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Preface

This handbook is the second volume in a series devoted to self contained and up-to-date
surveys in the theory of ordinary differential equations, written by leading researchers in
the area. All contributors have made an additional effort to achieve readability for math-
ematicians and scientists from other related fields, in order to make the chapters of the
volume accessible to a wide audience. These ideas faithfully reflect the spirit of this multi-
volume and the editors hope that it will become very useful for research, learning and
teaching. We express our deepest gratitude to all contributors to this volume for their clearly
written and elegant articles.

This volume consists of six chapters covering a variety of problems in ordinary differ-
ential equations. Both, pure mathematical research and real word applications are reflected
pretty well by the contributions to this volume. They are presented in alphabetical order
according to the name of the first author. The paper by Barbu and Lefter is dedicated to
the discussion of the first order necessary and sufficient conditions of optimality in control
problems governed by ordinary differential systems. The authors provide a complete analy-
sis of the Pontriaghin maximum principle and dynamic programming equation. The paper
by Bartsch and Szulkin is a survey on the most recent advances in the search of periodic
and homoclinic solutions for Hamiltonian systems by the use of variational methods. After
developing some basic principles of critical point theory, the authors consider a variety of
situations where periodic solutions appear, and they show how to detect homoclinic so-
lutions, including the so-called “multibump” solutions, as well. The contribution of Cârjă
and Vrabie deals with differential equations on closed sets. After some preliminaries on
Brezis–Browder ordering principle and Clarke’s tangent cone, the authors concentrate on
problems of viability and problems of invariance. Moreover, the case of Carathéodory solu-
tions and differential inclusions are considered. The paper by Hirsch and Smith is dedicated
to the theory of monotone dynamical systems which occur in many biological, chemical,
physical and economic models. The authors give a unified presentation and a broad range
of the applicability of this theory like differential equations with delay, second order qua-
silinear parabolic problems, etc. The paper by López-Gómez analyzes the dynamics of the
positive solutions of a general class of planar periodic systems, including those of Lotka–
Volterra type and a more general class of models simulating symbiotic interactions within
global competitive environments. The mathematical analysis is focused on the study of
coexistence states and the problem of ascertaining the structure, multiplicity and stability
of these coexistence states in purely symbiotic and competitive environments. Finally, the
paper by Ntouyas is a survey on nonlocal initial and boundary value problems. Here, some
old and new results are established and the author shows how the nonlocal initial or bound-

v
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ary conditions generalize the classical ones, having many applications in physics and other
areas of applied mathematics.

We thank again the Editors at Elsevier for efficient collaboration.
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CHAPTER 1

Optimal Control of Ordinary Differential Equations

Viorel Barbu and C̆at̆alin Lefter
University “Al.I. Cuza”, Iaşi, Romania, and

Institute of Mathematics “Octav Mayer”, Romanian Academy, Romania
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1. Introduction

The theory of control of differential equations has developed in several directions in close
relation with the practical applications of the theory. Its evolution has shown that its meth-
ods and tools are drawn from a large spectrum of mathematical branches such as ordinary
differential equations, real analysis, calculus of variations, mechanics, geometry. Without
being exhaustive we just mention, as subbranches of the control theory, the controllability,
the stabilizability, the observability, the optimization of differential systems and of sto-
chastic equations or optimal control. For an introduction to these fields, and not only, see
[22,33,38], as well as [2,25] and [26] for a geometric point of view.

The purpose of this work is to discuss the first order necessary and sufficient conditions
of optimality in control problems governed by ordinary differential systems. We do not
treat the optimal control of partial differential equations although all basic questions of
the finite dimensional theory (existence of optimal control, maximum principle, dynamic
programming) remain valid but the treatment requires more sophisticated methods because
of the infinite dimensional nature of the problems (see [4,27,38]).

In Section 1 we present some aspects and ideas in the classical Calculus of variations that
lead later, in the fifties, to the modern theory of optimal control for differential equations.

Section 2 presents some preliminary material. It contains elements of convex analysis
and the generalized differential calculus for locally Lipschitz functionals, introduced by
F.H. Clarke [10]. This will be needed for the proof of the maximum principle of Pon-
triaghin, under general hypotheses, in Section 3.1. We then discuss the exponential rep-
resentation of flows, introduced by A. Agrachev and R. Gamkrelidze in order to give a
geometric formulation to the maximum principle that we will describe in Sections 3.5, 3.6.

Section 3 is concerned with the Pontriaghin maximum principle for general Bolza prob-
lems. There are several proofs of this famous classical result and here, following F.H.
Clarke’s ideas (see [11]), we have adapted the simplest one relying on Ekeland’s varia-
tional principle. Though the maximum principle given here is not in its most general form,
it is however sufficiently general to cover most of significant applications. Some examples
are treated in detail in Section 3.4. Since geometric control theory became in last years an
important branch of mathematics (for an introduction to the theory see [2,26]), it is useful
and interesting to give a geometric formulation of optimal control problems and, conse-
quently, a geometric form of the maximum principle. Free time optimal problems are also
considered as a special case.

In the last section we present the dynamic programming method in optimal control prob-
lems based on the partial differential equation of dynamic programming, or Bellman equa-
tion (see [7]). The central result of this chapter says that the value function is a viscosity
solution to Bellman equation and that, if a classical solution exists, then an optimal con-
trol, in feedback form, is obtained. Applications to linear quadratic problems are given.
We discuss also the relationship between the maximum principle and the Bellman equa-
tion and we will see in fact that the dynamic programming equation is the Hamilton–Jacobi
equation for the Hamiltonian system given by the maximum principle.
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1.1. The calculus of variations

In this section we point out the fundamental lines of development in the Calculus of vari-
ations. We will not impose rigorous assumptions on the functions entering the described
problems, they will be as regular as needed. The main purpose is just to emphasize some
fundamental ideas that will be reencountered, in a metamorphosed form, in the theory of
optimal control for differential equations. For a rigorous presentation of the theory a large
literature may be cited, however we restrict for instance to [8,24] and to a very nice survey
of extremal problems in mathematics, including the problems of Calculus of variations,
in [34].

Let M be ann-dimensional manifold, andM0,M1 be subsets (usually submanifolds)
of M . L :R × TM → R is the Lagrangean function,TM being the tangent bundle ofM .
The generic problem of the classical Calculus of variations consists in finding a curve,y∗,
which minimizes a certain integral

J (y)=
∫ t1

t0

L
(
t, y(t), y′(t)

)
dt (1.1)

in the space of curves

Y =
{
y : [t0, t1] →M; y(tj ) ∈Mj , j = 1,2, y continuous and piecewiseC1}.

The motivation for studying such problems comes from both geometry and classical me-
chanics.

EXAMPLES. 1. The brachistocrone.The classical brachistocrone problem proposed by
Johann Bernoulli in 1682, asks to find the curve, in a vertical plane, on which a material
point, moving without friction under the action of its weight, is reaching the lower end
of the curve in minimum time. More precisely, if the curve is joining two pointsy(t0) =
y0, y(t1)= y1, then the time necessary for the material point to reachy1 from y0 is

T =
∫ t1

t0

(
2g
∣∣y(t)− y0

∣∣)−1/2
√

1+
(
y′(x)

)2 dt.

The curve with this property is a cycloid.
2. The minimal surface of revolution.One is searching for the curvey : [t0, t1] → R,

y(t0) = y0, y(t1) = y1, which generates the surface of revolution of least area. The func-
tional to be minimized is

J (y)= 2π
∫ t1

t0

y(x)

√
1+
(
y′(t)

)2 dt.

The solution is the catenary.
3. Lagrangean mechanics.A mechanical system with a finite number of degrees

of freedom is mathematically modelled by a manifoldM and a Lagrangean function
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L :R × TM → R (see [3]). The manifoldM is the configuration space of the mechani-
cal system. The pointsy ∈M are generalized coordinates and they′ ∈ TM are generalized
speeds. The principle of least action of Maupertuis–d’Alembert–Lagrange states that the
trajectories of the mechanical system areextremalfor the functionalJ defined in (1.1).
Consider the case of a system of N material points in the 3 dimensional space, moving
under the action of mutual attraction forces. In this case the configuration space is(R3)N ,
while the Lagrangean is

L= T −U (1.2)

whereT is the kinetic energy

T =
N∑

i=1

1

2
mi |x′

i |2

andU is the potential energy

U(x1, . . . , xN )=
N∑

i=1

kmimj

|xi − xj |
,

k is an universal constant.

To make things clear we consider the simplest problem in the Calculus of variations
whenM = Rn andy0, y1 are fixed.

We consider the space of variationsY = {h : [t0, t1] → Rn; h(t0)= h(t1)= 0, h ∈ C1};
if y∗ is a minimum ofJ in Y , then the first variation

δJ (y∗)h := d

ds
J (y∗ + sh)

∣∣∣∣
s=0

= 0. (1.3)

A curve that satisfies (1.3) is calledextremaland this is only anecessary conditionfor a
curve to realize the infimum ofJ . One easily computes

δJ (y)h=
∫ t1

t0

Ly
(
t, y∗(t), (y∗)′(t)

)
· h+Ly′

(
t, y∗(t), (y∗)′(t)

)
· h′ dt

whereLy , Ly′ are the gradients ofL with respect toy andy′, respectively. Ify∗ is C2, an
integration by parts in the previous formula gives

Ly
(
t, y∗(t), (y∗)′(t)

)
− d

dt
Ly′
(
t, y∗(t), (y∗)′(t)

)
= 0 (1.4)

which are theEuler–Lagrangeequations. It is a system ofn differential equations of second
order.
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It may be proved that if the Hessian matrix(Ly′y′) > 0, then the regularity ofL is in-
herited by the extremals, for instance ifL ∈ C2 then the extremals areC2 and thus satisfy
the Euler–Lagrange system. The proof of this fact is based on the first of theWeierstrass–
Erdmann necessary conditionswhich state that, along each extremal,Ly′ and the Hamil-
tonian defined below in (1.6) are continuous.

Another necessary condition for the extremaly∗ to realize the infimum ofJ is that
(Ly′y′)� 0 alongy∗. This is theLegendre necessary condition.

Suppose from now on that(Ly′y′) is a nondegenerate matrix at any point(t, y, y′). We
set

p = Ly′(t, y, y′). (1.5)

Since(Ly′y′) is nondegenerate, formula (1.5) defines a change of coordinates(t, y, y′)→
(t, y,p). From the geometric point of view it mapsTM locally ontoT ∗M , the cotangent
bundle. In mechanicsp is called the generalized momentum of the system and in most
applications its significance is of adjoint (or dual) variable. We consider theHamiltonian

H(t, y,p)= (p, y′)−L(t, y, y′). (1.6)

If, moreover,L is convex iny′ thenH = L∗, theLegendre transformof L:

H(t, y,p)= sup
y′

{
(p, y′)−L(t, y, y′)

}
.

For example, ifL is given by (1.2) thenH = T + U and it is just the total energy of the
system. If we compute the differential ofH along an extremal, taking into account the
Euler–Lagrange equations, we obtain

dH = −Lt dt −
d

dt
Ly′ dy + y′ dp.

Thus, through these transformations we obtain theHamiltonian equations





y′ = ∂H

∂p
(t, y,p),

p′ = −∂H
∂y
(t, y,p).

(1.7)

Solutions of the Hamiltonian system are in fact extremals corresponding to the Lagrangean
L̃(t, (y,p), (y ′,p′)) = p · y′ − H(t, y,p) in T ∗M . The projections onM are extremals
for J . Roughly speaking, solving the Euler–Lagrange system is equivalent to solving the
Hamiltonian system of 2n differential equations of first order. From the mechanics point of
view these transforms give rise to the Hamiltonian mechanics which study the mechanical
phenomena in the phase spaceT ∗M while in mathematics this is the start point for the
symplectic geometry (see for example [3,28]).
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Consider now the more general case of end points lying on two submanifoldsM0, M1.
It may be shown that the first variation ofJ in y computed in an admissible variationh
(assume that alsot0, t1 are free) is

δJ (y)h=
∫ t1

t0

Ly(t, y, y
′) · h+Ly′(t, y, y′) · h′ dt + {pδy −Hδt}

∣∣t1
t0

(1.8)

where

Hδt
∣∣t1
t0

=H
(
t1, y(t1),p(t1)

)
δt1 −H

(
t0, y(t0),p(t0)

)
δt0,

pδy
∣∣t1
t0

= p(t1)δy1 − p(t2)δy0.

It turns out thaty∗ ∈ C2 is extremal forJ if y∗ satisfies the Euler–Lagrange equations (1.4)
and in addition

{pδy −Hδt}
∣∣t1
t0

= 0. (1.9)

These aretransversality conditions. In caset0, t1 are fixed, these become

p(t0)⊥M0, p(t1)⊥M1.

Since(Ly′y′) is supposed to be nondegenerate, the Euler–Lagrange equations form a sec-
ond order nondegenerate system of equations and this implies that the family of extremals
starting at momentt0 from a given point ofy0 ∈ M cover a whole neighborhoodV of
(t0, y0) (we just vary the value ofy′(t0) in the associated Cauchy problem and use some
result on the differentiability of the solution with respect to the initial data, coupled with
the inverse function theorem). We consider now the functionS :V → R defined by

S(t, y)=
∫ t

t0

L
(
s, x(s), x′(s)

)
ds

where the integral is computed along the extremalx(s) joining the points(t0, y0) and(t, y).
It may be proved thatS satisfies the first order nonlinear partial differential equation

St +H(t, y, Sy)= 0. (1.10)

This is theHamilton–Jacobiequation. This is strongly related to the Hamiltonian sys-
tem (1.7) which is the system of characteristics associated to the partial differential equa-
tion (1.10) (see [16]).

A partial differential equation is usually a more complicated mathematical object than
an ordinary differential system. Solving a first order partial differential system reduces
to solving the corresponding characteristic system. This is the method of characteristics
(see [16]).
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However, this duality may be successfully used in a series of concrete situations to
integrate the Hamiltonian systems appearing in mechanics or in the calculus of varia-
tions. This result, belonging to Hamilton and Jacobi, states that if a general solution for
the Hamilton–Jacobi equation (1.10) is known, then the Hamiltonian system may be in-
tegrated (see [3,16,24]). More precisely, we assume that a general solution of (1.10) is

S = S(t, y1, . . . , yn, α1, . . . , αn) such that the matrix( ∂2S
∂yi∂αj

) is nondegenerated. Then∂S
∂αj

are prime integrals and a general solution of the Hamiltonian system (1.7) is given by the
2n system of implicit equations:

βi =
∂S

∂αi
, pi =

∂S

∂yi
.

In fact S is a generating function for the symplectic transform(yi,pi)→ (βi, αi) and in
the new coordinates the system (1.7) has a simple form for which the Hamiltonian function
is ≡ 0. A last remark is that a general solution to equation (1.10) may be found if variables
of H are separated (see [3,24]).

We considered previously first order necessary conditions. Suppose that(Ly′y′) > 0. Let
us take now the second variation

δ2J (y)h := d2

ds2
J (y + sh)

∣∣∣∣
s=0
.

This is a quadratic form denoted by

Qy(h)=
∫ t1

t0

Ωy(t, h,h′)dt

where the new Lagrangean

Ωy(t, h,h′) =
(
Lyy(t, y, y

′)h,h
)
+ 2
(
Lyy′(t, y, y′)h,h′)

+
(
Ly′y′(t, y, y′)h′, h′).

Here(·, ·) denotes the scalar product inRn and we assumed that the matrix(Lyy′) is sym-
metric (forn = 1 this is trivial, in higher dimensions the hypothesis simplifies computa-
tions but may be omitted). Clearly, ify∗ realizes a global minimum ofJ , then the quadratic
formQ(y∗)� 0. The positivity ofQ is related to the notion ofconjugate point. A point t
is conjugate tot0 along the extremaly∗ if there exists a non trivial solutionh : [t0, t] → Rn,
h(t0)= h(t)= 0 of the second Euler equation:

Ω
y∗

h − d

dt
Ω
y∗

h′ = 0.

The Jacobi necessary conditionstates that ify∗ realizes the infimum ofJ then the open
interval (t0, t1) does not contain conjugate points tot0. If y∗ is just an extremal and the
closed interval[t0, t1] does not contain conjugate points tot0, theny∗ is a local weak
minimum ofJ (in C1 topology).
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1.2. General form of optimal control problems

We consider the controlled differential equation

y′(t)= f
(
t, y(t), u(t)

)
, t ∈ [0, T ]. (1.11)

The input functionu : [0, T ] → Rm is calledcontroller or control andy : [0, T ] → Rn is
thestate of the system. We will assume thatu ∈ U whereU is the set of measurable, locally
integrable functions which satisfy thecontrol constraints:

u(t) ∈U(t) a.e.t ∈ [0, T ] (1.12)

whereU(t)⊂ Rn are given closed subsets. The differential system (1.11) is called thestate
system. We also consider a LagrangeanL and thecost functional

J (y,u)=
∫ T

0
L
(
t, y(t), u(t)

)
dt + g

(
y(0), y(T )

)
. (1.13)

A pair (y,u) is said to beadmissible pairif it satisfies (1.11), (1.12) andJ (y,u) <+∞.
Theoptimal control problemwe consider is

min
{
J (y,u);

(
y(0), y(T )

)
∈ C, (y,u) verifies (1.11)

}
(1.14)

HereC ⊂ Rn × Rn is a given closed set.
A controlleru∗ for which the minimum in (1.14) is attained is calledoptimal controller.

The corresponding statesy∗ are calledoptimal stateswhile (y∗, u∗)will be referred asopti-
mal pairs. By solution to (1.11) we mean an absolutely continuous functiony : [0, T ] → R
(i.e.,y ∈ AC([0, T ];Rn) which satisfies almost everywhere the system (1.11). In the spe-
cial casef (t, y,u) ≡ u, problem (1.14) reduces to the classical problem of calculus of
variations that was discussed in Section 1.1. For different setsC we obtain different types
of control problems. For example, ifC contains one element, that is the initial and final
states are given, we obtain aLagrange problem. If the initial state of the system is given
and the final one is free,C = {y0} × R, one obtains aBolza problem. A Bolza problem
with the LagrangeanL≡ 0 becomes aMayer problem.

An optimal controlleru∗ is said to be abang-bang controllerif u∗ ∈ ∂U(t) a.e.
t ∈ (0, T ) where∂U stands for the topological boundary ofU .

It should be said that the control constraints (1.12) as well as end point constraints
(y(0), y(T )) ∈ C can be implicitely incorporated into the cost functionalJ by redefining
L andg as

L̃(t, y,u)=
{
L(t, u) if u ∈U(t),
+∞ otherwise,

g̃(y1, y2)=
{
g(y1, y2) if (y1, y2) ∈ C,
+∞ otherwise.
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Moreover, integral (isoperimetric) constraints of the form

∫ T

0
hi
(
t, y(t), u(t)

)
dt � αi, i = 1, . . . , l,

∫ T

0
hi
(
t, y(t), u(t)

)
dt = αi, i = l + 1, . . . ,m

can be implicitly inserted into problem (1.14) by redefining new state variables{z1 . . . , zm}
and extending the state system (1.11) to





y′(t)= f
(
t, y(t), u(t)

)
, t ∈ (0, T ),

z′(t)= h
(
t, y(t), u(t)

)
,

z(0)= 0, zi(T )� αi for i = 1, . . . , l, zi(T )= αi for i = l + 1, . . . ,m

whereh= {hi}mi=1. For the new state variableX = (y, z) we have the end point constraints

(
X(0),X(T )

)
∈K,

where

K =
{(
(y0,0, . . . ,0), (y1, z)

)
∈ Rn+m × Rn+m, (y0, y1) ∈ C,

zi � αi, i = 1, . . . , l, zi = αi, i = l + 1, . . . ,m
}
.

2. Preliminaries

2.1. Elements of convex analysis

Here we shall briefly recall some basic results pertaining convex analysis and generalized
gradients we are going to use in the formulation and in proof of the maximum principle.

LetX be a real Banach space with the norm‖·‖ and dualX∗. Denote by(·, ·) the pairing
betweenX andX∗.

The functionf :X→ R = ]−∞,+∞] is said to beconvexif

f
(
λx + (1− λ)y

)
� λf (x)+ (1− λ)f (y), 0� λ� 1, x, y ∈X. (2.1)

The setD(f )= {x ∈X;f (x) <∞} is called theeffective domainof f and

E(f )=
{
(x,λ) ∈X× R; f (x)� λ

}
(2.2)

is called theepigraphof f . The functionf is said to belower semicontinuous(l.s.c.) if

lim inf
x→x0

f (x)� f (x0).

The functionf is said to beproper if f �≡ +∞.
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It is easily seen that a convex function is l.s.c. if and only if it is weakly lower semi-
continuous. Indeed,f is l.s.c. if and only if every level set{x ∈ X; f (x) � λ} is closed.
Moreover, the level sets are also convex, by the convexity off ; the conclusion follows by
the coincidence of convex closed sets and weakly closed sets.

Note also that, by Weierstrass theorem, ifX is a reflexive Banach space and iff is
convex, l.s.c. and lim‖x‖→∞ f (x)= +∞, thenf attains its infimum onX.

We note without proof (see, e.g., [9,6]) the following result:

PROPOSITION2.1. Let f :X → R be a l.s.c. convex function. Thenf is bounded from
below by an affine function andf is continuous onintD(f ).

Given a l.s.c. convex functionf :X→ R, the mapping∂f :X→X∗ defined by

∂f (x)=
{
w ∈X∗; f (x)� f (u)+ (w,x − u), ∀u ∈X

}
(2.3)

is called thesubdifferentialof f . An element of∂f (x) is calledsubgradientof f atx.
The mapping∂f is generally multivalued. The set

D(∂f )=
{
x; ∂f (x) �= φ

}

is the domain of∂f . It is easily seen thatx0 is a minimum point forf onX if and only if
0∈ ∂f (x0).

We note also, without proof, some fundamental properties of∂f (see, e.g., [6,9,31]).

PROPOSITION2.2. Letf :X→ R be convex and l.s.c. ThenintD(f )⊂D(∂f ).

LetC be a closed convex set and letIC(x) be the indicator function ofC, i.e.,

IC(x)=
{

0, x ∈ C,
+∞, x /∈ C.

Clearly,IC(x) is convex and l.s.c. Moreover, we haveD(∂IC(x))= C and

∂IC(x)=
{
w ∈X∗; (w,x − u)� 0, ∀u ∈ C

}
. (2.4)

∂IC(x) is precisely thenormal conetoC atx, denotedNC(x).
If F :X→ Y is a given function,X, Y Banach spaces, we set

F ′(x, y)= lim
λ→0

F(x + λy)− F(x)

λ

called thedirectional derivativeof F in directiony.
By definitionF is Gâteaux differentiable inx if ∃DF(x) ∈ L(X,Y ) such that

F ′(x, v)=DF(x)v, ∀v ∈X.
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In this case,DF is the Gâteaux derivative (differential) atx.
If f :X→ R is convex and Gâteaux differentiable inx, then it is subdifferentiable atx

and∂f (x)= ∇f (x).
In general, we have

PROPOSITION2.3. Letf :X→ R be convex, l.s.c. and proper. Then, for eachx0 ∈D(∂f )

∂f (x0)=
{
w ∈X∗; f ′(x0, u)� (w,u), ∀w ∈X

}
. (2.5)

If f is continuous atx0, then

f ′(x0, u)= sup
{
(w,u); w ∈ ∂f (x0)

}
, ∀u ∈X. (2.6)

Givenf :X→ R, the functionf ∗ :X∗ → R

f ∗(p)= sup
{
(p, x)− f (x); x ∈X

}

is called theconjugateof f , or theLegendre transformof f .

PROPOSITION2.4. Let f :X→ R be convex, proper, l.s.c. Then the following conditions
are equivalent:

1. x∗ ∈ ∂f (x),
2. f (x)+ f ∗(x∗)= (x∗, x),
3. x ∈ ∂f ∗(x∗).

In particular,∂f ∗ = (∂f )−1 and f = f ∗∗. In general,∂(f + g) ⊃ ∂f + ∂g and the
inclusion is strict. We have, however,

PROPOSITION 2.5 (Rockafellar).Let f and g be l.s.c. and convex onD. Assume that
D(f )∩ int D(g) �= φ. Then

∂(f + g)= ∂f + ∂g. (2.7)

We shall assume now thatX =H is a Hilbert space. Letf :H → R be convex, proper
and l.s.c. Then∂f is maximal monotone. In other words,

(y1 − y2, x1 − x2)� 0, ∀(xi, yi) ∈ ∂f, i = 1,2 (2.8)

and

R(I + λ∂f )=H, ∀λ > 0. (2.9)

R(I + λ∂f ) is the range ofI + λ∂f .
The mapping

(∂f )λ = λ−1(I − (I + λ∂f )−1), λ > 0 (2.10)



Optimal control of ordinary differential equations 13

is called theYosida approximationof f .
Denote byfλ :H → R the function

fλ(x)= inf

{ |x − y|2
2λ

+ f (y); y ∈H
}
, λ > 0

which is called theregularizationof f (see [29]).

PROPOSITION2.6 (Brezis [9]). Let f :H → R be convex and l.s.c. Thenfλ is Fréchet
differentiable onH , ∂fλ = {∇fλ} and

fλ(x)=
λ

2

∣∣∂fλ(x)
∣∣2 + f

((
I + λ∂f (x)

)−1)
, (2.11)

lim
λ→0

fλ(x)= f (x), ∀x ∈H. (2.12)

Consider the functionIg :Lp(Ω)→ R defined by

Ig(y)=





∫

Ω

g
(
x, y(x)

)
dx if g

(
·, y(·)

)
∈ L1(Ω),

+∞ otherwise

(2.13)

whereg :Ω × Rm → R is a function satisfying(Ω is a measurable subset ofRn)
1. g(x, ·) :Rm → R is convex and l.s.c. for a.e.x ∈ ω.
2. g is L× B measurable, i.e.g is measurable with respect to theσ -algebra of subsets

of Ω × Rm generated by products of Lebesgue sets inΩ and Borelian sets inRm.
3. g(x, y)� (α(x), y)+ β(x), a.e.x ∈Ω , y ∈ Rm, where

α ∈ Lq(Ω), β ∈ L1(Ω),
1

p
+ 1

q
= 1.

4. ∃y0 ∈ Lp(Ω) such thatIg(y0) <+∞.

PROPOSITION2.7. Let 1� p <∞. ThenIg is convex, l.s.c. and �≡ +∞. Moreover,

∂Ig(y)=
{
w ∈ Lq(Ω); w(x) ∈ ∂g

(
x, y(x)

)
a.e. x ∈Ω

}
. (2.14)

EXAMPLE 2.1. Let

C =
{
y ∈ Lp(Ω); a � y(x)� b, a.e.x ∈Ω

}
.

Then

g(y)=
{0 if a � y � b,

+∞ otherwise
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and so by (2.14)

NC(y) =
{
w ∈ Lq(Ω); w(x) ∈N[a,b]

(
y(x)

)
a.e.x ∈Ω

}

=
{
w ∈ Lq(Ω); w(x)= 0 if a < y(x) < b,

w(x)� 0 if y(x)= a,

w(x)� 0 if y(x)= b
}
. (2.15)

The caseIg :L∞(Ω) → R is more delicate since in this case∂Ig(y) takes values in a
measure space onΩ (see [32]).

Generalized gradients LetX be a Banach space of norm‖ · ‖ and dualX∗. The function
f :X → R is said to belocally Lipschitz continuousif for any bounded subsetM of X
there exists a constantLM such that

∥∥f (x)− f (y)
∥∥� LM‖x − y‖, ∀x, y ∈M.

Thedirectional derivativeof f in x is defined by

f 0(x, v)= lim sup
y→x
λ→0

λ−1(f (y + λv)− f (y)
)
. (2.16)

The functionf 0 is finite, positively homogeneous inv and subadditive. Then, by the Hahn–
Banach theorem,∃η ∈X∗ such that

(η, v)� f 0(x, v), ∀v ∈X.

By definition, thegeneralized gradientof f in x, denoted∂f (x), is the set

∂f (x)=
{
η ∈X∗; (η, v)� f 0(x, v), ∀v ∈X

}
. (2.17)

PROPOSITION 2.8 (See [10,12]).For eachx ∈ X, ∂f (x) is a convex andw∗-compact
subset ofX∗. Moreover,

f 0(x, v)= sup
{
(η, v); η ∈ ∂f (x)

}
, ∀v ∈X

and the map∂f :X→ 2X
∗

is weakly star upper semicontinuous, i.e. if xn → x andηn → η

weakly star inX∗, thenη ∈ ∂f (x).

If f is locally Lipschitz and Gâteaux differentiable, then∂f = Df . Moreover, iff is
convex and locally Lipschitz, then∂f is precisely the subdifferential off .

Given a closed subsetC of X, denote bydC the distance function

dC(x)= inf
{
‖x − y‖; y ∈ C

}
, ∀x ∈X.
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We can see thatdC is Lipschitzian

∣∣dC(x)− dC(y)
∣∣� ‖x − y‖, ∀x, y ∈X.

Let x ∈ C. The elementv ∈X is said to be tangent toC in x if

d0
C(x, v)= 0.

The set of all tangent elementsv is denotedTC(x) (thetangent conetoC atx). Thenormal
coneNC(x) toC atx is by definition

NC(x)=
{
η ∈X∗; (η, v)� 0, ∀v ∈ TC(x)

}
.

PROPOSITION2.9. The vectorh ∈ X is tangent toC in x if and only if ∀{xn} ⊂ C con-
vergent tox and each{λn} → 0, there is{hn} → h such that

xn + λnhn ∈ C, ∀n.

PROPOSITION2.10. If f,g are locally Lipschitzian, then

∂(f + g)(x)⊂ ∂f (x)+ ∂g(x), ∀x ∈X.

If C is a closed subset ofX and iff attains its minimum onC in x, then

0∈ ∂f (x)+NC(x).

We refer to the book [12] for further properties of generalized gradients.

2.2. Ekeland’s variational principle

Here we shall briefly recall, without proof, an important result known in literature asEke-
land variational principle[21].

THEOREM 2.1. Let X be a complete metric space andF :X → R be a l.s.c. function,
�≡ +∞ and bounded from below. Let ε > 0 andx ∈X be such that

F(x)� inf
{
F(y); y ∈X

}
+ ε. (2.18)

Then there existsxε ∈X such that

F(xε)� F(x), (2.19)

d(xε, x)�
√
ε, (2.20)

F(xε) < F(y)+
√
εd(xε, y), ∀y �= xε. (2.21)
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Roughly speaking, Theorem2.1says thatxε is a minimum point of the function

y → F(y)+
√
εd(xε, y).

COROLLARY 2.1. letX be a Banach space andF :X→ R be Gâteaux differentiable and
bounded from below. Then∀ε > 0, ∃xε ∈X such that

F(x)� inf
{
F(y); y ∈X

}
+ ε, (2.22)

∣∣∇F(xε)
∣∣�

√
ε. (2.23)

One may thus construct a minimizing sequence of almost critical points.

2.3. Elements of differential geometry and exponential representation of flows

In what follows we present some basic facts concerning the operator calculus introduced by
A. Agrachev and R. Gamkrelidze (see [1,2,23]) called exponential representation of flows
or chronological calculus. This is a very elegant tool that allows to replace nonlinear objects
such as manifolds, tangent vector fields, flows, diffeomorphisms with linear ones which
will be functionals and operators on the algebraC∞(M) of real infinitely differentiable
functions onM . At the end of the section a variation of parameters formula will be given;
this formula will show to be very useful in proving the geometric form of Pontriaghin
maximum principle. We follow essentially the description in [2].

Differential equations on manifoldsIn what followsM is a smoothn-dimensional man-
ifold, TM =

⋃
y∈M TyM is the tangent bundle.

We consider the Cauchy problem for the nonautonomous ordinary differential equation:

{
y′ = f t (y) := f (t, y),

y(0)= y0
(2.24)

wheref t is a nonautonomous vector fieldon M , that isf t (y) ∈ TyM for any y ∈ M ,
t ∈ R. In the caseM = Rn or a subdomain ofRn we have the following classical theorem
of Carathéodory (see [15, Chapter 2, Theorem 1.1]):

THEOREM 2.2. If f is measurable int for each fixedy and continuous iny for every
fixedt and there exists aL1 functionm0 such that in a neighborhood of(0, y0)

∣∣f (t, y)
∣∣�m0(t),

then problem(2.24)has a local solution in the extended sense(see Section1.2).
If for any fixedt , fi(t, ·) is C1 and for any(t, y) there exists anL1 functionm1 and

neighborhood of(t, y) such that for any(t, y) in this neighborhood

∣∣∣∣
∂fi

∂yj
(t, y)

∣∣∣∣�m1(t),
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then the solution is unique. Moreover, under this assumption the solution isC1 with respect
to the initial data.

In order to solve equation (2.24) in the case of a general manifoldM , we represent it in
local coordinates. Letϕ :N (y0) ⊂M → N (x0) ⊂ Rn, a local chart. In these coordinates
the vector fieldf t is represented as:

(
ϕ∗f

t
)
(x)=

n∑

i

f̃i(t, x)
∂

∂xi
= f̃ t (x).

Hereϕ∗ is the tangent map, or differential ofϕ. Solving problem (2.24) is equivalent to
solving the following Cauchy problem inRn:

{
x′ = f̃ (t, x),

x(0)= x0.
(2.25)

In order to insure existence and uniqueness of a local solution, we will assume thatf̃

satisfies the hypotheses of Theorem 2.2 which are in fact hypothesis onf since they do
not depend on the choice of the local chart. Under these hypothesis, by the theorem of
Carathéodory, problem (2.25) has a unique local solutionx(t, x0) which is absolutely con-
tinuous with respect tot andC1 with respect to the initial datax0 and satisfies the equation
almost everywhere. The solution of (2.24) isy(t, y0)= ϕ−1(x(t, x0)) and one may prove
that this is independent of the local chart. The solution of the Cauchy problem (2.24) is
defined on a maximal interval that we will suppose to beR for all initial data. Such vector
fields that determine global flows are calledcomplete. This always happens if the manifold
M is compact.

If we denote byF t the flow defined by the equation (2.24):F t (y0) = y(t, y0), then
F t ∈ Diff (M) the set of diffeomorphisms of the manifoldM and equation (2.24) may be
written





d

dt
F t (y)= f t ◦ F t (y), y ∈M,

F 0 = Id .

(2.26)

HYPOTHESES. We will suppose from now on thatM is a C∞ manifold and Diff(M)
denotes the set ofC∞ diffeomorphisms ofM . Moreover, we will suppose that the nonau-
tonomous vector fieldf t is complete and in any local chart̃f (t, x) is measurable with
respect tot for any fixedx andC∞ with respect tox for every fixedt and there exist
locally integrable functionsmk(t) such that locally

∣∣Dk
x f̃ (t, x)

∣∣�mk(t).

These hypotheses insure that the Cauchy problem (2.24) has unique solution depending
C∞ on the initial data.
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Exponential representation of flowsWe describe in the sequel how the chronological
exponential is defined and we will see that topological and differential structures are trans-
lated in the new language into the weak convergence of functionals and operators.

Pointsare represented as algebra homomorphisms fromC∞(M) to R. If y ∈ M then
it defines an algebra homomorphism̂y :C∞(M)→ R, ŷ(α) = α(y). One may prove that
for any algebra homomorphismψ :C∞(M)→ R, there exists an uniquey ∈M such that
ψ = ŷ (see [2]).

Diffeomorphismsof the manifoldM are represented as automorphisms of the algebra
C∞(M). More precisely, ifF ∈ Diff (M) we defineF̂ :C∞(M) → C∞(M) as F̂ (α) =
α ◦ F . More generally, ifF :M → N is a smooth map between two manifolds, then
it defines an algebra homomorphism̂F :C∞(N) → C∞(M) as F̂ (β) = β ◦ F with
β ∈ C∞(N). Observe that ifF,G ∈ Diff (M) thenF̂ ◦G= Ĝ ◦ F̂ .

Tangent vectors. Let f ∈ TyM . Then, as is well knownf may be seen either as tangent
vector iny to a curve passing throughy or as directional derivative, or Lie derivative, of
functions in the pointy in the directionf . For the first point of view one considers a smooth
curvey(t), y(0) = y, y′(0) = v. The second point of view is to consider the Lie deriva-
tive Lf α = d

dt α(y(t))|t=0. Through the representation described above, we may construct

f̂ :C∞(M)→ R, f̂ (α) := d
dt [ŷ(t)(α)]|t=0 = Lf α. Obviously,f̂ is a linear functional on

C∞(M) and satisfies the Leibnitz rule

f̂ (αβ)= α(y)f̂ (β)+ f̂ (α)β(y). (2.27)

Any linear functional onC∞(M) satisfying (2.27) corresponds in this way to a tangent
vector.

Vector fields. Let Vec(M) be the set of smooth vector fields onM and letf ∈ Vec(M).
Thenf defines a linear operator̂f :C∞(M)→ C∞(M), f̂ (α)(y)= f̂ (y)(α). This opera-
tor satisfies the Leibnitz rule

f̂ (αβ)= αf̂ (β)+ f̂ (α)β. (2.28)

Any linear functional ofC∞(M) satisfying (2.28) is calledderivationand corresponds to
a unique vector field.

We study now the behaviour of tangent vectors and vector fields under the action of
diffeomorphisms.

Let F ∈ Diff (M) andg ∈ TyM such thatg = d
dt y(t)|t=0. ThenF∗g ∈ TF(y)M and is

defined asF∗g = d
dt F(y(t))|t=0. So, ifα ∈ C∞(M), then

F̂∗g(α)=
d

dt
F̂
(
y(t)
)
(α)

∣∣∣∣
t=0

= d

dt
α
(
F
(
y(t)
))∣∣∣∣

t=0
= ĝ(α ◦ F)= ĝ ◦ F̂ (α).

So,

F̂∗g = ĝ ◦ F̂ . (2.29)
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In the same way, ifg ∈ Vec(M), sinceĝ(y)= ŷ ◦ ĝ, ̂F∗g(F (y))= F̂ (y) ◦ F̂∗g = ŷ ◦ F̂ ◦
F̂∗g. On the other hand ̂F∗g(F (y))= ̂F∗(g(y))= ŷ ◦ ĝ ◦ F̂ . As y is arbitrary,F̂ ◦ F̂∗g =
ĝ ◦ F̂ so

F̂∗g = F̂−1 ◦ ĝ ◦ F̂ = Ad F̂−1ĝ. (2.30)

REMARK 2.1. The notation Ad comes from the theory of Lie groups where it stands for
the adjoint representation of the group in the space of linear operators of the associated Lie
algebra. In our situation the group of diffeomorphisms of the manifold stands for the Lie
group and the associated Lie algebra is the algebra of vector fields. Through the described
representation one obtains the group of automorphisms ofC∞(M) and the associated Lie
algebra is the algebra of derivations ofC∞(M) (see, e.g., [3,28]).

The equation (2.24) becomes, through the described representation:





d

dt
ŷ(t)= ŷ(t) ◦ f̂ t ,

ŷ(0)= ŷ0

(2.31)

so the flow defined by the equation satisfies





d

dt
F̂ t = F̂ t ◦ f̂ t ,

F 0 = Id .

(2.32)

The flowF̂ t is calledthe right chronological exponentialand, in accordance with the linear
case, is denoted by

F̂ t = −→exp
∫ t

0
f̂ s ds. (2.33)

In order to simplify notations, we will omit from now on the hat̂unless confusion is
possible and, usually, when we refer to diffeomorphisms and vector fields we mean their
representations.

We observe however that at this point equations (2.31), (2.32) are not completely rigor-
ous since we have not yet defined a topology in the corresponding spaces of functionals or
operators onC∞(M).

Topology We consider onC∞(M) the topology of uniform convergence on compacta
of all derivatives. More precisely, ifM = Ω ⊂ Rn, for α ∈ C∞(M), K ⋐ M and k =
(k1, . . . , kn), ki � 0, we define the seminorms:

‖α‖s,K = sup
{∣∣Dkα(y)

∣∣; |k| = k1 + · · · + kn � s, y ∈K
}
.

This family of seminorms determines a topology onC∞(M) which becomes a Fréchet
space (locally convex topological linear space with a complete metric topology given by a
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translation invariant metric). In this topologyαm → α iff ‖αm − α‖s,K → 0 for all s � 0
andK ⋐M .

In the case of a general manifold, we choose a locally finite covering ofM with charts
(Vi, ϕi)i∈I , ϕ :V i → Oi ⊂ Rn diffeomorphisms and let{αi}i∈I be a partition of unity
subordinated to this covering. We define the family of seminorms

‖α‖s,K = sup
{
Dk
[
(αiα) ◦ ϕ−1](y)

∣∣ |k| � s, ϕ−1(y) ∈K, i ∈ I
}
.

This family of seminorms depends on the choice of the atlas but the topology defined
on C∞(M) is independent of this choice. One could also proceed by using the Whitney
theorem and consideringM as a submanifold of some Euclidean space.

Once we have defined the topology onC∞(M) we consider the space of linear contin-
uous operatorsL(C∞(M)). The spaces Diff(M) and Vec(M), through the representation
are linear subspaces. Indeed, one may easily verify that forf ∈ Vec(M) andF ∈ Diff (M)

∥∥f̂ α
∥∥
s,K

� C1‖α‖s+1,K ,
∥∥F̂ α

∥∥
s,K

� C2‖α‖s,K

where the constantsC1 = C1(s,K,f ),C2 = C2(s,K,F ). We thus define a family of semi-
norms on Vec(M), respectively Diff(M):

‖f ‖s,K = sup
{∥∥f̂ α

∥∥
s+1,K

∣∣ ‖α‖s,K = 1
}
,

‖F‖s,K = sup
{∥∥F̂ α

∥∥
s,K

∣∣ ‖α‖s,K = 1
}
,

which define locally convex topologies. On these spaces we also may consider the weak
topology induced fromC∞(M): Fn → F iff Fnα→ Fα for all α ∈ C∞(M) (the same for
a sequence of vector fields).

Differentiability and integrability of families of functions or operatorsFirst of all we
define these properties onC∞(M) which is a Fréchet space. In general, letX be a Fréchet
space whose topology is defined by the family{pk}k∈N of seminorms. The metric onX is
defined by

d(x, y)=
∑

k∈N

1

2k
pk(x − y)

1+ pk(x − y)
.

Let h : J ⊂ R →X. The functionh is differentiable int0 if there exists inX the limit

lim
t→t0

h(t)− h(t0)

t − t0
.

The functionh is Lipschitz continuous ifpk ◦ h is Lipschitz for allpk . Differentiability
and Lipschitz continuity may also be defined using the metric structure ofX.

The functionh is bounded ifpk ◦ h is bounded for allpk .
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For measurability and integrability we adapt the plan of development for theBochner
integral (see, e.g., [35]). A functionh is called a step function if it may be represented as

h=
∑

n∈N

xnχJn

whereχJn is the characteristic function of a measurable subsetJn ⊂ J . We call such a
representation ofh aσ -representation and it is obvious that this is not unique. We say that
the functionh is strongly measurableif h is the limit a.e. of a sequence of step functions.
The functionh is weakly measurableif x∗ ◦ h is measurable for allx∗ ∈ X∗. One may
prove that ifX is separable the two notions of measurability coincide (see Pettis theorem
in [35] in the caseX is a Banach space). Ifh is a step function thenh is integrableif

∑

n

µ(Jn)pk(xn)� ∞

for all the seminormspk . The integral ofh is then defined as

∫

J

h(t)dt =
∑

n

µ(Jn)xn

and it may be shown that it is independent of the order of summation and of the
σ -representation ofh.

If h is a measurable function we say that it isintegrableif there exists a sequence of
integrable step functions{hn}n∈N such that for allk

lim
n→+∞

∫

J

pk
(
h(t)− hn(t)

)
dt = 0.

In this case one may show that there exists

lim
n→+∞

∫

J

hn(t)dt

and this is independent of the sequence{hn}n∈N with the given properties. The limit is
denoted by

∫

J

h(t)dt

and is the integral ofh onJ .
For a familyP t , t ∈ J ⊂ R of linear continuous operators or linear continuous function-

als onC∞(M) the above notions (continuity, differentiability, boundedness, measurability,
integrability) will be considered in the weak sense, that is the functiont → P t has one of
these properties ifP t ◦ α has the corresponding property for allα ∈ C∞(M). We will not
discuss here the relation between the strong and weak properties.
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At this point we see that the operator equation (2.32) makes sense and it can be easily
proved that it has a unique solution. We point out the Leibnitz rule:

d

dt
P t ◦Qt

∣∣∣∣
t=t0

= d

dt
P t
∣∣∣∣
t=t0

◦Qt0 + P t0 ◦ d

dt
Qt

∣∣∣∣
t=t0

for two functionst → P t , t →Qt differentiable att0.
Consider now the flowF t defined by (2.24) andGt = (F t )−1. If we differentiate the

identityF t ◦Gt = I we obtain

F t ◦ f t ◦Gt + F t ◦ d

dt
Gt = 0

and thus




d

dt
Gt = −f t ◦Gt ,

G0 = Id .

(2.34)

We define thus theleft chronological exponential:

Gt = ←−exp
∫ t

0
−f t dt.

Further properties and extensionsWe have seen that̂F∗g = Ad F̂−1ĝ for F ∈ Diff (M),

g ∈ Vec(M). We compute now the differentialddt |t=0 Ad(F̂ t ) for a flowF t onM such that





d

dt
F t
∣∣∣∣
t=0

= f ∈ VecM,

F 0 = Id .

We have

d

dt
|t=0
(
AdF t

)
g = f ◦ g− g ◦ f = [f,g] =: (adf )g.

In the particular case

F t = −→exp
∫ t

0
f s ds

we obtain:




d

dt
(AdF t )g =

(
AdF t

)
adf tg,

AdF 0 = Id
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so we may write, formally:

Ad

(
−→exp
∫ t

0
f s ds

)
= −→exp

(∫ t

0
adf s ds

)
.

Let nowF ∈ Diff (M) andgt a nonautonomous vector field. Then

F ◦ −→exp
∫ t

0
gs ds ◦ F−1 = −→exp

∫ t

0
(AdFgs)ds. (2.35)

Indeed, the both sides of the equality verify the same Cauchy problem for the operator
equation





d

dt
q t = q t ◦

(
AdF gt

)
,

q0 = Id

and thus, by uniqueness of the solution, they coincide.
Now if we take againGt = (F t )−1 and if we differentiate the identityGt ◦ F t = Id we

obtain that d
dtG

t ◦ F t = −Gt ◦ F t ◦ f t and thus

d

dt
Gt = −Gt ◦

(
AdF t

)
f t .

This gives the relationship between left and right chronological exponentials:

←−exp
∫ t

0
f s ds = −→exp

∫ t

0

(
AdF s

)
f s ds. (2.36)

If F ∈ Diff (M), as we have seen, it defines an algebra automorphism ofC∞(M) : F̂ α =
α ◦ F = F ∗α, whereF ∗ is the pull back ofC∞ differential forms defined byF . This
suggests the fact that̂F may be extended, as algebra automorphism to the graded algebra
Λ(M)=

⊕
Λk(M) of differential forms. Ifω ∈Λk(M) then we define

F̂ω := F ∗ω.

It is well known thatF ∗ commutes with exterior differential:

F ∗ ◦ d = d ◦ F ∗

and forωi ∈Λki (M),

F ∗(ω1 ∧ω2)= F ∗(ω1)∧ F ∗(ω2).

SoF̂ is an algebra automorphism forΛ(M). We now consider a vector field:

d

dt
F t |t=0 = f, F 0 = Id .
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The action onΛk(M) is the Lie derivative of differential forms:

d

dt
F̂ tω

∣∣∣∣
t=0

= d

dt

(
F t
)∗
ω

∣∣∣∣
t=0

= Lfω.

We may thus understand the action of a vector fieldf ∈ Vec(M) as the Lie derivative of
differential forms:

f̂ = Lf .

The chronological exponential may be thus written

F t = −→exp
∫ t

0
Lf s ds.

We point out two fundamental properties of the Lie derivative:
SinceF̂ t ◦ d = d ◦ F̂ t one obtains that

f̂ ◦ d = d ◦ f̂ (equivalentlyLf ◦ d = d ◦Lf ).

Denote by if the interior product of a differential formω with a vector fieldf :
ifω(f1, . . . , fk)= ω(f,f1, . . . , fk), for ω ∈Λk(M), fi ∈ VecM . Then the classicalCar-
tan’s formulareads:

f̂ = d ◦ if + if ◦ d. (2.37)

Variation of parameters formula Consider the Cauchy problem for the linear differential
equation inRn:

{
y′ =Ay + b(t),

y(0)= y0.

The solution of the homogeneous equation (b ≡ 0) is y(t) = eAty0. For the nonhomo-
geneous equation a solution may be found by thevariation of constantsor variation of
parameters method. This consists in searching a solution of the formy(t) = eAtc(t) and
an equation forc(t) is obtained:c′(t)=A(t)b(t). The solution is given by thevariation of
constants formula

y(t)= eAty0 +
∫ t

0
eA(t−s)b(s)ds. (2.38)

We consider now the nonlinear differential equation

y′ = f t (y)
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which generates the flowF t = −→exp
∫ t

0 f
s ds. We consider also the perturbed equation

y′ = f t (y)+ gt (y)

which generates the flowH t = −→exp
∫ t

0 f
s + gs ds, depending on the perturbationgt . We

want to find an expression for this dependence. For this purpose one proceeds as in the
linear case and searchH t in the form

H t =Gt ◦ F t

where the flowGt has to be deduced. Differentiating this equality we find

d

dt
H t =Gt ◦ F t ◦

(
f t + gt

)

= d

dt
Gt ◦ F t +Gt ◦ d

dt
F t = d

dt
Gt ◦ F t +Gt ◦ F t ◦ f t .

So,





d

dt
Gt =Gt ◦ F t ◦ f t ◦

(
F t
)−1 =Gt ◦ AdF tgt ,

G0 = Id .

We thus obtained

Gt = −→exp
∫ t

0
AdF sgs ds

and the first form of variations formula

H t = −→exp
∫ t

0
AdF sgs ds ◦ F t . (2.39)

We also obtain

H t = F t ◦ Ad
(
F t
)−1
(

−→exp
∫ t

0
AdF sgs ds

)

and by (2.35)

H t = F t ◦ −→exp
∫ t

0
Ad
[(
F t
)−1 ◦ F s

]
gs ds = F t ◦ −→exp

∫ t

0

(
F ts
)
∗g
s ds (2.40)

whereF ts = −→exp
∫ t
s
f τ dτ .
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The second form of variations formula may be thus written

−→exp
∫ t

0
f s + gs ds = −→exp

∫ t

0
f s ds ◦ −→exp

∫ t

0

−→exp
∫ s

t

adf τ dτgs ds.

In the case whenf,g are autonomous vector fields the formula becomes (compare
with (2.38)):

et (f+g) = −→exp
∫ t

0
Adesf g ds ◦ etf = etf ◦ −→exp

∫ t

0
Ade(s−t)f g ds.

Elements of symplectic geometry. Hamiltonian formalism

DEFINITION 2.1. A symplectic structure on a (necessarily odd dimensional) manifoldN

is a nondegenerate closed differential 2-form. A manifold with a symplectic structureω is
called a symplectic manifold

LetM be a manifold andT ∗M =
⋃
y∈M T

∗
qM be the cotangent bundle. If(x1, . . . , xn)

are local coordinates onM then if p ∈ T ∗
yM , p =

∑n
i=1pi dxi , (p1, . . . , pn, x1, . . . , xn)

define the canonical local coordinates onT ∗M . Define

ω=
n∑

i=1

dpi ∧ dxi . (2.41)

To see that the definition is independent of the local coordinates letπ :T ∗M →M be the
canonical projection and the canonical 1-form onT ∗M :

ω1ξ (w)= ξ ◦ π∗(w), for w ∈ Tξ
(
T ∗M

)
.

If w ∈ T (T ∗M) then

w =
n∑

i=1

ξi
∂

∂pi
+ vi

∂

∂xi
.

Since

π∗

(
∂

∂pi

)
= 0 and π∗

(
∂

∂xi

)
= ∂

∂xi

one finds that

ω1ξ (w)=
n∑

i=1

pivi
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so

ω1 =
n∑

i=1

pi dxi

and

ω= dω1.

It is easy to see now thatω is a symplectic structure onT ∗M which becomes a symplectic
manifold.

Let now (N,ω) be a general symplectic manifold. Functions inC∞(N) are called
Hamiltonians. Let H be such a Hamiltonian. Then there exists a unique vector field on
N denoted

−→
H such that

−i−→H ω= ω
(
·,−→H

)
= dH.

−→
H is called theHamiltonian vector fieldof H and the corresponding flow is theHamil-
tonian flow. TheHamiltonian equationis

d

dt
ξ(t)= −→

H
(
ξ(t)
)

(2.42)

and the Hamiltonian flow is

�t = −→exp
∫ t

0

−→
H ds.

ThePoisson bracketof the Hamiltoniansα, β is defined as

{α,β} = L−→α β = dβ(−→α )= ω
(−→α ,−→β

)
= −{β,α}.

One may prove that(C∞(N), {·, ·}) is a Lie algebra and the mapH → −→
H is a Lie alge-

bra homomorphism fromC∞(N) to Vec(N). Bilinearity and antisymmetry are immediate.
Jacobi identity as well as the fact that

−−−→{α,β} = [−→α ,−→β ] are easy to prove if in local coor-
dinatesω has the canonic form (2.41). We conclude since, byDarboux theorem(see [3]),
there exists indeed a symplectic atlas onN such thatω in local coordinates is in canonical
form. In these coordinates

−→
H =

n∑

i=1

∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

and

{α,β} =
n∑

i=1

∂α

∂pi

∂β

∂xi
− ∂α

∂xi

∂β

∂pi
.
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Moreover, the Hamiltonian system (2.42) is written in the form (1.7).
Now, if F ∈ Diff (N) preserves the symplectic structure, that isF ∗ω = ω, then

AdF
−→
H = −−→

FH . Indeed,

ω
(
·,−−→FH

)
= d(FH)= d(H ◦ F)=H∗ ◦ F∗ = dH ◦ F∗

= ω
(
F∗·,−→H

)
= F ∗ω

(
·, (F∗)

−1−→H
)
= ω
(
·,AdF

−→
H
)
.

Prime integrals of Hamiltonian systems are those which commute with the Hamiltonian.
Indeed, consider the equation (2.42). Thenα ∈ C∞(M) is a prime integral iff et

−→
H α = const

which is equivalent, by differentiation, to
−→
H α = 0 or {H,α} = 0.

We consider again the case of the symplectic manifoldT ∗M . Given a nonautonomous
vector fieldf t ∈ Vec(M) we consider the Hamiltonian

(
f t
)#
(ξ)=

(
ξ, f t

)
.

In canonical symplectic coordinates(pi, xi), if f t =
∑n

i=1fi(t, x)
∂
∂xi

then (f t )#(ξ) =∑n
i=1pifi(t, x). Using the canonical coordinates it is easy to see that forf,g ∈ Vec(M)

{
f #, g#}= [f,g]#.

For a nonautonomous vector fieldf t the Hamiltonian vector field onT ∗M defined by−−→
(f t )# is named theHamiltonian lift. It satisfies

π∗
−−−→(
f t
)# = f t .

We want to establish now the relation between the flows determined byf t , respectively by−−→
(f t )#. LetF tτ = −→exp

∫ t
τ
f s ds. Then(F tτ )

∗ ∈ Diff (T ∗M). Let

gτ = d

dt

∣∣∣∣
t=τ

(
F tτ
)∗

PROPOSITION2.11. gt = −
−−→
(f t )# and

(
F tτ
)∗ = −→exp

∫ τ

t

−−−→(
f s
)# ds (2.43)

PROOF. First of all, since, in the exponential representation onT ∗M , (F t+ετ )∗ = (F t+εt )∗ ◦
(F tτ )

∗, it follows by differentiating with respect toε in 0 that

d

dt

(
F tτ
)∗ = gt ◦

(
F tτ
)∗
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so

(
F tτ
)∗ = ←−exp

∫ t

τ

gs ds.

Since

π ◦
(
F tτ
)∗ =

(
F tτ
)−1 ◦ π

it follows by differentiation that

π∗g
t = −f t . (2.44)

On the other hand, the flow(F tτ )
∗ preserves the 1-formω1 and thus the symplectic formω.

By Cartan’s formula (2.3)

0= Lgtω1 = igtω+ dω1
(
gt
)

which implies that

gt =
−−−−→
ω1
(
gt
)

which means that the fieldgt is Hamiltonian. By (2.44) and observing thatgt is linear ho-
mogeneous on the tangent space to the fibers, the first conclusion follows. Equality (2.43)
is now immediate taking into account the relationship between the left and right chrono-
logical exponential. �

3. The Pontriaghin maximum principle

The Pontriaghin maximum principle, developed by L. Pontriaghin and his collaborators
(see [30]), is a set of first ordernecessary conditionsof optimality in optimal control prob-
lems. This is expressed in terms of the dual linearized state system and reduces the problem
to solving a two point boundary problem for a differential system, which is in fact a Hamil-
tonian system, composed of the state equation and the dual equation.

3.1. The main theorem

Throughout this section the following conditions will be assumed on the optimal control
problem (1.14):

(i) The functions

L : [0, T ] × Rn × Rm → R; f : [0, T ] × Rn × Rm → Rn
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andLy , fy are measurable int , continuous in(y,u) and

∥∥fy(t, y,u)
∥∥+
∥∥Ly(t, y,u)

∥∥� α(t, u), ∀t ∈ [0, T ], ∀u ∈U(t).

(ii) For eacht ∈ [0, T ], U(t) ⊂ Rm is closed and for each closed setD ⊂ Rm the set
{t; D ∩U(t) �= ∅} is measurable.

(iii) g ∈ C1(Rn × Rn) andC is a closed convex subset ofRn × Rn.
Here we have denoted by the same symbol‖ · ‖ the norm inL(Rn,Rn) and inRn.

Theorem 3.1 below is the celebrated Pontryagin’s maximum principle for problem
(1.14).

THEOREM 3.1. Let (y∗, u∗) be an optimal pair in problem(1.14) such thatα(t, u∗) ∈
L1(0, T ). Then there existsp ∈AC([0, T ];Rn) and a constantλ which is equal to0 or 1
such that

∥∥p(t)
∥∥+ |λ| �= 0, ∀t ∈ [0, T ]

and

p′ = −f ∗
y (t, y

∗, u∗)p+ λLy(t, y
∗, u∗), a.e. t ∈ [0, T ], (3.1)

{
p(0),−p(T )

}
∈ λ∇g

(
y∗(0), y∗(T )

)
+NC

(
y∗(0), y∗(T )

)
, (3.2)

(
p(t), f

(
t, y∗(t), u∗(t)

))
− λL

(
t, y∗(t), u∗(t)

)

= max
u∈U(t)

{(
p(t), f

(
t, y∗(t), u

))
− λL

(
t, y∗(t), u

)}
a.e. t ∈ [0, T ]. (3.3)

If λ= 1, the problem is callednormalotherwise it isabnormal. If C = {y0} × Rn and
g(y1, y2) ≡ g1(y2) this is theBolza problemwith initial condition y(0) = y0 and (3.2)
reduces to

p(T )= −λ∇g1
(
y(T )

)
. (3.4)

If C = {(y1, y2); y1 = y2} andg ≡ 0, this is the periodic optimal control problem and (3.2)
has the form

p(0)= p(T ). (3.5)

The end point boundary conditions (3.2) are also calledtransversality conditions.

An elementary approach to the maximum principleIn order to understand better how the
optimality system (3.1)–(3.3) appears, as well as the proof we give in the next section, we
discuss first the special case whereL(t, ·, ·), f (t, ·, ·) are smooth (of classC1 for instance),
g(y1, y2) = g2(y2) ∈ C1, C = {y0} × Rn andU(t) ≡ U is a closed convex subset ofRm.
We shall assume alsofy(t, y∗, u∗) ∈ L∞(0, T ,R2n), fu(t, y∗, u∗) ∈ L∞(0, T ,R2n), where
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(y∗, u∗) is an optimal pair. By optimality we have forλ ∈ (0,1) and∀v ∈ L2(0, T ;Rm),
u∗(t)+ λv(t) ∈U a.e.t ∈ (0, T )

∫ T

0
L(t, y∗, u∗)dt + g2

(
y∗(T )

)

�

∫ T

0
L
(
t, yu

∗+λv, u∗ + λv
)
dt + g2

(
yu

∗+λv(T )
)
.

Hereyv is the solution of the Cauchy problemy′ = f (t, y, v), y(0)= y0. Noticing that

z(t)= lim
λ→0

1

λ

(
yu

∗+λv(t)− y∗(t)
)

is the solution to the system in variations

{
z′ = fy(t, y

∗, u∗)z+ fu(t, y
∗, u∗)v, t ∈ (0, T ),

z(0)= 0,
(3.6)

we find that

∫ T

0

(
Ly(t, y

∗, u∗), z(t)
)
+
(
Lu(t, y

∗, u∗), v(t)
)
dt +

(
∇g2
(
y∗(T )

)
, z(T )

)
� 0.

(3.7)

Next we definep the solution to the Cauchy problem

{
p′ = −f ∗

y (t, y
∗, u∗)p+Ly(t, y

∗, u∗), a.e.t ∈ (0, T ),
p(T )= −∇g2

(
y∗(T )

)
.

Multiplying the latter byz and integrating on(0, T ) we find by (3.6), (3.7) that

∫ T

0

(
Lu(t, y

∗, u∗)− fu(t, y
∗, u∗), v(t)

)
dt � 0.

Equivalently,

∫ T

0

(
Lu(t, y

∗, u∗)− fu(t, y
∗, u∗),w(t)− u∗(t)

)
dt � 0

for all w ∈ L2(0, T ;Rm), w(t) ∈U a.e.t ∈ (0, T ). This means (see (2.4)) that

fu
(
t, y∗(t), u∗(t)

)
−Lu

(
t, y∗(t), u∗(t)

)
∈NU

(
u∗(t)

)
a.e.t ∈ (0, T ).

If f is linear inu andu→ L(t, y,u) is convex the latter is equivalent with (3.3).
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3.2. Proof of the maximum principle

The main idea of proof given here is essentially due to F. Clarke [11]. We may assume that

∥∥f (t, y∗, u)
∥∥+
∥∥Ly(t, y,u)

∥∥+
∥∥fy(t, y,u)

∥∥� β(t) (3.8)

for a.e.t ∈ [0, T ] and all(y,u) ∈ Rn ×U(t) whereβ ∈ L1[0, T ]. This clearly implies that

∥∥f (t, x,u)− f (t, y,u)
∥∥� β(t)‖x − y‖,∥∥f (t, y,u)

∥∥� β(t)
(
‖y − y∗‖ + 1

) (3.9)

and so (standard existence theory) the state system (1.11) has a unique absolutely contin-
uous solutiony ∈ AC([0, T ];Rn) for each functionu(t) ∈ U(t), ∀t ∈ (0, T ). This can be
achieved by replacingU(t) by

Un(t)=
{
u ∈U(t);

∥∥f (t, y∗, u)− f (t, y∗, u∗)
∥∥� n,

∥∥fy(t, y,u)− fy(t, y,u
∗)
∥∥� n ∀y ∈ Rn

}
.

Indeed, if (y∗, u∗) is optimal then clearly it is optimal in problem (1.14) with control
constraintsu(t) ∈Un(t) a.e.t ∈ (0, T ) and so if the maximum principle (3.1)–(3.3) is true
in this case, there are{pn, λn} satisfying the conditions of Theorem 3.1 whereU is replaced
byUn(t).

By (3.1) and by assumption (ii) we see that

∥∥p′
n(t)
∥∥� α0

(
t, u∗(t)

)
, a.e.t ∈ (0, T ).

If {|pn(0)|} is bounded this implies that{pn} is compact inC([0, T ];Rn) and so on a
subsequence

pn → p in C
(
[0, T ];Rn

)

wherep satisfies Eqs. (3.1)–(3.3). Otherwise, we setqn = pn(t)/‖pn(0)‖ and conclude as
above that

pn → p in C
(
[0, T ];Rn

)

wherep satisfies Eqs. (3.1)–(3.3) withλ= 0.
Now we come back to the proof of the maximum principle. We set

X =
{
u : [0, T ] → Rm measurable; u(t) ∈U(t), a.e.t ∈ [0, T ]

}
. (3.10)

It is easily seen that this is a complete metric space with the Ekeland distance

d(u, v)=m
{
t ∈ [0, T ]; u(t) �= v(t)

}
. (3.11)
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Let Y =X× Rn endowed with the standard product metric and consider the function

ϕ :Y → R, ϕ(u, y0)=
∫ T

0
L
(
t, yu(t), u(t)

)
dt + g

(
y0, y

u(T )
)

(3.12)

where
{
(yu)′ = f (t, yu, u) a.e. in(0, T ),
yu(0)= y0.

We define the function

ϕε(u, y0)=
[((
ϕ(u, y0)− ϕ

(
u∗, y∗(0)

)
+ ε
)+)2 + d2

C

(
y0, y

u(T )
)]1/2 (3.13)

for all (u, y0) ∈ Y . HeredC is the distance toC.
By Ekeland’s principle, Theorem 2.1, for eachε > 0 there exists(uε, yε0) ∈ Y such that

ϕε(uε, y
ε
0)� ε,

d(uε, u
∗)+

∥∥yε0 − y∗(0)
∥∥�

√
ε (3.14)

and

ϕε(uε, y
ε
0)� ϕε(u, y0)+

√
ε
(
d(uε, u)+ ‖yε0 − y0‖

)
, ∀(u, y0) ∈ Y. (3.15)

We takeyρ0 = yε0 + ρz0 and setyε = yuε , yε(0)= yε0 with ‖z0‖ = 1. In (3.15) we take the
“spike” admissible control

uρ(t)=
{
u(t), t ∈ [t0 − ρ, t0],
uε(t), t ∈ [0, T ] \ (t0 − ρ, t0)

wheret0 ∈ [0, T ] is arbitrary but fixed andu ∈X. Then we have

yρ(t)= yuρ (t)= yε(t)+ ρzε(t)+ o(ρ)

wherezε ∈ BV ([0, T ];Rn) is the solution to the equation in variations





z′ε = fy(t, yε, uε)zε a.e.t ∈ (0, t0)∪ (t0, T ),
zε(0)= z0,

z+ε (t0)− z−ε (t0)= f
(
t0, yε(t0), u(t0)

)
− f
(
t0, yε(t0), uε(t0)

)
.

(3.16)

(HereBV ([0, T ];Rn) is the space of functions of bounded variation on[0, T ].)
By (3.15) we have

−2
√
ε �

ϕε(uρ, y
ρ
0 )− ϕε(uε, y

ε
0)

ρ
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= 1

ϕε(uρ, y
ρ
0 )+ ϕε(uε, y

ε
0)

[
((ϕ(uρ, y

ρ
0 )− ϕ(u∗, y∗(0))+ ε)+)2

ρ

−
((ϕ(uε, y

ε
0)− ϕ(u∗, y∗(0))+ ε)+)2

ρ

+
d2
C(y

ρ
0 , yρ(T ))− d2

C(y
ε
0, yε(T ))

ρ

]
.

Lettingρ tend to zero, we obtain after some calculation that

−2
√
ε �

(ϕ(uε, y
ρ
0 )− ϕε(u

∗, y∗(0))+ ε)+

ϕε(uε, y
ε
0)

[∫ T

0
Ly(t, yε, uε)zε dt

+
(
∇g
(
yε0, yε(T )

)
,
(
z0, zε(T )

))
+L
(
t0, yε(t0), u(t0)

)

−L
(
t0, yε(t0), uε(t0)

)]

+
(∇dC(yε0, yε(T )), (z0, zε(T )))

ϕε(uε, y
ε
0)

dC
(
yε0, yε(T )

)
.

Heret0 is a Lebesgue point forL(t, yε(t), uε(t)) andL(t, yε(t), u(t)).
We remind thats is aLebesgue pointfor a functionv : I ⊂ R → R if

lim
t→s

1

t − s

∫ t

s

∣∣v(τ)− v(s)
∣∣dτ = 0 (3.17)

and if v ∈ L1
loc then almost all pointss ∈ I are Lebesgue points ofv. We have

{∣∣∇dC
(
yε0, yε(T )

)∣∣= 1 if (yε0, yε(T )) /∈ C,

dC
(
yε0, yε(T )

)∣∣∇dC
(
yε0, yε(T )

)∣∣= 0 if (yε0, yε(T )) ∈ C.

We set




λε =
(ϕ(uε, y

ε
0)− ϕ(u∗, y∗(0))+ ε)+

ϕε(uε, y
ε
0)

,

µε =
dC(y

ε
0, yε(T ))

ϕε(uε, y
ε
0)

∇dC
(
yε0, yε(T )

)
.

This yields

λε

[∫ T

0
Ly(t, yε, uε)zε dt +

(
∇g
(
yε0, yε(T )

)
,
(
z0, zε(T )

))
+L
(
t0, yε(t0), u(t0)

)

−L
(
t0, yε(t0), uε(t0)

)]
+
(
µε,
(
z0, zε(T )

))
� −2

√
ε, (3.18)
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whereλε > 0 and

λ2
ε + ‖µε‖2 = 1, ∀ε > 0. (3.19)

Let pε ∈AC([0, T ];Rn) be the solution to the backward differential system

{
p′
ε(t)= −f ∗

y (t, yε, uε)pε + λεLy(t, yε, uε), t ∈ [0, T ],
pε(T )= −P

(
λε∇g

(
yε0, yε(T )

)
+µε

) (3.20)

whereP is the projectionP(y1, y2)= y2.
Substituting into (3.18), we get (via (3.16))

λε

∫ T

0
Ly(t, yε, uε)zε dt

= −
∫ T

0

(
pε(t), z

′
ε(t)− fy(t, yε, uε)zε

)
dt

−
(
pε(t0), f

(
t0, yε(t0), u(t0)

)
− f
(
t0, yε(t0), uε(t0)

))

−
(
pε(0), z0

)
−
(
P
(
λε∇g

(
yε0, yε(T )

)
+µε

)
, zε(T )

)
.

Substituting into (3.18) we obtain

−2
√
ε � λε

(
L
(
t0, yε(t0), u(t0)

)
−L
(
t0, yε(t0), uε(t0)

))

−
(
pε(t0), f

(
t0, yε(t0), u(t0)

)
− f
(
t0, yε(t0), uε(t0)

))

+ λε
(
∇g
(
yε0, yε(T )

)
,
(
z0, zε(T )

))
+
(
µε,
(
z0, zε(T )

))

−
(
pε(0), z0

)
−
(
P
(
λε∇g

(
yε0, yε(T )

)
+µε

)
, zε(T )

)
(3.21)

for all z0 ∈ Rn andu(t0) ∈U(T0). This yields

−2
√
ε � λε

(
L
(
t0, yε(t0), u(t0)

)
−L
(
t0, yε(t0), uε(t0)

))

−
(
pε(t0), f

(
t0, yε(t0), u(t0)

)
− f
(
t0, yε(t0), uε(t0)

))

−
((
pε(0),−(I − P)

(
λε∇g

(
yε0, yε(T )

)
+µε

))
,
(
z0, zε(T )

))
.

For z0 = 0 we get

2
√
ε− λεL

(
t0, yε(t0), uε(t0)

)
+
(
f
(
t0, yε(t0), uε(t0)

)
,pε(t0)

)

� max
u∈U(t0)

{
−λεL

(
t0, yε(t0), u

)
+
(
f
(
t0, yε(t0), u

)
,pε(t0)

)}
(3.22)

and foru= uε we see by (3.21) that

(
pε(0),−pε(T )

)
= λε∇g

(
yε(0), yε(T )

)
+µε + ηε (3.23)
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where‖ηε‖ � 2
√
ε.

Then, on a subsequence, again denotedε, we have

λε → λ,

µε → µ,

pε → p in C
(
[0, T ];Rn

)
(by Arzela theorem),

yε0 → y∗(0) in C
(
[0, T ];Rn

)
,

m
{
t ∈ [0, T ]; uε(t) �= u∗(t)

}
→ 0.

(3.24)

Recalling that by (3.9)

∥∥f (t, yε, uε)
∥∥� β(t)

(
‖yε − y∗‖ + 1

)

we infer that{yε} is compact inC([0, T ];Rn) and{y′
ε} is weakly compact inL1(0, T ;Rn).

We have

yε(t)= yε(0)+
∫ t

0
f
(
s, yε(s), uε(s)

)
ds (3.25)

and

∥∥f
(
t, yε(t), uε(t)

)
− f
(
t, y∗(t), u∗(t)

)∥∥

�
∥∥f
(
t, yε(t), uε(t)

)
− f
(
t, y∗(t), uε(t)

)∥∥

+
∥∥f
(
t, y∗(t), uε(t)

)
− f
(
t, y∗(t), u∗(t)

)∥∥

� β(t)
∥∥yε(t)− y∗(t)

∥∥+
∥∥f
(
t, y∗(t), uε(t)

)
− f
(
t, y∗(t), u∗(t)

)∥∥. (3.26)

On the other hand, sincef is continuous in(y,u) we have

∥∥f
(
t, y∗(t), uε(t)

)
− f
(
t, y∗(t), u∗(t)

)∥∥→ 0 a.e. in (0, T ).

Since

∥∥f
(
t, y∗(t), uε(t)

)∥∥� β(t) a.e.t ∈ [0, T ]

we infer by (3.26) and the Lebesgue dominated convergence theorem that

f (t, yε, uε)→ f (t, y∗, u∗) in L1(0, T ).

Thus, by (3.25) we conclude that

yε → y∗ in C
(
[0, T ];Rn

)
.

By (3.23) we see that

(
p(0),−p(T )

)
= λ∇g

(
y∗(0), y∗(T )

)
+µ (3.27)
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whereµ ∈NC(y∗(0), y∗(T )).
Indeed, sinceC is convex,d2

C is convex and we have that

(
µε,
(
yε(0), yε(T )

)
−w

)
� 2
(
d2
C

(
yε(0), yε(T )

)
− d2

C(w)
)
, ∀w ∈ C

and passing to the limit we obtain

(
µ,
(
y∗(0), y∗(T )

)
−w

)
� 0, ∀w ∈ C.

Since

f ∗
y

(
t, yε(t), uε(t)

)
→ f ∗

y

(
t, y∗(t), u∗(t)

)
a.e.t ∈ (0, T ),

Ly
(
t, yε(t), uε(t)

)
→ Ly

(
t, y∗(t), u∗(t)

)
a.e.t ∈ (0, T )

by (3.8) and (3.20) it follows that

p′ = −f ∗
y (t, y

∗, u∗)p+ λLy(t, y
∗, u∗) a.e.t ∈ (0, T ) (3.28)

and by (3.22)

−λL
(
t0, y

∗(t0), u
∗(t0)

)
+
(
f
(
t0, y

∗(t0), u
∗(t0)

)
,p(t0)

)

= max
u∈U(t0)

{
−λL

(
t0, y

∗(t0), u
)
+
(
f
(
t0, y

∗(t0), u
)
,p(t0)

)}
a.e.t0 ∈ [0, T ].

(3.29)

Recall also thatλ� 0 and

|λ| + ‖µ‖ = 1. (3.30)

If λ > 0, then replacingp by p/λ we get (3.1)–(3.3) withλ= 1.
If λ= 0, then by (3.30) we see thatµ �= 0 and so

∥∥p(0)
∥∥+
∥∥p(T )

∥∥ �= 0.

Clearly, this implies that

∥∥p(t)
∥∥ �= 0 ∀t ∈ [0, T ].

The proof of the theorem is complete.

REMARK 3.1. The problem (1.14) with state constraints

y(t) ∈K ⊂ Rm ∀t ∈ [0, T ] (3.31)
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whereK is a closed convex subset ofRn can be treated similarly. In this case we take

ϕε(u, y0)=
[((
ϕ(u, y0)− ϕ

(
u∗, y∗(0)

)
+ ε
)+)2 + d2

C

(
y0, y

u(T )
)

+
∫ T

0
d2
K

(
y(t)
)
dt

]1/2

.

We propose to the reader to obtain a optimality theorem of the type of Theorem 3.1 in the
present situation.

REMARK 3.2. In Theorem 3.1 the condition thatC is convex can be removed. (See [4] for
a proof in this general case.)

3.3. Convex optimal control problems

We shall study here the problem (P):

min

{∫ T

0
L
(
t, y(t), u(t)

)
dt + g

(
y(0), y(T )

)
;
(
y(0), y(T )

)
∈ C
}

(3.32)

subject to

y′(t)=A(t)y(t)+B(t)u(t)+ f0(t), u ∈ L1(0, T ;Rm
)

u(t) ∈U(t) a.e.t ∈ [0, T ]

whereL is convex in(y,u), measurable int , g ∈ C1(Rn × Rn) is convex,C is closed
and convex,A(t) ∈ L(Rn × Rn), B(t) ∈ L(Rm,Rn), A(·), B(·), f0(·) are integrable and
U(t)⊂ Rm is closed and convex.

We have by Theorem 3.1 the following sharpening of the maximum principle in this
case:

COROLLARY 3.1. If (y∗, u∗) is optimal and u∗ ∈ L1(0, T ), then there existsp ∈
AC([0, T ];Rn), λ ∈ {0,1} such thatλ+ |p(t)| �= 0 and

{
p′ = −A∗(t)p+ λLy

(
t, y∗(t), u∗(t)

)
a.e. t ∈ (0, T ),

(
p(0),−p(T )

)
− λ∇g

(
y∗(0), y∗(T )

)
∈NC

(
y∗(0), y∗(T )

)
,

(3.33)

B∗p(t) ∈ λLu
(
t, y∗(t), u∗(t)

)
+NU(t)

(
u∗(t)

)
a.e. t ∈ (0, T ) (3.34)

where∂L= (∂yL,∂uL) is the subdifferential ofL.
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In fact, (3.34) comes from the maximum principle

λL
(
t, y∗(t), u∗(t)

)
−
(
f
(
t, y∗(t), u∗(t)

)
,p(t)

)

= max
u∈U(t)

{
λL
(
t, y∗(t), u

)
−
(
f
(
t, y∗(t), u

)
,p(t)

)}
(3.35)

wheref (t, y,u) ≡ A(t)y + B(t)u+ f0(t) and, becauseλL(t, y∗, ·) is convex, the maxi-
mum in (3.35) is attained foru∗ satisfying (3.34).

COROLLARY 3.2. Assume thatC = C1 ×C2 and there exists(y,u) admissible such that
y(T ) ∈ intC2 or y(0) ∈ intC1. Then the problem is normal.

PROOF. Assume thatλ= 0 andy(T ) ∈ intC2. Then|p(t)| �= 0 and

{
p′ = −A∗(t)p a.e.t ∈ [0, T ],
p(0) ∈NC1

(
y∗(0)

)
, −p(T ) ∈NC2

(
y∗(T )

)
,

(3.36)

B∗(t)p(t) ∈NU(t)
(
u∗(t)

)
, a.e.t ∈ [0, T ]. (3.37)

We have

{
y′ =A(t)y +B(t)+ f0(t)u a.e.t ∈ [0, T ],
y(T ) ∈ intC2.

(3.38)

This yields

(y∗ − y)′ =A(t)(y − y∗)+B(t)(u− u∗) a.e.t ∈ [0, T ]

and

−
(
p(T ), y∗(T )− ρw− y(T )

)
� 0, ∀|w| = 1.

Then using (3.37) we get

ρ
∣∣p(T )

∣∣ = −
(
p(T ), y∗(T )− y(T )

)

= −
(
p(0), y∗(0)− y0

)
+
∫ T

0

(
u− u∗,B∗(t)p(t)

)
dt � 0

(becausep(0) ∈ NC1(y
∗(0))). Hencep(T ) = 0, contradiction. The corollary is proved.

The casey(0) ∈ intC1 can be treated similarly. �

COROLLARY 3.3. Under assumption of Corollary3.2, the system(3.33)–(3.34) is also
sufficient for optimality.
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PROOF. As seen earlier,λ= 1. Let (y,u) be an arbitrary pair such that

y′ =A(t)y +B(t)u+ f0(t) a.e.t ∈ [0, T ], u(t) ∈U(t),
(
y(0), y(t)

)
∈ C1 ×C2.

We have (by convexity ofC)

L(t, y∗, u∗)� L(t, y,u)+
(
Ly(t, y

∗, u∗), y∗ − y
)
+
(
Lu(t, y

∗, u∗), u∗ − u
)
,

g
(
y∗(0), y∗(T )

)
� g
(
y(0), y(T )

)
+
(
y∗(0)− y(0), y∗(T )− y(T )

)

× ∇g
(
y∗(0), y∗(T )

)
.

Integrating on[0, T ] and using (3.33) and (3.34), we see that

∫ T

0
L(t, y∗, u∗)dt + g

(
y∗(0), y∗(T )

)
�

∫ T

0
L(t, y,u)dt + g

(
y(0), y(T )

)

as claimed. �

We shall prove now a maximum principle for theconvex control problem of Bolzaunder
more general conditions onL. We shall assume that

1. L(t, ·, ·) :Rn × Rn → R is convex, continuous and the Hamiltonian function

H(t, x,p)= sup
{
(p,u)−L(t, x,u): u ∈U(t)

}

is finite and summable int for each(x,p) ∈ Rn × Rm. U(t) ⊂ Rm is closed and
convex for eacht . Moreover, assumption (ii) in Section 3.1 holds.

2. g ∈ C(Rn × Rn) is convex andC = C1 ×C2 whereC1, C2 are convex and closed.
3. f (t, y,u) = A(t)y + B(t)u + f0(t) where A(t) ∈ L1(0, T ;Rn × Rn), B(t) ∈
L1(0, T ;Rm × Rn), f0 ∈ L1(0, T ).

4. There is(y,u) admissible such that eithery(0) ∈ intC1 or y(T ) ∈ intC2.

THEOREM 3.2. Assume that(y∗, u∗) ∈ C([0, T ];Rn)× L2([0, T ];Rn) is optimal. Then
there existsp ∈AC([0, T ];Rn) such that

p′ +A∗(t)p ∈ ∂uL
(
t, y∗(t), u∗(t)

)
a.e. t ∈ (0, T ), (3.39)

(
p(0),−p(T )

)
∈ ∂g

(
y∗(0), y∗(T )

)
+NC

(
y∗(0), y∗(T )

)
, (3.40)

B∗p ∈ ∂uL
(
t, y∗(t), u∗(t)

)
+NU(t)

(
u∗(t)

)
a.e. t ∈ (0, T ). (3.41)

Moreover, conditions(3.39)–(3.41)are also sufficient for optimality.

PROOF. Forλ > 0 consider the problem

min

{∫ T

0
Lλ(t, y,u)dt + gλ

(
y(0), yλ(T )

)
+ 1

2

∫ T

0

∣∣u(t)− u∗(t)
∣∣2 dt
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+ 1

2

∣∣y(0)− y∗(0)
∣∣2 + 1

2λ

(
d2
C1

(
yλ(0)

)
+ d2

C2

(
yλ(T )

))
, u(t) ∈U(t)

}
(Pλ)

subject to

y′ =A(t)y +B(t)u+ f0(t) a.e.t ∈ (0, T ).

Problem(Pλ) has a unique solution(yλ, uλ).

LEMMA 3.1. For λ→ 0 we have

yλ → y∗ in C
(
[0, T ];Rn

)
, (3.42)

uλ → u∗ in L2([0, T ];Rn
)
. (3.43)

PROOF. Recall that (see Section 2.1)

Lλ(t, y,u) = inf
(z,v)

{ |y − z|2
2λ

+ |u− v|2
2λ

+L(t, z, v)

}
,

gλ(y1, y2) = inf
(z1,z2)

{ |y1 − z1|2
2λ

+ |y2 − z2|2
2λ

+ g(z1, z2)

}

anddC1 (dC2) is the distance toC1 (andC2 respectively). We have

∫ T

0
Lλ
(
t, yλ(t), uλ(t)

)
dt + gλ

(
yλ(0), yλ(T )

)
+ 1

2

∫ T

0

∣∣uλ(t)− u∗(t)
∣∣2 dt

+ 1

2

∣∣yλ(0)− y∗(0)
∣∣2 + 1

2λ

(
d2
C1

(
yλ(0)

)
+ d2

C2

(
yλ(T )

))

�

∫ T

0
L
(
t, y∗(t), u∗(t)

)
dt + g

(
y∗(0), y∗(T )

)
(3.44)

becauseLλ � L, gλ � g.
Let for λ→ 0,

uλ → ū weakly inL2
(
0, T ;Rm

)
,

yλ → ȳ strongly inC
(
0, T ;Rn

)
.

Then by the Fatou lemma

lim inf
λ→0

∫ T

0
Lλ
(
t, yλ(t), uλ(t)

)
dt �

∫ T

0
L
(
t, ȳ(t), ū(t)

)
dt

and by the lower semicontinuity ofg

lim inf
λ→0

gλ
(
λ(0), yλ(T )

)
� g
(
ȳ(0), ū(T )

)
.
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Then by (3.44) we deduce that

yλ(0)→ y∗(0), uλ → u∗ in L2(0, T ;Rm
)
. �

Now the maximum principle in(Pλ) yields ((Pλ) is smooth and so Corollary 3.2 applies)





p′
λ +A∗(t)pλ = ∇yLλ(t, yλ, uλ) a.e.t ∈ (0, T ),
(
pλ(0),−pλ(T )

)
= ∇gλ

(
yλ(0), yλ(T )

)
+
(
yλ(0)− y∗(0),0

)

+ 1

λ

(
∇d2

C1

(
yλ(0)

)
,∇d2

C2

(
yλ(T )

))
,

B∗pλ = ∂uLλ(yλ, uλ)+ uλ − u∗ +NU(t)
(
uλ(t)

)
a.e.t ∈ (0, T ).

(3.45)

We shall prove now that{pλ(t)} is bounded inRn. We shall use the same argument as in
the proof of Corollary 3.2. Indeed, we have

(
pλ(T ), yλ(T )− y(0)− ρw

)
�
(
∇2gλ

(
yλ(0), yλ(T )

)
, yλ(T )− y(0)

)
�M

because

1

2
∇d2

C2
(y)= 1

λ

(
I − (I + λ∂IC2)

−1)(y).

Hence

ρ
∣∣pλ(T )

∣∣�
(
pλ(T ), yλ(T )− y(0)

)
.

On the other hand, by (3.45), we have

−
(
pλ(0), yλ(0)− y(0)

)
+
(
pλ(T ), yλ(T )− y(T )

)

=
∫ T

0

(
∇yLλ(t, yλ, uλ), yλ − y

)
dt +

∫ T

0

(
B(uλ − u),pλ

)
dt

where

y′ =Ay +Bu+ f0.

Then again by (3.45) we see that

(
pλ(T ), yλ(T )− y(T )

)

�
(
pλ(0), yλ(0)− y(0)

)
+ 1

2λ

(
d2
C1

(
yλ(0)

)
− d2

C2

(
y(0)

))
.

Substituting the latter in the previous inequalities we see that{pλ(T )} is bounded inRn.
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On the other hand, the Hamiltonian functionH(t, y,p) is concave iny and convex inp.
By assumption 1, it follows that for eachy0 ∈ Rn there is a neighborhoodV(y0) of y0 and
α ∈ L1(0, T ) such that

−H(t, y,0)� α(t), ∀y ∈ V(y0), t ∈ (0, T ).

Indeed, we may chooseV(y0) a simplex generated by{y1, . . . , yN+1}. Then

−H(t, y,0)� −
∑

i

λiH(t, yi,0)=: α(t).

By the inequality

H(t, y,0)−H(t, y,ρw)� ρ(v,w), ∀v ∈ ∂pH(t, y,0)

it follows that

sup
{
‖v‖; v ∈ ∂pH(t, y,0)

}
� β(t), a.e.t ∈ (0, T ) (3.46)

whereβ ∈ L1(0, T ). We have

Lλ
(
t, y∗(t)+ ρw,v0(t)

)
�L
(
t, y∗(t)+ ρw,v0(t)

)
� α(t)

for all |w| = 1 andv0(t) ∈ ∂pH(t, y∗(t)+ ρw,0). Because

L(t, y, v0)= sup
{
(v0,p)−H(t, y,p)

}

and

L(t, y, v0)+H(t, y,0)= 0.

We have, by (3.45) and the convexity ofLλ(t, y, ·), that

(
p′
λ +A∗pλ, yλ − y∗ − ρw

)
+
(
B∗pλ + uλ − u∗, uλ − v0

)

� Lλ(t, yλ, uλ)−Lλ(t, y
∗ + ρw,v0) a.e.t ∈ (0, T ).

Hence

ρ
∣∣p′
λ +A∗pλ

∣∣ � α(t)−Lλ(t, yλ, uλ)+
(
p′
λ +A∗pλ, yλ − y

)

+
(
B∗pλ, uλ − v0

)
+ (uλ − u∗, uλ − v0). (3.47)

This yields (Lλ is bounded from below by an affine function)
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ρ

∫ T

0

∣∣p′
λ +A∗pλ

∣∣dt � C +
(
pλ(T ), yλ(T )− y∗(T )

)

−
(
pλ(0), yλ(0)− y∗(0)

)
+C
∣∣pλ(t)

∣∣∣∣uλ(t)− v0(t)
∣∣

+ |uλ − u∗|2 + |uλ − u∗||uλ − v0| a.e.t ∈ (0, T ).

Since
∫ T

0 |uλ|2 dt and|pλ(0)|, |pλ(T )| are bounded it follows by Gronwall’s lemma that

|pλ(t)| � C, ∀t ∈ [0, T ],
∫ T

0

∣∣p′
λ(t)+A∗pλ(t)

∣∣dt � C.

As a matter of fact, by (3.47) we see that{p′
λ} is weakly compact inL1(0, T ;Rn) (the

Dunford–Pettis theorem). Then on a subsequence, again denotedλ, we have

pλ(t)→ p(t) uniformly on[0, T ],
p′
λ → p′ weakly inL1

(
0, T ;Rn

)
.

(3.48)

Moreover, lettingλ→ 0 into (see the second equation in (3.45))

(
pλ(T ), yλ(0)− ξ

)
−
(
pλ(T ), yλ(T )− η

)

� gλ
(
yλ(0), yλ(T )

)
− gλ(ξ, η)+

1

λ

(
d2
C1

(
yλ(0)

)
+ d2

C2

(
yλ(T )

))

+
(
yλ(0)− y∗(0), yλ(0)− ξ

)
, ∀(ξ, η) ∈ C

we see that

(
p(0), yλ(0)− ξ

)
−
(
p(T ), y∗(T )− η

)
� g
(
y∗(0), y∗(T )

)
− g(ξ, η),

∀(ξ, η) ∈ C.

Then lettingλ→ 0 we see that the transversality condition (3.40) holds.
Next, we letλ→ 0 into the inequality (see (3.45))

∫ T

0

(
p′
λ +A∗pλ, yλ − y

)
dt +

∫ T

0

(
B∗pλ, uλ − u

)
dt

�

∫ T

0
Lλ
(
t, yλ, uλ

)
dt + 1

2

∫ T

0
|uλ − u∗|2 dt −

∫ T

0
Lλ(t, y,u)dt

− 1

2

∫ T

0
|u− u∗|2 dt.
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By weak lower semicontinuity of the convex integrand we know that (see Lemma 3.1)

lim inf
λ→0

∫ T

0
Lλ(t, yλ, uλ)dt �

∫ T

0
L(t, y∗, u∗)dt.

Hence

∫ T

0

(
p′ +A∗p,y∗ − y

)
dt +

∫ T

0

(
B∗p,u∗ − u

)
dt

�

∫ T

0
L(t, y∗, u∗)dt −

∫ T

0
L(t, y,u)dt,

∀(y,u) ∈ L∞(0, T ;Rn
)
×L2(0, T ;Rm

)
.

The latter implies that

p′(t)+A∗(t)p(t) ∈ ∂pL
(
t, y∗(t), u∗(t)

)
a.e.t ∈ (0, T ),

B∗(t)p(t) ∈ ∂uL
(
t, y∗(t), u∗(t)

)
+NU(t)

(
u∗(t)

)
a.e.t ∈ (0, T )

as claimed.
The sufficiency of conditions (3.39)–(3.41) for optimality is immediate. It relies on the

obvious inequalities

L(t, y∗, u∗) � L(t, y,u)+
(
Ly(t, y

∗, u∗), y∗ − y
)

+
(
Lu(t, y

∗, u∗)+ η,u∗ − u
)

a.e.t ∈ (0, T ), η ∈NU(t)
(
u∗(t)

)

where(y,u) is any pair of functions such thatu(t) ∈ U(t). If we take (y,u) such that
y(0) ∈ C1 andy(T ) ∈ C2

y′ =A(t)y +B(t)u+ f0(t)

and we integrate on(0, T ) we get by (3.40)–(3.41)

∫ T

0
L(t, y∗, u∗)dt �

∫ T

0
L(t, y,u)dt +

(
p(T ), y∗(T )− y(T )

)

−
(
p(0), y∗(0)− y(0)

)

�

∫ T

0
L(t, y,u)dt − g

(
y∗(0), y∗(T )

)
+ g
(
y(0), y(T )

)
.

Hence(y∗, u∗) is optimal in problem(Pλ). �
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The dual problem Define the functions

M(t, q,w)= sup
{
(q, v)+ (w,y)−L(t, y, v); v ∈U(t)

}
,

m(p1,p2)= sup
{
(p1, x1)− (p2, x2)− g(x1, x2); x1 ∈ C1, x2 ∈ C2

}
.

(3.49)

The problem

min

{∫ T

0
M
(
t,B∗(t)p,w(t)

)
dt +

∫ T

0

(
f0(t),p(t)

)
dt

+m
(
p(0),p(T )

)
; p′ +A∗(t)p =w a.e. in(0, T )

}
(P∗)

is called the dual of (P). We have

THEOREM3.3. Under assumptions of Theorem3.2the pair(y∗, u∗) is optimal in problem
(P) if and only if(P∗) has a solution(p∗,w∗). We have

infP+ infP∗ = 0. (3.50)

The proof is immediate. It relies on the conjugacy relationship betweenL andM .
It turns out that in certain situations the dual problem(P∗) is simpler than the primal

problem(P). In particular, control constraintsu(t) ∈ U(t) disappear in the dual problem.
Let us illustrate this on the following simple example:

min

{
1

2

∫ T

0
‖y(t)‖2 dt; y′(t)=A(t)y(t)+ u(t), y(0)= y0,

∥∥y(T )
∥∥� 1,

∥∥u(t)
∥∥� ρ a.e.t ∈ (0, T )

}

where‖ · ‖ is the Euclidean norm.
In this case

M(t, q,w)= 1

2
‖w‖2 + ρ‖q‖ ∀(q,w) ∈ Rn × Rn,

m(p1,p2)= (p1, y0)− ‖p2‖ ∀(p1,p2) ∈ Rn × Rn

and so the dual control problem(P∗) is

min

{∫ T

0

(
ρ
∥∥p(t)

∥∥+ 1

2

∥∥w(t)
∥∥2
)

dt +
(
p(0), y0

)
+
∥∥p(T )

∥∥;

p′ +A∗(t)p =w a.e. in(0, T )

}
.
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Comments The results presented above are essentially due to R.T. Rockafellar (see [32]).
In infinite dimensional spaces such results were established in [6].

3.4. Examples

3.4.1. The optimal control of the prey–predator systemWe shall treat here some specific
problems from different areas of interest. Consider the Volterra prey–predator system





x′(t)= x(t)
(
λ1 −µ1u(t)y(t)

)
, t ∈ [0, T ],

y′(t)= y(t)
(
−λ2 +µ2u(t)x(t)

)
, t ∈ [0, T ],

x(0)= x0, y(0)= y0, x0, y0> 0

(3.51)

wherex is the prey,y the predator and 0� u(t) � 1 is the segregation rate;λi , µi are
positive constants.

Consider the optimal control problem (see [4,37]):

min
{
−
(
x(T )+ y(T )

)
; 0� u� 1

}
. (3.52)

This is a Bolza optimal control problem where

L≡ 0, g(x, y)= −(x + y),

U = {u ∈ R; 0� u� 1},

f (x, y,u)=
(
x(λ1 −µ1uy)

y(−λ2 +µ2ux)

)
.

The maximum principle (see Theorem 3.1) yields




p′

1 = −(λ1 −µ1u
∗y∗)p1 −µ2u

∗y∗p2, t ∈ [0, T ],
p′

2 = µ1u
∗x∗p1 − (−λ2 +µ2u

∗x∗)p2, t ∈ [0, T ],
p1(T )= 1, p2(T )= 1,

(3.53)

u∗(t)= argmax
u∈U

{
x∗(t)

(
λ1 −µ1uy

∗(t)
)
p1(t)+ y∗(t)

(
−λ2 +µ2ux

∗(t)
)
p2(t)

}

a.e.t ∈ [0, T ]. (3.54)

Equivalently

u∗(t)=
{

0 if µ2p2(t)−µ1p1(t) < 0,
1 if µ2p2(t)−µ1p1(t) > 0.

(3.55)

(Sincex0, y0> 0, we havex∗(t) > 0, y∗(t) > 0.)
We shall discuss the form of the optimal control according to the sign ofµ2 − µ1. We

note first that alwaysu∗ is abang–bang controllerbecause the set of zeros of the function
µ2p2 −µ1p1 consists of a finite number of points.
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1. µ2 −µ1< 0.
In this case

(µ2p2 −µ1p1)(T )= µ2 −µ1< 0. (3.56)

Hence

µ2p2 −µ1p1< 0

in a maximal interval[T − δ, T ]. On this interval we have by (3.56) thatu∗(t) = 0
and so





p′
1 = −λ1p, t ∈ (T − δ, T ),

p′
2 = λ2p2, t ∈ (T − δ, T ),

p1(T )= p2(T )= 1.

Hence

p1(t)= eλ1(T−t), p2(t)= eλ2(t−T ) on [T − δ, T ].

Since the functionµ2eλ2(t−T ) − µ1e−λ1(T−t) is increasing, it follows that(T −
δ, T )= (0, T ). In other words, in this caseu∗(t)= 0, ∀t ∈ (0, T ).

2. µ2 −µ1> 0.
Then

µ2p2(t)−µ1p1(t) > 0 for t ∈ [T − ε,T ]

and

u∗(t)= 0 for t ∈ [T − ε,T ].

(We may assume thatt ∈ [T − ε,T ] is maximal with this property.) Let us prove that
t1 = T − ε is a switching point foru∗, i.e.,

µ2p2(t)−µ1p1(t) < 0 for 0� t � T − ε.

We have on(T − ε,T )

{
p′

1 = −p1(λ1 −µ1y
∗)−µ2y

∗p2, t ∈ (T − ε,T ),

p′
2 = −p2(µ2x

∗ − λ2)+µ1x
∗p1

(3.57)

i.e.,

{
p′

1 = −λ1p1 + y∗(µ1p1 −µ2p2), t ∈ (t1, T ),
p′

2 = λ2p2 + x∗(µ1p1 −µ2p2), t ∈ (t1, T ).
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Hence

p1(t)� eλ1(T−t)
� 1, p1(t1)=

µ2

µ1
p2(t1)�

µ2

µ1
> 0.

Note thatµ1p1(t)−µ2p2(t)= ϕ(t) satisfies the equation

ϕ′(t)= u∗ϕ(t)(µ2x
∗ −µ1y

∗)− λ2µ2p2 − λ1µ1p1, t ∈ (0, t1).

Hence

ϕ(t) = Ce
∫ t1
t u∗(µ2x

∗−µ1y
∗)ds

+
∫ t1

t

e
∫ s
t u

∗(µ2x
∗−µ1y

∗)dr (λ2µ2p2 + λ1µ1p1)ds for t ∈ (0, t1).

Sinceϕ(t1)= 0 we see thatC = 0 and

λ2µ2p2(t1)+ λ1µ1p1(t1)� λ2µ2 + λ1µ1> 0

we conclude thatϕ(t) > 0 in a left neighborhood oft1. Hence

u∗(t)= 0 for t ∈ (t1 − ε, t1)= (t2, t1).

But as seen above,µ2p2 −µ1p1 is increasing on(t2, t1) and so

µ2p2(t)−µ1p1(t) < 0

for all t < t1. Hencet1 = 0 and so

u∗(t)=
{

1 for t1< t � T ,
0 for 0� t < t1

(3.58)

where the switching pointt1 can be computed from the equation

µ2p2(t)−µ1p1(t)= 0.

3. µ2 −µ1 = 0.
In this case it follows thatu∗(t)= 0 for all t ∈ (0, T ).

3.4.2. Periodic solutions to Hamiltonian systemsConsider the Hamiltonian system

{
y′(t)= ∂pH

(
y(t),p(t)

)
+ f1(t), t ∈ (0, T ),

p′(t)= −∂yH
(
y(t),p(t)

)
+ f2(t), t ∈ (0, T )

(3.59)
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with periodic conditions

y(0)= y(T ), p(0)= p(T ). (3.60)

Assumptions:
1. H :Rn × Rn → R is convex, of classC1 and

γ1|y|2 + γ2|p|2 +C1 �H(y,p) <
π

T

(
|y|2 + |p|2

)
+C2 ∀y,p ∈ R

whereγ1, γ2> 0.
2. f1, f2 ∈ L2(0, T ;Rn).
A special case of (3.59) isf1 = 0,H(y,p)= g(y)+ 1

2|p|2. In this case, (3.59) reduces
to

y′ = p, p′ = −g′(y)+ f2(t)

i.e.,

y′′ + g′(y)= f2(t), y(0)= y(t), y′(0)= y′(T ).

Following Clarke and Ekeland [13], we may reduce problem (3.59), (3.60) to the optimal
control problem

min

{∫ T

0

(
G
(
v(t)− f2(t), u(t)− f1(t)

)
−
(
y(t), v(t)

))
dt

}
(3.61)

subject to

y′(t)= u(t), z′(t)= −v(t) a.e.t ∈ (0, T ),
y(0)= y(T ), z(0)= z(T )

(3.62)

whereG=H ∗ is the conjugate ofH , i.e.,

G(q1, q2)= sup
(y,p)

{
(y,p1)+ (p, q2)−H(y,p)

}
.

If (y∗, z∗, u∗, v∗) is optimal the maximum principle yields (see Theorem 3.1)





q ′
1(t)= −λv∗(t) a.e.t ∈ (0, T ),
q ′

2(t)= 0 a.e. t ∈ (0, T ),
q1(0)= q1(T ),

(3.63)

{
u∗(t), v∗(t)

}
= argmax

{u,v}

{(
u,q1(t)

)
−
(
v, q2(t)

)

− λG
(
v− f2(t), u− f1(t)

)
+ λ
(
y∗(t), v

)}
. (3.64)
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Clearly,λ= 1 because otherwise (i.e. ifλ= 0), q1 ≡ q2 ≡ 0 which contradicts (3.64).
By (3.62)–(3.64) we haveq2 ≡ C2, q1 − z∗ ≡ C1 and by (3.64) we see that

{
y∗(t)− q2(t), q1(t)

}
∈ ∂G

(
v∗(t)− f2(t), u

∗(t)− f1(t)
)

a.e.t ∈ [0, T ].

Since(∂G)−1 = ∂H we get (see Proposition 2.4)

{
v∗(t)− f2(t), u

∗(t)− f1(t)
}

∈ ∂H
(
y∗(t)−C2, z

∗(t)+C1
)
.

We set

ȳ = y∗(t)−C2, p = z∗(t)+C1. (3.65)

We have (see (3.63))





ȳ′ ∈ ∂pH(ȳ,p)+ f1(t) a.e.t ∈ (0, T ),
p′ ∈ −∂yH(ȳ,p)+ f2(t) a.e.t ∈ (0, T ),
ȳ(0)= ȳ(T ), p(0)= p(T )

i.e., (ȳ,p) is a solution of (3.59). We note also that, by assumption 1, we have

G(q1, q2)� sup
{y,p}

{
(y,p1)+ (p, q2)− γ1|y|2 − γ2|p|2

}
−C1<∞,

∀(q1, q2) ∈ Rn × Rn

i.e.,G is continuous onRn × Rn.
To conclude the proof, it remains to show that problem (3.61) has at least one solution.
Let {yn, zn, un, vn} be such that

y′
n = un, z′n = −vn, yn(0)= yn(T ), z(0)= zn(T ),

d �

∫ T

0
G(vn − f2, un − f1)dt −

∫ T

0
(yn, vn)dt � d + 1

n
.

(3.66)

whered is the infimum in (3.61).
By definition ofG and by assumption 1, we have

G(vn − f2, un − f1)− (yn, un)

� (y, vn − f2)+ (p,un − f1)− (yn, vn)−ω
(
|y|2 + |p|2

)

∀(y,p) ∈ Rn × Rn

whereω < π
T

. This yields

G(vn − f2, un − f1)− (yn, un)�
1

4ω

(
(vn − f2)

2 + (un − f1)
2)− (yn, vn).

(3.67)
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On the other hand, the periodic solution toy′ = u is expressed as

y(t)=
∑

m �=0

umeiµmt

iµm
, µm = 2mπ

T
.

Hence

yn(t)=
∑

m �=0

umn eiµmt

iµm
, umn = 1

T

∫ T

0
un(t)e

−iµmt dt.

This yields

∫ T

0
(yn, vn)dt =

∑

m �=0

umn v
m
n

iµm
, vmn = 1

T

∫ T

0
vne

−iµmt dt.

Hence by the Parseval formula

∫ T

0
(yn, vn)dt �

T

4π

∫ T

0

(
u2
n + v2

n

)
dt.

Then, by (3.67) and by assumption 1, we have

∫ T

0

(
G(vn − f2, un − f1)− (yn, un)

)
dt � α

∫ T

0

(
|un|2 + |vn|2

)
dt +C.

Hence the sequences{un}, {vn} are bounded inL2(0, T ;Rn).
On a subsequence we have

un → u∗ weakly inL2(0, T ;Rn),

vn → v∗ weakly inL2(0, T ;Rn).
(3.68)

We set

ȳn(t) = yn(t)−
∫ T

0
yn(t)dt,

z̄n(t) = zn(t)−
∫ T

0
zn(t)dt.

Then

∫ T

0
ȳn dt =

∫ T

0
z̄n dt = 0, ȳ′

n = un, ȳ′
n = −vn
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and{ȳn}, {z̄n} are bounded inH 1(0, T ;Rn). Hence

ȳn → y∗ strongly inC([0, T ];Rn)
weakly inH 1(0, T ;Rn),

z̄n → z∗ strongly inC([0, T ];Rn)
weakly inH 1(0, T ;Rn)

(3.69)

where(y∗)′ = u∗, (z∗)′ = −v∗, a.e.t ∈ [0, T ].
Clearly,{y∗, z∗, u∗, v∗} is optimal in (3.61). This follows by (3.66) using (3.68), (3.69)

and the fact that the convex integrand

(u, v)→
∫ T

0
G(v− f2, u− f1)dt

is weakly lower semicontinuous inL2(0, T ;Rn)×L2(0, T ;Rn). We have proved therefore

THEOREM3.4. Under assumptions1and2 there exists a solution(y,p) ∈H 1(0, T ;Rn)×
H 1(0, T ;Rn) to the periodic problem(3.59), (3.60).

3.4.3. An application to resonant systemsConsider the problem

min

{∫ T

0
u(t)dt; u ∈U

}

where

U = {u : (0,1)→ R, measurable, 0� u� B, meas[t : u(t) > 0]> 0,

y′′ + uy = 0, y′(0)= y′(1)= 0 has at least one nontrivial solution}.

THEOREM 3.5. Assume thatB > π2. Then every optimal pair(y∗, u∗) satisfies

u∗(t)=
{
B, 0� t � t1,
0, t1< t < t2,
B, t2 � t < 1.

(3.70)

PROOF. The state system is

y′ = z, z′ = −uy, z(0)= z(1)= 0.

By the maximum principle, Theorem 3.1, there existsλ= 0,1 and(p1,p2) such that

p′
1 = up2, p′

2 = −p1 a.e.t ∈ [0,1],
p′

2(0)= 0, p′
2(1)= 0,

(3.71)

u∗(t)= argmax
u∈U

{
−uy∗(t)p2(t)− λu

}
a.e.t ∈ [0, T ]. (3.72)
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We note thatp2 = p is the solution to

{
p′′ + u∗p = 0 a.e. t ∈ [0, T ],
p(0)= p(1)= 0.

Hencep andy∗ are both solutions toy′′ + u∗y = 0 and thereforep = Cy∗ on (0,1). If
λ= 0, by (3.72) we see that

u∗(t)= argmax
u∈U

{
−C
(
y∗(t)

)2
u
}
.

Hence,u∗(t)= 0 if C > 0 andu∗(t)= B if C < 0.Howeveru∗ �= 0 andu∗(t) �= B because
we know thatu= π2 is admissible in our problem andB > π2. Henceλ �= 0 and soλ= 1.
Then by (3.72) it follows that

−
(
y∗(t)p(t)+ 1

)
∈NU

(
u∗(t)

)
⊂N[0,B]

(
u∗(t)

)
a.e.t ∈ [0,1].

Hence (see (2.15))

u∗(t)=
{

0 if y∗(t)p(t)+ 1> 0,
B if y∗(t)p(t)+ 1< 0.

Equivalently

u∗(t)=
{

0 if C(y∗(t))2 + 1> 0,
B if C(y∗(t))2 + 1< 0.

(3.73)

(This follows by an elementary argument as in [36].)
On the other hand, ifu∗ is optimal, then|(y∗)′(t)| �= 0, ∀t ∈ (0,1). One can compute

exactly(t1, t2) and find

v =
∫ T

0
u∗(t)dt.

From here, we may conclude that for anyu ∈ L∞(0, T ) with 0� u� B, if

∫ T

0
u(t)dt < v,

then the equation

y′′ + uy = 0, y′(0)= y′(1)= 0

has only the trivial solutiony = 0.
This result is relevant in the theory of nonlinear resonant problems of the form

y′′ + f (y)= 0, y′(0)= y′(1)= 0. �
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3.5. Reachable sets and optimal control problems

In what follows we consider the controlled equation (1.11) supposed for simplicity to be
autonomous:

y′ = f u(y) := f (y,u)

with the initial data

y(0)= y0.

The hypotheses onf and the controller setU are such that for anyu ∈ U the nonau-
tonomous vector fieldf u(t) satisfies the hypotheses in Section 2.3. For example we will
suppose that the controller setU = {u : [0, T ] → U : u ∈ L∞(0, T )} and U ⊂ Rm is
closed.The vector fieldf is assumed to beC∞ in y for any fixedu ∈ U andf , ∂f

∂y
are

continuous in(y,u).
Thereachable set(or attainable set) at momentt is defined as follows:

Ry0(t)=
{
y0 ◦ −→exp

∫ t

0
f u(τ) dτ

∣∣ u ∈ U

}
.

We denote byyu(t) = −→exp
∫ t

0 f
u(τ) dτ and the flow corresponding to the equationF ts =

−→exp
∫ t
s
f u(τ) dτ .

We prove in this section that optimal control problems reduce to the study ofreachable
sets.

THEOREM 3.6. If yu
∗(T ) ∈ ∂Ry0(T ), the boundary ofRy0(T ), then, for all 0< s < T ,

yu
∗(s) ∈ ∂Ry0(s).

PROOF. It is clear thatF Ts (Ry0(s)) ⊂ Ry0(T ) and, sinceF Ts is a diffeomorphism,
F Ts (intRy0(s))⊂ intRy0(T ) and the conclusion is immediate. �

We will still call such trajectoriesoptimaland the corresponding controlleroptimal con-
trol.

Optimal control problems We consider the following controlled equation

{
y′ = f u(y),

y(0)= y0.
(3.74)

The optimal control problem is to find the admissible strategyu : [0, T ] →U such that the
pair (u, yu) minimizes a cost functionalJ . Depending on the form of the cost functionalJ

we distinguished in Section 1.2 three types of optimal control problems: Lagrange, Mayer
and Bolza.
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We consider first of all the case of theLagrange problemwith fixed end pointsy0, y1 and
cost functionalJ (y,u) =

∫ T
0 L(y(t), u(t))dt , with the LagrangeanL satisfying similar

hypotheses withf . We introduce the new variablej and consider the new system:

{
j ′ = L(t, y,u),

y′ = f u(y)
(3.75)

with initial data

y(0)= y0, j (0)= 0.

We consider the set of controllersu ∈ U such thatyu(T ) = y1. Then it is clear that, if
(u∗, yu

∗
) is an optimal pair then

(
j (T ), yu

∗
(T )
)
∈ ∂R(0,y0)(T )

whereR(0,y0) refers to the reachable set for system (3.75). This reduction has some incon-
venient in the sense that it does not distinguish between trajectories realizing the minimum
of J and those realizing the maximum. That is why one considers the extended set of
controllersŨ = {(u, v) | u ∈ U, v ∈ [0,+∞)} and the problem




j ′ = L(t, y,u)+ v,

y′ = f u(y),

y(0)= q0, j (0)= 0.
(3.76)

It is now clear that ifu∗ is optimal for the Lagrange problem then(ũ,0) is optimal in
(3.76).

Since Mayer problem is just a particular case of aBolza problem, we describe
the reduction for the latter. In this case the cost functional isJ (y,u) = g(y(T )) +∫ T

0 L(t, y(t), u(t))dt and the functionsg, L satisfy similar hypotheses tof . We intro-
duce the new variablej , the extended set of controllers̃U and consider the new system:





j ′ = L(t, y,u)+
n∑

i=1

∂l

∂yi
(y)fi(y,u)+ v,

y′ = f u(y),

q(0)= q0, j (0)= 0.

(3.77)

As in the case of the Lagrange problem, ifu∗ is optimal for the Bolza problem, then(u∗,0)
is optimal in (3.77).

We have thus seen that the study of optimal control problems reduces to the study of
reachable sets, more precisely to the study of those trajectories whose final points belong
to the boundary of the reachable set at that moment.
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3.6. Geometric form of Pontriaghin maximum principle

In this section we present a coordinate free version of the maximum principle (see also
Section 3.1). The proof we give here follows the ideas in [2].

Foru ∈ U we consider the HamiltonianH u := (f u)#.

THEOREM 3.7. Suppose that for the admissible controlu∗(t), t ∈ [0, T ], yu∗
(T ) ∈

∂Ry0(T ). Then there exists a non-zero Lipschitz curve in the cotangent bundleξ(t) ∈
T ∗
yu

∗
(t)
M solution of the Hamiltonian equation

d

dt
ξ(t)= −→

H
u∗(t)(

ξ(t)
)

and the following maximality condition is satisfied

−→
H
u∗(t)(

ξ(t)
)
= max

u∈U
−→
H
u(t)(

ξ(t)
)
.

PROOF. The idea of the proof is to consider as curveξ(t) a curve of covectors “orthogonal”
at each point to the boundary of the reachable set:∂Ry0(t).

Step 1.Let T :RN → Rn be Lipschitz continuous,T(0) = 0 and differentiable at 0.
Denote byT0 =DT(0) and by

RN+ =
{
(x1, . . . , xN ) ∈ RN | xi � 0

}
.

We prove that ifT0(RN+) = Rn, then for any neighborhoodV of 0 in RN , 0 ∈ intT(V ∩
RN+).

By the convexity ofRN+ it turns out thatT0|intRN+
is surjective and lety ∈ intRN+ with

T0(y)= 0 andδ > 0 such thaty +Bδ ⊂ intRN+ .
It is clear that one may find ann-dimensional linear subspaceX ⊂ RN such that

T0(X) = Rn so T0|X is invertible. Denote byD = Bδ ∩ X and forε > 0 the continuous
functionsTε :D→ Rn:

Tε(v)=
1

ε
T
(
ε(y + v)

)
.

One may easily check thatTε → T0 uniformly onD and since 0∈ int T0(D) it turns out,
using an usual argument based on degree theory, that 0∈ intTε(D) for ε > 0 small enough
or, equivalently, 0∈ intT(ε(y +Bδ)) which concludes the Step 1.

Step 2.We consider an admissible controlu(t) and compute the end point of the trajec-
tory using the second form of variations of parameters formula (2.40):

yu(T ) = y0 ◦ −→exp
∫ T

0
f u

∗(t) +
(
f u(t) − f u

∗(t))dt

= yu
∗
(T ) ◦ −→exp

∫ T

0

(
F Tt
)
∗
(
f u(t) − f u

∗(t))dt. (3.78)
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Denote by

gt,u =
(
F Tt
)
∗
(
f u − f u

∗(t))

and letL be the set of Lebesgue points ofu∗ (see (3.17)). We suppose that the convex cone
W generated by{gt,u(yu∗

(T )) | t ∈ L, u ∈ U} is the whole tangent spaceTyu∗ (T )M . We

prove that, in this case, necessarilyy1 := yu
∗
(T ) ∈ intRy0(T ).

Indeed, one may find a finite set of points 0< t1 < · · · < tN < T andu1, . . . , uN ∈ U
such thatW is generated by the finite set{gti ,ui | i = 1, . . . ,N}. Forx = (x1, . . . , xN ) ∈ RN+
we consider the strategy:

ux(t)=





ui, t ∈ [ti, ti + xi],

u∗(t), t ∈ [0, T ]
∖ N⋃

i=1

[ti, ti + xi].

Variation of parameters formula (3.78) gives:

yu
x

(T ) = y0 ◦ −→exp
∫ T

0
f u

x(t) dt

= yu
∗
(T ) ◦ −→exp

∫ t1+x1

t1

gt,u1 dt ◦ · · · ◦ −→exp
∫ tN+xN

tN

gt,un dt. (3.79)

If one considers the map:

T(x1, . . . , xN )= yu
x

(T ), x1, . . . , xN ∈ R

then it is easy to verify thatT is Lipschitz continuous,T(0)= y1 and

∂T
∂xi

∣∣∣∣
(0,...,0)

= gti ,ui (y1).

The hypotheses of Step 1 are verified and, consequently,

y1 ∈ intT
(
V ∩ RN+

)

for any neighborhoodV of 0 in RN and, sinceux is an admissible strategy we find that

y1 ∈ intRy0(T ).

Step 3.Suppose now thatyu
∗
(T ) ∈ ∂Ry0(T ). Since 0∈ ∂W , there exists a support hy-

perplane defined byξ(T ) ∈ T ∗
yu

∗
(T )
M ,ξ(T ) �= 0 such that

ξ(T )
(
gT ,u

(
yu

∗
(T )
))

� 0 a.e. t ∈ [0, T ], u ∈U.
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This means exactly that

[(
F Tt
)∗
ξ(T )

](
f u

∗(
yu

∗
(t)
))

�
[(
F Tt
)∗
ξ(T )

](
f u
(
yu(t)

))
.

Denote by

ξ(t)=
(
F Tt
)∗
ξ(T ).

The maximality condition is satisfied and, by (2.43)

d

dt
ξ(t)= −→

H
u∗(t)(

ξ(t)
)

which concludes the proof. �

It is now easy to recover the maximum principle for optimal control problems, as is
expressed in Section 3.1 by using the transformation described in Section 3.5 and the geo-
metric form of maximum principle, Theorem 3.7.

3.7. Free time optimal control problems

The free time optimal control problem

min
(u,T )

{∫ T

0
L
(
t, y(t), u(t)

)
dt + g

(
y(0), y(T )

)
;
(
y(0), y(T )

)
∈ C
}

(3.80)

subject to

y′ = f (y,u) a.e.t ∈ (0, T )

can be reduced to a fixed time optimal control problem of the form (1.14) by substitution

t =
∫ s

0
w2(τ )dτ, 0� s � 1,

z(s)= y
(
t (s)
)
, v(s)= u

(
t (s)
)
.

This yields

min
(v,w)

{∫ 1

0
L
(
t (s), z(s), v(s)

)
w2(s)ds + g

(
z(0), z(1)

)
;
(
z(0), z(1)

)
∈ C
}

subject to

z′(s)= f
(
z(s), v(s)

)
w2(s) a.e.s ∈ (0,1).
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In this case, by Theorem 3.1 we find that the maximum principle has the form

p′(t)= −fy(y∗, u∗)p+ λLy(y
∗, u∗),

(
p(0),−p(T )

)
∈ λ∇g

(
y∗(0), y∗(T )

)
+NC

(
y∗(0), y∗(T )

)
,

(
p(t), f

(
t, y∗(t), u∗(t)

))
− λL

(
t, y∗(t), u∗(t)

)

= max
(u∈U(t)

{(
p(t), f

(
y∗(t), u∗))− λL

(
y∗(t), u

)}
,

(
p(t), f

(
t, y∗(t), u∗(t)

))
− λL

(
t, y∗(t), u∗(t)

)
= 0 a.e. t ∈ [0, T ]

(3.81)

whereλ= 0,1 and‖p(t)‖ + λ �= 0, ∀t ∈ [0, T ].
In the special case,L≡ 1, g ≡ 0, (3.80) reduces to the optimal time problem

min
(T ,u)

{
T ;
(
y(0), y(T )

)
∈ C, u ∈U(t), a.e.t ∈ (0, T )

}
. (3.82)

We leave to the reader to deduce the maximum principle (from (3.81)) in this case.
We note, however, that ifg = 0,C = {y0} × {y1}, then it reads as

p′(t)= −fy(t, y∗, u∗)p a.e. in(0, T ),
(
p(t), f

(
t, y∗(t), u∗(t)

))
− λ= 0 a.e. t ∈ (0, T ),

(
p(t), f

(
t, y∗(t), u∗(t)

))
= max
u∈U(t)

(
p(t), f

(
t, y∗(t), u

))

whereλ ∈ {0,1} and|p(t)| + λ �= 0, ∀t ∈ [0, T ]. Hence|p(t)| �= 0, ∀t ∈ [0, T ].
From the geometric point of view, in the case of Lagrange or Bolza problems consid-

ered in Section 3.5, if the final timeT is free the conclusion is that for the equivalent
problems (3.75), respectively (3.77), the optimal pair((u∗,0), (j∗, yu

∗
) satisfy, forε > 0

small enough

(
j∗(T ), yu

∗
(T )
)
∈ ∂
( ⋃

|T−t |<ε
R(0,y0)(t)

)
. (3.83)

So, in general we obtain the following maximum principle for free time problems:

THEOREM 3.8. Suppose that for the admissible controlu∗(t), t ∈ [0, T ],

yu
∗
(T ) ∈ ∂

( ⋃

|T−t |<ε
Ry0(t)

)

Then there exists a non-zero Lipschitz curve in the cotangent bundleξ(t) ∈ T ∗
yu

∗
(t)

solution

of the Hamiltonian equation

d

dt
ξ(t)= −→

H
u∗(t)(

ξ(t)
)
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and the following maximality condition is satisfied

H u∗(t)(ξ(t)
)
= max

u∈U
H u(t)

(
ξ(t)
)
. (3.84)

Moreover, the following condition holds:

H u∗(t)(ξ(t)
)
= 0 a.e. t ∈ [0, T ]. (3.85)

PROOF. As before, the case of free time may be reduced to the fixed time situation by
considering reparameterizations of the trajectories of the initial system and introduce a
supplementary control related to the time rescaling in the way described below. First of all,
one considers a reparameterization (a new time scale):

t = γ (s), γ ′ > 0.

Then the solutionyu(s)= yu(γ (s)) satisfies

d

ds
yu(s)= γ ′(s)f u(γ (s))(y).

The modified system is
{
y′ = ϕf u(y), u ∈U, |ϕ − 1|< ε

T
< 1,

y(0)= y0.

Admissible controls are measurable, bounded functions of the formv(t) = (ϕ(t), u(t)),
|ϕ − 1| � ε

T
and the corresponding solution is denoted byyv(t). If we denote byv∗(t)=

(1, u∗(t)) then it is clear that, sinceyu
∗
(T ) ∈ ∂(

⋃
|T−t |<εRy0(t)) it follows thatyv

∗
(T ) ∈

∂Ry0(T ) and, at this point, the maximum principle may be applied. The Hamiltonian is

H v(ξ)= ϕH u(ξ), v = (ϕ,u).

The Hamiltonian system forH v∗
is the same as forH u∗

. The maximality condition be-
comes

Hv∗
(
ξ(t)
)
=H u∗(t)(ξ(t)

)
= max

|ϕ−1|<εT,u∈U
ϕH u

(
ξ(t)
)

from which conditions (3.84), (3.85) follow. �

Transversality conditions If in the optimal control problem of Lagrange we consider the
initial and final states belonging to some submanifoldsy0 ∈M0, y1 ∈M1, then supplemen-
tary transversality conditions appear, that is, the adjoint flow should satisfy (compare with
(3.2))

ξ(0) orthogonal toM0,

ξ(T ) orthogonal toM1.
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4. The dynamic programming equation

The optimal controlleru∗ determined on[0, T ] via the optimality system (maximum prin-
ciple) is also referred asopen loop optimal controller. An alternative way is to look for
an optimal controller expressed in feedback form. Such a controller is calledclosed loop
optimal controllerand it is determined from a Hamilton–Jacobi equation.

4.1. Optimal feedback controllers and smooth solutions to Hamilton–Jacobi equation

Consider the optimal control problem

min

{∫ T

0
L
(
t, y(t), u(t)

)
dt + ℓ

(
y(T )

)
; y′(t)= f

(
t, y(t), u(t)

)
,

y(0)= y0, u(t) ∈U(t), a.e.t ∈ [0, T ]
}
. (4.1)

This is a special case of problem (1.14) whereg(y1, y2)= l(y2) andC = {y0} × Rn. The
controlu : [0, T ] → Rm is of course measurable. We shall assume as usually that

L : [0, T ] × R × Rm → R, f : [0, T ] × Rn × Rm → R, ℓ :Rn → R

satisfy the assumption

∥∥Ly(t, y,u)
∥∥+
∥∥fy(t, y,u)

∥∥� α(t, u), ∀u ∈U(t), t ∈ [0, T ]

and ℓ, L, f are measurable int , continuous inu while U(t) is closed andt → U(t)

measurable.
A function

V : [0, T ] × Rn → Rm

Borel measurable is said to be afeedback controllerfor the systemy′ = f (t, y,u) if for
each(t0, y0) ∈ [0, T ] × Rn the Cauchy problem

{
y′(t)= f

(
t, y(t),V

(
t, y(t)

))
, a.e.t ∈ (t0, T ),

y(t0)= y0
(4.2)

has at least one absolutely continuous solutiony ∈ C([0, T ];Rn). The system (4.2) is
called aclosed loop system.

A controlu(t)= V (t, y(t)) wherey is the solution to (4.2) is calledfeedback controller.
In other words, afeedback controller(or control) is an input function (control) which is
expressed as a function of time and of the state of the system in the present time.

If u(t) = V (t, y(t)) is optimal for problem (4.1), then this feedback control is called
optimal feedback control.
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The representation of an optimal control in the feedback form (i.e. as a feedback con-
troller) is called thesynthesis problemof optimal control. The functionV is also called
synthesis functionfor the corresponding optimal control problem.

The synthesis problem is closely related to a first order partial differential equation.
This is theHamilton–Jacobi–Bellmanor thedynamic programming equationassociated to
problem (4.1) and has the following form:





ϕt (t, x)− sup
u∈U(t)

{
−
(
ϕx(t, x), f (t, x,u)

)
−L(t, x,u)

}
= 0

∀x ∈ Rn, t ∈ [0, T ],
ϕ(T , x)= ℓ(x) ∀x ∈ Rn

(4.3)

where

ϕt =
∂ϕ

∂t
, ϕx = ∂ϕ

∂x
.

If we denote byH : [0, T ] × Rn × Rm → R the Hamiltonian function

H(t, x,p)= sup
{
−
(
p,f (t, x,u)

)
−L(t, x,u); u ∈U(t)

}
(4.4)

then we may rewrite (4.3) as (compare with Eq. (1.10)):

{
ϕt (t, x)−H

(
t, x,ϕx(t, x)

)
= 0, t ∈ (0, T ), x ∈ Rn,

ϕ(T , x)= ℓ(x), x ∈ Rn.
(4.5)

In order to make clear the relationship between this equation and problem (4.1) we
introduce the function

Φ(t, x)= argsup
u∈U(t)

{
−
(
ϕx(t, x), f (t, x,u)

)
−L(t, x,u)

}
. (4.6)

Letψ : [0, T ] × Rn → R be the optimal value function associated with the optimal control
problem, i.e.,

ψ(t, x)= inf
u

{∫ T

t

L
(
x, y(s), u(s)

)
ds + ℓ

(
y(T )

)
;

y′(s)= f
(
s, y(s), u(s)

)
, s ∈ (t, T ), y(t)= x

}
. (4.7)

THEOREM 4.1. Letϕ ∈ C1([0, T ]× Rn) be a solution to Hamilton–Jacobi equation, with
the Cauchy conditionϕ(T )= ℓ(x). Assume thatΦ is a feedback controller. Then

ϕ(t, x)=ψ(t, x), ∀(t, x) ∈ (0, T )× Rn

andΦ is an optimal feedback controller.
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PROOF. Let (t, x) be fixed and letyt be the solution to

(
yt
)′
(s)= f

(
s, yt ,Φ

(
s, yt (s)

))
, s ∈ (t, T ), yt (t)= x. (4.8)

We have

d

ds
ϕ
(
s, yt (s)

)
= ϕs

(
s, yt (s)

)
+
(
ϕy
(
s, yt (s)

)
, f
(
s, yt (s),Φ

(
s, yt (s)

)))

a.e.s ∈ (t, T ), (4.9)

Then by (4.6) we see that

d

ds
ϕ
(
s, yt (s)

)
= ϕs

(
s, yt (s)

)
−H

(
s, yt (s), ϕy

(
s, yt (s)

))

−L
(
s, yt (s),Φ

(
s, yt (s)

))
a.e.s ∈ (t, T ).

By (4.5) we get

d

ds
ϕ
(
s, yt (s)

)
= −L

(
s, yt (s),Φ

(
s, yt (s)

))
a.e.s ∈ (t, T ).

Hence

ϕ(t, x)=
∫ T

t

L
(
s, yt (s),Φ

(
s, yt (s)

))
ds + ℓ

(
yt (T )

)
�ψ(t, x). (4.10)

On the other hand, if(y, v) is any admissible pair into problem (4.1), i.e.,

v(s) ∈U(s) a.e.s ∈ (t, T ), L
(
s, y(s), v(s)

)
∈ L1(t, T )

and
{
y′(s)= f

(
s, y(s), v(s)

)
a.e.s ∈ (t, T ),

y(t)= x

we have

d

ds
ϕ
(
s, y(s)

)
= ϕs

(
s, y(s)

)
+
(
ϕx
(
s, y(s)

)
, f
(
s, y(s), v(s)

))

� ϕs
(
s, y(s)

)
−H

(
s, y(s), ϕx

(
s, y(s)

))
−L
(
s, y(s), v(s)

)

a.e.s ∈ (t, T ).

Hence

d

ds
ϕ
(
s, y(s)

)
� −L

(
s, y(s), v(s)

)
a.e.s ∈ (t, T )
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and so

ϕ(t, x)�

∫ T

t

L
(
s, y(s), v(s)

)
ds + ℓ

(
y(T )

)
. (4.11)

Since(y, v) was arbitrary we conclude by (4.10) and (4.11) thatϕ = ψ as claimed.
Moreover, by (4.10) it follows that (fort = 0) u=Φ(t, y(t)) is an optimal feedback con-
troller. This completes the proof. �

In this way, if the Hamilton–Jacobi equation has aC1 solution then the synthesis prob-
lem reduces to this equation. Let us consider, in the next section, a simple special case.

4.2. Linear quadratic control problems

LetU(t)≡ Rm and let





f (t, y,u)≡ b(t)+A(t)x +B(t)u ∀x ∈ Rn, u ∈ Rm, t ∈ (0, T ),
L(t, y,u)≡ 1

2

(
Q(t)x, x

)
+ 1

2
|u|2,

ℓ(x)= 1

2
(P0x, x)

(4.12)

where

A(t) ∈ L∞(0, T ;L
(
Rn,Rn

))
, B(t) ∈ L∞(0, T ;L

(
Rm,Rn

))
,

P0 ∈ L
(
Rn,Rn

)
, b ∈ L∞(0, T ;Rn

)
, Q ∈ L∞(0, T ;L

(
Rn,Rn

))
.

Here we have denoted by(·, ·) the scalar product and by| · | the Euclidean norm inRn and
Rm, respectively. We shall assume further thatP0, Q(t) are symmetric positive matrices,
i.e.,

(P0x, x)� 0 ∀x ∈ Rn, (4.13)
(
Q(t)x, x

)
� 0 ∀x ∈ Rn, t ∈ [0, T ]. (4.14)

In this case the Hamiltonian function is (see (4.4))

H(t, x,p) = sup
u∈Rm

{
−
(
p,A(t)x +B(t)u+ b

)
− 1

2
|u|2 − 1

2

(
Q(t)x, x

)}

= −1

2

(
Q(t)x, x

)
−
(
p,b(t)

)
−
(
p,A(t)x

)

+ sup
u∈Rm

{
−
(
B∗(t)p,u

)
− 1

2
|u|2
}

= −1

2

(
Q(t)x, x

)
+ 1

2

∣∣B∗(t)p
∣∣2 −

(
p,b(t)

)
−
(
A∗(t)p, x

)
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and so the Hamilton–Jacobi equation (4.5) becomes





ϕt (t, x)−
1

2

∣∣B∗(t)ϕx(t, x)
∣∣2 +

(
ϕx(t, x), b(t)

)

+
(
A(t)x,ϕx(t, x)

)
+ 1

2

(
Q(t)x, x

)
= 0, t ∈ (0, T ), x ∈ Rn,

ϕ(T , x)= 1

2
(P0x, x).

(4.15)

Moreover, by (4.6) we see that

Φ(t, x)= −B∗(t)ϕx(t, x) ∀t ∈ (0, T ), x ∈ Rn. (4.16)

The form of Eq. (4.15) suggests thatϕ should be a quadratic function inx. Indeed, if we
look for ϕ under the form

ϕ(t, x)= 1

2

(
P(t)x, x

)
+
(
r(t), x

)
∀t ∈ (0, T ), x ∈ Rn

we obtain by (4.15) (note thatϕx = P(t)x + r(t))

1

2

(
P ′(t)x, x

)
+
(
r(t), x

)
− 1

2

∣∣B∗(t)P (t)x +B∗(t)r(t)
∣∣2

+
(
A(t)x,P (t)x + r(t)

)
+
(
P(t)x + r(t), b(t)

)
+ 1

2

(
Q(t)x, x

)
= 0,

P (T )= P0, r(T )= 0.

Differentiating with respect tox, we get

P ′(t)x + r ′(t)− P(t)B(t)B∗(t)P (t)x +A∗(t)P (t)x + P(t)A(t)x

+A∗(t)r − P(t)B(t)B∗(t)r(t)+ P(t)b(t)+Q(t)x = 0.

HenceP(t) must be a solution to the Riccati equation



P ′(t)+A∗(t)P (t)+ P(t)A(t)− P(t)B(t)B∗(t)P (t)+Q(t)= 0,
t ∈ (0, T ),

P (T )= P0

(4.17)

while r satisfies the linear equation



r ′(t)+A∗(t)r(t)− P(t)B(t)B∗(t)r(t)+ P(t)b(t)= 0

a.e.t ∈ (0, T ),
r(T )= 0.

(4.18)

The optimal feedback control is expressed as (see (4.16))

u(t)=Φ(t, y)= −B∗(t)P (t)x −B∗(t)r(t), t ∈ (0, T ). (4.19)
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In this way the synthesis problem for the linear quadratic optimal control problem (4.1),
(4.12) reduces to the Riccati equation (4.17).

It turns out that under our assumptions the Cauchy problem (4.17) has a unique solution,
globally defined (see [4,38])

P ∈W1,∞([0, T ];Rn
)
, P (t)= P ∗(t), P (t)� 0 ∀t ∈ [0, T ]

and this fact proves that a feedback operator for this problem exists.

REMARK 4.1. The hypothesisQ � 0 is essential for existence of optimal pairs. IfQ
is not positive, then it is possible that an optimal pair does not exist and the dynamic
programming equation (4.3) does not have a solution defined fort ∈ [0, T ]. More precisely,
if we still search for a solution as a quadratic form, then the Riccati equation (4.17) may not
have a globally defined solution. This is deeply related to the existence ofconjugate points,
almost as in the classical calculus of variations. For more details on conjugate points see
[26,2].

EXAMPLE . Let us consider the problem

min

{∫ T

0

(
y2 + u2)dt; y′ = y + u, y(0)= y0

}
. (4.20)

In this case the optimal feedback control is given by

u(t)= −P(t)y

whereP is the solution of the equation

{
P ′(t)+ 2P(t)− P 2(t)+ 2= 0, t ∈ (0, T ),
P(T )= 0.

We get

P(t)= 2
√

3C
e−2t/

√
3

1−Ce−2t/
√

3
+ 1+

√
3

whereC is to be determined from the conditionP(T )= 0.

The above discussion remains true for infinite dimensional linear quadratic problems of
the form (4.1), (4.2) whereRn andRm are replaced by the Hilbert spacesH andU and

B(t) ∈ L∞(0, T ;L(U,H)
)
, P0 ∈ L(H,H)

and

A(t) :H →H
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is a family of linear closed operators which generate an evolution operator inH . In this
case, however the Riccati equation (4.17) should be understood in a weak sense.

4.3. Viscosity solutions

Coming back to Eq. (4.5) it must be said, however, that in general it has not a classical solu-
tion. Thus a new concept of solution has been introduced by M.G. Crandall and P.L. Lions
in [20] (see also [17]).

Consider the equation

ϕt (t, x)−H(t, x,ϕx)= 0, (t, x) ∈Q= [0, T ] ×Ω. (4.21)

The functionϕ ∈ C(Q) is said to be a viscosity solution to Eq. (4.1) if for eachχ ∈ C1(Q)

the following conditions hold:
1. If ϕ − χ has local maximum at(t0, x0) ∈Q then

χt (t0, x0)−H
(
t0, x0, χx(t0, x0)

)
� 0.

2. If ϕ − χ has a local minimum at(t0, x0) then

χt (t0, x0)−H
(
t0, x0, χx(t0, x0)

)
� 0.

We have

THEOREM 4.2. The optimal value functionψ defined by(4.7) is a viscosity solution to
Hamilton–Jacobi equation(4.21).

PROOF. Let (t0, x0) ∈Q= (0, T )× Rn and letχ ∈ C1([0, T ] × Rn) such thatψ − χ has
a local maximum at(t0, x0), i.e.,

ψ(t0, x0)− χ(t0, x0)�ψ(t, x)− χ(t, x), ∀(t, x) ∈ V (4.22)

whereV is a neighborhood of(t0, x0).
Let (y,u) be an admissible pair on[t0, T ], such thaty(t0)= x0 andu is continuous on

[t0, T ]. We have

{
y′(s)= f

(
s, y(s), u(s)

)
a.e.s ∈ (t0, T ), u(s) ∈U(s),

y(t0)= x0.
(4.23)

In (4.22) we taket � t0 andx = y(t) and we have

χ(t0, x0)− χ
(
t, y(t)

)
� ψ(t0, x0)−ψ

(
t, y(t)

)

�

∫ t

t0

L
(
τ, y(τ ), u(τ )

)
dτ, t � t0. (4.24)
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Indeed for each 0� t � s � T we have

ψ(t, x)= inf

{∫ s

t

L
(
τ, y(τ, t, x), u(τ )

)
dτ +ψ

(
s, y(s, t, x, u)

)
; u(τ) ∈U

}
.

(4.25)

Here(s, t, x, u) is the solution to system (4.23) with the initial point(t, x). This equality
is the so called dynamic programming principle and follows by a direct calculation. Now
if we divide (4.24) byt − t0 and lett → t0 we get

−χt (t0, x0)−
(
χx(t0, x0), f

(
t0, x0, u(t0)

))
� L
(
t0, x0, u(t0)

)
.

Sinceu(t0) is arbitrary inU(t0) we obtain

−χt (t0, x0)+H
(
t0, x0, χx(t0, x0)

)
� 0

as claimed.
Assume now thatψ − χ has a local minimum at(t0, x0). We have

χ(t0, x0)− χ(t, x)�ψ(t0, x0)−ψ(t, x) ∀(t, x) ∈ V

whereV is a neighborhood of(t0, x0). Let (y,u) be an admissible pair such thaty(t0)= x0.
For ε > 0 sufficiently small we have

ψ
(
t0 + ε, y(t0 + ε)

)
−ψ(t0, x0)� χ

(
t0 + ε, y(t0 + ε)

)
− χ(t0, x0)

=
∫ t0+ε

t0

d

dt
χ
(
t, y(t)

)
dt

=
∫ t0+ε

t0

χt
(
t, y(t)

)
+
(
χy
(
t, y(t)

)
, f
(
t, y(t), u(t)

))
dt. (4.26)

If

χt (t0, x0)−H
(
t0, x0, χx(t0, x0)

)
� λ > 0

then we have

χt (t0, x0)+
(
χx(t0, x0), f (t0, x0, u)

)
+L
(
t, y(t), u(t)

)
� λ, ∀u ∈U(t0).

Hence

χt
(
t, y(t)

)
+
(
χy
(
t, y(t)

)
, f
(
t, y(t), u(t)

))
+L
(
t, y(t), u(t)

)
�
λ

2

for t0 � t � t0 + ε, ε sufficiently small.
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Then by (4.26) we see that

ψ
(
t0 + ε, y(t0 + ε)

)
−ψ(t0, x0)�

ελ

2
−
∫ t0+ε

t0

L
(
t, y(t), u(t)

)
dt.

The latter contradicts the principle of dynamic programming (4.25). This completes the
proof.

In particular, Theorem 4.2 implies the existence of a viscous solution for the Hamilton–
Jacobi equation (4.5) with final Cauchy condition.

The uniqueness of such a viscosity solution is more delicate and follows by some sharp
arguments developed by Crandall, Lions and Ishii (see [17–20]). �

Let us conclude this section with a representation result for the viscosity solution to
Hamilton–Jacobi equation in the case of a convex Hamiltonian, i.e. (see [4,5])

f (t, x,u) ≡ Ax +Bu, U convex,
L(t, x,u) ≡ L(x,u), L convex.

Denote byM the conjugate function

M(q,w)= sup
{
(q, v)+ (w,y)−L(y, v); v ∈U, y ∈ Rn

}
.

Then, as seen earlier, we have

ψ(t, x) = − inf

{∫ T

t

M
(
B∗p,w

)
ds + ℓ∗

(
−p(T )

)
+
(
p(t), x

)
;

p′ = −A∗p+w a.e. in(t, T )

}

= − inf
q

{
ℓ∗(−q)+ inf

w

{∫ T

t

M
(
B∗p,w

)
ds +

(
p(t), x

)
;

p′ = −A∗p+w,p(T )= q

}}

= − inf
q

{
ℓ∗(−q)+ θ(t, q)

}

where

θ(t, q) = inf

{∫ T

t

M
(
B∗p,w

)
ds +

(
p(t), x

)
;p′ = −A∗p+w,p(T )= q

}

= inf

{∫ T−t

t

M
(
B∗z, v

)
ds +

(
z(T − t), x

)
; z′ =A∗z+ v, z(0)= q

}

= inf
w

{∫ T

t

M
(
B∗z,w

)
ds +

(
z(T ), x

)
; z′ =A∗z+w,z(t)= q

}
.
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In other words,θ is the solution to Hamilton–Jacobi equation

{
θt (t, q)+

(
A∗q, θq(t, q)

)
− sup

w

{
−
(
θq(t, q),Bw

)
−M

(
B∗q,w

)
;w ∈ Rn

}
= 0,

θ(T , q)= (x, q).
(4.27)

We have proved therefore

THEOREM 4.3. The viscosity solution to Hamilton–Jacobi equation

{
ϕt (t, x)+

(
Ax,ϕx(t, x)

)
− sup
u∈U

{
(−ϕx,Bu)−L(x,u)

}
= 0,

ϕ(T , x)= ℓ(x)
(4.28)

is given by

ϕ(t, x)= − inf
q

{
ℓ∗(−q)+ θ(t, q)

}
(4.29)

whereθ is solution to(4.27).

Let us consider the special case

L(x,u)≡ h(u)+ g(x), A≡ 0, B ≡ I.

Then Eq. (4.28) reduces to (h∗ is the conjugate ofh)

{
ϕt (t, x)− h∗(−ϕx(t, x)

)
+ g(x)= 0,

ϕ(T , x)= ℓ(x)
(4.30)

and so Theorem 4.3 yields

ϕ(t, x)= − inf
q

{
ℓ∗(−q)+ θ(t, q)

}
(4.31)

where

{
θt (t, q)− g∗(−θq(t, q)

)
+ h∗(−B∗q

)
= 0,

θ(T , q)= (x, q) ∀t ∈ [0, T ], q ∈ Rn.
(4.32)

Forg = 0 the solutionϕ to the problem

{
ϕt (t, x)− h∗(−ϕ(t, x)

)
= 0

ϕ(T , x)= ℓ(x)
(4.33)
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is therefore given by (Lax–Hopf formula)

ϕ(t, x) = − inf
q

{
ℓ∗(−q)+ (x, q)+ (T − t)h∗(−q)

}

= inf
y

{
ℓ(y)+ (T − t)h

(
y − x

T − t

)}
, t ∈ (0, T ). (4.34)

As is easily seen, this formula remains true for a non convex functionℓ.

EXAMPLE . The equation

{
ϕt − c‖ϕx‖ = 0, x ∈ Rn, t ∈ (0, T ),
ϕ(0, x)= ϕ0(x)

(4.35)

is called theeikonal equationand models the flame propagation(ϕ(t, x) is the character-
istic equation of the burnt regionΩt at momentt).

Forψ = −ϕ we get

{
ψt + c‖ψx‖ = 0,
ψ(0, x)= ℓ(x), ℓ= −ϕ0

and by (4.34) we get

ψ(t, x) = inf
y

{
ℓ(y)+ th

(
y − x

t

)}

= inf
y

{
ℓ(y); ‖y − x‖ � ct

}

= inf
y

{
−ϕ0(y); ‖y − x‖ � ct

}

where

h(u)=
{

0, |u| � c,
+∞, |u|> c.

Finally

ϕ(t, x)= sup
{
ϕ0(y); ‖x − y‖ � ct

}
.

4.4. On the relation between the two approaches in optimal control theory

We make now more precise the relationship between the maximum principle and the dy-
namic programming equation.
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We consider the optimal problem (4.1). As we have seen in Section 3.1, ifu∗ is an
optimal control, then there existλ ∈ {0,1} andp(t) (not both 0), solution to the following
system:





y′ = f (t, y∗, u∗)= ∂

∂p
H u∗

(t, y∗,p),

p′ = −
(
p,fy(t, y

∗, u∗)
)
+ λLy(t, y

∗, u∗)= − ∂

∂y
H u∗

(t, y∗,p),

p(T )= −∇l
(
y∗(T )

)
(4.36)

whereH u(t, y,p)= (p,f (t, y,u))− λL and

H u∗(t)(t, y∗(t),p(t)
)
= max

u∈U
H u
(
t, y ∗ (t),p(t)

)
.

In Sections 4.1, 4.3, we derived a partial differential equation satisfied in the viscosity sense
by the value functionψ :

{
ψt −H(t, x,ψx)= 0,
ψ(T , x)= l(x)

(4.37)

andH(t, x,p)= maxuH u(t, x,−p). In fact, if we denote byS = −ψ , then

St +H u∗
(t, x, Sx)= 0

and this is just the Hamilton–Jacobi equation (see Section 1.1) corresponding to the Hamil-
tonian system (4.36) that appears in the maximum principle of Pontriaghin.

The next theorem states for this control problem the maximum principle by making use
of the Bellman equation. The hypotheses are more restrictive than in Theorem 3.1. Any-
how, this makes more precise the relationship between the two branches of control theory
and it is in a certain sense the analogous of the Jacobi theorem in calculus of variations.
For a general setting of this problem we refer to [14] (see also [22]).

THEOREM 4.4. Suppose thatu∗ is an optimal control and the value functionψ is C2.
Then the problem is normal and if we denote by

p = −ψx
(
t, y∗(t)

)

thenp satisfies(4.36)with λ= 1.

PROOF. As seen in Theorem 4.2,ψ is a viscosity solution of (4.37) and since it isC1, it is
a classical solution. Thus

d

dt
p(t)= −ψtx

(
t, y∗(t)

)
−ψxx

(
t, y∗(t)

)
f (t, y∗, u∗). (4.38)
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By the other hand, by the dynamic programming principle

d

dt
ψ
(
t, y∗(t)

)
= −L

(
t, y∗(t), u∗(t)

)

= ψt
(
t, y∗(t)

)
+
(
ψx
(
t, y∗(t)

)
, f
(
t, y∗(t), u∗(t)

))
.

This, combined with Bellman equation tells us that(y∗(t), u∗(t)) realizes the infimum of
(x,u)→ψt (t, x)+ (ψx(t, x), f (t, x,u))+L(t, x,u). This implies that the derivative with
respect tox computed in(t, y∗(t), u∗(t)) is 0 that is

ψxt
(
t, y∗(t)

)
+ψxx

(
t, y∗(t)

)
f
(
t, y∗(t), u∗(t)

)

+
(
ψx
(
t, y∗(t)

)
, fy
(
t, y∗(t), u∗(t)

))
+Ly

(
t, y∗(t), u∗(t)

)
= 0

which combined with (4.38) concludes the proof. �
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0. Introduction

The complex dynamical behavior of Hamiltonian systems has attracted mathematicians
and physicists ever since Newton wrote down the differential equations describing plane-
tary motions and derived Kepler’s ellipses as solutions. Hamiltonian systems can be inves-
tigated from different points of view and using a large variety of analytical and geometric
tools. The variational treatment of Hamiltonian systems goes back to Poincaré who inves-
tigated periodic solutions of conservative systems with two degrees of freedom using a
version of the least action principle. It took however a long time to turn this principle into
a useful tool for finding periodic solutions of a general Hamiltonian system

{
ṗ = −Hq(p, q, t),
q̇ =Hp(p, q, t)

(HS)

as critical points of the Hamiltonian action functional

Φ(p,q)=
∫ 2π

0
p · q̇ dt −

∫ 2π

0
H(p,q, t)dt

defined on a suitable space of 2π -periodic functions(p, q) :R → RN × RN . The reason is
that this functional is unbounded from below and from above so that the classical methods
from the calculus of variations do not apply. Even worse, the quadratic form

(p, q) �→
∫ 2π

0
p · q̇ dt

has infinite-dimensional positive and negative eigenspaces. ThereforeΦ is said to be
strongly indefinite. For strongly indefinite functionals refined variational methods like
Morse theory or Lusternik–Schnirelmann theory still do not apply. These were originally
developed for the closely related problem of finding geodesics and extended to many other
ordinary and partial differential equations, in particular to the second order Hamiltonian
system

q̈ = −Vq(q, t)

where the associated Lagrangian functional

J (q)= 1

2

∫ 2π

0
q̇2 dt −

∫ 2π

0
V (q, t)dt

is not strongly indefinite.
A major breakthrough was the pioneering paper [78] of Rabinowitz from 1978 who ob-

tained for the first time periodic solutions of the first order system (HS) by the above men-
tioned variational principle. Some general critical point theory for indefinite functionals
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was subsequently developed in the 1979 paper [19] by Benci and Rabinowitz. Since then
the number of papers on variational methods for strongly indefinite functionals and on ap-
plications to Hamiltonian systems has been growing enormously. These methods are not
restricted to periodic solutions but can also be used to find heteroclinic or homoclinic orbits
and to prove complex dynamics. In fact, they can even be applied to infinite-dimensional
Hamiltonian systems and strongly indefinite partial differential equations having a varia-
tional structure.

The goal of this chapter is to present an introduction to variational methods for strongly
indefinite functionals likeΦ and its applications to the Hamiltonian system (HS). The
chapter is divided into three sections. Section 1 is concerned with critical point theory,
Section 2 with periodic solutions, and Section 3 with homoclinic solutions of (HS). We
give proofs or sketches of proofs for selected basic theorems and refer to the literature for
more advanced results. No effort is being made to be as general as possible. Neither did
we try to write a comprehensive survey on (HS). The recent survey [81] of Rabinowitz in
Volume 1A of the Handbook of Dynamical Systems facilitated our task considerably. We
chose our topics somewhat complementary to those treated in [81] and concentrated on
the first order system (HS), though a certain overlap cannot and should not be avoided. As
a consequence we do not discuss second order systems nor do we discuss convex Hamil-
tonian systems where one can work with the dual action functional which is not strongly
indefinite. One more topic which we have not included—though it has recently attracted
attention of many researchers—is the problem of finding heteroclinic solutions by varia-
tional methods. These and many more topics are being treated in a number of well writ-
ten monographs dealing with variational methods for Hamiltonian systems, in particular
[1,5,33,52,69,73,80]. Further references can be found in these books and in Rabinowitz’
survey [81]. Naturally, the choice of the topics is also influenced by our own research
experience.

Restricting ourselves to variational methods we do not touch upon the dynamical sys-
tems approach to Hamiltonian systems which includes perturbation theory, normal forms,
stability, KAM theory, etc. An introduction to these topics can be found for instance in
the textbooks [47,75]. Also we do not enter the realm of symplectic topology and Floer
homology dealing with Hamiltonian systems on symplectic manifolds. Here we refer the
reader to the monograph [74] and the references therein.

We conclude this introduction with a more detailed description of the contents. In Sec-
tion 1 we consider pertinent results in critical point theory. Particular emphasis is put on a
rather simple and direct approach to strongly indefinite functionals.

Section 2 is concerned with periodic solutions of (HS). We present a unified approach,
via a finite-dimensional reduction in order to show the existence of one solution, and via
a Galerkin-type method in order to find more solutions. Subsection 2.2 concerns the exis-
tence of periodic solutions near equilibria (Lyapunov-type results) and in Subsection 2.3
the fixed energy problem is considered (finding solutions of a priori unknown period which
lie on a prescribed energy surface). The remaining subsections consider the existence and
the number of periodic solutions under different growth conditions on the Hamiltonian and
for spatially symmetric Hamiltonians.

Section 3 deals with homoclinic solutions for (HS) with time-periodic Hamiltonian.
Here we present a few basic existence and multiplicity results and discuss a relation to the
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Bernoulli shift and complicated dynamics. The proofs are more sketchy than in Section 2
because we did not want to enter too much into technicalities which are more complex than
in the periodic case. Moreover, the subject of this section is still rapidly developing and has
not been systematized in the same way as the periodic solution problem.

1. Critical point theory

1.1. Basic critical point theory

LetE be a real Hilbert space with an inner product〈. , .〉 andΦ a functional inC1(E,R).
Via the Riesz representation theorem we shall identify the Fréchet derivativeΦ ′(x) ∈ E∗

with a corresponding element ofE, and we shall write〈Φ ′(x), y〉 rather thanΦ ′(x)y. Our
goal here is to discuss those methods of critical point theory which will be useful in our
applications to Hamiltonian systems. In particular, although most of the results presented
here can be easily extended to real Banach spaces, we do not carry out such extension as it
will not be needed for our purposes.

Recall that{xj } is said to be aPalais–Smale sequence(a (PS)-sequencein short) if
Φ(xj ) is bounded andΦ ′(xj ) → 0. The functionalΦ satisfies thePalais–Smale condi-
tion (the (PS)-condition) if each (PS)-sequence possesses a convergent subsequence. If
Φ(xj )→ c andΦ ′(xj )→ 0, we shall sometimes refer to{xj } as a (PS)c-sequence.Φ satis-
fies the Palais–Smale condition at the levelc (the (PS)c-condition) if every(PS)c-sequence
has a convergent subsequence.

We shall frequently use the following notation:

Φc :=
{
x ∈E: Φ(x)� c

}
,

K :=
{
x ∈E: Φ ′(x)= 0

}
, Kc :=

{
x ∈K: Φ(x)= c

}
.

One of the basic technical tools in critical point theory is the deformation lemma.
Below we state a version of it, called the quantitative deformation lemma. It is due to
Willem [101], see also [23, Theorem I.3.4] and [102, Lemma 2.3].

A continuous mappingη :A× [0,1] → E, whereA⊂ E, is said to be aa deformation
ofA in E if η(x,0)= x for all x ∈A. Denote the distance fromx to the setB by d(x,B).

LEMMA 1.1. SupposeΦ ∈ C1(E,R) and letc ∈ R, ε̄, δ > 0 and a setN ⊂E be given. If

∥∥Φ ′(x)
∥∥� δ whenever d(x,E \N)� δ and

∣∣Φ(x)− c
∣∣� ε̄, (1.1)

then there exists anε ∈ (0, ε̄), depending only on̄ε and δ, and a deformationη :E ×
[0,1] →E such that:

(i) η(x, t)= x whenever|Φ(x)− c| � ε̄;
(ii) η(Φc+ε \N,1)⊂Φc−ε andη(Φc+ε,1)⊂Φc−ε ∪N ;

(iii) The mappingt �→Φ(η(x, t)) is nonincreasing for eachx ∈E.

PROOF. Since the argument is well known, we omit some details. A complete proof may
be found, e.g., in [23, Theorem I.3.4] or [102, Lemma 2.3].
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A mappingV :E \ K → E is said to be apseudo-gradient vector fieldfor Φ if V is
locally Lipschitz continuous and satisfies

∥∥V (x)
∥∥� 2

∥∥Φ ′(x)
∥∥,

〈
Φ ′(x),V (x)

〉
�
∥∥Φ ′(x)

∥∥2 (1.2)

for eachx ∈E \K . It is well known and not difficult to prove that anyΦ ∈ C1(E,R) has
a pseudo-gradient vector field; see, e.g., [23,80,102].

Let χ :E → [0,1] be a locally Lipschitz continuous function such that

χ(x)=
{

0 if
∣∣Φ(x)− c

∣∣� ε̄ or d(x,E \N)� δ,

1 if
∣∣Φ(x)− c

∣∣� ε̄/2 andd(x,E \N)� δ/2

and consider the Cauchy problem

dη

dt
= −1

2
δχ
(
η(x, t)

) V (η(x, t))
‖V (η(x, t))‖ , η(x,0)= x.

Since the vector field above is locally Lipschitz continuous and bounded,η(x, t) is
uniquely determined and continuous for each(x, t) ∈ E × R. It is now easy to see that
(i) is satisfied. Moreover,

d

dt
Φ
(
η(x, t)

)
=
〈
Φ ′(η(x, t)

)
,

dη

dt

〉
� − δ

4
χ
(
η(x, t)

)∥∥Φ ′(η(x, t)
)∥∥ (1.3)

according to (1.2). Hence also (iii) holds.
Let x ∈ Φc+ε \ N and 0< ε � ε̄/2. In order to establish the first part of (ii) we must

show thatΦ(η(x,1))� c− ε. Since

∥∥η(x, t)− x
∥∥�

∫ t

0

∥∥∥∥
dη

ds

∥∥∥∥ds �
1

2
δt,

d(η(x, t),E \N)� δ/2 whenever 0� t � 1. We may assumeΦ(η(x,1))� c− ε̄/2 (oth-
erwise we are done). Then, according to (1.3) and the definition ofχ ,

Φ
(
η(x,1)

)
= Φ(x)+

∫ 1

0

d

dt
Φ
(
η(x, t)

)
dt �Φ(x)− δ

4

∫ 1

0

∥∥Φ ′(η(x, t)
)∥∥dt

� c+ ε− δ2

4
.

HenceΦ(η(x,1))� c− ε if we chooseε � min{ε̄/2, δ2/8}.
In order to prove the second part of (ii) it remains to observe that ifx ∈ Φc+ε and

η(x,1) /∈N , thend(η(x, t),E \N)� δ/2 and therefore againΦ(η(x,1))� c− ε. �

We emphasize that the constantε is independent of the functionalΦ and the spaceE as
long asΦ satisfies (1.1). We shall make repeated use of this fact.
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It is easy to see that ifΦ satisfies (PS) andN is a neighbourhood ofKc, then there exist
ε̄, δ > 0 such that (1.1) holds.

Next we introduce the concept of local linking, due to Li and Liu [60]. LetΦ ∈ C1(E,R)
and denote the ball of radiusr and center at the origin byBr . The corresponding sphere
will be denoted bySr . The functionΦ is said to satisfy the local linking condition at 0 if
there exists a subspaceF0 ⊂E andα,ρ > 0 such thatF0 andF⊥

0 have positive dimension,

Φ � 0 on F0 ∩ B̄ρ, Φ � −α onF0 ∩ Sρ (1.4)

and

Φ � 0 on F⊥
0 ∩ B̄ρ, Φ � α onF⊥

0 ∩ Sρ . (1.5)

We shall denote the inner product ofx andy in Rm by x · y and we set|x| := (x · x)1/2.
For a symmetric matrixB we denote the Morse index of the quadratic form corresponding
toB byM−(B).

THEOREM 1.2. SupposeΦ ∈ C1(Rm,R) satisfies the local linking conditions(1.4)
and (1.5) for someF0 ⊂ Rm. ThenΦ has a critical pointx̄ with |Φ(x̄)| � α in each of
the following two cases:

(i) There existsR > 0 such thatΦ < 0 in Rm \BR ;
(ii) Φ(x) = 1

2Bx · x + ψ(x), whereψ ′(x) = o(|x|) as |x| → ∞, B is a symmetric
invertible matrix andM−(B) > dimF0.

PROOF. We first consider case (ii) which is more difficult. If there exists a critical pointx̄

with Φ(x̄)� −α, we are done. If there is no such point, then there exists a pseudogradient
vector fieldV whose domain containsΦ−α , and since|Φ ′(x)| is bounded away from 0 as
|x| is large,|Φ ′(x)| � δ (whereδ > 0) wheneverx ∈Φ−α . Hence the Cauchy problem

dγ

dt
= −V

(
γ (x, t)

)
, γ (x,0)= x

has a solution for allx ∈Φ−α , t � 0 and

Φ
(
γ (x, t)

)
= Φ(x)+

∫ t

0

d

ds
Φ
(
γ (x, s)

)
ds � −α−

∫ t

0

∣∣Φ ′(γ (x, s)
)∣∣2 ds

� −δ2t. (1.6)

ChooseR > 0 such that|ψ ′(x)| � 1
2λ0|x| for all |x| � R, whereλ0 := {inf |λj |: λj is an

eigenvalue ofB}. Let Rm = F+ ⊕ F−, with F± respectively being the positive and the
negative space ofB. For x ∈ Rm write x = x+ + x−, x± ∈ F±. By (1.6) and the form of
Φ, |γ (x,T )−| �R for anyx ∈ F0 ∩ Sρ providedT is large enough.

Let Sn andDn+1 be the unit sphere and the unit closed ball inRn+1. Recall that a
spaceX is calledl-connected if any mapping fromSn to X, 0 � n � l, can be extended
to a mapping fromDn+1 toX (cf. [84, Section 1.8]). We want to show that the setΦ−α ∩
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{x ∈ Rm: |x−| �R} is (k−1)-connected ifk <M−(B), possibly after choosing a largerR.
This will imply in particular that any homeomorphic image ofSk−1 contained in this set is
contractible there. Letr(x, t) := (1− t)x+ +x−, 0� t � 1. Thenr is a strong deformation
retraction ofΦ−α ∩ {x ∈ Rm: |x−| �R} ontoF− \BR . To see this, we only need to verify
thatr(x, t) ∈Φ−α for all x, t . Suppose firstBx+ · x+ � −1

2Bx
− · x−. Then|x+| � C|x−|

for someC; thusψ((1− t)x+ + x−)= o(|x−|2) as|x−| → ∞ and

Φ
(
r(x, t)

)
= 1

2
(1− t)2Bx+ · x+ + 1

2
Bx− · x− +ψ

(
(1− t)x+ + x−)

�
1

4
Bx− · x− +ψ

(
(1− t)x+ + x−)

� −α

if R is large enough. Let nowBx+ · x+ � −1
2Bx

− · x−; then|x−| �D|x+| and

d

dt
Φ
(
r(x, t)

)
= −Φ ′(r(x, t)

)
· x+

= −Bx+ · x+ −ψ ′((1− t)x+ + x−) · x+
� 0,

again providedR is large enough. Hence in this caseΦ(r(x, t)) � Φ(x) � −α. Since
F− \ BR is homeomorphic toSl−1 × [R,∞), wherel := M−(B), F− \ BR is (k − 1)-
connected for anyk < l. It follows that so is the setΦ−α ∩ {x ∈ Rm: |x−| �R}.

The set{γ (x,T ): x ∈ F0 ∩ Sρ} is contained inΦ−α ∩ {x ∈ Rm: |x−| � R} and home-
omorphic toSk−1, k < M−(B). Hence it can be contracted to a pointx∗ in Φ−α ∩
{x ∈ Rm: |x−| � R}. Denote this contraction byγ0, letD0 := F0 ∩ B̄ρ , D :=D0 × [0,1]
and define a mappingf : ∂D→ Rm by setting

f (x0, s) :=





x0, s = 0, x0 ∈D0,

γ (x0,2sT ), 0� s � 1
2, x0 ∈ ∂D0 = F0 ∩ Sρ,

γ0
(
γ (x0, T ),2s − 1

)
, 1

2 � s � 1, x0 ∈ ∂D0,

x∗, s = 1, x0 ∈D0.

(1.7)

It is clear from the construction thatΦ(f (x0, s)) � 0 whenever(x0, s) ∈ ∂D and< 0 if
x0 ∈ ∂D. Let

Γ :=
{
g ∈ C

(
D,Rm

)
: g|∂D = f

}
(1.8)

and

c := inf
g∈Γ

max
(x0,s)∈D

Φ
(
g(x0, s)

)
. (1.9)

We shall show thatf (∂D) linksF⊥
0 ∩Sρ in the sense that ifg ∈ Γ , theng(x0, s) ∈ F⊥

0 ∩Sρ
for some(x0, s) ∈ D. Assuming this, we see that the maximum in (1.9) is always� α,
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and hencec � α. We claimc is a critical value. OtherwiseKc = ∅, so (1.1) holds forg
with N = ∅, ε̄ ∈ (0, c) becauseΦ satisfies the (PS)-condition as a consequence of (ii).
Let ε < ε̄ and η be as in Lemma 1.1. Letg ∈ Γ be such thatg(x0, s) ∈ Φc+ε for all
(x0, s) ∈D. SinceΦ(f (x0, s))� 0 if (x0, s) ∈ ∂D andη(x,1)= x for x ∈ Φ0, the map-
ping (x0, s) �→ η(g(x0, s),1) is in Γ . But this is impossible according to the definition of
c becauseΦ(η(g(x0, s),1))� c− ε for all (x0, s) ∈D.

It remains to show thatf (∂D) links F⊥
0 ∩ Sρ . Write x = x0 + x⊥

0 ∈ F0 ⊕ F⊥
0 , D⊥

0 =
F⊥

0 ∩Bρ . Forg ∈ Γ we consider the map

G :
(
D0 ⊕D⊥

0

)
× [0,1] → Rm, G(x, s)= x⊥

0 − g(x0, s).

If there is no linking, thenG(x, s) �= 0 for someg ∈ Γ and allx0 ∈D0, x⊥
0 ∈ ∂D⊥

0 , 0�

s � 1. Forx0 ∈ ∂D0 we haveg(x0, s)= f (x0, s), henceΦ(g(x0, s)) < 0 andG(x, s) �= 0
(becauseΦ(x⊥

0 ) � 0). It follows thatG(x, s) �= 0 whenx ∈ ∂(D0 ⊕ D⊥
0 ) andG is an

admissible homotopy for Brouwer’s degree. Hence

deg
(
G(.,0),D0 ⊕D⊥

0 ,0
)
= deg

(
G(.,1),D0 ⊕D⊥

0 ,0
)
.

SinceG(x,0) = x⊥
0 − g(x0,0) = x⊥

0 − f (x0,0) = x⊥
0 − x0, the degree on the left-hand

side above is(−1)dimF0. On the other hand,f (x0,1) = x∗, wherex∗ is a point outside
D0 ⊕D⊥

0 ; henceG(x,1) �= 0 for anyx ∈D0 ⊕D⊥
0 and the degree is 0. This contradiction

completes the proof of (ii).
In case (i) the argument is similar but simpler. Suppose there is no critical pointx̄ with

Φ(x̄)� −α. SinceΦ � 0 in Rm \BR , |γ (x0, T )| �R for someT > 0 and allx0 ∈ F0∩Sρ .
It is obvious that the set{γ (x0, T ): x0 ∈ F0 ∩ Sρ} (which is homeomorphic to a sphere of
dimension�m−2) can be contracted to a point inRm \BR . Now we can proceed as above.
Note only thatΦ satisfies the (PS)c-condition because any (PS)c-sequence lies eventually
in BR . �

We shall need the following extension of Theorem 1.2:

THEOREM 1.3. SupposeΦ ∈ C1(Rm,R) satisfies the local linking conditions(1.4)
and (1.5) for someF0 ⊂ Rm. If there exist subspaces̃F ⊃ F ⊃ F0, F̃ �= F , andR > 0
such thatΦ < 0 on F̃ \ BR andΦ|F has no critical pointx ∈ Φ−α , thenΦ ′(x̄) = 0 for
somex̄ with α �Φ(x̄)� maxx∈F̃∩BR+1

Φ(x).

PROOF. This time we obtainγ by solving the Cauchy problem

dγ

dt
= −χ

(
γ (x, t)

)
V
(
γ (x, t)

)
, γ (x,0)= x,

whereχ ∈ C∞(Rm, [0,1]) is such thatχ = 1 onBR , χ = 0 on Rm \ BR+1 andV :F ∩
Φ−α → F is a pseudogradient vector field forΦ|F . Now we proceed as in the proof of
case (i) above and obtainT such thatγ (x0, T ) ∈ F ∩ (BR+1 \BR) wheneverx0 ∈ F0 ∩Sρ .
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This set can be contracted to a point iñF ∩ (BR+1 \ BR), hence we obtain a mapf ∈
C(∂D, F̃ ∩BR+1) as in (1.7). Since there existsg ∈ Γ ∩C(D, F̃ ∩BR+1) whereΓ is as
in (1.8) it follows that

c� max
(x0,s)∈D

Φ
(
g(x0, s)

)
� max
x∈F̃∩BR+1

Φ(x). �

An infinite-dimensional version of the linking theorems (in a setting which corresponds
to Theorems 1.2 and 1.3) may be found in [62]. However, we shall only make use of the
finite-dimensional versions stated above.

If the functionalΦ is invariant with respect to a representation of some symmetry group,
thenΦ usually has multiple critical points. In order to exploit such symmetries, we intro-
duce index theories.

LetE be a Hilbert space and

Σ := {A= C ∩O ⊂E: C is closed,O is open and−A=A}. (1.10)

Intersections of an open and a closed set (of a topological space) are calledlocally closed.
ThusΣ consists of the locally closed symmetric subsets ofE. Let A ∈ Σ , A �= ∅. The
genusof A, denotedγ (A), is the smallest integerk such that there exists an odd mapping
f ∈ C(A,Rk \ {0}). If such a mapping does not exist for anyk, thenγ (A) := +∞. Finally,
γ (∅)= 0. Equivalently,γ (A)= 1 if A �= ∅ and if there exists an odd mapA→ {+1,−1};
γ (A)� k if A can be covered byk subsetsA1, . . . ,Ak ∈Σ such thatγ (Aj )� 1.

PROPOSITION1.4. The two definitions of genus given above are equivalent forA ∈Σ .

PROOF. If f :A → Rk \ {0} is as in the first definition, then the setsAj := {x ∈ A:
fj (x) �= 0}, j = 1, . . . , k, coverA, are open inA and −Aj = Aj , henceAj ∈ Σ . The
mapfj/|fj | :Aj → {+1,−1} shows thatγ (Aj )� 1.

Supposeγ (A) � k in the sense of the second definition. SinceA ∩ Aj ∈ Σ , we may
assumeAj ⊂ A, A= C ∩O, Aj = Cj ∩Oj andCj ⊂ C, Oj ⊂O, whereC, Cj , O, Oj
are as in the definition ofΣ . If fj :Aj → {+1,−1} is odd, we may extend it to a continuous
mapfj :Oj → R. This is a consequence of Tietze’s theorem becauseAj is a closed subset
of Oj . Replacingf (x) by 1

2(f (x) − f (−x)) we may assume that the extension is also
odd. Letπj :A→ [0,1], j = 1, . . . , k, be a partition of unity subordinated to the covering
O1, . . . ,Ok of A. Replacingπj (x) by 1

2(πj (x)+ πj (−x)) we may assume that allπj are
even. Now the map

f :A→ Rk, f (x)=
(
π1(x)f1(x), . . . , πk(x)fk(x)

)

is well defined, continuous, odd, and satisfiesf (A)⊂ Rk \ {0}. �

The above definitions of genus do not need to coincide for arbitrary subsetsA = −A
which are not locally closed.
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PROPOSITION1.5. LetA,B ∈Σ .
(i) If there exists an odd mappingg ∈ C(A,B), thenγ (A)� γ (B).

(ii) γ (A∪B)� γ (A)+ γ (B).
(iii) There exists an open neighbourhoodN ∈Σ ofA such thatγ (A)= γ (N).
(iv) If A is compact and0 /∈A, thenγ (A) <∞.
(v) If U ∈Σ is an open bounded neighbourhood of0∈ Rl , thenγ (∂U)= l. In partic-

ular, γ (Sl−1)= l, whereSl−1 is the unit sphere inRl .
(vi) If X is a subspace of codimensionm in E andγ (A) >m, thenA∩X �= ∅.
(vii) If 0 /∈A andi(A)� 2, thenA is an infinite set.

A proof of this classical result may be found, e.g., in [80,85] ifΣ contains only closed
sets. This restriction is however not needed; see Proposition 1.7 below.

Let G be a compact topological group. ArepresentationT of G in a Hilbert spaceE
is a family {Tg}g∈G of bounded linear operatorsTg :E → E such thatTe = id (wheree
is the unit element ofG and id the identity mapping),Tg1g2 = Tg1Tg2 and the mapping
(g, x) �→ Tgx is continuous.T is an isometricrepresentation if eachTg is an isometry.
A setA ⊂ E is calledT -invariant if TgA = A for all g ∈ G. When there is no risk of
ambiguity we shall sayA isG-invariant or simply invariant. The set

O(x) := {Tgx: g ∈G}

will be called theorbit of x and

EG := {x ∈E: Tgx = x for all g ∈G}

the set offixed pointsof the representationT . Obviously,EG is a closed subspace ofE
andO(x)= {x} if and only if x ∈EG.

Let

Σ := {A⊂E: A is locally closed andTgA=A for all g ∈G}. (1.11)

Note that the definition (1.11) ofΣ coincides with (1.10) ifG = Z/2 ≡ {1,−1} and
T±1x = ±x. A mappingf :E → R is said to beT -invariant (or simply invariant) if
f (Tgx) = x for all g ∈ G andx ∈ E. If T andS are two (possibly different) represen-
tations ofG in E andF , then a mappingf :E → F is equivariantwith respect toT and
S (or equivariant) iff (Tgx)= Sgf (x) for all g ∈G, x ∈E. Finally, if f :E → F , we set

fG(x) :=
∫

G

Sg−1f (Tgx)dg, (1.12)

where the integration is performed with respect to the normalized Haar measure. It is easy
to see thatfG is equivariant. As a special case, forG= Z/2 acting via the antipodal map
onE andF we havefG(x) = 1

2(f (x)− f (−x)), sofG is odd. IfG acts trivially onF
(i.e.,S±1x = x) we obtainfG(x)= 1

2(f (x)+ f (−x)), sofG is even.
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If Φ ∈ C1(E,R) is invariant with respect to an isometric representationT of G, then it
is easy to see thatΦ ′(Tgx)= TgΦ

′(x) for all x ∈ E, g ∈G. Hencex is a critical point of
Φ if and only if so are ally ∈ O(x). The setO(x) will be called acritical orbit of Φ.

In what follows we restrict our attention to isometric representations ofG= Z/p, where
p � 2 is a prime, andG= S1 = R/2πZ. If G= S1, we do not distinguish betweenθ ∈ R
and the corresponding element ofG, and we may also identify this element with eiθ . The
same applies forG= Z/p ⊂ S1, where we identify the elements ofG with roots of unity,
again represented as eiθ .

Next we define an indexi :Σ → N0 ∪ {∞} for G= S1 andG= Z/p, p a prime num-
ber. In the casep = 2 we recover the genus. ForA ∈ Σ , A �= ∅, we definei(A) = 1 if
there exists a continuous mapf :A→G⊂ C \ {0} such thatf (Tθx)= einθf (x) for some
n ∈ N and allx, θ (n/p /∈ N if G = Z/p). And i(A) � k if A can be covered byk sets
A1, . . . ,Ak ∈ Σ such thati(Aj ) � 1. If such a covering does not exist for anyk, then
i(A) := +∞. Finally, we seti(∅) := 0. We have a version of Proposition 1.4 forG= S1.

PROPOSITION1.6. If G= S1, theni(A) is the smallest integerk for which there exists a
mappingf ∈ C(A,Ck \ {0}) such thatf (Tθx)= einθf (x) for somen ∈ N and allx, θ .

The proof is similar to that of Proposition 1.4. Note only that (1.12) needs to be used
and if fj (Tθx)= einj θfj (x), thenf (x)= (f1(x)

n/n1, . . . , fk(x)
n/nk ) wheren is the least

common multiple ofn1, . . . , nk . The corresponding version forG= Z/p, p an odd prime,
requires spaces lying betweenCk \ {0} andCk+1 \ {0}; see [10, Proposition 2.9].

The above definition is due to Benci [17,18] in the caseG = S1 and to Krasno-
sel’skii [56] forG= Z/p. Benci used in fact mappingsf ∈ C(A,Ck \ {0}) as in Proposi-
tion 1.6. Let us also remark that a different, cohomological index, has been introduced by
Fadell and Rabinowitz [36] forG = Z/2 andG = S1, and by Bartsch [10, Example 4.5]
for G= Z/p. While the geometrical indexes of Krasnosel’skii and Benci are much more
elementary, the cohomological indexes have some additional properties (which will not be
needed here).

Since we only consider isometric representations, it is easy to see that the orthogonal
complement̃E := (EG)⊥ is invariant. In order to formulate the properties of the index for
G= S1 andG= Z/p we set

dG := 1+ dimG=
{

1 for G= Z/p,

2 for G= S1.

PROPOSITION1.7. SupposeG= S1 orG= Z/p, wherep is a prime, and letA,B ∈Σ .
(i) If there exists an equivariant mappingg ∈ C(A,B), theni(A)� i(B).
(ii) i(A∪B)� i(A)+ i(B).

(iii) There exists an open neighbourhoodN ∈Σ ofA such thati(A)= i(N).
(iv) If A is compact andA∩EG = ∅, theni(A) <∞.
(v) If U is an open bounded invariant neighbourhood of 0 in a finite-dimensional in-

variant subspaceX of Ẽ, theni(∂U)= 1
dG

dimX.

(vi) If X is an invariant subspace of̃E with finite codimension and ifi(A) >
1
dG

codimẼX, thenA∩ (EG ⊕X) �= ∅.
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(vii) If A ∩ EG �= ∅, theni(A) = +∞. If A ∩ EG = ∅ and i(A) � 2, thenA contains
infinitely many orbits.

PROOF. (i) Let i(B) = k < ∞ (otherwise there is nothing to prove) andB1, . . . ,Bk be
a covering ofB as in the definition of the indexi(B). Theng−1(B1), . . . , g

−1(Bk) is a
covering ofA as in the definition ofi(A), hencei(A)� k.

(ii)–(iv) are obvious.
(v) It follows easily from Proposition 1.4 or 1.6 thati(∂U) � 1

dG
dimX if G = Z/2

or G = S1, respectively. In theZ/p-case forp � 3 we may identifyX with Cl and
take the coveringAj := {z ∈ Cl : zj �= 0, p arg(zj ) �= 0 mod2π}, Bj := {z ∈ Cl : zj �=
0, p arg(zj ) �= π mod2π}, j = 1, . . . , k, of Cl \ {0} in order to see thati(Cl \ {0})� 2l =
dimX.

The reverse inequality is a consequence of the Borsuk–Ulam theorem. A proof for
G= S1 may be found in [73, Theorem 5.4], and forG= Z/p in [9].

(vi) Let Y be the orthogonal complement ofX in Ẽ. ThenY is invariant and dimY =
codimẼX. SupposeA ∩ (EG ⊕ X) = ∅ and letf (x) = PY x wherePY denotes the or-
thogonal projector ontoY . Thenf :A → Y \ {0}. If G = Z/2 or G = S1 this implies
i(A)� 1

dG
dimY by Propositions 1.4, 1.6, respectively. IfG= Z/p, p � 3, we identifyY

with Cm and writef = (f1, . . . , fm). It follows from the Peter–Weyl theorem (see [73,
Theorem 5.1], where the caseG = S1 is considered) thatfj (Tθx) = einj θf (x) (nj �≡
0 modp). Let gj (x) := fj (x)

n/nj , wheren is the least common multiple ofn1, . . . , nk .
Theng :A→ Cm \ {0} andg(Tθx)= einθg(x), soi(A)� i(Cm \ {0})� 2m= codimẼX,
a contradiction.

(vii) SupposeA ∩EG �= ∅ and there exists a coveringA1, . . . ,Ak of A as in the defin-
ition. ThenAj ∩ EG �= ∅ for somej . For eachx ∈ Aj ∩ EG we havef (Tθx) = f (x).
So if fj (Tθx) = einθfj (x), with n as before, thenfj (x) = 0. Thus there is no map-
ping fj :Aj → G ⊂ C \ {0} as required in the definition of index, hencei(A) = +∞.
If A ∩ EG = ∅ andA consists ofk orbitsO(x1), . . . ,O(xk), then we letnj � 1 be the
largest integer such that 2π/nj ∈G andT2π/nj xj = xj . If G = Z/p then allnj = 1. We
definef :A → G by settingf (Tθxj ) = einθ , wheren is the least common multiple of
n1, . . . , nk . �

It is easy to prove an equivariant version of the deformation Lemma 1.1 for invariant
functionalsΦ :E → R. One simply observes that ifV is a pseudo-gradient vector field for
Φ then

VG(x) :=
∫

G

T −1
g V (Tgx)dg (1.13)

is an equivariant pseudo-gradient vector field forΦ. IntegratingVG as in the proof of
Lemma 1.1 yields an equivariant deformationη.

THEOREM 1.8. Supposef ∈ C1(Sn−1,R) is invariant with respect to a representation of
Z/p in Rn without nontrivial fixed points. Thenf has at leastn Z/p-orbits of critical
points.
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THEOREM1.9. Supposef ∈ C1(S2n−1,R) is invariant with respect to a representation of
S1 in R2n without nontrivial fixed points. Thenf has at leastn S1-orbits of critical points.

PROOF(outline). The proofs of Theorems 1.8 and 1.9 are standard. SetM = SdG·n−1 and
supposef has finitely many critical orbitsOj = O(xj ), j = 1, . . . , k. We may assume that
the critical valuescj = f (xj ) are ordered:c1 � · · · � ck . Then using the properties of the
index and an equivariant deformation lemma for functionals defined on manifolds one sees
thati(f cj )� j . The result follows fromi(M)= n.

We present a simpler proof which works iff ′ is locally Lipschitz continuous. Letη be
the negative gradient flow off onM and consider the sets

Aj :=
{
x ∈M: η(x, t)→ Oj ast → ∞

}

and

Bj :=
j⋃

i=1

Ai for j = 0, . . . , k.

ThenB0 = ∅, Bk = M , and it is not difficult to see thatBj−1 is an open subset ofBj .
Consequently allAj are locally closed. Using the flowη one constructs an equivariant
mapfj :Aj →Oj . This impliesi(Aj )� i(Oj )= 1, and thereforen= i(M)= i(Bk)� k.
This proof does not need the equivariant deformation lemma, and it produces directly a
covering ofM as in the definition of the index. �

REMARK 1.10. One can define index theories satisfying properties 1.7(i)–(iv), (vii) for
arbitrary compact Lie groupsG. However, properties 1.7(v), (vi) which are important for
applications and computations, cannot be extended in general, except for a very restricted
class of groups. This has been investigated in detail in [10]. In certain applications the
representation ofG inE is of a special form which allows to obtain similar results as above.
In order to formulate this, call a finite-dimensional representation spaceV ∼= Rn of the
compact Lie groupG admissible if every equivariant mapO → V k−1, O ⊂ V k a bounded
open and invariant neighbourhood of 0 inV k , has a zero on∂O. Clearly the antipodal
action ofZ/2 onR is admissible as are the nontrivial representations ofZ/p or S1 in R2.
Let E =

⊕∞
j=1Ej be the Hilbert space sum of the finite-dimensional Hilbert spacesEj

such that eachEj is isomorphic toV as a representation space ofG. For instance,E =
L2(S1,V ) with the representation ofG given by (Tgx)(t) = Tg(x(t)) has this property.
The same is true for subspaces likeH 1(S1,V ) or H 1/2(S1,V ). For an invariant, locally
closed setA⊂E let i(A)= 1 if A �= ∅ and there exists a continuous equivariant mapA→
SV = {v ∈ V : ‖v‖ = 1}. And let i(A) � k if A can be covered byA1, . . . ,Ak ∈ Σ with
i(A)� 1. Proposition 1.7 can be extended to this index theory. See [6,16] for applications
to Hamiltonian systems.

1.2. Critical point theory for strongly indefinite functionals

As will be explained in Section 2.1, functionals naturally corresponding to Hamiltonian
systems are strongly indefinite. This means that they are of the formΦ(z) = 1

2〈Lz, z〉 −
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ψ(z) whereL :E → E is a selfadjoint Fredholm operator with negative and positive
eigenspace both infinite-dimensional, and the same is true for the HessianΦ ′′(z) of a criti-
cal pointz of Φ. In order to study such functionals it will be convenient to use a variant of
the Palais–Smale condition that allows a reduction to the finite-dimensional case and leads
to simpler proofs. We shall also present two useful critical point theorems which apply
when the Palais–Smale condition does not hold. These will be needed for the existence of
homoclinic solutions.

First we introduce certain sequences of finite-dimensional subspaces and replace the
Palais–Smale condition by another one which is adapted to these sequences.

Let {En}n�1 be a sequence of finite-dimensional subspaces such thatEn ⊂En+1 for all
n and

E =
∞⋃

n=1

En.

Let Pn :E → En denote the orthogonal projection. Then{xj } is called a(PS)∗-sequence
forΦ (with respect to{En}) if Φ(xj ) is bounded, eachxj ∈Enj for somenj , nj → ∞ and
PnjΦ

′(xj )→ 0 asj → ∞.Φ is said to satisfy the(PS)∗-conditionif each(PS)∗-sequence
has a convergent subsequence. It is easy to see thatKc is compact for eachc if (PS)∗ holds.
Indeed, letxj ∈Kc, then we can findnj � j such that‖yj − xj‖ � 1/j , Φ(yj )→ c and
PnjΦ

′(yj )→ 0, whereyj := Pnj xj . Hence{yj }, and therefore also{xj }, has a convergent
subsequence. We shall repeatedly use the notation

Φn :=Φ|En and An :=A∩En.

Observe thatΦ ′
n(x)= PnΦ

′(x) for all x ∈En.
The condition(PS)∗ (in a slightly different form) has been introduced independently by

Bahri and Berestycki [7,8], and Li and Liu [60].

LEMMA 1.11. If Φ satisfies(PS)∗ and N is a neighbourhood ofKc, then there exist
ε̄, δ > 0 andn0 � 1 such that‖Φ ′

n(x)‖ � δ wheneverd(x,E \N)� δ, |Φ(x)− c| � ε̄ and
n� n0.

PROOF. If the conclusion is false, then we find a sequence{xj } such thatxj ∈ Enj for
somenj � j , d(xj ,E \N)→ 0,Φnj (xj )→ c andΦ ′

nj
(xj )→ 0. Hence{xj } is a (PS)∗-

sequence. Passing to a subsequence,xj → x̄ ∈ Kc. However, sinceKc is compact, the
sequence{xj } is bounded away fromKc and thereforēx /∈Kc, a contradiction. �

Next we introduce the notion of limit index in order to deal with symmetric functionals.
As in Section 1.1 we consider the groupsG = Z/p, wherep is a prime, orG = S1 and
their isometric representations inE. The groupZ/2 always acts via the antipodal map (i.e.,
T±1x = ±x) so that obviouslyEG = {0}. The reason for going beyond the usual index is
that we need to distinguish between certain infinite-dimensional sets havingi(A)= ∞; in
particular, we need to compare different spheres of infinite dimension and codimension.
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Let {En} be a sequence of subspaces as above and suppose in addition that eachEn is
G-invariant andEG ⊂En for somen. Let {dn} be a sequence of integers and

E := {En, dn}∞n=1.

The limit index ofA ∈Σ with respect toE , iE (A), is defined by

iE (A) := lim sup
n→∞

(
i(An)− dn

)
.

Clearly iE (A) = ∞ if A ∩ EG �= ∅. The limit index, in a somewhat different form, has
been introduced by Y.Q. Li [63], see also [92]. A special case is the limit genus,γE (A).
We note thatiE (A) can take the values+∞ or −∞ and ifEn = E, dn = 0 for all n, then
iE (A)= i(A), and similarly for the genus.

REMARK 1.12. The limit index is patterned on the notion of limit relative category intro-
duced by Fournier et al. in [42]. Recall that ifY is a closed subset ofX, then a closed set
A ⊂ X is said to be of categoryk in X relative toY , denoted catX,Y (A) = k, if k is the
least integer such that there exist closed setsA0, . . . ,Ak ⊂X, A0 ⊃ Y , which coverA, all
Aj , 1 � j � k, are contractible inX and there exists a deformationh :A0 × [0,1] → X

with h(A0,1) ⊂ Y and h(Y, t) ⊂ Y for all t ∈ [0,1]. If Y = ∅ (and A0 = ∅), then
catX(A)= catX,∅(A) is the usual Lusternik–Schnirelman category ofA in X. ForX ⊂ E

and using the above notation for subsets ofE, the limit relative category cat∞
X,Y (A) is by

definition equal to lim supn→∞ catXn,Yn(An). Note that unlike for the limit index, the limit
category is necessarily a nonnegative integer. Note also that ifD is the unit closed ball
andS its boundary in an infinite-dimensional Hilbert space, then catD,S(D)= catS(S)= 0
while cat∞D,S(D)= cat∞S (S)= 1.

Below we formulate some properties ofiE which automatically hold forγE . As before
Ẽ is the orthogonal complement ofEG. It follows from the invariance ofEn that the
dimension ofẼn = En ∩ Ẽ is even except whenG = Z/2. Recall the notationdG = 1 +
dimG.

PROPOSITION1.13. LetA,B ∈Σ .
(i) If for almost all n there exists an equivariant mappinggn ∈ C(An,Bn), then

iE (A)� iE (B).
(ii) iE (A∪B)� iE (A)+ i(B) if iE (A) �= −∞.

(iii) Let l ∈ Z, R > 0. If Y is an invariant subspace of̃E such thatdimYn = (dn + l)dG
for almost alln, theniE (Y ∩ SR)= l.

(iv) Letm ∈ Z. If X is an invariant subspace of̃E such thatcodimẼn Xn = (dn +m)dG

for almost alln and if iE (A) >m, thenA∩ (EG ⊕X) �= ∅.

PROOF. (i) It follows from (i) of Proposition 1.7 thati(An)− dn � i(Bn)− dn. So passing
to the limit asn→ ∞ we obtain the conclusion.

(ii) i(An ∪Bn)− dn � i(An)− dn + i(Bn)� (i(An)− dn)+ i(B). Now we can pass to
the limit again.
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(iii) This follows from (v) of Proposition 1.7.
(iv) There exists a numbern such thatEG ⊂En, codimẼn Xn = (dn+m)dG andi(An) >

dn +m. So by (vi) of Proposition 1.7,∅ �=An ∩ (EG ⊕Xn)⊂A∩ (EG ⊕X). �

Recall that ifx is a critical point of an invariant functionalΦ, then so are ally ∈ O(x).
We have the following results concerning the existence of critical orbits.

THEOREM 1.14. Suppose thatΦ ∈ C1(E,R) is G-invariant, satisfies (PS)∗ and
Φ(0) = 0. Moreover, suppose there exist numbersρ > 0, α < β < 0, integersm < l, and
invariant subspacesX,Y ⊂ Ẽ such that:

(i) EG ⊂En for almost alln;
(ii) codimẼn

Xn = (dn +m)dG anddimYn = (dn + l)dG for almost alln;
(iii) Φ|Y∩Sρ � β;
(iv) Φ|EG⊕X � α andΦ|EG � 0.

ThenΦ has at leastl −m distinct critical orbitsO(xj ) such thatO(xj ) ∩ EG = ∅. The
corresponding critical values can be characterized as

cj = inf
iE (A)�j

sup
x∈A

Φ(x), m+ 1� j � l,

and are contained in the interval[α,β].

PROOF. It is clear that{A ∈ Σ : i(A) � j + 1} ⊂ {A ∈ Σ : i(A) � j}, hencecm+1 �

cm+2 � · · · � cl . According to (iii) of Proposition 1.13,iE (Y ∩ Sρ) � l, hence by (iii),
cl � β. SupposeiE (A)�m+ 1. ThenA ∩ (EG ⊕X) �= ∅ by (iv) of Proposition 1.13 and
it follows from (iv) thatcm+1 � α. Moreover, (iv) impliesKcj ∩EG = ∅.

Supposec := cj = · · · = cj+p for somep � 0. The proof will be complete if we can
show thati(Kc) � p + 1 (because either allcj are distinct andKcj �= ∅, or i(Kcj ) � 2
for somej andKcj contains infinitely many orbits according to (vii) of Proposition 1.7).
By (iii) of Proposition 1.7 there exists a neighbourhoodN ∈ Σ such thati(N) = i(Kc),
and for thisN we may findε̄, δ > 0 andn0 � 1 such that the conclusion of Lemma 1.11
holds. It follows from Lemma 1.1 that we can find anε > 0 such that for eachn� n0 there
exists a deformationηn :En × [0,1] → En with ηn(Φ

c+ε
n ,1) ⊂ Φc−ε

n ∪ Nn. Moreover,
using (1.13) we may assume thatηn(., t) is equivariant for eacht . So by (i) and (ii) of
Proposition 1.13 and the definition ofc,

j + p � iE
(
Φc+ε)� iE

(
Φc−ε ∪N

)
� iE

(
Φc−ε)+ i(N) < j + i(N). (1.14)

Hencei(Kc)= i(N) > p. �

Applying Theorem 1.14 to−Φ we immediately obtain the following result which will
be more convenient in our applications:

COROLLARY 1.15. Suppose thatΦ ∈ C1(E,R) is G-invariant, satisfies(PS)∗ and
Φ(0) = 0. Moreover, suppose there exist numbersρ > 0, 0< α < β, integersm < l, and
invariant subspacesX,Y ⊂ Ẽ such that:
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(i) EG ⊂En for almost alln;
(ii) codimẼn

Xn = (dn +m)dG anddimYn = (dn + l)dG for almost alln;
(iii) Φ|Y∩Sρ � α;
(iv) Φ|EG⊕X � β andΦ|EG � 0.

ThenΦ has at leastl −m distinct critical orbitsO(xj ) such thatO(xj ) ∩ EG = ∅. The
corresponding critical values can be characterized as

cj = sup
iE (A)�j

inf
x∈A

Φ(x), m+ 1� j � l,

and are contained in the interval[α,β].

COROLLARY 1.16. If the hypotheses of Theorem1.14or Corollary 1.15are satisfied with
l ∈ Z fixed andm ∈ Z arbitrarily small, thenΦ has infinitely many geometrically distinct
critical orbits O(xj ) such thatO(xj ) ∩ EG = ∅. Moreover, cj → −∞ in Theorem1.14
andcj → ∞ in Corollary 1.15asj → −∞.

PROOF. It suffices to consider the case of Theorem 1.14. The valuecj is defined for all
j � l, j ∈ Z and since the sequence{cj } is nondecreasing, eithercj → −∞ and we are
done, orcj → c ∈ R asj → −∞. In the second caseKc is nonempty and compact accord-
ing to (PS)∗. LetN ∈Σ be a neighbourhood ofKc such thati(N) = i(Kc) <∞ and let
ε > 0 be as in Lemma 1.1. Sincec+ ε � cj0 for somej0 andc− ε < cj for all j � l, we
have (cf. (1.14))

j0 � iE
(
Φc+ε)

� iE
(
Φc−ε)+ i(N)= −∞,

a contradiction. �

REMARK 1.17. Proposition 1.13, Theorem 1.14 and Corollaries 1.15 and 1.16 are valid
if G = Z/2 andT±1x = ±x (i.e.,Φ is even). For thisG, i(A) is just the genusγ (A). If
G= Z/p andp � 3, thenl −m is necessarily an even integer.

We now state a critical point theorem which needs tools from algebraic topology.

THEOREM 1.18. LetM be a compact differentiable manifold andΦ :E ×M → R a C1-
functional defined on the product of the Hilbert spaceE andM . SupposeΦ satisfies(PS)∗,
there exist numbersρ > 0, α < β � γ and subspacesW , Y , whereE =W ⊕ Y ,Wn ⊂W ,
Yn ⊂ Y , dimWn � 1, such that:

(i) Φ|(W∩Sρ )×M � α;
(ii) Φ|Y×M � β;

(iii) Φ|(W∩Bρ )×M � γ .
ThenΦ possesses at leastcupl(M)+ 1 critical points.

Here cupl(M) denotes the cuplength ofM with respect to singular cohomology theory
with coefficients in an arbitrary field. For a proof we refer to Fournier et al. [42]. The
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argument there uses the limit relative category (see Remark 1.12) and is in the spirit of
Theorem 1.14. In particular, the numberscj are defined by minimaxing over setsA ⊃D

with cat∞C,D(A)� j , where(C,D) := (E×M,(W ∩Sρ)×M). An important role is played

by the inequality cat∞C,D((W ∩ Bρ) ×M) � cupl(M) + 1. A related result can be found
in [90].

For applications to homoclinic solutions one has to deal with functionals where neither
the (PS)- nor the (PS)∗-condition holds. We present two abstract critical point theorems
which are helpful in this case. The proofs involve again a reduction to a finite-dimensional
situation.

THEOREM 1.19. Let E be a separable Hilbert space with the orthogonal decomposition
E =E+ ⊕E−, z= z+ + z−, and supposeΦ ∈ C1(E,R) satisfies the hypotheses:

(i) Φ(z)= 1
2(‖z+‖2 − ‖z−‖2)−ψ(z) whereψ ∈ C1(E,R) is bounded below, weakly

sequentially lower semicontinuous withψ ′ :E → E weakly sequentially continu-
ous;

(ii) Φ(0)= 0 and there are constantsκ,ρ > 0 such thatΦ(z) > κ for everyz ∈ Sρ ∩
E+;

(iii) there existse ∈E+ with ‖e‖ = 1, andR > ρ such thatΦ(z)� 0 for z ∈ ∂M where
M = {z= z− + ζe: z− ∈X−, ‖z‖ �R, ζ � 0}.

Then there exists a sequence{zj } in E such thatΦ ′(zj ) → 0 andΦ(zj ) → c for some
c ∈ [κ,m], wherem := supΦ(M).

The theorem is due to Kryszewski and Szulkin [58]. Some compactness is hidden in
condition (i) where the weak topology is used. In the applications the concentration-
compactness method, see [65], can sometimes be used in order to obtain an actual critical
point. Of course, if the Palais–Smale condition holds then there exists a critical point at the
level c.

PROOF (outline). LetP± :E → E± be the orthogonal projections. We choose a Hilbert
basis{ek}k∈N of E− and define the norm

|||u||| := max

{
∥∥P+u

∥∥,
∞∑

k=1

|〈u, ek〉|
2k

}
.

The topology induced onE by this norm will be denoted byτ . On subsets{u ∈ E:
‖P−u‖ �R} this topology coincides with the weak×strong product topology(E−,w)×
(E+,‖ · ‖) onE. In particular, for a‖ · ‖-bounded sequence{uj } in E− we haveuj ⇀u

if and only if uj → u with respect to||| · |||. Given a finite-dimensional subspaceF ⊂E+,
‖ · ‖-bounded subsets ofE− ⊕ F are||| · |||-precompact.

We prove the theorem arguing indirectly. Suppose there existsα > 0 with ‖Φ ′(u)‖ � α

for all u ∈Φm
κ := {u ∈E: κ �Φ(u)�m}. Then we construct a deformationh : I ×Φm →

Φm, I = [0,1], with the properties:
(h1) h : I ×Φm →Φm is continuous with respect to the‖ · ‖-topology onΦm, and with

respect to theτ -topology;
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(h2) h(0, u)= u for all u ∈Φm;
(h3) Φ(h(t, u))�Φ(u) for all t ∈ I , u ∈Φm

κ ;
(h4) each (t, u) ∈ I × Φm has a τ -open neighbourhoodW such that the set

{v− h(s, v): (s, v) ∈W } is contained in a finite-dimensional subspace ofE;
(h5) h(1,Φm)⊂Φκ .

This leads to a contradiction as follows. SinceM is τ -compact, by(h1) and (h4) there
exists a finite-dimensional subspaceF ⊂E containing the set{v−h(s, v): (s, v) ∈ I×M},
henceh(I × (M ∩ F))⊂ F . Since

h(I × ∂M)⊂ F ∩Φκ ⊂ F \
(
Sρ ∩E+)

a standard argument using the Brouwer degree yieldsh(1,M ∩ F) ∩ Sρ ∩ E+ �= ∅. (The
setsF ∩ ∂M andF ∩ Sρ ∩ E+ link in F .) Now condition (ii) of the theorem implies
h(1,M ∩ F) �⊂Φκ , contradicting(h5).

It remains to construct a deformationh as above. For eachu ∈Φm
κ we choose a pseudo-

gradient vectorw(u) ∈E, that is‖w(u)‖ � 2 and〈Φ ′(u),w(u)〉> ‖Φ ′(u)‖ (this definition
differs somewhat from (1.2)). By condition (i) of the theorem there exists aτ -open neigh-
bourhoodN(u) of u in E such that〈Φ ′(v),w(u)〉 > ‖Φ ′(u)‖ for all v ∈ N(u) ∩ Φm

κ . If
Φ(u) < κ we setN(u)= {v ∈E: Φ(v) < κ}. As a consequence of condition (i) of the the-
orem this set isτ -open. Let(πj )j∈J be aτ -Lipschitz continuous partition of unity ofΦm

subordinated to the coveringN(u), u ∈Φm. This exists because theτ -topology is metric.
Clearly, theπj :E → [0,1] are also‖ · ‖-Lipschitz continuous. For eachj ∈ J there exists
uj ∈Φm with suppπj ⊂N(uj ). We setwj =w(uj ) and define the vector field

f :Φm →E, f (u) := m− κ

α

∑

j∈J
πj (u)wj .

This vector field is locally Lipschitz continuous andτ -locally Lipschitz continuous. It is
alsoτ -locally finite-dimensional. Thus we may integrate it and obtain a flowη : [0,∞)×
Φm →Φm. It is easy to see that the restriction ofη to [0,1] ×Φm satisfies the properties
(h1)–(h5). �

REMARK 1.20. A sequence{zj } is called aCerami sequenceif Φ(zj ) is bounded and
(1 + ‖zj‖)Φ ′(zj ) → 0. This definition has been introduced by Cerami in [22]. Note in
particular that if{zj } is as above, then〈Φ ′(zj ), zj 〉 → 0 which does not need to be the
case for an (a priori unbounded)(PS)-sequence. It has been shown in [59] that under the
hypotheses of Theorem 1.19 a stronger conclusion holds: there exists a Cerami sequence
{zj } such thatΦ(zj )→ c ∈ [κ,m].

The next result of this section deals withZ/p-invariant functionalsΦ ∈ C1(E,R). As
a substitute for the(PS)- or (PS)∗-condition we introduce the concept of(PS)-attractor.
Given an intervalI ⊂ R, we call a setA ⊂ E a (PS)I -attractor if for any (PS)c-sequence
{zj } with c ∈ I , and anyε, δ > 0 one haszj ∈ Uε(A ∩Φc+δ

c−δ ) providedj is large enough.
HereUε(F ) denotes theε-neighbourhood ofF in E.
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THEOREM 1.21. Let E be a separable Hilbert space with an isometric representation of
the groupG = Z/p, wherep is a prime, such thatEZ/p = {0}. LetE = E+ ⊕ E−, z =
z+ + z−, be an orthogonal decomposition andE± be Z/p-invariant. LetΦ ∈ C1(E,R)
be aZ/p-invariant functional satisfying the following conditions:

(i) Φ(z)= 1
2(‖z+‖2 − ‖z−‖2)−ψ(z) whereψ ∈ C1(E,R) is bounded below, weakly

sequentially lower semicontinuous withψ ′ :E → E weakly sequentially continu-
ous;

(ii) Φ(0)= 0 and there existκ,ρ > 0 such thatΦ(z) > κ for everyz ∈ Sρ ∩E+;
(iii) there exists a strictly increasing sequence of finite-dimensionalZ/p-invariant sub-

spacesFn ⊂E+ such thatsupΦ(En) <∞ whereEn :=E− ⊕Fn, and an increas-
ing sequence of real numbersRn > 0 with supΦ(En \BRn) < infΦ(Bρ);

(iv) for any compact intervalI ⊂ (0,∞) there exists a(PS)I -attractor A such that
inf{‖z+ −w+‖: z,w ∈A, z+ �=w+}> 0.

ThenΦ has an unbounded sequence{cj } of positive critical values.

PROOF (outline). Letτ be the topology onE introduced in the proof of Theorem 1.19.
For c ∈ R we consider the setM(c) of mapsg :Φc →E satisfying:

(P1) g is τ -continuous and equivariant;
(P2) g(Φa)⊂Φa for all a � infΦ(Bρ)− 1 whereρ is from condition (ii);
(P3) eachu ∈Φc has aτ -open neigbourhoodW ⊂E such that the set(id−g)(W ∩Φc)

is contained in a finite-dimensional linear subspace ofE.
Let i be theZ/p-index from Section 1.1 and set

i0(c) := min
g∈M(c)

i
(
g
(
Φc
)
∩ Sρ ∩E+) ∈ N0 ∪ {∞}.

Clearly i0 is nondecreasing andi0(c) = 0 for c � κ whereκ is from (ii). i0 is a kind of
pseudoindexin the sense of Benci’s paper [18]. Now we define the values

ck := inf
{
c > 0: i0(c)� k

}
.

One can show thati0(c) is finite for everyc ∈ R and can only change at a critical level
of Φ. In order to see the latter, given an interval[c, d] without critical values one needs
to construct mapsg ∈ M(d) with g(Φd) ⊂ Φc. Such a map can be obtained as time-1-
map of a deformation as in the proof of Theorem 1.19. Of course one has to make sure
that the deformation is equivariant which is the case if the vector field is equivariant. This
can be easily achieved, see (1.13). Given a finite-dimensional subspaceFn ⊂ E+ from
condition (iii) one next proves thati0(c) � dimFn for any c � Φ(E− ⊕ Fn). This is a
consequence of the properties of the index stated in Proposition 1.7. No extension of the
index to infinite dimensions is needed.

Details of the proof, of a slightly more general result in fact, can be found in [12] for
p = 2 and in [13] forp an odd prime. �
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2. Periodic solutions

2.1. Variational setting for periodic solutions

In this section we reformulate the problem of existence of 2π -periodic solutions of the
Hamiltonian system

ż= JHz(z, t) (2.1)

in terms of the existence of critical points of a suitable functional and we collect some basic
facts about this functional. When looking for periodic solutions of (2.1) we shall always
assume that the HamiltonianH =H(z, t) satisfies the following conditions:

(H1) H ∈ C(R2N × R,R),Hz ∈ C(R2N × R,R2N ) andH(0, t)≡ 0;
(H2) H is 2π -periodic in thet-variable;
(H3) |Hz(z, t)| � c(1+ |z|s−1) for somec > 0 ands ∈ (2,∞).

We note that it causes no loss of generality to assumeH(0, t)≡ 0. Occasionally we shall
need two additional conditions:

(H4) Hzz ∈ C(R2N × R,R4N2
);

(H5) |Hzz(z, t)| � d(1+ |z|s−2) for somed > 0 ands ∈ (2,∞).
Clearly, (H5) implies (H3).

LetE :=H 1/2(S1,R2N ) be the Sobolev space of 2π -periodicR2N -valued functions

z(t)= a0 +
∞∑

k=1

(ak coskt + bk sinkt), a0, ak, bk ∈ R2N (2.2)

such that
∑∞

k=1 k(|ak|2 + |bk|2) <∞. ThenE is a Hilbert space with an inner product

〈z,w〉 := 2πa0 · a′
0 + π

∞∑

k=1

k
(
ak · a′

k + bk · b′
k

)
, (2.3)

wherea′
k , b

′
k are the Fourier coefficients ofw. It is well known that the Sobolev embedding

E →֒ Lq(S1,R2N ) is compact for anyq ∈ [1,∞) (see, e.g., [2]) butz ∈E does not implyz
is bounded. There is a natural action ofR onLq(S1,R2N ) andE given by time translation:

(Tθz)(t) := z(t + θ) for θ, t ∈ R.

Since the functionsz are 2π -periodic int , T induces an isometric representation ofG=
S1 ≡ R/2πZ. In the notation of Section 1.1, we haveO(z1)= O(z2) if and only if z2(t)=
z1(t + θ) for someθ and allt ∈ R. Let

Φ(z) := 1

2

∫ 2π

0
(−J ż · z)dt −

∫ 2π

0
H(z, t)dt
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and

ψ(z) :=
∫ 2π

0
H(z, t)dt.

PROPOSITION2.1. If H satisfies(H1)–(H3), thenΦ ∈ C1(E,R) andΦ ′(z) = 0 if and
only if z is a 2π -periodic solution of(2.1).Moreover, ψ ′ is completely continuous in the
sense thatψ ′(zj )→ ψ ′(z) wheneverzj ⇀ z. If, in addition, H satisfies(H4) and (H5),
thenΦ ∈ C2(E,R) andψ ′′(z) is a compact linear operator for eachz.

PROOF. We only outline the argument. The details may be found, e.g., in [80, Appendix B]
or [102, Appendix A and Lemma 2.16]. Although the results in [102] concern elliptic
partial differential equations, the proofs are easy to adapt to our situation.

Let s′ = s/(s − 1) be the conjugate exponent. By (H3),

Hz :Ls
(
S1,R2N )→ Ls

′(
S1,R2N )

is a continuous mapping, and using this one shows thatψ ∈ C1(E,R) and

〈
ψ ′(z),w

〉
=
∫ 2π

0
Hz(z, t) ·w dt.

Moreover, it follows by the compact embedding ofE into Ls(S1,R2N ) thatψ ′ is com-
pletely continuous.

Since−J ż ·w = ż · Jw, the bilinear form(z,w) �→
∫ 2π

0 (−J ż ·w)dt is (formally) self-
adjoint. According to (2.2) and (2.3),

∫ 2π

0
(−J ż ·w)dt = π

∞∑

k=1

k
(
−Jbk · a′

k + Jak · b′
k

)
,

hence this form is continuous inE and the quadratic formz �→
∫ 2π

0 (−J ż · z)dt is of
classC1. Now it is easy to see thatΦ ′(z) = 0 if and only if z is a 2π -periodic solution
of (2.1). Moreover, by elementary regularity theory,z ∈ C1(S1,R2N ).

If (H4) and(H5) are satisfied, then, referring to the arguments in [80], [102] again, we
see thatψ ∈ C2(E,R) and

〈
ψ ′′(z)w,y

〉
=
∫ 2π

0
Hzz(z, t)w · y dt.

Sinceψ ′ is completely continuous,ψ ′′(z) is a compact linear operator. �

Note that complete continuity ofψ ′ implies weak continuity ofψ (i.e.,ψ(zj )→ ψ(z)

wheneverzj ⇀z).
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REMARK 2.2. If system (2.1) isautonomous, i.e.,H =H(z), thenΦ(Tθz)=Φ(z) for all
θ ∈ R. ThusΦ is T -invariant. Two 2π -periodic solutionsz1, z2 of an autonomous system
aregeometrically distinctif and only if O(z1) �= O(z2). WhenH =H(z), we shall write
H ′(z) instead ofHz(z).

Let z(t)= ak coskt ± Jak sinkt . Then

∫ 2π

0
(−J ż · z)dt = ±2πk|ak|2 = ±‖z‖2.

It follows thatE has the orthogonal decompositionE =E+ ⊕E0 ⊕E−, where

E0 =
{
z ∈E: z≡ a0 ∈ R2N},

E± =
{
z ∈E: z(t)=

∞∑

k=1

ak coskt ± Jak sinkt, ak ∈ R2N

}

and if z= z0 + z+ + z−, then

∫ 2π

0
(−J ż · z)dt =

∥∥z+
∥∥2 −

∥∥z−
∥∥2
.

Hence

Φ(z)= 1

2

∫ 2π

0
(−J ż · z)dt −

∫ 2π

0
H(z, t)dt = 1

2

∥∥z+
∥∥2 − 1

2

∥∥z−
∥∥2 −ψ(z).

(2.4)

REMARK 2.3. Φ is called the action functional and the fact thatz is a 2π -periodic solution
of (2.1) if and only ifΦ ′(z) = 0 is the least action (or the Euler–Maupertuis) principle.
However, although the solutionsz are critical points (or extremals) ofΦ, they can never
be minima (or maxima). Indeed, leta ∈ R2N andzj = a cosj t ±Ja sinj t . ThenΦ(zj )→
±∞, soΦ is unbounded below and above. Moreover, using (2.4) and the weak continuity
of ψ , it is easy to see thatΦ has neither local maxima nor minima.

The first to develop a variational method for finding periodic solutions of a Hamiltonian
system as critical points of the action functional was Rabinowitz [78]. Among other he has
shown that a star-shaped compact energy surface necessarily carries a closed Hamiltonian
orbit (see Section 2.3 for a discussion of this problem).

LEMMA 2.4. Suppose(H1)–(H3) are satisfied.
(i) If H(z, t) = 1

2A0(t)z · z + G0(z, t) and (G0)z(z, t) = o(|z|) uniformly in t as
z → 0, then ψ ′

0(z) = o(‖z‖) and ψ0(z) = o(‖z‖2) as z → 0, whereψ0(z) :=∫ 2π
0 G0(z, t)dt .
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(ii) If H(z, t) = 1
2A∞(t)z · z + G∞(z, t) and (G∞)z(z, t) = o(|z|) uniformly in t

as |z| → ∞, thenψ ′
∞(z) = o(‖z‖) and ψ∞(z) = o(‖z‖2) as ‖z‖ → ∞, where

ψ∞(z) :=
∫ 2π

0 G∞(z, t)dt .

PROOF. SinceH(0, t)= 0,ψ0(0)= ψ∞(0)= 0. It follows from (H3) that for eachε > 0
there is ac1(ε) > 0 such that|(G0)z(z, t)| � ε|z| + c1(ε)|z|s−1. Hence by the Sobolev
inequality,

∣∣〈ψ ′
0(z),w

〉∣∣�
∫ 2π

0

(
ε|z| + c1(ε)|z|s−1)|w|dt �

(
ε‖z‖ + c2(ε)‖z‖s−1)‖w‖.

Taking the supremum over‖w‖ � 1 and lettingz → 0 we see thatψ ′
0(z) = o(‖z‖) as

z→ 0. Since

ψ0(z)=
∫ 1

0

d

ds
ψ0(sz)ds =

∫ 1

0

〈
ψ ′

0(sz), z
〉
ds,

ψ0(z)= o(‖z‖2).
Similarly, for eachε > 0 there is ac3(ε) such that|(G∞)z(z, t)| � ε|z| + c3(ε). So

∣∣〈ψ ′
∞(z),w

〉∣∣�
(
ε‖z‖ + c4(ε)

)
‖w‖

andψ ′
∞(z)= o(‖z‖) as‖z‖ → ∞. Since

∣∣ψ∞(z)
∣∣=
∣∣∣∣
∫ 1

0

〈
ψ ′

∞(sz), z
〉
ds

∣∣∣∣�
1

2
ε‖z‖2 + c4(ε)‖z‖,

ψ∞(z)= o(‖z‖2) as‖z‖ → ∞. �

Let now

Ẽn :=
{
z ∈E: z(t)=

n∑

k=1

(ak coskt + bk sinkt)

}
and En :=E0 ⊕ Ẽn.

(2.5)

ThenEn ⊂En+1 for all n,

E =
∞⋃

n=1

En

and

E0
n =E0, Ẽ±

n =E±
n =E± ∩En. (2.6)
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Moreover,ES
1 = E0 (soES

1 ⊂ En for all n) and each subspaceEn is S1-invariant (or
more precisely,T -invariant). When using limit index theories we shall haveE = {En, dn},
where

dn · dG = 2N(1+ n)= dimE0 + 1

2
dimẼn = dimE0 + dimẼ+

n .

The orthogonal projectionE →En will be denoted byPn.

PROPOSITION2.5. Suppose(H1)–(H3) are satisfied and let{zj } be a sequence such that
zj ∈Enj for somenj , nj → ∞ andPnjΦ

′(zj )→ 0 asj → ∞. Then{zj } has a convergent
subsequence in each of the following two cases:

(i) H(z, t) = 1
2A∞(t)z · z + G∞(z, t), where(G∞)z(z, t) = o(|z|) as |z| → ∞ and

z= 0 is the only2π -periodic solution of the linear system

ż= JA∞(t)z.

(ii) Φ(zj ) is bounded above and there existµ>max{2, s − 1} andR > 0 such that

0<µH(z, t)� z ·Hz(z, t) for all |z| �R.

So in particular, (PS)∗ holds ifH satisfies one of the conditions above.

It follows upon integration that (ii) implies

H(z, t)� a1|z|µ − a2 (2.7)

for somea1, a2> 0. HenceH grows superquadratically andHz superlinearly as|z| → ∞.
Note also thatµ� s according to (H3).

PROOF. Let zj ∈Enj , nj → ∞ andPnjΦ
′(zj )→ 0 asj → ∞. SincePnjΦ

′(zj )= z+j −
z−j − Pnjψ

′(zj )→ 0 andψ ′ is completely continuous, it follows that if{zj } is bounded,
then zj → z after passing to a subsequence. Moreover,Φ ′(z) = 0. Hence it remains to
show that{zj } must be bounded.

Suppose (i) is satisfied and let

〈B∞z,w〉 :=
∫ 2π

0
A∞(t)z ·w dt, L∞z := z+ − z− −B∞z.

ThenB∞ :E → E is a compact linear operator (cf. Proposition 2.1). SinceL∞z = 0 if
and only if ż= JA∞(t)z, L∞ is invertible and it follows that(PnL∞|En)−1 is uniformly
bounded for largen. Hence

(PnjL∞)
−1PnjΦ

′(zj )= zj − (PnjL∞)
−1Pnjψ

′
∞(zj )→ 0
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and{zj } is bounded becauseψ ′
∞(z)= o(‖z‖) as‖z‖ → ∞.

Suppose now (ii) holds. Belowc1, c2, . . . will denote different constants whose exact
values are insignificant. Sincezj ∈Enj ,

c1‖zj‖ + c2 � Φ(zj )−
1

2

〈
PnjΦ

′(zj ), zj
〉

=
∫ 2π

0

(
1

2
zj ·Hz(zj , t)−H(zj , t)

)
dt

�

(
µ

2
− 1

)∫ 2π

0
H(zj , t)dt

� c3‖zj‖µµ − c4, (2.8)

where the last inequality follows from (2.7). SinceE0 is finite dimensional,‖z0
j‖ �

c5‖zj‖µ and by (2.8),

∥∥z0
j

∥∥� c6‖zj‖1/µ + c7. (2.9)

By the Hölder and Sobolev inequalities,

∥∥z+j
∥∥2 =

〈
Φ ′(zj ), z

+
j

〉
+
∫ 2π

0
Hz(zj , t) · z+j dt

� c8
∥∥z+j
∥∥+ c9

∫ 2π

0
|zj |s−1

∣∣z+j
∣∣dt

� c8
∥∥z+j
∥∥+ c10‖zj‖s−1

µ

∥∥z+j
∥∥ (2.10)

(here we have used thatµ> s − 1) and a similar inequality holds forz−j . Hence

∥∥z±j
∥∥� c8 + c10‖zj‖s−1

µ

and by (2.8),

∥∥z±j
∥∥� c11 + c12‖zj‖(s−1)/µ.

This and (2.9) combined imply{zj } is bounded. �

REMARK 2.6. (a) IfH(z, t) = 1
2A(t)z · z +G(z, t), whereA is a symmetric 2N × 2N

matrix with periodic entries andG satisfies the superlinearity condition of Proposition 2.5,
it is easy to see by an elementary computation that so doesH , possibly with a smaller
µ>max{2, s − 1} and a largerR.

(b) In some problems the growth restriction (H3) may be removed and the condition
µ >max{2, s − 1} can be replaced byµ > 2. For this purpose one introduces a modified
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HamiltonianHK such thatHK(z, t)=H(z, t) for |z| �K andHK(z, t)= C|z|s for |z| �

K + 1 and some convenientC, s. Then the modified functional satisfies(PS)∗, one can
apply a suitable variational method to obtain one or more solutions which are uniformly
bounded independently ofK . Hence these solutions satisfy the original equation forK

large. We shall comment on that when appropriate.

Let now H satisfy (H1)–(H5). For each fixedz we have〈Φ ′′(z)w,w〉 = ‖w+‖2 −
‖w−‖2 − 〈ψ ′′(z)w,w〉, and sinceψ ′′(z) is a compact linear operator, it is easy to see that
the quadratic forms±Φ ′′(z) have infinite Morse index. However, it is possible to define a
certain relative index which will always be finite. LetA be a symmetric 2N × 2N constant
matrix and

〈Lz,w〉 :=
∫ 2π

0
(−J ż−Az) ·w dt. (2.11)

It follows from (2.2) and (2.3) that

〈Lz, z〉 = −2πAa0 · a0 + π

∞∑

k=1

k

((
−Jbk − 1

k
Aak

)
· ak +

(
Jak − 1

k
Abk

)
· bk
)
.

(2.12)

The restriction of this quadratic form to a subspace corresponding to a fixedk � 1 is rep-
resented by the(4N × 4N)-matrixπkTk(A), where

Tk(A) :=




−1

k
A −J

J −1

k
A


 .

LetM+(·) andM−(·) respectively denote the number of positive and negative eigenvalues
of a symmetric matrix (counted with their multiplicities) and letM0(·) be the dimension
of the nullspace of this matrix. ThenM0(Tk(A))= 0 andM±(Tk(A))= 2N for all k large
enough. Indeed, a simple computation shows that the matrix

(
0 −J
J 0

)

has the eigenvalues±1, each of multiplicity 2N , so by a simple perturbation argument,
M±(Tk(A)) = 2N for almost allk (cf. [3, Section 12], [4, Section 2]). Therefore the fol-
lowing numbers are well defined and finite:

i−(A) :=M+(A)−N +
∞∑

k=1

(
M−(Tk(A)

)
− 2N

)
, (2.13)
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i+(A) :=M−(A)−N +
∞∑

k=1

(
M+(Tk(A)

)
− 2N

)
(2.14)

and

i0(A) :=M0(A)+
∞∑

k=1

M0(Tk(A)
)
. (2.15)

Clearly,i±(A), i0(A) are finite andi−(A)+ i+(A)+ i0(A)= 0. The quantityi−(A) is a
relative Morse index in the sense that it provides a measure for the difference between the
negative parts of the quadratic formsz �→

∫ 2π
0 (−J ż−Az) · zdt andz �→

∫ 2π
0 (−J ż · z)dt .

It is easy to see thati0(A) = dimN(L) is the number of linearly independent 2π -
periodic solutions of the linear system

ż= JAz. (2.16)

Hence in particulari0(A)� 2N . Moreover,i0(A)= 0 if and only if σ(JA) ∩ iZ = ∅. In-
deed, it follows from (2.12) (or by substituting (2.2) into (2.16)) that (2.16) has a nontrivial
2π -periodic solution if and only if eitherA is singular (so 0∈ σ(JA)) or

−kJbk =Aak and kJak =Abk (2.17)

for some(ak, bk) �= (0,0) andk � 1. (2.17) is equivalent to

JA(ak − ibk)= ik(ak − ibk).

Hence±ik ∈ σ(JA) and (2.16) has a nontrivial 2π -periodic solution if and only if
σ(JA) ∩ iZ �= ∅. We also see thatPn commutes withL, hence ifE =E+(L)⊕E0(L)⊕
E−(L) is the orthogonal decomposition corresponding to the positive, zero and nega-
tive part of the spectrum ofL andE±

n (L) := E±(L) ∩ En, E0
n(L) := E0(L) ∩ En, then

En = E+
n (L) ⊕ E0

n(L) ⊕ E−
n (L) is an orthogonal decomposition into the positive, zero

and negative part ofLn := PnL|En . Note thatE0(L) = N(L) andE0
n(L) = E0(L) for

almost alln.
In one of our applications we shall need a slight extension of Proposition 2.5.

COROLLARY 2.7. SupposeH is as in (a) of Remark2.6 andA is a constant matrix. If
{zj } is a sequence such thatΦ(zj ) is bounded above, zj = w+

j + w0
j + w−

j ∈ E+
mj
(L)⊕

E0(L)⊕E−
nj
(L),mj , nj → ∞ and(P+

mj
+P 0 +P−

nj
)Φ ′(zj )→ 0 asj → ∞ (P±

n andP 0

denote the orthogonal projectionsE → E±
n (L), E →E0(L)), then{zj } has a convergent

subsequence.

The proof follows by inspection of the argument of (ii) in Proposition 2.5. Note in partic-
ular that (2.8) holds withG(z, t)=H(z, t)− 1

2Az ·z replacingH andE0(L) replacingE0.
Moreover, since

〈±Lnz, z〉 � ε‖z‖2 for someε > 0 and allz ∈E±
n (L) (2.18)
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(ε independent ofn), also (2.10) can be easily adapted.

REMARK 2.8. (a) IfA is a nonconstant matrix with 2π -periodic entries, the definitions
of i±(A) and i0(A) no longer make sense. Therefore we need some other quantities to
measure the size of the positive and the negative part ofL. Assume for simplicity that
the operatorL corresponding toA is invertible and letM−

n (L) be the Morse index of the
quadratic formz �→ 〈Lz, z〉 restricted toEn. Let

j−(A) := lim
n→∞

(
M−
n (L)− (1+ 2n)N

)

and j+(A) := j−(−A). It can be shown thatj±(A) are well defined and finite, and
j±(A) = i±(A) wheneverA is a constant matrix [57, Sections 7 and 5]. See also the
references below.

(b) Morse-type indices for Hamiltonian systems have been introduced by Amann and
Zehnder [3,4] and Benci [18]. In [3,4] and [18] computational formulas for these in-
dices are also discussed. Our definitions ofi±(A), i0(A) follow Li and Liu [61] (more
precisely, the indicesi±(A) as defined here differ from those in [61] byN ). The num-
ber j−(A) equals the Conley–Zehnder (or Maslov) index of the fundamental solution
γ : [0,2π] → Sp(2N) of the equatioṅz(t) = JA(t). HereSp(2N) denotes the group of
symplectic 2N × 2N -matrices. Recall that a matrixC is symplectic ifCtJC = J . See the
books of Abbondandolo [1], Chang [23, Section IV.1] and in particular Long [68,69] for a
comprehensive discussion of the Conley–Zehnder index.

2.2. Periodic solutions near equilibria

The first existence and multiplicity results for periodic solutions of (2.1) are concerned
with solutions near an equilibrium. The classical results of Lyapunov [72], Weinstein [98],
and Moser [76] have been very influential for the development of the theory and can be
proved using the basic variational methods from Section 1.1.

We consider the autonomous Hamiltonian system

ż= JH ′(z) (2.19)

where the HamiltonianH :R2N → R is of classC2. Since the vector fieldH ′ is of class
C1, each initial value problem has a unique solutionz = z(t) defined on some maximal
intervalI . Furthermore,

d

dt
H
(
z(t)
)
=H ′(z(t)

)
· ż(t)= −J ż(t) · ż(t)= 0, (2.20)

henceH(z(t)) is constant for allt ∈ I . Throughout this section we assume thatH has 0 as
critical point. We first consider the case where 0 is nondegenerate. The constant function
z ≡ 0 is then an isolated, hyperbolic stationary solution of (2.19). It is well known that
periodic orbits near 0 can only exist ifJH ′′(0) has purely imaginary eigenvalues. The
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Lyapunov center theorem states that ifJH ′′(0) has a pair of purely imaginary eigenvalues
±iω which are simple, and if no integer multiples±ikω are eigenvalues ofJH ′′(0) then
(2.19) has a one-parameter family of periodic solutions emanating from the equilibrium
point. More precisely, letE(±iω) ⊂ R2N be the two-dimensional eigenspace associated
to ±iω and letσ ∈ {±2} be the signature of the quadratic formQ(z) = 1

2H
′′(0)z · z on

E(±iω). Then for eachε > 0 small enough there exists a periodic solution of (2.19) on the
energy surfaceH =H(0)+ σε2 with period converging to 2π/ω asε→ 0.

If ±iω is not simple, or if integer multiples are eigenvalues then there may be no pe-
riodic solutions near 0 as elementary examples show; see [76,27]. In order to formulate
a sufficient condition we assume that all eigenvalues ofJH ′′(0) which are of the form
ikω, k ∈ Z, are semisimple, i.e., their geometric and algebraic multiplicities are equal. Let
Eω ⊂ R2N be the generalized eigenspace ofJH ′′(0) corresponding to the eigenvalues of
the form±ikω, k ∈ N. LetQ :R2N → R, Q(z)= 1

2H
′′(0)z · z, be the quadratic part ofH

at 0 and letσ = σ(ω) ∈ Z be the signature of the quadratic formQ|Eω onEω. Observe
thatσ is automatically an even integer.

THEOREM 2.9. If σ �= 0 then one of the following statements hold.
(i) There exists a sequence of nonconstantTk-periodic solutionszk of (2.19)which lie

on the energy surfaceH = H(0) with zk → 0 and Tk → 2π/ω as k → ∞. The
periodTk is not necessarily minimal.

(ii) For ε > 0 small enough there are at least|σ/2| nonconstant periodic solutionszεj ,

j = 1, . . . , |σ/2|, of (2.19)on the energy surfaceH =H(0)+ σε2 with (not neces-
sarily minimal) periodT εj . These solutions converge towards0 asε→ 0. Moreover,
T εj → 2π/ω asε→ 0.

This theorem is due to Bartsch [11]. It generalizes the Weinstein–Moser theorem [98,
76] which corresponds to the case whereQ|Eω is positive or negative definite, hence|σ | =
dim Eω. Observe that the energy surfacesH = c are not necessarily compact forc close to
H(0).

PROOF (outline). We may assumeH(0) = 0. Theτ -periodic solutions of (2.19) corre-
spond to 2π -periodic solutions of

ż= τ

2π
JH ′(z). (2.21)

These in turn correspond to critical points of the action functional

A(z)=
∫ 2π

0
J ż(t) · z(t)dt

restricted to the surface{z ∈ E: ψ(z) = 2πH(0) + λ} whereE = H 1/2(S1,R2N )) and
ψ(z)=

∫ 2π
0 H(z(t))dt are as in Section 2.1. The period appears as Lagrange multiplier in

this approach. After performing a Lyapunov–Schmidt reduction of the equation

A′(z)= τ

2π
ψ ′(z)
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nearτ = 2π/ω andz≡ 0, one is left with the problem of finding critical points of a function

A0(v)= A
(
v+ w̄(v)

)

constrained to the level set{v ∈ V : ψ0(v)= λ}. HereV is the kernel of the linearization

E ∋ z �→ A′′(0)z− τ

2π
ψ ′′(0)z ∈E,

w̄ :V ⊃ U → V ⊥ ⊂ E is defined on a neighborhoodU of 0 in V , andψ0(v) := ψ(v +
w̄(v)). ThusV ∼=Eω and one checks thatA0 andψ0 are of classC1 and thatψ ′′

0 (0) exists.
In fact:

〈
ψ ′′

0 (0)v,w
〉
=
∫ 2π

0
H ′′(0)v(t) ·w(t)dt,

hence we can apply the Morse lemma toψ0 near 0. After a change of coordinatesψ0 looks
(in the sense of the Morse lemma) near 0 like the nondegenerate quadratic form

q :V → R, v �→ 1

2
H ′′(0)v · v.

Therefore the level surfacesψ−1
0 (λ) look locally like the level surfacesq−1(λ). If q is

positive definite, henceσ = dim V = dim Eω (which is just the situation of the Weinstein–
Moser theorem), one can conclude the proof easily upon observing that the functionals
A,ψ and, henceA0 andψ0 are invariant under the representation ofS1 = R/2πZ in E
induced by the time shifts. Moreover,ψ−1

0 (λ)∼= q−1(λ) is diffeomorphic to the unit sphere
SV of V for λ > 0 small. By Theorem 1.9 anyC1-functionalSV → R which is invariant
under the action ofS1 has at least12 dimV = 1

2 dimEω S1-orbits of critical points. Ifq is

negative definite thenψ−1
0 (λ) is diffeomorphic to the unit sphereSV of V for λ < 0 close

to 0, and one obtains|σ/2| critical orbits on these levels.
This elementary argument fromS1-equivariant critical point theory does not work ifq is

indefinite. Instead one looks at the flowϕλ onΣλ := ψ−1
0 (λ) which is essentially induced

by the negative gradient ofA0|Σλ. SinceA0 andψ0 are only of classC1 the gradient vector
field is of classC0, so it may not be integrable and has to be replaced by a pseudogradient
vector field which leavesΣλ invariant for allλ. Next one observes that the hypersurfaces
Σλ undergo a surgery asλ passesH(0) = 0. If 2n+ (respectively 2n−) is the maximal
dimension of a subspace ofV on whichq is positive (respectively negative) definite then
Σε is obtained fromΣ−ε upon replacing a handle of typeB2n+ ×S2n−−1 by S2n+ ×B2n−

.
It is this change in the topology ofΣλ near 0 which forces the existence of stationary
orbits ofϕ near the origin. In order to analyze the influence of this surgery on the flowϕλ
one has to use methods from equivariant Conley index theory and Borel cohomology. The
difference|n+ − n−| = |σ |/2 is a lower bound for the number of stationaryS1-orbits of
ϕλ onΣλ if λ > 0 is small andσ · (λ−H(0)) > 0. �
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It is also possible to parameterize the nontrivial periodic orbits near an equilibrium by
their period. The following result is due to Fadell and Rabinowitz [36].

THEOREM 2.10. If σ �= 0 then one of the following statements hold.
(i) There exists a sequence of nonconstant periodic orbitszk → 0 of (2.19)with (not

necessarily minimal) periodT = 2π/ω.
(ii) There exist integersk, l � 0 with k + l � |σ |/2, and there existsε > 0 such that

for eachτ ∈ (T − ε,T ) (2.19)has at leastk periodic orbitszτj , j = 1, . . . , k with
(not necessarily minimal) periodτ . And for eachτ ∈ (T ,T + ε) (2.19)has at least
l periodic orbitszτj , j = k + 1, . . . , k + l with (not necessarily minimal) period τ .
Moreover, zτj → 0 asτ → T = 2π/ω.

The proof uses a cohomological index theory. The integersk, l (and thus the direction
of the bifurcating solutions with the period as parameter) are not determined byH ′′(0)—
unlike case (ii) in Theorem 2.9.

Now we consider the case of a degenerate equilibrium. Suppose first that 0 is an isolated
critical point ofH , so there are no stationary orbits of (2.19) in a neighbourhood of the ori-
gin. Let iω be an eigenvalue ofJH ′′(0) and letFω ⊂ R2N be the generalized eigenspace of
JH ′′(0) corresponding to±iω. ThusFω ⊂ Eω does not contain generalized eigenvectors
of JH ′′(0) corresponding to multiples±ikω with |k| � 2. Letσ1 = σ1(ω) be the signature
of the quadratic formQ|Fω. Since we allowH ′′(0) to have a nontrivial kernel we also need
the critical groupsCq(H,0)= Ȟ q(H 0,H 0 \ {0}) associated to 0∈ R2N as a critical point
of the HamiltonianH . HereȞ ∗ denotes thěCech (or Alexander–Spanier) cohomology
with coefficients in an arbitrary field.

THEOREM 2.11. If σ1 �= 0 andCq(H,0) �= 0 for someq ∈ Z, then there exists a sequence
zk of nonconstant periodic orbits of(2.19)with (not necessarily minimal) periodTn such
that‖zn‖L∞ → 0 andTn → 2π/ω.

The result has been proved by Szulkin in [91] using Morse theoretic methods. It is un-
known whether the solutions obtained in Theorems 2.9–2.11 lie on connected branches
of periodic solutions. Continua of periodic solutions however do exist under stronger hy-
potheses when degree theoretic methods apply. We state one such result in this direction.

THEOREM 2.12. If σ1 �= 0 and the local degreedeg(∇H,0) of ∇H at the isolated critical
point 0 is nontrivial, then there exists a connected branch of periodic solutions of(2.19)
near0.

For a proof see the paper [27] by Dancer and Rybicki. They work in the space
W1(S1,R2N ) and apply a degree forS1-gradient maps to the bifurcation equations as-
sociated toẏ = λH ′(y). 2π -periodic solutionsy(s) of this equation correspond to 2π/λ-
periodic solutions of (2.19). The degree theory allows a classical Rabinowitz type argument
yielding a global continuum of solutions inR ×W1(S1,R2N ) that bifurcates from(λ0,0)
with λ0 = ω.
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Observe thatσ =
∑∞

k=1σk whereσk = σk(ω)= σ1(kω) is the signature ofQ|Fk , Fk the
generalized eigenspace ofJH ′′(0) corresponding to±ikω. Also observe (see [23, Theo-
rem II.3.2]) that the local degree can be expressed in terms of the critical groups as

deg(H ′,0)=
∞∑

q=0

(−1)q dimCq(H,0).

Thus the hypotheses of Theorem 2.11 are weaker than those of Theorem 2.12. Correspond-
ingly, the conclusion is also weaker.

Since the above results require only local conditions on the Hamiltonian near a station-
ary point they immediately generalize to Hamiltonian systems on a symplectic manifold
(W,Ω). The last result that we state in this section deals with periodic orbits near a mani-
foldM of equilibria. This result can in general not be reduced to the special caseW = R2N

with the standard symplectic structure�=
∑N

k=1 dpi ∧ dqi because the manifoldM need
not lie in a symplectic neighbourhood chart. We therefore state it in the general setting.

THEOREM 2.13. Let (W,�) be a symplectic manifold and letH :W → R be a smooth
Hamiltonian. Suppose there exists a compact symplectic submanifoldM ⊂ H−1(c) ⊂W

which is a Bott-nondegenerate manifold of minima ofH . Then there exists a sequence of
nonconstant periodic trajectories of the Hamiltonian flow associated toH which converge
toM .

The result is due to Ginzburg and Kerman [45]. It clearly applies to (2.19) whereW =
R2N and� is as above. Compared with the Weinstein–Moser theorem whereM is a point,
Theorem 2.13 does not yield periodic orbits on all energy surfaces close toM , and neither
does it yield a multiplicity result. We refer to [45] and the references therein for further
results on periodic orbits of Hamiltonian flows near manifolds of equilibria.

2.3. Fixed energy problem

LetH ∈ C2(R2N ,R) and supposeD := {z ∈ R2N : H(z)� 1} is a compact subset ofR2N

such thatH ′(z) �= 0 for all z ∈ S :=H−1(1). ThenS is a compact hypersurface of classC2

and we may assume without loss of generality that 0 is in the interior ofD. We consider
the autonomous Hamiltonian system (2.19). Ifz(t0) ∈ S then z(t) ∈ S for all t because
H(z(t)) is constant along solutions of (2.19) (see (2.20)). SinceS is compact,z(t) exists
for all t ∈ R.

We will be interested in the existence ofclosed Hamiltonian orbitson S, i.e., the sets
Orb(z) := {z(t): t ∈ R}, wherez = z(t) is a periodic solution of (2.19) withz(t) ∈ S.
Here we use the notation Orb(z) for closed orbits in order to distinguish them fromS1-
orbitsO(z) defined in Section 2.1. If̃H ∈ C2(R2N ,R) is another Hamiltonian such that
S = H̃−1(c) for somec andH̃ ′(z) �= 0 onS, thenH ′(z) andH̃ ′(z) are parallel and nowhere
zero onS. It follows that two solutionsz andz̃ of the corresponding Hamiltonian systems
are equivalent up to reparameterization ifz(t0) = z̃(t̃0) for somet0, t̃0 ∈ R. In particular,
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the orbits Orb(z) and Orb(z̃) coincide (see [80] for a detailed argument). Consequently,
closed orbits depend only onS and not on the particular choice of a Hamiltonian having
the properties given above. It is also possible to define closed orbits without referring to any
Hamiltonian: given a compact surfaceS of classC2, one may look for periodic solutions
of the systeṁz= JN(z), whereN(z) is the unit outer normal toS at z.

Throughout this section we assume thatS satisfies the following condition:
(S) S is a compact hypersurface of classC2 in R2N , S bounds a starshaped neighbour-

hood of the origin and allz ∈ S are transversal toS.
It follows from (S) that for eachz ∈ R2N \ {0} there exists a uniqueα(z) > 0 such that

z/α(z) ∈ S. Let α(0) := 0 and

H(z) := α(z)4. (2.22)

Clearly α(sz) = s4α(z) for all s � 0, henceH is positively homogeneous of degree 4.
Moreover,S =H−1(1),H ∈ C2(R2N ,R) and (by Euler’s identities)H ′(z) ·z= 4H(z) �= 0
wheneverz �= 0. In particular,H ′(z) �= 0 onS.

Supposez is a periodic solution of (2.19) with the HamiltonianH given by (2.22).
If Orb(z) ⊂ H−1(λ) then ẑ(t) := λ−1/4z(t/

√
λ) is a periodic solution of (2.19) on

H−1(1). If z has minimal period 2π then ẑ has minimal periodT := 2π
√
λ. On the

other hand, given a periodic solutionz of (2.19) onH−1(1) with minimal periodT
then z̃(t) := (T /2π)1/2z(T t/2π) is a periodic solution of (2.19) onH−1((T /2π)2) with
minimal period 2π . One easily checks that̃̂z = z and ˜̂z = z. Given two periodic so-
lutions z1, z2 of (2.19) onH−1(1) with minimal periodT and having the same orbit
Orb(z1)= Orb(z2)⊂H−1(1) then there existsθ ∈ R with z2(t)= z1(t + θ) for all t . The
corresponding solutions̃z1, z̃2 with minimal period 2π then satisfyz̃2(t) = z̃1(t + θ̃ ) for
someθ̃ ∈ R, hence they are not geometrically distinct in the sense of Remark 2.2. Ifz1, z2
have different orbits Orb(z1),Orb(z2)⊂H−1(1) thenz̃1, z̃2 are geometrically distinct.

We summarize the above considerations in the following

THEOREM 2.14. Let S be a hypersurface satisfying(S) and letH be defined by(2.22).
A periodic solutionz(t) of (2.19)onH−1(λ) yields a periodic solutionλ−1/4z(t/

√
λ) on

S =H−1(1). Moreover, there is a one-to-one correspondence between closed orbits onS

and geometrically distinct periodic solutions of(2.19)with minimal period2π .

We emphasize the importance of the assumption on the minimality of the period. Ifz is a
solution of (2.19) with minimal periodT and Orb(z)⊂ S, thenz(t) covers Orb(z) k times
as t goes from 0 tokT . A corresponding solutioñzk(t) := (kT /2π)1/2z(kT t/2π) has
minimal period 2π/k, hencez̃k andz̃m are geometrically distinct ifk �=m, yet Orb( ˆ̃zk)=
Orb( ˆ̃zm)= Orb(z).

Now we state the first main result of this section. It is due to Rabinowitz [78] and, ifS

bounds a convex neighbourhood of the origin to Weinstein [99].

THEOREM 2.15. LetS be a hypersurface satisfying(S). ThenS contains a closed Hamil-
tonian orbit.
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PROOF. By Theorem 2.14 it suffices to show that (2.19) withH given by (2.22) has a
2π -periodic solutionz �= 0. Let r be the largest andR the smallest number such that

r � |z| �R for all z ∈ S. (2.23)

Then

|z|4
R4

�H(z)�
|z|4
r4
, for all z ∈ R2N . (2.24)

The functional

Φ(z)= 1

2

∫ 2π

0
(−J ż · z)dt −

∫ 2π

0
H(z)dt = 1

2

∥∥z+
∥∥2 − 1

2

∥∥z−
∥∥2 −ψ(z)

is S1-invariant. Moreover,H ′(z) · z = 4H(z) > 0, henceΦ satisfies(PS)∗ according to
Proposition 2.5. Let̃En, En be given by (2.5) and let 2dn = 2N(1 + n), Y = E+ and
X =E+

1 ⊕E− (cf. (2.6)). ThenES
1 =E0 ⊂En for all n, codimẼn Xn = 2(dn − 2N) and

dimYn = 2(dn − N). Hence (i) and (ii) of Corollary 1.15 are satisfied, withl = −N and
m= −2N . By (2.24) and Lemma 2.4,Φ|Y∩Sρ � α for someα,ρ > 0. Since

Φ(z)�
1

2

∥∥z+
∥∥2 − 1

2

∥∥z−
∥∥2 − 1

R4

∫ 2π

0
|z|4 dt (2.25)

and dimE+
1 < ∞, Φ(z) → −∞ as ‖z‖ → ∞, z ∈ X. Finally, Φ|E0 � 0 because

H � 0. It follows that also (iii) and (iv) of Corollary 1.15 hold. Hence (2.19) has at leastN

geometrically distinct 2π -periodic solutionsz �= 0, and by Theorem 2.14, the hypersurface
S carries a closed Hamiltonian orbit. �

It is not necessary to exploit theS1-symmetry in order to show the existence of one
2π -periodic solutionz �= 0. However, the argument presented here will be needed below.

REMARK 2.16. Since the above proof gives no information on the minimal period of the
N geometrically distinct 2π -periodic solutions, we do not know whether they correspond
to distinct closed orbits onS. System (2.19) has in fact infinitely geometrically distinct
2π -periodic solutions. Indeed, we may replaceX = E+

1 ⊕ E1 by X = E+
r ⊕ E− for any

positive integerr and use Corollary 1.16 (see also Theorem 2.19). On the other hand, if
z= (p1, . . . , pN , q1, . . . , qN ) and

S =
{
z ∈ R2N :

N∑

j=1

1

2
αj
(
p2
j + q2

j

)
= 1

}
,

whereα1, . . . , αN are rationally independent positive numbers, then it is easy to see thatS

has exactlyN distinct closed orbits.
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In an answer to a conjecture of Weinstein, Viterbo [96] has generalized Theorem 2.15
to all compact hypersurfaces admitting a so-called contact structure. Subsequently his
proof has been simplified (and a more general result obtained) by Hofer and Zehnder [51].
Struwe [86], building upon the work of Hofer and Zehnder, proved that given an interval
[a, b] of regular values ofH such that the hypersurfacesSc :=H−1(c)⊂ R2N , c ∈ [a, b],
are compact, the set{c ∈ [a, b]: Sc carries a closed Hamiltonian orbit} has full measure
b − a. It has been shown by counterexamples of Ginzburg [43] and Herman [49] that in
general a compact hypersurface may not have any closed Hamiltonian orbit (see also [44]
and the references there).

In view of Remark 2.16 it is natural to ask whether eachS satisfying(S) must neces-
sarily haveN distinct closed Hamiltonian orbits. We shall show that this is indeed the case
under an additional geometric condition.

Denote the tangent hyperplane toS atw by Tw(S), supposeS satisfies(S) and letρ be
the largest number such that

Tw(S)∩
{
z ∈ R2N : |z|< ρ

}
= ∅ for all w ∈ S. (2.26)

Thenρ is the minimum of the distances fromTw(S) to the origin over allw ∈ S. It follows
from (S) thatρ is well defined; moreover, ifr is as in (2.23) andS bounds a convex set,
thenρ = r .

THEOREM 2.17. LetS be a hypersurface satisfying(S) and supposeR2< 2ρ2, whereR,
ρ are as in(2.23), (2.26).ThenS contains at leastN distinct closed Hamiltonian orbits.

PROOF. It follows from the proof of Theorem 2.15 that (2.19) (withH given by (2.22))
has at leastN geometrically distinct 2π -periodic solutions. According to Theorem 2.14 it
suffices to show that these solutions have minimal period 2π .

Recall from the proof of Theorem 2.15 thatl = −N andm= −2N , so invoking Corol-
lary 1.15 we have

cj = sup
iE (A)�j

inf
z∈A

Φ(z), −2N + 1� j � −N.

Since codim̃En Xn = 2(dn − 2N), it follows from (iv) of Proposition 1.13 that ifiE (A)�

−2N + 1, thenA∩ (EG ⊕X)=A∩ (E+
1 ⊕E0 ⊕E−) �= ∅. Hence

cj � sup
{
Φ(z): z ∈E+

1 ⊕E0 ⊕E−}. (2.27)

Let z ∈ E+
1 ⊕ E0 ⊕ E−. Using (2.25), the fact that‖z+‖ = ‖z+‖2 for z+ ∈ E+

1 and the
Hölder inequality, we obtain

Φ(z) �
1

2

∥∥z+
∥∥2 − 1

2

∥∥z−
∥∥2 − 1

R4
‖z‖4

4 �
1

2

∥∥z+
∥∥2

2 − 1

R4
‖z‖4

4

�
1

2
‖z‖2

2 − 1

R4
‖z‖4

4 �

√
π

2
‖z‖2

4 − 1

R4
‖z‖4

4 �
πR4

8
.
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This and (2.27) imply

cj �
πR4

8
. (2.28)

By the definition ofρ and the homogeneity ofH ,

ρ
∣∣H ′(z)

∣∣� z ·H ′(z)= 4H(z)= 4= 4H(z)3/4

wheneverz ∈ S. By the homogeneity again,

ρ
∣∣H ′(z)

∣∣� 4H(z)3/4 for all z ∈ R2N . (2.29)

Let nowz= z(t) be a 2π -periodic solution of (2.19). SinceH(z(t)) is constant,

Φ(z) = 1

2

∫ 2π

0
(−J ż · z)dt −

∫ 2π

0
H(z)dt

=
∫ 2π

0

(
1

2
H ′(z) · z−H(z)

)
dt =

∫ 2π

0
H(z)dt = 2πH(z). (2.30)

Supposez has minimal period 2π/m and writez = z̄ + z̃, z̄ ∈ E0, z̃ ∈ E+ ⊕ E−. By
Wirtinger’s inequality,

‖z̃‖2 �
1

m
‖˙̃z‖2,

and it follows using (2.30), (2.29) that

2πH(z) = Φ(z)= 1

2

∫ 2π

0
(−J ˙̃z · z)dt −

∫ 2π

0
H(z)dt

�
1

2
‖˙̃z‖2‖z̃‖2 − 2πH(z)�

1

2m
‖ż‖2

2 − 2πH(z)

= 1

2m

∫ 2π

0

∣∣H ′(z)
∣∣2 dt − 2πH(z)�

8

mρ2

∫ 2π

0
H(z)3/2 dt − 2πH(z)

= 2π

(
8H(z)3/2

mρ2
−H(z)

)
.

Hence

H(z)�
m2ρ4

16

and

Φ(z)= 2πH(z)�
πm2ρ4

8
.
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SinceR2< 2ρ2,

Φ(z) >
πm2R4

32
.

On the other hand, if the solutionz corresponds tocj , −2N + 1 � j � −N , thenΦ(z)�

πR4/8 according to (2.28). Hencem= 1 andz has minimal period 2π . �

Theorem 2.17 is due to Ekeland and Lasry [35] (see also [33]) in the case ofS bound-
ing a compact strictly convex region andR2 < 2r2, and by Berestycki et al. [20] in the
more general case considered here. We would also like to mention a result by Girardi and
Matzeu [46] showing that ifS satisfies(S), then the conditionR2< 2ρ2 may be replaced
byR2<

√
3ρr in Theorem 2.17.

It has been a longstanding conjecture (see, e.g., [33, p. 235]) that ifS bounds a compact
strictly convex set, then the minimal number of distinct closed Hamiltonian orbits suchS

must carry isN . Ekeland and Lassoued [34] and Szulkin [89] have shown thatS carries at
least 2 such orbits if its Gaussian curvature is positive everywhere. In a recent work Liu,
Long and Zhu [67] have shown that if in additionS is symmetric about the origin, the
number of such orbits is at leastN , and for general (possibly nonsymmetric)S as above,
Long and Zhu [71] have shown the existence of at least[N2 ] + 1 closed orbits ([a] denotes
the integer part ofa). They also make a new conjecture that[N2 ] + 1 (and notN ) is the
lower bound for the number of closed Hamiltonian orbits. See also Long’s book [69] for a
detailed discussion.

In the caseN = 2, Hofer, Wysocki and Zehnder [50] proved that ifS bounds a strictly
convex set then there are either two or infinitely many closed Hamiltonian orbits onS.
In [32] Ekeland has shown that a genericS bounding a compact convex set and having
positive Gaussian curvature carries infinitely many closed Hamiltonian orbits. This result
has been partially generalized by Viterbo [97] to hypersurfaces satisfying a condition sim-
ilar to (S). The question of the existence of infinitely many closed orbits is extensively
discussed in [33,69] where many additional references may be found.

2.4. Superlinear systems

Throughout this section we assume thatH satisfies (H1)–(H3),H(z, t)= 1
2Az ·z+G(z, t),

whereA is a symmetric 2N × 2N matrix,Gz(z, t) = o(z) uniformly in t asz→ 0, and
there existµ>max{2, s − 1} andR > 0 such that

0<µG(z, t)� z ·Gz(z, t) for all |z| �R. (2.31)

Recall from (2.7) that the last condition impliesG (and henceH ) is superquadratic andHz
superlinear.

THEOREM 2.18. SupposeH satisfies the hypotheses given above andσ(JA) ∩ iZ = ∅.
Then the system(2.1)has a2π -periodic solutionz �= 0.
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PROOF. Let

Φ(z)= 1

2

∫ 2π

0
(−J ż−Az) · zdt −

∫ 2π

0
G(z, t)dt

and letEn be given by (2.5). Denote the linear operator corresponding to the quadratic
part ofΦ by L (cf. (2.11)). Sinceσ(JA) ∩ iZ = ∅, L is invertible,E = E+(L)⊕E−(L)
andEn = E+

n (L)⊕ E−
n (L) (see the discussion and notation preceding Corollary 2.7). It

follows using (2.18) and Lemma 2.4 that there existα,ρ > 0 such that

Φ � 0 onE−
n (L)∩Bρ, Φ � −α onE−

n (L)∩ Sρ (2.32)

and

Φ � 0 onE+
n (L)∩Bρ, Φ � α onE+

n (L)∩ Sρ (2.33)

for all n. If Φ has a critical pointz ∈Φ−α , thenz �= 0, soz is a solution of (2.1) we were
looking for. Suppose no suchz exists. We shall complete the proof by showing that in this
caseΦ ′(z)= 0 for somez with Φ(z)� α.

We claim thatΦmn := Φ|E+
m (L)⊕E−

n (L)
has no critical pointz ∈ Φ−α

mn wheneverm,n �

n0 andn0 is large enough. Indeed, otherwise there is a sequence{zj } ⊂ Φ−α such that
zj ∈ E+

mj
(L)⊕E−

nj
(L), mj , nj → ∞ andΦ ′

mjnj
(zj )= 0. By Corollary 2.7,zj → z after

passing to a subsequence, soΦ(z) � −α andΦ ′(z) = 0, a contradiction. Hence we may
choosen0 so thatΦn0n has no critical point inΦ−α for anyn� n0. Let z = w+ +w− ∈
E+
n0+1(L)⊕E−

n (L). Then

Φ(z)= 1

2

〈
Lw+,w+〉+ 1

2

〈
Lw−,w−〉−

∫ 2π

0
G(z, t)dt, (2.34)

and sinceG(z, t) � a1|z|µ − a2 according to (2.7), it follows thatΦ(z) � 0 whenever
|z| � R. Moreover, sincen0 is fixed,R does not depend onn. If n � n0 + 1, then by
Corollary 1.3 (withEn corresponding toRm,F0 =E−

n (L),F =E+
n0
(L)⊕E−

n (L) andF̃ =
E+
n0+1 ⊕E−

n (L)) there existszn ∈ En such thatΦ ′
n(zn)= 0 andα �Φ(zn)� supB̄R+1

Φ.
Applying Proposition 2.5 to the sequence{zn} we obtain a critical pointzwithΦ(z)� α. �

Next we prove that the autonomous system

ż= JH ′(z)= J
(
Az+G′(z)

)
(2.35)

with superquadratic Hamiltonian has infinitely many geometrically distinctT -periodic so-
lutions for anyT > 0. Since there is a one-to-one correspondence betweenT -periodic
solutions for the systeṁz = JH ′(z) and 2π -periodic solutions foṙz = λJH ′(z), where
λ= T/2π (this can be easily seen by substitutingτ = t/λ), we may assume without loss
of generality thatT = 2π .
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THEOREM 2.19. SupposeH(z) = 1
2Az · z +G(z) satisfies(H1), (H3), H(z) � 0 for all

z ∈ R2N ,G satisfies(2.31)andG′(z)→ 0 asz→ 0.Then the system(2.35)has a sequence
{zj } of nonconstant2π -periodic solutions such that‖zj‖∞ → ∞.

If one can show that for eachT > 0 the system (2.35) has a nonconstantT -periodic
solutionzT �= 0, then the number of geometrically distinct nonconstant 2π -periodic solu-
tions is in fact infinite. Indeed, letzk = z2π/k , thenzk andzl may coincide for somek �= l,
yet the sequence{zk} will contain infinitely many distinct elements. However, the result
stated above shows much more: the solutionszj have amplitude which goes to infinity
with j .

PROOF OF THEOREM 2.19. We verify the hypotheses of Corollary 1.15. By Proposi-
tion 2.5,Φ satisfies(PS)∗, and obviously,ES

1 = E0 ⊂ En. Let 2dn = 2N(1 + n), X =
(E+

r (L)⊕E0(L)⊕E−(L)) ∩ Ẽ, wherer is a positive integer, andY = E+(L) ∩ Ẽ (we
use the notation of the preceding proof). Employing (2.14) and recalling thatM+(Tk(A))=
2N for largek, we have forn, r large enough (n� r),

dimYn =
n∑

k=1

M+(Tk(A)
)
= 2nN +

n∑

k=1

(
M+(Tk(A)

)
− 2N

)

= 2dn + i+(A)−M−(A)−N =: 2(dn + l) (2.36)

and

codimẼn Xn =
n∑

k=r+1

M+(Tk(A)
)
= 2Nn− 2Nr = 2dn − 2N(r + 1)

=: 2(dn +m).

It follows from (2.33) thatΦ|Y∩Sρ � α and from (2.34) withz = w+ + w0 + w− ∈
E+
r (L) ⊕ E0(L) ⊕ E−(L) thatΦ(z) → −∞ whenever‖z‖ → ∞, z ∈ E0 ⊕ X. Hence

Φ|E0⊕X � β for someβ. Moreover,Φ|E0 � 0 becauseH � 0. We have verified the hy-
potheses of Corollary 1.15 for allr large enough. Sincem→ −∞ asr → ∞, we conclude
from Corollary 1.16 that (2.35) has a sequence{zj } of nonconstant 2π -periodic solutions
such thatΦ(zj )→ ∞.

It remains to show that‖zj‖∞ → ∞. By (H3),

cj = Φ(zj )=Φ(zj )−
1

2

〈
Φ ′(zj ), zj

〉
=
∫ 2π

0

(
1

2
zj ·H ′(zj )−H(zj )

)
dt

� c̃

∫ 2π

0

(
1+ |z|s

)
dt � 2πc̃

(
1+ ‖z‖s∞

)
, (2.37)

and the conclusion follows becausecj → ∞. �
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The assumptionH � 0 is not necessary. Below we show how the proof of Theorem 2.19
can be modified in order to remove it.

COROLLARY 2.20. The conclusion of Theorem2.19remains valid without the condition
H � 0.

PROOF. SinceG satisfies (2.31), so doesH according to Remark 2.6; henceH is bounded
below. Let

α̃ := max
z∈E0

Φ(z)

and letr0< r < n be positive integers. LetX = (E+
r (L)⊕E0(L)⊕E−(L))∩ Ẽ as before

andY =Er0(L)
⊥ ∩E+(L)∩Ẽ. Then dimYn = 2(dn+ l) and we still havem< l if r−r0 is

large enough. DefineS = Y ∩ {z ∈E: ‖z‖s = 1} and note thatS is radially homeomorphic
to the unit sphere inY . We claim thatΦ|Y∩S � α > α̃ for all larger0. Assuming this for the
moment, we findr0 such that the condition above is satisfied. SinceΦ|E0 � α̃, we can eas-
ily see by modifying the argument of Theorem 1.14 that the conclusion of Corollary 1.15
(and hence also of Corollary 1.16) holds.

It remains to prove the claim. Arguing by contradiction, we findrj → ∞ and zj ∈
E
rj
+ (L)∩ Ẽ such that‖zj‖s = 1 andΦ(zj )� α. Hence

α � Φ(zj )=
1

2
〈Lzj , zj 〉 −

∫ 2π

0
G(zj )dt

� ε‖zj‖2 − c̃
(
‖zj‖ss + 1

)
= ε‖zj‖2 − 2c̃,

so {zj } is bounded inE. Passing to a subsequence,zj ⇀ z in E and zj → z in
Ls(S1,R2N ). It follows that ‖z‖s = 1; in particular,z �= 0. On the other hand,zj ∈
Erj (L)

⊥ ∩ E+(L) implies zj ⇀ 0, a contradiction. A somewhat different argument will
be given in the proof of Theorem 2.25. �

The first result on the existence of a nontrivial periodic solution of (2.1) is due to Rabi-
nowitz [78]. Theorem 2.18 may be found in [62]. The result contained there is in fact more
general: the caseσ(JA)∩ iZ �= ∅ is allowed ifG has constant sign for small|z|. Also some
Hamiltonians not satisfying the requirementµ> s−1 are allowed; for this purpose a trun-
cation argument indicated in Remark 2.6 is employed. Other extensions of Theorem 2.18
are due to Felmer [38] and Long and Xu [70]. Corollary 2.19 is due to Rabinowitz [79]
(in [79] no growth restriction(H3) is needed; again, this is achieved by truncation).

An interesting question concerning the autonomous system (2.35) is whether one can
find solutions with prescribed minimal period. Results in this direction, mainly for convex
Hamiltonians, can be found in Ekeland’s book [33, Section IV.5] and in Long’s book [69,
Chapter 13].
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2.5. Asymptotically linear systems

In this section we assume that in addition to (H1)–(H3) H satisfies the conditions

H(z, t)= 1

2
A0z · z+G0(z, t),

where(G0)z(z, t)= o(z) uniformly in t asz→ 0 (2.38)

and

H(z, t)= 1

2
A∞z · z+G∞(z, t),

where(G∞)z(z, t)= o(|z|) uniformly in t as|z| → ∞. (2.39)

HereA0,A∞ are 2N × 2N constant matrices. We assume for simplicity that the sys-
tem (2.1) isnonresonantat the origin and at infinity, that is,σ(JA0) ∩ iZ = σ(JA∞) ∩
iZ = ∅. This terminology is justified by the fact that the systemsż= JA0z andż= JA∞z
have no other 2π -periodic solutions thanz= 0.

As a first result in this section we give a sufficient condition for the existence of a non-
trivial 2π -periodic solution of (2.1).

THEOREM 2.21. SupposeH satisfies(H1)–(H3), (2.38), (2.39)and σ(JA0) ∩ iZ =
σ(JA∞) ∩ iZ = ∅. If i−(A0) �= i−(A∞), then the system(2.1) has a2π -periodic solu-
tion z �= 0.

PROOF. Supposei−(A0) < i−(A∞). The same argument applied to−Φ will give the
conclusion fori−(A0) > i−(A∞). Let L0 andL∞ be given by (2.11), with respectively
A = A0 andA = A∞. As in the proof of Theorem 2.18, we see that (2.32) and (2.33)
are satisfied, withL0 replacingL. SupposeΦ has no other critical points than 0. Then
Φn = Φ|En has no critical points with|Φn(z)| � α provided n � n0 and n0 is large
enough. For otherwise we findzj ∈ Enj such thatnj → ∞ andΦ ′

nj
(zj ) = 0. Accord-

ing to Proposition 2.5,zj → z after passing to a subsequence, hencez is a critical point
and|Φ(z)| � α which is impossible. Fixn� n0. Now we invoke Theorem 1.2. It follows
from Lemma 2.4 thatΦ ′

n(z) = PnL∞|En(z)+ o(‖z‖) as‖z‖ → ∞. If n is large enough,
then (with 2dn = 2N(1+ n) as in the proof of Theorem 2.19)

dimE−
n (L0)=M+(A0)+

n∑

k=1

M−(Tk(A0)
)
= 2dn + i−(A0)−N,

and similarly,

M−(PnL∞|En)= dimE−
n (L∞)= 2dn + i−(A∞)−N.

Sincei−(A0) < i
−(A∞), Theorem 1.2 withF0 =E−

n (L0) andB = PnL∞|En implies that
Φn has a critical pointz such that|Φn(z)| � α. This contradiction completes the proof.�
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As in the preceding section, we now turn our attention to the autonomous case.

THEOREM 2.22. SupposeH = H(z) satisfies(H1), (H3), (2.38), (2.39)and σ(JA0) ∩
iZ = σ(JA∞) ∩ iZ = ∅. If H � 0 and i−(A0) < i−(A∞), then the system(2.1) has at
least 1

2(i
−(A∞)− i−(A0)) geometrically distinct nonconstant2π -periodic solutions.

PROOF. We verify the assumptions of Corollary 1.15.Φ satisfies(PS)∗, ES
1 = E0 ⊂ En

andΦ|E0 � 0. LetX = E−(L∞) ∩ Ẽ andY = E+(L0) ∩ Ẽ. SinceH � 0 andσ(JA0) ∩
iZ = σ(JA∞)∩ iZ = ∅,A0 andA∞ are positive definite andM+(A0)=M+(A∞)= 2N .
Therefore (cf. (2.36))

dimYn = 2dn + i+(A0)−N =: 2(dn + l)

and

codimẼn Xn =
n∑

k=1

M+(Tk(A∞)
)
= 2dn + i+(A∞)−N =: 2(dn +m).

Sincei+(A0)= −i−(A0) andi+(A∞)= −i−(A∞), 1
2(i

−(A∞)− i−(A0))= l −m. Fi-
nally,Φ|Y∩Sρ � α > 0 according to (2.33) and sinceE−(L∞)=E0 ⊕X, it is easy to see
thatΦ|E0⊕X � β for an appropriateβ > α. Corollary 1.15 yields at leastl −m geomet-
rically distinct 2π -periodic solutions withΦ � α. SinceΦ > 0 these solutions cannot be
constant. �

In the next theorem we drop the hypothesisH � 0 and requireH to be even inz.

THEOREM 2.23. SupposeH = H(z) satisfies(H1), (H3), (2.38), (2.39)and σ(JA0) ∩
iZ = σ(JA∞) ∩ iZ = ∅. If H(−z) = H(z) for all z ∈ R2N , then the system(2.1) has at
least 1

2|i−(A∞)− i−(A0)| geometrically distinct2π -periodic solutionsz �= 0.

PROOF. We only sketch the argument. SinceΦ is an even functional, in view of Re-
mark 1.17 we may apply Theorem 1.14 ifi−(A0) > i−(A∞) and Corollary 1.15 if
i−(A0) < i−(A∞) in order to get|i−(A∞) − i−(A0)| pairs of nonzero 2π -periodic so-
lutions (here we use genus instead of index and disregard theS1-symmetry). For a critical
value c the setKc consists of criticalS1-orbits, some of them may correspond to con-
stant solutions, the other ones are homeomorphic toS1. So ifKc contains a nonconstant
solution, thenγ (Kc) � 2. On the other hand, ifγ (Kc) > 2, it is easy to see thatKc con-
tains infinitely many geometrically distinct critical orbits. Hence the number of nonzero
geometrically distinct critical orbits is at least1

2|i−(A∞)− i−(A0)|. �

REMARK 2.24. (a) The argument of Theorem 2.23 does not guarantee the existence of
nonconstant solutions.

(b) If H =H(z, t) is even inz and satisfies the other assumptions of the above theorem,
then the same argument asserts the existence of at least|i−(A∞)− i−(A0)| pairs of non-
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trivial 2π -periodic solutions (see [4] or [92]). Hamiltonian systems with spatial symmetries
will be further discussed in Section 2.6 below.

(c) As we have mentioned in Section 2.4, there is a one-to-one correspondence between
2π -periodic solutions of the systeṁz= JH ′(z) andT -periodic solutions oḟz= λJH ′(z),
whereλ= 2π/T . Hence, in view of the results of that section, there exist nonconstantT -
periodic solutions of any periodT wheneverH is autonomous and superquadratic. Here
the situation is different. IfH � 0, theni−(λA0)= i−(λA∞)=N for all smallλ > 0. Thus
Theorem 2.22 gives no nonconstant solutions of small periodT . This is not surprising, for
if H ′ is Lipschitz continuous with Lipschitz constantM , then each nonconstant periodic
solution must have periodT � 2π/M according to Theorem 4.3 in [20]. On the other hand,
it is easy to give examples wherei−(λA∞)− i−(λA0)→ ∞ asλ→ ∞. So the number of
geometrically distinctT -periodic solutions will go to infinity withT . However, there may
be no solutions of arbitrarily largeminimalperiod (see [92], Remark 6.3 for an example).

There is an extensive literature concerning the existence of one or two nontrivial so-
lutions of (2.1) in the framework of Theorem 2.21. Usually the argument is based on an
infinite-dimensional Morse theory and it is possible to weaken the nonresonance condi-
tions at zero and infinity. Also, it is not necessary to have constant matricesA0 andA∞.
The first results related to Theorem 2.21 may be found in Amann and Zehnder [3,4]. For
other results and more references, see, e.g., Abbondandolo [1], Chang [23], Guo [48],
Izydorek [53], Kryszewski and Szulkin [57], Li and Liu [61], Szulkin and Zou [93]. Theo-
rem 2.22 is due to Amann and Zehnder [4] and Benci [18]. It has been extended by Degio-
vanni and Olian Fannio [28], see also [92]. While the proof in [28] uses a cohomological
index theory (like the one in [36]) and a variant of Benci’s pseudoindex [18], the argument
in [92] is based on a relative limit index (which is a generalization of the limit indexiE ).
Another extension, using Conley index theory, has been carried out by Izydorek [54]. Some
other aspects of the problem (an estimate of the number ofT -periodic solutions in terms
of the so-called twist number) are discussed in Abbondandolo [1]. However, in all results
related to Theorem 2.22 we know of, the assumptions onH are rather restrictive. This is
briefly discussed in Remark 6.4 of [92]. Theorem 2.23 is due to Benci [18]. For results
about solutions of the autonomous equation (2.1) with prescribed minimal period we refer
again to Long’s book [69, Section 13.3].

2.6. Spatially symmetric Hamiltonian systems

In this section we consider the non-autonomous Hamiltonian system (2.1) whenH is in-
variant with respect to certain group representations inR2N . More precisely, we consider
two different kinds of symmetries:

• A compact Lie groupG acts onR2N via an orthogonal and symplectic representation;
the standard example is the antipodal action ofZ/2 (i.e.,H is even inz).

• The infinite groupZk acts onR2N via space translations; the standard example isZ2N

leading to a Hamiltonian system on the torusT 2N := R2N/Z2N . Another example
is ZN acting via translation of theq-variables which leads to a Hamiltonian system
on the cotangent spaceT ∗T N of theN -dimensional torus.



122 T. Bartsch and A. Szulkin

In the first case we may think ofG as a closed subgroup of O(2N) ∩ Sp(2N). We shall
always assume thatH :R2N ×R → R satisfies the hypotheses (H1)–(H3) from Section 2.1.

First we treat the compact group case and require:
(S) The compact groupG acts onR2N via an orthogonal and symplectic representation

T such that the action is fixed point free onR2N \ {0} (i.e., (R2N )G = {0}). H is
invariant with respect toT : H(Tgz, t)=H(z, t) for all g ∈G, z ∈ R2N , t ∈ R.

By an orthogonal and symplectic representation we mean that the matrix ofTg is in
O(2N)∩ Sp(2N) for all g ∈G. Clearly, if (S) holds andz(t) is a periodic solution of (2.1)
then so isTgz(t) for everyg ∈G. Thus one has to countG-orbits of periodic solutions and
not just periodic solutions.

THEOREM 2.25. Suppose(H1)–(H3) and (S) hold for G of prime order. If H is su-
perquadratic in the sense of(2.31) then the system(2.1) has a sequence of2π -periodic
solutionszj such that‖zj‖∞ → ∞.

If H is invariant with respect to an orthogonal symplectic representation of a more gen-
eral compact Lie groupG then one can apply Theorem 2.25 provided there exists a sub-
groupG1 ⊂ G of prime order having 0 as the only fixed point. This may or may not be
the case. It is always the case forG = S1 or more generally, forG = (S1)k a torus, act-
ing without nontrivial fixed points. A general existence result in this direction works for
admissiblegroup actions; see Remark 1.10.

PROOF. We want to apply Corollary 1.16 to the usual action functional

Φ(z)= 1

2

∫ 2π

0
(−J ż · z)dt −

∫ 2π

0
H(z, t)dt.

Although the proof of Corollary 2.20 could be used here with minor changes, we provide
a slightly different argument as we have mentioned earlier. By Proposition 2.5 the(PS)∗-
condition holds.

Recall the spacesEn ⊂ E from (2.5). We choosek0 ∈ N and setY := E⊥
k0

∩ E+. Now
we claim that fork0 large enough, there existsρ,α > 0 so thatΦ satisfies condition (iii)
from Corollary 1.15, that is,

Φ(z)� α for z ∈ Y with ‖z‖ = ρ. (2.40)

In order to see this we first observe that

‖z‖ �
√
k0‖z‖2 holds forz ∈ Y ,

and that there existsc1> 0 with

∣∣H(z, t)
∣∣� c1

(
|z|s + 1

)
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by (H3). Using the continuous embeddingE →֒ L2s−2 we obtain

‖z‖ss � ‖z‖2 · ‖z‖s−1
2s−2 �

c2√
k0

‖z‖ · ‖z‖s−1 for z ∈ Y .

This implies

Φ(z)�
1

2
‖z‖2 − c1

(
‖z‖ss − 2π

)
�

1

2
‖z‖2 − c1c2√

k0
‖z‖s − 2c1π

for everyz ∈ Y . Settingρ =
( √

k0
sc1c2

)1/(s−2) we therefore have forz ∈ Y with ‖z‖ = ρ:

Φ(z)�

(
1

2
− 1

s

)( √
k0

sc1c2

)2/(s−2)

− 2c1π > 0

providedk0 is large. Thus we may fixk0 ∈ N so that (2.40) holds.
Next we defineXk :=E− +Ek for k ∈ N. Then supΦ(Xk) <∞ becauseΦ(z)→ −∞

for z ∈ Xk with ‖z‖ → ∞ as we have seen earlier. In order to apply Corollary 1.16 with
X =Xk it remains to check the dimension condition from Corollary 1.16. Recall thatdG =
1 forG= Z/p. Settingdn = 2N(1+ n) we have

dimYn = 2N(n− k0)= dn + l

with l = −2N(k0 + 1) and

codimEn(Xk ∩En)= 2N(n− k)= dn +m(k)

with m(k) = −2Nk − 2N (En = Ẽn here becauseEG = {0}). Clearly l −m(k)→ ∞ as
k→ ∞. Now the theorem follows from Corollary 1.16 and (2.37). �

Comparing Theorem 2.25 with Theorems 2.18 and 2.19 we see that from the variational
point of view the spatial symmetry condition (S) has the same effect as theS1-symmetry of
the autonomous problem. This is also true for asymptotically linear Hamiltonian systems—
as we already observed in Remark 2.24(b). We state one multiplicity result in this setting.

THEOREM 2.26. SupposeH satisfies(H1)–(H3) and is asymptotically quadratic in the
sense of(2.38)and(2.39).Suppose moreover thatσ(JA0)∩ iZ = σ(JA∞)∩ iZ = ∅, and
let i−(A0) andi−(A∞) be the Morse indices defined in(2.13).If (S) holds forG of prime
order or forG∼= S1 then the system(2.1) has at least 1

dG
|i−(A∞)− i−(A0)| G-orbits of

nontrivial 2π -periodic solutions.

PROOF. The result follows from Theorem 1.14 or Corollary 1.15; cf. also the proof of
Theorem 2.23. �

Theorem 2.26 is also true forG= (Z/p)k ap-torus anddG = 1, orG= (S1)k a torus
anddG = 2, or ifG acts freely onR2N \ {0} anddG = 1+ dim(G).G acting freely means
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thatTgz= z for somez �= 0 implies thatg is the identity. Such actions exist only for a very
restricted class of Lie groups. It does not help much if a subgroupG1 of G acts freely (or
without nontrivial fixed points ifG1 is a torus orp-torus), because aG-orbit consists of
severalG1-orbits. So the multipleG1-orbits of periodic solutions may correspond to just
oneG-orbit of periodic solutions.

There are various extensions of Theorem 2.26 when the linearized equations at 0 or at∞
have nontrivial 2π -periodic solutions, mostly for even Hamiltonians; see for instance [54]
and the references therein.

Now we consider the spatially periodic case. The classical result is due to Conley and
Zehnder [24] and deals with the case ofZ2N , that isH is periodic in all variables. Then
periodic solutions appear inZ2N -orbits.

THEOREM 2.27. SupposeH ∈ C1(R2N × R) is 2π -periodic in all variables. Then(2.1)
has at least2N + 1 distinctZ2N -orbits of2π -periodic solutions.

PROOF. We consider the decompositionE =E+ ⊕E0⊕E− from Section 2.1 and observe
that

Φ(z+ 2πk)=Φ(z) for everyz ∈E, k ∈ Z2N .

SettingM = T 2N =E0/2πZ2N we obtain an inducedC1-functional

Ψ :
(
E+ ⊕E−)×M → R, Ψ

(
z+, z−, z0 + 2πZ2N )=Φ

(
z+ + z− + z0).

Critical points ofΨ correspond toZ2N -orbits of 2π -periodic solutions of (2.1). The con-
clusion follows from Theorem 1.18 and the fact that cupl(T 2N ) = 2N + 1. More pre-
cisely, we letW = E− andY = E+. SinceH is bounded,β as in (ii) of Theorem 1.18
exists and takingρ large enough, we also findα < β andγ . Finally, it is easy to see that
(PS)∗-sequences are bounded (cf. Proposition 2.5), consequently, the(PS)∗-condition is
satisfied. �

Using Theorem 1.18 one can also treat more general periodic symmetries, for instance
whenH(p,q, t) is invariant underZN acting on theq-variables by translations. Then one
needs some condition on the behavior ofH(p,q, t) as|p| → ∞. Results in this direction
have been obtained by a number of authors, see [23,37,42,40,66,90].

If the periodic solutions are non-degenerate then Conley and Zehnder [24] used Morse
theoretic arguments to prove:

THEOREM 2.28. SupposeH ∈ C2(R2N × R) is 2π -periodic in all variables and all2π -
periodic solutions of(2.1) are non-degenerate. Then(2.1) has at least22N distinct Z2N -
orbits of2π -periodic solutions.

The Morse theoretic arguments involve in particular the Conley–Zehnder index; see
Section 2.1, in particular Remark 2.8. Theorems 2.27 and 2.28 are special cases of the
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Arnold conjecture. This states that a Hamiltonian flow on a compact symplectic mani-
fold M has at least cat(M) periodic solutions. If all periodic solutions are non-degenerate
then it has at least

∑dimM
i=0 dimHi(M) critical points whereHi(M) denotes theith ho-

mology group ofM with coefficients in an arbitrary field. Theorems 2.27 and 2.28 cor-
respond to the caseM = T 2N where cat(M) = 2N + 1 and dimHi(M) =

(2N
i

)
, so that∑dimM

i=0 dimHi(M) = 22N . The interested reader can find results and many references
concerning the Arnold conjecture in the book [52] and in the paper [41].

We conclude this section with a theorem on Hamiltonian systems where the Hamiltonian
is both even and spatially periodic in thez-variables:

H(z+ 2πk, t + 2π)=H(z, t)=H(−z, t) for all z ∈ R2N , k ∈ Z2N , t ∈ R.
(2.41)

It follows thatHz(z, t)= 0 for all z ∈ (πZ)2N , hence modulo theZ2N -action (2.1) has at
least 22N stationary solutionsz(t) ≡ ci with ci ∈ {0,π}, i = 1, . . . ,2N . Thus the Arnold
conjecture is trivially satisfied if (2.41) holds. A natural question to ask is whether there
exist 2π -periodic solutions in addition to the 22N trivial equilibria.

THEOREM 2.29. SupposeH ∈ C2(R2N ×R) satisfies(2.41)and suppose all2π -periodic
solutions of (2.1) are non-degenerate. For z ∈ πZ2N let Az(t) := Hzz(z, t) and let
j−(Az) ∈ Z be the Conley–Zehnder index. Then(2.1)has at leastk = max|j−(Az)| −N

pairs±z1, . . . ,±zk of 2π -periodic solutions which lie on differentZ2N -orbits.

Theorem 2.29 has been proved in [14], an extension to Hamiltonian systems onT ∗T N ,
whereH is even inz and periodic in theq-variables can be found in [15].

3. Homoclinic solutions

3.1. Variational setting for homoclinic solutions

Up to now we have been concerned with periodic solutions of Hamiltonian systems. In this
part we turn our attention to homoclinic solutions of the system

ż= JHz(z, t). (3.1)

We assumeH satisfies the following hypotheses:
(H̃1) H ∈ C(R2N × R,R),Hz ∈ C(R2N × R,R2N ) andH(0, t)≡ 0;
(H̃2) H is 1-periodic in thet-variable;
(H̃3) |Hz(z, t)| � c(1+ |z|s−1) for somec > 0 ands ∈ (2,∞);
(H̃4) H(z, t) = 1

2Az · z+G(z, t), whereA is a constant symmetric 2N × 2N -matrix,
σ(JA)∩ iR = ∅ andGz(z, t)/|z| → 0 uniformly in t asz→ 0.

Note that the hypotheses(H̃1)–(H̃3) are the same as (H1)–(H3) in Section 2.1 except that
the period is normalized to 1 and not 2π (which is slightly more convenient here).



126 T. Bartsch and A. Szulkin

Let z0 be a 1-periodic solution of (3.1). A solutionz is said to behomoclinic(or doubly
asymptotic) to z0 if z �≡ z0 and |z(t) − z0(t)| → 0 as |t | → ∞. It has been shown by
Coti Zelati, Ekeland and Séré in [25] that ifH satisfies(H̃1)–(H̃3), then in many cases
a symplectic change of variables will reduce the problem of finding homoclinics toz0 to
that of finding solutions homoclinic to 0 for the system (3.1), with a new Hamiltonian
H satisfying(H̃1)–(H̃4). Therefore in what follows we only consider solutions which are
homoclinic to 0 (i.e.,z �≡ 0 andz(t)→ 0 as|t | → ∞), or homoclinic solutionsfor short.
Recall that if(H̃4) holds, then 0 is called ahyperbolic point.

LetE :=H 1/2(R,R2N ) be the Sobolev space of functionsz ∈ L2(R,R2N ) such that

∫

R

(
1+ ξ2)1/2∣∣ẑ(ξ )

∣∣2 dξ <∞,

whereẑ is the Fourier transform ofz. E is a Hilbert space with an inner product

(z,w) :=
∫

R

(
1+ ξ2)1/2ẑ(ξ ) · ŵ(ξ)dξ.

The Sobolev embeddingE →֒ Lq(R,R2N ) is continuous for anyq ∈ [2,∞) (see, e.g., [2]
or Section 10 in [87]) but not compact. Indeed, letzj (t) := z(t − j), wherez �≡ 0; then
zj ⇀ 0 inE asj → ∞ but zj �→ 0 inLq . However, the embeddingE →֒ L

q

loc(R,R
2N ) is

compact.
Now we introduce a more convenient inner product. It follows from(H̃4) that−iξJ −A

is invertible and(−iξJ −A)−1 is uniformly bounded with respect toξ ∈ R. Using this fact,
the equality−J ż ·w = ż · Jw and Plancherel’s formula it can be shown that the mapping
L :E →E given by

(Lz,w)=
∫

R

(−J ż−Az) ·w dt

is bounded, selfadjoint and invertible (see Section 10 in [87] for the details). It is also shown
in [87] that the spectrumσ(−J (d/dt)−A) is unbounded below and above inH 1(R,R2N );
henceE =E+ ⊕E−, whereE± areL-invariant infinite-dimensional spaces such that the
quadratic form(Lz, z) is positive definite onE+ and negative definite onE−. Therefore
we can define a new equivalent inner product inE by setting

〈z,w〉 :=
(
Lz+,w+)−

(
Lz−,w−),

wherez±,w± ∈E±. If ‖ · ‖ denotes the corresponding norm, we have

∫

R

(−J ż−Az) · zdt = (Lz, z)=
∥∥z+
∥∥2 −

∥∥z−
∥∥2
. (3.2)

Let

Φ(z) := 1

2

∫

R

(−J ż−Az) · zdt −
∫

R

G(z, t)dt
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and

ψ(z) :=
∫

R

G(z, t)dt.

Then

Φ(z)= 1

2

∥∥z+
∥∥2 − 1

2

∥∥z−
∥∥2 −ψ(z). (3.3)

PROPOSITION3.1. If H satisfies(H̃1)–(H̃4), thenΦ ∈ C1(E,R) and z is a homoclinic
solution of (3.1) if and only if z �= 0 andΦ ′(z) = 0. Moreover, ψ ′ andΦ ′ are weakly
sequentially continuous.

PROOF. We outline the argument. By(H̃3) and(H̃4), |Gz(z, t)| � c(|z| + |z|s−1) for some
constantc > 0. Henceψ ∈ C1(E,R) and

〈
ψ ′(z),w

〉
=
∫

R

Gz(z, t) ·w dt

according to Lemma 3.10 in [102] (although in [102]E is the Sobolev spaceH 1(RN ),
an inspection of the proof shows that the argument remains valid in our case). Having
this, it is easy to see from (3.2) and (3.3) thatΦ ∈ C1(E,R) andΦ ′(z) = 0 if and only
if z ∈ E and z is a weak solution of (3.1). Sincez ∈ Lq(R,R2N ) for all q ∈ [2,∞),
Gz(z(.), .) ∈ L2(R,R2N ); hencez ∈ H 1(R,R2N ). In particular,z is continuous by the
Sobolev embedding theorem, and consequently,z ∈ C1(R,R2N ), i.e.,z is a classical solu-
tion of (3.1).

It is well known that ifz ∈ H 1(R,R2N ), thenz(t) → 0 as|t | → ∞. For the reader’s
convenience we include a proof. Lett � u � t + 1. Givenε > 0, there isR such that if
|t | � R, then‖z‖L2((t,t+1),R2N ) < ε and‖ż‖L2((t,t+1),R2N ) < ε. Hence|z(u)|< ε for some
u ∈ [t, t + 1] and, using Hölder’s inequality,

∣∣z(t)
∣∣�
∣∣z(u)

∣∣+
∣∣z(u)− z(t)

∣∣ � ε+
∫ u

t

∣∣ż(τ )
∣∣dτ

� ε+ ‖ż‖L2((t,t+1),R2N ) < 2ε.

Finally, weak sequential continuity follows from the compact embeddingE →֒ L
q

loc, 2�

q <∞. Indeed, ifzj ⇀z in E, thenzj → z in L2
loc(R,R

2N )∩Lsloc(R,R
2N ), and invoking

the argument of Lemma 3.10 in [102] again, we see that〈ψ ′(zj ),w〉 → 〈ψ ′(z),w〉 for all
w ∈E, i.e.,ψ ′(zj )⇀ψ ′(z). Clearly,Φ ′(zj )⇀Φ ′(z) as well. �

It will be important in what follows that the functionalΦ is invariant with respect to the
representation of the groupZ of integers given by

(Taz)(t) := z(t + a), a ∈ Z (3.4)
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(this is an immediate consequence of the periodicity ofG). Moreover, since the linear
operatorL is Z-invariant, so are the subspacesE±.

It follows from theZ-invariance ofΦ thatΦ ′ is Z-equivariant; hence ifz = z(t) is a
homoclinic, so are allTaz, a ∈ Z. ThereforeΦ cannot satisfy the Palais–Smale condition
at any critical levelc �= 0. SettingO(z) := {Taz: a ∈ Z} (cf. Section 1.1), we call two
homoclinic solutionsz1, z2 geometrically distinctif O(z1) �= O(z2).

LEMMA 3.2. If H satisfies(H̃1)–(H̃4), then ψ ′(z) = o(‖z‖) and ψ(z) = o(‖z‖2) as
z→ 0.

We omit the argument which is exactly the same as in Lemma 2.4. Next we turn our
attention to Palais–Smale sequences.

PROPOSITION3.3. If H satisfies(H̃1)–(H̃4) and there areµ >max{2, s − 1} andδ > 0
such that

δ|z|µ � µG(z, t)� z ·Gz(z, t) for all z, t, (3.5)

then each(PS)-sequence{zj } for Φ is bounded. Moreover, if Φ(zj )→ c, thenc � 0, and
if c= 0, thenzj → 0.

PROOF. As in (2.8), we have

c1‖zj‖ + c2 �Φ(zj )−
1

2

〈
Φ ′(zj ), zj

〉
�

(
µ

2
− 1

)∫

R

G(zj , t)dt � c3‖zj‖µµ.
(3.6)

Since for eachε > 0 there isC(ε) such that|Gz(z, t)| � ε|z| + C(ε)|z|s−1 (by (H̃3) and
(H̃4)), we see as in (2.10) that

∥∥z±j
∥∥2

� αj
∥∥z±j
∥∥+ c4ε‖zj‖

∥∥z±j
∥∥+ c5(ε)‖zj‖s−1

µ

∥∥z±j
∥∥, (3.7)

where αj := ‖Φ ′(zj )‖ → 0. Hence choosingε small enough, we have‖zj‖ � c6 +
c7‖zj‖s−1

µ , and taking (3.6) into account,

‖zj‖ � c8 + c9‖zj‖(s−1)/µ.

It follows that{zj } is bounded.
Now we obtain from (3.6) that ifΦ(zj )→ c, then

c� c3 lim sup
j→∞

‖zj‖µ,

soc � 0. If c = 0, thenzj → 0 in Lµ and passing to a subsequence,zj ⇀ z in E. Hence
z= 0. Lettingj → ∞ in (3.7) we see thatzj → 0 also inE. �
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Condition (3.5) is rather restrictive. Other conditions (always including the inequality
0< µG(z, t) � z ·Gz(z, t) for all z �= 0 and someµ > 2) which imply boundedness of
(PS)-sequences may be found, e.g., in [6] and [31].

We shall need the following result which is a special case of P.L. Lions’ vanishing lemma
(see, e.g., [65] or [102]):

LEMMA 3.4. Let r > 0 be given and let{zj } be a bounded sequence inE. If

lim
j→∞

sup
a∈R

∫ a+r

a−r
|zj |2 dt = 0, (3.8)

thenzj → 0 in Lq(R,R2N ) for all q ∈ (2,∞).

PROOF. In [65,102] the case ofE = H 1(RN ) has been considered. Below we adapt the
argument of [102, Lemma 1.21] to our situation.

Let q ∈ (2,4). By Hölder’s inequality,

‖zj‖qLq ((a−r,a+r),R2N )
� ‖zj‖q−2

L2((a−r,a+r),R2N )
‖zj‖2

Lp((a−r,a+r),R2N )
,

wherep satisfies(q − 2)/2+ 2/p = 1. Hence

‖zj‖qLq ((a−r,a+r),R2N )
� sup
b∈R

(
‖zj‖q−2

L2((b−r,b+r),R2N )

)
‖zj‖2

Lp((a−r,a+r),R2N )

� C sup
b∈R

(
‖zj‖q−2

L2((b−r,b+r),R2N )

)
‖zj‖2

H1/2((a−r,a+r),R2N )
.

(3.9)

Here we may use the norm inH 1/2((a − r, a + r),R2N ) given by

‖z‖2
H1/2((a−r,a+r),R2N )

= ‖z‖2
L2((a−r,a+r),R2N )

+
∫ a+r

a−r

∫ a+r

a−r

|z(t)− z(s)|2
(t − s)2

ds dt

(see [2, Theorem 7.48]). CoveringR by intervals(an− r, an+ r), n ∈ Z, in such a way that
eacht ∈ R is contained in at most 2 of them and taking the sum with respect ton in (3.9),
we obtain

‖zj‖qq � 2C sup
a∈R

(
‖zj‖q−2

L2((a−r,a+r),R2N )

)
|zj |2E,

where

|zj |2E := ‖zj‖2
2 +
∫

R

∫

R

|z(t)− z(s)|2
(t − s)2

ds dt.

According to Theorem 7.12 in [64], the norms| · |E and‖ · ‖ are equivalent. Since{zj } is
bounded inE, it follows thatzj → 0 inLq .
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If q � 4, we can chooseq0 ∈ (2,4) andp > q. Then by Hölder’s inequality,‖zj‖qq �

‖zj‖(1−λ)q
q0 ‖zj‖λqp , where(1 − λ)q/q0 + λq/p = 1, and the conclusion follows because

‖zj‖q0 → 0 and‖zj‖p is bounded. �

PROPOSITION3.5. Suppose(H̃1)–(H̃4) are satisfied and{zj } is a bounded(PS)-sequence
such thatΦ(zj )→ c > 0. Then(3.1)has a homoclinic solution.

PROOF. Suppose first{zj } is vanishing in the sense that (3.8) is satisfied. It is clear
that (3.7) holds forµ = s. Sinceαj = ‖Φ ′(zj )‖ → 0 andzj → 0 in Ls according to
Lemma 3.4, it follows from (3.7) withε appropriately small thatzj → 0 in E; hence
Φ(zj )→ 0. This contradiction shows that{zj } cannot be vanishing. Therefore there exist
δ > 0 andaj such that, up to a subsequence,

∫ aj+r

aj−r
|zj |2 dt � δ (3.10)

for almost allj . Choosing a largerr if necessary we may assumeaj ∈ Z. Let z̃j (t) :=
zj (aj + t). It follows from theZ-invariance ofΦ that {z̃j } is a bounded(PS)-sequence
andΦ(z̃j )→ c. Hencez̃j ⇀ z̃ in E and z̃j → z̃ in L2

loc after passing to a subsequence.
Moreover, since

∫ r

−r
|z̃j |2 dt =

∫ aj+r

aj−r
|zj |2 dt, (3.11)

z̃ �= 0. According to Proposition 3.1,Φ ′ is weakly sequentially continuous. ThusΦ ′(z̃)= 0
and the conclusion follows. �

3.2. Existence of homoclinics

Our first result in this section asserts that ifGz is superlinear, then (3.1) has at least 1
homoclinic.

THEOREM 3.6. SupposeH satisfies(H̃1)–(H̃4) andG satisfies(3.5) with µ > max{2,
s − 1}. Then(3.1)has a homoclinic solution.

PROOF. According to (3.3), the functionalΦ corresponding to (3.1) has the form required
in Theorem 1.19. Moreover,G � 0 and thereforeψ � 0. Let zj ⇀ z. Thenzj → z in
L2

loc(R,R
2N ) andzj → z a.e. inR after passing to a subsequence, so it follows from Fa-

tou’s lemma thatψ is weakly sequentially lower semicontinuous. Moreover,ψ ′ is weakly
sequentially continuous according to Proposition 3.1. Hence (i) of Theorem 1.19 holds,
and so does (ii) becauseΦ(z)= 1

2‖z‖2 + o(‖z‖2) wheneverz→ 0, z ∈E+.
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We shall verify (iii). Letz0 ∈ E+, ‖z0‖ = 1. Since there exists a continuous projection
from the closure ofRz0 ⊕E− in Lµ(R,R2N ) to Rz0 andG(z, t)� δµ−1|z|µ,

Φ
(
z− + ζz0

)
�
ζ 2

2
− 1

2

∥∥z−
∥∥2 − δµ−1

∥∥z− + ζz0
∥∥µ
µ

�
ζ 2

2
− 1

2

∥∥z−
∥∥2 − δ0ζ

µ‖z0‖µµ

for someδ0> 0, and it follows thatΦ(z− +ζz0)� 0 whenever‖z− +ζz0‖ is large enough.
Obviously,Φ(z−)� 0 for all z− ∈E−.

We have shown that the hypotheses of Theorem 1.19 are satisfied. Hence there exists
a (PS)-sequence{zj } such thatΦ(zj )→ c > 0 and it remains to invoke Propositions 3.3
and 3.5. �

Next we turn our attention to asymptotically linear systems. Supposeσ(JA) ∩ iR = ∅,
let λ1 be the smallest positive andλ−1 the largest negativeλ such thatσ(J (A + λI)) ∩
iR �= ∅ and setλ0 := min{λ1,−λ−1}. Then

λ1 = inf
{
‖z‖2: z ∈E+, ‖z‖2 = 1

}
,

λ−1 = − inf
{
‖z‖2: z ∈E−, ‖z‖2 = 1

}
,

‖z‖2
� λ0‖z‖2 for all z ∈E

(3.12)

(see Section 10 of [87] for a detailed argument). We shall need the following two additional
assumptions onG:
(H̃5) G(z, t) = 1

2A∞(t)z · z+ F(z, t), whereA∞(t)z · z � λ|z|2 for someλ > λ1 and
Fz(z, t)/|z| → 0 uniformly in t as|z| → ∞;

(H̃6) G(z, t) � 0 and 1
2Gz(z, t) · z − G(z, t) � α(|z|), whereα(0) = 0 andα(|z|) is

positive and bounded away from 0 wheneverz is bounded away from 0.
A simple example of a functionG which satisfies(H̃5) and(H̃6) is given byG(z, t)=

a(t)B(|z|), wherea is 1-periodic,a(t)� a0> 0 for all t ,B ∈ C1(R,R),B(0)= B ′(0)= 0,
B ′(s)/s is strictly increasing, tends to 0 ass → 0 and toλ > λ1/a0 ass → ∞. That(H̃6)

holds follows from the identity

1

2
B ′(s)s −B(s)=

∫ s

0

(
B ′(s)

s
− B ′(σ )

σ

)
σ dσ.

LEMMA 3.7. If H satisfies(H̃1)–(H̃6), then each Cerami sequence{zj } (see Remark1.20
for a definition) is bounded.

PROOF. Suppose{zj } is unbounded and letwj := zj/‖zj‖. We may assume taking a sub-
sequence thatwj ⇀w. We shall obtain a contradiction by showing that{wj } is neither
vanishing (in the sense that (3.8) holds) nor nonvanishing.
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Assume first{wj } is nonvanishing. As in the proof of Proposition 3.5, we findaj ∈ Z
such that, passing to a subsequence,w̃j (t) :=wj (aj + t) satisfy

∫ r

−r
|w̃j |2 dt � δ > 0

for j large. Passing to a subsequence once more,w̃j ⇀w̃ inE andw̃j → w̃ inL2
loc and a.e.

in R. In particular,w̃ �= 0. Since‖Φ ′(zj )‖ = ‖Φ ′(z̃j )‖, it follows thatΦ ′(z̃j )/‖z̃j‖ → 0
and therefore

‖z̃j‖−1〈Φ ′(z̃j ), v
〉
=
〈
w̃+
j , v
〉
−
〈
w̃−
j , v
〉
−
∫

R

A∞(t)w̃j · v dt

−
∫

R

Fz(z̃j , t) · v
|z̃j |

|w̃j |dt → 0

for all v ∈ C∞
0 (R,R

2N ). Since|Fz(z, t)| � a|z| for somea > 0,Fz(z, t)= o(|z|) as|z| →
∞ and suppv is bounded, we see by the dominated convergence theorem that the last
integral on the right-hand side above tends to 0. Consequently, lettingj → ∞, we obtain

˙̃w = J
(
A+A∞(t)

)
w̃

which contradicts the fact that the operator−J (d/dt)− (A+A∞(t)) has no eigenvalues
in L2(R,R2N ) [31, Proposition 2.2].

Suppose now{wj } is vanishing. Then

‖zj‖−1〈Φ ′(zj ),w
+
j

〉
=
∥∥w+

j

∥∥2 −
∫

R

Gz(zj , t) ·w+
j

|zj |
|wj |dt → 0

and

‖zj‖−1〈Φ ′(zj ),w
−
j

〉
= −

∥∥w−
j

∥∥2 −
∫

R

Gz(zj , t) ·w−
j

|zj |
|wj |dt → 0.

Since‖wj‖ = 1,

∫

R

Gz(zj , t) · (w+
j −w−

j )

|zj |
|wj |dt → 1.

Let

Ij :=
{
t ∈ R:

∣∣zj (t)
∣∣� ε

}
,
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whereε > 0 has been chosen so that|Gz(z, t)| � 1
2λ0|z| whenever|z| � ε (suchε exists

according to(H̃4)). Sincew+
j andw−

j are orthogonal inL2, it follows from (3.12) that

∫

Ij

Gz(zj , t) · (w+
j −w−

j )

|zj |
|wj |dt �

1

2
λ0‖wj‖2

2 �
1

2

and therefore, since|Gz(z, t)| � a0|z| for somea0> 0,

1

4
�

∫

R\Ij

Gz(zj , t) · (w+
j −w−

j )

|zj |
|wj |dt � 2a0

∫

R\Ij
|wj |2 dt

� a0 meas(R \ Ij )(p−2)/p‖wj‖2/p
p

for almost allj (p > 2 arbitrary but fixed). As{wj } is vanishing,wj → 0 in Lp(R,R2N )

according to Lemma 3.4 and consequently, meas(R \ Ij )→ ∞. Let α0 := inf|z|>ε α(|z|).
Thenα0> 0 and(H̃6) implies

Φ(zj )−
1

2

〈
Φ ′(zj ), zj

〉
=
∫

R

(
1

2
Gz(zj , t)−G(zj , t)

)
dt

�

∫

R\Ij

(
1

2
Gz(zj , t)−G(zj , t)

)
dt �

∫

R\Ij
α0 dt → ∞.

However,Φ(zj ) is bounded and since{zj } is a Cerami sequence,〈Φ ′(zj ), zj 〉 → 0. There-
fore the left-hand side above must be bounded, a contradiction. �

The idea of showing boundedness of{zj } by excluding both vanishing and nonvanishing
of {wj } goes back to Jeanjean [55].

THEOREM 3.8. SupposeH satisfies(H̃1)–(H̃6). Then(3.1)has a homoclinic solution.

PROOF. We shall use Theorem 1.19 again, this time together with Remark 1.20. Clearly,
(i) and (ii) still hold. So if we can show that also (iii) is satisfied, then in view of Re-
mark 1.20 there exists a Cerami sequence{zj } with Φ(zj )→ c > 0. By Lemma 3.7,{zj }
is bounded, hence it is a(PS)-sequence as well and we can invoke Propositions 3.3 and 3.5
in the same way as before.

It remains to verify (iii) of Theorem 1.19. According to (3.12) and sinceλ > λ1 there
existsz0 ∈E+, ‖z0‖ = 1, such that

1= ‖z0‖2< λ‖z0‖2
2. (3.13)

SinceΦ|E− � 0, it suffices to show that

Φ
(
z− + ζz0

)
= ζ 2

2
− 1

2

∥∥z−
∥∥2 −

∫

R

G
(
z− + ζz0, t

)
dt � 0 (3.14)
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whenever‖z− + ζz0‖ is large enough. Assuming the contrary, we findz−j and ζj such

thatzj = z−j + ζjz0 satisfies‖zj‖ → ∞ and the reverse inequality holds in (3.14). Setting

wj := zj/‖zj‖ = (z−j + ζjz0)/‖zj‖ =w−
j + ηjz0, we obtain

η2
j

2
− 1

2

∥∥w−
j

∥∥2 −
∫

R

G(zj , t)

‖zj‖2
dt � 0,

and sinceG� 0,

η2
j

2
− 1

2

∥∥w−
j

∥∥2 −
∫

I

G(zj , t)

‖zj‖2
dt � 0, (3.15)

whereI is a bounded interval (to be specified). Passing to a subsequence,ηj → η ∈ [0,1],
w−
j ⇀w− in E andw−

j → w− in L2
loc and a.e. inR. It follows from (3.15) thatηj �

‖w−
j ‖, henceη > 0 becauseη2

j + ‖w−
j ‖2 = 1. In view of (3.13) and sincez0 andw− are

orthogonal inL2,

η2 −
∥∥w−∥∥2 −

∫

R

A∞(t)w ·w dt � η2 −
∥∥w−∥∥2 − λ‖w‖2

2

= η2(1− λ‖z0‖2
2

)
−
∥∥w−∥∥2 − λ

∥∥w−∥∥2
2

< 0,

hence there exists a bounded intervalI such that

η2 −
∥∥w−∥∥2 −

∫

I

A∞(t)w ·w dt < 0. (3.16)

On the other hand,

∫

I

G(zj , t)

‖zj‖2
dt = 1

2

∫

I

A∞(t)wj ·wj dt +
∫

I

F(zj , t)

|zj |2
|wj |2 dt,

and sinceI is bounded,|F(z, t)| � a|z|2 for somea > 0 andF(z, t)= o(|z|2) as|z| → ∞,
it follows from the dominated convergence theorem that the second integral on the right-
hand side above tends to 0. Consequently, passing to the limit in (3.15) we obtain

η2 −
∥∥w−∥∥2 −

∫

I

A∞(t)w ·w dt � 0,

a contradiction to (3.16). �

While several results concerning the existence of homoclinic solutions for second or-
der systems (e.g., of Newtonian or Lagrangian type) may be found in the literature, much
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less seems to be known about (3.1) under conditions similar to(H̃1)–(H̃4). The first pa-
per to use modern variational methods for finding homoclinic solutions seems to be [25]
of Coti Zelati, Ekeland and Séré. It has been shown there that ifH satisfies(H̃1)–(H̃4),
G = G(z, t) is superquadratic in an appropriate sense and convex inz, then (3.1) has at
least 2 geometrically distinct homoclinics. IfG=G(z), there is at least 1 homoclinic. The
convexity ofG was used in order to reformulate the problem in terms of a dual functional
which is better behaved thanΦ (see also a comment in Section 3.4). A result comparable
to our Theorem 3.6, but stronger in the sense that there is no growth restriction onG, is due
to Tanaka [95]. His proof is rather different from ours: he shows using a linking argument
and fine estimates that there is a sequence of 2πkj -periodic solutionszj of (3.1) which
tend to a homoclinic asj → ∞. A somewhat different result has been obtained by Ding
and Willem [31]. Their functionG is also superquadratic but they allow the matrixA to be
time-dependent (and 1-periodic) and moreover, they allow 0 to be the left endpoint of a gap
of the spectrum of−J (d/dt)−A(t) (more precisely,σ(−J (d/dt)−A(t))∩ (0, α)= ∅ for
someα > 0). See also Xu [103], where the superlinearity condition has been weakened
with the aid of a truncation argument. Theorem 3.8 is due to Szulkin and Zou [94]; how-
ever, the argument presented here is simpler.

Finally we would like to mention that ifA is time-dependent and|A(t)| → ∞ in an
appropriate sense as|t | → ∞, then it can be shown that in many casesΦ satisfies(PS)∗

and methods similar to those developed in Sections 2.4–2.6 become available, see, e.g.,
Ding [29]. Results concerning bifurcation of homoclinics may be found in Stuart [87] and
Secchi and Stuart [82].

3.3. Multiple homoclinic solutions

In Section 2.4 we have seen that in the autonomous case ifH is superquadratic, then the
Hamiltonian system has infinitely many periodic solutions whose amplitude tends to infin-
ity. The proof relied in a crucial way on theS1-invariance of the corresponding functional.
For homoclinics the situation is very different. Letz= (p, q) ∈ R2 and

H(z)= 1

2
p2 − 1

2
q2 + 1

4
q4. (3.17)

The corresponding Hamiltonian system reduces to a second order equation−q̈ = V ′(q),
where the potentialV (q)= 1

4q
4 − 1

2q
2. It is easy to see that there exists a homoclinicz0

and

S :=
{
±z0(t − a): a ∈ R

}
(3.18)

is the set of all homoclinics. So althoughS consists of infinitely (in fact uncountably)
many geometrically distinctZ-orbits (in the sense of Section 3.1), it contains only two
homoclinics which are really distinct, the reason for this being thatΦ is invariant with
respect to the representation (3.4) ofR rather thanZ. In particular, there are no homoclinics
of large amplitude.
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Below we shall assume that, in addition to theZ-invariance,Φ is also invariant with
respect to a representation ofZ/p (p a prime) inR2N and (S) of Section 2.6 is satisfied.
We also recall from Section 2.6 that ifH is even inz, then (S) holds withG = Z/2 (here
we denote groups byG in order to distinguish them from functionsG = G(z, t)). Our
aim is to show that there are infinitely many geometrically distinct homoclinics provided
H is superquadratic. Note that sinceZ/p is finite, (3.1) has infinitely many homoclinics
which are geometrically distinct when both the representations ofZ andZ/p are taken
into account if and only if it has infinitely many geometrically distinct homoclinics with
respect to the representation ofZ only.

THEOREM 3.9. SupposeH andG satisfy(H̃1)–(H̃4) and (3.5) with µ >max{2, s − 1},
there existc0, ε0> 0 such that

∣∣Gz(z+w, t)−Gz(z, t)
∣∣� c0|w|

(
1+ |z|s−1) whenever |w| � ε0 (3.19)

and (S) of Section2.6 holds forG = Z/p, p a prime. Then(3.1) has infinitely many geo-
metrically distinct homoclinic solutions.

Clearly, (3.19) is satisfied ifHzz is continuous and|Hzz(z, t)| � c(1+ |z|s−1) for some
c > 0.

According to our comments in Section 2.6, ifH is invariant with respect to an orthogonal
and symplectic representation of a groupG, if Z/p ⊂ G and (R2N )Z/p = {0}, then the
conclusion of the above theorem remains valid. However, if the system is autonomous orG

is infinite, then already the existence of one homoclinic (which follows from Theorem 3.6)
implies that there are infinitely many homoclinics which are geometrically distinct in the
Z × Z/p-sense but not in the sense of a representation of the larger group.

An important step in the proof of Theorem 3.9 is the following:

PROPOSITION 3.10. Suppose(H̃1)–(H̃4), (3.5) and (3.19) are satisfied and let{zj } be
a (PS)c-sequence withc > 0. Then there exist(not necessarily distinct) homoclinics
w1, . . . ,wk and sequences{bmj } (1 � m � k) of integers such that, passing to a subse-
quence if necessary,

∥∥∥∥∥zj −
k∑

m=1

Tbmj
wm

∥∥∥∥∥→ 0 and
k∑

m=1

Φ(wm)= c.

PROOF(outline). We shall only very briefly sketch the argument which is exactly the same
as in [58] (where a Schrödinger equation has been considered) or [30], see also [26]. By
Proposition 3.3,{zj } is bounded, and it is nonvanishing by the argument of Proposition 3.5.
Hence (3.10) is satisfied, and so is (3.11), wherez̃j = Ta1

j
zj . It follows that z̃j ⇀w1 �= 0

after passing to a subsequence andw1 is a homoclinic. Letv1
j := z̃j −w1. Then one shows

that{v1
j } is a(PS)-sequence such thatΦ(v1

j )→ c−Φ(w1). This argument is rather techni-

cal, and it is here (in the proof thatΦ ′(v1
j )→ 0 to be more precise) that the condition (3.19)

plays a role. Moreover, there existsα > 0 such thatΦ(w)� α for all critical pointsw �= 0.
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Indeed, otherwise we find a sequence of critical pointswn �= 0 withΦ(wn)→ 0. But then,
according to Proposition 3.3,wn → 0 which is impossible because (3.3) and the fact that
ψ ′(z) = o(‖z‖) asz → 0 imply w = 0 is the only critical point in some neighbourhood
of 0.

Now we can repeat the same argument forv1
j and obtain after passing to a subsequence

again thatṽ1
j := Ta2

j
v1
j ⇀w2 andΦ(v2

j ) → c − Φ(w1) − Φ(w2), wherev2
j = ṽ1

j − w2.

Sinceα > 0, after a finite number of steps

Φ
(
vkj
)
→ β := c−

k∑

m=1

Φ(wm)� 0.

But thenβ = 0 andvkj → 0. Since (up to a subsequence)Tbkj
vkj = zj −

∑k
m=1Tbmj

wm,

wherebmj = −(a1
j + · · · + amj ), the conclusion follows. �

PROOF OFTHEOREM 3.9. Assuming that (3.1) has finitely many geometrically distinct
homoclinics, we shall show that the hypotheses of Theorem 1.21 are satisfied thereby ob-
taining a contradiction.

SinceTg ∈ O(2N)∩ Sp(2N) for g ∈ G, the quadratic form (3.2) isG-invariant, henceΦ
is G-invariant. It has been shown in the proof of Theorem 3.6 thatψ is weakly sequentially
lower semicontinuous. This and Proposition 3.1 imply (i). We already know that (ii) holds.
In order to verify (iii), we first note that there is an increasing sequence ofG-invariant
subspacesFn ⊂E+ such that dimFn = n if p = 2 (in this case all subspaces are invariant)
and dimFn = 2n if p > 2. Since there exists a continuous projectionLµ(R,R2N )→ Fn,
we obtain

Φ(z)�
1

2

∥∥z+
∥∥2 − 1

2

∥∥z−
∥∥2 − δµ−1‖z‖µµ �

1

2

∥∥z+
∥∥2 − δ0

∥∥z+
∥∥µ
µ

− 1

2

∥∥z−
∥∥2

for someδ0 > 0 and allz ∈ En. The right-hand side above tends to−∞ as ‖z‖ → ∞
because dimFn <∞.

It remains to verify (iv). Choose a unique point in eachZ-orbit of homoclinics and
denote the set of all such points byF . According to our assumption,F is finite. Changing
the bmj :s if necessary we may assumewm ∈ F in Proposition 3.10. For a given positive
integerl, let

[F , l] :=
{

k∑

m=1

Tamwm: 1� k � l, am ∈ Z, wm ∈F

}
.

If I ⊂ (0,∞) is a compact interval andl is large enough, then[F , l] is a (PS)I -attractor
according to Proposition 3.10. Finally, that

inf
{∥∥z+ −w+∥∥: z,w ∈ [F , l], z+ �=w+}> 0 (3.20)

is a consequence of the result below. �
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PROPOSITION3.11. LetF be a finite set of points inE. Then(3.20)holds.

Here it is not assumed thatF is a set whose points have any special property. The proof
is straightforward though rather tedious and may be found in [26, Proposition 1.55]. In [26]
this result is proved forz andw (and notz+ andw+), however, the argument is exactly the
same in our case.

Theorem 3.9, forp = 2 (even Hamiltonian), is due to Ding and Girardi [30]. They have
allowedA to be time-dependent and 0 to be the left endpoint of a gap of the spectrum
of −J (d/dt) − A(t). A result similar to Theorem 3.9 but allowing much more general
(also infinite) groups has been obtained by Arioli and Szulkin [6]. Subsequently the su-
perquadraticity condition in [6] has been weakened by Xu [103] by means of a truncation
argument mentioned in the preceding section.

3.4. Multibump solutions and relation to the Bernoulli shift

It is known by Melnikov’s theory that certain integrable Hamiltonian systems having 0 as
a hyperbolic point can be perturbed in such a way that the stable and unstable manifold
at 0 intersect transversally. This in turn implies that there exists a compact set, invariant
with respect to the Poincaré mapping and conjugate to the Bernoulli shift (these notions
will be defined later), see Palmer [77], or [47], [100] for a more comprehensive account of
the subject. However, in general it is not an easy task to decide whether the intersection is
transversal. In this section we shall see that sometimes under conditions which are weaker
than transversality it is still possible to show the existence of an invariant set which is
semiconjugateto the Bernoulli shift.

Consider the Hamiltonian system (3.1), withH satisfying(H̃1)–(H̃4) and suppose that
z0 is a homoclinic solution. Letχ ∈ C∞(R, [0,1]) be a function such thatχ(t) = 1 for
|t | � 1/8 and suppχ ⊂ (−1/4,1/4). If χj (t) := χ(t/j), one easily verifies that{χjz0}
is a (PS)-sequence,Φ(χjz0)→ Φ(z0) = c and supp(χj z0) ⊂ (−j/4, j/4). Let wj (t) :=
χj (t)z0(t)+χj (t − j)z0(t − j). Sinceχj z0 andχj (· − j)z0(· − j) have disjoint supports,
it follows that {wj } is a (PS)-sequence such thatΦ(zj )→ 2c. One can therefore expect
that under suitable conditions there is a largej and a homoclinic solution

z(t)= χj (t)z0(t)+ χj (t − j)z0(t − j)+ ṽ(t)= z0(t)+ z0(t − j)+ v(t)

such that‖ṽ‖∞ (and hence also‖v‖∞) is small compared to‖z0‖∞. We shall call thisz a
2-bump solution. In a similar way one can look fork-bump solutions withk > 2.

Suppose now (3.1) has a homoclinic solutionz0 and for someε reasonably small, say
ε � 1

2‖z0‖∞, there existsM > 0 such that for anyk ∈ N and any sequence of integers
a1< a2< · · ·< ak satisfyingaj − aj−1 �M for all j , there is a homoclinic solution

z(t)=
k∑

j=1

z0(t − aj )+ v(t), (3.21)
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where‖v‖∞ � ε (so z is a k-bump solution). We emphasize thatM is independent ofk
here. Existence ofk-bump solutions for a class of superquadratic second order Hamiltonian
systems has been shown by Coti Zelati and Rabinowitz [26]. However, in [26]M may
depend onk. In [83] Séré has shown that under appropriate conditions onH , there is
M = M(ε) (independent ofk) such that homoclinic solutions of the form (3.21) exist.
More precisely, he has assumed thatH ∈ C2(R2N ,R) satisfies(H̃1)–(H̃4),G is convex in
z and

δ1|z|s �G(z, t)� δ2|z|s, sG(z, t)� z ·Gz(z, t)

for all z, t and someδ1, δ2 > 0, s > 2. Let s′ = s/(s − 1). SinceG is convex, one can use
Clarke’s duality principle in order to construct a dual functionalΨ ∈ C1(Ls

′
(R,R2N ),R)

such that there is a one-to-one correspondence between critical pointsu �= 0 of Ψ and
homoclinic solutionsz of (3.1) ([25], see also [33]). The functionalΨ is better behaved
thanΦ; in particular, it is not strongly indefinite and under the conditions specified above
it has the mountain pass geometry near 0. This fact has been employed in [25] in order to
obtain a homoclinic.

Let c be the mountain pass level forΨ , or more precisely, let

c := inf
h∈Γ

max
τ∈[0,1]

Ψ
(
h(τ)

)
,

where

Γ :=
{
h ∈ C

(
[0,1],Ls′

(
R,R2N )): h(0)= 0, Ψ

(
h(1)

)
< 0
}
.

Since 0 is a strict local minimum ofΨ andΨ is unbounded below,c > 0.

THEOREM 3.12 (Séré [83]).Suppose thatH , G satisfy the hypotheses above and there
is c′ > c such that the setKc′ := {u ∈ Ψ c′ : Ψ ′(u)= 0} is countable. Then for eachε > 0
there existsM =M(ε) such that to every choice of integersa1 < a2 < · · ·< ak satisfying
aj − aj−1 �M there corresponds a homoclinic solutionz of (3.1)given by(3.21).

The countability ofKc′ is a sort of nondegeneracy condition. A similar (but stronger)
condition has also been employed in [26]. Consider the Hamiltonian system withH given
by (3.17). Ifz0 is a homoclinic,u0 corresponds toz0 andc= Ψ (u0), thenKc′ is uncount-
able (see (3.18)). On the other hand, there are no multibump solutions in this case. There-
fore in general it is necessary to assume some kind of nondegeneracy. Note also that since
autonomous systems are invariant with respect to time-translations bya for anya ∈ R, the
countability condition can never be satisfied in this case. However, as has been shown by
Bolotin and Rabinowitz [21], autonomous systems may have multibumps.

The proof of Theorem 3.12, in particular the construction ofM independent ofk, is
lengthy and very technical. Therefore we omit it and refer the reader to [83]. To our knowl-
edge no multibump results are known for first order Hamiltonian systems with nonconvex
G (except when a reduction to a second order system like in [26] can be made).
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From now on we assume that (3.1) hask-bump solutions of the form (3.21) for anyk
andM is independent ofk. Choosea �M and let

zj (t) := z0(t − aj), j ∈ Z.

We claim that, given any sequence{sj } of 0’s and 1’s, there exists a solution

z(t)=
∑

j∈Z

sjzj (t)+ v(t)

of (3.1) such that‖v‖∞ � ε. Note that ifsj = 1 for infinitely manyj ′s, thenz has infinitely
many bumps and isnot a homoclinic. By our assumption, for any positive integerm we
can find a solution

zm(t)=
m∑

j=−m
sjzj (t)+ vm(t)

with ‖vm‖∞ � ε. Since 0 is a hyperbolic point andz0(t)→ 0 as|t | → ∞, z0 decays to 0
exponentially (this follows by exponential dichotomy [77], see also [25] or [31]). Therefore
‖zm‖∞ is bounded uniformly inm, and by (3.1), the same is true of‖żm‖∞. Hencezm,
and a posteriori alsovm, are uniformly bounded inH 1

loc(R,R
2N ). Since the embedding

H 1
loc(R,R

2N ) →֒ L∞
loc(R,R

2N ) is compact and‖vm‖∞ � ε, vm → v in L∞
loc(R,R

2N ) for
somev with ‖v‖∞ � ε. It follows that the corresponding functionz is a weak solution
of (3.1) andz �= 0. Moreover,z ∈H 1

loc(R,R
2N )∩C2(R,R2N ) (recallH is of classC2).

Let now

Σ2 := {0,1}Z =
{
s = {sj }j∈Z: sj ∈ {0,1}

}

be the set of doubly infinite sequences of 0’s and 1’s, endowed with the metric

d(s, s̃) :=
∑

j∈Z

2−|j ||sj − s̃j |.

The space(Σ2, d) is easily seen to be compact, totally disconnected and perfect (it is in
fact homeomorphic to the Cantor set). The mappingσ ∈ C(Σ2,Σ2) given by

(
σ(s)

)
j

= sj+1

is called theBernoulli shift on two symbols. It is often considered as a prototype of a chaotic
map. In particular, it has a countable infinity of periodic orbits, an uncountable infinity of
nonperiodic orbits, a dense orbit, and it exhibits sensitive dependence on initial conditions.
The details may be found, e.g., in Wiggins [100, Chapter 2].

Let

Z :=
{
z ∈ L∞(R,R2N ): z(t)=

∑

j∈Z

sjzj (t)+ v(t), sj ∈ {0,1}, ‖v‖∞ � ε

}
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andIj := [a(j − 1
2), a(j + 1

2)]. In Z we introduce a metricd by setting

d(z,0)=
∑

j∈Z

2−|j |(sj‖zj‖∞ + ‖v‖L∞(Ij ,R2N )

)
. (3.22)

Sincez0 decays exponentially, the topology induced byd coincides with theL∞
loc-topology

on Z as one readily verifies. Using this, the compactness ofΣ2 and of the embedding
H 1

loc(R,R
2N ) →֒ L∞

loc(R,R
2N ), it follows that the set

X :=
{
z ∈Z: z is a solution of (3.1)

}

is compact.
As before, letTa :X → X be the mapping given by(Taz)(t) = z(t + a) and let

fa :R2N → R2N be the Poincaré (or time-a) mapping defined byfa(z0) = z(a) where
z = z(t) is the unique solution of (3.1) satisfying the initial conditionz(0) = z0. Finally,
let Ev :X → R2N be the evaluation mapping,Ev(z) := z(0), and letI := Ev(X). Since
Ev is continuous and injective, it is a homeomorphism betweenX andI , and it is easy to
verify that the diagram

I
fa

I

X
Ta

Ev

X

Ev

(3.23)

is commutative. Note in particular that the setI is invariant with respect to the Poincaré
mappingfa .

THEOREM 3.13. There exists a continuous surjective mappingg : I → Σ2 such that the
diagram

I
fa

g

I

g

Σ2
σ

Σ2

is commutative.

If a continuous surjective mappingg as above exists, we shall say thatfa : I → I is
semiconjugateto σ :Σ2 →Σ2, andfa will be calledconjugateto σ if g is a homeomor-
phism.
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PROOF. Forz=
∑

j∈Z sj zj +v ∈X we defineϕ(z)= s = {sj }j∈Z. Thenϕ is a continuous
mapping fromX ontoΣ2 (cf. (3.22)) and the diagram

X
Ta

ϕ

X

ϕ

Σ2
σ

Σ2

(3.24)

commutes. Now the conclusion follows from (3.23) and (3.24) upon settingg :=
ϕ ◦ (Ev)−1. �

REMARK 3.14. It follows from the definition of topological entropyh(.) (see, e.g.,
[47, Definition 5.8.3] or [88, Definition 5.8.4]) and the uniform continuity ofg that
h(fa)� h(σ ) (cf. [88, Exercise 5.8.1.B]). It is well known thath(σ ) > 0. Hencefa|I , and
therefore also the time-1-mappingf1, has positive entropy. More precisely,h(σ ) = log2
andh(f1)� (log 2)/a according to [88, Example 5.8.1 and Theorem 5.8.4]. The same con-
clusion about the entropy may also be found in [83], where a different (in a sense, dual)
argument has been used.

The approach presented in this section is taken from a work in progress by W. Zou and
the second author. They study a certain second order system and hope to show that, in ad-
dition to the result of Theorem 3.13, to eachm-periodic sequences ∈Σ2 there corresponds
a z ∈X which has periodma.
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1. Introduction

One of the most important problems in the Theory of Differential Equations is that of local
existence. This consists in checking whether or not, for each initial datum, the Cauchy
problem attached to a given differential equation has at least one solution. Unless otherwise
specified, in that follows, we will assume thatRn is endowed with one of its equivalent
norms‖ · ‖. Sometimes, we will assume that‖ · ‖ is the Euclidean norm, i.e., that it is
defined by means of the usual inner product〈·,·〉 as‖ · ‖ =

√
〈·,·〉. In all these cases, either

we will explicitly specify that, or we assume that it is implicitly notified by the simple
use of the symbol〈·, ·〉. By adomainwe understand a nonempty assumed and open subset
D ⊆ Rn, and byI we denote an open interval inR. Further, we denote byK a nonempty
subset inRn. Letf : I×K → Rn be a given function. We recall that, excepting some other
special mentions to be done in due course, by asolutionto the differential equation

u′(t)= f
(
t, u(t)

)
(1.1.1)

we mean a functionu :J → K, with J a non-degenerate interval included inI, and sat-
isfying the equality (1.1.1) for allt ∈ J. Clearly, wheneverf is continuous, all solutions
to (1.1.1) are of classC1. The first significant local existence result is due to Cauchy and
refers to the case in whichK = D andf is aC1-function. This was extended by Lipschitz
to the class of all functionsf satisfying the homonymous condition, and by Peano [80] to
general continuous functions. More precisely, Peano [80] proved:

THEOREM 1.1.1 (Peano [80]). If D is a domain andf : I × D → Rn is a continuous
function, then, for every(τ, ξ) ∈ I × D, there existsT ∈ I, T > τ , such that the Cauchy
problem

{
u′(t)= f

(
t, u(t)

)
,

u(τ )= ξ
(1.1.2)

has at least one solutionu : [τ, T ] → D.

On the other hand, there are situations in which, instead of a domainD, one has to
consider a setK which contains non-interior points, say for instance when the stateu of a
certain system must evolve within a given closed subsetK in Rn. These considerations lead
to the concept ofviability of a setK with respect to a given functionf . More precisely,
we say that the subsetK ⊆ D is right viablewith respect to the functionf : I × D → Rn if
for each(τ, ξ) ∈ I × K there existsT ∈ I, T > τ , such that the differential equation (1.1.1)
has at least one solutionu : [τ, T ] → K satisfyingu(τ)= ξ . In order to be consistent with
the usual procedure, i.e.g(t, u)= (1, f (t, u)), which reduces the nonautonomous case to
the autonomous one, in the latter situation, i.e. whenf :D → Rn, we say thatK is right
viablewith respect tof if for eachξ ∈ K there existsT > 0 such that (1.1.1) has at least
one solutionu : [0, T ] → K satisfyingu(0) = ξ . Sometimes, when we will be interested
to get solutions defined at the left ofτ , we will speak aboutleft viability. Moreover, for
the sake of simplicity, whenever no confusion may occur, we will use the termviable to
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design right viable. Let us notice thatK is right viable with respect tof if and only if K
is left viable with respect to−f . The next simple characterization of right viable subsets
with respect to a given—possibly discontinuous—function which does not depend on the
t-variable is almost obvious.

PROPOSITION1.1.1. LetD be a domain andf :D → Rn. ThenK ⊆ D is right (left) viable
with respect tof if and only if it is the union of a certain family of right(left) trajectories
of (1.1.1).

If K is open, then it is viable with respect to any continuous functionf , and this is
nothing else that the celebrated Peano’s local existence theorem 1.1.1 just mentioned. By
contrary, ifK is not open, in general,K may fail to be viable with respect to any continu-
ousf , as we can see from the simple example below.

EXAMPLE 1.1.1. Let us consider the planeK = {(u1, u2, u3); u3 = 1} and the function
f :K → R3, defined byf (u1, u2, u3) = (u2 + u3,−u1,−u1) for every(u1, u2, u3) ∈ K.
Then, if ξ is the projection of the origin on this plane, i.e.ξ = (0,0,1), the prob-
lem (1.1.2) has no local solution. Indeed, assuming by contradiction that there exists
such a solutionu : [0, T ] → K, we have〈u′(t), u(t)〉 = 〈f (u(t)), u(t)〉 = 0 and therefore
‖u(t)‖ = ‖ξ‖ = 1 for everyt ∈ [0, T ]. Henceu(t) lies on the sphere of center 0 and ra-
dius 1 which has only one point in common withK, namelyξ . Then, necessarilyu(t)= ξ

for everyt ∈ [0, T ], which is impossible, because, in this case, one should haveu1(t)= 0
andu′

1(t) = u2(t) + u3(t) = 1 for everyt ∈ [0, T ]. This contradiction can be eliminated
only if (1.1.2) has no local solution.

Thus, wheneverK is not open, one has to compensate the lack of this crucial topological
assumption by something else, as less restrictive as possible. In order to understand what
extra-condition we have to impose, some comments are needed. More precisely, let us
consider for the moment thatD is a domain,f :D → Rn is continuous (and does not
depend ont) andU :D → R is a function of classC1 with ∇U(ξ) �= 0 onD. Then, ifU is
a prime integral for the systemu′(t)= f (u(t)), which amounts of saying thatf is parallel
to the tangent plane to each surface of constant levelΣη = {ξ ∈ D; U(ξ)=U(η)} at every
point of this surface, i.e.

n∑

i=1

f (ξ)
∂U

∂xi
(ξ)= 0,

for eachξ ∈ Ση, then the restrictionf|Ση , of the functionf to any surfaceΣη, has the
property that, for everyξ ∈Ση, the equationu′(t) = f|Ση (u(t)) has at least one local so-
lution u : [0, T ] →Ση satisfyingu(0) = ξ . This condition constitutes a first step through
a partial answer to the question:what extra-conditions must satisfy the setK ⊆ Rn (not
necessarily a level set) and the continuous functionf :K → Rn, in order that, for every
ξ ∈ K, to exist at least one function of classC1, u : [0, T ] → K, such thatu(0) = ξ and
u′(t) = f (u(t)). However, the conditions offered by the result just mentioned in the case
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K =Ση have three weak points. First, they askf to be defined on the union of all surfaces
Ση and not on a single one. Second,f must satisfy the mentioned “tangency condition”
on each one of the surfaces of the family. Finally, the setK is in this case of a very specific
type, namely it is a surface of constant level for a functionU :D → R, of classC1 and
satisfying∇U(ξ) �= 0 for all ξ ∈ D.

The first step in order to get an acceptable result in this direction would be expressed as
in Theorem 1.1.2 below. See Vrabie [106, Theorem 6.1.2, p. 212].

THEOREM 1.1.2. LetΣ ⊆ D be a regular surface andf :D → Rn a continuous function.
The necessary and sufficient condition in order that, for everyξ ∈ Σ to existT > 0 and
a function of classC1, u : [0, T ] → Σ , such thatu(0) = ξ andu′(t) = f (u(t)) for every
t ∈ [0, T ], is that for everyη ∈Σ , f (η) be parallel to the tangent plane toΣ at η.

As far as we know, the first general necessary and sufficient condition for viability has
been discovered by Nagumo [70] in 1942 in the case whenK is a closed, or merely locally
closed subset inRn. We recall thatK is locally closedif for eachξ ∈ K there existsρ > 0
such thatB(ξ,ρ)∩K is closed. We notice that Nagumo used the term “rechts zulässig”, i.e.
right admissibleto design viable, and proved the following fundamental characterization
for viability:

THEOREM 1.1.3 (Nagumo [70]). Let K ⊆ D be locally closed and letf : I × D → Rn

be continuous. A necessary and sufficient condition in order thatK be viable with respect
to f is that, for each(t, ξ) ∈ I×K, f (t, ξ) be tangent toK at ξ in the sense of Bouligand–
Severi, i.e.

lim inf
h↓0

1

h
dist
(
ξ + hf (t, ξ);K

)
= 0. (1.1.3)

Here and thereafter, dist(η;K) denotes the distance fromη ∈ Rn to the subsetK in Rn,
i.e. dist(η;K)= inf{‖η−µ‖; µ ∈ K}.

Since (1.1.3) is obviously satisfied at each interior point ofK, Peano’s theorem 1.1.1 is
a direct consequence of Nagumo’s theorem 1.1.3. Clearly, (1.1.3) is invariant with respect
to equivalent norms onRn. Moreover, this essentially metric condition can be described,
and therefore defined, only by means of linear topological concepts. See, for instance,
Ursescu [97].

We notice that Nagumo’s result (or variants of it) has been rediscovered independently,
in the late sixties and early seventies, by Yorke [108,109], Crandall [38] and Hartman [55]
among others. More precisely, Yorke [108] uses viability (weak positive invariancein his
terminology) in order to prove necessary and sufficient conditions for stability by means of
Liapunov functions, as well as to give very simple and elegant proofs for both Hukuhara
and Kneser’s theorems referring to the solution funnel. We notice that Yorke [108] analyzed
the case of subsetsK which areclosed relative toD, i.e., for which there exists a closed set
C ⊆ Rn such thatK = C ∩ D. Nevertheless, as Remark 1.1.1 below shows, all his results
hold true for locally closed sets as well.
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REMARK 1.1.1. If K ⊆ D is closed relative toD, then it is locally closed. Conversely, if
K ⊆ D is locally closed, then there exists an open neighborhoodV ⊆ D of K such thatK
is closed relative toV.

It should be emphasized that, from another point of view, Yorke [108] considered the
strictly more general case in which, instead of a cylindrical setI × D, f is defined on a
non-cylindrical oneD ⊆ R×Rn, situation requiring a more delicate analysis. Crandall [38]
considers the case whenD is arbitrary,K ⊆ D is locally closed andf :D → Rn is contin-
uous. He shows that a sufficient condition forK to be viable (forward invariant in his
terminology) with respect tof is (1.1.3). Hartman [55] proves essentially the same result
for D open,K closed relative toD andf :D → Rn continuous, and shows in addition that
(1.1.3) is necessary for the viability ofK with respect tof .

An extension of Nagumo’s viability theorem to Carathéodory functionsf was proved
by Ursescu [98] by using Scorza Dragoni’s theorem.

At this point, we can easily see that viability is independent of the values off onD \ K,
and therefore, in the study of such kind of problems there is no need forf to be defined
“outside” K. So, very often in that follows, we will speak about the viability of a subset
K ⊆ Rn with respect to a functionf defined either onI×D, or merely onI×K. This is no
longer true if we consider the problem oflocal invarianceto be defined below. Namely, let
f : I×D → Rn, whereD is a domain and letK ⊆ D. The subsetK is locally right invariant
with respect tof if for each(τ, ξ) ∈ I×K and each solutionu : [τ, c] → D, c ∈ I, c > τ , of
(1.1.1), satisfying the initial conditionu(τ)= ξ , there existsT ∈ (τ, c] such that we have
u(t) ∈ K for eacht ∈ [τ, T ]. It is right invariant if it satisfies the above condition of local
invariance withT = c.

As in the case of right viability, whenever we will consider solutions defined at the left
of τ we will speak aboutlocal left invariance. Again, for the sake of simplicity, if no
confusion can occur, we will use the termlocal invariant to design local right invariant.
We notice that ifK is viable with respect tof , and (1.1.1) has the uniqueness property on
I × D, thenK is locally invariant with respect tof . Furthermore, ifK is locally invariant
with respect tof , and the Cauchy problem (1.1.2) has the local existence property, which
happens, for instance, whenf is continuous, thenK is viable with respect tof . However,
in general, local invariance does not imply viability simply because the local invariance of
a given setK could be a consequence of the lack of local existence for (1.1.2) for some
ξ ∈ K. The following example is instructive in this respect.

EXAMPLE 1.1.2. Letf :R → R be defined by

f (ξ)=
{

−1 if ξ � 0,
1 if ξ < 0.

First we notice that the Cauchy problemu′(t) = f (u(t)), u(0) = 0 has no right solution.
See Vrabie [106, Example 2.2.1, p. 57]. ThenK = {0} is locally invariant, but not viable,
with respect tof .

A completion of Proposition 1.1.1 is:
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PROPOSITION1.1.2. LetD be a domain and letf :D → Rn. If K is the union of all right
(left) trajectories of (1.1.1) in D, issuing from a given subsetC ⊆ D, thenK is locally
right (left) invariant with respect tof . In particular, the subsetK ⊆ D is locally right (left)
invariant with respect to the continuous functionf if and only if it is the union of all right
(left) trajectories of(1.1.1)issuing fromK.

We also notice the following simple characterization of local right (left) invariance of
arbitrary subsets with respect to a possibly discontinuous function.

PROPOSITION1.1.3 (Yorke [108]).Let D be a domain andf : I × D → Rn. The subset
K ⊆ D is locally right invariant with respect tof if and only ifD\K is locally left invariant
with respect tof .

It should be noticed that Proposition 1.1.3 cannot be extended to handle right viability,
even iff is continuous, as the simple example below shows.

EXAMPLE 1.1.3. Forn= 1,K = (−1,1) is viable with respect to the functionf :R → R,
f ≡ 1, but, nevertheless,R \ K is neither right nor left viable with respect tof .

Sufficient conditions for local invariance were obtained by using some usual uniqueness
assumptions ensuring that once a solution to (1.1.1) lies inK, there is no other one issuing
from the same initial point and which leavesK “immediately”. Typical examples of this
kind were obtained by Brezis [18], Bony [13], Redheffer [85] and Martin [66]. Brezis [18]
analyzes the case whenD is open,K ⊆ D is relatively closed andf is locally Lipschitz,
and proves that (1.1.3) with “lim” instead of “lim inf” is necessary and sufficient forK to
be local invariant, “flow invariant” in his terminology, with respect tof . By means of a
general concept of normal to a given set, and using a tangency condition expressed in the
terms of this concept, Bony [13] get sufficient conditions for invariance. More precisely, let
K be a given subset inRn. Let ξ ∈ K be such that there exists a sphereB(η,ρ) containing
ξ on its boundary but whose interior has empty intersection withK. Then, the vectorν =
η − ξ is a metric normal toK at ξ . A similar concept has been introduced and studied
subsequently by Mordukhovich [69]. Coming back to local invariance we have:

THEOREM 1.1.4 (Bony [13]). If D is a domain, K is relatively closed inD, f :D → Rn

is Lipschitz, and

〈
ν,f (ξ)

〉
� 0 (1.1.4)

for eachν which is metric normal toK at ξ , thenK is locally invariant with respect tof .

We notice that unlike (1.1.3) which is invariant with respect to equivalent Banach norms,
(1.1.4) is not invariant with respect to equivalent Euclidean norms. Redheffer [85] extends
the main results in both Brezis [18] and Bony [13], by proving:
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THEOREM 1.1.5 (Redheffer [85]). If D is a domain, K is relatively closed inD, f :D →
Rn is continuous and there exists a uniqueness function1 ω :R+ → R such that

〈
ξ − η,f (ξ)− f (η)

〉
� ‖ξ − η‖ω

(
‖ξ − η‖

)
, (1.1.5)

for all ξ, η ∈ D and (1.1.4)is satisfied, thenK is locally invariant with respect tof .

THEOREM 1.1.6 (Redheffer [85]). If D is a domain, K is relatively closed inD, f :D →
Rn is continuous and there exists a uniqueness functionω :R+ → R such that(1.1.5) is
satisfied for allξ, η ∈ D and (1.1.3)is satisfied at all pointsξ ∈ K at which there exists at
least one metric normal toK, thenK is locally invariant with respect tof .

It is interesting to notice that, in all Theorems 1.1.4, 1.1.5 and 1.1.6, it may happened
thatK fails to have metric normal vectors at many of its points, at which, in spite of the fact
that it is by no means evident that some solution could not escape fromK through such a
point, no condition is imposed. The explanation of this apparently strange situation consists
in that, every point at whichK fails to have metric normal vectors is an interior-like point
of K, simply because the Bony’s tangent cone toK at such a point is all ofRn. Finally,
Martin [66] analyzes the special case whenf is continuous and dissipative. For other in-
variance results see [3,18,25,27,38,65,66,108]. Necessary conditions, which are expressed
in the terms of a tangency condition of the type (1.1.3), require also some uniqueness hy-
potheses. In a slightly different spirit, more closely related to dynamical systems than to
differential equations, the local invariance problem was studied by Ursescu [99,100]. The
main idea in [100] was to consider from the very beginning that a given abstract evolution
operator which stands for the set of “all solutions” satisfies a certain tangency condition
coupled with a uniqueness hypothesis. It should be mentioned that, in this general context,
there is no need of a “right-hand side”f of the associated differential equation—if any.

Unlike the above mentioned approaches, Cârjă et al. [24] consider the classical differ-
ential equation (1.1.1) and look for general sufficient and even necessary conditions for
local invariance expressed only in terms off , K andD, but not in the terms of the panel
of solutions to (1.1.1). The conditions there obtained, although by means of a comparison
function—see definition below—allow (1.1.1) to have multiple solutions inK.

We recall that a functionω : I × [0, a)→ R is acomparison functionif ω(t,0)= 0 for
eacht ∈ I, and for each[τ, T )⊆ I, the only continuous solutionx : [τ, T )→ [0, a) to the
differential inequality[D+x](t)� ω(t, x(t)) for t ∈ [τ, T ), satisfyingx(τ)= 0, is the null
function.

Cârj̆a et al. [24] show that, if there exists an open neighborhoodV ⊆ D of K such thatf
satisfies the surprisingly simple “exterior tangency” condition

lim inf
h↓0

1

h

[
dist
(
ξ + hf (t, ξ);K

)
− dist(ξ ;K)

]
� ω
(
t,dist(ξ ;K)

)
(1.1.6)

1We recall thatω :R+ → R is auniqueness functionif the only continuous functionφ : [0, δ)→ R+ satisfying
[D−φ](t) � ω(φ(t)), [D+φ](t) � ω(φ(t)) for eacht ∈ (0, δ) andφ(0) = 0 is the null function. HereD− and
D+ are the upper left and right Dini derivatives.
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for each(t, ξ) ∈ I × V, whereω is a certain comparison function, thenK is locally invari-
ant with respect tof . This condition reduces to the classical Nagumo’s tangency condition
when applied toξ ∈ K, and this simply because, at each such pointξ ∈ K, dist(ξ ;K)= 0.
So, we can easily see that, wheneverK is open, (1.1.6) is automatically satisfied for the
choiceV = K. More than this, they prove that, in many situations, the condition above is
even necessary for local invariance. The philosophy of this result rests on the simple obser-
vation that the local invariance is equivalent to the “(D,K)-separating uniqueness” prop-
erty defined below, while (1.1.6) implies(D,K)-separating uniqueness and, even viability,
if f is continuous. More precisely, we say that (1.1.1) has the(D,K)-separating unique-
ness propertyif, for each(τ, ξ) ∈ I × D and every solutionsu,v : [τ, T ] → D of (1.1.1),
satisfyingu(τ) = v(τ) = ξ , there existsc ∈ (τ, T ] such that bothu([τ, c)) andv([τ, c))
are included either inD \ K, or in K. In fact, if f is continuous, the Nagumo’s tangency
condition (1.1.3) combined with(D,K)-separating uniqueness is nothing else than a sim-
ple rephrasing of the local invariance property. Indeed,if K ⊆ D ⊆ Rn, with K closed and
D open, andf : I × D → Rn is continuous, thenK is locally invariant with respect tof if
and only if (1.1.3)is satisfied and(1.1.1)has the(D,K)-separating uniqueness property.

Notations

B(ξ,ρ) — the closed ball inRn centered atξ and of radiusρ > 0
BK(ξ) — the Bony’s tangent cone toK at ξ
CK(ξ) — {η ∈ Rn; limh↓0,µ→ξ

1
h

dist(µ+hη;K)= 0}, i.e. the Clarke’s tangent cone
to K at ξ

D — a domain, i.e. a nonempty and open subset inRn
d+
ds — the right derivative
dist(ξ ;K) — inf{‖ξ − η‖; η ∈ K}, i.e. the distance betweenξ ∈ Rn andK ⊆ Rn

FK(ξ) — {η ∈ Rn; limh↓0
1
h

dist(ξ + hη;K) = 0}, i.e. the Federer’s tangent cone
to K at ξ

Fτ,ξ — {(s, u(s)); s � τ, u ∈ S(τ, ξ)}
Fτ,ξ (t) — {u(t); u ∈ S(τ, ξ)}
I — a nonempty and open interval inR
J — a nonempty and non-degenerate, i.e. with nonempty interior interval inR
K — a nonempty subset inRn

Lp(S;Rn) — the space of all equivalence classes, with respect to theλ almost every-
where equality, of measurable functions fromS to Rn whose norms are
p-Lebesgue integrable overS

L1
loc(I) — the space of all equivalence classes, with respect to theλ almost every-

where equality, of measurable functions fromI to R whose norms are
Lebesgue integrable over each compact subset inI

l.s.c. — lower semicontinuous
N — the set of natural numbers, i.e. 0,1, . . . n, . . .
N∗ — the set of strictly positive natural numbers, i.e. 1,2, . . . n, . . .
NK(ξ) — the cone of normals in the sense of Bony toK at ξ
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(NK(ξ))
∗ — the conjugate ofNK(ξ), i.e. the set of allη ∈ Rn satisfying〈η, ν〉 � 0 for

eachν ∈NK(ξ)

ν — a vector which is normal in the sense of Bony toK at ξ
Rn — the linear space overR of all n-tuples of real numbers
R — the set of real numbers
R — R ∪ {−∞,+∞}, i.e. the extended set of real numbers
S(τ, ξ) — the set of all noncontinuable solutionsu of u′(t) = f (t, u(t)) satisfying

u(τ)= ξ

TK(ξ) — {η ∈ Rn; lim infh↓0
1
h

dist(ξ + hη;K) = 0}, i.e. the Bouligand–Severi’s
tangent cone toK at ξ

u.s.c. — upper semicontinuous
[x, y]+ — the right directional derivative of the norm calculated atx in the directiony

2. Preliminaries

2.1. Brezis–Browder ordering principle

The goal of this subsection is to prove a general and very simple principle concerning
preorder relations which unifies a number of various results in nonlinear functional analy-
sis, principle due to Brezis and Browder [19]. We notice that this is an ordering principle
similar to Zorn’s lemma, but based on theaxiom of dependent choicewhich, as shown by
Feferman [42], turns out to be strictly weaker thanthe axiom of choice. For easy reference
we recall:

THE AXIOM OF DEPENDENT CHOICE. LetS be a nonempty set and letR ⊆ S × S be a
binary relation with the property that, for eachξ ∈ S , the set{η ∈ S; ξRη} is nonempty.
Then, for eachξ ∈ S , there exists a sequence(ξm)m in S such thatξ0 = ξ andξmRξm+1
for eachm ∈ N.

We notice that, in its turn, the axiom of dependent choice impliesthe axiom of countable
choicestated below, which is sufficient to prove that a lot of remarkable properties in
Real Analysis can be described by means of sequences. We emphasize that the axiom of
dependent choice is “far enough” from the axiom of countable choice, as shown recently
by Howard and Rubin [57].

THE AXIOM OF COUNTABLE CHOICE. LetS be a nonempty set and letF = {Fm; m ∈ N}
be a countable family of nonempty subsets inS . Then, there exists a sequence(ξm)m with
the property thatξm ∈ Fm for eachm ∈ N.

Finally, we notice that we preferred this framework simply because the results based on
the axiom of dependent choice remain true no matter which initial assumption we make,
i.e. no matter if we assume that either the axiom of choice, or its negation, holds true.

LetS be a nonempty set. A binary relation# ⊆ S×S is apreorder onS if it is reflexive,
i.e. ξ # ξ for eachξ ∈ S , and transitive, i.e.ξ # η andη # ζ imply ξ # ζ .
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DEFINITION 2.1.1. LetS be a nonempty set,# a preorder onS and letM :S → R ∪
{+∞} be an increasing function. AnM-maximal elementis an element̄ξ ∈ S satisfying
M(ξ)= M(ξ̄ ), for everyξ ∈ S with ξ̄ # ξ .

THEOREM 2.1.1 (Brezis–Browder ordering principle [19]).LetS be a nonempty set, # a
preorder onS and letM :S → R ∪ {+∞} be a function. Suppose that:

(i) for any increasing sequence(ξk)k in S , there exists someη ∈ S such thatξk # η for
all k ∈ N;

(ii) the functionM is increasing.
Then, for eachξ0 ∈ S there exists anM-maximal element̄ξ ∈ S satisfyingξ0 # ξ̄ .

PROOF. Suppose first that the functionM is bounded from above. Let us consider a fixed
elementξ0 ∈ S and let us construct (inductively) an increasing sequence(ξk)k as follows:
if ξk is given, let us consider the setSk = {ξ ∈ S; ξk # ξ} and let us denote byβk =
sup{M(ξ); ξ ∈ Sk}. If ξk satisfies the conclusion, we have nothing to prove. If not, then
βk >M(ξk), and so we getξk+1 such thatξk # ξk+1 and

M(ξk+1) > βk − βk −M(ξk)

2
. (2.1.1)

We have thus constructed an increasing sequence (here is the point where we have used
the axiom of dependent choices)(ξk)k with the property that the sequence(M(ξk))k is
strictly increasing. By the assumption (i),(ξk)k is bounded above inS , i.e., there exists
ξ̄ ∈ S such thatξk # ξ̄ for every k ∈ N. We show that this̄ξ satisfies the conclusion.
Suppose by contradiction that there existsη ∈ S such thatξ̄ # η andM(ξ̄ ) <M(η).
SinceM is bounded from above, the sequence(M(ξk))k is bounded from above, and thus
convergent. Moreover limk→∞ M(ξk)� M(ξ̄ ) andη ∈ Sk for eachk ∈ N. Therefore we
haveβk � M(η). From (2.1.1), we deduce

2M(ξk+1)−M(ξk)� βk � M(η),

for all k ∈ N. Passing to the limit ask→ ∞, we obtainM(ξ̄ )� M(η), which is a contra-
diction. This achieves the proof under the extra-condition thatM is bounded above.

Consider now the general case, and let us define the auxiliary functionM1 :S →
(−π

2 ,
π
2 ] by

M1(ξ)=
{

arctan
(
M(ξ)

)
if M(ξ) <+∞,

π

2
if M(ξ)= +∞.

The functionM1 is increasing and bounded from above. Therefore there exists an ele-
ment ξ̄ ∈ S which verifies the conclusion withM1 instead ofM. But arctanM(ξ̄ ) =
arctanM(ξ) impliesM(ξ̄ )= M(ξ), which completes the proof in the general case.�

In its original formulation of Brezis–Browder ordering principle, it is assumed thatM

is bounded from above. In order to handle a larger class of applications this condition
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has been dropped in Cârjă and Ursescu [25], by obtaining the very slight extension here
presented. A simple inspection of the proof shows that the conclusion of Theorem 2.1.1
remains true if (i) is replaced by the weaker condition:

(j) For any increasing sequence(ξk)k in S with the property that the sequence(M(ξk))k
is strictly increasing, there exists someη ∈ S such thatξk # η for all k ∈ N.

2.2. Projections

We begin with:

DEFINITION 2.2.1. A subsetK ⊆ Rn is locally closedif for every ξ ∈ K there exists
ρ > 0 such thatK ∩B(ξ,ρ) is closed.

REMARK 2.2.1. Obviously every closed set is locally closed. Furthermore, ifD is a given
open subset inRn, then every relatively closed subsetK in D is locally closed too. Indeed,
if K is relatively closed, thenK = K ∩ D and so, for everyξ ∈ K there existsρ > 0 such
thatB(ξ,ρ) ⊆ D. ConsequentlyK ∩ B(ξ,ρ) = K ∩ D ∩ B(ξ,ρ) = K ∩ B(ξ,ρ) which is
closed, and this proves the assertion. Thus, each open subsetK in Rn is locally closed.
There exist however locally closed sets which are neither open, nor closed, nor even closed
relatively to D, as for exampleK ⊆ D ⊆ R2 defined byD = {(x, y) ∈ R2; x > 0} and
K = {(x, y) ∈ R2; 0< x < 1, y = 0}. The setK, which is in fact a line segment in the
planexOy, is locally closed but is neither open, nor closed, nor even closed relatively
to D.

We say thatξ ∈ Rn has projection onK if there existsη ∈ K such that‖ξ − η‖ =
dist(ξ ;K). Any η ∈ K enjoying the above property is calleda projectionof ξ on K, and
the set of all projections ofξ on K is denoted byΠK(ξ).

DEFINITION 2.2.2. An open neighborhoodV of K, with ΠK(ξ) �= ∅ for eachξ ∈ V, is
called aproximal neighborhoodof K. If V is a proximal neighborhood ofK, then every
single-valued selection,πK :V → K, of ΠK, i.e.πK(ξ) ∈ΠK(ξ) for eachξ ∈ V, is apro-
jection subordinated toV.

The next lemma, proved in Cârjă and Ursescu [25, Lemma 18], shows that for each
locally closed setK, all the points which are sufficiently close toK do have projections,
i.e. each locally closed setK has one proximal neighborhood.

LEMMA 2.2.1. Let K be locally closed. Then the set of allξ ∈ Rn such thatΠK(ξ) is
nonempty is a neighborhood ofK.

PROOF. Let ξ ∈ K. SinceK is locally closed, there existsρ > 0 such thatK ∩ B(ξ,ρ)
is closed. To complete the proof, it suffices to show that, for eachη ∈ K satisfying
‖ξ − η‖ < ρ/2, ΠK(η) is nonempty. Indeed, for eachη as above, there exists a se-
quence(ζk)k in K such that(‖ζk − η‖)k converges to dist(η;K). We can suppose, by
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taking a subsequence if necessary, that(ζk)k converges to a pointζ ∈ Rn. So, we have
dist(η;K) = ‖ζ − η‖. Clearly,‖ζk − ξ‖ � ‖ζk − η‖ + ‖η − ξ‖ for all k ∈ N, and conse-
quently‖ζ−ξ‖ � dist(η;K)+‖η−ξ‖ � 2‖η−ξ‖< ρ. Finally,‖ζk−η‖< ρ for all k ∈ N
sufficiently large. Thereforeζk ∈ K ∩B(ξ,ρ), and since the latter is closed, it follows that
ζ ∈ K. ThusΠK(η) is nonempty, and this completes the proof. �

2.3. Tangent cones

The next tangency concept was introduced independently by Bouligand [16] and
Severi [89].

DEFINITION 2.3.1. LetK ⊆ Rn andξ ∈ K. The vectorη ∈ Rn is tangent in the sense of
Bouligand–Severito the setK at the pointξ if

lim inf
h↓0

1

h
dist(ξ + hη;K)= 0.

PROPOSITION 2.3.1. The setTK(ξ) of all vectors which are tangent in the sense of
Bouligand–Severi to the setK at the pointξ is a closed cone.

PROOF. Let ξ ∈ K. According to Definition 2.3.1,η ∈ TK(ξ) if

lim inf
t↓0

1

t
dist(ξ + tη;K)= 0.

Let s > 0 and let us observe that

lim inf
t↓0

1

t
dist(ξ + tsη;K) = s lim inf

t↓0

1

ts
dist(ξ + tsη;K)

= s lim inf
τ↓0

1

τ
dist(ξ + τη;K)= 0.

Hencesη ∈ TK(ξ). In order to complete the proof, it remains to show thatTK(ξ) is a closed
set. To this aim let(ηk)k∈N∗ be a sequence of elements inTK(ξ), convergent toη. We have

1

t
dist(ξ + tη;K) �

1

t

∥∥t (η− ηk)
∥∥+ 1

t
dist(ξ + tηk;K)

= ‖η− ηk‖ + 1

t
dist(ξ + tηk;K)

for every k ∈ N∗. So lim inft↓0
1
t

dist(ξ + tη;K) � ‖η − ηk‖ for every k ∈ N∗. Since
limk→∞ ‖η− ηk‖ = 0, it follows that lim inft↓0

1
t

dist(ξ + tη;K)= 0, which achieves the
proof. �
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Following Bouligand [16], the coneTK(ξ) is calledthe contingent coneto the setK at
the pointξ .

PROPOSITION2.3.2. A vectorη ∈ Rn belongs to the coneTK(ξ) if and only if for every
ε > 0 there existh ∈ (0, ε) andph ∈ B(0, ε) with the property

ξ + h(η+ ph) ∈ K.

PROOF. Obviouslyη ∈ TK(ξ) if and only if, for everyε > 0 there existsh ∈ (0, ε) and
zh ∈ K such that1

h
‖ξ + hη− zh‖ � ε. Now, let us defineph = 1

h
(zh − ξ − hη), and let us

observe that we have both‖ph‖ � ε, andξ + h(η+ph)= zh ∈ K, thereby completing the
proof. �

A simple but useful consequence is:

COROLLARY 2.3.1. A vectorη ∈ Rn belongs to the coneTK(ξ) if and only if there exist
two sequences(hm)m in R+ and (pm)m in Rn with hm ↓ 0 andpm → 0 asm→ ∞, and
such thatξ + hm(η+ pm) ∈ K for eachm ∈ N.

REMARK 2.3.1. We notice that, ifξ is an interior point of the setK, thenTK(ξ) = Rn.
Indeed, in this case there existsρ > 0 such thatB(ξ,ρ) ⊂ K and, therefore, fort > 0
sufficiently small,ξ + tη ∈ B(ξ,ρ) ⊆ K. Obviously, for such numberst > 0, we have
dist(ξ + tη;K)= 0, from where it follows the condition in Definition 2.3.1.

An interesting consequence of Corollary 2.3.1 is given below.

THEOREM 2.3.1. Let K1,K2 ⊆ Rn be locally closed. If ξ ∈ K1 ∩ K2 is an interior point
of K1 ∪ K2, then we have

TK1∩K2(ξ)= TK1(ξ)∩ TK2(ξ).

PROOF. Obviously, for eachξ ∈ K1 ∩ K2, TK1∩K2(ξ) ⊆ TK1(ξ) ∩ TK2(ξ). To prove that,
whenever, in addition,ξ is in the interior ofK1 ∪ K2, the converse inclusion holds true, let
ξ ∈ K1 ∩ K2 and letη ∈ TK1(ξ) ∩ TK2(ξ). By Corollary 2.3.1, there exist four sequences
(hm)m, (h̃m)m in R+, (pm)m and(p̃m)m in X with hm ↓ 0, h̃m ↓ 0, pm → 0 andp̃m → 0
asm → ∞, and such thatξ + hm(η + pm) ∈ K1 and ξ + h̃m(η + p̃m) ∈ K2 for each
m ∈ K. Now, if we assume further thatξ is in the interior ofK1 ∪ K2, there existsρ > 0
such thatB(ξ,ρ) ⊂ K1 ∪ K2. SinceK1 and K2 are locally closed, diminishingρ > 0
if necessary, we may assume that bothK1 ∩ B(ξ,ρ) and K2 ∩ B(ξ,ρ) are closed. Let
m0 ∈ N be such that, for eachm�m0, we have bothξm = ξ + hm(η+ pm) ∈ B(ξ,ρ) and
ξ̃m = ξ+ h̃m(η+ p̃m) ∈ B(ξ,ρ). As a consequence, ifm�m0, the line segment[ξm, ξ̃m] ⊆
B(ξ,ρ)⊆ K1 ∪ K2. SinceB(ξ,ρ) is connected, whileB(ξ,ρ)∩ K1 andB(ξ,ρ)∩ K2 are
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closed, there existsηm ∈ [ξm, ξ̃m] ∩ K1 ∩ K2. Sinceηm ∈ [ξm, ξ̃m], there existsθm ∈ [0,1]
such thatηm = (1− θm)ξm + θmξ̃m. So, denoting

tm = (1− θm)hm + θmh̃m and qm = (1− θm)hm

tm
pm + θmh̃m

tm
p̃m,

we have

ηm = ξ + tm(η+ qm) ∈ K1 ∩ K2.

Finally, observing thattm ↓ 0 andqm → 0, and using Corollary 2.3.1, we get the conclu-
sion. �

In the case whenK1,K2 are closed subsets in a normed vector space, a similar result
was obtained by Quincampoix [84, Corollary 2.3].

The next tangency concept was introduced by Federer [41]. See also Girsanov [49].

DEFINITION 2.3.2. LetK ⊆ Rn andξ ∈ K. The vectorη ∈ Rn is tangent in the sense of
Federerto the setK at the pointξ if

lim
h↓0

1

h
dist(ξ + hη;K)= 0.

The set of all pointsη ∈ Rn which are tangent in the sense of Federer toK at ξ is
denoted byFK(ξ). This set is a cone which clearly is included inTK(ξ). A not necessarily
metrical tangency concept in general topological vector spaces which, inRn, reduces to
that one of Federer [41], is due to Ursescu [95]. As we shall show next, for a continuous
function f :K → Rn, the following surprising equivalence holds true:f (ξ) ∈ TK(ξ) for
eachξ ∈ K if and only if f (ξ) ∈ FK(ξ) for eachξ ∈ K, and this in spite of the fact that
FK(ξ) �= TK(ξ).

2.4. The proximal normal cone

We begin by recalling:

DEFINITION 2.4.1. Letξ ∈ K. We say thatν ∈ Rn is metric normal toK at ξ , if there
existη ∈ Rn andρ > 0 such thatB(η,ρ) containsξ on its boundary, its interior has empty
intersection withK, andν = η− ξ .

In Fig. 1(a) is illustrated a pointξ at which there is no metric normal vector. We notice
that we haveTK(ξ)= Rn. For the case in which there is at least one normal vector toK at
a pointξ , see Fig. 1(b).

DEFINITION 2.4.2. Theproximal normal cone toK at ξ ∈ K is the set of allζ ∈ Rn of the
form ζ = λν, whereν is metric normal toK atξ andλ� 0, whenever such a metric normal
ν exists, and{0} if there is no metric normal toK at ξ . We denote this cone byNK(ξ).
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Fig. 1.

The use of the term “cone” in Definition 2.4.2, is justified by the simple observation that,
for eachξ ∈ K, NK(ξ) is a cone in the usual sense, i.e., for eachζ ∈NK(ξ) andλ > 0, we
haveλζ ∈NK(ξ).

The next tangency concept was introduced by Ursescu [101]. Let nowSK(ξ) be the set of
all η ∈ Rn such thatη−ξ is a metric normal toK atξ whenever such a metric normal exists,
andSK(ξ)= {ξ} otherwise. Letη ∈ SK(ξ), and letE(ξ, η)= {ζ ∈ Rn; ‖η−ζ‖ � ‖η−ξ‖}.
SinceK ⊆ E(ξ, η), for eachη ∈ SK(ξ), we have

TK(ξ)⊆ BK(ξ), (2.4.1)

where

BK(ξ)=
⋂

η∈SK(ξ)

TE(ξ,η)(ξ).

One may easily see thatBK(ξ) is a cone inRn.

DEFINITION 2.4.3. The setBK(ξ), defined as above, is theBony tangent cone toK at ξ ,
and its elements are thetangents in the sense of Bonyto K at ξ ∈ K.

Let ‖ · ‖ be a given norm onRn. If x, y ∈ Rn, we denote by[x, y]+ theright directional
derivative of the normcalculated atx in the directiony, i.e.

[x, y]+ = lim
h↓0

‖x + hy‖ − ‖x‖
h

.

If ‖ · ‖ is the Euclidean norm, we have

[x, y]+ =





〈x, y〉
‖x‖ if x �= 0,

‖y‖ if x = 0.
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REMARK 2.4.1. Taking into account the definitions of bothE(ξ, η) and[·, ·]+, we easily
deduce thatζ ∈ TE(ξ,η)(ξ) if and only if [ξ − η, ζ ]+ � 0. Therefore,ζ ∈ BK(ξ) if and
only if [−ν, ζ ]+ � 0 for eachν which is a metric normal toK at ξ . In particular, when
Rn is endowed with the Euclidean norm, we easily deduce that, for eachξ ∈ K and each
η ∈ SK(ξ), TE(ξ,η)(ξ) is a closed half-space having the exterior normalη − ξ . Therefore,
in this case, we have

BK(ξ)=
(
NK(ξ)

)∗
,

where(NK(ξ))
∗ is the so-calledconjugate coneof NK(ξ), i.e.

(
NK(ξ)

)∗ =
{
η ∈ Rn; 〈ν, η〉 � 0, for eachν ∈NK(ξ)

}
.

REMARK 2.4.2. If there is no metric normal vector toK at ξ , we may easily see that
BK(ξ)= Rn. See also Fig. 1(a).

2.5. Clarke’s tangent cone

We are now ready to study another useful tangency concept defined by Clarke [32].

DEFINITION 2.5.1. LetK ⊆ Rn andξ ∈ K. The vectorη ∈ Rn is tangent in the sense of
Clarketo the setK at the pointξ if

lim
h↓0

µ→ξ ;µ∈K

1

h
dist(µ+ hη;K)= 0.

We denote byCK(ξ) the set of all vectorsη ∈ Rn which are tangent toξ ∈ K in the sense
of Clarke. It is not difficult to check out thatCK(ξ) is a closed convex cone.

REMARK 2.5.1. One may easily see that, for eachK and eachξ ∈ K, we have

CK(ξ)⊆ FK(ξ)⊆ TK(ξ)⊆ BK(ξ).

We notice that, wheneverK admits a classical tangent space atξ ∈ K, all tangent cones
previously introduced coincide with that tangent space. This happens for instance ifK is a
C1 curve, or surface or, even ifK is anm-dimensionalC1 manifold. However, ifK is not
smooth enough locally aroundξ , the inclusionsCK(ξ)⊆ CK(ξ)⊆ TK(ξ)⊆ BK(ξ) may be
strict, as the following example shows.

EXAMPLE 2.5.1 (Necula [73]). LetK ⊆ R2 be defined asK = K1 ∪ K2, where

K1 =
{
(x, y); (x, y) ∈ R2, y � |x|

}
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and

K2 =
{(

0,1/2m
)
; m ∈ N

}

and letξ = (0,0) ∈ K. Then, we have





CK(ξ)= {0},
FK(ξ)= K1,

TK(ξ)= K1 ∪
{
(0, y); y � 0

}
,

BK(ξ)= R2.

For a multifunction2 F :K � Rn, we define

lim inf
ξ→ξ0
ξ∈K

F(ξ)=
{
η ∈ Rn; lim

ξ→ξ0
ξ∈K

dist
(
η,F (ξ)

)
= 0
}
.

LEMMA 2.5.1. Let us assume that the norm‖ · ‖ on Rn satisfies

[x, y]+ = −[−x, y]+

for eachx, y ∈ Rn.3 Let K ⊆ Rn be locally closed. Then, for eachξ0 ∈ K, we have

lim inf
ξ→ξ0;ξ∈K

BK(ξ)= CK(ξ0). (2.5.1)

PROOF. We begin by showing that

lim inf
ξ→ξ0;ξ∈K

BK(ξ)⊆ CK(ξ0). (2.5.2)

Let η �= 0, η ∈ lim inf ξ→ξ0;ξ∈K BK(ξ). It follows that, for eachε > 0, there existsθ > 0
such that, for eachφ ∈ K ∩B(ξ0, θ), we have

B(η, ε)∩BK(φ) �= ∅. (2.5.3)

Take a sufficiently smallθ so that, for allξ ∈ K ∩ B(ξ0, θ4) and t ∈ [0, θ
4‖η‖ ], we have

ΠK(ξ + tη) �= ∅. By virtue of Lemma 2.2.1, this is always possible. Withξ andt as above,
let us defineg(t)= dist(ξ + tη;K). In order to prove thatη ∈ CK(ξ0), it suffices to show
thatg(t)� εt for eacht ∈ [0, θ

4‖η‖ ]. Further, sinceg(0)= 0, it suffices to show thatg′(t)�
ε, wheneverg′(t) exists. To this aim, takeφ ∈ΠK(ξ + tη), and let us observe that we have
φ ∈ K ∩B(ξ0, θ). Indeed,

‖φ − ξ0‖ � ‖ξ + tη− φ‖ + ‖ξ + tη− ξ0‖ � 2‖ξ + tη− ξ0‖ � θ,

2A function F :K → P(Rn), whereP(Rn) is the class of all subsets ofRn, is calledmultifunctionand is
denoted byF :K � Rn.

3This happens if‖ · ‖ is Gâteaux differentiable.
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as claimed. Now, for a sufficiently smallh > 0, we obtain

g(t + h)− g(t)� ‖ξ + tη+ hη− φ‖ − ‖ξ + tη− φ‖.

Dividing by h and lettingh ↓ 0, we get

g′(t)� [ξ + tη− φ,η]+. (2.5.4)

Taking into account thatφ ∈ΠK(ξ + tη), from Definition 2.4.1, we deduce thatξ + tη−φ
is metric normal toK at φ. In view of (2.5.3), there existsw ∈ BK(φ) with ‖w − η‖ � ε.
From Remark 2.4.1, we conclude

[−ξ − tη+ φ,w]+ � 0.

According to the hypothesis, we have

[ξ + tη− φ,η]+ � [ξ + tη− φ,η−w]+ + [ξ + tη− φ,w]+ � ε.

From this inequality and (2.5.4), we getg′(t) � ε, as claimed. Thus (2.5.2) holds. Since
TK(ξ)⊆ BK(ξ), to complete the proof, it suffices to show that

CK(ξ0)⊆ lim inf
ξ→ξ0;ξ∈K

TK(ξ).

So, letη ∈ CK(ξ0) and letξm ∈ K with ξm → ξ0. The idea is to findηm ∈ TK(ξm) with
ηm → η. This would imply thatη ∈ lim inf ξ→ξ0;ξ∈K TK(ξ). To this end, let us observe
that, sinceη ∈ CK(ξ0), for everyε > 0, there existmε ∈ N andhε > 0 such that, for all
0< h< hε andm�mε , we have

dist(ξm + hη;K) < hε.

Fix m as above and takeµhm ∈ K with ‖µhm − ξm − hη‖< hε. Let us consider

ηhm = 1

h

(
µhm − ξm

)
.

Since‖ηhm − η‖ � ε, {ηhm; h < 0< hε} is bounded and therefore it has a limit pointηm as
h ↓ 0. In its turn,ηm satisfies‖ηm − η‖ � ε. A simple computational argument shows that
ηm ∈ TK(ξm) and this completes the proof. �

REMARK 2.5.2. From Lemma 2.5.1, and Remarks 2.4.1 and 2.5.1, we easily deduce

lim inf
ξ→ξ0;ξ∈K

FK(ξ)= lim inf
ξ→ξ0;ξ∈K

TK(ξ)= lim inf
ξ→ξ0;ξ∈K

BK(ξ)= CK(ξ0). (2.5.5)
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Concerning the equalities (2.5.5), as far as we know, the main and most difficult part,
i.e. the equality of the second term to the last one has been proved independently by
Ursescu [96] and by Cornet [36] inRn. See also Treiman [93] for the proof of the inclusion
lim inf ξ→ξ0;ξ∈K TK(ξ)⊆ CK(ξ0) in general Banach spaces. We emphasize that there are ex-
amples showing that the converse inclusion does not hold in infinite-dimensional Banach
spaces. See, for instance, Treiman [93]. We notice that Ursescu [96] proves a characteriza-
tion of CK(ξ) in general Banach spaces, pertaining also an immediate proof of Treiman’s
main result in [93].

PROPOSITION2.5.1. Let K ⊆ Rn be locally closed and letf :K → Rn be continuous.
Then, the following conditions are equivalent:

(i) for eachξ ∈ K, f (ξ) ∈ CK(ξ),
(ii) for eachξ ∈ K, f (ξ) ∈ TK(ξ),

(iii) for eachξ ∈ K, f (ξ) ∈ BK(ξ).
In general, if G :K � Rn is such thatCK(ξ) ⊆ G(ξ) ⊆ BK(ξ) for eachξ ∈ K, then each
one of the conditions above is equivalent to:

(iv) for eachξ ∈ K, f (ξ) ∈ G(ξ).

PROOF. In view of Remark 2.5.1, it suffices to show that (i) is equivalent to (iii). But this
easily follows from Lemma 2.5.1 and this completes the proof. �

We notice that the equivalences in Proposition 2.5.1 were called to our attention by
Ursescu [101].

3. Problems of viability

3.1. Nagumo’s viability theorem

We begin with some background material we will need subsequently.

DEFINITION 3.1.1. LetK ⊆ Rn be nonempty andf : I×K → Rn. The subsetK is viable
with respect tof if for every (τ, ξ) ∈ I × K there existsT ∈ I, T > τ , such that (1.1.1) has
at least one solution,u : [τ, T ] → K, satisfyingu(τ)= ξ .

We can now proceed to the main result in this section.

THEOREM 3.1.1 (Nagumo [70]). Let K ⊂ Rn be a nonempty and locally closed set and
let f : I × K → Rn be a continuous function. The necessary and sufficient condition in
order thatK be viable with respect tof is that, for every(t, ξ) ∈ I × K, f (t, ξ) ∈ TK(ξ).
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3.2. Proof of the necessity

PROOF. In order to prove the necessity let(t, ξ) ∈ I × K. Then, there existT ∈ I,
T > t , and a functionu : [t, T ] → K, satisfyingu(t)= ξ andu′(s)= f (s,u(s)) for every
s ∈ [t, T ]. Consequently, we have

lim
h↓0

1

h

∥∥ξ + hf (t, ξ)− u(t + h)
∥∥= lim

h↓0

∥∥∥∥f
(
t, u(t)

)
− u(t + h)− u(t)

h

∥∥∥∥= 0.

But, this relation shows that, for every(t, ξ) ∈ I × K, f (t, ξ) ∈ TK(ξ) and the proof of the
necessity is complete.

We notice that, in fact, we have proved much more than claimed by the necessity part of
Theorem 3.1.1. Namely, we deduced:

THEOREM 3.2.1. If K is viable with respect tof : I × K → Rn, then, for each(t, ξ) ∈
I × K, we have

lim
h↓0

1

h
dist
(
ξ + hf (t, ξ);K

)
= 0.

We notice that in Theorem 3.2.1 neitherK is assumed to be locally closed, norf to be
continuous.

3.3. Existence of approximate solutions

PROOF OFTHEOREM 3.1.1 (Continued). For the sake of simplicity, we divide the proof
of the sufficiency into three steps. In the first one we shall prove the existence of a family
of approximate solutions for the Cauchy problem (1.1.2) defined on intervals of the form
[τ, c], with c ∈ I. In the second step we will show that the problem (1.1.2) admits such
approximate solutions, all defined on an interval[τ, T ] independent of the “approximation
order”. Finally, in the last step, we shall prove the uniform convergence on[τ, T ] of a
sequence of such approximate solutions to a solution of the problem (1.1.2).

Let (τ, ξ) ∈ I × K be arbitrary and let us chooseρ > 0,M > 0 andT ∈ I, T > τ , such
thatB(ξ,ρ)∩ K be closed,

∥∥f (t, x)
∥∥�M (3.3.1)

for everyt ∈ [τ, T ] andx ∈ B(ξ,ρ)∩ K, and

(T − τ)(M + 1)� ρ. (3.3.2)

The existence of these three numbers is ensured by the fact thatK is locally closed (from
where it follows the existence ofρ > 0), by the continuity off which implies its bounded-
ness on[τ, T ] ×B(ξ,ρ), and so the existence ofM > 0, and by the fact thatT ∈ I, T > τ ,
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can be chosen as close toτ as we wish. We will show that, once fixed anε ∈ (0,1) and
the three numbers above, there exist three functions:σ : [τ, T ] → [τ, T ], nondecreasing,
g : [τ, T ] → Rn, Riemann integrable andu : [τ, T ] → Rn, continuous, such that:

(i) t − ε � σ(t)� t for everyt ∈ [τ, T ];
(ii) ‖g(t)‖ � ε for everyt ∈ [τ, T ];

(iii) u(σ(t)) ∈ B(ξ,ρ)∩ K for everyt ∈ [τ, T ] andu(T ) ∈ B(ξ,ρ)∩ K;
(iv) u satisfies

u(t)= ξ +
∫ t

τ

f
(
σ(s), u

(
σ(s)

))
ds +

∫ t

τ

g(s)ds

for everyt ∈ [τ, T ].
For the sake of simplicity, in all that follows, we will say that such a triple(σ, g,u) is an

ε-approximate solutionto the Cauchy problem (1.1.2) on the interval[τ, T ]. �

The first step. Let τ ∈ I, ξ ∈ K and letρ > 0, M > 0 andT ∈ I, T > τ , be fixed as
above. Letε ∈ (0,1). We begin by showing the existence of anε-approximate solution
on an interval[τ, c] with c ∈ (τ, T ]. Since for every(t, ξ) ∈ I × K, f (t, ξ) ∈ TK(ξ), from
Proposition 2.3.2, it follows that there existsc ∈ (τ, T ], c−τ � ε andp ∈ Rn with ‖p‖ � ε

such thatξ + (c − τ)f (τ, ξ)+ (c − τ)p ∈ K. At this point, we can define the functions
σ : [τ, c] → [τ, c], g : [τ, c] → Rn andu : [τ, c] → Rn by

{
σ(t)= τ for t ∈ [τ, c],
g(t)= p for t ∈ [τ, c],
u(t)= ξ + (t − τ)f (τ, ξ)+ (t − τ)p for t ∈ [τ, c].

One can readily see that the triple(σ, g,u) is an ε-approximate solution to the Cauchy
problem (1.1.2) on the interval[τ, c]. Indeed the conditions (i), (ii) and (iv) are obvi-
ously fulfilled, while (iii) follows from (3.3.1), (3.3.2) and (i). Indeed, let us observe that
u(σ(t))= ξ , and therefore we haveu(σ(t)) ∈ B(ξ,ρ) ∩ K for everyt ∈ [τ, c]. Obviously
u(c) ∈ K. Moreover, by (3.3.1) and (3.3.2), we have

∥∥u(c)− ξ
∥∥� (c− τ)

∥∥f (τ, ξ)
∥∥+ (c− τ)‖p‖ � (T − τ)(M + 1)� ρ

for everyt ∈ [τ, c]. Thus (iii) is also satisfied.

The second step.Now, we will prove the existence of anε-approximate solution defined
on the whole interval[τ, T ]. To this aim we shall make use of Brezis–Browder Theo-
rem 2.1.1, as follows. LetS be the set of allε-approximate solutions to the problem (1.1.2)
having the domains of definition of the form[τ, c] with c ∈ (τ, T ]. OnS we define the rela-
tion “#” by (σ1, g1, u1)# (σ2, g2, u2) if the domain of definition[τ, c1] of the first triple is
included in the domain of definition[τ, c2] of the second triple, and the twoε-approximate
solutions coincide on the common part of the domains. Obviously “#” is a preorder rela-
tion onS . Let us show first that each increasing sequence((σm, gm, um))m∈N is bounded
from above. Indeed, let((σm, gm, um))m be an increasing sequence, and letc∗ = limm cm,
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where[τ, cm] denotes the domain of definition of(σm, gm, um). Clearly,c∗ ∈ (τ, T ]. We
will show that there exists at least one element,(σ ∗, g∗, u∗) ∈ S , defined on[τ, c∗] and sat-
isfying (σm, gm, um) # (σ ∗, g∗, u∗) for eachm ∈ N. In order to do this, we have to prove
first that there exists limm um(cm). For eachm,k ∈ N, m� k, we haveum(s)= uk(s) for
all s ∈ [τ, cm]. Taking into account (iii), (iv) and (3.3.1), we deduce

∥∥um(cm)− uk(ck)
∥∥ �

∫ ck

cm

∥∥f
(
σk(s), uk

(
σk(s)

))∥∥ds +
∫ ck

cm

∥∥gk(s)
∥∥ds

� (M + ε)|ck − cm|

for everym,k ∈ N, which proves that there exists limm→∞ um(cm). Since for everym ∈ N,
um(cm) ∈ B(ξ,ρ) ∩ K, and the latter is closed, it readily follows that limm→∞ um(cm) ∈
B(ξ,ρ)∩K. Furthermore, because all the functions in the set{σm; m ∈ N} are nondecreas-
ing, with values in[τ, c∗], and satisfyσm(cm) � σp(cp) for everym,p ∈ N with m � p,
there exists limm→∞ σm(cm) and this limit belongs to[τ, c∗]. This shows that we can define
the triple of functions(σ ∗, g∗, u∗) : [τ, c∗] → [τ, c∗] × Rn × Rn by

σ ∗(t)=
{
σm(t) for t ∈ [τ, cm],m ∈ N,
lim
m→∞

σm(cm) for t = c∗,

g∗(t)=
{
gm(t) for t ∈ [τ, cm],m ∈ N,
0 for t = c∗,

u∗(t)=
{
um(t) for t ∈ [τ, cm],m ∈ N,
lim
m→∞

um(cm) for t = c∗.

One can easily see that(σ ∗, g∗, u∗) is anε-approximate solution which is a majorant for
((σm, gm, um))m. Let us define the functionM :S → R ∪ {+∞} by M((σ, g,u)) = c,
where[τ, c] is the domain of definition of(σ, g,u). ClearlyM satisfies the hypotheses
of Brezis–Browder Theorem 2.1.1. Then,S contains at least oneM-maximal element
(σ̄ , ḡ, ū), defined on[τ, c̄]. In other words, if(σ̃ , g̃, ũ) ∈ S , defined on[τ, c̃], satisfies
(σ̄ , ḡ, ū) # (σ̃ , g̃, ũ), then we necessarily havēc = c̃. We will show next that̄c = T . In-
deed, let us assume by contradiction thatc̄ < T . Then, taking into account the fact that
ū(c̄) ∈ B(ξ,ρ)∩ K, we deduce that

∥∥ū(c̄)− ξ
∥∥ �

∫ c̄

τ

∥∥f
(
σ̄ (s), ū

(
σ̄ (s)

))∥∥ds +
∫ c̄

τ

∥∥ḡ(s)
∥∥ds � (c̄− τ)(M + ε)

� (c̄− τ)(M + 1) < (T − τ)(M + 1)� ρ.

Then, as̄u(c̄) ∈ K andf (c̄, ū(c̄)) ∈ TK(ū(c̄)), there existδ ∈ (0, T − c̄), δ � ε andp ∈ Rn

such that‖p‖ � ε andū(c̄)+ δf (c̄, ū(c̄))+ δp ∈ K. From the inequality above, it follows
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that we can diminishδ if necessary, in order to have‖ū(c̄)+ δ[f (c̄, ū(c̄))+ p] − ξ‖ � ρ.
Let us define the functionsσ : [τ, c̄+ δ] → [τ, c̄+ δ] andg : [τ, c̄+ δ] → Rn by

σ(t)=
{
σ̄ (t) for t ∈ [τ, c̄],
c̄ for t ∈ (c̄, c̄+ δ],

g(t)=
{
ḡ(t) for t ∈ [τ, c̄],
p for t ∈ (c̄, c̄+ δ].

Clearly,g is Riemann integrable on[τ, c̄ + δ] and‖g(t)‖ � ε for every t ∈ [τ, c̄ + δ]. In
addition, for everyt ∈ [τ, c̄ + δ], σ(t) ∈ [τ, c̄], and thereforēu(σ(t)) is well-defined and
belongs to the setB(ξ,ρ)∩ K. Accordingly, we can defineu : [τ, c̄+ δ] → Rn by

u(t)= ξ +
∫ t

τ

f
(
σ(s), ū

(
σ(s)

))
ds +

∫ t

τ

g(s)ds

for everyt ∈ [τ, c̄+ δ]. Clearlyu coincides withū on [τ, c̄] and then it readily follows that
u, σ andg satisfy all the conditions in (i) and (ii). In order to prove (iii) and (iv), let us
observe that

u(t)=
{
ū(t) for t ∈ [τ, c̄],
u(c̄)+ (t − c̄)f

(
c̄, ū(c̄)

)
+ (t − c̄)p for t ∈ (c̄, c̄+ δ].

Thenu satisfies the equation in (iv). Since

u
(
σ(t)

)
=
{
ū
(
σ̄ (t)

)
for t ∈ [τ, c̄],

ū(c̄) for t ∈ [c̄, c̄+ δ],

it follows thatu(σ(t)) ∈ B(ξ,ρ) ∩ K. Furthermore, from the choice ofδ andp, we have
bothu(c̄+ δ)= ū(c̄)+ δf (c̄, ū(c̄))+ δp ∈ K, and

∥∥u(c̄+ δ)− ξ
∥∥=
∥∥ū(c̄)+ δf

(
c̄, ū(c̄)

)
+ δp− ξ

∥∥� ρ

and consequentlyu satisfies (iii). Thus(σ, g,u) ∈ S . Furthermore, since(σ̄ , ḡ, ū) #
(σ, g,u) and c̄ < c̄ + δ, it follows that (σ̄ , ḡ, ū) is not anM-maximal element. But this
is absurd. This contradiction can be eliminated only if each maximal element in the setS

is defined on[τ, T ].

3.4. Convergence of approximate solutions

The third step. Let (εk)k∈N be a sequence from(0,1) decreasing to 0 and let((σk, gk,
uk))k∈N be a sequence ofεk-approximate solutions defined on[τ, T ]. From (i) and (ii), it
follows that

lim
k→∞

σk(t)= t and lim
k→∞

gk(t)= 0 (3.4.1)
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uniformly on[τ, T ]. On the other hand, from (iii), (iv) and (3.3.2), we have

∥∥uk(t)
∥∥ �

∥∥uk(t)− ξ
∥∥+ ‖ξ‖

�

∫ T

τ

∥∥f
(
σk(s), uk

(
σk(s)

))∥∥ds +
∫ T

τ

∥∥gk(s)
∥∥ds + ‖ξ‖

� (T − τ)(M + 1)+ ‖ξ‖ � ρ + ‖ξ‖

for everyk ∈ N and everyt ∈ [τ, T ]. Hence, the sequence(uk)k∈N is uniformly bounded
on [τ, T ]. Again from (iv), we have

∥∥uk(t)− uk(s)
∥∥ �

∣∣∣∣
∫ t

s

∥∥f
(
σk(τ ), uk

(
σk(τ )

))∥∥dτ

∣∣∣∣+
∣∣∣∣
∫ t

s

∥∥gk(τ )
∥∥dτ

∣∣∣∣

� (M + 1)|t − s|

for every t, s ∈ [τ, T ]. Consequently the sequence(uk)k∈N is equicontinuous on[τ, T ].
From Arzelà–Ascoli theorem—see Vrabie [106, Theorem 8.2.1, p. 320]—it follows that,
at least on a subsequence,(uk)k∈N is uniformly convergent on[τ, T ] to a function
u : [τ, T ] → Rn. Taking into account of (iii), (3.4.1) and of the fact thatB(ξ,ρ) ∩ K is
closed, we deduce thatu(t) ∈ B(ξ,ρ) ∩ K for everyt ∈ [τ, T ]. Passing to the limit in the
equation

uk(t)= ξ +
∫ t

τ

f
(
σk(τ ), uk

(
σk(s)

))
ds +

∫ t

τ

gk(s)ds

and taking into account (3.4.1), we deduce that

u(t)= ξ +
∫ t

τ

f
(
s, u(s)

)
ds

for everyt ∈ [τ, T ], which achieves the proof of the theorem. �

From Remark 2.3.1 combined with Theorem 3.1.1, we deduce Peano’s local existence
theorem 1.1.1. We mention that Theorem 1.1.2 too is a direct consequence of Theo-
rem 3.1.1 combined with the observation below.

REMARK 3.4.1. LetD be a nonempty and open subset inRn and letU :D → R be a
function of classC1 with ∇U(ξ) �= 0 onD. Let c ∈ R be such thatK = {ξ ∈Ω; U(ξ)= c}
is nonempty. Thenη ∈ Rn is tangent toK at the pointξ ∈ K if and only if 〈η,∇U(ξ)〉 = 0.
In other words, in this case,TK(ξ) coincides with the set of vectors in the tangent plane
to K atξ . Indeed, let us observe that a vectorη ∈ TK(ξ) if and only if there exists a function
u : [0,1] → K with u(0)= ξ , differentiable att = 0, with u′(0)= η, and such that

lim
t↓0

1

t

∥∥ξ + tη− u(t)
∥∥= 0.
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But, in the particular case of the setK considered, this relation holds if and only if
〈η,∇U(ξ)〉 = 0, which achieves the proof.

Summing up, and using Proposition 2.5.1, we deduce:

THEOREM3.4.1. LetK be a nonempty and locally closed subset inRn and letf : I×K →
Rn be continuous. Then the following conditions are equivalent:

(i) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ CK(ξ),
(ii) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ TK(ξ),

(iii) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ BK(ξ),
(iv) the setK is viable with respect tof .

In general, if G :K � Rn is such thatCK(ξ) ⊆ G(ξ) ⊆ BK(ξ) for eachξ ∈ K, then each
one of the conditions above is equivalent to

(v) for eachξ ∈ K, f (t, ξ) ∈ G(ξ).

3.5. Existence of noncontinuable solutions

In this section we will prove some results concerning the existence of noncontinuable,
or even global solutions to (1.1.1). We recall that a solutionu : [τ, T ) → K to (1.1.1) is
callednoncontinuable, if there is no other solutionv : [τ, T̃ )→ K of the same equation,
with T < T̃ and satisfyingu(t)= v(t) for all t ∈ [τ, T ). The solutionu is calledglobal if
T = supI. The next theorem follows from Brezis–Browder Theorem 2.1.1.

THEOREM 3.5.1. Let K ⊆ Rn be nonempty and letf : I × K → Rn be a possibly discon-
tinuous function. Then, the following conditions are equivalent:

(i) K is viable with respect tof ,
(ii) for each(τ, ξ) ∈ I×K there exists at least one noncontinuable solutionu : [τ, T )→

K of (1.1.1),satisfyingu(τ)= ξ .

PROOF. Clearly (ii) implies (i). To prove that (i) implies (ii) it suffices to show that every
solutionu can be continued up to a noncontinuable one. To this aim, we will make use of
Brezis–Browder Theorem 2.1.1. LetS be the set of all solutions to (1.1.1). OnS which, by
virtue of (i), is nonempty, we define the binary relation “#” by u# v if the domain[τ, Tv)
of v is larger that the domain[τ, Tu) of u, i.e.Tu � Tv , andu(t)= v(t) for all t ∈ [τ, Tu).
Clearly “#” is a preorder onS . Next, let(um)m be an increasing sequence inS , and let
us denote by[τ, Tm) the domain of definition ofum. Let T ∗ = limm→∞ Tm, which can
be finite, or not, and let us defineu∗ : [τ, T ∗)→ K by u∗(t)= um(t) for eacht ∈ [τ, Tm).
Since(Tm)m is increasing andum(t) = uk(t) for eachm � k and eacht ∈ [τ, Tm), u∗ is
well-defined and belongs toS . Moreover,u∗ is a majorant of(um)m. Thus each increasing
sequence inS is bounded from above. Moreover, the functionM :S → R∪{+∞}, defined
by M(v) = Tv , for eachv ∈ S , is monotone, and therefore we are in the hypotheses of
Theorem 2.1.1. Accordingly, foru ∈ S , there exists at least one elementū ∈ S with u# ū

and, in addition,̄u # ũ impliesTũ = Tū. But this means that̄u is noncontinuable, and, of
course, that it extendsu. The proof is complete. �
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THEOREM 3.5.2. Let K be a nonempty and locally closed subset inRn, and let f :
I × K → Rn be a continuous function. Then a necessary and sufficient condition in or-
der that for each(τ, ξ) ∈ I × K there exists at least one noncontinuable solution to(1.1.1)
satisfyingu(τ)= ξ is one of the five equivalent conditions in Theorem3.4.1.

PROOF. In view of Theorem 3.4.1, each one of the first five conditions is equivalent to the
viability of K with respect tof . The conclusion follows from Theorem 3.5.1, and the proof
is complete. �

In order to obtain global existence, some extra growth conditions onf are needed. We
discuss below a very natural one, introduced in a more general framework in Vrabie [102,
Definition 3.2.1, p. 95].

DEFINITION 3.5.1. A functionf : I×K → Rn is calledpositively sublinearif there exists
a norm‖ · ‖ on Rn such that, for eachT ∈ I, there exista > 0, b ∈ R andc > 0 satisfying

∥∥f (t, ξ)
∥∥� a‖ξ‖ + b

for each(t, ξ) ∈ Kc
+(f ), where

Kc
+(f )=

{
(t, ξ) ∈ I × K; t � T , ‖ξ‖> c and

[
ξ, f (t, ξ)

]
+ > 0

}
.

As concerns the existence of global solutions we have:

THEOREM3.5.3. LetK be a nonempty and closed subset inRn, and letf : I×K → Rn be
a continuous and positively sublinear function. Then a necessary and sufficient condition
in order that for each(t, ξ) ∈ I × K there exists at least one global solution to(1.1.1)
satisfyingu(τ)= ξ is each one of the five equivalent conditions in Theorem3.4.1.

PROOF. Clearly, each one of the five conditions is necessary. To complete the proof it
suffices to show that, wheneverK is viable with respect tof , then, for each(τ, ξ) ∈ I×K,
there exists at least one global solutionu : [τ, T )→ K to (1.1.1) satisfyingu(τ) = ξ . To
this aim, let(τ, ξ) ∈ I × K and letu : [τ, T )→ K be a noncontinuable solution to (1.1.1)
satisfyingu(τ)= ξ . We will show thatT = supI. To this aim, let us assume the contrary,
i.e., thatT < supI. In particular, this means thatT < +∞. Sinceu′(s) = f (s, (u(s)) for
all s ∈ [τ, T ), we deduce

[
u(s), u′(s)

]
+ =

[
u(s), f

(
s, u(s)

)]
+.

Since[u(s), u′(s)]+ = d+
ds (‖u(s)‖) for s ∈ [τ, T ), where‖ · ‖ is the norm whose existence

is ensured by Definition 3.5.1, integrating fromτ to t the last equality, we get successively

∥∥u(t)
∥∥ = ‖ξ‖ +

∫ t

τ

[
u(s), f

(
s, u(s)

)]
+ds
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= ‖ξ‖ +
∫

{τ�s�t;‖u(s)‖�c}

[
u(s), f

(
s, u(s)

)]
+ds

+
∫

{τ�s�t;‖u(s)‖>c}

[
u(s), f

(
s, u(s)

)]
+ds

� ‖ξ‖ + cλ
({
s ∈ [τ, t];

∥∥u(s)
∥∥� c

})

+
∫

{τ�s�t;‖u(s)‖>c}

[
a
∥∥u(s)

∥∥+ b
]
ds

� ‖ξ‖ + (b+ c)(T − τ)+ a

∫ t

τ

∥∥u(s)
∥∥ds.

Here, as usual,λ denotes the Lebesgue measure onR. Thanks to Gronwall’s inequality—
see Vrabie [106, Lemma 1.5.2, p. 46]—u is bounded on[τ, T ) and, sinceT < +∞, it
follows that{f (t, u(t)); t ∈ [τ, T )} is bounded. Thereforeu is globally Lipschitz on[τ, T )
and accordingly there exists limt↑T u(t)= u∗. SinceK is closed andT < supI, it follows
that (T ,u∗) ∈ I × K. Using this observation and recalling thatK is viable with respect
to f , we conclude thatu can be continued to the right ofT . But this is absurd, becauseu is
noncontinuable. This contradiction can be eliminated only ifT = supI, and this achieves
the proof. �

As, wheneverK is compact, each continuous functionf : I × K → Rn is positively
sublinear, from Theorem 3.5.3 it readily follows:

COROLLARY 3.5.1. LetK be a nonempty and compact subset ofRn, and letf : I × K →
Rn be continuous. Then a necessary and sufficient condition in order that for each(τ, ξ) ∈
I × K there exists at least one solution, u : [τ, T )→ K to (1.1.1),satisfyingT = supI and
u(τ)= ξ , is any one of the five equivalent conditions in Theorem3.4.1.

3.6. Viability of the relative closure

PROPOSITION3.6.1 (Roxin [86]). LetD ⊆ Rn be open, let K ⊆ D and letf : I×D → Rn

be continuous. If K is viable with respect tof , then its closure relative toD, K
D

, is also
viable with respect tof .

PROOF. Let τ ∈ I and let(ξk)k be a sequence inK convergent toξ ∈ K
D

. SinceK is
viable with respect tof , there exists a sequence(u(·, ξk))k of K-valued noncontinuable
solutions to (1.1.1) satisfyingu(τ, ξk) = ξk , for k = 1,2, . . . . It is well known that the
intersection of the domains of this sequence contains a nontrivial interval[τ, T ]. See, for
instance, Vrabie [106, Lemma 3.2.1, p. 107]. Moreover, diminishingT if necessary, we
may assume that there existsρ > 0 such thatu(t, ξk) ∈ B(ξ,ρ) ⊆ D, for all k ∈ N, and
t ∈ [τ, T ]. By a compactness argument involving Arzelà–Ascoli theorem, we conclude
that, on a subsequence at least, we have limk→∞ u(·, ξk) = u(·, ξ) uniformly on [τ, T ].
Thusu(t, ξ) ∈ K

D
for all t ∈ [τ, T ], and this completes the proof. �
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3.7. Comparison and viability

The next theorem, called to our attention by Ursescu [101], gives a characterization of the
viability of an epigraph of a certain function in the terms of a differential inequality. Similar
results can be found in Clarke et al. [33, p. 266]. Throughout, we denote by[D+x](t) the
right lower Dini derivativeof the functionx at t , i.e.

[D+x](t)= lim inf
h↓0

x(t + h)− x(t)

h
.

THEOREM3.7.1. Letω : I×R+ → R andv : [τ, T )→ R+ be continuous, with [τ, T )⊆ I.
Then

epi(v)=
{
(t, η); v(t)� η, t ∈ [τ, T )

}

is viable with respect to(t, y) �→ (1,ω(t, y)) if and only ifv satisfies

[D+v](t)� ω
(
t, v(t)

)
(3.7.1)

for eacht ∈ [τ, T ).

PROOF. Sufficiency. It suffices to show that the set{(t, v(t)); t ∈ [τ, T )}, included in
the boundary∂epi(v) of epi(v), satisfies the Nagumo’s tangency condition (1.1.3). From
(3.7.1) it follows that

[
D+

(
v(·)−

∫ ·

τ

ω
(
s, v(s)

)
ds

)]
(t)� 0

for eacht ∈ [τ, T ). Thus, in view of a classical result in Hobson [56, p. 365], we necessarily
have thatt �→ v(t)−

∫ t
τ
ω(s, v(s))ds is non-increasing on[τ, T ]. So, for eacht ∈ [τ, T )

andh > 0 such thatt + h < T , we have

(
t + h,v(t)+

∫ t+h

t

ω
(
s, v(s)

)
ds

)
∈ epi(v),

and therefore

dist
((
t, v(t)

)
+ h
(
1,ω
(
t, v(t)

))
;epi(v)

)

�

∥∥∥∥
(
t, v(t)

)
+ h
(
1,ω
(
t, v(t)

))
−
(
t + h,v(t)+

∫ t+h

t

ω
(
s, v(s)

)
ds

)∥∥∥∥

=
∣∣∣∣hω
(
t, v(t)

)
−
∫ t+h

t

ω
(
s, v(s)

)
ds

∣∣∣∣.

Dividing by h > 0 and passing to lim inf forh ↓ 0 we get (1.1.3) and this completes the
proof of the sufficiency.
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Necessity. Let us assume that epi(v) is viable with respect to the function(t, y) �→
(1,ω(t, y)), let t ∈ [τ, T ), and let(s, x) be a solution tos′ = 1, x′(s) = ω(s, x(s)), sat-
isfying the initial conditionss(0) = t andx(0) = v(t), and which remains in epi(v). We
have

v(t + h)− v(t)

h
�
x(h)− x(0)

h
.

Accordingly

[D+v](t)� ω
(
s(0), x(0)

)
= ω
(
t, v(t)

)
,

and this achieves the proof of the necessity. �

DEFINITION 3.7.1. A functionω : I×[0, a)→ R, 0< a � +∞, is acomparisonfunction
if ω(t,0) = 0 for eacht ∈ [0, a), and for each[τ, T ) ⊆ I, the only continuous function
x : [τ, T )→ [0, a), satisfying

{
[D+x](t)� ω

(
t, x(t)

)
for all t ∈ [τ, T ),

x(τ)= 0,

is the null function.

COROLLARY 3.7.1. Let ω : I × R+ → R be continuous and such that, for eachτ ∈ I,
the Cauchy problemy′(t) = ω(t, y(t)), y(τ) = 0 has only the null solution. Thenω is a
comparison function.

PROOF. Let v : [τ, T ] → R+ be any solution to (3.7.1). By Theorem 3.7.1, epi(v) is viable
with respect to(t, y) �→ (1,ω(t, y)). So, the unique solutiony : [τ, T )→ R+ of the Cauchy
problemy′(t)= ω(t, y(t)), y(τ)= 0 satisfies 0� v(t)� y(t)= 0. �

3.8. Viable preordered subsets

Let us assume now thatK is a nonempty subset inRn, and let “#” be apreorderonK, i.e.
a reflexive and transitive binary relation. For our later purposes, it is convenient to identify
“#” with the multifunctionP :K � K, defined by

P(ξ)= {η ∈ K; ξ # η}

for eachξ ∈ K, and called also a preorder. We say that a preorder “#”, or P is closedif
“#” is a closed subset inRn × Rn. Let f : I × K → Rn, and let us consider the differential
equation (1.1.1). We say that “#”, or P , is viable with respect tof if for each (τ, ξ) ∈
I × K, there exist[τ, T ] ⊆ I and a solutionu : [τ, T ] → Rn of (1.1.1) satisfyingu(τ)= ξ ,
u(t) ∈ K for eacht ∈ [τ, T ] andu is “#”-monotone on[τ, T ], i.e., for eachτ � s � t � T ,
we haveu(s) # u(t). The next lemma in Cârjă and Ursescu [25] is the main tool in our
forthcoming analysis.
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LEMMA 3.8.1. Let f : I × K → Rn be continuous and letP be a preorder onK. If P
is viable with respect tof then, for eachξ ∈ K, P(ξ) is viable with respect tof . If P is
closed inRn × Rn and, for eachξ ∈ K, P(ξ) is viable with respect tof , thenP is viable
with respect tof .

PROOF. Clearly, ifP is viable with respect tof , then, for allξ ∈ K, P(ξ) is viable with
respect tof .

Now, if P is closed, then, for eachξ ∈ K, P(ξ) is a fortiori closed. Let us assume that,
for eachξ ∈ K, P(ξ) is viable with respect tof . Let (τ, ξ) ∈ I × K. We shall show that
there exist[τ, T ] ⊆ I and at least one solutionu : [τ, T ] → K of (1.1.1), withu(τ)= ξ , and
such thatu([s, T ])⊆ P(u(s)) for eachs ∈ [τ, T ]. To this aim, we proceed in several steps.

In the first step, we note that, by standard qualitative arguments—see, for instance, Vra-
bie [106, Lemma 3.2.1, p. 107]—one can show that there existsT > τ , T ∈ I, such that for
every noncontinuable solutionu : [τ, Tm)→ K to (1.1.1) withu(τ)= ξ we haveT < Tm.
SinceP(ξ) is viable with respect tof , there exists a solutionu : [τ, T ] → K of (1.1.1) with
u(τ)= ξ andu([τ, T ])⊆ P(ξ).

In the second step, we remark that, for every solutionv : [τ, T ] → K to (1.1.1),
with v(τ) = ξ and v([τ, T ]) ⊆ P(ξ), and for everyν ∈ [τ, T ), there exists a solution
w : [τ, T ] → K to (1.1.1) such thatw equalsv on [τ, ν] andw([ν,T ])⊆ P(w(ν)).

In the third step, we observe that, thanks to the first two steps, for every nonempty
and finite subsetS of [τ, T ), with τ ∈ S, there exists a solutionu : [τ, T ] → K of (1.1.1)
satisfying bothu(τ)= ξ andu([s, T ])⊆ P(u(s)) for all s ∈ S.

In the fourth step, we consider a sequence(Sk)k∈N of nonempty finite subsets of[τ, T )
such thatτ ∈ Sk , Sk ⊆ Sk+1 for eachn ∈ N, and the setS = ∪k∈NSk is dense in[τ, T ]. For
example, we can take

Sk =
{
τ + i

2k
(T − τ); i ∈

{
0,1, . . . ,2k − 1

}}
.

Further, we shall make use of the third step to get a sequence of solutions(uk : [τ, T ] →
K)k to (1.1.1), satisfyinguk(τ ) = ξ and such thatuk([s, T ]) ⊆ P(uk(s)) for eachk ∈ N
and eachs ∈ Sk . Now, by virtue of Arzelà–Ascoli theorem, we can assume, taking a sub-
sequence if necessary, that the sequence(uk)k converges uniformly on[τ, T ] to a solution
u : [τ, T ] → K of (1.1.1). Clearlyu(τ)= ξ .

In the fifth step, we show thatu([s, T ])⊂ P(u(s)) for all s ∈ S. Indeed, givens as above,
there existsk ∈ N such thats ∈ Sk . Thens ∈ Sm andum([s, T ])⊆ P(um(s)) for all m ∈ N
with k �m. At this point, the closedness of the graph ofP shows thatu([s, T ])⊂ P(u(s)).

In the sixth and final step, taking into account thatS is dense in[τ, T ], u is continuous
on [τ, T ] and the graph ofP is closed, we conclude that the preceding relation holds for
everys ∈ [τ, T ], and this completes the proof. �

THEOREM 3.8.1. LetP be a closed preorder onK and letf : I×K → Rn be continuous.
Then a necessary and sufficient condition in order thatP be viable with respect tof is the
tangency condition below:
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f (t, ξ) ∈ TP(ξ)(ξ)

for each(t, ξ) ∈ I × K.

PROOF. The proof follows immediately from Lemma 3.8.1. �

4. Problems of invariance

This section follows very closely Cârjă et al. [24].

4.1. Preliminary facts

Let D be a domain inRn, K ⊆ D a locally closed subset, and let us consider the ordinary
differential equation (1.1.1), wheref : I × D → Rn is a given function.

DEFINITION 4.1.1. The subsetK is locally invariant with respect tof if for each
(τ, ξ) ∈ I × K and each solutionu : [τ, c] → D, c ∈ I, c > τ , of (1.1.1), satisfying the
initial conditionu(τ)= ξ , there existsT ∈ (τ, c] such thatu(t) ∈ K for eacht ∈ [τ, T ]. It
is invariant if it satisfies the above condition of local invariance withT = c.

The relationship between viability and local invariance is clarified in

REMARK 4.1.1. Iff is continuous onI × D andK is locally invariant with respect tof ,
thenK is viable with respect tof . The converse of this assertion is no longer true, as we
can see from the following example.

EXAMPLE 4.1.1. LetD = R, K = {0} and letf :R → R be defined byf (u)= 3
3√
u2 for

everyu ∈ R. ThenK is viable with respect tof but K is not locally invariant with respect
to f , because the differential equationu′(t) = f (u(t)) has at least two solutions which
satisfyu(0)= 0, i.e.u≡ 0 andv(t)= t3.

A simple necessary and sufficient condition of invariance is stated below.

THEOREM 4.1.1. Let D be a domain, K ⊆ D a nonempty and locally closed subset and
f : I×D → Rn a continuous function with the property that the associated Cauchy problem
has the uniqueness property. Then, a necessary and sufficient condition in order thatK be
invariant with respect tof is that, for every(t, ξ) ∈ I × K, f (t, ξ) ∈ TK(ξ).

PROOF. The conclusion follows from Theorem 3.1.1 and Remark 4.1.1. �

Theorem 4.1.1 says that, in general, ifK is viable with respect tof|I×K
and (1.1.1) has the

uniqueness property, thenK is locally invariant with respect tof . The preceding example
shows that this is no longer true if we assume thatK is viable with respect tof and merely
u′(t)= f|I×K

(t, u(t)) has the uniqueness property.
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REMARK 4.1.2. Moreover, iff : I × D → Rn is continuous and there exists one and only
one pointξ ∈ D such that the differential equation (1.1.1) has at least two solutionsu andv
satisfyingu(τ)= v(τ)= ξ , then,K = {u(t); t ∈ [τ, T ]} is viable with respect tof but it
is not locally invariant with respect tof .

The next example reveals another interesting fact about local invariance. It shows that
the local invariance ofK with respect tof can take place even ifu′(t)= f|I×K

(t, u(t)) has
not the uniqueness property.

EXAMPLE 4.1.2. LetK = {(x, y) ∈ R2; y � 0} and letf :R2 → R2 be defined by

f
(
(x, y)

)
=
{
(1,0) if (x, y) ∈ R2 \ K,(
1,3 3
√
y2
)

if (x, y) ∈ K.

Obviously K is locally invariant with respect tof|K but u′(t) = f|K(u(t)) has not the
uniqueness property. The latter assertion follows from the remark that, from each point,
(x,0) (on the boundary ofK), we have at least two solutions tou′(t) = f (u(t)), u(t) =
(t + x,0) andv(t)= (t + x, t3) satisfyingu(0)= v(0)= (x,0).

4.2. Sufficient conditions for local invariance

Our first sufficient condition for local invariance says that, whenever there exists an open
neighborhoodV ⊆ D of K such thatf satisfies the “exterior tangency” condition

lim inf
h↓0

1

h

[
dist
(
ξ + hf (t, ξ);K

)
− dist(ξ ;K)

]
� ω
(
t,dist(ξ ;K)

)
(4.2.1)

for each(t, ξ) ∈ I × V, whereω is a comparison function in the sense of Definition 3.7.1,
thenK is locally invariant with respect tof . More precisely, we have:

THEOREM 4.2.1. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I × D
→ Rn. If (4.2.1)is satisfied, thenK is locally invariant with respect tof .

PROOF. Let V ⊆ D be the open neighborhood ofK whose existence is ensured by (4.2.1),
and letω : I × [0, a) → R the corresponding comparison function. Letξ ∈ K and let
u : [τ, c] → V be any solution to (1.1.1) satisfyingu(τ) = ξ . Diminishingc if necessary,
we may assume that there existsρ > 0 such thatB(ξ,ρ) ∩ K is closed,u(t) ∈ B(ξ,ρ/2)
and, in addition, dist(u(t);K) < a for eacht ∈ [τ, c]. Let g : [τ, c] → R+ be defined by
g(t) = dist(u(t);K) for eacht ∈ [τ, c]. Let t ∈ [τ, c) andh > 0 with t + h ∈ [τ, c]. We
have

g(t + h) = dist
(
u(t + h);K

)

� h

∥∥∥∥
u(t + h)− u(t)

h
− u′(t)

∥∥∥∥+ dist
(
u(t)+ hu′(t);K

)
.
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Therefore

g(t + h)− g(t)

h
� α(h)+ dist(u(t)+ hu′(t);K)− dist(u(t);K)

h
,

where

α(h)=
∥∥∥∥
u(t + h)− u(t)

h
− u′(t)

∥∥∥∥.

Sinceu′(t) = f (t, u(t)) and limh↓0α(h) = 0, passing to the inf-limit in the inequality
above forh ↓ 0, and taking into account thatV, K, andf satisfy (4.2.1), we get

[D+g](t)� ω
(
t, g(t)

)

for each t ∈ [τ, c). So, g(t) ≡ 0 which means thatu(t) ∈ K ∩ B(ξ,ρ/2). But K ∩
B(ξ,ρ/2)⊆ K ∩B(ξ,ρ), and this achieves the proof. �

REMARK 4.2.1. Clearly, (4.2.1) is satisfied withω = ωf , where the functionωf : I ×
[0, a)→ R, a = supξ∈V dist(ξ ;K) is defined by

ωf (t, x)= sup
ξ∈V

dist(ξ ;K)=x

lim inf
h↓0

1

h

[
dist
(
ξ + hf (t, ξ);K

)
− dist(ξ ;K)

]
(4.2.2)

for each(t, x) ∈ I × [0, a).

So, Theorem 4.2.1 can be reformulated as:

THEOREM 4.2.2. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I × D
→ Rn. If there exists an open neighborhoodV of K with V ⊆ D such thatωf defined
by (4.2.2)is a comparison function, thenK is locally invariant with respect tof .

4.3. Viability and comparison imply exterior tangency

DEFINITION 4.3.1. LetK ⊆ D ⊆ Rn. We say that a functionf : I × D → Rn has the
comparison property with respect to(D,K) if there exist a proximal neighborhoodV ⊆ D
of K, one projectionπK :V → K subordinated toV, and one comparison functionω : I ×
[0, a)→ R, with a = supξ∈V dist(ξ ;K), such that

[
ξ − πK(ξ), f (t, ξ)− f

(
t, πK(ξ)

)]
+ � ω

(
t,
∥∥ξ − πK(ξ)

∥∥) (4.3.1)

for each(t, ξ) ∈ I × V.
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Let us observe that (4.3.1) is automatically satisfied for each(t, ξ) ∈ I×K, and therefore,
in Definition 4.3.1, we have only to assume that (4.3.1) holds for each(t, ξ) ∈ I × [V \ K].

DEFINITION 4.3.2. The functionf : I × D → Rn is called:
(i) (D,K)-Lipschitzif there exist a proximal neighborhoodV ⊆ D of K, a subordinated

projectionπK : V → K, andL> 0, such that

∥∥f (t, ξ)− f
(
t, πK(ξ)

)∥∥� L
∥∥ξ − πK(ξ)

∥∥

for each(t, ξ) ∈ I × [V \ K];
(ii) (D,K)-dissipativeif there exist a proximal neighborhoodV ⊆ D of K, and a pro-

jection,πK :V → K, subordinated toV, such that

[
ξ − πK(ξ), f (t, ξ)− f

(
t, πK(ξ)

)]
+ � 0

for each(t, ξ) ∈ I × [V \ K].

REMARK 4.3.1. We notice that, if we assume that (4.3.1), or either of the conditions (i),
or (ii) in Definition 4.3.2 is satisfied forξ replaced byξ1 andπK(ξ) replaced byξ2 with
ξ1, ξ2 ∈ V, as considered in Kenmochi and Takahashi [60], then, for each[τ, T ] ⊆ I and
ξ ∈ K, there exists at most one solutionu : [τ, T ] → K to (1.1.1) satisfyingu(τ)= ξ . On
contrary, in this more general frame, it may happen that, for certain (or for all)[τ, T ] ⊆ I
andξ ∈ K, (1.1.1) have at least two solutionsu,v : [τ, T ] → K satisfyingu(τ)= v(τ)= ξ .

Let V be a proximal neighborhood ofK, and letπK :V → K be a projection subordi-
nated toV. If f : I × V → K is a function with the property that, for eacht ∈ I andη ∈ K,
the restriction off (t, ·) to the “segment”

Vη =
{
ξ ∈ V \ K; πK(ξ)= η

}

is dissipative, thenf is (D,K)-dissipative.
It is easy to see that iff is either(D,K)-Lipschitz, or(D,K)-dissipative, then it has the

comparison property with respect to(D,K). We notice that there are examples showing that
there exist functionsf which, although neither(D,K)-Lipschitz, nor(D,K)-dissipative,
do have the comparison property. Moreover, there exist functions which, although(D,K)-
Lipschitz, are not Lipschitz onD, as well as, functions which although(D,K)-dissipative,
are not dissipative onD. In fact, these two properties describe merely the local behavior
of f at the interface betweenK and D \ K. We include below two examples: the first
one of an(D,K)-Lipschitz function which is not locally Lipschitz, and the second one
of a function which, although non-dissipative, is(D,K)-dissipative. We notice that both
examples refer to the autonomous case.

EXAMPLE 4.3.1. The graph of an(D,K)-Lipschitz functionf :R → R which is not Lip-
schitz is illustrated in Fig. 2. HereK = [a, b] andD is any open subset inR includingK.
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Fig. 2.

Fig. 3.

EXAMPLE 4.3.2. The graph of a functionf :R → R which is (D,K)-dissipative but not
dissipative is illustrated in Fig. 3. This time,K is either(−∞, β], or [α,+∞), or [α,β]
with α � a � b� β, andD is any open subset inR includingK.

We begin with:

THEOREM 4.3.1. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I × D
→ Rn. If f has the comparison property with respect to(D,K), and (1.1.3) is satisfied,
then(4.2.1)holds true.

PROOF. Let V ⊆ D be the open neighborhood ofK as in Definition 4.3.1, letξ ∈ V and
[t, T ) ⊆ I. Let ρ > 0 and letπK be the selection ofΠK as in Definition 4.3.1. Leth > 0
with t + h ∈ [t, T ]. Taking into account that‖ξ − πK(ξ)‖ = dist(ξ ;K), we have

dist
(
ξ + hf (t, ξ);K

)
− dist(ξ ;K)

�
∥∥ξ − πK(ξ)+ h

[
f (t, ξ)− f

(
t, πK(ξ)

)]∥∥
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−
∥∥ξ − πK(ξ)

∥∥+ dist
(
πK(ξ)+ hf

(
t, πK(ξ)

)
;K
)
.

Dividing by h, passing to the inf-limit forh ↓ 0, and using (1.1.3), we get

lim inf
h↓0

1

h

[
dist
(
ξ + hf (t, ξ);K

)
− dist(ξ ;K)

]

�
[
ξ − πK(ξ), f (t, ξ)− f

(
t, πK(ξ)

)]
+

� ω
(
t,
∥∥ξ − πK(ξ)

∥∥).

But this inequality shows that (4.2.1) holds, and this completes the proof. �

In the specific case in whichf is continuous, we have:

THEOREM 4.3.2. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I ×
D → Rn be continuous. Let us assume thatf has the comparison property with respect to
(D,K), and one of the four conditions below is satisfied:

(i) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ CK(ξ),
(ii) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ TK(ξ),

(iii) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ BK(ξ),
(iv) the setK is viable with respect tof .

Then(4.2.1)is also satisfied.
In general, if G :K � Rn satisfiesCK(ξ)⊆ G(ξ)⊆ BK(ξ) for eachξ ∈ K and:
(v) for every(t, ξ) ∈ I × K, f (t, ξ) ∈ G(ξ),

then(4.2.1)is satisfied too.

PROOF. The conclusion follows from Theorem 3.4.1. �

4.4. Sufficient conditions for invariance. Revisited

The next sufficient condition for invariance follows from Theorems 4.2.1 and 4.3.2.

THEOREM 4.4.1. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I ×
D → Rn. If f has the comparison property with respect to(D,K), and satisfies one of the
conditions(i), (ii), (iii), or (v) in Theorem4.3.2,thenK is locally invariant with respect
to f .

Now, letK ⊆ Rn and letV be an open neighborhood ofK.

DEFINITION 4.4.1. A functiong :V → K is a proximal generalized distanceif:
(i) g is Lipschitz continuous on bounded subsets inV,

(ii) g(ξ)= 0 if and only if ξ ∈ K.
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If K is closed, a typical example of proximal generalized distance is offered byg(ξ)=
α(dist(ξ ;K)), whereα : [0,+∞)→ [0,+∞) is Lipschitz on bounded subsets,α(0) = 0
andα(r) �= 0 if r �= 0, while dist(ξ ;K) is the usual distance fromξ to K. We notice that
if there exists a proximal generalized distanceg :V → [0,+∞), thenK is locally closed.
Indeed, sinceK = {ξ ∈ V; g(ξ)= 0} andg is continuous,K is relatively closed inV. But
V is open and thusK is locally closed, as claimed.

THEOREM 4.4.2. Let K ⊆ D ⊆ Rn, and letf : I × D → Rn. If there exist an open neigh-
borhoodV of K, with V ⊆ D, a proximal generalized distanceg :V → R+ and a compar-
ison functionω : I × [0, a)→ R such that

lim inf
h↓0

1

h

[
g
(
ξ + hf (t, ξ)

)
− g(ξ)

]
� ω
(
t, g(ξ)

)
(4.4.1)

for each(t, ξ) ∈ I × V, thenK is locally invariant with respect tof .

PROOF. The proof follows closely that one of Theorem 4.2.1, with the mention that here
one has to use the obvious inequalityg(λ)� g(η)+L‖λ−η‖ for eachλ,η ∈ B(ξ,ρ)∩V,
whereL> 0 is the Lipschitz constant ofg onB(ξ,ρ)∩ V. �

In order to obtain a simple, but useful, extension of Theorem 4.2.1, some observations
are needed. Namely, ifg :V → [0,+∞) is a generalized distance, we may consider the
generalized tangency condition

lim inf
h↓0

1

h
g
(
ξ + hf (t, ξ)

)
= 0 (4.4.2)

for each(t, ξ) ∈ I×K, and one may ask whether this implies viability, whenever, of course
f is continuous. The answer to this question is in the negative as the simple example below
shows.

EXAMPLE 4.4.1. LetK be locally closed, letV be any open neighborhood ofK and let
g :V → [0,+∞) be defined asg(ξ)= dist2(ξ ;K) for eachξ ∈ V. Further, letf : I × K →
Rn be a continuous function such thatK is not viable with respect tof . We can always
find such a function wheneverK is not open. Now, since

g
(
ξ + hf (t, ξ)

)
�
∥∥ξ + hf (t, ξ)− ξ

∥∥2
� h2

∥∥f (t, ξ)
∥∥2

for each(t, ξ) ∈ I × K, (4.4.2) is trivially satisfied. So, the generalized tangency condi-
tion (4.4.2) does not imply the viability ofK with respect tof .

This example shows that ifg is a proximal generalized distance, andg2 satisfies (4.4.2),
it may happen thatg does not satisfy (4.4.2). Therefore it justifies why, in the next result,
we assume explicitly that (4.4.2) holds true, even though it is automatically satisfied byg2.
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THEOREM 4.4.3. Let K ⊆ D ⊆ Rn, and letf : I × D → Rn. If there exist an open neigh-
borhoodV of K, with V ⊆ D, and a proximal generalized distanceg :V → R+ satisfying
(4.4.2)and such that

lim inf
h↓0

1

2h

[
g2(ξ + hf (t, ξ)

)
− g2(ξ)

]
� g(ξ)ω

(
t, g(ξ)

)
(4.4.3)

for each(t, ξ) ∈ I × V, thenK is locally invariant with respect tof .

PROOF. We have only to observe that, in the presence of (4.4.2), (4.4.3) and (4.4.1) are
equivalent, and to apply Theorem 4.4.2. �

Using Theorem 4.4.3, we will prove next some other sufficient conditions for invariance
expressed in the terms of a generalized Lipschitz projection. Namely, a subsetK is aLip-
schitz retractif there exist an open neighborhoodV of K and a Lipschitz continuous map,
r :V → K, with r(ξ) = ξ if and only if ξ ∈ K. The functionr as above is ageneralized
Lipschitz projection. For each Lipschitz retractK, one can define a proximal generalized
distance,g :V → [0,+∞), by g(ξ) = ‖r(ξ)− ξ‖ for all ξ ∈ V. Consequently, each Lip-
schitz retract is locally closed. Moreover, each open subsetK is Lipschitz retract (take
V = K and r the identity). Another simple example of a Lipschitz retract is given by a
closed subsetK which has an open neighborhoodV for which there exists a single-valued
continuous projectionπK :V → K, i.e. dist(ξ ;K) = ‖πK(ξ)− ξ‖ for eachξ ∈ V. In the
latter case we say thatK is a proximate retract. It should be noticed that the class of Lip-
schitz retract subsets is strictly larger than that of proximate retracts as the simple example
below shows.

EXAMPLE 4.4.2. TakeR2, endowed with the usual Hilbert structure and let us observe
that the set

K =
{
(x, y) ∈ R2; y � |x|

}
,

although Lipschitz retract, is not a proximate retract. Indeed, letV = R2, and letr((x, y))
be defined, either as(x, y) if (x, y) ∈ K, or as(x, |x|) if (x, y) ∈ V \ K. It is easy to
verify thatr is a generalized Lipschitz projection with Lipschitz constant

√
2, and thusK

is a Lipschitz retract. However,K is not a proximate retract since any selectionπK of the
projectionΠK is discontinuous at each point(0, y), with y > 0.

We emphasize that all the results which will follow can be reformulated to hold also for
locally Lipschitz retracts, i.e. for those subsetsK satisfying:for eachξ ∈ K there exists
ρ > 0 such thatB(ξ ;ρ)∩ K is Lipschitz retract, but for the sake of simplicity we confined
ourselves to the simpler case of Lipschitz retracts. First, letK be Lipschitz retract with the
corresponding generalized Lipschitz projectionr :V → K. In the next two results, we will
assume that the norm onRn is defined by means of an inner product, i.e.‖x‖2 = 〈x, x〉 for
eachx ∈ Rn.
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THEOREM 4.4.4. LetD ⊆ Rn be open and letf : I × D → Rn. Let us assume thatK ⊆ D
is Lipschitz retract with generalized Lipschitz projectionr :V → K satisfying

lim inf
h↓0

1

h

∥∥r
(
ξ + hf (t, ξ)

)
− ξ − hf (t, ξ)

∥∥= 0 (4.4.4)

for each(t, ξ) ∈ I×K. Assume, in addition, that there exists a comparison functionω : I×
[0, a)→ R, with a = supξ∈V ‖r(ξ)− ξ‖ such that

lim inf
h↓0

1

h

〈
r
(
ξ + hf (t, ξ)

)
− r(ξ)− hf (t, ξ), r(ξ)− ξ

〉

�
∥∥r(ξ)− ξ

∥∥ω
(
t,
∥∥r(ξ)− ξ

∥∥) (4.4.5)

for each(t, ξ) ∈ I × V. ThenK is locally invariant with respect tof .

PROOF. Let us defineg(ξ) = ‖r(ξ)− ξ‖ for eachξ ∈ V, and letL > 0 be the Lipschitz
constant ofr . Let us observe that

g2(ξ + hη)− g2(ξ)

=
〈
r(ξ + hη)− (ξ + hη)−

(
r(ξ)− ξ

)
, r(ξ + hη)− (ξ + hη)+

(
r(ξ)− ξ

)〉

=
〈
r(ξ + hη)− r(ξ), r(ξ + hη)+ r(ξ)− 2ξ

〉

− h
〈
η,2r(ξ + hη)− 2ξ

〉
+ h2‖η‖2

=
∥∥r(ξ + hη)− r(ξ)

∥∥2 + 2
〈
r(ξ + hη)− r(ξ), r(ξ)− ξ

〉

− h
〈
η,2r(ξ + hη)− 2ξ

〉
+ h2‖η‖2

�
(
L2 + 1

)
h2‖η‖2 + 2

〈
r(ξ + hη)− r(ξ), r(ξ)− ξ

〉
− 2h

〈
η, r(ξ + hη)− ξ

〉
.

Therefore,

lim inf
h↓0

1

2h

[
g2(ξ + hη)− g2(ξ)

]

� lim inf
h↓0

1

h

〈
r(ξ + hη)− r(ξ), r(ξ)− ξ

〉
−
〈
η, r(ξ)− ξ

〉
.

Since, by (4.4.4),g satisfies (4.4.2), takingη = f (t, ξ) and using (4.4.5) and Theo-
rem 4.4.3, we get the conclusion. �

A consequence of Theorem 4.4.4 is stated below.

THEOREM 4.4.5. Let K ⊆ D, with D open, and letf : I × D → Rn. Let us assume thatK
is a Lipschitz retract with the generalized Lipschitz projectionr :V → K satisfying(4.4.4).
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Let us assume in addition that, for eacht ∈ I andξ ∈ V, there exists the directional deriv-
ative, r ′(ξ)[f (t, ξ)], of r , at ξ in the directionf (t, ξ), and

〈
r ′(ξ)

[
f (t, ξ)

]
− f (t, ξ), r(ξ)− ξ

〉
�
∥∥r(ξ)− ξ

∥∥ω
(
t,
∥∥r(ξ)− ξ

∥∥), (4.4.6)

whereω : I × [0, a)→ R is a comparison function, anda = supξ∈V ‖r(ξ)− ξ‖. ThenK is
locally invariant with respect tof .

PROOF. It is easy to see that, in this specific case, (4.4.6) is equivalent to (4.4.5) and this
completes the proof. �

REMARK 4.4.1. LetK be a Lipschitz retract subset and letr :V → K be the correspond-
ing generalized Lipschitz projection. Letf : I × K → Rn be a continuous function, let
a = supξ∈V ‖r(ξ)− ξ‖, and let us define the functionω : I × [0, a)→ R+ by ω(t,0)= 0
and

ω(t, x)= sup
ξ∈V

‖r(ξ)−ξ‖=x

〈r ′(ξ)[f (t, ξ)] − f (t, ξ), r(ξ)− ξ 〉
‖r(ξ)− ξ‖ (4.4.7)

for each(t, x) ∈ I × (0, a). From Theorem 4.4.5, it follows thatK is invariant with respect
to f if (4.4.4) is satisfied andω, defined by (4.4.7), is a comparison function. Furthermore,
if K ⊆ Rn is a closed linear subspace inRn, andr is the projection ofRn on K, thenr
is linear, andr ′(ξ)[η] = r(η) for eachξ, η ∈ Rn. So, in this case, the condition (4.4.4) is
equivalent tof (I × K) ⊆ K. TakeV = {ξ ∈ Rn; dist(ξ ;K) < ρ}, for some fixedρ > 0,
and let us observe that the functionω, defined by (4.4.7), is given byω(t,0)= 0 and

ω(t, x)= sup
ξ∈V

‖r(ξ)−ξ‖=x

〈r(f (t, ξ))− f (t, ξ), r(ξ)− ξ 〉
‖r(ξ)− ξ‖ (4.4.8)

for each(t, x) ∈ I × (0, ρ). Hence, iff (I × K)⊆ K, andω defined by (4.4.8) is a compar-
ison function, thenK is invariant with respect to (1.1.1).

4.5. When tangency implies exterior tangency?

Next, we will prove that, in special circumstances, the tangency condition (1.1.3) for a
functionf : I × K → R comes from the exterior tangency condition (4.2.1) for a suitably
defined extensioñf : I × D → R of f . More precisely, we have:

THEOREM 4.5.1. Let f : I × K → Rn be a given function satisfying(1.1.3). If V ⊆ Rn

is a proximal neighborhood ofK and r :V → K is a projection subordinated toV, then
f̃ : I × V → Rn, defined byf̃ (t, ·)= f (t, r(·)) satisfies(4.2.1).
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PROOF. Let ξ ∈ V andh > 0. We have

dist
(
ξ + hf̃ (t, ξ);K

)
− dist(ξ ;K)

�
∥∥ξ − r(ξ)

∥∥+ dist
(
r(ξ)+ hf

(
t, r(ξ)

)
;K
)
−
∥∥ξ − r(ξ)

∥∥

= dist
(
r(ξ)+ hf

(
t, r(ξ)

)
;K
)
.

Dividing by h > 0 and passing to lim inf forh ↓ 0, we get

lim inf
h↓0

1

h

[
dist
(
ξ + hf̃ (t, ξ);K

)
− dist(ξ ;K)

]
� 0.

So, (4.2.1) holds true withω≡ 0, and the proof is complete. �

It should be noticed that, the conclusion of Theorem 4.5.1 is no longer true if we are
looking for a continuous extensioñf of a continuous functionf satisfying (1.1.3), as the
next example shows.

EXAMPLE 4.5.1. This example is adapted from Aubin and Cellina [3, p. 203]. Let
K1 = {(x,3 3

√
x2 ); x ∈ R+}, K2 = {(x,3 3

√
x2 ); x ∈ R−} and letK = K1 ∪ K2. If ξ ∈ K1,

we definef (ξ) as the unit clockwise oriented tangent vector toK1 at ξ , and if ξ ∈ K2,
we definef (ξ) as the unit counterclockwise oriented tangent vector toK1 at ξ . Of course,
f ((0,0)) = (0,1). Thusf :K → R2 is continuous andf (ξ) ∈ TK(ξ) for eachξ ∈ K. By
virtue of Theorem 1.1.3,K is viable with respect tof . Let f̃ be any continuous exten-
sion off to an open neighborhoodV of the origin. We may assume that for eachv ∈ V,
f̃2(v)�

1
2 .

In fact, the equationu′(t)= f (u(t)) subjected tou(0)= (0,0) has two local solutions
u,v : [0, δ] → K, with u([0, δ]) ⊆ K1 and v([0, δ]) ⊆ K2. Diminishing δ > 0, we may
assume that no solution tou′(t)= f̃ (u(t)), u(0)= (0,0), can escape fromV. Now, if we
assume thatK is invariant with respect tõf , we have

F0,(0,0)(δ)=
{
u(δ); u′(t)= f̃

(
u(t)
)
, for all t ∈ [0, δ], u(0)= (0,0)

}
⊆ K,

and by virtue of a classical result due to Kneser—see Theorem 7.5.1—we know that
F0,(0,0)(δ) is connected, and therefore, we conclude that there exists at least one solution
w : [0, δ] → K of u′(t)= f̃ (u(t)), u(0)= (0,0) with w(δ)= (0,0). But this is impossible,
becausew2(δ)�

1
2δ.

However, iff is continuous andK is smooth enough, by the very same proof we deduce:

THEOREM 4.5.2. Letf : I × K → Rn be a continuous function satisfying(1.1.3).If there
exists a proximal neighborhoodV ⊆ Rn of K, and a continuous projectionr :V → K
subordinated toV, thenf can be extended to a continuous functionf̃ : I × V → Rn satis-
fying (4.2.1).
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4.6. Local invariance and monotonicity

We say that the preorder “#” is locally invariant with respect tof if for each (τ, ξ) ∈
I × K, each solutionu : [τ, c] → D, c ∈ (τ, b], of (1.1.1) satisfyingu(τ) = ξ , there exists
T ∈ (τ, c] such thatu(t) ∈ K for eacht ∈ [τ, T ] andu is “#”-monotone on[τ, T ], i.e.,
for eachτ � s � t � T , we haveu(s) # u(t). We recall that, for eachξ ∈ K, P(ξ) =
{η ∈ K; ξ # η}.

REMARK 4.6.1. The preorder “#” is locally invariant with respect tof if and only if for
each(τ, ξ) ∈ I × K, each solutionu : [τ, c] → D, c ∈ (τ, b], of (1.1.1) satisfyingu(τ)= ξ ,
there existsT ∈ (τ, c] such that, for eachs ∈ [τ, T ] andt ∈ [s, T ], we haveu(t) ∈P(u(s)).

In contrast with Lemma 3.8.1, the next lemma is almost obvious.

LEMMA 4.6.1. The preorder “#” is locally invariant with respect tof if and only if for
eachξ ∈ K, P(ξ) is locally invariant with respect tof .

COROLLARY 4.6.1. If for eachξ ∈ K there exists an open neighborhoodV ⊆ D of ξ and
a comparison functionω : I × [0, a)→ R, with a = supη∈V dist(η;P(ξ)), and such that

lim inf
h↓0

1

h

[
dist
(
η+ hf (t, η);P(ξ)

)
− dist

(
η;P(ξ)

)]
� ω
(
t,dist

(
η;P(ξ)

))

for each(t, η) ∈ I × V, then “#” is locally invariant with respect tof .

COROLLARY 4.6.2. If, for eachξ ∈ K, f has the comparison property with respect to
(D,P(ξ)) and, for each(t, η) ∈ I ×P(ξ), we have

lim inf
h↓0

1

h
dist
(
η+ hf (t, η);P(ξ)

)
= 0,

then “#” is locally invariant with respect tof .

5. Carathéodory solutions

5.1. A Lebesgue type derivation theorem

In this section we extend some of the previously established results to a more general case
allowing the functionf to be discontinuous with respect to the time variable. This case is
very important in the study of some control problems to be analyzed in the sequel, when
even starting with a continuous function(t, v, u) �→ f (t, v,u), due to the discontinuities
of the optimal controlt �→ v∗(t), we have to consider a very irregular right-hand side
(t, u) �→ f (t, v∗(t), u) which is only measurable with respect tot . First we recall:
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DEFINITION 5.1.1. A functionf : I × K → Rn is of Carathéodory type, if it satisfies the
three conditions below.

(H1) For everyξ ∈ K the functionf (·, ξ) is measurable onI.
(H2) For almost everyt ∈ I the functionf (t, ·) is continuous onK.
(H3) For everym> 0, there exists a functionℓm ∈ L1

loc(I) such that‖f (t, u)‖ � ℓm(t)

for almost everyt ∈ I and for allu ∈ B(0,m)∩ K.

DEFINITION 5.1.2. A functionu : [τ, T ] → K is aCarathéodory solutionto the differen-
tial equation (1.1.1) ifu is absolutely continuous on[τ, T ] and satisfiesu′(t)= f (t, u(t))

a.e. fort ∈ [τ, T ].

DEFINITION 5.1.3. We say thatK is Carathéodory viablewith respect tof : I × K → Rn

if for each(τ, ξ) ∈ I×K there existT ∈ I, T > τ and a Carathéodory solutionu : [τ, T ] →
K to (1.1.1), satisfyingu(τ)= ξ .

Clearly, if K is viable with respect tof , then it is Carathéodory viable, but not con-
versely. In order to prove some necessary and sufficient conditions for Carathédory via-
bility, we recall first a Lebesgue type derivation theorem due to Scorza Dragoni [88]. For
more general results see Frankowska et al. [45] and Cârjă and Monteiro Marques [21].

THEOREM 5.1.1. Assume(H1), (H2) and (H3). Then there exists a negligible subsetZ of
I such that, for everyt ∈ I \ Z and everyξ ∈ K, one has

lim
h↓0

1

h

∫ t+h

t

f
(
s, u(s)

)
ds = f (t, ξ) (5.1.1)

for all continuous functionsu : I → K with u(t)= ξ .

In order to prove Theorem 5.1.1, we recall for easy reference a specific form of a Lusin
type continuity result due to Scorza Dragoni [87]. For more general results see Berliocchi
and Lasry [10] and Kucia [63].

Here and thereafter,λ denotes the usual Lebesgue measure onR.

THEOREM 5.1.2 (Scorza Dragoni [87]).Let f : I × K → Rn be a function that satisfies
(H1) and (H2). Then, for eachε > 0, there exists a closed setA ⊆ I such thatλ(I \ A) < ε
and the restriction off to A × K is continuous.

We note that the conclusion of Theorem 5.1.2 holds also true ifI is replaced by any
Lebesgue measurable subset inR, while K andRn are replaced by two separable metric
spacesX and respectivelyY . We can now proceed to the proof of Theorem 5.1.1.

PROOF OF THEOREM 5.1.1. SinceI is a countable union of finite length intervals, it
suffices to consider the case whenI is of finite length. For eachγ > 0, we shall obtain a
setLγ ⊂ I, with λ(I \ Lγ ) < γ , and such that (5.1.1) holds for allt ∈ Lγ . Finally, since
λ(I \ Lγ ) < γ , it will suffice to considerZ = ∩m(I \ L1/m).



Differential equations on closed sets 191

Let γ > 0 and let us observe that, by virtue of Theorem 5.1.2, it follows that there exists
a compact setAγ ⊆ I such thatλ(I \ Aγ ) < γ , and the restriction off to Aγ × K is
continuous.

We defineLγ ⊆ Aγ as the set of density points ofAγ which are also Lebesgue points
of the functionsℓ̃m : I → R, given byℓ̃m(t) = ℓm(t)χI\Aγ (t), whereℓm is given by (H3),
m= 1,2, . . . . It is known thatλ(Lγ )= λ(Aγ ) and, by definition, fort ∈ Lγ we have

lim
t∈J;λ(J)→0

λ(Aγ ∩ J)
λ(J)

= 1,

lim
t∈J;λ(J)→0

1

λ(J)

∫

J

∣∣ℓ̃m(s)− ℓ̃m(t)
∣∣ds = 0,

(5.1.2)

whereJ denotes intervals of positive length.
Let t ∈ Lγ . Consider a continuous functionu : I → K, and denote byξ = u(t). Then,

there ism� 1 such that‖u(θ)‖<m for all θ ∈ [t, t + δ], whereδ > 0 is sufficiently small.
Let ε > 0 be arbitrary. We can further assume that, for allθ ∈ Aγ ∩ [t, t + δ],

∥∥f
(
θ,u(θ)

)
− f (t, ξ)

∥∥�
ε

3
. (5.1.3)

By taking a smallerδ if necessary, in view of (5.1.2), we can also ensure that

1

s

∫

[t,t+s]\Aγ

ℓm(θ)dθ �
ε

3
, (5.1.4)

for everys ∈ (0, δ), and also

λ([t, t + s] \ Aγ )
s

∥∥f (t, ξ)
∥∥�

ε

3
(5.1.5)

for everys ∈ (0, δ). Then, by (5.1.3), for s ∈ (0, δ), we have

1

s

∫

[t,t+s]∩Aγ

∥∥f
(
θ,u(θ)

)
− f (t, ξ)

∥∥dθ �
ε

3

λ([t, t + s] ∩ Aγ )
s

�
ε

3
,

while by (5.1.4) and (5.1.5) we have

1

s

∫

[t,t+s]\Aγ

∥∥f
(
θ,u(θ)

)
− f (t, ξ)

∥∥dθ

�
1

s

∫

[t,t+s]\Aγ

(
ℓm(θ)+

∥∥f (t, ξ)
∥∥)dθ

�
1

s

∫

[t,t+s]\Aγ

ℓm(θ)dθ + λ([t, t + s] \ Aγ )
s

∥∥f (t, ξ)
∥∥� 2

ε

3
.
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Finally, we have

∥∥∥∥
1

s

∫ t+s

t

f
(
θ,u(θ)

)
dθ − f (t, ξ)

∥∥∥∥� ε,

for all s ∈ (0, δ) and this completes the proof. �

Using similar arguments we can prove:

THEOREM5.1.3. Assume(H1), (H2) and(H3). Then there exists a negligible subsetZ of I
such that, for everyt ∈ I \ Z and everyξ ∈ K, one has

lim
h↓0

1

h

∫ t+h

t

f
(
s, v(h)

)
ds = f (t, ξ)

for all functionsv : [0,+∞)→ K satisfyinglimh↓0 v(h)= ξ .

PROOF. The proof proceeds similarly with that one of Theorem 5.1.1 up to and including
the sentence: “Lett ∈ Lγ .” We continue as follows. There ism� 1 such that‖v(h)‖<m
for h ∈ (0, δ) whereδ > 0 is sufficiently small. Letε > 0 be arbitrary. We can assume that,
for all θ ∈ Aγ ∩ [t, t + δ] andh ∈ (0, δ),

∥∥f
(
θ, v(h)

)
− f (t, ξ)

∥∥�
ε

3
.

By taking a smallerδ if necessary, in view of (5.1.2), we can also ensure that (5.1.4) and
(5.1.5) hold. From now on, the proof follows the very same way as that one of Theo-
rem 5.1.1, with the observation that, here,f (θ,u(θ)) should be replaced byf (θ, v(h)),
wherever it appears. �

5.2. Characterizations of Carathéodory viability

We are now ready to prove the main characterizations of Carathéodory viability.

THEOREM5.2.1. Suppose thatK is locally closed andf : I×K → Rn is of Carathéodory
type. Then the following conditions are equivalent:

(i) there exists a negligible setZ ⊂ I such that for everyt ∈ I \ Z and for everyξ ∈ K,
f (t, ξ) ∈ CK(ξ),

(ii) there exists a negligible setZ ⊂ I such that for everyt ∈ I \ Z and for everyξ ∈ K,
f (t, ξ) ∈ TK(ξ),

(iii) there exists a negligible setZ ⊆ I such that for everyt ∈ I \ Z and for everyξ ∈ K,
f (t, ξ) ∈ BK(ξ),

(iv) for eachξ ∈ K there exists a negligible setZξ ⊆ I such that for everyt ∈ I \ Zξ ,
f (t, ξ) ∈ CK(ξ),
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(v) for eachξ ∈ K there exists a negligible setZξ ⊆ I such that for everyt ∈ I \ Zξ ,
f (t, ξ) ∈ TK(ξ),

(vi) for eachξ ∈ K there exists a negligible setZξ ⊆ I such that for everyt ∈ I \ Zξ ,
f (t, ξ) ∈ BK(ξ),

(vii) K is Carathéodory viable with respect tof .
In general, if G :K � Rn is such thatCK(ξ) ⊆ G(ξ) ⊆ BK(ξ) for eachξ ∈ K, then each
one of the conditions below:

(viii) there exists a negligible setZ ⊆ I such that for everyt ∈ I\Z and for everyξ ∈ K,
f (t, ξ) ∈ G(ξ),

(ix) for eachξ ∈ K there exists a negligible setZξ ⊆ I such that for everyt ∈ I \ Zξ ,
f (t, ξ) ∈ G(ξ),

is equivalent to each one of the seven conditions above.

In order to prove Theorem 5.2.1, we need two auxiliary lemmas.

LEMMA 5.2.1. Let K ⊆ Rn be locally closed, let f : I × K → Rn be a function of
Carathéodory type, let [τ, T ] ⊆ I, ξ ∈ K, and letρ > 0 be such thatK ∩B(ξ,ρ) is closed
and there existsℓ ∈ L1(τ, T ) such that‖f (s, η)‖ � ℓ(s) a.e. for s ∈ [τ, T ] and for all
η ∈ K ∩B(ξ,ρ). Then the family

F =
{
f (·, η); η ∈ K ∩B(ξ,ρ)

}

is compact inL1(τ, T ;Rn).

PROOF. Let (f (·, ηm))m be a sequence inF . Since for allm ∈ N, we haveηm ∈ K ∩
B(ξ,ρ) and the latter is compact, there exist a subsequence of(ηm)m, denoted for simplic-
ity again by(ηm)m, andη ∈ K ∩ B(ξ,ρ), such that limm ηm = η. It readily follows that
limm f (s, ηm)= f (s, η) a.e. fors ∈ [τ, T ]. Since‖f (s, ηm)‖ � ℓ(s) a.e. fors ∈ [τ, T ] and
for all m ∈ N, by virtue of Lebesgue dominated convergence theorem, we deduce that

lim
m

∫ T

τ

∥∥f (s, ηm)− f (s, η)
∥∥ds = 0,

and this achieves the proof. �

LEMMA 5.2.2. Let K ⊆ Rn be locally closed, let f : I × K → Rn be a function of
Carathéodory type, let [τ, T ] ⊆ I with T < supI, let h > 0 with T + h < supI and let
fh : [τ, T ] × K → Rn be defined by

fh(t, ξ)=
1

h

∫ t+h

t

f (s, ξ)ds

for each(t, ξ) ∈ [τ, T ] × K. Thenfh is continuous on[τ, T ] × K.

PROOF. Let (t, ξ) ∈ [τ, T ] × K. SinceK is locally closed andf satisfies(H3), there exist
ρ > 0 andℓ ∈ L1(τ, T ) such thatK ∩ B(ξ,ρ) is closed and‖f (s, η)‖ � ℓ(s) a.e. for
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s ∈ [τ, T ] and for allη ∈ K ∩ B(ξ,ρ). Then, for eachθ with [t + θ, t + h+ θ ] ⊂ I, and
eachη ∈K ∩B(ξ,ρ), we have

∥∥fh(t + θ, η)− fh(t, ξ)
∥∥

=
∥∥∥∥

1

h

∫ t+θ+h

t+θ
f (s, η)ds − 1

h

∫ t+h

t

f (s, ξ)ds

∥∥∥∥

�
1

h

∫ t+h

t

∥∥f (s + θ, η)− f (s, η)
∥∥ds + 1

h

∫ t+h

t

∥∥f (s, η)− f (s, ξ)
∥∥ds.

In view of Lemma 5.2.1 and Theorem A.1.1, we have

lim
θ→0

∫ t+h

t

∥∥f (s + θ, η)− f (s, η)
∥∥ds = 0

uniformly for η ∈ K ∩B(ξ,ρ). Next, using condition (H2) in Definition 5.1.1, the fact that
‖f (s, η)‖ � ℓ(s) a.e. fors ∈ [t, t + h] and for allη ∈ K ∩ B(ξ,ρ), by virtue of Lebesgue
dominated convergence theorem, we deduce that

lim
η→ξ

∫ t+h

t

∥∥f (s, η)− f (s, ξ)
∥∥ds = 0,

relation which, along with the preceding one, shows that

lim
(θ,η)→(0,ξ)

∥∥fh(t + θ, η)− fh(t, ξ)
∥∥= 0,

and this completes the proof. �

We can now proceed to the proof of Theorem 5.2.1.

PROOF OFTHEOREM 5.2.1. In view of Theorem 3.4.1, (i) (ii) and (iii) are equivalent.
Furthermore (i) implies (iv), (iv) implies (v) and (v) implies (vi). In order to show that the
first seven conditions are equivalent, it remains to prove that (vi) implies (vii) and (vii)
implies (ii). Let us prove that (vi) implies (vii). To this aim, letV be an open neighborhood
of K such thatΠK(ξ) �= ∅ for eachξ ∈ V. The existence of the setV, enjoying the specified
properties, is ensured by Lemma 2.2.1. Letℓ ∈ L1

loc(I) and let(τ, ξ) ∈ I × K be arbitrary.
We claim that we can chooseρ > 0 andT ∈ I with τ < T < supI, such thatB(ξ,ρ) ∩ K
is closed,B(ξ,ρ)⊆ V,

∥∥f (t, u)
∥∥� ℓ(t) (5.2.1)

a.e. fort ∈ [τ, T ] and for eachu ∈ B(ξ,ρ), and

∫ T

τ

ℓ(s)ds �
ρ

2
. (5.2.2)
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Indeed, sinceV is open andK is locally closed, we can get aρ > 0 with B(ξ,ρ) ∩ K
closed andB(ξ,ρ)⊆ V. Further, asf satisfies (H3), it follows that there existsℓ ∈ L1

loc(I)
satisfying (5.2.1). Finally, diminishingT if necessary, we get (5.2.2) andT < supI. Next,
let h > 0 with T + h < supI, and let us definefh : [τ, T ] → Rn by

fh(t, ξ)=
1

h

∫ t+h

t

f (s, ξ)ds.

From Lemma 5.2.2, we know thatfh is continuous. On the other hand, since (vi) holds,
we have〈fh(t, ξ), ζ 〉 � 0, for all t ∈ I and ζ ∈ NK(ξ), and thus the functionfh satis-
fies the condition (v) in Theorem 3.4.1 withG = coTK(ξ). Therefore, for eachh > 0,
with T + h < supI, K is viable with respect tofh. This implies that, for anyh > 0,
T + h < supI, there existsTh ∈ (τ, T ] and a solutionuh : [τ, Th] → K of the differ-
ential equationu′(t) = fh(t, u(t)) with uh(τ ) = ξ . From Theorem 3.5.1, using (5.2.1)
and (5.2.2), we conclude that we may chooseTh = T for eachh > 0, T + h < supI.
Therefore, for each sufficiently smallh > 0, u′(t) = fh(t, u(t)) has at least one solution
uh : [τ, T ] → B(ξ,ρ)∩ K satisfyinguh(τ )= ξ .

Take hm ↓ 0, and letum = uhm be a solution tou′(t) = fm(t, u(t)) with fm = fhm
on [τ, T ] and um(τ ) = ξ . We will prove that, for a certain functionu : [τ, T ] → K,
limm um(t) = u(t) uniformly for t ∈ [τ, T ], andu is a Carathéodory solution to (1.1.1)
satisfyingu(τ) = ξ . In order to do this, we will show first that{um; m ∈ N} satisfies the
hypotheses of Arzelà–Ascoli theorem. LetE ⊂ [τ, T ] be a Lebesgue measurable set and
let us observe that

∫

E

∥∥u′
m(t)

∥∥dt

=
∫

E

∥∥fhm
(
t, um(t)

)∥∥dt =
∫

E

∥∥∥∥
1

hm

∫ t+hm

t

f
(
s, um(t)

)
ds

∥∥∥∥dt

=
∫

E

∥∥∥∥
1

hm

∫ hm

0
f
(
t + s, um(t)

)
ds

∥∥∥∥dt

�
1

hm

∫ hm

0

∫

E

∥∥f
(
t + s, um(t)

)∥∥dt ds �
1

hm

∫ hm

0

∫

E

ℓ(t + s)dt ds.

Sinceℓ ∈ L1
loc(I), for eachε > 0 there existsδ(ε) > 0 such that, for eachE ⊂ [τ, T + h1]

with λ(E)� δ(ε), we have

∫

E

ℓ(t)dt � ε.

Since the Lebesgue measure is translation invariant, it follows that, for eachE ⊆ [τ, T ]
with λ(E)� δ(ε), we have

∫

E

ℓ(t + s)dt � ε
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for eachs ∈ [0, h1]. Summing up, we conclude that

∫

E

∥∥u′
m(t)

∥∥dt �
1

hm

∫ hm

0

∫

E

ℓ(t + s)dt ds � ε

for eachE ⊆ [τ, T ] with λ(E) � δ(ε). So {u′
m; m ∈ N} is uniformly integrable. This im-

plies that{um; m ∈ N} is equicontinuous. Moreover, sinceum(t) ∈ K ∩ B(ξ,ρ) for each
t ∈ [τ, T ], if readily follows that{um; m ∈ N} is uniformly bounded. Therefore, there ex-
istsu : [τ, T ] → K ∩ B(ξ,ρ) such that, at least on a subsequence, denoted for simplicity
again by(um)m, we have limm um(t)= u(t) uniformly for t ∈ [τ, T ]. Clearlyu is continu-
ous. On the other hand, by Theorem 5.1.3, we have

lim
m→∞

1

hm

∫ s+hm

s

f
(
θ,um(s)

)
dθ = f

(
s, u(s)

)

a.e. fors ∈ [τ, T ]. Since{u′
m; m ∈ N} is uniformly integrable, by virtue of Vitali’s Theo-

rem A.1.2, we conclude that

lim
m→∞

um(t) = lim
m→∞

(
ξ +
∫ t

τ

1

hm

∫ s+hm

s

f
(
θ,um(s)

)
dθ ds

)

= ξ +
∫ t

τ

f
(
s, u(s)

)
ds,

which shows thatu is a Carathéodory solution to (1.1.1) satisfyingu(τ)= ξ . HenceK is
Carathéodory viable with respect tof , and this shows that (vi) implies (vii).

Next, to prove that (vii) implies (ii), letZ ⊂ I be a negligible set as in Theorem 5.1.1. Let
t ∈ I \ Z, ξ ∈ K and letu(·) be a Carathéodory solution tou′(s)= f (s,u(s)) on [t, t + T ]
with u(t)= ξ andu(s) ∈ K for s ∈ [t, t + h]. We have

u(t + h)− u(t)

h
= 1

h

∫ t+h

t

f
(
s, u(s)

)
ds.

On the other hand, by (5.1.1), the right-hand side approachesf (t, ξ) ash ↓ 0. Accordingly

lim
h↓0

1

h
dist
(
ξ + hf (t, ξ);K

)
� lim
h↓0

∥∥∥∥f (t, ξ)−
u(t + h)− u(t)

h

∥∥∥∥= 0

and so,f (t, ξ) ∈ FK(ξ)⊆ TK(ξ), which shows that (ii) holds.
Now, (viii) implies (iii) which implies (vii), and (vii) implies (i) which implies (viii).

Finally, (ix) implies (vi) which implies (vii), and (vii) implies (iv) which implies (ix). The
proof is complete. �
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5.3. Sufficient conditions for Carathéodory local invariance

The aim of this section is to extend the results concerning local invariance to the more
general setting allowing the functionf to be of Carathéodory type. Unlike the case of nec-
essary and sufficient conditions for Carathéodory viability whose proofs differ essentially
from those referring to viability, all the results which will follow are simple copies of their
“C1-solutions” counterparts we already presented when we dealt with local invariance.
Therefore, we do not enter into details.

Let D be a domain inRn, K ⊆ D a locally closed subset, and let us consider the ordinary
differential equation (1.1.1), wheref : I × D → Rn is a given function.

DEFINITION 5.3.1. The subsetK is Carathéodory locally invariantwith respect tof
if for each (τ, ξ) ∈ I × K and each Carathéodory solutionu : [τ, c] → D, c ∈ I, c > τ ,
to (1.1.1), satisfying the initial conditionu(τ) = ξ , there existsT ∈ (τ, c] such that we
haveu(t) ∈ K for eacht ∈ [τ, T ]. It is Carathéodory invariantif it satisfies the above
condition of Carathéodory local invariance withT = c.

REMARK 5.3.1. IfK is Carathéodory locally invariant with respect tof , thenK is locally
invariant with respect tof . We notice that here we do have any extra-condition uponf as of
being of Carathéodory type. It should be interesting to know if, under the latter assumption
onf , the local invariance implies the Carathéodory local invariance.

The relationship between Carathéodory viability and Carathéodory local invariance is
clarified in:

REMARK 5.3.2. If f is of Carathéodory type onI × D andK is Carathéodory locally
invariant with respect tof , thenK is Carathéodory viable with respect tof . The converse
of this assertion is no longer true, as we already have seen in Example 4.1.1.

As in the case of local invariance, we have the following simple necessary and sufficient
condition of Carathéodory local invariance.

THEOREM 5.3.1. Let D be a domain, K ⊆ D a nonempty and locally closed subset and
f : I×D → Rn a Carathéodory type function with the property that(1.1.1)has the unique-
ness property. Then, a necessary and sufficient condition in order thatK be invariant with
respect tof is each one of the nine conditions(i)–(ix) in Theorem5.2.1.

PROOF. The conclusion follows from the Carathéodory Local Existence Theorem com-
bined with Remark 5.3.2 and the equivalence between (i) and (ix) in Theorem 5.2.1.�

As in the case of local invariance, the Carathéodory local invariance ofK with respect
to f can take place even ifu′(t) = f|I×K

(t, u(t)) has not the uniqueness property. See
Example 4.1.2.

We say thatω : I × [0, ρ) → R is a Carathéodory comparison functionif, for each
[τ, T ) ⊆ I, the only absolutely continuous solutionx : [τ, T ) → [0, ρ), of [D+x](t) �

ω(t, x(t)) a.e. fort ∈ [τ, T ), satisfyingx(τ)= 0, is the null function.



198 O. Cârjă and I.I. Vrabie

Our first sufficient condition for Carathéodory local invariance is expressed by means
of the “exterior tangency” condition: there exist a negligible subsetZ in I and an open
neighborhoodV ⊆ D of K such that

lim inf
h↓0

1

h

[
dist
(
ξ + hf (t, ξ);K

)
− dist(ξ ;K)

]
� ω
(
t,dist(ξ ;K)

)
(5.3.1)

for each(t, ξ) ∈ (I \ Z)× V, whereω is a certain Carathéodory comparison function.
The next result is a “Carathéodory” counterpart of Theorem 4.2.1.

THEOREM 5.3.2. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I × D
→ Rn. If (5.3.1)is satisfied, thenK is Carathéodory locally invariant with respect tof .

Theorem 5.3.2 can be reformulated as:

THEOREM 5.3.3. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I × D
→ Rn. If there exists an open neighborhoodV of K with V ⊆ D such thatωf defined by
(4.2.2) is a Carathéodory comparison function, thenK is Carathéodory locally invariant
with respect tof .

DEFINITION 5.3.2. Let K ⊆ D ⊆ Rn. We say that a functionf : I × D → Rn has
the Carathéodory comparison property with respect to(D,K) if there exist a negligi-
ble subsetZ of I, a proximal neighborhoodV ⊆ D of K, one projectionπK :V → K
subordinated toV, and a Carathéodory comparison functionω : I × [0, a) → R, with
a = supξ∈V dist(ξ ;K), such that

[
ξ − πK(ξ), f (t, ξ)− f

(
t, πK(ξ)

)]
+ � ω

(
t,
∥∥ξ − πK(ξ)

∥∥)

for each(t, ξ) ∈ (I \ Z)× V.

THEOREM 5.3.4. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I × D
→ Rn. If f has the Carathéodory comparison property with respect to(D,K), andK is
Carathéodory viable with respectf , then(5.3.1)holds true.

Other sufficient conditions for invariance obtained from Theorem 5.2.1 are:

THEOREM 5.3.5. Let K ⊆ D ⊆ Rn, with K locally closed andD open, and letf : I ×
D → Rn be of Carathéodory type. Let us assume thatf has the Carathéodory comparison
property with respect to(D,K), and satisfies one of the nine equivalent tangency conditions
(i)–(ix) in Theorem5.2.1.ThenK is Carathéodory locally invariant with respect tof .

5.4. Sufficient conditions via generalized distance

Here we reconsider the sufficient conditions for local invariance obtained by means of a
proximal generalized distance in the context of Carathéodory type functions.
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THEOREM 5.4.1. Let K ⊆ D ⊆ Rn, and letf : I × D → Rn. If there exist an open neigh-
borhoodV of K, with V ⊆ D, a proximal generalized distanceg :V → R+, a negligible
subsetZ in I and a Carathéodory comparison functionω : I × [0, a)→ R such that

lim inf
h↓0

1

h

[
g
(
ξ + hf (t, ξ)

)
− g(ξ)

]
� ω
(
t, g(ξ)

)

for each(t, ξ) ∈ (I \ Z)× V, thenK is Carathéodory locally invariant with respect tof .

Let g :V → [0,+∞) be a proximal generalized distance, and let us introduce the gener-
alized Carathéodory tangency condition:there exists a negligible subsetZ of I such that

lim inf
h↓0

1

h
g
(
ξ + hf (t, ξ)

)
= 0 (5.4.1)

for each(t, ξ) ∈ (I \ Z)× K.

THEOREM 5.4.2. Let K ⊆ D ⊆ Rn, and letf : I × D → Rn. If there exist an open neigh-
borhoodV of K, with V ⊆ D, a proximal generalized distanceg :V → R+, a negligible
subsetZ in I and a Carathéodory comparison functionω : I×[0, a)→ R satisfying(5.4.1)
and such that

lim inf
h↓0

1

2h

[
g2(ξ + hf (t, ξ)

)
− g2(ξ)

]
� g(ξ)ω

(
t, g(ξ)

)

for each(t, ξ) ∈ (I \ Z)× V, thenK is Carathéodory locally invariant with respect tof .

THEOREM 5.4.3. LetD ⊆ Rn be open and letf : I × D → Rn. Let us assume thatK ⊆ D
is a Lipschitz retract with the generalized Lipschitz projectionr :V → K, and there exists
a negligible subsetZ of I satisfying

lim inf
h↓0

1

h

∥∥r
(
ξ + hf (t, ξ)

)
− ξ − hf (t, ξ)

∥∥= 0 (5.4.2)

for each(t, ξ) ∈ (I \ Z)× K. Assume further that there exists a Carathéodory comparison
functionω : I × [0, a)→ R, with a = supξ∈V ‖r(ξ)− ξ‖, such that

lim inf
h↓0

1

h

〈
r
(
ξ + hf (t, ξ)

)
− r(ξ)− hf (t, ξ), r(ξ)− ξ

〉

�
∥∥r(ξ)− ξ

∥∥ω
(
t,
∥∥r(ξ)− ξ

∥∥)

for each(t, ξ) ∈ (I \ Z)× V. Then, K is Carathéodory locally invariant with respect tof .

A consequence of Theorem 5.4.3 is stated below.
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THEOREM 5.4.4. Let K ⊆ D with D open and letf : I × D → Rn. Let us assume thatK
is a Lipschitz retract with the generalized Lipschitz projectionr :V → K and there exists
a negligible subsetZ of I such that(5.4.2)is satisfied. Let us assume, in addition, that, for
eacht ∈ I \ Z andξ ∈ V, there exists the directional derivative, r ′(ξ)[f (t, ξ)], of r , at ξ in
the directionf (t, ξ), and

〈
r ′(ξ)

[
f (t, ξ)

]
− f (t, ξ), r(ξ)− ξ

〉
�
∥∥r(ξ)− ξ

∥∥ω
(
t,
∥∥r(ξ)− ξ

∥∥),

whereω : I × [0, a)→ R is a Carathéodory comparison function, with

a = sup
ξ∈V

∥∥r(ξ)− ξ
∥∥.

Then, K is Carathéodory locally invariant with respect tof .

6. Differential inclusions

6.1. Multifunctions

In this section we extend some of the previously established results to a more general case
allowing the functionf to be multivalued. First we introduce two classes of multifunctions.
Let K be a nonempty subset inRn and letF :K � Rn a given mapping with nonempty
values.

DEFINITION 6.1.1. The multifunctionF :K � Rn is upper semicontinuous(u.s.c.) at
ξ ∈ K if for every open neighborhoodV of F(ξ) there exists an open neighborhoodU of ξ
such thatF(η)⊆ V for eachη ∈ U ∩ K. We say thatF is upper semicontinuous(u.s.c.) on
K if it is u.s.c. at eachξ ∈ K.

DEFINITION 6.1.2. The multifunctionF :K � Rn is lower semicontinuous(l.s.c.) at
ξ ∈ K if for every open setV in Rn with F(ξ)∩V �= ∅ there exists an open neighborhoodU
of ξ such thatF(η) ∩ V �= ∅ for eachη ∈ U ∩ K. We say thatF is lower semicontinuous
(l.s.c.) on K if it is l.s.c. at eachξ ∈ K.

The next two lemmas will prove useful later.

LEMMA 6.1.1. If F :K � Rn is a nonempty and compact valued u.s.c. multifunction,
then, for each compact subsetC of K,

⋃
ξ∈CF(ξ) is compact. In particular, for each

compact subsetC of K, there existsM > 0 such that‖η‖ �M for eachξ ∈ C and each
η ∈ F(ξ).

PROOF. LetC be a compact subset inK and let{Dσ ; σ ∈ Ŵ} be an arbitrary open covering
of
⋃
ξ∈CF(ξ). SinceF is compact valued, for eachξ ∈ C there existsn(ξ) ∈ N such that

F(ξ)⊆
⋃

1�k�n(ξ)

Dσk .
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But F is u.s.c. and therefore there exists an open neighborhoodU(ξ) of ξ such that

F
(
U(ξ)∩ K

)
⊆

⋃

1�k�n(ξ)

Dσk .

The family{U(ξ); ξ ∈ C} is an open covering ofC. As C is compact, there exists a finite
family {ξ1, ξ2, . . . , ξp} in C such that

F(C)⊆
⋃

1�j�p

F
(
U(ξj )∩ K

)
⊆
⋃

1�j�p

⋃

1�k�n(ξj )

Dσk ,

and this completes the proof. �

LEMMA 6.1.2. Let F :K � Rn be a u.s.c., nonempty, convex, compact valued multi-
function, and letum : [0, T ] → K andfm ∈ L1(0, T ;Rn) be such thatfm(t) ∈ F(um(t))
for eachm ∈ N and a.e. for t ∈ [0, T ]. If limm um(t) = u(t) a.e. for t ∈ [0, T ] and
limm fm = f weakly inL1(0, T ;Rn), thenf (t) ∈ F(u(t)) a.e. for t ∈ [0, T ].

PROOF. By Mazur’s theorem—Dunford–Schwartz [40, Theorem 6, p. 416]—there exists
a sequence(gm)m of convex combinations of{fk; k � m}, i.e. gm ∈ co{fm, fm+1, . . .}
for eachm ∈ N, which converges strongly inL1(0, T ;Rn) to f . By a classical result due
to Lebesgue, we know that there exists a subsequence(gmp ) of (gm) which converges
almost everywhere on[0, T ] to f . Denote byT the set of alls ∈ [0, T ] such that both
(gmp (s))p and(um(s))m are convergent tof (s) and tou(s), respectively, and, in addition,
fm(s) ∈ F(um(s)) for eachm ∈ N. Clearly[0, T ] \T has null measure. Lets ∈ T and letE
be an open half-space inRn includingF(u(s)). SinceF is upper semicontinuous atu(s)
and(um(s))m converges tou(s), there existsm(E) belonging toN, such thatF(um(s))⊆ E
for eachm � m(E). From the relation above, taking into account thatfm(s) ∈ F(um(s))
for eachm ∈ N and a.e. fors ∈ [0, T ], we easily conclude

gmp (s) ∈ co

( ⋃

m�m(E)

F
(
um(s)

))

for eachp ∈ N with mp ≥ m(E). Passing to the limit forp → +∞ in the relation above
we deducef (s) ∈ E. SinceF(u(s)) is closed and convex, it is the intersection of all
closed half-spaces which include it. So, inasmuch asE was arbitrary, we, finally, get
f (s) ∈ F(u(s)) for eachs ∈ T and this completes the proof. �

6.2. Viability with respect to a multifunction

Let us consider the autonomous differential inclusion

u′(t) ∈ F
(
u(t)
)

(6.2.1)
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whereF :K � Rn is a given multifunction. By asolutionof (6.2.1) we mean an absolutely
continuous functionu :J → K, with J a proper interval, satisfyingu′(t) ∈ F(u(t)) a.e. for
t ∈ J.

DEFINITION 6.2.1. We say thatK is right viable with respect toF if for eachξ ∈ K, there
existsT > 0 such that (6.2.1) has at least one solutionu : [0, T ] → K satisfyingu(0)= ξ .

THEOREM 6.2.1. Let K be a locally closed subset inRn andF :K � Rn a u.s.c. non-
empty, closed, convex and bounded valued mapping. Then a necessary and sufficient con-
dition in order thatK be right viable with respect toF is the tangency condition

F(ξ)∩ TK(ξ) �= ∅ (6.2.2)

for eachξ ∈ K.

PROOF. Necessity. SinceF is upper semicontinuous and has nonempty, closed, convex
and bounded values, by virtue of Lemma 6.1.1, we conclude thatF is locally bounded. Let
ξ ∈ K and letu : [0, T ] → K be a solution to (6.2.1) satisfyingu(0)= ξ . Leth ∈ (0, T ] and
let us define

uh = 1

h

∫ h

0
u′(s)ds.

SinceF is locally bounded, by diminishingT > 0 if necessary, we may assume that
{u′(s); s ∈ [0, T ]} is bounded a.e. In other words, there existsM > 0 such that‖u′(s)‖
� M a.e. for s ∈ [0, T ]. This means that the set{‖uh‖; h ∈ (0, T ]} is bounded, also
by M , and therefore there existshm ↓ 0 such thatη = limm→∞ uhm . SinceF is up-
per semicontinuous atξ and has convex compact values, we infer thatη ∈ F(ξ). In-
deed, for each open neighborhoodV of F(ξ) there exists an open neighborhoodU of ξ
such thatF(ζ ) ⊆ V for eachζ ∈ K ∩ U. Therefore, ifh ∈ (0, T ] is sufficiently small,
we haveu′(s) ∈ V a.e. fors ∈ (0, h]. So,uh ∈ coV. Accordingly η ∈

⋂
V∈V(F (ξ)) coV,

whereV(F (ξ)) stands for the set of open neighborhoods ofF(ξ). But F(ξ) is convex,
and hence

⋂
V∈V(F (ξ)) coV = F(ξ). To complete the proof of the necessity, it suffices

to show thatη ∈ TK(ξ). To this aim, let us observe thatξ + huh = u(h) ∈ K, and so
dist(ξ + huh;K)= 0. Thus

dist(ξ + hη;K)� dist(ξ + huh;K)+
∥∥ξ + huh − (ξ + hη)

∥∥� h‖uh − η‖.

Sinceη is a limit point ofuh ash ↓ 0, we deduce

lim inf
h↓0

1

h
dist(ξ + hη;K)= 0

which shows thatη ∈ TK(ξ). The proof of the necessity is complete. �
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REMARK 6.2.1. On may ask whether the equivalence between (i) and (ii) in Proposi-
tion 2.5.1 can be extended to this framework. Namely, one may ask on the equivalence of
the two conditions below:

(j) for eachξ ∈ K, F(ξ)∩ CK(ξ) �= ∅,
(jj) for eachξ ∈ K, F(ξ)∩ TK(ξ) �= ∅.

The next simple example shows that (j) and (jj) are not equivalent. Namely, taken = 2,
K = {(x1, x2); |x1| � x2} andV = {(x1,1); |x1| � 1}, and let us defineF :K � R2 by
F(ξ) = V, for eachξ ∈ K. Clearly,F is both u.s.c. and l.s.c., with nonempty, convex,
compact values and (jj) holds true. NeverthelessF(0,0)∩ CK((0,0))= ∅.

We recall that, wheneverF :K � Rn is l.s.c. atξ ∈ K, for eachη ∈ F(ξ), and each
(ξm)m with limm ξm = ξ , there exist(ηm)m with ηm ∈ F(ξm) for eachm ∈ N, and such that
limm ηm = η. See, for instance, Cârjă [20, Theorem 2.4, p. 25]. So, from Remark 2.5.1 and
Lemma 2.5.1, we deduce:

PROPOSITION6.2.1. If F :K � Rn is l.s.c., then the following conditions are equivalent:
(i) for eachξ ∈ K, F(ξ)⊆ CK(ξ),

(ii) for eachξ ∈ K, F(ξ)⊆ TK(ξ),
(iii) for eachξ ∈ K, F(ξ)⊆ BK(ξ),

In general, if G :K � Rn is such thatCK(ξ) ⊆ G(ξ) ⊆ BK(ξ) for eachξ ∈ K, then each
one of the conditions above is equivalent to:

(iv) for eachξ ∈ K, F(ξ)⊆ G(ξ).

REMARK 6.2.2. The next simple example shows that the equivalence between (i) and
(ii) in Proposition 6.2.1 is no longer true ifF is u.s.c. Namely, taken = 2, K =
{(x1, x2); |x1| � x2} and let us defineF :K � R2 by

F(ξ)=
{{
(0,0)

}
if ξ ∈ K \

{
(0,0)

}
,

K if ξ = (0,0).

Clearly,F is u.s.c. with nonempty, closed values and (ii) holds true. Nevertheless (i) does
not hold.

6.3. Existence ofε-approximate solutions

The proof of the sufficiency consists in showing that (6.2.2) along with Brezis–Browder
Theorem 2.1.1 imply that, for eachξ ∈ K, there exists at least one sequence of “approx-
imate” solutions to (6.2.1), defined on the same interval,um : [0, T ] → Rn, satisfying
um(0) = ξ for eachm ∈ N, and such that(um)m converges in some sense to a solution
u of (6.2.1) satisfyingu(0)= ξ .

The next lemma represents an existence result concerning “approximate solutions” of
(6.2.1) satisfyingum(0)= ξ .

LEMMA 6.3.1. Let K be a nonempty and locally closed subset inRn, and letF :K � Rn

be a nonempty valued mapping which is locally bounded. If K andF satisfy(6.2.2)then for
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eachξ ∈ K there existρ > 0, T > 0,M > 0 such thatK ∩B(ξ,ρ) is closed, and for each
ε ∈ (0,1] there exist four functions: σ : [0, T ] → [0, T ] nondecreasing, f : [0, T ] → Rn

andg : [0, T ] → Rn measurable, andu : [0, T ] → Rn continuous, satisfying
(i) s−ε � σ(s)� s, u(σ(s)) ∈ K∩B(ξ,ρ) andf (s) ∈ F(u(σ (s))), a.e. for s ∈ [0, T ],

(ii) ‖f (s)‖ �M a.e. for s ∈ [0, T ],
(iii) u(T ) ∈ K ∩B(ξ,ρ),
(iv) ‖g(s)‖ � ε a.e. for s ∈ [0, T ]

and

u(t)= ξ +
∫ t

0
f (s)ds +

∫ t

0
g(s)ds (6.3.1)

for eacht ∈ [0, T ].

PROOF. Let ξ ∈ K be arbitrary, and chooseρ > 0,T > 0 andM > 0 such thatK∩B(ξ,ρ)
is closed,

‖η‖ �M (6.3.2)

for eachx ∈ K ∩B(ξ,ρ) andη ∈ F(x), and

T (M + 1)� ρ. (6.3.3)

This is always possible sinceK is locally closed andF is locally bounded. Letε ∈ (0,1].
We start by showing how to define the functionsf , g, σ , andu on a sufficiently small
interval [0, δ], δ � T , and then we will show how to extend them to the whole interval
[0, T ]. We recall that, in view of Proposition 2.3.2, there existδ ∈ (0, ε], η ∈ F(ξ) and
p ∈ Rn, all depending onε, with ‖p‖ � ε, and satisfyingξ + δ(η+ p) ∈ K. Diminishing
δ if necessary, and using (6.3.2), we may also assume that‖δ(η+ p)‖ � ρ. Let us define
u : [0, δ] → Rn by

u(t)= ξ + tη+ tp (6.3.4)

for eacht ∈ [0, δ]. By virtue of (6.3.2),u, η andp satisfy
(j) η ∈ F(u(0)),

(jj) ‖η‖ �M ,
(jjj) u(δ) ∈ K ∩B(ξ,ρ),
(jv) ‖p‖ � ε.
Settingf (s) = η, g(s) = p, σ(s) = 0 for s ∈ [0, δ] andu defined by (6.3.4), from (j)–

(jv), the fact thatδ ∈ (0, ε] and (6.3.4), we can easily see that(σ,f, g,u) satisfies (i)–(iv)
and (6.3.1) withT substituted byδ.

Next, we are going to show that, for eachε ∈ (0,1], there exists at least one 4-tuple
(σ,f, g,u), whose domain is[0, T ], satisfying (i)–(iv) and (6.3.1). To this aim we shall
use Brezis–Browder Theorem 2.1.1 as follows. LetS be the set of all 4-tuples(σ,f, g,u)
defined on[0, a] with a ∈ (0, T ] and satisfying (i)–(iv) and (6.3.1) on[0, a]. This set is
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clearly nonempty because(σ,f, g,u), defined as above, belongs toS . OnS we define a
binary relation “#” as follows. We say that(σ,f, g,u) defined on[0, a] and(σ̃ , f̃ , g̃, ũ)
defined on[0, b] satisfy

(σ,f, g,u)#
(
σ̃ , f̃ , g̃, ũ

)

if a � b, σ(s)= σ̃ (s), f (s)= f̃ (s) andg(s)= g̃(s) a.e. fors ∈ [0, a]. Endowed with “#”,
S is obviously a preordered set. Let((σm, fm, gm, um))m be a monotone sequence, and
let us denote by[0, am] the domain of(σm, fm, gm, um). Let a∗ = limm am, where[0, am]
denotes the domain of definition of(σm, fm, gm, um). Clearlya∗ ∈ (0, T ]. We will show
that there exists(σ ∗, f ∗, g∗, u∗) ∈ S , defined on[0, a∗] and satisfying

(σm, fm, gm, um)# (σ ∗, f ∗, g∗, u∗)

for eachm ∈ N. We will prove first that there exists limm um(am). For eachm,k ∈ N,
m� k, we haveum(s)= uk(s) for all s ∈ [0, am], and therefore, taking into account (iii),
(iv) and (6.3.1), we deduce

∥∥um(am)− uk(ak)
∥∥ �

∫ ak

am

∥∥fk(s)
∥∥ds +

∫ ak

am

∥∥gk(s)
∥∥ds

� (M + ε)|ak − am|

for all m,k ∈ N, m � k, which proves that there exists limm→∞ um(am). Since for
every m ∈ N, um(am) ∈ B(ξ,ρ) ∩ K, and the latter is closed, it readily follows that
limm→∞ um(am) ∈ B(ξ,ρ) ∩ K. In addition, because all the functions in the set{σm;
m ∈ N} are nondecreasing, with values in[0, a∗] and satisfyσm(am) � σp(ap) for every
m,p ∈ N with m� p, there exists limm→∞ σm(am) and this limit belongs to[0, a∗]. This
allows us to define the 4-tuple(σ ∗, f ∗, g∗, u∗) : [0, a∗] → [0, a∗] × Rn × Rn × Rn by

σ ∗(t)=
{
σm(t) for t ∈ [0, am],m ∈ N,
lim
m→∞

σm(am) for t = a∗,

f ∗(t)= fm(t) a.e. fort ∈ [0, am], m ∈ N,

g∗(t)=
{
gm(t) for t ∈ [0, am],m ∈ N,
0 for t = a∗,

u∗(t)=
{
um(t) for t ∈ [0, am],m ∈ N,
lim
m→∞

um(am) for t = a∗.

One can easily see that(σ ∗, f ∗, g∗, u∗) is an ε-approximate solution which is a majo-
rant for ((σm, fm, gm, um))m. Let us defineM :S → R ∪ {+∞} by M((σ,f, g,u)) = c,
where [0, c] is the domain of definition of(σ,f, g,u). Clearly M satisfies the hy-
potheses of Brezis–Browder Theorem 2.1.1. Then, there exists anM-maximal element
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(σ̄ , f̄ , ḡ, ū) ∈ S , defined on[0, c̄]. This means that if(σ̃ , f̃ , g̃, ũ) ∈ S is defined on
[0, c̃] and (σ̄ , f̄ , ḡ, ū) # (σ̃ , f̃ , g̃, ũ), we haveM((σ̄ , f̄ , ḡ, ū)) = M((σ̃ , f̃ , g̃, ũ)). We
will show next thatc̄= T . Indeed, let us assume by contradiction thatc̄ < T . We have

∥∥ū(c̄)− ξ
∥∥ �

∫ c̄

0

∥∥f̄ (s)
∥∥ds +

∫ c̄

0

∥∥ḡ(s)
∥∥ds � c̄(M + ε)

� c̄(M + 1) < ρ.

Then, asū(c̄) ∈ K, by virtue of (6.2.2), there existsfc̄ ∈ F(ū(c̄)) ∩ TK(ū(c̄)). This means
that, there existδ ∈ (0, T − c̄), δ � ε andp ∈ Rn such that‖p‖ � ε and ū(c̄) + δfc̄ +
δp ∈ K. From the inequality above, it follows that we can diminishδ if necessary, in order
to have‖ū(c̄)+ δ(fc̄ +p)− ξ‖ � ρ. Let us define the functionsσ : [0, c̄+ δ] → [0, c̄+ δ],
f : [0, c̄+ δ] → Rn andg : [0, c̄+ δ] → Rn by

σ(t)=
{
σ̄ (t) for t ∈ [0, c̄],
c̄ for t ∈ (c̄, c̄+ δ],

f (t)=
{
f̄ (t) a.e. fort ∈ [0, c̄],
fc̄ a.e. fort ∈ (c̄, c̄+ δ],

g(t)=
{
ḡ(t) for t ∈ [0, c̄],
p for t ∈ (c̄, c̄+ δ].

It is not difficult to see thatσ is nondecreasing,f andg are measurable on[0, c̄+ δ] and
‖g(t)‖ � ε for everyt ∈ [0, c̄+ δ]. We defineu : [0, c̄+ δ] → Rn by

u(t)= ξ +
∫ t

0
f (s)ds +

∫ t

0
g(s)ds

for everyt ∈ [0, c̄+ δ]. Clearlyu coincides withū on [0, c̄] and then it readily follows that
σ , f , g andu satisfy all the conditions in (i) and (ii). In order to prove (iii) and (iv), let us
observe that

u(t)=
{
ū(t) for t ∈ [0, c̄],
ū(c̄)+ (t − c̄)fc̄ + (t − c̄)p for t ∈ [c̄, c̄+ δ].

As u(c̄ + δ) = ū(c̄)+ δfc̄ + δp ∈ K, from the choice ofδ, we also haveu(c̄ + δ) ∈ K ∩
B(ξ,ρ). So, although(σ̄ , f̄ , ḡ, ū) isM-maximal, we have both(σ̄ , f̄ , ḡ, ū)# (σ,f, g,u),
andM((σ̄ , f̄ , ḡ, ū)) <M((σ,f, g,u)), which is absurd. This contradiction can be elim-
inated only if each maximal element in the setS is defined on[0, T ], and this completes
the proof of Lemma 6.3.1. �

6.4. Convergence of theε-approximate solutions

DEFINITION 6.4.1. Letξ ∈ K andε ∈ (0,1]. A 4-tuple(σ,f, g,u) satisfying (i)–(iv) and
(6.3.1) is called anε-approximate solutionof (6.2.1).
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We are now prepared to prove the sufficiency of Theorem 6.2.1.

PROOF. Let εm ↓ 0 and, for eachm ∈ N, let us fix anεm-approximate solution(σm, fm,
gm, um) of (6.2.1) defined on[0, T ].

Since, by (iv),‖gm(t)‖ � εm for eachm ∈ N andt ∈ [0, T ], we have

lim
m→∞

∫ t

0
gm(s)ds = 0

uniformly for t ∈ [0, T ]. Moreover, as for eachm ∈ N, fm satisfies (ii), we may assume
with no loss of generality (by extracting a subsequence if necessary) that there existsf ∈
L1(0, T ;Rn) such that

lim
m→∞

fm = f

weakly in L1(0, T ;Rn). As a consequence, from (6.3.1), we infer that there exists
u : [0, T ] → Rn such that

lim
m→∞

um(t)= u(t)

uniformly for t ∈ [0, T ]. Also from (6.3.1) and the last three relations, we easily conclude
that

u(t)= ξ +
∫ t

0
f (s)ds

for eacht ∈ [0, T ]. Recalling that, by (i), we haves − εm � σm(s)� s for eachm ∈ N and
a.e. fors ∈ [0, T ], from the remarks above, we obtain

lim
m→∞

um
(
σm(s)

)
= u(s)

a.e. fors ∈ [0, T ]. Furthermore, again by (i),um(σm(s)) ∈ K ∩ B(ξ,ρ) a.e. fors ∈ [0, T ]
and sinceK∩B(ξ,ρ) is closed, we haveu(s) ∈ K a.e. fors ∈ [0, T ]. Sinceu is continuous,
using once again the fact thatK ∩ B(ξ,ρ) is closed, we deduce thatu(s) ∈ K ∩ B(ξ,ρ)
for eachs ∈ [0, T ]. Finally, sinceF is upper semicontinuous with nonempty, convex and
compact values, by virtue of Lemma 6.1.2, we conclude thatf (s) ∈ F(u(s)) a.e. fors ∈
[0, T ], and thusu is a solution to (6.2.1) andu(0)= ξ . The proof is complete. �

6.5. Noncontinuable solutions

In this section we will prove some results concerning the existence of noncontinuable,
or even global solutions to (6.2.1). We recall that a solutionu : [0, T ) → K of (6.2.1) is
callednoncontinuableif there is no other solutionv : [0, T̃ )→ K of (6.2.1), withT < T̃ ,
satisfyingu(t) = v(t) for all t ∈ [0, T ). The next theorem is a consequence of Brezis–
Browder Theorem 2.1.1.
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THEOREM 6.5.1. Let K be a nonempty and locally closed subset inRn, and letF :K �

Rn be a u.s.c., nonempty, closed, convex and bounded valued mapping. Then, a necessary
and sufficient condition in order that for eachξ ∈ K to exist at least one noncontinuable
solution to(6.2.1)satisfyingu(0)= ξ is the tangency condition(6.2.2).

PROOF. The necessity is an easy consequence of Theorem 6.2.1. As concerns the suf-
ficiency, letξ ∈ K and letu : [0, T ) → K a solution to (6.2.1) satisfyingu(0) = ξ . The
existence of this solution is guaranteed by Theorem 6.2.1. To complete the proof it suf-
fices to show thatu can be continued up to a noncontinuable one. To this aim, we will
make use of Brezis–Browder Theorem 2.1.1. LetS be the set of all solutions to (6.2.1),
defined at least and coinciding withu on [0, T ). OnS , we define the binary relation “#”
by u # v if the domain[0, Tv) of v is larger that the domain[0, Tu) of u, i.e. Tu � Tv ,
andu(t)= v(t) for all t ∈ [0, Tu). Clearly “#” is a preorder onS . Next, let(um)m be an
increasing sequence inS , and let us denote by[0, Tm) the domain of definition ofum.
Let T ∗ = limm→∞ Tm, which can be finite, or not, and let us defineu∗ : [0, T ∗)→ K by
u∗(t)= um(t) for eacht ∈ [0, Tm). Since(Tm)m is increasing andum(t)= uk(t) for each
m� k and eacht ∈ [0, Tm), u∗ is well-defined and belongs toS . Moreover,u∗ is a majo-
rant ofum for eachm ∈ N. Thus each increasing sequence inS is bounded from above.
Moreover, the functionM :S → R ∪ {+∞}, defined byM(v) = Tv , for eachv ∈ S , is
monotone, and therefore we are in the hypotheses of Theorem 2.1.1. Accordingly, there
exists at least oneM-maximal element̄u ∈ S . But this means that̄u is noncontinuable,
and, of course, that it extendsu. The proof is complete. �

We need next a multivalued counterpart of Definition 3.5.1.

DEFINITION 6.5.1. A mappingF :K � Rn is calledpositively sublinearif there exist a
norm‖ · ‖ on Rn, a > 0, b ∈ R, andc > 0 such that

sup
{
‖η‖; η ∈ F(ξ)

}
� a‖ξ‖ + b

for eachξ ∈ Kc
+(F ), where

Kc
+(F )=

{
ξ ∈ K; ‖ξ‖> c and sup

η∈F(ξ)
[ξ, η]+ > 0

}
.

As concerns the existence of global solutions to (6.2.1), we have:

THEOREM 6.5.2. Let K ⊆ Rn be nonempty and closed, and letF :K � Rn be a u.s.c.,
nonempty, closed, convex and bounded valued mapping which is positively sublinear. Then,
a necessary and sufficient condition in order that for eachξ ∈ K there exists at least one
global solution to(6.2.1)satisfyingu(0)= ξ is the tangency condition(6.2.2).
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PROOF. Let ξ ∈ K and letu : [0, T )→ K be a noncontinuable solution to (6.2.1) satisfying
u(0) = ξ . We will show thatT = +∞. To this aim, let us assume the contrary, i.e., that
T <+∞. Sinceu′(s) ∈ F(u(t)) a.e. fors ∈ [0, T ), we deduce

[
u(s), u′(s)

]
+ � sup

η∈F(u(s))

[
u(s), η

]
+.

Observing that[u(s), u′(s)] = d
ds (‖u(s)‖) a.e. fors ∈ [0, T ), where‖ · ‖ is the norm in

Definition 6.5.1, integrating from 0 tot the last equality, we obtain

∥∥u(t)
∥∥� ‖ξ‖ +

∫ t

0
sup

η∈F(u(s))

[
u(s), η

]
+ ds.

Denoting byM = sup{‖η‖; η ∈ F(v), ‖v‖ � c} and byλ the Lebesgue measure onR, by
the positive sublinearity ofF and Lemma 6.1.1 we get

∥∥u(t)
∥∥ � ‖ξ‖ +

∫

{s�t;‖u(s)‖�c}
sup

η∈F(u(s))

[
u(s), η

]
+ ds

+
∫

{s�t;‖u(s)‖>c}
sup

η∈F(u(s))

[
u(s), η

]
+ ds

� ‖ξ‖ +Mλ
({
s � t;

∥∥u(s)
∥∥� c

})
+
∫

{s�t;‖u(s)‖>c}

[
a
∥∥u(s)

∥∥+ b
]
ds

� ‖ξ‖ + (b+M)T + a

∫ t

0

∥∥u(s)
∥∥ds.

So, by Gronwall’s Inequality, we deduce thatu is bounded on[0, T ). Again from
Lemma 6.1.1, it follows that the set{η; η ∈ F(u(t)), t ∈ [0, T )} is bounded. Therefore
u is globally Lipschitz on[0, T ) and accordingly there exists limt↑T u(t)= u∗. SinceK is
closed, it follows thatu∗ ∈ K. Using this observation and recalling that (6.2.2) is satisfied,
we conclude thatu can be continued to the right ofT , which is absurd as long asu is
noncontinuable. This contradiction can be eliminated only ifT = +∞, and this completes
the proof. �

Noticing that, in view of Lemma 6.1.1, wheneverK is compact, each upper semicontin-
uous, compact valued mappingF :K � Rn is bounded, and thus positively sublinear, from
Theorem 6.5.2, we deduce:

COROLLARY 6.5.1. Let K ⊆ Rn be nonempty and compact, and letF :K � Rn be a
u.s.c., nonempty, closed, convex and bounded valued mapping. Then, a necessary and
sufficient condition in order that for eachξ ∈ K to exist at least one global solution,
u : [0,+∞)→ K of (6.2.1),satisfyingu(0)= ξ is the tangency condition(6.2.2).
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6.6. Viable preordered subsets

As in Section 3.8, let us considerK a nonempty subset inRn, and let “#” be a preorder on
K, identified with the multifunctionP : K � K, defined by

P(ξ)= {η ∈ K; ξ # η}

for eachξ ∈ K, and called also a preorder. LetF :K � Rn be a multifunction. We say
that “#”, or P , is viable with respect toF if for each ξ ∈ K, there existT > 0 and a
solutionu : [0, T ] → Rn of the differential inclusion (6.2.1) satisfyingu(τ)= ξ , u(t) ∈ K
for eacht ∈ [0, T ] andu is “#”-monotone on[τ, T ], i.e., for eachτ � s � t � T , we have
u(s)# u(t). An autonomous multivalued counterpart of Lemma 3.8.1 is proved below. See
Cârj̆a and Ursescu [25].

LEMMA 6.6.1. LetF :K � Rn and letP be a preorder onK. If P is viable with respect
to F then, for eachξ ∈ K, P(ξ) is viable with respect toF . If P is closed inRn × Rn and,
for eachξ ∈ K, P(ξ) is viable with respect toF , thenP is viable with respect toF .

The proof follows the very same lines as that one of Lemma 3.8.1, and therefore we do
not enter into details.

THEOREM 6.6.1. Let P be a closed preorder onK and letF :K � Rn be u.s.c. with
nonempty, compact and convex values. Then a necessary and sufficient condition in order
thatP be viable with respect toF is the tangency condition below:

F(ξ)∩ TP(ξ)(ξ) �= ∅

for eachξ ∈ K.

PROOF. The proof follows immediately from Lemma 6.6.1. �

6.7. Local invariance. Sufficient conditions

Let D be a domain inRn, K ⊆ D a locally closed subset, and let us consider the differential
inclusion (6.2.1), whereF :D � Rn is a given multifunction.

DEFINITION 6.7.1. The subsetK is locally invariantwith respect toF if for eachξ ∈ K
and each solutionu : [0, c] → D, c > 0, of (6.2.1), satisfying the initial conditionu(0)= ξ ,
there existsT ∈ (0, c] such that we haveu(t) ∈ K for eacht ∈ [0, T ]. It is invariant if it
satisfies the local invariance condition above withT = c.

REMARK 6.7.1. IfF is upper semicontinuous and nonempty, convex and compact valued
on D andK is locally invariant with respect toF , thenK is viable with respect toF . The
converse of this assertion is no longer true, as we already have seen, even in the single-
valued case. See Example 4.1.1.
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Our first sufficient condition for local invariance is expressed in terms of the exterior
tangency condition below, extending its single-valued counterpart (1.1.6), i.e., there exists
an open neighborhoodV of K, with V ⊆ D, such that

lim inf
h↓0

1

h

[
dist(ξ + hη;K)− dist(ξ ;K)

]
� ω
(
dist(ξ ;K)

)
(6.7.1)

for eachξ ∈ V and eachη ∈ F(ξ), whereω is an “autonomous” comparison function, i.e.
a comparison function which does not depend ont . The main result in this section is:

THEOREM6.7.1. LetK ⊆ D ⊆ Rn, with K locally closed andD open, and letF :D � Rn.
If (6.7.1)is satisfied, thenK is locally invariant with respect toF .

PROOF. Let V ⊆ D be the open neighborhood ofK whose existence is ensured by
(6.7.1) and letω : [0, a)→ R the corresponding comparison function. Letξ ∈ K and let
u : [0, c] → V be any local solution to (6.2.1) satisfyingu(0) = ξ . Diminishing c if nec-
essary, we may assume that there existsρ > 0 such thatB(ξ,ρ) ∩ K is closed,u(t) ∈
B(ξ,ρ/2) and, in addition, dist(u(t);K) < a for eacht ∈ [0, c]. Let g : [0, c] → R+ be
defined byg(t)= dist(u(t);K) for eacht ∈ [0, c]. Let us observe thatg is absolutely con-
tinuous on[0, c]. Let t ∈ [0, c) be such that bothu′(t) andg′(t) exist andu′(t) ∈ F(u(t)),
and leth > 0 with t + h ∈ [0, c]. We have

g(t + h) = dist
(
u(t + h);K

)

� h

∥∥∥∥
u(t + h)− u(t)

h
− u′(t)

∥∥∥∥+ dist
(
u(t)+ hu′(t);K

)
.

Therefore

g(t + h)− g(t)

h
� α(h)+ dist(u(t)+ hu′(t);K)− dist(u(t);K)

h
,

where

α(h)=
∥∥∥∥
u(t + h)− u(t)

h
− u′(t)

∥∥∥∥.

Since limh↓0α(h)= 0, passing to the inf-limit forh ↓ 0 and taking into account thatV, K
andF satisfy (6.7.1), we get

[D+g](t)� ω
(
g(t)
)

a.e. fort ∈ [0, c). So,g(t) ≡ 0 which means thatu(t) ∈ K ∩ B(ξ,ρ/2) for all t ∈ [0, c).
But K ∩B(ξ,ρ/2)⊂ K ∩B(ξ,ρ) for eacht ∈ [0, c), and this completes the proof. �
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REMARK 6.7.2. One may easily see that (6.7.1) is satisfied withω= ωF , where the func-
tion ωF : [0, a)→ R, a = supξ∈V dist(ξ ;K), is defined by

ωF (x)= sup
ξ∈V

dist(ξ ;K)=x

sup
η∈F(ξ)

lim inf
h↓0

1

h

[
dist(ξ + hη;K)− dist(ξ ;K)

]
(6.7.2)

for eachx ∈ [0, a).

So, Theorem 6.7.1 can be reformulated as:

THEOREM6.7.2. LetK ⊆ D ⊆ Rn, with K locally closed andD open, and letF :D � Rn.
If there exists an open neighborhoodV of K with V ⊆ D such thatωF defined by(6.7.2)is
a comparison function, thenK is locally invariant with respect toF .

6.8. Local invariance. Necessary conditions

We begin with the following simple necessary condition for local invariance.

THEOREM 6.8.1. Let K ⊆ D ⊆ Rn, with K nonempty andD open, and letF :D � Rn

be l.s.c. with nonempty, convex and compact values. If K is locally invariant with respect
to F , then, for eachξ ∈ K, F(ξ)⊆ CK(ξ).

PROOF. Let ξ ∈ K and η ∈ F(ξ). SinceF is l.s.c. with nonempty, closed and convex
values, by the Michael’ selection theorem [67,68], there exists a continuous function
f :D → Rn such thatf (ξ)= η andf (x) ∈ F(x) for eachx ∈ D. As D is open, by Peano’s
local existence theorem 1.1.1, there exists at least one solutionu : [0, T ] → D of the equa-
tion u′(t) = f (u(t)) satisfyingu(0) = ξ . Clearly u′(0) = f (u(0)) = η and, in addition,
u is a solution to the differential inclusion (6.2.1). Sinceξ ∈ K and the latter is locally
invariant with respect toF , there exists 0< a � T such thatu(t) ∈ K for all t ∈ [0, a].
Now, repeating the same arguments as in the proof of Theorem 3.2.1—Section 3.2—we
conclude thatη = u′(0) ∈ FK(ξ). The conclusion follows from Proposition 6.2.1, and the
proof is complete. �

Next, we rephrase some concepts we introduced in the single-valued case.

DEFINITION 6.8.1. LetK ⊆ D ⊆ Rn. A multifunction F :D � Rn hasthe comparison
property with respect to(D,K) if there exist a proximal neighborhoodV ⊆ D of K, one
projectionπK :V → K subordinated toV, and one comparison function

ω : [0, a)→ R, with a = sup
ξ∈V

dist(ξ ;K),

such that

sup
η∈F(ξ)

inf
ηπ∈F(πK (ξ))

[
ξ − πK(ξ), η− ηπ

]
+ � ω

(∥∥ξ − πK(ξ)
∥∥) (6.8.1)

for eachξ ∈ V.



Differential equations on closed sets 213

A condition similar to that one in Definition 6.8.1, withξ replaced byξ1 andπK(ξ)

replaced byξ2 with ξ1, ξ2 ∈ V, has been used previously by Cârjă and Ursescu [25]. As
in the single-valued case, here, (6.8.1) is also automatically satisfied for eachξ ∈ K, and
therefore, in Definition 6.8.1, we have only to assume that (6.8.1) holds for eachξ ∈ V\K.

DEFINITION 6.8.2. The multifunctionF :D � Rn is called:
(i) (D,K)-Lipschitzif there exist a proximal neighborhoodV ⊆ D of K, a subordinated

projectionπK :V → K, andL> 0, such that

sup
η∈F(ξ)

inf
ηπ∈F(πK (ξ))

‖η− ηπ‖ � L
∥∥ξ − πK(ξ)

∥∥

for eachξ ∈ V \ K;
(ii) (D,K)-dissipativeif there exist a proximal neighborhoodV ⊂ D of K, and a pro-

jection,πK :V → K, subordinated toV, such that

sup
η∈F(ξ)

inf
ηπ∈F(πK (ξ))

[
ξ − πK(ξ), η− ηπ

]
+ � 0

for eachξ ∈ V \ K.

A strictly more restrictive Lipschitz condition, withξ replaced byξ1 andπK(ξ) by ξ2,
with ξ1, ξ2 belonging toD, has been considered first by Filippov [43]. In a very same spirit
as Filippov [43], Kobayashi [62] has used a dissipative type condition strictly restrictive
than that one in Definition 6.8.2. It is easy to see that ifF is either(D,K)-Lipschitz, or
(D,K)-dissipative, then it has the comparison property with respect to(D,K). We notice
that there are examples showing that there exist multifunctionsF which, although neither
(D,K)-Lipschitz, nor(D,K)-dissipative, have the comparison property. See, for instance,
the “single-valued” Examples 4.3.1 and 4.3.2.

THEOREM6.8.2. LetK ⊆ D ⊆ Rn, with K locally closed andD open, and letF :D � Rn

be a multifunction. If F has the comparison property with respect to(D,K), and

lim inf
h↓0

1

h
dist(ξ + hη;K)= 0 (6.8.2)

for eachξ ∈ K and eachη ∈ F(ξ), then(6.7.1)holds true.

PROOF. Let V ⊆ D be the open neighborhood ofK as in Definition 6.8.1, letξ ∈ V and
η ∈ F(ξ). Letρ > 0 and letπK be the selection ofΠK as in Definition 6.8.1. Leth ∈ (0, T ].
Since‖ξ − πK(ξ)‖ = dist(ξ ;K), we have

dist(ξ + hη;K)− dist(ξ ;K)

�
∥∥ξ − πK(ξ)+ h[η− ζ ]

∥∥−
∥∥ξ − πK(ξ)

∥∥+ d
(
πK(ξ)+ hζ ;K

)
,

for eachζ ∈ F(πK(ξ)).
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Dividing by h, passing to the lim inf forh ↓ 0, and using (6.8.2), we get

lim inf
h↓0

1

h

[
dist(ξ + hη;K)− dist(ξ ;K)

]
�
[
ξ − πK(ξ), η− ζ

]
+.

Sinceζ ∈ F(πK(ξ)) is arbitrary, we have

lim inf
h↓0

1

h

[
dist(ξ + hη;K)− dist(ξ ;K)

]
� inf
ζ∈F(πK(ξ))

[
ξ − πK(ξ), η− ζ

]
+.

Therefore

lim inf
h↓0

1

h

[
dist(ξ + hη;K)− dist(ξ ;K)

]
� ω
(∥∥ξ − πK(ξ)

∥∥).

But this inequality shows that (6.7.1) holds, and this completes the proof. �

COROLLARY 6.8.1. LetK ⊆ D ⊆ Rn, with K locally closed andD open, and letF :D �

Rn be a multifunction. If F has the comparison property with respect to(D,K) and, for
eachξ ∈ K, F(ξ)⊆ TK(ξ), thenK is local invariant with respect toF .

Corollary 6.8.1 and Proposition 6.2.1 yield:

COROLLARY 6.8.2. LetK ⊆ D ⊆ Rn, with K locally closed andD open, and letF :D �

Rn be l.s.c. with nonempty values. If, F has the comparison property with respect to(D,K)
and, for eachξ ∈ K, F(ξ)⊆ BK(ξ), thenK is local invariant with respect toF .

7. Applications

7.1. Invariance with respect to parametrized multifunctions

Let us consider the parametrized multifunctionF :D � Rn,

F(ξ)=
{
f (ξ, v); v ∈ V

}
,

whereD is a nonempty and open subset inRn, V is a nonempty and compact subset inRn

andf :D×Rn → Rn is a continuous function. LetK be a locally closed subset ofD and let
us assume thatF has convex values. We assume further that, for each measurable function
v : [0, a] → V and for eachξ ∈ D, there existsT ∈ (0, a] such that the equationu′(t) =
f (u(t), v(t)) has a unique Carathéodory solutionu : [0, T ] → Rn satisfyingu(0)= ξ .

THEOREM 7.1.1. Under the above circumstances, the following conditions are equiva-
lent:

(i) for eachξ ∈ K andv ∈ V, f (ξ, v) ∈ CK(ξ),
(ii) for eachξ ∈ K andv ∈ V, f (ξ, v) ∈ TK(ξ),
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(iii) for eachξ ∈ K andv ∈ V, f (ξ, v) ∈ BK(ξ),
(iv) K is locally invariant with respect toF .

In general, if G :K � Rn is such thatCK(ξ) ⊆ G(ξ) ⊆ BK(ξ) for eachξ ∈ K, then each
one of the conditions above is equivalent to

(v) for eachξ ∈ K, f (ξ, v) ∈ G(ξ).

PROOF. In view of Proposition 2.5.1, it suffices to show that (ii) is equivalent to (iv). Let
us assume that (ii) holds true and letu : [0, T ] → D be a solution tou′(t) ∈ F(u(t)) with
u(0)= ξ ∈ K. We have to show that there existsτ ∈ (0, T ] such thatu(t) ∈ K for all t ∈
[0, τ ]. By a classical result of Filippov, there exists a measurable functionv : [0, T ] → V
such that

u′(t)= f
(
u(t), v(t)

)
(7.1.1)

a.e. fort ∈ [0, T ]. By the uniqueness property, taking into account (ii) and using Theo-
rem 5.2.1, we deduce that there existsτ ∈ (0, T ] such that the unique solution to (7.1.1)
satisfiesu(t) ∈ K for all t ∈ [0, τ ]. Thus (ii) implies (iv).

Let us suppose now that (iv) holds true. Fixξ ∈ K andv ∈ V. The equationu′(t) =
f (u(t), v) with u(0)= ξ has a unique solutionu : [0, T ] → D. SinceK is locally invariant
with respect toF , there existsτ ∈ (0, T ] such that we haveu(t) ∈ K for all t ∈ [0, τ ]. As
u′(0)= f (ξ, v), it readily follows thatf (ξ, v) ∈ FK(ξ)⊆ TK(ξ), and thus (iv) implies (ii).
This completes the proof. �

7.2. Differentiability along trajectories

In this section we will show how viability can be used in order to obtain sufficient con-
ditions for asymptotic stability via Liapunov functions. Let us consider the autonomous
differential equation

u′(t)= g
(
u(t)
)
, (7.2.1)

whereg :Rn → Rn is continuous. LetV :Rn → R, and let us define

V ∗(ξ)= lim sup
h↓0

1

h

[
V
(
ξ + hg(ξ)

)
− V (ξ)

]

and

V∗(ξ)= lim inf
h↓0

1

h

[
V
(
ξ + hg(ξ)

)
− V (ξ)

]
.

If V ∗(ξ) = V∗(ξ), we denote this common value bẏV (ξ) and we note that, ifV is dif-
ferentiable, we havėV (ξ) = 〈gradV (ξ), g(ξ)〉. The next result will prove useful in the
sequel.
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THEOREM 7.2.1 (Yoshizawa [110]). If V :Rn → R is locally Lipschitz, u : [0, T )→ Rn

is any solution to(7.2.1)and t ∈ [0, T ), then

V ∗(u(t)
)
= lim sup

h↓0

1

h

[
V
(
u(t + h)

)
− V

(
u(t)
)]
.

PROOF. We have

V ∗(u(t)
)
= lim sup

h↓0

1

h

[
V
(
u(t)
)
+ hg

(
u(t)
)
− V

(
u(t)
)]

� lim sup
h↓0

1

h

[
V

(
u(t)+

∫ t+h

t

g
(
u(s)

)
ds

)
− V

(
u(t)
)]

+ lim sup
h↓0

1

h

[
−V
(
u(t)+

∫ t+h

t

g
(
u(s)

)
ds

)

+ V
(
u(t)
)
+ hg

(
u(t)
)]
.

Since
∣∣∣∣lim sup

h↓0

1

h

[
−V
(
u(t)+

∫ t+h

t

g
(
u(s)

)
ds

)
+ V

(
u(t)
)
+ hg

(
u(t)
)]∣∣∣∣

� L lim sup
h↓0

1

h

∥∥∥∥
∫ t+h

t

g
(
u(s)

)
ds − hg

(
u(t)
)∥∥∥∥= 0,

whereL> 0 is the Lipschitz constant ofV on a suitably chosen neighborhood ofu(t), we
deduce

V ∗(u(t)
)
� lim sup

h↓0

1

h

[
V
(
u(t + h)

)
− V

(
u(t)
)]
.

Similarly, we get

V ∗(u(t)
)
� lim sup

h↓0

1

h

[
V
(
u(t + h)

)
− V

(
u(t)
)]

and this completes the proof. �

7.3. Liapunov functions

DEFINITION 7.3.1. We say that 0 isstablefor (7.2.1) if for eachε > 0 there existsδ(ε) ∈
(0, ε) such that for eachξ ∈ Rn, ‖ξ‖ � δ(ε), each solutionu of (7.2.1), satisfyingu(0)= ξ ,
is defined on[0,+∞), and‖u(t)‖ � ε for all t � 0.
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Clearly, if 0 is stable for (7.2.1),{0} is both viable and locally invariant with respect
to g, and thusg(0)= 0. In other words, if 0 is stable for (7.2.1), thenu≡ 0 is necessarily
a solution to (7.2.1), and this is the only one issuing from 0.

DEFINITION 7.3.2. We say thatV has positive gradient atv ∈ R if

lim inf
dist(ξ ;K)↓0

ξ /∈K

V (ξ)− v

dist(ξ ;K)
> 0,

whereK = V −1((−∞, v]).

If V is of classC1 and‖gradV ‖ is bounded from below onV −1({v}) by a constant
c > 0, thenV has positive gradient atv.

PROPOSITION 7.3.1. Let g :Rn → Rn and V :Rn → R be continuous, and let K =
V −1((−∞, v]). If V has positive gradient atv andV ∗(ξ)� 0 wheneverV (ξ)= v, thenK
is viable with respect tog.

PROOF. Let us assume by contradiction thatK is not viable with respect tog. In view of
Theorem 3.1.1, this means that there existsξ ∈ ∂K such thatg(ξ) is not tangent in the
sense of Federer toK at ξ . So, there existγ > 0 and a sequencehm ↓ 0 such that

γ <
1

hm
dist
(
ξ + hmg(ξ);K

)

for all m ∈ N. As ξ ∈ ∂K, it follows thatV (ξ) = v. Furthermore, sinceV has positive
gradient atv, there existsν > 0 such that

ν <
V (ξ + hmg(ξ))− v

dist(ξ + hmg(ξ);K)
<

1

hmγ

[
V
(
ξ + hmg(ξ)

)
− v
]

for eachm ∈ N. Hence

0< ν �
1

γ
lim sup
h↓0

V (ξ + hg(ξ))− V (ξ)

h
= 1

γ
V ∗(ξ),

thereby contradicting the hypothesis thatV ∗(ξ)� 0. This contradiction can be eliminated
only if K is viable with respect tog, and this completes the proof. �

THEOREM 7.3.1 (Yorke [108]). Assume that(7.2.1)has the uniqueness property. Then
0 is stable for(7.2.1) if and only if there exist a continuous functionV :Rn → [0,+∞)

and a sequencevm ↓ 0 such thatV (x)= 0 if and only ifx = 0, and, for everym ∈ N for
whichV (x)= vm, we haveV ∗(x)� 0,and, for eachm ∈ N, V has positive gradient atvm.
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PROOF. We denote byu(·, ξ) : [0,+∞) → Rn the unique solution of (7.2.1) satisfying
u(0, ξ)= ξ .

Sufficiency. Let us assume that such a sequence(vm)m and functionV exist. LetKm =
V −1([0, vm]). Since (7.2.1) has the uniqueness property, by Proposition 7.3.1, it follows
thatKm is both viable and locally invariant with respect tog. Let ε > 0 and let us define
bothµ∗(ε)= inf‖ξ‖=ε V (ξ) andµ∗(ε)= sup‖ξ‖=ε V (ξ). Then,µ∗(ε) > 0. For anyε > 0,
choosem = m(ε) such thatvm < µ∗(ε), and chooseδ(ε) ∈ (0, ε) such thatµ∗(δ) < vm
for eachδ ∈ (0, δ(ε)). Let ξ ∈ Rn with ‖ξ‖ � δ(ε). Clearly,ξ ∈ Km. If there existst > 0
such that‖u(t, ξ)‖> ε, then there existst0 ∈ (0, t) such that‖u(t0, ξ)‖ = ε. On the other
hand, by the choice ofm, we haveu(t0, ξ) /∈ Km, thereby contradicting the local invariance
of Km with respect tog. This contradiction can be eliminated only if‖u(t, ξ)‖< ε for all
t � 0, and this completes the proof of the sufficiency.

Necessity. Suppose that 0 is stable for (7.2.1). Letδ(·) the function in Definition 7.3.1,
chooseε1> 0, and let us define inductivelyεm+1 = δ(εm)/2. Clearly,εm ↓ 0. Let us denote
by

K0
m =

{
u(t, ξ); ‖ξ‖ � δ(εm), andt � 0

}
.

SinceK0
m contains only points reached at positive time by solutions starting inB(0, δ(εm)),

it follows thatK0
m is viable with respect tog. By Proposition 3.6.1, we deduce thatKm =

K0
m is viable with respect tog. Sinceu′(t)= g(u(t)) has the uniqueness property, it follows

thatKm is in fact invariant with respect tog. For eachm= 1,2, . . . , let

vm =
∞∑

i=m+1

εi .

Clearly,vm = 1
2

∑∞
i=m+1 δ(εi−1)� εm for m= 1,2, . . . . Let K0 = Rn andv0 = +∞. We

have· · · ⊆ K2 ⊆ K1 ⊆ K0 and therefore, we may defineN(ξ)= max{m; ξ ∈ Km}. Notice
that we want to haveV (ξ)= vm for all ξ ∈ ∂Km. DefineV (0)= 0 and

V (ξ)= min
{
vN(ξ), vN(ξ)+1 + dist(ξ ;KN(ξ)+1)

}

for ξ �= 0. We begin by proving thatV is continuous. First, let us observe that, for each
m ∈ N, the functionN is constant onKm \ Km+1. Accordingly the restriction ofV to
Km \ Km+1 is continuous, and so the functionV itself is continuous at each interior
point of Km \ Km+1. Next, we show thatV is continuous on∂Km for eachm ∈ N.
Let ξ be arbitrary in∂Km. We have both‖ξ‖ ∈ [δ(εm), εm) and supη∈Km+1

‖η‖ � εm+1.
Therefore,N(ξ) = m and dist(ξ ;Km+1) > δ(εm) − εm+1 = δ(εm)/2. Hence we have
vN(ξ)+1 + dist(ξ ;KN(ξ)+1) > vN(ξ) andV (ξ) = vm. Chooseξi /∈ Km for i = 1,2, . . . ,
with ξi → ξ . Then, limi→∞ dist(ξi;Km)= 0, and

lim
i→∞

V (ξi)= vm = V (ξ),
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which shows thatV is continuous atξ . It remains to prove thatV is continuous at 0. Take
ξi → 0. ThenN(ξi)→ ∞ andV (ξi)� vN(ξi ). But vm → 0 asm→ ∞, so that

lim
ξ→0

V (ξ)= 0= V (0).

ThusV is continuous onRn.
Finally, we show thatV (ξ)= vm impliesV ∗(ξ)� 0. Indeed, if for somem ∈ N we have

V (ξ)= vm, thenξ ∈ Km, ξ + hg(ξ) ∈ Km−1 for h > 0 sufficiently small, and

V
(
ξ + hg(ξ)

)
� vm + dist

(
ξ + hg(ξ);Km

)
.

SinceKm is viable with respect tog, by virtue of Theorem 3.2.1, we haveg(ξ) ∈ TKm
(ξ),

and therefore

V ∗(ξ)� lim sup
h↓0

1

h
dist
(
ξ + hg(ξ);Km

)
= 0.

If 0 < dist(ξ ;Km)� vm − vm−1 = εm, thenV (ξ)= vm + dist(ξ ;Km), so thatV has posi-
tive gradient at eachvm, thereby completing the proof. �

7.4. Hukuhara’s theorem

In this section, by using viability and invariance techniques, we will prove two celebrated
results concerning the funnel of solutions, results due to Hukuhara [47] and Kneser [61].
Let f : I × D → Rn be a continuous function, and let us consider the non-autonomous
differential equation (1.1.1). Let(τ, ξ) ∈ I × D, and let us denote byS(τ, ξ) the set of all
noncontinuable solutionsu of (1.1.1) satisfyingu(τ)= ξ .

DEFINITION 7.4.1. Theright solution funnelthrough(τ, ξ) ∈ I × D, Fτ,ξ , is defined by

Fτ,ξ =
{(
s, u(s)

)
; s � τ, u ∈ S(τ, ξ)

}
.

If t � τ , we define thet-cross section ofFτ,ξ by

Fτ,ξ (t)=
{
u(t); u ∈ S(τ, ξ)

}
.

The next compactness result will prove useful in that follows.

PROPOSITION7.4.1. Let (τ, ξ) ∈ I × D and lett > τ be such that, for eachu ∈ S(τ, ξ),
u(t) is defined. Then

Fτ,ξ
(
[τ, t]

)
=
{(
s, u(s)

)
; s ∈ [τ, t], u ∈ S(τ, ξ)

}

is compact.
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PROOF. Let (tm, um(tm))m be an arbitrary sequence inFτ,ξ ([τ, t]), with um : (am, bm)→
D for eachm ∈ N. We may assume with no loss of generality that limm tm = s. Obviously,
s ∈ [τ, t] ⊆ (am, bm) for everym ∈ N, and therefore, by Hartman [54, Theorem 3.2, p. 26],
there exists at least one subsequence of(um)m, denoted for simplicity again by(um)m, and
u ∈ S(τ, ξ), with limm um = u uniformly on[τ, t]. But this shows that limm(tm, um(tm)=
(s, u(s)). Since(s, u(s)) ∈ Fτ,ξ ([τ, t]), the proof is complete. �

From Proposition 7.4.1, we deduce:

COROLLARY 7.4.1. The setFτ,ξ is locally closed.

THEOREM 7.4.1 (Hukuhara [47]).Let (τ, ξ) ∈ I × D and lett > τ be such that, for each
u ∈ S(τ, ξ), u(t) is defined. Then, for eachη ∈ ∂Fτ,ξ (t) there exists a solutionv such that
v(s) ∈ ∂Fτ,ξ (s) for all s ∈ [τ, t].

In order to prove Theorem 7.4.1, we need:

THEOREM 7.4.2 (Yorke [108]). If D is a domain, K1,K2 ⊆ D are locally closed and
viable with respect tof , and if K1 ∪ K2 = D, thenK1 ∩ K2 is viable with respect tof .

PROOF. The conclusion is a consequence of Theorem 2.3.1 and Nagumo’s viability theo-
rem 3.1.1. �

REMARK 7.4.1. A result similar to Theorem 7.4.2 holds true trivially in the case of local
invariance. More precisely, ifD ⊆ Rn is open,K1,K2 ⊆ D are locally closed and locally
invariant with respect tof , thenK1 ∩ K2 is locally invariant with respect tof .

Let τ ∈ I be fixed, let us denote byD = {s ∈ I; s > τ } × D, and let us defineF :D →
R × Rn, by F(t, ξ)= (1, f (t, ξ)) for each(t, ξ) ∈ D. Throughout, we denote by∂DFτ,ξ

the boundary ofFτ,ξ relative toD, i.e.∂DFτ,ξ = (D \ Fτ,ξ )
D ∩D ∩ Fτ,ξ

D
. We will deduce

Theorem 7.4.1 from a slightly more general result, i.e. Theorem 7.4.3 below.

THEOREM 7.4.3 (Yorke [108]). For each(τ, ξ) ∈ I × D, the set∂DFτ,ξ is left viable with
respect toF .

PROOF. Let us observe that (1.1.1) can be equivalently written as

w′(t)= F
(
w(t)

)
,

whereF is defined as above, andw = (s, u). By the definition ofFτ,ξ , we easily deduce
thatD ∩ Fτ,ξ is right viable and right locally invariant with respect toF , and hence, by
Propositions 1.1.1–1.1.3, it follows thatD \Fτ,ξ is both left viable and left locally invariant

with respect toF . So, thanks to Proposition 3.6.1, we conclude thatK1 = D \ Fτ,ξ
D

is left
viable with respect toF . Further, also by definition,D ∩ Fτ,ξ is left viable with respect
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to F , and again by Proposition 3.6.1, it follows thatK2 = D ∩ Fτ,ξ
D

is left viable with
respect toF . SinceK1 ∪ K2 = D, by Remark 1.1.1 and Theorem 7.4.2, we conclude that
K1 ∩K2 = ∂DFτ,ξ is left viable with respect toF , and this completes the proof. �

We may now proceed to the proof of Theorem 7.4.1.

PROOF OF THEOREM 7.4.1. First, let us observe that thanks to Proposition 7.4.1, it
follows that ∂DFτ,ξ ⊆ Fτ,ξ . Hence, in view of Theorem 7.4.3, we know that, for each
(t, u(t)) ∈ ∂DFτ,ξ , there exists at least one solutionv : [θ, t] → D, with τ � θ < t ,
v(t)= u(t) and such that(s, v(s)) ∈ ∂DFτ,ξ (s) for eachs ∈ [θ, t]. But, by virtue of Propo-
sition 7.4.1,Fτ,ξ ([τ, t]) is compact, and therefore a simple maximality argument shows
that we can always extend such a solution to[τ, t], and this achieves the proof. �

REMARK 7.4.2. Theorem 7.4.3 implies that, for each(t̃ , ỹ) ∈ ∂DFτ,ξ , there exists at least
one noncontinuable solution,v(·) : (σ, t̃] → Rn, of (1.1.1), such that(s, v(s)) ∈ ∂DFτ,ξ for
all s ∈ (σ, t̃] ∩ [τ, t̃]. If t > τ is chosen as in Theorem 7.4.1 andt̃ ∈ [τ, t], then by virtue of
both Theorem 7.4.3 and Proposition 7.4.1, it follows that[τ, t̃] ⊂ (σ, t̃].

REMARK 7.4.3. We notice that

∂Fτ,ξ (t)⊆ (∂DFτ,ξ )(t)=
{
v ∈ Rn; (t, v) ∈ ∂DFτ,ξ

}

and the inclusion can be strict. So, Theorem 7.4.3 is more general that Theorem 7.4.1
because it considers all of∂DFτ,ξ .

7.5. Kneser’s theorem

We conclude this section with the celebrated theorem of Kneser.

THEOREM 7.5.1 (Kneser [61]). Let (τ, ξ) ∈ I × D and let t > τ be such that, for each
u ∈ S(τ, ξ), u(t) is defined. ThenFτ,ξ (t) is connected.

PROOF. Let us assume by contradiction thatFτ,ξ (t) is not connected. Then there exist
two nonempty subsetsC1, C2 with Fτ,ξ (t) = C1 ∪ C2 but C1 ∩ C2 = C1 ∩ C2 = ∅. Let
K1 be the union of all right noncontinuable trajectories4 of (1.1.1) whose corresponding
solutionsv, either are not defined att , or, if defined, satisfy

dist
(
v(t);C1

)
� dist

(
v(t);C2

)
. (7.5.1)

Similarly, we defineK2 by reversing the inequality (7.5.1). By virtue of Proposition 1.1.1,
bothK1 andK2 are right viable with respect toF . In addition,K1 andK2 are locally closed

in I×D andK1∪K2 = I×D. So, by Proposition 3.6.1, it follows that bothK
D

1 andK
D

2 are

4We recall that a trajectory of (1.1.1) is a set of the form{v(t); t ∈ Iv}, wherev : Iv → D is a solution of (1.1.1).
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right viable with respect toF and, of course, locally closed. In view of Theorem 7.4.2, we

conclude thatK = K
D

1 ∩ K
D

2 is right viable with respect toF . As (τ, ξ) ∈ K, there exists
a noncontinuable solutionv such that(s, v(s)) ∈ K for eachs in the domain ofv. By the
choice oft , v(t) is defined and belongs toC1 ∪ C2. Since(t, v(t)) ∈ K, dist(v(t);C1) =
dist(v(t);C2) which must be 0. But this is absurd becausev(t) would be either inC1 ∩
C2, or in C1 ∩ C2. This contradiction can be eliminated only ifFτ,ξ (t) is connected as
claimed. �

7.6. The characteristics method for a first order PDE

LetΩ be a nonempty open subset ofRn, letH :Ω × R � Rn × R be a multifunction with
nonempty values, and consider the first order partial differential equation

inf
(u,v)∈H(x,w(x))

(
Dw(x)(u)− v

)
= 0, (7.6.1)

whereD denotes the differentiability concept of Severi [90]. We recall that a function
w :Ω → R is Severi differentiableat a pointx ∈Ω if, for every u ∈ Rn, there exists the
finite limit

Dw(x)(u)= lim
s↓0
p→0

(
1

s

)(
w
(
x + s(u+ p)

)
−w(x)

)
,

called theSeveri differential ofw at x in the directionu. If w is Severi differentiable atx,
the functionu �→Dw(x)(u) from Rn to R is theSeveri differential ofw at x. For details
see Ursescu [94]. We have

graph
(
Dw(x)

)
= Tgraph(w)

(
x,w(x)

)
.

Foru ∈ Rn, let us consider the extended real numbers:

Dw(x)(u)= lim inf
s↓0
p→0

(
1

s

)(
w
(
x + s(u+ p)

)
−w(x)

)
,

Dw(x)(u)= lim sup
s↓0
p→0

(
1

s

)(
w
(
x + s(u+ p)

)
−w(x)

)
.

We have the equalities:

epi
(
Dw(x)

)
= Tepi(w)

(
x,w(x)

)
,

hyp
(
Dw(x)

)
= Thyp(w)

(
x,w(x)

)
,
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where epi stands for the epigraph and hyp for the hypograph. To conclude,w is differen-
tiable atx if and only ifDw(x)(u) andDw(x)(u) are finite and equal to each other for all
u ∈ Rn, whileDw(x)(u)�Dw(x)(u) for all u ∈ Rn.

The epigraph and hypograph equalities above show thatu �→ Dw(x)(u) and u �→
Dw(x)(u) are l.s.c. and u.s.c., respectively.

By a solution to Eq. (7.6.1) we mean a differentiable functionw :Ω → R which satisfies
equality (7.6.1) for allx ∈Ω . Equation (7.6.1) is worth noting since it contains at least two
important particular cases: the quasilinear, first order partial differential equations (Gour-
sat [51], Perron [81], Kamke [59], Carathéodory [29], Courant and Hilbert [37]); the Bell-
man equations (Bellman [7–9], Pontryagin et al. [83], Boltyanskii [11,12], Gonzales [50],
Hájek [53], Cesari [30], Clarke and Vinter [35], and many others). Among other particular
cases of Eq. (7.6.1) we mention also the eikonal equation (see Ishii [58]). Let us consider
further the ordinary differential inclusion

(
X′(t), Y ′(t)

)
∈H

(
X(t), Y (t)

)
, (7.6.2)

whose solutions we label as characteristics with regard to Eq. (7.6.1). The theory for the
inclusion (7.6.2) is well developed (see Section 6.1 above) and we use it to start develop-
ing an existence theory for Eq. (7.6.1). We take here as a model the classical characteristics
method and characterize the solutionsw of (7.6.1) by means of the behavior of the func-
tionsw along solutions(X,Y ) of (7.6.2). Since the inclusion (7.6.2) is an autonomous
one, we consider only solutions(X,Y ) : [0, T )→ Rn × R where 0< T � ∞. In order to
characterize the solutionsw of (7.6.1), we need the following conditions:

(C1) For everyx ∈Ω , there exists a solution(X,Y ) : [0, T )→ Rn × R of the inclusion
(7.6.2), with (X(0), Y (0))= (x,w(x)), such that, for everys ∈ (0, T ),w(X(s))�
Y(s);

(C2) For everyx ∈ Ω , for every solution(X,Y ) : [0, T ) → Rn × R of the inclusion
(7.6.2), with (X(0), Y (0))= (x,w(x)), and for everys ∈ (0, T ), Y(s)�w(X(s)).

Now we are ready to state a first result concerning Eq. (7.6.1).

THEOREM 7.6.1. LetH :Ω × R � Rn × R be both u.s.c. and l.s.c. with nonempty, com-
pact and convex values, and letw :Ω → R be differentiable and such thatH has the
comparison property with respect to(Ω × R,hyp(w)). Thenw is a solution to Eq. (7.6.1)
if and only if it satisfies conditions(C1) and (C2).

As far as we know, the differentiability concept of Severi is the least restrictive for which
the characterization above holds true. Every other differentiability concepts used in the lit-
erature devoted to particular cases of Eq. (7.6.1) implies the classical Fréchet, referred
better as to Stolz–Young–Fréchet–Hadamard, differentiability. And,w is Fréchet differen-
tiable atx if and only if bothw is Severi differentiable atx, and the Severi differential
Dw(x) is linear onRn. In addition, Eq. (7.6.1) admits a natural substitute which dispenses
with any differentiability restriction, and which can be still characterized by using (C1)



224 O. Cârjă and I.I. Vrabie

and (C2). The substitute for Eq. (7.6.1) consists of the couple of first order partial differen-
tial inequalities below:

inf
(u,v)∈H(x,w(x))

(
Dw(x)(u)− v

)
� 0, (7.6.3)

0� inf
(u,v)∈H(x,w(x))

(
Dw(x)(u)− v

)
, (7.6.4)

calledgeneralized Bellman equation. A solution to inequality(7.6.3) (or (7.6.4)) is a func-
tionw :Ω → R which satisfies inequality (7.6.3) (or (7.6.4)) for allx ∈Ω . Clearly a func-
tionw is a solution to (7.6.1) if and only if it is a differentiable solution to the couple (7.6.3)
and (7.6.4). Since differentiability at a point implies continuity at that point, we conclude
that Theorem 7.6.1 above is a natural corollary of Theorem 7.6.2 below.

THEOREM 7.6.2. LetH :Ω × R � Rn × R be both u.s.c. and l.s.c. with nonempty, com-
pact and convex values, and letw :Ω → R be continuous such thatH has the comparison
property with respect to(Ω × R,hyp(w)). Then, w is a solution to(7.6.3)and (7.6.4) if
and only if it satisfies conditions(C1) and (C2).

We mention that all solutions to every variational problem satisfy both (C1) and (C2) (the
Bellman “principle”) with a suitable chosenH . Hence, under rather common hypotheses
upon the components of a variational problem, its continuous solution satisfies inequalities
(7.6.3) and (7.6.4) (the generalized Bellman “equation”). A typical example is the time op-
timal control problem associated to a control system and a target. More precisely, consider
the multifunctionF :Rn � Rn, the differential inclusion

X′(t) ∈ F
(
X(t)

)
, (7.6.5)

and fix atarget setT (nonempty and closed). LetR be thereachable set, that is, the set of
all initial points which can be transferred toT by trajectories of (7.6.5). Forx ∈ R define
T (x) as the infimum of the transition times. The well-known Bellman equation for the
optimal time problem is

−1+ sup
u∈F(x)

−DT (x)(u)= 0, x ∈ R \ T ,

which is a particular case of (7.6.1), for the choiceH(x,y)= (F (x), {−1}).
In its turn, Theorem 7.6.2 follows from the following anatomized variant of itself.

THEOREM 7.6.3. (a)Let H :Ω × R � Rn × R be u.s.c. with nonempty, compact and
convex values. A continuous functionw :Ω → R is a solution to inequality(7.6.3) if and
only if satisfies condition(C1).

(b) LetH :Ω × R � Rn × R be l.s.c. with closed and convex values. Let w :Ω → R
be a continuous function such thatH has the comparison property with respect to
(Ω × R,hyp(w)). Thenw is a solution to inequality(7.6.4)if and only if it satisfies condi-
tion (C2).
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PROOF. (a) SinceH(x,w(x)) is compact and sinceDw(x) is l.s.c. onRn, it follows that
“inf” can be replaced by “min” in (7.6.3), hence inequality (7.6.3) states that

φ �=H
(
x,w(x)

)
∩ Tepi(w)

(
x,w(x)

)
. (7.6.6)

Sincew is continuous, (7.6.6) is equivalent to (7.6.7) below

φ �=H(x, t)∩ Tepi(w)(x, t) (7.6.7)

for t � w(x), and this simply becauseTepi(w)(x, t)= Rn × R wheneverw(x) < t . On the
other hand, sincew is continuous, condition (C1) is equivalent to the viability of epi(w)
with respect toH . But the set epi(w) is closed inΩ × R, and therefore the conclusion is
an immediate consequence of Theorem 6.2.1.

(b) The inequality in (7.6.4) states thatH(x,w(x))⊆ Thyp(w)(x,w(x)). Sincew is con-
tinuous, we haveH(x, t) ⊆ Thyp(w)(x, t) in casew(x) > t . On the other hand, condi-
tion (C2) states that the set hyp(w) is invariant with respect toH . Since the set hyp(w)
is closed inΩ × R, the conclusion follows from Theorem 6.8.1 and Corollary 6.8.1.�

A natural question is whether we can weaken the continuity property of the functionw

in Theorem 7.6.2. This question arises from the fact that epi(w) is closed even in the case
whenw is l.s.c. and hyp(w) is closed in casew is u.s.c. The answer is in the negative as
the following examples in Cârjă and Ursescu [25] show. Consider first the inequality

Dw(x)
(
w(x)

)
− 1� 0.

HereH(x,y) = {(y,1)}, for all (x, y) ∈ R × R and the characteristic systemX′(s) =
Y(s), Y ′(s)= 1 has the solutionX(s)=X(0)+ sY (0)+ s2/2,Y(s)= Y(0)+ s. The l.s.c.
functionw :R → R given byw(x)= 0 for x = 0 and byw(x)= 1 for x �= 0 is a solution
to the preceding inequality but does not satisfy the condition:for everyx ∈ R and for every
s ∈ (0,+∞), w(x + sw(x) + s2/2) � w(x) + s (takex = 0 ands ∈ (0,1) and observe
w(0+ sw(0)+ s2/2)= 1> s =w(0)+ s). A second example is given by the differential
inequality

0�Dw(x)
(
w(x)

)
+ 1.

HereH(x,y) = {(y,−1)} for all (x, y) ∈ R × R and the characteristic systemX′(s) =
Y(s), Y ′(s) = −1 has the solutionsX(s) = X(0)+ sy(0)− s2/2, Y(s) = Y(0)− s. The
u.s.c. functionw :R → R given byw(x)= 0 for x = 0 and byw(x)= −1 for x �= 0 is a
solution to the preceding inequality but does not satisfy the condition:for everyx ∈ R and
for everys ∈ (0,+∞), w(x)− s � w(x + sw(x)− s2/2) (takex = 0 ands ∈ (0,1) and
observew(0)− s = −s >−1=w(0)+ sw(0)− s2/2).

A condition which assures that (C1) in part (a) of Theorem 7.6.3 holds for a l.s.c. func-
tionw, while (C2) in part (b) holds for a u.s.c. functionw is given below:
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THEOREM 7.6.4. LetH :Ω × R � Rn × R be a nonempty and convex valued multifunc-
tion satisfying

H(x,y1)⊆H(x,y2) (7.6.8)

for eachx ∈ Ω and y1, y2 ∈ R, with y1 � y2. (a) Assume thatH is u.s.c. with compact
values. Then, a l.s.c. functionw :Ω → R is a solution to the inequality(7.6.3)if and only
if it satisfies(C1).

(b) Assume thatH is l.s.c. with closed values. Letw :Ω → R a u.s.c. function such that
H has the comparison property with respect to(Ω × R,hyp(w)). Then, w :Ω → R is a
solution to the inequality(7.6.4)if and only if it satisfies(C2).

PROOF. The proof goes in the same spirit as that of Theorem 7.6.3. Indeed, in order to
prove (a), sinceTepi(w)(x,w(x)) ⊆ Tepi(w)(x, t) if w(x) � t , (7.6.8) implies that (7.6.6)
is equivalent to (7.6.7). In its turn, (7.6.6) is equivalent to (7.6.3). On the other hand,
since (7.6.8) is satisfied, condition (C1) is equivalent to the viability of epi(w) with re-
spect toH . Indeed, ifw(x) < t , and(X,Y ) : [0, T ] → Rn × R is a solution to (7.6.2) with
(X(0), Y (0)) = (x,w(x)), andw(X(s)) � Y(s) for all s ∈ [0, T ], then the functions �→
(X(s), Y (s)+ t −w(x))= (X(s),Y (s)) is a solution to (7.6.2) with(X(0), Y (0))= (x, t)

and satisfiesw(X(s))� Y(s) for all s ∈ [0, T ]. This completes the proof of (a). The proof
of (b) goes in the very same spirit, and therefore we do not give details. �

REMARK 7.6.1. The property (C1) is related to the so-calledweakly decreasing systems
discussed in Clarke et al. [34, p. 211], which in turn are related to the Liapunov theory of
stabilization. See also [34, p. 208]. The “monotone variant” of (C1) labelled below as (C3)
is connected to the so-calledstrongly decreasing systemsdiscussed also in [34, p. 217].

(C3) For each x ∈ Ω there exists a solution(X,Y ) : [0, T ] → Rn × R of the dif-
ferential inclusion(7.6.2)with (X(0), Y (0)) = (x,w(x)), such that the function
s �→w(X(s))− Y(s) is decreasing.

We have:

THEOREM 7.6.5. LetH :Ω × R � Rn × R be a u.s.c., nonempty and convex valued mul-
tifunction. Let, us assume that(7.6.8)is satisfied. Then, a continuous functionw satisfies
(C1) if and only if it satisfies(C3).

PROOF. On epi(w) we define a relationP by

P(x, t)=
{
(y, s); w(y)− s �w(x)− t

}
.

Obviously,P is a preorder on epi(w) and condition (C3) is equivalent to the viability of
the preorderP with respect toH . Moreover, condition (C1) is equivalent to the viabil-
ity of P(x, t) with respect toH for each(x, t) ∈ epi(w). The conclusion follows from
Lemma 6.6.1. �
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8. Notes and comments

8.1. The upper semicontinuous case

Since of its birth in 1942, viability theory emerged in several directions we will discuss
sequentially below. The first viability result for the multivalued case is due to Bebernes
and Schuur [6]. We mention that, in 1936, Zaremba [111] proved that ifF :D � Rn is
u.s.c. with nonempty compact and convex values andD is open then, for eachξ ∈ D, the
differential inclusion (6.2.1) has at least one solutionu : [0, T ] → D satisfyingu(0)= ξ . It
should be noticed that the concept of solution used by Zaremba in [111] is in the sense of
thecontingent derivative. More precisely, ifu : [0, T ] → Rn is continuous andt ∈ [0, T ),
the set

Du(t)=
{

lim
m→∞

u(t + tm)− u(t)

tm
; tm ↓ 0

}

is called thecontingent derivativeof u at t . We say thatu : [0, T ] → D is a contingent
solutionof (6.2.1) if

∅ �=Du(t)⊆ F
(
u(t)
)

(8.1.1)

for eacht ∈ [0, T ). In 1961, Wa˙zewski [107] proved that, ifF is u.s.c. with nonempty,
compact and convex values,u is a contingent solution to (6.2.1) if and only ifu is a
Carathéodory solution to (6.2.1). So, Zaremba’s existence result in [111] is nothing than
the multivalued counterpart of Peano’s local existence theorem 1.1.1. In the same spirit, the
viability result of Bebernes and Schuur is the multivalued version of Nagumo’s viability
theorem 1.1.3. Proposition 8.1.1 below, due to Wa˙zewski [107], is in fact equivalent to the
necessity part of Theorem 6.2.1.

PROPOSITION8.1.1. Let K ⊆ Rn be nonempty and locally closed and letF :K � Rn be
u.s.c. with nonempty, convex, compact values. Then, for everyξ ∈ K, and every solution
u : [0, T ] → K to (6.2.1),with u(0) = ξ , there existη ∈ F(ξ) and a sequence(tm)m in
(0, T ) convergent to0 such that the sequence( 1

tm
(u(tm)− ξ))m converges toη.

It is interesting to notice that, by using the viability theory developed in Section 6.1 for
the locally closed setK = {(t, u(t)); t ∈ [0, T ]} and the multifunction{1} × F , we can
prove (see [22]) that condition (8.1.1) is also equivalent to each one of the following:

(i) Du(t)∩ F(u(t)) �= ∅ for eacht ∈ [0, T ), or
(ii) coDu(t)∩ F(u(t)) �= ∅ for eacht ∈ [0, T ).

In 1981, Haddad [52] obtained the first result on viability of preorders. In fact, Haddad
adapted the proof of viability of sets in order to obtain viability of preorders. Cârjă and
Ursescu [25] showed that the viability, as well as the invariance of preorders can be com-
pletely described in terms of viability, or invariance of sets. See Section 3.8.

The structure of the set of viable solutions of a differential inclusion on a subsetK, for
whichΠK has continuous selections, was studied by Plaskacz [82]. See also the references
therein.
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As far as the infinite dimensional case is concerned, i.e. the case in which instead ofRn

we are considering an infinite-dimensional Banach spaceX, we mention the pioneering
contribution of Gauthier [48]. First, he used Zorn’s Lemma in order to get approximate
solutions defined on an a priori given interval. Second, he used a sufficient weak tangency
condition of the form:for eachξ ∈ K, there existη ∈ F(ξ), a sequence(hm)m decreasing
to 0, a sequence(qm)m weakly convergent to0 satisfying‖qm+η‖ � 2‖η‖ andξ+hm(η+
qm) ∈ K for eachm ∈ N. This tangency is far from being necessary for the viability ofK.
A necessary and sufficient condition for the viability ofK in a more general setting has
been obtained by Cârjă and Vrabie [27] by means of the so-called “bounded weak tangency
condition”.

8.2. The case of Carathéodory mappings

The first viability result in the case of a single-valued Carathéodory right-hand side is due
to Ursescu [98]. Theorem 5.2.1 is an extension of Ursescu’s result in [98] which contains
only the equivalence between (ii) and (vi) in the above mentioned theorem.

Although not presented here, the Carathéodory case for differential inclusions is well
developed and there exists a rather large literature on the subject. Among the first notable
results in this direction we mention those of Tallos [92], Ledyaev [64], Frankowska et al.
[45]. In all these papers, theorems of Scorza Dragoni type are the main tools. Results of
the same kind as in Theorem 5.2.1, but for differential inclusions, can be found in Cârjă
and Monteiro Marques [22] in the finite-dimensional case, and in Cârjă and Monteiro Mar-
ques [23] in the infinite-dimensional setting. There, a technique of approximation (as in
Theorem 5.2.1) of the multifunction through the Aumann integral mean is used.

8.3. The lower semicontinuous case

The next example shows that the convexity condition on the values ofF is essential in
obtaining the viability of a locally closed setK with respect to a u.s.c. multifunction
F :K � Rn by means of the tangency conditionTK(ξ)∩ F(ξ) �= ∅ for all ξ ∈ K.

EXAMPLE 8.3.1 (Aubin and Cellina [3, p. 202]). Letn= 2,K = B(0,1) andF :K → R2,
defined byF(ξ) = {(−1,0), (1,0)} for eachξ ∈ K. Then, one may easily see thatK is
locally closed (in fact closed and convex),F is u.s.c., satisfies the tangency condition, but
neverthelessK is not viable with respect toF .

The lack of convexity of the values ofF can be however counterbalanced by an l.s.c.
extra-assumption combined with the stronger tangency condition

F(ξ)⊆ TK(ξ) (8.3.1)

for eachξ ∈ K. More precisely, we have:
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THEOREM 8.3.1 (Aubin and Cellina [3, p. 198]).LetK be locally closed and letF :K �

Rn be both u.s.c. and l.s.c. with nonempty and closed values. If (8.3.1)is satisfied, thenK
is viable with respect toF . Moreover, x′ is a regulated function.5

We emphasize that even for the convex-valued case, l.s.c. and (8.3.1) do not ensure
invariance (see the case of functions), but implies viability via the Michael’s selection
theorem [67,68].

8.4. The semilinear single-valued case

Another direction was to consider a larger framework in order to handle semilinear partial
differential equations as well. To this aim, let us consider an infinite dimensional Banach
spaceX with norm‖ · ‖ and letL(X) be the space of all linear bounded operators fromX
toX, endowed with the usualoperator norm‖ ·‖L(X). We recall that{S(t); t � 0} ⊆ L(X)

is aC0-semigroupif
(i) S(0)= I ;

(ii) S(t + s)= S(t)S(s) for all t, s � 0;
(iii) lim h↓0S(h)ξ = ξ for eachξ ∈X.

The infinitesimal generatorof {S(t); t � 0} is the possibly unbounded linear operator
A :D(A)⊆X→X, defined by





D(A)=
{
ξ ∈X; ∃ lim

h↓0

1

h

[
S(h)ξ − ξ

]}
,

Aξ = lim
h↓0

1

h

[
S(h)ξ − ξ

]
for ξ ∈D(A).

Further, if{S(t); t � 0} is aC0-semigroup,A :D(A)⊆X→X is its infinitesimal genera-
tor andξ ∈D(A), then the mappingt �→ S(t−τ)ξ is the unique classical, i.e.,C1, solution
to the ordinary homogeneous differential equation

{
u′ =Au,

u(τ)= ξ,
(8.4.1)

defined on[τ,+∞). Moreover, sinceD(A) is dense inX, it follows that, for eachξ ∈X,
the mappingt �→ S(t − τ)ξ , which may fail to beC1, can be approximated uniformly
on compact subsets in[τ,+∞) by classical solutions to problem (8.4.1). Thus, for each
ξ ∈X, the mapping above can be considered as a generalized solution of (8.4.1), called the
semigroup solution. Furthermore, inspired from the variation of constants formula, we may
define the so-calledmild, orC0 solution, u : [τ, a)→X, of the nonhomogeneous problem

{
u′ =Au+ f (t),

u(τ )= ξ,

5A function isregulatedif it is uniform limit of step functions.
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by

u(t)= S(t − τ)ξ +
∫ t

τ

S(t − s)f (s)ds

for eacht ∈ [τ, a). Heref : [τ, a)→ X is a given continuous, or even locally integrable,
function anda > τ is finite or not. So, ifD ⊆X is a nonempty and open subset inX, I is
a given nonempty open interval,f : I × D → X, τ ∈ I andξ ∈ D, we may consider the
semilinear differential equation

{
u′ =Au+ f (t, u),

u(τ)= ξ.
(8.4.2)

As expected, amild, orC0 solutionof (8.4.2) is a continuous functionu : [τ, T )→ D, with
T ∈ I, and satisfying

u(t)= S(t − τ)ξ +
∫ t

τ

S(t − s)f
(
s, u(s)

)
ds (8.4.3)

for eacht ∈ [τ, T ). For details onC0-semigroups see Vrabie [105]. Further, ifK ⊆ D is
locally closed, we redefine the concepts of right viability and right invariance ofK with
respect toA+ f by using mild orC0 solutions. The main problem here is that, in general,
K ∩D(A) is very narrow, even empty (we emphasize thatD(A) is only dense and could
have empty interior), and therefore a necessary, or/and sufficient condition for viability of
the type (1.1.3), i.e.

lim inf
h↓0

1

h
dist
(
ξ + h

[
Aξ + f (t, ξ)

]
;K
)
= 0, (8.4.4)

for each(t, ξ) ∈ I×[K∩D(A)], turns out to be unrealistic for nonsmooth semigroups. An
example which justifies the remark above is that one whenK is the trajectory of a nowhere
differentiable right mild solution to (8.4.2), case in whichK ∩ D(A) = ∅. The case of
smooth semigroups (even nonlinear) was considered recently by Barbu and Pavel [5] by
means of the tangency condition (8.4.4) with “lim” instead of “lim inf”. It is the merit of
Pavel [75] to observe that, in general, the really useful sufficient, and, very often, even
necessary, condition for right viability which works in this case is

lim
h↓0

1

h
dist
(
S(h)ξ + hf (t, ξ);K

)
= 0, (8.4.5)

for each(t, ξ) ∈ I × K. We notice that, wheneverξ ∈ K ∩ D(A), (8.4.5) is equivalent
to (8.4.4) which is a stronger form, i.e. with “lim inf” replaced by “lim”, of the classical
Nagumo’s tangency condition (1.1.3) withA+f instead off . We re-emphasize that when-
everK is not included inD(A), or evenK ∩D(A) is empty, the only tangency condition
which could be of some use is (8.4.5). Namely, the main result in Pavel [75] is:



Differential equations on closed sets 231

THEOREM 8.4.1 (Pavel [75]). If S(t) is compact for eacht > 0 and f : I × K → X is
continuous, then a necessary and sufficient condition in order thatK be right viable with
respect to(t, u) �→Au+ f (t, u) is (8.4.5).

We notice that the compactness ofS(t) for eacht > 0 is a parabolicity condition. The
simplest nontrivial example of aC0 semigroup satisfying this condition is that one occur-
ring in the study of the heat flow. Namely, letS(t) :L2(0,π)→ L2(0,π) be defined by

[
S(t)ξ

]
(x)=

√
2

π

∞∑

k=1

ak(ξ)e
−k2t sinkx

for x ∈ (0,π), whereak(ξ) are the Fourier coefficients ofξ with respect to the orthogonal

system
{√ 2

π
sinx,

√
2
π

sin 2x, . . . ,
√

2
π

sinkx, . . .
}
, i.e.

ak(ξ)=
√

2

π

∫ π

0
ξ(y)sinky dy.

It is well known that this semigroup defines theL2(0,π)-solutions to the one-dimensional
heat equation

{
ut = uxx for (t, x) ∈ [0,+∞)× (0,π),
u(t,0)= u(t,π) for t ∈ [0,+∞),
u(0, x)= ξ for x ∈ (0,π).

Moreover, for eacht > 0, S(t) is a compact, in fact even a Hilbert–Schmidt operator,
because it is the limit in the operator norm of a sequence of finite-dimensional range oper-
ators. Indeed, a simple example of such sequence(Sm(t))m is

[
Sm(t)ξ

]
(x)=

√
2

π

m∑

k=1

ak(ξ)e
−k2t sinkx

for m= 1,2, . . . and eachξ ∈X, whereak(ξ) are as above.
The extension of Pavel’s Theorem 8.4.1 to Carathéodory perturbations has been consid-

ered by Cârj̆a and Monteiro Marques [21] for constant in time domains, and by Necula [71]
for time dependent domains.

8.5. The semilinear multivalued case

As far as we know, the true semilinear and multivalued case, i.e.A linear unbounded and
F multivalued, has been analyzed first by Pavel and Vrabie [78,79] by the end of seventies.
A good source of references in this respect is Pavel [76]. Shi [91] considers the semilinear
case (8.4.2) in whichf is replaced by a multifunction, redefines the concept of viability by
using strong solutions, i.e. continuous functionsu : [0, T )→ X, T ∈ (0,+∞], which are
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absolutely continuous on(0, T ) and satisfy:u′(t)=Au(t)+f (t) a.e. fort ∈ [0, T ), where
f ∈ L∞(0, T ;X), f (t) ∈ F(t, u(t)) a.e. fort ∈ (0, T ), and proves a characterization of
global viability, i.e. of right viability involving only strong solutions defined on[0,+∞).

THEOREM 8.5.1 (Shi [91]). LetX be reflexive, K a compact subset ofX, F :X � X a
nonempty, convex and compact valued upper semicontinuous mapping, and letA :D(A)⊆
X→X be the infinitesimal generator of a differentiableC0-semigroup{S(t); t � 0} with
S(t) compact for allt > 0. Then a necessary and sufficient condition in order thatK be
right global viable with respect toF is the following tangency condition: for eachξ ∈ K
there existη ∈ F(ξ), a sequence(hm)m decreasing to0 and a sequence(pm)m strongly
convergent to0 such that

S(hm)ξ + hm(η+ pm) ∈ K

holds for eachm ∈ N.

As concerns sufficient conditions for global viability, we mention:

THEOREM 8.5.2 (Shi [91]). Let X be reflexive, K a compact subset ofX, F :X � X

a nonempty, bounded, closed and convex valued upper semicontinuous mapping, and
let A :D(A) ⊆ X → X be the infinitesimal generator of a differentiableC0-semigroup
{S(t); t � 0} with S(t) compact for allt > 0. Then, a sufficient condition in order thatK
be right global viable with respect toF is the following tangency condition: for eachξ ∈ K
and eacht > 0 there existη ∈ F(ξ), a sequence(hm)m decreasing to0 and a sequence
(pm)m strongly convergent to0 such that

S(hm)ξ + hm
(
S(t)η+ pm

)
∈ S(t)K

holds for eachm ∈ N.

We note that the tangency condition in Theorem 8.5.2 is equivalent to:

AS(t)ξ + S(t)F (ξ)⊂ TS(t)K
(
S(t)ξ

)

holds for eachξ ∈ K and eacht > 0.
Clearly, in this case the general assumptions onK andF are significantly stronger than

those in Pavel and Vrabie [78,79]. We note that for instance, in the infinite-dimensional
setting, the compactness ofF(ξ) for eachξ ∈ D is not satisfied ifF is a superposition
operator which is not single-valued. On the other hand, this “weakness” of the general
setting of Shi [91] is well counterbalanced by the tangency condition which is quite close
to its finite-dimensional counterpart.

The existence of monotone solutions has been considered in this context by Chi¸s-
Şter [31].
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8.6. The nonlinear perturbed single-valued case

Theorem 8.4.1 was partially extended by Vrabie [103] for the fully nonlinear case, i.e.
whenA m-dissipative. Namely, Vrabie [103] shows that, ifA generates a nonlinear semi-
group of nonexpansive compact, fort > 0, operators andf : I × K →X is continuous on
the locally closed subsetK, a sufficient condition for viability is

lim
h↓0

1

h
dist
(
u
(
t + h, t, ξ, f (t, ξ)

)
;K
)
= 0 (8.6.1)

uniformly for (t, ξ) ∈ I × K, whereu(·, t, ξ, η) denotes the unique mild solution to the
problemu′(s) ∈ Au(s) + η satisfyingu(t, t, ξ, η) = ξ . Subsequent contributions in this
context are due to Bothe [14] who allowedK to depend ont as well. In particular, in case
K independent oft , Bothe [14] showed that the, possibly non uniform, tangency condition
(8.6.1) satisfied for each(t, ξ) ∈ I × K is necessary and sufficient for viability. The case
of Carathéodory perturbations defined on time dependent domains has been considered by
Necula [72].

8.7. The multivalued perturbed nonlinear case

The more delicate case in which one allowsA to be nonlinear, as well asf to be mul-
tivalued, has been considered by Bressan and Staicu [17] who used the tangency con-
dition proposed in Vrabie [103] after reducing the multivalued case to the single-valued
one by means of a continuous selection argument. The case in which the multifunctionF

is strongly-weakly u.s.c. has been considered by Cârjă and Vrabie [28] by using a weak
variant of the tangency condition in Vrabie [103], while the possibly nonconvex valued
case has been analyzed by Necula and Vrabie [74] by using a selection theorem due to
Fryszkowski [46].

8.8. Applications

The problem of finding Liapunov functions for differential inclusions is discussed in Aubin
[1, Chapter 9], and Aubin and Cellina [3, Chapter 6]. As we have pointed out in Section 7.6,
the characteristics method, when applied in control theory, is related to the dynamic pro-
gramming method. Theorem 7.6.2 says that there is an equivalence between the Bellman
equations (7.6.3) and (7.6.4) and the Bellman optimality conditions (C1) and (C2). If we
want to study the uniqueness properties of the Bellman equation, we have to add appropri-
ate boundary conditions and to use conditions (C1) and (C2) in order to get that a possible
solution is necessarily the value function of the given control problem. The notion of so-
lution for the couple of inequalities (7.6.3) and (7.6.4), defined in Section 7.6, is usually
calledcontingent solution. It is interesting to notice that this kind of solution is equivalent
with that of viscosity solution developed by Crandall and Lions [39]. However, the stan-
dard technique to get uniqueness is different here. Among the first contributions in this
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area we mention Frankowska [44] and Cârjă and Ursescu [26]. See also the more recent
article of Aubin [2] and the references therein. For other applications of viability and in-
variance techniques to Control Theory and Game Theory, we refer the reader to Aubin and
Cellina [3, Chapter 5]. As concerns the existence theory for periodic problems via viability
and/or invariance see Aubin and Cellina [3, Chapter 5] and Vrabie [104]. For applica-
tions to the existence of constrained solutions to nonlinear partial differential inclusions
see Bothe [15].

Finally, it should be noticed that the theory of invariant sets pertains a very elegant
approach to the study of orbital motions of a mass particle in a given force field. This was
pointed out by means of a second order tangency concept by Pavel and Ursescu [77].

Appendix

THEOREM A.1.1. Letp ∈ [1,+∞) and let[τ, T ] ⊆ I. A subsetF in Lploc(I;Rn) is rela-
tively compact inLp(τ, T ;Rn) if and only if it is bounded and

lim
θ↓0

∫ T−θ

τ

∥∥f (s + θ)− f (s)
∥∥ds = 0

uniformly forf ∈ F .

See Vrabie [105, Theorem A.4.1, p. 305]. For the proof of the next result see Dunford
and Schwartz [40, Theorem 15, p. 150].

THEOREM A.1.2 (Vitali). Let1� p <+∞, let S be a Lebesgue measurable subset inR,
and let(fm)m be a sequence inLp(S;Rn) converging almost everywhere to a functionf .
Thenf ∈ Lp(S;Rn) and

lim
m

‖fm − f ‖Lp(S;Rn) = 0

if and only if:
(i) {‖fm‖p; m ∈ N} is uniformly integrable inL1(S;Rn);

(ii) for eachε > 0 there exists a Lebesgue measurable setEε ⊆ S with λ(Eε) < +∞
and such that, for eachm ∈ N, we have

∫

S\Eε

∥∥fm(s)
∥∥p ds < ε.

We recall that a subsetF in L1(S;Rn) is uniformly integrable if

lim
λ(E)↓0

∫

E

∥∥f (s)
∥∥ds = 0

uniformly for f ∈F . We notice that wheneverS is a finite length interval, the condition (ii)
is automatically satisfied.
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0. Introduction

This chapter surveys a restricted but useful class of dynamical systems, namely, those
enjoying a comparison principle with respect to a closed order relation on the state space.
Such systems, variously called monotone, order-preserving or increasing, occur in many
biological, chemical, physical and economic models.

The following notation will be used.Z denotes the set of integers;N = {0,1, . . .}, the
set of natural numbers;N+ is the set of positive integers, andR is the set of real numbers.
Foru,v ∈ Rn (= Euclideann-space), we write

u� v ⇐⇒ ui � vi,

u < v ⇐⇒ ui � vi, u �= v,

u≪ v ⇐⇒ ui < vi,

wherei = 1, . . . , n. This relation� is called thevector orderin Rn.
The prototypical example of monotone dynamics is a Kolmogorov model of cooperating

species,

ẋi = xiGi(x), xi � 0, i = 1, . . . , n (0.1)

in the positive orthantRn+ = [0,∞)n, whereG :Rn+ → Rn is continuously differentiable.
xi denotes the population andGi the per capitagrowth rate of speciesi. Cooperation
means that an increase in any population causes an increase of the growth rates of all the
other populations, modeled by the assumption that∂Gi/∂xj � 0 for i �= j . The right-hand
sideFi = xiGi of (0.1) then defines acooperative vector fieldF :Rn → Rn, meaning that
∂Fi/∂xj � 0 for i �= j .

Assume for simplicity that solutions to Eq. (0.1) are defined for allt � 0. Let Φ =
{Φt :Rn+ → Rn+}t�0 denote the resulting semiflow inRn+ that describes the evolution of
states in positive time: the solution with initial valueu is given byx(t)=Φt (u). The key to
the long-term dynamics of cooperative vector fields is an important differential inequality
due to Müller [148] and Kamke [91].

u� v andt � 0 )⇒ Φt (u)�Φt (v).

In other words:The mapsΦt preserve the vector order. A semiflowΦ with this prop-
erty is calledmonotone. Monotone semiflows and their discrete-time counterparts, order-
preserving maps, form the subject of Monotone Dynamics.

Returning to the biological setting, we may make the assumption that each species di-
rectly or indirectly affect all the others. This is modeled by the condition that the Jacobian
matricesG′(x) are irreducible. An extension of the Müller–Kamke theorem shows that in
theopen orthantIntRn, the restriction ofΦ is strongly monotone: If u,v ∈ IntRn, then

u < v andt > 0 )⇒ Φt (u)≪Φt (v).

A semiflow with this property isstrongly monotone.
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Similar order-preserving properties are found in other dynamical settings, including de-
lay differential equations and quasilinear parabolic partial differential equations. Typically
the state space is a subset of a (real) Banach spaceY with a distinguished closed cone
Y+ ⊂ Y . An order relation is introduced byx � y ⇔ x − y ∈ Y+. WhenY is a space of
real valued functions on some domain,Y+ is usually (but not always) the cone of functions
with values inR+ := [0,∞). WhenY = Rn, the cooperative systems defined above use
the coneRn+.

Equations (0.1) model an ecology of competing species if∂Gi/∂xj � 0 for i �= j . The
resulting vector fieldK with componentsKi = xiGi is not generally cooperative, but its
negativeF = −K is cooperative. Many dynamical properties of the semiflow ofK can be
deduced from that ofF , which is monotone.

We will see that the long-term behavior of monotone systems is severely limited. Typical
conclusions, valid under mild restrictions, include the following:

• If all forward trajectories are bounded, the forward trajectory of almost every initial
state converges to an equilibrium.

• There are no attracting periodic orbits other than equilibria, because every attractor
contains a stable equilibrium.

• In R3, every compact limit set that contains no equilibrium is a periodic orbit that
bounds an invariant disk containing an equilibrium.

• In R2, each component of any solution is eventually increasing or decreasing.
Other cones inRn are also used, especially the orthants defined by restricting the sign

of each coordinate. For example, a system of two competing species can be modeled by
ODEs

ẏi = yiHi(y); yi � 0, i = 1,2

with ∂Hi/∂yj < 0 for i �= j . The coordinate changex1 = y1, x2 = −y2 converts this into
a cooperative system in the second orthantK defined byx1 � 0 � x2. This system is thus
both competitive and cooperative, albeit for different cones. Not surprisingly, the dynamics
are very simple.

In view of such powerful properties of cooperative vector fields, it would be useful to
know when a given fieldF in an open setD ⊂ Rn can be made cooperative or competitive
by changing coordinates. The following sufficient condition appears to be due to DeAngelis
et al. [39]; see also Smith [193], Hirsch [74]. Assume the Jacobian matrices[aij (x)] =
F ′(x) have the following two properties:

(1) (Sign stability) Ifi �= j thenaij does not change sign inD;
(2) (Sign symmetry)aijaji � 0 inD.
Let Γ be the combinatorial labeled graph with nodes 1, . . . , n and an edgeeij join-

ing i and j labeledσij ∈ {+,−} if and only if i �= j and there existsp ∈ D such that
sgnaij (p) = σij �= 0. ThenF is cooperative (respectively, competitive) relative to some
orthant if and only if in every closed loop inΓ the number of negative labels is even
(respectively, odd).

Order-preserving dynamics also occur in discrete time systems. Consider a nonau-
tonomous Kolmogorov systeṁxi = xiHi(t, x), where the mapH := (H1, . . . ,Hn) :
R × Rn → Rn has periodτ > 0 in t . Denote byT : Rn+ → Rn+ the Poincaré map, which
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to x ∈ Rn+ assignsy(τ) wherey(t) denotes the solution with initial valuex. ThenT is
monotone provided the∂Hi/∂xj � 0 for i �= j , and strongly monotone in the open orthant
when these matrices are also irreducible. Most of the results stated above have analogs
for T .

Convergence and stability properties of several kinds of order-preserving semiflows are
developed in Sections 1 and 2, in the setting of general ordered metric spaces. Section 3
treats ODEs whose flows preserve the order defined by a cone inRn. Delay differential
equations are studied in Section 4. In Section 5 we present results on order-preserving
maps. The final section applies the preceding results to second order quasilinear parabolic
equations.

1. Strongly order-preserving semiflows

This section introduces the basic definitions and develops the main tools of monotone
dynamics. Several results on density of quasiconvergent points are proved, and used to
establish existence of stable equilibria.

1.1. Definitions and basic results

The setting is a semiflowΦ = {Φt }0�t<∞ in a (partially) ordered metric space that pre-
serves the weak order relation:x � y implies Φt (x) � Φt (y). Such semiflows, called
monotone, have severely restricted dynamics; for example, inRn with the vector ordering
there cannot be stable periodic orbits other than equilibria. But for generic convergence
theorems we need semiflows with the stronger property of being “strongly order preserv-
ing,” together with mild compactness assumptions. In later sections we will see that these
conditions are frequently encountered in applications. The centerpiece of this section is the
Limit Set Dichotomy, a fundamental tool for the later theory.

1.1.1. Ordered spaces LetZ be a metric space andA,B ⊂ Z subsets. The closure ofA is
denoted byA and its interior by IntA. The distance fromA toB is defined as dist(A,B) :=
infa∈A,b∈B d(a, b). WhenB is a singleton{b} we may write this as dist(A,b)= dist(b,A).
X always denotes anordered space. This meansX is endowed with a metricd and an

order relationR ⊂ X × X. As usual we writex � y to mean(x, y) ∈ R, and the order
relation is:

(i) reflexive:x � x for all x ∈X,
(ii) transitive:x � y andy � z impliesx � z,

(iii) antisymmetric:x � y andy � x impliesx = y.
In addition, the ordering is compatible with the topology in the following sense:

(iv) if xn → x andyn → y asn→ ∞ andxn � yn, thenx � y.
This is just to say thatR is a closed subset ofX×X.

We write x < y if x � y andx �= y. Given two subsetsA andB of X, we writeA �

B (A < B) whenx � y (x < y) holds for each choice ofx ∈ A andy ∈ B. The relation
A� B does not imply“A<B orA= B”!
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The notationx ≪ y means that there are open neighborhoodsU,V of x, y respectively
such thatU � V . Equivalently,(x, y) belongs to the interior ofR. The relation≪, some-
times referred to as thestrong ordering, is transitive; in many cases it is empty. We write
x � y to meany � x, and similarly for> and≫.

We callX an ordered subspaceof an ordered spaceX′ if X ⊂ X′, and the order and
topology onX are inherited fromX′. When this is this case, the relationu < v for points
u,v ∈ X means the same thing whetheru andv are considered as points ofX, or points
of X′. But there are simple examples for whichu≪ v is true inX′, yet false inX.

LetX be an ordered space. Thelower boundaryof a setU ⊂X is the set of pointsx in
the boundary ofU such that every neighborhood ofx contains a pointy ∈ U with y > x.
Theupper boundaryof U is defined dually.

Two pointsx, y ∈ X areorder relatedif x < y or y < x; otherwise they areunrelated.
A subset ofX is unorderedif it does not contain order related points. The empty set and
singletons are unordered.

The (closed)order intervaldetermined byu,v ∈X is the closed set

[u,v] = [u,v]X := {x ∈X: u� x � v}

which may be empty. Theopen order intervalis the open set

[[u,v]] = {x ∈X: u≪ x ≪ v}.

A subset ofX is order boundedif it lies in an order interval, andorder convexif it contains
[u,v] whenever it containsu andv.

A point x ∈X is accessible from belowif there is a sequencexn → x with xn < x; such
a sequence is said to approximatex from below. We defineaccessible from abovedually,
that is, by replacing< with >. In most applications there is a dense open subset of points
that are accessible from both above and below.

ThesupremumsupS of a subsetS ⊂X, if it exists, is the unique pointa such thata � S

andx � S ⇒ x � a. Theinfimuminf S is defined dually, i.e., substituting� for �. A max-
imal elementof S is a pointa ∈ S such thatx ∈ S andx � a implies x = a. A minimal
elementis defined dually.

The following basic facts are well known:

LEMMA 1.1. Assume the ordered spaceX is compact.
(i) Every sequence inX that is increasing or decreasing converges.

(ii) If X is totally ordered, it contains a supremum and an infimum.
(iii) X contains a maximal element and a minimal element.

PROOF. (i) If p andq denote subsequential limits, thenp � q andq � p, hencep = q.
(ii) For eachx ∈ X, the setBx := {y ∈ X: y � x} is compact, and every finite family

of such sets has nonempty intersection becauseX is totally ordered. Therefore there exists
a ∈
⋂
x Bx , and clearlya = supX. Similarly, infX exists.

(iii) Apply (ii) to a maximal totally ordered subset (using Zorn’s lemma). �
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An ordered Banach spaceis an ordered space whose underlying metric space is a Banach
spaceY , and such that the setY+ = {y ∈ Y : y � 0} is a cone, necessarily closed and
convex. ThusY+ is a closed subset ofY with the properties:

R+ · Y+ ⊂ Y+, Y+ + Y+ ⊂ Y+, Y+ ∩ (−Y+)= {0}.

We always assumeY+ �= {0}.
When IntY+ is nonempty we callY a strongly orderedBanach space. In this case

x ≪ y ⇔ y − x ∈ IntY+.
The most important examples of ordered Banach spaces are completions of normed vec-

tor spaces of real-valued functions on some setΩ , with the positive cone corresponding to
nonnegative functions. This cone defines thefunctional ordering. The simplest case is ob-
tained fromΩ = {1,2, . . . , n}: hereY = Rn andY+ = Rn+, thestandard conecomprising
vectors with all components nonnegative. For the correspondingvector ordering, x � y

means thatxi � yi for all i. Other function spaces are used in Sections 4 and 6.
WhenY is an ordered Banach space, the notationX ⊂ Y tacitly assumes thatX is an

ordered subspace ofY (but not necessarily a linear subspace).
A subsetS of an ordered Banach space isp-convexif it contains the line segment

spanned byu,v wheneveru,v ∈ S andu < v.

1.1.2. Semiflows All maps are assumed to be continuous unless the contrary is indicated.
A semiflowonX is a mapΨ :R+ ×X→X, (t, x) �→ Ψt (x) such that:

Ψ0(x)= x, Ψt
(
Ψs(x)

)
= Ψt+s(x) (t, s � 0, x ∈X).

ThusΨ can be viewed as a collection of maps{Ψt }t∈R+ such thatΨ0 is the identity map
of X andΨt ◦Ψs = Ψt+s , and such thatΨt (x) is continuous in(t, x).

A flow in a spaceM is a continuous mapΨ :R ×M →M , writtenΨ (t, x) = Ψt (x),
such that

Ψ0(x)= x, Ψt
(
Ψs(x)

)
= Ψt+s(x) (t, s ∈ R, x ∈X).

Restricting a flow toR+ ×M gives a semiflow. AC1 vector fieldF on a compact mani-
fold M , tangent to the boundary, generates asolution flow, for which the trajectory ofx is
the solutionu(t) to the initial value problem du/dt = F(u), u(0)= x.

The trajectory of x is the map[0,∞)→ X, t �→ Ψt (x); the image of the trajectory is
theorbit O(x,Ψ ), denoted byO(x) whenΨ is understood. WhenO(x) = {x} thenx is
anequilibrium. The set of equilibria is denoted byE.
x and its orbit are calledT -periodic if T > 0 andΨT (x)= x; such aT is aperiodof x.

In this caseΨt+T (x)= Ψt (x) for all t � 0, soO(x)= Ψ ([0, T ] × {x}). A periodic point is
nontrivial if it is not an equilibrium.

A setA⊂X is positively invariantif ΨtA⊂ A for all t � 0. It is invariant if ΨtA= A

for all t � 0. Orbits are positively invariant and periodic orbits are invariant.
A setK is said toattract a setS if for every neighborhoodU of K there existst0 � 0

such thatt > t0 ⇒ Ψt (S)⊂ U ; whenS = {x} we sayK attractsx. An attractor is a non-
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empty invariant setL that attracts a neighborhood of itself. The union of all such neigh-
borhoods is thebasinof L. If the basin of an attractorL is all of X thenL is a global
attractor.

Theomega limit setof x ∈X is

ω(x)= ω(x,Ψ ) :=
⋂

t�0

⋃

s�t

Ψs(x).

This set is closed and positively invariant. WhenO(x) is compact,ω(x) is nonempty,
compact, invariant and connected and it attractsO(x) (see, e.g., Saperstone [175]).

A point x ∈ X is quasiconvergentif ω(x) ⊂ E; the set of quasiconvergent points is
denoted byQ. We callx convergentwhenω(x) is singleton{p}; in this caseΦt (x) →
p ∈E. We sometimes signal this by the abuse of notationω(x) ∈E. The set of convergent
points is denoted byC.

When all orbit closures are compact andE is totally disconnected (e.g., countable),
thenQ = C; because in this case every omega limit set, being a connected subset ofE,
is a singleton. For systems of ordinary differential equations generated by smooth vector
fields, the Kupka–Smale theorem gives generic conditions implying thatE is discrete (see
Peixoto [157]); but in concrete cases it is often difficult to verify these conditions.

1.1.3. Monotone semiflowsA mapf :X1 →X2 between ordered spaces ismonotoneif

x � y )⇒ f (x)� f (y),

strictly monotoneif

x < y )⇒ f (x) < f (y),

andstrongly monotoneif

x < y )⇒ f (x)≪ f (y).

Let Φ denote a semiflow in the ordered spaceX. We call Φ monotone or strictly
monotone according as each mapΦt has the corresponding property.

We callΦ strongly order-preserving, SOP for short, if it is monotone and whenever
x < y there exist open subsetsU,V of x, y respectively, andt0 � 0, such that

Φt0(U)�Φt0(V ).

Monotonicity ofΦ then implies thatΦt (U)�Φt (V ) for all t � t0.
We callΦ strongly monotoneif

x < y, 0< t )⇒ Φt (x)≪Φt (y)
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andeventually strongly monotoneif it is monotone and wheneverx < y there existst0> 0
such that

t � t0 )⇒ Φt (x)≪Φt (y).

This property obviously holds whenΦ is strongly monotone. We shall see in Section 6 that
many parabolic equations generate SOP semiflows in function spaces that are not strongly
ordered and therefore do not support strongly monotone semiflows.

Strong monotonicity was introduced in Hirsch [68,69], while SOP was proposed later
by Matano [133,134] and modified slightly by Smith and Thieme [197,199]. We briefly
explore the relation between these two concepts.

PROPOSITION1.2. If Φ is eventually strongly monotone, it is SOP. If X is an open subset
of a Banach spaceY ordered by a coneY+,Φ is SOP and the mapsΦt :X→X are open,
thenΦ is eventually strongly monotone. In particular, Φ is eventually strongly monotone
providedY is finite-dimensional,Φ is SOP and the mapsΦt are injective.

PROOF. If x < y andΦ is eventually strongly monotone, then there existst0> 0 such that
Φt0(x)≪Φt0(y). Take neighborhoods̃U of Φt0(x) andṼ of Φt0(y) such that̃U < Ṽ . By
continuity ofΦt0, there are neighborhoodsU of x andV of y such thatΦt0(U)⊂ Ũ and
Φt0(V )⊂ Ṽ . Therefore,Φt0(U) < Φt0(V ) soΦ is SOP.

Suppose thatX ⊂ Y is open and ordered byY+ andΦ is SOP. Ifx < y andU,V are
open neighborhoods as in the definition of SOP, the inequalityΦt (U) � Φt (V ) together
with the fact thatΦt (U) andΦt (V ) are open inY imply thatΦt (x)≪Φt (y). �

The following very useful result shows that the defining property of SOP semiflows,
concerning pointsx < y, extends to a similar property for compact setsK <L:

LEMMA 1.3. AssumeΦ is SOP andK,L are compact subsets ofX satisfyingK < L.
Then there exists real numberst1 � 0, ǫ > 0 and neighborhoodsU,V ofK,L respectively
such that

t � t1 and 0� s � ǫ )⇒ Φt+s(U)�Φt (V ).

PROOF. Let x ∈ K . For eachy ∈ L there existty � 0, a neighborhoodUy of x, and a
neighborhoodVy of y such thatΦt (Uy) � Φt (Vy) for t � ty sinceΦ is strongly order
preserving.{Vy}y∈L is an open cover ofL, so we may choose a finite subcover:L ⊂⋃n
i=1Vyi := Ṽ whereyi ∈ L, 1 � i � n. Let Ũx =

⋂n
i=1Uyi , which is a neighborhood

of x, and lett̃x = max1�i�n tyi . ThenΦt̃ (Ũx)⊂Φt̃ (Uyi )�Φt̃ (Vyi ), soΦt (Ũx)�Φt (Vyi )

for t � t̃x . It follows that

t � t̃x )⇒ Φt
(
Ũx
)
�Φt

(
Ṽ
)
.
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Extract a finite subcover{Ũxj } of K from the family{Ũx}. SettingU :=
⋃
j Ũxj ⊃K and

t1 := max1�j�m t̃xj , we have

t � t1 )⇒ Φt (U)=
⋃

j

Φt
(
Ũj
)
�Φt (V ).

In order to obtain the stronger conclusion of the lemma, note that for eachz ∈K there ex-
istsǫz > 0 and a neighborhoodU ′

z of z such thatΦ([0, ǫz)×Wz)⊂U . Choosez1, . . . , zm
inK so thatK ⊂

⋃
j U

′
zj

. DefineU ′ =
⋃
j U

′
zj

andǫ = minj {ǫzj }. If x ∈U ′ and 0� s < ǫ

thenx ∈ U ′
zj

for somej soΦs(x) ∈ U . ThusΦ([0, ǫ)× U ′)⊂ U soΦs(U ′)⊂ U . It fol-
lows thatΦt+s(U ′)⊂Φt (U)�Φt (V ) for t � t1, 0� s < ǫ. �

Several fundamental results in the theory of monotone dynamical systems are based on
the following sufficient conditions for a solution to converge to equilibrium.

THEOREM1.4 (Convergence Criterion).AssumeΦ is monotone, x ∈X has compact orbit
closure, andT > 0 is such thatΦT (x)� x. Thenω(x) is an orbit of periodT . Moreover,
x is convergent if the set of suchT is open and nonempty orΦ is SOP andΦT (x) > x.

PROOF. Monotonicity implies thatΦ(n+1)T (x) � ΦnT (x) for n = 1,2, . . . and therefore
ΦnT (x)→ p asn→ ∞ for somep by the compactness of the orbit closure. By continuity,

Φt+T (p) = Φt+T
(

lim
n→∞

ΦnT (x)
)

= lim
n→∞

Φ(n+1)T+t (x)

= lim
n→∞

Φt
(
Φ(n+1)T (x)

)

= Φt (p)

for all t � 0. Hencep is T -periodic.
To proveω(x)=O(p), supposetj → ∞ andΦtj (x)→ q ∈ ω(x) asj → ∞, and write

tj = njT + rj wherenj is a natural number and 0� rj < T . By passing to a subsequence
if necessary, we may assume thatrj → r ∈ [0, T ]. Taking limits asj → ∞ and noting that
nj → ∞, we have by continuity:

limΦtj (x)= limΦrj
(
limΦnjT (x)

)
= limΦrj (p)=Φr(p)= q.

Thereforeω(x)⊂O(p), and the opposite inclusion holds becausep ∈ ω(x). This proves
the first assertion of the theorem.

SupposeΦt (x) � x for all t in a nonempty open interval(T − ǫ,T + ǫ). The first as-
sertion shows thatω(x) is an orbitO(p) of periodτ for everyτ ∈ (T − ǫ,T + ǫ). All
elements ofO(p) have the same setG of periods;G is closed under addition and contains
(T − ǫ,T + ǫ). If 0 � s < ǫ andt � 0 then

Φt+s(p)=Φt
(
Φs(p)

)
=Φt

(
Φs+T (p)

)
=Φt (p).
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Hence[0, ǫ) ⊂ G and thereforeG = R+, which impliesp ∈ E. This proves the second
assertion.

If ΦT (x) > x andΦ is SOP then there exist neighborhoodsU of x andV of ΦT (x)
andt0> 0 such thatΦt0(U)�Φt0(V ). It follows thatΦt0(x)�Φt0+T+ǫ(x) for all ǫ suffi-
ciently small. The previous assertion impliesω(x)= p ∈E. �

1.2. Nonordering of omega limit sets

The next result is the first of several describing the order geometry of limit sets.

PROPOSITION1.5 (Nonordering of Periodic Orbits).A periodic orbit of a monotone semi-
flow is unordered.

PROOF. Let x have minimal periods > 0 under a monotone semiflowΦ. Supposex �

z ∈O(x). By compactness ofO(x) there is a maximaly ∈O(x) such thaty � z� x. By
periodicity and monotonicityy =Φt (x)�Φt (y), t > 0, hencey =Φt (y) by maximality.
Thereforet is an integer multiple ofs, sox =Φt (x)= y, implying x = z. �

The following result, which implies (1.5), is a broad generalization of the obvious fact
that for ODEs inR, nonconstant solutions are everywhere increasing or everywhere de-
creasing. LetJ ⊂ R be an interval andf :J →X a map. A compact subinterval[a, b] ⊂ J

is rising for f providedf (a) < f (b), andfalling if f (b) < f (a).

THEOREM 1.6. A trajectory of a monotone semiflow cannot have both a rising interval
and a falling interval.

This originated in Hirsch [67], with improvements in Smith [194], Smith and Walt-
man [203]. An analog for maps is given in Theorem 5.4.

PROOF. LetΦ be a monotone semiflow inX and fix a trajectoryf : [0,∞)→X, f (t) :=
Φt (x). Call an interval[d, d ′] weakly falling if f (d) � f (d ′). Monotonicity shows that
when this holds, theright translatesof [d, d ′]—the intervals[d + u,d ′ + u] with u� 0—
are also weakly falling.

Proceeding by contradiction, we assumef has a falling interval[a, a + r] and a rising
interval[c, c+ q]. To fix ideas we assumea � c, the casec� a being similar. Define

b := sup
{
t ∈ [c, c+ q]: f (t)� f (c), s := c+ q − b

}
.

Then[b, b+ s] is a rising interval in[c, c+ q], and

b < t � b+ s )⇒ f (t)� f (b). (1.1)

Claim 1: No interval [b − l, b] is weakly falling. Assume the contrary. Then (i)l > s,
and (ii) [b− (l − s), b] is weakly falling. To see (i), observe thatf (b+ l)� f (b) because
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[b, b + l] is a right translate of[b − l, b]; hencel � s would entailb < b + l � b + s,
contradicting (1.1) witht = b+ l. To prove (ii), note that right translation of[b − l, b]
shows that[b − l + s, b + s] is weakly falling, implyingf (b − (l − s)) � f (b + s) >

f (b); hence[b − (l − s), b] is falling. Repetition of this argument withl replaced by
l − s, l − 2s, . . . leads by induction onn to the absurdity thatl − ns > s for all n ∈ N.

Claim 2: r > s. Forf (b+ r)� f (b) because[b, b+ r] is falling, as it is a right trans-
late of [a, a + r]. Thereforer > s, for otherwiseb < b + r � b + s and (1.1) leads to a
contradiction.

As b+ s � a+ r , we can translate[a, a+ r] to the right by(b+ s)− (a+ r), obtaining
the weakly falling interval[b + s − r, b + s]. Note thatb + s − r < b by Claim 2. From
f (b + s − r) � f (b + s) > f (b)] we conclude that[b − (r − s), b] is falling. But this
contradicts Claim 1 withl = r − s. �

LEMMA 1.7. An omega limit set for a monotone semiflowΦ cannot contain distinct points
x, y having respective neighborhoodsU,V such thatΦrU �ΦrV for somer � 0.

PROOF. We proceed by contradiction. Suppose there exist distinct pointsx, y ∈ ω(z) hav-
ing respective neighborhoodsU , V such thatΦrU � ΦrV for somer � 0. Thenω(z) is
not a periodic orbit, for otherwise fromΦr(x)� Φr(y) we inferx � y and hencex < y,
violating Nonordering of Periodic Orbits.

There exist real numbersa < b < c be such thatΦa(z) ∈ U , Φb(z) ∈ V , Φc(z) ∈ U .
Therefore the properties ofr,U andV imply

Φa+r(z)�Φb+r (z), Φb+r(z)�Φc+r(z).

Asω(z) is not periodic, the semiflow is injective on the orbit ofz; hence the order relations
above are strict. But this contradicts Theorem 1.6. �

It seems to be unknown whether omega limit sets of monotone semiflows must be un-
ordered. This holds for SOP semiflows by the following theorem due to Smith and Thieme
[197, Proposition 2.2]; the strongly monotone case goes back to Hirsch [66]. This result is
fundamental to the theory of monotone semiflows:

THEOREM 1.8 (Nonordering of Omega Limit Sets).Letω(z) be an omega limit set for a
monotone semiflowΦ.

(i) No points ofω(z) are related by≪.
(ii) If ω(z) is a periodic orbit orΦ is SOP, no points ofω(z) are related by<.

PROOF. Assumex, y ∈ ω(z). If ω(z) is a periodic orbit thenx, y are unrelated (Proposi-
tion 1.5). If x ≪ y or x < y andΦ is SOP, there are respective neighborhoodsU , V of x,
y such thatΦr(U)�Φr(V ) for somer � 0; but this violates Lemma 1.7. �

COROLLARY 1.9. AssumeΦ is SOP.
(i) If an omega limit set has a supremum or infimum, it reduces to a single equilibrium.
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(ii) If the equilibrium set is totally ordered, every quasiconvergent point with compact
orbit closure is convergent.

PROOF. Part (i) follows from Theorem 1.8(ii), since the supremum or infimum, if it exists,
belongs to the limit set. Part (ii) is a consequence of (i). �

1.3. Local semiflows

For simplicity we have assumed trajectories are defined for allt � 0, but there are occasions
when we need the more general concept of alocal semiflowin X. This means a map
Ψ :Ω →X, withΩ ⊂ [0,∞)×X an open neighborhood of{0} ×X, such that the maps

Ψt :Dt →X, x �→ Ψ (t, x) (0� t <∞)

satisfy the following conditions:Dt is an open, possibly empty set inX, Ψ0 is the identity
map ofX, andΨs+t = Ψs ◦ Ψt in the sense thatDs+t = Dt ∩ Ψ−1

t (Ds) andΨs+t (x) =
Ψs(Ψt (x)) for x ∈Ds+t .

The trajectory ofx is defined as the map

Ix →X, t �→ Ψt (x), whereIx = {t ∈ R+: x ∈Dt }.

The composition law impliesIx is a half open interval[0, τx); we call τx ∈ (0,∞] the
escape timeof x. It is easy to see that every point with compact orbit closure has infinite
escape time. Thus a local semiflow with compact orbit closures is a semiflow. In dealing
with local semiflows we adopt the convention that the notationsΨt (x) andΨt (U) carry the
assumptions thatt ∈ Ix andU ⊂Dt . The image ofIx under the trajectory ofx is the orbit
O(x). The omega limit setω(x) is defined asω(x)=

⋂
t∈Ix O(Ψt (x)).

A local flowis a mapΘ :Λ→X whereΛ⊂ R×X is an open neighborhood of{0}×X,
and the (possibly empty) maps

Θt :Dt →X, x �→Θ(t, x) (−∞ � t <∞)

satisfy the following conditions:Θ0 is the identity map ofD0 := X, Θt is a homeomor-
phism ofDt ontoD−t with inverseΘ−t , and

x ∈ (Θs)−1Dr )⇒ Θr ◦Θs(x)=Θr+s(x).

Θ is aflowprovidedDt =X for all t .
The setJx := {t ∈ R: x ∈ Dt } is an open interval around 0. The positive and negative

semiorbitsof x are the respective sets

γ+(x)= γ+(x,Θ) :=
{
Θt (x): t ∈ Jx, t � 0

}
,

γ−(x)= γ−(x,Θ) :=
{
Θt (x): t ∈ Jx, t � 0

}
.
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Thetime-reversalof Θ is the local flowΘ̃ defined byΘ̃(t, x)=Θ(−t, x).
The omega limit setω(x) (for Θ) is defined to beω(x) =

⋂
t∈Ix ,t�0O(Ψt (x)). The

alpha limit setα(x)= α(x,Θ) of x is defined as the omega limit set ofx under the time-
reversal ofΘ+.

LetF be a locally Lipschitz vector fieldF on a manifoldM tangent along the boundary.
Denote byt �→ u(t;x) the maximally defined solution tȯu= F(u), u(0, x)= x. There is a
local flowΘF onM such thatΘt (x)= u(t;x). The time-reversal ofΘF isΘ−F . WhenM
is compact,ΘF is a flow. If we assume thatF , rather than being tangent to the boundary,
is transverse inward, we obtain a local semiflow.

Our earlier results are readily adapted to monotone local semiflows. In particular, omega
limit sets are unordered. Theorems 1.8 and 1.6 have the following extension:

THEOREM 1.10. LetΦ be a monotone local semiflow.
(a) No trajectory has both a rising and a falling interval.
(b) No points of an omega limit set are related by≪, or by< if Φ is SOP.
(c) The same holds for alpha limit sets providedΦ is a local flow.

PROOF. The proofs of Theorems 1.6 and 1.8 also prove (a) and (b), and (c) follows by
time reversal. �

1.4. The limit set dichotomy

Throughout the remainder of Section 1 we adopt the following assumptions:

(H) Φ is a strongly order preserving semiflow in an ordered spaceX, with every orbit
closure compact.

Our goal now is to prove the important Limit Set Dichotomy:

If x < y then eitherω(x) < ω(y), or ω(x)= ω(y)⊂E.

LEMMA 1.11 (Colimiting Principle).Assumex < y, tk → ∞,Φtk (x)→ p andΦtk (y)→
p ask→ ∞. Thenp ∈E.

PROOF. Choose neighborhoodsU of x andV of y andt0> 0 such thatΦt0(U)�Φt0(V ).
Let δ > 0 be so small that{Φs(x): 0 � s � δ} ⊂ U and {Φs(y): 0 � s � δ} ⊂ V . Then
Φs(x)�Φr(y) whenevert0 � r , s � t0 + δ. Therefore,

Φtk−t0
(
Φs(x)

)
�Φtk−t0

(
Φt0(y)

)
=Φtk (y) (1.2)

for all s ∈ [t0, t0 + δ] and all largek. As

Φtk−t0
(
Φs(x)

)
=Φs−t0

(
Φtk (x)

)
=Φr

(
Φtk (x)

)
,
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wherer = s − t0 ∈ [0, δ] if s ∈ [t0, t0 + δ], we have

Φr
(
Φtk (x)

)
�Φtk (y)

for large k and r ∈ [0, δ]. Passing to the limit ask → ∞ we find thatΦr(p) � p for
0� r � δ. If, in (1.2), we replaceΦs(x) byΦt0(x) and replaceΦt0(y) byΦs(y), and argue
as above then we find thatp �Φr(p) for 0 � r � δ. Evidently,Φr(p)= p, 0� r � δ and
therefore for allr � 0, sop ∈E. �

THEOREM 1.12 (Intersection Principle).If x < y thenω(x) ∩ ω(y) ⊂ E. If p ∈ ω(x) ∩
ω(y) and tk → ∞, thenΦtk (x)→ p if and only ifΦtk (y)→ p.

PROOF. If p ∈ ω(x) ∩ ω(y) then there exists a sequencetk → ∞ such thatΦtk (x)→ p

andΦtk (y) → q ∈ ω(y), andp � q by monotonicity. Ifp < q then we contradict the
Nonordering of Limit Sets sincep,q ∈ ω(y). Hencep = q. The Colimiting Principle then
impliesp ∈E. �

The proof of the next result has been substantially simplified over previous versions.

LEMMA 1.13. Assumex < y, tk → ∞,Φtk (x)→ a, andΦtk (y)→ b ask→ ∞. If a < b
thenO(a) < b andO(b) > a.

PROOF. The setW := {t � 0: Φt (a)� b} contains 0 and is closed. We proveW = [0,∞)

by showing thatW is also open. Observe first that ift ∈W , thenΦt (a) < b. For equality
implies b ∈ ω(x) ∩ ω(y) ⊂ E, and then the Intersection Principle entailsΦtk (x) → b,
giving the contradictiona = b.

Supposēt ∈W is positive. By SOP there are open setsU,V with Φt̄ (a) ∈U , b ∈ V and
t1 � 0 such thatΦt (U)�Φt (V ) for t � t1. There existsδ ∈ (0, t̄/2) such thatΦs(a) ∈ U
for |s− t̄ | � δ, so we can find an integerκ > 0 such thatΦs(Φtk (x)) ∈U for k � κ . Choose
k0 � κ such thatΦtk0 (y) ∈ V . Then we haveΦt+s+tk0 (x) � Φt+tk0 (y) for t � t1. Setting
t = tk − tk0 for largek in this last inequality yieldsΦtk+s(x)�Φtk (y) for largek. Taking
the limit ask→ ∞ we getΦs(a)� b for |s − t̄ | � δ. A similar argument in the casēt = 0
considering onlys ∈ [0, δ] gives the previous inequality for suchs. Therefore,W is both
open and closed soW = [0,∞). This provesO(a) < b, andO(b) > a is proved dually.�

LEMMA 1.14 (Absorption Principle).Let u,v ∈ X. If there existsx ∈ ω(u) such that
x < ω(v), thenω(u) < ω(v). Similarly, if there existsx ∈ ω(u) such thatω(v) < x, then
ω(v) < ω(u).

PROOF. Apply Lemma 1.3 to obtain open neighborhoodsU of x andV of ω(v) andt0> 0
such that

r � t0 )⇒ Φr(U)�Φr(V ),

henceΦr(U) � ω(v) sinceω(v) is invariant. Asx ∈ ω(u), there existst1 > 0 such that
Φt1(u) ∈ U . Hence forΦt0+t1(u) � ω(v), and monotonicity implies thatΦs+t0+t1(u) �
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ω(v) for all s � 0. This implies thatω(u)� ω(v). If z ∈ ω(u)∩ω(v) thenz= supω(u)=
inf ω(v), whence{z} = ω(u) = ω(v) by Corollary 1.9(ii). But this is impossible since
x < ω(v) andx ∈ ω(u), so we conclude thatω(u) < ω(v). �

LEMMA 1.15 (Limit Set Separation Principle).Assumex < y, a < b and there is a se-
quencetk → ∞ such thatΦtk (x)→ a, Φtk (y)→ b. Thenω(x) < ω(y).

PROOF. By Lemma 1.13,O(a) < b, and thereforeω(a) � b. If b ∈ ω(a) then Corol-
lary 1.9 implies thatω(a)= b ∈E. Applying the Absorption Principle withu= x, v = a,
x = a, we havea ∈ ω(x), a < ω(a)= b which implies thatω(x) < ω(a). This is impos-
sible asω(a) ⊂ ω(x). Consequently,ω(a) < b. By the Absorption Principle again (with
u= a, v = y), we haveω(a) < ω(y). Sinceω(a)⊂ ω(x), the Absorption Principle gives
ω(x) < ω(y). �

We now prove the fundamental tool in the theory of monotone dynamics, stated for
strongly monotone semiflows in Hirsch [66,68].

THEOREM 1.16 (Limit Set Dichotomy).If x < y then either
(a) ω(x) < ω(y), or
(b) ω(x)= ω(y)⊂E.

If case(b) holds andtk → ∞ thenΦtk (x)→ p if and only ifΦtk (y)→ p.

PROOF. If ω(x) = ω(y) then ω(x) ⊂ E by the Intersection Principle, Theorem 1.12,
which also establishes the final assertion. Ifω(x) �= ω(y) then we may assume that there
exists q ∈ ω(y) \ ω(x), the other case being similar. There existstk → ∞ such that
Φtk (y) → q. By passing to a subsequence if necessary, we can assume thatΦtk (x) →
p ∈ ω(x). Monotonicity impliesp � q and, in fact,p < q sinceq /∈ ω(x). By the Limit
Set Separation Principle,ω(x) < ω(y). �

Among the many consequences of the Convergence Criterion is that a monotone semi-
flow in a strongly ordered Banach space cannot have a periodic orbitγ that is attract-
ing, meaning thatγ attracts all points in some neighborhood of itself (Hadeler [55],
Hirsch [69]). The following consequence of the Limit Set Dichotomy implies the same
conclusion for periodic orbits of SOP semiflows:

THEOREM 1.17. Let γ be a nontrivial periodic orbit, some point of which is accessible
from above or below. Thenγ is not attracting.

The accessibility hypothesis is used to ensure that there are points nearp that are order-
related top but different fromp. Some such hypothesis is required, as otherwise we could
simply takeX = γ , and thenγ is attracting!

PROOF. Supposeγ ⊂ W attracts an open setW . By hypothesis there existsp ∈ γ and
x ∈ W such thatx > p or x < p andω(x) = γ . To fix ideas we assumex > p. Then
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p ∈ ω(x), so the Limit Set Dichotomy impliesp ∈ E. Hence the contradiction thatγ
contains an equilibrium. �

It turns out that the periodic orbitsγ considered above are not only not attracting; they
enjoy the strong form of instability expressed in the next theorem.

A setK ⊂X is minimal if it is nonempty, invariant, and every orbit it contains is dense
in K .

THEOREM 1.18. LetK be a compact minimal set that is not an equilibrium, some point
of which is accessible from below or above. Then there existsδ > 0 with the following
property: Every neighborhood ofK contains a pointx comparable to some point ofK ,
such thatdist(Φt (x),K) > δ for all sufficiently larget .

PROOF. We may assume there exists a sequencex̃n → p ∈ K with x̃n > p. Suppose
there is no suchδ. Then there exist a subsequence{xn} and pointsyn ∈ ω(xn) such that
yn → q ∈ K . Minimality of K impliesω(p) = ω(q) = K . Sincexn > p, the Limit Set
Dichotomy impliesω(xn)� ω(p); thereforeyn �K , soq �K . It follows thatq = supK ,
and Corollary 1.9 implies the contradiction thatK is a singleton. �

A stronger form of instability for periodic orbits is given in Theorem 2.6.

1.5. Q is plentiful

One of our main goals is to find conditions that make quasiconvergent points generic in
various senses. The first such results are due to Hirsch [66,73]; the result below is an
adaptation of Smith and Thieme [199, Theorem 3.5].

We continue to assumeΦ is an SOP semiflow with compact orbit closures.
A totally ordered arcis the homeomorphic image of a nontrivial intervalI ⊂ R under a

mapf : I →X satisfyingf (s) < f (t) whenevers, t ∈ I ands < t .

THEOREM 1.19. If J ⊂X is a totally ordered arc, J \Q is at most countable.

Stronger conclusions are obtained in Theorems 2.8 and 2.24.
The following global convergence theorem is adapted from Hirsch [73, Theorem 10.3].

COROLLARY 1.20. Let Y be an ordered Banach space. AssumeX ⊂ Y is an open set,
a closed order interval, or a subcone ofY+. If E = {p}, every trajectory converges top.

PROOF. If X is open inY , there exists a totally ordered line segmentJ ⊂ X and quasi-
convergent pointsu,v ∈ J with u < x < v, by Theorem 1.19. ThereforeΦt (u)→ p and
Φt (v)→ p, so monotonicity and closedness of the order relation implyΦt (x)→ p.

If X = [a, b], the trajectories ofa andb converge top by the Convergence Criterion 1.4,
and the previous argument shows all trajectories converge top. Similarly if X is a subcone
of Y+. �
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PROOF OFTHEOREM 1.19. LetW =Φ([0,∞)× J ). Continuity ofΦ implies thatW is
a separable metric space which is positively invariant underΦ. Therefore we may as well
assume thatX is a separable metric space.

We show that ifx ∈ J and

inf
{
dist
(
ω(x),ω(y)

)
: y ∈ J,y �= x

}
= 0,

thenx ∈Q. Choose a sequencexn ∈ J , xn �= x such that dist(ω(x),ω(xn))→ 0. We may
assume thatxn < x for all n. Taking a subsequence, we conclude from the Limit Set Di-
chotomy: Either someω(xn)= ω(x), or everyω(xn) < ω(x).

In the first case,x ∈ Q. In the second case, chooseyn ∈ ω(xn), zn ∈ ω(x) such that
d(yn, zn) → 0. After passing to subsequences, we assumeyn, zn → z ∈ ω(x). Because
yn � ω(x), we conclude thatz � ω(x). As z ∈ ω(x), Corollary 1.9 impliesω(x) = {z}.
Hencex ∈Q in this case as well.

It follows that for everyx ∈ J \Q, there exists an open setUx containingω(x) such that
Ux ∩ω(y)= ∅ for everyy ∈ J \ {x}. By the axiom of choice we get an injective mapping

J \Q→X, x �→ px ∈ ω(x)⊂Ux .

The separable metric spaceX has a countable baseB. A second application of the axiom
of choice gives a map

J \Q→ B, x �→ Vx ⊂Ux, px ∈ Vx .

This map is injective. For ifx, y are distinct points ofJ \Q, thenVx �= Vy becauseVx ,
being contained inUx , does not meetω(y); but py ∈ Vy ∩ ω(y). This provesJ \Q is
countable. �

Let Y be an ordered Banach space and assumeX ⊂ Y is an ordered subspace (not nec-
essarily linear). WhenY is finite-dimensional, Theorem 1.19 impliesX \Q has Lebesgue
measure zero, hence almost every point is quasiconvergent. For infinite-dimensionalY

there is an analogous result for Gaussian measures (Hirsch [73, Lemma 7.7]). The next
result shows that in this caseQ is also plentiful in the sense of category.

A subset of a topological spaceS is residualif it contains the intersection of countably
many dense open subsets ofS. WhenS is a complete metric space every residual set is
dense by the Baire category theorem.

The assumption onX in the following result holds for many subsets of an ordered Ba-
nach space, including all convex sets and all sets with dense interior.

THEOREM 1.21. AssumeX is a subset of an ordered Banach spaceY , and a dense open
subsetX0 ⊂X is covered by totally ordered line segments. ThenQ is residual inX.

PROOF. It suffices to show that the setQ1 := Q ∪ (Y \ X0) is residual inY . Note that
Y \Q1 =X0 \Q. LetL⊂ Y be the 1-dimensional space spanned by some positive vector.
Every translatey + L meetsY \Q1 in a finite or countably infinite set by Theorem 1.19,
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hence(y + L) ∩ Q1 is residual in the liney + L. By the Hahn–Banach theorem there
is a closed linear subspaceM ⊂ Y and a continuous linear isomorphismF : Y ≈M × L

such thatF(x + L)= {x} × L for eachx ∈M . ThereforeF(Q1) ∩ ({x} × L) is residual
in {x} × L for all x ∈ X0, whenceF(Q1) is residual inM × L by the Kuratowski–Ulam
Theorem (Oxtoby [154]). This impliesQ1 is residual inY . �

Additional hypotheses seem to be necessary in order to prove density ofQ in general
ordered spaces. The next theorem obtains the stronger conclusion thatQ has dense interior.
A different approach will be explored in Section 2.

A point x is doubly accessible from below(respectively, above) if in every neighborhood
of x there existf , g with f < g < x (respectively,x < f < g).

Consider the following condition on a semiflow satisfying (H):

(L) Either every omega limit set has an infimum inX and the set of points that are
doubly accessible from below has dense interior, or every omega limit set has a
supremum inX and the set of points that are doubly accessible from above has
dense interior.

This holds whenX is the Banach space of continuous functions on a compact set with the
usual ordering, for then every compact set has a supremum and infimum, and every point
is doubly accessible from above and below.

THEOREM 1.22. If (L) holds, thenX \Q⊂ IntC, and IntQ is dense.

The proof is based on the following result. Forp ∈ E defineC(p) := {z ∈ X: ω(z) =
{p}}. Note thatC =

⋃
p∈E C(p).

LEMMA 1.23. Supposex ∈ X \Q and a = inf ω(x). Thenω(a) = {p} with p < ω(x),
andx ∈ IntC(p) providedx is doubly accessible from below.

PROOF. Fix an arbitrary neighborhoodM of x. Note thata < ω(x) becauseω(x) is
unordered (Theorem 1.8). By invariance ofω(x) we haveΦta � ω(x), henceΦta � a.
Therefore the Convergence Criterion Theorem 1.4 impliesω(a) is an equilibriump � a.
Becausep < ω(x), SOP yields a neighborhoodN of ω(x) ands � 0 such thatp �ΦtN

for all t � s. Chooser � 0 with Φtx ∈ N for t � r . Thenp � Φtx if t � r + s. The set
V := (Φr+s)−1(N) ∩M is a neighborhood ofx in M with the property thatp �ΦtV for
all t � r + 2s. Hence:

u ∈ V )⇒ p � ω(u). (1.3)

Now assumex doubly accessible from below and fixy1, y ∈ V with y1< y < x. By the
Limit Set Dichotomyω(y) < ω(x), becauseω(x) �⊂ E. By SOP we fix a neighborhood
U ⊂ V of y1 and t0 > 0 such thatΦt0u � Φt0y for all u ∈ U . The Limit Set Dichotomy
impliesω(u)= ω(y) or ω(u) < ω(y); asω(y) < ω(x), we therefore have:

u ∈U )⇒ ω(u) < ω(x). (1.4)



258 M.W. Hirsch and H. Smith

For all u ∈ U , (1.4) impliesω(u) � ω(a) = {p}, while (1.3) entailsp � ω(u). Hence
U ⊂ C(p)∩M , and the conclusion follows. �

PROOF OFTHEOREM 1.22. To fix ideas we assume the first alternative in (L), the other
case being similar. LetX0 denote a dense open set of points doubly accessible from below.
Lemma 1.23 impliesX0 ⊂ Q ∪ IntC ⊂ Q ∪ IntQ, hence the open setX0 \ IntQ lies
in Q. This proveX0 \ IntQ ⊂ IntQ, soX0 \ IntQ = ∅. ThereforeIntQ ⊃ X0, hence
IntQ⊃X0 =X. �

EXAMPLE 1.24. An example in Hirsch [73] shows that generic quasiconvergence and the
Limit Set Dichotomy need not hold for a monotone semiflow that does not satisfy SOP. Let
X denote the ordered Banach spaceR3 whose ordering is defined by the “ice-cream” cone

X+ = {x ∈ R3: x3 �

√
x2

1 + x2
2}. The linear systemx′

1 = −x2, x
′
2 = x1, x

′
3 = 0 generates a

flow Φ with global period 2π which merely rotates points about thex3-axis. EvidentlyX+
is invariant, so linearity ofΦ implies monotonicity. On the other hand,Φ is not strongly
order preserving: Ifa = (1,0,1) (or any other point on∂Y+ except the origin 0), SOP
would requireΦt (a)≫ 0 for t > 0 becauseΦt is a homeomorphism, but this fails for all
t > 0. The Limit Set Dichotomy fails to hold: Fora = (1,0,1) andb= (2,0,2) it is easy to
see thata < b (for the ordering defined byX+) andω(a)∩ω(b)= ∅, butω(a) �<ω(b). As
E = C =Q = {x: x1 = x2 = 0} and most points belonging to periodic orbits of minimal
period 2π , quasiconvergence is rare. In fact, the set of nonquasiconvergent points—the
complement of thex3-axis—is open and dense. It is not known whether there is a similar
example with a polyhedral cone.

1.6. Stability in normally ordered spaces

We continue to assume the semiflowΦ is SOP with compact orbit closures.
Thediameterof a setZ is diamZ := supx,y∈Z d(x, y).
We now introduce some familiar stability notions. A pointx ∈ X is stable(relative to

R ⊂X) if for everyǫ > 0 there exists a neighborhoodU of x such that diamΦt (U ∩R) < ǫ
for all t � 0. The set of stable points is denoted byS.

Supposex0 is stable. Then omega limit sets of nearby points are close toω(x0), and if
all orbit closures are compact, the mapx �→ ω(x) is continuous atx0 for the Hausdorff
metric on the space of compact sets.
x is stable from above(respectively,from below) if x is stable relative to the set of

points� x (resp.,� x). The set of points stable from above (resp., below is denoted byS+
(resp.,S−).

Thebasin ofx in R is the union of all subsets ofR of the formV ∩R whereV ⊂X is
an open neighborhood ofx such that

lim
t→∞

diamΦt (V ∩R)= 0.

Notice thatω(x)= ω(y) for all y in the basin.
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If the basin ofx in R is nonempty, we sayx is asymptotically stablerelative toR. This
implies x is stable relative toR. If x is asymptotically stable relative toX we sayx is
asymptotically stable. The set of asymptotically stable points is an open set denoted byA.
x is asymptotically stable from above(respectively,below)if it is asymptotically stable

relative to the set of points� x (resp.,� x). The basin ofx relative to this set is called the
upper(resp.,lower) basin ofx. The set of suchx is denoted byA+ (resp.,A−).

Note that continuity ofΦ shows that asymptotic stability relative toR implies stability
relative toR. In particular,A⊂ S, A+ ⊂ S+ andA− ⊂ S−.

These stability notions forx depend only on the topology ofX, and not on the metric,
provided the orbit ofx has compact closure.

The metric spaceX is normally orderedif there exists anormality constantκ > 0 such
thatd(x, y)� κd(u, v) wheneveru,v ∈X andx, y ∈ [u,v]. In a normally ordered space
order intervals are bounded and the diameter of[u,v] goes to zero withd(u, v). Many com-
mon function spaces, includingLp spaces and the Banach space of continuous functions
with the uniform norm, are normally ordered by the cone of nonnegative functions. But
spaces whose norms involve derivatives are not normally ordered. Normality is required in
order to wring the most out of the Sequential Limit Set Trichotomy. The propositions that
follow record useful stability properties of SOP dynamics in normally ordered spaces.

PROPOSITION1.25. AssumeX is normally ordered.
(a) x ∈ S+ (respectively, S−) provided there exists a sequenceyn → x such thatyn > x

(resp., yn < x) and limn→∞ supt>0d(Φt (x),Φt (yn))= 0.
(b) x ∈ S providedx ∈ S+ ∩ S− andx is accessible from above and below.
(c) x ∈A providedx ∈A+ ∩A− andx is accessible from above and below.
(d) Supposea < b andω(a)= ω(b). Thena ∈A+ andb ∈A−. If a < x < b thenx ∈A

and the basin ofx includes[a, b] \ {a, b}.

In particular, (d) shows that an equilibriume is inA+ if x > e andΦt (x)→ e (provided
X is normally ordered); and dually forA−.

PROOF. We prove (a) for the caseyn > x. Givenǫ > 0, choosem andt0 so that

t > t0 )⇒ d
(
Φt (x),Φt (ym)

)
< ǫ.

By SOP there exists a neighborhoodW of x andt1> t0 such that

t > t1, v ∈W )⇒ Φt (v) < Φt (ym).

Fixing t1, we shrinkW to a neighborhoodWǫ of x so that

0< t � t1, v ∈Wǫ )⇒ d
(
Φt (x),Φt (v)

)
< κǫ,

whereκ > 0 is the normality constant. Ifx < v ∈Wǫ and t > t1 thenΦt (x) � Φt (v) �

Φt (ym), and therefore

t > t1, x < v ∈Wǫ )⇒ d
(
Φt (x),Φt (v)

)
� κd

(
Φt (x),Φt (ym)

)
� κǫ.
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Hence we have proved

0< t <∞, v ∈Wǫ )⇒ d
(
Φt (x),Φt (v)

)
< κǫ.

As ǫ is arbitrary, this provesx ∈ S+.
To prove (b), letun, vn → x with un < x < vn. Becausex ∈ S+ ∩S−, for anyǫ > 0 there

existsδ > 0 such that ifd(y, x) < δ andy < x or y > x, then supt>0d(Φt (y),Φt (x)) < ǫ.
Choosek such thatd(uk, x) < δ andd(vk, x) < δ. By SOP there is a neighborhoodWǫ of
x such thatΦt (uk)�Φt (Wǫ)�Φt (vk) for sufficiently larget . Normality implies that for
sucht ,

κ−1 diamΦt (We) � d
(
Φt (uk),Φt (vk)

)

� d
(
Φt (uk),Φt (x)

)
+ d
(
Φt (x),Φt (vk)

)
< 2ǫ.

As κ is constant andǫ is arbitrary, this provesx is stable.
The proofs of (c) and (d) are similar. �

PROPOSITION1.26. AssumeX is normally ordered, p ∈ E, and {Kn} is a sequence of
nonempty compact invariant sets such thatKn <p anddist(Kn,p)→ 0. Then:

(a) p is stable from below.
(b) If z is such thatω(z)= p, thenz is stable from below.

In particular, if p is the limit of a sequence of equilibria<p thenp is stable from below.

PROOF. (a) Givenǫ > 0, fixm such that dist(Km,p) < ǫ. By Lemma 1.3 there is a neigh-
borhoodW of p andt0> 0 such thatt > t0 )⇒Φt (W)�Km, and therefore

t > t0, v ∈W, p > v )⇒ d
(
Φt (p),Φt (v)

)
� κd

(
Φt (p),Φt (Km)

)
� κǫ.

Pick a neighborhoodWǫ ⊂W of p so small that

0� t � t0, v ∈Wǫ )⇒ d
(
Φt (p),Φt (v)

)
< κǫ.

Then

0� t <∞, v ∈Wǫ, v < p )⇒ d
(
Φt (p),Φt (v)

)
< κǫ.

This provesp ∈ S−, becauseǫ is arbitrary.
(b) Choose a neighborhoodU of z and t1 � 0 such thatΦt1(U) ⊂ W . Assume

y ∈ U , y < z. If t � t1 + t0, then Km � Φt (y) � Φt (z), and therefore by normal-
ity, d(Φt (y),Φt (z)) � κ dist(Km,Φt (z)). As Φt (z) → p, there existst2 � t1 + t0 such
that

t � t2 )⇒ d
(
Φt (y),Φt (z)

)
� κ dist(Km,p) < κǫ.
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Fix this t2. By continuity ofΦ there is a neighborhoodU1 ⊂U of z so small that

0� t � t2 )⇒ d
(
Φt (y),Φt (z)

)
� κǫ.

As ǫ is arbitrary, this impliesz ∈ S−. �

1.7. Stable equilibria in strongly ordered Banach spaces

In spaces that are not normally ordered we cannot directly use the results of the previous
subsection to characterize stable equilibria. For strongly monotone semiflows in strongly
ordered Banach spaces we work around this by introducing a weaker norm that makes the
order normal, and for which the semiflows are continuous and SOP. This permits use of the
earlier results.

Let Y be a strongly ordered Banach space. Theorder topologyon Y is the topology
generated by open order intervals. Anorder normon the topological vector spacêY is
defined by fixingu ≫ 0 and assigning tox the smallestǫ such thatx ∈ [−ǫu, ǫu]. It
is easy to see that̂Y is normally ordered by the order norm, with normality constant 1.
Every order neighborhood ofp in Ŷ contains[p − ǫu,p + ǫu] for all sufficiently small
numbersǫ > 0. For example,Y = C1([0,1]) with the usualC1-norm and withY+ the cone
of nonnegative functions is strongly ordered but not normally ordered; puttingu := 1, the
order norm becomes the usual supremum.

The induced topology on any subsetZ ⊂ Y is also referred to as the order topology,
and the resulting topological space is denoted byẐ. A neighborhood in̂Z is an order
neighborhood.

Every open subset of̂Z is open inZ, i.e., the identity map ofZ is continuous fromZ
to Ẑ. ThereforêZ = Z as topological spaces whenZ is compact. As shown below, ifΨ is
a monotone local semiflow inZ, it is also a local semiflow in̂Z, denoted bŷΨ . Evidently
Ψ andΨ̂ have the same orbits and the same invariant sets.

LEMMA 1.27. Let Ψ be a monotone local semiflow in a subsetX of a strongly ordered
Banach spaceY , that extends to a monotone local semiflow in an open subset ofY . Then:

(a) Ψ̂ is a monotone local semiflow.
(b) If Ψ is a strongly monotone, thenΨ̂ is SOP.

PROOF. It suffices to prove (a) and (b) whenX is open inY , which condition is henceforth
assumed.
Ψ̂ is monotone becauseΨ is monotone. To prove continuity of̂Ψ , letN = [[a, b]]Y ∩X

and(t0, x0) ∈ Ψ̂−1(N). As the latter is open inR+ ×X, there existsǫ > 0 andU , an open
neighborhood ofx0 in X, such that

[
(t0 − ǫ, t0 + ǫ)∩ R+

]
×U ⊂ Ψ̂−1(N).

We may chooseu,v ∈U such thatx ∈ [[u,v]]Y . If z ∈ [[u,v]]Y ∩X and|t − t0|< ǫ then
by monotonicity andu,v ∈U we havea≪ Ψ̂t (u)� Ψ̂t (z)� Ψ̂t (v)≪ b. Thus,

[
(t0 − ǫ, t0 + ǫ)∩ R+

]
×
(
[[u,v]]Y ∩X

)
⊂ Ψ̂−1(N),
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proving the continuity of̂Ψ .
Assumex, y ∈X, x < y and lett0> 0 be given. By strong monotonicity ofΨ there are

respective open neighborhoodsU,V ⊂X of x, y such thatΨt0(U)� Ψt0(V ) (see Proposi-
tion 1.2). Choosew,u, v, z ∈X such thatu,w ∈U , v, z ∈ V and

w≪ x ≪ u, v≪ y ≪ z

so that[[w,u]]Y ∩X and[[v, z]]Y ∩X are order neighborhoods inX of x, y respectively.
Monotonicity ofΨ implies

Ψt0
(
[[w,u]]Y ∩X

)
� Ψt0

(
[[v, z]]Y ∩X

)
. �

An equilibrium p for Ψ :R+ × X → X is order stable(respectively,asymptotically
order stableif p is stable (respectively, asymptotically stable) forΨ̂ .

PROPOSITION1.28. LetΨ be a monotone local semiflow in a subsetX of a strongly or-
dered Banach spaceY , that extends to a monotone local semiflow in some open subset
of Y . Assumep is an equilibrium having a neighborhoodW that is attracted to a com-
pact setK ⊂X. If p is order stable(respectively, asymptotically order stable), it is stable
(respectively, asymptotically stable).

PROOF. Supposep is order stable and letU be a neighborhood ofp. As K̂ =K , there is
a closed order neighborhoodN0 of p such thatN0 ∩K ⊂ U ∩K . By order stability there
exists an order neighborhoodN1 of p such thatO(N1) ⊂ N0. Compactness ofN0 ∩ K
implies there is an open setV ⊃ K there is an open setV ⊃ K such thatN0 ∩ V ⊂ U .
BecauseK attractsW , there is a neighborhoodU2 ⊂W of p andr � 0 such that

t � r )⇒ Ψt (U2)⊂ V.

By continuity ofΨr atp = Ψr(p) there is a neighborhoodU3 ⊂U2 of p such that

0� t � r )⇒ Ψt (U3)⊂ V.

and thusO(U3)⊂ V . ThereforeN1 ∩U3 is a neighborhood ofp such that

O(N1 ∩U3)⊂O(N1)∩O(U3)⊂N0 ∩ V ⊂U.

This showsp is stable.
Assumep is asymptotically order stable and choose an order neighborhoodM ⊂ X of

p that is attracted top by Ψ̂ . We show thatM ∩W is in the basin ofp for Ψ . Consider
arbitrary sequences{xk} in M ∩W andtk → ∞ in [0,∞). Fix u≫ 0. By the choice ofM
there are positive numbersǫk → 0 such that

p− ǫku≪ Ψtk (xk)≪ p+ ǫku.

This impliesΨtk (xk)→ p in X, because the order relation onX is closed and{Ψtk (xk)} is
precompact inX by the choice ofW and compactness ofK . �
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1.8. The search for stable equilibria

The following results illustrate the usefulness of a dense set of quasiconvergent points.
Φ denotes a strongly order preserving semiflow inX; Hypothesis (H) of Section 1.4 is still
in force.

PROPOSITION1.29. AssumeQ is dense. Letp,q ∈E be such thatp < q, p is accessible
from above, andq is accessible from below. Then there existsz ∈ X satisfying one of the
following conditions:

(a) p < z < q, andΦt (z)→ p or Φt (z)→ q;
(b) p < z < q andz ∈E;
(c) z > p andp ∈O(z), or z < q andq ∈O(z).

PROOF. By SOP there are open neighborhoodsU,V of p,q respectively andt0 � 0 such
thatΦtU �ΦtV for t � t0. Choose sequencesxn → p in U andyn → q in V with p < xn,
yn < q. We assumep /∈O(xn) andq /∈O(yn)), as otherwise (c) is satisfied. Then

t � t0 )⇒ p <Φt (xn)�Φt (yn) < q.

Choose open neighborhoodsU1,W,V1 of p,Φt0(y1), q respectively such that for some
t1 � t0:

t � t1 )⇒ Φt (U1)�Φt (W)�Φt (V1).

Choosew ∈Q∩W and a sequencesk → ∞, sk � t1 such thatΦsk (w)→ e ∈E. Fixm so
large thatxm ∈U1, ym ∈ V1. Then for sufficiently largek,

p <Φsk (xm)�Φsk (w)�Φsk (ym) < q.

It follows that p � e � q. If e = p or q thenω(Φsk (w)) = p or q by the Convergence
Criterion 1.4, giving (a) withz = Φsk (w). Therefore if (a) does not hold, (b) holds with
z= e. �

The assumption in Proposition 1.29 thatQ is dense can be considerably weakened,
for example, top (or q) being interior toQ: Assumey1 ∈ IntQ and setw = Φsk (w0),
w0 ∈ (IntQ) ∩Φsk−1(W), etc. In fact, density ofQ can be replaced with the assumption
thatp or q lies in the interior of the setQ# of pointsx such that there is a sequencexi → x

with limi→∞ dist(ω(xi),E) = 0. ClearlyQ# is closed and containsQ, so density ofQ
impliesQ# =X.

THEOREM1.30. SupposeX is normally ordered and the following three conditions hold:
(a) Q is dense;
(b) if e ∈E ande is not accessible from above(below) thene= supX (e= infX);
(c) there is a maximal totally ordered subsetR ⊂E that is nonempty and compact.

ThenR contains a stable equilibrium, an asymptotically stable equilibrium ifR is finite.
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PROOF. By Lemma 1.1, supR (infR) exists and is a maximal (minimal) element ofE.
We first prove that every maximal equilibriumq is in A+. This holds vacuously when
q = supX. Supposeq �= supX. If q is in the orbit of some point> q thenq ∈ A+ by
Proposition 1.25(d). Hence we can assume:

t � 0, y > q )⇒ Φt (y) > q.

By hypothesis we can choosey > q. By SOP there is an open neighborhoodU of q
and s > 0 such thatΦs(y) � Φs(U). By hypothesis we can choosez ∈ U such that
Φs(y) �= Φs(z) and z > q. Setx2 = Φs(y), x1 = Φsz. Thenx2 > x1 > q, By SOP and
the assumption above there is a neighborhoodV2 of x2 andt0 � 0 such that

t > t0 )⇒ q <Φt (x1)�Φt (V2).

Choosev ∈ V2 ∩Q. Thenq <Φt (v) for t � t0, henceq � ω(v)= ω(Φt0(v))⊂E. There-
fore Φt (v) → q by maximality ofq, so and Proposition 1.25(d) impliesq ∈ A+, as re-
quired. The dual argument shows that every minimal equilibria is inA−.

Assumption (c) and previous arguments establish thatq = supR andp = infR satisfy
p � q andq ∈A+, p ∈A−.

Supposep = q; in this case we proveq ∈ A. As q is both maximal and minimal inE,
we haveq ∈ A+ ∩ A−. If q is accessible from above and below thenq ∈ A by Proposi-
tion 1.25(b). Ifq is not accessible from above then by hypothesisq = supX, in which case
the fact thatq ∈A− impliesq ∈A. Similarly,q ∈A if q is not accessible from below.

Henceforth we assumep < q. AsR is compact andR ∩ S− �= ∅ becausep ∈ R, it fol-
lows thatR contains the equilibriumr := sup(R ∩ S−). Note thatr ∈ S−, because this
holds by definition ofr if r is isolated in{r ′ ∈R: r ′ � r}, and otherwiser ∈ S− by Propo-
sition 1.26(a). Ifr = q a modification of the preceding paragraph provesq ∈ S.

Henceforth we assumer < q; thereforer is accessible from above.
If r is not accessible from below thenr = p = infX so r ∈ S and we are done; so

we may as well assumer is accessible from below as well as from above. Ifr is the
limit of a sequence of equilibria> r thenr ∈ S+ by the dual of Proposition 1.26, hence
r ∈ S by Proposition 1.25(b). Therefore we can assumeR contains a smallest equilibrium
r1 > r . Note thatr1 /∈ S− by maximality ofr . We apply Proposition 1.29 tor, r1: among
its conclusions, the only one possible here is thatz > r andΦt (z)→ r (and perhapsr ∈
O(z)). Thereforer ∈ S+ by Proposition 1.25(a), whencer ∈ S by 1.25(b). WhenR is
finite, a modification of the preceding arguments proves max(R ∩A−)⊂A. �

Assumption (b) in the Theorem 1.30 holds for many subsetsX of an ordered Banach
spaceY , including open sets, subcones ofY+, closed order intervals, and so forth. This
result is similar to Theorem 10.2 of Hirsch [73], which establishes equilibria that are merely
order stable, but does not require normality.

Assumption (c) holds whenE is compact, and also in the following situation:X ⊂ Y

whereY is anLp space, 1� p < ∞, andE is a nonempty, closed, and order bounded
subset ofX; then every order bounded increasing or decreasing sequence converges.
If (c) holds and someΦt is real analytic with spatial derivatives that are compact and
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strongly positive operators, thenR is finite. This follows from the statements and proofs of
Lemma 3.3 and Theorem 2 in Jiang and Yu [90].

For related results on stable equilibria see Jiang [86], Mierczyński [138,139], and
Hirsch [69].

THEOREM1.31. LetΦ be a semiflow in a subsetX of a strongly ordered Banach spaceY ,
that extends to a strongly monotone local semiflow in some open subset ofY . Assume hy-
potheses(a), (b), (c)of Theorem1.30 hold, and every equilibrium has a neighborhood
attracted to a compact set. LetR ⊂ E be as in1.30(c).ThenR contains a stable equilib-
rium, and an asymptotically stable equilibrium whenR is finite.

PROOF. Our strategy is to apply Theorem 1.30 to the semiflowΦ̂ in X̂ (see Section 1.7).
Give X̂ the metric coming from an order norm on̂Y ; this makeŝX is normally ordered.
Lemma 1.27 shows that̂Φ is SOP. ThereforeR contains an equilibriump that is stable
for Φ̂, by Theorem 1.30. This meansp is order stable forΦ, whence Proposition 1.28
shows thatp is stable forΦ. The final assertion follows similarly. �

Stable equilibria are found under various assumptions in Theorems 2.9, 2.10, 2.11, 2.26,
3.14, 4.12.

2. Generic convergence and stability

2.1. The sequential limit set trichotomy

Throughout Section 2 we assume Hypothesis (H) of Section 1.4:

Φ is a strongly order preserving semiflow in an ordered spaceX, with all orbit clo-
sures compact.

The main result is that the typical orbit of an SOP semiflow is stable and approaches the set
E of equilibria. Existence of stable equilibria is established under additional compactness
assumptions.

The indexn runs through the positive integers.
A point x is strongly accessible from below(respectively, above) if there exists a se-

quence{yn} converging tox such thatyn < yn+1 < x (resp.,yn > yn+1 > x). In this case
we say{yn} strongly approximatesx from below(resp.,from above).

The sequence{xn} is omega compactif
⋃
nω(xn) is compact.

Define setsBC,AC ⊂X as follows:

x ∈ BC ⇐⇒ x is strongly accessible from below by an omega compact
sequence,

x ∈AC ⇐⇒ x is strongly accessible from above by an omega compact
sequence.
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In this notation “B” stands for “below,” “A” for above, and “C” for “compact.”
We will also use the following condition on a setW ⊂X:

(C) Every sequence{wn} in W that strongly approximates a point ofW from below or
above is omega compact.

This does not assert that any point is strongly accessible from below or above. But if every
point ofW is accessible from above andW satisfies (C), thenW ⊂AC; and similarly for
BC.

The next two propositions imply properties stronger than (C). Recall that a mapf :X→
X is completely continuousprovidedf (B) is compact for every bounded setB ⊂X; andf
conditionally completely continuousprovidedf (B) is compact wheneverB andf (B) are
bounded subsets ofX.

Theorbit of any setB ⊂X isO(B)=
⋃
t Φt (B).

PROPOSITION2.1. Assume the following two conditions:
(a) every compact set has a bounded orbit, and
(b) Φs is conditionally completely continuous for somes > 0.

If L⊂X is compact, then
⋃
x∈Lω(x) is compact and this impliesX has property(C).

PROOF. O(L) is a bounded set by (a), and positively invariant, so (b) implies compactness
of Φs(O(L)). As the latter set containsω(x) for all x ∈ L, the first assertion is proved. The
second assertion follows from precompactness of{xn}. �

PROPOSITION2.2. AssumeW ⊂X has the following property: For everyx ∈W there is
a neighborhoodUx ⊂X and a compact setMx that attracts every point inUx . ThenO(x)
is compact for everyx ∈W , and

⋃
y∈Ux ω(y) is compact. If zn → x ∈W then

⋃
nω(zn)

is compact, thereforeW has property(C).

PROOF. It is easy to see thatO(x) is compact and
⋃
y∈Ux ω(y) is compact because it lies

in Mx . Fix k � 0 such thatzn ∈Ux for all n� k. Then

⋃

n

ω(zn)=
⋃

1�n�k

ω(zn)∪Mx,

which is the union of finitely many compact sets, hence compact. Condition (C) follows
trivially. �

The key to stronger results on generic quasiconvergence and stability is the following
result of Smith and Thieme [197]:

THEOREM 2.3 (Sequential Limit Set Trichotomy).Let {x̃n} be an omega compact se-
quence strongly approximatingz ∈ BC from below. Then there is a subsequence{xn} such
that exactly one of the following three conditions holds:
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(a) There existsu0 ∈E such that

ω(xn) < ω(xn+1) < ω(z)= {u0}

and

lim
n→∞

dist
(
ω(xn), u0

)
= 0.

In this casez ∈ C.
(b) There existsu1 = sup{u ∈E: u < ω(z)} and

ω(xn)= {u1}<ω(z).

In this casez ∈ IntC. Moreoverz has a neighborhoodW such that ifw ∈W ,w < z
thenΦt (w)→ u1 andΦt (w) > u1 for sufficiently larget .

(c) ω(xn)= ω(z)⊂E.
In this casez ∈ IntQ. Moreoverω(w) = ω(z) ⊂ E for everyw < z sufficiently
nearz.

Note thatz is convergent in (a), and strongly accessible from below by convergent points
in (b). In (c),z is quasiconvergent and strongly accessible from below by quasiconvergent
points.

If z ∈AC there is an analogous dual result, obtained by reversing the order relation inX.
Although we do not state it formally, we will use it below. Ifz ∈AC∩BC then both results
apply. See Proposition 3.6 in Smith and Thieme [197].

PROOF OFTHEOREM 2.3. By the Limit Set Dichotomy 1.16, either there exists a positive
integerj such thatω(x̃n) = ω(x̃m) for all m,n � j , or else there exists a subsequence
{x̃ni } such thatω(x̃ni ) < ω(x̃ni+1) for all i. Therefore there is a subsequence{xn} such that
ω(xn) < ω(xn+1) for all n, orω(xn)= ω(xn+1) for all n.

CaseI: ω(xn) < ω(xn+1). We will see that (a) holds. The Limit Set Dichotomy 1.16
impliesω(xn)� ω(z). In fact, thatω(xn) < ω(z). Otherwiseω(xk)∩ω(z) �= ∅ for somek,
and the Limit Set Dichotomy implies the contradictionω(xk)= ω(z)� ω(xk+1) > ω(xk).

DefineK =
⋃
ω(xn), a nonempty compact invariant set. Consider the set

Λ=
{
y: y = lim

n→∞
yn, yn ∈ ω(xn)

}
⊂K.

ClearlyΛ is invariant and closed, and compactness ofK impliesΛ is compact and non-
empty. We show thatΛ is a single equilibrium. Supposey, v ∈Λ, so thatyn → y, vn → v

with yn, vn ∈ ω(xn). Sinceyn < vn+1 andvn < yn+1, we havey � v andv � y, sov = y.
Thus we can setΛ= {u0}, and invariance impliesu0 ∈E.

The definition ofΛ and compactness ofK imply limn→∞ dist(ω(xn), u0) = 0. From
ω(xn) < ω(xn+1) < ω(z) we infer

ω(xn) < u0 � ω(z).
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If u0 ∈ ω(z) thenω(z)= {u0} by Corollary 1.9, yielding (a).
We show thatu0 < ω(z) gives a contradiction. Choose a neighborhoodW of ω(z) and

t0 � 0 such thatu0 �Φt (W) for all t � t0 (by Lemma 1.3). There existst1 > 0 such that
Φt1(z) ∈ W , and by continuity ofΦt1 there existsm such thatΦt1(xm) ∈ W . It follows
that u0 � Φt (xm) for t � t0 + t1. As u0 ∈ E, we haveu0 � ω(xm). But this contradicts
ω(xm) < u0. Thus (a) holds in Case I.

CaseII: ω(xn)= ω(xn+1)⊂E. Sincexn < z, the Limit Set Dichotomy implies that ei-
therω(xn)= ω(z), which gives (c), or elseω(xn) < ω(z), which we now assume. Choose
an equilibriumu1 ∈ ω(x1). By Lemma 1.3 there exists an open setW containingω(z) and
t0 � 0 such thatu1 � Φt (W) for all t � t0. Arguing as in Case I, we obtainu1 � Φt (xm)

for somem and all larget . Sinceu1 ∈ ω(xm), it follows thatω(xm)= u1 by Corollary 1.9,
and thereforeω(xn) = {u1} as asserted in case (b). Finally, ifu ∈ E andu < ω(z), we
argue as above thatω(xm)� u for somem, which impliesu1 � u.

To provez ∈ IntQ, use SOP to obtain a neighborhoodUn of xn such thatΦt (xn−1) �

Φt (Un)�Φt (xn+1) for all larget , implyingUn ⊂Q. A similar argument proves the anal-
ogous assertion in (b). �

The following addendum to the Sequential Limit Set Trichotomy provides important
stability information. In essence, it associates various kinds of stable points to arbitrary
elementsz ∈ BC:

PROPOSITION2.4. AssumeX is normally ordered. In cases(a), (b)and(c) of the Sequen-
tial Limit Set Trichotomy, the following statements are valid respectively:

(a) z andu0 are stable from below;
(b) z is not stable from below, ω(z) is unstable from below, and u1 is asymptotically

stable from above;
(c) z is asymptotically stable from below, andz ∈A.

PROOF. (a) follows from Proposition 1.26(a) and (b).
(b) The first two assertions are trivial. To proveu1 ∈ A+, takew = xn for some largen

in the last assertion of (b) and apply 1.25(d) witha = u1.
(c) follows from 1.25(d), takingb= z. �

We expect in real world systems that observable motions are stable trajectories. Our next
result implies stable trajectories approach equilibria.

PROPOSITION2.5. S ∩ (BC ∪AC)⊂Q.

PROOF. Whenz ∈ S∩(BC∪AC), only (a) and (c) of the Sequential Limit Set Trichotomy
are possible, owing to continuity atz of the functionx �→ ω(x). In both casesz ∈Q. �

The inclusionS ⊂Q suggests trajectories issuing from nonquasiconvergent points are
unlikely to be observed; the next result implies that their limit sets are, not surprisingly,
unstable. There are as many concepts of instability as there are of stability, but for our
purposes the following very strong property suffices: A setM ⊂X is unstable from above
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provided there is an equilibriumu >M such thatω(x)= {u} if u > x > y, y ∈M . Such an
equilibriumu is unique, and SOP implies it attracts all points< u in some neighborhood
of u. Unstable from belowis defined dually.

THEOREM 2.6. Assumez ∈ BC \Q (respectively, z ∈ AC \Q). Thenω(z) is unstable
from below(resp., above).

PROOF. To fix ideas we assumez ∈ BC \Q. Then there exists a sequencexn → z and
an equilibriumu1 as in conclusion (b) of the Sequential Limit Set Trichotomy. Suppose
u1 < x < y, y ∈ ω(z). SOP implies there exist open setsWx andWy containingx andy,
respectively, andt0 � 0, such thatΦt (Wx) � Φt (Wy) for all t � t0. As Φs(z) ∈ Wy for
some larges, by continuityΦs(xn) ∈Wy for some largen. Thusu1 �Φt (x)�Φt+s(xn)
for all t � t0. Letting t → ∞ and using the fact thatω(xn) = {u1}, we find thatω(x) =
{u1}. �

A set isminimal if it is nonempty, closed and invariant, and no proper subset has these
three properties. Every positively invariant nonempty compact set contains a minimal set
(by Zorn’s Lemma). A minimal set containing more than one point is callednontrivial.

COROLLARY 2.7. A compact, nontrivial minimal setM that meetsBC (respectively,AC)
is unstable from below(resp., above).

PROOF. Supposez ∈M ∩BC. The assumptions onM imply M = ω(z) andM ∩E = ∅.
Thereforez ∈ BC \Q, and instability follows from Theorem 2.6. �

WhenX is a convex subset of a vector space, an alternative formulation of Theorem 2.6
is thatω(z) belongs to the upper boundary of the basin of attraction of the equilibriumu1.
Corollary 2.7 implies that periodic orbits are unstable. Theorem 2.6 is motivated by Theo-
rem 1.6 in Hirsch [79].

The following sharpening of Theorem 1.19, due to Smith and Thieme [199], is an im-
mediate corollary of the Sequential Limit Set Trichotomy.

THEOREM 2.8. If J ⊂ X is a totally ordered arc having property(C), thenJ \Q is a
discrete, relatively closed subset ofJ ; hence it is countable, and finite whenJ is compact.

PROOF. Every limit point z of J \ Q is strongly accessible from above or below by a
sequence{x̃n} in J \Q. As Property (C) impliesJ ⊂ BC ∪AC, there is a sequence{xn}
satisfying (a), (b) or (c) of Theorem 2.3 (or its dual result), all of which implyxn ∈ Q.
ThusJ \Q contains none of its limit points, which implies the conclusion. �

The following result sharpens Theorems 1.30 and 2.8:

PROPOSITION 2.9. AssumeX is normally ordered and every point is accessible from
above and below. Let J ⊂ X be a totally ordered compact arc having property(C), with



270 M.W. Hirsch and H. Smith

endpointsa < b such thatω(a) is an equilibrium stable from below andω(b) is an equi-
librium stable from above. ThenJ contains a point whose trajectory converges to a stable
equilibrium.

PROOF. Denote byCs (respectively:C+, C−) the set of convergent points whose omega
limits belong toS (resp.: toS+, S−). ThenC+ ∩C− = Cs by Proposition 1.25(b).

Set sup(J ∩C−)= z ∈ J .
Case1: z /∈ C−. Thenz > a. Choose a sequencex1< x2< · · ·< z in J ∩C− such that

xn → z. By the Sequential Limit Set Trichotomy 2.3 it suffices to consider the following
three cases:

(a) There existsu0 ∈E such that

ω(xn) < ω(xn+1) < ω(z)= {u0}.

This is not possible, becauseu0 ∈ S− by Proposition 2.4(a), yielding the contradic-
tion z ∈ C−.

(b) There existsu1 = sup{u ∈E: u < ω(z)}, and for alln we have

ω(xn)= {u1}<ω(z).

Now 2.4(b) hasu1 ∈ S+, hencexn ∈ C+. Thereforexn ∈ C+ ∩C− = Cs , as required.
(c) ω(xn)= ω(z). This is not possible becausexn ∈ C− andω(z)= ω(xn) implies the

contradictionz ∈ C−.
Thus (b) holds, validating the conclusion whenz /∈ C−.

Case2: z ∈ C−. If z = b thenz ∈ C+ ∩ C− = Cs and there is nothing more to prove.
Henceforth we assumez < b.

The closed subintervalK ⊂ J with endpointsz, b satisfies the hypotheses of the theo-
rem. Set inf(K ∩ C+) = w ∈ K . The dual of the reasoning above shows that ifw /∈ C+
then the conclusion of the theorem is true.

From now on we assumew ∈ C+. If w = z there is nothing more to prove, so we also
assumew > z. LetL⊂K be the closed subinterval with endpointsw andz. Let {x̄n} be a
sequence inL converging tow from below.

One of the conclusions (a), (b) or (c) of 2.3 holds. Referring to the corresponding parts
of 2.4, we see in case (a) thatω(w) is an equilibriumū0 that is stable from below; but
w > z, so this contradicts the definition ofz. If (b) holds,ω(x̄n) is an equilibriumū1 stable
from above. But̄xn <w, so this contradicts the definition ofw. In case (c) we have for all
n thatω(x̄n) = ω(w), which is an equilibrium stable from above. Butx̄n < w for n > 1,
again contradicting the definition ofw. �

In the following result the assumption on equilibria holds whenΦ has a global compact
attractor.

PROPOSITION 2.10. AssumeX is an open subset of a strongly ordered Banach space,
Φ is strongly monotone, and every equilibrium has a neighborhood attracted to a compact
set. Let J ⊂ X be a totally ordered compact arc, with endpointsa < b such thatω(a) is
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an equilibrium stable from below andω(b) is an equilibrium stable from above. ThenJ
contains a point whose trajectory converges to a stable equilibrium.

PROOF. Apply Proposition 2.9 to the to the SOP semifloŵΦ in the normally ordered
spacêX (see Section 1.7), to obtain an equilibriump that is stable for̂Φ. This meansp is
order stable forΦ, hence stable forΦ by Proposition 1.28. �

COROLLARY 2.11. LetX be a p-convex open set in an ordered Banach spaceY . Assume
Φ has a compact global attractor. Suppose that eitherY is normally ordered, or Y is
strongly ordered andΦ is strongly monotone. Then:

(i) There is a stable equilibrium.
(ii) Let u,v ∈ X be such thatu < v and there exist real numbersr, s > 0 such that

u <Φr(u), Φs(v) < v. Then there is a stable equilibrium in[u,v].
In case(ii) with Y normally ordered, the hypothesis of a global attractor can be replaced
the assumption that the line segment joiningu to v from satisfies condition(C).

PROOF. We first prove (ii). Monotonicity shows thatω(x)⊂ [u,v] for all x ∈ [u,v]. The
Convergence Criterion implies

Φt (u)→ a ∈E ∩ [u,v], Φt (v)→ b ∈E ∩ [u,v].

We claim thata ∈ S− andb ∈ S+, anda ∈ S is stable ifa = b. WhenY is normal this fol-
lows from Propositions 1.25(b) and (d), and it is easy to prove directly whenΦ is strongly
monotone. Supposea < b. By p-convexity and Theorems 2.9 and 2.10, the line segment
from a to b lies in [u,v] ∩ X and contains a point whosex such thatω(x) is a stable
equilibriumz. As noted above,z ∈ [u,v].

We prove (i) by findingu and v as in (ii). By Theorem 2.8 and compactness of the
global attractor, there is a minimal equilibriump and a maximal equilibriumq > p. AsX
is open, it contains a totally ordered line segmentJ < p. By Theorem 1.19J contains a
quasiconvergent pointu < p. Asω(u)� p, minimality ofp impliesΦt (u)→ p. Similarly
there existv > q withΦt (v)→ q. It follows from SOP thatu <Φr(u),Φs(v) < v for some
r, s > 0. �

For strongly monotone semiflows, the existence of order stable equilibria in attractors
was treated in Hirsch [68,69,73].

2.2. Generic quasiconvergence and stability

The following result adapted from Smith and Thieme [197] refines Theorems 1.22
and 1.21:

THEOREM 2.12. (i)AC ∪BC ⊂ IntQ∪C. Therefore ifAC ∪BC is dense, so isQ.
(ii) (IntAC)∪ (IntBC)⊂ IntQ. Therefore if(IntAC)∪ (IntBC) is dense, so isIntQ.
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PROOF. Everyz ∈ BC is the limit of an omega compact sequencex1< x2< · · · such that
(a), (b) or (c) of the Sequential Limit Set Trichotomy Theorem 2.3 holds, andz ∈ IntQ∪C
in each case; the proof forAC is similar.

To prove (ii), assumez ∈ IntBC. If (a) holds for every point of a neighborhoodW of z,
thenW ⊂ C, whencez ∈ IntQ. If there is no suchW , every neighborhood ofz contains a
point for which (b) or (c) holds, hencez ∈ IntQ. Similarly for z ∈ IntAC. �

The next result extends Theorems 8.10 and 9.6 of Hirsch [73] and Theorem 3.9 of Smith
and Thieme [197]:

THEOREM 2.13. AssumeX is normally ordered andInt(BC ∪ AC) is dense. ThenA ∪
IntC is dense.

PROOF. We argue by contradiction. IfA ∪ IntC is not dense, there exists an open setU

such that

U ∩A= ∅ =U ∩ IntC.

Supposez ∈ U ∩ BC, and let{xn} be a sequence inU strongly approximatingz from
below. Conclusion (b) of the Sequential Limit Set Trichotomy 2.3 is not possible because
z /∈ IntC, and conclusion (c) is ruled out becausez /∈A (see Proposition 2.4(c)). Therefore
conclusion (a) holds, which makesz convergent; likewise whenz ∈U ∩AC. Thus we have
C ⊃U ∩ (BC ∪AC), so IntC ⊃U ∩ Int(BC ∪AC). But the latter set is nonempty by the
density hypothesis, yielding the contradictionU ∩ IntC �= ∅. �

The following theorem concludes that generic trajectories are not only quasiconvergent,
but also stable. Its full force will come into play in the next subsection, under assumptions
entailing a dense open set of convergent points.

THEOREM 2.14. If X is normally ordered andInt(BC ∩AC) is dense, thenInt(Q∩ S) is
dense.

PROOF. IntQ is dense by Theorem 2.12. To prove density of IntS, it suffices to prove that
if z ∈ Int(BC ∩ AC), then every open neighborhoodU of z meets IntS. We can assume
z /∈A becauseA⊂ IntS. Let {xn} be an omega compact sequence strongly approximating
z from below. Suppose (b) or (c) of the Sequential Limit Set Trichotomy 2.3 holds. Then
xm ∈ U for m�m0. Fix m�m0. It follows from Proposition 1.25(d) (witha = xm, x =
xm+1, b = xm+2) thatxm+1 ∈ A, hencez ∈ A; this is proved similarly when{xn} strongly
approximatesz from above.

Henceforth we can assumez belongs to the open setW = Int(BC∩AC)\A, and conse-
quently that there are omega compact sequences{xn}, {yn} strongly approximatingz from
below and above respectively, for which Theorem 2.3(a) and its dual hold respectively.
Then Proposition 1.26 impliesz ∈ S+ ∩ S−, whencez ∈ S by Proposition 1.25(b). Thus
the open setW is contained in IntS, and we have proved IntS is dense. It follows that
IntS ∩ IntQ is dense. �
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2.3. Improving the limit set dichotomy for smooth systems

The aim now is to strengthen the Limit Set Dichotomy with additional hypotheses, espe-
cially smoothness, in order to obtain the following property:

(ILSD) A semiflow satisfies theImproved Limit Set Dichotomyif x1 < x2 implies that
either
(a) ω(x1) < ω(x2), or
(b) ω(x1)= ω(x2)= e ∈E.

We begin with some definitions.
LetX be a subset of the Banach spaceY . A mapf :X→ Y is said to belocally C1 at

p ∈ X if there exists a neighborhoodU of p in X and a continuousquasiderivativemap
f ′ :U → L(Y ), whereL(Y ) is the Banach space of bounded operators onY , such that

f (x)− f (x0)= f ′(x0)(x − x0)+ φ(x, x0)|x − x0|, x, x0 ∈U

with φ(x, x0)→ 0 asx → x0. The following result gives a setting where the quasideriva-
tive is uniquely determined byf . We denote the open ball inY of centerp and radiusr by
BY (p, r) := {y ∈ Y : |y − p|< r}.

LEMMA 2.15. Let p ∈ X ⊂ Y whereY is a strongly ordered Banach space. Assume
f :X → Y is locallyC1 at p, and suppose that eitherBY (p, r) ∩ Y+ ⊂ X or BY (p, r) ∩
(−Y+)⊂X for somer > 0. Thenf ′(p) is uniquely defined.

PROOF. SupposeBY (p, r) ∩ Y+ ⊂ X, the other case being similar. Fixw ≫ 0 and let
y ∈ Y . Asw+ y/n := kn � 0 for largen, y = n(kn −w) soY = Y+ − Y+.

Assume

f (x)− f (p)=A(x − p)+ φ(x,p)|x − p| = B(x − p)+ψ(x,p)|x − p|,

whereA,B ∈ L(Y ) andφ,ψ → 0 asx → p in X. It suffices to show thatAv = Bv for all
v � 0. The segmentx = p + sv ∈X for all smalls � 0. Inserting it in the formula above,
dividing by s, and lettings → 0 yields the desired result. �

LetΦ be a monotone semiflow on the subsetX of the strongly ordered Banach spaceY .
ConcerningX and the set of equilibriaE, we assume the following condition on the pair
(Y,X):

(OC) EitherX is an order convex subset ofY orE ⊂ IntX. For eache ∈E there exists
r > 0 such that eitherBY (e, r)∩ Y+ ⊂X orBY (e, r)∩ (−Y+)⊂X.

This relatively minor restriction is automatically satisfied ifX is an open set, an order
interval, or the coneY+. The second assertion of (OC) trivially holds ifE ⊂ IntX.
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We will also assume the following two conditions hold for someτ > 0. A compact,
strongly positive linear operator is called aKrein–Rutmanoperator.

(M) x1< x2 )⇒Φτ (x1)≪Φτ (x2)

(D*) Φτ is locallyC1 at eache ∈E, with Φ ′
τ (e) a Krein–Rutman operator.

As motivation for (D*), consider the case thatX is an open set inY andΦτ is C1. If
x ∈X, y ∈ Y+, h > 0, andx+hy ∈X, then(Φτ (x+hy)−Φτ (x))/h� 0 by monotonicity;
on taking the limit ash → 0, we getΦ ′

τ (x)y � 0. Consequently,Φ ′
τ (x)Y+ ⊂ Y+, and

hence the assumption thatΦ ′
τ (x) is strongly positive is not such a severe one. Typically,

one usually must verify it anyway to prove thatΦτ is strongly monotone.
Observe that (M) implies thatΦ is strongly order preserving onX.

THEOREM 2.16 (Improved Limit Set Dichotomy).LetΦ be a monotone semiflow on a
subsetX of the strongly ordered Banach spaceY for which (OC), (M), and (D*) are
satisfied. Then(ILSD) holds.

In particular, (ILSD) holds ifX is open, the semiflowΦ continuously differentiable and
strongly monotone, and the derivativeΦ ′

t (e) is a Krein–Rutman operator at eache ∈E.
Before giving the proof, we explore the spectral and dynamical implications of (D*).

2.3.1. The Krein–Rutman theoremThe spectrum of a linear operatorA :Y → Y is de-
noted by Spec(A). WhenA is compact (i.e., completely continuous), Spec(A) consists of
a countable set of eigenvalues and perhaps 0, and the eigenvalues have no accumulation
point except possibly 0.

Let ρ(A) be thespectral radiusof A, that is,ρ(A) = max{|λ|: λ ∈ Spec(A)}. Denote
the null space ofA byN(A) and the range by Im(A).

The set KR(Y ) of Krein–Rutman operators onY is given the metric induced by the
uniform norm.

THEOREM 2.17 (Krein–Rutman).LetA ∈ KR(Y ) and setr = ρ(A). ThenY decomposes
into a direct sum of two closed invariant subspacesY1 andY2 such thatY1 =N(A− rI ) is
spanned byz≫ 0 andY2 ∩ Y+ = {0}. Moreover, the spectrum ofA|Y2 is contained in the
closed ball of radiusν < r in the complex plane.

See Krein and Rutman [104], Takáč [214] or Zeidler [244] for proofs.
It follows that eachA ∈ KR(Y ) has a unique unit eigenvectorz(A) ∈ Y+, andz(A) ∈

IntY+, Az(A)= ρ(A)z(A).

LEMMA 2.18. ρ(A) andz(A) are continuous functions ofA ∈ KR(Y ).

PROOF. The upper semicontinuity of the spectral radius follows from the upper semi-
continuity of the spectrum as a function of the operator (Kato [92]). The lower semi-
continuity follows from the lower semicontinuity of isolated parts of the spectrum (Kato
[92, Chapter IV, Theorem 3.1, Remark 3.3, Theorem 3.16]). LetPA be the projection
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onto N(A) − ρ(A)I) along Im(A − ρ(A)I). Continuity ofA �→ PA is proved in [92,
Chapter IV, Theorem 3.16]. LetAn → A in KR(Y ) and setzn = z(An), z = z(A). Then
(I − PA))zn = (PAn − PA)zn → 0 asn→ ∞, and{PAzn} is precompact, so{zn} is pre-
compact. Ifzni → u for some subsequence, then

PAu= limAni zni = lim ρ(Ani )zni = ρ(A)u.

Uniqueness of the positive eigenvector forA (Theorem 2.17) impliesu= z andzn → z. �

For technical reasons it is useful to employ a norm that is more compatible with the par-
tial order. Ifw ∈ IntY+ is fixed, then the setU = {y ∈ Y : −w≪ y ≪w} is an open neigh-
borhood of the origin. Consequently, ify ∈ Y , then there existst0> 0 such thatt−1

0 y ∈U ,
hence,−t0w≪ y ≪ t0w. Define thew-norm by

‖y‖w = inf{t > 0: −tw � y � tw}.

Sincew ∈ IntY+, there existsδ > 0 such that for ally ∈ Y \ {0} we havew ± δ
y
|y| ∈ Y+.

Thus

‖y‖w � δ−1|y|

holds for ally ∈ Y , implying that thew-norm is weaker than the original norm. In fact,
the two norms are equivalent ifY+ is normal, but we will have no need for this result. See
Amann [6] and Hirsch [73] for more results in this direction. It will be useful to renormalize
the positive eigenvectorz(A) for A ∈ KR(Y ). The next result says this can be done contin-
uously. Continuity always refers to the original norm topology onY unless the contrary is
explicitly stated.

LEMMA 2.19. Let Z(A) = z(A)/‖z(A)‖w and β(A) = sup{β > 0: Z(A) � βw}. Then
β(A) > 0, Z(A) � β(A)w, and the mapsA→ Z(A) andA→ β(A) are continuous on
KR(Y ).

PROOF. Since thew-norm is weaker than the original norm, the mapA �→ ‖z(A)‖w is
continuous. This implies thatZ(A) is continuous inA. It is easy to see thatβ(A) > 0. Let
ǫ > 0 satisfy 2ǫ < β(A) and letAn →A in KR(Y ). Then−ǫw �Z(A)−Z(An)� ǫw for
all largen by continuity ofZ and because thew-norm is weaker than the original norm.
Therefore,Z(An) = Z(An) − Z(A) + Z(A) � (β(A) − ǫ)w, soβ(An) � β(A) − ǫ for
all largen. Similarly, Z(A) = Z(A) − Z(An) + Z(An) � (β(An) − ǫ)w for all largen,
soβ(A) � β(An)− ǫ for all largen. Thus,β(A)− ǫ � β(An) � β(A)+ ǫ holds for all
largen, completing the proof. �

The key to improving the Limit Set Dichotomy is to show that the omega limit set
of a pointx that is quasiconvergent but not convergent, is uniformly unstable in the lin-
ear approximation. The direction of greatest instability ate ∈ ω(x) is the positive direc-
tion z(e) := z(Φ ′

τ (e)). The numberρ(e) := ρ(Φ ′
τ (e)) gives a measure of the instability.
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Nonordering of Limit Sets means that positive directions are, in some rough sense, “trans-
verse” to the limit set. Thus our next result means that the limit set is uniformly unstable
in a transverse direction.

LEMMA 2.20. Assume(D*). Letx be quasiconvergent but not convergent. Thenρ(e) > 1
for all e ∈ ω(x).

PROOF. Fix e ∈ ω(x). Sinceω(x) is connected,e is the limit of a sequence{en} in ω(x)∩
U \ {e0}, whereU is the neighborhood ofe in the definition ofΦτ is locallyC1 at e. Then

e0 − en =Φτ (e)−Φτ (en)=Φ ′
τ (e)(e− en)+ o

(
|e− en|

)
,

where o(|e− en|)/|e− en| → 0 asn→ ∞. Putvn = (e− en)/|e− en|. Then

vn =Φ ′
τ (e)vn + rn, rn → 0, n→ ∞.

The compactness ofΦ ′
τ (e) implies thatvn has a convergent subsequencevni ; passing to the

limit along this subsequence leads tov = Φ ′
τ (e)v for some unit vectorv. Thusρ(e)� 1.

If ρ(e) = 1, then the Krein–Rutman Theorem impliesv = rz(e) wherer = ±1. Conse-
quently,

(e− eni )/|e− eni | → rz(e)

asi → ∞. It follows thate≪ eni or e≫ eni for all largei, contradicting the Nonordering
of Limit Sets. �

PROOF OFTHEOREM 2.16. By the Limit Set Dichotomy (Theorem 1.16), it suffices to
prove: If x1 < x2 andω(x1)= ω(x2)=K ⊂ E, thenK is a singleton.K is compact and
connected, unordered by the Nonordering of Limit Sets, and consists of fixed points ofΦτ .
Arguing by contradiction, we assumeK is not a singleton.

Setvn = Φnτ (x1), un = Φnτ (x2). Then dist(K,un)→ 0 and dist(K,vn)→ 0 asn→
∞. Moreover (M) and the final assertion of the Limit Set Dichotomy imply

un − vn ≫ 0, un − vn → 0.

Fix w≫ 0 and define real numbers

αn = sup{α ∈ R: α � 0, αw � un − vn}.

Thenαn > 0 andαn → 0.
To simplify notation, defineS :X → X by S(x) := Φτ (x). Chooseen ∈ K such that

vn − en → 0 asn→ ∞. By Lemma 2.20, local smoothness ofΦτ and compactness ofK ,
there existsr > 1 such thatρ(e) > r for all e ∈ K . Let zn = Z(en) be the normalized
positive eigenvector forS′(en)=Φ ′

τ (en) so‖zn‖w = 1 andzn �w. By Lemma 2.19, there
existsǫ > 0 such thatβ(en)� ǫ for all n. In particular,w � zn � ǫw for all n.
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Fix a positive integerl such thatr lǫ > 1.
For eache ∈ K , by (D*) we can choose an open neighborhoodWe of e in X and a

continuous mapS′ :We → L(Y ) such that forx, x0 ∈We we have

Sx − Sx0 = S′(x0)(x − x0)+ φ(x, x0)|x − x0|, lim
x→x0

φ(x, x0)= 0.

Puttingx0 = e and estimating norms, one easily sees that there exists a convex open neigh-
borhoodUe ⊂We of e such thatSi(Ue)⊂We for 1 � i � l. Furthermore, a simple induc-
tion argument implies thatSl is locallyC1 at e with quasiderivative

(
Sl
)′ :Ue → L(Y ),

(
Sl
)′
(x)= S′(Sl−1x

)
◦ S′(Sl−2x

)
◦ · · · ◦ S′(x).

By compactness ofK there is a finite subset{e1, . . . , eν} ⊂ K such that the setsUej
coverK . SetUj =Uej ,Wj =Wej . Then

K ⊂
ν⋃

j=1

Uj , Si(Uj )⊂Wj (1 � i � l),

and forz, z0 ∈Uj

Sl(z)− Sl(z0)=
(
Sl
)′
(z0)(z− z0)+ φl,j (z, z0)|z− z0|, lim

z→z0
φl,j (z, z0)= 0,

and the usual chain rule expresses(Sl)′ in terms ofS′.
By (OC), eitherX is order convex inY or E ⊂ IntX. In the order convex case, from

vn ≪ vn + αnw � un we infer thatvn + sαnw ∈ X for all s ∈ [0,1]. Sincevn − en → 0,
vn − un → 0, andαn → 0, for sufficiently largen there existsj (n) ∈ {1, . . . , ν} such that
Uj (n) contains the pointsvn, un, en, andvn + sαnw for all s ∈ [0,1]. WhenE ⊂ IntX the
same conclusion holds, and we can takeUj ,Vj to be open inY .

Lemma 2.15 justifies the application of the fundamental theorem of calculus to the map
[0,1] →X, s �→ Sl(vn + sαnw), leading to

Sl(vn + αnw)− Sl(vn)=
(
Sl
)′
(en)(αnw)+ αnδn

and

δn =
∫ 1

0

[(
Sl
)′
(vn + ηαnw)−

(
Sl
)′
(en)
]
w dη.

Using thatvn + αnw − en → 0,K is compact, and(Sl)′ is continuous, it is easy to show
that

lim
n→∞

max
0�η�1

∣∣[(Sl
)′
(vn + ηαnw)−

(
Sl
)′
(en)
]
w
∣∣= 0.
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It follows thatdn := ‖δn‖w → 0 asn→ ∞. Becausew � zn � ǫw ≫ 0 andδn � −dnw,
for sufficiently largen we have:

Sl(vn + αnw)− Sl(vn) �
[(
Sl
)′
(en)
]
αnw− αndnw

�
[
S′(en)

]l
αnw− αndnw

� r lαnzn − αndnw

� (r lǫ − dn)αnw

� αnw,

and therefore

un+l = Sl(un)� Sl(vn + αnw)� Slvn + αnw = vn+l + αnw.

Thusαnw � un+l − vn+l , so the definition ofαn+l implies αn+l � αn > 0 for all suffi-
ciently largen. Therefore the sequence{αi}i∈N+ , which converges to 0, contains a nonde-
creasing positive subsequence{αn+kl}k∈N+ . This contradiction impliesK is a singleton.�

A drawback of the Improved Limit Set Dichotomy, Theorem 2.16, is that the topology
onX comes from a strongly ordered Banach spaceY ⊃X, severely limiting its application
to infinite-dimensional systems. The following extension permits use of (ILSD) in more
general spaces:

PROPOSITION2.21. LetX1,X0 be ordered spaces such thatX1 ⊂X0 and the inclusion
mapj :X1 →֒X0 is continuous and order preserving. For k = 0,1 letΦk be a monotone
semiflow onXk with compact orbit closures. Assume for allt > 0 thatΦ0

t mapsX0 con-
tinuously intoX1, andΦ0

t |X1 =Φ1
t . If (ILSD) holds forΦ1, it also holds forΦ0.

PROOF. Denote the closure inXk of anyS ⊂ Xk by CkS. For k ∈ {0,1} andx ∈ Xk , let
Ok(x) andωk(x) respectively denote the orbit and omega limit set ofx.

The hypotheses imply that the compact setC0O0(x), which is positively invariant for
Φ0, is mapped homeomorphically byΦ0

1 ontoC1O1(y)⊂X1, which is positively invariant
for Φ1. AsΦ0 andΦ1 coincide inX1, we see thatω0(x)= ω1(y) as compact sets. Hence
Φ0 andΦ1 have the same collection of omega limit sets, which implies the conclusion.�

THEOREM 2.22 (Improved Sequential Limit Set Trichotomy).Assume(ILSD). Let {x̃n}
be a sequence approximatingz ∈ BC from below, with

⋃
nω(x̃n) compact. Then there is a

subsequence{xn} such that exactly one of the following three conditions holds for alln:
(a) There existsu0 ∈E such that

ω(xn) < ω(xn+1) < ω(z)= {u0}

and

lim
n→∞

dist
(
ω(xn), u0

)
= 0.
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(b) There existsu1 = sup{u ∈E: u < ω(z)}, and

ω(xn)= {u1}<ω(z).

In this casez ∈ IntC. Moreoverz has a neighborhoodW such that ifw ∈W ,w < z
thenΦt (w)→ u1 andΦt (w) > u1 for sufficiently larget .

(c′) There existsu2 ∈E such thatω(xn)= ω(x0)= u2.

Note thatz is convergent in (a), strongly accessible from below by convergent points
in (b), and convergent in (c′).

PROOF. Conclusions (a) and (b) are the same as in the Sequential Limit Set Trichotomy,
Theorem 2.3. If 2.3(c) holds, then (c′) follows from (ILSD). �

PROPOSITION2.23. Assume(ILSD). If x ∈ BC \ C thenω(x) is unstable from below. If
x ∈AC \C thenω(x) is unstable from above.

PROOF. This is just Theorem 2.6 ifx /∈Q. If x ∈ BC ∩ (Q \ C), we must have conclu-
sion (b) of Theorem 2.22. This providesu1 ∈ E such thatω(xn)= {u1} for all n, and the
remainder of the proof mimics that of Theorem 2.6. �

A consequence of Proposition 2.23 is that ifx ∈ BC ∩AC is nonconvergent, thenω(x)
lies in both the upper boundary of the basin of attraction of an equilibriumu0 and the lower
boundary of the basin of attraction of an equilibriumv0, whereu0 < L < v0. Thusω(x)
forms part of a separatrix separating the basins of attraction ofu0 andv0.

2.4. Generic convergence and stability

The following result concludes that the setC of convergent points is dense and open in
totally ordered arcs:

THEOREM 2.24. Assume(ILSD) and letJ ⊂ X be a totally ordered arc having prop-
erty (C). ThenJ \C is a discrete, relatively closed subset ofJ ; hence it is countable, and
finite whenJ is compact.

PROOF. The proof is like that of Theorem 2.8, using the Improved Limit Set Tri-
chotomy 2.22 instead of the Sequential Limit Set Trichotomy 2.3. �

We can now prove the following generic convergence and stability results:

THEOREM 2.25. Assume(ILSD).
(a) AC ∪BC ⊂ IntC ∪C. In particular, if AC ∪BC is dense, so isIntC is dense.
(b) If Int(BC ∩AC) is dense andX is normally ordered, thenInt(C ∩ S) is dense.
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PROOF. The proof of (a) is similar to that of Theorem 2.12: takep ∈X \ IntC and use the
Improved Limit Set Trichotomy (Theorem 2.22), instead of the Limit Set Trichotomy, to
show thatp ∈ IntC ∪C. Conclusion (b) follows from (a) and Theorem 2.14. �

THEOREM2.26. AssumeX is a subset of a strongly ordered Banach spaceY , and a dense
open subset ofX is covered by totally ordered line segments. Let (M) and(D*) hold. Then:

(a) The set of convergent points has dense interior.
(b) SupposeY is normally ordered. Then the set of stable points has dense interior.
(c) AssumeY is normally ordered; X is open or order convex or a subcone ofY+;

and every closed totally ordered subset ofE is compact. Then there is a stable
equilibrium, and an asymptotically stable equilibrium whenE is finite.

PROOF. The assumption in (a) impliesBC ∩ AC has dense interior and condition (OC)
holds. Therefore the Improved Limit Set Dichotomy (ILSD) holds by Theorem 2.16, so (a)
and (b) follow from Theorem 2.25(a). Conclusion (c) is a consequence of (a) and Theo-
rem 1.30. �

As most orbits with compact closure converge to an equilibrium, it is natural to inves-
tigate the nature of the convergence. It might be expected that most trajectories converg-
ing to a stable equilibrium are eventually increasing or decreasing. We quote a theorem
of Mierczyński that demonstrates this under quite general conditions for smooth strongly
monotone dynamical systems, including cases when the equilibrium is not asymptotically
stable in the linear approximation. Mierczyński assumes the following hypothesis:

(M1) X is an open set in a strongly ordered Banach spaceY . Φ is C1 on (0,∞)×X

and strongly monotone,Φ ′
t (x) is strongly positive for allt > 0, x ∈X, andΦ ′

1(x)

is compact.

The following local trichotomy due to Mierczyński [138] builds on earlier work of
Polá̌cik [161]:

THEOREM 2.27. Assume(M1). Then each equilibriume satisfyingρ(Φ ′
1(e))� 1 belongs

to a locally invariant submanifoldΣe of codimension one that is smooth and unordered
and has the following property. If limt→∞Φt (x)= e, there existst0 � 0 such that one of
the following holds ast → ∞, t � t0:

(i) Φt (x) decreases monotonically toe;
(ii) Φt (x) increases monotonically toe;

(iii) Φt (x) ∈Σe.

Mierczyński also provides further important information: The trajectories in cases (i)
and (ii) lie in curves tangent ate to the one-dimensional principle eigenspaceY1 of Φ ′

1(e)

described in the Krein–Rutman Theorem 2.17. The hypersurfaceΣe is locally unique in a
neighborhood ofe. Its tangent space is the closed complementary subspaceY2, henceΣe
is transverse toz = z(Φ ′

1(e))≫ 0 at e. Strong monotonicity implies that when (i) or (ii)
holds,e is asymptotically stable for the induced local flow inΣe, even whene is not stable.
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2.4.1. Background and related resultsSmith and Thieme [197,199] introduced the com-
pactness hypothesis (C) and obtained the Sequential Limit Set Trichotomy. This tool
streamlines many of the arguments and leads to stronger conclusions so the presentation
here follows [197,199]. Taká̌c [210] extends the compactness hypothesis, which leads to
additional stability concepts.

The results of Smith and Thieme [199] on generic convergence for SOP semiflows were
motivated by earlier work of Poláčik [160], who obtained such results for abstract semi-
linear parabolic evolution systems assuming less compactness but more smoothness than
Smith and Thieme.

The setA of asymptotically stable points can be shown to be dense under suitable hy-
potheses. See, e.g., Hirsch [73, Theorem 9.6]; Smith and Thieme [197, Theorems 3.13
and 4.1].

Hirsch [69] shows that ifK is a nonempty compact, invariant set that attracts all points
in some neighborhood of itself, thenK contains an order-stable equilibrium.

It is not necessary to assume, as we have done here, that the semiflow is globally de-
fined, that is, that trajectories are defined for allt � 0; many of the results adapt to local
semiflows. See Hirsch [73], Smith and Thieme [199].

3. Ordinary differential equations

Throughout this sectionRn is ordered by a coneK with nonempty interior. Our first objec-
tive is to explore conditions on a vector field that make the corresponding local semiflow
monotone with respect to the order defined byK . It is convenient to work with time-
dependent vector fields. We then investigate the long-term dynamics of autonomous vector
fields f that areK-cooperative, meaning thatK is invariant under the forward flow of
the linearized system. These results are applied to competitive vector fields by the trick of
time-reversal. In fairly general circumstances, limit sets of cooperative or competitive sys-
tems inRn are invariant sets for systems inRn−1. This leads to particularly sharp theorems
for n= 2 and 3.

A cone ispolyhedralif it is the intersection of a finite family of closed half spaces. For
example, the standard coneRn+ is polyhedral, while the ice-cream cone is not.

Thedual conetoK is the closed coneK∗ in the dual space(Rn)∗ of linear functions on
Rn, defined by

K∗ =
{
λ ∈
(
Rn
)∗: λ(K)� 0

}
.

To λ ∈K∗ we associate the vectora ∈ Rn such thatλ(x)= 〈a, x〉 where〈a, x〉 denotes the
standard inner product onRn. Under this associationK∗ is canonically identified with a
cone inRn, namely, the set of vectorsa such thata is normal to a supporting hyperplane
H of K , anda andK lie in a common halfspace bounded byH .

We use the following simple consequence of general results on the separation of two
closed convex sets:

x ∈K ⇐⇒ λ(x)� 0 (λ ∈K∗).
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See, e.g., Theorem 1.2.8 of Berman et al. [18].

PROPOSITION3.1. If x ∈K , thenx ∈ IntK if and only ifλ(x) > 0 for all λ ∈K∗ \ {0}.

PROOF. Supposex ∈ IntK , λ ∈K∗ \ {0}, andv ∈X satisfiesλ(v) �= 0. Thenx ± ǫv ∈K
for sufficiently smallǫ > 0, so

λ(x ± ǫv)= λ(x)± ǫλ(v)� 0,

implying thatλ(x) > 0.
To prove the converse, assumeµ(x) > 0 for all functionalsµ in the compact setΓ =

{λ ∈K∗: ‖λ‖ = 1}. As inf{µ(x): µ ∈ Γ }> 0, continuity of the map(x,λ) �→ λ(x) implies
µ(y) > 0 for all y in some neighborhoodU of x and allµ ∈ Γ . If λ ∈K∗ then‖λ‖−1λ ∈ Γ
and thereforeλ(y) > 0 for all y ∈U . This provesU ⊂K . �

An immediate consequence of Proposition 3.1 is that ifx ∈ ∂K , then there exists a
nontrivialλ ∈K∗ such thatλ(x)= 0.

3.1. The quasimonotone condition

Let J ⊂ R be a nontrivial open interval,D ⊂ Rn an open set andf :J ×D→ Rn a locally
Lipschitz function. We consider the ordinary differential equation

x′ = f (t, x). (3.1)

For every(t0, x0) ∈ J ×D, the initial value problemx(t0)= x0 has a unique noncontinu-
able solution defined on an open intervalJ (t0, x0) ⊂ R. We denote this solution byt �→
x(t, t0, x0). The notationx(t, t0, x0) will carry the tacit assumption that(t0, x0) ∈ J ×D

andt ∈ J (t0, x0). For fixeds0, t0 the mapx0 �→ x(s0, t0, x0) is a homeomorphism between
open subsets ofRn, the inverse beingx0 �→ x(t0, s0, x0).

System (3.1) is calledmonotoneif x0 � x1 )⇒ x(t, t0, x0)� x(t, t0, x1).
The time-dependent vector fieldf : J ×D→ Rn satisfies thequasimonotone condition

in D if for all (t, x), (t, y) ∈ J ×D andφ ∈K∗ we have:

(QM) x � y andφ(x)= φ(y) impliesφ(f (t, x))� φ(f (t, y)).

The quasimonotone condition was introduced by Schneider and Vidyasagar [177] for
finite-dimensional, autonomous linear systems and used later by Volkmann [224] for non-
linear infinite-dimensional systems. The following result is inspired by a result of Volk-
mann [224] and work of W. Walter [227]. See also Uhl [221], Walcher [226].

THEOREM 3.2. Assumef satisfies(QM) in D, t0 ∈ J , and x0, x1 ∈ D. Let ≺ denote
any one of the relations�,<,≪. If x0 ≺ x1 thenx(t, t0, x0) ≺ x(t, t0, x1), hence(3.1) is
monotone. Conversely, if (3.1) is monotone thenf satisfies(QM).
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PROOF. Assume thatx(t, t0, xi), i = 0,1 are defined fort ∈ [t0, t1] andx0 � x1. Letv≫ 0
be fixed and definexǫ := x1 + ǫv and fǫ(t, x) := f (t, x) + ǫv for ǫ > 0. Denote by
x(t) := x(t, t0, x0) and letyǫ(t) := x(t, t0, xǫ, ǫ) denote the solution of the initial value
problemx′(t) = fǫ(t, x), x(t0) = xǫ . It is well known thatyǫ(t) is defined on[t0, t1] for
all sufficiently smallǫ. We show thatx(t)≪ yǫ(t) for t0 � t � t1 and all sufficiently small
ǫ > 0. If not, then asx(t0) ≪ yǫ(t0), there would existǫ > 0 ands ∈ (t0, t1] such that
x(t)≪ yǫ(t) for t0 � t < s andyǫ(s)− x(s) ∈ ∂K . By Proposition 3.1, there exists a non-
trivial φ ∈ K∗ such thatφ(yǫ(s) − x(s)) = 0 but φ(yǫ(t) − x(t)) > 0 for t0 � t < s. It
follows that

d

dt

[
φ
(
yǫ(t)

)
− φ
(
x(t)
)]∣∣∣∣

t=s
� 0,

hence

φ
(
f
(
s, yǫ(s)

))
< φ
(
f
(
s, yǫ(s)

))
+ ǫφ(v)= φ

(
fǫ
(
s, yǫ(s)

))
� φ
(
f
(
s, x(s)

))
,

where the last inequality follows from the one above. On the other hand, by (QM) we have

φ
(
f
(
s, yǫ(s)

))
� φ
(
f
(
s, x(s)

))
.

This contradiction proves thatx(t) ≪ yǫ(t) for t0 � t � t1 and all smallǫ > 0. Since
yǫ(t) = x(t, t0, xǫ, ǫ) → x(t, t0, x1) as ǫ → 0, by taking the limit we conclude that
x(t, t0, x0)� x(t, t0, x1) for t0 � t � t1.

Fix t0 and t ∈ J (t0, x0). As the maph : x0 �→ x(t, t0, x0) is injective, fromx0 < x1
we infer x(t, t0, x0) < x(t, t0, x1). Note thath(D ∩ [x0, x1]) ⊂ [x(t, t0, x0), x(t, t0, x1)].
Therefore the relationx0 ≪ x1 implies IntD ∩ [x0, x1] �= ∅. Injectivity of h and invariance
of domain implies Int[x(t, t0, x0), x(t, t0, x1)] �= ∅, which holds if and only ifx(t, t0, x0)≪
x(t, t0, x1).

Conversely, suppose that (3.1) is monotone,t0 ∈ J , x0, x1 ∈ D with x0 � x1 and
φ(x0) = φ(x1) for someφ ∈ K∗. Sincex(t, t0, x0) � x(t, t0, x1) for t � t0 we conclude
that d

dt φ[x(t, t0, x1) − x(t, t0, x0)]|t=t0 � 0, or φ(f (t0, x1)) � φ(f (t0, x0)). Thus (QM)
holds. �

Theorem 3.2 has been stated so as to minimize technical details concerning the domain
J ×D by assuming thatJ andD are open. In many applications,D is a closed set, for
example,D =K or D = [a, b] wherea ≪ b. The proof can be modified to handle these
(and other) cases. IfD =K andK is positively invariant for (3.1), the proof is unchanged
because wheneverx ∈ D then x + ǫv ∈ D for small positiveǫ, and becauseK is also
positively invariant for the modified equation. IfD = [a, b], then the result follows by
applying Theorem 3.2 tof |J × [[a, b]] and using continuity.

A setS is calledpositively invariantunder (3.1) ifS ⊂D and solutions starting inS stay
in S, or more precisely:

(t0, x0) ∈ J × S and t ∈ J (t0, x0), t � t0 )⇒ x(t, t0, x0) ∈ S.
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It will be useful to have the following necessary and sufficient condition for invariance
of K :

PROPOSITION3.3. The coneK is positively invariant under(3.1) if and only ifK ⊂ D

and for eacht ∈ J
(P) λ ∈K∗, x ∈ ∂K , λ(x)= 0)⇒ λ(f (t, x))� 0.

PROOF. The proof that (P) implies positive invariance ofK is similar to that of Theo-
rem 3.2. Givenx1 ∈ K , we pass immediately toxǫ ≫ x1 and the solutionyǫ(t) of the
perturbed equation defined in the proof of Theorem 3.2 and show thatyǫ(t) ≫ 0 for
t0 � t � t1 by an argument similar to the one used in the aforementioned proof. The result
x(t, t0, x1)� 0 for t � t0 is obtained by passage to the limit asǫ → 0. The converse is also
an easy modification of the converse argument given in the proof of Theorem 3.2.�

Since we will have occasion to apply (P) to systems other than (3.1), it will be convenient
to refer to (P) by saying that (P) holds forf :J ×D → Rn whereK ⊂D. Hypothesis (P)
says that the time-dependent vector fieldf (t, x) points intoK at pointsx ∈ ∂K .

Let A(t) be a continuousn× n matrix-valued function defined on the intervalJ con-
taining t0 and consider the linear initial value problem for the matrix solutionX:

X′ =A(t)X, X(t0)= I. (3.2)

Observe that (P) and (QM) are equivalent for linear systems; therefore we have:

COROLLARY 3.4. The matrix solutionX(t) satisfiesX(t)K ⊂ K for t � t0 if and only
if for all t ∈ J , (P) holds for the functionx → A(t)x. In fact, (P) implies thatX(t) maps
K \ {0} and IntK into themselves for allt > t0.

A matrix A is K-positiveif A(K) ⊂ K . Corollary 3.4 implies thatX(t) is K-positive
for t � t0 if (P) holds.

If for every t ∈ J , there existsα ∈ R such thatA + αI is K-positive, then (P) holds
for A. Indeed, ifλ ∈K∗ satisfiesλ(x)= 0 then application ofλ to (A+ αI)x � 0 yields
thatλ(A(t)x)� 0. The converse is false for general cones but true for polyhedral cones by
Theorem 8 of Schneider and Vidyasagar [177]. See also Theorem 4.3.40 of Berman and
Neumann [18]. Lemmert and Volkmann [118] give the following example of a matrix

A=
[0 0 1

0 0 0
1 0 0

]

which satisfies (P) for the ice-cream cone above butA+ αI is notK-positive for anyα.
Recall that the domainD is p-convexif for every x, y ∈ D satisfyingx � y the line

segment joining them also belongs toD. Let ∂f
∂x
(t, x) be continuous onJ × D. We say



Monotone dynamical systems 285

thatf (or system (3.1)) isK-cooperativeif for all t ∈ J , y ∈D, (P) holds for the function
x → ∂f

∂x
(t, y)x. By Corollary 3.4 applied to the variational equation

X′(t)= ∂f

∂x

(
t, x(t, t0, x0)

)
X, X(t0)= I

we conclude that iff isK-cooperative thenX(t)= ∂x
∂x0
(t, t0, x0) isK-positive.

THEOREM 3.5. Let ∂f
∂x
(t, x) be continuous onJ × D. Then (QM) implies thatf is

K-cooperative. Conversely, if D is p-convex andf isK-cooperative, then(QM) holds.

PROOF. Suppose that (QM) holds,x ∈D, h ∈ ∂K , andφ ∈K∗ satisfiesφ(h)= 0. Since
x � x + ǫh and φ(x) = φ(x + ǫh) for small ǫ > 0, (QM) implies thatφ(f (t, x)) �

φ(f (t, x + ǫh)). Hence,

0� φ

(
f (t, x + ǫh)− f (t, x)

ǫ

)

and the desired result holds on taking the limitǫ → 0.
Conversely, suppose thatf is K-cooperative andD is p-convex. Ifx, y ∈ D satisfy

x � y andφ(x)= φ(y) for someφ ∈K∗, then eitherφ = 0 ory − x ∈ ∂K . Consequently

φ
(
f (t, y)− f (t, x)

)
=
∫ 1

0
φ

(
∂f

∂x

(
t, sy + (1− s)x

)
(y − x)

)
ds � 0

because the integrand is nonnegative. �

If for each(t, x) ∈ J ×D there existsα such that( ∂f
∂x
(t, x)+ αI) isK-positive, thenf

isK-cooperative. This is implied by the remark following Corollary 3.4.
In the special case thatK = Rn+, the cone of nonnegative vectors, it is easy to see by

using the standard inner product that we may identifyK∗ with K . The quasimonotone
hypothesis reduces to the Kamke–Müller condition [91,148]:x � y andxi = yi for somei
impliesfi(t, x)� fi(t, y). This holds by takingφ(x)= 〈ei, x〉 (ei is the unit vector in the
xi -direction) and noting that everyφ ∈K∗ can be represented as a positive linear combi-
nation of these functionals. Iff is differentiable, the Kamke–Müller condition implies

∂fi

∂xj
(t, x)� 0, i �= j. (3.3)

Conversely, if∂f
∂x
(t, x) is continuous onJ ×D, (3.3) holds andD is p-convex, then the

Kamke–Müller condition holds by an argument similar to the one used in the proof of the
converse in Theorem 3.5.

Stern and Wolkowicz [206] give necessary and sufficient conditions for (P) to hold for
matrixA relative to the ice-cream coneK = {x ∈ Rn: x2

1 + x2
2 + · · · + x2

n−1 � x2
n, xn � 0}.

LetQ denote then× n diagonal matrix with firstn− 1 entries 1 and last entry−1. Then
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(QM) holds forA if and only ifQA+ATQ+αQ is negative semidefinite for someα ∈ R.
Their characterization extends to other ellipsoidal cones.

3.2. Strong monotonicity with linear systems

In this section, all matrices are assumed to be square. Recall that the matrixA is strongly
positive ifA(K \ {0}) ⊂ IntK . We introduce the following milder hypothesis on the ma-
trix A, following Schneider and Vidyasagar [177]:

(ST) For allx ∈ ∂K \ {0} there existsν ∈K∗ such thatν(x)= 0 andν(Ax) > 0.

The following result for the case of constant matrices was proved by Elsner [44], answer-
ing a question in [177]. Our proof follows that of Theorem 4.3.26 of Berman et al. [18].

THEOREM 3.6. Let the linear system(3.2)satisfy(P).Then the fundamental matrixX(t1)
is strongly positive fort1 > t0 if there existss satisfyingt0 � s � t1 such that(ST) holds
for A(s).

PROOF. Observe that the set of alls such that (ST) holds forA(s) is open. If the result
is false, there existsx > 0 such that the solution of (3.2) given byy(t) = X(t)x satisfies
y(t1) ∈ ∂K \ {0}. By Corollary 3.4,y(t) > 0 for t � t0 andy(t) ∈ ∂K for t0 � t � t1. Let
s ∈ (t0, t1] be such that (ST) holds forA(s). Then there existsν ∈K∗ such thatν(y(s))= 0
andν(A(s)y(s)) > 0. As ν ∈ K∗ andy(t) ∈ K , h(t) := ν(y(t)) � 0 for t0 � t � t1. But
h(s)= 0 and d

dt |t=sh(t)= ν(A(s)y(s)) > 0 which, taken together, imply thath(s− δ) < 0
for small positiveδ, giving the desired contradiction. �

If (3.2) satisfies (P) and ifx ∈ ∂K then for allφ ∈ K∗ such thatφ(x) = 0 we have
φ(A(t)x) � 0. Hypothesis (ST) asserts that ifx �= 0 thenφ(A(t)x) > 0 for at least one
suchφ. Berman et al. [18] refer to (ST) (they include (P) in their definition) by saying
thatA is stronglyK-subtangential; while we do not use this terminology, our notation is
motivated by it.

An example in [18] shows that (P) and (ST) are not necessary for strong positivity. Let
K be the ice-cream coneK = {x ∈ R3: x2

1 + x2
2 � x2

3, x3 � 0} and consider the constant
coefficient system (3.2) with matrixA given by

A=
[ 0 1 0

−1 −1 0
0 0 0

]
.

An easy calculation shows that(x2
1 + x2

2)
′ = −2x2

2 so it follows easily thatK is pos-
itively invariant, hence (P) holds by Corollary 3.4. The solution satisfyingx(0) =
(cos(θ),sin(θ),1)T ∈ ∂K satisfiesx(t) ∈ IntK for t > 0 since the calculation above
and the fact thatx2(t) can have only simple zeros implies thatx2

1 + x2
2 is strictly

decreasing whilex3 remains unchanged. The linear functionalν, defined ν(x) :=
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(−cos(θ),−sin(θ),1)x belongs toK∗ by an easy calculation and satisfiesν(x(0)) = 0.
It is unique, up to positive scalar multiple, with these properties becauseK is smooth so
its positive normal at a point is essentially unique. Butν(Ax(0)) = sin2(θ) vanishes if
θ = 0,π . Therefore (ST) fails althoughX(t) is strongly positive fort > 0.

Theorem 3.6 leads to the following result on strong monotonicity for the nonlinear sys-
tem (3.1).

LEMMA 3.7. AssumeD is p-convex, ∂f
∂x
(t, x) is continuous onJ × D and f is

K-cooperative. Let x0, x1 ∈ D satisfyx0 < x1 and t > t0 with t ∈ J (t0, x0) ∩ J (t0, x1).
If there existsy0 on the line segment joiningx0 to x1 and r ∈ [t0, t] such that(ST) holds
for ∂f

∂x
(r, x(r, t0, y0)) then

x(t, t0, x0)≪ x(t, t0, x1).

PROOF. First, observe that fory0 on the segment it follows thatt ∈ J (t0, y0). We apply
the formula

x(t, t0, x1)− x(t, t0, x0)=
∫ 1

0

∂x

∂x0

(
t, t0, sx1 + (1− s)x0

)
(x1 − x0)ds,

whereX(t)= ∂x
∂x0
(t, t0, y0) is the fundamental matrix for (3.2) corresponding to the matrix

A(t)= ∂f
∂x
(t, x(t, t0, y0)). The left-hand side belongs toK \{0} if x0< x1 by Theorems 3.5

and 3.2 but we must show it belongs to IntK . For this to be true, it suffices that for each
t > t0 there existss ∈ [0,1] such that the matrix derivative in the integrand is strongly pos-
itive. In fact, this derivative isK-positive by Corollary 3.4 for all values of the arguments
with t � t0, so application of any nontrivialφ ∈ K∗ to the integral gives a nonnegative
numerical result. If there existss as above, then the application ofφ to the integrand gives
a positive numerical result for alls′ nears by continuity and Proposition 3.1 and hence
the integral belongs to IntK by Proposition 3.1. By Theorem 3.6,∂x

∂x0
(t, t0, y0) is strongly

positive fort > t0 if (ST) holds forA(r)= ∂f
∂x
(r, x(r, t0, y0)) for somer ∈ [t0, t]. But this

is guaranteed by our hypothesis. �

THEOREM 3.8. D is p-convex, ∂f
∂x
(t, x) is continuous onJ ×D, andf isK-cooperative.

Suppose for everyx0, x1 ∈D with x0 < x1 and t0 ∈ J , there existsy0 on the line segment
joining thexi such that(ST) holds for ∂f

∂x
(t0, y0). If x0, x1 ∈D, x0< x1, and t > t0 then

t ∈ J (t0, x0)∩ J (t0, x1) )⇒ x(t, t0, x0)≪ x(t, t0, x1).

PROOF. This is an immediate corollary of Lemma 3.7. �

As the main hypothesis of Theorem 3.8 will be difficult to verify in applications, the
somewhat stronger condition of irreducibility may be more useful because there is a large
body of theory related to it [18,19]. We now introduce the necessary background. A closed
subsetF ofK that is itself a cone is calleda faceofK if x ∈ F and 0� y � x (inequalities
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induced byK) implies thaty ∈ F . For example, the faces ofK = Rn+ are of the form{x ∈
Rn+: xi = 0, i ∈ I } whereI ⊂ {1,2, . . . , n}. For the ice-cream coneK = {x ∈ Rn: x2

1 +
x2

2 + · · · + x2
n−1 � x2

n, xn � 0}, the faces are the rays issuing from the origin and passing
through its boundary vectors. AK-positive matrixA isK-irreducibleif the only facesF of
K for whichA(F)⊂ F are{0} andK . The following is a special case of Theorem 2.3.9 in
Berman and Neumann [18]; see Berman and Plemmons [19] for proofs. These references
contain additional related results.

THEOREM 3.9. LetA be ann× n K-positive matrix. Then the following are equivalent:
(i) A isK-irreducible;

(ii) No eigenvector ofA belongs to∂K ;
(iii) A has exactly one unit eigenvector inK and it belongs toIntK ;
(iv) (I +A)n−1(K \ {0})⊂ IntK .

The famous Perron–Frobenius Theory is developed forK-positive andK-irreducible
matrices in the references above. In particular, the spectral radius ofA is a simple eigen-
value ofA with corresponding eigenvector described in (iii) above.

Below we require the simple observation that ifA isK-positive, then the adjointA∗ is
K∗-positive. Indeed, ifν ∈ K∗ then(A∗ν)(x) = ν(Ax) � 0 for all x ∈ K soA∗ν ∈ K∗.
The next result is adapted from Theorem 4.3.17 of Berman et al. [18].

PROPOSITION3.10. LetA be ann× n matrix and suppose that there existsα ∈ R such
thatB :=A+ αI isK-positive. ThenB isK-irreducible if and only if(ST) holds forA.

PROOF. Suppose thatB = A + αI is K-positive and (ST) holds. IfAx = λx for some
λ ∈ R and nonzero vectorx ∈ ∂K then there existsν ∈ K∗ such thatν(x) = 0 and
ν(Ax) > 0. But ν(Ax) = λν(x) = 0. Consequently, no eigenvector ofB belongs to∂K
so by Theorem 3.9,B isK-irreducible.

Conversely, suppose thatB is K-positive andK-irreducible. Letx ∈ ∂K , x �= 0 and
let ν ∈ K∗ satisfy ν �= 0 andν(x) = 0. By Theorem 3.9,C := B + I has the property
that Cn−1 is strongly positive soν(Cn−1x) > 0. As C is K-positive, ν(Crx) � 0 for
r = 1,2, . . . , n − 1. Becauseν(x) = 0, we may choosep ∈ {1,2, . . . , n − 1} such that
ν(Cpx) > 0 butν(Cp−1x)= 0. Letν̃ = (C∗)p−1ν. Thenν̃ ∈K∗, ν̃(x)= 0 andν̃(Cx) > 0.
But thenA satisfies (ST) becauseν̃(Ax)= ν̃(Cx) > 0. �

Motivated by Proposition 3.10, we introduce the following hypothesis for matrixA.

(CI) There existsα ∈ R such thatA+ αI isK-positive andK-irreducible.

In the special case thatK = Rn+, n� 2, matrixA satisfies (CI) if and only ifaij � 0 for
i �= j and there is no permutation matrix P such that

P TAP =
[
B 0
C D

]
,
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whereB andD are square. This is equivalent to the assertion that the incidence graph of
A is strongly connected. See Berman and Plemmons [19].

The following is an immediate consequence of Theorem 3.8.

COROLLARY 3.11. D is p-convex, ∂f
∂x
(t, x) is continuous onJ × D and f is K-

cooperative. Suppose that for everyx0, x1 ∈D with x0 < x1 and t0 ∈ J , there existsy0 on
the line segment joining thexi such that(CI) holds for ∂f

∂x
(t0, y0). If x0, x1 ∈D, x0 < x1,

and t > t0 then

t ∈ J (t0, x0)∩ J (t0, x1) )⇒ x(t, t0, x0)≪ x(t, t0, x1).

PROOF. If (CI) holds then, by Proposition 3.10, (ST) holds for∂f
∂x
(t, x), so the conclusion

follows from Theorem 3.8. �

Corollary 3.11 is an improvement of the restriction of Theorem 10 of Kunze and
Siegel [111] to the case thatK has nonempty interior; their results also treat the case
thatK has empty interior inRn but nonempty interior in some subspace ofRn. Walter
[228] gives a sufficient condition for strong monotonicity relative toK = Rn+ which does
not requiref to be differentiable.

For polyhedral cones it can be shown that matrixA satisfies (P) and (ST) if and only if
there existsα ∈ R such thatA+ αI isK-positive andK-irreducible. See Theorem 4.3.40
of Berman et al. [18]. For the case of polyhedral cones, therefore, Corollary 3.11 and
Theorem 3.8 are equivalent.

3.3. AutonomousK-competitive andK-cooperative systems

Our focus now is on the autonomous system of ordinary differential equations

x′ = f (x), (3.4)

wheref is a vector field on an open subsetD ⊂ Rn; all vector fields are assumed to
be continuously differentiable. We change our notation slightly to conform to more dy-
namical notation, denotingx(t,0, x0) by Φt (x), whereΦ denotes the dynamical system
(= local flow) inD generated byf discussed in Section 1. The notationΦt (x) carries the
tacit assumption thatt ∈ Ix , the open interval inR containing the origin on which the tra-
jectory ofx underΦ is defined. Thepositive semiorbit(respectively, (negative semiorbit)
of x is γ+(x) := {Φt (x): t ∈ t � 0} (respectively,γ−(x) := {Φt (x): t � 0}). The limit sets
of x can be defined as

ω(x)=
⋂

t�0

⋃

τ�t

Φτ (x), α(x)=
⋂

t�0

⋃

τ�t

Φτ (x).

We callf and Eq. (3.4)K-competitivein D if the time-reversed system

x′ = −f (x)
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is K-cooperative. WhenK is the standard coneRn+, f is competitive if and only if
∂fi/∂xj � 0 for i �= j . Therefore iff is K-competitive with local flowΦ, then−f is
K-cooperative with local flowΦ̃, whereΦ̃t (x) = Φ−t (x); and conversely. Thus time-
reversal changesK-competitive systems intoK-cooperative ones, and vice-versa. This
fact will be exploited repeatedly below.

In the remainder of Section 3 we assumeRn is ordered by a coneK ⊂ Rn with nonempty
interior.

A map islocally monotoneif every point in its domain has a neighborhood on which the
map is monotone. A local flow or local semiflowΦ is locally monotone ifΦt is a locally
monotone map for allt > 0. Locally strongly monotoneis defined similarly.

THEOREM3.12. Letf be aK-cooperative vector field in an open setD ⊂ Rn, generating
the local flowΦ. ThenΦ is locally monotone, and monotone whenD is p-convex.

PROOF. If D is p-convex, monotonicity follows from Theorem 3.2 (withf (t, x) := f (x)).
SupposeD is not p-convex. Denote the domain ofΦt byDt .

We first claim: For everyp ∈ D there existsτ > 0 and a neighborhoodN ⊂ Dτ such
thatΦt |N is monotone ift ∈ [0, τ ]. But this is obvious since by restrictingf to a p-convex
neighborhood ofp, we can use Theorem 3.2.

Now fix p ∈ D and letJ (0,p) ∩ [0,∞) = [0, r), 0< r � ∞. Let Ip be the set of all
nonnegatives ∈ [0, r) such that there is a neighborhoodUs of p, contained inDs , such
thatΦt |Us is monotone for eacht ∈ [0, s]. The previous claim implies that[0, τ ] ⊂ Ip
and, by its definition,Ip is an interval. Furthermore, straightforward applications of the
previous claim establish thatIp is both an open and a closed subset of[0, r). It follows that
Ip = [0, r). �

The next theorem gives a sufficient condition for strong monotonicity. DefineG(f ) to
be the set ofx ∈D such that (ST) holds forA= f ′(x). Note thatx ∈G(f ) provided (CI)
holds forA= f ′(x), by Proposition 3.10. IfK = Rn+, a sufficient condition forx ∈G(f )
is thatf ′(x) is an irreducible matrix with nonnegative off-diagonal entries.

THEOREM3.13. Letf be aK-cooperative vector field in an open setD ⊂ Rn, generating
the local flowΦ. AssumeD \ G(f ) does not contain any totally ordered line segment
(which holds whenD \G(f ) is zero dimensional). ThenΦ is locally strongly monotone,
and strongly monotone whenD is p-convex.

PROOF. SupposeD is p-convex, in which caseΦ is monotone by from Theorem 3.2. By
Theorem 3.8,Φ is strongly monotone.

WhenD is not p-convex,Φ is locally monotone by Theorem 3.12, and the previous
paragraph impliesΦ is locally strongly monotone. �

The proof of Theorem 3.13 can be adapted to cover certain nonopen domainsD, such
as an order interval, a closed halfspace, and the coneK ; see the discussion following the
proof of Theorem 3.2.
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Theorem 3.8 implies thatΦ is strongly monotone providedD is p-convex andf satisfies
the autonomous version of condition (ST) of Section 3.2, namely:

(ST*) For all u ∈ D,x ∈ ∂K \ {0} there existsν ∈ K∗ such thatν(x) = 0 and
ν(f ′(u)x) > 0.

Without p-convexity ofD, condition (ST*) yields local strong monotonicity.

3.4. Dynamics of cooperative and competitive systems

We continue to assumeRn is ordered by a coneK having nonempty interior; all notions
involving order refer to that defined byK . For this section, the terms “competitive” and
“cooperative” are tacitly understood to mean “K-competitive” and “K-cooperative,” and
monotonicity refers to the ordering defined byK .

We first apply results from Section 2 to obtain a generic stable convergence theorem for
cooperative vector fields.

Let Φ denote the local flow generated by a vector fieldf onD ⊂ Rn. We assumeD
is p-convex throughout this section without further mention. WhenΦt (x) is defined for
all (t, x) ∈ [0,∞) × D, as when all positive semiorbits have compact closure inD, the
corresponding positive local semiflowΦ+ is a semiflow. ToΦ we associateC, S andE,
denoting respectively the sets of convergent, stable and equilibrium points forΦ+.

THEOREM 3.14. Let f be a cooperative vector field on an open setD ⊂ Rn, generating
a local flowΦ such that:

(a) Every positive semiorbit ofΦ has compact closure inD;
(b) Condition(ST*) above is satisfied, andD =AC ∪BC.

ThenΦ has the following properties:
(i) C ∩ S contains a dense open subset ofD, consisting of points whose trajectories

converge to equilibria;
(ii) If E is compact there is a stable equilibrium, and an asymptotically stable equilib-

rium whenE is finite.

PROOF. Assumption (ST*) makesΦ strongly monotone. The hypothesis of Theorem 2.26,
with X = D, is fulfilled: D is normally ordered andD = BC ∪ AC. Therefore Theo-
rem 2.26 implies the conclusion. �

Theorem 3.14, like Theorem 3.13, holds for some more general domainsD, including
relatively open subsets ofV whereV denotes a closed halfspace, a closed order interval,
or the coneK .

One of the main results of this subsection is thatn-dimensional competitive and cooper-
ative systems behave like general systems of one less dimension. Theorems 3.21 and 3.22
illustrate this principle forn= 2 in a very strong form. In higher dimensions the principle
holds for compact limit sets. The key tool in proving this is the following result due to
Hirsch [67]:
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THEOREM 3.15. A limit set of a competitive or cooperative system cannot contain two
points related by≪.

PROOF. By time reversal, if necessary, we assume the system is cooperative, hence the
local flow is monotone. Now apply Proposition 1.10. �

A periodic orbit of a competitive or cooperative system is a limit set and consequently it
cannot contain two points related by≪. The following sharper result will be useful later:

PROPOSITION3.16. Nontrivial periodic orbit of a competitive or cooperative system can-
not contain two points related by<.

PROOF. By time-reversal we assume the system is cooperative, and in this case the con-
clusion follows from Proposition 1.10. �

LetΦ,Ψ be flows in respective spacesA,B. We sayΦ andΨ aretopologically equiv-
alent if there is a homeomorphismQ :A → B that is a conjugacy between them, i.e.,
Q ◦ Φt = Ψt ◦Q for all t ∈ R. The relationship of topological equivalence is an equiva-
lence relation on the class of flow; it formalizes the notion of “having the same qualitative
dynamics.”

A system of differential equationsy′ = F(y), defined onRk , is calledLipschitz if F
is Lipschitz. That is, there existsK > 0 such that|F(y1) − F(y2)| � K|y1 − y2| for all
y1, y2 ∈ Rk . With these definitions, we can state a result of Hirsch [67] that follows directly
from Theorem 3.15.

THEOREM 3.17. The flow on a compact limit set of a competitive or cooperative system
in Rn is topologically equivalent to a flow on a compact invariant set of a Lipschitz system
of differential equations inRn−1.

PROOF. Let L be the limit set,v ≫ 0 be a unit vector and letHv be the hyperplane or-
thogonal tov, i.e,Hv := {x: 〈x, v〉 = 0}. The orthogonal projectionQ ontoHv is given
by Qx = x − 〈x, v〉v. By Theorem 3.15,Q is one-to-one on L (this could fail only ifL
contains two points that are related by≪). Therefore,QL, the restriction ofQ to L, is a
Lipschitz homeomorphism ofL onto a compact subset ofHv . We argue by contradiction to
establish the existence ofm> 0 such that|QLx1 −QLx2| �m|x1 − x2| wheneverx1 �= x2
are points ofL. If this were false, then there exists sequencesxn, yn ∈ L, xn �= yn such that

|Q(xn)−Q(yn)|
|xn − yn|

= |(xn − yn)− v〈v, xn − yn〉|
|xn − yn|

→ 0

asn→ ∞. Equivalently,|wn − v〈v,wn〉| → 0 asn→ ∞ wherewn = xn − yn/|xn − yn|.
We can assume thatwn →w asn→ ∞ where|w| = 1. Then,w = v〈v,w〉 and therefore,
〈v,w〉2 = 1 sow = ±v. But thenxn − yn/|xn − yn| → ±v asn → ∞ and this implies
that xn ≪ yn or yn ≪ xn for all largen, contradicting Theorem 3.15. Therefore,Q−1

L is
Lipschitz onQ(L). SinceL is a limit set, it is an invariant set for (3.4). It follows that the



Monotone dynamical systems 293

dynamical system restricted toL can be modeled on a dynamical system inHv . In fact,
if y ∈Q(L) theny =QL(x) for a uniquex ∈ L andΨt (y)≡QL(Φt (x)) is a dynamical
system onQ(L) generated by the vector field

F(y)=QL

(
f
(
Q−1
L (y)

))

onQ(L). According to McShane [137], a Lipschitz vector field on an arbitrary subset ofHv
can be extended to a Lipschitz vector field on all ofHv , preserving the Lipschitz constant.
It follows thatF can be extended to all ofHv as a Lipschitz vector field. It is easy to see
thatQ(L) is an invariant set for the latter vector field. We have established the topological
equivalence of the flowΦ on L with the flowΨ onQ(L). Q(L) is a compact invariant
set for the(n− 1)-dimensional dynamical system onHv generated by the extended vector
field. �

A consequence of Theorem 3.17 is that the flow on a compact limit set,L, of a competi-
tive or cooperative system shares common dynamical properties with the flow of a system
of differential equations in one less dimension, restricted to the compact, connected invari-
ant setQ(L). Notice, however, thatL may be the limit set of a trajectory not inL, and
thereforeQ(L) need not be a limit set.

On the other hand, the flowΨ in a compact limit sets enjoys the topological property of
chain recurrence, due to Conley [31,30], which will be important in the next subsection.
The definition is as follows. LetA be a compact invariant set for the flowΦ. Given two
pointsz andy in A and positive numbersǫ and t , an (ǫ, t)-chain fromz to y in A is an
ordered set

{z= x1, x2, . . . , xm+1 = y; t1, t2, . . . , tm}

of pointsxi ∈A and timesti � t such that

∣∣Φti (xi)− xi+1
∣∣< ǫ, i = 1,2, . . . ,m. (3.5)

A is chain recurrentfor Φ if for every z ∈ A and for everyǫ > 0 andt > 0, there is an
(ǫ, t)-chain fromz to z in A.

Conley proved that whenA is compact and connected, a flowΦ inA is chain recurrent if
and only if there are no attractors. This useful condition can be stated as follows: For every
proper nonempty compact setS ⊂ A and all t > 0, there existss > t such thatΦs(S) �⊂
IntS.

Compactness ofA implies that chain recurrence of the flow inA is independent of the
metric, and thus holds for any topologically equivalent flow.

It is intuitively clear that, as Conley proved, flows in compact alpha and omega limit
sets are chain recurrent. Indeed, orbit segments of arbitrarily long lengths through pointx

repeatedly pass near any point ofω(x)∪α(x). Of course these segments do not necessarily
belong toω(x); but by taking suitable limits of points in these segments, one can find
enough(ǫ, t)-chains inω(x) andα(x) to prove the flows in these sets chain recurrent. For
a rigorous proof, see Smith [194].
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3.5. Smale’s construction

Smale [182] showed that it is possible to embed essentially arbitrary dynamics in a com-
petitive or cooperative irreducible system. His aim was to warn population modelers that
systems designed to model competition could have complicated dynamics. His result is
also very useful for providing counterexamples to conjectures in the theory of monotone
dynamics, since by time reversal his systems are cooperative. In this section, competitive
and cooperative are with respect to the usual cone.

Smale constructed special systems of Kolmogorov type

x′
i = xiMi(x), 1� i � n, (3.6)

in Rn+ where theMi are smooth functions satisfying

∂Mi

∂xj
< 0 (3.7)

for all i, j ; all sums are understood to be from 1 ton. We refer to such systems asto-
tally competitive. They are simple models of competition betweenn species, whereMi is
interpreted as theper capitagrowth rate of speciesi.

Smale’s object was to choose theMi so that the standard(n − 1)-simplexΣn = {x ∈
Rn+:

∑
xi = 1} is an attractor in which arbitrary dynamics may be specified.

In order to generate a dynamical system onΣn, letH denote the tangent space toΣn,
that is,H = {x ∈ Rn:

∑
xi = 0}, and leth :Σn → H be a smooth vector field onΣn,

meaning that all partial derivatives ofh exist and are continuous onΣn. We also assume
that h = (h1, h2, . . . , hn) has the formhi = xigi(x) where thegi are smooth functions
onΣn. Then the differential equation

x′
i = hi(x), 1 � i � n (3.8)

generates a flow inRn+ that leavesΣn invariant. The form of thehi ensures that ifxi(0)= 0,
thenxi(t) ≡ 0 so each lower dimensional simplex forming part of the boundary ofΣn is
invariant.

The goal is to construct a competitive system of the form (3.6) satisfying (3.7) such that
its restriction toΣn is equivalent to (3.8). Letp : [0,∞)→ R+ have continuous derivatives
of all orders, be identically 1 in a neighborhood ofs = 1, and vanish outside the interval
[1/2,3/2]. As g is a smooth vector field onΣn, it has a smooth extension toRn+ which
we denote byg in order to conserve notation. An example of such an extension is the map
x �→ P(

∑
xj )g(x/

∑
xj )/P (1), whereP(u)=

∫ u
0 p(s)ds.

Forη > 0, define

Mi(x)= 1− S(x)+ ηp
(∑

xj

)
gi(x), 1� i � n.
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Then (3.7) holds for sufficiently smallη sincep(
∑
xj ) vanishes identically outside a com-

pact subset ofRn+. Consider the system (3.6) withM as above.Rn+ is positively invariant;
and the functionS(x)=

∑
i xi , evaluated along a solutionx(t) of (3.6), satisfies

d

dt
S
(
x(t)
)
= S
(
x(t)
)[

1− S
(
x(t)
)]

since
∑
xigi(x) =

∑
hi(x) = 0. ConsequentlyΣn, which isS−1(1) ∩ Rn+, is positively

invariant. Moreover ifx(0) ∈ Rn+ thenS(x(0))� 0. This impliesS(x(t))→ 1 ast → ∞,
unlessx(t) ≡ 0, andΣn attracts all nontrivial solutions of (3.6) inRn+. Restricted toΣn,
(3.6) becomes

x′
i = ηhi(x), 1� i � n.

Therefore the dynamics of (3.6) restricted toΣn is equivalent, up to a change in time scale,
to the dynamics generated by (3.8).

As noted above, Smale’s construction has implications for cooperative and irreducible
systems since the time-reversed system corresponding to (3.6) is cooperative and irre-
ducible in IntRn+. Time-reversal makes the simplex a repellor for a cooperative system
Φ in Rn+. Therefore every invariant set in the simplex is unstable forΦ. Each trajectory
of Φ that is not in the simplex is attracted to the equilibrium at the origin or to the virtual
equilibrium at∞. The simplex is the common boundary between the basins of attraction
of these two equilibria.

3.6. Invariant surfaces and the carrying simplex

It turns out that the essential features of Smale’s seemingly very special construction are
found in a large class of totally competitive Kolmogorov systems

x′
i = xiMi(x), x ∈ Rn+. (3.9)

Here and belowi andj run from 1 ton. LetΦ denote the corresponding local flow. The
unit (n− 1) simplexis∆n−1 := {x ∈ Rn+:

∑
xi = 1}.

THEOREM 3.18. Assume(3.9)satisfies the following conditions:
(a) ∂Mi

∂xj
< 0;

(b) Mi(0) > 0;
(c) Mi(x) < 0 for |x| sufficiently large.

Then there exists an invariant compact hypersurfaceΣ ⊂ Rn+ such that
(i) Σ attracts every point inRn+ \ {0};

(ii) Σ ∩ IntRn+ is a locally Lipschitz submanifold;
(iii) Σ ∩ IntRn+ is transverse to every line that is parallel to a nonnegative vector and

meetsΣ ∩ IntRn+;
(iv) Σ is unordered;
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(v) Radial projection defines a homeomorphismh :Σ →∆n−1 whose inverse is locally
Lipschitz on the open(n− 1)-cell∆n−1 ∩ IntRn+. There is a flowΨ on∆n−1 such
thatΦt |Σ = h ◦Φt ◦ h−1.

COROLLARY 3.19. If n = 3, every periodic orbit inR3
+ bounds an unordered invariant

disk.

Assumption (a) is the condition of total competition; (b) and (c) have plausible biologi-
cal interpretations. The attracting hypersurfaceΣ , named thecarrying simplexby M. Zee-
man, is analogous to the carrying capacityK in the one-dimensional logistic equation
dx/dt = rx(K − x). One can defineΣ either as the boundary of the set of points whose
alpha limit set is the origin, or as the boundary of the compact global attractor. These sets
coincide if and only ifΣ is unique, in which case it uniformly attracts every compact set
in Rn+ \ {0}. Uniqueness holds under mild additional assumptions on the mapsMi (Wang
and Jiang [230]). The geometry, smoothness and dynamics of carrying simplices have been
investigated by Benaïm [14], Brunovsky [21], Miercyński [140,143,141], Tineo [220], van
den Driessche and M. Zeeman [223], Wang and Jiang [230], E. Zeeman [239], E. Zeeman
and M. Zeeman [240–242], M. Zeeman [243].

Theorem 3.18 is proved in Hirsch [72] using a general existence theorem for invariant
hypersurfaces, of which the following is a generalization:

THEOREM 3.20. LetΦ be a strongly monotone local flow in a p-convex open setD ⊂ Rn.
If L⊂D is a nonempty compact unordered invariant set, L lies in an unordered invariant
hypersurfaceM that is a locally Lipschitz submanifold.

IDEA OF PROOF. DefineU to be the set ofx ∈ D such thatΦt (x)≫ y for somet > 0,
and somey ∈ L. Continuity impliesU is open, and it is nonempty since it containsz ∈D
wherez > y ∈ L. It can be shown that the lower boundary ofU in D (Section 1.1) is a
hypersurface with the required properties, by arguments analogous to the proof of Theo-
rem 3.17. �

3.7. Systems inR2

Cooperative and competitive systems inR2 have particularly simple dynamics. Versions
of the following result were proved in Hirsch [67], Theorem 2.7 and Smith [194], Theo-
rem 3.2.2. It is noteworthy that in the next two theoremsΦ does not need to be monotone,
only locally monotone; hence p-convexity ofD is not needed.

THEOREM 3.21. LetD ⊂ R2 be an open set andg :D→ R2 a vector field that is cooper-
ative or competitive for the standard cone. Lety(t) a nonconstant trajectory defined on an
open intervalI ⊂ R containing0. Then there existst∗ ∈ I such that each coordinateyi(t)
is nonincreasing or nondecreasing on each connected component ofI \ {t∗}.
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PROOF. It suffices to prove thaty′
i(t) can change sign at most once. We assumeg is coop-

erative, otherwise reversing time. LetΦ be local flow ofg and setX(t, x)= ∂Φ
∂x
(t, x). The

matrix-valued functionX(t, x) satisfies the variational equation

∂

∂t
X(t, x)= ∂g

∂x

(
Φ(t, x)

)
·X(t, x), X(0, x)= I.

Cooperativity and Corollary 3.4 show thatX(t, x) has nonnegative entries fort � 0,
i.e., matrix multiplication byX(t, x) preserves the standard cone. The tangent vector
y′(t) to the curvey(t), being a solution of the variational equation, satisfiesy′(t) =
X(t, y(0))y′(0). Nonnegativity ofX(t, x) implies that if y′(t0) lies in the first or third
quadrants, theny′(t) stays in the same quadrant, and hence its coordinates have constant
sign, fort > t0. On the other hand ify′(t) for t � t0 is never in the first or third quadrants,
its coordinates again have constant sign. (Note thaty′(t) cannot transit directly between
quadrants 1 and 3, or 2 and 4, since it cannot pass through the origin.) We have shown that
there is at most onet0 ∈ I at whichy′(t) changes quadrants. If such at0 exists, sett∗ = t0;
otherwise lett∗ ∈ I be arbitrary. �

Variants of the next result have been proved many times for Kolmogorov type population
models (Albrecht et al. [1], Grossberg [53], Hirsch and Smale [80], Kolmogorov [97],
Rescigno and Richardson [168], Selgrade [178]).

THEOREM 3.22. Let g be aK-cooperative orK-competitive vector field in a domain
D ⊂ R2. If γ+(x) (respectively, γ−(x)) has compact closure inD, thenω(x) (respectively,
α(x)) is a single equilibrium.

PROOF. For the standard cone, denoted here byP , this follows from Theorem 3.21. The
general case follows by making a linear coordinate changey = T x mappingK onto
the standard cone. HereT is any linear transformation that takes a basis forR2 con-
tained in∂P into the standard basis, which lies in∂K . Then we haveu �K v if and
only if T u �P T v; in other words,T is an order isomorphism. It follows that the sys-
tem x′ = g(x) is K-cooperative (respectively,K-competitive) if and only if the sys-
tem y′ = h(y) := T g(T −1y) is P -cooperative (respectively,P -competitive). Therefore
T is a conjugacy between the local flowsΦ, Ψ of the two dynamical systems, that is,
T ◦Φt = Ψt ◦T . Consequently the conclusion forP , proved above, implies the conclusion
for K . �

3.8. Systems inR3

The following Poincaré–Bendixson theorem for three-dimensional cooperative and com-
petitive systems is the most notable consequence of Theorem 3.17. It was proved by
Hirsch [76] who improved earlier partial results [67,187]. The following result from
Smith [194] holds for arbitrary conesK ⊂ R3 with nonempty interior:
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THEOREM 3.23. Let g be aK-cooperative orK-competitive vector field in a p-convex
domainD ⊂ R3. Then a compact limit set ofg that contains no equilibrium points is a
periodic orbit.

PROOF. LetΦ denote the flow of the system, andL the limit set. By Theorem 3.17, the
restriction ofΦ toL is topologically equivalent to a flowΨ , generated by a Lipschitz planar
vector field, restricted to the compact, connected, chain recurrent invariant setQ(L). Since
L contains no equilibria neither doesQ(L). The Poincaré–Bendixson theorem implies that
Q(L) consists of periodic orbits and, possibly, entire orbits whose omega and alpha limit
sets are periodic orbits contained inQ(L). The chain recurrence ofΨ onQ(L) will be
exploited to show thatQ(L) consists entirely of periodic orbits.

Let z ∈ Q(L) and suppose thatz does not belong to a periodic orbit. Thenω(z) and
α(z) are distinct periodic orbits inQ(L). Let ω(z) = γ and suppose for definiteness that
z belongs to the interior component,V , of R2 \ γ so thatΨt (z) spirals towardγ in V .
The other case is treated similarly. Thenγ is asymptotically stable relative toV . Standard
arguments using transversals imply the existence of compact, positively invariant neigh-
borhoodsU1 andU2 of γ in V such thatU2 ⊂ IntV U1, z /∈ U1 and there existst0 > 0
for which Ψt (U1) ⊂ U2 for t � t0. Let ǫ > 0 be such that the 2ǫ-neighborhood ofU2 in
D is contained inU1. Chooset0 larger if necessary such thatΨt (z) ∈ U2 for t � t0. This
can be done sinceω(z)= γ . Then any(ǫ, t0)-chain inQ(L) beginning atx1 = z satisfies
Ψt1(x1) ∈U2 and, by (3.5) and the fact that the 2ǫ-neighborhood ofU2 is contained inU1,
it follows thatx2 ∈U1. As t2> t0, it then follows thatΨt2(x2) ∈U2 and (3.5) again implies
that x3 ∈ U1. Continuing this argument, it is evident that the(ǫ, t0)-chain cannot return
to z. There can be no(ǫ, t0)-chain inQ(L) from z to z and therefore we have contradicted
thatQ(L) is chain recurrent. Consequently, every orbit ofQ(L) is periodic. SinceQ(L) is
connected, it is either a single periodic orbit or an annulus consisting of periodic orbits. It
follows thatL is either a single periodic orbit or a cylinder of periodic orbits.

To complete the proof we must rule out the possibility thatQ(L) consists of an annulus
of periodic orbits. We can assume that the system is cooperative. The argument will be
separated into two cases:L= ω(x) orL= α(x).

If L = ω(x) consists of more than one periodic orbit thenQ(L) is an annulus of peri-
odic orbits in the plane containing an open subsetO. Then there existst0 > 0 such that
Q(Φt0(x)) ∈O. Let y be the unique point ofL such thatQ(y)=Q(Φt0(x)). y =Φt0(x)

cannot hold since this would imply thatL is a single periodic orbit so it follows that either
y ≪ Φt0(x) or Φt0(x) ≪ y. Suppose that the latter holds, the argument is similar in the
other case. Then there existst1 > t0 such thatΦt1(x) is so neary thatΦt0(x)≪ Φt1(x).
But then the Convergence Criterion from Chapter 1 implies thatΦt (x) converges to equi-
librium, a contradiction to our assumption thatL contains no equilibria. This proves the
theorem in this case.

If L= α(x) andQ(L) consists of an annulus of periodic orbits, letC ⊂ L be a periodic
orbit such thatQ(L) containsC in its interior.Q(C) separatesQ(L) into two components.
Fix a andb in L \C such thatQ(a) andQ(b) belong to different components ofQ(L) \
Q(C). SinceΦt (x) repeatedly visits every neighborhood ofa andb ast → −∞,Q(Φt (x))
must crossQ(C) at a sequence of timestk → −∞. Therefore, there existzk ∈ C such
thatQ(zk) = Q(Φtk (x)) and consequently, as in the previous case, eitherzk ≪ Φtk (x)
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or Φtk (x) ≪ zk holds for eachk. Passing to a subsequence, we can assume that either
zk ≪Φtk (x) holds for allk orΦtk (x)≪ zk holds for allk. Assume the latter, the argument
is essentially the same in the other case. We claim that for everys < 0 there is a point
w ∈ C such thatΦs(x) > w. For if tk < s then

Φs(x)=Φs−tk ◦Φtk (x) < Φs−tk (zk) ∈ C.

If y ∈ L thenΦsn(x)→ y for some sequencesn → −∞. By the claim, there existswn ∈ C
such thatΦsn(x) > wn. Passing to a subsequence if necessary, we can assume thatwn →
w ∈ C andy �w. Therefore, every point ofL is related by� to some point ofC.

The same reasoning applies to every periodic orbitC′ ⊂ L for whichQ(C′) belongs to
the interior ofQ(L): either every point ofL is � some point ofC′ or every point ofL is �

some point ofC′. Since there are three different periodic orbits inL whose projections are
contained in the interior ofQ(L), there will be two of them for which the same inequality
holds between points ofL and points of the orbit. Consider the case that there are two
periodic orbitsC1 andC2 such that every point ofL is � some point ofC1 and� some
point ofC2. The case that the opposite relations hold is treated similarly. Ifu ∈ C1 then it
belongs toL so we can findw ∈ C2 such thatu < w (equality can’t hold since the points
belong to different periodic orbits). Butw ∈ L so we can findz ∈ C1 such thatw < z.
Consequently,u, z ∈ C1 satisfyu < z, a contradiction to Proposition 3.16. This completes
the proof. �

A remarkable fact about three-dimensional competitive or cooperative systems on suit-
able domains is that the existence of a periodic orbit implies the existence of an equilibrium
point inside a certain semi-invariant closed ball having the periodic orbit on its boundary.
Its primary use is to locate equilibria, or conversely, to exclude periodic orbits. The con-
struction below is adapted from Smith [187,194] where the caseK = R3

+ was treated;
here we treat the general case thatK has nonempty interior. The terms “competitive” and
“cooperative” will be used to meanK-competitive andK-cooperative for brevity. A re-
lated result appears in Hirsch [75]. Throughout the remainder of this section, the system is
assumed to be defined on a p-convex subsetD of R3

+.
We can assume the system is competitive. Letγ denote the periodic orbit and assume

that there existp,q with p≪ q such that

γ ⊂ [p,q] ⊂D. (3.10)

Define

B =
{
x ∈ R3: x is not related to any pointy ∈ γ

}
= (γ +K)c ∩ (γ −K)c.

Here we use the notationAc for the complement of the subsetA in R3. Observe that in
definingB we ignored the domainD of (3.4), viewingγ as a subset ofR3. Another way
to defineB is to express its complement asBc = (γ +K)∪ (γ −K).

A 3-cell is a subset ofR3 that is homeomorphic to the open unit ball.



300 M.W. Hirsch and H. Smith

THEOREM 3.24. Let γ be a nontrivial periodic orbit of a competitive system inD ⊂ R3

and suppose that(3.10)holds. ThenB is an open subset ofR3 consisting of two connected
components, one bounded and one unbounded. The bounded component, B(γ ), is a 3-cell
contained in[p,q]. Furthermore, B(γ ) is positively invariant and its closure contains an
equilibrium.

Combining this result with Theorem 3.23 leads to the following dichotomy from
Hirsch [75].

COROLLARY 3.25. Assume the domainD ⊂ R3 of a cooperative or competitive system
contains[p,q] with p≪ q. Then one of the following holds:

(i) [p,q] contains an equilibrium;
(ii) the forward and backward semi-orbits of every point of[p,q] meetD \ [p,q].

PROOF. We take the system to be competitive, otherwise reversing time. Assume (ii) is
false. Then[a, b] contains a compact limit setL. If L is not a cycle, it contains an equilib-
rium by Theorem 3.23. IfL is a cycle, (i) follows from Theorem 3.24. �

PROOF SKETCH OFTHEOREM 3.24. ThatB is open is a consequence of the fact that
γ +K andγ −K are closed. We show thatB ∩D is positively invariant. Ifx ∈ B ∩D,
y ∈ γ and t > 0 thenΦ−t (y) ∈ γ so x is not related to it. Since the forward flow of
a competitive system preserves the property of being unrelated,Φt (x) is unrelated toy.
Therefore,Φt (x) ∈ B ∩D.

As in the proof of Theorem 3.17, forv > 0,Hv denotes the hyperplane orthogonal tov
andQ the orthogonal projection ontoHv alongv.Q is one-to-one onγ soQ(γ ) is a Jordan
curve inHv . LetHi andHe denote the interior and exterior components ofHv \Q(γ ). If
x ∈Q−1(Q(γ )) thenQ(x)=Q(y) for somey ∈ γ and therefore eitherx = y, x ≪ y or
y ≪ x. In any case,x /∈ B. Hence,

B =
(
B ∩Q−1(Hi)

)
∪
(
B ∩Q−1(He)

)
.

SetB(γ )= B ∩Q−1(Hi).
Givenz ∈Hi , letA+

z := {s ∈ R: z+ sv ∈ γ +K} andA−
z := {s ∈ R: z+ sv ∈ γ −K}.

A+
z clearly contains all larges by compactness ofγ and it is closed becauseγ + K is

closed. Ifs ∈A+
z , there existsy ∈ γ andk ∈K such thatz+ sv = y+ k soz+ (s + r)v =

y + k + rv, implying thats + r ∈ A+
z for all r � 0. It follows thatA+

z = [s+(z),∞), and
similarly,A−

z = (−∞, s−(z)]. If s−(z)� z+(z) soA+
z ∩A−

z is nonempty, then there exists
s ∈ R, ki ∈K , andyi ∈ γ such thatz+ sv = y1 + k1 = y2 − k2. We must havek1 = k2 = 0
or elsey2 > y1, a contradiction to Proposition 3.16, but thenz + sv = y1 so z = Qy1

contradicting thatz ∈Hi . We conclude thats−(z) < z+(z) and thatz+ sv ∈ B(γ ) if and
only if s−(z) < s < s+(z). It follows that

B(γ )=
{
z+ sv: z ∈Hi, s ∈

(
s−(z), s+(z)

)}
.
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It is easy to show that the mapsz �→ s±(z) are continuous and satisfys+(z)− s−(z)→ 0
asz→ y ∈ γ and this implies thatB(γ ) is a 3-cell. See the argument given in Smith [187,
194].

To proveB(γ )⊂ [p,q], we identifyK∗ as the set ofx such that〈x, k〉 � 0 for all k ∈K
(where〈x, k〉 denotes inner product). Schneider and Vidyasagar [177] proved the elegant
result that every vectorx has a unique representation

x = k−w, k ∈K, w ∈K∗, 〈w,k〉 = 0.

Choose anyz ∈ B ∩ (R3 \ [p,q]) and write

z− p = k −w, k ∈K,w ∈K∗, 〈w,k〉 = 0,

q − z= k′ −w′, k′ ∈K,w′ ∈K∗, 〈w′, k′〉 = 0.

Observe thatw > 0,w′ > 0 becausez ∈ B.
Eitherk > 0 or k′ > 0. For if k = k′ = 0 thenq − p = −(w+w′), so

0� 〈w+w′, q − p〉 = −‖w+w′‖2
� 0.

This entailsw+w′ = 0 and thusp = q, a contradiction.
We assumek > 0, as the casek′ > 0 is similar, and even follows formally by replacing

K with −K . Thenw > 0. Consider the rayR = {z+ tk: t � 0}. If y ∈ γ , then

〈w,z+ tk− y〉 = 〈w,z− p〉 + 〈w,p− y〉 � 〈w,z− p〉 = −‖w‖2< 0.

Becausez andu are unrelated, there existsu ∈K∗ such that〈u, z− y〉> 0. So

〈u, z+ tk− y〉 = 〈u, z− y〉 + t (z, k)� 〈u, z− y〉> 0.

This shows that no point ofR is related to any point ofγ . ThereforeR and hencez are in
the unbounded component ofB.

As B(γ ) is a connected component of the positively invariant setB, it is positively
invariant. Consequently its closure is a positively invariant set homeomorphic to the closed
unit ball in R3. It therefore contains an equilibrium by a standard argument using the
Brouwer Fixed Point Theorem (see, e.g., Hale [57, Theorem I.8.2]). �

If B(γ ) contains only nondegenerate equilibriax1, x2, . . . , xm, then standard topological
degree arguments imply thatm is odd and that 1=

∑m
i=1(−1)si wheresi ∈ {0,1,2,3} is

the number of positive eigenvalues ofDf (xi). See Smith [187] for the proof and further
information on equilibria inB(γ ).

There are many papers devoted to competitive Lotka–Volterra systems inR3, largely
stimulated by the work of M. Zeeman. See for example [82,223,237,239,243,240,242]
and references therein. The paper of Li and Muldowney [115] contains an especially nice
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application to epidemiology. Additional results for three-dimensional competitive and co-
operative systems can be found in references [66,75–77,41,194,196,247,248].

The recent paper of Ortega and Sánchez [153] is noteworthy for employing a cone re-
lated to the ice-cream cone and observing that results for competitive systems are valid
for general cones with nonempty interior. They show that ifP is a symmetric matrix of
dimensionn having one positive eigenvalueλ+ with corresponding unit eigenvectore+,
andn− 1 negative eigenvalues, then (3.4) is monotone with respect to the order generated
by the coneK := {x ∈ Rn: 〈Px,x〉 � 0, 〈x, e+〉 � 0} if and only if there exists a function
µ :Rn → R such that the matrixP ·Dfx + (Dfx)T ·P +µ(x)P is positive semidefinite for
all x. They use this result to show that one of the results of R.A. Smith [204] on the exis-
tence of an orbitally stable periodic orbit, in the special casen= 3, follows from the results
for competitive systems. It is not hard to see that if (3.4) satisfies the conditions above then
after a change of variables in (3.4), the resulting system is monotone with respect to the
standard ice-cream cone.

For applications of competitive and cooperative systems, see for example Benaïm [15],
Benaïm and Hirsch [16,17], Hirsch [69,74] Hofbauer and Sandholm [81], Hsu and Walt-
man [84], Smith [194,196], Smith and Waltman [202].

4. Delay differential equations

4.1. The semiflow

The aim of the present section is to apply the theory developed in Sections 1 and 2 to
differential equations containing delayed arguments. Such equations are often referred to
as delay differential equations or functional differential equations. Since delay differential
equations contain ordinary differential equations as a special case, when all delays are zero,
the treatment is quite similar to the previous section. The main difference is that a delay
differential equation generally can’t be solved backward in time and therefore there is not
a well-developed theory of competitive systems with delays.

Delay differential equations generate infinite-dimensional dynamical systems and there
are several choices of state space. We restrict attention here to equations with bounded
delays and follow the most well-developed theory (see Hale and Verduyn Lunel [61]). Ifr

denotes the maximum delay appearing in the equation, then the spaceC := C([−r,0],Rn)
is a natural choice of state space. Given a coneK in Rn, CK contains the cone of functions
which map[−r,0] into K . The section begins by identifying sufficient conditions on the
right hand side of the delay differential equation for the semiflow to be monotone with
respect to the ordering induced by this cone. This quasimonotone condition reduces to the
quasimonotone condition for ordinary differential equations when no delays are present.
Our main goal is to identify sufficient conditions for a delay differential equation to gen-
erate an eventually strongly monotone semiflow so that results from Sections 1 and 2 may
be applied.
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In order to motivate fundamental well-posedness issues for delay equations, it is useful
to start with a consideration of a classical example that has motivated much research in the
field (see, e.g., Krisztin et al. [105] and Hale and Verduyn Lunel [61]), namely the equation

x′(t)= −x(t)+ h
(
x(t − r)

)
, t � 0, (4.1)

whereh is continuous andr > 0 is the delay. It is clear thatx(t) must be prescribed on the
interval[−r,0] in order that it be determined fort � 0. A natural space of initial conditions
is the space of continuous functions on[−r,0], which we denote byC, wheren= 1 in this
case.C is a Banach space with the usual uniform norm|φ| = sup{|φ(θ)|: −r � θ � 0}. If
φ ∈ C is given, then it is easy to see that the equation has a unique solutionx(t) for t � 0
satisfying

x(θ)= φ(θ), −r � θ � 0.

If the state space isC, then we need to construct from the solutionx(t), an element of the
spaceC to call the state of the system at timet . It should have the property that it uniquely
determinesx(s) for s � t . The natural choice isxt ∈ C, defined by

xt (θ)= x(t + θ), −r � θ � 0.

Then,x0 = φ andxt (0)= x(t).
The general autonomous functional differential equation is given by

x′(t)= f (xt ), (4.2)

wheref :D → Rn, D is an open subset ofC andf is continuous. In the example above,
f is given byf (φ)= −φ(0)+h(φ(−r)) for φ ∈ C. Observe that (4.2) includes the system
of ordinary differential equations

x′ = g(x),

where g :Rn → Rn, as a special case. Simply letf (φ) = g(φ(0)) so that f (xt ) =
g(xt (0))= g(x(t)).

It will always be assumed that (4.2), together with the initial conditionx0 = φ ∈ D
has a unique, maximally defined solution, denoted byx(t, φ), on an interval[0, σ ). The
state of the system is denoted byxt (φ) to emphasize the dependence on the initial data.
Uniqueness of solutions holds if, for example,f is Lipschitz on compact subsets ofD
(see Hale and Verduyn Lunel [61]). This holds, for example, iff ∈ C1(D) has locally
bounded derivative. If uniqueness of solutions of initial value problems hold, then the map
(t, φ)→ xt (φ) is continuous. Therefore, a (local) semiflow onD can be defined by

Φt (φ)= xt (φ). (4.3)

In contrast to the case of ordinary differential equations,x(t, φ) cannot usually be defined
for t � 0 as a solution of (4.2) and consequently,Φt need not be one-to-one.
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It will be convenient to have notation for the natural embedding ofRn into C. If x ∈ Rn,
let x̂ ∈ C be the constant function equal tox for all values of its argument. The set of
equilibria for (4.2) is given by

E =
{
x̂ ∈D: x ∈ Rn andf (x̂)= 0

}
.

4.2. The quasimonotone condition

Given thatC is a natural state space for (4.2), we now consider what sort of cones inC

will yield useful order relations. The most natural such cones are those induced by cones
in Rn. Let K be a cone inRn with nonempty interior andK∗ denote the dual cone. All
inequalities hereafter are assumed to be those induced onRn byK . The coneK induces a
coneCK in the Banach spaceC defined by

CK =
{
φ ∈ C: φ(θ)� 0, −r � θ � 0

}
.

It has nonempty interior inC given by IntCK = {φ ∈ CK : φ(θ) ≫ 0, θ ∈ [−r,0]}. The
usual notation�,<,≪ will be used for the various order relations onC generated byCK .
In particular,φ �ψ holds inC if and only ifφ(s)�ψ(s) holds inRn for everys ∈ [−r,0].
The same notation will also be used for the various order relations onRn but hopefully the
context will alert the reader to the appropriate meaning. Cones inC that are not induced by
a cone inRn have also proved useful. See Smith and Thieme [198,200,194].

An immediate aim is to identify sufficient conditions onf for the semiflowΦ to be a
monotone semiflow. The following condition should seem natural since it generalizes the
condition (QM) for ordinary differential equations in the previous section. We refer to it
here as thequasimonotone condition, (QMD) for short. “D” in the notation, standing for
delay, is used so as not to confuse the reader with (QM) of the previous section. We follow
this pattern in several definitions in this section.

(QMD) φ,ψ ∈D, φ �ψ andη(φ(0))= η(ψ(0)) for someη ∈K∗, impliesη(f (φ))�
η(f (ψ)).

For the special caseK = Rn+, (QMD) becomes:

φ,ψ ∈D, φ �ψ andφi(0)=ψi(0) implies fi(φ)� fi(ψ).

As in Section 3, it is convenient to consider the nonautonomous equation

x′(t)= f (t, xt ), (4.4)

wheref :Ω → Rn is continuous onΩ , an open subset ofR × C. Given (t0, φ) ∈Ω , we
write x(t, t0, φ,f ) and xt (t0, φ,f ) for the maximally defined solution and state of the
system at timet satisfyingxt0 = φ. We assume this solution is unique, which will be the
case iff is Lipschitz in its second argument on each compact subset ofΩ . We drop the
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last argumentf from x(t, t0, φ,f ) when no confusion over whichf is being considered
will result.
f :Ω → Rn is said to satisfy (QMD) iff (t, ·) satisfies (QMD) onΩt ≡ {φ ∈ C: (t, φ) ∈

Ω} for eacht .
The next theorem not only establishes the desired monotonicity of the semiflowΦ but

also allows comparisons of solutions between related functional differential equations. It
generalizes Theorem 3.2 of Chapter 3 to functional differential equations and is a gener-
alization of Proposition 1.1 of [190] and Theorem 5.1.1 of [194] whereK = Rn+ is con-
sidered. The quasimonotone condition for delay differential equations seems first to have
appeared in the work of Kunisch and Schappacher [109], Martin [128], and Ohta [152].

THEOREM 4.1. Letf,g :Ω → Rn be continuous, Lipschitz on each compact subset ofΩ ,
and assume that eitherf or g satisfies(QMD). Assume also thatf (t,φ)� g(t, φ) for all
(t, φ) ∈Ω . Then

φ,ψ ∈Ωt0, φ �ψ, t � t0, )⇒ x(t, t0, φ,f )� x(t, t0,ψ,g)

for all t for which both are defined.

PROOF. Assume thatf satisfies (QMD), a similar argument holds ifg satisfies (QMD).
Let e ∈ Rn satisfy e ≫ 0, gǫ(t, φ) := g(t, φ) + ǫe and ψǫ := ψ + ǫê, for ǫ � 0. If
x(t, t0,ψ,g) is defined on[t0 − r, t1] for somet1> t0, thenx(t, t0,ψǫ, gǫ) is also defined
on this same interval for all sufficiently small positiveǫ and

x(t, t0,ψǫ, gǫ)→ x(t, t0,ψ,g), ǫ → 0,

for t ∈ [t0, t1] by Hale and Verduyn Lunel [61, Theorem 2.2.2]. We will show that
x(t, t0, φ,f )≪ x(t, t0,ψǫ, gǫ) on [t0 − r, t1] for small positiveǫ. The result will then fol-
low by lettingǫ → 0. If the assertion above were false for someǫ, then applying the remark
below Proposition 3.1, there existss ∈ (t0, t1] such thatx(t, t0, φ,f ) ≪ x(t, t0,ψǫ, gǫ)

for t0 � t < s andη(x(s, t0, φ,f )) = η(x(s, t0,ψǫ, gǫ)) for some nontrivialη ∈ K∗. As
η(x(t, t0, φ,f )) < η(x(t, t0,ψǫ, gǫ)) for t0 � t < s, by Proposition 3.1, we conclude that
d
dt |t=sη(x(s, t0, φ,f ))�

d
dt |t=sη(x(s, t0,ψǫ, gǫ)). But

d

dt

∣∣∣∣
t=s
η
(
x(s, t0,ψǫ, gǫ)

)
= η
(
g
(
s, xs(t0,ψǫ, gǫ)

))
+ ǫη(e)

> η
(
f
(
s, xs(t0,ψǫ, gǫ)

))

� η
(
f
(
s, xs(t0, φ,f )

))

= d

dt

∣∣∣∣
t=s
η
(
x(s, t0, φ,f )

)
,

where the last inequality follows from (QMD). This contradiction implies that no suchs

can exist, proving the assertion. �
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In the case of the autonomous system (4.2), takingf = g in Theorem 1.1 implies that
xt (φ) � xt (ψ) for t � 0 such that both solutions are defined. In other words, the semi-
flow Φ defined by (4.3) is monotone. In contrast to Theorem 3.2 of the previous sec-
tion, if φ < ψ we cannot conclude thatx(t, φ) < x(t,ψ) or xt (φ) < xt (ψ) sinceΦt is
not generally one-to-one. A simple example is provided by the scalar equation (4.2) with
r = 1 andf (φ) := maxφ, which satisfies (QMD). Letφ < ψ be strictly increasing on
[−1,−1/2], φ(−1) = ψ(−1) = 0, φ(−1/2) = ψ(−1/2) = 1, andφ(θ) = ψ(θ) = −2θ
for −1/2< θ � 0. It is easy to see thatx(t, φ)= x(t,ψ) for t � 0.

It is useful to have sufficient conditions for the positive invariance ofK . By this we
mean thatt0 ∈ J andφ � 0 impliesx(t, t0, φ) � 0 for all t � t0 for which it is defined.
The following result provides the expected necessary and sufficient condition. The proof is
similar to that of Theorem 4.1; the result is the delay analog of Proposition 3.3.

THEOREM4.2. Assume thatJ ×K ⊂Ω whereJ is an open interval. ThenK is positively
invariant for (4.4) if and only if for all t ∈ J

(PD) φ � 0, λ ∈K∗ andλ(φ(0))= 0 impliesλ(f (t, φ))� 0
holds.

Let L :J → L(C,Rn) be continuous, whereL(C,Rn) denotes the space of bounded
linear operators fromC to Rn, and consider the initial value problem for the linear nonau-
tonomous functional differential equation

x′ = L(t)xt , xt0 = φ. (4.5)

Observing that (PD) and (QMD) are equivalent for linear systems, we have the following
corollary.

COROLLARY 4.3. Letx(t, t0, φ) be the solution of(4.5).Thenx(t, t0, φ)� 0 for all t � t0
and allφ � 0 if and only if for eacht ∈ J , (PD)holds forL(t).

As in the case of ordinary differential equations, a stronger condition than (PD) for linear
systems is that for everyt ∈ J , there existsα ∈ R such thatL(t)φ + αφ(0)� 0 whenever
φ � 0.

It is useful to invoke the Riesz Representation Theorem [171] in order to identifyL(t)

with a matrix of signed Borel measuresη(t)= (η(t)ij ):

L(t)φ =
∫ 0

−r
dη(t)φ. (4.6)

The Radon–Nikodym decomposition ofηij with respect to the Dirac measureδ with unit
mass at 0 givesηij (t)= aij (t)δ+ η̃ij (t)whereaij is a scalar and̃ηij (t) is mutually singular
with respect toδ. In particular, the latter assigns zero mass to{0}. Therefore,

L(t)φ =A(t)φ(0)+ L̃(t)φ, L̃(t)φ :=
∫ 0

−r
dη̃(t)φ. (4.7)
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Continuity of the mapt → A(t) follows from continuity of t → L(t). The decomposi-
tion (4.7) leads to sharp conditions for (PD) to hold forL(t).

PROPOSITION4.4. (PD)holds forL(t) if and only if
(a) A(t) satisfies(P)of Proposition3.3,and
(b) L̃(t)φ � 0 wheneverφ � 0.

PROOF. If (a) and (b) hold,φ � 0,λ ∈K∗ andλ(φ(0))= 0 thenλ(L(t)φ)= λ(A(t)φ(0))
+ λ(L̃(t)φ)� 0 because each summand on the right is nonnegative.

Conversely, if (PD) holds forL(t), v ∈ ∂K , λ ∈K∗, andλ(v)= 0, defineφn(θ)= enθv
on [−r,0]. Thenφn � 0 andφn converges point-wise to zero, almost everywhere with
respect tõη(t). By (PD),

λ(L(t)φn)= λ(A(t)v + L̃(t)φn)� 0.

Lettingn→ ∞, we getλ(A(t)v)� 0 implying that (P) holds forA(t). Letφ � 0 be given
and defineφn(θ)= [1−enθ ]φ(θ) on [−r,0], n� 1.φn converges point-wise toφχ , where
χ is the indicator function of the set[−r,0), andφχ = φ almost everywhere with respect
to η̃(t). If λ ∈ K∗, thenλ(φn(0)) = 0 so applying (PD) we get 0� λ(L(t)φn) = L̃(t)φn.
Lettingn→ ∞ we get (b). �

For the remainder of this section, we suppose thatΩ = J ×D whereJ is a nonempty
open interval andD ⊂ C is open. Suppose that∂f

∂φ
(t,ψ) exists and is continuous onJ ×D

to L(C,Rn). In that case,x(t, t0, φ) is continuously differentiable in its last argument and
y(t, t0, χ)= ∂x

∂φ
(t, t0, φ)χ satisfies the variational equation

y′(t)= ∂f

∂φ

(
t, xt (t, φ)

)
yt , yt0 = χ. (4.8)

See Theorem 2.4.1 of Hale and Verduyn Lunel [61]. We say thatf (or (4.4)) isK-co-
operativeif for all (t, χ) ∈ J ×D the functionψ → ∂f

∂φ
(t, χ)ψ satisfies (PD). By Corol-

lary 4.3 applied to the variational equation we have the following analog of Theorem 3.5
for functional differential equations. The proof is essentially the same.

THEOREM 4.5. Let ∂f
∂φ
(t,ψ) exist and be continuous onJ ×D. If (QMD) holds for(4.4),

thenf isK-cooperative. Conversely, if D is p-convex andf isK-cooperative, then(QMD)
holds forf .

Consider the nonlinear system

x′(t)= g
(
x(t), x(t − r1), x(t − r2), . . . , x(t − rm)

)
, (4.9)
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whereg(x, y1, y2, . . . , ym) is continuously differentiable onR(m+1)n andrj+1 > rj > 0.
Then

∂f

∂φ
(ψ)= ∂g

∂x
(x,Y )δ +

∑

k

∂g

∂yk
(x,Y )δ−rk , (4.10)

whereδ−rk is the Dirac measure with unit mass at{−rk} and x = ψ(0), yk = ψ(−rk)
and (x,Y ) := (x, y1, y2, . . . , ym). By Theorem 4.5, Corollary 4.3, and Proposition 4.4,
(QMD) holds if and only if for each(x,Y ), ∂g

∂x
(x,Y ) satisfies condition (P) and∂g

∂yk
(x,Y ) is

K-positive. IfK = Rn+, the condition becomes∂gi
∂xj
(x,Y )� 0, for i �= j and ∂gi

∂ykj
(x,Y )� 0

for all i, j, k; if, in addition,n= 1 then ∂g

∂yk
(x,Y )� 0 for all k suffices.

4.3. Eventual strong monotonicity

We begin by considering the linear system (4.5). The following hypothesis for the contin-
uous mapL :J → L(C,Rn) reduces to (ST) of the previous section whenr = 0:

(STD) for all t ∈ J andφ � 0 with φ(0) ∈ ∂K satisfying one of the conditions
(a) φ(−r) > 0 andφ(0)= 0, or
(b) φ(s) > 0 for −r � s � 0,
there existsν ∈K∗ such thatν(φ(0))= 0 andν(L(t)φ) > 0.

The following result is the analog of Theorem 3.6 of the previous section for delay
differential equations.

THEOREM 4.6. Let linear system(4.5)satisfy(PD)and (STD)and lett0 ∈ J . Then

φ > 0, t � t0 + 2r )⇒ x(t, t0, φ)≫ 0.

In particular, xt (t0, φ)≫ 0 for t � t0 + 3r .

PROOF. By Corollary 4.3, we have thatx(t) := x(t, t0, φ) � 0 for all t � t0 that be-
long to J . There existst1 ∈ (t0, t0 + r) such thatx(t1 − r) = φ(t1 − r) = xt1(−r) > 0
since φ > 0. If x(t1) = 0, then (STD)(a) implies the existence ofν ∈ K∗ such that
ν(L(t1)xt1) > 0. As ν(x(t)) � 0 for t � t0 and ν(x(t1)) = 0 we conclude that
d
dt |t=t1ν(x(t)) � 0. But d

dt |t=t1ν(x(t)) = ν(L(t1)xt1) > 0, a contradiction. Therefore,
x(t1) > 0.

Now, by (4.7)

x′ =A(t)x + L̃(t)xt

from which we conclude

x(t)=X(t, t1)x(t1)+
∫ t

t1

X(t, r)L̃(r)xr dr,
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whereX(t, t0) is the fundamental matrix fory′ =A(t)y satisfyingX(t0, t0)= I . From (a)
of Proposition 4.4 and Corollary 3.4, it follows thatX(t, t0) isK positive fort � t0. This,
the fact thatxr � 0, and (b) of Proposition 4.4 imply that the integral belongs toK so we
conclude that

x(t)�X(t, t1)x(t1) > 0, t � t1.

We claim thatx(t)≫ 0 for t � t1 + r . If not, there is at2 � t1 + r such thatx(t2) =
xt2(0) ∈ ∂K but xt2(s) > 0 for −r � s � 0. Then (STD) implies the existence ofν ∈ K∗

such thatν(x(t2)) = 0 andν(L(t2)xt2) > 0. Sinceν(x(t)) � 0 for t � t0 we must have
d
dt |t=t2ν(x(t)) � 0. But d

dt |t=t2ν(x(t)) = ν(L(t2)xt2) > 0, a contradiction. We conclude
thatx(t)≫ 0 for t � t1 + r . �

In a sense, (STD)(a) says thatr has been correctly chosen; (STD)(b) is more fundamen-
tal. The next result gives sufficient conditions for it to hold.

PROPOSITION4.7. If L(t) satisfies(PD) and either
(a) A(t) satisfies(ST),or
(b) φ > 0)⇒ L̃(t)φ ≫ 0

then(STD)(b)holds.

PROOF. This is immediate from the definitions, the decomposition (4.7), Proposition 4.4,
and the expressionν(L(t)φ)= ν(A(t)φ(0))+ ν(L̃(t)φ). �

Theorem 4.6 leads immediately to a result on eventual strong monotonicity for the non-
linear system (4.4) where we assume thatΩ = J ×D as above.

THEOREM 4.8. Let D be p-convex, ∂f
∂φ
(t,ψ) exist and be continuous onJ × D to

L(C,Rn), and f be K-cooperative. Suppose that(STD) holds for ∂f
∂φ
(t,ψ), for each

(t,ψ) ∈ J ×D. Then

φ0, φ1 ∈D, φ0< φ1 )⇒ x(t, t0, φ0)≪ x(t, t0, φ1)

for all t � t0 + 2r for which both solutions are defined.

PROOF. By Theorem 4.5, we havex(t, t0, φ0)� x(t, t0, φ1) for t � t0 for which both so-
lutions are defined. We apply the formula

x(t, t0, φ1)− x(t, t0, φ0)=
∫ 1

0

∂x

∂φ

(
t, t0, sφ1 + (1− s)φ0

)
(φ1 − φ0)ds.

Here, forψ ∈ D and β ∈ C, y(t, t0, β) := ∂x
∂φ
(t, t0,ψ)β satisfies the variational equa-

tion (4.5) whereφ = β andL(t) = ∂f
∂φ
(t, xt (t0,ψ)). See Theorem 2.4.1 of Hale and Ver-

duyn Lunel [61]. The desired conclusion will follow if we show thaty(t, t0, β) ≫ 0 for
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t � t0 + 2r for ψ = sφ1 + (1− s)φ0 andβ = φ1 − φ0 > 0. By Theorem 4.6, it suffices to
show thatL(t) satisfies (PD) and (STD). But this follows from our hypotheses. �

In the next result, Theorem 4.8 is applied to system (4.9). We make use of notation
introduced below Theorem 4.5.

COROLLARY 4.9. Letg :R(m+1)n → Rn be continuously differentiable and satisfy
(a) ∂g

∂x
(x,Y ) satisfies(P) for each(x,Y ) ∈Z;

(b) for eachk, ∂g

∂yk
(x,Y ) isK positive;

(c) either ∂g
∂x
(x,Y ) satisfies(ST) or some ∂g

∂yk
(x,Y ) is strongly positive onK .

Then the hypotheses of Theorem4.8hold for (4.9).

PROOF. Recalling (4.10), it is evident that (a) and (b) imply that (4.9) isK-cooperative.
Hypothesis (c) and Proposition 4.7 imply that (STD) holds. �

In the special case that (4.9) is a scalar equation,m= 1 andK = R+, then ∂g
∂y
(x, y) > 0

suffices to ensure an eventually strongly monotone semiflow.

4.4. K is an orthant

Our results can be improved in the case thatK is a product cone such asRn+ =
∏n
i=1 R+,

i.e., an orthant. The following example illustrates the difficulty with our present set up.

x′
1(t) = −x1(t)+ x2(t − 1/2),

x′
2(t) = x1(t − 1)− x2(t).

Observe that (PD) holds for the standard cone. For initial data, takeφ = (φ1, φ2) ∈ C

(r = 1) whereφ1 = 0 andφ2(θ) > 0 for θ ∈ (−1,−2/3) and φ2(θ) = 0 elsewhere in
[−1,0]. The initial value problem can be readily integrated by the method of steps of length
1/2 and one sees thatx(t)= 0 for all t � −2/3. In the language of semiflows,φ > 0 yet
Φt (φ)=Φt (0)= 0 for all t � 0. The problem is thatC([−1,0],R2) is not the optimal state
space; a better one is the product spaceX = C([−1,0],R)×C([−1/2,0],R). Obviously,
an arbitrary cone inR2 will not induce a cone in the product spaceX.

For the remainder of this section we focus on the standard cone but the reader should
observe that an analogous construction works for any orthantK = {x: (−1)mixi � 0}.
Motivated by the example in the previous paragraph, letr = (r1, r2, . . . , rn) ∈ Rn+ be a
vector of delays,R = maxri and define

Cr =
n∏

i=1

C
(
[−ri,0],R

)
.
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Note that we allow some delays to be zero. We writeφ = (φ1, φ2, . . . , φn) for a generic
point ofCr . Cr is a Banach space with the norm|φ| =

∑
|φi |. Let

C+
r =

n∏

i=1

C
(
[−ri,0],R+

)

denote the cone of functions inCr with nonnegative components. It has nonempty interior
given by those functions with strictly positive components. As usual, we use the notation
�,<,≪ for the corresponding order relations onCr induced byC+

r . If xi(t) is defined on
[−ri, σ ), 1 � i � n, σ > 0 then we may redefinext ∈ Cr asxt = (x1

t , x
2
t , . . . , x

n
t ) where

xit (θ) = xi(t + θ) for θ ∈ [−ri,0]. Notice that now, the subscript signifying a particular
component will be raised to a superscript when using the subscript “t” to denote a function.

If D ⊂ Cr is open,J is an open interval andf :J ×D → Rn is given, then the stan-
dard existence and uniqueness theory for the initial value problem associated with (4.4)
is unchanged. Furthermore, Theorems 4.1 and 4.2, and Corollary 4.3 remain valid in our
current setting where, of course, we need only make use of the coordinate mapsη(x)= xi ,
1 � i � n in (QMD) and (PD). Our goal now is to modify (STD) so that we may ob-
tain a result like Theorem 4.6 that applies to systems such as the example above. We be-
gin by considering the linear system (4.5) whereL :J → L(Cr ,Rn) is continuous and let
Li(t)φ := 〈ei,L(t)φ〉, 1� i � n.

In our setting,L(t) satisfies (PD) if and only if:

φ � 0 andφi(0)= 0 implies Li(t)φ � 0.

THEOREM 4.10. Let linear system(4.5)satisfy(PD)and
(i) t ∈ J , rj > 0, φ � 0, φj (−rj ) > 0)⇒ Li(t)φ > 0 for somei;

(ii) for every proper subsetI of N := {1,2, . . . , n}, there existsj ∈ N \ I such that
Lj (t)φ > 0 wheneverφ � 0, φi(s) > 0, −ri � s � 0, i ∈ I .

Thenx(t, φ, t0)≫ 0 if φ > 0 for all t � t0 + nR.

PROOF. By (PD) and Corollary 4.3 we havex(t)� 0 for t � t0. An application of the Riesz
Representation Theorem and Radon–Nikodym Theorem implies that fori = 1,2, . . . , n,
we have

Li(t)φ = ai(t)φi(0)+
n∑

j=1

∫ 0

−rj
φj (θ)dθηij (t, θ)= ai(t)φi(0)+ L̄i(t)φ,

whereηij (t) is a positive Borel measure on[−rj ,0], ai(t) ∈ R andL̄i(t)φ � 0 whenever
φ � 0. Moreover,t → ηij (t) andt → ai(t) are continuous. See Smith [190,194] for details.
The representation ofLi in terms of signed measures,η̄ij , is standard; (PD) implies that
ηij := η̄ij must be positive fori �= j and thatη̄ii has the Lebesgue decompositionη̄ii =
aiδ + ηii with respect toδ, the Dirac measure of unit mass at zero, andηii is a positive
measure which is mutually singular with respect toδ.
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If xi(t1) > 0 for somei andt1 > t0 then fromx′
i(t)= ai(t)xi(t)+ L̄i(t)xt � ai(t)xi(t)

we conclude from standard differential inequality arguments thatxi(t) > 0 for t � t1.
As φ > 0, there existsj such thatφj > 0. If rj = 0 thenxj (t0) > 0; if rj > 0 then

xj (t1 − rj ) > 0 for somet1 ∈ (t0, t0 + rj ). In this case, it follows from (i) thatx′
i(t1) =

Li(t1)φ > 0 for somei and hencexi(t1) > 0. Hence,xi(t) > 0 for t � t1 by the previ-
ous paragraph. Applying (ii) withI = {i} and t = t2 = t1 + ri we may findk �= i such
that x′

k(t2) = Lk(t2)xt2 > 0 becausexit2(s) > 0, −ri � s � 0. Therefore, we must have
xk(t2) > 0 and hencexk(t) > 0 for t � t2. Obviously, we may continue in this manner until
we have all components positive fort � t0 + nR as asserted. �

Theorem 4.10 leads directly to a strong monotonicity result for the nonlinear nonau-
tonomous delay differential equation (4.4) in the usual way. We extend the definition of
K-cooperativity off to our present setup with state spaceCr exactly as before.

THEOREM 4.11. LetD ⊂ Cr be p-convex, ∂f
∂φ
(t,ψ) exist and be continuous onJ ×D to

L(Cr ,Rn), andf beK-cooperative. Suppose that for all(t,ψ) ∈ J ×D, L(t) := ∂f
∂φ
(t,ψ)

satisfies the conditions of Theorem4.10.Then

φ0, φ1 ∈D, φ0< φ1, t � t0 + nR )⇒ x(t, t0, φ0)≪ x(t, t0, φ1).

The biochemical control circuit with delays, modeled by the system

x′
1(t) = g

(
xn(t − rn)

)
− α1x1(t),

x′
j (t) = xj−1(t − rj−1)− αjxj (t), 2� j � n

(4.11)

with decay ratesαj > 0 and delaysri � 0 with R > 0 provides a good application of
Theorem 4.11 which cannot be obtained by Theorem 4.8 if the delays are distinct. We
assume theg :R+ → R+ is continuously differentiable andg′ > 0. Equation (4.11) is an
autonomous system for whichC+

r is positively invariant by Theorem 4.2. See Smith [191,
194] for more on this application.

4.5. Generic convergence for delay differential equations

The aim of this section is to apply Theorem 4.8 and Theorem 4.11 to the autonomous
delay differential equation (4.2) to conclude that the generic solution converges to equilib-
rium. ToΦ, defined by (4.3), we associateC, S andE, denoting respectively the sets of
convergent, stable and equilibrium points. The main result of this section is the following.

THEOREM 4.12. Let f ∈ C1(D), (4.2)be cooperative on the p-convex open subsetD of
C or Cr and satisfy:

(a) The hypotheses of Theorem4.8or of Theorem4.11hold;
(b) Every positive semiorbit ofΦ has compact closure inD andD =AC ∪BC.

Then



Monotone dynamical systems 313

(i) C ∩ S contains a dense open subset ofD, consisting of points whose trajectories
converge to equilibria;

(ii) If E is compact there is a stable equilibrium, and an asymptotically stable equilib-
rium whenE is finite.

PROOF. For definiteness, suppose that (4.2) is cooperative on the p-convex open subset
D of C and that the hypotheses of Theorem 4.8 hold. The other case is proved similarly.
Assumption (a) ensures thatΦ is eventually strongly monotone. Moreover, the derivative
of Φt (φ) with respect toφ exists andΦ ′

τ (φ)χ = yτ (t0, χ), wherey(t, t0, χ) is the solution
of the variational equation (4.8). As our hypotheses ensure thatL(t) = ∂f

∂φ
(xt (φ)) satis-

fies (STD), we conclude from Theorem 4.6 thatΦ ′
τ (φ) is strongly positive forτ � 3r .

Compactness ofΦ ′
τ (φ) :C → C for τ � r follows from the fact that a bound foryτ (t0, χ),

uniform for χ belonging to a bounded setB ⊂ C, can be readily obtained so, using (4.8),
we may also find a uniform bound fory′(t, t0, χ), τ − r � t � τ . See, e.g., Hale [58,
Theorem 4.1.1] for more detail.

The hypotheses of Theorem 2.26, withX =D, are fulfilled:D is normally ordered and
D = BC ∪AC; while (M) and (D∗) hold as noted above. Therefore Theorem 2.26 implies
the conclusion. �

In the special case that (4.2) is scalar (n = 1) we note that the setE of equilibria is
totally ordered inCr or C so the set of quasiconvergent points coincides with the set of
convergent points:Q = C. The classical scalar delay differential equation (4.1) has been
thoroughly investigated in the case of monotone delayed feedback (f (0)= 0 andf ′ > 0)
by Krisztin et al. [105]. They characterize the closure of the unstable manifold of the trivial
solution in case it is three-dimensional and determine in remarkable detail the dynamics
on this invariant set.

Smith and Thieme [198,200,194] introduce an exponential ordering, not induced by a
cone inRn, that extends the scope of application of the theory described here. One of the
salient results from this work is that a scalar delay equation for which the product of the
delayr and the Lipschitz constant off is smaller thane−1 generates an eventually strongly
monotone semiflow with respect to the exponential ordering and therefore the generic orbit
converges to equilibrium: the dynamics mimics that of the associated ordinary differential
equation obtained by ignoring the delay. See also work of Pituk [159].

We have considered only bounded delays. Systems of delay differential equations with
unbounded and even infinite delay are also of interest. See Wu [234] for extensions to such
systems. Wu and Freedman [235] and Krisztin and Wu [106–108] extend the theory to
delay differential equations of neutral type.

5. Monotone maps

5.1. Background and motivating examples

One of the chief motivations for the study of monotone maps is their importance in the
study of periodic solutions to periodic quasimonotone systems of ordinary differential
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equations. See for example the monograph of Krasnosel’skii [99], the much cited paper
of de Mottoni and Schiaffino [42], Hale and Somolinos [60], Smith [188,189], Liang and
Jiang [121], and Wang and Jiang [229–231]. To fix ideas, letf :R × Rn → Rn be a locally
Lipschitz function and consider the ordinary differential equation

x′ = f (t, x). (5.1)

As usual, denote byx(t, t0, x0) the noncontinuable solution of the initial value problem
x(t0) = x0, which for simplicity we assumed is defined for allt . If f is periodic int of
period one:f (t + 1, x)= f (t, x) for all (t, x), then it is natural to consider theperiod map
T :Rn → Rn defined by

T (x0)= x(1,0, x0). (5.2)

Its fixed points (periodic points) are in one-to-one correspondence with the periodic (sub-
harmonic) solutions of (5.1). IfK is a cone inRn for whichf satisfies the quasimonotone
condition (QM), then it follows from Theorem 3.2 thatT is a monotone map:x � y im-
pliesT x � Ty. Moreover,T has the important property, not shared with general monotone
maps, that it is an orientation-preserving homeomorphism.

In a similar way, periodic solutions for second order parabolic partial differential equa-
tions with time-periodic data can be analyzed by considering period maps in appropriate
function spaces. Here monotonicity comes from classical maximum principles. Hess [63]
remains an up-to-date survey. See also Alikakos et al. [3] and Zhao [245]. Remarkable
results are known for equations on a compact interval with standard boundary conditions.
Chen and Matano [23] show that every forward (backward) bounded solution is asymptotic
to a periodic solution; Brunovsky et al. [22] extend the result to more general equations.
Chen et al. [24] give conditions for the period map to generate Morse–Smale dynamics
and thus be structurally stable. Although monotonicity of the period map is an important
consideration in these results, it is not the key tool. The fact that the number of zeros on
the spatial interval of a solution of the linearized equation is non-increasing in time is far
more important. See Hale [59] for a nice survey.

A different theme in order-preserving dynamics originates in the venerable subject of
nonlinear elliptic and parabolic boundary value problems. The 1931 edition of Courant and
Hilbert’s famous book [34] refers to a paper of Bieberbach inGöttingen Nachrichten, 1912
dealing with the elliptic boundary value problem∆u = eu in Ω , u|∂Ω = f , in a planar
regionΩ . A solution is found by iterating a monotone map in a function space. Courant
and Hilbert extended this method to a broad class of such problems. Out of this technique
grew the method of “upper and lower solutions” (or “supersolutions and subsolutions”) for
solving, both theoretically and numerically, second order elliptic PDEs (see Amann [4],
Keller and Cohen [95], Keller [93,94], Sattinger [176]). Krasnosel’skii and Zabreiko [101]
trace the use of positivity in functional analysis—closely related to monotone dynamics—
to a 1924 paper by Uryson [222] on concave operators. The systematic use of positivity in
PDEs was pioneered Krasnosel’skii and Ladyzhenskaya [100] and Krasnosel’skii [98].

Amann [5] showed how a sequence{un} of approximate solutions to an elliptic problem
can be viewed as the trajectory{T nu0} of u0 under a certain monotone mapT in a suitable
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function space incorporating the boundary conditions, with fixed points ofT being solu-
tions of the elliptic equation. The dynamics ofT can therefore be used to investigate the
equation. Thus whenT is globally asymptotically stable, there is a unique solution; while
if T has two asymptotically stable fixed points, in many cases degree theory yields a third
fixed point. As Amann [6] emphasized, a few key properties ofT—continuity, monotonic-
ity and some form of compactness—allow the theory to be efficiently formulated in terms
of monotone maps in ordered Banach spaces.

Many questions in differential equations are framed in terms of eigenvectors of linear
and nonlinear operators on Banach spaces. The usefulness of operators that are positive
in some sense stems from the theorem of Perron [158] and Frobenius [51], now almost a
century old, asserting that for a linear operator onRn represented by a matrix with positive
entries, the spectral radius is a simple eigenvalue having a positive eigenvector, and all
other eigenvalues have smaller absolute value and only nonpositive eigenvectors. In 1912
Jentzsch [85] proved the existence of a positive eigenfunction with a positive eigenvalue
for a homogeneous Fredholm integral equation with a continuous positive kernel.

In 1935 the topologists Alexandroff and Hopf [2] reproved the Perron–Frobenius theo-
rem by applying Brouwer’s fixed-point theorem to the action of a positiven× n matrix on
the space of lines through the origin inRn+. This was perhaps the first explicit use of the
dynamics of operators on a cone to solve an eigenvalue problem. In 1940 Rutman [173]
continued in this vein by reproving Jentzsch’s theorem by means of Schauder’s fixed-point
theorem, also obtaining an infinite-dimensional analog of Perron–Frobenius, known today
as the Krein–Rutman theorem [104,214]. In 1957 G. Birkhoff [20] initiated the dynamical
use of Hilbert’s projective metric for such questions.

The dynamics of cone-preserving operators continues to play an important role in func-
tional analysis; for a survey, see Nussbaum [149,150]. One outgrowth of this work has
been a focus on purely dynamical questions about such operators; some of these results
are presented below. Polyhedral cones in Euclidean spaces have lead to interesting quanti-
tative results, includinga priori bounds on the number of periodic orbits. For recent work
see Lemmens et al. [117], Nussbaum [151], Krause and Nussbaum [102], and references
therein.

Monotone maps frequently arise as mathematical models. For example, the discrete
Lotka–Volterra competition model (see May and Oster [136]):

(un+1, vn+1) = T (un, vn)

:=
(
un exp

[
r(1− un − bvn)

]
, vn exp

[
s(1− cun − vn)

])

generates a monotone dynamical system relative to the fourth-quadrant cone only when
the intrinsic rate of increase of each population is not too large (r, s � 1) and then only on
the order interval[0, r−1] × [0, s−1] (Smith [192]). Fortunately in this case, every point
in the first quadrant enters and remains in this order interval after one iteration. As is
typical in ecological models, the Lotka–Volterra map is neither injective nor orientation-
preserving or orientation-reversing. For monotone maps as models for the spread of a gene
or an epidemic through a population, see Thieme [218], Selgrade and Ziehe [181], Wein-
berger [232], Liu [123] and the references therein.
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5.2. Definitions and basic results

A continuous mapT :X → X on the ordered metric spaceX is monotoneif x � y ⇒
T x � Ty, strictly monotoneif x < y ⇒ T x < Ty, strongly monotoneif x < y ⇒ T x ≪
Ty, andeventually strongly monotoneif wheneverx < y, there existsn0 � 1 such that
T nx ≪ T ny. We callT strongly order-preserving(SOP) if T is monotone, and whenever
x < y there exist respective neighborhoodsU,V of x, y andn0 � 1 such thatn � n0 ⇒
T nU � T nV .1 As with semiflows, eventual strong monotonicity implies the strong order
preserving property.

The orbit of x is O(x) := {T nx}n�0, and the omega limit set ofx is ω(x) :=⋂
k�0O(T

kx). If O(x) has compact closure,ω(x) is nonempty, compact, invariant (that
is,T ω(x)= ω(x)) andinvariantly connected. The latter means thatω(x) is not the disjoint
union of two closed invariant sets [116].

If T (x) = x thenx is a fixed pointor equilibrium. E denotes the set of fixed points.
More generally, ifT kx = x for somek � 1 we callx periodic, or k-periodic. The minimal
suchk is called the period ofx (andO(x)).

Let Y denotes an ordered Banach space with order coneY+. A linear operatorA ∈ L(Y )
is calledpositiveif A(Y+)⊂ Y+ (equivalently,A is a monotone map) andstrongly positive
if A(Y+ \ {0})⊂ IntY+) (equivalently,A is a strongly monotone map).

The following result is useful for proving smooth maps monotone or strongly monotone:

LEMMA 5.1. LetX ⊂ Y be a p-convex set andf : X → Y a locally C1 map with qua-
siderivativeh :U → L(Y ) defined on an open setU ⊂ Y . If the linear mapsh(x) ∈ L(Y )
are positive(respectively, strongly positive) for all x ∈U , thenf is monotone(respectively,
strongly monotone).

PROOF. By p-convexity it suffices to prove that everyp ∈X has a neighborhoodN such
thatf |N ∩X is monotone (respectively, strongly monotone). We takeN to be an open ball
in U centered atp. Supposep + z ∈ X ∩N , z > 0. By p-convexity,X ∩N contains the
line segment fromp to p + z. The definition (above Lemma 2.15) of locallyC1 implies
that the mapg : [0,1] → Y , t �→ f (p+ tz) isC1 with g′(t)= h(tz)z. Therefore

f (p+ z)− f (z)= g(0)− g(1)=
∫ 1

0
g′(t)dt =

∫ 1

0
h(tz)zdt.

Becauseh(tz) ∈ L(Y ) is positive andz > 0, we haveh(tz)z ∈ Y+, thereforef (p + z)−
f (p)� 0. If the operatorsh(tz) are strongly positive,f (p+ z)− f (p)≫ 0. �

PROPOSITION5.2 (Nonordering of Periodic Orbits).A periodic orbit of a monotone map
is unordered.

1Our use of “strongly order-preserving” conflicts with Dancer and Hess [38], who use these words to mean what
we have defined as “strongly monotone”. Our usage is consistent with that of several authors. Takáč [208,209]
uses “strongly increasing” for our SOP.
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PROOF. If not, there existsx in the orbit such thatT k(x) > x for somek > 0. Induction
onn shows thatT nk(x) > x for all n > 0. But if x has periodm> 0, induction onk proves
thatT mk(x)= x. �

LEMMA 5.3 (Monotone Convergence Criterion).AssumeT is monotone andO(z) has
compact closure. If m � 1 is such thatT mz < z or T mz > z thenω(z) is anm-periodic
orbit.

PROOF. Consider first the casem = 1. Compactness ofO(z) implies the decreasing se-
quence{T kz} converges to a pointp = ω(x). Now supposem > 1. Applying the case
just proved to the mapT m, we conclude that{T kmz} converges to a pointp = T m(p). It
follows thatω(z)= {p,Tp,T 2p, . . . , T m−1p}. �

Lemma 5.3 yields information on one-sided stability of compact limit sets whenT is
SOP; see Hirsch [70].

In order to state the following lemma succinctly, we call a setJ ⊂ N an interval if it is
nonempty and contains all integers between any two of its members. Fora, b ∈ N we set
[a, b] = {j ∈ N: a � j � b} (there will be no confusion with real intervals). Two intervals
overlapif they have more than one point in common.

Let J ⊂ N be an interval andf : J → X be a map. A subinterval[a, b] ⊂ J , a < b is
rising if f (a) < f (b), andfalling if f (b) < f (a).

THEOREM 5.4. A trajectory of a monotone map cannot have both a rising interval and a
falling interval.

PROOF. Follows from Theorem 1.6. �

LEMMA 5.5. If T is monotone, ω(z) cannot contain distinct points having respective
neighborhoodsU,V such thatT r(U)� T r(V ) for somer � 0.

PROOF. Follows from Theorem 5.4 (see proof of Lemma 1.7). �

The next result is fundamental to the theory of monotone maps:

THEOREM 5.6 (Nonordering Principle).Let ω(z) be an omega limit set for a monotone
mapT .

(i) No points ofω(z) are related by≪.
(ii) If ω(z) is a periodic orbit orT is SOP, no points ofω(z) are related by<.

PROOF. Follows from Proposition 5.2 and Lemma 5.5 (see the proof of Theorem 1.8).�

Call x convergentif ω(x) is a fixed point, andquasiconvergentif ω(x)⊂E. Just as for
semiflows, Proposition 5.6 leads immediately to a convergence criterion:
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COROLLARY 5.7. AssumeΦ is SOP.
(i) If an omega limit set has a supremum or infimum, it reduces to a single fixed point.

(ii) If the fixed point set is totally ordered, every quasiconvergent point with compact
orbit closure is convergent.

PROOF. Part (i) follows from Theorem 5.6(ii), since the supremum or infimum, if it exists,
belongs to the limit set. Part (ii) is a consequence (i). �

5.2.1. Failure of the limit set dichotomy We now point out a significant difference be-
tween strongly monotone maps and semiflows:

The Limit Set Dichotomy fails for strongly monotone maps.

Recall that for an SOP semiflow with compact orbit closures, the dichotomy (Theo-
rem 1.16) states:

If a < b, eitherω(a) < ω(b) or ω(a)= ω(b)⊂E.

Taká̌c [211, Theorem 3.10], gives conditions on strongly monotone maps under which
a < b implies that eitherω(a)∩ω(b)= ∅ orω(a)= ω(b). He also gives a counterexample
showing thatω(a)∩ ω(b)= ∅ does not implyω(a) < ω(b), nor doesω(a)= ω(b) imply
that these limit sets consist of fixed points (they are period-two orbits in his example).
However, the mapping in his example is defined on a disconnected space.

For any mapT in a Banach space, having an asymptotically stable periodic pointp of
period> 1, the Limit Set Dichotomy as formulated above must fail: take a pointq > p

so near top thatO(p) = ω(p) = ω(q). Clearlyω(p), being a nontrivial periodic orbit,
contains no fixed points. Thus the second assertion of the Limit Set Dichotomy fails in this
case.

Dancer and Hess [38] gave a simple example inRk for primek of a strongly monotone
map with an asymptotically stable periodic point of periodk which we describe below.
Therefore the second alternative of the Limit Set Dichotomy can be no stronger than that
ω(a)= ω(b) is a periodic orbit.

The Limit Set Dichotomy fails even for strictly monotone maps inR2. Let f (x) =
2 arctan(x), leta > 0 be its unique positive fixed point, and note that 0< f ′(a) < 1. Define
T0 :R2 → R2 by T0(x, y) := (f (y), f (x)). ThenE = {(−a,−a), (0,0), (a, a)} sincef
has no points of period 2. The fixed points ofT 2

0 are the nine points obtained by taking all
pairings of−a,0, a. An easy calculation shows that{(−a, a), (a,−a)} is an asymptotically
stable period-two orbit ofT0 because the Jacobian matrix ofT 2

0 is f ′(a)2 times the identity
matrix.T 0 is strictly monotone but not strongly monotone. Now consider the perturbations
Tǫ(x, y) := T0(x, y)+ (ǫx, ǫy). It is easy to see thatTǫ is strongly monotone forǫ > 0; and
by the implicit function theorem, for smallǫ > 0, Tǫ has an asymptotically stable period-
two orbitO(pǫ) with pǫ near(−a, a). As noted in [38], this example can be generalized
to Rk for primek.

Taká̌c [212] shows that linearly stable periodic points can arise for the period map asso-
ciated with monotone systems of ordinary and partial differential equations. Other coun-
terexamples for low-dimensional monotone maps can be found in Smith [192,195].
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As we have shown, asymptotically stable periodic orbits that are not singletons can exist
for monotone, even strongly monotone maps. Later we will show that the generic orbit of a
smooth, dissipative, strongly monotone map converges to a periodic orbit. Here, we show
that every attractor contains a stable periodic orbit.

Recall that a pointp is wanderingif there exists a neighborhoodU of p and a posi-
tive integern0 such thatT n(U) ∩U = ∅ for n > n0. Thenonwandering setΩ , consisting
of all points q that are not wandering, contains all limit sets. In the following, we as-
sume thatX is an open subset of the strongly ordered Banach spaceY andT :X →X is
monotone with compact orbit closures. The following result is adapted from Hirsch [71,
Theorems 4.1, 6.3].

THEOREM 5.8. If T is strongly monotone andK is a compact attractor, thenK contains
a stable periodic orbit.

The proof relies on the following result that does not use strong monotonicity nor that
K attracts uniformly:

THEOREM 5.9. Letp ∈K be a maximal(resp., minimal) nonwandering point. Thenp is
periodic, and every neighborhood ofp contains an open setW ≫ p (resp.,W ≪ p) such
thatω(x)=O(p) for all x ∈W .

PROOF. SupposeK attracts the open neighborhoodU of K and fixy ≫ p, y ∈ U . Since
p is nonwandering there exists a convergent sequencexi → p and a sequenceni → ∞
such thatT nixi → p. For all largei, xi � y. Passing to a subsequence, we assume that
T niy → q. By monotonicity andxi � y for largei, we haveq � p. Butq ∈K ∩Ω and the
maximality ofp requiresq = p. Sincep≪ y andT niy → p it follows thatT my ≪ y for
somem. Lemma 5.3 implies thatω(y) is anm-periodic orbit containingp. As this holds
for everyy ≫ p, the result follows. �

LEMMA 5.10. Letp,q ∈K be fixed points such thatp≪ q, p is order stable from below,
andq is order stable from above. ThenK ∩ [p,q] contains a stable equilibrium.

PROOF. LetR be a maximal totally ordered set of fixed points inK ∩ [p,q]. An argument
similar to the one in the proof of Theorem 1.30 shows that the fixed point

e := inf{z ∈E ∩R: z is order stable from above}

is order stable. Thate is stable follows from the analog of Proposition 1.28. �

PROOF OFTHEOREM5.8. Theorem 5.9 shows that some iterateT n, n� 0 has fixed points
p,q as in Lemma 5.10, which result therefore implies Theorem 5.8. �

Jiang and Yu [90, Theorem 2] implies that ifT is analytic, order compact with strongly
positive derivative, thenK must contain an asymptotically stable periodic orbit.
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5.3. The order interval trichotomy

In this section we assume thatX is a subset of an ordered Banach spaceY with positive
coneY+, with the induced order and topology. Much of the early work on monotone maps
on ordered Banach spaces focused on the existence of fixed points for self maps of or-
der intervals[a, b] such thata, b ∈ E; see especially Amann [6]. The following result of
Dancer and Hess [38], quoted without proof, is crucial for analyzing such maps.

Let u,v be fixed points ofT . A doubly-infinite sequence{xn}n∈Z (Z is the set of all
integers) inY is called anentire orbit fromu to v if

xn+1 = T (xn), lim
n→−∞

xn = u, lim
n→∞

xn = v.

If xn � xn+1 (respectively,xn < xn+1), the entire orbit isincreasing(respectively,strictly
increasing). If xn � xn+1 (respectively,xn > xn+1), the entire orbit isdecreasing(respec-
tively, strictly decreasing). If the entire orbit{xn} is increasing but not strictly increasing,
thenxn = v for all sufficiently largen; and similarly for decreasing.

Consider the following hypothesis:

(G) X = [a, b] wherea, b ∈ Y , a < b andT a = a, T b = b. The mapT :X → X is
monotone andT (X) has compact closure inX.

THEOREM 5.11 (The Order Interval Trichotomy).Under hypothesis(G), at least one of
the following holds:

(a) there is a fixed pointc such thata < c < b;
(b) there exists an entire orbit froma to b that is increasing, and strictly increasing ifT

is strictly monotone;
(c) there exists an entire orbit fromb to a that is decreasing, and strictly decreasing if

T is strictly monotone.

An extension of Theorem 5.11 to allow additional fixed points on the boundary of[a, b]
is carried out in Hsu et al. [83]. Wu et al. [236] weaken the compactness condition. See
Hsu et al. [83], Smith [192], and Smith and Thieme [201] for applications to general-
ized two-species competition dynamics. For related results see Hess [63], Matano [133],
Polá̌cik [162], Smith [184,194].

A fixed pointq of T is stableif every neighborhood ofq contains a positively invariant
neighborhood ofq. An immediate corollary of the Order Interval Trichotomy is:

COROLLARY 5.12. Assume hypothesis(G), and leta andb be stable fixed points. Then
there is a third fixed point in[a, b].

Corollary 5.14 establishes a third fixed point under different assumptions.
In general, more than one of the alternatives (a), (b), (c) may hold (see [83]). The fol-

lowing complement to the Order Interval Trichotomy gives conditions for exactly one to
hold; (iii) is taken from Proposition 2.2 of [83].

Consider the following three conditions:
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(a′) there is a fixed pointc such thata < c < b;
(b′) there exists an entire orbit froma to b;
(c′) there exists an entire orbit fromb to a.

PROPOSITION5.13. Assume hypothesis(G).
(i) If T is strongly order-preserving, exactly one of(a′), (b′), (c′) can hold. More pre-

cisely: Assumea < y < b and y has compact orbit closure. Thenω(y) = {b} if
there is an entire orbit froma to b, whileω(y)= {a} if there is an entire orbit from
b to a.

(ii) If a≪ b, at most one of(b′), (c′) can hold.
(iii) Supposea ≪ b, andE ∩ [a, b] \ {a, b} �= ∅ impliesE ∩ [[a, b]] \ {a, b} �= ∅. Then

at most one of(a′), (b′), (c′) can hold.

PROOF. For (i), consider an entire orbit{xn} from a to b. There is a neighborhoodU of a
such thatT kU � T ky for sufficiently largek. Choosexj ∈ U . ThenT kxj � T ky � b for
all largek. As limk→∞ T kxj = b and the order relation is closed,b is the limit of every
convergent subsequence of{T ky}. The case of an entire orbit fromb to a is similar.

In (ii), choose neighborhoodsU,V of a, b respectively such thatU ≪ V . Fix j so that
xj ∈U . If y ∈ V then an argument similar to the proof of (i) shows thatω(y)= {b}. Hence
there cannot be an entire orbit fromb to a, since it would contain a point ofV .

Assume the hypothesis of (iii), and note that (ii) makes (b′) and (c′) incompatible. If
(a′), there is a fixed pointc ∈ [[a, b]], and arguments similar to the proof of (ii) show that
neither (b′) nor (c′) holds. �

COROLLARY 5.14. In addition to hypothesis(G), assumeT is strongly order preserving
with precompact image. If some trajectory does not converge, there is a third fixed point.

PROOF. Follows from the Order Interval Trichotomy 5.11 and Proposition 5.13(i).�

A number of authors have considered the question of whethera priori knowledge
that every fixed point is stable implies the convergence of every trajectory. See Alikakos
et al. [3], Dancer and Hess [38], Matano [133] and Takáč [209] for such results. The fol-
lowing theorem is adapted from [38].

A setA ⊂ X is a uniform global attractorfor the mapT : X → X if T (A) = A and
dist(T nx,A)→ 0 uniformly inx ∈X.

THEOREM 5.15. Let a, b ∈ Y with a < b. AssumeT : [a, b] → [a, b] is strongly order
preserving with precompact image, and every fixed point is stable. ThenE is a totally
ordered arcJ that is a uniform global attractor, and every trajectory converges.

PROOF. We first show that there exists a totally ordered arc of fixed points; this will not use
the SOP property.O(a) is an increasing sequence converging to the smallest fixed point
in [a, b]. Similarly,O(b) is a decreasing sequence converging to the largest fixed point in
[a, b]. By renaminga andb as these fixed points, we may as well assume thata, b ∈E. The
stability hypothesis and Corollary 5.12 implies there is a fixed pointc satisfyinga < c < b.
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The same reasoning applies to[a, c] and[c, b], and can be repeated indefinitely to show
that every maximal totally ordered set of fixed points is compact and connected, hence an
arc (Wilder [233, Theorem I.11.23]). Thus by Zorn’s Lemma there is a totally ordered arc
J ⊂E joining a to b.

Next we prove:Every unordered compact invariant setK is a point ofJ . This will not
use precompactness ofT ([a, b]). Setq = inf{e ∈ J : K � e}. It suffices to proveq ∈ K ,
for thenK , being unordered, reduces to{q}. If q /∈K thenq > k. By SOP and invariance
of K there is a are neighborhoodsV of p andn > 0 such thatK = T n(K)� T (V ), hence
K � T n(V ∩ J )= V ∩ J . This gives the contradictionK � inf(V ∩ J ) < q.

Every ω(x) is compact by the precompactness assumption, and unordered by the
Nonordering Principle 5.6(ii). Total ordering ofJ therefore impliesω(x) is a point ofJ .
This proves every trajectory converges.

To show thatJ is a global attractor, letN be the openǫ-neighborhood ofJ for an arbi-
trary ǫ > 0. The stability hypothesis impliesN contains a positively invariant open neigh-
borhoodW of J . It suffices to proveT n(X)⊂W whenn is sufficiently large. Convergence
of all trajectories implies that for everyx ∈X there exists an open neighborhoodU(x) of
x andn(x) > 0 such thatT n(x) ∈W for all n � n(x). Precompactness ofT (X) implies
T (X)⊂

⋃
U(xi) for some finite set{xi}. HenceT n(X)⊂W providedn >max{n(xi)}. �

If the mapT in Theorem 5.15 isC1 and strongly monotone, thenE is a smooth totally
ordered arc by a result of Takáč [211].

5.3.1. Existence of fixed pointsDancer [37] obtained remarkable results concerning the
dynamics of monotone maps with some compactness properties: Limit sets can always be
bracketed between two fixed points, and with additional hypotheses these fixed points can
be chosen to be stable. The next two theorems are adapted from [37].

A mapT :Y → Y is order compactif it takes each order interval, and hence each order
bounded set, into a precompact set.

THEOREM 5.16. Let X be an order convex subset ofY . Assume thatT : X → X is
monotone and order compact, with every orbit having compact closure inX and every
omega limit set order bounded. Then for all z ∈ Y there are fixed pointsf,g such that
f � ω(z)� g.

PROOF. There existsu ∈ X such thatu� ω(z) because omega limit sets order bounded.
SinceT (ω(z))= ω(z), it follows thatω(z)� T iu for all i, henceω(z)� ω(u). Similarly,
there existss ∈ X such thatω(u) � ω(s). The setF := {x ∈ Y : ω(z) � x � ω(s)} is
the intersection of closed order intervals, hence closed and convex, nonempty because it
containsω(u), and obviously order bounded. MoreoverF ⊂X becauseX is order convex.
ThereforeT (F ) is defined and is precompact. Monotonicity ofT and invariance ofω(z)
andω(s) imply T (F )⊂ F . It follows from the Schauder fixed point theorem that there is
a fixed pointg ∈ F , andg � ω(z) as required. The existence off is proved similarly. �

The coneY+ is reproducingif Y = Y+ −Y+. This holds for many function spaces whose
norms do not involve derivatives. IfY+ has nonempty interior, it is reproducing: anyx ∈ Y
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can be expressed asx = λe− λ(e− λ−1x) ∈ Y+ − Y+, wheree≫ 0 is arbitrary andλ > 0
is a sufficiently large real number.

THEOREM 5.17. LetX ⊂ Y be order convex. AssumeT :X→X is monotone, completely
continuous, and order compact. Suppose orbits are bounded and omega limits sets are
order bounded.

(i) For all z ∈X there are fixed pointsf,g such thatf � ω(z)� g.
(ii) AssumeY+ is reproducing, X = Y or Y+, andE is bounded. Then there are fixed

pointseM = supE andem = infE, and all omega limit sets lie in[em, eM ]. More-
over, if x � em thenω(x)= {em}, while if x � eM thenω(x)= {eM}.

(iii) AssumeY+ is reproducing, X = Y or Y+, E is bounded, andT is strongly order
preserving. Supposez0 ∈ Y is not convergent. Then there are three fixed points
f < p < g such thatf < ω(z0) < g. If T is strongly monotone, f andg can be
chosen to be stable.

PROOF. We prove all assertions except for the stability in (iii). Complete continuity im-
plies that every positively invariant bounded set is precompact. Therefore orbit closures
are compact and omega limit sets are compact and nonempty, so (i) follows from Theo-
rem 5.16.

To prove (ii), note thatE is compact because it is bounded invariant and closed. Choose
a maximal elementeM ∈ E (Lemma 1.1). We must show thateM � e for every e ∈ E.
Since the order cone is reproducing,eM − e = v −w with v,w � 0. Setu := e+ v +w.
Thenu ∈ X, u � e, andu � eM . Monotonicity implieseM = T ieM � T iu for all i � 0,
henceeM � ω(u). By Theorem 5.16 there existsg ∈E such thatω(u)� g. HenceeM � g,
whenceeM = g by maximality. We now haveeM � ω(u) � g = eM , soω(u) = {eM}.
Monotonicity implies (as above)e � ω(u), thereforee � eM as required. This proves
eM = supE, and the dual argument provesem = infE. If x � em thenω(x) � em by
monotonicity; butω(x)� em by (i), soω(x)= {em}. Similarly for the casex � eM .

To prove the first assertion of (iii), note thatem <ω(z) < eM by (i) and the Nonordering
Principle 5.6(ii). Monotonicity and order compactness ofT imply [em, eM ] is positively
invariant with precompact image. AsT is SOP, there is a third fixed point in[em, eM ] by
Corollary 5.14. �

5.4. Sublinearity and the cone limit set trichotomy

Motivated by the problem of establishing the existence of periodic solutions of quasi-
monotone, periodic differential equations defined on the positive cone inRn, Krasno-
sel’skii pioneered the dynamics of sublinear monotone self-mappings of the cone [99].
We will prove Theorem 5.20 below, adapted from the original finite-dimensional version
of Krause and Ranft [103].

Let Y denote an ordered Banach space with positive coneY+. Denote the interior (pos-
sibly empty) ofY+ by P . A mapT :Y+ → Y+ is sublinear(or “subhomogeneous”) if

0< λ< 1 )⇒ λT (x)� T (λx),
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andstrongly sublinearif

0< λ< 1, x ≫ 0 )⇒ λT (x)≪ T (λx).

Strong sublinearity is the strong concavity assumption of Krasnosel’skii [99]. It can be
verified by using the following result from that monograph:

LEMMA 5.18. T :P → Y is strongly sublinear providedT is differentiable andT x ≫
T ′(x)x for all x ≫ 0.

PROOF. LetF(s)= s−1T (sx) for s > 0 and some fixedx ≫ 0. ThenF ′(s)= −s−2T (sx)

+ s−1T ′(sx)x ≪ 0 by our hypothesis. So for 0< λ< 1, we have

φ
(
T x − λ−1T (λx)

)
= φ
(
F(1)

)
− φ
(
F(λ)

)
< 0

for every nontrivialφ ∈ Y ∗
+, the dual cone inY ∗, becaused

dsφ(F (s)) < 0. The desired
conclusion follows from Proposition 3.1. �

COROLLARY 5.19. AssumeY is strongly ordered. A continuous mapT :Y+ → Y is sub-
linear providedT is differentiable inP andT x � T ′(x)x for all x ≫ 0.

PROOF. By continuity it suffices to proveT |P is sublinear. Fixe≫ 0. For eachδ > 0 the
mapP → Y , x �→ T x+δe is strongly sublinear by Lemma 5.18. Sendingδ to zero implies
T is sublinear. �

Krause and Ranft [103] have results establishing sublinearity of some iterate ofT , which
is an assumption used in Theorem 5.20 below.

The following theorem demonstrates global convergence properties for order compact
maps that are monotone and sublinear in a suitably strong sense.

THEOREM 5.20 (Cone Limit Set Trichotomy).AssumeT : Y+ → Y+ is continuous and
monotone and has the following properties for somer � 1:

(a) T r is strongly sublinear;
(b) T rx ≫ 0 for all x > 0;
(c) T r is order compact.

Then precisely one of the following holds:
(i) each nonzero orbit is order unbounded;

(ii) each orbit converges to0, the unique fixed point ofT ;
(iii) each nonzero orbit converges toq ≫ 0, the unique nonzero fixed point ofT .

A key tool in the proofs of such results is Hilbert’s projective metric and the related part
metric due to Thompson [219]. We define the part metricp(x, y) here in a very limited
way, as a metric onP (which is the “part”). Forx, y ≫ 0, define

p(x, y) := inf
{
ρ > 0: e−ρx ≪ y ≪ eρy

}
.
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The family of open order intervals inP forms a base for the topology of the part metric. It
is easy to see that the identity map ofP is continuous from the original topology onP to
that defined by the part metric.

WhenY = Rn with vector ordering, withP = Int(Rn+), the part metric is isometric to
the max metric onRn, defined bydmax(x, y) = maxi |xi − yi |, via the homeomorphism
Int(Rn+) ≈ Rn, x �→ (logx1, . . . , logxn). Restricted to compact sets in Int(Rn+), the part
metric and the max metric are equivalent in the sense that there existα,β > 0 such that
αp(x, y)� |x − y|max� βp(x, y).

The usefulness of the part metric in dynamics stems from the following result. Re-
call mapT between metric spaces is acontraction if it has a Lipschitz constant< 1,
and it isnonexpansiveif it has Lipschitz constant 1. We sayT is strictly nonexpansive
if p(T x,T y) < p(x, y) wheneverx �= y.

PROPOSITION5.21. LetT :P → P be a continuous, monotone, sublinear map.
(i) T is nonexpansive for the part metric.

(ii) If T is strongly sublinear, T is strictly nonexpansive for the part metric.
(iii) If T is strongly monotone, A⊂ P , and no two points ofA are linearly dependent,

thenT |A is strictly nonexpansive for the part metric.
(iv) Under the assumptions of(ii) or (iii), if L⊂ A is compact(in the norm topology)

andT (L)⊂ L, then the setL∞ =
⋂
n>0T

n(L) is a singleton.

PROOF. Fix distinct pointsx, y ∈A and set ep(x,y) = λ > 1, so thatλ−1x � y � λx andλ
is the smallest number with this property. By sublinearity and monotonicity,

λ−1T x � T
(
λ−1x

)
� Ty � T (λx)� λT x (5.3)

which impliesp(T x,T y)� p(x, y).
If T is strongly sublinear, the first and last inequalities in (5.3) can be replaced by≪,

which impliesp(T x,T y) < p(x, y).
Whenx andy are linearly independent,λ−1x < y < λx. If alsoT is strongly monotone,

(5.3) is strengthened to

λ−1T x � T
(
λ−1x

)
≪ Ty ≪ T (λx)� λT x

which also impliesp(T x,T y) < p(x, y).
To prove (iv), observe first that ifL is compact in the norm metric, it is also compact

in the part metric. In both (ii) and (iii)T reduces the diameter in the part metric of every
compact subset ofL. SinceT mapsL∞ onto itself but reduces its part metric diameter,
(iv) follows. �

PROOF OF THECONE L IMIT SET TRICHOTOMY 5.20. We first work under the assump-
tion thatr = 1. In this case Proposition 5.21 shows that every compact invariant set inP

reduces to a fixed point, and there is at most one fixed point inP . It suffices to consider the
orbits of pointsx ∈ P , by (b).
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Suppose there is a fixed pointq ≫ 0. There exist numbers 0< λ < 1< µ such that
x ∈ [λq,µq] ⊂ P . For alln we have

0≪ λq = λT nq � T n(λq)� T nx � T n(µq)� µT nq = µq.

HenceO(x)⊂ [λq,µq], soO(T x) lies inT ([λp,µq]), which is precompact by (c). There-
fore ω(x) is a compact unordered invariant set inP . Proposition 5.21(iii) implies that
ω(x)= {q}. This verifies (iii).

CaseI: If some orbitO(y) is order unbounded, we prove (i). We may assumey ≫ 0.
There exists 0< γ < 1 such thatγy ≪ x. Thenγ T ny � T n(γy)� T nx, implyingO(x)
is unbounded.

CaseII: If 0 ∈ ω(y) for somey, we prove (ii). We may assumey ≫ 0. Fix µ > 1
with x ≪ µy. Then 0� T nx � T n(µy) � µT ny → 0. ThereforeO(x) is compact and
T nx → 0.

CaseIII: If the orbit closureO(x) ⊂ [a, b] ⊂ P , then (iii) holds. ForO(x) is compact
by (c), soω(x) is a nonempty compact invariant set. Becauseω(x) ⊂ O(x) ⊂ P , Case I
implies (iii).

Cases I, II and III cover all possibilities, so the proof forr = 1 is complete. Now
assumer > 1. One of the statements (i), (ii), (iii) is valid forT r in place of T . If
(i) holds for T r , it obviously holds forT . Assume (ii) holds forT r . If x > 0 then
ω(x)= {0, T (0), . . . , T r−1(0)}. As this set is compact andT r invariant, it reduces to{0},
verifying (ii) for T . A similar argument shows that if (iii) holds forT r , it also holds
for T . �

The conclusion of the Cone Limit Trichotomy can fail for strongly monotone sublinear
maps—simple linear examples in the plane have a line of fixed points. But the following
holds:

THEOREM 5.22. Assume:
(a) T :Y+ → Y+ is continuous, sublinear, strongly monotone, and order compact;
(b) for eachx > 0 there existsr ∈ N such thatT rx ≫ 0.

Then:
(i) eitherO(x) is not order bounded for allx > 0, or O(x) converges to a fixed point

for all x � 0;
(ii) the set of fixed points> 0 has the form{λe: a � λ� b} wheree≫ 0 and0 � a �

b� ∞.

PROOF. Let y > 0 be arbitrary. IfO(y) is not order bounded, or 0∈ ω(y), the proof
of (i) follows Cases I and II in the proof of the Cone Limit Set Trichotomy 5.20. If
O(x) ⊂ [a, b] ⊂ P , thenω(y) is a compact invariant set inP , as in Case III of 5.20. As
ω(y) is unordered, every pair of its elements are linearly independent. Therefore Proposi-
tion 5.21(iv) impliesω(y) reduces to a fixed point, proving (i). The same reference shows
that all fixed points lie on a rayR ⊂ Y+ through the origin, which must pass through some
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e ≫ 0 by (b). Supposep,q are distinct fixed points and 0≪ p ≪ x <≪ q. There exist
unique numbers 0<µ< 1< ν such thatx = µp = µq. Then

T x � µTp = µp = x, T x � νT q = νq = x

provingT x = x. This implies (ii). �

Papers related to sublinear dynamics and the part metric include Dafermos and Slem-
rod [35], Krause and Ranft [103], Krause and Nussbaum [102], Nussbaum [149,150],
Smith [183], and Taká̌c [208,215]. For interesting applications of sublinear dynamics to
higher order elliptic equations, see Fleckinger-Pellé and Takáč [45,46].

5.5. Smooth strongly monotone maps

Smoothness together with compactness allows one to settle questions of stability of fixed
points and periodic points by examining the spectrum of the linearization of the mapping.
LetT :X→X whereX is an open subset of the ordered Banach spaceY with coneY+ hav-
ing nonempty interior inY . Assume thatT is a completely continuous,C1 mapping with a
strongly positive derivative at each point. ThenT is strongly monotone by Lemma 5.1 and
T ′(x) is a Krein–Rutman operator so the Krein–Rutman Theorem 2.17 holds forT ′(p),
p ∈E. Letρ be the spectral radius ofT ′(p), which the reader will recall is a simple eigen-
value which dominates all others in modulus and for which the generalized eigenspace is
spanned by an eigenvectorv≫ 0. LetV1 be the span ofv in Y . There is a complementing
closed subspaceV2 such thatY = V1 ⊕ V2 satisfyingT ′(p)V2 ⊂ V2 andV2 ∩ Y+ = {0}.
Let P denote the projection ofY ontoV2 alongv. Finally, letτ denote the spectral radius
of T ′(p)|V2 :V2 → V2, which obviously satisfiesτ < ρ. Mierczyński [139] exploits this
structure of the linearized mapping to obtain very detailed behavior of the orbits of points
nearp. In order to describe his results, defineK := {x ∈ X: T nx → p} to be the basin
of attraction ofp. LetM− := {x ∈X: T n+1 ≪ T nx,n� n0, somen0} be the set of even-
tually decreasing orbits,M+ := {x ∈ X: T nx ≪ T n+1x,n � n0, somen0} be the set of
eventually increasing orbits, andM :=M− ∪M+ be the set of eventually monotone (in the
strong sense) orbits.

The following result is standard but nonetheless important.

THEOREM 5.23 (Principle of Linearized Stability).If ρ < 1, there is a neighborhoodU
of p such thatT (U) ⊂ U and constantsc > 0, κ ∈ (ρ,1) such that for eachx ∈ U and
all n

∥∥T nx − p
∥∥� cκn‖x − p‖.

In the more delicate case thatρ � 1, Mierczýnski [139] obtains a smooth hypersur-
faceC, which is an analog forT of the codimension-one linear subspaceV2 invariant
under the linearized mappingT ′(p):
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THEOREM 5.24. If ρ � 1 there exists a codimension-one embedded invariant manifold
C ⊂X of classC1 having the following properties:

(i) C = {x+Pw+R(w)v: w ∈O} whereR :O → R is aC1 map defined on the rela-
tively open subsetO ofV2 containing0,satisfyingR(0)=R′(0)= 0. In particular,
C is tangent toV2 at p.

(ii) C is unordered.
(iii) C = {p ∈ X: ‖T nx − p‖/κn → 0} = {x ∈ X: ‖T nx − p‖/κn is bounded}, for

anyκ , τ < κ < ρ. In particular, C ⊂K .
(iv) K \C = {x ∈K: ‖T nx−p‖/κn → ∞} = {x ∈K: ‖T nx−p‖/κn is unbounded},

for anyκ , τ < κ < ρ.
(v) K \C =K ∩M .

Conclusion (v) implies most orbits converging top do so monotonically, but more can be
said. Indeed,K ∩M+ = {x ∈K: (T nx − p)/‖T nx − p‖ → −v} and a similar result for
K ∩M− with v replacing−v holds. The manifoldC is a local version of the unordered
invariant hypersurfaces obtained by Takáč in [209].

Corresponding to the spaceV1 spanned byv≫ 0 for T ′(p), a locally forward invariant,
one dimensional complement to the codimension one manifoldC is given in the following
result.

THEOREM5.25. There isǫ > 0 and a one-dimensional locally forward invariantC1 man-
ifold W ⊂ B(p; ǫ), tangent toV at p. If ρ > 1, thenW is locally unique, and for each
x ∈W there is a sequence{x−n} ⊂W with T x−n = x−n+1, x0 = x, andκn‖x−n−p‖ → 0
for anyκ , 1< κ < ρ.

HereB(p; ǫ) is the openǫ-ball centered atp. Local forward invariance ofW means that
x ∈W andT x ∈ B(x; ǫ) implies T x ∈W . Related results are obtained by Smith [184].
In summary, the above results assert that the dynamical behavior of the nonlinear mapT

behaves nearp like that of its linearizationT ′(p). Obviously, the above results can be
applied at a periodic pointp of period k by considering the mapT k which has all the
required properties.

Mierczyński [139] uses the results above to classify the convergent orbits ofT . Similar
results are obtained by Takáč in [210].

It is instructive to consider the sort of stable bifurcations that can occur from a linearly
stable fixed point, or a linearly stable periodic point, for a one parameter family of map-
pings satisfying the hypotheses of the previous results, as the parameter passes through a
critical value at whichρ = 1. The fact that there is a simple positive dominant eigenvalue
of (T k)′(p) ensures that period-doubling bifurcations from a stable fixed point or from a
stable periodic point, as a consequence of a real eigenvalue passing through−1, cannot
occur. In a similar way, a Neimark–Sacker [113] bifurcation to an invariant closed curve
cannot occur from a stable fixed or periodic point. These sorts of bifurcations can occur
from unstable fixed or periodic points but then they will “be born unstable.”

The generic orbit of a smooth strongly order preserving semiflow converges to fixed
point but such a result fails to hold for discrete semigroups, i.e., for strongly order pre-
serving mappings. Indeed, such mappings can have attracting periodic orbits of period
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exceeding one as we have seen. However, Tereščák [217], improving earlier joint work
with Polá̌cik [164,165], and [65], has obtained the strongest result possible for strongly
monotone, smooth, dissipative mappings.

THEOREM 5.26 (Tereš̌cák, 1996).Let T :Y → Y be a completely continuous, C1, point
dissipative map whose derivative is strongly positive at every point of the ordered Banach
space Y having coneY+ with nonempty interior. Then there is a positive integerm and an
open dense setU ⊂ Y such that the omega limit set of every point ofU is a periodic orbit
with period at mostm.

The mapP is point dissipative(see Hale [58]) provided there is a bounded setB with
the property that for everyx ∈X, there is a positive integern0 = n0(x) such thatP nx ∈ B
for all n� n0. We note that the hypothesis thatT ′(x) is strongly positive implies thatT is
strongly monotone by Lemma 5.1.

5.6. Monotone planar maps

A remarkable convergence result for planar monotone maps was first obtained by de Mot-
toni and Schiaffino [42]. They focused on the period-map for the two-species, Lotka–
Volterra competition system of ordinary differential equations with periodic coefficients.
The full generality of their arguments was recognized and improved upon by Hale and
Somolinos [60] and Smith [188,189,192]. We follow the treatment Smith in [192].

In addition to the usual order relations onR2, �,<,≪, generated byR2
+, we have the

“southeast ordering” (�K ), generated by the fourth quadrantK = {(u, v): u � 0, v � 0}.
The mapT is cooperativeif it is monotone relative to� andcompetitiveif it is monotone
relative toK .

Throughout this subsection, we assume thatT :A→A is a continuous competitive map
on the subsetA of the plane. Further hypotheses concerningA will be made below. As
noted above, all of the results have obvious analogs in the case of cooperative planar maps
(just interchange cones). Competitive planar maps preserve the order relation�K by defi-
nition, but they also put constraints on the usual ordering, as we show below.

LEMMA 5.27. LetT :A→A be a competitive map onA⊂ R2. If x, y ∈A satisfyT x ≪
Ty, then eitherx ≪ y or y ≪ x.

PROOF. If neitherx ≪ y nor y ≪ x hold, thenx �K y or y �K x holds. Butx �K y im-
pliesT x �K Ty which is incompatible withT x ≪ Ty. A similar contradiction is obtained
from y �K x. �

Lemma 5.27 suggests placing one of the following additional assumptions onT .

(O+) If x, y ∈A andT x ≪ Ty, thenx � y.
(O−) If x, y ∈A andT x ≪ Ty, theny � x.
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As we shall soon see, ifT is orientation preserving, then (O+) holds and if it is orien-
tation reversing, then (O−) holds. A sequence{xn = (un, vn)} ⊂ R2 is eventually compo-
nentwise monotoneif there exists a positive integerN such that eitherun � un+1 for all
n�N or un+1 � un for all n�N and similarly forvn.

In the case of orientation-preserving maps, the following result was first proved by de
Mottoni and Schiaffino [42] for the period map of a periodic competitive Lotka–Volterra
system of differential equations.

THEOREM 5.28. If T is a competitive map for which(O+) holds then for allx ∈ A,
{T nx}n�0 is eventually component-wise monotone. If the orbit of x has compact closure
in A, then it converges to a fixed point ofT . If, instead, (O−) holds then for allx ∈ A,
{T 2nx}n�0 is eventually component-wise monotone. If the orbit ofx has compact closure
in A, then its omega limit set is either a period-two orbit or a fixed point.

PROOF. We first note that ifT is competitive and (O−) holds thenT 2 is competitive and
(O+) holds (use Lemma 5.27) so the second conclusion of the theorem follows from the
first.

Suppose that (O+) holds. If T nx �K T
n+1x or T n+1x �K T

nx holds for somen � 1,
then it holds for all largern so the conclusion is obvious. Therefore, we assume that this
is not the case. It follows that for eachn � 1 either (a)T nx ≪ T n+1x or (b) T n+1x ≪
T nx. We claim that either (a) holds for alln or (b) holds for alln. Assumex ≪ T x (the
argument is similar in the other case). If the claim is false, then there is ann � 1 such
thatx ≪ T x ≪ · · · ≪ T n−1x ≪ T nx butT n+1x ≪ T nx. But (O+) impliesT nx � T n−1x

contradicting the displayed inequality. �

Orbits may not converge to a fixed point if (O−) holds. Consider the mapT : I → I

whereI = [−1,1]2 andT (u, v)= (−v,−u) reflects points through the linev = −u. It is
easy to see using Lemma 5.1 thatT is competitive and that (O−) holds (see below). Fixed
points ofT lie on the above-mentioned line but all other points inI are period-two points.

The hypotheses (O+) and (O−) onT are global in nature and therefore can be difficult to
check in specific examples. We now give sufficient conditions for them to hold that may be
easier to verify in applications.A contains order intervalsif x, y ∈ A andx ≪ y implies
that [x, y] ⊂ A. Clearly,A = [a, b] contains order intervals. IfA ⊂ R2 andT :A→ R2,
we say thatT is C1 if for eacha ∈ A there is an open setU in R2 and a continuously
differentiable functionF :U → R2 that coincides withT onU ∩A. We will have occasion
to make certain hypotheses concerningT ′(x) even though it is not necessarily uniquely
defined. What we mean by this is that there exists anF as above such thatT ′(x)=DF(x)

has the desired properties. This abuse of language will lead to no logical difficulties in the
arguments below. In the applications,A will typically be R2

+ or some order interval[a, b]
wherea≪ b in which caseT ′ is uniquely defined.

Consider the following hypothesis:

(H+) (a) A contains order intervals and is p-convex with respect to�K .
(b) detT ′(x) > 0 for x ∈A.
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(c) T ′(x)(K)⊂K for x ∈A.
(d) T is injective.

Hypothesis (H−) is identical except the inequality is reversed in (b).

LEMMA 5.29. If T :A→A satisfies(H+), thenT is competitive and(O+) holds. If (H−)
holds, thenT is competitive and(O−) holds.

PROOF. T is competitive by hypothesis (c) sinceA is p-convex with respect to�K .
Assuming that (H+) holds,x, y,T x,T y ∈ A andT x ≪ Ty, we will show thatx ≪ y.
According to Lemma 5.27, the only alternative tox ≪ y is y ≪ x so we assume the
latter for contradiction. Leta and b be the northwest and southeast corners of the rec-
tangle [y, x] ⊂ A so thata ≪K b and [y, x] = [a, b]K . SinceT is competitive onA,
T ([y, x])⊂ [T a,T b]K andT x ≪ Ty implies thatT a ≪K T b. Consider the oriented Jor-
dan curve forming the boundary of[y, x] starting ata and going horizontally tox, then
going vertically down tob, horizontally back toy and vertically up toa. As T is injec-
tive onA, the image of this curve is an oriented Jordan curve. Monotonicity ofT implies
that the image curve is contained in[T a,T b]K , begins atT a and moves monotonically
with respect to�K (southwest) throughT x and then monotonically toT b before moving
monotonically (decreasing or northwest) fromT b throughTy and on toT a. (H+)(b) im-
plies thatT is locally orientation preserving, so upon traversing the first half of the image
curve fromT a to Ty to T b, the curve must make a “right turn” atT b before continuing on
to T x and toT a. As the image curve cannot intersect itself, we see thatT x ≪ Ty cannot
hold, a contradiction. �

In specific examples it is often difficult to check thatT is injective. It automatically
holds ifA is compact and connected and there existsz ∈ T (A) such that the setT −1(z) is
a single point. This is because the cardinality ofT −1(w) is finite and constant forw ∈ T (A)
by Chow and Hale [26, Lemma 2.3.4].

The following is an immediate corollary of Theorem 5.28 and Lemma 5.29.

COROLLARY 5.30. If T :A→A satisfies(H+), then{T nx} is eventually component-wise
monotone for everyx ∈ A. In this case, if an orbit has compact closure inA, then it con-
verges to a fixed point ofT . If T satisfies(H−), then{T 2nx} is eventually component-wise
monotone for everyx ∈A. In this case, if an orbit has compact closure inA, then its omega
limit set is either a fixed point or a period-two orbit.

As an application of Corollary 5.30, we recall the celebrated results of de Mottoni and
Schiaffino [42] for the periodic Lotka–Volterra system

x′ = x
[
r(t)− a(t)x − b(t)y

]
,

y′ = y
[
s(t)− c(t)x − b(t)y

]
,

(5.4)

where r, s, a, b, c, d are periodic of period one anda, b, c, d � 0. The period map
T :R2

+ → R2
+, defined by (5.2) for (5.4), is strictly monotone relative to the fourth quad-

rant coneK by virtue of Theorem 3.5. Indeed, (5.4) is a competitive system relative to
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the coneR2
+ (the off-diagonal entries of the JacobianJ = J (t, x, y) of the right-hand

side are nonpositive), and every such system is monotone relative toK . Observe that
J + αI , for large enoughα > 0, has nonnegative diagonal entries so(J + αI)(u, v)T ∈K
if (u, v)T ∈ K (i.e., u � 0, v � 0). T is strongly monotone relative toK in Int R2

+ if
b, c > 0 by Corollary 3.11. BecauseT is injective and orientation preserving by Liouville’s
theorem, (H+) holds. Orbits are seen to be bounded by simple differential inequality ar-
guments, e.g., applied tox′ � x[r(t)− a(t)x]. Consequently, by Corollary 5.30, all orbits
O(T ) converge to a fixed point; equivalently, every solution of (5.4) is asymptotic to a
period-one solution.

System (5.4) is most interesting when each species can survive in the absence of its com-
petitor, i.e. the time average ofr ands are positive. In that case, aside from the trivial fixed
pointE0 := (0,0), there are unique fixed points of typeE1 := (e,0) andE2 := (0, f ). Of
course,e,f > 0 give initial data corresponding to the unique nontrivial one-periodic solu-
tions of the scalar equations:x′ = x[r(t)− a(t)x] andy′ = y[s(t)− d(t)y]. The dynamics
of the period map for these equations is described by alternative (iii) of Theorem 5.20.

It is shown by de Mottoni and Schiaffino that there is a monotone, relative toK ,
T -invariant curve joiningE1 to E2 which is the global attractor for the dynamics ofT in
R2

+ \ {E0}. This work has inspired a very large amount of work on competitive dynamics.
See Hale and Somolinos [60], Smith [188,189], Hess and Lazer [64], Hsu et al. [83], Smith
and Thieme [201], Wang and Jiang [230,231,229], Liang and Jiang [121], Zanolin [238].

6. Semilinear parabolic equations

The purpose of this section is to analyze the monotone dynamics in a broad class of second
order, semilinear parabolic equations.

For basic theory and further information on many topics we refer the reader to books
of Amann [11], Henry [62] Cholewa and Dlotko [25], Hess [63], Lunardi [124] and Mar-
tin [125], the papers of Amann [7–10], and the survey article of Poláčik [163].

Solution processes for semilinear parabolic problems have been obtained by many au-
thors; see for example [3,8,38,62,63,124,125,134,147,163,194,174,208,246]. We briefly
outline the general procedure, due to Henry, with important improvements by Mora and
Lunardi.

To balance the sometimes conflicting goals of order, topology and dynamics, the domain
of a solution process must be chosen carefully. We rely on results of Mora [147], refined
by Lunardi [124], for solution processes in Banach subspacesCkB(Ω)⊂ Ck(Ω), k = 0,1
determined by the boundary operatorB.

6.1. Solution processes for abstract ODEs

If Y andX are spaces such thatY is a subset ofX and the inclusion mapY → X is
continuous, we writeY →֒ X. WhenY andX are ordered Banach space structures, this
notation tacitly states thatY is a linear subspace ofX andY+ = Y ∩X+.

The domain and range of any maph are denoted byD(h) andR(h).
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6.1.1. Processes Let Z be a topological space and setẐ := {(t, t0, z) ∈ R+ × R+ ×
Z: t � t0}. A processin Z is a familyΘ = {Θt,t0}0�t0<t of continuous maps

Θt,t0 :Dt,t0 →Z, Dt,t0 open inZ,

where the set{(t, t0, z) ∈ Ẑ: z ∈D(t, t0)} is open inẐ containing{(t, t, z): t � 0, z ∈ Z},
with the properties:

• the map(t, t0, z) �→Θt,t0(z) is continuous from̂Z toZ.
• thecocycle identitieshold:

t � t1 � t0 )⇒ Θt,t1 ◦Θt1,t0 =Θt,t0, Θt,t = identity map ofZ.

Equivalently: there is a local semiflowΛ on R+ × Z such thatΛt (t0, u0) = (t +
t0,Θt,t0(u0)). It follows that for each(t0, z) there is a maximalτ := τ(t0, z) ∈ (t0,∞]
such thatz ∈ Dt,t0 for all t ∈ [t0, τ ). The trajectory of (t0, z) is the parametrized curve
[t0, τ )→Z, t �→Θt,t0(z), whose image is theorbit of (t0, z). A subsetS ⊂ Z is positively
invariant if it contains the orbit of every point inR+ × S.

A trajectory isglobal if it is defined on[t0,∞). The process is called global when all
trajectories are global.

Let S be a space such thatS →֒ Z. It may be thatS is positively invariant under the
processΘ , and the mapsΘt,t0 :S ∩D(t, t0)→ S are continuous respecting the topology
on S and furthermore, the map(t, t0, s)→ Θt,t0s is continuous from̂S to S. In this case
these maps form theinduced processΘS in S.

A processΘ in an ordered space is called (locally) monotone, SOP, Lipschitz, compact,
and so forth, provided every mapΘt,t0, t > t0 has the corresponding property.

6.1.2. Solution processesLetX be a Banach space.A denotes a linear operator (usually
unbounded) inX with domainD(A)⊂X, that issectorialin the following strong sense:

• A is a densely defined, closed operator generating an analytic semigroup{etA}t�0 in
L(X), and the resolvent operators(λI − A)−1 ∈ L(X) are compact for sufficiently
largeλ� 0.

The latter property ensures that etA is compact fort > 0 [156, Theorem 2.3.3].
We makeD(A) into a Banach space with the graph norm‖x‖D(A) = ‖x‖ + ‖Ax‖, or

any equivalent norm. ThenA : D(A)→X is bounded, andD(A) →֒X.
For 0� α � 1 we define the fractional power domain ofAα to beXα = Xα(A) :=

D(Aα). Thus we have [62]

D(A) →֒Xα →֒X, D(A)=X.

Let F : [0,∞) × Xα → X be a continuous map that islocally Lipschitz in the second
variable, i.e.:

• F |[0, τ ] × B(r) has Lipschitz constantL(τ, r) in the second variable whenever
[0, τ ] ⊂ [0,∞) andB(r) is the closed ball of radiusr in Xα .

Locally Hölder in the first variableis defined analogously. We sayF is C1 in the second
variable if ∂wF(t,w) is continuous.
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The data(X,A,F ) determine the abstract initial value problem

{
u′(t)= Au(t)+ F(t, u(t)) (t > t0),
u(t0)= u0 ∈X. (6.1)

A continuous curveu : [t0, τ )→ X, t0 < τ � ∞ is a (classical)solution through(t0, u0)

if u(t) ∈ D(A) for t0 < t < τ and (6.1) holds. It is well known (e.g., Lunardi [124, 4.1.2])
that every solution is also amild solution, i.e., it satisfies the integral equation

u(t)= e(t−t0)Au0 +
∫ t

t0

e(t−s)AF
(
s, u(s)

)
ds (t0 � t < τ). (6.2)

Moreover, every mild solution is a solution providedF is locally Hölder int (Lunardi [124,
Proposition 7.1.3]).

A classical or mild solution ismaximalif it does not extend to a classical or mild solution
on a larger interval in[t0,∞); it is then referred to as atrajectoryat (t0, u0), and its image
is anorbit. When such a trajectory is unique it is denoted byt �→ u(t, t0, u0). In this case
theescape timeof (t0, u0) is τ(t0, u0) := τ . If τ = ∞ the trajectory is calledglobal.

The following basic result means that Eq. (6.1) is well-posed in a strong sense, and that
solutions enjoy considerable uniformity and compactness.

THEOREM 6.1. Let (t0, u0) ∈ R+ ×Xα . There is a unique mild trajectory at(t0, u0), and
it is a classical trajectory providedF(t, u) is locally Hölder in t . If t0 < t1 < τ(t0, u0),
there is a neighborhoodU of x0 in Xα andM > 0 such that

‖u(t, t0, u1)− u(t, t0, u2)‖Xα �M‖u1 − u2‖Xα , u1, u2 ∈U.

There existC > 0, t0 < t1 < τ(t0, u0), a bounded neighborhoodN of u0 in X and a con-
tinuous map

Ψ : [t0, t1] ×N →X, (t, v) �→ u(t, t0, v),

whereu(t, t0, v) is a mild solution, such that the following hold. If s, t ∈ (t0, t1], 0� α < 1
andv,w ∈N :

(i) ‖Ψ (s, v)−Ψ (s,w)‖ � C‖v−w‖;
(ii) ‖Ψ (s, v)−Ψ (s,w)‖Xα � (s − t0)

−αC‖v−w‖;
(iii) Ψ ([s, t1] ×N) is precompact inXα ;
(iv) u(·, t0, v) : (t0, t] →Xα andu(·, t0, v) : [t0, t] →X are continuous;
(v) trajectories bounded inXα are global.

PROOF. Lunardi [124, Theorems 7.1.2, 7.1.3 and 7.1.10] proves the first assertion. Items
(i), (ii) and (iv) follow from [124, Theorem 7.1.5], and (v) follows from Theorem 7.1.8
(see also Henry [62, 3.3.4]). Fixβ with α < β < 1. AsN is bounded inX, Ψ (s ×N) is
bounded inXβ by (ii) (with α in (ii) replaced byβ). ThereforeΨ (s ×N) is precompact
in Xα , and (iii) follows becauseΨ defines a local semiflow onR+ ×Xα . �
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Equation (6.1) induces asolution processΘ in X, defined byΘt,t0(u0) := u(t, t0, u0).
Its restriction toXα defines an induced solution process on that space. When Eq. (6.1) is
autonomous, i.e.,F(t, u)= F(u), this solution process boils down to a local semiflowΦ
in Xα , defined byΦt (t0, u0)= u(t + t0, t0, u0).

When F(t, u) has periodλ > 0 in t , the solution process isλ-periodic: Θt,t0 ≡
Θt+λ, t0+λ. In this caseΘ reduces to a local semiflow onS1 ×Xα , the dynamics of which
are largely determined by the Poincaré mapT :=Θλ,0 which maps an open subset ofXα

continuously intoXα .
Let S be a set andZ a Banach space. We use expressions such as “S is bounded inZ”

or “S ⊂ Z is bounded” to meanS ⊂ Z and supu∈S ‖u‖Z <∞. Note thatS may also be
unbounded in other Banach spaces.

A map defined on a metric space iscompactif every bounded set in its domain has
precompact image. It islocally compactif every point of the domain has a neighborhood
with precompact image.

A Banach spaceY is adaptedto the data(X,A,F ) if the following two conditions hold:

Xα →֒ Y →֒X (6.3)

and the map(t, u0) �→Θt,t0u0 from [t0, τ )×D(t, t0)∩ Y to Y is continuous. The solution
processΘ determines theinduced solution processΘY in Y . The domain ofΘY

t,t0
is the

open subsetDY (t, t0) :=Dt,t0 ∩ Y of Y .
Rather than work with fractional power spaces, one can assume thatF : [0,∞)×K →X

whereK is a suitable subset ofX. The subsetK ⊂X is locally closedin the Banach space
X if for eachx ∈K there existsr > 0 such that{y ∈K: ‖x−y‖ � r} is closed inX. Closed
and open subsetsK of X are locally closed. Note that the following result gives existence
and uniqueness of mild solutions while at the same time giving positive invariance. It is
a special case of Theorems VIII.2.1 and VIII.3.1 in Martin [125]. Assumptions on the
semigroup etA remain as above.

THEOREM 6.2. LetK be a nonempty locally closed subset of a Banach spaceX and let
F : [0,∞) × K → X be continuous and satisfy: For eachR > 0 there areLR > 0 and
γ ∈ (0,1] such that forx, y ∈K , ‖x‖,‖y‖ �R, 0� s, t �R

∥∥F(t, x)− F(s, y)
∥∥� LR

(
|t − s|γ + ‖x − y‖

)
. (6.4)

Suppose also that:
(a) etA(K)⊂K for all t � 0, and
(b) lim infhց0

1
h

dist(x + hF(t, x),K)= 0 for (t, x) ∈ [0,∞)×K .
Then for each(t0, u0) ∈ [0,∞)×K , there is a unique classical trajectoryu(t, t0, u0) of
(6.2)defined on a maximal interval[t0, τ ), andu(t) ∈K for t0 � t < τ .

This result is useful for parabolic systems whenX = Ck(Ω), k = 0,1 but not whenX =
Lp(Ω). The substitution operators are well-behaved in the former cases but require very
stringent growth conditions for the latter; see Martin [125]. By virtue of the uniqueness
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assertions of Theorem 6.1 and Theorem 6.2, the solution processes given by the two results
agree onK if (6.4) holds.

Hypothesis (a) is obviously required for the positive invariance ofK in caseF = 0.
Hypothesis (b), called thesubtangential condition, is easily seen to be a necessary condi-
tion for the positive invariance ofK if A = 0. See Martin [125, Theorem VI.2.1]. Both
hypotheses are trivially satisfied ifK =X.

The following result is a special case of [125, Proposition VIII.4.1]:

PROPOSITION6.3. LetF : [0,∞)×X→X be continuous and satisfy(6.4)withK =X

and letu(t)= u(t, t0, x0) be the unique classical trajectory defined on a maximal interval
[t0, τ ) guaranteed by Theorem6.2.If τ <∞ thenlimt→τ ‖u(t)‖ = ∞.

6.1.3. Monotone processesGiven our interest in establishing monotonicity properties of
solution processes induced by parabolic systems in various functions spaces, there are two
approaches one may take. One is to establish the properties on spaces of smooth func-
tions such as fractional power spacesXα for α < 1 near unity and then try to extend the
monotonicity to larger spaces, e.g.,C0(Ω), by approximation. An alternative is to establish
the monotonicity properties on the larger spaces first and then get corresponding proper-
ties on the smaller spaces by restriction. We give both approaches here, beginning with the
former.

A processΘ is very strongly order preserving(= VSOP) if it is monotone and has
the following property: Givent0 � 0, u > v, andǫ > 0, there exists ∈ (t0, t0 + ǫ] and
neighborhoodsU,V of u,v respectively such that

t � s )⇒ Θt,t0(U ∩Dt,t0) > Θt,t0(V ∩Dt,t0).

This impliesΘ is SOP and strictly monotone.

THEOREM 6.4. AssumeX is an ordered Banach space andY →֒ X an ordered Banach
space such thatY is dense inX and the order coneY+ := Y ∩X+ is dense inX+. LetΘ
be a process inX that induces a monotone processΘY in Y . Then:

(a) Θ is monotone.
(b) AssumeR(Θt,t0)⊂ Y for all t > t0 � 0.ThenΘ is strictly monotone ifΘY is strictly

monotone, andΘ is VSOP providedΘY is strongly monotone andΘt,t0 :D(t, t0)→
Y is continuous fort > t0.

PROOF. (a) Fix u andv > u in X. The closed line segmentuv spanned byu andv is
compact, hence there existsρ > t0 with uv ⊂Dt0,ρ . By the density assumptions there exist
convergent sequencesun → u, vn → v in Dt0,ρ such thatun, vn ∈ Y andun < vn. AsΘY

is induced fromΘ , it follows thatun, vn ∈DY
t0,ρ

. For all t ∈ [t0, ρ),

Θt,t0(un)=ΘY
t,t0
(un)�ΘY

t,t0
(vn)=Θt,t0(vn).

Taking limits asn→ ∞ provesΘt,t0(u)�Θt,t0(v). ThusΘ is monotone.
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(b) Assume now thatΘY is strictly monotone. We show thatΘ is strictly monotone. Let
u(t), v(t) be local trajectories withu(t0) < v(t0). If r ∈ (t0, t1] is sufficiently neart0, then
u(r), v(r) are distinct points ofY , andu(r) < v(r) by (a). Henceu(t1) < v(t1) by strict
monotonicity ofΘY .

To proveΘ is VSOP, letu(t), v(t) be as above withu(t0), v(t0) ∈ Dt,t0. If t0 < s <

r < t , strict monotonicity impliesu(s) > v(s). These points are inY , ΘY is strongly
monotone, andΘ agrees withΘY in Y . Therefore there are disjoint neighborhoods
U1,V1 ⊂ Y of u(s), v(s) respectively, such that

Θr,s(U1 ∩Dr,s)≫Θr,s(V1 ∩Dr,s)

and strict monotonicity implies that

t > r )⇒ Θt,r(U1 ∩Dt,r) > Θt,r(V1 ∩Dt,r). (6.5)

As Θr,t0 :D(r, t0) → Y is continuous, we may define neighborhoodsU,V ⊂ X of
u(t0), v(t0) respectively by

U =Θ−1
r,t0
(U1), V =Θ−1

r,t0
(V1).

By (6.5) and the cocycle identities,

t > r )⇒ Θt,t0(U ∩Dt,t0) > Θt,t0(V ∩Dt,t0). �

LetX be an ordered Banach space with positive coneX+ andK a locally closed subset.
The mappingF :K →X is said to bequasimonotone(relative toX+) if:

(QM) For all (t, x), (t, y) ∈ [0,∞)×K satisfyingx � y we have:

lim
hց0

1

h
dist
(
y − x + h

[
F(t, y)− F(t, x)

]
,X+

)
= 0.

The next result is due to [125, Proposition VIII.6.1 and Lemma 6.3] (see also [129] in
case of abstract delay differential equations).

THEOREM 6.5. Assume the hypotheses of Theorem6.2 hold, F is quasimonotone, and
etA is a positive operator fort � 0. In addition, suppose one of the following:

(i) K is open.
(ii) K +X+ ⊂K .

(iii) X is a Banach lattice andK = [u,v] for someu,v ∈X ∪ {−∞,∞}, u� v.
Then

x, y ∈K,x � y )⇒ u(t, x)� u(t, y)
(
0� t � min{τx, τy}

)
.

By [−∞, v], v ∈X, is meant the set{x ∈X: x � v}; similarly for other intervals involv-
ing ±∞. Of course,−∞ � v � ∞ for everyv ∈ X. Observe thatK = [u,∞] is covered
by both (ii) and (iii).
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REMARK 6.6. If F has the property that for eachx, y ∈K with x � y, there existsλ > 0
such thatF(t, x)+ λx � F(t, y)+ λy thenF is quasimonotone because

y − x + h
[
F(t, y)− F(t, x)

]
= (1− λh)(y − x)

+ h
[
F(t, y)+ λy − F(t, x)− λx

]
∈X+

whenh < λ−1.

REMARK 6.7. It is well-known that etA is a positive operator if and only if(λI − A)−1

is a positive operator for all large positiveλ. See, e.g., [11, Theorem II 6.4.1] or [125,
Proposition 7.5.3]. Indeed, ifK is a closed convex subset ofX, then etAK ⊂ K if and
only if (λI −A)−1K ⊂K for all large positiveλ.

A Banach spaceX is aBanach latticeif for eachx, y ∈X, x ∨ y := sup{x, y} exists and
the norm is monotone in the sense:

|x| � |y| )⇒ ‖x‖ � ‖y‖,

where |x| denotes the absolute value ofx: |x| := (−x) ∨ x (see Vulikh [225]). Banach
lattices are easy to work with due to simple formulas such as

dist(x,X+)= ‖x − x+‖ = ‖x−‖,

wherex+ := x ∨ 0 andx− = −(−x)+. The requirement thatX be a Banach lattice is a
rather strong hypothesis which essentially restricts applicability toX = Lp(Ω),C0(Ω) or
C0

0(Ω). However, the latter two will be important for reaction–diffusion systems.

6.2. Semilinear parabolic equations

LetΩ ⊂ Rn be the interior of a compactn-dimensional manifold withC2 boundary∂Ω .
We consider the semilinear system ofm coupled equations (1� i �m):

∂ui

∂t
= (Aiui)(t, x)+ fi(t, x,u,∇u) (x ∈Ω, t > t0),

(Biui)(t, x)= 0 (x ∈ ∂Ω, t > t0),
ui(t0, x)= v0,i(x) (x ∈Ω).

(6.6)

Here the unknown function isu= (u1, . . . , um) :Ω → Rm, and∇u := (∇u1, . . . ,∇um) ∈
(Rn)m lists the spatial gradients∇ui of theui , i.e.,∇ui := (

∂ui
∂x1
, . . . ,

∂ui
∂xn
). EachAi(x) is a

second order, elliptic differential operator of the form

Ai(x)=
n∑

l,j=1

Cilj (x)
∂

∂xl

∂

∂xj
+

n∑

j=1

bij (x)
∂

∂xj
(6.7)
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with uniformly continuous and bounded coefficients. Eachn× n matrixCi(x) := [Cilj (x)]
is assumed positive definite:

0< inf
(〈
Ci(x)y, y

〉) (
x ∈Ω,y ∈ Rn, |y| = 1

)
,

where〈·, ·〉 denotes the Euclidean inner product onRn.
The function

f := (f1, . . . , fm) : R+ ×Ω × Rm ×
(
Rn
)m → Rm

is continuous, andf (t, x,u, ξ) is locally Lipschitz in(u, ξ) ∈ Rm × (Rn)m.
Each boundary operatorBi acts on sufficiently smooth functionsv : [t0, τ )×Ω → R in

one of the following ways, wherex ∈ ∂Ω :

Dirichlet: (Biv)(t, x)= v(t, x);
Robin: (Biv)(t, x)= γiv(t, x)+

∂v

∂ξi
(t, x);

Neumann: (Biv)(t, x)=
∂v

∂ξi
(t, x),

whereγi :Ω → [0,∞) is continuously differentiable, andξi :Ω → Rn is a continuously
differentiable vector field transverse to∂Ω and pointing outward fromΩ . Note that Neu-
mann is a special case of Robin.

We rewrite (6.6) as an initial-boundary value problem for an unknown vector-valued
functionu := (u1, . . . , um) : [t0, τ )×Ω → Rm,

∂u

∂t
= (Au)(t, x)+ f (t, x,u,∇u) (x ∈Ω, t > t0),

(Bu)(t, x)= 0 (x ∈ ∂Ω, t > t0),
u(t0, x)= u0(x) (x ∈Ω),

(6.8)

where the operatorsA := A1 × · · · ×Am andB := B1 × · · · × Bm act componentwise on
u= (u1, . . . , um). By asolution processfor Eq. (6.8) we mean a process in some function
space onΩ , whose trajectories are solutions to (6.8).

Of special interest areautonomoussystems, for whichf = f (x,u,∇u); and the
reaction–diffusionsystems, characterized byf = f (t, x,u).

Assumen < p < ∞. To Eq. (6.8) we associate an abstract differential Eq. (6.1) in
Lp(Ω,Rm). The pair of operators(Ai,Bi) has a sectorial realizationAi in Lp(Ω) with
domainD(Ai) →֒ Lp(Ω) (Lunardi [124, 3.1.3]). The operatorA := A1 × · · · × Am is
sectorial onX := Lp(Ω,Rm)= [Lp(Ω)]m.

Forα ∈ [0,1) setXα :=Xα(A). We chooseα so thatf defines a continuoussubstitution
operator

F :R+ ×Xα →X, F(t, u)(x) := f
(
t, x, u(x),∇u(x)

)
.
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It suffices to takeα

1> α >
1

2

(
1+ n

p

)
, (6.9)

for thenXα →֒ C1(Ω,Rm) by the Sobolev embedding theorems.
The data(A,F ) thus determine an abstract differential equationu′ = Au + F(t, u)

in X, whose trajectoriesu(t) correspond to solutionsu(t, x) := u(t)(x) of (6.6). The as-
sumptions onf makeF(t, u) locally Lipschitz inu ∈Xα .

By Theorem 6.1 and the Sobolev embedding theorem we have:

PROPOSITION 6.8. Equation (6.8) defines a solution processΘ on X := Lp(Ω,Rm)
which induces a solution process inXβ for everyβ ∈ [0,1) with β � α.

We quote a useful condition for globality of a solution:

PROPOSITION6.9. Assume there are constantsC > 0 and0< ǫ � 1 such that

∥∥f (t, x, v, ξ)
∥∥� C

(
1+ ‖v‖ + ‖ξ‖2−ǫ) for all (t, x, v, ξ) ∈ R+ ×Ω × S × Rn.

(6.10)

If u : [t0, τ )→ Lp(Ω,Rm) is a trajectory such that

lim sup
t→τ−

∥∥u(t)
∥∥
Lp(Ω,Rm)

<∞ (6.11)

thenτ = ∞.

PROOF. Follows from Amann [9, Theorem 5.3(i)], taking the constants of that result to be
m= k = p0 = γ0 = 1, κ = s0 = 0, γ1 = 2− ǫ. �

Solutions u : [t0, τ ) × Ω → Rm to (6.8) enjoy considerable smoothness. For ex-
ample, if the data∂Ωi, fi,Ai,Bi are smooth of classC2+2ǫ , 0 < 2ǫ < 1, then u ∈
C1+ǫ,2+2ǫ([t1, t2] ×Ω,Rm) for all t0< t1< t2< τ (Lunardi [124, 7.3.3(iii)]).

While useful for many purposes, solution processes in the spacesXα suffer from the
drawback thatXα and its norm are defined implicitly, leaving unclear the domains of so-
lutions and the meaning of convergence, stability, density and similar topological terms.
In addition, the topology ofXα might be unsuitable for a given application. To overcome
these difficulties we could appeal to results of Colombo and Vespri [29], Lunardi [124] and
Mora [147], establishing induced processes in Banach spaces of continuous, smooth orLp

functions; or we can apply Theorem 6.2. We now define these spaces.
For r ∈ N letCr(Ω) denotes the usual Banach space ofCr functions onΩ . Set

Cr0
(
Ω
)
:=
{
v ∈ Cr

(
Ω
)
: v|∂Ω = 0

}
.
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With γ, ξ as in a Robin boundary operator andr � 1, define

Crγ,ξ
(
Ω
)
:=
{
v ∈ Cr

(
Ω
)
: γ (x)v(x)+ ∂v

∂ξ
(x)= 0 (x ∈ ∂Ω)

}
.

It is not hard to show that:
• C0(Ω), C1(Ω) andC1

γ,ξ (Ω) are strongly ordered, withu≫ 0 if and only ifu(x) > 0

for all x ∈Ω ;
• C1

0(Ω) is strongly ordered, withu ≫ 0 if and only if u(x) > 0 for all x ∈ Ω and
∂u/∂ν > 0 whereν : ∂Ω → Rn is the unit vector field inwardly normal to∂Ω ;

• C0
0(Ω) is not strongly ordered. BothC0

0(Ω) andC0(Ω) are Banach lattices.
In terms of the boundary operatorsBi , for k = 0,1 we define Banach spaces

CkBi

(
Ω
)
:=





Ck0

(
Ω
)

if Bi is Dirichlet,
Ckγ,ξ

(
Ω
)

if Bi is Robin andk = 1,

C0
(
Ω
)

if Bi is Robin andk = 0.

Note thatC1
Bi
(Ω) is strongly ordered, whileC0

Bi
(Ω) is strongly ordered if and only ifBi

is Robin;C0
Bi
(Ω) is a Banach lattice. The ordered Banach space

CkB
(
Ω,Rm

)
:='iC

k
Bi

(
Ω
)
,

with the product order cone, is strongly ordered ifk = 1, or k = 0 and noBi is Dirichlet.
The order coneLp(Ω,Rm)+ is the subset ofLp(Ω,Rm) comprising equivalence classes
represented by functionsΩ → Rm+. Note thatLp(Ω,Rm) is normally ordered but not
strongly ordered.

It is known that the pair of operators(Ai,Bi) has a sectorial realizationAi onCk(Bi)
and therefore the product operatorA is sectorial onCkB(Ω,R

m). See Corollary 3.1.24,
Theorems 3.1.25, 3.1.26 in [124].

LEMMA 6.10. For X = Lp(Ω,Rm) or CkB(Ω,R
m), the analytic semigroupetA is a pos-

itive operator fort � 0 with respect to the cone of componentwise nonnegative functions
in X.

PROOF. As noted in Remark 6.7, it suffices to show that(λI − A)−1 is positive for large
λ > 0, or equivalently, that for eachi andfi � 0, the solutiongi ∈D(Ai) of fi = λgi −
Aigi satisfiesgi � 0. The existence ofgi is not the issue but rather it’s positivity. Thus
it boils down toλgi − Aigi � 0 )⇒ gi � 0. But these follow from standard maximum
principle arguments. See Lemma 3.1.4 in [155]. �

With X = Lp(Ω,Rm) andA andα as above, we have a chain of continuous inclusions
of ordered Banach spaces

D(A) →֒Xα →֒ C1
B

(
Ω,Rm

)
→֒ C0

B

(
Ω,Rm

)
→֒ Lp

(
Ω,Rm

)
,
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with a solution process inLp(Ω,Rm) and an induced solution process inXα .

PROPOSITION6.11. LetΘ be the solution process inLp(Ω,Rm) for Eq. (6.1)with n <
p <∞.

(a) For all t > t0,Θt,t0 mapsDt,t0 continuously intoC1
B(Ω,R

m).
(b) Θ induces a solution processΘ1 in C1

B(Ω,R
m).

(c) Θ induces a solution processΘ0 in C0
B(Ω,R

m) providedf = f (t, x,u).

PROOF. By uniqueness of solutions it suffices to establish induced solution processes in
C1
B(Ω,R

m) →֒Lp(Ω,Rm), and inC0
B(Ω,R

m) →֒ Lp(Ω,Rm)whenf = f (t, x,u). This
is done in Lunardi [124, Proposition 7.3.3] form = 1, and the general case is similar.
Part (c) follows from Theorem 6.2. �

HenceforthΘk, k ∈ {0,1}, denotes the processΘ0 orΘ1 as in Proposition 6.11.

6.2.1. Dynamics in spacesXΓ For any setΓ ⊂ Rm andk = 0,1 define

XkΓ :=
{
u ∈ CkB

(
Ω,Rm

)
: u
(
Ω
)
⊂ Γ

}
,

XΓ :=
{
u ∈ Lp

(
Ω,Rm

)
: u(Ω)⊂ Γ

}
.

(6.12)

A rectanglein Rm is a set of the formJ = J1 × · · · × Jm where eachJi ⊂ R is a non-
degenerate closed interval.Rm, Rm+ and closed order intervals[a, b], a � b are rectangles.

PROPOSITION6.12. Let J :='m
i=1Ji be a rectangle inRm such that either0 ∈ Ji or Bi

is Neumann, and the following hold for allx ∈Ω , u ∈ ∂J :

fi(t, x,u,0)� 0 if ui = inf Ji, fi(t, x,u,0)� 0 if ui = supJi . (6.13)

Then:
(i) In the reaction–diffusion case,XJ is positively invariant forΘ andXkJ is positively

invariant forΘk (k = 0,1).
(ii) Supposek =m= 1 andJ ⊂ R is an interval. ThenXJ is positively invariant forΘ

andX1
J is positively invariant forΘ1.

PROOF. For the reaction–diffusion case we sketch a proof thatX0
J is Θ0-positively in-

variant using Theorem 6.2. The proof thatXJ is Θ-positively invariant follows from this
sinceΘt,t0(u) is theLp limit lim kΘ

0
t,t0
(uk) whereuk ∈ X0

J approximatesu ∈ XJ in Lp

and the facts:Θ0 = Θ onX0
J , a dense subset of the closed subsetXJ . In order to verify

the subtangential condition forX0
J , it suffices to verify the subtangential condition forJ :

lim inf
hց0

1

h
dist
(
u+ hf (t, x,u), J

)
= 0 (6.14)
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for each(t, x,u) ∈ [0,∞)×Ω × J by Martin [125, Proposition IX.1.1]. But (6.14) is a
necessary condition forJ to be positively invariant for the ODE

v′ = f (t, x, v),

where x is a parameter. See, e.g., [125, Theorem VI.2.1]. It is well-known and easy
to prove that condition (6.13) implies the positive invariance ofJ for the ODE (see,
e.g., Proposition 3.3, Smith and Waltman [203, Proposition B.7], or Walter [227, Chap-
ter II, Section 12, Theorem II]). It follows that (6.14) holds. Therefore the subtangential
condition forX0

J holds. Finally, we must verify that etAX0
J ⊂ X0

J or, equivalently, that
etAiC0

Bi
(Ω,Ji)⊂ C0

Bi
(Ω,Ji). This follows from Remark 6.7 and standard maximum prin-

ciple arguments. It also follows from standard comparison principles for parabolic equa-
tions. See, e.g., Pao [155, Lemma 2.1] or Smith [194, Corollary 2.4].

The casek = m = 1 is a special case of [227, Chapter IV, Section 25, Theorem II,
Section 31, Corollaries IV and V]. �

Consider the case that (6.6) is autonomous:

∂ui

∂t
=Aiui + fi(x,u,∇u) (x ∈Ω, t > t0),

Biui = 0 (x ∈ ∂Ω, t > t0),
(6.15)

i = 1, . . . ,m. The solution processesΘ,Θ1,Θ0 reduce to local semiflows.
We introduce a mild growth condition, trivially satisfied in the reaction–diffusion case:

For eachs > 0 there existsC(s) > 0 such that
|v| � s )⇒

∣∣f (x, v, ξ)
∣∣� C(s)

(
1+ |ξ |2−ǫ). (6.16)

The following result gives sufficient conditions for solution processes inXΓ to be global,
and to admit compact global attractors:

PROPOSITION6.13. Assume system(6.15)satisfies(6.16).Let Γ ⊂ Rm be a nonempty
compact set such thatXΓ is positively invariant for(6.15).Then:

(a) There are solution semiflowsΦ,Φ1 in XΓ , X1
Γ respectively.Φ1 is compact.

(b) Assume(6.15) is reaction–diffusion. Then there is also a solution semiflowΦ0 in
X0
Γ . The semiflowsΦ,Φ0,Φ1 are compact and order compact. There is a compact

setK ⊂X1
Γ which is the global attractor for all three semiflows.

PROOF. (a) LetΓ lie in the open ball of radiusR > 0 about the origin inRm and let
h :Rm → Rm be any smooth bounded function that agrees with the identity on the open
ball of radiusR. Defineg by g(x, v, ξ)= f (x,h(v), ξ). Every trajectory inXΓ of (6.15)
is also a trajectory of the analogous system in whichf is replaced byg (compare Polá̌cik
[163, pp. 842–843]). Nonlinearityg satisfies (6.16) withC(s) constant so (6.10) holds. As

lim sup
t→τ−

∥∥u(t)
∥∥
C0(Ω,Rm)

�R,
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which implies (6.11), all trajectories are global by Proposition 6.9. Thus, the restrictions
of Ψ,Ψ 1 in X andC1

B(Ω,R
m) respectively toXΓ andX1

Γ define semiflowsΦ andΦ1.
As Ψ 1 is compact by Hale [58], Theorem 4.2.2,Φ1 is compact becauseX1

Γ is closed in
C1
B(Ω,R

m).
(b) In the reaction–diffusion case a similar argument establishes a compact solution

semiflowΦ0 in X0
Γ ; andΦ0 is order compact because order intervals inX0

Γ are bounded.
To proveΦ0 order compact, letN be an order interval inXΓ . For everyt = 2s > 0, Φs
mapsN continuously into an order intervalN ′ of X0

Γ . Precompactness inXΓ of ΦtN
follows from the precompactness inX0

Γ of Φ0
sN

′, already established, and the continuous
inclusionΦtN =Φ0

s ◦ΦsN ⊂Φ0
sN

′.
To prove order compactness ofΦ1, let N1 ⊂ X1

Γ be an order interval.N1 is contained
in an order intervalN0 of X0

Γ . Let Ck denote closure inXkΓ . For all t > 0 we have
C1(Φ1

t N1)= C1(Φ0
t N1)⊂ C1C0(Φ0

t N0), and the latter set is compact becauseΦ0 is order
compact. This provesΦ1

t N1 is precompact inX1
Γ .

X0
Γ is closed and bounded inX0, henceΦ0

t X
0
Γ is precompact inX0

Γ for all t > 0 by (a).

ThereforeK :=
⋂
t>0Φ

0
t X

0
Γ is a compact global attractor forΦ0. Similarly,K (with the

same topology) is a compact global attractor forΦ.
We rely on the identityΦ1

t =Φ0
t |X1

Γ and continuity ofΦ0
t :X0

Γ →X1
Γ for all t > 0. As

K is invariant underΦ0, it follows thatK is a compact subset ofX1
Γ . To proveK a global

attractor forΦ1, it suffices to prove: For arbitrary sequences{x(i)} in X1
Γ , andt (i)→ ∞

in R+ with t (i) > ǫ > 0, there is a sequenceik → ∞ in N such that{Φ1
t (ik)

x(ik)} converges

in X1
Γ to a point ofK . Choose{ik} so thatΦ0

t (ik)−ǫ(ik) convergesX0
Γ ask→ ∞ to p ∈K ;

this is possible becauseK is a compact global attractor forΦ0. ThenΦ1
t (ik)

x(ik) = Φ0
ǫ ◦

Φ0
t (ik)−ǫx(ik), which converges inX1

Γ ask→ ∞ toΦ0
ǫp ∈K . �

EXAMPLE . Let theui denote the concentrations or densities of entities such as chem-
icals or species. Such quantities are inherently positive, so taking the state space to be
Lp(Ω,Rm+) or CkB(Ω,R

m
+) is appropriate. We make the plausible assumption that suffi-

ciently high density levels must decrease. Modeling this situation by (a) and (b) below, we
get the following result.

PROPOSITION 6.14. In Eq. (6.15) assumef = f (x,u) and let the following hold for
i = 1, . . . ,m:

(a) fi(x,u)� 0 if ui = 0;
(b) there existsκ > 0 such thatfi(x,u) < 0 if ui � κ .

Then fork = 0,1 solution processes in the order conesLp(Ω,Rm+), C
k
B(Ω,R

m
+) are de-

fined by semiflowsΦ,Φk respectively; and there is a compact setK ⊂ Xk[0,κ]m that is the

global attractor forΦ,Φ0 andΦ1.

PROOF. Proposition 6.12 and (a) provesLp(Ω,Rm+) andCkB(Ω,R
m
+) are positively invari-

ant under the solution process.
Consider the compact rectanglesJ (c) := [0, cκ]m ⊂ Rm, c � 1. Assumption (b) and

Proposition 6.12 entail positive invariance ofXJ (c). Proposition 6.13 shows that there are
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solution semiflows inXJ (c) andXkJ (c) having a compact global attractorKc ⊂ X1
J (c) in

common. As theJ (c) are nested and exhaustRm+, these semiflows come from solution
semiflowsΦ,Φk as required. Moreover, all the attractorsKc coincide with the compact
setK :=K1 ⊂X1

J (1). It is easy to see thatK is the required global attractor. �

Results on global solutions and positively invariant sets can be found in many places.
See for example Amann [9,10], Cholewa and Dlotko [25], Cosner [33], Lunardi [124],
Polá̌cik [163], Smith [194], Smoller [205].

6.2.2. Monotone solution processes for parabolic equationsWe restrict attention here
to monotonicity properties with respect to the standard point-wise and component-wise
ordering of functionsΩ → Rm: f � g if and only if fi(x) � gi(x) for all x and all i.
The natural ordering onLp(Ω,Rm) is defined on equivalence classes by the condition on
representatives thatfi(x)� gi(x) almost everywhere.

Orderings induced by orthants inRn other than the positive orthant can be handled easily
by change of variables. See Mincheva [144] and [145] for results in the case of polyhedral
cones inRn.

Consider the casem= 1 in Eq. (6.8).

THEOREM 6.15. In Eq. (6.8),assumem= 1 andf isC1. Then:
(i) Θ is VSOP onLp(Ω,Rm).

(ii) Θ1 is strongly monotone inC1
B(Ω).

(iii) If f = f (t, x,u) the induced processΘ0 on C0
B(Ω) is VSOP, and strongly

monotone if all boundary operators are Robin.

PROOF. Let u,v : [t0, t1] ×Ω → R be solutions withv(t0, x)− u(t0, x)� 0 for all x and
> 0 for somex. Thenw := v− u is the solution to the problem

∂w

∂t
=Aw+

n∑

j=1

bj
∂w

∂xj
+ cw (x ∈Ω, t > t0),

Bw(t, x)= 0 (x ∈ ∂Ω, t > t0),
w(t0, x)� 0, w(t0, x) �≡ 0 (x ∈Ω)

(6.17)

wherebj = bj (t, x) and cj = cj (t, x) are obtained as follows. Evaluateu,v and their
spatial gradients at(t, x), and fors ∈ [0,1] set

Z(s) = (1− s)(t, x,u,∇u)+ s(t, x, v,∇v),

b(t, x) =
(
b1(t, x), . . . , bn(t, x)

)
=
∫ 1

0
D4f

(
Z(s)

)
ds,

c(t, x) =
∫ 1

0
D3f

(
Z(s)

)
ds
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whereD4f andD3f denote respectively the derivatives off (t, x, y, ξ) with respect to
ξ ∈ Rn andy ∈ R. By Taylor’s theorem

f (t, x, v,∇v)− f (t, x,u,∇u)= b(t, x)(∇u− ∇v)+ c(t, x)(u− v),

whence (6.17) follows.
The parabolic maximum principle and boundary point lemma ([194, Theorems 7.2.1,

7.2.2]) imply that the functionw(t1, ·), considered as an element ofC1
B(Ω), is ≫ 0.

This proves (ii), and the first assertion of (iii) follows from Theorem 6.4(b). The proof
of strong monotonicity for Robin boundary conditions is similar to the arguments given
above. Part (i) follows from strong monotonicity ofΘ1, Theorem 6.4 and continuity of
Θt,t0 :Lp(Ω,Rm)→Xα →֒C1

B(Ω,R
m). �

Form � 2 we impose further conditions on system (6.6) in order to have a monotone
solution process: it must be of reaction–diffusion type, and the vector fieldsf (t, x, ·) on
Rm must becooperative. In other words,f (t, x,u) is C1 in u and ∂fi/∂uj � 0 for all
i �= j . (The latter condition holds vacuously ifm = 1). When this holds then the system
is called cooperative. If in addition, there existsx̄ ∈ Ω such that them × m Jacobian
matrix [∂fi/∂uj (t, x̄, u)] is irreducible for all(t, u), we call the systemcooperative and
irreducible

THEOREM 6.16. If system(6.15) is cooperative, thenΘ,Θk , k = 0,1 are monotone. If
the system is also irreducible, then:

(i) Θ is VSOP onLp(Ω,Rm).
(ii) Θ1 is strongly monotone inC1

B(Ω,R
m).

(iii) Θ0 is VSOP inC0
B(Ω,R

m) and is strongly monotone when all boundary operators
are Robin.

PROOF. Monotonicity inC0
B(Ω,R

m) follows directly from Theorem 6.5 and Remark 6.6.
Indeed, letu� v in C0

B(Ω,R
m) andt be fixed. Then

[
F(t, v)− F(t, u)+ λ(v − u)

]
(x)

=
∫ 1

0

(
∂f

∂u

(
t, x, su(x)+ (1− s)v(x)

)
+ λI

)
ds(v − u)(x)� 0

for someλ > 0 and allx ∈Ω by cooperativity off and compactness ofΩ . This implies
that (QM) holds. The positivity of etA follows from Lemma 6.10. Monotonicity ofΘ in
Lp(Ω,Rm) follows from monotonicity ofΘ0 and Theorem 6.4.

The proof of VSOP and strong monotonicity for Robin boundary conditions in
C0
B(Ω,R

m) is like that of Theorem 6.15(i), exploiting the maximum principle for weakly
coupled parabolic systems (Protter and Weinberger [166, Chapter 3, Theorems 13, 14, 15
and pp. 192, Remark (i)]). See Smith [194, Section 7.4] for a similar proof.

Monotonicity ofΘ1 follows from monotonicity ofΘ0. Strong monotonicity ofΘ1, in
the case of Dirichlet boundary conditions, requires exploiting the maximum principle as in
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the previous case (the same references apply). VSOP ofΘ follows from strong monotonic-
ity of Θ1, Theorem 6.4 and continuity of the compositionΘt,t0 :Lp(Ω,Rm) → Xα →
C1
B(Ω,R

m). �

6.3. Parabolic systems with monotone dynamics

We now treat autonomous systems (6.15) having monotone dynamics. Our goal is The-
orem 6.17, a sample of the convergence and stability results derivable from the general
theory.

In addition to the assumptions for (6.6), we require the following conditions to hold
for the solution processΘ in X := Lp(Ω,Rm), with p satisfying (6.9) andXkΓ defined
in (6.12):

(SP) If m � 2 in system (6.15) thenf = f (x,u) and the system is cooperative and
irreducible.Γ ⊂ Rm is a nonempty set, either an open set or the closure of an open
set. The solution process induces semiflowsΦ,Φ1 in XΓ , X1

Γ respectively, and
Φ0 in X0

Γ for the reaction–diffusion case. These semiflows are assumed to have
compact orbit closures.

Simple conditions implying (SP) can be derived from Propositions 6.13.
The following statements follow from (SP), assertions aboutΦ0 having the implied

hypothesisf = f (x,u):
• X1

Γ is dense inX0
Γ and inXΓ .

• Φ andΦ0 agree onX0
Γ , andΦ,Φ0 andΦ1 agree onX1

Γ .
• Φt (respectively,Φ0

t ) mapsXΓ (respectively,X0
Γ ) continuously intoX1

Γ for t > 0
(Proposition 6.11).

• Φ, Φ1 andΦ0 have the same omega limit sets, compact attractors and equilibria.
• If Γ is open or order convex andf (x,u, ξ) is C1 in (u, ξ), the Improved Limit Set

Dichotomy (ILSD) holds forΦ1 by Theorem 2.16, and forΦ andΦ0 by Proposi-
tion 2.21.

• If Γ is compact thenΦ1 is compact. In the reaction–diffusion case withΓ compact,
Φ,Φ1 andΦ0 are compact and order compact, and a common compact global attrac-
tor (Propositions 6.13).

• Φ1 is strongly monotone;Φ0 is VSOP, and strongly monotone if all boundary opera-
tors are Robin;Φ is VSOP (Theorem 6.16).

The sets of quasiconvergent, convergent and stable points for any semiflowΨ are de-
noted respectively byQ(Ψ ),C(Ψ ),S(Ψ ). References to intrinsic or extrinsic topology of
these sets (e.g., closure, density) forΦ,Φ1 or Φ0 are to be interpreted in terms of the
topology of the corresponding domainXΓ ,X1

Γ orX0
Γ .

THEOREM 6.17. If system(6.15)satisfies hypothesis(SP),then:
(i) The setsQ(Φ),Q(Φ0) andQ(Φ1) are residual.

(ii) AssumeΓ is open or order convex andf (x,u, ξ) is C1 in (u, ξ). Then the sets
C(Φ)∩ S(Φ), C(Φ0)∩ S(Φ0) andC(Φ1) have dense interiors.
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(iii) Assumef = f (x,u) andΓ is compact. Then the semiflowsΦ,Φ0,Φ1 are compact
and order compact, and they have a compact global attractor in common.

(iv) AssumeΓ is open or order convex andEΓ is compact. Then somep ∈EΓ is stable
forΦ. Every suchp is also stable forΦ1, and forΦ0 in the reaction–diffusion case.
WhenEΓ is finite, the same holds for asymptotically stable equilibria.

PROOF. (i) follows from Theorem 1.21.
(ii) for Φ andΦ0 follows from Theorem 2.25(b). ForΦ1, (ii) follows from Theo-

rem 2.26(a).
(iii) is a special case of Proposition 6.13(b).
In (iv), to find ap ∈ EΓ having the asserted stability properties forΦ, it suffices to

verify the hypotheses of Theorem 1.30: (a) follows from (i), while (b) and (c) holds by the
assumptions onΓ and compactness ofE. Similarly forΦ0 in the reaction–diffusion case.

To prove the stability properties forp underΦ1, it suffices by Theorem 1.31 to show that
p has a neighborhood inX1

Γ that is attracted to a compact set. By (i) and the assumptions
onΓ , there are sequences{uk}, {vk} in Q(Φ1) converging top in XΓ , such that

uk � uk+1 � p � vk+1 � vk

and

p �= infXΓ )⇒ uk < uk+1<p, p �= supXΓ )⇒ p < vk+1< vk.

Replacinguk, vk by their images underΦǫk for sufficiently smallǫk > 0, we see from
strong monotonicity ofΦ1 that we can assume:

p �= infXΓ )⇒ uk ≪ uk+1 ≪ p, p �= supXΓ )⇒ p≪ vk+1 ≪ vk.

The setsNk := [[uk, vk]]X ∩XΓ are positively invariant and form a neighborhood basis at
p in XΓ .

Fix k0 such thatNk is bounded inX1
Γ for all k � k0. By Theorem 6.1(iii), for everys > 0

there existsj � k0 such thatΦs(Nj ) is precompact inXα , hence inX1
Γ . Fix such numbers

s and j and letP denote the closure ofΦs(Nj ) in X1
Γ . Being compact and positively

invariant,P contains the compact global attractorK :=
⋂
t>0ΦtP for the semiflow in

Φ1|P . ThenNj is a neighborhoodp in X1
Γ that is attracted underΦ1 toK . �
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[65] P. Hess and P. Poláčik, Boundedness of prime periods of stable cycles and convergence to fixed points in

discrete monotone dynamical systems, SIAM J. Math. Anal.24 (1993), 1312–1330.



Monotone dynamical systems 351

[66] M.W. Hirsch,Convergence in ordinary and partial differential equations, Notes for Colloquium Lectures
at University of Toronto, August 23–26, 1982, Amer. Math. Soc., Providence, RI (1982).

[67] M.W. Hirsch,Systems of differential equations which are competitive or cooperative. I: Limit sets, SIAM
J. Appl. Math.13 (1982), 167–179.

[68] M.W. Hirsch,Differential equations and convergence almost everywhere in strongly monotone semiflows,
Contemp. Math.17 (1983), 267–285.

[69] M.W. Hirsch,The dynamical systems approach to differential equations, Bull. Amer. Math. Soc.11 (1984),
1–64.

[70] M.W. Hirsch, Systems of differential equations which are competitive or cooperative. II: Convergence
almost everywhere, SIAM J. Math. Anal.16 (1985), 423–439.

[71] M.W. Hirsch,Attractors for discrete-time monotone dynamical systems in strongly ordered spaces, Geom-
etry and Topology, J. Alexander and J. Harer, eds., Lecture Notes in Math., Vol. 1167, Springer, New York
(1985), 141–153.

[72] M.W. Hirsch, Systems of differential equations which are competitive or cooperative. III: Competing
species, Nonlinearity1 (1988), 51–71.

[73] M.W. Hirsch,Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math.
383(1988), 1–53.

[74] M.W. Hirsch, Convergent activation dynamics in continuous time neural networks, Neural Networks2
(1989).

[75] M.W. Hirsch, Systems of differential equations that are competitive or cooperative. V: Convergence in
3-dimensional systems, J. Differential Equations80 (1989), 94–106.

[76] M.W. Hirsch,Systems of differential equations that are competitive or cooperative. IV: Structural stability
in three dimensional systems, SIAM J. Math. Anal.21 (1990), 1225–1234.

[77] M.W. Hirsch,Systems of differential equations that are competitive or cooperative. VI: A localCr closing
lemma for 3-dimensional systems, Ergodic Theory Dynam. Systems11 (1991), 443–454.

[78] M.W. Hirsch,Fixed points of monotone maps, J. Differential Equations123(1995), 171–179.
[79] M.W. Hirsch,Chain transitive sets for smooth strongly monotone dynamical systems, Differential Equa-

tions Dynamical Systems5 (1999), 529–543.
[80] M.W. Hirsch and S. Smale,Differential Equations, Dynamical Systems, and Linear Algebra, Acad. Press,

New York (1974).
[81] J. Hofbauer and W. Sandholm,On the global convergence of stochastic fictitious play, Econometrica70

(2002), 2265–2294.
[82] J. Hofbauer and J.W.-H. So,Multiple limit cycles for three-dimensional competitive Lotka–Volterra equa-

tions, Appl. Math. Lett.7 (1994), 65–70.
[83] S.-B. Hsu, H. Smith and P. Waltman,Competitive exclusion and coexistence for competitive systems on

ordered Banach spaces, Trans. Amer. Math. Soc.348(1996), 4083–4094.
[84] S.-B. Hsu and P. Waltman,Analysis of a model of two competitors in a chemostat with an external inhibitor,

SIAM J. Applied Math.52 (1992), 528–540.
[85] R. Jentzsch,Über Integralgleichungen mit positiven Kern, J. Reine Angew. Math.141(1912), 235–244.
[86] J. Jiang,Attractors for strongly monotone flows, J. Math. Anal. Appl.162(1991), 210–222.
[87] J. Jiang,On the existence and uniqueness of connecting orbits for cooperative systems, Acta Math. Sinica

(N.S.)8 (1992), 184–188.
[88] J. Jiang,Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal.

Appl. 18 (1994), 92–100.
[89] J. Jiang,Five-dimensional cooperative systems with every equilibrium stable, Differential Equations and

Control Theory, Wuhan, 1994, Lecture Notes in Pure and Appl. Math., Vol. 176, Dekker, New York (1996),
121–127.

[90] J. Jiang and S. Yu,Stable cycles for attractors of strongly monotone discrete-time dynamical systems,
J. Math. Anal. Appl.202(1996), 349–62.

[91] E. Kamke,Zur Theorie der Systeme gewöhnlicher Differentialgleichungen II, Acta Math.58 (1932), 57–
85.

[92] T. Kato,Perturbation Theory for Linear Operators, Springer, Berlin (1976).
[93] H.B. Keller, Elliptic boundary value problems suggested by nonlinear diffusion processes, Arch. Ration

Mech. Anal35 (1969), 363–381.



352 M.W. Hirsch and H. Smith

[94] H.B. Keller, Positive solutions of some nonlinear eigenvalue problems, J. Math. Mech.19 (1969), 279–
296.

[95] H.B. Keller and D.S. Cohen,Some positone problems suggested by nonlinear heat generation, J. Math.
Mech.16 (1967), 327–342.

[96] W. Kerscher and R. Nagel,Asymptotic behavior of one-parameter semigroups of positive operators, Acta
Appl. Math.2 (1984), 297–309.

[97] A. Kolmogorov, Sulla teoria di Volterra della lotta per l’esistenza, Giorno. Ist. Ital. Attuari7 (1936),
74–80.

[98] M. Krasnosel’skii,Positive Solutions of Operator Equations, Groningen, Noordhoff (1964).
[99] M. Krasnosel’skii,The Operator of Translation along Trajectories of Differential Equations, Transl. Math.

Monogr., Vol. 19, Amer. Math. Soc., Providence (1968).
[100] M.A. Krasnosel’skii and L. Ladyzhenskaya,The structure of the spectrum of positive nonhomogeneous

operators, Trudy Moskov. Mat. Obshch.3 (1954), 321–346 (in Russian).
[101] M.A. Krasnosel’skii and P.P. Zabreiko,Geometric Methods of Nonlinear Analysis, Springer, New York

(1984).
[102] U. Krause and R.D. Nussbaum,A limit set trichotomy for self-mappings of normal cones in Banach spaces,

Nonlinear Anal.20 (1993), 855–870.
[103] U. Krause and P. Ranft,A limit set trichotomy for monotone nonlinear dynamical systems, Nonlinear Anal.

19 (1992), 375–392.
[104] M.G. Krein and M.A. Rutman,Linear operators leaving invariant a cone in a Banach space, Uspekhi

Mat. Nauk3 (1948), 3–95. AMS Translation No. 26, Amer. Math. Soc., Providence, RI (1950).
[105] T. Krisztin, H.-O. Walther and J. Wu,Shape, Smoothness and Invariant Stratification of an Attracting Set

for Delayed Monotone Positive Feedback, Fields Inst. Monogr., Vol. 11, Amer. Math. Soc., Providence, RI
(1999).

[106] T. Krisztin and J. Wu,Monotone semiflows generated by neutral equations with different delays in neutral
and retarded parts, Acta Math. Univ. Comenian. (N.S.)63 (1994), 207–220.

[107] T. Krisztin and J. Wu,Asymptotic behaviors of solutions of scalar neutral functional differential equations,
Differential Equations Dynam. Systems4 (1996), 351–366.

[108] T. Krisztin and J. Wu,Asymptotic periodicity, monotonicity, and oscillations of solutions of scalar neutral
functional differential equations, J. Math. Anal. Appl.199(1996), 502–525.

[109] K. Kunisch and W. Schappacher,Order preserving evolution operators of functional differential equations,
Boll. Un. Mat. Ital. B (6) (1979), 480–500.

[110] H. Kunze and D. Siegel,Monotonicity with respect to closed convex cones I, Dynam. Contin. Discrete
Impuls. Systems5 (1999), 433–449.

[111] H. Kunze and D. Siegel,Monotonicity with respect to closed convex cones II, Appl. Anal. 77 (2001),
233–248.

[112] H. Kunze and D. Siegel,A graph theoretic approach to strong monotonicity with respect to polyhedral
cones, Positivity6 (2002), 95–113.

[113] Y.A. Kuznetsov,Elements of Applied Bifurcation Theory, second edition, Springer (1998).
[114] L. Ladyzhenskaya,Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cam-

bridge (1991).
[115] M. Li and J. Muldowney,Global stability for the SEIR model in epidemiology, Math. Biosci.125(1995),

155–164.
[116] J.P. LaSalle,The Stability of Dynamical Systems, SIAM, Philadelphia, PA (1976).
[117] B. Lemmens, R.D. Nussbaum and S.M. Verduyn Lunel,Lower and upper bounds forω-limit sets of non-

expansive maps, Indag. Math. (N.S.)12 (2001), 191–211.
[118] R. Lemmert and P. Volkmann,On the positivity of semigroups of operators, Comment. Math. Univ.

Carolin.39 (1998), 483–489.
[119] A.W. Leung,Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineer-

ing, Kluwer Academic, Dordrecht (1989).
[120] X. Liang and J. Jiang,The classification of the dynamical behavior of 3-dimensional typeK monotone

Lotka–Volterra systems, Nonlinear Anal.51 (2002), 749–763.
[121] X. Liang and J. Jiang,On the finite-dimensional dynamical systems with limited competition, Trans. Amer.

Math. Soc.354(2002), 3535–3554.



Monotone dynamical systems 353

[122] R. Loewy and H. Schneider,Positive operators on then-dimensional ice-cream cone, J. Math. Anal. Appl.
49 (1975), 375–392.

[123] R. Lui, A nonlinear integral operator arising from a model in population genetics. IV: Clines, SIAM
J. Math. Anal.17 (1986), 152–168.

[124] A. Lunardi,Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr. Nonlinear Differ-
ential Equations Appl., Vol. 16, Birkhäuser, Boston (1995).

[125] R.H. Martin,Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York (1976).
[126] R.H. Martin, Asymptotic stability and critical points for nonlinear quasimonotone parabolic systems,

J. Differential Equations30 (1978), 391–423.
[127] R.H. Martin,A maximum principle for semilinear parabolic systems, Proc. Amer. Math. Soc.14 (1979),

66–70.
[128] R.H. Martin,Asymptotic behavior of solutions to a class of quasimonotone functional differential equa-

tions, Proc. of Workshop on Functional Differential Equations and Nonlinear Semigroups, Pitman Res.
Notes Math. Ser., Vol. 48, Pitman, Boston, MA (1981).

[129] R.H. Martin and H.L. Smith,Abstract functional differential equations and reaction–diffusion systems,
Trans. Amer. Math. Soc.321(1990), 1–44.

[130] R.H. Martin and H.L. Smith,Reaction–diffusion systems with time-delays: Monotonicity, invariance, com-
parison and convergence, J. Reine Angew. Math.413(1991), 1–35.

[131] H. Matano,Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto
Univ. 18 (1978), 221–227.

[132] H. Matano,Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res.
Inst. Math. Sci.19 (1979), 645–673.

[133] H. Matano,Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems,
J. Fac. Sci. Univ. Tokyo30 (1984), 645–673.

[134] H. Matano,Strongly order-preserving local semi-dynamical systems—theory and applications, Semi-
groups, Theory and Applications, Vol. 1, H. Brezis, M.G. Crandall and F. Kappel, eds., Res. Notes Math.,
Vol. 141, Longman Scientific and Technical, London (1986), 178–185.

[135] H. Matano,Strong comparison principle in nonlinear parabolic equations, Nonlinear Parabolic Equa-
tions: Qualitative Properties of Solutions, L. Boccardo and A. Tesei, eds., Pitman Res. Notes Math. Ser.,
Longman Scientific and Technical, London (1987), 148–155.

[136] R. May and G. Oster,Bifurcations and dynamic complexity in simple ecological models, Amer. Naturalist
110(1976), 573–599.

[137] E.J. McShane,Extension of range of functions, Bull. Amer. Math. Soc. (N.S.)40 (1934), 837–842.
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Abstract
This chapter analyzes the dynamics of the positive solutions of a general class of planar

periodic systems including those of Lotka–Volterra type and a more general class of models
simulating symbiotic interactions within global competitive environments. It seems this is the
first occasion where this problematic has been addressed within the context of periodic planar
systems. Most of our mathematical analysis is focused towards the study of the existence of
coexistence states and the problem of ascertaining the structure, multiplicity and stability of
these coexistence states in purely symbiotic, and competitive, environments.
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1. Introduction

Throughout this chapter, for anyT > 0 we denote byCT the Banach space of real
T -periodic continuous functions endowed with the norm

‖u‖CT := max
t∈R

∣∣u(t)
∣∣= max

t∈[0,T ]

∣∣u(t)
∣∣.

Similarly,C1
T stands for the Banach space of realT -periodic functions of classC1 endowed

with the norm

‖u‖
C1
T

:= ‖u‖CT +
∥∥u′∥∥

CT
,

where′ = d
dt . The Banach spaceCT is ordered by its cone of non-negative functions

P :=
{
u ∈ CT : u(t)� 0, t ∈ R

}
.

Note that

IntP =
{
u ∈ CT : u(t) > 0, t ∈ R

}
.

Givenu, v ∈ CT , we shall writeu� v if u− v ∈ P , u > v if u− v ∈ P \ {0}, andu≫ v if
u− v ∈ IntP .

The main goal of this chapter is analyzing the dynamics of





u′(t)= λℓ(t)u(t)− a(t)u2(t)− b(t)u(t)v(t),

v′(t)= µm(t)v(t)− d(t)v2(t)− c(t)u(t)v(t),

u(0)= x > 0, v(0)= y > 0,

(1.1)

and, in particular, the existence, attractiveness and multiplicity of the component-wise non-
negativeT -periodic solutions of

{
u′(t)= λℓ(t)u(t)− a(t)u2(t)− b(t)u(t)v(t),

v′(t)= µm(t)v(t)− d(t)v2(t)− c(t)u(t)v(t),
(1.2)

where{ℓ,m,a, b, c, d} ⊂ CT satisfy

ℓ > 0, m > 0, a > 0, d > 0, (1.3)

and(λ,µ) ∈ R2 are regarded as two real parameters. System(1.2) exhibits three different
types of non-negativeT -periodic solution pairs. Namely, thetrivial state (0,0), thesemi-
trivial positive states(u,0) and(0, v) with u≫ 0 andv ≫ 0, and thecoexistence states,
which are the solution pairs(u, v) ∈ C1

T × C1
T with u ≫ 0 andv ≫ 0. The interest of

analyzing these states coming from the fact that in many circumstances they govern the
dynamics of(1.1).
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It should be noted that we are not imposing any sign restriction on the coupling coeffi-
cient functionsb(t) andc(t). Thus,(1.2) is far from falling within the classical family of
Lotka–Volterra periodic systems, sinceb andc might not have a constant sign. Actually, if
givenh ∈ CT we denote

h+ := max{h,0}, h− := h+ − h, Ih+ := Int supph+, Ih− := Int supph−,

and

Ih0 := Inth−1(0)= R \
(
Īh+ ∪ Īh−

)
,

then, the speciesu andv interact according to the following patterns:
• u andv compete ift ∈ I b+ ∩ I c+—periods of time whereb(t) > 0 andc(t) > 0.
• u andv cooperate ift ∈ I b− ∩ I c−—periods of time whereb(t) < 0 andc(t) < 0.
• u preys onv if t ∈ I b− ∩ I c+, andv preys onu if t ∈ I b+ ∩ I c−—periods of time where
b(t)c(t) < 0.

• u is free from the action ofv if t ∈ I b0 , andv is free from the action ofu if t ∈ I c0—
periods of time whereb(t)c(t)= 0.

Consequently, within our general setting(1.1) allows all different types of interactions
between the speciesu andv as time passes by.

Due to(1.3), we have that
∫ T

0 a > 0 and
∫ T

0 d > 0, and, hence, the change of variable

u := T
∫ T

0 a
U, v := T

∫ T
0 d

V, * := λ

T

∫ T

0
ℓ, M := µ

T

∫ T

0
m,

transforms(1.2) into




U ′(t)=*
ℓ(t)

1
T

∫ T
0 ℓ

U(t)− a(t)

1
T

∫ T
0 a

U2(t)− b(t)

1
T

∫ T
0 d

U(t)V (t),

V ′(t)=M
m(t)

1
T

∫ T
0 m

V (t)− d(t)

1
T

∫ T
0 d

V 2(t)− c(t)

1
T

∫ T
0 a

U(t)V (t).

Consequently, without lost of generality, we will throughout assume that the following
conditions are satisfied:

1

T

∫ T

0
ℓ= 1

T

∫ T

0
m= 1

T

∫ T

0
a = 1

T

∫ T

0
d = 1. (1.4)

Therefore,

h= 1 if h ∈ {ℓ,m,a, d} is assumed to be constant. (1.5)

Throughout this chapter, given any functionh ∈ CT we shall denote

ĥ := 1

T

∫ T

0
h(t)dt, hM := max

R
h, hL := min

R
h. (1.6)
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Using these notations, conditions(1.3) and(1.4) can be summarized as follows:

{ℓ,m,a, d} ⊂ P \ {0}, ℓ̂= m̂= â = d̂ = 1. (1.7)

This work is distributed as follows. In Section 2 we provide some basic preliminaries
needed for the subsequent mathematical analysis. Basically, it collects some well known
results for the single logistic equation. Section 3 ascertains the linearized stability character
of the semi-trivial positive solutions of(1.2).

Section 4 analyzes the minimal complexity of the components of the(λ,µ)-plane de-
termined by the curves of neutral stability of the semi-trivial states. Several different sit-
uation cases will be differentiated, according to the nature of the interactions between the
speciesu andv. The mathematical analysis carried out in Section 4 is reminiscent from
J. Eilbeck and J. López-Gómez [12], where attention was exclusively focused into the
competing species model.

In Section 5 we give an abstract unilateral global bifurcation result for systems. The main
theorem of Section 5 is new in its full generality, and it admits a number of applications
to the search of coexistence states in wide classes of nonlinear elliptic boundary value
problems and planar periodic systems. Here, we will apply it to get all available existence
results concerning the existence of coexistence states of(1.2). We point out that the abstract
result of Section 5 does not follow as a direct application of the unilateral theory developed
by P.H. Rabinowitz [31], but from the updated unilateral theorem of [19].

Section 6 considers the symbiotic prototype model (b < 0 andc < 0) and uses the the-
ory of monotone periodic systems to show that the set of coexistence states linking the
surfaces of the semi-trivial states along their respective curves of neutral stability is a real
analytic surface, and that the stability character of the coexistence states changes as one
crosses anyturning pointalong that surface, while it remains unchanged when an hystere-
sis point is passed by. The theory developed here goes back to [17], within the context of
quasi-cooperative systems, though here we are considerably tidying up the mathematical
analysis of [17] and adding all necessary technical details that were omitted there in. Some
of our abstract results for linear periodic systems provide with substantial improvements
of some of the results of M.A. Krasnosel’skii [16]. Most precisely, the characterization of
the attractive character of the system in terms of the existence of a strict positive super-
solution seems to be a completely new result. This theorem is reminiscent of the character-
ization of the strong maximum principle for second order linear elliptic operators found by
J. López-Gómez and M. Molina-Meyer [21,20]. Section 7 adapts the mathematical analy-
sis of Section 6 to the competing species model (b > 0 andc > 0), which possesses a
quasi-cooperative structure.

Finally, in Section 8 we briefly collect some of the main results available for predator
prey models (b > 0 andc < 0, or b < 0 andc > 0). In a forthcoming chapter, we will
adapt the theory developed by J. López-Gómez and M. Molina-Meyer [22,23], in order
to discuss the effects of strategic symbiosis in competitive environments in order to show
that strategic symbiosis allows the species to avoid extinction, while, simultaneously—and
quite strikingly—the productivity of the ecosystem grows.

For historical remarks and a precise account of some of the most important works avail-
able about these models, the reader is sent to the expository chapter of J. Mawhin [27,
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28], which bring an excellent complement to the mathematical analysis carried out in this
chapter.

Throughout this chapter, given two real Banach spaces,X andY , we denote byL(X;Y)
the space of linear continuous operators betweenX andY , and givenT ∈ L(X;Y), N [T ],
R[T ], and sprT will stand for the null space (kernel), the image (rank), and the spectral
radius ofT , respectively. The identity inX will be denoted byIX, and, givenR > 0 and
x ∈X, BR(x) will stand for the ball of radiusR centered atx.

2. Basic preliminaries. The single logistic equation

In this section we focus our attention into the single logistic equation

w′(t)= ρα(t)w(t)− β(t)w2(t), (2.1)

whereα, β ∈ CT satisfy

α̂ > 0, β > 0, (2.2)

andρ ∈ R is regarded as a real parameter. This equation provides us with the semi-trivial
states—positive—of(1.2) when(α,β) ∈ {(ℓ, a), (m,d)}.

2.1. The differential operatorddt + V :C1
T → CT

We begin studying some useful properties of the differential operator

d

dt
+ V :C1

T −→ CT , w �→w′ + Vw, (2.3)

whereV ∈ CT . The following result collects its main positivity properties.

PROPOSITION2.1. SupposeV , f ∈ CT and consider the periodic problem

w′ + Vw = f, w ∈ C1
T . (2.4)

Then, the following assertions are true:
(a) (2.4) has a unique solution for eachf ∈ CT if, and only if,

∫ T
0 V �= 0. In such case,

we denote byψ[V,f ] its unique solution.

(b) In case
∫ T

0 V > 0,ψ[V,f ] ≫ 0 if f > 0, andψ[V,f ] ≪ 0 if f < 0.

(c) In case
∫ T

0 V < 0,ψ[V,f ] ≪ 0 if f > 0, andψ[V,f ] ≫ 0 if f < 0.

(d) In case
∫ T

0 V = 0, (2.4) possesses a solution if, and only if,

∫ T

0
e
∫ s

0 V f (s)ds = 0. (2.5)
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In particular, (2.4) cannot admit a solution if eitherf > 0 or f < 0.Actually, under
condition(2.5) any solution of

w′ + Vw = f

must beT -periodic.

PROOF. For anyw0 ∈ R, the unique solution of the Cauchy problem

{
w′ + Vw = f,

w(0)=w0,

is given by

w(t)= e−
∫ t

0 V

[
w0 +

∫ t

0
e
∫ s

0 V f (s)ds

]
, t ∈ R, (2.6)

and it isT -periodic if, and only if,w(0)=w(T ). Equivalently,

(
e
∫ T

0 V − 1
)
w0 =

∫ T

0
e
∫ s

0 V f (s)ds. (2.7)

Thus, in case
∫ T

0 V �= 0,

w0 :=
∫ T

0 e
∫ s

0 V f (s)ds

e
∫ T

0 V − 1
(2.8)

is the unique initial value to aT -periodic solution, while, if
∫ T

0 V = 0, then identity(2.7)
implies(2.5).

As a result from this elementary analysis, substituting(2.8) into (2.6) and rearranging
terms, we find that under assumption

∫ T
0 V �= 0 the function

ψ[V,f ](t) := e−
∫ t

0 V

e
∫ T

0 V − 1

[∫ T

0
e
∫ s

0 V f (s)ds +
(
e
∫ T

0 V − 1
)∫ t

0
e
∫ s

0 V f (s)ds

]

= e−
∫ t

0 V

e
∫ T

0 V − 1

(∫ T

t

e
∫ s

0 V f (s)ds + e
∫ T

0 V

∫ t

0
e
∫ s

0 V f (s)ds

)
, t ∈ R,

provides us with the unique solution of(2.4). Note that, for anyV ∈ CT , the auxiliary
function

�(t) :=
∫ T

t

e
∫ s

0 V f (s)ds + e
∫ T

0 V

∫ t

0
e
∫ s

0 V f (s)ds, t ∈ R, (2.9)
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satisfies

�≫ 0 if f > 0, and �≪ 0 if f < 0.

Consequently, in case
∫ T

0 V > 0 we have that, for eacht ∈ R,

ψ[V,f ](t)=
e−
∫ t

0 V

e
∫ T

0 V − 1
�(t) > 0

if f > 0, whereasψ[V,f ](t) < 0 if f < 0. Similarly, in case
∫ T

0 V < 0, we have that
ψ[V,f ] ≫ 0 if f < 0, andψ[V,f ] ≪ 0 if f > 0, which concludes the proof of parts (a),
(b) and (c).

Finally, suppose
∫ T

0 V = 0. In this case, we already know that(2.5) is necessary for the
existence of a solution to(2.4). Suppose(2.5). Then, for eachw0 ∈ R, we have that(2.6)
satisfies

w(T )= e−
∫ T

0 V

[
w0 +

∫ T

0
e
∫ s

0 V f (s)ds

]
=w0 =w(0)

and, therefore, it provides us with a solution of(2.4). This concludes the proof. �

As an immediate consequence from Proposition 2.1, in case
∫ T

0 V �= 0 the linear differ-
ential operator(2.3) is a bijection. Clearly, it is continuous. So, it follows from the open
mapping theorem that it defines a linear isomorphism betweenC1

T andCT . Subsequently,
we shall denote byJ the canonical injection

J :C1
T → CT .

By Ascoli–Arzela’s theorem,J is compact, i.e., it sends bounded sets ofC1
T into relatively

compact subsets ofCT . Therefore, theresolvent operator

RV := J

(
d

dt
+ V

)−1

:CT → CT (2.10)

is as well compact. Actually, it isstrongly positiveif
∫ T

0 V > 0, while it isstrongly negative

if
∫ T

0 V < 0, i.e.,

RV

(
P \ {0}

)
⊂ IntP if

∫ T

0
V > 0, (2.11)

while,

RV

(
P \ {0}

)
⊂ −IntP if

∫ T

0
V < 0. (2.12)
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As a consequence from these positivity properties, one can easily get the main comparison
properties associated to Problem(2.4). To state them we need the following elementary
concepts.

DEFINITION 2.2. GivenV , f ∈ CT ,
(1) a functionw ∈ C1

T is said to be a subsolution (resp. strict subsolution) of(2.4) if
w′ + Vw � f (resp.w′ + Vw < f );

(2) a functionw ∈ C1
T is said to be a supersolution (resp. strict supersolution) of(2.4) if

w′ + Vw � f (resp.w′ + Vw > f ).

PROPOSITION2.3. SupposeV , f ∈ CT , with
∫ T

0 V �= 0. Then:

(a) In case
∫ T

0 V > 0, any strict subsolutionw of (2.4) satisfiesw ≪ ψ[V,f ], whereas
w≫ψ[V,f ] for any strict supersolutionw.

(b) In case
∫ T

0 V < 0, any strict subsolutionw of (2.4) satisfiesw ≫ ψ[V,f ], whereas
w≪ψ[V,f ] for any strict supersolutionw.

PROOF. Suppose
∫ T

0 V > 0 andw is a strict subsolution of(2.4). Then, the auxiliary
functionp defined by

p :=
(

d

dt
+ V

)
(ψ[V,f ] −w)

satisfiesp > 0 and, due to(2.11),

ψ[V,f ] −w = RV (p)≫ 0.

Similarly, whenw is a strict supersolution of(2.4),

q :=
(

d

dt
+ V

)
(w−ψ[V,f ]) > 0

and(2.11) implies

w−ψ[V,f ] = RV (q)≫ 0,

which concludes the proof of part (a). The proof of part (b) follows the same scheme,
though one should use(2.12), instead of(2.11). �

2.2. The single logistic equation

The following result characterizes the existence of positive solutions of(2.1).
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PROPOSITION2.4. Supposeα, β ∈ CT satisfy(2.2). Then, (2.1) possesses a positiveT -
periodic solution if, and only if, ρ > 0. Moreover, it is unique if it exists and if we denote it
by θ[ρα,β], then,

θ[ρα,β] = 1

ψ[ρα,β]
, (2.13)

whereψ[ρα,β] stands for the unique positive solution of

z′ + ραz= β, z ∈ C1
T . (2.14)

PROOF. Note that any positive solutionw ∈ C1
T of (2.1) must satisfyw ≫ 0, since

w′ = (ρα − βw)w. Moreover, the change of variablew = z−1 transforms(2.1) into the
linear equation(2.14). Thus, the positiveT -periodic solutions of(2.1) are in one-to-one
correspondence with the positive solutions of problem(2.14).

Supposeρ �= 0. Then,(2.2) implies ρα̂ �= 0 and, hence, thanks to Proposition 2.1(a),
(2.14) possesses a unique solution,ψ[ρα,β]. Moreover, thanks to Proposition 2.1(b)–(c),
ψ[ρα,β] ≫ 0 if ρ > 0, whileψ[ρα,β] ≪ 0 if ρ < 0.

Finally, note that ifρ = 0, then, due to Proposition 2.1(d),(2.14) cannot admit a positive
solution, since

∫ T

0
eρ
∫ s

0 αβ(s)ds =
∫ T

0
β(s)ds > 0.

Combining these features concludes the proof. �

We now analyze some important comparison properties between subsolutions, superso-
lutions and solutions of(2.1). First, we will introduce some basic concepts.

DEFINITION 2.5. Letρ ∈ R andα, β ∈ CT . Then,
(1) a functionw ∈ C1

T is said to be a subsolution (resp. strict subsolution) of(2.1) if
w′ � ραw− βw2 (resp.w′ < ραw− βw2);

(2) a functionw ∈ C1
T is said to be a supersolution (resp. strict supersolution) of(2.1) if

w′ � ραw− βw2 (resp.w′ > ραw− βw2).

PROPOSITION2.6. Supposeρ > 0 andα, β ∈ CT satisfyα̂ > 0 andβ > 0.Then, any strict
subsolutionw ≫ 0 of (2.1) satisfiesw ≪ θ[ρα,β], while any strict supersolutionw ≫ 0
satisfiesw≫ θ[ρα,β].

PROOF. Supposew ≫ 0 is a strict subsolution of(2.1). Then, the functionz := 1/w is
a strict supersolution of(2.14) and, hence, it follows from Proposition 2.3(a) thatz ≫
ψ[ρα,β]. Therefore,

w≪ 1

ψ[ρα,β]
= θ[ρα,β].
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Similarly, if w ≫ 0 is a strict supersolution of(2.1), thenz̄ := 1/w is a strict subsolution
of (2.14) and, hence,̄z≪ψ[ρα,β]. Consequently,w≫ θ[ρα,β]. �

COROLLARY 2.7. Let, for eachj ∈ {1,2}, ρj > 0 andαj , βj ∈ CT satisfyingαj > 0 and
βj > 0. Suppose

ρ1 � ρ2, α1 � α2, β1 � β2, (ρ1, α1, β1) �= (ρ2, α2, β2). (2.15)

Then, θ[ρ1,α1,β1] ≪ θ[ρ2,α2,β2].

PROOF. Under conditions(2.15), θ[ρ1,α1,β1] ≫ 0 is a strict subsolution of

w′ = ρ2α2w− β2w
2

and the conclusion follows from Proposition 2.6. �

2.3. Point-wise behaviour of the mapρ �→ θ[ρα,β]

In this section we regard to the unique positive solution of(2.1), θ[ρα,β], as a map de-
pending on the parameterρ > 0 in order to analyze some sharp properties of the global
bifurcation diagram of non-negative solutions of(2.1). Our main result reads as follows.

THEOREM 2.8. Supposêα > 0 andβ > 0, and set

Θ(ρ) := θ[ρα,β] ∈ C1
T , ρ > 0. (2.16)

Then, the map(0,∞) → C1
T , ρ �→ Θ(ρ), is real analytic and it possesses the following

asymptotic expansion atρ = 0

Θ(ρ)= α̂

β̂

[
ρ + ρ2I2 + O

(
ρ3)] asρ ↓ 0, (2.17)

whereI2 stands for the function defined by

I2(t) :=
∫ t

0
α − α̂

β̂

∫ t

0
β − 1

T

(∫ T

0

∫ t

0
α − α̂

β̂

∫ T

0

∫ t

0
β

)
, t ∈ R.

In particular,

lim
ρ↓0

∥∥Θ(ρ)
∥∥
CT

= 0. (2.18)
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If, in addition, α > 0, then the map(0,∞)→ CT , ρ �→Θ(ρ), is strongly increasing in the
sense thatΘ(ρ)≫Θ(ρ̃) if ρ > ρ̃. Further, if α≫ 0 andβ ≫ 0, then, for eachρ > 0,

αL

βM
ρ �Θ(ρ)�

αM

βL
ρ (2.19)

and

lim
ρ↑∞

Θ(ρ)

ρ
= α

β
in CT . (2.20)

PROOF. Note that the solutions of(2.1) are the zeroes of the non-linear operatorF :R ×
C1
T → CT defined by

F(ρ,w) :=w′ − ραw+ βw2, (2.21)

which is real analytic. Fixρ0> 0. Then,

F
(
ρ0,Θ(ρ0)

)
= 0

andDuF(ρ0,Θ(ρ0)) ∈ L(C1
T ;CT ) is given through

DuF
(
ρ0,Θ(ρ0)

)
:= d

dt
+ 2βΘ(ρ0)− ρ0α. (2.22)

SinceΘ(ρ0)≫ 0 satisfies

dΘ(ρ0)

dt
= ρ0αΘ(ρ0)− β

[
Θ(ρ0)

]2
,

division byΘ(ρ0) and integration in[0, T ] gives

0= Log
Θ(ρ0)(T )

Θ(ρ0)(0)
=
∫ T

0

[
ρ0α − βΘ(ρ0)

]
= 0

and, hence,

∫ T

0

[
2βΘ(ρ0)− ρ0α

]
=
∫ T

0
β(t)Θ(ρ0)(t)dt > 0,

sinceβ > 0. Thus, thanks to Proposition 2.1,DuF(ρ0,Θ(ρ0)) is a linear isomorphism
betweenC1

T andCT . Therefore, thanks to the implicit function theorem, there existε ∈
(0, ρ0), δ > 0, and a unique real analytic map

W : (ρ0 − ε,ρ0 + ε)→
{
w ∈ C1

T :
∥∥w−Θ(ρ0)

∥∥
C1
T
< δ
}
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such thatW(ρ0)=Θ(ρ0), F(ρ,W(ρ))= 0 if |ρ − ρ0|< ε, andw =W(ρ) if F(ρ,w)= 0
with |ρ− ρ0|< ε and‖w−Θ(ρ0)‖C1

T
< δ. AsW(ρ0)=Θ(ρ0)≫ 0, necessarilyW(ρ)≫

0 for ρ ∼ ρ0, and, therefore,W(ρ) = Θ(ρ), by the uniqueness of the positive solution
of (2.1). This shows thatρ �→Θ(ρ) is real analytic.

Although the fact that the map(0,∞)→ CT , ρ �→Θ(ρ), is strictly increasing ifα > 0
is a consequence from Corollary 2.7, it should be noted that implicit differentiation in

F
(
ρ,Θ(ρ)

)
= 0

gives rise to

(
d

dt
+ 2βΘ(ρ)− ρα

)
dΘ

dρ
(ρ)= αΘ(ρ) > 0

and, hence,

dΘ

dρ
(ρ)=

(
d

dt
+ 2βΘ(ρ)− ρα

)−1(
αΘ(ρ)

)
≫ 0,

because of(2.11).
To prove (2.17) we will use a celebrated device introduced by M.G. Crandall and

P.H. Rabinowitz [6]. Note that

DuF(0,0)=
d

dt
:C1
T → CT

and, hence,

N
[
DuF(0,0)

]
= span[1].

Moreover,

C1
T =N

[
DuF(0,0)

]
⊕ Y, Y :=

{
y ∈ C1

T :
∫ T

0
y = 0

}
.

Indeed, anyw ∈ C1
T admits a unique decomposition as

w = x + y, x ∈ R, y ∈ Y.

Actually,

x = ŵ, y =w− ŵ.

Now, consider the auxiliary operatorG :R2 × Y → CT defined by

G(s, ρ, y) := y′ − ρα(1+ y)+ βs(1+ y)2, (s, ρ, y) ∈ R2 × Y. (2.23)
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It should be noted thatG(s, ρ, y) = 0 implies F(ρ, s(1 + y)) = 0. It is rather clear
that G is a real analytic operator such thatG(0,0,0) = 0. Moreover, the operator
D(ρ,y)G(0,0,0) :R × Y → CT is given by

D(ρ,y)G(0,0,0)(ρ, y)= y′ − ρα, (ρ, y) ∈ R × Y,

and, so, it is a linear isomorphism. Indeed, if for some(ρ, y) ∈ R×Y one has thaty′ = ρα,
then integrating in[0, T ] givesρα̂ = 0 and, hence,ρ = 0, sinceα̂ > 0. Thus,y′ = 0 and,
therefore,y is constant. Consequently, as it has zero average, we obtain thaty = 0, which
concludes the proof of the injectivity. Now, fixf ∈ CT . Then, it is straightforward to check
that

y(t) := − f̂
α̂

∫ t

0
α+

∫ t

0
f − 1

T

(
− f̂
α̂

∫ T

0

∫ t

0
α +

∫ T

0

∫ t

0
f

)
, t ∈ R,

provides us with the unique element ofY solving

D(ρ,y)G(0,0,0)(ρ, y)= f, ρ := − f̂
α̂
.

Therefore, thanks to the implicit function theorem, there exists0 > 0, δ > 0, and a unique
real analytic map

(ρ, y) : (−s0, s0)→ (−δ, δ)×
{
y ∈ Y : ‖y‖

C1
T
< δ
}

such that(ρ(0), y(0)) = (0,0), G(s, ρ(s), y(s)) = 0 for eachs ∈ (−s0, s0), and(ρ, y) =
(ρ(s), y(s)) if G(s, ρ, y)= 0 with |s|< s0, |ρ|< δ, and‖y‖

C1
T
< δ. In particular,

F
(
ρ(s), s

(
1+ y(s)

))
= 0, |s|< s0,

and, so, for sufficiently smalls > 0,

(ρ,w) :=
(
ρ(s), s

(
1+ y(s)

))

provides us with a positiveT -periodic solution of(2.1). Necessarily, for sufficiently small
s > 0, we have that

s
(
1+ y(s)

)
=Θ

(
ρ(s)

)
(2.24)

because of the uniqueness of the positive solution of(2.1). Now, in order to find the lowest
order terms of the local developments

ρ(s)=
∞∑

n=1

ρns
n, y(s)=

∞∑

n=1

snyn, yn ∈ Y, n� 1, (2.25)
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we substitute(2.25) into the equation of the zeroes ofG. Then, we get

∞∑

n=1

sny′
n =
[
α

∞∑

n=1

ρns
n − sβ

(
1+

∞∑

n=1

snyn

)](
1+

∞∑

n=1

snyn

)

and identifying terms of order one in both members gives

y′
1 = ρ1α − β.

Thus,

ρ1 = β̂

α̂
, y1(t)= ρ1

∫ t

0
α −

∫ t

0
β − 1

T

(
ρ1

∫ T

0

∫ t

0
α −

∫ T

0

∫ t

0
β

)

and, therefore,(2.24) shows that

ρ(s)= ρ1s + O
(
s2) and Θ

(
ρ(s)

)
= s
(
1+ s y1(t)+ O

(
s2)) (2.26)

ass ↓ 0. Thanks again to the implicit function theorem, one can eliminates as a function
of ρ atρ = 0 from the identity

ρ1s + O
(
s2)= ρ.

Actually,

s = 1

ρ1
ρ + O

(
ρ2)= α̂

β̂
ρ + O

(
ρ2),

and, so, substituting this expansion into the second identity of(2.26) shows that

Θ(ρ)= α̂

β̂

[
ρ + α̂

β̂
y1ρ

2 + O
(
ρ3)
]

asρ ↓ 0, which provides us with the asymptotic expansion(2.17).
Subsequently, we suppose thatα≫ 0 andβ ≫ 0. The global estimates(2.19) and(2.20)

are consequences from Proposition 2.6. Indeed, settingΘ :=Θ(ρ), we have that

ραLΘ − βMΘ
2
�Θ ′ = ραΘ − βΘ2

� ραMΘ − βLΘ
2,

and, hence, for eachρ > 0, Θ(ρ) is a positive subsolution ofw′ = ραMw − βLw
2 and

a positive supersolution ofw′ = ραLw− βMw
2. Therefore,(2.19) follows from Proposi-

tion 2.6 by taking into account thatαM
βL
ρ and αL

βM
ρ provide us with the uniqueT -periodic

positive solutions of each of these autonomous equations.
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Now, fix δ > 0 sufficiently small so thatα
β

≫ δ, consider two functionsθ , θ̄ ∈ C1
T such

that

α

β
− δ < θ <

α

β
− δ

2
,

α

β
+ δ

2
< θ̄ <

α

β
+ δ, (2.27)

and set

w := ρ θ, w := ρ θ̄ .

Then, for each sufficiently largeρ > 0, sayρ � ρ0, we have that

ραw− βw 2 = ρ2βθ̄

(
α

β
− θ̄

)
<− δ

2
ρ2βθ̄ � ρθ̄ ′ =w ′,

and

ραw− βw2 = ρ2βθ

(
α

β
− θ

)
>
δ

2
ρ2βθ � ρθ ′ =w′.

Consequently, for eachρ � ρ0, w andw provide with a strict subsolution and a strict
supersolution of(2.1), respectively, and, hence, thanks to Proposition 2.6,

w = ρ θ ≪Θ(ρ)≪w = ρ θ̄ .

Thus, it follows from(2.27) that, for eachρ � ρ0,

α

β
− δ≪ Θ(ρ)

ρ
≪ α

β
+ δ.

Therefore, passing to the limit asρ ↑ ∞, shows that

α

β
− δ � lim inf

ρ↑∞
Θ(ρ)

ρ
� lim sup

ρ↑∞

Θ(ρ)

ρ
�
α

β
+ δ.

As these inequalities are valid for anyδ > 0, the proof of(2.20) is concluded, as well as
the proof of the theorem. �

It should be noted that the strong monotonicity ofΘ(ρ) is lost whenα changes of sign.
Indeed, suppose that, for some sufficiently smallδ > 0, β(t) = 0 andα(t) < 0 for each
t ∈ [0, δ]. Then, for eacht ∈ [0, δ] we have that

θ[ρα,β](t)= eρ
∫ t

0 αθ[ρα,β](0).

Since
∫ t

0 α < 0, the mapρ �→ θ[ρα,β](t) is decreasing for eacht ∈ (0, δ].
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Fig. 1. Graph ofρ �→Θ(ρ)(t) in caseα≫ 0 andβ ≫ 0.

In Fig. 1 we have represented the bifurcation diagram(ρ,Θ(ρ)(t)) for somet ∈ R in
the (ρ,Θ)-plane in the special, though important, case whenα ≫ 0 andβ ≫ 0. Thanks
to (2.19) the curveρ �→Θ(ρ)(t) must be confined in between the straight linesΘ = αL

βM
ρ

andΘ = αM
βL
ρ, and, due to(2.17) and(2.20), its tangents atρ = 0 andρ = ∞ are

Θ = α̂

β̂
ρ and Θ = α(t)

β(t)
ρ,

respectively.

2.4. Attractiveness ofθ[ρα,β]

Note that the linearized equations of(2.1) atw = 0 andw =Θ(ρ) are given by

w′ = ραw and w′ =
[
ρα − 2βΘ(ρ)

]
w,

respectively, whose Floquet multipliers are

eρ
∫ T

0 α and e
∫ T

0 [ρα−2βΘ(ρ)].

As a result,w = 0 is linearly stable ifρ < 0, linearly neutrally stable ifρ = 0 and linearly
unstable ifρ > 0. Moreover, in the proof of Theorem 2.8 we have seen that, for eachρ > 0,

∫ T

0

[
ρα− βΘ(ρ)

]
= 0, (2.28)
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and, hence,

e
∫ T

0 [ρα−2βΘ(ρ)] = e−
∫ T

0 [βΘ(ρ)] < 1.

Therefore,Θ(ρ) is linearly stable. Actually, it is easy to see that 0 is a global attractor
of (2.1) if ρ � 0, whereasΘ(ρ) attracts to all positive solutions of(2.1) if ρ > 0.

3. Linearized stability of the semi-trivial solutions

Thanks to Proposition 2.4,(1.2) possesses a semi-trivial state—throughout the remaining
of the chapter, positive—of the form(u,0) if and only if λ > 0. Moreover, in such case,
(θ[λℓ,a],0) is the unique semi-trivial state of this form. Similarly,(0, θ[µm,d]) provides us
with the unique semi-trivial state of(2.1) of the form (0, v), and it exists if and only if
µ > 0. The following result characterizes the stability of these states and the stability of
the trivial state(0,0).

PROPOSITION3.1. The following assertions are true:
(a) (0,0) is linearly stable ifλ < 0 andµ< 0, and it is linearly unstable if eitherλ > 0

or µ> 0.
(b) Supposeλ > 0. Then, (θ[λℓ,a],0) is linearly unstable if and only if

µ>
1

T

∫ T

0
c(t)θ[λℓ,a](t)dt, (3.1)

and linearly stable if and only if

µ<
1

T

∫ T

0
c(t)θ[λℓ,a](t)dt. (3.2)

Consequently, thecurve of change of stabilityof (θ[λℓ,a],0) in the (λ,µ)-plane is
given through its curve of neutral stability

µ= f (λ) := 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt. (3.3)

(c) Supposeµ> 0. Then, (0, θ[µm,d]) is linearly unstable if and only if

λ >
1

T

∫ T

0
b(t)θ[µm,d](t)dt, (3.4)

and linearly stable if and only if

λ <
1

T

∫ T

0
b(t)θ[µm,d](t)dt. (3.5)
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Consequently, thecurve of change of stabilityof (0, θ[µm,d]) in the(λ,µ)-plane is
given through its curve of neutral stability

λ= g(µ) := 1

T

∫ T

0
b(t)θ[µm,d](t)dt. (3.6)

PROOF. The linearization of(1.2) at any solution(u0, v0) ∈ C1
T × C1

T is given by

{
u′ = (λℓ− 2au0 − bv0)u− bu0v,

v′ = −cv0u+ (µm− 2dv0 − cu0)v.
(3.7)

When(u0, v0)= (0,0), (3.7) becomes into

{
u′ = λℓu,

v′ = µmv,

whose Poincaré map is given by

P(x, y)=
(

eλT 0
0 eµT

)(
x

y

)
, (x, y) ∈ R2,

sinceℓ̂= m̂= 1. Thus, its Floquet multipliers, eλT and eµT , are less than one ifλ < 0 and
µ < 0, while some of them is greater than one if eitherλ > 0 orµ > 0, which concludes
the proof of part (a).

When(u0, v0)= (θ[λℓ,a],0), (3.7) becomes into

{
u′ = (λℓ− 2aθ[λℓ,a])u− bθ[λℓ,a]v,

v′ = (µm− cθ[λℓ,a])v,
(3.8)

and its associated Poincaré map is given by

P(x, y)=
(

e
∫ T

0 (λℓ−2aθ[λℓ,a]) E

0 e
∫ T

0 (µm−cθ[λℓ,a])

)(
x

y

)
, (x, y) ∈ R2,

for some constantE ∈ R whose explicit knowledge is not important here. Thanks to(2.28),

∫ T

0
(λℓ− aθ[λℓ,a])= 0

and, hence,

0< e
∫ T

0 (λℓ−2aθ[λℓ,a]) = e−
∫ T

0 a(t)θ[λℓ,a](t)dt < 1.
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Consequently, the attractive character of(θ[λℓ,a],0) is given by the remaining Floquet mul-
tiplier

ν := e
∫ T

0 (µm−cθ[λℓ,a]) = eµT−
∫ T

0 c(t)θ[λℓ,a](t)dt .

As ν > 1 when(3.1) is satisfied,ν = 1 if (3.3) is satisfied, and 0< ν < 1 under condi-
tion (3.2), the proof of part (b) is concluded. Part (c) follows by symmetry. This ends the
proof. �

4. The curves of change of stability of the semi-trivial positive solutions

In this section we shall study some global properties of the curves of neutral stability(3.3)
and (3.6) of the semi-trivial solutions of(1.2). Such analysis is imperative in order to
ascertain the shape of each of the following regions within the parameter space(λ,µ):

Ruu :=
{
(λ,µ) ∈ (0,∞)2: (θ[λℓ,a],0) and(0, θ[µm,d]) are l.u.

}
,

(4.1)
Rss :=

{
(λ,µ) ∈ (0,∞)2: (θ[λℓ,a],0) and(0, θ[µm,d]) are l.s.

}
,

Rsu :=
{
(λ,µ) ∈ (0,∞)2: (θ[λℓ,a],0) is l.s.,(0, θ[µm,d]) is l.u.

}
,

(4.2)
Rus :=

{
(λ,µ) ∈ (0,∞)2: (θ[λℓ,a],0) is l.u., (0, θ[µm,d]) is l.s.

}
,

Ru⋆ :=
{
(λ,µ) ∈ (0,∞)× (−∞,0]: (θ[λℓ,a],0) is l.u.

}
,

(4.3)
Rs⋆ :=

{
(λ,µ) ∈ (0,∞)× (−∞,0]: (θ[λℓ,a],0) is l.s.

}
,

R⋆u :=
{
(λ,µ) ∈ (−∞,0] × (0,∞): (0, θ[µm,d]) is l.u.

}
,

(4.4)
R⋆s :=

{
(λ,µ) ∈ (−∞,0] × (0,∞): (0, θ[µm,d]) is l.s.

}
,

wherel.u. stands forlinearly unstableandl.s. for linearly stable. As the global behaviour
of the curves of neutral stability of the semi-trivial states is strongly based upon the na-
ture of the model under study, i.e., under the sign properties of the interaction coefficient
functionsb(t) andc(t), in the subsequent discussion we will have to distinguish several
different cases. We begin the section by giving a general result which is a straightforward
consequence from Theorem 2.8.

THEOREM 4.1. Supposeα, β, γ ∈ CT satisfy

α≫ 0, β ≫ 0, α̂ = β̂ = 1, (4.5)

and consider the function

N(ρ) := 1

T

∫ T

0
γ (t)θ[ρα,β](t)dt, ρ > 0. (4.6)
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Then,

N(ρ)= γ̂ ρ + 1

T

∫ T

0
γ (t)I2(t)dt ρ

2 + O
(
ρ3) asρ ↓ 0, (4.7)

where

I2(t) :=
∫ t

0
(α − β)− 1

T

∫ T

0

∫ t

0
(α − β), t ∈ R, (4.8)

and

lim
ρ↑∞

N(ρ)

ρ
= 1

T

∫ T

0
γ (t)

α(t)

β(t)
dt. (4.9)

Moreover, ρ �→ N(ρ) is increasing ifγ > 0, decreasing ifγ < 0, and, in general, is far
from monotone ifγ changes of sign. In such case, (4.9) can be either negative, or positive,
or zero, according to the value of the average on its right-hand side.

PROOF. By (4.5), it follows from Theorem 2.8 that

θ[ρα,β] = ρ + I2ρ
2 + O

(
ρ3) asρ ↓ 0.

Thus,

N(ρ) := 1

T

∫ T

0
γ (t)θ[ρα,β](t)dt = γ̂ ρ + 1

T

∫ T

0
γ (t)I2(t)dtρ

2 + O
(
ρ3),

which is (4.7). The validity of (4.9) is an immediate consequence from(2.20). The re-
maining assertions of the theorem are obvious, sinceθ[ρα,β] ≫ 0. �

It should be noted that, in general, nothing can be said about the concavity ofN(ρ)

at ρ = 0. Indeed, sinceI2 changes of sign ifI2 �= 0, becausêI2 = 0, the average of the
function γ I2 can have any sign we wish by choosing and adequateγ that may be taken
either positive, or negative, or changing of sign, in strong contrast with the autonomous
case, whereN(ρ)= γρ for everyρ > 0.

4.1. The speciesu andv compete(b > 0 andc > 0)

Besides(1.7), throughout this section we assume that

ℓ≫ 0, m≫ 0, a≫ 0, d ≫ 0, b > 0, c > 0, (4.10)

though most of our discussion can be easily adapted to cover much weaker require-
ments. Under assumptions(4.10), the curves of neutral stability of the semi-trivial states
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(θ[λℓ,a],0) and (0, θ[µm,d]), (3.3) and (3.6), are increasing inλ andµ, respectively, and
satisfy

f (λ) > 0, g(µ) > 0, (λ,µ) ∈ (0,∞)2. (4.11)

It should be noted that these are the curves delimiting the regions defined by(4.1) and
(4.2). Thanks to Theorem 4.1, the tangents of these curves at(λ,µ)= (0,0) are given by

µ= ĉλ and λ= b̂µ, (4.12)

respectively, as for the autonomous counterpart of(1.2)—where these are the curves of
neutral stability of(λ,0) and(0,µ)—and their tangents at infinity are given by

µ= αλ, α := 1

T

∫ T

0
c(t)

ℓ(t)

a(t)
dt,

λ= βµ, β := 1

T

∫ T

0
b(t)

m(t)

d(t)
dt,

(4.13)

respectively. In strong contrast with the autonomous case—where(4.12) and (4.13) are
the same straight lines—as a consequence from the non-autonomous character of(1.2), the
relative positionsof the straight lines(4.12) and(4.13) can be inter-exchanged at(λ,µ)=
(0,0) and at infinity, so entailing the existence of a crossing point between the curves of
change of stability of the semi-trivial states; a feature of great significance from the point
of view of the applications, as it might allow us designing environments where none of
the competitors is driven to extinction by the other. Most precisely, there are admissible
choices of the function coefficientsa, b, c, d , ℓ andm, for which either

b̂ĉ < 1 and αβ = 1

T

∫ T

0
c(t)

ℓ(t)

a(t)
dt · 1

T

∫ T

0
b(t)

m(t)

d(t)
dt > 1, (4.14)

or else

b̂ĉ > 1 and αβ = 1

T

∫ T

0
c(t)

ℓ(t)

a(t)
dt · 1

T

∫ T

0
b(t)

m(t)

d(t)
dt < 1. (4.15)

In such circumstances, as the curvesµ = f (λ), λ > 0, andλ = g(µ), µ > 0, are real
analytic, they must cross at most at a finite number of points—at least one—whose total
sum of contact orders must be an odd integer number. To construct examples satisfying any
of these requirements one can make the following choices:

a = d = 1, ℓ := 1+ ℓ1 sin

(
2π

T
·
)
, m := 1+m1 sin

(
2π

T
·
)
, (4.16)

for some constantsℓ1,m1 ∈ (−1,1), and

b := b0 + b1 sin

(
2π

T
·
)
, c := c0 + c1 sin

(
2π

T
·
)
, (4.17)
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for some constants

b0> 0, c0> 0, b1 ∈ (−b0, b0), c1 ∈ (−c0, c0).

For these choices, we have that

b̂= b0, ĉ= c0,

and

α = 1

T

∫ T

0
c(t)

ℓ(t)

a(t)
dt = c0 + 1

2
c1ℓ1, β = 1

T

∫ T

0
b(t)

m(t)

d(t)
dt = b0 + 1

2
b1m1.

Thus,(4.14) and(4.15) are equivalent to

b0c0< 1 and

(
c0 + 1

2
c1ℓ1

)(
b0 + 1

2
b1m1

)
> 1, (4.18)

and

b0c0> 1 and

(
c0 + 1

2
c1ℓ1

)(
b0 + 1

2
b1m1

)
< 1, (4.19)

respectively. We now show that any of these conditions can be reached by an adequate
choice of the several constants involved in their settings. Take, for sufficiently smallε > 0,

b0 = c0 = 1− ε, b1 = c1 = 1− 2ε.

Then, the functionp(ε) defined by

p(ε) :=
[
1− ε+ 1

2
(1− 2ε)ℓ1

][
1− ε+ 1

2
(1− 2ε)m1

]
, ε > 0,

satisfies

p(0)= 1+ 1

2
(ℓ1 +m1)+

1

4
ℓ1m1

and, hence,p(0) > 1 if ℓ1 > 0 andm1 > 0. Thus, if we chooseℓ1, m1 ∈ (0,1), then, for
sufficiently smallε > 0, we have thatp(ε) > 1, by continuity, and, consequently,(4.18) is
satisfied. On the contrary, choosing

b0 = c0 = 1+ ε, b1 = c1 = 1,

the auxiliary functionn(ε) defined by

n(ε) :=
[
1+ ε+ 1

2
ℓ1

][
1+ ε+ 1

2
m1

]
, ε > 0,
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Fig. 2. The curvesµ= f (λ) andλ= g(µ) in case(4.18).

satisfies

n(0)= 1+ 1

2
(ℓ1 +m1)+

1

4
ℓ1m1

and, hence,n(0) < 1 if ℓ1< 0 andm1< 0. Thus, if we chooseℓ1, m1 ∈ (−1,0), then, for
sufficiently smallε > 0, we have thatn(ε) < 1, by continuity, and, consequently,(4.19)
holds.

In Fig. 2 we have represented the curves of neutral stability of the semi-trivial states in
an admissible situation satisfying(4.18). It should be noted that, for the previous choice,
we have that, for each sufficiently smallε > 0,

1

β
=
(
b0 + 1

2
b1m1

)−1

=
(

1− ε+ 1

2
(1− 2ε)m1

)−1

< c0 = 1− ε < 1

and

α = c0 + 1

2
c1ℓ1 = 1− ε+ 1

2
(1− 2ε)ℓ1>

1

b0
= 1

1− ε
> 1

sinceℓ1 > 0 andm1 > 0. As illustrated by Fig. 2, the curves of change of stability of
the semi-trivial states must cross at least once, and at most at a finite number of points
whose total sum of contact orders must be odd. In the situations described by Fig. 2, one
among all admissible ones, these curves divide the first quadrant into four different re-
gions: the two regions enclosed by these curves, and the two exterior regions. In general,
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Fig. 3. The curvesµ= f (λ) andλ= g(µ) in case(4.19).

the region enclosed between them consists of a finite number of components—one un-
bounded, and the remaining bounded. Within the bounded components both semi-trivial
states are—alternatively—either linearly unstable, or linearly stable. In Fig. 2, both are
linearly unstable, becauseµ > f (λ) andλ > g(µ). Hence, this is the region Ruu defined
in (4.1). Independently of the number of bounded components enclosed by the curves of
neutral stability of the semi-trivial states, the unbounded component is always a subset of
the region Rss defined in(4.1), where both semi-trivial states are linearly stable. The re-
maining regions correspond with the regions Rsu and Rus defined in(4.2), where one of
the semi-trivial states is linearly stable and the other linearly unstable. As in all competing
species models, in this example we have that

Rs∗ = (0,∞)× (−∞,0], Ru∗ = ∅,
R∗s = (−∞,0] × (0,∞), R∗u = ∅.

In Fig. 3 we have represented an admissible situation adjusted to(4.19) for the choices
previously analyzed. Now, for each sufficiently smallε > 0, we have that

α := c0 + 1

2
c1ℓ1 = 1+ ε+ 1

2
ℓ1<

1

b0
= 1

1+ ε
< 1

and

1

β
:=
(
b0 + 1

2
b1m1

)−1

=
(

1+ ε+ 1

2
m1

)−1

> c0 = 1+ ε > 1,
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sinceℓ1< 0 andm1< 0. As the relative positions between the curves of neutral stability of
the semi-trivial states suffered a drastic change between the cases sketched in Figs. 2 and 3,
in the latest case, within the bounded component enclosed byµ= f (λ) andλ= g(µ) both
semi-trivial states must be linearly stable, while in the unbounded component both are
linearly unstable. As it is easily realized, this inter-exchange between the relative positions
of the curves of neutral stability of the semi-trivial states entails dramatic changes from the
point of view of applications.

Although the previous examples exhibit a reminiscent behaviour from the autonomous
model for(λ,µ) in a neighborhood of(0,0), in the sense that, for such range of(λ,µ) low
intensity competitionoccurs if b̂ĉ < 1, while high intensity competitionoccurs if b̂ĉ > 1,
these simple examples illustrate very well how temporal heterogeneities can affect the dy-
namics of(1.1), as for(λ,µ) sufficiently large the intensity of the competition is measured
by α, instead of̂c, andβ, instead ofb̂. Actually, for (λ,µ) large,low intensity competition
occurs ifαβ < 1 (cf. Fig. 3), whilehigh intensity competitionoccurs ifαβ > 1 (cf. Fig. 2).
The observation of this phenomenology goes back to [12].

In the previous examples, a further crossing point, perturbing from(0,0), might occur
if b0c0 = 1, as a result of the nature of the second order terms of the asymptotic expansion
of (3.3) and(3.6) at (0,0), but we refrain of performing this sharper analysis here (cf. [13]
for the corresponding analysis in the autonomous competing species model with diffusion).

It should be noted that most of the examples treated in the literature did not cover the
previous two cases, but, instead, covered some very special situations where the function
coefficients were chosen so that the curves of neutral stability of the semi-trivial states
cannot meet in the interior of the first quadrant, as in those cases the method of sub- and
supersolutions gives the existence of coexistence states in a rather simple way. Most pre-
cisely, lettL, tM ∈ [0, T ] such that

(θ[λℓ,a])j = θ[λℓ,a](tj ), j ∈ {L;M}.

Then, sincedθ[λℓ,a]
dt (tj )= 0, we have that

θ[λℓ,a](tj )=
ℓ(tj )

a(tj )
λ, j ∈ {L,M},

and, hence,

(
ℓ

a

)

L

λ� θ[λℓ,a] �

(
ℓ

a

)

M

λ, λ > 0. (4.20)

By symmetry,

(
m

d

)

L

µ� θ[µm,d] �

(
m

d

)

M

µ, µ > 0. (4.21)
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Thus, for eachλ > 0,

ĉ

(
ℓ

a

)

L

λ� f (λ)= 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt � ĉ

(
ℓ

a

)

M

λ, (4.22)

and, for eachµ> 0,

b̂

(
m

d

)

L

µ� g(µ)= 1

T

∫ T

0
b(t)θ[µm,d](t)dt � b̂

(
m

d

)

M

µ. (4.23)

Consequently, the curves of neutral stability(3.3) and(3.6) cannot meet at a point(λ,µ) �=
(0,0) if either

b̂ĉ

(
ℓ

a

)

M

(
m

d

)

M

< 1, (4.24)

or

b̂ĉ

(
ℓ

a

)

L

(
m

d

)

L

> 1. (4.25)

Actually, in any of these cases the curvesµ = f (λ) andλ = g(µ) divide the first quad-
rant into three regions and, necessarily, either Rss= ∅ or Ruu = ∅ (cf. Fig. 4). As in the
autonomous model, low intensity competition occurs under(4.24), while high intensity
competition occurs if(4.25) is satisfied. It should be noted that(4.24) and(4.25) become
into b̂ĉ < 1 andb̂ĉ > 1, respectively, ifℓ= a andm= d . These are the unique two possible
situations exhibited by the autonomous model.

Fig. 4. Curves of neutral stability in cases(4.24) (a) and(4.25) (b).
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4.2. The speciesv preys onu (b > 0 andc < 0)

Then, the curves of neutral stability of the semi-trivial states cannot meet at a point(λ,µ) �=
(0,0), since

f (λ)= 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt < 0 for eachλ > 0,

and

g(µ)= 1

T

∫ T

0
b(t)θ[µm,d](t)dt > 0 for eachµ> 0.

Note that, as a consequence from Theorem 2.8,λ �→ f (λ) is decreasing andµ �→ g(µ) is
increasing, sinceℓ > 0 andm > 0 (cf. Fig. 5). If we further assume thatℓ≫ 0, m≫ 0,
a ≫ 0 andd ≫ 0, then, besides the fact thatf (λ) andg(µ) are monotone, the tangents to
µ= f (λ) andλ= g(µ) at (0,0) and at infinity are given by the straight lines(4.12) and
(4.13), respectively.

Now, the half-planeλ > 0 is divided into four supplementary regions according to the
existence and character of each of the semi-trivial states. The interior of the first quadrant
is divided into the two regions Rus and Ruu (cf. (4.1) and(4.2)), and the quadrantλ > 0,
µ� 0, where(1.2) exclusively admits the semi-trivial state(θ[λℓ,a],0), is divided into the
regionµ> f (λ) Ru∗, where(θ[λℓ,a],0) is linearly unstable, and the regionµ< f (λ) Rs∗,
where(θ[λℓ,a],0) is linearly stable. Moreover,

R∗s = (−∞,0] × (0,∞), R∗u = ∅, Rss= ∅.

Fig. 5. Curves of neutral stability in the predator-prey model.
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The configuration shown by Fig. 5 is reminiscent of the classical one for the autonomous
model, where the curves of change of stability of the semi-trivial states(λ,0) and(0,µ) are
µ= cλ andλ= bµ, respectively. Actually, ifℓ= a andm= d , thenµ= ĉλ andλ= b̂µ

provide us with the tangents at(0,0) and at infinity to the curvesµ= f (λ) andλ= g(µ).

4.3. The speciesu andv cooperate (b < 0 andc < 0)

In this case,λ �→ f (λ) andµ �→ g(µ) are decreasing and, in general, they look like shows
Fig. 6. Now, the regions defined in(4.1)–(4.4) are given by the following identities:

Ruu = (0,∞)× (0,∞), Rss= ∅, Rus= ∅, Rsu= ∅,
Ru∗ =

{
(λ,µ): λ > 0, f (λ) < µ� 0

}
, Rs∗ =

{
(λ,µ): λ > 0,µ < f (λ)

}
,

R∗u =
{
(λ,µ): µ> 0, g(µ) < λ� 0}, R∗s = {(λ,µ): µ> 0, λ < g(µ)}.

As in the predator-prey model, if we further assumeℓ≫ 0,m≫ 0,a≫ 0 andd ≫ 0, then,
besides the fact thatf (λ) andg(µ) are monotone, the tangents to the curves of neutral sta-
bility µ= f (λ) andλ= g(µ) at (0,0) and at infinity are given by the straight lines(4.12)
and(4.13), respectively. Similarly, the configuration shown by Fig. 6 is reminiscent of the
classical one for the autonomous model, where the curves of change of stability of the
semi-trivial states(λ,0) and(0,µ) areµ= cλ andλ= bµ, respectively. Actually, ifℓ= a

andm= d , thenµ= ĉλ andλ= b̂λ provide us with the tangents at(0,0) and at infinity to
the curvesµ= f (λ) andλ= g(µ).

Fig. 6. Curves of neutral stability for the symbiotic model.
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4.4. The general case whenb andc change of sign

As for the competing species model, in order to simplify our analysis, besides(1.7) in this
section we assume that

a≫ 0, d ≫ 0, ℓ≫ 0, m≫ 0. (4.26)

Then, as in Section 4.1,(4.12) and (4.13) provide us with the tangents at(0,0) and at
infinity of the curves of neutral stability of the semi-trivial states. As we are assuming that
b andc change of sign in[0, T ], we have

I b+ := Int suppb+ �= ∅, I b− := Int suppb− �= ∅,
I c+ := Int suppc+ �= ∅, I c− := Int suppc− �= ∅,

and, hence,f (λ) andg(µ) fail to be monotone. Nevertheless, since

lim
(c−)M↓0

f (λ) = 1

T

∫ T

0
c+(t)θ[λℓ,a](t)dt,

(4.27)

lim
(b−)M↓0

g(µ) = 1

T

∫ T

0
b+(t)θ[µm,d](t)dt,

uniformly on compact subsets of(λ,µ), the curves of change of stability of the semi-trivial
states approximate the corresponding curves of the competition model with interaction
function coefficientsb+ andc+, asb− ↓ 0 andc− ↓ 0. Therefore, on compact subsets of
(λ,µ), the regions defined by(4.1) and (4.2) approximate the corresponding regions of
the associated competition model. Similarly, since

lim
(c+)M↓0

f (λ) = − 1

T

∫ T

0
c−(t)θ[λℓ,a](t)dt,

(4.28)

lim
(b+)M↓0

g(µ) = − 1

T

∫ T

0
b−(t)θ[µm,d](t)dt,

uniformly on compact subsets of(λ,µ), the curves of change of stability of the semi-
trivial states approximate the corresponding curves of the symbiotic model with interaction
function coefficients−b− and−c− asb+ ↓ 0 andc+ ↓ 0. Consequently, for(λ,µ) varying
in any compact subset of(0,∞)2, the regions defined by(4.1) and(4.2) approximate the
corresponding regions of the symbiotic model with interactions−b− and−c−. Therefore,
the general case whenb andc change of sign can be regarded as a sort of intermediate
situation between a competitive and a symbiotic model. Actually, the map(B,C) : [0,1] →
CT × CT defined, for eachε ∈ [0,1], by

B(ε) := εb+ − (1− ε)b− + 2ε(1− ε)
(
b+ − b−),

C(ε) := εc+ − (1− ε)c− + 2ε(1− ε)
(
c+ − c−

)
,
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establishes a homotopy between(b+, c+), (−b−,−c−) and(b, c). Indeed,

(
B(0),C(0)

)
=
(
− b−,−c−

)
,

(
B(1),C(1)

)
=
(
b+, c+

)
,

and

(
B(1/2),C(1/2)

)
= (b, c).

Consequently,(1.2) should exhibit an intermediate behavior between those exhibited by a
competition and a symbiotic model.

In Fig. 7, we have represented two admissible curvesµ = f (λ) andλ = g(µ) in the
special case when conditions

b̂ > 0, ĉ > 0, b̂ĉ < 1, (4.29)

and

α := 1

T

∫ T

0
c(t)

ℓ(t)

a(t)
dt < 0, β := 1

T

∫ T

0
b(t)

m(t)

d(t)
dt < 0 (4.30)

are satisfied. Conditions(4.29) can be reached by takingb+ andc+ with b̂+ĉ+ < 1 and
choosing sufficiently smallb− andc−. In order to get(4.30) it suffices to chooseℓ suf-
ficiently small inI c+ andm sufficiently small inI b+. This entails the birth rate of each of
the species must be relatively slow during the time periods where the intensity of its ag-
gressions on the other species reaches its highest level. Consequently, although the species
compete, the model exhibits some sort of cooperative behaviour. Nevertheless, one should
be very careful in choosing the adequate ranges of values of the parameters where this
phenomenology occurs.

For the situation illustrated in Fig. 7, the first quadrant is divided into there regions: the
region Ruu, where both semi-trivial states are linearly unstable, which is the region where
µ> f (λ) andλ > g(µ), the region Rsu, where(θ[λℓ,a],0) is linearly stable and(0, θ[µm,d])
is linearly unstable, which is the region whereλ > 0 and 0<µ< f (λ), and the region Rus,
where(θ[λℓ,a],0) is linearly unstable and(0, θ[µm,d]) is linearly stable, which is given by
µ > 0 and 0< λ < g(µ). In the second quadrant (λ � 0 andµ > 0), (0, θ[µm,d]) is the
unique semi-trivial state; it is linearly stable ifλ < g(µ) and linearly unstable ifλ > g(µ).
In the fourth quadrant (λ > 0 andµ � 0), (θ[λℓ,a]) is the unique semi-trivial state; it is
linearly stable ifµ< f (λ) and linearly unstable ifµ> f (λ). It should be noted that under
conditions(4.29) and (4.30) the curvesµ = f (λ) and λ = g(µ) might cross. In such
case, their total number of crossing points, counting contact orders, must be even, because
µ= f (λ) andλ= g(µ) are real analytic. Also, note that Fig. 7 shows a low-competitive-
intensity behaviour around(λ,µ)= (0,0) and a symbiotic type of behavior for sufficiently
largeλ andµ.

Now, by choosingb+ andc+ such thatb̂+ĉ+ > 1, b− ∼ 0, c− ∼ 0, ℓ ∼ 0 in I c+ and
m∼ 0 in I b+, one gets

b̂ > 0, ĉ > 0, b̂ĉ > 1, α < 0, β < 0. (4.31)
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Fig. 7. Curves of neutral stability under conditions(4.29) and(4.30).

Fig. 8. Curves of neutral stability under condition(4.31).

Fig. 8 shows two admissible curves of neutral stability of semi-trivial states adjusted
to (4.31). Now, these curves must cross at an odd number of points, counting contact
orders, in such a way that both semi-trivial states are linearly unstable in the unbounded
component of the enclosed region between them. Rather naturally, the model exhibits a
high-intensity-competition behavior around(0,0), while it exhibits a genuine cooperative
behavior for sufficiently largeλ andµ; as far as to the structure of the regions defined
in (4.1) and(4.2) concerns. It seems the first occasion that such a kind of behaviour has
been observed had been in [22] within the context of reaction diffusion models.
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Fig. 9. Curves of neutral stability under condition(4.32).

Now, by choosing sufficiently smallb+ andc+, ℓ∼ 0 in I c− and sufficiently large inI c+,
andm∼ 0 in I b− and sufficiently large inI b+, the following conditions can be reached

b̂ < 0, ĉ < 0, α > 0, β > 0, αβ > 1. (4.32)

Fig. 9 shows two admissible curves of neutral stability according to(4.32). As in case
(4.31), the total number of crossing points betweenµ= f (λ) andλ= g(µ) must be odd,
though, in case(4.32), Rss includes the unbounded component enclosed by the two curves,
while the bounded component containing(0,0) is a subset of Ruu, in strong contrast with
the situation described by Fig. 8. Actually, in case(4.32), the model exhibits a genuine
symbiotic behavior around(0,0), while it possesses a high-intensity-competitive behavior
for sufficiently large values ofλ andµ.

Finally, by choosing sufficiently smallb− andc+, one can easily reach

b̂ > 0, ĉ < 0, α < 0, β > 0, (4.33)

for instance, by takingℓ=m= a = d = 1. In such cases the curvesµ= g(λ) andλ= g(µ)

exhibit a behaviour quite reminiscent of the case whenv preys onu (cf. Fig. 10); rather
naturally, since these models can be regarded as perturbations from the case whenb− = 0
andc+ = 0, whereb > 0 andc < 0—v preys onu—though the symbiotic effects of the
interaction might play a significant role for large values ofλ andµ. In Fig. 10 we have
represented the curves of change of stability of the semi-trivial states of(1.2) in one of the
several admissible situation cases.
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Fig. 10. Curves of neutral stability under condition(4.33).

5. The existence of coexistence states

In this section we are going to give a very general result about the existence of coexistence
states of(1.2) for the general case whereb and c change of sign. As a matter of fact,
our result covers all admissible situations, as we are not imposing any sign restriction onb

andc. The general methodology adopted in this section goes back to the pioneering chapter
by J.M. Cushing [7], where one of the parameters,λ or µ, was fixed while the other was
considered as a bifurcation parameter in order to get the coexistence states as emanating
from one of the semi-trivial states in the context of competing species models. This idea
has been extremely fruitful in a number of different contexts [19, Chapter 7].

Most precisely, in Section 5.1 we use the abstract unilateral theorem of [19, Chapter 6]
to get an abstract global unilateral theorem for systems, which is the basic abstract result
to get—as an easy consequence—our theorem about the existence of coexistence states,
which will be given in Section 5.2. Our abstract result admits a number of applications in
rather different contexts, but we refrain of giving more details here in. It should be noted
that the well known, and very celebrated, unilateral theorems of P.H. Rabinowitz [31] are
wrong as they are stated. Actually, there is an available—very recent—counterexample by
E.N. Dancer [9]. In the subsequent subsections we shall consider each of the possible in-
teractions separately, as in each special circumstance one can obtain sharper consequences
from our abstract theorem.

5.1. Abstract unilateral bifurcation from semi-trivial states

Let X be an ordered Banach space whose positive coneP is normal and it has nonempty
interior, and consider a nonlinear abstract equation of the form

F(ρ, x, y) := L(ρ)(x − x0, y)+ R(ρ, x, y)= 0, (ρ, x, y) ∈ R ×X2, (5.1)
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for somex0 ∈ P \ {0}, where
(HL) K(ρ) := IX2 − L(ρ) ∈ L(X2), ρ ∈ R, is a compact and continuous operator pen-

cil with a discrete set ofsingular values, denoted byΣ . SinceL(ρ) is Fredl-
hom of index zero,σ ∈ Σ if, and only if, σ is an eigenvalueof L(ρ), i.e., if
dimN [L(σ )] � 1.

(HR) R ∈ C(R ×X2;X2) is compact on bounded sets and

lim
(x,y)→(x0,0)

R(ρ, x, y)

‖(x − x0, y)‖
= 0

uniformly on compact intervals ofR .
(HP) The solutions of(5.1) satisfy thestrong maximum principlein the sense that

(ρ, x, y) ∈ R ×
(
P \ {0}

)
×X and F(ρ, x, y)= 0 imply x ∈ IntP,

and

(ρ, x, y) ∈ R ×X×
(
P \ {0}

)
and F(ρ, x, y)= 0 imply y ∈ IntP,

where IntP stands for the interior of the coneP .
Subsequently, the spaceX2 is viewed as an ordered Banach space with positive coneP 2,
and, given any ordered Banach spaceE with positive coneW , ande1, e2 ∈ E, we write
e1> e2 if e1 − e2 ∈W \ {0}, ande1 ≫ e2 if e1 − e2 ∈ IntW . As

IntP 2 = IntP × IntP,

it is said that(ρ, x, y) is apositive solutionof (5.1), if (ρ, x, y) is a solution of(5.1) with
(x, y) > 0 (x � 0, y � 0 and(x, y) �= (0,0)). Thanks to Hypothesis (HP), any positive
solution(ρ, x, y) of (5.1)must have one of the following forms: eitherx ≫ 0 andy ≫ 0—
strongly positive, or x ≫ 0 andy = 0, orx = 0 andy ≫ 0—semi-trivial positive solutions.

Under Hypotheses (HL) and (HR),

F(ρ, x0,0)= 0 for eachρ ∈ R, (5.2)

and, due to Hypothesis (HP),x0 ≫ 0, sincex0 > 0. Moreover, sinceL(ρ) is a linear iso-
morphism for anyρ ∈ R \Σ , thefixed point index

Ind
(
0,K(ρ)

)

is well defined—the topological degree ofL(ρ) in any bounded open set containing 0.
Thus, the followingcrossing numberC :Σ → {−1,0,1} can be introduced

C(σ) := 1

2
lim
ε↓0

[
Ind
(
0,K(σ + ε)

)
− Ind

(
0,K(σ − ε)

)]
, σ ∈Σ. (5.3)
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Note thatC(σ) �= 0 if, and only if, Ind(0,K(ρ)) changes asρ crossesσ , and that this
occurs if, and only if, Ind((x0,0),F(ρ, ·, ·)) changes asρ crossesσ .

Our main result concerns the bounded components of strongly positive solutions of(5.1)
emanating from the curve(ρ, x, y) = (ρ, x0,0) at a singular valueρ0 ∈ Σ with—
classical—geometric multiplicity one andC(ρ0) ∈ {−1,1}. By a componentof strongly
positive solutions of(5.1) it is meant a maximal (for the inclusion) relatively closed and
connected subset of the set of strongly positive solutions of(5.1)—in R × IntP 2. Thanks
to [19, Theorem 6.2.1], Eq.(5.1) possesses a component emanating from(ρ, x, y) =
(ρ, x0,0) at ρ0 if C(ρ0) ∈ {−1,1}. Such a component will be subsequently denoted by
C0. Throughout the remaining of this section, we shall denote byPx andPy the projection
operators

Px(x, y)= x, Py(x, y)= y, (x, y) ∈X2. (5.4)

The main abstract result of this section can now be stated as follows.

THEOREM 5.1. Supposeρ0 ∈Σ satisfiesC(ρ0) �= 0,

N
[
L(ρ0)

]
= span

[
(ϕ0x, ϕ0y)

]
, ϕ0y ∈ P \ {0}, (5.5)

and, for eachx ∈X, PyK(ρ0)(x, ·) is strongly positive, in the sense that

PyK(ρ0)(x, ·)
(
P \ {0}

)
⊂ IntP. (5.6)

Then,

sprPyK(ρ0)(ϕ0x, ·)= 1 (5.7)

and there exists a componentCP0 of C0 ∩ [R × (IntP)2] such that

(ρ0, x0,0) ∈ C̄P0 .

Suppose, in addition, thatCP0 is bounded inR ×X2 and that

sprPyK(ρ0)(x, ·)= 1 for eachx ∈X. (5.8)

Then, some of the following alternatives occurs:
A1. There exists(ρ1, x1) ∈ (R×P)\ {(ρ0, x0)} such that(ρ1, x1,0) ∈ C̄P0 . In such case,

thanks to(HP),x1 ≫ 0 if x1> 0.
A2. There exists(ρ1, y1) ∈ R × P such that(ρ1,0, y1) ∈ C̄P0 . In such case, thanks to

(HP),y1 ≫ 0 if y1> 0.
Furthermore, alternativeA2 occurs if (ρ, x,0) ∈ F−1(0) implies x = x0, and ρ0 is the
unique value ofρ for which one is an eigenvalue ofPyK(ρ)(x0, ·) to a positive eigenvector.
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PROOF. The set ofnon-trivial solutionsof (5.1) is defined through

S := F−1((0,0)
)
\
[
(R \Σ)×

{
(x0,0)

}]
. (5.9)

Note that(ρ, x, y) ∈ S if F(ρ, x, y) = 0 with (x, y) �= (x0,0), or (ρ, x, y) = (ρ, x0,0)
with ρ ∈Σ . SinceC(ρ0) �= 0, thanks to [19, Theorem 6.2.1] there exists a component of
S, denoted byC0, such that(ρ0, x0,0) ∈ C0. Subsequently, we suppose that

ϕ0 := (ϕ0x, ϕ0y) ∈X× IntP

has been normalized so that

‖ϕ0‖X2 = 1.

It should be noted that, thanks to (HL),

K(ρ0)ϕ0 = ϕ0

and, hence,

PyK(ρ0)(ϕ0x, ϕ0y)= ϕ0y .

Thus, it follows from(5.5) and (5.6) that ϕ0y ≫ 0. Moreover, thanks to(5.6), (5.7) is
a consequence from Krein–Rutman theorem, since the spectral radius is the unique real
eigenvalue associated with it there is a positive eigenvector.

Now, letZ be a closed subspace ofX2 such that

X2 =N
[
L(ρ0)

]
⊕Z.

Thanks to Hahn–Banach’s theorem, there exists

ϕ∗
0 :=

(
ϕ∗

0x, ϕ
∗
0y

)
∈X′ ×X′

for which

Z =
{
(x, y) ∈X2:

〈
ϕ∗

0, (x, y)
〉
= 0
}
,
〈
ϕ∗

0, ϕ0
〉
= 1,

where 〈·, ·〉 stands for the duality betweenX2 andX′ × X′. Now, adapting the theory
developed by P.H. Rabinowitz [31], for eachη ∈ (0,1) and sufficiently smallε > 0 we set

Qε,η :=
{
(ρ, x, y) ∈ R ×X2: |ρ − ρ0|< ε,
∣∣〈ϕ∗

0, (x − x0, y)
〉∣∣> η

∥∥(x − x0, y)
∥∥}.

Since the mapping

(x, y) �→
∣∣〈ϕ∗

0, (x − x0, y)
〉∣∣− η

∥∥(x − x0, y)
∥∥
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is continuous,Qε,η is an open subset ofR ×X2 consisting of the two disjoint components
Q+
ε,η andQ−

ε,η defined through

Q+
ε,η :=

{
(ρ, x, y) ∈ R ×X2: |ρ − ρ0|< ε,
〈
ϕ∗

0, (x − x0, y)
〉
> η
∥∥(x − x0, y)

∥∥},

Q−
ε,η :=

{
(ρ, x, y) ∈ R ×X2: |ρ − ρ0|< ε,
〈
ϕ∗

0, (x − x0, y)
〉
<−η

∥∥(x − x0, y)
∥∥}.

The following result collects the main consequences from [19, Theorem 6.2.1, Lem-
ma 6.4.1, Proposition 6.4.2]; it is entirely attributable to P.H. Rabinowitz [31].

THEOREM 5.2. For each sufficiently smallδ > 0,

C0 ∩Bδ(ρ0, x0,0)⊂ Qε,η ∪
{
(ρ0, x0,0)

}

and each of the sets

S \
[
Q−
ε,η ∩Bδ(ρ0, x0,0)

]
and S \

[
Q+
ε,η ∩Bδ(ρ0, x0,0)

]

contains a component, denoted byC+
0 andC−

0 , respectively, such that

(ρ0, x0,0) ∈ C+
0 ∩ C−

0

and

C0 ∩Bδ(ρ0, x0,0)=
(
C+

0 ∪ C−
0

)
∩Bδ(ρ0, x0,0). (5.10)

Moreover, for each

(ρ, x, y) ∈
[
C0 \

{
(ρ0, x0,0)

}]
∩Bδ(ρ0, x0,0),

there exists a unique(s, x̃, ỹ) ∈ R ×Z such thatρ = ρ(s) and

(x, y)= (x0,0)+ sϕ0 +
(
x̃, ỹ
)
=
(
x0 + sϕ0x + x̃, sϕ0y + ỹ

)
(5.11)

with |s|> η ‖(x − x0, y)‖. Actually,

ρ = ρ0 + o(1) and
(
x̃, ỹ
)
= o(s), ass → 0. (5.12)

Note that if

(ρ, x, y) ∈ C+
0 ∩Bδ(ρ0, x0,0), (x, y) �= (x0,0),
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then(5.11) holds withs > η ‖(x − x0, y)‖> 0 and, hence,

s−1y = ϕ0y + s−1ỹ.

Thus, due to(5.12), for sufficiently smalls > 0 we have thats−1y ∈ IntP , sinceϕ0y ≫ 0,
and, hence,y ≫ 0. The fact thatx ≫ 0 is an easy consequence from(5.12) and the fact
thatx0 ≫ 0. Therefore, for any sufficiently smallδ > 0 we have that

[
C+

0 \
{
(ρ0, x0,0)

}]
∩Bδ(ρ0, x0,0)⊂ R × IntP 2. (5.13)

This shows the existence of the componentCP0 . Actually,CP0 is the maximal sub-continuum
of C+

0 in R × IntP 2 such that

(ρ0, x0,0) ∈ C̄P0 .

If CP0 is unbounded inR ×X2 the proof is concluded. So, for the remaining of the proof
we will assume thatCP0 is bounded.

The following result, which is [19, Theorem 6.4.3], provides us with an updated version
of the very celebrated unilateral theorem of P.H. Rabinowitz [31, Theorem 1.27] which is
necessary to conclude the proof of Theorem 5.1. It should be noted that [31, Theorem 1.27]
is wrong as originally stated (cf. the detailed discussion carried out in [19, p. 180] and the
counterexample of E.N. Dancer [9]).

THEOREM 5.3. The componentC+
0 satisfies some of the following alternatives:

1. C+
0 is unbounded inR ×X2.

2. There existsρ1 ∈Σ \ {ρ0} such that(ρ1, x0,0) ∈ C+
0 .

3. There exists(ρ, x, y) ∈ C+
0 such that

(ρ, x − x0, y) ∈ R ×
(
Z \ {0}

)
.

Now, we shall prove that

X2 =N
[
L(ρ0)

]
⊕R

[
L(ρ0)

]
. (5.14)

SinceL(ρ0) is Fredholm of index zero, to show(5.14) it suffices to prove thatϕ0 /∈
R[L(ρ0)]. This will be accomplished by contradiction. Suppose, there exists(x, y) ∈ X2

such that

L(ρ0)(x, y)= (x, y)− K(ρ0)(x, y)= ϕ0 = (ϕ0x, ϕ0y).

Then,

y − PyK(ρ0)(x, y)= ϕ0y ≫ 0. (5.15)
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Note that, thanks to (HL) and(5.6), the map

y �→ PyK(ρ0)(x, y)

defines a linear compact strongly order preserving operator. Moreover, by construction,

PyK(ρ0)(ϕ0x, ϕ0y)= ϕ0y

and, due to(5.8),

sprPyK(ρ0)(x, ·)= 1.

Let ψx ≫ 0 denote the principal eigenfunction associated toPyK(ρ0)(x, ·). Then, thanks
to (5.15), for eachβ > 0 we have that

y + βψx − PyK(ρ0)(x, y + βψx)= ϕ0y .

On the other hand, since

lim
β↑∞

(
β−1y +ψx

)
=ψx ≫ 0,

it is apparent that, for each sufficiently largeβ > 0, one has that

y + βψx ≫ 0

provides us with a positive solution of(5.15). Thanks to H. Amann [4, Theorem 3.2], this
is impossible. This contradiction concludes the proof of(5.14). Consequently, in order to
apply Theorem 5.3, we can make the special choice

Z =R
[
L(ρ0)

]
, (5.16)

which will be maintained throughout the rest of the proof.
SinceCP0 ⊂ C+

0 , some of the following alternatives occurs: either

CP0 = C+
0 \
{
(ρ0, x0,0)

}
, (5.17)

or

CP0 is a proper subset ofC+
0 \
{
(ρ0, x0,0)

}
. (5.18)

Suppose(5.17). Then,C̄P0 = C+
0 satisfies some of the alternatives of Theorem 5.3. Alterna-

tive 1 cannot be satisfied, sinceC̄P0 is compact. Suppose alternative 3 occurs. Then, thanks
to the choice(5.16), there exists

(ρ, x, y) ∈ C+
0 = C̄P0 ⊂ R × P 2
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such that

(ρ, x − x0, y) ∈ R ×R
[
L(ρ0)

]
, y �= 0.

Since(ρ, x, y) ∈ R×P 2 with y �= 0, necessarilyy > 0 and, consequently,y ≫ 0, by (HP).
Thus, there exists(x̃, ỹ) ∈X2 such that

L(ρ0)(x̃, ỹ)= (x̃, ỹ)− K(ρ0)(x̃, ỹ)= (x − x0, y)

and, taking projections,

ỹ − PyK(ρ0)
(
x̃, ỹ
)
= y ≫ 0.

Arguing as above, this is impossible, because, due to(5.8),

sprPyK(ρ0)(x̃, ·)= 1.

Thus, alternative 2 of Theorem 5.3 must be satisfied. Consequently, there existsρ1 ∈Σ \
{ρ0} such that

(ρ1, x0,0) ∈ C+
0 = C̄P0

and, therefore, alternative A1 of the theorem is satisfied.
Now, suppose(5.18), instead of(5.17). Then, since

C+
0 ∩Bδ(ρ0, x0,0)=

[
CP0 ∩Bδ(ρ0, x0,0)

]
∪
{
(ρ0, x0,0)

}

for each sufficiently smallδ > 0, fixing one of theseδ’s, there exists

(ρ1, x1, y1) /∈ Bδ(ρ0, x0,0) (5.19)

such that

(ρ1, x1, y1) ∈ C+
0 ∩
(
R × ∂P 2)∩ ∂CP0 ,

where, given any setU , ∂U stands for the boundary ofU . Then,

F(ρ1, x1, y1)= 0 and (x1, y1) ∈ P 2.

If x1 > 0 andy1 > 0, then, due to (HP),x1 ≫ 0 andy1 ≫ 0, which is impossible, since
(x1, y1) ∈ ∂P 2. Thus, eitherx1 = 0, or y1 = 0. Supposey1 = 0. Then, thanks to(5.19),
(ρ1, x1) �= (ρ0, x0), and, therefore, alternative A1 is satisfied again. Obviously, ifx1 = 0,
then the alternative A2 is satisfied.

Finally, suppose that(ρ, x,0) ∈ F−1(0) implies x = x0, andρ0 is the unique value of
ρ for which one is an eigenvalue ofPyK(ρ)(x0, ·) to a positive eigenvector. To conclude
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the proof of the theorem we proceed by contradiction. Assume alternative A1 is satisfied.
Then, there exists(ρ1, x1) ∈ (R×P)\ {(ρ0, x0)} such that(ρ1, x1,0) ∈ C̄P0 . Thus,x1 = x0,
since(ρ1, x1,0) ∈ F−1(0), and, hence,

ρ1 �= ρ0. (5.20)

Let {(γn, un, vn)}n�1 be any subsequence ofCP0 such that

lim
n→∞

(γn, un, vn)= (ρ1, x0,0). (5.21)

Then, for eachn� 1, vn ≫ 0, and, setting,

ψn := vn

‖vn‖
,

we find fromF(γn, un, vn)= 0 that

ψn = PyK(γn)(un,ψn)−
PyR(γn, un, vn)

‖vn‖

= PyK(ρ1)(un,ψn)+ Py
[
K(γn)− K(ρ1)

]
(un,ψn)−

PyR(γn, un, vn)

‖vn‖
.

As {(un,ψn)}n�1 is bounded, since we are assuming thatCP0 is bounded, we have

lim
n→∞

Py
[
K(γn)− K(ρ1)

]
(un,ψn)= 0,

by the continuity ofK(ρ) in ρ. Moreover, thanks to(5.21), it follows from (HR) that

lim
n→∞

PyR(γn, un, vn)

‖vn‖
= 0.

Thus, for eachn� 1, there existswn ∈X such that

ψn = PyK(ρ1)(x0,ψn)+wn

with limn→∞wn = 0. Consequently, by compactness, there exists a subsequence of
{ψn}n�1, again labeled byn, for which the limit

Ψ := lim
n→∞

ψn ∈X

exists and it satisfies

Ψ = PyK(ρ1)(x0,Ψ ). (5.22)

NecessarilyΨ ∈ P and‖Ψ ‖ = 1. Thus,Ψ > 0 and, hence,Ψ provides us with a positive
eigenvector ofPyK(ρ1)(x0, ·) associated with the eigenvalue 1. By our assumptions, this
is impossible, unlessρ1 = ρ0, which contradicts(5.20). This concludes the proof. �



Planar periodic systems of population dynamics 401

5.2. The existence of coexistence states in the general case

Subsequently, we fixλ > 0 and considerµ as the main bifurcation parameter. Also,X :=
CT will be regarded as an ordered Banach space by its cone of non-negative functions,P .
Note thatP is normal, since every order interval is bounded. Also, note that, given any
constantM > 0—to be chosen later—(u, v) ∈ C1

T × C1
T is a solution of(1.2) if and only if,

(u, v) ∈ CT × CT and F(µ,u, v)= 0, (5.23)

where

F :R × CT × CT → CT × CT

is the operator defined by

F(µ,u, v) :=
(
u− RM

[
(λℓ+M)u− au2 − buv

]

v− RM

[
(µm+M)v − dv2 − cuv

]
)

(5.24)

andRM stands for the operator introduced in(2.10),

RM := J

(
d

dt
+M

)−1

:CT → CT .

Thanks to Proposition 2.1,RM is compact and strongly order preserving. Moreover, for
eachµ ∈ R we have that

F(µ, θ[λℓ,a],0)= 0

and, hence, sinceF is real analytic, the general assumptions (HL) and (HR) of Section 5.1
are satisfied by choosing

(ρ, x0,0) := (µ, θ[λℓ,a],0), µ ∈ R. (5.25)

Moreover, ifF(µ,u, v)= 0 with u(t0) > 0 for somet0 ∈ R, then

u(t)= e
∫ t
t0
(λℓ−au−bv)

u(t0) > 0

for eacht ∈ R, since

u′ = (λℓ− au− bv)u,

and, hence,u ≫ 0. Similarly, v ≫ 0 if it is somewhere positive. Therefore,F satisfies
Hypothesis (HP) as well.
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Maintaining the notations introduced in Section 5.1, for the choice(5.25) we have that
the linearization

L(µ) :=D(u,v)F(µ, θ[λℓ,a],0)

is given, for each(u, v) ∈ CT × CT , through

L(µ)

(
u

v

)
:=
(
u− RM

[
(λℓ+M − 2aθ[λℓ,a])u− bθ[λℓ,a]v

]

v− RM

[
(µm+M − cθ[λℓ,a])v

]
)

(5.26)

and, therefore,

K(µ)

(
u

v

)
:=
(

RM

[
(λℓ+M − 2aθ[λℓ,a])u− bθ[λℓ,a]v

]

RM

[
(µm+M − cθ[λℓ,a])v

]
)
.

Suppose(u, v) ∈N [L(µ)] for someµ ∈ R and(u, v) �= (0,0). Then,u, v ∈ C1
T , and

{
u′ = (λℓ− 2aθ[λℓ,a])u− bθ[λℓ,a]v,

v′ = (µm− cθ[λℓ,a])v.
(5.27)

Supposev = 0. Then,u �= 0 and the second equation of(5.27) holds true. Moreover, the
first one reduces to

u′ = (λℓ− 2aθ[λℓ,a])u. (5.28)

Thanks to(2.28), we have that

∫ T

0
(λℓ− aθ[λℓ,a])= 0

and, hence,

∫ T

0
(λℓ− 2aθ[λℓ,a])= −

∫ T

0
a(t)θ[λℓ,a](t)dt < 0. (5.29)

Therefore,(5.28) cannot admit a non-trivialT -periodic solution. This contradiction shows
that, necessarily,v �= 0, which implies

µ= µ0 := 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt, (5.30)

sincem̂= 1. Actually, in this case, there exists a constantA �= 0 such that

v =Aϕv, ϕv(t) := e
∫ t

0(µ0m−cθ[λℓ,a]), t ∈ R. (5.31)
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Thanks to(5.29), it follows from Proposition 2.1 that the problem

u′ = (λℓ− 2aθ[λℓ,a])u− bθ[λℓ,a]ϕv, u ∈ C1
T , (5.32)

possesses a unique solution. Namely,

ϕu := −R2aθ[λℓ,a]−λℓ(bθ[λℓ,a]ϕv). (5.33)

Consequently,L(µ) is an isomorphism ifµ �= µ0, whereas

N
[
L(µ0)

]
= span

[
(ϕu, ϕv)

]
. (5.34)

In particular, using the notations introduced in Section 5.1, this entailsΣ = {µ0}. Note
that, sinceϕv ≫ 0, condition(5.5) is satisfied. Also, for eachu, v ∈X = CT , we have that

PvK(µ0)(u, v)= RM

[
(µ0m+M − cθ[λℓ,a])v

]
, (5.35)

which is independent ofu. Now, choosingM sufficiently large so that

µ0m+M − cθ[λℓ,a] ≫ 0,

it follows from Proposition 2.1 thatPvK(µ0)(u, v)≫ 0 if v > 0. Therefore,(5.6) and(5.7)
are satisfied. Actually, sincePvK(µ0)(u, ·) is constant inu, condition(5.8) is as well sat-
isfied. Furthermore, since(θ[λℓ,a],0) is the unique semi-trivial solution of(1.2) for each
µ ∈ R and 1 cannot be an eigenvalue ofPvK(µ)(0, ·), unlessµ = µ0—we have already
seen it in the proof of(5.34)—to show that all assumptions of Theorem 5.1 are satisfied it
remains to prove thatC(µ0) �= 0. To prove it, one can argue as follows. Note thatL(µ) is
analytic inµ and that, for eachu, v ∈ CT , we have

dL

dµ
(µ)(u, v)=

(
0,−RM(mv)

)
.

We now show that the following holds:

dL

dµ
(µ0)(ϕu, ϕv)=

(
0,−RM(mϕv)

)
/∈R
[
L(µ0)

]
. (5.36)

Indeed, if(5.36) is not true, then there existsv ∈ CT such that

−RM(mϕv)= v− RM

[
(µ0m+M − cθ[λℓ,a])v

]
.

Equivalently,

v′ = (µ0m− θ[λℓ,a])v −mϕv, v ∈ CT . (5.37)
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Thanks to(5.30), it follows from Proposition 2.1(d) that(5.37) does not admit a solution,
sincemϕv > 0. This contradiction shows(5.36). It should be noted that(5.36) is the clas-
sical transversality condition of M.G. Crandall and P.H. Rabinowitz [6]. SinceL(µ0) is
Fredholm of index zero, because it is a compact perturbation of the identity, it is apparent
from (5.36) that

dL

dµ
(µ0)

(
N
[
L(µ0)

])
⊕R

[
L(µ0)

]
= CT × CT . (5.38)

Thus,µ0 is a 1-transversal eigenvalue of the analytic familyL(µ), µ ∈ R, in the sense of
[19, Definition 4.2.1]. Hence, the algebraic multiplicity defined there in equals one, i.e.,

χ
[
L(µ);µ0

]
= 1,

and, therefore, thanks to [19, Theorem 5.3.1],µ0 is a pole of order one of the resolvent op-
eratorL−1(µ), µ �= µ0. Consequently, thanks to [19, Theorem 5.6.2], the crossing number
C(µ0) defined in(5.3) satisfies

C(µ0) ∈ {−1,1}.

Therefore, Theorem 5.1 provides us with the following existence result.

THEOREM 5.4. Fix λ > 0 and considerµ as the main bifurcation parameter. Then, Prob-
lem(1.2) possesses a component of coexistence states

Cλµ ⊂ R × IntP × IntP

such that

(µ0, θ[λℓ,a],0) ∈ C̄λµ, (5.39)

whereµ0 is defined through(5.30). Moreover, if Cλµ is bounded, then there existsµ∗ > 0
such that

λ= 1

T

∫ T

0
b(t)θ[µ∗m,d](t)dt (5.40)

and

(µ∗,0, θ[µ∗m,d]) ∈ C̄λµ. (5.41)

Therefore, Cλµ links the semi-trivial states(µ0, θ[λℓ,a],0) and (µ∗,0, θ[µ∗m,d]) if it is
bounded.
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PROOF. The existence ofCλµ bifurcating from the curve(µ,u, v)= (µ, θ[λℓ,a],0) atµ=
µ0 is an immediate consequence from Theorem 5.1.

SupposeCλµ is bounded. Then, it satisfies alternative A2 of Theorem 5.1 and, hence,
there exists(µ∗, v∗) ∈ R × P such that

(µ∗,0, v∗) ∈ C̄λµ.

Thus, there exists a sequence of coexistence states of(1.2), say{(µn, un, vn)}n�1, such
that

lim
n→∞

(µn, un, vn)= (µ∗,0, v∗).

For eachn� 1, we have that

un = RM

[
(λℓ+M)un − au2

n − bunvn
]
.

Thus, setting

Un := un

‖un‖CT
, n� 1,

gives

Un = RM

[
(λℓ+M)Un − aunUn − bvnUn

]
, n� 1. (5.42)

Since{(λℓ+M)Un − aunUn − bvnUn}n�1 is bounded inCT andRM is compact, there
exists a subsequence ofUn, labeled again byn, such that

lim
n→∞

Un =Φ.

Necessarily,‖Φ‖CT = 1, and, hence,Φ > 0, sinceun ≫ 0,n� 1. Moreover, passing to the
limit asn→ ∞ in (5.42), we find that

Φ = RM

[
(λℓ+M − bv∗)Φ

]
.

Thus,Φ ∈ C1
T , Φ > 0, and

Φ ′ = (λℓ− bv∗)Φ. (5.43)

Supposev∗ = 0, then, we find from(5.43) thatλℓ̂= λ= 0, which is impossible, since we
are assumingλ > 0. Thus,v∗ > 0. Actually, since(µ∗,0, v∗) solves(1.2), necessarily

µ∗ > 0 and v∗ = θ[µ∗m,d] ≫ 0.
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Consequently,(5.43) becomes into

Φ ′ = (λℓ− bθ[µ∗m,d])Φ, (5.44)

and, therefore,

λ= 1

T

∫ T

0
b(t)θ[µ∗m,d](t)dt,

which concludes the proof of the theorem. �

By symmetry, ifµ> 0 is fixed andλ ∈ R is regarded as the main bifurcation parameter,
then the following result is satisfied.

THEOREM 5.5. Fix µ> 0 and considerλ as the main bifurcation parameter. Then, Prob-
lem(1.2) possesses a component of coexistence states

C
µ
λ ⊂ R × IntP × IntP

such that

(λ0,0, θ[µm,d]) ∈ C̄
µ
λ , λ0 := 1

T

∫ T

0
b(t)θ[µm,d](t)dt. (5.45)

Moreover, if C
µ
λ is bounded, then there existsλ∗ > 0 such that

µ= 1

T

∫ T

0
c(t)θ[λ∗ℓ,a](t)dt (5.46)

and

(λ∗, θ[λ∗ℓ,a],0) ∈ C̄
µ
λ . (5.47)

Therefore, C
µ
λ links the semi-trivial states(λ0,0, θ[µm,d]) and (λ∗, θ[λ∗ℓ,a],0) if it is

bounded.

5.3. Local structure ofCλµ andC
µ
λ at (µ0, θ[λℓ,a],0) and(λ0,0, θ[µm,d])

The following result shows that, for eachλ > 0, Cλµ consists of a real analytic curve of
coexistence states of(1.2) in a neighborhood of

(µ,u, v)= (µ0, θ[λℓ,a],0).
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Although this is a consequence from the celebrated theorem of M.G. Crandall and P.H. Ra-
binowitz [6], we shall give a self-contained proof—whose uniqueness part is based on The-
orem 5.2—in order to calculate the bifurcation direction of the curve of coexistence states.
Throughout this section, all notation introduced in Section 5.2 will be maintained.

THEOREM 5.6. Fix λ > 0 and regard toµ ∈ R as the main bifurcation parameter. Then,
there existε > 0 and two real analytic maps

µ : (−ε, ε)→ R, (u1, v1) : (−ε, ε)→R
[
L(µ0)

]
×R
[
L(µ0)

]
, (5.48)

such that

µ(0)= µ0 = 1

T

∫ T

0
c(t) θ[λℓ,a](t)dt,

(
u1(0), v1(0)

)
= (0,0), (5.49)

and, for eachs ∈ (−ε, ε),

F
(
µ(s), θ[λℓ,a] + s

[
ϕu + u1(s)

]
, s
[
ϕv + v1(s)

])
= 0, (5.50)

whereϕv andϕu are the functions defined by(5.31) and (5.33), respectively. Moreover,
there existsδ > 0 such that, if B0

δ stands for the ball of radiusδ centered at(µ0, θ[λℓ,a],0) ∈
R × CT × CT and, for eachs ∈ (−ε, ε), we set

(
u(s), v(s)

)
:=
(
θ[λℓ,a] + s

[
ϕu + u1(s)

]
, s
[
ϕv + v1(s)

])
, (5.51)

then

Cλµ ∩B0
δ =
{(
µ(s), u(s), v(s)

)
: 0< s < ε

}
∩B0

δ . (5.52)

Furthermore,

dµ

ds
(0)= 1

T

∫ T

0

[
c(t)ϕu(t)+ d(t)ϕv(t)

]
dt. (5.53)

PROOF. Consider the operator

G :R2 ×R
[
L(µ0)

]
→ CT × CT

defined, for each(s,µ,u1, v1) ∈ R2 ×R[L(µ0)], by

G(s,µ,u1, v1) :=
{
s−1F

(
µ,θ[λℓ,a] + s(ϕu + u1), s(ϕv + v1)

)
, if s �= 0,

D(u,v)F(µ, θ[λℓ,a],0)(ϕu + u1, ϕv + v1), if s = 0.

The operatorG is real analytic and it satisfies

G(0,µ0,0,0)=D(u,v)F(µ0, θ[λℓ,a],0)(ϕu, ϕv)= L(µ0)(ϕu, ϕv)= (0,0).
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Moreover, for each(µ,u1, v1) ∈ R ×R[L(µ0)],

D(µ,u1,v1)G(0,µ0,0,0)(µ,u1, v1)= lim
h→0

[
h−1G(0,µ0 + hµ,hu1, hv1)

]

= lim
h→0

[
h−1D(u,v)F(µ0 + hµ, θ[λℓ,a],0)(ϕu + hu1, ϕv + hv1)

]

= lim
h→0

[
h−1L(µ0 + hµ)(ϕu + hu1, ϕv + hv1)

]

= L(µ0)(u1, v1)+µ
dL

dµ
(µ0)(ϕu, ϕv).

Thanks to the proof of Theorem 5.1, we already know that

N
[
L(µ0)

]
⊕R

[
L(µ0)

]
= CT × CT ,

though this easily follows from the fact that(ϕu, ϕv) /∈R[L(µ0)]. Therefore,

L(µ0)|R[L(µ0)] :R
[
L(µ0)

]
→R

[
L(µ0)

]

is a linear isomorphism and, hence, it follows from(5.36) that

D(µ,u1,v1)G(0,µ0,0,0) :R ×R
[
L(µ0)

]
→ CT × CT

is a linear isomorphism as well. Consequently, thanks to the implicit function theorem,
there existε > 0 and the real analytic maps(5.48), satisfying(5.49), such that, for each
s ∈ (−ε, ε),

G
(
s,µ(s), u1(s), v1(s)

)
= 0.

Moreover, if

G(s,µ,u1, v1)= 0

for some(s,µ,u1, v1) sufficiently close to(0,µ0,0,0), then

(s,µ,u1, v1)=
(
s,µ(s), u1(s), v1(s)

)
.

It should be noted that, by the definition ofG itself, for eachs ∈ (−ε, ε), (5.50) is satisfied.
Now, we will prove the uniqueness result.

Thanks to Theorem 5.2, there existsδ > 0 such that, for each

(µ,u, v) ∈
[
Cλµ \

{
(µ0, θ[λℓ,a],0)

}]
∩Bδ,

there exists a unique(s, ũ, ṽ) ∈ R ×R[L(µ0)] such that

µ= µ(s), (u, v)= (θ[λℓ,a],0)+ s(ϕu, ϕv)+
(
ũ, ṽ
)
, (5.54)



Planar periodic systems of population dynamics 409

with s > η ‖(u− θ[λℓ,a], v)‖> 0. Moreover,

µ= µ0 + o(1) and
(
ũ, ṽ
)
= o(s) ass → 0. (5.55)

So, setting

U(s) := s−1ũ(s)= o(1), V (s) := s−1ṽ(s)= o(1),

we have that(U(s),V (s)) ∈R[L(µ0)] and

F
(
µ(s), θ[λℓ,a] + s

(
ϕu +U(s)

)
, s
(
ϕs + V (s)

))
= 0.

Thus,

G
(
s,µ(s),U(s),V (s)

)
= 0

and, therefore, by the uniqueness obtained as an application of the implicit function theo-
rem toG, if δ is taken sufficiently small, we have that

(
U(s),V (s)

)
=
(
u1(s), v1(s)

)

and, consequently,

(µ,u, v)=
(
µ(s), u(s), v(s)

)
,

which concludes the proof of(5.52).
To prove(5.53), consider the second equation of(5.50). Then, after division bys, gives

ϕv + s
dv1

ds
(0)+ O

(
s2)

= RM

{[(
µ0 + s

dµ

ds
(0)+ O

(
s2)
)
m+M

](
ϕv + s

dv1

ds
(0)+ O

(
s2)
)

− ds

(
ϕv + s

dv1

ds
(0)+ O

(
s2)
)2

− c
(
θ[λℓ,a] + sϕu + O

(
s2))

×
(
ϕv + s

dv1

ds
(0)+ O

(
s2)
)}
.

By definition,

ϕv = RM

{
(µ0m+M − cθ[λℓ,a])ϕv

}
.

Thus, dividing bys the previous identity, passing to the limit ass → 0, and rearranging
terms yields to

dv1

ds
(0)= RM

[
(µ0m+M − cθ[λℓ,a])

dv1

ds
(0)+ dµ

ds
(0)mϕv − dϕ2

v − cϕuϕv

]
,
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or, equivalently,

d

dt

dv1

ds
(0)= (µ0m− cθ[λℓ,a])

dv1

ds
(0)+ dµ

ds
(0)mϕv − dϕ2

v − cϕuϕv.

Thus, thanks to Proposition 2.1(d),

∫ T

0
e−
∫ t

0(µ0m−cθ[λℓ,a])
(

dµ

ds
(0)m(t)ϕv(t)− d(t)ϕ2

v(t)− c(t)ϕu(t)ϕv(t)

)
dt = 0,

and, hence,(5.31) entails

∫ T

0

(
dµ

ds
(0)m(t)− d(t)ϕv(t)− c(t)ϕu(t)

)
dt = 0.

Therefore,

dµ

ds
(0)= 1

T

∫ T

0

[
c(t)ϕu(t)+ d(t)ϕv(t)

]
dt,

sincem̂= 1. This concludes the proof. �

By symmetry, for eachµ> 0, Cµλ consists of a real analytic curve of coexistence states
of (1.2) in a neighborhood of(λ,u, v)= (λ0,0, θ[µm,d]). Actually, setting

λ0 := 1

T

∫ T

0
b(t)θ[µm,d](t)dt, ϕ̃u(t) := e

∫ t
0 (λ0ℓ−bθ[µm,d]), t ∈ R, (5.56)

and

ϕ̃v := −R2dθ[µm,d]−µm(cθ[µm,d]ϕ̃u), (5.57)

there existsδ > 0 such that in the ball of radiusδ > 0 centered at(λ0,0, θ[µm,d]) the com-
ponentCµλ consists of a real analytic curve of the form

(λ,u, v)=
(
λ(s), s

(
ϕ̃u + O(s)

)
, θ[µm,d] + s

(
ϕ̃v + O(s)

))
, s ∼ 0, s > 0,

whereλ(0)= λ0 and

dλ

ds
(0)= 1

T

∫ T

0

[
b(t)ϕ̃v(t)+ a(t)ϕ̃u(t)

]
dt. (5.58)
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6. The symbiotic model (b < 0 and c < 0)

In this section we analyze the structure of the set of coexistence states of(1.2) in the spe-
cial case whenb < 0 andc < 0. Our main result shows that, for eachλ > 0 andµ > 0,
the components of coexistence states of(1.2) constructed in Section 5,Cµλ andCλµ, are
real analytic curves. These curves fiber a real analytic surface entirely formed by coex-
istence states and linking the corresponding surfaces of semi-trivial solutions along their
curves of neutral stability. Also, the stability of the coexistence states along these curves is
completely ascertained. It turns out that the stability of the coexistence states along these
curves changes at any turning point along the curve, while it remains unchanged when an
hysteresis point is passed by. Some of the results of this section are substantial improve-
ments of some results of M.A. Krasnosel’skii [16]. The theory developed in this section
can be viewed as a development of many ideas and results going back to [17].

6.1. Periodic systems of cooperative type

In this section we study the linear periodic system

{
u′ = αu+ βv,

v′ = γ u+ ρv,
(6.1)

whereα, β, γ , ρ ∈ CT satisfy

∫ T

0
α < 0,

∫ T

0
ρ < 0, β > 0, γ > 0, (6.2)

as well as its associated Cauchy problem





u′ = αu+ βv,

v′ = γ u+ ρv,

u(0)= u0, v(0)= v0.

(6.3)

The next result is the key theorem from which most of the results of this section will follow.

THEOREM 6.1. Suppose(6.1) possesses a solution(u, v) ∈ C1
T × C1

T \ {(0,0)}. Then,
either u ≫ 0 and v ≫ 0, or else u ≪ 0 and v ≪ 0. Therefore, all the coexistence
states of(1.2) must be ordered, in the sense that, for any pair of coexistence states,
(u1, v1) �= (u2, v2), eitheru1 ≫ u2 andv1 ≫ v2, or u1 ≪ u2 andv1 ≪ v2.

PROOF. If u= 0, thenv′ = ρv, and it follows from Proposition 2.1 thatv = 0. Thus,u �= 0,
since(u, v) �= (0,0). As the system is linear, without lost of generality we can assume that
u(t) > 0 for somet ∈ R . If u≫ 0, thenγ u > 0 and, therefore,

v = R−ρ(γ u)≫ 0,
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which concludes the proof of the first thesis of the theorem. To show thatu≫ 0 we will
argue by contradiction. Suppose there aret0< t1 such that

u(t0)= u(t1)= 0 and u(t) > 0 for eacht ∈ (t0, t1). (6.4)

Then, for eacht ∈ R, we have that

u(t)=
∫ t

t0

e
∫ t
τ αβ(τ)v(τ )dτ (6.5)

and

v(t)= e
∫ t
t0
ρ
v(t0)+

∫ t

t0

e
∫ t
τ ργ (τ)u(τ)dτ. (6.6)

Supposev(t0)� 0. Then, thanks to(6.4) and(6.6), we find that, for eacht ∈ [t0, t1],

v(t)� e
∫ t
t0
ρ
v(t0)� 0,

sinceγ u� 0. Thus,(6.4) and(6.5) imply

0= u(t1) =
∫ t1

t0

e
∫ t1
τ αβ(τ)v(τ )dτ

�

∫ t0+t1
2

t0

e
∫ t1
τ αβ(τ)v(τ )dτ

= exp

(∫ t1

t0+t1
2

α

)∫ t0+t1
2

t0

exp

(∫ t0+t1
2

τ

α

)
β(τ)v(τ )dτ

= exp

(∫ t1

t0+t1
2

α

)
u

(
t0 + t1

2

)
> 0,

which is impossible. Hence,v(t0) < 0. So, there isδ > 0 such thatt0 < t0 + δ < t1, for
which v(t) < 0 if t ∈ [t0, t0 + δ]. Thus, we find from(6.5) that u(t) � 0 for eacht ∈
[t0, t0 + δ], which contradicts(6.4). Therefore, necessarilyu ≫ 0, which concludes the
proof of the first statement.

Now, suppose(u1, v1) �= (u2, v2) are two coexistence states of(1.2). Then,

(u2 − u1)
′ = λℓ(u2 − u1)− a(u2 + u1)(u2 − u1)− bu2v2 + bu1v1

=
[
λℓ− a(u2 + u1)− bv2

]
(u2 − u1)− bu1(v2 − v1).

By symmetry,

(v2 − v1)
′ =
[
µm− d(v2 + v1)− cu2

]
(v2 − v1)− cv1(u2 − u1).
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Thus, the pair

(U,V ) := (u2 − u1, v2 − v1) ∈ C1
T × C1

T

satisfies
{
U ′ =

[
λℓ− a(u2 + u1)− bv2

]
U − bu1V,

V ′ =
[
µm− d(v2 + v1)− cu2

]
V − cv1U.

Sinceu1 ≫ 0, v1 ≫ 0, b < 0 andc < 0, necessarily−bu1 > 0 and−cv1 > 0. Moreover,
sinceu2 ≫ 0 andv2 ≫ 0 satisfy

u′
2

u2
= λℓ− au2 − bv2,

v′
2

v2
= µm− dv2 − cu2,

integrating in[0, T ] gives

∫ T

0
(λℓ− au2 − bv2)= 0,

∫ T

0
(µm− dv2 − cu2)= 0. (6.7)

Thus,

∫ T

0

[
λℓ− a(u2 + u1)− bv2

]
= −

∫ T

0
a(t)u1(t)dt < 0

and

∫ T

0

[
µm− d(v2 + v1)− cu2

]
= −

∫ T

0
d(t)v1(t)dt < 0.

Therefore, by the first part of the theorem, eitherU ≫ 0 andV ≫ 0, orU ≪ 0 andV ≪ 0,
which concludes the proof. �

PROPOSITION6.2. Suppose(ū, v̄) ∈ C1(R+)× C1(R+), R+ := [0,∞), satisfy





ū′ � αū+ βv̄,

v̄′ � γ ū+ ρv̄,

ū(0) > 0, v̄(0) > 0.

(6.8)

Then, ū(t) > 0 and v̄(t) > 0 for eacht � 0.
If u0 +v0> 0 andu0v0 = 0, then there existst0> 0 such that the solution(u, v) of (6.3)

satisfiesu(t) > 0 andv(t) > 0 for eacht � t0.

PROOF. Setting

d := ū′ − αū− βv̄ � 0, δ := v̄′ − γ ū− ρv̄ � 0,
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and integrating the resulting system show that, for eacht ∈ R+,

ū(t)= e
∫ t

0 αū(0)+
∫ t

0
e
∫ t
τ α
[
β(τ)v̄(τ )+ d(τ)

]
dτ (6.9)

and

v̄(t)= e
∫ t

0 ρ v̄(0)+
∫ t

0
e
∫ t
τ ρ
[
γ (τ)ū(τ )+ δ(τ )

]
dτ. (6.10)

Now, supposēu(0) > 0 andv̄(0) > 0. Then, either̄u(t) > 0 for eacht ∈ R+, or there exists
t∗ such that

ū
(
t∗
)
= 0 and ū(t) > 0 for eacht ∈

[
0, t∗

)
. (6.11)

Suppose(6.11) occurs. Then, sincēu(0) > 0, v̄(0) > 0, β > 0 andd � 0, it follows from
(6.9) that there exists̃t ∈ (0, t∗) such that

v̄
(
t̃
)
= 0 and v̄(t) > 0 for eacht ∈

[
0, t̃
)
,

which contradicts(6.10), sincev̄(0) > 0 andγ � 0, δ � 0 andū� 0 in [0, t̃]. Therefore,
ū(t) > 0 for eacht ∈ R+ and, thanks to(6.10), v̄(t) > 0 for eacht ∈ R+. This concludes
the proof of the first part of the proposition.

Now, supposeu0 > 0 andv0 = 0, and let(u, v) denote the unique solution of(6.3).
Thanks to the first part of the proposition, for eachε > 0 the solution(uε, vε) of (6.1) with
initial data(uε(0), vε(0)) = (u0, v0 + ε) satisfiesuε(t) > 0 andvε(t) > 0 for eacht � 0.
Thus, by continuous dependence with respect to the initial data, passing to the limit as
ε ↓ 0 we find thatu > 0 andv � 0. Hence, for eacht � 0,

u(t)= e
∫ t

0 αu0 +
∫ t

0
e
∫ t
τ αβ(τ)v(τ )dτ � e

∫ t
0 αu0> 0.

If v = 0 in R+, then we find from thev-equation thatγ u= 0 in R+, which is impossible
sinceγ > 0 andu ≫ 0. Thus, there existst0 > 0 such thatv(t0) > 0. Therefore, since
u(t0) > 0, by applying the first part of this theorem, we find thatu(t) > 0 andv(t) > 0 for
eacht � t0, which concludes the proof. �

Subsequently, we denote byU(t) the fundamental matrix of solutions of(6.1) such
thatU(0)= I := IR2. Then,U(T ) provides us with the Poincaré map associated to(6.1).
Thanks to Liouville’s formula,

0< detU(T )= e
∫ T

0 (α+ρ) < 1,

since
∫ T

0 (α + ρ) < 0. Thus, if we denote byν1 and ν2 the two eigenvalues ofU(T ),
counting algebraic multiplicities, then

0< ν1ν2< 1. (6.12)

Actually, the following result is satisfied.
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THEOREM 6.3. The characteristic multipliers of(6.1), ν1 and ν2, are real and distinct,
and satisfy(6.12). Moreover, if we order them so that0< ν1< ν2, then, 0< ν1< 1,

N
[
U(T )− ν1I

]
= span

[
(x0, y0)

]
with x0< 0 andy0> 0,

and

N
[
U(T )− ν2I

]
= span

[
(x0, y0)

]
with x0> 0 andy0> 0.

In particular, (6.1) is asymptotically stable ifν2< 1, neutrally stable ifν2 = 1, and unsta-
ble if ν2> 1. Furthermore,

λ0 := − 1

T
Logν2 (6.13)

provides us with the unique value ofλ ∈ R for which the eigenvalue problem

{
u′ = αu+ βv+ λu,

v′ = γ u+ ρv+ λv,
(6.14)

admits a solution(u, v) ∈ C1
T × C1

T with u≫ 0 andv≫ 0.

PROOF. Supposeu0 > 0, v0 > 0, and let(u(t), v(t)) denote the unique solution of(6.3).
Then, thanks to Proposition 6.2,u(T ) > 0 andv(T ) > 0, and, hence,U(T ) sends the
interior of the first quadrant of the plane into itself. Setting

U(T )=
(
u11 u12
u21 u22

)
,

the invariance of the first quadrant entailsuij � 0 for eachi, j ∈ {1,2}. On the other hand,
the eigenvalues ofU(T ) (ν1 andν2) are the roots of

z2 − (u11 + u22)z+ u11u22 − u12u21 = 0,

which are given through

1

2

(
u11 + u22 ±

√
-
)
,

where

- := (u11 + u22)
2 − 4(u11u22 − u12u21)= (u11 − u22)

2 + 4u12u21 � 0.

Thus, both are real. Moreover, since

detU(T )= u11u22 − u12u21 = ν1ν2> 0,
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necessarily

u11> 0, u22> 0, ν1 + ν2 = u11 + u22.

We now show thatu12> 0 andu21> 0. Indeed, ifu12 = 0, then

{ν1, ν2} = {u11, u22}

and, hence,

N
[
U(T )− u22I

]
= span

[
(0,1)

]
.

Consequently, the solution of(6.3) with initial data(0,1), say(u, v), satisfiesu(nT )= 0
for eachn � 1, which contradicts the second part of Proposition 6.2. This contradiction
shows thatu12> 0. Similarly,u21> 0 follows. Thus,- > 0 and, therefore,ν1 �= ν2, say
0< ν1< ν2. Now, note that

min{u11, u22}< ν2 = 1

2

(
u11 + u22 +

√
-
)
.

In caseu11 = min{u11, u22}, (u12/(ν2 − u11),1) provides us with an eigenvector ofU(T )
associated toν2, while, in caseu22 = min{u11, u22}, (1, u21/(ν2 − u22)) provides us with
an eigenvector ofU(T ) associated toν2. In both situations the two components of the
eigenvector are positive. Similarly, in caseu11 = min{u11, u22}, (1, u21/(ν1 − u22)) is an
eigenvector ofU(T ) associated toν1 whose second component is negative, since

ν1 = u11 + u22 − ν2< u22.

By symmetry, in caseu22 = min{u11, u22}, (u12/(ν1 − u11),1) is an eigenvector ofU(T )
associated toν1 whose second component is negative. Therefore, the eigenvector ofU(T )

associated toν2 can be chosen in the interior of the first quadrant, while the eigenvector
associated toν1 can be chosen in the interior of the second quadrant.

Now, note that the change of variable

(u, v)= eλt (x, y)

transforms(6.14) into

{
x′ = αx + βy,

y′ = γ x + ρy.

Thus, for any(u0, v0) ∈ R2, the unique solution of(6.14) satisfying

(
u(0), v(0)

)
= (u0, v0)
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is given through

(
u(t), v(t)

)
= eλtU(t)(u0, v0).

Therefore, the Poincaré map of(6.14) is given by

PT := eλTU(T )

and, consequently, the multipliers of(6.14) are eλT νj , j ∈ {1,2}. Thus, the eigenvalue
problem(6.14) possesses aT -periodic solution if, and only, if

λ ∈
{
− 1

T
Logν1,−

1

T
Logν2

}
.

By the analysis already done, the unique value ofλ providing us with aT -periodic solution
having both components positive is the one given by(6.13), as the other eigenvalue pro-
vides us with aT -periodic solution whose components have contrary sign. This concludes
the proof. �

Subsequently, the valueλ0 defined by(6.13) will be called theprincipal eigenvalue
of (6.14). It should be noted that(6.1) is asymptotically stable if, and only ifλ0 > 0,
whereas it is unstable if, and only if,λ0 < 0. The following result provides us with an
extremely useful criterion for ascertaining the stability of(6.1).

THEOREM 6.4. The following properties are satisfied:
(a) System(6.1) is stable(ν2 < 1) if, and only if, there exists(ū, v̄) ∈ C1

T × C1
T with

ū≫ 0 and v̄≫ 0 such that

{
ū′ � αū+ βv̄,

v̄′ � γ ū+ ρv̄,
(6.15)

with some of these inequalities strict.
(b) System(6.1) is unstable(ν2 > 1) if, and only if, there exits(u, v) ∈ C1

T × C1
T with

u≫ 0 andv≫ 0 such that

{
u′ � αu+ βv,

v′ � γ u+ ρv,
(6.16)

with some of these inequalities strict.

PROOF. First we will prove part (a). Ifν2 < 1, then the principal eigenvalue of(6.14) is
positive. Indeed,

λ0 = − 1

T
Logν2> 0
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and, hence, anyT -periodic strongly positive solution associated toλ0 provides us with a
strict supersolution of(6.1). This shows the necessity of the existence of the supersolution.
To show the sufficiency of this condition, suppose there exists(ū, v̄) ∈ C1

T ×C1
T with ū≫ 0

andv̄≫ 0 satisfying(6.15) with some of the inequalities strict. Now, pick

(u0, v0) ∈N
[
U(T )− ν2I

]

with u0> 0 andv0> 0, and let(u(t), v(t)) denote the unique solution of(6.3). Then,

(
u(nT ), v(nT )

)
= νn2(u0, v0), n� 0.

Now, pickR > 0 satisfying

0< u0<Rū(0), 0< v0<Rv̄(0),

and consider the auxiliary function

x :=Rū− u, y :=Rv̄ − v.

Then, by construction,




x′ � αx + βy,

y′ � γ x + ρy,

x(0) > 0, y(0) > 0,

(6.17)

and, hence, thanks to Proposition 6.2,

x(t) > 0 and y(t) > 0 for eacht ∈ R+.

Equivalently,

0< u(t) < Rū(t) and 0< v(t) < Rv̄(t) for eacht ∈ R+,

sinceu0> 0 andv0> 0. In particular, the sequence

(
u(nT ), v(nT )

)
= νn2(u0, v0), n� 0,

is bounded above and, therefore,ν2 � 1. Supposeν2 = 1. Then,λ0 = 0 and, thanks to
Theorem 6.3,(6.1) possesses aT -solution (p, q) with p ≫ 0 andq ≫ 0. On the other
hand, setting

d := ū′ − αū− βv̄, δ := v̄′ − γ ū− ρv̄,

we have thatd � 0, δ � 0, d + δ > 0, and
{
ū′ = αū+ βv̄ + d,

v̄′ = γ ū+ ρv̄+ δ.
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Consequently, for eachξ ∈ R, the pair

(uξ , vξ ) := (ū− ξp, v̄− ξq)

provides us with aT -periodic solution of

{
u′ = αu+ βv+ d,

v′ = γ u+ ρv+ δ.
(6.18)

Sinceū ≫ 0 and v̄ ≫ 0, we have thatuξ ≫ 0 andvξ ≫ 0 for sufficiently smallξ > 0.
Moreover, sincep≫ 0 andq ≫ 0, we have thatuξ ≪ 0 andvξ ≪ 0 for sufficiently large
ξ > 0. Thus, there existsξ > 0 such thatuξ � 0, vξ � 0 and, for somet0 ∈ R, either
uξ (t0)= 0, orvξ (t0)= 0. Without lost of generality we can assume thatuξ (t0)= 0. Then,
for eacht � t0, we have that

uξ (t)=
∫ t

t0

e
∫ t
τ α
[
βvξ (τ )+ d(τ)

]
dτ. (6.19)

If βvξ + d > 0, then, we find from(6.19) that uξ (t0 + nT ) > 0 for eachn � 2, which
contradicts the periodicity ofuξ , sinceuξ (t0)= 0. Thus,

βvξ = d = 0, (6.20)

and, thanks again to(6.19),

uξ = 0.

Thus, substituting into thev-equation of(6.18) shows that

v′
ξ = ρvξ + δ.

Necessarily,

vξ = R−ρ(δ)≫ 0,

sinceδ > 0, and, therefore,βvξ > 0, which contradicts(6.20) and showsν2 < 1. This
concludes the proof of part (a).

Now, we will prove part (b). Supposeν2> 1. Then,

λ0 = − 1

T
Logν2< 0

and, hence, anyT -periodic strongly positive solution of(6.14) associated toλ0 provides
us with a strict subsolution of(6.1). To show the converse, let(u, v) ∈ C1

T ×C1
T with u≫ 0

andv≫ 0 satisfying(6.16) with some of the inequalities strict. Pick

(u0, v0) ∈N
[
U(T )− ν2I

]
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with u0> 0 andv0> 0, and let(u(t), v(t)) denote the unique solution of(6.3). Then,

(
u(nT ), v(nT )

)
= νn2(u0, v0), n� 0. (6.21)

Now, for eachε > 0 we consider the auxiliary function

(Uε,Vε) := (u− εu, v− εv).

For anyε > 0, (Uε,Vε) is a strict supersolution of(6.1). Moreover, for sufficiently small
ε > 0 we have that

Uε(0)= u0 − εu(0) > 0 and Vε(0)= v0 − εv(0) > 0.

Choose one of theseε’s. Then, thanks to Proposition 6.2,Uε(t) > 0 andVε(t) > 0 for each
t � 0. In particular, for eachn� 0,

εu(0)= εu(nT ) < u(nT )= νn2u0

and, therefore,ν2 � 1.
Supposeν2 = 1. Then,λ0 = 0 and, thanks to Theorem 6.3,(6.1) possesses aT -solution

(p, q) with p≫ 0 andq ≫ 0. On the other hand, setting

d := u′ − αu− βv, δ := v′ − γ u− ρv,

we have thatd � 0, δ � 0, d + δ < 0, and

{
u′ = αu+ βv + d,

v′ = γ u+ ρv + δ.

Consequently, for eachξ ∈ R, the pair

(uξ , vξ ) := (p− ξu, q − ξv)

provides us with aT -periodic solution of

{
u′ = αu+ βv− d,

v′ = γ u+ ρv− δ.
(6.22)

Sincep ≫ 0 andq ≫ 0, we have thatuξ ≫ 0 andvξ ≫ 0 for sufficiently smallξ > 0.
Moreover, sinceu≫ 0 andv ≫ 0, we have thatuξ ≪ 0 andvξ ≪ 0 for sufficiently large
ξ > 0. Thus, there existsξ > 0 such thatuξ � 0, vξ � 0 and, for somet0 ∈ R, either
uξ (t0) = 0, or vξ (t0) = 0. The result obtained in ending the proof of part (a) shows that
this is impossible. It should be noted that−d � 0, −δ � 0 and−(δ + d) > 0. Therefore,
ν2> 1, which concludes the proof of the theorem. �
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6.2. Structure of the set of coexistence states

In this section, the coexistence states of(1.2) will be regarded as zeroes of the operator

F :R2 × CT × CT → CT × CT

defined by

F(λ,µ,u, v) :=
(
u− RM

[
(λℓ+M)u− au2 − buv

]

v− RM

[
(µm+M)v − dv2 − cuv

]
)

(6.23)

whereM > 0 is fixed. The following result will provide us with the sharp structure of the
whole surface, in terms of the parameters(λ,µ), of the coexistence states of(1.2) linking
the surfaces of semi-trivial states of(1.2) along their curves of neutral stability.

PROPOSITION6.5. Suppose(u0, v0) ∈ CT × CT satisfiesu0 ≫ 0, v0 ≫ 0, and

F(λ,µ,u0, v0)= 0.

Then, each of the operators

D(λ,u,v)F(λ,µ,u0, v0) :R × CT × CT → CT × CT

and

D(µ,u,v)F(λ,µ,u0, v0) :R × CT × CT → CT × CT

is surjective. In other words, (0,0) is a regular value ofF with respect toR2× IntP × IntP .

PROOF. By differentiating, we have that

D(u,v)F(λ,µ,u0, v0)= ICT×CT − RM

(
αM −bu0

−cv0 βM

)
, (6.24)

DλF(λ,µ,u0, v0)= −RM

(
ℓu0
0

)
, (6.25)

and

DµF(λ,µ,u0, v0)= −RM

(
0
mv0

)
, (6.26)

where, for anyξ � 0, we are denoting

αξ := λℓ+ ξ − 2au0 − bv0, βξ := µm+ ξ − 2dv0 − cu0. (6.27)
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Subsequently, it will be said that(λ,µ,u0, v0) is a non-degenerate coexistence state
of (1.2) if D(u,v)F(λ,µ,u0, v0) is an isomorphism. In the contrary case, it will be said
that(λ,µ,u0, v0) is degenerate.

Obviously, D(λ,u,v)F(λ,µ,u0, v0) and D(µ,u,v)F(λ,µ,u0, v0) are surjective if
(λ,µ,u0, v0) is non-degenerate. So, suppose(λ,µ,u0, v0) is degenerate. Then, since
D(u,v)F(λ,µ,u0, v0) is a compact perturbation of the identity, it is Fredholm of index
zero and, hence,

N := dimN
[
D(u,v)F(λ,µ,u0, v0)

]
= codimR

[
D(u,v)F(λ,µ,u0, v0)

]
� 1.

Now, note thatN [D(u,v)F(λ,µ,u0, v0)] is the set ofT -periodic solutions(u, v) of the
linear system

{
u′ = α0u− bu0v,

v′ = −cv0u+ β0v.
(6.28)

Sinceb < 0 andc < 0, we have that

−bu0> 0 and −cv0> 0.

Moreover, since(λ,µ,u0, v0) is a coexistence state of(1.2), relations(6.7) hold with
(u2, v2)= (u0, v0) and, hence,

∫ T

0
α0 = −

∫ T

0
a(t)u0(t)dt < 0 and

∫ T

0
β0 = −

∫ T

0
d(t)v0(t)dt < 0.

Therefore,(6.28) fits into the abstract setting of Section 6.1. Consequently, thanks to The-
orems 6.1 and 6.3, the biggest multiplier of(6.28), denoted byν2, equals one and anyT -
periodic solution of(6.28) must be a multiple of a fixedT -periodic solution(ϕ,ψ) such
thatϕ ≫ 0 andψ ≫ 0. In particular,N = 1. So, thanks to(6.25) and(6.26), to conclude
the proof it suffices to show the following:

−RM(ℓu0,0) /∈R
[
D(u,v)F(λ,µ,u0, v0)

]
,

−RM(0,mv0) /∈R
[
D(u,v)F(λ,µ,u0, v0)

]
.

(6.29)

On the contrary, suppose that, e.g.,

−RM(ℓu0,0) ∈R
[
D(u,v)F(λ,µ,u0, v0)

]
.

Then, the system

{
u′ = α0u− bu0v+ ℓu0,

v′ = −cv0u+ β0v,
(6.30)
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possesses aT -periodic solution, say(u, v). Actually, for eachR > 0, the pair

(uR, vR) := (u+Rϕ,v+Rψ)

provides us with aT -periodic solution of(6.30). Sinceℓu0> 0, for sufficiently largeR >
0, (uR, vR) provides us with aT -periodic strongly positive strict supersolution of(6.28)
and, therefore, thanks to Theorem 6.4(a),ν2 < 1, which is a contradiction, sinceν2 = 1.
Similarly, the second relation of(6.29) holds. This concludes the proof. �

The following result, which is an easy consequence from Proposition 6.5, ascertains the
global structure of the components of coexistence statesCλµ andC

µ
λ of (1.2) constructed in

Theorems 5.4 and 5.5.

THEOREM 6.6. The following properties are satisfied:
(a) For eachλ > 0, the component of coexistence statesCλµ is unbounded inR×CT ×CT

and it consists of a real analytic curve. More precisely, there exits a real analytic map
(µ,u, v) : [0,∞)→ R × IntP × IntP such that

(
µ(0), u(0), v(0)

)
= (µ0, θ[λℓ,a],0)

and

Cλµ =
{(
µ(s), u(s), v(s)

)
: s ∈ (0,∞)

}
.

(b) For eachµ> 0, the component of coexistence statesC
µ
λ is unbounded inR × CT ×

CT and it consists of a real analytic curve. More precisely, there exists a real analytic
map(λ,u, v) : [0,∞)→ R × IntP × IntP such that

(
λ(0), u(0), v(0)

)
= (λ0,0, θ[µm,d])

and

C
µ
λ =

{(
λ(s), u(s), v(s)

)
: s ∈ (0,∞)

}
.

(c) The set of coexistence states of(1.2) (λ,µ,u, v) ∈ R2× IntP × IntP such thatλ > 0
and, for someµ ∈ R, (µ,u, v) ∈ Cλµ, or µ > 0 and, for someλ ∈ R, (λ,u, v) ∈ C

µ
λ

is a real analytic surface linking the surfaces of semi-trivial states

{
(λ,µ, θ[λℓ,a],0): λ > 0, µ ∈ R

}

and

{
(λ,µ,0, θ[µm,d]): λ ∈ R, µ > 0

}
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along their respective curves of neutral stability

µ= 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt and λ= 1

T

∫ T

0
b(t)θ[µm,d](t)dt.

PROOF. Suppose(λ,µ,u0, v0) is a coexistence state of(1.2) with, e.g., λ > 0. Sub-
sequently, we fixλ and regard toµ as the main path-following parameter. Suppose
(λ,µ,u0, v0) is non-degenerate. Then, the implicit function theorem shows that(µ,u0, v0)

lies in an analytic curve through it that can be locally parameterized byµ, or . . . by some
length, or pseudo-length of arc of curve, as it is usual in numerical analysis of bifurcation
problems. Now, suppose that(λ,µ,u0, v0) is degenerate and letω0 ∈ R × CT × CT such
that

N
[
D(µ,u,v)F(λ,µ,u0, v0)

]
= span[ω0].

LetZ be any closed supplement ofω0 in R × CT × CT , i.e.,

R × CT × CT = span[ω0] ⊕Z.

Then, any element(µ,u, v) ∈ R × CT × CT admits a unique decomposition as

(µ,u, v)= sω0 + z, (s, z) ∈ R ×Z.

So, the problem of solvingF(λ,µ,u, v)= 0, withλ fixed, around(µ,u0, v0) is equivalent
to the problem of solving

0= G(s, z) := F
(
λ, (µ,u0, v0)+ sω0 + z

)

around(s, z) = (0,0). The mapG :R × Z → CT × CT is real analytic and it satisfies
G(0,0)= 0. Moreover, thanks to Proposition 6.5, the linearized operator

DzG(0,0)=D(µ,u,v)F(µ,u0, v0)|Z

is a linear isomorphism. Therefore, thanks to the implicit function, the set of coexistence
states of(1.2) around(λ,µ,u0, v0) consists of an analytic curve. Actually, the curve can
be parameterized by the projection of the coexistence states onω0.

Now, fix λ > 0. Sinceb < 0, for eachµ> 0 we have that

λ > 0>
1

T

∫ T

0
b(t)θ[µm,d](t)dt

and, therefore, thanks to Theorem 5.4,Cλµ is unbounded. Moreover, thanks to Theorem 5.6,
there existsL> 0 and a real analytic map

(µ,u, v) : [0,L] → R × IntP × IntP
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such that

(
µ(0), u(0), v(0)

)
= (µ0, θ[λℓ,a],0)

and, in a neighborhood of(µ0, θ[λℓ,a],0), Cλµ consists of

{(
µ(s), u(s), v(s)

)
: 0< s �L

}
.

By a global continuation argument based on the implicit function theorem, thelocal curve
(µ(s), u(s), v(s)), s ∈ (0,L], admits amaximal continuation(non-prolonging) to a real
analytic curve,(µ(s), u(s), v(s)), s ∈ (0,∞), of coexistence states of(1.2). Actually, the
parameters can be taken as the length of arc of curve. Clearly,

Γ :=
{(
µ(s), u(s), v(s)

)
: s > 0

}
⊂ Cλµ,

sinceCλµ is connected. Moreover, the uniqueness obtained as an application of the implicit
function theorem shows that there exists an open subsetO ⊂ R × CT × CT such that

Γ ⊂ O and F−1(0)∩ (R × IntP × IntP)∩O = Γ.

Therefore,Cλµ = Γ , sinceCλµ is connected. Part (b) follows from the symmetry of the
problem. part (c) is a two-parameter re-interpretation of parts (a) and (b) that can be eas-
ily obtained from the fact thatF is real analytic in all its arguments. This concludes the
proof. �

For the autonomous counterpart of(1.2) with bc = 1, is very simple to check that, for
eachλ > 0, the curve

(
µ(s), u(s), v(s)

)
= (cλ,λ− bs, s), s � 0,

provides us with the componentCλµ bifurcating from the semi-trivial solution(λ,0) atµ=
cλ. As this simple example shows, in general, conditionµ′ = 0 cannot be avoided unless
some additional assumptions are made, as, e.g., having a priori bounds for the coexistence
states of the model atµ= µ0. Note that in caseµ′ = 0, one necessarily hasµ(s)= µ0 for
eachs � 0 and

lim sup
s↑∞

∥∥(u(s), v(s)
)∥∥

CT×CT
= ∞,

sinceCλµ is unbounded. Actually, as an immediate consequence from the analysis carried
out in the next section, in caseµ′ = 0 one has that, for eachs � 0, u̇(s)≫ 0 andv̇(s)≫ 0,
where· := d

ds . Therefore,

lim
s↑∞

∥∥(u(s), v(s)
)∥∥

CT×CT
= ∞.
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6.3. Stability of the coexistence states alongCλµ andC
µ
λ

Fix λ > 0 and let(µ(s), u(s), v(s)), s � 0, be the real analytic map constructed in Theo-
rem 6.6, wheres is assumed to be the length of arc of curve. Subsequently, we shall denote
· := d

ds . Since

F
(
λ,µ(s), u(s), v(s)

)
= 0, s � 0,

differentiating with respect tos gives

D(µ,u,v)F
(
λ,µ(s), u(s), v(s)

)(
µ̇(s), u̇(s), v̇(s)

)
= 0, s > 0, (6.31)

and, hence,

N
[
D(µ,u,v)F

(
λ,µ(s), u(s), v(s)

)]
= span

[(
µ̇(s), u̇(s), v̇(s)

)]
, s > 0.

Moreover, sinces has been taken as the length of arc of curve,

∥∥(µ̇(s), u̇(s), v̇(s)
)∥∥

R×CT×CT
= 1, s > 0. (6.32)

On the other hand, since

(
µ(0), u(0), v(0)

)
= (µ0, θ[λℓ,a],0),

it follows from Theorem 5.6 that

v̇(s)= ϕv + O(s)= e
∫ ·

0(µ0m−cθ[λℓ,a]) + O(s)≫ 0, s ↓ 0. (6.33)

Now, set

(ps, qs) :=
(
u̇(s), v̇(s)

)
, s > 0,

and note that(6.31) can be equivalently rewritten in the form

{
(ps)

′ =
[
λℓ− 2au(s)− bv(s)

]
ps − bu(s)qs,

(qs)
′ = −cv(s)ps +

[
µ(s)m− 2dv(s)− cu(s)

]
qs + µ̇(s)mv(s).

(6.34)

Note that, since−bu(s) > 0, −cv(s) > 0,

∫ T

0

[
λℓ− 2au(s)− bv(s)

]
= −2

∫ T

0

[
au(s)

]
< 0, (6.35)

and

∫ T

0

[
µ(s)m− 2dv(s)− cu(s)

]
= −2

∫ T

0

[
dv(s)

]
< 0, (6.36)
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the linear system(6.34) fits within the general setting of Section 6.1. In particular, thanks
to Proposition 2.1, we find from the first equation of(6.34) that, for eachs > 0 sufficiently
small,

ps = R−[λℓ−2au(s)−bv(s)]
(
−bu(s)qs

)
≫ 0.

Therefore, there existsε > 0 such that

ps ≫ 0 and qs ≫ 0 for eachs ∈ [0, ε]. (6.37)

Supposeµ= µ0 for eachs � 0. Then,(6.34) becomes into

{
(ps)

′ =
[
λℓ− 2au(s)− bv(s)

]
ps − bu(s)qs,

(qs)
′ = −cv(s)ps +

[
µ(s)m− 2dv(s)− cu(s)

]
qs .

(6.38)

Thanks to(6.32), (ps, qs) �= (0,0) and, hence, thanks to Theorem 6.1, for eachs � 0,
eitherps ≫ 0 andqs ≫ 0, orps ≪ 0 andqs ≪ 0. Thanks to(6.37), necessarily

ps ≫ 0 and qs ≫ 0 for eachs ∈ [0,∞). (6.39)

Indeed, sinces → (ps, qs) is real analytic, if(6.39) is not satisfied, then, due to(6.37),
there is some value ofs, says̃ > 0, whereps̃ > 0,qs̃ > 0, and, e.g.,ps̃ ≫ 0 fails. Thanks to
Theorem 6.1, this would implyps̃ ≫ 0 andqs̃ ≫ 0, which is a contradiction. Thus,(6.39)
is satisfied, as it was claimed in the last paragraph of Section 6.2, and, consequently, thanks
to Theorem 6.3, the principal characteristic multiplier of(µ(s), u(s), v(s)), which will be
subsequently denoted byν2(s), satisfiesν2(s)= 1 for eachs � 0. Therefore, ifµ̇= 0, then
ν̇2 = 0 and, hence, all the coexistence states ofCλµ are neutrally stable. Wheṅµ �= 0, then
the following result is satisfied.

THEOREM 6.7. Supposėµ �= 0 in [0,∞). Then, the set

S :=
{
s ∈ (0,∞): µ̇(s)= 0

}
(6.40)

is discrete, eachs ∈ S is a zero of finite order oḟµ, and

S =
{
s ∈ (0,∞): ν2(s)= 1

}
. (6.41)

Moreover,

µ̇(s)
(
1− ν2(s)

)
> 0, s ∈ (0,∞) \ S, (6.42)

and

ps ≫ 0 and qs ≫ 0 if µ̇(s)� 0. (6.43)



428 J. López-Gómez

PROOF. The fact thatS is discrete and that eachs ∈ S has finite order, as a zero ofµ̇,
are consequences from the fact thatµ̇ is real analytic. Now, we shall prove(6.41). Pick
s ∈ S . Then,(ps, qs) satisfies(6.38) and, due to(6.32), (ps, qs) �= (0,0). Thus, thanks to
Theorem 6.1,ps ≫ 0 andqs ≫ 0, orps ≪ 0 andqs ≪ 0. In any of these cases, it follows
from Theorem 6.3 thatλ= 0 is theprincipal characteristic exponentof (µ(s), u(s), v(s))
and, hence,ν2(s)= 1. To prove the converse inclusion, lets ∈ (0,∞) such thatν2(s)= 1.
Then, thanks to Theorem 6.3, there exists aT -periodic pair(P,Q) with P ≫ 0 andQ≫ 0
such that

{
P ′ =

[
λℓ− 2au(s)− bv(s)

]
P − bu(s)Q,

Q′ = −cv(s)P +
[
µ(s)m− 2dv(s)− cu(s)

]
P.

(6.44)

Now, choose a sufficiently smallε > 0 so that the auxiliary pair

(U,V ) := (P − εps,Q− εqs),

satisfyU ≫ 0 andV ≫ 0. Thanks to(6.34) and(6.44) we have that

{
U ′ =

[
λℓ− 2au(s)− bv(s)

]
U − bu(s)V,

V ′ = −cv(s)U +
[
µ(s)m− 2dv(s)− cu(s)

]
V − εµ̇(s)mv(s).

Assumeµ̇(s) > 0. Then, sinceεmv(s) > 0, (U,V ) is a strict subsolution of

{
x′ =

[
λℓ− 2au(s)− bv(s)

]
x − bu(s)y,

y′ = −cv(s)x +
[
µ(s)m− 2dv(s)− cu(s)

]
y,

(6.45)

and, hence, thanks to Theorem 6.4(b),ν2(s) > 1, which is a contradiction. Assumėµ(s) <
0. Then,(U,V ) is a strict supersolution of(6.45) and, due to Theorem 6.4(a),ν2(s) < 1,
which is a contradiction again. Consequently,µ̇(s)= 0 and, therefore,(6.41) holds.

Now, pick s̃ ∈ S . Thanks to(6.32), it follows from Theorem 6.1 that some of the fol-
lowing alternatives occurs:

1. ps̃ ≫ 0 andqs̃ ≫ 0.
2. ps̃ ≪ 0 andqs̃ ≪ 0.

Assume alternative 1 occurs. Ass̃ is an isolated zero oḟµ(s), there existsε > 0 such that
ps = u̇(s)≫ 0 andqs = v̇(s)≫ 0 for eachs ∈ (s̃ − ε, s̃ + ε), and

µ̇−1(0)∩
(
s̃ − ε, s̃ + ε

)
∩ (0,∞)=

{
s̃
}
.

Thus, for each

s ∈ J := (0,∞)∩
[(
s̃ − ε, s̃ + ε

)
\
{
s̃
}]
,

eitherµ̇(s) > 0, orµ̇(s) < 0. Supposėµ(s) > 0. Then,(ps, qs) provides us with a strongly
positive strict supersolution of(6.45) and it follows from Theorem 6.4(a) thatν2(s) < 1.
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Hence,µ̇(s)(1 − ν2(s)) > 0. Now, supposėµ(s) < 0. Then,(ps, qs) provides us with
a strongly positive strict subsolution of(6.45) and it follows from Theorem 6.4(b) that
ν2(s) > 1. Hence,µ̇(s)(1 − ν2(s)) > 0. Therefore, condition(6.42) is satisfied for each
s̃ ∈ S satisfying alternative 1.

Now, supposẽs ∈ S satisfies alternative 2. As̃s is an isolated zero oḟµ(s), there exists
ε > 0 such thatps = u̇(s)≪ 0 andqs = v̇(s)≪ 0 for eachs ∈ (s̃ − ε, s̃ + ε), and

µ̇−1(0)∩
(
s̃ − ε, s̃ + ε

)
∩ (0,∞)=

{
s̃
}
.

Thus, for each

s ∈ J := (0,∞)∩
[(
s̃ − ε, s̃ + ε

)
\
{
s̃
}]
,

either µ̇(s) > 0, or µ̇(s) < 0. Supposeµ̇(s) > 0. Then,(−ps,−qs) provides us with a
strongly positive strict subsolution of(6.45) and it follows from Theorem 6.4(b) that
ν2(s) > 1. Hence,µ̇(s)(1 − ν2(s)) < 0. Similarly, if µ̇(s) < 0, then,(−ps,−qs) pro-
vides us with a strongly positive strict supersolution of(6.45) and Theorem 6.4(a) implies
ν2(s) < 1. Therefore, the following condition is satisfied

µ̇(s)
(
1− ν2(s)

)
< 0, s ∈ (0,∞)∩

[(
s̃ − ε, s̃ + ε

)
\
{
s̃
}]
, (6.46)

for eachs̃ ∈ S satisfying alternative 2.
Now, suppose

S = {sn: n� 1}, 0< s1< sn < sn+1, n� 2;

the subsequent argument can be easily adapted to cover the case whenS is finite, possibly
empty. Thanks to(6.37), for sufficiently smalls > 0,ps ≫ 0 andqs ≫ 0. Moreover, either
µ̇(s) > 0 for eachs ∈ (0, s1), or µ̇(s) < 0 for eachs ∈ (0, s1).

Supposeµ̇(s) > 0 for eachs ∈ (0, s1). Then, for sufficiently smalls > 0, (ps, qs) pro-
vides us with a strongly positive strict supersolution of(6.45) and, hence, thanks to The-
orem 6.4(a),ν2(s) < 1. Actually, this is the inter-exchange stability principle between the
semi-trivial state(µ, θ[λℓ,a],0) and the bifurcating coexistence state(µ(s), u(s), v(s)) as
µ crossesµ0. Thanks to(6.41), necessarilyν2(s) < 1 for everys ∈ (0, s1) and, therefore,

µ̇(s)
(
1− ν2(s)

)
> 0, s ∈ (0, s1). (6.47)

Necessarilyps1 ≫ 0 andqs1 ≫ 0. Indeed, ifps1 ≪ 0 andqs1 ≪ 0, then(6.46) holds, which
contradicts(6.47). Therefore,

µ̇(s)
(
1− ν2(s)

)
> 0, s ∈ (0, s2) \ {s2}. (6.48)

Reiterating this argument,(6.42) holds readily.
Now, supposėµ(s) < 0 for eachs ∈ (0, s1). Then,(ps, qs) provides us with a strongly

positive strict subsolution of(6.45) and, hence, thanks to Theorem 6.4(b),ν2(s) > 1. As
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in the previous case, this provides us with the inter-exchange stability principle between
the semi-trivial state(µ, θ[λℓ,a],0) and the bifurcating coexistence state(µ(s), u(s), v(s)).
Thanks to(6.41), ν2(s) > 1 for everys ∈ (0, s1) and, therefore,(6.47) is as well satisfied.
Arguing as above, the proof of(6.42) is concluded.

Note that, as a result from the previous analysis, we have that

ps̃ ≫ 0 and qs̃ ≫ 0 for eachs̃ ∈ S ∪ {0}. (6.49)

Let s∗1 , s∗2 ∈ S ∪ {0} such that

µ̇(s) > 0, s ∈
(
s∗1, s

∗
2

)
.

Thanks to(6.49), ps ≫ 0 andqs ≫ 0 for eachs > s∗1 sufficiently close tos∗1 . Thus, either
ps ≫ 0 andqs ≫ 0 for eachs ∈ (s∗1, s∗2), or there exists0 ∈ (s∗1, s∗2) and t ∈ R such that
ps0 � 0 andqs0 � 0 and eitherps0(t)= 0, orqs0(t)= 0. Since

−cv(s0)ps0 + µ̇(s0)mv(s0) > 0,

thanks to Proposition 2.1, it follows from the second equation of(6.34) thatqs0 ≫ 0. Thus,

−bu(s0)qs0 > 0

and, thanks again to Proposition 2.1, the first equation of(6.34) givesps0 ≫ 0, which is
impossible. Therefore, for eachs ∈ (s∗1, s∗2),ps ≫ 0 andqs ≫ 0, which concludes the proof
of (6.43). The proof is completed. �

It should be noted that, since the dependence of the Poincaré map of(6.45) on s is
analytic, the maps → ν2(s) is as well real analytic. Moreover,

ν2(0)= 1,

because this is the critical value of the parameter where the stability of the semi-trivial state
changes. As far as tȯµ(0) concerns, it might take any real value, according with the value
of the integral of(5.53).

Subsequently, we shall assume

µ̇ �= 0

in order to use Theorem 6.7 for ascertaining the attractive character of all the coexistence
states along the curveCλµ. In this case, setting

s1 = minS,

some of the following alternatives occurs. Either

µ̇(s) > 0, s ∈ (0, s1) (6.50)
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Fig. 11. An admissible graph oḟµ(s) in case(6.50).

or

µ̇(s) < 0, s ∈ (0, s1). (6.51)

If S = ∅, then eitherµ̇(s) > 0 for eachs > 0, or µ̇(s) < 0 for eachs > 0. The bifurcation
of Cλµ from (µ0, θ[λℓ,a],0) is said to besuper-criticalif (6.50) occurs, while it is said to be
sub-critical if (6.51) is satisfied.

The following concepts will be extremely useful in the forthcoming discussion. Given
s̃ ∈ S , we shall denote by ord(s̃) the order of̃s as a zero oḟµ(s).

• A value s̃ ∈ S is said to be ahysteresis pointof Cλµ if ord (s̃) is even.
• A value s̃ ∈ S is said to be asuper-critical turning pointof Cλµ if ord (s̃) is odd and
µ(s) > µ(s̃) in a perforated neighborhood ofs̃.

• A value s̃ ∈ S is said to be asub-critical turning pointof Cλµ if ord (s̃) is odd and
µ(s) < µ(s̃) in a perforated neighborhood ofs̃.

Suppose(6.50) and, e.g., the graph oḟµ(s) is of the type sketched in Fig. 11. Although
far from necessary we shall assume thatS = {s1, s2, s3, s4, s5}. Hence,µ̇(s) > 0 for each
s > s5. For this special configuration,s1, s3 and s4 are hysteresis points, whiles2 is a
sub-critical turning point ands5 is a super-critical turning point. Thanks to Theorem 6.7,
the principal characteristic multiplierν2(s) of the coexistence state(µ(s), u(s), v(s)) must
adjust to the pattern shown in Fig. 12. Therefore, the coexistence state(µ(s), u(s), v(s))

is asymptotically stable ifs ∈ (0, s1) ∪ (s1, s2) ∪ (s5,∞), whereas it is unstable ifs ∈
(s2, s5) \ {s3, s4}. In Fig. 13 we have represented the corresponding bifurcation diagram of
coexistence states, where we are representing the value ofu(t) for a given timet ∈ R versus
the parameterµ, not s. Except for(µ,0,0), continuous lines represent stable solutions,
while dashed lines represent unstable solutions. The horizontal lines represent the curves
of states(µ,0,0) and(µ, θ[λℓ,0],0). The curveCλµ bifurcates from(µ, θ[λℓ,a],0) at

µ= µ0 = 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt < 0,

sincec < 0. The wiggled thick line representCλµ, whose bifurcation from the semi-trivial
state is super-critical. At the sub-critical turning point(µ(s2), u(s2), v(s2)) the stability of
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Fig. 12. The corresponding principal characteristic multiplierν2(s).

Fig. 13. The corresponding bifurcation diagram.

the solutions along the lower arc of curve ofCλµ is lost. Then, the solutions stay unstable
until the second turning point,(µ(s5), u(s5), v(s5)), which is super-critical, is passed by.
Once crossed the super-critical turning point, all remaining solutions for further values of
s stay stable. It should be noted that, thanks to Theorem 6.7,u(s) andv(s) are strongly
increasing along the pieces of the curveCλµ whereµ̇(s)� 0.

Now, suppose(6.51), instead of(6.50), and, e.g., the graph oḟµ(s) adjust to the profile
shown in Fig. 14. According to Theorem 6.7, the principal characteristic multiplierν2(s)

of the coexistence state(µ(s), u(s), v(s)) must adjust to the pattern shown in Fig. 15.
In Fig. 16 we have represented an admissible bifurcation diagram corresponding to the
graph ofµ̇(s) shown in Fig. 14. Now the bifurcation ofCλµ from (µ, θ[λℓ,a],0) at µ0 is
sub-critical, the solutions along the lower curve being unstable until they reach the super-
critical turning point(µ(s2), u(s2), v(s2)), where they become stable until reaching the
second turning point,(µ(s5), u(s5), v(s5)), where they become unstable and stay unstable
for any further value ofs, s > s5.
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Fig. 14. An admissible graph foṙµ(s) in case(6.51).

Fig. 15. The corresponding principal characteristic multiplierν2(s).

Fig. 16. The corresponding bifurcation diagram.

As in the previous example, as a result of Theorem 6.7,s �→ (u(s), v(s)) is strongly
increasing along any arc of curve filled in by stable solutions, though some of the compo-
nents might decrease along some pieces of the arcs of curve where the coexistence states
are unstable.
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Generically, when some additional parameter of the model is varied, each hysteresis
point will either disappear, or it will generate an even number of turning points; half among
them sub-critical and the other half super-critical. This might provide with a mechanism to
generate models with an arbitrarily large number of coexistence states.

It should be noted that(1.2) might possess some additional coexistence state not lying
in Cλµ. If this is the case, i.e., if(1.2) possesses a coexistence state(µ,u0, v0) /∈ Cλµ, then
the global continuation argument used to ascertain the analytic structure ofCλµ also shows
that there is an analytic curve

(µ,u, v) : (−∞,∞)→ R × CT × CT

of coexistence states of(1.2) such that

(
µ(0), u(0), v(0)

)
= (µ,u0, v0)

and µ̇ �= 0. Indeed, ifµ̇ = 0, thenµ(s) = µ for eachs, and s �→ (u(s), v(s)) must be
strongly monotone, and, as a result, it should bifurcate from(µ0, θ[λℓ,a],0), which is not
possible, because(µ,u0, v0) /∈ Cλµ. Theorem 6.7 also applies along these curves, showing
that ν2(s) − 1 must change of sign at any turning point along them. The corresponding
curves should be either isolated bounded components, or unbounded components, but a
sharper analysis of this and other related problems escapes from the general scope of this
chapter.

By symmetry, all the results that we have obtained forCλµ are also valid for the compo-
nentsCµλ obtained by fixingµ> 0 and usingλ as the main bifurcation parameter.

6.4. Low and strong symbiosis effects

Throughout this section we will assume that

ℓ≫ 0, m≫ 0, a≫ 0, d ≫ 0, −b≫ 0, −c≫ 0. (6.52)

Then, it is said that(1.2) is lowly symbiotic if

(−b
a

)

M

(−c
d

)

M

< 1, (6.53)

while it is said that(1.2) is highly symbiotic if

(−b
a

)

L

(−c
d

)

L

> 1. (6.54)

Although in the intermediate situation cases where conditions(6.53) and(6.54) fail, the
curves of coexistence statesCλµ and C

µ
λ might exhibit a boundedµ projection and a

boundedλ projection, respectively, because of the lost of uniform priori bounds inCT ×CT ,
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in the cases when some of these conditions is satisfied, theµ andλ-projections are un-
bounded. Actually, the following result is satisfied for the case of low symbiosis.

THEOREM 6.8. Assume(6.52), (6.53), and (1.2) possesses a coexistence state, say
(λ,µ,u, v). Then,

λ � −(−b/ℓ)M (m/d)Mµ if µ> 0,

µ � −(−c/m)M (ℓ/a)Mλ if λ > 0.
(6.55)

Moreover,

‖u‖CT �
(ℓ/a)M |λ| + (−b/a)M (m/d)M |µ|

1− (−b/a)M(−c/d)M
,

‖v‖CT �
(m/d)M |µ| + (−c/d)M(ℓ/a)M |λ|

1− (−b/a)M(−c/d)M
,

(6.56)

and, therefore, for eachλ > 0 andµ> 0 there exist

µ1 = µ1(λ) ∈ (−∞,µ0] and λ1 = λ1(µ) ∈ (−∞, λ0]

such that

PµCλµ ∈
{
[µ1,∞), (µ0,∞)

}
and PλC

µ
λ ∈
{
[λ1,∞), (λ0,∞)

}
,

wherePγ stands for theγ -projection operator, γ ∈ {λ,µ}.

PROOF. Pick t0, t1 ∈ R such that

u(t0)= ‖u‖CT and v(t1)= ‖v‖CT .

Then,u′(t0)= v′(t1)= 0 and, hence,

λℓ(t0)− a(t0)u(t0)− b(t0)v(t0)= 0, µm(t1)− d(t1)v(t1)− c(t1)u(t1)= 0.

Thus,

u(t0)= λ
ℓ(t0)

a(t0)
− b(t0)

a(t0)
v(t0), v(t1)= µ

m(t1)

d(t1)
− c(t1)

d(t1)
u(t1). (6.57)

Now, since

v(t0)� v(t1)= µ
m(t1)

d(t1)
− c(t1)

d(t1)
u(t1)� µ

m(t1)

d(t1)
− c(t1)

d(t1)
u(t0),
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the first identity of(6.57) implies

u(t0)�
ℓ(t0)

a(t0)
λ− b(t0)

a(t0)

m(t1)

d(t1)
µ+ b(t0)

a(t0)

c(t1)

d(t1)
u(t0)

and, hence,

[
1− b(t0)

a(t0)

c(t1)

d(t1)

]
u(t0)�

ℓ(t0)

a(t0)
λ− b(t0)

a(t0)

m(t1)

d(t1)
µ. (6.58)

Similarly,

[
1− b(t0)

a(t0)

c(t1)

d(t1)

]
v(t1)�

m(t1)

d(t1)
µ− c(t1)

d(t1)

ℓ(t0)

a(t0)
λ. (6.59)

Moreover, thanks to(6.53),

0< 1−
(−b
a

)

M

(−c
d

)

M

� 1− b(t0)

a(t0)

c(t1)

d(t1)
(6.60)

and, consequently, it follows from(6.58) and(6.59) that, necessarily,

λ� −−b(t0)
ℓ(t0)

m(t1)

d(t1)
µ and µ� −−c(t1)

m(t1)

ℓ(t0)

a(t0)
λ.

Therefore,(6.55) are necessary conditions for the existence of a coexistence state. Also,
substituting(6.60) into (6.58) and(6.59), gives(6.56).

Now, fix λ > 0 and consider the analytic curveCλµ. Thanks to Theorem 6.6(a),Cλµ is
unbounded inR × CT × CT . Thus, thanks to the uniform a priori estimates(6.56), PµCλµ
must be unbounded. Note that it is connected, sinceCλµ is a curve. Therefore, the conclu-
sion follows from the second necessary condition of(6.55). Similarly, one can obtain the
corresponding assertion forC

µ
λ . �

As a consequence from Theorem 6.8, for eachλ > 0, the curveCλµ looks like the one
shown in Fig. 13, whereas, for the case of strong symbiosis, the following result shows that
Cλµ looks like shows Fig. 16.

THEOREM 6.9. Assume(6.52), (6.54),

(a/d)L(d/a)L >
[
(−b/a)L(−c/d)L

]−1
, (6.61)

and(1.2) possesses a coexistence state, say(λ,µ,u, v). Then,

λ� −(−b/a)L(a/d)Lµ, µ� −(−c/d)L(d/a)Lλ, (6.62)
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and

∫ T

0
u �

−T (λ+ (−b/a)L(a/d)Lµ)
aL[(−b/a)L(−c/d)L(a/d)L(d/a)L − 1] ,

∫ T

0
v �

−T (µ+ (−c/d)L(d/a)Lλ)
dL[(−b/a)L(−c/d)L(a/d)L(d/a)L − 1] .

(6.63)

Therefore, for eachλ > 0 andµ> 0 there exist

µ1 = µ1(λ) ∈ [µ0,0) and λ1 = λ1(µ) ∈ [λ0,0)

such that

PµCλµ ∈
{
(−∞,µ1], (−∞,µ0)

}
and PλC

µ
λ ∈
{
(−∞, λ1], (−∞, λ0)

}
.

PROOF. Dividing byu theu-equation, byv thev-equation, and integrating in[0, T ] gives

λ= 1

T

∫ T

0
(au+ bv), µ= 1

T

∫ T

0
(dv + cu). (6.64)

Thus,

∫ T

0
(au) = λT −

∫ T

0
(bv)� λT + (−b/a)L

∫ T

0
(av)

� λT + (−b/a)L(a/d)L
∫ T

0
(dv)

= T λ+ (−b/a)L(a/d)LT µ+ (−b/a)L(a/d)L
∫ T

0
(−cu)

� T λ+ (−b/a)L(a/d)LT µ

+ (−b/a)L(−c/d)L(a/d)L(d/a)L
∫ T

0
(au)

and, hence,

[
1− (−b/a)L(−c/d)L(a/d)L(d/a)L

] ∫ T

0
(au)� T

[
λ+ (−b/a)L(a/d)Lµ

]
.

Similarly,

[
1− (−b/a)L(−c/d)L(a/d)L(d/a)L

] ∫ T

0
(dv)� T

[
µ+ (−c/d)L(d/a)Lλ

]
.
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On the other hand, thanks to(6.61), we have that

(−b/a)L(−c/d)L(a/d)L(d/a)L > 1,

and, hence,(6.62) holds true. Therefore,

aL

∫ T

0
u �

∫ T

0
(au)� −T λ+ (−b/a)L(a/d)Lµ

(−b/a)L(−c/d)L(a/d)L(d/a)L − 1
,

dL

∫ T

0
v �

∫ T

0
(dv)� −T µ+ (−c/d)L(d/a)Lλ

(−b/a)L(−c/d)L(a/d)L(d/a)L − 1
,

(6.65)

and, consequently,(6.63) is as well true.
Now, fix λ > 0 and considerCλµ. Thanks to Theorem 6.6(a),Cλµ is unbounded inR ×

CT × CT . Moreover, due to second estimate of(6.62),

PµCλµ ∩ [0,∞)= ∅.

On the other hand, thanks to(6.63), u andv possess uniform a priori bounds inCT on
compact subsets of(λ,µ). Indeed, it is rather clear that(6.63) shows thatuL andvL are
uniformly bounded. Now, picktu, tv ∈ R such that

uL = u(tu), vL = v(tv).

Then,

u(t)= e
∫ t
tu
(λℓ−au−bv)

u(tu), v(t)= e
∫ t
tv
(µm−dv−cu)

v(tv),

must be uniformly bounded, as well. This concludes the proof. �

Even in the case when the model possesses a stable coexistence state, the solutions
of (1.1) might blow up in finite time for sufficiently large initial data. In the case of high
symbiosis, where according to Theorem 6.9 Problem(1.2) does not admit a coexistence
state ifλ > 0 andµ > 0, all solutions of(1.1) will blow-up in finite time independently
of the size of the initial populations. Actually, this is the reason why(1.2) cannot admit a
coexistence state. We refrain of giving more details here in, though we send to the interested
reader to [11] for further technical details concerning the elliptic counterpart of the model
studied here in.

7. The competing species model (b > 0 and c > 0)

Undoubtedly, this is the case that has attracted more attention in the mathematical litera-
ture. Perhaps, because in a certainly pioneer chapter, P. de Mottoni and A. Schiaffino [29]
showed that any solution of(1.1) converges in the large to aT -periodic component-wise
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non-negative solution of(1.2), which extraordinary facilitates the analysis of the dynam-
ics of (1.1). Among the most important works related to this model one should include
the most pioneering chapter of J.M. Cushing [7], where the average of the birth rates,
λ andµ, were used by the first time as the main bifurcation parameters to show the ex-
istence of a continuum, not necessarily a curve, of coexistence states of(1.2) linking the
two semi-trivial states of the model. Then, a huge industry grew from these pioneering
chapters. Among the most important posterior works one should quote those of S. Ah-
mad [1], S. Ahmad and A.C. Lazer [2], C. Alvárez and A.C. Lazer [3], J.C. Eilbeck and
J. López-Gómez [12], J.K. Hale and A. Somolinos [14], P. Hess and A.C. Lazer [15],
J. López-Gómez [17], R. Ortega and A. Tineo [30], H. Smith [32,33], A. Tineo [34,35],
and F. Zanolin [36], among many others that are omitted here; many of them authorized by
the previous authors.

Rather naturally, in this section we will focus our attention into the results obtained
in [17] and [12], where it was proved that the componentsCλµ andC

µ
λ are real analytic

curves consisting of coexistence states whose attractive character changes when a turning
point is crossed. This theorem is a very sharp improvement of a previous result by R. Or-
tega and A. Tineo [30], were it was shown that either the model possess a segment of
coexistence states, or it exhibits a finite number of coexistence states.

Although in the previous references some uniqueness results were given, the problem
of the uniqueness remains, in its wide amplitude, entirely open, and it will be treated else-
where.

7.1. Periodic systems of quasi-cooperative type

In this section we study the periodic linear system

{
u′ = αu− βv,

v′ = −γ u+ ρv,
(7.1)

whereα, β, γ , ρ ∈ CT satisfy

∫ T

0
α < 0,

∫ T

0
ρ < 0, β > 0, γ > 0, (7.2)

and its associated Cauchy problem





u′ = αu− βv,

v′ = −γ u+ ρv,

u(0)= u0, v(0)= v0.

(7.3)

As an immediate consequence from Theorem 6.1, it follows the next result.

THEOREM 7.1. Suppose(7.1) possesses a solution(u, v) ∈ C1
T × C1

T \ {(0,0)}. Then, ei-
ther u ≫ 0 and v ≪ 0, or elseu ≪ 0 and v ≫ 0. Therefore, all the coexistence states
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of (1.2) must be ordered, in the sense that for any pair of coexistence states, (u1, v1) �=
(u2, v2), eitheru1 ≫ u2 andv1 ≪ v2, or u1 ≪ u2 andv1 ≫ v2.

PROOF. The change of variable

(x, y)= (u,−v) (7.4)

transforms(7.1) into

{
x′ = αx + βy,

y′ = γ x + ρy,
(7.5)

which is of the same type as(6.1). Therefore, the result is a corollary of Theorem 6.1.�

Similarly, the following quasi-cooperative counterpart of Proposition 6.2 holds.

PROPOSITION7.2. Suppose(ū, v̄) ∈ C1(R+)× C1(R+), R+ := [0,∞), satisfy





ū′ � αū− βv̄,

v̄′ � −γ ū+ ρv̄,

ū(0) > 0, v̄(0) < 0.
(7.6)

Then, ū(t) > 0 and v̄(t) < 0 for eacht � 0.
If u0 − v0> 0 andu0v0 = 0, then there existst0> 0 such that the unique solution(u, v)

of (7.3) satisfiesu(t) > 0 andv(t) < 0 for eacht � t0.

PROOF. The auxiliary pair

(x̄, ȳ) := (ū,−v̄)

satisfies





x̄′ � αx̄ + βȳ,

ȳ′ � γ x̄ + ρȳ,

x̄(0) > 0, ȳ(0) > 0,

and, hence, thanks to Proposition 6.2,x̄(t) > 0 andȳ(t) > 0 for eacht � 0, which con-
cludes the proof of the first claim.

Now, supposeu0 − v0> 0 andu0v0 = 0, and let(u(t), v(t)) denote the unique solution
of (7.3). Then,

(x, y) := (u,−v)
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satisfies





x′ = αx + βy,

y′ = γ x + ρy,

x(0)= u0, y(0)= −v0,

and

x(0)+ y(0)= u0 − v0> 0, x(0)y(0)= 0.

Thus, it follows from Proposition 6.2 that there existst0> 0 such thatx(t) > 0 andy(t) > 0
for eacht � t0. Therefore,u(t) > 0 andv(t) < 0 for eacht � t0, which concludes the
proof. �

Also, the following counterpart of Theorem 6.3 holds. Subsequently, we shall denote by
Φ(T ) the Poincaré map of(7.1).

THEOREM 7.3. The characteristic multipliers of(7.1), ν1 and ν2, are real and distinct,
and satisfy0< ν1ν2< 1. Moreover, if we order them so that0< ν1< ν2, then, 0< ν1< 1,

N
[
Φ(T )− ν1I

]
= span

[
(x0, y0)

]
with x0> 0 andy0> 0,

and

N
[
Φ(T )− ν2I

]
= span

[
(x0, y0)

]
with x0> 0 andy0< 0.

In particular, (7.1) is asymptotically stable ifν2< 1, neutrally stable ifν2 = 1, and unsta-
ble if ν2> 1. Furthermore, the value

λ0 := − 1

T
Logν2 (7.7)

provides us with the unique value ofλ ∈ R for which the eigenvalue problem

{
u′ = αu− βv+ λu,

v′ = −γ u+ ρv+ λv
(7.8)

admits a solution(u, v) ∈ C1
T × C1

T such thatu≫ 0 andv≪ 0.

PROOF. As the change of variable(7.4) transforms(7.1) into (7.5), if

U(T )=
(
u11 u12
u21 u22

)
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denotes the Poincaré map of(7.5), necessarily

Φ(T )=
(
u11 −u12

−u21 u22

)
. (7.9)

Indeed, if we denote by(u(t), v(t)) the unique solution of(7.3) and(x(t), y(t)) stands for
the unique solution of(7.5) satisfying(x(0), y(0))= (u0,−v0), then

(
u(T )

v(T )

)
=
(
x(T )

−y(T )

)
=
(
u11 −u12

−u21 u22

)(
x(0)

−y(0)

)
=Φ(T )

(
u0
v0

)
.

Clearly, the eigenvalues ofU(T ) andΦ(T ) are the same. Moreover, thanks to Theorem 6.3,

N
[
U(T )− ν1I

]
= span

[
(x̃0, ỹ0)

]
with x̃0< 0 andỹ0> 0,

N
[
U(T )− ν2I

]
= span

[
(x̃0, ỹ0)

]
with x̃0> 0 andỹ0> 0,

and a direct calculation shows that, for eachj ∈ {1,2}, (x, y) is an eigenvector ofU(T )
associated to the eigenvalueνj if, and only if,(x,−y) is an eigenvector ofΦ(T ) associated
to νj . Therefore,

N
[
Φ(T )− ν1I

]
= span

[
(x0, y0)

]
with x0> 0 andy0> 0,

and

N
[
Φ(T )− ν2I

]
= span

[
(x0, y0)

]
with x0> 0 andy0< 0,

which concludes the proof of the first block of statements.
Finally, note that the change of variable(7.4) transforms(7.8) into the equivalent system

{
x′ = αx + βy + λx,

y′ = γ x + ρy + λy,

for which the last assertion of Theorem 6.3 is valid. This concludes the proof. �

Finally, by performing the change of variable(7.4), it is easy to see that the following
counterpart of Theorem 6.4 is satisfied.

THEOREM 7.4. The following properties are satisfied:
(a) System(7.1) is stable(ν2 < 1) if, and only if, there exists(ū, v̄) ∈ C1

T × C1
T with

ū≫ 0 and v̄≪ 0 such that

{
ū′ � αū− βv̄,

v̄′ � −γ ū+ ρv̄,
(7.10)

with some of these inequalities strict.
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(b) System(6.1) is unstable(ν2 > 1) if, and only if, there exits(u, v) ∈ C1
T × C1

T with
u≫ 0 andv≪ 0 such that

{
u′ � αu− βv,

v′ � −γ u+ ρv,
(7.11)

with some of these inequalities strict.

7.2. Structure of the componentsCλµ andC
µ
λ

As in Section 6.2, the coexistence states of(1.2) will be regarded as zeroes of the operator
F :R2 × CT × CT → CT × CT defined by(6.23), whereM > 0 is fixed. The following
counterpart of Proposition 6.5 is satisfied.

PROPOSITION7.5. Suppose(u0, v0) ∈ CT × CT satisfiesu0 ≫ 0, v0 ≫ 0, and

F(λ,µ,u0, v0)= 0.

Then, each of the operators

D(λ,u,v)F(λ,µ,u0, v0) :R × CT × CT → CT × CT

and

D(µ,u,v)F(λ,µ,u0, v0) :R × CT × CT → CT × CT

is surjective. In other words, (0,0) is a regular value ofF with respect toR2× IntP × IntP .

PROOF. As in the proof of Proposition 6.5, differentiating gives(6.24), (6.25) and
(6.26). Similarly, D(λ,u,v)F(λ,µ,u0, v0) and D(µ,u,v)F(λ,µ,u0, v0) are surjective if
(λ,µ,u0, v0) is non-degenerate. So, suppose(λ,µ,u0, v0) is degenerate. Then, since
D(u,v)F(λ,µ,u0, v0) is a compact perturbation of the identity,

N := dimN
[
D(u,v)F(λ,µ,u0, v0)

]
= codimR

[
D(u,v)F(λ,µ,u0, v0)

]
� 1,

andN [D(u,v)F(λ,µ,u0, v0)] is the set ofT -periodic solutions(u, v) of the linear system

{
u′ = α0u− bu0v,

v′ = −cv0u+ β0v.
(7.12)

Sinceb > 0 andc > 0, we have that

−bu0< 0 and −cv0< 0.
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Moreover, since(λ,µ,u0, v0) is a coexistence state of(1.2),

∫ T

0
α0 = −

∫ T

0
a(t)u0(t)dt < 0 and

∫ T

0
β0 = −

∫ T

0
d(t)v0(t)dt < 0.

Therefore,(7.12) fits into the abstract setting of Section 7.1. Thus, thanks to Theorem 7.3,
the biggest multiplier of(7.12), denoted byν2, equals one and anyT -periodic solution
of (7.12) must be a multiple of a fixedT -periodic solution(ϕ,ψ) such thatϕ ≫ 0 and
ψ ≪ 0. In particular,N = 1. Now, due to(6.25) and (6.26), to conclude the proof it
suffices to prove(6.29). On the contrary, suppose that, e.g.,

−RM(ℓu0,0) ∈R
[
D(u,v)F(λ,µ,u0, v0)

]
.

Then, the system

{
u′ = α0u− bu0v+ ℓu0,

v′ = −cv0u+ β0v,
(7.13)

possesses aT -periodic solution(u, v). Actually, for eachR > 0, the pair

(uR, vR) := (u+Rϕ,v+Rψ)

provides us with aT -periodic solution of(7.13) such that, for sufficiently largeR > 0,

uR ≫ 0 and vR ≪ 0.

Moreover, it follows fromℓu0> 0 that

{
u′
R > α0uR − bu0vR,

v′
R = −cv0uR + β0vR,

and, therefore, thanks to Theorem 7.4(a),ν2 < 1, which is a contradiction, sinceν2 = 1.
Similarly, the second relation of(6.29) holds. This concludes the proof. �

The following result ascertains the global structure of the coexistence states of(1.2)
for the competing species model. To reduce the complexity of the number of cases to be
considered in our analysis we shall throughout assume that conditions(4.10) are satisfied,
though most of the results are still valid in the absence of(4.10)—such restrictions are
exclusively needed in order to get some non-existence results entailing the relative com-
pactness of the componentsCλµ andC

µ
λ .

THEOREM 7.6. Assumeb > 0, c > 0, and (1.2) exhibits a coexistence state, say
(λ,µ,u0, v0). Then, λ > 0,µ> 0, and

u0 ≪ θ[λℓ,a], v0 ≪ θ[µm,d]. (7.14)
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Moreover, the following properties are satisfied:
(a) For eachλ > 0 there existsµ1(λ) > 0 such that(1.2) does not admit a coexistence

state ifµ � µ1(λ). Moreover, the component of coexistence statesCλµ constructed
in Theorem5.4 is bounded inR × CT × CT and it consists of a real analytic curve.
More precisely, there exits a real analytic map(µ,u, v) : [0,1] → R × IntP × IntP
such that

(
µ(0), u(0), v(0)

)
= (µ0, θ[λℓ,a],0),

(
µ(1), u(1), v(1)

)
= (µ∗,0, θ[µ∗m,d]),

and

Cλµ =
{(
µ(s), u(s), v(s)

)
: s ∈ (0,1)

}
,

whereµ∗ > 0 is the unique value ofµ satisfying(5.40).
(b) For eachµ> 0 there existsλ1(µ) > 0 such that(1.2) does not admit a coexistence

state ifλ � λ1(µ). Moreover, the component of coexistence statesC
µ
λ constructed

in Theorem5.5 is bounded inR × CT × CT and it consists of a real analytic curve.
More precisely, there exists a real analytic map(λ,u, v) : [0,1] → R× IntP × IntP
such that

(
λ(0), u(0), v(0)

)
= (λ0,0, θ[µm,d]),

(
λ(1), u(1), v(1)

)
= (λ∗, θ[λ∗ℓ,a],0),

and

C
µ
λ =

{
(λ(s), u(s), v(s)

)
: s ∈ (0,1)

}
,

whereλ∗ > 0 is the unique value ofλ satisfying(5.46).
(c) The set of coexistence states of(1.2) (λ,µ,u, v) ∈ R2 × IntP × IntP such that, for

someµ ∈ R, (µ,u, v) ∈ Cλµ, or, for someλ ∈ R, (λ,u, v) ∈ C
µ
λ , is a real analytic

surface linking the surfaces of semi-trivial states

{
(λ,µ, θ[λℓ,a],0) :λ > 0, µ ∈ R

}

and

{
(λ,µ,0, θ[µm,d]): λ ∈ R, µ > 0

}

along their respective curves of neutral stability

µ= 1

T

∫ T

0
c(t)θ[λℓ,a](t)dt and λ= 1

T

∫ T

0
b(t)θ[µm,d](t)dt.

Therefore, (1.2) possesses a coexistence state if both semi-trivial states are, simul-
taneously, linearly unstable, or linearly stable.
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PROOF. The fact that the componentsCλµ andC
µ
λ are real analytic curves follows from

Proposition 7.5 adapting the argument of the proof of Theorem 6.6. Now, we shall show
that both components are bounded. The remaining assertions of the theorem follow straight
ahead from Theorems 5.4 and 5.5.

Suppose(λ,µ,u0, v0) is a coexistence state of(1.2). Then, dividing byu0 the u-
equation, byv0 thev-equation, and integrating in[0, T ] gives

λ= 1

T

∫ T

0
(au0 + bv0) > 0 and µ= 1

T

∫ T

0
(dv0 + cu0) > 0.

Thus,λ > 0 andµ> 0 are necessary for the existence of a coexistence state. So, throughout
the remaining of the proof we will assume thatλ > 0 andµ> 0.

Fix λ > 0. Then,u0 ≫ 0 is a positive strict subsolution of the problem

u′ = λℓ− au2, u ∈ C1
T ,

sincebu0v0 > 0, and, hence, thanks to Proposition 2.6,u0 ≪ θ[λℓ,a]. Similarly, v0 ≪
θ[µm,d]. Thus,

v0 = µmv0 − dv2
0 − cu0v0> (µm− cθ[λℓ,a])v0 − dv2

0.

Hence, if

µ>
1

T

∫ T

0
c(t)θ[λℓ,a](t)dt,

then, thanks again to Proposition 2.6, we have that

v0 ≫ θ[µm−cθ[λℓ,a],d] :=Θµ,

and, so,

u0< (λℓ− bΘµ)u0 − au2
0.

Consequently, dividing byu0 and integrating in[0, T ] gives

λ >
1

T

∫ T

0
b(t)Θµ(t)dt. (7.15)

To show the existence ofµ1(λ) such that(1.2) cannot admit a coexistence state ifµ� µ1
it suffices to show that(7.15) cannot be satisfied for sufficiently largeµ. To show this, note
that the functionΨµ defined throughΘµ := µΨµ satisfies

1

µ
Ψ ′
µ =

(
m− cθ[λℓ,a]

µ

)
Ψµ − dΨ 2

µ.
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Adapting the argument of the proof of(2.20) it is apparent that limµ↑∞Ψµ = m
d

uniformly

in R, since limµ↑∞
cθ[λℓ,a]
µ

= 0. Therefore,

lim
µ↑∞

Θµ = ∞

uniformly in [0, T ], and, consequently,(7.15) fails to be true for sufficiently largeµ. By
symmetry, for anyµ > 0 there existsλ1(µ) > 0 such that(1.2) does not admit a coexis-
tence state ifλ� λ1(µ).

The previous bounds show thatCλµ andC
µ
λ must be bounded for eachλ > 0 andµ> 0.

The remaining assertions of the theorem follow readily from Theorems 5.4, 5.5 and 5.6.�

For the autonomous counterpart of(1.2) with bc = 1, is easy to check that, for any
λ > 0, the curve

(
µ(s), u(s), v(s)

)
= (cλ,λ− bs, s), 0� s �

λ

b
,

provides us with the componentCλµ bifurcating from the semi-trivial solution(λ,0) at
µ = cλ. As this simple example shows, conditionµ̇ = 0 cannot be avoided in general,
unless some additional assumptions are imposed; e.g., that the semi-trivial states cannot be
simultaneously neutrally stable.

As in the symbiotic model, fixingλ, or µ, and due to Proposition 7.5, any coexistence
state of(1.2), say(λ,µ,u0, v0), must lay into a real analytic curve of coexistence states
of (1.2). Fix, e.g.,λ and letΓ denote the trajectory of theµ–curve of coexistence states
containing(λ,µ,u0, v0). As a consequence from the existence of uniform a priori bounds
in CT for the coexistence states of(1.2) (cf. Theorem 7.6),Γ must be bounded. IfΓ ∩Cλµ �=
∅, thenΓ = Cλµ. Thus, ifΓ �= Cλµ, necessarilyΓ ∩Cλµ = ∅, and, consequently,Γ must be an
isolated component with respect of the surfaces of semi-trivial positive solutions of(1.2).
Suppose such a component exists. Then, by varying an additional parameter of the model,
e.g., the amplitude ofb, or c, it is possible to show that whenb, or c are sufficiently small,
then (1.2) possesses a unique coexistence state, necessarily belonging toCλµ. Therefore,
at some intermediate value of theunfolding parameter, the isolated componentΓ must
reduce to a single point. Thanks to Proposition 7.5 this is impossible. Therefore, the only
coexistence states of(1.2) are those contained in the componentsCλµ. The technical details
of this analysis will appear elsewhere.

As an easy consequence from Theorem 7.6, except in the case when both semi-trivial
states are neutrally stable,(1.2) possesses, at most, a finite number of coexistence states
and, according to Theorem 7.1, all of them must be ordered, which provides us with the
main result of R. Ortega and A. Tineo [30].

In the case when both semi-trivial states are neutrally stable, either there is an analytic
curve of coexistence states linking both states, or the model possesses a finite number of
coexistence states; its cardinal depending on the values of the several parameter functions
involved in the setting of the model.
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7.3. Stability of the coexistence states alongCλµ andC
µ
λ

Fix λ > 0 and let(µ(s), u(s), v(s)), s � 0, be the real analytic map constructed in Theo-
rem 7.6, wheres ∈ (0,L) is assumed to be the length of arc of curve. Subsequently, we
shall denote· := d

ds . Repeating the argument of Section 6.3, we have(6.31) and(6.32).
Moreover, since

(
µ(0), u(0), v(0)

)
= (µ0, θ[λℓ,a],0),

it follows from Theorem 5.6 that

qs := v̇(s)= ϕv + O(s)= e
∫ ·

0(µ0m−cθ[λℓ,a]) + O(s)≫ 0, s ↓ 0. (7.16)

Similarly, setting

(ps, qs) :=
(
u̇(s), v̇(s)

)
, s > 0,

(6.31) can be rewritten in the form

{
(ps)

′ =
[
λℓ− 2au(s)− bv(s)

]
ps − bu(s)qs,

(qs)
′ = −cv(s)ps +

[
µ(s)m− 2dv(s)− cu(s)

]
qs + µ̇(s)mv(s).

(7.17)

In the competing species model, we have that−bu(s) < 0, −cv(s) < 0, (6.35) and(6.36).
Thus,(7.17) fits within the general setting of Section 7.1. In particular, thanks to Proposi-
tion 2.1, we find from the first equation of(7.17) that, for each sufficiently smalls > 0,

ps = R−[λℓ−2au(s)−bv(s)]
(
−bu(s)qs

)
≪ 0.

Therefore, there existsε > 0 such that

ps ≪ 0 and qs ≫ 0 for eachs ∈ [0, ε]. (7.18)

Supposeµ(s) = µ0 for eachs ∈ [0,L]. Then, (7.17) becomes into(6.38) and, due to
(6.32), (ps, qs) �= (0,0). Thus, thanks to Theorem 7.1, for eachs ∈ [0,L], eitherps ≫ 0
andqs ≪ 0, orps ≪ 0 andqs ≫ 0. Thanks to(7.18), necessarily

ps ≪ 0 and qs ≫ 0 for eachs ∈ [0,L]. (7.19)

Indeed, sinces → (ps, qs) is analytic, if(7.19) is not satisfied, then, due to(6.37), there
is some value ofs, say s̃ ∈ (0,L] whereps̃ < 0, qs̃ > 0, and, e.g.,ps̃ ≪ 0 fails. Due
to Theorem 7.1, this impliesps̃ ≪ 0 andqs̃ ≫ 0, which is a contradiction. Thus,(7.19)
holds true. Consequently, thanks to Theorem 7.3, the principal characteristic multiplier of
(µ(s), u(s), v(s)), ν2(s), equals 1 for eachs ∈ [0,L]. Therefore, ifµ̇= 0, thenν̇2 = 0 and,
hence, all the coexistence states ofCλµ are neutrally stable. Wheṅµ �= 0, the following
result is satisfied.
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THEOREM 7.7. Supposėµ �= 0 in [0,L]. Then, the set

S :=
{
s ∈ (0,L): µ̇(s)= 0

}
(7.20)

is finite(possibly empty), eachs ∈ S is a zero of finite order oḟµ, and

S =
{
s ∈ (0,L): ν2(s)= 1

}
. (7.21)

Moreover,

µ̇(s)
(
1− ν2(s)

)
> 0, s ∈ (0,L) \ S, (7.22)

and

ps ≪ 0 and qs ≫ 0 whenever µ̇(s)� 0. (7.23)

PROOF. The fact thatS is, at most, finite and that eachs ∈ S has finite order—as a zero of
µ̇—are consequences from the fact thatµ̇ is real analytic. Now, we shall prove(7.21). Pick
s ∈ S . Then,(ps, qs) satisfies(6.38) and, due to(6.32), (ps, qs) �= (0,0). Thus, thanks to
Theorem 7.1,ps ≪ 0 andqs ≫ 0, orps ≫ 0 andqs ≪ 0. In any of these cases, we find
from Theorem 7.3 thatλ= 0 is theprincipal characteristic exponentof (µ(s), u(s), v(s))
and, hence,ν2(s)= 1. To prove the converse inclusion, lets ∈ (0,L) such thatν2(s)= 1.
Then, thanks to Theorem 7.3, there exists aT -periodic pair(P,Q) with P ≫ 0 andQ≪ 0
such that

{
P ′ =

[
λℓ− 2au(s)− bv(s)

]
P − bu(s)Q,

Q′ = −cv(s)P +
[
µ(s)m− 2dv(s)− cu(s)

]
P.

(7.24)

Now, choose a sufficiently smallε > 0 so that the auxiliary pair

(U,V ) := (P − εps,Q− εqs),

satisfyU ≫ 0 andV ≪ 0. Thanks to(7.17) and(7.24) we have that

{
U ′ =

[
λℓ− 2au(s)− bv(s)

]
U − bu(s)V,

V ′ = −cv(s)U +
[
µ(s)m− 2dv(s)− cu(s)

]
V − εµ̇(s)mv(s).

Assumeµ̇(s) > 0. Then, sinceεmv(s) > 0, the pair(U,V ) satisfies

{
U ′ =

[
λℓ− 2au(s)− bv(s)

]
U − bu(s)V,

V ′ <−cv(s)U +
[
µ(s)m− 2dv(s)− cu(s)

]
V,
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and, hence, thanks to Theorem 7.4(a),ν2(s) < 1, which is a contradiction. Assume
µ̇(s) < 0. Then,(U,V ) satisfies

{
U ′ =

[
λℓ− 2au(s)− bv(s)

]
U − bu(s)V,

V ′ >−cv(s)U +
[
µ(s)m− 2dv(s)− cu(s)

]
V,

and, due to Theorem 7.4(b),ν2(s) > 1, which is a contradiction again. Consequently,
µ̇(s)= 0 and, therefore,(7.21) holds true.

Now, pick s̃ ∈ S . Thanks to(6.32), it follows from Theorem 7.1 that some of the fol-
lowing alternatives occurs:

1. ps̃ ≫ 0 andqs̃ ≪ 0.
2. ps̃ ≪ 0 andqs̃ ≫ 0.

Assume alternative 1 occurs. Ass̃ is an isolated zero oḟµ(s), there existsε > 0 such that
ps = u̇(s)≫ 0 andqs = v̇(s)≪ 0 for eachs ∈ (s̃ − ε, s̃ + ε), and

µ̇−1(0)∩ (s̃ − ε, s̃ + ε)∩ (0,L)= {s̃}.

Thus, for each

s ∈ J := (0,L)∩
[
(s̃ − ε, s̃ + ε) \ {s̃}

]
,

eitherµ̇(s) > 0, or µ̇(s) < 0. Supposėµ(s) > 0. Then,

{
(ps)

′ =
[
λℓ− 2au(s)− bv(s)

]
ps − bu(s)qs,

(qs)
′ >−cv(s)ps +

[
µ(s)m− 2dv(s)− cu(s)

]
qs,

(7.25)

and it follows from Theorem 7.4(b) thatν2(s) > 1. Hence,µ̇(s)(1 − ν2(s)) < 0. Now,
supposėµ(s) < 0. Then,

{
(ps)

′ =
[
λℓ− 2au(s)− bv(s)

]
ps − bu(s)qs,

(qs)
′ <−cv(s)ps +

[
µ(s)m− 2dv(s)− cu(s)

]
qs,

(7.26)

and it follows from Theorem 7.4(a) thatν2(s) < 1. Hence,µ̇(s)(1− ν2(s)) < 0. Therefore,
the following condition is satisfied

µ̇(s)
(
1− ν2(s)

)
< 0, s ∈ (0,L)∩

[
(s̃ − ε, s̃ + ε) \ {s̃}

]
, (7.27)

for eachs̃ ∈ S satisfying alternative 1.
Now, supposẽs ∈ S satisfies alternative 2. As̃s is an isolated zero oḟµ(s), there exists

ε > 0 such thatps = u̇(s)≪ 0 andqs = v̇(s)≫ 0 for eachs ∈ (s̃ − ε, s̃ + ε), and

µ̇−1(0)∩ (s̃ − ε, s̃ + ε)∩ (0,L)= {s̃}.
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Thus, for each

s ∈ J := (0,L)∩
[
(s̃ − ε, s̃ + ε) \ {s̃}

]
,

eitherµ̇(s) > 0, or µ̇(s) < 0. Supposėµ(s) > 0. Then,

{
(−ps)′ =

[
λℓ− 2au(s)− bv(s)

]
(−ps)− bu(s)(−qs),

(−qs)′ <−cv(s)(−ps)+
[
µ(s)m− 2dv(s)− cu(s)

]
(−qs),

(7.28)

with −ps ≫ 0 and−qs ≪ 0, and, hence, due to Theorem 7.4(a),ν2(s) < 1. Thus,µ̇(s)(1−
ν2(s)) > 0. Similarly, if µ̇(s) < 0, then, due to Theorem 7.4(b),ν2(s) < 1. Therefore,
condition(7.22) is satisfied for each̃s ∈ S satisfying alternative 2.

Now, suppose

S = {sn: 1� n�N}, 0< sn < sn+1, 1� n�N − 1;

the subsequent argument is easily adapted to cover the case whenS is empty. Thanks to
(7.19), for sufficiently smalls > 0,ps ≪ 0 andqs ≫ 0. Moreover, eitheṙµ(s) > 0 for each
s ∈ (0, s1), or µ̇(s) < 0 for eachs ∈ (0, s1).

Supposeµ̇(s) > 0 for eachs ∈ (0, s1). Then, for sufficiently smalls > 0, (−ps,−qs)
satisfies(7.28) and, hence, thanks to Theorem 7.4(a),ν2(s) < 1. Actually, this is the inter-
exchange stability principle between the semi-trivial state(µ, θ[λℓ,a],0) and the bifurcating
coexistence state(µ(s), u(s), v(s)) asµ crosses the bifurcation valueµ0. Thanks to(7.21),
necessarilyν2(s) < 1 for eachs ∈ (0, s1) and, therefore,

µ̇(s)
(
1− ν2(s)

)
> 0, s ∈ (0, s1). (7.29)

Necessarilyps1 ≪ 0 andqs1 ≫ 0. Indeed, ifps1 ≫ 0 andqs1 ≪ 0, then(7.27) holds, which
contradicts(7.29). Therefore,

µ̇(s)
(
1− ν2(s)

)
> 0, s ∈ (0, s2) \ {s2}. (7.30)

Reiterating this argument,(7.22) holds true.
Now, supposėµ(s) < 0 for eachs ∈ (0, s1). Then,(−ps,−qs) satisfies

{
(−ps)′ =

[
λℓ− 2au(s)− bv(s)

]
(−ps)− bu(s)(−qs),

(−qs)′ >−cv(s)(−ps)+
[
µ(s)m− 2dv(s)− cu(s)

]
(−qs),

(7.31)

and, hence, thanks to Theorem 7.4(b),ν2(s) > 1. As in the previous case, this provides us
with the inter-exchange stability principle between the semi-trivial state(µ, θ[λℓ,a],0) and
the bifurcating coexistence state(µ(s), u(s), v(s)). Thanks to(7.21), ν2(s) > 1 for each
s ∈ (0, s1) and, therefore,(7.22) is as well satisfied. Arguing as above, the proof of(7.22)
is concluded.
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Note that, as a result from the previous analysis, we have that

ps̃ ≪ 0 and qs̃ ≫ 0 for eachs̃ ∈ S ∪ {0}. (7.32)

Finally, let s∗1 , s∗2 ∈ S ∪ {0} such that

µ̇(s) > 0, s ∈
(
s∗1, s

∗
2

)
.

Thanks to(7.32), ps ≪ 0 andqs ≫ 0 for eachs > s∗1 sufficiently close tos∗1 . Thus, either
ps ≪ 0 andqs ≫ 0 for eachs ∈ (s∗1, s∗2), or there exists0 ∈ (s∗1, s∗2) and t ∈ R such that
ps0 � 0 andqs0 � 0 and eitherps0(t)= 0, orqs0(t)= 0. Since

−cv(s0)ps0 + µ̇(s0)mv(s0) > 0,

we find from Proposition 2.1 applied to the second equation of(7.17) thatqs0 ≫ 0. Thus,
−bu(s0)qs0 < 0 and, thanks again to Proposition 2.1, the first equation of(7.17) gives
ps0 ≪ 0, which is impossible. Therefore, for eachs ∈ (s∗1, s∗2), ps ≪ 0 andqs ≫ 0, which
concludes the proof of(7.23). The proof of the theorem is completed. �

7.4. Some bifurcation diagrams

In order to study the curvesCµλ we did carried out some numerical investigations in [12],
where we solved(1.2) using spectral collocation methods coupled with path-following
techniques. To computeT -periodic solutions of(1.2), the most appropriate set of basis
functions to use is trigonometric polynomials, and these were used to generate the bifurca-
tion diagrams of Figs. 17 and 18. Fig. 17 shows the approximated componentsC

µ
λ for the

following problems, withT = 1 anda = d = 1,
(a) µ = 3.32, m(t) = 1 + 0.7 sin(2πt), ℓ(t) = 1 + 0.7 cos(2πt), b(t) = 0.9 +

0.7 sin(2πt + π/4), c(t)= 0.9+ 0.7 cos(2πt + π/4).
(b) µ = 3.32, m(t) = 1 + 0.7 sin(2πt), ℓ(t) = 1 + 0.7 cos(2πt), b(t) = 0.9 +

0.7 sin(2πt), c(t)= 0.9+ 0.7 cos(2πt).
(c) µ= 5.00,ℓ(t)=m(t)= 1+ 0.7 sin(2πt), b(t)= c(t)= 0.9+ 0.7 sin(2πt).
(d) µ= 3.32,ℓ(t)=m(t)= 1− 0.7 sin(2πt), b(t)= c(t)= 1.1+ 0.7 sin(2πt).

Given aµ > 0, we have plotted the parameterλ along the horizontal axis, and along the
vertical one we give the value‖u‖2

2 + ‖v‖2, where

‖f ‖2 =

√√√√
∞∑

j=1

c2
j if f = c1 +

∞∑

j=1

[
c2j sin(2πjt)+ c2j+1 cos(2πjt)

]
.

This particular choice of norm makes it easy to distinguish between the semi-trivial states
(λ,µ, θ[λℓ,a],0) and (λ,µ,0, θ[µm,d]), which would otherwise cross near the bifurcation
points and confuse the picture. Stable solutions are represented by continuous lines, unsta-
ble ones by dashed lines. Several different cases are shown according to the nature of the
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Fig. 17. Bifurcation diagrams forµ> 0 constant.

Fig. 18. Two examples with both semi-trivial states neutrally stable.
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bifurcation to coexistence states from the semi-trivial solutions. In all cases,C
µ
λ possesses

at most a finite number of hysteresis and turning points and the stability of the coexistence
states change according to Theorem 7.7. Fig. 18 shows some of the possible situations
when both semi-trivial states are neutrally stable. In some cases,(1.2) possesses a coexis-
tence states, while in others it does not. Fig. 18 shows the following two cases, withT = 1
anda = d = 1:

(a) µ = 5.365,m(t) = 1 + 0.7 sin(2πt), ℓ(t) = 1 + 0.7 cos(2πt), b(t) = c(t) = 0.9 +
0.7 sin(2πt).

(b) µ = 5.365, m(t) = 1 + 0.7 sin(2πt), ℓ(t) = 1 + 0.7 cos(2πt), b(t) = 0.9 +
0.7 sin(2πt), c(t)= 0.9+ 0.7 cos(2πt).

Case (a) provides us with an example where both semi-trivial states are neutrally stable and
(1.2) does not admit a coexistence state. It should be noted that, thanks to the discussion
closing Section 7.3,(1.2) cannot admit a further coexistence state outsideC

µ
λ . Case (b)

provides us with an example where both semi-trivial states are neutrally stable and(1.2)
possesses a unique coexistence state, which is stable.

7.5. Dynamics of(1.1)

Thanks to the theory developed by P. de Mottoni and A. Schiaffino [29], all solutions
of (1.1) must approach aT -periodic solution of(1.2) as time passes by. Combining this
information with the theory developed in this section, one can easily obtain the validity of
the following assertions. Subsequently, we shall denote by(u(t), v(t)) the unique positive
solution of(1.1).

1. If λ� 0 andµ� 0, then limt↑∞ (u(t), v(t))= (0,0).
2. If λ > 0 andµ� 0, then

lim
t↑∞

(
u(t), v(t)

)
= (θ[λℓ,a],0). (7.33)

3. If λ� 0 andµ> 0, then

lim
t↑∞

(
u(t), v(t)

)
= (0, θ[µm,d]). (7.34)

4. If

λ > 0, 0<µ<
1

T

∫ T

0
c(t)θ[λℓ,a](t)dt, (7.35)

and(1.2) does not admit a coexistence state, then,(7.33) holds true.
5. If (7.35) is satisfied, and(1.2) has a coexistence state, then, either(7.33) holds true,

or there exists a coexistence state(u0, v0) of (1.2) such that

lim
t↑∞

(
u(t), v(t)

)
= (u0, v0). (7.36)
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Moreover, in this case the number of stable coexistence states of(1.2) equals the
number of unstable coexistence states, if there is some.

6. If

µ> 0, 0< λ<
1

T

∫ T

0
b(t)θ[µm,d](t)dt, (7.37)

and(1.2) does not admit a coexistence state, then,(7.34) holds true.
7. If (7.37) is satisfied and(1.2) has a coexistence state, then, either(7.34) holds true,

or there exists a coexistence state(u0, v0) of (1.2) satisfying(7.36). Moreover, in this
case the number of stable coexistence states of(1.2) equals the number of unstable
coexistence states, if there is some.

8. If

λ >
1

T

∫ T

0
b(t)θ[µm,d](t)dt, µ >

1

T

∫ T

0
c(t)θ[λℓ,a](t)dt, (7.38)

then(1.2) possesses a stable coexistence state. Moreover, ifn� 1 stands for its num-
ber of stable coexistence states, then(1.2) possessesn−1 unstable coexistence states
and a finite number of neutrally stable coexistence states. Furthermore, there exists a
coexistence state(u0, v0) for which (7.36) holds true.

9. If

0< λ<
1

T

∫ T

0
b(t)θ[µm,d](t)dt, 0<µ<

1

T

∫ T

0
c(t)θ[λℓ,a](t)dt,

then(1.2) possesses an unstable coexistence state. Moreover, ifn� 1 stands for its
number of unstable coexistence states, then(1.2) possessesn− 1 stable coexistence
states and a finite number of neutrally stable coexistence states. Furthermore, either
there exists a coexistence state(u0, v0) for which (7.36) holds, or either(7.33), or
(7.34), holds, according to the values of(x, y).

8. The speciesv preys onu (b > 0 and c < 0)

Now, the linearization of(1.2) around any coexistence state can be expressed in the form

{
u′ = αu− βv,

v′ = γ u+ ρv,
(8.1)

whereα, β, γ , ρ ∈ CT satisfy

∫ T

0
α < 0,

∫ T

0
ρ < 0, β > 0, γ > 0, (8.2)
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which is a non-cooperative periodic system. As a result, the nice monotonicity properties
available for competing species and symbiotic models are lost, and, in general, the compo-
nents of coexistence statesCλµ andC

µ
λ bifurcating from the semi-trivial states are far from

being analytic curves, except in a neighborhood of their bifurcation points from the semi-
trivial states. Nevertheless, in strong contrast with the classical cases of competition and
symbiosis, in this model the existence of a coexistence state is characterized by the linear
stability of the semi-trivial states.

8.1. Characterizing the existence of coexistence states

Subsequently, we supposem≫ 0 andd ≫ 0. Then,

lim
µ↑∞

1

T

∫ T

0
b(t)θ[µm,d](t)dt = ∞,

since

lim
µ↑∞

θ[µm,d]
µ

= m

d
,

and, hence, for eachλ > 0 there exists a unique value ofµ, µ∗ > 0, such that

λ= 1

T

∫ T

0
b(t)θ[µ∗m,d](t)dt. (8.3)

The following result is satisfied.

THEOREM 8.1. The following conditions are equivalent:
(a) Problem(1.2) possesses a coexistence state.
(b) λ > 0 and any semi-trivial state of(1.2) is linearly unstable.
(c) The parameters(λ,µ) satisfy

λ >max

{
0,

1

T

∫ T

0
(bθ[µm,d])

}
, µ >

1

T

∫ T

0
(cθ[λℓ,a]), (8.4)

where, for eachµ ∈ R, θ[µm,d] ∈ C1
T stands for the maximal non-negative solution

of u′ = λℓu− au2. In other words, θ[µm,d] ≫ 0 if µ> 0, while θ[µm,d] = 0 if µ� 0.
Moreover, for eachλ > 0, the componentCλµ of coexistence states constructed in Theo-
rem5.4 is bounded inR × CT × CT and it satisfies

(λ,µ0, θ[λℓ,a],0), (λ,µ∗,0, θ[µ∗m,d]) ∈ C̄λµ, (8.5)

whereµ∗ is the unique value ofµ satisfying(8.3). Therefore, theµ-projection ofCλµ is the
interval (µ0,µ∗).
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PROOF. Suppose(λ,µ,u0, v0) is a coexistence state of(1.2). Then, dividing byu0 the
u-equation and integrating in[0, T ] gives

λ= 1

T

∫ T

0
(au0 + bv0) > 0.

So,λ > 0 is necessary for the existence. Subsequently, we will assume thatλ > 0. Then,
thanks again to theu-equation,

u′
0 = λℓu0 − au2

0 − bu0v0< λℓu0 − au2
0,

and, due to Proposition 2.6,

u0 ≪ θ[λℓ,a]. (8.6)

So, dividing byv0 thev-equation, integrating in[0, T ], and using(8.6) shows that

µ= 1

T

∫ T

0
(cu0 + dv0) >

1

T

∫ T

0
c(t)θ[λℓ,a](t)dt,

sincec < 0. Thus, the second estimate of(8.4) is necessary for the existence.
Now, supposeµ> 0. Then,θ[µm,d] ≫ 0,

v′
0 = µmv0 − dv2

0 − cu0v0>µmv0 − dv2
0,

and, it is apparent from Proposition 2.6 that

v0 ≫ θ[µm,d]. (8.7)

Consequently,

λ= 1

T

∫ T

0
(au0 + bv0) >

1

T

∫ T

0
b(t)θ[µm,d](t)dt

and, therefore,(8.4) is necessary for the existence of a coexistence state. It should be noted
that(8.4) provides us with the set of values of(λ,µ) with λ > 0 for which any semi-trivial
state of(1.2) is linearly unstable, i.e., (b) and (c) are equivalent and we have just seen that
(a) implies (c).

Now, fix λ > 0 and pick(µ,u0, v0) ∈ Cλµ. Then,(8.7) is satisfied. Moreover, at any time
t0 wherev0(t0)= (v0)M , we have thatv′

0(t0)= 0 and, hence, it follows from thev-equation
that

µm(t0)− d(t0)v0(t0)− c(t0)u0(t0)= 0.
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Thus, thanks to(8.6),

‖v0‖CT = v0(t0)=
m(t0)

d(t0)
µ+ −c(t0)

d(t0)
u(t0)

�

(
m

d

)

M

|µ| +
(−c
d

)

M

θ[λℓ,a],

and, consequently,Cλµ is bounded. Now, it is apparent that Theorem 5.4 concludes the
proof. Indeed, theµ-projection ofCλµ must be the interval(µ0,µ∗) and, therefore,(8.4) is
sufficient for the existence of a coexistence state of(1.2). �

8.2. Dynamics of(1.1)

Thanks to the theory developed in [25], the following results, whose proofs are omitted
here, are satisfied. Subsequently, we shall denote by(u(t), v(t)) the unique positive solu-
tion of (1.1).

1. If (0,0) is linearly stable, i.e., ifλ� 0 andµ� 0, then limt↑∞ (u(t), v(t))= (0,0).

2. If λ > 0 and (θ[λℓ,a],0) is linearly stable, i.e.,µ � 1
T

∫ T
0 c(t)θ[λℓ,a](t)dt , then

limt↑∞ (u(t), v(t))= (θ[λℓ,a],0).

3. If µ > 0 and (0, θ[µm,d]) is linearly stable, i.e.,λ � 1
T

∫ T
0 b(t)θ[µm,d](t)dt , then

limt↑∞ (u(t), v(t))= (0, θ[µm,d]).
As far as to the problem of the uniqueness, multiplicity and stability of the coexistence

states things are much more difficult to deal with than in the competing species and sym-
biotic prototype counterparts, since the linearization of(1.2) at any coexistence state has
a non-cooperative structure—the off-diagonal entries of the coupling matrix of the sys-
tem have contrary signs—and for such problems a general comparison principle within
the spirit of Theorems 6.1 and 7.1 is far from being available. Therefore, the problem of
ascertaining the signs of the Floquet exponents of a given coexistence state is extremely
difficult to treat with.

Quite strikingly, although the one-dimensional predator–prey model with diffusion un-
der homogeneous Dirichlet boundary conditions is known to admit at most a coexistence
state [26,10,18], there are choices of the several coefficient functions in the setting of(1.2)
for which the predator–prey model admits two 2T -periodic coexistence states and one
unstableT -periodic coexistence state [5,8,18]. Hence, the uniqueness result for the one-
dimensional elliptic model does not extend in general to the periodic prototype models,
however both prototypes, viewed as abstract non-cooperative systems, possess the same
operator structure [18]. In [25] were obtained some persistence results in the presence of
coexistence states, and in [5] it was shown that if the product of the interactionsb andc is
sufficiently small, then the model admits at most a coexistence state, though we refrain of
giving more details here. Actually, this uniqueness principle holds true in the general case
whenb andc are arbitrary. The details will appear elsewhere.
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1. Introduction

The evolution of a physical system in time is described by an initial value problem, i.e.
a differential equation (ordinary or partial) and an initial condition. In many cases it is
better to have more initial information. The local condition is replaced then by a nonlocal
condition, which gives better effect than the local initial condition, since the measurement
given by a nonlocal condition is usually more precise than the only one measurement given
by a local condition.

The study of initial value problems (IVP for short) with nonlocal conditions is of sig-
nificance, since they have applications in problems in physics and other areas of applied
mathematics. Conditions of this type can be applied in the theory of elasticity with better
effect than the initial or Darboux conditions.

Consider the differential equation

x′(t)= f
(
t, x(t)

)
, x(t0)= x0, t � 0, x(t) ∈ Rn. (1.1)

The fundamental assumption used when modeling a system using a differential equation
is that the time rate at timet , given asx′(t), depends only on the current status at timet ,
given asf (t, x(t)). Moreover, the initial condition is given in the formx(t0) = x0. In
applications, this assumption and the initial condition should be improved so that we can
model the situations more accurately and therefore derive better results.

One improvement of Eq. (1.1) is to assume that the time rate depends not only on the
current status, but also on the status in the past; that is, the past history will contribute to
the future development, or, there is atime-delayeffect.

Another improvement of Eq. (1.1) is the so-calleddifferential equations with nonlocal
conditions. That is, we extend the initial condition (also calledlocal condition)

x(t0)= x0

to the followingnonlocal condition

x(t0)+ g
(
x(·)
)
= x0, (1.2)

wherex(·) denotes a solution (that is,x(·) is a function) andg is a mapping defined on
some space consisting of certain functions. (Of course,g may be identically zero, in which
case it reduces to the local condition or initial conditionx(t0) = x0.) The advantage of
using nonlocal conditions is that measurements at more places can be incorporated to get
better models.

1.1. Examples of nonlocal conditions

Let p ∈ N and lett1, t2, . . . , tp be given real numbers such that

t0< t1< t2< · · ·< tp � t0 + α.
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Theng can be defined by the formula

g(x)=
p∑

i=1

cix(ti), (1.3)

whereci , i = 1,2, . . . , p are given constants or by the relation

g(x)=
p∑

i=1

ci

ǫi

∫ ti

ti−ǫi
x(t)dt, (1.4)

whereǫi , i = 1,2, . . . , p are given positive constants such that:ti−1 < ti − ǫi < ti , i =
1,2, . . . , p. Particularly, ifx0 = 0,p = 1, t1 = t0 + α then

u(t0)= −c1x(t0 + α) and x(t0)=
−c1

ǫ1

∫ t0+α

t0+α−ǫ1
x(t)dt

respectively.
The constantsci , i = 1,2, . . . , p in the nonlocal condition (1.3) can satisfy the inequal-

ities |ci |> 1, i = 1,2, . . . , p. It is remarkable that ifci �= 0, i = 1,2, . . . , p the results can
be applied to kinematics to determine the evolutiont → x(t) of the location of a physical
object for which we do not know the positionsx(0), x(t1), . . . , x(tp), but we know that the
nonlocal condition of (1.3) holds. Consequently, to describe some physical phenomena,
the nonlocal condition can be more useful than the standard initial conditionx(0) = x0.
From the nonlocal condition of (1.3) it is clear that whenci = 0, i = 1,2, . . . , p we have
the classical initial condition.

Let us have one more example for partial differential equations. In the theory of diffusion
and heat conduction one can encounter a mathematical model of the form:

Lx + c(w, t)x = f (w, t), t ∈Ω, 0< t < T,

x(w, t)= φ(w, t), w ∈ ∂Ω, 0< t < T,

x(w,0)+
N∑

k=1

βk(w)x(w, tk)=ψ(w), w ∈Ω andtk ∈ (0, T ], k = 1, . . . ,N,

whereΩ is a bounded region inRn andL is a uniformly parabolic operator with continuous
and bounded coefficients. It represents the diffusion phenomenon of a small amount of
gas in a transparent tube. If there is very little gas at the initial time, the measurement
x(w,0) of the amount of the gas in this instant may be less precise that the measurement
x(w,0)+

∑N
k=1βk(x)x(w, tk) of the sum of the amount of this gas.



Nonlocal initial and boundary value problems 465

2. Nonlocal initial value problems

Here, we consider the following initial value problem

x′ = f (t, x), t ∈ I := [t0, T ], x ∈ Rn, (2.1)

x(t0)+ g
(
x(·)
)
= x0, (2.2)

wherex(·) denotes a solution andg is a mapping acting on some space of functions defined
on [0, T ].

Sinceg(x(·)) in Eq. (2.2) is defined on the interval[t0, T ] rather than a single point, the
IVP (2.1)–(2.2) is called an “initial value problem with nonlocal conditions” or “ nonlocal
initial value problem”, and can be applied with better effect than just using the classical ini-
tial value problem withx(t0)= x0, because new measurements at more places are allowed,
thus more information is available.

For the IVP (2.1)–(2.2), observe that ifx is a solution, then

x(t)= x(t0)+
∫ t

t0

f
(
s, x(s)

)
ds =

[
x0 − g

(
x(·)
)]

+
∫ t

t0

f
(
s, x(s)

)
ds. (2.3)

On the other hand, assume that a functionx on the interval[t0, T ] satisfies (2.3). For
this fixed functionx, g(x(·)) is a fixed element inRn, hence d

dt g(x(·))= 0. Therefore, if
we take a derivative int , thenx is a solution of IVP (2.1)–(2.2). That is, we conclude that
a continuous functionx is a solution of the IVP (2.1)–(2.2) if and only if

x(t)=
[
x0 − g

(
x(·)
)]

+
∫ t

t0

f
(
s, x(s)

)
ds.

This leads to a mappingP onC([t0, T ],Rn) such that

(Px)(t)=
[
x0 − g

(
x(·)
)]

+
∫ t

t0

f
(
s, x(s)

)
ds.

2.1. Existence and uniqueness

Motivated by physical problems, Byszewski and Lakshmikantham [12] considered the fol-
lowing nonlocal IVP

x′ = f (t, x), t ∈ I := [t0, b], (2.4)

x(t0)+ g
(
t1, t2, . . . , tp, x(·)

)
= x0, (2.5)

where t0 < t1 < · · · < tp < b, p ∈ N, x = (x1, x2, . . . , xn) ∈ Ω , x0 = (x10, . . . , xn0) ∈
Ω , f = (f1, . . . , fn) ∈ C(I × Ω,E), g = (g1, . . . , gn) : Ip × Ω → E, g(t1, . . . , tp, ·) ∈
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C(Ω,E) andΩ ⊂ E is a suitable subset. The symbolg(t1, . . . , tp, x(·)) is used in the
sense that in the place of· we can substitute only elements of the set{t1, . . . , tp}.

LetE =E1×E2×· · ·×En, whereEi, i = 1,2, . . . , n are Banach spaces with norm‖·‖.

THEOREM 2.1. Assume that:
(i) E is a Banach space with norm‖ · ‖, x0 ∈ E, andΩ := B(x0, r) = {y: ‖y − x0‖

� r} ⊂E.
(ii) There exist constantsLi > 0, i = 1, . . . , n such that

∥∥fi(s, y)− fi(s, ȳ)
∥∥� Li‖y − ȳ‖

for (s, y), (s, ȳ) ∈ I ×Ω , i = 1, . . . , n.
(iii) There exist constantsKi > 0, i = 1, . . . , n such that

∥∥gi(t1, . . . , tp, z)− gi(t1, . . . , tp, z̄)
∥∥�Ki‖z− z̄‖, z, z̄ ∈Ω, i = 1, . . . , n.

(iv) (Md +N)
√
n� r, (Ld +K)

√
n < 1,

where

Mi = sup
(s,y)∈I×Ω

∥∥fi(s, y)
∥∥, Ni = sup

z∈Ω

∥∥g(t1, . . . , tp, z)
∥∥, i = 1, . . . , n,

and

d = b− t0, L= max
i=1,...,n

Li, K = max
i=1,...,n

Ki,

M = max
i=1,...,n

Mi, N = max
i=1,...,n

Ni .

Then there exists a unique solution on the nonlocal IVP(2.4)–(2.5).

PROOF. It is easy to see, that problem (2.4)–(2.5) is equivalent to the integral equation

x(t)= x0 − g
(
t1, . . . , tp, x(·)

)
+
∫ t

t0

f
(
s, x(s)

)
ds, t ∈ I,

which is also equivalent to the following system of the integral equations

xi(t)= xi0 − gi
(
t1, . . . , tp, x(·)

)
+
∫ t

t0

fi
(
s, x(s)

)
ds, t ∈ I, i = 1, . . . , n.

We introduce the operatorT given by

(T y)(t) :=
(
(T1y)(t), . . . , (Tny)(t)

)
, t ∈ I,
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where

(Tiy)(t)= xi0 − gi
(
t1, . . . , tp, x(·)

)
+
∫ t

t0

fi
(
s, x(s)

)
ds, t ∈ I, i = 1, . . . , n.

LetX := C(I,Ω). We will show that the operatorT mapsX intoX. We observe that

‖Ty − x0‖ =
(

n∑

i=1

‖Tiy − xi0‖2

)1/2

=
(

n∑

i=1

[
sup
t∈I

∥∥(Tiy)(t)− xi0
∥∥
]2
)1/2

�

(
n∑

i=1

[
sup
t∈I

∫ t

t0

∥∥fi
(
s, y(s)

)∥∥ds +
∥∥gi
(
t1, . . . , tp, y(·)

)∥∥
]2
)1/2

�

(
n∑

i=1

[
sup
t∈I

(
|t − t0|Mi +Ni

)]2
)1/2

� (Md +N)
√
n� r,

for y ∈X. ThereforeT :X→X.
Next, we will show thatT is a contraction onX. We have:

‖Ty − T ȳ‖ =
(

n∑

i=1

‖Tiy − Ti ȳ‖2

)1/2

=
(

n∑

i=1

[
sup
t∈I

∥∥(Tiy)(t)− (Ti ȳ)(t)
∥∥
]2
)1/2

�

(
n∑

i=1

[
sup
t∈I

∫ t

t0

∥∥fi
(
s, y(s)

)
− fi

(
s, ȳ(s)

)∥∥ds

+
∥∥gi
(
t1, . . . , tp, y(·)

)
− gi

(
t1, . . . , tp, ȳ(·)

)∥∥
]2
)1/2

�

(
n∑

i=1

[
sup
t∈I

(
|t − t0|Li

∥∥y(s)− ȳ(s)
∥∥+Ki

∥∥y(·)− ȳ(·)
∥∥)
]2
)1/2

� (Ld +K)
√
n‖y − ȳ‖
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for arbitraryy, ȳ ∈X which proves thatT is a contraction. Hence, by Banach fixed point
theorem, in spaceX there is the only one fixed point ofT and this point is the solution of
the nonlocal problem (2.4)–(2.5). So, the proof of the theorem is complete. �

Consider now a nonlocal IVP with a special form of the nonlocal initial condition,

x′(t)= f
(
t, x(t)

)
, t ∈ J := [0, T ], (2.6)

x(0)+
p∑

k=1

ckx(tk)= x0, (2.7)

where 0< t1< · · ·< tp � T , f :J ×E → E is a given function andE is a Banach space
with norm‖ · ‖, x0 ∈E, ck �= 0 andp ∈ N.

By X we denote the Banach spaceC(J,E) with the standard norm‖ · ‖X.

DEFINITION 2.2. Assume that
∑p

k=1 ck �= −1. A functionx ∈X is called a mild solution
of (2.6)–(2.7) if satisfies the integral equation

x(t)=A

(
x0 −

p∑

k=1

ck

∫ tk

0
f
(
s, x(s)

)
ds

)
+
∫ t

0
f
(
s, x(s)

)
ds,

whereA= (1+
∑p

k=1 ck)
−1.

DEFINITION 2.3. A functionx :J → E is said to be a classical solution of the nonlocal
problem (2.6)–(2.7) if

(i) x is continuous onJ and continuously differentiable onJ ,
(ii) x′(t)= f (t, x(t)) for t ∈ J , and

(iii) x(0)+
∑p

k=1 ckx(tk)= x0.

It is easy to see that iff ∈ C(J×E,E) and
∑p

k=1 ck �= −1, thenx is the unique classical
solution of the nonlocal problem (2.6)–(2.7) if and only ifx is the unique mild solution of
this problem.

THEOREM 2.4. Assume that:
(1) f :J × E → E is continuous with respect to the first variable onJ and there is

L> 0 such that

∥∥f (t, z)− f (t, z̄)
∥∥� L

2∑

i=1

‖z− z̄‖

for t ∈ J , z, z̄ ∈E.
(2)
∑p

k=1 ck �= −1.
(3) 2LT (1+ |A

∑p

k=1 ck|) < 1.



Nonlocal initial and boundary value problems 469

Then the nonlocal IVP(2.6)–(2.7)has a unique classical solution.

PROOF. Introduce the operatorP by the formula

(Px)(t) = A

(
x0 −

p∑

k=1

ck

∫ tk

0
f
(
s, x(s)

)
ds

)

+
∫ t

0
f
(
s, x(s)

)
ds, t ∈ J, x ∈X.

It is easy to see thatP :X→X. We will prove thatP is a contraction onX. We have

∥∥(Px)(t)− (P x̄)(t)
∥∥ =

∥∥∥∥∥A
(

−
p∑

k=1

ck

∫ tk

0

[
f
(
s, x(s)

)
− f
(
s, x̄(s)

)]
ds

)

+
∫ t

0

[
f
(
s, x(s)

)
− f
(
s, x̄(s)

)]
ds

∥∥∥∥∥

� 2LT

(
1+
∣∣∣∣∣A

p∑

k=1

ck

∣∣∣∣∣

)
‖x − x̄‖X.

By (3) operatorP is a contraction. Consequently by Banach fixed point theorem in space
X there is only one fixed point ofP and this fixed point is the unique classical solution of
the nonlocal IVP (2.6)–(2.7). The proof of the theorem is complete. �

Theorem 2.4 is a special case of Theorem 2.4 of [11], where the functional differential
equationx′(t) = f (t, x(t), x(a(t))), t ∈ J was considered. We point out that when we
model some situations from physics and other applied sciences, we typically end up with
partial differential equations. In recent years there has been increasing interest in studying
evolution differential equations with nonlocal conditions. The interested reader is referred
to [10] and [86] and the references cited therein.

3. Nonlocal boundary value problems

Let f : [0,1] × R2 → R be a continuous function and lete : [0,1] → R be a function in
L1[0,1], ai ∈ R, ξi ∈ (0,1), i = 1,2, . . . ,m− 2, 0< ξ1 < ξ2 < · · ·< ξm−2 < 1. We con-
sider the following second-order ordinary differential equation

x′′(t)= f
(
t, x(t), x′(t)

)
+ e(t), t ∈ (0,1) (3.1)

subject to the following boundary value conditions:

x(0)= 0, x(1)=
m−2∑

i=1

aix(ξi). (3.2)
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It is well known, that if a functionx ∈ C1[0,1] satisfies the boundary conditions (3.2)
and allαi have the same sign then there exists anη ∈ [ξ1, ξm−2] such that

x(0)= 0, x(1)= αx(η),

with α =
∑m−2

k=1 ai . Accordingly, the problem of the existence of a solution for the bound-
ary value problem (BVP for short) (3.1)–(3.2) can be studied via the existence of a solution
of the following three-point BVP

x(0)= 0, x(1)= αx(η). (3.3)

The above so-called “nonlocal” or “ multi-point” or “m-point” BVP was initiated by Il’in
and Moiseev in [43,44], motivated by the work of Bitsadze and Samarskii on nonlocal lin-
ear elliptic BVPs [7,8]. The nonlocal BVP for ordinary differential equations arise in a
variety of different areas of applied mathematics and physics, and describe many phenom-
ena in the applied mathematical sciences. For example, the vibrations of a guy wire of a
uniform cross-section and composed onN parts of different densities can be set up as a
multi-point BVP (see [83]); many problems in the theory of elastic stability can be handled
by the method of multi-point problems (see [90]).

We will study nonlocal BVP for first, second or higher order ordinary differential equa-
tions.

3.1. First-order three-point boundary value problems

Givena, b, c ∈ R with a < b < c. Let J := [a, c] andMn×n the Banach space of all con-
stant matrices of ordern with the norm

‖B‖ = max
1�i,j�n

|bi,j |.

Let C(J ),L1(J ), andAC(J ) the usual Banach spaces of all continuous functions, all
Lebesque integrable functions and all absolutely continuous functions with the norms

‖x‖∞ = max
{∣∣x(t)

∣∣: t ∈ J
}
, ‖x‖L1 =

∫

J

∣∣x(t)
∣∣dt,

‖x‖AC = ‖x‖∞ + ‖x′‖L1,

respectively. Forα = (α1, . . . , αn) ∈ Rn, define

‖α‖ = max
{
|αi |: i = 1, . . . , n

}
.

Denote byX,Y and Z the Banach spacesC[J,Rn] = {(x1, . . . , xn): xi ∈ C(J )},
L1[J,Rn] = {(x1, . . . , xn): xi ∈ L1C(J )}, andAC[J,Rn] = {(x1, . . . , xn): xi ∈ AC(J )}
with the norms‖x‖X = max{‖xi‖∞: i = 2, . . . , n}, ‖x‖Y =

∑n
i=1 ‖xi‖L1 and ‖x‖Z =

max{‖xi‖AC : i = 2, . . . , n} respectively.
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DEFINITION 3.1. We say thatf :J × Rn → Rn is a Carathéodory function if
(i) f (·, u) is Lebesgue measurable onJ for eachu ∈ Rn,

(ii) f (t, ·) is continuous onRn for a.e.t ∈ J ,
(iii) for eachr ∈ (0,∞), there exists anhr ∈ L1(J,Rn) such that

∣∣fi(t, u)
∣∣� (hr)i(t), for a.e.t ∈ J, ‖u‖ � r, i = 1, . . . , n.

We study the problem of existence of solutions for the three-point BVP

x′(t)= f
(
t, x(t)

)
, for a.e.t ∈ J, (3.4)

Mx(a)+Nx(b)+Rx(c)= α, (3.5)

wheref : [a, c] × Rn → Rn is a Carathéodory function,M,N,R ∈Mn×n, andα ∈ Rn are
given.

THEOREM3.2. Letf : [a, c]×Rn → Rn be a Carathéodory function andα ∈ Rn. Assume
that

(A1) M,N,R are constant square matrices of ordern such that

det(M +N +R) �= 0.

(A2) There exist functionsp, r ∈ L1(J ) such that

∥∥f (t, u)
∥∥� p(t)‖u‖ + r(t),

for a.e. t ∈ J andu ∈ Rn.
Then the three-point BVP(3.4)–(3.5)has at least one solution inC(J,Rn) provided

Γ ‖p‖1< 1,

where

Γ = max
{∥∥(M +N +R)−1R

∥∥,
∥∥(M +N +R)−1M

∥∥,
∥∥(M +N +R)−1(N +R)

∥∥,
∥∥(M +N +R)−1(N +M)

∥∥}.

PROOF. Let e(·) ∈ L1(J,Rn) andα ∈ Rn, x ∈AC(J ) be such that

x′(t)= e(t), for a.e.t ∈ J,
Mx(a)+Nx(b)+Rx(c)= α.

Then

x(t)=
∫ t

a

e(s)ds + (M +N +R)−1
[
α−N

∫ b

a

e(s)ds −R

∫ c

a

e(s)ds

]
.
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If E is the identity matrix, fora � t � b < c, we have

x(t) =
∫ t

a

[
E − (M +N +R)−1N − (M +N +R)−1R

]
e(s)ds

−
∫ b

t

[
(M +N +R)−1N + (M +N +R)−1R

]
e(s)ds

−
∫ c

b

[
(M +N +R)−1R

]
e(s)ds

=
∫ t

a

(M +N +R)−1Me(s)ds

−
∫ b

t

(M +N +R)−1(N +R)e(s)ds

−
∫ c

b

(M +N +R)−1Re(s)ds,

and hence
∥∥x(t)

∥∥� max
{∥∥(M +N +R)−1M

∥∥,
∥∥(M +N +R)−1(N +R)

∥∥,
∥∥(M +N +R)−1R

∥∥}‖e‖Y .

Fora � b� t � c we have

x(t) =
∫ b

a

[
E − (M +N +R)−1N − (M +N +R)−1R

]
e(s)ds

−
∫ t

b

[
−E + (M +N +R)−1R

]
e(s)ds

−
∫ c

t

[
(M +N +R)−1R

]
e(s)ds

=
∫ b

a

(M +N +R)−1Me(s)ds

−
∫ t

b

(M +N +R)−1(−M −N)e(s)ds

−
∫ c

t

(M +N +R)−1Re(s)ds,

and hence
∥∥x(t)

∥∥� max
{∥∥(M +N +R)−1M

∥∥,
∥∥(M +N +R)−1(M +N)

∥∥,
∥∥(M +N +R)−1R

∥∥}‖e‖Y .
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By combining the above relations we get
∣∣x(t)

∣∣� Γ ‖e‖1

where

Γ = max
{∥∥(M +N +R)−1R

∥∥,
∥∥(M +N +R)−1M

∥∥,
∥∥(M +N +R)−1(N +R)

∥∥,
∥∥(M +N +R)−1(N +M)

∥∥}.

It is obvious that, ife= 0, then the problem

x′(t)= 0, for a.e.t ∈ J,
Mx(a)+Nx(b)+Rx(c)= α,

has the unique solutionx(t)=w, where

w = (M +M +R)−1α.

Moreover the problem

x′(t)= f (t, x), for a.e.t ∈ J,
Mx(a)+Nx(b)+Rx(c)= α,

has a solutionx = y1 +w if and only if y1 is a solution of

y′(t)= f (t, y +w), for a.e.t ∈ J, (3.6)

My(a)+Ny(b)+Ry(c)= 0. (3.7)

Now we defineL :D(L)⊂X→ Y by

D(L)=
{
y ∈AC(J ): My(a)+Ny(b)+Ry(c)= 0

}
,

and fory ∈D(L),

Ly = y′.

We also define a nonlinear mappingG :X→X by

Gy = f
(
t, y(t)+w

)
, t ∈ J.

We note thatG is a bounded operator fromX into Y . Next it is easy to see from (A1) that
the linear mappingL :D(L) ⊂ X → Y , is a one-to-one mapping. Let the linear mapping
K :Y →X be defined fore ∈ Y by

(Ke)(t)=
∫ t

a

e(s)ds + (M +M +R)−1
[
α −N

∫ b

a

e(s)ds −R

∫ c

a

e(s)ds

]
.
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Then fore ∈ Y , we haveKe ∈ D(L) andLKe = e. For y ∈ D(L), we haveKLy = y.
Furthermore, it follows easily using the Arzelá–Ascoli theorem thatKG maps a bounded
subset ofX into a relatively compact subset ofX. Hence,KG :X → X is a compact
mapping.

We next note thaty ∈ C(J,Rn) is a solution of BVP (3.6)–(3.7) if and only ify is a
solution to operator equation

Ly −Gy,

which is equivalent to the equation

y =KGy.

We apply the Leray–Schauder continuation theorem (see, e.g., [82, Corollary IV.7]) to
obtain existence of a solution toy =KGy or equivalently to the BVP (3.6)–(3.7).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

y′(t)= λf (t, y +w), for a.e.t ∈ J, (3.8)

My(a)+Ny(b)+Ry(c)= 0, (3.9)

is bounded inX = C(J,Rn) by a constant independent ofλ ∈ [0,1].
Let y(t) be a solution of (3.8)–(3.9) for someλ ∈ [0,1]. It follows from our assumptions

thatf (t, y(t)+w(t)) ∈ L1(J,Rn). We have

‖y‖X � λΓ
∥∥f
(
t, y(t)+w

)∥∥
Y

� Γ
[
‖p‖L1‖y +w‖X + ‖r‖L1

]

� Γ
[
‖p‖L1

(
‖y‖X + ‖w‖X

)
+ ‖r‖L1

]
.

It follows from Γ ‖p‖L1 < 1 that there exists a constantc0, independent ofλ ∈ [0,1], such
that

‖y‖X � c0.

This completes the proof of the theorem. �

THEOREM3.3. Letf : [a, c]×Rn → Rn be a Carathéodory function andα ∈ Rn. Assume
that (A1) holds. Moreover we suppose that

(A3) There exists functionp ∈ L1(J ) such that

∥∥f (t, u)− f (t, v)
∥∥� p(t)‖u− v‖

for a.e. t ∈ J and allu,v ∈ Rn.
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Then the three-point BVP(3.4)–(3.5)has a unique solution inC(J,Rn) provided

Γ ‖p‖1< 1.

PROOF. We note that (A3) implies
∥∥f (t, u)

∥∥�
∥∥f (t,0)

∥∥+ p(t)‖u‖,

for a.e. t ∈ J and all u ∈ Rn. Hence the BVP (3.4)–(3.5) has at least one solution in
C(J,Rn) by Theorem 3.2. Suppose thatu1, u2 are two solutions of (3.4)–(3.5) inC(J,Rn).
Settingz= u1 − u2, we have

z′ = f
(
t, u1(t)

)
− f
(
t, u2(t)

)
,

Mz(a)+Nz(b)+Rz(c)= 0.

Then we have

‖z‖X � λΓ
∥∥f
(
t, u1(t)

)
− f
(
t, u2(t)

)∥∥
Y

� Γ
(
‖p‖L1‖u1 − u2‖X

)

� Γ ‖p‖L1‖z‖X,

which implies thatz(t)= 0, for t ∈ J and henceu1 = u2. This completes the proof of the
theorem. �

Theorems 3.2 and 3.3 were taken from [74]. Existence and uniqueness of solutions of
the BVP (3.4)–(3.5) were studied in [84] by using the successive over relaxation iteration
and the Banach contraction mapping principle.

3.2. Second-order three-point boundary value problems

In this section we consider the following three-point BVP

x′′(t)= f
(
t, x(t), x′(t)

)
+ e(t), t ∈ (0,1) (3.10)

x(0)= 0, x(1)= x(η), (3.11)

wheref : [0,1] × R2 → R, e : [0,1] → R are given functions andη ∈ (0,1).
We will study the existence and uniqueness of the BVP (3.10)–(3.11). We use the clas-

sical spacesC[0,1],Ck[0,1],Lk[0,1], andL∞[0,1] of continuous,k-times continuously
differentiable, measurable real valued functions whosekth power of the absolute value
is Lebesgue integrable on[0,1], or measurable functions that are essentially bounded on
[0,1]. We also use the Sobolev spaceW2,k(0,1), k = 1,2 defined by

W2,k(0,1)=
{
x : [0,1] → R: x, x′are absolutely continuous

on [0,1] with x ∈ Lk[0,1]
}
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with its usual norm. We denote the norm inLk[0,1] by ‖ · ‖k , and the norm inL∞[0,1] by
‖ · ‖∞.

The BVP (3.10)–(3.11) can be put in the form of an operator equation

Lx +Nx =w,

whereL :D(L)⊂X→ Y is a linear operator,N :X→ Y is a nonlinear operator, andX,Y
are suitable spaces in duality. Clearly the linear operatorL in (3.10) is given by

Lx = −x′′

where the boundary conditions (3.11) are used to define the domain,D(L), of L.
We begin by giving the following definition.

DEFINITION 3.4. A functionf : [0,1] × R2 → R satisfies Carathéodory’s conditions if:
(i) for each (x, y) ∈ R2, the functiont ∈ [0,1] → f (t, x, y) ∈ R is measurable on

[0,1],
(ii) for a.e. t ∈ [0,1], the function(x, y) ∈ R2 → f (t, x, y) ∈ R is continuous onR2,

and
(iii) for each r > 0, there existsgr ∈ L1[0,1] such that|f (t, x, y)| � gr(t) for a.e.

t ∈ [0,1] and(x, y) ∈ R2 with
√
x2 + y2 � r .

In the next existence theorems, we obtain appropriatea priori bounds by applying degree
theory. We use Wirtinger-type inequalities to obtain the necessary a priori bounds needed
to apply the Leray–Schauder continuation theorem [82, Corollary IV.7].

THEOREM 3.5. Let f : [0,1] × R2 → R satisfy Carathéodory’s conditions. Assume that
there exist functionsp,q, r ∈ L1[0,1] such that

∣∣f (t, u, v)
∣∣� p(t)|u| + q(t)|v| + r(t), (3.12)

for a.e. t ∈ [0,1] and all (u, v) ∈ R2. Then for every given functione ∈ L1[0,1], the BVP
(3.10)–(3.11),has at least one solution inC1[0,1] provided

‖q‖1 � 1,

and

√
η‖p‖L1[η,1]

1− ‖q‖L1[0,1]
1− ‖q‖L1[η,1]

+ ‖p‖L1[0,1] + ‖q‖L1[0,1] < 1.

PROOF. LetX be the Banach spaceC1[0,1] andY denote the Banach spaceL1(0,1) with
their usual norms. We define a linear mappingL :D(L)⊂X→ Y by setting

D(L)=
{
x ∈W2,1(0,1): x(0)= 0, x(1)= x(η)

}
,
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and forx ∈D(L),

Lx = −x′′.

We also define a nonlinear mappingN :X→ Y by setting

(Nx)(t)= f
(
t, x(t), x′(t)

)
, t ∈ [0,1].

We note thatN is a bounded mapping fromX into Y . Next, it is easy to see that the linear
mappingL :D(L)⊂X→ Y , is one-to-one mapping. Next, the linear mappingK :Y →X,
defined fory ∈ Y by

(Ky)(t)= −
∫ t

0
(t − s)y(s)ds + t

∫ η

0
y(s)ds + t

1− η

∫ 1

0
(1− s)y(s)ds

is such that fory ∈ Y , Ky ∈D(L) andLKy = y; and foru ∈D(L),KLu = u. Further-
more, it follows easily using the Arzelá–Ascoli theorem thatKN maps a bounded subset
of X into a relatively compact subset ofX. HenceKN :X→X is a compact mapping.

We next note thatx ∈ C1[0,1] is a solution of the BVP (3.10)–(3.11) if and only ifx is
a solution to the operator equation

Lx =Nx + e.

Now, the operator equationLx =Nx + e is equivalent to the equation

x =KNx +Ke.

We apply the Leray–Schauder continuation theorem (see, e.g., [82, Corollary IV.7]) to
obtain the existence of a solution forx = KNx + Ke or equivalently to the BVP
(3.10)–(3.11).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1), (3.13)

x(0)= 0, x(1)= x(η), (3.14)

is, a priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1].
We observe first that forx ∈W2,1(0,1) with x(0) = 0, x(1) = x(η) there exists aζ ∈

(0,1), η < ζ < 1, such thatx′(ζ )= 0. It follows that

‖x‖2 �
2

π
‖x′‖2, ‖x‖∞ � ‖x′‖2,

∣∣x(1)
∣∣=
∣∣x(η)

∣∣=
∣∣∣∣
∫ η

0
x′(t)dt

∣∣∣∣�
√
η‖x′‖2,
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∣∣x′(1)
∣∣=
∣∣∣∣
∫ 1

ζ

x′′(t)dt

∣∣∣∣�
∫ 1

ζ

∣∣x′′(t)
∣∣dt.

We multiply Eq. (3.13) byx and integrate from 0 to 1 to get

0 = −
∫ 1

0
x′′(t)x(t)dt + λ

∫ 1

0
f
(
t, x(t), x ′(t)

)
x(t)dt − λ

∫ 1

0
e(t)x(t)dt

� ‖x′‖2
2 −
∣∣x′(1)

∣∣∣∣x(1)
∣∣−
∫ 1

0

∣∣f
(
t, x(t), x ′(t)

)∣∣∣∣x(t)
∣∣dt − ‖e‖1‖x‖∞

� ‖x′‖2
2 −
∣∣x′(1)

∣∣∣∣x(1)
∣∣

−
∫ 1

0

[
p(t)

∣∣x(t)
∣∣2 + q(t)

∣∣x(t)
∣∣∣∣x′(t)

∣∣+ r(t)
∣∣x(t)

∣∣]dt − ‖e‖1‖x‖∞

� ‖x′‖2
2 − √

η‖x′‖2‖x′′‖L1[η,1]

−
[
‖p‖1‖x‖2

2 + ‖q‖1‖x‖∞‖x′‖∞ + ‖r‖1‖x‖∞
]
− ‖e‖1‖x‖∞

� ‖x′‖2
2 − √

η‖x′‖2‖x′′‖L1[η,1] −
[
‖p‖1‖x′‖2

2 + ‖q‖1‖x′‖2‖x′′‖1
]

−
(
‖r‖1 + ‖e‖1

)
‖x′‖2.

From Eq. (3.13) we have

‖x′′‖1 � ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1

� ‖p‖1‖x′‖2 + ‖q‖1‖x′′‖1 + ‖r‖1,

so that

‖x′′‖1 �
‖p‖1‖x′‖2

1− ‖q‖1
+ ‖r‖1

1− ‖q‖1
.

Similarly we have

‖x′′‖L1[η,1] �
‖p‖L1[η,1]‖x′‖2

1− ‖q‖L1[η,1]
+ ‖r‖1

1− ‖q‖L1[η,1]
.

Consequently

{
1− ‖q‖1 − √

η‖p‖L1[η,1]
1− ‖q‖1

1− ‖q‖L1[η,1]
− ‖p‖1

}
‖x′‖2

� ‖q‖1‖r‖1 + √
η‖r‖1

1− ‖q‖1

1− ‖q‖L1[η,1]
+
(
‖r‖1 + ‖e‖1

)(
1− ‖q‖1

)
.
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Hence, there exists a constantC, independent ofλ ∈ [0,1] such that‖x′‖2 � C. It follows
that there is a constant, still denoted byC, independent ofλ ∈ [0,1] such that

‖x‖C1[0,1] � C.

This completes the proof of the theorem. �

THEOREM 3.6. Let f : [0,1] × R2 → R satisfy Carathéodory’s conditions. Assume that
a � 0, b� 0, α(t) ∈ L1[0,1] are such that

∣∣f (t, u, v)
∣∣� a|u| + b|v| + α(t),

for a.e. t ∈ [0,1] and all (u, v) ∈ R2. Then for every given functione(t) ∈ L1[0,1], the
BVP(3.10)–(3.11)has at least one solution inC1[0,1] provided

(
2

π
a + b

)(
2

π
+
√
η(1− η)

)
< 1.

PROOF. As in the proof of Theorem 3.5 it suffices to verify that the set of all possible
solutions of the family of equations (3.13)–(3.14) is a priori bounded inC1[0,1] by a
constant independent ofλ ∈ [0,1].

Lettingx to be a solution of (3.13)–(3.14) for someλ ∈ [0,1] we get, as in Theorem 3.5,
that

0 = −
∫ 1

0
x′′(t)x(t)dt + λ

∫ 1

0
f
(
t, x(t), x ′(t)

)
x(t)dt − λ

∫ 1

0
e(t)x(t)dt

� ‖x′‖2
2 −
∣∣x′(1)

∣∣∣∣x(1)
∣∣−
∫ 1

0

[
a|x|2 + b|x||x′| + α(t)|x|

]
dt − ‖e‖1‖x‖∞

� ‖x′‖2
2 − √

η‖x′‖2‖x′′‖L1[η,1] − a‖x‖2
2 − b‖x‖2‖x′‖2

−
(
‖α‖1 + ‖e‖1

)
‖x‖∞

� ‖x′‖2
2 − √

η‖x′‖2‖x′′‖L1[η,1] −
(

4

π2
a + 2

π
b

)
‖x′‖2

2 −
(
‖α‖1 + ‖e‖1

)
‖x′‖2.

Also

‖x′′‖L1[η,1] �
∥∥f
(
t, x(t), x ′(t)

)∥∥
L1[η,1] + ‖e‖1

� a

∫ 1

η

|x|dx + b

∫ 1

η

|x′|dx + ‖α‖1 + ‖e‖1

�
√

1− η

(
2

π
a + b

)
‖x′‖2 + ‖α‖1 + ‖e‖1.
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Consequently

‖x′‖2 �
(‖α‖1 + ‖e‖1)(1+ √

η)

1− ((2/π)a + b)(2/π +
√
η(1− η))

.

It then follows as in proof of Theorem 3.5 that there exists a constantC independent of
λ ∈ [0,1] such that‖x‖C1[0,1] � C, which proves the theorem. �

We give now a uniqueness result for the BVP (3.10)–(3.11).

THEOREM 3.7. Let f : [0,1] × R2 → R satisfy Carathéodory’s conditions. Assume that
a � 0, b� 0, are such that

∣∣f (t, u1, v1)− f (t, u2, v2)
∣∣� a|u1 − u2| + b|v1 − v2|, (3.15)

for a.e. t ∈ [0,1] and all (ui, vi) ∈ R2, i = 1,2. Then for every given functione(t) ∈
L1[0,1], the BVP(3.10)–(3.11)has unique solution inC1[0,1] provided

(
2

π
a + b

)(
2

π
+
√
η(1− η)

)
< 1.

PROOF. We note that (3.15) implies that

∣∣f (t, u, v)
∣∣< a|u| + b|v| +

∣∣f (t,0,0)
∣∣

for all t ∈ [0,1] and all(u, v) ∈ R2. Hence the BVP (3.10)–(3.11) has a solution by Theo-
rem 3.6. Let nowu1, u2 be two solutions of (3.10)–(3.11) inC1[0,1]. Settingw = u1 −u2
we have

w′′ = f (t, u1, u
′
1)− f (t, u2, u

′
2), t ∈ (0,1), (3.16)

w(0)= 0, w(1)=w(η). (3.17)

Multiplying Eq. (3.16) byw and integrating over[0,1] we get

0 = −
∫ 1

0
w′′w dt +

∫ 1

0

[
f
(
t, u1(t), u

′
1(t)
)
− f
(
t, u2(t), u

′
2(t)
)]
w(t)dt

� ‖w′‖2
2 −
∣∣w(1)

∣∣∣∣w′(1)
∣∣

−
∫ 1

0

∣∣f
(
t, u1(t), u

′
1(t)
)
− f
(
t, u2(t), u

′
2(t)
)∣∣∣∣w(t)

∣∣dt

� ‖w′‖2
2 − √

η‖w′‖2‖w′′‖L1[η,1]

−
∫ 1

0

[
a|u1 − u2|2 + b|u′

1 − u′
2||u1 − u2|2

]
dt
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� ‖w′‖2
2 − √

η‖w′‖2‖w′′‖L1[η,1] −
(

4

π2
a + 2

π
b

)
‖w′‖2

2.

But

‖w′′‖L1[η,1] =
∥∥f
(
t, u1(t), u

′
1(t)
)
− f
(
t, u2(t), u

′
2(t)
)∥∥
L1[η,1]

�
√

1− η

(
2

π
a + b

)
‖w′‖2

2,

and consequently

(
1−
(√

η(1− η)+ 2

π

)(
2

π
a + b

))
‖w′‖2

2 � 0,

so that‖w′‖2 = 0. Sincew(0) = 0 we obtain usingw(t) =
∫ t

0 w
′(t)dt that ‖w‖∞ �

‖w′‖2 = 0. Hencew = 0 a.e. in[0,1] and thusw(t) = 0 for everyt ∈ [0,1] becausew
is continuous. �

Theorems 3.5–3.7 were proved by Gupta in [25]. By means of rather different approach
based on an existence theorem for operator inclusions, Marano proved in [80], that ifp,q, r

are inL1[0,1] and (3.12) holds, then the BVP (3.10)–(3.11) has at least one generalized
solutionx ∈W2,1[0,1] provided

‖p‖1 + ‖q‖1< 1,

which is an improvement of Theorem 3.5. For this result of Marano, Gupta in [26] gave
a simple proof by using degree theory and Wirtinger-type inequalities. Marano in [80]
proved also that ifp,q, r are inL2[0,1] and (3.12) holds, then the BVP (3.10)–(3.11) has
at least one generalized solutionx ∈W2,1[0,1] provided

√
η+ 1

π
‖p‖2 + ‖q‖2< 1.

In the case whenp,q, r are inL2(0,1), and (3.12) holds, Gupta in [32] proved that the
BVP (3.10)–(3.11) has at least one generalized solutionx ∈ C1[0,1] provided

2

π
‖p‖2 + ‖q‖2< 1.

The Leray–Schauder continuation theorem can be used without the use of Wirtinger-
type inequalities and using instead Green’s functions. The Green’s functions for various
BVPs are easily computed. Then one uses Green’s functions to reduce the BVPs to inte-
gral equations. Thus finding a priori estimates can be realized by estimating the norms of
integral operators, which can be solved by Green’s functions and its derivatives. In this
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direction Zhang and Han [93] proved that ifp,q, r are inL1[0,1] and (3.12) holds, then
the BVP (3.10)–(3.11) has at least one solution inC1[0,1] provided

max

{∫ η

0

(
sp(s)+ q(s)

)
ds +

∫ 1

η

1− s

1− η

(
sp(s)+ q(s)

)
ds,

∫ 1

η

s − η

1− η

(
sp(s)+ q(s)

)
ds

}
< 1.

In [9] Boucherif and Bouguima proved the existence of solutions of the BVP (3.10)–
(3.11) by considering two types of nonlinearities, continuous and Carathéodory’s nonlin-
earities. The methods used in the first case rely on the topological transversality theorem of
Granas [14], and in the second case on the technique of cut-off functions. They motivated
their results by the remark that iff (t, u, v)= u+ v+R(t, u, v) with R(t, u, v)� r(t) for
a.e.t ∈ [0,1] thenf satisfies condition (3.12) i.e.|f (t, u, v)| � p0(t)|u|+ q0|v|+ r(t) but
‖p0‖1 + ‖q0‖1 = 2> 1.

THEOREM 3.8. Letf : [0,1] × R2 → R be a continuous function satisfying the following
conditions:

(f1) there existsr > 0 such that

∫ t

0
f
(
s, x(s), x′(s)

)
x(s)ds > 0 whenever

∣∣x(t)
∣∣> r.

(f2) |f (t, u, v)| �ψ(|v|) for (t, u) ∈ [0,1]× [−r, r], v ∈ R whereψ : [0,∞)→ (0,∞)

is such that1/ψ is integrable over bounded intervals in[0,∞) and
∫ +∞

0
s

ψ(s)
ds >

2r .
Then the BVP(3.10)–(3.11)has at least one solution.

PROOF. We begin by examining the linear problem

x′′ = z, x(0)= 0, x(1)= x(η)

wherez ∈ C([0,1],R). This problem has a unique solutionx ∈ C2[0,1], given by

x(t)=
∫ t

0
(t − s)z(s)ds + t

∫ η

0
z(s)ds + t

1− η

∫ 1

η

(1− s)z(s)ds.

This relation defines a linear operatorK :C[0,1] → C2[0,1] such thatx = Kz is the
unique solution. MoreoverL=K−1 is defined by

D(L)=
{
x ∈ C2[0,1]: x(0)= 0, x(1)= x(η)

}
, Lx = x′′.

Forλ ∈ [0,1] consider the one-parameter family of problems

x′′(t)= λf
(
t, x(t), x′(t)

)
, t ∈ (0,1), (3.18)



Nonlocal initial and boundary value problems 483

x(0)= 0, x(1)= x(η). (3.19)

We shall prove that any solutionx of (3.18)–(3.19) is a priori bounded, independently ofλ.
Let x be a solution of (3.18)–(3.19). Ifλ= 0 thenx = 0 and so‖x‖0 = 0< r . Assume

0< λ � 1. Thenλf satisfies (f1). Supposex takes on a positive maximum att0 ∈ [0,1].
Thenx′(t0)= 0 andx′′(t0)� 0. Now, if x(t0) > r it follows from (f1) that

∫ t0

0
x′′(s)x(s)ds = x(t0)x

′(t0)−
∫ t0

0
x′(s)2 ds > 0.

Sincex′(t0) = 0 we have a contradiction. Hencex(t0) � r and therefore‖x‖0 � r . Note
that t0 �= 0 sincex(0)= 0. Also, the caset0 = η or t0 = 1 leads to a contradiction.

Now we want to show that there exists a constantm0, such that|x′(t)| � m0 for all
t ∈ [0,1]. Suppose on the contrary that for all positive constantsm, there existst0 ∈ (0,1]
such thatx′(t0) > m or x′(t0) <−m. We will assume only the casex′(t0) > m, since the
other case can be handled in a similar way. Letτ ∈ (0,1) be such thatx′(τ ) = 0 and
x′(t) > 0 for all t ∈ (τ, t0]. This implies that

x′′(t)�ψ
(
x′(t)

)
for all t ∈ [τ, t0].

Hence

x′′(t)x′(t)

ψ(x′(t))
� x′(t) for all t ∈ [τ, t0].

Integrating this inequality fromτ to t0 we get

∫ x′(t0)

0

s

ψ(s)
ds � 2r.

It follows from the assumptions onψ that there exists a constantm̃ such thatx′(t0)� m̃,
and so we get a contradiction.

Sincef is continuous, we have|x′′(t)| � m1 := sup{|f (t, u, v)|: 0 � t � 1,‖u‖0 �

r,‖v‖0 � m0}. Hence‖x′′‖0 � m1. Finally, letM = max(r,m0,m1). Then we get, from
‖x‖ = max(‖x‖0,‖x′‖0,‖x′′‖0) that‖x‖ �M , andM is independent ofλ.

We apply the topological transversality of Granas [14]. LetU = {x ∈ D(L): ‖x‖ <
M + 1}, andj :D(L)→ C1[0,1] with j (x) = x, the natural embedding. The Nemitskii
operatorF :C1[0,1] → C[0,1] is defined byF(x)(t) := f (t, x(t), x′(t)) for all t ∈ [0,1].

For 0� λ� 1 define a family of mappings

Hλ :U →D(L) byHλ(x)= λKFj (x).

Hλ is a compact homotopy which has no fixed points on the boundary∂U of U . Since
the constant mapH0 is essential, the topological transversality theorem implies thatH1 is
essential i.e. has a fixed point. This completes the proof. �
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In the case of Carathéodory’s nonlinearities we state the following result whose proof is
given in [9].

THEOREM 3.9. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s condi-
tions. Assume that

(f) |f (t, u, v)| � ω(t, |u| + |v|) for a.e. t ∈ [0,1] and all (u, v) ∈ R2 whereω : [0,1] ×
R+ → R+ is nondecreasing in its second argument and

lim
ρ→∞

1

ρ

∫ 1

0
ω(t, ρ)dt = 0.

Then the BVP(3.10)–(3.11)has at least one solution.

3.3. Third-order three-point boundary value problems

In this section we consider third-order three-point BVPs. The existence and uniqueness
of third-order BVPs deserve a good deal of attention, since they occur in a wide variety
of applications. For example, a three-layer beam is formed by parallel layers of different
materials. For an equally loaded beam of this type, has shown that the deflectionψ is
governed by an ordinary third-order linear differential equation

ψ ′′′ −K2ψ ′ + a = 0,

whereK2 anda are physical parameters depending on the elasticity of the layers. The
condition of zero moment at the free ends implies the boundary conditions

ψ ′(0)=ψ ′(1)= 0,

and the symmetry yields the third boundary condition

ψ(1/2)= 0.

We will study existence and uniqueness of the following three-point BVP

x′′′(t)= f
(
t, x(t), x ′(t), x′′(t)

)
+ e(t), t ∈ (0,1), (3.20)

x(0)= x(η)= x(1)= 0 (3.21)

wheree : [0,1] → R is a function inL1[0,1], η ∈ (0,1), andf : [0,1] × R3 → R is a
function satisfying Carathéodory’s conditions, that is

(i) for each(x, y, z) ∈ R3, the functiont ∈ [0,1] → f (t, x, y, z) ∈ R is measurable on
[0,1],

(ii) for a.e. t ∈ [0,1], the function(x, y, z) ∈ R3 → f (t, x, y, z) ∈ R is continuous on
R3, and
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(iii) for each r > 0, there existsgr ∈ L1[0,1] such that|f (t, x, y, z)| � gr(t) for a.e.
t ∈ [0,1] and(x, y, z) ∈ R3 with

√
x2 + y2 + z2 � r .

THEOREM3.10. Letf : [0,1]×R3 → R satisfy Carathéodory’s conditions. Assume that
(i) there exista, b, c ∈ R andα(t) ∈ L1[0,1] such that

f (t, x, y, z)y � ay2 + b|y||x| + c|y||z| + α(x)y,

for a.e. t ∈ [0,1] and all (x, y, z) ∈ R3;
(ii) there exist functionsp,q, r in L2[0,1] and a functionS(t) ∈ L1[0,1] such that

∣∣f (t, x, y, z)
∣∣� p(t)|x| + q(t)|y| + r(t)|z| + S(t),

for a.e. t ∈ [0,1] and all (x, y, z) ∈ R3.
Letη ∈ (0,1) be given. Then for any given functione ∈ L1[0,1], the tree-point BVP(3.20)–
(3.21)has at least one solution inC2[0,1] provided

4

π2
|a| + 4

π3
|b| + 2

π
|c| + 2

π2
‖p‖2 + 2

π
‖q‖2 + ‖r‖2< 1.

PROOF. LetX be the Banach spaceC2[0,1] andY denote the Banach spaceL1(0,1) with
their usual norms. We define a linear mappingL :D(L)⊂X→ Y by setting

D(L)=
{
x ∈W3,1(0,1): x(0)= x(η)= x(1)= 0

}
,

and forx ∈D(L),

Lx = −x′′′.

We also define a nonlinear mappingN :X→ Y by setting

(Nx)(t)= f
(
t, x(t), x′(t), x′′(t)

)
, t ∈ [0,1].

We note thatN is a bounded mapping fromX into Y . Next, it is easy to see that the linear
mappingL :D(L)⊂X→ Y , is one-to-one mapping. Next, the linear mappingK :Y →X,
defined fory ∈ Y by

(Ky)(t)= 1

2

∫ t

0
(t − s)2y(s)ds +Bt +Ct2,

where

B = 1

2η(η− 1)

∫ η

0
(t − s)2y(s)ds + η

2(1− η)

∫ 1

0
(t − s)2y(s)ds,

C = 1

2η(1− η)

∫ η

0
(t − s)2y(s)ds − 1

2(1− η)

∫ 1

0
(t − s)2y(s)ds,
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is such that fory ∈ Y , Ky ∈D(L) andLKy = y; and foru ∈D(L),KLu = u. Further-
more, it follows easily using the Arzelá–Ascoli theorem thatKN maps a bounded subset
of X into a relatively compact subset ofX. HenceKN :X→X is a compact mapping.

We next note thatx ∈ C1[0,1] is a solution of the BVP (3.20)–(3.21) if and only ifx is
a solution to the operator equation

Lx =Nx + e.

Now, the operator equationLx =Nx + e is equivalent to the equation

x =KNx +Ke.

We apply the Leray–Schauder continuation theorem (see, e.g., [82, Corollary IV.7])
to obtain the existence of a solution forx = KNx + Ke or equivalently to the BVP
(3.20)–(3.21).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

x′′′(t)= λf
(
t, x(t), x ′(t), x′′(t)

)
+ λe(t), t ∈ (0,1), (3.22)

x(0)= x(η)= x(1)= 0, (3.23)

is, a priori, bounded inC2[0,1] by a constant independent ofλ ∈ [0,1].
We observe that forx ∈W3,1(0,1) with x(0)= x(η)= x(1)= 0, there existξ1, ξ2, ξ3 in

(0,1) with ξ1< η < ξ2, x′(ξ1)= x′(ξ2)= 0, x′′(ξ3)= 0. This gives

‖x‖2 �
1

π
‖x′‖2, ‖x′‖2 �

2

π
‖x′′‖2,

∣∣x′(0)
∣∣=
∣∣∣∣
∫ ξ1

0
x′′(t)dt

∣∣∣∣�
∫ η

0

∣∣x′′(t)
∣∣dt,

∣∣x′(1)
∣∣=
∣∣∣∣
∫ 1

ξ2

x′′(t)dt

∣∣∣∣�
∫ 1

η

∣∣x′′(t)
∣∣dt,

∣∣x′′(0)
∣∣=
∣∣∣∣
∫ ξ3

0
x′′(t)dt

∣∣∣∣� ‖x′′′‖1,
∣∣x′′(1)

∣∣=
∣∣∣∣
∫ 1

ξ3

x′′(t)dt

∣∣∣∣� ‖x′′′‖1.

We multiply Eq. (3.22) byx′ and integrate from 0 to 1 to get

0 = −
∫ 1

0
x′′′(t)x′(t)dt + λ

∫ 1

0
f
(
t, x(t), x′(t), x′′(t)

)
x′(t)dt

− λ

∫ 1

0
e(t)x′(t)dt
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� ‖x′′‖2
2 −
∣∣x′′(1)

∣∣∣∣x′(1)
∣∣−
∣∣x′′(0)

∣∣∣∣x′(0)
∣∣

+ λ

∫ 1

0

{
ax′2(t)+ b

∣∣x(t)
∣∣∣∣x′(t)

∣∣+ c
∣∣x′(t)

∣∣∣∣x′′(t)
∣∣+ α(t)x′(t)

}
dt

− λ‖e‖1‖x′‖∞

� ‖x′′‖2
2 −
(∣∣x′(0)

∣∣+
∣∣x′(1)

∣∣)‖x′′‖1 − |a|‖x′‖2
2 − |b|‖x‖2‖x′‖2

− |c|‖x′‖2‖x′′‖2 −
(
‖α‖1 + ‖e‖1

)
‖x′‖∞

� ‖x′′‖2
2 −
(∫ η

0

∣∣x′′(t)
∣∣dt +

∫ 1

η

∣∣x′′(t)
∣∣dt
)

‖x′′′‖1

−
(

4

π2
|a| + 4

π3
|b| + 2

π
|c|
)

‖x′′‖2
2 −
(
‖α‖1 + ‖e‖1

)
‖x′′‖2

� ‖x′′‖2
2 − ‖x′′‖1‖x′′′‖1 −

(
4

π2
|a| + 4

π3
|b| + 2

π
|c|
)

‖x′′‖2
2

−
(
‖α‖1 + ‖e‖1

)
‖x′′‖2.

From Eq. (3.22) we have

‖x′′′‖1 � ‖p‖2‖x‖2 + ‖q‖2‖x′‖2 + ‖r‖2‖x′′‖2 + ‖S‖1 + ‖e‖1

�

(
2

π2
‖p‖2 + 2

π
‖q‖2 + ‖r‖2

)
‖x′′‖2 + ‖S‖1 + ‖e‖1.

Putting this in the previous inequality we find

‖x′′‖2 �
‖S‖1 + 2‖e‖1 + ‖α‖1

1−
( 4
π2 |a| + 4

π3 |b| + 2
π
|c| + 2

π2 ‖p‖2 + 2
π
‖q‖2 + ‖r‖2

) .

Hence, there exists a constantC, independent ofλ ∈ [0,1] such that‖x′′′‖1 � C. It follows
that there is a constant, still denoted byC, independent ofλ ∈ [0,1] such that

‖x‖C2[0,1] � C.

This completes the proof of the theorem. �

In Theorem 3.10 we can do without assumption (i), if we observe that

f (t, x, y, z)y �
∣∣f (t, x, y, z)

∣∣|y|

� −
∣∣p(t)

∣∣|y||x| −
∣∣q(t)

∣∣y2 −
∣∣r(t)

∣∣|y||z| −
∣∣S(t)

∣∣|y|.
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It is easy to see from the proof of Theorem 3.10 that the BVP (3.20)–(3.21) has at least one
solution inC2[0,1] provided

4

π2
‖p‖2 + 4

π
‖q‖2 + 2‖r‖2< 1.

THEOREM3.11. Letf : [0,1]×R3 → R satisfy Carathéodory’s conditions. Suppose that
(iii) there exist functionsp,q, r ∈ L2[0,1] such that

∣∣f (t, x1, y1, z1)− f (t, x2, y2, z2)
∣∣

� p(t)|x1 − x2| + q(t)|y1 − y2| + r(t)|z1 − z2|,

for a.e. t ∈ [0,1] and all (xi, yi, zi) ∈ R3, i = 1,2.
Let η ∈ (0,1) be given. Then for everye ∈ L1[0,1] the BVP(3.20)–(3.21)has exactly one
solution inC2[0,1] provided

4

π2
‖p‖2 + 4

π
‖q‖2 + 2‖r‖2< 1.

PROOF. We note that (iii) implies that

∣∣f (t, x, y, z)
∣∣� p(t)|x| + q(t)|y| + r(t)|z| +

∣∣f (t,0,0,0)
∣∣

for a.e.t ∈ [0,1] and all(x, y, z) ∈ R3. Accordingly the BVP (3.20)–(3.21) has at least one
solution inC2[0,1].

Now, to prove the uniqueness, letx1, x2 are two solutions of the BVP (3.20)–(3.21).
Settingu(t)= x(t)− x2(t) we then get

u′′′(t)= f
(
t, x1(t), y1(t), z1(t)

)
− f
(
t, x2(t), y2(t), z2(t)

)
, (3.24)

u(0)= u(η)= u(1)= 0. (3.25)

We multiply Eq. (3.24) byu′ and integrate over[0,1] to get

0 = −
∫ 1

0
u′′′(t)u′(t)dt

+
∫ 1

0

[
f
(
t, x1(t), y1(t), z1(t)

)
− f
(
t, x2(t), y2(t), z2(t)

)]
u′(t)dt

� ‖u′′‖2
2 − ‖u′′‖2‖u′′′‖1 − ‖p‖2‖u‖2‖u′‖∞ − ‖q‖2‖u′‖2‖u′‖∞

− ‖r‖2‖u′‖∞‖u′′‖2

� ‖u′′‖2
2 − ‖u′′‖2

(
‖p‖2‖u‖2 + ‖q‖2‖u′‖2 + ‖r‖2‖u′′‖2

)

−
(

2

π2
‖p‖2 + 2

π
‖q‖2 + ‖r‖2

)
‖u′′‖2

2
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�

(
1−
[

4

π2
‖p‖2 + 4

π
‖q‖2 + 2‖r‖2

])
‖u′′‖2

2,

hence‖u′′‖2 = 0. It now follows from the estimate‖u‖2 � (2/π2)‖u′′‖2 and the continuity
of u thatu(t)= 0 for everyt ∈ [0,1], i.e.x1(t)= x2(t) for everyt ∈ [0,1]. This completes
the proof of the theorem. �

Theorems 3.10 and 3.11 were proved in [31]. For other results for third-order three-point
BVPs the interested reader is referred to [1,24,81] and the references cited therein.

3.4. m-point boundary value problems reduced to three-point boundary value problems

Let f : [0,1] × R2 → R be either a continuous or a Carathéodory’s function and let
e : [0,1] → R be a function inL1[0,1], ai ∈ R, with all of theai ’s having the same sign,
ξi ∈ (0,1), i = 1,2, . . . ,m− 2, 0< ξ1 < ξ2 < · · ·< ξm−2 < 1. We consider the following
second-order ordinary differential equation

x′′(t)= f
(
t, x(t), x′(t)

)
+ e(t), t ∈ (0,1) (3.26)

subject to one of the following boundary value conditions:

x(0)= 0, x(1)=
m−2∑

i=1

aix(ξi), (3.27)

x′(0)= 0, x(1)=
m−2∑

i=1

aix(ξi), (3.28)

x(0)= 0, x′(1)=
m−2∑

i=1

aix
′(ξi). (3.29)

It is well known, that the existence of a solution for these BVPs can be studied via the
existence of a solution for Eq. (3.26) subject to one of the following three-point boundary
value conditions:

x(0)= 0, x(1)= αx(η), (3.30)

x′(0)= 0, x(1)= αx(η), (3.31)

x(0)= 0, x′(1)= αx′(η), (3.32)

whereα =
∑m−2

i=1 ai andη ∈ [ξ1, ξm−2].
For certain boundary condition case such that the linear operatorLx = x′′, defined in

a suitable Banach space, is invertible, is the so-callednonresonancecase. Otherwise, the
so-calledresonancecase. In the next sections we will give existence results for both, non-
resonance and resonance cases.
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3.5. Nonresonance results

Using the Leray–Schauder continuation theorem (see [82]) we first give an existence result
for the three-point BVP (3.26), (3.30) in the case whenα �= 1.

THEOREM 3.12. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s con-
ditions. Assume that(3.12)holds. Also letα ∈ R, andη ∈ (0,1) be given. Then the BVP
(3.26), (3.30)has at least one solution inC1[0,1] provided





‖p‖1 + ‖q‖1< 1, if α � 1,

‖p‖1 + ‖q‖1<
1− αη

α(1− η)
, if 1< α < 1/η.

PROOF. LetX be the Banach spaceC1[0,1] andY denote the Banach spaceL1(0,1) with
their usual norms. We denote a linear mappingL :D(L)⊂X→ Y by setting

D(L)=
{
x ∈W2,1(0,1): x(0)= 0, x(1)= αx(η)

}
,

and forx ∈D(L),

Lx = x′′.

We also define a nonlinear mappingN :X→ Y by setting

(Nx)(t)= f
(
t, x(t), x′(t)

)
, t ∈ [0,1].

We note thatN is a bounded mapping fromX into Y . Next, it is easy to see that the linear
mappingL :D(L)⊂ X → Y , is one-to-one mapping. We note that sinceα � 1, α �= 1/η.
Next, the linear mappingK :Y →X, defined fory ∈ Y by

(Ky)(t) =
∫ t

0
(t − s)y(s)ds + αt

1− αη

∫ η

0
(η− s)y(s)ds

− t

1− αη

∫ 1

0
(1− s)y(s)ds

is such that fory ∈ Y , Ky ∈D(L) andLKy = y; and foru ∈D(L),KLu = u. Further-
more, it follows easily using the Arzelá–Ascoli theorem thatKN maps a bounded subset
of X into a relatively compact subset ofX. HenceKN :X→X is a compact mapping.

We next note thatx ∈ C1[0,1] is a solution of the BVP (3.26), (3.30) if and only ifx is
a solution to the operator equation

Lx =Nx + e.

Now, the operator equationLx =Nx + e is equivalent to the equation

x =KNx +Ke.



Nonlocal initial and boundary value problems 491

We apply the Leray–Schauder continuation theorem (see, e.g., [82, Corollary IV.7]) to ob-
tain the existence of a solution forx = KNx + Ke or equivalently to the BVP (3.26),
(3.30).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1), (3.33)

x(0)= 0, x(1)= αx(η), (3.34)

is, a priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1].
We observe that ifx ∈W2,1(0,1), with x(0)= 0, x(1)= αx(η), with α � 1, there exists

a ζ ∈ (0,1) with x′(ζ )= 0. Indeed, suppose thatα � 1 andx′(t) > 0 for everyt ∈ (0,1).
Thenx(t) > 0 for everyt ∈ (0,1) andx(t) is strictly increasing on[0,1]. We then get that
0< x(1)− x(η)= (α − 1)x(η)� 0, a contradiction. Then we have

‖x‖∞ � ‖x′‖∞ � ‖x′′‖1. (3.35)

Now let x(t) be a solution of (3.33)–(3.34) for someλ ∈ [0,1], so thatx ∈W2,1(0,1)
with x(0)= 0, x(1)= αx(η). We then get from Eq. (3.33) that

‖x′′‖1 = λ
∥∥f
(
t, x(t), x ′(t)

)
+ e(t)

∥∥
1

� ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1 + ‖e‖1

�
(
‖p‖1 + ‖q‖1

)
‖x′′‖1 + ‖r‖1 + ‖e‖1.

It follows from the assumption that there is a constantc, independent ofλ ∈ [0,1], such
that

‖x′′‖1 � c.

It is now immediate from (3.35) that the set of solutions of the family of equations (3.33)–
(3.34) is, a priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1]. This com-
pletes the proof of the theorem whenα � 1.

Let nowα > 1 andη ∈ (0,1) with αη < 1. It suffices to verify that the set of all possible
solutions of the family of equations (3.33)–(3.34) is, a priori, bounded inC1[0,1] by a
constant independent ofλ ∈ [0,1].

Forx ∈W2,1(0,1), with x(0)= 0, x(1)= αx(η), if α > 1, there exists aζ ∈ (η,1) such
that(α − 1)x(η)= x(1)− x(η)= (1− η)x′(ζ ), or x(η)= (1− η)/(α − 1)x′(ζ ).

Then we have

‖x‖∞ � ‖x′‖∞ �
α(1− η)

1− αη
.

We then see from Eq. (3.33) that

‖x′′‖1 = λ
∥∥f
(
t, x(t), x ′(t)

)
+ e(t)

∥∥
1
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� ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1 + ‖e‖1

�
(
‖p‖1 + ‖q‖1

)(α(1− η)

1− αη

)
‖x′′‖1 + ‖r‖1 + ‖e‖1

for a solutionx of the family of equations (3.33)–(3.34) for someλ ∈ [0,1]. It is then
immediate that the set of solutions of the family of equations (3.33)–(3.34) is, a priori,
bounded inC1[0,1] by a constant, independent ofλ ∈ [0,1]. This completes the proof of
the theorem. �

Now we study them-point BVP (3.26)–(3.27) using the a priori estimates that we ob-
tained for the three-point BVP (3.26), (3.30). This is because for every solutionx(t) of the
BVP (3.26)–(3.27) there existsη ∈ [ξ1, ξm−2], depending onx(t), such thatx(t) is also a
solution of the BVP (3.26), (3.30) withα =

∑m−2
i=1 ai �= 1.

THEOREM 3.13. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s condi-
tions. Assume that(3.12)holds. Also letα =

∑m−2
i=1 ai , andη ∈ (0,1) be given. Then the

BVP(3.26)–(3.27)has at least one solution inC1[0,1] provided





‖p‖1 + ‖q‖1< 1, if α � 1,

‖p‖1 + ‖q‖1<
1− αξm−2

α(1− ξ1)
, if 1< α < 1/ξm−2.

PROOF. We will give only the proof forα =
∑m−2

i=1 ai � 1; the other case is similar. The
proof is quite similar to that of Theorem 3.12 and uses the a priori bounds for the set of
solutions of the family of equations (3.33)–(3.34).

LetX be the Banach spaceC1[0,1] andY denote the Banach spaceL1(0,1) with their
usual norms. We denote a linear mappingL :D(L)⊂X→ Y by setting

D(L)=
{
x ∈W2,1(0,1): x(0)= 0, x(1)=

m−2∑

i=1

aix(ξi)

}
,

and forx ∈D(L),

Lx = x′′.

We also define a nonlinear mappingN :X→ Y by setting

(Nx)(t)= f
(
t, x(t), x′(t)

)
, t ∈ [0,1].

We note thatN is a bounded mapping fromX into Y . Next, it is easy to see that the linear
mappingL :D(L)⊂X→ Y , is one-to-one mapping. Next, the linear mappingK :Y →X,
defined fory ∈ Y by

(Ky)(t)=
∫ t

0
(t − s)y(s)ds +At
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whereA is given by

A

(
1−

m−2∑

i=1

aiξi

)
=
m−2∑

i=1

ai

∫ ξ1

0
(ξi − s)y(s)ds −

∫ 1

0
(1− s)y(s)ds,

is such that fory ∈ Y , Ky ∈D(L) andLKy = y; and foru ∈D(L), KLu = u. Further-
more, it follows easily using the Arzelá–Ascoli theorem thatKN maps bounded subsets
of X into a relatively compact subsets ofX. HenceKN :X→X is a compact mapping.

We, next, note thatx ∈ C1[0,1] is a solution of the BVP (3.26)–(3.27) if and only ifx is
a solution to the operator equation

Lx =Nx + e.

Now, the operator equationLx =Nx + e is equivalent to the equation

x =KNx +Ke.

We apply the Leray–Schauder continuation theorem to obtain the existence of a solution
for x =KNx +Ke or equivalently to the BVP (3.26)–(3.27).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1), (3.36)

x(0)= 0, x(1)=
m−2∑

i=1

aix(ξi), (3.37)

is, a priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1].
Let, now,x(t) be a solution of (3.36)–(3.37) for someλ ∈ [0,1], so thatx ∈W2,1(0,1)

with x(0)= 0, x(1)=
∑m−2

i=1 aix(ξi). Accordingly, there exists, anη ∈ [ξ1, ξm−2], depend-
ing onx, such thatx(t) is a solution of the three-point BVP

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1),

x(0)= 0, x(1)= αx(η).

It then follows, as in the proof of Theorem 3.12 that there is a constantc, independent of
λ ∈ [0,1], andη ∈ [ξ1, ξm−2], such that

‖x‖∞ � ‖x′‖∞ � ‖x′′‖1 � c.

Thus the set of solutions of the family of equations (3.36)–(3.37) is, a priori, bounded in
C1[0,1] by a constant, independent ofλ ∈ [0,1].

This completes the proof of the theorem. �
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Theorems 3.12 and 3.13 were proved in [33]. In Theorem 3.12 the functionsp,q, r in
the condition (3.12) are inL1(0,1). If p,q are inL∞(0,1) andr, e in L2(0,1) then the
BVP (3.26), (3.30) has at least one solution inC1[0,1] provided





2

π

(
2

π
‖p‖∞ + ‖q‖∞

)
< 1, if α � 1,

2

π
‖p‖∞ + ‖q‖∞ <

√
2(1− αη)

α(1− η)
, if 1 < α < 1/η.

In the case whenα � 1 andαη �= 1 we have a sharper condition for the solvability of
BVP (3.26), (3.30). Thus, iftp, q, r are inL1[0,1] and (3.12) holds, then the BVP (3.26),
(3.30) has at least one solution inC1[0,1] provided





∥∥tp(t)
∥∥

1 +
∥∥q(t)

∥∥
1<

1− αη

1− η
, if αη� 1,

∥∥tp(t)
∥∥

1 +
∥∥q(t)

∥∥
1<

αη− 1

(α − 1)η
if αη > 1.

The above conditions were proved in [33] and based on a priori estimates obtained by a
different method than that was used in Theorem 3.12.

In the case whenα ∈ R, α � 1 Gupta and Trofimchuk in [38] gave constructive condi-
tions for the solvability of the BVP (3.26), (3.30) using the spectral radius of a compact
linear operator, and in [39] new solvability conditions based on a new type Wirtinger in-
equality. For other results see [37].

In the case whenα ∈ R with αη �= 1 a better condition for the solvability of the
BVP (3.26), (3.30) is given by Gupta and Trofimchuk in [38]. They proved that, iftp,
q, t[tp+ q], r are inL1[0,1] and (3.12) holds, then the BVP (3.26), (3.30) has at least one
solution inC1[0,1] provided

max

{∫ η

0

∣∣∣∣
1− α

1− αη
− 1

∣∣∣∣
[
sp(s)+ q(s)

]
ds

+ 1

|1− αη|

∫ 1

η

(1− s)
[
sp(s)+ q(s)

]
ds,

∫ 1

η

|s − αη|
|1− αη|

[
sp(s)+ q(s)

]
ds + |α − 1|

|1− αη|

∫ η

0
s
[
sp(s)+ q(s)

]
ds

}
< 1.

Moreover, Gupta in [30], whenα �= 1 andαη �= 1, obtained new a priori estimates which
are sharper than those used in the previous theorems. More precisely, he proved that if
p,q, r are inL1(0,1) and (3.12) holds, then the BVP (3.26), (3.30) has at least one solution
in C1[0,1] provided

M‖p‖1 + 1

1− τ
‖q‖1< 1,
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whereM andτ are appropriate constants.
Finally, we note that in [40] Gupta and Trofimchuk studied examples of three-point BVP

by making extensive use of computer algebra systems like Maple and MathCad.
Concerning the uniqueness of the solutions of the BVPs (3.26), (3.30) and (3.26)–(3.27)

we have the following results.

THEOREM 3.14. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s condi-
tions. Assume that there exist nonnegative constantsc, d such that

∣∣f (t, x1, x2)− f (t, y1, y2)
∣∣� c|x1 − x2| + d|y1 − y2|

for a.e. t ∈ [0,1] and all (xi, xi) ∈ R2, i = 1,2. Also letα ∈ R, and η ∈ (0,1) be given.
Then the BVP(3.26), (3.30)has exactly one solution inC1[0,1] provided





2

π

(
2

π
c+ d

)
< 1, if α � 1,

2

π
c+ d <

√
2(1− αη)

α(1− η)
, if 1< α < 1/η.

PROOF. The existence of a solution for the BVP (3.26), (3.30) follows from Theorem 3.12.
Let nowx1(t), x2(t) be two solutions of the BVP (3.26), (3.30). We then get

x′′
1(t)− x′′

2(t)= f
(
t, x1(t), x

′
1(t)
)
− f
(
t, y1(t), y

′
1(t)
)
, 0< t < 1,

(x1 − x2)(0)= 0, (x1 − x2)(1)= α(x1 − x2)(η).

It follows that

∥∥x′′
1 − x′′

2

∥∥
2 =
∥∥f
(
t, x1(t), x

′
1(t)
)
− f
(
t, y1(t), y

′
1(t)
)∥∥

2

� c‖x1 − x2‖2 +
∥∥x′

1 − x′
2

∥∥
2

�
2

π

(
2

π
c+ d

)∥∥x′′
1 − x′′

2

∥∥
2.

Hence, we get that‖x′′
1 − x′′

2‖2 = 0. It now follows from the inequalities

‖x1 − x2‖2 �
2

π

∥∥x′
1 − x′

2

∥∥
2 �

4

π2

∥∥x′′
1 − x′′

2

∥∥
2 = 0,

thatx1(t)= x2(t) for a.e.t ∈ [0,1] and hence for everyt ∈ [0,1] because of the continuity
of x1(t) andx2(t) on [0,1]. This completes the proof of the theorem in the case when
α � 1. The proof for the case 1< α < 1/η is similar. �
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THEOREM 3.15. Let f : [0,1] × R2 → R be as in Theorem3.14.Then for any givene(t)
in L2(0,1), them-point BVP(3.26)–(3.27)has exactly one solution inC1[0,1] provided





‖p‖1 + ‖q‖1< 1, if α � 1,

‖p‖1 + ‖q‖1<
1− αξm−2

α(1− ξ1)
, if 1< α < 1/η.

We now give a theorem which allowsf to have nonlinear growth. We do this by impos-
ing a decomposition condition forf . We need the following simple lemma.

LEMMA 3.16. Let x ∈ C1[0,1] satisfyx(0) = 0, x(1) = αx(η), whereη ∈ (0,1), and
α > 1, α �= 1/η, then there existζ andC0 ∈ (0,1) such thatx′(ζ )= C0x(1).

PROOF. If αη > 1, letC0 = 1/(αη). There existsζ ∈ (0,1) with

x′(ζ )= x(η)− x(0)

η
= C0x(1).

If αη < 1, letC0 = α−1
α(1−η) . There existsζ ∈ (η,1) with

x′(ζ )= x(1)− x(η)

1− η
= α − 1

α(1− η)
x(η)= C0x(1). �

THEOREM 3.17. Assume thatf : [0,1] × R2 → R is continuous and has the decomposi-
tion

f (t, x,p)= g(t, x,p)+ h(t, x,p)

such that
(1) pg(t, x,p)� 0 for all (t, x,p) ∈ [0,1] × R2;
(2) h(t, x,p)| � a(t)|x|+b(t)|p|+u(t)|x|r +v(t)|p|k+c(t) for all (t, x,p) ∈ [0,1]×

R2 wherea, b,u, v are inL1[0,1] and0� r, k < 1.
Then, for α �= 1/η, there exists a solutionx ∈ C1[0,1] to BVP(3.26), (3.30)provided that





‖a‖1 + ‖b‖1<
1

2
, if α � 1,

‖a‖1 + ‖b‖1<
1

2

(
1− (α − 1)2

α2(1− η)2

)
, if 1< α <

1

η
,

‖a‖1 + ‖b‖1<
1

2

(
1− 1

α2η2

)
, if

1

η
< α.

PROOF. By the same argument as in the proof of Theorem 3.12, it suffices to show that all
possible solutions of the following family of equations (3.33)–(3.34) is bounded inC1[0,1]
by a constant independent ofλ ∈ [0,1].
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Suppose thatx is a solution of (3.33) and letζ be as in Lemma 3.16 and writeC =
‖c‖1 + ‖e‖1. Multiplying both sides of Eq. (3.33) withx′ and integrating, we obtain

1

2
x′2(t) �

1

2
x′2(ζ )+ ‖x′‖∞

(
‖a‖1‖x‖∞ + ‖b‖1‖x′‖∞

+ ‖u‖1‖x‖r∞ + ‖v‖1‖x′‖k∞ +C
)

= 1

2
C2

0x
′2(1)+ ‖x′‖∞

(
‖a‖1‖x‖∞ + ‖b‖1‖x′‖∞

+ ‖u‖1‖x‖r∞ + ‖v‖1‖x′‖k∞ +C
)
.

Since‖x‖∞ � ‖x′‖∞ and by assumption

‖a‖1 + ‖b‖1<
1

2

(
1−C2

0

)
.

If ‖x′‖∞ �= 0, we have

(
1

2

(
1−C2

0

)
−
(
‖a‖1 + ‖b‖1

))
‖x′‖∞ � ‖u‖1‖x‖r∞ + ‖v‖1‖x′‖k∞ +C.

This implies that‖x′‖∞ is bounded since 0� r, k < 1, that is, there isM > 0 such that
‖x‖∞ � ‖x′‖∞ �M . This completes the proof. �

Theorem 3.17 is taken over from Feng and Webb [15] and is more general than Theo-
rem 3.12, since the assumptions of Theorem 3.12 are special cases of Theorem 3.17, when
g(t, x,p)≡ 0, u(t)≡ 0 andv(t)≡ 0. But in Theorem 3.12 we need‖a‖1 + ‖b‖1< 1 and
in Theorem 3.17 in these special cases we need‖a‖1 +‖b‖1< 1/2. In [15] also interesting
examples are given to compare their results with other existence results.

We now give existence results for the BVPs (3.26), (3.31) and (3.26), (3.32). By using
the same argument as in Theorem 3.12 we can prove the following existence results (see
[32,34]).

THEOREM 3.18. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s con-
ditions. Assume that(3.12)holds. Also letα ∈ R, andη ∈ (0,1) be given. Then the BVP
(3.26), (3.31)has at least one solution inC1[0,1] provided





‖p‖1 + ‖q‖1< 1, if α � 0,(
1+ max

{
α(1− η)

|α − 1| ,
1− η

|α − 1|

})
‖p‖1 + ‖q‖1< 1, if 0< α �= 1.



498 S.K. Ntouyas

In Theorem 3.18 ifp,q, r are inL2(0,1) then the BVP (3.26), (3.31) has at least one
solution inC1[0,1] provided





2

π

(
2

π
‖p‖2 + ‖q‖2

)
< 1, if α � 0,

(√
2

π
+ max

{
α(1− η)

|α − 1| ,
1− η

|α − 1|

})
‖p‖1 + 2

π
‖q‖1< 1, if 0 < α �= 1.

THEOREM 3.19. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s condi-
tions. Assume that(3.12)holds. Also letα ∈ R, α �= 1 and η ∈ (0,1) be given. Then the
BVP(3.26), (3.32)has at least one solution inC1[0,1] provided

(
max

{
1+ |α − 1|

|α − 1| ,
|α| + |α − 1|

|α − 1|

})(
‖p‖1 + ‖q‖1

)
< 1.

As in Theorem 3.13 we prove existence results for them-point BVPs (3.26), (3.28) and
(3.29), (3.31), by using the a priori bounds obtained for the BVPs (3.26), (3.31) and (3.26),
(3.32).

3.6. Results at resonance

In the following we shall give existence results for BVP (3.26), (3.30) whenαη = 1. In
this case, the linear operatorL is noninvertible and the Leray–Schauder continuation the-
orem cannot be used. We shall apply the continuation theorem of Mawhin [82]. For the
convenience of the reader, we recall this theorem.

Let X andZ be Banach spaces andL :D(L) ⊂ X → Z be a linear operator which is
Fredholm of index zero (that is im(L) (the image ofL) is closed inZ, and ker(L) (the
kernel ofL) andZ/ im(L) (the cokernel ofL) are finite-dimensional with equal dimen-
sion). LetP :X→ ker(L) andQ :Z→Z1, whereX = ker(L)⊕X1 andZ = im(L)⊕Z1,
be continuous projections. LetL1 denoteL restricted toD(L) ∩ X1, an invertible op-
erator into im(L), and writeK = L−1

1 . Let Ω be a bounded, open subset ofX such
that D(L) ∩ Ω �= ∅ and letN :Ω → Z be anL-compact mapping, that is, the maps
QN :Ω →Z andK(I −Q)N :Ω →X are compact.

THEOREM 3.20. LetL be Fredholm of index zero and letN beL-compact onΩ . Assume
that the following conditions are satisfied.

(1) Lx + λNx �= 0 for each(x,λ) ∈ [D(L)\kerL∩ ∂Ω] × (0,1).
(2) Nx /∈ im(L) for eachx ∈ ker(L)∩ ∂Ω .
(3) deg(QN |kerL,Ω ∩ ker(L),0) �= 0, whereQ :Z → Z is a continuous projection as

above.
Then the equationLx +Nx = 0 has at least one solution inD(L)∩Ω .

The following existence theorems hold.
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THEOREM 3.21. Letf : [0,1] × R2 → R be a continuous function. Assume that:
(1) There exist functionsp,q, r in L1[0,1] such that

∣∣f (t, u, v)
∣∣� p(t)|u| + q(t)|v| + r(t), for t ∈ [0,1] and(u, v) ∈ R2.

(2) There existsN > 0 such that forv ∈ R with |v|>N , one has

∣∣f (t, u, v)
∣∣� −l|u| + n|v| −M for t ∈ [0,1], u ∈ R

wheren > l � 0,M � 0.
(3) There existsR > 0 such that for|v|>R one has either

vf (t, vt, v)� 0 for t ∈ [0,1]

or else

vf (t, vt, v)� 0 for t ∈ [0,1].

Then, for every continuous functione, the BVP(3.26), (3.30)with αη= 1 has at least one
solution inC1[0,1] provided that

2
(
‖p‖1 + ‖q‖1

)
+ l

n
< 1.

We give the proof via several lemmas. We now letL be the linear operator fromD(L)⊂
X→ Z = L1(0,1) defined by

D(L)=
{
x ∈W2,1(0,1): x(0)= 0, x(1)= x(η)/η

}

and forx ∈D(L), Lx = x′′. LetX1 = {x ∈X: x(0)= 0}.

LEMMA 3.22. SupposeL is as above. ThenL :D(L)⊂X→Z is Fredholm of index zero.
Furthermore, the linear operatorK : im(L)→D(L)∩X1 defined by

(Ky)(t)=
∫ t

0

∫ τ

0
y(s)ds dτ, y ∈ im(L)

is such thatK = L−1
P , whereLP = L|D(L)∩X1. Also‖Ky‖ � ‖y‖1 for all y ∈ im(L).

PROOF. It is easy to see that ker(L)= {ct : c ∈ R}. We show that

im(L)=
{
y ∈ L1[0,1]:

∫ 1

0
Y(t)dt =

∫ 1

0
Y(ηt)dt, whereY(t)=

∫ t

0
y(s)ds

}
.
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In fact, fory ∈ im(L), there isx ∈D(L) with y(t)= x′′(t). Therefore

∫ 1

0
Y(t)dt =

∫ 1

0

[
x′(t)− x′(0)

]
dt = x(1)− x′(0),

and

∫ 1

0
Y(ηt)dt =

∫ 1

0

[
x′(ηt)− x′(0)

]
dt = x(η)/η− x′(0).

Sincex(1) = 1
η
x(η), we have

∫ 1
0 Y(t)dt =

∫ 1
0 Y(ηt)dt . On the other hand, supposey ∈

L1[0,1] is such that
∫ 1

0 Y(t)dt =
∫ 1

0 Y(ηt)dt . Let x(t) =
∫ t

0 Y(s)ds, thenx ∈ D(L) and
x′′(t)= y(t).

Fory ∈ L1[0,1], let

Qy = 2

1− η

∫ 1

0

∫ t

ηt

y(s)ds dt,

and lety1(t)= y(t)−Qy. ThenY1(t)=
∫ t

0 y(s)ds− (Qy)(t), and writingQy in the form

Qy = 2

1− η

{∫ 1

0

∫ t

0
y(s)ds dt −

∫ 1

0

∫ ηt

0
y(s)ds dt

}
,

we see that

∫ 1

0

∫ t

0
y(s)ds dt − Qy

2
=
∫ 1

0

∫ ηt

0
y(s)ds dt − η

Qy

2
,

that is

∫ 1

0
Y1(t)dt =

∫ 1

0
Y1(ηt)dt.

This shows thaty1 ∈ im(L). HenceZ = im(L) + R. Since im(L) ∩ R = {0}, we have
Z = im(L)⊕ R and thereforeL is Fredholm of index zero.

Now we define a projection fromX onto ker(L) by setting(Px)(t) = x′(0)t and let
X1 = {x ∈X,x′(0)= 0}. Then, forx ∈D(L)∩X1, we have

(KLP x)(t)=Kx′′(t)=
∫ t

0

∫ τ

0
x′′(s)ds dτ =

∫ t

0

(
x′(τ )− x′(0)

)
dτ = x(t),

and fory ∈ im(L), we have

(LPKy)(t)=
(∫ t

0

∫ τ

0
y(s)ds dτ

)′′
= y(t).
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This shows thatK = L−1
P . Also we have

∥∥(Ky)(t)
∥∥

∞ �

∫ 1

0

∫ 1

0

∣∣y(s)
∣∣ds dτ �

∥∥y(t)
∥∥

1,

and

(Ky)′(t)=
∫ t

0
y(s)ds, so

∥∥(Ky)′(t)
∥∥

∞ �
∥∥y(t)

∥∥
1,

and hence‖Ky‖ � ‖y‖1 which completes the proof. �

LEMMA 3.23. Let U1 = {x ∈ D(L) \ ker(L),Lx + λNx = 0 for someλ ∈ [0,1]}. Then
U1 is a bounded subset ofX.

PROOF. Suppose thatx ∈U1, andLx = −λNx, thenλ �= 0 andQNx = 0. Therefore

∫ 1

0

∫ τ

ητ

(
f
(
t, x(t), x ′(t)

)
+ e(t)

)
dt dτ = 0,

and hence there existsγ ∈ (0,1) such that

∣∣f
(
γ, x(γ ), x′(γ )

)∣∣=
∣∣e(γ )

∣∣�
∥∥e(t)

∥∥
∞.

Also for x ∈D(L) \ ker(L), by Lemma 3.22 and condition (1)

∥∥(I − P)x
∥∥ =

∥∥KL(I − P)x
∥∥�
∥∥L(I − P)x

∥∥
1 =
∥∥L(x)

∥∥
1

�
∥∥N(x)

∥∥
1 � ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1 + ‖e‖1.

If for somet0 ∈ [0,1], |x′(t0)| �N then we have

∣∣x′(0)
∣∣=
∣∣∣∣x

′(t0)−
∫ t0

0
x′′(t)dt

∣∣∣∣�N + ‖x′′‖1.

Otherwise, if|x′(t)|>N for all t , from condition (2) we obtain

∣∣x′(γ )
∣∣� ‖e‖∞ +M

n
+ l

n
‖x‖∞,

so that

∣∣x′(0)
∣∣=
∣∣∣∣x

′(γ )−
∫ γ

0
x′′(t)dt

∣∣∣∣�
‖e‖∞ +M

n
+ l

n
‖x‖∞ + ‖x′′‖1.
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Therefore we have in either case

∥∥P(x)
∥∥=

∣∣x′(0)
∣∣� max

{‖e‖∞ +M

n
,N

}
+ l

n
‖x‖∞ + ‖x′′‖1.

Writing x(t)=
∫ t

0 x
′(s)ds, we obtain

‖x‖∞ � ‖x′‖1 � ‖x′‖∞.

Therefore

‖x′‖∞ � ‖x‖ �
∥∥(I − P)(x)

∥∥+ ‖Px‖

�

(
‖p‖1 + ‖q‖1 + l

n

)
‖x′‖∞ + ‖x′′‖1 +C,

whereC = ‖r‖1+max{‖e‖∞+M/n,N}. LetC1 = 1−[‖p‖1+‖q‖1+ l
n
], so thatC1> 0.

Then we can write

‖x′‖∞ �
1

C1
‖x′′‖1 + C

C1
,

and then

‖x′′‖1 =
∥∥L(x)

∥∥
1 � ‖Nx‖1 � ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1 + ‖e‖1

�
(
‖p‖1 + ‖q‖1

)
‖x′‖∞ + ‖r‖1 + ‖e‖1

�
‖p‖1 + ‖q‖1

C1
‖x′′‖1 +C2,

whereC2 = ‖p‖1+‖q‖1
C1

+ ‖r‖1 + ‖e‖1. If C3 = ‖p‖1+‖q‖1
C1

thenC3< 1 and hence

‖x‖∞ � ‖x′‖∞ �
C2

C1(1−C3)
+ C

C1
,

which proves thatU1 is bounded. �

LEMMA 3.24. The setU2 := {x ∈ ker(L): N(x) ∈ im(L)} is bounded.

PROOF. Suppose thatx ∈U2 so thatx(t)= ct , wherec is a constant. SinceQNx = 0, we
have

∫ 1

0

∫ τ

ητ

f (t, ct, c)dt dτ = −
∫ 1

0

∫ τ

ητ

e(t)dt dτ.
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Therefore there existsξ ∈ (0,1) such that|f (ξ, cξ, c)| � |e(ξ)| � ‖e‖∞. It follows that

|c| � max

{
N,

M + ‖e‖∞
n− l

}
.

For, if |c| > N , then by condition (2) we obtain‖e‖∞ � −l|cξ | + n|c| −M and hence
|c| � (M + ‖e‖∞)/(n− l). ThusU2 is bounded. �

LEMMA 3.25. If in condition (3) we assume that there existsR > 0 such that for all
|v|>R, vf (t, vt, v)� 0, for t ∈ [0,1], then the set

U3 :=
{
x ∈ ker(L): H(x,λ)= λJx + (1− λ)QNx = 0, λ ∈ [0,1]

}
,

is bounded, whereJ : ker(L)→ Z0, is the linear isomorphism given byJ (ct)= c.

PROOF. Assume thatxn(t) − cnt ∈ U3 and ‖cnt‖ = |cn| → ∞ asn → ∞. Then there
existsλn ∈ [0,1] such that

λncn + (1− λn)(QN)(cnt)= 0.

{λn} has a convergent subsequence, for simplicity we writeλn → λ0. We show thatλ0 �= 1.
Indeed, otherwise we have

λn = −(1− λn)
(QN)cnt

cn
,

and as previously we find that

(1− λn)
‖(QN)cnt‖

|cn|
→ 0 (n→ ∞),

contradictingλn → 1. Hence forn large enough, 1− λn �= 0, and therefore

λn

1− λn
cn =Q

(
f (t, cnt, cn)+ e(t)

)
,

and so

λn

1− λn
= 2

1− η

∫ 1

0

∫ τ

ητ

f (s, cns, cn)

cn
ds dτ + 2

cn(1− η)

∫ 1

0

∫ τ

ητ

e(s)ds dτ.

Since|cn| → ∞, we may assume that|cn|>max{N,R}. Then for large enoughn we have

∣∣∣∣
f (s, cns, cn)

cn

∣∣∣∣� n− l − M

|cn|
�
n− l

2
.
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By our assumptioncnf (t, cnt, cn)� 0 this yieldf (t, cnt, cn)/cn � −(n− l)/2. Hence, by
Fatou’s lemma,

lim sup
n→∞

{∫ 1

0

∫ τ

ητ

f (s, cns, cn)

cn
ds dτ + 1

cn

∫ 1

0

∫ τ

ητ

e(s)ds dτ

}

� lim sup
n→∞

∫ 1

0

∫ τ

ητ

f (s, cns, cn)

cn
ds dτ

�

∫ 1

0

∫ τ

ητ

lim sup
n→∞

f (s, cns, cn)

cn
ds dτ

� − (n− l)(1− η)

4
.

This is a contradiction withλn/(1− λn)� 0. ThusU3 is bounded. �

PROOF OFTHEOREM 3.21. Firstly, by Arzelá–Ascoli theorem, it can be shown that the
linear operatorK : im(L) → D(L) ∩ X1 in Lemma 3.22 is compact operator, soN is

L-compact. LetΩ be a bounded open set containing
⋃3
i=1Ui . Then by the above lem-

mas the conditions of Theorem 3.20 are satisfied and thereforeLx +Nx = 0 has at least
one solution inD(L) ∩ Ω so that the BVP (3.26), (3.30) withαη = 1 has at least one
solution. �

THEOREM 3.26. Assume thatf : [0,1] × R2 → R is continuous and has the decomposi-
tion

f (t, x,p)= g(t, x,p)+ h(t, x,p).

Assume that
(1) There existsM1 > 0 such that forx ∈D(L) := {x ∈W2,1(0,1): x(0)= 0, x(1)=

1
η
x(η)}, if |x′(t)|>M1 for all t ∈ [0,1], then

∫ 1

0

∫ s

ηs

(
f
(
t, x(t), x ′(t)

)
+ e(t)

)
dt ds �= 0;

(2) There existsM2> 0, such that for allv ∈ R with |v|>M2 one has either

v
(
f (t, vt, v)+ e(t)

)
� 0 for t ∈ [0,1],

or

v
(
f (t, vt, v)+ e(t)

)
� 0 for t ∈ [0,1];

(3) pg(t, x,p)� 0 for all (t, x,p) ∈ [0,1] × [−M,M] × R;
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(4) |h(t, x,p)| � a(t)|x| + b(t)|p| + u(t)|x|r + v(t)|p|k + c(t) for (t, x,p) ∈ [0,1] ×
[−M,M] × R wherea, b,u, v are inL1[0,1] and0� r , k < 1.

Then, the BVP(3.26), (3.30)with αη = 1 has at least one solution inC1[0,1] provided
that

‖a‖1 + ‖b‖1<
1

2
.

Theorem 3.21 is taken over from [16]. For the proof of Theorem 3.26 we refer to [15].
Other results are given by Gupta in [27,34]. In [16] is also proved the following uniqueness
result.

THEOREM 3.27. Suppose that the conditions(1) and(2) in Theorem3.21are replaced by
the following conditions respectively:

(1) There exist functionsp,q in L1[0,1] such that

∣∣f (t, u1, v1)− f (t, u2, v2)
∣∣� p(t)|u1 − u2| + q(t)|v1 − v2|

for t ∈ [0,1] and(u1, v1), (u2, v2) ∈ R2.
(2) There existsn > l � 0 such that

∣∣f (t, u1, v1)− f (t, u2, v2)
∣∣� −l|u1 − u2| + n|v1 − v2|

for t ∈ [0,1], (u1, v1), (u2, v2) ∈ R2.
Then the BVP(3.26), (3.30)with αη= 1 has exactly one solution inC1[0,1] provided that

2
(
‖p‖1 + ‖q‖1

)
+ l

n
< 1.

3.7. m-point boundary value problems reduced to four-point boundary value problems

Letf : [0,1]×R2 → R be either a continuous or a Carathéodory’s function ande : [0,1] →
R be a function inL1[0,1], ci, aj ∈ R, with all of theci ’s, and all ofaj ’s, having the same
sign,ξi, τj ∈ (0,1), i = 1,2, . . . ,m−2, j = 1,2, . . . , n−2, 0< ξ1< ξ2< · · ·< ξm−2< 1,
0< τ1< τ2< · · ·< τn−2< 1.

Consider the following second-order ordinary differential equation

x′′(t)= f
(
t, x(t), x′(t)

)
+ e(t), t ∈ (0,1) (3.38)

subject to one of the following boundary conditions

x(0)=
m−2∑

i=1

cix
′(ξi), x(1)=

n−2∑

j=1

ajx(τj ), (3.39)



506 S.K. Ntouyas

x(0)=
m−2∑

i=1

cix
′(ξi), x′(1)=

n−2∑

j=1

aix
′(τj ), (3.40)

x(0)=
m−2∑

i=1

cix
′(ξi), x(1)=

n−2∑

j=1

aix(τj ), (3.41)

x(0)=
m−2∑

i=1

cix(ξi), x′(1)=
n−2∑

j=1

aix
′(τj ). (3.42)

It is well known that if a functionx ∈ C1 satisfies one of the boundary conditions (3.39)–
(3.42) andci, aj , i = 1,2, . . . ,m − 2, j = 1,2, . . . , n − 2 are as above, then there exist
ζ ∈ [ξ1, ξm−2], η ∈ [τ1, τn−2] such that

x(0)= γ x′(ζ ), x(1)= αx(η), (3.43)

x(0)= γ x′(ζ ), x′(1)= αx′(η), (3.44)

x(0)= γ x(ζ ), x(1)= αx(η), (3.45)

x(0)= γ x(ζ ), x′(1)= αx′(η), (3.46)

respectively withγ =
∑m−2

i=1 ci , α =
∑n−2

j=1 aj .
As in the case ofm-point BVPs which are reduced to three-point BVPs, we shall prove

an existence result the BVP (3.38)–(3.39), proving first an existence result for the BVP
(3.38), (3.43), and using the a priori bounds obtained for this problem for the BVP (3.38)–
(3.39). In the next lemma we obtain the needed a priori bounds, which are independent of
ζ andη, for the BVP (3.38), (3.43).

LEMMA 3.28. Letζ , η ∈ (0,1) is given andx(t) ∈W2,1(0,1) be such thatx(0)= γ x′(ζ ),
x(1)= αx(η). Then

‖x‖∞ �A‖x′‖∞, ‖x′‖∞ � B‖x′′‖1

where

A=
{1, if α � 0,
L, if α > 0,α �= 1,
1+ |γ |, if α = 1

and

B =





1, if α � 0, γ = 0,
1

1−Q
, if α � 0, γ �= 0,

1

1− S
, if α > 0,α �= 1,

1, if α = 1,
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where forα > 0, α �= 1,





M = min

{
α,

1

α

}
< 1,

L= min

{
1

1−M
,1+ 1− η

|1− α| ,1+ |α|(1− η)

|1− α| ,1+ |γ |
}
,

S = min

{ |1− α|
1− η

L,
|1− α|
α(1− η)

L,
1

|γ |L
}

for α < 0,

Q= min

{
1− α

1− η
,

1− α

|α|(1− η)
,

1

|γ |

}

and forα = 0,Q= 1
|γ | providedQ< 1 andS < 1.

PROOF. We consider the following cases:
Case1: α � 0. In this casex(1)x(η)� 0 and accordingly there exists aθ ∈ [η,1] such

thatx(θ)= 0. Hence it follows that‖x‖∞ � ‖x′‖∞. Also if γ = 0, we have fromx(0)= 0
andx(θ) = 0 that there exists az ∈ (0, θ) such thatx′(z) = 0. Accordingly, we get that
‖x′‖∞ � ‖x′′‖1. Suppose, now, thatα < 0 andγ �= 0. Next we see from Mean Value
Theorem there existsω ∈ (η,1) such that

(α − 1)x(η)= x(1)− x(η)= (1− η)x′(ω)

and hence

x(η)= 1− η

α − 1
x′(ω).

Also, sincex(1)= αx(η) we get

x(1)= α(1− η)

α − 1
x′(ω).

From the relations

x′(t) = x′(ω)+
∫ t

ω

x′′(s)ds = α − 1

1− η
x(η)+

∫ t

ω

x′′(s)ds,

x′(t) = x′(ω)+
∫ t

ω

x′′(s)ds = α − 1

α(1− η)
x(1)+

∫ t

ω

x′′(s)ds

and

x′(t)= x′(ζ )+
∫ t

0
x′′(s)ds = 1

γ
x(0)+

∫ t

0
x′′(s)ds
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then follows that

‖x′‖∞ �
1

1−Q
‖x′′‖1,

whereQ= min{1−α
1−η ,

1−α
|α|(1−η) ,

1
|γ | } if Q< 1. Finally, forα = 0, γ �= 0 it is easy to see that

Q= 1
|γ | since we require thatQ< 1 and 1

1−η > 1.
Case2: α > 0, α �= 1. We first consider the relations

x(t)= x(1)+
∫ t

1
x′(s)ds = αx(η)+

∫ t

1
x′(s)ds

and

x(t)= x(η)+
∫ t

η

x′(s)ds = 1

α
x(1)+

∫ t

η

x′(s)ds.

Since, now,M = min{α, 1
α
}< 1, we get from the above relations that

‖x‖∞ �
1

1−M
‖x′‖∞.

Next, we get the relations

x(t)= x(1)+
∫ t

1
x′(s)ds = α(1− η)

α − 1
x′(ω)+

∫ t

1
x′(s)ds

and

x(t)= x(η)+
∫ t

η

x′(s)ds = 1− η

α − 1
x′(ω)+

∫ t

η

x′(s)ds.

From these relations and

x(t)= x(0)+
∫ t

0
x′(s)ds = γ x′(ζ )+

∫ t

0
x′(s)ds

it is immediate that

‖x‖∞ � L‖x′‖∞,

whereL= min{ 1
1−M ,1+ 1−η

|α−1| ,1+ |α|(1−η)
|α−1| ,1+ |γ |}. Further, we have

‖x′‖∞ �
1

1− S
‖x′′‖1,
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whereS = min{ |1−α|
1−η L,

|1−α|
α(1−η)L,

1
|γ |L} if S < 1.

Case3:α = 1. Sincex(1)= x(η) there exists anω ∈ (η,1) with x′(ω)= 0. It is then im-
mediate that‖x′‖∞ � ‖x′′‖1. Also sincex(t)= x(0)+

∫ t
0 x

′(s)ds = γ x′(ζ )+
∫ t

0 x
′(s)ds,

it is immediate that‖x‖∞ � (1+ |γ |)‖x′‖∞.
This completes the proof of the lemma. �

THEOREM 3.29. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s condi-
tions. Assume that(3.12)holds. Also letη ∈ (0,1) be given andα,γ ∈ R with 1 + γ �=
α(γ + η). Moreover we assume thatQ< 1 andS < 1.

Then the BVP(3.38), (3.43)has at least one solution inC1[0,1] provided





‖p‖1 + ‖q‖1< 1, α � 0, γ = 0,

‖p‖1 + ‖q‖1< 1−Q, α � 0, γ �= 0,

L‖p‖1 + ‖q‖1< 1− S, α > 0,α �= 1,(
1+ |γ |

)
‖p‖1 + ‖q‖1< 1, α = 1.

PROOF. LetX be the Banach spaceC1[0,1] andY denote the Banach spaceL1(0,1) with
their usual norms. We denote a linear mappingL :D(L)⊂X→ Y by setting

D(L)=
{
x ∈W2,1(0,1): x(0)= γ x′(ζ ), x(1)= αx(η)

}
,

and forx ∈D(L),

Lx = x′′.

We also define a nonlinear mappingN :X→ Y by setting

(Nx)(t)= f
(
t, x(t), x′(t)

)
, t ∈ [0,1].

We note thatN is a bounded mapping fromX into Y . Next, it is easy to see that the linear
mappingL :D(L)⊂X→ Y , is one-to-one mapping. Next, the linear mappingK :Y →X,
defined fory ∈ Y by

(Ky)(t) =
∫ t

0
(t − s)y(s)ds + γ

∫ ζ

0
y(s)ds

+ γ + t

1+ γ − α(γ + η)

[
α

∫ η

0
(η− s)y(s)ds

−
∫ 1

0
(1− s)y(s)ds + γ (α − 1)

∫ ζ

0
y(s)ds

]
, t ∈ [0,1]

is such that fory ∈ Y , Ky ∈D(L) andLKy = y; and foru ∈D(L), KLu = u. Further-
more, it follows easily using the Arzelá–Ascoli theorem that KN maps bounded subsets of
X into a relatively compact subsets ofX. HenceKN :X→X is a compact mapping.
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We, next, note thatx ∈ C1[0,1] is a solution of the BVP (3.38), (3.43) if and only ifx
is a solution to the operator equation

Lx =Nx + e.

Now, the operator equationLx =Nx + e is equivalent to the equation

x =KNx +Ke.

We apply the Leray–Schauder continuation theorem to obtain the existence of a solution
for x =KNx +Ke or equivalently to the BVP (3.38), (3.43).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1), (3.47)

x(0)= γ x′(0), x(1)= αx(η) (3.48)

is, a priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1].
(I) Assume thatα � 0, γ = 0. From Lemma 3.28 we have

‖x‖∞ � ‖x′‖∞ � ‖x′′‖1.

Let, now,x(t) be a solution of (3.47)–(3.48) for someλ ∈ [0,1], so thatx ∈W2,1(0,1)
with x(0)= γ x′(ζ ), x(1)= αx(η). We then get

‖x′′‖1 = λ
∥∥f
(
t, x(t), x ′(t)

)
+ e(t)

∥∥
1

� ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1 + ‖e‖1

�
(
‖p‖1 + ‖q‖1

)
‖x′′‖1 + ‖r‖1 + ‖e‖1.

It follows from our assumption that there is a constantc, independent ofλ ∈ [0,1], such
that

‖x′′‖1 � c.

It is now immediate that the set of solutions of the family of equations (3.47)–(3.48) is, a
priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1].

(II) Assume thatα � 0, γ �= 0. Then we have, by Lemma 3.28 that

‖x‖∞ � ‖x′‖∞, ‖x′‖∞ �
1

1−Q
‖x′′‖1.

We then get

‖x′′‖1 = λ
∥∥f
(
t, x(t), x ′(t)

)
+ e(t)

∥∥
1
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� ‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖r‖1 + ‖e‖1

�
[
‖p‖1 + ‖q‖1

] 1

1−Q
‖x′′‖1 + ‖r‖1 + ‖e‖1.

We proceed as in case (I).
The process for the other cases is similar to the previous cases and we omit the details.

This completes the proof of the theorem. �

We study now the multi-point BVP (3.38)–(3.39) using the a priori estimates that can be
obtained for a four-point BVP (3.38), (3.43). This is because for every solutionx(t) of the
BVP (3.38)–(3.39), there existη ∈ [ξ1, ξm−2], ζ ∈ [τ1, τn−2], depending on,x(t), such that
x(t) is also a solution of the BVP (3.38), (3.43) withγ =

∑m−2
i=1 ci andα =

∑n−2
j=1 aj . The

proof is quite similar to the proof of Theorem 3.29 and uses the a priori estimates obtained
in the proof of Lemma 3.28 for the set of solutions of the family of equations (3.38), (3.43).

THEOREM 3.30. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s con-
ditions. Assume that(3.12)holds. Let ci, aj ∈ R, with all of theci ’s (respectively, aj ’s),
having the same sign, ξi, τj ∈ (0,1), i = 1,2, . . . ,m − 2, j = 1,2, . . . , n − 2, 0< ξ1 <

ξ2< · · ·< ξm−2< 1, 0< τ1< τ2< · · ·< τn−2< 1 be given. Suppose that

1+
(
m−2∑

i=1

ci

)(
1−

n−2∑

j=1

aj

)
−
n−2∑

j=1

aj τj �= 0.

Let γ =
∑m−2

i=1 ci andα =
∑n−2

j=1 aj . Moreover we assume thatQ′ < 1, andS′ < 1, where

M = min{α, 1
α
}< 1,

L′ = min

{
1

1−M
,1+ 1− τ1

|1− α| ,1+ |α|(1− τ1)

|1− α| ,1+ |γ |
}
,

S′ = min

{ |1− α|
1− τn−2

L,
|1− α|

α(1− τn−2)
L,

1

|γ |L
}
,

Q′ = min

{
1− α

1− τn−2
,

1− α

|α|(1− τn−2)
,

1

|γ |

}
.

Then the BVP(3.38)–(3.39)has at least one solution inC1[0,1] provided





‖p‖1 + ‖q‖1< 1, α � 0, γ = 0,

‖p‖1 + ‖q‖1< 1−Q′, α � 0, γ �= 0,

L′‖p‖1 + ‖q‖1< 1− S′, α > 0,α �= 1,(
1+ |γ |

)
‖p‖1 + ‖q‖1< 1, α = 1.



512 S.K. Ntouyas

PROOF. LetX be the Banach spaceC1[0,1] andY denote the Banach spaceL1(0,1) with
their usual norms. We denote a linear mappingL :D(L)⊂X→ Y by setting

D(L)=
{
x ∈W2,1(0,1): x(0)=

m−2∑

i=1

cix
′(ξi), x(1)=

n−2∑

j=1

ajx(τj )

}
,

and forx ∈D(L),

Lx = x′′.

We also define a nonlinear mappingN :X→ Y by setting

(Nx)(t)= f
(
t, x(t), x′(t)

)
, t ∈ [0,1].

We note thatN , is a bounded mapping fromX into Y . Next, it is easy to see that the linear
mappingL :D(L)⊂X→ Y , is one-to-one mapping. Next, the linear mappingK :Y →X,
defined fory ∈ Y by

(Ky)(t)=
∫ t

0
(t − s)y(s)ds + ct + k, t ∈ [0,1],

wherec andk are given by

[
1+
(
m−2∑

i=1

ci

)(
1−

n−2∑

j=1

aj

)
−
n−2∑

j=1

aj τj

]
c

=
(
n−2∑

j=1

aj − 1

)(
m−2∑

i=1

ci

∫ ξi

0
y(s)ds

)

+
n−2∑

j=1

aj

∫ τj

0
(τj − s)y(s)ds −

∫ 1

0
(1− s)y(s)ds

and
[

1+
(
m−2∑

i=1

ci

)(
1−

n−2∑

j=1

aj

)
−
n−2∑

j=1

aj τj

]
k =

m−2∑

i=1

ci

n−2∑

j=1

aj

∫ τj

0
(τj − s)y(s)ds

−
m−2∑

i=1

ci

∫ 1

0
(1− s)y(s)ds +

(
1−

n−2∑

j=1

aj τj

)
m−2∑

i=1

ci

∫ ξi

0
y(s)ds,

is such that fory ∈ Y , Ky ∈ D(L)andLKy = y; and foru ∈ D(L), KLu = u. Further-
more, it follows easily using the Arzelá–Ascoli theorem that KN maps bounded subsets of
X into a relatively compact subset ofX. HenceKN :X→X is a compact mapping.
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We, next, note thatx ∈ C1[0,1] is a solution of the BVP (3.38)–(3.39) if and only ifx is
a solution to the operator equation

Lx =Nx + e.

Now, the operator equationLx =Nx + e is equivalent to the equation

x =KNx +Ke.

We apply the Leray–Schauder continuation theorem to obtain the existence of a solution
for x =KNx +Ke or equivalently to the BVP (3.38)–(3.39).

To do this, it suffices to verify that the set of all possible solutions of the family of
equations

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1), (3.49)

x(0)=
m−2∑

i=1

cix
′(ξi), x(1)=

n−2∑

j=1

ajx(τj ) (3.50)

is, a priori, bounded inC1[0,1] by a constant independent ofλ ∈ [0,1].
Let, now,x(t) be a solution of (3.49)–(3.50) for someλ ∈ [0,1], so thatx ∈W2,1(0,1)

with x(0)=
∑m−2

i=1 cix
′(ξi), x(1)=

∑n−2
j=1 ajx(τj ). Accordingly, there existζ ∈ [ξ1, ξm−2]

andη ∈ [τ1, τn−2] depending onx(t), such thatx(t) is a solution of the four point BVP

x′′(t)= λf
(
t, x(t), x′(t)

)
+ λe(t), t ∈ (0,1),

x(0)= γ x′(ζ ), x(1)= αx(η).

It then follows, as in the proof of Theorem 3.30 that there is a constantc, independent of
λ ∈ [0,1], andη ∈ [ξ1, ξm−2], ζ ∈ [τ1, τn−2] such that

‖x‖∞ � c1‖x′‖∞ � c2‖x′′‖1 � c,

wherec1, c2 are constants independent ofλ,η, ζ . Thus the set of solutions of the family
of equations is, a priori, bounded inC1[0,1] by a constant, independent ofλ ∈ [0,1]. This
completes the proof of the theorem. �

Theorems 3.29 and 3.30 are taken from [35]. Similar results for the BVP (3.38), (3.40)
are proved in [35] and for the BVPs (3.38), (3.41) and (3.38), (3.42) in [36].

3.8. The general case

Let f : [0,1] × R2 → R be either a continuous or a Carathéodory’s function ande(t) ∈
L1[0,1]. Let ξi, ηj , ci, aj , i = 1,2, . . . ,m − 2, j = 1,2, . . . , n − 2, 0< ξ1 < ξ2 < · · · <
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ξm−2 < 1, 0< η1 < η2 < · · · < ηn−2 < 1 be given. Consider the following second-order
ordinary differential equation:

x′′(t)= f
(
t, x(t), x ′(t)

)
+ e(t), t ∈ (0,1), (3.51)

subject to one of the following boundary value conditions:

x(0)=
m−2∑

i=1

cix(ξi), x(1)=
n−2∑

j=1

ajx(ηj ), (3.52)

x(0)=
m−2∑

i=1

cix(ξi), x′(1)=
n−2∑

j=1

ajx(ηj ), (3.53)

x′(0)=
m−2∑

i=1

cix(ξi), x(1)=
n−2∑

j=1

ajx(ηj ), (3.54)

x(0)=
m−2∑

i=1

cix
′(ξi), x(1)=

n−2∑

j=1

ajx
′(ηj ), (3.55)

x(0)=
m−2∑

i=1

cix
′(ξi), x′(1)=

n−2∑

j=1

ajx(ηj ), (3.56)

x(0)=
m−2∑

i=1

cix(ξi), x′(1)=
n−2∑

j=1

ajx
′(ηj ), (3.57)

x(0)=
m−2∑

i=1

cix
′(ξi), x′(1)=

n−2∑

j=1

ajx
′(ηj ). (3.58)

When all theci ’s have the same sign and also all theaj ’s have the same sign, it is known
that existence of a solution for (3.51) with boundary conditions (3.52)–(3.58) can be ob-
tained via existence subject to the respective four-point boundary conditions

x(0)= γ x(ξ), x(1)= αx(η), (3.59)

x(0)= γ x(ξ), x′(1)= αx(η), (3.60)

x′(0)= γ x′(ξ), x(1)= αx(η), (3.61)

x′(0)= γ x′(ξ), x′(1)= αx′(η), (3.62)

x(0)= γ x′(ξ), x(1)= αx(η), (3.63)

x(0)= γ x′(ξ), x′(1)= αx′(η), (3.64)

x(0)= γ x(ξ), x′(1)= αx′(η), (3.65)
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whereξ ∈ [ξ1, ξm−2], η ∈ [η1, ηn−2], γ =
∑m−2

i=1 ci , α =
∑n−2

j=1 aj .
When all theci ’s have the same sign and also all theaj ’s have no same sign, the existence

of a solution for (3.51) with boundary value conditions (3.52)–(3.58) can be obtained via
existence subject to the following boundary conditions

x(0)= γ x(ξ), x(1)=
n−2∑

j=1

ajx(ηj ), (3.66)

x(0)= γ x(ξ), x′(1)=
n−2∑

j=1

ajx
′(ηj ), (3.67)

x′(0)= γ x(ξ), x(1)=
n−2∑

j=1

ajx(ηj ), (3.68)

x′(0)= γ x′(ξ), x′(1)=
n−2∑

j=1

ajx
′(ηj ), (3.69)

x(0)= γ x′(ξ), x(1)=
n−2∑

j=1

ajx(ηj ), (3.70)

x(0)= γ x′(ξ), x′(1)=
n−2∑

j=1

ajx
′(ηj ), (3.71)

x(0)= γ x(ξ), x′(1)=
n−2∑

j=1

ajx
′(ηj ), (3.72)

whereξ ∈ [ξ1, ξm−2], γ =
∑m−2

i=1 ci .
When all theci ’s do not have the same sign and also all theaj ’s have the same sign,

the existence of a solution for (3.51) with boundary value conditions (3.52)–(3.58) can be
obtained via existence subject to the following boundary conditions

x(0)=
m−2∑

i=1

cix(ξi), x(1)= αx(η), (3.73)

x(0)=
m−2∑

i=1

cix(ξi), x′(1)= αx′(η), (3.74)

x′(0)=
m−2∑

i=1

cix
′(ξi), x(1)= αx(η), (3.75)
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x′(0)=
m−2∑

i=1

cix
′(ξi), x′(1)= αx′(η), (3.76)

x(0)=
m−2∑

i=1

cix
′(ξi), x(1)= αx(η), (3.77)

x(0)=
m−2∑

i=1

cix
′(ξi), x′(1)= αx′(η), (3.78)

x(0)=
m−2∑

i=1

cix(ξi), x′(1)= αx′(η), (3.79)

whereη ∈ [η1, ηn−2], α =
∑n−2

j=1 aj .
For certain boundary condition case such that the linear operatorLx = x′′, defined in

a suitable Banach space, is invertible, is the so-called nonresonance case. Otherwise, the
so-called resonance case.

Existence results were given for the BVPs:
• (3.51)–(3.52) in [29] for the nonresonance case and in [59] for resonance case,
• (3.51), (3.54) and (3.51), (3.55) in [59] for resonance case,
• (3.51), (3.57) in [29] for nonresonance case,
• (3.51), (3.58) in [28] for nonresonance case,
• (3.51), (3.59), (3.51), (3.61), (3.51), (3.62) and (3.51), (3.65) in [61] for resonance

case,
• (3.51), (3.66), (3.51), (3.67), (3.51), (3.68) and (3.51), (3.69) in [60] for resonance

case,
• (3.51), (3.73), (3.51), (3.74), (3.51), (3.75) and (3.51), (3.76) in [62] for resonance

case.
For the BVP (3.38), (3.52) we report an existence result for the nonresonance case
from [29].

THEOREM 3.31. Let f : [0,1] × R2 → R be a function satisfying Carathéodory’s condi-
tions. Assume that(3.12)holds. Let ci, aj ∈ R, with all of theci ’s (respectively, aj ’s), not
having the same sign, ξi, ηj ∈ (0,1), i = 1,2, . . . ,m − 2, j = 1,2, . . . , n − 2, 0< ξ1 <

ξ2< · · ·< ξm−2< 1, 0< η1< η2< · · ·< ηn−2< 1 be given. Suppose that

(
m−2∑

i=1

ciξi

)(
1−

n−2∑

j=1

aj

)
�=
(

1−
n−2∑

j=1

ci

)(
n−2∑

j=1

ajηj − 1

)
.

Then the BVP(3.51)–(3.52)has at least one solution inC1[0,1] provided

Q
(
M‖p‖1 + ‖q‖1

)
< 1,
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where

M = min

{
1∣∣∑m−2
i=1 ci

∣∣

(
m−2∑

i=1

|ci |λi +
∑m−2

i=1 |ciξi |∣∣1−
∑m−2

i=1 ci
∣∣

)
,

1∣∣∑n−2
j=1 aj

∣∣

(
n−2∑

j=1

|ai |µj +
∑n−2

j=1 |cj (1− ηj )|∣∣1−
∑n−2

j=1 aj
∣∣

)
,

1+
∑m−2

i=1 |ciξi |∣∣1−
∑m−2

i=1 ci
∣∣ ,1+

∑n−2
j=1 |cj (1− ηj )|∣∣1−

∑n−2
j=1 aj

∣∣

}
,

λi = max{ξi,1− ξi}, i = 1, . . . ,m− 2,µj = max{ηj ,1− ηj }, j = 1, . . . , n− 2 and

Q= min

{ ∑m−2
i=1 |ciξi |∣∣∑m−2

i=1 ciξi
∣∣−M

∣∣1−
∑m−2

i=1 ci
∣∣ ,

∑n−2
j=1 |aj (1− ηj )|∣∣∑n−2

i=j aj (1− ηj )
∣∣−M

∣∣∑n−2
j=1 aj − 1

∣∣

}
.

For resonance case Liu in [59] gave existence results for the BVP (3.51)–(3.52) in the
following cases:

(1)
∑m−2

i=1 ciξi = 0, γ = 1, α = 1,
∑m−2

i=1 ciξ
2
i �= 0,

∑n−2
j=1 ajη

2
j �= 1.

(2)
∑m−2

i=1 ciξi �= 0, γ = 1, α = 1,
∑n−2

i=1 ajηj = 1,
∑n−2

j=1 ajη
2
j �= 1.

(3)
∑m−2

i=1 ciξi = 0, γ �= 1, α = 1,
∑n−2

i=1 ajηj = 1,
∑n−2

j=1 ajη
2
j �= 1.

(4)
∑m−2

i=1 ciξi = 0, γ = 1, α �= 1,
∑n−2

i=1 ajηj = 1,
∑m−2

i=1 ciξ
2
i �= 0.

We give an existence result at resonance, for the BVP (3.51)–(3.52) in the case (1), i.e.
when

m−2∑

i=1

ciξi = 0, γ = 1, α = 1,
m−2∑

i=1

ciξ
2
i �= 0,

n−2∑

j=1

ajη
2
j �= 1.

THEOREM 3.32. Let f : [0,1] × R2 → R be a continuous function. Assume that either
there existsm1 ∈ {1,2, . . . ,m− 3} such thatci < 0 (1� i � m1), ci > 0 (m1 + 1 � i �

m− 2), or there existsn1 ∈ {1,2, . . . , n− 3} such thataj > 0 (1� j � n1), aj < 0 (n1 +
1� j � n− 2), furthermore

(H1) There exist functionsa, b, c, r in L1[0,1], and constantθ ∈ [0,1) such that for all
(x, y) ∈ R2, t ∈ [0,1] either
∣∣f (t, x, y)

∣∣� a(t)|x| + b(t)|y| + c(t)|y|θ + r(t)

or else
∣∣f (t, x, y)

∣∣� a(t)|x| + b(t)|y| + c(t)|x|θ + r(t).
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(H2) There exists constantM > 0 such that, for x ∈ dom(L), if |x(t)| >M for all t ∈
[0,1], then

m−2∑

i=1

ci

∫ ξi

0

∫ s

0

[
f
(
τ, x(τ ), x ′(τ )

)
+ e(τ )

]
dτ ds �= 0.

(H3) There exists constantM∗ > 0 such that for anyd ∈ R, if |d|>M∗, then either

d

m−2∑

i=1

ci

∫ ξi

0

∫ s

0

[
f (τ, d,0)+ e(τ )

]
dτ ds < 0

or else

d

m−2∑

i=1

ci

∫ ξi

0

∫ s

0

[
f (τ, d,0)+ e(τ )

]
dτ ds > 0.

Then, for everye ∈ L1[0,1], the BVP(3.51)–(3.52)in the case(1), i.e. when
∑m−2

i=1 ciξi =
0, γ = 1, α = 1,

∑m−2
i=1 ciξ

2
i �= 0,

∑n−2
j=1 ajη

2
j �= 1, has at least one solution inC1[0,1]

provided

‖a‖1 + ‖b‖1<
1

-1 + 1
, where-1 = a +

∑n−2
i=j |aj |(1− ηj )∣∣1−
∑n−2

j=1 ajηj
∣∣ .

3.9. Positive solutions of some nonlocal boundary value problems

There is much attention focused on question of positive solutions of BVPs for ordinary
differential equations. Much of interest is due to the applicability of certain Krasnosel’skii
fixed point theorems or the Leggett–Williams multiple fixed point theorem, or a synthesis
of both to obtain positive solutions or multiple positive solutions which lie in a cone. Here
we present some of the results on positive solutions of some nonlocal BVPs.

Consider the differential equation

x′′ + a(t)f (x)= 0, t ∈ (0,1) (3.80)

with the boundary conditions

x(0)= 0, αx(η)= x(1), (3.81)

where 0< η < 1. Our purpose here is to give some existence results for positive solutions
to (3.80)–(3.81), assuming thatαη < 1 andf is either superlinear or sublinear.
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Set

f0 = lim
x→0+

f (x)

x
, f∞ = lim

x→∞
f (x)

x
.

Thenf0 = 0 andf∞ = ∞ correspond to the superlinear case, andf0 = ∞ andf∞ = 0
correspond to the sublinear case. By thepositive solutionof the BVP (3.80)–(3.81) we
understand a functionx(t) which is positive on 0< t < 1 and satisfies the differential
equation (3.80) and the boundary conditions (3.81).

The key tool in our approach is the following Krasnosel’skii’s fixed point theorem in a
cone [54] (see also [21]).

THEOREM 3.33. LetE be a Banach space, and letK ⊂E be a cone. AssumeΩ1,Ω2 are
open bounded subsets ofE with 0∈Ω1,Ω1 ⊂Ω2, and let

A :K ∩
(
Ω2 \Ω1

)
−→K

be a completely continuous operator such that
(i) ‖Au‖ � ‖u‖, u ∈K ∩ ∂Ω1, and‖Au‖ � ‖u‖, u ∈K ∩ ∂Ω2; or

(ii) ‖Au‖ � ‖u‖, u ∈K ∩ ∂Ω1, and‖Au‖ � ‖u‖, u ∈K ∩ ∂Ω2.
ThenA has a fixed point inK ∩ (Ω2 \Ω1).

We give first some preliminary lemmas.

LEMMA 3.34. Letαη �= 1 then fory ∈ C[0,1], the problem

x′′(t)+ y(t)= 0, t ∈ (0,1), (3.82)

x(0)= 0, αx(η)= x(1) (3.83)

has a unique solution

x(t) = −
∫ t

0
(t − s)y(s)ds − αt

1− αη

∫ η

0
(η− s)y(s)ds

+ t

1− αη

∫ 1

0
(1− s)y(s)ds.

LEMMA 3.35. Let 0< α < 1
η
. If y ∈ C[0,1] and y � 0, for t ∈ (0,1) then the unique

solutionx of the problem(3.82)–(3.83)satisfiesx(t)� 0, t ∈ [0,1].

PROOF. From the fact thatx′′(t) = −y(t) � 0, we know that the graph ofx(t) is con-
cave down on(0,1). So, if x(1)� 0, then the concavity ofx and the boundary condition
x(0)= 0 imply that x � 0 for t ∈ [0,1]. If x(1) < 0, then we have thatx(η) < 0 and
x(1)= αx(η) > 1

η
x(η) which contradicts to the concavity ofx. �
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LEMMA 3.36. Letαη > 1. If y ∈ C[0,1] andy � 0, for t ∈ (0,1) then(3.82)–(3.83)has
no positive solution.

PROOF. Assume that (3.82)–(3.83) has a positive solutionx. If x(1) > 0, thenx(η) > 0
and x(1)

1 = αx(η)
1 >

x(η)
η

which contradicts to the concavity ofx. If x(1)= 0 andx(τ) > 0
for someτ ∈ (0,1), thenx(η)− x(1)= 0, τ = η. If τ ∈ (0, η), thenx(τ) > x(η)= x(1),
which contradicts to the concavity ofx again. �

LEMMA 3.37. Let 0< α < 1
η
. If y ∈ C[0,1] and y � 0, for t ∈ (0,1) then the unique

solutionx of the problem(3.82)–(3.83)satisfies

inf
t∈[η,1]

x(t)� γ ‖x‖,

whereγ = min{αη, α(1−η)
1−αη , η}.

PROOF. We divide the proof into two steps.
Step1. We deal with the case 0< α < 1. In this case, by Lemma 3.35, we know that

x(η)� x(1). Set

x
(
t̄
)
= ‖x‖.

If t̄ � η < 1, then mint∈[η,1] x(t)= x(1) and

x
(
t̄
)
� x(1)+ x(1)− x(η)

1− η
(0− 1)= x(1)

1− αη

α(1− η)
.

Then

min
t∈[η,1]

x(t)�
α(1− η)

1− αη
.

If η < t̄ < 1, then mint∈[η,1] x(t)= x(1). From the concavity ofx, we know thatx(η)
η

�

x(t̄ )

t̄
which combined with boundary conditionαx(η)= x(1), gives x(1)

αη
�

x(t̄ )

t̄
� x(t̄ )=

‖x‖. Therefore

min
t∈[η,1]

x(t)� αη‖x‖.

Step2. We deal with the case 1< α < 1
η
. In this case, we havex(η)� x(1). Set

x
(
t̄
)
= ‖x‖.



Nonlocal initial and boundary value problems 521

Then we can choosēt such thatη � t̄ � 1. This contradicts to the concavity ofx. From
x(η) � x(1) and the concavity ofx, we know that mint∈[η,1] x(t) = x(η). Using the con-

cavity ofx and Lemma 3.35, we havex(η)
η

�
x(t̄ )

t̄
which implies that

min
t∈[η,1]

x(t)� η‖x‖.

This completes the proof. �

The main result here is the following:

THEOREM 3.38. Assume that
(A1) f ∈ C([0,∞), [0,∞));
(A2) a ∈ C([0,1], [0,∞)) and there existsx0 ∈ [η,1] such thata(x0) > 0.

Then the BVP(3.80)–(3.81)has at least one positive solution in the case
(i) f0 = 0 andf∞ = ∞ (superlinear) or

(ii) f0 = ∞ andf∞ = 0 (sublinear).

PROOF. (i) Suppose thatf0 = 0 andf∞ = ∞. We wish to show the existence of a positive
solution of (3.80)–(3.81). Now (3.80)–(3.81) has a solutionx = x(t) if and only if x solves
the operator equation

x(t) = −
∫ t

0
(t − s)a(s)f

(
x(s)

)
ds − αt

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

:= Ax(t).

Denote

K =
{
x: x ∈ C[0,1], x � 0, min

η�t�1
x(t)� γ ‖x‖

}
.

It is obvious thatK is a cone inC[0,1]. Moreover, by Lemma 3.37,AK ⊂ K . It is also
easy to check thatA :K →K is completely continuous.

Now f0 = 0, we may chooseH1 > 0 so thatf (x) � ǫx, for 0< x < H1, whereǫ > 0
satisfies

ǫ

1− αη

∫ 1

0
(1− s)a(s)ds � 1.

Thus, ifx ∈K and‖x‖ =H1 we get

Ax(t) �
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds
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�
t

1− αη

∫ 1

0
(1− s)a(s)ǫx(s)ds

�
ǫ

1− αη

∫ 1

0
(1− s)a(s)ds‖x‖

�
ǫ

1− αη

∫ 1

0
(1− s)a(s)dsH1.

Now if we let

Ω1 =
{
x ∈ C[0,1]: ‖x‖<H1

}
,

then‖Ax‖ � ‖x‖, for x ∈K ∩ ∂Ω1.
Further sincef∞ = ∞, there existŝH2 > 0 such thatf (x)� ρx, for x � Ĥ2, whereρ

is chosen so that

ρ
ηγ

1− αη

∫ 1

η

(1− s)a(s)ds > 1.

Let H2 = max{2H1,
Ĥ2
γ

} andΩ2 = {x ∈ C[0,1]: ‖x‖ < H2}, thenx ∈ K and‖x‖ = H2
implies

min
η�t�1

x(t)� γ ‖x‖ � Ĥ2,

and so

Ax(η) = −
∫ η

0
(η− s)a(s)f

(
x(s)

)
ds − αη

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ η

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

= − 1

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ η

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

= η

1− αη

∫ 1

η

a(s)f
(
x(s)

)
ds + 1

1− αη

∫ η

0
sa(s)f

(
x(s)

)
ds

− η

1− αη

∫ 1

0
sa(s)f

(
x(s)

)
ds

�
η

1− αη

∫ 1

η

a(s)f
(
x(s)

)
ds
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− η

1− αη

∫ 1

η

sa(s)f
(
x(s)

)
ds (by η < 1)

= η

1− αη

∫ 1

η

(1− s)a(s)f
(
x(s)

)
ds.

Hence, forx ∈K ∩ ∂Ω2,

‖Ax‖ � ρ
ηγ

1− αη

∫ 1

η

(1− s)a(s)ds‖x‖ � ‖x‖.

Therefore, by the first part of Theorem 3.33, it follows thatA has a fixed point inK ∩
(Ω2 \Ω1), such thatH1 � ‖x‖ �H2. This completes the superlinear part of the theorem.

(ii) Suppose next thatf0 = ∞ andf∞ = 0. We first chooseH3> 0 such thatf (x)�Mx

for 0< x <H3, where

Mγ

(
η

1− αη

)∫ 1

η

(1− s)a(s)ds � 1.

Then

Ax(η) = −
∫ η

0
(η− s)a(s)f

(
x(s)

)
ds − αη

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ η

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)a(s)f
(
x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)a(s)Mx(s)ds

�
η

1− αη

∫ 1

η

(1− s)a(s)Mγ ds‖x‖

� H3.

Thus, we may letΩ3 = {x ∈ C[0,1]: ‖x‖<H3} so that

‖Ax‖ � ‖x‖, x ∈K ∩ ∂Ω3.

Now, sincef∞ = 0, there existĤ4 > 0 so thatf (x) � λx for x � Ĥ4, whereλ > 0
satisfies

λ

1− αη

∫ 1

0
(1− s)a(s)ds � 1.
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We consider two cases:
Case1. Supposef is bounded, sayf (x)�N for all x ∈ [0,∞). In this case choose

H4 = max

{
2H3,

N

1− αη

∫ 1

0
(1− s)a(s)ds

}

so that forx ∈K with ‖x‖ =H4 we have

Ax(t) = −
∫ t

0
(t − s)a(s)f

(
x(s)

)
ds − αt

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
1

1− αη

∫ 1

0
(1− s)a(s)N ds

� H4

and therefore‖Ax‖ � ‖x‖.
Case 2. If f is unbounded, then we know from (A1) that there isH4: H4 >

max{2H3,
1
γ
Ĥ4} such that

f (x)� f (H4) for 0< x �H4.

Then forx ∈K and‖x‖ =H4 we have

Ax(t) = −
∫ t

0
(t − s)a(s)f

(
x(s)

)
ds − αt

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
t

1− αη

∫ 1

0
(1− s)a(s)f (H4)ds

�
1

1− αη

∫ 1

0
(1− s)a(s)λH4 ds

� H4.

Therefore, in either case we may put

Ω4 =
{
x ∈ C[0,1]: ‖x‖<H4

}
,
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and forx ∈ K ∩ ∂Ω4 we may have‖Ax‖ � ‖x‖. By the second part of Theorem 3.33,
if follows that the BVP (3.80)–(3.81) has a positive solution. The proof of the theorem is
completed. �

The previous results are taken from [69]. Theorem 3.38 was proved either for sub- or
superlinear case. Therefore the following questions are natural:

• Whether or not we can obtain similar conclusion, iff0 = f∞ = 0 or f0 = f∞ = ∞;
• Whether or not we can obtain similar conclusion, iff0, f∞ /∈ {0,∞}.
Motivated by the results in [69], Liu in [57] established some simple criteria for the

existence of positive solutions of the BVP (3.80)–(3.81), which gives a positive answer to
the questions stated above. The key tool in his approach is the following fixed point index
theorem [21].

THEOREM3.39. LetE be Banach space andK ⊂E be a cone inE. Letr > 0,and define
Ωr = {x ∈ K: ‖x‖ < r}. AssumeA :Ωr → K is a completely continuous operator such
thatAx �= x for x ∈ ∂Ωr .

(i) If ‖Ax‖ � ‖x‖ for x ∈ ∂Ωr , theni(A,Ωr ,K)= 1.
(ii) If ‖Ax‖ � ‖x‖ for x ∈ ∂Ωr , theni(A,Ωr ,K)= 0.

In what follows, for the sake of convenience, set

Λ1 = (1− αη)

(∫ 1

0
(1− s)a(s)ds

)−1

,

Λ2 = (1− αη)

(
ηγ

∫ 1

η

(1− s)a(s)ds

)−1

.

THEOREM 3.40. Assume that the following assumptions are satisfied:
(H1) f0 = f∞ = ∞.
(H2) There exist constantsρ1 > 0 and M1 ∈ (0,Λ1) such thatf (u) � M1ρ1, u ∈

[0, ρ1].
Then the BVP(3.80)–(3.81)has at least two positive solutionsx1 andx2 such that

0< ‖x1‖< ρ1< ‖x2‖.

PROOF. At first, in view of f0 = ∞, then for anyM∗ ∈ (Λ2,∞), there existρ∗ ∈ (0, ρ1)

such that

f (x)�M∗x, 0 � x � ρ∗.

SetΩρ∗ = {x ∈ K: ‖x‖ < ρ∗}. Sincex ∈ ∂Ωρ∗ ⊂ K , we have minη�t�1x(t) � γ ‖x‖.
Thus, for anyx ∈ ∂Ωρ∗ , we have

Ax(η) = −
∫ η

0
(η− s)a(s)f

(
x(s)

)
ds − αη

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds
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+ η

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

= η

1− αη

∫ 1

η

a(s)f
(
x(s)

)
ds + 1− η

1− αη

∫ η

0
sa(s)f

(
x(s)

)
ds

− η

1− αη

∫ 1

η

sa(s)f
(
x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)a(s)f
(
x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)a(s)M∗x(s)ds

�
γ ηM∗
1− αη

∫ 1

η

(1− s)a(s)‖x‖ds

> ‖x‖,

which yields

‖Ax‖> ‖x‖, for y ∈ ∂Ωρ∗ .

Hence, Theorem 3.39 impliesi(A,Ωρ∗ ,K)= 0.
Next, sincef∞ = ∞, then for anyM∗ ∈ (Λ2,∞), then there existρ∗ > ρ1 such that

f (x)�M∗x, 0� x � γρ∗.

SetΩρ∗ = {x ∈ K: ‖x‖ < ρ∗} for x ∈ ∂Ωρ∗ . Sincex ∈ K , we have minη�t�1x(t) �

γ ‖x‖ = γρ∗. Thus, for anyx ∈ ∂Ωρ∗ , we have

Ax(η) = −
∫ η

0
(η− s)a(s)f

(
x(s)

)
ds − αη

1− αη

∫ η

0
(η− s)a(s)f

(
x(s)

)
ds

+ η

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)a(s)f
(
x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)a(s)M∗x(s)ds

�
γ ηM∗

1− αη

∫ 1

η

(1− s)a(s)‖x‖ds

> ‖x‖,
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which implies

‖Ax‖> ‖x‖, for y ∈ ∂Ωρ∗ .

Hence, Theorem 3.39 yieldsi(A,Ωρ∗ ,K)= 0.
Finally, setΩρ1 = {x ∈K: ‖x‖< ρ1}. For anyx ∈ ∂Ωρ1 we obtain

Ax(t) �
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
M1ρ1

1− αη

∫ 1

0
(1− s)a(s)ds

< ρ1 = ‖x‖,

which yields

‖Ax‖< ‖x‖, for y ∈ ∂Ωρ1.

Thus, Theorem 3.39 again shows thati(A,Ωρ1,K)= 1.
Hence, sinceρ∗ < ρ1< ρ

∗ it follows from the additivity of the fixed point index that

i
(
A,Ωρ1 \Ωρ∗ ,K

)
= 1, i

(
A,Ωρ∗ \Ωρ1,K

)
= −1.

Thus,A has a fixed pointx1 in Ωρ1 \Ωρ∗ , and a fixed pointx2 in Ωρ∗ \Ωρ1. Both are
positive solutions, 0< ‖x1‖< ρ1< ‖x2‖, and the proof of the theorem is complete. �

THEOREM 3.41. Assume that the following assumptions are satisfied:
(H3) f0 = f∞ = 0.
(H4) There exist constantsρ2 > 0 andM2 ∈ (Λ2,∞) such thatf (u) � M2ρ2, u ∈

[γρ2, ρ2].
Then the BVP(3.80)–(3.81)has at least two positive solutionsx1 andx2 such that

0< ‖x1‖< ρ2< ‖x2‖.

PROOF. First, sincef0 = 0, for anyε ∈ (0,Λ1), there existsρ∗ ∈ (0, ρ2) such that

f (x)� εx, for x ∈ [0, ρ∗].

SettingΩρ∗ = {x ∈K: ‖x‖< ρ∗} for anyx ∈ ∂Ωρ∗ , we get

Ax(t) �
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
ερ∗

1− αη

∫ 1

0
(1− s)a(s)ds < ρ∗ = ‖x‖,
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which yields

‖Ax‖< ‖x‖, for x ∈ ∂Ωρ∗ .

Thus Theorem 3.39 impliesi(A,Ωρ∗ ,K)= 1.
Second, in viewf∞ = 0, then for anyε ∈ (0,Λ1), there existsρ0> ρ2 such that

f (x)� εx, for x ∈ [ρ0,∞),

and we consider two cases.
Case(i). Suppose thatf is unbounded; then fromf ∈ C([0,∞), [0,∞)), we know

that there isρ∗ > ρ0 such thatf (x) � f (ρ∗), for x ∈ [0, ρ∗]. Sinceρ∗ > ρ0, one has
f (x)� f (ρ∗)� ερ∗, for x ∈ [0, ρ∗]. Forx ∈K , ‖x‖ = ρ∗ we obtain

Ax(t) �
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
ερ∗

1− αη

∫ 1

0
(1− s)a(s)ds < ρ∗ = ‖x‖.

Case(ii). Suppose thatf is bounded, sayf (x) � L. Taking ρ∗ � max{L/ε,ρ2}, for
x ∈K , ‖x‖ = ρ∗ one has

Ax(t) �
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

�
L

1− αη

∫ 1

0
(1− s)a(s)ds < ρ∗ = ‖x‖.

Hence, in either case, we always may setΩρ∗ = {x ∈K: ‖x‖< ρ∗} such that

‖Ax‖< ‖x‖, for x ∈ ∂Ωρ∗ .

Thus Theorem 3.39 impliesi(A,Ωρ∗ ,K)= 1.
Finally setΩρ2 = {x ∈ K: ‖x‖ < ρ2}, for x ∈ ∂Ωρ2, sincex ∈ K , minη�t�1x(t) �

γ ‖x‖ = γρ2, and hence we can get

Ax(η) �
η

1− αη

∫ 1

η

(1− s)a(s)f
(
x(s)

)
ds

�
γ ηM2

1− αη
ρ2

∫ 1

η

(1− s)a(s)ds > ρ2 = ‖x‖,

which yields

‖Ax‖> ‖x‖, for x ∈ ∂Ωρ2.
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Thus Theorem 3.39 impliesi(A,Ωρ2,K)= 0.
Hence, sinceρ∗ < ρ2< ρ

∗ it follows from the additivity of the fixed point index that

i
(
A,Ωρ2 \Ωρ∗ ,K

)
= −1, i

(
A,Ωρ∗ \Ωρ2,K

)
= 1.

Thus,A has a fixed pointx1 in Ωρ2 \Ωρ∗ , and a fixed pointx2 in Ωρ∗ \Ωρ2. Both are
positive solutions, 0< ‖x1‖< ρ2< ‖x2‖, and the proof of the theorem is complete. �

For the case whenf0, f∞ /∈ {0,∞} we have the following

THEOREM3.42. Suppose that(H2)and(H4)hold and thatρ1 �= ρ2. Then the BVP(3.80)–
(3.81)has at least one positive solutionx satisfyingρ1< ‖x‖< ρ2 or ρ2< ‖x‖< ρ1.

Theorems 3.40–3.42 were taken from [57]. A method to study the existence of positive
solutions of some three-point BVPs is to write the BVP as an equivalent Hammerstein
integral equation of the form

x(t)=
∫ 1

0
k(t, s)a(s)f

(
x(s)

)
ds ≡ T x(t),

and seek fixed points ofT in the cone of positive functions in the spaceC[0,1]. We use
the fixed point index for compact maps, which is based on Leray–Schauder degree theory,
and use a well-known nonzero fixed point theorem in order to prove thatT has a positive
fixed point.

We apply this method for the BVP (3.80)–(3.81) using the cone defined by

K =
{
x ∈ C[0,1]: x � 0, min

{
x(t): a � t � b

}
� c‖x‖

}
,

and the following kernel (Green’s function) in the Hammerstein integral operator

k(t, s)= 1

1− αη
t(1− s)−





αt

1− αη
(η− s), s � η

0, s > η

−
{
t − s, s � t

0, s > t .

Let a, b ∈ (0,1] and suppose that
∫ b
a
a(t)dt > 0. We are able to find upper and lower

bounds fork(t, s) with s fixed, of the same type. We have the same freedom in choosing
the numbersa andb. Let us find the upper and lower bounds for the BVP (3.80)–(3.81).
We have to exhibitΦ(s), a subinterval[a, b] ⊂ [0,1] and a constantc ∈ (0,1] such that

k(t, s)�Φ(s), for everyt, s ∈ [0,1],
k(t, s)� cΦ(s), for everys ∈ [0,1], t ∈ [a, b].

3.9.1. Upper bounds We shall show that we may takeΦ(s)= max{1, α} s(1−s)
1−αη . (In this

caseαη < 1 but it is possible to haveα > 1.)
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Case1: s > η. t < s is simple so considert � s. Thenk(t, s) = s + (αη−s)t
1−αη . If also

s � αη then it is a decreasing function oft so the maximum occurs whent = s and

k(t, s)�
s − sαη+ s(αη− s)

1− αη
= s(1− s)

1− αη
�Φ(s).

If s < αη (which can happen only ifα > 1) the maximum occurs att = 1 and then

k(t, s)�
αη(1− s)

1− αη
< α

s(1− s)

1− αη
=Φ(s).

Case2: s � η. For t � s we clearly havek(t, s) �
s(1−s)
1−αη � Φ(s). So considert � s.

Thenk(t, s)= s + st (α−1)
1−αη . Forα > 1 the maximum occurs whent = 1 and then

k(t, s)�
αs(1− η)

1− αη
� α

s(1− s)

1− αη
=Φ(s),

usings � η. Forα � 1 the maximum occurs whent = s and then

k(t, s)= αs(s − η)+ s(1− s)

1− αη
�
s(1− s)

1− αη
=Φ(s).

3.9.2. Lower bounds We will show that we may take arbitrarya > 0 andb� 1.
Case1: s > η. For t < s, k(t, s) = t (1−s)

1−αη � a
s(1−s)
1−αη � aηΦ(s). For t � s, k(t, s) =

s − t (s−αη)
1−αη . If s > αη then the minimum occurs whent = 1 so

k(t, s)�
αη(1− s)

1− αη
� αη

s(1− s)

1− αη
=
{
αηΦ(s), α � 1,
ηΦ(s), α > 1.

If s � αη (only possible ifα > 1) the minimum is att = s and

k(t, s)�
s(1− s)

1− αη
� ηΦ(s).

Case2: s � η. First supposea � t � s. (This case cannot occur ifα � η.) Thenk(t, s)=
t[1−αη+(α−1)s]

1−αη . Forα < 1 we have[1 − αη+ (α − 1)s] � 1 − αη+ (α − 1)η = 1 − η so
k(t, s) is increasing int and has a minimum whent = a. Thus

k(t, s)�
a

1− αη
[1− η] � 4a(1− η)Φ(s),

sinces(1− s)� 1/4. Note that 4a(1− η) < 1 sinceα < η.
Forα > 1, k(t, s) is clearly increasing so we have

k(t, s)�
a

1− αη

[
1− αη+ (α − 1)s

]
�

a

1− αη
[1− αη] �

4(1− αη)a

α
Φ(s).
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Note that4(1−αη)a
α

= 4aαη(1−αη)
α2η

< 1
α2 < 1 sinceα < η.

Now suppose thatt � s. Thenk(t, s) = s + t (α−1)s
1−αη . For α � 1 the minimum occurs

whent = 1 and then

k(t, s)�
α(1− η)s

1− αη
� α(1− η)Φ(s).

Forα > 1 the minimum occurs either att = s or t = a but in both cases

k(t, s)� s �
1− αη

α
Φ(s)� η(1− αη)Φ(s).

The conclusion is that we may take

c=
{

min
{
a,αη,4a(1− η),α(1− η)

}
, α < 1,

min
{
aη,4a(1− αη), η(1− αη)

}
, α � 1.

Hence we have:

THEOREM 3.43. Let a, b ∈ (0,1] and suppose that
∫ b
a
a(t)dt > 0. Let c as defined above

and

m=
(

max
0�t�1

∫ 1

0
k(t, s)a(s)ds

)−1

, M =
(

min
0�t�1

∫ b

a

k(t, s)a(s)ds

)−1

.

Then for0< αη < 1 the BVP(3.80)–(3.81)has at least one positive solution if either

(h1) 0� lim sup
x→0

f (x)

x
<m and M < lim inf

x→∞
f (x)

x
� ∞,

or

(h2) 0� lim sup
x→∞

f (x)

x
<m and M < lim inf

x→0

f (x)

x
� ∞,

and has two positive solutions if there isρ > 0 such that either

(E1)





0� lim sup
x→0

f (x)

x
<m,

min

{
f (x)

ρ
: x ∈ [cρ,ρ]

}
� cM, x �= T x for x ∈ ∂Ωρ, and

0� lim sup
x→∞

f (x)

x
<m,
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or

(E2)





M < lim sup
x→0

f (x)

x
� ∞,

max

{
f (x)

ρ
: x ∈ [0, ρ]

}
�m, x �= T x for x ∈ ∂Kρ, and

M < lim sup
x→∞

f (x)

x
� ∞,

where

Ωρ =
{
x ∈K: c‖x‖ � min

a�t�b
x(t) < cρ

}
, Kr =

{
x ∈K: ‖x‖< ρ

}

andK is a closed convex set in a Banach space.

Theorem 3.43 is taken from Webb [92]. Similar results are given by Infante [45] who
proved existence of eigenvalues of some nonlocal BVP, including nonlocal boundary con-
ditions other than (3.81), as

(a) x′(0)= 0, αx′(η)= x(1), 0< η < 1,
(b) x(0)= 0, αx′(η)= x(1), 0< η < 1,
(c) x′(0)= 0, αx(η)= x(1), 0< η < 1.
Infante and Webb [47] obtained more general results for existence of positive solutions

of somem-point BVPs in the case when all the parameters occurring in the boundary
conditions are not positive and the nonlinear term allow more general behaviour than being
either sub- or superlinear. Two four-points BVPs are studied in details in [47].

Also interesting results were given for the following three-point BVP

x′′ + a(t)f (x)= 0, t ∈ (0,1), (3.84)

x′(0)= 0, αx(η)= x(1), (3.85)

where 0< η < 1, 0< α < 1 by Liu in [56]. By applying Krasnosel’skii’s fixed point theo-
rem he proved existence

• of single positive solution underf0 = 0, f∞ = ∞ or f0 = ∞, f∞ = 0,
• of two positive solution underf0 = f∞ = ∞ or f0 = f∞ = 0,
• of positive solutions underf0, f∞ �∈ {0,∞}.

In [56] some interesting examples were given to demonstrate the results.
A more general three-point BVP was studied by Ma and Wang. In [79] they studied the

existence of positive solutions of the following BVP

x′′(t)+ a(t)x′(t)+ b(t)x(t)+ h(t)f (x)= 0, t ∈ (0,1), (3.86)

x(0)= 0, x(1)= αx(η), (3.87)

wheref ∈ C([0,1], [0,∞)), h ∈ C([0,1], [0,∞)) and there existsx0 ∈ [0,1] such that
h(x0) > 0, anda ∈ C[0,1], b ∈ C([0,1], (−∞,0)). Under these assumptions they proved



Nonlocal initial and boundary value problems 533

the existence of at least one positive solution of the BVP (3.86)–(3.87) either in superlinear
or sublinear case, by applying the Krasnosel’skii’s fixed point theorem in cones.

If in the BVP (3.80)–(3.81) the boundary condition (3.81) is nonhomogeneous, i.e.

x(0)= 0, x(1)− αx(η)= b, (3.88)

Ma in [78], by using Schauder’s fixed point theorem, proved in the superlinear case that,
if (A1) and (A2) of Theorem 3.38 hold, then there exists a positive numberb∗ such that
(3.80), (3.88) has at least one positive solution forb: 0 < b < b∗ and no solution for
b > b∗. This result was improved and complemented by Zhang and Wang in [95], where
they studied the BVP (3.80), (3.88) under the following conditions:

(H1) α ∈ (0,1/η), η ∈ (0,1);
(H2) a(t) is a nonnegative measurable function defined on(0,1) and

0�

∫ η

0
sa(s)ds <+∞, 0<

∫ 1

η

(1− s)a(s)ds <+∞;

(H3) f : [0,∞)→ [0,∞) is continuous;
(H3∗) f : [0,∞)→ [0,∞) is locally Lipschitz continuous;
(H4) lim supu→+∞

f (u)
u
< δ;

(H5) lim infu→+∞
f (u)
u
>M ;

(H6) limu→0+
f (u)
u
< δ,

whereδ,M are suitable defined constants, and proved that:
• the BVP (3.80), (3.88) has a positive solution for allb > 0 if (H1)–(H4) hold;
• there exists a positive numberb∗ such that (3.80), (3.88) has at least one positive

solution forb: 0< b < b∗ and no solution forb > b∗ if (H1)–(H3), (H5) and (H6)
hold;

• there exists a positive numberb∗ such that (3.80), (3.88) has at least two solution for
b: 0< b < b∗, at least one forb= b∗, none forb > b∗ if (H1), (H2), (H3∗), (H5) and
(H6) hold.

We remark that (H2) allowsa(t) to be singular att = 0 and/ort = 1, and (H5) and (H6)
allow but not require the nonlinearityf (x) to be superlinear at zero and infinity.

Now, we consider the following three-point nonlinear second-order BVP

x′′(t)+ λa(t)f
(
x(t)
)
= 0, t ∈ (0,1), (3.89)

x(0)= 0, αx(η)= x(1), (3.90)

where 0< η < 1. For this problem, an open interval of eigenvalues is determined, which
in return, imply the existence of a positive solution of (3.89)–(3.90) by appealing to Kras-
nosel’skii’s fixed point theorem.

For the sake of simplicity, we let

A= (1− αη)−1
∫ 1

0
(1− η)a(s)ds, B = η(1− αη)−1

∫ 1

0
(1− η)a(s)ds.
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THEOREM 3.44. Assume that
(A1) f ∈ C([0,∞), [0,∞));
(A2) a ∈ C([0,1], [0,∞)) and does not vanish identically on any subinterval.
(A3) limx→0+

f (x)
x

= l with 0< l <∞.

(A4) limx→∞
f (x)
x

= L with 0<L<∞.
Then, for eachλ satisfying either

(i) 1
γBL

< λ< 1
Al

or
(ii) 1

γBl
< λ< 1

AL

the BVP(3.89)–(3.90)has at least one positive solution.

PROOF. Let λ given as in (i), and chooseǫ > 0 such that

1

γB(L− ǫ)
� λ�

1

A(l + ǫ)
.

Consider also the coneK and the operatorA defined in the proof of Theorem 3.38. By
(A3), there existsH1 > 0 such thatf (x)� (l + ǫ)x, for 0< x �H1. So, choosingx ∈K
with ‖x‖ =H1, we have

Ax(t) = λ
t

1− αη

∫ 1

0
(1− s)a(s)f

(
x(s)

)
ds

� λ
t

1− αη

∫ 1

0
(1− s)a(s)(l + ǫ)x(s)ds

� λ
1

1− αη

∫ 1

0
(1− s)a(s)(l + ǫ)‖x‖ds

� λ
1

1− αη

∫ 1

0
(1− s)a(s)(l + ǫ)H1 ds

� λA(l + ǫ)‖x‖ � ‖x‖.

Consequently,‖Ax‖ � ‖x‖. So, if we set

Ω1 =
{
x ∈ C[0,1]: ‖x‖<H1

}
,

then‖Ax‖ � ‖x‖, for x ∈K ∩ ∂Ω1.
Next we construct the setΩ2. Considering (A4) there existsH 2 such thatf (x) �

(L− ǫ)x, for x �H 2. LetH2 = max{2H1,
Ĥ2
γ

} andΩ2 = {x ∈ C[0,1]: ‖x‖<H2}, then
x ∈K and‖x‖ =H2 implies

min
η�t�1

x(t)� γ ‖x‖ � Ĥ2,
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and so

Ax(η) = λ
η

1− αη

∫ 1

η

(1− s)a(s)f
(
x(s)

)
ds

� λ
η

1− αη

∫ 1

η

(1− s)a(s)(L− ǫ)x(s)ds

� λ
η

1− αη

∫ 1

η

(1− s)a(s)(L− ǫ)γ ‖x‖ds

= λ
γ η

1− αη

∫ 1

η

(1− s)a(s)(L− ǫ)H2 ds

� λBγ (L− ǫ)‖x‖
= ‖x‖.

Hence, forx ∈K ∩ ∂Ω2,

‖Ax‖ � ‖x‖.

Therefore, by the first part of Theorem 3.33, it follows thatA has a fixed point inK ∩
(Ω2 \Ω1), completing the proof in case (i).

Consider now the case (ii). Letλ given as in (ii) and chooseǫ > 0 such that

1

γB(l − ǫ)
� λ�

1

A(L+ ǫ)
.

We omit the rest of the proof, since it is similar to that of Theorem 3.38. �

Theorem 3.44 is taken from Raffoul [89]. He proved also that:
• if (A1), (A2), (A4) hold and limx→0+

f (x)
x

= ∞ then the BVP (3.89)–(3.90) has at
least one positive solution for eachλ satisfying 0< λ< 1

AL
;

• if (A1), (A2), (A3) hold and limx→∞
f (x)
x

= ∞ then the BVP (3.89)–(3.90) has at
least one positive solution for eachλ satisfying 0< λ< 1

Al
.

Other existence and multiplicities of positive solutions for the BVP (3.89)–(3.90) were
proved by Ma in [70] by using fixed point index theory and the method of upper and lower
solutions. He proved in [70] the following result.

THEOREM 3.45. Assume that:
(A1) λ is a positive parameter; η ∈ (0,1) andαη < 1.
(A2) a : [0,1] → [0,∞) is continuous and does not vanish identically on any subset of

positive measure.
(A3) limx→∞

f (x)
x

= ∞.
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Then there exists a positiveλ∗ such that the BVP(3.89)–(3.90)has at least two positive
solutions for0< λ< λ∗, at least one positive solution forλ= λ∗, and no positive solutions
for λ > λ∗.

Interesting results on the existence of multiple positive solutions for three-point BVP
can be obtained by using the Leggett–Williams fixed point theorem. We will give such a
result proving the existence of triple positive solutions of the following BVP

x′′ + f (t, x)= 0, t ∈ (0,1), (3.91)

x(0)= 0, x(1)= αx(η). (3.92)

In this approach, we do not need the assumption thatf is sublinear or superlinear, which
was required in Theorem 3.38.

For convenience of the reader, we present here the necessary definitions from cone the-
ory in Banach spaces.

DEFINITION 3.46. LetE be a Banach space overR. A nonempty, closed setP ⊂ E is
said to be a cone provided that

(a) αu+ βv ∈ P for all u,v ∈ P and allα,β � 0 and
(b) u,−u ∈ P impliesu= 0.

If P ⊂ E is a cone, we denote the order induced byP on E by �. For u,v ∈ P , we
write u� v if and only if v− u ∈ P .

DEFINITION 3.47. The mapψ is said to be a nonnegative continuous concave functional
onP providedψ :P → [0,∞) is continuous and

ψ
(
λx + (1− λ)y

)
� λψ(x)+ (1− λ)ψ(y)

for all x, y ∈ P andλ ∈ [0,1].

Let 0< a < b be given and letψ be a nonnegative continuous concave functional on the
coneP . Define the convex setsPr andP(ψ,a, b) by

Pr =
{
y ∈ P : ‖y‖< r

}

and

P(ψ,a, b)=
{
y ∈ P : a �ψ(y), and‖y‖ � b

}
.

Our consideration is based on the following fixed point theorem given by Leggett and
Williams in 1979 [55] (see also Guo and Lakshmikantham [21]).

THEOREM 3.48 (Legget–Williams fixed-point theorem).Let T :P c → P c be a com-
pletely continuous operator and letψ be a nonnegative continuous concave functional
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onP such thatψ(y)� ‖y‖ for y ∈ P c. Suppose that there exist0< a < b < d � c such
that

(C1) {y ∈ P(ψ,b, d): ψ(y) > b} �= ∅ andψ(Ty) > b for all y ∈ P(ψ,b, d);
(C2) ‖Ty‖< a for all ‖y‖ � a, and
(C3) ψ(Ty) > b for y ∈ P(ψ,b, c) with ‖Ty‖> d .

ThenT has at least three fixed pointsy1, y2, andy3 such that‖y1‖ < a, b < ψ(y2) and
‖y3‖> a withψ(y3) < b.

THEOREM 3.49. Assume thatη ∈ (0,1), α > 0 andαη < 1. Assume that:
(A1) f : [0,1] × [0,∞)→ [0,∞) is continuous andf (t, ·) does not vanish identically

on any subset of[0,1] with positive measure.
Suppose also that there exist constants0< a < b < b/γ � c such that

(D1) f (t, x) < ma, for 0� t � 1, 0� x � a,
(D2) f (t, x)� b/δ, for η� t � 1, b� x � b/γ ,
(D3) f (t, x)�mc, for 0 � t � 1, 0� x � c,

where

m=
(

2− αη+ αη2

2(1− αη)

)−1

, δ = min

{
αη(1− η)2

2(1− αη)
,
η(1− η)2

2(1− αη)

}
,

and γ is defined in Lemma3.37.Then the BVP(3.91)–(3.92)has at least three positive
solutionsx1, x2 andx3 satisfying‖x1‖< a,b < ψ(x2) and‖x3‖> a withψ(x3) < b.

PROOF. Let E = C[0,1] be endowed with the maximum norm,‖x‖ = max0�t�1 |x(t)|,
and the orderingx � y if x(t)� y(t) for all t ∈ [0,1]. From the factx′′(t)= −f (t, x)� 0,
we know thatx(t) is concave on[0,1]. So, define the coneP ⊂E by

P =
{
x ∈E: x is concave and nonnegative valued on[0,1]

}
.

Finally, let the nonnegative concave functionalψ :P → [0,∞) be defined by

ψ(x)= min
η�t�1

x(t), x ∈ P.

We notice that for eachx ∈ P , ψ(x)� ‖x‖. Define an operatorT :P →E by

T x(t) = −
∫ t

0
(t − s)f

(
s, x(s)

)
ds − αt

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds

+ t

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds.

We note that, ifx ∈ P thenT x(t) � 0,0 � t � 1. In view of (T x)′′(t) = −f (t, x(t)) �

0,0 � t � 1, we see thatT x ∈ P ; that is to say thatT :P → P . Also T is completely
continuous.
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We now show that all the conditions of Theorem 3.48 are satisfied. Now ifx ∈ P c, then
‖x‖ � c and (D3) impliesf (t, x(t))�mc, 0� t � 1. Consequently,

‖T x‖ = max
0�t�1

−
∫ t

0
(t − s)f

(
s, x(s)

)
ds − αt

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds

+ t

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds

� max
0�t�1

∫ t

0
(t − s)f

(
s, x(s)

)
ds + αt

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds

+ t

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds

� max
0�t�1

(∫ t

0
(t − s)ds + αt

1− αη

∫ η

0
(η− s)ds

+ t

1− αη

∫ 1

0
(1− s)ds

)
·mc

= 2− αη+ αη2

2(1− αη)
·mc

= c.

Hence,T :P c → P c. In the same way, ifx ∈ P c, then assumption (D1) yieldsf (t, x(t)) <
ma, 0 � t � 1. As in the argument above, we can obtain thatT :P a → Pa . Therefore
condition (C2) of Theorem 3.48 is satisfied.

To check condition (C1) of Theorem 3.48, we choosex(t) = b/γ , 0 � t � 1. It
is easy to see thatx(t) = b/γ ∈ P(ψ,b, b/γ ) andψ(x) = ψ(b/γ ) > b, and so{x ∈
P(ψ,b, b/γ ): ψ(x) > b} �= ∅. Hence, ifx ∈ P(ψ,b, b/γ ), thenb � x(t) � b/γ , η �

t � 1. From assumption (D2), we havef (t, x(t)) � b/δ, η � t � 1, and by the defin-
ition of ψ and the coneP , we have to distinguish two cases, (i)ψ(T x) = T x(η) and
(ii) ψ(T x)= T x(1).

In case (i) we have

ψ(T x) = T x(η)

= −
∫ η

0
(η− s)f

(
s, x(s)

)
ds − αη

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds

+ η

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds

� − 1

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds + η

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds

= − η

1− αη

∫ η

0
f
(
s, x(s)

)
ds + 1

1− αη

∫ η

0
sf
(
s, x(s)

)
ds
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+ η

1− αη

∫ 1

0
f
(
s, x(s)

)
ds − η

1− αη

∫ 1

0
sf
(
s, x(s)

)
ds

= η

1− αη

∫ 1

η

f
(
s, x(s)

)
ds + 1

1− αη

∫ η

0
sf
(
s, x(s)

)
ds

− η

1− αη

∫ 1

0
sf
(
s, x(s)

)
ds

>
η

1− αη

∫ 1

η

f
(
s, x(s)

)
ds − η

1− αη

∫ 1

η

sf
(
s, x(s)

)
ds

�
η

1− αη

∫ 1

η

(1− s)ds · b
δ

= η(1− η)2

2(1− αη)
· b
δ

� b.

In case (ii), we have

ψ(T x) = T x(1)

= −
∫ 1

0
(1− s)f

(
s, x(s)

)
ds − α

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds

+ 1

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds

= αη

1− αη

∫ 1

0
(1− s)f

(
s, x(s)

)
ds − α

1− αη

∫ η

0
(η− s)f

(
s, x(s)

)
ds

= αη

1− αη

∫ 1

0
f
(
s, x(s)

)
ds − αη

1− αη

∫ 1

0
sf
(
s, x(s)

)
ds

− αη

1− αη

∫ η

0
f
(
s, x(s)

)
ds + α

1− αη

∫ η

0
sf
(
s, x(s)

)
ds

= αη

1− αη

∫ 1

η

f
(
s, x(s)

)
ds − αη

1− αη

∫ 1

0
sf
(
s, x(s)

)
ds

+ α

1− αη

∫ η

0
sf
(
s, x(s)

)
ds

>
αη

1− αη

∫ 1

η

f
(
s, x(s)

)
ds − αη

1− αη

∫ 1

η

sf
(
s, x(s)

)
ds

= αη

1− αη

∫ 1

η

(1− s)f
(
s, x(s)

)
ds
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�
αη(1− η)2

2(1− αη)
· b
δ

� δ · b
δ

= b,

i.e.

ψ(T x) > b, ∀x ∈ P(ψ,b, b/γ ).

This shows that condition (C1) of Theorem 3.48 is satisfied. We finally show that (C3) of
Theorem 3.48 also holds. Suppose thatx ∈ P(ψ,b, c) with ‖T x‖> b/γ . Then we have

ψ(T x)= min
η�t�1

T x(t)� γ · ‖T x‖> γ · b/γ = b.

So, condition (C3) of Theorem 3.48 is satisfied. Therefore an application of Theorem 3.48
completes the proof. �

Theorem 3.49 was taken from [42]. For the BVP (3.91)–(3.92) Ma in [76] studied mul-
tiplicity results at resonance, i.e. whenαη = 1, by developing the methods of lower and
upper solutions when the lower and upper solutions are well ordered as well as opposite
ordered, by the connectivity properties of the solution set of parameterized families of
compact vector fields.

Let us discuss some extensions of the above results.
Consider the followingm-point BVP

x′′ + a(t)f (x)= 0, t ∈ (0,1), (3.93)

x(0)= 0, x(1)=
m−2∑

i=1

αix(ξi) (3.94)

whereαi � 0 for i = 1,2, . . . ,m − 3 andαm−2 > 0, 0< ξ1 < ξ2 < · · · < ξm−2 < 1,∑m−2
i=1 αiξi < 1. By using the Krasnosel’skii’s fixed point theorem in cones Ma in [72]

proved the existence of positive solution of the BVP (3.93)–(3.94) under the assump-
tions thata ∈ C([0,1], [0,∞)), and there existsx0 ∈ [ξm−2,1] such thata(x0) > 0 and∑m−2

i=1 αiξi < 1, either in superlinear or sublinear case. The steps of the proof are parallel
to that of the proof of Theorem 3.38.

A natural generalization of the boundary condition (3.94) is

x(0)= 0,
∫ b

a

h(t)x(t)dt = x(1), (3.95)

where[a, b] ⊂ (0,1), h ∈ C([a, b], [0,∞)),
∫ b
a
th(t)dt �= 1 andb

∫ b
a
h(t)dt < 1. The ex-

istence of positive solutions for the BVP (3.80), (3.95) is studied by Ma [73] whenf is
either superlinear or sublinear.
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Another result for the followingm-point BVP

x′′ + a(t)f (x)= 0, t ∈ (0,1), (3.96)

x′(0)=
m−2∑

i=1

βix
′(ξi), x(1)=

m−2∑

i=1

αix(ξi) (3.97)

whereαi, βi � 0 and
∑m−2

i=1 αi < 1,
∑m−2

i=1 βi < 1, was given by Ma and Castaneda in [71]
also by using the Krasnosel’skii’s fixed point theorem in cones and either in superlinear
or sublinear case. These results were generalized and improved by Liu [58] by applying
topological degree methods.

The result for the BVP (3.80), (3.88) was generalized by Guo et al. in [23], where they
studied the following BVP (3.80), (3.98) where (3.98) stands for the boundary condition

x(0)= 0, x(1)−
m−2∑

i=1

αix(ξi)= b, (3.98)

whereb,αi > 0 (i = 1,2, . . . ,m − 2). In this problema(t) is allowed to be singular at
t = 0,1.

Them-point BVP

x′′ + f (t, x)= 0, t ∈ (0,1), (3.99)

x(0)= 0, x(1)=
m−2∑

i=1

αix(ξi) (3.100)

whereαi > 0 for i = 1,2, . . . ,m− 2, 0< ξ1 < ξ2 < · · ·< ξm−2 < 1,
∑m−2

i=1 αiξi < 1 and
f : [0,1] × [0,∞)→ [0,∞) a continuous function, was studied by Liu et al. in [64] by
using the Legget–Williams fixed point theorem and Green’s functions.

Existence and multiplicity results for positive solutions for them-point BVP

(
p(t)x′)′ − q(t)x + f (t, x)= 0, 0< t < 1,

ax(0)− bp(0)x′(0)=
m−2∑

i=1

αix(ξi),

cx(1)− dp(1)x′(1)=
m−2∑

i=1

βix(ξi),

wherep,q ∈ C([0,1], (0,∞)), a, b, c, d ∈ [0,∞) are given by Ma in [77]. See also [75]
for results for superlinear semipositonem-point BVPs.



542 S.K. Ntouyas

Three-point BVP of higher-order ordinary differential equations was studied by Liu and
Ge in [65] where they consider BVP consisting of the equation

x(n) + λa(t)f
(
x(t)
)
= 0, t ∈ (0,1)

with one of the following boundary value conditions:

x(0)= αx(η), x(1)= βx(η),

x(i)(0)= 0, i = 1,2, . . . , n− 2,

and

x(n−2)(0)= αx(n−2)(η), x(n−2)(1)= βx(n−2)(η),

x(i)(0)= 0, i = 1,2, . . . , n− 3,

whereη ∈ (0,1), α � 0, β � 0, anda : (0,1)→ R may change sign,f (0) > 0, andλ > 0
is a parameter.

For other recent results on positive solutions for nonlocal BVP the interested reader is
referred to [13,18,46,48,51,64,67,68] and the references cited therein.

3.10. Positive solutions of nonlocal boundary value problems with dependence on the
first-order derivative

All the results in the previous section were proved under the assumption that the first deriv-
ative x′ is not involved explicitly in the nonlinear term. In this section we are concerned
with the existence of positive solutions for the second-order three-point BVP

x′′(t)+ f
(
t, x(t), x′(t)

)
, 0< t < 1, (3.101)

x(0)= 0, x(1)= αx(η), (3.102)

wheref : [0,1] × [0,∞)× R → [0,∞) is continuous,α > 0, 0< η < 1 and 1− αη > 0.
To show the existence of positive solutions to BVP (3.101)–(3.102), we use an extension

of Krasnosel’skii’s fixed point theorem in cones, proved in [19]. To state this fixed point
theorem some notations are necessary.

Let X be a Banach space andK ⊂ X a cone. Supposeα,β :X → R+ are two convex
functionals satisfying

α(λx)= |λ|α(x), β(λx)= |λ|β(x), λ ∈ R,

and

‖x‖ �Mmax
{
α(x),β(x)

}
for x ∈X and

α(x)� α(y) for x, y ∈K, x � y,
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whereM > 0 is a constant.

THEOREM 3.50. Let r2> r1> 0,L> 0 be constants and

Ωi =
{
x ∈X: α(x) < ri, β(x) < L

}
, i = 1,2,

two bounded open sets inX. Set

Di =
{
x ∈X: α(x)= ri

}
.

AssumeT :K →K is a completely continuous operator satisfying
(a) α(T u) < r1, u ∈D1 ∩K ; α(T u) > r2, u ∈D2 ∩K ;
(b) β(T u) < L, u ∈K ;
(c) there is ap ∈ (Ω ∩K)\ {0} such thatα(p) �= 0 andα(x+λp)� α(x) for all x ∈K

andλ� 0.
ThenT has at least one fixed point in(Ω2 \Ω1)∩K .

From Lemmas 3.34 and 3.37 we know that the unique solution of the BVP

x′′ + y(t)= 0, 0< t < 1, x(0)= 0, x(1)= αx(η)

is given by

x(t) = −
∫ t

0
(t − s)y(s)ds − αt

1− αη

∫ η

0
(η− s)y(s)ds

+ t

1− αη

∫ 1

0
(1− s)y(s)ds

and satisfies

min
t∈[η,1]

x(t)� γ ‖x‖,

whereγ = min{αη, α(1−η)
1−αη , η}.

Moreover it is easy to see that, if 1− αη �= 0, the Green function for the BVP

−x′′ = 0, 0< t < 1, x(0)= 0, x(1)= αx(η)
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is given by

G(t, s)=





s[(1− t)− α(η− t)]
1− αη

, s � t , s � η,

s(1− t)+ αη(t − s)

1− αη
, η� s � t ,

t[(1− s)− α(η− s)]
1− αη

, t � s � η,

t (1− s)

1− αη
, t � s, s � η.

Let X = C1([0,1],R) with ‖x‖ = max0�t�1[x2(t) + (x′(t))2]1/2, and K = {x ∈
X: x(t) � 0, x is concave on[0,1]}. Define functionalsα(x) = max0�t�1 |x(t)| and
β(x)= max0�t�1 |x′(t)| for eachx ∈X. Then‖x‖ �

√
2max{α(x),β(x)} and

α(λx)= |λ|α(x), β(λx)= |λ|β(x), x ∈X, λ ∈ R,

α(x)� α(y), for x, y ∈K, x � y.

We set

M = max
0�t�1

∫ 1

0
G(t, s)ds, m= max

0�t�1

∫ 1

η

G(t, s)ds,

Q= 3− αη+ αη2

2(1− αη)
.

THEOREM 3.51. Let f : [0,1] × [0,∞)× R → [0,∞) be a continuous function, α > 0,
0< η < 1 and1−αη > 0. Suppose that there areL> b > γb > c > 0 such thatf (t, u, v)
satisfies the growth conditions:

(1) f (t, u, v) < c/M for (t, u, v) ∈ [0,1] × [0, c] × [−L,L];
(2) f (t, u, v)� b/m for (t, u, v) ∈ [0,1] × [γ b, b] × [−L,L];
(3) f (t, u, v) < L/Q for (t, u, v) ∈ [0,1] × [0, b] × [−L,L].

Then the BVP(3.101)–(3.102)has at least one positive solutiony(t) satisfying

c < α(x) < b,
∣∣y′(t)

∣∣<L.

PROOF. Take

Ω1 =
{
x ∈X:

∣∣x(t)
∣∣< c,

∣∣x′(t)
∣∣<L

}
,

Ω2 =
{
x ∈X:

∣∣x(t)
∣∣< b,

∣∣x′(t)
∣∣<L

}

two bounded open sets inX, and

D1 =
{
x ∈X: α(x)= c

}
, D2 =

{
x ∈X: α(x)= b

}
.
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Let

f ∗(t, u, v)=
{
f (t, u, v), (t, u, v) ∈ [0,1] × [0, b] × (−∞,∞),
f (t, b, v), (t, u, v) ∈ [0,1] × (b,∞)× (−∞,∞),

and

f1(t, u, v)=
{
f ∗(t, u, v), (t, u, v) ∈ [0,1] × [0,∞)× [−L,L],
f ∗(t, u,−L), (t, u, v) ∈ [0,1] × [0,∞)× (−∞,−L],
f ∗(t, u,L), (t, u, v) ∈ [0,1] × [0,∞)× [L,∞).

Thenf1 ∈ C([0,1] × [0,∞)× R,R+). Define

(T x)(t)=
∫ 1

0
G(t, s)f1

(
s, x(s), x′(s)

)
ds.

Obviously,T :K → K is completely continuous, and there is ap ∈ (Ω2 ∩K) \ {0} such
thatα(x + λp)� α(x) for all x ∈K andλ� 0. Forx ∈D1 ∩K , α(x)= c. From (1), we
get

α(T x) = max
t∈[0,1]

∣∣∣∣
∫ 1

0
G(t, s)f1

(
s, x(s), x′(s)

)
ds

∣∣∣∣

< max
t∈[0,1]

∫ 1

0
G(t, s)

c

M
ds = c

M
max
t∈[0,1]

∫ 1

0
G(t, s)ds = c.

Whereas forx ∈ D2 ∩ K , α(x) = b. We havex(t) � γ α(x) = γ b for t ∈ [η,1]. So,
from (2), we get

α(T x) = max
t∈[0,1]

∣∣∣∣
∫ 1

0
G(t, s)f1

(
s, x(s), x′(s)

)
ds

∣∣∣∣

> max
t∈[0,1]

∣∣∣∣
∫ 1

η

G(t, s)f1
(
s, x(s), x′(s)

)
ds

∣∣∣∣

> max
t∈[0,1]

∫ 1

η

G(t, s)
b

m
ds = b

m
max
t∈[0,1]

∫ 1

η

G(t, s)ds = b.

Forx ∈K , from (3), we get

β(T x) = max
t∈[0,1]

∣∣∣∣−
∫ t

0
f1
(
s, x(s), x′(s)

)
ds

+ 1

1− αη

∫ 1

0
(1− s)f1

(
s, x(s), x′(s)

)
ds

− α

1− αη

∫ η

0
(η− s)f1

(
s, x(s), x′(s)

)
ds

∣∣∣∣
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<

[
1+ 1

1− αη

∫ 1

0
(1− s)ds + α

1− αη

∫ η

0
(η− s)ds

]
L

Q

= 3− αη+ αη2

2(1− αη)

L

Q
= L.

Theorem 3.50 implies there isy ∈ (Ω2 \Ω1) ∩K such thaty = Ty. So,y is a positive
solution for BVP (3.101)–(3.102) satisfying

c < α(x) < b,
∣∣y′(t)

∣∣<L.

Thus, the proof of the theorem is complete. �

Theorem 3.51 was proved in [19], where one more result was proved in the case when
0< α � 1 andη ∈ (0,1), under the assumptions (1), (2) and the following one

(4) f (t, u, v) < L2/(2b) for (t, u, v) ∈ [0,1] × [0, b] × [−L,L].
Consider now a three-point BVP

(
p(t)x′(t)

)′ = f
(
t, x(t), x′(t)

)
, t ∈ [0,1], (3.103)

x′(0)= 0, x(1)= x(η) (3.104)

wheref : [0,1] × R × R → R is continuous,p : [0,1] → R is a positive continuous dif-
ferentiable function, mint∈[0,1] p(t) := p1 > 0 andη ∈ (0,1). For this problem the linear
operatorLx(t)= (p(t)x′(t))′ is not invertible, so the three-point BVP (3.103)–(3.104) is
a resonance problem. By using a theorem of a fixed point index forA-proper semilinear
operators Bai and Fang [6] proved the following theorem.

THEOREM 3.52. Suppose
(1) f : [0,1] × R × R → R is continuous and there exist constantsa > 0, b > 0, and

0< c < p2
1/(2‖p‖∞) such that

∣∣f (t, x, y)
∣∣� a + b|x| + c|y|, ∀t ∈ [0,1], x, y ∈ R.

(2) There existsM > 0 such that

f (t, x,0) > 0, ∀t ∈ [0,1], x >M.

(3) f (t, x, y) � 0, ∀t ∈ [0,1], y ∈ R and there exist constants0< σ < b and ε > 0
such that

f (t, x, y)� σx, ∀t ∈ [0,1], 0� x � ε, y ∈ R.

Then the BVP(3.103)–(3.104)has at least one positive solution.
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A more general nonlocal BVP was studied by Palamides [87]. He consider the following
BVP

x′′(t)= f
(
t, x(t), x′(t)

)
, t ∈ (0,1),

αx(0)− βx′(0)= 0, x(1)=
m−2∑

i=0

αix(ξi)

with α � 0, β > 0. Existence of positive solution is given, under superlinear and/or sublin-
ear growth rate inf . A different method is employed based on analysis of the correspond-
ing vector field on the(x, x′)-face plane and Kneser’s property of the solutions funnel.

Finally positive solutions for 2nth order nonlocal BVP was studied by Guo et al. in [22]
and [20] where they consider BVPs consisting of the equation

x(2n)(t)= f
(
t, x(t), x ′′(t), . . . , x2(n−1)(t)

)
, 0� t � 1,

and one of the following boundary conditions:

x(2i)(0)= 0, x(2i)(1)=
m−2∑

j=1

kijx
(2i)(ξj ), 0� i � n− 1,

and

x(2i)(0)− βix
(2i+1)(0)= 0, x(2i)(1)=

m−2∑

j=1

kijx
(2i)(ξj ), 0� i � n− 1.

They use the Legget–Williams fixed point theorem and a fixed point theorem in double
cones respectively.

For other recent results we refer to [49,50,52,53].

3.11. Positive solutions of nonlocal problems forp-Laplacian

The purpose of this section is to establish the existence of positive solutions to the following
three-point boundary value problem forp-Laplacian

(
g(u′)

)′ + a(t)f (u)= 0, for 0< t < 1, (3.105)

u(0)= 0, and u(ν)= u(1), (3.106)

whereg(v)= |v|p−2v, with p > 1, andν ∈ (0,1).
We will prove the existence of at least three positive pseudo-symmetric solutions of the

BVP (3.105)–(3.106) where we now define what we mean by a pseudo-symmetric function.
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DEFINITION 3.53. Forν ∈ (0,1) a functionu ∈ C[0,1] is said to be pseudo-symmetric if
u is symmetric over the interval[ν,1]. That is, fort ∈ [ν,1] we haveu(t)= u(1− (t − ν)).

In this setting we are able to verify that for allx in our coneσu = 1+ν
2 .

In our approach we will use a new multiple fixed point theorem, now called the five
functionals fixed point theorem, obtained by Avery [2], which generalized the Leggett–
Williams fixed point theorem [55] in terms of functionals rather than norms. We state first
the five functional fixed point theorem.

Let γ , β, θ be nonnegative, continuous, convex functionals onP andα, ψ be nonnega-
tive, continuous, concave functionals onP . Then, for nonnegative real numbersh, a, b, d
andc, we define the convex sets,

P(γ, c) =
{
x ∈ P : γ (x) < c

}
,

P (γ,α, a, c) =
{
x ∈ P : a � α(x), γ (x)� c

}
,

Q(γ,β, d, c) =
{
x ∈ P : β(x)� d, γ (x)� c

}
,

P (γ, θ,α, a, b, c) =
{
x ∈ P : a � α(x), θ(x)� b, γ (x)� c

}
,

and

Q(γ,β,ψ,h, d, c)=
{
x ∈ P : h�ψ(x), β(x)� d, γ (x)� c

}
.

THEOREM 3.54. Let P be a cone in a real Banach spaceE. Suppose there exist posi-
tive numbersc andM , nonnegative, continuous, concave functionalsα andψ onP , and
nonnegative, continuous, convex functionalsγ , β, andθ onP , with

α(x)� β(x) and ‖x‖ �Mγ(x)

for all x ∈ P(γ, c). Suppose

A :P(γ, c)→ P(γ, c)

is completely continuous and there exist nonnegative numbersh,a, k, b, with 0< a < b

such that:
(i) {x ∈ P(γ, θ,α, b, k, c): α(x) > b} �= ∅ andα(Ax) > b for x ∈ P(γ, θ,α, b, k, c);

(ii) {x ∈Q(γ,β,ψ,h, a, c): β(x) < a} �= ∅ andβ(Ax) < a for x ∈Q(γ,β,ψ,h, a, c);
(iii) α(Ax) > b for x ∈ P(γ,α, b, c) with θ(Ax) > k;
(iv) β(Ax) < a for x ∈Q(γ,β, a, c) withψ(Ax) < h.

ThenA has at least three fixed pointsx1, x2, x3 ∈ P(γ, c) such that,

β(x1) < a, b < α(x2),

and

a < β(x3) with α(x3) < b.
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Assumef : [0,∞) → [0,∞) is continuous, and leta : [0,1] → [0,∞) be continu-
ous. Letν ∈ (0,1), and letE = C[0,1] be the Banach space with the sup-norm,‖u‖ =
sup{|u(x)|: 0� x � 1}, and define the coneP ⊂E by

P =
{
u ∈E: u(0)= 0, u is concave, andu is symmetric on[ν,1]

}
.

Hereafter, supposeν ∈ (0,1), with
∫ ν

0 a(r)dr > 0, and we will choose aδ ∈ (0, ν), such
that

∫ ν
δ
a(t)dt > 0, and the constantsM∗ andm∗, defined by

M∗ =
∫ ν

0
G

(∫ σ

s

a(r)dr

)
ds,

and

m∗ =
∫ δ

0
G

(∫ σ

s

a(r)dr

)
ds,

satisfy the inequalityν < m∗
M∗ . Trivially, we haveδ < m∗

M∗ . We let

m=
∫ δ

0
G

(∫ ν

δ

a(r)dr

)
ds = δG

(∫ ν

δ

a(r)dr

)

and

M =
∫ σ

0
G

(∫ σ

s

a(r)dr

)
ds,

as well as,

h1 =
∫ ν

δ

G

(∫ σ

s

a(r)dr

)
ds,

h2 =
∫ δ

0
G

(∫ δ

s

a(r)dr

)
ds,

and

h3 =
∫ δ

0
G

(∫ σ

δ

a(r)dr

)
ds.

Define the nonnegative, continuous, concave functionalsα, ψ , and the nonnegative, con-
tinuous, convex functionalsβ, θ , γ on the coneP by:

γ (x)= θ(x) := max
t∈[0,1]

x(t)= x(σ ),

β(x) := max
t∈[δ,ν]

x(t)= x(ν),
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α(x)=ψ(x) := min
t∈[δ,ν]

x(t)= x(ν).

In our main result, we will make use of the following lemma. The lemma is easily proved
using the concavity and the pseudo-symmetry of allu ∈ P .

LEMMA 3.55. Letx ∈ P . Then
(D1) u(δ)� δu(1)= δu(ν), and
(D2) σu(ν)� νu(σ )= ν‖u‖.

We are now ready to apply the five functionals fixed point theorem to an operatorA

to give sufficient conditions for the existence of at least three positive pseudo-symmetric
solutions to (3.105)–(3.106).

THEOREM 3.56. Assume thatν ∈ (0,1), a : [0,1] → [0,∞) is a pseudo-symmetric con-
tinuous function, δ ∈ (0, ν) such that

∫ ν

δ

a(t)dt > 0 with ν <
m∗

M∗ ,

andf : [0,∞)→ [0,∞) is continuous. Let 0< a < b < c, with ch2 < aM , and suppose
thatf satisfies the following conditions:

(i) f (x) > g( b
m
) for all b� x � b

δ
,

(ii) f (x) < g(
Ma−ch2
M(h1+h3)

) for all aδ � x � aσ
ν

, and
(iii) f (x)� g( c

M
) for all 0� x � c.

Then the three-point boundary value problem(3.105)–(3.106)has at least three positive
pseudo-symmetric solutionsu1, u2, u3 such that

max
t∈[δ,ν]

u1(t) < a < max
t∈[δ,ν]

u2(t) and min
t∈[δ,ν]

u2(t) < b < min
t∈[δ,ν]

u3(t).

PROOF. Define the completely continuous operatorA onP by

Au(t)=w(t)=





∫ t

0
G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds, 0� t � σ ,

w(ν)+
∫ 1

t

G

(∫ s

σ

a(r)f
(
u(r)

)
dr

)
ds, σ � t � 1,

where

σ = ν + 1

2
.

We first note that foru ∈ P we haveAu(t)� 0,Au(0)= 0, and applying the Fundamental
Theorem of Calculus we have thatAu is concave. Furthermore, fort ∈ [ν,1]

Au(t)=Au
(
1− (t − ν)

)
.
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Consequently,Au ∈ P , that is,A :P → P . Moreover, since
(
g
(
(Au)′

))′
(t)= −a(t)f

(
u(t)
)
� 0 for all 0< t < 1,

we have that all fixed points ofA are solutions of (3.105)–(3.106). Thus we set out to verify
that the operatorA satisfies the five functionals fixed point theorem which will prove the
existence of three fixed points ofA which satisfy the conclusion of the theorem.

If u ∈ P(γ, c), thenγ (u)= maxt∈[0,1] u(t)� c. Thus

γ (Au) = Au(σ)

=
∫ σ

0
G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds

�

∫ σ

0
G

(∫ σ

s

a(r)g

(
c

M

)
dr

)
ds

=
(
c

M

)∫ σ

0
G

(∫ σ

s

a(r)dr

)
ds

= c.

Hence,

A :P(γ, c)→ P(γ, c).

Next, letN = m∗+δM∗
2 . Thusm∗ >N > δM∗, and if we define

uP (t)=





(
b

N

)∫ t

0
G

(∫ σ

s

a(r)dr

)
ds, 0� t � σ ,

uP (ν)+
(
b

N

)∫ 1

t

G

(∫ s

σ

a(r)dr

)
ds, σ � t � 1,

and

uQ(t)=





(
aδ

N

)∫ t

0
G

(∫ σ

s

a(r)dr

)
ds, 0� t � σ ,

uQ(ν)+
(
aδ

N

)∫ 1

t

G

(∫ s

σ

a(r)dr

)
ds, σ � t � 1,

then, clearlyuP , uQ ∈ P . Furthermore,

α(uP )= uP (δ)=
(
b

N

)∫ δ

0
G

(∫ σ

s

a(r)dr

)
ds = bm∗

N
> b,

and

θ(uP )= uP (ν)=
(
b

N

)∫ ν

0
G

(∫ σ

s

a(r)dr

)
ds = bM∗

N
<
b

δ
,
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as well as,

ψ(uQ)= uQ(δ)=
(
aδ

N

)∫ δ

0
G

(∫ σ

s

a(r)dr

)
ds = aδm∗

N
> aδ,

and

β(uQ)= uQ(ν)=
(
aδ

N

)∫ ν

0
G

(∫ σ

s

a(r)dr

)
ds = aM∗δ

N
< a.

Therefore,

uP ∈
{
u ∈ P

(
γ, θ,α, b,

b

δ
, c

)
: α(u) > b

}
,

and

uQ ∈
{
u ∈Q(γ,β,ψ,aδ, a, c): β(u) < a

}
,

hence, these sets are nonempty.
If u ∈ P(γ, θ,α, b, b

δ
, c), thenb � u(t)� b

δ
, for all t ∈ [δ, ν], and thus by condition (i)

of this theorem,

α(Au) = Au(δ)

=
∫ δ

0
G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds

�

∫ δ

0
G

(∫ ν

δ

a(r)f
(
u(r)

)
dr

)
ds

>

∫ δ

0
G

(∫ ν

δ

a(r)g

(
b

m

)
dr

)
ds

=
(
b

m

)∫ δ

0
G

(∫ ν

δ

a(r)dr

)
ds

= b.

Hence, condition (i) of the five functionals fixed point theorem is satisfied.
If u ∈ P(γ,α, b, c) with θ(Au) > b

δ
, then by Lemma 3.55(D1), we have

α(Au)=Au(δ)� δAu(1)= δAu(ν)= δθ(Au) > b.

Thus, condition (iii) of the five functionals fixed point theorem is satisfied.
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If u ∈ Q(γ,β,ψ,aδ, a, c), then aδ � u(t) � a, for all t ∈ [δ, ν], and thus by
Lemma 3.55(D2),aδ � u(t) � aσ

ν
, for all t ∈ [δ, σ ]. Thus by condition (ii) of this the-

orem,

β(Au) = Au(ν)

=
∫ ν

0
G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds

=
∫ δ

0
G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds +

∫ ν

δ

G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds

�

∫ δ

0
G

(∫ δ

s

a(r)f
(
u(r)

)
dr

)
ds +

∫ δ

0
G

(∫ σ

δ

a(r)f
(
u(r)

)
dr

)
ds

+
∫ ν

δ

G

(∫ σ

s

a(r)f
(
u(r)

)
dr

)
ds

<

(
c

M

)∫ δ

0
G

(∫ δ

s

a(r)dr

)
ds

+
(
Ma − ch2

M(h1 + h3)

)∫ δ

0
G

(∫ σ

δ

a(r)dr

)
ds

+
(
Ma − ch2

M(h1 + h3)

)∫ ν

δ

G

(∫ σ

s

a(r)dr

)
ds

= ch2

M
+ (Ma − ch2)h3

M(h1 + h3)
+ (Ma − ch2)h1

M(h1 + h3)

= a.

Hence, condition (ii) of the five functionals fixed point theorem is satisfied.
If u ∈Q(γ,β, a, c), with ψ(Au) < aδ, then by Lemma 3.55, we have

β(Au)=Au(ν)�
Au(δ)

δ
= ψ(Au)

δ
< a.

Consequently, condition (iv) of the five functionals fixed point theorem is also satisfied.
Therefore, the hypotheses of the five functionals fixed point theorem 3.54 are satisfied, and
there exist at least three positive pseudo-symmetric solutionsu1, u2, u3 ∈ P(γ, c) for the
three-point boundary value problem (3.105)–(3.106) such that,

β(u1) < a < β(u2) and α(u2) < b < α(u3). �

Theorem 3.56 was taken from [3]. Existence of positive solutions for the BVP (3.105)–
(3.106) was proved also in [91] and [41], relying on Krasnosel’skii’s and Legget–Williams
fixed point theorems respectively. BVP withp-Laplacian and more general boundary con-
ditions was studied in [66], where the boundary conditionsu(0)−B0(u

′(η))= 0, u′(1)= 0
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andu′(0)= 0, u(1)+B1(u
′(η))= 0 are used and in [4,5] where them-point boundary con-

ditionsu(0)= 0, u(1)=
∑m−2

i=1 aiu(ξi) andu′(0)=
∑m−2

i=1 biu
′(ξi), u(1)=

∑m−2
i=1 aiu(ξi)

are used. Finally multi-point BVP forp-Laplacian at resonance was proved by Ni and Ge
in [85] and Garcia-Huidobro et al. in [17].
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regularization, 13
relation
– preorder, 156
relative Morse index, 105, 106
representation
– diffeomorphisms, 18
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– points, 18
– tangent vectors, 18
– vector fields, 18
reproducing cone, 322
resolvent operator, 366
resonance, 489
rising interval, 249, 317

sectorial, 333
semi-trivial positive state, 361
semiconjugate mapping, 141
semiflow, 245
semiorbit, 251
set
– reachable, 224
– target, 224
Severi differential
– atx, 222
– atx in the directionu, 222
singular value of an operator pencil, 393
solution
– ε-approximate, 168, 206
– Carathéodory, 190
– contingent, 227, 233
– flow, 245
– global, 172
– mild, orC0, 229
– noncontinuable, 172, 207
– of a differential inclusion, 202
– of inequality, 224
– process, 335
– right funnel, 219
– semigroup, 229
– to a differential equation, 149
spectral radius, 274
stable fixed point, 320
stable from above, 258
stable from below, 258
standard cone, 245
state of the system, 9
strictly monotone, 246
strictly monotone map, 316
strong approximation, 265
strong maximum principle, 393
strong ordering, 244
strongly accessible, 265
strongly increasing, 370
strongly monotone, 246
strongly negative, 366
strongly order-preserving, 246
strongly order-preserving (SOP) map, 316
strongly positive, 366
strongly positive operator, 316
strongly sublinear map, 324

sub-critical turning point, 431
subdifferential, 11
subgradient, 11
sublinear map, 323
subset
– Carathéodory invariant, 197
– Carathéodory locally invariant, 197
– closed relative toD, 151
– flow invariant, 153
– invariant, 178, 210
– locally closed, 151, 158
– locally invariant, 178, 210
– right viable with respect tof , 149
– right viable with respect toF , 202
– viable, 166
subsolution, 367, 368
super-critical turning point, 431
superlinear indefinite model, 388
supersolution, 367, 368
supremum, 244
symbiotic species, 387, 411
synthesis problem, 63
system
– strongly decreasing, 226
– weakly decreasing, 226

t -cross-section ofFτ,ξ , 219
theorem
– Bony, 153
– Brezis–Browder, 157
– Hukuhara, 220
– Kneser, 221
– Nagumo, 151, 166
– Pavel, 231
– Peano, 149
– Redheffer, 154
– Scorza Dragoni, 190
– Shi, 232
– Vitali, 234
– Yorke, 217, 220
– Yoshizawa, 216
topological degree, 393
topologically equivalent, 292
totally competitive, 294
totally ordered arc, 255
trajectory, 245, 333
transversality conditions, 7, 30, 61
trivial state, 361

uniform global attractor, 321
unilateral bifurcation theorem, 397
unordered, 244
unstable from above, 268
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unstable from below, 269
upper boundary, 244

variation of constants formula, 24
variation of parameters method, 24
vector
– metric normal toK at ξ , 153, 161
– tangent in the sense of
– – Bony, 162
– – Bouligand–Severi, 159
– – Clarke, 163

– – Federer, 161
vector field
– complete, 17
– Hamiltonian, 27
– nonautonomous, 16
vector ordering, 245
very strongly order preserving (VSOP) process,

336
viability, 149

Yosida approximation, 13



This page intentionally left blank


