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Preface

This book is an expanded version of lecture notes for the graduate course “An
Introduction to Methods of Functional Analysis in Probability and Stochastic
Processes” thatI gave for students of the University of Houston, Rice University,
and a few friends of mine in Fall, 2000 and Spring, 2001. It was quite an
experience to teach this course, for its attendees consisted of, on the one hand,
a group of students with a good background in functional analysis having limited
knowledge of probability and, on the other hand, a group of statisticians without
a functional analysis background. Therefore, in presenting the required notions
from functional analysis, I had to be complete enough for the latter group while
concise enough so that the former would not drop the course from boredom.
Similarly, for the probability theory, I needed to start almost from scratch for the
former group while presenting the material in a light that would be interesting
for the latter group. This was fun. Incidentally, the students adjusted to this
challenging situation much better than I.

In preparing these notes for publication, I made an effort to make the presen-
tation self-contained and accessible to a wide circle of readers. I have added a
number of exercises and disposed of some. I have also expanded some sections
that I did not have time to cover in detail during the course. I believe the book
in this form should serve first year graduate, or some advanced undergraduate
students, well. It may be used for a two-semester course, or even a one-semester
course if some background is taken for granted. It must be made clear, however,
that this book is not a textbook in probability. Neither may it be viewed as a
textbook in functional analysis. There are simply too many important subjects
in these vast theories that are not mentioned here. Instead, the book is intended
for those who would like to see some aspects of probability from the perspec-
tive of functional analysis. It may also serve as a (slightly long) introduction
to such excellent and comprehensive expositions of probability and stochastic
processes as Stroock’s, Revuz’s and Yor’s, Kallenberg’s or Feller’s.
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xii Preface

It should also be said that, despite its substantial probabilistic content, the
book is not structured around typical probabilistic problems and methods. On
the contrary, the structure is determined by notions that are functional analytic
in origin. As it may be seen from the very chapters’ titles, while the body is
probabilistic, the skeleton is functional analytic.

Most of the material presented in this book is fairly standard, and the book is
meant to be a textbook and not a research monograph. Therefore, I made little
or no effort to trace the source from which I had learned a particular theorem
or argument. [ want to stress, however, that I have learned this material from
other mathematicians, great and small, in particular by reading their books. The
bibliography gives the list of these books, and I hope it is complete. See also
the bibliographical notes to each chapter. Some examples, however, especially
towards the end of the monograph, fit more into the category of “research”.

A word concerning prerequisites: to follow the arguments presented in the
book the reader should have a good knowledge of measure theory and some
experience in solving ordinary differential equations. Some knowledge of ab-
stract algebra and topology would not hurt either. I sketch the needed material
in the introductory Chapter 1. I do not think, though, that the reader should start
by reading through this chapter. The experience of going through prerequisites
before diving into the book may prove to be like the one of paying a large bill
for a meal before even tasting it. Rather, I would suggest browsing through
Chapter 1 to become acquainted with basic notation and some important exam-
ples, then jumping directly to Chapter 2 and referring back to Chapter 1 when
needed.

I'would like to thank Dr. M. Papadakis, Dr. C. A. Shaw, A. Renwick and F. J.
Foss (both PhDs soon) for their undivided attention during the course, efforts to
understand Polish-English, patience in endless discussions about the twentieth
century history of mathematics, and valuable impact on the course, including
how-to-solve-it-easier ideas. Furthermore, I would like to express my gratitude
to the Department of Mathematics at UH for allowing me to teach this course.
The final chapters of this book were written while I held a special one-year
position at the Institute of Mathematics of the Polish Academy of Sciences,
Warsaw, Poland.

A final note: if the reader dislikes this book, he/she should blame F. J.
Foss who nearly pushed me to teach this course. If the reader likes it, her/his
warmest thanks should be sent to me at both addresses: bobrowscy@op.pl
and a.bobrowski@pollub.pl. Seriously, I would like to thank Fritz Foss for his
encouragement, for valuable feedback and for editing parts of this book. All
the remaining errors are protected by my copyright.
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Preliminaries, notations and conventions

Finite measures and various classes of functions, including random vari-
ables, are examples of elements of natural Banach spaces and these
spaces are central objects of functional analysis. Before studying Ba-
nach spaces in Chapter 2, we need to introduce/recall here the basic
topological, measure-theoretic and probabilistic notions, and examples
that will be used throughout the book. Seen from a different perspective,
Chapter 1 is a big “tool-box” for the material to be covered later.

1.1 Elements of topology

1.1.1 Basics of topology ~ We assume that the reader is familiar with
basic notions of topology. To set notation and refresh our memory, let us
recall that a pair (S,U) where S is a set and U is a collection of subsets
of S is said to be a topological space if the empty set and .S belong to
U, and unions and finite intersections of elements of I belong to U. The
family U is then said to be the topology in S, and its members are called
open sets. Their complements are said to be closed. Sometimes, when
U is clear from the context, we say that the set S itself is a topological
space. Note that all statements concerning open sets may be translated
into statements concerning closed sets. For example, we may equivalently
define a topological space to be a pair (S,C) where C is a collection of
sets such that the empty set and S belong to C, and intersections and
finite unions of elements of C belong to C.

An open set containing a point s € .S is said to be a neighborhood of
s. A topological space (S,U) is said to be Hausdorff if for all p;,ps € S,
there exists Ay, Ao € U such that p; € A;,i = 1,2 and A; N Ay = 0.
Unless otherwise stated, we assume that all topological spaces considered
in this book are Hausdorff.
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The closure, cl(A), of a set A C S is defined to be the smallest closed
set that contains A. In other words, cl(A) is the intersection of all closed
sets that contain A. In particular, A C cl(A). A is said to be dense in
Siff cl(A)=S.

A family V is said to be a base of topology U if every element of U
is a union of elements of V. A family V is said to be a subbase of U/ if
the family of finite intersections of elements of V is a base of U.

If (S,U) and (S’,U") are two topological spaces, then amap f : S — S5’
is said to be continuous if for any open set A’ in U’ its inverse image
f71(A) is open in S.

Let S be a set and let (S”,U’) be a topological space, and let { f;,t € T}
be a family of maps from S to S’ (here T is an abstract indexing set).
Note that we may introduce a topology in S such that all maps f; are
continuous, a trivial example being the topology consisting of all subsets
of S. Moreover, an elementary argument shows that intersections of finite
or infinite numbers of topologies in S is a topology. Thus, there exists
the smallest topology (in the sense of inclusion) under which the f;
are continuous. This topology is said to be generated by the family

{fi,t € T}.

1.1.2 Exercise Prove that the family ¥ composed of sets of the form
fr (A, t € T, A’ €U’ is a subbase of the topology generated by fi,t €
T.

1.1.3 Compact sets A subset K of a topological space (S,U) is said to
be compact if every open cover of K contains a finite subcover. This
means that if V is a collection of open sets such that K C (Jgcy B,
then there exists a finite collection of sets Bi,..., B, € V such that
K c |Jj_, B;. If S is compact itself, we say that the space (S,U) is
compact (the reader may have noticed that this notion depends as much
on S as it does on U). Equivalently, S is compact if, for any family
Ci,t € T of closed subsets of S such that (,.p C; = (0, there exists
. of its members such that (), Cy, = 0.
A set K is said to be relatively compact iff its closure is compact.
A topological space (S,U) is said to be locally compact if for every
point p € S there exist an open set A and a compact set K, such that
s € A C K. The Bolzano—Weierstrass Theorem says that a subset
of R™ is compact iff it is closed and bounded. In particular, R™ is locally
compact.

a finite collection Ci,,...,C}
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1.1.4 Metric spaces Let X be an abstract space. Amap d : XxX — R*
is said to be a metric iff for all z,y,z € X

(a) d(z,y) = d(y, ),
(b) d(z,y) < d(z,2) +d(z,y),
(c) d(z,y)=0iff x = y.

A sequence z,, of elements of X is said to converge to x € X if
lim,, 00 d(xy, x) = 0. We call z the limit of the sequence (z,,),>1 and
write lim,, .., z, = x. A sequence is said to be convergent if it con-
verges to some z. Otherwise it is said to be divergent.

An open ball B(z,r) with radius r and center x is defined as the set
of all y € X such that d(z,y) < r. A closed ball with radius r and center
x is defined similarly as the set of y such d(x,y) < r. A natural way to
make a metric space into a topological space is to take all open balls as
the base of the topology in X. It turns out that under this definition a
subset A of a metric space is closed iff it contains the limits of sequences
with elements in A. Moreover, A is compact iff every sequence of its
elements contains a converging subsequence and its limit belongs to the
set A. (If S is a topological space, this last condition is necessary but
not sufficient for A to be compact.)

A function f : X — Y that maps a metric space X into a normed
space Y is continuous at z € X if for any sequence z,, converging to
x, lim, o f(z,) exists and equals f(x) (x, converges in X, f(z,) con-
verges in Y). f is called continuous if it is continuous at every x € X
(this definition agrees with the definition of continuity given in 1.1.1).

1.2 Measure theory

1.2.1 Measure spaces and measurable functions  Although we assume
that the reader is familiar with the rudiments of measure theory as
presented, for example, in [103], let us recall the basic notions. A family
F of subsets of an abstract set {2 is said to be a o-algebra if it contains )
and complements and countable unions of its elements. The pair (2, F)
is then said to be a measurable space. A family F is said to be an
algebra or a field if it contains €2, complements and finite unions of its
elements.

A function p that maps a family F of subsets of  into R* such that

n(J A =Y n(4n) (1.1)

neN
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for all pairwise-disjoint elements A,,n € N of F such that the union
Unen An belongs to F is called a measure. In most cases F is a o-
algebra but there are important situations where it is not, see e.g. 1.2.8
below. If F is a o-algebra, the triple (2, F, u) is called a measure space.

Property (1.1) is termed countable additivity. If F is an algebra
and pu(S) < oo, (1.1) is equivalent to

oo

nh—>ngo w(Ap) =0 whenever A, € F, A, D Anyi, ﬂ A, =0. (1.2)
n=1

The reader should prove it.

The smallest o-algebra containing a given class F of subsets of a set is
denoted o(F). If Q is a topological space, then B(£2) denotes the smallest
o-algebra containing open sets, called the Borel o-algebra. A measure
u on a measurable space (€2, F) is said to be finite (or bounded) if
1(Q) < oo. It is said to be o-finite if there exist measurable subsets ,,,
n € N, of Q such that p(,) < oo and Q= {J,,cr Qn-

A measure space (2, F, ) is said to be complete if for any set A C 2
and any measurable B conditions A C B and pu(B) = 0 imply that A
is measurable (and p(A) = 0, too). When € and F are clear from the
context, we often say that the measure pu itself is complete. In Exercise
1.2.10 we provide a procedure that may be used to construct a complete
measure from an arbitrary measure. Exercises 1.2.4 and 1.2.5 prove that
properties of complete measure spaces are different from those of mea-
sure spaces that are not complete.

A map f from a measurable space (2, F) to a measurable space
(U, F’) is said to be F measurable, or just measurable iff for any
set A € F’ the inverse image f~1(A) belongs to F. If, additionally, all
inverse images of measurable sets belong to a sub-o-algebra G of F, then
we say that f is G measurable, or more precisely G/F’ measurable.
If f is a measurable function from (€, F) to (€', F’) then

or={Ac F|A= f'(B) where B € F'}

is a sub-c-algebra of F. oy is called the o-algebra generated by f. Of
course, f is G measurable if oy C G.

The o-algebra of Lebesgue measurable subsets of a measurable subset
A C R™ is denoted M, (A) or M(A) if n is clear from the context, and
the Lebesgue measure in this space is denoted leb,,, or simply leb. A stan-
dard result says that M := M(R") is the smallest complete o-algebra
containing B(R™). In considering the measures on R™ we will always
assume that they are defined on the o-algebra of Lebesgue measurable
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sets, or Borel sets. The interval [0,1) with the family of its Lebesgue
subsets and the Lebesgue measure restricted to these subsets is often
referred to as the standard probability space. An n-dimensional
random vector (or simply n-vector) is a measurable map from a proba-
bility space (€2, F,P) to the measurable space (R™, B(R")). A complex-
valued random variable is simply a two dimensional random vec-
tor; we tend to use the former name if we want to consider complex
products of two-dimensional random vectors. Recall that any random n-
vector X is of the form X = (X3, ..., X,,) where X; are random variables
X;: Q—R.

1.2.2 Exercise Let A be an open set in R™. Show that A is union of
all balls contained in A with rational radii and centers in points with
rational coordinates. Conclude that B(R) is the o-algebra generated by
open (resp. closed) intervals. The same result is true for intervals of the
form (a,b] and [a,b). Formulate and prove an analog in R™.

1.2.3 Exercise Suppose that Q and ' are topological spaces. If a map
f:Q — Q' is continuous, then f is measurable with respect to Borel
o-fields in  and €. More generally, suppose that f maps a measurable
space (2, F) into a measurable space (€, F’), and that G’ is a class of
measurable subsets of ' such o(G’") = F'. If inverse images of elements
of G’ are measurable, then f is measurable.

1.2.4 Exercise Suppose that (Q, F, u) is a measure space, and f maps
Q into R. Equip R with the g-algebra of Borel sets and prove that f
is measurable iff sets of the form {w|f(w) < t}, ¢ € R belong to F.
(Equivalently: sets of the form {w|f(w) < t}, t € R belong to F.) Prove
by example that a similar statement is not necessarily true if Borel sets
are replaced by Lebesgue measurable sets.

1.2.5 Exercise  Let (92, F, 1) be a complete measure space, and f be
amap f: Q — R. Equip R with the algebra of Lebesgue measurable
sets and prove that f is measurable iff sets of the form {w|f(w) < t},
t € R belong to F. (Equivalently: sets of the form {w|f(w) < t},t € R
belong to F.)

1.2.6 Exercise Let (S,U) be a topological space and let S’ be its
subset. We can introduce a natural topology in S’, termed induced
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topology, to be the family of sets U’ = U N S” where U is open in S.
Show that

B(S)={BcCS|B=ANS" AecB(S)} (1.3)

1.2.7 Monotone class theorem A class G of subsets of a set € is termed
a w-system if the intersection of any two of its elements belongs to the
class. It is termed a A-system if (a) Q belongs to the class, (b) A,B € G
and A C Bimplies B\A € G and (¢) if A1, As,... € G,and A} C Az C ...
then (J,,cy An € G. The reader may prove that a A-system that is at the
same time a mw-system is also a o-algebra. In 1.4.3 we exhibit a natural
example of a A-system that is not a o-algebra. The Monotone Class
Theorem or 7\ theorem, due to W. Sierpinski, says that if G is
a m-system and F is a A-system and G C F, then o(G) C F. As a
corollary we obtain the uniqueness of extension of a measure defined on
a m-system. To be more specific, if (2, F) is a measure space, and G is
a m-system such that o(G) = F, and if g and p’ are two finite measures
on (Q,F) such that u(A) = ' (A) for all A € G, then the same relation
holds for A € F. See [5].

1.2.8 Euxistence of an extension of a measure A standard construction
involving the so-called outer measure shows the existence of an extension
of a measure defined on a field. To be more specific, if y is a finite
measure on a field F, then there exists a measure 1 on o(F) such that
i(A) = p(A) for A € F, see [5]. It is customary and convenient to omit
the “7” and denote both the original measure and its extension by pu.
This method allows us in particular to prove existence of the Lebesgue
measure [5, 106].

1.2.9 Two important properties of the Lebesgue measure  An important
property of the Lebesgue measure is that it is regular, which means that
for any Lebesgue measurable set A and ¢ > 0 there exists an open set
G D A and a compact set K C A such that leb(G \ K) < e. Also, the
Lebesgue measure is translation invariant, i.e. leb A = leb A; for any
Lebesgue measurable set A and ¢t € R, where

Ar={seR;s—te A} (1.4)

1.2.10 Exercise Let (2, F) be a measure space and p be a measure,
not necessarily complete. Let Fy be the class of subsets B of €2 such that
there exists a C' € F such that 4(C) = 0 and B C C. Let F,, = o(FUFy).
Show that there exists a unique extension of p to F,,, and (2, F,, 1) is a
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complete measure space. Give an example of two Borel measures p and
v such that F, # F,.

1.2.11 Integral — Let (2, F, 1) be a measure space. The integral [ fdpu
of a simple measurable function f, i.e. of a function of the form
f = Z?:l cila, where n is an integer, ¢, are real constants, A; be-
long to F, and p(A4;) < oo, is defined as [ fdu = > i, ciu(4;). We
check that this definition of the integral does not depend on the choice
of representation of a simple function. The integral of a non-negative
measurable function f is defined as the supremum over integrals of non-
negative simple measurable functions fs such that fs < f (u a.e.). This
last statement means that fs(w) < f(w) for all w € Q outside of a mea-
surable set of u-measure zero. If this integral is finite, we say that f is
integrable.

Note that in our definition we may include functions f such that
f(w) = oo on a measurable set of ws. We say that such functions have
their values in an extended non-negative half-line. An obvious necessary
requirement for such a function to be integrable is that the set where it
equals infinity has measure zero (we agree as it is customary in measure
theory that 0 - co = 0).

If a measurable function f has the property that both f* = max(f, 0)
and f~ = max(—f,0) are integrable then we say that f is absolutely
integrable and put [ fdu = [ f*du— [ f~ du. The reader may check
that for a simple function this definition of the integral agrees with the
one given initially. The integral of a complex-valued map f is defined
as the integral of its real part plus ¢ (the imaginary unit) times the
integral of its imaginary part, whenever these integrals exist. For any
integrable function f and measurable set A the integral [ 4 f dpis defined
as [1afdpu.

This definition implies the following elementary estimate which proves

‘/Afdu‘ S/Alfldu- (1.5)

Moreover, for any integrable functions f and g and any a and S in R,

useful in practice:

we have
/(af+ﬁg)du=a/fdu+5/gdu~

In integrating functions defined on (R", M,,(R™), leb,,) it is customary
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to write dsj...ds, instead of dleb,(s) where s = (s1,...,8,). In one
dimension, we write ds instead of dleb(s).

There are two important results concerning limits of integrals de-
fined this way that we will use often. The first one is called Fatou’s
Lemma and the second Lebesgue Dominated Convergence The-
orem. The former says that for a sequence of measurable functions f,
with values in the extended non-negative half-line limsup,, . [ fn dp >
Jlimsup,,_, . fndu, and the latter says that if f, is a sequence of mea-
surable functions and there exists an integrable function f such that
|fnl < f (p ae.), then lim, .o [ fndp = [gdp, provided f, tends
to g pointwise, except perhaps on a set of measure zero. Observe that
condition |f,| < f implies that f, and g are absolutely integrable; the
other part of the Lebesgue Dominated Convergence Theorem says that
J |fn — g/ du tends to zero, as n — oo. The reader may remember that
both above results may be derived from the Monotone Convergence
Theorem, which says that if f,, is a sequence of measurable functions
with values in the extended non-negative half-line, and f,+1(w) > fp,(w)
for all w except maybe on a set of measure zero, then [ 4 Jndpu tends to
J 4 limy, oo fr(w) dp regardless of whether the last integral is finite or in-
finite. Here A is the set where lim,, . fn(w) exists, and by assumption
it is a complement of a set of measure zero.

Note that these theorems are true also when, instead of a sequence of
functions, we have a family of functions indexed, say, by real numbers
and consider a limit at infinity or at some point of the real line.

1.2.12 Exercise  Let (a,b) be an interval and let, for 7 in this inter-
val, (7, w) be a given integrable function on a measure space (€2, F, 11).
Suppose furthermore that for almost all w € Q, 7 — z(7,w) is con-
tinuously differentiable and there exists an integrable function y such
that sup ¢, [2'(7,w)| < y( ). Prove that 2(1) = [qz( p(dw) is
differentiable and that 2'(7) = [, 2’ dw)

1.2.13 Product measures  Let (Q,F, u) and (€, F’, i) be two o-finite
measure spaces. In the Cartesian product € x Q' consider the rect-
angles, i.e. the sets of the form A x A’ where A € F and A’ € F',
and the function p ® p'(A x A') = p(A)p/(A4’). Certainly, rectangles
form a m-system, say R, and it may be proved that p ® p’ is a mea-
sure on R and that there exists an extension of u ® u’ to a measure on
o(R), which is necessarily unique. This extension is called the prod-
uct measure of g and p’. The assumption that p and y' are o-finite
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is crucial for the existence of pu ® p'. Moreover, u ® p' is o-finite, and it
is finite if pu and p' are. The Tonelli Theorem says that if a func-
tion f : Q@ x @ — R is o(R) measurable, then for all w € Q the
function f, : & — R, f,(v') = f(w,w’) is F' measurable and the
function f¢ : Q — R, f“’/(w) = f(w,w’) is F measurable. Further-
more, the Fubini Theorem says that for a ¢(R) measurable function
f:OxQ —=RT,

/ fd(ue ')
QxQ/

/[ folw) ()] o)

|1 £ ) e ),

finite or infinite; measurability of the integrands is a part of the theorem.
Moreover, this relation holds whenever f is absolutely integrable.

1.2.14 Absolute continuity Let p and v be two measures on a measure
space (2, F); we say that u is absolutely continuous (with respect
to v) if there exists a non-negative (not necessarily integrable) function
[ such that p(A) = [, fdv for all A € F. In such a case f is called
the density of p (with respect to v). Observe that f is integrable (with
respect to v) iff p is finite, i.e. iff ©(Q2) < co. When it exists, the density
is unique up to a set of v-measure zero.

1.2.15 Change of variables formula  Suppose that (Q, F,P) is a mea-
sure space and f is a measurable map from (2, F) to another mea-
surable space (€, F’). Consider the set function py on F' defined by
pr(A) = u(f~H(A)) = u(f € A). We check that uf is a measure in
(¥, F'). It is called the transport of the measure p via f or a mea-
sure induced on (', ') by p and f. In particular, if u is a probability
measure, and ' = (R", M,,(R™)), uy is called the distribution of f.

Note that a measurable function z defined on ' is integrable with
respect to py iff z o f is integrable with respect to v and

/Q/xduf:/ga:ofd,u. (1.6)

To prove this relation, termed the change of variables formula, we
check it first for simple functions, and then use approximations to show
the general case. A particular case is that where a measure, say v, is
already defined on (€', F'), and p is absolutely continuous with respect
to v. If ¢ is the density of jy with respect to v, then the change of
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variables formula reads:

/xofdu:/ xduf:/ xpdu.
Q Q/ (944

Of particular interest is the case when ' = R" and v = leb,,.

If 4 = P is a probability measure on (Q,F) and ' = R, we usually
denote measurable maps by the capital letter X. We say that X has a
first moment iff X is integrable, and then write EX = [XdP. EX
is called the first moment or expected value of X. The Holder in-
equality (see 1.5.8 below) shows that if X? has a first moment then X
also has a first moment (but the opposite statement is in general not
true). E X2 is called the (non-central) second moment of X. If F X2
is finite, we also define the central second moment or variance of X
as D? X = 0% = E(X — E X)? The reader will check that 0% equals
EX?— (EX)2.

If the distribution of a random variable X has a density ¢ with respect
to Lebesgue measure, than F X exists iff f(&) = £¢(€) is absolutely
integrable and then EX = [~ _£¢(€) d¢.

1.2.16 Convolution of two finite measures Let p and v be two finite
measures on R. Consider the product measure y ® v on R x R, and a
measurable map f: RxR — R, f(¢,7) = ¢+ 7. The convolution p *v
of p with v is defined as the transport of p ® v via f. Thus, p* v is a
bounded measure on R and, by the change of variables formula,

/xd(u*u) - //x(g—FT),u(dc)V(dT). (1.7)

We have pxv(R) = p@v(RxR) = p(R)v(R). In particular, the convolu-
tion of two probability measures on R is a probability measure. Observe
also that p* v = v x pu, and that (u* p') * p” = p* (' = ') for all
bounded measures pu, ' and p”.

1.2.17 Convolution of two integrable functions For two Lebesgue in-
tegrable functions ¢ and i on R their convolution ¢ * 1 is defined by
(&) = [0 (£ —<)¥(c) ds. The reader will use the Fubini-Tonelli The-
orem to check that ¢ x v is well-defined for almost all £ € R.

1.2.18 Exercise Suppose that g and v are two finite measures on R,
absolutely continuous with respect to Lebesgue measure. Let ¢ and ¢
be the densities of 1 and v, respectively. Show that u * v is absolutely
continuous with respect to Lebesgue measure and has a density ¢ = ¢*.



1.2 Measure theory 11

In partlcular if both ¢ and v vanish for & < 0 then so does ¢ and

fo ¥(s) de.

1.2.19 Exercise A counting measure on R with support Z is a mea-
sure that assigns value one to any set {k} where k is an integer. Suppose
that p and v are two measures on R, absolutely continuous with respect
to the counting measure. The densities of ;4 and v may be identified with
infinite sequences, say (a,),~; and (b,),~, - Prove that p * v is abso-
lutely continuous with respect to counting measure and that its density
may be identified with a sequence ¢, = Z;iioo an_kbg. In particular,
if a, = b, =0forn <0, then ¢, =0 for n < 0 and ¢, = >, _g an—rbs
for n > 0.

1.2.20 Proposition Let p and v be two finite Borel measures on R
and assume that [ @ dy = [ 2 dv for every bounded continuous function
z. Then p = v, i.e. u(A) = v(A) for all Borel sets A.

Proof 1Tt suffices to show that pu(a,b] = v(a,b,a < b € R. Consider
Tt = %I[O’t) * 14,1 > 0. Since

nr) =+ [ " Loy (7 — ) Lian (6) s, (18)

t) o

then |x:(7)| <1 and |z¢(7 +¢) — 2¢(7)| < 3, so that x; is bounded and
continuous. Hence, by assumption

/xt dp = /xt dw. (1.9)

If 7 <a, (1.8) implies z(7) = 0. If 7 > b, we write

1 b 1 T—a

2(r) = ;/ Lo (r — <) ds = ;/ 10.(s) ds (1.10)
a T—b

to see that z,(7) = 0,if 7—b > ¢. Finally, if a < 7 < b, 24(7 7tf0 =

1, for t < 7 — a. Consequently, lim; .o x¢(7) = 1(4)(7),7 € R. By the

Lebesgue Dominated Convergence Theorem we may let t — 0 in (1.9)

to obtain yi(a,b] = [ 1 dp = [ 1 dv = v(a,b]. O

The reader should note how in the proof we have used the “smoothing
property” of convolution and the family z; (which should be thought as
approximating the Dirac measure at 0, see below). Also, a careful ex-
amination of the proof shows that our result is true as well when we
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replace the phrase “bounded continuous functions” by “bounded uni-
formly continuous functions” or even “continuous functions with com-
pact support”. This result will become even clearer in Chapter 5, see the
celebrated Riesz Theorem 5.2.9.

1.2.21 Exercise Let (92, F) be a measurable space and w belong to
Q). The measure J,, given by 6,(4A) =1ifw e Aand §,(A) =0ifw ¢ A
is termed Dirac (delta) measure at the point w. Consider the Dirac
measure 0y in the measurable space (R,B(R)) and show that for any
Borel measure p on R, % dg = . How would you describe p* d;, ¢t € R?
See (1.4).

1.2.22 Convolution on a topological semigroup  The notion of convo-
lution may be generalized if we introduce the notion of a topological
semigroup. By definition, a topological semigroup G is a topological
space and a semigroup at the same time, such that the multiplication
inG, -:GxG — G is continuous (G x G is equipped with the product
topology — see 5.7.4). This map, being continuous, is measurable with
respect to appropriate Borel o-fields. Therefore, for two bounded mea-
sures  and v on G, we may define p* v as the transport of u® v via this
map. By the change of variables formula for any measurable f : G — R,

/ fd(uxr) = / £(6 ) () (). (1.11)

Convolution so defined is associative, multiplication in G being associa-
tive, but in general is not commutative, for neither must G be commu-
tative.

If G is a group such that (£,1) — &n and € — &1 are continuous,
then G is called a topological group; ! is, of course, the inverse of

£in G.

1.2.23 Example  Convolution on the Klein group. The Klein four-
group [50] (the Klein group for short) is a commutative group G with
four elements, g1, ..., g4, and the following multiplication table:

°© g1 92 g3 94

g1 g1 92 g3 94
g2 g2 91 94 G3
g3 g3 g4 g1 G2
94 94 93 G2 g1

Table 1.1
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G is a topological group when endowed with discrete topology (all sub-
sets of G are open sets). Any finite measure p on G may be identi-
fied with a vector (a;),_,
v = (bi);=y .4 the coordinates of convolution p* v = (¢;);—; 4. as
the image of the measure (a;b;), 4 on G x G, can be read off the

4, with non-negative coordinates. For any

ij=1,..,
multiplication table:

c1 = a1by + azby + azbs + asby,

2 = aiby + asby + azbs + asbs,

c3 = aibs + agby + azby + asbe,

¢4 = aibg+ asbs + asbs + ayb;. (1.12)

Note that convolution on the Klein group is commutative, for the group
is commutative.

1.2.24 Example  Convolution on the Kisyrski group. Consider G =
R x {—1, 1}, with multiplication rule

(1, k) o (1) = (7l + <, kl). (1.13)

We will leave it to the reader to check that G is a (non-abelian) group,
and note the identity in G is (0, 1) and the inverse of (7, k) is (—k7, k). G
is also a topological space, even a metric space, when considered as a sub-
space of R2. Clearly, if (7,,, k,,) converges to (7, k) and (,,l,,) converges
to (s,1) then (7, kn) © (Sn, In) converges to (7,k) o (s, 1), and (—k, 7o, kn)
converges to (—kT, k), proving that G is a topological group.

If 4 is a measure on G then we may define two measures on R by
wi(A) = p(A x {i}),i = 1,-1, A € M. Conversely, if u;,i = 1,—1 are
two measures on R, then for a measurable subset B of G we may put
w(B) = (BNRx{1}))+p_1(BN(Rx{-1})), where BN(R x {1}) is
identified with an appropriate subset of R. This establishes a one-to-one
correspondence between measures on G and pairs of measures on R; to
denote this correspondence we shall write p = (u1, t—1). We have

4ﬂM=Aﬂ&DmMO+Aﬂ&4M4M& (1.14)

for all bounded measurable functions f : G — R.
Let xg denote the convolution in G and let * denote the convolution
in R. For f as above,

4memo:AAfwmw@wmmwmwmmm.
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Using (1.14) this may be rewritten as

/G {/}R f(rl+ ¢, Dp (d7) + /R frl+¢,—Dp—y (dr)} v (d(s,1))

or, consequently, as
/R / F(r + 6 D (d7) w1 (ds) + / / F(=7 46~ (dr) vy (do)
4 / / 7+ 6~y (A7) 1y (d)
4 / / F= 46, Dt (A7) vy (ds).

Hence, (p*¢ )1 is a sum of two measures: one of them is puy * v; and
the other one is fi_1 * v_q, where i_1(A) = p_1(—A), and —A = {5 €
R,—¢ € A}. Similarly, we obtain a formula for (u *g v)_1. We may
summarize this analysis by writing:

(1, p—1) %G (v1,v—1) = (p *v1 + iy *xv_q, p—1 *v1 + fig xv_q), (1.15)

or in matrix notation,

(41, p11) %6 (1, v1) = (“1 f“) <V1 > . (1.16)

p—-1 7}

1.2.25 Exercise  Let pu(t) = 3(1 +e 29,1 — 2% ,0,0) where a > 0
is a constant, be a probability measure on the Klein group. Use (1.12)
to check that u(t) * p(s) = u(t +s),s,t > 0.

1.2.26 Exercise  Let pu(t) = 3((14+e72%") §;, (1 —e~2%%)6,), where a is
a positive constant and §; is the Dirac measure at ¢, be a measure on the
Kisynski group. Use (1.16) to check that p(t) * u(s) = u(t + s),s,t > 0.

1.2.27 Exercise Find the formula for the convolution of two measures
on a group G of congruences modulo p where p is a prime number. Recall
that this group is composed of numbers 0,1, ...,p — 1 and the product of
two elements a and b of this group is defined to be ab (mod p).

1.2.28 Exercise Use convolutions in R” to extend the argument used
in 1.2.20 and show that the same theorem holds for Borel measures in
R™.
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1.2.29 Exercise Let C = {z € C;|z| = 1} be the unit circle with
usual multiplication. Check that a convolution of two integrable func-
tions on C is given by @ x y(e'®) = [T _x(e!®=D)y(el?) d6. Let

p(ei(x):i 1—7"2 :i i T‘|n\eina 0<r<l1
" 211 —2rcosa+1r2  2m ’ -

n=—oo

be the Poisson kernel. Check that p, > 0, ffﬂ pr(e?)dfd = 1, and
Dr*Ds = Prs, 0 < 1,5 < 1. The equivalence of the two definitions of p, is
a consequence of the formula for the sum of a geometric series and some
simple (but intelligent) algebra — see [103, 111] or other textbooks.

1.2.30 Definition FEven though the probability space is a basic notion
of the theory of probability and stochastic processes, it is often the case
that we are not able to say anything about the underlying “original”
probability space upon which the random variable/process is defined.
Neither do we need or intend to. Quite often all we need is the informa-
tion on distributions. The following definitions are exactly in this spirit.

A random variable X is called Gaussian/normal with parame-

ters m € R,0? > 0 if its distribution is absolutely continuous with
(é m)

respect to leb and has density ﬁexp{ }. We also write
X ~ N(m,0?). Sometimes it is convenient to allow 0% = 0 in this
definition, and say that X = m a.s. is a (degenerate) normal variable
with parameters m and 0.

e A random variable is called exponential with parameter \ > 0 if
its distribution is absolutely continuous with respect to leb and has
the density Alg+e™**. If its density equals %e*’\““', s € R, the random
variable is called bilateral exponential.

e A random variable is called uniform on the interval [a, b] if its distri-
bution is absolutely continuous with respect to leb and has a density
allad):

e A random variable is called gamma with parameters ¢ > 0 and
b > 0 if its distribution is absolutely Continuous with respect to leb
and has density %Sa_le_bis+( s), where I'(a) = [~ s* 'e " ds.

e A random variable is called binomial with parameters n € N and

pebalitrex=n = (})ra-prrosi<n
e A random variable X is called Poisson with parameter A\ > 0 if

P(X =k)=e A k=0,1,...



16 Preliminaries, notations and conventions

e A random variable X is called geometric with parameter p € [0, 1]

The reader is encouraged to check that the first four functions listed
above are indeed densities of probability measures on R (see Exercise
1.2.31 below), while the last three are probability mass functions of
probability measures on N. Notice also that a gamma variable with
parameters 1 and A is an exponential variable. In the following sec-
tions we shall prove, not only that there exist random variables with
any given distribution, but also that for any distribution there exist in-
finitely many independent random variables with this distribution. Some
readers might find it surprising that all such variables may be defined
on the standard probability space.

g2
1.2.31 Exercise  Show that [, ez ds = v/27.

1.2.32 Exercise Prove that if X is a normal variable with parameters

1

0 and o, then X? is a gamma variable with parameters % and 5 5.

1.2.33 Exercise Let u be the distribution of a gamma variable with
parameters a and b, and let v be the distribution of a gamma variable
with parameters a’ and b. Show that p * v has the same density as a
gamma variable with parameters a + o’ and b.

1.2.34 Exercise  (Poisson approximation to binomial) Show that if
X, is a sequence of random variables with binomial distributions having
parameters n and p, respectively, and if lim,, .., np, = A > 0, then
lmP[X, = k] = 2re™, k> 0.

1.2.35 Exercise  Show that if X ~ N(u,0?) then E X = u, 0% = o?.
Moreover, if X ~ I'(a,b) then EX = ¢, and 0% = 7z

1.2.36 Exercise Let X be a non-negative random variable with finite
expected value. Prove that P{X > e} < £X (Markov inequality).
Also, deduce that for any random variable with a finite second moment,

P{{IX —-FEX|>¢e} < i—z‘ (Chebyshev’s inequality).

1.2.37 Exercise  Use the Fubini Theorem to show that for any non-
negative random variables X and Y and any numbers a, 5 > 0 we have

EX°YhP = / / as® IBPTIP{X > 5, Y > thdsdt. (1.17)
0 0
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Take X =1, to deduce
EYP = /OOO BtPIP{Y >t} dt. (1.18)
Apply this to obtain
EYPlixss = /OOO BPIP{X > 5, Y > t}dt, s>0, (1.19)
and, consequently,

EX“Y":/ as® TEYP1 x5, ds. (1.20)
0

1.3 Functions of bounded variation. Riemann—Stieltjes
integral

1.3.1 Functions of bounded variation A function y defined on a closed
interval [a, b] is said to be of bounded variation if there exists a number
K such that for every natural n and every partition a =t <ty < --- <
tn = b,

Z|y L1)|<K

The infimum over all such K is then denoted varly,a,b]. We do not
exclude the case where a = —oo or b = co. In such a case we understand
that y is of bounded variation on finite subintervals of [a,b] and that
varly, —o0o, bl = lim._, _o, var[y, ¢, b] is finite and/or that

varly,a,o0] = lim varly, a, c|

is finite. It is clear that var[y, a,b] > 0, and that it equals |y(b) — y(a)| if

y is monotone. If y is of bounded variation on [a,b] and a < ¢ < b, then
y is of bounded variation on [a, ¢] and [c, b], and

varly, a, b = varly, a, c] + var[y, ¢, b. (1.21)
Indeed, ifa =t <t <---<t,=candc=s5; <s3<---<85,, = b,
then u; = ¢t = 1,....,.n — 1, up, = t, = s1 and upy; = Si41,¢ =
1,...,m —1, is a partition of [a, b], and

m+n—1 m

ST ly(u) —y(uim)l =3 [yts) — y(tim)| + D [y(si) — ylsia)l.

=2 =2 =2
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This proves that the right-hand side of (1.21) is no greater than the
left-hand side. Moreover, if a =t <ty < --- < t, = b is a partition of
[a, ] then either ¢ = ¢; for some 1 < j < n, or there exists a j such that
t; < ¢ < tjq1. In the first case we define the partition a = ¢; <ty <
-+ <t; = cof [a,c] and the partition ¢ =51 <s9 <+ < $pp1_; =b
of [c,b] where s; = tj4;_1, to see that the right-hand side of (1.21) is no
less than the left-hand side. In the other case we consider the partition
a=t; <ty <. <ty =bof [a,b], where t] =¢t; for i < j, t}; =,
t;H =tjti—1,?=1,...,n+1—7, and reduce the problem to the previous
case by noting that

t;) —y(ti—1)l.

(]
=X
—~
S+
~—

I
<
—~
S+

|
—
=

A
=
—~

i=2 i=2
Equation (1.21) proves in particular that the function v, (t) = varly, a, t]
where ¢t € [a,b] is non-decreasing. Define v_(t) = vy (t) — y(t). For
s < t, the expression v_(t) — v_(s) = v (t) — v4(s) — [y(t) — y(s)] =
varly, s,t] — [y(t) — y(s)] is non-negative. We have thus proved that any
function of bounded variation is a difference of two non-decreasing func-
tions y(t) = vy (t) — v_(t). In particular, functions of bounded variation
have right-hand and left-hand limits. The left-hand limit of y at ¢ is
denoted y(t—) and the right-hand limit of y at ¢ is denoted y(t+). Note
that the representation of a function of bounded variation as a difference
of two non-decreasing functions is not unique. See 1.3.6 below.

1.3.2 Lemma  If y(¢) is a function of bounded variation on [a, b] then
there exists at most countable number of points of discontinuity of ¥,

i.e. points t € [a, b] where y(t—) # y(t), or y(t+) # y(t).

Proof Fix m € N. Note that there may be only a finite number of
points such that |y(t—) — y(t)| > L. This shows that there exists at
most countable number of points ¢ € [a,b] where y(t—) # y(t). The
same argument proves that there exists at most countable number of
points t € [a, b] where y(t+) # y(t), and these two facts together imply

our claim. 0

1.3.3 Exercise  Let y(¢) be a function of bounded variation, and let
Dis(y) be the set of points of discontinuity of y. Let y, be defined as
y(t) = y(t+),t € [a,b] (note that y and y, differ only on Dis(y)).
Prove that y, is right-continuous and of bounded variation. Moreover,
var[yy, a, b < varly,a,b].
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The function y, is called the regularization of y. A function y of
bounded variation is said to be regular if y = y,.

1.3.4 Exercise  Prove that if y is of bounded variation and right-
continuous, then so is vy (t) = varly, a, t].

1.3.5 Monotone functions and finite measures In this subsection we
will show that there is a one-to-one correspondence between regular non-
decreasing functions satisfying (1.22) below, and finite measures on R.

Let u be a finite measure on R. Define y(t) = u(—oo, t]. It is clear that
y(t) is non-decreasing, has left limits and is right-continuous. As for the
last two statements it suffices to note that if ¢,, < ¢ and lim,,_, oo t,, = ¢,
then |J(—o0,t,] = (—o0,t) and by continuity of measure, the limit of
y(t,) exists and equals p(—o0, t); analogously, if s, > t and lim, o0 8, =
t, then ((—o0,t,] = (—o0,t] and the limit of y(s,) exists and equals
y(t) = p(—o0,t]. Also, note that

y(—oo) = lim y(t) =0, and y(oco)= lim y(t) < oco. (1.22)
t——o0 t—oo
The last limit equals x(R) and in particular, if p is a probability measure,
it equals 1.

Now, suppose that y is a right-continuous non-decreasing function
such that (1.22) holds. We will show that there exists a unique finite
Borel measure p such that u(—oo,t] = y(t).

If p is such a measure, and ag < a1 < by < az <by < ...<a, <b, <
bn+1 are real numbers, then we must have

L ((oo, ag] U U(ai, bi] U (b1, oo))

= [y(ao) — y(—00)] + > _[y(bs) — y(ai)] + [y(00) — y(bns1)]
i=1
with obvious modification if (—oo, ag] and/or (by,41,00) is not included
in the union. Such finite unions form a field F, and we see that the above
formula defines an additive function on F.

To show that p thus defined is countably additive, assume that A, D
An+1 are members of F and that ﬂff:l A,, = (. We need to show that
lim,, 00 p(Ayn) = 0.

Suppose that this is not the case, and that there exists an ¢ > 0
such that u(A,) > € for all n > 1. By (1.22) and right-continuity of
y, for every A, there exists a B, € F such that cl(B,) C A, and
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w(An\ Bn) < sagr. This is just saying that for a finite interval (a, b] € F
the right-continuity of y implies that we may find o’ > a such that
y(b)—y(a’) is arbitrarily close to y(b)—y(a), and that (1.22) allows doing
the same with infinite intervals. It will be convenient to treat cl(B,,)
as subsets of R = {—oo} UR U {+0o0}. R equipped with the topology
inherited from R plus neighborhoods of {—oc} and {400} of the form
[—00, 5), and (s,00],s € R respectively, is a compact topological space.
Since (cl(By) = 0, there exists an n € N such that ¢l(B1) Nel(Bz) N
..Ncl(By) = 0. Now,

p(An) = (A \ () B) + () B) = u((J (4 \ B)
<p(J@i\B) <3 A\ B) <3 5 < 5.

a contradiction. Hence, by 1.2.8 there exists an extension of y to o(F)
which is clearly equal to the Borel o-algebra, and 1.2.7 shows that this
extension is unique. Finally,

y(t) = lim [y(t) —y(=n)] = lim u(=n,t] = p(=o0,1].

1.3.6 Functions of bounded variation and signed measures  In this sub-
section we introduce the notion of a charge and discuss some properties
of charges. In particular, we prove that there is a one-to-one correspon-
dence between signed measures and regular functions of bounded varia-
tion satisfying (1.22).

A set function p on a measurable space (2, F) is said to be a charge
or a signed measure if there exist finite measures u™ and p~ such
that g = pu+ — ™. Of course such a representation is not unique; for any
positive finite measure v we have p = (u* +v) — (1~ +v). Later on, we
will see that there is representation of p that is in a sense “minimal”.

Given a Borel charge pz on R, i.e. a signed measure which is the differ-
ence of two finite Borel measures on R, we may define y(t) = p(—oo, t].
Then y is a regular function of bounded variation and satisfies (1.22),
being the difference of yT () = pt(—o0,t] and y~(t) = p~(—o0, t]. Con-
versely, if y is a regular function of bounded variation satisfying (1.22),
then there exists a unique Borel charge such that p(—o0,t] = y(t). To
prove this, consider x(t) = var[y, —o0o,t], yg = % and y, = “5¥. For
any a < b, 2[ys (b) — i (@)] = 2(b) — w(a) + y(b) — y(a) > 0, proving
that yar is non-decreasing. In a similar fashion we show that y, is non-
decreasing also. Both yg and y, are regular and satisfy (1.22) since x
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and y do. Therefore, there exist two positive finite measures ua' and f
such that yi (t) = pg (—oo,t] and yy (t) = pg (—o0, t]. Since

Y=v5 — Yo (1.23)

the charge p = ,uar — 14y satisfies our requirements.

Moreover, the functions yar and y, satisfy z = yar + 7o - The repre-
sentation (1.23) is minimal in the following sense: if y* and y~ are two
regular non-decreasing functions satisfying (1.22) such that y = y*—y~,
then y* +y~ > x. Indeed, in such a case, for any a < b we have

y(b) —y(a) = [y (b) —y"(a)] = [y~ (b) =y (a)]

and consequently

ly(®) —y(a)l < [y" (0) —y™(a)] = [y~ (b) =y~ (a)].

Using this inequality for subintervals of [a, b] we obtain

varly,a,b] < [y*(b) —y*(a)] — [y~ (b) — y~ (a)] (1.24)

and the claim follows by taking the limit as a — —o0.
By 1.2.8, this proves that

lul < pt +pu” (1.25)

where |u| is a measure related to z and put and p~ are related to y and
y~, respectively. To be more specific, there exists a positive measure v
such that |p|42v = g™+ p~. Thus, the minimality of the representation
(1.23) may also be rephrased as follows: for any charge p there exists two
positive measures ,uar and pg such that u = ,usr — g and |p| = M(T + g s
and for any other measures ut and p~ such that © = pu* — u~ there
exists a positive measure v such that ut = pd +v and p= = pg +v.
Given a charge p in the minimal representation p = ug — 1y and a
function f that is absolutely integrable with respect to ,uar and pg , we
define [ fduas [ fdug — [ fdug . It may be checked that if g = p+ —p~
for some other measures pu+ and p~ such that f is absolutely integrable
with respect to them, then [ fdu = [ fdu®™ — [ fdu~. Obviously,

‘/fdu‘ < [1niant+ [1r1an
‘/fdﬁb‘ < [ 151l

and in particular



22 Preliminaries, notations and conventions

1.3.7 The Riemann—Stieltjes integral — Let [a,b] be an interval (a < b)
and let y be a function of bounded variation on [a,b]. Suppose that
t — xz(t) € R is another function on [a,b]. Consider two sequences,
T = (ti)i=o,..x and E = (§;)i=0,... k of points of [a,b], where k is an
integer, such that

a=1ty <ty <---<tp=b, to <& <t <o <tpoq < o1 <ty

Define the related numbers A(7) = supg<;<{t: —ti—1} and

E

-1
5(77571"3/) l’(fz)[ ( z+1) - y(tz)] (126)

7

I
=)

If the limit lim, oo S(75, 20, x,y) exists for any sequence of pairs
(7,,Ey) such that lim, . A(7,) = 0, and does not depend on the
choice of the sequence of (7,,,Z,,), function z is said to be Riemann—
Stieltjes integrable with respect to . The above limit is denoted

/ab x¢ dy(t)

and called the (Riemann—Stieltjes) integral of x (with respect to y).

This definition has to be modified when either a or b is infinite. Assume
for instance that a is finite and b = co. It is clear then that the definition
of A(T) has to be changed since A(7) as defined now is always infinite.
We put therefore A(T) = supg<;<j_1(ti — ti—1), and then require that
the limit lim,, oo S(7p, 2, , y)_e)_cists for any sequence of pairs (7,,Z,,)
such that lim, .. A(7,) = 0, and lim,, oty ,—1 = 00. Here ¢, 1
is the second to last element of partition 7,; the last one is always oc.
Again the limit is not to depend on the choice of the sequence of (7,,, Z,,).

With this definition, it turns out that continuous functions are Rie-
mann—Stieltjes integrable. First of all, Exercise 1.3.8 below shows that
continuous functions are integrable with respect to a function of bounded
variation iff they are integrable with respect to its regularization. Thus, it
suffices to show that continuous functions are integrable with respect to
regular functions of bounded variation. To this end, let z be continuous
on [a,b]. To focus our attention, we assume that a = —oo and b is finite.
We understand that the limit lim;, . x(t) exists. Function z, being
continuous, is measurable. Extend y to the whole line by setting y(t) =
y(b) for t > b. Let p be the unique finite (signed) measure corresponding
to the regularization y, of such an extended function. Since x is bounded,
it is integrable and we may define [ = [ f du. Now, consider the sequence
of partitions 7,, with sets of midpoints =,,. Fix € > 0. Since « is uniformly
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continuous, we may choose an R > 0 and a § > 0 such that |z(t)—z(s)| <
e provided |t — s| < ¢, for s,t € (—o0,b], or s,t < —R. Choose n large
enough so that A(7,) < € and ¢,2 < —R. Again, ¢, is the second
element of partition 7,,. Now

|Z_S(7;L7Envx7y)|
kn

xdu — Z$(§n,i)[y(tn,i+1) = Y(tn,i)]

(tn,istn,it1] i=0

Z / LR CHIECY

This proves that the limit of S(7,,Z,, z,y) is [ and concludes the proof
of our claim.

< eu(R).

1.3.8 Exercise Let y be a function of bounded variation on an inter-
val [a, b], let y, be the regularization of y and x be a continuous function
n [a,b]. Assume to fix attention that ¢ and b are finite. Consider the
sequence of partitions 7,, with sets of midpoints =,,, such that the cor-
responding A,, tends to zero. Prove that
lim S(7,,E,,z,y) = nh_)rréo S(Tn, En,x,yr) + x(a)[y(a+) — y(a)].

n—oo

1.4 Sequences of independent random variables

1.4.1 Definition Let (2, F,P) be a probability space. Let F;,t € T
be a family of classes of measurable subsets (T is an abstract set of
indexes). The classes are termed mutually independent (to be more
precise: mutually P-independent) if for all n € N, all t1,...,¢t, € T
and all A; € ]:t,”i =1,..,n

P(() 4) = [[P(A)). (1.27)
i=1 i=1
The classes are termed pairwisely independent (to be more precise:

pairwisely P-independent) if for all n € N, all ¢1,t, € T and all
A€ F,,i=1,2,

P(A; N Ag) =P(A;)P(Ay).

It is clear that mutually independent classes are pairwisely independent.
Examples proving that pairwise independence does not imply joint in-
dependence may be found in many monographs devoted to probability
theory. The reader is encouraged to find one.
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Random variables X;,t € T are said to be mutually (pairwisely) in-
dependent if the o-algebras F; = o(X;) generated by X; are mutually
(pairwisely) independent.

From now on, the phrase “classes (random variables) are indepen-
dent” should be understood as “classes (random variables) are mutually
independent”.

1.4.2 Exercise  Suppose that two events, A and B, are independent,
i.e. P(AN B) = P(A)P(B). Show that the o-algebras

{A.4%0,0}, (B,B%9,0}
are independent.

1.4.3 Exercise Let (£, F,P) be a probability space and G € F be a o-
algebra. Define G+ as the class of all events A such that A is independent
of B for all B € G. Show that GL is a A-system. To see that Gt is in
general not a o-algebra consider Q = {a,b,¢,d} with all simple events
equally likely, and G a o-algebra generated by the event {c¢, d}. Note that
A ={a,c} and B = {b,c} are independent of G but that neither AN B
nor AU B are independent of G.

1.4.4 Exercise Suppose that random variables X and Y are indepen-
dent and that f and g are two Lebesgue measurable functions. Prove that
f(X) and ¢(Y) are independent.

1.4.5 Exercise Show that random variables X and Y are independent
iff the distribution of the random vector (X,Y) is Px ® Py . Consequently,
the distribution of the sum of two independent random variables is the
convolution of their distributions:

Px+y = ]P’X * ]Py.

1.4.6 Exercise Suppose that X,,,n > 1 is a sequence of independent
random variables with exponential distribution with parameter A > 0.
Show that S, = Y ,_, X}, is a gamma variable with parameters A and
n.

1.4.7 Exercise Let X ~ N(0,07) and Y ~ N(0,03) be two indepen-
dent random variables. Show that X +Y ~ N(0,0% + 03).

1.4.8 Exercise  Suppose that random variables X and Y are inde-
pendent and have expected values. Show that £ XY = EX EY; the
existence of ¥ XY is a part of the claim.
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1.4.9 Example It is easy to find an example showing that the con-
verse statement to the one from the previous exercise is not true. Suppose
however that X and Y are such that EXf(Y) = EXE f(Y) for any
Borel function f. Does that imply that X and Y are independent? The
answer is still in the negative. As an example consider random variables
X that has only three possible values 0,2 and 4 each with probability
%, and Y that attains values a and b (a # b) with probability % each.
Assume also that their joint probability mass function is given by:

Y\X 0 2 4
a 12 1 Table 1.2

132 6 132

b 5 0 i

Then the joint probability mass function of X and f(Y) for any f is the
same, except that a is replaced with some real o and b is replaced with a
B (o« may happen to be equal ). Certainly X and Y are not independent,
andyet EX =2, Ef(Y) =2 and EXf(Y) =82 442 4120 _ 4 g,
and so Ef(Y)X = EXFE f(Y). The reader should be able to prove that
it Ef(Y)g(X)=FEf(Y)Eg(X) for all Borel functions f and g then X
and Y are independent.

1.4.10 Exercise If random variables X; are exponential with param-
eter A\;,4 = 1,2, and independent, then ¥ = min(X;, X3) is exponential
with parameter Ay + As.

1.4.11 Exercise Show that if X and Y are independent exponential
random variables with parameters A and p, respectively, then P[X <

_ 2
Y]—m.

1.4.12 Theorem  Suppose that F;,¢ € T are independent m-systems
of measurable sets, and that T,,u € U are disjoint subsets of T. The
o-algebras G, generated by F;,t € T, are independent.

Proof Fix n € N, and choose indexes uyq, ..., u, € U. (If the number of
elements of U is finite, n must be chosen no greater than the number of
elements in U.) We need to prove that (1.27) holds for all A; € G,,,,i =
1,...,n. By assumption, (1.27) holds if all A; belong to the class A; of
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events of the form
k(1)
A; =) Bij, (1.28)
j=1

where B; ; belong to F, ; for some t; ; € T,,. Now, fix A;,i = 2,...,n, of
this form and consider the class By of events A; such that (1.27) holds.
As we have pointed out By contains A;p, and it is easy to check that By
is a A-system (for example, to check that A, B € B; and A C B implies
B\ A € By we use only the fact that for such sets P(B\A) = P(B)—P(A4)).
Since A; is a m-system, by the Monotone Class Theorem B; contains
the o( A1), and, consequently G,,,. Thus, (1.27) holds for A; € G,, and
A;,i=2,...,n, of the form (1.28).

Now, we fix 41 € G,, and A;,i = 3,...,n, of the form (1.28), and
consider the class By of events As such that (1.27) holds. Repeating the
argument presented above we conclude the this class contains G,,,, which
means that (1.27) holds if A; belongs to G,,, A3 belongs to G,, and the
remaining A; are of the form (1.28). Continuing in this way we obtain
our claim. |

1.4.13 A sequence of independent random variables with two values

Let n(t) = >"2, 11 1y(t =) and X, k > 1, be random variables on the
standard probability space, given by Xj(t) = n(2¥t),t € [0,1). For any
k, Xy attains only two values, 0 and 1, both with the same probability
%. To be more precise, Xy = 1if t € [giﬂ, giﬁ) for some 0 < § < 2F
and 0 otherwise. X are also independent. To show this note first that
for any n > 0, the set of ¢ such that X1 = 41,..., X;, = J,, (where §; are

either 0 or 1), equals [S7 ) 5%, 327 ) 5% + o). Therefore,

1 n
leb{X1 =01, Xn = 0n} = o = Ellleb{Xi =6} (1.29)
Moreover,
leb{Xg = 52, ...,Xn = 6%} = leb{X1 = 17X2 = 527 7Xn = 5n}
+l6b{X1 =0,X5 =09,...., X;, = 6n}

1 1 1 L
= 27 + 27 = on—1 = l:HQZSb{XZ = 61}

In a similar fashion, we may remove any number of variables X; from
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formula (1.29) to get

leb{X;, = 01,..., X;, = Ok} = 2% =[] tev{x;, = 6;},
j=1

which proves our claim.

1.4.14 A sequence of independent uniformly-distributed random vari-
ables  The notion of independence does not involve the order in the
index set T. Reordering the sequence Xj from 1.4.13 we obtain thus
an infinite matrix X,, ,,,n,m > 1, of independent random variables at-
taining two values 0 and 1 with the same probablhty . Define Y,
> 57 Xn,m- This series converges absolutely at any t € [0,1), and
the sum belongs to [0, 1]. Since for any n € N, 0(Y},) is included in the o-
algebra F,, generated by random variables X,, ,,, m > 1, and o-algebras
Fn are independent by 1.4.12, the random variables Y;, are independent.
We claim that they are uniformly distributed on [0,1).

Let p,, be the distribution of Y;,, and g, be the distribution of
Zk L Xn,m- By the Lebesgue Dominated Convergence Theorem, for

m=1 2771
any continuous function f,

/fdun = /]"(Yn)dleb_/1 f(Y,(s))ds (1.30)
1 k 1

= lim Z 2—m ds =: klir{.lo fdpn k.

k—o0
=1

To determine the distribution p, ; and the above integral note that
Zk L Xy, m attains only 2% values, from 0 to 1 —

m=1 27”
ablhty 5% Thus ,un  is the sum of point masses

Qk , each with prob-

21k concentrated at the
points 0, 2%, ...;1 — 2. Hence, the last integral equals = 5% Zf 0_1 f(zk)
This is, however the approx1mat1ng sum of the Rlemann integral of the
function f. Therefore, the limit in (1.30) equals fo s)ds. On the other
hand, this is the integral with respect to the dlstrlbutlon of a random
variable that is uniformly distributed on [0,1). Our claim follows by

1.2.20.

1.4.15 A sequence of independent normal random variables  From the
random variables Y;, we obtain easily a sequence of independent normal
random variables. In fact, we consider Z,, = erf(Y},), where “erf” is the

52
inverse of the increasing function y(t) = \/% fioo e~ 7 ds, that maps
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the real line into (0,1).f Z, are independent since “erf” is continuous,
so that 0(Z,,) C o(Y,,). Moreover, for any continuous function f on [0, 1],
changing the variables s = y(t),

/fsz,L = Jo F(erf) dP = /01 Flerf(s))ds = \/% /: Flt)e™ 7 dt,

and the claim follows.

1.4.16 Exercise Prove the existence of an infinite sequence of random
variables with (a) exponential distribution (b) Poisson distribution.

1.4.17 A sequence of independent random variables If we are more
careful, we may extend the argument from 1.4.15 to prove existence of a
sequence of independent random variables with any given distribution.
Indeed, it is just a question of choosing an appropriate function to play
a role of “erf”.

The distribution of a random variable Y is uniquely determined by
the non-decreasing, right-continuous function y(t) = P[Y < ¢], satisfying
(1.22) with y(+o00) = 1, often called the cumulative distribution
function. Therefore, it suffices, given a non-decreasing, right-continuous
function y satisfying (1.22) with y(400) = 1, to construct a measurable
function z : [0,1] — R such that

leb{s € [0,1] : x(s) <t} =y(t), teR. (1.31)

Indeed, if this can be done then for a sequence Y,,n > 1 of indepen-
dent random variables with uniform distribution in [0, 1) we may define
Zn = x(Yy), n > 1. Since 0(Z,,) C 0(Yy,), Z, are independent and have
cumulative distributions function equal to y, for we have
PIZ, <t] =Plz(Y,) <t] =Py, [s: z(s) <]
=leb{s: xz(s) <t} = y(t),
as desired.
Coming back to the question of existence of a function y satisfying

(1.31), note that if we require additionally that = be non-decreasing and
left-continuous, this relation holds iff

{s €[0,1);z(s) <t} = [0,y(2)].
Thus, condition s < y(¢) holds iff z(s) < ¢, and for any s we have

{t:s <y)} = {t;x(s) <t} = [2(s),00).

1 This is somewhat non-standard but useful notation.
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Therefore, we must have
z(s) =inf{t: s < y(t)}. (1.32)
Note that for x thus defined,

x(s) <t < inf{u;y(u) > s} <t
< (t,00) C {usy(u) > s}
S yt) =ylt+) = s,

since y is non-decreasing. This implies that = is measurable and that
(1.31) holds. Note that we do not need to know whether z is or is not
left-continuous; we have used the assumption of left-continuity to infer
(1.32) from (1.31), but do not require it in proving that (1.32) implies
(1.31).

1.4.18 Exercise = We will say that a random variable Y has a modified
Bernoulli distribution with parameter 0 < p < 1 iff %(Y—i— 1) is Bernoulli
r.v. with the same parameter. In other words, P{Y = 1} = p,P{Y =
—1} = ¢ = 1 — p. Suppose that we have two sequences X,;,n > 1 and
Y,,n > 1 of mutually independent random variables such that all X,
have the same distribution with E X = m and D?X,, = ¢2, and that Y,
all have the modified Bernoulli distribution with parameter 0 < p < 1.
Then (X,,Y,) are random vectors with values in the Kisyriski group.
Let Z,,n > 1 be defined by the formula: (X;,Y7) o ... 0 (X,,Y,) =
(Zn, 11, Yi). Show that (a) [[;—,Y; is a modified Bernoulli variable
with parameter p, = £(p—¢q)" + 3, (b) EZ, = 2. (1=(p—q)"), and (c)
D27, = no? + 4pq E;:ll (E Z;)?, so that lim,, DZnZ" =02+ §m2.

1.5 Convex functions. Holder and Minkowski inequalities

1.5.1 Definition Let (a,b) be an interval (possibly unbounded: a =
—oo and/or b = 00). A function ¢ is termed convex if for all u,v € (a, b)
and all 0 < a < 1,

plau+ (1 —a)v) < ag(u) + (1 — a)¢(v). (1.33)

1.5.2 Exercise  Show that ¢ is convex in (a,b) iff for all a < u; <
ug <wug < b,

U2 — Uy uz — Uz

P(uz) <

o(us) +

Uz — U1 Uz — U1

¢(uz). (1.34)
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1.5.3 Exercise  (a) Assume ¢ is convex in (a, b). Define ¢(u) = ¢(a+
b—u). (If a = —00,b = 0o, put a + b = 0.) Show that ¢ is convex. (b)
For convex ¢ on the real line and ¢t € R, define ¢(u) = ¢(2t — u). Prove
that ¢ is convex.

1.5.4 Lemma  Suppose ¢ is convex in (a,b) and let u € (a,b). Define

1) = Jouls) = D=0 e g
o0 =gout) = YU ey )

Then (a) f and g are non-decreasing, and (b) f(s) < g(t) for any s and
t from the domains of f and g, respectively.

Proof To prove the statement for f, we take a < s < s’ < u and do
some algebra using (1.34) with u; = s1,us = s2 and uz = u. To prove
the corresponding statement for g we either proceed similarly, or note
that ge(s) = —f5 .1p_y (@ +b—s). Indeed,

at+b—u)—¢pla+b—s u) — @(s
f¢;’“+b_"(a+b_8):¢(aib—u)—(f(+;_—s) ):(b(s)—jf( )

Finally, (b) follows from (1.34), with uy = s,ug = u,ug = t. O
1.5.5 Proposition Convex functions are continuous.

Proof By 1.5.4, for any u € (a,b) there exist right-hand side and left-
hand side derivatives of ¢ at u, which implies our claim. Note that the
left-hand side derivative may be smaller than the right-hand side deriva-
tive: consider ¢(u) = |u| at u = 0. O

1.5.6 Proposition Let ¢ be a convex function on (a,b), and let S
be the family of linear functions 1(t) = a + bt such that ¥(t) < ¢(¢),
t € (a,b). Furthermore, let Sy = {¢ € S|Y(t) = at + b,a,b € Q}. Then
(a) &(t) = supyeg¥(t), and (b) if ¢ is not linear itself, then ¢(t) =
Sup sy (1),

Proof (a) Obviously, ¢(t) > sup,,cg ¥(t), so it is enough to show that for
any t € (a,b) there exists a 1y € S such that 1 (t) = ¢(t). We claim that
we may take 1:(s) = q(s —t) + ¢(t), where ¢ is any number bigger than
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the left-hand derivative ¢’_(t) of ¢ at ¢, and smaller than the right-hand
derivative ¢/, (t) of ¢ at t. Indeed, ¢(t) = ¢(t), and by 1.5.4, for s > t,

Yi(s) — o(t) ¢(s) — o(t)

=g<q¢, (1)<
p—_— q<¢L(t) < s 1

which implies ¥;(s) < ¢(s). For s < t, the argument is the same, or we
could argue using the function ¢ defined in 1.5.3 to reduce the problem
to the case s > t.

(b) Let t € (a,b) and let ¢; be the function defined in (a). Since ¢ is
% is not equal to g for some s € (a,b). Without loss
of generality, we may assume that s > ¢ (if s < t, consider the function
d(u) = ¢(2t — u), which is convex also, and note that it is enough to
show (b) for ¢ instead of ¢). The claim will be proven if we show that
for any € > 0, and sufficiently small h > 0, the function

not linear,

Yren(u)=(q+h)(u—1t)+o(t) —e=1(u) + h(u—1t) —e (1.36)
belongs to S. We take h < min(<5, (Si:f(t) q). Note that ¢(52 f(t) >

q, by 1.5.4.

Foru < s, e n(u) < y(u) <
For uw > t, by 1.5.4, ¢(u137;15(t >

o(u) — ¢(t)
—t

gb( ) since h(u—t)—e < h(s—t)—e < 0.
)= ¢ 4 h. Thus,

Ypen(u) < (u—1t)+ o(t) — e < d(u).

O

1.5.7 Proposition If ¢ is continuously differentiable with ¢’ increas-
ing, then ¢ is convex.

Proof Fix u € (a,b) and consider fy,, defined in (1.35). For s < u, there

exists a s < 6 < w such that —¢(0)(u — s) + ¢(u) — ¢(s) = 0. Thus,
fév (s) = —(s)(u—s)+d(w)—¢(s) >0,

(u—s)?
n (a,u). Reversing the argument from 1.5.4 we prove that this implies

the thesis. 0

proving that fy . is non-decreasing

1.5.8 Hélder inequality — Let (2, F, 1) be a measure space, and let z,y
be two measurable functions on Q with values in [0, co]. Suppose that
%+%:1,p>1. Then

[ () (o)
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Proof Let K = ([, d,u)% and L = ([,y? du)%. Without loss of
generality we may assume that both K and L are finite and non-zero
since if K > 0,L = oo or K = oo, L > 0, there is nothing to prove, or if
K =0 (respectively L =0), then x =0 p a.e. (y =0 p a.e.) so that the
left hand-side equals zero too.

Let, X = 2/K,Y = y/L. Then [, X?du = [,Y9dp = 1. Note also
that [, XY du = [, XY dp, where B = {w|X(w)Y (w) > 0}. On B we
may define the functions a(w) and b(w) such that X (w) = e*«)/? and
Y (w) = e?«)/4. Since ¢(s) = e* is a convex function (see 1.5.7),

X(@)Y(w) = e@/rb@/a < Lo Lo
P q
LXP(0) + LY ()
= — w bl w ).
p q

Integrating over B we get

1 1
/XYd,u = /XYdugf/XpduﬁLf/quu
Q B pJB pJB
1 1

1 1
= f/Xpdquf/qu,u:erf:l,
PJB PJB p q

which gives the thesis. |

1.5.9 Minkowski inequality =~ Under notations of 1.5.8,

(fesors)/ (L)' (frw)

Proof By the Holder inequality,

/Q(x+y)”du:/9x(z+y)p’1du+/y(:c+y)”’1du

Q

() (frooreo)

(o) ([
(L)’ + (L] (o eora)

The thesis follows by dividing both sides by the last term above (note
that if this term is zero, there is nothing to prove.) |
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1.6 The Cauchy equation

The content of this section is not needed in what follows but it provides
better insight into the results of Chapter 6 and Chapter 7. Plus, it con-
tains a beautiful Theorem of Steinhaus. The casual reader may skip this
section on the first reading (and on the second and on the third one as
well, if he/she ever reads this book that many times). The main theorem
of this section is 1.6.11.

1.6.1 Exercise Let (Q,F, 1) be a measure space. Show that for all
measurable sets A, B and C

(AN B) = u(CNB)| < u(A=+C).

Here = denotes the symmetric difference of two sets defined as A+ B =

(A\B)U(B\ A).

1.6.2 Lemma If A C R is compact and B C R is Lebesgue measur-
able, than z(t) = leb(A; N B) is continuous, where A, is a translation of
the set A as defined in (1.4).

Proof By Exercise 1.6.1,

\leb(AH_h N B) - leb(At N B)| S leb(At+h - At)
=leb(Ap +~ A); = leb(Ap, + A), t,heR,

since Lebesgue measure is translation invariant. Therefore it suffices to
show that given € > 0 there exists a 0 > 0 such that leb(A, + A) < ¢
provided |h| < 6. To this end let G be an open set such that leb(G\ A) <
§, and take 0 = minge 4 min, e |a — b|. This is a positive number since
A is compact, GC is closed, and A and Gt are disjoint (see Exercise 1.6.3
below). If |h| < §, then A, C G. Hence,

leb(Ap, \ A) < leb(G\ A) < %
and
leb(A \ Ah) = leb(A \ Ah)fh = leb(A,h \ A) <

)

[N e

as desired. O

1.6.3 Exercise Show that if A and B are disjoint subsets of a metric
space (X, d), A is compact, and B is closed, then 6 = minge 4 minyep |a—
b| is positive. Show by example that the statement is not true if A is
closed but fails to be compact.
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1.6.4 The Steinhaus Theorem If A and B are Lebesgue measurable
subsets of R such that leb(A) > 0 and leb(B) > 0, then A+ B = {c €
Rlc=a+b,a € A,b € B} contains an open interval.

Proof Since Lebesgue measure is regular, there exists a compact subset
of A with positive measure. Therefore it suffices to show the theorem
under additional assumption that A is compact. Of course, C' = —A =
{u,—u € A} is then compact also. By 1.6.2, z(t) = leb(C; N B) is a
continuous, in particular measurable, function. On the other hand, z =
14 %1, so that [ x(t)dt = leb(A) leb(B) > 0.

This implies that there exists a point ¢y such that x(tg) > 0. Since z
is continuous, there exists an interval (to — d,t9p + ¢), § > 0 in which x
assumes only positive values. Hence leb(C; N B) > 0 for ¢ in this interval,
and in particular Cy N B is non-empty. Thus, for any t € (to — d,t9 + 0)
there exists b € B and a € A such that —a +t = b. This shows that this
interval is contained in A + B, as desired. 0

1.6.5 The Cauchy equation A function z : Rt — R is said to satisfy
the Cauchy equation if

x(s+t) = x(s) + x(t), s,t> 0. (1.37)

An example of such a function is x(t) = at, where a € R, and it turns out
that there are no other simple examples (see 1.6.11 and 1.6.12 below).
Functions that satisfy (1.37) and are not of this form are very strange
(and thus very interesting for many mathematicians). In particular, it is
easy to see that (1.37) implies that

x <kt> = E:E(t), teR" k,neN. (1.38)
n n

Therefore, if x satisfies (1.37) and is continuous we may take ¢ = 1 in
(1.38) and approximate a given s € RT by rational numbers to obtain
z(s) = z(1)s. (1.39)

We need, however, a stronger result. Specifically, we want to show that
all measurable functions that satisfy (1.37) are of the form (1.39). To this
end, we need the Steinhaus Theorem and the lemmas presented below.
The reader should start by solving the next exercise.

1.6.6 Exercise Prove that (1.37) implies (1.38).
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1.6.7 Lemma  Suppose that x satisfies (1.37) and is bounded from
above in an interval (tg — d,¢9 + J), where § < tg, i.e. z(t) < M for
some M € R and all ¢ in this interval. Then x is bounded from below in
(to — d,t0 + 9), i.e. z(t) > N for some N € R and ¢ in this interval.

Proof For t € (tg—d,to+0), let t' =2ty —t € (to — J,tp + ). We have
z(to) = [z(t) + z(t')], so that z(t) = 2x(to) — z(t') > 2x(to) — M. In
other words, we may choose N = 2z(ty) — M. O

1.6.8 Exercise  Show that if x satisfies (1.37) and is bounded from
below in an interval, then it is bounded from above in this interval.

1.6.9 Lemma  Suppose that x satisfies (1.37) and is bounded in an
interval (to — d,tg + 0), i.e. |x(t)] < M for some M € R and all ¢ in this
interval. Then

M
|x(t)—x(t0)| < 7|t—t0|, te (to—(s,to—i-é). (140)

In particular, z is continuous at tg.

Proof Observe that if t and ¢’ are as in the proof of Lemma 1.6.7, then
|x(t)—x(to)| = |z(t") —x(tg)] and |t—tg| = |t/ —to|. Thus, we may restrict
our attention to t € (to — d,%9). Let t,, € (to — 0,t9),n > 1, converge to
to — 6. We may choose t, in such a way that «, = tzo:ti, n > 1, are
rational. Since t = (1 — ay)to + antn, z(t) = (1 — an)z(to) + anz(ts),
and we obtain

2M
tO - tn

z(t) — x(to) = anla(ty) — z(to)] < 2Ma, = (to —t). (1.41)

Letting t, — tg — 6,

2M
2(t) — a(to) < =5 (to — 1). (1.42)
Analogously, if ¢/, € (tg,tp + 0) tends to tp + 0 in such a way that
ay = :P:i is rational, then ¢ty = ot/ + (1 — o)t, and x(to) — z(t) =
a (z(t)) — x(t)). Moreover,

M o=ty = 2 . (1.43)

z(to) — z(t) < lim 5

I
n—oo ], t

O
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1.6.10 Lemma  If x satisfies (1.37) and is bounded from above in an
interval (tg — 0,t9 + 9), where g > ¢ > 0, then it is also bounded from
above in intervals (t; — d1,t1 + 01), where t; € R, and 6; = §1(¢1) =
min(ty,0).

Proof Let t € (t1 — 0,t1 + ), where t; > 0. Define t/ =t +tg —t1 €
(to — 0,t0 + 9). We have
x(t) = z(t") + sgn(ty — to)z(|t1 — tol) (1.44)

< sup x(t") +sgn(t; — to)x(|ty — tol), (1.45)
t,e(t()*(s,t()%»(;)

i.e. z is bounded from above in ¢t € (¢; — J,t1 + ¢). Recall that

1, T>0,
segn(7) = < 0, T=0, (1.46)
-1, 7<0.
The case t; < § is proved similarly. O

1.6.11 Theorem If a measurable function z satisfies (1.37) then it is
of the form (1.39).

Proof 1t suffices to show that  is continuous. Since RT = [J77 {t; z(¢) <
n}, there exists an n € N such that leb{t;z(t) < n} > 0. Let A =
{t;z(t) < n} + {t;z(t) < n}. Fort € A C RY, x(t) < 2n. By the
Steinhaus Theorem, A contains an interval (tg — d,%9 + d), and so z is
bounded from above in this interval. By Lemma 1.6.10, for any ¢; >
0 there exists an interval (¢; — d1,¢1 + 01) where §; > 0 in which x
is bounded. By Lemma 1.6.7, this implies that = is bounded in these
intervals, and by Lemma 1.6.9, z is continuous at every ¢; > 0. |

1.6.12 Corollary  Our argument shows that a function x that satisfies
(1.37) and is not measurable must be unbounded in any open interval.

1.6.13 Exercise Let y : Rt — R be a measurable function such that
y;t(t)s ) exists for all s > 0. Show that we must have
z(s) = e** for some real a.

z(s) == limy_
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Basic notions in functional analysis

A characteristic of functional analysis is that it does not see functions,
sequences, or measures as isolated objects but as elements or points
in a space of functions, a space of sequences, or a space of measures.
In a sense, for a functional analyst, particular properties of a certain
probability measure are not important; rather, properties of the whole
space or of a certain subspace of such measures are important. To prove
existence or a property of an object or a group of objects, we would
like to do it by examining general properties of the whole space, not
by examining these objects separately. There is both beauty and power
in this approach. We hope that this crucial point of view will become
evident to the reader while he/she progresses through this chapter and
through the whole book.

2.1 Linear spaces

The central notion of functional analysis is that of a Banach space. There
are two components of this notion: algebraic and topological. The alge-
braic component describes the fact that elements of a Banach space may
be meaningfully added together and multiplied by scalars. For example,
given two random variables, X and Y, say, we may think of random
variables X +Y and aX (and oY) where a € R. In a similar way, we
may think of the sum of two measures and the product of a scalar and
a measure. Abstract sets with such algebraic structure, introduced in
more detail in this section, are known as linear spaces. The topological
component of the notion of a Banach space will be discussed in Section
2.2.

37
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2.1.1 Definition Let X be a set; its elements will be denoted x, vy, z,
ete. A triple (X, +,-), where + isamap +: X x X > X, (z,y) —z+y
and - is a map - : R x X — X (a,z) — ax, is called a (real) linear
space if the following conditions are satisfied:

(al) (x+y)+z=2+ (y+2), for all z,y,z € X,
(a2) there exists © € X such that z + © =z, for all z € X,
(a3) for all € X there exists an 2’ € X such that x + 2’ = ©,
(ad) x+y=y+a, foral z,y €X,
(ml) a(fz) = (af)z, for all o, f € R,z € X
(m2) 1z =z, for all z € X,
(d) a(z+y) = ar+ ay, and (o + )z = ax + Pz for all o, € R and

z,y € X.

Conditions (al)—(a4) mean that (X, +) is a commutative group. Quite
often, for the sake of simplicity, when no confusion ensues, we will say
that X itself is a linear space.

2.1.2 Exercise  Conditions (a2) and (a4) imply that the element O,
called the zero vector, or the zero, is unique.

2.1.3 Exercise Conditions (al) and (a3)—(a4) imply that for any = €
X, 7’ is determined uniquely.

2.1.4 Exercise Conditions (d), (al) and (a3) imply that for any = €
X, 0x = O.

2.1.5 Exercise 2.1.3, and 2.1.1 (d), (m2) imply that for any =z € X,
2’ = (—1)x. Because of this fact, we will adopt the commonly used

notation z’ = —z.

2.1.6 Example Let S be a set. The set X = R® of real-valued func-
tions defined on S is a linear space, if addition and multiplication are
defined as follows: (z + y)(p) = z(p) + y(p), (ax)(p) = azx(p), for all
z(-),y(-) € RY, a € R, and p € S. In particular, the zero vector © is a
function z(p) = 0, and —=z is defined by (—z)(p) = —z(p). This example
includes a number of interesting subcases: (a) if § = N, RY is the space
of real-valued sequences, (b) if S = R, R® is the space of real functions
on R, (c) if $ = {1,...,n} x {1,2,...,k}, R¥ is the space of real n x k
matrices, etc.
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2.1.7 Linear maps A map L from a non-empty subset D(L) (the do-
main of L) of a linear space X to a linear space Y is linear if for all
a,8 € Rand z,y in D(L), ax + By belongs to D(A), and L(ax + By) =
aL(xz) + BL(y). Note that the operations +,- on the left-hand side of
this equation are performed in X while those on the right-hand side are
operations in Y. With linear operations it is customary to omit paren-
theses for the argument so that we write Lz instead L(x). Note that the
definition implies that © belongs to D(L) and LO = ©, where again the
© on the left hand-side is the zero in X, while that on the right-hand
side is in Y. In the sequel we shall write such equations without making
these distinctions, and if the reader keeps these remarks in mind, there
should be no confusion. A linear map L : X — Y is called an algebraic
isomorphism of X and Y, if it is one-to-one and onto. (In particular,
L~ exists and is linear.) If such a map exists, X and Y are said to be
algebraically isomorphic.

2.1.8 Example The collection L(X,Y) of linear maps from a linear
space X (with domain equal to X) to a linear space Y is a linear space
itself, provided we define

(al)r = aLx and (L+M)x=Lx+ Mz
for L, M € L(X,Y) and a € R. The reader is encouraged to check this.

2.1.9 Algebraic subspace A subset Y of a linear space X is called an
algebraic subspace of X if for all ,y € Y, and o € R, z 4+ y and ax
belong to Y. Observe that Y with addition and multiplication restricted
to Y is itself a linear space.

2.1.10 Example Let [P, p > 0 denote the space of sequences =z =
(Zn)n>1, such that > 07 | [2,|P < cc. [P is a subspace of the space R".
Indeed, denoting f(z) = Yo |zn|P < oo, we have f(az) = |aff f(z)
and f(z+y) < 2P(f(z)+f(y)), where x = (zn)n>1,y = (Yn)n>1. The last
inequality follows directly from the estimate |z + y|P < 2P(|z|? + |y|P),
which can be proved by considering the cases |y| > |z| and |z| < |y|
separately.

2.1.11 Example Recall that a function x : S — R is said to be
bounded if there exists an M > 0 such that sup,cg[(p)] < M. The
space B(S) of bounded functions is an algebraic subspace of R since
if x and y are bounded by M, and M,, respectively, then azx + Sy is
bounded by |a|M, + |3|M,.



40 Basic notions in functional analysis

2.1.12 Example Let S be a topological space. The space C(S) of real
continuous functions is an algebraic subspace of R®. Similarly, if S is a
measurable space (S, F), then the space M(S,F) (or M(S) if there is
one obvious choice for F) of real measurable functions is a subspace of
RS, This just says that the sum of two continuous (measurable) functions
is continuous (measurable), and that a continuous (measurable) function
multiplied by a number is again continuous (measurable).

2.1.13 Example Let C1(R) denote the set of differentiable functions.
C1(R) is an algebraic subspace of R® and differentiation is a linear map
from C1(R) to RE.

2.1.14 Exercise Let L be a linear map from X to Y. Show that (a)
the domain D(L) is an algebraic subspace of X, (b) the set Ker L =
{z € X|La = 0}, called the kernel of L, is an algebraic subspace of X,
and (c) the set Range L = {y € Y|y = La, for some z € X}, called the
range, is an algebraic subspace of Y.

2.1.15 Definition Let X be a linear space and let Y be an algebraic
subspace of X. Consider the relation ~ in X, defined by

T~y iff e —yeY.

Since Y is an algebraic subspace of X, for any z,y and z € X, we have
(a) z ~yiff y ~ 2z, (b) z ~y and y ~ z implies & ~ z, and (c) = ~ z.
This means that ~ is an equivalence relation. Let

[z] = {y € X|z ~ y}

be the equivalence class of z. (Note that for any = and y in X, the
classes [z] and [y] are either identical or disjoint, and that the union of
all classes equals X.) The set of equivalence classes is called the guotient
space and denoted X/Y. We note that X/Y is a linear space itself. Indeed,
since Y is a subspace of X, the classes [x + y] and [z’ + ] coincide if
x ~ 2’ and y ~ ¢/, so that we may put [z] + [y] = [z + y]. Analogously,
we note that we may put afz] = [az] (in particular, that the definition
does not depend on the choice of = but only on [z]). It is easy to show
that the conditions of Definition 2.1.1 are fulfilled; the zero of X/Y is
the space Y. The map = — [z] is called the canonical map (canonical
homomorphism) of X onto X/Y. Notice that this map is linear.
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2.1.16 Definition If A and B are subsets of a linear subspace of
X, and « and (8 are real numbers, then the set «A + BB is defined as
{z € X|z = ax + By, for some x € A,y € B}. In particular, if A = {x},
we write x + 8B, instead of {z} + 8B.

2.1.17 Exercise Prove that any class in X/Y, different from Y, may
be represented as x + Y where = ¢ Y.

2.1.18 Exercise Let A and B, A C B be subsets of a linear space X,
and let z € X. Show that (B\ A) —z = (B —z)\ (A —x).

2.1.19 Example Let R¥ be the space of real-valued functions defined
on R, and let R¥ be its subset of even functions. We may check that R¥
is an algebraic subspace of RE. What is the quotient space R® /R®? Note
first that two functions are in the equivalence relation iff their difference
is even. Secondly, in any equivalence class there exists at least one odd
function. Indeed, any class contains at least one function x; and any
function can be represented as & = xo+x, where z.(t) = [z(t)+x(—t)]/2
is even and z,(t) = [x(t)—xz(—t)]/2 is odd, so that x is in relation with an
odd function z, (note that x, may be zero, if x itself is even). Moreover,
there may not be more than one odd function in any class, for if there
were two, their difference would have to be both even (by the definition
of the equivalence relation) and odd (by the properties of odd functions),
and hence zero. This suggests that R® /RE is algebraically isomorphic to
the space R¥ of odd functions on R. The isomorphism maps a class to
the unique odd function that belongs to the class. We have proved that
this map is a one-to-one map and obviously it is onto. The reader is
encouraged to check that it is linear.

2.1.20 Exercise Let S be a set and let Y € R® be the subspace of
constant functions. Characterize R® /Y.

2.1.21 Exercise Let L:X — Y be a linear map. Show that Range L
is algebraically isomorphic to X/Ker L.

2.1.22 Example  Suppose that (2, F) and (€', F’) are two measur-
able spaces, and let f be a measurable map from Q to €. Let L :
M) — M() be given by (Lz)(w) = x(f(w)). L is a linear map,
and its range is the algebraic subspace M () of M(Q) of functions
y(w) of the form y(w) = z(f(w)) where z € M('). What is the kernel
of L? It is the subspace of M(Q) of functions with the property that



42 Basic notions in functional analysis

z(w') = 0 for all " € Ry (the range of f). The equivalence relation
defined by means of KerL identifies two functions that are equal on
R;. This suggests that M(QY')/KerL is algebraically isomorphic to the
space of measurable functions on R;. We have to be careful in stating
this result, though, since R; may happen to be non-measurable in €.
A natural way to make Ry a measurable space is to equip it with the
o-algebra Fp, of subsets of the form RyNB where B € F'. Using 2.1.21,
we can then show that My () is isomorphic to M(Ry, Fr,).

2.1.23 Exercise Take Q@ = Q' = [0,1], and let F be the Lebesgue
measurable subsets, 7' = {Q, 0}, and f(w) = % and check to see that f
is measurable and that the range of f is not measurable in (', F').

2.1.24 Doob—Dynkin Lemma A more fruitful and deeper result con-
cerning M(€2) is the following lemma due to Doob and Dynkin (see e.g.
3.2.5). With the notations of 2.1.22, M;(Q) equals M(Q,o(f)).

Proof (Observe how the lattice structure of R is employed in the proof.)
The relation M;(Q) C M(Q,o(f)) is obvious. To prove the opposite in-
clusion it is enough to show that any positive function from M(Q,o(f))
belongs to M(£2), since any function in this space is a difference of
two positive functions. Now, the claim is true for simple functions y =
>, aila, where the a; are constants and the A; belong to o(f). Indeed,
the A; are of the form f~1(B;) where the B; belong to F’, so that we
have y(w) = z(f(w)) where = > | a;1p,. Finally, if y € M(Q,0(f))
is non-negative, then there exists a non-decreasing sequence of simple
functions y, that converges pointwise to y. Let x,, be the correspond-
ing sequence of simple functions in M(€') such that z,,(f(w)) = yn(w).
Certainly, the idea is to prove that x, converges to some z € M(QY)
that satisfies z o f = y, so that y = M(Q). Note first that z,, is non-
decreasing on Rj. Indeed, for any w’ in this set there exists an w € €
such that w’ = f(w) and we have

T (W) = yn(f (@) < Yns1(f (W) = Tns1 ().

However, it is hard to tell what happens outside of Ry; in particular we
should not think that the sets B; defined above (for simple functions)
are subsets of R¢; as a result z,, may happen to be divergent outside
of R¢. Certainly, the values of the limit function = outside of Ry do
not matter as long as we make sure that x is measurable. Were R
measurable we could bypass the difficulty by taking x,1g, instead of
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Zn. If Ry is not measurable, we may consider the measurable set C' =
{w'|limy,— 00 Zn (W) exists } and define z(w) = lim, o0 Tn(w') for ' €
C, and zero otherwise. We already know that Ry C C, so that for w € Q,
x(f(w)) = lim, xn(f(w)) = limy, 0 yn(w) = y(w) U

2.1.25 Linear combinations Let x; € X,i = 1,...,n be given vectors,
and let a; € R be real numbers. A vector y = >"" | a;z; is called a linear
combination of z; € X,i = 1,...,n. If a; are non-negative and satisfy
Z:-L:l a; = 1, y is called a convex combination of x; € X,i =1, ..., n.
If Y is a subset of X, then its linear span, or simply span spanY is
defined to be the set of all linear combinations of vectors x; € Y,i =
1,...,n (where n € N and the vectors z; may vary from combination
to combination). Certainly, spanY is an algebraic subspace of X. The
reader may check that it is actually the smallest algebraic subspace of
X that contains Y in the sense that if Z is an algebraic subspace of
X that contains Y then spanY C Z. Analogously, the convex hull
of Y, denoted convY is the set of all convex combinations of vectors
z; €Y, 2 =1,...,n,n € N and is the smallest convex set that contains Y.
We say that Y is convex if convY = Y. Note that we always have Y C
convY C spanY, and Y is an algebraic subspace of X iff spanY =Y, in
which case Y = convY = span Y.

2.1.26 Example Let X = R2, and let A and B be two points in the

plane R?. If 0 denotes the origin, then the interval AB is the convex hull
— — E— — — — —

of two vectors: 0A and 0B. Indeed, C' € AB iff 0C = 0B + BC = 0B +

— — — —

aBA where 0 < a < 1. This means, however, that 0C' = (1—a)0B+a0A

—

— =
since BA=0A4 - 0B.
2.1.27 Exercise Let X = R? and Y; = {(z,y)|z? + (y — 2)? < 1},

Y2 = {(x,y)|2? + y* < 1}. Find the span and the convex hull of Y;,i =
1,2.

2.1.28 Exercise Let X = [!. Prove that Y; = {(2)n>1 € I*|z, > 0}
is convex. Define Yo = {(2)n>1 € Y1|D>. o, = 1}. Find the convex
hull and the span of Ys.

2.1.29 Exercise Let Y;,i =1,...,n be convex subsets of a linear space
X. Prove that the convex hull of (!, Y; equals the set of z € X of the
form

z = iawh (2.1)
i=1
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where «; are non-negative, Y .- ; &; = 1 and y; € Y;. Show by example
that the claim is not true if Y; are not convex.

2.1.30 Exercise Let f: R — R be a function. Show that the subset
of points in R? lying above the graph of f is convex iff f is convex.

2.1.31 Exercise Show that the functions of bounded variation on R
form an algebraic subspace of RE, and that the subset of non-decreasing
functions is convex. Similarly, the set of signed measures on a measure
space (w, F) is a linear space, and probability measures form its convex
subset.

2.1.32 Exercise  Let mon x(s) = n(2%s — k), s € RT,0 < k < 27,
where

0, s € (—00,0) UL, 00),

n(s) = 1, s €0, %),
-1, sel3,1).

Define vectors on X = RIOD by 2, = (Mm))0,1),m > 1 (restriction
of 7, to [0,1)) and 2o = 1jg1y. Also, let yp,, = 1[27;2“%). Finally, let

Zy = {20 < k < 2"} and Y,, = {ypn|0 < k < 2"}. Prove that
span Ly, = span Y.

2.2 Banach spaces

As we have mentioned already, the notion of a Banach space is crucial
in functional analysis and in this book. Having covered the algebraic
aspects of Banach space in the previous section, we now turn to dis-
cussing topological aspects. A natural way of introducing topology in a
linear space is by defining a norm. Hence, we begin this section with the
definition of a normed space (which is a linear space with a norm) and
continue with discussion of Cauchy sequences that leads to the definition
of a Banach space, as a normed space “without holes”. Next, we give a
number of examples of Banach spaces (mostly those that are important
in probability theory) and introduce the notion of isomorphic Banach
spaces. Then we show how to immerse a normed space in a Banach space
and provide examples of dense algebraic subspaces of Banach spaces. We
close by showing how the completeness of a Banach space may be used
to prove existence of an element that satisfies some required property.
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2.2.1 Normed linear spaces Let X be a linear space. A function || - || :
X — R,z — ||z|| is called a norm, if for all z,y € X and o € R,

(n1) [lz] =0,

(n2) ||z =0, iff z = O,

(m3) [Jaz|| = [ [|[],

(md) [z +yll < llzll + lly]l-
If (n2) does not necessarily hold, || - | is called a semi-norm. Note that
if || - || is a semi-norm, then ||©| = 0 by (n3) and 2.1.4. A pair (X, |- |]),
where X is a linear space and || - || is a norm in X called a normed

linear space, and for simplicity we say that X itself is a normed linear
space (or just normed space).

2.2.2 Exercise (n3)—(n4) imply that for z,y € X

[zl = llyll| < lle £ yll.

2.2.3 Theorem Suppose X is a linear space, and || - || is a semi-norm.
Then Yo = {z € X: ||z|| = 0} is an algebraic subspace of X and the pair
(X/Yo, [l - l[1), where

=l = inf |ly[| = [l=]], (2.2)
y€[z]
is a normed linear space.

Proof That Yy is an algebraic subspace of X follows directly from (n3)-
(nd). By 2.2.2, if z ~ y then |||lz]| — |ly||| < [|l= =y = 0, so that (2.2)
holds. We need to show (n2)—(n4) of the definition for the function ||| |||,
(n1) being trivial. Condition (n2) follows directly from (2.2). Conditions
(n3) and (n4) now follow from the fact that || - || is a semi-norm: indeed,
for any «’ € [z] and ' € [y],

=]+ Wl =z + 9l < 12"+ 9"l < ="+ 1= =+ -
and

llafllll = [llexlll| < llaz’l| = lof 12| = |alll[=]]I]
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2.2.4 Exercise Suppose that Y is a subspace of a normed linear space
X. Extend the argument used in 2.2.3 to show that the quotient space
X/Y is a normed linear space if we introduce

I[z][l« = inf {|y[|. (2.3)

y€Elx]
2.2.5 Example Let (Q,F, u) be a measure space, and p > 1 be a real
number. Let LP(§2, F, u) be the set of measurable functions z on §2 such

that (fQ ||P dp)l/p < 00. An analogous argument to that presented for
[P in 2.1.10 may be used to show that LP(Q), F, u) is a linear space. We

claim that
1/p
ol = ( / x|pdu)
Q

is a semi-norm on this space. Indeed, (nl) and (n3) are trivial, and (n4)
reduces to the Minkowski inequality (see 1.5.9) if p > 1. For p = 1, (n4)
follows from the triangle inequality: |z + y| < |z| + |y|.

However, || - || is not a norm since ||z|| = 0 implies merely that z = 0
1 a.e. Thus, to obtain a normed linear space we need to proceed as in
2.2.3 and consider the quotient space LP(Q2, F, u)/Y, where Y = {x|z =
0p a.e.}. In other words we do not distinguish two functions that differ
on a set of measure zero.

It is customary, however, to write LP(Q2, F, u) for both LP(Q2, F, u)
itself and for its quotient space defined above. Moreover, for simplicity,
it is often said that a function x belongs to LP(Q, F, u) even though what
is meant is that x represents a class of functions in LP(Q, F, 1)/Y. This
should not lead to confusion, although it requires using caution, at least
initially. As a by-product of this notational (in)convenience we often
encounter phrases like “Let LP(Q,F,u) be the space of (equivalence
classes of) functions integrable with the pth power”.

2.2.6 Normed spaces as metric spaces  Note that if || - || is a norm, then
d(z,y) = ||z — y|| is a metric. This means that (X, d) is a metric space.
We may thus introduce topological notions in X; such as convergence of
a sequence, open and closed sets etc. However, the structure of a normed
linear space is richer than that of a metric space.

A subset Y of a normed linear space X is said to be linearly dense iff
its linear span is dense in X. Y is called a subspace of X if it is a closed
algebraic subspace of X. Note that a closure of an algebraic subspace is
a subspace.
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2.2.7 Exercise Let x and x,,n > 1 be elements of normed linear
space. Suppose that z = lim,, .o ,; show that

Jall = tim ]|

2.2.8 Cauchy sequences A sequence (z,)n>1 of elements of a normed
linear space X is said to be Cauchy if for all ¢ > 0 there exists an
ng = ng(€) such that d(x,, Tm) = ||[n — Tm|| < € for all n,m > ng.
We claim that every convergent sequence is Cauchy. For the proof, let
€ > 0 be given and let z = lim,,_,, x,,. Choose ng large enough to have
|z — z|| < € for all n > ng. If n,m > ng, then

[2n = Zm| < 20 — 2l + |l — 2m || < 26

2.2.9 Exercise Show that every Cauchy sequence (n)n>1, Tn € X,
is bounded, i.e. there exists an M > 0 such that ||z,|| < M for all
n > 1. Moreover, the limit lim,,_,« ||z5 || exists for all Cauchy sequences

(xn)nZL

2.2.10 Not every Cauchy sequence is convergent Let X = C([0,1]) be
the linear space of continuous real-valued functions on [0, 1] equipped
with the usual topology (see 2.1.12). Let ||z()|| = fo |z(s)| ds (see 2.2.5)
and define a sequence in X whose elements are given by

07 0 S S S % - %7
o) = F436-3), b-izs2iid,
1, i+i<s<l
For m > n, ||&m — x| = 3[+ — £] (look at the graphs!), so that the se-

quence is Cauchy. However, it is not convergent. Indeed, if lim,, o ||z, —

l—E
z|| = 0 for some = € C([0,1]), then for all € > 0, limy, o0 [ [2n(s) —
z(s)|ds = 0. Since for n > 1, we have z,,(s) = 0 whenever s € [0, £ — ¢,
l—e . . . .
we have [27°|z(s)] = 0, i.e. 2(s) = 0 a.e. in [0, 5 — ¢). By continuity,
z(s) = 0 for all s < %. The same argument shows that z(s) = 1, for

2
€ (%, 1]. This contradicts continuity of .

2.2.11 Remark There are at least two ways of explaining why, in the
previous example, (z,,),>1 failed to be convergent. Both are fruitful and
lead to a better understanding of the phenomenon in question (actually,
they are just different sides of the same coin). Note that the notion of
convergence (and of a Cauchy sequence) depends both on X and on the
norm. Thus, the first way of explaining 2.2.10 is to say that the norm
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lz()] = fol |z(s)|ds is not appropriate for X = C([0,1]). This norm
is too weak in the sense that it admits more Cauchy sequences than
it should. If we define ||z|/sup = SUPg<s< [2(8)], then ||z, — Tm|lsup =
% — 5 for m > n, so that the seque;lcg is not Cauchy any more, and
the problem with this sequence disappears. Moreover, we will not have
problems with other sequences since any sequence that is Cauchy in
this norm is convergent in this norm to an element of C([0,1]) (see
2.2.16 below). The second way of explaining 2.2.10 is to say that the
space is not appropriate for the norm. Indeed, if we stick to this norm
and, instead of C([0, 1]) take the space L*[0, 1] of (equivalence classes of)
Lebesgue integrable functions, (x,),>1 will not only be Cauchy, but also
convergent. Indeed, we have actually found the limit = of our sequence:
@ = 1¢1 4)-F The fact is that it does not belong to C([0,1]), but it does
belong to L![0,1]. Moreover, we may prove that any Cauchy sequence
in L'[0,1] is convergent (see below).

2.2.12 Definition If every Cauchy sequence in a normed linear space
X is convergent, X is called a Banach space. If we recall that a met-
ric space is termed complete if every Cauchy sequence of its elements
is convergent (see 2.2.6), we may say that a Banach space is a com-
plete normed linear space. Note again that this notion involves both the
space and the norm; and that this pair becomes a Banach space if both
elements “fit” with each another.

Before we continue with examples of Banach spaces, the reader should
solve the following two “warm-up” problems.

2.2.13 Exercise  Suppose that Y is a subspace of a Banach space.
Show that Y is itself a Banach space, equipped with the norm inherited
from X.

2.2.14 Exercise Let X be a normed linear space and (x,,),>1 be a se-

quence of its elements. We say that a series > - | z,, converges, if the
n . .

sequence ¥y, = y ., x; converges. We say that this series converges

absolutely if > | ||z, | < oo. Show that a normed linear space is a

Banach space iff every absolutely convergent series converges.

2.2.15 The space of bounded functions Let S be a set and let B(.S) be
the linear space of bounded functions on S. Define the norm

||| = sup |z(p)]
peS

t We have not proven yet that lim x,, = x, but this is a simple exercise.
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(the supremum is finite by the definition of a bounded function; see
2.1.11). B(S) is a Banach space.

Proof We check easily that conditions (nl)—(n4) of the definition of
the norm are satisfied. The only non-trivial statement is that about
completeness. Let, therefore, x,, be the Cauchy sequence in B(S). Let p
be a member of S. By the definition of the supremum norm the sequence
2n(p) is a Cauchy sequence in R. Let z(p) = lim,, o0 2 (p). We claim
that = belongs to B(S) and x,, converges to x in this space. Indeed,
since x,, is a Cauchy sequence in B(S), given € > 0, we may choose
an no such that for all p € S and n,m > ng, |z,(p) — Tm(p)| < e
Taking the limit m — oo, we get |z(p) — z,(p)| < e. In particular
supyes [2(p)] < supyes{[z(p) — 2a(p)| + [2a(p)]} < 0, ie. @ € B(S),
and ||z, — z|| < e. This means that z,, converges to z in the supremum
norm. U

2.2.16 The space of continuous functions Let S be a compact Haus-
dorff topological space. The space C(S) of continuous functions x on S,
equipped with the supremum norm:

[[#]| = sup [z(p)]
peS

is a Banach space.

Proof 1t is enough to show that C(S) is a subspace of B(S). Note that
continuous functions on a compact set are bounded, for the image of a
compact set via a continuous function is compact and compact sets in R
are necessarily bounded. It remains to show that the limit of a sequence
xn, € C(5) does belong not only to B(S) but also to C'(S). But this just
means that the uniform limit of a sequence of continuous functions is
continuous, which may be proven as follows. For p € S and € > 0, take
n such that [z, (p) — z(p)] < § for all p € S. Moreover, let U be the
neighborhood of p such that ¢ € U implies |z, (p) — z,(q)| < §. The
triangle inequality shows that

[2(p) — 2(q)] < |z(p) — n(p)| + l2n(p) — 2n(@)] + |2alq) — x(q)] <,
as desired. |
2.2.17 Exercise (a) Let S be a Hausdorff topological space. The space

BC(S) of bounded continuous functions z on S equipped with the supre-
mum norm is a Banach space. (b) Let (€2, F) be a measurable space. The
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space BM () of bounded measurable functions on  equipped with the
same norm is a Banach space.

2.2.18 The space L>(Q, F,u) Let (2, F, 1) be a measure space. As
noted in Exercise 2.2.17 above, the space BM () of bounded measurable
functions on €2, with the supremum norm is a Banach space. The fact
that there exists a measure p on (£2, F) allows introducing a new Banach
space that is closely related to BM (). In many situations it is desirable
to identify measurable functions that differ only on a set of p-measure
zero. In other words, we introduce an equivalence relation: two measur-
able functions z and y are in this equivalence relation iff z(w) = y(w)
for all w € Q except maybe for a set of u-measure zero. Note that an
unbounded function may belong to the equivalence class of a bounded
function. Such functions are said to be essentially bounded, and we
define the norm of the equivalence class [x] of an essentially bounded
function x to be

[z]l = inf  [yllzaco-
y € [z]

y € BM(Q)

We shall prove later that the infimum in this definition is attained for a
bounded y € [z]. The space of (classes of) essentially bounded functions
is denoted L™ (Q, F, u).

The reader may have noticed the similarity of the procedure that we
are using here to the one in 2.2.3. Let us remark, however, that these
procedures are not identical. Specifically, the linear space of essentially
bounded measurable functions on (2, F), where the equivalence class
was introduced above, is not a normed linear space in the sense of Def-
inition 2.2.1, since [|x||par(n) may be infinite for an x in this space.
Nevertheless, an argument almost identical to the one presented in 2.2.3
proves that L>(Q, F, u) is a normed linear space.

Let us note that for any = € L*™(Q,F,u) there exists a bounded
y € [a] such that (o]l (0.5 = Iollmarca)- Indeed, let y, € BM(Q)
be such that y,, = x for all w € Q\ A,, where u(A4,) =0 and

nILHOIO lynllBar) = 2]l oo (9,7 ,1)-

Define y(w) = 0 for w € A = {J,5; Ay and y(w) = z(w) for w ¢ A.
Certainly, u(A) =0, and so y € [z]. Moreover, y is bounded because for
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any n € N we have

lyllBaro) = sup [y(w)| = sup  [y(w)]
weR weN\A,

< sup |yn(W)] = |lynllBar)-

we\A,

Taking the limit as n — oo, this inequality also shows that
llyll Bao) < nlglgo lynllBare) = @l Lo (.7 1)

Since the reverse inequality is obvious, our claim is proved.

To show that L>(Q,F,u) is complete, we use Exercise 2.2.14. Let
[2n] € L>°(, F, 1) be a sequence such that Y7, ||[z] || oo (0,7, < 00
Let y, € BM(Q2) be such that |ly,||par) = [l[@n]llz=@ 7). Then
the series > 7 |y, is absolutely convergent, and because BM (1) is a
Banach space, ZZO=1 yn, converges to a y in this space. Since the class of
i yi equals > [2;] we infer that Y., [z;] converges to the class of
1y, as desired.

2.2.19 The space LP(Q, F,u), p >1 Let (Q,F, 1) be a measure space.
The space LP(Q, F, 1), p > 1, is a Banach space.

Proof We shall use 2.2.14. Let z,, € LP(Q, F, 1) be such that

oo
> Nl o,z < oo

n=1

Consider the function zg = >~ |2, | which takes values in the extended
positive half-line. By Fatou’s Lemma and Minkowski’s inequality

n p n
1o du < im [ (Dml) dp< fim 3 lell” < oc.
i=1 i=1

In particular, the set of w where xg(w) = 0o has measure zero. Therefore,
the series z(w) = Yo | z,(w) converges absolutely except maybe on a
set of measure zero, where we put z(w) = 0. With such a definition, we
have

n
/l‘— E Z;
i=1

Hence, x € LP(Q, F, 1) and lim,, 00 z,, = 2. O

p k o]
TR D DI T VES Sy P

i=n+1 i=n+1
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2.2.20 Remark In the proof of 2.2.19 we have used 2.2.14. This was a
nice shortcut but because of its use we have lost valuable information (see
the proof of 3.7.5 for instance). The result we are referring to says that
any convergent sequence x, € LP(, F, 1), n > 1 has a subsequence that
converges almost surely; this result is a by-product of a direct proof of
2.2.19 (see e.g. [103]). To prove it, we note first that x,,,n > 1 is Cauchy.
Next, we proceed as in the hint to 2.2.14 and find a subsequence z,,, , k >
1 such ||y, ., — @n,|| < 35. Then the series > 77 (Zn,, — Tn,) + Tn,
converges both a.s. and in the norm in LP({, F, ). Since the partial
sums of this series equal z,,, , the sum of this series must be the limit of
ZTn,n > 1, which proves our claim.

2.2.21 Corollary  Let (2, F,P) be a measure space, and let G be a
sub-o-algebra of F. The space LP(Q2, G,P) is a subspace of LP(Q), F,P),
p=>1

2.2.22 Remark  The proof of our Corollary is obvious, is it not? If a
random variable is G measurable then it is also F measurable and since
L?(9Q,G,P) is a Banach space itself, then it is a subspace of LP(§2, F,P).
Yes? No. We forgot that LP(Q2, G, P) is a space of equivalence classes and
not functions. If G does not contain all of the sets A € F with P(A) =0,
then the equivalence classes in LP(£2, G, P) are not equivalence classes of
LP(Q2, F,P) and we may not even claim that LP(£2,G,P) is a subset of
L?(Q, F,P)! In other words, Corollary 2.2.21 is not true unless G contains
all measurable sets of probability zero.

Without this assumption, the correct statement of Corollary 2.2.21 is
that LP(Q, G, P) is isometrically isomorphic to a subspace of LP(§2, F,P)
in the sense of 2.2.30, see 2.2.33 below.

2.2.23 Corollary  Suppose that X, is a subspace of a Banach space
LP(Q, F, 1), where p > 1 and p is a finite measure such that 1o € X.
Then the collection G of events A such that 14 € X is a A-system.

Proof Q and ) belong to G by assumption. Moreover, if A and B belong
to G and A C B then B\ A belongs to G since 1g\4 = 1p — 14 € Xo.
Finally, if A, € G,n > 1, is a non-decreasing sequence of events, then

Uz, e = Laa [l e = n(J Ax \ An)
k=1

converges to zero, as n — o0. Since Xy is closed (being a subspace)
1ye , a, belongs to X, proving that U20=1 Ay, belongs to G. |
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2.2.24 The space of signed Borel measures For any Borel charge u
let = ,uar — 1ty be its minimal representation, as described in 1.3.6.
Define ||u|| = |p|(R) = pg (R) + pg (R). Equivalently, let y be a regular
function of bounded variation such that (1.22) holds and define |y|| to
be the variation of y on (—o0,00). The space BM(R) of Borel charges
(the space of regular functions of bounded variation such that (1.22)
holds) with this norm is a Banach space.

Proof Note that by definition g = u™ — p~, where u™ and p~ are
positive measures, implies

el < 17 (R) + 17 (R). (2.4)

We need to start by showing that BM(R) is a normed space. If ||| =
|u|(R) = 0, then pd (R) = 0 and pg (R) = 0, so that ud (4) = 0 and
to (A) = 0, for all Borel subsets of R, proving that g = 0. Of course
w1 = 0 implies ||u|| = 0.

If o € R and g € BM(R), then the variation of y(t) = ap(—o0,t] on
(—o00,00) equals || times the variation of pu(—oo,t] in this interval. In
other words ||au|| = |af||u|. Finally, if p = ud — pg and v = v — vy,
then p+v = (ug +vg) — (g + 14 ), so that by (2.4),

I+ VIl < pg (R) + g (R) + g (R) + 15 (R)
= [lpll + Il

Turning to completeness of BM(R), let p,,n > 1 be a sequence of
charges such that > ° | ||un|| < co. Let p, = /,L:;O — H,, o be the minimal
representation of u,,. By definition, for any Borel subset A of R,

Dl o(A) + g o (A)] < Y lrid o (R) + 11 0(R)] < o0,
n=1 n=1
so that both series on the left converge absolutely. We may thus define
pt(A) = Z N:,O(A)y wo(A) = Z N;,O(A)~
n=1 n=1

Functions p* and p~ are countably additive (this statement is a par-
ticular case of the Fubini Theorem). Thus we may introduce the charge
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p=p*—p". By (24)

n
e = il
i=1

o0 o0
1> wdo— > mio

1=n+1 1=n+1
00 0o
< Z H;,_O(R)+ Z 1;.0(R)
i=n+1 i=n+1

which tends to zero, as n — oo. This proves that p is the sum of the
series Y o | fi. O

2.2.25 Exercise  Suppose that X is a linear normed space. Consider
the set b(X) of sequences (z,)n>1 with values in X, that are bounded,
ie. ||(zn)n>1ll« = sup,>1 ||zl < co. Prove that b(X) is a linear, in fact
normed space when equipped with |- |«. Moreover, it is a Banach space
iff X is a Banach space. Finally, Cauchy sequences in X form a subspace,
say b.(X), of b(X).

2.2.26 Exercise Show directly that the following spaces of sequences
are Banach spaces: (a) ¢ : the space of convergent sequences with the
norm ||(xy)n>1]| = sup,,>1 |Znl, (b) I : the space of absolutely conver-

1
gent sequences with the norm [|(2,)n>1]] = (X0 [#4[P)”, p > 1. Show
also that the space ¢y of sequences converging to zero is a subspace of c.

2.2.27 Exercise  Cartesian product Prove that if X and Y are two
Banach spaces then the space of ordered pairs (z,y) where z € X
and y € Y is a Banach space with the norm ||(z,y)| = |lz| + ||,
or [[(z, y) Il = V/IlzlI* + lyll*, or [|(z,y)Il = [|z[| V [lyll, where [lz|| V [|ly|| =

max{||z[], [ly[|}-

2.2.28 Exercise Let S be a set and let p € S. Show that the set of
members z of B(S) such that z(p) = 0 is a subspace of B(S).

2.2.29 Exercise Repeat 2.2.28 for a compact, Hausdorff topological
space, with B(S) replaced with C(S). May we make a similar statement
for L*>(R) and some p € R?

2.2.30 Definition A linear map I from a linear normed space (X,
[l - |lx) onto a linear normed space (X,| - [ly) is an isomorphism if
there exist two positive constants m and M, such that m|z| < |[Tz|y <
M]||z||x. In particular, isomorphisms are bijections. In such a case, X
and Y are said to be isomorphic. If M =m =1, i.e. if ||Iz|y = ||z|x,
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I is said to be an isometric isomorphism and X and Y are said to be
isometrically isomorphic.

2.2.31 Example For any a < b € R, the space Cla,b] is isometri-
cally isomorphic to C[0,1]. The isomorphism is given by I : Cla,b] —
C[0,1],y(r) = Iz(r) = ((1 —7)a+ 7b). (What is the inverse of I7?)
Analogously, C[0,1] is isometrically isomorphic to the space C[—o0, 0]
of continuous functions with limits at plus and minus infinity. The iso-
morphism is given by y(7) = Iz(7) = z(% arctant + ).

This result may be generalized as follows: if S and S’ are two topolog-
ical spaces such that there exists a homeomorphism f : S — S’ and if
a € BC(S) is such that |a(p)| = 1, then Iz(p) = a(p)z(f(p)) is an iso-
metric isomorphism of BC(S) and BC(S’). The famous Banach—Stone
Theorem says that if S and S’ are compact, the inverse statement is true
as well, i.e. all isometric isomorphisms have this form (see [22]).

2.2.32 Exercise Let S and S’ be two sets. Suppose that f: S — S’
is a bijection. Show that B(S) is isometrically isomorphic to B(S’). In
the case where (S, F) and (S, F’) are measurable spaces what additional
requirement(s) on f will guarantee that BM(S) and BM(S’) are iso-
metrically isomorphic?

2.2.33 Example Let G be a sub-g-algebra of the c-algebra F of
events in a probability space (Q, F,P). In general LP(Q,G,P) is not a
subspace of LP(Q, F,P), p > 1 (see 2.2.22). However, LP(2,G,P) is iso-
metrically isomorphic to the subspace L{ (€2, G,P) of equivalence classes
in LP(Q, F,P) corresponding to integrable with pth power G measurable
functions. To see this let us consider an equivalence class in LP(Q, G, P).
If X is its representative, then X is G measurable and all other elements
of this class differ from X on P-null events that belong to G. The equiv-
alence class of X in LP(Q, F,P) is composed of all functions that differ
from X on P-null events that are not necessarily in G. Nevertheless, the
norms of these classes of X in LP(Q,G,P) and LP(Q, F,P) are equal.
Let I map the equivalence class of X in LP(Q, G,P) into the equivalence
class of X in LP(Q, F,P). Since the range of I is L5(Q, G, P), our claim
is proven.

Remark 2.2.11 suggests the following procedure for constructing Ba-
nach spaces from normed linear spaces: find the “limits” of Cauchy se-
quences and add them to the original space. Let us explain this idea in
more detail. Since some Cauchy sequences in our normed linear space
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X “cause trouble” by not being convergent, first we may immerse X
in the space of Cauchy sequences b. by noting that an = € X may be
represented as a constant sequence in b.. Next, we may note that we
are really not interested in Cauchy sequences themselves but in their
“limits”, which may be thought of as equivalence classes of Cauchy se-
quences that become arbitrarily close to each other as n — oo. Some of
these equivalence classes correspond to elements of x and some do not.
The point is however that they form “the smallest” Banach space that
contains X. We make this idea rigorous in the following theorem.

2.2.34 “Filling holes” in a normed linear space  Let X be a normed
space. There exists a Banach space Y and a linear operator L : X — Y
satisfying the following two conditions:

[Lzlly = [lzllx,  cl(R(L)) =Y. (2.5)

Proof Consider the space of Cauchy sequences from Exercise 2.2.25, and
its subspace by(X) of sequences converging to ©. Let Y = b.(X)/bo(X)
be the quotient space, and for any = € X, let Lz be the equivalence
class of a constant sequence (z),>1. Two elements, (2, ),>1 and (z],)n>1
of b.(X) are equivalent if lim, o ||z, — #}|| = 0. This implies that
limy, o0 ||Zn || = limp,— o0 ||27, ]|, and this limit is the norm of the equiva-
lence class to which they belong (see Exercise 2.2.4). In particular, the
first condition in (2.5) holds. The map L is linear, as a composition of
two linear maps.

To complete the proof of (2.5), assume that (z,)n>1 € be(X). Let y
be the class of (z,),>1 in the quotient space Y, and let y; = Lx; be a
sequence of elements of Y. We have

lyi = ylle = T [l — o (2.6)

which implies that lim;_. ||y; — y|ly = 0, as desired.

It remains to prove that Y is a Banach space. Let y, be a Cauchy
sequence in Y. There exists a sequence z,, € X such that || Lz, —y, || < +.
The sequence (x,,),>1 is Cauchy in X, for

1 1
|20 — Zmllx = | Lxn — Lemlly < =+ [|yn — Yl + —-
n m

Let y be the class of (z,)n>1 in Y. Arguing as in (2.6) we see that
lim,, o0 [|[L2zyn — y||ly = 0 and hence lim,, o ¥, = y as well. |
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2.2.35 Corollary The space Y from the previous subsection is unique
in the sense that if Y’ is another space that satisfies the requirements
of this theorem, then Y’ is isometrically isomorphic to Y. Therefore, we
may meaningfully speak of the completion of a normed space.

Proof Let L’ : X — Y’ be a map such that ||L'z|y = ||z||x, (R(L)) =
Y’. For 3/ € Y', there exists a sequence z,, € X such that lim,,_ || Lz}, —
y'|ly» = 0. Since |L'z, — L'z |ly' = |@n — @m|| = | Lxn — Lam ||y, Lz, is
then a Cauchy sequence in Y. Since Y is a Banach space, there exists a
y in Y such that lim,, .., Lz, = y. This y does not depend on the choice
of the sequence z,, but solely on ¥/, for if 2/, is another sequence such
that L'z, tends to y’ then

[Lan — La, Iy = [lzn — a7 llx = [ L'2n — L'af, [l

tends to zero as n — oo.

Let us thus define I : Y — Y by Iy’ = y. Obviously, I is linear.
Moreover, it is onto for we could repeat the argument given above after
changing the roles of Y’ and Y. Finally,

Hy'lly = lim [[Lan|ly = lm [lznllx = o (|L2n]lv = [ly'[lv.
n—o0 n— oo n—oo

O

2.2.36 Example If X is the space of sequences « = (§,),>1 that are

eventually zero, with the norm |jz|| = (32, |§n|p)% , where the sum
above is actually finite for each x, then X is a normed linear space but
it is not complete. Its completion is [P. Similarly, if in X we introduce
the norm ||z|| = sup,,~; |€x], then the completion of the normed space
X is the space ¢y of gequences converging to zero equipped with the
supremum norm.

These two statements are equivalent to saying that X, when equipped
with the appropriate norm, is an algebraic subspace of [P and ¢y that is
dense in these spaces.

2.2.37 The spaces C.(S) and Cy(S) Let S be a locally compact Haus-
dorff space, and let C.(S) be the space of continuous functions z on
S such that z(p) # 0 only on a compact subset K of S. Note that
K = K(x) may be different for different x. The space C.(S) equipped
with the supremum norm ||z|| = sup,cg [2(p)| = suppex (s |2(P)] is a
normed linear space. In general, though, it is not complete. Its comple-
tion Cp(S) and called the space of functions vanishing at infinity.
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To explain this terminology, consider S = N equipped with discrete
topology. The discrete topology is that one in which all subsets of N
are open. Compact sets in N are sets with a finite number of elements.
Therefore, C.(S5) is a space of sequences x = (&,),,~, such that &, =0
for all but a finite number of n. In 2.2.36 we saw that Co(N) may be
identified with the space ¢y of sequences converging to zero.

Similarly we may check that Co(R™) is the space of continuous func-
tions x such that limy_o 2(s) = 0. Here s = (s1,....,5,) and [s| =

Dii1 S

If S is compact, then Cy(S) coincides with C(S). As an example one
may take S = NU{oo} with the topology defined by choosing its base to
be the family of all singletons {n} and neighborhoods of infinity of the
form {n € N:n >k} U{occ},k > 1. S is then compact, and continuous
functions on S may be identified with convergent sequences (&,),,~,. The
value of such a function at {oo} is the limit of the appropriate sequence.
In topology, S is called the one-point compactification of N. O

2.2.38 Exercise  Show that Cy(G) where G is the Kisynski group is
isometrically isomorphic to the Cartesian product of two copies of Cy(R)
with the norm [|(z1, z—1)[| = [[zllco®) V 2]l cor)-

We now continue with examples of dense algebraic subspaces of some
Banach spaces.

2.2.39 Proposition Let (Q,F,u) be a measure space. The simple
functions that are non-zero only on a set of finite measure form a dense
algebraic subspace of L*(£, F, ).

Proof Tt suffices to show that for a non-negative z € L*(£2, F, 1), there
exists a sequence of simple functions approximating x that are non-zero
only on a set of finite measure. We know, however, that the integral of a
non-negative function z equals the supremum of the integrals of simple
functions bounded above by x. In particular, for any n > 0 we may find
a simple function , such that z, < x and [,z,dp > [yzdu — L.
This implies that ||z — @nl|p .7 = [o(@ — 2n)dp < = as desired.
Furthermore, the set where z,, is non-zero must be finite, for [z, du <
Jadu < oco.

|

2.2.40 Exercise Prove an analogous result for LP(Q, F, u), 00 > p >
1.
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2.2.41 Proposition Let (Q,F,u) be a measure space with a finite
measure , and let 1 < p < oo be a given number. The space LP (2, F, i)
is dense in L1(Q, F, u).

Proof We need to show first that LP(Q, F, u) is a subset of the space
LY(Q, F,p); this follows from the Hélder inequality; if = belongs to
LP(Q, F,u) then it belongs to L*(, F, 1) since

[ el = [ fal-toan < [/Q x|pdufm<m]é.

Since p is finite, any indicator function of a set A € F belongs to
L?(Q, F, 1), and any simple function belongs to LP (2, F, i), as the linear
combination of indicator functions. Thus, the claim follows from 2.2.39.

O

is finite.

2.2.42 Exercise Find a counterexample showing that the last propo-
sition is not true if p is not finite.

2.2.43 Exercise Use the Holder inequality to show that L"(Q2, F, u) C
L#(Q, F,p) for all 1 < s <r < oo, provided p is finite.

2.2.44 Proposition Let  be a finite or an infinite interval in R (open
or closed). Then C,(Q?) is dense in LP(2, M(A),leb), co > p > 1.

Proof By 2.2.39 and 2.2.40 it suffices to show that a function 14, where
A is measurable with finite leb(A), belongs to the closure of C.(f2). By
1.2.9, we may restrict our attention to compact sets A.

Let A be a compact set and let k& be a number such that A C [k, k].
Let B = (—o0,—(k+1)]U[k+1,00), and z, (1) = m, where
d(1,B) = min,ep |T—o| and d(1, A) = minye 4 |7 —o|. Note that d(7, A)
and d(7, B) may not be simultaneously zero, and that x,(7) = 0 for
7 € B, and z,(7) = 1 for 7 € A. Finally, x,, are uniformly bounded by
1, supported in [—(k + 1),k + 1] and tend to 14 pointwise, for if 7 & A,
then d(r, A) # 0. By the Lebesgue Dominated Convergence Theorem

limy, oo |7 — LallLr(Q,M(A),1e5) = 0. O

2.2.45 Corollary  The completion of the space C[0, 1] equipped with
the norm ||| = [ |«|dleb is L'[0,1].
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2.2.46 Corollary  Another well-known Consequence of the above the-
orem is that for any z € L*(R™T) the function y(7) = [~ z(7 + o) do is
continuous in 7 € RT. This result is obvious for contmuous 2 with com-
pact support; if the support of z is contained in the interval [0, K], K > 0,
then

(T +<) =y <K sup |o(r+c+0)—a(r+o0)] — 0,

0<o<K c—0
by uniform continuity of x. To prove the general case, let x,, be a se-
quence of continuous functions with compact support approximating z
and let y,, (7 fo % (7 + o) do. Then

sup y(r) = n(7)] < / |27+ 0) — Tu(r + 0)| do
T2 0
<z — 2nllpr®ey,

and y is continuous as a uniform limit of continuous functions.

We close by exhibiting some examples illustrating how the fact that X
is a Banach space may be used to show existence of a particular element
in X. We shall use such arguments quite often later: see e.g. 2.3.13 and
7.1.2.

2.2.47 Example Suppose that RT > ¢ +— x; € X is a function taking
values in a Banach space X, and that for every ¢ > 0 there exists a v > 0
such that ||z —xzs|| < e provided s,t > v. Then there exists an x € X such
that for any € > 0 there exists a § > 0 such that ||z, — z|| < € for t > v.
We then write, certainly, x = lim;_. o, x¢. To prove this note first that if
Uy is a numerical sequence such that lim, . uy, = 00, then y, = x,,
is a Cauchy sequence. Let x be its limit. For ¢ > 0 choose v in such a
way that ¢t,u > v implies ||z; — x| < e. Since limu,, = co, almost all
numbers u,, belong to (v,00) so that ||z —z|| = limy, o |2t — Zu,, || < €
This implies the claim. Finally, note that there may be no two distinct
elements = with the required property.

2.2.48 Riemann integral in a Banach space  The completeness of Ba-
nach spaces allows us to extend the notion of the Riemann integral to the
case of Banach space valued functions. Let a < b be two real numbers.
Suppose that z. : [0,1] — X, t — a is function on [a,b] taking values
in a normed linear space X. Consider two sequences, 7 = (¢;);=0,...x and
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= = (&)i=o0,....k—1 of points of [a, ], where k is an integer, such that

a=1ty <ty <---<tp=>b, to <& <t < <t < &1 Sty
(2.7)
Define the related number A(7) = supg<;<;(t;i — ti—1) and the element
of X given by o

k
Ex) =Y @ (tivr — )
=0

If the limit lim,,— o S(75, Zp, x.) exists for any sequence of pairs (7, =)
such that lim,,_,, A(7,) = 0, and does not depend on the choice of the
sequence of (7, E,,), function z is said to be Riemann integrable. The
above limit is denoted f; x¢dt and called the (Riemann) integral of
2. We shall prove that continuous functions taking values in a Banach
space are Riemann integrable.

To this end, consider a continuous function [a,b] 2 t — a; € X, and
let € > 0 be given. Since x is continuous on a compact interval, it is
uniformly continuous and we may choose a 6 > 0 such that [s —t| < ¢
and s,t € [a,b] implies ||zs — ]| < €. Let sequences T = (t;)i=o,... x and
T' = (t})i=o0,...k be such that A(7) < § and A(7’) < é. Also, let 7" be
a sequence that contains all elements of 7 and 77 : 7" = (t])i=1,... k
We have A(7") < § and k¥ < k + k' — 2, for besides tg = to =
and ty = tj, = b there may be some t; = t}, i = 1,.,k = 1,j =

k" — 1. An interval [t;,t;11], i = 0, ..., k either coincides with some

[t;’,t;’ﬂ} j € {0,....k"” — 1} or is a finite union of such intervals, say,
[ti,tiy1] = [t;’,t;’H]U [t g0t 4] for some I For any = = (&)i=o,....k

such that (2.7) holds,

"
xfz l-‘rl Z "Etj'er _7+7rz+1 - tj+m)

MN

[ze, — xt;/+m](t;/+m+l - t;‘/+m)

3
g

MN

IA

€ (t;!+m+1 - t;'/+m) = e(tiy1 —ti),

m=0

since both §; and t;+m

Summing over ¢ we obtain

belong to [t;,t;41], so that | — ¢/

Teml < 6.

||S(T,E,,1‘) - S(T”a E”a 33)” < G(b - (1),
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where = = (¢/)i=o,... k-1 = (t/)i=0,... k—1. This argument works for
T’ and 7", as well. Hence

||S(T,E,£L’) —S(T/,E,/,{E)” < 2€(b_a)a (28)

for all sequences 7 and 7" such that A(7) < ¢ and A(7’) < 6 and any
sequences = and Z’ of appropriate midpoints. This proves that for any
sequence (7, E,,) such that lim,, . A(7,) =0, S(7,,, Z,, x) is a Cauchy
sequence, and thus converges. Using (2.8) we prove that this limit does
not depend on the choice of (7,,Z,,).

More general, Lebesgue-type integrals may be introduced for functions
with values in Banach spaces. We need to mention the Bochner and
Pettis integrals here, see [54] for example. For our purposes, though, the
Riemann integral suffices.

2.2.49 Example Consider the elements ey, A > 0, and wu(t),¢ > 0 of
L'(RT) defined by their representatives ex(7) = ™™ and u(t) = 14,
respectively. Let RT 3 ¢ +— u(t) = 1jp) be the function with values in
L'(RT). We will check that

oo
A/ e Mu(t)dt =eyx  in L'(RT), for X > 0.
0
The above integral is an improper Riemann integral, i.e. we have

oo T
/ e My(t)dt := lim e Mu(t) dt.
0 T—o0 0

We start by noting that ||u(t) —u(s)|| L1 w+) = [1[s.0)ll 1 ey = fst dr =
(t —s),t > s so that u is continuous, and so is the integrand above. Fix
T > 0. We have:

T n
T
/ e Mu(t)dt = lim — E e My (Tkn™') =t lim fr,
0 n—oo M P n— oo
with the limit taken in L'(RT). Note that fr(7) equals

T

T - _ ATk n _ATrrn _
— E e n 1[0,T)(T) = =7 [e W T e ’\T} Lo, 1) (7).
[ en —1

T

Certainly, the expression in brackets does not exceed e 7 and tends to

e " — e * as n — oo, while the sequence before the brackets tends

to % Hence, by the Dominated Convergence Theorem, lim,, o fr.n =



2.8 The space of bounded linear operators 63
f(ex — e D)u(T) in L*(RT). Thus,

T
)\/O e Mu(t)dt = (ex — e M u(T).

Finally, ||(ex — e T )u(T) — ex|| 11 ®+) does not exceed
lexw(T) — exllprg+) + e_ATHU(T)HLl(Rﬂ

= / e MAdr+Te M = (14 T)e M
T

which converges to 0 as T" — oo.

2.2.50 Exercise Let X be a Banach space, and suppose that t +— x; €
X is continuous in an interval [a, b]. The scalar-valued function ¢t — ||z||

is then continuous, and therefore integrable. Show that f; Tt dtH <

b
Jo el dt.

2.3 The space of bounded linear operators

Throughout this section, (X, | -||x) and (Y, || -||y) are two linear normed
spaces. From now on, to simplify notation, we will denote the zero vector
in both spaces by 0.

2.3.1 Definition A linear map L : X — Y is said to be bounded if
|[Lz||y < M]z||x for some M > 0. If M can be chosen equal to 1, L
is called a contraction. In particular, isometric isomorphisms are con-
tractions. Linear contractions, i.e. linear operators that are contractions
are very important for the theory of stochastic processes, and appear
often.

2.3.2 Definition  As in 2.1.12, we show that the collection £(X,Y)
of continuous linear operators from X to Y is an algebraic subspace
of L(X,Y). £(X,Y) is called the space of bounded (or continuous)
linear operators on X with values in Y. The first of these names is
justified by the fact that a linear operator is bounded iff it is continuous,
as proved below. If X = Y we write £(X) instead of £(X,Y) and call
this space the space of bounded linear operators on X. If Y = R,
we write X* instead of £(X,Y) and call it the space of bounded linear
functionals on X.
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2.3.3 Theorem Let L belong to L(X,Y) (see 2.1.7). The following
conditions are equivalent:

(a) L is continuous (L € L(X,Y)),
(b) L is continuous at some x € X
(¢) L is continuous at zero,
(d) supjg,=1 [[Lx|ly is finite,

)

(e) L is bounded.

Moreover, supj,, =1 [|[Lzlly = min{M € M} where M is the set of
constants such that ||Lz|y < M||z||x holds for all z € X.

Proof The implication (a) = (b) is trivial. If a sequence z,, converges to
zero, then x,, +a converges to x. Thus, if (b) holds, then L(x,, +x), which
equals Lz, + Lz, converges to Lz, i.e. Lz, converges to 0, showing (c). To
prove that (c) implies (d), assume that (d) does not hold, i.e. there exists
a sequence x, of elements of X such that ||z,|x = 1 and || Lz,| > n.
Then the sequence y, = ﬁxn converges to zero, but |[Ly,|y > /7
must not converge to zero, so that (c) does not hold. That (d) implies
(e) is seen by putting M = sup,, [[Lx|ly; indeed, the inequality in the
definition 2.3.1 is trivial for x = 0, and for a non-zero vector x, the
norm of ﬁx equals one, so that ||Lﬁf£||y < M, from which (e) follows
by multiplying both sides by ||z||. Finally, (a) follows from (e), since
|Len — Le|l < L — )| < Mz, — 2.

To prove the second part of the theorem, note that in the proof of the
implication (d)=(e) we showed that M; = sup,, =1 [|Lz||vy belongs to
M. On the other hand, if ||Lz|y < M|z||x holds for all € X, then
considering only z with ||z||x = 1 we see that M; < M so that M is
the minimum of M. O

2.3.4 Exercise Suppose that a < b are two real numbers and that
[a,b] 2 t — x; is a Riemann integrable function taking values in a
Banach space X. Let A be a bounded linear operator mapping X into a
Banach space Y. Prove that [a,b] 3 t — Axz; € Y is Riemann integrable,
and A f: xydt = fab Az, dt.

2.3.5 Example Let (,F,u) and (¥, F',v) be two measure spa-
ces. Suppose that k(w,w’) is bounded (say, by M) and measurable with
respect to the product o-algebra F @ F' in Q ® Q’. Consider the lin-
ear operator K : LY(QV,F',v) — L*®(Q,F,pu) given by (Kz)(w) =
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Jor K( w')dv(w'). The estimate

(Kz)(w)| < [ [k(w,0)z(w)]dv(w') < M|zl L@,z 0)
Q/
shows that K is a bounded linear operator from the space L'(Q', F',v)
to L (Q, F, ).

2.3.6 Example For /\ > 0 define Ay : BM(RT) — BM(R") by
(Axz) (1) = e 32 0 n, 2 (%) . This series converges uniformly on
all compact subintervals of RT and its sum does not exceed ||z||. Thus,
Az belongs to BM(R™) for all A > 0; in fact it belongs to BC(R™).
Moreover, Ay maps the space Co(RT) of continuous functions on R™ that
vanish at infinity into itself. To prove this, note that for any € Co(R™)
and € > 0, we may find 7' > 0 and a function z7 € Co(R™) such that
zp(T) = 0 whenever 7 > T and ||z — z7| < e. Moreover, Ayzp (1) =
ZBTA xy (%) e ()‘T,) is a finite sum of members of Cyh(RT) and we
have ||Axz — Ayzr|| < e. This proves that Ay belongs to the closure of
Co(R™), which equals Co(R™).

Finally, Ay maps the space C(R¥) of continuous functions with limit
at infinity into itself. To prove this consider an z € C(R¥) and let
k = lim; oo (7). Then x — klg+ € Co(RT) and

Ayx = A)\($ — /ﬁ?lRJr) + kA)1p+ = A)\(IE — H1R+) + klg+
belongs to C(R*), as desired.
Thus A, is a linear contraction in BM (R*), Co(R*) and C(R¥).

2.3.7 Definition Let L € £L(X,Y) be a bounded linear operator. The
number ||L|| = supy,, =1 [[Lxly, often denoted ||L||z(x,y) or simply || L],
is called the norm of the operator.

2.3.8 Example In 2 2.46 we showed that for any z € L'(RT) the
function Tz(7 fo (7 4+ o) do is continuous. Obviously,

sup [Tz(7)| < [|z]| 1 g+)-
7>0

Hence T maps L'(RT) into BC(R*) and ||T|| < 1. Moreover, Tz = x
since z(7) = e~ and ||z|| po@+) = ||2[/ L1 (®+) = 1, proving that ||T']| = 1.
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2.3.9 Exercise Let [! be the space of absolutely summable sequences
T = (§n)n21 with the norm ||z|| = Y77 | |€,]. Let

L(gn)n21 = (§n+1)n21’ R(g’ﬂ)nzl = (fnfl)rel

(& = 0, L and R stand for “left” and “right”, respectively) be translation
operators, and let I be the identity in 1. Show that ||aL + bR + cI|| =
la] + [b] + |¢|, where a,b and ¢ are real numbers.

2.3.10 Proposition  The space L(X,Y) of bounded linear operators
equipped with the norm || - ||z(x,v) is a normed linear space. Moreover,
if Y is a Banach space, then so is £(X,Y).

Proof We need to check conditions (n1)—(n4) of the definition of a norm.
(n1)—(n3) are immediate. To prove (nd) we calculate:

IL+M| = sup [[Le+ Mzlly < sup {|[Lzfly +[|Mz]v}
lellx=1 lellx=1
< sup |Lally + sup [[Mzlly = |[L] +[|M]].
lellx=1 lzllx=1

Let L,, be a Cauchy sequence in £(X,Y). For any =z € X, the sequence
Lyx is Cauchy in Y, since || L,2 — Linz|ly < ||[Ln — L 2ex,v||2]/x. Let
Lx = lim,, ., Lyx. It may be checked directly that L is a linear operator.
We repeat the argument from 2.2.15 to show that L is the limit of L,
in £(X,Y). For arbitrary € > 0 there exists an ng such that | L,z —
Lx|y < €||z]x, for n,m > ng. Taking the limit, as m — oo, we obtain
[Lnx — Lally < €|lz[x, for z € X,n > ng. Thus, sup) = [Lzlly < e+
SUP|jz =1 [ Lnzlly < 00, s0that L € L(X,Y). Also ||Lyz—Lz|ly < ellzx
for € Xis equivalent to || L — Ly | £(x,v) < €, which completes the proof.

O

2.3.11 Exercise  Assume that X,Y and Z are normed linear spaces,
and let L € £(X,Y) and K € £(Y,Z). Then the composition K o L of K
and L (in the sequel denoted simply K L) is a bounded linear operator
from X to Z and

IKLl cex,zy) < K ey 1Ll ey z)-

2.3.12 Exercise Let A;,B;,i = 1,...,n be linear operators in a Ba-
nach space and let M = max;=1_.. ,{||4:|, ||Bil|}- Then

|AnAn_1...A1 = ByBy_1..Bi| < M"' > || A; - Bill. (2.9)
i=1
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In particular, for any A and B and M = max{|Al, | B|},
JA" — B < M"'n||A - B|. (2.10)

2.3.13 Exercise Let A be a bounded linear operator in a Banach
space X, and let A” = Ao A" 1 n > 2 be its nth power. Prove that the
series >~ tnn‘?n converges for all ¢ € R in the operator topology, i.e.
with respect to norm [|- || z(x). Let €' denote its sum. Show that for any
real numbers s and t, e(*T9)4 = ¢t4es4, In other words, {e!4,t € R} is

a group of operators (see Chapter 7). We often write exp(tA) instead of
et4,

2.3.14 Exercise Let A and B be two bounded linear operators in

a Banach space such that AB = BA. Show that e!(A+5) = ¢t4etB —
ot BotA

2.3.15 Exercise  Suppose that A € £(X) is an operator such that
[I — All < 1. Then, we may define log A = —> > L(I — A)". Prove
that exp(log A) = A.

2.3.16 Exercise Under notations of 2.3.9 show that

||eaL+bR+cIH _ ea+b+c
where a,b € RT and c € R.

2.3.17 Measures as operators —In what follows BM (R) will denote the
space of bounded Borel measurable functions on R, equipped with the
supremum norm, and BC(R) its subspace composed of bounded contin-
uous functions. BUC(R) will denote the subspace of bounded uniformly
continuous functions on R, and Cy(R) the space of continuous functions
that vanish at infinity.

Given a finite measure p on (R, B(R)) we may define an operator T},
acting in BM (R) by the formula

(T,)(7) = / £(r + 5) du(s). (2.11)

Let us first check that T}, indeed maps BM (R) into itself. If 2 = 1(, 3] for
some real numbers a < b, then T,,2(7) = p(—00,b—7] — p(—o00,a — 7] is
of bounded variation and hence measurable. The class G of measurable
sets such that 7,14 is measurable may be shown to be a A-system. This
class contains a m-system of intervals (a,b] (plus the empty set). By the
Sierpinski m—\ theorem, the o-algebra generated by such intervals is a
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subset of G, and on the other hand, by 1.2.17 it is equal to the Borel
o-algebra. Hence, T,z is measurable for any = 14, where A € B(R).
By linearity of the integral this is also true for simple functions z. Since
pointwise limits of measurable functions are measurable, we extend this
result to all x € BM(R). That T,z is bounded follows directly from
the estimate given below. We have also noted that the map is linear
(integration being linear). As for its boundedness, we have

[Tzl < sup |[(T,z)(7)| < supsup |z(7 + <) |[u(R) = [|z[|u(R), (2.12)
TER TER ¢eR

with equality for 2 = 1g. Thus, ||7,|| = ©#(R) and in particular ||T),[ =1
for a probability measure ;. We note also that 7}, leaves the subspaces
BC(R) and BUC(R) invariant, meaning that 7}, maps these spaces into
themselves. The former assertion follows from the Lebesgue Dominated
Convergence Theorem, and the latter from the estimate

[(Thz)(7) = (Tuz) ()| < sup lz(r +v) —2(c + V)| u(R), 7,¢€R.

veE
Analogously, we may prove that 7, maps Co(R) into itself.

An important property of 7, (as an operator in Cy(R)) is that it
determines p, meaning that if 7, = T}, for two measures p and v, then
p = v. Indeed, T,, = T, implies in particular that for any z € Cy(R),
(T,z)(0) = (T,x)(0), ie. [padu = [pxdy, which implies = v by
1.2.20. In other words, the map p +— T}, is a linear invertible map from
BM(R) into L(BM (R)) (right now this map is defined only on a subset
of BM(R), see 2.3.20 below, however). The same is true for T, as an
operator in BUC(R), BC(R) and BM (R).

Another important property of the map p +— T, is related to the
notion of the convolution of two finite measures on R. Note that we
have:

@20 = [@ar )= [ [arr v

= [ alr+ )+ )(dp) = T, (2.13)

In words, p +— T}, changes convolution into operator composition. Func-
tional analysts say that this map is a homomorphism of two Banach
algebras (see Exercise 2.3.20 and Chapter 6).

2.3.18 Exercise  Find (a) the operator 7}, related to the normal dis-
tribution with parameters m and o, (b) the operator related to a uniform
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distribution, and (c) the operator related to the exponential distribution
with parameter A > 0.

2.3.19 Exercise Let X be a non-negative integer-valued random vari-
able. Prove that X is a Poisson variable with parameter a > 0 iff for any
bounded function g on the non-negative integers, X¢g(X) is integrable
and F Xg(X) = aFE g(X + 1). Analogously, show that X has the geo-
metric distribution with parameter p iff for all bounded functions g on
the non-negative integers with g(0) = 0, Fg(X) = qF g(X + 1), where
g=1-—p.

2.3.20 Exercise Introduce the bounded linear operator related to a
Borel charge p on R and prove that for any two such Borel charges u
and v, T, T, = T}, where

puxv=ptxvt LT xvT —pm kvt —pT T (2.14)

with obvious notation. Of course, relation (2.14) is a result of viewing a
signed measure as a difference of two positive measures and extending
the operation of convolution by linearity. Note that for all u, v € BM(R)
the operators 7}, and T, commute:

T,T, = T,T,.

In particular, taking v to be the Dirac measure at some point t € R, we
see that all T}, commute with translations. See 5.2.13 in Chapter 5 for a
converse of this statement.

2.3.21 Operators related to random wvariables If X is a random vari-
able, we may assign to it the operator T'x defined by Tx = Tp, where
Px is the distribution of X. We thus have

Txx(T):/Rx(T—i—g)]P’X(dQ:/Qx(T—i—X)dIP’:Ex(T—i—X).

Note that if random variables X and Y are independent, then Px_y =
]P)X * ]Py. ThU.S, TX+Y = TXTy.

However, while the map u — T, preserves all information about ,
T'x does not determine X. In particular, we are not able to recover any
information about the original probability space where X was defined.
In fact, as suggested by the very definition, all we can recover from T'x
is the distribution of X.

As an example, observe that the operator Ayx(7) described in 2.3.6
is related to the random variable %X ar, where X, has the Poisson
distribution with parameter Ar.
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2.3.22 Exercise Find operators related to the random variables X,
and S,, described in 1.4.6. Prove that T, = (T'x,)".

2.3.23 Measure as an operator on BM(R)  With a Borel charge ;1 on R
we may also associate the operator S, on BM(R) defined by the formula
Suv = p+v. Using (2.14) we show that ||p = v|| < ||| ||| so that S,
is bounded and ||S,|| < ||p||. Moreover, S, 69 = p where &y is the Dirac
measure at 0, proving that [|S,| = ||u||. Certainly, 5,5, = Sy

2.3.24 Exercise Find (a) the operator S, related to the normal dis-
tribution with parameters m and o, (b) the operator related to a uniform
distribution, and (c) the operator related to the exponential distribution
with parameter A > 0.

2.3.25 Borel measures as operators on a locally compact group  The
results of the foregoing subsections may be generalized as follows. For a
finite, possibly signed, measure p on a locally compact group we define
an operator S, on BM(G) as S,v = p * v. Arguing as in 2.3.23, it can
be shown that S, is a bounded linear operator with ||S,|| = ||x| and
SuSy = Spsw- )

We may also define the operators T}, and 7T, by the formulae

T,(g) = / £(hg) p( dh)

and

T,a(g) = [ x(gh)n(an).

Note that these formulae define two different operators unless G is com-
mutative. In 5.3.1 we shall see that S, is related to T}, as the operator
S’“I/ = v % p is related to Tw

For now, we need only determine where the operator T}, is defined.
It may be shown that it maps BM(G) into itself. The operator also
maps the space BUC(G) into itself. The space BUC(G) is the space
of bounded functions = on G such that for every ¢ > 0 there exists a
neighborhood U of e (the neutral element of G) such that {

|z(g1) — x(g2)| <€, whenever g1g; ' € U. (2.15)

t The space BUC(G) thus defined is actually the space of bounded functions that
are uniformly continuous with respect to the right uniform structure on G; the
space of functions that are uniformly continuous with respect to the left uniform
structure is defined by replacing glggl in (2.15) with gglgl - see [51]. We will not
distinguish between the two notions of uniform continuity because at all groups
considered in this book these two notions are equivalent.
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BUC(G) is a Banach space, and to prove that T,, maps BUC(G) into
itself it suffices to note that

Tu(91) = Tuw(g2)] < llull sup [2(g1h) = 2(g2h)]
S

and that g1h(geh)™" = g1g5 ', so that the right-hand side above does
not exceed ||p|e, if g1 and go are chosen as in (2.15).

It turns out that Cy(G) C BUC(G) and that T, maps Cy into itself.
Since the proof, although simple, requires more knowledge of topology
of locally compact spaces we shall omit it here. Besides, the techniques
used in it are not crucial here and the statement in question is obvious
in the examples we consider below.

Note finally that if g and v are two finite measures on G, then as in
(2.13), we may calculate

Ts)la) = [ o) (sv)(an) = [ [ alhanag) p(amvians)

/GTua?(hgg)u(dhg) =T,T,x(g9), v € BM(G). (2.16)

The reader will check similarly that T#*U = T#T,,.

2.3.26 Example  Consider the space BM(G) of signed measures p
defined on the Klein group G. Each measure p on G may be identified
with four real numbers a; = p({g;}), ¢ = 1,2,3,4. The norm in this
space is

al ay

4
lall = |[{ = =Y faal, = |
,Lt a3 — (2B] a3
aq a4

Treating elements of this space as differences of two positive measures
on G, we define the convolution of two charges p * v as in (2.14) and
prove that (1.12) still holds. The operator S, (v) = p * v is a bounded
linear operator given by

b1 ay a2 a3 a4 b1 ay
bo az a1 a4 a3 by ag
Sy = ) where = . (2.17)
b3 a3 a4 air a b3 as
by ag az az a by a4

What is the form of T),? A member z of Cy(G) may also be identified



72 Basic notions in functional analysis

with four numbers &; = 2(g;),% = 1,2, 3,4, but the norm in this space is
57,| Now

|zl = max;—1,2,3,4

m = @) = [ aloih)u(ah) = Y x(gigy)as.

Jj=1

Using the multiplication table from 1.2.23 we see that

m a; az a3 Qa4 &1

12 az a1 a4 a3 &2
T,x = =

73 as a4 a1 a &3

74 as az az a1 a4

Thus, except for acting in different spaces, 7, and S, are represented by
the same matrix. In general, if G is a finite but non-commutative group,
the matrix that represents S, is the transpose of the matrix of T},.

2.3.27 Example In 1.2.24 we saw that any positive measure on the
Kisynski group G may be identified with a pair of measures on R. On
the other hand, any signed measure on G is a difference of two posi-
tive measures. Hence, any charge on G may be identified with a pair of
charges on R. In other words, the space BM(G) is isometrically isomor-
phic to the Cartesian product of two copies of BM(R), with the norm
(1, 1)l = ||l + ||pe=1]|- An easy argument shows that both (1.14)
and (1.15) hold for charges as well. As a result of the latter equation

SNV =p*V= (Smyl + Sﬂ—l’/*l’ S#—1l/1 + Sﬂl”fl)v

where S, and Sj;, are operators in BM(R) related to charges y; and fi;,
i=1,—1 on R (i is defined in 1.2.24). This formula may be written in
the matrix form as

_ Sm Sﬂ71
S“ = (S g ) . (2.18)

H—1 M1
As BM(G) is isometrically isomorphic to BM(R) x BM(R), so Cy(G)
isometrically isomorphic to Cy(R) x Co(R), with the norm ||(x1,z_1)||
|21 ]|V ||z—1]| where z; € Cy(R), i = —1,1 (Exercise 2.2.38). Using (1.14)
we see that

is

T,x(&1) = /Gx(Tl + & kD) p(d(r, k)
equals

[ar+gman + o+ uaan)
R

R
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for [ =1 and

/ 1(=7 + &) pa(dr) + / oy (=7 + &) (dr)
R R

for [ = —1. Hence, using matrix notation
T T
T, = i “‘1> (2.19)
: (Tﬂ—1 Tﬂl

where T),, and T}, are operators on Cy(R) related to measures p; and
it; on R. Notice that the matrix in (2.18) is a “conjugate” matrix to
the matrix in (2.19), if we agree that the conjugate to T}, is S, for any
v € BM(R).

2.3.28 Exercise  Find the form of the operators 7T, and Su on the
Kisynski group.

2.3.29 Uniform topology versus strong topology. Weierstrass’ Theorem
Although it is nice to know that £(X,Y) is a Banach space, in applica-
tions the mode of convergence related to the norm in £(X,Y) is not very
useful. The reason is that the requirement that operators A, converge
to an operator A in the norm of L£L(X,Y) is very restrictive, and there
are few interesting examples of such behavior. More often we encounter
sequences such that ||A,z — Az|ly — 0 as n — oo for all z € X. This
mode of convergence is called strong convergence, in contrast to the
one discussed above, called convergence in the operator norm, or
uniform convergence. Indeed, convergence in the operator norm is a
strong convergence that is uniform in any ball — see the definition of the
norm in £(X,Y). See also 5.4.18 in Chapter 5.

As an example consider the space C[0,1] of continuous functions on
the unit interval, and a sequence of operators A, € L(C[0,1]),n > 1,
defined by

zn:x (j/n) () s1(1— )", (2.20)

Linearity of A,,n > 1, is obvious, and

n n . i

uell = sup (Aol < ol Y- (1) 08 = ) (220
s€1[0,1] =1 J

so that A, are linear contractions in L£(C[0,1]). Taking z(s) = 1, we

see that actually ||A|| = 1. We shall show that A, converges strongly

but not uniformly to the identity operator I. For n > 1 let z,(s) =
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0V (1—1|2ns—1|). We see that ||z,| = 1, but 2,(j/n) =0, j =0,1,...,n,
so that A,xz, = 0. Thus ||A, — I|| > ||An®n — n|| = ||zn]] = 1 and we
cannot have lim,,_, ||A, — I]| = 0. On the other hand, from (2.21) we
see that

(Anz)(s) = Ex(Xn/n)

where X, is a binomial variable B(s,n). Recall that E X,,/n = s, and
D*(X,/n) = S(ln;s) By Chebyshev’s inequality

D*(X,/n) s(1—s) 1
= < .
62 néd?  ~ 4nd?
Moreover, x, as a continuous function on a compact interval, is uniformly

continuous, i.e. for any € > 0 there exists a 6 > 0 such that |z(s)—z(t)| <
€/2 provided s,t € [0,1], |s — t| < d. Therefore,

[(Anz)(s) —x(s)] < E |o(Xn/n) —x(s)]
S E 1{\Xn/nfs|26} |a:(Xn/n) — l‘(8)|
TEL{|x,, /n—s|<s} [2(Xn/n) — x(s)]
< 2l + 5

Note that the § on the right-hand side does not depend on s but solely on
x and e. (Although the random variables X,, and the events {|X,,/n — s|
< 4} do!) Thus

€

[Anz — zf] < 2] t3

1
4né?
and our claim follows: if we want to have ||A,x — || less than €, we take
n > Ll%l.

This proves also that polynomials form a dense set in C]0, 1]; indeed
A,x is a polynomial regardless of what x is, and A,z converges to x in
the supremum norm. This is the famous Weierstrass Theorem. The
polynomials (2.20) were introduced by S. Bernstein, who also gave the
proof of the Weierstrass Theorem reproduced above, and therefore are
called Bernstein polynomials.

2.3.30 Corollary If xz € C[0,1], and fol Tx(T)dr =0, for all n > 0,
then z = 0.

Proof By 2.3.29, for any = € X, and any € > 0 there exists a polynomial
x such that ||z—z.|| < e. Our assumption implies that fol ze(T)x(T)dr =
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/01 (1) dr

0. Since

/01 2?(7)dr — /01 xe(T)x(T)dr
[ 1) stiatr) o

[ =zl [l2]] < el]],

IN

and since € is arbitrary, fol 22(7)dr = 0. Therefore, z(7) = 0 almost
surely, and by continuity, for all = € [0, 1]. O

2.3.31 Exercise Prove that Iz(7) = 2(—In ) with convention In0 =
—o0o maps C(R™) (the space of continuous functions with limit at infin-
ity) isometrically isomorphically onto C[0,1]. Conclude that the func-
tions ex(1) = e 7, A > 0 form a linearly dense subset of C(RT),
and consequently that fooo e *x(7)dr = 0, A > 0, implies x = 0, for
xz € C(RT).

2.3.32 Two linear and continuous operators that coincide on a linearly
dense subset are equal  Suppose Xg is a subset of a normed linear
space X and span Xg = X. Let L;,i = 1,2, be two linear and continuous
operators with values in a normed linear space Y. If Lix = Loz for all
z € X, then Ly = Ls.

Proof If x € spanXq, then x = Z?:l a;x; for some scalars «; € R and
vectors x; € Xg. Thus Lix = Lox by linearity of Ly and Lsy. For z € X|
we may find a sequence of vectors x,, € Xy such that lim,, .., z, = x.
Thus, L1z = Loz by continuity. |

2.3.33 Euzistence of the extension of a linear operator defined on a lin-
early dense set  Suppose Xy is a subset of a normed linear space X,
span Xo = Xg, and Xy = X. Let L be a linear map from Xg into a Banach
space Y, and suppose that there exists a constant C' > 0 such that for all
x € Xo, ||Lz|ly < Cllz||x, where || - [|x and || - ||y are norms in X and Y,
respectively. Then, there exists a unique linear and continuous operator
M : X — Y such that Lz = Mz for € X and ||Mz|y < C||z|x,z € X.
(For obvious reasons, the operator M is usually denoted simply by L.)

Proof For any x € X there exists a sequence of vectors z,, € Xy such
that lim,,_ x, = x. The sequence y,, = Lz, is a Cauchy sequence in
X, since z,, is a Cauchy sequence, because ||yn — ym|ly < Cllxn — Tm|x-
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Thus, Lz, converges to an element in Y, since Y is complete. Moreover,
the limit does not depend on the choice of the sequence x,, but solely on
x. Indeed, if for another sequence z/, we have lim,,_,o ), = z, then by
|Lay, — Ll ||y < Cllzn — 2,||x, we have limy,_,o0 Lx,, = lim, o0 La),.
We may thus put Mz = lim,,_,, Lz,. In particular, if x € Xy we may
take a constant sequence x, = x to see that Mx = Lx. The operator
M is linear: if z,y € X, then we pick sequences x,,y, € Xy such that
limy, o0 Ty, = x, limy, 00 Yn = y; by linearity of L, we have

M(az+ py) = lim L(az, + Py,) =« lim Lz, + § lim Ly,
= aMz+ My.
Similarly,

|Mally = lim | Laally < C lim [z = Cllals.
Uniqueness of M follows from 2.3.32. 0

2.3.34 Exercise Prove that if A,,n > 0 are bounded linear operators
A, € L(X,Y) such that ||4,] < M,n > 0 for some M > 0 and A,z
converges to Apx, for all  in a linearly dense set of € X, then A,
converges strongly to Ayp.

2.3.35 Definition A family A;,t € T of bounded linear operators
where T is an index set is said to be a family of equibounded opera-
tors iff there exists a constant M > 0 such that || 4] < M.

2.3.36 Definition An operator L € L(X) is said to preserve a func-
tional f € X*, if f(Lx) = f(z) for all z € X. Note that, by 2.3.32, to
check if L preserves f it is enough to prove that f(Lx) = f(z) holds on
a linearly dense set.

2.3.37 Markov operators  Let (2, F, u) be a measure space. Let Y be
an algebraic subspace of L'(Q, F, u) which is dense in L*(£2, F, u), and
such that z* = max(z,0) belongs to Y for z € Y. Suppose that P is a
linear operator in L(Y, L*(2, , u)) such that Pz > 0 and

/Pa:d,u:/xdu, (2.22)
Q Q

for all x € Y such that > 0. Then there exists a unique extension of P
to a contraction, denoted by the same letter, P € E(Ll(Q, F, p)), such
that Px > 0 if z > 0 and (2.22) holds for all z € L(Q, F, p).
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Proof Let us write # = a¥ — 27, where 27 = max(x,0) and 2~ =
max(—x,0). For z € Y, we have P(x%) — Pz > 0, since 2+ — 2 > 0.
Thus,

(Px)T = max(Pz,0) < P(x™).
Since = = (—x)", we also have

(Pz)” = (=Pz)" = [P(-2)]" < [P(-2)"] = P(2").

Therefore,

/Q Prldy = / (P2)* + (Pr) ] du < / [P(a+) + P(a~)] dp

Q

= /{2[x++x_]du=/§2|$|du~

Thus, the existence of the extension to a contraction is secured by 2.3.33.
Using linearity, we show that (2.22) holds for all « € Y, and not just for
x> 0in Y, so that the bounded linear functional F' : z — [, xdpu is
preserved on Y, and thus on LY(Q, F, u1).

It remains to show that Px > 0ifz > 0. If x > 0 and z,, € Y converges
to x, then xz;} belongs to Y and ||z — ;7 || 110,70 < |2 — 2nllLr .7 0
(since f{wnSO} |z — 2, dp = f{xngo}(x +z,) dp > f{wngo} xdp). Thus,
Pz >0 as a limit of non-negative functions z;'. U

2.3.38 Remark In 2.3.37, we may take Y to be the algebraic subspace
of simple functions. If 4 is finite, we may take Y = L?(Q, F, u1).

2.3.39 Definition  Suppose L'(Q,F,u) is a space of absolutely in-
tegrable functions on a measure space (Q,F,u). A linear map P :
LY(Q, F,p) — LY(Q, F, p) such that

(a) Pz >0 for z >0,
b Pxdy = [,xdp for x >0
(d) Jq p=Jozdu

is called a Markov operator. As we have seen, Markov operators are
linear contractions. Condition (b) implies that Markov operators pre-
serve the integral (which is a linear functional on L!(Q, F, p)).

2.3.40 Exercise Let y be a non-negative element of L!(R, M, leb)
such that [ ydleb = 1. Prove that P, defined on L'(R, M, leb) by P,z =
y * x is a Markov operator.
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2.3.41 Example The operator from 2.3.26 is a Markov operator in
the space L'(G) of absolutely integrable functions with respect to the
counting measure on the measure space 2 = G composed of four ele-
ments, provided g is non-negative and its coordinates add up to one. In
other words, S, = u*v is a Markov operator provided p is a probability
measure.

Observe that the space L'(G) coincides with the space BM(G) of
signed measures on G, since all measures on G are absolutely continuous
with respect to the counting measure.

2.3.42 Exercise Provide a similar example of a Markov operator on
the space L' (G) of functions that are absolutely integrable with respect
to Lebesgue measure on the Kisynski group G; here we treat G as two
parallel lines both equipped with one-dimensional Lebesgue measure.

2.3.43 Exercise Let k(7,0) ba a non-negative function on R? such
that [ k(7,0) do = 1, for almost all 7. Prove that the operator K defined
on LY(R, M,leb) by Kz(r) = [k(r,0)do is a Markov operator.

2.3.44 Exercise Let (2, F,u) be a measure space and let f be a
measurable map into a measurable space (2, F’). Find a measure p’ on
(¥, F') such that the operator P : L' (Y, F' /) — LY (Q, F,u) given
by (Px)(w) = z(f(w)), w € Q, is Markov. For another example of a
Markov operator, see 3.4.5 below.

2.3.45 Campbell’s Theorem  We often encounter operators that map
the space L'(Q,F, 1) into the space of integrable functions on another
measure space (', F’ ). If the operator P maps (classes of) non-
negative functions into (classes of) non-negative functions and the rela-
tion [, Pxdy’ = [,z dp holds we shall still call P a Markov operator.
Here is a famous example. Let (€2, F,P) be a probability space where a
sequence X, of independent exponentially distributed random variables
with parameter a is defined. Let S,, = Z?Zl X;. Sp has the gamma
distribution with parameters n and a. For any absolutely integrable
function z on the right half-axis, let (Pz)(w) = >, 2(Sp(w)). P is
a Markov operator mapping the space L!'(R*, M(RT),a - leb) of func-
tions that are absolutely integrable with respect to Lebesgue measure
multiplied by a (with the norm ||z|| = a [ |z(s)|ds) into L'(2, F, P). No-
tice that for two functions, say = and y, from the same equivalence class
in LY(RT, M(RT),a-leb) the values of Pz and Py evaluated at some w
may differ. Nevertheless, we may check that P maps classes into classes.
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We leave the proof as an exercise. It is clear that P maps non-negative
functions into non-negative functions. Moreover, for non-negative z,

[wawan— [ 3 (S0 () dw

n=1

ntn—l

:/Oooge—at(i_l)!x(t)dt:/Ooox(t)adt.

We have proved a (small) part of Campbell’s Theorem — see [41, 66].
We shall come back to this subject in 6.4.9.

2.3.46 Exercise Consider the operator D that maps the joint distri-
bution of two random integer-valued variables into the distribution of
their difference. Extend D to the whole of [1(Z x Z), where Z x Z is
equipped with the counting measure, find an explicit formula for D, and
show that this operator is Markov.
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Conditional expectation

The space L?(Q, F,P) of square integrable random variables on a proba-
bility space (2, F,P) is a natural example of a Hilbert space. Moreover,
for X € L?(Q, F,P) and a o-algebra G C F, the conditional expectation
E(X|G) of X is the projection of X onto the subspace of G measurable
square integrable random variables. Hence, we start by studying Hilbert
spaces and projections in Hilbert spaces in Section 3.1 to introduce con-
ditional expectation in Section 3.2. Then we go on to properties and
examples of conditional expectation and all-important martingales.

3.1 Projections in Hilbert spaces

3.1.1 Definition A linear space with the binary operation XxX — R,
mapping any pair in Xx X into a scalar denoted (z, y), is called a unitary
space or an inner product space iff for all x,y,z € X, and o, 0 € R,
the following conditions are satisfied:

as—f—y,z) = (.%',Z) + (y,z),
ax,y) = az,y),

The number (x,y) is called the scalar product of x and y. The
vectors x and y in a unitary space are termed orthogonal iff their
scalar product is 0.

3.1.2 Example The space [? of square summable sequences with the
scalar product (z,y) = Y2, &1y is a unitary space; here z = (&,),,51
Y = (Mn)p>1- The space Cjp 1) of continuous functions on [0, 1] with

80
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the scalar product (z,y) fo s)ds is a unitary space. Another
important example is the space L2(Q ]—' u) where (2, F,p) is a mea-
sure space, with (z,y) = fQ xydp. The reader is encouraged to check
conditions (s1)—(s5) of the definition.

In particular, if 4 is a probability space, we have (X,Y) = E XY. Note
that defining, as customary, the covariance of two square integrable ran-
dom variables X and Y as cov(X,Y) = E(X — (EX)1g)(Y —(EY)lq)
we obtain cov(X,Y) = (X,Y) - EXFEY.

3.1.3 Cauchy—Schwartz—Bunyakovski inequality ~ For any x and y in a
unitary space,

(z,9)? < (z,2)(y, y).

Proof Define the real function f(t) = (x + ty, x + ty); by (s3) it admits
non-negative values. Using (s1)—(s2) and (s5):

Ft) = (z,2) + 2t(z, y) + (3, y); (3.1)
so f(t) is a second order polynomial in ¢. Thus, its discriminant must be
non-positive, i.e. 4(x,y)? — 4(x, z)(y,y) < 0. O

3.1.4 Theorem A unitary space becomes a normed space if we define
||lz|| = v/ (z,x). This norm is often called the unitary norm.

Proof (nl) follows from (s3), and (n2) follows from (s4). To show (n3)
we calculate:

laz|l = /(az, az) = v/a2(z,2) = |al/(z,2) = |a] ],

where we have used (s2) and (s5). Moreover, by (3.1) and 3.1.3,

o+ yl? = (z,2) +2(z,y) + (y,9) < > + 2]z [yl + 9],
as desired. O

3.1.5 Example In the case of L?(Q, F, 1) the norm introduced above
is the usual norm in this space, ||z||* = [, 2% dp.

3.1.6 Law of large numbers. First attempt Suppose that X, are iden-
tically distributed, uncorrelated, square integrable random variables in
a probability space (2, F,P), i.e. that cov(X;, X;) = 0 for ¢ # j. Then
Sn — HttXn converges in L2(€, F,P) to (E X)lg.

n
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Proof It suffices to note that the squared distance between % and

(EX)lqg equals [|[£ 3" | (X; — (E X)1q)||?, which by a direct compu-
tlati20n based on assumption of lack of correlation equals 2z Y% | 0% =
EUX1 . ]

3.1.7 Remark Note that the Markov inequality implies that under
2
the above assumptions, for any € > 0, IP’(|*%" —EX|>¢€ < 7x

ne
zero. This means by definition that 2= converges to E X in probability

(see Chapter 5).

tends to

3.1.8 Parallelogram law  In any unitary space H,
lz + ylI* + llz = ylI* = 2[||z[|* + [ly]1?],

where x,y € H, and || - || is a unitary norm.

Proof Taket=1and t = —1 in (3.1) and add up both sides. O

3.1.9 Exercise (polarization formula) In any unitary space

2+ yl* — ||z —y|?
(2,y) = | | - | I*

3.1.10 Definition Let H be a unitary space, and let ||-|| be the unitary
norm. If (H, ||-]]) is a Banach space, this pair is called a Hilbert space.
Again, quite often we will say that H itself is a Hilbert space. A leading
example of a Hilbert space is the space L%(Q, F, 1) where (Q, F, ) is a
measure space.

3.1.11 Euzistence of the closest element from a closed conver set  Let
C be a closed convex subset of a Hilbert space H, and let « ¢ C. There
exists a unique element y € C, such that

—yl|=d:= inf ||z — z|.
Iz~ yll = d = ing flo — =]

Proof For any z, 2" € C, we have by 3.1.8,

Iz =2'1* = l(z — ) + (z — 2)|]?
=2 — 112 — 2P} — [z 4 — 2]
z+ 2 2
2 —IH
< 2{lz —z|® + ||z — ||} — 4d, (3.2)

=2{llz —a|® + Iz — =]*} - 4
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since %‘ZI belongs to C. By definition of d there exists a sequence z,, € C,
such that lim, . ||z, — z|| = d. We will show that z, is a Cauchy
sequence. Choose ng such that ||z, —z||* < d?+£, for n > ng. Then, using
(3.2) with 2z = z, 2’/ = 2z, we see that for n,m > ng, ||z, — zm|* <€,

which proves our claim. Define y = lim, . 2,; we have ||z — y| =
lim,, oo ||& — 2n|| = d. Moreover, if ||y’ — z|| = d, then (3.2) with z =y
and 2z’ =y’ shows that ||y —y'|| = 0. O

3.1.12 Ezistence of projection  Let Hj be a subspace of a Hilbert space
H. For any « in H, there exists a unique vector Px € Hj such that for
any z € Hy, (x — Pz, z) = 0. Px is called the projection of x in Hj.

Proof If x belongs to H; we take Px = x, and it is trivial to check that
this is the only element we can choose. Suppose thus that = ¢ H; and
put Pz = y where y is the element that minimizes the distance between
x and elements of H;. Let z belong to H;. The function

F#) =llz =y +tel* = |z — yl* + 2t(2, 2 — y) + || 2],

attains its minimum at t;, = 0. On the other hand ¢, = — Q‘I(;fy_”%) )

that (z — y,z) = 0. Suppose that (z — ¢, z) = 0 for some y' in H; and
all z € Hy, and y # y'. Then

lz—yll> ===y P +2(x -y, ¥ —y)+ Iy —y|* = llz— ' II>+ Iy -yl

since y' — y belongs to Hy. Thus ||z — y|| > ||z — ¢'||, a contradiction.
O

3.1.13 Corollary  Under assumptions and notations of 3.1.12, for all
z,y € X and o, f € R, P(ax + fy) = aPx + Py, and || Pz| < ||z]. In
other words, P is a linear contraction.

Proof For the first part it suffices to show that (ax + Sy — aPx —
BPy,z) = 0 for z € Hj, but this follows directly from the definition of
Pz and Py and conditions (s1)—(s2) in 3.1.1. To complete the proof note
that ||z|? = ||z — Px||? + 2t(x — Pz, Pz) + || Px|? = ||z — Px||* + || Pz

O

3.1.14 Exercise Show that for any projection P, | P|| = 1.

3.1.15 Corollary Let H; be a proper subspace of a Hilbert space H.
There exists a non-zero vector y € H such that (y,z) = 0 for all z € Hj.
We say that y is perpendicular to Hj.
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3.1.16 Exercise Let H; be the subspace of a Hilbert space H. Define
H; as the set of all y such that (x,%) = 0 for all € H;. Prove that Hj-
is a subspace of H and that any z € H may be represented in a unique
way in the form z = o + y where 2 € H; and y = Hj. Also, if P is the
projection on H; then I — P is the projection on Hj-.

3.1.17 Example Let H = L?(Q,F,P) and H; = L?(Q,G,P) where G
is a sub-c-algebra of F. If X € L?(Q, F,P) is independent of G then for
any Y € L?(Q,G,P) we have EXY = EX - EY. Hence, X — (E X)1gq
is perpendicular to L?(Q, G, P). In particular, (E X)lg is the projection
of X onto L?(,G,P). Example 1.4.9 shows that it may happen that
X — (E X)1gq belongs to L?(2,G,P)* and yet X is not independent of
g.

3.1.18 Properties of projections Let H; and Hs be subspaces of a
Hilbert space H, and let P;,7 = 1,2, denote corresponding projection
operators. H; C Hy iff ||Piz|| < ||Pyz| for all z € H. In such a case
P1P2 = P2P1 = Pl-

Proof For any = € H, ||z]|?> = || — Piz||*> + ||Piz||? since z — Pz
is perpendicular to Piz. Similarly, ||z]|? = ||z — Px|* + || Pz||?. By
definition, Pox is the element of Hy that minimizes the distance between
x and an element of this subspace. Hence if H; C Hy then |z — Pax|? <
|z — Piz||?, and so ||Piz||* < || P2z||?. Conversely, if the last inequality
holds, then for x € Hy,

|z = Pz || = laf| = [ Poarl|® < [l| = | Pra|® = ||l — Pra|® = 0,

proving that x = Pox € Hs.

If Hy C H,, then P,P, = P, since Pix € H; C Hs for any x € H.
To calculate P; P, note that Pjx belongs to H; and for any z € Hy,
(Pox — Pz, 2) = (Pax — z,2) + (x — Piz,2). Now, (Pax — z,2) = 0
since z € Hy, and (x — Pix,z) = 0 since z € H;. This implies that
Pla? = P1P2.7,‘. |

3.1.19 Definition A bounded linear operator A in a Hilbert space H
is said to be self-adjoint (see 5.3.1) if for any z and y in H, (Az,y) =

(z, Ay).

3.1.20 Example Let H be the space R” with the norm [|(&;)i=1, .|| =
Vi, €. A linear operator in this space may be identified with the
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nxn matrix (o ;)i j=1,..» With e ; being the ith coordinate in the vec-
tor A(d;,j)i=1,....n- Such an operator is self-adjoint if the corresponding
matrix is symmetric (see the proof of Theorem 4.1.3).

3.1.21 Exercise Prove that for any projection P and vectors x and
y in H we have

(Pl‘,y) = (PJ:,Py) = (x,Py); (33)

in particular, projections are self-adjoint.

3.1.22 The norm of a self-adjoint operator Let A be a self-adjoint
operator in a Hilbert space H. Then [|A|| = sup) =, [(Az, 2)].

Proof Denote the supremum above by ||Al|o. By the Cauchy inequality,
[[Allo < supjzy=1 [|All llz[| = ||A]. To prove the converse fix = € H such
that Az # 0 and ||z]| =1, and let y = mAx. Then

| Az] = (Az,9) = 5[(Az,5) + (z, Ay)]

(A +y),z +y) — (Alz —y), — y)]

IN

1
4
1 2 2 1 2 2
71 Allolllz +ylI* + lla = ylI°] = Sl Allo[lll1” + [ly17]-

Hence, || A|| = supy,1 [ Az]| < supyg =y 5llAllollz]* + llyl*] = [|Allo,
since ||ly|| = 1. O

3.1.23 A characterization of a projection operator ~ We have seen that
any projection P is self-adjoint and that P2 = P. The converse is also
true: if P is a self-adjoint operator in a Hilbert space H and if P? = P
then H; = Range P is a subspace of H and P is the projection on Hj.

Proof Certainly, H; is an algebraic subspace of H. By definition, if x,,
belongs to H; then there exists y, in H such that Py, = x,. Hence
if x, converges to an x then the calculation Px = lim, .. Pz, =
limy, — 00 P2y, = limy,—o0 Py, = lim, o &, = x, proves that x belongs
to H;. Therefore, H is a subspace of H.

Let P; be the projection on H;. By 3.1.16 it suffices to show that
Pz = Px for all x € H; and for all x € H% The first claim is true since
for x € H; both Pixz and Pz are equal to x. Since Pyx = 0 for all Hll
we are left with proving that Pz = 0 if = belongs to Hji . For such an x,
however, we have ||Pz||? = (Pz, Pr) = (z, P2x) = (x, Px) = 0 since Pz
belongs to Hy. |
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3.1.24 Exercise Suppose that P; and P, are two projections on the
subspaces H; and Hs of a Hilbert space H, respectively. Prove that the
following conditions are equivalent:

(a) PPy = PP,
(b) Py = P + P, — P, P, is a projection operator,
(¢) Py = Py P, is a projection operator.

If one of these conditions holds, then H; + Hs is a subspace of H and Ps
is the projection on this subspace, and Py is a projection on H; N H,.

3.1.25 Example Suppose that G; and G, are independent o-algebras
of events in a probability space (2, F,P). Let P; and P5 denote the pro-
jections in L?(Q, F,P) on the subspaces L?(Q,G1,P) and L?(€, Go, P),
respectively. For any X in L?(Q, F,P), P, X is G; measurable and so by
Exercise 3.1.17, PP/ X = (FE X) 1q. Similarly, PP, = (E X) 1g. Thus
Hy = L*(9,G1,P) + L?(Q,Gs,P) is a subspace of L?(Q2,F,P), and in
particular it is closed. The projection on this subspace is the operator
P1 + P2 — P1 PQ.

3.1.26 Direct sum  Another important example is the case where H; N
Hs contains only the zero vector. In this case, Hy + Hs is termed the
direct sum of H; and Hs. The representation of an x € Hy + Hy as the
sum of vectors 1 € Hy and x5 € Hs is then unique.

3.1.27 Exercise Show that in the situation of 3.1.25, the A-system of
events A such that 14 € L?(Q,G1,P) N L?(Q, Go,P) is trivial, i.e. that
P(A) equals either 0 or 1. In particular, if P is complete, G is a o-algebra.

3.1.28 The form of a bounded linear functional on a Hilbert space
Suppose that H is a Hilbert space and f is a linear and continuous
functional on H. There exists a unique y € H such that f(z) = (z,y).
In particular ||z|| = || f]].

Proof Suppose that for y,y’ € H we have (z,y) = (z,y’) for all € H.
Put z = y — ¢/, to see that ||y — ¢’|| = 0, which implies the uniqueness
assertion.

Next, consider Ker f = {« € H|f(x) = 0}. This is a linear subspace of
H, since f is linear and continuous. If Ker f = H, we put y = 0. In the
other case, there exists a z ¢ Ker f. The non-zero vector yp = z — Pz is
our candidate for y. (Just think: if we really have f(z) = (z,y) then y is
orthogonal to Ker f.) If this is to work, we must have (z — Pz,z— Pz) =
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llvoll?> = f(yo). If this formula does not hold, a little scaling will do the
job: specifically, we take y = tyg where t = ‘f(yﬁg so that [|y||? = f(y).
It remains to prove that f(z) = (z,y) for all z € H. Take x € H, and

write z = (x — ”;ﬁg y) + ﬁ;fﬁg y. The first term belongs to Ker f, which

is orthogonal to y. Thus, (z,y) = (H@SHZy’ y) = f(z). Finally, |f(z)] <
[z[lllyll shows that || f]| < ||z, and [|z]|* = (z,z) = f(z) < | fIll=] gives
[zl < IF1- O

3.2 Definition and existence of conditional expectation

3.2.1 Motivation Let (2, F,P) be a probability space. If B € F is such
that P(B) > 0 then for any A € F we define conditional probability
P(A|B) (probability of A given B) as

P(AN B)

BAIB) = 515

(3.4)

As all basic courses in probability explain, this quantity expresses the
fact that a partial knowledge of a random experiment (“B happened”)
influences probabilities we assign to events. To take a simple example,
in tossing a die, the knowledge that an even number turned up excludes
three events, so that we assign to them conditional probability zero, and
makes the probabilities of getting 2,4 or 6 twice as big. Or, if three balls
are chosen at random from a box containing four red, four white and
four blue balls, then the probability of the event A that all three of them
are of the same color is 3@) / (132) = % However, if we know that at least
one of the balls that were chosen is red, the probability of A decreases
and becomes (g) [(132) - (2)]*1 = 130 By the way, if this result does not
agree with the reader’s intuition, it may be helpful to remark that the
knowledge that there is no red ball among the chosen ones increases the
probability of A, and that it is precisely the reason why the knowledge
that at least one red ball was chosen decreases the probability of A.
An almost obvious property of P(A|B) is that, as a function of A, it
constitutes a new probability measure on the measurable space (2, F).
It enjoys also other, less obvious, and maybe even somewhat surpris-
ing properties. To see that, let B;,;i = 1,....,n,n € N be a collection
of mutually disjoint measurable subsets of € such that (JI_, B; = Q
and P(B;) > 0. Such collections, not necessarily finite, are often called
dissections, or decompositions, of ). Also, let A € F. Consider all
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functions Y of the form
Y =) bilp, (3.5)
i=1

where b; are arbitrary constants. How should the constants b;,i =1,...,n
be chosen for Y to be the closest to X = 147 The answer depends, of
course, on the way “closeness” is defined. We consider the distance

AY.X) = [V = XRE =Y - Xlpore (30
Q

In other words, we are looking for constants b; such that the distance
Y — X||£2(0,7,p) is minimal; in terms of 3.1.12 we want to find a pro-
jection of X onto the linear span of {1p,,7 = 1,...,n}. Calculations are
easy; the expression under the square-root sign in (3.6) is

Z/ (Y —14)% dP Z/ (b —14)% dP
i=1 7 Bi i=1/Bi

= > [0P(Bi) — 2bP(B; N A) + P(A)] ,

i=1

and its minimum is attained when b; are chosen to be the minima of the
binomials b?P(B;) — 2b;P(B; N A) + P(A), i.e. if
b P(AN B;)
" P(By)
Now, this is very interesting! Our simple reasoning shows that in or-
der to minimize the distance (3.6), we have to choose b; in (3.5) to be
conditional probabilities of A given B;. Or: the conditional probabilities
P(A|B;) are the coefficients in the projection of X onto the linear span
of {1p,,% =1,...,n}. This is not obvious from the original definition at
all.
This observation suggests both the way of generalizing the notion of

= P(A|B;). (3.7)

conditional probability and the way of constructing it in much more
complex situations. Why should we look for generalizations of the no-
tion of conditional probability? First of all, the definition (3.4) is valid
only under the condition that P(B) > 0, which is very unpleasant in
applications. Secondly, we want to have a way of constructing condi-
tional probability of random variables more complex than X = 14 (in
such cases we speak of conditional expectation). Lastly, we want to
have a way of constructing conditional expectations with respect to o-
algebras.
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To understand the modern concept of conditional expectation, the
reader is advised to take notice that our analysis involves a fundamen-
tal change in approach. Specifically, instead of looking at P(A|B;),i =
1,...,n separately, we gather all information about them in one func-
tion Y. In a sense, Y is more intrinsic to the problem, and, certainly, it
conveys information in a more compact form. Thus, the modern theory
focuses on Y instead of P(A|B;).

The function Y defined by (3.5) and (3.7) is a prototype of such a
conditional expectation; it is in fact the conditional expectation of X =
14 with respect to the o-algebra G generated by the dissection B;,i =
1,2,...,n. Let us, therefore, look closer at its properties. Notice that
while X is measurable with respect to the original o-algebra F, Y is
measurable with respect to a smaller o-algebra G. On the other hand,
even though Y is clearly different from X, on the o-algebra G it mimics
X in the sense that the integrals of X and Y over any event B € G are
equal. Indeed, it suffices to check this claim for B = B;, and we have

/de:/ P(A|Bi)dP:IP(AmBi)=/ 14 dP.

It suggests that the notion of conditional expectation should be con-
sidered in L*(, F,P) rather than L?(2, F,P) and leads to Definition
3.2.5 below. Before it is presented, however, the reader should solve the
following two exercises.

3.2.2 Exercise Let X be an exponential random variable. Check to
see that P(X >t + s|X > s) = P(X > t), where s,¢t > 0. This is often
referred to as the memoryless property of the exponential distribu-
tion. Prove also the converse: if a non-negative random variable T has
the memoryless property, then it is exponential.

3.2.3 Exercise Let B;,i > 0 be a decomposition of {2, and let A and
C with P(C) > 0 be two events. Show that P(A) =) ., P(A|B;)P(B;)
(the total probability formula) and P(A|C) = 3=, P(A|B; N C)P(B;|C),
where we sum over all 4 such that P(B; N C) > 0.

3.2.4 Exercise It is interesting to note that the reasoning presented
at the beginning of 3.2.1 does not work in the context of the spaces
LP(Q, F,P) where 1 < p < oo and p # 2. To be more exact, prove that
(a) for 1 < p < 00, p # 2, the minimum of the distance || X =Y || 1» 0,7 p)

is attained for b; = [P(ANB,)]7/ ([P(AN By)]7T + [P(A° N B)}77 ),
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(b) for p = 1, b; must be chosen to be equal 1 or 0 according as P(AN
B;) > P(APNB)) or P(ANB;) < P(ASNB;); if P(ANB;) = P(ANB;) the
choice of b; does not matter as long as 0 < b; < 1, and (c) for p = oo the
best approximation is b; = % for any A and B; (unless the probability
of the symmetric difference between A and one of the events B; is zero).

3.2.5 Definition Let (Q, F,P) be a probability space, X belong to
LY(Q,F,P), and G C F be a o-algebra. A variable Y € L'(Q,G,P) such
that for all A € G,

AXﬂ:AYW (3.8)

is termed the conditional expectation (of X with respect to G) and
denoted E(X|G). In words: the operator P : X — E(X|G) is a Markov
operator in L'(Q, F,P), with values in L}(Q,G,P) C LY(Q,F,P), that
preserves all functionals Fs : X — [ 4 X dP where A € G. Note that
E(X|G) depends on P as well (see e.g. 3.3.11 and 3.3.12, below) and if we
want to stress that dependence we write Ep(X|G). For X € L1(Q, F,P)
and a random variable Y we define E(X|Y) as E(X|o(Y)). By the Doob—
Dynkin Lemma 2.1.24 E(X|Y) = f(Y) for a Lebesgue measurable func-
tion f. The conditional probability P(A|G) is defined as E(14|G). Note
that P(A|G) is not a number, but a function (to be more specific: a class
of functions).

3.2.6 Theorem Forany X € L!(Q, F,P), the conditional expectation
exists. Moreover, the map P : X — E(X|G) is a Markov operator and,
when restricted to L?(Q2, F,P), is a projection onto L?(2,G,P).

Proof Let X € L?(Q,F,P), and Y = PX be the projection of X on the
subspace L?(Q2,G,P). For any Z € L*(Q,G,P), (X — PX,Z) = 0, i.e.
Jo(X = PX)ZdP = 0. Taking Z = 14, A € G we obtain (3.8). We have
thus proved existence of conditional expectation for X € L*(Q,F,P).
By 2.3.37-2.3.38, we will be able to extend the operator P to a Markov
operator on L'(Q, F,P) if we prove that P maps non-negative X €
L?(Q, F,P) into a non-negative PX. Moreover, by 2.3.37, the extension
of P will preserve the integrals over A € G. Therefore, we will be done
once we show the claim about images of non-negative X € L?(Q, F,P).

Let X € L?(Q,F,P) and X > 0. Assume the probability of the event
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A = {w|PX(w) < 0} is not zero. Since

A= U Ay = U{w|PX < f%},

n=1

we have P(A,) = § > 0 for some n > 1. Thus, since 4,, € G we have by
(3.5),

—§>/ PXdIP:/ XdP >0,
n A, An

a contradiction. O

3.3 Properties and examples

3.3.1 Theorem Let o,08 € R, X,Y and X,,, n > 1, belong to the
space L'(Q, F,P), and let H,G, H C G be sub-c-algebras of F. Then,

(a) E(X|G) is G measurable,

(b) [,E(X|G)dP = [, XdP, for A € G,

() EIE(X|0)] = EX,

(d) E(aX + BY|G) = aE(X|G) + SE(Y|0),
(e) E(X|G) >0if X >0,

(f) E|E(X|G)| < E|X]|, or, which is the same:

IEX[9) 1 .7,p) < 1 X1 ,7.p),

(¢) E(E(X|9)[H) = E(E(X[H)|G) = E(X|H),

(h) E(X|G) = (E X)1g if X is independent of G,

(i) if X is G measurable, then E(X|G) = X; in particular, E(1o|G) = 1q,
(j) if G and H are independent then E(X|o(GUH)) = E(X|G)+E(X|H)—

(E X)1gq; if, additionally, X is independent of H then E(X |0(GUH)) =
E(X]9),
(k) if lim, oo X, = X in LY(Q,F,P), then lim, .. E(X,|G) = E(X|G)
in L1(Q,G,P),
1) [E(X|9)] <E(|X]]9),
(m) if X,, > 0and X, /X (a.s.), then E(X,|G) / E(X|G),
(n) if XY is integrable, and X is G measurable, then

E(XY|G) = XE(YG),

(o) X isindependent of G iff for any Lebesgue measurable function f such
that f(X) € LH(Q, F,P), E(f(X)|G) = (Ef(X))la.
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(p) If ¢ is convex and ¢(X) is integrable, then
H(E(X]0)) < E(G(X)|G).
Conditions (d)—(e),(g)—(k), and (m)—(p) hold P a.s.

Proof (a)—(b) is the definition, repeated here for completeness of the list.
It is worth noting here in particular that (a)-(b) imply that E(X|G) €
LY(Q, F,P). (d)—(f) have already been proved. (c) follows from (b) on
putting A = Q.

(g) If we introduce the notation P, X = E(X|G), P.X = E(X|H), (g)
reads PLP, X = P,PX = P,X. Our claim follows thus by 3.1.18, for
X € L?(Q, F,P). To complete the proof we apply 2.3.33 and 2.2.41.

(h) By density argument it suffices to show that our formula holds for
all square integrable X. This, however, has been proved in 3.1.17.

(i) The first part is obvious by definition. For the second part note
that 1g is G measurable for any G.

(j) Again, it is enough to consider square integrable X. Under this
assumption the first part follows from Example 3.1.25 and the second
from (h).

(k) By (£),

IE(Xn|9) — E(X|G)|L1@op) < Xn = XllL1(2.7.p)-
(1) Apply (e) to |X| £ X and use linearity.
(m) By (e), E(X,|G) / to some G measurable Y (be careful, these
inequalities hold only a.s.!) Moreover, for A € G,

/Yd]P’: lim [ E(X,|G)dP = lim Xnd]P’:/Xd]P’.

This implies that Y € L'(Q,G,P), and Y = E(X|G).

(n) This result may be proved by considering indicator functions first,
and then applying linearity and continuity of conditional expectation.
Let us, however, take another approach and prove that (n) is actually
(i) in a different probability space.

Note that we may assume that ¥ > 0. Let P¥ be the probability
measure in {Q, F} defined by P*(A) = ¢ [, Y dP, where k = [, Y dP.
A random variable Z on Q belongs to L'(Q, F,P%) iff ZY belongs to
L'(Q, F,P), and we have

/Zd[@ﬁ = %/ZYdIP’.
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For Ae g,

PH(A) = %/AEpmg)dP;

i.e. the restriction of P¥ to G has a density tEp(Y|G). As above, a
G measurable random variable Z belongs to L'(Q,G,P#) iff ZEp(Y|G)
belongs to L(£2,G,P), and we have

/deﬂ = %/ZEP(YW) dP.

By assumption, X € L'(Q, F,P!). Let Z = Ep:(X|G). We have

/Zdﬂvﬁ:/XdPﬁ, Aeg.
A A

The right-hand side equals % f 4 XY dP, and since Z is G measurable,
the left-hand side equals ¢ [ ZEp(Y|G)dP. Moreover, ZEp(Y|G) is G
measurable. Thus Ep(XY|G) equals ZEp(Y'|G). Furthermore, Z = X
(P* a.s.), X being G measurable. Therefore, Ep(XY|G) = XEp(Y|G) P
a.s., since if P¥(A) = 0, for some A € G, then either P(4) =0, or Y =0
on A (P a.s.); and in this last case Ep(Y|G) =0 (P a.s.).

(0) The necessity follows from (h), f(X) being independent of G if X
is. If X is not independent of G, then there exist sets A € o(X),B € G
such that P(AN B) # P(A)P(B). Let f = 1¢, where X 1(C) = A. We
have f(X) =14, so that Ef(X) = P(A)lq. Taking B introduced above
we have [,P(A)lgdP = P(A)P(B) while [, f(X)dP = [514dP =
P(A N B). Thus

E(f(X)|G) # (Ef(X)1a.

(p) If ¢ is linear, (p) reduces to (d). In the other case, for ¢ € Sp, (see
1.5.6 for notations), we have ¢(X) < ¢(X), thus

Y(E(X]9)) = E((X)|9) < E(¢(X)[9),

almost surely. Since Sy is countable, the set of w €  where the last
inequality does not hold for some ¥ € S also has probability zero.
Taking the supremum over ¥ € Sy, we obtain the claim. |

3.3.2 Remark Point (h) above says that conditioning X on a o-
algebra that is independent from o(X) is the same as conditioning on
a trivial o-algebra {,0}. This is related to the so-called 0-1 law; see
3.6.11. Condition (g), called the tower property, is quite important and
useful in proving results pertaining to the conditional expectation. Note
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that (¢) may be viewed as a particular case of (g). Condition (p) is called
Jensen’s inequality; note that (f) is a particular case of (p) for ¢(t) = |¢|.

3.3.3 Conditional expectation in LP(Q, F,P) Let X bein LP(Q, F,P)
where p > 1 and G be a sub-c-algebra of F. By the Holder inequality,
X € LYQ,F,P), too, and so E(X|G) exists. By Jensen’s inequality
[E(X|G)|P < E(]X|P|G). Therefore,

[Eexigrae < [E(xpig)ar = [1x1ap = |1X]3,.

This shows that E(X|G) € LP(Q, F,P) and that conditional expectation
is a contraction operator from LP(§2, F,P) to LP(Q, F,P).

3.3.4 Exercise In 3.2.1 we have seen that if G is generated by a finite
dissection (B;)i=1,...n, then E(X|G) = " | b;1p, where X = 14,b; =

]P(]P,?gj_g)”). Prove that for X € L(Q, F,P) the formula is the same except
that b; = P(#B) [ X dP.

3.3.5 Example A die is tossed twice. Let X;,7 = 1,2, be the number
on the die in the ith toss. We will find E(X;]|X; + X2). The space Q is a
set of ordered pairs (7,7), 1 <14,j < 6. 0(X7 + X2) is generated by the
dissection (B;)i=2,... .12 where B; is composed of pairs with coordinates
adding up to 7. In other words B; are diagonals in the “square” 2. We
have

12
1
E(X1| X1+ Xo) =Y bilp, bi= ]P(B)/B X, dP.
i=2 ¢ i

For example by = 1; which means that if X; + X5 = 2, then X; = 1.
Similarly, bs = %, which can be interpreted by saying that if X7+ X5 = 3,
then X; =1 or 2 with equal probability. Similarly, bs = 4, which means
that the knowledge that X; + Xy = 8 increases the expected result on
the first die.

3.3.6 Exercise Let B;,i = 1,2,..., be an infinite dissection of (2.
Consider A € F, and functions of the form

¢=> bilp,. (3.9)
1=1

What are necessary and sufficient conditions for ¢ € L*(Q2,F,P) (in
terms of b;)? Choose b; in such a way that the distance in (3.6) is min-
imal. Check to see that ¢ with such coefficients belongs to L?(€2, F,P)
and satisfies fBi 14dP = fBi ¢ dP.
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3.3.7 Exercise Imitating the proof of the Cauchy—Schwartz— Bunya-
kovski inequality (see 3.1.3) show that

E(XY|G)* <E(X?}G)E(Y?G) Pas, (3.10)

for X,Y € L*(Q, F,P).

3.3.8 Exercise State and prove analogs of the Lebesgue Dominated
Convergence Theorem and Fatou’s Lemma for conditional expectation.

3.3.9 Exercise Prove the following Markov inequality (c.f. 1.2.36):

1
P(X > alG) < EIE(X|Q), a>0,X>0Pas.

3.3.10 Exercise Let VAR(X|G) = E(X?|G) — E(X|G)?. Show that
D*(X) = E[VAR(X|G)] + D*[E(X|G)].

In calculating conditional expectation, quite often the difficult part is
to guess the answer; checking that this is a correct one is usually a much
easier matter. The fact that conditional expectation is a projection in a
Hilbert space of square integrable functions may facilitate such guessing.
We hope the following examples illustrate this idea. By the way, we do
not have to check that our answer is correct since conditional expectation
in LY(Q, F,P) is uniquely determined by its values in L?(Q, F,P).

3.3.11 Example Let Q =[0,1], F be the o-algebra of Lebesgue mea-
surable subsets of [0,1], and let P be the restriction of the Lebesgue
measure to this interval. Let G be the collection of Lebesgue measurable
subsets such that 1 — A = A (P a.s.). By definition, 1 — A = {w|w =
1-w',w' € A}, and A = B (P a.s.) iff the probability of the symmetric
difference of A and B is 0. In other words G is the family of sets that
are symmetric with respect to % We claim that G is a o-algebra.

(a) Obviously 1 — Q =, so that Q € G.

(b) Notethat we 1 — Al s 1-—weAdl sl-wdAdeowdl— A ie
1— A% = (1 — A)®. Moreover, A® = BC (P a.s.) whenever A = B (P
a.s.). Thus, Ac G= Al e Gfor 1 — A = (1 — A) = AC (P as.).

(c) As above we show that 1 —J,,~; An = U,,>1(1 — Ay). Moreover, if
A, =B, (Pas.), then U,~; An = U,,>; Bn (P as.). Thus A, € G =
Ups14n €G.



96 Conditional expectation

What is L2(Q, G, P)? Because any Y € L?(Q,G,P) is a pointwise limit of
a sequence of linear combinations of indicator functions of sets in G, and
14, A € G satisfies 14(w) = 14(1 —w), (P a.s.), Y belongs to L?(Q2,G,P)
iff V(w) =Y (1-w), (Pas). Let X € L?(Q, F,P). What is Z = E(X|G)?
Z must belong to L?(€, G, P) and minimize the integral

1
/0 (X(w) — Z())* dw
1

- /E(X(w) - Z(w))de+/1 (X(w) = Z(w))? dw
0

2

- / TI(X (@) - Z@) + (X1 - w) — Z(@))?} dw;

the last equality resulting from the change of variables and Z(w) = Z(1—
w) (P a.s.). Now, for two numbers a, b € R, (a—7)?+(b—7)? is minimal for
T = %2 Thus, we must have E(X|G)(w) = Z(w) = $[X (w)+ X (1-w)],
(P a.s.). Certainly, this formula holds also for X € L(Q,F,P), which

can be checked directly.

3.3.12 Conditional expectation depends on probability measure  Let the
space (Q,F) and the o-algebra G be as in 3.3.11, and let P(4) =
2 [,wdw. To calculate Y = E(X|G), X € L*(Q,F,P), observe that
we must have Y (1 —w) = Y (w), P a.s. Noting that P a.s. is the same as
leb a.s., we consider the distance

d(X,Y) = /Q(X —Y)?dP

and choose Y in such a way that this distance is minimal. Calculating
as in 3.3.11, we see that this distance equals

2/05 {[X(w) =Y (W) Pw+2X(1-w) - YW1l -w)} dw. (3.11)

For fixed w, we treat X (w) and X (1 — w) as given and minimize the
integrand. The minimum will be attained for

E(X|9)(w) =Y (w) =wX(w)+ (1 —w)X(1 —w).
To check that this formula is valid for X € L}(Q, F,P) we calculate:

/ Y(w)dP(w) = 2/ {wXw)+ (1 -w)X(1—-w)}wdw
A A

= w2 w w w — W — W w
J/A X(w)d ”/17,4 X(1-w)(1-w)d
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where the last relation holds since A € G; changing variables, this equals:

2/Aw2X(w)dw+2/A(w—w2)X(w) dw

:2/AwX(w)dw:/AX(w)dIF’.

3.3.13 Example Let Q = {(z,y)||z|+|y| < 1}, F be the o-algebra of
its Lebesgue subsets, and let IP be % times the restriction of the Lebesgue
measure to . Let X(w) = 2,Y(w) = y where w = (z,y). The problem
is to find E(X?|Y). To this end, we will find a function F(y) such that
E(X?|Y)(w) = F(Y (w)). Note that X € L?(Q, F,P). We have

| o) -xpae= [ 11 / T ) - 2 dray

~1+lal
_ /_1 {2F(y)(1 ) - gp(y)(l e da- |y|>5} .

The minimum of the integrand is attained if F(y) equals £(1 — |y|)? for
|z| < 1. For |z| > 1 the value of the function F' can be defined arbitrar-
ily. It remains to check that F(Y (w)) equals E(X?|G); calculations are

straightforward.

3.3.14 Example Suppose that random variables X,Y have a joint
density f(z,y), which is a Lebesgue measurable function, and g(z) is a
Lebesgue measurable function such that g(X) € L*(Q, F,P). Again, the
problem is to find E(g(X)|Y"). To see what our guess should be, assume
first that g(X) € L?(Q, F,P), and minimize the distance d(Z, X') where
Z € L*(Q,G,P). Recalling that Z must be of the form Z = 2(Y), we
minimize

12.%) = [[ )~ g@) s sy
/R [22(y) / F(y) de — 22(y) / o) f (&, ) da
+/92(x)f(ac,y) dx} dy. (3.12)
R

Jz 9(®) f(=,y) dz
Je f(zy) dz
provided [, f(x,y)dz # 0. If this last integral is zero, then f(z,y) =0

for almost all x € R. Thus, the integral (3.12), taken over the set of

The minimum of the integrand is attained for z(y) =
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y € R such that [, f(z,y)dz = 0, equals zero regardless of what z(y) is
defined to be. For example, we may put

Jp 9(x) f(z,y) dz
Ay)=1{ Jef@yds J f(z,y)dz #0, (3.13)
0, otherwise.

3.3.15 Exercise State and prove an analogous proposition for discrete
random variables.

3.3.16 Exercise Let 71 =X;+Y and Zy = X5 4+ Y where £ X; =
E X5, and X1, X5 and Y are independent absolutely integrable random
variables. Show that E(Z1]|Z:) equals Zs.

3.3.17 Conditional distribution  So far, we have interpreted the formula
(3.13) to mean that if Y is known, then the “average” outcome of g(X)
is z(Y"). Notice that class of functions g is quite large here, and therefore
should determine more than just the expected value of X: it should
determine “the distribution of X given Y = y”. Note that we may not
speak of “the distribution of X given ¥ = y” in terms of (3.4) since
P{Y = y} is quite often zero. In particular, right now it is unclear where
the variable (XY = y) (in words:“X given that ¥ = y”) is defined. It
is convenient and reasonable, though, to interpret the first formula in
(3.13) to be [, g(x)h(x,y) dz where

f (m y)

h(z,y) = fR sy de (3.14)
is a density of (X|Y = y). Here is an example. Let X;, i = 1,2, be
two exponential random variables with parameter A. It is often said
that if Y = X3 + Xo is known to be y then X = X; is uniformly
distributed on [0, y]. This is a simple case of (3.13). To see this note that
the joint distribution of X; and Xs is given by the density fo(z1,22) =
A2e~A@1te2) 2025 > 0, and that, by the change of variables formula,
the density of X and Y is given by f(z,y) = \2e Y,y > = > 0. The
numerator in (3.13), where g(z) = z, is therefore equal to \2e=*¥y2/2
and the denominator equals A2e~*Yy. Thus, in the first interpretation
we infer that if Y = y then X is on average expected to be y/2. In the
second however, we calculate h(z,y) given in (3.14) to be 1/y for z <y
and 0 for = > y. This is exactly what we have claimed.

Note, finally, that even though the probability space where (XY = y)
is defined may have nothing to do with the probability space where
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X; were defined, the existence of such a probability space follows from
the bingle fact that h(z,y) is a density function for all y such that

Jg f(x,y)dz #0.

3.3.18 Use of symmetries  Suppose that random variables X7, ..., X,
are integrable and that their joint distribution Px, . x, does not change
when the random variables are permuted, i.e. that they are exchange-
able. In particular, for any Borel measurable set C' C R™ we have

/ xX; dPX17~-7Xn :/ Z; dIPXl,...,Xn, 1 S i,j S n. (315)
C C

Suppose now that in an experiment we are not able to observe the vari-
ables X; themselves but only their sum S. Since the random variables
are exchangeable, our best bet on the value of X;, given S| is of course
%S. This is an intuitive guess that E(X;|S) = %S, i=1,...,n. To prove
that our intuition is right we note first that

E(Xi[S) = E(X;]5),  1<i,j<n. (3.16)

Indeed, it suffices to show that for any A € o(S)
/XidIP’:/deIP’, 1<i,j<n. (3.17)
A A

Now, if A € o(S) then there exists a Borel measurable B C R such
that A = {w € Q;S(w) € B} and so there exists a Borel measurable
C C R™ such that A = {w € (X;(w),...,Xn(w)) € C}. By the
change of variables formula [, X;dP = [, z;dPx, .. x,. Hence (3.15)
forces (3.17) and (3.16).

Hence, as predicted:

1
E(X;|S) = ZX |5) = —E(S]S) = —5.

This result is particularly useful when applied to an infinite sequence
X,,n > 1 of independent, identically distributed random variables. The
assumption of independence forces X1, ..., X, to be exchangeable for any
n and our result gives

S

E(X;lSn) = —, 1<i<n, (3.18)
n
where S, Ez 1 X;. The same assumption implies also a stronger
result:
S”L .
E(Xilo(Sn, Sn41,.)) ==, 1si<m (3.19)
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Indeed, o(Sy, Sp+1,-..) = 0(Sp, Xns1, Xnto,...) because Sg, k > n may
be expressed as linear combinations of S,, and Xy, k > n, and vice versa.
Moreover, o(Sp, Xn+1, Xnt2,..) = 0(Sn, 0(Xn+1, Xnt2,...)) and the o-
algebra o(X,,4+1, Xn12,...) is independent of both S,, and X;,1 < i < n.
Hence (3.19) follows from 3.3.1 (j).

What is nice about (3.19), and what is its advantage over (3.18) is
that it shows that “%“ is a sequence of conditional expectations of X,
with respect to a non-increasing sequence of o-algebras, for there are
well-known theorems concerning convergence of such sequences. Later
on, in 3.7.5, we will be able to use (3.19) to prove the all-important
Strong Law of Large Numbers.

In the remainder of this section we focus on the tower property.

3.3.19 Exercise Using (c), (h), and (n) in 3.3.1 show that if X and
Y are independent and X,Y, and XY are integrable then F XY =
EX-FEY.

3.3.20 Example Let G, H, and Z be o-algebras in (2, F,P) such that
Z C HNG. We say that given Z, G and ‘H are independent iff:

P(ANB|Z) =P(AIZT)P(B|Z), A€G,BeH. (3.20)

We will show that this condition is equivalent to each of the following
two:

P(B|G) = P(B|T), B eH, (3.21)

P(A/H) = P(A|Z), Aeg. (3.22)

These conditions are often expressed by saying that H depends on G
only through 7 and G depends on H only through Z, respectively.

By symmetry, it is enough to prove that (3.20) is equivalent to (3.21).
To prove that (3.20) implies (3.21), note first that P(B|Z) is a G mea-
surable function, so it suffices to show that

/IA]P’(B|Q)d]P’:/ 14P(B|IT)dP, A€g
Q Q

(this is obvious for A € T C G). Since 14 is G measurable, the left-hand
side equals

/E(1Am3|g)d11>:/ 14n5dP =P(ANB),
Q Q
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and the right-hand side, by (3.20),

/IA]E(13|Z)d]P> = /E[lAE(IB|I) 7] dP:/E(1A|I)]E(13|Z)d]P>
Q Q Q

= / E(14n5|T)dP = P(AN B).
Q
Conversely, if (3.21) holds, the left-hand side in (3.20) equals:

E(1anslZ) = E{[E(1ang|9)]|Z} =E{E(1415|G)|Z}
E(14E(15|9)|T) = E(14E(15|7)|T)
= E(14|Z)E(15|Z).

3.3.21 Exercise The previous example is important in the theory of
Markov processes. To consider the simplest case; a sequence X,,,n > 0
of random variables with values in N is said to be a Markov chain if it
enjoys the Markov property: for all n > 0, and i, e N0 < k <n+1,
P[Xn-i-l == in+1|Xk == iky 0 S k S n] == P[Xn-i-l == in+1|Xn == in]
= Pininga
provided P[X}, = ix,0 < k < n] > 0. Here the p; j, i,j € N are called the
transition probabilities (or jump probabilities) of the chain and satisfy
ZjeNpm» = 1,7 € N and p; ; > 0. Existence of a Markov chain with a
given matrix of transition probabilities is proved by a straightforward
construction, e.g. in [5]. The reader will show that the Markov prop-
erty may be defined in an equivalent way by any of the following three
conditions:
P(AN B|X,) =P(A|X,,)P(B|X,), A€G,,B¢cH,,
P(B|G,) = P(B|X,), BeH,,
P(A[Hn) = P(A|Xy), Aeg,,

where G,, = 0(X,,, Xnt1,...) and H,, = o0(Xo, ..., Xp).

3.4 The Radon—Nikodym Theorem

3.4.1 Lebesgue decomposition — Let A\, u be two finite measures on a
measurable space (2, F). Then, there exists a non-negative function f €
LY(Q, F,p) and a measure v singular to u (i.e. such that there exists a
set S € F with pu(S) =0 and v(©2\ S) = 0) such that

/\(A):/fd,u—i—y(A), for all A e F.
A
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Proof Consider a linear functional Fz = [ d\, acting in the space
L2(Q, F, A\ + p). The estimate

Fi| < VAQ) / 22 A < VA |2 220 F b0
Q

shows that F' is well-defined and bounded. Therefore, there exists a
function y € L*(Q,F,A + p) such that Fz = [, zyd(\ + p). Taking
x=14,A € F, we see that

AA) = /A Y + /A ydu. (3.23)

This in turn proves that y > 0, (A + u) ae., and y < 1, X a.e. Let
S = {wly(w) =1} € F. By (3.23), 1(S) = 0. Rewriting (3.23) in the form
fQ(l—y)lA d\ = fQ y1 4 dp, we see that for any non-negative measurable

function z on Q, [,(1—y)zd\ = [, yx du. Define f(w) = 132‘(’3}) on S,

and zeroon S. If A € F, and A C SC, we may take r = 1Aﬁ to see
that A(4) = [, fdu. Also, let v(A) = A\(S N A). Thus, v(S%) =0, i.e. p

and v are singular. Moreover,

AA) = A(ANSY) + A(ANS) :/

fdu+v(A) = / fdu+v(A).
Ans® A

Finally, f belongs to L'(€, F, u1), since it is non-negative and [, fdp =
Joo fdu=A(S%) < . O

3.4.2 The Radon—Nikodym Theorem  Under assumptions of 3.4.1, sup-
pose additionally that p(A) = 0 for some A € F implies that A\(A) = 0.
Then v = 0; i.e. A is absolutely continuous with respect to u.

Proof We know that u(S) = 0, so that v(S) = A(S) = 0. On the other
hand, »(S%) = 0 so that v = 0. O

3.4.3 Remark With the Radon—Nikodym Theorem at hand, we may
prove existence of conditional expectation very easily. We note first that
it is enough to restrict ourselves to non-negative variables. Consider the
space (€2,G,P) and the measure p(A) = [, X dP where X > 0,X €
L'(Q, F,P). The measure yu is absolutely continuous with respect to P
and so there exists a non-negative Y € L'(Q, G, P) such that

/Xd}P’:/Yd}P’,
A A
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as desired. This method of approaching conditional expectations is found
in most probabilistic monographs. (Following Kolmogorov, who was the
first to investigate conditional expectation in this generality and used
the Radon-Nikodym Theorem to prove its existence.) See e.g. [5, 46, 57].
Analysts, however, prefer the approach via projections [107]. We should
mention that there are of course purely measure-theoretic proofs of the
Lebesgue decomposition theorem and the Radon—-Nikodym Theorem [49,
103].

3.4.4 Exercise Using the Radon-Nikodym Theorem prove that the
conditional expectation E(X|Y) equals f(Y) for some Lebesgue mea-
surable function f. (We have proved it before using the Doob-Dynkin
Lemma.)

3.4.5 Application: Frobenius—Perron operators Let (2, F, i) be a mea-
sure space. Suppose that a measurable map f : ) — 2 is non-singular,
i.e. that for any A € F such that u(A) = 0, we also have u(f~1(A)) =
0. In studying asymptotic behavior of iterates fo"*1(w) = fo(f(w)),
n>1, w € Q, we may use a linear operator in L*(2, F, u), called the
Frobenius—Perron operator, related to f [80]. To define it, assume
first that (a representation of) an element of x € L'(Q,F,u) is non-
negative, and define a set function on F by p,(A) = ff—l(A) xdpu. It is
easy to see that pu, is a measure. Furthermore, since f is non-singular,
1o is absolutely continuous with respect to p. Hence, there exists a non-
negative element Pz of L'(Q, F, i) such that ff—l(A) zdp = [, Prdpu.
Note that Px is defined only as an equivalence class of functions and
that P maps the set of (equivalence classes of) non-negative functions
into itself. For arbitrary x € LY(Q, F, 1) we define Pz as the difference
of Pzt and Px~. It is easy to check that Pz is linear. Moreover, for
non-negative x we have [, zdy = ff,lﬂa:d,u = [, Pxdp, so that P
preserves the integral, and therefore is a Markov operator.

3.5 Examples of discrete martingales

3.5.1 Definition Let (2, F,P) be a probability space and let F,,,n >
1, be an increasing sequence of o-algebras of measurable sets: F, C
Fn+1 C F; such a sequence is called a filtration. A sequence X,,,n > 1
of random variables X,, € L'(Q,F,P) is termed a martingale if X,
is F,, measurable and E(X,|F,—1) = X,—1 for all n > 1. To be more
specific, we should say that X,, is a martingale with respect to F,, and
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P. However, F,, and P are often clear from the context and for simplicity
we omit the phrase “with respect to F,, and P”. Similarly, a sequence
X, € LY(Q,F,P),n > 1 is termed a submartingale (with respect to
F. and P) if X, are F,, measurable and E(X,,41|F,) > X,,n > 1. If
—X,, is a submartingale, X, is called a supermartingale. Filtrations,
martingales, supermartingales and submartingales indexed by a finite
ordered set are defined similarly.

3.5.2 Exercise = Show that X,.,n > 1, is a submartingale iff there
exists a martingale M,,,n > 1, and a previsible sequence A,,n > 1
(ie. Ay = 0 and A,41,n > 1, is F,, measurable) such that A,1; >
A, (a.s.) and X,, = M,, + A,,. This decomposition, called the Doob
decomposition, is unique in L'(Q, F, P).

3.5.3 Sum of independent random wvariables If X,,n > 1 are (mu-
tually) independent random variables, and E X,, = 0 for n > 1, then
S, = Y."_, X, is a martingale with respect to F,, = o(X1,..., X,,). In-
deed, by 3.3.1 (h)*(l)7 E(S7L+1‘Fn) = E(Xn+1 —|—Sn|.7:n) = E(X,L+1|.7:n) +
Sp=E X411+ S, = Sy, since X,,11 is independent of o(Xj, ..., X,,).

3.5.4 Polya’s urn scheme  Suppose that in a box there are w white
balls and b black balls. One ball is drawn at random and returned to the
box together with k balls of the same color. Let X,, be the proportion
of white balls in the box after the nth draw. We will show that X,
is a martingale with respect to the filtration F,, = o(X1, ..., X;,). Note
that we do not know (2, F,P); all we know (by description) is a joint
distribution of (X, X, 11).

X, is a simple function (in particular: bounded and integrable) that

admits n + 1 values —2E~_ 5 — 0,1,....n, on sets B;, and any set in

w+b+nk’ "
Fn is{ a finite disjoint union of B;s. If X, = %, then X, 1 =
71”1;(1(:21’3 - with probability ibﬁ’; coand X, = oo +b’iﬁi1) - with
probability % Therefore,
/ X1 dP =
B;
w4+ (i+ 1)k w + ik w+ ik b+ (n—1d)k P(B)
w+b+m+Dkw+b+nk  w+b+(n+ 1Dk w+b+nk ’

which by simple algebra equals

(w +ik)(w + b+ (n + 1)k)  w+ik
(w+b+(n+1)k)(w+b+nk)P(Bi)_w+b+nk / X dP.
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3.5.5 Galton-Watson process The famous Galton—Watson process
describes the number of individuals in a population of descendants of
a single ancestor in which individuals give birth, independently from
other individuals of this population, to a random number of children;
the distribution of the number of children is the same for all individuals.

Formally, let X?,n,k > 1, be an infinite matrix of independent, identi-
cally distributed random variables with values in {0, 1, ...}. Assume that
E X! = m < oo. The Galton-Watson process is defined inductively by
Zo =1and Z, 11 = Y7 XM n > 0,if Z, > 1, and Z,y; = 0 if
Z, = 0.

Let F,, = o(Z1,...,2Zy,), n > 1. We will prove that M, = ,in is a
martingale. Indeed,

) k

EZpii = Z EZpiily, -1 = Z E Z X, (3.24)
k=0 k=1 i=1

&S] k 9]

= Elz—xEY X!'""'=mY kP{Z, =k} =mEZ,.
k=1 i=1 k=1

Thus, FE Z, is integrable and EZ,, = m" for all n > 0. Therefore M, is

integrable and E M,, = 1.

Now, each member of the o-algebra o(Z1, ..., Z,) is a disjoint union
of sets of the form {Z; = ki, ..., Z, = kyn}. The random variable M,, is
o(Z1, ..., Z,) measurable and equals % on such sets. Also, since XZ-"+1
are independent of 71, ..., Z,,

k
1 n
My dP = ——E> X"z g 20—k,
/{Zl_k17~--;Zn_kn} mn+1 — L {Z1 15-e034m )
mk
= m’ﬂfl P{Zl == k'l, ceey Z’I’L = kn}

= / M, dP
{lekl,.wZ":kn}

provided k,, > 1. In the other case both the first and the last integrals
in this formula are zero. This proves our claim.

3.5.6 Wright—Fisher model of population genetics Imagine a popula-
tion of 2N, N € N, individuals; each individual belonging to either of two
distinct classes, say a and A. (Individuals are actually chromosomes —
that’s why we have 2N of them — and a and A denote two possible alleles
at a particular locus.) The population evolves in discrete time: a next
generation is formed by selecting its 2N members from the previous one
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independently and with replacement. The state of such a population in
generation n is conveniently described by a single random variable X (n)
equal to the number of individuals of type a, say. Note that if X(n) =k
then X (n + 1) is a binomial random variable with parameters 5% and
2N:

P{X(n+1) = I|X(t) = k} = (Qf )pl(l _ph,

In particular E (X (n +1)|X(n)) = 2N XQ(](,L) This proves that X (n) is a

non-negative martingale. See 3.7.6 for an application.

3.5.7 Exercise  Calculating as in (3.24) show that if X', n,k > 1 are
square integrable then

D*(Z,11) = m*D?*(Z,) + o*m™ (3.25)

where 02 = D*(X') and m = E X?. In particular Z, € L*(Q,F,P),
n > 1. Conclude that for m # 1,

2 2 2, ,n—1 n_1
D?*(Znya) = - m?" — 4 mn =" (m ),
m(m —1) m(m — 1) m—1
(3.26)
and when m =1,
D*(Zp41) = no’. (3.27)

3.5.8 Exercise Let X € L'(Q,F,P) and F, be a filtration. Show
that X,, = F (X|F,) is a martingale with respect to F,.

3.5.9 Exercise  Suppose that X, is a martingale with respect to fil-
tration F,,. Let Fy be the trivial o-algebra and assume that Y,,,n > 0
are JF, measurable, absolutely integrable random variables such that
Y, (Xnt+1 — X,p) are absolutely integrable. Show that Z,,n > 1, defined
by Z, =" Yi1(X; — X;-1),n > 0, where X = 0, is a martingale.

3.6 Convergence of self-adjoint operators

3.6.1 Motivation In the previous section we have already encountered
examples of theorems concerning convergence of conditional expecta-
tions. In Theorem 3.3.1 point (m) and in Exercise 3.3.8 we saw that if
the o-algebra G is fixed, then the conditional expectation with respect
to this o-algebra behaves very much like an integral. In this section we
devote ourselves to a short study of theorems that involve limit behavior
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of conditional expectation E (X|F,) where X is fixed and F,, is a family
of g-algebras. This will lead us in a natural way to convergence theorems
for martingales presented in Section 3.7.

If F,, is a filtration in a probability space (€2, F,P), then L!(Q, F,,P) is
a non-decreasing sequence of subspaces of L!(Q, F,P), and L?(Q, F,,,P)
is a non-decreasing sequence of subspaces of L?(£2, F,P). If X is a square
integrable random variable, then the sequence X,, = E (X|F,) of con-
ditional expectations of X is simply the sequence of projections of X
onto this sequence of subspaces. Thus, it is worth taking a closer look
at asymptotic behavior of a sequence x,, = P,x, where x is a member of
an abstract Hilbert space H and P, are projections on a non-decreasing
sequence of subspaces H,, of this space. In view of Theorem 3.1.18, the
assumption that H,, is a non-decreasing sequence may be conveniently
expressed as (Ppz,x) < (Ppy1z,z) < (2, 7).

As an aid in our study we will use the fact that projections are self-
adjoint operators (see 3.1.19). Self-adjoint operators are especially im-
portant in quantum mechanics, and were extensively studied for decades.
Below, we will prove a well-known theorem on convergence of self-adjoint
operators and then use it to our case of projections. Before we do that,
however, we need to introduce the notion of a non-negative operator
and establish a lemma.

3.6.2 Definition A self-adjoint operator A is said to be non-negative
if (Az,z) > 0 for all z € H; we write then A > 0. If A and B are two
self-adjoint operators such that A — B > 0 we often write A > B or
B < A.

3.6.3 Exercise  Prove that if A is non-negative then so are all its
powers. Moreover, all even powers of any self-adjoint operator are non-
negative.

3.6.4 Lemma Let A be a non-negative, self-adjoint operator in a
Hilbert space H. Then (A%x,z) < ||A|(Az, x).

Proof 1If ||A|| = 0, there is nothing to prove. In the other case our
relation is equivalent to (B2z,z) < (Bx,z) where B = mA is a self-
adjoint contraction. Certainly, (Bx,z) > 0. Note that I — B, where
Ix = z, is also self-adjoint as a difference of two self-adjoint operators,
and ((I — B)y,y) = (y,y) — (By,y) > 0, for any y € H. Since B — B? =
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B(I — B)B+ (I — B)B(I — B), we have
(B - B*)x,z) = (I — B)Bz, Bx) + (B(I — B)z,(I — B)x) >0

which proves our claim. |

3.6.5 Convergence theorem for a monotone sequence of self-adjoint op-
erators  If A, is a sequence of self-adjoint operators in a Hilbert space
H, such that A, < A1 < M1, for all natural n, where M is a constant
and Iz = x, then there exists the strong limit Az = lim,, .., A,z of A,
and A is self-adjoint.

Proof For any x, the numerical series (A,z,z) is non-decreasing and
bounded by M ||x||?, and therefore converges to a real number, say F(z).
Hence, for all x and y in H there exists the limit

G(z,y) = lim (A,z,y) (3.28)
since (A,z,y) equals
1
1 [(Apz + Apy, 2+ y) — (Anz — Any,z — y)] (3.29)

which tends to 1 [F(z +y) — F(z — y)]. Since for any n > 1
—[[ Al lz]* < (Apz, ) < MlJz||?, (3.30)

3.1.22 shows that || 4,|| < M’, where M’ = M V ||A;]]. Thus, |G(z,y)| <
M'||z|| ly|l- Fix z. As a function of y, G(z,y) is a linear functional on
H. Moreover, by (3.28), this functional is bounded with norm less than
M'||z||. Therefore, there exists an element Ax of H such that G(x,y) =
(Az,y). By (3.28) the map = — Az is linear. Since ||Az| < M|z,
A is bounded and ||A|| < M'. A is also self-adjoint since (Az,y) =
limy, oo (Anx,y) = lim, oo (An