Lemma 5.2-2 in [125].) We will state the above
observation in a slightly more general situation, which will be used repeatedly
in many chapters.

Lemma 2.1. Let q(x) be in C*(Q), 0 < a < 1; G € C([0,00)),G" < 0 in
(0,00) and there exists some ¢y > 0 such that G(cg) < 0. Consider the boundary
value problem

(2.5) —oAu+ q(x)u =uG(u) in Q, u=0 on IN.

(i) If G(0) < p1(—0A + q(x)), then u = 0 is the only non-negative solution of
the problem.



6 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

(i) If G(0) > p1(—0A + q(x)), then the problem has a unique strictly positive
solution in €.

We consider the problem (2.1) under the simplest situation when the growth
rate a of the prey is small. In such situation, no prey population can survive as
described below.

Theorem 2.2. Suppose a < p1(—cA) and (u,v) is a non-negative solution of
(2.1). Then the following are true:

(i) u =0 in Q.

(ii) If e < p1(—02A), then we also have v = 0 in Q; if e > pi(—02A), then
either v =0 in Q or v is the unique positive solution of

(2.6) o9Av+v(e—gv) =0 in Q, v =0 on .

Proof. Multiplying the first equation of (2.1) by u, and integrating over 2, we
obtain

(2.7) —01/ uAudz < a/ u2daz—b/ udde.
Q Q Q

On the other hand, the characterization of the first eigenvalue gives

(2.8) pl(—alA)/u2d33§/01|Vu|2d33:—01/uAudac.
Q Q Q

Inequalities (2.7) and (2.8) imply that fQ widr < mfﬂ u?dr if u # 0.
Thus we must have v = 0 in Q. Consequently, assertion (ii) follows from the
discussion for single equation above analogous to (2.4), with ¢ = 0, and o, a,b
respectively replaced by o9, ¢, f.

We next use bifurcation technique to analyze problem (2.1) as the parameters
e or a varies. This will eventually lead to Theorem 2.3 and Theorem 2.4. The
approach involves decoupling the two equations in (2.1). We write the first
equation in (2.1) in the form;

(2.9) —01Au+ cvu = u(a —bu) in Q, u=0 on 09,

which can be regarded as a special case of (2.4) with ¢ = o1,q(z) = cv(x).
Thus, if a < pi(—01A + cv(x)), then (2.9) has no positive solution; while if
a > p1(—o1A + cv(x)), then (2.9) has a unique positive solution in €. Let v be
an arbitrary function in C1(£), we define u(v) as a function on Q by:

0 if a < pi(—01A + cw),
(2.10)  wu(v) =
unique solution of problem (2.9) if a > p1(—01A + cv).
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Clearly, if v satisfies the single equation:
(2.11) —03Av =v(e —gv+ fu(v)) in Q, v=0on 0,

then the pair (u(v),v) will be a solution of (2.1). To analyze (2.11), we first
obtain the following properties of the mapping v — wu(v).

Lemma 2.2.(i) The mapping: v — u(v) defined by (2.10) considered as a
function from C*(Q) to C1(Q) is continuous;
(ii) if v1 > vo in Q, then u(vy) < u(va) in Q.

The proof of this lemma can be found in Brown [15] or p. 360 in Leung [125].

To study more interesting situations, we now suppose that
(2.12) a> p1(—o14).

In the following Theorem 2.3, we let the parameter e varies, while all other
parameters are held fixed. Problem (2.1) has two non-negative solutions (0, 0)
and (u(0),0) for all values of e. We consider the global bifurcations as e varies in
the decoupled equation (2.11). This leads to bifurcation from the line of solution
(u(0),0) to solution of (2.1) with both components positive in 2. Let L be the
operator defined by

Lv = —o3Av — fu(0)v.

Without loss of generality, we may assume that p;(—o2A — fu(0)) # 0. Other-
wise, we replace L by L+k for an appropriate constant k. For each hin C1(£2), let
Kh denote the unique solution of the problem: Lu = h in 2, u = 0 on 9€2. The
map K : CH(Q) — C1() is a compact linear operator. Let F : C*(Q) — C1(Q)
be defined by

F(v) = —gv® + flu(v) — u(0)]o.

By Lemma 2.2, F' is continuous and |[F(v)|| = o(||v]|) as v — 0 in C1(Q), where
|| - || denotes the norm in C'*(Q2). We now write (2.11) in the form:

(2.13) v—eKv— KF(v)=0.

Since ||KF(v)|| = o(||[v]]) as v — 0 in C1(£2), we can apply the global bifurcation
results of Rabinowitz [190] as the parameter e varies. We can also apply results
concerning bifurcation from simple eigenvalues described in Crandall and Ra-
binowitz [33], Blat and Brown [11] or [125] to obtain properties concerning the
local behavior of the bifurcation solutions. It is shown that in a neighborhood
of the bifurcation point (p1(—o2A — fu(0)),0), all non-trivial solutions (e, v) of
(2.13) lie on a curve of the form {(é(a), #(a)) : =6 < a < 6} in Rx CH(Q), where
€(0) = p1(—02A — fu(0)) and ¢(a) = agy+ terms of higher “order” in «. Here,
¢1 is a positive principal eigenfunction for the eigenvalue pi(—o2A — fu(0)).
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From the fact that % < 0 on 0f2 where v is the outward unit normal at the
boundary, we thus conclude that for « sufficiently small and positive, the corre-
sponding non-trivial solution v lies in the cone

P={veC'Q):v(z)>0 forxzcqQ, %(az) <0 for xz € 00}.
Moreover, the closure of the set of non-trivial solutions (e, v) of (2.13) contains
a component S (i.e. a maximal connected subset) such that either S joins
(p1(—02A — fu(0)),0) to co in R x CH(Q) or S joins (p1(—0o2A — fu(0)),0) to
(p,0), where p is some other eigenvalue of L. More precisely, we can further
deduce (see [125] or [11]) the following properties for the set S.

Lemma 2.3. The component S contains a connected subset ST C S — {(e(a),
¢(a)) : =6 < a < 0} with the following properties:

(i) ST is contained in R x P;

(i) {p € R (p,0) € S} = (pr (=02 — fu(0)), +0).

Let (u,v) be any solution of (2.1) with each component non-negative in €.
Suppose that v is not the trivial function, then v is the unique positive solution
of the equation

(2.14) —03Av — fuv =wv(e —gv) in 2, v =0 on .

Let A1 and w; be the principal eigenvalue and the corresponding eigenfunction
with max{wy(z) : © € Q} = 1. Tt is readily checked that if e > o3A1, then
the function g~!(e — o2 A1 )w; is a lower solution of the problem (2.14), and that
any sufficiently large positive constant is an upper solution. Since v must be
between the upper and lower solutions, we conclude that if e > o9A; we have
v > gl (e — goA)wr = k(e)wr in Q, where k(e) := g~ '(e — gaA1) — 00 as
e — 00. Now, consider the eigenvalue problem

(2.15) —01Au + ck(e)wiu = Au in Q, u=0on 0.

The least eigenvalue A = A (e) has the characterization:
Aile) = inf. {/ o1|Vul* 4 ck(e)wiu’dr : u € W01’2(Q),/ wde = 1}.
Q Q

Thus from the limit of k(e), we can deduce that A;(e) — oo as e — oo. Conse-
quently, we have 5\1(6) > a, if e is large enough.

Next, from the characterization of first eigenvalue and comparing with (2.15),
we find that the first eigenvalue of

—01Aw+cvw = w in Q, w=0 on IN
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is greater that a. Hence the only non-negative solution of
—01Au+ cvu = u(a —bu) in Q, uw=0, on N

is the zero function. We have proved that if e is large enough and v is not the
trivial function, then v = 0. From Lemma 2.3, we see that the only way the
continuum of solutions S can join the bifurcation point (p1(—o2A — fu(0)),0)
on the (e,v) plane to co is by u(v) becoming equal to zero for e sufficiently
large. However, when u(v) = 0, then clearly v satisfies (2.6). If we consider
the bifurcation diagram on the e — (u,v) plane, the continuum of solutions
{(e,u(v),v) : (e,v) € ST} for (2.1) must join up with the continuum of solu-
tions {(e,0,v) : (e,v) is a solution of (2.6)}, Solutions of (2.6) are discussed in
Theorem 2.2(ii). From the above arguments, we obtain the following theorem.

Theorem 2.3. (i) Suppose:

(2.16) a> o).

Then there exists \* > o9\1 = p1(—02A) such that if e satisfies: p1(—oaA —
fu(0)) < e < A, that is:

(2.17) pr(oc2A+e+ fu(0)) >0  and e <A\,

the boundary value problem (2.1) has a solution with each component strictly
positive in 2. Moreover, there exists A > X\ such that if e > 5\, then any non-
negative solution (u,v) of problem (2.1) with v # 0 must have u = 0. (Recall the
definition of p1 in (1.7).)

(ii) Suppose:

(218) a < oM.
Then any non-negative solution (u,v) of problem (2.1) must have u = 0.

In the following theorem, we let the parameter a varies, while all other
parameters are held fixed. We write the second equation in @.1) in th§ form of
(2.14). Analogous to Lemma 2.2, we define a map from C1(Q) to C1(€2) by:

0 if e < p1(—02A — fu),
(2.19)  w(u) =
unique solution of problem (2.14) if e > p1(—02A — fu).

We can show as in Lemma 2.2 that u — v(u) is a continuous function from
C1(Q) to C'(Q) and that u — v(u) is an increasing function.

Theorem 2.4. (i) Suppose:

e > o9\ and
(2.20)
p1(01A 4+ a—cv(0)) > 0,
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then the boundary value problem (2.1) has a solution with each component strictly
positive in ).

(ii) Suppose that e < o9X1. Then, provided that a is sufficiently large, the
problem (2.1) has a solution with each component strictly positive in €.

Proof. Let e > 091, then problem (2.1) has a solution (u,v) = (0,v(0)) with
v(0) non-trivial. We write the first equation of (2.1) as:

(221)  —o1Au+ cv(0)u = au — bu® — cfv(u) — v(0)]u in Q, uw=0 on 9N,

and bifurcate with the parameter a at a = p1(—01A + cv(0)) when (u,v) =
(0,v(0)). As in Lemma 2.3, we can show that there exists a continuum of
solutions ST of (2.21) contained in R X P, i.e. u > 0 whenever (a,u) € S*, and
that {a: (a,u) € ST} = (p1(—01A + cv(0)),00). If (a,u) € ST, then v > 0 and
so v(u) > v(0), i.e. v(u) is not the trivial function. Consequently, the continuum
of solutions {(a,u,v(u)) : (a,u) € ST} for the system (2.1) cannot connect with
the continuum of solutions {(a,u(0),0) : @ > o1 A;1}. This leads to the assertion
of part (i).
For part (ii), suppose that e < o1 A;. We have u(0) satisfies

—o1Au=au—bu? in Q, u=0 on AN.

Let A; and w; be the principal eigenvalue and the corresponding eigenfunction
with max{w;(z) : * € Q} = 1. Using a/b and b~ (a— o1 \)w; for a large enough
as upper and lower solutions respectively, we find that b= (a —o1\1)w; < u(0) <
ab—!. Comparing the least eigenvalue of

(2.22) —02Aw — fu(0)w =Aw in Q, w=0 on 0L,
with that of
—09Av — fb_l(a —o1A)wiv = Av in Q, v=0 on 01,

by means of Rayleigh’s quotient, we conclude that the first eigenvalue p1(—ooA—
fu(0)) of (2.22) tends to —oo as a — +o00. That is we have p;(—o2A — fu(0)) <
e < o9 for a sufficiently large. Thus by Theorem 2.3(i), we assert that problem
(2.1) has a solution which is positive in both components.

Part B: General Results via Degree Theory.

We next consider a prey-predator system with more general type of interac-
tion than quadratic (or Lotka-Volterra type). Moreover, we will obtain some-
what sharper results, and find necessary and sufficient conditions for the exis-
tence of positive solutions. We shall use degree theory method of cone index to
prove that the conditions in parts (ii) and (iii) of the following Theorem 2.5 is
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sufficient for the existence of positive solution. More precisely, for a constant
d > 0, we will consider the boundary value problem:

Au+ uM(u,v) =0
in €,
(2.23) A + v(h(u) — m(v)) = 0

u:’l):O OnaQ,

where M (u,v) and its first partial derivatives are continuous in the first closed
quadrant. Moreover, it satisfies

(2.24) M, (u,v) <0 for u,v > 0; M,(u,0) <0 for u >0,

(2.25)
M(0,0) > 0; there exists a constant Cy > 0 such that M (u,0) < 0 for u > Cj.

The functions h and m belong to C(]0, 00)),

2.2
(2.26) with each function strictly increasing in [0, 00).

A solution (u,v) of problem (2.23) is called a positive solution if both com-
ponents are > 0 and Z 0 on 2. A common assumption in ecological studies is to
set the rate M (u,v) = al_l(a—bu— ) where o1, a,b, ¢, k are positive constants
or other rates involving ratios of u and v. Such type of growth rate is called
Holling’s type. From the smoothness of M, h and m, the positive solutions of

(2.23) are classical solutions with components in C?(Q), if they exist.

Theorem 2.5. Assume hypotheses (2.24) to (2.26) and there exists a positive
number By such that

(2.27) m(Bo) > h(Co).

Then all positive solutions (u,v) of (2.23) must satisfy 0 < u < Cp,0 < v < By.
Moreover:

(i) Suppose M(0,0) < A1, and h(0) < A\id + m(0), then (0,0) is the only non-
negative solution of (2.23).

(ii) Suppose h(0) < A1d+m(0), then problem (2.23) has a positive solution (u,v)
iff:

(2.28) M(0,0) > Ai; and py(dA + (h(ug) — m(0))) > 0.

(i5i) If h(0) > A\yd+m(0), and M(0,v) > M (u,v) for u,v > 0. Then (2.23) has
a positive solution (u,v) iff

(2.29) M(0,0) > A1; and p1(A+ M(0,v9)) > 0.
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(Note that the assumption on h(0) in case (iii) already implies that the second
inequality in (2.28) is true.) Furthermore, from the boundedness of the posi-
tive solution of (2.23), we have each component of the positive solution strictly
positive in ), by Lemma 1.1.

Remark 2.2. In (ii) above, the function ug is the unique positive solution
of Au+ uM(u,0) = 0 in 2, u = 0 on 9Q. Such solution exists provided
M(0,0) > A1, by Lemma 2.1. In (iii) above, the function vy is the unique
positive solution of dAv + v(h(0) —m(v)) =0in Q, v = 0 on 9. Such solution
exists provided h(0) > A1d + m(0), by Lemma 2.1.

Example 2.1. In the usual Volterra-Lotka model, we let
(2.30) M(u,v) = oy (@ —bu— ), d =02, h(u) = e+ fu, m(v) = gu,

where 01,09,a,b,c, f,g are positive constants and e is any constant, then The-
orem 2.5 readily leads to the following corollary.

Corollary 2.6. Consider problem (2.23) with M (u,v),d, h(u), m(v) as given in
(2.50).

(i) If a < 011, e < \oa, then (0,0) is the only non-negative solution of (2.23).
(ii) If e < oaA1, then problem (2,23) has a positive solution iff

(2.31) a> o1\ and ﬁl(O'QA +e+ fU()) > 0.

(iii) If e > o9y, then (2.28) has a positive solution iff
(2.32) 01 (0‘1A +a— CU()) > 0.

(Note that part (ii) is closely related to Theorem 2.4(ii). When a is sufficiently
large, the second inequality in (2.31) will be satisfied. Note also part (iii) above
is closely related to Theorem 2.4(i) and Theorem 2.3(i); when e is large enough,
(2.32) cannot hold.)

The following lemma is very useful for proving Theorem 2.5.

Lemma 2.4. Assume a(z) € L*>(R). Let u be an arbitrary function satisfying
u > 0,%Z 0 in Q with u =0 on .

(i) If 0 £ (A + a(z))u > 0 in Q, then p1(A+a(z)) > 0.

(11) If 0 £ (A + a(x))u < 0 in Q, then p1(A +a(z)) <0

(1ii) If (A + a(z))u =0 in Q, then p1(A + a(z)) = 0.

Proof. (i) Let (x) > 0 in  be an eigenfunction corresponding to the principal
eigenvalue p = p1(A + a(z)). Then 0 < [(A + a(x))uf dz = p [, ud dz, hence
we must have p > 0.

(ii) We simply reverse the sign in the argument in part (i) involving the integral.
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(iif) We have 0 = p [y uf dz with u > 0,u # 0, 0 > 0 in Q. This implies that
p= (A +a(x) =

Proof (of Part (i) and necessity part of (ii), (iii) of Theorem 2.5 for the
existence of positive solution). We first prove the existence of an a-priori
bound for all non-negative solutions of (2.23). For any given v > 0 in €, we
have by (2.24) and (2.25) a family of upper solutions w = C in 2, C > Cj for
the first equation in (2.23), i.e.

Aw 4+ wM(w,v) < 0in Q, w >0 on .

By the sweeping principle,any positive solution of problem (2.23) must have
0 < u < Cy. Let (a,0) be a positive solution of (2.23). Suppose xg €
such that v(zg) = max,cq0(x) > 0. Then from the second equation in (2.23),
0(xo)[h(a(zp)) — m(0(x0))] = —dA(zp) > 0 at the interior maximum point.
Thus we must have

(2.33) m(o(zo)) < h(u(zo)) < h(Co).

By the increasing property of the function m, we must have (z¢) < By.

We now prove the necessity assertion for part (i) and (iii) of Theorem 2.5.
Suppose h(0) < A\yd+m(0), and (@, 0) is a positive solution of (2.23). Since v > 0
in Q, and dA? + 9(h(a) —m(?)) = 01in ©, 0 = 0 on 0f2, we can obtain by max-
imum principle that © cannot have a nonpositive minimum in 2. Consequently,
we must have © > 0 in  (cf. Lemma 1.1). Next, consider the scalar problem:
Aw~+wM(w,0) =0in Q, w = 0 on IN. The constant function Cy+ € is a upper
solution. On the other hand, the fact that Aa+aM (@,0) > Aa+aM (4, v) = 0in
), implies the function u is a lower solution. We conclude that @ < ug < Cy+e.
By Lemma 1.1, we have ug > 0 in Q, and Lemma 2.1(i) implies M (0,0) > 0.
The fact that ug > @ implies that

AAD + B(h(ug) — m(0)) > dAD + 5(h(@) — m()) = 0

in Q. By Lemma 2.4(i), the above inequalities implies the second inequality in
(2.28).

Next, suppose h(0) > Aid + m(0). Consider the scalar problem: dAw +
w(h(0) — m(w)) =0 in Q, w = 0 on IQ). We can verify readily as above that
v and dw are respectively upper and lower solutions, where § > 0 is sufficiently
small and moreover o > dw in 2. (Recall the definition of w in (1.5).) The
uniqueness of positive solution of this scalar problem leads to dw < vy < ¥ in 2.
Consequently, we have Aa+uaM (0,vg) > Au+aM (a,vy) > Au+uM (ua,v) = 0.
By Lemma 2.4(i) again, we conclude that the second inequality of (2.29) is valid.

Before we begin to prove the sufficiency part of Theorem 2.5, we need to
introduce some concepts in cone index method. Roughly speaking, we will apply
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the theory to compact operators on the cone of positive vector functions. Let E
be a Banach space, W C FE is called a wedge in F if W is a closed convex set and
aW C W for every real a > 0. A wedge is called a cone if W N {-W} = {0}.
For y € W, define

Wy={xeFE:y+0xecW,for0<60 <+, for some v > 0}.

One readily verifies that W), is convex, and W, 2 {y} U {—y} U{W}. Moreover,
the set W,,(the closure of W y), is also a Wedge Let Sy ={z e W, : —z € W, };
we easily see that Sy is a linear subspace of E.

A nonempty subset A of a metric space X is called a retract of X if there
exists a continuous map 7 : X — A (called a retraction), such that r|A = id4.
By a theorem of Dugundji [53], [54], every nonempty closed convex subset of a
Banach space E is a retract of E. Let X be a retract of a Banach space E. For
every open subset U of X and every compact map f : U — X which has no
fixed points on QU, there exists an integer ix(f,U) defined by

ix(f,U) =ig(for,r Y (U)) =deg(id — f or,r—1(U),0),

where ig(for,r~1(U)) is the well-known Leray-Schauder degree. This definition
is independent of the choice of the retraction. The integer ix (f,U) is called the
fixed point index of f (over U with respect to X). This index satisfies the
normalization, additivity, homotopic invariance and permanence properties as
the Leray-Schauder degree (cf. Theorem A2-1 in Chapter 6). If 2o € U is an
isolated fixed point of f, and zg is the only fixed point of f in xzg + pB,p > 0,
where B is the open unit ball of E. We define the fixed point index by

indexx (f,zo) :=ix(f,xo+ pB).

Definition 2.1. Let L : E — E be a compact linear operator such that L(W,) C
W,. L is said to have property (o)) on W, if the following holds:

(o) There ezists t € (0,1) and a w € Wy\S, such that w — tLw € S,,.

Remark 2.3. If ] — L is invertible in Wy, an important consequence of property
(o) on Wy, is given below in Lemma 2.5, asserting that there exists z € W), such
that the equation x — Lz = z has no solution for x in W Under appropriate
circumstances, this in turn leads to indexy (A, yo) = 0, by Lemma 2.6(i), where
L is the Fréchet derivative of A at yg in W.

Lemma 2.5. Let L : E — E be a compact linear operator such that L(W,) C
W,. Assume I — L is invertible in Wy, (in the sense that h # Lh if h € W,\{0} ).
IfL has property («) on Wy, then there erists z € W such that the equation
x — Lx = z has no solution for x in W
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Proof. Since L has property (), there exists v € W,\S, and ¢ € (0,1) such
that v —tLv = h € S. Thus —v ¢ Wy, —h € S, and —v — L(—v) = —v + Lv =
—v+tLv+(1—t)Lv = —h+(1—t)Lv € W,,. Let z :== —h+(1—t)Lv = —(v—Lwv).
If there exists g € Wy such that ¢ — Lg = z. Then we have v+ q¢ — L(v + q) =
v—ILv+4+q—Lg=—2+2=0. This impliesv+¢g =0, and —v =q € Wy. Thus
we have v € Sy, which is a contradiction.

Lemma 2.6. Let W be a wedge in Banach space E, By := W — W is dense in

E, and D is an open set in W. Suppose that A : D — W is a compact map with

fized point yy = Ay € D, and the Fréchet derivative of A at yo in W, denoted

by L= A (yo), is compact on E. Then L maps Wy, into itself. Moreover:

(i) Assume that I — L is invertible in I/Vy0 (in the sense that h # Lh if h €
Wy, \{0}). If there exists an element =z € Wy, such that the equation v — Lz = z

has no solution for x in Wy, then indexw (A,yo) = 0.

(ii) Assume I — L is invertible in W,. If L does not have property (o)) on Wy,

then indexw (A,yo) = indexs, (L,0) = (—1)°Wo) = +1. Here, o(yg) is the sum

of multiplicities of the eigenvalues of L in Sy, which are greater than one.

Proof. The proof can be found in Dancer [37] and Li [148]. More explanations
are found in Remark 2.1(i) and (ii) in Ruan and Feng [194]. Remark 2.1(ii) in
[194] is same as Theorem A2-3 in Chapter 6 (Appendices).

From Lemmas 2.5 and 2.6, we obtain the following lemma.

Lemma 2.7. Under the hypotheses of Lemma 2.6, let I — L be invertible on
Wy, as described in Lemma 2.6.

(i) If L has property (o) on Wy, then indexw (A, yo) = 0.

(ii) If L does not have property (o) on Wy, , then indexw (A, yo) = indexs, (L,0)
= =+£1.

We are now ready to prove the sufficiency part (ii) and (iii) of Theorem
2.5. Let [Co(Q)]? := {(u1,u2) : u; € C(Q), and u; = 0 on 9Q, fori = 1,2}.
Let [C(Q)]? = {(u1,u2) : vy € Co(Q),u; > 0in Q, fori = 1,2}, By =
max.{Cy, B}, and [E(B1)]? := {(u1,u2) : u; € C(Q), |us| < By in Q, fori=
1,2}, with closure [E(Bl)]Q. For each (up,uz) € [C(Q)]%,60 € [0,1], define the
operator Ay : [Co(Q)]? N[E(B1)]? — [Co(Q)]? by Ag(u1,us) = (v1,v2) where

(2.34) {1)1 = (—A+ P)"Ouy M (uy, us) + Puy]

vy = (—A + P)7H0d tug(h(u1) — m(ug)) + Pus).

Here, the inverse operator is taken with homogeneous Dirichlet boundary con-
dition on 0f2, and P > 0 is a large enough constant such that the operator
Ay is positive, compact and Fréchet differentiable on [Cy(Q)]?> N [E(By)]?. For
convenience, let K denotes the cone K := [Cy (Q)]%, as described above, and
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D = [C§(2))2 N [E(B1)]?. The bound on the solution implies that the oper-
ators Ay has no fixed point on the boundary 9D in the relative topology, i.e.
on the intersection of boundary of [E(B1)]? with K. We can further use a fa-
miliar cut-off procedure (see Li [148]) to extend Ay to be defined outside D as
a compact positive mapping from the cone K into itself. For convenience, we
will denote A := A;. We will denote the fixed point index of Ay over D with
respect to the cone K by ix(Ag, D). By homotopy invariance principle, we ob-
tain ig (A, D) = ix (A1, D) = ig (Ao, D). From definition, the i-th component
of Ag(u1,u2) is (—=A + P)~Y(Pu;). One readily verifies by maximum principle
that Ag(u) # Au for every u = (uj,uz) € 9D and A > 1. Hence, by Theo-
rem A2-4 in Chapter 6 (Appendices), we conclude by contraction argument that
ik(A, D) =1ix(Ap, D) =1.

Let y be an isolated fixed point of the map Ay in K, we denote the lo-
cal index of Ay at y with respect to K by indexy(Ag,y).We now show that
index (A, (0,0)) = 0 for both cases (ii) and (iii). For y € K, define

K, ={pelC(Q)?:y+spe K for some s> 0}, and
Sy={peK,:—pe K}

Here K, denotes the closure of K,. We have Ko = K, S0 = {(0,0)}. Let
A’ ((0,0)) be the Fréchet derivative of A at (0,0) in K. The first component of
A’ ((0,0))(u1,uz) is (—A + P)~1(M(0,0) + P)us. Hence [I — AL ((0,0)]u =0
for u = (u1,us) € K implies that [A + M(0,0)]u; = 0, u; € CF (). Thus the
assumption M (0,0) > A; in (2.28) or (2.29) implies that u; = 0. Similarly, we
have for the second component [d1 A + h(0) — m(0)Jug = 0, uz € Cgf (). Thus
the assumption h(0) # A\id + m(0) in (2.28) or (2.29) implies that uy = 0. We
thus conclude I — A’ ((0,0)) is invertible in K. Further, the assumption
M (0,0) > A\ implies that p;(A + ¢tM(0,0) + (t — 1)P) is positive when ¢ = 1
and negative when ¢ = 0. From the continuity in ¢ € [0, 1] for the eigenvalue
p1(A+tM(0,0) + (t — 1)P), there must exist some ¢ € (0,1) and a nontrivial
function 4 € C () such that (—A + P)u = t(M(0,0) + P)a or @ — t(—A +
P)~Y(M(0,0) + P)i = 0 in Q. We thus have [I — tA4’, ((0,0))](@,0) = (0,0) €
S(0,0), with (@,0) € K(90)\S(0,0)- We thus conclude by Lemma 2.7(i), with W,
replaced by K(q ), that indexk (4, (0,0)) = 0.

We will show that for both cases (ii) and (iii), we have index (A, (up,0)) =
index i (A, (0,v9)) = 0.

Consider case (ii) when h(0) < Ad + m(0), and assume (2.28). Let
L = A’ ((u0,0)) be the Fréchet derivative of A at (ug,0) in K. Suppose that
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(I — L)(u1,uz) = 0, for some u; > 0,uz > 0in Q, and u; = ug = 0 on JQ. Then

Auq + [M(U(), 0) + quu(uo, 0)]U1 + UOMU(U(), O)UQ =0
in €,
(2.35) ¢ dAug + [h(ug) — m(0)]ug =0

U1:U2:0 on 0f).

Thus the second assumption in (2.28) and the second equation above imply
that ug = 0. We then consider the first equation above again. Since pi(A +
M (up,0)) = 0, and uoMy(up,0) < 0 by (2.24), we have p1(A + M (up,0) +
uoMy (up,0)) < 0. Hence, all the eigenvalues p of the problem:

Au + [M(ug, 0) + ug My (ug, 0)]u = pu in 2, v =0 on 09,

satisfy p < 0. However, uy satisfies this problem with p = 0. Thus u; = 0. That
is the operator (I — L) is invertible on K, o).

We next show that the operator L has property («) on K (uo,0)- Let P > 0;
observe that the eigenvalue p1(dA —dP +t[h(ug) —m(0) +dP]) is negative when
t = 0, and is positive when t = 1. By continuity, there exists some ¢t* € (0, 1),
such that pq(dA — dP — t*[h(ug) — m(0) + dP]) = 0. There exists uj > 0 in €,
vanishing on 02 such that (—dA + dP)ub — t*[h(ug) — m(0) + dPJul = 0 in Q.
Since S(y,0) = Co(Q2) x {0}, we can readily verify that if we let w = (0,u3), then
we have w — t*Lw € S(y,,0) With w € Ky, 0)\S(u0,0)- Consequently, by Lemma
2.7(i), with Wy, replaced by K, ), we conclude that indexk (A, (ug,0)) = 0.

Next, consider the case (iii) when h(0) > Aid + m(0), and assume (2.29).
Let L = A’ ((u0,0)) and (u1,u2) be as described above for case (ii), and thus
obtain (2.35) again. The assumption ~(0) > A;d+m(0) and increasing property
of the function A imply the validity of the second assumption in (2.28). Thus
we obtain up = 0 as before. We then follow the same argument as before to
conclude that I — L is invertible in K, (u0,0)- We then prove the operator L has
property (a) on K, o) exactly as in case (ii) above. Thus we conclude that
index (A, (up,0)) = 0.

We now consider the point (0,vg). For case (ii), that is, h(0) < A1d + m(0),
we must have vg = 0. Thus (0,v9) = (0,0), and the index of A at this fixed
point has been shown to be 0.

For case (iii) when 2(0) > Aid + m(0), let L = A’_((0,v0)) be the Fréchet
derivative of A at (0, vg).Suppose that (I — L)(u1,us) = 0, for some u; > 0,ug >
0in €, and u; = us = 0 on OQ. Then

Auy + M(O, Uo)ul =0
in Q,
dAuy + voh/ (0)uq + [h(0) — vom/(vg) — m(vg)]ug =0

Ul :U2:0 on 0f).
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The second assumption in (2.29) implies that p(A + M(0,v9)) # 0; thus we
conclude from the first equation above that u; = 0. Since pj(dA + h(0) —
m(vp)) = 0 and m/(vp) > 0 is not the trivial function, we have p1(dA + h(0) —
vom/(vg) — m(vg)) < 0. We thus deduce from the second equation above that
ug = 0. We thus conclude that the operator I — L is invertible in K (0,00)-

From the second assumption in (2.29), we deduce that for P > 0, the eigen-
value p1(A — P + t[M(0,v9) + P]) is negative if ¢ = 0 and is positive if ¢ = 1.
Hence, there exist t* € (0,1) and a non-trivial, non-negative function uj vanish-
ing on 92, such that

—Auj + Puj — t"(M(0,v) + P)ui = 0 in Q.

Since S(g,u) = {0} x Co(Q), we can readily verify that if we let w = (u?,0), then
we have & — t*Lw € S(0,00) With w € I_((O’UO)\S(O,UO). Consequently, by Lemma
2.7(i), we conclude that indexy (A, (0,v9)) = 0.

From the above paragraphs, we thus have

ik(A, D) =1, indexk (A, (0,0)) = indexk (A, (ug,0)) = indexx (A, (0,v9)) = 0.

If one component of a solution of (2.23) in K is identically zero, there are at most
three solutions (0, 0), (up,0) and (0,vp) in K. In order to avoid contradicting the
additive property of the indices of the map on disjoint open subsets, there must
be at least another fixed point of A in D. (See Theorem A2-1(ii) in Chapter 6.)
This complete the proof of Theorem 2.5(ii) and (iii).

In some interesting applications, the predator v may have no crowding effect
on its own growth rates. This lead to the following theorem.

Theorem 2.7. Let N = 1,2 or 3. Assume hypotheses (2.24) to (2.26) except
that here m = 0. Moreover

h(0) < 0; and there existsd > 0, such that M,(u,v) < —6 for 0 < u < Cy,v > 0.

Then all positive solutions (u,v) of (2.23) must satisfy 0 < u < B1,0 < v < B,
for some positive constants By, Ba. Moreover

(i) If M(0,0) < A1, then (0,0) is the only non-negative solution of (2.23).
(ii) Problem (2.23) has a positive solution iff

(2.36) M(0,0) > A1; and p1(dA + h(ug)) > 0.

Proof. We first prove the existence of an a-priori bound for all non-negative
solutions of (2.23). For any given v > 0 in 2, we have by (2.24) and (2.25) a
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family of upper solutions w = C in Q, C > Cj for the first equation in (2.23),
ie.
Aw 4+ wM(w,v) < 0in Q, w >0 on ON.

By the sweeping principle, any positive solution of problem (2.23) must have
0 < u < (Cy. Suppose there is no a-priori bound for v. Then there exists a
sequence of positive solutions (u,,v,) for (2.23) satisfying:

llvn||Lee — 00, asn — o0, 0 < u, <Cpin Q.
Let vy, = vy, /||vn||Lee; it satisfies 0 < v, < 1 and:
(2.37) dAvy, + h(0)v, = —[h(un) — h(0)]D, in Q.

By W?2P(Q) estimates and appropriate embedding, we can find subsequence,
again denoted as {#,} such that v, — vy € C*() uniformly for some a €
(0,1), and wvo(z) > 0,% 0 in Q.

Next, let @, = up/||un||r2z > 0 in Q. Divide the first equation satisfied by
(tp, vy ), multiply by ,, and integrate over (2, we obtain:
(2.38)

_M(0,0) < / (Vi [2d — / M(0,0)i2 d = / (M (1, v) — M0, 0)]i2 dz < 0.
Q Q Q

The last inequality above is due to assumption (2.24) on M,, M,,. From (2.38),
we obtain a uniform bound on the W12(Q) norm on 4,. We can select subse-
quence, denoted the same way, such that i, converge weakly in W12(Q) and
strongly in L(Q), ¢ < 2N(N —2)~! to a non-negative function iy € W12(Q), if
N > 2 (by Rellich-Kondrachov Compactness Theorem, see e.g. p. 272 in Evans
[57]). If the space dimension N = 3, the inequality ¢ < 2N (N —2)~! is satisfied
if we choose ¢ = N = 3. If the space dimension N = 2, using pN(N —p)~! — oo
as p — N, we can also assume 1,, converge to g in L9(2),q = 2. We also have
l|To|| 12 = limp—ool|tn||z2 = 1, and we may assume ||uy||;2 — k > 0, as n — oo.
Taking limit in (2.37), and using W24 theory, we find 7y € W02’q = W02’N is a
strong solution of

(2.39) dATo + h(0)To = —[h(kito) — h(0)]To

for N = 3 or 2. Moreover the increasing property of h(u) and equation (2.37)
implies that

(2.40) dAvy + h(O)l_lo <0 in Q.

Since h(0) < 0, we obtain by maximum principle for the strong solution that
vo(x) > 0 for all x € Q. (See e.g. Gilbarg and Trudinger [71] or Theorem A3-1
in Chapter 6.) For the case N = 1, the convergence on the right of (2.37) to
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(2.39) is valid in C97(Q),y =1 — %, by Morrey’s inequality (see e.g. p. 266 in
[57]). Thus the solution 7y of (2.39) is in C?(£2) by Schauder’s theory. Therefore
we can also conclude that tp(z) > 0 for all z € Q by means of (2.40).

Consider the integral on the right side of (2.38). We use (2.24) and the
assumption concerning M, in the statement of Theorem 2.7 to obtain

Jo M (tn, vy) — M(0,0)]a2 dz < [, —Ovnt2 da
(2.41)
= —0||vn|| Lo [, Unt2 da.

However, we have
(2.42) / VptiZ dx — / Totid dz >0, as n — oo.
Q Q

Taking limit as n — oo in (2.38) and using (2.41) and (2.42), we obtain the
contradiction —M (0,0) < —oo if ||v,||pe — 00. Consequently, we must have an
a-priori bound for all positive solutions of problem (2.23).

Parts (i) and (ii) of this Theorem follow readily from parts (i) and (ii) of
Theorem 2.5 respectively, with the role of Cy and By respectively replaced by
By and Bs.

Example 2.2. Let M(u,v) = o7 *(a — bu — cv), d = o9, h(u) = u —y.m = 0,
where 01,09, a,b, ¢,y are positive constants. Note that h(0) = —y < 0. Thisis a
very common model, when the predator has negative intrinsic growth rate, and
there is no crowding effect of the population of predator on itself. Here, we can
apply Theorem 2.7. The conditions in (2.36) becomes

(2.43) a>o1A1; and  pp(02A + ug —y) > 0.

Example 2.3. We can also apply Theorem 2.7 to models not of Volterra-Lotka
type reaction. The popular Holling’s type of growth rate assumption may be
assumed. Let M (u,v) = oy *(a — bu — 57 ), d =02, h(u) = kug —v, m =0,
where 01,09,a,b,¢,d, k,v,d are positive constants.

Part C: Coexistence Regions in Parameter Space.

We now return to the diffusive Volterra-Lotka model, and describe a region
on the (a, e) intrinsic growth rate parameter plane when positive solutions always
exist while the other parameters are fixed. This leads to Theorem 2.8, Fig. 1.2.1
and Fig. 1.2.2. More precisely, consider problem (2.1) with o3 = 09 = 1 for
simplicity. Let the parameters b, ¢, f and g be fixed positive constants. We can
readily use Theorem 2.5(i) and (ii) to obtain a region in the (a, e) plane between
certain lines or curves so that positive solutions will always exist. Here, we have
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(2.23) with 01 = 09 = d = 1. The conditions h(0) < A\yd + m(0) and (2.28) in
Theorem 2.5(ii) are the same as

(2.44) AL > e > pi(—A — fug), a> p1(—A+ cvy), vy = 0.

The conditions h(0) > A\d + m(0) and (2.29) in Theorem 2.5(iii) are the same
as

(245) e> A = pl(—A) > pl(—A — qu), a > pl(—A + Cvo).
Consequently, if 01 =09 =1, a # A1, e # Ay, and
(2.46) a> p1(—A+cvg), e> p1(—A — fug),

then Theorem 2.5(ii) and (ili) imply that problem (2.1) has a solution with
each component strictly positive in . We next use (2.44) to (2.46) and the
characterization of principal eigenvalue to obtain very simple description, in
terms of the interaction parameters and the size of 2, of a region on the (a,e)
plane where positive solutions always exist. By avoiding the reference to ug and
v, the description is easier to use.

Theorem 2.8. Consider the boundary value problem (2.1), under the assump-
tions o1 =00 =1, a # A\, e # Ay,
(i) Suppose ¢ > g and

C

(2.47) a> M+ (e — Al)g .

e>/\1—(a—)\1)

SR

Then (2.1) has a solution with each component strictly positive in €.
(ii) Suppose ¢ < g and

e> A, a>min{)\1—|—%,e[l—(l—g)(l—%)?’f(]}; or
(2.48)
/\1>e>)\1—(a—)\1)%, CL>A1,

where K = |Q| 7! Jo p3dx,|Q| = measureof Q and ¢ is the positive principal

eigenfunction of —A with mazqe = 1. Then problem (2.1) has a positive solu-
tion with each component strictly positive in §Q.

Proof. (i) Suppose ¢ > g. First, assume e > A;. We now show that in this case
c

(249) /\1 + (6 — )\1)5 > pl(—A + CU()).

By the characterization of principal eigenvalue, we have

p1(—A+cvg) = infues{/ \Vul*dx + cvou’da},
Q
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where S := {u € H} (), Jo u?dr = 1}. Consequently,

(2.50) p1(—A + cvg) < ||U0||ZQ2(Q){/Q |Vol?de + c/ﬂv%daz}.

From the equation satisfied by vy, we have

(2.51) g/ vg’dx:e/ v%dm—/ Vg |*da.
Q Q Q

From (2.50) and (2.51), we obtain

_ c c
(2.52) p1(—A + cvg) < ||v0||L22(Q){(1 - —)/ |Vg|?dx + e / vadz}.
g Ja gJa
Since 1 — £ < 0, we obtain (2.49) as follows:

( A+cvo) (1—5))\14-6;—)\14-(6—)\1)9

Thus by (2.45) and (2.49), we find that strictly positive solutions must exist for
(a, e) satisfying:
(2.53) e> A and a > A\ + (e — )\1)2.

g

Next, let e < A;. We obtain from Theorem 2.5(ii) above that (2.44) is suf-
ficient for existence of positive solutions. By the characterization of principal
eigenvalue, we find

(2.54)
p1(—A = fug) = infues{(l + ) Jo [VulPde — 4 fQ |Vul2dz + b [ ugu®da]}

<infues{(1 + fQ |Vul?dz} — mfues{fg |Vul|?dz + be upu’dr}
= (14+ A = §o1(=A + buo)
(1+ )Al—ga—)\l——(a—)\l)

Thus by (2.44) and (2.54), if e < A1, we find that strictly positive solutions
must exist for (a,e) satisfying

(255) A >e>)\1—£(a—)\1), a> M.

The assertion of part (i) follows from (2.53) and (2.55). (See Fig. 1.2.1.)



1.2. DIFFUSIVE PREY-PREDATOR SYSTEMS 23

\
A] \_
\_
\
\

f
=1, ~(a-A)-
b

Figure 1.2.1: Coexistence Region in (a,e) Parameter Space, for case ¢ > g.

We next consider part (ii) and assume ¢ < g. Suppose e > A1, then Theorem
2.5(iii) asserts that if a satisfies (2.45) then problem (2.1) has positive solutions.
It suffices to show that

(2.56) =4+ cun) < min{+ <5, el = (1= £)(1- M3y,

g e

By the characterization of the principal eigenvalue and the fact that vy < e/g
we find

p1(—A+ cvg) = infues{ [q |Vul*dz + [, cvou’da}
(2.57) < infues{ [q | Vul*dz + < [quida}

_ ec
—)\1—|—g.
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Next, observe that (2.52) remains valid in the present case ¢ < g, i.e. 1—cg™! >
0. Thus using (2.51) and (2.52) we obtain

ec

vgdx)(/ﬂ vada) "+ —.

(2.58) p1(—A+ cvg) < [1— g][e - (g/ ;

Q

Using the fact that g=!(e — A\1)¢ is a lower solution for the problem satisfied by
Vg, we have

e— A3 3 3
(2.59) (=) /Q Sz < /Q WBda.

1

From vy < eg™", we also have

(2.60) /Qvg dx < (E)Q\m.

Letting K = [~ [, ¢*dz, we deduce readily from (2.58) to (2.60) that

p1(=A+cvo) < [1—£]fe— (e~ A)3e 2K + "
(2.61)
=ell - (1- 51— 2)°K].
Thus, from (2.57) and (2.61), we conclude that if (a,e) satisfy the first line of
the inequalities in (2.48), there must exist positive solutions to problem (2.1).
Next, assume e < A1, we obtain the inequalities in the second line of (2.48)
as sufficient condition for the existence for positive solution of (2.1) in exactly
the same way as obtaining the second inequality of (2.47) as sufficient condition

in part (i).
Remark 2.4. If we define

~ C )\]_ 3
—el—(1-5)1-2LyK
ae) = el — (1= )1 = 2],
where K is defined in Theorem 2.8. It can be shown by calculus that
(1) The graph of (a(e),e) and (A1 + (e — A1)¢, e) do not intersect when e > Ay.
(2) The graphs of (a(e),e) and (A1 + <, €) intersect at one point (ao($), eo($)),
when e > A1, and

c c
lim ag(—) =00, lim ey(—) = oc;
c¢/g—1 (g) c/g—1 (g)

C C
li )=, i -) = A1
e ®0lg) T A im0l = A

(3) limg/g—1[a(e) — (A + (e = A1)¢)] = 0 uniformly on compact subsets of e €
[)\1, OO)
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Figure 1.2.2: Coexistence Region in (a,e) Parameter Space, for case ¢ < g.

The situation is illustrated in Fig 1.2.2 above. The details can be found in
J. Lépez-Gémez and R. Pardo San Gil [162].

Notes.

Theorem 2.1 was first proved in Leung [123], and Theorem 2.2 to Theorem
2.4 are due to Blat and Brown [11]. Theorem 2.5 and Corollary 2.6 are found in
Li [148]. Lemmas 2.5 to 2.7 concerning indices of fixed point are obtained from
Dancer [37] and Li [148]. Theorem 2.7 is a modification of a theorem in [148].
Theorem 2.8 is obtained from Lépez-Gémez and Pardo San Gil [162]. More
recent extension of the theory in this section for the case of ratio-dependent
interaction rates can be found in Ryu and Ahn [197].



26 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

1.3 Strictly Positive Coexistence for Diffusive Com-
peting Systems

In this section we study problem (1.1) when the functions f;(u,v) and fo(u,v)
simulate competition between the two species populations u(x) and v(z) in a
bounded domain 2, with conditions as described in Section 1.1. More precisely,
we first assume:

£i(0,0) =0, i =1,2,

(3.1) 9L 9l <0, foru>0,0>0, i=1,2, and

a; > o\, 1 =1,2.

Part A: General Results.

The following theorem can be readily obtained by the method of upper and
lower solution for a system of semilinear elliptic equations.

Theorem 3.1. Assume that f;, i = 1,2, are in C([0,00) x [0,00)) and hy-
potheses (3.1) are valid. Suppose there exist positive constants ki, ks such that
the following inequalities:

ar — o1 + f1(0,k2) > 0,
az + f2(0,k2) < 0,
ag — 021 + fa(k1,0) >0,
a1 + f1(k1,0) <0

(3.2)

are satisfied. Then problem (1.1) has a positive solution (u(x),v(z)) with u(x) >
0,0(z) > 0 in €.

Proof. Let w(x) be the positive principal eigenfunction in € for the eigen-
value problem Au 4+ Au = 0 in ©Q, v = 0 on 9€2. For r; > 0 small enough, we
have o1 A(rw) + mwlar + fi(rw,v)] = rMwlar — o1\ + fi(riw,v)] > 0, and
o1Aky + kilar + fi(k1,v)] < 0 for 0 < v < ko. Also, for 2 > 0 small enough,
we have o9A(rew) + rowlas + fa(u,rew)] = rewlas — oo\ + fo(u,rew)] > 0,
and o9Aky + kaolag + fa(u,k2)] < 0 for 0 < u < k;. The pair of functions
(riw(x), k1), (rew(x),ke) form a coupled upper-lower solution for the system
(1.1). Thus by e.g. Theorem 1.4-2 in Leung [125], there exists a solution
(a(x),v(x)) to (1.1) with mw(x) < a(x) < ki, rew(z) < 9(x) < ko in Q.
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The above theorem applies immediately to the following Volterra-Lotka com-
petition system.

o1Au+u(a —bu —cv) =0

in Q,
(3.3) o2Av +v(e — fu—gv) =0
u=v=0 on 0f2,

where 01,09,a,b,c,e, f and g are positive constants.
Corollary 3.2. Suppose that

e a
(3.4) a> oA\ +c—, and 6>0’2)\1+f3.

g

Then the boundary value problem (3.3) has a positive solution (u(z),v(x)) with
a(z) > 0,0(x) > 0 in Q.

Proof. Identify a, e respectively with a1, ag and let fi(u,v) = —bu—cv, fa(u,v) =
—fu — gv. Consider (3.3) as a special case of (1.1) under hypotheses (3.1) and
(3.2). Choose k; = 7 — e and ky = ¢ — ¢, for € > 0 sufficiently small, then we
can verify that (3.2) is satisfied. The results follows from Theorem 3.1.

Remark 3.1. If a > o1\, e > 021, then the inequalities in (3.4) are readily
satisfied when competition between the two species are relatively weak, in the
sense of small ¢ and f. The conditions in (3.4) are very easy to verify.

By using bifurcation method, we can follow the procedures as in Theorem
2.3(i) to obtain positive solutions as the growth rate of the second species e
varies.

Theorem 3.3. Suppose
(3.5) a> o).

Then there exist py, po, 3 satisfying oA\ < p1 < po < ps with the following
properties:

(i) If 1 < e < pa, then the boundary value problem (3.3) has at least one
solution with each component strictly positive in 2.

(ii) If e > us, then every non-negative solution of the boundary value problem
(3.3) has at least one component identically equal to zero.
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Proof. The proof is analogous to that of Theorem 2.3. Let (3.5) be satisfied.
For any v € C1(Q), define u(v) as in (2.9) and (2.10). Then, for all values e,
problem (3.3) has the solution (u,v) = (u(0),0). We consider the bifurcation of
solution as the parameter e varies in the problem:

(3.6) —09Av = ev — gv* — fu(v)v inQ, v =0 on ON.

Bifurcation occurs when e = p1(—o2A+ fu(0)). As in the proof of Theorem 2.3,
we can show that there exists a continuum ST of solutions (e,v) of (3.6) such
that v > 0 for all v € ST and S* intersects with the curve corresponding to
the zero solution only when e = p;(—02A + fu(0)). Multiplying (3.6) by v and
integrating by parts, we find e > p1(—02A) for all e such that (e,v) € ST. By
means of sweeping principle argument, we find v < e/ f for all v with (e,v) € ST.
Thus for all v such that (e,v) € ST, there exists a bound in C'(Q2) which is
dependent on e. Since ST connects (p1(—0o2A + fu(0)),0) with oo in CH(Q), it
follows that {e : (e,v) € ST} D (p1(—02A + fu(0)),00). (More details can be
found in Blat and Brown [11].)

As in Theorem 2.3, we can show that there exists a constant p3 > 0 such that
if e > g, then all solutions of (3.3) have at least one component identically equal
to zero. As in the proof of Theorem 2.3, we will need to obtain a lower bound
for v in terms of e. For this purpose, we need a slight change in the definition
of k(e) for analyzing (2.15). The eigenvalue \; and eigenfunction w; will be
respectively replaced with the least eigenvalue and principal eigenfunction of

—09A¢ + fu(0)p = AP in Q, ¢ =0 on .

The remaining part of the proof follows the argument in the last part for the
proof of Theorem 2.3(i).

One can obtain similar bifurcation results as above, when the growth rate
parameter a varies. For competitive system more general than Volterra-Lotka
type, we can obtain the following existence theorem by cone-index method. The
conditions are in terms of the signs of principal eigenvalues of appropriate related
scalar equations. The results are analogous to the sufficiency part of Theorem
2.5 in the last section.

Theorem 3.4. Assume that f;,i = 1,2, are in C1([0,00) x [0,00)). Consider
the boundary value problem (1.1), under assumptions:

(1) fi(0,0) =0, limy—ocof1(u,0) = —00, limy— oo f2(0,v) = —00,
(3.7)
(13) Of;/Ou < 0,0f;/0v <0 for u>0,v>0,i=1,2.
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Suppose that
(3.8) ay > p1(—014), as > p1(—0o2A),

and one of the following two situations hold:
(i) ﬁl(alA + a1+ fl(O,vo)) > 0, and ﬁl(UQA +as + fQ(UQ,O)) > 0;
(ii) ﬁl(alA + a1+ fl(O,vo)) <0, and ﬁl(UQA + ag + fQ(U(), 0)) <0;

Then the boundary value problem (1.1), has a positive solution with each com-
ponent strictly positive in 2.

Remark 3.2. In Theorem 3.4, ug is the unique positive solution of oqu +
ula; + f1(u,0)] = 0 in Q, u = 0 on 9; vy is the unique positive solution of
oov + vlag + f2(0,v)] =0 in Q, v =0 on 9.

Proof. Let Bj, By be positive numbers such that f(B1,0) = —ay, f2(0, Bg) =
—ag. Using assumption (ii) in (3.7), we can show by applying sweeping principle
to each scalar equation of (1.1) for a fixed positive function assigned to the other
component to conclude that all positive solutions of (1.1) satisfy 0 < u < B; and
0<v<Byin Q. Let [Cf () = {(u1,u2) : u; € C(Q),u; > 0in Q, and =
0 on dQ, fori = 1,2}, B = max.{B1, B2}, and [E(B)]? := {(u1,us) : u; €
C(Q), lui| < Bin Q, fori = 1,2}, with closure [E(B)]?. For each (uj,us) €
[C(Q)]%,0 € [0,1], define the operator Ay : [Co(Q)]? N [E(B)]? — [Co(2))? by
Ag(u1,u2) = (v1,v2) where

{ v = (—o1A + P)0ui (a1 + f1(u1, ug)) + Puy]
(3.9)

vy = (—a2A + P) Oug(as + fo(u1,us)) + Pus).

Here, the inverse operator is taken with homogeneous Dirichlet boundary con-
dition on 02, and P > 0 is a large enough constant such that the operator
Ay is positive, compact and Fréchet differentiable on [Cj (Q)]2 N [E(B)]?. Let
K be the cone K = [C;(Q)]? = {(u1,u2) : v € C(Q),u; > 0in Q, and =
0 on 0%, fori=1,2}, and D = [CF()]?> N [E(B)]?>. The bound on the solu-
tion implies that the operators Ay has no fixed point on the boundary 0D in the
relative topology, i.e. on the intersection of boundary of [E(B)]? with K. We
can further use a familiar cut-off procedure to extend Ay to be defined outside
D as a compact positive mapping from the cone K into itself. For convenience,
we will denote A := A;. We will denote the fixed point index of Ay over D with
respect to the cone K by ix(Ap, D). As in the proof of Theorem 2.5(ii), (iii),
we obtain i (A, D) = ix(Ap, D) = 1.
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Let y be an isolated fixed point of the map Ay in K, we denote the local
index of Ay at y with respect to K by indexri(Ag,y). We now show that
index (A, (0,0)) = 0 for each case (i) and (ii). For y € K, define

K, ={pelC(Q))?:y+spe K for some s> 0}, and

Sy={peK,:—pe K}

Here K, denotes the closure of K,. We have Koo = K, S = {(0,0)}. Let
A’ ((0,0)) be the Fréchet derivative of A at (0,0) in K. The first component
of A, ((0,0))(u1,u2) is (—o1A + P)~ (a1 + P)uy. Hence [I — A’ ((0,0))]u =0
for u = (u1,u2) € K implies that [01A + aj]u; = 0, u; € CSF(Q). Thus the
assumption a; > pi(—o1A) implies that u; = 0. Similarly, we have for the
second component [o2A + agjus = 0, ug € Car (). Thus the assumption as >
p1(—o2A) implies that up = 0. We thus conclude I — A/, ((0,0)) is invertible in
Wio,0)- Further, the assumption a; > p1(—01A) and the continuity in ¢ € [0, 1]
for the eigenvalue p;(01A+ta; + (t—1)P) imply that there exists some t € (0,1)
and a nontrivial function 4 € C; () such that (—o1A + P)u = t(a; + P)a or
@ —t(—01A+ P) (a1 + P)u = 0 in Q. We thus have [I —tA4, ((0,0))](a,0) =
(0,0) € S(,0), with (@,0) € K(90)\S(0,0)- We thus conclude by Lemma 2.7(i)
that index g (A, (0,0)) = 0.
We next show that for case (i), we have

index i (A, (uo,0)) = indexk (A, (0,v9)) = 0.

Let L = A, ((uo,0)) be the Fréchet derivative of A at (ug,0). Suppose that
(I — L)(uy,uz) = 0, for some u; > 0,uz > 0in Q, and u; = ug = 0 on 9€2. Then

(3.10)
o1Au + [a1 + fl(u0,0) + Uo%(u0,0)]Ul + Uo%(u0,0)UQ =0
in €,
o2Auy + [ag + fa(uo,0)Juz =0
up =ug =0 on 0f).

Thus the second equation above and the second assumption in situation (i)
implies that uo = 0. We then consider the first equation above again. Since
p1(o1A + a1 + fi(up,0)) =0, and uo%(uo,O) < 0 by (3.7), we have p1 (1A +
a1 + f1(uo,0) + uo%(uo, 0)) < 0. Hence, all the eigenvalues p of the problem:

o1Au+ [a; + f1(ug,0) + uo%(uo,O)]u = pu in Q, v =0 on 99,

satisfy p < 0. However, u; satisfies this ;_)roblem with p = 0. Thus u; = 0. That
is the operator (I — L) is invertible on K, -
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We next show that the operator L has property (a) on W(uo,O)' Let P > 0;
observe that the eigenvalue pi(ooA — P +tlas + fa(ug,0) 4+ P]) is negative when
t = 0, and is positive when t = 1. By continuity, there exists some ¢t* € (0, 1),
such that pj(o2A — P+ t*[ag + fa(uo,0) + P]) = 0. There exists u3 > 0 in ,
vanishing on 9 such that (—o2A + P)uj — t*[az + f2(ug,0) + Plui = 0 in Q.
Since S(yy,0) = Co(Q) x {0}, we can readily verify that if we let w = (0,u%), then
we have w — t*Lw € S(y,,0) With w € Ky, 0)\S(u,0)- Consequently, by Lemma
2.7(i), we conclude that index (A, (up,0)) = 0.

We now consider the point (0,v) and let L = A’ ((0,v9)) be the Fréchet
derivative of A at (0,v) in K. Suppose that (I — L)(u1,us) = 0, for some
ur > 0,u2 > 0in Q, and u; = us = 0 on 9. Then

o1Au; + [a1 + f1(0,v0)]ug =0
in €,
A 92 (o 0 82 (0 =0
o9 AU + Vg 50 ( ,vo)ul + [ag + f2( ,7)0) + Vg Jo ( ,UO)]UQ

up =ug =0 on 0f).

From the first equation above and the first assumption in situation (i), we obtain
up = 0. Since p1(02A +ag + f2(0.v9)) = 0 and vog—jZ(O, v) < 0 is not the trivial
function, we have p1(02A + ag + f2(0,v0) + vo%(o,vo)) < 0. We thus deduce
from the second equation above that us = 0. We thus conclude that the operator
I — L is invertible in K ).

From the first assumption in (i), we deduce that for P > 0, the eigenvalue
p1(c1A — P +tlays + f1(0,v9) + P]) is negative if ¢ = 0 and is positive if ¢t = 1.
Hence, there exist t* € (0, 1) and a nontrivial, non-negative function u} vanishing
on 012, such that

—o01Au] + Puy —t*(a1 + f1(0,v0) + P)u] =0 in Q.

Since S(g,45) = {0} X Co(€2), we can readily verify that if we let w = (u},0), then
we have W — t*Lw € S(0,09) With w € K(O,vo)\S(O,vo)' Consequently, by Lemma
2.7(i), we conclude that index (A, (0,v0)) = 0.

We thus have

ik(A, D) =1, indexk (A, (0,0)) = indexk (A, (ug,0)) = indexx (A, (0,v9)) = 0.

In order to avoid contradicting the additive property of the indices of the map
on disjoint open subsets, there must be at least another fixed point of A in
D. Hence for case (i), there must be more positive solution in D other than
(0,0), (up,0) or (0,vg).
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We next consider the proof of case (ii). Let L = A/, ((up,0)) be the Fréchet
derivative of A at (up,0). Suppose that (I — L)(ui,u2) = 0, for some u; >
0,u2 > 01in Q, and u; = ug = 0 on Q. Then (uq, us) satisfies (3.10) again. The
second equation in (3.10) and the second assumption in (ii) implies that ug = 0.
We then obtain from the second equation in (3.10) that u; = 0 in the same way
as in case (i) above. Hence the operator (I — L) is invertible on K, o).

We next show that the operator L does not have property (@) on Ky, 0)-
We have S(,,,0) = Co(€) x {0}, and W(yg.0)\S(ue,0) = Co(Q) x {Cy (2)\{0}}.
Suppose the operator L }ias property (a) on K(uo,O) Then there exists some

€ (0,1) and (UT,UE) S K(uo,O)\S(uo,0)7 such that

wf — t*(—o1A + P)"([a1 + f1(uo, 0) + uo B2 (ug, 0) + Plu}
—|—U0 (u0> )u2) € 0( )a

uy — t*(—=2A + P)~([az + fa(uo,0) 4+ Pluj ) = 0.

The first equation above is always satisfied. The second equation above implies
that )

t—*u§ > uj in Cp(Q),

where T := (—o2 A+ P)~taz + fa(ug, 0)+ P]. By Theorem A2-6(i) in Chapter 6,
we obtain r(T") > 1 for the spectral radius (7). On the other hand the second
assumption in (ii) implies that there exists a positive eigenfunction ¢ for the
negative eigenvalue (3 := p1(02A + ag + fa(up,0)) such that

*_
Tus =

(=022 + P)¢ — (a2 + fa(uo,0) + P)p = =S¢ > 0 in Q.

We thus have ¢ — T¢ > 0 in Cp(Q2). Thus by Theorem A2-6(ii) in Chapter 6,
we obtain r(T) < 1. From this contradiction we conclude that L cannot have
property . Consequently, using Lemma 2.7, we have

index i (A, (ug,0)) = indexc, @)« (o (L (0,0)) = £1

In order to calculate index gy oy (L, (0,0)), we use Theorem A2-3 in Chapter
6 to find index, ()« oy (L, (0,0)) = (—1)™, where m is the sum of multiplicities
of eigenvalues of L greater than 1. Suppose (gi) 1Y) € Cp(Q)x {0} is an eigenvector
of L with X\ as eigenvalue. Then

(—UlA + P)_l[al + fl(uo,O) + UO%(U(),O) + P]¢ = )\¢
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Let T := (01A+P) tay —I—fl(uo,O)—l—uo%(uo,O)—l—P]. We have 3 := p1(01A+
a1 + f1(uo,0) + oGy on "L (ug, 0)) < 0, and

(=01 A+ P)p — (ay + f1(uo,0) + uo%(uo,O) +P)p=—P¢>0 inQ

for some positive eigenfunction 6 for the eigenvalue 3. We thus have ¢—T'¢ > 0,
and by Theorem A2-6(ii) in Chapter 6 again we obtain 7(T") < 1. Consequently
A < 1and m = 0. Thus we have index (4, (up,0)) = (—=1)° = 1. Similarly, we
can show that index i (4, (0,v9)) = 1.

We thus have

ix(A, D) =1, indexk (A, (0,0)) =0,
index i (A, (up,0)) = indexk (A, (0,v9)) = 1.

In order to avoid contradicting the additive property of the indices (Theorem
A2-1(ii) in Chapter 6), there must exist a positive solution of problem (1.1) in
D other than (0,0), (up,0) or (0, vp).

For each case (i) or (ii), the positive solution (u(x),v(z)) in D, other than
(0,0), (ug, 0) or (0,vp), has each component Z 0, > 0in €. From the boundedness
of the coefficients [a; + f;(u(z),v(x))], we obtain from each equation in (1.1) and
Lemma 1.1 that each component of (u(x),v(z)) is strictly positive in Q.

For necessary conditions, we consider the special case when the intrinsic
growth rates a; and ag of each species are the same

(3.11) o1 =02 =0, a1+ fi(u,v) =pu) — q(v), az+ fa(u,v) =r) — s(u),

0) =0, p,r,—q,—s are C'([0,00)) non-

where p(0) = a; = az = 7(0), ¢(0 )= (
r’ < 0. Moreover, there exist constants ¢, ¢y

increasing functions, and p’ < 0,
such that

(3.12) p(u) < 0 for u > cy; r(v) <0 for v > co.

Theorem 3.5. Consider the boundary value problem (1.1), under the special
conditions (3.11) and (3.12). Suppose further that both p' + s',r" + ¢' have the
same constant sign on (0,c) where ¢ = max.{ci,c2}. If the boundary value
problem has a positive solution, then p(0) > A1, r(0) > A1, and one of the
following three situations must hold:

(i) p1(cA +p(0) — q(vo)) > 0, and p1(cA +r(0) — s(up)) > 0;
(1) p1(cA +p(0) — q(vo)) <0, and p1(cA +7(0) — s(up)) < 0;
(iii) p1(cA + p(0) — q(vo)) =0, and p1(cA +1(0) — s(up)) = 0.
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Proof. First assume that
(3.13) p+s >0, v +4 >0.

Let (u,v) be a positive solution of the boundary value problem (1.1), (1.3) under
the hypotheses of this theorem. The function @ is a positive lower solution to
the scalar problem:

(3.14) ocAu+up(u) =0 in Q, u =0 on 0Q;

and the constant function u = ¢; is an upper solution for (3.14). Thus problem
(3.14) has a positive solution, and Lemma 2.1 implies that p(0) > oA;. Moreover,
we have r(0) = ag = a1 = p(0) > oA, and we have a positive solution ug for
(3.14) and a positive solution vy for cAv + vr(v) = 0 in Q, v = 0 on 9. We
have

p(0) — q(vo) = 7(0) — q(vo) = 7(0) + q(0) — q(vo) < 7(vo),

where the last inequality is due to the second part of (3.13). Similarly, from the
first inequality in (3.13), we obtain

7(0) — s(uo) < p(uo).
From the two inequalities above, we find
p1(cA +p(0) — q(vo)) < pr(cA +7(vo)) =0,

ﬁl(O'A + T‘(O) — S(Uo)) < ﬁl(O'A +p(u0)) = 0.

That is, we obtain the second conclusion (ii) of the statement of the theorem.
If we reverse both inequalities in (3.13), the arguments above lead to conclusion
(i) of the theorem. If both inequalities in (3.13) are changed to equality, then
we obtain conclusion (iii).

Remark 3.3. When (3.13) holds, there are strong competitions between the
two species, we obtain case (ii) in Theorem 3.5 when both eigenvalues involved
are negative. If both inequalities in (3.13) are reversed, there are weaker com-
petitions, and we obtain case (i) above when both eigenvalues involved are pos-
itive. The assumptions in Theorem 3.5 are very restrictive. In Theorem 3.11 to
Theorem 3.13 below, we will consider cases when one species is much stronger
than the other.

For fixed f;(u,v),i = 1,2, satisfying (3.7) and suppose a1, ay satisfy (3.8),
we now utilize Theorem 3.4 and comparison method to deduce a more detailed
description of the set:

(3.15)

A= {(a1,a2)| a; > p1(—0;A),i = 1,2; the boundary value problem (1.1)

has a strictly positive solution in €.}
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The analysis here is more general than that for the Volterra-Lotka prey-predator
case given in the last section. By assumption (3.8), there exist positive solutions
u = ug(ay),v = vo(ag) respectively satisfying the following:

o1Au + ufa; + f1(u,0)] =0 in Q, u=0 on 09,

o9Av + vlag + f2(0,v)] =0 in Q, v =0 on IN.

Define v, @, u, v to be the maximal non-negative solutions of the following scalar
boundary value problems:

(09 Av + v(ag + fa(ug(a1),v)) =01in 2, v =10 on 0;
o1A%+ w(ay + f1(@,v)) =0in Q, @ =0 on I

(3.16)
o1Au+u(ar + fi(w,vo(az)) = 0in Q, u=0 on 9

09 AD + B(ag + f2(u, 7)) =0in Q, =0 on 9.

The four functions are not always nontrivial, and are completely determined by
the two constants a; and ag. For each fixed v, v < v < vg(az), the functions u
and 0 are respectively upper and lower solutions of

(3.17) o1Au+u(ay + f1(u,v)) =0in , uw =0 on 9.

For each fixed u, 0 < u < @, the functions vg(az) and v are respectively upper
and lower solutions of

(3.18) o9 Av +v(ay + f2(u,v)) =0, in Q, v =20 on IN.

Similarly, for each fixed v, 0 < v < ©, the functions ug(a;) and u are respectively
upper and lower solutions of problem (3.17). For each fixed u, u < u < ug(ay),
the functions v and 0 are respectively upper and lower solutions of problem
(3.18). Let (u1(z,t),vi(x,t)) and (ua(z,t),v2(x,t)) be respectively solutions of
the initial boundary value problem (1.2) with initial conditions:

(3.19) (u1(z,0),v1(2,0)) = (a,v), and (uz(x,0),v2(x,0)) = (u,v).

One can show by comparison that as t — +o00, uj(x,t) and vi(x,t) respectively
tend from above and below to some %*(z) and v*(x) in Q, since the initial
conditions are upper and lower solutions for the steady state problem. Similarly
as t — 400, ug(x,t) and vy (z, t) respectively tend from below and above to some
u’(x) and 9°(x) in Q, since the initial conditions are lower and upper solutions
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for the steady state problem. Note that u®, v®,u®, v° are completely determined
by the parameters aq,as. Next, we define

Gi(a1,a2) := p1(—02A — fa(u®,0)) > p1(—024),
(3.20)

Ga(a1,a2) = p1(—01A = f1(0,v*)) > p1(—0c1A).

For given (a1, asz) satisfying (3.8) and let (u,v) be a corresponding solution of
the steady state problem (1.1), we can readily deduce by comparison that:

(3.21) ' <u<a®, vi <o <7

If (a1,a2) € A, then we have 4° > u > 0 in Q. Taking limit as ¢t — 400, we also
find that @® is a positive solution of:

o1Au® +a’(a; + fi(a®,v°)) =0in Q, @® =0 on 0N.
Comparing with (3.20), we must have:
ap > Ga(aq,az).
Similarly ©° is a positive solution of:
oo AT® + 0% (az + f2(u®,0°)) = 0in Q, v° =0 on 9.
We conclude that

as > Gl(al, ag).

Define
Hy(ar) :=inf{B > p1(—024) : B > G1(a1, 3)},
Hy(a2) == inf{a > pi(—01A) : a > Ga(a,a2)}.
Using comparison arguments as given in the last paragraph and more careful

analysis by means of Theorem 3.4, one can obtain a more precise description of
the set A as follows.

Theorem 3.6. Consider problem (1.1) under assumptions (3.7) and (3.8). The
set A defined in (3.15) is a connected region bounded by the two curves:

Pl Lap = HQ(CLQ), FQ L ag = Hl(al)

in the following sense: for each ay > pi1(—o2A), the horizontal slice {a;j :
(a1,a2) € A} is a nonempty interval whose left endpoint is on I't; and for
each a1 > p1(—o1A), the vertical slice {ag : (a1,a2) € A} is a nonempty interval
whose lower endpoint is T's.
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Details of the proof can be found in Ruan and Pao [195]. Moreover, the
theorem is actually true for more general boundary conditions for the functions
u, v respectively of the form B; = ai(a:)% + Bi(x),i = 1,2. Here, a; and 3; are
non-negative functions in C1+%(9Q),0 < a < 1, with either a; = 0,3; > 0 or
a; > 0,06; > 0. The set A is illustrated in Fig. 1.3.1 below.

p1(=034)

pi(=0;4)

Figure 1.3.1: Coexistence Region in (a1, as) Parameter Space.

Applying the results of Theorem 3.4 to system the Volterra-Lotka system
(3.3), we see that when the interaction rates ¢ and f are small, we will have case
(i) when both of the related principal eigenvalues are positive. Thus Theorem
3.4 asserts the existence of positive coexistence solution. Actually, we can also
obtain the existence of such solution when both ¢ and f are small from the
result in Corollary 3.2. On the other hand, when ¢ and f are both large, we
have strong competition between the species. In this case, we will have case (ii)
in Theorem 3.4 when both related principal eigenvalues are negative. Thus we
have coexistence positive solution again.
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Part B: Extreme Strong Competition.

We now make a more careful study of the situation when both competition
interaction parameters ¢ and f are large. We shall see that the species may
tend to segregate from each other as they coexist. For simplicity we restrict to
o1 =09 =1,a> A,e > A;,b =g =1 and Dirichlet boundary condition. That
is, we consider:

Au+ula —u—cv) =0
in €,
(3.22) Av+v(e—v— fu)=0

u=v=>0 on 0f).

Recall that by Lemma 2.1, there cannot be any non-negative solution of the
above problem with u Z 0if a < A (or v Z 0 if e < A\1). When both ¢ and f are
large, there is one type of positive solution to the problem (3.22) closely related
to the positive solutions of the reduced problem:

Au+u(a —v) =0
in €,
(3.23) Av+v(e—u)=0

u=v=0 on 0f2,

with a > A1,e > A;. Moreover, the existence of positive solution of the reduced
problem (3.23) is related to the trivial solution of the problem:

(3.24) Aw+awt +ew” =0 inQ, w=0 on I

We will find that if (3.24) has only the trivial solution which has nonzero index,
then (3.23) has a positive solution. Moreover, for each isolated positive solution
(@,v) of (3.23), there is a positive solution (u,v) of (3.22) with ¢, f large, fu
close to @ and cv close to 9.

There is another type of positive solution of (3.22) when ¢, f — oo,c™1f —
a € (0,00). Here, the corresponding positive solution (u,v) of (3.22) has the
property that ¢||u||co, f]|v||cc both tending to infinity. More precisely, if there is
an isolated solution wq of the problem:

(3.25) Aw+wT(a—alwT) +w (e+w )=0 inQ, w=0 ondQ

which changes sign in 2 and has non-zero index, then (3.22) has a positive
solution near (oz_lwar ,—w, ) for ¢, f large. In this situation, one species is
segregated to near where w({ # 0 and the other species is segregated to near
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where —w; # 0 in 2. We now describe more carefully the first type of positive
solution of (3.22).

Theorem 3.7 (Extreme Strong Competition for Both Species, I). Sup-
pose (u,v) is an isolated positive solution of (3.23) with non-zero index. Then
for any € > 0, there exists a large M > 0, such that for any ¢, f > M, problem
(3.22) has at least one positive solution (u,v) satisfying:

(3.26) [|fu—1|leo <€ |lcv—17|lo0 <.

By the index of (4, 0), we mean the fixed point index denoted by index p(B, (4,7)),
where P represents the natural positive cone in C(Q) x C(Q), and B : C() x

C(Q) — C(Q) x C(Q) is defined by
B(u,v) = (—A 4+ k)" (ku + au — wv, kv + ev — uv),

with homogeneous Dirichlet boundary condition. Here, k is a large positive con-
stant so that B maps some neighborhood N of (u,0) in P into P. (Recall the
definition of fixed point index in Part B of Section 1.2.)

Proof. Let u = fu,v = cv. We readily verify that (u,v) is a positive solution
of (3.22) if and only if (@, ) solves:

Au+ula —v) — f~lu2 =0
in Q,
(3.27) Av+v(e—u)—c =0

u=v=>0 on 0f).

Consequently, in order to prove this theorem, it suffices to prove (3.27) has
a positive solution near (4, 0) when f and ¢ are large. Comparing (3.27) with
(3.23), we see that this can be achieved readily by homotopy invariance of degree
argument.

Theorem 3.8. Suppose problem (3.24) has only the trivial solution w = 0 with
indemcé(D)(Bl,O) # 0, where Byw = (—A) " (aw* + ew™). Then the problem
(3.23) has at least one positive solution. Moreover, there exists a constant M > 0
such that any solution (u,v) of problem (3.23) satisfies:

ulloo + [[v]loe < M;
and the sum of the indices of all the positive solutions of (3.23) is equal to

indea:oé(g)(él, 0). Here, C3(Q) denotes the functions in C1(Q) with zero bound-
ary value on 0.
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Proof. The proof of this theorem can be divided into three steps.
Step 1. We first show that there exists M > 0 such that any positive solution
(u,v) of the problem:

(—Au = tau+ (1 —t)a(u —v)" — v

in €,
—Av=tev+ (1 —t)e(v —u)t —uv
(3.28)
u=v=0 on 0§,
0<t<1,
must satisfy
(3.29) ulloo + [[]]oo < M.

Observe that neither component of a non-negative solution of (3.28) can
vanish identically unless both components vanish identically.

Suppose, by contradiction, there exist ¢, € [0,1] and positive solutions
(tn,vy) of (3.28) with ¢ = ¢,, such that

l[unlloo + [[vn]lee — o0
Then from the equation we find
(330) —Aty, < atly, —Av, < ety, fan|8Q = {)n‘aﬂ =0,

where
Up = (||Un||00)_lum Up = (||Un||00)_1vn-

From (3.30), we obtain

/ Vi, |*dz < a/ #2dr < a mes.(Q),
Q Q

/ |V, |?dr < e/ v2dx < e mes.(Q).
Q Q

Here mes.(f2) is the measure of the domain Q. Thus {a,},{0,} are bounded
in I/VO1 2(Q), which is a Hilbert space. By compact embedding in L2(f2), we can
choose a subsequence such that

Uy — U, Uy — U weakly in Wol’Q(Q) and strongly in L?(Q).

Moreover, we can deduce by taking (—A)~! with Dirichlet boundary conditions

on both sides of (3.30) that if 4 = 0, then @, — 0 in C(2). This contradicts
||tin||oo = 1. Therefore we have @ # 0. Similarly, 0 # 0.
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Since ||ty ||oo + ||Vn]|co — 00, without loss of generality we suppose ||v,||oo —
oo. From (3.28), we find

- Un

—Ady, = thaty, + (1 —t,)a(d, — W)+ — ||vn||coTnTp.
mn||o0

Multiplying both sides by ¢ € C§°(£2) and integrating over €2, we obtain

+
~ ” u Un
= loull [ vt

Since [, Unlnodr — [ 0¢dz, ||vy|les — oo and the left side of the above
equation is uniformly bounded, we obtain fQ uv¢pdr = 0. Since ¢ is arbitrary,
we conclude wv = 0 a.e. in Q.

Let oy, = [|[tunl|oo/||vn]loo- Without loss of generality we may assume oy, —
a € [0,00) (otherwise, we consider ||vp||oo/||tn||oo). We also assume ¢, — ¢ €
[0,1]. From the equations in (3.28), we obtain
)+

— Aty —p) = tpla(anin) — etp] + (1 —ty)[a(Qntn — 0n) T — e(P — antin) ™).

Multiplying the above equation by ¢ € C§°(2), integrating over Q2 and passing
to the limit, we obtain

/QV(aﬂ—f))VgZ)da: :f/Q[a(aa)—e@]gz)der(l—f)/Q[a(aa—a)te(@—aa)ﬂgﬁdx.

Since 4, v > 0 and uv = 0, we have

(et — )" =ab, (0—oau)" =7;
and hence
/ V(au —0)Vodr = / [a(at) — ev]p dx.
Q Q
Let wyg = at — v. We have war = ati, w, = —v and so

/ VuwoVede = /(aw()F +ewy )odx, for all ¢ € Cg°(R2).
Q Q

This means wy = au — ¥ is a bounded weak solution of (3.24) and hence a
classical solution. Since wg # 0, we arrive at a contradiction. This completes
the proof of step 1.

Step 2. Let Bjs denotes the ball in C(€Q2) x C(€2) centered at 0, with radius

M as described in (3.29). Let P be the natural positive cone in C'(Q2) x C(£2),
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and the operator B be defined as in Theorem 3.7. Here, we assume the positive
constant k£ has been chosen sufficiently large for the definition of B so that B
maps P N By to P. We will show

(3.31) degp(I — B, P N By, 0) = indexcy o)(Bi,0),

where By is the mapping defined in the statement of this theorem.
First, by means of (3.29), the homotopy

Hy(u,v) = (=A+ k)" YHtau+ (1 — t)a(u — v)T — uv + ku,
tev + (1 —t)e(v —u)™ — uv + kv)
with k£ > 0 leads to
(3.32) degp(I — B, PN By,0) = degp(I — Hy, P N By, 0).
Next, we consider another homotopy

—Au=a(u—v)T —tuv + (1 — t)eg

in Q,
(3.33) —Av=rce(v—u)t —tuv+ (1 —t)eo
u=v=0 on 0f2,
where ¢t € [0,1]. Here, € is a fixed positive number. If (u,v) is a non-negative

solution of (();3.33), then u — v satisfies

~A(u—v)=alu—v)" +e(u—v)"in Q, (u—"v)laq =0.
Thus, by the assumption of the theorem we obtain u = v; and hence u satisfies
(3.34) —Au=(1—1t)eg —tu? in Q, ulpg = 0.

Using an upper and lower solution argument and noting that the right hand
side of (3.34) is concave with respect to u, we see that (3.34) has a unique non-
negative solution 1), for ¢t € [0,1],0 < ¢y < (1 — t)eo(—A)71(1) and ¥ > 0 in Q
for 0 <t < 1. Here, (—A)~! is taken with zero Dirichlet boundary condition.
Thus (3.33) has a unique non-negative solution (u,v) = (14,). Define

Hy(u,v) = (—A+k) " a(u—v) T —tuvt(1—t)eg+ku, e(v—u) " —tuv+(1—t)eg+kv)

with k£ > 0 large and ¢y chosen sufficiently small so that ||1g||cc < M /2. Then
we obtain by homotopy invariance of degree that

degp(I — Hy, PN Byy,0) = degp(I — Hy, P N Byy,0) = indexp(Hy, (1o, 10)).
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Since H, = Hy, we combine with (3.32) to find
(3.35) degp(I — B, PN By, 0) = indexp(Hy, (1o, 1h0)).

Let P denote the natural positive cone in CH(Q) x C}(Q) and j : P — P denote
the inclusion. Since Hy maps a neighborhood of (10, %0) in P continuously into
P, the commutativity property of the fixed point index (see Nussbaum [178])
leads to

(3.36) indexp(Ho, (1o, %)) = indexp(jHo, (1ho, Vo)) = index 5(Hoj, (to,0))-

Since (g, o) € int(P), due to maximum principle, we further find that

(3.37) index (Hoj, (Y0,10)) = index 5 (Hoj, (1ho, t0)),

where E denotes Cg () x CA(9Q).

Now consider the homeomorphism  : E — E defined by h(u,v) = (u,u—0v).
Clearly h™! = h and h maps a neighborhood of (vq,1) into a neighborhood
of (10, 0). Since (1p,1) is an isolated fixed point of Hyj, (109, 0) is an isolated
fixed point of h~'Hyjh. By the commutativity of the fixed point index, we have

(338) an@xE(ﬁoj, (¢07 ¢0)) = inde$E(h_lﬁ0jh7 (¢07 O))u
where one readily verifies that
™ Hojh(u,w) = (=A 4+ k)" aw™ + o + ku, aw™ + ew™ + kw).

Since by assumption the problem —Aw = awt + ew™ in Q, wl|gg = 0
has only the trivial solution, we can use the homotopy H(u,w) = (—A +
th) " (taw™ + € + thu, aw’ + ew™ + thw),0 <t <1 to find

(3.39) index g (h™" Hojh, (1)0,0)) = index 5(Ho, (14, 0)).

Now Ho(u,w) = ((—A)"Y(eg), (=A) " (aw™ + ew™)), and by the product theo-
rem of degree, (cf. [75] or [178]), we find
(3.40)

ind6$E(H0, (1/)0, 0))

= indexcé@)((—A)_l(eo),1/10)) ~indexcé(g)((—A)_1(aw+ +ew™),0)
= indexcy (Q)(B’l, 0).
From (3.35) to (3.40), we obtain

degp(I — B, PN By, 0) = indexcyq)(Bi,0).
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This proves the validity of (3.31).
Step 3. This last step will complete the proof of the theorem. By taking t = 1
n (3.28), the argument in step 1 above shows that any positive solution (u,v) of

(3.23) satisfies ||u||oo + ||V||oc < M. Since a,e > A1, one can show as in Theorem
2.5 or 3.4 that (0,0) is a solution of (3.23) with

indexp(B,(0,0)) = 0.
Choose a small ball B, such that
degp(I — B, B, N P,0) = indexp(B, (0,0)).

Then by the additivity of degree (cf. Theorem A2-1 in Chapter 6) and (3.31)
we obtain

degp(I — B, (By\B;) N P,0) = indexcyq )(B1,0) # 0.

Hence (3.23) has at least one non-negative solution in (Bjs\B,.) NP, and the sum
of the indices of all such solutions is equal to indeazcé (Q)(Bl, 0). Since a,e > A,
(3.23) has no non-negative solution (u,v) with only one component identically
zero. Since any non-negative solution of (3.23) must be in By NP by step 1, and
B, is chosen so small that (3.23) has only the trivial solution in B,, we see that
all solutions with each component strictly positive in 2 of (3.23) are contained
in (By/\B,) N P. Consequently, the sum of indices of such positive solutions of
(3.23) is equal to indeazcé@)(él, 0). This completes the proof of the theorem.

Corollary 3.9. Suppose problem (3.24) has only the trivial solution w = 0 with
indemcé(D)(Bl,O) # 0, where Byw = (—A)"Yawt + ew™). Then there exist
large positive constants M and N such that for any f,e > N, problem (3.22)
has at least one positive solution (u,v) satisfying:

Fllulloo + ¢||v]|oe < M.

The next Theorem describes the second type of positive solution of (3.22)
mentioned above.

Theorem 3.10 (Extreme Strong Competition for Both Species, II). Let
a € (0,00). Suppose problem (3.25) has an isolated solution wy in L?(2), which
changes sign and has non-zero index. Then there exist respectively very large
and small positive constants N and € such that for any c, f satisfying

c>N, |clf —a| <e

the problem (3.22) has a positive solution (u,v) near (o twg, —wy ) in L*() x
L3(9).
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(The question of uniqueness and stability of the steady-state will be considered
in Theorems 5.10 and 5.11 in Section 1.5 below).

Outline of Proof. The proof is similar to that of Theorem 3.8, thus we will
only outline the main ideas. First, we consider the homotopy:
(3.41)

(—Au=tau+ (1 —t)a(u —a o)t —tw? — (1 —t)((u — a~ o) ") — cuv
—Aw = tev + (1 — )e(v — aw)* — t0? — (1 — £)((v — au)*)? e
—(tB+ (1 — t)a)cuw
u=v=0 on 99,

where 0 <t < 1. Here § > 0 is fixed. If (u,v) is any non-negative solution of
(3.41), we can readily show that

a2

2
—Augz, —AvgdzinQ, u=wv=0 on 08,
since the function g(s) := As — s? is bounded by A?/4 for s > 0. We thus obtain
that if (u,v) is any non-negative solution of (3.41), then

(3.42) 0<u<M, 0<v<M

for some M > 0. For simplicity, we next denote the right hand side of the first
equation in (3.41) by fi(u,v,t), and that for the second equation by fa(u,v,t).
Let

up = min{u, M}, vy = min{v, M}.

Define i
fi(u,v,t) = fi(unr,vae,t), fo(u,v,t) = folunr,var, t).

Choose ¢ > 0 so small such that in the neighborhood Nj(wg) in L?(2), wp is the
only solution of (3.25). Then choose §; > 0 so that (u,v) € ONs, (o wf, —wy)
implies that u # 0,v # 0 and au—v € Ng(wp). Here ONs, (o twg , —wy ) denotes
the boundary of the d;-neighborhood N, (o™ twg, —wy) of (e twg, —wy) in
L?(Q) x L?(2). We then show there exist positive N; large and e small such
that problem (3.41), with the first and second line on right hand side respectively
replaced by fl(u,v,t) and fg(u,v,t), has no non-negative solution (u,v) with
(u,v) € ONs, (atwd , —wy ) whenever ¢ > Ny, [ —a| <eand 0 <t < 1.
For any ¢ > Ny, let M, > 0 be large enough such that

fl(u,ﬂ,t) + MCU > 07 fg(u,’(},t) +MC’U > 07
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for any u,v > 0 and t € [0,1]. Define the mapping
At(u7 ’U) = (_A + MC)_I(fl(uu v, t) + MCU, f:?(uu v, t) + MC’U)

which is completely continuous and maps the natural positive cone P in L?(Q) x
L?(Q) into itself. We show that for large ¢, the problem with ¢ = 0:

~Au=a(u—a )t — ((u—a1v)")? - cuv
in €,
(3.43) —Av =e(v—au)t — ((v—au)t)? — acuw

u=v=>0 on 0f),

has a unique non-negative solution in N(gl(oz_lw(')F ,—w, ), and the solution de-
noted by (ue, ve) = (e, aue — wp) tends to (e~ twy, —wy ) in L2(Q) x L3(Q) as
¢ — 0.

As in the proof of Theorem 3.8, we use the regularity of Ag, the homeomor-
phism h(u,v) = (u,au —v) in E = C(Q) x CA(RQ), the commutativity of the
fixed point index and the product formula (cf. [75] or [178]) to obtain:

degp(I — Ay, PN Nj, (o twg, —wy ), 0)
= degp(I — Ao, P N Ns, (o twy , —wy ), 0)
= indexp(Ao, (te, v¢))
= index (Ao, (te, vc))
= indexcé(g)(ég, wo) - index gy (o (B, uc)
= indexcé(ﬂ)(ég, wp) # 0.
Here, Bow = (—A) wt(a —a~twt) + w™ (e +w™)], Bu = (—A) aa  wi —
(atwf)? — cu(au — wp)], and we can obtain from uniqueness property that
index gy (o) (B, uc) = 1.
This shows that (u,v) = Aj(u,v) has at least one solution in the set P N
N5, (atwf, —wg ) for ¢ > N > Ny and |3 — a| < 1. The solution of (3.22) will

satisfy (3.41) for ¢ = 1. For more details, see Dancer and Du [41].

Part C: One Much Stronger Competitor.

In the remaining part of this section, we finally consider the case of existence
of positive solution for problem (3.22) when none of the conditions (i) or (ii) of
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Theorem 3.4 is satisfied. (Here, in the notation of Theorem 3.4, fi(u,v) :=
—u — cv, fo(u,v) := —fu—wv,a1 =a > p1(—A),azs = e > p1(—A),00 =09 = 1.
Also recall the definition of ug and vy in Remark 3.2.)

Define ¢, f to be positive constants when

(3.44) Mm(A+a—cv) =0, pr(A+e— ]?U,o) =0.
For convenience, we define coexistence parameter sets as follows:

T :={(c,f):c>c0< f<f,
and problem (3.22) has a strictly positive solution},

T~ :={(e,f): f>[,0<e<g
and problem (3.22) has a strictly positive solution}.

Let:
(3.45) gi(c) = /th dx — fc/Qh2(—A — (a — 2up)) " (uoh) dz,

where h is the positive eigenfunction which spans the kernel of —A — (e — fuq)
and normalized so that ||h||12(q) = 1. Similarly, define

(3.46) g0(f) = /Qk:?’ dx — cf/QkQ(—A — (e — 2v9)) " H(wok) dz,

where k is the positive eigenfunction which spans the kernel of —A — (a — ¢uvp)
and normalized so that ||k[|z2q) = 1.

The coefficients ¢ and f in (3.22) can be interpreted as coefficients of com-
petition. The following theorem describes situations of coexistence when the
competition coefficient of one species is relatively large compared with the other.

Theorem 3.11 (Positive Solution with One Competitor much Stronger).
Consider problem (8.22) with a > p1(—=A),e > p1(—A) and ¢, f as defined in
(8.44). The coexistence parameter set described above has the following proper-
ties.

(i) The set T is nonempty if either g1(¢) > 0 or g2(f) < 0.

(i1) For almost all (a,e) in (A1,00) X (A1,00), either T is nonempty or T~ is
nonempty.

(Here, g1, g2 are defined in (3.45) and (3.46).)

Proof. Linearizing equations (3.22) at (ug,0) leads to the system:

—Ay+ (2up — a)y = —cupz
in €,
(3.47) —Az+ fupz = ez
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Since ug > 0 in €2, by comparison we have pi1(—A + (2ug —a)) > p1(—A+ (ug —
a)) = 0. Thus by [3], the operator [—A + (2ug — a)]~! exists and is a compact
positive operator on CS’Q(Q), 0 < a < 1. Equation (3.47) is thus equivalent to
the system:

y=[-A+ (2up — a)] "} (—cupz),
(3.48)
z= fIA+ e (ugz).

For convenience, let A7 = [A + e]™!, Myz = upz, Ay = [-A + (2ug — a)] 7L,
Mgz = —cugz, and ¢ = (y, 2)” then (3.48) can be written as

q = fBi1g+ Bag,

where

o 0 0 _ 0 A2Mca
Bl_[o AlMa]’ BQ_[O 0]

are compact operators on the Banach space [C’é’a(Q)]Q. Thus I — fB; — By is
a Fredholm operator on [C’é’a(Q)]Q, with index 0. Furthermore, since ker(I —
fB1 — Bo) has dimension 1, f will be a simple eigenvalue of the pair (I — Bs, By)
provided

(3.49) Bi¢ ¢ Range(I — By — fB1),

where ¢ is any element in the ker(I — fB; — Ba) (cf. Chow and Hale [28]). To
verify (3.49), let ¢ = (y, 2)T and

y=[-A+ (2up — a)] "} (—cupz),
(3.50) )
z= fIA+ e (upz),

with z # 0. Then the second component of Bi¢ is [A + e] lugz = f~1z. For
any ¢* = (y*,z%) € [C’é’a(Q)]Q, the second component of (I — By — fB)¢*
is I — f[A + €] Y(upz*). Hence if Bi¢ € Range(I — By — fBy), then z €
Range(I — f[A+e]"tM,). However, by (3.50), the kernel ker(I — f[A+e]~' M,)
is spanned by z, leading to a contradiction.

The analysis above justifies the application of the bifurcation theorem of
Crandall and Rabinowitz [33], with fixed a > A1,e > Ay, ¢ > 0, while the param-
eter f varies across f. For all f near f, (ug,0) is a solution of problem (3.22).
There exists dp > 0 and smooth functions f : (—dp,d0) — R, u : (=g, 00) —
Cy™(Q), v : (=60, 00) — Cy*(€2) such that:

F0) = F. ul(s) = o+ syo+(s), v(s) = sz + 5(s),
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where B
2o spans the ker(I — f[A + ]~ M,),

zo(x) > 0, for x € Q, / zgda: =1,
Q
Yo = [—A + (2ug — a)] ! (—cuo2);
1)y = oI5, 125}l gy = ol as s — 0.

Moreover, in a sufficiently small neighborhood of (f,ug,0) in R x Cé’a(f_l) X
CS’Q(Q), the triples (f(s),u(s),v(s)),|s| < do are the only solutions to (3.22)
other than (f,up,0). In particular, we have positive solutions to (3.22) when
5> 0.

We now let A\(s) = f(s)— f and calculate X’(0). For this purpose, we consider
the equation

—Au(s) = ev(s) = v(s) — f(s)u(s)v(s),
which is equivalent to:
(351)
(=A+ fug —e)(s20 + 2(s)) = —A(s)(uo + sy0 + §(s)) (520 + 2(s))
— (s20 + 2(s))? = f(syo + 5(s)) (520 + £(5))-
Differentiating (3.51) with respect to s yields
(3.52) ~
(—A+ fug —€)((s))
= N'(s)(uo + syo +§(s))(s20 + 2(s)) — Als)(yo + ¥/ (5))(s20 + 2(s))
- ):(8)(11,0 + syo + 7(s)) (20 + Zi(s)) —2(sz0+ 2(s)) (20 + 2'(s))
— f(yo +7'(s))(s20 + Z(s)) — f(syo + () (20 + Z'(5)).

If we differentiate with respect to s once more and evaluate at s = 0, we obtain

(—A + fug —e)(Z"(s)) = —2X(0)upzo — 2(20 + Z'(0))?
—2f(yo +§'(0)) (20 + Z(0)).
We deduce Z'(0) = /(0) = 0 and obtain from (3.53)

(3.53)

(3.54) / 20(—A + fup —e)(Z"(s)) dz = / [—2N (0)ug 2 — 2(20)% — 2fyo22] dz.
Q Q
Integrating by parts, we obtain
(3.55) V() =~ [ uoshde] [ (3 + Funch) dal.
Q Q

Identifying 2 with h in (3.45), and noting that yo = [~A+(2ug—a)] ™! (—cup2o),
we find

(3.56) N(0) = - /Q o2 ] L g1(c),



50 CHAPTER 1. SYSTEMS OF TWO EQUATIONS

where g1 (c) is given in (3.45). Suppose g1(¢) > 0, then g1 (c) changes sign at some
¢ > ¢, and for ¢ = ¢; € (¢, ¢), we have g1(c1) > 0, and X'(0) < 0. Consequently
for 6 > 0 sufficiently small, (3.22) has a positive solution if (c, f) = (c1, f — ).
That is 7" is non-empty.

If g1(¢) > 0 and ¢y is slightly less than ¢, positive solution bifurcates to the
left of f at (cg, f). If g1(¢) < 0, then positive solution bifurcates to the right of
f at (co, f). By symmetry, if go(f) < 0 and fo is slightly less than f, positive
solution bifurcates to the right of ¢ at (¢, fo). Thus T is also nonempty. This
proves part (i).

We shall not show the proof of part (ii), which can be found in Dancer [40].

The following lemma can be proved readily, and can be used for applying
part (i) of Theorem 3.11 to find positive coexistence states.

Lemma 3.1. Consider problem (3.22) with a > A\1,e > A1 and €, f, g1(¢), g2(f)
be as described in Theorem 3.11. If e is sufficiently large, then g1(¢) > 0 and

92(f) <0.
Proof. We first deduce a more convenient expression for ¢;(¢) and gz(f). By
definition in (3.45)

—Ah = eh — fugh in Q, h =0 on 0Q.

We have

—~Ah — (a —2ug)h = (e —a)h + (2 — flugh in Q.
That is
(3.57) h=(e—a)Lh+ (2 — f)L(ugh)

where L is the operator [~A — (a — 2ug)]~!, under zero Dirichlet boundary
conditions. Using (3.57), we can rewrite g;(¢) by means of (3.45) as:

(358) (@) =2— P2 F - fo) /

R¥dr—(2—f)"t(a— e)fc/ h%Lhdz,
Q

Q
if f # 2. Note that h is positive and L is a positive operator. Similarly, we

obtain:
k= (a — €)L2k‘ + (2 — E)LQ(’U()k‘),

where Lo is the operator [-A — (e — 2vp)] ™!, under zero Dirichlet boundary
conditions. Moreover from (3.46), we have

(3859) ga(f) = (2 - &) M2~ —&f) /

Kdr—(2—2¢) (e — a)éf/ KLk dz.
Q Q

It is easy to see that go(f) < 0if € < 2,2—¢— fé < 0and e > a. For fixed
a > A1, equations (3.44) indicate that if e is large, then both f and vy are
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increased. This in turn leads to smaller ¢. We thus have to carefully estimate
fc as e becomes large.
Let © = e vg. Then ¥ is a solution of

—e 1A =3(1-9) in Q, 9=0 on 0Q.

It can be shown that as e — 0o, we have © — 1 in LP(Q) for each p € (1,00) (see
e.g. Dancer [38] or similar proof in Theorem 5.2 in Section 1.5). Let ¢ = e¢. Note
that ¢ depends on e, and the spectral radius satisfies 7((—A)"1(a — éd)I) = 1.
Now, if ¢ > 0, 7((=A) " a—cd)I) — r((—A) Ha—c)I) = A\ *(a—c) as e — o0,
since ¥ — 1 in LP(Q2). Suppose ¢ = ec is unbounded as e — co. Let e; — oo and
é(e;) == e;é > c* for some ¢* > a — ;. Then

L=r((=A)"Ya—éd)I) <r((—=A)Ha —co)I) — A\ a — )

as e¢; — oo. This implies ¢* < a — A1, contradicting the assumption on ¢*. We
may thus assume ¢ = e¢ — « for some « as e — oo. Since 1 = r((—A)"1(a —
é0)I) — A (a — a) as e — oo. We must have e¢ — a — Aj as e — o0.

We next consider the change of f for large e. Let # > 0 be an arbitrary
number. We will show that if e is large, then

(3.60) r((=A)" (e — Feup)I) > 1, that is p1(A + (e — Feug)I) > 0.

Thus, from the definition of f in (3.44) and comparison, we must have f > 7e.
Since 7 is arbitrary, it follows that e™'f — oo as e — oco. To prove (3.60), it
suffices to find a . > 1 and a non-negative nontrivial function w = s, € WO1 2((2)
which is a weak lower solution (as described in Section 9.3 in Chapter 9 of Evans
[57]) for the problem:

(3.61) —Aw = p; e —reug)w in Q, w=0 on OQ.

This follows because a simple calculation shows that this implies that (—A +
KI)~Y(e+ K — feug)s. > Bse for some 3 > 1. Here, K > Feuq is chosen to
ensure the operator acting on s, is positive. Thus by p. 265, in Schaefer [205]
or a theorem similar to Theorem A2-6 in Chapter 6, we find the spectral radius
satisfies
r((—A+ KI) (e + K — feug)l) > 8> 1.

In order to construct the weak lower solution as described above, we choose a
neighborhood N of 92 in € such that ug(z) < (2F)~! in N. Let z denote the
principal non-negative eigenfunction of (—A) on N, with zero Dirichlet boundary

conditions on ON. Define s.(z) to be z(z) on N and to be zero otherwise. Then
se € Wi2(Q). Since e — Feug(z) > (1/2)e on N, we have

(3.62) —Ase < (e — Feug)se
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pointwise in N if e is large. Moreover (3.62) is trivially valid in Q\N pointwise.
We can then deduce as in Section 4.4 of Chapter 4 or Lemma 1.1 in Berestyki
and Lions [7] that s. is a weak lower solution for (3.61). This completes the
proof that e™!f — oo as e — oo. It follows that fé — oo as e — oo. Since

¢ — 0 as e — oo, the comments after (3.59) imply that ga(f) < 0 for large e.
By means of further analysis of the asymptotics for f,¢ as e — oo using
formula (3.58), we can deduce as above that g;(¢) > 0 as e — oo. For more

details see Dancer [40].

The following theorem provides more information concerning the coexistence
states as the parameters (c, f) changes near (¢, f) as described in (3.44).

Theorem 3.12. Consider problem (3.22) with hypotheses as described in Theo-
rem 3.11. Assume that (c1, f1) € TT. Suppose further that 0 < c < cy, f1 < f <
f and either ¢ < ¢y or fi < f, then problem (3.22) has a strictly positive solu-
tion which is an “asymptotically stable” solution of the corresponding parabolic
problem.

Remark 3.4. Here, by an “asymptotically stable” solution, we mean a solution
(u,v) such that the spectral radius satisfies r(A’(u,v)) < 1, (u,v) is an isolated
solution and has index 1 in

D = {(u,v) : Co(Q) x Cp(2),0 <u<a,0<v<einQ},

where A is the map whose fixed points are solutions of (3.22), described in (3.65)
below. A’(u,v) denotes the Fréchet derivative of A at (u,v).

Proof. We first prove the existence of a strictly positive solution. Since
(c1, f1) € T, there exists a strictly positive solution (uy,v;) satisfying

—A’U,l = ul(a — Uy — 017)1)
in €,
—Avy = vi(e —v1 — frur)

Ul :’U1:0 on 0f).

By comparison, we have 0 < u; < ug < a,0 <v; < vy <ein Q. Since ¢ < ¢,
we have
—Auy <wuj(a—u; —cvp) in Q.

Moreover, strict inequality holds in €2 if ¢ < ¢1, since u; > 0 and v; > 0 in .
Thus

(3.63) up < (—A + kN Yui(a + k —uy — cvy)),
and equality does not hold if ¢ < ¢;. Similarly

(3.64) v1 > (A + kD) HNoi(e+k — vy — fuy)),



1.3. DIFFUSIVE COMPETING SYSTEMS 53
and equality does not hold if f > fi1. Here kis a positive constant satisfying
k > max.{a + ce,e + fa} such that the mapping:
(3.65) A(u,v) = (A + k) Hu(a+k —u—cv),v(e + k — v — fu))
is monotone on the set:
D = {(u,v) € Co(Q) x Cp(Q): 0<u<a,0<v<e in Q).
If we define (ug,vs) = A(uq,v1), we see from (3.63) and (3.64) that
ug > ug > up, 0 <wg <oy,
Defining (ty41,0n+1) = A(tun,vn),n =2,3,4..., we have
UY > Unt1 = Up, 0L v Svp,n=2,3,4...

By theory explained in Leung [125], the function (@, 0) = lim,—oco(Un,vy) is a
strictly positive solution of (3.22), unless © = 0. In this case (@,?) = (up,0). It
is also shown in Dancer [40] that

u<a
in Q,
>0
if (4, 0) is any solution of (3.22) satisfying:
up <4 < ug
in Q.

0<

>

<

Let C = {(u,v) € D : u; < u < up,0 < v < v} If the limit is such that
(,?) = (ug,0), then (ug,0) is the only fixed point of the mapping A in C. The
set C is closed and convex (thus contractible); and AC C C' by monotonicity.
Hence by basic properties of fixed point index, the sum of the indices of fixed
points of A in C' (counted relative to C') is 1, see Amann [3]. If (ug,0) is the
only fixed point in C, then we must have indexc(A, (up,0)) = 1. On the other
hand, by using Theorem 1 and Lemma 2 in Dancer [37] and part of Proposition
1 in Dancer [39], we can show that indexc (A, (ug,0)) = 0, provided we have
(3.66)

(A’ (ug,0)) > 1,and A'(ug, 0)(h, k) # (h, k) if (h, k) € (C5 (Q) x Cif (2))\{0,0}.

Note that the first property above is related to property («) of Definition 2.1,
as indicated in the proof of case (ii) in Theorem 3.4. In order to analyze the
spectral radius indicated in (3.66), we note that

A'(ug,0)(h, k) = (A + kI)"Ya+ k — 2ug)h — cugk, (e + k — fug)k).
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We thus have the following relationship for the various spectrum
o(A (ug,0)) = o((=A + kD) Na+k —2uo)) Uo((—A + kD)~ (e + k — fuo)I).
It follows that

(A (ug,0)) = r((=A + k)" Ye +k — fu)l) > 1.

The last inequality above is due to the fact that f < f. The second property
of (3.66) can be proved by procedures as in the proof of Theorem 3.4. We can
thus conclude that we also have indexc(A, (up,0)) = 0, contradicting the fact
that indexc (A, (up,0)) = 1 deduced above. Consequently, we must have (u, )
is a strictly positive solution of (3.22).

The details of the proof of the “asymptotic stability” of the solution as
described in the above remark will be given later in Section 1.5 of this chapter.
By applying Remark 4 on p. 58 of Dancer [39], with E = LP(Q) x LP(Q2) for
large p, we can deduce that the solution is actually asymptotically stable with
respect to the corresponding parabolic problem in the space X* x X<, where
X® is a fractional power space in the sense of p. 29 in Henry [84] (cf. Section
6.4 in Chapter 6). For more explanations, see Dancer [40].

By means of Theorem 3.12, we can obtain the following more detailed infor-
mation.

Theorem 3.13. Consider problem (3.22) with hypotheses described in Theorem
8.11. Assume T is nonempty. Then there exist u > ¢, v € (0,f) and a
continuous strictly increasing function g* : [e,u] — (0, f] such that g*(¢) =
v,gt(p) = f, and Tt = {(c,f) : ¢ > &0 < f < f,f > g™ (c)}. Moreover,
if (¢, f) € int T, then problem (3.22) has at least two solutions, at least one
of which is “asymptotically stable”. Furthermore, problem (3.22) has a strictly
positive asymptotically stable solution if ¢ = ¢, v < f < f, and a strictly positive

solution if f=f,¢<c<p.

Notes.

Theorem 3.1 and Corollary 3.2 are found in Leung [121] and Pao [182].
Theorem 3.3 is due to Blat and Brown [11]. Theorems 3.4 and 3.5 are obtained
from Li and Logan [151]. Theorem 3.6 is due to Ruan and Pao [195]. Theorems
3.7, 3.8, Corollary 3.9 and Theorem 3.10 are results in Dancer and Du [41].
Theorem 3.11 is given in Dancer [40] and the proof of part (i) follows an argument
in Cantrell and Cosner [18]. Lemma 3.1, Theorem 3.12 and Theorem 3.13 are
obtained from Dancer [40].
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1.4 Strictly Positive Coexistence for Diffusive Coop-
erating Systems

In this section we study problem (1.1) when the functions f;(u,v) and fo(u,v)
simulate cooperation or mutualism between the two species populations u(z)
and v(z) in a bounded domain 2, with conditions as described in Section 1.1.
For simplicity, we first consider the Volterra-Lotka type of interaction when f;
and fo are linear. More precisely, we consider

o1Au+u(a —bu+ cv) =0
in €,

(4.1) o2Av +v(e+ fu—gv) =0

u=v=>0 on 0,
where a,b,c,e, f and g are all positive constants. The signs of the interaction
coefficients +c and +f indicate mutualism. The first theorem shows that when
each species can survive by itself (i.e. they satisfy (4.2)), and the cooperation
coefficients are not very large (i.e. they satisfy (4.3)), then there will be coexis-

tence equilibrium state. The main idea in the proof is that condition (4.3) will
impose a bound on both populations.

Theorem 4.1. Suppose
(4.2) a> o1\ and e > o9,

then the boundary value problem (4.1) has a solution with each component strictly
positive in ) if and only if

(4.3) cf < bg.

Proof. By hypothesis (4.3), there exists (xg,yp) in the first open quadrant
where

a—bxo+cyo <0, e+ fxo—gyo <O0.

Define (u(x),v(x)) = (xo,y0) for z € Q. Let w(x) > 0 be the principal eigen-
function for the operator (—A) on © with principal eigenvalue A; > 0 and zero
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Dirichlet boundary conditions. We readily verify that for § > 0 sufficiently small,
(4.4)
(01Au+ u(a —bu+cv) <0 in , for dw(x) <v <7,

IN

02 AU+ (e + fu—gv) <0 in Q, for dw(x) <u <7,

01A(0w) + dw(a — béw + cv)
= dw(—0o1A1 +a—béw+cv) >0 in Q, for dw(zx) <v <o

oo A(dw) + dw(e + fu — gow)
=dw(—o1A1+e+ fu—gdw) >0 in Q, for dw(z) <u < u.

Thus the functions (u(z), v(z)) and (dw(z), dw(z)) form a pair of coupled ordered
upper-lower solutions for the boundary value problem (4.1). By Theorem 1.4-2
in Leung [125], the problem (4.1) has a solution (u(x),v(z)) satisfying

dw(z) < u(r) <9, dw(z) <v(X) <y for z €.

To prove the converse, suppose (4.1) has a nontrivial positive solution (@, v)
and cf > bg. Choose k such that

<k<

SRR
Q =

Define (uq(7),v4(7)) = (aw(z), akw(z)) for z € Q. Considering the equations
(4.1) in a neighborhood of the boundary, we readily obtain by maximum prin-
ciple that the outward normal derivative of 4 and ¥ are strictly negative at the
boundary. Thus we have

(4.5) W) > Uag (), D(T) > vag(x), =€ Q for some g > 0.
By the choice of k, we readily verify that

01Auq + ug(a — bug + cvy) >0 in Q,
(4.6)
09 AV + V(e + fug — gug) >0 in O

for all @ > . Using (4.5), (4.6) and the sweeping principle for quasimonotone
nondecreasing system by means of a family of lower solutions, we assert that

w(r) > u(z), 9(x) > v4(x), € Q forall a> ap.

(The sweeping principle is an extension of Theorem 1.4-2 for the scalar case
described in Leung [125]. The extension to quasimonotone nondecreasing system
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is described in Theorem A3-9 in Chapter 6.) We thus obtain a contradiction by
letting av — o0o. Consequently, we must have (4.3).
We next consider the more general cooperating system:

Au+ uM(u,v) =0

in €,
(4.7) Av+ovN(u,v) =0
u=v=>0 on 0,
where M, N € C'(R x R),
(4.8) M, (u,v) >0, Ny(u,v) >0 for u,v > 0.

(4.9) For w,v>0,-D <M, <0, —-D < N, <0, for some D > 0;
’ moreover, either M, or N, is not identically zero.

Let I'jyy and I'y be points on the open uv-plane defined respectively by the

equations M (u,v) = 0 and N(u,v) = 0. For convenience, define the functions

M; (u,v) = M (u,v)—M(0,0), Ny (u,v) = N(u,v)—N(0,0); and let T'ps, and I'n,

be points on the open uv-plane defined respectively by the equations M (u,v) =

0 and Ni(u,v) = 0. We will assume that

(4.10)
I'pr and I'y are two distinct curves; and the set I'yy, and I'y, are represented
by two distinct positive functions u = ¢1(v), u = 11 (v) respectively for v > 0.

Theorem 4.2. Under hypotheses (4.8) to (4.10), suppose M(0,0) > p1(—A) =
A1, and N(0,0) > p1(—A) = A;.
(i) If Tpr and T'n intersect at a point (xg,yo) in the first open quadrant,
then problem (4.7) has a solution with each component strictly positive in Q.
(i) If the problem (4.7) has a positive solution (with each component strictly
positive in ), then

Y1) ¢1(z)

(4.11) SUPz>0 > infrso
Proof. We have M (xo,y0) = N(xo,y0) = 0. Define (u(x),v(z)) = (xo,y0) for
r € Q. Let w(x),\; be as defined in the proof of Theorem 4.1. For § > 0
sufficiently small, we have:
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(4.12)
Au+ aM(u,v) = zoM(xo,v) < xogM(20,y0) =0 in Q, for dw(z) <v <0,

A+ 0N (u,v) = yoN(u,yo) < yoN(xg,y0) =0 in Q, for dw(z) <u <,

A(dw) + dwM (dw,v) > A(dw) + dwM (dw,0) in Q, for dw(x) <v <7,
= —A\10w + dwM (0w, 0)
> —Adw + dwA; =0 in Q, for § > 0 sufficiently small,

A(0w) + dwN (u, dw) > A(dw) + dwN (0,0w) in Q, for dw(zr) <u <7,
= —A10w + 6wN (0, dw)
L > —Adw + dwA; =0 in Q, for § > 0 sufficiently small.

Thus the functions (u(z), v(z)) and (dw(z), dw(z)) form a pair of coupled ordered
upper-lower solutions for the boundary value problem (4.7). By Theorem 1.4-2
in [125], the problem (4.7) has a solution (u(x),v(z)) satisfying

dw(z) < u(r) <9, dw(z) <v(X) <y for z €.

This proves (i). For part (ii), suppose (4.7) has a positive solution (a(z),v(x))
in 2 and (4.11) is false. That is, assume

infz>0 > SUPz>0

¢1(x) Y1 (x)

x r
Then there exists a constant 7 > 0 such that ¢;(cw(x)) > Tow(z) > Y1 (ow(x))
for all z € Q, and all ¢ > 0. Note that by definition and (4.9), we have
0 = M(¢1(ow(x)),0w(x)) — M(0,0) < M(tow(x),ow(x)) — M(0,0). Thus,
M(0,0) < M(row(x),ow(z)) for z € Q. Similarly, we obtain N(0,0) <
N(tow(x),ow(x)) for x € Q. We thus arrive at the following inequalities for
z e all o> 0:

—A(Tow) = TA\ow < TowM (0,0) < TowM (Tow, ow),
(4.13)
—A(ow) = Ajow < owN(0,0) < N(Tow, ow).

Moreover, by means of maximum principle at the boundary, we can verify that
U > ogTw, ¥ > ogw, for € Q, 0y > 0 sufficiently small. Thus using the family of
lower solutions (07w, ow),o > og for the quasimonotone nondecreasing system
(4.7), we obtain a contradiction, @ > oTw, ¥ > ow, as o — 0.
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For a simple special case for (4.7), we consider

Au + u(mi(v) —mao(u)) =0 -
(4.14) Av 4 v(ni(u) —ng(v)) =0 ’

u=v=0 on 0f).

Here mq1,ma,n1,ns € C%(R);m2(0) = na(0) = 0. As in (4.8) and (4.9), we
assume

(4.15) m;>0,n, >0, fori=1,2.
(4.16) |m5| < D, |nb| < D, forsomeconstant D > 0.

Theorem 4.3. Assume the hypotheses on m;,n; above and (4.15) and (4.16).
Suppose m1(0) > p1(—A), and n1(0) > p1(—A), and further

(4.17) mfy,n] <0, mi,ny >0.

Then the problem (4.14) has a solution with each component strictly positive in
Q if and only if the two simultaneous equations: mq(v) = ma(u),ni(u) = na(v)
has a solution in the first open quadrant in the uwv-plane.

Proof. Hypotheses (4.15) to (4.17) ensures that conditions (4.8) to (4.10) are
satisfied for problem (4.7) with M (u,v) = mq(v) — ma(u), N(u,v) = nqi(u) —
na(v),(except that the function ¢ (v) may possibly be only defined in a bounded
subinterval of v > 0). If the simultaneous equations: mi(v) = ma(u),ni(u) =
na(v) have a solution in the first open quadrant, then we can apply the same
proof as the first part of Theorem 4.2 to assert that problem (4.14) has a positive
solution.

Next, assume that (4.14) has a positive solution. Recall that M;(u,v) =
mi(v) —mi(0) — ma(u), Ni(u,v) = ni(u) — n1(0) — na(v). We verify ¢1(v) =
my H(my(v) — my(0)), 41 (v) = ny* (na(v) +n1(0)). The functions ¢; is concave
down and 17 is concave up. Therefore, mf) is nonincreasing and w1T(:z:) is non-
decreasing. Note also that both ¢; and ; are increasing functions. For v > 0,
let ¢(v) = my'(m1(v),¥(v) = ny'(na(v)), we have ¢(0) = my'(my(0)) >
m51(0) = 0 > nyH(0) = (0). If the lim, .ooni(u) is finite, then ¥ (v) tends
to oo as v tends to a finite number. Then there must be a number x* where
Y(x*) > ¢(z*). Hence 1) and ¢ must be equal at some positive number, and the
simultaneous equations must have a solution in the first open quadrant.

If limy—ooni(u) = oo, then 9 (x) is defined for all > 0, and by Theorem
4.2, we have (4.11):

Y1)

x

¢1(x)

> infz>0 .
X

SUPz>0
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The last inequality implies that there exist xg > 0 such that ¥1(xg) > ¢1(xg).
Since 11(0) = 0 = ¢1(0), there must be a x; € (0,z0) at which ¢](z1) > ¢} (z1).
This can be written as

ny(71) - m (z1) .
i (ny !t (na(x1) +11(0))) ~ mh(my ' (ma (1) —ma(0)))

(4.18)

Since nf > 0,n5 > n4H(0) > 0, we must have ng(x) — oo as © — oo. Conse-
quently, there must exists x2 € (x1,00) such that no(z) > na(x1) + n1(0) and
mi(x) > my(z1) —mi(0) for x > x9. It then follows readily from (4.18) that

ny(@) > ny(z1)
nf(ny f(n2(@))) = nf(ny " (n2(z1)+n1(0)))
(4.19)
> m (z1) > m (z)
mj (my ' (m1(z1)—mi1(0))) = (mh(my " (mi()))
for x > x9. This means
d _ d

i (na(@) > my (ma ()

for x > x9. Note that %nfl(ng(aﬁ)) is nondecreasing in x while %mgl(ml(a:))
is nonincreasing. Consequently, we must have nj!(ng(#)) > my*(my (%)) for
some T > x9; i.e. YP(T) > ¢(Z). We can then conclude the proof as in the last
paragraph.

We next consider a generalization of Theorem 4.1, when the interaction co-
efficients b, ¢, f and g may change with position, and the Laplacian is replaced
by two second order uniformly elliptic operators as follow:

(4.20) Lk—ZaUk )0;0; +Zb]k )0; — cx(x), k=1,2
4,j=1

with

(4.21) aij, € C(Q), bjk,cr, € LX), i,j=1,...,N, k=1,2,

We will consider the problem:
Liu+ ula — b(z)u + c(x)v] =0
in €,
(4.22) Lov 4+ v[e + f(z)u — g(z)v] =0

u=v=0 on 0,
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where b, ¢, f,g € C(Q) satisfy b(z) > 0,g(x) > 0 foreach x € Q, and ¢ >0, f > 0
in Q, ¢ #£0,f # 0; the parameters a,e € R are constants. For any function
h € L*>®(£2), we denote

hr :=essinfq h, hy := esssupq h.

We will consider solutions of (4.22) with w,v in W2P(Q),p > N, and the
equations are satisfied almost everywhere. By the Sobolev embedding, we
have W2P(Q) ¢ C?>N/P=¢ for any small ¢ > 0. Moreover, the functions
u,v € W2P(Q) is twice classically differentiable almost everywhere in Q. Actu-
ally, many of the theorems in the last two sections can be extended in analogous
fashions as below. For convenience, we will let w = 0|_r, ,(2)q(x) denote the
positive solution of

,q(z)

—Liw = wlp(z) — ¢(x)w] in Q, w=0 on 09,

if p1(Ly + p(x)) > 0. Otherwise, let _1, p(z) g = 0 in Q. (Here, we assume
q(x) > 0in ©.) Recall the definition of the principal eigenvalues, p1(—cA+p(z))
and p1(cA + p(x)), given in (1.4) and (1.7) in Section 1.1. We now extend the
definitions naturally when oA is replaced by a second order uniformly elliptic op-
erator. Moreover, for the corresponding Dirichlet problem in a different domain
G, the principal eigenvalues are denoted by p§'(—Ly, + p(x)) and p§ (Li + p(x)).
For more detailed description of the properties of such solutions, the maximum
and comparison theorems in W?2P(£2) theory, the reader is referred to Theorems
A3.1 to A3.5 in Section 6.3 in Chapter 6. The following theorem is an extension
of Theorem 4.1 of this section.

Theorem 4.4 (Positive Solution under Weak Cooperation). Suppose
emfm < brgr; and
(4.23)
Pr(Lr +a+ ()0, e g)) >0, pr(La+e+ f(@)0—1,.ap@)) >0,
then the boundary value problem (4.22) has a solution with each component
strictly positive in €.

Proof. From (4.22), we see that if (u, v) is a positive solution of problem (4.22),
then

=01, atcop(@)s V= O—Lyet fugle)):

By comparison, we readily deduce

a+cyon — (1)L
9[—L1,a+cv,b($)] < 0[—L1,a+chM,bﬂ = br :

Thus,

a+cpyup — (01)L

(4.24) up <
br,
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Similarly, we deduce

e+ faun — (CQ)L.

(4.25) (YIRS
gL

From (4.24) and (4.25) we obtain a bound of any positive solution of problem
(4.22) in terms of a and e as follows:

(a—(c1)r)gr+(e—(c2)r)em
UM < brgr—cmfm ’

(4.26)
(e=(c2)L)br+(a—(c1)r)fm
UM S brgr—cmfm ’

As in (2.14) we consider the problem:
(4.27) —Lov — f(x)uv = v(e — g(z)v) in Q, v =0 on IN.

Define the map v(u) from C'(Q) to C1(Q) as in (2.19) with pi(—02A — fu)
replaced by p1(—La — f(x)u).

Note that if both a < p1(—L1) and e < p1(—Ls), then the second and third
inequality of assumptions (4.23) cannot be satisfied. Suppose e > p1(—Lz), we
write the first equation of (4.22) as

(4.28) —Liu—c(z)v(0)u = au—b(z)u?+c(z)[v(u) —v(0)]u in Q, u=0 on IN

and bifurcate with increasing parameter a at a = p1(—L1 — ¢(®)0_L, ¢ g()])
when (u,v) = (0,0[_1, ¢ g(z)))- From the bound (4.26) of positive solutions in
terms of a, we can show as in Lemma 2.3 that there exists a continuum of
solutions ST of (4.28) contained in R x P, i.e. u > 0 whenever (a,u) € ST and
{fa € R:(a,u) € ST} = (p1(—L1 — c(2)0_ Ly e,g(x)), +0).

If (a,u) € ST, then u > 0 and so v(u) > v(0), i.e. v(u) is not the trivial so-
lution. Consequently, the continuum of solutions {(a,u,v(u)) : (a,u) € ST} for
system (4.22) cannot be connected with the continuum of solutions {(a, u(0),0) :
a > p1(—L1)}. Thus both components of the solutions of (4.22) on the contin-
uum {(a,u,v(u)) : (a,u) € ST} are positive in Q; and by comparison, both the
second and third inequality in (4.23) are satisfied.

Similarly, suppose a > p;(—Lj), we bifurcate with e to obtain a solution
of problem (4.22) with both components positive in €2 for each e > p1(—Lo —
9(%)0—L, ap(x))- This completes the proof

Remark 4.1. From the methods in the previous two sections, we can deduce
that the last two inequalities in (4.23) imply that the related indices of both
solutions (0,01, ¢ g(z)) and (0L, a,b(x),0) of (4.22) are zero.

The previous theorems in this section essentially concentrate on finding
steady states when cooperative interaction coefficients between the different
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species are relatively small. These are reflected for instance in assumptions
(4.3) and the first part of (4.23). We next concentrate on situations when the
cooperative coefficients are relatively large. For simplicity, we will assume

(4.29) Li=Ly=L.

The conditions on large cooperative coefficients will be imposed in the form:

(4.30) cenfr —bmgn > barenr — brer,
or
(4.31) crfL —bymgnm > gmfvr — 9o fr-

In the next theorem, we will see for instance that under condition (4.30), for
any given fixed a < p;(—L), there exists a constant e(a) such that for e > e(a),
the problem (4.22), (4.29) cannot have positive equilibrium. Roughly speaking,
the cooperation rates and growth rate of one species is too large for any possible
coexistence equilibrium.

Theorem 4.5 (Nonexistence under Strong Cooperation). Assume (4.29)
for problem (4.22).

(i) Suppose (4.30) holds, then for any fized a < p1(—L), there exists a number
e = e(a) such that a > p1(—L — c(2)0[_L c(a),g(x)]), and problem (4.22) does not
have any coezistence positive solution if e > e(a).

(ii) Suppose (4.31) holds, then for any fivred e < pi(—L), there exists a number
a = a(e) such that e > p1(—L — f(2)0|_L q(e) b)), and problem (4.22) does not
have any coezistence positive solution if a > a(e).

Before proving this theorem, we first consider the following two lemmas which
estimate the sizes of the solutions, and will be used to prove the theorem.

Lemma 4.1. Assume (4.29), and let (u,v) be any positive coexistence solution
of (4.22). Then,
(i) If e > a, then

cM +gMm
4.32 U< — 0.
(4.32) ~ fo+br
(ii) If a > e, then
(4.33) o< S,
cL + 9L

Proof. Assume (4.29), e > a, and let (u,v) be any coexistence positive solution
of (4.22). Define

(4.34) w = (cpr + gm)v — (fr +br)u.
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We can deduce from (4.22) that we have in Q,

(4.35) (=L —a+bru+ gyv)w > 0.
Moreover, from the second equation of (4.22), we find
(4.36) e=p1(—L — fu+ gv).

Thus the monotonic dependence of the principal eigenvalue on the potential
implies that
a<e<p(—L— fru+ gyv).

This gives p1(—L —a — fru+ gypv) > 0, and
(4.37) p1(—L —a+bru+ gyv) > p1(—L — a— fru+ gyv) > 0.

Consequently, (4.35), (4.37), the strong maximum principle (cf. Theorem A3-1
in Chapter 6), and the argument for strong maximum principle for Theorem 3.5
in p. 35 of [71] imply that w > 0. This completes the proof of part (i) of this
Lemma. Part (ii) is proved similarly.

Lemma 4.2. (i) For a fired a < p1(—L1), let eg(a) > p1(—La) be such that
(4.38) a>p1(=L1 —c(x)0|_1,cq) for each e > eo(a).

Assume that there exists a sequence of positive coezistence solutions (en, U, Uy)
of (4.22), n > 1, such that e, > maz{eg(a),0} for each n > 1 and lim,_€n =
0o. Then, for any compact subset K C ) there exists a positive constant o =
a(K) > 0 such that for each n > 1

(4.39) :—" >a in K.

(ii) Similarly, for a fized e < p1(—Ls2), let ag(e) > p1(—L1) be such that
(4.40) e > p1(—La — f(z)0_L,ap) for each a > ao(e).

Assume that there exists a sequence of positive coexistence solutions (an, U, Uy )
of (4.22), n > 1, such that a, > maxz{ag(e),0} for eachn > 1 and limy ooty =
00. Then, for any compact subset K C () there exists a positive constant 3 =
B(K) > 0 such that for each n > 1

(4.41) Y >8 i K.
Qn

Proof. We first prove the existence of eg(a) with property as sta‘Eed in inequality
(4.38). Since ¢ € C(R2),¢ > 0,c # 0, there exists a ball B with B C 2 such that

¢ = mingc > 0.
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On the other hand, by Theorem 3.4 in [45] or Theorem A3-4 in Chapter 6

0_ _
lime_mM = ¢! uniformly in B:;
e
and hence, there exists é such that for e > é, we have

e —

9[—[/2,6,9} > m in B.

Consequently, by comparison of principal eigenvalues (Theorem 2.3 in [45] or
Theorem A3-5 in Chapter 6), we obtain

CL

B B
Pl = rzeq) < pr(=Ln = Bisieq) < pr(=L1) = 570r—e

for each e > é. Thus, for a fixed a < p1(—L1), there must exists eg(a) > p1(—La2)
such that inequality (4.38) is satisfied.

Let (e, un,vn),n > 1, be a sequence of positive solutions of (4.22) with
en, > max{eg(a),0} and lim,_o.e, = co. Then, from the second equation of
(4.22), we find

—Lov, = epv, — gv% + fupvn, > env, — gv% in Q,
with f # 0; thus v, is a strict positive upper solution of
—Low = epw — gw? in Q, w=0 on IN.

By Lemma 3.2 in Delgado, Lépez-Gémez and Suarez [45] (cf. Theorem A3-3 in
Chapter 6), we find

(4.42) Up > 0[—L2,en,g]-

Substituting (4.42) into the first equation of (4.22) and repeating the previous
arguments, we obtain

(4.43) Un 2 Ol L1 —c(2)0_ 1,y 0, o),0:b(@)]"

Note that the function on the right of the above inequality is well defined and
positive because of (4.38). From (4.43) we find

I b
(4.44) B infamsoo ™ > limin fpso— st O La en g 6HO]
€n €n

We now show that

01— L, —c(2)y

7L2,en,g]7a7b(x)} > CL

(4.45) limin fr—oo >
€n by gm
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uniformly in compact subsets of (2. Let 1,5 be two arbitrary subdomains of
Q) such that
01 CQy, Oy C Q.

Define
o Ol Li—c(@)0)_ 1y e gs0,b()]
n - en I

which is the unique positive solution of

1 a 0[_L27en,g} 2 .

. ——Liw=(—+c——)w— ) = -

(4.46) Liw=(—+c Jw—bw* inQ, w=0 on N

én én én

By Theorem 3.4 in [45] or Theorem A3-4 in Chapter 6,

0_ _
limn_woM =g ! uniformly in Q.
€n

Thus, for any € > 0, there exists ng = ng(€) such that for each n > ng we have

0[—L2,6n,g} cL

(4.47) L4 > L ¢ in Q.

€n €n gMm
Since O, is the unique positive solution of (4.46), it follows from (4.47) that for
each n > ng, the function ©,, is a strict positive upper solution of the problem:
1 CL 2

4.48 ——Liw=(——-¢w—bw
@4 ——Lw= (=g

in Qy, w=20 on 0Ns.

Suppose that ¢ > 0 is sufficiently small such that % — € > 0, then for n
sufficiently large, we have

Q2
cr, —1 —L
L e p(—L) = pi2(=L1)
gm €n €n

— 0 as n — oco.

Consequently (4.48) has a unique positive solution, say @22; and by comparison
we have
0,>06%% in O

for all n sufficiently large. Moreover, from (4.48) we obtain from Theorem 3.4
in [45] or Theorem A3-4 in Chapter 6 that

c €
limn_,oo@;b - L 5 uniformly in €.

bgnm
Thus,

c
liminfn_oo©n > L uniformly in €.
bvgm  bL
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Since the above is valid for any € > 0, we obtain (4.45) uniformly in any compact
subset of 2. We then obtain from (4.44) that
Uy, Cr,

(4.49) liminfn—oo— >
€n bargm

uniformly in any compact subset of , and in particular in ;. We next define

Un N Un
Up = —, O 1= —,
€n €n

and obtain from the second equation of (4.22) that
1. X 5 o
— Loy, = 0, — gU;, + flnOp.
€n

Consequently, from (4.49) we see that for any € > 0, there exists ng = ng(e)
such that v,, is a strict positive upper solution of the problem

1
(4.50) = (1 4 JLCL

—ew —gw? in Q, w=0 on I
en brigm

for each n > ng. Choose € > 0 sufficiently small so that 1 + % —e > 0.
then we see that for n sufficiently large, problem (4.50) has a unique positive
solution, which we denote by ©$%. Moreover, by Lemma 3.2 in [45] or Theorem

A3-3 in Chapter 6, we find
(4.51) m:?zé&

for sufficiently large n.

Let K be an arbitrary compact subset of €2, we choose subdomains €21 C {29
as described above, and K C €;. Then by Theorem 3.4 in [45] or Theorem A3-4
in Chapter 6,

-1

lim O — (1 4 JLL

uniformly in K.
n—o0 brgm

—€)g
Since the limit above is bounded away from zero in K, we obtain (4.39) as
described in part (i). Part (ii) is proved similarly.

Proof of Theorem 4.5.

Assume (4.29), (4.30) and fix a < p1(—L). Suppose there exists a sequence
of positive coexistence solutions of (4.22), (en,un,v,),n > 1, such that e, >
maz{ep(a),0} and lim, e, = co. Let Q1 C Q be an arbitrary subdomain of
Q with Q; C Q. By Lemma 4.2, there exists a = a(€1) > 0 such that for each
n>1

v .
L >a in Q.
€n
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Moreover, by Lemma 4.1, we have for each n > 1

Un _ €M+ 9M Un
en ~ fL+bL ey

Thus by (4.30), there exists € > 0 such that for each n > 1

Unp, CLUn

— < —¢ in Ql.
€n bMen
That is, for all n > 1, we have
(4.52) by, — crv, < —ebpyre, in Q.

On the other hand, we find from the first equation in (4.22) that
a=p1(—L+ bu, —cv,) < p?l(—L + baruyn, — crvy).
Consequently, we find from (4.52) that
a < p?l(—L) — ebyre, — —00 as n — oo.

This contradiction shows that problem (4.22) cannot have any positive coexis-
tence state for e large enough. This completes the proof of Theorem 4.5.

The following theorem concerning a-priori uniform bound for positive solu-
tions of (4.22) will lead to sufficient conditions for coexistence state in the case
of large cooperative coeflicients.

Theorem 4.6. Assume (4.29) for problem (4.22) and N < 5. Suppose that

cr.fr > by,

and for some o > 0
maz{|al, e[} < a;

then there exists a constant C = C(«,Q,b, ¢, f,g) such that
ull ooy £ C5 |[v][zee ) < C

for any positive coexistence solution (u,v) of problem (4.22).

Proof. We shall prove this theorem under the condition a > e. By symmetry,
the result can be proved similarly if e > a. Suppose that the conclusion of the
theorem is false, and there exists a sequence of positive coexistence solutions
(ag, ek, uk, Vi), k > 1 with —a < e < ap < «, such that

(4.53) lim Supk_,oo(HukHLoo(Q) + H’l)kHLoo(Q)) = OQ.
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We claim that
(4.54) lim Supk_,ooHukHLoo(Q) = lim Supk_onkaLoo(Q) = Q.

Otherwise, if {||vg||fo () }r>1 is bounded by a positive constant 3, then the first
equation in (4.22) leads to

—Luy, < (a+ epfB)ug, — bu% in

and by comparison, we deduce that {||ug||r~(q)}tr>1 is also bounded. How-
ever, this contradicts (4.53). Similarly, if {|[ug|[ze()}r>1 is bounded, then
{llvkllLee () tr>1 is also bounded. Consequently, (4.54) must hold. By choosing
a subsequence, if necessary, we may assume that

(4.55) llmk_,ooHukHLoo(Q) = 00, limk_,oo(ak, ek) = (CLOO, eoo),

for some (aoo, €00) € R? satisfying —a < es < @0 < . From Lemma 4.1(ii),
we obtain

< fa + b
crL + gL

For each k£ > 1, let x5 € ) be such that

(4.56) Vg ug, for all k> 1.

(4.57) u(zy) = My = |[ug||z (-
Since €2 is bounded, we may assume without loss of generality that
(4.58) limp— ool = Too € ).

We now consider the two different cases where (i) xoo € Q, or (ii) 2 € 0.
For case (i), denote

§ = d(T0o,00) /2 > 0, e := M % k> 1.

Since limy_.oo M), = 00, we have limy_,.€; = 0. The change of variables

T — Tk

4.59 Y= (2, wy) = €2 (ug, vg), k>1,
k

€k

transforms the system (4.22) into

Apzp, = e%akzk — b(xy + eky)z,% + c(zk + €xy) zpwi,
(4.60)
Apwy, = ézewy, — g(xr + exy)zi + 2k + 1Y) 2pwy,

where

(461) Ak = —E%Zlaijl(xk+eky)8i8j —ekZéyzlbjl(a:k—i-eky)aj—kezcl (.Tk+6ky),
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provided z, + e,y € Q. If y € RN satisfies |y| < %, then z = xp + exy € , and
thus (4.60) holds. For any p > 0, let B, be the ball of radius p centered at the
origin, we have B, C By, for k sufficiently large, since limy_.oc€x = 0. From
definition (4.59) we have z = uy/M}, thus

(4.62) HZkHLOO(Bp) = 1, Zk(O) = 1, for all k& > 1.
Moreover, from (4.56) and (4.62), we have

Jav by
4.63 oy < IMTTOM g all k> 1
(4.63) |[wg || L (B,) < g lrallkz

Using compactness argument as in Section 5.1 or Section A.3 in [125], we can
choose subsequence, again labeled by k, such that there exists non-negative
functions z,w € W*P(B,) N C'(B,),0 <v <1, p> N sufficiently large, with

limg— (25, wi) = (z,w) in (W*P(B,) N CY(B,))>.

We thus have z(0) = 1, and passing to limit as k¥ — oo in (4.60), we find (z,w)
satisfies:

_Zgj:laijl($oo)aiaj2 = —b(To0)2? + c(Too) 2w,
(4.64) in B,.
=3 1ij1(200) 0i05w = —g(200)2® + [(2oo) 2w,

Since p is arbitrary, by a standard diagonal sequence argument we can assert
that z,w € I/Vfo’f(RN ) and (4.64) holds in the whole RY. Moreover, standard

elliptic regularity theory implies that z,w € C?(RY). Furthermore, by a linear
change of coordinates, (4.64) can be reduced to

—Az = —b(200)2% + ¢(T00) 2w

(4.65) in RN,
—Aw = —g(To0)w? + f(Too)zw

From (4.65), we obtain

f(@s0) +b(z)

z) = in RN,
(o) F gl) 2 O 0

(4.66) (A 4+ b(200)z + g(xoo)w) (w —

Since the functions z,w are non-negative and z(0) = 1, the potential coefficient
V = b(x0)z + g(xoo)w of the above equation has the property:

V>0 V#0 in RV.

By a Liouville type Theorem (see Lemma 7.5 in [45] or Theorem A3-6 in Chapter
6), the bounded solution in RY of (4.66) must satisfy:

— z= in RV.
(4.67) w (o) F 9(2a0) 0 R
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Using the relation (4.67), the first equation in (4.65) becomes

A = CE00) f(@00) = Baso)g(Tn0) 5 o pN
(4.68) A R EE jrog

Since cr,fr, > bargar, we have ¢(z) f(ZToo) > b(Z0)9(Zs0). By Theorem 1.1 in
Gidas and Spruck [70] or Theorem A3-7 in Chapter 6, the non-negative solution
of the above equation must satisfy z = 0 in RY, because N < 5. This contradicts
the fact that z(0) = 1; therefore we must have case (ii) with z € 0€2.

For case (ii), we use the same argument as in the second part of the proof of
Theorem 1.1 in [70] or Theorem A3-7 in Chapter 6 to show that the problem:

—Az = —b(200)2? + ¢(T00) 2w
(4.69) in RY,
—Aw = —g(To0)w? + f(Too)zw

where RY = {z € R" : zy > 0}, has a non-negative solution (z,w) with
2(0) = 1. Then, using the same argument as above with RY replaced with
Rf , we arrive again at a contradiction. We thus conclude that there must exist
a-prior bound for the positive coexistence solution of (4.22) as described in the
statement of this Theorem.

Theorem 4.7 (Positive Solution under Strong Cooperation). Consider
problem (4.22) with L1 = Ly and N <'5.
(i) Suppose
(4.70)
cofL —bymgn > byey —brer, and

01 (L1 —+a + C(aj)e[_LQ,&g(m)]) <0, 1.e.a < pl(—Ll — C(.I‘)Q[_L%e’g(z)});

then the boundary wvalue problem (4.22) has a solution with each component
strictly positive in €.
(ii) Suppose
(4.71)
cLfrL —bmgm > gmfm — grfr; and

pr(La +e+ f(2)0-1, ap@)) <0, ie. e < pi(—La — f(2)0_1, ap));

then the boundary value problem (4.22) has a solution with each component
strictly positive in €.

(Outline of Proof.) Let G(e) := p1(—L1—cl[_L cq]), G(e) is a decreasing function
of e. For a fixed a < p1(—L1), we find from Theorem 4.5 above that there exists
a number e(a) such that if a > p1(—L1 — c(2)0_L, ¢(a),g(z)]) = G(e(a)), then
there is no coexistence state, and if e > e(a) there is no coexistence. Since
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O—Loeg) = 0if e =0 and a < p1(—L1 — ()0, ¢ g(z)) When e = 0, there
is a number e, such that a = G(e,). Theorem 4.6 above gives uniform bound
for all solutions under first inequality in (4.70). Hence with e as the bifurcation
parameter, the branch of unbounded curve of solutions has to connect e to
minus infinity. That is bifurcating (e, u,v) at (eq,0,0[—L, ¢, ¢(x)]), the branch of
positive solutions connects e from e, to minus infinity. However, if e < e,, then
G(e) > G(eq) = a. This means the second inequality in (4.70) is satisfied. This
proves part (i). The second part is proved in the same way by symmetry. (See
Fig. 1.4.1 and Theorem 4.9 below for clarification, we allow both e and a to be
< p1(—Lq) simultaneously.)

e

A

a=Gle):=| pi(=L=cO_p.q)

a< Gle)

or a> G(e)

or

P (L+a+cO_p,,0) <0

e(ao) ﬁI(L'l'CH'C 0[—L,€,g]) >0

~ e= p;(=L=f O_Lqp)

pi(=L)

e< pi(=L—f O_pap)
or

P (Lte+f O _pap) <0

Figure 1.4.1: (For large ¢, f) Curves bounding regions of coexistence on (a,e)
plane when b, ¢, f, g are fixed, and L = Ly = Lo.
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Remark 4.2. Roughly speaking, suppose

(4.72) crfr — bugnm > max {byrenr —brer, gufir — grfr}

and some of the semitrivial positive solution is “linearly stable” (with index 1),
then there exists positive coexistence state to (4.22).

The following theorems describe more carefully the set of parameters a,e
when one or more coexistence state may occur. For fixed a, we define interval
for the parameter e so that there exist coexistence solution(s) by I§. For fixed e,
define interval for parameter a so that there exist coexistence solution(s) by I¥.
The following theorem first considers the case when the cooperative coefficients
are relatively small.

Theorem 4.8. Assume the first inequality in (4.23) for problem (4.22), and let
IT, 15 be defined as above.

(i) Suppose e > p1(—La), then either If = (p1(—L1 — c(2)0|_1, ¢ g(x)]> 00) OT
there exists a. < p1(—L1 — c(@)0|_1y,e,g(x)) Such that If = [a.,00). If a. <
p1(=L1—c(2)0|_ 1, e g(x)), then there exists at least two positive coexistence states
for a € (ax, p1(=L1 — c(2)0_L, e g(x))))-

(ii) Suppose a > p1(—L1), then either 1§ = (p1(—La — f(2)0|—L, o) ) OT
there exists ex < p1(—La — f(2)0|_1, ap@)) such that I = [es,00). If ex <
p1(—La — f(®)0_L, ap)), then there exists at least two positive coexistence
states for e € (ex, p1(—L2 — f(2)0_1, ab()]))-

Remark 4.3. The details of the proof of the above theorem can be found in
Theorems 8.8 and 8.14 in Delgado, Lépez-Gémez and Suarez [45]. The idea
of the proof of part (i) is as follows. In case I{ is larger than (pi(—L;1 —
()0 14,e,9(x)]» ), then there exists a coexistence state (u.,v.) when a = a.
Moreover for such e there will be a maximal coexistence state (u¢,v®) satisfying
Uy < u® < Kyp,v, < 0v® < Ky for some large constants Ky, K5. Using degree
theory method as in the last chapter, it can be shown that the index of this
maximal coexistence solution is 1. In order to satisfy the homotopy invariance
of degree in an appropriate set of positive functions, there must be at least one
more positive coexistence solution.

Similar multiplicity results can also be obtained in the case for large coop-
erative coefficients. In this case, we use homotopy invariance and show that the
index of an appropriate minimal coexistence state is 1 to conclude that there
must be another positive coexistence solution.

Theorem 4.9. Consider problem (4.22) with L1 = Ly = L and N < 5.
(i) Assume the first inequality in (4.70) and a < pi(—L). Then either I§ =
(—00,€q) or I§ = (—00,€*] for some e* > e, where e, is the unique value of
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e satisfying a = p1(—L — c(2)0_L e, g(2)))- If 1§ = (—00, €] with e* > e4, then
problem (4.22) has at least two coexistence state for each e € (eq,€").
(ii) Assume the first inequality in (4.71) and e < p1(—L). Then either I{ =
(—00,ae) or If = (—o0,a*] for some a* > a. where ae is the unique value of a
satisfying e = p1(—L — f(2)0|_L . b)) If If = (—00,a*] with a* > a., then
problem (4.22) has at least two coexistence state for each a € (ae,a™).

The details of the proof of the theorem above can be found in Theorems 8.9
and 8.10 in [45].

Notes.

Theorem 4.1 is due to Korman and Leung [107]. Theorems 4.2 and 4.3 are
found in Li and Ghoreishi [149]. Theorems 4.4 to 4.9 are obtained from Delgado,
Lépez-Gémez and Suarez [45].

1.5 Stability of Steady-States as Time Changes

In this section, we discuss the stabilities of the steady states found in the previous
sections. Here, stability can be interpreted slightly differently in various cases.
We might prove directly that certain smooth solutions of the corresponding
parabolic problem stay close and tend to the steady state. Sometimes, only
linearized stabilities are considered, and the steady states are stable or unstable
with respect to solutions of the corresponding parabolic problem in appropriate
functions spaces by means of applying standard stability theorems. In case that
the linearized problem has zero as its eigenvalue, more sophisticated theorem
will be applied. We will call nontrivial non-negative steady-state solutions with
one component identically zero semi-trivial solutions.

Part A: Prey-Predator Case.

We first consider the prey-predator case discussed in Section 1.2. Before
discussing the stability of the coexistence states, we note a very remarkble nec-
essary and sufficient condition relating the existence of positive coexistence state
and the linearized stability of the trivial and semi-trivial non-negative solutions.

Theorem 5.1. Consider problem (2.23) under hypotheses (2.24) to (2.27) and
additionally:
h(0) — m(0) # \d, and My(u,v) <0 if u,v > 0.

Then problem (2.23) has a positive solution iff the point spectrum of the lin-
earized system at each of its trivial and semi-trivial non-negative solutions con-
tains a positive number.
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Proof. We first prove necessity, and assume (2.23) has a positive solution (@, 7).
The possible trivial or semi-trivial non-negative solutions are (0, 0), (ug, 0), (0, vo).
We thus have to consider the linearization of the operator:

6.1) S H I PRtk

at these three solutions. By comparison, we have ug > u; thus by Lemma 2.1,
we have M(0,0) > A;. That is, p1(A + M(0,0)I) > 0. The Fréchet derivative
F’(0,0) is given by:
A+ M(0,0)1 0
2 F’ = ’ .
(5:2) (0,0) [ 0 dA + (h(0) — m(O))T

Hence, the spectrum of F/(0,0) contains a positive real number. We next con-
sider the Fréchet derivative F'(ug,0):

y w\ | Aw+ (M(ug,0) + uoM,(uo,0))w + woM,(ug, 0)z
(5:3) F(uo,0) < z) N [ OdAz + ?h(uo)o— m(0))z ’ ’ ] '

We see that F”(ug, 0) has only pure point spectrum o, given by o, = {£1,&2, ... }U
{61,02, ...} where {{1, &2, ... } is the point spectrum of the operator A+ (M (ug, 0)+
wo My (up,0)), while {61,60s,...} is the point spectrum of the operator dA +
(h(up) —m(0)). By Theorem 2.5 (ii), (iii) we have 6; = p1(dA+ (h(ug) —m(0)) >
0. This means o, contains a positive number.

In case the solution (0,vy) of (2.23) exists with vy nontrivial, then Lemma
2.1 implies ~(0) > A1d + m(0). We apply Theorem 2.5(iii) to assert p;(A +
M(0,v9)) > 0. We then consider the Fréchet derivative: F’(0,vp)

) w) Aw + M (0,vg)w
G4y F0w) ( 2 > - [voh’(o)w + Azt (h(0) — mlun) — o (v0)):

As in the above case, we deduce that the spectrum of F’(0,vg) contains a positive
number.

We next prove the sufficiency part of this Theorem, and assume the point
spectrum of the linearized system at each of the trivial and semi-trivial solu-
tions contains a positive number. First, consider the point (0,0). From the
representation (5.2) for F’(0,0), we must have either p;(A + M(0,0)I) > 0
or p1(dA + (h(0) — m(0))I) > 0. There are thus three possible cases (a)
M(0,0) > A1, h(0) < Aid + m(0); (b) M(0,0) > Ay, h(0) > A\id + m(0); or
(c) M(0,0) < Ay, h(0) > A1d + m(0).

We first consider case (a). Since M (0,0) > 0, we have a solution (ug,0) with
ug nontrivial. Consider the linearization of the operator u :— Au + uM (u,0)
at ug. The principal eigenvalue for the operator A + M (ugp,0) is zero. By
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comparison, the principal eigenvalue &; of the corresponding linear operator
A+ [M (ug, 0) + uo My (up, 0)] must have & < 0. From (5.3), the spectrum o, of
F'(up, 0) satisfies 0, = {&1,&2,... }U{61,02,...} where {{1,&2,. .. } is the point
spectrum of the operator A + [M (ug, 0) 4+ uo My (ug,0)], while {01, 6s,. ..} is the
point spectrum of the operator dA + (h(ug) — m(0)). Thus & < 0 implies that
the principal eigenvalue 6y of the operator dA + (h(up) — m(0)) must be > 0.
From Theorem 2.5(ii), we conclude that problem (2.23) has a positive solution.

We next consider case (b). Since h(0) > A\id + m(0), we have a solution
(0,v9) with vp nontrivial. Consider the linearization of the operator v :—
dAv 4 v(h(0) — m(v)) at vy. By comparison, the principal eigenvalue &; of the
corresponding linear operator dA + [h(0) — m(vg) — vom/ (vg)] must have 6; < 0.
From (5.4), the spectrum o, of F'(0,vg) satisfies o, = {51, &, ... U {51, Oy, ... }
where {§~1,§~2, ...} is the point spectrum of the operator A + M (0,vg)I, while
{61,05,...} is the point spectrum of the operator dA + [R(0) —m(vg) — v/ (vo)].
Thus 6; < 0 implies that the principal eigenvalue &; of the operator A+M (0,v0)1
must be > 0. From Theorem 2.5(iii), we conclude that problem (2.23) has a pos-
itive solution.

Finally, we now show that case (c¢) cannot occur. Since h(0) > A\id+m(0), we
have a solution (0, vg) with vy nontrivial. As in the last paragraph, the principal
eigenvalue £ of the linear operator A + [2(0) — m(vg) — vom’(vg)] must have
6, < 0, and the principal eigenvalue §~1 of the operator A + M (0,vg)I must be
> 0. However, by assumption M (0,0) > M (0,vp); thus p(A + M(0,0)) > 0.
This contradicts the condition M (0,0) < Ay of case (c).

This completes the proof of Theorem 5.1

The problem of uniqueness and stability of positive solutions of (2.23) is
usually quite difficult. We now consider the uniqueness and stability of positive
solution for a special case of (2.23) when the diffusion parameters are small.
This is a singular perturbation problem. The result can also be used to study
the situation when the space domain is large. We will see that the effect of the
boundary condition will become less significant. More precisely, consider

eAu+u(a —bu—cv) =0
in €,
(5.5) eAv + d o(h(u) — m(v)) =0

u=v=20 on 0f).

The functions h and m belong to C1(R), with b’ > 0 and m’ > 0;

5.6 o
(5.6) a,b,c,d and € are positive constants.

For convenience, we denote

(5.7) F(u,v) = (u(a — bu — cv), d_lv(h(u) —m(v)),
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X =LP(Q) x LP(QQ), p > 1, A =diag(A,A) is an operator on X.

Theorem 5.2 (Uniqueness near Constant Equilibrium). Assume that the
equation F(u,v) =0 has an isolated oot wy = (U, v) in the first open quadrant
in R?, and there exists a constant By such that m(Bgy) > h(a/b). Then the
problem (5.5) has a unique solution we in a neighborhood N (wq) of the constant
function wg in X for sufficiently small € > 0. Moreover, ||we — wpl||x — 0 as
€— 0.
Proof. From the proof of Theorem 2.5. we have an a-priori bound on the
values of all positive solutions of (5.5), independent of € > 0. We can modify
the function F'(u,v) for large |u| + |v|, and for v < 0 or v < 0, without affecting
the equilibrium positive solutions we are seeking. We may thus assume without
loss of generality that F'(u,v) and all its first partial derivatives are bounded for
all (u,v) € R2, and the first or second component of F is zero when u < 0 or
v < 0 respectively. By comparison and sweeping principle argument for scalar
equations, we can readily justify that the solutions we found will be positive
solutions of the original problem.

Let p be a large positive number greater that max{2,dim Q}, and consider
the operator A on LP(Q2) x LP(Q):

(5.8) A— [ﬁ g]

with domain D(A) = (W2P(Q) N W, P(2)) x (WP(Q) N WP (Q)). We may
consider the functions F' to be a mapping from LP(Q2) x LP(2) into L>°(Q) x
L>(Q), and thus into L"(Q) x L"(Q) for any r € [1,00). Due to the structure
of F, we can assert that the operator is continuous from LP(Q) x L¥(Q) into
L™ (2)x L"(2). (See Theorem 19.2 in Vainberg [222] or Theorem A4-1 in Chapter
6). Let F’ be the Jacobian matrix of F', we can similarly obtain the mapping
from LP(Q) x LP(Q) into the entries of F’ in L"(2) is continuous. Moreover,
using Holder’s inequality i.e.||fg|lq < [|f|lpllgllr for 1/¢ = 1/p + 1/r, and the
argument in Section 20 in [222], we can show that F' maps LP x LP into LY x L4
with continuous Gateaux derivatives expressible by means of F' € M? where M?
denotes 2 x 2 matrices with entries in L"(€2). Since its Gateaux derivative F” is
continuous, the map F' is Fréchet differentiable as a mapping from LP(Q) x LP ()
into L1(2) x LI(Q2) (cf. Theorem 3.3 in Vainberg [222] or Theorem A4-2 in
Chapter 6). More precisely, we obtain

F(w) = F(wi) = F'(w1)(w — wi) + 0(w),
(5.9) i
with F'(w1) € M2, ||8(w)llq = o(|[w — w1]]p),

where w, wy are elements of LP(2) x LP(£2). Note that r can be chosen arbitrarily
large so that ¢ can be made large and satisfies ¢ > max{2, dim Q}. Moreover we
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have ¢ < p and L? O LP. The operator A defined in (5.8) can be extended from
LP(Q) x LP(Q) into L4(Q) x LI(2), with domain D(A) = (W22(Q) N W,(Q) x
(W24(Q) N Wol’q(Q)). We will denote by A as operator in both LP(2) x LP(Q)
and L1(Q) x L1(2) without causing confusion.

The function wy is a constant function in Q, and thus F'(wg) is a constant
matrix which commutes with the operator A. We have:

N ¢
(5.10) Fi{wo) = dYoR(4)  —d~Lom/ (%)

Let 1, uo be eigenvalues of the matrix F”(wg). Then we have
p1 + po = —bi — d”om/(0) <0,
p1 - 2 = bd =Y aom/ (0) + ed™ aoh (@) > 0.
This implies that Rep; < 0 and Reps < 0. Thus we have the spectrum
o(F'(wo)) C{z:2€C, Rez < —¢ < 0} for some constant ¢.

The Cy semigroup U (t) generated by the bounded operator F”(wg) satisfies
lU®)]] < Me™® for some constant M > 0. For each ¢ > 0, the operator
€A generate a Cy semigroup T, with ||T|| < My, where My > 1. Since €A
commutes with F'(wg), we have T (t)U(t) = U(t)T.(t), and ||[(T.(t)U(t))"|| =
[(Te(nt)U(nt))|| < MogMe . Let Sc(t) be the Cy semigroup generated by

€A + F'(wp), then the Trotter product formula (Corollary 5.5, in Chapter 3 of
Pazy [184] or Theorem A4-6 in Chapter 6) yields for all = € L9(Q2) x L1(Q):

(5.11) Se(t)x = limp—oo(Te(t/n)U(t/n))" x = limp—oo(Te()U(t))x.
We thus have
(5.12) |Sc(t)|| < MoMe™®,

which is independent of € > 0. We can thus assert that 0 is not an element of
o(eA + F'(wp)), and the resolvent operator satisfies:
M M,

(5.13) led + Flwg)) || < =22
by using the general version of Hille-Yosida Theorem or Theorem A4-3 in Chap-
ter 6.

For a small 0 > 0, let Ns(wo) = {w € LP(Q) x LP(Q) : |[|lw — wpl|, < 0} be
the d-neighborhood of wg in LP(Q2) x LP(2). We can consider problem (5.5) as
finding a solution of

(5.14) —ecAw = F(w)
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in a neighborhood Nj(wp) of X = LP(Q) x LP(Q2). Since F(wp) = 0, we can set
wy to be wp in (5.9) to rewrite (5.14) as

(5.15) (eA+ F'(wo))w = F'(wo)wo + 0(w),

where ||6(w)]||; = o(||w —wo||p) (Here, the function 6 is determined by wp). For
w € X, let

(5.16) Qc(w) := (eA+ F'(wo) ' [F' (wo)wo + O(w)].

We now show that for € > 0 sufficiently small, Q. maps Ng(wy) into itself. Note
that 0(w) € LI(2) x L4(R), and thus 61 (w) := (eA+F'(wg))10(w) € W24(Q2) x
W24(Q), by the regularity theory of elliptic equations. Since ¢ > dimQ, we
obtain by Sobolev embedding that ||6;(w)||, < c1l|1(w)|lwze < c2||0(w)||q =
o(||lw — wol|p, for some constants ¢y, cz. Hence, for 6 > 0 sufficiently small, we
have

(5.17) |61 (w)||p, < /2 for w € Ns(wp).

We next consider the term (e A+ F'(wq) "1 F’(wo)wp in (5.16). The Cy semigroup
generated by eA+F’(wp) satisfies (5.12), and (e A+F'(wp))zr — F'(wp)x ase — 0
for any x € D(A), where D(A) is the domain of A, which is dense in X. By the
The Trotter-Neveu-Kato Semigroup Convergence Theorem (see Theorem 7.2, on
p. 44 in Goldstein [74] or Theorem A4-7 in Chapter 6), we find S.(t)x — U(t)x
for all t > 0, z € X. Moreover, the resolvent satisfies R(\,eA + F'(wp))x —
R(\, F'(wg))z for any x € X as € — 0 with A > —¢, where R(\, A) denotes the
operator (A — A)~1. Putting A = 0, we find (eA + F'(wo)) o — (F'(wp)) z.
In particular

(5.18) (€A + F'(wo)) ' F'(wp)z — z for any z € X,

as € — 0. Thus for sufficiently small ¢, we have ||(eA + F'(wg))  F’(wo)wg —
wollp < /2. Since

1Qe(w) —wolly < [[(eA + F'(wo)) ™ F' (wo)wo — wolp + |61 (w)|l,

we find from (5.17) and the last inequality that () maps Ns(wp) into itself. Note
that for wq,wy € Ne(wp), we have

Qe(w1) — Qe(wz) = (eA+ F'(wp)) ™! (0(w1) — O(w2)).
By means of Sobolev embedding and elliptic W24 estimates, we find

1Qe(w1) = Qe(wa)llp < K|[0(w1) = O(w2)]lq,
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for some constant K. Using the continuity of Gateaux derivative F’, Lagrange’
formula, and Holder’s inequality as mentioned above, we deduce:

[|0(w1) — 0(w2)llq < Bllwr — w2llp

where 3 is arbitrarily small if wy,ws are close enough to wgy in X (cf. [222]).
From the last two inequalities we find that Q. is a contraction in Ns(wg) for
sufficiently small 4. We thus obtain in the neighborhood a unique fixed point
we, which is the solution of the problem.

Remark 5.1. The solution in [IW2?(2)NW,"*(92)]? found in the above theorem
is actually a classical solution. However, it converges to the constant solution
as € — 0 only in LP(Q) x LP(§2). The fact that the product of the eigenvalues of
F'(wy) is positive is a consequence of the prey-predator interaction. It leads to
the fact that all eigenvalues have negative real parts.

In order to study the stability of the steady-state found for (5.5), we now
consider the parabolic problem:

ut(Z,t) = R72Au + u(a — bii — cbd)
(z,t) € Q% (0,1),

(5.19) v(Z,t) = R72A0 + d~*o(h(a) — m(v))
u=0v=0 (z,t) € 00 x {0},
(5.20) (@(z,0),3(z,0)) = (7o(F), o (7)) 7eq.

For R > 0 sufficiently large, we have an equilibrium solution (ar(Z),vr(Z)) of
(5.19), which is in an arbitrary small neighborhood of wy in X. Here, we may
define (ug(x),vr(z)) := (ar(Z),vr(z)) for x € RQ where T = x/R € (.

Let

(5.21) B = {(u,9) : (1,9) € C(Q) x C(Q), u =10 =0 on 0Q}.

The operator A; := diag.(R™2A, R"2A) is an infinitesimal generator of an an-
alytic semigroup on B for ¢ > 0, with domain D(A;) = {(u1,uz) : 4; € WHP(Q)
for all p,u; =0 and Au; = 0on 09Q, 1 = 1,2}, If (up,v9) € B, we can
consider the solution of the initial boundary value problem (5.19), (5.20) as a
function

(5.22) (a(-,t),9(-,t)) € C([0,T], B) n C*((0,T], B),

with (a(-,0),0(-,0)) € B, (u(-,t),0(-,t)) € D(A;) for all t € (0,7]. We have the
following stability theorem.
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Theorem 5.3 (Asymptotic Stability under Small Diffusion). Assume all
the hypotheses concerning F(u,v) in Theorem 5.2. For R > 0 sufficiently large,
the equilibrium solution (ag(Z),vR(Z)) of (5.19) is asymptotically stable in the
sense that any solution of the initial boundary value problem (5.19), (5.20), with
initial condition in B, considered as a function described in (5.22) will satisfy:

(5.23) 60 £),5(,#) — (@r(z), 5(@))|[5 — 0, as t — +oc,

provided that ||(ug, Vo) — (ur(Z), vr(Z))||B is sufficiently small, where
(5.24) (a(2,0),5(7,0) = (79 (2), 50(2) Teq.

Proof. (Outline) To prove the asymptotic stability of (ugr,vr), we apply a
stability result of Mora [176] or Theorem A4-9 in Chapter 6. We see that it
suffices to show that the spectrum of the linearization Ar + Bg of the elliptic
system corresponding to (5.19) at (g, Ur) is in a subset of {z : Rez < —¢; } for
some ¢1 > 0 where
L [R—m 0 }
B=1 0o R2A|

aupr — 2bup — cvRr —CUR
d~'oph/(ag)  d~'(h(ag) — vrm'(vr) — m(vR))

are operators on B given in (5.21). Let Sy := {z: Rez < —M}. For any large
M > 0, the spectrum of the operator Ap is contained in Sy for all large enough
R > 0. Since the functions ur and vr are uniformly bounded for all R, the
norms of the operators Bgr are uniformly bounded as operators on the Banach
space B. Moreover, the operators Az and Bgr commute. We thus obtain from
the semicontinuity of the spectrum of closed operator (see Sections 3.1-3.2 of
Chapter 4 in Kato [102] or Theorem A4-10 in Chapter 6.) that the spectrum of
(AR + BpR) is contained in a closed subset of the left open complex plane of the
form {z: Rez < —¢1}, for some ¢; > 0, provided R is sufficiently large.

Br =

The last theorem gives the stability of a steady-state for only a very special
situation. More general theorem will be more elaborate. In view of Theorems 5.2
and 5.3, one is interested in conditions which insure the uniqueness of positive
solutions for certain prey-predator systems. In the case of Volterra-Lotka type
of interaction, there are some simple conditions. Without loss of generality, we
consider problem (2.1) with o1 = 09 = 1 as follows:

Au+u(a —bu—cv) =0
in €,
(5.25) Av+v(e+ fu—gv) =0

u=v=>0 on 012,
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where a,b, ¢, e, f and g are positive constants.

Theorem 5.4 (Uniqueness under Weak Interaction). Consider the bound-
ary value problem (5.25) under hypotheses:

a> A, €> A,
(5.26) cf < gb, and

a > gb(gb — cf) 71\ + ce/g].
There exists a positive constant k < 1 such that if
(5.27) cf < k(bg),

then (5.25) has a unique coexistence solution with each component strictly posi-
tive in Q, and in C*T(Q).
Proof. Let C, F be positive constants such that ¢ < C, f < F and

(5.28) CF < gb, a> gb(gh— CF) [\ + Ce/qg].

Let U,U,V,V € C?*2(Q) be strictly positive functions in € satisfying the fol-
lowing scalar problems:

AU+ U(a—bU)=0inQ, U=0 on 09,

A

AV—l—V(e—i—%—gV):O inQ, V=0 on 99,

5.29 . . i
(5.29) AU+ UT(a—bU—-CV)=0inQ, U=0 on 9,

AV +V(e—gV)=0inQ, V=0 on 99.

Note that U, V, V exist because a, e, e+Fa/bare > Aj; and U,V,Vare>dp >0
in € for sufficiently small § > 0. One can readily deduce by upper lower solutions
method that V(z) < %(e + £, hence a — oV >a-— %(e + £2y > )y for all
x € . Consequently, we obtain

0<dp<U<U, 0<6p<V<V

for x € 2,6 > 0 sufficiently small. Since the outward normal derivatives of ¢
are negative on the boundary, there must exist a constant K > 0 such that

(5.30) U<KU, V<KV, U<KV, V<KU
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for all z € Q.
Define uy := U. Let v be the positive solution of

Avy +vi(e+ fup —gvy) =0 in Q, v; =0 on 09,
and u;,v;,1 = 2,3,... be defined inductively by:
Au; + ui(a — bu; — cvi—1) =0
in €,
(5.31) Av; +vi(e + fu; — gv;)) =0
u; =v; =0 on .

As described in Leung [123] or Section 5.3 in [125], the sequence satisfies:

U<up <ug<ug<--<us<ug<u <U,
(5.32)
V<uyuy<yu<<yl <y <3<V

for all x € Q. From (5.31), we find for i > 1:
0= /Q(U22'+2Au2z'+1 — ugi+1Augito)dr

= - /Q Ui+ 1U2i42[b(U2i2 — U2it1) + c(vait1 — v2;)]dr,
which implies
(5.33) b/Q(U2i+1 — Ui 4+2)U2i+1U2i42dT = C/Q(UZH-I — V2;)Ui+1Ui+2d.
Also for i > 1, we have

0= /Q(UZH-IAUQZ' — v9;Avoiq1)dx

= - /Q V2:2i+1[f (u2i — uiv1) + g(vait1 — v2i)]d,

which implies
(5.34) 9/{2(U2z‘+1 — V2i)V2iV2i41dT = f/Q(u%—i—l — Ug;i)V2;V2;41dT.
Moreover, for i > 1

0= /(U21AU2¢+1 — ugit1Aug;)de
Q
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= —/ Uiuzi+1[b(u2i — u2it1) + c(v2i-1 — vy;)]dz,
0
0= /(U%—IAU% — v2;Avg; _1)dx
Q

= - /g; V2i—1V24 [f(UQZ - U2i—1) + 9(U2i—1 - UZi)]dxa

respectively gives

(5.35) b/ (U2i41 — Ui )ugiuiy1dr = C/ (v2i—1 — v2;)ugiugi1de,
Q )

(5.36) 9/ (v2i—1 — Vo) V2i—1V2idx = f/(u2z'—1 — Ug;)Vi—1V2;dx.
Q Q

Using (5.33), (5.34) and (5.30), (5.32) we deduce that:

fQ(U2¢+1 — U2i42)U2i+1U2i2dT = % fQ(U2z’+1 — V2; ) Ui+ 1U2i42dT
(5.37) i )
< § Jq K (v2i41 — v2i)vaiviprda = K2% Jo(u2it1 — u2i)vavi 1 da,

Then, we use (5.35), (5.36) and (5.30), (5.32) again to obtain:

Jo(ugir1 — ugi)ugiugiprde = § [o(vai—1 — va;)ugiugip1de
(5.38) ] )
< £ Jo K2 (vaim1 — v2i)v2i—1vgida = KQ% Jo (i1 — ugi)vai—1vada.

Combining (5.37), (5.38) and (5.30), (5.32) once more, we obtain:

o C
(5.39) /(U2z’+1 — U2i42)U2i41U2i42dT = Kg(%)Q / (ugi—1 — ugi)ugi—1uzidx
Q Q

for each integer ¢ > 1. From (5.39), we conclude that if
cf < (K)™(bg),

then lim; . fQ(UQZ'+1 — Ugit2)Ugi+1uzi+2dr = 0. By dominated convergence,
and limiﬁoou%_kl =u* > 0in , limi_,oouHQ = u, > 0in €, limi_wo(u%_,_l —
Ugit2) = u* —uy > 0 in , we conclude that u* = u, for all z € Q. Similarly,
from lim; o0 (V241 — V2i42) = v* — v, > 0 in Q, we deduce v* = v,. By [125],
the solution of (u,v) of (5.25) satisfies u, < u < u*, v, < v <v* in Q. We thus
obtain (5.27) by choosing k = K 4.
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Part B: Competing Species Case.

We next discuss some stability results for the competing species case, and
consider system (1.2) with initial conditions:

(5.40) u(z,0) = u’(z), v(z,0) = v°(z) for x € Q.

We assume that

(5.41)
The functions f; have Holder continuous partial derivatives up to second
order in compact sets, 1 = 1,2; a1, a9,01 and oo are positive constants.

Moreover

£i(0,0) =0, i =1,2;

(5.42)

%];1, %{; <0, i=1,2 for (u,v) in the first open quadrant.

Under appropriate conditions, we will prove the local asymptotic stability of
steady states by the method of upper lower solutions for the corresponding
parabolic problem. The main assumption essentially means the competitions
between the species are relatively small. The method of proof here avoids the
problem of locating the spectrum of the linearized equation. It may not be
readily justified that the spectrum is on the right half plane as in proof of
Theorem 5.3 above.

Theorem 5.5 (Asymptotic Stability under Weak Competition).  Con-
sider the initial-boundary value problem (1.2), (5.40), under hypotheses (5.41),
(5.42) and

(5.43) a; > oiA, 1=1,2.

Suppose (u,v) = (u1(x),ae(x)) is an equilibrium solution of (1.2) with each u;
in C?T(Q), @;(x) > 0 in Q, Ou;/Ov < 0 on O, fori=1,2, and

s (2)-(8f;/0us) (@1 (x), T2 (x))
SupzeQ|u S (@)- (afj/au])(u (r),'2(r))|
(5.44)

for each 1 < i,j < 2,0 # j, then (uy(x),us(x)) is asymptotically stable. Here
asymptotically stable means that if (u,v) = (uy(z,t),uz(x,t)) is a solution of
(1.2), (5.40) with u; € C*T1H/2(Q % [0,T]), each T > 0,i = 1,2, then
ui(z,t) — w;(z) uniformly as t — +o00,i = 1,2 in Q, provided that (uy(x,0),
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ua(z,0)) = (u®(x),°(z)) and its first partial derivatives are close enough to that
of u;(x) respectively for all x € Q,1=1,2.

Remark 5.2. Recall that in Section 1.3, there are many theorems giving suf-
ficient conditions for the existence of positive equilibrium. For (3.3) with suffi-
ciently small ¢ and f, one can show that there exists equilibrium with property
as described in (5.44).

Proof. Hypothesis (5.44) implies that there are constants pq, ps close enough
to 1, with p; < 1 < pg such that for each x € €,

Ui () mazy) <s,7<py |(0F5/0ui)(sti (x),7U2(2))|

0 < o @rming, 2aes @F; /0w ) (st (@) i2(@)]

(5.45)
a;(z) (min s [(Ofi/0ui)(st1(x),Tu2(x))]
< infren B0 R o om WG @ < o0

for each 1 < 4,5 < 2,4 # j, where €; is a small positive number. We will
construct appropriate lower and upper solutions v;, w;, and apply a comparison
theorem to obtain the results here. Let

G(z) =

)

uz(w) minp1§8§f§p2|g_£(3ﬂl( ), Tliz))|
|

al(a:)maxplgsgﬂg—ﬁ(%l(x) 2(7))

for z € ; and let @ be a number, 1 < a < py such that (1 — p1) > (a —
1)infreqG(z). Define wo(z,t) = p(x,t)is(x), p(x,t) = 1+ (a—1—eqiiz(z))e™ ™,
where €4 and m are positive constants to be determined later(one condition on
€4 is e4max,cqla(r) < a—1). On the other hand, define vy (z,t) = q(z,t)u1 (),
q(z,t) = 1 — (1 — B(z))e ™, where 8(z) = 1 — (o — 1)infreqG(z) + e2(a —
1) 4+ es(a@ — Duy(x), eo and e3 are small positive constants satisfying es +
e3mat,cqtl(x) < € < infreaG(x). (Observe that p1 < B(x) < 1). We have
(5.46)

O'QAQUQ[CLQ + fQ(’Ul,’wQ)] — %

= p(x, t)uz[f2(v1, wa) — fa(vr,t2) + favy,t2) — fo(t, U2)]

+e ™ m(a — 1 — eqtia(x)) Uy — U202e4 AUy — 20264 Y 1y a%xz]

< p(z,t)us [mam1§T§p2{g—£(v1, Ti) H(a — 1)tige™™ — equide ™}
— mingy, <s<1{ 92 (stiy, 2) } - {(1 — B)ine™™ — es(a — D)afe ™} + e ™[]
where [- - -] represents the terms inside the brackets immediately before the

inequality sign <, and 3 = 1 — (a — 1)infecoG(z) + ea(ar — 1). Set €4 = m = e3;
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thus

\p(az, t)ﬂ@ [mm?lﬁrépz{g—g(vh Ta?)}{(_€4a§e_mt)
+miny, <s<1{ 522 (s, U2) bes (o — V)ufe ™|

+e Mt [m(a —1- 64’112(.1‘))’112 — ’1120'264Aﬂ2]| < 64€_mt’112(.1‘)K1

for all x € Q, where K7 is some positive constant. In a neighborhood @ of 92
in Q, we have —209€e4 > 1" ; a%rie_mt + ege ™ iig () Ky < 0, for all t > 0, since
o = 0 on 0f). Further,

Maz1<r<p,{ 92 (v1 (), Tli2 (7))} — 1) ()
—ming, << {2 (s (), B2 (2)) }(1 = B) (x)
< mazi<s<r<pn{ G2 (st (w), T2 (7)) Hav — 1)aa(2)
+mazy, <s<1| §2 (st (2), G2(2))| (0 = 1)G() — ez — 1)) ()
= —mini<s<r<p | G2 (st (@), T2 (2))| (@ — 1)2(2)
+ U (€)miny, <s<r<pa | 2 (511 (@), T2(2))| (0 = 1)

—eo(a — 1)@1(x)mamplgsgl\g—ﬁ@ﬂl(x%a2(1’))| <0,

for all x € Q,t > 0. Consequently, we have ooAwy + walag + fo(vi,ws)] —
Owy /0t < 0, for x € @,,t > 0. For z € Q\@, two terms in (5.46) satisfy the
inequality:

P, ) s [mazy <r<p, {2 (01, 7l2) o — Dtige™™
—ming, <s<1{ 2 (st, )} - (1 = B)ie™™] < —exKpe™™,

for some Ko > 0, all ¢t > 0; and for such (z,t), the sum of all the other re-
maining terms after the inequality sign < in (5.46) can be reduced to less than
(1/2)ea Kae~™* in absolute value, by choosing €4 = m = e3 sufficiently small. We
therefore have oo Aws +walag + fa(vi, wa)] —Ows /0t < 0, for (z,t) € 0 x [0, 00),
and wy(z,t) is an upper solution.
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For v, we have the inequality:
(5.47)
o1Avifay + fi(vi, we)] — %

= q(z,t)ur[fi(v1,w2) — fi(v1,t2) + fi(vi, 62) — fi(ts, Us)]
+e ™ [—m(1 — B(x))ur + wrores(a — 1) Ay + 201e3(av — 1) S04 a%xz]

> q(a, ) [ming <r<p, {5 (01, 702) H(ow — 1)tize ™™ — eque™"}

— mazp, <s<1{ G2 (stir, U2)} - {(1 = Bare™™ — e3(a — D)uafe ™} + e~ ™[]

where [- - -] represents the terms inside the brackets immediately before the
inequality sign >. Due to the choice of ¢4 = m = €3 made previously, one has
the inequality

2

| g(@, )t [ming <r<p, { $2 (v1, Tl2) }(—esiGe ™)

- mammﬁsﬁl{g—ﬁ(sqﬁh@2)}(—63(04 — Duge™™)]
+e ™ [=m(1 — B(x))u1 + Gro1e3(a — 1) At ]| < eqe™ 0 K3

for all z € €2, where K3 is some positive constant. In a neighborhood O of 00
in Q, we have 201e3(a — 1) Y7 af, €™ — eqe” ™y (2) K3 > 0, for all t > 0,
since @y = 0 on 0f). Further,

Miny <r<p,{ 52 (01, 7l2) H (@ — 1)z — maz,, <s<1{ G (su1, 1) } (1 — B)ta

> <o, <pal 2 (501, 70) (00 — V)it + ming, <uc| 92 (51, 02)| (1 - Bty
> — (o = 1) ming, <s<1| G (s, )| (in freaG(x) — €1)
+min |90 (511, 72)|(1 — )
pr<s<t| gyt (U, u2)[(1 — B)un
=~ (2)min,, <s<1| §L (s, )| - (€2 — €1)(a = 1) > 0,
for all x € Q,¢t > 0. The second > sign in the last sentence is due to hypothesis

(5.45). Consequently, we have o1Avy + [a1 + fi(vi,w2)] — dvi /0t > 0, for
x € @,t>0. For x € Q\Q, two terms in (5.47) satisfies the inequality:
mt

q(x, )i [miny << p, { G (v1, Tli9)} - (@ — 1)tize™

— mazp, <s<1 {51 (stin, W) H(1 = B)iine™™] > (e1 — €2) Kye ™™



1.5. STABILITY OF STEADY-STATES 89

for some K4 > 0, all ¢ > 0; and for such (z,t), the sum of all the other remaining
terms after the inequality sign > in (5.47) can be reduced to less than (1/2)(e; —
€2)K4e™™ in absolute value, by reducing the size of ¢4 = m = e3. We therefore
have o1Av; + [a1 + f1(v1, w2)] — vy /Ot > 0, for (z,t) € Q x [0,00), and v (x, 1)
is a lower solution.

Since all the first partial derivatives of fi and fs have the same sign, we can
interchange the role of w1y, fi with us, fo respectively and construct lower and
upper solutions vy, w7 in exactly the same manner as before. Here vy, w; are
of the form vy = §(z,t)ue, w1 = p(x,t)u;(z) with p(z,t),G(x,t) analogous to
p(z,t),q(x,t) respectively. (p(x,t) — 17, 4(x,t) — 17, as t — oo, all z € Q).

Finally, we have v;(x,t) — u;(x) from below, and w;(z,t) — u;(x) from
above, as t — oo, uniformly for x € Q,i = 1,2. When the initial conditions
u;(x,0) and their partial derivatives are close to that of u;(z) in the sense de-
scribed in the theorem, we have v;(x,0) < u;(x,0) < w;(x,0),z € Q. (Note that
we have 0u;/0v < 0 on 0f2). Applying appropriate comparison or differential
inequalities as in Section 1.2 in [125], we obtain

vi(z,t) < wui(x,t) < w;i(z,t) for (z,t) € Q x [0, 00),

and thus we have (@1 (x), u2(x)) as an asymptotically stable equilibrium solution.

In the situation when the intrinsic growth rate of one species is small, we
can prove the following theorem in a similar fashion.

Theorem 5.6. Consider the initial-boundary value problem (1.2), (5.40), under
hypotheses (5.41), (5.42) and

(5.48) a1 < o1A1, ag > 02A;
and ui(z) € C?*T*(Q) is a solution of
(5.49) g9 Av + vlag + f2(0,v)] =0 in Q, v =0 on 99,

with u(z) > 0 for x € Q. Let (u,v) = (u1(x,t),uz(x,t)) be a solution of (1.2),
(5.40) with u; € C*1+2/2(Q % [0,T)), each T > 0,7 = 1,2, where u®(z), v°(x)
are both non-negative functions in C*+*(Q) satisfying compatibility conditions
as described in Ladyzhenskaya, Solonnikov and Ural’ceva [113] or Section 1.3
in [125]. Then (ui(x,t),uz(z,t)) — (0,us(x)) as t — oo, uniformly for x € (Q,
provided that u®,v° and all their first partial derivatives are close enough to 0, u}
respectively and their corresponding first partial derivatives.

Under the stronger assumption of uniqueness of positive steady state, we can
obtain a global stability result as follows. (We shall discuss the problem of such
uniqueness in later theorems in this section.)
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Theorem 5.7 (Global Asymptotic Stability in case of Uniqueness).
Consider problem (3.3) restricted to o1 = 02. Assume condition (3.4) is satis-
fied and that problem (3.3) only has a unique solution (u*(x),v*(x)) with both
components strictly positive in Q. Let (u(z,t),v(z,t) be a solution of the initial
boundary value problem:

up = Au + u(a — bu — cv)
in Q x [0,00),
vy = Av+v(e — fu— gv)
(5.50)
u=v=0 on 99 x [0, 00),
u(z,0) = u’(z), vz, 0) = 0°(z) in (2

with both u®,v° >0, 0 in C%(Q),0 < a < 1, and vanishing on 0), then
(u(z, 1), v(z,t)) — (u'(z),v"(2)), ast — o0

uniformly in Q.

Proof. We first choose numbers a; and e; such that

(5.51) ap >a, e >e
and
(5.52) Q>A1+%?,€>A1+i%n

By hypothesis (3.4), such aj, e; must exist.

For convenience, we introduce the following notation: If w € C1(Q), w(z) >
0 for all z € Q, and dw/Jdv < 0 everywhere on 9, we write w >> 0. If
w,z € CHQ),we write w << z if z —w >> 0. We first prove the theorem under
the additional conditions u",v" € C1(Q),

(5.53) uw >>0, " >>0,
and for all z € ,

0a 0
(5.54) ud(z) < Tl’ (z) < 71

Here, for any A > A1, the symbol 84 denotes the unique positive solution of

AZ+ZIA—Z]=0inQ, Zlpg=0.
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Let ¢1 be the positive principal eigenfunction for the Laplacian on € with Dirich-
let boundary condition. Choose € > 0 so small such that

(5.55) epr(x) <u'(z), egn(z) <°(x)
and

a> A+ <G+ beg (),
(5.56)
e> A + % + gedr(x),

for all z € Q. If we set 4 = 0, /b,0 = 0, /g and u = v = €¢1, then
At +ala —bu —cv] = (a—ay)u —cuy < 0
for x € Q; and since u < a1 /b,

Av +vle — fu — gv] = vle = A\ — fu — gv]
>vle— A — fay/b—gv] >0

on (2. Similarly, we have

Au + ufa — bu — cv] > 0,
AT+ vle — fu— gv] < 0.

The conclusion of the theorem follows from the uniqueness assumption, the
inequalities u(z) < u’(z) < a(x),v(z) < 0°(x) < v(z),r € Q, and comparison
with solutions of the differential system (5.50) with initial conditions replaced at
the steady-state upper lower solutions (u(x),v(x)). Solutions with such initial
conditions converges monotonically to a maximum-minimum pair of steady -
state. (See Pao [183] or Theorem 1.3 in [32].)

We next remove condition (5.54) on the initial functions u°(z),v%(z). First,
observe that there exists large K > 1, such that

ud(z) < Lﬂz(az)’ 0 (2) < Kbe(x)
g

on Q. Define (U(z,t),V(x,t)) to be the solution of problem (5.50) with initial
conditions replaced with

Kb,(x)

(0(2.0).¥(,0)) = (==

,0).

It is clear that V = 0, U is non-negative in  x [0, 00) and

(5.57) limy—ooU (z, 1) = Hal(f).
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Moreover, the convergence above is monotone, because U(x,0), V(z,0) satisfies
AU (z,0) + U(x,0)[a — bU(x,0) — cV(x,0)] = b(U(z,0))*)[K ! —1] <0,

AV(z,0) + V]e — fU — gV] = 0.

The convergence in (5.57) is also in C'(€2) norm by using W?P? estimates, com-
pact embedding and equations (5.50). (See e.g. pp. 87-89 in Fife [59]). Similarly,

define (U(z,t),V (x,t)) to be the solution of problem (5.50) with initial condi-
tions replaced with

(U(x,0),V(z,0)) = (0, —=—

We have U = 0, V is non-negative in € x [0,00) and the monotone C!(Q)
convergence

(5.58) limy—ooV (2, 1) = Heéx).

On the other hand, one readily verifies that the functions U(z, t), U (z,t), V(x,1),

V(x,t) satisfies:
AU +Ula —bU — V] — 0U /ot < 0
AV + Ve — fU — gV] — 0V /0t > 0
(5.59) o ~ ~
AV + Ve~ fU— gV] -V /at < 0
AU+ Ula —bU — V] —0U /0t > 0

for (z,t) € Q x (0,00), and

0=U(x,0) < u(z) < U(,0) = Lalz)
(5.60)
0 =V(,0) < () < V(z,0) = £l

for x € Q. From comparison theorems (cf. pp. 24-26 in [125]), we assert that
(5.61) 0=U(z,t) <ulxz,t) <U(x,t), 0=V(x,t)<ov(x,t)<V(z,t)

for (x,t) € Q x [0,00). We next observe that Au + u[a — bu] = (a — a1)u < 0 in
Q, u|pq = 0, thus u = 6,, /b is a strict upper solution of the problem

Az+zla—bz] =0 in Q, z|pg =0.
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Similarly, 6., /g is a strict upper solution of the problem
Az+zle—gz] =0 in Q, z|pn =0.
By monotone iteration and comparison, we obtain

0 0a, 0e Oc,
<< — << —

.62 = = )
(5.62) b b g P

For s > 0, let u*(x) = u(x,s),v*(x) = v(z, s) for z € Q. We obtain from (5.57),
(5.58), (5.61) and (5.62) that for s > 0 sufficiently large

Oa, () s ‘961(50)
<
2w <

(5.63) u’(z) <

for € Q. On the other hand for s > 0, we obtain from the theory of parabolic
equations and strong maximum principle that u®,v® are in C*(Q) and

(5.64) u® >>0, v®>>0.
Comparing (5.63) and (5.64) respectively with (5.54) and (5.53), we obtain the
conclusion of this theorem by using the beginning part of the proof.

When the intrinsic growth rates of both species are the same, the following
theorem gives sufficient conditions for uniqueness of coexistence solution. It
reflects the situation when the crowding effect of each species on itself is greater
than its competing effecting on the growth rate on the other species.

Theorem 5.8 (Uniqueness under Weak Competition). Consider problem
(3.3) with o1 = 09 = 1. Suppose that

(5.65) a=e>M\, b>f, andc<g,

then (3.3) has a unique coexistence solution with each component in C*T(Q)
and strictly positive in €.

Proof. Suppose 01 = 03 = 1, (5.65) holds and (u, v) is a solution of (3.3) with
each component in C?* () and strictly positive in 2. We claim that if 2 is a
function in C1(€) satisfying

(5.66) Az+zla—bu—gv] =0 in Q, z=0 on 09,
then z = 0 in ). Note that the eigenvalue problem
(5.67) Aw+ wla —bu — cv] + Aw =0 in Q, w =0 on 09,

had eigenvalue A = 0 with eigenfunction w = u which is strictly positive in €.
It follows that A = 0 is the smallest eigenvalue of the problem (5.67). Thus from
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Rayleigh’s quotient, we find that for any nontrivial function ¢» € C1(Q2) which
vanishes at 0€2, we have

0< Jo VY = [a — bu — cv]yp?)da
- Jo ¥2ds

Suppose z satisfies (5.66), we integrate by parts and obtain from (5.68) that

(5.68)

0= [o(—2Az — 2z%[a — bu — gv])dx
= fQ(\VZ|2 — 2%[a — bu — cv])dx + Jovlg — c)z?dx > Jov(g — c)z?dx.

Since g > ¢ and v > 0 in Q, we justify the claim that z = 0 in Q.
The differential equations in (3.3) can be written as:

Au+ ula — bu — gv] + (g — c)uv =0
in Q.
Av+vla —bu —gv] + (b— fluv =0

Multiplying the first and second equation above respectively by (b — f) and
(9 — ¢) and subtracting, we obtain At + ¢[a — bu — gv] = 0 in Q, where ¢ =
(b— f)u—(g—c)v. We thus have ¢ = 0; that is v = ru, where r = (b— f)/(g—c).
From the first equation in (3.3), we obtain

bg — cf

Au+ ula —
g—c

u] =0 in ©Q, u=0 on .

Hence the function 6 = @u satisfies

(5.69) AO+60[a—0]=0in Q, 6=0 on I

Consequently (u,v) must satisfy

., g-—c b—f
(uav)_(bg_cf07bg_cf

where 6 is uniquely defined as the solution of problem (5.69).

6) in Q.

Other sufficient conditions for unique positive coexistence state even for a # e
can also be found.

Theorem 5.9 (Uniqueness under Weak Competition). Consider problem
(3.3) with o1 = 09 = 1 and assume (3.4) is satisfied. Suppose that

20, bf20,
L + 20f + fi

(5.70) 4bg >
b0 (c—af /) 99 (a—cc/g)

)
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then (3.3) has a unique coexistence solution with each component in C*+({2)
and strictly positive in €.

Remark 5.3. Here, for any A > \{, 04 denotes the unique positive solution
of (5.69) where a is replaced by A. Thus, by (3.4), 0(c—af/) and 0(g_cc/q) are
positive functions in Q. For fixed a, b, e and g, hypothesis (5.70) will be satisfied
for ¢, f sufficiently small. This is true because 0(c_uf/p)(0r 0(q—cc/q)) increases
gc20, (OI‘ bf20.

as or ¢) decreases for x € ). Thus
f (orc) b0(c—af/b) 99(a—cc/q)

) decreases as f (or
¢) decreases.
Proof. Assume all the hypotheses of this theorem, and (uq,v1), (uz, v2) are two
strictly positive solutions of (3.3) in . Let p = u; — u2,q = v1 — vo, then
Ap + [a — buy — cvi]p — bugp — cuaq = 0
in Q,
(5.71) Aq+ [e = fuz — gualq — fvip — gr1ig =0

Since u; is a strictly positive solution of

Ay + [a —buy — cv1]Yp + ap =0 in Q,
(5.72)
=0 on 0f),

with @ = 0, the number o = 0 must be the smallest eigenvalue of the above
problem. Moreover, by variational properties, we have

(5.73) /Qz(—Az — [a = buy — cvi]z)dx > 0,

for any z € C?(Q) which vanishes on 9€2. Similarly, since v5 is a strictly positive
solution of

A+ e — fug — guav +ap =0 in Q,
(5.74)
=0 on 01,

with @ = 0, the number o = 0 must be the smallest eigenvalue of the above
problem. Moreover,

(5.75) /Qz(—Az — e = fua — fus]z)dz > 0,

for any z € C?(Q) which vanishes on Q. Multiplying the first equation of (5.71)
by —p, the second by —q, integrating over {2 and adding, we deduce from (5.73)
and (5.75) that

(5.76) /(bqu2 + (cug + fv1)pg + gv1q2)d33 <0.
Q
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By comparison of scalar equations using upper and lower solutions we can readily
obtain for : = 1,2, z € QQ,

(5.77)

in Q. Thus by hypothesis (5.70), the quadratic expression in the integrand of
(5.76) is positive definite for each x € Q. Consequently, we must have p and ¢
identically equal to zero in Q. That is (u1,v1) = (ug,v2) in Q.

Theorem 5.9 is relevant for weak competition (i.e. small ¢, f). In case of
strong competition, we consider problem (3.22) in Section 1.3 with large ¢, f.
With a modification of the proof of Theorem 3.10 and more carefully analysis
of the indices we can extend Theorem 3.10 to obtain the following “uniqueness”
result.

Theorem 5.10 (Local Uniqueness of Segregated Coexistence under
Strong Competition). Suppose wy € C}(Q) is a non-degenerate solution
of (3.25) which changes sign. Let max{2,N/2} < p < oo, then there exist
respectively very large and small positive constants N and € such that for any

¢, f satisfying
(5.79) c>N, |eft—al <e,
1,,+

the problem (3.22) has a “unique” positive solution (u,v) near (o™ wy , —w, )
in LP(Q2) x LP(Q). (Recall that « is any fized number satisfying o € (0,00).)

We now discuss the stability of the “unique” positive solution described in
Theorem 5.10. Consider the problem:

up = Au+u(a — u — cv)
in 2 x [0, 00),
(5.80) Tur = Av +v(e —v — fu)

u=v=20 on 0f).

where a > Ai,e > A\ and 7 > 0. The stability problem of the positive steady-
state solution of the system is reduced by the following theorem to the study of
the stability of the steady-state wy with non-zero index of the scalar problem
(3.25) described in Theorem 3.10 of Section 1.3, Part B.
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Theorem 5.11 (Stability of the Segregated Coexistence Solution). As-
sume that the hypotheses of Theorem 5.10 are valid. Then the “unique” positive
solution (u,v) for problem (3.22) found in Theorem 5.10 is a stable steady state
solution for the parabolic problem (5.80) if wy described in Theorem 5.10 is a
stable solution of (3.25) (for the corresponding parabolic problem); and it is un-
stable if wg is unstable. (Here, stable or unstable is interpreted as in Theorem
A4-11 or Theorem A4-12 in Chapter 6 for solutions in the fractional power space
Xéx X 0<a<1,X=LPQ)).

Proof. Suppose wg is a stable solution, and there exist ¢ — oo such that the
unique positive solution (u;,v;) of problem (3.22) with (¢, f) = (¢, fi) satis-
fying (5.79) and u; — o twy,v; — (—wy) in LP(Q) for p > maz{2, N/2} is
unstable. (Recall in Theorem 3.10, we consider the solution (u,v) for (3.22)
near (o lwg,—wy) in L% however, by Lemma 1.4 in Dancer and Guo [42],
convergence in L? together with || - ||sc bound imply convergence in L?, p > 2).
Consider the eigenvalues for linearized problem of (3.22) at (u;,v;) with the

second equation multiplied by 771

Ah; + (a — 2u; — civy)h; — ciuk; = \h;

in Q,
(5'81) Ak; — fivih; + (6 — 2v; — fzuz)k‘z = A7k;
h; =k; =0 on 0.
If we let w; = —k;, (5.81) becomes:
Ahi + (a — 2u; — ¢;vi)h; + ciujw; = Ahy
in Q,

(5.82) Aw; + fivih; + (e — 2v; — fiug)w; = ATw;
hi:k‘i:O on 0f).
By the stability theorems in Henry [84] (cf. Theorem A4-11 in Chapter 6), and

the assumption that (u;,v;) is unstable, we deduce that the principal eigenvalue
A; of (5.82) must satisfy

>

i > 0.

Let the eigenfunctions corresponding to A = \; in (5.82) be (h;, ;) € K\{0,0)},
where K is the cone of non-negative functions in LP(€2) x LP(), ||hs||p + |||, =
1. We first show that {5\2} is uniformly bounded. Suppose N\ — 00 as i — 0,
we obtain from (5.82)

(5.83)  —A(Bih; + ;) = (a — 2u;)Bihi + (e — 2v;)w; — N(Bihy + T0;) in Q,
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where 3; = f;/c;. Hence,

Jo IV (Bihi + i dx = [,[Bi(a — X)hi + (e — Nim)Wi) (Bihi + ;) da
(5.84) i i
-2 fﬂ(ﬂlulhz + Uﬂf)l)(ﬂlhz + Ibi)dx < 0.

Here, we use a — \; < 0, e — A\;7 < 0 for large i and h;,@w; > 0,% 0. This is
a contradiction, and thus {/\ } is uniformly bounded. Consequently, we may
assume without loss of generality that limi—ooXi = A with A > 0. Note that the
LP(Q2) norm of the expression on the right of (5.83) is uniformly bounded, we
thus assert by regularity theory that {||G;h; + ;|2 } is uniformly bounded. By
compact embedding, there exists a subsequence (still denoted as {ﬁJL + w;})
such that Bih; + @; — y in LP(Q2) as i — oo, and y > 0. We must have y # 0;
otherwise it follows readily from 0 < ﬁzh < ﬁzh 4+ w;, 0 < w; < ﬁzh + ; that
||illp + [[@3]|, — 0 as i — oo, contradicting ||h;||, + |[@i]], = 1. We also know
that there exist h,w € LP(Q) such that h; — h, @; — @ weakly in LP(€2). Hence,
we have y = ah + . Note that by Sobolev embedding, ||%;]|oo and ||i;||oo are
also uniformly bounded. Let ¢ be a C? function with compact support in €2, and
multiply the first equation in (5.81) by ¢ when (h;, k;, A) = (hl, ki, Ni i)s ki = —w;,
and integrate by parts, we find

(5.85) (hi, —=A¢) = (a — 2u; — v — Ai, hip) — (cius, ki),
where (-, -) denotes the integral of the product over Q2. Dividing both sides above
by ¢;, we find

1 - a 2 A -
. —(hi, —A —— —u; —v; — — i kid).
(5.86) Cz‘ (hi, ¢) = (Cz o Ui — Ui o hz¢) (ui, kig)
Passing to the limit as ¢ — oo and noting that ¢; — oo, u; — a_lwar, e

in L"(§2) for any r > 2, we obtain
(5.87) (wy h — a Lwlk, ¢) =0,

where k = . Since the C? functions ¢ satisfying (5.87) are dense in L9(Q) for
1/q+1/p =1, we obtain

(5.88) wyh =a twik in Q.

Let
Dy ={x : wo(x) <0}, Dy = {x:wy(z)> 0}.

Since wg € C&(Q) and wq changes sign on 2, both D; and Ds are not empty we
must have the property

(5.89) h=0in D;, w=0 in Ds.
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Let ¢ be a C? function with compact support in Q, if we multiply (5.83) by ¢
and integrate by parts, we obtain

(Bihi + @i, —A@) = ((aBih; + ed;), ¢)
(5.90) ] o
=2((Biuihi + viwy), @) — Ai(Bihi + TW;), ¢),
where (-, -) denotes the integral of the product over 2. Since u; — o~ twg , v; —
(—wq ) in L7(Q2) for any v € (2,00), we can pass to the limit above as i — oo to
obtain

(Bih + w0, —A®) = ((aah + ew), ¢)
(5.91) ) o
—2((warh + (—wy )W), ¢) — Aah + 7)), P).

Note that y = ah + @, and since C? functions ¢ in (5.91) above are dense in
L1(2), where 1/q + 1/p = 1, we find by means of property (5.89) that

—Ay = (aah + ew) — 2w h + (—wg )ib) — Mah + 70)

(5.92) = [(a@ — 2o wy )sgnTwo + (e + 2wy )sgn~wo

— A(sgntwg + Tsgn~wo)|y = B(\)y,

and y = 0 on 9. Here, sgnTwy (or sgn~wyp) is the function with value 1 (or
0) and 0 (or 1) respectively at points where wy is positive or negative. The
expression (B(\)y,y) defined above is decreasing in A for A\ real. Hence by
(5.91) and the fact that A > 0, we deduce (Ay + B(0)y,y) > 0. It follows
from the characterization of eigenvalues that A+ B(0)/ has a non-negative real
eigenvalue. By our non-degeneracy assumption, this eigenvalue must be positive.
Thus by Theorem A4-12 in Chapter 6, we find w is not stable as a solution of
the corresponding parabolic equation. This contradicts the assumption in the
beginning that wy is stable, unless the unique positive solutions (u;, v;) for large
1 are all stable.

We next prove the converse part of the theorem, and assume wy is unstable.
Suppose the conclusion is false; then there exists a sequence of stable solutions
(ui, v;) with corresponding ¢; — o0, ¢;” L. — a, and principal eigenvalues \; for
corresponding linearized problem (5.82) satisfying Xi < 0. Hence, there exists
(hi, ;) € K\{(0,0)} with ||h;||, + ||@i|l, = 1 such that (h;,@;, \;) satisfies
(5.82). We first show {)\;} is uniformly bounded. Suppose, not, there exists
a subsequence, denoted again by {S\Z} such that \; — —oo as i — oo. Let

Bi = fi/ci, then

(593) —A(ﬂjlz + QDZ) = (a - QUZ)ﬂJlZ + (6 - QUi)QDZ' — S\Z(ﬂjh + TQDZ') in Q.
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Therefore, from the non-negativity of h;, w;, we find
(5.94) —A(Bih; +w;) > (—0; — M) (Bihy + ;) in Q,

where 0; = mazx{||(a — 2u;)||c0, || (€ — 20;)||o0 }, €1 = min{1,7}. From the proof
of Theorem 3.10, we have uniform bound for {||u;||sc}, {||vil|sc}, and thus {6;}
is uniformly bounded. Thus —6; — S\Z — 400 as 1 — 00. Let ¢ be a positive
principal eigenfunction of the A, we obtain from (5.94)

(5.95) A1 /Q(ﬁz‘ili + W) prdr > (—0; — Nian) /Q(ﬁiili + ;) prdx.

This is impossible as ¢ — oco. Thus {;\Z} is uniformly bounded; then, we use the
same argument as in the proof of the stable case to obtain:

Bihi +w; — y in LP(Q), y # 0in LP(Q) and y > 0,
since h; > 0,w; > 0. Moreover, we have A\ — 5\, A< 0, and y = ah + w satisfies

—Ay = [(a — 207 twg )sgnTwg + (e + 2wy )sgn~wo

(5.96) —X(sgnTwg + Tsgn~"wg)]y in Q,
y=0 on 0f).

Since y > 0,# 0, the characterization of eigenvalues implies that the eigenvalue
problem for A in

—Ah = [(a — 2a" wg )sgnTwy + (e + 2wy )sgn~"wo

(5.97) —X(sgnTwy + Tsgn~"wg) + AJhin Q,

h=0 on 0f).

has principal eigenvalue equal to zero. Moreover, since —)\(sgntwo +71sgn"wg) >
0, we obtain by comparison that the principal eigenvalue A = A of the problem

—Ah = [(a — 2a" wg )sgnTwy + (e + 2wy )sgn~wo + AJh  in €,
(5.98)
h=20 on 0,

must have A > 0. However, from the fact that wqg is non-degenerate, we have
A # 0. Consequently we have A > 0. This implies that wy is stable, contradicting
the assumption of the second half of the proof. This completes the proof of this
theorem.
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We now come to the discussion of the case when the competition coefficients
¢, f for system (3.22) are not both small or both large. Recall that in Theorem
3.12 in Section 1.3, we find the existence of positive solutions when ¢ and f are
such that p;(A+a—cvg) and p1(A+e— fug) are of different signs, where (ug,0)
and (0,vg) are the semi-trivial solutions. We shall now prove the “asymptotic
stability” of the positive solution asserted by Theorem 3.11.

Recall that for Theorem 3.12, we set

D = {(u,v) : Cp(2) x Cp(22),0 <u<a,0<v<ein},

where A is the map given by (3.65) whose fixed points are solutions of (3.22).
By an “asymptotically stable” solution (u,v) in Theorem 5.12 below, we mean
the spectral radius satisfies
(5.99)

r(A (u,v)) <1, (u,v) is an isolated solution, and indexp(A, (u,v)) = 1.

Note that the case when r(A’(u,v)) = 1 is usually undetermined. However,
if we also find that the index is 1 and the solution is isolated, then we can
use a relevant theorem involving stability on the “center manifold” to obtain
the solution is asymptotically stable with respect to flows in an appropriate
function subspace X x X% of X x X, X = LP(Q2). This will be explained in the
proof of the following theorem.

Theorem 5.12. Under the hypotheses of Theorem 3.12, one of the positive
solution for (3.22) found in Theorem 3.12 is asymptotically stable in the sense
described in (5.99) if 0 < c<cy, fi < f < f and either ¢ < ¢ or f1 < f. Here
(c1, f1) € T is defined for Theorem 3.11, so that positive solution exist.

Proof. (Outline) For convenience, we define the cone K = {(u,v) € Co(Q) x

Co(2) :u>0in 2, v <0 in Q} and denote the corresponding induced order
by >g. Recall that in the proof of Theorem 3.12, we choose k to be a positive
constant satisfying k > max.{a + ce,e + fa}, and define that the mapping;:

Alu,v) == (A + k) ula +k —u—cv),v(e + k —v— fu))
on the set:
D :={(u,v) € Co(Q) x Cx(N): 0<u<a,0<v<e in Q).
For (c1, f1) € T™, we have a strictly positive solution (u1,v;) satisfying
—Au; = uj(a —uy — cjvy)

in Q,
—Avy = vi(e — v — frur)

U1:U1:0 on 0f.
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We can write C' := {(u,v) € D : u; <u < up,0 <v <wv} as an order interval
C = [(u1,v1), (up,0)] in D with order >g induced by K. The mapping A is
increasing on the order interval C.

We have shown in the proof of Theorem 3.12 that A(u;,v1) >g (u1, v1)(where
>g means >g and equality does not hold). Let w = A(uy,v1) — (u1,v1) >g 0.
Since A is increasing, the map A; defined by Ai(u,v) = A(u,v) — tw, for 0 <
t < 1, is an increasing C'' map of C into itself. Let z; denote its minimal fixed
point in C, which can be obtained by iterating from (uj,v;). Moreover, by
iteration, z; increases as ¢ decreases. Since {z; : t € (0,1)} lies in a compact
set (by the boundedness of C' and the compactness of A), we readily see that
xo = lim;_,o+ x¢ exists, is in C, and is a fixed point of A.

We will prove the solution z( is an “asymptotically stable” solution. Since
x¢ > (u1,v1), the first component of x; is positive in Q. Since, x; = Az —tw <g
A(ug,0) — tw = (up,0) — tw, and both components of w are positive in 2, we
find that the second component of x; must be positive in 2. By argument
as in the proof of the last theorem A’(z;) is a demi-interior operator to K.
That is, for any y € K\{(0,0)}, we have f(A'(x;)y) > 0 for all f € K*\{0},
where K* = {g € (Co(Q) x Co(Q))* : g(z) > 0 for all z € K}. (Note that
this is true by using the Riesz representation of linear functional, and the fact
that such A’(z;)y is positive in Q by the maximum principle applied to the
linearized system of the form (5.82)). However, as described in p. 50 of Dancer
[39], if A’(z¢) is a demi-interior operator, then (A — A’(x;))~! is a demi-interior
operator for some A > r(A’(z;)). Then, using the geometric expansion for
(M — A’(z4))~! as described in the appendix of Schaefer [205], we can obtain
f(y) > 0if y € K\{(0,0)} for any f € K*\{0}, which is an eigenfunction
corresponding to the eigenvalue r(A’(x¢)). Moreover, we have r(A'(z;)) is a
simple eigenvalue of A’(x;) and is the only non-zero eigenvalue to which there
corresponds a positive eigenfunction (cf. Lemma 2.4 in Dancer and Guo [42] or
Theorem 3.2 on p.632 of Amann [3], or equivalently Theorem A3-8 in Chapter
6). Then, applying a variant of the remark on p. 143 of Dancer [37] to the
increasing mapping A; : C — C with minimal solution z; in C' and the fact that
f(z¢) > 0 as deduced above, we find 7(A’(x;)) < 1. Further, from the continuity
of spectral radius, we obtain 7(A’(xp)) <1 ast — 0F.

From Theorem 3.12, we have indexc (A, (ug,0)) = 0 and r(A’(up,0)) > 1.
Thus, from the conclusion of the above paragraph, xo # (ug,0). Hence, xg
is a strictly positive solution. By the arguments given in the last paragraph,
we find A’(zg) is a demi-interior operator. If r(A’(xp)) < 1, then we can use
Theorem A2-3 in Chapter 6 to obtain indexc(A, z¢) = 1. Moreover, this implies
that the principal eigenvalue of the linearized equation at x( is negative. By
the first theorem in Chapter 5 in Henry [84] or Theorem A4-11 in Chapter 6,
we obtain asymptotic stability with respect to solutions of parabolic problems
corresponding to (3.22) with initial conditions in the subspace X% x X 0 <
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a < 1, with X = LP(Q), for large p.

On the other hand, suppose r(A’(zg)) = 1. Then all fixed points z; of A;
in a neighborhood of (x,t) = (x0,0) are represented by (x:,t) = (xg + ah +
z(a),¢()), where z and ¢ are C' functions, with ¢ : (—e,e) — R,$(0) =
0,2(0) = 0,h spans N(I — A’'(xg)), f spans N(I — A'(z¢)*) and f(w(a)) = 0,
for all small « (cf Dancer [37]). Moreover, we have ¢(a) > 0 when a € (—¢,0).
We choose a number ag < 0, with 7 := ¢(ag) > 0 where ¢'(ag) #0, I — A'(z;)
is invertible. Since we also have r(A’(z;)) < 1 and by Krein-Rutman theorem
r(A'(z;)) is in the spectrum of A'(z.), thus r(A’'(z;)) < 1 (cf. Theorem A2-5
in Chapter 6), and we obtain indexc (A, z,;) = 1. We next deduce that z is
isolated. Suppose not, then we obtain from the analyticity of A that ¢(a) =0
for all small a. Thus, any solution of z = A(x) — tw near (xg,0) must has
t = 0, contradicting (x¢,t) are solutions. To calculate the indexc (A, x¢), we
can construct a neighborhood V containing x;,0 <t < 7 so that by homotopy
invariance:

(5.100) dego(A-, V) =dege(A, V) =indexc(A, o).

Then, by means of the functional f and the isolated property of xy, we can
construct appropriate neighborhood to show:

(5.101) dego(Ar, V) =indexc(Ar,x;) = 1.

By means of (5.100) and (5.101), we obtain indexc (A, z¢) = 1. For more details,
see the arguments for proving Proposition 3 in p. 144 and Remark 4 in p. 146
of Dancer [37].

We next observe that the indexc (A, x¢) is the same as indexp(A, xy), when
we assume Of) is smooth. To see this, we use the space V' x V where V de-
notes the space of functions u in Cy(£2) for which gbl_lu extends to a continuous
function on Q with the norm ||u|| := supyeq|p;*(v)u(x)|, where ¢; denotes
the positive eigenfunction corresponding to the principal eigenvalue for —A on
) with Dirichlet boundary condition. The set V' is a Banach space under the
norm || - ||. The functions u for which in fycqé; 'u(z) > 0 are interior elements
of the cone KNV, where K is the usual cone in Cy(€2). In particular, this holds
for u € C1(Q) with u(x) > 0 in Q and du/dv < 0 on JQ. The mapping A is
completely continuous from E := Cp(Q) x Cy(Q) into V x V. Moreover, if z
is an isolated fixed point of A in F, the commutativity theorem for degree (see
Granas [75] or Nussbaum [178]) ensures that indexg (A, o) = indexy v (A, xp).
Similarly, if zy € C, the index of x¢ in C is the same as that in C N (V x V).
That is, we only need to prove our results for indices in the space V x V. In this
case, we simply have to prove that the fixed point is interior to C N (V x V) or
DN (V xV), and the result then follows. This can be readily justified by using
maximum principle for the corresponding system as explained before.
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Next, suppose (i) r(A’(xg)) = 1, (ii) the fixed point xq is isolated and (iii)
the index indexp(A,zp) = 1. From (i) we have the principal eigenvalue of the
corresponding linearized system at xg is = 0; then we justify as in above that
the eigenspace (center manifold) is one dimensional. From Theorem 6.2.1 in
Chapter 6 of Henry [84], we assert that if xo is asymptotically stable in the
center manifold, then it is asymptotically stable in X* x X“. We can use the
argument in Theorem 9.3.2 of Chow and Hale [28] to assert the stability of zg
on the manifold is determined by Liapunov Schmidt reduction since the related
function F there is C?. In particular, z is stable if 0 has index 1 for the
Liapunov Schmidt reduction. The Liapunov Schmidt reduction for I — A is
equivalent to that for L — F'. Moreover, by Theorem 24.2 in Krasnosel’skii and
Zabrieko [109], we can relate the indexrrxrr(A,zo) or indexrp(A, zp) with the
index of the 0 of the bifurcation equation, and find they are equal in this simple
case. Thus by property (iii), the index of 0 of the bifurcation equation is 1, and
xq is asymptotically stable on the manifold and X% x X“ in LP x LP. The details
are too technical to be included here (cf. Dancer [40]).

Part C: Cooperative Species Case.

We now come to the discussion of the stability of some of the positive steady
states (i.e. coexistence states) for cooperating species found in Section 1.4. We
will use the operators L and Ly as defined in (4.20) and (4.21). Recall the
general cooperative system (4.22), and the part concerning weak cooperation in
assumptions (4.23). Also, recall the symbol 0|_p, , 3 defined immediately before
Theorem 4.4, denoting the solution for the related scalar problem. Under some
further restrictive conditions, we have the following uniqueness and stability
theorem.

Theorem 5.13 (Uniqueness under Weak Cooperation and Asymptotic
Stability). Assume hypotheses (4.23),

c(x) >0, f(x) >0 for z €Q,
and that any coexistence state (u*,v*) of problem (4.22) satisfies
(5.102) supq(u®/v*) - supq(v*/u*) < infq(b/c) -infalg/f)-

Then the boundary value problem (4.22) possesses a unique coezistence solution.
Moreover, it is asymptotically stable.

Proof. (Outline) Under the assumptions (4.23), we can obtain uniform a-priori
bound for all non-negative solutions of (4.22). Thus we can use the fixed point
cone index method to study non-negative solutions as in Sections 2 and 3. As
in Theorem 2.5 and part (i) of Theorem 3.4, we can show that both semi-trivial
positive solutions (0|_r, q4,0) and (0,0(_r, . ) have zero local index. Moreover,
the solution (0,0) has index zero and the global index of the related mapping
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equals one. Consequently, it suffices to show that under condition (5.102), all
the eigenvalues of the corresponding linearized problem at (u*,v*) have real
parts less than some negative constant. By Theorem A2-3 in Chapter 6, we can
then infer that the solution (u*,v*) has local index one; and by the additivity
of indices, such positive solution must be unique. The linearized problem at
(u*,v*) is given by:

Lih+ (a —2bu* 4 cv*)h + cu*k = A\h
in €,
(5.103) Lok + fo*h + (e + fu* — 2gv*)k = \k

h=k=0 on 0f).

By Theorem A3-8 in Chapter 6 (or Theorem 8.3 and 8.4 in [45]), the principal
eigenvalue of problem (5.103) is negative if we can find functions h* > 0,k* > 0
in ) satisfying

(5.104)

Lih* + (a—2bu* 4+ cv*)h* + cu™k™ < 0, Lok™ + fo*h™ + (e + fu™ —2gv™)k* <0

in 2. Then, by Theorem A3-8 in Chapter 6 again, the real parts of all other
eigenvalues of problem (5.103) are less than some negative number. In order to
construct h*, k* satisfying (5.104), we first find positive constants «, 5 such that

infa(b/c) B supq(u* /v*)
(5.105) Supa(v* a7 > " > “nfala/T)

Such constants exist due to assumption (5.102). Then, define
h* = au®, k' = po*.
We have
(5.106) Lih* + (a — 2bu™ 4+ cv™)h* 4 cu™k™ = u* (Bev™ — abu™).

Moreover, for each z € Q, we obtain from (5.105)

1 _ pou* b
(Bev* — abu*) 5 = Bix — af

(5.107)
< Bsupa (%) — ainfo(2) <0.

Thus we obtain the first inequality in (5.104) from (5.106) and (5.107). Similarly,
we can verify the second inequality in (5.104). The assertion on asymptotic
stability of the solution (u*,v*) can be deduced from Theorem A4-11 in Chapter
6. This completes the proof of Theorem 5.13.
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The following corollary is more readily applicable, using only information
from the coefficients of the system (4.22). Recall the definitions of cyr, gar, b1
and gy, etc. for Theorem 4.4.

Corollary 5.14. Assume L1 = Lo, c(x) > 0, f(z) > 0 for each x € Q,

(5.108) e v < brgr, pi(—L1) >0, a> p1(—L1), e > p1(—La),
and
(5.109)
b 2 2 b 2 2 1
MIM (9ra” + cpe”)(bre” + fua”) .(sumf)z <

16br,91,(brgr, — exrfan)? (a— pi(—L1))(e — p1(—L1)) (0 evfu’

where ¢ > 0 is the principal eigenfunction associated with pi1(—Lq), normalized
so that ||¢|lec =1 and 1 > 0 is the unique solution of

_lej = 17 m Q7 1/}‘89 = 0.

Then the boundary value problem (4.22) has exactly one coexistence solution.
Furthermore, it is asymptotically stable.

Proof. We first show that the family of functions (a, v¢),t > 1, defined by

t(gra? b?
(5.110) 4, - HLa” + emt)

_ t(bre® + fua?)
~ A(brgr — CMfM)w7 h

© A(brgr —emfu)

are upper solutions to problem (4.22). To verify this, it suffices to show for
T €€,

1> [a—tb(z)K1 — c(x)K2)],
(5.111)

1> [e—t(g(x) Ky — f(x)K1)Y],
where

Ko (gLa2 + CM€2) o (bL62 + fMa2)
YT A(brgr —emfu) 0T Albrgr — enfu)’
For positive A and B, we have supg>o(A — B€)§ = A%/(4B). Thus we find that
for each t > 1,
(5.112)
2 2

Y- la—t(b(z) Ky — c(z)Ko)y] < H@) K — c@)Ka) = 1bpK1 — oK)

Similarly, we find

e2

< .
- 4(bLK2 — CMKl)

(5.113) Y- le—t(g(x) Kz — f(x)K1)Y)]
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From the definition of K7 and Ky, we have:
(5.114) a? = 4(bp Ky — ey Ky), €2 =4(bp Ky — e K)).

We thus obtain (5.111) from (5.112), (5.113) and (5.114). From the generalized
sweeping principle or Theorem A3-9 in Chapter 6, substituting at ¢ = 1 in
(5.110) we obtain the estimates:

(bre? + fua?)
4(brgr — emfm)

(gra® + cprb?)

5.115 u* <
( ) = A(brLgr, — cm fur)

P, vt <

for any positive solution (u*,v*) of (4.22). By comparison with the scalar equa-
tions, we readily obtain

— pi(—L — pi(—L
a—pi( 1)% R A e—pi1(—L1)
by ’7 am

We can readily verify that (5.102) is satisfied by using (5.109), (5.115) and
(5.116). Consequently, we can apply Theorem 5.13 to complete the proof of this
corollary.

(5116) U* Z 9[—L1,a,b} Z w

As in the above corollary, we can apply the generalized sweeping principle
and Theorem 5.13 to deduce other uniqueness and asymptotic stability results
as follows. (Since the technique is similar, we will omit the details which is given
in Corollary 9.5 in [45].)

Corollary 5.15. Assume Ly = Lo, c(x) >0, f(x) > 0 for each = € Q,

emfm <brgr, a>e> pi(—Ly),
and

0 a,b(x
(supgA=tueb@ly2 o OLIL

N, Ny
M o ,
01— Lae.g(e)) cm fm

A1 S
(5.117) M, M,

Then problem (4.22) has a unique coexistence state, which is asymptotically

stable. Here
_ bu(gr +cm) Ny — bar(br, + fur)

M= brgr —emfu’ 0 brgn — enmfur
B grer +gm)  (cr +90)gm(bar + far) — frorl
My = max{ngM —cnfr’ bulgm(bar + faur) — frler +g1)]
My = maz{ gr.(fr +bar) gn (bar + far)

bvgm —cenfr’ gv(bm + fur) — frler +91)"

In the Volterra-Lotka model (4.1) for cooperating species with constant co-
efficients, we may perform stretching of variables in u and v to attain without
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loss of generality o1 = 00 = b = g = 1. In this case, Corollary 5.15 simplifies
into the following result as in Theorem 3.3 and 3.4 in Korman and Leung [107].

Corollary 5.16. Consider problem (4.1) with
(5.118) o1=09=b=g=1.

Suppose
cf <1, a>e>pi(—A),

and

H—A,a,l 1
( Y ])2 < =

5.119 .
( ) —A,e,l] Cf

Then problem (4.1) has a unique coexistence state, which is asymptotically stable.

Proof. Under the assumptions of this corollary, the constants M7, My, N1 and
Ny of Corollary 5.15 satisfies

l1+c 1+ f

NlZMlzq, N2:M2:]_—cf'

Consequently hypothesis (5.117) becomes (5.119). The result follows from Corol-
lary 5.15.

There are some results for global attractivity of positive solution. In the
situation when we have uniform a-priori bound as in Theorem 5.13, we can
apply the following topological result in Hirsch [86] to the parabolic system
associated with (4.22).

Theorem 5.17. Assume that T is a strongly positive monotone continuous dy-
namical system on X where the cone K has non-empty interior and X is sepa-
rable. Moreover, assume that the closure of the positive semi-orbit O(x) of x is
compact for each x € X. Then, there exists a dense subset A of X such that if
x € A, then w(x) (the w-limit of x), is contained in the set of stationary points.

Due to excessive technicalities, we will omit the details of the above theorem.

As a consequence of the theorem, we have the following result.

Theorem 5.18 (Global Attractivity). Assume that cprfyr < brgr, a >
p1(—L1), e > pi(—L2), c¢(x) > 0, f(z) > 0 for each z € 2, and that prob-
lem (4.22) has a unique coexistence state, say (u*,v*). Consider the following



1.5. STABILITY OF STEADY-STATES 109

corresponding parabolic problem:

u = Liu + ufa — b(z)u + c(x)v]
in Q x (0,00),
vy = Lov + v[e + f(x)u — g(x)v]
(5.120)
u=v=0 on 99 x (0, 00),
u(x,0) = ap(z), v(x,0) = () x € Q,

where Uy, 09 € C(Q). Then the solution of (5.120) is defined for all t > 0
and there exists a dense subset A of (C(Q))? such that if i > 0,99 > 0 and
(ﬂo,@o) € A, then

(5.121) limy—ool|u(z,t) — u||co = limi—oso||v(x,t) — v*||o = 0.

The idea of the proof is as follows. If (g, 0g) € A, we first show by means
of Theorem 5.17 that the solution of the parabolic problem (5.120) converges to
some steady state. Then we use comparison method to show that if 49 > 0 and
09 > 0, the solution converges to a positive coexistence state. Finally, (5.121)
follows from the assumption on uniqueness of positive coexistence state. More
details can be found in the proof of Theorem 9.8 in [45]. They are omitted in
order to condense the length of this section.

Notes.

Theorem 5.1 and Theorem 5.2 can be found respectively in Li [148] and Li
and Ghoreishi [149]. Theorem 5.3 is obtained from Li and Ramm [152], and
Theorem 5.4 is adopted from methods in Leung [123]. Theorem 5.5 is found
in Leung [122]; Theorem 5.7 to Theorem 5.9 are due to Cosner and Lazer [32].
Theorems 5.10 and 5.11 are found in Dancer and Guo [42]. Theorem 5.12 is
obtained from Dancer [40]. Theorem 5.13, Corollaries 5.14 to 5.16 and Theorem
5.18 are due to Delgado, Lépez-Gémez and Suarez [45]. Theorem 5.17 is obtained
by Hirsch [86].



Chapter 2

Positive Solutions for Large
Systems of Equations

2.1 Introduction

Most practical or real world reaction-diffusion problems involve more than two
interacting species. It is therefore crucial to extend the results in the last chap-
ter to various cases which arise in applicable problems. The challenge is to use
sophisticated methods to obtain rigorous reliable results which are useful for
fundamental understanding and application. An example for study is the mi-
gration of numerous North American mammals to interact with those of South
American origin (see, e.g. Darlington [43] and Young [240]). Will all species
coexist in the same environments? This leads to the study of the Section 2.2
where we study the coexistence of all species when various subgroups of species
are mixed together. Within each subgroup, the species may have mutualistic,
competing or food-chain relationship. It is shown that appropriate properties of
the subsystems will insure that the full system has a steady-state solution which
is strictly positive in each components. On the other hand, in a well-known
experiment, Paine [181] found that the removal of predator starfish Pisaster or-
chraceus from an area resulted in the reduction of a fifteen-species community
to an eight-species community. The question is how the presence of the starfish
enables the coexistence of all fifteen-species. As another example of application
for Section 2.4 concerning interaction of three species, we consider a problem
in neurochemistry. The process of inducing and suppressing pain in humans is
related to the interactions between certain biochemical substances distributing
along neuro-path nets. It is known that two neurotransmitters acetylcholine
and triethylcholine compete for chemical receptors. The first one induces pain
while the second one serves as an suppressor. These two are both predated
through deprivation of receptors by a third neuropeptide of a choline with a

111
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special structure (cf. Xu [237]). The positive coexistence of such three species
will affect the physiological sensitivity of an individual in response to pain stim-
ulation. In Section 2.3 we study the spread of several bacterial infections among
many interacting species. Conditions are found concerning the growth, infec-
tion, and interaction rates such that it is possible to attain positive coexistence
of the infected species and the various bacterias.

In Section 2.6, we consider applications of reaction-diffusion system to the
study the dynamics of nuclear fission reactors. The neutrons are divided into
m energy groups. The fission, removal, absorption and transfer rates of the
neutrons in different groups are dependent on temperature, which is described
by the (m-+1)-st equation (see, e.g. Duderstadt and Hamilton [52] and Glasstone
and Sesonke [72]). We use bifurcation method to find critical size of reactor core
when positive steady-state can occur for the system which is not symmetric. The
asymptotic stability of the steady-state is also analyzed by means of a stability
theorem for sectorial operators.

Recently, various models are developed for the treatment of tumor growth
by means of drug and chemotherapy. They involve large systems of reaction-
diffusion equations with many interacting species (cf. Cui [35], Jackson [95], Cui
and Friedman [36], Friedman and Reitich [64], Ward and King [228] etc.). Such
new models in medical sciences necessitate systematic rigorous study of large
systems of nonlinear partial differential equations.

In every section in this chapter, 2 is a bounded domain in RY with bound-
ary 0 belonging to C?t#,0 < < 1. The symbol A denotes the Laplacian
operator. We have limit our discussion only on bounded domains, the extension
to unbounded domains (see e.g. Furusho [66]) is too lengthy for our present
purpose.

2.2 Synthesizing Large (Biological) Diffusive Systems
from Smaller Subsystems

In this section, large systems of steady-state reaction-diffusion equations describ-
ing many interacting species are studied. In every case, two uncoupled related
subsystems are first constructed and analyzed. We assume that all species of
each subgroup coexist among themselves when the other group is absent. The
problem is to determine whether all species can coexist when the two subgroups
are mixed together in the same environment. This section is motivated by studies
of many researchers on large ecosystem models (see e.g. Goh [73] and Simberloff
[207]). Here, we follow the presentations in Leung and Ortega [139]. It is shown
that appropriate properties of the subsystems will insure that the full system
has a steady-state solution which is strictly positive in each component. The
method of bifurcation and upper-lower solutions are used in the analysis. Bifur-
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cation theory is also used in the construction of lower solutions. More precisely,
we consider the system:

Au; + ui[p; + XM aiu; + Z;‘:lmjumﬂ] =0 in €,
1=1,....m,
(2.1) AUt + Um+i[gi + Xy sijug + Z;‘:lbijumﬂ'] =0 in 9,
1=1,...,n,
u; =0 on0f, i=1,...m+n.

Here, Q is a bounded domain in RV with boundary 9Q belonging to C?T#,0 <
p < 1. The functions u;(x), ..., um (x) represent the concentrations of the first
group of m species, while the functions w,,+1(z), ..., Um+n(z) denote those of
the second group of n species. The constants p;, g;, a;j,7ij, bij, s;j are intrinsic
growth rates and interaction rates of the species. The system (2.1) describes the
m + n species in diffusive equilibrium while undergoing Volterra-Lotka type of
interaction.

It is convenient to introduce constant matrices:

A:{aij},lgi,jgm, B:{bw},lgl,jgn,

R={ry}, 1<i<m,1<j<n,

and

S:{Sij}, 1§2§n,1§j§m

Letting u; = w;,i = 1,...,m and upm4; = 2;,i = 1,...,n, system (2.1) can be
written in the form:

Aw; + w;p; + (Aw); + (Rz);] =0 in Q, i =1,....,m,
Az + zilgi + (Sw); + (Bz);] =0 in Q, i=1,...,n;

(2.2)
w; =0 on 09, i=1,...,m, and

Lz, =0 on 0, i=1,..,n.

We will assume that the two groups of species, I and II, competes with each other,



114 CHAPTER 2. POSITIVE SOLUTIONS FOR LARGE SYSTEMS

and each species inhibits its own growth rate. More precisely, we assume::
ri; <0 for1<i<m, 1<j5<n,
(2.3) 5, <0 for1<i<n, 1<j<m,
ai; <0 for 1 <i<m, and b; <0 for 1 <i<n.
Assumption (2.3) will be made in Theorem 2.1 to Theorem 2.3 and all the
examples in this section. The following two uncoupled systems will serve as

starting points for analyzing the full system (2.1):

Aw; + w; [pi + (A’LU)Z] =0 in Q,

(2.4)

w; =0 on 02, for i=1,...,m;
and

Az + z[qi + (Bz);] =0 in Q,
(2.5)

zi=0 on 0, fori=1,...,n.

The methods of bifurcation and upper-lower solutions will be used in the anal-
ysis. The lower solutions are constructed by applying bifurcation theory at the
first eigenvalue of the Laplacian operator.

In the first theorem, we assume that within each of the two groups of species
the interactions among themselves are cooperative. That is, we assume:

(2.6) ai; >0, for i #7,1<4,j<m;
and
(27) bij>07 for i #£j,1<i,5 <n.

For convenience, we define
D = mini<i<mPi and g = mini<i<n ¢;-

The principal eigenvalue for the operator —A on the domain 2 with zero Dirich-
let boundary data is denoted by Ag. We use Ay in this section rather than the
usual A\; to avoid possible confusion.

Theorem 2.1 (Synthesizing Competing Groups of Cooperative Species).
Assume hypotheses (2.3), (2.6) and (2.7). Suppose that there exist w = (w1 (x), ...,
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Wi (2)), 2 = (21(2), ..., Zn(x)) whose components are in CTH(Q),0 < u < 1, and
are positive for all x € § such that

Aw; + wip; + (Aw);] <0 in €,

(2.8)

w; =0 ond, fori=1,..,m;
and

AZ + Zilgi + (BZ):] < 0 in €,
(2.9)

Zzz=0 ondQ, fori=1,...n.
Further, assume
(2.10) 4+ XN<p and d"+ X <g,

where
¢ = mari<icm{sup(—Rz(z)); : x € Q},

d* = mawi<;<p{sup(—Sw(z)); : z € Q}.
Then there exist a solution (u1,us, ..., Umin) € [CETH(Q)™F™ of (2.1) such that
u; >0 Qi=1,...m+n.

Remark 2.1.  Hypotheses (2.8) and (2.9) can be rephrased vaguely as as-
suming that the subsystems (2.4) and (2.5) each has a positive upper solution.
Also note that, for hypotheses (2.10), ¢* and d* can be made arbitrarily small
by assuming —R and —S are small.

Before proving this theorem, we first observe the following lemma, which is
a direct result of the bifurcation Theorem A1-4 in Chapter 6.

Lemma 2.1. (a) For each i = 1,...,m, the point (A\,v) = ([\o + c*]p71,0) is a
bifurcation point for the scalar equation:

(2.11) —Av + v =v[Ap+ ailv]] in Q, v=0 on ON.

(That is, in every meighborhood of ([Ao + c*]p™%,0) in R x CH(SY), there is a
solution to the equation with v Z 0).

(b) For each i = 1,...,n, the point (\,v) = ([A\o + d*]g~*,0) is a bifurcation
point for the scalar equation:

(2.12) —Av+d*v =v[Ag + bii|v]] in Q, v =0 on .

For convenience we will denote C*(Q) by & in the rest of this section.
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Proof of Theorem 2.1. By the above lemma, there exist sequences {\}, w? )},
and {A,z8)}22, in R x $\{0}, with (AL, wi) — ([Ao+c*]p™1,0) and (A}, 2%) —
([Ao + d*]qt,0) as k — oo, where

—Awi + c*wi = wi [Nip + ai|wi]] in Q,
(2.13)
wf =0 on0f2, fori=1,..,m, and

—AZL 4 d*zh = 2 Nig + byl2k]] i Q,
(2.14)
zf =0 on 0, fori=1,..n.

Let 0} = wi/||wi|ls, 2k = 2i/|z]|ls. Since (A + ¢*)~! and (A + d*)~! are
compact operators, there are subsequences of {1} }% ,,{2!}? ,, denoted by the
same symbols for convenience, and functions 1, 2 in , such that ||@} — @||s —
0, /2% — 2|ls — 0 as k — oo, and ||i]|g = ||Z]|s = 1. From (2.13) and (2.14), we
readily obtain —Aw = Agw, —AZ = AgZ in . Since )\g is the first eigenvalue of
(—A)~!, we must have @ > 0 or @ < 0 on Q. The same is true for 2.

It follows that there exists kg > 0 such that w};, and z,’C have the same sign as
w and Z respectively, for all £ > kg. Since the additive inverse of any solution
of (2.13) or (2.14) is also a solution of the same equation, we may assume that
wi >0 and 2z > 0in Q for all k > ko. From hypothesis (2.10) and the limits of
/\}'g and 5\2,, we may also assume that 0 < )\}; <landO< 5\2 <1 for all kK > kg.
Moreover, from the fact that ||w}||s — 0 and ||2%||g — 0 as k — oo, there exists
an integer k1 > kg such that

(2.15) wh <@y, i=1,...,m and 2z, <%, i=1,...,n in Q
for all k& > k.

Define w, = w,i,l,i =1,...m,z
(2.14), we obtain

= z,,i=1,..,n, in Q. From (2.13) and

)

Aw, = —w; [)\i;lp_ + aiw; — c*]
(2.16)
> —w,[p; + (Aw); + (Rz);] in Q,

for i =1,...,m; and
Az; = —2;[\b a + biiz; — d*]

(2.17)
> —z;qi + (Bz); + (Sw);] inQ,
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for ¢ = 1,...,n. Moreover, we have 0 < w; < w; fori=1,...mand 0 <z, <%
for i = 1,...,n, for all x € 2. On the other hand, hypotheses (2.3), (2.8) and
(2.9) imply that

(2.18) Aw; < —w;lp; + (Aw); + (Rz);] in Q, fori=1,..,m,
and
(2.19) Az < —Zgi + (Bz); + (Sw);] in Q, fori=1,...,n.

Thus the pair of functions (wy,...,w,,,2;, ..., Z,,,) and (W1, ..., Wy, 21, ..., 2, ) form
coupled lower and upper solutions for the system (2.1). Here we have used (2.16)-
(2.19) and hypotheses (2.3), (2.6) and (2.7) concerning the signs of the matrices
A, B, R and S. Consequently, by a well-known theorem (cf., e.g. Theorem 1.4-2
in [125] or Theorem 8-10.5 in [183], there is a solution (uj, ug, ..., Um+r) of (2.1)
with 0 <w; <wu; <wgi=1,...,mand 0 <z; <u; <w;,t=1,...,nin Q. This
proves the Theorem.

We next consider the situation when the species inside group I do not interact
cooperatively as in (2.6). We assume the other relations between the groups I
and II, and inside group II, remain unchanged. In group I, we assume that
there is one predator (i.e. the m-th species) with m — 1 competing preys. More
precisely, we suppose:

a;; <0 for1<i<m-—1,1<j<m;
(2.20)
am; >0 for 1 <j<m—1

In this case we will not assume as before that the subsystem (2.4), i.e. the
subsystem for species inside group I, has an upper solution as given in (2.8). If
we have the hypothesis:

(2.21) Ao <D,
we define positive functions y = (y1(x), ..., ym(x)) in Q as follows:
—Ay; = yilpi + aiyi] in Q,

y; =0 on 09, fori=1,..,m—1;

_Aym = ym[pm + Zgn:_llamjyj + ammym] in Q

Ym =0 on 0NQ.

From hypotheses (2.21) and the assumption on a;; in (2.3), we see that small
positive multiples of an eigenfunction of the operator A and large constant
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functions are respectively lower and upper solutions of each of the above scalar
equations successively. By means of Lemma 2.1 in Chapter 1 or Theorem 1.4-2
and Lemma 5.2-2 in [125], we can readily show that the above equations have a
solution y € [C?T#(Q)]™, and each y; is a uniquely defined positive function in
Q,i=1,...,m. For convenience, we define the matrix:

A={ay}, 1<ij<m,
where
aij=ay; if i#j, and a;; =01if i =4

Theorem 2.2 (Synthesizing a Prey-Predator Group with a Coopera-
tive Group). Assume hypotheses (2.3), (2.7), (2.20) and (2.21). Suppose that
there exists Z = (21(x), ..., Zn(x)) whose components are in C*TH(Q),0 < p < 1,
and are positive for all x € Q such that

AZ; + Zi[qi + (BZ)Z] <0 in Q,
(2.22)

Zz=0 ondQ, fori=1,...,n.

Further, assume
(2.23) E+X<p and d+ X <g

where

¢ .= mazx{ sup{(Ay(z) — RZ(z)); :x € Q},i=1,...,m — 1;

sup{(—Rz(z))m : x € Q}},

d := maz<i<n{sup(—Sy(z)); : x € Q}.
Then there exists a solution (u1,us, ..., Um+n) € [C*TH(Q™™ of (2.1) such that
u; >0 Qi=1,...m+n.

Remark 2.2. (a) Note that y is constructed independent of the off-diagonal
entries of the first m — 1 rows of the matrix A. On the other hand, the matrix A
is independent of the diagonal entries of A; and thus, the first inequality of (2.23)
is valid provided that —R and the absolute value of the off-diagonal entries of
the first m — 1 rows of A is sufficiently small.

(b) Hypothesis (2.21)is actually included in assumption (2.23).

Proof of Theorem 2.2. As in the proof of the last theorem, we consider the
following equations:

—Aw + éw = w[Ap + ai|w|] in Q,
(2.24)

w=0 ondf), fori=1,..,m;
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and

—Az+4dz = z[Aq + bi|z|] in Q,
(2.25)
z=0 on 09, fori=1,..n.

As in Lemma 2.1, we can show that (A\,w) = (|[Ag + ¢Jp~%,0) is a bifurcation
point of (2.24), and (X,z) = (|]Ao + d]a™",0) is a bifurcation point of (2.25).
There exist sequences {(AL, wi)}22  and {(AL, 22)}%2 | in R x & with (AL, wl) —
(Ao + &p~1,0) and (AL, 2:) — ([Mo + dla~',0) as k — oo, where w} > 0 and
2 > 0 are solutions of:

—Aw}C + Ew}; = w};[)\i,p_ + a¢¢|w};|] in Q,

(2.26)
wi =0 ondQ, fori=1..,m;
and
(2.27) —Azf +dzf = # [N+ bal Al in

zi=0 ondf, fori=1,..n.

By hypothesis (2.23), we may assume that 0 < A} < 1 and 0 < 5\2 < 1 for all
k > kg, some kg.

Since [|wi|ls — 0, ||zt||]s — 0 as k — oo, there exists a positive integer
k1 > ko, such that 0 < wz <yi,t=1,....m,0< z}C <Zz,i=1,..,n,in Q, for all
k > ki. Define w, = wzl forie=1,...m, z; = z,il for i = 1,...,n in Q; and let
w=(w,..., W,,),2 = (21, ..., 2,). From (2.26) and (2.27), we obtain:

Aw; = —w;[A} b+ aiw; — ]
(2.28) ]
> —w,;[pi + auw; + (Ay); + (RZ);]  in Q,

fori=1,...,m—1; and

Aw,, = =W, [\ D + G W, — €]
(2.29) )
> =W, [Pi + Gmm W,y + (AW) i + (RZ)p]  in Q.

Moreover, we have

Az; = —z [5\219 + biiz; — d|
(2.30)
> —z;[q; + biiz; + (Bz); + (Sy);] in €,
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fori=1,..,n, and 0 < w; <y;,0 <z <% in Q. On the other hand, from the
construction of y, hypotheses (2.20) and (2.22), we deduce that:

Ay; < —yilps + aiiys + (Aw); + (Rz);] in Q, for i =1,...,m —1,
(2.31) Ay < —YmlPm + Gmm¥m + (AY)m + (R2)m] in Q,
Az < —Zgi + (Bz); + (Sw);] in Q, for i =1,...,n.

Thus, the pair of functions (Wy, ..., W,,,, %1, -, Z,) and (Y1, ..., Ym, Z1, -, Z) form
lower and upper solutions for the system (2.1). Consequently, we conclude as
in the last theorem that problem (2.1) has a positive solution in 2, between the

upper and lower solutions.

In the third case, we consider the situation when there is a competing relation
inside the first group of species and a food-chain relation inside the second group.
Again, the two groups compete against each other as before. More specifically,
we assume:

(2.32) a;; <0 for 1 <14,5 <m;

bi7i+1<0f01‘ 1<1<n—-1,
(2.33) bii—1 >0 for 2<i<n, and
bZ'jZO for |i—j|>1.

Positive solutions inside a food-chain group have been studied in Lépez-Gémez
and Pardo San Gil [163]. Here, we will not need to assume the existence of
positive solution explicitly inside each group as in Theorem 2.1. For convenience,
we define

(2.34) Cl = q1/|b11|, Cz == (qz- + Ci—lbz',z'—l)/|bz'z'| fOI" 7= 2, ey N

A;k = E;-”:Lj#\aijpj/ajﬂ + E;'L:lhnij‘cj for 1 =1,...,m; and
(2.35)
B} = |bji+1|Cit1 + XLy |sijpj/ajs| for i=1,...,n.

Theorem 2.3 (Synthesizing a Competing Group with a Food-Chain
Group). Assume hypotheses (2.3), (2.32) and (2.33). Suppose

Af+Xo<pi fori=1,..,m, and
(2.36)
B +X<gq fori=1,..,n.
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Then there exists a solution (U1, us, ..., Umin) € [C*TH(Q)]™ " of problem (2.1)
such that u; >0 in Q, i =1,...,m 4+ n.

Proof. First define w; € C?T#(Q) for i = 1,...,m to be the unique positive
solution of the problem:

—Aw; = w; [pz' + aiz‘ﬁ}i] in €,
w; =0 on 02, w; >0 in (.

It is clear that w; < p;/a;; in Q.(See e.g. Chapter 5 in [125]). Further, define
zi=C;in Q for i = 1,...,n. From (2.34), we see that z; satisfies

Az, =0>% [qi + bi,i—lgi—l + bnil] in Q, for i=1,...,n.

(Here, we denote Zy = 0, 1,9 = 0 for convenience.)
To construct a lower solution for system (2.1) in this theorem, we consider
the auxiliary problems:

—Aw + Afw = w[Ap; + a;i|lw|] in Q,

(2.37)

w=0 ond, fori=1,..m;
and

—Az+ Bfz = z[\g; + bii|z]] in €,
(2.38)

z=0 on 02, fori=1,..,n.

As in Theorem 2.1, the points (A, w) = ([A\o + A}]/pi,0) € R x & are bifurcation
points for equation (2.37), and (X, z) = ([Ao + B:]/gi,0) € R x S are bifurcation
points for equation (2.38). There exist sequences {(A},wi)}%2 ,, {(5\2,22)};";1,
with w! > 0 and 2, > 01in Q, (AL, w}) — ([Ao + Az‘]/pi,O),(S\/i,z,i) — ([Ao +
Bf]/q;,0) in R x 3, as k — co. Moreover,

—sz + Afw}% = w,i[)\ﬁ;:pi + aii|wz\] in Q,

(2.39)
w,i, =0 ondf, fori=1,.. m;
and
210 —AzZi+ Bizh = 2L [ALgi + byl 2h]] in Q,
2.40

Z2i=0 ondQ, fori=1,..n

By hypotheses (2.36), we have 0 < [Ao+ A]/p; <1and 0 < [Ao+ Bj]/q; <1 for
i=1,....,m and j = 1,...,n, respectively. It follows that there exists a positive
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integer kg such that 0 < )\};O <1,0< 5\?430 <land 0 < wzo <w;,0 < zio <z in
Qfori=1,..,mand j=1,...,n, respectively.

Finally, define w, = wlio and z; = zio inQinfori=1,....mand j=1,...,n,
respectively. Set w = (W1, ..., W), W = (W, ..., W,,), 2 = (Z1,...,2,) and z =
(21, s 2,,) in Q. From (2.39) and (2.35), we have for i = 1,...,m,

sy dp

—Aw; = —Afw; + W [Agopi + aiw,]
(2.41) )
< w;[pi + aiuw; + (Aw); + (Rz);] 1in Q.

From (2.33), (2.40) and (2.35), we have for i = 1, ..., n,

~Az; = —Bfz; + ;[ Mo ti + biizi]
(2.42)
< 2;[qi + biiz; + bii—12;_1 + bii+1Zi41 + (Sw);]  in Q.

Moreover, from hypotheses (2.32) and (2.33), we obtain for i =1, ...,m,

—Aw; = w;[p; + a;;w;]
(2.43) )
> w;[p;i + aiw; + (Aw); + (Rz);] in

and we obtain for s =1, ...,n,

—AZ > Zi[qi + bii—1Zi—1 + biiZi]
(2.44)
> Zilgi + bii—1Zi1 + biZi + b1z, + (Sw);]  in Q.

Consequently, we find that the pair (wy,...,Wm,21,..., 2n) and (Wy,...,W,,,
Z1, ..., Z,) form upper and lower solutions for the system (2.1) under the hypothe-
ses of this theorem. We then conclude that there exists a solution
(U1, ..., Upmt+n) between the pair, and it has the properties as stated in the
theorem.

In general, it is nontrivial to verify assumptions (2.8) to (2.10) in Theorem
2.1. However, in some cases, it is not difficult to express these hypotheses
directly in terms of the growth and interaction coefficients of the components,
as illustrated in the following example.

Example 2.1. Consider system (2.1) with m = 3,n = 2. Assume hypotheses
(2.3), (2.6) and (2.7). Let

a1 a2 a3 -1 a2 a3
D = det az1 a2 agy |, D1 =det| -1 a2 a3 |,
azy asz ass —1 a3z ass
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ain —1 a3 a;n arp —1
_D2 = det a1 -1 ass | , D3 = det a21 a9 -1 5
a1 —1 ass azg; azy —1
b1 b2 -1 b2 bin —1 ‘
Dy = det , Dy =det , Dg = det .
: ba1  boo > =1 boo 0 bor —1

Suppose that
(2.45) D, D1, Dyand D3 have the same sign;
(2.46) Dy, D5 and Dg have the same sign; and
(247) P> Ay, 94> Ao

Then there exists a solution (uy, ..., us) € [C?*TH#(Q)]® of problem (2.1) such that
u; > 0in Q, for 4 = 1,...,5, provided that all the entries of the matrices R and
S are sufficiently small in absolute value.

Remark 2.3. An example for a;; and b;; satisfying (2.45), (2.46), (2.6) and
(2.7) is given by ajl = —3,(112 = 2,&13 = 3,&21 = 1,a22 = —5,(123 = 2,&31 =
1,@32 = 1,@33 = —4 and b11 = —2,1)12 = 1,1)21 = 1,b22 = —1.

Proof. Let 6 and £ be respectively the unique positive solution of the boundary
value problems:

(2.48) —Av=v[p—v] inQ, v=0 on 09,
and
(2.49) —A?=0[g—7] inQ, 9=0 on 09,

where p = max{p1,p2,ps} and § = mazx{q,q2}. For « = D;/D > 0,08 =
Dy/D > 0,7 = D3/D > 0, the function w = (wy,wy,w3) = (ab, [0,70) is a
solution of the problem

—Aw; = w;[p + (Aw);] in €,
(2.50)
w; =0 on 01, fori=1,2,3.

For & = D5/Dy > 0,3 = Dg/Dy > 0, the function z = (21, 22) = (@&, 5¢) is a
solution to the problem

—Az; = 2[G+ (Bz);] in Q,
(2.51)
z; =0 on 0N, fori=1,2.
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Equations (2.50) and (2.51) imply that w = (w1, wa, ws) = (ad, 56,~0) satisfies

Aw; + w;[p; + (Aw);] <0 in £,
(2.52)
w; =0 on 99N, fori=1,2,3,

and z = (21, 22) = (@€, 5¢) satisfies

Az + zi[qi + (BZ)Z] <0 in Q,
(2.53)
z;=0 on 0N, fori=1,2.

Inequality (2.47) and the assumptions on the matrices R and S imply that
condition (2.10) in Theorem 2.1 is valid. Thus the existence of positive solution
in this example follows from Theorem 2.1.

Remark 2.4. Since 1/p and 1/q are upper bounds for the positive solutions in
(2.48) and (3.49), respectively, one can readily obtain an explicit condition on
the matrices R and S such that (2.10) is satisfied.

Further extentions of the theories in this section can be found in [139].

2.3 Application to Epidemics of Many Interacting
Infected Species

This section considers the application of systems of reaction-diffusion to epi-
demiology. Blat and Brown [12] model the spread of infections by a system of
two reaction-diffusion equations. Capasso and Maddalena [23], [24] use similar
models to investigate the spread of oro-faecal or other bacterial and viral dis-
eases. In this section, we consider large systems modeling the spread of several
bacterial infections among many interacting species, as described in Leung and
Villa [142]. More precisely, we consider

(3.1)
—Au; + a;(x)u; = Z;-”:lbijvj forxeQ, i=1,..,n,
—Avy, + apv, = Z;L:lfkj(uj) + v BT ckjv; forre, k=1,..,m,
u=vp =0 forxed,i=1,...,n, k=1,...,m,

where b;; > 0 and c;; are any constant, f; € C L(R), and Q is a bounded domain
in RY, with boundary 0 of class C*t*, 0 < a < 1.

We will also consider the corresponding parabolic system, with du; /0t and
Ovy /0t added to the first n and second m equations respectively on the left on
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(3.1). The functions u; represent n different kinds of bacterial population densi-
ties and the functions vy represent m different-type infected-species population
densities. The populations are assumed to diffuse in the space domain 2. The
functions a;(x) are assumed to be positive, because the bacterial populations
tend to die in the absence of other factors; the term b;;v; represent the growth
of the number of bacterial due to infected species. The functions ax(x) are as-
sumed to be positive, because a certain proportion of the infected species recover
per unit time; the term fi;(u;) describe the rate at which the kth species be-
comes infected by u;, and the terms vicy;jv; describe the interaction between the
kth and the jth infected species. The model can be more naturally interpreted
in the form of the corresponding parabolic system, with the positive solutions of
(3.1) considered as steady-states. The prototype form with m =n =1,¢;; =0,
is introduced in e.g. [12] and [23]. We will consider the case when all c;j;, are
zero as well as other cases.

For convenience, we will adopt the following conventions. Let B and Kj be
respectively n X m and m X n constant matrices as follows:

bir - bim f{l(o) e f{n(o)

(3.2) B : S|, Ko =

For a_bbreviation, we write F= col.(F1, ..., Fy4m), where Fj are operators from
[CH(Q)]" ™ into C1(Q) defined by
(3.3)

Filcol.(u1, ..oy Up, V1, ooy U )] = T 1bijv; fori=1,...,n,

Foykleol.(ur, oy tn, 01, ooy um)] = 2574 fij(ug) + v X7 cpjv; for k=1,...,m.

We now label a few key assumptions, some or all of which will be used in
various theorems in this section:

The functions a;, @, are members of C%(2),0 < o < 1 and satisfy

(3-4) a;(z) > 0,ar(x) >0forallz € Q,i=1,...,n,k=1,....,m.

(3.5)
The functions fx; € C1(R) satisfy fi;(0) > 0-and f;(0) = 0;
frj(s) >0forall s >0,k=1,..,m, j=1,...,n. For each k, there exists
at least one j such that 0 < fi;(s)for all s > 0.

The functions fy; satisfy fi;(s) < Kys for all s > 0,

3.6 . .
(3.6) where K is some positive constant.
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There exists a constant vector d = col.(dy,...,dy,), with d; > 0,

a7 ° (.
i =1,...,n, such that BKyd > (A + a*)=d.

Here, the (strict) inequality between the two vectors are interpreted to be sat-
isfied for each component. The quantity A; is the principal eigenvalue for
—A as defined by (1.5) in Section 1.1, with principal eigenfunction ¢ where
||#|lcc = 1. The symbols a* and a** are defined as a* = sup.{a;(x),ar(x)|z €
Qi=1,..,nk =1,..,m} and a* = inf{a;(x),ax(z)|]r € Qi =1,...,nk =
1,...,m}.

Another assumption which will sometimes be used concerning the interaction
of the infected species vy, is as follows:

(3.8) ckr < 0, and |egg| > X724 [ plex], for each k= 1,...,m.
In order to simplify writing, we introduce a few more notations. Let
E = {w = col.(w, ..., wpim)|w; € CHQ),w; =00n dQ,i=1,...,m+n},

with norm [|w||g = max.{||wi||c1@li = 1,...,m + n};and P denotes the cone
P = {col.(wi,...;Wnim) € Elw; > 0in Q,i =1,...,n +m}. Also, let

Y = {w = col.(wy, ..., wn1m)|wi € C*TQ),w; = 0 on IQ}

with its norm denoted as [|w|ly = maz.{[|lwillc2ra@)li = 1,....m +n}. As
operators from C?T%(Q) into C%(Q), we write

Li:=—A+a;, i=1,...,n,

Lpyp:=—A+ag, k=1,....,m.

As an operator from Y into [C*(Q)]"t™, we write L = col.(L1, ..., Lptm)-
The system (3.1) can be abbreviated as

(3.9 Llw] = Flw], where w €Y,
To study this nonlinear problem, we consider the auxiliary problem:
(3.10) Liw] = AF[w], weY,

where A is a parameter, and investigate the bifurcation from the trivial solution
w = 0 as the parameter A passes through a certain value Ag. Under conditions
(3.4) and (3.5), we will see that this bifurcation actually occurs in Theorem 3.1.
Moreover, in Theorem 3.2, we will see that hypotheses (3.5), (3.6) and (3.7)
insure that \g < 1; and hypothesis (3.8) insures that the bifurcation curve of
nontrivial solutions connects to A = +o00. Thus (3.10) has a nontrivial solution
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when A = 1, i.e. (3.9) has a nontrivial solution under appropriate conditions.
For convenience, we let My denotes the (n+m) x (n+m) square constant matrix:

0 B
MO_[KO 0]

where the 0’s along the diagonal are zero matrices with appropriate dimensions.
Applying L~ to both sides of (3.10), using zero Dirichlet boundary condition,
we obtain: w = AL F[w]. Thus, (3.10) can be written as:

(3.11) QN w) =0, (\,w)€e RxE,
where ) : R x F — FE is an operator given by
QN w) := w — AL Flw]

(for this entire section the inverse operators L™! or L; ! will always mean finding
the solution using zero Dirichlet boundary condition).

Theorem 3.1. Under hypotheses (3.4) and (5.5), the point (X\o,0) is a bifurca-
tion point for problem (3.11). Here X = \g is the unique positive number so that
the problem:

(3.12) Liw] = AMow in§, w=0 on 01,

has a non-negative eigenfunction in E. (The nullspace for L=' My — /\LOI 18 one

dimensional as described in Lemma 3.2 below.) Moreover, the component of S
containing the point (Ao, 0) is unbounded, where

S:={(\w) € RT xP| Q(\,w) =0,A >0 and w € P\{0}};

and it also has the property that SN (RT x OP) = (Xo,0).
We first state a sequence of lemmas which will lead to the proof of Theorem
3.1. The proof of the lemmas will be given afterwards.

Lemma 3.1. (Comparison) Let w,w € [C*(Q)NCH(Q)]" ™, w £ 0,1; > 0,0; #
0 Q, fori=1,...,n+m, satisfy

Lijw;(z)] = Z;};L{”pij(x)wj(x), for zeQ, i=1,....,n+m
wlan =0, w = col.(wi,..., Wnim),

LZ[UA}Z(J?)] > Zyi{n qij(di)’lf)j(di), fOT T € Q,’i = 1,. an+m

W = col.(Wy, ..., Wntm)
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where p;; and q;; are bounded functions in €). Suppose that
qij zpij m Q fO’I’ ’i,j = 1,...,n—|—m,

and qij,pi; >0 in Q for all i +# 7,
then there exists an integer k, 1 < k < n+m and a real number & such that

Wy, = 0wy, Prj = qrj in Q forall j=1,...,n+m,
and w; —ow; >0 forall j=1,...,n+m.

Lemma 3.2. Under hypotheses (3.4) and (3.5), there ezists (Ao, w’) € R X Y,
Ao > 0, such that

(3.13) Lw®] = ANoMow® in Q, w’ =0 on 00

with each component w9 > 0 in Q, Owd/Ov < 0 on Q for i = 1,...,n +
m. Furthermore, the ez’ge@‘unction corres;zondmg to the eigenvalue 1/\g for
the operator L= My : [CH(Q)]"T™ — [CH(Q)]"™ is unique up to a multiple.
Also, the number X\ = Ay is the unique positive number so that the problem
w = AL 'Myw has a nontrivial non-negative solution for w € P.

Lemma 3.3. Let G : E — E be the operator defined by:
Glw] = L7YF(w) — Myw),
then ||G[w]||/l|wl|lz — 0 as |w]z — 0.

Proof of Theorem 3.1. The operator G described in Lemma 3.3 is completely
continuous, and the operator L~'My described in Lemma 3.2 is compact and
positive with respect to P. Equation (3.11) can be written as:

w — AL [Mow] — AG[w] = 0, for (\,w) € RT x E.

By means of Lemma 3.3 and the existence and uniqueness part of Lemma 3.2, we
can apply Theorem 29.2 in Diemling [49] to conclude that (Ao, 0) is a bifurcation
point for problem (3.11), and the component of S containing the point (Ao, 0)
as described above is unbounded.

Let (\;,w;) € S,i=1,2,..., be a sequence tending to a limit point (X, @) in
R* x 0P, and (\,w) # (Ao, 0). We now show that @ = col.(w1, ..., Wp+m) Must
satisfy w; = 0 in €, for each ¢ = 1,...,n +m. Consider the first case when there
exists some zg € Q and some j € {1,...,n} such that w;(xz¢) = 0. The equation
Lj[w;] = AXP bk ik > 0 implies w; = 0 in Q); and subsequently the right
side of this equation implies that w, 1 = 0 in 2 for each k = 1, ..., m. This leads
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to L;[w;] =0 in Q, for i = 1,...,n, and thus w; = 0 for such ¢ too. Hence w = 0
in this case.

Consider the second case when w; > 0 in Q for all j € {1,...,n}. For each
k=1,....,m, A >0, we introduce the problem

Li[z] = A Z?:l fkj(ﬂ)j) + )‘Z[Z;nzl,j;ék CkjWn+j + ckkz]  in
(3.14)
z2=0 on Of).

The function wy = 0 is a lower solution of (3.14) due to the sign of fi;; and
Wn4k > 0 is a solution which is # 0, due to (3.5). Since f;,(0)0w;/0v < 0 on
0}, there exists a small §; > 0 such that for 0 < § < §;, we have

(3.15) Adp+ag(z)dp < )\Z;-Lzlfkj(’lf)j) +)\5¢[Z?:17j7ékckjwn+j —|—Ckk(5¢] in Q.

Consequently, the functions ws := d¢,0 < § < §1, form a family of lower solutions
for problem (3.14), and W, # ws for all 6 € [0,d;]. By means of a sweeping
principle (cf. Theorem 1.4-3 in [125]), it follows that w4+, > ws, > 0 in €.
Moreover, for each k =1, ..., m, the function w,; satisfies

L[] = AZJ_ fij(05) — AMOpqr|ET 0k W] in Q,
and thus
—AWpy g + apWpir + )\|Z;-ilckj’lf)n+j|’lf)n+k > )\Z;-Lzlfkj(’lf)j) >0 in Q.

It follows from the maximum principle that 0w, ;/0v < 0 on 0. We thus
obtain in this second case that w € Int(P), which is a contradiction. Hence,
only the first case can happen, and we must have w = 0.

Next define z; := w;/||w;||g,i = 1,2,...; they satisfy

(3.16) 2z = ML~ [Moz] = \iGlwi] /| [wil |z = 0.

Since L™1Mj is compact, there exists a subsequence of {z;}(again denoted by
{z;} for convenience) such that L='Myz; converges in E. Since Glw;]/||w;||g
tends to zero in E, as ||w;||g — ||w0||g = 0, Eq. (3.16) implies that {z;} converges
in E to a function zy say, and

zZ0 — j\L_lM()Zo.

Moreover, we have zy € P since w; € P, and zp # 0 since ||z;|| = 1 for all . The
uniqueness part of Lemma 3.2 thus implies that A = \g. Consequently, we must
have (A, @) = (Ag,0). This completes the proof of Theorem 3.1.

For completeness, we will present the proofs of Lemmas 3.1 to 3.3.
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Proof of Pemma 3.1. Let K > 0 be a positive constant such that p; + K, q;; +
K >0in , for i = 1,...,n +m. From the inequalities for L;[w;(z)] and ¢;j, pij,

we have
m—+n

Lilti] + Kb; > (gis + K)di + Y qigib; > 0.
J=14

Thus the maximum principles imply the following properties
w; >0 in Q, and (0w;/0n)(x) <0 if z€ I and w;(zT) =0.

Without loss of generality, we may assume that some component of w takes a
positive value somewhere. Otherwise, replace w by —w. Since w = 0 on 0f2,
we can readily obtain from properties just obtained that w;(x) — ew;(z) > 0 for
some € >0 and all z € Q,i =1,...,n + m. Let ¢; = sup{a : w; —aw; > 0 in O}
for those ¢ = 1,...,n +m such that d; can be finitely defined. Define § to be the
minimum of such d}s. Thus ¢ = d, for some k, and 0 < 0}, < 00, w; — dw; > 0 in
Q for i = 1,...,n+m. From the inequalities for L;[w;(x)] and L;[w;(x)], we find
the inequality

(Ly + K) (g — Spwg) > (K + pr) (g — Spwr) + S0t " Pri (Wi — Sgw;)
+ 3T (qri — pra); >0 in Q.

Consequently, the maximum principle implies that Wy — dwg = 0 in 2. Then,
the last inequality above further implies that we must have qi; = p; for all
1=1,...,n+m.

Proof of Lemma 3.2. The operator L~'Mj as described in the Lemma is com-
pletely continuous and positive with respect to the cone P. Let z = col.(z1, ...,
Znam) = col (LT(1), .. L;+m( )). The functions satisfy z; > 0 in Q, z;|sgq = 0
for i = 1,...,n +m. Define v = L™'Myz. The positivity of B, Ky and the
maximum principle imply that the components satisfy v; > 0 and dv; /v < 0
on 0N for i = 1,....n +m. Thus, there exists 6 > 0 such that L~ 'Myz > iz
with z € P. Theorem 2.5 in Krasnosel skii [108] or Theorem A3-10 in Chapter 6
asserts that there exists a nontrwlal w® = col.(w?,...,wd,,.) € P and po >6>0
such that L=!Mow® = pow® (i.e. (3.13) with \g = 1/p0) Suppose w # 0 for
some 1 <i<n (or n+1<i<n+m); using the maximum principle on each of
the last m (or first n) equations in (3.13), we obtain by means of the positivity of
Ky (or B) that for each j =n+1,...,n+m (or j = 1,...,n) we must have wg-) >0
in 2 and 8w§-) /Ov < 0 on 0N. Then, we use the first n (or last m) equations and
the positivity of B (or Kj) to obtain by means of the maximum principle that
wg-) > 01in 2 and 8w§-)/81/ <0on o foreachi=1,...,n (orj=n+1,...,n+m.)
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Now, let @° = col.(wY, ..., Wn1m) Z 0 be such that Lo® = \gMow". From
Lemma 3.1, there must exist 6* € R and some k,1 < k < m + n, such that

(3.17) wh = §*w) and wg-) — 5*11)? >0inQ foralj=1,...m+n.
If there is an integer r such that

(3.18) w?(z) — 6*wd(z) > 0 for 7 € Q,

T

then L,[w? — §*wY] > 0 implies that w? — @2 > 0in Q. If 1 < r < n (or
n+1<r <n+m), consider the i-th equation in (3.13) forn+1<i<n+m
(or 1 <i < mn). We obtain L;[w) — §*1@Y] > 0 in 2, which implies w? — §*@? > 0
in Q, for each i = n+1,...,n+m (or i = 1,...,n). We then consider the
other n (or m) equations to obtain w{ — 6*@Y > 0 in Q for each i = 1,....n
(or i = n+1,..,n+m). This contradicts the existence of an integer k such
that (3.17) holds. This means that if (3.17) holds, there cannot exist an r such
that (3.18) holds. That is we have w® = §*@°. Finally, suppose that there is
another A\; > 0,A; # Ag, such that Lw = A\ Myw for some w € P\{0}. We
can deduce as before that w; > 0 in Q, 0w;/dv < 0 on I for i = 1,...,n + m.
Then we can obtain from Lemma 3.1 that \; = A\g. This completes the proof of
Lemma 3.2.

Proof of Lemma 3.3. We use Schauder’s theory to deduce
1G]/ lwlls < kI [F(w) = Mow] ||oo/|[w]]oo

<KD S i () = FL0)wi] oo /1 w; oo + 2231 D250 Teijllwnqj oo

— 0, as ||lw||g — 0.

Theorem 3.2 (Coexistence of Bacteria and Infected Species). Under hy-
potheses (3.4) to (3.8), the problem (3.9) has a solution w = col.(w1, . .., Wpim) €
Y, such that w; >0 in Q for each i and w # 0 (i.e. w € P\{0}).

Remark 3.1. By the property: SN (R* x 9P) = ()\o,0), of the part S of
the bifurcation curve described in Theorem 3.1, we must have w; > 0 in 2, for
1=1,...,n+m.

In order to prove Theorem 3.2, we first show the following two lemmas.

Lemma 3.4. Under hypotheses (3.4), (3.5) and (3.7), the positive number where
bifurcation occurs described in Theorem 3.1 satisfies Mg < 1.

Proof. By hypothesis (3.7), there exists a small enough ¢ > 0 such that
B[Ko(A\ +a*)"td—col.(e, ...;€)] > (A +a*)d and Ko(A+a*)"1d > col.(c, ..., €).
Let p'= col.(p1, ..., pm) be the positive constant vector defined by p':= Ky(A +
a*)~td — col.(e, ...,€). We can readily verify that the positive constant vector
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g := col.(dy,...,dp, p1,...,Dm) satisfies Myg > (A1 + a*)g. Thus there exists
r > 1 such that

(3.19) Mog > r(\ +a™)g.

Let 2z := ¢g. Since L;[¢] < (A1 + a*)¢ in Q for each i = 1,...,n + m, a simple
calculation shows

L7 [Mo2] > L7 r(A\ + a*)Z]
=rL (A +a*)¢lg >r9g =12 in Q,
where r > 1. As in Lemma 3.2, we obtain by means of Theorem 2.5 in Kras-
nosel’skii [108] or Theorem A3-10 in Chapter 6 the existence of a nontrivial

function @ € P such that L='Myw = pb with p > . The uniqueness part of
Lemma 3.2 implies that p = 1/Ag. Thus we have \g < 1/r < 1.

Lemma 3.5. Under the hypotheses (3.4) and (3.5), let (\,w) € S, where S
1s described in Theorem 3.1. Suppose Ry are positive constants such that 0 <
Wyik(x) < Ry forallz € Q, k=1,...,m. Then for eachi=1,...,n,

(3.20) 0 < wi(z) < A(inf.a;)"" > by Ry for all z € Q.
k=1
Proof. For each i = 1,...,n, consider the scalar linear problem
(3.21) Lil2] = X bk in Q, 2 =0 on 9.
k=1

Since the trivial function and 2 = A(inf . a;) 71 S°}1, b Ry, are respectively lower
and upper solution of (3.21), the unique solution z = w; must satisfy (3.20).

Proof of Theorem 3.2. Let the component of S containing the point (g, 0),
described in Theorem 3.1, be denoted by ST. Since Ay < 1, by Lemma 3.4,
it suffices to show that the set I := {\ € RT|(\,w) € ST for some w} is
unbounded. For convenience, let

Qg = Zbik(inf.ai)_l >0 fork=1,...,m,
i=1

m

Br = |crk| — Z \ckj\ fork=1,...,m.
j=1j#k
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Hypothesis (3.8) implies each (3 > 0. Suppose that the set I is contained in the
interval [0, C], we will deduce a contradiction. Let N > 0 be large enough such
that

(3.22)  CK1(D_aj)(0N) = Bp(ON)* <0 forall 6 > 1, cach k=1,...,m.
j=1

Here, the constant K7 is described in (3.6). We claim that if there exists A such

that (\,w) € 8T, then w = col.(wy, ..., wp4m) must satisfy:

(3.23) 0<wi(z) <N forallzeQ,i=n+1,....,n+m.

Suppose (3.23) is not true. Let (X, @) € ST, such that @ does not satisfy the
corresponding (3.23). For each i = n+1,...,n+ m, let 27 € Q be the point
where 1; attains its maximum value on Q. Let r € {n + 1,...,n + m} where
Wy (x)) = max{Wp41(2}1) - - Wntm(T)my)}. By assumption on w, we must
have o := w,(x*)/N > 1; moreover, we have 0 < w;(x) < @, (z*) = o* N for all
re€Qi=n+1,...,n+m. Suppose we have x* € . Then (3.6), Lemma 3.5
and (3.22) imply that @, (x}) satisfies:

— AW (1) + Qr—p(27) W, (27)
=X E?:l fren,j(W;(x7)) + S‘wr(ﬁ) Z;nzl Crn,jWn+;(2})
< 5‘[[(1 Z?:l w;(zy)] + S‘(O‘*N)2 [~ler—nr—nl| + Z;‘nzl,j;ér—n |er—n.l]

< AKLC(P, aw)(@*N) — (a*N)2B,_,, < 0.

Note that we have used the assumption that I is contained in [0, C] and a* > 1
in obtaining the last two inequalities above. This contradicts the fact that )
is an interior maximum. Thus we must have x: € 0f). Then the boundary
conditions and Lemma 3.5 imply that @ = 0; and we can conclude that (3.23)
must be true.

Finally, inequality (3.23), Lemma 3.5 and gradient estimates by means of
equation (3.10) imply that St cannot be unbounded if I is bounded. Conse-
quently, I must be unbounded, and this completes the proof of Theorem 3.2.

We next consider system (3.1), under the special situation when all ¢;; = 0,
for k,j =1,...,m; that is, we consider the problem:

_Aui + az(x)uz = Z;Tl:l bZ'jUj for x € Q,’i = 1, ey N,
(3.24) —Avg + ag(x)vg = Z;}ZI frj(u;) for ze Q k=1,..m,

u=vp=0 forxed,i=1,...n, k=1,...m.
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In other words, the infected species v will not interact among themselves. This
situation is a direct generalization of the theory in Blat and Brown [12]. Under
additional assumptions on fi;(u;) for large u; (see (3.28)), Theorem 3.3 shows

that problem (3.24) has a positive solution. Letting w = col.(wy,. ..., Wptm) =
col.(uy, ..., Up,V1,...,0mn), System (3.24) can be written as
(3.25) Liw] = Flw], w € E,
where F is the same as F' described in (3.3) with the special restriction ¢;; = 0,
for all k,7 =1,...,m. For convenience, we define
; fis(m)/m it n#0
(3.26)  fij(n) = ] fori=1,...,m, j=1,...,n.
i/j(o) if n=0
Also define the m x n matrix
fulm) - fialma)
~ m,n
(3.27) Fatmp| ~ = s
where 7;; are real numbers for ¢ = 1,...,m, j = 1,...,n. We will use the
following hypothesis:
(3.28)
There exist a real numberny > 0, and a constant vector ¢ = col.(q1,- .., qn),

with ¢; > 0,2 =1,...,n, such that:

m,n

q'B [fij(mj)] < (M + a2 for all ;> no.

Under hypothesis (3.28), one can always choose a number p; with 0 < p; <
(A1 + a™*) such that:

(3.29) q'B [ﬁ-j(ma’)}

2,7=1

m,n
4 < p3qh < (A +a™)?g" for all ny; > no.

Z?]:

The following theorem is the main result for case when the infected species do
not interact among each other.

Theorem 3.3 (Coexistence When Infected Species Do Not Interact).
Under hypotheses (3.4) to (3.7), and (3.28), the problem (3.25) (alternatively,

problem (3.24) with w = col.(uy,...,Un,V1,...,Up)) has a solution w =
col.(wy, ..., Wpym) € Y, such that w; > 0 in Q for each i and w # 0 (i.e.
w € P\{0}).

In this theorem, F is considered with the special restriction c;; = 0, and
assumption (3.8) concerning c; is not assumed. We are thus led to the problem:

(3.30) Llw] = \F[w], w € E,
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with F' as described above. Since F is a special case of 2 , Theorem 3.1 applies.
Under the assumptions of Theorem 3.3, let S be as defined in Theorem 3.1, and
S* be the component of S containing the point (Ag, 0). Recall that ST is proved
to be unbounded in Theorem 3.1. The following Lemma will be needed in the
proof of Theorem 3.3.

Lemma 3.6. Assume all the hypotheses of Theorem 3.3. Suppose {(Xr,wr)},
r=1,2,... is a sequence in ST with the property: A — 5\ 0< 5\ < 00, and
||w’"||E — 00, as 7 — co. Then there exists a subsequence {( M7y, W )} such
that the first n components of W'Y tend to +oo uniformly in compact subsets
of Q, as r(j) — 0.

Proof of Lemma 3.6. Let 2] = @} /||0"||g, y;, = U,/||@0" ||, w" = @"/||0"||g =
col .(24,...,25,y7,...,yn,), for r =1,2,.... Dividing equation (3.30) for @" by
||@"|| g, we obtain

—AZ +ai(z)Z) = N, > bigy; forzeQi=1,..,n

(3.31) — Ay + ap()yl = A Y0y fi(@)2F for 2 € Qk=1,...,m

2l =y, =0 forxed,i=1,...,n, k=1,...m

Since the right-hand side of (3.31) is bounded in || - ||co- nOrm, using Schauder’s
estimates we obtain a subsequence of {w"}22;, denoted again by {w"}2>2,, which

converges in the ||.||p - norm to a function w = col.(z1,...,2n, Y1,...,Ym) € E.
Here, from the definition of S, we must have z; > 0,y > 0 in Q for i =
1,...,n,k=1,...,m, and ||w||g = 1. Using Schauder’s theory, we see that w

also satisfy (3.31) by taking limit as r — oo.

If y =0in Q for all kK = 1,...,m, the first n equations in (3.31) imply by
maximum principle that z; = 0 in €, for each ¢ = 1,...,n. This contradicts
the fact that ||@w||g = 1. Thus, there must exists some [ € {1,...,m}, such
that y; Z 0 in Q. The first n equations in (3.31) then imply that z;(z) > 0
in Q for all ¢ = 1,...,n. The conclusion of Lemma 3.6 follows since u}(x) =
2N (@) ||a"||g, [|0"||E — oo, and 27 (x) — z(z) > 0 in Q (in C1(Q)-norm) as
r — 00.

Proof of Theorem 3.3. Recall that Lemma 3.4 implies that A\g < 1. To prove
this Theorem, it suffices to show that if there exists a sequence in ST with
property as described in Lemma 3.6, then we must have A > 1. This leads to the
existence of (A,) in ST with A = 1; that is, we obtain a solution of problem
(3.24).

If {\: (A\,w) € ST} is contained in a bounded interval, then there must
exists a sequence {(Xr,w’“) %, in 8T with property as described in Lemma
3.6; and (), w") satisfies (3.30) for each r. Denoting @" = col.(@},.. ., W) =
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col.(ay,...,up,0},...,05,), the conclusion of Lemma 3.6 implies that we may as-
sume that @] (z) — oo uniformly in compact subsetsof Q, asr — 00,7 =1,...,n.
Let W = ~T/H,II)THLQ k - Uk:/Hw ||L2 \IIT = COl(lﬁ{,,?ﬂg,gf,,g;%)
Dividing the equation for (Ap,@0") by || ||L2(Q ), We obtain

AT+ ai (@)} = N YT byl forreQ,i=1,..,n
(3.32)

AL+ ag(x)é, = Ar Z 1fkj( )1/1; forxe k=1,...,m
Since the right side of (3.32) is bounded in || - ||f,(q)- norm, using Agmon-

Douglis-Nirenberg estimate, we obtain a subsequence of {¥, }2°,, also denoted
by {¥,}5,, which converges to a function ¥ = col.(¢1,...,¢¥n, &1, ..., &m) in
L(2) at each component. Moreover we have ||¥|[z, ) = 1, and ¢; > 0,&, > 0
a.e. inQ fori=1,....,n, k=1,...,m

Let (q1,...,qn) be as described in hypothesis (3.28), and p; be as chosen
n (3.29). Define py such that 0 < p; < p2 < (A + @*), and let ¢7 =
(q1s - Qns Qna1s - Gnim), Where g = (1/p1) Z?:l q;ibjk, k=1,...,m. (Note
that g, is the k-th component of (1/p1)¢” B). By the first inequality in (3.29),
we readily obtain from the definition of ¢7 and p, that

0 B

(3.33) | man < o™ for all mij > .
Mmﬂ” 0

2,7=1
To simplify writing, for ¢« = 1,...,n, denote h;j(n) = 0 when j = 1,..,n and
hijin(n) = bj; when j =1,...,m. For ¢ = 1,...,m, denote hii, ;(n) = fij(n)
when j =1,...,nand hjypn jin(n) = 0 when j = 1,...,m. Inequality (3.33) can
then be rewritten as:

(3.34) (jT([hU (nw)]?t”}wrm) < pogt  for all Mij = 10-
7.]
Note that h;; are really constants for j > n,i=1,...,n+ m.
J

Multiplying the first n equations of (3.32) by ¢;¢,i = 1,...,n, and the last
m equations of (3.32) by ¢,1x¢,k = 1,...,m, we obtain, after integrating by
parts:

(3.35) 0= / 97O+ ai) + A S bi€llgiddz,  fori=1...,n,
Q

J=1

(3.36) 0= /Q[—f};()\l +ag) 4+ Z EV] quarddz, fork=1,...m
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Adding the last n + m equations, and using the definitions of a** and h;;, we
obtain:

(3.37) 0< /Q {(—(M +a™)i v, + X,@T[hij(w;)]zjg"*mmb} da.

(Recall that h;; are constants for j > n, and h;;(}) above actually depends
only on af,j = 1,...,n.)

Let {Q4}3°, be a sequence of open subsets of €2, such that Q, C Q C
Q1 C Q, for all k£ with Q@ = U2 ,8;; and let € > 0 be an arbitrary small
constant. Since the quantities A, g%, hi; are bounded, and ¥, — ¥ in Ly(Q),
we may assume that for [ and r sufficiently large, we have:

(3.38) / Sl (TG, e < e
O\ ’
We can thus obtain from (3.37) that:

(3.39) 0s | =+ a*)q" 4+ A" [(hig (@) g da + e,
1

By Lemma 3.6, we may assume that @7 — oo uniformly in {; for each fixed [,
asr — oo, forj=1,...,n.
Consequently, from (3.34) and (3.39), we obtain

(3.40) 0< [ {=(A+a™)+Np2} 70, pdx + €
Q

for all sufficiently large r. Letting r — oo, we find that for all sufficiently large
L,

(3.41) 0< [ {=(\+a™)+Ap2} T Vpda + e
97
Since € is arbitrary, we conclude
0< [ {~On+am)+ Ao} TV da
Q

This leads to A > (A; + a**)/ps > 1. The proof of Theorem 3.3 is complete.

Remark 3.2. The global continuum of positive solutions of (3.30) and (3.10)
cannot cross A = 0, because when A = 0 the trivial solution is the only solution
by the maximum principle.

In the remaining part of this section, we will consider the stability of the
steady state solutions found in Theorem 3.2 as a solution of the corresponding
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parabolic system. It will be seen in Theorem 3.5 that if hypotheses (3.5) and
(3.8) are strengthened, then the bifurcating steady-states near the bifurcation
point are asymptotically stable in time. Before obtaining further results with
additional hypotheses, we first deduce a few more consequences of hypotheses
(3.4) and (3.5).

Lemma 3.7. Under hypotheses (3.4) and (3.5), the problem

(3.42) Lw] = AMIw  inQ, w=0 ondQ,

has a solution (\,w) = (Ao, w%), W’ € Y with each component @9 > 0 in
Q, 00 /ov < 0 on OQ fori = 1,..,n +m. (Here, Ny is exactly the same
number as in Lemma 3.2.) Moreover, any solution of (3.42) with A = o is a
multiple of w°.

Proof. The existence of a positive solution and the simplicity of the correspond-
ing eigenvalue is proved in exactly the same way as Lemma 3.2 with the role of
B and Kj interchanged. The fact that )\g is exactly the same as in Lemma 3.2
follows exactly the same procedure as in the proof of Lemma 2.4 in Leung and
Villa [141] or Lemma 6.4 in Section 2.6, and will thus be postponed.

For convenience, we will define two operators Ly and Ly : E — E as follow:

(3.43) Lo =1 — ML 1My,

(3.44) Ly :=—L ' M,.

Lemma 3.8. Under hypotheses (3.4) and (3.5), the null space and range of Ly,
denoted respectively by N(Lg) and R(Lg), satisfy:
(i) N(Lg) is one-dimensional, spanned by w?,
(ii) dim[E/R(Ly)] = 1, and
(iii) Liw® € R(Ly).
Proof. Part (i) was proved in Lemma 3.2. The remaining parts are proved in

the same way as in Lemma 2.5 in [141] or Lemma 6.5 in Section 2.6. For the
proof of part (iii), the positivity property of w® and @° are used.

Theorem 3.4 (Local Bifurcation). Assume hypotheses (3.4), (3.5) and the
additional condition that fr; € C* ( ) fork=1,...n,j = 1,....m. Then there
exists > 0 and a C*-curve (A(s), d(s)) : (—6,8) — Rx E with A\(0) = Ao, $(0) =

0, such that in a neighborhood of (No,0), _any solution of (8.11) is either of the
form (X, 0) or on the curve (\(s), sjw® + &(s)]) for |s| < 6. Furthermore, the set
ST\{(N0,0)} is contained in Rt x (IntP), where St is the component of the
closure of S (described in Theorem 3.1) containing the point (\g,0) in RT x E.
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Proof. Equation (3.11) can be written as
(3.45) QN w) := Lo[w] + (A — Xo)L1][w] — A\G[w] = 0,

where the operator G : E — FE is defined in Lemma 3.3. Under the additional
smoothness condition on fj;, we can show that @ € C?(R* x E,E) and the
Fréchet derivative of GG is continuous on E. Moreover, we can readily deduce as
in Lemma 3.3 that Ly = D2Q (Ao, 0), L1 = D12Q(Xo,0), and G[O] = DQG[O] =0.
Hence we can apply the local bifurcation theorem in Crandall and Rabinowitz
[34] to obtain the C'-curve (A(s),(s)) describing the nontrivial solution of
(3.11) near (Ao, 0) as stated above.

For s > 0 sufficiently small, the function s[w® + ¢(s)] is clearly in Int P.
Suppose (A, w;) € S,i = 1,2... is a sequence tending to a limit point (\, )
in RT x OP; we can show as in Theorem 3.1 that (\,@w) = (A\g,0). By means
of the local behavior of all the solutions (3.11) near (\g,0), we conclude that
ST\{(X,0)} C R" x (IntP). This completes the proof of Theorem 3.4.

We next consider the linearized and then the asymptotic stability of the
positive bifurcating solution described in Theorem 3.3, near (\g,0). Applying
the bifurcation theory in [34], and the fact that

(3.46) / @? - A7 da #£ 0,
Q

(note that each component of both w° and w? is strictly positive in ), we can
assert that there exist d; € (0,0) and two functions: (y(:),2(-)) : (Ag — 91, Ao +
61) > Rx E, (n(-),h(-)) : [0,61) — R x E, with (7(Xo), 2(X0)) = (n(0), h(0)) =
(0,w°), such that

(3.47) DyQ(A,0)2(A) = v(\)(=L) ' (2(N),
and
(3.48) DaQ(A(s), s(uw® + ¢(s))h(s) = n(s) (L)' (h(s)).

Here, (3.46) and the theory in [34] imply that (A) and 7)(s) are respectively L=
simple eigenvalues of D2Q (), 0) and DaQ(A(s), s(w’ + ¢(s)) with eigenfunctions
z(A) and h(s). Moreover, the theory in [34] further lead to the following lemmas.

Lemma 3.9. Assume all the hypotheses in Theorem 3.4. There exists p > 0
such that for each s € [0,01), there is a unique (real) eigenvalue 1(s) for the
linear operator

(3.49) QF = —LD2Q(A(s), s(w” + ¢(s))) : Y — [CY(Q)™+"
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satisfying [n(s)| < p with eigenfunction h(s) € Y. That is,

(3.50) Qih(s) = —L[h(s)] + A(s) Fu[s(w” + ¢(s))]h(s) = n(s)h(s).

The next few lemmas study the behavior of the eigenvalues 5\(8) and 7(s) for
small s > 0, and y(\) near A = Ag.
Lemma 3.10. Assume all the hypotheses of Theorem 3.4. Suppose further that
(3.51) fij(0) <0 fork=1,.,m,j=1,..,n;
(3.52) ci; <0 forallk,j=1,..,m.

Then, the function A(s) satisfies X'(0) > 0.

Remark 3.3. Note that hypotheses (3.51) and (3.52) are respectively modifi-
cations of (3.6) and (3.8). Hypothesis (3.52) means the infected species compete
among each other.

Proof. Theorem 3.4 asserts that N (0) exists. Equation (3.11) implies that
s(w® + ¢(s)) is in Y; and for s € [0,4), we have

L[s(w® + (5))] = A(s)F'[s(w” + ¢(s))].
Dividing by s and then differentiating with respect to s for s > 0, we find
L[g'(s)] = N(s)(1/s) Fls(w® + 6(s))] + ;\(S)d%{(l/S)F[S(wO + o(s))]}-

Letting s — 0T, we obtain

(3.53) L[¢'(0)] = XN (0)Mow® + A(0)Myd' (0) + A(0)Row®,
where

. Onxn Onxm
(3.54) Ro = [ A ] .
Here, Hy is the m x n matrix whose (4,)-th entry is (1/2)f/;(0)w) for i =
1,...,m,j7=1,...,n; and Zj is the diagonal m x m matrix col.(E;-n:l clngﬂ»,
iy cmjw2+j). We multiply (3.53) by (@°)7 and integrate over Q. Then,

after integrating by parts on the left and canceling with the second term on the
right, we obtain
yo_—ﬂmhﬁwﬁwmw
(0) = Jo (@) Mow® dx

The last inequality is due to the additional assumptions (3.51) and (3.52).
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Lemma 3.11. Under all the hypotheses in Theorem 8.4, the function ()
satisfies 7' (Ag) > 0.
Proof. Note that DoQ(\,0) = I — AL~ My. From (3.47), we have

(I = AL7 Mp)z(\) = v(M\)(=L)7Lz(N), for A € (A9 — 61, Ao + 01).

Applying L, multiplying by (@°)”, and integrating over Q, we obtain

/ (@) LI (N)] — A@)T Moz(\) de = [y(ho) — 7(V)] / (@) (N da,
Q Q

since (o) = 0. Integrating by parts, using the equation for (¥°)7, and letting
A tends to A after transposing, we obtain

, )T Mow® dz
7 (o) = fs}(ﬂ(w)O)T:z)O dr

Lemma 3.12. Under the hypotheses of Theorem 3.4, (3.51) and (3.52), there
exists 9y € (0,01) such that n(s) <0 for all s € (0,92).

Proof. From Theorem 1.16 in [34] or exposition in Smoller [209], we find
—sN'(s)y' (M) and n(s) have the same sign for s > 0 near 0. Hence Lemma 3.10
and Lemma 3.11 imply 7n(s) < 0 for small positive s.

The linearized eigenvalue problem for (3.10), (3.11) at the bifurcating solu-
tion w = s(w® + ¢(s)) is precisely (3.50). When A = A(0) = A, the eigenvalue
problem corresponding to (3.50) becomes

(3.55) —L[h] 4+ ANMoh=nh  he€E,

where 7) is the eigenvalue. Under hypotheses (3.4) and (3.5), Theorem 3.1 asserts
that 7 = 0 is an eigenvalue for (3.55), with positive eigenfunction. Using this
property and the fact that the off diagonal terms of My are all non-negative, we
can proceed to show the following.

Lemma 3.13. Under hypotheses (3.4) and (5.5), all eigenvalues in equation
(3.55) except n = 0 satisfies Re(n) < —r for some positive number r.

The proof of this lemma is essentially the same as the proof of Lemma 2.8
in Leung and Ortega [138]. The details will be omitted here

Lemmas 3.9 to 3.12 above essentially shows the eigenvalue 1 = 0 correspond-
ing to (3.50) at s = 0 moves to the left as s increases. As to the other eigenvalues
with Re(n) < —r described in Lemma 3.13, one can show by perturbation argu-
ments that they should still be in the left open half plane for s > 0 sufficiently
small. More precisely, we have the following.
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Lemma 3.14. Under the hypotheses of Lemma 3.10, there exists a number
0* € (0,9) and a positive function n(s) for s € (0,0%) such that the real parts of
all the numbers in the point spectrum of the linear operator Q% are contained in
the interval (—oo, —n(s)), for s € (0,6). (Here, § is described in Theorem 3.4
and Q% is described in (3.49) in Lemma 3.9.)

The proof of Lemma 3.14, using the assertions in Lemmas 3.9 to 3.13 are
exactly the same as the proof of Theorem 2.2 in [138]. The details are thus
omitted here.

For each s € (0,8*), the function @, := s[w®+¢(s)] described in Theorem 3.4
can be considered as a steady-state solution of (3.10) with L replaced by 0/0t+L
and homogeneous boundary condition. We now consider the time asymptotic
stability of this steady-state as a solution of the corresponding parabolic prob-
lem. In order to obtain a precise statement, we let B; and By be Banach spaces
as follow:

Br={u:ue[C(Q)]"T u=0 on dN},

and
By ={u:u € [L,(Q)]""™} for p large enough such that N/(2p) < 1.

Let A; be the operator L on B; with domain D(A;) = {u : u € [W2P(Q)]"+t™
for all p, Au € [C(Q)]"",u = 0 and Au = 0 on 9Q}; and Az be the operator
L on By with domain D(A3) = {u € By : u € [W2P(Q) N W()l’p(Q)]”+m}. For
w = col.(wi,...,Wntm), we consider the following nonlinear initial-boundary
value problem for each i = 1,2:

W4 Aw(t) = M(w(®), w(0) = wy for t € (0,7,

(3.56) -

A solution of (3.56) in B; is a function w € C([0,T], B;) N C((0,T], B;), with
w(0) = wo, w(t) € D(A;) for all ¢t € (0,T]; and w(t) satisfies (3.56) for ¢t € (0, 7.
The operator As is an infinitesimal generator of an analytic semigroup, say S(t),
on By for ¢ > 0. It is well known that for a > 0,

(—A2) % = ﬁ /000 o718 (1) dr

defines a bounded linear operator on By (called fractional power of the oper-
ator As). Moreover, [(—A2)™]~! := (—A2)% is a closed operator on By with
dense domain D((—A2)®) = (—A3)~%(B3). We denote by X the Banach space
(D(=42)%, |1,.) where [[t]l, = [[(~A)2w]| > for all w € D((~Az)?).

Using Lemma 3.14, we can use the theory by Mora [176] (Theorem A4-9 in
Chapter 6) or apply the stability Theorem 5.1.1 in Henry [84] (Theorem A4-11
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in Chapter 6) for sectorial operators to obtain the following asymptotic stability
theorem for the steady-state solution w;.

Theorem 3.5 (Local Stability of Coexistence Steady-State when the
Infected Species Compete). Assume all the hypotheses of Theorem 3.4,
(3.51) and (3.52). For each fizred s € (0,6%), let X = A(s), w = s[w® + ¢(s)].
Then, for each i = 1,2, there exists p > 0,8 >0 and M > 1 such that equation
(8.56) has a unique solution in B; for all t > 0 if wy € By and ||wg — 0| <
p/(2M) fori =1 (or wyg € X and ||lwyg — W||o < p/(2M) for i = 2; here we
assume o € (N/(2p),1) for the space X*). Moreover, the solution satisfies

(3.57) [[w(t) — @|oo < 2Me P ||wg — @||oe  forallt >0,i=1,
or
(3.58) [[w(t) — ©||o < 2Me P ||wg — @||o for all t > 0,i = 2.

2.4 Conditions for Coexistence in Terms of Signs of
Principal Eigenvalues of Related Single Equations,
Mixed Boundary Data

In the last two sections, the conditions for coexistence solutions are expressed
in terms of relationship of the coefficients with the principal eigenvalue of the
operator —A. In Theorem 2.5 for prey-predator and Theorem 3.4 for competing
species studies in the last chapter, the conditions are expressed in terms of the
signs of the principal eigenvalues of appropriate operators on scalar equations
deduced from the original system. Such results are more direct and convenient.
In this section, we investigate extentions of such results to the case of a system
of three equations. Moreover, we consider the situation of mixed boundary
condition rather than Dirichlet type. The results of this section are mainly
adopted from Li and Liu [150] and Liu [160].

As described in Section 2.1, the study of three species diffusion-reaction
systems is applicable to many practical problems. As a further example from
immunology, we consider the interaction of viruses with different types of anti-
bodies. An external antigen (e.g viruses, called V) stimulates a large increase
in a type of immunoglobulin molecules (called antibody 1, Abl), which then
induce the production of another type of antibody (called Ab23). By binding
with V, Abl will act as a predator with V as its prey. Induced by Abl and then
neutralizing Abl, Ab23 will be a predator with Abl as prey. Since some of the
idiotopes on Ab2( resemble the shape of the antigenic determinant on V, the
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interaction between V and Ab2( is competing for the binding sites on Abl. (See
e.g. Linthicum and Faird [156] or Roitt, Brostoff and Male [193].)

Let © be a bounded domain in RV, N > 2, and assume 9 belongs to C>+®
for some 0 < a < 1. We define a boundary operator B by

(4.1) Bu = a(z)u + b(x)0u/0n

where a,b € C1T2(0£2). We assume that either b(z) > 0 and 0 # a(x) > 0 on
0, or b(z) = 0 and a(z) > 0 on 9N. Here, n is the outward unit normal at
the boundary. For a linear operator L, with +L (or —L) elliptic, we denote by
M (L, B), the largest (or smallest) eigenvalue for the problem:

Lu=MXu in 2, Bu=0 on 0.

When the boundary condition is clear from the context, the eigenvalue is ab-
breviated as A\j(L). The spectral radius of a compact operator T' is denoted
by r(T'). For a given boundary operator B as described above, we define for
convenience a class of function F(B) C C(2 x RT) as follows:

Definition 4.1. A function f : Q x [0,00) — R belongs to the class F(B),
denoted as f € F(B), if

(i) f(z,2) € C¥OQx[0,00)),0 < a < 1, and its partial derivative with respect
to the second component f,(z,z) are continuous in Q x [0, 00);

(il) —C < fo(z,2z) < 0in 2 x [0,00) for some C' > 0;

(iii) limsup,— oo f(z,2) < A1(=A, B) uniformly for x € Q.

We first deduce an extention of Lemma 2.1 of Chapter 1 concerning the
existence of positive solution for scalar equations.

Lemma 4.1. Suppose f € F(B). Consider the boundary value problem:

42) { —Au = uf(z,u) n Q,

Bu=20 on 0f).

(i) If \i(A+ f(x,0)) > 0, then the problem (4.2) has a unique positive solution.
(11) If \i(A + f(x,0)) <0, the u =0 is the only non-negative solution of (4.2).

Proof. (i) Assume A\; = A\ (A+ f(z,0)) > 0. Let ¢(z) > 0 be the corresponding
eigenfunction. We have A¢ — P¢p < 0 in €, for sufficiently large P > 0, and
B¢ =0 on 0f2. The boundary condition (4.1), (4.2) implies ¢ is not a constant
function, and thus the Hopf Lemma implies that at the boundary minimum point
x0, we must have d¢/0n < 0. The boundary condition (4.1), (4.2) again implies
that ¢(x) > ¢(xg) > 0 for all x € €, for the case b(z) Z 0. Let 6 € (0, A1), and
€ > 0 be small enough such that |f(z,ed(x)) — f(x,0)] < § for all z € Q. We
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have

Aeh + f(x,ep)ed

= Aeg + f(x,0)eh + [f(z,e0) — f(2,0)]ep
(4.3)
>ep(x)(A1—9) >0 in Q,

( B(epp) <0 on 0.

Let b(z) = b(z) + o with 0 > 0, and A} = A\;(—A, B) where Bu = a(z)u +
b(x)du/On on Q. By the continuous dependence of eigenvalues on the boundary
conditions, we have A; is close enough to A1 (—A, B) for sufficiently small o so
that

limsup,—4o0f (2, 2) < A1 uniformly for z € €.

Let w(x) > 0 be an eigenfunction for the eigenvalue A\ = Al(—A,B). By the
same argument as in the last paragraph, we obtain w(z) > 0 for all z € Q.
Thus, for K > 0 sufficiently large, we have @ := Kw > u := €¢ in (), where €
was chosen in the last paragraph to satisfy (4.3), and f(z, %) < A; for all z € €.
We thus have

Au+af(x,u) = AKw+ Kwf(x,u)

(4.4) = Kw(f(x,u) — A1) <0 in £,
Bu>0 on Of).

The last inequality above is true because 0u/dn = (—a/b)a > (—a/b)a on 0.
Define ug := u in §2, and inductively, for i = 1,2, ..., u; to be the solution of

(4.5) —Au; + Pu; = uj—q1 f(x,ui—1) + Puj—1 inQ, Bu; =0 ondf.

Here P > 0 is chosen sufficiently large so that the function z — zf(x, z) + Pz is
nondecreasing in z for x € Q,0 < z < mazqiu. Using (4.3), (4.4) and (4.5), one
can show by means of Hopf Lemma and maximum principle (cf. Section 5.1 in
[125] for the case of Dirichlet boundary condition) that

(4.6) u< <y <---<upg<u <a in Q.

The sequence {uy} is bounded in C(Q). Using the mapping (—A+P) ! (uf (x,u)
+ Pu) and Theorem 4.2 in Amann [3], we can choose subsequence {uy;)} so
that it converges in C1(£). Then, we can use Lemma 9.2 in [3] to assert that
the sequence {uy; (v)f(z,up ()} is bound