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Preface

This book is an expanded English version of “Knot Theory” which I edited and
which was published in the original Japanese by Springer-Verlag Tokyo in 1990.
This version covers many research methods and results of knot theory in classical
dimensions which were developed before 1995. The purpose is to inform advanced
undergraduates and graduate students in mathematics as well as researchers in
other disciplines about what knot theory is and how to study it. In addition, I
hope that some parts of this book can be read by less advanced undergraduates,
and that other parts will be useful to knot theorists as a reference. Since the study
of knot theory is now undergoing rapid progress and uses many areas of modern
mathematics (as seen in this book), I thought that it was a good idea to have
several knot theorists quickly develop a book which surveys the entire scope of
knot theory. Thus, in preparing the Japanese version, I asked my colleagues in
the KOOK Seminar to write basic materials on the subject that I had selected
(the KOOK seminar is a seminar on geometric topology organized by members of
Kobe University, Osaka University, Osaka City University, and Kwansei Gakuin
University that has been held monthly for the last ten years). In making this
expanded English version, my colleagues in the KOOK seminar also helped me in
translating some parts of the book into English. Here is a list of the contributors
and their roles, where * denotes a contribution to the English translation:

Dr. Hiroshi Goda: Chapter 4*

Dr. Toshio Harikae: Chapter 15*

Dr. Daniel J. Heath: English advisor*

Dr. Fujitsugu Hosokawa: Prelude

Dr. Seiichi Kamada: Chapter 14*, References, Refcrences™
Dr. Taizo Kanenobu: Chapter 2, Chapter 2*

Dr. Shin’ichi Kinoshita: Chapter 15

Dr. Masako Kobayashi: Appendix C*

Dr. Tsuyoshi Kobayashi: Chapter 4, Chapter 9, Chapter 9*
Dr. Toru Maeda: Chapter 6

Dr. Yoshihiko Marumoto: Chapter 13, Chapter 13*

Dr. Yasuyuki Miyazawa: Chapter 11*

Dr. Kanji Morimoto: Appendix C

Dr. Hitoshi Murakami: Chapter 8, Chapter 11

Dr. Jun Murakami: Chapter 9

Dr. Yasutaka Nakanishi: Chapter 3, Chapter 3*, Appendix F
Dr. Makoto Sakuma: Chapter 7, Chapter 7*, Chapter 10, Chapter 10*,
Appendix F, Appendix F*

Dr. Tetsuo Shibuya: Chapter 13

Dr. Junzo Tao: Appendix B

Dr. Masakazu Teragaito: Chapter 8*
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Dr. Yoshiaki Uchida: Chapter B*
Dr. Shuji Yamada: Chapter 1, Chapter 1*
Dr. Katsuyuki Yoshikawa: Chapter 14

All of the figures in the book were illustrated by Dr. Yasutaka Nakanishi. Since I
revised the contents of most of the chapters extensively, I bear sole responsibility
for the accuracy of the contents.

In the final stages of development, Dr. Taizo Kanenobu, Dr. Yasutaka Nakan-
ishi, and Dr. Makoto Sakuma kindly checked the contents of the book.

Hirozumi Fujii, Shin’ichi Sugihara, and Makoto Tamura, who are doctoral
students at Osaka City University and Osaka University, helped me greatly in
preparing the references. The graduate students Teruhisa Kadokami, Yoshihiko
Tsujii, Shigeru Nagamatsu, and Makoto Soma, and a research associate, Naoko
Kamada, helped me in editing the book. Also, Etsuko Miyahara, Miho Sakuma,
Masae Shiomi, Tatsuyuki Shiomi, and Hiroshi Yokota helped me in various ways
in making this book.

Dr. John Dean of the University of Texas at Austin made many valuable linguistic
improvements.

I would like to thank all of them for their invaluable contributions.

May 8, 1996
Akio Kawauchi



A prelude to the study of knot theory

When we think of a knot, we imagine a string as shown in figure 1; we do not imag-
ine an untied string as in figure 2. From the topological viewpoint, however, these
strings are the same. This is because it depends on the mathematical viewpoint
we adopt whether or not the pictures are the same one.

A

In planar geometry, we consider the pictures of figures 3 and 4 to be distinct. In
this case, the mathematical viewpoint we have adopted is that two pictures in the
plane are regarded as the same when they are congruent, i.e., when one can be
transformed into the other by a congruence transformation of the plane. To see
that the pictures of figures 3 and 4 are distinct, we use the property that length
and angle are invariant under any congruence transformation. In figure 3 the angle
at any point except the end points is 180°. In figure 4 there is a point whose angle
is not 180°, so we can conclude that they are distinct.

3 4

The topological viewpoint is one in which two objects in Euclidean 3-space R3,
such as the strings in figures 1 and 2, are regarded as the same when one can
be sent to the other by an auto-homeomorphism h of R3. There is a restricted
version of this viewpoint which imposes on A the condition that A should preserve
an orientation of R® or that it should preserve the orientations of both R3 and
the objects (when the objects are oriented). Adopting this restricted viewpoint,
we can develop a different mathematical theory. For example, in planar geometry,
a reflection (in a line) reverses the orientation of the plane and hence is different
from a parallel translation or a rotation, which are orientation preserving. In planar
geometry, the requirement that congruences preserve orientation corresponds to
whether or not reflections are included in our congruence transformations. That
the strings of figures 1 and 2 are the same from the topological viewpoint is shown

xi



xii A PRELUDE TO THE STUDY OF KNOT THEORY

by the illustrations in figures 5-8. Figure 5 is deformed into figure 6 by an auto-
homeomorphism of R? which contracts an arc neighborhood of the right endpoint
of the string. The deformations are similar in figures 6, 7 and 8.

Now let us consider the embedded circles in figures 9 and 10 obtained from
figures 1 and 2 respectively by joining their endpoints together. The two embedded
circles do not appear to be the same from the topological viewpoint. As a matter
of fact, it can be shown that they are distinct.

By a knot, we will mean a circle embedded in R* (or in $3) such as in figures 9 and
10. Knot theory is, in a sense, the study of how to determine whether or not two
given knots are the same. In Chapter 0, the precise definition of a knot and related
basic concepts are stated. We used the notion of angle in order to show that the
pictures in figures 3 and 4 are distinct in planar geometry. Angle and length are
numbers which are invariant under congruence transformations. Similarly, in knot
theory, in order to distinguish two knots, we find and compare a number (or more
generally an algebraic system) which is invariant under auto-homeomorphisms of
R3 (or S$%). Such a number or algebraic system is called a knot invariant. Knot
invariants play an important role in knot theory. In planar geometry, we know
three necessary and sufficient conditions for two triangles to be congruent, which
are stated in terms of the invariants of congruence transformations, namely, the
angle and the length. The problem of finding a necessary and sufficient condition
for two knots to be the same in terms of computable knot invariants is not yet
solved, however. This is one reason why many researchers pay attention to knot
theory. In addition, there is the fact that knot theory has recently come to have
applications to other areas of science as well as to mathematics.
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When we consider a knot in R3, the first problem is how to describe the knot on
paper. When we see an object in R3 with our eyes, we project R® radially from a
point into the sight plane, and use the difference in view between our two eyes to
judge far and near. In drawing, the perspective method of describing an object in
R2, the perspective representation is well-known. The method of describing a knot
in the plane which we will use is called a regular presentation. It is similar to the
perspective representation except that our eye is placed at the point at infinity
in R? and we use as the projection an orthogonal projection such that no two
segments overlap and three or more segments do not meet at one point. Further,
in the regular presentation, the upper-lower relation at every crossing point of two
segments is marked, as can be seen in figure 9. However, if we change the direction
of orthogonal projection or deform the knot itself by an auto-homeomorphism of
R3, then the regular presentation may change so as to appear to be a regular
presentation of a distinct knot.

e

For example, the knots of figures 11 and 12 appear to represent distinct knots
though they are the same. For any two regularly presented knots to be the same,
it is known as a necessary and sufficient condition that one can be deformed into
the other by a finite number of three kinds of moves, called the Reidemeister
moves. The notion of knot presentations as well as this argument are discussed in
Chapter 1. In Appendix A, we show that several notions of knot equivalence are
the same.

Once we know about knot presentations, several knot invariants come to
mind. For example, the minimal crossing number of all regular presentations of
a knot, the crossing number of the knot, is the easiest understandable invariant,
though the determination of the crossing number of a given knot is not easy. A
list of knots with up to 10 crossings was known by R. H. Fox and the knots with
up to 9 crossings were known earlier. Nowadays, a nearly complete list of the
knots with up to 13 crossings is known. In Appendix F, we list the knots with up
to 10 crossings together with the data which are now known. The knot in figure
11 is a knot with 3 crossings. There are just two knots with crossing number 3,
the other knot of which is its mirror image (the image by a reflection of R? in a
plane). Since reflections are orientation-reversing auto-homeomorphisms of R3, the
mathematical viewpoint we have adopted determines whether or not we regard two
knots which are related by a mirror reflection as the same knot. The question of
whether or not the knot in figure 11 and its mirror image can be transformed into
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one another by an orientation-preserving auto-homeomorphism of R? had been a
very difficult question until it was answered negatively by M. Dehn around 1930.
The knot tables in the appendix consider two knots related by a mirror reflection
to be the same. Thus, we list only one knot with crossing number 3.

We discuss in Chapter 2 standard examples of knots appearing very often in
knot theory, and in Chapter 3 basic methods of construction and decomposition.
One of the classically known knot invariants is the Alexander polynomial. This is
a polynomial derived from the fundamental group of the complement R® — K of
a knot K in R3. For example, the Alexander polynomial of the knot of figure 9 is
t2 —t+1 and the Alexander polynomial of the knot in figure 10 is 1, so that we can
conclude that these knots are distinct. The fundamental group of the complement
of a knot in R3 has group-theoretically interesting structures. This is discussed in
Chapter 6. The book by Crowell and Fox [1963] contains an excellent account of a
method of how to compute the Alexander polynomial from the fundamental group
of the knot complement. In Chapters 5 and 7 the calculation of the Alexander
polynomial using covering space theory is discussed.

In 1984, a new polynomial invariant, called the Jones polynomial was dis-
covered by V. F. R. Jones. It is defined by using a braid presentation of a knot,
discussed in Chapter 1, and then by analyzing when two braids represent the same
knot in the Hecke algebra for the braid group. Prior to the appearance of Jones
polynomial, J. H. Conway modified the Alexander polynomial into a new poly-
nomial, called the Conway polynomial with a geometric identity formula, called
a skein relation. Using the fact that the Jones polynomial has a similar skein re-
lation, several related Laurent polynomial invariants have since been discovered.
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The mirror image

These are discussed in Chapters 8 and 9. We also discuss in Chapter 16 an algebra
of certain knot invariants, which were invented by V. A. Vassiliev and include in
a sense all of these polynomial invariants.

IR EE NN

13

It is obvious that the knot of figure 10 is untied. Mathematically, we can
say that it is the boundary of a disk. Such a knot is called a trivial knot or an
unknot. In general, it is known that any knot is the boundary of a surface, so
that a non-trivial knot is the boundary of a surface which is not a disk. There
are many interesting questions about what properties these surfaces have, how
we can determine them, what knot invariants we can derive from them, etc. For
example, the surface of figure 13 is such a surface for the knot of figure 12 and
is seen to be different from a disk. In fact, this surface is a compact surface of
genus 1 with connected boundary. Such a compact orientable surface bounded by
a knot is called a Seifert surface for the knot. Seifert surfaces for a given knot are
not uniquely determined, but we can consider the minimal genus of such Seifert
surfaces, which is a knot invariant, called the genus of the knot. The genus of a
trivial knot is 0, but we know that the genera of the knots in figures 11 and 12
(which are the same) is 1. In this way, we can find several properties of knots by
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investigating the topological and algebraic aspects of Seifert surfaces. These ideas
are discussed in Chapters 4 and 5.

A knot can be represented in various forms. Although it depends on our
feelings whether or not such a form is beautiful, a sense of balance or symmetry
is one reason why we may feel it to be beautiful. From such a sense of symmetry
of a knot, we can derive a feature of the knot. For example, if we move the knot
of figure 11 by the 120° rotation around the point 0 shown in figure 14, then it is
unchanged. Similarly, if we move it by the 180° rotation around the dotted line
as shown in figure 15, then it again remains unchanged. The mathematical theory
that uses this idea is developed in Chapter 10.

16 17

There is an old problem asking the difference in complexity between a given
knot and the trivial knot. For example, when we change the upper-lower relation
at the crossing point of the knot of figure 11 encircled by the dotted circle in figure
16, we obtain a trivial knot, shown in figure 17. In other words, the knot of figure
11 is not trivial, as mentioned before, but we can obtain a trivial knot by changing
the upper-lower relation at one crossing point of the knot. Then we may have the
question of how many such crossing changes are needed to obtain a trivial knot
from a given knot. Not only are there many (clever or unclever) methods of finding
the places to make crossing changes, but the places we can make crossing changes
depend on the regular presentation of the knot we are working with. Thus, we see
that this question is not simple. However, we can consider, as a knot invariant, the
minimum of the numbers of such places for all possible regular presentations of the
knot. This number is called the unknotting number of the knot. The unknotting
number of the knot of figure 11 is not 0 since it isn’t trivial, so it must be 1 since,
as mentioned before, a crossing change at one place makes the knot trivial. The
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unknotting number may seem to be computable for any knot, but the computation
is actually very difficult. This problem is discussed in Chapter 11.

A knot itself is a circle, which is a 1-dimensional closed manifold. The only
1-dimensional compact connected manifolds are arcs and circles. Considering the
possible ways to embed a 1-dimensional manifold into R3, we see that the embed-
ding is unique for an arc, but not unique for a circle; from this fact knot theory
emerges as a mathematical problem. One generalization of knot theory is the
study of embeddings of an m-dimensional manifold into an n-dimensional mani-
fold, namely, how an m-dimensional manifold can be situated in an n-dimensional
manifold, for positive integers m,n with m < n. In this sense, knot theory might
also be called situation analysis. For example, we consider two parallel Euclidean
3-spaces R} and R? in R* and a knot Kj in R3 and a knot K; in R3. If K and K,
are the same knot, then we have a cylinder bounded by Ky and K; and embedded
in the region R® x [0, 1] between R} and R$. Even if K, and K are distinct knots,
it is possible that we have a cylinder bounded by K; and K and embedded in
R3 x [0, 1]. In this case, we say that the knots Ky and K are cobordant and we can
construct a mathematical theory that considers when two knots are cobordant.
This theory is discussed in Chapter 12.

As a high-dimensional generalization, the embedding problem of the m-
dimensional sphere S™ into the n-dimensional sphere S™ has been studied consid-
erably. In the cases where n —m =1 and n —m > 3, it is shown in [Brown 1960]
and [Zeeman 1960] respectively that the embeddings are unique from the topolog-
ical viewpoint. In the case of n —m = 2, many research results are known and the
field is referred to as high-dimensional knot theory. In particular, 2-dimensional
knot theory, which deals with embeddings of $? in Euclidean 4-space R* or §%,
is still being studied by many researchers. This is discussed in Chapters 13 and
14. Further, the study of embeddings of a 2-dimensional closed manifold in R*
has also progressed during the last 20 years; some of these results are included in
Chapters 13 and 14.

WAL [ & -
|
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Cobordism

In knot theory, we have restricted ourselves to the case embedded circles, but we
can develop a similar theory for other objects embedded in R®. For example, we
may consider a circle with a diameter in figure 18, called a 6-curve. The object in
figure 19 is also a f-curve (called Kinoshita’s 6-curve), but the embedding into R3
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is different from that of figure 18. The study of how to distinguish this difference
from the topological viewpoint is an interesting mathematical theory which is a
generalization of knot theory. In this theory, we consider a more complicated object
than a 6-curve, called a graph in general. This theory is now developing, but some
of its contents and results are reported in Chapter 15.

A

18 19

As another generalization of knot theory different from the generalization to
graphs, we can also consider simultaneous embeddings of several circles into R®
or S3. For example, figure 20 illustrates two entangled circles in R3, called the
Whitehead link and figure 21 illustrates three entangled circles in R?, called the
Borromean rings. When we embed several circles into R? in this way, the embed-
ded image is called a link. The theory of links is included in knot theory. We often
consider a link exterior, the Dehn surgery manifold of a link (i.e., a closed mani-
fold obtained from a link exterior by attaching solid tori) and a branched covering
manifold with branch set a link, rather than the same concepts for a knot. This is
because the study of 3-dimensional manifolds happens to be easier in this context.
Much research is done from this viewpoint. In this book, we allow the term links
to include knots. We make a survey of covering space in Appendix B and two
surveys topics in 3-dimensional manifold theory, including the theory of canonical
decompositions, Dehn surgery and Heegaard splittings in Appendices C and D.

5 ) %)

20 21

Links exist not only in the mathematical world but also in the natural world.
Recently, molecular biology is rapidly developing owing to the recent development
of technology which allows us to see and photograph the structure of DNA and cells
by a highly efficient electron microscope. Though the structure of DNA is a double
helix when we observe a small piece of it, the whole of this DNA structure may form
a circle which we call a DNA knot. The existence of not only a trivial DNA knot but
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also several DN A knots such as the trefoil knot of figure 9 and the figure eight knot,
listed as 4, in the knot table of the appendix were confirmed and they could in turn
be photographed. Also, in the field of chemistry, we usually distinguish compounds
by a molecular structure expressing a covalent bond of atoms. However, in the case
of high molecular weight compounds, long twisted chains of molecules form a link
or a graph to which knot theory can also be applied. The topological viewpoint may
be insufficient to distinguish compounds, but a wonderful feature of mathematics
is that we can change our mathematical viewpoint, or consider a suitable device
fitting to our needs. Knot theory is also becoming useful in elementary particle
theory, an area of theoretical physics, through braid representations, etc. and there
is much research collaboration between knot theorists and physicists.

We can trace the history of knot theory back to the 19th century. In Japan,
it was introduced about 40 years ago by Hidetaka Terasaka, who was a professor
of Osaka University.

Recently, the number of researchers in knot theory is increasing together with
those in 3-dimensional manifold theory (in which the Poincaré conjecture is the
most famous unsolved problem). This is because knot theory is necessary for the
study of 3-dimensional manifolds, for example, because of the following facts: link
exteriors give interesting, concrete examples of 3-dimensional manifolds, and every
closed connected orientable 3-dimensional manifold is obtained as a Dehn surgery
manifold along a link and as a branched covering manifold over S with branch
set a knot.

Mathematics appears to be loosely related to the other natural sciences, but
there are many demands on mathematics from not only mathematics itself but
also the other fields of natural science. These demends influence the mathematical
viewpoint we adopt and the direction of our research. From such demands, new
mathematical theories are created. Knot theory is an area of mathematics which
is expected to develop much more in the future and we would be happy if this
book is the origin of your study.



Notes on research conventions
and notations

(1) In this book, unless otherwise specified, spaces and maps are considered to
be in the PL category, which we discuss in Chapter 0. We omit “PL” after
Chapter 0. Thus, PL spaces, PL manifolds, PL maps, PL homeomorphisms,
PL links (knots), etc. are simply written as spaces, manifolds, maps, homeo-
morphisms, links (knots), etc., respectively.

(2) Unless otherwise specified, both R® and S® are considered as the ambient
spaces of knots and links.

(3) The notation 2 is used for PL homeomorphisms, to indicate the same link
(knot) types, and for group (module) isomorphisms when the meanings are
obvious.

(4) Homology groups are with integral coefficients, unless otherwise stated. By
A™, we mean the n-fold direct sum A@ AG --- P A of an abelian group (or

a module) A.

(5) The smallest normal subgroup containing elements 1,2, ..., Tm in a group
G is denoted by {(z1,2,...,2m))C.

(6) A free group F with a basis z1,z2,...,z, is denoted by (z1,z9,..., Z ).
For words R;, Rs,...,Rs in x1,%9,...,2,, the quotient group G of F by
the normal subgroup ((R;,Ra,..., Rs))¢ is denoted by (z1,72,...,2, |
Ri, Ry, ..., Rs). We call it a presentation (or a finite presentation when r

and s are finite) of the group G. R; is called a relation, and instead of R; we
also write R; =1 or U; = V; when R; = Uinl (or Ui_lVi).

(7) In a finite presentation (x1,xs2,...,z, | R, Ra, ..., Rs) of a group G, we call
T — s the deficiency of the presentation and the maximum of the deficiencies
of all finite presentations of G is called the deficiency of the group G and
denoted by defG.

(8) A finite presentation (zi,z2,...,z, | R1, Ra,..., Rs) is called a Wirtinger
presentation if each relation R; is in the form x;lkaw_l for some letters
Th,xr and a word w in x1, 22, ..., Tx.

(9) The transpose of a matrix A is denoted by A’. The determinant and the trace
(i.e., the sum of diagonal entries) of a square matrix A are denoted by detA
and trA, respectively. E™ denotes the identity matrix of size n.

(10) The identity map and the empty set are respectively denoted by id and 0.
(11) For a topological space X and a subspace Y, we denote the closure of X —Y
in X by cI(X —Y).

XX
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(12) N,Z,Q, R, C, Sy, denote respectively the set of natural numbers, the ring of
integers, the rational number field, the real number field, the complex number
field and the symmetric group on k& letters.

(13) Base points of fundamental groups are omitted unless confusion might occur.

(14) R™ denotes Euclidean space of dimension n. $7~1 and D" denote the (n—1)-
dimensional sphere {z € R" | ||z|| = 1} and the n-dimensional ball {z € R™ |
lz|]| < 1}, respectively.

(15) By a surface, we mean a connected 2-manifold except for a “Seifert surface”
for a link, which we allow to be disconnected.

(16) In the references, the symbols *, ** *** etc., are attached to papers whose
publishing data are insufficient.



Chapter 0
Fundamentals of knot theory

In this chapter, we first explain the PL category in which we consider spaces. Next,
PL manifolds and related matters are defined. Finally, PL knots and PL links are
defined together with related basic concepts.

0.1 Spaces

A simplicial complex is a (finite or infinite) set K of simplices in Euclidean space
RY of alarge dimension N which satisfies the following conditions (1),(2) and (3):

(1) For each pair A1, A2 € K, the intersection A; N Ay is a face of A; and of A
unless it is 0.

(2) All faces of each A € K are contained in K.

(3) For each A € K, there are only finitely many elements of K meeting A.

The union of all simplices in K is called the polyhedron of K and denoted by
|K|. For two simplicial complexes Ki, K», we say that a map [ : |Ki| — |Ka|
is PL(=piecewise linear) if f defines a simplicial map K| — K} under suitable
simplicial subdivisions K| and K} of K; and K. For any two simplicial complexes
K; and K, with |K;| = |K3|, the identity map id : |Ki| — |K2| is PL. The
composite map of any two PL maps is also a PL map. By a triangulation of
a topological space X, we mean a pair (K,t) of a simplicial complex K and a
homeomorphism ¢ : |K| 2 X.

Definition 0.1.1 A non-empty collection 7 of triangulations of a topological space
X is called a PL structure on X if we have the following:

(1) For any (K;,t;) € T,i = 1,2, the homeomorphism t; '#; : |K;| — | K2| is PL.
(2) A triangulation (K,t) of X belongs to 7 if t; 't : |[K| — |Ko| is PL for some
(Ko,t()) eT.

We call a topological space X together with a PL structure 7 a PL space and
each (K,t) € T a triangulation of the PL space X. The dimension of X is defined
to be the dimension of K. A one-dimensional PL space is called a graph. Given a
triangulation (K, t) of X, there is a unique PL structure 7 on X containing (K, t).
Unless otherwise stated, the polyhedron | K| of a simplicial complex K is considered
to be a PL space with PL structure containing (K, id). In particular, a simplex A
and its boundary A are PL spaces since A = |K(A)]| for the simplicial complex
K(A) consisting of all faces of A and JA = |K(8A)| for the simplicial complex
K(0A) = K(A)—{A}. For PL spaces X;,7 = 1,2, we say that amap f : X; — X»
is PL if there is a triangulation (K, ;) of X, such that t;lftl 1 |Ky| — |K2| is PL.
Further, when f is a homeomorphism, the map f is called a PL homeomorphism. In
this case, f~! is also a PL homeomorphism. For example, if there is a triangulation

1
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(K;,t;) of X; for i = 1,2, with | K| = |K3|, then the map tot]' : X; — Xy is a
PL homeomorphism.

As the category of topological spaces and (continuous) maps is called TOP
category, the category of PL spaces and PL maps is called PL category. See [Hudson
1969)], [Rourke-Sanderson 1972], [Homma 1980} etc. for fundamental techniques in
the PL category. A topological subspace Y of a PL space X is called a PL subspace
of X (or a PL space in X) if Y is a PL space and the inclusion: Y C X is PL. In
this case, the pair (X,Y) is called a PL space pair. Any open set O of a PL space
X is not a PL subspace in general, but O has a unique PL structure so that every
PL subspace Y of X with Y C O is a PL subspace of O. This open set O together
with this PL structure is called a PL open subspace of X.

For an n-dimensional simplex (or simply, n-simplex) A and a PL space pair
(X, X), we assume that there is a surjective PL map f : (4,04) — (X, X) inducing
a PL homeomorphism A —8A = X — X. Then we call X an n-dimensional cell (or
simply an n-cell) and X — X the interior, denoted by intX and X the boundary.
In this book, a set K of PL cells in a PL space, PL homeomorphic to R¥ for some
N is called a cell complez if K has the following (1), (2) and (3):

(1) If X1 # X, for any X1, X2 € K, then intX; NintXs = 0.

(2) If the dimension of X € K is n, then X is contained in the union of PL cells
of dimensions< n — 1 in K.

(3) For each X € K, there are only finitely many PL cells in K meeting X.

The union of all PL cells in a cell complex K is also called the polyhedron of K
and denoted by |K|.

0.2 Manifolds and submanifolds

An n-dimensional PL ball (or simply, a PL n-ball or a PL arcfor n = 1 or a PL disk
for n = 2) is a PL space which is PL homeomorphic to an n-dimensional simplex
A. The n-dimensional ball D™ is regarded as a PL n-ball by a PL structure that
includes a triangulation (K (A),t) of D™. An n-dimensional PL sphere (or simply,
a PL n-sphere) is a PL space which is PL homeomorphic to the boundary 0A
of an (n + 1)-dimensional simplex A. It is also called a PL circle when n = 1
and a PL sphere when n = 2. The n-dimensional sphere S™ is regarded as a PL
n-sphere by a PL structure that includes a triangulation (K(8A),t) of S™. Up
to PL homeomorphism, such PL structures on D™ and S™ are unique. For each
simplex A in a simplicial complex K, the link of A in K, denoted by Link(A4, K)
is the subcomplex of K consisting of all simplices not meeting A which are faces
of simplices containing A in K. A PL space M is called an n-dimensional PL
manifold (or PL n-manifold) if M has a triangulation (K,t¢) with the following
property: For each vertex v of K, |Link(v, K)| is a PL (n — 1)-ball or a PL (n —
1)-sphere. Such a K is also called an n-dimensional combinatorial manifold (or
combinatorial n-manifold) and (K,t), a combinatorial manifold triangulation of
M. For example, differentiable manifolds are PL manifolds (cf. [Munkres 1961]).
For a combinatorial n-manifold K and a simplex A with dimA < n, |Link(4, K)|
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is a PL (n — dimA — 1)-ball or PL (n — dimA — 1)-sphere. We denote by 0K the
subcomplex of K consisting of all simplices A such that |Link(A, K)| is a PL ball.
Then 0K is a combinatorial (n — 1)-manifold unless it is §. IM = t(0K) is an
(n — 1)-dimensional PL manifold, unless it is @, and is independent of the choice
of combinatorial manifold triangulation (K,t) of M. It is called the boundary of
M. A PL manifold M without boundary (i.e., such that M = ) is said to
be closed or open according to whether M is compact or non-compact. We set
intM = M — OM and call it the interior of M. A PL subspace of a PL manifold
M is called a PL submanifold (or a PL manifold in M) if its PL structure has a
combinatorial manifold triangulation. For example, OM is a PL submanifold of M
(if it is not @). Any PL open subspace of a PL manifold is a PL manifold, which
we call a PL open submanifold. For example, intM is a PL open submanifold of
M. In particular, the interior of a PL n-ball is called a PL open n-ball. It is PL
homeomorphic to R™. A PL open submanifold of S™ obtained by removing one
point from S™ is also PL homeomorphic to R™. A PL submanifold L of a PL
manifold M is said to be proper if 9L = LN OM. A PL loop in a PL manifold M
is the image of a PL map from S! into M. In particular, it is called a PL simple
loop if the map is one-to-one. A PL space pair is called a trivial PL sphere pair if
it is PL homeomorphic to the boundary pair (94, 9A’) of a simplex A and a face
A’. Tt is also called a trivial PL ball pair if it is PL. homeomorphic to a cone over
(0A,04"). A proper PL submanifold L in a PL manifold M is said to be locally
flat if there are combinatorial manifold triangulations (K, tar) and (K, tr) of
M and L, respectively, such that Ky, is a subcomplex of Kj; and t = tps llKLI
and for each vertex v of K, (|Link(v, K)|, |Link(v, K1.)|) is a trivial PL sphere
or ball pair.

An orientation of an n-simplex is an equivalence class of orderings of the
n+1 vertices modulo even permutations. By [vp, v1,. . .,vs], we denote an oriented
simplex with vertices ordered as vg, v1, . .., v, and by —[vg, v1, . .., U], the simplex
with opposite orientation. By the induced orientation of the face of [vg,v1,. .., vy)
opposite to v;, we mean the orientation given by (—1)%[vg,v1,...,Di,...,vs]. An
orientation of a PL n-manifold M is an orientation of each n-simplex of Kjs for
a combinatorial manifold triangulation (Kas,tar) of M such that the orientation
of Ag induced from the orientation of A; is opposite to that of Ag induced from
the orientation of As for any m-simplices Aj, Az, in K with Ag = A1 N Az an
(n—1)-simplex. In terms of homology, we can describe it as follows: An orientation
of M is a system {2, | ¢ € intM} such that z, € H,(M, M —z) = Z is a generator
and for any points x,y connected with a PL arc «, 2; is sent to 2z, under the
natural composite isomorphism

H,(M,M—-z)=H,(M,M —a) 2 H,(M,M —y).
According to whether or not such an orientation exists, we say that M is orientable

or non-orientable. When M is orientable and an orientation is specified, M is
said to be oriented. Any open PL submanifold, any PL n-submanifold, and the
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boundary M (if it is not @) of an oriented n-manifold M are orientable with
orientations induced from the orientation of M. (Unless otherwise mentioned, such
PL manifolds are considered to be oriented by such orientations.) D™, S™ and R™
are orientable. Let (M, L) be a pair such that M is a PL manifold M and L is a PL
submanifold of M or §. Two PL auto-homeomorphisms h, &’ of (M, L) are said to
be PL ambient isotopic if there is a PL auto-homeomorphism family {h; |0 <t <
1} of (M, L) such that hg = h,h; = h’ and the map (M, L) x [0,1] — (M, L)% [0, 1]
defined by this family is a PL map. This family {h; | 0 < ¢ < 1} is called a PL
ambient isotopy from h to h'. PL spaces N and N’ in M are said to be PL ambient
isotopic if there is a PL auto-homeomorphism h of M such that h and id are PL
ambient isotopic and h(N) = N’. (When N and N’ are oriented PL manifolds,
the PL homeomorphism h |n: N = N’ is understood to be orientation-preserving.)
For example, any orientation-preserving PL auto-homeomorphisms of D™, S™ and
R™ are known to to be PL ambient isotopic to id.

0.3 Knots and links

Here, we denote S™+2 or R**2? by M. An n-dimensional PL link (or simply a PL
n-link) is a locally flat compact PL submanifold L of M each component of which
is PL homeomorphic to S™. In particular, it is called an n-dimensional PL knot (or
PL n-knot) when L is connected. In this book, we discuss in detail the case when
n =1 or 2. A PL 1-link or 1-knot is usually called a PL link or knot, respectively.
We assume that M and L are oriented unless otherwise stated.

Definition 0.3.1 Two PL n-links L and L’ are equivalent if there is a PL auto-
homeomorphism h of M with h(L) = L’. More strictly, if h is orientation-preserving
or -reversing, then they are positive-equivalent or negative-equivalent, respectively.
Further, L and L’ belong to the same type and we denote it by L = L’ if h and
h|r: L — L' are orientation-preserving.

For a PL n-link L, the type of L is the collection of all PL n-links which contains
L as a member and any two members of which belong to the same type. The
same n-link as L but with the opposite orientations on all the components of L
is denoted by —L. When L = —L, the link L is said to be invertible. We denote
by L* the image of L under an orientation-reversing PL auto-homeomorphism ¢
of M, where we orient L* with orientation induced from L by g. In this case, the
type of L* is independent of a choice of ¢ and determined only by L. L* is called
the mirror image of L. —(L*) = (—L)* is simply denoted by —L*. We say that
L is amphicheiral if L = pL* for a PL n-link pL* which is L* or obtained from
L* by reversing the orientations of some components of L*. In particular, L is
(+)amphicheiral when L 2 L* and (—)amphicheiral when L = —L*.

Let a PL n-link L have r components. L is trivial if L is the boundary of the
union of r mutually disjoint PL (n+1)-balls in M. L is split if there are two disjoint
PL (n + 2)-balls D24 = 1,2, in M with LN D2 = @ and L N D2 £ ¢
for i =1 and 2. (Otherwise, L is non-splittable.) L is completely splittable if there
are just r mutually disjoint PL (n + 2)-balls D!"?(i = 1,2,...,7) in M such
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that DP*2 N L is one component of L. (Otherwise, L is not completely splittable.)
For any regular neighborhood N(L) of L in M, there is a PL homeomorphism
f:(LxD?Lx0)2(N(L),L). We call M — intN (L) the exterior of L in M
and denote it by E(L, M) (or by E(L) unless confusion will arise). For arbitrary
regular neighborhoods N(L) and N(L') of PL n-links L and L’ of the same type
in M, there is a PL auto-homeomorphism h of M giving the same type of L
and L’ such that h(N(L)) = N(L'). This follows from the uniqueness of regular
neighborhoods (a fact known to hold for a considerably general PL subspace in
a PL space). In particular, E(L, M) and E(L’, M) are orientation-preservingly
PL homeomorphic. Let L;(i = 1,2,...,r) be the components of L. We say that
f(p; x D?) and f(p; x 0D?) for a point p; € L; are a meridian disk and a meridian
of L;, respectively, where the orientation of the meridian disk is chosen so that the
intersection number of the meridian disk and L; is +1. The set of these meridians
fori =1,2,...,r is called a meridian system of L. This has the following special
feature: For arbitrary meridian systems m and m’ of PL n-links L and L’ of the
same type in M, there is a PL auto-homeomorphism & of M giving the same type
of L and L' such that h(m) = m/'.

We take n = 1. There is an oriented PL simple loop ¢; in ON (L) such that ¢;
is homologous to L; in N(L) and null-homologous in M — L;. Such an ¢; is called
a longitude of the component L;. The set of these longitudes for : = 1,2,...,r
is called a longitude system of L. The pair (m,£) of a meridian system m and a
longitude system £ of L in N(L) such that each component of m meets ¢ in a
single point is called a meridian-longitude system pair of L. This has the following
special feature: For arbitrary meridian-longitude system pairs (m,£) and (m’,¢')
of PL links L and L’ of the same type in M, there is a PL auto-homeomorphism
h of M giving the same type of L and L’ such that h(m) = m’ and h(¢) = ¢'.

A fundamental problem in n-dimensional knot theory is to determine when
two PL n-links with the same number of components belong to the same type. For
an r-component PL n-link L in M = S™*2, the homology of the exterior E(L) is
determined only by n and r:

7 (g=n+1)
Zr(g=1)
Z(g=0)
0(g#0,1,n+1).

Ho(E(L)) =

Thus, it is an important problem in manifold theory to determine when two ori-
ented PL manifolds with the same dimension, the same homology, and the same
boundary are orientation-preservingly PL homeomorphic, since it is intimately
related to the fundamental problem of n-dimensional knot theory.

Supplementary notes for Chapter 0

Let L be a compact topologically embedded submanifold of M = R"**2 (or S"*2)
each component of which is homeomorphic to S™. This submanifold L is called an
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n-dimensional tame link in M if there is a topological auto-homeomorphism A of
M such that h(L) is a PL subspace of M. Otherwise, L is called an n-dimensional
wild link in M. If L has a topological neighborhood N in M such that (N, L)
is homeomorphic to L x (D?,0), then L is called an n-dimensional link in the
TOP category. In the case that n = 1, the concept of PL links coincides with
that of tame links and with that of links in the TOP category. In the case that
n > 2, there are non-locally flat compact PL submanifolds of M, each component
of which is PL homeomorphic to S™. We call them non-locally flat PL links in M.
The notion of a slice knot which will be discussed in Chapter 12 is motivated by
a 2-dimensional non-locally flat PL knot with just one non-locally flat point (cf.
[Fox-Milnor 1966]).



Chapter 1
Presentations

In this chapter, we discuss regular presentations, braid presentations and bridge
presentations for links.

1.1 Regular presentations

We call a line segment of a polygonal link L in R an edge of L and an end point
of the line segment a vertez of L. Let R? be a plane in R? and p : R® — R? be
an orthogonal projection. Let L be a link in R? and p(L) the projection of L. We
call a point ¢ of the image p(L) a multiple point if p~'(¢) N L contains more than
one point. The cardinality of p~(c) N L is called the order of ¢ and c is called an
n-multiple point if the order of ¢ is n. A two-multiple point is called a double point.
We say that p is a regular projection for L if we have the following two conditions:

(1) The set of multiple points of the image p(L) consists of finitely many double
points.
(2) No point in the preimage p~'(c) N L of any double point ¢ € p(L) is a vertex
of L.
Any multiple point of any regular projection image p(L) is like figure 1.1.1 a.
Hence any multiple point like figure 1.1.1 b, ¢ or d is not contained in any regular
projection image p(L). The following is a fundamental fact of combinatorial knot
theory:

Proposition 1.1.1 For any polygonal link L, there exists a regular projection for L.

XML N <

a

Fig. 1.1.1

Proof. Since the projections of a link L on two parallel planes coincide, any pro-
jection is determined by a straight line which goes through the origin and is or-
thogonal to the projecting plane. The space of straight lines going through the
origin in R3 is the two-dimensional projective plane RP2. Define S to be the set of
straight lines going through the origin which do not determine regular projections
for L. It is enough to show that S is nowhere dense in RP?. We show that S is
a one dimensional subset of RP2. Define S; to be the set of straight lines going
through the origin which are parallel to a line going through a vertex of L and
another point of L. Define S5 to be the set of straight lines going through the
origin which are parallel to a line going through more than two points of L. We

7
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can easily see that § = §; U Ss. In fact, a projection has multiple points of type
b or ¢ in figure 1.1.1 if and only if the projection is determined by a straight line
in S;. A projection has multiple points whose order is greater than 2 if and only
if the projection is determined by a straight line in Ss. It can be easily checked
that the set S consists of finite line segments in RP?. An elementary calculation
also enables us to show that S5 consists of finitely many curve segments of second
order. Therefore S is a one dimensional subset of RP? (cf. [Crowell-Fox 1963]).
O

For convenience, we assume that the projection determined by the z-axis is a reg-
ular projection for a link L. Each double point ¢ of the regular projection image
p(L) is called a crossing. For the points c;,c— of p~1(c) N L, we say that cy is
an overcrossing and c_ is an undercrossing if the z-coordinate of cy is greater
than that of c_. The line segment of L that contains the overcrossing or under-
crossing of ¢ is called the overpass or the underpass of ¢, respectively. A regular
presentation or simply diagram of a link L is a regular projection image p(L) such
that the overcrossing and the undercrossing at each crossing of p(L) are distin-
guished. (Usually, we denote the diagram by erasing a small neighborhood of each
undercrossing in order to distinguish between over and under.) If L has an orien-
tation, then a regular projection p(L) has the induced orientation. The crossing
number of a regular projection p(L) is the number of the crossings of p(L). The
mintmal crossing number or simply crossing number of a link L is the smallest
crossing number of all regular projections of all links with the same type as L. The
minimal crossing number is one of the most general quantities that reflects the
complexity of links. Let D; and Dy be two diagrams. We say that D; is identical
to Dy if there is an orientation preserving auto-homeomorphism of the plane R?
that maps D; onto Ds; and makes the over—under relations coincide and makes
the orientations coincide (if they have orientations). We do not distinguish these
identical diagrams.

Exercise 1.1.2 Confirm that any two links with identical diagrams belong to the
same type.

Exercise 1.1.3 For any positive integer n, show that there are only finitely many
knot types whose minimal crossing numbers are less than n. [Hint: It is enough to
show that there are only finitely many diagrams whose crossing numbers are less
than n.]

The local moves of a diagram shown in figure 1.1.2 are called the Reidemeister
moves of type I, IT and III. We say that two link diagrams are R-isotopic if they
can be transformed into each other by a finite sequence of the Reidemeister moves.
The following theorem is a fundamental fact:

Theorem 1.1.4 Let Dy and Dy be diagrams of Ly and Lo, respectively. Then L
and Lo belong to the same type if and only if Dy and Dy are R-isotopic.

The proof of this theorem needs careful consideration. (See Appendix A for the
details.) We add another type of move, the type IV, shown in figure 1.1.3, to the
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Xﬂx K >

/ /\

Fig. 1.1.2

Reidemeister moves. We say that any two diagrams are regularly isotopic if they
can be transformed into each other by a finite sequence of the Reidemeister moves
of type II, type III or type IV. We call such a deformation a reqular isotopy. For a
crossing ¢ of an oriented link diagram D, we define the sign of ¢, sign(c) as follows:
If the underpass of ¢ goes through from the right side to the left side of the overpass
of ¢, then sign(c) = +1 (see figure 1.1.5); otherwise, sign(c) = —1. We denote by
w(D) the sum of the signs of all crossings of the diagram D, namely,

w(D) = Z sign(c),
cee(D)

where ¢(D) denotes the set of crossings of D. We call w(D) the writhe of D. Let
D = DyUDyU- - -UD,, be a diagram of m-components link with D;(1 = 1,2,...,m)
the diagrams of the knot components. We set {(D) = >"7", w(D;) and we call it
the twisting number of D.

\—/ _./_\__

Fig. 1.1.3

Ezample 1.1.5. Let D be the diagram shown in figure 1.1.4. Then w(D) = —4 and
t(D) =0.

NOKX

Fig. 1.1.4
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Let the crossing in figure 1.1.5 be a crossing ¢ of an oriented diagram D. Assume
that the overcrossing and the undercrossing of ¢ are on the same component D;
of D. Let D' be the same diagram as D but with the opposite orientation on D;.
Then the crossing ¢ of D as in figure 1.1.5 changes a crossing of D’ as in figure
1.1.6. Since the signs of the crossings of figures 1.1.5 and 1.1.6 are equal, we see
that the twisting number of the diagram D is independent of the orientation of
D. This quantity, the twisting number, is closely related to the notion of regular
isotopy of diagrams.

Fig. 1.1.5 Fig. 1.1.6

Proposition 1.1.6 Any two regularly isotopic link diagrams have the same twisting
number.

Exercise 1.1.7 Show Proposition 1.1.6. [Hint: Show that the Reidemeister moves
of type II, IIT and IV do not change the twisting number.]

The following theorem means that the converse of this Proposition holds in part.

Theorem 1.1.8 If two knot diagrams are R-isotopic and have the same twisting
number, then they are regularly isotopic.

I I
R —_—
- -
/ L* \ r*
Fig. 1.1.7

Proof. Classify the type I Reidemeister moves into the type I, I_,I* or I* as they
are shown in figure 1.1.7. Obviously, the moves of type I, and typeI* are generated
by the moves of type IV, type I or type I_. Therefore any R-isotopic diagrams
can be transformed into each other by a finite sequence of the Reidemeister moves
of type I;, type I_, type II, type III or type IV. Then we can postpone the
Reidemeister moves of type I} and type I_ until the end of the sequence, although
after this change, the length of the sequence may be longer than the original
sequence. Let D and D’ be two diagrams satisfying the assumption of the theorem.
Consider a sequence of the Reidemeister moves stated above realizing the R-isotopy
between D and D’. Postpone the moves of type I. and type I_ of the sequence
until the end of the sequence. Since t(D) = t(D’), the number of moves of type
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I; in the sequence is equal to that of I_. Therefore we can use the Reidemeister
move of type IV for a pair of the types I, and I_ in the sequence. So D and D’
are regularly isotopic. O

Exercise 1.1.9 Generalize Theorem 1.1.8 to links and prove it.

Let L = K1 UK> be a 2-component link. Let D = Dy U D5 be a diagram of L with
p(K;) = Dy, i = 1,2. We define the linking number of D; and D; to be

1 .
3 Z sign(c)

ceD1NDy

and denote it by Link(Di, D3) or Link(D). For example, the linking number of
the diagram shown in figure 1.1.4 is —2.

Exercise 1.1.10 Show that the linking number of any 2-component link diagram
is an integer.

Exercise 1.1.11 Show that the linking number is invariant under the R-isotopy of
diagrams.

According to this exercise and Theorem 1.1.4, the linking number is an invariant of
2-component links. So, we call Link(D) the linking number of the link L denote it by
Link(K;, K3) or Link(L). (See Supplementary notes of this chapter.) For a diagram
D = p(L) of a link L with components K; (i = 1,2,...,m) and D; = p(K;)
(i=1,2,...,m), we define the total linking number to be

Z Lil’lk(Di, Dj)

i<j
and denote it by Link(L) or Link(D). Obviously, we have
w(D) = t(D) + 2Link(D).

For a link L in S = {(z,y,2,w) | 2% + y* + 2% + w? = 1}, we consider the
regular presentations, i.e., the diagrams as follows: Choose a pair of antipodal
points {p;,p_} of S that do not intersect L. For simplification, we assume that
py = (0,0,0,1) and p_ = (0,0,0,—1). Set S? = {(z,y,2,w) € S3 | w = 0} and
define the projection p: S% — {p,p_} — S% by

p(z,y,2,w) = (2,9, 2,0)/||(z,y, 2,0)||.

By using this projection, the regular projection, the regular presentation and the
Reidemeister moves are defined on the sphere similarly to the planar case. The
Reidemeister moves on the sphere are more natural than those on the plane, be-
cause the Reidemeister move of type IV is not needed for the definition of regular
isotopy on the sphere.
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1.2 Braid presentations
Let I3 be the cube {(z,y,2) | 0 < z,y,z < 1}, and let n be an integer. Take the

points P; = (ﬁﬁ’ %, 1) and @; = (47 %,0), i=1,2,...n, on the top and bottom
of the cube I3. Let s1, 82,...,8, be n mutually disjoint polygonal arcs having the

following properties:

(1) O(s1U---Usp)={P1,...,Pn,Q1,...,Qn}.
(2) Each arc s; is monotone with respect to the z-coordinate.

S

~
~

j______.-__br__.__._- ——

~

~

b b2

~
~

bibe

Fig. 1.2.1

We call b = s7 Usy U---U s, an n-string braid and each s; a string of b. We say
that two braids by and b; are equivalent if there is an ambient isotopy f; : I3 —
I3(0 <t < 1) such that f; |grs=id (0 <t < 1), fo = id and fi(bg) = b;. We say
that two braids are strongly equivalent if there is an ambient isotopy as above with
the extra condition that for each level ¢, f;(by) is a braid. These two equivalence
relations on braids are actually the same equivalence relation ([Artin 1947]). Let
by C I} and by C I3 be two n-string braids. We construct a new braid b1 b in the
cube I} U I3 by attaching the bottom face of I} to the top face of I3 naturally (see
figure 1.2.1). (To make this more rigorous, we have to contract the height of I3 UI3
to 1/2.) This braid b1bs is called the product of b; and bs. The quotient space of
the set of n-string braids modulo the equivalence relation above becomes a group
with this product operation. The identity element of this group is the braid which
consists of n vertical straight line segments connecting the P;’s and the @Q;’s. The
inverse element of a braid b is the mirror image of b with respect to the plane
z = % This group is called the n-string braid group, and denoted by B,,. Let o;
be the element of B, shown in figure 1.2.2. Then the following theorem holds.
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P Py Pi Py Pz Pa
I

|
J

Oi

Fig. 1.2.2

w___.. ——

Theorem 1.2.1 The n-string braid group B,, has the following presentation:

(01, y0n_1 | 0iok = oroi(|i — k| > 2),

0:0i+10; = 01410041 (1 <n —2))

B P’” P Pra P P P, PJ“ P Pnl Piie P; Pisi Pi2
0.0;+10; 0 10i0i+1
Fig. 1.2.3

See [Birman 1974] for the proof of this theorem. The geometric meaning of the
relations in this group presentation is shown in figure 1.2.3.

Next, we discuss a relationship between braids and links. Let b C I3 € R® be
an n-string braid in the cube located in R3. If we connect the end points of the
braid b with mutually disjoint n polygonal arcs in the exterior of I3, the braid b
becomes a link in R3. We call this operation a closing of a braid. One of the most
natural ways to close a braid is to connect P; to Q; (1 < i < n) with trivial arcs as
they are shown in figure 1.2.4. The link given by this closing is called a vertically
closed braid, or simply a closed braid and denoted by b. The orientation of b is
given by the downward direction of the braid . Another natural way to closing of
a braid is to connect Ps; 1 to Po; and Qg;—1 to (Jo; as in figure 1.2.5. To do this,
n must be an even integer. We call the link given by this closing a horizontally
closed braid. In this case, the orientation of the resulting link is undefined. If b has
the same link type as a link L, we call b a braid presentation of L. If a horizontally
closed braid is positive-equivalent to a link K, then we call the closed braid a plat
presentation of K. Do all links have braid presentations and plat presentations?



14 CHAPTER 1 PRESENTATIONS

( ™)
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Fig. 1.2.4 Fig. 1.2.5

The answer is ‘yes’ (cf. Supplementary notes of this chapter). To prove this, it is
enough to show that any link has a braid presentation, because an n-string braid
presentation can be regarded as a 2n-string plat presentation.

Let D be a link diagram and ¢; a crossing of D. A smoothing at a vertex c¢;
is a deformation of the diagram as in figure 1.2.6. Smoothing at all the vertices of
D makes D a union of mutually disjoint simple loops S; U--- U S, in the plane.
These simple loops are called the Seifert circles of D. We connect with an arc a;
two points in the Seifert circles obtained by the smoothing at ¢; . Such an arc is
called a connecting arc of the Seifert circles. The orientation of the Seifert circles
is induced from that of the diagram. Then each connecting arc looks like figure
1.2.7 and there is no connecting arc like figure 1.2.8. The set of Seifert circles and
connecting arcs {S1,...,Sn;a1,...,a.} is called the system of Seifert circles of the
diagram D. The system of Seifert circles of a diagram of the figure eight knot is
shown in figure 1.2.9.

a;
—
Fig. 1.2.6 Fig. 1.2.7 Fig.1.2.8

Now we introduce two types of deformations of a system of Seifert circles. We say
that two oriented simple loops in the plane are coherent if they have the same
rotation number. Let S; and Sy be two Seifert circles in the system of Seifert
circles of a link diagram D. Assume that Sy is inside S; and their orientations
are not coherent. Moreover, assume that there is a band b connecting S; and S
that does not intersect the other part of the system as in figure 1.2.10. Then we
deform D by Reidemeister moves as follows: first, stretch out Si N b along b until
it is near S; and apply the Reidemeister move of type IV (see figure 1.2.11). Next,
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® @

Fig. 1.2.9

expand this part into a big circle just inside .S; (see figure 1.2.12). This new circle
may intersect some connecting arcs. The situation at these points is shown in
figure 1.2.13. The resulting Seifert circles and connecting arcs are given in figure
1.2.14. So, the resulting system of Seifert circles becomes as in figure 1.2.15. This
deformation of the system of Seifert circles is called a concentric deformation of
type I

Sl

Fig. 1.2.10 Fig. 1.2.11 Fig. 1.2.12
A M) L A

N\ (

/\ @
Fig. 1.2.13 Fig. 1.2.14 Fig. 1.2.15

Let S; and Sy be two Seifert circles in the system of Seifert circles of a link diagram
D. Assume that Sy is outside S; and S; is outside S and their orientations are
coherent. Moreover, assume that there is a band b connecting S; and Sy that does
not intersect the other part of the system, as in figure 1.2.16. Then we deform
D by Reidemeister moves as follows: At first, stretch out Sy N b along b until
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it is near S;. Next, expand this part into a big circle just outside S; (see figure
1.2.17.) Then the new system of Seifert circles becomes as in figure 1.2.18. This
deformation of the system of Seifert circles is called a concentric deformation of
type II. If we consider the system of Seifert circles on the sphere, the concentric
deformation of type II is nothing but the concentric deformation of type I. We
note that a concentric deformation may increase the number of connecting arcs,
but never changes the number of Seifert circles. Here we give an answer to the
question mentioned before.

06 O O

Fig. 1.2.16 Fig. 1.2.17 Fig. 1.2.18

Theorem 1.2.2 Any link diagram can be deformed into a braid presentation by a
finite sequence of concentric deformations of types I and II.

CAAS

Fig. 1.2.19

Proof. A diagram whose Seifert circles are concentric is a braid presentation. So,
we show that any link diagram can be deformed into such diagrams. Let D be a
link diagram and S be the system of Seifert circles of D. If S has a Seifert circle
that contains all other Seifert circles inside, then let Sy denote that Seifert circle.
Otherwise, we add a new trivial circle Sy to S so that Sy contains S inside. We shall
deform all the Seifert circles into concentric circles parallel to Sy by the following
procedure: Firstly, we apply the concentric deformation of type I between Sy and
another Seifert circle until we cannot do it any more. (See figure 1.2.19.) After
this deformation, if there is more than one outermost circle inside Sy, then we
apply the concentric deformation of type II between the outermost circles inside
Sp as many times as possible. (See figure 1.2.20.) Then there is only one outermost
circle, say Si, inside Sy, whose orientation is coherent with Sj. Secondly, we do
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the same procedure for the circle S;. Continuing this procedure inductively, we

have concentric Seifert circles Sy, ..., S,. If we added Sy to the diagram D at the
beginning, remove it. Thus, we have a braid presentation. (|
— —
Fig. 1.2.20

The braid index of a link is the minimal number of braid strings among all braid
presentations for the link. Theorem 1.2.2 implies the following corollary:

Corollary 1.2.3 The minimal number of Seifert circles of all diagrams of a given
link is equal to the braid index of the link.

Exercise 1.2.4 Show that there are infinitely many link types of braid index 2.

Next, we discuss a necessary and sufficient condition for two closed braids to belong
to the same link type. Let B,, be the n-string braid group. For any two integers m, n
with m < n, we consider that B,, C B, by identifying each generator o; € B,,
witho; € B, (i=1,...,m—1). Set

B={(bn)|be B,,n=1,2,3,...}.
We define Markov mowves of type I and II as follows:
I (biba,n) < (baby,m).
Il (b,n) < (borl n+1).

We also call the move of type I a conjugacy move (see figure 1.2.21) and the move
of type II a stabilization (see figure 1.2.22). We say that two elements of B are
Markov equivalent if they can be deformed into each other by a finite sequence of
Markov moves. Then we have the following theorem:

r :

Fig. 1.2.21 Fig. 1.2.22
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Theorem 1.2.5 For two braids (b,n) and (V,n’), the vertically closed braids b

and ¥ belong to the same link type if and only if (b,n) and (t',n’) are Markov
equivalent.

See [Birman 1974] for the proof of this theorem. According to this theorem and
Theorem 1.2.2, it may be said that knot theory is the study of the Markov equiva-
lence classes of the braid groups. The word problem in the braid group is solvable,
i.e., there is an algorithm to determine whether or not two given words are the
same element in the braid group. The conjugacy problem in the braid group is also
solvable, i.e., there is an algorithm to determine whether or not two given words
are conjugate in the braid group. However, the Markov equivalence problem has
not yet been solved.

1.3 Bridge presentations

Let D = p(L) be a link diagram of a link L in R3. Let By U---U B,, be a
union of mutually disjoint arcs in L that contains all overcrossings but not any
undercrossings-of D. We call Bs,...B,, overbridges of L and p(Bi1),...p(Bm)
overbridges of D. Then cl(L — (By U --- U B,,)) consists of m mutually disjoint
arcs C,...,Cp, which we call underbridges of L and whose projections we call
underbridges of D. For a given diagram D, there are many choices of overbridges
of D. If each overbridge contains at least one overcrossing and each underbridge
contains at least one undercrossing then the number m of overbridges is minimal
in the diagram D. We call such a number m the bridge number of D and we say
that D is an m-bridge diagram. The bridge number b(L) of a link L is the minimum
of the bridge numbers of all diagrams of all links with the same link type as L.
The diagram shown in figure 1.3.1 is a 2-bridge diagram for the figure-eight knot,
whose bridge number is 2.

=

Fig. 1.3.1

Exercise 1.3.1 Show that any 1-bridge link is a trivial knot.

Exercise 1.3.2 Show that a link L is a b-bridge link if and only if L has a 2b-plat
presentation.
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Supplementary notes for Chapter 1

Alexander proved that any link type can be presented by a closed braid in [Alexan-
der 1923]. The proof of Theorem 1.2.2 is due to [Yamada 1987]. Usually, the linking
number is defined for simplicial cycles by using the intersection numbers of simpli-
cial chains. The intersection number of simplicial chains and the linking number
for simplicial cycles are described in [Seifert-Threlfall 1980]. See [Kawauchi 1980]
for the definitions of the intersection number of singular chains and the linking
number of singular cycles. Some account of the word problem for the braid group
is given in [Murasugi 1982]. Some account of the conjugacy problem for the braid
group is given in [Birman 1974]. On the other hand, it is known that there is a
finitely presented group with no algorithm to determine whether or not a word
represents the unit element (cf. [Magnus-Karrass-Solitar 1966]).



Chapter 2
Standard examples

In this chapter, we discuss 2-bridge links, torus links and pretzel links. These links
appear very often in studies on knot theory.

2.1 Two-bridge links

The 2-bridge links are first discussed using Schubert’s normal form and then using
Conway’s normal form.

Schubert’s Normal Form We consider the projection p : % — {p4,p_} — S? given
in 1.1, where py = (0,0,0,1), p— = (0,0,0,-1), and S? = {(z,y,2z,w) € S |w =
0}. By putting B3 = {(z,y,2z,w) € S* | w > 0} and B3 = {(z,y,2z,w) € S3 |
w < 0}, a 2-bridge knot or link K in S3 (cf. 1.3) can be presented as follows:
Kn{ps,p_} = ¢ and each of K N B3 and K N B3 consists of two arcs which are
mapped injectively into S% by p. The arc components w;(i = 1,2) of K N B3 and
v;(i = 1,2) of KN B3 are the overbridges and the underbridges of K, respectively.
We assume that K meets S? in four points A, B, C, and D, where the initial point
and the terminal point of w; are A and B, respectively, the initial point and the
terminal point of wy are C and D, respectively, the initial point of v; is B, and the
initial point of v, is D. Further, we can deform K by an ambient isotopy of S? so
that the overbridges p(w;) and p(ws) are straight (i.e. geodesic) lines in S2, and
each of the underbridges p(v;1) and p(vs) intersects the overbridges transversally
and alternately. More precisely, for a 2-bridge link K, there is a pair of coprime
integers («, 3) satisfying

(2.1.1) a>0, —a<fB<a @ isodd,

and K has the following regular projection: each bridge is divided into o segments
and numbered from 0 to 2a — 1 modulo 2« as shown in figure 2.1.1. Thus B and
D are numbered 0, and A and C are numbered a. Along the underbridge p(v;),
one starts from 0 of the overbridge p(w ), which is B, and meets p(ws) at 3, and
next meets p(w;) at 28, and then meets p(wz) at 38. This is to be repeated until
one reaches either a8 of p(ws) (= C) or a of p(wy) (= A) according to whether
a is odd or even. Similarly, along the underpass p(vq), one starts from 0 of p(ws2),
which is D, and meets p(w;) at B, and next meets p(wsz) at 23, and then meets
p(w) at 38. This is to be repeated until one reaches either a8 of p(w;) (= A)
or a of p(wz) (= C) according to whether « is odd or even. We call this regular
projection Schubert’s normal form of a 2-bridge link and denote it by S(a, (),
which is a knot or a 2-component link according to whether « is odd or even. For
example, S(5,—3) and S(2,+1) are shown in figures 2.1.2 and 2.1.3, respectively;
the latter is called the Hopf link.

21
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atl a+2 202 2a-—1
a b - > 0
a—1 a—2 2 1
Fig. 2.1.1

-

3 3
2 ‘1i—l(] 2 - 0
1 1
0 3 2 0 3 2
S(2,1) S, —1)
Fig. 2.1.3

Theorem 2.1.1 The two-fold branched covering space over S3 with branch set the
2-bridge link S(a, B) is the lens space L(x, 3).

Proof. Since both (B3, w; Uws) and (B2, v; Uv,) are trivial tangles (cf. Chapter
3), the two-fold branched covering spaces over B2 and B? with branch sets w; Uws
and vy U v, respectively, are solid tori V, and V_. Thus the two-fold branched
covering space over S® with branch set a 2-bridge link is a lens space (cf. Appendix
D). Each of the lifts of p(w;), p{wz) to V4 is a meridian of V.. Also, each of the
lifts of p(v1) and p(vz) to V_ is a meridian of V_. Thus, if the lift of p(w;) (or
p(ws)) is a standard meridian, then that of p(v1) (or p(vq)) is a characteristic
curve of the lens space. Let us consider S(3,1), which is shown in figure 2.1.4 a.
Cut S? along p(w;) Up(ws) to get the annulus as shown in figure 2.1.4 b. Then the
two-fold branched covering space over S? with branch set {4, B,C, D} is a torus
which is obtained by gluing the two boundaries of the annulus given in figure 2.1.4
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c. Since each of the lifts of p(w;) and p(ws)) is a meridian of V,., each of the lifts
of p(v1) and p(v2) is homologous to 3(meridian)+1(longitude) in OV with respect
to a meridian-longitude system of V. Hence the two-fold branched covering space
over $3 with branch set S(3,1) is the lens space L(3,1). For other S(a,3), the
assertion can be proved in the same way. O

2
(<

Fig. 2.1.4

Exercise 2.1.2 Prove that S(«, 3) is invertible.

Theorem 2.1.3 (1) The 2-bridge knots S{«, 8) and S(c/,3') belong to the same
type if and only if
a=d, =4 (moda).

(2) The 2-component 2-bridge links S(a, 3) and S(o/, 3') belong to the same type
if and only if
a=d, BH'=p4 (mod2a).

If we consider positive-equivalence instead of the link type, then the condition of
(2) reduces to that of (1).

Proof. When we ignore the orientation, the proof follows from the classification of
the lens space (cf. Appendix D). For the oriented case, we refer to [Schubert 1956].
]
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Exercise 2.1.4 Prove that the mirror image of S(o, 8) is S(o,—0), so that the
2-bridge knot S(«, 3) is amphicheiral if and only if 32 = —1 (mod «).

Exercise 2.1.5 Show that if we change the orientation of one of the components
of the 2-component 2-bridge link S(«, 3), then this becomes S(a, 8'), where §' =
a+ [ (mod 2a).

Ezample 2.1.6. 5(32,7) and S(32, —25) are positive-equivalent as unoriented links,
but do not belong to the same type as oriented links. In this example, we see that
the linking numbers are both zero.

L\/Wx_ X’j

2

(n is even)

y...\

an

(n is odd)

Fig. 2.1.5

Conway’s Normal Form Any 2-bridge link has a 4-plat presentation, which can
be further deformed as in figure 2.1.5, where a; indicates |a;|(# 0) crossing points
with sign &; = a;/|a;] = +£1. We denote the unoriented 2-bridge link with this
regular projection by C(as, ag, ..., an), which is called Conway’s normal form. For
example, C(3) and C(3,—2,2,3) are shown in figures 2.1.6 a and b, respectively.

Exercise 2.1.7 Show that C(a;,as,...,a,) and C(ay,as,...,an +¢&,—¢), € = %1,
are positive-equivalent.

-l o0 ) c&\’/&\’x’\/\wﬁj

Fig. 2.1.6

Exercise 2.1.8 Show that the mirror image of C(a1, as, ..., an) is C(—a1, —aq,
ey —Qp).
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Exercise 2.1.9 Show that C(an,...,a2,a1) and C(eaq,¢cas,...,ca,), where € =
(—=1)™"1, are positive-equivalent.

Theorem 2.1.10 Let a(> 0) and 8 be coprime integers obtained by the continued
fraction:

o 1
2.1.10.1 = =a+
(2.1.10.1) G —a 1
a2 + cee + —
Qn
Then the two-fold covering space over S® with branch set C(a1,az, ..., a,) is the

lens space L(a, 3).

See [Burde-Zieschang 1985] for proof.

Let (o, ') be a pair of integers satisfying (2.1.1) and 8 = B*! (mod a).
Then by Theorem 2.1.10, C(a1,as, ..., a,) and S(«, ') are positive-equivalent (as
unoriented links). Conversely, given a 2-bridge link S(¢, 3) in Schubert’s normal
form, using the continued fraction (2.1.10.1) we can deform it into Conway’s normal
form. Furthermore, we may suppose that all of the ai,aq,...,a, are positive or
negative according to whether 8 is positive or negative. Thus a 2-bridge link is
alternating (cf. Definition 8.4.11). By Exercises 2.1.7 and 2.1.9, we can deform
S(a, B) into C'(by, ba, ..., by,) so that all the b;’s are either positive or negative and
neither |b1| nor |b,,] is equal to one. We know that such a presentation is unique
from the uniqueness of the continued fraction (Exercises 2.1.12 and 2.1.13):

Theorem 2.1.11 Let {a1,as,...,a,} and {b1,be,...,by} be sets of integers such
that all the a;’s or b;’s are positive or negative and none of |ai|, |an|, |b1], [bm] is
one. Then the 2-bridge links C(a1,as,...,arn) and C(b1,bs,...,by,) are positive-
equivalent if and only if m = n and either a; = b; or a; = €b,,,_; withe = (—=1)"71,
for all 1.

Exercise 2.1.12 Let the a;’s be positive integers, and («, 3) and (¢/, 8’) the pairs
of integers satisfying the condition (2.1.1) obtained from the continued fractions:

1 o 1

o
— =a;+ =da, +

B 18 1
a2+...+_ an_1+...+_
an ai

Then prove that a = o’ and 88’ = (-1)"~! (mod ).

Exercise 2.1.13 Let the a;’s and b;’s be positive integers. Suppose that

S —a+ ! by +
Z—a - - -
g T 1
ag + -+ — by + -4+ —
an by,
where n > m. Then prove that either
n=m and (a1,as,...,a,) = (b1,ba,...,by), or

n=m-+1 and (al,ag,...,an):(bl,bg,...,bm—l,l).
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Exercise 2.1.14 (2.1.1) Let (a, 3) be a pair of integers satisfying (1) and set 8’ =
Bta(f] <a)if ais odd, or ' = S if « is even. Then prove that o/8" has a

continued fraction:
« 1
ﬁ = 2b + ———

2by + -+ + E
where each b; is a non-zero integer and n is even or odd according to whether « is
odd or even.

(2) Let D(by,b2,...,b,) be the oriented 2-bridge knot (if n is even) or 2-
component 2-bridge link (if n is odd) with the corresponding diagram as shown in
figure 2.1.7. Then prove that S(a,3) has the same type as D(by,bs,...,b,). Fur-

ther, prove that this presentation is unique up to the relation D(by,ba,...,b,) =
D(=by,...,—bs,—b1).
2bn
(\: XX X it C X X
(n is odd)

:\/ S
N\
2ba

(n is even)

Fig. 2.1.7

Example 2.1.15. If we reverse the orientation of one of the two components of
S(4,1) = D(—1,1,—-1), then we obtain S(4,—3) = D(2).

Exercise 2.1.16 Prove that there exists an ambient isotopy of S® which inter-
changes the components of a 2-component 2-bridge link so that the link orientation
remains as it was.

2.2 Torus links

A torus link is a link embedded in the standard torus T in S°. Regarding T
as the boundary of a tubular neighborhood of a trivial knot in S, we take a
meridian-longitude system (m,¢) of the trivial knot on T. A torus knot on T is
said to be of type (p,q) and denoted by T(p,q) if it is homologous to pm + ¢¢
in T for some coprime integers p and g. The torus link of type (np,ng), denoted
by T(np,nq), is the n-component parallel link of such loops which are oriented in
the same direction. In other words, T'(np,nq) is the closed braid of the ng-braid
(0102...0nq—1)"P. The proof of the following proposition is not difficult:
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Fig. 2.2.1

Proposition 2.2.1

(1) T(£1, q) and T'(p,£1) are trivial knots.

(2) T'(np,ng), T(—np, —nq), and T'(ng,np) belong to the same link type.
(3) The mirror image of T'(np,ngq) is T(np, —ng).

(4) T(np,nq) is invertible.

The torus knots are classified as follows:

Theorem 2.2.2

(1) A torus knot T(p,q) is trivial if and only if either p = +1 or ¢ = £1.
(2) Two non-trivial torus knots T(p,q) and T(y',q’) belong to the same type if

and only if (p,q) is equal to one of (p,q), (¢,p), (—p, —q), and (—g, —p).
(3) A non-trivial torus knot is not amphicheiral.

The proof of this theorem may be found in 6.1.17 and 12.2.15.
Exercise 2.2.3 Establish a similar classification for torus links.

Exercise 2.2.4 Find all of the torus links with crossing number < 10.

2.3 Pretzel links

For non-zero integers qi, ¢z, ..., gm, the link with the regular projection shown
in figure 2.3.1 is called the pretzel link and denoted by P(q1, g2, -- -, ¢m), where
g; indicates |g;| crossing points with sign € = ¢;/|¢;| = £1. Suppose that (¢, g5,

..y qb,) is a cyclic permutation of (q1, g2, - .., ¢m)- Then P(q}, ¢5, ..., q},) and
P(qi1, g2, - - ., gm) are positive-equivalent. If ¢; = +1, then P(q1, ..., Gi, - .+, Gm) 1S
positive-equivalent to P(g;, q1, - -, Giy - - -, @m)- So any pretzel link can be deformed
into the form of P(e, ..., &, p1, P2, ..., Pn), € = £1 and |p;| > 1, which we denote
by P(—eb; p1, p2, - .., Pn), with b the number of €. If b > 0 and p; = —2¢, then
P(—¢b;p1,p2,...,pn) has the same type as P(—e(b — 1);p1,P2,- -, —Dis---,Pn)-
Thus we can assume that none of p; is equal to —2¢ when b > 0. Then the condition
for the pretzel link P(—eb;p1,p2,...,Pn) to be a knot is that either n > 0 and all
of the p;’s and n + b are odd or that n > 1 and just one of the p;’s is even. We
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call it a pretzel knot of odd type in the former case, and a pretzel knot of even type
in the latter case. The pretzel knot is oriented by the orientation of the top arc
running from right to left. The following classification theorem for pretzel knots is
well-known:

C\A_—\K -\\
Y R §

Fig. 2.3.1
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o

P(-3,5,7)

Theorem 2.3.1

(1) A pretzel knot P(—eb; p1,p2, - ..,pn) is a 2-bridge knot (or possibly a trivial
knot) if and only if n < 2 and P(—b;p1,p2) has the same type as C(p1,b, p2).

(2) Two pretzel knots P(—b;p1,D2,...,pn) and P(~c;q1,492,...,qm) which are
neither 2-bridge nor trivial belong to the same type if and only if m = n,
b = ¢ and one of the following conditions is satisfied:

(a) Both are of odd type and (q1,92,.-.,qn) is a cyclic permutation of (p1,p2,

.y Pn)-

(b) Both are of even type and (q1,4qs,.-.,9n) is a cyclic permutation of either

(P1,P2,- -+ Pn) OF (P, -, P2,P1)-

Further, the following is also known:

Theorem 2.3.2 A pretzel knot P(—eb;p1,po,...,pn) Which is neither a 2-bridge
knot nor a trivial knot is a torus knot if and only if b =0, n = 3, and (p1,p2,P3)
is a cyclic permutation of either (3¢, 3¢, —2¢) or (3¢, 5e, —2¢), where € = +1.

Exercise 2.3.3 What are the types of the torus knots appearing in Theorem 2.3.27

Exercise 2.3.4 Find pretzel links which are also torus links.

Supplementary notes for Chapter 2

The 2-bridge links were first studied in [Bankwitz-Schumann 1934] as 4-plat pre-
sentations, which is just Conway’s normal form. They were classified by Schubert
[Schubert 1956] via the classification of lens spaces. Another proof was given in
[Burde 1975] by using the linking numbers of branched covering spaces. Con-
way’s normal form was re-introduced in [Conway 1970] through the tangle theory
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(cf. Chapter 3). See also [Siebenmann *] on this matter. For Exercise 2.1.14, see
[Kanenobu-Miyazawa 1992]. The classification of the torus knots followed from
that of the free product Z, * Z, which is the quotient group of the group of the
torus knot (cf.[Schreier 1924]). Now the Alexander polynomial is an easy tool for
solving this problem (cf. Exercise 7.4.4). The torus knots are characterized as the
only knots whose groups have non-trivial centers (cf. Corollary 6.3.6). It is also
known that the bridge index of a torus knot T'(p, ¢) with |p| > |qg| is |¢| (see [Schu-
bert 1954]) and the minimal crossing number is |p|(|g| — 1) (cf. [Murasugi 1991]
where the Jones polynomial discussed in Chapter 3 is used). The unknotting num-
ber of T'(p,q) is (|p| — 1)(lg| — 1)/2, which is the affirmative answer to Milnor’s
conjecture [Milnor 1968]. This last result was proved by F. B. Kronheimer and
T. S. Mrowka in [Kronheimer-Mrowka 1993|, who determined the 4-dimensional
genus of T'(p, q) (defined in 12.3) by applying gauge theory to an embedded surface
in a 4-manifold. The pretzel knot first appeared in the book of Reidemeister [Rei-
demeister 1932] as an example of a knot with trivial Alexander polynomial, and
thereafter was often treated by many authors. A special feature of this knot is that
the two-fold branched covering space over S% with this knot as the branch set is a
Seifert manifold. From this point of view, J. M. Montesinos generalized the pretzel
links to a class of links called the Montesinos links (cf. [Montesinos 1973’, *]). The
Montesinos link M (—eb; (p1,q1), (p2,92), - - -, (Pn,qn)) is obtained from the pretzel
link P(—eb;p1,p2,...,0n) by replacing each 2-string braid of p;-half twists with
a rational tangle with slope g;/p; (see 3.3 for rational tangles). The classification
of the Montesinos links is stated in [Burde-Zieschang 1985] (see also 10.7). The
pretzel links are not in general simple links (see Chapter 3 for this definition). For
example, P(0;2,~2) is a 2-component trivial link. However, every pretzel knot is
a simple knot. See, for example, [Kawauchi 1985’] for this proof and the proofs
of Theorems 2.3.1 and 2.3.2. It should be noted that the m-orbifold group (de-
fined in 10.6.7) of any pretzel link is a reflection group in 2-dimensional spherical,
Euclidean or hyperbolic space, which has been known since the appearance of
[Reidemeister 1932].



Chapter 3
Compositions and decompositions

In this chapter, we discuss how to construct a new link from given links by various
compositions. Then we discuss decompositions, which are the inverse operations of
compositions. After that, compositions of tangles are discussed. Throughout this
chapter, links are understood to be links in S3.

3.1 Compositions of links

We explain here the concepts of connected sum, band sum and companionship. For
two oriented knots (S3, K1) and (53, K2), let P; be a point on K;, and (B3, B}) a
regular neighborhood of P; in (5%, K;), which is a trivial ball pair (i = 1,2). Then
we have the following definition:

Definition 3.1.1 The connected sum (or composition) of the knots K; and Ko,
denoted by Ki#{K5, is an oriented knot obtained from the disjoint union of the
manifold pairs (S® — intB} K; — intB}) (i = 1,2) by pasting their boundaries
along an orientation-reversing homeomorphism ¢ : (9B3,9B}) — (0B},0B1).
The knots K7 and K5 are called the factors of the connected sum Kj#Ks. The
construction can be simply described as follows: K1}§K> is a knot obtained by
connecting any diagram of K; with that of K5, as shown in figure 3.1.1.

S D - O

Fig. 3.1.1

Exercise 3.1.2 For two given knots K; and K5, show that the knot type of the
connected sum K1§K> is uniquely determined.

Exercise 3.1.3 Show that the set of knot types forms an abelian semi-group with
unit element under the connected sum operation.

For a 2-component split link K1 U K5, we take a disk B so that by = K1 N B
and by = Ko N B are arcs in B and some orientation of B is coherent with the
orientations of K7 and Ks.

Definition 3.1.4 A band sum of K; and K>, denoted by K, K> is the knot K; U
K, U (0B — (intby U intb,)) for such a disk B.

The orientation of K1f, K2 is chosen to coincide with that of K; —b; (and also that
of K3 —b3). The band sum operation is a special case of a hyperbolic transformation
of a link (in 12.3) and also of a fusion of a link (in 13.1).

31
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Exercise 3.1.5 Show that the knot type of a band sum K, K> is not uniquely
determined by K; and K.

Exercise 3.1.6 Give the definitions of connected sum and band sum for links.

Let V* = N(K) be a regular neighborhood of a knot K in S%, and let L be a link
in a solid torus V = D? x S! such that L is not contained in any 3-ball in V.

Definition 3.1.7 A satellite of the knot K is a link which is the image L* = ¢(L) C
V* C 83 for a homeomorphism ¢ : V — V*.

In this definition, the knot K is also called a companion of the link L*.

Exercise 3.1.8 Show that each link in a solid torus V as illustrated in figure 3.1.2
is not contained in any 3-ball in V.

©® © @

a b c

Fig. 3.1.2

Definition 3.1.9 A double of a knot K is a satellite of K obtained by an image of
the knot shown in figure 3.1.2a. In particular, a twist knot is a double of a trivial
knot.

In the definition 3.1.7 above, L* is not uniquely determined by K and L. Usually,
we take the homeomorphism ¢ to send the the standard meridian-longitude system
(€0, mg) of V' to a meridian-longitude system (¢, m) of K on V*, which we call a
faithful homeomorphism.

Exercise 3.1.10 When we use a faithful homeomorphism ¢, show that L* is unique-
ly determined by K and L.

Definition 3.1.11 A cable knot of a knot K is a satellite L* of K in the definition
3.1.7 such that K is a non-trivial knot and L is a knot on 9V.

More precisely, a cable knot L* of a knot K is called the (p, q)-cable knot of K if
 is taken to be a faithful homeomorphism and L is homologous to pfy + gmg in
ov.

Exercise 3.1.12 Show that both knots K; and K5 are companions of the connected
sum K1§K>.

Exercise 3.1.13 Show that, if both knots K; and K> are companions of each other,
then K; & +K>.
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3.2 Decompositions of links
To decompose a link into links with respect to the connected sum or companion-
ship, it is important to determine which links are not decomposable. In this section,
such links are introduced. The following theorem is important for the connected
sum decomposition:
Theorem 3.2.1 (Non-cancellation theorem) A connected sum Li8Ls of any two
links L1 and L4 is not a trivial link unless both links L1 and Lo are trivial links.
The proof (whose details are left to the reader) is essentially obtained from the
following two facts:

(1) If L; and L2 are non-split links, then L1}L is a non-split link.

(2) If L1fL2 is a trivial knot, then L; and Lo are trivial knots.
(1) is directly proved by a cut-and-paste argument of combinatorial topology. (2)
is usually obtained from Schubert’s result on the additivity of the knot genus (cf.
4.1.5) under the connected sum, i.e., g{Li1§L2) = g(L1) + g(L2) (which is also
proved by a cut-and-paste argument).

Definition 3.2.2 A link L is locally trivial if any 2-sphere S in S which intersects
L transversally in two points bounds a 3-ball intersecting L in a trivial arc.

Exercise 3.2.3 Show the following statements:

(1) A trivial knot is locally trivial.
(2) A trivial 2-component link is locally trivial.

Definition 3.2.4 A link is prime if it is locally trivial, non-split and non-trivial.

Exercise 3.2.5 Show that each link shown in figure 3.2.1 is prime.

Fig. 3.2.1

Two-bridge knots and torus knots are well-known examples of prime knots.

Theorem 3.2.6 (Unique factorization theorem) A non-split link can be decom-
posed into finitely many prime links with respect to the connected sum. Further,
the decomposition is unique in the following sense: if

LifiLofl- - §Lm = Li§LoH - - - 4L,
for prime links L;(i = 1,2, ...,m) and Li(j =1,2,...,n), then we have m = n and
L, =L, (i=1,2,...,n) after permuting the indices suitably.

The proof is given by cut-and-paste argument in [Schubert 1949] and [Hashizume
1958].
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Definition 3.2.7 A link L is atoroidal if any torus T in the interior of the link
exterior E(L) = cl(S3 — N(L)) of L is compressible or d-parallel in E(L) (see the
terminology of Appendix C).

Definition 3.2.8 A link is simple if it is prime and atoroidal.

Exercise 3.2.9 Show the following statements:

(1) The link shown in figure 3.2.2, which is a connected sum of two Hopf links,
is atoroidal.
(2) Non-trivial torus knots are simple.

QLD

Fig. 3.2.2

Definition 3.2.10 A link L is anannular if any annulus A properly embedded in the
exterior E(L) of L is compressible or J-parallel (see the terminology in Appendix
Q).

Definition 3.2.11 A link L is hyperbolic if it is simple and anannular.

Remark. The word “hyperbolic”’in Definition 3.2.11 originates from the fact that,
due to Thurston’s hyperbolization theorem, the exterior E(L) is a hyperbolic man-
ifold of finite volume in the sense of Appendix C (cf. Theorems C.7.2 and 6.1.13).

Exercise 3.2.12 Show that no torus link is hyperbolic.

Definition 3.2.13 A link L has only trivial companions if L has no companion
except its components and a trivial knot.
Exercise 3.2.14 Check the differences among the following properties:

(1) A link is simple.

(2) A link is hyperbolic.

(3) A link has only trivial companions.

[Hint: In the case of knots, (1) and (3) are equivalent. If a knot is simple but not
hyperbolic, then it is a torus knot.]

3.3 Definition of a tangle and examples
In this section, the concept of a tangle is introduced.

Definition 3.3.1 A tangle is the pair consisting of a 3-ball B3 and a (possibly
disconnected) proper 1-submanifold ¢ with 8¢ # @. In particular, it is an n-string
tangle if t consists of n arcs.

Note that we do not consider the case 9t = () as a tangle (B, ).
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Definition 3.3.2 A trivial (n-string) tangle is a tangle homeomorphic to the pair

(D?,{a1,az,...,a,}) X [0,1] for some interior points a1, as, ...,a, of D%
a b c d e f
Fig. 3.3.1

In the tangles shown in figure 3.3.1, a and b are trivial tangles. We say that the
tangles a, ¢, d and e are respectively a trivial arc, the clasp, the K-T tangle and
the chain tangle. In the following definition, we give a notation for trivial 2-string
tangles, which was introduced by [Conway 1970].

Definition 3.3.3 The Conway notation aias - - - a, means the diagram of a trivial
2-string tangle obtained from a sequence of non-zero integers a;, as, ..., ay, as it is
indicated in figure 3.3.2 where a; denotes |a;| crossings with sign &; = a;/|a;| = £1
(i =1,2,...,n). (We consider the signs of the crossings in figure 3.3.2 to be all
positive.)

(n is odd) (n is even)
Fig. 3.3.2

Exercise 3.3.4 Show that every tangle shown in figure 3.3.2 is a trivial 2-string
tangle.

We note that the link obtained from the tangle above by gluing the ears as shown
in figure 3.3.3 is the 2-bridge knot C(an—1,an—2, ..., a2,a1) (cf. 2.1). The trivial
2-string tangle with Conway notation ajas---a, is also called a rational tangle
with slope
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which is a rational number or co. We see that the rational tangles with slopes 0
and oo are respectively deformed into the tangles of figures 3.3.1b and 3.4.1a by
ambient isotopies keeping the boundary fixed.

Fig. 3.3.3

For two tangles (A, s) and (B,t), suppose that the numbers of points in Js
and in Ot are equal. Then we have the following definition:

Definition 3.3.5 A tangle sumof (4, s) and (B, t) is the link (4, s)U, (B, t) obtained
by gluing them together via a homeomorphism ¢ : 8(B,t) — 0(A, s).

Ezample 3.3.6. As shown in figure 3.3.4, the link type of a tangle sum is not
uniquely determined by the tangles.

& — @;oo
) —— @D = @

Fig. 3.3.4

Exercise 3.3.7 Construct a pair of distinct knots from the same pair of tangles by
taking distinct tangle sums.

3.4 How to judge the non-splittability of a link
In this section, we give a condition for a link presented by a tangle sum to be a
non-split link.

Definition 3.4.1 A tangle (B,t) is non-split if any proper disk D in B does not
split ¢ in B.

Ezample 3.4.2. The tangle shown in figure 3.4.1a is split, but those in figures 3.4.1b
and 3.4.1c are non-split. In fact, there is a splitting disk shown in figure 3.4.1a.
In figure 3.4.1b, both arc components link the loop component which represents a
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a b c

Fig. 3.4.1

generator of the fundamental group of the complement of each arc in B. In figure
3.4.1c, if the arc components are split, then the tangle must be a trivial 2-string
tangle by the triviality of the arcs, and the knot obtained from this tangle by gluing
the ears shown in figure 3.3.3 must be a 2-bridge knot, in particular, a prime knot.
But the resulting knot is the connected sum of the trefoil knot and its mirror image
(which is called the square knot), and hence is not prime, a contradiction.

The following theorem is useful for constructing a non-split link:
Theorem 3.4.3 Any link obtained by any tangle sum of two non-split tangles is
non-split.

Exercise 3.4.4 Prove Theorem 3.4.3. [Hint: Suppose that the resulting link is split.
Then consider the intersection of the splitting sphere and the bounding sphere of
tangles. Cf.[Nakanishi 1981’).]

&) &)

Fig. 3.4.2

Ezxample 3.4.5. The links shown in figure 3.4.2 are non-split.
Here is a method for constructing a non-split tangle.

Theorem 3.4.6 Let (C,v) be a tangle and D be a disk properly embedded in C such
that D divides (C,v) into two tangles (A, s) and (B,t). We assume the following:
(1) The numbers of points in (0A— D)Nv, (8B —D)Nv and DN are all greater
than or equal to one.
(2) Any disk A properly embedded in A with AN38D = and AN s = 0 does
not split s in A.
(3) (B,t) is non-split.
Then (C,v) is a non-split tangle.
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Corollary 3.4.7 In Theorem 3.4.6 above, we assume the following condition instead
of condition (2):

(2°) The tangle (A, s) is non-split.

Then (C,v) is also non-split.

For the proof, see [Nakanishi 1981’]. Here is one example.

o & O

Fig. 3.4.3
QD J\\w
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Fig. 3.4.4

Ezample 3.4.8. By Theorem 3.4.6, all the tangles in figure 3.4.3 can be shown to
be non-split. Therefore, by Theorem 3.4.3, the chain links shown in figure 3.4.4 are
non-split if their component numbers are greater than three in the case of 3.4.4a,
and one in the case of 3.4.4b.

The link of figure 3.4.4b has the property that every proper sublink is trivial. A
link with this property is called a Brunnian (or an almost-trivial) link.

Exercise 3.4.9 Prove the assertion in Example 3.4.8.

3.5 How to judge the primeness of a link

In this section, we give a condition for a link presented by a tangle sum to be a
prime link.

Definition 3.5.1 A tangle (B,t) is locally trivial if any 2-sphere S in B which
intersects t in two points transversely bounds a 3-ball in B which intersects ¢ in a
trivial arc.

Example 3.5.2. The tangles shown in figures 3.5.1a and 3.5.1b are not locally
trivial, but those in figures 3.5.1c and d are locally trivial. In fact, some non-
trivial 2-spheres are shown in figures 3.5.1a and 3.5.1b. In figure 3.5.1c¢, there is no
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Fig. 3.5.1

2-sphere which bounds a 3-ball intersecting ¢ in a knotted arc by the triviality of
the arcs and the loop. If there is a 2-sphere which bounds a 3-ball containing the
loop, then we must have an arc outside the ball, since the sphere intersects ¢ in
two points. This contradicts the fact that both of the arcs are linking the loop. In
figure 3.5.1d, we remark that there is no loop. One arc is a trivial arc and the other
is an arc of a trefoil knot. If there is a 2-sphere which bounds a 3-ball intersecting ¢
in a knotted arc, then it must be an arc of the trefoil knot. By the non-cancellation
theorem (Theorem 3.2.1), any link obtained from the tangle by gluing ears must
have a trefoil knot as a factor. But the knot obtained from this tangle by gluing
the ears as shown in figure 3.3.3 is a trivial knot, which is a contradiction.

=)

Fig. 3.5.2

Remark 3.5.3 As shown in figure 3.5.2, a link obtained from two locally trivial
tangles by a tangle sum need not be locally trivial.

Definition 3.5.4 A tangle (B,t) is indivisible if any proper disk D in B which
intersects ¢ transversely in a single point divides (B,t) into two tangles, at least
one of which is the trivial 1-string tangle shown in figure 3.3.1a.

oo @ @
‘/

Fig. 3.5.3

Example 3.5.5. The tangles shown in figures 3.5.3a and 3.5.3b are divisible, but
those in figures 3.5.3c and 3.5.3d are indivisible. In fact, some dividing disks are
shown in figures 3.5.3a and 3.5.3b. In figure 3.5.3¢ or 3.5.3d, for any dividing disk
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D, we consider two tangles obtained by dividing by D. In figure 3.5.3c, one of
them is trivial, since the arc in the original 3-ball is trivial. In figure 3.5.3d, one
of them has a single arc, since ¢ consists of two arcs, and by the locally triviality,
it is the trivial 1-string tangle shown in figure 3.3.1a.

Definition 3.5.6 A tangle is prime if it is non-split, locally trivial, and indivisible
and if it is not a trivial 1-string tangle.

Exercise 3.5.7 Show that the tangles shown in figure 3.5.4 are not prime.

8 by & &

Fig. 3.5.4

Ezrample 3.5.8. The tangles shown in figures 3.3.1c-f and 3.4.3 are prime tangles.
Exercise 3.5.9 Show the primeness of the tangles in Example 3.5.8.

Exercise 3.5.10 For any n-string tangle, show that indivisibility implies local triv-
iality.

Exercise 3.5.11 For any n-string tangle with n > 2 except the trivial 2-string
tangle, show that indivisibility implies primeness.

The following theorem is useful for constructing a prime link:

Theorem 3.5.12 A link obtained from two prime tangles by any tangle sum is
prime.

The proof is in [Nakanishi 1981°]. For example, the links shown in figure 3.4.4 are
prime.

Exercise 3.5.13 Give a method of constructing a prime tangle by examining The-
orem 3.4.6.

For example, as an answer to this exercise, we have the following theorem:

Theorem 3.5.14 Let (C,v) be a tangle and D be a disk properly embedded in
C such that D divides (C,v) into two tangles (A,s) and (B,t). We assume the
following:

(1) The numbers of points in (OA— D)Nv, (0B — D)Nv and DNv are all greater

than or equal to two.

(2) (A, S) is prime.

(3) (B,t) is prime.
Then (C,v) is a prime tangle.

The proof is in [Nakanishi 1981’]. There is also another method as follows:
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Theorem 3.5.15 Let (B,t) be a prime tangle. Let t* be the union of t and an arc
(or loop) parallel to a component of t in B. Then (B,t*) is a prime tangle.

Exercise 3.5.16 Prove Theorem 3.5.15 (cf. [Nakanishi 1981°).
The following gives a useful criterion for a tangle to be prime:

Theorem 3.5.17 A tangle (B, t) is prime if and only if the double branched covering
space over B with branch set t is irreducible and boundary-irreducible.

The proof is an application of the equivariant sphere and loop theorems (cf. Ap-
pendix C) and may be found in [Nakanishi 1981’]. The following theorem shows
that Theorem 3.5.12 is not always almighty for showing primeness.

Theorem 3.5.18 No 2-bridge knot or torus knot can be presented as a tangle sum
of two prime tangles.

The proof follows from Theorem 3.5.17 and [Magnus-Karras-Solitar 1966(p. 211)}.

3.6 How to judge the hyperbolicity of a link

In this section, we give a condition for a link presented by a tangle sum to be a
hyperbolic link.

Definition 3.6.1 A tangle (B,t) is atoroidal if there is no essential torus in it,
namely, any torus T in the interior of the exterior E(t; B) = cl(B — N(t)) is
compressible or d-parallel to a component of FrN(¢) = cl(ON(t) — (ON(t) N OB))
in E(t; B).

Definition 3.6.2 A tangle (B,t) is anannular if there is no essential annulus in it,
namely, any proper annulus A in E(¢t; B) with AN FrN(¢) = 0 is compressible or
O-parallel to a component of FrN(t) or cl(0FE(t; B) — FrN(t)) in E(t; B).

Fig. 3.6.1
Exercise 3.6.3 Show that the tangle shown in figure 3.6.1a is neither atoroidal nor
anannular but the tangle shown in figure 3.6.1b is both atoroidal and anannular.

Exercise 3.6.4 Show that a 2-string tangle is anannular if it is locally trivial and
atoroidal.

Definition 3.6.5 A tangle (B,t) is hyperbolic if it is prime, atoroidal and anannular.

The following theorem is useful for constructing hyperbolic links:



42 CHAPTER 3 COMPOSITIONS AND DECOMPOSITIONS

Theorem 3.6.6 A link obtained from two hyperbolic tangles by any tangle sum is
hyperbolic.

Exercise 3.6.7 Prove Theorem 3.6.6.

3.7 Non-triviality of a link

In this section, we discuss some results due to Y. Nakanishi on the non-triviality
of a link containing a given tangle.

Theorem 3.7.1 For a non-trivial 2-string tangle (B,t) and two 2-string tangles
(A1,51) and (Az,s2), we assume that the tangle sums (B,t) U, (A1,s1) and
(B, t)Uy (Aa, s2) are trivial knots for two homeomorphisms ¢ : 8(A1,s1) — 0(B, 1)
and ¢ : 0(Asz, s2) — O0(B,t). Then there exists a homeomorphism h : (A;,s1) —
(A2, 82) such that ¢ = h.

Theorem 3.7.2 For a non-trivial 2-string tangle (B,t) and two 2-string tangles
(A1,81) and (As,s2), we assume that the tangle sums (B,t) U, (A1,s1) and
(B,t) Uy (A2,s2) are trivial 2-component links for two homeomorphisms ¢ :
0(A1,81) — O(B,t) and ¢ : 0(As,82) — O(B,t). Then there exists a homeo-
morphism h : (A1,s1) — (Ag, s2) such that ¢ = ¢h.

Theorem 3.7.3 For a 2-string tangle (B,t) and two 2-string tangles (A1, s1) and
(Aq2, s2), we assume that some tangle sums (B, t) U, (A1, s1) and (B,t) Uy (As, s2)
are a trivial knot and a trivial 2-component link, respectively. Then the tangle
(B, t) is a trivial 2-string tangle.

Outlines of the proofs of these theorems are as follows: We consider the double
covering spaces over S with, as branch sets, the trivial knot and the 2-component
trivial link given in these theorems. We denote the liftings of B and A;,7= 1,2, to
these covering spaces by B and A;,i = 1,2, respectively. If one of (B,t), (A1, s1)
and (As, s2) is not locally trivial, i.e., has a local knot, then the resulting knots
or links have a local knot as a factor, a contradiction. Hence (B, t), (A1, 1) and
(Ag, s2) are all locally trivial, and (B, t) is a prime tangle. If (A1, s1) and (A3, s2)
are non-split, then they are prime, and so the resulting knots or links are prime by
Theorem 3.5.12. Therefore, (A1, s1) and (As, s2) are all trivial 2-string tangles, and
so A;(i = 1,2) are solid tori. For Theorem 3.7.1, we apply the solution of the knot
exterior conjecture by [Bleiler-Scharlemann 1988] (for a strongly invertible knot)
or [Gordon-Luecke 1989] (cf. 6.1.12) to B which is a non-trivial knot exterior.
Then we can conclude that the boundaries of the splitting disks in the trivial
tangles (A1, s1) and (Ag, s2) are sent to isotopic curves in 8(B,t) by ¢ and . For
Theorem 3.7.2, the same conclusion can be obtained from a homological argument.
This completes the outlined proofs of Theorems 3.7.1 and 3.7.2. For Theorem 3.7.3,
suppose that (B,t) is non-trivial. By the arguments stated above, 4;,7 = 1,2, are
solid tori and B is a non-trivial knot exterior. Because S! x $2 is a union of B
and Ay, B must be a solid torus by the solution of the property R conjecture by
[Gabai 1987’] (cf. Supplementary notes for Chapter 4), which is a contradiction.
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There is another proof for Theorem 3.7.3 using the super-additivity under band
sum (cf. [Gabai 1987”], [Scharlemann 1989]). This completes the outlined proof of
Theorem 3.7.3.

Exercise 3.7.4 Complete the proofs of Theorems 3.7.1-3.

These theorems tell us that the non-triviality of a link, which is a global property,
happens to be determined by a property of an embedded tangle, which is a local
property. It would be interesting to study which global properties of links deter-
mined by properties of embedded tangles. At the end of this section, we raise a
notion and an open problem due to Y. Nakanishi.

Definition 3.7.5 A tangle is a x-tangle if every link obtained from that tangle and
any other tangle by any tangle sum is not trivial.

Open Problem 3.7.6 If there exist mutually disjoint diagrams of n *-tangles in
a diagram of a knot K, then the unknotting number u(K) (cf. Chapter 11) has
u(K) > n. Is it true or not?

3.8 Conway mutation

In this last section, we explain Conway’s mutation of a link, in [Conway 1970]. For
a link L in S®, we take a 2-sphere S in S% meeting L transversely in just 4 points.
Such a sphere S is called a Conway sphere for L. Let p be a self-map of (S, LN S)
of period 2 such that the fixed point set of p on S is a two-point set disjoint from
LN, which we call a symmetry on (S, LN.S). There are three kinds of symmetries
on (S,LNS).

Definition 3.8.1 A link L/ is an elementary Conway mutant of a link L if (S3, L")
is obtained from (S3, L) by splitting along a Conway sphere S and re-gluing by
using a symmetry p on (S, LN 8S). A link L' is a Conway mutant of a link L if L'
is obtained from L by a finite sequence of elementary Conway mutants.

We note that for an elementary Conway mutant L’ of an oriented link L, there
are two canonical ways to orient L’. The following observation gives evidence of
difficulty in distinguishing between a link and its Conway mutant (cf. [Viro 1977]):

Proposition 3.8.2 If L’ is a Conway mutant of a link L, then the double covering
spaces over S2 with branch sets L and L' are orientation-preservingly homeomor-
phic.

Proof. Let S be the Conway sphere S for L and p be the symmetry on (S, SN L),
used for constructing the Conway mutant L’ of L. Let (B;, L;)(i = 1,2) with
L; = B; N L be the tangles obtained from (S*, L) by splitting it along S. The
double branched covering space M over S% with branch set L is obtained by
gluing the double branched covering spaces B;(i = 1,2) over B;(i = 1,2) with
branch sets L;(i = 1,2). Let ¢ be the non-trivial covering transformation of M,
Note that the lift 5 of p to the torus 8Bs is (non-equivariantly) ambient isotopic
to t |55,- Then we see that the double branched covering space M’ over $3 with
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branch set L' is orientation-preservingly (and non-equivariantly) homeomorphic
to the manifold M* obtained from B; and B, by re-gluing via t | 2B, instead of the

identity on By. M* is orientation- preservmgly (and equ1var1antly) homeomorphlc
to M by a homeomorphism defined by id : Bi — Byandt | B,: B2 — Bs. O

We also observe here another fact in [Cooper 1982] which you can understand
after you know the facts in Chapter 5. Namely, the Seifert matrices of any knot
and its Conway mutant are S-equivalent, so that their Alexander polynomials and
their signatures are equal, respectively. Using Proposition 3.8.2 and this fact, we
see that no two knots with up to 10 crossings in the knot table of this book are
mutually Conway mutants. Here are some examples of inequivalent knots which
are mutually Conway mutants.

Ezample 3.8.3. Let P(q1,q2,-..,qm) be a pretzel knot as described in 2.3. For any
permutation (g}, db, - - -, q,) of (¢1,¢2, ---,qm), the pretzel knot P(qy,q5, ..., q)
is a Conway mutant of P{qi, g2, ...,qm), since any permutation is a composition
of transpositions. By Theorem 2.3.1, we have finitely many inequivalent pretzel
knots which are mutually Conway mutants.

Ezample 3.8.4. The Conway knot K¢ shown in 3.8.1b is an elementary Conway
mutant of the Kinoshita-Terasaka knot Kxr shown in figure 3.8.1a. These knots
are known as non-trivial knots with 11 crossings and with trivial Alexander poly-
nomials. The inequivalence of these knots was first observed by [Riley 1971]. This
can be also shown by examining the torus decompositions of their double covering
spaces (cf. 10.6) or by examining certain twisted Alexander polynomials of them
(cf. [Wada 1994]). It is also observed in [Gabai 1984] that the genera (defined
in 4.1.5) of Kxr and K¢ are 2 and 3, respectively. Although Kgr is a ribbon
knot defined in 13.1.9, it is unknown whether or not K¢ is a ribbon knot or more
generally a slice knot (defined in 12.1).
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Fig. 3.8.1

Exercise 3.8.5 For any two links L;,¢ = 1,2, any two connected sums Li§L, and
L1§ — Ly are mutually Conway mutants.
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It is also easily checked that any Conway mutant of a trivial link, a torus link or
a 2-bridge link is positive-equivalent to itself, because any Conway sphere for it
necessarily bounds a split tangle.

Supplementary notes for Chapter 3

The notion of a connected sum or more generally that of a companion was intro-
duced by [Schubert 1949], and the notion of primeness is naturally induced from it
as a prime factor. For example, the unique factorization theorem for a link ([Schu-
bert 1949], [Hashizume 1958]) makes a great step forward in the study of links. As
for prime numbers in elementary number theory, it is a useful approach to consider
a prime link as a prime factor. In the old days, only special types of links could
be judged to be prime by a technical reason. Since [Kirby-Lickorish 1979], tangle
theory has been developed by several knot theorists to be a great machine which
enables us to judge primeness and hyperbolicity, even for complicated links (cf.
[Myers 1983], [Nakanishi 1981°, 1983], [Soma 1983]), though the tangle theory is
not all powerful for such judgment. Conway mutation was generalized to the mu-
tation of a 3-manifold in [Ruberman 1987]. Finally, we note that we can construct
from any given link (S3, L) a new link (S3, L*) with a map ¢ : (S3, L*) — (S3,L)
such that ¢ is close to a homeomorphism in several senses as an application of the
tangle and mutation theories (cf. [Kawauchi 1993]).



Chapter 4
Seifert surfaces I: a topological approach

In this chapter, Seifert surfaces for links are introduced. The notions of an incom-
pressible Seifert surface, a minimal genus Seifert surface, and a fiber Seifert surface
are discussed with respect to Murasugi sums.

4.1 Definition and existence of Seifert surfaces

In this section, we define a Seifert surface for a link and discuss Seifert’s algorithm
for demonstrating the existence of a Seifert surface for any link and some properties
of minimal genus Seifert surfaces.

Definition 4.1.1 A Seifert surface for a link L in R3 (or $3) is a compact oriented
2-manifold S embedded in R? (or $3) such that S = L as an oriented link and S
does not have any closed surface components.

Exercise 4.1.2 Let a, b, ¢ be surfaces in R3 shown in figure 4.1.1 whose boundaries
belong to the same trefoil knot type. Show that a is not orientable, thus it is not
a Seifert surface, and that b is a Seifert surface which is ambient isotopic to ¢ in

R3.
= N RR®

Fig. 4.1.1

Theorem 4.1.3 For any oriented link L in R3, there exists a Seifert surface for L.

K — =

N\

D D
Fig. 4.1.2

Proof (Seifert’s algorithm). Let D be a diagram of L in the z = 0 plane R? in R3.
Let D’ be a diagram in R2, obtained by modifying a neighborhood of each crossing
in D into two disjoint arcs, as shown in figure 4.1.2. Then D’ has no crossings and
hence is the boundary of a collection of oriented disks in R2. We deform these
disks into mutually disjoint disks by slightly pushing their interiors into the upper

47
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half space. Then we paste half-twisted bands to the union Sy of these disjoint
disks, as shown in figure 4.1.3, to obtain a compact surface S whose boundary
represents the same diagram as D in R2. Then we can orient Sy by the orientation
determined by the orientation of D’ N D (which comes from the orientation of L).
This orientation of Sy is naturally extended to the orientation of S as shown in
figure 4.1.3. Hence, we have a Seifert surface S for L. O

Fig. 4.1.3

Ezample 4.1.4. The torus link of type (2,4) has two components. We introduce
two kinds of orientations on it, as shown in figure 4.1.4 and then apply Seifert’s al-
gorithm to the resulting oriented links. The genera of the resulting Seifert surfaces
are 0 and 1 and we can see that 0 and 1 are the minimal genera of Seifert surfaces
for these links, respectively (cf. 5.4.3). This means that the Seifert surfaces of a
link are much affected by the link orientation.

Definition 4.1.5 A Seifert surface S for a link L is a minimal genus Seifert surface
for L if
x(S) = max{x(F) | Fis a Seifert surface for L},

i.e., S is the simplest 2-manifold in the sense of Euler characteristic. Further, the
genus of a knot K is the genus of the minimal genus Seifert surface for K.

Exercise 4.1.6 The Seifert surface in figure 4.1.5 is obtained by applying Seifert’s
algorithm to the torus knot of type (3,4). Confirm that the genus of this surface
is 3. In a similar way, show that the torus knot of type (p,q) has a Seifert surface

with genus (p| - 1)(jg| - 1)/2.

Let E(= E(L)) be the exterior of a link L in S3. Let Sg = SNE(= S) for a Seifert
surface S of L.

Definition 4.1.7 A Seifert surface S for a link L in S3 is incompressible if each
component of Sg is incompressible in F (cf. Appendix C).

The following theorem is obtained from the loop theorem (cf. Appendix C):
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Fig. 4.1.5

Theorem 4.1.8 A Seifert surface is incompressible if it is of minimal genus.

In general, the converse of Theorem 4.1.8 is not true. For instance, Lyon [Lyon
1971] showed that there exist knots which have incompressible Seifert surfaces
with arbitrarily large genera. Let (E’, (OE)’) be the manifold pair obtained from
(E,QE) by cutting E along SEg.

Definition 4.1.9 A link L in S3 is a fibered link if there is a Seifert surface S for L
such that (E', (OE)’) is homeomorphic to (Sg,3Sg) x [0, 1].

In this definition, the Seifert surface S is called a fiber surface. Since E’ is con-
nected, a fiber surface S is connected. In general, we can show that every Seifert
surface for a fibered link is connected (see 5.4.4).
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Theorem 4.1.10 The following three conditions on a Seifert surface S for a fibered
link L are mutually equivalent:

(1) S is a minimal genus Seifert surface.
(2) S is an incompressible Seifert surface.
(3) S is a fiber surface.

Exercise 4.1.11 Prove Theorem 4.1.10 [Hint: see Theorem 6.3.2].

gan @@
Fig. 4.1.6

We say that an unknotted annulus (C S2) with one full twist is a Hopf band (see
figure 4.1.6).

Exercise 4.1.12 Show that a Hopf band is a fiber surface.

f A4 = I

Ses

Fig. 4.1.7

Exercise 4.1.13 Let A be an unknotted annulus in S with n full twists (|n| £ 0,1)
as in figure 4.1.7. Show that A is a minimal genus Seifert surface. Show also that
A is not a fiber surface (cf. 5.4.4).

4.2 The Murasugi sum

The Murasugi sum of surfaces in S® is a powerful machine for the study of various
properties of Seifert surfaces. Here, we define the Murasugi sum and state some
basic properties and applications.

Definition 4.2.1 A compact oriented surface R embedded in S? is a 2n-Murasugi

sum (or a 2n-generalized plumbing) of two compact oriented surfaces R; and Ry if

we have the following:

(1) R = Ry U Ry with Ry N Ry a disk D such that

(1.1) 8D is a 2n-gon with edges a1,b1,a2,bs,...,an, b, enumerated in this order
(cf. figure 4.2.1),

(1.2) a; is contained in OR; and is a proper arc in Ry for all ¢,

(1.3) b; is contained in Ry and is a proper arc in R; for all 4.
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(2) There exist 3-balls By, Bs in S? (as shown in figure 4.2.2) such that
(21) B UB;y = 53, BN By =0B; =8By = 52,

(2.2) B, D R; (Z = 1,2),

(23) O0BiNR; =8By N Ry = D.

Fig. 4.2.2

The 2-Murasugi sum is nothing but a connected sum of links. The 4-Murasugi
sum is also called a plumbing. Considering that R, R; and Ry in Definition 4.2.1
are Seifert surfaces for links in S3, we have the following facts:

Theorem 4.2.2 If both Ry and Ry are incompressible Seifert surfaces, then R is
an incompressible Seifert surface.

Theorem 4.2.3 R is a minimal genus Seifert surface if and only if both R, and R»
are minimal genus Seifert surfaces.

We refer to [Gabai 1983] for these proofs. In general, the converse of Theorem
4.2.2 is not true (see figure 4.2.3).
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Fig. 4.2.4

The proof of Theorem 4.2.4 will be given in Section 4.3. In the remainder of
this section, we suggest some applications of the above theorems as exercises. Let
C(2b1,2by,...,2byy,) be a 2-bridge knot in Conway’s normal form (cf. 2.1), where
bi(: = 1,2,...,2n) are non-zero integers. This knot bounds a canonical Seifert
surface obtained by plumbing together 2n unknotted annuli with b1, bs, ..., by
full twists, as shown in figure 4.2.4 .
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Exercise 4.2.5 Show that S is a minimal genus Seifert surface. [Hint: See Exercise
4.1.13 and Theorem 4.2.3.]

Exercise 4.2.6 Show that C(2b1,2ba, ..., 2bs,) is a fibered knot if and only if |b;| =
1 for each i. [Hint: See Theorem 4.1.10, Exercises 4.1.12, 4.1.13 and Theorem 4.2.4.]

Exercise 4.2.7 Show that the Whitehead link is a fibered link and that the Seifert
surface shown in figure 4.2.5 is a fiber surface.

Exercise 4.2.8 Show that the surface in Exercise 4.1.6 is a fiber surface by using
Theorem 4.2.4.

Gabai proposed the following conjecture in [Gabai 1986’]:

Conjecture (Gabai) The fiber surface of any non-trivial atoroidal (cf. Definition
3.2.7) fibered knot can be decomposed by a non-trivial Murasugi sum.

Remark This conjecture is not true for a general fibered link (see figure 4.2.6).

4.3 Sutured manifolds

In this section, we introduce the notion of a sutured manifold, which is necessary
to prove the theorems stated in Section 4.2. Let M be a (possibly closed) compact
oriented 3-manifold. Let N be @ or a compact 2-manifold in OM. A proper 2-
manifold S in M is said to be proper in (M,N) if 8§ C N. For a connected
oriented proper 2-manifold S in (M, N), we define x_(S5) by

x-(S) = max{0, —x(5)}.

If S is a disconnected oriented proper 2-manifold in (M, N), then we define x_(.5)
by
X-(8)=>_x-(5)

3=1
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where Sy, ..., S, are the connected components of S. With this notation, we define
a non-negative integer-valued function z on Ha(M, N) by

z(a) = min{x_(9) | Sis proper in (M, N)witha = [S] € Ho(M, N)}.

A proper 2-manifold S in (M, N) is called a norm-minimizing 2-manifold for
(M,N) if x-(S) = z([S]).
‘We have the following:

Lemma 4.3.1
(1) z(ka) = |k|z(a) for any k € Z and a € Ho(M, N).
(2) z(a+b) < z(a) + z(b) for any a,b € Ha(M, N).

Proof. By definition, we see that z(ka) < |k|z(a). We shall show that z(ka) >
|k|z(a). Since x(a) = x(—a), we may assume that k > 1. Let S be a proper 2-
manifold in (M, N) representing ka. For a point yo € M — S, we define a function
¢ from M — S to the cyclic additive group Z; = {0,1,...,k — 1} of order k
by (y) = Int(c,S) (mod k) where ¢ is a path in M from yo to y € M - S
which intersects S transversely. Here, we note that this definition is well-defined,
namely, the number Int(c, S) (mod k) does not depend on a choice of a path c,
since S represents ka € Ho(M,N). We can also see that ¢ is constant on any
connected component of M — S. For each (1 = 0,1,...,k — 1) let S; be the
union of components S’ of S such that ¢(M.) =i+ 1 for the component M/ of
M — S on the (+) side of S’ and p(M?’) = i for the component M’ of M — S
on the (—) side of S’. Then S is the disjoint union of S;(i = 0,1,...,k — 1). Since
Int(ka, b) = kInt(a,b) = 0 (mod k) for any b € Hy (M, cl(OM — N)), it follows that
there is a number ig € Z such that cl{@M — N) C ¢~ !(ip). Then for each i € Zy,
ka=[S] = Z;:é [S;] = k[S:] in Ho(M, N). Since Ha(M, N) is a free abelian group,
we have a = [S;], so that x_(S;} > z(a) and x-(5) = Zi:ol x-(S:) > |k|z(a).
Thus, we have conclusion (1).

In order to show (2), let S and T be norm-minimizing 2-manifolds which
represent a and b respectively and meet transversely. If there is a loop component
of S NT which bounds a disk D in S or T, say in S, then we take an innermost
disk D’ ¢ D bounded by a loop component of SNT in D C S and we do surgery
on T by a 2-handle along D’, namely, replace T with a 2-manifold cl(T — c¢(0D’ x
(-1,1])) U (D’ x {-1,1}) for a bi-collar ¢ : (D',8D") x [-1,1] —» (M, T) of D’
with ¢(z,0) =z for all x € D’ (cf. 5.1). This modification of T reduces the number
of components of SN T, but does not alter the homology class [T] € H, (M, N) or
the value of x_(T"). Continuing this process, we can assume that there is no loop
component of S NT which is the boundary of a disk in S or T Similarly, we can
also assume that there is no arc component of SN7T which is the boundary of a disk
in Sor T. Let S+ T be a 2-manifold obtained from S and T by the orientation-
preserving cut-and-paste operation as shown in figure 4.3.1. Then S +T represents
a + b and we can see that x_(S+T) = x_(S) + x~ (7). Hence, we have

z{a+b) < x_(S+T) =x_(S) + x-(T) = z(a) + z(b). O
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Let R4 denote the non-negative real numbers. Thurston showed the following
theorem in [Thurston 1986’]:

Theorem 4.3.2 Let x be a non-negative Integral valued function on Ho(M, N).
Then z extends to a continuous function z : Hy(M, N;R) — Ry which is linear
on any ray from the origin. In particular, we have z(a + b) < z(a) + z(b) for all
a,b € Hy(M,N;R).

By Theorem 4.3.2, we can see that x is a semi-norm, that is, it satisfies all the
conditions of a norm || - || except “lla|| =0 a=0".

Ezample 4.8.8. Let M be the exterior E(L) of the Whitehead link L = K; U K.
Then Ho(M,0M;R) = H'(M;R) = R2. We see that the proper surfaces P, and
P in M shown in figure 4.3.2 form a linear basis [P;],[P2] for Hy(M,0M;R),
which are dual to the meridianal basis m;y, mg of Hi(M;R) with respect to the
intersection pairing (see figure 4.3.2).

Claim P; and P, are norm-minimizing 2-manifolds for (M,dM).

Proof. We shall show it for the case of P;. If P; is not norm-minimizing, there is a
proper 2-manifold @ without closed surface components such that [Q] = [P1], any
component of 8Q is not null-homotopic in OM, and x-(Q) = 0, since x—(P) =1
and the natural homomorphism Ha(M) — Hao(M,0M) is trivial. If there is a disk
component in @, then K; spans a disk disjoint from K». This contradicts the
fact that L is a non-split link. Hence we may suppose that all the components of
Q@ are annuli. Since Int(Q,m;) = 1 and Int(Q, m2) = 0, there is a component
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Fig. 4.3.3

@' in @ which bounds a longitude of K; and a meridian of K3, so we have that
Link(K7, K3) = %1, contradicting the fact that Link(K7, K2) = 0. O

Next, we consider a surface P; + P; obtained from P; and P, by the orientation-
preserving cut-and-paste operation as shown in figure 4.3.1. Observe that P; + P,
is a torus with two open disks removed and that P, + P» is a Seifert surface of L.
Since L is a genus 1 fibered link (Exercise 4.2.7), P; + P, is norm-minimizing by
Theorem 4.1.10, that is, z([P1] + [P2]) = x—(P1 + P2) = 2. Thus, the unit sphere
Sy = {a € Hyo(M,0M;R) | z(a) = 1} on z in R? contains 3 points [P1], [P,] and
([P1] + [P2])/2. By the same argument, S; further contains —[Pi], —[P], ([PA] —
[P])/2,([P2] — [P1])/2 and —([P1] + [P2])/2. Since z is a semi-norm, we see that
the unit ball By = {a € H;(M,8M;R) | z(a) < 1} is a convex set in R2. Since it
contains the above eight points, the figure of this convex set becomes a diamond
as shown in figure 4.3.3.

Now, we define a sutured manifold. Let M be a compact oriented 3-manifold with
boundary and « a compact 2-manifold in M.

Definition 4.3.4 The manifold pair (M,~) is a sutured manifold if we have the
following conditions (1),(2) and (3):
(1) v is the union of mutually disjoint annuli and tori. We denote the union of
annuli by A(v) and the union of tori by T'().
(2) Each component of A(7y) contains an oriented core loop, called a suture. We
denote the set of sutures by s(7).
(3) R(y) = cl(8M —~) is oriented so that each component of R(~y) is homologous
to a component of s(vy) in 7.

We denote by R () the union of those components of R(-y) whose positive normal
vectors point out of M, and by R_ () the union of those components of R(7) whose
positive normal vectors point into M.

Ezample 4.3.5 (Product sutured manifold). Let S be a compact oriented surface
such that 8S # 0. Set M = S x [0,1],7 = 85 x [0,1],R+(v) = S x 1 and
R_(v) = §%0, then (M, ) is a sutured manifold, called a product sutured manifold.
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For a sutured manifold (M,~), a proper disk D in M is called a product disk if
there is an embedding

(I x ;1 x {0}, I x {1}, 01 x I) — (M; Ry (v), R (7), A(7))

under some identification D ¢ I x I for I = [0, 1]. We say that (M’,+’) is obtained
from (M,~) by a product decomposition if (M’,~') is obtained from (M,v) by
cutting along a product disk D, as shown in figure 4.3.5.

Exercise 4.3.6 Show that (M,) is a product sutured manifold if and only if
(M’,~") is a product sutured manifold.

Ezample 4.3.7 (Complementary sutured manifold). Let S be a Seifert surface for
a link L in S3. For the exterior E(= E(L)) of L, set Sg = SN E. Then a regular
neighborhood pair (N,§) = (N(Sg, E), N(0Sg,0F)) admits the structure of a
product sutured manifold naturally. We say that this (N, §) is a sutured manifold
obtained from S. Let N¢ = cl(E(L)— N) and §° = cl(0E(L)—6). We put a sutured
manifold structure on (N¢,§¢) so that R4 (§°) = R+(6). We say that this sutured
manifold (N¢,°) is the complementary sutured manifold for S (see figure 4.3.6).

Exercise 4.3.8 Let S be a surface in S3. Show that the following two conditions
are equivalent:

(1) S is a fiber surface.
(2) The complementary sutured manifold for S is a product sutured manifold.
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Fig. 4.3.6

Definition 4.3.9 A sutured manifold (M, ) is a taut sutured manifold if M is an
irreducible 3-manifold and R(y) is a norm minimizing surface for (M, 7).

The following theorem is important to our argument:

Theorem 4.3.10 (cf. Exercise 4.3.8) Let S be a Seifert surface for a non-split link
in S3. Then the following two conditions are equivalent:

(1) S is a minimal genus Seifert surface.
(2) The complementary sutured manifold for S is a taut sutured manifold.

The proof of Theorem 4.3.10 is much more difficult than the proof of Exercise
4.3.8. We omit it here. See Gabai’s paper [Gabai 1983’] or [Scharlemann 1989] for
it. For the remainder of this section, we shall prove Theorem 4.2.4.

Proof of Theorem 4.2.4. At first, we prepare some notation and terminology. We
take R, R1, Rz, D,a1,...,an,b1,...,bs, S? as in Definition 4.2.1. Set F = cl(S? —
D) and T = (R— D)UF. We can see that T is a Seifert surface for a link L = OR.
We may suppose that R is disjoint from 7" in E = E(L) by a small ambient isotopy
(see figure 4.3.7). Let (M, ) be the complementary sutured manifold for R, (N, 6)
be the complementary sutured manifold for T', and (N;, é;) be the complementary
sutured manifold for R;(¢ = 1,2). Note that RUT decomposes E into two sutured
manifolds. Let (Hi, €1) be the sutured manifold whose “thick part” is in the upper
side and (Hs, €2) the sutured manifold whose “thick part” is in the lower side. Here,
we can take product disks aq,...,a, in (Hy,€;) corresponding to aj,...,a,. By
figure 4.3.8, we can decompose (Hj,€;) into the sutured manifold homeomorphic
to (N1,61) and the product sutured manifold homeomorphic to (cl(R — Ry) X
I,8(cl(R—Ry)) x I) by the product decomposition along a1 U- - -Ua,. Suppose that
both R; and R; are fiber surfaces. Then we have that (NVy, 81) is a product sutured
manifold by Exercises 4.3.6 and 4.3.8. Hence, (Hi,¢€1) is also a product sutured
manifold. By the same argument, we can see that (Hs,€s) is a product sutured
manifold. Then (M,~) = (Hy Ur Ha, €1 Ur €9) is a product sutured manifold. By
Exercise 4.3.8 again, R is a fiber surface.

Conversely, suppose that R is a fiber surface. Then we can see that (Hi,€1)
and (Ha,€2) are product sutured manifolds. Following the above argument con-
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versely, we have also that (N1, 61) and (Ng, 82) are product sutured manifolds. By
Exercise 4.3.8, both R; and Ry are fiber surfaces. d

Supplementary notes for Chapter 4

The Murasugi sum of Seifert surfaces was introduced originally in [Murasugi 1958,
1958’,1958”] in order to estimate the degree of the Alexander polynomial of alter-
nating links. After that, J. Stallings showed in [Stallings 1978] that a Seifert surface
obtained by a Murasugi sum of fiber surfaces is a fiber surface. D. Gabai gave the
proofs of Theorems 4.2.2 and 4.2.3 in [Gabai 1983] and extended the notion of the
Murasugi sum to one in a general 3-manifold to obtain a result similar to Theorem
4.2.4 in [Gabai 1986’]. It is also shown in [Kobayashi 1989] that the Murasugi sum
is an effective means to decide whether minimal genus Seifert surfaces of a link are
unique or not. By extending this method, O. Kakimizu classified the incompress-
ible Seifert surfaces for prime knots of < 10 crossings [Kakimizu *] and M. Sakuma
classified the minimal genus Seifert surfaces for special arborescent links [Sakuma
1994]. D. Gabai investigates the properties of Seifert surfaces by looking directly
at the complementary sutured manifolds in [Gabai 1986”,1987,1987°,1987”] and
the theory of sutured manifolds is reported synthetically in [Scharlemann 1989]. A



60 CHAPTER 4 SEIFERT SURFACES I: A TOPOLOGICAL APPROACH

knot K has property P if for any label f # oo on K, the fundamental group of the
Dehn surgery manifold x(S®; (K, f)) is not trivial (cf. Appendix D for the notion
of Dehn surgery). A knot K has property @ if there is a closed surface F' in 53
with F D K and F — K connected such that H; (V;, F — K) # 0 for the manifolds
Vi(i = 1,2) obtained from S3 by splitting it along F' (cf. [Simon 1970]). A knot
K has property R if x(S%; (K,0)) is not homeomorphic to S* x S2. The sutured
manifold theory is discussed in connection with these properties of a knot. The
property P conjecture is that every non-trivial knot has property P. It is not yet
settled, but important progress has been made in (Gordon-Luecke 1989]. Namely,
it is proved that x(S3; (K, f)) is not homeomorphic to S® for any non-trivial knot
K and any label f # oo. The following theorem is a related general result, given
in [Culler-Gordon-Luecke-Shalen 1987:

Cyclic surgery theorem Let M be a compact connected Haken 3-manifold such
that OM is a torus. Assume that (M U, D?) and w1 (M Uy D?) are cyclic groups
for two embeddings ¢,¢’ : S — M. Then the intersection number of ¢(S*) and
#'(S') in OM is 0 or 1.

For example, we see from this theorem and [Bleiler-Scharlemann 1988] that any
non-trivial knots with non-trivial symmetry group have property P. We see also
that 71 (x(S3%; (K, f))) is not trivial for any non-trivial knot K and any label f #
+1, co. The property R conjecture is that every non-trivial knot has property R,
which has been settled in [Gabai 1987’] where it is proved that x(S3(K,0)) is a
Haken manifold for any non-trivial knot K.

The notion of the genus of a knot is defined in 4.1.5. We remark here that
there are two other similar notions, called the canonical genus and the free genus
of a knot. A canonical Seifert surface for a knot K is a Seifert surface F. for K
obtained by applying Seifert’s algorithm to a diagram D for K. Then the canonical
genus of K, denoted by g.(K), is the minimal genus of all such canonical Seifert
surfaces F.. A free Seifert surface for a knot K is a Seifert surface Fy for K such
that the fundamental group m1(S® — Fy) is a free group, and the free genus of
K, denoted by g;(K), is the minimal genus of all such free Seifert surfaces Fy.
Since any canonical Seifert surface is a free Seifert surface, we have the inequality
9c(K) > gf(K) > g(K) for all knots K. For example, when K is an alternating
knot (cf. 8.4.11), it is known that this inequality is replaced by the equality (cf.
[Murasugi 1960]). On the other hand, when K is an untwisted or twisted double
of a trefoil knot, we have g(K) = 1 and gf(K) = 2 (except the case of +6-full
twists with g7 (K) = 1) by [Kobayashi,M.-Kobayashi,T. 1996] and g.(K) = 3 by
[Kawauchi 1994].



Chapter 5
Seifert surfaces II: an algebraic approach

In this chapter, we discuss the Seifert matrix, which is derived from a connected
Seifert surface of a link, and related link invariants such as the signature, the
nullity, the Arf invariant and the one-variable Alexander polynomial.

5.1 The Seifert matrix

We consider a connected Seifert surface F for a link K in S3. An embedding
c: Fx[-1,1] — 8% is called a bi-collar of F in §3 if ¢(F x 0) = F and ¢(F x 1)
is in the positive normal direction of F' (see figure 5.1.1).

positive normal direction

<«— c(Fx1)=F*

F
mC(FX[L]]) < F

< (Fx(-1)=F

Fig. 5.1.1

For any other bi-collar ¢/ : F x [-1,1] — S% of F, it is shown that there is
an orientation-preserving homeomorphism & : §2 — 83 such that h |p= id and
c' = he.

Exercise 5.1.1 Show this by considering a general technique of PL topology.

For a bi-collar ¢ : F x [-1,1] — 83, we let F* = ¢(F x 1) and F~ = ¢(F x
(—1)). We orient F* so that F'* and F represent the same generator of Ho(c(F x
[—1,1]),¢((OF) x [-1,1]) & Z. For an element x = {c;} of H1(F) with ¢, a cycle,
let 2% = {cF} be the corresponding element of H;(F*). Using that F* NF~ = 0,
we can define the linking number Link(c{,c; ) € Z in S of a 1-cycle c¢f in F* and
a l-cycle ¢; in F'~ (which is a generalization of the definition of the linking number
in 1.1). In other words, Link(cj, ;) is the intersection number Int(d{,c;) of any
2-chain df in S3 and c¢; such that 8d{ = ¢, and each 2-simplex A? appearing
in df and each 1-simplex A! appearing in ¢, either do not meet, or meet at one
point in the interior of each simplex.

Comments. According to whether A2 and A! do not meet, meet in a positive
orientation, or meet in a negative orientation, we take (A2, Al) to be 0,1 or —1,

61
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respectively. Then Int(d],c; ) is the sum of €(A?, Al) on all of such A% and A!
appearing in di and cy .

One can show that Link(c;,c;) depends only on the homology classes [c]] €
Hi(F*) and [c;] € Hi(F7).

Definition 5.1.2 A Seifert form on the link L (associated with a connected Seifert
surface F') is a map
¢Z Hl(F) X Hl(F) —Z
defined by ¢(x,y) = Link(c},c; ).
Lemma 5.1.3
(1) p(z1 + 22,9) = d(z1,y) + $(22,7), Bz, 1 + 42) = d(z, 1) + B(, y2).-

(2) ¢(z,y) — &(y,x) = I(z,y), where I(x,y) denotes the intersection number of
x and y on the surface F.

Proof. (1) is clear from the definition. We show (2).

é(x,y) — #(y,z) = Link(c}, c; ) — Link(c], ¢;)
= Link(c}, ¢,) — Link(c; , ¢,)
= Link{c} — ¢, ¢y)
= Int(c(cz % [-1,1]),¢y)
= I(z,y),

where ¢(c; x [—1,1]) denotes a 2-cycle constructed from a suitable triangulation
of F x[-1,1]. O

H,(F) is a free abelian group of finite rank, say n. A square matrix V = (v;;) of
size n with vy; = ¢(x;, x;) for a basis z1,Z2,...,2Zn of Hi(F) is called a Seifert
matriz of the link L. This matrix of course depends on choice of F' and a basis
Z1,Z2,..., Ty of Hy(F). Thus, it is not a link invariant, but as we shall show in
the next section, the S-equivalence class of it is an invariant of the link L. In this
section, we give a characterization of a Seifert matrix. A unimodular matrix is
an integral square matrix whose determinant is 1. Two integral square matrices
V and W are unimodular-congruent if there is a unimodular matrix P such that
W = PVP.

Theorem 5.1.4 An integral square matrix V of size n is a Seifert matrix of an
r-component link L if and only if m = (n — r + 1)/2 is a non-negative integer and
V — V' is unimodular-congruent to the block sum T of m copies of ( _01 (1)> and
the zero matrix O™~ of size r — 1.

Exercise 5.1.5 Show that V — V' and T are unimodular-congruent if and only if

there are unimodular matrices P;,i = 1,2, such that Pi{(V — V') P, is the block
sum of the unit matrix E?™ and O"~!. (Hint: Use that V — V" is skew-symmetric.)
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Corollary 5.1.6 An integral square matrix V is a Seifert matrix of a knot if and
only if det(V — V') = 1.

Proof of Theorem 5.1.4. Let V be a Seifert matrix of L. By Lemma 5.1.3, V — V'
is an intersection matrix of a connected Seifert surface F of L. With a suitable
basis of H{(F'), the intersection form I : H{(F) x H,(F) — Z represents the
matrix T, so that V — V'’ and T are unimodular-congruent. To prove sufficiency,
we assume that there is a unimodular matrix P with P(V —V’)P’ = T'. Clearly, any
matrix unimodular-congruent to a Seifert matrix is also a Seifert matrix by a base
change. Hence it is sufficient to prove that V is a Seifert matrix when we assume
that P = E™. Now we consider F' as a genus m closed surface with r open disks
removed. F is constructed from a disk D by attaching n bands B;(1 = 1,2,...,n)
to @D in order that

af—v a;_v ap,0y,. .. 7a’;’m—17 a;_m’ a2_m—17a2_m7a;m+17a2_m+17 T a:’ Uy s
where a;r and a; are the end arcs of the band B;. Then D U B; is an annulus
for each i. Denoting the homology class in H,(F) represented by a suitably ori-
ented core circle of the annulus by z;, we see that xy,xs,...,x, form a basis of
H,(F) and the intersection matrix associated with it is 7. We shall embed F into
S$3 so that the Seifert matrix associated with the basis z1,22,...,2, is V. Let
F,=DUB,U---UB,. Let V = (v;;). First, embed D standardly. Embed B,
so that Link(z],z]) = vi1 on the Seifert surface Fy. Next, embed By so that
Link(z3,2]) = wv21, Link(z3,25) = w2 on the Seifert surface F». Continuing
this process, we obtain an embedding of F,, = F into S® whose Seifert matrix on
T1,L2,-..,ZLn 18 V. O

Exercise 5.1.7 Construct a link L with a Seifert matrix
1 2 -1

1 1 -1
-1 -1 1

5.2 S-equivalence

For integral square matrices V and W, we say that W is a row enlargement of V
or V is a row reduction of W if

8 @

0
W=1{1
0

c\
<8 o

where z is an integer and u is a row vector and v’ is a column vector. If W' is
a row enlargement of V') then we say that W is a column enlargement of V or
V is a column reduction of W. We note that if a matrix W is obtained from W
by replacing the integral row vector (zu) with any other integral row vector (Z4),
then W is unimodular-congruent to W.
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Definition 5.2.1 S-equivalence is an equivalence relation which is generated by
the following relations: unimodular-congruence, row-enlargement, row-reduction,
column-enlargement and column-reduction.

Exercise 5.2.2 Show that a matrix that is S-equivalent to a Seifert matrix is a
Seifert matrix.

The following theorem is the main theorem of this section:
Theorem 5.2.3 Any two Seifert matrices of a link L are S-equivalent.

We consider a (possibly disconnected) oriented 2-manifold F and a 3-ball B in
R3 such that F N B3 = (intF) N B3 is a disjoint union of two disks D1, Dy and
the 2-manifold

F' = cl(F — (D1 UD3))Ucl(8B® — (D, U Dy))

is orientable. Let F” have the orientation inherited from F — (D; U D). Then we
say that F' is a I-handle enlargement of F' or F is a 1-handle reduction of F’,
and this 3-ball B3 is a I-handle on F with attaching disks D;, D,. Before proving
Theorem 5.2.3, we show the following lemma:

Lemma 5.2.4 Any two connected Seifert surfaces Fi, Fy of a link L in R3 are am-
bient isotopic after modifying them by a finite sequence of 1-handle enlargements.

Proof. Let K;(i =1,2,...,7) be the components of L. By an isotopic deformation
of F, in R2 keeping L fixed, we may assume that intF} and intF, meet transversely
with intF; NintF5 being a closed 1-manifold (that is, a disjoint union of simple
loops).

Exercise 5.2.5 Show this last statement.
[Hint: Use that the linking number Link(Kj;, K) for a loop K] C intF; parallel to
K; equals —Link(K;, L — K;).]

Let m be the genus of F;. We take mutually disjoint bands B;(: = 1,2,...,2m +
r — 1) in F} so that (1) the end arcs of the band B; belong to K; when i < 2m
and belong to K; and K;_3mt+1 when 2m +1<i<2m+7r -1, and (2) D; =
cl(Fy — Uf;"l“Lr_lBi) is a disk. Let b; be a proper arc in the band B; joining the end
arcs and meeting intF;, transversely. For ¢ < 2m, 9b; splits K into two arcs. Let b]
be one of them. Let £ be the loop in F;' corresponding to the loop ¢; = b;Ub; C F}.
Since Fy U —F; is a 2-cycle in S3 and H(S3) = 0, we have int(¢;, F; U —F) = 0.
However, El‘-" N F; = (0. This means that b; meets intF> with intersection number 0.
When 2m+1 < i < 2m+r—1, we can assume that b; meets int F; with intersection
number 0 by considering suitable ambient isotopic deformations of F} keeping L
fixed as they are shown in figure 5.2.1. Taking the 1-handle enlargements of F»
along b;(i = 1,2,...,2m + r — 1), we can conclude that the resulting surface F>
meets int F} within the disk D;. Let £y be an innermost loop in D; with respect to
the simple loops in (intF1) N F3 and let Dg C Dy be the disk bounded by ¢5. We
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take a bi-collar ¢(Dgy x [—1,1]) of Dy with ¢{Dg x [—1,1]) N Fy = ¢4y x [—1,1]).
The 2-manifold Fy = (Fy —c(fo x (—1,1))Uc(Dg x {—1,1}) is a 1-handle reduction
of Fy. In case Fj has a closed surface component Fp, then Fy bounds a compact
connected orientable 3-manifold M in S® such that M N Fy; = 0, because F; is
connected. Using the manifold M, we can eliminate the loop ¢y by a finite sequence
of 1-handle enlargements and 1-handle reductions on F; (see Exercise 5.2.6 later).
By continuing this process, we finally obtain a 2-manifold F3 from F, such that
FyNnintFy; = 0, and Fy does not have a closed surface component (though it may
be disconnected). Since the Seifert surface Fj is connected, the closed 2-manifold
Fy U —Fy is a closed connected surface. Using the connected 3-manifold bounded
by it in S2, we obtain F; from Fy¥ by a finite sequence of 1-handle enlargements
and 1-handle reductions on Fy and ambient isotopies of S (cf. Exercise 5.2.6).
Then a handle slide argument shows that we can obtain ambient isotopic surfaces
after modifying them by a finite sequence of 1-handle enlargements on F; and F5.

g
i A R A
—_—
or
oo\

K(iz2m+1) £ £

Fig. 5.2.1

Exercise 5.2.6 Let M be a compact connected orientable 3-manifold. Let A and
B be compact (possibly disconnected) 2-manifolds such that AU B = M and
0A = AN B = OB. Then show that a surface parallel (cf. C.5) to B is obtained by
a finite sequence of 1-handle enlargements and 1-handle reductions on A.

Proof of Theorem 5.2.8. Any Seifert matrices of ambient isotopic connected Seifert
surfaces are unimodular-congruent. Let F’ be a 1-handle enlargement of a con-
nected Seifert surface F. We have a Seifert matrix of F/ which is a row or column
enlargement of a Seifert matrix of F'. Hence by Lemma 5.2.4, Theorem 5.2.3 is
proved. O

Exercise 5.2.7 Let A be a Seifert matrix of a connected Seifert surface F of a link
L. Show that for any row or column enlargement AT of A, there is a 1-handle
enlargement F* of F with Seifert matrix A™.

5.3 Number-theoretic invariants

We consider a symmetric bilinear form b : G x G — Z on a free abelian group
G of finite rank. This form is said to be even if b(z,z) is an even integer for all
z € G. Otherwise, it is said to be odd. Two such forms (G,b), (G',b’) are said to be
isomorphic if there is an isomorphism f : G & G’ such that b(z,y) = b'(f(z), f(y))
for all z,y € G. The form (G,b) is said to be non-singular (or non-degenerate,
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respectively) if the homomorphism G — Hom(G,Z) sending z to b(z, ) is an
isomorphism (or a monomorphism, respectively).

Exercise 5.3.1 Show that there is exactly one non-singular symmetric even bilinear
form b: Gx G — Z with G =2 Z&® Z. (We call this form the hyperbolic plane form.)

Two symmetric bilinear forms (G, b), (G’,b') are said to be stably isomorphic if
we obtain isomorphic forms after adding some copies of the hyperbolic plane form
to them as orthogonal summands. A symmetric bilinear form associated with an
integral square matrix V is a symmetric bilinear form b : G x G — Z representing
the matrix V + V' with respect to a suitable basis of G. This is clearly an even
form. The following theorem is obtained directly from Theorem 5.2.3:

Theorem 5.3.2 The stable isomorphism class of a symmetric bilinear form b :
G x G — 1 associated with V is an invariant of the link type of L.

In particular, the signature and the nullity of b are invariants of the link type
of L, called the signature and the nullity of L and denoted by o(L) and n(L),
respectively.

Exercise 5.3.3 For an r-component link L, show that

n(L)<r—1,o(L}+n(L)=r—1(mod2).

Exercise 5.3.4

(1) For any Seifert matrices V;,7 = 1,2, of two links L;,i = 1,2, show that
the block sum V) @ V5 is a Seifert matrix of any connected sum LqfLy. In
particular, show that o(L18L2) = 0(L1) + o(Ls).

(2) For any Seifert matrix V of a link L, show that V/, —V' and —V are Seifert
matrices of the inverse —L, the mirror image L* and the inverted mirror
image —L*, respectively. In particular, show that o(+L*) = —o(L) for any
link L, so that ¢(L) = 0 for any (4 )amphicheiral or (—)amphicheiral link L.

To derive another invariant of a symmetric even bilinear form b, we consider the
non-degenerate form b: G x G — Z with G = G/{z € G | b(z,G) = 0} naturally
induced from b. We extend this form b to the non-degenerate (= non-singular)
Q-form bg : Gq x Gq — Q. Let G+ = {u € Gq | bg(u,G) € Z} and T = G+/G.
Then we see that T is a finite abelian group and Z)Q induces a non-degenerate(=
non-singular) symmetric bilinear form

0:TxT—Q/Z,

which we call a non-singular linking form. Using the fact that b is an even form,
we have a well-defined function

qg:T—Q/Z
by letting q(v) = bg(u,u)/2 (mod 1) for v = {u} € T(u € Gq).
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In general, a map ¢’ : 7" — Q/Z with T’ a finite abelian group is called
a non-singular quadratic function if the map ¢ : T x T' — Q/Z defined by
O, v') = ¢(v+v) — ¢ (v) — ¢ ) for all v,v' € T' is a non-singular linking
form. The non-singular quadratic function ¢’ is also called the quadratic function
inducing the non-singular linking form £'.

Since we have the identity

(v +v") = q(v) — q(v') = £(v, V')

for all v,v' € T, the map g : T — Q/Z is a non-singular quadratic function.
Two non-singular linking forms £ : T x T' — Q/Z and ¢ : T" x T' — Q/Z are
isomorphic if there is an isomorphism f : T — T’ with b(v,v") = b'(f(v), f'(v"))
for all v,v’ € T. Similarly, two non-singular quadratic functions q : T — Q/Z
and ¢’ : T — Q/Z are isomorphic if there is an isomorphism f : T = T’ with
qv) = ¢ (f(v)) for all v,v’ € T.

The following theorem is also obtained directly from Theorem 5.2.3:

Theorem 5.3.5 The non-singular linking form ¢ : T x T — Q/Z and the non-
singular quadratic function q : T — Q/Z which are induced from the even sym-
metric bilinear form b: G x G — Z associated with a Seifert matrix V of a link L
are invariants of the link type of L up to isomorphisms.

By this theorem, we call ¢ and q the linking form of L and the quadratic function
of L, respectively. Next, we consider a non-singular linking form £ : Ty x Ty — Q/Z
such that T3 is a direct sum of copies of Z; and £(v,v) = 0 for all v € T, and a
quadratic function ¢ : T — Q/Z inducing the non-singular linking form £. Since
LTy x Tp) = q(T>) = {0,1/2} C Q/Z, we can regard £ and q as £ : Tp x Ty — Zq
and ¢ : Ty — Zj, respectively. Since £(v,v) = 0 for all v € Th, there is a basis
T, Y1) - - &, Ym Of T such that €(z;, x;) = €(y;,y;) = 0 and £(z;,y;) = 6, ; for
all 4, j. This basis is called a symplectic basis (with respect to ¢). We consider the

Gauss sum
GS(q) = >_ (-1

€Ty

This value is of course an invariant of the isomorphism class of the quadratic
function q : Ty — Zo. Let T% be the direct summand of T, generated by z; and y;.
Since ¢(z; + y;) — g(z;) — q(y;) = 1, we see that

Z (=1)2@) = (—1)a@dalvi)g

x€TS

so that

m

as(g) = [[(32 (~1)%@) = (~1)2m,

=1 zeT}

where a = 3", q(;)q(y;). This means that a € Z, is an invariant of the isomor-
phism of g. This value a is called the Arf invariant of ¢ and denoted by Arf(q).
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Exercise 5.3.6 Show that there is a symplectic basis z1,y1,...,Zm,ym of To as
follows: In case Arf(q) = 0, then g(z; + y;) = 1,q(z;) = ¢(y;) = 0 for all i. In case
Arf(q) = 1, then q(z; +y;) = 1 for all 4, g(z1) = g(y1) = 1, and g(z:) = q(y:) =0
for all ¢ with ¢ > 2.

A link L with components K;(i = 1,2,...,r) is said to be proper if Link(K;, L —
K;) = 0(mod 2) for all ¢. In particular, any knot is proper. Let ¢o : H1(F; Z3) X
H,(F;Z5) — Zy be the Zs-reduction of the Seifert form ¢ : H;(F) x H (F) — Z
on a connected Seifert surface F of a link L. We define a map q : H1(F;Z2) — Z»
by g(z) = ¢2(z, z). By Lemma 5.1.3, we have the identity

q(z+y) —q(z) — q(y) = L2(z,y)

for all z,y € Hy,(F;Z2), where I, is the Zo-intersection form on H;(F;Zy). Since
F is orientable, we see that Io(z,z) = 0 for all x € Hy(F;Zy). By I : H,(F;Z3) x
H,(F;Zy) — Zy, we denote the non-singular linking form induced from I5.

Proposition 5.3.7 The map q : H\(F;2Z2) — Z2 defines a quadratic function § :
Hy(F;25) — Zy inducing a non-singular linking form Iz : Hy(F;Z3) x Hi(F :
Z5) — Z if and only if the link L is proper.

Proof. Note that ¢ induces a non-singular quadratic function ¢ if and only if
q(z;) = 0 for the element z; € H{(F';Zy) representing each component K; of
OF = L. Since we have ¢(z;) = Link(K};, L — K;) (mod 2), we have the conclusion.

O

By this proposition, Arf(§) is defined for a connected Seifert surface F of a proper
link L. This value depends only on the S-equivalence class of a Seifert matrix on F.

Exercise 5.3.8 Confirm this assertion.

Accordingly, by Theorem 5.2.3, Arf(¢) is an invariant of the type of the proper
link L, called the Arf invariant of L and denoted by Arf(L). When L is a knot,
this invariant is independent of the orientation of L, but in general it depends on
the orientation of L (see figure 5.3.1).



5.4 THE REDUCED LINK MODULE 69

5.4 The reduced link module

By A, we denote the group ring Z(t) of the infinite cyclic group (t) with a generator
t, which is seen to be a Noetherian ring. For a Seifert matrix V of size n of a link
L, let Yy (t) : A — A™ be the A-homomorphism representing the matrix tV/ — V
with respect to the standard basis of A™. Then by Theorem 5.2.3, we see that
the A-module A™/Imyy (t) is an invariant of the type of L up to A-isomorphisms,
which is called the reduced link module of the link L. Let E = E(L,S%). Let
v : 7 = m(E,z) — (t) be the epimorphism sending each meridian of L to t.
The homology group Hi(Ew) of the infinite cyclic covering space Eo, over FE
corresponding to the subgroup Kery of 71 (E, ) naturally forms a A-module.

Proposition 5.4.1 The A-module H1(E ) is A-isomorphic to the reduced link mod-
ule of L.

Proof. For a connected Seifert surface F' of L, let E’ be the manifold obtained

from E by splitting it along Fg = F N E(X2 F). Let F* and F~ be the two

copies of Fg occurring in F’. Then E. is constructed from the infinite copies

(E},F;",F7)(i = 0,£1,42,...) of (E', F*,F~) as follows: In the topological sum
7 o El, we identify F;” with F;'; for all i (see figure 5.4.1).

i=—00

£

< F¢

¢ ! !

F.=F7 Fr=Fia Fra=Fi,
Fig. 5.4.1

Further, the covering transformation ¢ : Eo, — Fo can be taken to be the trans-
lation of the copy E; into the copy E; ; for all i. By the Mayer-Vietoris exact
sequence, we obtain an exact sequence

L
Hy(Fg) ®z A 227 Hi(E') @z A — Hyi(Ess) — 0

of A-modules, where j* : Fg =2 Ft C E' and j~ : Fg & F~ C E’ denote the
natural injections. Let V be a Seifert matrix associated with a basis e1,ea,..., e,
of Hi(Fg). Then H1(E') is a free abelian group and we can have a basis €}(i =
1,2,...,n) for it such that Link(c}, ¢;) = 6;; in S? for a cycle ¢} in E' with e, = {c}}
and a cycle ¢; in Fg with e; = {¢;}. Then tj; — j, represents the matrix tV' —V
with respect to these bases. This means that H;(FEs) is a reduced link module.

O

For a Seifert matrix V of a link L, we take

Ap(t) = A(L;t) = det(tV' - V).
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By Theorem 5.2.3, A (t) is an invariant of the type of L up to multiplication
by t™(m = 0,41,£2,...). This Laurent polynomial is called the one-variable
Alexander polynomial of L.

Remark Because of a convenient relation to covering space theory, Ay () is usually
considered to be an element of A up to multiplication by the units £¢™.

Exercise 5.4.2 For an r-component link L, show that (t —1)"~! divides A (), the
quotient Ap(t) = Ar(t)/(t —1)"! is a Laurent polynomial of even degree, and
the multiplicity of (¢ — 1) in Af(¢t) is even (this Laurent polynomial will be called

the Hosokawa polynomial after Theorem 7.3.16). Also, show that when r = 1,
Ar(l)=1.

Exercise 5.4.3 If a link L bounds a connegted Seifert surface of genus g, then show
that the Laurent polynomial degree degAp (t) has degAr(t) < 2g.

Exercise 5.4.4 If the reduced link module of a link L is finitely generated as an
abelian group, then show that any Seifert surface of L is connected. Also, show
that any fibered link satisfies this assumption.

5.5 The homology of a branched cyclic covering manifold

For the exterior E of a link L, let v : m1(E) — (t) be the epimorphism sending
each meridian of L to ¢ and 7, : m(E) — (¢t | t" = 1) the composition of v and
the natural quotient map (t) — (¢t | t" = 1). Let p, : E, — E be the covering
corresponding to the kernel of ~,,. We consider a branched covering p,, : M,, — 93
with branch set a link L which is a completion of the covering p, : E, — E. We
note that the infinite cyclic covering p : Eo, — E (corresponding to the kernel of
~) is the composite of the covering p™ : Ex, — Foo/{(t") = E, and the covering
o : E, — E. We denote by ¢ : Eo, — M, the composition of p" : F, — E,
and the inclusion j, : E, C M,. The cyclic group (¢t | t* = 1) acts on M, so
that the map g¢" is t-invariant, i.e., ¢"t = tq". Letting p,(t) = (1 —t")/(1 - ¢t) =
14+t4 -+, we have the following:

Theorem 5.5.1 The map q" : Eo, — M,, induces a A-epimorphism
@ : Hi(Eoo) — Hi(My)
whose kernel is p, (t)H1(Ew ). Accordingly, q% induces a A-isomorphism
H1(Eo)/pn(t)H1(Eo) = H1(My).
We denote the minimal number of A-generators of Hi(F) by e(L) and the min-

imal number of abelian generators of Hy(E,) by e,(L). The following is obtained
from Theorem 5.5.1:

Corollary 5.5.2 e(L) > e (L)/(n — 1).
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Exercise 5.5.3 Derive this corollary from Theorem 5.5.1.

Proof of Theorem 5.5.1. We consider simplicial triangulations of M,, and S* so
that p,, and ¢ are simplicial maps between them. Let ¢ be a 1-cycle in M,, with this
triangulation. Then py4(c) in S is also a 1-cycle and we have a 2-chain ¢ in S® with
Oc' = Pny(c) since H1(S%) = 0. Let ¢, be the preimage of ¢’ under the chain map
Py : C2(My,) — Ca(S3). Then we have 8¢}, = p,(t)c. This means that p,(t) = 0
in H1(M,) = 0. Hence p,,(t)H1(Ex) C Kerq?, for ¢7 is a A-homomorphism. By a
general position argument, we see that for any element z in H;(M,), there is an
element =’ in Hy (E,) with jn.(2') = z. Let v, : H1(E) — (t) be the epimorphism
induced from . Let 47 : Hi(E,) — (t") be the epimorphism obtained from the
composition v.pna : H1(Ey) — (t) by restricting the co-domain to its image which
is the subgroup (t™) C (t). Let K;(i = 1,2,...,7) be the components of L. Let
mgn) be the lift by p, of a meridian m; C E of K; in S3. If ¥7(z') = ¢, then
the element 2" = 2’ — a{mgn)} € Hi(E,) has ju.(z”) = z and 42 (z”) = 1. Note
that the covering p" : E,, — F, is associated with the kernel of the composite
epimorphism 7" : 1 (E,) — (¢*) of the Hurewicz epimorphism 71 (E,) — Hi(E,,)
and 7. For a simple loop ¢’ in E, representing z”, the restriction p™ |(yn)-1(c):
(p™)~1(c") — ¢’ is a trivial covering. Let ¢ be any component of (p™)~1(c”).
Then q?{cy} = jnx{c’} = jns(z") = z. Hence ¢ is surjective. Next, assume
that ¢7(y) = 0 for an element y € Hi(Fy). Then pP(y) = >.._; a;{m;} and
>, a; = 0. For the epimorphism v, : H1(FE) — (t) induced from ~, the element
z=3"_1a;{m;} € Hi(E,) has 7.(z) = 1. Hence there is an element z € Hy(Ex)
such that p,.p?(Z) = p«(2) = 2. Letting ¢’ = y — pn(t)Z, we have ¢?(y’') = 0 and
PnsP?(y') = 0. This means that p?(y’) = 0. We note the following exact sequence

o Hy(Bn) 25 Hy(Boo) Y5 Hy(Boo) 7 Hy(Ew) 25 Ho(Eoo) — -+

which is induced from this short exact sequence on chain complexes:

0 — Cy(Foo) —=5 Cy(Eoo) 2 Cy(En) — 0.
Then we see that there is an element y” € Hq(Fo) with v/ = (" — 1)y”, so that
y=pn(t)((t = 1)y" + 2) € pa(t)H1(Eco) and Kerg = pn(t) H1(Eoo)- 0

Corollary 5.5.4 The first Betti number 31(Mz) of My is equal to n(L).

Proof. Since p2(t) = 1+, we have Hy (M2) & H1(Ex)/(1+t)Hi(Ex). By Propo-
sition 5.4.1, Hy (M) is isomorphic to the cokernel Z™ /Imyy (—1) of the homomor-
phism 9y (—1) : Z" — Z"™ representing the matrix —(V + V') for a Seifert matrix
V of L. Hence B1(Mz) = n(L). O

Exercise 5.5.5 When H;(M,) is a finite abelian group, show that the order of
H;(M,) is given by the absolute value | [[;_; Az (w*)| where Ar(t) is the Alexan-
der polynomial of L and w is an n-th primitive root of unity (cf. Lemma 7.2.8).
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By Proposition 5.4.1, H1(E) has a square A-presentation matrix. The minimal
size of such matrices is denoted by m(L) and is called Nakanishi’s indez (by con-
vention, m(L) = 0 when H;(Es) = 0). Clearly, m(L) > e(L), but actually we
have the following (cf. [Kawauchi 1987]):

Theorem 5.5.6 m(L) = e(L).

Supplementary notes for Chapter 5

The Seifert matrix was introduced by [Seifert 1934] in the case of a knot. The
notion of S-equivalence was introduced by [Trotter 1962] and [Murasugi 1965] (see
[Trotter 1973]). The proof of Theorem 5.2.3 is similar to that of [Rice 1971] in the
case of a knot and included in [Kawauchi *] where an analogous result is established
in general dimension. We note that in [Murasugi 1965] n(L) + 1 (instead of n(L))
is called the nullity of L. The stable isomorphism class of the symmetric bilinear
even form b : G x G — Z appearing in Theorem 5.3.2 is known to be completely
determined by the signature, the nullity and the isomorphism classes of the linking
form £: T x T — Q/Z and the quadratic form ¢ : T — Q/Z which are induced
from b (see [Wall 1972], [Hirzebruch-Neumann-Koh 1971]). Further, it is shown in
[Wall 1972] that the isomorphism class pair of the linking form £ and the quadratic
form ¢ corresponds bijectively to the isomorphism class of a certain linking form
& T* x T* — Q/Z. Accordingly, the number theoretic invariants of the linking
form ¢* stated in [Kawauchi-Kojima 1980] (which are computed from ¢q) are a
complete invariant of the isomorphism class pair of £ and ¢. The Arf invariant of a
proper link was introduced by [Robertello 1965] (see [Kawauchi 1984] for the effect
of the link orientation). The reduced link module has been discussed in detail in
the case of a knot (see, for example, [Pizer 1985]), but is not well understood in the
case of the general link (cf. [Kawauchi 1987], [Pizer 1987]). Theorem 5.5.1 on the
homology of a branched cyclic covering manifold was given by [Sakuma 1979] in a
more general setting emphasizing the naturality of the isomorphism. The present
proof is in [Kawauchi 1994].

Finally, we note that all of the results in this chapter continue to hold when
we consider a homology 3-sphere instead of the 3-sphere S°.



Chapter 6
The fundamental group

In this chapter, we discuss various properties of the fundamental group of a link
exterior.

6.1 Link groups and link group systems
Here, we discuss how a certain topological property of a link exterior is related to
the fundamental group.

Definition 6.1.1 The link group of a link L in S3 (or R?), which we denote by 7 or
(L), is the fundamental group 71 (E(L),b) of the exterior E(L), where b denotes
a base point.

When L is a knot, 7 is called the knot group. Clearly, for any two equivalent links
L, L', we have an isomorphism 7(L) 22 w(L'). However, the converse is not true in
general.

Exercise 6.1.1 Show that the links L; and L2 in figure 6.1.1 are not equivalent,
but their exteriors E(L;) and E(Ljy) are homeomorphic (so that there is an iso-
morphism 7 (L;) & w(Ls)).

L@ @
Ll L2
Fig. 6.1.1
Exercise 6.1.3 Show that if a link L is a split union of two links Ly, Lo, then 7(L)

is isomorphic to the free product 7(L1) * w(L2).

Theorem 6.1.4 For a link L in §3, the following are equivalent:

(1) L is non-splittable.
(2) L is a trivial knot or E(L) is a Haken manifold with incompressible boundary.
(3) The group ©(L) is indecomposable (with respect to the free product).

Proof. It follows from the loop theorem (cf. C.2.2) and the sphere theorem (cf.
C.2.3) that (1) — (2), and from the Kneser conjecture (Theorem C.4.4) that
(2) — (3). (3) — (1) is clear. O

Since a subgroup of a free group is free, we obtain from Theorem 6.1.4 the following:

73
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Corollary 6.1.5 If w(L) is a free group of rank r, then L is an r-component trivial
link. (The converse also clearly holds.)

Let K;(i =1,2,...,r) be the components of a link L. Let T; be the torus compo-
nent of dF(L) around K;. Let (m;,£;) be a meridian-longitude pair of K; in S%
with m;U¥; C T;. Note that the orientations of m; and ¢; are uniquely specified by
the orientations of S and K;. We consider m; and ¢; as elements of 71 (E(L), p)
by choosing a path w; in E(L) from the base point p to the point m; N¥; for each
i. Then the subgroup of 7 = m(E(L),p) generated by m; and ¢; is independent
of a choice of w; up to conjugation. This subgroup is called a meridian-longitude
subgroup of m on K; and denoted by (m;,#;)™. By the loop theorem (cf. Appendix
C), (m;, £;)™ is isomorphic to Z or Z® Z, and if it is isomorphic to Z, then #; is the
trivial element and L is a split union of the trivial knot K; and the sublink L — K.
A system (G;G;,i=1,2,...,7) of a group G and its subgroups G;(i = 1,2,...,7)
is called a group system.

Definition 6.1.6 A group system of an r-component link L is the group system
(w(L); (mi, £;)™,i = 1,2,...,r) for some meridian-longitude subgroups (m;, ¢;)™
(i=1,2,...,7) of the components of L.

By an isomorphism ¢ from a group system (w(L);{m;,4)™,i = 1,2,...,7) of
an r-component link L onto a group system (w(L');{(m},€)",i = 1,2,...,7) of
an r-component link L', we mean an isomorphism ¢ : 7(L) & 7(L') such that

w(m;) = m} and ¢(¢;) = £ for all i. The following theorem shows that the link
type is determined by the isomorphism classes of group systems of the link.

Theorem 6.1.7 Two r-component links L and L' in 5% belong to the same type
if and only if there is an isomorphism ¢ from a group system (mw(L); (m;, £;)™, i =
1,2,...,7) of L onto a group system (w(L'); (m}, €)™, i =1,2,...,r) of L'.

Proof. Since the “only if” part is clear, it suffices to prove the “if”part. We as-
sume that there is an isomorphism ¢ from (7(L);{m;,€;)™,i = 1,2,...,7) onto
(m(L'); (m, €)™, i=1,2,...,r). Let L;(j =1,2,...,u) and Li,(k=1,2,...,v) be
the non-splittable sublinks of L and L', respectively. Then #(L) and w(L’) are free
products of the 7(L;)’s and the 7 (L} )’s respectively. By Theorem 6.1.4, 7(L;) and
w(L},) are indecomposable groups for all j, k. If some L; is a trivial knot, then the
component of L’ corresponding to L; by ¢ is a trivial knot which is split from
the other components of L’. Hence we can assume that neither L; nor L is a
trivial knot, so that none of 7(L;), w(L}) is isomorphic to Z. Then by the Kurosh
subgroup theorem (cf. [Lyndon-Schupp 1977}, [Magnus-Karass-Solitar 1966]), we
have that u = v, and ¢(7(L;)) and m(L}) are conjugate in w(L’) for each j by
permuting the indices of w(L}), if necessary. Hence ¢ induces an isomorphism
p; from a group system (w(L;); (m;,,¢;,)",i = 1,2,...,7;) onto a group system
(W(L;); (mj,, £;)",i=1,2,...,r;) for each j. By Waldhausen’s theorem (Theorem
C.4.1), there is a homeomorphism from E(L;) to E(L}) preserving the (oriented)
meridian-longitude systems of L; and L;» for each j. This homeomorphism extends
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to an auto-homeomorphism of 53 sending L; to L;- and preserving the orientations
of $3,L; and L for each j, so that L; and L’ belong to the same type. g

For a group system (m(L); (m;, £;,)",i = 1,2,...,r) of alink L, some group systems
of the links —L, L* and —L* are respectively isomorphic to the group systems
(w(L);(mi_l,é;l)”,i = 1,2,...,r),(w(L);(m;l,éiY’,i = 1,2,...,7r) and («(L);
(m, é;l)”,i = 1,2,...,7r). Then we obtain from Theorem 6.1.7 the following
corollary:

Corollary 6.1.8 (1) L is invertible if and only if

(m(L); {mi, €)™ i = 1,2,...,7) = (m(L); (m; 1, 67 ) i = 1,2,...,7).
(2) L is (+)amphicheiral if and only if

(m(L); (my, )™ i = 1,2,...,7) = (n(L); {m; L, 6)™ i = 1,2,...,7).
(3) L is (—)amphicheiral if and only if

(m(L); (my )™ i =1,2,...,7) 2 (n(L); {mq, 671" i = 1,2,..., 7).

The following theorem follows from the Seifert-van Kampen theorem (cf. Appendix
B):

Theorem 6.1.9 For any group systems (w(K;); (m;, 4;)™)(i = 1,2) of knots K;(i =
1,2) and any group system (7 (K); (m, £)™) of the connected sum K = K1§K>, the
group w(K) is isomorphic to the group obtained from the free product 7(Ki) *
m(Ks) by adding the relation m; = mg. Under this isomorphism, the meridian-
longitude subgroup (m, €)™ on K corresponds to the subgroup generated by m,
and £145 up to conjugation.

In particular, we obtain the following corollary from the observation preceding
Corollary 6.1.8 and Theorem 6.1.9:

Corollary 6.1.10
For any knots Ky, K, we have an isomorphism 7(Kot K) = 7(Koff — K*).

OO,

Fig. 6.1.2

Ezample 6.1.11. For a (left-handed or right-handed) trefoil knot K, we call the
connected sum K§K a granny knot, and noting that K is invertible, we call the con-
nected sum K§K* = Kff— K* a square knot (see figure 6.1.2). By Corollary 6.1.10,
we have m(K{K) = n(Kf{K™*). However, K K and K#{K* are not equivalent. For
if they are equivalent, then their signatures must satisfy o(K#K) = +o(K§K*).
But o(K#K) = +4 and o(Kf§K™*) = 0 by Exercise 5.3.4, since o(K) = +2.
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As this example shows, even for a knot, the group is not a complete invariant for
knot equivalence. However, for prime knots, it is known to be a complete invariant.

Theorem 6.1.12 Prime knots K;, K, in §% are equivalent if and only if m(K;) =2
ﬂ'(KQ).

This is essentially a corollary of the following two results:

(1) ([Whitten 1987]) For prime knots K;, Ko in S3, if 7(K;) = 7(K3), then there
is a homeomorphism E(K;) & E(K>).

(2) ([Gordon-Luecke 1989]) For any non-trivial knots K7, Ko in S, any homeo-
morphism E(K;) = F(K3) can be extended to an auto-homeomorphism of
53 sending K1 to Ko setwise.

The following theorem and Thurston’s hyperbolization theorem (cf. C.7.2) justify
the definition of a “hyperbolic” link in Definition 3.2.11.

Theorem 6.1.13 A link L in S3 is simple and anannular if and only if the group
(L) is non-abelian and indecomposable (with respect to free product) and any
subgroup of w(L) isomorphic to Z & Z is conjugate to a subgroup of a meridian-
longitude subgroup (m;,£;)™ of some component K; of L.

This theorem follows from Theorem 6.1.4, the annulus theorem (cf. C.6.1), some
properties of special Seifert manifolds (cf. C.5), and the two well-known facts: that
E(L) is not homeomorphic to the twisted I-bundle over the Klein bottle, and that
m1(E(L)) is abelian if and only if L is a Hopf link or a trivial knot (cf. Theorem
6.3.1).

Exercise 6.1.14 Complete the proof of Theorem 6.1.13.
We obtain the following from Thurston’s hyperbolization theorem:

Theorem 6.1.15 A link L in S° is simple and anannular if and only if the group
(L) is non-abelian, indecomposable (with respect to the free product) and iso-
morphic to a discrete subgroup of PSLs(C).

Proof. By Theorem 6.1.13 and Thurston’s hyperbolization theorem, L is simple
and unannular if and only if E(L) is a hyperbolic manifold with finite volume.
Hence the ‘only if’ part is obtained. We show the ‘if’ part. For any link L, the
group w(L) is torsion-free (i.e., " = 1 implies z = 1 for any element z € 7(L)
and any non-zero integer n). Let 7 be a discrete subgroup of PSLy(C) isomorphic
to w(L). Because 7 is discrete and torsion-free, it is known that 7 acts properly-
discontinuously (cf. B.4) and orientation-preservingly on the hyperbolic 3-space
H3, so that the projection H® — H3/m = M is a covering projection with =
the covering transformation group. Since 7 is a finitely generated group, we see
from the Scott Theorem (cf. [Hempel 1976]) that there is a compact orientable
3-submanifold E of M with the natural isomorphism 7 (E) & m1(M) = m. Using
that the universal covering space of M is H® = R3, we can take E to be irre-
ducible, so that E is homotopy equivalent to E(L) which is a Haken manifold
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with incompressible boundary by Theorem 6.1.4. Since the Euler characteristic
x(F) = x(E(L)) = 0, the boundary 8E of E has only torus components. Then by
the loop theorem, E is a Haken manifold with 0F incompressible in E, for 71 (E)
is non-abelian and indecomposable. We see that the inclusion F C M — intE
is a homotopy equivalence and by [Thurston *], that any subgroup of (M)
isomorphic to Z @& Z is conjugate to a subgroup of the fundamental group of a
component of M — intE (that is, an end of M). Hence F is algebraically sim-
ple. By Thurston’s hyperbolization theorem, F is a hyperbolic manifold and any
isomorphism (L) 2 71 (E) preserves the peripheral structures. By Waldhausen’s
theorem, E(L) is homeomorphic to E, so that L is simple and unannular. (]

Proposition 6.1.16 The group of the torus knot T(p, q) of type (p, q) has the group
presentation (a,b | a? = b?).

Fig. 6.1.3

Proof. We take the knot T'(p,q) on the standard torus T in S%. Let V;,i = 1,2,
be the solid tori obtained by splitting S* along T. Then E(T(p,q)) = S° —
intN(T'(p,q)) is the union of two solid tori V;* = cl(V; — N(T(p,q))),i = 1,2,
pasted along the annulus A = E(T'(p,¢)) N T. The central loop C of the annulus
A is isotopic to T(p,q) in the torus T. For a meridian-longitude pair (m,£) on
Vi (in S?), C represents mP¢4 in 71 (T). Note that T is ambient isotopic to both
OV and 8V in S3. Let (m},£;),i = 1,2, be the meridian-longitude pair on V;*
corresponding to (m,£) by this ambient isotopy. Then m} and £ represent the
trivial element and a generator of w1 (V}*) 2 Z, respectively, so that [C] = [€1]9.
Also, m3 and ¢5 represent a generator and the trivial element of mi (V") = Z,
respectively, so that [C] = [m}]P. By the Seifert-van Kampen Theorem, we obtain
a group presentation of 7(T'(p,q)) as {(a,b | a? = b?) with a = [m}],b=[¢}]. O

Using Proposition 6.1.16, we give here a group-theoretic proof of Theorem 2.2.2
(except the proof of non-amphicheirality which is given in 12.2.11).

6.1.17. Group-theoretic Proof of Theorem 2.2.2 except non-amphicheirality. For
p = £1 or ¢ = %1, the knot T'(p,q) is trivial. Assume that p # +1, ¢ # +1.
The center £(7) of the group m of T'(p,q) includes the subgroup A generated
by aP, and the quotient group 7/A is the free product Z, * Z,. Hence 7 is not
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abelian and we have (1). Further, since the center {(Z, * Z,) is the trivial group,
we have {(n) = A and the group Z, * Z, is uniquely determined by the group
m. We see from the Kurosh subgroup theorem that Z, * Z, = Z, * Zy if and
only if {|pl,lq|} = {I¥|,|d’|}. Hence, we have (2) when we know that T(p,q) is
non-amphicheiral. O

Exercise 6.1.18 Find a group presentation of a torus link by using an argument
similar to Proposition 6.1.16.

Exercise 6.1.19 Show that the group (a,b | a? = b?) (where p and ¢ are coprime
integers not equal to +1) is not isomorphic to any subgroup of PSLy(C). [Hint:
Use the fact that every non-trivial element = of PSL4(C) is conjugate to a matrix

([1) }) or (Z(/) y(zl ) according to whether or not the trace tr(z) = 2.

6.2 Presentations of a link group

We shall give here a presentation of 7(L) = 71 (R®—L). Note that there are natural
isomorphisms m1 (E(L,R?)) = 7 (R3 - L) = m1(E(L, S%)) by regarding S° as the
one-point compactification of R3. Let R3 have the orientation of the right-hand
rule. For the orthogonal projection p : R — R? whose image p(L) gives a regular
presentation of L, we consider that R2 = R? x 0 and p sends each (z,y, 2) € R® to
(z,y,0) € R?2 x0 = R2. We assume that the regular presentation p(L) is connected
and has at least one double point. Let v;(j = 1,2,...,s) be the double points of
p(L). Then we assume that an open arc neighborhood of the overcrossing point
of p'l(vj) in L is in the upper-half space RS‘r and the remaining part of L is in
R? for each j. In this case, we say that the link L is in an over-normal position.
(As a dual concept, when an open arc neighborhood of the undercrossing point of
p~1(v;) in L is in the lower-half space R® and the remaining part of L is in R2
for each j, we say that the link L is in an under-normal position).

[Step 1] We take a point a under the plane R2. Let F be a 2-dimensional polyhedron
consisting of the cone p(L) * a and the line segments joining = with p(z) for all

x € L (see figure 6.2.1).

a

Fig. 6.2.1

[Step 2] We consider p(L) as a graph whose vertices are v;(j = 1,2,...,s). Let
e;i(t = 1,2,...,m) be the edges of the graph p(L). We orient each e; by the
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orientation induced from that of L. We take a cell decomposition of L so that any
element of U;?:lp_l(vj) is the 0-cell and the arc e of L corresponding to e; for
each i is the 1-cell (see figure 6.2.2).

[Step 3] We consider F' as the polyhedron of a cell complex K given as follows:
Namely, the 0-cells of K consist of the O-cells of L (including v;(j = 1,2,...,s) by
our assumption) and a. The 1-cells of A consist of the line segment with end point
set p~'(v;) and the line segment with end point set {vj,a} for all j. Denoting the
union of these 1-cells by F'!, we take as a 2-cell of K the closure of each component
of F — F! in F. Then the boundary of each 2-cell of K contains just one of the
1-cells € (i = 1,2,...,m). Let D; be the 2-cell of K with 8D; > e/. We orient
D; by the orientation induced from that of ef*.

[Step 4] F° = R® — F is simply connected. Let H be the union of F¢ and the open
2-cells intD;(i = 1,2,...,m). Then w1 (H) is a free group (z1,z2,...,Zs) of rank
m, where the base point b of m1(H) is taken above the link L and the generator
x; is represented by a path intersecting intD; in just one point with intersection
number +1 (see figure 6.2.3).

D

Fig. 6.2.3

[Step 5] Let H' be obtained from H by adjoining all of the open 1-cells in K
belonging to R® — L. The group 71 (H’) is obtained from 7, (H) = (21, Z2,...,Zm)
by adding one relation for each attached open 1-cell, which is shown as follows:
(1) Add the relation z;z;,' = 1 for each 1-cell J with p(J) a double point of p(L)
as shown in figure 6.2.4.
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(2) Add the relation z;z; “x; 'z¢ = 1 for each 1-cell J with a as an end point as
shown in figure 6.2.5, where € = £1 is the sign of the crossing point of p(L)
(see 1.1 and figure 6.2.6).

en” ex"
— -—
e‘/\
/r D. Da
DS =7
\es/\
] —>| Ds
Fig. 6.2.4 Fig. 6.2.5

Then the path around each 1-cell J in (2) is a path which turns around each 1-cell
in (2) except for J once. Hence each relation in (2) is a consequence of the other
relations in (2). Finally, add the point a to H' to obtain R3 — L. No new relation
occurs from this addition. Thus, we obtain the following:

€n €
Er €s (] Cs
e, | e s | S—
e, e
e=—1 e=]
Fig. 6.2.6

Theorem 6.2.1 For a connected regular presentation p(L) with at least one double
point of a link L, we have a presentation of the group w(L) whose generators are the
words x1, T2, ...,T, corresponding to the edges ey, ea,...,en of p(L) and whose
relations consist of z; = x and z;x;, “z; xS = 1 for each double point of p(L),
shown in figure 6.2.6. Further, we can remove any one relation xia:,fx,jla:; =1
from the relations of the presentation without changing the resulting group.

The presentation of w(L) given in Theorem 6.2.1 is called an over presentation
of w(L). When L is in under-normal position, the mirror image L* of L in R? is
in over-normal position. By Theorem 6.2.1, we have an over presentation of the
group 7(L*). When we apply the remark preceding Corollary 6.1.8, we obtain the
following new presentation of the group #(L) which we call an under presentation
of the group w(L):

Theorem 6.2.2 For a connected regular presentation p(L) of a link L with at least
one double point, we have a presentation of the group w(L) whose generators
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are the words z1, s, ..., T, corresponding to the edges e1,es,. .., e, of p(L) and
whose relations consist of z = x5 and x; lzc;:ch:cs_f = 1 for each double point of
p(L), shown in figure 6.2.6. Further, we can remove any one relation :ci_lzrimhxs‘e =
1 from the relations of the presentation without altering the group.

Remark 6.2.3 The generator x; in Theorem 6.2.1 and the generator z; in Theorem
6.2.2 induce the same element in the abelianized group of 7(L) = m;(R® — L) (that
is, in H;(R3 — L)).

Remark 6.2.4 When a regular presentation p(L) of a link L is disconnected, a
presentation of the group (L) is obtained as a free product of group presentations
for all connected components of p(L) which are obtained from Theorem 6.2.1
(or Theorem 6.2.2), where we take () as a group presentation of the connected
component without double points.

Ezxample 6.2.5. The over and under presentations of the group of the Hopf link
shown in figure 6.2.7 are respectively

(z1,22,y1,92 | T1 = 2, y1 = Yo, 2719y '@, ' = 1) and

(@1, %2, y1,92 | @1 = To, Y1 = Yo, Y @7 Y1%2 = 1).
Each group is isomorphic to {z,y | zy = yz) £ Z & Z.

Fig. 6.2.7

Example 6.2.6. The over and under presentations of the group of the trefoil knot
shown in figure 6.2.8 are respectively

(€1, T2, T3, Tgy Ts, Tg | L1 = Ty, T3 = L4, Ty = Tg,T1T5 Ty T4 = 1, 2575 75 'To =
1) and

(T4, T2, T3, Ty, Ts, Tg | T = T3,Ts = Ts,Te = L1, 2] TsToz; = 1,25 23m67; ' =

1). Each group is isomorphic to {z,y | zyz~! = y~1zy).
I
Ly
Lo
Xz
X3 Is
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Let p(L) be a connected regular presentation of a link L with at least one dou-
ble point and with n bridges. Let Y;(i = 1,2,...,n) be the overbridges. In the
over presentation of L on p(L), the generators corresponding to the edges of p(L)
forming Y; can be reduced to one generator, say y;, so that we have a presentation
(Y1,Y2, -, Yn | 71,72,-..,7n—1) of the group 7(L) where r; is a relation as shown
in figure 6.2.9. (In this figure, r; is given as yowy, 'w™! with w = yZ(a)y;(b) oyl
where €(a),e(b),...,€(c) are respectively the signs (see 1.1 or figure 6.2.6) of the
crossing points occurring at the intersections of the overbridges y,,¥s,- - -, y. and
the underbridge between y;, and yg. From this argument, we obtain the following:

Ya Yo Ye
Yn Yn
e e oy (N ey K
Fig. 6.2.9

Theorem 6.2.7 The group of an n-bridge link has a Wirtinger presentation with
n generators represented by meridians and with deficiency one.

Ezample 6.2.8. The group of the Borromean rings in a 3-bridge presentation shown
in figure 6.2.10 has the presentation
{a,b,c|a = (cb~lc b)alcb~lc™1b)71,b = (ac ta"c)b(ac ta"te)L).

Fig. 6.2.10
Exercise 6.2.9 Find a Wirtinger presentation with 2 generators and one relation
of the 2-bridge link S(«, 8). [Hint: Think of Schubert’s normal form.]

Exercise 6.2.10 Show the inequality 1 < defw(L) < r for the deficiency defn(L)
of the group (L) of an r-component link L.

The following theorem is obtained by using a braid presentation of a link:
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Theorem 6.2.11 (Alexander-Artin theorem) Any link group has a presentation of

the following Wirtinger type: {z1,Z2,...,ZTn | T; = wixp(i)wi_l,i =1,2,...,n)
where p(1),p(2),...,p(n) are a permutation of 1,2,...,n and w;(i = 1,2,...,n)
are words in 21, %, ..., T, which satisty the identity T[], z; = [[1; wiTp@yw;
in the free group {z1,%s2, ...,Zs). Conversely, any group with such a Wirtinger

presentation is realized by a link group.

Proof. As shown in Chapter 1, any link L is obtained from an n-braid b € B, by
closing it in the vertical direction (Alexander’s theorem). We take n points A; =
(i/(n+1),1/2)(i = 1,2,...,n) in the square I? = {(z,y) | 0 < x,y < 1}. Then
the braid b gives an ambient isotopy from an auto-homeomorphism f;, of I% to the

identity fixing {A,, Ag, ..., An} setwise. This auto-homeomorphism f;, determines
an automorphism ¢, of the free group (z1,2,...,z,) of rank n which is the
fundamental group of 72 —{A;, Az, ..., A, } where z; is represented by a meridian

of A; in I?. Let fy(A;) = Ap(i)- Then we have gp(z;) = wixp(i)wi_l. By the Seifert-
van Kampen theorem, we obtain the first half of the theorem. Conversely, for any
p(2) and w; stated in the theorem, there is a braid b with ¢p(x;) = wi:cp(i)wi_l(i =
1,2,...,n). (See Artin’s theorem, cf. [Burde-Zieschang 1985].) Hence we obtain
the second half of the theorem. 0

Exercise 6.2.12 Find a group presentation of the pretzel link P(q1,qs2, ..., qm)-

6.3 Subgroups and quotient groups of a link group

Here, we observe miscellaneous properties of a link group. As a preliminary tool, we
first explain the homology group of a group. For any group G and any integer ¢ > 1,
we can construct a path-connected topological space X such that m(X,b) = G
and m;(X,b) =0 (1 < i < ¢+1), where b is a base point (cf. [Spanier 1966]). Then
the homology group Hy(G) of the group G is defined to be the homology group
H4(X) which is known to be independent of choice of X up to isomorphism. The
following theorem follows essentially from a classification argument of the abelian
fundamental groups of 3-manifolds (cf. [Hempel 1976)):

Theorem 6.3.1 A non-trivial abelian subgroup of the group w(L) of a link L is
isomorphic to Z or Z & Z.

Proof. Let A be anon-trivial abelian subgroup of # = w(L). If 7 is not indecompos-
able, then A is isomorphic to Z or conjugate to a subgroup of an indecomposable
component of m by the Kurosh subgroup theorem. Hence we can assume that
is an indecomposable group. Since it is obvious when 7 & Z, we may assume by
Theorem 6.1.4 that £ = E(L) is a Haken manifold with incompressible bound-
ary. Let F be the covering space over E corresponding to the subgroup A of .
Since m;(E) = 0 for all 4 > 2, we have H,(A) = H,(E) for all ¢. In particular,
H3(A) = 0. To complete the proof, it suffices to show that the following two cases
cannot occur: (1) A = Z,, with |m| > 2, (2) A = Z* with s > 3. In the case (1)
we have H3(A) & Z,, and in the case (2) H3(A) = Z* for u = s!/(s — 3)!3! (cf.
[Hempel 1976], p.75). These contradict Hs(A4) = 0. O
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The following theorem is a special case of the Stallings fibration theorem for a
compact 3-manifold in [Stallings 1962]:

Theorem 6.3.2 Consider a (unique) epimorphism v from the group 7(L) of a link
L to the infinite cyclic group (t) sending each meridian of L to t. Then L is a
fibered link if and only if the kernel Kery of y is finitely generated.

Proof. If L is a fibered link, then Ker+y is isomorphic to the fundamental group
of the fiber surface, which is a free group of finite rank. Conversely, suppose that
Ker~y is finitely generated. By Exercise 5.4.4, a minimal genus Seifert surface F' of
L is connected. Let E = E(L) and Fg = EN F(= F). Let E' be the 3-manifold
obtained from E by splitting along Fg, and F;(i = 1,2) the resulting copies of Fg
in E’. The natural homomorphism (j;)y : m1(F;) — m1(E’) is injective for each i.
Let E. be the infinite cyclic covering space over E corresponding to the kernel of
v, which is constructed by pasting together the Z-indexed copies of E’ (cf. 5.4).
If (j;)p is not surjective for some ¢, then we must have that m1(E) = Kery is
not finitely generated (cf. [Neuwirth 1965]), which is a contradiction. Hence (j;)y
is an isomorphism. Then using that E’ is irreducible, we can show that there is a
homeomorphism (E’; Fy, Fy) = (F x [0,1], F x 0, F x 1) (cf. [Hempel 1976]). Hence
L is a fibered link. (|

Exercise 6.3.3 If 7(L) = Z & Z, then show that the link L is equivalent to a Hopf
link.

Link groups with non-trivial center are completely determined in [Burde-Murasugi
1970]. Here we observe only several standard properties.

Theorem 6.3.4 For a link L in S%, the center of the group n(L) is non-trivial if
and only if E(L) is a Seifert manifold.

Proof. Since the center of w(L) is non-trivial, then m(L) is an indecomposable
group, so that 7(L) = Z (in this case, E(L) = S' x D?) or E(L) is a Haken manifold
such that E(L) is incompressible by Theorem 6.1.5. It is clear in the former case
and seen from [Waldhausen 1967] in the latter case that E(L) is a Seifert manifold.
Conversely, suppose that E(L) is a Seifert manifold. Let B be the base space of this
fibration. Since the natural homomorphism H;(8FE (L)) — H;(E(L)) is surjective,
it follows that the natural homomorphism H;(8B) — H;(B) is surjective. Hence
B is homeomorphic to the planar surface obtained from S? by removing from
it r open disks with r the number of components of L. Since B and E(L) are
orientable, a regular fiber of the fibration represents a non-trivial element in the
center of 7(L). O

Proposition 6.3.5 Let E(L) be a Seifert manifold. Then either there is a Seifert
fibered structure on S3 extending the Seifert fibered structure of E(L) or the link
L has a component O which is a trivial knot in S® such that the Seifert fibered
structure of E(L) extends to a Seifert fibered structure on E(O) = S* x D?.

Proof. Let K be a component of L. Let N(K) be a component of N(L). Let L’
be a sublink of L such that a regular fiber of IN(K)(C OE(L)) is a meridian of
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K for all components K of L’. If L’ = @, then we can extend the Seifert structure
of E(L) to a Seifert fibered structure on S%. Let L’ # 0. Then E(L') is a Seifert
manifold with a Seifert fibered structure extending the Seifert fibered structure of
E(L), and the group obtained from m(L’) by adding to it a relation [p'] = 1 for
a regular fiber b’ of E(L') is a trivial group. This means that the base space B’
of E(L') is a disk with at most one singular point, so that L’ is a trivial knot.
O

We see easily that any fiber of any Seifert structure on S is a torus knot. Hence
we obtain the following from Theorem 6.3.4 and Proposition 6.3.5 (cf. [Burde-
Zieschang 1966]):

Corollary 6.3.6 For any knot K in S, the center of m(K) is non-trivial if and only
if K is a torus knot.
Exercise 6.3.7 For the link L in S® shown in figure 6.3.1, show the following;:

(1) The center of (L) is non-trivial.
(2) There is no Seifert fibered structure on S$* with the link L belonging to the
fibers.

C:

Fig. 6.3.1

A group 7 is said to be locally indicable if every non-trivial finitely generated
subgroup of m admits an epimorphism to Z. The following theorem is observed in
[Howie-Short, 1985]:

Theorem 6.3.8 Every link group is locally indicable.

A group 7 is said to be residually finite if for every non-trivial element z € ,
there is a homomorphism ¢ from 7 to a finite group H with ¢(x) # 1.

Theorem 6.3.9 Every link group is residually finite.

Proof. The free product of residually finite groups is residually finite and Z is resid-
ually finite. Hence it suffices to show it for (L) when E(L) is a Haken manifold
such that OF is incompressible. In case E(L) is a Seifert manifold, E(L) is a fiber
bundle over S! with a fiber a compact surface F (cf. [Orlik 1972]). In particular,
there is a short exact sequence

1 — m(F) = n(L) — m(S*) — 1.
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Since 71 (F') is a free group, 7(L) is residually finite by a method which is described
in [Neuwirth 1965(pp. 63-64)]. If E(L) is a hyperbolic manifold with finite volume,
then 7(L) is a subgroup of PSLy(C) by Theorem 6.1.5. It is also residually finite
by [Lyndon-Schupp 1977], Proposition 7.11. In general, E(L) is a Seifert manifold
or a hyperbolic manifold with finite volume or a torus sum of such link exteriors
by the torus decomposition theorem (Theorem C.6.3). Then we obtain the proof
in the general case. O

Exercise 6.3.10 Complete the proof of Theorem 6.3.9 in the general case. (Cf.
(Hempel 1987]).

The following theorem is observed in [Gonzélez-Acuiia 1975]:

Theorem 6.3.11 For any finitely generated group G, choose elements z,zs, ...,
T, in G with ({x1,Z2,...,T,))¢ = G. Then there is an epimorphism ¢ from the
group m(L) of some n-component link L to G sending a meridian system of L to
the elements x1,xg,...,Tn.

Supplementary notes for Chapter 6

For alink L with components K;(¢ = 1,2, ..., r) we denote the kernel of the natural
epimorphism (L) — w(L— K;) by A;. Then the product D(L) = [Ay, A1] [Az2, A2]
... [Ar, Ar] of the commutator subgroups [A4;, A;] of A; is a normal subgroup of
m(L). The quotient group 7(L)}/D(L) is invariant under a link-homotopy of L (that
is to say, a homotopic deformation of L permitting only self-intersections of each
component of L). Using this concept, Milnor’s p*-invariant, which is a numerical
invariant of a link-homotopy, is defined (cf. [Milnor 1954]). For the lower central
series

(L) =7n(L)o Dw(L)1 D7w(L)e D+, w(L)gs1 = [w(L), m(L)g],

of a link group n(L), the quotient group w(L)/m (L) is invariant under a topo-
logical I-equivalence (that is to say, a link cobordism (= a link concordance),
as described in 12. 3, except that the cobordism annuli are only required to be
topologically embedded). From this definition, Milnor’s i-invariant, which is a nu-
merical link invariant of a topological I-equivalence, is defined (cf. [Milnor 1957]).



Chapter 7
Multi-variable Alexander polynomials

In this chapter, we define the Alexander module and the link module of a link and
show how to calculate them by Fox’s free differential calculus. Then we define the
(multi-variable) graded Alexander polynomials to be the characteristic polynomi-
als of these modules and explain the Torres conditions, which the (0-th) Alexander
polynomial satisfies.

7.1 The Alexander module

Let L = KUKy U--- UK, be alink in S® and E be the exterior of L. Let
7 = m1(E) be the group of L. Let ¢; be the homology class in H;(E) = H;(S®—L)
represented by a meridian of K; (1 < ¢ <r). Then H;(E) is a free abelian group
of rank r generated by ¢1,...,t,.. Let v : # = m(E) — Hi(E) be the Hurewicz
epimorphism. The covering space over E corresponding to the subgroup Ker(y) =
[w, 7] of w is called the universal abelian covering space of E and denoted by E.,.
Since H1(E) acts on E., as the covering transformation group, Hi(E.,) is regarded
as a module over the integral group ring ZH; (E) of H1(E). By regarding Hy(E) as
the multiplicative free abelian group []|_, (¢;} with basis ¢1,1s,...,t,, we identify
ZH,(FE) with the Laurent polynomial ring A in the variables ti,...,t., so that we
can regard Hy(E,) as a A-module. Let p: E, — E be the covering projection and
b a point in E. Then H;i(E,,p~'(b)) can also be regarded as a A-module.

Definition 7.1.1 (1) The link module of L is the A-module H;(E.,).
(2) The Alezander module of L, denoted by A(L), is the A-module Hy(E.,p~1(b)).

Since E, is a connected, non-compact 3-manifold, we have Hy(E,) = Z and
Hi,(E,) = H;i(E,,p~'(b)) = 0(: > 3). Here t; acts on Ho(E,) as the identity
map. Let € : A — Z be the A-homomorphism defined by £(¢;) =1 (1 <4 < r). The
kernel Ker(e) is an ideal of A generated by {¢t;, —1 | 1 < ¢ < r} which is denoted
by e(A) and called the augmentation ideal of A. Then Ho(E,) = A/e(A).

Proposition 7.1.2 We have the following two A-exact sequences (for a suitable
positive integer n):

1) 0— Hi(E)) — A(L) — e(A) — 0.

(2) 0— Hy(E,)) —» A" -5 A" — A(L) — 0.

Proof. (1) follows from the homology exact sequence of the pair (E.,, p~1(b)). (2)
Since F is a compact connected 3-manifold with boundary, there is a deformation
retract from E to a connected compact 2-dimensional cell complex W with only
one 0O-cell b. Let n be the number of 2-cells of W. Then the number of 1-cells of
W is equal to n — 1 since x(W) = x(E) = 0. Let p : W, — W be the universal

87



88 CHAPTER 7 MULTI-VARIABLE ALEXANDER POLYNOMIALS

abelian covering of W, and let Cy(W,) be the chain complex associated with W.,.
Then the desired result is obtained from the following exact sequence:

0 — Hy(W,) — Co(W,) -2 CL(W,) — Hy(W,,pt (b)) — O,

where 0 denotes the boundary homomorphism. O

Exercise 7.1.3 (1) Show that the exterior E of the Hopf link is homeomorphic to
St x S x [0,1]. Further, by using this result, show that

Hi(E,)=0 (i >1) and A,(L) = (A).
(2) Show that the exterior F of the 2-component trivial link is homotopy equivalent
to a bouquet S§! Vv §! v §%. Further, using this result, show that

Hy(E,) = Hy(E,) =2 Aand A(L) 2 A A.

Fig. 7.1.1

We describe a method to calculate the Alexander module and the link module of
a given link, for example, the link L shown in figure 7.1.1. The group 7 of this link
L has the presentation: (z,y | yzyzy 'z~ 1y lz~1). Let W be a 2-dimensional
cell complex associated with this presentation, i.e., W has one 0-cell b, two 1-cells
z* and y*, and one 2-cell r*, where r* is attached to the 1-skeleton according to
the relation in the group presentation. Then w1 (W, b) is identified with 7. Let p :
W, — W be the universal abelian covering. Then there are natural isomorphisms
Hy(W,) = H,(E,) and H;(W,,p~ (b)) = A(L). To calculate these modules, we
describe the chain complex Cy(W,) explicitly. Choose a lift b of b to E, and let
Z*,5*, and 7* be the lifts of z*, y*, and r*, respectively, with base point b. Then
the chain complex Cy(W,) is given as follows:

W, 2 aw,) —2— cw,) —2— o,

A[7] E Ale]

where A[- - -] denotes the free A-module with basis --- in the parenthesis [ |.
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Fig. 7.1.2
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We see that 01(2*) = (&1 — 1)é* and 01 (§*) = (2 — 1)é* and that Op(7*) is
represented by the lift with base point b of a loop representing the word
yryry tz~ly~lz~!. We construct the lift successively from the initial letter of
this word and obtain the following:

Fig. 7.1.3

Do (") = 4 + tod™ + Litod™ + L1133" — 240g" — t1t2d* — t1y* — 3*
= (=1412) (L +t1t2)2" + (1 — t1)(1 + t1t2)9".

The calculation is performed using the following facts:

(1) Let u1 and ug be words of z and y (more precisely, loops in W with base point
b representing the words), and @; and 4q the lifts of u; and ug with base point 13,
respectively. Then as a 1-chain, we have (u/l—\ug) = 4y + v(u1)tg (see figure 7.1.4),
where v denotes the Hurewicz epimorphism wy (W, ) — Hy (W) = (t1) X (t2) and
we identify H(W) with the covering transformation group of W,,.

(2) Let (u—1) be the lift of =" with base point b. Then we have (u—1) = —y(u~1)a
(see figure 7.1.5).

Put z = (1 —t1)§* — (1 — t2)z* € C1(W,). Then, from figure 7.1.3, we see that
Ker(0,) is the free A-module A[z] with base z. On the other hand, we see 92 (7*) =
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23 Uz
A
241 ”(M:)uw

e 7(1(1)8/‘

Fig. 7.1.4

(14 t1t2)z. Hence we obtain the following:

A(L) = C1(W,)/Im(82) = Alz*, y*]/((1 + t1t2)2).
H, (E’Y) = Ker(@l)/lm(ag) = A/(l + tltz).

r{a™)

rlu e r(u)e”

Fig. 7.1.5

The above calculation can be described explicitly using a method called Foz’s free
differential calculus which we shall now explain. Let F, be the free group with
basis 1, ..., Zn. For each k (1 < k < n), there is a unique map 8/8zy, : F,, — ZF,
determined by the following conditions (see [Crowell-Fox, 1963]):

(1) 89@/83:,6 = 6ik-

(2) O(uv)/Ozy = OufOx) + udv/dzy.

Exercise 7.1.4 Show the following identities:
01/0xr, =0, Ou™'/0zy = —u"'(Ou/Ozy).

The Z-homomorphism extension ZF,, — ZF;, of the map 0/0z, is also denoted by
the same symbol 8/0zy, and we call it the free derivative with respect to zy. The
calculation of the example stated above is generalized as follows:

Theorem 7.1.5 Let {x1,...,Zy | T1,...,Tm) be a presentation of the group w of a
link L with r components. Let v be the homomorphism between the group rings
induced from the composite homomorphism (1, ...,z,) — ™ — [[;_,{t;). Then
we obtain a chain complex

A™ 22 A LA,

where 0, is represented by the (m,n) matrix (y(0r;/0zk))1<i<m,1<k<n and dy is
represented by the (n,1) matrix (v(zk) —1)1<k<n such that the Alexander module
and the link module of L are obtained as follows:

A(L) = Coker(82), Hi(E.) = Ker(d)/Im(dz).



7.2 INVARIANTS OF A A-MODULE 91

We now know how to derive the Alexander module and the link module from a
presentation of a link group, but for applications of these A-modules, we must know
invariants derived from them, which will be described in the following section.

7.2 Invariants of a A-module

In this section, a general theory for deriving some invariants from A-modules is
discussed. First, we note that the Laurent polynomial ring A has the following
properties (cf. [Lang 1965]):

(1) A is a unique factorization domain.
(2) A is Noetherian, i.e., every submodule of a finitely generated A-module is
finitely generated.

Let H be a finitely generated A-module. Then there is an epimorphism from a
finitely generated free A-module A™ to H whose kernel is finitely generated by
property (2). So, we obtain an exact sequence A™ — A™ — H — 0. Let P
be the (m,n) matrix representing the homomorphism A™ — A™. We call P a
presentation matriz of H. Though presentation matrices of H are not unique, we
have the following result (see [Zassenhaus 1958(pp. 117-120)}).

Lemma 7.2.1 Two presentation matrices of H are related by a finite sequence of
the following operations.

(1) Interchange two rows or two columns.

(2) Multiply a row or column by a unit of A.

(3) Add to any row a A-linear combination of other rows or to any column a
A-linear combination of other columns.

(4) P~ I: , where * is a A-linear combination of rows of P.

(5) P (1: (1)), where x is an arbitrary row.

By (4) and (5), we can note that for any positive integer d, H has a presentation
matrix of size (m,n) with n > d and m > n — d. Let Q(A) be the quotient field of
A. We define two kinds of invariants of a A-module H as follows:

Definition 7.2.2 The rank of H, denoted by ranky H or simply rankH is the di-
mension of the Q(A)-vector space H ® Q(A), where ® denotes the tensor product
over A.

Definition 7.2.3 For each non-negative integer d, the d-th elementary ideal of H,
denoted by E4(H), is the ideal of A generated by the (n — d)-minors of a pre-
sentation matrix P of H of size (m,n) with n > d and m > n — d. The d-th
characteristic polynomial of H, denoted by Ag4(H), is the greatest common divisor
of the elements of E4(H).



92 CHAPTER 7 MULTI-VARIABLE ALEXANDER POLYNOMIALS

Exercise 7.2.4 Show that Eg(H) and Agq(H) (up to multiplication by a unit of A)
does not depend on the choice of a presentation matrix P of H of size (m,n) with
n > d and m > n — d by using Lemma 7.2.1.

From Lemma7.2.1(4),(5), we see that E;(H) = A if H has a presentation matrix
P of size (m,n) with d > n and E4(H) = {0} if H has a presentation matrix P of
size (m,n) with n —d > m.

Ezample 7.2.5. Let H=A*®A/(M\)D---®A/(A\n), where \;(i =1,2,...,n) are
non-zero elements of A such that A;41|\; for each ¢. Then we have rankH = s,
and Ag(H) is 0, A\g—s+1 - A, or 1, according to whether 0 < d<s—1,s<d <
s+n—1,ors+n<d.

Definition 7.2.6 The torsion submodule of H is the A-submodule TH = {z € H |
Az = 0for some non-zero A € A} and H is torsion freeif TH = 0.

Lemma 7.2.7 For a A-exact sequence
0—-H, —-—H—Hy—0

of finitely generated A-modules, we have the following:

(1) rankH = rankH, + rankH>.

(2) Ag(H) = Aq(H,)Ao(Hs), where = denotes the equality up to multiplication
by a unit of A.

(3) If TH, = 0 and rankH; = r, then Ay(H) = Aq_(H;) or 0 according to
whetherr <dor0<d<r-—1.

Proof. (1) follows from the fact that Q(A) is flat over A: i.e., the operation ®Q(A)
preserves exactness of a sequence. (2) First, we consider the case where H; and Hs
have square presentation matrices P; and P, respectively. Then H has a presen-
tation matrix of the form (Pl 0

* P2
The assertion in the general case can be proved by using the concept of localiza-
tion (see [Lang 1965]). Let p be a prime element of A, and suppose A¢(H) = p%q,
Ao(H1) = pbq’, and Ao(H) = p°q”. Here a, b, and c are non-negative integers, and
q,4q ,and ¢" are elements of A relatively prime to p. Let A, be the ring obtained
from A by localizing at the prime ideal (p), i.e., Ay = {A1/X2 € Q(A) | p [z}
This ring is a principal ideal domain where pA,y is the only prime ideal. Hence, the
A(py-modules H® Ay, H1 ® Ay, and Ha® A,y have square presentation matrices,
and their 0-th characteristic polynomials are p®, p®, and p¢ respectively. Since A
is flat over A, these three A(,)-modules are connected by a short exact sequence.
Hence, by the previous argument, we see p® = p®p® and therefore a = b+ c. By
applying this argument to each prime element of A, we obtain (2). (3) can also be
proved using the idea of localization. [Hint: H ® Ag) = (H1 ® Ag)) ® A7,y ] O

, and we can easily prove the desired result.

The same results also hold for modules over a ring R which has the two conditions
stated in the beginning of this section. The following lemma is useful for the



7.3 GRADED ALEXANDER POLYNOMIALS 93

homological study of a covering space over S* with a link as the branch set and
for the study of the Alexander polynomials of symmetric knots (see [Hillman 1981]
or [Sakuma 1979]):

Lemma 7.2.8 Let R be a Noetherian unique factorization domain, and let R(t)
be the group ring over R of the infinite cyclic group (t). Let H be a finitely
generated R(t)-module, and let A(t) be the 0-th characteristic polynomial of H.
Let f(t) = ag+ait+---+ant™ (a; € R) be an element of R(t) such that a¢ and a,
are units of R. Then the 0-th characteristic polynomial of the R-module H/ f (t)H
is given by TI™_; A(w;). Here, {w; | 1 < i < n} are the roots of f(t) (in the splitting
field of f(t) ).

7.3 Graded Alexander polynomials

In this section, we define the graded Alexander polynomials of a link and state
some properties of them.

Definition 7.3.1 (1) For each non-negative integer d, the d-th Alezander polynomial
of a link L, denoted by A(Ld) = A(Ld) (t1,...,tr), is the (d + 1)-th characteristic
polynomial A1 (A(L)) of the Alexander module A(L).

(2) The Alezander nullity of L, denoted by B(L), is rankA(L) — 1.

In particular, the O-th Alexander polynomial A(LO) is called the Alexander polyno-
mial of L and denoted by Ap. We describe a method of calculating these invariants.
Let (z1,...,Zn | 71,---,7n—1) be a Wirtinger presentation of the group m of an
r-component link L obtained from a connected link diagram of L. Note that the
deficiency of this presentation is 1 and that the image v(xx) of z by the Hurewicz
epimorphism 7 is equal to some ¢, (1 < h < 7). Let P be the presentation matrix
of A(L) obtained from this group presentation by the method given by Theorem
7.1.5. Let X4,...,X, be the column vectors of P, i.e., P = (Xy,...,X,) with
Xk = (v(0ri/0xk))1<i<n-1- Let P be the square matrix obtained from P by
deleting Xy.

Lemma 7.3.2 If 7 = 1, then det P, = A Ifr > 2, then
det P, = NS
et P, = (v(zx) — 1)AL".

Proof. By the relation 8,82 = 0, we obtain > ,_, (v(zx) — 1)Xx = 0. Hence for
each pair ¢ and k with ¢ # k, we see

(v(zi) — 1) det Py = det(X1, ..., (v(z:) = 1) Xi, -, Xy -, Xn)
= det(Xl, ceey —2j¢i("y(l'j) — 1)X]’, ... ,X}C, e ,Xn)
= +(y(xx) — 1) det P,

If r = 1, we obtain the desired result immediately. If 7 > 2, we obtain the desired
result by using the fact that g.c.d.{t; — 1,...,¢. — 1} = 1. d
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Corollary 7.3.3 E1(A(L)) is equal to (A(LO)) or E(A)(A(LO)) according to whether
r=1orr>2.

The invariants of L given in Definition 7.3.1 are obtained from the link module
H,(E,) as follows :

Proposition 7.3.4
(1) B(L) = rankH,(E,) = rankHy(E.,).
(2) AL = Ag(Hi(E,)).

Proof. These follow from Proposition 7.1.2 and Lemma 7.2.7. ]

Exercise 7.3.5 Show that the following three conditions are equivalent:

(1) Au(L) =0.
(2) AD #0.
(3) Hy(E,) =0.

Although the interpretation of the Alexander polynomial in terms of the link
module H;(FE,) given by the above proposition is theoretically important, the
presentation matrix of Hq(FE.) is more complicated than that of A(L) in case the
number of components r of L is large. This is caused by the following fact:

Proposition 7.3.6 The link module of an r-component trivial link O" is given as
follows:
(1) Ifr=1, Hi(Ey)=0.
(2) Ifr =2, Hi(E,) 2 A.
(3) If r > 3, Hi(E,) has a presentation with () generators & (1 <i<k <r)
and (3) relations (t; — 1)énk — (tn —1)éix+ (tc —1)én =0 (1 < i < h <k < ).

Proof. The link group of O" has a group presentation {(z1,...,z, | —) , and the cell
complex W associated with this presentation is a bouquet of r circles. We construct
an r-dimensional cell complex X whose 1-skeleton is equal to W as follows. First,
consider a cell decomposition of S' with one 0-cell € and one 1-cell e'. Consider
7 circles S} = € U e} of this cell complex, and let X be the cell complex which is
obtained as the product S x - - - x S!. Then the number of m-cells of X is ([ ). Let
X, be the universal abelian covering of X, and let Cy(X,,) be its chain complex.
Since 71(X) is naturally identified with 27 = [];_, (¢;), C4(X,) has a structure of
a A-chain complex. Since W is the 1-skeleton of X, Cy(W,) is a sub-chain complex
of Cy(X). To be precise, C;(W,) = C;(X,,) or 0 according to whether 0 < i <1
or ¢ > 2. On the other hand, we have H;(X,) =0 (¢ > 1) since X,, = R". Hence
we see that

Ker(@l) = Im(62) = CQ(XW)/Ker(ag) = CQ(X,Y)/Im(aa)

C2(X.,) is a free A-module with basis é;; (1 <4 < h < r) where é;, is a lifting 2-cell
of e =€) x -+ xel x---xef x---x el C3(X,) is generated by éipr (1 <i < h <
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k < r) where é;y, is a lifting 3-cell of &, = € x---xel x - xel x---xel x---xel.
As shown in figure 7.3.1, we have

F3(éink) = (t; — 1)éng — (tr — 1)éir + (tx — 1)é;n.

Hence, we obtain the proposition. O

Fig. 7.3.1

Problem 7.3.7 For an r-component trivial link, show the following:
(1) rankHq(Ey) =7 — 1.
(2) Ha(E,) = AT,
(3) If r > 3, then H;(E,) %2 A"~'. [Hint: Consider the elementary ideals.]

Exercise 7.3.8

(1) Show that the link group of an r-component link L has a presentation m =
(T1, -y TryQ1yen ey Quep | T1y ..., Tn—1) Such that v(z;) =¢; (1 <i < r) and
Y(ap) =1 (1<h<n-r).

(2) Show that H; (E.,) has a presentation with n—r-+ (}) generators and n—1+(3)
relations, by using the 2-dimensional cell complex W associated with the
group presentation given in (1).

Using Exercise 7.3.8, we can have the following proposition (see [Crowell-Strauss
1969] for the proof):

Proposition 7.3.9

(1) If » < 3, then Hy(E,) has a square presentation matrix. In particular,
Eo(H:(Ey)) = (AL).

(2) If r > 4, then Eo(H\(E,)) = (A)*(AL), where s = ("'). In particular,
H,(E,) cannot have a square presentation matrix if Ap # 0.

At the end of this section, we observe a homological relationship of the universal
abelian covering space of F to the other free abelian covering spaces over E. Let
v be an epimorphism from H;(E) to a free abelian group J, and let E, be the
covering space over E corresponding to the kernel of the composite homomorphism
vy :m(E) — Hi(E) — J. Then H,(E,) has a structure of a ZJ-module.
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Proposition 7.3.10

(1) If r > 2 and J = {(a) 2 Z, then Ag(H{(E,)) = (a — DAL(v(t1), ..., v(tr)).
(2) If rankJ > 2, then Aog(H1(E,)) = Ap(v(t1),...,v(tr)).

Exercise 7.3.11 Prove the above proposition by the method indicated in the fol-
lowing:
(1) If we replace v with vy in Theorem 7.1.5, we obtain a method to calculate
H,(E,).
(2) For Hi(E,), results analogous to those in Proposition 7.3.4 hold.
(3) Apply Lemma 7.3.2 by noting that the g.c.d. of the vvy(zy) — 1's (k =
1,2,...,n) is equal to a — 1 or 1 according to whether rankJ is 1 or greater
than 1.

By comparing Cy(E,) with Cy(E, ), we obtain the following (see [Kawauchi 1978]):
Proposition 7.3.12

rankZH H2 (E,,)
rankzy H1(E,)

> ranky Ho(E,)
> ranka Hy (E,).

In the above proposition, the inequalities hold even when J = {1}. Hence by
combining the first inequality with 7.1.2, we have the following corollary:

Corollary 7.3.13 0 < (L) <r — 1.

We consider the special case that J = (¢) and v is given by v(t;) = ¢ for all <.
Then E, is constructed using a Seifert surface (cf. 5.4) and has a special meaning.
In the following proposition, which is proved in [Sakuma 1979], we denote this E,
by E and the covering projection E, — E, by ¢:

Proposition 7.3.14 For r > 2, we have the Z(t)-exact sequence
0 — qHi(E,) — Hi(Ew) — (Z(t)/(t = 1))"" — 0.
In particular, we have

Ao(guHi(Ey)) = Ao(Hi(Eso))/(t = 1) = Ap(t,...,t)/(t = 1)"72

Definition 7.3.15 The Hosokawa polynomial of a link L, denoted by ApL(t) is the
polynomial Ay (t,...,t)/(t — 1)"2. (cf. Exercise 5.4.2.)

The following theorem was proved by [Hosokawa 1958]:

Theorem 7.3.16
(1) A(t) satisfies the following three conditions: (1-1) Ar(t) = AL(t™!) and
the multiplicity of the factor (t — 1) in AL(t) is even (possibly zero), (1-
2) the degree (as a Laurent polynomial) deg Ay (t) is even. (1-3) when we
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set A\;p, = Link(K;, K}) or — 219(7&1’)9 Link(K;, K}) according to whether
i# hori=h, any (r — 1) minor of the square matrix (\;;,) of size r is equal
to +AL(1).

(2) For any r > 2 and for any integral Laurent polynomial A(t) which satisfies
the conditions (1-1) and (1-2), there is an r-component link whose Hosokawa
polynomial is equal to A(t).

7.4 Torres conditions

Here we describe some well-known conditions, called the Torres conditions, which
the (0-th) Alexander polynomial satisfies.

Theorem 7.4.1 (Torres conditions) The Alexander polynomial AL (ty, ..., t.) of
an r-component link L = K; U---U K, has the following properties:

(1) AL(t,...,t) = ALt ... 870,

(2

(@ = 1)/(ts — D)}AL (1) ifr =2
B = DAL (b, te) ifr >3,

AL(tl, ceyteoy, 1) = {

where L/ = Kl U---u Kr,1 and )\l = Lll’lk(Kz,Kr)

Proof. For (1), we show the following strengthened result:
APyt = AP

for 8 = B(L) by the Blanchfield duality of Appendix E. (c¢f. Lemma 7.2.7 and
Proposition 7.3.4(2).) In fact, by Theorem E.2 applied to the localization at each
prime factor of Agﬁ )(tl, ..., tr), we see that the B-th characteristic polynomial A’
of the A-module H,(E,,dE,) is equal to A%ﬂ )(tl_l, ...,t71) up to multiplication
by a unit of A. On the other hand, we see that the following sequence induced
from the homology exact sequence of the pair (E,,dE.,)

TH,(0E,) — TH;(E,) — TH;(E-,0E.) — THy(E-)

is exact, because TH;(0E.,) = H;(0E,) for all j. Since there is a A-epimorphism
®;_1A/(t; — 1) - TH;(OE,), we see from Lemma 7.2.7(2) that A(Lﬁ)(tl, ceayty)
and A(Lﬂ ) (t7',...,t!) are equal up to multiplication by a unit of A and a factor
of [Ti_,(t; — 1). Then the desired result follows. For (2), let E’ be the exterior
of L'. Then the exterior E of L is obtained as F = F' — intN(K,). Let v be
the natural composite epimorphism 71 (E) — m(E') — H1(E') = (t1,...,tr—1 |
[t;,tn] = 1), and let E, be the covering space over E corresponding to the ker-
nel of v. Let p : E} — E’ be the universal abelian covering of E’. Then E,
is identified with p~*(E). By the excision isomorphism, we have H.(E,E,) =
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H,(p"'(N(K,)),p ' (ON(K,))), and hence Hy(E/,E,) = 0. Let A’ be the Lau-
rent polynomial ring on (r — 1) variables t1, ..., t,—1. Then the above isomorphism
is a A’-isomorphism, and we obtain Hz(E., E,) = At ...ti‘:‘ll — 1). By the
homology exact sequence of the pair (Efy, E,), we have the exact sequence

Hy(E.) — Hy(E,, E,) — H\(E,) — H\(E,) — Hi(E,, E,) = 0.

Noting that Hz(E7) = 0 if A(ty,...,t,—1) # 0 (Exercise 7.3.5), we obtain the
desired result from Proposition 7.3.10 and Lemma 7.2.7 (2). O

Theorem 7.4.1(1) can also be proved by using either dual presentations of a
link group (cf. [Torres-Fox 1954]) or the duality of Reidemeister torsion (cf. [Milnor
1962]). Further, in Theorem 7.4.1, by using (2), (1) can be refined as follows:

Theorem 7.4.2 AL(ty, ..., tr) = (_1)%11)1 '--tlr)TAL(tfly .o, t71), where b; = 1 —
2 1<n(iy<r Link(K;, Kp) (mod 2).

Exercise 7.4.3 Prove the theorem above using the following method:

(1) In case there is a component K; such that Link(K;, K}) # 0 for every k # 1,
use induction on the number r of the components of L.

(2) Otherwise, adjoin a new component Kj such that Link(Kp, K;) #0 (1 <i <
r). Then the Alexander polynomial of Ky U L satisfies the desired result by
(1). Applying Theorem 7.4.1(2), the theorem is proved.

Exercise 7.4.4 Show that the Alexander polynomial Ar(p, ) of the (p, g)-torus knot
T (p,q) is given by
1 - 1)(t-1)
A ty=~—— 7~ 7
T(PMI)( ) (P — 1)(ta — 1)

by using the knot group presentation given in Proposition 6.1.16. Also, show that
the Hosokawa polynomial AT(nP)nq) (t) of the n-component torus link T'(np, ng)
is given by -

A _ _ Pnpq

AT (mp ) (© Prp(t)pnq(t)’
where we let p., (t) = (1—t™)/(1—t). [Hint: By noting that T'(np, nq) is a satellite of
T(p, q), consider a suitable Mayer-Vietoris exact sequence for H.(E (T (np,nq)eo).]

Supplementary notes for Chapter 7

In [Rolfsen 1976], we can find a nice explanation of link modules using the surgery
description of links. [Bailey 1977] and [Nakanishi 1980] gave a characterization
of presentation matrices of link modules of 2-component links using this method.
From this characterization, it is shown in [Hillman 1981’] that the Torres conditions
are insufficient to characterize the Alexander polynomial, i.e., there is a 2-variable
polynomial which satisfies the Torres conditions but is not the Alexander poly-
nomial of a link. See [Hillman 1981] for a detailed study of Alexander ideals. For
further relations between Alexander invariants and the homology of finite abelian
coverings, see [Mayberry-Murasugi 1982] and [Sakuma 1995].



Chapter 8
Jones type polynomials I:
a topological approach

In this chapter, we discuss the following polynomial invariants of a link: the Conway
polynomial, the Jones polynomial, the skein polynomial, the @ polynomial and the
Kauffman polynomial.

8.1 The Jones polynomial
For a link diagram D, let |D| denote the unoriented diagram. A state for |D| is

a diagram obtained by replacing each crossing K of |D| with JCor >X; the result
is a union of mutually disjoint simple loops. One state of the diagram shown in
figure 8.1.1a is illustrated in figure 8.1.1b.

3

a: a diagram b: a state

Fig. 8.1.1

The number of states of a diagram with n crossings is 2. For example, all the
states of the link diagram in figure 8.1.1a are illustrated in figure 8.1.2. Given a
state S for |D|, we assign an independent variable A or B, which we call a weight
for S, to each crossing K of |D|, according to whether the crossing changes into
J(or X in S. In other words, assigning A and B to a neogborhood of a crossing
of |D| as shown in figure 8.1.3, we choose A or B of the regions which connect in
S as the weight of the vertex for S. Let (|D|/S) denote the product of all weights
for a state S. For example, for the diagram |D| of figure 8.1.1a and the first state
S of figure 8.1.2, we have (|D|/S) = BBAB = AB3. Let |S| be the number of
components of S. We define the bracket polynomial of | D| by the following identity:

(D) = (IDI/8)8,
s

where the summation is taken over all states for | D] and § is a variable independent

of A and B.

Exercise 8.1.1 Compute the bracket polynomial {|D}} for the diagram |D| of figure
8.1.1a. Find a diagram which presents the same knot as |D| but does not have the
same bracket polynomial.

99



100 CHAPTER 8 JONES TYPE POLYNOMIALS I

09 &% &9 &9
09 &3 09 &9

Fig. 8.1.3

By this exercise, the bracket polynomial is not a link invariant, but we can modify
it to become a link invariant, as we shall explain. Let O™ denote an n-component
trivial link diagram without crossings and let O = O.

Proposition 8.1.2 The bracket polynomial has the following properties:

0 (o"h = o,

1) Xy = A00) + B{X).

2) Xy = BOO + A(X).
Here, \/\, )(and X denote diagrams which are identical except inside the depicted
regions.

We note that (2) differs from (1) by a 90° rotation.

Remark 8.1.3 We can employ Proposition 8.1.2 as the definition of the bracket
polynomial.
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Exercise 8.1.4 Prove Proposition 8.1.2 and confirm Remark 8.1.3.

Let Do D’ be a link diagram obtained as a split union of two link diagrams D and
D’ so as not to cause extra crossings.

Exercise 8.1.5 Prove (|D o D'|) = (|D|){|D']}.

To construct a link invariant from the bracket polynomial, we must arrange that
it is invariant under the three types of Reidemeister moves. For this purpose, we
investigate how the bracket polynomial behaves under the Reidemeister moves.

Lemma 8.1.6
() = (A+ B8)(™).
(Y) = (B + 486)(™).

Proof. By Proposition 8.1.2, we have (6) = A(U) + B(5). By Exercise 8.1.5,
we have () = (|O]) () = 6(*). Thus we have the first identity. The second
one follows similarly. ]

In particular, this lemma means that if the bracket polynomial is to be invariant
under the type I move, then we must have A = B or § = 1 in which case it becomes
a trivial invariant.

Exercise 8.1.7 Characterize the bracket polynomial when A = B or § = 1. Explain
the reason why we are not interested in the bracket polynomial in this case.

Setting aside the type I move for a while, we consider only the moves of types II
and III.

Definition 8.1.8 Two (unoriented) diagrams of links, |D| and |D’|, are regularly
isotopic if they differ by a finite sequence of the Reidemeister moves of types II,
III and IV (and ambient isotopies of R2). (Cf. 1.1.)

The notion of regular isotopy naturally occurs when we deform a knot formed from
a rubber band with the twist of the band taken into consideration. First of all, we
modify the bracket polynomial to be a regular isotopy invariant.

Lemma 8.1.9 () = ABQ() + (A2 + ABS + B)(X).
Proof. By Lemma 8.1.6, we have
(%) = A + B(X)
= A{BOQ) + ACX)} + B(B + 48)(X).
Hence the desired identity is obtained. O

Thus, when we take AB = 1 and A? + ABé& + B? = 0, the bracket polynomial
is invariant under the move of type II. Then we can see from similar calculations
that these relations also make the bracket polynomial invariant under the moves
of types III and IV.
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Exercise 8.1.10 Verify this assertion.

Thus, by taking B = A7, § = —(A? + A~2), the bracket polynomial becomes a
regular isotopy invariant. From now on, we assume that A, B and § are chosen in
this way. The observation above is summarized as follows:

Theorem 8.1.11 Let |D| be an unoriented link diagram. Let {|D|) be the Laurent
polynomial (in A) defined by the rules:

(0) (|0]) = {=(4* + A}

1) (X) = )( + A7),

2) (X) = )() + A(X).
Then { ) is a regular isotopy invariant.
We return to the move of type L. If a knot is formed from a rubber band as stated
after Definition 8.1.8, then the Reidemeister move of type I corresponds to adding
a full twist to the band. This fact that the move of type I changes the twist shows
a crucial difference between the move of type I and the other moves. Recall the
writhe w(D) of an oriented diagram D, defined in 1.1. For any orientation, we
have w( ) = w(™) — 1 and w(¥) = w(*~) + 1. Using this observation, we have
the following theorem:

Theorem 8.1.12 The Laurent polynomial V(D; A) (in A) defined by the identity
V(D; A) = (=A%) PYID|)/{~(A% + A"%)}

for an (oriented) diagram D of a link L is an invariant of the link type of L.

Remark 8.1.13 The reason we divide the bracket polynomial by {—(A? + A~2)}
is not serious. It is only done so that we have the identity V(O; A) = 1.

Proof. The invariance under the moves of types II and III follows from Theorem
8.1.11 and the fact that the writhe does not change under them. We have

V(65 4) = (-4%) ) /(- <A2+A 2)}

(—A%) eI (A8 () (A2 + A72))
(—A%)~ ><U>/{—<A2+A-2>}

V(~; A).

I

I

Similarly, we have V(B/; A) =V (~7; A). Thus, it is also an invariant of the type I
move. g

We denote V(D; A) by V(L; A) and call it the Jones polynomial of L.
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Exercise 8.1.14 Compute the Jones polynomial of a suitable link and, in particular,
for a knot with trivial Alexander polynomial.

As seen in this exercise, it turns out that the Jones polynomial is a rather strong
invariant. The Jones polynomial was first introduced in [Jones 1985] and the defi-
nition given here is due to [Kauffman 1987’]. In 8.4, we shall observe to what extent
the Jones polynomial is strong (that is, how many links have the same Jones poly-
nomial). Here, we should emphasize that we have obtained a link invariant by a
very simple method.

8.2 The skein polynomial
We first state a characterization of the Jones polynomial defined in 8.1.

Theorem 8.2.1 For link diagrams, we have the following identities:
(J1,) V(0; A) = 1.
(Ji,) AV K A) — AV A) = (A2 — A2V (G A).

Proof. (J14) is clear. Forgetting the orientation, we obtain from Theorem 8.1.11
the following identity:

AQKY — A710X) = (A2 — A 2)00).

Recalling the orientation, we obtain from the identities w(?<) = w()() + 1 and
w(X) = w(jC) — 1 the following identity:

AWK A) — AV (X A)

- A4(_A3)—w(j()—1<X> _ A—4(_A3)Aw(jC)+1<X>
= (- 4% 700 La10X) - 40K}

= (4% (472 - 4%)0)

=(A2- V0G40

By taking t1/2 = A=2, (J;,) and (J1z,) change into the following identities:

(-]1) V(O;t) =1.

(In) VKt =tV (OKt) = (1172 — /2 v (O 1),

From now on, we assume that the variable of the Jones polynomial is as above.
Let us compute the Jones polynomial for a few examples using (Jr) and (Jyr).

Ezample 8.2.2.
(1) =1V (00) —tv (Q0) = (¢1/2 — - 1/2)v (OD). Hence, V (02) = —t1/2 —t=1/2,
@) =V () — v (@) = /2 — t-1/2)v (D). Hence, V() = —¢5/2 — ¢1/2,
3) 7 v(@) — v (@) = /2 — t=1/2)v (@)). Hence, V(D) = —t4 + 3 +¢.
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O
@) O
7\ /' \
©) ,O O O
O O O O
Fig. 8.2.1

As seen from these examples, the Jones polynomial of any link can be calculated
by using only (J1) and (J1). It is convenient for our calculation to consider a binary
resolution tree, shown in figure 8.2.1.

Here, the central, left and right circles in each o’o‘o stand for either X, X and j(,
or X, A and ). Further, each bottom circle corresponds to a trivial link. By a
calculation similar to Example 8.2.2(1), we have

V(On) — (_t1/2 _ t—1/2)n—1'

Thus, the Jones polynomial of every link can in principle be calculated by tracing
back a binary resolution tree from the bottom trivial links. Two links with the
same binary resolution tree are said to be skein equivalent. (A skein is a thread
wound in a loose, elongated coil.) To give the rigorous definition, we call a link
triple (L4, L—, Lo) a skein triple if there is a link diagram triple (D, D_, Dy) of it
whose component diagrams are mutually identical except in a neighborhood triple
where it is consistent with (X, X, ().

“ ”

Definition 8.2.3 The Skein equivalence is an equivalence relation “ ~” on the set
of all links generated by the following:

(0) if L and L' belong to the same type, then L ~ L/,
(1) Ly ~ L', and Lo ~ L{ imply L_ ~ L',
(2) L~ L" and Lo ~ L), imply Ly ~ L,

for skein triples (Ly,L_, Lo) and (L', ,L", Lg).

As seen from the calculation method above, the Jones polynomial is invariant
under skein equivalence. Moreover, we see that we may adopt (J1) and (Ji1) as
a definition of the Jones polynomial. (In this case, we must note that Theorem
8.1.12 is needed to see that it is well-defined. Though it can be directly proved
by Theorem 8.2.6, it would be much harder than Theorem 8.1.12.) The following
theorem shows that the one-variable Alexander polynomial A(L;t) = Ap(¢) (see
5.4) is also invariant under skein equivalence.
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Theorem 8.2.4 The one-variable Alexander polynomial A(L;t) (after suitable mul-
tiplication by +t™/ 2) satisfies the following identities:

(A1) A(O;t) = 1.
(A1) A(Ly;t) — A(L_;t) = (t1/2 —t=Y2)A(Lg; t).

Proof. We consider Seifert surfaces for L, ,L_ and Ly as shown in figure 8.2.2.
Taking certain bases of the first homology groups, we can assume that L, L_ and
Lg have Seifert matrices M, M_ and My such that

_{a u _fa+1 wu
M+_(,UI MO), M—_< o MO),
where u is a row vector and v’ is a column vector. When we define the one-variable
Alexander polynomial A(L;t) of a link L to be
(=1)"det(t/2 M’ —t~Y/2 M)

where M is a Seifert matrix of L and n is the size of M, we obtain the desired

result by an easy calculation. (]
Fig. 8.2.2

To avoid confusion, we use the notation A*(L;t) for A(L;t) satisfying the iden-
tities in Theorem 8.2.4. This polynomial is uniquely determined (without ambi-
guity concerning multiplication of a unit +¢t™) and is called Conway’s normalized
one-variable Alexander polynomial. Moreover, when we replace t'/? — t=1/2 with
z, A*(L;t) changes into a polynomial in z (without a negative power term) which
we call the Conway polynomial and denote by V(L; z).

Exercise 8.2.5 Compute the Conway polynomial for several links.

An analogy between (A;), (An) and (J1),(Ji1) leads us to the existence of the
following Laurent polynomial invariant:

Theorem 8.2.6 There is a Laurent polynomial invariant P(L;a,z) € Zla, a1,
z,271] of the type of a link L which is determined uniquely by the following
identities:

(P1) P(O) =1.

(Pu) a~1P(K) — aP(X) = 2P(0).

The invariant P(L;a,z) is called the skein polynomial of L. (It is also called
the twisted Alexander, HOMFLY, two-variable Jones, FLYPMOTH or LYMPH-
TOFU polynomial). The skein polynomial was introduced by [Freyd- Yetter-Hoste-
Lickorish-Millett-Ocneanu 1985] and its existence can be proved directly using a
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binary resolution tree (see [Lickorish-Millett 1987]). We shall discuss it from the
viewpoint of state models in 8.5 and from the viewpoint of representation theory
in Chapter 9.

Exercise 8.2.7 Compute P(L;a, z) for several links L. Also, sketch the proof of
Theorem 8.2.6.

The one-variable Alexander polynomial (Conway polynomial) and the Jones poly-
nomial can be derived from the skein polynomial as follows:

Proposition 8.2.8
A*(L;t) = P(L; 1,82 —t71/2),
V(L;t) = P(L;t,¢/2 —t1/2).
We see now that the skein polynomial can be re-defined via an invariant of regular
isotopy.
Definition 8.2.9 The R-polynomial of a link diagram D is a regular isotopy invari-
ant R(D;a,z2) € Z[a,a™ !, 2z,271] of D such that
(R1) R(O) = 1.
(Rir) RCK) = RCX) = zr(().
NP ) A - N~
(Rin) R(Y) = aR(™), R(E) = a™'R(™).
Exercise 8.2.10 Show that we can omit one of the relations in (Ryr). Also show

that the R-polynomial of each link diagram is uniquely determined by Definition
8.2.9.

The skein polynomial can be defined from the R-polynomial as follows (and con-
versely the R-polynomial is defined from the skein polynomial in this way):

Theorem 8.2.11 For any diagram D of a link L, we have
P(Lia™,2) = a VP R(D;a, 2).

This suggests that the variable a measures a twisting information on a link. If
we say that the one-variable Alexander polynomial is an invariant ignoring this
twisting information, then what can we say about the Jones polynomial or more
generally about the skein polynomial? What topological meaning do they poten-
tially have? There remain many questions to be answered.

8.3 The @ and Kauffman polynomials
We sometimes consider a quadruple

A, X0

instead of a skein triple (X,X,)C) associated with a link diagram D. It is also
denoted by (D4, D_, Dy, D) for D or (Ly, L_, Lo, L) for the link L pre-
sented by D. The quadruple (|D.|,|D—|,|Dol,|Deo|) of unoriented link diagrams
is presented as (X, X, )(, >X). We denote by |L| the link obtained from a link L
by forgetting the orientation.
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Theorem 8.3.1 There is a Laurent polynomial invariant Q(|L|;z) € Z[z,z™"'] of
an unoriented link |L| which is invariant under positive-equivalent links (cf. 0.3.1)
and uniquely determined by the following identities:

@) Qon=1.
(@Qm) QCX) +Q(X) = 2{Q00) + Q(X)}.

This theorem can be proved directly using unoriented link diagrams (cf. [Brandt-
Lickorish-Millett 1986]). An algebraic proof of this theorem as well as of Theorem
8.2.6 is known.

Exercise 8.3.2 Compute the Q-polynomial for several links and give a sketch of
the proof of Theorem 8.3.1.

Considering the Q-polynomial instead of the Conway polynomial, we may obtain
a new link type invariant in place of the skein polynomial by an argument similar
to that used for the establishment of Theorem 8.2.11 (cf. [Kauffman 1990]).

Theorem 8.3.3 For an unoriented link diagram |D|, there is a regular isotopy
invariant A(|D|;a,z) € Zla,a™*,xz,271] which satisfies the following identities:
(A A(JO]) = 1.
(Am) ACK) + ACX) = 2{A00) + ACX)).
(Am) ACY) = aA(™), ACE) = a"A(T).
Further, if we take
F(L;a,z) = a~*PIA(|D|; a, z)

for a link L represented by D, F(L;a,x) is an invariant of the type of L.

This invariant F(L; a,z) of L is called the Kauffman polynomial. Clearly, we have
F(L;1,z) = Q(|L[; ).

Exercise 8.3.4 Compute the Kauffman polynomial for several links and give a
sketch of the proof of Theorem 8.3.3.

Exercise 8.3.5 For a quadruple (D, D_, Dy, Dy,) associated with a diagram D
of a link L, show that w(D;) = w(Duo) + 2v + 1 for some integer v. Using this
integer v, show that

aF(Ly;a,2) +a ' F(L_;a,z) = 2{F(Lo;a,z) + a~* F(Loo; a, 2)}.

8.4 Properties of the polynomial invariants

We describe some properties of the Jones, skein and Kauffman polynomials, defined
in 8.1, 8.2 and 8.3. First, we prepare some notation used in this section. For a link
L, 4L denotes the number of components of L. We denote a split union of two links
L; and Ly by Lj + Ls. The n-fold cyclic branched covering space over S with
branch set L is denoted by M, (L). We can directly obtain the following properties
from the recursive definition of the skein polynomial, given in Theorem 8.2.6 (cf.
[Lickorish-Millett 1987]):
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Theorem 8.4.1

(1) P(-L;a,2z) = P(L;q, z)

(2) P(L*;a,2) = P(L; —a™1, 2).

(3) For any connected sum Li#Ly of Ly and Lo,
P(L1#Ls;a,z) = P(L1;a,2)P(Lo;a, z).

(4) P(Ly + Lo a,z) = {(a=! — a)/2} P(L1;a,2)P(Ls; a, 2).

(5) For any link L, P(L;a,a™! —a) = 1.

(6) P(La —-a, '—Z) = P(L7 a, Z)a
P(L;a,—z2) = P(L;—a,2) = (-1)*"1P(L;aq, 2).

Some topological interpretations are well-known for the evaluation of the one-
variable Alexander polynomial at a root of unity (see Exercise 5.5.5). Likewise,
the evaluations of the Jones polynomial at some roots of unity have topological
meanings.

Theorem 8.4.2
(1) V(L;1) = (-2)#-1,
(2) V(L; -1) = A*(L; —1).
(3) V(L;e*™V=1/3) = 1,
)

fHL—1 r . .
(4) V(L; v=T) = \/‘ (—=1)AE)  (if L is proper),
(otherwise).
(5) V(L; 627r\/_/6) —6(L)( /TT)IL-1(/=3 yrankHi(M2(L)iZs) where §(L) =

For the proof, see [Lickorish-Millett 1986°], [Lipson 1986] and [Murakami, H. 1986,
1986°]. (In particular, the sign of §(L) in (5) is determined in [Lipson 1986].) As an
evaluation of the skein polynomial, the following is known (cf. [Lickorish-Millett
1986):

Theorem 8.4.3 P(L;/—1, /1) = (y/=2)r2rkH1(Ms(L)iZ2)

As we have seen in Chapter 1, any link diagram can be changed into a set of disjoint
simple closed curves, called the Seifert circles, by smoothing all the crossings.
Moreover, using this fact, we can deform any link into a closed braid. The following
theorem, given in [Murakami,H. 1987}, is related to the definition of the skein
polynomial via braid groups discussed in the next chapter:

Theorem 8.4.4 For a diagram D of a link L with n Seifert circles and mutually
independent variables a;(i = 0,1,...,n), we have the identity:

ag P P(L;a0,2) = Z a;"PYP(L; a;,2)Fy(ag, . .., an),

i=1

where ( ) )
aga;~ —ag ;)
Fi(ao,...,an): H “—‘-—‘]:T—-—jl—-—-
1S (%%~ 4 65)
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Using the fact that choosing a;, z appropriately makes the skein polynomial change
into the one-variable Alexander polynomial or the Jones polynomial, we obtain
from Theorem 8.4.4 the following corollary (cf. [Murakami,H. 1987]):

Corollary 8.4.5 (1) If a link L has a diagram D with three Seifert circles, then
P(L;a,t'/? — t=1/2) is expressible by either A*(L;t) and w(D) or V(L;t) and
w(D).

(2) If a link L has a diagram D with four Seifert circles, then P(L;a,t'/2 —t~1/2)
is expressible by either A*(L;t),V(L;t) and w(D) or V(L;t), V(L;t™1) and w(D).
Moreover, A*(L;t) can be expressed by V(L;t),V(L;t™1) and w(D).

(3) If a link L has a diagram D with 5 Seifert circles, then P(L;a,t'/?> —t=1/2) is
expressible by A*(L;t),V (L;t), V(L;t™ 1) and w(D).

From the proof of Theorem 8.4.4 in [Murakami,H. 1987], we also obtain the fol-

lowing estimate on the braid index which is given in [Morton 1986] and [Franks-
Williams 1987):

Theorem 8.4.6 For a diagram D with n Seifert circles, we have the following
inequality:

w(D) — (n—1) < l—deg,P(L;a,z) < h—deg,P(L;a,z) < w(D)+ (n—1),

where by l—deg, and h—deg, we denote the minimal and maximal degrees of
P(L;a, z) regarded as a polynomial in a, respectively.

The following theorem, which is given in [Lickorish-Millett 1986] and [Morton
1986’], shows a big difference between the Jones polynomial and the one-variable
Alexander polynomial :

Theorem 8.4.7 Suppose that L’ is obtained from a link L by reversing the ori-
entation of one component K of L. Then we have V(L';t) = t 3’V (L;t), where
A = Link(K, L — K).

Some evaluations of the Q-polynomial are summarized here (cf. [Brandt-Lickorish-
Millett 1986)).

Theorem 8.4.8
(1) Q(IL[;1) = 1.
(2) Q(|L|; —1) = (—3)rankH1(M2(L):Z3) (compare 8.4.2(5)).
(3) Q(ILI;2) = |A*(L; —1)|*.
(4) Q(L|;—2) = (=2)#1.

The following theorem shows that the Kauffman polynomial and the skein poly-
nomial are related via the Jones polynomial (cf. [Lickorish 1986]):

Theorem 8.4.9 F(L;—t3/4, /4 +¢t~1/4) = V(L;1).

The following theorem shows that these polynomial invariants are not complete
invariants (cf. [Kanenobu 1986,1989’)):
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Theorem 8.4.10 There exist infinitely many knots with the same skein polynomial
(and hence with the same Jones and the same Alexander polynomials). There
exists a pair of knots with the same Kauffinan polynomial.

We conclude this section with an application of the Jones polynomial to alternating
links, which is one of the most interesting applications of the Jones polynomial.
Compare [Murasugi 1987,1987’] for the detailed argument.

Definition 8.4.11 A link diagram is alternating if an over-crossing and an under-
crossing appear alternately as one goes along each component. A link is alternating
if it possesses an alternating diagram.

A

For example, figure 8.4.1a is alternating, but figure 8.4.1b is not alternating, though
they represent the same link type.

Fig. 8.4.1

Definition 8.4.12 A link diagram is reduced if there is no crossing as shown in
figure 8.4.2 when we consider that the diagram is on 52, where each square means
a diagram of a tangle.

X A

Fig. 8.4.2

We have the following theorem:

Theorem 8.4.13 For any connected diagram D, we have the following inequality:
h—degV(D; A) — I—deg ,V(D; A) < 4¢(D),

where c¢(D) is the crossing number of D. Further, if D is alternating and reduced,
then the inequality can be replaced by equality.
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8.5 The skein polynomial via a state model

We show here the existence of the skein polynomial using a certain state model on
a link diagram whose proof is due to [Turaev 1988] and [Jones 1989]. All proofs,
however, are omitted. Let D be a link diagram. Fix a positive integer n.

Definition 8.5.1 An n-state on D is a function which sends each segment of D to
an element of the set {—-n+1,-n+3,...,n—3,n—1}.

Let S be an n-state on D. We define a weight g(D, S;v) of S at a crossing v as in
figure 8.5.1, where the numbers 7 and j denote the values of the segments given
by S and q denotes a variable. We take g(D, S;v) = 0 for any state S and any
crossing v except the above cases. We define G(D, S) = [[¢(D, S;v), where the
product is taken over all crossings of D. We take G(D, S) = 1 if D does not have
any crossing.

We consider a smooth (possibly non-simple) planar loop C defined by a func-
tion a(t) (0 <t < 1) such that |a'(t)] = 1 and a(0) = a(1). Let e1(¢) = a/(t). Let
ea2(t) be a vector obtained by turning the vector e;(¢) 90° anticlockwise. Then the
curvature of C is a a real-valued function k(t) defined by € (t) = (t)ea(t). The
rotation number rot(C) of C is defined by = fol k(t)dt. The rotation number of
a component of a link diagram is defined to be the rotation number of a smooth
loop obtained by rounding each corner off. Thus, for a simple planar loop C, we
have that rot{C) is +1 or —1 according to whether it is oriented counterclockwise
or clockwise.

Now we consider a link diagram D and an n-state S on D. Let d(D, S) and
s(D, S) be a diagram and a state obtained from D and S by changing each crossing

of the type 2% into ©){. Then we see that if G(D, §) # 0, then s(D, §) is constant
on each component of d(D,S). In this case, we define [(D,S) = g2oc Tot(@)s(C)
where the sum is taken over all components C of d(D, S) and s(C) is the value of
s(D,S8) on C.

Deﬁnition 8.5.2 For a link diagram D, we define
palD) = (=) S 6(D,5) [(D,5),
s

where the sum is taken over all n-states S on D.

Theorem 8.5.3 p, (D) is an invariant of the type of a link presented by D and we
have the following identities:

n

(p1) Pa(0) = L=
(p11) ¢ "2n(X) = ¢"Pa(X) + (g — ¢ H)pa 00) = 0.

The proof is complicated, but elementary. Taking n = 1,2,3, ..., we can deduce
from this theorem the existence of the skein polynomial stated in 8.2.
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\/\ . g9(D,S;v)=—q .

(i#7): g(D,Sv)=1
(i<j): 9(D,Siv)=q—-q".

9(D, S;v) = —q.

(i#35): 9(D,Sv)=1.

l' .
y A B
(i<j): g(D,Sv)=q"'—q.
X

Fig. 8.5.1

Supplementary notes for Chapter 8

It is known that there exists a pair of 2-bridge knots with the same skein polyno-
mial but with distinct Kauffman polynomials and, conversely, a pair of 2-bridge
knots with the same Kauffman polynomial but with distinct skein polynomials. (cf.
[Kanenobu 1989’].) In this sense, the skein polynomial and the Kauffman polyno-
mial are distinct invariants. On the other hand, in [Kauffman 1991] the following
fact (due to F. Jaeger) is observed: the Kauffman polynomial can be obtained as
a certain weighted sum of the skein polynomials of links associated with a given
link. In [Kawauchi 1992] we showed how to construct a link whose skein polyno-
mial is “close”to that of a given link. For example, for any link L and any positive
integers M, N, we can find a link L*, not equivalent to L, such that the differ-
ence P(L*;a,z) — P(L;a,z) can be written as a sum of finitely many terms in the

following form:
f(@)(@® — 1)z

with f(a) € Z[a,a™!] = Z{a) and m > M. Then if we take a to satisfy a2V = 1,
we have that P(L*;a,z) = P(L;a, 2).



Chapter 9
Jones type polynomials II:
an algebraic approach

In this chapter, we discuss some algebras related to link polynomials such as the
skein polynomial in order to explain how the polynomials arise from the represen-
tation theory of algebras.

9.1 Preliminaries from representation theory

Let R be a commutative ring with unit.

Definition 9.1.1 An R-module A is an R-algebra if there is an R-bilinear map
Ax A— A, (a,b) — ab, which has the following properties:

(1) For any element a,b,c € A, (ab)c = a(bc).

(2) There is an element 1 € A such that al = la = a for all elements a € A.

A map p from an R-algebra A to an R-algebra A’ is called an algebra homomor-
phism if p(a+b) = p(a) + p(b), p(ab) = p(a)p(b) andp(ra) = Ap(a) for all a,b € A
and all A € R. Let M, (R) be the matrix R-algebra consisting of all (n,n) matrices
over R.

Definition 9.1.2 A matriz representation of an R-algebra A is an algebra homo-
morphism p : A — M, (R) for some n such that p(1) = E".

In this definition, n is called the degree of the matrix representation p, and we
denote it by deg(p) = n. For two matrix representations p and 7 of an R-algebra
A of degree n, p is said to be equivalent to 7 if there is an R-isomorphism @ :
R™ — R™ such that ®(p(a)(x)) = 7(a)(®(x)) for each a € A and each x € R".
This equivalence gives an equivalence relation among the matrix representations of
A of degree n. We say that a matrix representation p of A of degree n is irreducible!
if it is not equivalent to the direct sum

p1+ p2 i A= M, (R) ® M, (R) C Mp, 45, (R) = My (R)

of any two matrix representations p; : A — M,,(R) ({ = 1,2) such that 0 <mn; <n
and n = ny + ng, where M,,, (R) © M,,(R) is a matrix R-algebra consisting of all
the block sums X; @ X, for all X; € M,,, (R) and all X5 € M,,,(R).

From now on, we take R to be C and we call a finitely generated C-algebra
simply an algebra.

1The usual term for this is indecomposable. We use irreducible here only for “semi-simple”
algebras, for which it coincides with the concept of “irreducible” in the usual sense.
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Ezxample 9.1.8 (Group algebra). The symmetric group algebra of degree n is the
group algebra C[S,,] of the symmetric group S,, of degree n over C. We note that
S, has the following presentation:
generators 81yce+y8n—1-
relations (Sl) 8i8i+18; = Si+18iSi+1 (Z = 1, NP (2l 2)
(82) sis; =358 (Ji—jl=2).
(83) =1 (i=1,...,n—1).
The braid group algebra of degree n is the group algebra C[B,,] of the braid group
B,, of degree n over C. We see from the braid group presentation of B,, given in
1.2.1 that there is an algebra epimorphism C[B,] — C[S,,] sending a; to s; for all
i.

A sequence of integers ni,...,n, such that n=n; +---+n,, and ny > --- >
nm > 0 is called a partition of n and denoted by (ni,...,nm,). Then by A(n)
we denote the set of all partitions of n. Then we have the following theorem (see

(Iwahori 1978]):

Theorem 9.1.4 The number of the equivalence classes of irreducible matrix repre-
sentations of C[S,,] is equal to the number of the elements of A(n).

( .. . l ]<—f1boxes
«— fo boxes
«— f3 boxes

n<

«— fm boxes

Fig. 9.1.1

Let A = (n1,...,nm,m) be a partition of n. Then we can match A with a diagram
as in figure 9.1.1, which is called a Young diagram Y (\) and we can concretely
construct the irreducible matrix representation of C[S,] corresponding to A\. We
discuss below another example of an algebra (see [Iwahori 1964], [Bourbaki 1968]).

Ezample 9.1.5(Iwahori-Hecke algebra). Let g be a complex number. The Iwahori-
Hecke algebra of degree n is an algebra H,(q) defined by the following generators
and relations:
generators 1,91,---,9n-1-
relations  (H1) g¢igi+19; = gi+19:9i+1 (i=1,...,n—2).
(H2) gig; = gjgs (i —3]>2).
(H3) ¢f=(qg—1Dgi+gq (=1,...,n—1).
Thus, H,(1) and C[S,] are naturally isomorphic by the correspondence g; — s;
for all <. More generally, it is known that H,(g) and C[S,] are isomorphic for a

generic complex number q. That is, we have the following theorem (see [Gyoja-Uno
1989)):
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Theorem 9.1.6 H,(q) and C[S,,] are isomorphic if and only if q is not 0 or an m-th
root of 1 except 1 for any m with 2 <m < n.

Hence, combining this theorem with Theorem 9.1.4, we see that the equivalence
classes of irreducible matrix representations of Hy,(g) correspond bijectively with
A(n) for a generic complex number ¢ (cf. [Bourbaki 1968]).

9.2 Link invariants of trace type

We denote by B the disjoint union of the braid groups B, (n = 1,2,...) and
by ~ the Markov equivalence which is an equivalence relation on B. Then we
may identify B/~ with the set of link types (cf. Theorem 1.2.5). Throughout this
section, we adopt this identification. Let ¢ : B/. — C be a function which we
call here a link invariant. Let k : B — C be the composition of the quotient map
B — B/~ and the link invariant ¢. We denote by k, the restriction of k to B,,.
We assume that k, is a linear combination of the traces of finitely many matrix
representations of C[B,] for each n. That is, there are matrix representations

(n) : C[By] — M,,(C) and a,; € C (j =1,2,...,7m,) such that

= Z anyjtrpjn) (b)
7=1

for each element b € B, and each n. Then we denote by A,(p) the algebra
e, pjn)(C[ »]) and call it the algebra belonging to the link invariant ¢. Let

= an;p{" : Ba = An(p).
=1

Then we say that the link invariant ¢ is a link invariant of trace type if there exists
an algebra-homomorphism j, : A,(p) — Any1(p) which makes the following
diagram commutative for all n:

in

B, —— B.n

snl S"Hl

An(p) —— Anta(e),
where i,, : B, — Bj11 denotes the homomorphism defined by i,(c;) = o, for all
i(i=1,2...,n—1).
Ezample 9.2.1. The skein polynomial P is a link invariant of trace type such that
A, (P) is the Iwahori-Hecke algebra H,(q) (cf. [Jones 1987]).

Ezxample 9.2.2. The Kauffman polynomial F' is a link invariant of trace type such
that A, (F) is a g-analogue of Brauer algebra (cf. [Birman-Wenzl 1989], [Murakami,
J. 1987]).
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9.3 The skein polynomial as a link invariant of trace type

The skein polynomial P of Example 9.2.1 can be defined by induction on n from
a trace defined on the Iwahori-Hecke algebra H,(q), so that P is a natural trace
type invariant. In this section, we give a method of describing a presentation of this
trace type invariant concretely. For this purpose, we give a matrix representation
of C[B,], denoted by px, for each A € A(n). We use another presentation of the
Iwahori-Hecke algebra H,(q) by changing the parameter gq.
generators 1,91,...,9n-1.
relations (H1)Y  9igit19i = Gi+19igi+1 (1 =1,...,n—2).
(H2)  gigj =g;9: (li—3j|=2).
H3Y g¢Z2—(¢g—q¢Hgi—1=0 (:=1,2,...,n—1).

Exercise 9.3.1 Explain the correspondence of the parameter ¢ in Example 9.1.4 to
the parameter ¢ in this presentation.

Hereafter, we adopt this presentation for H,(q). As we claimed in section 9.1,
there is a one-to-one correspondence between the set of irreducible matrix rep-
resentations of H,(¢) and the set A(n) of partitions of n for a generic complex
number g. Then we denote by 7, the irreducible matrix representation of H,(q)
corresponding to A € A(n). For any complex number o € C — {0}, we define an
algebra homomorphism

pn(@) : C[By] — Hn(q)

by pn(a)(o;) = a~1g; foreachi (i = 1,2,...,n—1). Now we define p) = mxp,(e).
Let the skein polynomial P be such that

b a,q) = Z axtrpa(b

AEA(n)

Then we give a concrete presentation of ay. Let x be the box lying in the i-th row
and the j-th column of the Young diagram Y (A} of the partition A of n, shown in
figure 9.3.1.

Fig. 9.3.1
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Definition 9.3.2 The hook of x is the union of £ and the boxes lying below = and
the boxes lying in the right hand side of . The hook length of x, denoted by A(x),
is the number of the boxes in the hook of x.

In the Young diagram Y (X), we put 0 in each diagonal box and put —1 on the
boxes adjoining the boxes with the number 0 in the right side and put —2 on
the boxes adjoining the boxes with the number —1 on the right hand side. We
continue this numbering procedure on the boxes on the right hand side. Next, put
1 on the boxes adjoining below the boxes with the number 0 and put 2 on the
boxes adjoining below the boxes with the number 1. We continue this numbering
procedure. (cf. figure 9.3.2.) Thus, we can assign an integer to each box z of the
Young diagram Y (A) which we denote by £(z).

0 -1 -21]-3

1 0 -1

Fig. 9.3.2

Notation For an integer i, let [i;q] = (¢° — ¢~ %)/(¢— ¢~ ') and [0; q] = 0. Then we
put
p(niq) = [niqlln —1;4].. . [1;4]

for each n > 1 and

Dig)= [] Ma)dl

€Y (X)
for each A € A(n).
Then we have the following presentation of ay:

Theorem 9.3.3

11—t _1~ -1
ay = (—1)"“1@ H (aql(m) —alg X )) (a—a 1)
D (q) g—q! qg—qt

z€Y ()

For the proof of this theorem, we refer to [Gyoja *| and [Jones 1987].

9.4 The Temperley-Lieb algebra

We take the points P; = (i/(n+1),1) and Q; = (¢/(n+1),0) (i = 1,2,...,n) in the
boundary of the square I? = {(z,y) | 0 < z,y < 1}. An (n,n)-tangle diagram in I*
is a diagram d in I? which is given by d = |D| N I? for an unoriented link diagram
|D| in R? such that |D| N 8I? is equal to the set {F;,@Q; | i = 1,2,...,n} and
this set is disjoint from the vertices of |D|. A typical example is an n-string braid
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diagram discussed in 1.2. Two (n, n)-tangle diagrams d and d’ in I? are said to be
regularly isotopic if they can be transformed into each other by a regular isotopy
keeping 012 fixed (i.e., by a finite sequence of the Reidemeister moves of type II,
type III and type IV in intI?). We denote by D? the set of the regular isotopy
classes of (n,n)-tangles in I2. By a method similar to forming the n-braid group
B,,, we have that D} forms a semi-group with identity 1 which is represented by a
trivial n-braid diagram. Let TL,, be the algebra C[D?] over C associated with the
semi-group DI. Then the Kauffman bracket ( ) defined by the following (1)-(3)
(cf. Theorem 8.1.11) operates on the algebra T'L,:
(1) (|O] o d) = é(d) for a split diagram |O| o d where |O] is an unoriented trivial
knot diagram without crossing and d is an (n,n)-tangle diagram.
2) (X) = AQ0) + BEX).
3) X) = BOO + A(X).
Here we take A to be a fixed non-zero complex number and § = —(A4%2 + A~?) and
B=A"1
By using (1), (2) and (3), the algebra T L, is easily seen to be generated over
C by (n,n)-tangles without crossing and loop. Let e;(1 = 1,2,...,n — 1) be the
elements of D7 shown in figure 9.4.1. Then we obtain the following theorem (cf.
[Kauffman 19877]):

n—i—

“_

Fig. 9.4.1

1
see

Theorem 9.4.1 The algebra TL,, over C has the following presentation:
generators l,e1,...,en—1.
relations (TL1) ejeir1e; = e; for all possible i.
(TL2) e;e; = eje; for all 4,j with |i — j| > 2.
(TL3) e? = ée; for all i.

The algebra over C determined by these generators and relations is called the n-th
Temperley-Lieb algebra (cf. [Jones 1983]). For the n-string braid group B,,, we note
that there is a natural algebra epimorphism

p:C[B,) —TL,

sending each primitive generator o; of B, (in figure 1.2.2) to A™11 4 Ae;.
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Theorem 9.4.2 Let A € C have A*™ # 1 for any integer m with 1 < m < n. Then
there exists an element f, € TL, such that
(1) esfn=frnei=0foralli(i=1,2,...,n—1), and
(2) fn = 1+ wy, for an element w, of the subalgebra of TL, generated by
e(i=1,2,...,n—1).

Many proofs of this theorem are known (cf. [Jones 1983], [Wenzl 1987], [Lickorish
1991], [Yamada 1992], [Turaev 1994]). The uniqueness of the element f, follows
from (1) and (2). Also, we have f2 = f, and zf, = fnz for all x € TL,. This
element f, is called the Jones-Wenzl idempotent or the magic element of the n-
th Temperley-Lieb algebra T'L,. This element plays an important role in many
arguments concerning the Temperley-Lieb algebra.

Supplementary notes for Chapter 9

The origin of the results of this chapter was the discovery of the Jones polynomial
by V.F.R. Jones in [Jones 1985]. V.F.R. Jones discovered an algebra with a trace,
called the Jones algebra, in his study of index theory for subfactors of the hyper-
finite 11y factor. Then he observed that there is a representation from the braid
group to the Jones algebra; he successfully obtained a link invariant by combining
this representation with the trace on the Jones algebra. This is what is called the
Jones polynomial. Although it had been known that the Jones algebra is a quotient
of the Iwahori-Hecke algebra by a certain ideal, A. Ocneanu showed in [Ocneanu
*] that there exists a certain trace on the Iwahori-Hecke algebra which he used to
generalize the Jones polynomial to the skein polynomial. After the discovery of the
Jones polynomial, Kauffman discovered a link polynomial invariant — the Kauff-
man polynomial. Then it was shown in [Murakami, J. 1987] and [Birman-Wenzl
1989] that the Kauffman polynomial can be also expressed in terms of a trace of a
certain algebra. In [Murakami, J. 1989], parallel versions of these polynomial link
invariants are studied from the viewpoint of representation theory.



Chapter 10
Symmetries

As shown in figure 10.0.1, there are various kinds of symmetries on knots. In the
first half of this chapter, we study some relationships between symmetries and
the polynomial invariants. As an application, we explain the proof of [Kawauchi
1979] on the non-invertibility of 8;7 (see figure 10.0.2). In the latter half of this
chapter, we study the symmetry group of a knot, which essentially controls the
symmetries of a knot. We explain a (still unpublished) theory of F. Bonahon and
L. Siebenmann (cf. [Bonahon-Siebenmann *]) for a canonical decomposition of a
knot, which gives us good insight into the knot and enables us to determine the
symmetry groups of algebraic knots including 8,7 and the Kinoshita-Terasaka knot
Kkt (see figure 3.8.1a).

O & 5

d e

Fig. 10.0.1

10.1 Periodic knots

As a generalization of the symmetry shown in figure 10.0.1a, we have the concept
of periodic knots.

Definition 10.1.1 A knot K C R? is a periodic knot of period n if there is a periodic
map f of (R?, K) which satisfies the following conditions:

(1) f is 27/n-rotation about a line F in R3.
(2) FNK = 0.

121
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Let p : R® — R3/f be the projection. Put F, = p(F) and K. = p(K). Then
F, and K, are 1-dimensional proper submanifolds in R3/f = R3. We define the
linking number, Link(F,, K.), of Fi and K, to be the linking number of the knots
O, = F,U{co} and K, in the 3-sphere S = R3 U {o0}.

K
Q . \«
14 Fu
F
f ~—te O,
Fig. 10.1.1

Exercise 10.1.2 Let d = |Link(F, K.)|. Then show that d and the period n are
relatively prime.

Theorem 10.1.3 If a knot K has a prime power period n = p” where p is prime
and r > 1, then we have the following congruence:

A(K;t) = pa(t)" ' A(Ky; )" (mod p).
Here pg(t) =1+t+---+ tfi—l and = (mod p) denotes the congruence modulo p
up to multiplication by +t*.

Proof. First, we show that the above result holds for the torus knot T'(n, d) of type
(n,d), which is the “simplest” periodic knot of period n. As shown in figure 10.1.2,
we see that the quotient knot K, = T'(n, d), is a trivial knot and Link(F, K,) = d.
Thus, we obtain the desired result from the following congruence:

A(K(n,d);t) = {(t™ - Dt - DI/ - D@ - 1)}
= pa(t")/pa(t) = (pa(t))"" (mod p).
To prove the theorem for general periodic knots, we use the Conway polynomial.

Let Vy,qa(2) be the Conway polynomial of T'(n,d). Then the desired formula is
equivalent to the following:

V(K;2) = Vya(2)" 'V(Ki;2)"  (mod p).

We may assume that f is the 2w /n-rotation around the z-axis of R3. Let K also
denote the diagram of the knot K obtained by projection to the (z,y)-plane, and
let K, also denote the diagram of K, obtained as the quotient of the diagram K
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K(3,4) K(3,4),

Fig. 10.1.2

(see figure 10.1.1). Let ¢ be a crossing of the diagram K and c,. be the corresponding
crossing of the diagram K. Let K (Z,c), K_(Z,¢) and K¢(Z,c) be the f-invariant
diagrams obtained from the diagram K by replacing the crossings {f*(c) | 0 < i <
n—1} by X, X, )(, respectively. Then we obtain the following:

Lemma 10.1.4

V(K4 (Znc);z) = V(K -(Zne); 2) + 2"V(Ko(Zne); 2) (mod p).

Proof of Lemma 10.1.4. Construct the binary resolution tree T of K (Z,c) ob-
tained from the skein triples on the crossings ¢, f(c), ..., f*"1(c) (see figure 10.1.3).
Then this expresses V(K (Znc); z) as the sum of 2" terms corresponding to the
branches of T. The periodic map f induces a Z,-action on the set of branches of
T. This action fixes the branches corresponding to K_(Z,c) and K¢(Z,c), which
contribute to V(K (Znc); z) by V(K- (Znc); 2) and 2"V (Ko(Znc); z) respectively.
Each of the remaining Z,-orbits consists of p* branches for some s (1 < s < 7),
all branches of which give the same contribution to V(K4 (Z,c¢); z). Hence the to-
tal contribution of each of the remaining Z,-orbits is 0 modulo p. Lemma 10.1.4
follows. O

Proof of Theorem 10.1.8 (continued). Construct a binary resolution tree of (a
diagram of) the quotient knot K, so that each end is in one of the following two
forms (see figure 10.1.4):

(1) A diagram which is separable by the boundary of a regular neighborhood of
F,.
(2) K(d,n)s, i.e., (d,1)-cable of a meridian loop of F, for some integer d.

Let I be the number of the trivalent vertices in the resolution tree above. We
prove the theorem by induction on [. To perform this induction, we extend our
consideration to periodic links and show that the conclusion of the theorem holds
for periodic links. Suppose | = 0. Then K, is of the form (1) or (2) and hence K
is either a split link or a torus knot, so we obtain the desired congruence. Next,
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o
O/ \O
/N /N _
o o o) o) — resolution at f<(e)
SN AN AN AN :

« resolution at ¢

« resolution at f(c)

Fig. 10.1.3

we consider the general case. Let ¢, be the crossing of K, which appears in the
first step of the resolution tree of K,. Let ¢ be a crossing of K which projects
to c.. Without loss of generality, we may assume that c is a positive crossing.
Then we have K = K (Z,c¢) and for the periodic links K_(Z,c) and Kq(Zyc), the
congruence holds by the inductive hypothesis. Hence, by Lemma 10.1.4, we have
the following congruence modulo p:

V(K;2) = V(K_(Znc); 2) + 2"V (Ko (Znc); 2)
= vn,d(z)n_l{v(K*—§ z) + 2V(Kqo;2)}"
= Vn,d(z)"_IV(K*;z)",

where K,._ and K,o denote the diagrams such that (K., K.—, K.q) is the skein
triple (cf. 8.2) at the crossing c.. This completes the proof of Theorem 10.1.3. O

¢

Fig. 10.1.4

Exercise 10.1.5 Show that 2 and 3 are the only periods of the trefoil knot and that
817 does not have any periods.
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Exercise 10.1.6 For a knot K as in Theorem 10.1.3, prove the following results by
methods similar to the proof of Theorem 10.1.3:
(1) V(K;t) = V(K t)™ ! (mod p, &p(t)), where &,(t) = (—t1/2 —¢~1/2)p=1 1
(see [Murasugi 1988]).
(2) V(K;t) = V(K;t™!) (mod p,tP — 1) (see [Traczyk 1990], [Yokota 1991]).
(3) Find congruences on the skein and Kauffman polynomials similar to those in
(1) and (2) (see [Przytycki 1989], [Yokota 1991°, 1993]).

Originally, Theorem 10.1.3 was obtained as a corollary of the following explicit
formula for the Alexander polynomials in [Murasugi 1971]:

Theorem 10.1.7 A(K;t) = A(K.; t)l'I?:_OIA(O,,= UK,;w',t), where w is a primitive
n-th root of 1.

For the proof, see also [Burde-Zieschang 1985] and [Hillman 1986]. In [Davis-
Livingston 1991], the realization problem of the above formula is investigated.

Exercise 10.1.8 Prove Theorem 10.1.3 by using Theorem 10.1.7.

Exercise 10.1.9 Show that the only periods of the torus knot of type (p, q) are the
divisors of p and gq.

Finally, we note that the definition of a periodic knot is equivalent to the following.

Definition 10.1.10 A knot K C S? is a periodic knot of period n if there is a
periodic map f of (S3, K) of period n such that Fix(f) 2 S* and Fix(f) N K = 0.

The fact that the two definitions of periodic knots are equivalent is implied by the
positive solution of the Smith Conjecture, which was obtained by a synthesis of
deep theories involving the geometry and topology of 3-manifolds (cf. [Morgan-
Bass 1984]).

Smith Conjecture 10.1.11 For any oricntation preserving periodic map f of S
with Fix(f) # 0, the fixed point set Fix(f) is a trivial knot in S3.

Remark f must be a smooth (or PL) periodic map. Otherwise, there is a coun-
terexample (cf. [Bing 1964]).

10.2 Freely periodic knots

In the previous section, we treated