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Preface

This book is an expanded version of lecture notes for the graduate course “An
Introduction to Methods of Functional Analysis in Probability and Stochastic
Processes” that I gave for students of the University of Houston, Rice University,
and a few friends of mine in Fall, 2000 and Spring, 2001. It was quite an
experience to teach this course, for its attendees consisted of, on the one hand,
a group of students with a good background in functional analysis having limited
knowledge of probability and, on the other hand, a group of statisticians without
a functional analysis background. Therefore, in presenting the required notions
from functional analysis, I had to be complete enough for the latter group while
concise enough so that the former would not drop the course from boredom.
Similarly, for the probability theory, I needed to start almost from scratch for the
former group while presenting the material in a light that would be interesting
for the latter group. This was fun. Incidentally, the students adjusted to this
challenging situation much better than I.

In preparing these notes for publication, I made an effort to make the presen-
tation self-contained and accessible to a wide circle of readers. I have added a
number of exercises and disposed of some. I have also expanded some sections
that I did not have time to cover in detail during the course. I believe the book
in this form should serve first year graduate, or some advanced undergraduate
students, well. It may be used for a two-semester course, or even a one-semester
course if some background is taken for granted. It must be made clear, however,
that this book is not a textbook in probability. Neither may it be viewed as a
textbook in functional analysis. There are simply too many important subjects
in these vast theories that are not mentioned here. Instead, the book is intended
for those who would like to see some aspects of probability from the perspec-
tive of functional analysis. It may also serve as a (slightly long) introduction
to such excellent and comprehensive expositions of probability and stochastic
processes as Stroock’s, Revuz’s and Yor’s, Kallenberg’s or Feller’s.

xi



xii Preface

It should also be said that, despite its substantial probabilistic content, the
book is not structured around typical probabilistic problems and methods. On
the contrary, the structure is determined by notions that are functional analytic
in origin. As it may be seen from the very chapters’ titles, while the body is
probabilistic, the skeleton is functional analytic.

Most of the material presented in this book is fairly standard, and the book is
meant to be a textbook and not a research monograph. Therefore, I made little
or no effort to trace the source from which I had learned a particular theorem
or argument. I want to stress, however, that I have learned this material from
other mathematicians, great and small, in particular by reading their books. The
bibliography gives the list of these books, and I hope it is complete. See also
the bibliographical notes to each chapter. Some examples, however, especially
towards the end of the monograph, fit more into the category of “research”.

A word concerning prerequisites: to follow the arguments presented in the
book the reader should have a good knowledge of measure theory and some
experience in solving ordinary differential equations. Some knowledge of ab-
stract algebra and topology would not hurt either. I sketch the needed material
in the introductory Chapter 1. I do not think, though, that the reader should start
by reading through this chapter. The experience of going through prerequisites
before diving into the book may prove to be like the one of paying a large bill
for a meal before even tasting it. Rather, I would suggest browsing through
Chapter 1 to become acquainted with basic notation and some important exam-
ples, then jumping directly to Chapter 2 and referring back to Chapter 1 when
needed.

I would like to thank Dr. M. Papadakis, Dr. C. A. Shaw, A. Renwick and F. J.
Foss (both PhDs soon) for their undivided attention during the course, efforts to
understand Polish-English, patience in endless discussions about the twentieth
century history of mathematics, and valuable impact on the course, including
how-to-solve-it-easier ideas. Furthermore, I would like to express my gratitude
to the Department of Mathematics at UH for allowing me to teach this course.
The final chapters of this book were written while I held a special one-year
position at the Institute of Mathematics of the Polish Academy of Sciences,
Warsaw, Poland.

A final note: if the reader dislikes this book, he/she should blame F. J.
Foss who nearly pushed me to teach this course. If the reader likes it, her/his
warmest thanks should be sent to me at both addresses: bobrowscy@op.pl
and a.bobrowski@pollub.pl. Seriously, I would like to thank Fritz Foss for his
encouragement, for valuable feedback and for editing parts of this book. All
the remaining errors are protected by my copyright.
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Preliminaries, notations and conventions

Finite measures and various classes of functions, including random vari-
ables, are examples of elements of natural Banach spaces and these
spaces are central objects of functional analysis. Before studying Ba-
nach spaces in Chapter 2, we need to introduce/recall here the basic
topological, measure-theoretic and probabilistic notions, and examples
that will be used throughout the book. Seen from a different perspective,
Chapter 1 is a big “tool-box” for the material to be covered later.

1.1 Elements of topology

1.1.1 Basics of topology We assume that the reader is familiar with
basic notions of topology. To set notation and refresh our memory, let us
recall that a pair (S,U) where S is a set and U is a collection of subsets
of S is said to be a topological space if the empty set and S belong to
U , and unions and finite intersections of elements of U belong to U . The
family U is then said to be the topology in S, and its members are called
open sets. Their complements are said to be closed. Sometimes, when
U is clear from the context, we say that the set S itself is a topological
space. Note that all statements concerning open sets may be translated
into statements concerning closed sets. For example, we may equivalently
define a topological space to be a pair (S, C) where C is a collection of
sets such that the empty set and S belong to C, and intersections and
finite unions of elements of C belong to C.

An open set containing a point s ∈ S is said to be a neighborhood of
s. A topological space (S,U) is said to be Hausdorff if for all p1, p2 ∈ S,
there exists A1, A2 ∈ U such that pi ∈ Ai, i = 1, 2 and A1 ∩ A2 = ∅.
Unless otherwise stated, we assume that all topological spaces considered
in this book are Hausdorff.

1



2 Preliminaries, notations and conventions

The closure, cl(A), of a set A ⊂ S is defined to be the smallest closed
set that contains A. In other words, cl(A) is the intersection of all closed
sets that contain A. In particular, A ⊂ cl(A). A is said to be dense in
S iff cl(A) = S.

A family V is said to be a base of topology U if every element of U
is a union of elements of V. A family V is said to be a subbase of U if
the family of finite intersections of elements of V is a base of U .

If (S,U) and (S′,U ′) are two topological spaces, then a map f : S → S′

is said to be continuous if for any open set A′ in U ′ its inverse image
f−1(A′) is open in S.

Let S be a set and let (S′,U ′) be a topological space, and let {ft, t ∈ T}
be a family of maps from S to S′ (here T is an abstract indexing set).
Note that we may introduce a topology in S such that all maps ft are
continuous, a trivial example being the topology consisting of all subsets
of S. Moreover, an elementary argument shows that intersections of finite
or infinite numbers of topologies in S is a topology. Thus, there exists
the smallest topology (in the sense of inclusion) under which the ft
are continuous. This topology is said to be generated by the family
{ft, t ∈ T}.

1.1.2 Exercise Prove that the family V composed of sets of the form
f−1
t (A′), t ∈ T, A′ ∈ U ′ is a subbase of the topology generated by ft, t ∈

T.

1.1.3 Compact sets A subset K of a topological space (S,U) is said to
be compact if every open cover of K contains a finite subcover. This
means that if V is a collection of open sets such that K ⊂ ⋃

B∈V B,
then there exists a finite collection of sets B1, . . . , Bn ∈ V such that
K ⊂ ⋃n

1=1Bi. If S is compact itself, we say that the space (S,U) is
compact (the reader may have noticed that this notion depends as much
on S as it does on U). Equivalently, S is compact if, for any family
Ct, t ∈ T of closed subsets of S such that

⋂
t∈T Ct = ∅, there exists

a finite collection Ct1 , . . . , Ctn of its members such that
⋂n
i=1 Cti = ∅.

A set K is said to be relatively compact iff its closure is compact.
A topological space (S,U) is said to be locally compact if for every
point p ∈ S there exist an open set A and a compact set K, such that
s ∈ A ⊂ K. The Bolzano–Weierstrass Theorem says that a subset
of Rn is compact iff it is closed and bounded. In particular, Rn is locally
compact.
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1.1.4 Metric spaces Let X be an abstract space. A map d : X×X → R+

is said to be a metric iff for all x, y, z ∈ X

(a) d(x, y) = d(y, x),
(b) d(x, y) ≤ d(x, z) + d(z, y),
(c) d(x, y) = 0 iff x = y.

A sequence xn of elements of X is said to converge to x ∈ X if
limn→∞ d(xn, x) = 0. We call x the limit of the sequence (xn)n≥1 and
write limn→∞ xn = x. A sequence is said to be convergent if it con-
verges to some x. Otherwise it is said to be divergent.

An open ball B(x, r) with radius r and center x is defined as the set
of all y ∈ X such that d(x, y) < r. A closed ball with radius r and center
x is defined similarly as the set of y such d(x, y) ≤ r. A natural way to
make a metric space into a topological space is to take all open balls as
the base of the topology in X. It turns out that under this definition a
subset A of a metric space is closed iff it contains the limits of sequences
with elements in A. Moreover, A is compact iff every sequence of its
elements contains a converging subsequence and its limit belongs to the
set A. (If S is a topological space, this last condition is necessary but
not sufficient for A to be compact.)

A function f : X → Y that maps a metric space X into a normed
space Y is continuous at x ∈ X if for any sequence xn converging to
x, limn→∞ f(xn) exists and equals f(x) (xn converges in X, f(xn) con-
verges in Y). f is called continuous if it is continuous at every x ∈ X

(this definition agrees with the definition of continuity given in 1.1.1).

1.2 Measure theory

1.2.1 Measure spaces and measurable functions Although we assume
that the reader is familiar with the rudiments of measure theory as
presented, for example, in [103], let us recall the basic notions. A family
F of subsets of an abstract set Ω is said to be a σ-algebra if it contains Ω
and complements and countable unions of its elements. The pair (Ω,F)
is then said to be a measurable space. A family F is said to be an
algebra or a field if it contains Ω, complements and finite unions of its
elements.

A function µ that maps a family F of subsets of Ω into R+ such that

µ(
⋃
n∈N

An) =
∞∑
n=1

µ(An) (1.1)
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for all pairwise-disjoint elements An, n ∈ N of F such that the union⋃
n∈N An belongs to F is called a measure. In most cases F is a σ-

algebra but there are important situations where it is not, see e.g. 1.2.8
below. If F is a σ-algebra, the triple (Ω,F , µ) is called a measure space.

Property (1.1) is termed countable additivity. If F is an algebra
and µ(S) <∞, (1.1) is equivalent to

lim
n→∞

µ(An) = 0 whenever An ∈ F , An ⊃ An+1,
∞⋂
n=1

An = ∅. (1.2)

The reader should prove it.
The smallest σ-algebra containing a given class F of subsets of a set is

denoted σ(F). If Ω is a topological space, then B(Ω) denotes the smallest
σ-algebra containing open sets, called the Borel σ-algebra. A measure
µ on a measurable space (Ω,F) is said to be finite (or bounded) if
µ(Ω) <∞. It is said to be σ-finite if there exist measurable subsets Ωn,
n ∈ N, of Ω such that µ(Ωn) <∞ and Ω =

⋃
n∈N Ωn.

A measure space (Ω,F , µ) is said to be complete if for any set A ⊂ Ω
and any measurable B conditions A ⊂ B and µ(B) = 0 imply that A
is measurable (and µ(A) = 0, too). When Ω and F are clear from the
context, we often say that the measure µ itself is complete. In Exercise
1.2.10 we provide a procedure that may be used to construct a complete
measure from an arbitrary measure. Exercises 1.2.4 and 1.2.5 prove that
properties of complete measure spaces are different from those of mea-
sure spaces that are not complete.

A map f from a measurable space (Ω,F) to a measurable space
(Ω′,F ′) is said to be F measurable, or just measurable iff for any
set A ∈ F ′ the inverse image f−1(A) belongs to F . If, additionally, all
inverse images of measurable sets belong to a sub-σ-algebra G of F , then
we say that f is G measurable, or more precisely G/F ′ measurable.
If f is a measurable function from (Ω,F) to (Ω′,F ′) then

σf = {A ∈ F|A = f−1(B) where B ∈ F ′}

is a sub-σ-algebra of F . σf is called the σ-algebra generated by f . Of
course, f is G measurable if σf ⊂ G.

The σ-algebra of Lebesgue measurable subsets of a measurable subset
A ⊂ Rn is denoted Mn(A) or M(A) if n is clear from the context, and
the Lebesgue measure in this space is denoted lebn, or simply leb. A stan-
dard result says that M := M(Rn) is the smallest complete σ-algebra
containing B(Rn). In considering the measures on Rn we will always
assume that they are defined on the σ-algebra of Lebesgue measurable
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sets, or Borel sets. The interval [0, 1) with the family of its Lebesgue
subsets and the Lebesgue measure restricted to these subsets is often
referred to as the standard probability space. An n-dimensional
random vector (or simply n-vector) is a measurable map from a proba-
bility space (Ω,F ,P) to the measurable space (Rn,B(Rn)). A complex-
valued random variable is simply a two dimensional random vec-
tor; we tend to use the former name if we want to consider complex
products of two-dimensional random vectors. Recall that any random n-
vector X is of the form X = (X1, ..., Xn) where Xi are random variables
Xi : Ω → R.

1.2.2 Exercise Let A be an open set in Rn. Show that A is union of
all balls contained in A with rational radii and centers in points with
rational coordinates. Conclude that B(R) is the σ-algebra generated by
open (resp. closed) intervals. The same result is true for intervals of the
form (a, b] and [a, b). Formulate and prove an analog in Rn.

1.2.3 Exercise Suppose that Ω and Ω′ are topological spaces. If a map
f : Ω → Ω′ is continuous, then f is measurable with respect to Borel
σ-fields in Ω and Ω′. More generally, suppose that f maps a measurable
space (Ω,F) into a measurable space (Ω,F ′), and that G′ is a class of
measurable subsets of Ω′ such σ(G′) = F ′. If inverse images of elements
of G′ are measurable, then f is measurable.

1.2.4 Exercise Suppose that (Ω,F , µ) is a measure space, and f maps
Ω into R. Equip R with the σ-algebra of Borel sets and prove that f
is measurable iff sets of the form {ω|f(ω) ≤ t}, t ∈ R belong to F .
(Equivalently: sets of the form {ω|f(ω) < t}, t ∈ R belong to F .) Prove
by example that a similar statement is not necessarily true if Borel sets
are replaced by Lebesgue measurable sets.

1.2.5 Exercise Let (Ω,F , µ) be a complete measure space, and f be
a map f : Ω → R. Equip R with the algebra of Lebesgue measurable
sets and prove that f is measurable iff sets of the form {ω|f(ω) ≤ t},
t ∈ R belong to F . (Equivalently: sets of the form {ω|f(ω) < t}, t ∈ R

belong to F .)

1.2.6 Exercise Let (S,U) be a topological space and let S′ be its
subset. We can introduce a natural topology in S′, termed induced
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topology, to be the family of sets U ′ = U ∩ S′ where U is open in S.
Show that

B(S′) = {B ⊂ S′|B = A ∩ S′, A ∈ B(S)}. (1.3)

1.2.7 Monotone class theorem A class G of subsets of a set Ω is termed
a π-system if the intersection of any two of its elements belongs to the
class. It is termed a λ-system if (a) Ω belongs to the class, (b) A,B ∈ G
andA ⊂ B impliesB\A ∈ G and (c) ifA1, A2, ... ∈ G, andA1 ⊂ A2 ⊂ . . .

then
⋃
n∈N An ∈ G. The reader may prove that a λ-system that is at the

same time a π-system is also a σ-algebra. In 1.4.3 we exhibit a natural
example of a λ-system that is not a σ-algebra. The Monotone Class
Theorem or π–λ theorem, due to W. Sierpiński, says that if G is
a π-system and F is a λ-system and G ⊂ F , then σ(G) ⊂ F . As a
corollary we obtain the uniqueness of extension of a measure defined on
a π-system. To be more specific, if (Ω,F) is a measure space, and G is
a π-system such that σ(G) = F , and if µ and µ′ are two finite measures
on (Ω,F) such that µ(A) = µ′(A) for all A ∈ G, then the same relation
holds for A ∈ F . See [5].

1.2.8 Existence of an extension of a measure A standard construction
involving the so-called outer measure shows the existence of an extension
of a measure defined on a field. To be more specific, if µ is a finite
measure on a field F , then there exists a measure µ̃ on σ(F) such that
µ̃(A) = µ(A) for A ∈ F , see [5]. It is customary and convenient to omit
the “˜” and denote both the original measure and its extension by µ.

This method allows us in particular to prove existence of the Lebesgue
measure [5, 106].

1.2.9 Two important properties of the Lebesgue measure An important
property of the Lebesgue measure is that it is regular, which means that
for any Lebesgue measurable set A and ε > 0 there exists an open set
G ⊃ A and a compact set K ⊂ A such that leb(G \K) < ε. Also, the
Lebesgue measure is translation invariant, i.e. lebA = lebAt for any
Lebesgue measurable set A and t ∈ R, where

At = {s ∈ R; s− t ∈ A}. (1.4)

1.2.10 Exercise Let (Ω,F) be a measure space and µ be a measure,
not necessarily complete. Let F0 be the class of subsets B of Ω such that
there exists a C ∈ F such that µ(C) = 0 and B ⊂ C. Let Fµ = σ(F∪F0).
Show that there exists a unique extension of µ to Fµ, and (Ω,Fµ, µ) is a
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complete measure space. Give an example of two Borel measures µ and
ν such that Fµ 
= Fν .

1.2.11 Integral Let (Ω,F , µ) be a measure space. The integral
∫
f dµ

of a simple measurable function f , i.e. of a function of the form
f =

∑n
i=1 ci1Ai where n is an integer, ci are real constants, Ai be-

long to F , and µ(Ai) < ∞, is defined as
∫
f dµ =

∑n
i=1 ciµ(Ai). We

check that this definition of the integral does not depend on the choice
of representation of a simple function. The integral of a non-negative
measurable function f is defined as the supremum over integrals of non-
negative simple measurable functions fs such that fs ≤ f (µ a.e.). This
last statement means that fs(ω) ≤ f(ω) for all ω ∈ Ω outside of a mea-
surable set of µ-measure zero. If this integral is finite, we say that f is
integrable.

Note that in our definition we may include functions f such that
f(ω) = ∞ on a measurable set of ωs. We say that such functions have
their values in an extended non-negative half-line. An obvious necessary
requirement for such a function to be integrable is that the set where it
equals infinity has measure zero (we agree as it is customary in measure
theory that 0 · ∞ = 0).

If a measurable function f has the property that both f+ = max(f, 0)
and f− = max(−f, 0) are integrable then we say that f is absolutely
integrable and put

∫
f dµ =

∫
f+ dµ−

∫
f− dµ. The reader may check

that for a simple function this definition of the integral agrees with the
one given initially. The integral of a complex-valued map f is defined
as the integral of its real part plus ı (the imaginary unit) times the
integral of its imaginary part, whenever these integrals exist. For any
integrable function f and measurable set A the integral

∫
A
f dµ is defined

as
∫

1Af dµ.
This definition implies the following elementary estimate which proves

useful in practice: ∣∣∣∣
∫
A

f dµ
∣∣∣∣ ≤
∫
A

|f |dµ. (1.5)

Moreover, for any integrable functions f and g and any α and β in R,

we have ∫
(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ.

In integrating functions defined on (Rn,Mn(Rn), lebn) it is customary
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to write ds1...dsn instead of d lebn(s) where s = (s1, ..., sn). In one
dimension, we write ds instead of dleb(s).

There are two important results concerning limits of integrals de-
fined this way that we will use often. The first one is called Fatou’s
Lemma and the second Lebesgue Dominated Convergence The-
orem. The former says that for a sequence of measurable functions fn
with values in the extended non-negative half-line lim supn→∞

∫
fn dµ ≥∫

lim supn→∞ fn dµ, and the latter says that if fn is a sequence of mea-
surable functions and there exists an integrable function f such that
|fn| ≤ f (µ a.e.), then limn→∞

∫
fn dµ =

∫
g dµ, provided fn tends

to g pointwise, except perhaps on a set of measure zero. Observe that
condition |fn| ≤ f implies that fn and g are absolutely integrable; the
other part of the Lebesgue Dominated Convergence Theorem says that∫
|fn − g|dµ tends to zero, as n → ∞. The reader may remember that

both above results may be derived from the Monotone Convergence
Theorem, which says that if fn is a sequence of measurable functions
with values in the extended non-negative half-line, and fn+1(ω) ≥ fn(ω)
for all ω except maybe on a set of measure zero, then

∫
A
fn dµ tends to∫

A
limn→∞ fn(ω) dµ regardless of whether the last integral is finite or in-

finite. Here A is the set where limn→∞ fn(ω) exists, and by assumption
it is a complement of a set of measure zero.

Note that these theorems are true also when, instead of a sequence of
functions, we have a family of functions indexed, say, by real numbers
and consider a limit at infinity or at some point of the real line.

1.2.12 Exercise Let (a, b) be an interval and let, for τ in this inter-
val, x(τ, ω) be a given integrable function on a measure space (Ω,F , µ).
Suppose furthermore that for almost all ω ∈ Ω, τ → x(τ, ω) is con-
tinuously differentiable and there exists an integrable function y such
that supτ∈(a,b) |x′(τ, ω)| ≤ y(ω). Prove that z(τ) =

∫
Ω
x(τ, ω)µ(dω) is

differentiable and that z′(τ) =
∫
Ω
x′(τ, ω)µ(dω).

1.2.13 Product measures Let (Ω,F , µ) and (Ω′,F ′, µ′) be two σ-finite
measure spaces. In the Cartesian product Ω × Ω′ consider the rect-
angles, i.e. the sets of the form A × A′ where A ∈ F and A′ ∈ F ′,
and the function µ ⊗ µ′(A × A′) = µ(A)µ′(A′). Certainly, rectangles
form a π-system, say R, and it may be proved that µ ⊗ µ′ is a mea-
sure on R and that there exists an extension of µ⊗ µ′ to a measure on
σ(R), which is necessarily unique. This extension is called the prod-
uct measure of µ and µ′. The assumption that µ and µ′ are σ-finite
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is crucial for the existence of µ⊗ µ′. Moreover, µ⊗ µ′ is σ-finite, and it
is finite if µ and µ′ are. The Tonelli Theorem says that if a func-
tion f : Ω × Ω′ → R is σ(R) measurable, then for all ω ∈ Ω the
function fω : Ω′ → R, fω(ω′) = f(ω, ω′) is F ′ measurable and the
function fω

′
: Ω → R, fω

′
(ω) = f(ω, ω′) is F measurable. Further-

more, the Fubini Theorem says that for a σ(R) measurable function
f : Ω × Ω′ → R+,∫

Ω×Ω′
f d(µ⊗ µ′) =

∫
Ω

[
∫

Ω′
fω(ω′)µ(dω′)]µ(dω)

=
∫

Ω′
[
∫

Ω

fω
′
(ω)µ(dω)]µ(dω′),

finite or infinite; measurability of the integrands is a part of the theorem.
Moreover, this relation holds whenever f is absolutely integrable.

1.2.14 Absolute continuity Let µ and ν be two measures on a measure
space (Ω,F); we say that µ is absolutely continuous (with respect
to ν) if there exists a non-negative (not necessarily integrable) function
f such that µ(A) =

∫
A
f dν for all A ∈ F . In such a case f is called

the density of µ (with respect to ν). Observe that f is integrable (with
respect to ν) iff µ is finite, i.e. iff µ(Ω) <∞. When it exists, the density
is unique up to a set of ν-measure zero.

1.2.15 Change of variables formula Suppose that (Ω,F ,P) is a mea-
sure space and f is a measurable map from (Ω,F) to another mea-
surable space (Ω′,F ′). Consider the set function µf on F ′ defined by
µf (A) = µ(f−1(A)) = µ(f ∈ A). We check that µf is a measure in
(Ω′,F ′). It is called the transport of the measure µ via f or a mea-
sure induced on (Ω′,F ′) by µ and f. In particular, if µ is a probability
measure, and Ω′ = (Rn,Mn(Rn)), µf is called the distribution of f.

Note that a measurable function x defined on Ω′ is integrable with
respect to µf iff x ◦ f is integrable with respect to µ and∫

Ω′
xdµf =

∫
Ω

x ◦ f dµ. (1.6)

To prove this relation, termed the change of variables formula, we
check it first for simple functions, and then use approximations to show
the general case. A particular case is that where a measure, say ν, is
already defined on (Ω′,F ′), and µf is absolutely continuous with respect
to ν. If φ is the density of µf with respect to ν, then the change of
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variables formula reads:∫
Ω

x ◦ f dµ =
∫

Ω′
xdµf =

∫
Ω′
xφdν.

Of particular interest is the case when Ω′ = Rn and ν = lebn.

If µ = P is a probability measure on (Ω,F) and Ω′ = R, we usually
denote measurable maps by the capital letter X. We say that X has a
first moment iff X is integrable, and then write EX ≡

∫
X dP. E X

is called the first moment or expected value of X. The Hölder in-
equality (see 1.5.8 below) shows that if X2 has a first moment then X

also has a first moment (but the opposite statement is in general not
true). EX2 is called the (non-central) second moment of X. If EX2

is finite, we also define the central second moment or variance of X
as D2X = σ2

X = E (X − EX)2. The reader will check that σ2
X equals

EX2 − (EX)2.
If the distribution of a random variable X has a density φ with respect

to Lebesgue measure, than EX exists iff f(ξ) = ξφ(ξ) is absolutely
integrable and then EX =

∫∞
−∞ ξφ(ξ) dξ.

1.2.16 Convolution of two finite measures Let µ and ν be two finite
measures on R. Consider the product measure µ ⊗ ν on R × R, and a
measurable map f : R×R → R, f(ς, τ) = ς + τ. The convolution µ ∗ ν
of µ with ν is defined as the transport of µ ⊗ ν via f. Thus, µ ∗ ν is a
bounded measure on R and, by the change of variables formula,∫

xd(µ ∗ ν) =
∫ ∫

x(ς + τ)µ(dς)ν(dτ). (1.7)

We have µ∗ν(R) = µ⊗ν(R×R) = µ(R)ν(R). In particular, the convolu-
tion of two probability measures on R is a probability measure. Observe
also that µ ∗ ν = ν ∗ µ, and that (µ ∗ µ′) ∗ µ′′ = µ ∗ (µ′ ∗ µ′′) for all
bounded measures µ, µ′ and µ′′.

1.2.17 Convolution of two integrable functions For two Lebesgue in-
tegrable functions φ and ψ on R their convolution φ ∗ ψ is defined by
ϕ(ξ) =

∫∞
−∞ φ(ξ− ς)ψ(ς) dς. The reader will use the Fubini–Tonelli The-

orem to check that φ ∗ ψ is well-defined for almost all ξ ∈ R.

1.2.18 Exercise Suppose that µ and ν are two finite measures on R,

absolutely continuous with respect to Lebesgue measure. Let φ and ψ

be the densities of µ and ν, respectively. Show that µ ∗ ν is absolutely
continuous with respect to Lebesgue measure and has a density ϕ = φ∗ψ.
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In particular, if both φ and ψ vanish for ξ < 0 then so does ϕ and
ϕ(ξ) =

∫ ξ
0
φ(ξ − ς)ψ(ς) dς.

1.2.19 Exercise A counting measure on R with support Z is a mea-
sure that assigns value one to any set {k} where k is an integer. Suppose
that µ and ν are two measures on R, absolutely continuous with respect
to the counting measure. The densities of µ and ν may be identified with
infinite sequences, say (an)n≥1 and (bn)n≥1 . Prove that µ ∗ ν is abso-
lutely continuous with respect to counting measure and that its density
may be identified with a sequence cn =

∑∞
k=−∞ an−kbk. In particular,

if an = bn = 0 for n < 0, then cn = 0 for n < 0 and cn =
∑n
k=0 an−kbk

for n ≥ 0.

1.2.20 Proposition Let µ and ν be two finite Borel measures on R

and assume that
∫
xdµ =

∫
xdν for every bounded continuous function

x. Then µ = ν, i.e. µ(A) = ν(A) for all Borel sets A.

Proof It suffices to show that µ(a, b] = ν(a, b], a < b ∈ R. Consider
xt = 1

t 1[0,t) ∗ 1(a,b], t > 0. Since

xt(τ) =
1
t

∫ τ

−∞
1[0,t)(τ − ς)1(a,b](ς) dς, (1.8)

then |xt(τ)| ≤ 1 and |xt(τ + ς) − xt(τ)| ≤ ς
t , so that xt is bounded and

continuous. Hence, by assumption∫
xt dµ =

∫
xt dν. (1.9)

If τ ≤ a, (1.8) implies xt(τ) = 0. If τ > b, we write

xt(τ) =
1
t

∫ b

a

1[0,t)(τ − ς) dς =
1
t

∫ τ−a

τ−b
1[0,t)(ς) dς (1.10)

to see that xt(τ) = 0, if τ−b > t. Finally, if a < τ ≤ b, xt(τ) = 1
t

∫ t
0

dς =
1, for t < τ − a. Consequently, limt→0 xt(τ) = 1(a,b](τ), τ ∈ R. By the
Lebesgue Dominated Convergence Theorem we may let t → 0 in (1.9)
to obtain µ(a, b] =

∫
1(a,b] dµ =

∫
1(a,b] dν = ν(a, b].

The reader should note how in the proof we have used the “smoothing
property” of convolution and the family xt (which should be thought as
approximating the Dirac measure at 0, see below). Also, a careful ex-
amination of the proof shows that our result is true as well when we
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replace the phrase “bounded continuous functions” by “bounded uni-
formly continuous functions” or even “continuous functions with com-
pact support”. This result will become even clearer in Chapter 5, see the
celebrated Riesz Theorem 5.2.9.

1.2.21 Exercise Let (Ω,F) be a measurable space and ω belong to
Ω. The measure δω given by δω(A) = 1 if ω ∈ A and δω(A) = 0 if ω 
∈ A

is termed Dirac (delta) measure at the point ω. Consider the Dirac
measure δ0 in the measurable space (R,B(R)) and show that for any
Borel measure µ on R, µ ∗ δ0 = µ. How would you describe µ ∗ δt, t ∈ R?
See (1.4).

1.2.22 Convolution on a topological semigroup The notion of convo-
lution may be generalized if we introduce the notion of a topological
semigroup. By definition, a topological semigroup G is a topological
space and a semigroup at the same time, such that the multiplication
in G, · : G × G → G is continuous (G × G is equipped with the product
topology – see 5.7.4). This map, being continuous, is measurable with
respect to appropriate Borel σ-fields. Therefore, for two bounded mea-
sures µ and ν on G, we may define µ∗ν as the transport of µ⊗ν via this
map. By the change of variables formula for any measurable f : G → R,∫

f d(µ ∗ ν) =
∫
f(ξ · η)µ( dξ)ν( dη). (1.11)

Convolution so defined is associative, multiplication in G being associa-
tive, but in general is not commutative, for neither must G be commu-
tative.

If G is a group such that (ξ, η) �→ ξη and ξ �→ ξ−1 are continuous,
then G is called a topological group; ξ−1 is, of course, the inverse of
ξ in G.

1.2.23 Example Convolution on the Klein group. The Klein four-
group [50] (the Klein group for short) is a commutative group G with
four elements, g1, ..., g4, and the following multiplication table:

◦ g1 g2 g3 g4

g1 g1 g2 g3 g4
g2 g2 g1 g4 g3
g3 g3 g4 g1 g2
g4 g4 g3 g2 g1

Table 1.1
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G is a topological group when endowed with discrete topology (all sub-
sets of G are open sets). Any finite measure µ on G may be identi-
fied with a vector (ai)i=1,...,4 with non-negative coordinates. For any
ν = (bi)i=1,...,4 , the coordinates of convolution µ ∗ ν = (ci)i=1,...,4 , as
the image of the measure (aibj)i,j=1,...,4 on G × G, can be read off the
multiplication table:

c1 = a1b1 + a2b2 + a3b3 + a4b4,

c2 = a1b2 + a2b1 + a3b4 + a4b3,

c3 = a1b3 + a2b4 + a3b1 + a4b2,

c4 = a1b4 + a2b3 + a3b2 + a4b1. (1.12)

Note that convolution on the Klein group is commutative, for the group
is commutative.

1.2.24 Example Convolution on the Kisyński group. Consider G =
R × {−1, 1}, with multiplication rule

(τ, k) ◦ (ς, l) = (τ l + ς, kl). (1.13)

We will leave it to the reader to check that G is a (non-abelian) group,
and note the identity in G is (0, 1) and the inverse of (τ, k) is (−kτ, k). G

is also a topological space, even a metric space, when considered as a sub-
space of R2. Clearly, if (τn, kn) converges to (τ, k) and (ςn, ln) converges
to (ς, l) then (τn, kn)◦ (ςn, ln) converges to (τ, k)◦ (ς, l), and (−knτn, kn)
converges to (−kτ, k), proving that G is a topological group.

If µ is a measure on G then we may define two measures on R by
µi(A) = µ(A × {i}), i = 1,−1, A ∈ M. Conversely, if µi, i = 1,−1 are
two measures on R, then for a measurable subset B of G we may put
µ(B) = µ1(B∩ (R×{1}))+µ−1(B∩ (R×{−1})), where B∩ (R×{1}) is
identified with an appropriate subset of R. This establishes a one-to-one
correspondence between measures on G and pairs of measures on R; to
denote this correspondence we shall write µ = (µ1, µ−1). We have∫

G

f dµ =
∫

R

f(ξ, 1)µ1( dξ) +
∫

R

f(ξ,−1)µ−1( dξ), (1.14)

for all bounded measurable functions f : G → R.

Let ∗G denote the convolution in G and let ∗ denote the convolution
in R. For f as above,∫

G

f d(µ ∗G ν) =
∫

G

∫
G

f ((τ, k) ◦ (ς, l))µ (d(τ, k)) ν (d(ς, l)) .
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Using (1.14) this may be rewritten as∫
G

[∫
R

f(τ l + ς, l)µ1 (dτ) +
∫

R

f(τ l + ς,−l)µ−1 (dτ)
]
ν (d(ς, l))

or, consequently, as∫
R

∫
R

f(τ + ς, 1)µ1 (dτ) ν1 (dς) +
∫

R

∫
R

f(−τ + ς,−1)µ1 (dτ) ν−1 (dς)

+
∫

R

∫
R

f(τ + ς,−1)µ−1 (dτ) ν1 (dς)

+
∫

R

∫
R

f(−τ + ς, 1)µ−1 (dτ) ν−1 (dς) .

Hence, (µ ∗G ν)1 is a sum of two measures: one of them is µ1 ∗ ν1 and
the other one is µ̃−1 ∗ ν−1, where µ̃−1(A) = µ−1(−A), and −A ≡ {ς ∈
R,−ς ∈ A}. Similarly, we obtain a formula for (µ ∗G ν)−1. We may
summarize this analysis by writing:

(µ1, µ−1)∗G (ν1, ν−1) = (µ1 ∗ν1 + µ̃−1 ∗ν−1, µ−1 ∗ν1 + µ̃1 ∗ν−1), (1.15)

or in matrix notation,

(µ1, µ−1) ∗G (ν1, ν−1) =
(
µ1 µ̃−1

µ−1 µ̃1

)(
ν1
ν−1

)
. (1.16)

1.2.25 Exercise Let µ(t) = 1
2 (1 + e−2at, 1 − e−2at, 0, 0) where a > 0

is a constant, be a probability measure on the Klein group. Use (1.12)
to check that µ(t) ∗ µ(s) = µ(t+ s), s, t ≥ 0.

1.2.26 Exercise Let µ(t) = 1
2 ((1+e−2at) δt, (1− e−2at)δt), where a is

a positive constant and δt is the Dirac measure at t, be a measure on the
Kisyński group. Use (1.16) to check that µ(t) ∗ µ(s) = µ(t+ s), s, t ≥ 0.

1.2.27 Exercise Find the formula for the convolution of two measures
on a group G of congruences modulo p where p is a prime number. Recall
that this group is composed of numbers 0, 1, ..., p− 1 and the product of
two elements a and b of this group is defined to be ab (mod p).

1.2.28 Exercise Use convolutions in Rn to extend the argument used
in 1.2.20 and show that the same theorem holds for Borel measures in
Rn.
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1.2.29 Exercise Let C = {z ∈ C; |z| = 1} be the unit circle with
usual multiplication. Check that a convolution of two integrable func-
tions on C is given by x ∗ y(eiα) =

∫ π
−π x(e

i(α−θ))y(eiθ) dθ. Let

pr(eiα) =
1
2π

1 − r2

1 − 2r cosα+ r2
=

1
2π

∞∑
n=−∞

r|n|einα, 0 ≤ r < 1

be the Poisson kernel. Check that pr ≥ 0,
∫ π
−π pr(e

iθ) dθ = 1, and
pr ∗ps = prs, 0 ≤ r, s < 1. The equivalence of the two definitions of pr is
a consequence of the formula for the sum of a geometric series and some
simple (but intelligent) algebra – see [103, 111] or other textbooks.

1.2.30 Definition Even though the probability space is a basic notion
of the theory of probability and stochastic processes, it is often the case
that we are not able to say anything about the underlying “original”
probability space upon which the random variable/process is defined.
Neither do we need or intend to. Quite often all we need is the informa-
tion on distributions. The following definitions are exactly in this spirit.

• A random variable X is called Gaussian/normal with parame-
ters m ∈ R, σ2 > 0 if its distribution is absolutely continuous with
respect to leb and has density 1√

2πσ2 exp{− (s−m)2

2σ2 }. We also write
X ∼ N(m,σ2). Sometimes it is convenient to allow σ2 = 0 in this
definition, and say that X = m a.s. is a (degenerate) normal variable
with parameters m and 0.

• A random variable is called exponential with parameter λ > 0 if
its distribution is absolutely continuous with respect to leb and has
the density λ1R+e−λs. If its density equals λ

2 e−λ|s|, s ∈ R, the random
variable is called bilateral exponential.

• A random variable is called uniform on the interval [a, b] if its distri-
bution is absolutely continuous with respect to leb and has a density

1
b−a1[a,b].

• A random variable is called gamma with parameters a > 0 and
b > 0 if its distribution is absolutely continuous with respect to leb

and has density ba

Γ(a)s
a−1e−bs1R+(s), where Γ(a) =

∫∞
0
sa−1e−s ds.

• A random variable is called binomial with parameters n ∈ N and

p ∈ [0, 1] if P (X = k) =
(
n

k

)
pk(1 − p)n−k, 0 ≤ k ≤ n.

• A random variable X is called Poisson with parameter λ > 0 if
P(X = k) = e−λ λ

k

k! , k = 0, 1, . . .
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• A random variable X is called geometric with parameter p ∈ [0, 1]
if P(X = k) = pqk, q = 1 − p, k = 0, 1, . . .

The reader is encouraged to check that the first four functions listed
above are indeed densities of probability measures on R (see Exercise
1.2.31 below), while the last three are probability mass functions of
probability measures on N. Notice also that a gamma variable with
parameters 1 and λ is an exponential variable. In the following sec-
tions we shall prove, not only that there exist random variables with
any given distribution, but also that for any distribution there exist in-
finitely many independent random variables with this distribution. Some
readers might find it surprising that all such variables may be defined
on the standard probability space.

1.2.31 Exercise Show that
∫

R
e−

s2
2 ds =

√
2π.

1.2.32 Exercise Prove that if X is a normal variable with parameters
0 and σ, then X2 is a gamma variable with parameters 1

2 and 1
2σ2 .

1.2.33 Exercise Let µ be the distribution of a gamma variable with
parameters a and b, and let ν be the distribution of a gamma variable
with parameters a′ and b. Show that µ ∗ ν has the same density as a
gamma variable with parameters a+ a′ and b.

1.2.34 Exercise (Poisson approximation to binomial) Show that if
Xn is a sequence of random variables with binomial distributions having
parameters n and pn respectively, and if limn→∞ npn = λ > 0, then
lim P[Xn = k] = λk

k! e
−λ, k ≥ 0.

1.2.35 Exercise Show that if X ∼ N(µ, σ2) then EX = µ, σ2
X = σ2.

Moreover, if X ∼ Γ(a, b) then EX = a
b , and σ2

X = a
b2 .

1.2.36 Exercise Let X be a non-negative random variable with finite
expected value. Prove that P{X ≥ ε} ≤ EX

ε (Markov inequality).
Also, deduce that for any random variable with a finite second moment,
P{|X − EX| ≥ ε} ≤ σ2

X

ε2 (Chebyshev’s inequality).

1.2.37 Exercise Use the Fubini Theorem to show that for any non-
negative random variables X and Y and any numbers α, β > 0 we have

EXαY β =
∫ ∞

0

∫ ∞

0

αsα−1βtβ−1P{X > s, Y > t}dsdt. (1.17)
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Take X = 1, to deduce

E Y β =
∫ ∞

0

βtβ−1P{Y > t}dt. (1.18)

Apply this to obtain

E Y β1{X>s} =
∫ ∞

0

βtβ−1P{X > s, Y > t}dt, s > 0, (1.19)

and, consequently,

EXαY β =
∫ ∞

0

αsα−1E Y β1{X>s} ds. (1.20)

1.3 Functions of bounded variation. Riemann–Stieltjes
integral

1.3.1 Functions of bounded variation A function y defined on a closed
interval [a, b] is said to be of bounded variation if there exists a number
K such that for every natural n and every partition a = t1 ≤ t2 ≤ · · · ≤
tn = b,

n∑
i=2

|y(ti) − y(ti−1)| ≤ K.

The infimum over all such K is then denoted var[y, a, b]. We do not
exclude the case where a = −∞ or b = ∞. In such a case we understand
that y is of bounded variation on finite subintervals of [a, b] and that
var[y,−∞, b] = limc→−∞ var[y, c, b] is finite and/or that

var[y, a,∞] = lim
c→∞

var[y, a, c]

is finite. It is clear that var[y, a, b] ≥ 0, and that it equals |y(b)− y(a)| if
y is monotone. If y is of bounded variation on [a, b] and a ≤ c ≤ b, then
y is of bounded variation on [a, c] and [c, b], and

var[y, a, b] = var[y, a, c] + var[y, c, b]. (1.21)

Indeed, if a = t1 ≤ t2 ≤ · · · ≤ tn = c and c = s1 ≤ s2 ≤ · · · ≤ sm = b,

then ui = ti, i = 1, . . . , n − 1, un = tn = s1 and un+i = si+1, i =
1, . . . ,m− 1, is a partition of [a, b], and

m+n−1∑
i=2

|y(ui) − y(ui−1)| =
n∑
i=2

|y(ti) − y(ti−1)| +
m∑
i=2

|y(si) − y(si−1)|.
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This proves that the right-hand side of (1.21) is no greater than the
left-hand side. Moreover, if a = t1 ≤ t2 ≤ · · · ≤ tn = b is a partition of
[a, b] then either c = tj for some 1 ≤ j ≤ n, or there exists a j such that
tj < c < tj+1. In the first case we define the partition a = t1 ≤ t2 ≤
· · · ≤ tj = c of [a, c] and the partition c = s1 ≤ s2 ≤ · · · ≤ sn+1−j = b

of [c, b] where si = tj+i−1, to see that the right-hand side of (1.21) is no
less than the left-hand side. In the other case we consider the partition
a = t′1 ≤ t′2 ≤ · · · ≤ t′n+1 = b of [a, b], where t′i = ti for i ≤ j, t′j+1 = c,

t′j+i = tj+i−1, i = 1, . . . , n+1−j, and reduce the problem to the previous
case by noting that

n∑
i=2

|y(ti) − y(ti−1)| ≤
n+1∑
i=2

|y(t′i) − y(t′i−1)|.

Equation (1.21) proves in particular that the function v+(t) = var[y, a, t]
where t ∈ [a, b] is non-decreasing. Define v−(t) = v+(t) − y(t). For
s ≤ t, the expression v−(t) − v−(s) = v+(t) − v+(s) − [y(t) − y(s)] =
var[y, s, t]− [y(t)− y(s)] is non-negative. We have thus proved that any
function of bounded variation is a difference of two non-decreasing func-
tions y(t) = v+(t)− v−(t). In particular, functions of bounded variation
have right-hand and left-hand limits. The left-hand limit of y at t is
denoted y(t−) and the right-hand limit of y at t is denoted y(t+). Note
that the representation of a function of bounded variation as a difference
of two non-decreasing functions is not unique. See 1.3.6 below.

1.3.2 Lemma If y(t) is a function of bounded variation on [a, b] then
there exists at most countable number of points of discontinuity of y,
i.e. points t ∈ [a, b] where y(t−) 
= y(t), or y(t+) 
= y(t).

Proof Fix m ∈ N. Note that there may be only a finite number of
points such that |y(t−) − y(t)| ≥ 1

m . This shows that there exists at
most countable number of points t ∈ [a, b] where y(t−) 
= y(t). The
same argument proves that there exists at most countable number of
points t ∈ [a, b] where y(t+) 
= y(t), and these two facts together imply
our claim.

1.3.3 Exercise Let y(t) be a function of bounded variation, and let
Dis(y) be the set of points of discontinuity of y. Let yr be defined as
yr(t) = y(t+), t ∈ [a, b] (note that y and yr differ only on Dis(y)).
Prove that yr is right-continuous and of bounded variation. Moreover,
var[yr, a, b] ≤ var[y, a, b].
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The function yr is called the regularization of y. A function y of
bounded variation is said to be regular if y = yr.

1.3.4 Exercise Prove that if y is of bounded variation and right-
continuous, then so is v+(t) = var[y, a, t].

1.3.5 Monotone functions and finite measures In this subsection we
will show that there is a one-to-one correspondence between regular non-
decreasing functions satisfying (1.22) below, and finite measures on R.

Let µ be a finite measure on R. Define y(t) = µ(−∞, t]. It is clear that
y(t) is non-decreasing, has left limits and is right-continuous. As for the
last two statements it suffices to note that if tn < t and limn→∞ tn = t,

then
⋃

(−∞, tn] = (−∞, t) and by continuity of measure, the limit of
y(tn) exists and equals µ(−∞, t); analogously, if sn > t and limn→∞ sn =
t, then

⋂
(−∞, tn] = (−∞, t] and the limit of y(sn) exists and equals

y(t) = µ(−∞, t]. Also, note that

y(−∞) = lim
t→−∞

y(t) = 0, and y(∞) = lim
t→∞

y(t) <∞. (1.22)

The last limit equals µ(R) and in particular, if µ is a probability measure,
it equals 1.

Now, suppose that y is a right-continuous non-decreasing function
such that (1.22) holds. We will show that there exists a unique finite
Borel measure µ such that µ(−∞, t] = y(t).

If µ is such a measure, and a0 < a1 ≤ b1 < a2 ≤ b2 < ... < an ≤ bn <

bn+1 are real numbers, then we must have

µ

(
(−∞, a0] ∪

n⋃
i=1

(ai, bi] ∪ (bn+1,∞)

)

= [y(a0) − y(−∞)] +
n∑
i=1

[y(bi) − y(ai)] + [y(∞) − y(bn+1)]

with obvious modification if (−∞, a0] and/or (bn+1,∞) is not included
in the union. Such finite unions form a field F , and we see that the above
formula defines an additive function on F .

To show that µ thus defined is countably additive, assume that An ⊃
An+1 are members of F and that

⋂∞
n=1An = ∅. We need to show that

limn→∞ µ(An) = 0.
Suppose that this is not the case, and that there exists an ε > 0

such that µ(An) > ε for all n ≥ 1. By (1.22) and right-continuity of
y, for every An there exists a Bn ∈ F such that cl(Bn) ⊂ An and
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µ(An \Bn) < ε
2n+1 . This is just saying that for a finite interval (a, b] ∈ F

the right-continuity of y implies that we may find a′ > a such that
y(b)−y(a′) is arbitrarily close to y(b)−y(a), and that (1.22) allows doing
the same with infinite intervals. It will be convenient to treat cl(Bn)
as subsets of R = {−∞} ∪ R ∪ {+∞}. R equipped with the topology
inherited from R plus neighborhoods of {−∞} and {+∞} of the form
[−∞, s), and (s,∞], s ∈ R respectively, is a compact topological space.
Since

⋂
cl(Bn) = ∅, there exists an n ∈ N such that cl(B1) ∩ cl(B2) ∩

... ∩ cl(Bn) = ∅. Now,

µ(An) = µ(An \
n⋂
i=1

Bi) + µ(
n⋂
i=1

Bi) = µ(
n⋃
i=1

(An \Bi))

≤ µ(
n⋃
i=1

(Ai \Bi)) ≤
n∑
i=1

µ(Ai \Bi) ≤
n∑
i=1

ε

2i+1
<
ε

2
,

a contradiction. Hence, by 1.2.8 there exists an extension of µ to σ(F)
which is clearly equal to the Borel σ-algebra, and 1.2.7 shows that this
extension is unique. Finally,

y(t) = lim
n→∞

[y(t) − y(−n)] = lim
n→∞

µ(−n, t] = µ(−∞, t].

1.3.6 Functions of bounded variation and signed measures In this sub-
section we introduce the notion of a charge and discuss some properties
of charges. In particular, we prove that there is a one-to-one correspon-
dence between signed measures and regular functions of bounded varia-
tion satisfying (1.22).

A set function µ on a measurable space (Ω,F) is said to be a charge
or a signed measure if there exist finite measures µ+ and µ− such
that µ = µ+−µ−. Of course such a representation is not unique; for any
positive finite measure ν we have µ = (µ+ + ν)− (µ− + ν). Later on, we
will see that there is representation of µ that is in a sense “minimal”.

Given a Borel charge µ on R, i.e. a signed measure which is the differ-
ence of two finite Borel measures on R, we may define y(t) = µ(−∞, t].
Then y is a regular function of bounded variation and satisfies (1.22),
being the difference of y+(t) = µ+(−∞, t] and y−(t) = µ−(−∞, t]. Con-
versely, if y is a regular function of bounded variation satisfying (1.22),
then there exists a unique Borel charge such that µ(−∞, t] = y(t). To
prove this, consider x(t) = var[y,−∞, t], y+

0 = x+y
2 and y−0 = x−y

2 . For
any a ≤ b, 2[y+

0 (b) − y+
0 (a)] = x(b) − x(a) + y(b) − y(a) ≥ 0, proving

that y+
0 is non-decreasing. In a similar fashion we show that y−0 is non-

decreasing also. Both y+
0 and y−0 are regular and satisfy (1.22) since x
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and y do. Therefore, there exist two positive finite measures µ+
0 and µ−

0

such that y+
0 (t) = µ+

0 (−∞, t] and y−0 (t) = µ−
0 (−∞, t]. Since

y = y+
0 − y−0 , (1.23)

the charge µ = µ+
0 − µ−

0 satisfies our requirements.
Moreover, the functions y+

0 and y−0 satisfy x = y+
0 + y−0 . The repre-

sentation (1.23) is minimal in the following sense: if y+ and y− are two
regular non-decreasing functions satisfying (1.22) such that y = y+−y−,
then y+ + y− ≥ x. Indeed, in such a case, for any a ≤ b we have

y(b) − y(a) = [y+(b) − y+(a)] − [y−(b) − y−(a)]

and consequently

|y(b) − y(a)| ≤ [y+(b) − y+(a)] − [y−(b) − y−(a)].

Using this inequality for subintervals of [a, b] we obtain

var[y, a, b] ≤ [y+(b) − y+(a)] − [y−(b) − y−(a)] (1.24)

and the claim follows by taking the limit as a→ −∞.

By 1.2.8, this proves that

|µ| ≤ µ+ + µ− (1.25)

where |µ| is a measure related to x and µ+ and µ− are related to y+ and
y−, respectively. To be more specific, there exists a positive measure ν
such that |µ|+2ν = µ++µ−. Thus, the minimality of the representation
(1.23) may also be rephrased as follows: for any charge µ there exists two
positive measures µ+

0 and µ−
0 such that µ = µ+

0 −µ−
0 and |µ| = µ+

0 +µ−
0 ,

and for any other measures µ+ and µ− such that µ = µ+ − µ− there
exists a positive measure ν such that µ+ = µ+

0 + ν and µ− = µ−
0 + ν.

Given a charge µ in the minimal representation µ = µ+
0 − µ−

0 and a
function f that is absolutely integrable with respect to µ+

0 and µ−
0 , we

define
∫
f dµ as

∫
f dµ+

0 −
∫
f dµ−

0 . It may be checked that if µ = µ+−µ−

for some other measures µ+ and µ− such that f is absolutely integrable
with respect to them, then

∫
f dµ =

∫
f dµ+ −

∫
f dµ−. Obviously,∣∣∣∣

∫
f dµ

∣∣∣∣ ≤
∫

|f |dµ+ +
∫

|f |dµ−

and in particular ∣∣∣∣
∫
f dµ

∣∣∣∣ ≤
∫

|f |d|µ|.
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1.3.7 The Riemann–Stieltjes integral Let [a, b] be an interval (a < b)
and let y be a function of bounded variation on [a, b]. Suppose that
t �→ x(t) ∈ R is another function on [a, b]. Consider two sequences,
T = (ti)i=0,..,k and Ξ = (ξi)i=0,...,k of points of [a, b], where k is an
integer, such that

a = t0 < t1 < · · · < tk = b, t0 ≤ ξ0 ≤ t1 ≤ · · · ≤ tk−1 ≤ ξk−1 ≤ tk.

Define the related numbers ∆(T ) = sup0≤i≤k{ti − ti−1} and

S(T ,Ξ, x, y) =
k−1∑
i=0

x(ξi)[y(ti+1) − y(ti)]. (1.26)

If the limit limn→∞ S(Tn,Ξn, x, y) exists for any sequence of pairs
(Tn,Ξn) such that limn→∞ ∆(Tn) = 0, and does not depend on the
choice of the sequence of (Tn,Ξn), function x is said to be Riemann–
Stieltjes integrable with respect to y. The above limit is denoted∫ b

a

xt dy(t)

and called the (Riemann–Stieltjes) integral of x (with respect to y).
This definition has to be modified when either a or b is infinite. Assume

for instance that a is finite and b = ∞. It is clear then that the definition
of ∆(T ) has to be changed since ∆(T ) as defined now is always infinite.
We put therefore ∆(T ) = sup0≤i≤k−1(ti − ti−1), and then require that
the limit limn→∞ S(Tn,Ξn, x, y) exists for any sequence of pairs (Tn,Ξn)
such that limn→∞ ∆(Tn) = 0, and limn→∞ tn,kn−1 = ∞. Here tn,kn−1

is the second to last element of partition Tn; the last one is always ∞.

Again the limit is not to depend on the choice of the sequence of (Tn,Ξn).
With this definition, it turns out that continuous functions are Rie-

mann–Stieltjes integrable. First of all, Exercise 1.3.8 below shows that
continuous functions are integrable with respect to a function of bounded
variation iff they are integrable with respect to its regularization. Thus, it
suffices to show that continuous functions are integrable with respect to
regular functions of bounded variation. To this end, let x be continuous
on [a, b]. To focus our attention, we assume that a = −∞ and b is finite.
We understand that the limit limt→−∞ x(t) exists. Function x, being
continuous, is measurable. Extend y to the whole line by setting y(t) =
y(b) for t ≥ b. Let µ be the unique finite (signed) measure corresponding
to the regularization yr of such an extended function. Since x is bounded,
it is integrable and we may define l =

∫
f dµ. Now, consider the sequence

of partitions Tn with sets of midpoints Ξn. Fix ε > 0. Since x is uniformly
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continuous, we may choose an R > 0 and a δ > 0 such that |x(t)−x(s)| <
ε provided |t − s| < ε, for s, t ∈ (−∞, b], or s, t < −R. Choose n large
enough so that ∆(Tn) < ε and tn,2 < −R. Again, tn,2 is the second
element of partition Tn. Now

|l−S(Tn,Ξn, x, y)|

=

∣∣∣∣∣
kn∑
i=0

∫
(tn,i,tn,i+1]

xdµ−
kn∑
i=0

x(ξn,i)[y(tn,i+1) − y(tn,i)]

∣∣∣∣∣
≤
∣∣∣∣∣
kn∑
i=0

∫
(tn,i,tn,i+1]

|x(s) − x(ξn,i)|µ(ds)

∣∣∣∣∣ ≤ εµ(R).

This proves that the limit of S(Tn,Ξn, x, y) is l and concludes the proof
of our claim.

1.3.8 Exercise Let y be a function of bounded variation on an inter-
val [a, b], let yr be the regularization of y and x be a continuous function
on [a, b]. Assume to fix attention that a and b are finite. Consider the
sequence of partitions Tn with sets of midpoints Ξn, such that the cor-
responding ∆n tends to zero. Prove that

lim
n→∞

S(Tn,Ξn, x, y) = lim
n→∞

S(Tn,Ξn, x, yr) + x(a)[y(a+) − y(a)].

1.4 Sequences of independent random variables

1.4.1 Definition Let (Ω,F ,P) be a probability space. Let Ft, t ∈ T

be a family of classes of measurable subsets (T is an abstract set of
indexes). The classes are termed mutually independent (to be more
precise: mutually P-independent) if for all n ∈ N, all t1, ..., tn ∈ T

and all Ai ∈ Fti , i = 1, ..., n

P(
n⋂
i=1

Ai) =
n∏
i=1

P(Ai). (1.27)

The classes are termed pairwisely independent (to be more precise:
pairwisely P-independent) if for all n ∈ N, all t1, t2 ∈ T and all
Ai ∈ Fti , i = 1, 2,

P(A1 ∩A2) = P(A1)P(A2).

It is clear that mutually independent classes are pairwisely independent.
Examples proving that pairwise independence does not imply joint in-
dependence may be found in many monographs devoted to probability
theory. The reader is encouraged to find one.
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Random variables Xt, t ∈ T are said to be mutually (pairwisely) in-
dependent if the σ-algebras Ft = σ(Xt) generated by Xt are mutually
(pairwisely) independent.

From now on, the phrase “classes (random variables) are indepen-
dent” should be understood as “classes (random variables) are mutually
independent”.

1.4.2 Exercise Suppose that two events, A and B, are independent,
i.e. P(A ∩B) = P(A)P(B). Show that the σ-algebras

{A,A�,Ω, ∅}, {B,B�,Ω, ∅}

are independent.

1.4.3 Exercise Let (Ω,F ,P) be a probability space and G ∈ F be a σ-
algebra. Define G⊥ as the class of all events A such that A is independent
of B for all B ∈ G. Show that G⊥ is a λ-system. To see that G⊥ is in
general not a σ-algebra consider Ω = {a, b, c, d} with all simple events
equally likely, and G a σ-algebra generated by the event {c, d}. Note that
A = {a, c} and B = {b, c} are independent of G but that neither A ∩B
nor A ∪B are independent of G.

1.4.4 Exercise Suppose that random variables X and Y are indepen-
dent and that f and g are two Lebesgue measurable functions. Prove that
f(X) and g(Y ) are independent.

1.4.5 Exercise Show that random variablesX and Y are independent
iff the distribution of the random vector (X,Y ) is PX⊗PY . Consequently,
the distribution of the sum of two independent random variables is the
convolution of their distributions:

PX+Y = PX ∗ PY .

1.4.6 Exercise Suppose that Xn, n ≥ 1 is a sequence of independent
random variables with exponential distribution with parameter λ > 0.
Show that Sn =

∑n
k=1Xk is a gamma variable with parameters λ and

n.

1.4.7 Exercise Let X ∼ N(0, σ2
1) and Y ∼ N(0, σ2

2) be two indepen-
dent random variables. Show that X + Y ∼ N(0, σ2

1 + σ2
2).

1.4.8 Exercise Suppose that random variables X and Y are inde-
pendent and have expected values. Show that EXY = EX E Y ; the
existence of EXY is a part of the claim.
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1.4.9 Example It is easy to find an example showing that the con-
verse statement to the one from the previous exercise is not true. Suppose
however that X and Y are such that EXf(Y ) = EXE f(Y ) for any
Borel function f. Does that imply that X and Y are independent? The
answer is still in the negative. As an example consider random variables
X that has only three possible values 0, 2 and 4 each with probability
1
3 , and Y that attains values a and b (a 
= b) with probability 1

2 each.
Assume also that their joint probability mass function is given by:

Y \X 0 2 4

a 1
12

2
6

1
12

b 3
12 0 3

12

Table 1.2

Then the joint probability mass function ofX and f(Y ) for any f is the
same, except that a is replaced with some real α and b is replaced with a
β (αmay happen to be equal β). CertainlyX and Y are not independent,
and yet EX = 2, E f(Y ) = α+β

2 and EXf(Y ) = 8α
12 + 4α

12 + 12β
12 = α+β,

and so Ef(Y )X = EXE f(Y ). The reader should be able to prove that
if E f(Y )g(X) = E f(Y )E g(X) for all Borel functions f and g then X

and Y are independent.

1.4.10 Exercise If random variables Xi are exponential with param-
eter λi, i = 1, 2, and independent, then Y = min(X1, X2) is exponential
with parameter λ1 + λ2.

1.4.11 Exercise Show that if X and Y are independent exponential
random variables with parameters λ and µ, respectively, then P[X ≤
Y ] = λ

λ+µ .

1.4.12 Theorem Suppose that Ft, t ∈ T are independent π-systems
of measurable sets, and that Tu, u ∈ U are disjoint subsets of T. The
σ-algebras Gu generated by Ft, t ∈ Tu are independent.

Proof Fix n ∈ N, and choose indexes u1, ..., un ∈ U . (If the number of
elements of U is finite, n must be chosen no greater than the number of
elements in U .) We need to prove that (1.27) holds for all Ai ∈ Gui

, i =
1, ..., n. By assumption, (1.27) holds if all Ai belong to the class Ai of
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events of the form

Ai =
k(i)⋂
j=1

Bi,j , (1.28)

where Bi,j belong to Fti,j
for some ti,j ∈ Tui

. Now, fix Ai, i = 2, ..., n, of
this form and consider the class B1 of events A1 such that (1.27) holds.
As we have pointed out B1 contains A1, and it is easy to check that B1

is a λ-system (for example, to check that A,B ∈ B1 and A ⊂ B implies
B\A ∈ B1 we use only the fact that for such sets P(B\A) = P(B)−P(A)).
Since A1 is a π-system, by the Monotone Class Theorem B1 contains
the σ(A1), and, consequently Gui

. Thus, (1.27) holds for A1 ∈ Gu1 and
Ai, i = 2, ..., n, of the form (1.28).

Now, we fix A1 ∈ Gu1 and Ai, i = 3, ..., n, of the form (1.28), and
consider the class B2 of events A2 such that (1.27) holds. Repeating the
argument presented above we conclude the this class contains Gu2 , which
means that (1.27) holds if A1 belongs to Gu1 , A2 belongs to Gu2 and the
remaining Ai are of the form (1.28). Continuing in this way we obtain
our claim.

1.4.13 A sequence of independent random variables with two values
Let η(t) =

∑∞
i=0 1[ 12 ,1)

(t− i) and Xk, k ≥ 1, be random variables on the
standard probability space, given by Xk(t) = η(2kt), t ∈ [0, 1). For any
k, Xk attains only two values, 0 and 1, both with the same probability
1
2 . To be more precise, Xk = 1 if t ∈ [ 2i+1

2k+1 ,
2i+2
2k+1 ) for some 0 ≤ i < 2k

and 0 otherwise. Xk are also independent. To show this note first that
for any n ≥ 0, the set of t such that X1 = δ1, ..., Xn = δn (where δj are
either 0 or 1), equals [

∑n
i=0

δi

2i+1 ,
∑n
i=0

δi

2i+1 + 1
2n ). Therefore,

leb{X1 = δ1, ..., Xn = δn} =
1
2n

=
n∏
i=1

leb{Xi = δi}. (1.29)

Moreover,

leb{X2 = δ2, ..., Xn = δn} = leb{X1 = 1, X2 = δ2, ..., Xn = δn}
+leb{X1 = 0, X2 = δ2, ..., Xn = δn}

=
1
2n

+
1
2n

=
1

2n−1
=

n∏
i=2

leb{Xi = δi}.

In a similar fashion, we may remove any number of variables Xj from
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formula (1.29) to get

leb{Xi1 = δ1, ..., Xik = δk} =
1
2n

=
n∏
j=1

leb{Xij = δj},

which proves our claim.

1.4.14 A sequence of independent uniformly-distributed random vari-
ables The notion of independence does not involve the order in the
index set T. Reordering the sequence Xk from 1.4.13 we obtain thus
an infinite matrix Xn,m, n,m ≥ 1, of independent random variables at-
taining two values 0 and 1 with the same probability 1

2 . Define Yn =∑∞
m=1

1
2mXn,m. This series converges absolutely at any t ∈ [0, 1), and

the sum belongs to [0, 1]. Since for any n ∈ N, σ(Yn) is included in the σ-
algebra Fn generated by random variables Xn,m m ≥ 1, and σ-algebras
Fn are independent by 1.4.12, the random variables Yn are independent.
We claim that they are uniformly distributed on [0, 1).

Let µn be the distribution of Yn, and µn,k be the distribution of∑k
m=1

1
2mXn,m. By the Lebesgue Dominated Convergence Theorem, for

any continuous function f,∫
f dµn =

∫
f(Yn) dleb =

∫ 1

0

f(Yn(s)) ds (1.30)

= lim
k→∞

∫ 1

0

f
( k∑
m=1

1
2m

Xn,m(s)
)
ds =: lim

k→∞

∫
f dµn,k.

To determine the distribution µn,k and the above integral note that∑k
m=1

1
2mXn,m attains only 2k values, from 0 to 1− 1

2k , each with prob-
ability 1

2k . Thus µn,k is the sum of point masses 1
2k concentrated at the

points 0, 1
2k , ..., 1 − 1

2k . Hence, the last integral equals 1
2k

∑2k−1
i=0 f

(
i

2k

)
.

This is, however, the approximating sum of the Riemann integral of the
function f. Therefore, the limit in (1.30) equals

∫ 1

0
f(s) ds. On the other

hand, this is the integral with respect to the distribution of a random
variable that is uniformly distributed on [0, 1). Our claim follows by
1.2.20.

1.4.15 A sequence of independent normal random variables From the
random variables Yn we obtain easily a sequence of independent normal
random variables. In fact, we consider Zn = erf(Yn), where “erf” is the
inverse of the increasing function y(t) = 1√

2π

∫ t
−∞ e−

s2
2 ds, that maps
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the real line into (0, 1).† Zn are independent since “erf” is continuous,
so that σ(Zn) ⊂ σ(Yn). Moreover, for any continuous function f on [0, 1],
changing the variables s = y(t),∫

f dPZn
=
∫

[0,1)

f(erf) dP =
∫ 1

0

f(erf(s)) ds =
1√
2π

∫ ∞

−∞
f(t)e−

t2
2 dt,

and the claim follows.

1.4.16 Exercise Prove the existence of an infinite sequence of random
variables with (a) exponential distribution (b) Poisson distribution.

1.4.17 A sequence of independent random variables If we are more
careful, we may extend the argument from 1.4.15 to prove existence of a
sequence of independent random variables with any given distribution.
Indeed, it is just a question of choosing an appropriate function to play
a role of “erf”.

The distribution of a random variable Y is uniquely determined by
the non-decreasing, right-continuous function y(t) = P[Y ≤ t], satisfying
(1.22) with y(+∞) = 1, often called the cumulative distribution
function. Therefore, it suffices, given a non-decreasing, right-continuous
function y satisfying (1.22) with y(+∞) = 1, to construct a measurable
function x : [0, 1] → R such that

leb{s ∈ [0, 1] : x(s) ≤ t} = y(t), t ∈ R. (1.31)

Indeed, if this can be done then for a sequence Yn, n ≥ 1 of indepen-
dent random variables with uniform distribution in [0, 1) we may define
Zn = x(Yn), n ≥ 1. Since σ(Zn) ⊂ σ(Yn), Zn are independent and have
cumulative distributions function equal to y, for we have

P[Zn ≤ t] = P[x(Yn) ≤ t] = PYn [s : x(s) ≤ t]

= leb{s : x(s) ≤ t} = y(t),

as desired.
Coming back to the question of existence of a function y satisfying

(1.31), note that if we require additionally that x be non-decreasing and
left-continuous, this relation holds iff

{s ∈ [0, 1];x(s) ≤ t} = [0, y(t)].

Thus, condition s ≤ y(t) holds iff x(s) ≤ t, and for any s we have

{t : s ≤ y(t)} = {t;x(s) ≤ t} = [x(s),∞).

† This is somewhat non-standard but useful notation.
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Therefore, we must have

x(s) = inf{t : s ≤ y(t)}. (1.32)

Note that for x thus defined,

x(s) ≤ t⇔ inf{u; y(u) ≥ s} ≤ t

⇔ (t,∞) ⊂ {u; y(u) ≥ s}
⇔ y(t) = y(t+) ≥ s,

since y is non-decreasing. This implies that x is measurable and that
(1.31) holds. Note that we do not need to know whether x is or is not
left-continuous; we have used the assumption of left-continuity to infer
(1.32) from (1.31), but do not require it in proving that (1.32) implies
(1.31).

1.4.18 Exercise We will say that a random variable Y has a modified
Bernoulli distribution with parameter 0 ≤ p ≤ 1 iff 1

2 (Y +1) is Bernoulli
r.v. with the same parameter. In other words, P{Y = 1} = p,P{Y =
−1} = q = 1 − p. Suppose that we have two sequences Xn, n ≥ 1 and
Yn, n ≥ 1 of mutually independent random variables such that all Xn

have the same distribution with EX = m and D2Xn = σ2, and that Yn
all have the modified Bernoulli distribution with parameter 0 < p < 1.
Then (Xn, Yn) are random vectors with values in the Kisyński group.
Let Zn, n ≥ 1 be defined by the formula: (X1, Y1) ◦ ... ◦ (Xn, Yn) =
(Zn,

∏n
i=1 Yi). Show that (a)

∏n
i=1 Yi is a modified Bernoulli variable

with parameter pn = 1
2 (p− q)n+ 1

2 , (b) E Zn = m
2q (1− (p− q)n), and (c)

D2Zn = nσ2 + 4pq
∑n−1
i=1 (E Zi)2, so that limn→∞

D2Zn

n = σ2 + p
qm

2.

1.5 Convex functions. Hölder and Minkowski inequalities

1.5.1 Definition Let (a, b) be an interval (possibly unbounded: a =
−∞ and/or b = ∞). A function φ is termed convex if for all u, v ∈ (a, b)
and all 0 ≤ α ≤ 1,

φ(αu+ (1 − α)v) ≤ αφ(u) + (1 − α)φ(v). (1.33)

1.5.2 Exercise Show that φ is convex in (a, b) iff for all a < u1 ≤
u2 ≤ u3 < b,

φ(u2) ≤
u2 − u1

u3 − u1
φ(u3) +

u3 − u2

u3 − u1
φ(u2). (1.34)
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1.5.3 Exercise (a) Assume φ is convex in (a, b). Define φ̃(u) = φ(a+
b − u). (If a = −∞, b = ∞, put a + b = 0.) Show that φ̃ is convex. (b)
For convex φ on the real line and t ∈ R, define φ(u) = φ(2t− u). Prove
that φ is convex.

1.5.4 Lemma Suppose φ is convex in (a, b) and let u ∈ (a, b). Define

f(s) = fφ,u(s) =
φ(u) − φ(s)

u− s
, s ∈ (a, u),

g(t) = gφ,u(t) =
φ(t) − φ(u)

t− u
, t ∈ (u, b). (1.35)

Then (a) f and g are non-decreasing, and (b) f(s) ≤ g(t) for any s and
t from the domains of f and g, respectively.

Proof To prove the statement for f, we take a < s < s′ < u and do
some algebra using (1.34) with u1 = s1, u2 = s2 and u3 = u. To prove
the corresponding statement for g we either proceed similarly, or note
that gφ(s) = −fφ̃,a+b−u(a+ b− s). Indeed,

fφ̃,a+b−u(a+ b− s) =
φ̃(a+ b− u) − φ̃(a+ b− s)
a+ b− u− (a+ b− s)

=
φ(u) − φ(s)

s− u
.

Finally, (b) follows from (1.34), with u1 = s, u2 = u, u3 = t.

1.5.5 Proposition Convex functions are continuous.

Proof By 1.5.4, for any u ∈ (a, b) there exist right-hand side and left-
hand side derivatives of φ at u, which implies our claim. Note that the
left-hand side derivative may be smaller than the right-hand side deriva-
tive: consider φ(u) = |u| at u = 0.

1.5.6 Proposition Let φ be a convex function on (a, b), and let S
be the family of linear functions ψ(t) = a + bt such that ψ(t) ≤ φ(t),
t ∈ (a, b). Furthermore, let S0 = {ψ ∈ S|ψ(t) = at + b, a, b ∈ Q}. Then
(a) φ(t) = supψ∈S ψ(t), and (b) if φ is not linear itself, then φ(t) =
supψ∈S0

ψ(t).

Proof (a) Obviously, φ(t) ≥ supψ∈S ψ(t), so it is enough to show that for
any t ∈ (a, b) there exists a ψt ∈ S such that ψt(t) = φ(t). We claim that
we may take ψt(s) = q(s− t) + φ(t), where q is any number bigger than
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the left-hand derivative φ′−(t) of φ at t, and smaller than the right-hand
derivative φ′+(t) of φ at t. Indeed, ψt(t) = φ(t), and by 1.5.4, for s ≥ t,

ψt(s) − φ(t)
s− t

= q ≤ φ′+(t) ≤ φ(s) − φ(t)
s− t

which implies ψt(s) ≤ φ(s). For s ≤ t, the argument is the same, or we
could argue using the function φ̃ defined in 1.5.3 to reduce the problem
to the case s ≥ t.

(b) Let t ∈ (a, b) and let ψt be the function defined in (a). Since φ is
not linear, φ(s)−φ(t)

s−t is not equal to q for some s ∈ (a, b). Without loss
of generality, we may assume that s > t (if s < t, consider the function
φ̃(u) = φ(2t − u), which is convex also, and note that it is enough to
show (b) for φ̃ instead of φ). The claim will be proven if we show that
for any ε > 0, and sufficiently small h > 0, the function

ψt,ε,h(u) = (q + h)(u− t) + φ(t) − ε = ψt(u) + h(u− t) − ε (1.36)

belongs to S. We take h < min( ε
s−t ,

φ(s)−φ(t)
s−t −q). Note that φ(s)−φ(t)

s−t >

q, by 1.5.4.
For u ≤ s, ψt,ε,h(u) ≤ ψt(u) ≤ φ(u) since h(u−t)−ε ≤ h(s−t)−ε ≤ 0.

For u > t, by 1.5.4, φ(u)−φ(t)
u−t ≥ φ(s)−φ(t)

s−t > q + h. Thus,

ψt,ε,h(u) ≤
φ(u) − φ(t)

u− t
(u− t) + φ(t) − ε ≤ φ(u).

1.5.7 Proposition If φ is continuously differentiable with φ′ increas-
ing, then φ is convex.

Proof Fix u ∈ (a, b) and consider fφ,u defined in (1.35). For s < u, there
exists a s < θ < u such that −φ(θ)(u − s) + φ(u) − φ(s) = 0. Thus,
f ′φ,u(s) = −φ(s)(u−s)+φ(u)−φ(s)

(u−s)2 ≥ 0, proving that fφ,u is non-decreasing
in (a, u). Reversing the argument from 1.5.4 we prove that this implies
the thesis.

1.5.8 Hölder inequality Let (Ω,F , µ) be a measure space, and let x, y
be two measurable functions on Ω with values in [0,∞]. Suppose that
1
p + 1

q = 1, p > 1. Then

∫
Ω

xy dµ ≤
(∫

Ω

xp dµ
) 1

p
(∫

Ω

yq dµ
) 1

q

.
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Proof Let K =
(∫

Ω
xp dµ

) 1
p and L =

(∫
Ω
yq dµ

) 1
q . Without loss of

generality we may assume that both K and L are finite and non-zero
since if K > 0, L = ∞ or K = ∞, L > 0, there is nothing to prove, or if
K = 0 (respectively L = 0), then x = 0 µ a.e. (y = 0 µ a.e.) so that the
left hand-side equals zero too.

Let, X = x/K, Y = y/L. Then
∫
Ω
Xp dµ =

∫
Ω
Y q dµ = 1. Note also

that
∫
Ω
XY dµ =

∫
B
XY dµ, where B = {ω|X(ω)Y (ω) > 0}. On B we

may define the functions a(ω) and b(ω) such that X(ω) = ea(ω)/p and
Y (ω) = eb(ω)/q. Since φ(s) = es is a convex function (see 1.5.7),

X(ω)Y (ω) = ea(ω)/p+b(ω)/q ≤ 1
p
ea(ω) +

1
q
eb(ω)

=
1
p
Xp(ω) +

1
q
Y q(ω).

Integrating over B we get∫
Ω

XY dµ =
∫
B

XY dµ ≤ 1
p

∫
B

Xp dµ+
1
p

∫
B

Y q dµ

=
1
p

∫
B

Xp dµ+
1
p

∫
B

Y q dµ =
1
p

+
1
q

= 1,

which gives the thesis.

1.5.9 Minkowski inequality Under notations of 1.5.8,(∫
Ω

(x+ y)p dµ
) 1

p

≤
(∫

Ω

xp dµ
) 1

p

+
(∫

Ω

yp dµ
) 1

p

.

Proof By the Hölder inequality,∫
Ω

(x+ y)p dµ =
∫

Ω

x(x+ y)p−1 dµ+
∫

Ω

y(x+ y)p−1 dµ

≤
(∫

Ω

xp dµ
) 1

p
(∫

Ω

(x+ y)q(p−1) dµ
) 1

q

+
(∫

Ω

yp dµ
) 1

p
(∫

Ω

(x+ y)q(p−1) dµ
) 1

q

=

[(∫
Ω

xp dµ
) 1

p

+
(∫

Ω

yp dµ
) 1

p

](∫
Ω

(x+ y)p dµ
) 1

q

.

The thesis follows by dividing both sides by the last term above (note
that if this term is zero, there is nothing to prove.)
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1.6 The Cauchy equation

The content of this section is not needed in what follows but it provides
better insight into the results of Chapter 6 and Chapter 7. Plus, it con-
tains a beautiful Theorem of Steinhaus. The casual reader may skip this
section on the first reading (and on the second and on the third one as
well, if he/she ever reads this book that many times). The main theorem
of this section is 1.6.11.

1.6.1 Exercise Let (Ω,F , µ) be a measure space. Show that for all
measurable sets A,B and C

|µ(A ∩B) − µ(C ∩B)| ≤ µ(A÷ C).

Here ÷ denotes the symmetric difference of two sets defined as A÷B =
(A \B) ∪ (B \A).

1.6.2 Lemma If A ⊂ R is compact and B ⊂ R is Lebesgue measur-
able, than x(t) = leb(At ∩B) is continuous, where At is a translation of
the set A as defined in (1.4).

Proof By Exercise 1.6.1,

|leb(At+h ∩B) − leb(At ∩B)| ≤ leb(At+h ÷At)

= leb(Ah ÷A)t = leb(Ah ÷A), t, h ∈ R,

since Lebesgue measure is translation invariant. Therefore it suffices to
show that given ε > 0 there exists a δ > 0 such that leb(Ah ÷ A) < ε

provided |h| < δ. To this end let G be an open set such that leb(G\A) <
ε
2 , and take δ = mina∈A minb∈G� |a− b|. This is a positive number since
A is compact, G� is closed, and A and G� are disjoint (see Exercise 1.6.3
below). If |h| < δ, then Ah ⊂ G. Hence,

leb(Ah \A) < leb(G \A) <
ε

2
,

and

leb(A \Ah) = leb(A \Ah)−h = leb(A−h \A) <
ε

2
,

as desired.

1.6.3 Exercise Show that if A and B are disjoint subsets of a metric
space (X, d), A is compact, and B is closed, then δ = mina∈A minb∈B |a−
b| is positive. Show by example that the statement is not true if A is
closed but fails to be compact.
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1.6.4 The Steinhaus Theorem If A and B are Lebesgue measurable
subsets of R such that leb(A) > 0 and leb(B) > 0, then A + B = {c ∈
R|c = a+ b, a ∈ A, b ∈ B} contains an open interval.

Proof Since Lebesgue measure is regular, there exists a compact subset
of A with positive measure. Therefore it suffices to show the theorem
under additional assumption that A is compact. Of course, C = −A =
{u,−u ∈ A} is then compact also. By 1.6.2, x(t) = leb(Ct ∩ B) is a
continuous, in particular measurable, function. On the other hand, x =
1A ∗ 1B , so that

∫∞
−∞ x(t) dt = leb(A) leb(B) > 0.

This implies that there exists a point t0 such that x(t0) > 0. Since x
is continuous, there exists an interval (t0 − δ, t0 + δ), δ > 0 in which x

assumes only positive values. Hence leb(Ct∩B) > 0 for t in this interval,
and in particular Ct ∩B is non-empty. Thus, for any t ∈ (t0 − δ, t0 + δ)
there exists b ∈ B and a ∈ A such that −a+ t = b. This shows that this
interval is contained in A+B, as desired.

1.6.5 The Cauchy equation A function x : R+ → R is said to satisfy
the Cauchy equation if

x(s+ t) = x(s) + x(t), s, t > 0. (1.37)

An example of such a function is x(t) = at, where a ∈ R, and it turns out
that there are no other simple examples (see 1.6.11 and 1.6.12 below).
Functions that satisfy (1.37) and are not of this form are very strange
(and thus very interesting for many mathematicians). In particular, it is
easy to see that (1.37) implies that

x

(
k

n
t

)
=
k

n
x(t), t ∈ R+, k, n ∈ N. (1.38)

Therefore, if x satisfies (1.37) and is continuous we may take t = 1 in
(1.38) and approximate a given s ∈ R+ by rational numbers to obtain

x(s) = x(1)s. (1.39)

We need, however, a stronger result. Specifically, we want to show that
all measurable functions that satisfy (1.37) are of the form (1.39). To this
end, we need the Steinhaus Theorem and the lemmas presented below.
The reader should start by solving the next exercise.

1.6.6 Exercise Prove that (1.37) implies (1.38).
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1.6.7 Lemma Suppose that x satisfies (1.37) and is bounded from
above in an interval (t0 − δ, t0 + δ), where δ < t0, i.e. x(t) ≤ M for
some M ∈ R and all t in this interval. Then x is bounded from below in
(t0 − δ, t0 + δ), i.e. x(t) ≥ N for some N ∈ R and t in this interval.

Proof For t ∈ (t0 − δ, t0 + δ), let t′ = 2t0 − t ∈ (t0 − δ, t0 + δ). We have
x(t0) = 1

2 [x(t) + x(t′)], so that x(t) = 2x(t0) − x(t′) ≥ 2x(t0) −M. In
other words, we may choose N = 2x(t0) −M.

1.6.8 Exercise Show that if x satisfies (1.37) and is bounded from
below in an interval, then it is bounded from above in this interval.

1.6.9 Lemma Suppose that x satisfies (1.37) and is bounded in an
interval (t0 − δ, t0 + δ), i.e. |x(t)| ≤M for some M ∈ R and all t in this
interval. Then

|x(t) − x(t0)| ≤
M

δ
|t− t0|, t ∈ (t0 − δ, t0 + δ). (1.40)

In particular, x is continuous at t0.

Proof Observe that if t and t′ are as in the proof of Lemma 1.6.7, then
|x(t)−x(t0)| = |x(t′)−x(t0)| and |t−t0| = |t′−t0|. Thus, we may restrict
our attention to t ∈ (t0 − δ, t0). Let tn ∈ (t0 − δ, t0), n ≥ 1, converge to
t0 − δ. We may choose tn in such a way that αn = t0−t

t0−tn , n ≥ 1, are
rational. Since t = (1 − αn)t0 + αntn, x(t) = (1 − αn)x(t0) + αnx(tn),
and we obtain

x(t) − x(t0) = αn[x(tn) − x(t0)] ≤ 2Mαn =
2M

t0 − tn
(t0 − t). (1.41)

Letting tn → t0 − δ,

x(t) − x(t0) ≤
2M
δ

(t0 − t). (1.42)

Analogously, if t′n ∈ (t0, t0 + δ) tends to t0 + δ in such a way that
αn = t0−t

t′n−t is rational, then t0 = α′
nt

′
n + (1 − α′

n)t, and x(t0) − x(t) =
α′
n(x(t

′
n) − x(t)). Moreover,

x(t0) − x(t) ≤ lim
n→∞

2M
t′n − t

(t0 − t) =
2M
δ

(t0 − t). (1.43)
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1.6.10 Lemma If x satisfies (1.37) and is bounded from above in an
interval (t0 − δ, t0 + δ), where t0 > δ > 0, then it is also bounded from
above in intervals (t1 − δ1, t1 + δ1), where t1 ∈ R, and δ1 = δ1(t1) =
min(t1, δ).

Proof Let t ∈ (t1 − δ, t1 + δ), where t1 > δ. Define t′ = t + t0 − t1 ∈
(t0 − δ, t0 + δ). We have

x(t) = x(t′) + sgn(t1 − t0)x(|t1 − t0|) (1.44)

≤ sup
t′∈(t0−δ,t0+δ)

x(t′) + sgn(t1 − t0)x(|t1 − t0|), (1.45)

i.e. x is bounded from above in t ∈ (t1 − δ, t1 + δ). Recall that

sgn(τ) =

⎧⎪⎪⎨
⎪⎪⎩

1, τ > 0,

0, τ = 0,

−1, τ < 0.

(1.46)

The case t1 ≤ δ is proved similarly.

1.6.11 Theorem If a measurable function x satisfies (1.37) then it is
of the form (1.39).

Proof It suffices to show that x is continuous. Since R+ =
⋃∞
n=1{t;x(t) ≤

n}, there exists an n ∈ N such that leb{t;x(t) ≤ n} > 0. Let A =
{t;x(t) ≤ n} + {t;x(t) ≤ n}. For t ∈ A ⊂ R+, x(t) ≤ 2n. By the
Steinhaus Theorem, A contains an interval (t0 − δ, t0 + δ), and so x is
bounded from above in this interval. By Lemma 1.6.10, for any t1 >

0 there exists an interval (t1 − δ1, t1 + δ1) where δ1 > 0 in which x

is bounded. By Lemma 1.6.7, this implies that x is bounded in these
intervals, and by Lemma 1.6.9, x is continuous at every t1 > 0.

1.6.12 Corollary Our argument shows that a function x that satisfies
(1.37) and is not measurable must be unbounded in any open interval.

1.6.13 Exercise Let y : R+ → R be a measurable function such that
x(s) := limt→∞

y(t+s)
y(s) exists for all s > 0. Show that we must have

x(s) = eas for some real a.
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Basic notions in functional analysis

A characteristic of functional analysis is that it does not see functions,
sequences, or measures as isolated objects but as elements or points
in a space of functions, a space of sequences, or a space of measures.
In a sense, for a functional analyst, particular properties of a certain
probability measure are not important; rather, properties of the whole
space or of a certain subspace of such measures are important. To prove
existence or a property of an object or a group of objects, we would
like to do it by examining general properties of the whole space, not
by examining these objects separately. There is both beauty and power
in this approach. We hope that this crucial point of view will become
evident to the reader while he/she progresses through this chapter and
through the whole book.

2.1 Linear spaces

The central notion of functional analysis is that of a Banach space. There
are two components of this notion: algebraic and topological. The alge-
braic component describes the fact that elements of a Banach space may
be meaningfully added together and multiplied by scalars. For example,
given two random variables, X and Y, say, we may think of random
variables X + Y and αX (and αY ) where α ∈ R. In a similar way, we
may think of the sum of two measures and the product of a scalar and
a measure. Abstract sets with such algebraic structure, introduced in
more detail in this section, are known as linear spaces. The topological
component of the notion of a Banach space will be discussed in Section
2.2.

37
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2.1.1 Definition Let X be a set; its elements will be denoted x, y, z,
etc. A triple (X,+, ·), where + is a map + : X × X → X, (x, y) �→ x+ y

and · is a map · : R × X → X, (α, x) �→ αx, is called a (real) linear
space if the following conditions are satisfied:

(a1) (x+ y) + z = x+ (y + z), for all x, y, z ∈ X,
(a2) there exists Θ ∈ X such that x+ Θ = x, for all x ∈ X,
(a3) for all x ∈ X there exists an x′ ∈ X such that x+ x′ = Θ,
(a4) x+ y = y + x, for all x, y ∈ X,

(m1) α(βx) = (αβ)x, for all α, β ∈ R, x ∈ X,

(m2) 1x = x, for all x ∈ X,

(d) α(x + y) = αx + αy, and (α + β)x = αx + βx for all α, β ∈ R and
x, y ∈ X.

Conditions (a1)–(a4) mean that (X,+) is a commutative group. Quite
often, for the sake of simplicity, when no confusion ensues, we will say
that X itself is a linear space.

2.1.2 Exercise Conditions (a2) and (a4) imply that the element Θ,
called the zero vector, or the zero, is unique.

2.1.3 Exercise Conditions (a1) and (a3)–(a4) imply that for any x ∈
X, x′ is determined uniquely.

2.1.4 Exercise Conditions (d), (a1) and (a3) imply that for any x ∈
X, 0x = Θ.

2.1.5 Exercise 2.1.3, and 2.1.1 (d), (m2) imply that for any x ∈ X,

x′ = (−1)x. Because of this fact, we will adopt the commonly used
notation x′ = −x.

2.1.6 Example Let S be a set. The set X = RS of real-valued func-
tions defined on S is a linear space, if addition and multiplication are
defined as follows: (x + y)(p) = x(p) + y(p), (αx)(p) = αx(p), for all
x(·), y(·) ∈ RS , α ∈ R, and p ∈ S. In particular, the zero vector Θ is a
function x(p) ≡ 0, and −x is defined by (−x)(p) ≡ −x(p). This example
includes a number of interesting subcases: (a) if S = N, RN is the space
of real-valued sequences, (b) if S = R, RR is the space of real functions
on R, (c) if S = {1, ..., n} × {1, 2, ..., k}, RS is the space of real n × k

matrices, etc.
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2.1.7 Linear maps A map L from a non-empty subset D(L) (the do-
main of L) of a linear space X to a linear space Y is linear if for all
α, β ∈ R and x, y in D(L), αx+ βy belongs to D(A), and L(αx+ βy) =
αL(x) + βL(y). Note that the operations +, · on the left-hand side of
this equation are performed in X while those on the right-hand side are
operations in Y. With linear operations it is customary to omit paren-
theses for the argument so that we write Lx instead L(x). Note that the
definition implies that Θ belongs to D(L) and LΘ = Θ, where again the
Θ on the left hand-side is the zero in X, while that on the right-hand
side is in Y. In the sequel we shall write such equations without making
these distinctions, and if the reader keeps these remarks in mind, there
should be no confusion. A linear map L : X → Y is called an algebraic
isomorphism of X and Y, if it is one-to-one and onto. (In particular,
L−1 exists and is linear.) If such a map exists, X and Y are said to be
algebraically isomorphic.

2.1.8 Example The collection L(X,Y) of linear maps from a linear
space X (with domain equal to X) to a linear space Y is a linear space
itself, provided we define

(αL)x = αLx and (L+M)x = Lx+Mx

for L,M ∈ L(X,Y) and α ∈ R. The reader is encouraged to check this.

2.1.9 Algebraic subspace A subset Y of a linear space X is called an
algebraic subspace of X if for all x, y ∈ Y, and α ∈ R, x + y and αx

belong to Y. Observe that Y with addition and multiplication restricted
to Y is itself a linear space.

2.1.10 Example Let lp, p > 0 denote the space of sequences x =
(xn)n≥1, such that

∑∞
n=1 |xn|p < ∞. lp is a subspace of the space RN.

Indeed, denoting f(x) =
∑∞
n=1 |xn|p < ∞, we have f(αx) = |α|pf(x)

and f(x+y) ≤ 2p(f(x)+f(y)), where x = (xn)n≥1, y = (yn)n≥1. The last
inequality follows directly from the estimate |x + y|p ≤ 2p(|x|p + |y|p),
which can be proved by considering the cases |y| ≥ |x| and |x| < |y|
separately.

2.1.11 Example Recall that a function x : S → R is said to be
bounded if there exists an M > 0 such that supp∈S |x(p)| ≤ M. The
space B(S) of bounded functions is an algebraic subspace of RS since
if x and y are bounded by Mx and My, respectively, then αx + βy is
bounded by |α|Mx + |β|My.
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2.1.12 Example Let S be a topological space. The space C(S) of real
continuous functions is an algebraic subspace of RS . Similarly, if S is a
measurable space (S,F), then the space M(S,F) (or M(S) if there is
one obvious choice for F) of real measurable functions is a subspace of
RS . This just says that the sum of two continuous (measurable) functions
is continuous (measurable), and that a continuous (measurable) function
multiplied by a number is again continuous (measurable).

2.1.13 Example Let C1(R) denote the set of differentiable functions.
C1(R) is an algebraic subspace of RR and differentiation is a linear map
from C1(R) to RR.

2.1.14 Exercise Let L be a linear map from X to Y. Show that (a)
the domain D(L) is an algebraic subspace of X, (b) the set Ker L =
{x ∈ X|Lx = 0}, called the kernel of L, is an algebraic subspace of X,

and (c) the set RangeL = {y ∈ Y|y = Lx, for some x ∈ X}, called the
range, is an algebraic subspace of Y.

2.1.15 Definition Let X be a linear space and let Y be an algebraic
subspace of X. Consider the relation ∼ in X, defined by

x ∼ y iff x− y ∈ Y.

Since Y is an algebraic subspace of X, for any x, y and z ∈ X, we have
(a) x ∼ y iff y ∼ x, (b) x ∼ y and y ∼ z implies x ∼ z, and (c) x ∼ x.

This means that ∼ is an equivalence relation. Let

[x] = {y ∈ X|x ∼ y}

be the equivalence class of x. (Note that for any x and y in X, the
classes [x] and [y] are either identical or disjoint, and that the union of
all classes equals X.) The set of equivalence classes is called the quotient
space and denoted X/Y.We note that X/Y is a linear space itself. Indeed,
since Y is a subspace of X, the classes [x + y] and [x′ + y′] coincide if
x ∼ x′ and y ∼ y′, so that we may put [x] + [y] = [x+ y]. Analogously,
we note that we may put α[x] = [αx] (in particular, that the definition
does not depend on the choice of x but only on [x]). It is easy to show
that the conditions of Definition 2.1.1 are fulfilled; the zero of X/Y is
the space Y. The map x �→ [x] is called the canonical map (canonical
homomorphism) of X onto X/Y. Notice that this map is linear.
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2.1.16 Definition If A and B are subsets of a linear subspace of
X, and α and β are real numbers, then the set αA + βB is defined as
{z ∈ X|z = αx+ βy, for some x ∈ A, y ∈ B}. In particular, if A = {x},
we write x+ βB, instead of {x} + βB.

2.1.17 Exercise Prove that any class in X/Y, different from Y, may
be represented as x+ Y where x 
∈ Y.

2.1.18 Exercise Let A and B,A ⊂ B be subsets of a linear space X,

and let x ∈ X. Show that (B \A) − x = (B − x) \ (A− x).

2.1.19 Example Let RR be the space of real-valued functions defined
on R, and let RR

e be its subset of even functions. We may check that RR
e

is an algebraic subspace of RR. What is the quotient space RR/RR
e ? Note

first that two functions are in the equivalence relation iff their difference
is even. Secondly, in any equivalence class there exists at least one odd
function. Indeed, any class contains at least one function x; and any
function can be represented as x = xe+xo where xe(t) = [x(t)+x(−t)]/2
is even and xo(t) = [x(t)−x(−t)]/2 is odd, so that x is in relation with an
odd function xo (note that xo may be zero, if x itself is even). Moreover,
there may not be more than one odd function in any class, for if there
were two, their difference would have to be both even (by the definition
of the equivalence relation) and odd (by the properties of odd functions),
and hence zero. This suggests that RR/RR

e is algebraically isomorphic to
the space RR

o of odd functions on R. The isomorphism maps a class to
the unique odd function that belongs to the class. We have proved that
this map is a one-to-one map and obviously it is onto. The reader is
encouraged to check that it is linear.

2.1.20 Exercise Let S be a set and let Y ⊂ RS be the subspace of
constant functions. Characterize RS/Y.

2.1.21 Exercise Let L : X → Y be a linear map. Show that RangeL
is algebraically isomorphic to X/Ker L.

2.1.22 Example Suppose that (Ω,F) and (Ω′,F ′) are two measur-
able spaces, and let f be a measurable map from Ω to Ω′. Let L :
M(Ω′) → M(Ω) be given by (Lx)(ω) = x(f(ω)). L is a linear map,
and its range is the algebraic subspace Mf (Ω) of M(Ω) of functions
y(ω) of the form y(ω) = x(f(ω)) where x ∈ M(Ω′). What is the kernel
of L? It is the subspace of M(Ω′) of functions with the property that
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x(ω′) = 0 for all ω′ ∈ Rf (the range of f). The equivalence relation
defined by means of KerL identifies two functions that are equal on
Rf . This suggests that M(Ω′)/KerL is algebraically isomorphic to the
space of measurable functions on Rf . We have to be careful in stating
this result, though, since Rf may happen to be non-measurable in Ω′.
A natural way to make Rf a measurable space is to equip it with the
σ-algebra FRf

of subsets of the form Rf ∩B where B ∈ F ′. Using 2.1.21,
we can then show that Mf (Ω) is isomorphic to M(Rf ,FRf

).

2.1.23 Exercise Take Ω = Ω′ = [0, 1], and let F be the Lebesgue
measurable subsets, F ′ = {Ω, ∅}, and f(ω) = 1

2 and check to see that f
is measurable and that the range of f is not measurable in (Ω′,F ′).

2.1.24 Doob–Dynkin Lemma A more fruitful and deeper result con-
cerning Mf (Ω) is the following lemma due to Doob and Dynkin (see e.g.
3.2.5). With the notations of 2.1.22, Mf (Ω) equals M(Ω, σ(f)).

Proof (Observe how the lattice structure of R is employed in the proof.)
The relation Mf (Ω) ⊂ M(Ω, σ(f)) is obvious. To prove the opposite in-
clusion it is enough to show that any positive function from M(Ω, σ(f))
belongs to Mf (Ω), since any function in this space is a difference of
two positive functions. Now, the claim is true for simple functions y =∑n
i=1 ai1Ai

where the ai are constants and the Ai belong to σ(f). Indeed,
the Ai are of the form f−1(Bi) where the Bi belong to F ′, so that we
have y(ω) = x(f(ω)) where x =

∑n
i=1 ai1Bi . Finally, if y ∈ M(Ω, σ(f))

is non-negative, then there exists a non-decreasing sequence of simple
functions yn that converges pointwise to y. Let xn be the correspond-
ing sequence of simple functions in M(Ω′) such that xn(f(ω)) = yn(ω).
Certainly, the idea is to prove that xn converges to some x ∈ M(Ω′)
that satisfies x ◦ f = y, so that y = M(Ω). Note first that xn is non-
decreasing on Rf . Indeed, for any ω′ in this set there exists an ω ∈ Ω
such that ω′ = f(ω) and we have

xn(ω′) = yn(f(ω)) ≤ yn+1(f(ω)) = xn+1(ω).

However, it is hard to tell what happens outside of Rf ; in particular we
should not think that the sets Bi defined above (for simple functions)
are subsets of Rf ; as a result xn may happen to be divergent outside
of Rf . Certainly, the values of the limit function x outside of Rf do
not matter as long as we make sure that x is measurable. Were Rf
measurable we could bypass the difficulty by taking xn1Rf

instead of
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xn. If Rf is not measurable, we may consider the measurable set C =
{ω′| limn→∞ xn(ω′) exists } and define x(ω) = limn→∞ xn(ω′) for ω′ ∈
C, and zero otherwise. We already know that Rf ⊂ C, so that for ω ∈ Ω,
x(f(ω)) = limn→∞ xn(f(ω)) = limn→∞ yn(ω) = y(ω).

2.1.25 Linear combinations Let xi ∈ X, i = 1, ..., n be given vectors,
and let αi ∈ R be real numbers. A vector y =

∑n
i=1 αixi is called a linear

combination of xi ∈ X, i = 1, ..., n. If αi are non-negative and satisfy∑n
i=1 αi = 1, y is called a convex combination of xi ∈ X, i = 1, ..., n.

If Y is a subset of X, then its linear span, or simply span spanY is
defined to be the set of all linear combinations of vectors xi ∈ Y, i =
1, ..., n (where n ∈ N and the vectors xi may vary from combination
to combination). Certainly, spanY is an algebraic subspace of X. The
reader may check that it is actually the smallest algebraic subspace of
X that contains Y in the sense that if Z is an algebraic subspace of
X that contains Y then spanY ⊂ Z. Analogously, the convex hull
of Y, denoted convY is the set of all convex combinations of vectors
xi ∈ Y, i = 1, ..., n, n ∈ N and is the smallest convex set that contains Y.

We say that Y is convex if convY = Y. Note that we always have Y ⊂
convY ⊂ spanY, and Y is an algebraic subspace of X iff spanY = Y, in
which case Y = convY = spanY.

2.1.26 Example Let X = R2, and let A and B be two points in the
plane R2. If 0 denotes the origin, then the interval AB is the convex hull
of two vectors:

−→
0A and

−→
0B. Indeed, C ∈ AB iff

−→
0C =

−→
0B +

−−→
BC =

−→
0B +

α
−−→
BA where 0 ≤ α ≤ 1. This means, however, that

−→
0C = (1−α)

−→
0B+α

−→
0A

since
−−→
BA =

−→
0A−−→

0B.

2.1.27 Exercise Let X = R2, and Y1 = {(x, y)|x2 + (y − 2)2 ≤ 1},
Y2 = {(x, y)|x2 + y2 ≤ 1}. Find the span and the convex hull of Yi, i =
1, 2.

2.1.28 Exercise Let X = l1. Prove that Y1 = {(xn)n≥1 ∈ l1|xn ≥ 0}
is convex. Define Y2 = {(xn)n≥1 ∈ Y1|

∑∞
n=1 xn = 1}. Find the convex

hull and the span of Y2.

2.1.29 Exercise Let Yi, i = 1, ..., n be convex subsets of a linear space
X. Prove that the convex hull of

⋃n
i=1 Yi equals the set of z ∈ X of the

form

z =
n∑
i=1

αiyi, (2.1)



44 Basic notions in functional analysis

where αi are non-negative,
∑n
i=1 αi = 1 and yi ∈ Yi. Show by example

that the claim is not true if Yi are not convex.

2.1.30 Exercise Let f : R → R be a function. Show that the subset
of points in R2 lying above the graph of f is convex iff f is convex.

2.1.31 Exercise Show that the functions of bounded variation on R

form an algebraic subspace of RR, and that the subset of non-decreasing
functions is convex. Similarly, the set of signed measures on a measure
space (ω,F) is a linear space, and probability measures form its convex
subset.

2.1.32 Exercise Let η2n+k(s) = η(2ns − k), s ∈ R+, 0 ≤ k < 2n,
where

η(s) =

⎧⎨
⎩

0, s ∈ (−∞, 0) ∪ [1,∞),
1, s ∈ [0, 1

2 ),
−1, s ∈ [ 12 , 1).

Define vectors on X = R[0,1) by zm = (ηm)|[0,1),m ≥ 1 (restriction
of ηm to [0, 1)) and z0 = 1[0,1). Also, let yk,n = 1[ k

2n ,
k+1
2n ). Finally, let

Zn = {zk|0 ≤ k < 2n} and Yn = {yk,n|0 ≤ k < 2n}. Prove that
spanZn = spanYn.

2.2 Banach spaces

As we have mentioned already, the notion of a Banach space is crucial
in functional analysis and in this book. Having covered the algebraic
aspects of Banach space in the previous section, we now turn to dis-
cussing topological aspects. A natural way of introducing topology in a
linear space is by defining a norm. Hence, we begin this section with the
definition of a normed space (which is a linear space with a norm) and
continue with discussion of Cauchy sequences that leads to the definition
of a Banach space, as a normed space “without holes”. Next, we give a
number of examples of Banach spaces (mostly those that are important
in probability theory) and introduce the notion of isomorphic Banach
spaces. Then we show how to immerse a normed space in a Banach space
and provide examples of dense algebraic subspaces of Banach spaces. We
close by showing how the completeness of a Banach space may be used
to prove existence of an element that satisfies some required property.
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2.2.1 Normed linear spaces Let X be a linear space. A function ‖ · ‖ :
X → R, x �→ ‖x‖ is called a norm, if for all x, y ∈ X and α ∈ R,

(n1) ‖x‖ ≥ 0,

(n2) ‖x‖ = 0, iff x = Θ,

(n3) ‖αx‖ = |α| ‖x‖,
(n4) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

If (n2) does not necessarily hold, ‖ · ‖ is called a semi-norm. Note that
if ‖ · ‖ is a semi-norm, then ‖Θ‖ = 0 by (n3) and 2.1.4. A pair (X, ‖ · ‖),
where X is a linear space and ‖ · ‖ is a norm in X called a normed
linear space, and for simplicity we say that X itself is a normed linear
space (or just normed space).

2.2.2 Exercise (n3)–(n4) imply that for x, y ∈ X,∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x± y‖.

2.2.3 Theorem Suppose X is a linear space, and ‖ · ‖ is a semi-norm.
Then Y0 = {x ∈ X : ‖x‖ = 0} is an algebraic subspace of X and the pair
(X/Y0, |‖ · ‖|), where

|‖[x]‖| = inf
y∈[x]

‖y‖ = ‖x‖, (2.2)

is a normed linear space.

Proof That Y0 is an algebraic subspace of X follows directly from (n3)–
(n4). By 2.2.2, if x ∼ y then

∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x − y‖ = 0, so that (2.2)

holds. We need to show (n2)–(n4) of the definition for the function |‖·‖|,
(n1) being trivial. Condition (n2) follows directly from (2.2). Conditions
(n3) and (n4) now follow from the fact that ‖ · ‖ is a semi-norm: indeed,
for any x′ ∈ [x] and y′ ∈ [y],

|‖[x] + [y]‖| = |‖[x+ y]‖| ≤ ‖x′ + y′‖ ≤ ‖x′‖ + ‖y′‖ = |‖[x]‖| + |‖[y]‖|.

and

|‖α[x]‖| = |‖[αx]‖| ≤ ‖αx′‖ = |α| ‖x′‖ = |α||‖[x]‖|.
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2.2.4 Exercise Suppose that Y is a subspace of a normed linear space
X. Extend the argument used in 2.2.3 to show that the quotient space
X/Y is a normed linear space if we introduce

‖[x]‖∗ = inf
y∈[x]

‖y‖. (2.3)

2.2.5 Example Let (Ω,F , µ) be a measure space, and p ≥ 1 be a real
number. Let Lp(Ω,F , µ) be the set of measurable functions x on Ω such
that

(∫
Ω
|x|p dµ

)1/p
<∞. An analogous argument to that presented for

lp in 2.1.10 may be used to show that Lp(Ω,F , µ) is a linear space. We
claim that

‖x‖ =
(∫

Ω

|x|p dµ
)1/p

is a semi-norm on this space. Indeed, (n1) and (n3) are trivial, and (n4)
reduces to the Minkowski inequality (see 1.5.9) if p > 1. For p = 1, (n4)
follows from the triangle inequality: |x+ y| ≤ |x| + |y|.

However, ‖ · ‖ is not a norm since ‖x‖ = 0 implies merely that x = 0
µ a.e. Thus, to obtain a normed linear space we need to proceed as in
2.2.3 and consider the quotient space Lp(Ω,F , µ)/Y, where Y = {x|x =
0µ a.e.}. In other words we do not distinguish two functions that differ
on a set of measure zero.

It is customary, however, to write Lp(Ω,F , µ) for both Lp(Ω,F , µ)
itself and for its quotient space defined above. Moreover, for simplicity,
it is often said that a function x belongs to Lp(Ω,F , µ) even though what
is meant is that x represents a class of functions in Lp(Ω,F , µ)/Y. This
should not lead to confusion, although it requires using caution, at least
initially. As a by-product of this notational (in)convenience we often
encounter phrases like “Let Lp(Ω,F , µ) be the space of (equivalence
classes of) functions integrable with the pth power”.

2.2.6 Normed spaces as metric spaces Note that if ‖·‖ is a norm, then
d(x, y) = ‖x− y‖ is a metric. This means that (X, d) is a metric space.
We may thus introduce topological notions in X; such as convergence of
a sequence, open and closed sets etc. However, the structure of a normed
linear space is richer than that of a metric space.

A subset Y of a normed linear space X is said to be linearly dense iff
its linear span is dense in X. Y is called a subspace of X if it is a closed
algebraic subspace of X. Note that a closure of an algebraic subspace is
a subspace.
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2.2.7 Exercise Let x and xn, n ≥ 1 be elements of normed linear
space. Suppose that x = limn→∞ xn; show that

‖x‖ = lim
n→∞

‖xn‖.

2.2.8 Cauchy sequences A sequence (xn)n≥1 of elements of a normed
linear space X is said to be Cauchy if for all ε > 0 there exists an
n0 = n0(ε) such that d(xn, xm) = ‖xn − xm‖ < ε, for all n,m ≥ n0.

We claim that every convergent sequence is Cauchy. For the proof, let
ε > 0 be given and let x = limn→∞ xn. Choose n0 large enough to have
‖xn − x‖ < ε for all n ≥ n0. If n,m ≥ n0, then

‖xn − xm‖ ≤ ‖xn − x‖ + ‖x− xm‖ < 2ε.

2.2.9 Exercise Show that every Cauchy sequence (xn)n≥1, xn ∈ X,

is bounded, i.e. there exists an M > 0 such that ‖xn‖ ≤ M for all
n ≥ 1. Moreover, the limit limn→∞ ‖xn‖ exists for all Cauchy sequences
(xn)n≥1.

2.2.10 Not every Cauchy sequence is convergent Let X = C([0, 1]) be
the linear space of continuous real-valued functions on [0, 1] equipped
with the usual topology (see 2.1.12). Let ‖x(·)‖ =

∫ 1

0
|x(s)|ds (see 2.2.5)

and define a sequence in X whose elements are given by

xn(s) =

⎧⎨
⎩

0, 0 ≤ s ≤ 1
2 − 1

n ,
1
2 + n

2 (s− 1
2 ), 1

2 − 1
n ≤ s ≤ 1

2 + 1
n ,

1, 1
2 + 1

n ≤ s ≤ 1.

For m > n, ‖xm− xn‖ = 1
2 [ 1
n − 1

m ] (look at the graphs!), so that the se-
quence is Cauchy. However, it is not convergent. Indeed, if limn→∞ ‖xn−
x‖ = 0 for some x ∈ C([0, 1]), then for all ε > 0, limn→∞

∫ 1
2−ε

0
|xn(s) −

x(s)|ds = 0. Since for n > 1
ε , we have xn(s) = 0 whenever s ∈ [0, 1

2 − ε],

we have
∫ 1

2−ε
0

|x(s)| = 0, i.e. x(s) = 0 a.e. in [0, 1
2 − ε). By continuity,

x(s) = 0 for all s < 1
2 . The same argument shows that x(s) = 1, for

s ∈ ( 1
2 , 1]. This contradicts continuity of x.

2.2.11 Remark There are at least two ways of explaining why, in the
previous example, (xn)n≥1 failed to be convergent. Both are fruitful and
lead to a better understanding of the phenomenon in question (actually,
they are just different sides of the same coin). Note that the notion of
convergence (and of a Cauchy sequence) depends both on X and on the
norm. Thus, the first way of explaining 2.2.10 is to say that the norm
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‖x(·)‖ =
∫ 1

0
|x(s)|ds is not appropriate for X = C([0, 1]). This norm

is too weak in the sense that it admits more Cauchy sequences than
it should. If we define ‖x‖sup = sup0≤s≤1 |x(s)|, then ‖xn − xm‖sup =
1
2 − n

2m for m ≥ n, so that the sequence is not Cauchy any more, and
the problem with this sequence disappears. Moreover, we will not have
problems with other sequences since any sequence that is Cauchy in
this norm is convergent in this norm to an element of C([0, 1]) (see
2.2.16 below). The second way of explaining 2.2.10 is to say that the
space is not appropriate for the norm. Indeed, if we stick to this norm
and, instead of C([0, 1]) take the space L1[0, 1] of (equivalence classes of)
Lebesgue integrable functions, (xn)n≥1 will not only be Cauchy, but also
convergent. Indeed, we have actually found the limit x of our sequence:
x = 1( 1

2 ,1]
.† The fact is that it does not belong to C([0, 1]), but it does

belong to L1[0, 1]. Moreover, we may prove that any Cauchy sequence
in L1[0, 1] is convergent (see below).

2.2.12 Definition If every Cauchy sequence in a normed linear space
X is convergent, X is called a Banach space. If we recall that a met-
ric space is termed complete if every Cauchy sequence of its elements
is convergent (see 2.2.6), we may say that a Banach space is a com-
plete normed linear space. Note again that this notion involves both the
space and the norm; and that this pair becomes a Banach space if both
elements “fit” with each another.

Before we continue with examples of Banach spaces, the reader should
solve the following two “warm-up” problems.

2.2.13 Exercise Suppose that Y is a subspace of a Banach space.
Show that Y is itself a Banach space, equipped with the norm inherited
from X.

2.2.14 Exercise Let X be a normed linear space and (xn)n≥1 be a se-
quence of its elements. We say that a series

∑∞
n=1 xn converges, if the

sequence yn =
∑n
i=1 xi converges. We say that this series converges

absolutely if
∑∞
n=1 ‖xn‖ < ∞. Show that a normed linear space is a

Banach space iff every absolutely convergent series converges.

2.2.15 The space of bounded functions Let S be a set and let B(S) be
the linear space of bounded functions on S. Define the norm

‖x‖ = sup
p∈S

|x(p)|

† We have not proven yet that lim xn = x, but this is a simple exercise.
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(the supremum is finite by the definition of a bounded function; see
2.1.11). B(S) is a Banach space.

Proof We check easily that conditions (n1)–(n4) of the definition of
the norm are satisfied. The only non-trivial statement is that about
completeness. Let, therefore, xn be the Cauchy sequence in B(S). Let p
be a member of S. By the definition of the supremum norm the sequence
xn(p) is a Cauchy sequence in R. Let x(p) = limn→∞ xn(p). We claim
that x belongs to B(S) and xn converges to x in this space. Indeed,
since xn is a Cauchy sequence in B(S), given ε > 0, we may choose
an n0 such that for all p ∈ S and n,m ≥ n0, |xn(p) − xm(p)| < ε.

Taking the limit m → ∞, we get |x(p) − xn(p)| ≤ ε. In particular
supp∈S |x(p)| ≤ supp∈S{|x(p) − xn(p)| + |xn(p)|} < ∞, i.e. x ∈ B(S),
and ‖xn − x‖ ≤ ε. This means that xn converges to x in the supremum
norm.

2.2.16 The space of continuous functions Let S be a compact Haus-
dorff topological space. The space C(S) of continuous functions x on S,
equipped with the supremum norm:

‖x‖ = sup
p∈S

|x(p)|

is a Banach space.

Proof It is enough to show that C(S) is a subspace of B(S). Note that
continuous functions on a compact set are bounded, for the image of a
compact set via a continuous function is compact and compact sets in R

are necessarily bounded. It remains to show that the limit of a sequence
xn ∈ C(S) does belong not only to B(S) but also to C(S). But this just
means that the uniform limit of a sequence of continuous functions is
continuous, which may be proven as follows. For p ∈ S and ε > 0, take
n such that |xn(p) − x(p)| ≤ ε

3 for all p ∈ S. Moreover, let U be the
neighborhood of p such that q ∈ U implies |xn(p) − xn(q)| ≤ ε

3 . The
triangle inequality shows that

|x(p) − x(q)| ≤ |x(p) − xn(p)| + |xn(p) − xn(q)| + |xn(q) − x(q)| ≤ ε,

as desired.

2.2.17 Exercise (a) Let S be a Hausdorff topological space. The space
BC(S) of bounded continuous functions x on S equipped with the supre-
mum norm is a Banach space. (b) Let (Ω,F) be a measurable space. The
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space BM(Ω) of bounded measurable functions on Ω equipped with the
same norm is a Banach space.

2.2.18 The space L∞(Ω,F , µ) Let (Ω,F , µ) be a measure space. As
noted in Exercise 2.2.17 above, the space BM(Ω) of bounded measurable
functions on Ω, with the supremum norm is a Banach space. The fact
that there exists a measure µ on (Ω,F) allows introducing a new Banach
space that is closely related to BM(Ω). In many situations it is desirable
to identify measurable functions that differ only on a set of µ-measure
zero. In other words, we introduce an equivalence relation: two measur-
able functions x and y are in this equivalence relation iff x(ω) = y(ω)
for all ω ∈ Ω except maybe for a set of µ-measure zero. Note that an
unbounded function may belong to the equivalence class of a bounded
function. Such functions are said to be essentially bounded, and we
define the norm of the equivalence class [x] of an essentially bounded
function x to be

‖[x]‖ = inf
y ∈ [x]

y ∈ BM(Ω)

‖y‖BM(Ω).

We shall prove later that the infimum in this definition is attained for a
bounded y ∈ [x]. The space of (classes of) essentially bounded functions
is denoted L∞(Ω,F , µ).

The reader may have noticed the similarity of the procedure that we
are using here to the one in 2.2.3. Let us remark, however, that these
procedures are not identical. Specifically, the linear space of essentially
bounded measurable functions on (Ω,F), where the equivalence class
was introduced above, is not a normed linear space in the sense of Def-
inition 2.2.1, since ‖x‖BM(Ω) may be infinite for an x in this space.
Nevertheless, an argument almost identical to the one presented in 2.2.3
proves that L∞(Ω,F , µ) is a normed linear space.

Let us note that for any x ∈ L∞(Ω,F , µ) there exists a bounded
y ∈ [x] such that ‖[x]‖L∞(Ω,F,µ) = ‖y‖BM(Ω). Indeed, let yn ∈ BM(Ω)
be such that yn = x for all ω ∈ Ω \An where µ(An) = 0 and

lim
n→∞

‖yn‖BM(Ω) = ‖[x]‖L∞(Ω,F,µ).

Define y(ω) = 0 for ω ∈ A =
⋃
n≥1An and y(ω) = x(ω) for ω 
∈ A.

Certainly, µ(A) = 0, and so y ∈ [x]. Moreover, y is bounded because for
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any n ∈ N we have

‖y‖BM(Ω) = sup
ω∈Ω

|y(ω)| = sup
ω∈Ω\An

|y(ω)|

≤ sup
ω∈Ω\An

|yn(ω)| = ‖yn‖BM(Ω).

Taking the limit as n→ ∞, this inequality also shows that

‖y‖BM(Ω) ≤ lim
n→∞

‖yn‖BM(Ω) = ‖[x]‖L∞(Ω,F,µ).

Since the reverse inequality is obvious, our claim is proved.
To show that L∞(Ω,F , µ) is complete, we use Exercise 2.2.14. Let

[xn] ∈ L∞(Ω,F , µ) be a sequence such that
∑∞
n=1 ‖[xn]‖L∞(Ω,F,µ) <∞.

Let yn ∈ BM(Ω) be such that ‖yn‖BM(Ω) = ‖[xn]‖L∞(Ω,F,µ). Then
the series

∑∞
n=1 yn is absolutely convergent, and because BM(Ω) is a

Banach space,
∑∞
n=1 yn converges to a y in this space. Since the class of∑n

i=1 yi equals
∑n
i=1[xi] we infer that

∑n
i=1[xi] converges to the class of

y, as desired.

2.2.19 The space Lp(Ω,F , µ), p ≥ 1 Let (Ω,F , µ) be a measure space.
The space Lp(Ω,F , µ), p ≥ 1, is a Banach space.

Proof We shall use 2.2.14. Let xn ∈ Lp(Ω,F , µ) be such that

∞∑
n=1

‖xn‖Lp(Ω,F,µ) <∞.

Consider the function x0 =
∑∞
n=1 |xn| which takes values in the extended

positive half-line. By Fatou’s Lemma and Minkowski’s inequality

∫
|x0|p dµ ≤ lim

n→∞

∫ ( n∑
i=1

|xi|
)p

dµ ≤ lim
n→∞

n∑
i=1

‖xi‖p <∞.

In particular, the set of ω where x0(ω) = ∞ has measure zero. Therefore,
the series x(ω) =

∑∞
n=1 xn(ω) converges absolutely except maybe on a

set of measure zero, where we put x(ω) = 0. With such a definition, we
have∫ ∣∣∣∣∣x−

n∑
i=1

xi

∣∣∣∣∣
p

dµ ≤ lim
k→∞

∫ k∑
i=n+1

|xi|p dµ ≤
∞∑

i=n+1

‖xi‖pLp(Ω,F,µ).

Hence, x ∈ Lp(Ω,F , µ) and limn→∞ xn = x.
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2.2.20 Remark In the proof of 2.2.19 we have used 2.2.14. This was a
nice shortcut but because of its use we have lost valuable information (see
the proof of 3.7.5 for instance). The result we are referring to says that
any convergent sequence xn ∈ Lp(Ω,F , µ), n ≥ 1 has a subsequence that
converges almost surely; this result is a by-product of a direct proof of
2.2.19 (see e.g. [103]). To prove it, we note first that xn, n ≥ 1 is Cauchy.
Next, we proceed as in the hint to 2.2.14 and find a subsequence xnk

, k ≥
1 such ‖xnk+1 − xnk

‖ < 1
2k . Then the series

∑∞
k=1(xnk+1 − xnk

) + xn1

converges both a.s. and in the norm in Lp(Ω,F , µ). Since the partial
sums of this series equal xnk

, the sum of this series must be the limit of
xn, n ≥ 1, which proves our claim.

2.2.21 Corollary Let (Ω,F ,P) be a measure space, and let G be a
sub-σ-algebra of F . The space Lp(Ω,G,P) is a subspace of Lp(Ω,F ,P),
p ≥ 1.

2.2.22 Remark The proof of our Corollary is obvious, is it not? If a
random variable is G measurable then it is also F measurable and since
Lp(Ω,G,P) is a Banach space itself, then it is a subspace of Lp(Ω,F ,P).
Yes? No. We forgot that Lp(Ω,G,P) is a space of equivalence classes and
not functions. If G does not contain all of the sets A ∈ F with P(A) = 0,
then the equivalence classes in Lp(Ω,G,P) are not equivalence classes of
Lp(Ω,F ,P) and we may not even claim that Lp(Ω,G,P) is a subset of
Lp(Ω,F ,P)! In other words, Corollary 2.2.21 is not true unless G contains
all measurable sets of probability zero.

Without this assumption, the correct statement of Corollary 2.2.21 is
that Lp(Ω,G,P) is isometrically isomorphic to a subspace of Lp(Ω,F ,P)
in the sense of 2.2.30, see 2.2.33 below.

2.2.23 Corollary Suppose that X0 is a subspace of a Banach space
Lp(Ω,F , µ), where p ≥ 1 and µ is a finite measure such that 1Ω ∈ X0.

Then the collection G of events A such that 1A ∈ X0 is a λ-system.

Proof Ω and ∅ belong to G by assumption. Moreover, if A and B belong
to G and A ⊂ B then B \ A belongs to G since 1B\A = 1B − 1A ∈ X0.

Finally, if An ∈ G, n ≥ 1, is a non-decreasing sequence of events, then

∥∥1⋃∞
k=1 Ak

− 1An

∥∥p
LP

= µ(
∞⋃
k=1

Ak \An)

converges to zero, as n → ∞. Since X0 is closed (being a subspace)
1⋃∞

k=1 Ak
belongs to X0, proving that

⋃∞
k=1Ak belongs to G.
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2.2.24 The space of signed Borel measures For any Borel charge µ

let µ = µ+
0 − µ−

0 be its minimal representation, as described in 1.3.6.
Define ‖µ‖ = |µ|(R) = µ+

0 (R) + µ−
0 (R). Equivalently, let y be a regular

function of bounded variation such that (1.22) holds and define ‖y‖ to
be the variation of y on (−∞,∞). The space BM(R) of Borel charges
(the space of regular functions of bounded variation such that (1.22)
holds) with this norm is a Banach space.

Proof Note that by definition µ = µ+ − µ−, where µ+ and µ− are
positive measures, implies

‖µ‖ ≤ µ+(R) + µ−(R). (2.4)

We need to start by showing that BM(R) is a normed space. If ‖µ‖ =
|µ|(R) = 0, then µ+

0 (R) = 0 and µ−
0 (R) = 0, so that µ+

0 (A) = 0 and
µ−

0 (A) = 0, for all Borel subsets of R, proving that µ = 0. Of course
µ = 0 implies ‖µ‖ = 0.

If α ∈ R and µ ∈ BM(R), then the variation of y(t) = αµ(−∞, t] on
(−∞,∞) equals |α| times the variation of µ(−∞, t] in this interval. In
other words ‖αµ‖ = |α|‖µ‖. Finally, if µ = µ+

0 − µ−
0 and ν = ν+

0 − ν−0 ,
then µ+ ν = (µ+

0 + ν+
0 ) − (µ−

0 + ν−0 ), so that by (2.4),

‖µ+ ν‖ ≤ µ+
0 (R) + ν+

0 (R) + µ−
0 (R) + ν−0 (R)

= ‖µ‖ + ‖ν‖.

Turning to completeness of BM(R), let µn, n ≥ 1 be a sequence of
charges such that

∑∞
n=1 ‖µn‖ <∞. Let µn = µ+

n,0−µ−
n,0 be the minimal

representation of µn. By definition, for any Borel subset A of R,

∞∑
n=1

[µ+
n,0(A) + µ−

n,0(A)] ≤
∞∑
n=1

[µ+
n,0(R) + µ−

n,0(R)] <∞,

so that both series on the left converge absolutely. We may thus define

µ+(A) =
∞∑
n=1

µ+
n,0(A), µ−(A) =

∞∑
n=1

µ−
n,0(A).

Functions µ+ and µ− are countably additive (this statement is a par-
ticular case of the Fubini Theorem). Thus we may introduce the charge
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µ = µ+ − µ−. By (2.4)

‖µ−
n∑
i=1

µi‖ = ‖
∞∑

i=n+1

µ+
i,0 −

∞∑
i=n+1

µ−
i,0‖

≤
∞∑

i=n+1

µ+
i,0(R) +

∞∑
i=n+1

µ−
i,0(R)

which tends to zero, as n → ∞. This proves that µ is the sum of the
series

∑∞
n=1 µn.

2.2.25 Exercise Suppose that X is a linear normed space. Consider
the set b(X) of sequences (xn)n≥1 with values in X, that are bounded,
i.e. ‖(xn)n≥1‖∗ = supn≥1 ‖xn‖ <∞. Prove that b(X) is a linear, in fact
normed space when equipped with ‖ · ‖∗. Moreover, it is a Banach space
iff X is a Banach space. Finally, Cauchy sequences in X form a subspace,
say bc(X), of b(X).

2.2.26 Exercise Show directly that the following spaces of sequences
are Banach spaces: (a) c : the space of convergent sequences with the
norm ‖(xn)n≥1‖ = supn≥1 |xn|, (b) lp : the space of absolutely conver-

gent sequences with the norm ‖(xn)n≥1‖ =
(∑∞

n=1 |xn|p
) 1

p , p ≥ 1. Show
also that the space c0 of sequences converging to zero is a subspace of c.

2.2.27 Exercise Cartesian product Prove that if X and Y are two
Banach spaces then the space of ordered pairs (x, y) where x ∈ X

and y ∈ Y is a Banach space with the norm ‖(x, y)‖ = ‖x‖ + ‖y‖,
or ‖(x, y)‖ =

√
‖x‖2 + ‖y‖2, or ‖(x, y)‖ = ‖x‖∨ ‖y‖, where ‖x‖∨ ‖y‖ =

max{‖x‖, ‖y‖}.

2.2.28 Exercise Let S be a set and let p ∈ S. Show that the set of
members x of B(S) such that x(p) = 0 is a subspace of B(S).

2.2.29 Exercise Repeat 2.2.28 for a compact, Hausdorff topological
space, with B(S) replaced with C(S). May we make a similar statement
for L∞(R) and some p ∈ R?

2.2.30 Definition A linear map I from a linear normed space (X,
‖ · ‖X) onto a linear normed space (X, ‖ · ‖Y) is an isomorphism if
there exist two positive constants m and M , such that m‖x‖ ≤ ‖Ix‖Y ≤
M‖x‖X. In particular, isomorphisms are bijections. In such a case, X

and Y are said to be isomorphic. If M = m = 1, i.e. if ‖Ix‖Y = ‖x‖X,
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I is said to be an isometric isomorphism and X and Y are said to be
isometrically isomorphic.

2.2.31 Example For any a < b ∈ R, the space C[a, b] is isometri-
cally isomorphic to C[0, 1]. The isomorphism is given by I : C[a, b] →
C[0, 1], y(τ) = Ix(τ) = x ((1 − τ)a+ τb) . (What is the inverse of I?)
Analogously, C[0, 1] is isometrically isomorphic to the space C[−∞,∞]
of continuous functions with limits at plus and minus infinity. The iso-
morphism is given by y(τ) = Ix(τ) = x( 1

π arctan τ + 1
2 ).

This result may be generalized as follows: if S and S′ are two topolog-
ical spaces such that there exists a homeomorphism f : S → S′ and if
α ∈ BC(S) is such that |α(p)| = 1, then Ix(p) = α(p)x(f(p)) is an iso-
metric isomorphism of BC(S) and BC(S′). The famous Banach–Stone
Theorem says that if S and S′ are compact, the inverse statement is true
as well, i.e. all isometric isomorphisms have this form (see [22]).

2.2.32 Exercise Let S and S′ be two sets. Suppose that f : S → S′

is a bijection. Show that B(S) is isometrically isomorphic to B(S′). In
the case where (S,F) and (S,F ′) are measurable spaces what additional
requirement(s) on f will guarantee that BM(S) and BM(S′) are iso-
metrically isomorphic?

2.2.33 Example Let G be a sub-σ-algebra of the σ-algebra F of
events in a probability space (Ω,F ,P). In general Lp(Ω,G,P) is not a
subspace of Lp(Ω,F ,P), p ≥ 1 (see 2.2.22). However, Lp(Ω,G,P) is iso-
metrically isomorphic to the subspace Lp0(Ω,G,P) of equivalence classes
in Lp(Ω,F ,P) corresponding to integrable with pth power G measurable
functions. To see this let us consider an equivalence class in Lp(Ω,G,P).
If X is its representative, then X is G measurable and all other elements
of this class differ from X on P-null events that belong to G. The equiv-
alence class of X in Lp(Ω,F ,P) is composed of all functions that differ
from X on P-null events that are not necessarily in G. Nevertheless, the
norms of these classes of X in Lp(Ω,G,P) and Lp(Ω,F ,P) are equal.
Let I map the equivalence class of X in Lp(Ω,G,P) into the equivalence
class of X in Lp(Ω,F ,P). Since the range of I is Lp0(Ω,G,P), our claim
is proven.

Remark 2.2.11 suggests the following procedure for constructing Ba-
nach spaces from normed linear spaces: find the “limits” of Cauchy se-
quences and add them to the original space. Let us explain this idea in
more detail. Since some Cauchy sequences in our normed linear space
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X “cause trouble” by not being convergent, first we may immerse X

in the space of Cauchy sequences bc by noting that an x ∈ X may be
represented as a constant sequence in bc. Next, we may note that we
are really not interested in Cauchy sequences themselves but in their
“limits”, which may be thought of as equivalence classes of Cauchy se-
quences that become arbitrarily close to each other as n→ ∞. Some of
these equivalence classes correspond to elements of x and some do not.
The point is however that they form “the smallest” Banach space that
contains X. We make this idea rigorous in the following theorem.

2.2.34 “Filling holes” in a normed linear space Let X be a normed
space. There exists a Banach space Y and a linear operator L : X → Y

satisfying the following two conditions:

‖Lx‖Y = ‖x‖X, cl(R(L)) = Y. (2.5)

Proof Consider the space of Cauchy sequences from Exercise 2.2.25, and
its subspace b0(X) of sequences converging to Θ. Let Y = bc(X)/b0(X)
be the quotient space, and for any x ∈ X, let Lx be the equivalence
class of a constant sequence (x)n≥1. Two elements, (xn)n≥1 and (x′n)n≥1

of bc(X) are equivalent if limn→∞ ‖xn − x′n‖ = 0. This implies that
limn→∞ ‖xn‖ = limn→∞ ‖x′n‖, and this limit is the norm of the equiva-
lence class to which they belong (see Exercise 2.2.4). In particular, the
first condition in (2.5) holds. The map L is linear, as a composition of
two linear maps.

To complete the proof of (2.5), assume that (xn)n≥1 ∈ bc(X). Let y
be the class of (xn)n≥1 in the quotient space Y, and let yi = Lxi be a
sequence of elements of Y. We have

‖yi − y‖Y = lim
n→∞

‖xi − xn‖X (2.6)

which implies that limi→∞ ‖yi − y‖Y = 0, as desired.
It remains to prove that Y is a Banach space. Let yn be a Cauchy

sequence in Y. There exists a sequence xn ∈ X such that ‖Lxn−yn‖ ≤ 1
n .

The sequence (xn)n≥1 is Cauchy in X, for

‖xn − xm‖X = ‖Lxn − Lxm‖Y ≤ 1
n

+ ‖yn − ym‖ +
1
m
.

Let y be the class of (xn)n≥1 in Y. Arguing as in (2.6) we see that
limn→∞ ‖Lxn − y‖Y = 0 and hence limn→∞ yn = y as well.
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2.2.35 Corollary The space Y from the previous subsection is unique
in the sense that if Y′ is another space that satisfies the requirements
of this theorem, then Y′ is isometrically isomorphic to Y. Therefore, we
may meaningfully speak of the completion of a normed space.

Proof Let L′ : X → Y′ be a map such that ‖L′x‖Y′ = ‖x‖X, cl(R(L′)) =
Y′. For y′ ∈ Y′, there exists a sequence xn ∈ X such that limn→∞ ‖Lx′n−
y′‖Y′ = 0. Since ‖L′xn−L′xm‖Y′ = ‖xn−xm‖ = ‖Lxn−Lxm‖Y, Lxn is
then a Cauchy sequence in Y. Since Y is a Banach space, there exists a
y in Y such that limn→∞ Lxn = y. This y does not depend on the choice
of the sequence xn but solely on y′, for if x′n is another sequence such
that L′xn tends to y′ then

‖Lxn − Lx′n‖Y = ‖xn − x′n‖X = ‖L′xn − L′x′n‖Y′

tends to zero as n→ ∞.

Let us thus define I : Y′ → Y by Iy′ = y. Obviously, I is linear.
Moreover, it is onto for we could repeat the argument given above after
changing the roles of Y′ and Y. Finally,

‖Iy′‖Y = lim
n→∞

‖Lxn‖Y = lim
n→∞

‖xn‖X = lim
n→∞

‖L′xn‖Y′ = ‖y′‖Y′ .

2.2.36 Example If X is the space of sequences x = (ξn)n≥1 that are

eventually zero, with the norm ‖x‖ = (
∑∞
n=1 |ξn|p)

1
p , where the sum

above is actually finite for each x, then X is a normed linear space but
it is not complete. Its completion is lp. Similarly, if in X we introduce
the norm ‖x‖ = supn≥1 |ξn|, then the completion of the normed space
X is the space c0 of sequences converging to zero equipped with the
supremum norm.

These two statements are equivalent to saying that X, when equipped
with the appropriate norm, is an algebraic subspace of lp and c0 that is
dense in these spaces.

2.2.37 The spaces Cc(S) and C0(S) Let S be a locally compact Haus-
dorff space, and let Cc(S) be the space of continuous functions x on
S such that x(p) 
= 0 only on a compact subset K of S. Note that
K = K(x) may be different for different x. The space Cc(S) equipped
with the supremum norm ‖x‖ = supp∈S |x(p)| = supp∈K(x) |x(p)| is a
normed linear space. In general, though, it is not complete. Its comple-
tion C0(S) and called the space of functions vanishing at infinity.
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To explain this terminology, consider S = N equipped with discrete
topology. The discrete topology is that one in which all subsets of N

are open. Compact sets in N are sets with a finite number of elements.
Therefore, Cc(S) is a space of sequences x = (ξn)n≥1 such that ξn = 0
for all but a finite number of n. In 2.2.36 we saw that C0(N) may be
identified with the space c0 of sequences converging to zero.

Similarly we may check that C0(Rn) is the space of continuous func-
tions x such that lim|s|→∞ x(s) = 0. Here s = (s1, ...., sn) and |s| =√∑n

i=1 s
2
i .

If S is compact, then C0(S) coincides with C(S). As an example one
may take S = N∪{∞} with the topology defined by choosing its base to
be the family of all singletons {n} and neighborhoods of infinity of the
form {n ∈ N : n ≥ k} ∪ {∞}, k ≥ 1. S is then compact, and continuous
functions on S may be identified with convergent sequences (ξn)n≥1. The
value of such a function at {∞} is the limit of the appropriate sequence.
In topology, S is called the one-point compactification of N. �

2.2.38 Exercise Show that C0(G) where G is the Kisyński group is
isometrically isomorphic to the Cartesian product of two copies of C0(R)
with the norm ‖(x1, x−1)‖ = ‖x‖C0(R) ∨ ‖x‖C0(R).

We now continue with examples of dense algebraic subspaces of some
Banach spaces.

2.2.39 Proposition Let (Ω,F , µ) be a measure space. The simple
functions that are non-zero only on a set of finite measure form a dense
algebraic subspace of L1(Ω,F , µ).

Proof It suffices to show that for a non-negative x ∈ L1(Ω,F , µ), there
exists a sequence of simple functions approximating x that are non-zero
only on a set of finite measure. We know, however, that the integral of a
non-negative function x equals the supremum of the integrals of simple
functions bounded above by x. In particular, for any n > 0 we may find
a simple function xn such that xn ≤ x and

∫
Ω
xn dµ >

∫
Ω
xdµ − 1

n .

This implies that ‖x − xn‖L1(Ω,F,µ) =
∫
Ω
(x − xn) dµ < 1

n as desired.
Furthermore, the set where xn is non-zero must be finite, for

∫
xn dµ ≤∫

xdµ <∞.

2.2.40 Exercise Prove an analogous result for Lp(Ω,F , µ),∞ > p >

1.
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2.2.41 Proposition Let (Ω,F , µ) be a measure space with a finite
measure µ, and let 1 < p <∞ be a given number. The space Lp(Ω,F , µ)
is dense in L1(Ω,F , µ).

Proof We need to show first that Lp(Ω,F , µ) is a subset of the space
L1(Ω,F , µ); this follows from the Hölder inequality; if x belongs to
Lp(Ω,F , µ) then it belongs to L1(Ω,F , µ) since

∫
Ω

|x|dµ =
∫

Ω

|x| · 1Ω dµ ≤
[∫

Ω

|x|p dµ
] 1

p

[µ(Ω)]
1
p .

is finite.
Since µ is finite, any indicator function of a set A ∈ F belongs to

Lp(Ω,F , µ), and any simple function belongs to Lp(Ω,F , µ), as the linear
combination of indicator functions. Thus, the claim follows from 2.2.39.

2.2.42 Exercise Find a counterexample showing that the last propo-
sition is not true if µ is not finite.

2.2.43 Exercise Use the Hölder inequality to show that Lr(Ω,F , µ) ⊂
Ls(Ω,F , µ) for all 1 ≤ s ≤ r ≤ ∞, provided µ is finite.

2.2.44 Proposition Let Ω be a finite or an infinite interval in R (open
or closed). Then Cc(Ω) is dense in Lp(Ω,M(A), leb), ∞ > p ≥ 1.

Proof By 2.2.39 and 2.2.40 it suffices to show that a function 1A, where
A is measurable with finite leb(A), belongs to the closure of Cc(Ω). By
1.2.9, we may restrict our attention to compact sets A.

Let A be a compact set and let k be a number such that A ⊂ [−k, k].
Let B = (−∞,−(k+ 1)]∪ [k+ 1,∞), and xn(τ) = d(τ,B)

nd(τ,A)+d(τ,B) , where
d(τ,B) = minσ∈B |τ−σ| and d(τ, A) = minσ∈A |τ−σ|. Note that d(τ, A)
and d(τ,B) may not be simultaneously zero, and that xn(τ) = 0 for
τ ∈ B, and xn(τ) = 1 for τ ∈ A. Finally, xn are uniformly bounded by
1, supported in [−(k + 1), k + 1] and tend to 1A pointwise, for if τ 
∈ A,

then d(τ, A) 
= 0. By the Lebesgue Dominated Convergence Theorem
limn→∞ ‖xn − 1A‖Lp(Ω,M(A),leb) = 0.

2.2.45 Corollary The completion of the space C[0, 1] equipped with
the norm ‖x‖ =

∫ 1

0
|x|d leb is L1[0, 1].
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2.2.46 Corollary Another well-known consequence of the above the-
orem is that for any x ∈ L1(R+) the function y(τ) =

∫∞
0
x(τ + σ) dσ is

continuous in τ ∈ R+. This result is obvious for continuous x with com-
pact support; if the support of x is contained in the interval [0,K],K > 0,
then

|y(τ + ς) − y(τ)| ≤ K sup
0≤σ≤K

|x(τ + ς + σ) − x(τ + σ)| →
ς→0

0,

by uniform continuity of x. To prove the general case, let xn be a se-
quence of continuous functions with compact support approximating x
and let yn(τ) =

∫∞
0
xn(τ + σ) dσ. Then

sup
τ≥0

|y(τ) − yn(τ)| ≤
∫ ∞

0

|x(τ + σ) − xn(τ + σ)|dσ

≤ ‖x− xn‖L1(R+),

and y is continuous as a uniform limit of continuous functions.

We close by exhibiting some examples illustrating how the fact that X

is a Banach space may be used to show existence of a particular element
in X. We shall use such arguments quite often later: see e.g. 2.3.13 and
7.1.2.

2.2.47 Example Suppose that R+ � t �→ xt ∈ X is a function taking
values in a Banach space X, and that for every ε > 0 there exists a v > 0
such that ‖xt−xs‖ < ε provided s, t > v. Then there exists an x ∈ X such
that for any ε > 0 there exists a δ > 0 such that ‖xt − x‖ < ε for t > v.

We then write, certainly, x = limt→∞ xt. To prove this note first that if
un is a numerical sequence such that limn→∞ un = ∞, then yn = xun

is a Cauchy sequence. Let x be its limit. For ε > 0 choose v in such a
way that t, u > v implies ‖xt − xu‖ < ε. Since limun = ∞, almost all
numbers un belong to (v,∞) so that ‖xt−x‖ = limn→∞ ‖xt−xun

‖ ≤ ε.

This implies the claim. Finally, note that there may be no two distinct
elements x with the required property.

2.2.48 Riemann integral in a Banach space The completeness of Ba-
nach spaces allows us to extend the notion of the Riemann integral to the
case of Banach space valued functions. Let a < b be two real numbers.
Suppose that x· : [0, 1] → X, t �→ xt is function on [a, b] taking values
in a normed linear space X. Consider two sequences, T = (ti)i=0,..,k and
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Ξ = (ξi)i=0,...,k−1 of points of [a, b], where k is an integer, such that

a = t0 < t1 < · · · < tk = b, t0 ≤ ξ0 ≤ t1 ≤ · · · ≤ tk−1 ≤ ξk−1 ≤ tk.

(2.7)
Define the related number ∆(T ) = sup0≤i≤k(ti − ti−1) and the element
of X given by

S(T ,Ξ, x·) =
k∑
i=0

xξi(ti+1 − ti).

If the limit limn→∞ S(Tn,Ξn, x·) exists for any sequence of pairs (Tn,Ξn)
such that limn→∞ ∆(Tn) = 0, and does not depend on the choice of the
sequence of (Tn,Ξn), function x is said to be Riemann integrable. The
above limit is denoted

∫ b
a
xt dt and called the (Riemann) integral of

x. We shall prove that continuous functions taking values in a Banach
space are Riemann integrable.

To this end, consider a continuous function [a, b] � t �→ xt ∈ X, and
let ε > 0 be given. Since x is continuous on a compact interval, it is
uniformly continuous and we may choose a δ > 0 such that |s − t| < δ

and s, t ∈ [a, b] implies ‖xs− xt‖ < ε. Let sequences T = (ti)i=0,...,k and
T ′ = (t′i)i=0,...,k′ be such that ∆(T ) < δ and ∆(T ′) < δ. Also, let T ′′ be
a sequence that contains all elements of T and T ′ : T ′′ = (t′′i )i=1,...,k′′ .

We have ∆(T ′′) < δ and k′′ ≤ k + k′ − 2, for besides t0 = t′0 = a

and tk = t′k′ = b there may be some ti = t′j , i = 1, ..., k − 1, j =
1, ..., k′ − 1. An interval [ti, ti+1], i = 0, ..., k either coincides with some
[t′′j , t

′′
j+1], j ∈ {0, ..., k′′ − 1} or is a finite union of such intervals, say,

[ti, ti+1] = [t′′j , t
′′
j+1]∪...∪[t′′j+l, t

′′
j+l+1] for some l. For any Ξ = (ξi)i=0,...,k

such that (2.7) holds,∥∥∥∥∥xξi
(ti+1 − ti) −

l∑
m=0

xt′′j+m
(t′′j+m+1 − t′′j+m)

∥∥∥∥∥
=

∥∥∥∥∥
l∑

m=0

[xξi
− xt′′j+m

](t′′j+m+1 − t′′j+m)

∥∥∥∥∥
≤ ε

l∑
m=0

(t′′j+m+1 − t′′j+m) = ε(ti+1 − ti),

since both ξi and t′′j+m belong to [ti, ti+1], so that |ξi − t′′j+m| < δ.

Summing over i we obtain

‖S(T ,Ξ, x) − S(T ′′,Ξ′′, x)‖ ≤ ε(b− a),
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where Ξ′′ = (ξ′′i )i=0,...,k′′−1 ≡ (t′′i )i=0,...,k′′−1. This argument works for
T ′ and T ′′, as well. Hence

‖S(T ,Ξ, x) − S(T ′,Ξ′, x)‖ ≤ 2ε(b− a), (2.8)

for all sequences T and T ′ such that ∆(T ) < δ and ∆(T ′) < δ and any
sequences Ξ and Ξ′ of appropriate midpoints. This proves that for any
sequence (Tn,Ξn) such that limn→∞ ∆(Tn) = 0, S(Tn,Ξn, x) is a Cauchy
sequence, and thus converges. Using (2.8) we prove that this limit does
not depend on the choice of (Tn,Ξn).

More general, Lebesgue-type integrals may be introduced for functions
with values in Banach spaces. We need to mention the Bochner and
Pettis integrals here, see [54] for example. For our purposes, though, the
Riemann integral suffices.

2.2.49 Example Consider the elements eλ, λ > 0, and u(t), t ≥ 0 of
L1(R+) defined by their representatives eλ(τ) = e−λτ and u(t) = 1[0,t),
respectively. Let R+ � t �→ u(t) = 1[0,t) be the function with values in
L1(R+). We will check that

λ

∫ ∞

0

e−λtu(t) dt = eλ in L1(R+), for λ > 0.

The above integral is an improper Riemann integral, i.e. we have∫ ∞

0

e−λtu(t) dt := lim
T→∞

∫ T

0

e−λtu(t) dt.

We start by noting that ‖u(t)−u(s)‖L1(R+) = ‖1[s,t)‖L1(R+) =
∫ t
s

dτ =
(t− s), t ≥ s so that u is continuous, and so is the integrand above. Fix
T > 0. We have:∫ T

0

e−λtu(t) dt = lim
n→∞

T

n

n∑
k=1

e−λ
T k
n u
(
Tkn−1

)
=: lim

n→∞
fT,n

with the limit taken in L1(R+). Note that fT,k(τ) equals

T

n

n∑
k=[ τn

T ]+1

e−
λT k

n 1[0,T )(τ) =
T
n

e
λT
n − 1

[
e−

λT
n [ τn

T ] − e−λT
]
1[0,T )(τ).

Certainly, the expression in brackets does not exceed e−λτ and tends to
e−λτ − e−λT as n → ∞, while the sequence before the brackets tends
to 1

λ . Hence, by the Dominated Convergence Theorem, limn→∞ fT,n =
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1
λ (eλ − e−λT )u(T ) in L1(R+). Thus,

λ

∫ T

0

e−λtu(t)dt = (eλ − e−λT )u(T ).

Finally, ‖(eλ − e−λT )u(T ) − eλ‖L1(R+) does not exceed

‖eλu(T ) − eλ‖L1(R+) + e−λT ‖u(T )‖L1(R+)

=
∫ ∞

T

e−λτ dτ + T e−λT = (1 + T )e−λT

which converges to 0 as T → ∞.

2.2.50 Exercise Let X be a Banach space, and suppose that t �→ xt ∈
X is continuous in an interval [a, b]. The scalar-valued function t→ ‖xt‖
is then continuous, and therefore integrable. Show that

∥∥∥∫ ba xt dt
∥∥∥ ≤∫ b

a
‖xt‖dt.

2.3 The space of bounded linear operators

Throughout this section, (X, ‖ · ‖X) and (Y, ‖ · ‖Y) are two linear normed
spaces. From now on, to simplify notation, we will denote the zero vector
in both spaces by 0.

2.3.1 Definition A linear map L : X → Y is said to be bounded if
‖Lx‖Y ≤ M‖x‖X for some M ≥ 0. If M can be chosen equal to 1, L
is called a contraction. In particular, isometric isomorphisms are con-
tractions. Linear contractions, i.e. linear operators that are contractions
are very important for the theory of stochastic processes, and appear
often.

2.3.2 Definition As in 2.1.12, we show that the collection L(X,Y)
of continuous linear operators from X to Y is an algebraic subspace
of L(X,Y). L(X,Y) is called the space of bounded (or continuous)
linear operators on X with values in Y. The first of these names is
justified by the fact that a linear operator is bounded iff it is continuous,
as proved below. If X = Y we write L(X) instead of L(X,Y) and call
this space the space of bounded linear operators on X. If Y = R,

we write X∗ instead of L(X,Y) and call it the space of bounded linear
functionals on X.
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2.3.3 Theorem Let L belong to L(X,Y) (see 2.1.7). The following
conditions are equivalent:

(a) L is continuous (L ∈ L(X,Y)),
(b) L is continuous at some x ∈ X,
(c) L is continuous at zero,
(d) sup‖x‖X=1 ‖Lx‖Y is finite,
(e) L is bounded.

Moreover, sup‖x‖X=1 ‖Lx‖Y = min{M ∈ M} where M is the set of
constants such that ‖Lx‖Y ≤M‖x‖X holds for all x ∈ X.

Proof The implication (a) ⇒ (b) is trivial. If a sequence xn converges to
zero, then xn+x converges to x. Thus, if (b) holds, then L(xn+x), which
equals Lxn+Lx, converges to Lx, i.e. Lxn converges to 0, showing (c). To
prove that (c) implies (d), assume that (d) does not hold, i.e. there exists
a sequence xn of elements of X such that ‖xn‖X = 1 and ‖Lxn‖ > n.

Then the sequence yn = 1√
n
xn converges to zero, but ‖Lyn‖Y >

√
n

must not converge to zero, so that (c) does not hold. That (d) implies
(e) is seen by putting M = sup‖x‖X

‖Lx‖Y; indeed, the inequality in the
definition 2.3.1 is trivial for x = 0, and for a non-zero vector x, the
norm of 1

‖x‖x equals one, so that ‖L 1
‖x‖x‖Y ≤M, from which (e) follows

by multiplying both sides by ‖x‖. Finally, (a) follows from (e), since
‖Lxn − Lx‖ ≤ ‖L(xn − x)‖ ≤M‖xn − x‖.

To prove the second part of the theorem, note that in the proof of the
implication (d)⇒(e) we showed that M1 = sup‖x‖X=1 ‖Lx‖Y belongs to
M. On the other hand, if ‖Lx‖Y ≤ M‖x‖X holds for all x ∈ X, then
considering only x with ‖x‖X = 1 we see that M1 ≤ M so that M1 is
the minimum of M.

2.3.4 Exercise Suppose that a < b are two real numbers and that
[a, b] � t �→ xt is a Riemann integrable function taking values in a
Banach space X. Let A be a bounded linear operator mapping X into a
Banach space Y. Prove that [a, b] � t �→ Axt ∈ Y is Riemann integrable,
and A

∫ b
a
xt dt =

∫ b
a
Axt dt.

2.3.5 Example Let (Ω,F , µ) and (Ω′,F ′, ν) be two measure spa-
ces. Suppose that k(ω, ω′) is bounded (say, by M) and measurable with
respect to the product σ-algebra F ⊗ F ′ in Ω ⊗ Ω′. Consider the lin-
ear operator K : L1(Ω′,F ′, ν) → L∞(Ω,F , µ) given by (Kx)(ω) =
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Ω′ k(ω, ω′)x(ω′) dν(ω′). The estimate

|(Kx)(ω)| ≤
∫

Ω′
|k(ω, ω′)x(ω′)|dν(ω′) ≤M‖x‖L1(Ω′,F ′,ν)

shows that K is a bounded linear operator from the space L1(Ω′,F ′, ν)
to L∞(Ω,F , µ).

2.3.6 Example For λ > 0 define Aλ : BM(R+) → BM(R+) by
(Aλx)(τ) = e−λτ

∑∞
n=0

(λτ)n

n! x
(
n
λ

)
. This series converges uniformly on

all compact subintervals of R+ and its sum does not exceed ‖x‖. Thus,
Aλx belongs to BM(R+) for all λ > 0; in fact it belongs to BC(R+).
Moreover, Aλ maps the space C0(R+) of continuous functions on R+ that
vanish at infinity into itself. To prove this, note that for any x ∈ C0(R+)
and ε > 0, we may find T > 0 and a function xT ∈ C0(R+) such that
xT (τ) = 0 whenever τ ≥ T and ‖x − xT ‖ ≤ ε. Moreover, AλxT (τ) =∑[λT ]
n=0 xT

(
n
λ

)
e−λτ (λτ)n

n! is a finite sum of members of C0(R+) and we
have ‖Aλx− AλxT ‖ ≤ ε. This proves that Aλ belongs to the closure of
C0(R+), which equals C0(R+).

Finally, Aλ maps the space C(R+) of continuous functions with limit
at infinity into itself. To prove this consider an x ∈ C(R+) and let
κ = limτ→∞ x(τ). Then x− κ1R+ ∈ C0(R+) and

Aλx = Aλ(x− κ1R+) + κAλ1R+ = Aλ(x− κ1R+) + κ1R+

belongs to C(R+), as desired.
Thus Aλ is a linear contraction in BM(R+), C0(R+) and C(R+).

2.3.7 Definition Let L ∈ L(X,Y) be a bounded linear operator. The
number ‖L‖ = sup‖x‖X=1 ‖Lx‖Y, often denoted ‖L‖L(X,Y) or simply ‖L‖,
is called the norm of the operator.

2.3.8 Example In 2.2.46 we showed that for any x ∈ L1(R+) the
function Tx(τ) =

∫∞
0
x(τ + σ) dσ is continuous. Obviously,

sup
τ≥0

|Tx(τ)| ≤ ‖x‖L1(R+).

Hence T maps L1(R+) into BC(R+) and ‖T‖ ≤ 1. Moreover, Tx = x

since x(τ) = e−τ and ‖x‖BC(R+) = ‖x‖L1(R+) = 1, proving that ‖T‖ = 1.
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2.3.9 Exercise Let l1 be the space of absolutely summable sequences
x = (ξn)n≥1 with the norm ‖x‖ =

∑∞
n=1 |ξn|. Let

L (ξn)n≥1 = (ξn+1)n≥1 , R (ξn)n≥1 = (ξn−1)n≥1

(ξ0 = 0, L andR stand for “left” and “right”, respectively) be translation
operators, and let I be the identity in l1. Show that ‖aL+ bR + cI‖ =
|a| + |b| + |c|, where a, b and c are real numbers.

2.3.10 Proposition The space L(X,Y) of bounded linear operators
equipped with the norm ‖ · ‖L(X,Y) is a normed linear space. Moreover,
if Y is a Banach space, then so is L(X,Y).

Proof We need to check conditions (n1)–(n4) of the definition of a norm.
(n1)–(n3) are immediate. To prove (n4) we calculate:

‖L+M‖ = sup
‖x‖X=1

‖Lx+Mx‖Y ≤ sup
‖x‖X=1

{‖Lx‖Y + ‖Mx‖Y}

≤ sup
‖x‖X=1

‖Lx‖Y + sup
‖x‖X=1

‖Mx‖Y = ‖L‖ + ‖M‖.

Let Ln be a Cauchy sequence in L(X,Y). For any x ∈ X, the sequence
Lnx is Cauchy in Y, since ‖Lnx− Lmx‖Y ≤ ‖Ln − Lm‖L(X,Y)‖x‖X. Let
Lx = limn→∞ Lnx. It may be checked directly that L is a linear operator.
We repeat the argument from 2.2.15 to show that L is the limit of Ln
in L(X,Y). For arbitrary ε > 0 there exists an n0 such that ‖Lnx −
Lmx‖Y ≤ ε‖x‖X, for n,m ≥ n0. Taking the limit, as m→ ∞, we obtain
‖Lnx− Lx‖Y ≤ ε‖x‖X, for x ∈ X, n ≥ n0. Thus, sup‖x‖X=1 ‖Lx‖Y ≤ ε+
sup‖x‖X=1 ‖Lnx‖Y <∞, so that L ∈ L(X,Y). Also ‖Lnx−Lx‖Y ≤ ε‖x‖X

for x ∈ X is equivalent to ‖L−Ln‖L(X,Y) ≤ ε, which completes the proof.

2.3.11 Exercise Assume that X,Y and Z are normed linear spaces,
and let L ∈ L(X,Y) and K ∈ L(Y,Z). Then the composition K ◦L of K
and L (in the sequel denoted simply KL) is a bounded linear operator
from X to Z and

‖KL‖L(X,Z) ≤ ‖K‖L(X,Y)‖L‖L(Y,Z).

2.3.12 Exercise Let Ai, Bi, i = 1, ..., n be linear operators in a Ba-
nach space and let M = maxi=1,...,n{‖Ai‖, ‖Bi‖}. Then

‖AnAn−1...A1 −BnBn−1...B1‖ ≤Mn−1
n∑
i=1

‖Ai −Bi‖. (2.9)
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In particular, for any A and B and M = max{‖A‖, ‖B‖},

‖An −Bn‖ ≤Mn−1n‖A−B‖. (2.10)

2.3.13 Exercise Let A be a bounded linear operator in a Banach
space X, and let An = A ◦An−1, n ≥ 2 be its nth power. Prove that the
series

∑∞
n=0

tnAn

n! converges for all t ∈ R in the operator topology, i.e.
with respect to norm ‖ ·‖L(X). Let etA denote its sum. Show that for any
real numbers s and t, e(t+s)A = etAesA. In other words, {etA, t ∈ R} is
a group of operators (see Chapter 7). We often write exp(tA) instead of
etA.

2.3.14 Exercise Let A and B be two bounded linear operators in
a Banach space such that AB = BA. Show that et(A+B) = etAetB =
etBetA.

2.3.15 Exercise Suppose that A ∈ L(X) is an operator such that
‖I − A‖ < 1. Then, we may define logA = −∑∞

n=1
1
n (I − A)n. Prove

that exp(logA) = A.

2.3.16 Exercise Under notations of 2.3.9 show that

‖eaL+bR+cI‖ = ea+b+c

where a, b ∈ R+ and c ∈ R.

2.3.17 Measures as operators In what follows BM(R) will denote the
space of bounded Borel measurable functions on R, equipped with the
supremum norm, and BC(R) its subspace composed of bounded contin-
uous functions. BUC(R) will denote the subspace of bounded uniformly
continuous functions on R, and C0(R) the space of continuous functions
that vanish at infinity.

Given a finite measure µ on (R,B(R)) we may define an operator Tµ
acting in BM(R) by the formula

(Tµx)(τ) =
∫

R

x(τ + ς) dµ(ς). (2.11)

Let us first check that Tµ indeed maps BM(R) into itself. If x = 1(a,b] for
some real numbers a < b, then Tµx(τ) = µ(−∞, b− τ ]−µ(−∞, a− τ ] is
of bounded variation and hence measurable. The class G of measurable
sets such that Tµ1A is measurable may be shown to be a λ-system. This
class contains a π-system of intervals (a, b] (plus the empty set). By the
Sierpiński π–λ theorem, the σ-algebra generated by such intervals is a
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subset of G, and on the other hand, by 1.2.17 it is equal to the Borel
σ-algebra. Hence, Tµx is measurable for any x = 1A, where A ∈ B(R).
By linearity of the integral this is also true for simple functions x. Since
pointwise limits of measurable functions are measurable, we extend this
result to all x ∈ BM(R). That Tµx is bounded follows directly from
the estimate given below. We have also noted that the map is linear
(integration being linear). As for its boundedness, we have

‖Tµx‖ ≤ sup
τ∈R

|(Tµx)(τ)| ≤ sup
τ∈R

sup
ς∈R

|x(τ + ς)|µ(R) = ‖x‖µ(R), (2.12)

with equality for x = 1R. Thus, ‖Tµ‖ = µ(R) and in particular ‖Tµ‖ = 1
for a probability measure µ. We note also that Tµ leaves the subspaces
BC(R) and BUC(R) invariant, meaning that Tµ maps these spaces into
themselves. The former assertion follows from the Lebesgue Dominated
Convergence Theorem, and the latter from the estimate

|(Tµx)(τ) − (Tµx)(ς)| ≤ sup
υ∈R

|x(τ + υ) − x(ς + υ)|µ(R), τ, ς ∈ R.

Analogously, we may prove that Tµ maps C0(R) into itself.
An important property of Tµ (as an operator in C0(R)) is that it

determines µ, meaning that if Tµ = Tν for two measures µ and ν, then
µ = ν. Indeed, Tµ = Tν implies in particular that for any x ∈ C0(R),
(Tµx)(0) = (Tνx)(0), i.e.

∫
R
xdµ =

∫
R
xdν, which implies µ = ν by

1.2.20. In other words, the map µ �→ Tµ is a linear invertible map from
BM(R) into L(BM(R)) (right now this map is defined only on a subset
of BM(R), see 2.3.20 below, however). The same is true for Tµ as an
operator in BUC(R), BC(R) and BM(R).

Another important property of the map µ �→ Tµ is related to the
notion of the convolution of two finite measures on R. Note that we
have:

(TµTνx)(τ) =
∫

(Tνx)(τ + ς)µ(dς) =
∫ ∫

x(τ + ς + υ) ν(dυ)µ(dς)

=
∫
x(τ + ρ)(µ ∗ ν)(dρ) = Tµ∗ν(τ). (2.13)

In words, µ �→ Tµ changes convolution into operator composition. Func-
tional analysts say that this map is a homomorphism of two Banach
algebras (see Exercise 2.3.20 and Chapter 6).

2.3.18 Exercise Find (a) the operator Tµ related to the normal dis-
tribution with parameters m and σ, (b) the operator related to a uniform



2.3 The space of bounded linear operators 69

distribution, and (c) the operator related to the exponential distribution
with parameter λ > 0.

2.3.19 Exercise Let X be a non-negative integer-valued random vari-
able. Prove that X is a Poisson variable with parameter a > 0 iff for any
bounded function g on the non-negative integers, Xg(X) is integrable
and EXg(X) = aE g(X + 1). Analogously, show that X has the geo-
metric distribution with parameter p iff for all bounded functions g on
the non-negative integers with g(0) = 0, E g(X) = qE g(X + 1), where
q = 1 − p.

2.3.20 Exercise Introduce the bounded linear operator related to a
Borel charge µ on R and prove that for any two such Borel charges µ
and ν, TµTν = Tµ∗ν where

µ ∗ ν = µ+ ∗ ν+ + µ− ∗ ν− − µ− ∗ ν+ − µ+ ∗ ν− (2.14)

with obvious notation. Of course, relation (2.14) is a result of viewing a
signed measure as a difference of two positive measures and extending
the operation of convolution by linearity. Note that for all µ, ν ∈ BM(R)
the operators Tµ and Tν commute:

TµTν = TνTµ.

In particular, taking ν to be the Dirac measure at some point t ∈ R, we
see that all Tµ commute with translations. See 5.2.13 in Chapter 5 for a
converse of this statement.

2.3.21 Operators related to random variables If X is a random vari-
able, we may assign to it the operator TX defined by TX = TPX

where
PX is the distribution of X. We thus have

TXx(τ) =
∫

R

x(τ + ς) PX(dς) =
∫

Ω

x(τ +X) dP = Ex(τ +X).

Note that if random variables X and Y are independent, then PX+Y =
PX ∗ PY . Thus, TX+Y = TXTY .

However, while the map µ → Tµ preserves all information about µ,
TX does not determine X. In particular, we are not able to recover any
information about the original probability space where X was defined.
In fact, as suggested by the very definition, all we can recover from TX
is the distribution of X.

As an example, observe that the operator Aλx(τ) described in 2.3.6
is related to the random variable 1

λXλτ , where Xλτ has the Poisson
distribution with parameter λτ .
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2.3.22 Exercise Find operators related to the random variables Xn

and Sn described in 1.4.6. Prove that TSn
= (TXn

)n.

2.3.23 Measure as an operator on BM(R) With a Borel charge µ on R

we may also associate the operator Sµ on BM(R) defined by the formula
Sµν = µ ∗ ν. Using (2.14) we show that ‖µ ∗ ν‖ ≤ ‖µ‖ ‖ν‖ so that Sµ
is bounded and ‖Sµ‖ ≤ ‖µ‖. Moreover, Sµδ0 = µ where δ0 is the Dirac
measure at 0, proving that ‖Sµ‖ = ‖µ‖. Certainly, SµSν = Sµ∗ν .

2.3.24 Exercise Find (a) the operator Sµ related to the normal dis-
tribution with parameters m and σ, (b) the operator related to a uniform
distribution, and (c) the operator related to the exponential distribution
with parameter λ > 0.

2.3.25 Borel measures as operators on a locally compact group The
results of the foregoing subsections may be generalized as follows. For a
finite, possibly signed, measure µ on a locally compact group we define
an operator Sµ on BM(G) as Sµν = µ ∗ ν. Arguing as in 2.3.23, it can
be shown that Sµ is a bounded linear operator with ‖Sµ‖ = ‖µ‖ and
SµSν = Sµ∗ν .

We may also define the operators Tµ and T̃µ by the formulae

Tµx(g) =
∫
x(hg)µ( dh)

and

T̃µx(g) =
∫
x(gh)µ( dh).

Note that these formulae define two different operators unless G is com-
mutative. In 5.3.1 we shall see that Sµ is related to Tµ as the operator
S̃µν = ν ∗ µ is related to T̃µ.

For now, we need only determine where the operator Tµ is defined.
It may be shown that it maps BM(G) into itself. The operator also
maps the space BUC(G) into itself. The space BUC(G) is the space
of bounded functions x on G such that for every ε > 0 there exists a
neighborhood U of e (the neutral element of G) such that †

|x(g1) − x(g2)| < ε, whenever g1g−1
2 ∈ U . (2.15)

† The space BUC(G) thus defined is actually the space of bounded functions that
are uniformly continuous with respect to the right uniform structure on G; the
space of functions that are uniformly continuous with respect to the left uniform

structure is defined by replacing g1g−1
2 in (2.15) with g−1

2 g1 - see [51]. We will not
distinguish between the two notions of uniform continuity because at all groups
considered in this book these two notions are equivalent.
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BUC(G) is a Banach space, and to prove that Tµ maps BUC(G) into
itself it suffices to note that

|Tµx(g1) − Tµx(g2)| ≤ ‖µ‖ sup
h∈G

|x(g1h) − x(g2h)|

and that g1h(g2h)−1 = g1g
−1
2 , so that the right-hand side above does

not exceed ‖µ‖ε, if g1 and g2 are chosen as in (2.15).
It turns out that C0(G) ⊂ BUC(G) and that Tµ maps C0 into itself.

Since the proof, although simple, requires more knowledge of topology
of locally compact spaces we shall omit it here. Besides, the techniques
used in it are not crucial here and the statement in question is obvious
in the examples we consider below.

Note finally that if µ and ν are two finite measures on G, then as in
(2.13), we may calculate

(Tµ∗νx)(g) =
∫

G

x(hg) (µ ∗ ν)(dh) =
∫

G

∫
G

x(h1h2g)µ(dh1)ν(dh2)

=
∫

G

Tµx(h2g)ν(dh2) = TνTµx(g), x ∈ BM(G). (2.16)

The reader will check similarly that T̃µ∗ν = T̃µT̃ν .

2.3.26 Example Consider the space BM(G) of signed measures µ
defined on the Klein group G. Each measure µ on G may be identified
with four real numbers ai = µ({gi}), i = 1, 2, 3, 4. The norm in this
space is

‖µ‖ =

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝
a1

a2

a3

a4

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

=
4∑
i=1

|ai|, µ =

⎛
⎜⎜⎝
a1

a2

a3

a4

⎞
⎟⎟⎠ .

Treating elements of this space as differences of two positive measures
on G, we define the convolution of two charges µ ∗ ν as in (2.14) and
prove that (1.12) still holds. The operator Sµ(ν) = µ ∗ ν is a bounded
linear operator given by

Sµ

⎛
⎜⎜⎝
b1
b2
b3
b4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a1 a2 a3 a4

a2 a1 a4 a3

a3 a4 a1 a2

a4 a3 a2 a1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
b1
b2
b3
b4

⎞
⎟⎟⎠ , where µ =

⎛
⎜⎜⎝
a1

a2

a3

a4

⎞
⎟⎟⎠ . (2.17)

What is the form of Tµ? A member x of C0(G) may also be identified
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with four numbers ξi = x(gi), i = 1, 2, 3, 4, but the norm in this space is
‖x‖ = maxi=1,2,3,4 |ξi|. Now

ηi := (Tµx)(gi) =
∫
x(gih)µ( dh) =

4∑
j=1

x(gigj)aj .

Using the multiplication table from 1.2.23 we see that

Tµx =

⎛
⎜⎜⎝
η1
η2
η3
η4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a1 a2 a3 a4

a2 a1 a4 a3

a3 a4 a1 a2

a4 a3 a2 a1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
ξ1
ξ2
ξ3
ξ4

⎞
⎟⎟⎠ .

Thus, except for acting in different spaces, Tµ and Sµ are represented by
the same matrix. In general, if G is a finite but non-commutative group,
the matrix that represents Sµ is the transpose of the matrix of Tµ.

2.3.27 Example In 1.2.24 we saw that any positive measure on the
Kisyński group G may be identified with a pair of measures on R. On
the other hand, any signed measure on G is a difference of two posi-
tive measures. Hence, any charge on G may be identified with a pair of
charges on R. In other words, the space BM(G) is isometrically isomor-
phic to the Cartesian product of two copies of BM(R), with the norm
‖(µ1, µ−1)‖ = ‖µ1‖ + ‖µ−1‖. An easy argument shows that both (1.14)
and (1.15) hold for charges as well. As a result of the latter equation

Sµν = µ ∗ ν = (Sµ1ν1 + Sµ̃−1ν−1, Sµ−1ν1 + Sµ̃1ν−1),

where Sµi
and Sµ̃i

are operators in BM(R) related to charges µi and µ̃i,
i = 1,−1 on R (µ̃ is defined in 1.2.24). This formula may be written in
the matrix form as

Sµ =
(
Sµ1 Sµ̃−1

Sµ−1 Sµ̃1

)
. (2.18)

As BM(G) is isometrically isomorphic to BM(R)×BM(R), so C0(G) is
isometrically isomorphic to C0(R)×C0(R), with the norm ‖(x1, x−1)‖ =
‖x1‖∨‖x−1‖ where xi ∈ C0(R), i = −1, 1 (Exercise 2.2.38). Using (1.14)
we see that

Tµx(ξ, l) =
∫

G

x(τ l + ξ, kl)µ( d(τ, k))

equals ∫
R

x1(τ + ξ)µ1( dτ) +
∫

R

x−1(τ + ξ)µ−1( dτ)
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for l = 1 and∫
R

x1(−τ + ξ)µ−1( dτ) +
∫

R

x−1(−τ + ξ)µ1( dτ)

for l = −1. Hence, using matrix notation

Tµ =
(
Tµ1 Tµ−1

Tµ̃−1 Tµ̃1

)
(2.19)

where Tµi
and Tµ̃i

are operators on C0(R) related to measures µi and
µ̃i on R. Notice that the matrix in (2.18) is a “conjugate” matrix to
the matrix in (2.19), if we agree that the conjugate to Tν is Sν for any
ν ∈ BM(R).

2.3.28 Exercise Find the form of the operators T̃µ and S̃µ on the
Kisyński group.

2.3.29 Uniform topology versus strong topology. Weierstrass’ Theorem
Although it is nice to know that L(X,Y) is a Banach space, in applica-
tions the mode of convergence related to the norm in L(X,Y) is not very
useful. The reason is that the requirement that operators An converge
to an operator A in the norm of L(X,Y) is very restrictive, and there
are few interesting examples of such behavior. More often we encounter
sequences such that ‖Anx − Ax‖Y → 0 as n → ∞ for all x ∈ X. This
mode of convergence is called strong convergence, in contrast to the
one discussed above, called convergence in the operator norm, or
uniform convergence. Indeed, convergence in the operator norm is a
strong convergence that is uniform in any ball – see the definition of the
norm in L(X,Y). See also 5.4.18 in Chapter 5.

As an example consider the space C[0, 1] of continuous functions on
the unit interval, and a sequence of operators An ∈ L(C[0, 1]), n ≥ 1,
defined by

(Anx)(s) =
n∑
j=1

x(j/n)
(
n

j

)
sj(1 − s)n−j . (2.20)

Linearity of An, n ≥ 1, is obvious, and

‖Anx‖ = sup
s∈[0,1]

|(Anx)(s)| ≤ ‖x‖
n∑
j=1

(
n

j

)
sj(1 − s)n−j = ‖x‖, (2.21)

so that An are linear contractions in L(C[0, 1]). Taking x(s) = 1, we
see that actually ‖A‖ = 1. We shall show that An converges strongly
but not uniformly to the identity operator I. For n ≥ 1 let xn(s) =
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0∨(1−|2ns−1|). We see that ‖xn‖ = 1, but xn(j/n) = 0, j = 0, 1, ..., n,
so that Anxn = 0. Thus ‖An − I‖ ≥ ‖Anxn − xn‖ = ‖xn‖ = 1 and we
cannot have limn→∞ ‖An − I‖ = 0. On the other hand, from (2.21) we
see that

(Anx)(s) = E x(Xn/n)

where Xn is a binomial variable B(s, n). Recall that EXn/n = s, and
D2(Xn/n) = s(1−s)

n . By Chebyshev’s inequality

P(|Xn/n− s| ≥ δ) ≤ D2(Xn/n)
δ2

=
s(1 − s)
nδ2

≤ 1
4nδ2

.

Moreover, x, as a continuous function on a compact interval, is uniformly
continuous, i.e. for any ε > 0 there exists a δ > 0 such that |x(s)−x(t)| <
ε/2 provided s, t ∈ [0, 1], |s− t| ≤ δ. Therefore,

|(Anx)(s) − x(s)| ≤ E |x(Xn/n) − x(s)|
≤ E 1{|Xn/n−s|≥δ} |x(Xn/n) − x(s)|

+E 1{|Xn/n−s|<δ} |x(Xn/n) − x(s)|

≤ 2‖x‖ 1
4nδ2

+
ε

2
.

Note that the δ on the right-hand side does not depend on s but solely on
x and ε. (Although the random variables Xn and the events {|Xn/n− s|
< δ} do!) Thus

‖Anx− x‖ ≤ 2‖x‖ 1
4nδ2

+
ε

2

and our claim follows: if we want to have ‖Anx−x‖ less than ε, we take
n ≥ ‖x‖

εδ2 .

This proves also that polynomials form a dense set in C[0, 1]; indeed
Anx is a polynomial regardless of what x is, and Anx converges to x in
the supremum norm. This is the famous Weierstrass Theorem. The
polynomials (2.20) were introduced by S. Bernstein, who also gave the
proof of the Weierstrass Theorem reproduced above, and therefore are
called Bernstein polynomials.

2.3.30 Corollary If x ∈ C[0, 1], and
∫ 1

0
τnx(τ) dτ = 0, for all n ≥ 0,

then x = 0.

Proof By 2.3.29, for any x ∈ X, and any ε > 0 there exists a polynomial
xε such that ‖x−xε‖ < ε.Our assumption implies that

∫ 1

0
xε(τ)x(τ) dτ =
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0. Since ∣∣∣∣
∫ 1

0

x2(τ) dτ
∣∣∣∣ =

∣∣∣∣
∫ 1

0

x2(τ) dτ −
∫ 1

0

xε(τ)x(τ) dτ
∣∣∣∣

=
∣∣∣∣
∫ 1

0

[x(τ) − xε(τ)]x(τ) dτ
∣∣∣∣

≤ ‖x− xε‖ ‖x‖ ≤ ε‖x‖,

and since ε is arbitrary,
∫ 1

0
x2(τ) dτ = 0. Therefore, x(τ) = 0 almost

surely, and by continuity, for all τ ∈ [0, 1].

2.3.31 Exercise Prove that Ix(τ) = x(− ln τ) with convention ln 0 =
−∞ maps C(R+) (the space of continuous functions with limit at infin-
ity) isometrically isomorphically onto C[0, 1]. Conclude that the func-
tions eλ(τ) = e−λτ , λ ≥ 0 form a linearly dense subset of C(R+),
and consequently that

∫∞
0

e−λτx(τ) dτ = 0, λ > 0, implies x = 0, for
x ∈ C(R+).

2.3.32 Two linear and continuous operators that coincide on a linearly
dense subset are equal Suppose X0 is a subset of a normed linear
space X and spanX0 = X. Let Li, i = 1, 2, be two linear and continuous
operators with values in a normed linear space Y. If L1x = L2x for all
x ∈ X0, then L1 = L2.

Proof If x ∈ spanX0, then x =
∑n
i=1 αixi for some scalars αi ∈ R and

vectors xi ∈ X0. Thus L1x = L2x by linearity of L1 and L2. For x ∈ X,

we may find a sequence of vectors xn ∈ X0 such that limn→∞ xn = x.

Thus, L1x = L2x by continuity.

2.3.33 Existence of the extension of a linear operator defined on a lin-
early dense set Suppose X0 is a subset of a normed linear space X,

spanX0 = X0, and X0 = X. Let L be a linear map from X0 into a Banach
space Y, and suppose that there exists a constant C > 0 such that for all
x ∈ X0, ‖Lx‖Y ≤ C‖x‖X, where ‖ · ‖X and ‖ · ‖Y are norms in X and Y,

respectively. Then, there exists a unique linear and continuous operator
M : X → Y such that Lx = Mx for x ∈ X0 and ‖Mx‖Y ≤ C‖x‖X, x ∈ X.

(For obvious reasons, the operator M is usually denoted simply by L.)

Proof For any x ∈ X there exists a sequence of vectors xn ∈ X0 such
that limn→∞ xn = x. The sequence yn = Lxn is a Cauchy sequence in
X, since xn is a Cauchy sequence, because ‖yn − ym‖Y ≤ C‖xn − xm‖X.
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Thus, Lxn converges to an element in Y, since Y is complete. Moreover,
the limit does not depend on the choice of the sequence xn but solely on
x. Indeed, if for another sequence x′n we have limn→∞ x′n = x, then by
‖Lxn − Lx′n‖Y ≤ C‖xn − x′n‖X, we have limn→∞ Lxn = limn→∞ Lx′n.
We may thus put Mx = limn→∞ Lxn. In particular, if x ∈ X0 we may
take a constant sequence xn = x to see that Mx = Lx. The operator
M is linear: if x, y ∈ X, then we pick sequences xn, yn ∈ X0 such that
limn→∞ xn = x, limn→∞ yn = y; by linearity of L, we have

M(αx+ βy) = lim
n→∞

L(αxn + βyn) = α lim
n→∞

Lxn + β lim
n→∞

Lyn

= αMx+ βMy.

Similarly,

‖Mx‖Y = lim
n→∞

‖Lxn‖Y ≤ C lim
n→∞

‖xn‖X = C‖x‖X.

Uniqueness of M follows from 2.3.32.

2.3.34 Exercise Prove that if An, n ≥ 0 are bounded linear operators
An ∈ L(X,Y) such that ‖An‖ ≤ M,n ≥ 0 for some M > 0 and Anx

converges to A0x, for all x in a linearly dense set of x ∈ X, then An
converges strongly to A0.

2.3.35 Definition A family At, t ∈ T of bounded linear operators
where T is an index set is said to be a family of equibounded opera-
tors iff there exists a constant M > 0 such that ‖At‖ ≤M.

2.3.36 Definition An operator L ∈ L(X) is said to preserve a func-
tional f ∈ X∗, if f(Lx) = f(x) for all x ∈ X. Note that, by 2.3.32, to
check if L preserves f it is enough to prove that f(Lx) = f(x) holds on
a linearly dense set.

2.3.37 Markov operators Let (Ω,F , µ) be a measure space. Let Y be
an algebraic subspace of L1(Ω,F , µ) which is dense in L1(Ω,F , µ), and
such that x+ = max(x, 0) belongs to Y for x ∈ Y. Suppose that P is a
linear operator in L

(
Y, L1(Ω,F , µ)

)
such that Px ≥ 0 and∫

Ω

Pxdµ =
∫

Ω

xdµ, (2.22)

for all x ∈ Y such that x ≥ 0. Then there exists a unique extension of P
to a contraction, denoted by the same letter, P ∈ L

(
L1(Ω,F , µ)

)
, such

that Px ≥ 0 if x ≥ 0 and (2.22) holds for all x ∈ L1(Ω,F , µ).
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Proof Let us write x = x+ − x−, where x+ = max(x, 0) and x− =
max(−x, 0). For x ∈ Y, we have P (x+) − Px ≥ 0, since x+ − x ≥ 0.
Thus,

(Px)+ = max(Px, 0) ≤ P (x+).

Since x− = (−x)+, we also have

(Px)− = (−Px)+ = [P (−x)]+ ≤ [P (−x)+] = P (x−).

Therefore,∫
Ω

|Px|dµ =
∫

Ω

[(Px)+ + (Px)−] dµ ≤
∫

Ω

[P (x+) + P (x−)] dµ

=
∫

Ω

[x+ + x−] dµ =
∫

Ω

|x|dµ.

Thus, the existence of the extension to a contraction is secured by 2.3.33.
Using linearity, we show that (2.22) holds for all x ∈ Y, and not just for
x ≥ 0 in Y, so that the bounded linear functional F : x →

∫
Ω
xdµ is

preserved on Y, and thus on L1(Ω,F , µ).
It remains to show that Px ≥ 0 if x ≥ 0. If x ≥ 0 and xn ∈ Y converges

to x, then x+
n belongs to Y and ‖x − x+

n ‖L1(Ω,F,µ) ≤ ‖x − xn‖L1(Ω,F,µ)

(since
∫
{xn≤0} |x − xn|dµ =

∫
{xn≤0}(x + xn) dµ ≥

∫
{xn≤0} xdµ). Thus,

Px ≥ 0 as a limit of non-negative functions x+
n .

2.3.38 Remark In 2.3.37, we may take Y to be the algebraic subspace
of simple functions. If µ is finite, we may take Y = L2(Ω,F , µ).

2.3.39 Definition Suppose L1(Ω,F , µ) is a space of absolutely in-
tegrable functions on a measure space (Ω,F , µ). A linear map P :
L1(Ω,F , µ) → L1(Ω,F , µ) such that

(a) Px ≥ 0 for x ≥ 0,
(b)

∫
Ω
Pxdµ =

∫
Ω
xdµ for x ≥ 0

is called a Markov operator. As we have seen, Markov operators are
linear contractions. Condition (b) implies that Markov operators pre-
serve the integral (which is a linear functional on L1(Ω,F , µ)).

2.3.40 Exercise Let y be a non-negative element of L1(R,M, leb)
such that

∫
y dleb = 1. Prove that Py defined on L1(R,M, leb) by Pyx =

y ∗ x is a Markov operator.
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2.3.41 Example The operator from 2.3.26 is a Markov operator in
the space L1(G) of absolutely integrable functions with respect to the
counting measure on the measure space Ω = G composed of four ele-
ments, provided µ is non-negative and its coordinates add up to one. In
other words, Sµ = µ∗ν is a Markov operator provided µ is a probability
measure.

Observe that the space L1(G) coincides with the space BM(G) of
signed measures on G, since all measures on G are absolutely continuous
with respect to the counting measure.

2.3.42 Exercise Provide a similar example of a Markov operator on
the space L1(G) of functions that are absolutely integrable with respect
to Lebesgue measure on the Kisyński group G; here we treat G as two
parallel lines both equipped with one-dimensional Lebesgue measure.

2.3.43 Exercise Let k(τ, σ) ba a non-negative function on R2 such
that

∫
R
k(τ, σ) dσ = 1, for almost all τ. Prove that the operatorK defined

on L1(R,M, leb) by Kx(τ) =
∫
k(τ, σ) dσ is a Markov operator.

2.3.44 Exercise Let (Ω,F , µ) be a measure space and let f be a
measurable map into a measurable space (Ω′,F ′). Find a measure µ′ on
(Ω′,F ′) such that the operator P : L1(Ω′,F ′, µ′) → L1(Ω,F , µ) given
by (Px)(ω) = x(f(ω)), ω ∈ Ω, is Markov. For another example of a
Markov operator, see 3.4.5 below.

2.3.45 Campbell’s Theorem We often encounter operators that map
the space L1(Ω,F , µ) into the space of integrable functions on another
measure space (Ω′,F ′, µ′). If the operator P maps (classes of) non-
negative functions into (classes of) non-negative functions and the rela-
tion

∫
Ω′ Pxdµ′ =

∫
Ω
xdµ holds we shall still call P a Markov operator.

Here is a famous example. Let (Ω,F ,P) be a probability space where a
sequence Xn of independent exponentially distributed random variables
with parameter a is defined. Let Sn ≡ ∑n

j=1Xj . Sn has the gamma
distribution with parameters n and a. For any absolutely integrable
function x on the right half-axis, let (Px)(ω) =

∑∞
n=1 x(Sn(ω)). P is

a Markov operator mapping the space L1(R+,M(R+), a · leb) of func-
tions that are absolutely integrable with respect to Lebesgue measure
multiplied by a (with the norm ‖x‖ = a

∫
|x(s)|ds) into L1(Ω,F ,P). No-

tice that for two functions, say x and y, from the same equivalence class
in L1(R+,M(R+), a · leb) the values of Px and Py evaluated at some ω
may differ. Nevertheless, we may check that P maps classes into classes.
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We leave the proof as an exercise. It is clear that P maps non-negative
functions into non-negative functions. Moreover, for non-negative x,∫

Ω

(Px)(ω) dω =
∫

Ω

∞∑
n=1

x
(
Sn(ω)

)
dω

=
∫ ∞

0

∞∑
n=1

e−at
antn−1

(n− 1)!
x(t) dt =

∫ ∞

0

x(t)adt.

We have proved a (small) part of Campbell’s Theorem – see [41, 66].
We shall come back to this subject in 6.4.9.

2.3.46 Exercise Consider the operator D that maps the joint distri-
bution of two random integer-valued variables into the distribution of
their difference. Extend D to the whole of l1(Z × Z), where Z × Z is
equipped with the counting measure, find an explicit formula for D, and
show that this operator is Markov.
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Conditional expectation

The space L2(Ω,F ,P) of square integrable random variables on a proba-
bility space (Ω,F ,P) is a natural example of a Hilbert space. Moreover,
for X ∈ L2(Ω,F ,P) and a σ-algebra G ⊂ F , the conditional expectation
E(X|G) of X is the projection of X onto the subspace of G measurable
square integrable random variables. Hence, we start by studying Hilbert
spaces and projections in Hilbert spaces in Section 3.1 to introduce con-
ditional expectation in Section 3.2. Then we go on to properties and
examples of conditional expectation and all-important martingales.

3.1 Projections in Hilbert spaces

3.1.1 Definition A linear space with the binary operation X×X → R,

mapping any pair in X×X into a scalar denoted (x, y), is called a unitary
space or an inner product space iff for all x, y, z ∈ X, and α, β ∈ R,

the following conditions are satisfied:

(s1) (x+ y, z) = (x, z) + (y, z),
(s2) (αx, y) = α(x, y),
(s3) (x, x) ≥ 0,
(s4) (x, x) = 0 iff x = 0.
(s5) (x, y) = (y, x).

The number (x, y) is called the scalar product of x and y. The
vectors x and y in a unitary space are termed orthogonal iff their
scalar product is 0.

3.1.2 Example The space l2 of square summable sequences with the
scalar product (x, y) =

∑∞
n=1 ξnηn is a unitary space; here x = (ξn)n≥1 ,

y = (ηn)n≥1 . The space C[0,1] of continuous functions on [0, 1] with

80
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the scalar product (x, y) =
∫ 1

0
x(s)y(s) ds is a unitary space. Another

important example is the space L2(Ω,F , µ) where (Ω,F , µ) is a mea-
sure space, with (x, y) =

∫
Ω
xy dµ. The reader is encouraged to check

conditions (s1)–(s5) of the definition.
In particular, if µ is a probability space, we have (X,Y ) = EXY. Note

that defining, as customary, the covariance of two square integrable ran-
dom variables X and Y as cov(X,Y ) = E (X − (EX)1Ω)(Y − (E Y )1Ω)
we obtain cov(X,Y ) = (X,Y ) − EXE Y.

3.1.3 Cauchy–Schwartz–Bunyakovski inequality For any x and y in a
unitary space,

(x, y)2 ≤ (x, x)(y, y).

Proof Define the real function f(t) = (x+ ty, x+ ty); by (s3) it admits
non-negative values. Using (s1)–(s2) and (s5):

f(t) = (x, x) + 2t(x, y) + t2(y, y); (3.1)

so f(t) is a second order polynomial in t. Thus, its discriminant must be
non-positive, i.e. 4(x, y)2 − 4(x, x)(y, y) ≤ 0.

3.1.4 Theorem A unitary space becomes a normed space if we define
‖x‖ =

√
(x, x). This norm is often called the unitary norm.

Proof (n1) follows from (s3), and (n2) follows from (s4). To show (n3)
we calculate:

‖αx‖ =
√

(αx, αx) =
√
α2(x, x) = |α|

√
(x, x) = |α|‖x‖,

where we have used (s2) and (s5). Moreover, by (3.1) and 3.1.3,

‖x+ y‖2 = (x, x) + 2(x, y) + (y, y) ≤ ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2,

as desired.

3.1.5 Example In the case of L2(Ω,F , µ) the norm introduced above
is the usual norm in this space, ‖x‖2 =

∫
Ω
x2 dµ.

3.1.6 Law of large numbers. First attempt Suppose that Xn are iden-
tically distributed, uncorrelated, square integrable random variables in
a probability space (Ω,F ,P), i.e. that cov(Xi, Xj) = 0 for i 
= j. Then
Sn

n = X1+···+Xn

n converges in L2(Ω,F ,P) to (EX)1Ω.
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Proof It suffices to note that the squared distance between Sn

n and
(EX)1Ω equals ‖ 1

n

∑n
i=1(Xi − (EX)1Ω)‖2, which by a direct compu-

tation based on assumption of lack of correlation equals 1
n2

∑n
i=1 σ

2
Xi

=
1
nσ

2
X1
.

3.1.7 Remark Note that the Markov inequality implies that under

the above assumptions, for any ε > 0, P(|Sn

n −EX| > ε) ≤ σ2
X1
nε tends to

zero. This means by definition that Sn

n converges to EX in probability
(see Chapter 5).

3.1.8 Parallelogram law In any unitary space H,

‖x+ y‖2 + ‖x− y‖2 = 2
[
‖x‖2 + ‖y‖2],

where x, y ∈ H, and ‖ · ‖ is a unitary norm.

Proof Take t = 1 and t = −1 in (3.1) and add up both sides.

3.1.9 Exercise (polarization formula) In any unitary space

(x, y) =
‖x+ y‖2 − ‖x− y‖2

4
.

3.1.10 Definition Let H be a unitary space, and let ‖·‖ be the unitary
norm. If (H, ‖ ·‖) is a Banach space, this pair is called a Hilbert space.
Again, quite often we will say that H itself is a Hilbert space. A leading
example of a Hilbert space is the space L2(Ω,F , µ) where (Ω,F , µ) is a
measure space.

3.1.11 Existence of the closest element from a closed convex set Let
C be a closed convex subset of a Hilbert space H, and let x 
∈ C. There
exists a unique element y ∈ C, such that

‖x− y‖ = d := inf
z∈C

‖x− z‖.

Proof For any z, z′ ∈ C, we have by 3.1.8,

‖z − z′‖2 = ‖(z − x) + (x− z′)‖2

= 2{‖z − x‖2 + ‖z′ − x‖2} − ‖z + z′ − 2x‖2

= 2{‖z − x‖2 + ‖z′ − x‖2} − 4
∥∥z + z′

2
− x
∥∥2

≤ 2{‖z − x‖2 + ‖z′ − x‖2} − 4d2, (3.2)
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since z+z′
2 belongs to C. By definition of d there exists a sequence zn ∈ C,

such that limn→∞ ‖zn − x‖ = d. We will show that zn is a Cauchy
sequence. Choose n0 such that ‖zn−x‖2 ≤ d2+ ε

4 , for n ≥ n0. Then, using
(3.2) with z = zn z

′ = zm we see that for n,m ≥ n0, ‖zn − zm‖2 ≤ ε,

which proves our claim. Define y = limn→∞ zn; we have ‖x − y‖ =
limn→∞ ‖x− zn‖ = d. Moreover, if ‖y′ − x‖ = d, then (3.2) with z = y

and z′ = y′ shows that ‖y − y′‖ = 0.

3.1.12 Existence of projection Let H1 be a subspace of a Hilbert space
H. For any x in H, there exists a unique vector Px ∈ H1 such that for
any z ∈ H1, (x− Px, z) = 0. Px is called the projection of x in H1.

Proof If x belongs to H1 we take Px = x, and it is trivial to check that
this is the only element we can choose. Suppose thus that x 
∈ H1 and
put Px = y where y is the element that minimizes the distance between
x and elements of H1. Let z belong to H1. The function

f(t) = ‖x− y + tz‖2 = ‖x− y‖2 + 2t(z, x− y) + t2‖z‖,

attains its minimum at tmin = 0. On the other hand tmin = − 2(z,x−y)
‖x−y‖2 so

that (x − y, z) = 0. Suppose that (x − y′, z) = 0 for some y′ in H1 and
all z ∈ H1, and y 
= y′. Then

‖x−y‖2 = ‖x−y′‖2 +2(x−y′, y′−y)+‖y′−y‖2 = ‖x−y′‖2 +‖y′−y‖2

since y′ − y belongs to H1. Thus ‖x − y‖ > ‖x − y′‖, a contradiction.

3.1.13 Corollary Under assumptions and notations of 3.1.12, for all
x, y ∈ X and α, β ∈ R, P (αx+ βy) = αPx+ βPy, and ‖Px‖ ≤ ‖x‖. In
other words, P is a linear contraction.

Proof For the first part it suffices to show that (αx + βy − αPx −
βPy, z) = 0 for z ∈ H1, but this follows directly from the definition of
Px and Py and conditions (s1)–(s2) in 3.1.1. To complete the proof note
that ‖x‖2 = ‖x−Px‖2 +2t(x−Px, Px)+‖Px‖2 = ‖x−Px‖2 +‖Px‖2.

3.1.14 Exercise Show that for any projection P, ‖P‖ = 1.

3.1.15 Corollary Let H1 be a proper subspace of a Hilbert space H.

There exists a non-zero vector y ∈ H such that (y, x) = 0 for all x ∈ H1.

We say that y is perpendicular to H1.
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3.1.16 Exercise Let H1 be the subspace of a Hilbert space H. Define
H⊥

1 as the set of all y such that (x, y) = 0 for all x ∈ H1. Prove that H⊥
1

is a subspace of H and that any z ∈ H may be represented in a unique
way in the form z = x+ y where x ∈ H1 and y = H⊥

1 . Also, if P is the
projection on H1 then I − P is the projection on H⊥

1 .

3.1.17 Example Let H = L2(Ω,F ,P) and H1 = L2(Ω,G,P) where G
is a sub-σ-algebra of F . If X ∈ L2(Ω,F ,P) is independent of G then for
any Y ∈ L2(Ω,G,P) we have EXY = EX · E Y. Hence, X − (EX)1Ω

is perpendicular to L2(Ω,G,P). In particular, (EX)1Ω is the projection
of X onto L2(Ω,G,P). Example 1.4.9 shows that it may happen that
X − (EX)1Ω belongs to L2(Ω,G,P)⊥ and yet X is not independent of
G.

3.1.18 Properties of projections Let H1 and H2 be subspaces of a
Hilbert space H, and let Pi, i = 1, 2, denote corresponding projection
operators. H1 ⊂ H2 iff ‖P1x‖ ≤ ‖P2x‖ for all x ∈ H. In such a case
P1P2 = P2P1 = P1.

Proof For any x ∈ H, ‖x‖2 = ‖x − P1x‖2 + ‖P1x‖2 since x − P1x

is perpendicular to P1x. Similarly, ‖x‖2 = ‖x − P2x‖2 + ‖P2x‖2. By
definition, P2x is the element of H2 that minimizes the distance between
x and an element of this subspace. Hence if H1 ⊂ H2 then ‖x−P2x‖2 ≤
‖x − P1x‖2, and so ‖P1x‖2 ≤ ‖P2x‖2. Conversely, if the last inequality
holds, then for x ∈ H1,

‖x− P2x‖2 = ‖x‖ − ‖P2x‖2 ≤ ‖x‖ − ‖P1x‖2 = ‖x− P1x‖2 = 0,

proving that x = P2x ∈ H2.

If H1 ⊂ H2, then P2P1 = P1, since P1x ∈ H1 ⊂ H2 for any x ∈ H.

To calculate P1P2x note that P1x belongs to H1 and for any z ∈ H1,

(P2x − P1x, z) = (P2x − x, z) + (x − P1x, z). Now, (P2x − x, z) = 0
since z ∈ H2, and (x − P1x, z) = 0 since z ∈ H1. This implies that
P1x = P1P2x.

3.1.19 Definition A bounded linear operator A in a Hilbert space H

is said to be self-adjoint (see 5.3.1) if for any x and y in H, (Ax, y) =
(x,Ay).

3.1.20 Example Let H be the space Rn with the norm ‖(ξi)i=1,..n‖ =√∑n
i=1 ξ

2
i . A linear operator in this space may be identified with the
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n×n matrix (αi,j)i,j=1,...,n with αi,j being the ith coordinate in the vec-
tor A(δi,j)i=1,...,n. Such an operator is self-adjoint if the corresponding
matrix is symmetric (see the proof of Theorem 4.1.3).

3.1.21 Exercise Prove that for any projection P and vectors x and
y in H we have

(Px, y) = (Px, Py) = (x, Py); (3.3)

in particular, projections are self-adjoint.

3.1.22 The norm of a self-adjoint operator Let A be a self-adjoint
operator in a Hilbert space H. Then ‖A‖ = sup‖x‖=1 |(Ax, x)|.

Proof Denote the supremum above by ‖A‖0. By the Cauchy inequality,
‖A‖0 ≤ sup‖x‖=1 ‖A‖ ‖x‖ = ‖A‖. To prove the converse fix x ∈ H such
that Ax 
= 0 and ‖x‖ = 1, and let y = 1

‖Ax‖Ax. Then

‖Ax‖ = (Ax, y) =
1
2
[(Ax, y) + (x,Ay)]

=
1
4
[(A(x+ y), x+ y) − (A(x− y), x− y)]

≤ 1
4
‖A‖0[‖x+ y‖2 + ‖x− y‖2] =

1
2
‖A‖0[‖x‖2 + ‖y‖2].

Hence, ‖A‖ = sup‖x‖=1 ‖Ax‖ ≤ sup‖x‖=1
1
2‖A‖0[‖x‖2 + ‖y‖2] = ‖A‖0,

since ‖y‖ = 1.

3.1.23 A characterization of a projection operator We have seen that
any projection P is self-adjoint and that P 2 = P. The converse is also
true: if P is a self-adjoint operator in a Hilbert space H and if P 2 = P

then H1 = RangeP is a subspace of H and P is the projection on H1.

Proof Certainly, H1 is an algebraic subspace of H. By definition, if xn
belongs to H1 then there exists yn in H such that Pyn = xn. Hence
if xn converges to an x then the calculation Px = limn→∞ Pxn =
limn→∞ P 2yn = limn→∞ Pyn = limn→∞ xn = x, proves that x belongs
to H1. Therefore, H1 is a subspace of H.

Let P1 be the projection on H1. By 3.1.16 it suffices to show that
P1x = Px for all x ∈ H1 and for all x ∈ H⊥

1 . The first claim is true since
for x ∈ H1 both P1x and Px are equal to x. Since P1x = 0 for all H⊥

1

we are left with proving that Px = 0 if x belongs to H⊥
1 . For such an x,

however, we have ‖Px‖2 = (Px, Px) = (x, P 2x) = (x, Px) = 0 since Px
belongs to H0.
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3.1.24 Exercise Suppose that P1 and P2 are two projections on the
subspaces H1 and H2 of a Hilbert space H, respectively. Prove that the
following conditions are equivalent:

(a) P1P2 = P2P1,

(b) P3 = P1 + P2 − P1P2 is a projection operator,
(c) P4 = P1P2 is a projection operator.

If one of these conditions holds, then H1 +H2 is a subspace of H and P3

is the projection on this subspace, and P4 is a projection on H1 ∩ H2.

3.1.25 Example Suppose that G1 and G2 are independent σ-algebras
of events in a probability space (Ω,F ,P). Let P1 and P2 denote the pro-
jections in L2(Ω,F ,P) on the subspaces L2(Ω,G1,P) and L2(Ω,G2,P),
respectively. For any X in L2(Ω,F ,P), P1X is G1 measurable and so by
Exercise 3.1.17, P2P1X = (EX) 1Ω. Similarly, P1P2 = (EX) 1Ω. Thus
H0 = L2(Ω,G1,P) + L2(Ω,G2,P) is a subspace of L2(Ω,F ,P), and in
particular it is closed. The projection on this subspace is the operator
P1 + P2 − P1P2.

3.1.26 Direct sum Another important example is the case where H1 ∩
H2 contains only the zero vector. In this case, H1 + H2 is termed the
direct sum of H1 and H2. The representation of an x ∈ H1 + H2 as the
sum of vectors x1 ∈ H1 and x2 ∈ H2 is then unique.

3.1.27 Exercise Show that in the situation of 3.1.25, the λ-system of
events A such that 1A ∈ L2(Ω,G1,P) ∩ L2(Ω,G2,P) is trivial, i.e. that
P(A) equals either 0 or 1. In particular, if P is complete, G is a σ-algebra.

3.1.28 The form of a bounded linear functional on a Hilbert space
Suppose that H is a Hilbert space and f is a linear and continuous
functional on H. There exists a unique y ∈ H such that f(x) = (x, y).
In particular ‖x‖ = ‖f‖.

Proof Suppose that for y, y′ ∈ H we have (x, y) = (x, y′) for all x ∈ H.

Put x = y − y′, to see that ‖y − y′‖ = 0, which implies the uniqueness
assertion.

Next, consider Ker f = {x ∈ H|f(x) = 0}. This is a linear subspace of
H, since f is linear and continuous. If Ker f = H, we put y = 0. In the
other case, there exists a z 
∈ Ker f. The non-zero vector y0 = z−Pz is
our candidate for y. (Just think: if we really have f(x) = (x, y) then y is
orthogonal to Ker f.) If this is to work, we must have (z−Pz, z−Pz) =
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‖y0‖2 = f(y0). If this formula does not hold, a little scaling will do the
job: specifically, we take y = ty0 where t = f(y0)

‖y0‖2 so that ‖y‖2 = f(y).
It remains to prove that f(x) = (x, y) for all x ∈ H. Take x ∈ H, and
write x = (x − f(x)

‖y‖2 y) + f(x)
‖y‖2 y. The first term belongs to Ker f, which

is orthogonal to y. Thus, (x, y) = ( f(y)
‖y‖2 y, y) = f(x). Finally, |f(x)| ≤

‖x‖‖y‖ shows that ‖f‖ ≤ ‖x‖, and ‖x‖2 = (x, x) = f(x) ≤ ‖f‖‖x‖ gives
‖x‖ ≤ ‖f‖.

3.2 Definition and existence of conditional expectation

3.2.1 Motivation Let (Ω,F ,P) be a probability space. If B ∈ F is such
that P(B) > 0 then for any A ∈ F we define conditional probability
P(A|B) (probability of A given B) as

P(A|B) =
P(A ∩B)

P(B)
. (3.4)

As all basic courses in probability explain, this quantity expresses the
fact that a partial knowledge of a random experiment (“B happened”)
influences probabilities we assign to events. To take a simple example,
in tossing a die, the knowledge that an even number turned up excludes
three events, so that we assign to them conditional probability zero, and
makes the probabilities of getting 2, 4 or 6 twice as big. Or, if three balls
are chosen at random from a box containing four red, four white and
four blue balls, then the probability of the event A that all three of them
are of the same color is 3

(
4
3

)
/
(
12
3

)
= 3

55 . However, if we know that at least
one of the balls that were chosen is red, the probability of A decreases
and becomes

(
4
3

)
[
(
12
3

)
−
(
8
3

)
]−1 = 3

130 . By the way, if this result does not
agree with the reader’s intuition, it may be helpful to remark that the
knowledge that there is no red ball among the chosen ones increases the
probability of A, and that it is precisely the reason why the knowledge
that at least one red ball was chosen decreases the probability of A.

An almost obvious property of P(A|B) is that, as a function of A, it
constitutes a new probability measure on the measurable space (Ω,F).
It enjoys also other, less obvious, and maybe even somewhat surpris-
ing properties. To see that, let Bi, i = 1, ..., n, n ∈ N be a collection
of mutually disjoint measurable subsets of Ω such that

⋃n
i=1Bi = Ω

and P(Bi) > 0. Such collections, not necessarily finite, are often called
dissections, or decompositions, of Ω. Also, let A ∈ F . Consider all
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functions Y of the form

Y =
n∑
i=1

bi1Bi
(3.5)

where bi are arbitrary constants. How should the constants bi, i = 1, ..., n
be chosen for Y to be the closest to X = 1A? The answer depends, of
course, on the way “closeness” is defined. We consider the distance

d(Y,X) =

√∫
Ω

(Y −X)2 dP = ‖Y −X‖L2(Ω,F,P). (3.6)

In other words, we are looking for constants bi such that the distance
‖Y −X‖L2(Ω,F,P) is minimal; in terms of 3.1.12 we want to find a pro-
jection of X onto the linear span of {1Bi , i = 1, ..., n}. Calculations are
easy; the expression under the square-root sign in (3.6) is

n∑
i=1

∫
Bi

(Y − 1A)2 dP =
n∑
i=1

∫
Bi

(bi − 1A)2 dP

=
n∑
i=1

[
b2iP(Bi) − 2biP(Bi ∩A) + P(A)

]
,

and its minimum is attained when bi are chosen to be the minima of the
binomials b2iP(Bi) − 2biP(Bi ∩A) + P(A), i.e. if

bi =
P(A ∩Bi)

P(Bi)
= P(A|Bi). (3.7)

Now, this is very interesting! Our simple reasoning shows that in or-
der to minimize the distance (3.6), we have to choose bi in (3.5) to be
conditional probabilities of A given Bi. Or: the conditional probabilities
P(A|Bi) are the coefficients in the projection of X onto the linear span
of {1Bi , i = 1, ..., n}. This is not obvious from the original definition at
all.

This observation suggests both the way of generalizing the notion of
conditional probability and the way of constructing it in much more
complex situations. Why should we look for generalizations of the no-
tion of conditional probability? First of all, the definition (3.4) is valid
only under the condition that P(B) > 0, which is very unpleasant in
applications. Secondly, we want to have a way of constructing condi-
tional probability of random variables more complex than X = 1A (in
such cases we speak of conditional expectation). Lastly, we want to
have a way of constructing conditional expectations with respect to σ-
algebras.
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To understand the modern concept of conditional expectation, the
reader is advised to take notice that our analysis involves a fundamen-
tal change in approach. Specifically, instead of looking at P(A|Bi), i =
1, ..., n separately, we gather all information about them in one func-
tion Y. In a sense, Y is more intrinsic to the problem, and, certainly, it
conveys information in a more compact form. Thus, the modern theory
focuses on Y instead of P(A|Bi).

The function Y defined by (3.5) and (3.7) is a prototype of such a
conditional expectation; it is in fact the conditional expectation of X =
1A with respect to the σ-algebra G generated by the dissection Bi, i =
1, 2, ..., n. Let us, therefore, look closer at its properties. Notice that
while X is measurable with respect to the original σ-algebra F , Y is
measurable with respect to a smaller σ-algebra G. On the other hand,
even though Y is clearly different from X, on the σ-algebra G it mimics
X in the sense that the integrals of X and Y over any event B ∈ G are
equal. Indeed, it suffices to check this claim for B = Bi, and we have∫

Bi

Y dP =
∫
Bi

P(A|Bi) dP = P(A ∩Bi) =
∫
Bi

1A dP.

It suggests that the notion of conditional expectation should be con-
sidered in L1(Ω,F ,P) rather than L2(Ω,F ,P) and leads to Definition
3.2.5 below. Before it is presented, however, the reader should solve the
following two exercises.

3.2.2 Exercise Let X be an exponential random variable. Check to
see that P(X > t + s|X > s) = P(X > t), where s, t ≥ 0. This is often
referred to as the memoryless property of the exponential distribu-
tion. Prove also the converse: if a non-negative random variable T has
the memoryless property, then it is exponential.

3.2.3 Exercise Let Bi, i ≥ 0 be a decomposition of Ω, and let A and
C with P(C) > 0 be two events. Show that P(A) =

∑
i≥1 P(A|Bi)P (Bi)

(the total probability formula) and P(A|C) =
∑
i P(A|Bi ∩ C)P(Bi|C),

where we sum over all i such that P(Bi ∩ C) > 0.

3.2.4 Exercise It is interesting to note that the reasoning presented
at the beginning of 3.2.1 does not work in the context of the spaces
Lp(Ω,F ,P) where 1 ≤ p ≤ ∞ and p 
= 2. To be more exact, prove that
(a) for 1 < p <∞, p 
= 2, the minimum of the distance ‖X−Y ‖Lp(Ω,F,P)

is attained for bi = [P(A∩Bi)]
1

p−1 /
(
[P(A ∩Bi)]

1
p−1 + [P(A� ∩Bi)]

1
p−1

)
,
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(b) for p = 1, bi must be chosen to be equal 1 or 0 according as P(A ∩
Bi) > P(A�∩Bi) or P(A∩Bi) < P(A�∩Bi); if P(A∩Bi) = P(A�∩Bi) the
choice of bi does not matter as long as 0 ≤ bi ≤ 1, and (c) for p = ∞ the
best approximation is bi = 1

2 for any A and Bi (unless the probability
of the symmetric difference between A and one of the events Bi is zero).

3.2.5 Definition Let (Ω,F ,P) be a probability space, X belong to
L1(Ω,F ,P), and G ⊂ F be a σ-algebra. A variable Y ∈ L1(Ω,G,P) such
that for all A ∈ G, ∫

A

X dP =
∫
A

Y dP (3.8)

is termed the conditional expectation (of X with respect to G) and
denoted E(X|G). In words: the operator P : X �→ E(X|G) is a Markov
operator in L1(Ω,F ,P), with values in L1(Ω,G,P) ⊂ L1(Ω,F ,P), that
preserves all functionals FA : X �→

∫
A
X dP where A ∈ G. Note that

E(X|G) depends on P as well (see e.g. 3.3.11 and 3.3.12, below) and if we
want to stress that dependence we write E P(X|G). For X ∈ L1(Ω,F ,P)
and a random variable Y we define E(X|Y ) as E(X|σ(Y )). By the Doob–
Dynkin Lemma 2.1.24 E(X|Y ) = f(Y ) for a Lebesgue measurable func-
tion f. The conditional probability P(A|G) is defined as E(1A|G). Note
that P(A|G) is not a number, but a function (to be more specific: a class
of functions).

3.2.6 Theorem For anyX ∈ L1(Ω,F ,P), the conditional expectation
exists. Moreover, the map P : X �→ E(X|G) is a Markov operator and,
when restricted to L2(Ω,F ,P), is a projection onto L2(Ω,G,P).

Proof Let X ∈ L2(Ω,F ,P), and Y = PX be the projection of X on the
subspace L2(Ω,G,P). For any Z ∈ L2(Ω,G,P), (X − PX,Z) = 0, i.e.∫
Ω
(X − PX)Z dP = 0. Taking Z = 1A, A ∈ G we obtain (3.8). We have

thus proved existence of conditional expectation for X ∈ L2(Ω,F ,P).
By 2.3.37–2.3.38, we will be able to extend the operator P to a Markov
operator on L1(Ω,F ,P) if we prove that P maps non-negative X ∈
L2(Ω,F ,P) into a non-negative PX. Moreover, by 2.3.37, the extension
of P will preserve the integrals over A ∈ G. Therefore, we will be done
once we show the claim about images of non-negative X ∈ L2(Ω,F ,P).

Let X ∈ L2(Ω,F ,P) and X ≥ 0. Assume the probability of the event
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A = {ω|PX(ω) < 0} is not zero. Since

A =
∞⋃
n=1

An :=
∞⋃
n=1

{ω|PX(ω) < − 1
n
},

we have P(An) = δ > 0 for some n ≥ 1. Thus, since An ∈ G we have by
(3.8),

− δ

n
>

∫
An

PX dP =
∫
An

X dP ≥ 0,

a contradiction.

3.3 Properties and examples

3.3.1 Theorem Let α, β ∈ R, X, Y and Xn, n ≥ 1, belong to the
space L1(Ω,F ,P), and let H,G, H ⊂ G be sub-σ-algebras of F . Then,

(a) E(X|G) is G measurable,
(b)

∫
A

E(X|G) dP =
∫
A
X dP, for A ∈ G,

(c) E[E(X|G)] = EX,

(d) E(αX + βY |G) = αE(X|G) + βE(Y |G),
(e) E(X|G) ≥ 0 if X ≥ 0,
(f) E|E(X|G)| ≤ E|X|, or, which is the same:

‖E(X|G)‖L1(Ω,F,P) ≤ ‖X‖L1(Ω,F,P),

(g) E(E(X|G)|H) = E(E(X|H)|G) = E(X|H),
(h) E(X|G) = (EX)1Ω if X is independent of G,
(i) if X is G measurable, then E(X|G) = X; in particular, E(1Ω|G) = 1Ω,

(j) if G and H are independent then E(X|σ(G∪H)) = E(X|G)+E(X|H)−
(EX)1Ω; if, additionally,X is independent of H then E(X|σ(G∪H)) =
E(X|G),

(k) if limn→∞Xn = X in L1(Ω,F ,P), then limn→∞ E(Xn|G) = E(X|G)
in L1(Ω,G,P),

(l) |E(X|G)| ≤ E(|X| |G),
(m) if Xn ≥ 0 and Xn ↗ X (a.s.), then E(Xn|G) ↗ E(X|G),
(n) if XY is integrable, and X is G measurable, then

E(XY |G) = XE(Y |G),

(o) X is independent of G iff for any Lebesgue measurable function f such
that f(X) ∈ L1(Ω,F ,P), E(f(X)|G) = (Ef(X))1Ω.
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(p) If φ is convex and φ(X) is integrable, then

φ
(
E(X|G)

)
≤ E(φ(X)|G).

Conditions (d)–(e),(g)–(k), and (m)–(p) hold P a.s.

Proof (a)–(b) is the definition, repeated here for completeness of the list.
It is worth noting here in particular that (a)–(b) imply that E(X|G) ∈
L1(Ω,F ,P). (d)–(f) have already been proved. (c) follows from (b) on
putting A = Ω.

(g) If we introduce the notation P1X = E(X|G), P2X = E(X|H), (g)
reads P1P2X = P2P1X = P2X. Our claim follows thus by 3.1.18, for
X ∈ L2(Ω,F ,P). To complete the proof we apply 2.3.33 and 2.2.41.

(h) By density argument it suffices to show that our formula holds for
all square integrable X. This, however, has been proved in 3.1.17.

(i) The first part is obvious by definition. For the second part note
that 1Ω is G measurable for any G.

(j) Again, it is enough to consider square integrable X. Under this
assumption the first part follows from Example 3.1.25 and the second
from (h).

(k) By (f),

‖E(Xn|G) − E(X|G)‖L1(Ω,G,P) ≤ ‖Xn −X‖L1(Ω,F,P).

(l) Apply (e) to |X| ±X and use linearity.
(m) By (e), E(Xn|G) ↗ to some G measurable Y (be careful, these

inequalities hold only a.s.!) Moreover, for A ∈ G,∫
A

Y dP = lim
n→∞

∫
A

E(Xn|G) dP = lim
n→∞

∫
A

Xn dP =
∫
A

X dP.

This implies that Y ∈ L1(Ω,G,P), and Y = E(X|G).
(n) This result may be proved by considering indicator functions first,

and then applying linearity and continuity of conditional expectation.
Let us, however, take another approach and prove that (n) is actually
(i) in a different probability space.

Note that we may assume that Y ≥ 0. Let P� be the probability
measure in {Ω,F} defined by P�(A) = 1

k

∫
A
Y dP, where k =

∫
Ω
Y dP.

A random variable Z on Ω belongs to L1(Ω,F ,P�) iff ZY belongs to
L1(Ω,F ,P), and we have∫

Z dP� =
1
k

∫
ZY dP.
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For A ∈ G,

P�(A) =
1
k

∫
A

E P(Y |G) dP;

i.e. the restriction of P� to G has a density 1
kE P(Y |G). As above, a

G measurable random variable Z belongs to L1(Ω,G,P�) iff ZE P(Y |G)
belongs to L1(Ω,G,P), and we have∫

Z dP� =
1
k

∫
ZE P(Y |G) dP.

By assumption, X ∈ L1(Ω,F ,P�). Let Z = E P�(X|G). We have∫
A

Z dP� =
∫
A

X dP�, A ∈ G.

The right-hand side equals 1
k

∫
A
XY dP, and since Z is G measurable,

the left-hand side equals 1
k

∫
ZE P(Y |G) dP. Moreover, ZE P(Y |G) is G

measurable. Thus E P(XY |G) equals ZE P(Y |G). Furthermore, Z = X

(P� a.s.), X being G measurable. Therefore, E P(XY |G) = XE P(Y |G) P

a.s., since if P�(A) = 0, for some A ∈ G, then either P(A) = 0, or Y = 0
on A (P a.s.); and in this last case E P(Y |G) = 0 (P a.s.).

(o) The necessity follows from (h), f(X) being independent of G if X
is. If X is not independent of G, then there exist sets A ∈ σ(X), B ∈ G
such that P(A ∩ B) 
= P(A)P(B). Let f = 1C , where X−1(C) = A. We
have f(X) = 1A, so that Ef(X) = P(A)1Ω. Taking B introduced above
we have

∫
B

P(A)1Ω dP = P(A)P(B) while
∫
B
f(X) dP =

∫
B

1A dP =
P(A ∩B). Thus

E(f(X)|G) 
= (Ef(X))1Ω.

(p) If φ is linear, (p) reduces to (d). In the other case, for φ ∈ S0, (see
1.5.6 for notations), we have ψ(X) ≤ φ(X), thus

ψ
(
E(X|G)

)
= E(ψ(X)|G) ≤ E(φ(X)|G),

almost surely. Since S0 is countable, the set of ω ∈ Ω where the last
inequality does not hold for some ψ ∈ S0 also has probability zero.
Taking the supremum over ψ ∈ S0, we obtain the claim.

3.3.2 Remark Point (h) above says that conditioning X on a σ-
algebra that is independent from σ(X) is the same as conditioning on
a trivial σ-algebra {Ω, ∅}. This is related to the so-called 0–1 law; see
3.6.11. Condition (g), called the tower property, is quite important and
useful in proving results pertaining to the conditional expectation. Note
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that (c) may be viewed as a particular case of (g). Condition (p) is called
Jensen’s inequality; note that (f) is a particular case of (p) for φ(t) = |t|.

3.3.3 Conditional expectation in Lp(Ω,F ,P) Let X be in Lp(Ω,F ,P)
where p > 1 and G be a sub-σ-algebra of F . By the Hölder inequality,
X ∈ L1(Ω,F ,P), too, and so E(X|G) exists. By Jensen’s inequality
|E(X|G)|p ≤ E(|X|p|G). Therefore,∫

|E(X|G)|p dP ≤
∫

E(|X|p|G) dP =
∫

|X|p dP = ‖X‖pLp .

This shows that E(X|G) ∈ Lp(Ω,F ,P) and that conditional expectation
is a contraction operator from Lp(Ω,F ,P) to Lp(Ω,F ,P).

3.3.4 Exercise In 3.2.1 we have seen that if G is generated by a finite
dissection (Bi)i=1,...n, then E(X|G) =

∑n
i=1 bi1Bi

where X = 1A, bi =
P(A∩Bi)

P(Bi)
. Prove that for X ∈ L1(Ω,F ,P) the formula is the same except

that bi = 1
P(Bi)

∫
Bi
X dP.

3.3.5 Example A die is tossed twice. Let Xi, i = 1, 2, be the number
on the die in the ith toss. We will find E(X1|X1 +X2). The space Ω is a
set of ordered pairs (i, j), 1 ≤ i, j ≤ 6. σ(X1 +X2) is generated by the
dissection (Bi)i=2,...,12 where Bi is composed of pairs with coordinates
adding up to i. In other words Bi are diagonals in the “square” Ω. We
have

E(X1|X1 +X2) =
12∑
i=2

bi1Bi , bi =
1

P(Bi)

∫
Bi

X1 dP.

For example b2 = 1; which means that if X1 + X2 = 2, then X1 = 1.
Similarly, b3 = 3

2 , which can be interpreted by saying that ifX1+X2 = 3,
then X1 = 1 or 2 with equal probability. Similarly, b8 = 4, which means
that the knowledge that X1 +X2 = 8 increases the expected result on
the first die.

3.3.6 Exercise Let Bi, i = 1, 2, ..., be an infinite dissection of Ω.
Consider A ∈ F , and functions of the form

φ =
∞∑
i=1

bi1Bi
. (3.9)

What are necessary and sufficient conditions for φ ∈ L2(Ω,F ,P) (in
terms of bi)? Choose bi in such a way that the distance in (3.6) is min-
imal. Check to see that φ with such coefficients belongs to L2(Ω,F ,P)
and satisfies

∫
Bi

1A dP =
∫
Bi
φdP.
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3.3.7 Exercise Imitating the proof of the Cauchy–Schwartz– Bunya-
kovski inequality (see 3.1.3) show that

E(XY |G)2 ≤ E(X2|G)E(Y 2|G) P a.s., (3.10)

for X,Y ∈ L2(Ω,F ,P).

3.3.8 Exercise State and prove analogs of the Lebesgue Dominated
Convergence Theorem and Fatou’s Lemma for conditional expectation.

3.3.9 Exercise Prove the following Markov inequality (c.f. 1.2.36):

P(X ≥ a|G) ≤ 1
a

E(X|G), a > 0, X ≥ 0 P a.s.

3.3.10 Exercise Let VAR(X|G) = E(X2|G) − E(X|G)2. Show that

D2(X) = E [VAR(X|G)] +D2[E(X|G)].

In calculating conditional expectation, quite often the difficult part is
to guess the answer; checking that this is a correct one is usually a much
easier matter. The fact that conditional expectation is a projection in a
Hilbert space of square integrable functions may facilitate such guessing.
We hope the following examples illustrate this idea. By the way, we do
not have to check that our answer is correct since conditional expectation
in L1(Ω,F ,P) is uniquely determined by its values in L2(Ω,F ,P).

3.3.11 Example Let Ω = [0, 1], F be the σ-algebra of Lebesgue mea-
surable subsets of [0, 1], and let P be the restriction of the Lebesgue
measure to this interval. Let G be the collection of Lebesgue measurable
subsets such that 1 − A = A (P a.s.). By definition, 1 − A = {ω|ω =
1 − ω′, ω′ ∈ A}, and A = B (P a.s.) iff the probability of the symmetric
difference of A and B is 0. In other words G is the family of sets that
are symmetric with respect to 1

2 . We claim that G is a σ-algebra.

(a) Obviously 1 − Ω = Ω, so that Ω ∈ G.
(b) Note that ω ∈ 1 − A� ⇔ 1 − ω ∈ A� ⇔ 1 − ω 
∈ A ⇔ ω 
∈ 1 − A; i.e.

1 − A� = (1 − A)�. Moreover, A� = B� (P a.s.) whenever A = B (P
a.s.). Thus, A ∈ G ⇒ A� ∈ G for 1 −A� = (1 −A)� = A� (P a.s.).

(c) As above we show that 1 − ⋃n≥1An =
⋃
n≥1(1 − An). Moreover, if

An = Bn (P a.s.), then
⋃
n≥1An =

⋃
n≥1Bn (P a.s.). Thus An ∈ G ⇒⋃

n≥1An ∈ G.
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What is L2(Ω,G,P)? Because any Y ∈ L2(Ω,G,P) is a pointwise limit of
a sequence of linear combinations of indicator functions of sets in G, and
1A, A ∈ G satisfies 1A(ω) = 1A(1−ω), (P a.s.), Y belongs to L2(Ω,G,P)
iff Y (ω) = Y (1−ω), (P a.s). Let X ∈ L2(Ω,F ,P). What is Z = E(X|G)?
Z must belong to L2(Ω,G,P) and minimize the integral∫ 1

0

(X(ω) − Z(ω))2 dω

=
∫ 1

2

0

(X(ω) − Z(ω))2 dω +
∫ 1

1
2

(X(ω) − Z(ω))2 dω

=
∫ 1

2

0

{
(X(ω) − Z(ω))2 + (X(1 − ω) − Z(ω))2

}
dω;

the last equality resulting from the change of variables and Z(ω) = Z(1−
ω) (P a.s.). Now, for two numbers a, b ∈ R, (a−τ)2+(b−τ)2 is minimal for
τ = a+b

2 . Thus, we must have E(X|G)(ω) = Z(ω) = 1
2 [X(ω)+X(1−ω)],

(P a.s.). Certainly, this formula holds also for X ∈ L1(Ω,F ,P), which
can be checked directly.

3.3.12 Conditional expectation depends on probability measure Let the
space (Ω,F) and the σ-algebra G be as in 3.3.11, and let P(A) =
2
∫
A
ω dω. To calculate Y = E(X|G), X ∈ L2(Ω,F ,P), observe that

we must have Y (1− ω) = Y (ω), P a.s. Noting that P a.s. is the same as
leb a.s., we consider the distance

d(X,Y ) =
∫

Ω

(X − Y )2 dP

and choose Y in such a way that this distance is minimal. Calculating
as in 3.3.11, we see that this distance equals

2
∫ 1

2

0

{
[X(ω) − Y (ω)]2ω + 2[X(1 − ω) − Y (ω)]2(1 − ω)

}
dω. (3.11)

For fixed ω, we treat X(ω) and X(1 − ω) as given and minimize the
integrand. The minimum will be attained for

E(X|G)(ω) = Y (ω) = ωX(ω) + (1 − ω)X(1 − ω).

To check that this formula is valid for X ∈ L1(Ω,F ,P) we calculate:∫
A

Y (ω) dP(ω) = 2
∫
A

{ωX(ω) + (1 − ω)X(1 − ω)}ω dω

= 2
∫
A

ω2X(ω) dω + 2
∫

1−A
ωX(1 − ω)(1 − ω) dω
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where the last relation holds since A ∈ G; changing variables, this equals:

2
∫
A

ω2X(ω) dω + 2
∫
A

(ω − ω2)X(ω) dω

= 2
∫
A

ωX(ω) dω =
∫
A

X(ω) dP.

3.3.13 Example Let Ω = {(x, y)| |x|+ |y| ≤ 1}, F be the σ-algebra of
its Lebesgue subsets, and let P be 1

2 times the restriction of the Lebesgue
measure to Ω. Let X(ω) = x, Y (ω) = y where ω = (x, y). The problem
is to find E(X2|Y ). To this end, we will find a function F (y) such that
E(X2|Y )(ω) = F (Y (ω)). Note that X ∈ L2(Ω,F ,P). We have

∫
Ω

(F (Y ) −X)2 dP =
∫ 1

−1

∫ 1−|x|

−1+|x|
(F (y) − x2)2 dxdy

=
∫ 1

−1

{
2F (y)(1 − |y|) − 4

3
F (y)(1 − |y|)3 +

1
5
(1 − |y|)5

}
dy.

The minimum of the integrand is attained if F (y) equals 1
3 (1− |y|)2 for

|x| ≤ 1. For |x| > 1 the value of the function F can be defined arbitrar-
ily. It remains to check that F (Y (ω)) equals E(X2|G); calculations are
straightforward.

3.3.14 Example Suppose that random variables X,Y have a joint
density f(x, y), which is a Lebesgue measurable function, and g(x) is a
Lebesgue measurable function such that g(X) ∈ L1(Ω,F ,P). Again, the
problem is to find E(g(X)|Y ). To see what our guess should be, assume
first that g(X) ∈ L2(Ω,F ,P), and minimize the distance d(Z,X) where
Z ∈ L2(Ω,G,P). Recalling that Z must be of the form Z = z(Y ), we
minimize

d(Z,X) =
∫∫

R2
(z(y) − g(x))2f(x, y) dxdy

=
∫

R

[
z2(y)

∫
R

f(x, y) dx− 2z(y)
∫

R

g(x)f(x, y) dx

+
∫

R

g2(x)f(x, y) dx
]
dy. (3.12)

The minimum of the integrand is attained for z(y) =
∫

R
g(x)f(x,y) dx∫
R
f(x,y) dx

provided
∫

R
f(x, y) dx 
= 0. If this last integral is zero, then f(x, y) = 0

for almost all x ∈ R. Thus, the integral (3.12), taken over the set of
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y ∈ R such that
∫

R
f(x, y) dx = 0, equals zero regardless of what z(y) is

defined to be. For example, we may put

z(y) =

{ ∫
R
g(x)f(x,y) dx∫
R
f(x,y) dx

,
∫

R
f(x, y) dx 
= 0,

0, otherwise.
(3.13)

3.3.15 Exercise State and prove an analogous proposition for discrete
random variables.

3.3.16 Exercise Let Z1 = X1 + Y and Z2 = X2 + Y where EX1 =
EX2, and X1, X2 and Y are independent absolutely integrable random
variables. Show that E(Z1|Z2) equals Z2.

3.3.17 Conditional distribution So far, we have interpreted the formula
(3.13) to mean that if Y is known, then the “average” outcome of g(X)
is z(Y ). Notice that class of functions g is quite large here, and therefore
should determine more than just the expected value of X: it should
determine “the distribution of X given Y = y”. Note that we may not
speak of “the distribution of X given Y = y” in terms of (3.4) since
P{Y = y} is quite often zero. In particular, right now it is unclear where
the variable (X|Y = y) (in words:“X given that Y = y”) is defined. It
is convenient and reasonable, though, to interpret the first formula in
(3.13) to be

∫
R
g(x)h(x, y) dx where

h(x, y) =
f(x, y)∫

R
f(z, y) dz

, (3.14)

is a density of (X|Y = y). Here is an example. Let Xi, i = 1, 2, be
two exponential random variables with parameter λ. It is often said
that if Y = X1 + X2 is known to be y then X = X1 is uniformly
distributed on [0, y]. This is a simple case of (3.13). To see this note that
the joint distribution of X1 and X2 is given by the density f0(x1, x2) =
λ2e−λ(x1+x2), x1, x2 ≥ 0, and that, by the change of variables formula,
the density of X and Y is given by f(x, y) = λ2e−λy, y > x > 0. The
numerator in (3.13), where g(x) = x, is therefore equal to λ2e−λyy2/2
and the denominator equals λ2e−λyy. Thus, in the first interpretation
we infer that if Y = y then X is on average expected to be y/2. In the
second however, we calculate h(x, y) given in (3.14) to be 1/y for x < y

and 0 for x > y. This is exactly what we have claimed.
Note, finally, that even though the probability space where (X|Y = y)

is defined may have nothing to do with the probability space where
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Xi were defined, the existence of such a probability space follows from
the single fact that h(x, y) is a density function for all y such that∫

R
f(x, y) dx 
= 0.

3.3.18 Use of symmetries Suppose that random variables X1, ..., Xn

are integrable and that their joint distribution PX1,...,Xn does not change
when the random variables are permuted, i.e. that they are exchange-
able. In particular, for any Borel measurable set C ⊂ Rn we have∫

C

xi dPX1,...,Xn
=
∫
C

xj dPX1,...,Xn
, 1 ≤ i, j ≤ n. (3.15)

Suppose now that in an experiment we are not able to observe the vari-
ables Xi themselves but only their sum S. Since the random variables
are exchangeable, our best bet on the value of Xi, given S, is of course
1
nS. This is an intuitive guess that E(Xi|S) = 1

nS, i = 1, ..., n. To prove
that our intuition is right we note first that

E(Xi|S) = E(Xj |S), 1 ≤ i, j ≤ n. (3.16)

Indeed, it suffices to show that for any A ∈ σ(S)∫
A

Xi dP =
∫
A

Xj dP, 1 ≤ i, j ≤ n. (3.17)

Now, if A ∈ σ(S) then there exists a Borel measurable B ⊂ R such
that A = {ω ∈ Ω;S(ω) ∈ B} and so there exists a Borel measurable
C ⊂ Rn such that A = {ω ∈ Ω; (X1(ω), . . . , Xn(ω)) ∈ C}. By the
change of variables formula

∫
A
Xi dP =

∫
C
xi dPX1,...,Xn . Hence (3.15)

forces (3.17) and (3.16).
Hence, as predicted:

E(Xi|S) =
1
n

E(
n∑
j=1

Xj |S) =
1
n

E(S|S) =
1
n
S.

This result is particularly useful when applied to an infinite sequence
Xn, n ≥ 1 of independent, identically distributed random variables. The
assumption of independence forces X1, ..., Xn to be exchangeable for any
n and our result gives

E(Xi|Sn) =
Sn
n
, 1 ≤ i ≤ n, (3.18)

where Sn =
∑n
i=1Xi. The same assumption implies also a stronger

result:

E(Xi|σ(Sn, Sn+1, ...)) =
Sn
n
, 1 ≤ i ≤ n. (3.19)
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Indeed, σ(Sn, Sn+1, ...) = σ(Sn, Xn+1, Xn+2, ...) because Sk, k ≥ n may
be expressed as linear combinations of Sn and Xk, k ≥ n, and vice versa.
Moreover, σ(Sn, Xn+1, Xn+2, ...) = σ(Sn, σ(Xn+1, Xn+2, ...)) and the σ-
algebra σ(Xn+1, Xn+2, ...) is independent of both Sn and Xi, 1 ≤ i ≤ n.

Hence (3.19) follows from 3.3.1 (j).
What is nice about (3.19), and what is its advantage over (3.18) is

that it shows that Sn

n is a sequence of conditional expectations of X1

with respect to a non-increasing sequence of σ-algebras, for there are
well-known theorems concerning convergence of such sequences. Later
on, in 3.7.5, we will be able to use (3.19) to prove the all-important
Strong Law of Large Numbers.

In the remainder of this section we focus on the tower property.

3.3.19 Exercise Using (c), (h), and (n) in 3.3.1 show that if X and
Y are independent and X,Y , and XY are integrable then EXY =
EX · E Y.

3.3.20 Example Let G,H, and I be σ-algebras in (Ω,F ,P) such that
I ⊂ H ∩ G. We say that given I, G and H are independent iff:

P(A ∩B|I) = P(A|I)P(B|I), A ∈ G, B ∈ H. (3.20)

We will show that this condition is equivalent to each of the following
two:

P(B|G) = P(B|I), B ∈ H, (3.21)

P(A|H) = P(A|I), A ∈ G. (3.22)

These conditions are often expressed by saying that H depends on G
only through I and G depends on H only through I, respectively.

By symmetry, it is enough to prove that (3.20) is equivalent to (3.21).
To prove that (3.20) implies (3.21), note first that P(B|I) is a G mea-
surable function, so it suffices to show that∫

Ω

1AP(B|G) dP =
∫

Ω

1AP(B|I) dP, A ∈ G

(this is obvious for A ∈ I ⊂ G). Since 1A is G measurable, the left-hand
side equals ∫

Ω

E(1A∩B |G) dP =
∫

Ω

1A∩B dP = P(A ∩B),
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and the right-hand side, by (3.20),∫
Ω

1AE(1B |I) dP =
∫

Ω

E [1AE(1B |I) |I] dP =
∫

Ω

E(1A|I)E(1B |I) dP

=
∫

Ω

E(1A∩B |I) dP = P(A ∩B).

Conversely, if (3.21) holds, the left-hand side in (3.20) equals:

E(1A∩B |I) = E {[E(1A∩B |G)] |I} = E {E(1A1B |G)|I}
= E(1AE(1B |G)|I) = E(1AE(1B |I)|I)

= E(1A|I)E(1B |I).

3.3.21 Exercise The previous example is important in the theory of
Markov processes. To consider the simplest case; a sequence Xn, n ≥ 0
of random variables with values in N is said to be a Markov chain if it
enjoys the Markov property: for all n ≥ 0, and ik ∈ N, 0 ≤ k ≤ n+ 1,

P[Xn+1 = in+1|Xk = ik, 0 ≤ k ≤ n] = P[Xn+1 = in+1|Xn = in]

=: pin,in+1

provided P[Xk = ik, 0 ≤ k ≤ n] > 0. Here the pi,j , i, j ∈ N are called the
transition probabilities (or jump probabilities) of the chain and satisfy∑
j∈N pi,j = 1, i ∈ N and pi,j ≥ 0. Existence of a Markov chain with a

given matrix of transition probabilities is proved by a straightforward
construction, e.g. in [5]. The reader will show that the Markov prop-
erty may be defined in an equivalent way by any of the following three
conditions:

P(A ∩B|Xn) = P(A|Xn)P(B|Xn), A ∈ Gn, B ∈ Hn,

P(B|Gn) = P(B|Xn), B ∈ Hn,

P(A|Hn) = P(A|Xn), A ∈ Gn,

where Gn = σ(Xn, Xn+1, ...) and Hn = σ(X0, ..., Xn).

3.4 The Radon–Nikodym Theorem

3.4.1 Lebesgue decomposition Let λ, µ be two finite measures on a
measurable space (Ω,F). Then, there exists a non-negative function f ∈
L1(Ω,F , µ) and a measure ν singular to µ (i.e. such that there exists a
set S ∈ F with µ(S) = 0 and ν(Ω \ S) = 0) such that

λ(A) =
∫
A

f dµ+ ν(A), for all A ∈ F .
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Proof Consider a linear functional Fx =
∫
xdλ, acting in the space

L2(Ω,F , λ+ µ). The estimate

|Fx| ≤
√
λ(Ω)

√∫
Ω

|x|2 dλ ≤
√
λ(Ω)‖x‖L2(Ω,F,λ+µ)

shows that F is well-defined and bounded. Therefore, there exists a
function y ∈ L2(Ω,F , λ + µ) such that Fx =

∫
Ω
xy d(λ + µ). Taking

x = 1A, A ∈ F , we see that

λ(A) =
∫
A

y dλ+
∫
A

y dµ. (3.23)

This in turn proves that y ≥ 0, (λ + µ) a.e., and y ≤ 1, λ a.e. Let
S = {ω|y(ω) = 1} ∈ F . By (3.23), µ(S) = 0. Rewriting (3.23) in the form∫
Ω
(1−y)1A dλ =

∫
Ω
y1A dµ, we see that for any non-negative measurable

function x on Ω,
∫
Ω
(1− y)xdλ =

∫
Ω
yxdµ. Define f(ω) = y(ω)

1−y(ω) on S�,

and zero on S. If A ∈ F , and A ⊂ S�, we may take x = 1A 1
1−y to see

that λ(A) =
∫
A
f dµ. Also, let ν(A) = λ(S ∩A). Thus, ν(S�) = 0, i.e. µ

and ν are singular. Moreover,

λ(A) = λ(A ∩ S�) + λ(A ∩ S) =
∫
A∩S�

f dµ+ ν(A) =
∫
A

f dµ+ ν(A).

Finally, f belongs to L1(Ω,F , µ), since it is non-negative and
∫
Ω
f dµ =∫

S� f dµ = λ(S�) <∞.

3.4.2 The Radon–Nikodym Theorem Under assumptions of 3.4.1, sup-
pose additionally that µ(A) = 0 for some A ∈ F implies that λ(A) = 0.
Then ν = 0; i.e. λ is absolutely continuous with respect to µ.

Proof We know that µ(S) = 0, so that ν(S) = λ(S) = 0. On the other
hand, ν(S�) = 0 so that ν = 0.

3.4.3 Remark With the Radon–Nikodym Theorem at hand, we may
prove existence of conditional expectation very easily. We note first that
it is enough to restrict ourselves to non-negative variables. Consider the
space (Ω,G,P) and the measure µ(A) =

∫
A
X dP where X ≥ 0, X ∈

L1(Ω,F ,P). The measure µ is absolutely continuous with respect to P

and so there exists a non-negative Y ∈ L1(Ω,G,P) such that∫
A

X dP =
∫
A

Y dP,
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as desired. This method of approaching conditional expectations is found
in most probabilistic monographs. (Following Kolmogorov, who was the
first to investigate conditional expectation in this generality and used
the Radon–Nikodym Theorem to prove its existence.) See e.g. [5, 46, 57].
Analysts, however, prefer the approach via projections [107]. We should
mention that there are of course purely measure-theoretic proofs of the
Lebesgue decomposition theorem and the Radon–Nikodym Theorem [49,
103].

3.4.4 Exercise Using the Radon–Nikodym Theorem prove that the
conditional expectation E(X|Y ) equals f(Y ) for some Lebesgue mea-
surable function f. (We have proved it before using the Doob–Dynkin
Lemma.)

3.4.5 Application: Frobenius–Perron operators Let (Ω,F , µ) be a mea-
sure space. Suppose that a measurable map f : Ω → Ω is non-singular,
i.e. that for any A ∈ F such that µ(A) = 0, we also have µ(f−1(A)) =
0. In studying asymptotic behavior of iterates f◦n+1(ω) = f◦n(f(ω)),
n ≥ 1, ω ∈ Ω, we may use a linear operator in L1(Ω,F , µ), called the
Frobenius–Perron operator, related to f [80]. To define it, assume
first that (a representation of) an element of x ∈ L1(Ω,F , µ) is non-
negative, and define a set function on F by µx(A) =

∫
f−1(A)

xdµ. It is
easy to see that µx is a measure. Furthermore, since f is non-singular,
µx is absolutely continuous with respect to µ. Hence, there exists a non-
negative element Px of L1(Ω,F , µ) such that

∫
f−1(A)

xdµ =
∫
A
Pxdµ.

Note that Px is defined only as an equivalence class of functions and
that P maps the set of (equivalence classes of) non-negative functions
into itself. For arbitrary x ∈ L1(Ω,F , µ) we define Px as the difference
of Px+ and Px−. It is easy to check that Px is linear. Moreover, for
non-negative x we have

∫
Ω
xdµ =

∫
f−1Ω

xdµ =
∫
Ω
Pxdµ, so that P

preserves the integral, and therefore is a Markov operator.

3.5 Examples of discrete martingales

3.5.1 Definition Let (Ω,F ,P) be a probability space and let Fn, n ≥
1, be an increasing sequence of σ-algebras of measurable sets: Fn ⊂
Fn+1 ⊂ F ; such a sequence is called a filtration. A sequence Xn, n ≥ 1
of random variables Xn ∈ L1(Ω,F ,P) is termed a martingale if Xn

is Fn measurable and E(Xn|Fn−1) = Xn−1 for all n ≥ 1. To be more
specific, we should say that Xn is a martingale with respect to Fn and



104 Conditional expectation

P. However, Fn and P are often clear from the context and for simplicity
we omit the phrase “with respect to Fn and P”. Similarly, a sequence
Xn ∈ L1(Ω,F ,P), n ≥ 1 is termed a submartingale (with respect to
Fn and P) if Xn are Fn measurable and E(Xn+1|Fn) ≥ Xn, n ≥ 1. If
−Xn is a submartingale, Xn is called a supermartingale. Filtrations,
martingales, supermartingales and submartingales indexed by a finite
ordered set are defined similarly.

3.5.2 Exercise Show that Xn, n ≥ 1, is a submartingale iff there
exists a martingale Mn, n ≥ 1, and a previsible sequence An, n ≥ 1
(i.e. A1 = 0 and An+1, n ≥ 1, is Fn measurable) such that An+1 ≥
An (a.s.) and Xn = Mn + An. This decomposition, called the Doob
decomposition, is unique in L1(Ω,F ,P).

3.5.3 Sum of independent random variables If Xn, n ≥ 1 are (mu-
tually) independent random variables, and EXn = 0 for n ≥ 1, then
Sn =

∑n
i=1Xi is a martingale with respect to Fn = σ(X1, ..., Xn). In-

deed, by 3.3.1 (h)–(i), E(Sn+1|Fn) = E(Xn+1+Sn|Fn) = E(Xn+1|Fn)+
Sn = EXn+11Ω +Sn = Sn, since Xn+1 is independent of σ(X1, ..., Xn).

3.5.4 Polya’s urn scheme Suppose that in a box there are w white
balls and b black balls. One ball is drawn at random and returned to the
box together with k balls of the same color. Let Xn be the proportion
of white balls in the box after the nth draw. We will show that Xn

is a martingale with respect to the filtration Fn = σ(X1, ..., Xn). Note
that we do not know (Ω,F ,P); all we know (by description) is a joint
distribution of (Xn, Xn+1).
Xn is a simple function (in particular: bounded and integrable) that

admits n + 1 values w+ik
w+b+nk , i = 0, 1, ..., n, on sets Bi, and any set in

Fn is a finite disjoint union of Bis. If Xn = w+ik
w+b+nk , then Xn+1 =

w+(i+1)k
w+b+(n+1)k with probability w+ik

w+b+nk and Xn+1 = w+ik
w+b+(n+1)k with

probability b+(n−i)k
w+b+nk . Therefore,∫

Bi

Xn+1 dP =[
w + (i+ 1)k

w + b+ (n+ 1)k
w + ik

w + b+ nk
+

w + ik

w + b+ (n+ 1)k
b+ (n− i)k
w + b+ nk

]
P(Bi),

which by simple algebra equals

(w + ik)(w + b+ (n+ 1)k)
(w + b+ (n+ 1)k)(w + b+ nk)

P(Bi) =
w + ik

w + b+ nk
P(Bi) =

∫
Bi

Xn dP.
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3.5.5 Galton–Watson process The famous Galton–Watson process
describes the number of individuals in a population of descendants of

a single ancestor in which individuals give birth, independently from
other individuals of this population, to a random number of children;
the distribution of the number of children is the same for all individuals.

Formally, letXn
k , n, k ≥ 1, be an infinite matrix of independent, identi-

cally distributed random variables with values in {0, 1, ...}. Assume that
EXn

k = m < ∞. The Galton–Watson process is defined inductively by
Z0 = 1 and Zn+1 =

∑Zn

i=1X
n+1
i , n ≥ 0, if Zn ≥ 1, and Zn+1 = 0 if

Zn = 0.
Let Fn = σ(Z1, ..., Zn), n ≥ 1. We will prove that Mn = Zn

mn is a
martingale. Indeed,

E Zn+1 =
∞∑
k=0

E Zn+11Zn=k =
∞∑
k=1

E

k∑
i=1

Xn+1
i 1Zn=k (3.24)

=
∞∑
k=1

E 1Zn=kE

k∑
i=1

Xn+1
i = m

∞∑
k=1

k P{Zn = k} = mE Zn.

Thus, E Zn is integrable and EZn = mn for all n ≥ 0. Therefore Mn is
integrable and EMn = 1.

Now, each member of the σ-algebra σ(Z1, ..., Zn) is a disjoint union
of sets of the form {Z1 = k1, ..., Zn = kn}. The random variable Mn is
σ(Z1, ..., Zn) measurable and equals kn

mn on such sets. Also, since Xn+1
i

are independent of Z1, ..., Zn,∫
{Z1=k1,...,Zn=kn}

Mn+1 dP =
1

mn+1
E

kn∑
i=1

Xn+1
i 1{Z1=k1,...,Zn=kn}

=
mkn
mn+1

P{Z1 = k1, ..., Zn = kn}

=
∫
{Z1=k1,...,Zn=kn}

Mn dP

provided kn ≥ 1. In the other case both the first and the last integrals
in this formula are zero. This proves our claim.

3.5.6 Wright–Fisher model of population genetics Imagine a popula-
tion of 2N,N ∈ N, individuals; each individual belonging to either of two
distinct classes, say a and A. (Individuals are actually chromosomes –
that’s why we have 2N of them – and a and A denote two possible alleles
at a particular locus.) The population evolves in discrete time: a next
generation is formed by selecting its 2N members from the previous one
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independently and with replacement. The state of such a population in
generation n is conveniently described by a single random variable X(n)
equal to the number of individuals of type a, say. Note that if X(n) = k

then X(n + 1) is a binomial random variable with parameters k
2N and

2N :

P{X(n+ 1) = l|X(t) = k} =
(

2N
l

)
pl(1 − p)2N−l.

In particular E (X(n+ 1)|X(n)) = 2N X(n)
2N . This proves that X(n) is a

non-negative martingale. See 3.7.6 for an application.

3.5.7 Exercise Calculating as in (3.24) show that if Xn
k , n, k ≥ 1 are

square integrable then

D2(Zn+1) = m2D2(Zn) + σ2mn (3.25)

where σ2 = D2(Xn
k ) and m = EXn

k . In particular Zn ∈ L2(Ω,F ,P),
n ≥ 1. Conclude that for m 
= 1,

D2(Zn+1) =
σ2

m(m− 1)
m2n − σ2

m(m− 1)
mn =

σ2mn−1(mn − 1)
m− 1

,

(3.26)
and when m = 1,

D2(Zn+1) = nσ2. (3.27)

3.5.8 Exercise Let X ∈ L1(Ω,F ,P) and Fn be a filtration. Show
that Xn = E (X|Fn) is a martingale with respect to Fn.

3.5.9 Exercise Suppose that Xn is a martingale with respect to fil-
tration Fn. Let F0 be the trivial σ-algebra and assume that Yn, n ≥ 0
are Fn measurable, absolutely integrable random variables such that
Yn(Xn+1 −Xn) are absolutely integrable. Show that Zn, n ≥ 1, defined
by Zn =

∑n
i=1 Yi−1(Xi −Xi−1), n ≥ 0, where X0 = 0, is a martingale.

3.6 Convergence of self-adjoint operators

3.6.1 Motivation In the previous section we have already encountered
examples of theorems concerning convergence of conditional expecta-
tions. In Theorem 3.3.1 point (m) and in Exercise 3.3.8 we saw that if
the σ-algebra G is fixed, then the conditional expectation with respect
to this σ-algebra behaves very much like an integral. In this section we
devote ourselves to a short study of theorems that involve limit behavior
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of conditional expectation E (X|Fn) where X is fixed and Fn is a family
of σ-algebras. This will lead us in a natural way to convergence theorems
for martingales presented in Section 3.7.

If Fn is a filtration in a probability space (Ω,F ,P), then L1(Ω,Fn,P) is
a non-decreasing sequence of subspaces of L1(Ω,F ,P), and L2(Ω,Fn,P)
is a non-decreasing sequence of subspaces of L2(Ω,F ,P). If X is a square
integrable random variable, then the sequence Xn = E (X|Fn) of con-
ditional expectations of X is simply the sequence of projections of X
onto this sequence of subspaces. Thus, it is worth taking a closer look
at asymptotic behavior of a sequence xn = Pnx, where x is a member of
an abstract Hilbert space H and Pn are projections on a non-decreasing
sequence of subspaces Hn of this space. In view of Theorem 3.1.18, the
assumption that Hn is a non-decreasing sequence may be conveniently
expressed as (Pnx, x) ≤ (Pn+1x, x) ≤ (x, x).

As an aid in our study we will use the fact that projections are self-
adjoint operators (see 3.1.19). Self-adjoint operators are especially im-
portant in quantum mechanics, and were extensively studied for decades.
Below, we will prove a well-known theorem on convergence of self-adjoint
operators and then use it to our case of projections. Before we do that,
however, we need to introduce the notion of a non-negative operator
and establish a lemma.

3.6.2 Definition A self-adjoint operator A is said to be non-negative
if (Ax, x) ≥ 0 for all x ∈ H; we write then A ≥ 0. If A and B are two
self-adjoint operators such that A − B ≥ 0 we often write A ≥ B or
B ≤ A.

3.6.3 Exercise Prove that if A is non-negative then so are all its
powers. Moreover, all even powers of any self-adjoint operator are non-
negative.

3.6.4 Lemma Let A be a non-negative, self-adjoint operator in a
Hilbert space H. Then (A2x, x) ≤ ‖A‖(Ax, x).

Proof If ‖A‖ = 0, there is nothing to prove. In the other case our
relation is equivalent to (B2x, x) ≤ (Bx, x) where B = 1

‖A‖A is a self-
adjoint contraction. Certainly, (Bx, x) ≥ 0. Note that I − B, where
Ix = x, is also self-adjoint as a difference of two self-adjoint operators,
and ((I −B)y, y) = (y, y)− (By, y) ≥ 0, for any y ∈ H. Since B −B2 =
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B(I −B)B + (I −B)B(I −B), we have

((B −B2)x, x) = ((I −B)Bx,Bx) + (B(I −B)x, (I −B)x) ≥ 0

which proves our claim.

3.6.5 Convergence theorem for a monotone sequence of self-adjoint op-
erators If An is a sequence of self-adjoint operators in a Hilbert space
H, such that An ≤ An+1 ≤MI, for all natural n, where M is a constant
and Ix = x, then there exists the strong limit Ax = limn→∞Anx of An
and A is self-adjoint.

Proof For any x, the numerical series (Anx, x) is non-decreasing and
bounded by M‖x‖2, and therefore converges to a real number, say F (x).
Hence, for all x and y in H there exists the limit

G(x, y) = lim
n→∞

(Anx, y) (3.28)

since (Anx, y) equals

1
4

[(Anx+Any, x+ y) − (Anx−Any, x− y)] (3.29)

which tends to 1
4 [F (x+ y) − F (x− y)]. Since for any n ≥ 1

−‖A1‖ ‖x‖2 ≤ (Anx, x) ≤M‖x‖2, (3.30)

3.1.22 shows that ‖An‖ ≤M ′, where M ′ = M ∨‖A1‖. Thus, |G(x, y)| ≤
M ′‖x‖ ‖y‖. Fix x. As a function of y, G(x, y) is a linear functional on
H. Moreover, by (3.28), this functional is bounded with norm less than
M ′‖x‖. Therefore, there exists an element Ax of H such that G(x, y) =
(Ax, y). By (3.28) the map x �→ Ax is linear. Since ‖Ax‖ ≤ M ′‖x‖,
A is bounded and ‖A‖ ≤ M ′. A is also self-adjoint since (Ax, y) =
limn→∞(Anx, y) = limn→∞(Any, x) = (Ay, x). Finally, A − An is self-
adjoint and by Lemma 3.6.4, for any x ∈ H,

‖Ax−Anx‖2 = ((A−An)2x, x) ≤ ‖A−An‖((A−An)x, x)

≤ 2M ′((A−An)x, x)

and the last sequence converges to zero, as n→ ∞.

3.6.6 Exercise Show that if An is a sequence of self-adjoint operators
in a Hilbert space, such that (Anx, x) ≥ (An+1x, x) and (Anx, x) ≥
M‖x‖2 for all x ∈ H and natural n, then there exists the strong limit
Ax = limn→∞Anx of An and A is self-adjoint.
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3.6.7 An application: the square root If A is a self-adjoint operator
such that (Ax, x) ≥ 0 for all x ≥ 0 then there exists a self-adjoint
operator B that commutes with all operators that commute with A and
such that B2 = A.†

Proof Without loss of generality we may assume that 0 ≤ A ≤ I, for
if this is not the case then either A = 0 (in which case the theorem is
obvious) or the operator A′ = 1

‖A‖A satisfies this condition and then

the square root of A may be found as
√
‖A‖ times the square root of

A′. Let C = I − A; observe that 0 ≤ C ≤ I. Consider the following
sequence of operators defined inductively: A0 = 0, An+1 = 1

2 (C + A2
n).

An induction argument shows that An are self-adjoint and non-negative,
and commute with A. Since

An+1 −An =
1
2
(A2

n −A2
n−1) =

1
2
(An −An−1)(An +An−1),

An+1−An is a linear combination of powers of the operator C with pos-
itive coefficients and hence An+1 ≥ An. An induction argument shows
also that An ≤ I. Indeed, A0 ≤ I, and if An ≤ I then ‖An‖ ≤ 1 and
by 3.6.4 we have A2

n ≤ ‖An‖An ≤ An which in turn implies An+1 ≤
1
2 (C + An) ≤ I. Hence, there exists the strong limit A∞ of An, n ≥ 1,
and A∞x = limn→∞An+1x = 1

2Cx + 1
2 limn→∞A2

nx = 1
2Cx + 1

2A
2
∞x.

Let B = I − A∞. Then B2x = x − 2A∞x + A2
∞x = x − Cx = Ax, as

desired. Finally, B commutes with all operators commuting with A since
An, n ≥ 1 and A∞ do.

3.6.8 Corollary (a) Suppose that Hn is an increasing sequence of
subspaces of a Hilbert space H. Projections Pn on Hn converge strongly
to the projection P∞ on H∞ = cl(

⋃
n≥1 Hn). (b) If H = L2(Ω,F ,P) and

Hn = L2(Ω,Fn,P) where Fn is a filtration, then H∞ = L2(Ω,F∞,P)
where F∞ = σ(

⋃
n≥1 Fn).

Proof (a) The strong convergence of Pn to a self-adjoint operator A∞
has been proved in 3.6.5, so it suffices to identify A∞ as the projection
P∞.

Note first that we have A2
∞x = limn→∞ PnA∞x = limn→∞ PnPnx =

limn→∞ Pnx = A∞x since P 2
n = Pn and ‖PnPnx − PnA∞x‖ ≤ ‖Pnx −

A∞x‖ tends to zero. By 3.1.23, the range H̃∞ of A∞ is closed and A∞
is the projection on H̃∞.

† See e.g. Theorem 4.1.3 for an application. This operator is uniquely determined
[90], but we will not need this fact here and will not prove it either.
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We need to prove that H̃∞ = H∞. It is clear that all Hn are subsets
of H̃∞, for if x ∈ Hn then Pmx = x for all m ≥ n and so A∞x =
limm→∞ Pmx = x forces x ∈ H̃∞. Hence, H∞ ⊂ H̃∞. On the other
hand, if x ∈ H̃∞, then x = limn→∞ Pnx where Pn belong to Hn. Thus,
H∞ ⊃ H̃∞ and so H∞ = H̃∞.

(b) The inclusion H∞ ⊂ L2(Ω,F∞,P) is easy to prove: the limit of a
sequence Xn of random variables that are Fn measurable, respectively,
must be F∞ measurable. To prove the other inclusion we note that
1Ω ∈ H∞ (for 1Ω ∈ Hn, n ≥ 1) and recall that by 2.2.23 the collection
G of events A such that 1A ∈ H∞ is a λ-system. On the other hand,
Hn ⊂ H∞, i.e. Fn ⊂ G and so

⋃∞
n=1 Fn ⊂ G. By the π–λ theorem,

F∞ ⊂ G, and 2.2.39 forces L2(Ω,F∞,P) ⊂ H∞.

3.6.9 Corollary Let Fn, n ≥ 1, be a filtration in a probability space
(Ω,F ,P). For any X ∈ L1(Ω,F ,P) the sequence Xn = E(X|Fn) con-
verges in L1(Ω,F ,P) to X∞ = E(X|F∞) where F∞ = σ(

⋃
n≥1 Fn).

Proof If X is square integrable then ‖Xn −X∞‖L1 , which is less than
‖Xn−X∞‖L2 by the Hölder inequality, converges to zero by 3.6.8. Since
conditional expectation is a Markov operator in L1(Ω,F ,P), and in par-
ticular has norm one, convergence of a sequence of conditional expec-
tations on a dense set such as L2(Ω,F ,P) implies convergence on the
whole of L1(Ω,F ,P).

3.6.10 Exercise Let (Ω,F ,P) be a standard probability space. For
n ≥ 1, let Fn be the σ-algebra generated by the partition A0 = [ 12 , 1),
Ai = [ i−1

2n ,
i

2n ), i = 1, ..., 2n−1. In other words, the space L1(Ω,Fn,P)
consists of (equivalence classes of) bounded functions that are con-
stant on each of Ai, i = 0, ..., 2n−1. Show that E(X|Fn) converges in
L1(ω,F ,P) to X∞ = X1[0, 12 ) +

∫
[ 12 ,1)

X dP1[ 12 ,1)
.

3.6.11 The 0–1 law Corollary 3.6.9 has the following nice application
known as the 0–1 law: if Gn is a sequence of independent σ-algebras, then
the tail algebra T =

⋂∞
n=1 σ(

⋃
k=n Gk) contains only events A such that

P(A) is either zero or one. To prove this law it suffices to show that all
X ∈ L1(Ω, T ,P) are constants a.e., and this follows from the following
calculation:

X = E(X|σ(
∞⋃
n=1

Gn)) = lim
n→∞

E(X|σ(
n⋃
i=1

Gi)) = (EX)1Ω. (3.31)
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The first equality above follows from the fact that T ⊂ σ(
⋃∞
n=1 Gn), the

second one from Corollary 3.6.9 and the fact that σ(
⋃∞
n=1 σ(

⋃n
i=1 Gi)) =

σ(
⋃∞
n=1 Gn) and the third one from the fact that X is independent of

σ(
⋃n
i=1 Gi)) being σ(

⋃∞
i=k+1 Gi) measurable.

3.6.12 Example Let Xn, n ≥ 1 be independent random variables. We
claim that S = lim supn→∞

Sn

n where Sn =
∑n
i=1Xi is tail measurable.

Indeed, first of all for any a ∈ R, {S < a} =
⋃
k≥1

⋂
n≥k{Sn

n < a} is
σ(Xn, n ≥ 1) measurable. Secondly, for any k ≥ 1, lim supn→∞

Sn

n is

equal to the upper limit of n−k
n

S
(k)
n−k

n−k where S(k)
n−k = Xk+1 + · · · + Xn.

Since S(k)
n−k is the (n− k)th sum of the sequence Xk+n, n ≥ 1, the upper

limit of n−k
n

Sn−kn
(k)

n−k is σ(Xn+k, n ≥ 1) measurable and so is S. Since k
is arbitrary, the claim is proved.

The random variable lim infn→∞
Sn

n is also tail measurable, being
equal to (−1) times the upper limit of the sequence −Xn, n ≥ 1. There-
fore, the set {ω| limn→∞

Sn(ω)
n exists} has probability either zero or one,

for it belongs to the tail σ-algebra as the set where lim inf and lim sup
are equal.

3.6.13 Corollary Suppose that Fn ⊃ Fn+1, n ≥ 1 is a non-decreasing
sequence of σ-algebras of events in a probability space (Ω,F ,P).

Exercise 3.6.6 and the argument used in 3.6.8 prove that for any
X ∈ L2(Ω,F ,P), E(X|Fn) converges in L2(Ω,F ,P) to PX where PX
is the projection on H∞ =

⋂∞
n=1 Hn = L2(Ω,

⋂∞
n=1 Fn,P). Thus PX =

E(X|⋂∞
n=1 Fn). Arguing as in 3.6.9, we obtain that for any integrable

X, E(X|Fn) converges to E(X|⋂∞
n=1 Fn) in L1(Ω,F ,P).

3.6.14 Almost sure convergence Although it is proper to view 3.6.8
and 3.6.13 as particular cases of 3.6.5, such a broader view comes at
the cost of losing important details of the picture. To see what we have
overlooked, let us consider again a sequence of projections Pn on a non-
decreasing sequence of subspaces Hn of a Hilbert space H. Given x ∈ H,

let y1 = P1x and yn = Pnx − Pn−1x, n ≥ 2. Then Pnx =
∑n
i=1 yi

and yn ⊥ Pn−1x so that ‖Pnx‖2 =
∑n
i=1 ‖yi‖2 and hence

∑∞
i=1 ‖yi‖2 ≤

‖x‖2 <∞. Thus, if H = L2(Ω,F ,P) for some probability space (Ω,F ,P)
then limn→∞ Pnx =

∑∞
i=1 yi converges to Px not only in the norm but

also a.s. (see the proof of 2.2.19). In other words, convergence in 3.6.8
and the first part of 3.6.13 is not only in L2(Ω,F ,P) but also a.s. It is
worth stressing here that in general convergence in Lp does not imply
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a.s. convergence, as it may be seen from Example 3.6.15 below, and
that neither does a.s. convergence imply convergence in Lp. Hence the
information that convergence in 3.6.8 is both in L2 and a.s. is non-trivial.

Similarly, under assumptions of 3.6.13, P ′
n = I − Pn is a sequence

of non-decreasing projections and thus converges a.s. and in L2 to a
projection P ′. Therefore, Pn = I − Pn converge to P = I − P ′ not only
in L2 but also a.s.

3.6.15 Example Convergence in L1 does not imply a.s. convergence
Let xk,n = 1[ k

2n ,
k+1
2n ), 0 ≤ k ≤ 2n − 1, n ∈ N, be a doubly indexed

triangular array of vectors in L1(0, 1). Note that ‖xk,n‖ = 2−n. Hence,
if we reorder these vectors in a natural way (going row by row), we
obtain a sequence converging to zero. On the other hand, for τ ∈ [0, 1)
the values of corresponding functions do not converge to zero, attaining
the value 1 infinitely many times.

3.6.16 Example By Exercise 3.5.7, if Zn is the Galton–Watson pro-
cess with square integrable Xn

k then Zn, n ≥ 1 are square integrable
also. Moreover, if n > 1, (3.26) and (3.27) show that the martingale
Mn = Zn

m

n
is bounded in L2, for limn→∞D2(Mn) = σ2

m(m−1) . Therefore,
Mn converges pointwise and in L2 to a random variable M.

3.6.17 The Law of Large Numbers. Second attempt As a consequence
of 3.6.13 we obtain the following form of the Law of Large Numbers.
Suppose that Xn, n ≥ 1 are independent, square integrable, identically
distributed random variables in a probability space (Ω,F ,P). Then Sn

n =
X1+···+Xn

n converges to EX11Ω in L2 and a.s.

Proof By (3.19), Sn

n = E(X1|σ(Sn, Sn+1, ...)) and Fn = σ(Sn, Sn+1, . . . )
is a non-increasing sequence of σ-algebras. Thus Sn

n converges a.s. and
in L2. Since lim supn→∞

Sn

n = limn→∞
Sn

n is tail T measurable, it must
be constant, and this constant must be EX.

3.7 ... and of martingales

A natural way to generalize 3.6.17 is to abandon the assumption that
Xn are square integrable and suppose that they are absolutely integrable
instead. Then Corollary 3.6.13 still applies to show that Sn

n converges
to (EX) 1Ω in L1. However, our argument does not prove that the con-
vergence is also a.s. We could try to prove a.s. convergence using trun-
cation/density arguments, the most elegant proof, however, and the one
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that leads to a more general result, namely the Martingale Convergence
Theorem, leads through Doob’s Upcrossing Inequality to be presented
below. The situation is typical in that there is much more to probability
theory than functional analysis (at least in the narrow sense of a mixture
of linear algebra and topology) can explain in a straightforward way. In
fact, probability theory is a beautiful and independent field of mathe-
matics, and the rapid development of direct probabilistic methods that
was witnessed in the past century allows the use of them in an essential
way in other branches of mathematics to obtain new deep results and to
give new surprisingly short proofs of old results or to make old reason-
ings more transparent. Therefore, even in this book, functional analytic
argument should sometimes give way to a purely probabilistic one ...

3.7.1 Upcrossing Inequality Let N be a natural number, Xn, 1 ≤ n ≤
N, be a martingale with respect to a filtration Fn, 1 ≤ n ≤ N, and
let a < b be two real numbers. We will be interested in the number
Un = Un(a, b), 1 ≤ n ≤ N, of times the value of Xn crosses from below a

up above b. To be more specific Un = m if m is the largest integer such
that we may find 1 ≤ l1 < k1 < l2 < k2 < ... < lm < km = n such that
Xli < a and Xki > b for i = 1, ...,m. The reader should convince himself
that Un, termed the number of upcrossings, is a random variable.

This variable is related to a betting strategy in the following hazard
game. Suppose that at time k, 1 ≤ k ≤ N, only numbers Xn(ω), 0 ≤
n ≤ k − 1 are known to a player, who basing on this knowledge decides
to take or not to take part in the game at this moment of time; by
definition we put X0 ≡ EX1. If the player chooses to play, he places
a bet and gains or loses Xk − Xk−1 dollars, depending on the sign of
Xk − Xk−1. Consider the following betting strategy. We do not bet at
time k until Xk−1 is less than a, and from that time on we bet until
Xk−1 is more than b, at which time we stop betting and wait until Xk−1

is less than a to repeat the whole procedure. In other words, we bet at
time 1 only if X0 ≡ EX1 < a and then bet at time k > 2 if we did bet
at time k − 1 and Xk−1 is less than b or if we did not bet at k − 1 and
Xk−1 is less than a. With this strategy, our total gain or loss at time
n is Zn =

∑n
i=1 Yi(Xi − Xi−1), where Y1 = 1 if EX < a and Y1 = 0

if EX1 ≥ a, and Yn = 1{Yn−1=1}1{Xn−1≤b} + 1{Yn−1=0}1{Xn−1<a}, 1 ≤
n ≤ N. By 3.5.9, Zn, 1 ≤ n ≤ N is a martingale and we have E Zn = 0.

Suppose now that we play only up to time n and that up to that
time there were m upcrossings. Suppose also that the last upcrossing
has ended at time km, so that we stopped betting at km + 1. Up to
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time km we have gained at least $(b − a)m, but what has happened
after that? There are two possible scenarios. In the first scenario, all
Xk, km < k < n are bigger than or equal to a. In this case, we do not
bet after time km and hence our total gain is the same as it was at time
km. As a consequence:

Zn ≥ (b− a)Un. (3.32)

In the second scenario one of the numbers Xk, km < k < n is less than
a, say that i is the smallest number with this property. In this case, we
start betting at time i+ 1 and bet for the rest of the game, since there
can be no more upcrossings. In the last part of the game we gain or lose
Xn −Xi dollars. Therefore,

Zn ≥ (b− a)Un +Xn −Xi ≥ (b− a)Un +Xn − a. (3.33)

Consequently, in both scenarios we have:

Zn ≥ (b− a)Un − (Xn − a)−. (3.34)

Taking expectations, we obtain the upcrossing inequality:

(b− a)E Un ≤ E (Xn − a)− ≤ E |Xn − a| ≤ E |Xn| + a. (3.35)

3.7.2 Exercise Show that the upcrossing inequality is true also for
supermartingales.

3.7.3 Martingale Convergence Theorem Suppose that Xn, n ≥ 1 is a
martingale such that E |Xn| ≤ M for some M > 0 and all n ≥ 1. Then
there exists an absolutely integrable X∞ such that Xn converges to X∞
a.s.

Proof By the upcrossing inequality, for any a < b the number of upcross-
ings U(a, b) = limn→∞ Un(a, b) from below a up above b is an integrable
random variable. In particular, U(a, b) is finite a.s. so that the set A(a, b)
of all ω such that U(a, b) = ∞ has probability zero. On the other hand,
if the limit limn→∞Xn(ω) does not exist then the upper limit of the
sequence Xn(ω), n ≥ 1 is strictly larger than its lower limit. As a con-
sequence, for some rational numbers a and b there are infinitely many
upcrossings of the sequence Xn(ω), n ≥ 1 from below a up above b, i.e. ω
belongs to A(a, b). In other words, the set of all ω such that Xn(ω) does
not converge is contained in the set

⋃
a,b∈Q A(a, b) which has measure

zero as a countable union of sets of measure zero. The assertion that
X∞ is absolutely integrable follows by Fatou’s Lemma.
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3.7.4 Remark Note that we do not claim that Xn converges to X∞
in L1(Ω,F ,P).

3.7.5 The Strong Law of Large Numbers Suppose that Xn, n ≥ 1 are
independent, integrable, identically distributed random variables in a
probability space (Ω,F ,P). Then Sn

n = X1+···+Xn

n converges to (EX1)1Ω

in L1 and a.s.

Proof We proceed as in 3.6.17, and write Sn

n as the conditional expec-
tation of X1 with respect to the non-increasing sequence of σ-algebras
σ(Sn, Sn+1, ...), n ≥ 1. Corollary 3.6.13 allows us then to prove conver-
gence of Sn

n to (EX1)1Ω in L1(Ω,F ,P). We check that for any natu-
ral N , Fm = σ(S−m, S−m+1, ...),−N ≤ m ≤ −1, is a filtration, and
Ym,−N ≤ m ≤ −1, where Ym = S−m

−m is a martingale with respect to
this filtration. Moreover, supm≤−1E |Ym| = supn≥1E

∣∣Sn

n

∣∣ ≤ E |X1|.
Hence, arguing as in 3.7.3, we see that, as m→ −∞, Y−m converges al-
most surely to an absolutely integrable random variableX∞. This means
that as n→ ∞, Sn

n it converges almost surely to X∞. By 2.2.20, Sn

n has
a subsequence that converges a.s. to (EX1)1Ω and so (EX1)1Ω = X∞
almost surely.

3.7.6 Example The Wright–Fisher model 3.5.6 describes one of the
forces of population genetics, called genetic drift, which is, roughly
speaking, a random loss of variation in a population. In our simple case
genetic drift is expressed in the fact that the states X = 0 and X = 2N
are absorbing, i.e. genetic drift forces one of the alleles to be fixed in the
population. The Martingale Convergence Theorem may be used to find
the probability pk of fixation of allele a given that X(0) = k. Indeed, its
assumptions are satisfied, so that X(∞) = limn→∞X(n) exists almost
surely and we have pk · 2N + (1 − pk) · 0 = EX(∞) = EX(0) = k and,
consequently, pk = k

2N .

3.7.7 Martingale convergence in L1 As we have seen, a martingale
that is bounded in L1 converges almost surely but not necessarily in L1.

To ensure convergence in L1 one needs to assume additionally that the
random variables involved are uniformly integrable. There are two
equivalent definitions of uniform integrability of a sequence Xn, n ≥ 1
of absolutely integrable functions on a measure space L1(Ω,F , µ) with
finite measure µ. The first definition requires that the numerical sequence
supn≥1E |Xn|1|Xn|≥k converges to zero, as k → ∞. The second requires
that Xn, n ≥ 1 be bounded in L1 and that for every ε > 0 there would
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exist a δ > 0 such that E |Xn|1A < ε for all n ≥ 1 provided µ(A) <
δ. In problem 3.7.9 the reader is asked to prove equivalence of these
definitions.

It is easy to see that uniform integrability is a necessary condition for
convergence of a sequence in L1. Indeed, for any measurable set A we
have

E |Xn|1A ≤ E |Xn −X|1A + E |X|1A
≤ ‖Xn −X‖L1 + E |X|1A.

Hence, if Xn converges to X in L1, then given ε > 0 we may choose
n0 such that ‖Xn − X‖L1 ≤ ε

2 for all n ≥ n0, and for such n make
E |Xn|1A less than ε by choosing A of small measure. For the remaining
finite number of variables Xn, 1 ≤ n < n0, E |Xn|1A may be made
small uniformly in n by choosing sets A of possibly smaller measure (see
Exercise 3.7.10).

In general, the sole uniform integrability of a sequence does not im-
ply its convergence in L1.† Nevertheless, uniform integrability implies
convergence when coupled with convergence in measure. A sequence
Xn on (Ω,F , µ) is said to converge in measure to X if for every ε > 0,
the measure of the set where |Xn −X| is greater than ε converges to 0,
as n→ ∞. As it was with uniform integrability, convergence in measure
is necessary for convergence in L1; this can be seen from the Markov
inequality 1.2.36:

µ{|Xn −X| > ε} ≤ E |Xn −X|
ε

. (3.36)

Furthermore, we have the following criterion for convergence in L1 :

a sequence Xn ∈ L1, n ≥ 1 converges to an X ∈ L1 iff it is uniformly
integrable and converges to X in measure.

We have already proved the “only if part” of this theorem. Before
giving the proof of the “if part”, let us note that as a direct consequence
we obtain that

if a martingale Xn, n ≥ 1 (with respect to a filtration Fn, n ≥ 1) is
uniformly integrable then it converges to an integrable limit X∞ almost
surely and in L1; in such a case, Xn = E(X∞|Fn).
† Rather than with convergence, uniform integrability is related to compactness and

weak compactness [32, 37]. See e.g. [5] for more information on uniform integra-
bility. We will come back to this question and in particular explain the notion of
weak compactness in Chapter 5 – see 5.7.1. In Subsection 5.8 of that same chapter
we will also give more information on convergence in measure, to be mentioned in
the next sentence.



3.7 ... and of martingales 117

Indeed, since Xn, n ≥ 1, is bounded, it converges a.s. Hence, P{|Xn−
X∞| > ε} = E 1|Xn−X∞|>ε converges to 0, as n→ ∞, by the inequality
1|Xn−X∞|>ε < 1Ω and Dominated Convergence Theorem. This proves
convergence in measure (i.e. convergence in probability), and since uni-
form integrability is given, our criterion applies, proving convergence in
L1. Finally, since Xn = E(Xm|Fn) for all m ≥ n, Theorem 3.3.1 (k)
shows that Xn = limm→∞ E(Xm|Fn) = E(X∞|Fn), as desired.

We are left with proving that convergence in measure and uniform
integrability of a sequence imply its convergence. Thus, let us assume
that Xn ∈ L1, n ≥ 1 is uniformly integrable and converges in measure
to an X ∈ L1. For k ≥ 1, define the function φk : R → R by φk(τ) = τ

for |τ | < k and φk(τ) = k or −k according as τ ≥ k or τ ≤ −k.
Random variables Xn,k = φk(Xn) are thus bounded by k. Moreover,
limk→∞ supn≥1 ‖Xn,k − Xn‖L1 ≤ supn≥1E |Xn|1|Xn|≥k = 0, and it is
easy to see that φk(X) converges in L1 to X, as k → ∞. Hence, of the
three terms appearing on the right-hand side of the inequality

‖Xn −X‖L1 ≤ ‖Xn −Xn,k‖L1 + ‖Xn,k − φk(X)‖L1 + ‖φk(X) −X‖,

the first and the last may be made arbitrarily small by choosing a large
k and this can be done uniformly with respect to n. In other words,
given ε > 0 we may choose a k such that

‖Xn −X‖L1 ≤ ε

2
+ ‖Xn,k − φk(X)‖L1 .

Let us fix this k. Since |φk(τ) − φk(σ)| ≤ |τ − σ|, the event {|Xn,k −
φk(X)| > ε} is a subset of {|Xn − X| > ε}, which proves that Xn,k

converges to φk(X) in measure. Hence, we may choose an n0 so that for
all n ≥ n0, µ{|Xn,k − φk(X)| ≥ ε

4µ(Ω)} < ε
4k . As a result,

‖Xn,k − φk(X)‖L1 = E |Xn,k − φk(X)|1|Xn,k−φk(X)|≥ ε
4µ(Ω)

+ E |Xn,k − φk(X)|1|Xn,k−φk(X)|< ε
4µ(Ω)

≤ 2kµ{|Xn,k − φk(X)| ≥ ε

4µ(Ω)
} +

ε

4µ(Ω)
µ(Ω) < ε

and we are done.

3.7.8 Corollary Let Xn, n ≥ 1 be a martingale with respect to a
filtration Fn, n ≥ 1. The following are equivalent:

(a) there exists an X ∈ L1 such that Xn = E(X|Fn),
(b) Xn, n ≥ 1 converges a.s. and in L1 to X∞ ∈ L1,

(c) Xn, n ≥ 1 is uniformly integrable.
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Proof By 3.6.9, condition (a) implies that Xn, n ≥ 1 converges to some
X∞ in L1. In particular, our martingale is bounded in L1 and so 3.7.3
proves almost sure convergence (we use 2.2.20 to make sure that the lim-
its spoken of in 3.6.9 and 3.7.3 are the same a.s.). Implications (b)⇒(c)
and (c)⇒(a) have been proved in 3.7.7.

3.7.9 Exercise Prove equivalence of the two definitions of uniform
integrability.

3.7.10 Exercise Prove that a constant sequenceXn = X ∈ L1, n ≥ 1,
is uniformly integrable. More generally, a sequence that admits only a
finite number of values is uniformly integrable. Deduce that if a sequence
Xn, n ≥ 1, is dominated by an integrable non-negative random variable
Y, i.e. |Xn| ≤ Y a.s., then it is uniformly integrable.

3.7.11 Doob’s Optional Sampling Theorem Let Fn, n ≥ 1, be a fil-
tration in a measurable space (Ω,F), and let F∞ :=

⋃
n≥1 Fn. An F∞

measurable random variable τ with values in N ∪ {∞} is said to be a
Markov time (or optional time, or stopping time) if {τ = n} ∈ Fn.
Intuitively, if the filtration comes from a random process Xn, n ≥ 1, then
by observing the process up to time n, we are able to tell whether τ has
happened yet, i.e. iff τ ≤ n or not. A straightforward argument shows
that the collection Fτ of events A ∈ F∞ such that A ∩ {τ = k} ∈ Fk
for all k is a σ-algebra. Intuitively, for A ∈ Fτ , by time τ we are able
to tell if A happened or not. Some properties of Fτ are almost obvious.
For example, if τ ≡ n, then Fτ = Fn. Moreover, τ is Fτ measurable and
if τ and σ are two Markov times with τ ≤ σ then Fτ ⊂ Fσ. Indeed, if
A ∈ Fτ then

A ∩ {σ = n} =
n⋃

m=1

A ∩ {τ = m} ∩ {σ = n}

with A ∩ {τ = m} ∈ Fm ⊂ Fn and {σ = n} ∈ Fn.
Let Xn,Fn, n ≥ 1 be a uniformly integrable martingale so that there

exists an integrable X∞ such that E(X∞|Fn) = Xn. Moreover, let τ
and σ be two Markov times with τ ≤ σ. The random variable Xτ =∑
n∈N∪{∞} 1τ=nXn is well-defined with ‖Xτ‖L1 ≤ ‖X∞‖L1 ; Xσ is de-

fined similarly. The Optional Sampling Theorem says that in such
circumstances E(Xσ|Fτ ) = Xτ . Since Xτ is integrable and Fτ measur-
able, to prove this theorem it suffices to check that

∫
A
Xτ dP =

∫
A
Xσ dP

for all A ∈ Fτ . Fix n ≤ m. By assumption A ∩ {τ = n} ∈ Fn and
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A∩{τ = n}∩{σ = m} ∈ Fm.Hence,
∫
A∩{τ=n}Xn dP =

∫
A∩{τ=n}X∞ dP

and
∫
A∩{τ=n}∩{σ=m}Xm dP =

∫
A∩{τ=n}∩{σ=m}X∞ dP. Consequently,∫

A

Xσ dP =
∑

n∈N∪{∞}

∑
m∈{n,...,∞}

∫
A∩{τ=n}∩{σ=m}

Xm dP

=
∑

n∈N∪{∞}

∑
m∈{n,...,∞}

∫
A∩{τ=n}∩{σ=m}

X∞ dP

=
∑

n∈N∪{∞}

∫
A∩{τ=n}

X∞ dP

=
∑

n∈N∪{∞}

∫
A∩{τ=n}

Xn dP =
∫
A

Xτ dP,

as desired.

3.7.12 Exercise Let Xn, n ≥ 1, be a sequence of integer-valued ran-
dom variables and Fn, n ≥ 1 be the natural filtration. Fix a number
k ∈ N. Show that τk = min{n ∈ N|Xn = k} is a Markov time while
σk = max{n ∈ N|Xn = k}, in general, is not. (We put min ∅ = ∞.)

3.7.13 Exercise Let Fn, n ≥ 1 be a filtration in a measurable space
(Ω,F). (a) Show that an F∞ measurable random variable τ is a Markov
time iff {τ ≤ n} ∈ Fn, n ≥ 1. (b) Show that if a sequence Xn, n ≥ 1, of
random variables is adapted in that Xn is Fn measurable for n ≥ 1, and
τ is a finite Markov time, then Xτ =

∑∞
n=1 1τ=nXn is an Fτ measurable

random variable. (c) Show that for any finite Markov time Fτ is the σ-
algebra generated by all Xτ constructed from adapted processes Xn, n ≥
1.

3.7.14 The maximal inequality Suppose that Xn, n ≥ 1 is a positive
submartingale with respect to a filtration Fn, n ≥ 1, and let X∗

n =
sup1≤k≤nXk, n ≥ 1. Then for any number t > 0,

tP{X∗
n > t} ≤ EXn1{X∗

n>t}.

Proof The event {X∗
n > t} is a disjoint union of sets Ak, 1 ≤ k ≤ n where

ω ∈ Ak iff Xk(ω) is the first variable with the property that Xk(ω) > t.

Since onAk, Xk is greater than t, we have tP{X∗
n > t} =

∑n
k=1 tP(Ak) ≤∑n

k=1EXk1Ak
≤∑n

k=1EXn1Ak
= EXn1{X∗

n>t} where in the second-
to-the-last step we have used the submartingale property and the fact
that Ak are Fk measurable.
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3.7.15 Martingale convergence in Lp, p > 1 Suppose that there exists
a p > 1 such that a martingale Xn, n ≥ 1, is integrable with the pth
power and supn≥1E |Xn|p =: M < ∞. Then, by the Hölder inequal-
ity, this martingale is also bounded in L1. Moreover, it is uniformly
integrable. Indeed, if τ ≥ k then 1 ≤ ( τk )p−1, and τ ≤ τp

kp−1 . Hence,
E |Xn|1|Xn|≥k ≤ 1

kp−1E |Xn|p ≤ M
kp−1 → 0 as k → ∞. Therefore, by

3.7.3 and 3.7.7 the martingale converges a.s. and in L1 to an integrable
variable X∞. By Fatou’s Lemma, X∞ ∈ Lp. Is it true that Xn, n ≥ 1
converges to X∞ in Lp as well? The answer in the affirmative follows
from the following Doob’s Lp inequality:

‖ sup
n≥1

|Xn|‖Lp ≤ qM, (3.37)

which implies in particular that X∗ = supn≥1 |Xn| is finite a.s. and
belongs to Lp; q, as always, is such that 1

p + 1
q = 1. If (3.37) is estab-

lished, our claim follows by |Xn −X∞|p ≤ 2p(X∗)p and the Dominated
Convergence Theorem.

We have done all the toil needed to prove (3.37) in 3.7.14 and Exercise
1.2.37. To complete the proof note that by Jensen’s inequality Yn = |Xn|
is a submartingale. Hence, if we let Y ∗

n = sup1≤k≤n Yk, then by 3.7.14
we have tP{Y ∗

n > t} ≤ E Yn1{Y ∗
n>t}. By (1.18) and (1.20),

‖Y ∗
n ‖pLp = E (Y ∗

n )p =
∫ ∞

0

ptp−1P{Y ∗
n > t}dt

≤ p

p− 1

∫ ∞

0

(p− 1)tp−2E Yn1{Y ∗
n>t} dt

= qE Yn(Y ∗
n )p−1 ≤ q(E Y pn )

1
p

(
E (Y ∗

n )(p−1)q
) 1

q

≤ qM(E (Y ∗
n )p)1−

1
p

where we have used the Hölder inequality and (p − 1)q = p. Since Y ∗
n

belongs to Lp we may divide by (E (Y ∗
n )p)1−

1
p to obtain

(E (Y ∗
n )p)

1
p ≤ qM,

which implies (3.37) by limn→∞ Y ∗
n = X∗ and the Monotone Conver-

gence Theorem.
Since all convergent sequences are bounded, the main result of this

subsection can be phrased as follows: a martingale in Lp converges in
Lp iff it is bounded in Lp.



4

Brownian motion and Hilbert spaces

The Wiener mathematical model of the phenomenon observed by an
English botanist Robert Brown in 1828 has been and still is one of
the most interesting stochastic processes. Kingman [66] writes that the
deepest results in the theory of random processes are concerned with
the interplay of the two most fundamental processes: Brownian motion
and the Poisson process. Revuz and Yor [100] point out that the Wiener
process “is a good topic to center a discussion around because Brownian
motion is in the intersection of many fundamental classes of processes.
It is a continuous martingale, a Gaussian process, a Markov process or
more specifically a process with independent increments”. Moreover, it
belongs to the important class of diffusion processes [58]. It is actually
quite hard to find a book on probability and stochastic processes that
does not describe this process at least in a heuristic way. Not a serious
book, anyway.

Historically, Brown noted that pollen grains suspended in water per-
form a continuous swarming motion. Years (almost a century) later
Bachelier and Einstein derived the probability distribution of a position
of a particle performing such a motion (the Gaussian distribution) and
pointed out its Markovian nature – lack of memory, roughly speaking.
But it took another giant, notably Wiener, to provide a rigorous math-
ematical construction of a process that would satisfy the postulates of
Einstein and Bachelier.

It is hard to overestimate the importance of this process. Even outside
of mathematics, as Karatzas and Shreve [64] point out “the range of ap-
plication of Brownian motion (...) goes far beyond a study of microscopic
particles in suspension and includes modelling of stock prices, of thermal
noise in electric circuits (...) and of random perturbations in a variety
of other physical, biological, economic and management systems”. In

121
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mathematics, Wiener’s argument involved a construction of a measure
in the infinite-dimensional space of continuous functions on R+, and this
construction was given even before establishing firm foundations for the
mathematical measure theory.

To mention just the most elementary and yet so amazing properties
of this measure let us note that it is concentrated on functions that
are not differentiable at any point. Hence, from its perspective, func-
tions that are differentiable at a point form a negligible set in the space
of continuous functions. This should be contrasted with quite involved
proofs of existence of a single function that is nowhere differentiable and
a once quite common belief (even among the greatest mathematicians)
that nowhere differentiable functions are not an interesting object for a
mathematician to study and, even worse, that all continuous functions
should be differentiable somewhere. On the other hand, if the reader
expects this process to have only strange and even peculiar properties,
he will be surprised to learn that, to the contrary, on the macroscopic
level it has strong smoothing properties. For example, if we take any, say
bounded, function x : R → R and for a given t > 0 consider the func-
tion xt(τ) = Ex(τ + w(t)), τ ∈ R where w(t) is the value of a Wiener
process at time t, this new function turns out to be infinitely differen-
tiable! Moreover, x(t, τ) = xt(τ) is the solution of a famous heat equation
∂u
∂t = const.∂

2u
∂τ2 with the initial condition u(0, τ) = x(τ). And this fact is

just a peak of a huge iceberg of connections between stochastic processes
and partial differential equations of second order.

Finally, let us mention that the notion of Itô stochastic integral (to be
discussed in brief in the final section of this chapter) would not emerge
if there was no model of Brownian motion and its properties were not
described. And without stochastic integral there would be no stochastic
analysis and no way for a mathematician to approach important prob-
lems in physics, biology, economy etc.

For more information on Brownian motion see the excellent introduc-
tory chapter to Rogers and Williams’s book [102].

We will define Brownian motion in the first section and then in Section
3 use Hilbert space theory to rewrite the original Wiener’s proof of the
existence of Brownian motion thus defined. The necessary background
from the Hilbert space is provided in Section 2. The final Section 4 is
devoted to a discussion of the Itô integral.
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4.1 Gaussian families & the definition of Brownian motion

4.1.1 Definition A family {Xt, t ∈ T} of random variables defined
on a probability space (Ω,F ,P) where T is an abstract set of indexes is
called a stochastic process. The cases T = N,R,R+, [a, b], [a, b), (a, b],
(a, b) are very important but do not exhaust all cases of importance. For
example, in the theory of point processes, T is a family of measurable sets
in a measurable space [24, 66]. If T = N (or Z), we say that our process
is time-discrete (hence, a time-discrete process is a sequence of random
variables). If T = R,R+ etc. we speak of time-continuous processes. For
any ω ∈ Ω, the function t → Xt(ω) is referred to as realization/sample
path/trajectory/path of the process.

4.1.2 Gaussian random variables An n-dimensional random vector

X = (X1, ..., Xn)

is said to be normal or Gaussian iff for any α = (α1, . . . , αn) ∈ Rn

the random variable
∑n
j=1 αjXj is normal. It is said to be standard

normal if Xi are independent and normal N(0, 1). A straightforward
calculation (see 1.4.7) shows that convolution of normal densities is nor-
mal, so that the standard normal vector is indeed normal. In general,
however, for a vector to be normal it is not enough for its coordinates
to be normal. For instance, let us consider a 0 < p < 1 and a vector
(X1, X2) with the density

f(x1, x2) = p
1
π

e−
x2
1+x2

2
2 + (1 − p)

1
π

2
√

3
3

e−
4
3

x2
1+x1x2+x2

2
2 .

Then X1 and X2 are normal but (X1, X2) is not. To see that one checks
for example that X1 − 1

2X2 is not normal.

4.1.3 Theorem An n-dimensional vector X is normal iff there ex-
ists an n× n matrix A and a vector m such that for any n-dimensional
standard normal vector Y , vectors X and AY + m have the same dis-
tribution. The vector m and the matrix R = AAT are determined, by
m = (µi)1≤i≤n = (EXi)1≤i≤n and R = ( cov(Xi, Xj) )1≤i,j≤n.

Proof The space Rn is a Hilbert space when equipped with scalar prod-
uct (α, β) =

∑n
i=1 αiβi, α = (αi)1≤i≤n, β = (βi)1≤i≤n. The space of lin-

ear operators on the Hilbert space Rn is isometrically isomorphic to the
space of n × n matrices (ai,j)1≤i,j≤n with the norm ‖(ai,j)1≤i,j≤n‖ =∑n
i=1

∑n
j=1 a

2
i,j . The isomorphism maps an operator A into a matrix
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(ai,j)1≤i,j≤n, where ai,j is the ith coordinate of the vector Aej , ej =
(δi,j)1≤i≤n, and we have Aα = (

∑n
j=1 ai,jαj)1≤i,j≤n. Moreover, A is

self-adjoint iff the corresponding matrix is symmetric.
Consider the symmetric matrix R = (cov(Xi, Xj))1≤i,j≤n, and let the

same letter R denote the corresponding operator in Rn. For any α ∈ Rn,

by linearity of expectation,

(Rα,α) =
n∑
i=1

n∑
j=1

E (Xi − µi)(Xj − µj)αiαj = E

[
n∑
k=1

αk(Xk − µk)

]2

= D2 (α,X). (4.1)

Hence, (Rα,α) is non-negative and by 3.6.7 there exists a non-negative
square root of R, i.e. a symmetric matrix A such that R = A2 and
(Aα,α) ≥ 0, α ∈ Rn.

Let Y be any standard normal vector and define Z = AY +m. Clearly,
Z is Gaussian. We claim that Z has the same distribution as X. By the
result to be proved in Subsection 6.6.11, it suffices to show that the
distribution of (α,Z) is the same as that of (α,X), α ∈ Rn. Since both
variables have normal distributions, it remains to prove that E (α,Z) =
E (α,X), and D2 (α,Z) = D2 (α,X). The former relation is obvious,
for both its sides equal (α,m). To prove the latter, note first that by
1.4.7, D2(β1Y1 + β2Y2) = β2

1 + β2
2 , β1, β2 ∈ R, and, more generally,

D2 (β, Y ) = D2 (
∑n
i=1 βiYi) = ‖β‖2

Rn . Moreover, since A is self-adjoint,

D2 (α,Z) = E [(α,Z) − (α,m)]2 = E [(α,AY )]2 = E [(Aα, Y )]2

= D2 [(Aα, Y )] = ‖Aα‖2
Rn = (Aα,Aα) = (Rα,α),

completing the proof by (4.1).

Note As a result of our proof and 6.6.11, R andm determine the distri-
bution of X; we write X ∼ N(m,R). In particular, normal variables are
independent iff they are uncorrelated, i.e. iff the appropriate covariances
are zero.

4.1.4 An auxiliary result that is of its own importance Our next theo-
rem, Theorem 4.1.5 below, concerns L2 convergence of Gaussian vectors.
In its proof we will use the following result that will turn out to be of
its own importance in Chapter 5, where various modes of convergence
of random variables will be discussed.

If X and Xn, n ≥ 1 are random variables defined on the same proba-
bility space (Ω,F ,P) and limn→∞ P(|X−Xn| > ε) = 0 for all ε > 0, then
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limn→∞E f(Xn) = E f(X) for all bounded uniformly continuous func-
tions f on R. Indeed, for any δ > 0 the absolute value of the difference
between E f(Xn) and E f(X) is estimated by∫

|Xn−X|≥δ
|f(Xn) − f(X)|dP +

∫
|Xn−X|<δ

|f(Xn) − f(X)|dP.

Moreover, given ε > 0 one may choose a δ so that |f(τ) − f(σ)| < ε

provided |τ − σ| < δ. For such a δ the second integral above is less than
εP{|Xn−X| < δ} ≤ ε while the first is less than 2‖f‖supP{|Xn−X| ≥ δ},
which may be made arbitrarily small by taking large n.

4.1.5 Theorem If a sequence Xn ∼ N(µn, σ2
n) of normal variables

converges in L2 to a variable X, then there exist limits µ = limn→∞ µn
and σ2

n = limn→∞ σ2
n, the variable X is Gaussian and X ∼ N(µ, σ2).

Proof The sequence µn, n ≥ 1 must converge because µn = EXn and
by the Hölder inequality expectation is a bounded linear functional on
L2. Moreover, by continuity of the norm, the sequence ‖Xn‖L2 converges
as well. Since ‖Xn‖2

L2 = µ2
n + σ2

n, there exists the limit of σ2
n.

By 4.1.4 and Chebyshev’s inequality (cf. 3.1.7), limn→∞E f(Xn) =
E f(X), for any bounded uniformly continuous function f. On the other
hand,

lim
n→∞

E f(Xn) =
1√

2πσ2
n

∫ ∞

−∞
exp
{
− (τ − µn)2

2σ2
n

}
f(τ) dτ

=
1√
2πσ

∫ ∞

−∞
exp
{
− (τ − µ)2

2σ2

}
f(τ) dτ,

which identifies the distribution of X by 1.2.20. To justify the passage
to the limit under the integral above, change the variable to ξ = (τ −
µn)σ−1

n , use Lebesgue’s Dominated Convergence Theorem, and come
back to the τ variable. This calculation is valid only if σ2 
= 0. In the
other case, limn→∞E f(Xn) = f(µ) which identifies X as a degenerate
Gaussian random variable concentrated at µ.

4.1.6 Definition A random process wt, t ≥ 0 on a probability space
(Ω,F ,P) is said to be a (one-dimensional) Wiener process (Brownian
motion) on R+ starting at 0, iff

(a) the vector w(t1, ..., tk) = (wt1 , ...., wtk) is a k-dimensional Gaussian
vector, for any k ∈ N and all t1, t2, ..., tk ≥ 0,

(b) E wtws = s ∧ t, Ewt = 0 for all s, t ≥ 0,
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(c) the trajectories/sample paths of wt start at zero and are continuous,
i.e. the map t → wt is continuous, and w0(ω) = 0, for any ω ∈ Ω,
except perhaps for ω in an event of probability zero.

If the process is defined only for t in a subinterval [0, a], a > 0 of R+,

and conditions (a)–(c) are satisfied for t ∈ [0, a], wt is called a Brownian
motion on [0, a].

4.1.7 Equivalent conditions 1 Condition E wtws = t ∧ s implies
E (wt − ws)2 = |t− s|. Conversely, if w0 = 0 and E (wt − ws)2 = |t− s|
then E wtws = t ∧ s. This follows directly from E (wt − ws)2 = E w2

t −
2E wtws + E w2

s .

2 Condition (b) determines the vector of expectations and the co-
variance matrix of the Gaussian vector w(t1, ..., tk) = (wt1 , ..., wtk). If
we assume w0 = 0, conditions (a)–(b) are equivalent to

(d) for any k ∈ N and 0 ≤ t1 < t2... < tk, the vector

v(t1, ..., tk) =
(
wt2 − wt1√
t2 − t1

, ...,
wtk − wtk−1√
tk − tk−1

)

is a standard Gaussian vector, or, equivalently, random variables wti −
wti−1 , i = 1, ..., k, are independent with normal distribution N(0, ti −
ti−1).

Indeed, observe that v(t1, ..., tk) = A[w(t1, ..., tk)]T where A is a matrix⎛
⎜⎜⎜⎜⎝

1√
tk−tk−1

− 1√
tk−tk−1

0 0 . . . 0
0 1√

tk−1−tk−2
− 1√

tk−1−tk−2
0 . . . 0

...
...

. . . . . . . . . . . .
0 · · · · · · · · · 1√

t2−t1 − 1√
t2−t1

⎞
⎟⎟⎟⎟⎠

and the superscript T denotes the transpose of a vector. Hence, if (a)
holds, v(t1, ..., tn) is Gaussian. Moreover, by (b), E

(
wti

−wti−1
ti−ti−1

)
= 0,

for 1 ≤ i ≤ k, and if ti > tj , then expanding the product under

the expectation sign we obtain that E
(
wti

−wti−1√
ti−ti−1

wtj
−wtj−1√
tj−tj−1

)
equals

1√
ti−ti−1

1√
tj−tj−1

(tj−tj−1−tj−tj−1) = 0. Finally, E
(
wti

−wti−1
ti−ti−1

)2

= 1.

This shows that the vector of expectations of v(t1, ..., tk) is zero and its
covariance matrix is the identity matrix.

To prove the converse implication note first that it is enough to show
that (d) implies that (a) holds for distinct ti ∈ R+ and this follows from
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the fact that w(t1, ..., tk) equals⎛
⎜⎜⎜⎝

√
t1 0 0 · · · 0√

t2 − t1
√
t2 − t1 0 · · · 0

...
...

. . . . . . . . .√
tk − tk−1 · · · · · · · · · √

tk − tk−1

⎞
⎟⎟⎟⎠ [v(0, t1, ..., tk)]T.

Moreover, if (d) holds and s ≤ t then E wt = E (wt − w0) = 0 for
wt−w0 ∼ N(0, t), and E wtws = E (wt−ws)(ws−w0)+E w2

s = E (wt−
ws)E (ws − w0) + E w2

s = s, which means that (d) implies (b).

4.2 Complete orthonormal sequences in a Hilbert space

4.2.1 Linear independence Vectors x1, ..., xn in a linear space X are
said to be linearly independent iff the relation

α1x1 + · · · + αnxn = 0 (4.2)

where αi ∈ R implies α1 = α2 = · · · = αn = 0. In other words, x1, ..., xn
are independent iff none of them belongs to the subspace spanned by
the remaining vectors. In particular, none of them may be zero.

We say that elements of an infinite subset Z of a linear space are
linearly independent if any finite subset of Z is composed of linearly
independent vectors.

4.2.2 Orthogonality and independence A subset Y of a Hilbert space is
said to be composed of orthogonal vectors, or to be an orthogonal
set, if for any distinct x and y from Y, (x, y) = 0, and if 0 
∈ Y. If,
additionally ‖x‖ = 1 for any x ∈ Y, the set is said to be composed of
orthonormal vectors, or to be an orthonormal set. By a usual abuse
of language, we will also say that a sequence is orthonormal (orthogonal)
if its values form an orthonormal (orthogonal) set.

Orthogonal vectors are linearly independent, for if (4.2) holds, then
0 = (

∑n
i=1 αxi,

∑n
i=1 αxi) =

∑n
i=1 α

2‖xi‖2, which implies αi = 0,
for i = 1, ..., n. On the other hand, if x1, ..., xn are linearly indepen-
dent then one may find a sequence y1, ..., yn, of orthonormal vectors
such that span {x1, ..., xn} = span {y1, ..., yn}. The proof may be car-
ried by induction. If n = 1 there is nothing to prove; all we have
to do is take y1 = x1

‖x1‖ to make sure that ‖y1‖ = 1. Suppose now
that vectors x1, ..., xn+1 are linearly independent; certainly x1, ..., xn
are independent also. Let y1, ..., yn be orthonormal vectors such that
Y := span {x1, ..., xn} = span {y1, ..., yn}. The vector xn+1 does not
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belong to Y and so we may take yn+1 = xn+1−Pxn+1
‖xn+1−Pxn+1‖ where P de-

notes projection on Y. (The reader will check that Y is a subspace of H;
consult 5.1.5 if needed.) Certainly, y1, ..., yn+1 are orthonormal. More-
over, since yn+1 ∈ span {x1, ..., xn+1} (since Pxn+1 ∈ span{x1, ..., xn}),
span{y1, ..., yn+1} ⊂ span{x1, ..., xn+1}; analogously we prove the con-
verse inclusion. The above procedure of constructing orthonormal vec-
tors from linearly independent vectors is called the Gram–Schmidt
orthonormalization procedure. There are a number of examples of
sequences of orthogonal polynomials that can be obtained via the Gram–
Schmidt orthonormalization procedure, including (scalar multiples) of
Legendre, Hermite and Laguerre polynomials that are of importance
both in mathematics and in physics (see [83], [53], [75] Section 40).

4.2.3 Exercise Let {x1, ..., xn} be an orthonormal set in a Hilbert
space H, and let x ∈ H. Show that the projection Px of x on the linear
span of {x1, ..., xn} is given by

Px =
n∑
k=1

(x, xk)xk.

If {x1, ..., xn} is orthogonal, then

Px =
n∑
k=1

(x, xk)
xk

‖xk‖2
.

4.2.4 Least square regression Let X and Y be given square integrable
random variables. The problem of finding constants a and b such that
the square distance between Y and aX + b is the least is known as the
problem of least square regression. An equivalent formulation of this
problem is to find the projection PY of Y on the span{1Ω, X}. Since this
span is the same as that of {1Ω, X− (EX)1Ω} and 1Ω and X− (EX)1Ω

are orthogonal, we find that

PY = (Y,X − (EX)1Ω)
X − (EX)1Ω

‖X − (EX)1Ω‖2
+ (Y, 1Ω)

1Ω

‖1Ω‖2

=
EXY − EX E Y

σ2
X

(X − (EX)1Ω) + (E Y )1Ω

=
cov(X,Y )

σ2
X

(X − (EX)1Ω) + (E Y )1Ω.
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The quantity ρ = ρX,Y = cov(X,Y )
σXσY

is called the correlation coefficient.
The above formula is often written as

PY − (E Y )1Ω = ρ
σX
σY

(X − (EX)1Ω).

4.2.5 Exercise Let xk, k ≥ 1 be an orthonormal sequence in a Hilbert
space H. Prove the following Bessel’s inequality: for any x ∈ H,

‖x‖2 ≥
∞∑
k=1

(xn, x)2. (4.3)

4.2.6 Separability A set S is said to be denumerable or countable
if there exists a function, say f, mapping N onto S. In other words there
exists a sequence pn = f(n) whose values exhaust the set S. Of course all
finite sets are countable and so is N itself. The set of rational numbers is
countable, too, but R is not. We also note that a union of two countable
sets is countable, and, more generally, countable union (i.e. a union of
a countable number) of countable sets is countable. A metric space is
said to be separable if there exists a countable set that is dense in this
space. We say that a Banach space (Hilbert space) is separable if it is
separable as a metric space with the metric d(x, y) = ‖x− y‖.

4.2.7 Separability of C[a, b] The space C[0, 1] is separable. Indeed, the
set of polynomials with rational coefficients is countable, any polynomial
can be approximated by polynomials with rational coefficients, and the
set of polynomials is dense in C[0, 1] by the Weierstrass Theorem (see
2.3.29). Since C[0, 1] is isometrically isomorphic to C[a, b] where −∞ ≤
a < b ≤ ∞, C[a, b] is separable also.

4.2.8 The space Lp[a, b] is separable Let −∞ < a < b < ∞, and
1 ≤ p < ∞ be real numbers. From 4.2.7 and 2.2.44 it follows that
Lp[a, b] is separable. The spaces Lp(−∞,∞), Lp(−∞, a) and Lp(a,∞)
are separable also. We will show that the first of these spaces is sepa-
rable, leaving the reader the opportunity to show the remaining claims.
To do that, we note that Lp[a, b] may be identified with a subspace of
Lp(−∞,∞), composed of (equivalence classes with respect to the equiv-
alence relation x ∼ y ≡

∫ b
a
|x− y|dleb of) functions in Lp(−∞,∞) that

vanish outside of [a, b]. With this identification in mind, we may con-
sider a union D of countable subsets Dn that are dense in Lp[−n, n]. D
is certainly countable, and for any ε > 0 and x ∈ Lp(−∞,∞), one may
find an n such that the restriction xn of x to [−n, n] is within ε

2 distance



130 Brownian motion and Hilbert spaces

from x, and a y ∈ Dn within the same distance from xn. Thus, D is
dense in Lp(−∞,∞).

4.2.9 Exercise Suppose that a measure space (Ω,F , µ) is separable,
i.e. that there exists a sequence An of elements of F such that for every
A ∈ F and ε > 0 there exists an n ∈ N such that µ(A÷An) < ε. Prove
that L2(Ω,F , µ) is separable.

4.2.10 Theorem If a Banach space is separable then there exists a
(possibly finite) countable set composed of linearly independent vectors
that is linearly dense in this space.

Proof The argument is somewhat similar to the Gram–Schmidt or-
thonormalization procedure. Let {xk, k ≥ 1} be dense in a Banach space
X. Using an induction argument we will construct a (possibly finite) se-
quence of linearly independent vectors yk such that

span {xk, 1 ≤ k ≤ n} ⊂ span {yk, 1 ≤ k ≤ n}; (4.4)

this will imply that cl span {xn, n ≥ 1} = cl span {yn, n ≥ 1}, and the
theorem will follow. We use the following convention: if the sequence yn
is finite, having say n0 elements, then by definition span {yk, 1 ≤ k ≤
n} = span {yk, 1 ≤ k ≤ n0} = span {yn, n ≥ 1} for n ≥ n0.

For n = 1 we let y1 = x1. For the induction step we suppose that
linearly independent vectors y1, ..., yn have already been defined in such
a way that (4.4) is satisfied. If

span {yk, 1 ≤ k ≤ n} = X,

we are done; otherwise there exists at least one natural j such that
xj 
∈ span {yk, 1 ≤ k ≤ n}, for if {xj , j ≥ 1} is included in span {yk, 1 ≤
k ≤ n} so is its closure. Certainly, j ≥ n + 1. We take the minimal j
with this property, and put yn+1 = xj . By construction {x1, ..., xn+1} ⊂
{x1, ..., xj} ⊂ {y1, ..., yn+1}.

4.2.11 Complete orthonormal sequences We will say that an orthog-
onal (orthonormal) sequence in Hilbert space is complete if its linear
span is dense in this space. 4.2.2 and 4.2.10 above show that in any
separable Hilbert space there exists a complete orthonormal sequence.
We say that a Hilbert space is infinite-dimensional if there is no finite
orthonormal set that is complete in this space.
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4.2.12 Theorem Let H be a Hilbert space and let (xn)n≥1 be an
orthonormal sequence. The following are equivalent:

(a) (xn)n≥1 is complete,
(b) for all x in H, x = limn→∞

∑n
i=1(xi, x)xi,

(c) for all x and y in H, (x, y) =
∑∞
n=1(xn, x)(xn, y),

(d) for all x in H, ‖x‖2 =
∑∞
n=1(xn, x)

2,

(e) for all x in H, ‖x‖2 ≤∑∞
n=1(xn, x)

2,

(f) for all x in H, (x, xn) = 0 for all n ≥ 1 implies x = 0.

Proof If (a) holds, then Hn = span {xi, 1 ≤ i ≤ n} is an non-decreasing
sequence of subspaces of H with H = cl(

⋃∞
n=1 Hn). By 3.6.8, projections

Pn on Hn converge strongly to the identity operator I : limn→∞ Pnx =
x, x ∈ H. Since Pnx =

∑n
i=1(xi, x)xi, (see 4.2.3 above) (b) follows.

Implications

(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f)

are trivial. Finally, if (a) does not hold, then there exists an x ∈ H,

perpendicular to the closure of the linear span of (xn)n≥1, contradicting
(f).

4.2.13 Exercise Prove that xk = (δk,n)n≥1 , n ≥ 1 is a complete
orthonormal sequence in l2.

4.2.14 Example Let x2n+k = 2
n
2 z2n+k where 0 ≤ k < 2n and zm

where defined in 2.1.32. The random variables xm and zm and are
centered (E xm = E zn = 0). For any n and 0 ≤ k 
= k′ < 2n,
z2n+k and z2n+k′ have disjoint support so that their product is zero
and so is their covariance. Also, if m > n then for 0 ≤ k < 2n and
0 ≤ l < 2m z2n+kz2m+l = z2m+k provided 2m−nk ≤ l < 2m−n(k+1), and
z2n+kz2m+l = 0 otherwise. Since E x2

2n+k = 2n 1
2n = 1, 0 ≤ k < 2n, n ≥

0, zm are orthonormal. Furthermore, if x ∈ L2[0, 1] is orthogonal to all
xn, then by 2.1.32 it is orthogonal to all 1[ k

2n ,
k+1
2n ), 0 ≤ k < 2n, n ≥ 0.

Therefore, if a y ∈ L2[0, 1] is continuous, by the Lebesgue Dominated
Convergence Theorem

∫ 1

0

x(s)y(s) ds = lim
n→∞

2n−1∑
k=0

y

(
k

2n

)∫ k+1
2n

k
2n

x(s) ds = 0.

This proves that x is orthogonal to all continuous functions on [0, 1],
so that by 2.2.19 it is orthogonal to all y ∈ L2[0, 1], and in particular
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to itself. Thus x = 0 and we have proven that (xn)n≥1 is a complete
orthonormal sequence in L2[0, 1].

4.2.15 Exercise Let zn, n ≥ 1, be an orthonormal sequence in a
Hilbert space H, and let (an)n≥1 ∈ l2. Prove that the series

∑∞
n=1 anzn

converges.

4.2.16 Any two separable infinite-dimensional Hilbert spaces are iso-
metrically isomorphic If H and H1 are infinite-dimensional separable
Hilbert spaces, then there exists an operator A mapping H onto H1 such
that

(Ax,Ay)H1 = (x, y)H for all x, y ∈ H.

(In particular on putting x = y we obtain ‖Ax‖H = ‖x‖H1 .)

Proof Let wn, n ≥ 1 and zn, n ≥ 1 be complete orthonormal sequences
in H and H1, respectively. Let x ∈ H. The series

∑∞
n=1(x,wn)

2
H con-

verges, so we may define Ax =
∑∞
n=1(x,wn)Hzn (see 4.2.15). Note that

(Ax,Ay)H1 =
∑∞
n=1(x,wn)H(y, wn)H = (x, y)H. Moreover, A is onto, for

if y is in H1, then
∑∞
n=1(y, zn)

2
H1

is finite, and by 4.2.15 we may con-
sider x =

∑∞
n=1(y, zn)H1wn. We check that (x,wi)H = (y, zi)H1 so that

Ax = y.

4.2.17 Remark If H is not infinite-dimensional the theorem remains
the same except that the operator A does not have to be “onto”.

4.2.18 Corollary All infinite-dimensional separable Hilbert spaces
are isometrically isomorphic to l2.

4.2.19 Corollary If H is a separable Hilbert space, then there exists
a probability space (Ω,F ,P) and a linear operator A : H → L2(Ω,F ,P)
such that for any x and y in H, Ax is a centered Gaussian random
variable, and (Ax,Ay)L2(Ω,F,P) = cov(Ax,Ay) = (x, y)H.

Proof Let (Ω,F ,P) be a probability space where a sequence Xn of
independent standard Gaussian random variables is defined. Note that
Xn ∈ L2(Ω,F ,P) since ‖Xn‖2

L2(Ω,F,P) = σ2(Xn) = 1. Certainly, Xn are
orthonormal. Let H1 be the subspace of L2(Ω,F ,P) spanned by Xn ( i.e.
the closure of the linear span of Xn, n ≥ 1). Since H1 is separable, there
exists an operator A : H → H1 described in 4.2.16. By 4.1.5, for any
x ∈ H, Ax is Gaussian as a limit of Gaussian random variables. It also
must be centered, for by the Hölder inequality expectation is a bounded
linear functional in L2(Ω,F ,P).
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4.3 Construction and basic properties of Brownian motion

4.3.1 Construction: first step There exists a process {wt, t ≥ 0} on a
probability space (Ω,F ,P) satisfying (a)–(b) of the definition 4.1.6.

Proof Let H = L2(R+), and let A be the operator described in 4.2.19.
Let wt = A(1[0,t)). Any vector (wt1 , ..., wtn) is Gaussian, because for any
scalars αi, the random variable

n∑
i=1

αiwi = A
( n∑
i=1

αi1[0,ti)

)
is Gaussian. Moreover, E wt = 0, and E wtws = (1[0,t), 1[0,s))L2(R+) =∫∞
0

1[0,t)1[0,s) dleb = s ∧ t.

4.3.2 Existence of Brownian motion on [0, 1] In general it is hard, if
possible at all, to check if the process constructed above has continu-
ous paths. We may achieve our goal, however, if we consider a specific
orthonormal system (other ways of dealing with this difficulty may be
found in [5, 61, 100, 79]†). We will construct a Brownian motion on [0, 1]
using the system xn from 4.2.14. As in 4.2.19, we define

Ax =
∞∑
n=0

(xn, x)Yn (4.5)

where Yn is a sequence of standard independent random variables. Let

wt(ω) = (A1[0,t))(ω) =
∞∑
n=0

(xn, 1[0,t))Yn(ω) =
∞∑
n=0

yn(t)Yn(ω), t ∈ [0, 1].

(4.6)
The argument presented in 4.3.1 shows that wt satisfy the first two con-
ditions of the definition of Brownian motion, and it is only the question
of continuity of paths that has to be settled.

Note that yn(t) = (xn, 1[0,t)) =
∫ t
0
xn(s) ds is a continuous function,

so that for any ω, the partial sums of the series in (4.6) are (linear
combinations of) continuous functions. We will prove that the series
converges absolutely and uniformly in t ∈ [0, 1] for almost all ω ∈ Ω. To
this end write

wt(ω) =
∞∑
n=0

2n−1∑
k=0

y2n+k(t)Y2n+k(ω) (4.7)

† Kwapień’s approach [79] described also in [59] is of particular interest because
it involves a very elegant functional-analytic argument and shows directly that
Brownian paths are Hölder continuous with any parameter α ∈ (0, 1

2
).
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and

an(ω) = sup
0≤t≤1

2n−1∑
k=0

|y2n+k(t)Y2n+k(ω)| . (4.8)

Certainly, if
∑∞
n=0 an(ω) < ∞ a.s., we are done. Observe that for any

n ∈ N, functions y2n+k, 0 ≤ k ≤ 2n − 1, have disjoint supports and

sup
0≤t≤1

|y2n+k(t)| = sup
0≤t≤1

|y2n(t)| = y2n

(
2−(n+1)

)
= 2

n
2 2−(n+1) = 2−( n

2 +1),

so that

an(ω) ≤ 2−( n
2 +1) sup

0≤k≤2n−1
|Y2n+k(ω)| .

We want to find a convergent series
∑∞
n=1 bn of non-negative num-

bers such that an(ω) ≤ bn for all but a finite number of indexes n
(this number might be different for different ω), except maybe for a
set of measure zero. In other words we want to show that the set of
ω such that an(ω) ≥ bn for infinite number of indexes has measure
zero. The probability of this event equals limn→∞ P(

⋃
k≥n{an(ω) ≥

bn}) ≤ limn→∞
∑∞
k=n P{an(ω) ≥ bn}. Thus it suffices to show that∑∞

n=1 P{an(ω) ≥ bn} < ∞. (In other words we are using the easy part
of the Borel–Cantelli lemma.) Write cn = bn2

n
2 , and

P{an(ω) ≥ bn} ≤ P{2−( n
2 +1) sup

0≤k≤2n−1
|Y2n+k| ≥ bn}

= P{ sup
0≤k≤2n−1

|Y2n+k| ≥ 2cn}

≤
2n−1∑
k=0

P{|Y2n+k| ≥ 2cn}

=
2n+1

√
2π

∫ ∞

2cn

e−
s2
2 ds ≤ 2n√

2πcn

∫ ∞

2cn

se−
s2
2 ds

=
2n√
2πcn

e−2c2n .

To make the last series converge we may try 2c2n ≥ n or at least cn =
√

n
2 .

Then
∑∞
n=1 P{an(ω) ≥ bn} ≤ ∑∞

n=1

(
2
e

)n 1√
πn

< ∞, and the series∑∞
n=1 bn =

∑∞
n=1

√
n
2 2−

n
2 converges also. This completes the proof.

4.3.3 Brownian Motion on R+ To construct a Brownian motion on
R+, note that we may start with a doubly-infinite matrix Yn,m n,m ≥ 0,
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of independent Gaussian variables and construct a sequence of indepen-
dent copies of Brownian motion on [0, 1] : wkt =

∑∞
n=0 yn(t)Yn,k. In

other words, for any k ≥ 2, and s1, . . . , sk ∈ [0, 1] and distinct inte-
gers n1, ..., nk, random variables wnk

sk
are mutually independent. Then

we define

wt =
[t]−1∑
n=0

wn1 + w
[t]
t−[t], (4.9)

or, which is the same,

wt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w0
t , t ∈ [0, 1],

w0
1 + w1

t−1, t ∈ [1, 2],

w0
1 + w1

1 + w2
t−2, t ∈ [2, 3],

so on . . .

(4.10)

In other words, wt is defined so that for any ω ∈ Ω, wt(ω) in the
interval [n, n+1] is a path that develops as a Brownian motion on [0, 1],
but starts at wn and is independent of the past (to be more specific:
wt − wn is independent of the past).

4.3.4 Exercise Check that (4.10) defines a Brownian motion, i.e. that
conditions (a)–(c) of definition 4.1.6 are satisfied.

4.3.5 A more direct construction A less intuitive, but more elegant
way of constructing a Brownian motion wt on R+ is to put

wt = (1 + t)
(
w0

t
1+t

− t

1 + t
w0

1

)
, (4.11)

where w0
t , t ∈ [0, 1] is a Brownian motion on [0, 1]. Still another way may

be found in [62].

4.3.6 Exercise Show that (4.11) defines Brownian motion.

4.3.7 Properties of Brownian motion Let wt be a Brownian motion
on R+. Then,

(i) for any a > 0, 1
awa2t is a Brownian motion,

(ii) for any s > 0, wt−ws is a Brownian motion, independent of wu, u ≤ s,

(iii) −wt is a Brownian motion,
(iv) tw 1

t
is a Brownian motion.
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Property (i) is called the scaling property, and property (iv) is called the
time-reversal property.

Proof We need to check that conditions (a)–(c) of definition 4.1.6 are
satisfied. The proof of (a)–(b) is very similar in all cases. For example, in
proving (iv) we note that for any t1, ..., tn the vector (t1w 1

t1
, t2w 1

t2
, ...,

tnw 1
tn

) is Gaussian as an image of the Gaussian vector (w 1
t1
, w 1

t2
, ...,

w 1
tn

) via the affine transformation given by the matrix with t1, ..., tn on
the diagonal, and the remaining entries zero. Moreover, since for any
a > 0, a(s ∧ t) = (as) ∧ (at), E tw 1

t
sw 1

s
= st( 1

s ) ∧ ( 1
t ) = t ∧ s.

Continuity of paths is not a problem either; the non-trivial point in
the whole theorem is that P{limt→0 tw 1

t
= 0}. A hint that it is really so

is that E (tw 1
t
)2 = t, so that tw 1

t
tends to zero in L2(Ω,F ,P), and, by

the Markov inequality 1.2.36, we have limt→0 P(|tw 1
t
| ≥ ε) = 0, for any

ε > 0. To prove that P{limt→0 tw 1
t

= 0}, we need to be more careful.
Observe that, since the paths of tw 1

t
are continuous for t > 0,

{lim
t→0

tw 1
t

= 0} =
⋂
n∈N

⎡
⎣ ⋃
m∈N

⋂
s< 1

m ,s∈Q

{|sw 1
s
| ≤ 1

n
}

⎤
⎦ . (4.12)

Note that were the paths not continuous we would be able to write
merely

{lim
t→0

tw 1
t

= 0} =
⋂
n∈N

⎡
⎣ ⋃
m∈N

⋂
s< 1

m

{|sw 1
s
| ≤ 1

n
}

⎤
⎦ .

In (4.12), the sequence An of sets in brackets is decreasing: An+1 ⊂ An,

so we can write

P{lim
t→0

tw 1
t

= 0} = lim
n→∞

P

⎧⎨
⎩
⋃
m∈N

⎡
⎣ ⋂
s< 1

m ,s∈Q

{|sw 1
s
| ≤ 1

n
}

⎤
⎦
⎫⎬
⎭ .

The sequence An,m appearing in brackets now is increasing in m: for
any n, An,m ⊂ An,m+1, and we may write

P{lim
t→0

tw 1
t

= 0} = lim
n→∞

lim
m→∞

P

⎧⎨
⎩
⎡
⎣ ⋂
s< 1

m ,s∈Q

{|sw 1
s
| ≤ 1

n
}

⎤
⎦
⎫⎬
⎭ .

Now, for any m, there exists a sequence sj(m) that admits and exhausts
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all values s < 1
m , s ∈ Q. Thus,

P{lim
t→0

tw 1
t

= 0} (4.13)

= lim
n→∞

lim
m→∞

lim
j→∞

P{|s1(m)w 1
s1(m)

| ≤ 1
n
, ..., |sj(m)w 1

sj(m)
| ≤ 1

n
}.

Moreover, both vectors

(s1w 1
s1(m)

, ..., sj(m)w 1
sj(m)

) and (ws1(m), ..., wsj(m))

are normal and have the same covariance matrix and the same vector of
expected values; in other words their distributions are the same. Thus,

P{|s1(m)w 1
s1(m)

| ≤ 1
n
, ..., |sj(m)w 1

sj(m)
| ≤ 1

n
} (4.14)

= P{|ws1(m)| ≤
1
n
, ..., |wsj(m)| ≤

1
n
}.

But, repeating the argument presented above, we obtain

P{lim
t→0

wt = 0} = lim
n→∞

lim
m→∞

lim
j→∞

P{|ws1(m)| ≤
1
n
, ..., |wsj(m)| ≤

1
n
}.

(4.15)
Combining (4.13)–(4.15), we see that

P{lim
t→0

tw 1
t

= 0} = P{lim
t→0

wt = 0} = 1.

Finally, a comment is needed on independence of wt − ws, from the
σ-field σ(wu, 0 ≤ u ≤ s) – this follows by condition 2 in 4.1.7 and 1.4.12.

4.3.8 Remark Note that the argument used in the proof of the fact
that P{limt→0 tw 1

t
= 0} = 1 applies to a much more general situation.

In particular, we have never used the assumption that distributions are
normal. The situation we were actually dealing with was that we had two
stochastic processes wt and zt (in our case zt was equal to tw 1

t
), both

with continuous paths in R+
∗ , and the same joint distributions. To be

more specific: for any n ∈ N and t1 ≤ tn ≤ .... ≤ tn the joint distribution
of wt1 , ..., wtn and zt1 , ..., ztn was the same. Using these assumptions we
were able to show that existence of the limit limt→0 wt (a.s.) implies
existence of the limit limt→0 zt (a.s.).

The relation to be proven in the following exercise will be needed in
4.3.10.

4.3.9 Exercise Prove that E |w(t)| =
√

2t
π .
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4.3.10 Brownian paths have unbounded variation We will prove that
sample paths of the Brownian motion are a.s. not of bounded variation
on any interval. Without loss of generality we will restrict our attention
to the variation of the path on [0, 1]. Let us fix ω and define vn(ω) =∑2n

k=1

∣∣∣w k
2n

(ω) − w k−1
2n

(ω)
∣∣∣ . Certainly, vn ≤ vn+1 and we may define

v(ω) = limn→∞ vn(ω). It suffices to show that v = ∞ a.s., or that
E e−v = 0. Notice that the random variables

∣∣∣w k
2n

(ω) − w k−1
2n

(ω)
∣∣∣ , 0 ≤

k < 2n, are independent and have the same distribution. Thus, by the
Lebesgue Dominated Convergence Theorem, E e−v equals

lim
n→∞

E e−vn = lim
n→∞

E
2n∏
k=1

e
−
∣∣∣∣w k

2n
−w k−1

2n

∣∣∣∣ = lim
n→∞

(
E e

−
∣∣∣∣w 1

2n

∣∣∣∣
)2n

.

Let t = 1
2n . Since

E e−|wt| =
1√
2πt

∫ ∞

−∞
e−|s|e−

s2
2t ds =

√
2
πt

∫ ∞

0

e−se−
s2
2t ds

=

√
2
π

∫ ∞

0

e−
√
tse−

s2
2 ds =

√
2
π
e

t
2

∫ ∞

√
t

e−
u2
2 du

(u = s+
√
t) then

E e−v = lim
t→0+

e
1
2

(√
2
π

∫ ∞

√
t

e−
u2
2 du

) 1
t

= e
1
2 exp

{
lim
t→0+

1
t

ln

(√
2
π

∫ ∞

√
t

e−
u2
2 du

)}

= e
1
2 exp

⎧⎨
⎩− lim

t→0+

(√
2
π

∫ ∞

√
t

e−
u2
2 du

)−1√
2
π

e−
t
2

1
2
√
t

⎫⎬
⎭ = 0,

where we have used de l’Hospital’s rule.
Brownian paths are not differentiable at any point either; for a direct

proof see e.g. [5]

4.3.11 Brownian motion is a time-continuous martingale Let (Ω,F ,P)
be a probability space. An increasing family Ft, t ≥ 0 of σ-algebras of
measurable sets: Ft ⊂ Ft+h ⊂ F ; for all t, h ≥ 0, is called a (time-
continuous) filtration. A stochastic process Xt, t ≥ 0, is termed a
(time-continuous) martingale with respect to filtration Ft, t ≥ 0 iff
Xt is Ft measurable, Xt ∈ L1(Ω,Ft,P) and E(Xt+h|Ft) = Xt, t, h ≥ 0.
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To be more specific, we should say that Xt, t ≥ 0 is a martingale with
respect to Ft, t ≥ 0 and P. If filtration is not clear from the context, a
“martingale Xt, t ≥ 0” is a stochastic process that is a martingale with
respect to the natural filtration Ft = σ(Xs, s ≤ t).

Brownian motion is a time-continuous martingale. Indeed, E (w(t +
h)|Ft) = E (w(t+ h)−w(t)|Ft) + E (w(t)|Ft) = 0 +w(t), for w(t+ h)−
w(t) is independent of Ft = σ(w(s), s ≤ t) and w(t) is Ft measurable.
Similarly, Xt = w2(t)− t is a martingale. To this end it suffices to show
that E (w2(t+h)−w2(t)|Ft) = h. Writing w2(t+h)−w2(t) as [w(t+h)−
w(t)]2+2w(t)[w(t+h)−w(t)], since [w(t+h)−w(t)]2 is independent of Ft
and w(t) is Ft measurable, this conditional expectation equals E [w(t+
h) − w(t)]2 plus w(t)E (w(t+ h) − w(t)|Ft) = w(t)E (w(t+ h) − w(t)).
The former quantity equals h and the latter 0, as desired.

The celebrated Lévy Theorem (see e.g. [102]), a striking converse
to our simple calculation, states that

a continuous-time martingale w(t), t ≥ 0, with continuous paths and
X(0) = 0 such that w2(t) − t is a martingale, is a Brownian motion.

4.3.12 Exercise Show that for any real a, Xt = eaw(t)− a2
2 t is a mar-

tingale.

4.4 Stochastic integrals

Let us consider the following hazard game related to a Brownian motion
w(t), t ≥ 0. Suppose that at time t0 we place an amount x(t0) as a bet,
to have x(t0)[w(t0 + h)−w(t0)] at time t0 + h. More generally, suppose
that we place amounts x(ti) at times ti to have

n−1∑
i=1

x(ti)[w(ti+1) − w(ti)] (4.16)

at time tn where 0 ≤ a = t0 < t1 < · · · < tn = b <∞. If we imagine that
we may change our bets in a continuous manner, we are led to considering
the limit of such sums as partitions refine to infinitesimal level. Such a
limit, a random variable, would be denoted

∫ b
a
x(t) dw(t). The problem

is, however, whether such a limit exists and if it enjoys properties that
we are used to associating with integrals. The problem is not a trivial
one, for as we know from 4.3.10, t → w(t) is not of bounded variation
in [a, b], so that this integral may not be a Riemann–Stieltjes integral.
This new type of integral was introduced and extensively studied by K.
Itô, and is now known as an Itô integral.
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The first thing the reader must keep in mind to understand this no-
tion is that we will not try to define this integral for every path sep-
arately; instead we think of w(t) as an element of the space of square
integrable functions, and the integral is to be defined as an element of
the same space. But the mere change of the point of view and the space
where we are to operate does not suffice. As a function t �→ w(t) ∈
L2(Ω,F ,P) where (Ω,F ,P) is the probability space where w(t), t ≥ 0
are defined, the Brownian motion is not of bounded variation either.
To see that consider a uniform partition ti = a + i

n (b − a), i = 0, .., n
of [a, b]. Since E [w(ti+1) − w(ti)]2 = 1

n (b − a), the supremum of sums∑n−1
i=1 ‖w(ti+1) − w(ti)‖L2(Ω,F,P) over partitions of the interval [a, b] is

at least
∑n−1
i=1

√
b−a
n =

√
n
√
b− a, as claimed.

We will still be able to establish existence of the limit of sums (4.16)
for quite a large class of stochastic processes x(t), and will see that
x �→

∫ b
a
xdw is an isometry of two appropriate Hilbert spaces. (Note

that at present it is not even clear yet whether such sums are members
of L2(Ω,F ,P).) In fact the tool that we are going to use is (2.3.33),
where we proved that once we define a bounded operator on a linearly
dense subset of a Banach space, this operator may be in a unique way
extended to the whole of this space. Our linearly dense set will be the
set of so-called simple processes, which correspond to sums (4.16).

Because w(t) is not of bounded variation, properties of the Itô integral
are going to be different from the Riemann–Stieltjes integral (cf. 1.3.7).
To see one of the differences, let us recall that the approximating sums
S(T ,Ξ, x, y) =

∑n−1
i=0 x(ξi)[y(ti+1) − y(ti)] of the Riemann–Stieltjes in-

tegral
∫
xdy involved both partitions T : a = t0 < t1 < · · · < tn = b

and midpoints Ξ : ti−1 ≤ ξi−1 ≤ ti; and the limit as ∆(T ) tends to zero
was not to depend on Ξ. The fact that the choice of midpoints does not
matter for the Riemann–Stieltjes integral is very much related to the
fact that y is of bounded variation. Indeed, if x is continuous and Ξ and
Ξ′ are two sets of midpoints corresponding to one partition T (we may
always combine two partitions to obtain a new one that will be more
refined than the two original ones), then

|S(T ,Ξ, x, y) − S(T ,Ξ′, x, y)| =

∣∣∣∣∣
n−1∑
i=0

[x(ξi) − x(ξ′i)][y(ti+1) − y(ti)]

∣∣∣∣∣
≤ ε

n−1∑
i=0

|y(ti+1) − y(ti)| ≤ ε var[y, a, b],
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provided ∆(T ) < δ where δ is so small that |x(t) − x(s)| < ε when
|t− s| < δ.

Therefore, since the Brownian paths have unbounded variation, we
should expect that in the Itô integral the choice of midpoints in the ap-
proximating sum does matter. This is really so, as we shall see shortly.
Note that this is actually something that we should have predicted on
account of interpretation of the integral in terms of our hazard game.
Indeed, our betting strategy x(t), a ≤ t ≤ b, is in general a stochas-
tic process, for it will most likely depend on the behavior of Brownian
motion w(t). In fact, it is natural to assume that x(t) will be Ft measur-
able where Ft, t ≥ 0 is a natural filtration of the Brownian motion; in
other words, by the Doob–Dynkin Lemma, x(t) will be a function of the
Brownian motion up to time t. Such processes are said to be adapted.
Now, an approximating sum with ξi > ti would describe a strategy of a
person playing the game at time ti with some foreknowledge of the fu-
ture behavior of the Brownian motion, however short ξi− ti may be. Of
course we should not expect that such a strategy will result in the same
gain as the strategy of a player who does not posses this knowledge.

4.4.1 The choice of midpoints: an example We will consider two ap-
proximating sums:

Sn =
n−1∑
i=1

w(ti,n)[w(ti+1,n) − w(ti,n)] and

S′
n =

n−1∑
i=1

w(ti+1,n)[w(ti+1,n) − w(ti,n)],

where ti,n = a + i
n (b − a), 0 ≤ i ≤ n, and show that Sn converges

in L2(Ω,F ,P) to 1
2 [w2(b) − w2(a)] − 1

2 (b − a) while S′
n converges to

1
2 [w2(b) − w2(a)] + 1

2 (b− a). To this end, note first that by the relation
α(β − α) = 1

2 (β2 − α2) − 1
2 (α− β)2,

Sn =
1
2

n−1∑
i=1

[w2(ti+1,n) − w2(ti,n)] −
1
2

n−1∑
i=1

[w(ti+1,n) − w(ti,n)]2

=
1
2
[w2(b) − w2(a)] − 1

2

n−1∑
i=1

[w(ti+1,n) − w(ti,n)]2.

In a similar way, by β(β − α) = 1
2 (β2 − α2) + 1

2 (α− β)2,
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S′
n =

1
2
[w2(b) − w2(a)] +

1
2

n−1∑
i=1

[w(ti+1,n) − w(ti,n)]2.

Hence, it remains to show that

lim
n→∞

Zn = lim
n→∞

1
2

n−1∑
i=1

[w(ti+1,n) − w(ti,n)]2 =
1
2
(b− a)

(in L2(Ω,F ,P)). An elegant way of doing that was shown to me by Alex
Renwick (for a different method see e.g. [20]). Note specifically that
random variables w(ti+1,n) − w(ti,n), 0 ≤ i ≤ n − 1, are independent
and have distribution N(0, 1

n (b − a)). By 1.2.32, their squares have the
gamma distribution with parameters 1

2 and 1
2

n
b−a and, by 1.2.33, the sum

of the squares has the gamma distribution with parameters n
2 and 1

2
n
b−a .

In particular, by 1.2.35, EZn = b − a and ‖Zn − 1
2 (b − a)‖L2(Ω,F,P) =

σ2
Zn

= 2 (b−a)2
n , which proves our claim. �

In what follows we will focus our attention on the Itô integral, which
corresponds to the natural choice ξi = ti. Note however, that other
choices are of interest as well. In particular, taking the midpoint ξi =
1
2 (ti + ti+1) leads to the so-called Stratonovich integral.

We fix a Brownian motion w(t), t ≥ 0 on (Ω,F ,P) and the natural
filtration Ft = σ(w(s), s ≤ t).

4.4.2 The integrands The integrands in the Itô integral will be square
integrable processes x = x(t, ω) that “do not depend on the future”. First
of all we require that x is jointly measurable; i.e. that it is measurable
as a function from ([a, b]×Ω,M([a, b])×F) to (R,M(R)). Secondly, we
require that

∫ b
a

∫
Ω
x2(t, ω) dP dt is finite. Thirdly, to avoid the possibility

of strategies dictated by knowledge of a future, we will assume that x
is progressively measurable which means that for every t ∈ [a, b],
x1Γ(t) is M([a, t]) ×Ft measurable, where Γ(t) = [0, t] × Ω.

A set A ∈ M([a, b]) × F is said to be progressively measurable if
A ∩ Γ(t) ∈ M([a, t]) × Ft. It is easy to check that the collection I of
progressively measurable sets forms a σ-algebra. For example, to check
that a countable union of elements of I belongs to I we use the formula
(
⋃∞
n=1An) ∩ Γ(t) =

⋃∞
n=1(An ∩ Γ(t)).

Furthermore, a process x is progressively measurable iff it is measur-
able with respect to I. Indeed, by definition x is progressively measurable
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iff for all t ∈ [a, b], x1Γ(t) is M([a, b]) ×Ft measurable. This means that

∀A∈M(R)∀t∈[a,b](x1Γ(t))−1(A) ∈ M([a, b]) ×Ft
⇐⇒ ∀A∈M(R)∀t∈[a,b] x

−1(A) ∩ 1Γ(t) ∈ M([a, b]) ×Ft,
⇐⇒ ∀A∈M(R) x

−1(A) ∈ I,

and this last relation means that x is I measurable.
An important corollary to this is that the space of square integrable

progressively measurable processes is a Hilbert space, or that it forms
a closed subset of square integrable functions on [a, b] × Ω. The former
space will be denoted L2

p = L2
p[a, b] = L2

p([a, b],Ω,F ,P,Ft).

The following lemma will be needed in 4.4.4, below.

4.4.3 Lemma Consider the space L2[a, b] of real-valued, square inte-
grable functions on [a, b], and the operators Tn, n ≥ 1 in this space given
by Tnx(t) =

∑n−2
i=0 αi(x)1[ti+1,ti+2)(t), where αi(x) = n

b−a
∫ ti+1

ti
x(s) ds

and ti = a+ i
n (b− a). Then ‖Tn‖ = 1 and limn→∞ Tnx = x.

Proof We have

‖Tnx‖2 =
n−2∑
i=0

α2
i (x)

b− a

n
=
n−2∑
i=0

n

b− a

(∫ ti+1

ti

x(s) ds
)2

≤
n−2∑
i=0

n

b− a

∫ ti+1

ti

x2(s) ds
∫ ti+1

ti

12 ds (Cauchy–Schwartz)

=
n−2∑
i=0

∫ ti+1

ti

x2(s) ds ≤ ‖x‖2.

Hence, ‖Tn‖ ≤ 1. For equality take xn(t) = 1[0,tn−1)(t).
To prove the rest note that if x = 1(c,d) where a ≤ c < d ≤ b then

Tnx(t) = x(t) for all n greater than n0 = n0(t), except perhaps for t = c

and t = d. Moreover, Tnx(t) ≤ 1[a,b], and so by the Lebesgue Dominated
Convergence Theorem Tnx converges to x, as n→ ∞. Since such x form
a linearly dense subset of L2[a, b], we are done.

4.4.4 A dense subset of L2
p: the collection of simple processes A process

is called simple if there exists an n ≥ 1, a partition a = t0 < t1 < · · · <
tn = b and xti ∈ L2(Ω,Fti ,P) such that

x(t, ω) =
n−1∑
i=0

xti(ω)1[ti,ti+1)(t) + xtn−1(ω)1{b}. (4.17)
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We note that a simple process is of necessity progressively measurable as
a sum of progressively measurable processes. Moreover, it is square inte-
grable. Indeed,

∫
Ω
x2(t, ω) dP(ω) equals

∑n−1
i=0 ‖xti‖2

L2(Ω,F,P)1[ti,ti+1)(t)+

‖xtn−1‖2
L2(Ω,F,P)1{b}, and

∫ b
a

∫
Ω
x2 dP dleb =

∑n−1
i=0 ‖xti‖2

L2(Ω,F,P)(ti+1 −
ti).

To prove that simple processes form a dense set in L2
p, take an x

from this space and note that for almost all ω, xω(t) = x(t, ω) belongs
to L2[a, b]. Hence, we may use the operators Tn from 4.4.3 to define a
simple process xn(t, ω) as Tnxω(t) for all such ω and put zero otherwise.
Now,

‖xn − x‖L2
p

=
∫

Ω

∫ b

a

[Tnx(t, ω) − x(t, ω)]2 dtdP(ω)

=
∫

Ω

‖Tnxω − xω‖2
L2[a,b] dP(ω). (4.18)

By Lemma 4.4.3, the integrand converges to zero and is bounded above
by 4‖xω‖2

L2[a,b]. Furthermore,
∫
Ω

4‖xω‖2
L2[a,b] dP(ω) = 4‖x‖L2

p
< ∞, so

that the integral in (4.18) converges to zero, as desired.

4.4.5 The Itô isometry The simple process (4.17) may be thought of
as a betting strategy in which we bet the amount xti at times ti to have

I(x) =
n−1∑
i=0

xti [w(ti+1) − w(ti)]

at time b. We will show that I(x) belongs to L2(Ω,F ,P) and that
‖I(x)‖L2(Ω,F,P) = ‖x‖L2

p
. This is the Itô isometry. For reasons to be

explained in 4.4.8 below, all we will use in the proof is that w(t), t ≥ 0
and w2(t) − t, t ≥ 0 are martingales.

First, writing (w(t)−w(s))2 as w2(t)−w2(s)−2w(t)w(s)+2w2(s), since
w(t) is a martingale, E

(
[w(t) − w(s)]2|Fs

)
= E

(
w2(t) − w2(s)|Fs

)
, t ≥

s. This in turn equals t− s since w2(t) − t, t ≥ 0 is a martingale. Next,
we show that xtiδi, where δi = w(ti+1) − w(ti), is square integrable
and ‖xtiδi‖2

L2(Ω,F,P) = (ti+1 − ti)‖xti‖2
L2(Ω,F,P). To this end, we note

that x2
ti1{x2

ti
≤k}δ

2
i ≤ kδ2i , k ∈ N is integrable and Fti measurable, and

calculate

E x2
ti1{x2

ti
≤k}δ

2
i = E E

(
x2
ti1{x2

ti
≤k}δ

2
i |Fti

)
= E x2

ti1{x2
ti
≤k}E

(
δ2i |Fti

)
= (ti+1 − ti)E x2

ti1{x2
ti
≤k},
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from which our claim follows by letting k → ∞. Now,

‖I(x)‖L2(Ω,F,P) =
n−1∑
i=0

E x2
tiδ

2
i + 2

∑
0≤i<j≤n−1

E xtixtjδiδj ,

and since the first sum equals
∑n−1
i=0 (ti+1−ti)E x2

ti = ‖x‖L2
p

it remains to
show that E [xtiδi][xtjδj ] = 0. Note that this last expectation exists, for
variables in brackets are square integrable. Moreover, E

(
δj |Ftj

)
equals

zero, w(t), t ≥ 0 being a martingale. Hence

E xtiδi xtjδj = E E
(
xtiδi xtjδj |Ftj

)
= E xtiδi xtj E

(
δj |Ftj

)
= 0,

for i < j, as desired.

4.4.6 Definition By 4.4.4 and 4.4.5 there exists a linear isometry
between L2

p and L2(Ω,F ,P). This isometry is called the Itô integral

and denoted I(x) =
∫ b
a
xdw.

4.4.7 Itô integral as a martingale It is not hard to see that taking
a < b < c and x ∈ L2

p[a, c] we have
∫ b
a
xdw =

∫ c
a
x1[a,b]×Ω dw. Hence, by

linearity
∫ c
a
xdw =

∫ b
a
xdw +

∫ c
b
xdw. Also, we have E

∫ c
a
xdw = 0 for

simple, and hence all processes x in L2
p[a, c], since E is a bounded linear

functional on L2(Ω,F ,P). Finally, E
(∫ c
b
xdw|Fb

)
= 0 where as before

Fb = σ(w(s), 0 ≤ s ≤ b). Indeed, if x is a simple process (4.17) (with b

replaced by c and a replaced by b), then E (xtiδi|Fti) = xtiE (δi|Fti) = 0,
for all 0 ≤ i ≤ n− 1, whence by the tower property E (xtiδi|Fb) = 0 as
well, and our formula follows.

Now, assume that x ∈ L2
p[0, t] for all t > 0. Then we may define y(t) =∫ t

0
xdw. The process y(t), t ≥ 0, is a time-continuous martingale with

respect to the filtration Ft, t ≥ 0, inherited from the Brownian motion.
Indeed, E (y(t)|Fs) = E

(∫ s
0
xdw|Fs

)
+ E

(∫ t
s
xdw|Fs

)
=
∫ s
0
xdw+ 0 =

y(s), because
∫ s
0
xdw is Fs measurable as a limit of Fs measurable

functions.

4.4.8 Information about stochastic integrals with respect to square inte-
grable martingales There are a number of ways to generalize the notion
of Itô integral. For example, one may relax measurability and integra-
bility conditions and obtain limits of integrals of simple processes in a
weaker sense (e.g. in probability and not in L2). The most important
fact, however, seems to be that one may define integrals with respect
to processes other than Brownian motion. The most general and yet
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plausible integrators are so-called continuous local martingales, but
in this note we restrict ourselves to continuous square integrable
martingales. These are time-continuous martingales y(t), t ≥ 0 with
E y2(t) < ∞, t ≥ 0, and almost all trajectories continuous. Certainly,
Brownian motion is an example of such a process. It may be proven that
for any such martingale there exists an adapted, non-decreasing process
a(t) such that y2(t)− a(t) is a martingale. A non-decreasing process
is one such that almost all paths are non-decreasing. For a Brownian
motion, a(t) does not depend on ω and equals t. Now, the point is again
that one may prove that the space L2

p[a, b] = L2
p[a, b, y] of progressively

measurable processes x such that E
∫ b
a
x2(s) da(s) is finite is isometri-

cally isomorphic to L2(Ω,F ,P). To establish this fact one needs to show
that simple processes form a linearly dense set in L2

p[a, b, y] and define
the Itô integral for simple processes as I(x) =

∑n−1
i=0 xti [y(ti+1)− y(ti)].

Again, the crucial step is establishing Itô isometry, and the reader now
appreciates the way we established it in 4.4.5.

4.4.9 Exercise Make necessary changes in the argument presented
in 4.4.5 to show the Itô isometry in the case of a square integrable
martingale.
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Dual spaces and convergence of probability
measures

Limit theorems of probability theory constitute an integral, and beauti-
ful, part of this theory and of mathematics as a whole. They involve, of
course, the notion of convergence of random variables and the reader has
already noticed there are many modes of convergence, including almost
sure convergence, convergence in L1, and convergence in probability. By
far the most important mode of convergence is so-called weak conver-
gence. Strictly speaking, this is not a mode of convergence of random
variables themselves but of their distributions, i.e. measures on R. The
famous Riesz Theorem, to be discussed in 5.2.9, says that the space
BM(S) of Borel measures on a locally compact topological space S is
isometrically isomorphic to the dual of C0(S). This gives natural ways
of defining new topologies in BM(S) (see Section 5.3). It is almost mag-
ical, though in fact not accidental at all, that one of these topologies is
exactly “what the doctor prescribes” and what is needed in probability.
This particular topology is, furthermore, very interesting in itself. As one
of the treats, the reader will probably enjoy looking at Helly’s principle,
so important in probability, from the broader perspective of Alaoglu’s
Theorem.

We start this chapter by learning more on linear functionals. An im-
portant step in this direction is the famous Hahn–Banach Theorem on
extending linear functionals; as an application we will introduce the no-
tion of a Banach limit. Then, in Section 5.2 we will study examples of
dual spaces, and in Section 5.3 some topologies in the dual of a Ba-
nach space. Finally, we will study compact sets in the weak topology
and approach the problem of existence of Brownian motion from this
perspective.

147
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5.1 The Hahn–Banach Theorem

5.1.1 Definition If X is a linear normed space, then the space of
linear maps from X to R is called the space of linear functionals. Its
algebraic subspace composed of bounded linear functionals is termed the
dual space and denoted X∗. The elements of X∗ will be denoted F,G,

etc. The value of a functional F on a vector x will be denoted Fx or
〈F, x〉. In some contexts, the letter notation is especially useful showing
the duality between x and F (see below).

Let us recall that boundedness of a linear functional F means that
there exists an M > 0 such that

|Fx| ≤M‖x‖, x ∈ X.

Note that Fx is a number, so that we write |Fx| and not ‖Fx‖.

5.1.2 Theorem Let F be a linear functional in a normed space X,

and let L = {x ∈ X : Fx = 0}. The following are equivalent:

(a) F is bounded,
(b) F is continuous,
(c) L is closed,
(d) either L = X or there exists a y ∈ X and a number r > 0 such that

Fx 
= 0 whenever ‖x− y‖ < r.

Proof Implications (a) ⇒ (b) ⇒ (c) are immediate (see 2.3.3). If L 
= X,

then there exists a y ∈ X \L, and if (c) holds then X \L is open, so that
(d) holds also.

To prove that (d) implies (a), let B(y, r) = {x : ‖x−y‖ < r} and note
that the sign of Fx is the same for all x ∈ B(y, r). Indeed, if Fx < 0
and Fx′ > 0 for some x, x′ ∈ B(y, r), then the convex combination
xc = Fx′

Fx′−Fxx + −Fx
Fx′−Fxx

′ satisfies Fxc = Fx′Fx−FxFx′
Fx′−Fx = 0, contrary

to our assumption (note that B(y, r) is convex). Hence, without loss of
generality we may assume that Fx > 0 for all x ∈ B(y, r). Let z 
= 0
be an arbitrary element of X, and set x+ = y + r

‖z‖z ∈ B(y, r) and

x− = y − r
‖z‖z ∈ B(y, r). Since Fx+ > 0, −Fz < Fy

r ‖z‖. Analogously,

Fx− > 0 implies Fz < Fy
r ‖z‖. Thus, (a) follows with M = Fy

r .

5.1.3 Examples of linear functionals If (Ω,F ,P) is a probability space
then FX = EX is a bounded linear functional on X = L1(Ω,F ,P).
More generally, one may consider any measure space (Ω,F , µ) and a
functional Fx =

∫
xdµ on L1(Ω,F , µ). If µ is finite, the same formula
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defines a linear functional on the space BM(Ω) of bounded measurable
functions (endowed with the supremum norm). If H is a Hilbert space
and y ∈ H, then Fx = (x, y) is a bounded linear functional in H. In
3.1.28 we have seen that all functionals in H are of this form.

Let (Ω,F , µ) be a measure space, and let p > 1 be a number. As-
sume that y ∈ Lq(Ω,F , µ), where 1

p + 1
q = 1. By the Hölder inequality

the absolute value of
∫
Ω
xy dµ is no greater than ‖x‖Lp(Ω,F,µ) times

‖y‖Lq(Ω,F,µ), and therefore is finite for all x ∈ Lp(Ω,F , µ). Linearity of
the map Fx =

∫
Ω
xy dµ on X = Lp(Ω,F , µ) is obvious, and another ap-

plication of the Hölder inequality shows that F is bounded. In a similar
way one proves that if (Ω,F , µ) is a measure space and y is essentially
bounded, then Fx =

∫
xy dµ is a linear functional on L1(Ω,F , µ).

5.1.4 Duality Let X be a Banach space and X∗ be its dual. Fix x ∈ X,

and consider a linear map X∗ � F → F (x). This is clearly a bounded
linear functional on X∗ for |F (x)| ≤ ‖x‖X‖F‖X∗, so that its norm is no
greater than ‖x‖X. In fact we will be able to prove later that these norms
are equal, see 5.1.15 below. The main point to remember, however, is that
sometimes it is profitable to view X as a subset of X∗∗. Equivalently, one
should remember about the duality between X and X∗ which is amply
expressed in the notation F (x) = 〈F, x〉. In this notation, depending on
needs, one may either interpret F as fixed and x as arguments, or the
opposite: x as fixed and F as arguments.

5.1.5 Lemma Suppose that X is a normed space, Y is its algebraic
subspace and x 
∈ Y. Set

Z = {z ∈ X : z = y + tx for some y ∈ Y, t ∈ R}.

Then, Z is an algebraic subspace of X, and it is closed whenever Y is
closed. The representation z = y + tx of an element of Z is unique.

Proof For uniqueness of representation, note that if z = y+tx = y′+t′x
where y, y′ ∈ Y and t, t′ ∈ R and (t, x) 
= (t′, y′) then we must have t 
= t′,
and consequently x = 1

t−t′ (y
′ − y) ∈ Y, a contradiction.

Z is certainly an algebraic subspace of X; we need to prove it is closed
if Y is closed. Suppose that yn ∈ Y and tn ∈ R and that zn = yn + tnx

converges. We claim first that tn is bounded; indeed if this is not the
case, then for some sequence nk, 1

tnk
ynk

+ x = 1
tnk

znk
would converge

to zero, for zn is bounded. This, however, is impossible since vectors
1
tnk

ynk
belong to a closed set Y and −x 
∈ Y. Secondly, tn may not have
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two accumulation points, i.e. there are no two subsequences, say tnk
and

tn′
k
, such that tnk

converges to t and tn′
k

converges to t′ where t 
= t′.
Indeed, if this was the case, ynk

would converge to some y ∈ Y and yn′
k

would converge to some y′ ∈ Y. However, zn converges, and so ynk
+tnk

x

would have to have the same limit as yn′
k

+ tn′
k
x. Therefore, we would

have y + tx = y′ + t′x, which we know is impossible.
Since tn is bounded and has at most one accumulation point, it con-

verges to, say, t. It implies that yn converges to, say, y. Since Y is closed,
y belongs to Y and so zn converges to y + tx ∈ Z.

5.1.6 Lemma Under notations of 5.1.5, suppose that there exists
a linear functional F ∈ Y∗ and a number M > 0 such that |Fy| ≤
M‖y‖, y ∈ Y. Then there exists an F̃ ∈ Z∗ such that F̃ y = Fy, y ∈ Y

and |Fz| ≤M‖z‖, z ∈ Z.

Proof Note that we do not assume that Y is closed. If a linear functional
F̃ extends F to Z, then for z = y + tx we must have F̃ z = F̃ y + tF̃ x =
Fy+tF̃ x. Thus, by Lemma 5.1.5, F̃ is uniquely determined by a number
a = F̃ x. The lemma reduces thus to saying that one may choose an a

such that

−M‖y + tx‖ ≤ Fy + ta ≤M‖y + tx‖, for all y ∈ Y. (5.1)

This is trivial if t = 0, and in the other case, dividing by t, we see after
some easy algebra that this is equivalent to

−M‖y + x‖ ≤ Fy + a ≤M‖y + x‖, for all y ∈ Y. (5.2)

(Beware the case t < 0!) The existence of the a we are looking for is
thus equivalent to

sup
y∈Y

{−Fy −M‖y + x‖} ≤ inf
y∈Y

{−Fy +M‖y + x‖} (5.3)

or, which is the same,

−Fy −M‖y + x‖ ≤ −Fy′ +M‖y′ + x‖, for all y, y′ ∈ Y. (5.4)

Since F is bounded on Y, however, we have:

−Fy + Fy′ = F (y′ − y) ≤M‖y′ − y‖ ≤M [‖y′ + x‖ + ‖ − x− y‖]
= M‖y′ + x‖ +M‖x+ y‖,

which proves our claim. Note that the inequality in (5.3) may be strict:
we may not claim that the extension of the functional F is unique.
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5.1.7 Exercise In the situation of the preceding lemma, assume ad-
ditionally that Y is closed and F (y) = 0 for y ∈ Y. Take M = 1 and
check that a = infy∈Y ‖x− y‖ > 0 does the job in the proof.

5.1.8 Partially ordered sets A set S is said to be partially ordered
if there exists a relation R in S (a relation in S is a subset of S × S),
such that (a) (p1, p2) ∈ R and (p2, p1) ∈ R implies p1 = p2, and (b)
(p1, p2) ∈ R and (p2, p3) ∈ R implies (p1, p3) ∈ R. Instead of (p1, p2) ∈ R

one writes then p1 ≤ p2. We say that partially ordered set S is linearly
ordered if for all p1, p2 ∈ S either p1 ≤ p2 or p2 ≤ p1.

An element p ∈ S is said to be an upper bound for a set S′ ⊂ S, if
p′ ≤ p for all p′ ∈ S′. Note that p does not have to belong to S′.

An element pm ∈ S′ ⊂ S is said to be maximal in S′ if for all p′ ∈ S′,
pm ≤ p′ implies pm = p′.

5.1.9 Exercise Prove by example that a maximal element may be
not unique.

5.1.10 Kuratowski–Zorn Lemma If S is partially ordered and for any
linearly ordered subset of S there exists its upper bound, then there
exists a maximal element of S. We omit the proof of this famous result.

5.1.11 Exercise Let Ω be a non-empty set, and let F be a family
of subsets of Ω. Suppose that unions of elements of F belong to F . An
example of such a family is the family of all sets that contain a fixed
element p0 ∈ S. Prove that there exists a set Am ∈ F such that Am ⊂ A

implies Am = A for all A ∈ F .

5.1.12 The Hahn–Banach Theorem Let M > 0 and Y be an algebraic
subspace of a normed space X. Suppose that F is a linear functional
on Y such that |Fy| ≤ M‖y‖, for y ∈ Y. Then, there exists a linear
functional F̃ on X such that F̃ y = Fy, y ∈ Y and |Fx| ≤M‖x‖, x ∈ X.

Proof We may assume that Y 
= X, for otherwise the theorem is trivial.
Consider the family S of pairs (Z, FZ) of subspaces Z and functionals
FZ on Z such that

(a) Y ⊂ Z,

(b) FZ(y) = F (y), for all y ∈ Y,

(c) |FZz| ≤M‖z‖, for z ∈ Z.
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By Lemma 5.1.6, S is non-empty. We will write (Z, FZ) ≤ (Z′, FZ′) if
Z ⊂ Z′, and FZz = FZ′z, for z ∈ Z. It is easy to see that S with this
relation is a partially ordered set.

Suppose for the time being that we may prove that there exists a
maximal element (Zm, Fm) of S. Then we would have Zm = X, for
otherwise by 5.1.6 we could extend Fm to a subspace containing Zm as
a proper subset, contrary to the maximality of (Zm, Fm).

Thus, by the Kuratowski–Zorn Lemma it remains to prove that every
linearly ordered subset S′ of S has an upper bound. Let the elements of
S′ be indexed by an abstract set U : S′ = {(Zu, Fu), u ∈ U}; note that
we write Fu instead of FZu

. Let Zb =
⋃
u∈U Zu (“b” is for “bound”).

If x ∈ Zb and y ∈ Zb then there exist u, v ∈ U such that x ∈ Zu

and y ∈ Zv. Since S′ is linearly ordered, we either have Zu ⊂ Zv or
Zv ⊂ Zu. Thus, both x and y belong to either Zu or Zv, and so does
their linear combination. Consequently, a linear combination of elements
of Zb belongs to Zb; Zb is an algebraic subspace of X.

Similarly one proves that if z ∈ Zu ∩ Zv for some u, v ∈ U , then
Fuz = Fvz. This allows us to define a functional Fb on Zb by the formula:

Fb(z) = Fu(z), whenever z ∈ Zu,

for the definition does not depend on the choice of u. Arguing as above
one proves that Fb is linear. Of course, the pair (Zb, Fb) satisfies (a)–(c)
and is an upper bound for S′.

5.1.13 Separating vectors from subspaces The first application of the
Hahn–Banach Theorem is that one may separate vectors from subspaces.
To be more specific: let Y be an algebraic subspace of a Banach space,
and x 
∈ Y. There exists a bounded linear functional F on X such that
Fx 
= 0, and Fy = 0, y ∈ Y. To this end, one defines first an F on Z

from 5.1.5 by F (y + tx) = td(x,Y) = t infy∈Y ‖x − y‖. By 5.1.7 this is
a bounded linear functional on Z such that |Fz| ≤ ‖z‖, for z ∈ Z, and
Fx 
= 0. By the Hahn–Banach Theorem this functional may be extended
to the whole of X in such a way that ‖F‖X∗ ≤ 1.

5.1.14 Exercise A map p : X → R+ is called a Banach functional
if p(x+ y) ≤ p(x)+ p(y) and p(tx) = tp(x) for x and y in X and t ∈ R+.

An example of a Banach functional is p(x) = M‖x‖, M > 0. Repeat the
argument from 5.1.6 to show the following form of the Hahn–Banach
Theorem. If p is a Banach functional on X, Y is a subspace of X and F
is a linear functional on Y such that |F (y)| ≤ p(y), y ∈ Y, then there
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exists a linear functional F̃ on X such that F̃ (y) = F (y), y ∈ Y and
|F (x)| ≤ p(x), x ∈ X.

5.1.15 More on duality Let x 
= 0 be a vector in a Banach space. There
exists a functional F ∈ X∗ such that ‖F‖ = 1, and Fx = ‖x‖. Indeed,
let Y be the subspace of X defined by Y = {y ∈ X; y = tx, t ∈ R}.
The functional F on y, given by F (tx) = t‖x‖, satisfies Fx = ‖x‖, and
‖F‖Y∗ = maxF (| x

‖x‖ |, | −x‖x‖ |) = 1. Therefore, the extension of F, that
exists by the Hahn–Banach Theorem, satisfies all the desired properties.
In particular we obtain

‖x‖ = sup
‖F‖X∗=1

|Fx| = sup
‖F‖X∗=1

|〈F, x〉|. (5.5)

This should be compared to the fact that by definition

‖F‖X∗ = sup
‖x‖=1

|Fx| = sup
‖x‖=1

|〈F, x〉|, (5.6)

as this again shows the duality between X and X∗. As a by-product we
obtain the fact that the norms considered in 5.1.4 are equal. In other
words, one may consider X as a subspace of X∗∗, and the norms of x as
an element of X and as a functional on X∗ are the same.

There is, however, an important difference between (5.5) and (5.6).
Indeed, while it is easy to show by example that the supremum in the
latter equality does not have to be attained at a vector x ∈ X, we have
constructed the functional F for which the supremum in the former
equality is attained. This suggests the following problem. We know that
continuous functions attain their suprema on compact sets; is there a
topology in X∗ under which the function F �→ 〈F, x〉 is continuous for
all x, and the set of functionals with norm one is compact? The answer
is affirmative, and it turns out that this topology is simply the weakest
topology such that the functions F �→ 〈F, x〉 are continuous for all x ∈ X,

called the weak∗ topology. This is the subject of Alaoglu’s Theorem 5.7.5,
below. This topology is exactly the topology that this chapter is devoted
to.

Before closing this subsection, we introduce the notion of a Banach
limit, a tool of great usefulness in functional analysis, ergodic theory,
etc. See e.g. 5.3.6 for a simple application.

5.1.16 Banach limit As in 2.3.9, let L be the left translation L (ξn)n≥1

= (ξn+1)n≥1 in l∞, and let e be the member of l∞ with all coordinates
equal to 1. There exists a functional B on l∞ such that ‖B‖ = 1,
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(a) BL = B, and Be = 1,
(b) B (ξn)n≥1 ≥ 0 provided ξn ≥ 0, n ≥ 1,
(c) lim infn→∞ ξn ≤ B (ξn)n≥1 ≤ lim supn→∞ ξn,

(d) B (ξn)n≥1 = limn→∞ ξn if this limit exists.

Such a functional is called a Banach limit.

Proof Let Y = Range(L − I) ⊂ l∞, where I is the identity operator.
Consider

a = inf
y∈clY

‖e− y‖ = inf
y∈Y

‖e− y‖ = inf
x∈l∞

‖e− (Lx− x)‖.

Taking x = 0, we have a ≤ 1. Also, if we had ‖e−(Lx−x)‖ < 1 for some
x ∈ l∞, then all the coordinates of Lx−x = (ξn+1 − ξn)n≥1 would need
to be positive, so that x = (ξn)n≥1 would be increasing. Since x ∈ l∞,
(ξn)n≥1 would need to converge and we would have limn→∞(ξn+1−ξn) =
0 and, hence, ‖e− (Lx− x)‖ = 1. This contradiction shows that a = 1.

By 5.1.7 and the Hahn–Banach Theorem there exists a functional B
such that ‖B‖ = 1, Be = 1 and By = 0, y ∈ clY. In particular (a) holds.

Suppose that Bx < 0 even though x 
= 0 has non-negative coordinates.
Then ‖e− 1

‖x‖x‖ ≤ 1 and yet B(e− 1
‖x‖x) > 1. This contradicts ‖B‖ = 1.

Hence, (b) follows.
We are left with proving (c), condition (d) following directly from

(c). We will show that B (ξn)n≥1 ≥ l := lim supn→∞ ξn; the other
inequality will follow from this by noting that lim supn→∞(−ξn) =
− lim infn→∞ ξn. Take ε > 0 and choose an n0 such that ξn ≥ l− ε, n ≥
n0. By (b), B (ξn)n≥1 = BLn0 (ξn)n≥1 = B (ξn0+n)n≥1 . Hence by (b) we
obtain B (ξn+n0 − (l − ε))n≥1 ≥ 0, so that B (ξn)n≥1 = B (ξn0+n)n≥1 ≥
l − ε. Since ε is arbitrary, we are done.

5.1.17 Exercise Prove (d) directly without referring to (c), by noting
that c0 ⊂ clY.

5.2 Form of linear functionals in specific Banach spaces

In 3.1.28 we saw that all bounded linear functionals on a Hilbert space
H are of the form Fx = (x, y) where y is an element of H. In this
section we will provide forms of linear functionals in some other Banach
spaces. It will be convenient to agree that from now on the phrase “a
linear functional” means “a bounded linear functional”, unless stated
otherwise.
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5.2.1 Theorem Let X = c0 be the space of sequences x = (ξn)n≥1

such that limn→∞ ξn = 0, equipped with the supremum norm. F is a
functional on X if and only if there exists a unique sequence (αn)n≥1 ∈ l1

such that

Fx =
∞∑
n=1

ξnαn (5.7)

where the last series converges uniformly. Also, ‖F‖c∗0 = ‖ (αn)n≥1 ‖l1 .
In words: c∗0 is isometrically isomorphic to l1.

Proof Define ei = (δi,n)n≥1 . Since ‖∑n
i=1 ξiei − x‖ = supi≥n+1 |ξi|

which tends to zero as n → ∞, we may write x = limn→∞
∑n
i=1 ξiei =∑∞

i=1 ξiei. In particular, (en)n≥1 is linearly dense in c0. This is crucial
for the proof.

If (αn)n≥1 belongs to l1, then

∞∑
n=1

|ξnαn| ≤ ‖x‖c0
∞∑
n=1

|αn| = ‖x‖c0‖ (αn)n≥1 ‖l1 (5.8)

and the formula (5.7) defines a bounded linear functional on c0.

Conversely, suppose that F is a linear functional on c0. Define αn =
Fen, and xn =

∑n
i=1(sgnαi)ei ∈ c0. We have ‖xn‖c0 ≤ 1, and Fxn =∑n

i=1 |αi|. Since |Fx| ≤ ‖F‖, if ‖x‖ ≤ 1, (αn)n≥1 belongs to l1 and its
norm in this space is does not exceed ‖F‖. Using continuity and linearity
of F, for any x ∈ c0,

Fx = F lim
n→∞

n∑
i=1

ξiei = lim
n→∞

F
n∑
i=1

ξiei

= lim
n→∞

n∑
i=1

ξiFei = lim
n→∞

n∑
i=1

ξiαi =
∞∑
n=1

ξiαi. (5.9)

Estimate (5.8) proves that the last series converges absolutely and that
‖F‖ ≤ ‖ (αn)n≥1 ‖l1 . Combining this with (5.8) we obtain ‖F‖c∗0 =
‖ (αn)n≥1 ‖l1 .

5.2.2 Exercise State and prove an analogous theorem for the space
c of convergent sequences.
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5.2.3 Theorem Let X = l1. F is a functional on X if and only if there
exists a unique sequence (αn)n≥1 ∈ l∞ such that

Fx =
∞∑
n=1

ξnαn, x = (ξn)n≥1 ∈ l1 (5.10)

where the last series converges uniformly. Also, we have ‖F‖(l1)∗ =
‖ (αn)n≥1 ‖l∞ . In other words (l1)∗ is isometrically isomorphic to l∞.

Proof If (αn)n≥1 belongs to l∞ then the series (5.10) converges abso-
lutely, and the series of absolute values is no greater than ‖x‖l1 times
‖ (αn)n≥1 ‖l∞ . In particular, ‖F‖ ≤ ‖ (αn)n≥1 ‖l∞ .

Conversely, suppose that F is a linear functional on l1, and define αn =
Fen where as before ei = (δi,n)n≥1 . Since ‖en‖l1 = 1, supn |αn| ≤ ‖F‖,
proving that (αn)n≥1 belongs to l∞, and that its norm in l∞ does not
exceed ‖F‖. Now, ‖x−∑n

i=1 ξiei‖l1 =
∑∞
i=n+1 |ξi| so that x =

∑∞
i=1 ξiei.

Therefore, we may argue as in (5.9) to obtain (5.10). This in turn implies
that ‖F‖ ≤ ‖ (αn)n≥1 ‖l∞ , and so the two quantities are equal.

5.2.4 Remark The theorems proven above illustrate in particular the
fact that X may be viewed as a subspace of X∗∗. In our case we have
c0 ⊂ l1. It is also worth noting how duality is expressed in formulae (5.7)
and (5.10).

5.2.5 Exercise Let l1r , r > 0 be the space of sequences (ξn)n≥1 such
that

∑∞
n=1 |ξn|rn < ∞. When equipped with the norm ‖(ξn)n≥1‖ =∑∞

n=1 |ξn|rn, l1r is a Banach space. Prove that this space is isomorphic
to l1 and use this result to find the form of a linear functional on l1r .

5.2.6 Theorem Let X be the space C[0, 1] of continuous functions on
the interval [0, 1]. F is a linear functional on X iff there exists a (unique)
signed Borel measure µ on [0, 1] such that

Fx =
∫ 1

0

xdµ, (5.11)

and ‖F‖ = ‖µ‖BM[0,1].

Proof Certainly, if µ is a signed measure then (5.11) defines a linear
functional on C[0, 1] and ‖F‖ ≤ ‖µ‖. To complete the proof we show
that for a given functional F there exists a µ such that (5.11) holds and
‖µ‖ ≤ ‖F‖, and then prove uniqueness.
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The space C[0, 1] is a subspace of the space BM [0, 1] of bounded mea-
surable functions on this interval. Let F be an extension of our functional
to BM [0, 1], which exists by the Hahn–Banach Theorem. (This exten-
sion may perhaps be not unique but this will not concern us.) Define

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t < 0,

F1[0,t], 0 ≤ t ≤ 1,

F1[0,1], t ≥ 1.

(5.12)

If a < 0 and b > 1 and a = t0 ≤ t1 ≤ ... ≤ tn = b, where ti < 0 ≤ ti+1,

and tj ≤ 1 < tj+1, for some 1 ≤ i ≤ j < n, then

n∑
k=1

|y(tk) − y(tk−1)|

= |y(ti+1)| +
j∑

k=i+2

|y(tk) − y(tk−1)| + |y(tj+1) − y(tj)|

= |F1[0,ti+1]| +
j∑

k=i+2

|F1(tk−1,tk]| + |F1(tj ,1]|

= F

(
βi+11[0,ti+1] +

j∑
k=i+2

βk1(tk−1,tk] + βj+11(tj ,1]

)

where βi+1 = sgnF1[0,ti+1], βk = sgnF1(tk−1,tk], k = i + 2, ..., j, and
βj+1 = sgnF1(tk,t1]. Above, the argument of F is a function with norm
1 in BM [0, 1], hence, the whole expression is bounded by ‖F‖. This
shows that var[y, a, b] ≤ ‖F‖ and so var[y,−∞,∞] ≤ ‖F‖. Moreover,
condition (1.22) is satisfied. Let µ be the unique Borel measure on R

corresponding to the regularization of y. Even though µ is a measure on
R, it is concentrated on [0, 1] for y is constant outside of this interval.
Hence, µ may be identified with a measure on [0, 1]. Also, µ({0}) =
y(0) − y(0−) = F1{0}, and ‖µ‖ = var[y,−∞,∞] ≤ ‖F‖.

For x ∈ C[0, 1] define xn =
∑n
i=1 x(

i
n )1( i−1

n , i
n ] on (0, 1] and xn(0) =

x( 1
n ). By uniform continuity of x, xn tends to x in BM [0, 1]. There-

fore, Fx = limn→∞ Fxn. On the other hand, Fxn =
∑n
i=1 x(

i
n )[y( in ) −

y( i−1
n )] + x( 1

n )1{0}. The sum here is an approximating sum of the Rie-
mann–Stieltjes integral of x with respect to y. By 1.3.8, this sum con-
verges to the same limit as the corresponding approximating sum of the
Riemann–Stieltjes integral of x with respect to the regularization yr of
y, for y(0+) = y(0). Since µ(−∞, t] = yr(t), t ∈ R, Fx is the limit of
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i=1 x(

i
n )µ( i−1

n , in ] + x( 1
n )µ({0}), which by the Lebesgue Dominated

Convergence Theorem equals
∫
[0,1]

xdµ.
To prove uniqueness of representation (5.11), assume that µ and ν

are two measures such that this formula holds. Let µ = µ+ − µ− and
ν = ν+ − ν−, for some positive measures µ+, µ−, ν+, and ν− on [0, 1].
Then

∫
xd(µ+ + ν−) =

∫
xd(ν+ + µ−), for all x ∈ C[0, 1], which by

1.2.20 implies µ+ + ν− = ν+ + µ−, and so µ = ν.

5.2.7 Exercise In Subsection 1.2.20 we dealt with measures on R and
in the concluding step of the proof above we needed to apply 1.2.20 to
two measures on [0, 1]. Fill out the necessary details.

5.2.8 Remark It is not true that for any functional F on C[0, 1]
there exists a regular function y of bounded variation on [0, 1] such that

Fx =
∫
xdy, for all x ∈ C[0, 1]. (5.13)

The assumption that y is right-continuous does not allow us to express
Fx = x(0) in this form. However, one may prove that for any F on
C[0, 1] there exists a unique function of bounded variation on [0, 1], right-
continuous in (0, 1), such that y(0) = 0 and (5.13) holds. In a similar
way, there is no one-to-one correspondence between measures on {−∞}∪
R∪{∞} and functions of bounded variation on R such that (1.22) holds,
for the measure of {−∞} may possibly be non-zero.

5.2.9 Riesz Theorem In Theorem 5.2.6, the assumption that we are
dealing with functions at [0, 1] is inessential. In particular, we could con-
sider any interval [a, b], half-axis (−∞, a] or [a,+∞), with or without
endpoints, or the whole of R; we could also include one or both points at
infinity (see below). From the topological point of view it is the assump-
tion that we consider functions defined on a locally compact topological
space that is important. A famous Theorem of Riesz says what fol-
lows.

Let S be a locally compact topological space, and let C0(S) be the space
of continuous functions vanishing at infinity. F is a functional on C0(S)
iff there exist a finite (signed) measure on S such that Fx =

∫
S
xdµ.

Moreover, ‖F‖C∗
0 (S) is equal to the total variation of µ.

We note that this theorem includes not only 5.2.6 but also 5.2.1 and
5.2.2 as special cases (see 2.2.37). Corollary 5.2.10 and Exercise 5.2.11
below are also instances of this result, but we will derive them from 5.2.6
without referring to the Riesz Theorem. The proof of the Riesz Theorem
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may be found e.g. in [103]. It is important to note that the measure in
the Riesz Theorem is non-negative iff F maps the non-negative cone
C+

0 (S) of all non-negative numbers into R+ ([103]). Moreover, it is inner
regular, i.e. for any ε > 0 and any open set G there exists its compact
subset K of G such that µ(G \K) < ε.

5.2.10 Corollary For any linear functional on C[−∞,∞] there exists
a unique Borel measure µ on R and two unique real numbers a and b

such that

Fx =
∫
xdµ+ ax(+∞) + bx(−∞). (5.14)

Proof By 2.2.31, C[−∞,∞] is isomorphic to C[0, 1] and the isomorphism
I : C[0, 1] → C[−∞,∞] is given by Ix(τ) = x( 1

π arctan τ + 1
2 ). If F is

a functional on C[−∞,∞], then F ◦ I is a functional on C[0, 1], and
thus we have F ◦ Ix =

∫
xdν for some measure ν on [0, 1]. Now, for

y ∈ C[−∞,∞],

Fy = F ◦ I ◦ I−1y =
∫
I−1y dν =

∫
y ◦ f dν,

where f(ς) = tan(πς − π
2 ) is a map from [0, 1] to [−∞,∞]. Let ν =

ν+ − ν− be a representation of ν and let ν+
f and ν−f be the transports

of measures ν+ and ν− via f. Note that ν+ and ν− are measures on
{−∞} ∪ R ∪ {∞}. Let the measures µ+ and µ− on R be restrictions of
ν+ and ν− to R, respectively. Then

Fy =
∫

[0,1]

y ◦ f dν+ −
∫

[0,1]

y ◦ f dν−

=
∫
{−∞}∪R∪{∞}

y dν+
f −

∫
{−∞}∪R∪{∞}

y dν−f

=
∫

R

y dµ+ ay(+∞) + by(−∞)

where µ = µ+−µ−, a = ν+
f ({+∞})−ν−f ({+∞}), and b = ν+

f ({−∞})−
ν−f ({−∞}). Uniqueness is proven as in 5.2.6.

5.2.11 Exercise Using 5.2.10 find the form of linear functionals on
C0(R), and on the space of functions that vanish at infinity and have a
finite limit at −∞.

5.2.12 Exercise Find the form of a linear functional on C0(G) where
G is the Kisyński group.
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5.2.13 Corollary If T is an operator on C0(R) that commutes with
all translations Tt, t ≥ 0, given by Ttx(τ) = x(τ + t), then there exists a
unique (signed) Borel measure µ on R such that Tx(τ) =

∫
x(τ+ς)µ( dς).

Proof Define Fx = Tx(0). F is a bounded linear functional on C0(R).
Hence (see 5.2.11) there exists a charge µ such that Tx(0) =

∫
x(ς)µ( dς).

We have

Tx(τ) = TτTx(0) = TTτx(0) =
∫
Tτx(ς)µ( dς) =

∫
x(τ + ς)µ( dς).

Uniqueness is obvious.

5.2.14 Remark By the remark at the end of 5.2.9, the measure in the
corollary above is non-negative iff T maps the non-negative cone C+

0 (R)
into itself.

Our next goal is to find the form of a functional on L1(Ω,F , µ). Before
we will do that, however, we need a lemma.

5.2.15 Lemma Suppose that (Ω,F , µ) is a measure space and that
F is a linear functional on L1(Ω,F , µ). There exist two functionals F+

and F− such that F = F+ − F−, and F+x and F−x are non-negative
whenever x is (a.e.).

Proof If x ≥ 0, define F+x = sup0≤y≤x Fy. This is a finite number,
since for 0 ≤ y ≤ x, |Fy| ≤ ‖F‖‖y‖ ≤ ‖F‖‖x‖. Moreover,

F+x ≥ 0 and ‖F+x‖ ≤ ‖F‖‖x‖. (5.15)

We have (a) F+(x1 + x2) = F+(x1) + F+(x2), for x1, x2 ≥ 0 and (b)
F+(αx) = αF+(x) for x ≥ 0 and non-negative number α. The proof
of (b) is immediate. To prove (a), for any ε > 0 choose 0 ≤ yi ≤ xi
such that Fyi > F+xi − ε, i = 1, 2. Then, 0 ≤ y1 + y2 ≤ x1 + x2, and
F+(x1 + x2) ≥ F (y1 + y2) ≥ F+x1 + F+x2 − 2ε. Thus F+(x1 + x2) ≥
F+x1 + F+x2. For the other inequality, we note that for every ε > 0
there exists a 0 ≤ y ≤ x1 + x2 such Fy ≥ F+(x1 + x2) − ε. Then
y1 = min(y, x1), satisfies 0 ≤ y1 ≤ x1.Moreover, y2 = y−y1 equals either
0 or y − x1 and so is no greater than x2. Since we have y1 + y2 = y,

F+x1 + F+x2 ≥ Fy1 + Fy2 = F (y1 + y2) ≥ F+(x1 + x2) − ε. This
completes the proof of (a).

Now, one checks that the functional F+x = F+x+ − F+x− where
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x+ = max(x, 0) and x− = max(−x, 0) is linear, and F+x is non-negative
whenever x ≥ 0. F+ is also bounded since by (5.15),

‖F+x‖ = ‖F+x+ − F+x−‖ ≤ ‖F+x+‖ + ‖F+x−‖
≤ ‖F‖[‖x+‖ + ‖x−‖] = ‖F‖ ‖x‖.

It remains to check that a bounded linear functional F−x = F+x −
Fx maps non-negative functions into non-negative numbers, but this is
obvious by definition of F+.

5.2.16 Theorem Let (Ω,F , µ) be a σ-finite measure space. F is a
bounded linear functional on X = L1(Ω,F , µ) iff there exists a function
y ∈ L∞(Ω,F , µ) such that

Fx =
∫

Ω

xy dµ. (5.16)

In such a case, ‖F‖ = ‖y‖L∞(Ω,F,µ).

Proof The “if part” is immediate and we will restrict ourselves to proving
the converse. Also, to prove the last statement of the theorem it suffices
to show ‖y‖ ≤ ‖F‖ since the other inequality is immediate from (5.16).

1 We will show that if the theorem is true for finite µ, then it also
holds for σ-finite µ. To see that let Ω =

⋃
n≥1 Ωn, where Ωn are disjoint

and µ(Ωn) < ∞. For all n ≥ 1 let Xn = L1(Ωn,Fn, µn) where Fn is
the σ-algebra of measurable subsets of Ωn, and µn is the restriction
of µ to this σ-algebra. Consider the restriction Fn of F to Xn. Then
‖Fn‖X∗

n
≤ ‖F‖X∗ and hence by assumption there exists a function yn ∈

L∞(Ωn,Fn, µn) such that for all x ∈ Xn, Fnx =
∫
xyn dµn =

∫
xyn dµ,

and ‖yn‖ ≤ ‖Fn‖. Let us extend each yn to the whole of Ω by putting
yn(ω) = 0 for ω 
∈ Ωn.Define also y =

∑∞
n=1 yn, which amounts to saying

that y(ω) = yn(ω) for ω ∈ Ωn. Take an x ∈ X and define xn = x1Ωn
.

Then ‖∑n
i=1 xi−x‖ =

∫
Ω\⋃n

i=1 Ωi
|x|dµ tends to zero, which means that

limn→∞
∑n
i=1 xi = x in the norm in X. On the other hand, xn may be

identified with an element of Xn. Therefore,

Fx = lim
n→∞

n∑
i=1

Fxi = lim
n→∞

n∑
i=1

Fixi = lim
n→∞

n∑
i=1

∫
Ωi

yixi dµi

= lim
n→∞

n∑
i=1

∫
Ωi

yixdµ = lim
n→∞

∫
Ω

( n∑
i=1

yi
)
xdµ =

∫
Ω

yxdµ,
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the last step following by the Lebesgue Dominated Convergence Theo-
rem. Moreover, since ‖yn‖ ≤ ‖Fn‖ ≤ ‖F‖, we have ‖y‖ ≤ ‖F‖.

2 Using Lemma 5.2.15, one may argue that we may further restrict
ourselves to the case where Fx ≥ for x ≥ 0.

3 Assume therefore that µ(Ω) < ∞, and Fx ≥ for x ≥ 0. Define a
set-function ν on (Ω,F) by ν(A) = F1A. This is a (positive) bounded,
measure, since (a) ν(Ω) = F1Ω ≤ ‖F‖‖1Ω‖ = ‖F‖µ(Ω), (b) finite ad-
ditivity follows from linearity of F, and (c) if An are disjoint sets, then
‖1⋃n

i=1 Ai
− 1⋃∞

i=1 Ai
‖ = ‖1⋃∞

i=n+1 Ai
‖ = µ(

⋃∞
i=n+1Ai) tends to zero,

and thus ν(
⋃n
i=1Ai) = F1⋃n

i=1 Ai
tends to F1⋃∞

i=1 Ai
= ν(

⋃∞
i=1Ai).

Moreover, ν(A) = F1A ≤ ‖F‖‖1A‖ = ‖F‖µ(A), and in particular,
µ(A) = 0 implies ν(A) = 0. By the Radon–Nikodym Theorem there
exists a non-negative y such that F1A = ν(A) =

∫
A
y dµ =

∫
Ω

1Ay dµ.
Hence, by linearity, for any simple function x, Fx =

∫
Ω
xy dµ. Further-

more, for non-negative x we may use an increasing sequence xn of simple
functions converging almost everywhere to x. By the Monotone Conver-
gence Theorem such functions converge to x in the sense of the norm in
L1(Ω,F , µ). Hence, Fxn tends to Fx. On the other hand, by the same
theorem

∫
Ω
xny dµ converges to

∫
Ω
xy dµ. Therefore, Fx =

∫
xy dµ for

non-negative x, and hence for all x ∈ L1(Ω,F , µ).
It remains to show that ‖y‖ ≤ ‖F‖. Suppose that on the contrary,

‖y‖ > ‖F‖. This means that the measure µ(A) of a measurable set A =
{|y| > ‖F‖} is positive. Let x = 1A. This is an element of L1(Ω,F , µ),
and ‖x‖ = µ(A). Note that Fx =

∫
A
y dµ > ‖F‖µ(A) = ‖F‖‖x‖. This,

however, contradicts the definition of ‖F‖.

5.2.17 Exercise Prove claim 2 made above.

5.2.18 Exercise Show that 5.2.16 implies 5.2.3.

5.2.19 Exercise Let (Ω,F , µ) be a σ-finite measure space. Show that
Lp(Ω,F , µ), p > 1, is isomorphic to Lq(Ω,F , µ), where 1

p + 1
q = 1.

5.3 The dual of an operator

5.3.1 The dual operator Let X and Y be Banach spaces, and let A be
an operator A ∈ L(X,Y). For any functional F on Y, the map F ◦ A
is a linear functional on X. Since ‖F ◦ A‖X∗ ≤ ‖F‖Y∗‖A‖L(X,Y), the
map F �→ F ◦ A, denoted A∗, is a bounded linear map from Y∗ to X∗
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and ‖A∗‖ ≤ ‖A‖. The operator A∗ is called the dual operator or the
adjoint operator of A. Since for any x ∈ X,

‖Ax‖ = sup
F∈Y∗,‖F‖=1

|FAx| = sup
F∈Y∗,‖F‖=1

|A∗Fx| ≤ ‖A∗‖‖x‖,

we see that ‖A‖ ≤ ‖A∗‖, and so ‖A‖ = ‖A∗‖. Furthermore, we see that
A∗ is adjoint to A if for any x ∈ X and F ∈ Y∗,

〈F,Ax〉 = 〈A∗F, x〉.

By Definition 3.1.19 a linear operator in a Hilbert space is self-adjoint
if A = A∗. More examples follow.

5.3.2 Exercise Let X = Rn. A linear operator on X may be identified
with a matrix A(n × n). Check that its adjoint is identified with the
transpose of A.

5.3.3 Example Now we can clarify the relation between the operators
Tµ and Sµ introduced in 2.3.17 and 2.3.23. For any bounded measurable
function x on R, and any measure ν on R,

〈Sµν, x〉 =
∫
xdSµν =

∫
xdµ ∗ ν =

∫ ∫
x(τ + ς)µ( dτ)ν( dς)

=
∫
Tµxdν = 〈ν, Tµx〉. (5.17)

Since this relation holds in particular for x ∈ C0(R) this formula proves
that Sµ is dual to Tµ. Similarly, considering the operators Sµ and Tµ
introduced in 2.3.25 we see that for any x ∈ BM(G) and in particular
for x ∈ C0(G),

〈Sµν, x〉 =
∫
xdSµν =

∫
xdµ ∗ ν =

∫ ∫
x(gh)µ( dh)ν( dg)

=
∫
Tµxdν = 〈ν, Tµx〉

which proves that Sµ is dual to Tµ. Analogously, S̃µ is dual to T̃µ. The
reader should examine Examples 2.3.26 and 2.3.27 in the light of the
above discussion.

5.3.4 Exercise Let X,Y and Z be Banach spaces and suppose that
A ∈ L(X,Y) and B ∈ L(Y,Z). Show that (BA)∗ = A∗B∗ ∈ L(Z∗,X∗).
Use this result to show equivalence of (a) and (c) in 3.1.24.
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5.3.5 Exercise Let R be the right shift in l1 : R (ξn)n≥1 = (ξn−1)n≥1

where we set ξ0 = 0. Check that R∗ in l∞ is the left shift R∗ (αn)n≥1 =
L (αn)n≥1 = (αn+1)n≥1 .

5.3.6 An application: invariant measures Both stochastic and deter-
ministic phenomena (such as forming of fractals, for instance) are often
described by specifying the evolution of the distribution of their particu-
lar characteristic in time. If the time is discrete, this is simply a sequence
µn, n ≥ 0 of measures on a space S. Such a sequence naturally depends
on the initial distribution µ0 and this dependence is often described by
means of a single operator P, for we have µn = Pnµ0. Typically, S is a
compact topological space and P is a linear map from BM(S), the space
of Borel measures on S, to itself. Because of the interpretation, we also
assume that Pµ is a probability measure whenever µ is. Such operators
are also called Markov operators (of course this is a more general
class of operators than that described in 2.3.37).

One of the questions that a mathematician may ask is that of exis-
tence of an invariant measure of a Markov operator P , i.e. of such
a probability measure µ� that Pµ� = µ�. If µ� is a distribution of our
process at time 0, this distribution does not change in time.

As we will see shortly, the search for an invariant measure may be
facilitated by a dual operator. In general, though, the dual P ∗ of P
is defined in [BM(S)]∗ which in the first place is difficult to describe. A
situation that can be easily handled is that where P ∗ leaves the subspace
C(S) of [BM(S)]∗ invariant. (Well, C(S) is not a subspace of [BM(S)]∗

but it is isometrically isomorphic to a subspace of [BM(S)]∗, which in a
sense is quite the same as being a subspace.) In such a case P is said to
be a Feller operator.

Quite often we actually start with a linear operator U that maps
C(S) into itself, such that U1S = 1S , and Ux ≥ 0 provided x ≥ 0.
Then, the dual P of U is a Markov operator in BM(S). Indeed, for any
non-negative x and probability measure µ,

∫
S
xdPµ =

∫
S
Uxdµ ≥ 0

so that Pµ is a non-negative measure, and the calculation Pµ(S) =∫
S

1S dPµ =
∫
S
U1S dµ =

∫
S

1S dµ = µ(S) = 1 shows that Pµ is a
probability measure.

To find an invariant measure of such an operator P it suffices to find
a non-negative invariant functional F on C(S), i.e. a linear functional
such that F1S = 1, FUx = Fx, x ∈ C(S), and Fx ≥ 0 whenever x ≥ 0.
Indeed, by the Riesz Theorem, with such a linear functional F we have a
non-negative measure µ� such that

∫
S
xdµ� = Fx; this is a probability
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measure since µ�(S) =
∫
S

1S dµ� = F1S = 1. This measure is invariant
for P since for any x ∈ C(S) we have

∫
S
xdPµ� =

∫
S
Uxdµ� = FUx =

Fx =
∫
S
xdµ�, which implies Pµ� = µ�.

If S is not compact, however, this scheme fails to work. The problem
lies in the fact that in general the operator U∗ acts in C(S)∗ and not in
BM(S). For example take a locally compact S = N. We have C(S) = l∞,
the space of bounded sequences, C0(S) = c0, the space of sequences
converging to zero, and BM(S) = l1, where “=” means “is isometrically
isomorphic to”. Let us take a closer look at functionals on C(S). For
any F ∈ C(S)∗ we may define a functional F0 on C0(S) given by F0x =
Fx, x ∈ C0(S). By the Riesz Theorem, there exists a measure µ such
that

∫
S
xdµ = F0x, x ∈ C0(S). This formula may be used to extend

F0 to the whole of C(S). The functionals F0 and F agree only on a
subspace of C(S). Moreover, if F is non-negative, then F0x ≤ Fx, x ∈
C(S). Indeed, for a natural k, F0(x1{n≤k}) = F (x1{n≤k}) ≤ Fx. Hence,
by the Lebesgue Dominated Convergence Theorem, F0x =

∫
S
xdµ =

limk→∞
∫
S
x1{n≤k} dµ ≤ Fx, which also may be proved using 5.2.1.

Therefore we conclude that any positive F ∈ C(S)∗ can be expressed as
a sum F0 +F1, where F0 is its measure-part defined above, and F1 is its
positive “singular” part, F1 = F − F0. An example of such a singular
functional is a Banach limit.

Now, given a non-negative U in C(S) with U1S = 1S and a non-
negative µ ∈ BM(S), it is natural to define Pµ as (U∗µ)0, the measure-
part of U∗µ, (and extend this definition in a natural way to all µ ∈
BM(S)). Then, Pµ is a non-negative measure, since for non-negative
x ∈ C0,

∫
S
xdPµ = 〈U∗µ, x〉 =

∫
S
xdµ ≥ 0. However, in general P is

not a Markov operator, since for any probability measure µ and x ∈ C(S)
we have

Pµ(S) = (U∗µ)01S ≤ 〈U∗µ, 1S〉 = 〈µ,U1S〉 = 〈µ, 1S〉 = µ(S) = 1,

and the inequality may be strict. In particular, if we find a non-negative
functional F that is also invariant, i.e.

F1S = 1, U1S = 1S , and FUx = Fx, (5.18)

the corresponding measure µ may happen not to be invariant. In the
following example, due to R. Rudnicki and taken from [81], we have Pµ =
1
2µ. We consider the functional Fx = F (ξn)n≥1 = 1

2Bx+
∑∞
n=1

1
2n+1 ξn,

where B is a Banach limit, and the operator Ux = Fx1S . Clearly, (5.18)
is satisfied, since FUx = F (Fx1S) = FxF1S = Fx. It is easy to see
that the measure µ on S that corresponds to F0 is given by µ(A) =
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n∈S

1
2n+1 . In particular, F0 has a natural extension to l∞ given by

F0 (ξn)n≥1 =
∑∞
n=1

1
2n+1 ξn (which agrees with F only on the kernel of

B which is a proper subspace of l∞). Now, for any x ∈ c0,

〈Pµ,x〉 = 〈U∗µ, x〉 = 〈µ,Ux〉 = 〈µ, Fx1S〉 = Fx 〈µ, 1S〉

= Fxµ(S) =
1
2
Fx = 〈1

2
µ, x〉.

as claimed.

5.3.7 Von Neumann’s Ergodic Theorem A bounded operator U in a
Hilbert space H is said to be unitary if its inverse (both left and right)
exists and equals U∗. In other words we have UU∗ = U∗U = I. Note
that U is unitary iff (Ux,Uy) = (x, y) for all x and y in H. In particular
unitary operators are isometric isomorphisms of H.

The famous von Neumann’s Ergodic Theorem says that if U is unitary,
then limn→∞

1
n

∑n
k=1 U

kx = Px, x ∈ H, where P is the projection on
the subspace H1 = {x|Ux = x} = Ker(U − I). Observe that x = Ux

iff U∗x = U−1x = x. Hence H1 = Ker(U∗ − I). The main step in the
proof is establishing that H⊥

1 is the closure of Range(U − I) or, which is
the same, that {cl Range(U − I)}⊥ = H1. To this end we note that, by
continuity of the scalar product, x is perpendicular to cl Range(U−I) iff
it is perpendicular to Range(U − I). Since for all y ∈ H1, (x,Uy − y) =
(U∗x−x, y), then our claim is proven. Now, for x ∈ H1 we find a y such
that x = Uy− y and then 1

n

∑n
k=1 U

kx = 1
n‖Uk+1y−Uy‖ ≤ 2

n‖y‖ → 0,
as n → ∞. Also, if x = Ux then 1

n

∑n
k=1 U

kx = x. This completes the
proof by 3.1.16.

An important example is the case where H = L2(Ω,F , µ) where µ is a
finite measure, and U is given by Ux = x◦f for some measure-preserving
map f . A map f is said to be measure-preserving if it is measurable
and µ(f−1(B)) = µ(B) for all measurable sets B ⊂ Ω. In other words
the transport µf of the measure µ via f is the same as µ. To prove that
such a U is indeed unitary we calculate as follows:

(Ux,Uy) =
∫

Ω

x(f(ω))y(f(ω)) dµ(ω) =
∫

Ω

xy dµf =
∫

Ω

xy dµ = (x, y).

5.4 Weak and weak∗ topologies

Distributions of random variables, i.e. probability measures on R, are
functionals on C0(R) and we have a well-defined metric in C0(R)∗ which



5.4 Weak and weak∗ topologies 167

may be used in studying asymptotic behavior of these distributions and
hence of these random variables. However, there are very few limit the-
orems of probability that can be expressed in the language provided by
this topology. In fact I am aware of only one interesting case, namely
the Poisson approximation to binomial (see 5.8.4). This topology, the
strong topology in C0(R)∗, is simply too strong to capture such delicate
phenomena like the Central Limit Theorem. In this section we give a
functional analytic view on other possible choices of topology. First, the
weak topology and then the weak∗ topology are discussed.

5.4.1 Convergence determining sets Let Y be a Banach space. A set
Λ ⊂ Y∗ is said to be a convergence determining set if Λ separates
points in Y, i.e. if for all y1 and y2 in Y there exists a functional F ∈ Λ
such that Fy1 
= Fy2. Let UΛ be the smallest topology in Y under which
all F ∈ Λ are continuous. The family of subsets of Y of the form

U(y0, F, ε) = {y ∈ Y; |Fy − Fy0| < ε}

where y0 ∈ Y, F ∈ Y, and ε > 0 are given, is a subbase of this topology.
Note that UΛ is a Hausdorff topology for Λ separates points of Y. By
definition, UΛ is smaller than the strong topology in Y (generated by the
open balls). Note also that for any U(y0, F, ε) there exists a δ such that
the open ball B(y0, ε) ⊂ U(y0, F, ε).

A sequence yn converges to a y ∈ Y in the UΛ topology iff

lim
n→∞

Fyn = Fy

for all F ∈ Λ. Of course, the same can be said of a net. Since Λ separates
points of Y, there may be only one y like that. The fact that the strong
topology is stronger than UΛ is now expressed in the implication:

lim
n→∞

yn = y (strongly) ⇒ lim
n→∞

yn = y (in UΛ),

which can also be verified as follows: for all F ∈ UΛ, |Fyn − Fy| ≤
‖F‖‖yn − y‖.

All such topologies are termed weak topologies. From among many
weak topologies we will discuss two of (probably) greatest importance:
the weak topology and the weak∗ topology (or the weak-star topology).

5.4.2 The weak topology By the Hahn–Banach Theorem, Y∗ is a con-
vergence determining set. The resulting topology UΛ in Y is called the
weak topology.

In general, weakly convergent sequences are not strongly convergent.
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In fact, the only known infinite-dimensional Banach space where weakly
convergent sequences are strongly convergent is l1 (see 5.4.9). As an
example consider the sequence ek = (δn,k)n≥1 in c0. Certainly, ‖ek −
el‖ = 1 for k 
= l, and so ek does not converge in the strong topology,
as k → ∞. However, any F ∈ c∗0 is of the form (5.7). Hence, Fek = αk
tends to 0 as k → ∞, which proves that ek converges weakly to the zero
functional.

5.4.3 Exercise Let yn ∈ L1(R) be represented by yn(τ) = 1√
2πn

e−
τ2
2n .

Show that xn converges weakly, but not strongly, to 0.

5.4.4 Example Suppose that for any F ∈ Y∗, Fyn converges. Does
it imply that yn converges weakly? The answer is in the negative; in
particular Y equipped with the weak topology is not complete. To see
that consider an example of the space C(S) of continuous functions on
a compact space, and assume that one may construct a sequence of
equibounded functions yn ∈ C(S), supn≥1 ‖yn‖ < ∞, that converges
pointwise to a function y 
∈ C(S) (as in 1.2.20 or 2.2.44 for instance;
one may also take S = [0, 1] and yn(s) = sn). For any F ∈ C(S)∗ there
exists a measure µ on S such that Fyn =

∫
S
yn dµ which converges to∫

S
y dµ by the Lebesgue Dominated Convergence Theorem. On the other

hand, yn may not converge to a y0 in C(S) because this would imply∫
y dµ =

∫
y0 dµ for all µ ∈ C(S)∗, and, consequently, taking µ = δp,

y(p) = y0(p) for all p ∈ S, which we know is impossible.

5.4.5 Exercise Let yn =
∑n
k=1 ek, ek = (δn,k)n≥1 ∈ c0. Show that

Fyn converges for all F ∈ c∗0, and yet yn does not converge weakly in c0.

Let us continue with examples of criteria for weak convergence; one is
general; the other one relates to the space Lp, p > 1. In both cases we
assume that a sequence yn to be proven weakly convergent is bounded.
This is a natural assumption, for in 7.1.8 we prove that weakly conver-
gent sequences are bounded.

5.4.6 Proposition Let yn be a bounded sequence in a Banach space
Y, that Y∗

0 ⊂ Y∗ is linearly dense in Y∗, and that limn→∞ Fyn = Fy,

for F ∈ Y∗
0. Then yn converges weakly to y.

Proof Let F ∈ Y∗. Fix ε > 0. There exists a linear combination G =∑k
i=1 αiFi of elements of Y∗

0 such that ‖F − G‖Y∗ < ε
3M where M =
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supn≥1 ‖yn‖∨‖y‖. Of course, limn→∞Gyn = Gy. Let n0 be large enough
so that |G(yn − y)| < ε

3 , for n ≥ n0. Then

|Fyn − Fy| ≤ |(F −G)yn| + |G(yn − y)| + |(G− F )y|

≤ ε

3M
‖yn‖ +

ε

3
+

ε

3M
‖y‖ ≤ ε.

5.4.7 Example Assume that (Ω,F , µ) is a σ-finite measure space. A
sequence yn of elements of ∈ Lp(Ω,F , µ), p > 1 is weakly convergent iff
(a) yn is bounded and (b) the numerical sequence

∫
A
yn dµ converges for

all measurable sets A with finite measure.

Proof Necessity of (a) was discussed above, and necessity of (b) fol-
lows from the fact that for any A with finite measure Fy =

∫
A
y dµ

is a bounded linear functional on Lp(Ω,F , µ), because by the Hölder
inequality

‖Fy‖Lp ≤
(∫

1A dµ
) 1

q

‖y‖Lq = µ(A)
1
q ‖y‖Lq .

To prove sufficiency recall that the set of indicator functions 1A where
A is of finite measure is linearly dense in Lq(Ω,F , µ) (see 2.2.39). Hence,
arguing as in 5.4.6 one may show that the sequence

∫
xyn dµ converges

for all x ∈ Lq(Ω,F , µ), by showing that
∫
xyn dµ is a Cauchy sequence.

Let Hx = limn→∞
∫
xyn dµ. Certainly, H is linear and

|Hx| ≤ ‖x‖Lq(Ω,F,µ) sup
n∈N

‖yn‖Lp(Ω,F,µ).

Hence, H ∈ (Lp)∗, and by 5.2.19 there exists a y ∈ Lq such that Hx =∫
xy dµ = limn→∞

∫
xyn dµ.

5.4.8 Exercise The argument from 5.4.7 proves that Lp(Ω,F , µ) has
a property that if for some bounded sequence yn and all linear func-
tionals F on this space, the numerical sequence Fyn converges, then yn
converges weakly to some y. The property of Lp that makes the proof
work is that it is reflexive. A Banach space X is said to be reflexive iff
it is isometrically isomorphic to its second dual, i.e. if for any functional
x∗∗ on X∗ there exists an x ∈ X such that x∗∗(F ) = F (x) for all F ∈ X∗.
State and prove the appropriate result on weak convergence in reflexive
Banach spaces.
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5.4.9 Weak and strong topologies are equivalent in l1 By linearity, it
suffices to show that if a sequence xk, k ≥ 1 of elements of l1 converges
weakly to 0, then it converges strongly, as well. Suppose that it is not
so. Then, ‖xk‖ does not converge to 0. Any sequence of non-negative
numbers that does not converge to 0 contains a positive subsequence
converging to a positive number. Moreover, a subsequence of a weakly
convergent sequence converges weakly. Hence, without loss of generality,
we may assume that limk→∞ ‖xk‖ = r > 0, and that ‖xk‖ 
= 0. Taking
yk = 1

‖xk‖xk we obtain a sequence yk = (ηk,n)n≥1 converging weakly to
zero and such that ‖yk‖ =

∑∞
n=1 |ηk,n| = 1. We will show that such a

sequence may not exist.
By 5.2.3, for any bounded (αn)n≥1 we have limk→∞

∑∞
n=1 αnηk,n = 0.

In particular, taking αn = δl,n, n ≥ 1 for l ≥ 1 we see that

lim
k→∞

ηk,l = 0, l ≥ 1. (5.19)

We will define two sequences ki, i ≥ 1, and ni, i ≥ 1, of integers induc-
tively. First we put k1 = 1 and choose n1 so that

∑n1
n=1 |η1,n| ≥ 3

5 . By
(5.19), having chosen ki and ni we may choose ki+1 large enough to have
ki+1 > ki and

∑ni

n=1 |ηki+1,n| < 1
5 and then, since ‖yk‖ = 1 for all k ≥ 1,

we may choose an ni+1 so that
∑ni+1
n=ni+1 |ηki+1,n| > 3

5 .

Now, define

αn = sgnηki,n, for n ∈ Ai := {ni−1 + 1, ..., ni}

where n0 := 0, and let F be a continuous linear functional on l∞ related
to this bounded sequence. Then,

Fxki
=
∑
n∈Ai

αnηki,n +
∑
n �∈Ai

αnηki,n =
∑
n∈Ai

|ηki,n| +
∑
n �∈Ai

αnηki,n

≥
∑
n∈Ai

|ηki,n| −
∑
n �∈Ai

|ηki,n| = 2
∑
n∈Ai

|ηki,n| − 1 >
1
5
,

contrary to the fact that xki converges weakly to 0, as i→ ∞.

5.4.10 Weak∗ topology Another important example of a convergence
determining set arises if Y itself is a dual space of a Banach space, say X.

In such a case, all elements of Y are functionals on X and we may consider
the set of functionals on Y that are of the form y → y(x) for some fixed
x ∈ X. By the Hahn–Banach Theorem this is a convergence determining
set. The resulting topology in Y is called the weak∗ topology. Note
that the sets Uy0,x,ε = {y ∈ Y||y(x) − y0(x)| < ε} form the subbase
of weak∗ topology. A sequence yn converges to y in this topology iff
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limn→∞ yn(x) = y(x) for all x ∈ X. The most important example of
such a topology is the case where X = C(S) for some compact space S.
Then Y = X∗ is the space of Borel measures on S and µn ∈ Y converges
to µ iff

lim
n→∞

∫
xdµn = lim

n→∞

∫
xdµ,

for all x ∈ C(S). We note here that weak∗ topology is weaker than the
weak topology – see the examples below.

5.4.11 Example Let S = [0, 1]. If S � pn → p, as n → ∞, then δpn

converges to δp in the weak∗ topology but not in the strong or weak
topology.

5.4.12 Weak∗ convergence to the Dirac measure at a point Establish-
ing weak∗ convergence of, say, a sequence µn of probability measures is
particularly simple if the limit measure is concentrated in a single point,
say s0, for in such a case it is enough to show that for any neighborhood
V of s0, limn→∞ µn(V �) = 0. Indeed, for an arbitrary continuous x on
S, given ε > 0 we may choose a neighborhood V = V (ε) of p0 such
that |x(p)− x(p0)| < ε

2 for p ∈ V . Next, for n sufficiently large, we have
µn(V �) ≤ ε

4‖x‖ . Since for all n,
∫
xdδp0 = x(p0) =

∫
x(p0)µn( dp), we

have∣∣∣∣
∫
xdµn −

∫
xdδs0

∣∣∣∣ ≤ (
∫
V

+
∫
V �

)|x(p) − x(p0)|µn( dp)

≤
∫
V

|x(p) − x(p0)|µn( dp) + 2‖x‖µn(V �),

which for V and n described above is less than ε
2 + ε

2 , as desired.
Certainly, this result remains true for nets as well. For example, the

probability measures µr on the unit circle C = {z ∈ C; |z| = 1} with
densities being Poisson kernels pr, 0 ≤ r < 1 (see 1.2.29) converge, as
r → 1, to δ1 in the weak∗ topology. To show this, we note that for any
δ > 0, setting Vδ = {eiα ∈ C; |α| < δ}, we have

µr(V �
δ ) =

1
π

∫ π

δ

1 − r2

1 − 2r cosα+ r2
dα ≤ π − δ

π

1 − r2

1 − 2r cos δ + r2
−→
r→1

0.

This implies that the same is true for any open neighborhood V of 1
and proves our claim by the previous remarks.

As another example note that in 2.3.29 we have actually proven that
the distributions of variables Xn/n tend in weak∗ topology to δs.
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5.4.13 Example In Example 1.4.14, we have actually proved that for
any n the distributions µn,k converge, as k → ∞, in the weak∗ topology
to the Lebesgue measure on [0, 1]. Taking f(s) = 0 if s is rational and 1
otherwise we see, however, that

∫
f dµn,k does not converge to

∫
f dleb,

since measures µn,k are concentrated on rational numbers. Thus, µn,k
do not converge weakly or strongly to leb.

5.4.14 Example Let xk = (δk,n)n≥1 ∈ l1, k ≥ 1. By 5.2.1, xk con-
verges in the weak∗ topology to 0. Since ‖xk‖ = 1, k ≥ 1, however, it
cannot converge to zero strongly, and hence does not converge strongly
to anything at all. By 5.4.9, this shows in particular that in l1 the weak∗

topology is strictly weaker than the weak topology. This can be seen
from 5.2.3, as well.

5.4.15 Measures escaping to infinity If S is locally compact, the space
C0(S) is often not the best choice of test functions to study the weak∗

convergence of measures on S. It is more convenient to treat measures
on S as measures on a (say, one-point) compactification S of S and take
C(S) as the set of test functions. The reason is that it may happen
that some mass of involved measures escapes “to infinity”, as in the
example where S = R+ and µn = 1

2δ0 + 1
2δn. In this case, for any

x ∈ C0(R),
∫
xdµn converges to 1

2x(0), so that µn as functionals on
C0(R+) converge in the weak∗ topology to an improper distribution
1
2δ0. In this approach it is unclear what happened with the missing
mass. Taking an x ∈ C(R+) = C([0,∞]) clarifies the situation, because
for such an x we see that

∫
xdµn converges to 1

2x(0) + 1
2x(∞), and so

µn converges to 1
2δ0 + 1

2δ∞. Working with compactification of S instead
of S itself helps avoid misunderstandings especially when it is not so
clear whether and how much measure escapes to infinity. If we work
only with probability measures, an equivalent approach is to check that
the limiting measure is a probability measure and in the case it is not,
to find out what happened with the missing mass. (See also 5.7.12.)

5.4.16 Example Let Xn be geometric random variables with param-
eters pn respectively. If pn → 0 and npn → a > 0, as n → ∞, then the
distribution µn of 1

nXn converges in the weak∗ topology to the expo-
nential distribution.
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Proof Let x be a member of C(R+) = C([0,∞]). Then∫
R+
xdµn =

∞∑
k=0

x

(
k

n

)
pnq

k
n = npn

∫ ∞

0

x

(
[nt]
n

)
q[nt]n dt

where [nt] denotes the integer part of nt. Since

(1 − pn)nt ≤ (1 − pn)[nt] ≤ (1 − pn)nt−1 (5.20)

and extreme terms in this inequality converge to e−at (since (1− pn)
1

pn

converges to e−1), so does the (1 − pn)[nt]. Similarly, [nt]
n → t, and

so the integrand converges pointwise to ae−atx(t). Using the right in-
equality in (5.20) one proves that the convergence is actually dominated
and the Lebesgue theorem applies to show that

∫
R+ xdµn converges to∫∞

0
ae−atx(t) dt.

5.4.17 The role of dense sets The weak∗ convergence of functionals
may be viewed as a special case of strong convergence of operators where
operators have scalar values. Therefore, all theorems concerning strong
convergence of operators apply to weak∗ convergence. In particular, one
may use 2.3.34, especially if we deal with weak∗ convergence of probabil-
ity measures, for then the assumption of equiboundedness is automati-
cally satisfied. As an example let us consider the measures from 5.4.16.
By 2.3.31 the functions eλ(τ) = e−λτ , λ ≥ 0, form a linearly dense sub-
set of C(R+) and so to prove 5.4.16 it suffices to show that

∫∞
0
eλ dµn

converges to a
∫∞
0

e−λte−at dt = a
λ+a for all λ ≥ 0. On the other hand,∫ ∞

0

eλ dµn =
∞∑
k=0

pnq
k
ne

−λk
n =

pn

1 − e−
λ
n (1 − pn)

n

n

which converges to the desired limit since n(1 − e−
λ
n ) converges to λ.

The following lemma serves as a very useful tool in proving weak∗

convergence of measures. We will use it in particular in establishing the
Central Limit Theorem, to be presented in the next section.

5.4.18 Lemma A sequence µn of probability measures on R converges
to a probability measure µ in the weak∗ topology iff the corresponding
operators Tµn

in C[−∞,∞] converge strongly to Tµ.

Proof The “if” part of this lemma is immediate. To prove the “only
if” part note that by assumption, for any x ∈ C[−∞,∞] any any τ ∈
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(−∞,∞), there exists the limit of yn(τ) =
∫

R
x(τ − σ)µ( dσ), as n →

∞, and equals y(τ) =
∫

R
x(τ − σ)µ( dσ). Moreover, limn→∞ yn(±∞) =

x(±∞) = y(±∞). We will prove that yn converges to y uniformly, i.e.
strongly in C[−∞,∞].

We claim that the family yn is bounded (by ‖x‖) and equicontinuous
on [−∞,∞], so that the assumptions of the well-known Arzela–Ascoli
Theorem (see e.g. [22] or 5.7.17, below) are satisfied. To see that this
implies our result assume that yn does not converge to y strongly, and
choose a subsequence that stays at some distance ε > 0 from y. By the
Arzela–Ascoli Theorem, there exists a subsequence of our subsequence
that converges uniformly to some z ∈ C[−∞,∞]. Being chosen from
yn this subsequence must also converge (pointwise) to y, implying that
z = y, a contradiction.

It remains to prove the claim. For a given ε > 0, a δ > 0 may be
chosen so that |x(σ)−x(σ′)| < ε provided |σ−σ′| < δ, σ, σ′ ∈ R. Hence,
for any τ ∈ R and |h| < δ we also have |yn(τ + h) − yn(τ)| ≤

∫
R
|x(τ +

h − σ) − x(τ − σ)|µ( dσ) < ε, proving that yn, n ≥ 1 is equicontinuous
at τ ∈ R. To prove that it is equicontinuous at ∞ we first take a T > 0
and define xk ∈ C[−∞,∞], k ≥ 1 as xk(τ) = 1

1+kmax{T−τ,0} . Then,
limk→∞ xk(τ) = 1[T,∞)(τ), τ ∈ R. Hence

lim sup
n→∞

µn[T,∞) ≤ lim
n→∞

∫
R

xk dµn =
∫

R

xk dµn −→
k→∞

µ[T,∞).

This implies that given an ε > 0 we may choose a T > 0 so that
µn[T,∞) < ε, for sufficiently large n. Since such a T may be chosen for
each n ≥ 1 individually, as well, and x belongs to C[−∞,∞], we may
choose a T so that µn[T,∞) < ε for all n ≥ 1 and |x(τ)−x(∞)| < ε, for
τ > T. Now, for τ > 2T,

|yn(∞) − yn(τ)| ≤
∫
σ≤T

+
∫
σ>T

|x(∞) − x(τ − σ)|µn( dσ) ≤ ε+ 2‖x‖ε

proving that yn are equicontinuous at ∞. The case of −∞ is treated in
the same way.

5.4.19 Remark In the above proof, to use the Arzela–Ascoli Theo-
rem, it was crucial to show that yn are uniformly continuous on [−∞,∞]
and not just on R. Note that for a given x ∈ C[−∞,∞], the functions
yn(τ) = x(n+ τ) are equicontinuous in R but not in [−∞,∞]. As a re-
sult, the Arzela–Ascoli Theorem does not apply, even though yn are also
bounded. In fact, taking non-zero x with support contained in [0, 1], we
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have ‖yn−ym‖ = ‖x‖, n 
= m, so that yn, n ≥ 1 cannot have a converging
subsequence.

5.4.20 Corollary Let µn, n ≥ 1 and νn, n ≥ 1 be two sequences of
probability measures on R converging weakly to probability measures µ
and ν, respectively. Then, the measures µn ∗νn converge weakly to µ∗ν.

Proof This follows directly from 5.4.18, ‖Tµn‖ = ‖Tν‖ = 1 and the tri-
angle inequality applied to Tµn∗νn

x−Tµ∗νx = Tµn
(Tνn

−Tν)x+Tν(Tµn
−

Tµ)x, x ∈ C[−∞,∞].

5.4.21 Remark In probability theory one rarely considers conver-
gence of measures in the weak topology. Although it may sound strange,
the reason for this is that the weak topology is still too strong! On the
other hand, weak∗ topology is used quite often, but for historical reasons,
convergence in this topology is termed the weak convergence. (Sometimes
narrow convergence, from the French étroite.) In what follows we will
adhere to this custom. This should not lead to misunderstandings as
the “real” weak convergence will not concern us any more.

5.5 The Central Limit Theorem

By far the most important example of weak convergence is the Central
Limit Theorem. For its proof we need the following lemma, in which the
lack on dependence of the limit on X is of greatest interest; the fact that
the second derivative in the limit points out to the normal distribution
will become clear in Chapters 7 and 8 (see 8.4.18 in particular).

5.5.1 Lemma Let X be square integrable with EX = 0 and EX2 =
1. Also, let an, n ≥ 1 be a sequence of positive numbers such that
limn→∞ an = 0. Then, for any x ∈ D, the set of twice differentiable func-
tions x ∈ C[−∞,∞] with x′′ ∈ C[−∞,∞], the limit of 1

a2
n
(TanXx − x)

exists and does not depend on X. In fact it equals 1
2x

′′.

Proof By the Taylor formula, for a twice differentiable x, and numbers
τ and ς,

x(τ + ς) = x(τ) + ςx′(τ) +
ς2

2
x′′(τ + θς), (5.21)
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where 0 ≤ θ ≤ 1 depends on τ and ς (and x). Thus,

1
a2
n

[TanXx(τ) − x(τ)] =
1
a2
n

E [x(τ + anX) − x(τ)]

=
1
an
x′(τ)EX +

1
2
E
[
X2x′′(τ + θanX)

]
=

1
2
E
[
X2x′′(τ + θanX)

]
, (5.22)

for EX = 0.† Since EX2 = 1,∣∣∣∣ 1
a2
n

(TanXx− x)(τ) − 1
2
x′′(τ)

∣∣∣∣ =
∣∣∣∣12EX2 (x′′(τ + θanX) − x′′(τ))

∣∣∣∣ .
For x ∈ D, and ε > 0, one may choose a δ such that |x′′(τ+ς)−x′′(τ)| <
ε, provided |ς| < δ. Calculating the last expectation on the set where
|X| ≥ δ

an
and its complement separately we get the estimate∥∥∥∥ 1

a2
n

(TanXx− x) − 1
2
x′′
∥∥∥∥ ≤ 1

2
‖x′′‖EX21{|X|≥ δ

an
} +

1
2
ε. (5.23)

Since P{|X| ≥ δ
an

} → 0 as n → ∞ we are done by the Lebesgue Domi-
nated Convergence Theorem.

5.5.2 The Central Limit Theorem The Central Limit Theorem in its
classical form says that

if Xn, n ≥ 1 is a sequence of i.i.d. (independent, identically dis-
tributed) random variables with expected value m and variance σ2 > 0,
then

1√
nσ2

n∑
k=1

(Xk −m)

converges weakly to the standard normal distribution.

Proof (of CLT) Without loss of generality we may assume that m = 0
and σ2 = 1, since the general case may be reduced to this one. Let Tn =
T 1√

n
X where X is any of the variables Xn, n ≥ 1. By the independence

assumption, T 1√
n

∑n
k=1Xk

= Tnn and we need to show that Tnn converges
strongly to TZ where Z is a standard normal variable. The set D of twice

† Let us observe here that although it is not obvious that the map ω �→ θ(τ, 1√
n

X)

is measurable, measurability of the function ω �→ X2x′′[τ+ θ(τ, 1√
n

X) 1√
n

X] is

assured by the fact that this function equals x(τ + 1√
n

X) − x(τ) − 1√
n

Xx′(τ).
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differentiable functions x with x′′ ∈ C[−∞,∞] is dense in C[−∞,∞];
hence it suffices to show convergence for x ∈ D. Now, by (2.10),

‖Tnn x− TZx‖ = ‖Tnn x− Tn1√
n
Zx‖ ≤ n‖Tnx− T 1√

n
Zx‖

≤ ‖n(T 1√
n
Xx− x) − n(T 1√

n
Zx− x)‖,

which by Lemma 5.5.1 converges to 0, as n→ ∞.

5.5.3 The Lindeberg condition A sequence Xn, n ≥ 1 of independent
(not necessarily identically distributed) square integrable random vari-
ables is said to satisfy the Lindeberg condition iff for every δ > 0,

1
s2n

n∑
k=1

E (Xk − µk)21{|Xk−µk|>δsn}

tends to 0, as n → ∞, where µk = EXk and s2n =
∑n
k=1 σ

2
k, σ

2
k =

D2Xk > 0. In what follows we will use E X 2
n1{|Xn|>δsn} as a short-

hand for the sum above. Note that i.i.d. variables satisfy the Lindeberg
condition; for such variables we have 1

s2n
E X 2

n1{|Xn|>δsn} = 1
σ2
1
E (X1 −

µ)21{|X1−µ1|>
√
nσ1δ} which certainly converges to zero, as n→ ∞.

The celebrated Lindeberg–Feller Theorem says that the Lindeberg con-
dition holds iff limn→∞

max(σ2
1 ,...,σ

2
n)

s2n
= 0 and the sequence 1

sn

∑n
k=1Xk

converges weakly to the standard normal distribution.
We will prove merely the “only if” part which is perhaps less remark-

able but more applicable.

Proof The proof is a modification of the proof of 5.5.2. As before, we
assume without loss of generality that EXn = 0, n ≥ 0. By the indepen-
dence assumption T 1

sn

∑n
k=1Xk

= T 1
sn
Xn

. . . T 1
sn
X1
. Analogously, we may

write TZ where Z is standard normal as T 1
sn
Zn
. . . T 1

sn
Z1

where Zk is nor-
mal with zero mean and variance σ2

k. Now, using (2.9), ‖T 1
sn

∑n
k=1Xk

−
TZ‖ ≤∑n

k=1 ‖T 1
sn
Xk

−T 1
sn
Zk

‖ and our task reduces to showing that for
x ∈ D,

n∑
k=1

‖T 1
sn
Xk
x− x− 1

2
σ2
k

s2n
x′′‖ +

n∑
k=1

‖T 1
sn
Zk
x− x− 1

2
σ2
k

s2n
x′′‖ (5.24)

converges to 0, as n→ ∞. Arguing as in (5.22) and (5.23), we obtain

‖ s
2
n

σ2
k

[T 1
sn
Xk
x− x] − 1

2
x′′‖ ≤ 1

2
ε+

1
σ2
k

‖x′′‖EX2
k1{|Xk|>snδ},
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where we chose δ in such a way that |x′′(τ + ς) − x′′(τ)| < ε, provided
|ς| < δ. Multiplying both sides by σ2

k

s2n
and summing from k = 1 to k = n,

n∑
k=1

∥∥∥∥T 1
sn
Xk
x− x− 1

2
σ2
k

s2n
x′′
∥∥∥∥ ≤ 1

2
ε+

1
s2n

‖x′′‖E X 2
n1{|Xn|>δsn}.

This proves by the Lindeberg condition that the first sum in (5.24)
converges to zero. Since the second sum has the same form as the first
sum it suffices to show that Zn, n ≥ 1, satisfies the Lindeberg condition.
Noting that E Z4

n = 3σ4
n,

1
s2n

n∑
k=1

E Z2
k1{|Zk|>δsn} ≤ 1

s4nε
2

n∑
k=1

E Z4
k ≤ 3

ε2
max(σ2

1 , ..., σ
2
n)

s2n
.

In Exercise 5.5.4 the reader will check that this last quantity converges
to zero.

5.5.4 Exercise Complete the proof above by showing that the Lin-
deberg condition implies limn→∞

max(σ2
1 ,...,σ

2
n)

s2n
= 0.

5.5.5 Exercise Show that the Lyapunov condition

lim
n→∞

1
s2+αn

n∑
k=1

E |Xk − µk|2+α = 0

where α > 0, and sn is defined as before, implies the Lindeberg condition.

5.6 Weak convergence in metric spaces

The assumption that the space S where our probability measures are
defined is compact (or locally compact) is quite restrictive and is not
fulfilled in many important cases of interest. On the other hand, assum-
ing just that S is a topological space leads to an unnecessarily general
class. The golden mean for probability seems to lie in separable metric
spaces, or perhaps, Polish spaces. A Polish space is by definition a
separable, complete metric space. We start with general metric spaces
to specialize to Polish spaces later when needed. As an application of
the theory developed here, in the next section we will give another proof
of the existence of Brownian motion.
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5.6.1 Definition Let (S, d) be a metric space, and let BC(S) be the
space of continuous (with respect to the metric d, of course) functions on
S. A sequence Pn of Borel probability measures on S is said to converge
weakly to a Borel probability measure P on S iff, for all x ∈ BC(S),

lim
n→∞

∫
S

xdPn =
∫
S

xdP. (5.25)

It is clear that this definition agrees with the one introduced in the
previous section, as in the case where S is both metric and compact,
BC(S) coincides with C(S).

We will sometimes write Enx for
∫
S
xdPn and Ex for

∫
S
xdP.

5.6.2 Corollary Suppose Pn, n ≥ 1 is a sequence of Borel probability
measures on (S, d) and f : S → S′, where (S′, d′) is another metric
space, is a continuous map. Then the transport measures (Pn)f , n ≥ 1
on S′ converge weakly. The proof is immediate by the change of variables
formula (1.6).

5.6.3 Portmanteau Theorem Let P and Pn, n ≥ 1 be probability mea-
sures on a metric space (S, d). The following are equivalent:

(a) Pn converge weakly to P,

(b) condition (5.25) holds for Lipschitz continuous x with values in [0, 1],
(c) lim supn→∞ Pn(F ) ≤ P(F ), for closed F ⊂ S,

(d) lim infn→∞ Pn(G) ≥ P(G), for open G ⊂ S,

(e) limn→∞ Pn(B) = P(B), for Borel B with µ(∂B) = 0.

Proof Recall that ∂B = clB ∩ cl(S \B).
Implication (a)⇒(b) is obvious. Assume (b) and for a closed F and

s ∈ S define d(p, F ) := infq∈F d(p, q). Note that |d(p, F ) − d(p′, F )| ≤
d(p, p′) so that functions xk(p) = (1 + kd(p, F ))−1, k ≥ 1, are Lipschitz
continuous (with Lipschitz constant k). Also, limk→∞ xk(p) = 1 or 0
according as p ∈ F or p 
∈ F. This gives (c) by

lim sup
n→∞

Pn(F ) ≤ lim sup
n→∞

Enxk = E xk −→
k→∞

P(F ),

the last relation following by the Monotone Convergence Theorem.
Taking complements we establish equivalence of (c) and (d). Next,

that (c) and (d) imply (e) can be seen from

lim sup
n→∞

Pn(B) ≤ lim sup
n→∞

P(cl B) ≤ P(cl B) = P(∂B) + P(Bo) = P(Bo)

≤ lim inf
n→∞

Pn(Bo) ≤ lim inf
n→∞

P(B)
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where the set Bo := S \ cl(S \B) = clB \ ∂B is open.
Finally, in proving that (e) implies (a), by linearity and the assumption

that P and Pn are probability measures, it suffices to show 5.25 for
continuous functions with values in [0, 1]. Since x is continuous, cl{x >
t} ⊂ {x = t}, t ≥ 0, and the sets {x = t} are disjoint. Hence, the
set {t ≥ 0; P{x = t}}, being countable, has Lebesgue measure zero. By
(1.18) with β = 1, and the Dominated Convergence Theorem,

Enx =
∫ ∞

0

Pn{x > t}dt =
∫ 1

0

Pn{x > t}dt

−→
n→∞

∫ 1

0

P{x > t}dt =
∫ ∞

0

P{x > t}dt = E x,

as desired.

5.6.4 Remark Note that we assume a priori that the limit measure
in the above theorem is a probability measure.

5.6.5 The space of measures as a metric space If S is separable, one
may introduce a metric D in the space PM(S) of probability measures
on S in such a way that limn→∞D(Pn,P) = 0 iff Pn converges weakly
to P. In particular, in discussing convergence of measures it is justified
to restrict our attention to sequences of measures (as opposed to general
nets). The most famous metric of such a type is the Prohorov–Lévy
metric DPL defined as follows: DPL(P,P�) is the infimum of those pos-
itive ε for which both P(A) ≤ P�(Aε) + ε, as well as P�(A) ≤ P(Aε) + ε,

for any Borel subset A of S. Here Aε is the set of those p ∈ S that
lie within the ε distance from A, i.e. such that there is a p′ ∈ A such
that d(p, p′) < ε. It turns out that if S is a Polish space, then so is
(PM(S), DPL). This result is not only of special beauty, but also of im-
portance, especially in the theory of point processes [24].

Another example of such a metric is the Fortet–Mourier metric
DFM : DFM(P,P�) = sup

∣∣∫ xdP −
∫
xdP�

∣∣ where the supremum is
taken over all x ∈ BC(S) such that |x(p) − x(p′)| ≤ d(p, p′), p, p′ ∈ S

and supp∈S |x(p)| ≤ 1.
These results are discussed in detail in many monographs, see e.g.

Billingsley [5], Edgar [36], Ethier and Kurtz [38], Shiryaev [106]. A rich
source of further information is Dudley [31] and Zolotarev [116].

5.6.6 Weak convergence in R ... For measures on R it suffices to
check condition (e) of 5.6.3 for B of the form B = (−∞, t], t ∈ R. In
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other words, it is enough to check convergence of cumulative distribution
functions, Fn(t) = Pn(−∞, t] to F (t) = P(−∞, t] at every point t where
P{t} = 0, i.e. at every point of continuity of F. To this end note first
that our assumption implies obviously that (e) holds for all intervals
(a, b] with a and b being points of continuity of F . For the proof we will
need the following properties of the class I of such intervals:

(i) I is a π-system;

(ii) condition (e) holds for all finite unions of elements of I;

(iii) for every s ∈ R, and ε > 0 there is an interval (a, b] ∈ I such that
s ∈ (a, b), and b− a < ε;

and the fact that R is separable, and hence satisfies the following

Lindelöf property: any open cover of a subset of R contains a de-
numerable subcover.

Condition (i) is obvious, (ii) follows by (i), induction argument and
Pn(A ∪ B) = Pn(A) + Pn(B) − Pn(A ∩ B). (iii) is true, since the set of
c ∈ R, with P{c} > 0, is countable.

As for the Lindelöf property, consider open balls with centers at ratio-
nal numbers and radii 1

n . There are countably many balls like that and
we can arrange them in a sequence Bn, n ≥ 1. Since rational numbers
form a dense set in R, any s ∈ R belongs to at least one of Bn, n ≥ 1.
Now, let Uγ , γ ∈ Γ be a cover of a set A ⊂ R. To a Bn assign one of the
Uγ , γ ∈ Γ containing it, if such a Uγ exists. Since there are countably
many balls, there are countably many sets Uγ chosen in this process.
We will show that their union covers G. Let s belong to G; then there
is a γ such that s ∈ Uγ , and since Uγ is open, there is an n0 such that
s ∈ Bn0 ⊂ G. The set of γ such that Bn0 ⊂ Uγ is non-empty and there
is a Uγ0 assigned to this n0. We have s ∈ Bn0 ⊂ Uγ0 , which implies our
claim.

Now, by (iii), any open G is a union of intervals (a, b), such that
(a, b] ∈ I and (a, b] ⊂ G. By the Lindelöf property, we have G =⋃
k≥1(ak, bk) =

⋃
k≥1(ak, bk], for some (ak, bk] ∈ I, k ≥ 1. By assump-

tion, for any integer l, lim infn→∞ Pn(G) ≥ limn→∞ Pn(
⋃l
k=1(ak, bk]) =

P(
⋃l
k=1(ak, bk]). Since for any ε > 0 one may choose an l such that

P(
⋃l
k=1(ak, bk]) > P(G)− ε, we have lim infn→∞ Pn(G) > P(G)− ε. But

ε was arbitrary, and we conclude that (d) in 5.6.3 holds, as desired.
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5.6.7 Example Here is the alternative proof of 5.4.16 using 5.6.6. If
X is exponential with parameter a then for any t ≥ 0, P{X > t} = e−at.
Taking complements we see that it suffices to show that P{ 1

nXn > t}
converges to e−at. Now, 1

nXn > t iff Xn > [nt]. Therefore, the involved
probability equals

∑∞
k=[nt]+1 pnq

k
n = q

[nt]+1
n . Arguing as in (5.20), we get

our claim.

5.6.8 ... and in Rk For probability measures Pn in Rk, we have a re-
sult analogous to 5.6.6. That is, Pn converge weakly to a P if Fn(a) =
Pn

(∏k
i=1(−∞, ai]

)
converges to F (a) = P

(∏k
i=1(−∞, ai]

)
for all a =

(a1, ..., ak) ∈ Rk with P{a} = 0. The proof is analogous to 5.6.6; first we
show that our assumption implies that (e) in 5.6.3 holds for all rect-
angles (a, b], (i.e. sets of s = (s1, ..., sk) ∈ Rk, such that ai < si ≤ bi,

i = 1, ..., k, where a = (a1, ..., ak) and similarly for b), with P{a} =
P{b} = 0. Then we show that the class I of such rectangles satisfies con-
ditions (i)–(ii) of 5.6.6, and the following version of (iii): for any s ∈ Rk,

and ε > 0 there exist (a, b] in this class such that the Euclidian dis-
tance between a and b is less than ε. Since Rk is separable, the Lindelöf
property completes the proof.

5.6.9 Remark We know from 1.2.20 that the values of a measure on
the sets of the form (−∞, t] determine this measure. In 5.6.6 we proved
that such sets also determine convergence of measures. We should not
expect, however, that in general a collection of sets that determines a
measure must also determine convergence – see [6]. In the same book it is
shown that conditions (i)–(iii) can be generalized to give a nice criterion
for convergence of probability measures in a (separable) metric space.

5.6.10 Example Probability measures on Rk may of course escape
to infinity; and this may happen in various ways. In studying such phe-
nomena we need to be careful to keep track of how much of the mass
escapes and where it is being accumulated. The criterion given in 5.6.8
can be of assistance, if we use it in an intelligent way.

The following example originates from population genetics and de-
scribes the limit distribution of a pair (Xt, Yt), t > 0, of random vari-
ables, in which the first coordinate may be interpreted as a time (mea-
sured backwards) to the first common ancestor of two individuals taken
from a large population (see [16, 17, 18]). The so-called effective pop-
ulation size 2N(·) is supposed to be known as a function of time (the
factor 2 is here for genetical reasons: individuals are in fact interpreted
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as chromosomes and chromosomes come in pairs). The larger 2N(·) is,
the longer time it takes to find the ancestor. The variable Xt is trun-
cated at a t > 0, and the second coordinate is defined as Yt = t − Xt.

Formally, Xt is a random variable taking values in [0, t] with distribution
determined by 2N(·) according to the formula P[Xt ≥ u] = e−

∫ t
t−u

dv
2N(v)

(in particular: P[X = t] = e−
∫ t
0

dv
2N(v) ). Let Pt be the distribution of the

pair (Xt, Yt) in R+ × R+. We are interested in the limit of Pt as t→ ∞
and consider the following cases:

(a) limt→∞N(t) = 0,
(b) limt→∞N(t) = N, 0 < N <∞,

(c) limt→∞N(t) = ∞, and
∫∞
0

dt
2N(t) = ∞,

(d) limt→∞N(t) = ∞, and
∫∞
0

dt
2N(t) <∞.

We will show that Pt converges weakly to a measure on [0,∞]2. In the
cases (a) and (c), this measure is the Dirac measure at {0} × {∞} and
{∞}×{∞}, respectively. In (b) and (d), it is the measure identified with
the functionals on C([0,∞]2) given by

x→ 1
2N

∫ ∞

0

e−
t

2N x(t,∞) dt,

x→ e−
∫ ∞
0

du
2N(u)x(∞, 0) +

∫ ∞

0

1
2N(u)

e−
∫ ∞

u
dv

2N(v)x(∞, u) du,

respectively. These claims may be summarized in the form of the follow-
ing table.

Table 5.1

behavior of N(t) variable X = X∞ variable Y = Y∞

limt→∞N(t) = 0 0 ∞
limt→∞N(t) = N , exponential with

0 < N <∞ parameter 2N ∞
limt→∞N(t) = ∞,∫∞

0
du

2N(u) = ∞ ∞ ∞
limt→∞N(t) = ∞, finite, P(Y > w) =∫∞

0
du

2N(u) <∞ ∞ 1 − e−
∫ ∞

w
du

2N(u)

P(Y = 0) = e−
∫ ∞
0

du
2N(u)

For the proof, note that for any v, w ≥ 0 and t so large that t− w ≥ v,

Pt[(v,∞) × (w,∞)] = P[v < Xt < t− w] = e−
∫ t

t−v
du

2N(u) − e−
∫ t

w
du

2N(u) .
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Hence, limt→∞ Pt[(v,∞) × (w,∞)] equals 0 in the case (a), for v > 0.
It equals 1 in the case (a), for v = 0, and in the case (c). It equals
e−

v
2N in the case (b), and 1 − e−

∫ ∞
u

dv
2N(v) in the case (d). This proves

our claim in cases (b)–(d); to treat (a) we need to note additionally that
limt→∞ P[X ≤ v, t−X > w] = limt→∞ P[X ≤ v] = 1, v ≥ 0.

5.7 Compactness everywhere

I believe saying that the notion of compactness is one of the most im-
portant ones in topology and the whole of mathematics is not an ex-
aggeration. Therefore, it is not surprising that it comes into play in a
crucial way in a number of theorems of probability theory as well (see
e.g. 5.4.18 or 6.6.12). To be sure, Helly’s principle, so familiar to all stu-
dents of probability, is simply saying that any sequence of probability
measures on R is relatively compact; in functional analysis this theorem
finds its important generalization in Alaoglu’s Theorem. We will dis-
cuss compactness of probability measures on separable metric spaces, as
well (Prohorov’s Theorem), and apply the results to give another proof
of existence of Brownian motion (Donsker’s Theorem). On our way to
Brownian motion we will prove the Arzela–Ascoli Theorem, too.

We start by looking once again at the results of Section 3.7, to con-
tinue with Alexandrov’s Lemma and Tichonov’s Theorem that will lead
directly to Alaoglu’s Theorem mentioned above.

5.7.1 Compactness and convergence of martingales As we have seen
in 3.7.7, a martingale converges in L1 iff it is uniformly integrable. More-
over, in 3.7.15 we proved that a martingale converges in Lp, p > 1 iff it
is bounded. Consulting [32] p. 294 we see that uniform integrability is
necessary and sufficient for a sequence to be relatively compact in the
weak topology of L1. Similarly, in [32] p. 289 it is shown that a sequence
in Lp, p > 1 is weakly relatively compact iff it is bounded. Hence, the re-
sults of 3.7.7 and 3.7.15 may be summarized by saying that a martingale
in Lp, p ≥ 1, converges iff it is weakly relatively compact. However, my
attempts to give a universal proof that would work in both cases covered
in 3.7.7 and 3.7.15 have failed. I was not able to find such a proof in the
literature, either.

5.7.2 Definition We say that an open infinite cover of a topological
space S is truly infinite iff it does not contain a finite subcover.
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5.7.3 Alexandrov’s Lemma Let V be a subbase in S. If there is an
open truly infinite cover of S, then there also is a truly infinite cover of
S build with elements of V.

Proof (i) The set of truly infinite subcovers of S is non-empty and
partially ordered by the relation of inclusion. Moreover, any linearly
ordered subset, say Ct, t ∈ T (where T is a non-empty index set) of this
set has its upper bound; indeed Cb =

⋃
t∈T Ct is such a bound. To prove

this assume that Cb is not truly infinite; it covers S and is infinite as
it contains at least one cover Ct. Then there exists an integer n and
elements U1, U2, ..., Un of Cb that cover S. Since Ct, t ∈ T, is linearly
ordered, there exists a t such that all Ui ∈ Ct which contradicts the fact
that Ct is truly infinite, thus proving that Cb is truly infinite. By the
Kuratowski–Zorn Lemma, there exists a maximal element of the set of
truly infinite covers. Let Cm be such a cover.

(ii) Suppose an open set G does not belong to Cm. Then there exist
an n ∈ N and members U1, U2, ..., Un of Cm such that

G ∪
n⋃
i=1

Ui = S, (5.26)

because {G}∪Cm contains Cm as a proper subset, and hence cannot be
a truly infinite cover. Conversely, for no member G of Cm may we find
n ∈ N and Ui in Cm so that (5.26) holds, for Cm is truly infinite. Hence,
the possibility of writing (5.26) fully characterizes open sets that do not
belong to Cm. It follows immediately that if G1 ⊂ G2 are open sets and
G1 
∈ Cm then G2 
∈ Cm. Moreover, if G1, G2 
∈ Cm, then G1 ∩G2 
∈ Cm,
either.

(iii) We will show that V ′ = V ∩ Cm is a cover of S. This will imply
that it is a truly infinite cover, as it is a subset of a truly infinite cover.
Take a p ∈ S and its open neighborhood U ∈ Cm. By definition, there
exists a k ∈ N and members V1, ..., Vk of V such that p ∈ ⋂ki=1 Vk ⊂ U.

Now, by (ii), one of Vi must belong to Cm, for otherwise their intersection
would not belong to Cm, and neither would U. This however, shows that
V ′ covers S.

5.7.4 Tichonov’s Theorem Let T be a non-empty set and let, for each
t ∈ T, St be a topological space. Let

∏
t∈T St be the set of functions

f : T → ⋃
t∈T St such that f(t) belongs to St for all t ∈ T. Let us

introduce a topology in
∏
t∈T St by defining its subbase to be formed

of sets of the form Vt,U = {f ∈ ∏t∈T St|f(t) ∈ U} where t ∈ T and
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U ⊂ St is open. This is the weakest topology making all the maps∏
t∈T St � f �→ f(t) ∈ St, t ∈ T continuous. Tichonov’s Theorem says

that if the St are compact then so is
∏
t∈T St.

Proof Suppose that
∏
t∈T St is not compact.

(i) By Alexandrov’s Lemma, there exists a family V ′ of subsets Vt,U
that is a truly infinite cover of

∏
t∈T St. Now, fix a t ∈ T and consider the

family Ut of open sets U in St such that Vt,U belongs to V ′. Then, none
of Ut is a cover of St. Indeed, if it were, there would exist an n ∈ N and
sets U1,t, ..., Un,t ∈ Ut such that St =

⋃n
i=1 Un,t. Consequently, we would

have
∏
t∈T St = {f ∈ ∏t∈T St|f(t) ∈ St} ⊂ ⋃ni=1{f ∈ ∏t∈T St|f(t) ∈

Ui} =
⋃n
i=1 Vt,Ui , contradicting the fact that V ′ is a truly infinite cover.

(ii) By (i), for any t ∈ T there exists a p = f(t) ∈ St such that
p 
∈ Vt,U for U ∈ Ut. On the other hand, thus defined f is a member
of
∏
t∈T St, and V ′ is a cover of this space. Hence, there exists a t and

an open set U ⊂ St, U ∈ Ut such that f ∈ Vt,U , i.e. f(t) ∈ U. This
contradiction shows that

∏
t∈T St must be compact.

5.7.5 Alaoglu’s Theorem Let X be a Banach space. The unit (closed)
ball B = {F ∈ X∗|‖F‖ ≤ 1} in X∗ is weak∗ compact.

Proof By Tichonov’s Theorem, all bounded functionals of norm not
exceeding 1 are members of the compact space

∏
x∈X Sx where Sx are

compact intervals [−‖x‖, ‖x‖]. Moreover, the weak∗ topology in B is the
topology inherited from

∏
x∈X Sx. Hence, it suffices to show that B is

closed in
∏
x∈X Sx.

To this end, let us assume that an f ∈∏x∈X Sx belongs to the closure
of B. We need to show that f is a linear functional with the norm not
exceeding 1. Let us take x and y ∈ X and the neighborhoods Vf,x,ε, Vf,y,ε
and Vf,x+y,ε, where Vf,z,ε = {g ∈ ∏x∈X Sx||g(z) − f(z)| < ε}. There is
an F ∈ B that belongs to the intersection of these three neighborhoods.
Hence |f(x+ y) − f(x) − f(y)| = |f(x+ y) − f(x) − f(y) − F (x+ y) +
F (x)+F (y)| ≤ |f(x+y)−F (x+y)|+ |F (x)−f(x)|+ |f(y)−F (y)| < 3ε.
Since ε > 0 can be chosen arbitrarily, f(x+ y) = f(x) + f(y). Similarly
one shows that f(αx) = αf(x). Finally, |f(x)| ≤ ‖x‖ by definition of Sx
in
∏
x∈X Sx.

5.7.6 Corollary Let S be a compact topological space, and let Pn,

n ≥ 1, be a sequence of probability measures in S. By Alaoglu’s The-
orem and the Riesz Theorem there exists a subsequence of Pn, n ≥ 1,
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converging to a linear functional F on C(S), with ‖F‖ ≤ 1. Moreover,
F is non-negative and F (1S) = 1. This implies that F corresponds to
a probability measure P on S. Hence, for any sequence of probability
measures on S there exists a subsequence converging to a probability
measure on S.

5.7.7 Helly’s principle Helly’s principle says (see e.g. [41]) that any
sequence Pn, n ≥ 1, of probability measures on R has a subsequence con-
verging to some measure µ; yet in general the inequality µ(R) ≤ 1 may
be strict. The reason for this last complication is probably already clear
for the reader: R is not compact. If we consider Pn, n ≥ 1 as measures
on the one-point compactification, or the natural two-point compacti-
fication of R, and use 5.7.6 it may happen that the limit probability
measure has some mass at one of the adjoint points.

In a similar way, Helly’s principle applies to measures on any locally
compact space.

5.7.8 Exercise Prove 5.4.20 without alluding to 5.4.18, and using
5.7.7 instead (applied to µn ⊗ νn on R2) – cf. 6.5.6.

5.7.9 Tightness of measures Let S be a separable metric space. Then,
a sequence of probability measures Pn, n ≥ 1, does not have to have a
converging subsequence. Well, as we shall see in the proof of 5.7.12, it
does have to, but the support of the limit measure may be partly or
totally outside of S. To make sure the limit measure is concentrated on
S we require the measures Pn to “hold on tight” to S. By definition, a
family of probability measures on S is said to be tight if for every ε > 0
there exists a compact set K such that P(K) > 1 − ε for all P in this
family.

5.7.10 Urysohn’s Theorem The universal space where the supports of
limit measures “live” is the Hilbert cube H = [0, 1]N =

∏∞
i=1 Si where all

Si = [0, 1]. The topology in H is introduced in the general way described
in 5.7.4, but in this special case we may go further and introduce the
norm dH in H by

dH(f, g) =
∞∑
i=1

1
2i
|f(i) − g(i)|.

It is clear that if dH(fn, f) converges to 0 then fn(i) converges to f(i).
The converse statement follows by the Lebesgue Dominated Convergence
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Theorem. As a corollary, the topology induced in H by the metric dH is
the same as the topology introduced in 5.7.4.

Urysohn’s Theorem states that any separable metric space S is home-
omorphic to a subset of H.

Proof We need to show that there is an injective map Φ : S → H such
that for any members p and pn, n ≥ 1, of S, d(pn, p) converges to 0 iff
dH(Φ(pn),Φ(p)) does. Without loss of generality, we may assume that
the metric d in S is bounded by 1, i.e. that d(p, p′) ≤ 1 for all p and p′

in S. Indeed, in the general case we introduce an equivalent metric d′

in S by d′ = min(d, 1). Let ei, i ≥ 1, be dense in S, and let Φ(p) = f

be a function f : N → [0, 1] given by f(i) = d(p, ei). By continuity of
metric, limn→∞ d(pn, p) = 0 implies limn→∞ d(pn, ei) = d(p, ei) for all
i ∈ N, and hence dH(Φ(pn), φ(p)) converges to 0. Conversely, if d(p, ei)
converges to 0 for all i then, since {ei, i ≥ 1} is dense, given ε > 0 we
may find an ei such that d(p, ei) < ε

3 . Next, we may find an n0 such
that |d(pn, ei) − d(p, ei)| < ε

3 for n ≥ n0. For such an n, d(pn, p) ≤
d(pn, ei) + d(p, ei) < ε, as desired. Finally, the same argument shows
that d(p, ei) = d(p′, ei), i ∈ N, implies d(p, p′) = 0 and hence p = p′.

5.7.11 Corollary The transport of a measure on S via Φ together
with the transport of the measure on Φ(S) via Φ−1 establishes a one-
to-one correspondence between Borel measures on S and on S′ = Φ(S).
Moreover, by the change of variables formula (1.6), a sequence of prob-
ability measures Pn, n ≥ 1, on S converges weakly to a P iff a corre-
sponding sequence (Pn)Φ converges weakly to PΦ. Furthermore, Φ and
Φ−1 map compact sets into compact sets. Hence, Pn, n ≥ 1, is tight iff
(Pn)Φ, n ≥ 1, is.

5.7.12 Prohorov’s Theorem Suppose a sequence of Borel probability
measures on a separable metric space S is tight. Then, it is relatively
compact.

Proof By Urysohn’s Theorem and 5.7.11, it suffices to show that a tight
sequence Pn, n ≥ 1, of Borel measures on a subset S of H is relatively
compact. Of course the idea is to reduce this situation to that described
in 5.7.6. We note that in general Borel subsets of S are not Borel in
H, unless S is Borel itself. We may, however, use characterization (1.3)
and given a Borel measure P on S define a Borel measure P� on H by
P�(A) = P(S ∩ A). Now, the sequence P�n, n ≥ 1, has a subsequence
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P�ni
, i ≥ 1, converging to a probability measure µ on H. By 5.6.3,

lim sup
i→∞

P�ni
(A) ≤ µ(A), for any closed subset A of H. (5.27)

Since Pn, n ≥ 1, is tight, there are sets Kk, k ≥ 1, that are compact
in S (hence, compact in H as well) such that Pn(Kk) ≥ 1 − 1

k , n ≥ 1.
Moreover, Kk are Borel subset of H and P�n(Kk) = Pn(Kk), n ≥ 1.
Hence, µ(Kn) ≥ 1 − 1

k . If we let K =
⋃
k≥1Kk, then µ(K) = 1.

Let B ∈ B(S). If A1 and A2 are Borel in H and B = A1 ∩S = A2 ∩S,
then the symmetric difference of A1 and A2 is contained in H\S ⊂ H\K.
Therefore, the quantity P(B) := µ(A) where A ∈ B(S) and B = A ∩ S
is well defined. We check that P is a Borel measure on S and P� = µ.

Finally, if B ⊂ S is closed in S, then there is an A ⊂ H that is closed
in H such that B = S ∩ A. Since P�n(A) = Pn(B) and P(B) = µ(A),
(5.27) shows that Pni , i ≥ 1, converge weakly to P.

5.7.13 Exercise Complete the above proof by showing that if B ⊂ S

is compact in S, then it is compact in H, too. Note that an analogous
statement about closed sets is in general not true.

5.7.14 Remark The converse to Prohorov’s Theorem is true under
the assumption that S is complete. However, we will neither use nor
prove this result here.

5.7.15 Brownian motion as a measure Let C(R+) be the space of
continuous functions x, y, ... mapping R+ into R and such that x(0) = 0.
When equipped with the metric

d(x, y) =
∞∑
n=1

1
2n

min{1, sup
s∈[0,n]

|x(s) − y(s)|},

C(R+) is a metric space. Moreover, polynomials with rational coefficients
form a dense set in C(R+), i.e. C(R+) is separable. Indeed, given x ∈
C(R+) and 1 > ε > 0, we may choose an n0 ∈ N so that 1

2n0−1 < ε and
a polynomial y with rational coefficients such that sups∈[0,n0] |x(s) −
y(s)| < ε

2 . Then, d(x, y) ≤ ∑n0
n=1

1
2n

ε
2 +

∑∞
n=n0+1

1
2n < ε

2 + 1
2n0 <

ε, as claimed. A similar argument shows that limn→∞ d(xn, x) = 0 iff
functions xn ∈ C(R+) converge to x ∈ C(R+) uniformly on compact
subintervals of R+, and that C(R+) is complete.

We will show that the Borel σ-algebra B(C(R+)) is the σ-algebra
generated by the maps C(R+) � x �→ πt(x) := x(t) ∈ R, t > 0. To this
end we note that all these maps are continuous, hence Borel measurable,
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and it suffices to show that B(C(R+)) is a subset of the σ-algebra just
mentioned. By the characterization of convergence in C(R+) given at the
end of the previous paragraph, for y ∈ C(R+) and positive T , the map
C(R+) � x �→ fy,T (x) = supt∈[0,T ] |x(t)− y(t)| is continuous. Hence, the
sets Vy,T,ε := f−1

y,T (−ε, ε), where ε > 0, are open in C(R+). Moreover,
these sets form a subbase of the topology in C(R+) and belong to the
σ-algebra generated by the πt, t > 0, as may be seen from

Vy,T,ε =
⋃
n≥1

⋂
t∈Q

A(y, t,
n

n+ 1
ε)

where A(y, t, ε) := {x ∈ C(R+)| |x(t) − y(t)| ≤ ε} = Φ−1
t [−ε, ε].

Now, suppose that (Ω,F ,P) is a probability space where a Brownian
motion process is defined. Without loss of generality we may assume
that all trajectories ω �→ w(t, ω) are continuous and w(0, ω) = 0. The
map W : Ω → C(R+) that assigns a trajectory to an element of Ω
is measurable because W−1Bt,A = {ω ∈ Ω|x(t, ω) ∈ A} ∈ F where
Bt,A = {x ∈ C(R+)|x(t) ∈ A} and A is a Borel subset of R, and
the sets Bt,A generate B(C(R+)). Hence, given a Brownian motion on
(Ω,F ,P) we may construct a measure PW on C(R+), called the Wiener
measure, as the transport of P via W. Note that finite intersections of the
sets Bt,A where t > 0 and B ∈ B(R) form a π-system. Hence the Wiener
measure is determined by its values on such intersections. In other words,
it is uniquely determined by the condition that (PW )πt1,t2,...,tn

(called a
finite-dimensional distribution of PW ) is a Gaussian measure with
covariance matrix (ti ∧ tj)i,j=1,...,n (see 4.1.7), where πt1,...,tn : C(R+) →
Rn is given by πt1,...,tnx = (x(t1), ..., x(tn)) and t1 < t2 < ... < tn are
positive numbers.

On the other hand, if we could construct a measure PW on the space
(C(R+),B(C(R+)) possessing the properties listed above, the family of
random variables πt, t ≥ 0, would be a Brownian motion. In the following
subsections we will prove existence of PW without alluding to Chapter
4. We start by presenting the Arzela–Ascoli Theorem which plays a role
in the proof. However, the reader who wants to be sure he understands
this subsection well should not skip the following exercise.

5.7.16 Exercise Check that the sets Vy,T,ε form a subbase of the
topology in C(R+).

5.7.17 Arzela–Ascoli Theorem The Arzela–Ascoli Theorem, the fa-
mous criterion for compactness of a set A ⊂ C(S) where (S, d) is a
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compact metric space, turns out to be another direct consequence of Ti-
chonov’s Theorem. The former theorem says that the set A is relatively
compact iff it is composed of equicontinuous functions and there exists
an M > 0 such that

‖x‖C(S) ≤M, for all x ∈ A. (5.28)

Let us recall that A is said to be composed of equicontinuous functions
iff

∀ε>0∀p∈S∃δ>0∀p′∈S∀x∈A d(p, p′) < δ ⇒ |x(p) − x(p′)| ≤ ε. (5.29)

For the proof of the Arzela–Ascoli Theorem we need to recall two lem-
mas.

5.7.18 Lemma Let us suppose A ⊂ C(S) is composed of equicontin-
uous functions and (5.28) is satisfied. Let us consider A as a subset of∏
p∈S Sp where Sp = [−M,M ] for all p ∈ S. Then, the closure of A in

this space is composed of equicontinuous functions, and (5.29) holds for
all x ∈ cl A, too. In particular, the limit points of A are continuous.

Proof Let us fix y ∈ cl A and ε > 0, and choose a δ > 0 so that (5.29)
holds. Let p′ be such that d(p, p′) < δ. For all n ≥ 1, there exists an
xn ∈ Vp,y, 1n ∩ Vp′,y, 1n ∩A where Vp,y, 1n is a neighborhood of y composed
of x ∈ C(S) such that |x(p) − y(p)| < 1

n . Hence,

|y(p)−y(p′)| ≤ |y(p)−xn(p)|+ |xn(p)−xn(p′)|+ |xn(p′)−y(p′)| ≤ ε+
2
n
,

for all n ≥ 1. Therefore, |y(p) − y(p′)| ≤ ε.

5.7.19 Lemma Suppose xn, n ≥ 1, is a sequence of equicontinuous
functions on a compact metric space S, and limn→∞ xn(p) exists for
all p ∈ S. Then, the convergence is in fact uniform, i.e. limn→∞ ‖xn −
x‖C(S) = 0. (Note that x ∈ C(S) by the previous lemma.)

Proof Suppose that this is not so. Then, there exists a c > 0 such
that ‖xn− x‖ ≥ c for infinitely many n ≥ 1. On the other hand, for any
n ≥ 1, there exists a pn ∈ S such that ‖xn−x‖ = |xn(pn)−x(pn)|. Hence,
there are infinitely many n such that |xn(pn) − x(pn)| ≥ c. Since S is
compact, there exists a further subsequence of pn, n ≥ 1, converging to a
p0 ∈ S. Without loss of generality, to simplify notation, we assume that
limn→∞ pn = p0. Then, for any ε > 0 and n large enough, d(pn, p) < δ
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where δ is chosen as in (5.29). Moreover, by assumption, for n large
enough |xn(p0) − x(p0)| ≤ ε. Therefore, for such n,

|xn(pn)−x(pn)| ≤ |xn(pn)−xn(p0)|+ |xn(p0)−x(p0)|+ |x(p0)−x(pn)|

does not exceed 3ε (we use the previous lemma here!), which contradicts
the way the pn were chosen.

Proof (of the “if” part of the Arzela–Ascoli Theorem) Let xn, n ≥ 1, be
a sequence of elements of A. By the first lemma, the closure of A in the
space

∏
p∈S Sp is composed of equicontinuous functions. Since

∏
p∈S Sp,

is compact, so is clA. Moreover, the topology in this space is the topology
of pointwise convergence. Hence, there exists a subsequence of xn, n ≥ 1,
converging to a continuous x. By the second lemma, the convergence is
in fact uniform.

5.7.20 Exercise Show the “only if” part of the Arzela–Ascoli Theo-
rem.

5.7.21 Remark Suppose S = [0, t] where t > 0, and A ⊂ C[0, t] is
composed of equicontinuous functions x such that |x(0)| ≤ M for some
constant M independent of the choice of x ∈ A. Then A is relatively
compact.

Proof We may take an n > 0 such that |x(s) − x(s′)| < 1 provided
|s − s′| ≤ 1

n . Then, for all x ∈ A and s ∈ [0, t], |x(s)| ≤ |x(0)| +∑[ns]
k=1

∣∣x ( kn)− x
(
k−1
n

)∣∣+∣∣∣x(s) − x
(

[ns]
n

)∣∣∣ ≤M+[ns]+1 ≤M+[nt]+1.
This shows that (5.28) holds with M replaced by M + [nt] + 1.

5.7.22 Compact sets in C(R+) A set A ⊂ C(R+) is relatively com-
pact iff it is composed of functions that are equicontinuous at every
subinterval of R+.

Proof Necessity is obvious by the Arzela–Ascoli Theorem. To show suf-
ficiency, for i ∈ N, let Ai be the set of y ∈ C[0, i] such that there is an
x ∈ A such that y = x|[0,i] (the restriction of x to [0, i]). Let us recall
that x(0) = 0 for all x ∈ C(R+). Therefore, by 5.7.21, the sets Ai are
compact and so is

∏
i∈N Ai.

There is a one-to-one correspondence between elements of A and se-
quences (yi)i≥1 ∈ ∏i∈N Ai such that (yi+1)|[0,i] = yi, i ≥ 1. Moreover,
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a sequence xn, n ≥ 1 of elements of C(R+) converges in C(R+) iff the
corresponding (yn,i)i≥1 , n ≥ 1, converges in

∏
i∈N Ai.

If a xn ∈ C(R+), n ≥ 1, does not have a converging subsequence, then
there is no converging subsequence of the corresponding (yn,i)i≥1 , n ≥ 1,
contradicting compactness of

∏
i∈N Ai.

5.7.23 Donsker’s Theorem The theorem we are to discuss may be
called a “C(R+)-version of the Central Limit Theorem”. We suppose
that Xi, i ≥ 1, is a sequence of independent, identically distributed ran-
dom variables with mean zero and variance 1 defined on (Ω,F ,P). Let
S0 = 0, and Sn =

∑n
i=1Xi, n ≥ 1. For any ω ∈ Ω and n ∈ N we define

a continuous function Xn(t) = Xn(t, ω) of argument t ∈ R+ by letting
Xn
(
k
n

)
= 1√

n
Sk and requiring Xn(t) to be linear in between these points.

In other words,
√
nXn(t) = (1 − α(t))S[nt] + α(t)S[nt]+1 = S[nt] + α(t)X[nt]+1 (5.30)

where ≤ α(t) = nt− [nt] ≤ 1 ∈ [0, 1]. As in 5.7.15, we prove that Xn is a
measurable map from Ω to C(R+). Let Pn, n ≥ 1, denote the transport
measures on C(R+) related to these maps. The Donsker’s Theorem
says that

the measures Pn, n ≥ 1 converge weakly and the limit measure is the
Wiener measure PW on C(R+).

In particular, the existence of PW is a part of the theorem. For the
proof we need two lemmas, a hard one and an easy one. We start with
the former.

5.7.24 Lemma The sequence Pn, n ≥ 1 is tight in C(R+).

Proof For x ∈ C(R+) and t > 0 let us define the functions mt(h) =
mt(x, h) of argument h ≥ 0 by mt(h) = sup0≤s≤t |x(s) − x(s + h)|. By
5.7.22, it is clear that we need to make sure that large values ofmt(Xn, h)
do not show up too often. In other words, we want to have a control over
supn Pn{mt(x, h) > ε}, ε > 0. We will gain it in several steps.

1 Fix 0 ≤ s < t. Since maximum of a polygonal function is attained
at one of its vertices,

sup
s≤u≤t

|Xn(u) −Xn(s)| ≤ max
�ns�≤k≤�nt�

∣∣∣∣ 1√
n
Sk −Xn(s)

∣∣∣∣
where �s� denotes the smallest integer k such that k ≥ s. Let �s� (= [s])
denote the largest integer dominated by s. Note that 1√

n
S�ns� ≥ Xn(s) ≥
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1√
n
S�ns� provided X�ns� ≥ 0, and both inequalities reverse in the other

case. Hence, our supremum does not exceed

max
�ns�≤k≤�nt�

∣∣∣∣ 1√
n
Sk −

1√
n
S�ns�

∣∣∣∣ ∨ max
�ns�≤k≤�nt�

∣∣∣∣ 1√
n
Sk −

1√
n
S�ns�

∣∣∣∣
so that, for any ε > 0, P{sups≤u≤t |Xn(u) −Xn(s)| > ε} is no greater

than P

{
max�ns�≤k≤�nt�

∣∣∣ 1√
n

∑k
i=�ns�+1Xi

∣∣∣ > ε
}

plus a similar proba-
bility with �ns� replaced by �ns�. Since random variables Xi are in-
dependent and identically distributed, both probabilities are no greater
than P

{
max1≤k≤�nt�−�ns�

∣∣∣ 1√
n
Sk

∣∣∣ > ε
}
. Moreover, for s > and h > 0,

�n(s+ h)� − �ns� ≤ �nh� + 1. Thus,

sup
s

P

{
sup

s≤u≤s+h
|Xn(u) −Xn(s)|

}
≤ 2P{ max

1≤k≤�nh�+1

1√
n
|Sk| > ε}.

(5.31)
For m ≥ 1, let S∗

m = max1≤k≤m |Sk| and for a > 0 let τa = min{k ∈
N| |Sk| > a}. Note that τa is a Markov time and Sτ is a well-defined
random variable. Moreover, the probability on the right-hand side of
(5.31) equals P{Sm >

√
nε} = P{τ√nε ≤ m} where m = m(n, h) =

�nh� + 1.
2 We have the following maximal inequality of Ottaviani:

P(S∗
m ≥ 2

√
mr) ≤ 2P{Sm ≥ √

mr}
1 − r−2

, r > 1. (5.32)

For its proof we note that

P{|Sm| > r
√
m} ≥ P{|Sm| > r

√
m,S∗

m > 2r
√
m}

≥ P{τ ≤ m, |Sm − Sτ | < r
√
m}

=
m∑
k=1

P{τ = k, |Sm − Sk| < r
√
m},

where τ = τ2r
√
m for simplicity. Since Sm − Sk is independent of the

variables X1, ..., Xk and has the same distribution as Sm−k, and {τ =
k} ∈ σ(X1, ..., Xk), the last sum equals

m∑
k=1

P{τ = k}P{|Sm−k| < r
√
m}

≥ min
1≤k≤m

P{|Sm−k| < r
√
m}

m∑
k=1

P{τ = k}

≥ min
1≤k≤m

P{|Sk| < r
√
m}P{τ ≤ m}.
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Moreover, by Chebyshev’s inequality

min
1≤k≤m

P{|Sk| < r
√
m} = 1 − max

1≤k≤m
P{|Sk| ≥ r

√
m}

≥ 1 − max
1≤k≤m

k

r2m
= 1 − 1

r2
.

Hence, P{|Sm| > r
√
m} ≥ (1 − 1

r2 )P{S∗
m > 2r

√
m} and (5.32) follows

by dividing by 1 − 1
r2 (this is where we need r > 1).

3 Let rn = 1
2

√
n
mε. Since limn→∞ rn = ε

2
1√
h
, for sufficiently small

h and sufficiently large n we have rn > 1. Moreover, by 1, 2 and the
Central Limit Theorem,

lim sup
n→∞

sup
s≥0

P

{
sup

s≤u≤s+h
|Xn(u) −Xn(s)|

}
≤ lim
n→∞

2P{|Sm| > √
mrn}

1 − r−2
n

=
(

1 − 4h
ε2

)−1 4√
2π

∫ ∞

ε

2
√

h

e−u
2/2 du.

Since limh→0+
1
h

4√
2π

∫∞
ε

2
√

h

e−u
2/2 du = 0,

lim sup
h→0+

1
h

lim sup
n→∞

sup
s≥0

P

{
sup

s≤u≤s+h
|Xn(u) −Xn(s)| > ε

}
= 0. (5.33)

The first “lim sup” here may be replaced by “lim” for we are dealing
with limits of non-negative functions.

4 Relation (5.33) implies that, for any t > 0,

lim sup
h→0+

lim sup
n→∞

P

{
sup

0≤s≤t
sup

s≤u≤s+h
|Xn(u) −Xn(s)| > ε

}
= 0. (5.34)

To prove this, we take a δ > 0 and choose hδ < 1 small enough to have

1
h

lim sup
n→∞

sup
s≥0

P

{
sup

s≤u≤s+h
|Xn(u) −Xn(s)| >

ε

3

}
<
δ

t
, for h < hδ.

Next, we take l = �t/h� and divide the interval [0, t] into l + 1 subin-
tervals [si, si+1], i = 0, ..., l where s0 = 0 and sl+1 = t, such that
maxi=0,...,l |si+1 − si| < h. For s < u ≤ t with u − s < h, there ex-
ists an si such that |si − u| ∧ |si − s| < h and we either have si ≤ s < u

or i ≥ 2 and s ≤ si ≤ u. In the former case, |Xn(u) −Xn(s)| does
not exceed |Xn(u) −Xn(si)|+ |Xn(u) −Xn(si)| and in the latter it does
not exceed |Xn(u) −Xn(si)|+ |Xn(u) −Xn(si−1)|+ |Xn(si) −Xn(si−1)|.
Therefore, {sup0≤s≤t sups≤u≤s+h |Xn(u) −Xn(s)| > ε} is contained in
the union

⋃l
i=0{supsi≤u≤si+h |Xn(u) −Xn(s)| > ε

3}, and its probabil-
ity is no greater than the sum of probabilities of the involved events,
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which by assumption does not exceed (�t/h� + 1)h δ
t+1 ≤ t+h

t+1 δ < δ.

Since δ was arbitrary, we are done.
Again, the first “lim sup” in (5.34) may be replaced by “lim”. Hence,

by definition of mt and Pn, we have

lim
h→0+

lim sup
n→∞

P{mt(Xn, h) > ε} = lim
h→0+

lim sup
n→∞

Pn{mt(x, h) > ε} = 0.

(5.35)
Finally, limh→0+mt(Xn(ω), h) for every ω ∈ Ω and n ∈ N, the func-

tion Xn(ω) being continuous. Therefore, by the Dominated Convergence
Theorem,

lim
h→0+

P{mt(Xn, h) > 0} = lim
h→0+

E 1{mt(Xn,h)>ε} = 0, n ∈ N.

(5.36)
This proves that the “lim sup” in (5.35) may be replaced by “sup”.

5 Fix ε > 0 and t > 0. For any k ∈ N, there exists an hk such that
supn Pn{mkt(x, hk) > 1

k} ≤ ε
2k+1 . Let K =

⋂
k≥1{mkt(x, hk) ≤ 1

k}. By
5.7.22, K is compact (it is closed by 5.7.18), and

min
n≥1

Pn(K) = 1 − sup
n≥1

Pn(K�) ≥ 1 − sup
n≥1

∞∑
k=1

Pn

{
mkt(x, hk) >

1
k

}

≥ 1 −
∞∑
k=1

ε

2k+1
= 1 − ε.

5.7.25 Lemma For any 0 ≤ t1 < t2 < ... < tk, the distributions
(Pn)πt1,...,tk

of (Xn(t1), ...,Xn(tk)) converge weakly to the normal distri-
bution with covariance matrix (ti ∨ tj)i,j=1,...,k .

Proof By 5.6.2 and 4.1.7, it suffices to show that

Xn =
(Xn(t1)√

t1
,
Xn(t2) −Xn(t1)√

t2 − t1
, ...,

Xn(tk) −Xn(tk−1)√
tk − tk−1

)

converges weakly to the standard normal distribution. To this end, we
show that

Sn =
1√
n

(
S[nt1]√
t1
,
S[nt2] − S[nt1]√

t2 − t1
, ...,

S[ntk] − S[ntk−1]√
t2 − t1

)

converges to the standard normal distribution, and that

lim
n→∞

∣∣E x ◦ Xn − E x ◦ Sn
∣∣ = 0,
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for any continuous x on Rk with compact support. The reasons why we
may restrict our attention to continuous functions with compact support
are (a) continuous functions with compact support form a dense set in
C0(Rk) and (b) by the first claim we know that the the limit measure is
a probability measure, so that no mass escapes to infinity.

To prove the first claim we note that the coordinates of Sn are in-
dependent and that the ith coordinate has the same distribution as
1√
n

1√
ti−ti−1

S[nti]−[nti−1] (we put t0 = 0) which by the Central Limit

Theorem and limn→∞
[nti]−[nti−1]

n = ti − ti−1 converges weakly to the
N(0, 1) distribution. Hence, for any ai ∈ R, i = 1, ..., k,

P

{
Sn ∈

k∏
i=1

(−∞, ai]

}
=

k∏
i=1

P

{
S[nti] − S[nti−1]√

t2 − t1
≤ ai

}

converges to
∏k
i=1

1√
2π

∫∞
ai

e−u
2/2 du, as desired.

To prove the second claim we argue similarly as in 4.1.4. Let Rn :=
Xn − Sn. By definition (5.30), the ith coordinate of Rn equals

1√
n

α(ti)X[nti]+1 − α(ti−1)X[nti−1]+1√
ti − ti−1

and the variance of this coordinate is no greater than 2
n(ti−ti−1)

. Let∣∣Rn∣∣ denote the sum of absolute values of coordinates of Rn. For δ > 0,
the probability P

{∣∣Rn∣∣ ≥ δ
}

does not exceed

k∑
i=1

P

{
1√
n

α(ti)X[nti]+1 − α(ti−1)X[nti−1]+1√
ti − ti−1

≥ δ

k

}

which, by Chebyshev’s inequality, is dominated by δ2

n k
2
∑k
i=1

2
(ti−ti−1)

.

Given ε > 0 we may find a δ such that |x(t) − x(s)| < ε
2 provided

|t − s| < δ, t, s ∈ Rk. Moreover, we may find an n such that P{|Rn| ≥
δ} < ε

4‖x‖ . Calculating E
∣∣x ◦ Sn − x ◦ Xn

∣∣ on the set where |Rn| < δ

and its complement, we see that this expectation is no greater than
ε
2 + 2‖x‖ ε

4‖x‖ = ε.

Proof (of Donsker’s Theorem) This is a typical argument using com-
pactness – compare e.g. 6.6.12.

The first lemma shows that there exists a subsequence of Pn, n ≥ 1
that converges weakly to a probability measure on C(R+). By 5.6.2 and
the second lemma, the finite-dimensional distributions of this measure
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are normal with appropriate covariance matrix. Hence, this limit mea-
sure is the Wiener measure PW . It remains to prove that the measures
Pn converge to PW .

Suppose that this is not so. Then there exists a subsequence of our
sequence that stays at some distance ε > 0 away from PW . On the other
hand, this subsequence has a further subsequence that converges to some
probability measure. Using 5.6.2 and the second lemma again, we see
that this limit measure must be the Wiener measure – a contradiction.

5.8 Notes on other modes of convergence

5.8.1 Modes of convergence of random variables Throughout the
book, we have encountered various modes of convergence of random
variables. To list the most prominent ones, we have the following defini-
tions:

(a) Xn converges to X a.s. if P{ω| limn→∞Xn(ω) = X(ω)} = 1,
(b) Xn converges to X in L1 norm if limn→∞ ‖Xn −X‖L1 = 0,
(c) Xn converges to X in probability if limn→∞ P{|Xn −X| > ε} = 0,
(d) Xn converges to X weakly iff PXn

converges weakly to PX .

Note that in the first three cases we need to assume that Xn and X are
random variables defined on the same probability space (Ω,F); addi-
tionally, in the third case these random variables need to be absolutely
integrable. In the fourth case such an assumption is not needed.

It is easy to see that a.s. convergence does not imply convergence
in L1 norm, even if all the involved variables are absolutely integrable.
Conversely, convergence in L1 norm does not imply a.s. convergence (see
3.6.15).

If the random variables Xn and X are defined on the same proba-
bility space (Ω,F ,P), and are absolutely integrable, and Xn converge
to X in L1(Ω,F ,P), then they converge to X in probability also – see
(3.36). Similarly, a.s. convergence implies convergence in probability. In-
deed, P{|Xn − X| > ε} = E 1{|Xn−X|>ε} and the claim follows by the
Dominated Convergence Theorem (compare (5.36)).

Finally, if Xn, n ≥ 1, converge to X in probability then they converge
to X weakly. This has been proved in 4.1.4, but we offer another proof
here. To this end we note first that if a is a point of continuity of the
cumulative distribution function of X then for any ε > 0 one may find a
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δ such that the difference between P{X ≤ a} and P{X ≤ a− δ} is less
than ε. Therefore, |P{Xn ≤ a} − P{X ≤ a}| is less than

P{Xn > a ∧X ≤ a} + P{Xn ≤ a ∧X > a}
≤ P{Xn > a ∧X ≤ a− δ} + P{Xn ≤ a ∧X > a+ δ} + ε

≤ 2P{|Xn −X| ≥ δ} + ε.

This implies that the upper limit of |P{Xn ≤ a} − P{X ≤ a}| is less
than ε and thus proves our claim.

In general, weak convergence does not imply convergence in proba-
bility even if all involved variables are defined on the same probability
space. However, if they converge weakly to a constant, then they con-
verge in probability also; the reader should prove it.

5.8.2 Exercise Prove the last claim.

5.8.3 Scheffé’s Theorem In general a.s. convergence does not imply L1

convergence. We have, however, the following Scheffé’s Theorem. Let
(Ω,F , µ) be a measure space, and let φ and φn n ≥ 1 be non-negative
functions on Ω such that φn(ω) converges to φ(ω) a.s. and cn =

∫
φn dµ

converges to c =
∫
φdµ. Then

∫
|φn − φ|dµ converges to 0, i.e. the

measures µn with densities φn converge strongly to the measure with
density φ.

Proof Let An = {φ ≥ φn}. We have∫
|φn − φ|dµ =

∫
An

|φn − φ|dµ+
∫

Ω\An

|φn − φ|dµ

= 2
∫
An

|φn − φ|dµ+ cn − c.

Since (φ−φn)1An
≤ φ, the theorem follows by the Lebesgue Dominated

Convergence Theorem.

5.8.4 The Poisson Theorem as an example of strong convergence By
1.2.31 and Scheffé’s Theorem, binomial distributions with parameters n
and pn converge strongly to the Poisson distribution with parameter λ
provided npn converges to λ, as n→ ∞.

5.8.5 Example Let Ω = N,φn(i) = δin, φ(i) = 0 and µ be the count-
ing measure. The requirements of Scheffé’s Theorem are satisfied except
for the one concerning integrals. We see that Dirac measures δn of which
φn are densities do not converge to zero measure strongly.
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5.8.6 Corollary Let µ and µn, n ≥ 1, be probability measures on a
set S with countably many elements. The following are equivalent:

(a) µn converges strongly to µ,
(b) µn converges weakly to µ,
(c) µn converges to µ in weak∗ topology,
(d) µn({p}) converges to µ({p}) for all p ∈ S.

Proof Implications, (a) ⇒(b)⇒(c) are obvious. To show that (c) implies
(d) we note that the function xp0(p) = 1 for p = p0 and zero otherwise
is continuous on S (with discrete topology). (d) implies (a) by Scheffé’s
Theorem.
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The Gelfand transform and its applications

6.1 Banach algebras

6.1.1 Motivating examples Let S be a locally compact Hausdorff topo-
logical space, and C0(S) be the space of continuous functions on S that
vanish at infinity, equipped with the supremum norm. Until now, we
treated C0(S) as a merely Banach space. This space, however, unlike
general Banach spaces, has an additional algebraic structure: two func-
tions on S may not only be added, they may be multiplied. The product
of two functions, say x and y, is another function, a member of C0(S)
given by

(xy)(p) = x(p)y(p). (6.1)

The operation so defined is associative and enjoys the following proper-
ties that relate it to the algebraic and topological structure introduced
before:

(a) ‖xy‖ ≤ ‖x‖‖y‖,
(b) (αx)y = α(xy) = x(αy), α ∈ R,

(c) x(y1 + y2) = xy1 + xy2,

(d) xy = yx.

Moreover, if S is compact, then C0(S) = C(S) has a unit, an element
u = 1S such that ux = xu = x for all x ∈ C(S). We have ‖u‖ = 1.

For another example, let X be a Banach space and let L(X) be the
space of bounded linear operators on X. If we define xy as the composi-
tion of two linear maps x and y ∈ X, it will be easy to see that conditions
(a)–(c) above are satisfied (use 2.3.11), and that the identity operator is
a unit. Such multiplication does not, however, satisfy condition (d).

Yet another example is the space l1(Z) of absolutely summable se-
quences (ξn)n∈Z . If we define the product of two sequences x = (ξn)n∈Z

201
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and y = (ηn)n∈Z as their convolution( ∞∑
i=−∞

ξn−iηi

)
n∈Z

, (6.2)

then conditions (a)− (d) are satisfied. Also, the sequence e0 = (δn,0)n≥0

plays the role of the unit.
The final, very important example is the space BM(R) of (signed)

Borel measures on R with convolution (2.14) as multiplication.
As a generalization of these examples, let us introduce the following

definition.

6.1.2 Definition A Banach algebra A is a Banach space, equipped
with an additional associative operation A × A � (x, y) �→ xy ∈ A, such
that conditions (a)–(c) above hold, and additionally

(c′) (y1 + y2)x = y1x+ y2x.

6.1.3 Various comments and more definitions If (d) holds, A is said to
be a commutative Banach algebra and condition (c′) is superfluous.
If there is a unit u satisfying the properties listed above for u = 1S ,
A is said to be a Banach algebra with unit. All Banach algebras
described above have units, except perhaps for C0(S), which has a unit
iff S is compact.

We will say that a subspace B of a Banach algebra A is a subalgebra
of A if B is a Banach algebra itself, or that, in other words, the product
of two elements of B lies in B. As an example one may take A = BM(R)
and B = l1(Z); the elements of l1(Z) may be viewed as charges on R

that are concentrated on integers Z; it is almost obvious that for two
such charges their convolution is concentrated on Z as well, and that
(2.14) becomes (6.2).

A bounded linear map H from an algebra A to an algebra B is said
to be a homomorphism if H(xy) = (Hx)(Hy), for all x and y in A. If B

is the algebra of bounded linear operators on a Banach space X, we say
that H is a representation of A in L(X).

Two Banach algebras A and B are said to be (isometrically) isomorphic
if there exists a map J : A → B that is an (isometric) isomorphism
between them as Banach spaces and, additionally, for all elements x and
y of A, J(xy) = J(x)J(y).

We will illustrate these notions with examples and exercises given
below. Before we do that, though, let us note that Exercises 2.3.12,
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2.3.13, 2.3.14 and 2.3.15 are actually ones on Banach algebras. In other
words, instead of operators A,B ∈ L(X) one may consider elements a, b
of an abstract Banach algebra with a unit u, define exp(a) and exp(b) as
sums of the appropriate series and prove that exp(a) exp(b) = exp(a+b),
provided a commutes with b. Similarly, if ‖u − a‖ < 1, one may define
log a and check that exp(log a) = a. We start by providing two more
examples of this type.

6.1.4 Exercise Let A be a Banach algebra. Suppose that ‖x‖ < 1.
Prove that the series

∑∞
n=1 x

n converges to an element, say y, of A, and
that xy + x− y = yx+ x− y = 0.

6.1.5 Exercise Let A be a Banach algebra with unit u. Suppose that
‖x‖ < 1. Prove that the series

∑∞
n=0 x

n, where x0 = u converges to an
element, say y, of A, and that (u− x)y = y(u− x) = u.

6.1.6 Example The left canonical representation of a Banach algebra
A in the space L(A) of bounded linear operators in A is the map A �
a �→ La ∈ L(A) where Lab = ab for all b ∈ A; certainly LaLb = Lab. The
right canonical representation is a similar map a �→ Ra with Ra given by
Rab = ba, and we have RaRb = Rba. The reader will note that operators
Sµ and S̃µ from 2.3.25 are the left and right canonical representations
of the algebra BM(R), respectively.

The inequality ‖La‖ ≤ ‖a‖ holds always, but to make sure that it
is not strict it suffices to assume that A has a unit, or that it has a
right approximate unit bounded by 1, i.e. that there exists a sequence
un ∈ A, ‖un‖ ≤ 1, n ≥ 1 such that limn→∞ aun = a, a ∈ X. (Similarly,
‖Ra‖ = ‖a‖ if A has a left approximate unit bounded by 1, i.e. that
there exists a sequence un ∈ A, ‖un‖ ≤ 1, n ≥ 1 such that limn→∞ una =
a, a ∈ X.)

6.1.7 Exercise Let A be a Banach algebra without unit. Check that
the set Au = L1(R+) × R equipped with multiplication (a, α)(b, β) =
(αb+βa+ab, αβ) and the norm ‖(a, α)‖ = ‖a‖+ |α| is a Banach algebra
with unit (0, 1). It is commutative iff A is commutative. Moreover, the
map a �→ (a, 0) is an isometric isomorphism of A and the subalgebra
A × {0} of Au.

6.1.8 Example Let L1(R) be the Banach space of (equivalence classes
of) absolutely integrable functions on R with the usual norm. As the
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reader will easily check, L1(R) is a commutative Banach algebra with
convolution as multiplication:

x ∗ y(τ) =
∫ ∞

−∞
x(τ − ς)y(ς) dς. (6.3)

This algebra may be viewed as a subalgebra of BM(R) composed of
signed measures that are absolutely continuous with respect to the Leb-
esgue measure. Here “may be viewed” actually means that there exists
an isometric isomorphism between L1(R) and the said subalgebra of
measures (see Exercise 1.2.18). This isomorphism maps a measure into
its density with respect to Lebesgue measure.

From the same exercise we see that if x and y are representatives
of two elements of L1(R) such that x(τ) = y(τ) = 0, for τ < 0, then
x ∗ y(τ) = 0 for τ < 0 and

x ∗ y(τ) =
∫ τ

0

x(τ − ς)y(ς) dς, τ > 0. (6.4)

This proves that the set of (equivalence classes) of integrable functions
that vanish on the left half-axis is a subalgebra of L1(R), for obviously it
is also a subspace of L1(R). This subalgebra is isometrically isomorphic
to the algebra L1(R+) of (classes of) absolutely integrable functions on
R+ with convolution given by (6.4). The isomorphism maps (a class of)
a function from L1(R+) into (a class) of its natural extension x̃ to the
whole axis given by x̃(τ) = x(τ), τ ≥ 0, x̃(τ) = 0, τ < 0.

In a similar fashion one proves that the space L1
e(R) of (equivalence

classes of) even functions that are absolutely integrable on R is a sub-
algebra of L1(R). To this end it is enough to show that if x and y are
even then x ∗ y defined in (6.3) is even also.

6.1.9 Exercise Prove that the subspace of l1(Z) formed by absolutely
summable sequences (ξn)n∈Z such that ξn = 0 for n < 0 is a subalgebra
of l1(Z). Show that this subalgebra is isometrically isomorphic to the
algebra l1(N0) of absolutely summable sequences (ξn)n≥0 with convolu-
tion

(ξn)n≥0 ∗ (ηn)n≥0 =

(
n∑
i=0

ξn−iηi

)
n≥0

(6.5)

as multiplication.
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6.1.10 Example Consider the elements eλ, λ > 0, of L1(R+) defined
by their representatives eλ(τ) = e−λτ . One checks that the following
Hilbert equation is satisfied:

(λ− µ)eλ ∗ eµ = eµ − eλ, λ, µ > 0. (6.6)

Now, let us note that as a Banach space, L1(R+) is isometrically
isomorphic to the space L1

e(R) of (equivalence classes of) even functions
that are absolutely integrable on R. The isomorphism J : L1

e(R) →
L1(R+) is given by Jx(τ) = 2x(τ), τ ∈ R+, and J−1y(τ) = 1

2y(|τ |)
for y ∈ L1(R+) and τ ∈ R. Even though Banach algebras L1(R+) and
L1

e(R) are isometrically isomorphic as Banach spaces, it turns out that
as Banach algebras they are quite different. In particular, one checks
that ẽλ = Jeλ ∈ L1

e(R), λ > 0, instead of satisfying (6.6), satisfy

(µ2 − λ2)ẽλ ∗ ẽµ = µẽλ − λẽµ, λ, µ > 0. (6.7)

(Note, though, that we did not prove that L1(R+) and L1
e(R) are not iso-

morphic; relations (6.6)–(6.7) show merely that the natural isomorphism
of Banach spaces introduced above is not an isomorphism of Banach al-
gebras.)

6.1.11 Exercise Show that the space l1e(Z) of even absolutely summa-
ble sequences (ξn)n∈Z forms a subalgebra of l1(Z). Show that as a Banach
space l1e(Z) is isomorphic to l1(N0), but that the natural isomorphism of
these Banach spaces is not an isometric isomorphism of Banach algebras.

6.1.12 Exercise Prove that the family ut = 1[0,t) ∈ L(R+), t > 0,
satisfies the so-called “integrated semigroup equation”

ut ∗ us =
∫ t+s

0

ur dr −
∫ t

0

ur dr −
∫ s

0

ur dr,

and that ũt = Jut = 1
21(−t,t) ∈ L1

e(R) satisfies the so-called “sine func-
tion equation”:

ũtũs =
∫ t+s

0

ũr dr −
∫ |t−s|

0

ũr dr.

6.1.13 Exercise Show that en(τ) = ne−nτ (a.s.), n ≥ 1, is an ap-
proximate unit in L1(R+).
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6.2 The Gelfand transform

6.2.1 Multiplicative functionals As we have seen in the previous chap-
ter, one may successfully study Banach spaces with the help of bounded
linear functionals. However, to study Banach algebras, linear functionals
will not suffice for they do not reflect the structure of multiplication in
such algebras. We need to use linear multiplicative functionals. By defi-
nition, a linear multiplicative functional on a Banach algebra is a linear
functional F , not necessarily bounded, such that, F (xy) = FxFy. In
other words F is a homomorphism of A and the algebra R equipped with
the usual multiplication. To avoid trivial examples, we assume that F is
not identically equal to 0.

6.2.2 Exercise Prove that if F is a multiplicative functional on a
Banach algebra with unit u then Fu = 1.

6.2.3 Lemma Linear multiplicative functionals are bounded; their
norms never exceed 1.

Proof Suppose that for some x0, |Fx0| > ‖x0‖. Then for x = sgnFx0
|Fx0| x0 ∈

A we have that ‖x‖ < 1 and Fx = 1. Let y be defined as in 6.1.4. We have
F (xy+x−y) = 0, but on the other hand this equals F (xy)+Fx−Fy =
(Fx)(Fy) + Fx− Fy = 1, a contradiction.

6.2.4 Remark The idea of the above proof becomes even more clear
if A has a unit. We construct x as before but then take y defined in 6.1.5
to arrive at the contradiction:

1 = Fu = Fy(Fu− Fx) = Fy(1 − 1) = 0.

6.2.5 Exercise Suppose that an algebra A has a right or left approx-
imate unit. Show that multiplicative functionals on A have norm 1.

6.2.6 Example Let C(S) be the algebra of continuous functions on a
compact topological space. A linear functional on C(S) is multiplicative
iff there exists a point p ∈ S such that Fx = x(p) for all x ∈ C(S).

Proof As always in such cases, the non-trivial part is the “only if” part.
Let F be a multiplicative functional. We claim first that there exists a
p ∈ S such that for all x ∈ C(S), Fx = 0 implies x(p) = 0. Suppose
that this is not so. Then for all p ∈ S, there exist a neighborhood Up
of p and a continuous function xp ∈ C(S) such that Fxp = 0 but xp is
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non-zero in Up. Consequently, yp = x2
p is positive in Up and Fyp = 0.

Since S is compact there exist p1, ..., pn such that S ⊂ ⋃ni=1 Upi
. Defining

z =
∑n
i=1 yi, and z′ = 1

z (recall that z > 0), we obtain a contradiction:
1 = F (1S) = F (z)F (z′) = 0.

Now, let p ∈ S be such that Fx = 0 implies x(p) = 0. For any
x ∈ C(S), we have F (x−F (x)1S) = 0. Hence, x(p) = F (x)F (1S) = F (x)
as claimed.

6.2.7 The Gelfand transform Let us look once again at the definition
of a multiplicative functional using the duality notation: a multiplicative
functional on a Banach algebra is a bounded linear functional satisfying:

〈F, xy〉 = 〈F, x〉〈F, y〉, for all x, y ∈ A. (6.8)

In this definition, F is fixed, while x and y vary. We will think differently
now, however: we fix x and y, and vary F. As we have seen, multiplicative
functionals form a subset M of a unit ball in A∗, which is compact in
the weak∗ topology. One may prove (Exercise 6.2.8) that M∪{0} where
0 is a zero functional on A is closed in this topology, and thus M itself
is locally compact (0 plays the role of “infinity” here). Hence, in (6.8)
the elements x and y may be viewed as functions defined on the locally
compact set of multiplicative functionals. In such an interpretation, (6.8)
may be written down in a still more clear way:

xy(F ) = x(F )y(F );

which is just (6.1) with p replaced by F ! So, if we forget about the fact
that Fs are “really” functionals and treat them as points of a topological
space, we will be able to view our abstract algebra A in a much simpler
way. In other words, we have succeeded in transforming an abstract
Banach algebra into a subset of the algebra C0(M). (We need to talk
about a subset of C0(M) for there might be some functions in C0(M)
that do not correspond to any element of A; see e.g. 6.3.1 further on.) A
map described above, transforming elements x ∈ A into functions x(F )
defined on M, is called the Gelfand transform. Certainly, the Gelfand
transform is a homomorphism of Banach algebras A and C0(M). As we
will see shortly by looking at a number of examples, the set M, though
defined in an abstract way, in many cases forms a very nice and simple
topological space. This method of viewing Banach algebras has proven
useful in many situations; see e.g. [27, 51, 82, 103, 104, 112, 115].

Unfortunately, in our presentation we did not take care of one impor-
tant fact. Specifically, in contrast to the rich spaces of linear functionals
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that allowed us to describe a Banach space in such a pleasant way, the
space of multiplicative functionals may be too small to describe the
Banach algebra well. In fact, there are Banach algebras with no mul-
tiplicative functionals, and the only general condition for existence of
a rich space of multiplicative functionals is that the Banach algebra is
commutative, with identity and – complex. This means in particular
that multiplication of vectors by complex scalars is allowed. Technically,
the situation is not much different from the real case; all that happens is
that in all the involved definitions the real field R must be replaced by a
complex field C. An example of a complex Banach space (and a complex
algebra) is the space of complex-valued functions on a compact topo-
logical space. On the other hand, properties of real and complex spaces
differ considerably. In particular, as we have said, a complex, commuta-
tive Banach algebra has a rich space of multiplicative functionals, while
a real Banach algebra may have none, even if it is commutative and has
a unit.

Nevertheless, there are a good number of real Banach algebras for
which the space of multiplicative functionals is rich enough for the
Gelfand transform to preserve the most important properties of the el-
ement of this algebra. The examples presented in the next section, all
of them often used in probability, explain this idea in more detail. As
we shall see, a function mapping a measure on N into the related prob-
ability generating function is an example of the Gelfand transform, and
so are the Fourier and Laplace transforms of (densities of) measures on
the real axis and positive half-axis, respectively. The reader should not,
however, jump to the examples before solving the problems presented
below.

6.2.8 Exercise Let A be a Banach algebra. Prove that M ∪ {0} is
closed in the weak∗ topology of A∗. Moreover, if A has a unit then M
is closed.

6.2.9 Exercise Let A be a Banach algebra with a unit u and let x ∈ A.

Show that for any multiplicative functional F on A, F (expx) = exp(Fx).
In other words, the Gelfand transform of expx equals exp x̂, where x̂ is
the Gelfand transform of x.

6.3 Examples of Gelfand transform

6.3.1 Probability generating function The space l1 = l1(N0) of abso-
lutely summable sequences x = (ξn)n≥0 is a Banach algebra with con-
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volution (6.5) as multiplication. We already know (see 5.2.3 or 5.2.16)
that a linear functional on l1 has to be of the form

Fx =
∞∑
n=0

ξnαn (6.9)

where αi = Fei = F (δi,n)n≥0, and supn≥0 |αn| < ∞. To determine the
form of a multiplicative functional, observe first that e2 = e1 ∗ e1 and,
more generally, en = en∗1 , n ≥ 0 where the last symbol denotes the nth
convolution power of e1. Also, Fe0 = 1. Hence αn = αn, n ≥ 0, where
α = α1. Therefore, if F is multiplicative, then there exists a real α
such that Fx =

∑∞
n=0 α

nξn. This α must belong to the interval [−1, 1]
for otherwise the sequence αn would be unbounded. Conversely, any
functional of this form is multiplicative.

This proves that a multiplicative functional on l1 may be identified
with a number α ∈ [−1, 1]. Moreover, one may check that the weak∗

topology restricted to the set of multiplicative functionals is just the
usual topology in the interval [−1, 1]. In other words, the image via the
Gelfand transform of the vector x ∈ l1 is a function x̂ on [−1, 1] given
by x̂(α) =

∑∞
i=0 α

iξi. However, in this case, the space of multiplicative
functionals is “too rich”; the information provided by α ∈ [−1, 0) is
superfluous. Therefore, in probability theory it is customary to restrict
the domain of x̂ to the interval [0, 1].

We note that the interval [−1, 1] is compact, and that this is related
to the fact that l1 has a unit. It is also worth noting that the image
via Gelfand transform of a sequence in l1 is not just “any” continuous
function on [−1, 1]; this function must be expandable into a series x̂(α) =∑∞
n=0 ξnα

n and in particular be infinitely differentiable and analytic.
This illustrates the fact that the image of a Banach algebra via the
Gelfand transform is usually a subset of the algebra C0(M).

6.3.2 Exercise Consider the space l1(N0 × N0) of infinite matrices
x = (ξi,j)i,j≥0 such that

∑∞
i=0

∑∞
j=0 |ξi,j | < ∞ with the norm ‖x‖ =∑∞

i=0

∑∞
j=0 |ξi,j |. Prove that this is a Banach space and a Banach algebra

with multiplication defined as

(ξi,j)i,j≥0 ∗ (ηi,j)i,j≥0 = (
i∑

k=0

j∑
l=0

ξk,lηi−k,j−l)i,j≥0.

Prove that all multiplicative functionals on this space are of the form
Fx =

∑∞
i=0

∑∞
j=0 α

iβjξi,j , where α and β are in [−1, 1]. In other words,
the topological space M of multiplicative functionals may be identified
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(i.e. it is homeomorphic) with [−1, 1]× [−1, 1]. As in 6.3.1 we note that
in probability theory one usually uses only non-negative values of α and
β. If x is a distribution, the function

g(α, β) =
∞∑
i=0

∞∑
j=0

αiβjξi,j , α, β ∈ [0, 1]

is termed the joint probability generating function.

6.3.3 The Laplace transform Let L1(R+) be the Banach algebra of ab-
solutely integrable functions on R+ with the usual norm and convolution
as multiplication. From 5.2.16 we know that if F is a linear functional
on L1(R+), then there exists a bounded function, say α(·), on R+ such
that

Fx =
∫ ∞

0

xα dleb, x ∈ L1(R+). (6.10)

Assume that F is multiplicative. We have

F (x ∗ y) =
∫ ∞

0

α(τ)x ∗ y(τ) dτ

=
∫ ∞

0

α(τ)
∫ τ

0

x(τ − ς)y(ς) dς dτ

=
∫ ∞

0

∫ ∞

ς

α(τ)x(τ − ς)y(ς) dτ dς

=
∫ ∞

0

∫ ∞

0

α(τ + ς)x(τ)y(ς) dτ dς (6.11)

and

FxFy =
∫ ∞

0

∫ ∞

0

α(τ)α(ς)x(τ)y(ς) dτ dς. (6.12)

First we show that α may be chosen to be continuous, i.e. that there
is a continuous function in the equivalence class of α. By 2.2.44, there
exists a continuous function x0 with compact support such that Fx0 =∫∞
0
αx0 dleb 
= 0. Using (6.11) and (6.12),∫ ∞

0

y(ς)α(ς)
∫ ∞

0

α(τ)x0(τ) dτ dς =
∫ ∞

0

y(ς)
∫ ∞

0

α(τ + ς)x0(τ) dτ dς.

Since y ∈ L1(R+) is arbitrary, α(ς) =
∫ ∞
0 α(τ+ς)x0(τ) dτ

Fx0
, for almost all

ς ∈ R+. Hence it suffices to show that β(ς) =
∫∞
0
α(τ + ς)x0(τ) dτ =
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ς
α(τ)x0(τ − ς) dτ is continuous. To this end, note that for ς, h > 0

we have

|β(ς + h) − β(ς)| ≤
∫ ∞

ς+h

|α(τ)| |x0(τ − ς − h) − x0(τ − ς)|dς

+
∫ ς+h

ς

|α(τ)| |x0(τ − ς)|dτ,

that the second integral tends to zero as h→ 0, and that the first may be
estimated by ‖α‖L∞(R+) supσ∈R+ |x0(σ+h)−x0(σ)| which also converges
to zero by virtue of uniform continuity of x0.

Let us assume thus that α is continuous. Using (6.11) and (6.12), we
see now that a linear functional F is multiplicative if α(τ+ς) = α(τ)α(ς),
for almost all τ, ς ∈ R+. Since α is continuous this relation holds for all
τ and ς in R+. In particular, taking τ = ς = 1

2σ we see that for any
σ > 0, α(σ) = α(σ)2 ≥ 0. Moreover, we may not have α(σ) = 0 for some
σ ∈ R+ for this would imply α(τ) = 0 for all τ ∈ R+ and Fx = 0 for
all x ∈ L1(R+). Thus we may consider β(τ) = ln α(τ) (ln is the natural
logarithm). We have β(τ + ς) = β(τ) + β(ς). In Section 1.6 we have
proven that this implies β(τ) = µτ for some µ ∈ R. Thus, α(τ) = eµτ .
Since α must be bounded, we must have µ = −λ, λ ≥ 0.

We have proven that all multiplicative functionals on L1(R+) are of
the form

Fx =
∫ ∞

0

e−λτx(τ) dτ ;

in other words, the set M of multiplicative functionals on L1(R+) may
be identified with R+. One still needs to check that topologies in R+ and
in the space M agree, but this is not difficult. We remark that the fact
that L1(R+) does not have a unit has its reflection in the fact that R+

is not compact; the point at infinity corresponds to the zero functional
on L1(R+).

6.3.4 The Fourier cosine series What is the general form a multiplica-
tive functional on the algebra l1e(Z) defined in Exercise 6.1.11? We know
that as a Banach space l1e(Z) is isometrically isomorphic to l1(N0) and
the isomorphism is given by

Ix = I(ξn)n≥0 = y = (ηn)n∈Z, where ηn =
1
2
ξ|n|, n 
= 0, η0 = ξ0

and

I−1y = I−1(ηn)n∈Z = x = (ξn)n≥0, where ξn = 2ηn, n > 0, ξ0 = η0.
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If F is a linear functional on l1e(Z), then FI is a linear functional on
l1(N0) which must be of the form (6.9). Hence FIx =

∑∞
n=0 αnξn for all

x = (ξn)n≥0 in x ∈ l1(N0), and

Fy = FIx =
∞∑
n=0

αnξn = α0ξ0 + 2
∞∑
n=1

αnηn

= α0ξ0 +
∑

n∈Z,n �=0

αnηn =
∑
n∈Z

αnηn. (6.13)

Here we put α−n = αn for n ≥ 1, making αn an even sequence.
Now, assume that F is multiplicative. Since e0 is a unit for our algebra,

α0 = F (e0) = 1. Note that en, n 
= 0, do not belong to l1e(Z) but
1
2 (e−n + en) do. Also, αn = F 1

2 (e−n + en). If m and n are both odd or
both even, then

2αn−m
2
αn+m

2
=

1
2
F (e− 1

2 (n−m) + e 1
2 (n−m))(e− 1

2 (n+m) + e 1
2 (n+m))

=
1
2
F (e−n + en + e−m + em) = αn + αm.

Let α = α1. Since ‖ 1
2 (e−1 + e1)‖ = 1, α belongs to [−1, 1], and one may

choose a t ∈ [0, 2π) such that α = cos t. We claim that αn = cosnt, n ∈
Z. To prove this note first that there is only one even sequence αn, n ∈ Z,
such that

2αn−m
2
αn+m

2
= αn + αm, and α0 = 1, α1 = cos t (6.14)

where n and m are either both even or both odd. In other words the
sequence αn, n ∈ Z is uniquely determined by the functional equa-
tion and initial conditions (6.14). This fact is left as an exercise for the
reader. Secondly, using the well-known trigonometric identity we check
that αn = cosnt satisfies (6.14). As a result, invoking (6.13) we see that
all multiplicative functionals on l1e(Z) are of the form

F (ηn)n∈Z =
∞∑

n=−∞
ηn cosnt, t ∈ [0, 2π).

The reader may notice, however, that the topological space M is not
isomorphic to [0, 2π); it may not be since [0, 2π) is not compact, while
M is, for l1e(Z) has a unit. Moreover, if a sequence tk ∈ [0, 2π) tends to
2π then the corresponding functionals Ftk =

∑∞
n=−∞ ηn cosntk tend in

the weak∗ topology to F0 =
∑∞
n=−∞ ηn. This suggests that instead of

the interval [0, 2π) we should think of a unit circle in the complex plane
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C = {z; z = eit, t ∈ [0, 2π)}, which, for the one thing, is compact. The
reader will check that M may indeed be identified with this set.

6.3.5 Exercise Show that (6.14) determines the sequence αn, n ∈ Z

uniquely.

6.3.6 The Fourier series Let us consider the algebra l1(Z). By 5.2.16,
all linear functionals on this space have to be of the form

F (ξn)n∈Z =
∞∑

n=−∞
αnξn (6.15)

where αn, n ∈ Z is bounded. As in 6.3.1, we see that αn = Fen =
(Fe1)n = αn; this time however this relation holds for all n ∈ Z. Hence,
the only multiplicative functionals in l1(Z) are

F (ξn)n∈Z =
∞∑

n=−∞
ξn, and F (ξn)n∈Z =

∞∑
n=−∞

(−1)nξn.

The situation changes if we allow sequences in l1(Z) to have complex
values. Repeating the argument from 5.2.3 one proves that linear func-
tionals on l1(Z) (that are complex-valued now) have to be of the form
(6.15) with a bounded, complex sequence αn. In such case, there are
infinitely many bounded solutions to αn = αn, all of them of the form
αn = eitn, t ∈ [0, 2π). In other words, the image of the element of the
complex l1(Z) via the Gelfand transform is a function x̂ on [0, 2π) given
by

x̂(t) =
∞∑

n=−∞
ξneitn, t ∈ [0, 2π),

called the Fourier series of x. As in the previous subsection we note,
however, that the topological space M of multiplicative functionals may
not be identified with the interval [0, 2π) but rather with the unit circle.

6.3.7 The Fourier transform Let L1(R) be the Banach algebra of ab-
solutely integrable functions on R+ with the usual norm and convolution
as multiplication. Arguing as in 6.3.3 we obtain that all multiplicative
functionals on this algebra have to be of the form

Fx =
∫ ∞

−∞
αxdleb (6.16)
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where α is continuous and satisfies

α(τ + ς) = α(τ)α(ς), for all τ, ς ∈ R. (6.17)

This implies that α(τ) = aτ where a = α(1). Since α(1) = α(1/2)α(1/2)
is non-negative we may choose a real µ such that α(τ) = eµτ . The
requirement that α be bounded forces now µ = 0, so that the only
multiplicative functional on L1(R) is

Fx =
∫ ∞

−∞
xdleb.

If we allow the members of L1(R) to have complex values, the analysis
presented above does not change except that α(τ) turns out to be of the
form α(τ) = eµτ where µ is complex. The boundedness condition leads
now to µ = it where t ∈ R. As a result, all multiplicative functionals on
the complex space L1(R) are of the form:

Fx =
∫ ∞

−∞
eitτx(τ) dτ, t ∈ R.

One proves that M is indeed topologically isomorphic to R. The image
x̂ of an element x of the complex L1(R) is its Fourier transform. Note
that R is not compact and that L1(R) does not have a unit. As a bonus
we obtain the fact that the Fourier transform of an absolutely integrable
function belongs to C0(R).

6.3.8 The Fourier cosine transform Let L1
e(R) be the Banach algebra

of even, absolutely integrable functions on R with the usual norm and
convolution as multiplication. As a Banach space L1

e(R) is isometrically
isomorphic to L1(R+). Hence arguing as in 6.3.4, one proves that all
linear functionals on L1

e(R) are of the form

Fx =
∫ ∞

−∞
x(τ)α(τ) dτ = 2

∫ ∞

0

x(τ)α(τ) dτ, (6.18)

where α is a bounded, even function. Calculating as in (6.11) and (6.12),
we obtain

F (x ∗ y) =
∫ ∞

−∞

∫ ∞

−∞
α(τ + ς)x(τ)y(ς) dτ dς (6.19)

and

FxFy =
∫ ∞

−∞

∫ ∞

−∞
α(τ)α(ς)x(τ)y(ς) dτ dς. (6.20)
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Even though these two equations are formally the same as (6.11) and
(6.12), we may not claim that they imply that α(τ + ς) = α(τ)α(ς) since
x and y are not arbitrary: they are even. Nevertheless, rewriting the
right-hand side of (6.19) as∫ ∞

−∞

∫ ∞

−∞
α(τ + ς)x(τ)y(−ς) dτ dς =

∫ ∞

−∞

∫ ∞

−∞
α(τ − ς)x(τ)y(ς) dτ dς

we obtain

F (x ∗ y) =
∫ ∞

−∞

∫ ∞

−∞

1
2
[α(τ + ς) + α(τ − ς)]x(τ)y(ς) dτ dς. (6.21)

Observe that

α(τ + ς) + α(τ − ς) = α(τ + ς) + α(−τ + ς) = α(−τ − ς) + α(−τ + ς)

= α(−τ − ς) + α(τ − ς)

so that (6.21) equals

2
∫ ∞

0

∫ ∞

0

[α(τ + ς) + α(τ − ς)]x(τ)y(ς) dτ dς.

Using (6.18),

FxFy = 4
∫ ∞

0

∫ ∞

0

α(τ)α(ς)x(τ)y(ς) dτ dς.

Since x and y restricted to R may be arbitrary members of L1(R) we
infer that if F is a multiplicative functional then

α(τ + ς) + α(τ − ς) = 2α(τ)α(ς) (6.22)

for almost all τ and ς in R+. This is the famous cosine equation, a con-
tinuous equivalent of the equation which we have encountered in 6.3.4.
Arguing as in 6.2.6 we prove that α may be chosen to be continuous,
and thus that (6.22) holds for all τ and ς in R+. The reader will not be
surprised to learn that all continuous solutions to (6.22) are of the form
α(τ) = cos(tτ), t ∈ R. Hence, all multiplicative functionals on L1

e(R) are
of the form

Fx =
∫ ∞

−∞
cos(tτ)x(τ) dτ.

Also, the locally compact topological space M may be identified with
R. The image

x̂(t) =
∫ ∞

−∞
cos(tτ)x(τ) dτ

of a member of L1
e(R) is termed the Fourier cosine transform.
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6.3.9 The Gelfand transform on the Klein group Consider the space
L1(G) of functions on the Klein group that are absolutely summable with
respect to the counting measure. This space coincides with the space of
all signed measures on the Klein group. The convolution in this space was
discussed in 2.2.19. The space L1(G) with multiplication thus defined is
a Banach algebra with unit identified with a sequence (1, 0, 0, 0); which
is just the Dirac measure on the unit of the Klein group. (The elements
of this space will be written as column vectors or row vectors.)

Let us find all multiplicative functionals on L1(G). To this end, note
first that by 5.2.16 all linear functionals on L1(G) are of the form
F (ai)i=1,2,3,4 =

∑4
i=1 αiai where αi are real numbers. If F is to be

multiplicative, we must have

4∑
i=1

αici =

[
4∑
i=1

αiai

][
4∑
i=1

αibi

]

for all (ai)i=1,2,3,4 and (bi)i=1,2,3,4 where ci are defined by (1.12). A
direct calculation shows that the possible choices for αi are

F1 = (+1,+1,+1,+1),

F2 = (+1,−1,−1,+1),

F3 = (+1,−1,+1,−1),

F4 = (+1,+1,−1,−1).

We could write this as follows:⎡
⎢⎢⎣
F1µ

F2µ

F3µ

F4µ

⎤
⎥⎥⎦ = Gµ =

⎡
⎢⎢⎣

+1, +1, +1, +1
+1, −1, −1, +1
+1, −1, +1, −1
+1, +1, −1, −1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎦ , where µ =

⎡
⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎦ .

(6.23)
In other words, M = {F1, F2, F3, F4} is a finite set, and the Gelfand
transform of an element of µ of L1(G) may be identified with

(µ(Fi))i=1,2,3,4 = (Fiµ)i=1,2,3,4 ,

treated as members of the algebra R4 with coordinatewise multiplication.
Note that the matrix G, appearing in (6.23), is invertible and that

G−1 = 1
4G.

We will apply this result in 7.8.4 below.
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6.3.10 Remark As a simple calculation shows, the functions τ → eitτ ,

t ∈ R, generate multiplicative functionals on the algebra BM(R) and
τ → e−λτ generate multiplicative functionals on the algebra BM(R+).
Finding the general form of multiplicative functionals on the algebra
BM(R) or BM(R+) is a more difficult task. We will not pursue this sub-
ject because fortunately we do not need all multiplicative functionals to
describe members of these algebras. All we need is the Fourier trans-
form of a member of BM(R) and the Laplace transform of a member of
BM(R+) (of course it requires a proof, see Section 6.6). In a sense, the
situation is similar to that in 6.3.1 where we remarked that although
the space of multiplicative functionals on l1(N0) is isomorphic to [−1, 1]
it suffices to consider the functionals corresponding to α ∈ [0, 1]. This
is not only fortunate but also very useful, and we will have plenty of
examples that illustrate this.

6.4 Examples of explicit calculations of Gelfand transform

6.4.1 Exercise Let Zn be the Galton–Watson process described in
3.5.5 and let f be the common probability generating function of the
(distribution of) random variables Xk

n used in the construction of Zn.
Show that the probability generating function of the (distribution of) Zn
is the nth composition f◦n of f, where f◦(n+1) = f(f◦n), and f◦1 = f.

6.4.2 Exercise Find the probability generating function of (a) the
binomial distribution, (b) the Poisson distribution, and (c) the geometric
distribution.

6.4.3 Exercise Let X and Y be two independent random variables
with values in the set of non-negative integers, with probability generat-
ing functions fX and fY , respectively. Let fX,Y be the joint probability
generating function of the (distribution of the) pair (X,Y ). Show that
fX,Y (α, β) = fX(α)fY (β).

6.4.4 Exercise Let fX be the probability generating function of a
random variable X with values in non-negative integers. Show that the
joint probability generating function of the pair (X,X) is fX,X(α, β) =
fX(α+ β).
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6.4.5 Example Let us recall that for any 0 ≤ α < 1 and a positive
number r,

∞∑
n=0

(
n+ r − 1

n

)
αn =

1
(1 − α)r

(6.24)

where
(
n+r−1
n

)
= r(r+1)···(r+n−1)

n! . This may be checked by expanding
the right-hand side into Maclaurin’s series. In particular, if 0 < p ≤ 1,
and r = k is a positive integer, then pn =

(
n−1
k−1

)
qn−kpk, q = 1 − p, n =

k, k + 1, . . . is a distribution of a random variable, because
∞∑
n=k

(
n− 1
k − 1

)
qn−kpk = pk

∞∑
n=0

(
n− 1 + k

n

)
qn =

pk

(1 − q)k
= 1.

The quantity pn is the probability that in a series of independent Berno-
ulli trials with parameter p the kth success will occur at the nth trial
[40]. In other words (pn)n≥k is the distribution of the time T to the kth
success. The distribution (pn)n≥0 where pn = 0 for n < k is termed the
negative binomial distribution with parameters p and k. The proba-
bility generating function of this distribution is given by

f(α) = pk
∞∑
n=k

(
n− 1
k − 1

)
qn−kαn = pkαk

∞∑
n=0

(
n− 1 + k

k − 1

)
qnαn

=
(αp)k

(1 − αq)k
.

This result becomes obvious if we note that T is the sum of k independent
times Ti to the first success, and that Ti−1 is geometrically distributed:
P(Ti = n) = pqn−1, n ≥ 1. Indeed, this implies that the probability
generating function of T is the kth power of the probability generating
function of T1, which equals pα

1−αq .

6.4.6 Exercise Let Xm, n ≥ 1, be independent Bernoulli random
variables with parameter p. Define a random walk Sn, n ≥ 0, by S0 = 0
and Sn =

∑n
i=1Xi, n ≥ 1. Let pn = P(Sn = 0), and let rn = P(S1 
=

0, . . . , Sn−1 
= 0, Sn = 0) be the probability that at time n the random
walk returns to 0 for the first time. Note that a priori we may not exclude
the case

∑∞
n=1 pn = ∞ or

∑∞
n=1 rn < 1. Show that

(a) p2n =
(
2n
n

)
pnqn, p2n+1 = 0, n ≥ 0,

(b) f(α) =
∑∞
n=1 p2nα

n equals (1 − 4αpq)−
1
2 for α ∈ [0, 1] if p 
= q; if

p = q = 1
2 the formula holds for α ∈ [0, 1),

(c)
∑∞
n=1 pn = 1

|p−q| so that (pn)n≥0 belongs to l1 iff p 
= q,
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(d) pn =
∑n
k=1 rkpn−k, n ≥ 1 (this is almost (pn)n≥0 = (pn)n≥0∗(rn)n≥0 ,

but not quite!), and so g(α) =
∑∞
n=1 rnα

n satisfies f(α) = 1 +
f(α)g(α),

(e) g(α) = 1 − (1 − 4αpq)
1
2 ,

(f)
∑∞
n=1 rn = 1 − |p− q|.

6.4.7 Exercise For τ ∈ R and t > 0 let g(τ, t) = 1√
2πt

e−
τ2
2t and

g(τ, 0) = limt→0 g(τ, t) = 0. Show that the Laplace transform of g(τ, t),

G(τ, λ) =
∫ ∞

0

e−λtg(τ, t) dt

equals
1√
2λ

e−
√

2λ|τ |, λ > 0.

Hint: check that G is differentiable in τ and d2G
dτ2 = 2λG.

6.4.8 Exercise Calculate the Fourier transform (the characteristic
function) φ(α) = E eiαX of a standard normal random variable X, by
checking that it satisfies the following differential equation:

d
dα

φ(α) = −αφ(α), φ(0) = 1. (6.25)

6.4.9 Campbell’s Theorem Let us come back to the random variable
(Px)(ω) =

∑∞
n=1 x(Sn(ω)) discussed in 2.3.45, where x ∈ L1(R+, a ×

leb), and try to find its characteristic function. Assume first that x is
continuous with support in [0,K], say, and define xn(τ) = x( jKn ) for
jK
n < τ ≤ (j+1)K

n , 1 ≤ j ≤ n − 1, x(0) = x(Kn ). Then, xn converges
to x pointwise (even uniformly) and so for any ω, Pxn(ω) converges
to Px(ω). By the Lebesgue Dominated Convergence Theorem charac-
teristic functions φn(α) of Pxn converge to that of Px. On the other
hand,

Pxn =
n−1∑
j=0

x

(
jK

n

)
Yn,j

where Yn,j is a number of Sl in the interval ( jKn ,
(j+1)K

n ]. In Exercise 7.5.7
in Chapter 7 the reader will show that Yn,j are independent, Poisson
distributed random variables with parameter λ = aK

n . Hence

φn(α) =
n−1∏
j=0

exp{aK
n

(eiαx( jK
n ) − 1)} = exp{aK

n

n−1∑
j=0

(eiαx( jK
n ) − 1)}.
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The sum in the exponent above is an approximating sum of the Riemann
integral

a

∫ K

0

[eiαx(u) − 1] du = a

∫ ∞

0

[eiαx(u) − 1] du,

and thus the characteristic function of Px equals

exp{a
∫ ∞

0

[eiαx(u) − 1] du}. (6.26)

This result may be extended to all x ∈ L1(R+, a× leb). To this end, one
approximates x in the strong topology of L1(R+, a× leb) by a sequence
xn of continuous functions with compact support (see 2.2.44). Since P
is a Markov operator, Pxn converge to Px in L1(Ω,F ,P), and hence
weakly also (see 5.8.1). Therefore, the characteristic functions of Pxn
converge to that of Px. Our claim follows now by the Lebesgue Dom-
inated Convergence Theorem and the estimate |1 − eiαx(u)| ≤ |αx(u)|
(see the solution to 6.4.8).

Note that α in equation (6.26) is redundant in the sense that it appears
only together with x, while x is an arbitrary element of L1(R+, a ×
leb) anyway. In other words we may restate our (actually, Campbell’s)
theorem by saying that

EeiPx = exp{a
∫ ∞

0

[eix(u) − 1] du} (6.27)

and if necessary recover (6.26) by substituting αx for x. Formula (6.27) is
a particular case of the so-called characteristic functional of a point
process. In this setting, {Sn, n ≥ 1} is viewed as a random subset
of R+. The characteristic functional x �→ EeiPx (which is not a linear
functional) describes the distribution of such a random set in a quite
similar way to that in which the characteristic function describes the
distribution of a random variable (see [24], [66]). In the case of a single
random variable Z we describe its distribution by means of expected
values EeiY of a family Y = αZ of random variables indexed by α ∈ R.

Since a random set is a more complex entity than a random variable
we need more “test-variables” Y to describe it and need to take, for
example, Y = Px indexed by x ∈ L1(R+, a × leb). The random set
{Sn, n ≥ 1} is called the Poisson (point) process with parameter a
(see also 7.5.5).

The characteristic functional (6.27) reveals much more than is seen
at a first glance. For example, taking x =

∑n
i=1 αixi where αi ∈ R and

xi ∈ L1(R+, a × leb) we obtain from it the joint characteristic function
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of Pxi, 0 ≤ i ≤ n. In particular, taking xi to be indicators of mea-
surable disjoint subsets Ai of R+ with finite measure we see that the
number of points of our random set in each Ai is Poisson distributed
with parameter a leb(Ai) and independent of a number of such points in
Aj , j 
= i. Moreover, if x1 and x2 belong to L2(R+), we differentiate the
joint characteristic function

φ(α1, α2) = exp{a
∫ ∞

0

[eiα1x1(u)+iα2x2(u) − 1] du}

of Px1 and Px2 at (0, 0) to obtain

E Px1Px2 = a2

∫
x1x2 dleb+ a2

∫
x1 dleb

∫
x2 dleb. (6.28)

6.4.10 Exercise Let a, b > 0, and Pt be the Markov operator related
to a Poisson process with parameter at. There is a probability space
(Ω,F ,P) where one may construct a random subset† S of R+ such that
for x ∈ L1(R+, a× leb), the expected value F (x) = EeiPx where

Px(ω) =
∑

s∈S(ω)

x(s)

is given by

F (x) = b

∫ ∞

0

e−btE eiPtx dt =
b

b+ a
∫∞
0

[1 − eix(u)] du
.

Such random sets are called geometric point processes and are of
importance in population genetics – see [18]. Show that for any bounded
measurable A, the number of elements of this random set in A is geo-
metrically distributed with parameter p = b

b+aleb(A) . Also, show that P
is a Markov operator and that for x1 and x2 in L2(R+) we have

E Px1Px2 = 2
a2

b2

∫
x1 dleb

∫
x2 dleb+

a2

b

∫
x1x2 dleb.

Deduce in particular that random variables P1A and P1B are not inde-
pendent even if the sets A and B are disjoint.

6.4.11 Exercise The bilateral exponential measure with parameter
a > 0 is the probability measure with density x(τ) = a

2 e−|τ |a. Show by
direct calculation that the Fourier cosine transform of the density of the
bilateral exponential distribution with parameter a equals a2

a2+t2 . Note

† The phrase random set means here that one may introduce a σ-algebra in the set
of (countable) subsets in R+ such that the map ω → S(ω) is measurable.
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that since the bilateral exponential is symmetric its Fourier transform
and Fourier cosine transform coincide.

6.4.12 Exercise The Cauchy measure with parameter a > 0 is the
probability measure with density x(τ) = 1

π
a

a2+τ2 . Use the calculus of
residues to show that the Fourier transform (and the Fourier cosine
transform) of the density of the Cauchy measure with parameter a is
e−|t|a.

6.5 Dense subalgebras of C(S)

In this short section we present the Kakutani–Krein Theorem and derive
from it the Stone–Weierstrass Theorem. Of course, in functional analysis
this last theorem is of great interest by itself, but the main reason to
present it here is that it constitutes a tool in proving inversion theorems
of the next section section (Theorem 6.6.7).

6.5.1 Definition Let S be a topological space. A subset of the set
of continuous functions on S is said to be a lattice if both x ∨ y and
x ∧ y belong to this subset whenever x and y do. It is said to separate
points if for any p, q ∈ S, there exists a z in this set with z(p) 
= z(q).

6.5.2 The Kakutani–Krein Theorem Let C(S) be the space of continu-
ous functions on a compact topological space S and let A be an algebraic
subspace of C(S) which contains 1S and is a lattice. If A separates points,
then the closure of A is the whole of C(S).

Proof Fix x ∈ C(S). For any p, q ∈ S, take a z ∈ A such that z(q) 
= z(p).
Then there is exactly one pair of numbers α, β such that α+βz(p) = x(p)
and α+βz(q) = x(q). Writing yp,q = α1S +βz ∈ A we see that at p and
q the values of yp,q and x are the same.

Now, fix ε > 0 and p ∈ S. Functions yp,q and x being continuous, we
may find an open neighborhood Uε,q of q such that yp,q(r) < x(r) + ε,

r ∈ Uε,q. These neighborhoods cover S. Since S is compact, one may find
a finite subcover of this cover. Let q1, ..., qn be the points defining this
subcover. Note that yp = yp,q1∧yp,q2∧...∧yp,qn

∈ A satisfies yp < x+ε1S
because any r belongs to Uqi,ε for some i = i(r) and for this i we have
yp(r) ≤ yp,qi(r) < x(r) + ε. Also, yp(p) = x(p).

Finally, let Vp be open neighborhoods of p such that yp(r) > x(r) − ε

for r ∈ Vp. Again, Vp, p ∈ S form an open cover of S. Let p1, ..., pk be
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the points defining a finite subcover of this cover. Writing y = yp1 ∨
yp2 ∨ ... ∨ ypn

∈ A and arguing as above we see that y > x− ε1S . Since,
obviously, y < x + ε1S , we obtain ‖x − y‖ < ε. This proves that A is
dense in C(S), as desired.

6.5.3 The Stone–Weierstrass Theorem Let C(S) be the space of real
continuous functions on a compact topological space S, and let B be its
subalgebra. If B separates points and contains 1S , then the closure of B

equals C(S).

Proof Let A be the closure of B. Since A separates points and contains
1S it suffices to show that it is a lattice, and by Exercise 6.5.4 it suffices
to show that |x| belongs to A whenever x does. Without loss of generality
we may assume ‖x‖ ≤ 1. By the Weierstrass Theorem 2.3.29, for any
ε > 0 there exists a polynomial pn such that supτ∈[0,1] | |τ | − pn(τ)| < ε.

Hence, for any p ∈ S, | |x(p)| − pn(x(p))| < ε. This shows that |x| can
be uniformly approximated by a polynomial in x. But A is an algebra,
as the reader will easily check, and contains 1S so that a polynomial in
x belongs to A. Hence, |x| belongs to the closure of A, equal to A, as
claimed.

6.5.4 Exercise Show that an algebraic subspace of C(S) is a lattice
iff |y| belongs to this subspace whenever y does.

6.5.5 Exercise Prove the following complex version of the Stone–
Weierstrass Theorem. If A is a subalgebra of the space C(S) of complex
continuous functions on a compact space S satisfying conditions of 6.5.3
and such that the complex conjugate x of any x ∈ A belongs to A then
the closure of A equals C(S).

6.5.6 Exercise Let C(R2) be the algebra of functions x on R2 such
that the limit limτ2+σ2→∞ x(τ, σ) exists, and let C(R) be the algebra
of functions y such that the limit lim|τ |→∞ y(τ) exists. Show that linear
combinations of functions of the form x(τ, σ) = y1(τ)y2(σ) where yi ∈
C(R), i = 1, 2, are dense in C(R2). Use this to offer yet another proof of
5.4.20 (cf. 5.7.8).

6.5.7 Exercise (Continuation) Use the previous exercise to show that
if X and Y are random variables, X is independent from a σ-algebra F
and Y is F measurable, then E(x(X,Y )|F) =

∫
R
x(τ, Y ) PX( dτ) for any

x ∈ C(R2).
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6.6 Inverting the abstract Fourier transform

In probability theory, three examples of a Banach algebra seem to be of
particular importance. These are: the algebra BM(R) of Borel measures
on R, the algebra BM(R+) of Borel measures on R+ and the algebra
BM(N0) of Borel measures on N0 (isometrically isomorphic to l1(N0)).
This is because we are interested in random variables in general, but
quite often our interest focuses on positive random variables or random
variables with natural values. From 6.3.10 we know that the Gelfand
transform in the first two of these algebras is related to the Fourier
transform and the Laplace transform, respectively. The Gelfand trans-
form in the third algebra is a probability generating function, except
that it is defined on [−1, 1] and not on [0, 1] as customary in probabil-
ity. The reader may be familiar with the fact that there are well-known
inversion theorems for the Fourier transform, for the Laplace transform
and for the probability generating function; all serious books in proba-
bility discuss them (or at least one of them). Such theorems assert that
the values of the Fourier or Laplace transform or the probability gener-
ating function of a (probability) measure determine this measure. This
section is devoted to proving these results.

At this point it is crucial to recall that the set of multiplicative func-
tionals on a Banach algebra A may be empty. Hence, in general the
Gelfand transform does not determine a member of this algebra and
there is no “inversion theorem” for the abstract Gelfand transform. Our
case is not hopeless, however, since we may restrict ourselves to abelian
algebras. Moreover, we are not dealing with general Banach algebras but
rather with convolution algebras of measures. Inspecting the arguments
used in the previous section we discover that the notion of a multiplica-
tive functional on the algebra of Borel measures on a locally compact
commutative topological semigroup G with multiplication ◦ is closely
related to that of a semicharacter of G, defined to be a bounded, real
or complex, continuous function α on G such that

α(g1 ◦ g2) = α(g1)α(g2);

a semicharacter on a group is called a character. To be more specific,
we check that given a semicharacter α we may define a multiplicative
functional on BM(G) by

Fαµ =
∫

G

α dµ.

As a subset of a locally compact space, the set Λ of such functionals is
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a locally compact space itself. Following [52], the map

BM(S) � µ �→ µ̂ ∈ C(Λ),

where µ̂(α) = Fαµ will be called the abstract Fourier transform.
Hence, inversion theorems of probability theory say that for many

locally compact semigroups G, a measure in BM(G) is determined by its
abstract Fourier transform.

Unfortunately, it is not clear whether this theorem is true for all lo-
cally compact commutative semigroups. It is definitely true for locally
compact commutative groups, but the proof is based on the results of
Gelfand and Raikov concerning unitary representations of a locally com-
pact commutative group [52], and cannot be presented in this elementary
treatise. Therefore, we need to take up a still more modest course. Specif-
ically, we will prove that the theorem is true for compact commutative
semigroups, provided that semicharacters separate their points (this will
follow immediately from the Stone–Weierstrass Theorem) and then treat
the remaining cases that are important from the probabilistic point of
view separately.

We start, though, with examples and exercises on characters and the
elementary inversion theorem for probability generating function.

6.6.1 Example In Section 6.3 we have showed that α(n) = αn, α ∈
[−1,+1], and α(τ) = e−λτ , λ ≥ 0, are the only real semicharacters of
the semigroups N and R+, respectively. Moreover, α(τ) = eiτt, t ∈ R,

are the only complex characters of the group R.

6.6.2 Exercise Show that semicharacters of a semigroup G have val-
ues in the complex unit disc (i.e. |α(g)| ≤ 1, g ∈ G) and that characters
of a group have values in a unit circle.

6.6.3 Exercise Show that characters of a group form a group (called
the dual group or the character group). Show that the dual group
to Z is (izomorphic to) the unit circle with complex multiplication. Con-
versely, the dual of this last group is Z. This is a simple example of the
general theorem of Pontryagin and Van Kampen saying that the dual of
the dual group is the original group – [51] p. 378.

6.6.4 Inversion theorem for the probability generating function The
values of x̂(α) =

∑∞
n=0 ξnα

n determine x = (ξn)n≥0 ∈ l1(N0).
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Proof The function x̂ is analytic with right-hand derivatives at 0 equal
dnx̂(0)
dαn = n!ξn.

6.6.5 Exercise Prove the inversion theorem for the joint probability
generating function (see 6.3.2).

6.6.6 Exercise Prove that the values of x̂(t) =
∑∞
n=−∞ ξneitn deter-

mine x = (ξn)n∈Z ∈ l1(Z).

6.6.7 Theorem Suppose G is a compact topological semigroup and
the set of its semicharacters separates points. Then, a Borel measure µ
on G is determined by its abstract Fourier transform.

Note: as a corollary to the important theorem of Gelfand and Raikov
mentioned earlier one may show that the set of characters of a commu-
tative locally compact group separates points – [51] pp. 343–345.

Proof By the Riesz Theorem, it suffices to show that the linear span Y

of characters is dense in C(G). Y is a subalgebra of C(G). Moreover, it
separates points and contains 1G. Hence, if all semicharacters are real,
our claim follows by the Stone–Weierstrass Theorem. In the general case,
we note that Y also has the property of being closed under complex
conjugation – a function belongs to Y iff its complex conjugate does.
Hence, the theorem follows by 6.5.5.

6.6.8 Example The unit circle C with complex multiplication is a
compact commutative group. All its characters are of the form α(z) =
zn, z ∈ C, n ≥ 0. Obviously, the set of characters separates points of
C. Hence, a measure µ on C is determined by µ̂(n) =

∫
C
znµ( dz).

More generally, all characters on the compact group Ck are of the form
α(z1, ..., zk) = zn1

1 ...znk

k , ni ≥ 0, i = 1, ..., k, and a measure µ on Ck is
determined by µ̂(n1, ..., nk) =

∫
Ck z

n1
1 ...znk

k µ( dz1...zk).

6.6.9 Inversion theorem for the Laplace transform A measure µ ∈
BM(R+) is determined by its Laplace transform, µ̂(λ) =

∫
R+ eλ dµ, λ ≥

0, eλ(τ) = e−λτ , τ ≥ 0.

Proof This is a direct consequence of 2.3.31. We may also derive it
from 6.6.7 by noting that G = R+ ∪ {∞}, with the usual addition and
supplementary rule a+∞ = ∞, a ∈ R+∪{∞}, is a compact semigroup,
so that µ may be treated as an element of BM(G), with µ({∞}) = 0.
Moreover, all semicharacters on R+ may be continuously extended to the
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whole of G to form semicharacters of G. These semicharacters separate
points of G.

6.6.10 Inversion theorem for the Fourier transform All characters of
Rk, k ≥ 1 are of the form Rk � s = (s1, ..., sk) �→ et(s) = eis·t where
t = (t1, ..., tk) ∈ Rk and “ ·” denotes the scalar product s · t =

∑k
i=1 siti.

Hence, the multidimensional Fourier transform of a measure µ ∈ BM(R)
is given by µ̂(t) =

∫
Rk et dµ. The inversion theorem for the Fourier trans-

form does not follow from 6.6.7, since Rk is not compact. The compact-
ification argument of 6.6.9 does not work either, since the characters of
Rk do not have limits at infinity. To prove that a measure µ ∈ BM(Rk)
is determined by its Fourier transform, µ̂(t) =

∫
Rk et dµ, we proceed as

follows.
We assume, without loss of generality, that µ is a probability measure.

It suffices to show that for any x ∈ C0(Rk) and ‖x‖ > ε > 0 there exists
a linear (complex) combination y of et such that∣∣∣∣

∫
Rk

xdµ−
∫

Rk

y dµ
∣∣∣∣ < ε. (6.29)

Let n be large enough so that µ(Sn) > 1 − ε
6‖x‖ where

Sn = {s = (s1, ..., sk) ∈ Rk, |si| ≤ n, i = 1, ..., k}.

The linear combinations of ẽm =
(
eπn−1m

)
|Sn

,m ∈ Zk are, by 6.5.5,
dense in C(Sn). Let y0 be a linear combination of em such that ‖x|Sn

−
y0‖C(Sn) <

ε
2 . Since the ẽm are periodic with period 2n (in each co-

ordinate), y0 has the 2n-periodic extension y, defined on R. We have
‖y0‖C(Sn) = ‖y‖BM(Rk). In particular, ‖y‖BM(Rk) ≤ ‖x‖ + ε ≤ 2‖x‖.
Hence, integrating |x − y| over Sn and its complement we see that the
left-hand side of (6.29) is less than µ(Sn) ε2 + ε

6‖x‖ (‖x‖ + 2‖x‖) < ε.

We conclude this section with applications.

6.6.11 Distributions of linear combinations of coordinates determine the
distribution of a random vector

Proof If X = (X1, ..., Xk), then for µ = PX ,

µ̂(t) =
∫

Rk

et dµ =
∫

Ω

eit·X dP =
∫

R

xdPt·X

where x(s) = eis, s ∈ R.
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6.6.12 Continuity theorem Let µ and µn, n ≥ 1, be probability mea-
sures on a locally compact semigroup G. If µn converge weakly to µ,

then µ̂n converges pointwise to µ̂. Conversely, if we assume that the ab-
stract Fourier transform determines a measure, and that µ̂n converges
pointwise to µ̂, then µn converges weakly to µ.

Proof The first part is immediate. For the other part observe that, by
Alaoglu’s Theorem, any subsequence of the sequence µn, n ≥ 1, con-
tains a further subsequence converging to some µ0 (perhaps not a prob-
ability measure, but definitely a non-negative measure). By the first
part, the abstract Fourier transforms of the measures forming this sub-
subsequence converge to µ̂0. On the other hand, by assumption they con-
verge to µ̂. In particular µ0(G) = µ(G) = 1, so that µ0 is a probability
measure. Since the abstract Fourier transform is assumed to determine
the measure, we must have µ0 = µ. This shows that µn converges to µ.

6.6.13 Corollary In view of 6.6.4 and 5.8.6 a sequence xn = (ξi,n)i≥0 ,

n ≥ 1, of distributions in l1(N0) converges strongly, weakly or in the
weak∗ topology to a density x = (ξi)i≥0 iff limn→∞

∑∞
i=0 α

iξi,n =∑∞
i=0 α

iξi for all α ∈ [0, 1].

6.6.14 Exercise Use the continuity theorem for the generating func-
tion to prove the Poisson approximation to binomial 1.2.34.

6.6.15 Negative binomial approximates gamma Let Xn, n ≥ 1, be neg-
ative binomial random variables with parameters (pn, k), respectively. If
pn → 0 and npn → a > 0, as n → ∞, then the distribution µn of 1

nXn

converges weakly to the gamma distribution with parameters k and a.

Indeed, all measures may be considered as elements of BM(R+). The
Laplace transform of 1

nXn equals

φn(λ) = E exp{−λ
n
Xn} = E

(
exp{−λ

n
}
)Xn

,

which is the probability generating function of Xn at α = exp{−λ
n}.

Therefore, φn(λ) = exp{− kλ
n }pk

n

(1−exp{− λ
n}qn)k × nk

nk converges to ak

(λ+a)k , which is
the Laplace transform of the gamma distribution with prescribed pa-
rameters: ∫ ∞

0

e−λte−at
ak

(k − 1)!
tk−1 dt =

ak

(λ+ a)k
.
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Note that we have once again established 5.4.16 (take k = 1).

6.6.16 Another proof of the Central Limit Theorem The continuity
theorem is a powerful tool in proving weak convergence of probability
measures. The point is that we need to consider merely integrals

∫
α dµ

with α continuous and having nice algebraic properties. In particular,
the proof of CLT (in its classical form 5.5.2) is now an easy exercise in
calculus.

Recall that for any continuously differentiable function φ on R we
have φ(t) = φ(0) +

∫ t
0
φ′(s) ds. Using this, if φ is twice continuously

differentiable

φ(t) = φ(0) +
∫ t

0

(
φ′(0) +

∫ s

0

φ(u) du
)

ds

= φ(0) + tφ′(0) +
∫ t

0

(t− s)φ′′(s) ds (6.30)

by Fubini’s Theorem. (This is a particular case of the Taylor formula
with integral remainder.) Also, one checks that for continuous function
φ, limt→0

1
t

∫ t
0
φ(s) ds = φ(0). In a similar way,

lim
t→0

2
t2

∫ t

0

(t− s)φ(s) ds = lim
t→0

2
t2

∫ t

0

∫ s

0

φ(u) du ds = φ(0). (6.31)

Now, without loss of generality we may assume thatm = 0 and σ2 = 1,
since the general case may be reduced to this one. Then, arguing as in
1.2.12 we see that the (common) characteristic function φ(t) = E eitXn of
all Xn is twice differentiable with φ′(0) = iµ = 0 and φ′′(0) = −EX2 =
−σ2 = −1. Moreover, the characteristic function of 1√

n

∑n
k=1Xk equals

φn( t√
n
). By (6.30),

φn
(

t√
n

)
=

[
1 +
∫ t√

n

0

(
t√
n
− s

)
φ′′(s) ds

]n

and (6.31) implies that n
∫ t√

n

0 ( t√
n
− s)φ′′(s) ds tends to − t2

2 as n→ ∞.

Recalling limτ→0+(1− τ) 1
τ = e−1 we obtain φn( t√

n
) → e−

t2
2 , as desired.

6.6.17 Central Limit Theorem with (Poisson distributed) random num-
ber of terms Let Xn, n ≥ 1, be the i.i.d. random variables from the
previous subsection. Let Zn be Poisson random variables with E Zn =
an, a > 0, independent of Xn, n ≥ 1. Defining Yn =

∑Zn

k=1Xk we have
that Yn−anm√

anσ2 converges weakly to the standard normal distribution.
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Proof Again, we may assume m = 0 and σ2 = 1. Let µ and φ be
the (common) distribution and characteristic function of the Xn, n ≥ 1,
respectively. The key step in the proof is that the distribution of Yn
equals

e−an
∞∑
k=0

(an)k

k!
µ∗k = e−an exp(anµ)

where ∗k denotes the kth convolution power and exp is the exponent
in the algebra BM(R). Hence, the characteristic function of 1√

an
Yn is

e−an exp
[
anφ

(
t√
an

)]
. By (6.30) and (6.31),

anφ

(
t√
an

)
− an = an

∫ t√
an

0

(
t√
an

− s

)
φ′′(s) ds

tends to − t2

2 , as claimed.

6.6.18 Example In 8.4.31 we show that, for a > 0 and t ≥ 0,

φa,t(τ) =

⎧⎪⎪⎨
⎪⎪⎩

e−at
[
cosh

√
a2 − τ2t+ iτ+a√

a2−τ2 cosh
√
a2 − τ2t

]
, |τ | < a,

e−at
[
cos

√
τ2 − a2t+ iτ+a√

τ2−a2 cos
√
τ2 − a2t

]
, |τ | > a,

e−at(1 ± iat+ at), τ = ±a,
(6.32)

is the characteristic function of a random variable, say ξa(t). (To be
more specific, ξa(t) =

∫ t
0
(−1)Na(s) ds where Na(t), t ≥ 0, is the Poisson

process to be introduced in 7.5.5, but this is of no importance for now.)
We will show that, as a→ ∞,

√
aξa(t) converges to an N(0, t) variable.

To this end, it suffices to prove that lima→∞ φa,t(
√
aτ) = e−

tτ2
2 . Let

τ ∈ R be fixed. For a > τ2, φa,t(
√
aτ) is calculated using the first formula

in the definition above, and some algebra shows that it equals

exp

{
at

[√
1 − τ2

a
− 1

]}⎡⎣1
2

+
iτ√
a

+ 1

2
√

1 − τ2√
a

⎤
⎦

+ exp

{
at

[
−
√

1 − τ2

a
− 1

]}⎡⎣1
2
−

iτ√
a

+ 1

2
√

1 − τ2√
a

⎤
⎦ .

Observe that the expressions in square brackets tend to 1 and 0, respec-
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tively. Next, 0 < exp
{
at

[
−
√

1 − τ2

a − 1
]}

≤ 1 , and

lim
a→∞

at

[√
1 − τ2

a
− 1

]
= lim
a→∞

at
[
1 − τ2

a − 1
]

√
1 − τ2

a + 1
=

−τ2t

2
,

as desired.

6.7 The Factorization Theorem

This section is devoted to Cohen’s Factorization Theorem, later gener-
alized independently by E. Hewitt, P. C. Curtis and A. Figá-Talamanca,
and S. L. Gulik, T. S. Liu and A. C. M. van Rooij, see [52] and the
overview article [72]. This is one of the fundamental theorems of the
theory of Banach algebras but this is not the main reason why we dis-
cuss it here. Rather, we are motivated by the fact that this theorem
constitutes an integral part of the structure of the Kisyński’s algebraic
version of the Hille–Yosida Theorem to be discussed in Chapter 8. On
the other hand, Cohen’s Theorem is not crucial for the proof of the
Hille–Yosida Theorem. Hence, a casual reader may take my advice from
Section 1.6.

6.7.1 The Factorization Theorem LetH be a representation of L1(R+)
by bounded linear operators in a Banach space X, and let R ⊂ X be
defined as

R = {x ∈ X|x = H(φ)y for some φ ∈ L1(R+), y ∈ X}.

Then, for every x in the closed linear span X0 of R there exists a y ∈ X

and a non-negative φ ∈ L1(R+) such that x = H(φ)y. In particular, R
is an algebraic subspace of X and is closed.

Proof

(a) Let Au = L1(R+)×R be the algebra with unit u = (0, 1) described
in 6.1.7. For notational convenience, we will write φ and φψ to denote
(φ, 0) and (φ, 0)(ψ, 0) ∈ Au, respectively. In other words we identify
L1(R+) with a subalgebra L1(R+) × {0} of Au. Define H : Au → L(X)
by H(φ, α) = H(φ) + αIX. H is now a representation of Au.
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(b) Let iλ ∈ L1(R+) be given by iλ(τ) = λe−λτ , τ > 0. Note that

lim
λ→∞

iλφ = φ, φ ∈ L1(R+), (6.33)

‖iλ‖ = 1. (6.34)

This implies that if x = H(φ)y, φ ∈ L1(R+), y ∈ X, then limλ→∞H(iλ)x
= limλ→∞H(iλ)H(φ)y = limλ→∞H(iλφ)y = H(φ)y = x. By linearity
and continuity,

lim
λ→∞

H(iλ)x = x, (6.35)

for all x ∈ X0.

(c) Let x ∈ X0 and (λn)n≥1 be a sequence of positive numbers. Define
bn ∈ Au and yn ∈ X0 by

bn =
n∏
j=1

(2u− aj)−1, yn = H

⎛
⎝ n∏
j=1

(2u− aj)

⎞
⎠x, (6.36)

where aj = iλj . Note that H(bn)yn = H(u)x = x. Since (see 6.1.5)

(2u− aj)−1 =
1
2

(
u− 1

2
aj

)−1

=
1
2
u+

∞∑
k=1

2−(k+1)akj ,

(6.34) implies ‖(2u− aj)−1‖ ≤ 1 and ‖bn‖ ≤ 1. Moreover,

bn = 2−nu+ φn (6.37)

for appropriate choice of φn ∈ L1(R+), and bn converges (in Au) iff φn
converges (in L1(R+)). Note that φn ≥ 0. Since φn+1 − φn equals

bn+1 − bn + 2−(n+1)u =
{
(2u− an+1)−1 − u

}
bn + 2−(n+1)u

=
{
(2u− an+1)−1 − u

}
(φn + 2−nu) + 2−(n+1)u

= (2u− an+1)−1(an+1 − u)φn

+ 2−(n+1)(2u− an+1)−1(2an+1 − 2u)

+ 2−(n+1)(2u− an+1)−1(2u− an+1),

= (2u− an+1)−1{iλn+1φn − φn} + 2−(n+1)(2u− an+1)−1an+1,

we have

‖φn+1 − φn‖ = ‖iλn+1 ∗ φn − φn‖ + 2−(n+1). (6.38)

Also, yn+1 − yn =
(
I −H(iλn+1)

)
yn so that

‖yn+1 − yn‖ ≤ ‖H(iλn+1)yn − yn‖. (6.39)
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(d) By (6.33), (6.35), (6.38) and (6.39), the sequence (λn)n≥1 can
be constructed inductively in such a way that both ‖yn+1 − yn‖ and
‖φn+1−φn‖ are less than 1

2n . Consequently, the series
∑∞
n=1 ‖yn+1−yn‖

and
∑∞
n=1 ‖φn+1−φn‖ are convergent and, consequently, there exist the

limits limn→∞ yn = y and limn→∞ φn = φ. We have φ ≥ 0 since φn ≥ 0.
Finally,

x = lim
n→∞

H(bn)yn = lim
n→∞

[
1
2n
yn +H(φn)yn

]
= H(φ)y

as desired.

6.7.2 Corollary For any ϕ ∈ L1(R+) there exists a ψ ∈ L1(R+) and
a nonnegative φ ∈ L1(R+) such that ϕ = φ ∗ ψ.

Proof Take X = L1(R+) and H(φ) = Lφ. By (6.33), the closure of R
equals L1(R+).
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Semigroups of operators and Lévy processes

Our plan is to prepare a functional-analytic background for the semi-
group-theoretical treatment of Markov processes. We start with the
Banach–Steinhaus uniform boundedness principle, the result that on its
own is one of the most important theorems in functional analysis as well
as one of its most powerful tools. In Section 7.2 we prove basic facts from
the calculus of Banach space valued functions. Section 7.3 is crucial: as
we shall see from the Hille–Yosida theorem to be presented in Chap-
ter 8, there is a one-to-one correspondence between Markov processes
and a class of linear operators – the class of generators of corresponding
semigroups. In general, these operators are not bounded, but are closed.
Hence, Section 7.3 presents the definition and basic properties of closed
operators. Section 7.4 is devoted to the rudiments of the theory of semi-
groups of operators, and in 7.5 we study Lévy processes (a particular
type of Markov processes) with the aid of the theory introduced in the
foregoing sections. Following the example of Feller [41], we postpone the
treatment of general Markov processes to the next chapter.

7.1 The Banach–Steinhaus Theorem

We start with the following exercise.

7.1.1 Exercise Let rn, n ≥ 1, be a non-increasing sequence of positive
numbers and xn, n ≥ 1, a sequence of elements of a Banach space X,

and let clBn = clB(xn, rn) be the closed ball with radius rn and center
xn. Assume that clBn, n ≥ 1, is a decreasing sequence of sets: clBn+1 ⊂
clBn. Show that

⋂
n∈N clBn is non-empty.

234
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7.1.2 Baire’s Category Theorem A subset, say S, of a normed space
X is termed nowhere dense iff its closure does not contain any open ball.
It turns out that if S is nowhere dense, then any open ball B contains
a ball B′ such that B′ ∩ S is empty. Indeed, if we suppose that any
ball B′ that is a subset of a certain ball B contains an element of S,
then it is easy to see that every point of B belongs to the closure of S.
To this end it suffices to consider, for every point x of B, the sequence
of balls B(x, 1

n ) with n large enough to have B(x, 1
n ) ⊂ B. This leads

us to the following important statement about Banach spaces: a Banach
space may not be represented as a countable union of nowhere dense sets.
This is the famous Baire’s Category Theorem. The name comes from the
fact that sets that may be represented as a countable union of nowhere
dense sets (e.g. countable sets) are termed sets of the first category. In
this terminology, Baire’s Theorem states that Banach spaces are not of
the first category; they are sets of the second category. To prove this
theorem, assume that we have X =

⋃
n∈N Sn where X is a Banach space

and Sn are nowhere dense sets. Let B0 be the open ball with radius
1 and center 0. Since S1 is nowhere dense, B0 contains an open ball
B1 that is disjoint with S1. We may actually assume that the radius
of B1 is smaller than 1

2 , and that the closure of B1 is contained in B0

and disjoint with S1; it is just a matter of taking a smaller radius, if
necessary. This procedure may be repeated: we may find an open ball
B2 of radius lesser than 1

3 such that its closure is contained in B1 and
is disjoint with S2. More generally, having found an open ball Bn, we
may find an open ball Bn+1 with radius less than 1

n+2 , whose closure is
contained in Bn and yet is disjoint with Sn+1. This, however, leads to a
contradiction. Specifically, we may use 7.1.1 for the sequence of closures
of balls Bn to see that there exists an x that belongs to all the closed
balls clBn. On the other hand, clBn is disjoint with Sn, and therefore, x
does not belong to the union of Sn, which is impossible by assumption
that X =

⋃
n∈N Sn.

7.1.3 The Banach–Steinhaus Theorem (uniform boundedness principle)
Suppose that X is a Banach space and that An, n ≥ 1, is a sequence of

bounded linear operators. Assume that for every x ∈ X, the supremum
of ‖Anx‖ is finite. Then supn∈N ‖An‖ is finite also.

Proof Let Sn = {x ∈ X; supk∈N ‖Akx‖ ≤ n}. Since the operators An
are continuous, the sets Sn are closed. Our assumption states that X =⋃
n∈N Sn. Therefore, by Baire’s Category Theorem, there exists an l ∈
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N, such that there exists a closed ball B contained in Sl. Let x be the
center of this ball and let r > 0 be its radius. Consider a non-zero y ∈ X

and a vector z = x+ r
‖y‖y ∈ B. We have

‖Any‖ =
∥∥∥∥‖y‖r Anz −

‖y‖
r
Anx

∥∥∥∥ ≤ ‖y‖
r

‖Anz‖ +
‖y‖
r

‖Anx‖ ≤ 2l
r
‖y‖
(7.1)

since both z and x belong to B ⊂ Sl. Thus, supn∈N ‖An‖ ≤ 2l
r .

7.1.4 Corollary Suppose that An, n ≥ 1, is a sequence of continuous
linear operators in a Banach space X, and that the limit limn→∞Anx

exists for all x ∈ X. Then the operator Ax = limn→∞Anx is linear and
bounded.

Proof Linearity of A is obvious; it is its boundedness that is non-trivial
and needs to be proven. It follows, however, from the Banach–Steinhaus
Theorem. Indeed, by assumption the sequence ‖Anx‖ is bounded for
all x ∈ X, and so the sequence of norms ‖An‖ must be bounded by
a constant, say K. Therefore, ‖Ax‖ = limn→∞ ‖Anx‖ ≤ K‖x‖ for all
x ∈ X, as desired.

7.1.5 Remark It is worthwhile saying that the above theorem is true
only for linear operators. The reader should contrast this situation with
the fact that, for example, functions xn(τ) = τn converge pointwise on
[0, 1] but their limit is not continuous.

7.1.6 Corollary Suppose that At, t ∈ (0, 1], is a family of bounded
linear operators such that for every x ∈ X, the limit limt→0Atx exists.
Then there exists a δ > 0 such that sup0<t≤δ ‖At‖ is finite.

Proof The difficulty lies in the fact that we are now dealing with an
uncountable family of operators. We may argue, however, in this way: if
the thesis of the theorem is not true, then for any n there exists tn < 1

n

such that ‖Atn‖ ≥ n. On the other hand, limn→∞Atnx = limt→0Atx

exists for all x ∈ X. This is a contradiction, by 7.1.3.

7.1.7 Exercise Following the argument from the previous subsection
show that if At, t ∈ T, is a family of bounded linear operators in a
Banach space, indexed by an abstract set T, and if supt∈T ‖Atx‖ is finite
for any x ∈ X, then supt∈T ‖At‖ is finite, too.
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7.1.8 Corollary Weakly∗ convergent sequences are bounded. In par-
ticular, weakly convergent sequences are bounded.

Proof Let Fn ∈ X∗ converge in weak∗ topology. Then for every x ∈
X, Fnx converges and therefore is bounded. The uniform boundedness
principle completes the proof.

7.1.9 Exercise If An, n ≥ 1, and A are bounded linear operators in a
Banach space X, with values in a normed space Y, and if An converges
strongly to A then

lim
n→∞

Anxn = Ax

for each sequence xn ∈ X, n ≥ 1, that converges to x.

7.1.10 Corollary Let Y be a compact subset of a Banach space X.

Suppose that A and An, n ≥ 1, are bounded linear operators in X with
values in a normed space Z, and that limn→∞Anx = Ax for all x ∈ X.

Then

lim
n→∞

sup
y∈Y

‖Any −Ay‖ = 0,

i.e. the convergence is uniform on Y.

Proof Let ε > 0 be given. Since Y is compact, there exist k ∈ N and
y1, ..., yk ∈ Y such that for any y ∈ Y there exists a 1 ≤ i ≤ k such that
‖y − yi‖ < ε

4M . For any y ∈ Y, the norm of Any − Ay is less than the
minimal value of ‖Any − Anyi‖ + ‖Anyi − Ayi‖ + ‖Ayi − Ay‖. By the
Banach–Steinhaus Theorem An are equibounded by, say, M. Hence we
may estimate this quantity by

2M min
i=1,...,k

‖y − yi‖ + max
i=1,...,k

‖Anyi −Ayi‖.

The first term above is less than ε
2 and the second may be made that

small by choosing n large enough.

7.1.11 Corollary Suppose that xt, t ∈ T, where T is an abstract index
set, is a family of equicontinuous functions on R such that

sup
t∈T

sup
τ∈R

|xt(τ)| = c

is finite. Suppose that µn, n ≥ 1, is a sequence of probability measures
converging weakly to a probability measure µ. Then, limn→∞

∫
R
xt dµn

=
∫

R
xt dµ uniformly in t ∈ T.
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Proof By 5.7.17, for any T > 0, the functions (xt)|[−T,T ] form a compact
set in C[−T, T ]. Applying 7.1.10 to the functionals x �→

∫
[−T,T ]

xdµn we
see that

lim
n→∞

∫
[−T,T ]

xt dµn =
∫

[−T,T ]

xt dµ (7.2)

uniformly in t ∈ T.

On the other hand, for any ε > 0 we may find a T > 0 such that
µ({−T, T}) = 0 and µ(−T, T )� < ε. Then, for large n, µn(−T, T )� is
less than ε, too. Hence,

∣∣∣∫(−T,T )� xt dµn
∣∣∣ ≤ εc. This, together with (7.2)

completes the proof.

7.1.12 Corollary A sequence µn of probability measures on R con-
verges weakly to a probability measure µ iff the corresponding operators
Tµn

in BUC(R) converge strongly to Tµ.

Proof If x ∈ BUC(R), then the functions xσ, σ ∈ R defined as xσ(τ) =
x(σ + τ) are equicontinuous on R.

7.2 Calculus of Banach space valued functions

7.2.1 The derivative Let a < b be two numbers. A function (a, b) → xt
taking values in a normed space is said to be differentiable at a point
t0 ∈ (a, b) iff the limit limh→0+

xt0+h−xt0
h = x′t0 exists, and x′t0 is then

called the derivative of xt at t0. Analogously one defines the right-hand
(left-hand) derivative at a point t0, if the function is defined in [t0, t0+h)
((t0 − h, t0]) for some positive h, and the appropriate limit exists.

Many results from the calculus of real-valued functions remain valid
with this definition. For example, one proves that if a function (a, b) �
t→ xt is differentiable, and the derivative equals zero, then the function
is constant. Let us carry out the proof, for it illustrates well the method
of proving this sort of theorem. Let x∗ ∈ X∗ be a linear functional. Since
x∗ is linear and continuous, the scalar-valued function t → x∗(xt) is
differentiable with derivative x∗(x′t), which by assumption equals zero.
Thus, x∗(xt) is constant for any functional x∗. Choose a t0 ∈ (a, b). For
any t in this interval, ‖xt − xt0‖ = supx∗∈X,‖x∗‖=1 |x∗(xt − xt0)| = 0, as
desired.

7.2.2 Example Here is another example of a generalization of a clas-
sical result that is often found useful. If t → xt is continuous in an
interval [a, b] (right-continuous at a and left-continuous at b), then for
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any x ∈ X, the function t → yt = x +
∫ t
a
xs ds is differentiable and

y′t = xt (with right-hand derivative at a etc.).

Proof For any t < b and h > 0 sufficiently small,∥∥∥∥yt+h − yt
h

− xt

∥∥∥∥ =

∥∥∥∥∥ 1
h

∫ t+h

t

(xs − xt) ds

∥∥∥∥∥ ≤ sup
s∈[t,t+h]

‖xs − xt‖,

which tends to zero, as h→ 0. For t > a and sufficiently small h < 0 the
argument is similar.

7.2.3 Corollary A function [a, b] � t → xt is continuously differen-
tiable iff there exists a continuous function [a, b] � t→ yt such that

xt = xa +
∫ t

a

ys ds, t ∈ [a, b]. (7.3)

Proof If t→ xt is continuously differentiable in [a, b], then the function
t→ zt = xt−xa−

∫ t
a
x′s ds is differentiable in (a, b) with z′t = x′t−x′t = 0,

and thus it is constant. Since ‖zt‖ ≤ ‖xt − xa‖ + (t− a) sups∈[a,b] ‖x′s‖,
we have limt→a zt = 0, implying zt = 0 for all t ∈ [a, b], by continuity.

On the other hand, by 7.2.2, if (7.3) holds, then xt is continuously
differentiable, and x′t = yt.

7.2.4 Example Certainly, not all theorems from calculus are true
for Banach space valued functions. For instance, the Lagrange Theorem
fails, i.e. for a continuously differentiable function xt on an interval (a, b),
with values in a Banach space X, continuous on [a, b], there may be no
θ ∈ (a, b) such that (b − a)x′θ = xb − xa. To see that consider xt =
(sin t, cos t), t ∈ [0, π2 ] with values in the Hilbert space R2. Then x′θ =
(cos θ,− sin θ) and ‖x′θ‖ = π

2 , for all θ ∈ [0, π2 ], while ‖xπ
2
− x0‖ =

‖(−1, 1)‖ =
√

2.
We may prove, however, the following useful estimate: if xt satisfies the

above assumption and ‖x′t‖ ≤M for some M > 0 and all t ∈ (a, b) then
‖xb−xa‖ ≤M(b− a). To this end, for a functional F on X consider the
scalar-valued function t → Fxt. This function satisfies the assumptions
of Lagrange’s Theorem and therefore there exists a θ ∈ (a, b) such that
Fxb −Fxa = Fx′θ(b− a); note that θ depends on F and that is why we
may not omit the functional F in this relation. Nevertheless,

|F (xb − xa)| ≤ ‖F‖ ‖x′θ‖(b− a) ≤ ‖F‖M(b− a),

and our claim follows by (5.5).
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7.3 Closed operators

7.3.1 Definition Let X be a Banach space. A linear operator A with
domain D(A) ⊂ X and values in X is termed closed iff for any converging
sequence xn of elements of its domain such that Axn converges, the limit
x = limn→∞ xn belongs to D(A) and Ax = limn→∞Axn. It is clear that
all continuous operators are closed; there are, however, many examples
of linear operators that are closed but not continuous.

7.3.2 Example Consider C[0, 1], the space of continuous functions
on [0, 1] (with supremum norm). Let the operator A be defined on the
algebraic subspace D(A) of continuously differentiable functions (with
right-hand derivative at τ = 0 and left-hand derivative at τ = 1), by
Ax = x′. A is not bounded. Indeed, first of all it is not defined on
the entire space. But, since the domain of A is dense in C[0, 1] maybe
we could extend A to a bounded linear operator? The answer is no.
Extending A to a bounded linear operator is possible only if there exists
a constant K such that ‖Ax‖ ≤ K‖x‖ for all x ∈ D(A) (cf. 2.3.33)
Defining, however, the functions xn(τ) = τn, n ≥ 1, we see that ‖xn‖ = 1
and Axn = nxn−1, so that ‖Axn‖ = n.

On the other hand, if for a converging sequence xn of elements of
D(A), there also exists the limit limn→∞ x′n, then x is continuously dif-
ferentiable and x′ = limn→∞ x′n. This is a well-known fact from calculus;
to reproduce its proof note that for τ ∈ [0, 1] and any n ≥ 1, we have
xn(τ) = xn(0) +

∫ τ
0
x′n(σ) dσ. Since x′n converges to some continuous

y (even uniformly), the integral above converges to
∫ τ
0
y(σ) dσ, while

xn(τ) converges to x(τ) and xn(0) converges to x(0). Thus, x(τ) =
x(0) +

∫ τ
0
y(σ) dσ. This implies our result.

7.3.3 Exercise Let A be a linear operator in a Banach space X. Equip
the algebraic subspace D(A) with the norm ‖x‖A = ‖x‖ + ‖Ax‖. Prove
that D(A) with this norm is a Banach space iff A is closed.

7.3.4 Example Suppose thatA is a closed linear operator in a Banach
space X, and that t → xt ∈ D(A) is a Riemann integrable function on
an interval [a, b]. If t �→ Axt is integrable also, then

∫ b
a
xs ds belongs to

D(A), and

A

∫ b

a

xs ds =
∫ b

a

Axs ds. (7.4)
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Proof Let (Tn,Ξn), n ≥ 1, be a sequence of pairs considered in defini-
tion 2.2.48. Since xt ∈ D(A), for all t ∈ [a, b], S(Tn,Ξn, x·) belongs to
D(A) also, and we see that AS(Tn,Ξn, x·) = S(Tn,Ξn, Ax·). If, addi-
tionally, limn→∞ ∆(Tn) = 0, then the limit of S(Tn,Ξn, x·) exists and
equals

∫ b
a
xs ds. Similarly, the limit of S(Tn,Ξn, Ax·) exists and equals∫ b

a
Axs ds. Closedness of A implies that

∫ b
a
xs ds belongs to D(A) and

that (7.4) holds.

7.3.5 Exercise Assume that A is a closed operator in a Banach space
X, and B ∈ L(X). Prove that C = A + B with domain D(C) = D(A)
is closed. In particular, a linear operator A is closed iff for some λ ∈ R,

λIX −A is closed.

7.3.6 Example Consider the space BUC(R) and the operator A =
d2

dτ2 with domain D( d2

dτ2 ) composed of all twice differentiable functions
x with x′′ ∈ BUC(R). We claim that A is closed. It may seem that the
way to prove this claim is simply to follow the argument given in 7.3.2.
Thus, we would assume that a sequence of xn ∈ D( d2

dτ2 ) converges to
some x and that the sequence x′′n of derivatives converges to some y, and
write

xn(τ) = xn(0) + τx′n(0) +
∫ τ

0

∫ σ

0

x′′n(ς) dς dσ

= xn(0) + τx′n(0) +
∫ τ

0

(τ − σ)x′′n(σ) dσ. (7.5)

The reader already perceives, however, that there is going to be a prob-
lem with passage to the limit as n → ∞. The question is: does the nu-
merical sequence x′n(0) converge? Or, perhaps, we have not defined our
operator properly? We have not assumed that x′ belongs to BUC(R);
maybe we should have done it? The answer is in the negative: it turns
out that the assumption that x and x′′ belong to BUC(R) implies that x′

does belong to BUC(R), too. This follows from formula (7.8), below. We
will prove this formula first, and then complete the proof of the fact that
A is closed. Note that uniform continuity of x′ follows from boundedness
of x′′ and that it is only boundedness of x′ that is in question.

Let x be a twice differentiable function on the interval [0, n], n ∈ N.

Integrating by parts twice we see that for any τ ∈ (0, n],∫ τ

0

σn+1

τn
x′′(σ) dσ = x′(τ)τ − (n+ 1)x(τ) + n(n+ 1)

∫ τ

0

σn−1

τn
x(σ) dσ.

(7.6)
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Therefore, for τ ∈ [0, n),∫ n

τ

(n− σ)n+1

(n− τ)n
x′′(σ) dσ =

∫ n−τ

0

σn+1

(n− τ)n
x′′(n− σ) dσ (7.7)

= −x′(τ)(n− τ) − (n+ 1)x(τ) + n(n+ 1)
∫ n

τ

(n− σ)n−1

(n− τ)n
x(σ) dσ.

Subtracting (7.7) from (7.6), after some algebra,

x′(τ) =
∫ n

0

an(τ, σ)x′′(σ) dσ +
∫ n

0

bn(τ, σ)x(σ) dσ, τ ∈ (0, n),

where

an(τ, σ) =

{
1
n
σn+1

τn , σ ≤ τ,

− 1
n

(n−σ)n+1

(n−τ)n , n ≥ σ > τ,

and

bn(τ, σ) =

{
−(n+ 1)σ

n−1

τn , σ ≤ τ,

(n+ 1) (n−σ)n−1

(n−τ)n , n ≥ σ > τ.

Since∫ n

0

|an(τ, σ)|dσ =
1

n(n+ 2)
σn+2

τn

]σ=τ

σ=0
− 1
n(n+ 2)

(n− σ)n+2

(n− τ)n
]σ=n

σ=τ

=
1

n(n+ 2)
[τ2 + (n− τ)2] ≤ 1

2
n

n+ 2
, τ ∈ (0, n),

and∫ n

0

|bn(τ, σ)|dσ =
n+ 1
n

σn

τn

]σ=τ

σ=0
− n+ 1

n

(n− σ)n

(n− τ)n
]σ=n

σ=τ
=

2(n+ 1)
n

,

we have, by continuity,

sup
τ∈[0,n]

|x′(τ)| ≤ 1
2

n

n+ 2
sup

τ∈[0,n]

|x′′(τ)| + 2(n+ 1)
n

sup
τ∈[0,n]

|x(τ)|.

Arguing similarly on the negative half-axis, we obtain

sup
τ∈[−n,n]

|x′(τ)| ≤ 1
2

n

n+ 2
sup

τ∈[−n,n]

|x′′(τ)| + 2(n+ 1)
n

sup
τ∈[−n,n]

|x(τ)|.

Therefore,

‖x′‖BUC(R) ≤
1
2
‖x′′‖BUC(R) + 2‖x‖BUC(R). (7.8)

This implies that the first derivative of a member of D( d2

dτ2 ) belongs
to BUC(R). Moreover, it implies that if xn converges to an x, and x′′n
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converges to a z, then x′n is a Cauchy sequence, and thus converges to a
y. As in 7.3.2 we prove that this forces x to be differentiable and x′ = y.

Now, the sequence yn = x′n converges to y and y′n = x′′n converges to z,
thus y is differentiable with y′ = z, so that x is twice differentiable with
x′′ = z.

7.3.7 The left inverse of a closed linear operator is closed Suppose
that X is a Banach space and that A is a closed linear operator in X.

Let

R = {y ∈ X; y = Ax for some x ∈ X}

denote its range, and suppose that A is injective, i.e. that for any x ∈
D(A), condition Ax = 0 implies x = 0. This forces A to map D(A) onto
R in a one-to-one fashion. Indeed, if there are two elements of D(A),
say x1 and x2, such that Ax1 = Ax2, then we have A(x1 − x2) = 0, and
so x1 equals x2. Define the operator A−1 (often called the left inverse of
A) with domain D(A−1) = R, and range equal to D(A), by

A−1y = x iff Ax = y, for y ∈ R, x ∈ D(A).

We claim that A−1 is closed. To prove this, suppose that a sequence yn of
elements of R converges to y and that A−1yn converges to some x. Then,
elements xn = A−1yn belong to D(A) and converge to x. Furthermore,
the sequence Axn = yn converges also. Since A is closed, x belongs to
D(A) and Ax = y. This means, however, that y belongs to the domain
of A−1 and that A−1y = x, as desired.

As a corollary, we obtain that the left inverse of a bounded linear op-
erator is closed. In general, the left inverse of a bounded linear operator
may be unbounded.

7.3.8 Exercise Prove that a linear operator A : X ⊃ D(A) → X is
closed iff its graph GA = {(x, y) ∈ X × X;x ∈ D(A), y = Ax} is closed
in X×X equipped with any one of the norms defined in 2.2.27. Use this
result to give a simple proof of the fact that the left inverse of a closed
operator (if it exists) is closed.

7.3.9 Example Let C0[0, 1] be the subspace of C[0, 1] composed of
functions x such that x(0) = 0. For x ∈ C0[0, 1] define Ax in C0[0, 1] by
Ax(τ) =

∫ τ
0
x(σ) dσ. The operator A is linear and bounded, since

sup
τ∈[0,1]

|Ax(τ)| ≤ sup
τ∈[0,1]

τ‖x‖ = ‖x‖.
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Moreover, if Ax = 0 then
∫ τ
0
x(σ) dσ = 0, for all τ ∈ [0, 1], and so

x(τ) = d
dτ

∫ τ
0
x(σ) dσ = 0. It is easy to see that the range R of A is

the set of all differentiable functions x ∈ C0[0, 1] such that x′ belongs to
C0[0, 1]. Therefore, the operator A−1 = d

dτ defined on R is closed.

7.3.10 Example Here is another proof of the fact that the operator
introduced in 7.3.6 is closed. Let λ > 0, we will show that in BUC(R)
there exists exactly one solution to the equation

λx− 1
2
x′′ = y, (7.9)

where y is any (given) member of BUC(R). To prove uniqueness, it
suffices to consider the homogeneous ODE: λx− 1

2x
′′ = 0, . Recall that

solutions to this equation are of the form x(τ) = C1e−τ
√

2λ + C2eτ
√

2λ,

where C1 and C2 are arbitrary constants (r = ±
√

2λ are the roots of
λ − 1

2r
2 = 0). If C1 
= 0, then limτ→−∞ |x(τ)| = ∞, and x must not

belong to BUC(R). Analogously, we exclude the case where C2 
= 0.
Hence, the only solution to the homogeneous equation that belongs to
BUC(R) is trivial.

Now, we need to show that for any y, (7.9) has at least one solution.
From the theory of ODEs we know that we should look for an x of the
form

x(τ) = C1e−τ
√

2λ + C2eτ
√

2λ

+
1√
2λ

∫ τ

0

[
e−(τ−σ)

√
2λ − e(τ−σ)

√
2λ
]
y(σ) dσ. (7.10)

For any constants C1 and C2, this function solves (7.9), but they are to
be determined in such a way that x ∈ BUC(R). For τ > 0,∣∣∣∣C1e−τ

√
2λ +

1√
2λ

∫ τ

0

e−(τ−σ)
√

2λy(σ) dσ
∣∣∣∣ ≤ |C1| +

1
2λ

‖y‖BUC(R+).

Therefore, if x is to be bounded,

τ → C2eτ
√

2λ − 1√
2λ

eτ
√

2λ

∫ τ

0

e−σ
√

2λy(σ) dσ

must be bounded also. Since limτ→∞ eτ
√

2λ = ∞, we must have

C2 =
1√
2λ

∫ ∞

0

e−σ
√

2λy(σ) dσ. (7.11)

Similarly,

C1 =
1√
2λ

∫ 0

−∞
eσ

√
2λy(σ) dσ.
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Hence,

x(τ) =
1√
2λ

∫ τ

−∞
e−(τ−σ)

√
2λy(σ) dσ +

1√
2λ

∫ ∞

τ

e(τ−σ)
√

2λy(σ) dσ

=
1√
2λ

∫ ∞

−∞
e−|τ−σ|

√
2λy(σ) dσ. (7.12)

We need to check that this x belongs to BUC(R). Certainly,

‖x‖BUC(R) ≤ sup
τ∈R

1√
2λ

∫ ∞

−∞
e−|τ−σ|

√
2λ dσ‖y‖BUC(R)

=
2√
2λ

∫ ∞

0

e−σ
√

2λ dσ‖y‖BUC(R)

=
1
λ
‖y‖BUC(R), (7.13)

proving boundedness of x. Next, note that

|x(τ) − x(τ ′)| ≤ 1√
2λ

∫ ∞

−∞

∣∣∣e−|τ−σ|
√

2λ − e−|τ ′−σ|
√

2λ
∣∣∣ dσ‖y‖BUC(R).

Assuming, as we may, that τ ′ > τ, and writing the last integral as the
sum of integrals over (−∞, τ), [τ, τ ′] and (τ ′,∞), we estimate it by(

1 − e
√

2λ(τ−τ ′)
) 1√

2λ
+ 2(τ ′ − τ) +

(
1 − e

√
2λ(τ−τ ′)

) 1√
2λ

which implies uniform continuity of x.
We have proved that for any λ > 0 the operator λIBUC(R) − 1

2
d2

dτ2

is one-to-one with range equal to the whole of BUC(R). Moreover, by
(7.13), the inverse operator is bounded. It implies that 1

2
d2

dτ2 is closed,
but our analysis shows more, and that is going to be important in what
follows (see 7.5.1). In fact, in Subsection 7.5.1 we will need a slightly
different version of this result, stated in the exercise below.

7.3.11 Exercise Show that for any y ∈ C[−∞,∞], (7.9) has exactly
one solution x ∈ C[−∞,∞] and that the inverse of λIC[−∞,∞] − d2

dτ2 is
bounded with norm less than 1

λ .

7.3.12 Cores Sometimes, it is hard to describe analytically the whole
domain D(A) of a closed linear operator A. Actually, in most cases it is
impossible. What is easier and possible is to find an algebraic subspace
D ⊂ D(A) that characterizes A in the sense that for any x ∈ D(A) there
exists a sequence xn ∈ D such that limn→∞ xn = x and limn→∞Axn =
Ax. (See e.g. 7.6.17.) Sets with this property are termed cores of A. It
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is clear that if D is a core for A, then AD (the image of D via A) is
dense in the range R of A. A partial converse to this remark turns out
to be a useful criterion for determining whether an algebraic subspace
D ⊂ D(A) is a core. Specifically, we will show that if a closed operator
A has the property that ‖Ax‖ ≥ c‖x‖ for some positive c and all x in
D(A), and if AD is dense in R, then D is a core of A. Indeed, under
these assumptions, for any x ∈ D(A), there exists a sequence xn such
that Axn converges to Ax. Since 1

c‖Axn−Ax‖ ≥ ‖xn−x‖, the sequence
xn converges to x, and we are done.

The role of a core for a closed operator is similar to that of a dense
algebraic subspace for a bounded operator. In particular, a dense alge-
braic subspace is a core for any bounded linear operator. Note, however,
that what is a core for one closed linear operator does not have to be a
core for another closed linear operator.

7.3.13 Exercise Show that D is a core of a closed operator A, iff it
is dense in D(A) equipped with the norm ‖ · ‖A (cf. 7.3.3).

7.4 Semigroups of operators

7.4.1 Definition Let X be a Banach space, and suppose that opera-
tors Tt, t ≥ 0, are bounded. The family {Tt, t ≥ 0} is termed a semigroup
of operators (a semigroup, for short) iff

1o for all s, t ≥ 0, Ts+t = TtTs,

2o T0 = IX, where IX is the identity operator in X.

The key relation is the semigroup property 1o; it establishes a homo-
morphism between the semigroup of positive numbers with addition as
a semigroup operation, and the semigroup (the Banach algebra) L(X)
of operators on X. Families of operators that fulfill this relation enjoy
surprising properties. The situation is similar to Theorem 1.6.11, which
says that measurable functions that satisfy the Cauchy functional equa-
tion are continuous. Indeed, if {Tt, t ≥ 0} is a semigroup of operators in
a Banach space X, and for any x ∈ X, the map t → Ttx is (Bochner)
measurable, it is also continuous for t > 0. We will not use this theorem
later on, neither shall we introduce the notion of Bochner measurability;
we mention it here solely to impress the reader with the importance and
far reaching consequences of the apparently simple relation 1o. In what
follows we will prove more (but simpler) results of this sort.



7.4 Semigroups of operators 247

7.4.2 Example Let x be an integrable function on R+ and let t be
a non-negative number. Let Ttx be a new function on R+ defined to be
equal to 0 for τ < t and x(τ − t) for τ ≥ t. We will use a shorthand:
Ttx(τ) = x(τ− t)1[t,∞)(τ), although it is not exactly correct, for x(τ− t)
is not defined for τ < t. Observe that if y is another integrable function
such that

∫∞
0

|x(τ) − y(τ)|dτ = 0, then∫ ∞

0

|Ttx(τ) − Tty(τ)|dτ =
∫ ∞

t

|x(τ − t) − y(τ − t)|dτ

=
∫ ∞

0

|x(τ) − y(τ)|dτ = 0.

Therefore, if x and y belong to the same equivalence class in L1(R+),
then so do Ttx and Tty. Consequently, Tt is an operator in L1(R+). To
prove the semigroup property of {Tt, t ≥ 0}, we take a representant x of
a class in L1(R), and calculate as follows:

TsTtx(τ) = 1[s,∞)(τ)Ttx(τ − s)

= 1[s,∞)(τ)1[t,∞)(τ − s− t)x(τ − s− t)

= 1[s+t,∞)(τ)x(τ − s− t) = Tt+sx(τ).

Since the choice of an x from an equivalence class does not influence
the result of our calculations (a.s.), the proof is complete. {Tt, t ≥ 0} is
called the semigroup of translations to the right.

7.4.3 Exercise Show that if {Tt, t ≥ 0} and {St, t ≥ 0} are two
semigroups, and St commutes with Tt for all t ≥ 0, i.e. StTt = TtSt,

then Ut = StTt is a semigroup.

7.4.4 Exercise Let pr be the Poisson kernel defined in 1.2.29. For an
integrable x on the unit circle C and t > 0 let Ttx = pexp(−t) ∗ x. Use
1.2.29 to check that if we let T0x = x, then {Tt, t ≥ 0} is a semigroup
of operators on both the space of continuous functions on C and on the
space of equivalence classes of integrable functions on C. Also, show that
Tt, t ≥ 0, are contractions.

7.4.5 Definition A semigroup {Tt, t ≥ 0} is said to be strongly con-
tinuous or of class c0 iff

3o limt→0 Ttx = x, for x ∈ X.

Semigroups that satisfy this condition are particularly important. In
fact most modern textbooks on semigroups restrict their attention to
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strongly continuous semigroups [26, 43, 91, 94]; the theories of stochastic
processes and PDEs supply, however, many examples of semigroups that
are not strongly continuous (see [25, 54]).

7.4.6 Exercise Show that if {Tt, t ≥ 0} and {St, t ≥ 0} are two
strongly continuous semigroups, and St commutes with Tt for all t ≥ 0
then Ut = StTt is a strongly continuous semigroup. In particular, if
{Tt, t ≥ 0} is a semigroup, and ω is a number, then Ut = eωtTt is a
strongly continuous semigroup.

7.4.7 Example Let X = BUC(R+) be the space of all bounded, uni-
formly continuous functions on R+, and let Ttx(τ) = x(τ+t). Obviously,
Tt maps BUC(R+) into itself. As in 7.4.2 we check that {Tt, t ≥ 0} is a
semigroup. To show that it is of class c0, take an x ∈ X, and for a given
ε > 0 choose a δ > 0, such that |x(τ)− x(σ)| < ε provided τ, σ ≥ 0, and
|τ − σ| < δ. Then, for t < δ,

‖Ttx− x‖ = sup
τ≥0

|Ttx(τ) − x(τ)| = sup
τ≥0

|x(τ + t) − x(τ)| ≤ ε.

This proves that limt→0+ Ttx = x. Observe, however, that ‖Tt − I‖ =
sup‖x‖=1 ‖Ttx− x‖ = 2, for all t > 0 (cf. 7.4.19 and 7.4.20). The reader
should prove it, arguing as in 2.3.29 for example.

7.4.8 Example Let {Tt, t ≥ 0} be the semigroup from 7.4.2. We will
prove that it is strongly continuous. Note first that Tt have norm 1; one
of the ways to see this is to note that they are Markov. Therefore, it suf-
fices to show relation 3o for x from a dense subset X0 of X. In particular,
we may choose for X0 the set of (equivalence classes corresponding to)
continuous functions with compact support in the open half-axis (0,∞).
Note that Tt maps X0 into itself, and that X0 ⊂ BUC(R+). A modifi-
cation of the reasoning from 7.4.7 shows that for x ∈ X0, Ttx tends to x
uniformly, as t→ 0+.Moreover, if the support of x is contained in the in-
terval (0,K) for someK > 0 then ‖Ttx−x‖L1(R+) ≤ K‖Ttx−x‖BUC(R+),

completing the proof.

7.4.9 Exercise Let rα be the rotation around (0, 0) of the plane R2

by the angle α ∈ R+ and let X = C0(R2). Check that Ttx(p) = x(rtp),
where p ∈ R2, is a strongly continuous semigroup of operators.

7.4.10 Example Prove that the semigroup from 7.4.4 is of class c0.
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7.4.11 Exponential growth Suppose that {Tt, t ≥ 0} is a strongly con-
tinuous semigroup of operators in a Banach space X. Then there exist
constants M ≥ 1 and ω ∈ R such that

‖Tt‖ ≤Meωt. (7.14)

Proof By 7.1.6, there exists a δ > 0 and an M ≥ 1, such that ‖Tt‖ ≤M

for 0 ≤ t ≤ δ (we cannot have M < 1, for ‖T0‖ = 1 – see also 7.4.13).
For arbitrary t ≥ 0, one may find an n ∈ N ∪ {0} and t′ ∈ [0, δ) such
that t = nδ + t′. By the semigroup property,

‖Tt‖ = ‖Tnδ Tt′‖ ≤MnM = Men lnM ≤Me(nδ+t′) ln M
δ .

Taking ω = lnM
δ completes the proof.

7.4.12 Remark Taking X = R, and Tt = eωtx, t ≥ 0, we see that ω in
(7.14) may be arbitrary. As we have remarked, M must be greater than
or equal to 1. It is also worth noting that for a fixed strongly continuous
semigroup the minimum of the set of ω such that (7.14) holds for some
M ≥ 1 may not be attained.

7.4.13 Exercise Suppose that {Tt, t ≥ 0} is a semigroup, and that
‖Tt‖ ≤ Meωt, for some ω ∈ R, M ∈ R+ and all t > 0. Prove that
0 ≤M < 1 implies Tt = 0 for all t > 0.

7.4.14 Continuity If {Tt, t ≥ 0} is a strongly continuous semigroup,
then for all x ∈ X, the function t → Ttx is strongly continuous in R+

(right-continuous at 0).

Proof Right-continuity at t = 0 is secured by the definition of a strongly
continuous semigroup. If t > 0 then limh→0+ Tt+hx = limh→0+ ThTtx =
Ttx, since Tt belongs to X. Also, for suitable ω and M,

lim sup
h→0+

‖Tt−hx− Ttx‖ ≤ lim sup
h→0+

‖Tt−h‖L(X)‖x− Thx‖

≤ lim sup
h→0+

Meω(t−h)‖x− Thx‖ = 0.

7.4.15 The infinitesimal generator Let {Tt, t ≥ 0} be a strongly con-
tinuous semigroup of operators in a Banach space X. Let D(A) denote
the set of all x ∈ X, such that the limit

Ax := lim
h→0+

Thx− x

h
(7.15)
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exists. It is clear that if x and y belong to D(A) then so does αx+βy for
all real α and β, and that A(αx+βy) = αAx+βAy. Thus, A is a linear
operator. As we shall see, in general A is not continuous and in particular
defined only on an algebraic subspace of X. Nevertheless, D(A) is never
empty, and in fact dense in X. To see that consider

∫ t
0
Tsxds where

x ∈ X, t > 0. Since

Th

∫ t

0

Tsxds =
∫ t

0

Ts+hxds =
∫ t+h

h

Tsxds =
∫ t+h

0

Tsxds−
∫ h

0

Tsxds,

(7.16)
we also have

1
h

(Th
∫ t

0

Tsxds−
∫ t

0

Tsxds) =
1
h

∫ t+h

t

Tsxds− 1
h

∫ h

0

Tsxds. (7.17)

Arguing as in 7.2.3, we see that the last two expressions tend to Ttx and
x, respectively. This proves that

∫ t
0
Tsxds belongs to D(A) and

A

∫ t

0

Tsxds = Ttx− x. (7.18)

Moreover, by linearity, 1
t

∫ t
0
Tsxds also belongs to D(A) for all t > 0

and x ∈ X. Since, again as in 7.2.3, limt→0
1
t

∫ t
0
Tsxds = x, our claim is

proven.

7.4.16 Example What is the generator of the semigroup from exam-
ple 7.4.7? If x ∈ BUC(R+) belongs to D(A), then the limit

lim
h→0+

Thx(τ) − x(τ)
h

= lim
h→0+

x(τ + t) − x(τ)
h

= x′(τ)

exists (even uniformly in τ ≥ 0). Therefore, x ∈ D(A) must be dif-
ferentiable with x′ in BUC(R+). Suppose, conversely, that x is differ-
entiable with x′ ∈ BUC(R+). Then, by the Lagrange Theorem, for
any non-negative τ and h > 0, there exists a 0 ≤ θ ≤ 1 such that
x(τ + h) − x(τ) = hx′(τ + θh). Since x′ is uniformly continuous, for
any ε > 0 there exists a δ > 0 such that |x′(τ) − x′(σ)| < ε provided
|τ − σ| < δ and τ and σ are non-negative. Thus, for 0 < h < δ,

sup
τ≥0

∣∣∣∣Thx(τ) − x(τ)
h

− x′(τ)
∣∣∣∣ = sup

τ≥0
|x′(τ + θh) − x′(τ)| ≤ ε,

proving that x belongs to D(A), and Ax = x′. Hence, the generator is
completely characterized.
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7.4.17 Exercise What is the infinitesimal generator of the semigroup
introduced in 7.4.2?

7.4.18 Example Let {Tt, t ≥ 0} be a strongly continuous semigroup
with generator A. Let λ ∈ R be given; we define St = e−λtTt, and denote
its generator by B. Then, D(A) = D(B) and Bx = Ax− λx.

Proof For all x ∈ X,

lim
t→0

{
1
t
(Stx− x) − 1

t
(Ttx− x)

}
= lim

t→0

1
t
(Stx− Ttx)

= lim
t→0

1
t
(e−λt − 1)Ttx = −λx.

Thus, the limit Bx = limt→0
1
t (Stx− x) exists whenever the limit Ax =

limt→0
1
t (Ttx− x) exists, and Bx = Ax− λx.

7.4.19 Example Let B ∈ L(X) be a bounded linear operator, and let
Tt = etB , t ≥ 0. {Tt, t ≥ 0} is a semigroup of operators by 2.3.13. We
claim that

lim
t→0

‖Tt − I‖L(X) = 0, (7.19)

and

lim
t→0

∥∥∥∥Tt − I

t
−B

∥∥∥∥
L(X)

= 0. (7.20)

We note that relation (7.20) implies (7.19), and so we may restrict our-
selves to proving this last formula. We have∥∥∥∥etB − I

t
−B

∥∥∥∥ =

∥∥∥∥∥1
t

∑
n=2

tnBn

n!

∥∥∥∥∥ ≤ 1
|t|
∑
n=2

|t|n‖B‖n
n!

=
1
|t| (e

‖B‖t − ‖B‖t− 1),

and lims→0+
1
s (e

as − as− 1) = 0, for any number a.
This proves both that {Tt, t ≥ 0} is a strongly continuous semigroup

and that B is its infinitesimal generator. Note, however, that (7.19) is
much stronger than the definition of strong continuity of a semigroup
(cf. 7.4.7). In 7.4.20 we show that, conversely, if a semigroup {Tt, t ≥
0} satisfies (7.19) then there exists an operator B ∈ L(X) such that
Tt = etB – such semigroups are said to be continuous in the uniform
topology. Strongly continuous semigroups form a much wider class and
their generators are usually not bounded.
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7.4.20 Proposition Let A be a Banach algebra with unit u, and
suppose that at, t ≥ 0, is a family such that atas = at+s and limt→0 ‖at−
u‖ = 0. Then there exists an element a of A such that at = exp ta.

Proof By assumption t �→ at is continuous, hence integrable on fi-
nite intervals. Moreover, setting bt := 1

t

∫ t
0
as ds, t > 0, we see that

limt→0 bt = u. By 6.1.5, for small t, the inverse of bt exists.

On the other hand, calculating as in (7.16) and (7.17), we see that

ah − u

h
bt =

1
t

[
1
h

∫ t+h

t

as ds− 1
h

∫ h

0

as ds

]
−→
h→0+

1
t
(at − u).

Thus, there exists the limit limh→0+
ah−u
h = limh→0+

ah−u
h btb

−1
t =

1
t (at−u)b

−1
t =: a.We note that by definition, a commutes with all at. By

the semigroup property, limh→0+
at+h−at

h = at limh→0+
ah−u
h = ata, and

limh→0+
at−h−at

−h = limh→0+ at−h limh→0+
ah−u
h = ata, proving that the

derivative of at exists and equals aat = ata. A similar argument using
7.4.19 shows that ct = exp(at) has the same property.

Finally, we take a t0 > 0 and define dt = ctat0−t. Then, dt is differen-
tiable with the derivative equal to actat0−t− ctaat0−t = 0. Therefore, dt
is constant and equals identically d0 = at0 . This means that ctat0−t = at0
for all 0 ≤ t ≤ t0. In particular, for t = t0 we obtain ct0 = at0 , completing
the proof.

7.4.21 Exercise Even though the formula T (t) = exp(At) is elegant
and simple there are few interesting cases where it can be applied to give
an explicit form of T (t). The reason is of course that exp(At) involves all
the powers of A. Even if A is a finite matrix, calculations may be very
tiresome, especially if the dimension of A is large. One usual technique in
such a case is diagonalizing A, i.e. representing it, if possible, as UBU−1

where U is an invertible matrix and B has all entries zero except on
the diagonal, to obtain exp(At) = U exp(Bt)U−1. Here, exp(Bt) has all
entries zero except on the diagonal where they are equal to eλit; λi being
eigenvalues of A and entries of the diagonal of B. Another technique is
to use the Cayley–Hamilton Theorem which says that A satisfies its own
characteristic equation. Hence, if A is of dimension n, An is a polynomial
in I,A, ..., An−1 and so eAt =

∑n−1
i=0 pi(t)A

i where pi(t) are polynomials.
The reader may want to check his knowledge of linear algebra in proving
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that

eAt =
1
5

⎡
⎣ 5 0 0

5 − 4e−t − e−6t 2e−t + 3e−6t 2e−t − 2e−6t

5 − 6e−t + e−6t 3e−t − 3e−6t 3e−t + 2e−6t

⎤
⎦ ,

where A =

⎡
⎣0 0 0

2 −4 2
0 3 −3

⎤
⎦ .

7.4.22 Isomorphic semigroups Let X and Y be two Banach spaces
and let J : X → Y be an (isometric) isomorphism of X and Y. Sup-
pose that {St, t ≥ 0} is a strongly continuous semigroup of operators
in X, with the generator B. Then {Ut, t ≥ 0}, where Ut = JStJ

−1, is
a strongly continuous semigroup of operators in Y and its generator C
equals C = JBJ−1. To be more specific: y ∈ D(C) iff J−1y ∈ D(B), and
Cy = JBJ−1y. The semigroup {Ut, t ≥ 0} is said to be (isometrically)
isomorphic to {St, t ≥ 0}.

Proof Obviously, U0 = JS0J
−1 = JIXJ

−1 = IY, and

UtUs = JStJ
−1JSsJ

−1 = JStSsJ
−1 = JSt+sJ

−1 = Ut+s.

Moreover, if y ∈ Y, then x = J−1y ∈ X, so that limt→0+ StJ
−1y =

J−1y. Therefore limt→0+ JStJ
−1y = JJ−1y = y. Finally, the limit ỹ =

limt→0+
JStJ

−1y−y
t exists iff there exists x̃ = limt→0+

StJ
−1y−J−1y

t , and
ỹ = Jx̃, proving that J−1y belongs to D(B) iff y ∈ D(C) and Cy =
JBJ−1y.

7.4.23 Exercise Suppose that X1 is a subspace of a Banach space X.

Let {Tt, t ≥ 0} be a strongly continuous semigroup of linear operators
with generator A, such that TtX1 ⊂ X1. Prove that {St, t ≥ 0} where
St = (Tt)|X1 is the restriction of {Tt, t ≥ 0} to X1 is a strongly continuous
semigroup of operators in the Banach space X1, with the generator B
given by

D(B) = D(A) ∩ X1 = {x ∈ X1;Ax ∈ X1}, Bx = Ax, x ∈ D(B).

7.4.24 Example Let l1r , r > 0 be the space of sequences (ξn)n≥1 such
that

∑∞
n=1 |xn|rn < ∞, considered in 5.2.5. When equipped with the

norm ‖(xn)n≥1‖ =
∑∞
n=1 |xn|rn, l1r is a Banach space. This space is
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isometrically isomorphic to l1 and the isomorphism is given by:

l1 � (ξn)n≥1
J−→
(
ξn
rn

)
n≥1

∈ l1r , (7.21)

l1r � (ξn)n≥1
J−1

−→ (ξnrn)n≥1 ∈ l1. (7.22)

Let L,R and I be defined as in 2.3.9 and let Lr, Rr and Ir be the left
translation, right translation and the identity operator in l1r , respectively.
Consider the semigroup et(aLr+bRr+cIr), t ≥ 0, in l1r generated by the
bounded operator A = aLr + bRr + cIr. This semigroup is isometrically
isomorphic to the semigroup etJ

−1AJ , t ≥ 0, generated by the bounded
operator J−1AJ. Since

J−1LrJ(ξn)n≥1 = J−1Lr

(
ξn
rn

)
n≥1

= J−1

(
ξn+1

rn+1

)
n≥1

=
1
r

(xn+1)n≥1 ,

(7.23)

J−1RJ(ξn)n≥1 = J−1R

(
ξn
rn

)
n≥1

= J−1

(
ξn−1

rn−1

)
n≥1

= r (ξn−1)n≥1 ,

(7.24)

we have J−1AJ = a
rL+ brR+ cI. In other words, et(aLr+bRr+cIr), t ≥ 0,

in l1r is isometrically isomorphic to et(
a
rL+brR+cI), t ≥ 0 in l1. See 7.4.43

for an application.

7.4.25 Exercise Arguing as in 7.4.14, prove that if x belongs to D(A),
then so does Ttx. Moreover, the function t→ Ttx is continuously differ-
entiable in R+ (has right derivative at t = 0), and

dTtx
dt

= ATtx = TtAx, t ≥ 0.

More generally, define D(An) by induction as the set of all x ∈ D(An−1)
such that An−1x belongs to D(A) and prove that if x belongs to D(An)
then so does Ttx. Moreover, t→ Ttx is then n-times differentiable and

dnTtx
dtn

= AnTtx = TtA
nx, t ≥ 0.

7.4.26 Corollary Using 7.4.25 and 7.2.3 we see that an element of x ∈
X belongs to D(A) iff there exists a y ∈ X such that Ttx = x+

∫ t
0
Tsy ds.

In such a case Ax = y.



7.4 Semigroups of operators 255

7.4.27 Exercise A matrix (pi,j)i,j∈I, where I is a countable set of
indexes, is said to be a stochastic matrix if its entries are non-negative
and

∑
j∈I pi,j = 1, i ∈ I. In such a case, P (ξi)i∈I =

(∑
i∈I ξipi,j

)
j∈I

is a
Markov operator in l1(I). A matrix (qi,j)i,j∈I

is said to be a Q-matrix,
or an intensity matrix or a Kolmogorov matrix if qi,j ≥ 0 for i 
= j

and
∑
j∈I qi,j = 0. Show that if I is finite, then Q is an intensity matrix

iff P (t) = eQt is a stochastic matrix for all t ≥ 0.

7.4.28 An infinitesimal generator is closed The infinitesimal generator
of a strongly continuous semigroup is closed. Indeed, if xn ∈ D(A) then

Ttxn = xn +
∫ t

0

TsAxn ds, t ≥ 0, n ≥ 1.

Moreover, if limn→∞ xn = x, then Ttxn tends to Ttx, t ≥ 0. Finally, if
limn→∞Axn = y, then ‖TsAxn − Tsy‖ ≤ Meωs‖Axn − y‖ for suitable
constants M and ω. Hence,∥∥∥∥

∫ t

0

TsAxn ds−
∫ t

0

Tsy ds
∥∥∥∥ ≤ t sup

0≤s≤t
‖Tsxn − Tsy‖

which tends to zero, as t → 0. Therefore Ttx = x+
∫ t
0
Tsy ds, so that x

belongs to D(A) and Ax = y.

7.4.29 Exercise Semigroup restricted to the domain of its generator
Suppose that {Tt, t ≥ 0} is a strongly continuous semigroup with gener-
ator A. Consider the Banach space (D(A), ‖ · ‖A) from Example 7.3.3.
Since TtD(A) ⊂ D(A), {Tt, t ≥ 0} may be considered as a semigroup on
(D(A), ‖·‖A). Prove that it is strongly continuous and find its generator.

7.4.30 The Laplace transform of a semigroup Let {Tt, t ≥ 0} be a
strongly continuous semigroup and let M and ω be constants such that
(7.14) is satisfied. For x ∈ X, u > 0, and λ > ω consider the integral∫ u
0

e−λsTsxds (note that the integrand is continuous). For v > u,∥∥∥∥
∫ v

0

e−λsTsxds−
∫ u

0

e−λsTsxds
∥∥∥∥ ≤

∫ v

u

e−λsTsxds

≤ M‖x‖
∫ v

u

e−(λ−ω)s ds,

which tends to zero, as u and v tend to infinity. Since X is a Banach
space, we may define (see 2.2.47)

Rλx = lim
u→∞

∫ u

0

e−λsTsxds =
∫ ∞

0

e−λsTsxds.
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Note that Rλ, λ > ω, are bounded operators and

‖Rλ‖ ≤M

∫ ∞

0

e−(λ−ω)s ds =
M

λ− ω
. (7.25)

7.4.31 Example We will show that∫ ∞

0

e−λtT (t)φdt = eλ ∗ φ, λ > 0, φ ∈ L1(R+)

where {T (t), t ≥ 0} is the semigroup of translations to the right from
7.4.2 and eλ ∈ L1(R+) are defined by their representatives eλ(τ) = e−λτ

(as in 2.2.49). Since {eµ, µ > 0} is linearly dense in L1(R+), it suffices to
consider φ = eµ. Direct computation of eµ ∗ 1[0,t) shows that T (t)eµ =
µeµ ∗ 1[0,t) − 1[0,t) + eµ. Using 2.2.49 and (6.6), for λ > 0,∫ ∞

0

e−λtT (t)eµ = µ

∫ ∞

0

e−λt1[0,t) ∗ eµ dt−
∫ ∞

0

e−λt1[0,t) dt+
1
λ
eµ

=
µ

λ
eµ ∗ eλ −

1
λ
eλ +

1
λ
eµ = eλ ∗ eµ.

7.4.32 The resolvent of A Let {Tt, t ≥ 0} be a strongly continuous
semigroup and let M and ω be constants such that (7.14) is satisfied.
Fix λ > ω. An element x ∈ X belongs to D(A) iff there exists a y ∈ X

such that x = Rλy. Moreover,

Rλ(λIX −A)x = x, x ∈ D(A), (7.26)

(λIX −A)Rλy = y, y ∈ X. (7.27)

In other words, the Laplace transform of a semigroup is the resolvent of
its infinitesimal generator.

Proof Instead of λIX we often write simply λ. If x ∈ D(A), then
e−λtTt(A− λ)x = d

dt [e
−λtTtx]. Therefore,

Rλ(λ−A)x = −
∫ ∞

0

e−λtTt(A− λ)xdt = − lim
u→∞

∫ u

0

d
dt

[e−λtTtx] dt

= lim
u→∞

[x− e−λuTux] = x,

since ‖e−λuTux‖ ≤ Me−(λ−ω)u‖x‖. In particular, if x belongs to D(A)
then x = Rλy for y = λx−Ax.

We need to prove that Rλy belongs to D(A) for all y ∈ X. As in
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7.4.18, let B be the generator of the semigroup St = e−λtTt. By 7.4.15,
the vector

∫ u
0

e−λtTty dt =
∫ u
0
Sty dt belongs to D(B) = D(A) and

A

∫ u

0

Sty dt = B

∫ u

0

Sty dt+ λ

∫ u

0

Sty dt = Suy − y + λ

∫ u

0

Sty dt.

Moreover, limu→∞
∫ u
0
Sty dt = Rλy, and limu→∞[Suy−y+λ

∫ u
0
Sty dt] =

λRλy − y. Since A is closed, Rλy is a member of D(A) and ARλy =
λRλy − y, as desired.

7.4.33 Remark Relation (7.27) shows that if A is a generator of a
strongly continuous semigroup in a Banach space X, then for any y ∈ X,

there exists at least one solution to the equation

λx−Ax = y, λ > ω, (7.28)

namely x = Rλy, and (7.26) shows that there exists at most one solution
to this equation. We have encountered an operator with this property in
7.3.6. In particular, since Rλ is bounded (cf. 7.25), we have proven once
again that the infinitesimal generator of a strongly continuous semigroup
must be closed.

7.4.34 Remark Relations given in 7.4.32 show that the generator de-
termines the semigroup or, in other words, different semigroups have dif-
ferent generators. Indeed, 7.4.32 shows that the generator, or, to be more
specific, the resolvent of the generator determines the Laplace transform
of the semigroup it generates. Moreover, using Exercise 2.3.31 and the
argument from 7.2.1 (i.e. employing functionals to reduce the problem
to real-valued functions) we show that the Laplace transform of a con-
tinuous (!) Banach space valued function determines this function.

7.4.35 Example Let v > 0 be given. Throughout this subsection
Y = BUC(R) and X = BUC1(R) is the space of differentiable x ∈ Y

with x′ ∈ BUC(R). The norm in X is given by ‖x‖X = ‖x‖Y + ‖x′‖Y.
The space X×Y is equipped with the norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y

(in what follows the subscripts in the norms will be omitted). Let the
family {G(t), t ∈ R} of operators in X be given by

G(t)
(
x

y

)
=

(
C(t)x+

∫ t
0
C(u)y du

dC(t)x
dt + C(t)y

)
(7.29)

where C(t)x(τ) = 1
2x(τ + vt) + 1

2x(τ − vt), so that (
∫ t
0
C(u)y du)(τ) =

1
2

∫ t
−t y(τ + vu) du and dC(t)x

dt = v
2x

′(τ + vt) − v
2x

′(τ − vt). The family
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{C(t), t ∈ R} is an example of cosine operator function in that it
satisfies the cosine functional equation (Exercise 7.4.36):

2C(t)C(s) = C(t+ s) + C(t− s). (7.30)

It is clear that C(t) maps Y into Y and is a contraction operator. More-
over, C(t) leaves X invariant and

∫ t
0
C(u)y du maps Y into X with

(C(t)x)′(τ) = C(t)x′(τ), (
∫ t

0

C(s)y ds)′(τ) =
1
2v

(y(τ+vt)−y(τ−vt)).
(7.31)

Hence, C(t) : X → X and
∫ t
0
C(u) du : Y → X are bounded. Similarly,

dC(t)
dt is a bounded linear operator from X to Y.

A direct computation based on (7.30) shows that {G(t), t ∈ R} is a
group of operators, i.e. G(t)G(s) = G(t+ s), t, s ∈ R.

Clearly, limt→0 C(t)y = y strongly in Y, and by (7.31), limt→0 C(t)x =
x strongly in Y1. As a result, limt→0

∫ t
0
C(s)y ds = 0 strongly in Y.

Using the other relation in (7.31), limt→0

∫ t
0
C(s)y ds = 0 strongly in X,

as well. Finally, limt→0
dC(t)x

dt = 0 strongly in Y for x ∈ X. This shows
that {G(t), t ∈ R} is strongly continuous.

To find the generator A of the semigroup {G(t), t ≥ 0}, we reason as
follows. Let D( d2

dτ2 ) be the set of twice differentiable y in Y with y′′ ∈ Y.

A direct calculation shows that for λ > 0, x ∈ Y there exists the Laplace
transform

Lλx(τ) :=
∫ ∞

0

e−λtC(t)x(τ) dt =
1
2v

e
λ
v τ

∫ ∞

τ

e−
λ
v σx(σ) dσ

+
1
2v

e−
λ
v τ

∫ τ

−∞
e

λ
v σx(σ) dσ.

This implies that Lλx is twice differentiable with (Lλx)′′ = λ2

v2Lλx −
λ
v2x ∈ Y (if x ∈ X, then (Lλx)′′ ∈ X). Since for y ∈ Y, L�λy :=∫∞
0

e−λt
∫ t
0
C(s)x(τ) dsdt = λ−1Lλy, L

�
λy ∈ D( d2

dτ2 ). Hence, the Laplace
transform of the first coordinate in (7.29) belongs to D( d2

dτ2 ), too. Sim-
ilarly, we check that the Laplace transform of the other coordinate in
(7.29) belongs to X. This shows that D(A) ⊂ D( d2

dτ2 )×X. On the other
hand, for (x, y) ∈ D( d2

dτ2 ) × X,

lim
t→0+

1
t

{
G(t)

(
x

y

)
−
(
x

y

)}
=
(

y

v2x′′

)
strongly in X. (7.32)

Hence D(A) = D( d2

dτ2 ) × X and A(x, y) = (y, v2x′′).
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7.4.36 Exercise Show that the family {C(t), t ∈ R} defined in 7.4.35
is a cosine operator function.

7.4.37 Exercise Prove (7.32).

7.4.38 Exercise Let X = c0 and Tt (ξn)n≥1 = (e−ntξn)n≥1 . Show
that {Tt, t ≥ 0} is a strongly continuous semigroup and that the operator

A (ξn)n≥1 = − (nξn)n≥1 , D(A) = {(ξn)n≥1 ∈ c0; (nξn)n≥1 ∈ c0}

is its infinitesimal generator.

7.4.39 Exercise Use (7.26) and (7.27) to show that the resolvent Rλ
satisfies the Hilbert equation (cf. (6.6))

(λ− µ)RλRµ = Rµ −Rλ, λ, µ > ω. (7.33)

Then, show that, by (7.25), R+ � λ → Rλ is continuous (see (8.38), if
needed). Argue by induction that it is also infinitely differentiable with
dn

dλnRλ = (−1)nn!Rn+1
λ .

7.4.40 Semigroups and the Cauchy problem Let A be the infinitesimal
generator of a strongly continuous semigroup {Tt, t ≥ 0}. The Cauchy
problem

dxt
dt

= Axt, t ≥ 0, x0 = x ∈ D(A) (7.34)

where xt is a sought-for differentiable function with values in D(A), has
the unique solution xt = Ttx.

Proof By 7.4.25 we merely need to prove uniqueness of solutions.
To this end suppose that xt is a solution to (7.34), fix t > 0 and

consider ys = Tt−sxs, 0 < s < t. Since ys+h−ys

h = Tt−s−h
xs+h−xs

h +
Tt−s−h−Tt−s

h xs for suitably small |h|, and the operators Tt are bounded
in any compact subinterval of R+, ys is differentiable and

d
ds
ys = Tt−s

d
ds
xs − Tt−sAxs = Tt−s(Axs −Axs) = 0.

(See Example 7.1.9.) Hence, Tt−sxs is constant, and since lims→t ys =
Ttx, Tt−sxs = Ttx, for all 0 < s < t. Letting s→ t, we obtain xt = Ttx.
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7.4.41 Corollary If {Tt, t ≥ 0} and {St, t ≥ 0} are two strongly
continuous semigroups with generators A and B respectively, and if A =
B, then {Tt, t ≥ 0} = {St, t ≥ 0}.

Proof By 7.4.40, Ttx = Stx for all t ≥ 0 and x ∈ D(A) = D(B). Since
D(A) is a dense set, we are done.

7.4.42 Example By 7.4.35, the equation{
dx(t)

dt = y(t), x(0) = x ∈ D( d2

dτ2 ),
dy(t)
dt = v2 d2

dτ2x(t), y(0) = y ∈ BUC1(R),
(7.35)

in BUC1(R)×BUC(R) has the unique solution
(
x(t)
y(t)

)
= G(t)

(
x

y

)
, t ≥

0 with G(t) given by (7.29). A function x(t, τ) satisfying (7.35) satisfies
also the wave equation:

∂2x(t, τ)
∂t2

= v2 ∂
2x(t, τ)
∂τ2

, x(0, τ) = x(τ),
∂

∂t
x(0, τ) = y(τ); (7.36)

the first coordinate in (7.29) is the solution to (7.36) while the second is
its derivative with respect to t.

7.4.43 Example The infinite system of equations

x′1(t) = λx1(t) − (b+ d)x1(t) + dx2(t),

x′i(t) = λxi(t) − (b+ d)xi(t) + dxi+1(t) + bxi−1(t), i ≥ 2

where d > b > 0 and λ ∈ R are parameters, was introduced and studied
in [108] as a model of behavior of a population of cells that are resistant
to a cancer drug. In this model, there are infinitely many types of resis-
tant cells, and xi(t) is the number of resistant cells of type i at time t. It
was natural to ask for criteria for the decay, as t→ ∞, of the population∑∞
i=1 xi(t) of resistant cells. Also the weighted sums

∑∞
i=1 xi(t)r

i where
r > 0 were of interest and it led the authors to considering the problem
in the spaces l1r introduced in 5.2.5.

Our system may be written as a differential equation in l1r in the form

dx(t)
dt

= (λ− b− d)x(t) + [dL+ bR]x(t)

where L and R stand for left and right translation in l1r (see 2.3.9). In
particular, the solution to this system is given by the exponential func-
tion of the operator appearing on the right-hand side above. By 7.4.24,
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this exponential function is isometrically isomorphic to the exponential
function of the operator (λ − b − d)I + d

rL + brR in l1. By 2.3.16, the
norm of the exponential function of (λ − b − d)I + d

rL + brR equals
exp{ tr (br2 + (λ − b − d)r + d)}. This converges to zero as t → 0, iff
br2 + (λ − b − d)r + d is negative. Treating this binomial as a func-
tion of r with a parameter λ and fixed d and b, we consider ∆(λ) =
[λ − (b + d)]2 − 4bd = (λ − λ1)(λ − λ2), where λ1 = (

√
d −

√
b)2,

λ2 = (
√
d +

√
b)2. If the binomial is to be negative, we must assume

that either λ > λ2 or λ < λ1, and that r belongs to the open interval

(r1, r2) where ri = b+d−λ+(−1)i
√

∆(λ)

2b , i = 1, 2, are the corresponding
roots of the binomial. Note that in the case λ > λ2 these roots are neg-
ative, and thus we must choose λ < λ1, as it was proven in [108] in a
different way.

7.4.44 Cores of generators Suppose that {Tt, t ≥ 0} is a strongly
continuous semigroup with generator A and that an algebraic subspace
D ⊂ D(A) is dense in D(A). If TtD ⊂ D, t ≥ 0 then D is a core of A.

Proof Let ω and M be constants such that (7.14) holds. By (7.26) and
(7.27), the relation y = (λ − A)x is equivalent to x = Rλy, for λ > ω.

Thus, using (7.25), ‖(λ−A)x‖ ≥ λ−ω
M ‖x‖, for all x ∈ D(A). By 7.3.12, it

suffices therefore to show that (λ−A)D is dense in X. Since D is dense
in X, it is enough to show that the closure of (λ−A)D contains D.

The reason why this relation is true is that for any x, Rλx belongs to
the closure of the linear span of elements of the form Ttx, t ≥ 0. Here is
the complete argument: note first that for any x ∈ X, the sequence

xn =
1
n

n2∑
k=1

e−λ
k
nT k

n
x (7.37)

converges to Rλx. Indeed, for t ≥ s,

‖e−λtTtx− e−λsTsx‖ ≤ ‖Tse−λs‖ ‖e−λ(t−s)Tt−sx− x‖,

and our claim follows since the norm of xn −Rλx may be estimated by

‖xn −
∫ n

0

e−λtTtxdt‖ + ‖
∫ ∞

n

e−λtTtxdt‖

≤

∥∥∥∥∥∥
n2∑
k=1

∫ k
n

k−1
n

[
e−λ

k
nT k

n
x− e−λtTtx

]
dt

∥∥∥∥∥∥+
M

λ− ω
e−(λ−ω)n
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≤ sup
0≤h≤ 1

n

‖e−λhThx− x‖
n2∑
k=1

∫ k
n

k−1
n

‖e−λtTt‖dt+
M

λ− ω
e−(λ−ω)n

≤ sup
0≤h≤ 1

n

‖e−λhThx− x‖
∫ ∞

0

‖e−λtTt‖dt+
M

λ− ω
e−(λ−ω)n

≤
{

sup
0≤h≤ 1

n

‖e−λhThx− x‖ + e−(λ−ω)n

}
M

λ− ω
.

Now, take x ∈ D and consider xn defined in (7.37). By assumption, xn
belongs to D, and the sequence λxn−Axn = 1

n

∑n2

k=1 e−λ
k
nT k

n
(λx−Ax)

converges to Rλ(λx− Ax) = x. It implies that x belongs to the closure
of (λ−A)D and completes the proof.

7.4.45 Exercise Show that the set of all functions that are infinitely
many times differentiable with derivatives in BUC(R+) is a core of the
generator of the semigroup from 7.4.7.

7.4.46 The representation of L1(R+) related to a bounded semigroup
Let {T (t), t ≥ 0} be a strongly continuous semigroup of equibounded
operators, i.e. let (7.14) be satisfied with ω = 0. Moreover, let φ be a
continuous function that is a member of L1(R+). For any x ∈ X, the map
R+ � t → φ(t)T (t)x is continuous and one may consider its Riemann
integral on an interval, say [0, u]. Arguing as in 7.4.30, one proves that
the improper integral

H(φ)x =
∫ ∞

0

φ(t)T (t)xdt

exists also, and we obtain

‖H(φ)x‖ ≤M‖φ‖L1(R+)‖x‖X.

This implies that, for φ fixed, H(φ) is a bounded linear operator in
X. On the other hand, by fixing x and varying φ we see that such
a bounded linear operator may be defined for any φ ∈ L1(R+), be-
cause any such φ may be approximated by a sequences of continuous
elements of L1(R+), say φn, and then H(φ) may be defined as the limit
of H(φn). In other words we use 2.3.33 to extend a bounded linear map
L1(R+) � φ → H(φ) ∈ L(X) from a dense subset of L1(R+), where we
have ‖H(φ)‖L(X) ≤M‖φ‖L1(R+) to the whole of L1(R+). †

In particular if φ(τ) = eλ(τ) = e−λτ , where λ > 0, then H(φ) = Rλ is

† The operator H(φ) is in fact the strong Bochner integral of φ(t)T (t).
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the resolvent of the semigroup {T (t), t ≥ 0}. Moreover, approximating
the indicator function of an interval [0, t] by a sequence of continuous
functions, we check that H(1[0,t])x =

∫ t
0
T (s)xds.

Using (6.6) and Exercise 7.4.39, for λ, µ > 0, λ 
= µ we have

(λ− µ)H(eλ ∗ eµ) = H(eµ − eλ) = H(eλ) −H(eµ) = Rλ −Rµ

= (λ− µ)RλRµ = (λ− µ)H(eλ)H(eµ)

Since λ→ eλ ∈ L1(R+) is continuous, this implies that

H(eλ ∗ eµ) = H(eλ)H(eµ)

for all positive λ and µ, and since the set {eλ, λ > 0} is linearly dense
in L1(R+), the map φ → H(φ) is proven to be a homomorphism of the
Banach algebra L1(R+).

7.4.47 Exercise Let {Tt, t ≥ 0} be a strongly continuous semigroup
in a Banach space X and let A be its generator. Show that

⋂∞
n=1 D(An)

is dense in X.

7.4.48 Exercise This exercise prepares the reader for the Trotter–
Kato Theorem and for the proof of the Hille–Yosida Theorem (both to
be presented in Chapter 8). Let {Tn(t), t ≥ 0} be a sequence of strongly
continuous equibounded semigroups, i.e. semigroups such that (7.14) is
satisfied with ω = 0 and M > 0 that does not depend on n. Let An
be the generators of these semigroups and let Hn be the correspond-
ing homomorphisms of L1(R+). Prove that the following conditions are
equivalent.

(a) For all λ > 0, (λ−An)−1 converges strongly (as n→ ∞).
(b) For all t > 0,

∫ t
0
Tn(s) ds converges strongly.

(c) For all φ ∈ L1(R+), Hn(φ) converges strongly.

If one of these conditions holds, then φ �→ H(φ) = limn→∞Hn(φ) is a
homomorphism of the algebra L1(R+).

7.4.49 Exercise Show the implication (a)⇒(b) in the previous exer-
cise, arguing as follows. (a) Let b(X) be the space of bounded sequences
(xn)n≥1, xn ∈ X with the norm ‖ (xn)n≥1 ‖b(X) = supn≥1 ‖xn‖, and

let U(t) (xn)n≥1 =
(∫ t

0
Tn(s)xn ds

)
n≥1

∈ b(X). Show that R+ � t �→
U(t) (xn)n≥1 is continuous in b(X) and ‖U(t)‖L(b(X)) ≤ Mt. Conclude
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that the improper integral
∫∞
0

e−λtU(t) (xn)n≥1 dt exists and check that
it equals

1
λ

(∫ ∞

0

e−λt
∫ t

0

Tn(s)xn ds
)
n≥1

=
1
λ

(
(λ−An)−1xn

)
n≥1

.

(b) Let c(X) be the subspace of b(X) composed of convergent sequences.
Show that the operators U(t), t ≥ 0 leave c(X) invariant. To this end,
note that otherwise, by 5.1.13, there would exist a functional F ∈ b(X)∗

such that F (xn)n≥1 = 0 for (xn)n≥1 ∈ c(X) and F (U(t) (xn)n≥1) 
= 0
for some t > 0 and (xn)n≥1 ∈ c(X). This would contradict the form of
the Laplace transform of U(t) found in (a).

7.4.50 A preparation for semigroup-theoretical proof of the CLT Quite
often we are interested in a situation where {Tn(t), t ≥ 0}, n ≥ 1, con-
sidered in the two previous subsections are not semigroups, and yet
approximate a semigroup in a certain sense. We may assume in partic-
ular that {Tn(t), t ≥ 0}, n ≥ 1, are families of equibounded operators
in a Banach space X, i.e. that ‖Tn(t)‖ ≤ M for all t ≥ 0 and some
constant M > 0. Under some measurability conditions (notably, if func-
tions t → Tn(t)x are Bochner measurable), it makes sense to define
Hn(φ)x =

∫∞
0
φ(t)Tn(t)xdt, for φ ∈ L1(R+). The case we need for the

proof of the CLT is that of piecewise continuous functions t �→ Tn(t)x
with countable number of points of discontinuity. In such a case, we
may first define operators Hn(φ) for continuous φ with compact support
as a Riemann integral, and then extend the definition to the whole of
L1(R+). Of course, now the Hn are not homomorphisms of L1(R+) but
merely operators from L1(R+) to L(X). Nevertheless, the following are
equivalent.

(a) For all λ > 0, Hn(eλ) converges strongly (as n→ ∞).

(b) For all t > 0,
∫ t
0
Tn(s)xds converges strongly.

(c) For all φ ∈ L1(R+), Hn(φ) converges strongly.

As an example let us consider a sequence Tn, n ≥ 1, of contractions,
and a sequence of positive numbers (hn)n≥1 such that limn→∞ hn = 0.

We define Tn(t) = T
[t/hn]
n and assume that limn→∞(λ − An)−1 =: Rλ

exists for all λ > 0, where An = 1
hn

(Tn−I). This will imply that all three

conditions (a)–(c) above hold. To this end we note that ‖T [t/hn]
n ‖ ≤ 1,
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and for λ > 0 write∫ ∞

0

e−λtT [t/hn]
n xdt =

∞∑
k=0

∫ (k+1)hn

khn

e−λt dt T knx

=
hnλn
λ

e−λhn

∞∑
k=0

(e−λhnTn)kx =
hnλn
λ

e−λhn
[
I − e−λhnTn

]−1
x

=
hnλn
λ

(
eλhn − Tn

)−1
x =

λn
λ

[
eλhn − 1
hn

− Tn − I

hn

]−1

x

=
λn
λ

(λn −An)−1x (7.38)

where λn = eλhn−1
hn

. Hence, ‖µ(µ − An)−1‖ ≤ νn(µ)
∫∞
0

e−νn(µ)t dt = 1
where νn(µ) = 1

hn
ln(hnµ + 1). Consequently, ‖µRµ‖ ≤ 1. Moreover,

λ �→ (λ−An)−1 satisfies the Hilbert equation. Thus,

‖(λ−An)−1− (µ−An)−1‖ ≤ ‖(µ−λ)(λ−An)−1(µ−An)−1‖ ≤ |λ− µ|
λµ

,

for all λ, µ > 0. By limn→∞ λn = λ, this enables us to prove that the
limit of (7.38) exists and equals Rλx, as desired. Note that λ �→ Rλ
satisfies the Hilbert equation, as a limit of λ �→ (λ − An)−1. Hence
φ �→ H(φ) = limn→∞Hn(φ) is a representation of L1(R+).

We will continue these considerations in 8.4.18.

7.5 Brownian motion and Poisson process semigroups

7.5.1 A semigroup of operators related to Brownian motion Let w(t),
t ≥ 0, be a Brownian motion, and let µt be the distribution of w(t).
Define the family {Tt, t ≥ 0} in BM(R) by the formula Tt = Tµt

. In
other words,

(Ttx)(τ) = E x(τ + w(t)). (7.39)

I claim that {Tt, t ≥ 0} is a semigroup of operators. Before proving this
note that ‖Tt‖ ≤ 1, so that {Tt, t ≥ 0} is the family of contractions,
i.e. (7.14) holds with M = 1 and ω = 0. This will be the case for all
semigroups discussed in Sections 7.5 and 7.6.

Properties of the operators Tt, t ≥ 0, reflect properties of the measures
µt, t ≥ 0, and thus of the process w(t), t ≥ 0. The property 2o of the
definition of a semigroup of operators is an immediate consequence of
the fact that µ0 is a Dirac measure (point mass) at 0,

∫
xdµ0 = x(0),
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which in turn follows from w(0) = 0 a.s. Property 1o will be proven once
we show that

µt ∗ µs = µs+t. (7.40)

Brownian motion has independent increments, so that w(t+ s) is a sum
of two independent random variables w(t+s) = [w(t+s)−w(s)]+w(s).
Consequently,

µt+s = Pw(t+s) = Pw(t+s)−w(s) ∗ Pw(s) = µt ∗ µs;

the last equality following from the fact that w(t + s) − w(s) has the
same distribution as w(t).

Moreover, we claim that {Tt : t ≥ 0} when restricted to C[−∞,∞]† is
a strongly continuous semigroup. Indeed, for any ε > 0, by Chebyshev’s
inequality,

µt(−ε, ε)� = P{|w(t)| ≥ ε} ≤ E w2(t)
ε2

=
t

ε2
;

hence limt→0 µt(−ε, ε)� = 0. Therefore, by 5.4.12, µt converge weakly to
δ0, the Dirac measure at 0, proving our claim by 5.4.18.

Finally, we claim that the domain D(A) of the infinitesimal generator
of {Tt, t ≥ 0} equals D( d2

dτ2 ), the set of twice differentiable functions with
x′′ ∈ C[−∞,∞], and Ax = 1

2x
′′. To prove that limt→0+

1
t {Ttx − x} =

1
2x

′′, for x ∈ D( d2

dτ2 ), we take a sequence tn of positive numbers with
limn→∞ tn = 0, and assume without loss of generality that tn ≤ 1.
Then, T (tn) = Tw(tn) = T√tnw(1) so that limn→∞

1
tn

(T (tn)x − x) =
limn→∞

1
tn

(T√tnw(1) − x) = 1
2x

′′ by Lemma 5.5.1 with an =
√
tn and

X = w(1). (This lemma was used to prove the Central Limit Theorem;
the Central Limit Theorem and the fact that 1

2x
′′ is the generator of the

Brownian motion semigroup are very much related.)
We still need to prove that D(A) ⊂ D( d2

dτ2 ). There are several ways to
do that; the first, most direct one is to note that, by 7.4.32, D(A) equals
the range of Rλ. Moreover,

Rλx(τ) =
∫ ∞

0

e−λt
1√
2πt

∫ ∞

−∞
e−

(τ−σ)2

2t x(σ) dσ dt

=
∫ ∞

−∞
k(λ, τ − σ)x(σ) dσ (7.41)

† The choice of space is more or less arbitrary here; we could have taken C0(R) or
L1(R) instead. See Subsection 8.1.15.
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where k(λ, τ − σ) =
∫∞
0

e−λt 1√
2πt

e−
(τ−σ)2

2t dt. This last integral was cal-

culated in 6.4.7 to be 1√
2λ

e−
√

2λ|τ−σ|. Thus, Rλx(τ) equals

1√
2λ

e−τ
√

2λ

∫ τ

−∞
eσ

√
2λx(σ) dσ +

1√
2λ

eτ
√

2λ

∫ ∞

τ

e−σ
√

2λx(σ) dσ

which implies that Rλx is twice differentiable. Performing the necessary
differentiation we see that (Rλx)′′ = 2λRλx−2x, so that (Rλx)′′ belongs
to C[−∞,∞] and we are done (cf. (7.12)!).

The second method relies on 7.3.10 (or, rather on 7.3.11) and 7.4.32.
Suppose that an x belongs to D(A) \ D( d2

dτ2 ), and consider λx − Ax ∈
C[−∞,∞]. By 7.3.11, there exists a y ∈ D( d2

dτ2 ) such that λy − 1
2y

′′ =
λx−Ax. On the other hand, λy − 1

2y
′′ = λy −Ay, and this contradicts

the fact that λ−A is one-to-one.
The third and final method uses (7.4.44) and (7.3.6). If x is differen-

tiable with x′ ∈ C[−∞,∞], then, by (1.2.12) Ttx(τ) = E x(τ + w(t))
is differentiable and its derivative E x′(τ +w(t)) belongs to C[−∞,∞].
Analogously, if x belongs to D( d2

dτ2 ), then so does Ttx. Therefore, D( d2

dτ2 ),
is a core for A. Hence, for any x ∈ D(A) there exists a sequence xn ∈
D( d2

dτ2 ), such that xn converges to x, and Axn converges to Ax. But
Axn = 1

2x
′′
n, and the operator 1

2
d2

dτ2 , defined on D( d2

dτ2 ), is closed, and
so x belongs to D( d2

dτ2 ) and Ax = 1
2x

′′.

7.5.2 Remark As a by-product we obtain that u(t, τ) = E x(τ+w(t))
is the only bounded (in t ≥ 0) solution to the Cauchy problem for the
heat equation:

∂

∂t
u(t, τ) =

1
2
∂2

∂τ2
u(t, τ), u(0, τ) = x(τ), x ∈ D

(
d2

dτ2

)
.

This important relation is indeed only the peak of an iceberg. There is a
large class of important PDE and integro-differential equations of second
order for which one may construct probabilistic solutions. Moreover,
stochastic processes are closely related to integro-differential operators
in the way the operator d2

dτ2 is related to Brownian motion. In fact as
all properties of the Brownian motion are hidden in the operator d2

dτ2 , so
the properties of some other processes are hidden in their “generating”
operators.

7.5.3 Exercise Show that λRλ, whereRλ is the resolvent of the Brow-
nian motion semigroup, is the operator related to the bilateral exponen-
tial distribution with parameter a =

√
2λ.
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7.5.4 Exercise Consider the process w(t) + at, where a is a constant
and w(t) is the Brownian motion. Introduce the corresponding fam-
ily of operators, show that this is a strongly continuous semigroup on
C[−∞,∞], and find its generator.

7.5.5 The semigroup of operators related to the Poisson process As in
2.3.45, let Xn be independent random variables with the same expo-
nential distribution of parameter a > 0, defined on a probability space
(Ω,F ,P). Also, let S0 = 0, and Sn =

∑n
i=1Xi, for n ≥ 1. For any ω ∈ Ω,

let N(t) = Nt(ω) be the largest integer k such that Sk(ω) ≤ t. Certainly
N0 = 0 (almost surely). Moreover, for any t ≥ 0, N(t) is a random
variable, for if τ is a real number then

{ω ∈ Ω;Nt(ω) ≤ τ} = {ω ∈ Ω;Nt(ω) ≤ [τ ]} = {ω ∈ Ω;S[τ ]+1(ω) > t}

and this last set is measurable. It is also quite easy to see what is the
distribution µt of N(t). Certainly, this is a measure that is concentrated
on the set of integers. Moreover,

µt({k}) = P{N(t) = k} = P{Sk ≤ t} − P{Sk+1 ≤ t}

=
∫ t

0

ak
τk−1

(k − 1)!
e−aτ dτ −

∫ t

0

ak+1 τ
k

k!
e−aτ dτ

=
∫ t

0

d
dτ

[
ak
τk

k!
e−aτ

]
dτ =

aktk

k!
e−at.

The family N(t), t ≥ 0 is called the Poisson process (on R+). Define
the related operators in BM(R)† by Tt = Tµt . In other words,

Ttx(τ) = E x(τ +N(t)) =
∫
x(τ + ς)µt(ς) =

∞∑
n=0

x(τ + n)
λntn

n!
e−λt.

(7.42)
Since µt is concentrated on natural numbers, it may be viewed as a

member of l1(N0). In the notation of 5.2.3 and 6.3.1,

µt = e−at
∞∑
k=0

aktk

k!
ek = e−at

∞∑
k=0

aktk

k!
e∗k1 = e−at exp(ate1)

= exp(−at(e1 − e0)). (7.43)

It means that {µt, t ≥ 0}, being the exponent function, is a convolution
semigroup:

µt ∗ µs = µt+s.

† See footnote to 7.5.1.
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On the other hand l1(N0) is a subalgebra of (signed) measures and from
2.3.20 we remember that a map µ→ Tµ is a representation of the algebra
of signed measures in the spaces C0(R) and BM(R). Since Te1 is a
translation operator Ax(τ) = x(τ + 1), (7.43) gives

Tt = Tµt = e−ateatA = e−at
∞∑
n=0

antnAn

n!
; (7.44)

where A0 = I; the semigroup related to the Poisson process is the expo-
nent function of a(I −A).

Formally, (7.42) and (7.44) are identical, there is a difference though in
the sense they are understood. Formula (7.42) establishes merely the fact
that for any τ the numerical series on its the right-hand side converges to
Ttx(τ). Formula (7.44) proves not only that the convergence is actually
uniform in τ ; which means that the series converges in the sense of the
norm in BM(R), but also that the convergence is uniform in x, when x
varies in a (say: unit) ball in BM(R). In other words, the series converges
in the sense of the norm in L(BM(R)).

As a corollary, u(t, τ) = E u(τ + N(t)), where N(t) is the Poisson
process with parameter a, and u is any member of BM(R), is a solution
to the following Cauchy problem:

∂u(t, τ)
∂t

= au(t, τ + 1) − au(t, τ), u(0, τ) = u(τ), t ∈ R (7.45)

7.5.6 Remark The semigroup {Tt = et(aA−aI), t ≥ 0} related to the
Poisson process has a natural extension to a group Tt = et(aA−aI), t ∈ R.
Note, however, that the operators T−t, t > 0 (except for being inverses
of Tt) do not have clear probabilistic interpretation.

7.5.7 Exercise Prove directly that the Poisson process has stationary
and independent increments, i.e. that for all 0 ≤ t1 < t2 < ... < tn, the
random variablesN(t2)−N(t1), ..., N(tn)−N(tn−1) are independent and
N(ti)−N(ti−1) has the Poisson distribution with parameter a(ti−ti−1).

7.5.8 Exercise Let Yn, n ≥ 1, be a sequence of independent iden-
tically distributed random variables. Suppose that N(t) is a Poisson
process that is independent from these variables. Consider the random
process pt =

∑N(t)
n=1 Yn, where we agree that

∑0
n=1 Yn = 0. Processes

of this form are termed compound Poisson processes. If Yn = 1, for all
n ≥ 1, pt is a (simple) Poisson process. If Yn admit only two values: 1 and
−1, both with probability 1

2 , pt is a symmetric random walk on integers.
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Find an explicit expression for the semigroup of operators related to pt
and repeat the analysis made for the Poisson process to find the Cauchy
problem of which u(t, τ) = E u(τ + pt) is a solution. Check directly that
this equation is satisfied. Write this equation for the random walk.

7.5.9 Exercise Find the probability generating function of a com-
pound Poisson process if Yn takes values in N and the probability gen-
erating function of Yn is given. Find the characteristic function of this
process if Yn takes values in R and the characteristic function of Yn is
given.

7.5.10 Exercise Let Rλ, λ > 0, be the resolvent of the Poisson semi-
group. Show that λRλ is the operator related to the geometric distribu-
tion with parameter p = λ

λ+a .

7.6 More convolution semigroups

7.6.1 Definition A family {µt, t ≥ 0} of Borel measures on R is
said to be a convolution semigroup of measures iff (a) µ0 = δ0, (b) µt
converges weakly to δ0, as t→ 0+, and (c)

µt ∗ µs = µt+s, t, s ≥ 0. (7.46)

7.6.2 Example Let b > 0. The measures {µt, t ≥ 0} with gamma
densities xt(τ) = bt

Γ(t)τ
t−1e−bτ1R+(τ), for t > 0 and µ0 = δ0, form a con-

volution semigroup. The semigroup property should have been proven
by the reader in 1.2.33. Moreover, if Xt is a random variable with dis-
tribution µt, then EXt = tb−1 and D2Xt = tb−2. Hence, for any ε > 0,
P{|Xt−tb−1| > ε} tends to zero, as t→ 0+, being dominated by tb−2ε−2

(by Chebyshev’s inequality). This implies that µt converges to δ0, as
t→ 0 + .

7.6.3 Definition A stochastic process Xt, t ≥ 0, is said to be a Lévy
process iff (a) X0 = 0 a.s., (b) almost all its paths are right-continuous
and have left limits, (c) for all t ≥ s ≥ 0, the variable Xt − Xs is
independent of σ(Xu, 0 ≤ u ≤ s) and has the same distribution as Xt−s.

As we have already seen, Brownian motion and the Poisson process are
examples of Lévy processes. In fact they constitute the most prominent
and most important examples of Lévy processes [66], [100].
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7.6.4 Lévy processes and convolution semigroups Lévy processes are
in a natural way related to convolution semigroups of measures. In fact,
the distributions µt, t ≥ 0 of a Lévy process Xt, t ≥ 0 form a convolution
semigroup. Indeed, µ0 = δ0 by point (a) of the definition of Lévy process.
Moreover, by (b) of this definition, Xt converges a.s. to X0, as t→ 0+.
Hence, by 5.8.1, Xt converges to X0 weakly, as well. Finally, by (c) in
7.6.3, Xt+s = (Xt+s − Xs) + Xs is a sum of two independent random
variables, and PXt+s−Xs

= PXt
= µt. Hence, µt+s = PXt+s

= PXt+s−Xs
∗

PXs
= µt ∗ µs.

7.6.5 Cauchy flights Not all processes with distributions forming con-
volution semigroups are Lévy processes. For example, a Cauchy process
is by definition a process that satisfies conditions (a) and (c) of definition
7.6.3 and Xt, t > 0 has a Cauchy measure with parameter t, i.e. if µt
has the density xt(τ) = 1

π
t

t2+τ2 , yet its sample paths are discontinuous
(see [36]).

Moreover, the distributions µt, t ≥ 0, of Cauchy random variables Xt

with parameter t form a convolution semigroup regardless of whether the
increment Xt−Xs is independent of Xs or not. Indeed, since the Fourier
transform x̂(ς) =

∫∞
−∞ eiςτxt(τ) dτ of xt equals e−t|ς|, by 6.4.12, we have

x̂tx̂s = x̂s+t. By 6.4.11, this proves that µt+s = µt ∗ µs. Moreover, for
any ε > 0,

µt(−ε, ε) =
1
π

∫ ε

−ε

t

t2 + τ2
dτ =

2
π

arctan
ε

t
−→
t→0+

1,

proving that µt converges to δ0.
In other words, forming a convolution semigroup of measures is a

property of distributions and not of random variables.

7.6.6 Examples of generators of convolution semigroups Let {µt, t ≥
0} be a convolution semigroup on R. Define the semigroup {Tt, t ≥ 0}
in X = BUC(R) by Tt = Tµt

. By 7.1.12, this is a c0 semigroup in X; its
generator A will be called the generator of the convolution semigroup
{µt, t ≥ 0}.

In general, finding an explicit form of A is difficult, if possible at all.
As we shall see, however, the domain of A contains the space X2 of all
twice differentiable functions in X with both derivatives in X, and A

restricted to X2 can be described in more detail. Here are two examples.
(a) The Cauchy semigroup We have

1
t
(Ttx− x)(σ) =

1
π

∫
R

x(τ + σ) − x(σ)
τ2 + t2

dτ.
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Since y(τ) = τ
τ2+1 is odd, this equals

1
π

∫
R

[
x(τ + σ) − x(σ) − x′(σ)y(τ)

τ2
(τ2 + 1)

]
τ2

τ2 + 1
1

τ2 + t2
dτ.

Since y(0) = 0, y′(0) = 1, and y′′(0) = 0, by de l’Hospital’s rule, the
expression in brackets tends, for x ∈ X2, to 1

2x
′′(σ), as τ → 0. Also, it is

continuous as a function of τ, and bounded. Hence, it belongs to BC(R).
Moreover, the measures νt with densities τ2

τ2+1
1

τ2+t2 converge weakly, as
t→ 0, to the measure m with density 1

τ2+1 . Hence, for x ∈ X2, and any
σ, the above expression tends to

1
π

∫
R

[
x(τ + σ) − x(σ) − x′(σ)y(τ)

τ2

]
dτ.

Using 7.1.12, this convergence may be proven to be uniform in σ. We
skip the details now, as we will prove this result in a more general setting
later – see 7.6.14.

(b) The gamma semigroup In this case,

1
t
(Ttx− x)(σ) =

bt

tΓ(t)

∫ ∞

0

[
x(τ + σ) − x(σ) − x′(σ)y(τ)

τ2

]
e−bτ τ t+1 dτ

+ x′(σ)
bt

tΓ(t)

∫ ∞

0

1
τ2 + 1

e−bτ τ t dτ.

For any λ ≥ 0, changing variables τ ′ = (λ+ b)τ ,

bt

tΓ(t)

∫ ∞

0

e−λτe−bτ τ t+1 dτ =
bt

tΓ(t)
1

(λ+ b)t+2
Γ(t+ 2)

= bt
1

(λ+ b)t+2
(t+ 1).

This converges to 1
(λ+b)2 , as t→ 0. Thus, the measures νt with densities

bt

tΓ(t)e
−bτ τ t+1 converge weakly to the measure m with density τ

b2 e−bτ .
Similarly, the second integral converges to x′(σ) 1

b

∫∞
0

1
τ2+1e−bτ dτ. Thus,

for any σ, 1
t (Ttx− x)(σ) converges to∫ ∞

0

[
x(τ + σ) − x(σ) − x′(σ)y(τ)

τ2

]
e−τ

τ

b2
dτ +

x′(σ)
b

∫ ∞

0

e−bτ

τ2 + 1
dτ.

Again, the convergence may be shown to be uniform in σ.

7.6.7 Generating functional Let {µt, t ≥ 0} be a convolution family of
measures on R, {Tt, t ≥ 0} be the corresponding semigroup of operators



7.6 More convolution semigroups 273

in X = BUC(R), and A be its generator. Let F : C ⊃ D(F ) → R be the
generating functional of {µt, t ≥ 0}, defined as

Fx = lim
t→0+

Ftx

on the domain D(F ) = {x ∈ X| limt→0+ Ftx exists}, where

Ftx =
1
t
(Ttx(0) − x(0)).

It is clear that D(A) ⊂ D(F ). Moreover, if x ∈ D(A) then Ax(σ) =
limt→0+

1
t (Ttx(σ) − x(σ)) = limt→0+ Ftxσ, where xσ(τ) = x(σ+τ), σ ∈

R. In particular, xσ belongs to D(F ) and Ax(σ) = Fxσ. Hence, the
values of A may be recovered from the values of F.

The key result concerning F is that:

X2 ⊂ D(F ), (7.47)

where X2 is the set of all twice differentiable functions in X with both
derivatives in X.

We note that X2 when equipped with the norm ‖x‖2 = ‖x‖X+‖x′‖X+
‖x′′‖X (or with the equivalent norm, ‖x‖∗2 = ‖x‖X + ‖x′′‖X), is a Banach
space – see 7.3.3 and 7.3.6. Moreover, if x ∈ X is differentiable with
x′ ∈ X, then so is Ttx and (Ttx)′ = Ttx

′ ∈ X. Similarly, if x ∈ X2,
then (Ttx)′′ = Ttx

′′. Hence, Tt, t ≥ 0, leave X2 invariant, ‖Ttx‖2 ≤ ‖x‖2,

and (Tt)|X2 , t ≥ 0, is a strongly continuous semigroup of operators. In
particular, the domain D2 of its infinitesimal generator is dense in X2 (in
the sense of the norm ‖ · ‖2); certainly, D2 ⊂ D(A). Besides this remark,
for the proof of (7.47) we will need the following set of lemmas.

7.6.8 Lemma For every δ > 0 we have

sup
t>0

1
t
µt(−δ, δ)� <∞.

Proof Let x(τ) = |τ |∧δ. There exists a y ∈ D2, lying within δ/6 distance
from x. Let τ0 ∈ [−δ/6, δ/6] be such that minτ∈[−δ/6,δ/6] y(τ) = y(τ0).
Note that |y(τ0)| ≤ δ/6. Let z(τ) = y(τ − τ0) − y(τ0), τ ∈ R. Then,
z ∈ D2, z ≥ 0, and z(0) = 0. Moreover, for |τ | > δ, we have z(τ) ≥
y(τ − τ0) − δ/6 − δ/6 ≥ 5

6δ − 2
6δ = δ

2 , since |τ − τ0| > 5
6δ.

The function f(t) = Ftz = 1
t

∫
R
z dµt is continuous in t ∈ R+

∗ with
limt→0 f(t) = Fz and limt→∞ f(t) = 0, hence bounded. Therefore,
supt>0

1
tµt(−δ, δ)� ≤ 2

δ supt>0
1
t

∫
R
z dµt is finite.
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7.6.9 Lemma Let δ > 0. Then, there exist y� and z� in the set C∞

of infinitely differentiable functions with all derivatives in X, such that
y�(τ) = τ and z�(τ) = τ2 whenever |τ | ≤ δ.

We leave the proof of this lemma as an exercise.

7.6.10 Lemma (a) There exist y� and z� in D2 such that y� = 0 and
(y�)′(0) = 1, and z�(0) = (z�)′(0) = 0 and (z�)′′(0) = 2. (b) There exists
a δ > 0 such that supt>0

1
t

∫
(−δ,δ) τ

2 µt( dτ) is finite.

Proof (a) We may not have x′(0) = 0 for all x ∈ D2, for then we
would have infx∈D2 ‖x− y�‖2 ≥

∣∣(y�)′(0)
∣∣ = 1, contrary to the fact that

D2 is dense in X2. Hence, there exists an x ∈ D2 with x′(0) 
= 0 and,
consequently, y� = 1

x′(0) (x− x(0)1R) possesses the required properties.
To prove the other relation, we note that the operator

Px = x− x(0)1R − x′(0)y� (7.48)

mapping X2 into Y = {x ∈ X2|x(0) = x′(0) = 0} is linear and bounded
with the norm not exceeding 2+‖y�‖2.Moreover, it is onto (since Px = x

for x ∈ Y) and leaves D2 invariant. Hence, D2∩Y is dense in Y, D2 being
dense in X2. Therefore, there is an x ∈ D2 ∩ Y such that x′′(0) 
= 0, for
otherwise we would have infx∈D2∩Y ‖x − z�‖2 ≥ |(z�)′′(0)| = 2. Finally,
z� = 2

x′′(0)x possesses the required properties.

(b) By the Taylor formula, z�(τ) = τ2

2 (z�)′′(θτ), for some θ = θ(τ), 0 ≤
θ ≤ 1. By continuity of (z�)′′, there exists a δ > 0 such that (z�)′′(τ) ≥ 1
whenever |τ | ≤ δ. For such a τ , z�(τ) ≥ 1

2τ
2.

Since z�(0) = 0, Ftz� = 1
t

∫
R
z� dµt. Moreover, arguing as in the proof

of Lemma 7.6.8, we see that supt>0 |Ftz�| is finite. Therefore,

sup
t>0

1
t

∫
(−δ,δ)

τ2 µt( dτ) ≤ 2 sup
t>0

1
t

∫
(−δ,δ)

z�(τ)µt( dτ)

≤ 2 sup
t>0

1
t

∫
R

z�(τ)µt( dτ) + 2 sup
t>0

1
t

∫
(−δ,δ)�

z�(τ)µt( dτ)

≤ 2 sup
t>0

|Ftz�| + 2‖z�‖2 sup
t>0

1
t
µt(−δ, δ)�

which is finite by Lemma 7.6.10.

Proof (of relation (7.47)) We need to show that the limit limt→0 Ftx

exists for all x ∈ X2. By definition this limit exists for all x in D2 and
this set is dense in X2. Therefore, it suffices to show that there exists a
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constant c such that supt>0 |Ftx| ≤ c‖x‖2, x ∈ X2. Since both 1R and y�

in (7.48) belong to D(F ), our task reduces to showing that there exists
a c such that

sup
t>0

|FtPx| ≤ c‖x‖2, x ∈ X2. (7.49)

By the Taylor theorem, Px(τ) = τ2

2 (Px)′′(θτ) where θ = θ(τ) and
0 ≤ θ ≤ 1. Thus, |Px(τ)| ≤ ‖Px‖2

τ2

2 . Now the estimate

|Px(τ)| ≤ ‖Px‖2
τ2

2
1(−δ,δ) + ‖Px‖21(−δ,δ)�

implies (7.49) with

c = c(δ) = ‖P‖
[
sup
t>0

1
t

∫
−(δ,δ)

τ2

2
µt( dτ) + sup

t>0

1
t
µt(−δ, δ)�

]

which may be made finite by Lemmas 7.6.8 and 7.6.10.

Before we establish the form of the generator of a convolution semi-
group we need two more lemmas and the following definition.

7.6.11 Definition A distribution µ on R is said to be symmetric if
its transport µs via the map τ �→ −τ equals µ. In other words, if X is
a random variable with distribution µ, then −X has the distribution µ,
too.

7.6.12 Lemma Let µ be a symmetric distribution on R. Then, for
any δ > 0 and k ∈ N,

µ∗k[−δ, δ]� ≥ 1
2
(1 − ekµ[−δ,δ]�).

Proof Let Sk =
∑k
i=1Xi be the sum of k independent random variables

with distribution µ. We claim that

P[|Sk| > δ] ≥ 1
2

P

{
max
1≤i≤k

|Xi| > δ

}
. (7.50)

To prove this we note first that by assumption for any Borel sets Bi ∈
B(R), i = 1, ..., k, the probability

P{Xi ∈ Bi, i = 1, ..., k} =
∏
i=1

P{Xi ∈ Bi}
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does not change when one or more of the Xi is replaced by −Xi. By
1.2.7, this implies that the same is true for P {(X1, ..., Xk) ∈ B} where
B ∈ B(Rk), and, consequently, for the probability P {f(X1, ..., Xk) ∈ B}
where B ∈ B(Rl), l ∈ N and f : Rk → Rl is Borel measurable. In
particular, for any i = 1, ..., k, pi,1 = pi,2 where

pi,α = P

⎧⎨
⎩|Xj | ≤ δ, j = 1, ..., i− 1, Xi > δ, (−1)α

∑
j=1,...,k, j �=i

Xj ≥ 0

⎫⎬
⎭ ,

α = 1, 2. On the other hand, pi,1 + pi,2 is no less than qi := P{|Xj | ≤
δ, j = 1, ..., i− 1, Xi > δ}. Hence, pi,2 ≥ 1

2qi. Similarly, p′i,1 ≥ 1
2q

′
i where

p′i,α and q′i are defined in the same way as pi,α and qi, respectively, but
with Xi > δ replaced by Xi < −δ.

Let τ = τ(ω) = min{i = 1, ..., k | |Xi(ω)| > δ}, where min ∅ = ∞.

Then qi + q′i = P{τ = i}. Moreover,

P{|Sk| > δ} ≥ P{|Sk| > δ, τ <∞} =
k∑
i=1

P{|Sk| > δ, τ = i}

≥
n∑
i=1

(pi,2 + p′i,1) ≥
1
2

n∑
i=1

(qi + q′i)

=
1
2

n∑
i=1

P{τ = i} =
1
2

P(τ <∞) =
1
2

P

{
max
1≤i≤k

|Xi| > δ

}
,

as claimed. Next, by independence, P{max1≤i≤k |Xi| ≤ δ} ≤ (µ[−δ, δ])k

≤ e−kµ[−δ,δ]� since for x ≤ 1, x ≤ e−(1−x). Combining this with (7.50),
P{|Sk| > δ} ≥ 1

2

(
1 − ekµ[−δ,δ]�

)
. This is the same as our thesis, since

Sk has distribution µ∗k.

7.6.13 Lemma Let tn, n ≥ 0 be a sequence of positive numbers such
that limn→∞ tn = 0. For any ε > 0 we may choose a δ > 0 so that

sup
n≥1

[t−1
n ]µtn [−δ, δ]� < ε.

Proof 1 Let us recall that an m ∈ R is said to be a median of a
distribution µ on R if both (−∞,m] and [m,∞) have µ measure at least
1
2 . Note that µ has at least one median.

For n ≥ 1, let mn be a median for µtn . Since the measures µtn tend
to Dirac measure at 0, we have limn→∞mn = 0. Indeed, without loss of
generality we may assume mn ≥ 0, because the measures µtn with mn <
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0 may be replaced by µs
tn (see Definition 7.6.11). Moreover, we may not

have mn ≥ m for some m > 0 and infinitely many n, because otherwise
for infinitely many n we would have µtn(−∞,m) ≤ µtn(−∞,mn) ≤ 1

2

contrary to the fact that µtn(−∞,m) converges to 1, as n→ ∞.

2 Fix n ≥ 1. Let Xn and X ′
n be two independent random variables

with distribution µtn . The events {Xn > mn + δ,X ′
n ≤ mn} and {Xn <

mn − δ,X ′
n ≥ mn} are disjoint and their union is contained in {|Xn −

X ′
n| > δ}. On the other hand, their probabilities equal P{Xn > mn +

δ}P{X ′
n ≤ mn} ≥ 1

2P{Xn > mn + δ} and P{Xn < mn − δ}P{X ′
n ≥

mn} ≥ 1
2P{Xn < mn− δ}. Hence, 2P{|Xn−X ′

n| > δ} ≥ P{|Xn−mn| >
δ}, i.e.

[t−1
n ]µtn [mn − δ,mn + δ]� ≤ 2[t−1

n ]µtn ∗ µs
tn [−δ, δ].

Thus, for δ > supn≥1 |mn|,

[t−1
n ]µtn [−2δ, 2δ]� ≤ 2[t−1

n ]µtn ∗ µs
tn [−δ, δ]�. (7.51)

3 For ε > 0 let η = 1
2 (1−e−ε/2) and let δ > supn≥1 |mn| be a point of

continuity for µ1 ∗µs
1 large enough so that µ1 ∗µs

1[−δ, δ]� < η. By 5.4.18,
5.4.20 and 7.4.14, the measures µ[t−1

n ]tn
∗ µs

[t−1
n ]tn

converge weakly to

µ1∗µs
1. Therefore, for n larger than some n0, µ[t−1

n ]tn
∗µs

[t−1
n ]tn

[−δ, δ]� < η.

By (7.50) and (7.51),

[t−1
n ]µtn [−2δ, 2δ]� < ε, (7.52)

for n ≥ n0. On the other hand, for each 1 ≤ n ≤ n0, we may choose
a δ such that (7.52) holds for this n. Therefore, for sufficiently large δ,
(7.52) holds for all n. This implies our thesis.

7.6.14 The form of the generator Let {µt, t ≥ 0} be a convolution
semigroup and let A be the generator of the corresponding semigroup
{Tt, t ≥ 0} of operators in X = BUC(R). Then, X2 ⊂ D(A). Moreover,
there exists an a ∈ R and a finite Borel measure m on R such that

Ax(σ) = ax′(σ) (7.53)

+
∫

R

[x(τ + σ) − x(σ) − x′(σ)y(τ)]
τ2 + 1
τ2

m( dτ), x ∈ X2,

where y(τ) = τ
τ2+1 .

Proof 1 Define the measures νt, t > 0, by vt( dτ) = 1
t

τ2

τ2+1 µt( dτ).
In other words, νt is absolutely continuous with respect to µt and has
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a density 1
t

τ2

τ2+1 For appropriate choice of δ > 0 (Lemmas 7.6.8 and
7.6.10),

sup
t>0

νt(R) ≤ sup
t>0

1
t

∫
(−δ,δ)

τ2 µt( dτ) + sup
t>0

1
t
µt(−δ, δ)� <∞.

Let tn, n ≥ 1, be a numerical sequence such that limn→∞ tn = 0. The
measures 1

νt(R)νt are probability measures. Hence, there exists a sequence
nk, k ≥ 1, with limk→∞ nk = ∞, such that the measures 1

νtnk
(R)νtnk

converge weakly to a probability measure on [−∞,∞], and the numerical
sequence νtnk

(R) converges, too. Hence, νtnk
converge to a finite measure

m on [−∞,∞]. Furthermore,m is concentrated on R. Indeed, it is clearly
so when limn→∞ νtnk

(R) = 0, for then νtnk
converge weakly to zero

measure. In the other case, νtnk
(R), k ≥ 1, is bounded away from 0, and

Lemma 7.6.13 shows that the sequence 1
νtnk

(R)νtnk
, k ≥ 1, is tight, so

that its limit is concentrated on R, and so is m.
For x ∈ X2, let (Wx)(τ) = τ2

τ2+1x(τ). Clearly, Wx ∈ X2, and (Wx)(0)
= 0. Hence,

FWx = lim
t→0

1
t

∫
R

Wx dµt = lim
t→0

∫
R

xdνt = lim
k→∞

∫
R

xdνtnk
=
∫

R

xdm.

Since X2 is dense in X, this determines the measure m.
We have proved that any sequence vtn , n ≥ 1, with limn→∞ tn = 0,

has a subsequence converging weakly to the unique Borel measure m on
R. Therefore, limt→0+ vt = m (weakly).

2 For x ∈ X2, let zσ(τ) = [x(σ + τ) − x(σ) − x′(σ)y(τ)] τ
2+1
τ2 , τ, σ ∈

R. Since y(0) = 0, y′(0) = 1, and y′′(0) = 0, by de l’Hospital’s rule,
limτ→0 zσ(τ) = 1

2x
′′(σ). Also, for any δ > 0, zσ is seen to be uniformly

continuous in τ ∈ (−δ, δ)� and bounded. This implies zσ ∈ X. Moreover,

1
t

[(Ttx)(σ) − x(σ)] =
1
t

∫
R

[x(τ + σ) − x(σ)] µt( dτ)

= x′(σ)Fty +
∫

R

zσ dνt.

For any σ ∈ R, this converges to ax′(σ) +
∫

R
zσ dm, where a = Fy.

Hence, our task reduces to showing that limt→0

∫
R
zσ dνt =

∫
R
zσ dm

uniformly in σ ∈ R.

To this end, we check directly that the functions z̃σ(τ) = zσ(τ) τ2

τ2+1

are equicontinuous at any τ ∈ R. Hence, zσ are equicontinuous at τ 
= 0.
Also, writing 1

2x
′′(σ)− x(σ+τ)−x(σ)−x′(σ)y(τ)

τ2 as 1
2x

′′(σ)− 1
2x

′′(σ+ θτ) +
x′(σ)(y(τ)−τ)

τ2 where θ = θ(τ), 0 ≤ θ ≤ 1 (by the Taylor expansion), and
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using uniform continuity of x′′ we see that zσ are equicontinuous at
τ = 0, too. Finally, by the Taylor formula, |zσ(τ)| ≤ ‖x‖2(1 + ‖y‖2)
whenever |τ | ≤ 1; when |τ | > 1 it does not exceed 2‖x‖2(2 + ‖y‖). This
implies uniform convergence, by 7.1.11.

7.6.15 Exercise If x ∈ X2, then so does xσ where xσ(τ) = x(σ + τ),
and we have ‖x‖X2 = ‖xσ‖X2 (cf. (7.6.7)). Moreover, t−1[Ttx(σ)−x(σ)] =
t−1[Ttxσ(0) − xσ(0)]. Use this and (7.49) to show directly that X2 ⊂
D(A).

7.6.16 Examples In the case of the Brownian motion semigroup,m is
the Dirac measure at 0 and a = 0. In the case of the Cauchy semigroup,
m is the measure with density 1

τ2+1 (with respect to Lebesgue measure)
and a = 0. In the case of the gamma semigroup, m has the density
τe−bτ , and a = 1

b

∫∞
0

1
τ2+1e−bτ dτ.

7.6.17 Corollary The set X2 is a core for A. In particular, A is fully
determined by 7.6.14.

Proof The operators Tt leave X2 invariant and X2 ⊂ D(A). Moreover,
X2 is dense in X, hence dense in D(A), as well. The result follows now
by 7.4.44.

7.6.18 The Lévy–Khintchine formula Let {µt, t ≥ 0} be a convolution
semigroup on R. There exists a finite Borel measure m and a constant
a such that∫

R

eiτξ µt( dτ) = exp
{

itξa+ t

∫
R

(
eiξτ − 1 − iξτ

τ2 + 1

)
τ2 + 1
τ2

m( dτ)
}
.

(7.54)

Proof Fix ξ ∈ R. Let x1(τ) = cos(ξτ) and x2(τ) = sin(ξτ). We
have xj ∈ X2 ⊂ D(A), j = 1, 2. Hence, d

dtTtxj = ATtxj , j = 1, 2. In
particular, d

dt [Ttxj(0)] =
[

d
dtTtxj

]
(0) = FTtxj , j = 1, 2. Thus, t �→

φ(t) =
∫

R
eiτξ µt( dτ) = Ttx1(0) + iTtx2(0) is differentiable, too, and

d
dtφ(t) = FTtx1 + iFTtx2. Furthermore, by (7.53), FTtxj is the sum of
a
∫

R
x′j dµt and

∫
R

[∫
R

xj(τ + σ)µt( dσ) −
∫

R

xj dµt −
∫

R

x′j dµt
τ

τ2 + 1

]
τ2 + 1
τ2

m( dτ).
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Also, x′1(τ) + ix′2(τ) = iξeiξτ and x1(τ + σ) + ix2(τ + σ) = eiξτeiξσ.
Therefore, FTtx1 + iFTtx2 equals

aiξφ(t) + φ(t)
∫

R

(
eiξτ − 1 − iξτ

τ2 + 1

)
τ2 + 1
τ2

m( dτ) =: bφ(t).

In other words, φ(t) is the solution of the equation d
dtφ(t) = bφ(t) satis-

fying φ(0) =
∫

R
eiτξ µ0( dτ) = 1. Hence, φ(t) = ebt.

7.7 The telegraph process semigroup

7.7.1 Orientation The example we are going to present now is some-
what unusual. Since the time of publication of the pioneering paper by
Kolomogorov [73], it has been well known that there is a close connection
between stochastic processes and partial differential equations of second
order. Partial differential equations (PDEs) of second order form three
distinct classes: the elliptic, the parabolic and the hyperbolic equations.
One of the reasons for such a classification is the fact that properties of
PDEs differ greatly depending on which class they belong to. Now, the
second order PDEs that are known to be related to stochastic processes
are of elliptic or parabolic type (see e.g. [35], [33], [38], [42], [113]). The
process that we are going to describe now, however, is related to a hy-
perbolic PDE known as the telegraph equation. A probabilistic formula
for the solutions to this equation was introduced by S. Goldstein [44]
and M. Kac [60]. Years later, J. Kisyński [71] has recognized the fact
that a modified process introduced by Kac is a process with stationary
increments, provided increments are considered in the sense of the group
that we now call by his name. Let us also note that the discovery of Kac,
followed by papers by R. J. Griego and R. Hersh, marked the beginning
of interest in so-called random evolutions (see e.g. [96] where also an
abundant bibliography is given).

Let us describe the result obtained by Kac. Let a > 0 and v be two
real numbers. The equation

∂2y(t, τ)
∂t2

+ 2a
∂y(t, τ)
∂t

= v2 ∂
2y(t, τ)
∂τ2

(7.55)

is called the telegraph equation. From the theory of PDEs it is known
that it has exactly one solution if we require additionally that

y(0, τ) = y(τ), and
∂y(0, τ)
∂t

= 0, (7.56)

where y is a sufficiently regular function.
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M. Kac has shown that the solution is given by:

y(t, τ) =
1
2
E [y(τ + vξ(t)) + y(τ − vξ(t))] , (7.57)

where

ξ(t) = ξa(t) =
∫ t

0

(−1)N(u) du, t ≥ 0, (7.58)

and N(t), t ≥ 0, is a Poisson process with parameter a. It is worth
noting that this formula generalizes the well-known solution to the wave
equation. The wave equation is the equation

∂2y(t, τ)
∂t2

= v2 ∂
2y(t, τ)
∂τ2

; (7.59)

and it is just a question of a change of variables to see that its solution
satisfying (7.56) is (compare 7.4.42)

y(t, τ) =
1
2
[y(τ + vt) + y(τ − vt)]. (7.60)

Certainly, the only difference between the telegraph equation and the
wave equation is the second term on the left-hand side of (7.55); and
if a = 0 the telegraph equation becomes the wave equation. In such a
case, however, the Poisson process degenerates to a family of random
variables that are all equal to 0 and

∫ t
0
(−1)N(u) du = t (a.s.), so that

(7.57) reduces to (7.60).

7.7.2 Exercise From the theory of PDEs it is well-known that the
unique solution to (7.55)–(7.56) is given by (see e.g. [23], [97])

y(t, τ) = (a+
1
2
∂

∂t
)
(

e−at
∫ t

−t
I0

(
a
√
t2 − σ2

)
y(τ + vσ) dσ

)

=
1
2

e−at[y(τ + vt) + y(τ − vt)]

+
a

2
e−at

∫ t

−t
I0

(
a
√
t2 − σ2

)
y(τ + vσ) dσ

+
a

2
e−at

∫ t

−t

t√
t2 − σ2

I1

(
a
√
t2 − σ2

)
y(τ + vσ) dσ,

where I0(z) =
∑∞
k=0

1
k!k!

(
z
2

)2k and I1(z) =
∑∞
k=0

1
k!(k+1)!

(
z
2

)2k+1 (=
d
dz I0(z)) are modified Bessel functions of order zero and one, respectively.
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Show that

e−at +
a

2
e−at

∫ t

−t
I0

(
a
√
t2 − σ2

)
dσ

+
a

2
e−at

∫ t

−t

t√
t2 − σ2

I1

(
a
√
t2 − σ2

)
dσ = 1, (7.61)

and conclude that, for each t ≥ 0, there exists a random variable X(t)
such that y(τ, t) = E y(τ +X(t)). Equation (7.57) fully describes X(t).

7.7.3 The telegraph process Let us study in more detail the process

ξ(t) =
∫ t

0

(−1)N(u) du, t ≥ 0,

often called the telegraph process or Poisson–Kac process. It de-
scribes the position of a particle that at time 0 starts its movement to
the right with velocity 1 and then changes the direction of the move-
ment (but not the absolute value of its speed) at times of jumps of the
Poisson process. From the physical point of view, to describe the move-
ment completely we should know not only its position at time t but also
its velocity. In our case all we need is the position of the point and the
direction in which it is moving. Comparing the process

∫ t
0
(−1)N(u) du

with the Brownian motion also suggests the need for another coordi-
nate. If we know that at time t the Brownian motion was at a point τ,
we know also the distribution of the Brownian motion at s ≥ t, specifi-
cally, we have w(s) ∼ N(τ, t− s). However, this is not the case with the
process

∫ t
0
(−1)N(u) du; knowing that

∫ t
0
(−1)N(u) du = τ does not deter-

mine the distribution of this process in the future s > t. If (−1)N(t) = 1
this distribution is going to have a bigger mass on [τ,∞) than in the
case (−1)N(t) = −1. Motivated by such or similar reasons, Kisyński has
introduced the process

gt = (v
∫ t

0

(−1)N(u) du, (−1)N(t)) (7.62)

and the related group G = R×{−1, 1}, defined in 1.2.24. Then he proved
that, for any non-negative t and s,

(i) the random vectors gt+sg−1
t and gt are independent, and

(ii) the random vectors gt+sg−1
t and gs have the same distribution,

and derived (7.57) as a consequence of this fact.
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To prove (i) and (ii) we may argue as follows. First, using (τ, k)−1 =
(−kτ, k) we calculate gt+sg−1

t to be equal to

(v
∫ t+s

0

(−1)N(u) du, (−1)N(t+s))((−1)N(t)v

∫ t

0

(−1)N(u) du, (−1)N(t))

= (v
∫ t+s

t

(−1)N(u)−N(t) du, (−1)N(t+s)−N(t)).

Next, for n ≥ 1 we consider sk = k
2n s, tk = k

2n t, 0 ≤ k ≤ 2n − 1 and
random variables

Yn = v
n∑
k=0

t

2n
(−1)N(tk), Zn = v

n∑
k=0

s

2n
(−1)N(t+sk+1)−N(t).

For n,m ≥ 1, let Gn and Fm be σ-algebras generated by the random
variablesN(tk+1)−N(tk), 0 ≤ k < 2n, andN(t+si+1)−N(t+si), 0 ≤ i <

2m, respectively. Since these random variables are mutually independent,
by 1.4.12, Gn is independent of Fm. Thus, the π-system

⋃
n≥1 Gn is a

subset of the λ-system F⊥
m and the π–λ theorem implies σ

(⋃
n≥1 Gn

)
⊂

Fm, i.e. the σ-algebra σ
(⋃

n≥1 Gn
)

is independent of Fm. A similar

argument shows that σ
(⋃

m≥1 Fm
)

is independent of σ
(⋃

n≥1 Gn
)
. On

the other hand,

gt = lim
n→∞

(
Yn, (−1)N(t2n−1)

)
gt+sg−1

t = lim
n→∞

(
Zn, (−1)N(t+s2n−1)−N(t)

)
,

and the random variablesN(tk) =
∑k
l=1[N(tl)−N(tl−1)] are Gn measur-

able and N(t+si)−N(t) =
∑i
l=1[N(t+sl)−N(t+sl−1)] are Fm measur-

able. Hence, gt is independent of gt+sg−1
t . Condition (b) is proven simi-

larly; the main idea of the proof is that by 7.5.7, N(t+sk+1)−N(t+sk),
0 ≤ k < 2n−1, have the same distribution as N(sk+1) −N(sk), 0 ≤ k <

2n−1.

7.7.4 The telegraph process semigroup Let µt be the distribution of
gt; µt is a probability measure on G. Writing gt+s = (gt+sg−1

t )gt and
using (i) and (ii) we see that µt+s = µt ∗ µs (convolution in the sense of
1.2.22, compare the analysis following (7.40)). Therefore, by (2.16), the
operators

Ttx(h) = Tµt
x(h) =

∫
x(h′h)µt( dh′) = E x(gth), h ∈ G, x ∈ BUC(G),
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form a semigroup: TtTs = TµtTµs = Tµt∗µs = Ts+t. To see that {Tt, t ≥
0} is strongly continuous it suffices to show that µt converges weakly
to δ(0,1), as t → 0+. (Compare 7.1.12.) To this end, consider µt as a
measure on R2. Then, µt(Ball�), where Ball� is the complement of the
ball with center at (0, 1) and with radius r < 1, is the probability that
N(t) is odd, or |vξ(t)| > r. If t < r/v the latter inequality may not be
satisfied, and we see that our probability equals e−at sinh at which tends
to 0 as t→ 0, proving our claim.

7.7.5 The generator of the telegraph semigroup One way to find the
generator of {Tt, t ≥ 0} is to compare this semigroup with the semigroup
{St, t ≥ 0} where

Stx(h) = x((vt, 1)h) t ≥ 0, h ∈ G

whose generator is easy to find. Specifically, the reader should check that
the domain D(B) of the infinitesimal generator B of {St, t ≥ 0} is given
by

D(B) = {x ∈ BUC(G), x is differentiable and x′ ∈ BUC(G)} (7.63)

where we say that x ∈ BUC(G) is differentiable iff xi(τ) = x(τ, i), i =
1,−1, are differentiable with x′i ∈ BUC(R), and put x′(τ, i) = ix′i(τ).
Moreover, B is given by

Bx = vx′. (7.64)

Now, let C = Tδ(0,−1) . Taking h = (τ, k) ∈ G, we have

(eatTtx)(h) = eatE x(gth)1[N(t)=0] + eatE x(gth)1[N(t)=1]

+ eatE x(gth)1[N(t)≥2].

If N(t) = 0, which happens with probability e−at, then gt = (vt, 1).
Hence, (eatTtx)(h) = (Stx)(h)+eatE x(gth)1[N(t)=1] +o(t) where o(t) ≤
eat‖x‖P{N(t) ≥ 2} = ‖x‖(eat − 1 − at) so that o(t)/t → 0 as t → 0.
Therefore, for any x ∈ BUC(G)

lim sup
t→0

1
t
‖eatTtx− Stx− tCx‖

is the lim sup, as t→ 0, of

eat

t
sup

τ∈R,k=1,−1

∣∣∣∣E
[
x(v
∫ t

0

(−1)N(u) du+ τ,−k) − x(τ,−k)
]

1[N(t)=1]

∣∣∣∣
which equals zero by uniform continuity of x and the fact that P[N(t) =
1] = te−at.
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This shows that the difference between eatTtx−x
t and Stx−x

t converges
to Cx. In particular, the domains of infinitesimal generators of semi-
groups {St, t ≥ 0} and {eatTt, t ≥ 0} coincide and the generator of the
latter equals B+C. Finally, by 7.4.18, Ax = Bx+Cx−ax on the domain
D(A) equal to D(B) defined in (7.63).

7.7.6 Exercise Prove (7.63) and (7.64).

7.7.7 Proof of Eq. (7.57) Take an x ∈ D(A) and define xk(τ, t) =
Ttx(τ, k). By 7.7.5, the function t → xk(τ, t) is the unique solution of
the system of equations:

∂xk(τ, t)
∂t

= kv
∂xk(τ, t)
∂τ

+ ax(τ,−k) − ax(τ, k), k = 1,−1.

Sometimes it is convenient to write this system in a matrix form:(
∂x1(τ,t)
∂t

∂x−1(τ,t)
∂t

)
=
(
v ∂
∂τ − a a

a −v ∂
∂τ − a

)(
x1(τ, t)
x−1(τ, t)

)
. (7.65)

By 7.4.25, if x belongs to D(A2), i.e. if the components of x are twice
differentiable with second derivatives in BUC(R), then the xk(τ, t) are
also twice differentiable and t→ xk(τ, t) satisfies(

∂2x1(τ,t)
∂t2

∂2x−1(τ,t)
∂t2

)
=
(
v ∂
∂τ − a a

a −v ∂
∂τ − a

)2(
x1(τ, t)
x−1(τ, t)

)
. (7.66)

In particular we may take a twice differentiable y ∈ BUC(R) with
y′′ ∈ BUC(R), define x ∈ BUC(G) to be (isomorphic with) the pair
(y, y) (compare 2.2.38) and consider y(t, τ) = 1

2 [x1(τ, t) + x−1(τ, t)] and
z(t, τ) = 1

2 [x1(τ, t) − x−1(τ, t)]. Then, by (7.65),

∂y

∂t
=

1
2
(1, 1)

(
v ∂
∂τ − a a

a −v ∂
∂τ − a

)(
x1(τ, t)
x−1(τ, t)

)
= v

∂z

∂τ
;

in particular ∂
∂ty(0, τ) = ∂z

∂τ z(0, τ) = 0. Furthermore, by (7.66),

∂2y

∂t2
=

1
2
(1, 1)

(
(v ∂
∂τ − a)2 + a2 −2a2

−2a2 (v ∂
∂τ + a)2 + a2

)(
x1(τ, t)
x−1(τ, t)

)

=
1
2

(
v2 ∂

2

∂τ2
− 2av

∂

∂τ
, v2 ∂

2

∂τ2
+ 2av

∂

∂τ

)(
x1(τ, t)
x−1(τ, t)

)

= v2 ∂
2y

∂τ2
− 2av

∂z

∂τ

= v2 ∂
2y

∂τ2
− 2a

∂y

∂t
,
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i.e. y satisfies the telegraph equation with y(0, τ) = y(τ), and ∂y
∂t (0, τ) =

0. Finally, to obtain (7.57) it suffices to note that

x1(τ, t) = E y(τ + vξ(t))1{N(t) is even} + E y(τ − vξ(t))1{N(t) is odd},

x−1(τ, t) = E y(τ + vξ(t))1{N(t) is odd} + E y(τ − vξ(t))1{N(t) is even}.
(7.67)

7.7.8 Exercise From the theory of PDEs it is known that the unique
solution to (7.55) with initial conditions y(0, τ) = 0 and ∂y

∂t (0, τ) = z(τ)
is given by (see e.g. [23], [97])

y(t, τ) =
1
2
e−at

∫ t

−t
I0

(
a
√
t2 − σ2

)
z(τ + vσ) dσ.

Conclude that, for each t ≥ 0, there exists a random variable Y (t) such
that y(t, τ) = 1

2E z(τ + vY (t)) – compare (7.68), below.

7.7.9 Exercise (a) Repeat the analysis from subsection 7.7.7 with
x ∈ BUC(G) equal to the pair (y,−y) where y ∈ BUC(R) is twice
differentiable with y′′ ∈ BUC(R), to see that y(t, τ) defined there is a
solution of the telegraph equation with initial conditions y(0, τ) = 0 and
∂y
∂t (0, τ) = vy′(τ). (b) Use (a) to show that

y(t, τ) =
1
2
E y(τ + vξ(t)) +

1
2
E y(τ − vξ(t)) +

1
2
E

∫ ξ(t)

−ξ(t)
z(τ + vσ) dσ

(7.68)
solves the telegraph equation with initial conditions y(0, τ) = y(τ) and
∂y
∂t (0, τ) = z(τ) where y ∈ BUC(R) is twice differentiable with y′′ ∈
BUC(R) and z ∈ BUC(R) is differentiable with z′ ∈ BUC(R) (see also
(8.64))

Relation (7.68), due to Kisyński [71], is a counterpart of the classic
d’Alembert’s formula for the solution of the wave equation:

u(t, τ) =
1
2
[y(τ + vt) + y(τ − vt)] +

1
2

∫ t

−t
z(τ + vσ) dσ,

where y and z are the initial conditions stated above (compare Exercise
7.4.42).

7.8 Convolution semigroups of measures on semigroups

In this subsection we present a short discussion of convolution semi-
groups on two important classes of topological semigroups: the (one-
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dimensional) Lie groups and the discrete semigroups. We start by pre-
senting an example.

7.8.1 Convolution semigroup of measures on R+
∗ What is the general

form of a convolution semigroup on the group R+
∗ with multiplication

as a group product? It is quite easy to answer this question once we
note that this group is isomorphic to R with addition (via the map
R+

∗ � u �→ lnu ∈ R). This implies that Xt, t ≥ 0, is a Lévy process on
R+

∗ iff lnXt, t ≥ 0, is a Lévy process on R.

In what follows we will find the form of the infinitesimal generator of
a convolution semigroup on R+

∗ . Before we do this, let us note that the
isomorphism described above preserves “differential structure” of R+

∗ .
To be more specific, a function x on R+

∗ is differentiable iff z = x◦ exp is
differentiable on R and we have z′(τ) = x′(eτ )eτ or, which is the same
x′(u) = z′(lnu) 1

u . A similar statement is true for higher derivatives. This
will be important in what follows.

Let {µt, t ≥ 0} be a convolution semigroup on R+
∗ . In other words, we

assume that µt∗µs = µt+s where ∗ denotes convolution on R+
∗ as defined

in 1.2.22. Also, µ0 = δ1 (the Dirac delta at 1), and limt→0+ µt = µ0

weakly – note that 1 is the neutral element of R+
∗ and as such it plays

the same rôle as 0 does in R.

For t ≥ 0, let νt be the transport of µt via exp, i.e.
∫

R
z dνt =

∫
R

+
∗
z ◦

ln dµt, x ∈ BM(R). A direct calculation shows that∫
R

z d(νt ∗ νs) =
∫

R
+
∗
z ◦ ln d(µt ∗ µs) =

∫
R

+
∗
z ◦ ln dµt+s =

∫
R

z dνt+s

(the first convolution in BM(R+
∗ ), the second in BM(R)), i.e. that νt∗νs =

νt+s. Also, ν0 = δ0 and, by 5.6.2, limt→0+ νt = ν0. Hence, {νt, t ≥ 0}
is a convolution semigroup on R. Moreover, the corresponding semi-
group {St, t ≥ 0} of operators St = Tνt

in BUC(R) is (isometrically)
isomorphic to the semigroup {Tt, t ≥ 0}, Tt = Tµt

on BUC(R+
∗ ). The

isomorphism J : BUC(R+
∗ ) → BUC(R) is given by Jx = x ◦ ln . But

J is more than an isomorphism of two Banach spaces – it preserves the
differential structure of R+

∗ .

Let A be the infinitesimal generator of {St, t ≥ 0} and B be the
infinitesimal generator of {Tt, t ≥ 0}. If x ∈ BUC(R+

∗ ) is twice dif-
ferentiable with x′′ ∈ BUC(R+

∗ ), then Jx is twice differentiable and
(Jx)′′ ∈ BUC(R). By 7.6.14, Jx belongs to D(A) and AJx is given
by (7.53) with x replaced by Jx. By 7.4.22, x belongs to D(B) and
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Bx = J−1AJx. Using J−1(Jx)′(u) = ux′(u) we obtain

Bx(u) = aux′(u) +
∫

R

[x(eτu) − x(u) − ux′(u)y(τ)]
τ2 + 1
τ2

m( dτ)

= aux′(u)

+
∫

R
+
∗

[x(vu) − x(u) − ux′(u)y♦(v)]
(ln v)2 + 1

(ln v)2
m♦( dv),

where y♦ = y ◦ ln and m♦ is the transport of m via exp .
There are striking similarities between (7.53) and this formula, espe-

cially when written as

Bx(u) = aDx(u) (7.69)

+
∫

R
+
∗

[x(vu) − x(u) −Dx(u)y♦(v)]
(ln v)2 + 1

(ln v)2
m♦( dv),

where Dx = J−1(Jx)′ so that Dx(u) = ux′(u). Note that the function
(ln v)2+1
(ln v)2 has singularity at 1, but as v → 1, the expression in the brackets

tends to D2x(1). Also, y♦ inherits properties of y: Dy♦ = J−1y′ so
that Dy♦(u) = y′|τ=lnu; similarly D2y♦(u) = y′′|τ=lnu. In particular,
y♦(1) = 0 and Dy♦(1) = 1.

Relations (7.53) and (7.69) are particular cases of Hunt’s Theorem, as
explained in the next subsection.

7.8.2 Convolution semigroups of measures on a one-dimensional Lie
group The Kisyński group and the group from 7.8.1 are examples
of a one-dimensional Lie group. Roughly speaking, a one-dimensional
Lie group is a topological group that is locally isomorphic to R and the
involved isomorphism preserves “a (local) differential structure”.

On any one-dimensional Lie group G there exists exactly one (up to a
constant) natural way to define a derivativeDx of a “smooth” function x.
In the case where G = R, Dx = x′, if G = R+

∗ , Dx(u) = ux′(u), and if G

is the Kisyński group D(x1, x2) = (x′1,−x′2) – see 2.2.38, compare 7.7.5.
Moreover, there exists a function z on G, called the Hunt function,
that near the neutral element e of G mimics the properties of z(τ) = τ2

defined on R. In particular, z(e) = Dz(e) = 0 and D2z(e) = 2. Also,
there is a y on G that plays the rôle of y appearing in (7.53) in that y(e) =
0 and Dy(e) = 1. Finally, for every convolution semigroup {µt, t ≥ 0}
the set of bounded uniformly continuous twice differentiable functions
with bounded uniformly continuous second derivative is contained in the
domain of the generating functional Fx = limt→0+

1
t (
∫

G
xdµt − x(e)),
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and there exist a constant a ∈ R and a measure m on G, possibly not
finite but such that

∫
z dm is finite, such that

Fx = aDx(e) +
∫

G

[x(g) − x(e) −Dx(e)y(g)]m( dg).

A similar, but more complicated, formula is true for n-dimensional Lie
groups. The proof of this theorem, due to Hunt, may be found in [55].

7.8.3 Example Two-dimensional Dirac equation Let H = R × Z

be the non-commutative group with multiplication rule (τ, k)(σ, l) =
(τ(−1)l + σ, k+ l). (H is isomorphic to the subgroup H1 = {(τ, k, l)|k =
(−1)l} of the direct product of the Kisyński group G and the group
Z of integers.) We note that the natural derivative D on H is given
by Dx(τ, k) = (−1)k ∂

∂τ x(τ, k); D is defined on the subset BUC1(H) of
BUC(H) of functions x such that τ �→ x(τ, k) is differentiable for all
k ∈ Z, and y(τ, k) = Dx(τ, k) = (−1)k ∂

∂τ x(τ, k) belongs to BUC(H).
The process gt = (ξ(t), N(t)), where N(t), t ≥ 0 is a Poisson process

and ξ(t) =
∫ t
0
(−1)N(s) ds, has independent, identically distributed in-

crements in the group H in the sense that relations (i) and (ii) of 7.7.3
hold.

We want to find the generator A of the corresponding semigroup
{Tt, t ≥ 0},

Ttx(h) = E x(gth), h ∈ H, x ∈ BUC(H). (7.70)

To this end we compare it with the semigroup {St, t ≥ 0}, Stx(τ, k) =
e−tx ((t, 0)(τ, k)) = e−tx(τ + (−1)kt, k). We note that the domain of
the infinitesimal generator B of {St, t ≥ 0} equals BUC1(H), and Bx =
Dx−x whereD is the natural derivative on H. Moreover, whenN(t) = 0,
which happens with probability e−t, gt = (t, 0) and so E 1{N(t)=0}x(gth)
= Stx(h). Similarly, N(t) = 1 with probability te−t and then gt =
(ξ(t), 1). Since |ξ(t)| ≤ t, we have

sup
h∈H

∣∣∣∣1t E 1{N(t)=1}x(gth) − e−tx ((0, 1)h)
∣∣∣∣

≤ e−t sup
σ,τ∈R,k∈Z,|σ−τ |≤t

|x(τ, k) − x(σ, k)| −→
t→0

0.

Therefore,

1
t
(Tt − St)x(h) =

1
t
E1{N(t)=1}x(gth) +

1
t
E1{N(t)≥2}x(gth)
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tends to x ((0, 1)h) (in the norm of BUC(H)), because

sup
h∈H

∣∣∣∣1t E1{N(t)≥2}x(gth)
∣∣∣∣ ≤ ‖x‖BUC(H)

1
t
P{N(t) ≥ 2} −→

t→0
0.

This shows that D(A) = D(B) and Ax = Bx + Cx = Dx + Cx − x

where Cx(h) = x ((0, 1)h), i.e. Cx(τ, k) = x(τ, k + 1) (C is the operator
related to the Dirac measure at the point (0, 1)). Defining Ut = etTt we
obtain that, for x ∈ BUC(H),

dUtx
dt

= (D + C)Utx and U0x = x. (7.71)

Our findings may be applied to give a probabilistic formula for the
solution of the two-dimensional Dirac equation:

∂u(t, τ)
∂t

=
∂u(t, τ)
∂τ

+ zv, u(0, τ) = u(τ),

∂v(t, τ)
∂t

= −∂v(t, τ)
∂τ

+ zu, v(0, τ) = v(τ), (7.72)

where z is a complex number with modulus 1, and u and v are differen-
tiable members of BUC(H) with derivative in this space. Indeed, we may
set x(τ, k) = zku(τ) for even k and x(τ, k) = zkv(τ) otherwise. Then x

belongs to (complex) BUC1(H) and (7.71) is satisfied. In particular

dUtx(τ, 0)
dt

= (D + C)Utx(τ, 0),

dUtx(τ, 1)
dt

= (D + C)Utx(τ, 1).

Defining u(t, τ) = Utx(τ, 0) and v(t, τ) = 1
zUtx(τ, 1), since

(DUtx)(τ, 0) =
∂

∂τ
Utx(τ, 0),

(CUtx)(τ, 0) = Utx ((0, 1)(τ, 0)) = Utx(τ, 1) = zv(t, τ),

(DUtx)(τ, 1) = − ∂

∂τ
Utx(τ, 1),

(CUtx)(τ, 1) = Utx ((0, 1)(τ, 1)) = Utx(τ, 2) = z2Utx(τ, 0),

we see that u(t, τ) and v(t, τ) solve the Dirac equation (7.72).
By (7.70), using matrix notation we may write the solution to the

Dirac equation as(
u(t, τ)
v(t, τ)

)
= Eet zN(t)

(
0, 1
1, 0

)N(t)(
u(τ + ξ(t))
v(τ − ξ(t))

)
.
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7.8.4 Continuous convolution semigroups of measures on the Klein group
What is the form of a convolution semigroup {µt, t ≥ 0} of probability

measures on the Klein group G? It may be difficult to answer this ques-
tion directly. However, we may be helped by the fact that the Gelfand
transform (6.23) establishes an isometric isomorphism between the al-
gebra L1(G) and the algebra R4 with coordinatewise multiplication. In-
deed, it is easy to find all convolution semigroups, say {νt, t ≥ 0}, on R4.

First of all, coordinates of νt must be non-negative, and we check that
logarithms of coordinates satisfy the Cauchy equation. Hence, νt must
be of the form (rt1, r

t
2, r

t
3, r

t
4) for some non-negative ri. Now, if µt is a

convolution semigroup of probability measures on G, then the Gelfand
transform Gµt is a convolution semigroup on R4, and by the definition of
G, the first coordinate of Gµt is 1 for all t ≥ 0. Hence Gµt = (1, rt2, r

t
3, r

t
4)

for some non-negative ri, i = 2, 3, 4, and µt = 1
4G(1, rt2, r

t
3, r

t
4)

T; the ri
must be chosen in such a way that µt has positive coordinates (we will
see how to do that shortly).

To continue our analysis, note that by (1.12) (see (2.17)), the measure
µt = (a1(t), a2(t), a3(t), a4(t)) ∈ L1(G) may be represented as the matrix

A(t) =

⎛
⎜⎜⎝
a1(t) a2(t) a3(t) a4(t)
a2(t) a1(t) a4(t) a3(t)
a3(t) a4(t) a1(t) a2(t)
a4(t) a3(t) a2(t) a1(t)

⎞
⎟⎟⎠ ,

i.e. as an operator in L1(G). Since {µt, t ≥ 0} is a convolution semigroup,
the matrices A(t) satisfy A(t)A(s) = A(t + s) (the left-hand side is the
product of matrices). Moreover, as t→ 0, matrices A(t) converge to the
identity matrix coordinatewise, and thus uniformly with respect to all
coordinates. By 7.4.20, A(t) = etB where B = limt→0

A(t)−I
t = A′(0).

Now, the derivative of 1
4G(1, rt2, r

t
3, r

t
4)

T at t = 0 equals

1
4
G(0, ln r2, ln r3, ln r4)T = (α1, α2, α3, α4)T,

where α1 = ln r2r3r4, and

α2 = ln r4(r2r3)−1, α3 = ln r3(r2r4)−1, α4 = ln r2(r3r4)−1,

or

r2 = e−
1
2 (α2+α3), r3 = e−

1
2 (α2+α4), r4 = e−

1
2 (α3+α4).
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Therefore,

B =
1
4

⎛
⎜⎜⎝
α1 α2 α3 α4

α2 α1 α4 α3

α3 α4 α1 α2

α4 α3 α2 α1

⎞
⎟⎟⎠ .

We have
∑4
i=1 αi = 0. Writing eBt = eα1te(B−α1)t, we see that the

vector 1
4G(1, rt2, r

t
3, r

t
4) has non-negative coordinates if αi, i ≥ 2, are

non-negative.
There are striking similarities between the form of B and the matrix

in (2.17). Writing

B = a

⎛
⎜⎜⎝

0 β2 β3 β4

β2 0 β4 β3

β3 β4 0 β2

β4 β3 β2 0

⎞
⎟⎟⎠− a

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

where a = −α1, βi = 1
4aαi, i ≥ 2, we see that the value of the oper-

ator B on a measure, say (a1, a2, a3, a4) ∈ BM(G) is a times the con-
volution of probability measures (0, β2, β3, β4) and (a1, a2, a3, a4) minus
a(a1, a2, a3, a4).Hence µ(t) is the exponent of a(0, β2, β3, β4)−a(1, 0, 0, 0)
in our convolution algebra. This is surprisingly “clean” and elegant re-
sult, especially when obtained after such a long calculation. It suggests
that these were special properties of the Klein group that blurred our
analysis and that we should look for more general principles to obtain a
more general result. This suggestion is strengthen by Theorem 3, p. 290
in [40]. Before continuing, the reader may wish to try to guess and prove
the general form of a convolution semigroup on the group of congruences
modulo p.

7.8.5 Continuous convolution semigroups of measures on a discrete
semigroup Let G be a discrete semigroup with identity element. All
measures on G are members of the algebra l1(G) of measures that are
absolutely continuous with respect to the counting measure. If {µ(t), t ≥
0} is a convolution semigroup of probability measures in G, then there
exists a probability measure x ∈ l1(G), and a positive number a such
that µ(t) = exp at(x − δ) where δ is the Dirac measure at the identity
of the semigroup.

Proof For simplicity of notation we assume that G has infinitely many
elements; the reader will easily make minor modifications needed for the
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case where the number of elements in G is finite. By 5.8.6, the assump-
tion that µ(t) converges in weak∗ topology to δ implies that it converges
in the strong topology. By 7.4.20, there exists an element y of l1(G) such
that µ(t) = exp{yt}. The Banach space l1(G) is isometrically isomor-
phic to l1(N0) and a measure µ(t) may be identified with a sequence
(mi(t))i≥0 where we may arrange m0(t) to be the mass of µ(t) at the
identity element of the semigroup. Since y = limt→0

µ(t)−δ
t , the coordi-

nates of y are given by η0 = limt→0
m0(t)−1

t , and ηi = limt→0
mi(t)
t , i ≥ 1,

and all except η0 are non-negative. Since y ∈ l1(G),
∑∞
i=1 ηi < ∞

and except for the trivial case this sum is not equal to zero. Moreover,∑∞
i=0 ηi = 0, because µ(t) are probability measures. Hence one may take

a =
∑∞
i=1 ηi = −η0 and x = 1

ay + δ.

7.8.6 Remark Calculations related to the Klein group presented in
subsection 7.8.4 have this advantage that they lead to an explicit for-
mula for transition probability matrices, while in 7.8.5 only the form
of the generator is given. From 7.4.21 we know that one is sometimes
able to obtain the transition matrices from the generating matrix using
diagonalization procedure (see also 8.4.31). A closer look at our calcu-
lations reveals that in the case of Klein group, the Gelfand transform is
exactly this procedure. This is a simple case of a more general result – as
explained in [37] Section 2.2.1, the abstract Fourier transform is a way
of decomposing a Banach space, like BUC(G), into a possibly infinite
number of subspaces that are left invariant by translation operators.



8

Markov processes and semigroups of
operators

This chapter provides more advanced theory of semigroup of operators
needed for the treatment of Markov processes. The main theorem is the
Hille–Yosida theorem. Also, we establish perturbation and approxima-
tion results; the Central Limit Theorem, theorems on approximation of
Brownian motion and the Ornstein–Uhlenbeck process by random walks,
the Feynman–Kac formula and Kingman’s coalescence are obtained as
corollaries of these results.

8.1 Semigroups of operators related to Markov processes

We start with an example of a semigroup related to a process that is
not a Lévy process.

8.1.1 A semigroup of operators related to reflected Brownian motion
Consider again the semigroup {Tt, t ≥ 0} from 7.5.1, acting in BUC(R).
Let BUCe(R) be the subspace of BUC(R) composed of even functions.
Note that Tt leaves this space invariant. Indeed, the distribution of w(t)
is the same as that of −w(t) so that if x ∈ BUCe(R), then

Ttx(−τ) = E x(−τ +w(t)) = E x(−τ −w(t)) = E x(τ +w(t)) = Ttx(τ).

By Exercise 7.4.23, the domain D(B) of the generator of the semigroup
{St, t ≥ 0} of restrictions of Tt to BUCe(R) is given by

D(B) = {x ∈ BUCe(R);x is twice differentiable with x′′ ∈ BUCe(R)}.

In particular, x′(0) = 0 for all x ∈ D(B).
Next, BUCe(R) is isometrically isomorphic to the space BUC(R+)

of bounded uniformly continuous functions on R+. The isomorphism is
given by Jx(τ) = x(τ), τ ≥ 0, x ∈ BUCe(R). Note that J−1y(τ) =

294
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y(|τ |), τ ∈ R, y ∈ BUC(R+). We claim that the domain D(C) of the
infinitesimal generator of T r

t = JStJ
−1 equals

{y ∈ BUC(R+); y′′ exists and belongs to BUC(R+) and y′(0) = 0}.
(8.1)

(At τ = 0 the derivative is the right-hand derivative.) To this end note
first that, by 7.4.22, D(C) is the image of D(B) via J, so that if y belongs
to D(C), then it must be twice differentiable with y′′ ∈ BUC(R+) and
y′(t) = 0, being the restriction of an x ∈ BUCe(R). On the other hand,
if y is twice differentiable with y′′ ∈ BUCe(R), and y′(0) = 0, then the
function x defined as x(τ) = y(|τ |) is certainly twice differentiable in
R \ {0}, and

x′(τ) =
τ

|τ |y
′(|τ |), x′′(τ) = y(|τ |), τ 
= 0.

Also, the right-hand derivative of x at zero equals limτ→0+
x(τ)−x(0)

τ =
limτ→0+

y(τ)−y(0)
τ = y′(0) = 0; and, analogously, the left-hand derivative

equals −y′(0) = 0. Thus, x′(0) exists and equals 0. Finally,

lim
τ→0

x′(τ) − x′(0)
τ

= lim
τ→0

y′(|τ |)
|τ | = lim

σ→0+

y(σ)
σ

= y′′(0).

So, x belongs to D(B) and y = Jx, which proves that D(C) is the set
described in (8.1).

As a result, for any y ∈ D(C), the function y(t, τ) = T r
t y(τ) is the

unique solution to the following Cauchy problem:

∂y(τ, t)
∂t

=
1
2
∂2y(τ, t)
∂τ2

, τ > 0, y′(0, t) = 0, y(τ, 0) = y(τ). (8.2)

We may write an explicit formula for T r
t :

T r
t y(τ) = JStJ

−1y(τ) = StJ
−1y(τ) = E J−1y(τ + w(t))

= E y (|τ + w(t)|) . (8.3)

We may also write:

T r
t y(τ) = E 1τ+w(t)≥0y[τ + w(t)] + E 1τ+w(t)<0y[−(τ + w(t))]

=
1√
2πt

∫ ∞

0

y(σ)e−
(σ−τ)2

2t dσ +
1√
2πt

∫ 0

−∞
y(−σ)e−

(−(σ−τ))2

2t dσ

=
1√
2πt

∫ ∞

0

y(σ)e−
(σ−τ)2

2t dσ +
1√
2πt

∫ ∞

0

y(σ)e−
(σ+τ)2

2t dσ

=
∫ ∞

0

y(σ)k(t, τ, σ) dσ, (8.4)
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where

k(t, τ, σ) =
1√
2πt

[
e−

(σ−τ)2

2t + e−
(σ+τ)2

2t

]
. (8.5)

Equivalently,

T r
t y(τ) =

∫ ∞

0

y(σ)K(t, τ, dσ) (8.6)

where for fixed t and τ, K(t, τ, ·) is a measure on R+ with density
k(t, τ, σ). In other words, k(t, σ, τ) is a density of the random variable
|τ + w(t)|, and K(t, τ, ·) is its distribution.

We note that

(T r
t T

r
sx)(τ) =

∫
R+

(T r
sx)(σ)K(t, τ, dσ)

=
∫

R+

∫
R+
x(ς)K(s, σ, dς)K(t, τ, dσ). (8.7)

On the other hand, by the semigroup property this equals

(T r
t+sx)(τ) =

∫
R+
x(ς)K(t+ s, τ, dς).

Applying 1.2.20 to the measures
∫

R+ K(s, σ, ·)K(t, τ, dσ) and K(t +
s, τ, ·) we obtain the Chapman–Kolmogorov equation:∫

R+
K(s, σ,B)K(t, τ, dσ) = K(t+ s, τ, B). (8.8)

8.1.2 Exercise Let t > 0. Show that there is no measure µ such that
T r
t = Tµ in the sense of 2.3.17. (Look for the hint there!)

8.1.3 Exercise Let BUCn(R) be the space of odd functions in
BUC(R) (‘n’ stands for “not even”). Show that the Brownian motion
semigroup leaves this subspace invariant.

The process wr(t) = |τ+w(t)| is termed reflected Brownian motion
starting at τ ≥ 0. More generally, if w(t), t ≥ 0, is a Brownian motion
and X is a non-negative independent random variable, then wr(t) =
|X + w(t)| is a reflected Brownian motion with initial distribution PX .

Though it has continuous paths, reflected Brownian motion is not a
Lévy process, as it is not space homogeneous (see Exercise 8.1.2, above).
It belongs to a more general class of Markov processes. Similarly, the
Chapman–Kolmogorov equation (8.8) is a more general principle than
(7.46) – see 8.1.12.



8.1 Semigroups of operators related to Markov processes 297

8.1.4 Definition A process Xt, t ≥ 0 is said to be a Markov process
if for every t ≥ 0, the σ-algebra σ{Xs, s ≥ t} depends on Ft = σ{Xs, s ≤
t} only through σ(Xt) – see 3.3.20. This is often expressed shortly by
saying that the future (behavior of the process) depends on the past only
through the present. Equivalently, by 3.3.20 we say that the past depends
on the future only through the present, or that given the present, the
future and the past are independent.

8.1.5 Remark The definition of a Markov process remains the same
when we treat the case where Xt, t ≥ 0, are random vectors or, even
more generally, random elements, i.e. measurable functions with values
in an abstract measurable space (S,F); S is quite often a topological
space and F is the σ-algebra of Borel subsets of S.

8.1.6 Equivalent conditions In checking whether a process is Markov,
it is convenient to have a condition that is equivalent to the above defi-
nition but may turn out to be easier to check. To this end, we note that
if X(t), t ≥ 0, is a Markov process then, for every n and t ≤ t1 ≤ ... ≤ tn
and Borel sets Bi, i = 1, ..., n,

P(X(ti) ∈ Bi, i = 1, ..., n |Ft) = P(X(ti) ∈ Bi, i = 1, ..., n |X(t)). (8.9)

On the other hand, this condition implies that X(t), t ≥ 0, is Markov.
Indeed, for any A ∈ Ft, both sides of the equation

P(A ∩B) =
∫
A

E(1B |X(t)) dP

are finite measures as functions ofB, and (8.9) shows that these measures
are equal on the π-system of sets of the form B = {X(ti) ∈ Bi, i =
1, ..., n}, Bi ∈ B(R), that generates Ft. Hence, our claim follows by the
the π–λ theorem.

Yet another, still simpler condition for the process to be Markov is

P(X(s) ∈ B |Ft) = P(X(s) ∈ B |X(t)), s ≥ t, B ∈ B(R). (8.10)

Clearly, (8.9) implies (8.10). To see the other implication, we note first
that by a standard argument, (8.10) implies

E(f(X(s))|Ft) = E(f(X(s))|X(t)) (8.11)

for any bounded, Borel measurable function f . Next, taking t1 ≤ t2
larger than t, using the tower property and the fact that the 1X(t1)∈B1
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is Ft1 measurable, we calculate P(X(t1) ∈ B1, X(t2) ∈ B2|Ft) as

E
(
1X(t1)∈B11X(t2)∈B2 |Ft

)
= E

(
E
(
1X(t1)∈B11X(t2)∈B2 |Ft1

)
|Ft
)

= E
(
1X(t1)∈B1E

(
1X(t2)∈B2 |Ft1

)
|Ft
)

= E
(
1X(t1)∈B1E

(
1X(t2)∈B2 |X(t1)

)
|Ft
)

with the last equality following by (8.9). Now, since E
(
1X(t2)∈B2 |X(t1)

)
is σ(X(t1)) measurable, it equals g(X(t1)) for some Borel measurable g.
Hence, by (8.10), the last conditional expectation equals

E
(
1X(t1)∈B1E

(
1X(t2)∈B2 |X(t1)

)
|X(t)

)
= E

(
E
(
1X(t1)∈B11X(t2)∈B2 |Xt1

)
|X(t)

)
= E

(
1X(t1)∈B11X(t2)∈B2 |X(t)

)
,

establishing (8.9) for n = 2. The reader should find it an easy exercise
now to give the details of an induction argument leading from (8.10) to
(8.9).

8.1.7 Easy exercise Give these details.

8.1.8 Exercise Show that a process X(t), t ≥ 0, is Markov iff (8.11)
holds for all f ∈ C(R) (see 6.5.6).

8.1.9 Lévy processes are Markov The class of Lévy processes is a sub-
class of the class of Markov processes. To see that, let X(t), t ≥ 0, be
a Lévy process. We need to show that (8.11) holds for all f ∈ C(R)
(see Exercise 8.1.8 above). Since X(s) may be written as the sum of
two independent random variables X(s) −X(t) and X(t), it suffices to
show that if X and Y are random variables, X is independent from a
σ-algebra F and Y is F measurable, then

E(f(X + Y )|F) = E(f(X + Y )|Y ), f ∈ C(R). (8.12)

Now, if f ∈ C(R), then (τ, σ) �→ f(τ + σ) is a member of C(R2). Hence,
by 6.5.7, E(f(X+Y )|F) =

∫
R
f(τ+Y ) PX( dτ). By the Fubini Theorem,

σ �→
∫

R
f(τ + σ) PX( dτ) is Borel measurable. Hence, ω �→

∫
R
f(τ +

Y (ω)) PX( dτ) is a well-defined, σ(Y ) measurable random variable. This
implies (8.12).

8.1.10 Exercise Show that the reflected Brownian motion is a Mar-
kov process.
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8.1.11 Transition functions of Markov processes The distribution of
the position of a Markov process at time t given that at time s it was at
τ is in general a function of both s and t. Markov processes for which
it does depend on s and t only through the difference t − s are termed
time-homogeneous Markov processes. In what follows, we consider
only such processes.

The kernel K related to the reflected Brownian motion is an ex-
ample of a transition function. The transition function of a (time-
homogeneous) Markov process is a function K(t, τ, B) (‘K’ for “kernel”)
of three variables t ≥ 0, p ∈ S,B ∈ F , where (S,F) is a measurable
space; S is the set of possible values of the process; K satisfies the fol-
lowing properties.

(a) K(t, p, ·) is a probability measure on (S,F), for all t ≥ 0, p ∈ S.

(b) K(0, p, ·) = δp (delta measure at p).
(c) K(t, ·, B) is measurable for all t ≥ 0 and B ∈ F .
(d) The Chapman–Kolmogorov equation is satisfied:∫

S

K(s, q, B)K(t, p, dq) = K(t+ s, p,B). (8.13)

We say that a family {X(t), t ≥ 0} of random variables on a probability
space (Ω,F ,P) with values in S is a Markov process with transition
function K if for t > s:

P(X(t) ∈ B|X(s)) = K(t− s,X(s), B), B ∈ B(S). (8.14)

Hence, the measure K(t, p, ·) is the distribution of the position of the
process at time t given that at time zero it started at p.

8.1.12 Exercise Let {µt, t ≥ 0} be a convolution semigroup of mea-
sures, and let K(t, τ, B) = µt(B − τ). Prove that K is a transition
function, and in particular that the Chapman–Kolmogorov equation is
satisfied.

8.1.13 Example If S = N, a measure µ on S may be identified with
a sequence x = (ξn)n≥1 where ξn = µ({n}). Similarly, given a transition
function K on N we may define pn,m(t) = K(t, n, {m}), n,m ≥ 1, t ≥ 0.
Then, pn,n(0) = 1, pn,m(0) = 0, n 
= m, pn,m ≥ 0 and

∑
m≥1 pn,m = 1.

Moreover, by the Chapman–Kolmogorov equation pn,m(s+ t) = K(s+
t, n, {m}) =

∫
N
K(s,m, {n})K(t, n, dm) =

∑
m≥1 pm,n(s)pn,m(t). In

other words, P (s)P (t) = P (s + t) where P (t) = (pn,m(t))n,m≥1 in the
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sense of multiplication of matrices. Such a family of matrices is called a
semigroup of transition matrices.

Conversely, given a semigroup of transition matrices {P (t), t ≥ 0},
P (t) = (pn,m(t))n,m≥1 , t ≥ 0, we may define a transition function by
K(s, n,B) =

∑
m∈B pn,m(s), B ⊂ N. The details are left to the reader.

8.1.14 Example The Ornstein–Uhlenbeck process Given α, γ > 0
and a Wiener process w(t), t ≥ 0, we define the Ornstein–Uhlenbeck
process starting at 0 as

X(t) = γe−αt
∫ t

0

eαs dw(s).

We follow Breiman [19] to show that it is a Gaussian process and a
time-homogeneous Markov process, and find its transition function. Let
k ∈ N and 0 = t0 < t1 < ... < tk be given. Define ∆wi,j,n = w(si+1,j,n)−
w(si,j,n), si,j,n = tj−1 + i

n (tj − tj−1), i = 0, ..., n− 1, j = 1, ..., k, n ∈ N.
Then,

X(tj) = γe−αtj
j∑
l=1

∫ tl

tl−1

eαs dw(s) (8.15)

= γe−αtj lim
n→∞

j∑
l=1

n−1∑
i=0

eαsi,l,n∆wi,l,n

with the limit in L2(Ω). Therefore, for any coefficients ai, i = 1, ..., k,∑k
j=1 ajX(tj) is the limit of γ

∑k
l=1 bl

∑n−1
i=0 eαsi,l,n∆wi,l,n where bl =∑k

j=l aje
−αtj . By Theorem 4.1.5, the approximating sum being normal

as the sum of independent normal random variables,
∑k
j=1 ajX(tj) is

normal, too. Using (8.15) again, by independence of increments of the
Brownian motion and E(∆i,1,n)2 = t1

n ,

E X(t2)X(t1) = lim
n→∞

γ2e−α(t1+t2)
n−1∑
i=0

n−1∑
l=0

eα(si,1,n+sl,1,n)E∆i,1,n∆l,1,n

+ lim
n→∞

γ2e−α(t1+t2)
n−1∑
i=0

n−1∑
l=0

eα(si,1,n+sl,2,n)E∆i,1,n∆l,2,n

= lim
n→∞

γ2e−α(t1+t2)
n−1∑
i=0

e2αsi,1,n
t1
n

= γ2e−α(t1+t2)

∫ t1

0

e2αs ds.
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For s > t, let Z = Z(s, t) = X(s) − e−α(s−t)X(t). Z is a normal
variable with mean 0. Also, for r ≤ t,

EZX(r) = γ2e−α(r+s)

∫ r

0

e2αu du− γ2e−α(s−t)e−α(t+r)

∫ r

0

e2αu du = 0,

proving that Z is independent of X(r). Therefore, Z is independent of
Ft = σ(X(r), r ≤ t). Furthermore, this allows us to compute the variance
of Z to be

EZ2 = EZX(s) = γ2e−2αs

∫ s

0

e2αu du− γ2e−α(s−t)e−α(s+t)

∫ t

0

e2αu du

= γ2e−2αs

∫ s

t

e2αu du =
γ2

2α
(1 − e−2α(s−t)).

Consequently, using 6.5.7, for any f ∈ C(R), E(f(X(s))|Ft) equals
E(f(Z+e−α(s−t)X(t))|Ft) =

∫
R
f(τ+e−α(s−t)X(t)) PZ( dτ). As in 8.1.9,

we argue that this is E(f(X(s))|X(t)), and, as in Exercise 8.1.8, extend
this relation to all f ∈ BM(R). This shows that the Ornstein–Uhlenbeck
process is a Markov process. Moreover, taking f = 1B , B ∈ B(R), we
have P(X(s) ∈ B|X(t)) =

∫
R

1B(τ + e−α(s−t)X(t)) PZ( dτ) = P(Z ∈
B − e−α(s−t)X(t)). In other words, since Z ∼ N(0, γ

2

2α (1 − e−2α(s−t))),
K, defined to be, for any t > 0 and τ ∈ R, the distribution of a normal
variable with mean e−αtτ and variance γ2

2α (1 − e−2αt), is a transition
function of this process. Clearly, the Ornstein–Uhlenbeck process is a
time-homogeneous Markov process.

8.1.15 Semigroups of operators related to transition functions of Markov
processes With a transition function one may associate a family of
operators in BM(S) by

(Utµ)(B) =
∫
S

K(t, p, B)µ( dp); (8.16)

it is clear that Utµ is a measure. In particular, if µ is a probability
measure, then Utµ is a probability measure. Moreover, by the Chapman–
Kolmogorov equation, {Ut, t ≥ 0} is a semigroup of operators. To check
that ‖Ut‖ = 1, t ≥ 0, we may use the minimal representation of a charge,
as described in 1.3.6, and the fact that Ut maps non-negative measures
into non-negative measures.

Formula (8.16) has a clear interpretation: if X(t), t ≥ 0, is a Markov
process with transition function K and initial distribution µ, then Utµ is
the distribution of the process at time t. However, at least historically,
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instead of dealing with this semigroup directly, it has been easier to
consider the semigroup

Ttx(p) =
∫
S

x(q)K(t, p, dq), t ≥ 0, (8.17)

defined in BM(S). This semigroup is dual to {Ut, t ≥ 0} in the sense
that we may treat a member of BM(S) as a functional on BM(S) given
by µ �→

∫
S
xdµ =: (x, µ), and we have (x,Ut) = (Ttx, µ). To be more

specific: the dual to Ut coincides with Tt on BM(S). Clearly, ‖Tt‖ = 1,
and Tt1S = 1S , t ≥ 0.

Note that in contradistinction to the case of Lévy processes, when
S = R we may not claim that this semigroup maps C0(R) or BUC(R)
into itself. In general, all we may claim is that it maps BM(S) into itself.
Also, the operators Tt are non-negative in that they leave the cone of
non-negative functions invariant. If S is locally compact and the semi-
group leaves C0(S) invariant and is a strongly continuous semigroup as
restricted to this subspace, we say that {Tt, t ≥ 0} is a Feller semigroup,
that the related process is a Feller process, and/or that the kernel K
is a Feller kernel. We note that Lévy processes are Feller processes.

8.1.16 Example Let S = N. The space of measures on N is isometri-
cally isomorphic with l1(N), the space of absolutely summable sequences
x = (ξn)n≥1 . Moreover, BM(S) is isometrically isomorphic with l∞, the
space of bounded sequences y = (ηn)n≥1. For a transition family given
by a semigroup of transition matrices P (t) = (pn,m(t))n,m≥1 , t ≥ 0,
the semigroup {Ut, t ≥ 0} in l1 is given by Utx = (σn(t))n≥1 where
σn(t) = (Utx)({n}) =

∑∞
m=1 pm,n(t)ξm. In other words, Utx is the ma-

trix product xP (t) where x is treated as a horizontal vector. Similarly,
the semigroup {Tt, t ≥ 0} in l1 is given by Tty = (ςn(t))n≥1 , where
ςn(t) =

∑∞
m=1 ηmpn,m(t). In other words, Ttx is the matrix product

P (t)y where y is treated as a vertical vector.

8.1.17 Semigroups in C(S) and transition kernels Let S be a com-
pact space and {Tt, t ≥ 0} be a semigroup of non-negative contraction
operators in C(S) such that Tt1S = 1S . Then, there exists the unique
transition function K such that (8.17) holds for all x ∈ C(S).

Proof For p ∈ S and t ≥ 0, the map x �→ Ttx(p) is a non-negative
linear functional in that x ≥ 0 implies Ttx(p) ≥ 0. Also it is bounded
with the norm not exceeding ‖Tt‖ = 1. By the Riesz Theorem, there
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exists a Borel measure K(t, p, ·) such that (8.17) holds. Since Tt1S = 1S ,
K(t, p, ·) is a probability measure.

We will show that K is a transition function. Clearly, conditions (a)
and (b) of Definition 8.1.11 are satisfied, the latter following by T0x = x.

We need to show (c) and (d).
We provide the proof in the case of a metric space. The argument in

the general case is similar, but more technical. If S is a metric space
and B is a closed set, then 1B may be approximated by a pointwise
limit of continuous functions, say xk, k ≥ 1, as in the proof of 5.6.3.
Then,

∫
S
xk(q)K(t, p, dq) converges to K(t, p, B). On the other hand, by

(8.17), K(t, p, B) is a pointwise limit of continuous, hence measurable,
functions Ttxk(p). This shows (c) for closed B. Now, the family of sets
B for which K(t, ·, B) is measurable is a λ-system. Since the Borel σ-
algebra is generated by the π-system of closed sets, by the π–λ theorem,
K(t, ·, B) is measurable for all Borel B.

Note that by the semigroup property we have (compare the final part
of the argument in 8.1.1):∫
S

∫
S

x(r)K(s, q, dr)K(t, p, dq) =
∫
S

x(r)K(t+ s, p, dr), x ∈ C(S).

Approximating 1B by continuous functions xk as above, we obtain the
Chapman–Kolmogorov equation with closed B, and then, extend the
result to all Borel sets.

Uniqueness follows directly from (8.17) and the Riesz Theorem.

8.1.18 Exercise Show that an operator T in BM(S) (or BC(S)) is
a non-negative contraction iff 0 ≤ Tx ≤ 1 provided 0 ≤ x ≤ 1.

8.1.19 Exercise Show that if K is a transition function of a Markov
process {X(t), t ≥ 0}, then Tsx(X(t)) = E(x(X(t+ s))|Ft), where Ft =
σ(X(u), u ≤ t).

8.1.20 Exercise Let {X(t), t ≥ 0} be a Lévy process. Show that the
corresponding semigroup is given by Ttx(τ) = E x(τ +X(t)).

8.1.21 Exercise Let {X(t), t ≥ 0} be the Ornstein–Uhlenbeck process
constructed by means of a Brownian motion {w(t), t ≥ 0}. Show that
the corresponding semigroup is given by Ttx(τ) = E x(e−αtτ +w(β(t)))
where β(t) = γ2

2α (1 − e−2αt).
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8.1.22 The minimal Brownian motion A slight change in the reasoning
from 8.1.1 leads to another interesting process known as the minimal
Brownian motion. By Exercise 8.1.3, the Brownian motion semigroup
leaves the space BUCn(R) invariant. On the other hand, this space is
isomorphic to BUC0(R+) of uniformly continuous functions x on R+

that vanish at τ = 0. The isomorphism I : BUC0(R+) → BUCn(R)
is given by (Ix)(τ) = sgn(τ)y(|τ |), x ∈ BUC0(R+). The inverse I−1 is
given by I−1y(τ) = y(τ), τ ≥ 0, y ∈ BUCn(R). We define the semigroup
{Tm

t , t ≥ 0} in BUC0(R+) as the semigroup isomorphic to the restriction
of Tt to BUCn(R). Calculating as in (8.3) one obtains:

(Tm
t x)(τ) = E sgn(τ + w(t))x(|τ + w(t)|). (8.18)

Moreover,

Tm
t x(τ) =

∫ ∞

0

x(σ)K(t, τ, dσ) (8.19)

where K(t, τ, ·) is the measure with density

k(t, τ, σ) = e−
(τ−σ)2

2t − e−
(τ+σ)2

2t . (8.20)

The generator Am of Tm
t is given by: Amx = 1

2x
′′, on the domain

D(Am) composed of x ∈ BUC0(R+) that are twice differentiable with
x′′ ∈ BUC0(R+). For any x ∈ D(Am), the function x(t) = Tm

t x is a
unique solution to the Cauchy problem

∂x(τ, t)
∂t

=
1
2
∂2x(τ, t)
∂τ2

, τ > 0, x(0, t) = 0, x(τ, 0) = x(τ). (8.21)

The process introduced in this way may be described as follows: after
starting at τ > 0, it evolves as a free Brownian motion until it touches
the barrier τ = 0. At this moment, it disappears from the space. This
process is termed the minimal Brownian motion.

As a result, the distribution K(t, τ, ·) with density (8.20) is not a
probability measure, for there is a positive probability that at time t the
process will no longer be in the space. To accommodate such situations,
in Definition 8.1.11 (a) the requirement that K(t, τ, ·) is the probability
measure is relaxed and it is assumed that K(t, τ, S) ≤ 1, instead. An-
other way of dealing with such phenomena is to introduce an additional
point ∆, referred to as the cemetery (or coffin state), where all the
disappearing trajectories of the process are sent and from where none of
them ever returns. More details about this in the next example and in
8.1.26.

Note, finally, that the state space S of the minimal Brownian motion is
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the open half-axis R+
∗ , while the state of the reflected Brownian motion

is R+.

8.1.23 Exercise Using the procedure from 8.1.1 construct the semi-
group related to “reflected Cauchy process” and a “minimal Cauchy
process”. Construct also “reflected” and “minimal” compound Poisson
process from the compound Poisson process defined in 7.5.8 with sym-
metric distribution of Yn.

8.1.24 Absorbed Brownian motion Let K(t, τ, B), t ≥ 0, τ > 0, be
the transition function on R+

∗ related to the minimal Brownian motion.
Define K̃(t, τ, B) on R+ by K̃(t, 0, B) = 1B(0) and

K̃(t, τ, B) = K(t, τ, B)1B�(0) + [1 −K(t, τ,R+
∗ )]1B(0), τ > 0. (8.22)

Note that [1 −K(t, τ,R+
∗ )] is the probability that, at time t, the mini-

mal Brownian motion that started at τ is no longer in R+
∗ . Therefore,

the above formula says that we modify the minimal Brownian motion
by requiring that after the process touches the barrier τ = 0 it stays
there for ever. This new process is termed the absorbed Brownian
motion. The procedure just described is of course a particular case of
the procedure from the previous subsection with ∆ = 0. The reader will
check that K̃ is a transition function in R+.

Define the operators T a
t in BUC(R+) by

T a
t x(τ) =

∫
R+
x(σ)K̃(t, τ, dσ), t ≥ 0. (8.23)

If {Tm
t , t ≥ 0} denotes the semigroup of the minimal Brownian motion,

then by (8.22),

T a
t x = x(0)1R+ + Tm

t (x− x(0)1R+);

note that x− x(0)1R+ belongs to BUC0(R+). Using this and the semi-
group property and strong continuity of {Tm

t , t ≥ 0} we see that {T a
t , t ≥

0} is a strongly continuous semigroup. Furthermore,

T a
t x− x

t
=
Tm
t [x− x(0)1R+ ] − [x− x(0)1R+ ]

t
,

proving that x belongs to the domain D(Aa) of the infinitesimal gener-
ator of {T a

t , t ≥ 0} iff x− x(0)1R+ belongs to the domain D(Am) of the
infinitesimal generator of {Tm

t , t ≥ 0}. Thus, Aax = 1
2x

′′, on the domain
D(Aa) composed of x ∈ BUC(R+) that are twice differentiable with
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x′′ ∈ BUC(R+). Moreover, for any x ∈ D(Aa), the function x(t) = T a
t x

is the unique solution to the Cauchy problem

∂x(τ, t)
∂t

=
1
2
∂2x(τ, t)
∂τ2

, τ > 0, x′′(0, t) = 0, x(τ, 0) = x(τ). (8.24)

8.1.25 Remark Subsections 8.1.1, 8.1.22 and 8.1.24 illustrate the fact
that the behavior of a Markov process on a boundary (in our case at the
point τ = 0) is reflected in the form of the domain of the infinitesimal
generator of the process, and, consequently in the boundary condition
of the related Cauchy problem. The boundary condition x′(0) = 0 corre-
sponds to reflection, x′′(0) = 0 corresponds to absorption, and x(0) = 0
describes the fact that the process disappears from the space upon touch-
ing the boundary (sometimes called a non-accessible boundary). Elastic
Brownian motion, a process with still another type of behavior at the
boundary, sometimes called the sticky barrier phenomenon, will be in-
troduced in 8.2.18 below. See [58], [88], [100], [109] for more about this
fascinating subject.

8.1.26 Semigroups in C0(S) and transition functions Let S be a lo-
cally compact space (but not a compact space) and let S∆ be the one-
point compactification of S. Let {Tt, t ≥ 0} be a semigroup of non-
negative contraction operators in C0(S). Then, there exists the unique
transition function K on S∆ such that (8.17) holds for all x ∈ C0(S),
and K(t,∆, ·) = δ∆.

Proof We will show that the operators

T∆
t x = x(∆)1S∆ + Tt(x− x(∆)1S∆)

form a semigroup of non-negative contraction operators in C(S∆). The
semigroup property of {T∆

t , t ≥ 0} follows directly from the semigroup
property of {Tt, t ≥ 0}.

For y ∈ C0(S) let y+ = max(x, 0) and y− = max(0,−x). Both y+ and
y− belong to C0(S) and we have y = y+ − y−. Since Tty = Tty

+ − Tty
−

and the elements Tty+ and Tty
− are non-negative, (Tty)+ ≤ Tty

+. For
x ∈ C(S∆) let y = x−a1S∆ , where a = x(∆). To prove that the operators
Tt are non-negative, we need to show that a1S∆ + Tty ≥ 0 provided
a1S∆ +y ≥ 0. The inequality a1S∆ +y ≥ 0, however, implies y− ≤ a and,
hence, ‖y−‖ ≤ a. Since Tt, t ≥ 0 are contraction operators, ‖Tty−‖ ≤ a,

i.e. Tty− ≤ a1S∆ . Hence, a1S∆ + Tty = a1S∆ + Tty
+ − Tty

− ≥ 0, as
desired.
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Using non-negativity and T∆
t 1S∆ = 1S∆ , since |x| ≤ ‖x‖1S∆ , we have

|Ttx| ≤ Tt‖x‖1S∆ = ‖x‖1S∆ . This implies ‖Tt‖ ≤ 1, as desired.
Therefore, there exists a transition function on S∆ such that

T∆
t x(p) =

∫
S∆

x(q)K(t, p, dq), p ∈ S∆.

This implies (8.17) with x ∈ C0(S); for such x integrals over S∆ and S

are the same. The rest follows by T∆
t x(∆) = x(∆).

8.1.27 Remark In general K(t, p, S) ≤ 1, p ∈ S as K(t, p, {∆}) ≥ 0.

8.1.28 Pseudo-Poisson process Let K(p,B) be a probability measure
on a measurable space (S,F) for each p ∈ S, and a measurable function if
B ∈ F is fixed. Let us defineKn, n ≥ 0, inductively byK0(p,B) = 1B(p)
and Kn+1(p,B) =

∫
S
Kn(q,B)K(p, dq). In particular, K1 = K. By

induction one shows that Kn, n ≥ 0, are probability measures for each
fixed p ∈ S, and measurable functions if B ∈ F is fixed.

Now, for a given a > 0 define K(t, p, B) as
∑∞
n=0 e−at a

ntn

n! K
n(p,B).

Then, conditions (a)–(c) of Definition 8.1.11 hold. Probably the easiest
way to prove the Chapman–Kolmogorov equation is to note that the
semigroup (Stx)(p) =

∫
R
x(q)K(t, p, dq) related to these measures is

given by St = e−ateatK . Here K is the operator (Kx)(p) =
∫
S
x(q)

K(p, dq).
The operatorK and the semigroup {St, t ≥ 0} act in the space BM(S)

of bounded measurable functions on S. The infinitesimal generator of
{St, t ≥ 0} is a(K − I). The reader should write the Cauchy problem of
which xt = Stx is a solution for x ∈ BM(S).

The realization of the process with transition function defined above
looks as follows. Suppose that the process starts at p ∈ S. Then, it stays
there for a random, exponential time with parameter a. Next, it jumps
to a random point q and the distribution of its position after this jump
is K(p, ·). The process continues in the same way later. This is the so-
called pseudo-Poisson process, compare 7.5.8. It is interesting that
all Markov processes are limits of pseudo-Poisson processes: this is a by-
product of Yosida’s proof of the Hille–Yosida theorem. See Section 8.2,
below.

8.1.29 Example Markov property and the Poisson formula The
Markov property of a process may exhibit itself in interesting analytic
ways. The example we want to present now involves the classical Pois-
son formula for the solution of the Dirichlet problem in a disc. The
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Dirichlet problem in a disc may be posed in the following way: given a
continuous function φ0 on a unit circle C on the complex plane find a
function φ continuous in the unit disc, where |z| ≤ 1, and harmonic in
the open unit ball, where |z| < 1. In other words, we want to have a
continuous function such that

∆φ(x, y) =
∂2φ

∂x2
(x, y) +

∂2φ

∂y2
(x, y) = 0, x2 + y2 < 1,

φ(x, y) = φ0(x, y), x2 + y2 = 1.

It turns out that this problem is well-posed and the unique solution is
given by (see e.g. [95], [97], [103])

φ(x, y) =
∫ π

−π
pr(ei(α−θ))φ0(eiθ) dθ = φ0 ∗ pr(eiα) (8.25)

where x = r cosα, y = r sinα (0 ≤ r < 1), and pr is the Poisson kernel
defined in Exercise 1.2.29. In this exercise the reader has checked (I hope
he did) that pr ≥ 0,

∫ π
−π rr(θ) dθ = 1, and pr ∗ ps = prs, 0 ≤ r, s < 1.

The first two relations have a nice interpretation once we know that
(see e.g. [103]) the space of harmonic functions in the unit disc (harmonic
in the open disc, continuous in the disc) is isometrically isomorphic to
the space of continuous function on the unit circle, both spaces with
supremum norm. Hence, the map φ0 �→ φ �→ φ(x, y) is a bounded,
non-negative linear functional. Since this functional may be proven to
have norm one (by the so-called maximum principle), there must exist
a probability measure Px,y on C such that φ(x, y) =

∫
C
φ(eiθ) Px,y( dθ).

By (8.25), pr(ei(α−·)) is a density of this measure.
A still deeper insight is given by the following probabilistic solution

to the Dirichlet problem (see [34], [93], [113] etc., or the classic [30]):

φ(x, y) = E φ0((x, y) + w(τ)), (8.26)

where w(t), t ≥ 0, is a two-dimensional Brownian motion (i.e. a pair of
independent one-dimensional Brownian motions) and τ is the random
time when (x, y) + w(t) touches the unit circle for the first time.

A word of explanation is needed here. As we have seen, at any time
t, a Markov process starts afresh, forgetting the whole past. Some pro-
cesses, the two-dimensional Brownian motion among them, possess the
stronger property, the strong Markov property and start afresh at
some random times. These times are Markov times τ , i.e., similarly to
3.7.11, at time t we must know whether τ has happened or not. In other
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words, {τ ≤ t} ∈ Ft where Ft is an appropriate filtration. The time of
touching the unit circle for the first time is a Markov time. After that,
the Brownian motion starts afresh.

Armed with this knowledge, let us rewrite the last of the three prop-
erties of the Poisson kernel as

p r
s
∗ ps = pr, (8.27)

where it is assumed that 0 ≤ r < s < 1. Comparing (8.25) and (8.26) we
see that ps(ei(α−·)) is the density of distribution of the position of the
process seiα + w(t) at the time when it touches the unit circle for the
first time. Hence, using the scaling property of the Brownian motion we
may show that p r

s
(ei(α−·)) is the distribution of the process reiα + w(t)

when it touches the circle with radius s for the first time. After starting
at riα where r < s, and before touching the unit circle for the first
time, the process must touch the circle with radius s. Formula (8.27)
expresses thus the fact that after touching the circle with radius s the
process starts afresh. Conditional on reaching the circle with radius s
at a point seiθ, the distribution of the position at the time of touching
the unit circle is given by the kernel ps(ei(θ−·)), and the unconditional
distribution is obtained by integration over positions seiθ. In this sense,
(8.27) is very similar to the Chapman–Kolmogorov equation.

8.2 The Hille–Yosida Theorem

Given a transition family K one may construct a Markov process such
that (8.14) holds (see e.g. [38], [113]). However, transition functions are
rarely given explicitly, and the same is true about the semigroups of oper-
ators. Therefore, instead of giving an explicit formula for the semigroup
or specifying the appropriate transition function, we often restrict our-
selves to describing the generator of the semigroup. The main theorem
of this section, the Hille–Yosida–Feller–Phillips–Miyadera Theo-
rem,† characterizes operators that are generators of strongly continu-
ous semigroups. Characterization of generators of semigroups defined by
means of transition families will be given in the next section.

8.2.1 The Hille–Yosida Theorem Let X be a Banach space. An op-
erator A : X ⊃ D(A) → X is the generator of a strongly continuous

† Although the original formulation of this theorem was given independently by Hille
and Yosida in the case ω = 0 and M = 1, and the general case was discovered later,
independently by Feller, Phillips and Miyadera, in what follows for simplicity we
will often call this theorem the Hille–Yosida Theorem.
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semigroup {Tt, t ≥ 0} in X such that

‖Tt‖ ≤Meωt, t ≥ 0 (8.28)

for some M ≥ 1 and ω ∈ R (see (7.14)) iff the following three conditions
hold.

(a) A is closed and densely defined.
(b) All λ > ω belong to the resolvent set of A: this means that for all

λ > ω there exists a bounded linear operator Rλ = (λ − A)−1 ∈
L(X), i.e. the unique operator such that (λ − A)Rλx = x, x ∈ X and
Rλ(λ−A)x = x, x ∈ D(A).

(c) For all λ > ω and all n ≥ 1,

‖Rnλ‖ ≤ M

(λ− ω)n
. (8.29)

The proof of this crucial theorem is the main subject of this section.
To be more specific, this section is devoted to the proof of sufficiency
of conditions (a)–(c). This is because necessity of (a)–(c) is proven in
a straightforward manner. In fact, necessity of (a) and (b) was shown
in 7.4.15 and 7.4.32, respectively. To prove (c) we note that according
to 7.4.32, Rλ is the Laplace transform of the semigroup. Hence, by the
semigroup property Rnλx =

∫∞
0
...
∫∞
0

e−λ
∑n

i=1 tiT (
∑n
i=1 ti)xdt1...dtn,

which implies ‖Rnλx‖ ≤M‖x‖
(∫∞

0
e−(λ−ω)t dt

)n
, as desired.

We note that, by 7.4.34, Amay generate only one semigroup; the point
is to prove its existence.

8.2.2 Reduction to the case ω = 0 We note that it is enough to consider
the case ω = 0, i.e. the case where

‖λnRnλ‖ ≤M. (8.30)

Indeed, if A satisfies (a)–(c) then B = A−ω is a closed, densely defined
operator satisfying (a)–(c) with ω = 0 for we have (λ−B)−1 = (λ+ω−
A)−1, λ > 0. Let {St, t ≥ 0} be the semigroup of operators generated
by B; we have ‖St‖ ≤ M . Define Tt = eωtSt. Then, by 7.4.18, the
infinitesimal generator of {Tt, t ≥ 0} is B + ωI = A. Finally, ‖Tt‖ =
eωt‖St‖ ≤ eωtM.

The sufficiency of conditions (a)–(c) in the Hille–Yosida theorem fol-
lows from the following result.
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8.2.3 Theorem Let A be a closed, not necessarily densely defined,
operator in a Banach space X, and let X′ = clD(A). Suppose that all
λ > 0 belong to the resolvent set of A. Then, (8.30) holds iff there exists
a family {U(t), t ≥ 0} of bounded linear operators such that ‖U(t) −
U(s)‖ ≤M(t− s), 0 ≤ s ≤ t, and

λ

∫ ∞

0

e−λtU(t)xdt = Rλx, x ∈ X. (8.31)

In such a case, there exists a strongly continuous semigroup {Tt, t ≥
0} on X′ such that ‖Tt‖ ≤ M, and

∫∞
0

e−λtTtxdt = Rλx, x ∈ X′. In
particular, the infinitesimal generator of {Tt, t ≥ 0} is the operator Ap,
termed the part of A in X′, defined by

D(Ap) = {x ∈ D(A)|Ax ∈ X′}, Apx = Ax.

8.2.4 Definition The family {U(t), t ≥ 0} described above is termed
the integrated semigroup related to A. Clearly, A determines the
Laplace transform of U(t) and hence U(t) itself.

8.2.5 The Yosida approximation The key role in the proof of Theorem
8.2.3 is played by the operators

Aλ = λ2Rλ − λI = λ(λRλ − I), λ > 0,

called the Yosida approximation, and more specifically by their ex-
ponents eAλt which will be shown to approximate Tt, as λ→ ∞. Let us
therefore look at some properties of Aλ and exhibit examples.

8.2.6 Lemma Let A be as in 8.2.3 and assume that (8.30) holds. Then

‖eAλt‖ ≤M, (8.32)

lim
λ→∞

λRλx = x, x ∈ X′, (8.33)

and

lim
λ→∞

Aλx = Ax, x ∈ D(A). (8.34)

Proof Since eAλt = e−λteλ
2Rλt, to show (8.32) it suffices to prove that

‖eλ2Rλt‖ ≤ eλtM, and we write

‖eλ2Rλt‖ ≤
∞∑
n=0

‖λ2nRnλ‖
n!

≤M
∞∑
n=0

λn

n!
= eλtM.

Since D(A) is dense in X′, and ‖λRλ‖ ≤M, it is enough to check (8.33)
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for x ∈ D(A). For such an x, however, by (7.26), λRλx − x = RλAx,

and ‖RλAx‖ ≤ M
λ ‖Ax‖ converges to 0 as λ→ ∞.

Referring to (7.26) again we see that Aλx = λRλAx, x ∈ D(A), so
that (8.34) follows from (8.33).

Let us note that conditions (8.33) and (8.34) are counterparts of 3o

in 7.4.5, and (7.15), respectively.

8.2.7 Example Let us consider the operator A in C0(R) given by
Ax = x′′ for all twice differentiable functions x ∈ C0(R) with x′′ ∈
C0(R). An analysis similar to the one given in 7.3.10 shows that Rλ
exists for all λ > 0 and that λRλ is the operator related to the bi-
lateral exponential distribution, say µλ, with parameter a =

√
2λ (see

7.5.3). Thus, (8.33) expresses the fact that, as λ→ ∞, the µλ converge
weakly to the Dirac measure at 0. Moreover, the exponential of Aλ is the
operator related to the probability measure e−λtetλµλ with exponential
function taken in the sense of the algebra BM(R). By 6.2.9, the Fourier
transform of this measure, a function of ξ ∈ R, equals e−λteλµ̂λ(ξ)t, which

by 6.4.11 equals e−λte
2λ2

2λ+ξ2 t, and tends to e−t
ξ2

2 . By the Continuity The-
orem, e−λteλµλt converges to N(0, t) and so by 5.4.18, eAλt converges to
the operator related to the normal distribution. In other words, eAλt

approximates the Brownian motion semigroup in C0(R).

8.2.8 Example Let A be the operator of first derivative in C0(R) with
suitably chosen (how?) domain. Then λRλ exists for all λ > 0 and is the
operator related to the exponential distribution µλ with parameter λ.
Relation (8.33) has thus a familiar interpretation. Moreover, the Laplace
transform of the measure related to eAλt, a function of ξ > 0, equals
e−λteλ

λ
ξ+λ t and converges to e−ξt, the Laplace transform of the Dirac

measure at t. Hence eAλt converges to the semigroup of translations to
the left, Ttx(τ) = x(τ + t).

8.2.9 Example Let Ax(τ) = ax(τ + 1) − ax(τ), a > 0, x ∈ C0(R)
(or, say, x ∈ BM(R)). One checks that (λ − A)−1 exists for all λ > 0,
and λRλ is the operator related to the geometric distribution µλ with
parameter p = λ

λ+a (see 6.1.5 and 7.5.10). Therefore, the probability
generating function of the probability measure related to eAλt, a function

of s ∈ [0, 1], equals e−λte
λ2

λ+(1−s)a . As λ→ ∞, this converges to e−ate−ast,
which is the probability generating function of the Poisson distribution
with parameter at. In other words, eAλt converges to the semigroup
related to the Poisson process.
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8.2.10 Example Let X = C([0,∞]) be the space of continuous func-
tions on R+ with a limit at infinity. Define the domain D(B) of an oper-
ator B to be the set all differentiable functions x ∈ X such that x(0) = 0
and x′ ∈ X, and set Bx = −x′. The differential equation λx + x′ = 0,
where λ > 0 has infinitely many solutions x(τ) = ce−λτ indexed by the
constant c. However, in D(B) there is only one solution to this equation,
namely the zero function. On the other hand, for any y ∈ X the function
x(τ) =

∫ τ
0

e−λ(τ−ς)y(ς) dς satisfies λx+x′ = y and belongs to D(B) (we
use de l’Hospital’s rule to show that, if additionally y is non-negative, x
has a limit at infinity, and then by linearity extend this claim to all y).
This shows that (λ−B)−1 exists for λ > 0, and we have

‖(λ−B)−1y‖ ≤ sup
τ≥0

∫ τ

0

e−λ(τ−ς) dς ‖y‖ =
∫ ∞

0

e−λς dς ‖y‖ =
1
λ
‖y‖,

so that the estimate (8.30) is satisfied with M = 1. We will show, how-
ever, that the Yosida approximation does not converge. To this end note
first that we have (λ−B)−1y = eλ ∗ y where eλ(τ) = e−λτ . Next, if we
take any continuous function z defined on R with compact support in
R+

∗ then ∫ ∞

0

[(λ−B)−1y](τ) z(τ) dτ =
∫ ∞

0

y(τ)Rλz(τ) dτ

where Rλ is the operator considered in 8.2.8; this is a particular case of
(5.17). Thus,∫ ∞

0

(eBλty)(τ)z(τ) dτ =
∫ ∞

0

y(τ)(eAλtz)(τ) dτ

where Aλ is the Yosida approximation of the operator A from 8.2.8 and
Bλ is the Yosida approximation of B. We know that eAλtz converges
uniformly to the translation of z to the left. For a y with compact support
this implies that the last interval converges to

∫∞
0
y(τ)z(τ+ t) dτ. Hence

if eBλty converges uniformly to some Tty then
∫∞
0
Tty(τ)z(τ) dτ must be

equal to this last integral. Since z is arbitrary, Tty(τ) = 0 for τ < t and
Tty(τ) = y(τ−t) for τ ≥ 0. This is a contradiction as long as we consider
y with y(0) 
= 0, because then Tty defined above is not continuous and on
the other hand is supposed to be a uniform limit of continuous functions.

The reason why the Yosida approximation fails to converge here is the
fact that D(B) is not dense in X; the closure X′ of D(B) is the space of
all x ∈ X with x(0) = 0. The reader has probably noticed that for such
functions the argument presented above does not lead to contradiction
since the function Tty is continuous. In fact one may prove that for
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y ∈ Y, eBλty converges strongly to the semigroup {Tt, t ≥ 0} in Y, of
translations to the right defined above.

8.2.11 Example Let l∞ denote the space of bounded sequences x =
(ξn)n≥1 equipped with the supremum norm, and A be the operator given
byAx = (−nξn)n≥1 defined on the domain D(A) ⊂ l∞ composed of all
x such that (−nξn)n≥1 belongs to l∞. For any λ > 0 and y = (ηn)n≥1 ∈
l∞, the resolvent equation λx − Ax = y is equivalent to the system
of infinitely many equations λξn + nξn = ηn, n ≥ 1, and thus has the
unique solution in D(A) given by ξn = 1

λ+nηn. In other words, λRλy =(
λ

λ+nηn

)
n≥1

, and so ‖λRλ‖ ≤ 1, and the estimate (8.30) is satisfied

with M = 1. Moreover, any x ∈ D(A) is also a member of c0 because
|ξn| ≤ 1

n‖ (nξn)n≥1 ‖, and so X′ is contained in c0. Considering sequences
(ξn)n≥1 that are eventually zero, we prove that X′ actually equals c0.
Despite this fact the Yosida approximation converges for all x ∈ l∞.
Indeed, note first that

eAλtx =
(
e−λte

λ2
λ+n tξn

)
n≥1

=
(
e−

λn
λ+n tξn

)
n≥1

and that limλ→∞ e−
λn

λ+n t = e−nt, t ≥ 0. Defining

Ttx =
(
e−ntξn

)
n≥1

, x ∈ l∞,

we have, for any k ∈ N,

‖Ttx− eAλtx‖ ≤ sup
n≥1

|e− λn
λ+n t − e−nt| ‖x‖

≤ sup
1≤n<k

|e− λn
λ+n t − e−nt| ‖x‖ + 2e−

λk
λ+k t‖x‖ (8.35)

since the sequence e−
λn

λ+n t, n ≥ 1, decreases and, for n ≥ k, e−nt ≤
e−kt ≤ e−

λk
λ+k t. Now, for arbitrary t > 0 and ε > 0 we choose a k so

that 2e−kt < ε
2 ; in fact one such k may be chosen for all t larger than a

given t0. With this k fixed we may choose a λ large enough so that the
supremum in (8.35) is less than ε

2 and so is 2e−
kλ

λ+k t, uniformly in any
interval [t0, t1] where 0 < t0 < t1.

We have thus proven that the Yosida approximation converges for
any x ∈ l∞ uniformly in any interval [t0, t1]. If x belongs to c0, the term
2e−

λk
λ+k t‖x‖ in (8.35) may be replaced by 2 supn≥k |ξn| and consequently

one may prove that for x ∈ c0 the Yosida approximation converges uni-
formly in any interval [0, t1]. The situation is typical in that the Yosida
approximation of a densely defined operator always converges uniformly
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on compact subsets of R+ and, for non-densely defined operators, if it
converges at all, it converges uniformly on compact subintervals of R+

∗ .
To the best of my knowledge, the reason why the Yosida approxima-

tion converges sometimes despite the fact that D(A) is not dense in X

(and such situations happen quite often) is not fully known yet; only
particular cases were studied. In particular there is no useful criterion
for such convergence that would cover all important cases.

8.2.12 Lemma Suppose that the assumptions of 8.2.6 are satisfied.
Then, for all µ, λ > 0,

(µ−Aλ)−1 =
1

λ+ µ
+
(

λ

λ+ µ

)2

R λµ
λ+µ

. (8.36)

Furthermore, limλ→∞(µ − Aλ)−1 = Rµ, and the representations Hλ of
the algebra L1(R+) related to the exponential functions of the Yosida ap-
proximation converge strongly to a representation H such that H(eλ) =
Rλ. In particular, ‖H‖ ≤ lim supλ→∞ ‖Hλ‖ ≤M.

Proof Observe that, by the Hilbert equation,

(I − νRλ)(I + νRλ−ν) = (I + νRλ−ν)(I − νRλ) = I, (8.37)

provided λ − ν > 0, λ, ν > 0. Fix µ, λ > 0. For ν = λ2

λ+µ we have
λ− ν = λµ

λ+µ > 0 and, by (8.37),

(I − νRλ)−1 =
(
I − λ2

λ+ µ
Rλ

)−1

= I +
λ2

λ+ µ
R λµ

λ+µ
.

Thus, for all µ, λ > 0,

(µ−Aλ)−1 =
(
µ+ λ− λ2Rλ

)−1
=

1
λ+ µ

(
I − λ2

λ+ µ
Rλ

)−1

=
1

λ+ µ
+
(

λ

λ+ µ

)2

R λµ
λ+µ

,

proving (8.36).
Observe now that the map R+

∗ � λ→ Rλ is continuous in the operator
norm; indeed, by the Hilbert equation and (8.30),

‖Rλ −Rµ‖ ≤ |λ− µ|M
2

λµ
. (8.38)

Hence limλ→∞(µ−Aλ)−1 = Rµ and the rest follows by 7.4.48.
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8.2.13 Exercise Suppose that (8.30) holds. By (8.32), (µ−Aλ)−1 =∫∞
0

e−µtetAλ dt satisfies ‖(µ−A)−n‖ ≤ M
µn . Prove this estimate directly

using (8.36).

Proof (of Theorem 8.2.3)
(a) If (8.30) holds, then by 7.4.48 (or 7.4.49) and 8.2.12, the limit

U(t) = limλ→∞ Uλ(t), where Uλ(t) =
∫ t
0

eAλs ds, exists in the strong
topology (it exists in the operator topology as well, but we will not need
this result here). Hence, by (8.32), ‖U(t) − U(s)‖ ≤M(t− s), t ≥ s.

Next, for µ > 0,

µ

∫ ∞

0

e−µtU(t) dt = µ lim
λ→∞

∫ ∞

0

e−µt
∫ t

0

eAλs dsdt

= lim
λ→∞

∫ ∞

0

e−µteAλt dt = lim
λ→∞

(µ−Aλ)−1 = Rµ.

Here, the second equality follows by simple calculation (integration by
parts) and the third by Lemma 8.2.12. The first equality is a direct
consequence of the Dominated Convergence Theorem for Banach space
valued functions; since we do not have it at our disposal, however, we
need to establish it in another way. To this end we note that, since both
‖
∫∞
T

e−λtU(t) dt‖ and ‖
∫∞
T

e−λtUλ(t) dt‖, where T > 0, are bounded
by M

∫∞
T

e−λttdt, given ε > 0 we may choose a T such that the norms
of both integrals are less than ε. Hence, it suffices to show that, for
x ∈ X with x 
= 0, Uλ(t)x converges to U(t)x uniformly on any interval
[0, T ]. Given ε > 0, we choose a k ∈ N with k > 3TM‖x‖ε−1. Then,
we choose a λ0 such that for λ > λ0, ‖Uλ(ti)x − U(ti)x‖ < ε

3 , for
i = 0, ..., k, where ti = iT

k . Then, for any t ∈ [0, T ] there exists an
i with |t − ti| ≤ T

k . Therefore, by the triangle inequality applied to
U(t)x−Uλ(t)x = [U(t)x−U(ti)x]+[U(ti)x−Uλ(ti)x]+[Uλ(ti)x−Uλ(t)x],
for λ > λ0, ‖U(t)x− Uλ(t)x‖ < ε, as desired (comp. 5.7.19).

Hence, the family {U(t), t ≥ 0} has the required properties. Con-
versely, suppose that (8.31) is satisfied and ‖U(t) − U(s)‖ ≤ M(t − s).
Let F ∈ X∗ and x ∈ X. The real-valued function t → F (U(t)x) is Lips-
chitz continuous with |F (U(t)) − F (U(s))| ≤ M‖F‖ ‖x‖(t − s). Hence,
it is differentiable almost everywhere and | d

dtF (U(t)x)| ≤ M‖F‖ ‖x‖.
Integrating by parts, F (Rλx) =

∫∞
0

e−λt d
dtF (U(t)x) dt. Hence,

‖Rλ‖ = sup
‖x‖=1

sup
‖F‖X∗=1

|F (Rλx)| ≤
∫ ∞

0

e−λtM dt =
M

λ
. (8.39)

As in (8.38), this implies that λ→ Rλ is continuous. Consequently, using
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an induction argument, by the Hilbert equation (7.33), it is differentiable
with

dn

dλn
Rλ = (−1)nn!Rn+1

λ . (8.40)

On the other hand, for any F and x as above, a direct calculation shows
that

dn

dλn
F (Rλx) =

∫ ∞

0

e−λt(−t)n d
dt
F (U(t)x) dt.

Arguing as in (8.39), we obtain ‖ dn

dλnRλ‖ ≤M
∫∞
0

e−λttn dt = Mn!
λn+1 and

this gives (8.30) by (8.40).
(b) Let x ∈ D(A). Observe that λRλx ∈ D(A), and that A(λRλx) =

λRλAx ∈ D(A) ⊂ X′. This means that if x ∈ D(A), then λRλx ∈ D(Ap).
Moreover, by (8.33), limλ→∞ λRλx = x, proving that D(Ap) is dense in
D(A). Thus, D(Ap) is dense in X′, too.

Let x ∈ D(Ap). We write

eAλtx− x =
∫ t

0

d
ds

eAλsxds =
∫ t

0

eAλsAλxds = Uλ(t)Aλx.

By (8.34), Aλx converges, as λ → ∞, to Ax. Moreover, ‖Uλ(t)‖ ≤ Mt

and the operators Uλ(t) converge strongly to U(t). Hence, the limit

T (t)x = lim
λ→∞

eAλtx = x+ U(t)Ax (8.41)

exists for all x ∈ D(Ap). Since D(Ap) is dense in X′ and we have (8.32),
this limit exists for all x ∈ X′, and ‖T (t)‖L(X′) ≤ M. Clearly eAλtx

belongs to X′ and so does T (t)x. The semigroup property of {T (t), t ≥ 0}
follows from the semigroup property of {eAλt, t ≥ 0}. Furthermore, by
‖U(t)Ax‖ ≤ Mt‖Ax‖, we have limt→0+ T (t)x = x, x ∈ D(Ap). Since
‖T (t)‖ ≤ M and D(Ap) is dense in X′, limt→0+ T (t)x = x, x ∈ X′.
Finally, by (8.31), for x ∈ D(Ap) and λ > 0,∫ ∞

0

e−λtT (t)xdt =
1
λ

(x+RλAx) = Rλx; (8.42)

since the operators on both sides of this equality are bounded andD(Ap)
is dense in X′, this equality is true for all x ∈ X′.

(c) By (8.42) and integration by parts,

λ

∫ ∞

0

e−λt
∫ t

0

T (s)xdsdt = Rλx, x ∈ X′.

Comparing this with (already established) equality (8.31), by 7.4.34,
U(t)x =

∫ t
0
T (s)xdsdt, x ∈ X′. In particular, (8.41) takes on the form
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T (t)x = x +
∫ t
0
T (s)Axds, x ∈ D(Ap). By 7.4.26 this implies that

D(Ap) is a subset of the domain D(G) of the infinitesimal generator
G of {T (t), t ≥ 0}, and Ax = Gx for x ∈ D(Ap). Finally, if x ∈ D(G)
then there exists a y ∈ X′ and a λ > 0 such that x = (λ − G)−1y. On
the other hand, (λ − G)−1y is the Laplace transform of t �→ T (t)y and
hence, by (8.42), equals Rλy. This shows x ∈ D(A). Since y belongs
to X′, Ax = ARλy = λRλy − y ∈ X′, showing that x ∈ D(Ap), i.e.
D(G) ⊂ D(Ap).

8.2.14 Corollary One of the by-products of the proof is that the
semigroup generated by A is the limit, as λ → ∞, of exponential func-
tions eAλt. This important result has many applications, one of them we
will need later is that if the operators Rλ are non-negative, then so are
Tt. The proof of the converse statement is elementary.

8.2.15 Exercise Show that, for all x ∈ X, λ > 0 and t ≥ 0,

T (t)Rλx = U(t)λRλ − U(t)x+Rλx.

8.2.16 The algebraic version of the Hille–Yosida theorem Under as-
sumptions of 8.2.3, (8.30) is satisfied iff there exists a representation H

of L1(R+) in L(X) such that H(eλ) = Rλ, λ > 0, where eλ ∈ L1(R+)
are defined by their representatives eλ(τ) = e−λτ (as in 2.2.49). In such
a case U(t) = H(1[0,t)),

X′ = {x ∈ X|x = H(φ)y, φ ∈ L1(R+), y ∈ X}, (8.43)

and

T (t)x = T (t)H(φ)y = H(S(t)φ)y (8.44)

where {S(t), t ≥ 0} is the semigroup of translations to the right in
L1(R+) defined in 7.4.2.

Proof A direct calculation shows that eλ ∗ eλ(τ) = τe−λτ . More gen-
erally, by induction we show that e∗nλ (τ) = τn−1

(n−1)!e
−λτ . In particular,

‖e∗nλ ‖L1(R+) = 1
λn . Therefore, if H is a representation of L1(R+) such

that H(eλ) = Rλ and ‖H‖ ≤ M, then ‖Rnλ‖L(X) = ‖H(e∗nλ )‖L(X) ≤
M‖e∗nλ ‖L1(R+) = M

λn , i.e. Rλ satisfies (8.30). The other implication was
shown in Lemma 8.2.12.

Next, ‖H(1[0,t)) − H(1[0,s))‖ = ‖H(1[s,t))‖ ≤ M(t − s), t ≥ s, so
that t �→ H(1[0,t)) is continuous and there exists the (improper, Rie-
mann) integral

∫∞
0

e−λtH(1[0,t)) dt which, by Exercise 2.2.49, equals
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H
(∫∞

0
e−λt1[0,t) dt

)
= 1

λH(eλ) = 1
λRλ. By (8.31) and 7.4.34, this im-

plies U(t) = H(1[0,t)).

Furthermore, by H(eλ) = (λ − A)−1, we have D(A) = {x ∈ X|x =
H(eλ)y, y ∈ X} ⊂ X′′ where X′′ is the right-hand side of (8.43). Hence
X′ ⊂ clX′′. Moreover, since eλ, λ > 0, are linearly dense in L1(R+),
X′′ ⊂ X′. Therefore, X = clX′′. Now, Cohen’s Factorization Theorem
shows that X′′ is closed, and (8.43) follows.

Finally, t �→ H(S(t)φ)y is continuous, and bounded by M‖φ‖ ‖y‖;
hence its Laplace transform exists. By 7.4.31, it equals

H(
∫ ∞

0

e−λtS(t)φdt)y = H(eλ ∗ φ)y = H(eλ)H(φ)y = RλH(φ)y.

This shows both (8.44) and the fact that the definition does not depend
on the choice of φ and y but solely on x = H(φ)y.

8.2.17 Remarks (a) Without Factorization Theorem 6.7.1, we could
merely prove that X′ is the closure of the right-hand side of (8.43), and
that (8.44) holds for x of the form x = H(φ)y.

(b) With cosmetic changes, our argument shows existence of both the
integrated semigroup related to A and the semigroup generated by Ap.
In other words, we have an independent proof of (the sufficiency part
of) the Hille–Yosida theorem.

8.2.18 Example Elastic Brownian motions Given a number λ > 0,
and a continuous function y : R+ → R, with a finite limit at infinity, let
us consider the differential equation

λx− 1
2
x′′ = y (8.45)

where x is supposed to be twice continuously differentiable. Fix ε > 0.
We claim that there exists a unique twice continuously differentiable
function x satisfying (8.45), such that the limit limτ→∞ x(τ) exists, and

x(0) = εx′(0). (8.46)

To see that, note first that looking for solutions to Equation (8.45) of
the form x(τ) = e−

√
2λτz(τ), using the Laplace transform, or another

standard method, one can easily find out that the general solution of
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the equation is

x(τ) = C1e
√

2λτ + C2e−
√

2λτ +

√
2
λ

∫ τ

0

sinh[
√

2λ(σ − τ)]y(σ) dσ

=
[
C1 −

1√
2λ

∫ τ

0

e−
√

2λτy(σ) dσ
]

e
√

2λτ

+
[
C2 +

1√
2λ

∫ τ

0

e
√

2λσy(σ) dσ
]

e−
√

2λτ . (8.47)

Observe that, by de l’Hospital’s rule,

lim
τ→∞

[
C2 +

1√
2λ

∫ τ

0

e
√

2λσy(σ) dσ
]

e−
√

2λτ = lim
τ→∞

y(τ).

Thus limτ→∞ x(τ) exists iff the limit

lim
τ→∞

[
C1 −

1√
2λ

∫ τ

0

e−
√

2λσy(σ) dσ
]

e
√

2λτ

exists. This is the case when

C1 = C1(λ, y) =
1√
2λ

∫ ∞

0

e−
√

2λσy(σ) dσ. (8.48)

Now, we demand additionally that (8.46) holds, to obtain

C1 + C2 = ε
√

2λ(C1 − C2),

i.e.

C2 = C2(λ, ε, y) =
ε
√

2λ− 1
ε
√

2λ+ 1
C1, (8.49)

and this completes the proof of our claim. We observe also that, by
(8.45), limτ→∞ x′′(τ) exists.

Let us consider the space X = C[0,∞] of all continuous functions
x : R+ → R with a finite limit at infinity, equipped with the norm
‖x‖ = supτ≥0 |x(τ)|. Given ε > 0, define the domain of an operator
Aε as the set of all twice continuously differentiable functions x with
x′′ ∈ X, which satisfy (8.46), and set Aεx = 1

2x
′′.

We claim now that for every ε > 0, the operator Aε is the infinitesimal
generator of a positive contraction semigroup {T εt , t ≥ 0}, acting in X.
To see that note first that the domain D(Aε) of Aε is dense in X. Indeed,
the set of all twice continuously differentiable functions is dense in X,
and, for every δ > 0 and every twice continuously differentiable function
x ∈ X with x′′ ∈ X such that x 
∈ D(Aε), there exists a function xδ
enjoying ‖xδ−x‖ < δ and xδ ∈ D(Aε). For example, we may put xδ(τ) =
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x(τ) + ae−bτ where a = 1
2 min (δ, |εx′(0) − x(0)|) sgn(εx′(0) − x(0)), b =

1
ε

[
εx′(0)−x(0)

a − 1
]

and observe that b ≥ 1
ε

(
2 |εx′(0)−x(0)|
|εx′(0)−x(0)| − 1

)
= 1

ε > 0
and ε(xδ)′(0) = εx′(0) − [εx′(0) − x(0) − a] = x(0) + a = xδ(0) and
‖x− xδ‖ = |a| < δ.

Furthermore, by (8.47)–(8.49), we have, for λ > 0, τ ≥ 0,

Rλx(τ) := (λ−Aε)
−1
x(τ)

=
1√
2λ

∫ ∞

0

e−
√

2λ|τ−σ|y(σ) dσ

+H(ε
√

2λ)
1√
2λ

∫ ∞

0

e−
√

2λ(σ+τ)y(σ) dσ

=
1√
2λ

∫ ∞

−∞
e−

√
2λ|τ−σ|y∗(σ) dσ (8.50)

where H(u) = u−1
u+1 and

y∗(τ) =

{
y(τ), τ ≥ 0,

H(ε
√

2λ)y(−τ), τ < 0.

The values of the linear fractional function H lie in [−1, 1] for non-
negative u. Thus |H(ε

√
2λ)| < 1 and supτ∈R |y∗(τ)| = supτ≥0 |y(τ)|, so

that, for λ > 0,

‖Rλ(Aε)x‖ ≤ 1√
2λ

∫ ∞

−∞
e−

√
2λ|σ| dσ‖y∗‖ =

‖y‖
λ
, (8.51)

which, by the Hille–Yosida theorem, proves our claim.
The semigroups T εt , t ≥ 0 are related to so-called elastic Brownian

motion and the parameter ε measures the degree in which the barrier
τ = 0 is “sticky”. Some insight into the way the particle behaves at the
boundary may be gained from the following analysis.

Let us rewrite (8.50) in the form

Rλ(Aε)x(τ) =
1√
2λ

∫ ∞

0

[
e−

√
2λ|σ−τ | + e−

√
2λ(σ+τ)

]
y(σ) dσ

− 2
ε
√

2λ+ 1
1√
2λ

∫ ∞

0

e−
√

2λ(σ+τ)y(σ) dσ. (8.52)

Notice that the function R+
∗ � τ → 1

ετ+1 ∈ R as well as the derivative
of the positive function R+

∗ � τ →
√

2τ ∈ R are completely monotone
(see [41] p. 415 for the definition) and, thus, by Criterion 2, p. 417 and
Theorem 1a, p. 416 of the above mentioned monograph, for any ε ≥ 0
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there exists a measure µε on R+ such that

1
ε
√

2λ+ 1
=
∫ ∞

0

e−λtµε dt.

By setting λ = 0 we see that µε is a probability measure. By 6.4.7 the
transition probability of the stochastic process governed by the semi-
group T εt , t ≥ 0, is given by

Kε(t, τ,Γ) =
1√
2πt

∫
Γ

[e−
(τ−σ)2

2t + e−
(τ+σ)2

2t ] dσ (8.53)

−2
∫

Γ

∫
[0,t)

1√
2π(t− s)

e−
(τ+σ)2

2(t−s) µε(ds) dσ, t ≥ 0, τ ≥ 0.

Comparing this formula with (8.5), (8.20) and (8.22) we see that the
measure µε governs the probability of annihilation of the Brownian trav-
eller touching the screen τ = 0. Here we are not able to dive more into
this difficult subject. In [58] pp. 45–47 a more detailed probabilistic
treatment based on the employment of P. Levy’s local time is presented.
A more modern presentation may be found in [100].

8.2.19 The Phillips Perturbation Theorem Suppose that A is the gen-
erator of a strongly continuous semigroup {T (t), t ≥ 0} satisfying (7.14),
and B is a bounded linear operator. Then, A+B with domain D(A) is
the generator of a strongly continuous semigroup {S(t), t ≥ 0} such that

‖S(t)‖ ≤Me(ω+M‖B‖)t. (8.54)

Proof Let X be the space where {T (t), t ≥ 0} is defined. Define induc-
tively bounded linear operators Sn(t) ∈ L(X), by S0(t) = T (t), t ≥ 0,
and

Sn+1(t)x =
∫ t

0

T (t− s)BSn(s)xds, t ≥ 0, x ∈ X, n ≥ 0. (8.55)

By induction, ‖Sn(t)‖ ≤ Mn+1‖B‖ntn

n! eωt, and the series
∑∞
n=0 Sn(t) con-

verges in the operator norm, uniformly in t in compact intervals. Its
sum, S(t), is a strongly continuous family of operators, being a limit of
strongly continuous families, and (8.54) holds. Moreover, a straightfor-
ward calculation shows that, for λ > ω, n ≥ 0,

∫∞
0

e−λsSn+1(s)xds =
RλB

∫∞
0

e−λsSn(s)xds, where Rλx =
∫∞
0

e−λtS0(t)xdt is the resolvent
of A (note that Sn+1 is a convolution of Sn and T and use linear function-
als as in 7.2.1 and 7.2.4 to justify the change of the order of integration).
Hence, by induction

∫∞
0

e−λtSn(t)xdt = (RλB)nRλx. Using (8.54) and
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uniform convergence of the series on compact intervals we argue that for
λ > ω +M‖B‖,∫ ∞

0

e−λtS(t)xdt =
∞∑
n=0

∫ ∞

0

e−λtSn(t)xdt =
∞∑
n=0

(RλB)nRλx.

For such a λ and x ∈ D(A), we have
∑∞
n=0(RλB)nRλ(λ − A − B)x =∑∞

n=0(RλB)nx −∑∞
n=0(RλB)n+1x = x. Similarly, for x ∈ X and n ∈

N, the sum
∑n
k=0(RλB)kRλx = Rλ

∑n
k=0(BRλ)

kx belongs to D(A)
and (λ − A − B)

∑n
k=0(RλB)kRλx = x − (BRλ)n+1x. Since ‖BRλ‖ ≤

M‖B‖
λ−ω < 1, we have limn→∞(BRλ)n+1x = 0. λ − A − B being closed,∑∞
n=0(RλB)nRλx ∈ D(A) and (λ−A−B)

∑∞
n=0(RλB)nRλx = x, prov-

ing that∫ ∞

0

e−λtS(t)xdt = (λ−A−B)−1x, x ∈ X, λ > ω+M‖B‖. (8.56)

This implies dn

dλn (λ−A−B)−1x =
∫∞
0

e−λt(−t)nS(t)xdt, n ≥ 0. By the
Hilbert equation, dn

dλn (λ − A − B)−1 = (−1)nn!(λ − A − B)−(n+1) (see
Exercise 7.4.39). Hence, by the Hille–Yosida theorem, (8.54) shows that
A+B is the generator of a strongly continuous semigroup. (8.56) proves
now that the semigroup generated by A + B equals {S(t), t ≥ 0} – see
7.4.34.

8.2.20 Corollary The semigroup generated by A + B is given by
S(t) =

∑∞
n=0 Sn(t), with the limit in operator topology being uniform

in t in compact intervals.

8.2.21 Example If B commutes with all T (t), t ≥ 0, then S(t) =
T (t) exp(tB). Offer two proofs of this result: a proof based on 8.2.20 and
a direct one.

8.2.22 Example A semigroup generated by an integro-differential
equation Let us consider the semigroup {Ut, t ≥ 0} defined by (8.16) with
the transition kernel K related to the Brownian motion. To be more spe-

cific, K(t, τ, ·) is the measure with density k(t, τ, σ) = 1√
2πt

e−
(σ−τ)2

2t . If a
probability measure µ is absolutely continuous with respect to Lebesgue
measure, and has a density x, then also the measure Utµ is absolutely

continuous, and has a density y(σ) =
∫∞
−∞

1√
2πt

e−
(σ−ς)2

2t x(ς) dς. In other
words, {Ut, t ≥ 0} leaves the subspace L1(R) of BM(R) invariant. A
straightforward calculation shows that this semigroup, as restricted to



324 Markov processes and semigroups of operators

L1(R), is a strongly continuous semigroup of Markov operators. The in-
finitesimal generator of the restricted semigroup is Ax = 1

2
d2x
dτ2 defined

for x ∈ D(A) ⊂ L1(R), composed of x such that x′′ exists almost every-
where, is absolutely integrable and x(τ) = x′(τ) +

∫ τ
0
x′′(σ) dσ.

Moreover, let us consider a stochastic kernel b, i.e. a measurable func-
tion of two real variables such that b ≥ 0,

∫
R
b(τ, σ) dσ = 1, τ ∈ R.

In other words, for each τ ∈ R, b(τ, ·) is a density of a measure, say
K(τ, ·), on R. Given a non-negative number a and such a kernel, we
may construct the transition family related to a pseudo-Poisson process,
as described in 8.1.28. The special form of K(τ, ·) forces the related
semigroup {Ut, t ≥ 0} in BM(R), as was the case with the Brownian
motion semigroup discussed above, to leave the space L1(R) invariant.
Indeed, for τ ∈ R, the kernels Kn(τ, ·), n ≥ 1, have densities bn(τ, σ)
given inductively by b1 = b, bn+1(τ, σ) =

∫
R
b(τ, ς)bn(ς, σ) dς. Therefore,

K(t, τ, ·) has a mass of e−at at τ = 0 and, apart from this point, a density

b(t, τ, ·) =
∞∑
n=1

e−at
antn

n!
bn(τ, ·), (convergence in L1(R)).

We note that ‖bn(τ, ·)‖L1(R) = 1 and ‖b(t, τ, ·)‖L1(R) = 1 − e−at, τ ∈
R, t ≥ 0. Consequently, if µ is absolutely continuous with respect to the
Lebesgue measure and has a density x, then Utµ is absolutely continuous,
too, and has a density y(σ) = e−atx(σ) +

∫
R
b(t, τ, σ)x(τ) dτ.

The last formula implies, furthermore, that {Ut, t ≥ 0} restricted to
L1(R) is continuous in the operator norm and that its infinitesimal gen-
erator is aBx − ax where Bx(τ) =

∫
R
b(τ, σ)x(σ) dσ, and is a Markov,

hence bounded, operator.
By the Phillips Perturbation Theorem, the operator 1

2
d2x
dτ2 + aBx de-

fined on D(A) is the generator of a strongly continuous semigroup in
L1(R), say {S(t), t ≥ 0}. Using 8.2.20, we see that S(t) are non-negative
operators. To be more specific, an inductive argument shows that for a
density x ∈ L1, Sn(t)x is non-negative and

∫
R
Sn(t)x(τ) dτ = antn

n! ; in
particular ‖Sn(t)‖ = antn

n! . Hence, in agreement with (8.54), ‖S(t)‖ =
eat. Now, the semigroup {e−atS(t), t ≥ 0} generated by 1

2
d2x
dτ2 +aBx−ax

with domain D(A) is a strongly continuous semigroup, and operators
e−atS(t) are Markov operators.

Consequently, the integro-differential equation

∂x(t, τ)
∂t

=
1
2
∂2x(t, τ)
∂τ2

+ a

∫
R

b(τ, σ)x(σ) dσ − ax(t, τ), x(0, ·) ∈ D(A),

(8.57)
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describes the evolution of densities of a Brownian motion that at the
epochs of the Poisson process with intensity a is perturbed by jumps of
the pseudo-Poisson process discussed above.

8.2.23 Example Let X and Y be two Banach spaces, and let K :
X → Y and Θ : Y → X be two bounded linear operators such that
KΘy = y, y ∈ Y; in the non-trivial case, though, we do not have
ΘKx = x, x ∈ X. Also, let {T (t), t ≥ 0} and {P (t), t ≥ 0} be two
strongly continuous semigroups in X and Y, respectively, and let A be
the generator of {T (t), t ≥ 0}. We assume that

P (t)K = KT (t), t ≥ 0. (8.58)

To persuade yourself that such semigroups and operators exist, see [16]
pp. 60–62. We note here that letting P �(t) = ΘP (t)K, t ≥ 0, we ob-
tain P �(t)P �(s) = P �(t + s) and that [0,∞) � t �→ P �(t)x is strongly
continuous for all x ∈ X, yet in general {P �(t), t ≥ 0} is not a strongly
continuous semigroup, since P �(0) = ΘK 
= IX.

We claim that the semigroup {S(t), t ≥ 0} generated by A+ΘK (with
domain D(A)) is given by

S(t) = T (t) +
∫ t

0

esT (t− s)ΘP (s)K ds = T (t) +
∫ t

0

esT (t− s)P �(s) ds.

(8.59)
To prove it, by the Phillips Perturbation Theorem, it suffices to show
that

Sn(t) =
∫ t

0

sn−1

(n− 1)!
T (t− s)P �(s) ds, n ≥ 1, t ≥ 0. (8.60)

By (8.58), this relation holds for n = 1. To prove the induction step we
note that KT (s− u)ΘP (u) = P (s). Hence,

Sn+1(t) =
∫ t

0

T (t− s)Θ
∫ s

0

un−1

(n− 1)!
KT (s− u)ΘP (u)K du ds

=
∫ t

0

∫ s

0

un−1

(n− 1)!
duT (t− s)ΘP (s)K ds

=
∫ t

0

sn

n!
T (t− s)ΘP (s)K ds,

as desired.



326 Markov processes and semigroups of operators

8.2.24 Example (See [70]) Let a > 0 and v > 0 be given. Consider
the operator Aa,v(x, y) = (y, v2x′′−2ay) in X×Y = BUC1(R)×BUC(R)
with domain D(Aa,v) = D( d2

dτ2 )×X where D( d2

dτ2 ) is defined in 7.4.35. In
7.4.35, we have proved that A0,v is a generator of a semigroup in X×Y.

Since, Aa,v = A0,v +Ba where Ba(x, y) = (0,−2ay) is a bounded linear
operator, Aa,v is also a generator of a semigroup {Ta,v(t), t ≥ 0}. Since
Ta,v(t) ∈ L(X × Y), there exist operators Sij(t) = Sij(t, a, v), i, j = 0, 1
such that S00(t) ∈ L(X), S01(t) ∈ L(Y,X), S10(t) ∈ L(X,Y), S11(t) ∈
L(Y) and

Ta,v(t) =
(
S00(t, a, v) S01(t, a, v)
S10(t, a, v) S11(t, a, v)

)
, (8.61)

i.e. for x ∈ X and y ∈ Y,

Ta,v(t)
(
x

y

)
=
(
S00(t, a, v)x S01(t, a, v)y
S10(t, a, v)x S11(t, a, v)y

)
.

By 7.4.40, for x ∈ D( d2

dτ2 ) and y ∈ X the system{
dx(t)

dt = y(t), x(0) = x,
dy(t)
dt = v2 d2

dτ2x(t) − 2ay(t), y(0) = y,
(8.62)

has a unique solution. On the other hand, for such x and y, by 7.7.9,

x(t, τ) =
1
2
E x(τ + vξ(t)) +

1
2
E x(τ − vξ(t)) +

1
2
E

∫ ξ(t)

−ξ(t)
y(τ + vσ) dσ

and y(t, τ) = ∂
∂tx(t, τ) solve (8.62). By the density argument, it shows

that for x ∈ X and y ∈ Y,

S00(t)x(τ) =
1
2
E x(τ + vξ(t)) +

1
2
E x(τ − vξ(t)),

S01(t)y(τ) =
1
2
E

∫ ξ(t)

−ξ(t)
y(τ + vσ) dσ,

S10(t)x(τ) =
v

2
E x′(τ + vξ(t))1E(t) −

v

2
E x′(τ + vξ(t))1E(t)�

+
v

2
E x′(τ − vξ(t))1E(t)� − v

2
E x′(τ − vξ(t))1E(t),

S11(t)y(τ) =
1
2
E [y(τ + vξ(t)) + y(τ − vξ(t))]1E(t)

− 1
2
E [y(τ + vξ(t)) + y(τ − vξ(t))]1E(t)� , (8.63)
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where E(t) is the event that N(t) is even and E(t)� is its complement
(note that, for a fixed t, the probability that ξ(t) is not differentiable at
t equals 0).

Another interesting formula for S01 may be derived from the fact that
for (x, y) ∈ D(Aa,v)

Aa,vTa,v(t)
(
x

y

)
= Ta,v(t)Aa,v

(
x

y

)
.

Specifically, taking x = 0 and y ∈ X, we obtain S11(t)y = S00y−2aS01y.

Hence, by (8.63),

S01(t)y(τ) =
1
2a
E[y(τ + vξ(t)) + y(τ − vξ(t))]1E(t)� . (8.64)

The density argument extends this formula to all y ∈ Y.

8.2.25 Remark In view of (7.68), (8.64) shows that

x(t, τ) =
1
2
E x(τ + vξ(t)) +

1
2
E x(τ − vξ(t))

+
1
2a
E[y(τ + vξ(t)) + y(τ − vξ(t))]1E(t)� (8.65)

solves the telegraph equation with initial conditions x(0, τ) = x(τ) and
∂x
∂t (0, τ) = y(τ) where x ∈ D( d2

dτ2 ) and y ∈ X.

8.2.26 Corollary Formulae (8.63) and (8.64) allow us to estimate the
norms of Sij . Specifically, it is clear that ‖S00(t)x‖Y ≤ ‖x‖Y and that
for x ∈ X, (S00(t)x)′ = S00(t)x′. Hence, ‖S00(t)‖L(X,X) ≤ 1. Moreover,
for y ∈ Y, by (8.63), (S01(t)y)′(τ) = 1

2vE [y(τ + vξ(t)) − y(τ − vξ(t))].
This implies ‖(S01(t)y)′‖Y ≤ 1

v‖y‖Y. Since, by (8.64), ‖S01(t)y‖Y ≤
1
aP(E(t)�)‖y‖Y and P(E(t)�) = 1−e−at

2 ≤ 1
2 , we obtain ‖S01(t)‖L(X,Y) ≤

(2a)−1 +v−1. Moreover, using (8.63) again, ‖S10(t)‖L(Y,X) ≤ v[P(E(t))+
P(E(t)�)] = v. Similarly, ‖S11(t)‖L(Y,Y) ≤ 1.

It may be shown that the order of the estimate for the norm of S10(t)
is the finest in that ‖S10(t)‖ ≥ 1

2v.

8.3 Generators of stochastic processes

In this section we give a characterization of generators of Feller processes
and Markov chains.
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8.3.1 Definition Let S be a locally compact space. An operator A :
C0(S) ⊃ D(A) → C0(S) is said to satisfy the positive maximum
principle if for any x ∈ D(A) and p ∈ S, x(p) = supq∈S x(q) ≥ 0
implies Ax(p) ≤ 0.

8.3.2 Example Let S = R, and A = a d2

dτ2 , where a ≥ 0, on the
domain D(A) composed of all twice differentiable functions in C0(R)
such that x′′ ∈ C0(R). If the global, or even local, maximum of x ∈
D(A) is attained at τ ∈ R, then x′(τ) = 0 and, by the Taylor formula,
x′′(τ) ≤ 0. Hence, A satisfies the positive maximum principle.

8.3.3 Exercise Show that Ax = ax′, where a ∈ R, defined on a
suitable domain D(A) ⊂ C0(R) satisfies the positive maximum principle.

8.3.4 Generators of Feller processes I Let S be a locally compact
space. An operator A in C0(S) is the generator of a semigroup related
to a Feller kernel iff

(a) D(A) is dense in C0(S),
(b) A satisfies the positive maximum principle,
(c) for some λ0 > 0, the range of the operator λ0 −A equals C0(S).

Proof
(Necessity) The necessity of (a) and (c) follows directly from the

Hille–Yosida theorem. To show (b), suppose that {Tt, t ≥ 0} given by
(8.17) is a Feller semigroup with generator A, x ∈ D(A), and the global
maximum of x is attained at p with x(p) ≥ 0. Then ‖x+‖ = x(p),
where as before, x+ = max(x, 0). Since Ax = limt→0

1
t (Ttx − x) in

C0(S), we have Ax(p) = limt→0
1
t (Ttx(p) − x(p)). But, the operators

Tt are non-negative. Hence, Ttx(p) ≤ Ttx
+(p) =

∫
S
x+(q)K(t, p, dq) =∫

S∆
x+(q)K(t, p, dq) ≤ x(p)K(t, p, S∆) = x(p). This implies Ax(p) ≤ 0.

(Sufficiency) Suppose that A satisfies (a) through (c). Suppose also
that for some λ > 0, y ∈ C0(S) and x ∈ D(A), λx − Ax = y. Also, let
p be such that |x(p)| = ‖x‖. If x(p) ≥ 0 then by the positive maximum
principle, y(p) ≥ λx(p). Hence, ‖y‖ ≥ λx(p) = λ‖x‖. If x(p) < 0, the
same argument applied to −x gives ‖ − y‖ ≥ λ‖ − x‖. So, in both cases
‖y‖ ≥ λ‖x‖. In other words, if the range of λ−A equals C0(S), (λ−A)−1

exists and its norm does not exceed 1
λ . In particular, since this is true

for λ0, A is closed.
Let ρ(A) denote the set of µ > 0 such that the range of µ−A equals
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C0(S). We need to show that ρ(A) = (0,∞). Let λ ∈ ρ(A) and µ ∈
(0, 2λ). Then |µ− λ‖‖(λ−A)−1‖ < 1, and the series

Rµ =
∞∑
n=0

(λ− µ)n(λ−A)−(n+1)

converges in the operator norm. Moreover, writing µ−A as µ−λ+λ−A,
for any y ∈ C0(S), (µ−A)

∑N
n=0(λ− µ)n(λ−A)−(n+1)y equals

N∑
n=0

(λ− µ)n(λ−A)−ny −
N∑
n=0

(λ− µ)n+1(λ−A)−(n+1)y

= y − (λ− µ)N+1(λ−A)−(N+1)y −→
N→∞

y.

This implies that limn→∞A
∑N
n=0(λ − µ)n(λ − A)−(n+1)y exists and

equals µRµy−y. Since A is closed, Rµy ∈ D(A), and ARµy = µRµy−y.
In other words, for every y ∈ C0(S), there exists an x ∈ D(A), namely
x = Rµy, such that µx − Ax = y. This proves that λ ∈ ρ(A) implies
(0, 2λ) ⊂ ρ(A). Now, if µ ∈ (0, 4λ), then 1

4µ+λ ∈ (0, 2λ) and so (0, 1
2µ+

2λ) ⊂ ρ(A), implying (0, 4λ) ⊂ ρ(A). By the induction argument λ ∈
ρ(A) implies (0, 2nλ) ⊂ ρ(A). Since, by (b), ρ(A) is non-empty, our claim
is proved.

By the Hille–Yosida theorem, A generates a strongly continuous semi-
group {Tt, t ≥ 0} in C0(S). What is left is to show that the operators Tt
are non-negative, and this will be proved once we prove that (λ−A)−1

are non-negative. To this end we take x ≥ 0. Then, y = (λ−A)−1x be-
longs to D(A) and satisfies the equation λy−Ay = x. If y(q) < 0 for some
q ∈ S, then there exists a p such that −y(p) = supq∈S [−y(q)] > 0. By
the positive maximum principle −Ay(p) ≤ 0. Hence, x(p) ≤ λy(p) < 0,
a contradiction.

8.3.5 Remarks (i) Condition (c) may be replaced by:

(c′) for all λ > 0, the range of the operator λ−A equals C0(S).

(ii) If S is compact, A satisfies the maximum principle: if x ∈ D(A)
and the global maximum is attained at p, then Ax(p) ≤ 0, regardless
of whether x(p) ≥ 0 or not. The difference lies in the fact that in such
a case 1S belongs to C0(S); hence x(p)1S − x ∈ C0(S) is non-negative,
and we obtain Ttx(p) ≤ x(p). Note that if S is locally compact, but not
compact, and x(p) = supq∈S x(q), where x ∈ C0(S), then automatically
x(p) ≥ 0.
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(iii) Proving condition (c), called the range condition, is usually the
hardest part of the proof of the fact that an operator A is a generator.

(iv) As a by-product of the proof, we obtain that operators satisfying
the positive maximum principle are dissipative. A linear operator A :
X ⊃ D(A) → X is said to be dissipative if for all x ∈ D(A) and λ > 0,
‖λx−Ax‖ ≥ λ‖x‖.

8.3.6 Exercise Use 8.3.4 to show that the operators Aε defined in
8.2.18 are generators of Feller semigroups.

8.3.7 Exercise Let C2[0, 1] be the subspace of C[0, 1] composed of
twice differentiable functions with second derivative in C[0, 1]. Use 8.3.4
to show that the operators Aε,δ defined by Aε,δx = 1

2x
′′ on

D(Aε,δ) = {x ∈ C2[0, 1];x(0) − εx′(0) = 0, x(1) + δx′(1) = 0},

are generators of Feller processes with values in [0, 1]. These processes
are elastic Brownian motions with two barriers: at 0 and at 1.

8.3.8 Proposition The reasoning used in proving that (c) implies
(c′) is worth closer attention (compare [38] p. 12, [43] p. 46, etc.). Here
we give another example of a situation where it applies. Suppose A is
a Banach algebra and Hn : L1(R+) → A, n ≥ 1, are homomorphisms
of the algebra L1(R+), such that ‖Hn‖ ≤ M for some M > 0. Suppose
that the limit limn→∞Hn(eλ) exists for some λ > 0. Then, it exists for
all λ > 0.

Proof Let ρ be the set of λ > 0 such that the above limit exists. We
have seen that it suffices to show that λ ∈ ρ implies (0, 2λ) ⊂ ρ. A minor
modification of the argument shows that all that needs to be showed is
that λ ∈ ρ implies (0, 2λ)∩(λ−1, λ+1) ⊂ ρ. Let λ, µ > 0. By the Hilbert
equation (6.6), eµ = eλ+(µ−λ)eλeµ. An induction argument shows that
eµ =

∑n
k=1 e

∗k
λ (µ− λ)k−1 + (µ− λ)ne∗nλ eµ, n ≥ 0. Suppose |µ− λ| < λ.

Then, letting n→ ∞, eµ =
∑∞
k=1 e

∗k
λ (µ−λ)k−1, since ‖e∗nλ ‖L1(R+) = 1

λn .
Therefore, Hn(eλ) =

∑∞
k=1Hn(e∗kλ )(µ − λ)k−1 =

∑∞
k=1[H(eλ)]k(µ −

λ)k−1. If Rλ = limn→∞Hn(eλ) exists, and |µ − λ| < 1 ∧ λ, this series
converges, as n → ∞, to Rµ :=

∑∞
k=1R

k
λ(µ − λ)k−1. To see that we

take an ε > 0, choose an l ∈ N such that M
∑∞
k=l |µ − λ|k−1λ−k ≤

ε/3, and then choose an n ≥ 0 such that ‖Rkλ − Hn(ekλ)‖A ≤ ε/(3d)
for all 1 ≤ k ≤ l − 1, where d = 1

1−|λ−µ| . Clearly limn→∞Hn(e∗kλ ) =
limn→∞[Hn(eλ)]k = Rkλ for all k ≥ 1; hence ‖Rkλ‖ ≤ Mλ−k. Therefore,
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‖Rµ−Hn(µ)‖A does not exceed ε(3d)−1
∑l−1
k=1 |λ−µ|k−1+2M

∑∞
k=l |µ−

λ|k−1λ−k ≤ ε/3 + 2ε/3 = ε.

Sometimes it is convenient to have the following version of theorem
8.3.4.

8.3.9 Generators of Feller processes II Let S be a locally compact
space. An operator A in C0(S) is the generator of a semigroup related
to a Feller kernel iff

(a) D(A) is dense in C0(S),
(b) if x ∈ D(A), λ > 0 and y = λx−Ax, then λ infp∈S x(p) ≥ infp∈S y(p),
(c) for some λ0 > 0, the range of the operator λ0 −A equals C0(S).

Proof (Necessity) Let {Tt, t ≥ 0} be the semigroup generated by
A. By (8.17), we have Tty(p) ≥ infp∈S y(p) (note that infp∈S y(p) =
infp∈S∆ y(p)). Moreover, if assumptions of (b) are satisfied, then λx(p) =
λ
∫∞
0

e−λtTty(p) dt ≥ inft≥0 Tty(p) ≥ infp∈S y(p). This proves (b). The
rest is clear.

(Sufficiency) Let x, y and λ be as in (b). Taking −y and −x instead of
y and x, respectively, we obtain λ supp∈S x(p) ≤ supp∈S y(p). Together
with (b) this gives λ‖x‖ ≤ ‖y‖ = ‖λx − Ax‖, i.e. dissipativity of A.
Hence, as in the proof of 8.3.4 we argue that A generates a semigroup
of contractions. Moreover, (b) implies that Rλy ≥ 0 provided y ≥ 0.
Therefore, the semigroup generated by A is a semigroup of non-negative
operators and 8.1.26 applies.

The problem with applying theorems 8.3.4 and 8.3.9 is that the whole
domain of an operator is rarely known explicitly, and we must be satisfied
with knowing its core. Hence, we need to characterize operators which
may be extended to a generator of a Feller semigroup. In particular,
such operators must be closable. A linear operator A : X ⊃ D(A) → X is
said to be closable if there exists a closed linear operator B such that
Bx = Ax for x ∈ D(A).

Let us recall that a graph GA of an operator A is defined as GA =
{(x, y) ∈ X × X;x ∈ D(A), y = Ax}.

8.3.10 Lemma Let A be a linear operator in a Banach space X. The
following conditions are equivalent:

(a) A is closable,
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(b) the closure of the graph GA of A in the space X × X equipped with
the norm ‖(x, y)‖ = ‖x‖ + ‖y‖ is a graph of a closed operator,

(c) if xn ∈ D(A), n ≥ 1, limn→∞ xn = 0 and limn→∞Axn exists, then
limn→∞Axn = 0.

Proof We will show that (b) =⇒ (a) =⇒ (c) =⇒ (b).
Clearly, (b) implies (a). Also, if A is closable and B is its closed exten-

sion, then xn, n ≥ 1, described in (c) belong to D(B) and Bxn = Axn.
Since B is closed, limn→∞Bxn = B0 = 0, proving (c).

Since the closure cl GA of GA is a subspace of X×X (in particular, it is
closed), we are left with proving that (c) implies that cl GA is a graph of
an operator (see 7.3.8). To this end we need to show that (x, y), (x, y′) ∈
cl GA implies y = y′. By linearity, it suffices to show that (0, y) ∈ cl GA
implies y = 0. Now, (0, y) ∈ cl GA iff there exists a sequence xn ∈
D(A), n ≥ 1, such that limn→∞ xn = 0 and limn→∞Axn = y. By (c),
this implies y = 0.

The following example shows that there are operators that are not
closable.

8.3.11 Example Let X = C[0, 1] and define Ax(τ) = x′(0) on D(A)
composed of all x ∈ X such that x′(0) (the right-hand derivative) exists.
Let xn(τ) = max(2−n − |τ − 2−n|, 0). Then xn ∈ D(A) with x′n(0) = 1.
Moreover, ‖xn‖ = 2−n → 0 as n→ ∞ and limn→∞Axn = 1[0,1] 
= 0.

8.3.12 Definition The closure A of a closable operator A is the
unique closed operator such that GA = cl GA.

8.3.13 (Pre)-generators of Feller processes I Let S be a locally com-
pact space and A be a linear operator A : C0(S) ⊃ D(A) → C0(S). A is
closable and its closure A generates a Feller semigroup iff:

(a) D(A) is dense in C0(S),
(b) if x ∈ D(A), λ > 0 and y = λx−Ax, then λ infp∈S x(p) ≥ infp∈S y(p),
(c) the range of λ−A is dense in C0(S) for some λ > 0.

Proof Necessity is clear in view of 8.3.9. For sufficiency we note first that
by (b) A is dissipative; we will show that A is closable. Let xn ∈ D(A)
be such that limn→∞ xn = 0 and limn→∞Axn exists and equals, say, y.
Let z belong to D(A). Then ‖(λ − A)(λxn + z)‖ ≥ λ‖λxn + z‖, for all
λ > 0. Letting n → ∞ we obtain ‖λz − λy − Az‖ ≥ λ‖z‖. Dividing by
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λ and letting λ → ∞, ‖z − y‖ ≥ ‖z‖. Now, by (a), we may choose a
sequence zn ∈ D(A) such that limn→∞ zn = y. Hence, 0 ≥ ‖y‖, proving
that y = 0, as desired.

Let A be the closure of A. We need to show that A generates a Feller
semigroup, and to this end we may apply theorem 8.3.9. Clearly, A is
densely defined. To prove condition (c) of the theorem, we consider the
λ > 0 from assumption (c), and suppose y ∈ C0(S) is such that there
exists a sequence xn ∈ D(A) with limn→∞(λ − A)xn = y. Then, by
‖xn − xm‖ ≤ 1

λ‖(λ − A)(xn − xm)‖, xn, n ≥ 1, is a Cauchy sequence,
hence, it converges to some x ∈ C0(S). Since A is closed, x belongs to
D(A) and (λ − A)x = y. This shows that the range of λ − A is closed.
Therefore, by assumption (c), it equals C0(S).

Finally, we need to show that A satisfies condition (b). This, however,
is easy because for any x ∈ D(A) there exist xn ∈ D(A) such that
limn→∞ xn = x and limn→∞Axn = Ax. By assumption (b) we have
λ infp∈S xn(p) ≥ infp∈S(λxn(p) − Axn(p)). Letting n → ∞, we obtain
λ infp∈S x(p) ≥ infp∈S(λx(p) −Ax(p)), as desired.

8.3.14 (Pre)-generators of Feller processes II Let S be a locally com-
pact space and A be a linear operator A : C0(S) ⊃ D(A) → C0(S). A is
closable and its closure A generates a Feller semigroup iff:

(a) D(A) is dense in C0(S),
(b) A satisfies the positive maximum principle,
(c) the range of λ−A is dense in C0(S) for some λ > 0.

Proof Necessity is clear in view of 8.3.4. As for sufficiency, by 8.3.13, all
we need to show is that A satisfies condition (b) of this theorem. Consider
x, y and λ described there. There are two possible cases: either there
exists a p such that x(p) = infq∈S x(q) or infq∈S x(q) = x(∆) = 0. In the
former case, −x attains its maximum at p and so Ax(p) ≥ 0. Therefore,
λ infq∈S x(q) = λx(p) ≥ λx(p) − Ax(p) ≥ infq∈S{λx(q) − Ax(q)}, as
desired. To treat the latter case, we recall that at the end of the proof of
8.3.4 we showed that the positive maximum principle implies that x ≥ 0
provided y ≥ 0. This means that λ infq∈S x(q) ≥ 0 = infq∈S y(q).

8.3.15 Example Let S = [0, 1] and consider the operator Ax(s) =
s(1 − s)x′′(s) defined for all polynomials on [0, 1]. It is clear that A is
densely defined and satisfies the maximum principle. Moreover, if x(s) =∑n
i=0 ais

i then Ax(s) =
∑n−1
i=1 (i+ 1)iai+1s

i −∑n
i=2 i(i− 1)aisi. Hence,
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for a polynomial y(s) =
∑n
i=0 bis

i and a number λ > 0, the equation
λx−Ax = y is satisfied iff the coefficients satisfy the system

(λ+i(i−1))ai−i(i+1)ai+1 = bi, 0 ≤ i ≤ n−1, (λ+n(n−1))an = bn.

(8.66)
Since this system has a solution (an is calculated from the last equation
and substituted to the previous-to-last, which allows the calculation of
an−1, and so on), the range of A is dense in C[0, 1]. Therefore, theorem
8.3.14 applies and the closure of A is the generator of a Feller semigroup
in C[0, 1]. (See also 8.4.20.)

8.3.16 Exercise It is possible to characterize A introduced above in
more detail: show that D(A) is composed of functions that are twice dif-
ferentiable in (0, 1) with lims→0+ s(1−s)x′′(s) = lims→1− s(1−s)x′′(s) =
0 and we have Ax(s) = s(1 − s)x′′(s), s ∈ (0, 1), Ax(1) = Ax(0) = 0.

We now turn to generators of continuous-time Markov chains; we will
characterize generators of strongly continuous semigroups {U(t), t ≥ 0}
in l1 = l1(N) of the form U(t)x = xP (t) where {P (t), t ≥ 0} is a semi-
group of transition matrices and xP (t) is the matrix product. Note that,
in contradistinction to the case of Feller semigroups, we thus study the
evolution of distributions of a Markov chain and not the related evolu-
tion given by the dual semigroup – see 8.1.15 and 8.1.16. As we have seen
in 7.4.27, there is a one-to-one correspondence between finite intensity
matrices and semigroups of finite transition matrices. If the matrices fail
to be finite the situation is more complicated in that different semigroups
of transition matrices may be related to the same intensity matrix. In
the remainder of this section in the set of propositions we present a result
due to T. Kato [54, 65] which explains this situation in more detail.

We recall that (ξn)n≥1 ∈ l1 is said to be a distribution iff ξn ≥
0, n ≥ 1, and F (ξn)n≥1 = 1 where the functional F ∈ (l1)∗ is given
by F (ξn)n≥1 =

∑∞
n=1 ξn; the set of densities is denoted by D. A linear,

not necessarily bounded operator A in l1 is said to be non-negative if it
maps D(A) ∩ (l1)+ into (l1)+, where (l1)+ is the non-negative cone, i.e.
the set of non-negative (ξn)n≥1 ∈ l1. For x and y in l1 we write x ≤ y

or y ≤ x if y − x ∈ (l1)+. For two operators, A and B, in l1 we write
A ≤ B or B ≥ A iff B − A is non-negative. An operator A (defined
on the whole of l1) is said to be Markov if it leaves D invariant; it is
said to be sub-Markov iff it is non-negative and FAx ≤ Fx for x ∈ D.
Markov and sub-Markov operators are contractions. As in 5.2.1, we write
ei = (δi,n)n≥1 , i ≥ 1.
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8.3.17 Exercise Let xn, n ≥ 1, be a sequence of elements of l1 such
that 0 ≤ xn ≤ xn+1, n ≥ 1, and ‖xn‖ ≤ M,n ≥ 1, for some M > 0.
Show that xn converges.

8.3.18 Definition Let Q = (qi,j)i,j∈N
be an intensity matrix. We

define the domain of an operator A0 to be the linear span of ei, i ≥ 0, and
put A0ei = (qi,n)n≥1. Furthermore, the operator D (“D” for “diagonal”)
with domain D(D) = {(ξn)n≥1 ∈ l1| (qn,nξn)n≥1 ∈ l1} is defined by
D(xn)n≥1 = (qn,nξn)n≥1 ; note that −D is non-negative.

8.3.19 Proposition The operator O (O for “off diagonal”) given by
O (ξn)n≥1 =

(∑
i≥1,i �=n ξiqi,n

)
n≥1

is well-defined on D(D) and ‖Ox‖ ≤
‖Dx‖ for x ∈ D(D) and ‖Ox‖ = ‖Dx‖ for x ∈ D∩D(D). Moreover, for
any 0 ≤ r < 1, the operator D+ rO with domain D(D) is the generator
of a strongly continuous semigroup of sub-Markov operators in l1.

Proof For x ∈ D(D),
∑∞
n=1

∣∣∣∑i≥1,i �=n ξiqi,n
∣∣∣ does not exceed

∞∑
n=1

∑
i≥1,i �=n

|ξiqi,n| =
∞∑
i=1

|ξi|
∞∑

n≥1,n �=i
qi,n =

∞∑
i=1

|ξi| (−qn,n) = ‖Dx‖,

with equality iff (ξn)n≥1 is non-negative. This proves the first claim.
For r = 0 the second claim is immediate: the semigroup generated by

D, say {S(t), t ≥ 0}, is given by S(t) (ξn)n≥1 = (eqn,ntξn)n≥1 . To treat
the general case we note first that for λ > 0 we have (λ−D)−1 (ξn)n≥1 =(

1
λ−qn,n

ξn

)
n≥1

and

Bλ := O(λ−D)−1 (8.67)

is well-defined. Moreover, we have ‖Bλx‖ ≤∑n≥1

∑
i≥1,i �=n

qi,n

λ−qi,i
|ξi| =∑

i≥1

∑
n≥1,n �=i

qi,n

λ−qi,i
|ξi| =

∑
i≥1

−qi,i

λ−qi,i
|ξi| ≤

∑
i≥1 |ξi| = ‖x‖. Hence,

Bλ is a contraction and for any 0 ≤ r < 1 the series
∑∞
n=0 r

nBnλ (=
(I + rBλ)−1) converges in the operator norm. Let

Rλ,r = (λ−D)−1
∞∑
n=0

rnBnλ .

By definition Rλ,rx belongs to D(D) and (λ−D)Rλ,rx =
∑∞
n=0 r

nBnλx,
and rORλ,rx = rBλ

∑∞
n=0 r

nBnλx =
∑∞
n=1 r

nBnλx. Hence, (λ − D −
rO)Rλ,rx = x. Similarly, Rλ,r(λ − D − rO)x = x, x ∈ D(D). This
shows that Rλ,r = (λ − D − rO)−1 and in particular that D + rO is
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closed. Moreover, if x ≥ 0 then y = Rλ,rx is non-negative, too; indeed,
(λ − D)−1 ≥ 0 and O ≥ 0 and so Bλ ≥ 0. Hence, using −D ≥ 0 and
O ≥ 0, ‖λy‖ ≤ ‖λy‖ + (1 − r)‖Dy‖ = ‖λy − Dy‖ − r‖Dy‖ = ‖λy −
Dy‖ − r‖Oy‖ ≤ ‖λy −Dy − rOy‖ = ‖x‖ with the previous-to-last step
following by the triangle inequality. This shows that λRλ,r is sub-Markov
and in particular ‖λRλ,r‖ ≤ 1. Since D + rO is densely defined, by
the Hille–Yosida theorem it generates a strongly continuous semigroup
of operators. This is a semigroup of sub-Markov operators since the
approximating exponential functions of the Yosida approximation are
formed by such operators – see 8.2.14.

8.3.20 Proposition As r ↑ 1, the semigroups {Sr(t), t ≥ 0} converge
strongly to a strongly continuous semigroup {S(t), t ≥ 0} of sub-Markov
operators generated by an extension of D + O (hence, an extension of
A0, as well).

We postpone the proof to the next section (Subsection 8.4.16) where
we will have approximation theorems for operator semigroups at our
disposal.

8.3.21 Proposition Let {S(t), t ≥ 0} be the semigroup defined in
8.3.20 and suppose that the generator A of a strongly continuous semi-
group {T (t), t ≥ 0} is an extension of the operator A0. Then A is also
an extension of D + O and, if T (t) ≥ 0, t ≥ 0, then S(t) ≤ T (t), t ≥ 0.
We say that {S(t), t ≥ 0} is the minimal semigroup related to Q.

Proof Suppose that x =
∑∞
n=1 ξnen belongs to D(D). By definition

of D(D), so do xN :=
∑N
n=1 ξnen, N ≥ 1, and since Aen = A0en =

(D+O)en, we have AxN = (D+O)xN . Moreover, limn→∞DxN = Dx

and so, by ‖O(xN −x)‖ ≤ ‖D(xN −x)‖, limN→∞OxN = Ox. Therefore
limN→∞AxN exists and equals (D+O)x and, obviously, limN→∞ xN =
x. Since A is closed, being the generator of a semigroup, x belongs to
D(A) and Ax = (D +O)x, proving the first claim.

Next, we note that (λ − A)−1 exists for sufficiently large λ > 0. For
y ∈ D(D), we may write

(1 − r)Oy = Ay −Dy − rOy = (λ−D − rO)y − (λ−A)y.

Taking y = (λ − D − rO)−1x, x ∈ l1, and applying (λ − A)−1 to the
left-most and right-most sides of the above equality,

(1 − r)(λ−A)−1O(λ−D − rO)−1x = (λ−A)−1x− (λ−D − rO)−1x.
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Since all operators on the left-hand side are non-negative, for large λ >
0 we have (λ − D − rO)−1 ≤ (λ − A)−1. As we shall see in 8.4.16,
(λ − D − rO)−1 converges to (λ − G)−1 where G is the generator of
{S(t), t ≥ 0}. Hence, (λ − G)−1 ≤ (λ − A)−1. This implies the second
claim – see 8.2.14.

8.3.22 Proposition Let {S(t), t ≥ 0} be the semigroup defined in
Subsection 8.3.20. The following are equivalent:

(a) {S(t), t ≥ 0} is a semigroup of Markov operators;
(b) for any λ > 0, limn→∞Bnλ = 0 strongly;
(c) for any λ > 0, Range(λ−D −O) is dense in l1;
(d) for any λ > 0, Range(λ−A0) is dense in l1;
(e) for any λ > 0, Range(I −Bλ) is dense in l1;
(f) if for some λ > 0 and a = (αn)n≥1 ∈ l∞ we have Qa = λa (where Qa

is the product of the matrix Q and the column-vector a), then a = 0.

If one and hence all of these conditions hold, the matrix Q is said to be
non-explosive.

Proof Condition (a) holds iff λRλ is a Markov operator for all λ > 0
(cf. 8.2.14). On the other hand,

I +O

n∑
k=0

(λ−D)−1Bkλ = (λ−D)
n∑
k=0

(λ−D)−1Bkλ +Bn+1
λ . (8.68)

Therefore, for x ≥ 0, ‖x‖ + ‖O∑n
k=0(λ − D)−1Bkλ‖ = ‖λ∑n

k=0(λ −
D)−1Bkλx‖ + ‖D∑n

k=0(λ − D)−1Bkλx‖ + ‖Bn+1
λ x‖, since −D ≥ 0. By

8.3.19 this gives, ‖x‖ = ‖λ∑n
k=0(λ − D)−1Bkλx‖ + ‖Bn+1

λ x‖. Letting
n → ∞ we see that ‖x‖ = ‖λRλ‖ iff limn→∞ ‖Bnλx‖ = 0 (the fact that
limn→∞

∑n
k=0(λ−D)−1Bkλx = Rλx is proved in 8.4.16). This shows (a)

⇔ (b).
Next we show (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (b). To prove the first

implication we rewrite (8.68) as (λ − D − O)
∑n
k=0(λ − D)−1Bkλx =

x + Bn+1
λ x, x ∈ l1; this relation shows that if (b) holds any x may be

approximated by elements of Range(λ−D−O), as desired. To see that
(c) implies (d) we note that for any x ∈ D(D) there exist xn ∈ D(A0)
such that limn→∞ xn = x and limn→∞A0xn = limn→∞(D + O)xn =
(D +O)x (see the beginning of the proof of 8.3.21); hence the range of
λ−D−O is contained in the closure of the range of λ−A0. The fact that
(d) implies (e) becomes clear once we write I−Bλ = (λ−D)(λ−D)−1−
O(λ−D)−1 = (λ−D−O)(λ−D)−1 and note that all elements x of D(D)
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are of the form x = (λ−D)−1y for some y ∈ l1. Indeed, this shows that
the range of λ−D−O is equal to the range of I−Bλ and we know that
λ−D−O is an extension of A0. To show the last implication we note that,
since Bλ is sub-Markov, ‖Bnλx‖ ≤ ‖Bkλx for x ≥ 0 and k ≤ n. Therefore,
for such an x, ‖Bnλx‖ ≤ ‖Cnx‖ where Cn = 1

n+1

∑n
k=0B

k
λ. Hence, it

suffices to show that Cn converges strongly to 0. If x = y − Bλy for
some y ∈ l1, we have Cnx = 1

n+1

∑n
k=0B

k
λ(I−Bλ)y = 1

n+1 (x−Bn+1
λ x).

Therefore, for x ∈ Range(I − Bλ), limn→∞ Cnx = 0. If (e) holds, the
same is true for all x ∈ l1 since ‖Cn‖ ≤ 1.

Finally, we show (d) ⇔ (f). To this end we note that (d) holds iff, for
any functional F on l1, the relation F (λx−A0x) = 0 for all x ∈ D(A0)
implies F = 0. By definition of D(A0), F (λx−A0x) = 0 for all x ∈ D(A0)
iff F (λei − A0ei) = for all i ≥ 1. On the other hand, any F may be
identified with an a = (αn)n≥1 ∈ l∞ and we have F (λei − A0ei) =
λαi −

∑∞
j=1 qi,jαj .

8.3.23 Example Let rn, n ≥ 1, be a sequence of non-negative num-
bers. A Markov chain with intensity matrix Q = (qi,j)i,j≥1 where

qi,j =

⎧⎪⎪⎨
⎪⎪⎩
−ri, j = i,

ri, j = i+ 1,

0, otherwise,

is said to be a pure birth process with rates rn, n ≥ 1. (In particular,
the Poisson process is a pure birth process with a constant rate.) For
such a Q, we have (λ − D)−1 (ξn)n≥1 =

(
ξn

λ+rn

)
n≥1

and in particular

(λ − D)−1ek = 1
λ+rk

ek. Also Oek = rkek+1. Hence, Bλek = rk

λ+rk
ek+1

and so Bnλek =
∏k+n−1
i=k

ri

λ+ri
en+k and ‖Bnλek‖ =

∏k+n−1
i=k

ri

λ+ri
. Since

ek, k ≥ 1, are linearly dense in l1, Bnλ converges strongly to 0 as n→ ∞
iff
∏∞
i=1

ri

λ+ri
= 0. This last condition is equivalent to

∑∞
i=1(− ln ri

λ+ri
) =

∞. Since limx→0+
− ln(1−x)

x = 1, Q is non-explosive iff
∑∞
n=1

1
λ+rn

di-
verges for all λ > 0.

8.3.24 Example (See [110].) Let d, r > 0. Consider the Kolmogorov
matrix Q = (qi,j)i,j≥1 given by

qi,j =

⎧⎪⎪⎨
⎪⎪⎩

(i− 1)r, j = i− 1, i ≥ 2,

−(i− 1)r − (i+ 1)d, j = i, i ≥ 1,

(i+ 1)r, j = i+ 1, i ≥ 1,
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and 0 otherwise. To show that Q is non-explosive we check that condition
(f) of Proposition 8.3.22 is satisfied. The equation Qa = λa considered
there may be rewritten as

(i− 1)rαi−1 − [(i− 1)r + (i+ 1)d]αi + (i+ 1)dαi+1 = λαi, i ≥ 1,

where we put α0 = 0. Then αi+1 =
[
1 + (i−1)r+λ

(i+1)d

]
αi − i−1

i+1
r
dαi−1, or

αi+1 − αi =
(i− 1)r + λ

(i+ 1)d
αi −

i− 1
i+ 1

r

d
αi−1. (8.69)

Note that, if αi > 0 for some i ≥ 1, then αi+1 − αi >
i−1
i+1

r
d (αi − αi−1) .

Hence, by the induction argument, if α1 > 0 then αi+1 − αi > 0 and
αi > 0 for all i ≥ 1. Therefore, by (8.69) again, αi+1 − αi ≥ λ

(i+1)dαi or

αi+1 ≥
[
1 + λ

(i+1)d

]
αi resulting in αn ≥ α1

∏n
i=2

(
1 + λ

id

)
, n ≥ 1.

Hence, if α1 > 0, the limit limn→∞ αn exists and is no less than∏∞
i=2

(
1 + λ

id

)
α1 = ∞. Since this contradicts a ∈ l∞, we must have

α1 ≤ 0. But, we may not have α1 < 0 for then b := −a ∈ l∞ would
satisfy Qb = λb while having its first coordinate positive, which we
know is impossible. Thus, α1 = 0 and an induction argument based on
(8.69) shows that αi = 0 for all i ≥ 1.

8.3.25 Remark Probabilistically, the reason why there are in gen-
eral many semigroups related to a given Q matrix may be explained
as follows. Let us recall that if X(t), t ≥ 0 is a Markov chain related
to Q, then given that X(t) = n, the chain waits in this state for an
exponential time with parameter −qn,n and then jumps to one of the
other states, the probability of jumping to k 
= n being −qn,k/qn,n (if
qn,n = 0 the process stays at n for ever). It is important to note that
in general such a procedure defines the process only up to a certain
random time τ, called explosion. This is well illustrated by the pure
birth process of Subsection 8.3.23. If the process starts at 1, then af-
ter exponential time T1 with parameter r1 it will be at 2, and after
exponential time T2 with parameter r2 it will be at 3, and so on. Let
us put τ =

∑∞
n=1 Tn. Is τ finite or infinite? If

∑∞
n=1

1
rn

= ∞, then
P{τ = ∞} = 1 and in the other case P{τ < ∞} = 1. Indeed, if the
series converges, we may not have P{τ = ∞} > 0, as this would imply
Eτ = ∞ while we have E τ =

∑∞
n=1E Tn =

∑∞
n=1

1
rn
<∞. Conversely,

if the series diverges, then, as we have seen in 8.3.23 we have for any
λ > 0,

∏∞
n=1

rn

λ+rn
= 0. Hence, E e−τ =

∏∞
n=1E e−Tn =

∏∞
n=1

rn

λ+rn
= 0

showing that P{τ = ∞} = 1.
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This means that after the (random) time τ, the process is left unde-
fined. In other words, at any time t > 0 some paths of the process may
no longer be defined (namely the paths X(t, ω) such that τ(ω) < t), and
we observe only some of them – hence the probability that the process
is somewhere in N may be (and is) strictly less than 1. The transition
probabilities of the process described above form the minimal semigroup
defined in 8.3.20. Now, we may introduce an additional rule for the be-
havior of the process after τ ; for example we may require that at τ it
jumps back to 1 and does the same for all subsequent explosions. How-
ever, instead of the above rule, we could require that at τ it jumps to
one of the even numbers, the probability of jumping to 2k being some
pk such that

∑∞
k=1 pk = 1, and the reader will be able to find more

such possibilities. All these choices lead to different processes and dif-
ferent semigroups – all of them, however, have transition semigroups
dominating the minimal transition semigroup.

In this context it is worth mentioning that condition (f) of 8.3.22
has a nice probabilistic interpretation. It turns out, specifically, that
a = (αn)n≥1 , αn = E {e−λτ |X(0) = n} solves the equation Qa = λa

and is maximal in the sense that if Q (α′
n)n≥1 = λ (α′

n)n≥1 for some
(α′
n)n≥1 ∈ l∞ with ‖ (α′

n)n≥1 ‖l∞ ≤ 1, then α′
n ≤ αn – see e.g. [92].

Certainly a 
= 0 iff τ 
= ∞.

8.4 Approximation theorems

The Trotter–Kato Approximation Theorem establishes a connection be-
tween convergence of semigroups and convergence of their resolvents. As
we have already seen in the examples of Yosida approximation, conver-
gence of resolvents of semigroups alone does not imply convergence of
semigroups on the whole of the space; in general the semigroups converge
only on a subspace, perhaps on the subspace {0}. In fact, convergence
of resolvents is equivalent to convergence of integrated semigroups, and
to convergence of related homomorphisms – see 7.4.48. Before present-
ing the theorem, we illustrate this situation further by the following two
examples. In the first example we need to consider a complex Banach
space, but the reader should not find this a difficulty after remarks made
in 6.2.7.

8.4.1 Example Let {T (t), t ≥ 0}, ‖T (t)‖ ≤M , be a semigroup acting
in a complex Banach space X0 and let Rλ, λ > 0, be the resolvent of this
semigroup. Define X as the Cartesian product X0 × C where C is the
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field of complex numbers and set, for x ∈ X0, z ∈ C, t ≥ 0, n ≥ 1,

Tn(t)
(
x

z

)
=
(
T (t)x
eitnz

)
.

Let Rλ,n be the resolvent of {Tn(t), t ≥ 0}. We have, for λ > 0,

Rλ,n

(
x

z

)
=
∫ ∞

0

e−λtTn(t)
(
x

z

)
dt =

(
Rλx
1

λ−niz

)

which converges to
(
Rλx

0

)
in the uniform operator topology. However,

Tn(t)
(
x

z

)
does not have any limit, as n → ∞, either in the strong or

in the weak topology as long as z 
= 0. On the other hand, integrals∫ t
0

enis ds = 1
in (eint − 1) tend to 0, as n→ ∞, in agreement with 7.4.48.

8.4.2 Example Let X = C0(R+
∗ ) be the space of continuous functions

x that satisfy x(0) = limτ→∞ x(τ) = 0. For n ≥ 1, let

Tn(t)x(τ) = 1R+(τ − nt)x(τ − nt), t ≥ 0,

and let An be the generators of these semigroups. The set X0 = {x ∈
X|∃K(x) > 0 such that τ > K(x) ⇒ x(τ) = 0} is dense in X. If x ∈ X0

then

(λ−An)−1x(τ) =
∫ ∞

0

e−λtTn(t)x(τ) dt

=
∫ ∞

0

e−λt1R+(τ − nt)x(τ − nt) dt

=
∫ τ

n

0

e−λtx(τ − nt) dt =
1
n

∫ τ

0

e−
λ
n (τ−σ)x(σ) dσ

≤ 1
n
K(x)‖x‖

which tends to 0 as n → ∞. Since the operators Rλ,n are equibounded
in n, i.e. ‖Rλ,n‖ ≤ 1

λ , we also have limn→∞Rλ,nx = 0, for all x ∈ X.

On the other hand, it is obvious that, for t > 0, Tn(t) tends weakly, as
n → ∞, to 0. Thus, if the strong limit of it exists it is equal to 0, too.
But, for all n ≥ 1, t > 0 and x ∈ X,

‖Tn(t)x− 0‖ = sup
τ∈R+

|1R+(τ − nt)x(τ − nt)| = ‖x‖.

This contradiction proves that although the weak convergence takes
place, the strong one does not, and, once again, convergence of semi-
groups is not implied by convergence of their resolvents.
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8.4.3 The Trotter–Kato Theorem Let {Tn(t), t ≥ 0}, n ≥ 1, be a se-
quence of strongly continuous semigroups with generators An. Suppose,
furthermore, that there exists an M > 0 such that ‖Tn(t)‖ ≤ M and
let Rλ,n = (λ− An)−1, λ > 0, n ≥ 1, denote the resolvents of An. If the
limit

Rλ = lim
n→∞

Rλ,n (8.70)

exists in the strong topology for some λ > 0, then it exists for all λ > 0.
Moreover, in such a case, there exists the strongly continuous semigroup
{T (t), t ≥ 0}

T (t)x := lim
n→∞

Tn(t)x, x ∈ X′ (8.71)

of operators in X′ = cl(RangeRλ). The definition of X′ does not depend
on the choice of λ > 0, convergence in (8.71) is uniform in compact
subintervals of R+ and we have

∫∞
0

e−λtT (t)xdt = Rλx, λ > 0, x ∈ X′

and ‖T (t)‖L(X′) ≤M .

Proof To prove the first assertion we argue as in 8.3.8, where A = L(X),
replacing convergence in the operator topology by strong convergence.
Moreover, the definition of X′ does not depend on the choice of λ > 0
because Rλ satisfies the Hilbert equation Rµ−Rλ = (λ−µ)RλRµ which,
written as Rµx = Rλ(x+(λ−µ)Rµx), x ∈ X, implies first Range(Rλ) ⊃
Range(Rµ) for all λ, µ > 0 and then Range(Rλ) = Range(Rµ) by sym-
metry.

Next,

X′ = {x ∈ X| lim
λ→∞

λRλx exists and equals x}.

Indeed, if we denote the right-hand side above by X′′, then by definition
X′ ⊃ X′′. Also, X′′ is closed, by ‖λRλ‖ ≤ M,λ > 0. Hence, to show
the opposite inclusion it suffices to show that RangeRµ ⊂ X′′, for some
µ > 0. But, if x = Rµy, then λRλx = λRλRµy = µRλRµy+Rµy−Rλy,
and since ‖Rλ‖ ≤Mλ−1, limλ→∞ λRλx = Rµy = x, as claimed.

Hence, operators Tn(t) being equibounded, to prove (8.71), it suffices
to show that it holds for x of the form x = Rλy where λ > 0 and y ∈ X.

This, however, will be shown once we prove that Tn(t)Rλ,ny converges.
By Exercise 8.2.15,

Tn(t)Rλ,ny = λ

∫ t

0

Tn(s)Rλ,ny ds−
∫ t

0

Tn(s)y ds+Rλ,nx.

On the other hand, by 7.4.48, there exists the strong limit U(t) =
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limn→∞
∫ t
0
Tn(s) ds with ‖U(t)‖L(X) ≤ Mt. This implies that the limit

limn→∞ Tn(t)Rλ,ny exists and equals U(t)λRλy − U(t)y +Rλy. In par-
ticular,

T (t)Rλy = U(t)λRλy − U(t)y +Rλy, λ > 0, t ≥ 0, y ∈ X. (8.72)

Clearly, ‖T (t)x‖ ≤ M‖x‖, x ∈ X′. Since Rλ,n commutes with Tn(t),
Rλ commutes with U(t). Therefore, by (8.72), ‖λRλU(t)y − U(t)y‖ =
‖T (t)Rλy−Rλy‖ ≤ (M + 1)λ−1‖y‖ which implies limλ→∞ λRλU(t)y =
U(t)y. Hence, (8.72) shows that T (t)x is a member of X′. By the density
argument the same is true for all x ∈ X′. Also, in view of (8.71), it is clear
that {T (t), t ≥ 0} is a semigroup. Using (8.72) and ‖U(t)‖L(X) ≤ Mt

we see that limt→0 T (t)x = x for x in a dense subspace of X′, hence, for
all x ∈ X′; this means that {T (t), t ≥ 0} is strongly continuous. Finally,
continuity of t→ T (t)x implies that convergence in (8.71) is uniform on
compact subintervals of R+. The rest is clear.

8.4.4 Remark The generator of the limit semigroup As Examples
8.4.1 and 8.4.2 make it clear, in general there is no closed linear operator
A such that (λ − A)−1 equals Rλ, λ > 0, the limit pseudo-resolvent
in the Trotter–Kato Theorem. (A family Rλ, λ > 0, of operators in a
Banach space is said to be a pseudo-resolvent if it satisfies the Hilbert
equation.) The point is that Rλ, λ > 0, are, in general, not injective.
However, X′ ∩ KerRλ = {0} so that Rλ, λ > 0, restricted to X′ are
injective. Indeed, by the Hilbert equation, Rλx = 0 implies Rµx = 0,
λ, µ > 0; in other words, KerRλ does not depend on λ > 0. Hence, if
x ∈ X′ ∩KerRλ then x = limλ→∞ λRλx = 0.

Therefore, for any λ > 0 we may define Ax = λx −
(
(Rλ)|X′

)−1
x

on D(A) = RangeRλ. By the Hilbert equation, this definition does not
depend on λ > 0. A straightforward argument shows that A thus defined
satisfies the assumptions of the Hille–Yosida theorem (in X′, with ω =
0). Therefore it generates a strongly continuous semigroup in X′. Since
(λ − A)−1x = Rλx =

∫∞
0

e−λtT (t)xdt, x ∈ X′, this semigroup is the
semigroup {T (t), t ≥ 0} from the Trotter–Kato Theorem.

8.4.5 Example Convergence of elastic Brownian motions Let X =
C[0,∞] and let Aε, ε > 0, be the generators of semigroups related to
elastic Brownian motions defined in 8.2.18. Observe that the formula
(8.50) may be rewritten as

(λ−Aε)
−1
x(τ) = Rλx(τ) +

2ε
ε
√

2λ+ 1

∫ ∞

0

e−
√

2λσx(σ) dτe−
√

2λτ ,
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where

Rλx(τ) =
1√
2λ

∫ ∞

0

[
e−

√
2λ|σ−τ | − e−

√
2λ(σ+τ)

]
x(σ) dσ.

Therefore, for every x ∈ X and λ > 0,

∥∥(λ−Aε)−1x−Rλx
∥∥ =

∣∣∣∣ 2ε
ε
√

2λ+ 1

∣∣∣∣ sup
τ≥0

∣∣∣∣
∫ ∞

0

e−
√

2λσx(σ) dσe−
√

2λτ

∣∣∣∣
≤
∣∣∣∣ 2ε
ε
√

2λ+ 1

∣∣∣∣ 1√
2λ

‖x‖ −→
ε→0

0.

In other words, for any sequence εn, n ≥ 1, such that limn→∞ εn = 0 the
semigroups {Tn(t), t ≥ 0}, n ≥ 1, generated by Aεn , n ≥ 1, satisfy the
assumptions of the Trotter–Kato Theorem. Also, we see that Rλx(τ) = 0
and that for any x ∈ X such that x(0) = 0,

lim
λ→∞

λRλx = x. (8.73)

Hence, X′ = {x ∈ X|x(0) = 0}.

8.4.6 Exercise Check that the semigroup related to Brownian motion
described in 7.5.1 leaves C[−∞,∞] invariant and is a strongly continuous
semigroup in this space, and the resolvent of the restricted semigroup is
still given by (7.41). Conclude that, for x ∈ C[−∞,∞],

lim
λ→∞

√
λ

2

∫ ∞

−∞
e−

√
2λ|τ−σ|x(σ) dσ = x(τ)

uniformly in τ. Use this to prove (8.73). Moreover, show that the limit
semigroup in Example 8.4.5 is the semigroup related to the minimal
Brownian motion, restricted to X′. �

If condition (8.70) holds and x ∈ D(A), then for λ > 0 there exists a
y in X′ such that x = Rλy. Also, xn = Rλ,ny, n ≥ 1, belong to D(An)
and we have limn→∞ xn = x and limn→∞Anxn = limn→∞ λRλ,ny −
y = λRλy − y = ARλy = Ax. In Subsection 8.4.9 a version of the
approximation theorem is presented where convergence of semigroups is
characterized in terms of such convergence of their generators.

8.4.7 Definition Given a sequence An, n ≥ 1, of (in general, un-
bounded) operators in a Banach space X, the domain of the extended
limit Aex of this sequence is defined as the set of x ∈ X with the prop-
erty that there exist xn ∈ D(An) such that limn→∞ xn = x and the
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limit limn→∞Anxn exists. Although the latter limit is not uniquely de-
termined by x (see 8.4.11), we write Aexx = limn→∞Anxn. In other
words, A is a so-called multi-valued operator.

8.4.8 Exercise Let An, n ≥ 1, be as in the above definition and let
c(X) be the space of all convergent sequences with values in X. Let us
define the operator A in c(X) by A (xn)n≥1 = (Anxn)n≥1 with domain

D(A) = {(xn)n≥1 |xn ∈ D(An), (Anxn)n≥1 ∈ c(X)}.

Also let L : c(X) → X be given by L (xn)n≥1 = limn→∞ xn. Show that x
belongs to the domain of the extended limit of An, n ≥ 1, iff there exists
an (xn)n≥1 ∈ D(A) such that L (xn)n≥1 = x.

8.4.9 The Sova–Kurtz version of the Trotter–Kato Theorem Let X

be a Banach space. Suppose, as in 8.4.3, that {Tn(t), t ≥ 0}, n ≥ 1, is
a sequence of strongly continuous semigroups with generators An, and
that there exists an M > 0 such that ‖Tn(t)‖ ≤ M . Also, suppose that
for some λ > 0 the set of y that can be expressed as λx − Aexx, where
Aex is the extended limit of An, n ≥ 1, is dense in X. Then, the limit
(8.70) exists for all λ > 0. Moreover, X′ = cl(D(Aex)) and the part
Ap of Aex in X is single-valued and is the infinitesimal generator of the
semigroup defined by (8.71).

Proof By saying that y may be expressed as λx − Aexx we mean that
there exists a sequence xn ∈ D(An) such that limn→∞ xn = x and
limn→∞Anxn exists and equals λx−y. Clearly Rλ,n(λxn−Anxn) = xn.

Also ‖Rλ,ny−xn‖ = ‖Rλ,n(y−λxn+Anxn)‖ ≤Mλ−1‖y−λxn+Anxn‖.
Since limn→∞(λxn − Anxn) = y, the sequence Rλ,ny, n ≥ 1, converges
and its limit equals limn→∞ xn = x. This shows that the limit (8.70)
exists for the λ described in the assumption of our theorem and x from
a dense subspace of X. Since ‖Rλ,n‖ ≤ Mλ−1 this limit exists for all
x ∈ X.

The same argument applies now to show that

Rλ(λx−Aexx) = x (8.74)

for all x ∈ D(Aex) and λ > 0. Hence, D(Aex) ⊂ RangeRλ ⊂ X′. Let A
be the generator of the semigroup defined by (8.70). The remark made
before 8.4.7 shows that D(A) ⊂ D(Aex). Since the former set is dense in
X′, cl(D(Aex)) = X′.

Finally, if x ∈ D(Ap), i.e. if x ∈ D(Aex) and Aexx ∈ X′, then, by
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(8.74), x belongs to D(A) and since Rλ(λx − Ax) = x, x ∈ D(A), we
have Ax = Aexx, x ∈ D(Ap). On the other hand, if x ∈ D(A), then
x ∈ D(Aex) and Aexx belongs to X′ so that D(A) ⊂ D(Ap).

8.4.10 Corollary Suppose that {Tn(t), t ≥ 0}, n ≥ 1, is a sequence
of strongly continuous semigroups in X with generators An, n ≥ 1, and
that there exists an M > 0 such that ‖Tn(t)‖ ≤ M . Let A be a linear,
in general unbounded operator such that Range(λ − A) is dense in X

for some λ > 0. If for every x ∈ D(A) there exists a sequence xn ∈
D(An), n ≥ 1, such that limn→∞ xn = x and limn→∞Anxn = Ax,
then the limit (8.70) exists, the part Ap of A in X′ is closable and its
closure is the generator of the semigroup given by (8.71). In particular,
if A is the generator of a semigroup {S(t), t ≥ 0} in X (in which case
Range(λ−A) = X, λ > 0), S(t) coincides with T (t) given by (8.71).

8.4.11 Example Telegraph equation with small parameter Let 0 <

ε < 1 be given. The equation

ε
∂2x(t, τ)
∂t2

+
∂x(t, τ)
∂t

=
1
2
∂2x(t, τ)
∂τ2

, x(0, τ) = x(τ),
∂x

∂t
(0, τ) = y(τ)

(8.75)
is called the telegraph equation with small parameter. Of course,
this equation is obtained from (7.55) when we put 2a = 2v2 = ε−1.

It is reasonable to expect that, as ε → 0, solutions to (8.75) tend to
the solutions of the diffusion equation

∂x(t, τ)
∂t

=
1
2
∂2x(t, τ)
∂τ2

, x(0, τ) = x(τ).

To prove this conjecture, we consider the operators Aε = A(2ε)−1,(2ε)−1/2

where Aa,v has been defined in 8.2.24. As proved there, Aε is the gen-
erator of a strongly continuous semigroup, say {Tε(t), t ≥ 0}, in X × Y

where X = BUC1(R) and Y = BUC(R). We have

Tε(t) =
(
S00(ε, t) S01(ε, t)
S10(ε, t) S11(ε, t)

)

where, by 8.2.26,

‖S00(ε, t)‖ ≤ 1, ‖S01(ε, t)‖ ≤ ε+
√

2ε ≤ 3
√
ε,

‖S10(ε, t)‖ ≤ 1√
2ε

≤ 1√
ε
, ‖S11(ε, t)‖ ≤ 1. (8.76)

We note that the Trotter–Kato Theorem cannot be applied to the
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semigroups {Tε(t), t ≥ 0}, 0 < ε < 1, since they are not equibounded.
However, putting

Vε(t) =
(

1 0
0

√
ε

)
Tε(t)

(
1 0
0 1√

ε

)
=

(
S00(ε, t) 1√

ε
S01(ε, t)√

εS10(ε, t) S11(ε, t)

)

we obtain the family of equibounded semigroups {Vε(t), t ≥ 0}, 0 < ε <

1. Indeed, for (x, y) ∈ X × Y,

‖S00(ε, t)x+
1√
ε
S01(ε, t)y‖ + ‖

√
εS10(ε, t)x+ S11(ε, t)y‖

≤ ‖x‖ + 3‖y‖ + ‖x‖ + ‖y‖ ≤ 4‖(x, y)‖,

so that ‖Vε(t)‖ ≤ 4.
The domain of the generator, say Bε, of {Vε(t), t ≥ 0} is the same as

the domain of Aε (= D( d2

dτ2 ) × X) and

Bε

(
x

y

)
=
(

1 0
0

√
ε

)
Aε

(
1 0
0 1√

ε

)(
x

y

)
=

(
1√
ε
y

1√
ε

1
2x

′′ − 1
ε y

)
. (8.77)

We know that the operator 1
2

d2

dτ2 with domain D( d2

dτ2 ) is the generator
of the Brownian motion semigroup {TB(t), t ≥ 0} in Y. This semigroup
leaves the space X invariant and (TB(t)x)′ = TB(t)x′. Hence, the re-
stricted semigroup {V (t), t ≥ 0} (V (t) = TB(t)|X) is strongly continuous
in X, and its generator is 1

2
d2

dτ2 with domain D1( d2

dτ2 ) composed of three
times differentiable functions with all three derivatives in Y.

Let us take x ∈ D1( d2

dτ2 ) and for every ε consider (x,
√
ε 1
2x

′′−εy) where
y ∈ X. Since x′′ belongs to X, (x,

√
ε 1
2x

′′ − εy) belongs to D(Bε). More-
over, Bε(x,

√
ε 1
2x

′′ − εy) = (1
2x

′′ −√
εy, y) → ( 1

2x
′′, y) and (x,

√
ε 1
2x

′′ −
εy) → (x, 0), as ε → 0. This shows that, for any sequence εn, n ≥ 1,
converging to zero, D1( d2

dτ2 ) × {0} is contained in the domain of the
extended limit Bex of Bεn . Our calculation shows also that the set of
vectors of the form λ(x, y) −Bex(x, y), where (x, y) ∈ D(Bex), contains
vectors (λx− 1

2x
′′, (λ−1)y). Since the vectors of the form λx− 1

2x
′′ where

x ∈ D1( d2

dτ2 ) exhaust the whole of X and X is a dense subspace of Y, the
conditions of the Sova–Kurtz version of the Trotter–Kato Theorem are
fulfilled with any λ > 0, λ 
= 1. (See Exercise 8.4.12.)

Moreover, if (xε, yε) converges, as ε→ 0, to (x, y), in such a way that
Bε(xε, yε) converges, then, by (8.77), 1√

ε
yε converges, and so yε converges

to 0. This shows that D(Bex) is contained in X × {0}. Combining this
with our previous findings we obtain that the subspace where the limit
semigroup of {Vε(t), t ≥ 0} is defined equals X×{0}. By 8.4.9, we know



348 Markov processes and semigroups of operators

that the part of Bex in X×{0} is single-valued, and we have already seen
that one of its possible values on (x, 0) where x ∈ D1( d2

dτ2 ) is ( 1
2x

′′, 0).
This means that the generator of the limit semigroup and the operator
A(x, 0) = ( d2

dτ2 , 0) coincide on the set D1( d2

dτ2 )×{0}, which is the domain
of the latter operator. Since both operators are generators of semigroups,
they must be equal (use 7.4.32, for example). Hence, we have

lim
ε→0

Vε(t)
(
x

0

)
= lim
ε→0

(
S00(ε, t)x√
εS10(ε, t)x

)
=
(
V (t)x

0

)
, x ∈ X. (8.78)

Therefore, in view of the inequality involving ‖S01(ε, t)‖ contained in
(8.76), S00(ε, t)x+S01(ε, t)y converges to V (t)x strongly in X, for x ∈ X

and y ∈ Y. A density argument then applies to show that it converges to
V (t)x in Y for x and y in Y, and this is what we have set out to prove.

8.4.12 Exercise Modify the argument from the previous subsection
to show that the conditions of 8.4.9 are fulfilled, as they must, with any
λ > 0.

8.4.13 Exercise Prove that the derivative of the solution to the tele-
graph equation with small parameter converges to that of the diffusion
equation provided x ∈ D1( d2

dτ2 ) and y = 1
2x

′′.

8.4.14 Exercise Prove convergence of semigroups from 8.4.5 using
8.4.9.

8.4.15 Exercise Prove convergence of semigroups from 8.4.11 using
the Trotter–Kato Theorem 8.4.3. To this end solve the system of equa-
tions

λx− 1√
ε
y = w,

λy − 1√
ε

1
2
x′′ +

1
ε
y = z,

with given w ∈ X and z ∈ y and unknown x ∈ D1( d2

dτ2 ) and y ∈ X to
show that

(λ−Bε)−1 =

(
(ελ+ 1)(λ2ε+ λ− 1

2
d2

dτ2 )−1
√
ε(λ2ε+ λ− 1

2
d2

dτ2 )−1

√
ε 1
2

d2

dτ2 (λ2ε+ λ− 1
2

d2

dτ2 )−1 ελ(λ2ε+ λ− 1
2

d2

dτ2 )−1

)
,

where (λ− 1
2

d2

dτ2 )−1 is the resolvent of the operator 1
2

d2

dτ2 in X.
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8.4.16 Proof of 8.3.20 We have Rλ,r ≤ Rλ,r′ for r ≤ r′, and ‖Rλ,r‖ ≤
λ−1. Hence, by 8.3.17, there exists the strong limit Rλ = limr↑1Rλ,r.
Clearly, for any N ∈ N,

∑N
n=0(λ − D)−1rnBnλ ≤ Rλ,r ≤ Rλ. Hence,

letting r ↑ 1, we obtain
∑N
n=0(λ − D)−1Bnλ ≤ Rλ. Applying 8.3.17

again, the series
∑∞
n=0(λ −D)−1Bnλ converges and we have

∑∞
n=0(λ −

D)−1Bnλ ≤ Rλ. On the other hand, Rλ,r ≤
∑∞
n=0(λ −D)−1Bnλ and so,

letting r ↑ 1, Rλ ≤∑∞
n=0(λ−D)−1Bnλ , proving that the two are equal.

(Note that we do not claim that Rλ = (λ−D)−1
∑∞
n=0B

n
λ ; in fact, the

series
∑∞
n=0B

n
λ in general diverges.)

Next, we note that for x ∈ D(D),
∑N+1
n=0 (λ − D)−1Bnλ (λ − D)x =

x +
∑N+1
n=1 (λ − D)−1Bn−1

λ Ox = x +
∑N
n=0(λ − D)−1BnλOx. Letting

N → ∞, we obtain Rλ(λ−D)x = x+RλOx, i.e. Rλ(λ−D−O)x = x.

In particular, the range of Rλ contains D(D) and so cl(RangeRλ) = l1.

Therefore, the semigroups {Sr(t), t ≥ 0} converge as r ↑ 1 to a strongly
continuous semigroup. The limit semigroup is composed of sub-Markov
operators, the operators Sr(t), t ≥, 0 ≤ r < 1, being sub-Markov. Finally,
for x ∈ D(D), limr↑1Dx + rOx = Dx + Ox, proving that the extended
limit of D + rO, which is the generator of the limit semigroup, is an
extension of D +O.

8.4.17 Approximation by discrete-parameter semigroups Let us sup-
pose that Tn, n ≥ 1, are contractions in a Banach space X and hn, n ≥ 1,
are positive numbers with limn→∞ hn = 0. Then, the operators An =
h−1
n (An − I) are generators of contraction semigroups {Tn(t), t ≥ 0}

where Tn(t) = e−h
−1
n te−h

−1
n tTn . If the extended limit Aex of An, n ≥ 1,

has the property that for some λ > 0 the vectors of the form λx−Aexx

form a dense set in X, then, by 7.4.48, 8.4.3 and 8.4.9, there exist the
limits

U(t)x = lim
n→∞

∫ t

0

Tn(u)xdu, x ∈ X,

T (t)x = lim
n→∞

Tn(t)x, x ∈ X.

We will show that U(t) and T (t) may also be approximated as follows:

U(t)x = lim
n→∞

∫ t

0

T [u/hn]
n xdu, x ∈ X, (8.79)

T (t)x = lim
n→∞

T [t/hn]
n x, x ∈ X. (8.80)

To this end, we note first that by 8.4.9 there exists the strong limit
Rλ = limn→∞(λ − An)−1. Hence, by 7.4.50, there exists the limit on
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the right-hand side of (8.79). Equality must hold, because both sides are
continuous and their Laplace transforms coincide. Moreover, from the
proof of the Trotter–Kato Theorem 8.4.3 we know that U(t)x ∈ X′ for all
t ≥ 0 and x ∈ X; on the other hand, for x ∈ X′, U(t)x =

∫ t
0
T (s)xds, so

that by the strong continuity of {T (t), t ≥ 0}, limt→0
1
tU(t)x = x. This

shows that it suffices to show (8.80) for x of the form x = U(s)y, y ∈
X, s > 0. In view of (8.79) and ‖T [t/hn]‖ ≤ 1, this will be done once we
show that limn→∞ T

[t/hn]
n

∫ s
0
T

[u/hn]
n y du exists and equals T (t)U(s)y.

We have:

T
[ t

hn
]

n

∫ s

0

T
[ u

hn
]

n y du =
∫ s

0

T

[
u+hn[ t

hn ]
hn

]
n y du =

∫ s+hn[ t
hn

]

hn[ t
hn

]
T

[ u
hn

]
n y du

=
∫ s+hn[ t

hn
]

0

T
[ u

hn
]

n y du−
∫ hn[ t

hn
]

0

T
[ u

hn
]

n y du

−→
n→∞

U(t+ s)y − U(t)y.

On the other hand, U(t + s)y − U(t)y = limn→∞
∫ t+s
0

Tn(u)y du −
limn→∞

∫ t
0
Tn(u)y du = limn→∞ Tn(t)

∫ s
0
Tn(u)y du = T (t)U(s), as de-

sired.

8.4.18 Corollary Central Limit Theorem again As in the proof of
5.5.2, we assume without loss of generality that Xn, n ≥ 1, are inde-
pendent, identically distributed random variables with mean zero and
variance 1. Let Tn = T 1√

n
Xn

= T 1√
n
X1

be the related operators in

C[−∞,∞]. By Lemma 5.5.1, limn→∞ n(Tn − I)x = 1
2x

′′ for all twice
differentiable functions x ∈ C[−∞,∞] with x′′ ∈ C[−∞,∞]. The oper-
ator x→ 1

2x
′′ defined on the set of such functions is the generator of the

semigroup {T (t), t ≥ 0} related to Brownian motion. Hence, by 8.4.10,
limn→∞ T

[nt]
n x = T (t)x for all x ∈ C[−∞,∞]. Taking t = 1 and noting

that Tnn = T 1√
n

∑n
i=1Xi

we obtain the claim by 5.4.18.

8.4.19 Example A random walk approximating Brownian motion
Brownian motion is often approximated by the following random walk.
Given a sequence of independent random variables Yi assuming val-
ues +1 and −1 with equal probability 1

2 , we define the simple ran-
dom walk Wk, k ≥ 1, by W0 = 0 and Wk =

∑k
i=1 Yi. Next, we define

continuous-time processes Xn(t), n ≥ 1, by Xn(t) = 1√
n
W[nt], t ≥ 0.

In other words, with n increasing, we increase the number of steps of
the random walk in a finite time, while decreasing their length; the
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steps are being taken at times t = k
n . We note that EXn(t) = 0 and

D2Xn(t) = 1
n

∑[nt]
i=1 Y

2
i = [nt]

n −→ t, as n→ ∞.

To see thatXn(t), n ≥ 1, approximates a Brownian motion w(t), t ≥ 0,
we note that TXn(t) = T

[nt]
1√
n
Y1
. By 5.5.1, limn→∞(T 1√

n
Y1
x−x) = 1

2x
′′, for

suitable class of functions x. As in 8.4.18, this implies limn→∞ TXn(t)x(τ)
= E x(τ + w(t)), τ ∈ R, x ∈ C[−∞,∞].

8.4.20 Example For an n ≥ 1, we define a discrete-time Markov pro-
cess Xn(k), k ≥ 0, in [0, 1] by requiring that given Xn(k) = s we have
Xn(k + 1) = Y/n where Y is a binomial random variable with parame-
ter s. We will show that as n→ ∞, Xn([2nt]), n ≥ 0, approximates the
continuous-time process in [0, 1] with generator A introduced in 8.3.15
and 8.3.16. To this end it suffices to show that for a twice differen-
tiable function x ∈ C[0, 1] with x′′ ∈ C[0, 1], limn→∞ 2n[Anx− x] = Ax

strongly in C[0, 1], where Anx are Bernstein polynomials (see 2.3.29).
Using the Taylor formula (5.21), 2n[Anx−x](s) = 2nx′(s)E (Y/n−s)+
nE (Y/n−s)2x′′[s+θ(Y/n−s)] = nE (Y/n−s)2x′′[s+θ(Y/n−s)]. Also
Ax(s) = nx′′(s)E (Y/n− s)2 since E (Y − ns)2 = D2Y = ns(1 − s).

For a given ε > 0, a δ > 0 may be chosen so that |τ − σ| < δ implies
|x′′(σ)−x′′(τ)| < ε.Hence, by Chebyshev’s inequality, ‖2n[Anx−x]−Ax‖
does not exceed

sup
s∈[0,1]

εnE (Y/n− s)21|Y/n−s|<δ + 2n‖x′′‖E (Y/n− s)21|Y/n−s|≥δ

≤ ε sup
s∈[0,1]

s(1 − s) + 2n−3δ−2‖x′′‖ sup
s∈[0,1]

E (Y − ns)4.

Since the first supremum equals 1
4 , we are left with proving that

lim
n→∞

n−3 sup
s∈[0,1]

E (Y − ns)4 = 0.

This, however, follows by a straightforward calculation of E (Y − ns)4;
the details are left to the reader.

8.4.21 Example The pure death process related to the n-coalescent of
Kingman Let us consider a population of N individuals which evolves
according to the following rules. The generations are discrete and non-
overlapping, and each member of the (n + 1)st generation chooses his
parent from the nth generation at random and independently from the
other members, the probability of choosing any parent being equal to
N−1. We observe a sample of n individuals from this population at
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time 0 and are interested in the number XN (k), k ≥ 1, of ancestors k
generations back; we assume that the process is well-defined for all k ≥ 0,
i.e. that the population has evolved in the manner described above for
an infinitely long time. XN (k), k ≥ 0, is a discrete-time Markov chain
with values in {1, ..., n} and transition probabilities pi,j = pi,j(N) =

N−i
{
i

j

}(
N
j

)
j!, where

{
i

j

}
is the Stirling number of the second kind

– see 8.4.33. Indeed, N i is the number of all possible ways i members
may choose their parents, and the number of ways exactly j parents
may be chosen is the product of three numbers. The first of them is the
number of ways the set of i elements may be partitioned into j subsets,
i.e. the Stirling number of the second kind. The second is the number
of ways j parents may be chosen from the population of N individuals
– the binomial coefficient

(
N
j

)
, and the third is the number of possible

assignments of j parents to j subsets.
The process XN (k), k ≥ 0, is a pure death process in that its

paths are non-increasing sequences. We will show that XN ([tN ]), t ≥
0, converges to a continuous-time (pure death) process with intensity
matrix Q = (qi,j) , where

qi,i = −
(
i

2

)
, i = 1, ..., n, qi,i−1 =

(
i

2

)
, i = 2, ...., n (8.81)

and qi,j = 0 otherwise. To this end we note first that to prove that

N
[
(pi,j)1≤i,j≤n − I

]
converges to Q it suffices to show that the corre-

sponding entries of these matrices converge. Moreover,

pi,i =
i−1∏
k=1

(
1 − k

N

)
= 1 −

i−2∑
k=1

k

N
+ h1

where |h1| ≤ 2i−1
∑i−1
l=2

(i−1)l

N l , so that limN→∞Nh1 = 0. Similarly,

pi,i−1 =
(
i

2

)
1
N

i−2∏
k=1

(
1 − k

N

)
=

1
N

(
i

2

)
+ h2 (8.82)

where |h2| ≤ 2i−1
(
i
2

)
1
N

∑i−2
l=1

(i−2)l

N l so that limN→∞Nh2 = 0. This
shows that limN→∞N [pi,i− 1] = −

(
i
2

)
= − limN→∞Npi,i−1. Moreover,

since
n∑
j=1

pi,j =
i∑

j=1

pi,j = 1, (8.83)
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for j 
= i, i− 1, Npi,j ≤ N
∑
l �=i,i−1 pi,j = N(1− pi,i − pi,i−1) ≤ N |h1|+

N |h2| −→ 0 as N → ∞, as desired.
As formula (8.81) shows, if N is large and the time is measured in

units of N generations, the distribution of the time (counted backwards)
when there are j ancestors of the given sample is approximately ex-
ponential with parameter j(j − 1)/2. In particular, the expected time
TMRCAS to the most recent common ancestor of a sample of n individual
is E TMRCAS ≈ 2N

∑n
i=2

1
i(i−1) = 2N(1− 1

n ). In particular, the expected
time TMRCAP to the most recent common ancestor of the whole popu-
lation is ETMRCAP ≈ 2N.

8.4.22 Example Kingman’s n-coalescent A modification of the rea-
soning from the previous subsection allows tracing of the whole geneal-
ogy of a sample. To this end, for a sample of n individuals we consider
the Markov chain RN (k), k ≥ 0, of equivalence relations in {1, ..., n}; the
pair (i, j) belongs to the equivalence relation RN (k) iff the individuals i
and j have a common ancestor k generations ago. Each equivalence class
corresponds to a member of a population that lived k generations ago,
yet the opposite statement is not true because some members of this
generation may have not have descendants. RN (0) is the main diago-
nal in the square {(i, j)|1 ≤ i, j ≤ n} and by 8.4.21, RN (k) eventually
reaches the full equivalence relation, i.e. the whole square.

We follow Kingman [67], [68] to show that RN ([Nt]), t ≥ 0, converges,
as N → ∞, to the continuous-time Markov chain with intensity matrix
Q given by

qE,E′ =

⎧⎪⎪⎨
⎪⎪⎩
−
(|E|

2

)
, if E = E ′,

1, if E ≺ E ′,

0, otherwise,

(8.84)

where |E| denotes the number of equivalence classes in an equivalence
relation E and we write E ≺ E ′ iff E ⊂ E ′ and E ′ is formed by amalga-
mating (exactly) two equivalence classes of E . The Markov chain with
intensity matrix (8.84) is called the n-coalescent of Kingman.

To this end we note that pE,E′ , the transition probability of the chain
RN , is zero if E 
⊂ E ′. Also if E ⊂ E ′ yet E 
≺ E ′, then |E| − |E ′| ≥ 2,
and pE,E′ ≤ p|E|,|E′| where pi,j is the transition probability of the pure
death chain from the previous subsection. Hence, limN→∞NpE,E′ = 0.
Moreover, pE,E = p|E|,|E|, so that limN→∞N(pE,E − 1) = −

(|E|
2

)
. Finally,
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if E ≺ E ′, pE,E′ =
(|E|

2

)−1
p|E|,|E|−1 (we do know which two equivalence

classes are to be amalgamated), so that limN→∞NpE,E′ = 1, as desired.
This result may be used to derive many classic formulae for sampling

distributions in population genetics (see [39]) and in particular the fa-
mous Ewens sampling formula (see [69]).

8.4.23 A generalization of 8.4.17 In applications it is often the case
that semigroups, especially discrete parameter semigroups, approximat-
ing a semigroup do not act in the same space as the limit semigroup
does. Typically, we have a sequence of Banach spaces, say Xn, n ≥ 1,
approximating a Banach space X in the sense that there exist operators
Pn : X → Xn such that limn→∞ ‖Pnx‖n = ‖x‖, for all x ∈ X (‖·‖n is the
norm in Xn). In such a case, we say that a sequence xn ∈ Xn, n ≥ 1, con-
verges to an x ∈ X if limn→∞ ‖xn − Pnx‖ = 0. With such a convention,
the Trotter–Kato Theorem remains true with the proof requiring only
cosmetic changes. In Subsection 8.4.25 we present a typical example of
such an approximation.

8.4.24 Exercise Show that in the situation described above we have
supn≥1 ‖Pn‖ <∞.

8.4.25 Example A random walk approximating the Ornstein–Uhlenbeck
process Imagine an urn with 2n balls, say green and red. One ball is
drawn at random; if it is red then a green ball is put into the urn and if
it is green a red ball is put into the urn. This procedure is then repeated
– this is the famous Ehrenfest model from statistical mechanics. The
state of this process may be described by a singe number, for example
by the difference between the number of red balls and n. In other words,
we are dealing with a discrete-time Markov chain with values in the set
Sn = {i ∈ Z||i| ≤ n} and transition probabilities pi,i+1 = 1− i+n

2n ,−n ≤
i ≤ n− 1, pi,i−1 = i+n

2n ,−n+ 1 ≤ i ≤ n.

If (pi)i∈Sn
is the initial distribution of the process, then at time k,

the distribution is Ukn (pi)i∈Sn
where Un (pi)i∈Sn

= (qi)i∈Sn
with qn =

1
2npn−1, q−n = 1

2np−n+1 and q−n+i+1 = (1− i
2n )p−n+i+ i+2

2n p−n+i+2, 0 ≤
i ≤ n − 2. The operator Un acts in the space of sequences (pi)i∈Sn

equipped with the norm ‖ (pi)i∈Sn
‖ =

∑
i∈Sn

|pi|. The related dual op-
erator Tn is defined in the space Xn of sequences (ξi)i∈Sn

equipped with
the norm ‖ (ξi)i∈Sn

‖n = maxi∈Sn
|ξi| as follows: Tn (ξi)i∈Sn

= (ηi)i∈Sn

where η−n+i = i
2nξ−n+i−1 + (1 − i

2n )ξ−n+i+1, 1 ≤ i ≤ 2n − 1, η∓n =
ξ±n±1.
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We will show that if the length of a single step of the process is taken
to be a√

n
and the time scale is changed so that steps will be taken

at times k
bn , then, as n → ∞, these Markov chains approximate the

Ornstein–Uhlenbeck process. We put a2 = γ2α−1 and b = α where α
and γ are parameters of the Ornstein–Uhlenbeck process (see 8.1.14). In
other words, we show that

lim
n→∞

T [bnt]
n x = T (t)x, (8.85)

where {T (t), t ≥ 0} is the Ornstein–Uhlenbeck semigroup in C0(R); we
note that Xn, n ≥ 1, approximate the space X = C0(R) in the sense of
8.4.23 if we let Pnx = (ξi)i∈Sn

where ξi = x( ai√
n
),−n ≤ i ≤ n.

To prove (8.85) we need the following result. Consider the opera-
tor Ax(τ) = −ατx′(τ) + γ2

2 x
′′(τ) defined on D(A) composed of twice

differentiable functions in X with both derivatives in X and such that
τ → Bx(τ) = τx′(τ) belongs to X. We want to show that for x ∈ D(A),
limt→0+

1
t (T (t)x − x) = Ax, i.e. that the infinitesimal generator of the

Ornstein–Uhlenbeck semigroup is an extension of A. To this end, we re-
call that by 8.1.21, T (t)x(τ) = E x(e−atτ+w(β(t))) where w(t), t ≥ 0, is
a Brownian motion and β(t) = γ2

2a (1 − e−2at). Using the Taylor formula
(5.21), we write x(e−atτ + w(β(t))) as x(τe−at) + x′(τe−atτ)w(β(t)) +
x′′(τe−at + θw(β(t)))w(β(t))/2; note that θ is a function of τ, t and ω.

Using E w(β(t)) = 0 and E w2(β(t)) = β(t), and applying the Lagrange
formula to x(τe−at), we obtain T (t)x(τ) − x(τ) = τ(e−at − 1)x′(τ +
θτ(e−at−1))+ 1

2β(t)E x′′(τe−at+θw(β(t))). Using the triangle inequal-
ity in a straightforward manner the task reduces to showing that

lim
t→0

sup
τ∈R

∣∣τx′(τ + θτ(e−at − 1)) − τx′(τ)
∣∣ = 0, (8.86)

and

lim
t→0

sup
τ∈R

∣∣E x′′(τe−at + θw(β(t))) − x′′(τ)
∣∣ = 0, (8.87)

uniformly in τ ∈ R. We will prove the first of these relations, leaving the
proof of the other as an exercise.

Let ε > 0 be given. We choose an M > 0 so that supτ∈R |τx′(τ)| < 9
19ε

for |τ | > 9
10M . Also, we choose a δ > 0 so that |x′(τ) − x′(σ)| < ε

M for
|τ − σ| < δ, |τ |, |σ| ≤ 11

10M. Finally, we take a t small enough to have
1 − e−at < min( 1

10 ,
δ
M ). Then, for |τ | > M , |τx′(τ + θτ(e−at − 1))| <∣∣∣ τ

τ+θτ(e−at−1)

∣∣∣ 9
19ε ≤ 10

19ε, so that the absolute value in (8.86) is less than
ε. Similarly, for |τ | ≤ M the absolute value in (8.86) does not exceed
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M |x′(τ +θτ(e−at−1))−x′(τ)| < ε since |θτ(e−at−1)| ≤M(e−at−1) <
min(δ, M10 ).

Using 8.1.21 we check that the Ornstein–Uhlenbeck semigroup leaves
D(A) invariant. Since D(A) is dense in X, D(A) is a core for the infinites-
imal generator of {T (t), t ≥ 0}. In particular, Range(λ−A) is dense in X.

Therefore, (8.85) will be shown once we prove that limn→∞ ‖nb(TnPnx−
Pnx) − PnAx‖n = 0 for x ∈ D(A).

By the Taylor formula nb(TnPnx− Pnx)
(
a−n+i√

n

)
equals

ib

2

[
x

(
a
−n+ i− 1√

n

)
− x

(
a
−n+ i√

n

)]

+ b

(
2n− i

2

)[
x

(
a
−n+ i+ 1√

n

)
− x

(
a
−n+ i√

n

)]

= −ab−n+ i√
n

x′
(
a
−n+ i√

n

)
+
a2bi

4n
x′′
(
a
−n+ i√

n
− θ1

a√
n

)

+
a2b(2n− i)

4n
x′′
(
a
−n+ i√

n
+ θ2

a√
n

)
, 1 ≤ i ≤ 2n− 1,

and nb(TnPnx− Pnx) (∓a√n) equals

±ab
√
nx′
(
∓a

√
n
)

+
a2b

2
x′′
(
∓a

√
n+ θ3

a√
n

)
,

where 0 ≤ θi ≤ 1, i = 1, 2, 3. Since

PnAx

(
a
−n+ i√

n

)
= −αa−n+ i√

n
x′
(
a
−n+ i√

n

)
+
γ2

2
x′′
(
a
−n+ i√

n

)
,

0 ≤ i ≤ 2n, and b = α and a2b = γ2, we obtain

‖nb(TnPnx− Pnx) − PnAx‖n ≤ γ2 sup
τ,σ,|τ−σ|≤ 2a√

n

|x′′(τ) − x′′(σ)|

which converges to 0 as n→ ∞ by uniform continuity of x′′.

8.4.26 Exercise Prove (8.87).

Suppose that we have two Feller processesXA andXB with generators
A and B respectively. Sometimes, for example when B is bounded, A+B
is well defined and generates a Feller semigroup. What does the process
related to A + B look like at time t? It is reasonable to expect that
for large n a good approximation is given by the following discrete-time
process: we allow the process to evolve for time t/n according to the
transition probability of XA and then for the same time according to the
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distribution of XB , and then repeat the whole circle n times. Formally,
we have the following theorem.

8.4.27 The Trotter product formula Suppose that A and B and C are
generators of c0 semigroups {S(t), t ≥ 0}, {T (t), t ≥ 0} and {U(t), t ≥ 0}
of contractions, respectively, in a Banach space X. Suppose also that D
is a core for C and D ⊂ D(A) ∩ D(B) and Cx = Ax + Bx for x ∈ D.
Then,

U(t) = lim
n→∞

[
S

(
t

n

)
T

(
t

n

)]n
, t ≥ 0,

strongly.

Proof Since D is a core, by 8.4.9 it suffices to show that

lim
n→∞

n

t
(S(t/n)T (t/n)x− x) = Ax+Bx

or, which is the same, limn→∞
[
nt−1(S(t/n)T (t/n)x− x) − S(t/n)Ax

]
= Bx. To this end we write ‖nt−1[S(t/n)T (t/n)x − x] − S(t/n)Ax −
Bx‖ ≤ ‖S(t/n){nt−1[T (t/n)−x]−Ax}‖+ ‖nt−1[S(t/n)x−x]−Bx‖ ≤
‖nt−1[T (t/n) − x] − Ax‖ + ‖nt−1[S(t/n) − x] − Ax‖ −→ 0, as n → ∞.

8.4.28 Exercise Suppose that {T (t), t ≥ 0} and {S(t), t ≥ 0} are two
contraction semigroups. Show that the limit limn→∞[S(t/n)T (t/n)]n ex-
ists iff there exists the limit limn→∞[T (t/n)S(t/n)]n, and then both are
equal.

8.4.29 Exercise Find an example showing that, in the notations of
8.4.27, even if the semigroups {S(t), t ≥ 0} and {T (t), t ≥ 0} commute
and D(A) = D(B), the domain D(C) may be strictly larger than D(A).

8.4.30 Corollary The Feynman–Kac formula LetXt, t ≥ 0, be a Lévy
process, and let {T (t), t ≥ 0} be the related semigroup in X = C0(R)
or X = C[−∞,∞]. Moreover, let A be the infinitesimal generator of
{T (t), t ≥ 0} and B be the operator in X given by Bx = bx where b is a
fixed member of X. The semigroup {U(t), t ≥ 0} generated by A+B−βI
where β = ‖b‖ is given by

U(t)x = e−βtE eb(τ+
∫ t
0 Xs ds)x(τ +Xt). (8.88)
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Proof By 8.4.27, it suffices to show that e−βt[T (t/n)e(t/n)B ]nx(τ) con-
verges pointwise in τ ∈ R to the right-hand side in (8.88). We have

T (t)etBx(τ) =
∫

R

etb(τ+σ)x(τ + σ)µt( dσ).

Hence, by induction,

[T (t)etB ]nx(τ)

=
∫

R

...

∫
R

et
∑n

i=1 b(τ+
∑n

j=i σj)x(τ +
n∑
i=1

σi)µt( dσ1)...µt( dσn).

Since µt/n⊗...⊗µt/n is a joint distribution of Xt/n, X2t/n−Xt/n, ..., Xt−
X(n−1)t/n, we obtain

e−βt[T (t/n)e(t/n)B ]nx(τ) = E e−βte(t/n)
∑n

k=1 b(τ+Xkt/n)x(τ +Xt).

This implies our result by the Lebesgue Dominated Convergence The-
orem because, for almost all ω, the map t → b(τ + Xt(ω)) is Riemann
integrable and limn→∞(t/n)

∑n
k=1 b(τ+Xkt/n(ω)) =

∫ t
0
b(τ+Xs(ω)) ds.

8.4.31 Corollary The characteristic function of the telegraph process
In 7.7.5 we have proved that the infinitesimal generator of the semi-
group related to the process gt, t ≥ 0, defined in (7.62) is the sum of two
operators: B and C − aI. The operator B generates the semigroup of
operators related to the convolution semigroup µt = δ(vt,0), t ≥ 0, on the
Kisyński group G. The operator C − aI generates the semigroup of op-
erators related to the convolution semigroup µ�t = e−at exp(atδ(0,−1)) =
e−at

∑∞
n=0

(at)n

n! δ∗n(0,−1) = e−at cosh(at)δ(0,1) + e−at sinh(at)δ(0,−1), t ≥ 0,
(convolution in G.) Therefore, by 8.4.27, the distribution of gt, t ≥ 0, is
the limit of (µt/n ∗ µ�t/n)∗n as n→ ∞. Identifying a measure on G with

a pair of measures on R, by (1.16), we see that (µt/n ∗µ�t/n)∗n is the pair
of measures being the entries of the first column of the nth power of the
matrix

A = A(t, n) =
[
e−at/n cosh(at/n)δvt/n e−at/n sinh(at/n)δ−vt/n
e−at/n sinh(at/n)δvt/n e−at/n cosh(at/n)δ−vt/n

]
.

Since in calculating powers of this matrix we use convolution (in R)
as multiplication, it may be hard to find explicit formulae for An. The
task, however, becomes much easier to achieve if we turn to characteristic
functions and note that the characteristic function of the entry of An,



8.4 Approximation theorems 359

a function of τ ∈ R, say, is the corresponding entry in the nth power of
the matrix (with scalar entries)

Ac(t, n, τ) = e−a
t
n

[
cosh at

n e
τ ivt

n sinh at
n e

−τ ivt
n

sinh at
n e

τ ivt
n cosh at

n e
−τ ivt

n

]

of characteristic functions of entries of A. In other words, our task re-
duces to that of finding limn→∞[Ac(t, n, τ)]n. In what follows we restrict
ourselves to the case where v = 1; this will simplify our calculations and
the general case may be easily recovered from this particular one.

To this end we will use some basic linear algebra. For any non-negative
numbers p and q such that p2 − q2 = 1 and any complex z = r +

iu with u, r ≥ 0 and |z| = 1, the matrix M =
(
zp zq

zq zp

)
has two

complex eigenvalues λj = pr + sj with corresponding right eigenvectors
vj = (−zq, ipu − sj) where sj are two (in general complex) roots of
p2r2−1, j = 1, 2. Since p2r2−1 is real, s1 +s2 = 0. Therefore, M equals[

−zq −zq
ipu− s1 ipu+ s1

] [
λ1 0
0 λ2

] −1
2zqs1

[
ipu+ s1 zq

s1 − ipu −zq

]
. (8.89)

The point in representing M in such a form is that the nth power of
(8.89) is easily computed to be[

−zq −zq
ipu− s1 ipu+ s1

] [
λn1 0
0 λn2

] −1
2zqs1

[
ipu+ s1 zq

s1 − ipu −zq

]
(8.90)

because in (8.89) the rightmost matrix is the inverse of the leftmost
matrix. Of course, e

at
n Ac(t, n, τ) is of the form of M with z = e

it
n τ ,

p = cosh at
n and q = sinh at

n .
To find our limit we need to consider three cases: (a) τ2 < a2, (b)

τ2 > a2, and (c) τ2 = a2. Calculating the first two derivatives of x �→
cosh ax cos τx − 1 at x = 0 we see that for sufficiently large n, in case
(a) cosh a tn cos a tn > 1 and in case (b), cosh a tn cos a tn < 1.

In both cases we represent [Ac(t, n, τ)]n as

1
2
e−at

[
1 1

−ipu+s1
zq − ipu+s1

zq

] [
λn1 0
0 λn2

] [
1 + ipus−1

1 zqs−1
1

1 − ipus−1
1 −zqs−1

1

]
. (8.91)

When n → ∞, z converges to 1 and puq−1 converges to τa−1. In case
(a), p2r2 − 1 = (pr + 1)(pr − 1) > 0 for sufficiently large n and we

take s1 =
√
p2r2 − 1. Then qs−1

1 =
√

q2

(pr+1)(pr−1) has the same limit

as
√

sinh2 ax
2(cosh ax cos τx−1) as x → 0, and by de l’Hospital’s rule this last
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limit equals a√
a2−τ2 . Hence pu

s1
= pu

q
q
s1

converges to τ√
a2−τ2 . In case

(b), p2r2 < 1 for sufficiently large n and we take s1 = i
√

1 − p2r2.

Then q
s1

converges to −ia√
τ2−a2 , and so pu

s1
converges to −iτ√

τ2−a2 . Therefore,
[Ac(t, n, τ)]n converges to

1
2
e−at

[
1 1√

a2−τ2−iτ
a −

√
a2−τ2+iτ

a

] [
α1 0
0 α2

][
1 + iτ√

a2−τ2
a√

a2−τ2

1 − iτ√
a2−τ2 − a√

a2−τ2

]

in the case (a), and to

e−at
1
2

[
1 1

i
√
τ2−a2−iτ

a − i
√
τ2−a2+iτ

a

] [
α1 0
0 α2

][
1 + τ√

τ2−a2
−ia√
τ2−a2

1 − τ√
τ2−a2

ia√
τ2−a2

]

in case (b), where αj = limn→∞ λnj , j = 1, 2. If f(x) is a positive function

such that limx→0 f(x) = 0 then limx→0[1+f(x)]
1
x = elimx→0

f(x)
x . Hence,

in case (a), lnα1 = limx→0 t
√

2(cosh ax cos ax−1)
x2 and by de l’Hospital’s

rule α1 = e
√
a2−τ2t. Analogously, α2 = e−

√
a2−τ2t. In case (b), α1 =

ei
√
τ2−a2t and α2 = e−i

√
τ2−a2t. Therefore,

lim
n→∞

Ac(t, n, τ)n = e−at
[
φ1(t, τ, a), φ2(t,−τ, a)
φ2(t, τ, a), φ1(t,−τ, a)

]

where, in case (a),

φ1(t, τ, a) = cosh
√
a2 − τ2t+ i

τ√
a2 − τ2

sinh
√
a2 − τ2t,

φ2(t, τ, a) =
a√

a2 − τ2
sinh

√
a2 − τ2t,

and in case (b)

φ1(t, τ, a) = cos
√
τ2 − a2t+ i

τ√
τ2 − a2

sin
√
τ2 − a2t,

φ2(t, τ, a) =
a√

τ2 − a2
sin
√
τ2 − a2t.

Case (c) may be treated analogously, or we may note that the functions
φi, i = 1, 2 must be continuous in τ ∈ R. This gives φ1(t,±a, a) = 1± iat
and φ2(t,±a, a) = at.

By (7.67), the characteristic function of ξ(t) =
∫ t
0
(−1)N(s) ds equals

φ1 + φ2. Hence it is given by (6.32) – compare [12], [96].

8.4.32 Exercise Use 8.4.31, 6.6.18 and (8.65) to give a direct proof of
convergence of solutions of the telegraph equation with small parameter
to the solution of the diffusion equation that does not rely on the Trotter–
Kato Theorem.
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8.4.33 Appendix Stirling numbers (see [45], [101])
1 The definition Let (t)n denote the polynomial

(t)0 = 1, (t)1 = t, (t)n = t(t− 1) · · · (t− n+ 1), n ≥ 2.

For each n ∈ N0, the polynomials (t)k, 0 ≤ k ≤ n, are linearly indepen-
dent, and so are the tk, 0 ≤ k ≤ n. Hence, the Stirling numbers s(n, k)
of the first kind may be defined by the formula

(t)n =
n∑
k=0

s(n, k)tk; we put s(n, k) = 0 if k 
∈ {0, ..., n}. (8.92)

Analogously, by definition, the Stirling numbers S(n, k) of the second
type are uniquely determined by

tn =
n∑
k=0

S(n, k)(t)k; S(n, k) = 0 if k 
∈ {0, ..., n}. (8.93)

It is easy to see that s(n, n) = S(n, n) = 1, s(n, 0) = S(n, 0) = 0.
2 A recurrence relation From now on we will focus on Stirling numbers

of the second kind since they are of greater importance for us. Note that
(t)k+1 = (t)k(t− k) = t(t)k − k(t)k. Thus

ttn = t
n∑
k=0

S(n, k)(t)k =
n∑
k=0

S(n, k)(t)k+1 +
n∑
k=0

S(n, k)k(t)k

=
n+1∑
k=1

S(n, k − 1)(t)k +
n∑
k=0

S(n, k)k(t)k

=
n+1∑
k=1

[S(n, k − 1) + kS(n, k)](t)k

since S(n, n+ 1) = 0. Comparing this with (8.93) where n was replaced
by n+ 1 we get

S(n+ 1, k) = S(n, k − 1) + kS(n, k), k = 1, 2, ..., n+ 1. (8.94)

Using this relation allows us to calculate the entries S(n, k) of the matrix
given in Table 8.1. To do that we have to take into account that S(0, 0) =
1 and S(n, 0) = 0, n ≥ 1, i.e. that the first column (except for the first
entry) is composed of zeros and that S(n, n) = 1, which gives the entries
on the diagonal; (8.94) then allows us to fill consecutive columns (a
bigger table can be found on page 258 of [45] or page 48 of [101]).

The main point, however, is that the recurrence relation (8.94) and
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“boundary conditions” S(n, 0) = 0, n ≥ 1, and S(n, n) = 1 determine
all Stirling numbers of the second type.

n\k 0 1 2 3 4 5 ...

0 1 0 0 0 0 0 ...
1 0 1 0 0 0 0 ...
2 0 1 1 0 0 0 ...
3 0 1 3 1 0 0 ...
4 0 1 7 6 1 0 ...
5 0 1 15 25 10 1 ...
6 0 1 31 90 65 15 ...

Table 8.1

3 Relation to combinatorics Let, as in 8.4.21,
{
n

k

}
denote the number

of possible ways a set of n elements may be partitioned into k non-empty

subsets. It is clear that
{
n

0

}
= 0 for n ≥ 1, and

{
n

n

}
= 1 and we could

agree on
{

0
0

}
= 1. Hence, to show that S(n, k) =

{
n

k

}
it suffices to

show that {
n+ 1
k

}
=
{

n

k − 1

}
+ k

{
n

k

}
.

This can be achieved as follows. Think of a set with n + 1 elements
as having n ordinary elements and a special one. When we divide our
set into k subsets, this special element either forms a one-element set,

and there are
{

n

k − 1

}
partitions like that since then the remaining n

elements are partitioned into k − 1 subsets, or is a member of a subset
with at least two elements. In the latter case the remaining elements are
partitioned into k subsets and the special element has been added to one
of them – this last step may be done in k ways.

8.4.34 Exercise Relation (8.83) is clear because of the probabilistic
interpretation. Prove it analytically.
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Appendixes

9.1 Bibliographical notes

9.1.1 Notes to Chapter 1 Rudiments of measure theory may be
found in [103]. Classics in this field are [28] and [49]; see also [87]. A
short but excellent account on convex functions may be found in [41],
Chapter V, Section 8. A classical detailed treatment may be found in
[85]. The proof of the Steinhaus Theorem is taken from [76].

9.1.2 Notes to Chapter 2 There are many excellent monographs
devoted to Functional Analysis, including [2], [22], [32], [37], [54], [98],
[112]. Missing proofs of the statements concerning locally compact spaces
made in 2.3.25 may be found in [22] and [55].

9.1.3 Notes to Chapter 3 Among the best references on Hilbert
spaces are [90] and [111]. The proof of Jensen’s inequality is taken from
[34]; different proofs may be found in [5] and [87]. Some exercises in 3.3
were taken from [20] and [34]. An excellent and well-written introductory
book on martingales is [114]; the proof of the Central Limit Theorem is
taken from this book. Theorems 3.6.5 and 3.6.7 are taken from [90]. A
different proof of 3.6.7 may be found e.g. in [98].

9.1.4 Notes to Chapter 4 Formula (4.11) is taken from [59]. Our
treatment of the Itô integral is largely based on [113]. For detailed in-
formation on matters discussed in 4.4.8 see e.g. [93], [64] and [38]. To be
more specific: for integrals with respect to square integrable martingales
see e.g. Proposition 3.4 p. 67, Corollary 5.4 p. 78, Proposition 6.1. p. 79,
Corollary 5.4, and pp. 279–282 in [38], or Chapter 3 in [64] or Chapter
2 in [34]. See also [57], [61], [102] etc.
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9.1.5 Notes to Chapter 5 From Bourbaki and Kuratowski to Bourbaki
and Kuratowski According to [37] p. 7, Lemma 5.1.10 “was discovered
independently in 1923 by R. L. More and by K. Kuratowski, was redis-
covered by Zorn in 1935 and then rediscovered yet again by Teichmüller
a little later. The name Zorn Lemma was coined by Bourbaki, who was
one of the first to make systematic use of the principle.” The reader
should be warned that Bourbaki is not a single person, but a group of
(outstanding) French mathematicians, who publish all their work under
one name. Körner [75] reports that (once upon a time) Mr. Bourbaki
applied for membership in the AMS, but was replied that he should ap-
ply as an institutional member (and pay higher dues). He never wrote
back. The proof of 5.2.6 is due to Banach. Theorem 5.2.16 is due to H.
Steinhaus. As shown in [51], the assumption that µ is σ-finite may be
relaxed if Ω is a locally compact topological space. Theorem 5.4.9 and
its proof are due to Banach [3]; other proofs may be found in [22], [32],
[37]. The proof of Prohorov’s Theorem follows closely classic Ikeda and
Watanabe [57]. The proof of Donsker’s Theorem is a blending of argu-
ments presented in [61] and [100], see also [5] and [107]. The proof of
Tichonov’s Theorem is taken from Kuratowski [77]. The absolute clas-
sic on convergence of probability measures is of course the first edition
of Billingsley [6]. A very nice chapter on this subject may be found in
Stroock [107], as well. Concerning Polish spaces, Stroock writes that this
is “a name coined by Bourbaki in recognition of the contribution made
to this subject by the Polish school in general and C. Kuratowski in
particular”.

9.1.6 Notes to Chapter 6 I. Gelfand was the first to notice and
prove in the 1940s the importance of Banach algebras. Now the theory
is flourishing with applications (see e.g. [27]). A different proof of 6.2.6,
based on the Riesz Theorem, may be found in [22] p. 219. The idea of a
character of a group is one of the basic notions of the rich and beautiful
theory of abstract harmonic analysis [51]. The proof of the Factorization
Theorem is due to P. Koosis [74]. For supplementary reading for this
chapter see e.g. [22], [51], [63], [82], [117], [115]. In particular, in [51] a
much more general version of the factorization theorem may be found.

9.1.7 Notes to Chapter 7 Example 7.3.6 is taken from [65]. There
are a number of excellent books on semigroups of operators, some of
them are listed in the bibliography. The absolute classics in this field are
[54] and [112]. A thorough treatment of Lévy processes may be found in
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[4]. For stochastic process with values in a (topological, locally compact)
group see [55], see also [56]. Our proof of (7.47) is a simplified version of
the argument leading to the theorem of Hunt, as presented in [55]. On
the other hand, to arrive at (7.53) while avoiding technicalities involved
in analyzing general Lie groups, I have used the argument of [41] and
this part of reasoning apparently does not work in the general case of
a Lie group. An explicit formula (in terms of the Hilbert transform) for
the infinitesimal generator of the Cauchy semigroup can be given if we
consider it in Lp(R), p > 1 – see [89]. The probabilistic formula for the
solution of the two dimensional Dirac equation is due to Ph. Blanchard
et al [7], [8], [9], [10]. Group-theoretical aspects of the formula were
discussed in [11].

9.1.8 Notes to Chapter 8 The vast literature on Markov processes
that covers various aspects of the theory includes [4], [20], [21], [29], [35],
[34], [38], [41], [42], [46], [47], [48], [57], [58], [61], [62], [84], [88], [92], [93],
[99], [100], [102], [105], [107], [109], [113], [114].

Theorem 8.2.1 is due to Hille, Yosida, Feller, Phillips and Miyadera,
and generalizes the earlier result of Hille and Yosida where ω = 0 and
M = 1. The proof of this theorem as presented here differs from the orig-
inal one, and there were many who contributed their ideas to simplifica-
tion and clarification of the argument. The decisive steps, however, seem
to be due to W. Arendt whose paper [1] inspired the whole literature on
so-called integrated semigroups (where also 8.2.3 was established – with
a different proof) and J. Kisyński, who noticed relations with the the-
ory of representations of Banach algebras and introduced the algebraic
version 8.2.16 of the theorem. In particular, thanks to W. Chojnacki’s
reference to Cohen’s Factorization Theorem, he was the first to show
(8.43). The whole research on non-densely defined operators was also
greatly influenced by the paper by G. Da Prato and E. Sinestrari [25].

One of the most important cases of the Hille–Yosida theorem not
discussed in this book is the Stone Theorem on generation of unitary
groups. The famous Bochner Theorem characterizing Fourier transforms
of bounded Borel measures on Rn, n ∈ N, may be proved to follow from
the Stone Theorem [98], [112].

With the exception of the proof of 8.4.16, the second part of Section
8.3 follows [54] closely.

The equivalence of (a) and (b) in 7.4.48 was apparently first noticed
by T. G. Kurtz [78], but at that time it seemed to be merely a side-
remark (compare, however, [26] pp. 123–124 and probably hundreds of
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other places). Arendt’s article [1] added a new dimension to this result;
see [14]; see also the paper by Lizama [86] for convergence theorems for
integrated semigroups. By the way, this part of Kurtz’s article seems to
be completely forgotten by many specialists of the theory of integrated
semigroups.

Subsections 8.4.21 and 8.4.22 are of course based on Kingmans’ orig-
inal papers [67], [68]. Examples 8.4.1, 8.4.2, 8.4.5 and 8.4.11 are taken
from [13] and [15]. A straightforward way of computing the characteristic
function of the telegraph process may be found in [96].

9.2 Solutions and hints to exercises

Hint to Exercise 1.2.4 By 1.2.3, it suffices to show that B(R) = σ(G)
where G is the class of intervals (−∞, t], t ∈ R. To this end, prove first
that intervals (s, t), s, t ∈ R, belong to σ(G). Then show that every open
set in R is a countable union of such intervals, and deduce that σ(G)
contains all Borel sets. For the example we may take (Ω,F) = (R,B(R))
and f(τ) = τ.

Exercise 1.2.6 The family F defined by the right-hand side of (1.3) is
a σ-algebra, and contains open sets in S′. Hence, F ⊃ B(S′). Moreover,
the family G of subsets A of S such that A ∩ S′ is Borel in S′ is a σ-
algebra and contains open sets in S. Therefore G ⊃ B(S). This implies
F ⊂ B(S′) and completes the proof.

Exercise 1.2.10 Let G be the class of sets of the form A∪B where A ∈ F
and B ∈ F0. Of course G ⊂ Fµ. We see that Ω belongs to G and so do
countable unions of elements of G. Also, if A ∈ F and B ∈ F0 and C is
as in the definition of F0, then (A ∪ C)� ∈ F , and C \ (A ∪ B) ∈ F0.

Since C� ⊂ B�,

(A ∪B)� = [(A ∪B)� ∩ C] ∪ [A� ∩B� ∩ C�]

= [C \ (A ∪B)] ∪ [A� ∩ C�] = [C \ (A ∪B)] ∪ (A ∪ C)�

proving that (A ∪ B)� ∈ F0. Thus, G is a σ-algebra and we must have
Fµ = G. Suppose that A,A′ ∈ F , B,B′ ∈ F0 and C,C ′ are chosen as in
the definition of F0. If A ∪ B = A′ ∪ B′, then the symmetric difference
of A and A′ is a subset of B ∪ B′ ⊂ C ∪ C ′, and so µ(A) equals µ(A′).
Therefore, we may define µ(A∪B) as µ(A), A ∈ F , B ∈ F0. The rest is
clear.
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Exercise 1.2.12 For almost all ω ∈ Ω and h 
= 0, we have 1
h [x(τ+h, ω)−

x(τ, ω)] = x′(τ + θh, ω) where θ depends on τ, h and ω. The absolute
value of this expression is no greater than y(ω). The claim thus follows
from the Lebesgue Dominated Convergence Theorem.

Exercise 1.2.31 If l is the left-hand side of the relation we are to prove,
then, changing to polar coordinates,

l2 =
∫

R

∫
R

e−
s2+t2

2 dsdt =
∫ π

0

∫ ∞

0

re−
r2
2 dr dθ

= [−e
r2
2 ]∞0 2π = 2π.

Exercise 1.2.36

EX =
∫
X≥ε

X dP +
∫
X<ε

X dP ≥ ε

∫
X≥ε

dP = εP{X ≥ ε}.

Exercise 1.2.37 By the Fubini Theorem, since P{X > s, Y > t} =∫
Ω

1{X>t,Y >t} dP, the left-hand side in (1.17) equals∫
Ω

∫
[0,X(ω))×[0,Y (ω))

αsα−1βtβ−1 leb2(d(s, t))P (dω).

Using the Fubini Theorem again, the inner (double) integral equals∫ X(ω)

0

αsα−1 ds
∫ Y (ω)

0

βtβ−1 dt = Xα(ω)Y β(ω),

and we are done. (1.18) is now straightforward, and so is (1.20) if we have
(1.19). To prove (1.19) note that P{Y 1{X>s} > t} = P{X > s, Y > t}.

Hint to Exercise 1.3.4 The right-hand limit of v+(t) exists and is no less
than v+(t), for this function is non-decreasing. May v+(t+) be strictly
bigger than v+(t)? The following argument shows that this is impossible.
If v+(t+) > v+(t) then there exists a δ > 0 such that for any sufficiently
small ε > 0, var[y, t, t0] > δ, where t0 = t+ ε. We may assume that this
ε > 0 is so small that |y(t)− y(s)| < δ′ = δ/2 for s ∈ [t, t0]. This implies
that we may find a t < t1 < t0 and a partition of [t1, t0] such that the
appropriate sum of absolute values of differences between values of y at
partitioning points is greater than δ′. The interval [t, t1], however, enjoys
the same properties as [t, t0]. Therefore we may find a t < t2 < t1, and
a partition of [t2, t1], (and consequently a partition of [t2, t0]) such that
the appropriate sum is bigger than 2δ′.
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Since this is supposed to be a hint and not a complete solution, we
shall say no more.

Exercise 1.3.8 Write

S(T ,Ξ, x, y) = x(ξk−1)y(b) − x(ξ0)y(a) −
k−1∑
i=1

[x(ξi) − x(ξi−1)]y(ti),

to see that

|S(Tn,Ξn, x, y) − S(Tn,Ξn, x, yr) − x(ξ0,n)[y(a+) − y(a)]|

is less than

var[a, b, y] · sup
|ξ−η|≤2∆(Tn)

|x(ξ) − x(η)|,

which tends to zero, by the uniform continuity of x. Here ξ0,n is the first
element of Ξn and limn→∞ x(ξ0,n) = x(a).

Exercise 1.4.4 It is enough to note that σ(f(X)) ⊂ σ(X) and σ(g(Y )) ⊂
σ(Y ).

Exercise 1.4.5 The “if” part is trivial, the “only if” part follows from
1.2.7.

Exercise 1.4.10 Note that Z is an exponential random variable with
parameter λ iff P[Z > s] = e−λs, s ≥ 0. Now, P[Y > s] = P[X1 >

s,X2 > s] = P[X1 > s]P[X2 > s] = e−(λ1+λ2)s.

Hint to Exercise 1.4.11

P[X ≤ Y ] = λµ

∫ ∞

0

∫ ∞

t

e−µse−λt dsdt.

Hint to Exercise 1.4.18 Find a recurrence for Zn.

Exercise 1.5.2 u2 belongs to [u1, u3] iff there exists an 0 ≤ α ≤ 1 such
that u2 = αu3 + (1 − α)u1. This α equals u2−u1

u3−u1
. See 2.1.26.

Exercise 1.5.3 We calculate φ̃(αu+βv) = φ(a+b−αu−βv) = φ
(
α(a+

b− u) + β(a+ b− v)
)
≤ αφ(a+ b− u) + βφ(a+ b− v) = αφ̃(u) + βφ̃(v),

where β = 1 − α. The claim concerning φ is proved similarly.

Exercise 1.6.1 Since µ(A ∩ B) = µ(A ∩ B ∩ C) + µ(A ∩ B ∩ C�), and
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µ(C ∩B) = µ(C ∩B ∩A) + µ(C ∩B ∩A�), then

|µ(A ∩B) − µ(C ∩B)| = |µ(A ∩B ∩ C�) − µ(B ∩ C ∩A�)|
≤ µ(A ∩B ∩ C�) + µ(B ∩ C ∩A�)

≤ µ(A ∩ C�) + µ(C ∩A�) = µ(A÷ C).

Exercise 1.6.3 Suppose that δ = 0. Then there exist sequences an ∈ A

and bn ∈ B such that limn→∞ d(an, bn) = 0. Since A is compact we may
choose a converging subsequence ank

; limk→∞ ank
= a ∈ A. However,

this implies that bnk
also converges to a, and since B is closed, a ∈ B.

This is a contradiction.
An appropriate example may be constructed in R, and the trick is

to choose A and B unbounded. For example A =
⋃
n∈N[2n, 2n + 1],

B = {2n+ 1 + 1
n , n ≥ 2}.

Exercise 1.6.6 For s > 0, x(ks) = x(
∑k
i=1 s) =

∑k
i=1 x(s) = kx(s). Tak-

ing s = t
k , and an arbitrary t > 0, x( tk ) = 1

kx(k
t
k ) = 1

kx(t). Combining
these two relations, we get the claim.

Exercise 2.1.2 Suppose that there are two vectors Θ1 and Θ2 satisfying
(a2). Then Θ1 = Θ1 + Θ2 = Θ2 + Θ1 = Θ2.

Exercise 2.1.3 Suppose x+x′′ = Θ. Then x′′ = x′′+Θ = x′′+(x+x′) =
(x′′ + x) + x′ = (x+ x′′) + x′ = Θ + x′ = x′ + Θ = x′.

Exercise 2.1.4 We have 0x = (0+0)x = 0x+0x. Thus, Θ = 0x+(0x)′ =
(0x+ 0x) + (0x)′ = 0x+

(
0x+ (0x)′

)
= 0x+ Θ = 0x.

Exercise 2.1.5 Θ = 0x = [1 + (−1)]x = 1x + (−1)x. Thus, by 2.1.3,
(−1)x = x′.

Exercise 2.1.14 (a) follows directly from the definition of a linear map.
(b) If x and y belong to Ker L, then L(αx+ βy) = αLx+ βLy = 0. (c)
is proved similarly.

Exercise 2.1.17 If a class is not equal to Y, it contains an element, say x,
that does not belong to Y. An element y belongs to this class iff x ∼ y,

i.e. x− y ∈ Y, so that the class equals x+ Y.

Hint to Exercise 2.1.20 Pick p ∈ S and show that the set of functions
that vanish at this point is an algebraic subspace of RS . Proceed as in
2.1.19 to show that this subspace is algebraically isomorphic to RS/Y.
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Hint to Exercise 2.1.21 Show that I[x] = Lx does not depend on the
choice of x from the class [x] and that I is the desired algebraic isomor-
phism.

Exercise 2.1.23 The inverse image of ∅ is ∅ and the inverse image of Ω
is Ω, but the range of f equals { 1

2} 
∈ F ′.

Exercise 2.1.28 Observe (and then check) that both Y1 and Y2 are
convex, and that spanY1 = spanY2 = R2.

Hint to Exercise 2.1.29 Show that the set of z of the form (2.1) is convex,
and note that any convex set that contains yi must contain elements of
such a form. As for the counterexample, think of the letter “x” as a
subset of R2, and take Yi to be the left-hand part of the letter and Y2

to be the right-hand part of the letter. The convex hull of the “x” is a
square and the set of z of the form (2.1) is clepsydra-shaped.

Exercise 2.1.32 The inclusion spanZn ⊂ spanYn is easy. Moreover,
spanZn ⊂ Zn+1. We will show that spanYn ⊂ spanZn by induction.
For n = 1 this follows from

z0 = y0,1 + y1,1, z1 = y0,1 − y1,1.

Assume that Yn ⊂ Zn, so that yl,n ∈ spanZn ⊂ spanZn+1, for all
0 ≤ l < 2n. Since

yl,n = y2l,n+1 + y2l+1,n+1, z2n+l = y2l,n+1 − y2l+1,n+1,

or

y2l,n+1 =
1
2
(yl,n + z2n+l), y2l+1,n+1 =

1
2
(yl,n − z2n+l),

yk,n+1 ∈ spanZn+1, for 0 ≤ k < 2n+1, as desired.

Exercise 2.2.2 By (n4), ‖x‖−‖y‖ = ‖x± y∓ y‖−‖y‖ ≤ ‖x± y‖, which
gives that claim, except for the absolute value sign on the left-hand side.
We complete the proof by changing the roles of x and y.

Exercise 2.2.7 By 2.2.2,∣∣‖xn‖ − ‖x‖
∣∣ ≤ ‖xn − x‖.

Hint to Exercise 2.2.14 The “only if” part is immediate. To show the
other part, assuming that xn is a Cauchy sequence, find a subsequence
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xnk
, such ‖xnk+1 −xnk

‖ < 1
2k . Then the series

∑∞
k=1(xnk+1 −xnk

)+xn1

converges. Prove that xn converges to the sum of this series.

Hint to Exercise 2.2.17 Proceed as in 2.2.16: the uniform limit of a
sequence of bounded continuous functions is bounded and continuous
(use 2.2.9). Analogously, the limit (even pointwise) of a sequence of
measurable functions is measurable.

Hint to Exercise 2.2.42 Take Ω = R+
∗ with Lebesgue measure and

x(t) = 1
t .

Hint to Exercise 2.3.4 Use

‖S(T ,Ξ, Ax·) − S(T ′,Ξ′, Ax·)‖ ≤ ‖A‖ ‖S(T ,Ξ, x·) − S(T ′,Ξ′, x·)‖.

Cf. 7.3.4.

Hint to Exercise 2.3.12 Proof by induction. For the induction step
write Pn+1−Rn+1 as (An+1Pn−An+1Rn)+(An+1Rn−Bn+1Rn) where
Pn = AnAn−1...A1 and Rn = BnBn−1...B1.

Hint to Exercise 2.3.13 Prove that Sn(t) =
∑n
i=0

tiAi

i! is a Cauchy
sequence in L(X). To this end, use Exercise 2.3.11 to see that ‖An‖ ≤
‖A‖n.

Exercise 2.3.14
etAetB equals:

∞∑
k=0

∞∑
n=0

(tA)n

n!
(tB)k

k!
=

∞∑
i=0

i∑
j=0

(tA)j

j!
(tB)i−j

(i− j)!
(i = n+ k)

=
∞∑
i=0

1
i!

i∑
j=0

(
i

j

)
(tA)j(tB)i−j =

∞∑
i=0

ti(A+B)i

i!
= et(A+B). (9.1)

Hint to Exercise 2.3.16
Note that our exponent equals ec

∑∞
n=0

(C)n

n! , where C = aL + bR.

Thus it is enough to show that ‖eC‖ = ea+b. Furthermore, ‖eC‖ ≤
e‖C‖ = ea+b, for obviously ‖C‖ = a+ b. Also, we have

Ck(ξn)n≥1 =

(
k∑
i=0

(
k

i

)
aibk−iξn−k+2i

)
n≥1

(9.2)

where ξ0 = 0, ξ−i = −ξi, for i ≥ 1. In particular, if (ξn)n≥1 = (δn,m)n≥1
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for some m ≥ 1, then for k < m, ‖Ck(ξn)n≥1‖l1 equals

m+k∑
n=m−k

k∑
i=0

(
k

i

)
aibk−iδn−k+2i,m =

2k∑
n=0

k∑
j=0

(
k

j

)
ak−jbjδn+m−2j,m

=
k∑

n=0

k∑
j=0

(
k

j

)
ak−jbjx2n+m−2j =

k∑
i=0

(
k

i

)
ak−ibi = (a+ b)k.

Thus, since the operator C is positive, we get for all m ≥ 2,

‖eC‖ ≥ ‖eC (δn,m)n≥1 ‖l1 ≥
∥∥∥∥∥
m−1∑
k=0

Ck

k!
(δn,m)n≥1

∥∥∥∥∥ =
m−1∑
k=0

(a+ b)k

k!
,

and, consequently, ‖eC‖ ≥ ea+b.

Hint to Exercise 2.3.19 The formula EXg(X) = λE g(X + 1) holds
iff pn = P[X = n] satisfies (n + 1)pn = λpn. The formula E g(X) =
qE g(X + 1) holds iff pn+1 = qpn.

Exercise 2.3.40 This problem is a particular case of 2.3.43.

Exercise 2.3.43 The integral in the definition is finite almost everywhere
by Fubini’s Theorem. Moreover, the image of x lies in L1(R,M, leb), for
changing the order of integration we obtain:∫

R

|Kx(τ)|dτ ≤
∫

R

∫
R

k(τ, σ)|x(σ)|dσ dτ =
∫

R

|x(σ)|dσ = ‖x‖. (9.3)

The reader should check that K maps classes into classes. Moreover,
for non-negative x, omitting absolute values signs in (9.3) we obtain a
sequence of equalities.

Hint to Exercise 2.3.44 Taking x = 1A where A ∈ F ′, we see that
µ′(A) =

∫
Ω′ 1A dµ′ must be equal to

∫
Ω

1A ◦ f dµ =
∫
Ω

1f−1(A) dµ =
µ(f−1(A)). Thus the only measure that will satisfy the required property
is the transport of µ via f : µ′ = µf . It remains to check that µf is indeed
the proper choice.

Exercise 3.1.9 Subtract both sides of (3.1) with t = 1 and t = −1,
respectively.

Exercise 3.1.19 If P is a projection on a subspace H1, then

(Px, y) = (Px, y − Py + Py) = (Px, y − Py) + (Px, Py) = (Px, Py)

since y − Py is perpendicular to H1.
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Hint to Exercise 3.1.16 Take x = Pz and y = z − Pz where P is the
projection on H1. If x+y = x′ +y′, then x−x′ = y′−y is perpendicular
to itself.

Hint to Exercise 3.1.24 Use 3.1.23. Note that P 2
3 = P3 iff (a) holds; in

such case P3 is self-adjoint. Analogously, P4 is self-adjoint iff (x, P1P2y)
= (x, P2P1y) for all x and y in H, i.e. iff (a) holds; in such a case P 2

4 = P4.

Moreover, the range of P3 is contained in H1+H2 for P3 = P1+P2(I−
P1), and H1 + H2 is a subset of the range because a direct calculation
shows that if x = P1y1 + P2y2 for some y1 and y2 in H then P3x = x,

which implies that x belongs to the range of P3.

Finally, the range of P4 = P1P2 = P2P1 is contained in H1 and in H2

and it must be equal the intersection of these two subspaces since for x
in the intersection we have x = P4x.

Hint to Exercise 3.2.2 For the converse show that x(t) = ln P(T >

t), t ≥ 0 satisfies the Cauchy equation.

Exercise 3.3.4 The sum
∑n
i=1 bi1Bi is G measurable, and we check that∫

Bj

n∑
i=1

bi1Bi
= cj

∫
Bj

dP =
∫
Bj

X dP.

Exercise 3.3.6 The square of the norm of φ in L2(Ω,F ,P) is∫
Ω

φ2 dP =
∞∑
i=1

∫
Bi

φ2 dP =
∞∑
i=1

b2iP(Bi)

so that φ ∈ L2(Ω,F ,P) iff the last series converges. As in (3.7) we show
that ∫

Ω

(φ− 1A)2 dP =
∞∑
i=1

[
b2iP(Bi) − 2biP(Bi ∩A) + P(A)

]
,

so that we have to choose bi = P(A∩Bi)
P(Bi)

= P(A|Bi), i = 1, 2, ... Since

∞∑
i=1

(
P(A ∩Bi)

P(Bi)

)2

P(Bi) =
∞∑
i=1

P2(A ∩Bi)
P(Bi)

≤
∞∑
i=1

P(A ∩Bi)P(Bi)
P(Bi)

=
∞∑
i=1

P(A ∩Bi) = P (A),

φ with such coefficients belongs to L2(Ω,F ,P) (in particular the minimal
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distance is finite). Also, for such a φ,∫
Bi

φdP =
∫
Bi

bi dP = biP(Bi) = P(A ∩Bi) =
∫
Bi

1A dP.

Exercise 3.3.7 For any t ∈ R,

t2E(Y 2|G) − 2tE(XY |G) + E(X2|G) = E((tY −X)2|G) (9.4)

except for the set At of probability zero. But just because of that we
should not claim that this holds for all t ∈ R, except on a set of proba-
bility zero. We need to be more careful and proceed as follows.

For any rational t ∈ Q, (9.4) holds except on a set At of probability
zero. Moreover, E((tY −X)2|G) ≥ 0, except on a set Bt of probability
zero. Thus

t2E(Y 2|G) − 2tE(XY |G) + E(X2|G) ≥ 0 (9.5)

except on At∪Bt. Furthermore, A =
⋃
t∈Q(At∪Bt) is a set of probability

zero. For all ω ∈ Ω\A, (9.5) holds for all t ∈ Q, and by continuity of the
right-hand side, for all t ∈ R. Therefore, except for a set of probability
zero, the discriminant of the right-hand side is non-positive, and our
claim follows.

Exercise 3.3.9 Using 3.3.1 (e), we obtain that E(X|G) ≥ E(Y |G) when-
ever X ≥ Y. Hence E(1X≥a|G) ≤ E

(
X
a 1X≥a|G

)
≤ E

(
X
a |G
)
.

Exercise 3.3.10 We have E VAR(X|G) = E
[
E(X2|G) − E(X|G)2

]
=

EX2 − E
[
E(X|G)

]2 and D2
[
E(X|G)

]
= E

[
E(X|G)

]2 −
[
E E(X|G)

]2
= E

[
E(X|G)

]2 − (EX)2. Adding up we get the claim.

Exercise 3.3.16 E(Z1|Z2) = EX11Ω + E(Y |Z2) = EX11Ω + E(Z2 −
X2|Z2) = E(Z2|Z2) = Z2.

Exercise 3.3.19 We have EXY = E

[
E
(
XY |σ(Y )

)]
= E

(
Y E(X|σ(Y ))

= E
(
Y EX) = EX · E Y.

Exercise 3.5.2 Define An+1 =
∑n
i=1 [E(Xi+1|Fi) −Xi] .

Exercise 3.5.7 Set ‖X‖ = ‖Xn
k ‖L2 , k, n ≥ 1. We have

E Z2
n+1 = E

∞∑
k=0

(
k∑
i=1

Xn+1
i

)2

1Zn=k =
∞∑
k=1

P{Zn = k}E (
k∑
i=1

Xn+1
i )2
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=
∞∑
k=1

P{Zn = k}
[
k‖X‖2 + k(k − 1)m2

]
= ‖X‖2E Zn +m2E (Z2

n − Zn)

=
(
‖X‖2 −m2

)
E Zn +m2D2(Zn) +m2(n+1),

whence (3.25) follows.
The case m = 1 is clear, since D2(Z1) = σ2. In the other case we

note that σ2

m(1−m)m
n is a particular solution of (3.25) and that the gen-

eral form of the solution to the homogeneous recurrence associated with
(3.25) is αm2n; the constant α is chosen so that D2(Z1) = σ2.

Hint to Exercise 3.6.6 Apply 3.6.5 to A′
n = −An.

Exercise 3.7.9 The condition of the first definition implies the two
conditions of the second definitions because (i) for all n, k ≥ 1 we
have E |Xn| ≤ E |Xn|1|Xn|≥k + kµ(Ω) which proves that Xn, n ≥ 1, is
bounded, and (ii) in view of the fact that E |Xn|1A = E |Xn|1A∩|Xn|≥k+
E |Xn|1A∩|Xn|<k ≤ E |Xn|1|Xn|≥k + kµ(A) we may make E |Xn|1A less
than an arbitrary ε > 0 by choosing a large k first, and then taking,
say, δ < ε

2k (provided µ(A) < δ). On the other hand, if our sequence
is bounded in L1 then E |Xn|1|Xn|≥k is bounded by the same constant,
say M , and so the measure of each of the sets Am,k = {|Xm| ≥ k} is
less than M

k . Hence, given ε > 0 and δ = δ(ε) spoken of in the sec-
ond definition we may take k > M

δ to make supn≥1E |Xn|1|Xn|≥k ≤
supn≥1 supm≥1E |Xn|1Am,k

less than ε.

Hint to Exercise 3.7.10 Note that random variables φk(X), where φk
was defined in the last paragraph of 3.7.3, converge to X in L1.

Hint to Exercise 3.7.13 For part (c), given A ∈ Fτ , consider the proces
Xn = 1A∩{τ=n}, n ≥ 1, and show that it is adapted.

Exercise 4.2.3 For any real αk, 1 ≤ k ≤ n,∥∥∥∥∥
n∑
k=1

αkxk − x

∥∥∥∥∥
2

= (
n∑
k=1

αkxk − x,
n∑
k=1

αkxk − x) (9.6)

= ‖x‖2 − 2
n∑
k=1

αk(xk, x) +
n∑
k=1

α2
k

= ‖x‖2 −
n∑
k=1

(xk, x)2 +
n∑
k=1

[αk − (x, xk)]2.
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The first two terms above do not depend on αk, and thus the minimum
is attained exactly when the last term equals 0, i.e. iff αk = (xk, x).

Exercise 4.2.5 For any n ≥ 1,
∑n
k=1(xn, x)

2 is the square of the norm
of the projection of x onto span {xk, 1 ≤ k ≤ n}. Thus it is less than
‖x‖2 by 3.1.13 (it also follows directly from (9.6) above if we take αk =
(x, xk)). Since n is arbitrary, (4.3) follows.

Exercise 4.2.15 Note that ‖∑l
i=k aizi‖2 =

∑l
i=k a

2
i so that the sequence∑n

i=1 aizi is Cauchy.

Hint to Exercise 4.3.12 It suffices to show that

E

(
ea[w(t+h)−w(t)]2 |Ft

)
= E ea[w(t+h)−w(t)]2 = e

a2h
2 ,

or that E eX = e
σ2
2 , provided X ∼ N(0, σ2), which can be checked

directly. (Recall that MX(t) = E etX is a so-called moment generating
function of a random variable X; if X ∼ N(0, σ2) then MX(t) = e

σ2t2
2 .)

Exercise 5.1.11 Use the Kuratowski–Zorn Lemma.

Hint to Exercise 5.2.5 The isomorphism is given in 7.4.24. A functional
on l1r may be represented as Fx = F (ξn)n≥1 =

∑∞
n=1 αnr

nξn where
(αn)n≥1 belongs to l∞. To prove this, use 5.2.3 and the argument from
5.2.10.

Hint to Exercise 5.2.12 By 2.2.38, C0(G) is isometrically isomorphic to
C0(R) × C0(R).

Hint to Exercise 5.1.17 Check that finite combinations y =
∑n
i=1 ξiei

of ei := (δi,n)n≥1 , i ≥ 1, belong to Y.

Hint to Exercise 5.4.3 To prove weak convergence use 5.2.16. To show
that the sequence does not converge strongly note that if it converges it
must converge to zero and that ‖yn‖ = 1.

Hint to Exercise 5.5.4 Argue as in the proof of the Markov inequality
(see 1.2.36).

Hint to Exercise 5.5.5 Use the estimate:

E |Xk − µk|2+α1{|Xk−µk|>δsn} ≥ sαnδ
αE |Xk − µk|21{|Xk−µk|>δsn}.

Hint to Exercise 5.7.20 For any ε > 0 there exists an n ≥ 1 and
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x1, ..., xn ∈ A such that mini=1,...,n ‖x−xi‖ < ε
3 for all x ∈ A. Moreover,

there is a δ such that d(p, p′) < δ implies |xi(p) − xi(p′)| ≤ ε
3 .

Hint to Exercise 6.2.8 Use the argument from the proof of Alaoglu’s
Theorem to show that F (xy) = FxFy for all x and y in A and F in the
closure of M ∪ {0}. Note that we may not exclude the zero functional
from being in the closure of M. If A has a unit u, though, we show that
F (u) = 1 for all F in the closure of M, so that the zero functional does
not belong to clM.

Hint to Exercise 6.3.5 Note first that it is enough to determine αn, n ≥
2. Now, choose n = 2k + 1 and m = 2k − 1 in (6.14) to obtain

α2k+1 = 2α1α2k − α2k−1.

Similarly, choose n = 2k and n = 2k+ 2, to obtain α2k+2 = 2α1α2k+1 −
α2k. This proves that values of αn and αn+1 determine αn+2, so the
proof is completed by the induction argument.

Hint to Exercise 6.4.6 (b) Use (a) and (6.24) with r = 1
2 , and α replaced

by 4αpq. Note that (2n − 1)!!2nn! = (2n)! so that
(
n−1+ 1

2
n

)
4n =

(
2n
n

)
.

(f) Use Abel’s theorem to show that
∑∞
n=1 rn = limα→1 g(α), and note

that 1 − 4pq = (p+ q)2 − 4pq. Details may be found in [40] or [48].

Exercise 6.4.7 For τ = 0, this result follows directly from 1.2.31 by the
substitution s =

√
λt.

For τ > 0,

∂g(τ, t)
∂τ

= −τ
t
g(τ, t),

and
∂g(τ, t)
∂t

= (−1
t

+
τ2

t2
)g(τ, t) =

1
2
∂2g(τ, t)
∂τ2

.

Let (a, b) ⊂ R be a finite interval. For τ in this interval,∣∣∣∣∂g(τ, t)∂τ

∣∣∣∣ ≤ c

t
g(d, t),

∣∣∣∣∂2g(τ, t)
∂τ2

∣∣∣∣ ≤ 2(
1
t

+
c2

t2
)g(d, t)

where c = |a| ∨ |b| and d = |a| ∧ |b|. Taking µ in Exercise 1.2.12 to be
the measure on R+ with density e−λt we obtain

∂

dτ
G(λ, τ) =

∫
R+

∂

∂τ
g(λ, τ)µ(dω), τ > 0.
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Similarly,

∂2

∂τ2
G(λ, τ) =

∫
R+

∂2

∂τ2
g(λ, τ)µ(dω) = 2

∫ ∞

0

e−λt
∂

∂t
g(τ, t) dt.

Integrating by parts, this equals 2λG(τ, t). The general solution to the
equation d2

dτ2G(λ, τ) = 2λG(λ, τ) in R+
∗ is given by

G(λ, τ) = C1e−
√

2λτ + C2e
√

2λτ .

(This is an ODE with λ treated as a parameter.) Since limτ→∞G(λ, τ) =
0, C2 = 0, and since limτ→0G(λ, τ) = 1√

2λ
, C1 = 1√

2λ
.

A different, more direct computation of this integral may be found
e.g. in [109].

Exercise 6.4.8 By the Lebesgue Dominated Convergence Theorem, and
the estimate |eihs − 1| ≤ |sh| (draw a picture!) the difference quotient
φ(α+h)−φ(α)

h =
∫∞
−∞ eiαs eihs−1

h e−
s2
2 ds, converges to i

∫∞
−∞ seiαse−

s2
2 ds.

Integrating by parts, this equals i times [−eiαse−
s2
2 ]∞s−∞ +iαφ(α). Since

the first term above equals zero, (6.25) is proved. A general solution to
the equation d

dαφ(α) = −αφ(α) is φ(α) = Ce−
α2
2 . Since we must have

φ(0) = 1, C = 1, and we obtain φ(α) = e−
α2
2 .

Exercise 6.5.4 Use the relations

x ∨ y =
1
2
|x− y| + 1

2
(x+ y), x ∧ y = −[(−x) ∨ (−y)],

or

x ∧ y = −1
2
|x− y| + 1

2
(x+ y), x ∨ y = −[(−x) ∧ (−y)],

or their combination.

Hint to Exercise 6.5.5 Show first that the set of real parts of the elements
of A is equal to the algebra of real continuous functions on S.

Exercise 6.5.7 Since ‖x(X,Y ) − y(X,Y )‖L1(Ω) ≤ ‖x − y‖C(R2), by lin-
earity it suffices to show the formula for x(τ, σ) = y1(τ)y2(σ) where
yi ∈ C(R), i = 1, 2. We have E(y1(X)y2(Y )|F) = (Ey1(X))y2(Y ), Y
being F measurable and X being independent of F . On the other hand,
since y2(Y ) does not depend on τ,∫

R

y1(s)y2(Y ) PX( dτ) = y2(Y )
∫

R

y1(s) PX( dτ) = y2(Y )Ey1(X),

as desired.
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Hint to Exercise 6.6.6 Show the the following calculation is correct:∫ π

−π
x̂(t)eitm dt =

∞∑
n=−∞

ξn

∫ π

−π
eitneitm dt = 2πξ−m, m ∈ Z.

Exercise 6.6.14 The pgf of the binomial distribution equals (pα+ q)n =
[1 + (1 − α)p]n. In the limit, as p → 0 and n → ∞ in such a way that
np→ λ, we obtain e−λ(1−α) as desired.

Exercise 7.1.1 Note that xn is a Cauchy sequence, for if m ≥ n then
xm ∈ Bm ⊂ Bn, so that ‖xn − xm‖ ≤ rn. Let x = limn→∞ xn. For any
n ∈ N, xm ∈ Bn, as long as m ≥ n and Bn is closed. Thus, x ∈ Bn, as
desired.

Exercise 7.1.9 By 7.1.3, An are equibounded. Hence, there exists an M
such that

‖Anxn −Ax‖ ≤ ‖Anxn −Anx‖ + ‖Anx−Ax‖
≤M‖xn − x‖ + ‖Anx−Ax‖

which implies our claims.

Exercise 7.1.7 If the supremum of norms is not finite, then T must
contain an infinite number of elements, and we may choose tn ∈ T

such that ‖Atn‖ ≥ n. This is a contradiction by the Banach–Steinhaus
Theorem.

Hint to Exercise 7.3.4 The key is the fact that if the sequences xn, n ≥ 1,
and Cxn converge, then so do Bxn and Axn.

Exercise 7.4.6 By 7.1.6, there exists a δ > 0 and M ≥ 1 such that for
0 ≤ t ≤ δ, ‖Tt‖ ≤M (M is bigger than 1 since ‖T0‖ = 1). Thus, for any
x ∈ X, and 0 ≤ t ≤ δ,

‖TtStx− x‖ ≤ ‖TtStx− Ttx‖ + ‖Ttx− x‖ ≤M‖Stx− x‖ + ‖Ttx− x‖.

The claim follows by taking the limit as t→ 0.

Hint to Exercise 7.4.10 Use 5.4.12 and a result analogous to 5.4.18,
where R is replaced by the unit circle.

Exercise 7.4.13 Note that St = e−ωtTt is a semigroup, and that ‖St‖ ≤
M. By the semigroup property, for any t > 0 and n ≥ 1,

‖St‖ = ‖Snt
n
‖ ≤ ‖S t

n
‖n ≤Mn.
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Since 0 ≤M < 1, ‖St‖ = 0, i.e. St = 0, and Tt = 0.

Hint to Exercise 7.4.25 The characteristic values of A are 0,−1 and
−6 with eigenvectors [1, 1, 1], [0, 2, 3] and [0, 1,−1] respectively. Further-
more, ⎡

⎣1 0 0
1 2 1
1 3 −1

⎤
⎦
−1

=
1
5

⎡
⎣ 5 0 0
−2 1 1
−1 3 −2

⎤
⎦ .

Exercise 7.4.23 The semigroup property of {St, t ≥ 0} and its strong
continuity are trivial. Moreover, x belongs to D(B) iff the limit

lim
t→0+

Stx− x

t
= lim
t→0+

Ttx− x

t

exists. If it exists, however, it belongs to X1, for X1 is closed.

Exercise 7.4.27 Let e = (1, · · · , 1)T be the column-vector with all en-
tries equal to 1. The condition

∑
j∈I qi,j = 0, i ∈ I, is equivalent to

Qe = 0. Analogously,
∑
j∈I pi,j = 1, i ∈ I, iff P (t)e = e. The key to

the proof is the fact that Q = d
dtP (t)|t=0. If P (t), t ≥ 0, are stochastic

matrices then qi,j = d
dtpi,j(t)|t=0 = limt→0+

pi,j(t)
t ≥ 0, i 
= j, and qi,i =

limt→0+
pi,i(t)−1

t ≤ 0. Moreover, Qe = d
dt [P (t)e]|t=0 = [ d

dte]|t=0 = 0.
Conversely, if Q is an intensity matrix, then all the entries of exp tQ are
non-negative because rI + Q where r = −mini∈I qi,i has non-negative
entries and we have eQt = e−rte(rI+Q)t, matrices −rI and Q commuting.
Moreover, eQte = e since eQ0e = e and d

dte
Qte = eQtQe = 0.

Hint to Exercise 7.4.37 Use the Taylor formula (5.21). For example,
for x ∈ D( d2

dτ2 ), C(t)x(τ) − x(τ) = 1
4v

2t2[x′′(τ + θ1vt) + x′′(τ − θ2vt)]
and (C(t)x)′(τ) − x′(τ) = 1

2 tv[x
′′(τ + θ3vt) − x′′(τ + θ4vt)], where 0 ≤

θi ≤ 1, i = 1, ..., 4. This implies limt→0
1
t (C(t)x− x) = 0 for x ∈ D( d2

dτ2 )
strongly in X.

Hint to Exercise 7.4.47 Show that without loss of generality we may
assume that the semigroup is bounded and consider elements of the form
H(φ)x where φ is C∞ with bounded support.

Hint to Exercise 7.4.48 Both sets {eλ, λ > 0} and {1[0,t), t > 0} are
linearly dense in L1(R+).

Exercise 7.5.3 See (7.41) and the paragraph following it.
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Hint to Exercise 7.5.4 Repeat the analysis given for the Brownian mo-
tion. The semigroup is given by Ttx(τ) = E x(τ + at+w(t)). Prove that
the generator equals 1

2x
′′ + ax′, and has the domain D( d2

dτ2 ).

Hint to Exercise 7.5.10 λ
∫∞
0

e−λte−at a
ktk

k! dt = λ ak

(λ+a)k+1 .

Exercise 7.7.2 y(t, τ) = 1 solves (7.55)–(7.56) with y(τ) = 1.

Hint to Exercise 7.7.6 If xk, k = 1,−1 are differentiable and their deriva-
tives belong to BUC(R) then y(τ, k) = kvx′(τ, k) belongs to BUC(G).
Moreover,

Stx(τ, k) − x(τ, k) = x(vtk + τ, k) − x(τ, k) = vtkx′(τ + θvtk, k)

where θ = θ(v, t, k, x, τ) belongs to the interval [0, 1]. Thus

1
t
‖Stx− x− ty‖ ≤ sup

τ∈R,k=1,−1
|x′(τ + θtkv, k) − x′(τ, k)|

≤ sup
|τ−σ|≤tv

v|x′(σ, k) − x′(τ, k)|

which tends to zero, as t → 0, by uniform continuity of τ → x′(τ, k),
k = 1,−1. The rest is proven as in 7.4.16.

Hint to Exercise 7.7.8 Let y(τ) = 1
v

∫ τ
0
z(σ) dσ, and write z(τ + vσ) as

∂
∂σy(τ + vσ), then integrate

∫ t
−t I0

(
a
√
t2 − σ2

)
∂
∂σy(τ + vσ) dσ by parts

to obtain

y(τ + vt) − y(τ − vt) + a

∫ t

−t
I1

(
a
√
t2 − σ2

) σ√
t2 − σ2

y(τ + vσ) dσ.

Next note that the function xτ (σ) := y(τ + vσ)− y(τ − vσ) is odd, and
so is σ �→ I1

(
a
√
t2 − σ2

)
σ√
t2−σ2 while σ �→ I1

(
a
√
t2 − σ2

)
t√

t2−σ2 and

σ �→ I0
(
a
√
t2 − σ2

)
are even. Hence,

y(t, τ) = e−atxτ (t) + e−at
a

2

∫ t

−t
I0

(
a
√
t2 − σ2

)
xτ (σ) dσ

+ e−at
a

2

∫ t

−t
I1

(
a
√
t2 − σ2

) t+ σ√
t2 − σ2

xτ (σ) dσ.

Also, using (7.61),

e−at +
a

2
e−at

∫ t

−t
I0

(
a
√
t2 − σ2

)
dσ

+
a

2
e−at

∫ t

−t

t+ σ√
t2 − σ2

I1

(
a
√
t2 − σ2

)
dσ = 1.
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Hint to Exercise 7.7.9 (b) Let y(τ) = 1
v

∫ τ
0
z(σ) dσ. Note that y(τ +

vξ(t))− y(τ − vξ(t)) =
∫ ξ(t)
−ξ(t) z(τ + vσ) dσ. Use linearity of the telegraph

equation.

Exercise 8.1.2 As shown in 2.3.17, operators Tµ commute with transla-
tions. Let St denote translation: Stx(τ) = x(τ + t). Then

(UtSsx)(τ) = E x(|s+ τ + w(t)|),

while

SsUtx)(τ) = E x(s+ |τ + w(t)|).

These two are not equal for all x ∈ BUC(R+): take e.g.

xs(τ) =

{
τ − s, τ < s,

0, τ ≥ 0.

Exercise 8.1.7 Easy.

Exercise 8.1.8 In 1.2.20 it was shown that there exist continuous func-
tions fh converging pointwise, as h → 0, to 1(a,b] where a < b. By
the Lebesgue Dominated Convergence Theorem, fh(X(s)) converges in
L1(Ω) to 1X(s)∈(a,b]. Hence E(1X(s)∈(a,b]|Ft) = E(1X(s)∈(a,b]|X(t)), i.e.,
for any A ∈ Ft,

∫
A

1X(s)∈B dP =
∫
A

E(1X(s)∈B |X(t)) dP for B of the
form B = (a, b]. However, both sides in this equality are finite measures
in B. By the π–λ theorem, the equality holds for all B, proving (8.10).

Hint to Exercise 8.1.10 Use 6.5.7 to conclude that E(f(wr(s))|Ft) =∫
R
f(|τ + σ + wr(t)|) Pw(s)−w(t)( dσ).

Exercise 8.1.12 The only non-trivial part is the fact that, for any Borel
set B and a measure µ, the function fB(τ) := µ(B − τ) is measurable.
If B = (−∞, σ] for some σ ∈ R, then fB(τ) = µ(−∞, σ − τ ]. Hence, FB
is bounded, left-continuous and non-increasing, and in particular mea-
surable. Using linearity of the integral, we check that fB is measurable
for B of the form (a, b], a < b. Such sets form a π-system. Moreover,
the class H of Borel sets such that fB is measurable is a λ-system.
Indeed, R ∈ H and if A,B ∈ H, and A ⊂ B then A − τ ⊂ B − τ

and the relation (B \ A) − τ = (B − τ) \ (A − τ) (see 2.1.18) results
in fB\A(τ) = fB(τ) − fA(τ), proving conditions (a) and (b) in 1.2.7.
To prove (c) it is enough, by the already proved part (b), that for
any disjoint Ai ∈ H we have

⋃∞
i=1Ai ∈ H (for if Ai are not disjoint



9.3 Some commonly used notations 383

then we may consider A�i = Ai −
⋃i−1
j=1 instead). For such Ai, however,

f⋃∞
i=1 Ai

=
∑∞
i=1 fAi

. By the π–λ theorem, B(R) ⊂ H, i.e. fB is measur-
able for all Borel sets B.

Exercise 8.2.13 By (8.30) and the Binomial Theorem we have∥∥∥∥∥
(

1
λ+ µ

+
(

λ

λ+ µ

)2

R λµ
λ+µ

)n∥∥∥∥∥ ≤
(

1
λ+ µ

+

∥∥∥∥∥
(

λ

λ+ µ

)2

R λµ
λ+µ

∥∥∥∥∥
)n

≤M
n∑
i=0

(
1

λ+ µ

)n−i(
λ

λ+ µ

)2i (λ+ µ)i

(λµ)i

≤ M

µn

n∑
i=0

(
µ

λ+ µ

)n−i(
λ

λ+ µ

)i
=
M

µn
.

Hint to Exercise 8.2.15 On both sides of this equality, we have contin-
uous functions. Calculate their Laplace transforms and use the Hilbert
equation (7.33) to show that they are equal.

Hint to Exercise 8.3.16 The operator x → x′′ with natural domain in
C[ε, 1 − ε], 0 < ε < 1

2 is closed.

Hint to Exercise 8.3.17 Show coordinate-wise convergence first; then
use Scheffé’s Theorem.

Hint to Exercise 8.4.6 Note thatRλx(τ) = 1√
2λ

∫∞
−∞ e−

√
2λ|τ−σ|x∗(σ) dσ

where x∗(τ) = (sgn τ)x(|τ |).

Hint to Exercise 8.4.24 Use the Uniform Boundedness Principle on the
operators An, n ≥ 1 :

Anx = (P1x, ..., Pnx, 0, 0, ...)

mapping X into the Banach space of bounded sequences (xn)n≥1 with
xn ∈ Xn, n ≥ 1.

Exercise 8.4.34 Put t = N,n = i and k = j in 8.93.

9.3 Some commonly used notations

[τ ] or �τ� – the largest integer not exceeding τ,
�τ� – the smallest integer no smaller than τ,
τ+ = max(0, τ), τ− = (−τ)+,
A,B,C either a set or an operator,
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A� – the complement of a set A,
BC(S) – the space of bounded continuous functions on S,
BM(S) – the space of bounded measurable functions on S,
BM(S) – the space of bounded Borel charges (signed measures) on a

topological space S,
BUC(G) – the space of bounded uniformly continuous functions on a

locally compact group G – see 2.3.25,
C(S) – the space of continuous functions on S,
C([−∞,∞]) – the space of continuous functions on R with limits at

both ∞ and −∞,

C(R) – the subspace of C([−∞,∞]) of functions with the same limit
at ∞ and −∞,

D(A) – the domain of an operator A,
eλ – eλ(τ) = e−λτ , see 2.2.49,
F ,G, etc. – σ-algebras,
m,λ, µ, ν – measures, but
λ, µ, ν – are also often used to denote a positive (or non-negative)

number, especially in the context of the Laplace transform, while m

may denote a mean or a median of a random variable,
G – a (semi-)group,
M – Lebesgue measurable sets (see 1.2.1),
N – the set of natural numbers,
N0 – N ∪ {0},
Ω, (Ω,F ,P) – a probability space,
p, q – points of S,
Q – the set of rational numbers,
R – the set of reals,
R+ – the set of non-negative reals,
R+

∗ – R+ \ {0},
S – a set, or a space, probably a topological or metric space,
sgn – the signum function, see (1.46),
τ, σ – usually a real number, sometimes a Markov time,
X,Y,Z etc. – a linear space, a Banach space or a subset, perhaps a

subspace of such a space, but
Z – is sometimes used to denote the set of integers, see e.g. 6.1.1,
x, y, z – elements of a Banach space, or of a linear space.
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0–1 law, 110
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algebra, 202
functional, 152
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space, 48

Bernstein polynomials, 74, 351
Brownian motion

absorbed, 305
as a martingale, 138
construction of, 133–137
definition of, 125
elastic, 321, 330, 343
minimal, 304
reflected, 294, 296

canonical map (canonical
homomorphism), 40

Cauchy
equation, 34
flight, 271
problem, 259
process, 271

cemetery, 304
change of variables formula, 9
Chapman–Kolmogorov equation, 296,

299
character, 224
character group, 225
charge, 20
coffin state, 304
combination

convex, 43
linear, 43

conditional expectation, 89

convex hull, 43
convolution, 10

on a semigroup, 12
core, 245, 261
cosine operator function, 258
countable additivity, 4
cumulative distribution function, 28

d’Alembert’s formula, 286
Dirac

(delta) measure, 12
equation, 290

Dirichlet problem, 307
distribution, 9

bilateral exponential, 221
exponential, 15
gamma, 15
Gaussian, 15
negative binomial, 218
normal, 15
Poisson, 15
symmetric, 275
uniform, 15

Ehrenfest model, 354
equation

Cauchy, 34
Chapman–Kolmogorov, 296, 299
cosine functional, 258
Hilbert, 205, 259
telegraph, 280, 327

with small parameter, 346
wave, 260, 281

equibounded operators, 76
equivalence

class, 40
relation, 40

Ewens sampling formula, 354
exchangeable, 99
explosion, 339
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extended limit, 344

field, 3
finite-dimensional distribution, 190
formula

Ewens sampling, 354
Feynman–Kac, 357
Trotter product, 357

function
absolutely integrable, 7
Bessel, 281
bounded, 39
convex, 29
Hunt, 288
measurable, 7
of bounded variation, 17
simple, 7
vanishing at infinity, 57

functional
Banach, 152
characteristic, 220
generating, 273

Galton–Watson process, 105
genetic drift, 115
Gram–Schmidt orthonormalization

procedure, 128
group

dual, 225
Kisyński, 13
Klein, 12
Lie, 288

Hölder inequality, 31
Helly’s principle, 187
Hilbert

cube, 187
equation, 205, 259

Hunt
function, 288
Theorem, 289

independent
mutually, 23
pairwisely, 23

inequality
Bessel’s, 129
Cauchy–Schwartz-Bunyakovski, 81
Chebyshev’s, 16
Doob’s Lp, 120
Hölder, 31
Jensen’s, 94
Markov, 16
maximal, 119
Minkowski, 32
upcrossing, 113

inner product, 80

isomorphism, 54
algebraic, 39
isometric, 55

Itô
integral, 139, 145
isometry, 144

kernel, 40
Kingman’s coalescence, 351

Lévy
–Khintchine formula, 279
process, 270
Theorem, 139

lattice, 222
law of large numbers, 81, 112, 115

and ergodic theorem, 166
least square regression, 128
Lemma

Alexandrov’s, 185
Doob–Dynkin, 42
Fatou’s, 8
Kuratowski–Zorn, 151

Lindeberg condition, 177

map
measure-preserving, 166
non-singular, 103

Markov
chain, 101
inequality, 16
operator, 76–79, 164
process, 297
property, 101
time, 118

matrix
intensity, 255
Kolmogorov, 255

measure, 4
absolutely continuous, 9
Dirac, 12
invariant, 164
regular, 6, 34, 159
signed, 20
translation invariant, 6
transport of, 9

measure space, 4
measures escaping to infinity, 172, 182
median, 276
metric

Fortet–Mourier, 180
Prohorov–Lévy, 180

moments, 10

natural filtration, 139
nets, 180
non-explosive, 337
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norm, 45

one-point compactification, 58
operator

adjoint, 163
bounded linear, 63

extension of, 75
norm of, 65

closable, 331
closed, 240
dissipative, 330
dual, 163
Feller, 164
Frobenius–Perron, 103
graph of, 243, 331
Markov, 76–79, 164
non-densely defined, 365
part of, 311
projection, 83

characterization of, 85
related to a measure, 67
related to a random variable, 69
self-adjoint, 84

non-negative, 107
non-negative, a root of, 109
norm of, 85

sub-Markov, 334
translation, 66
unitary, 166

orthogonal, 80

parallelogram law, 82
Poisson

–Kac process (telegraph process),
230, 280

approximation to binomial, 16
compound process, 269
distribution, 15
formula, 307
kernel, 15, 247
point process, 220
process, 268, 312

polarization formula, 82
positive maximum principle, 328
process

adapted, 119, 141
Feller, 302
Galton–Watson, 105
Lévy, 270
Markov, 297

time-homogeneous, 299
non-decreasing, 146
Ornstein–Uhlenbeck, 300, 354
point, 220

geometric, 221
Poisson, 220

previsible, 104

progressively measurable, 142
pseudo-Poisson, 307
pure death/birth, 338, 351
simple, 143
telegraph, 280
Wiener (see Brownian motion), 121

property
Lindelöf, 181
Markov, 101
memoryless, 89
tower, 93, 100

pseudo-resolvent, 343

range, 40
range condition, 330
representation, 202
Riemann–Stieltjes integral, 22

scalar product, 80
semi-norm, 45
semicharacter, 224
semigroup

integrated, 311
of equibounded operators, 262
of operators, 246

continuous in the uniform topology,
251

infinitesimal generator of, 249
Laplace transform of, 256
of class c0, 247
strongly continuous, 247

of translations to the right, 247
topological, 12

separation of points, 167, 222
space

Banach, 48
complete, 48
Hilbert, 82
inner product, 80
linear, 38
normed, 45
Polish, 178
unitary, 80

span, 43
standard probability space, 5
Stirling numbers, 361
Stratonovich integral, 142
subspace, 46

algebraic, 39

telegraph process, 230
Theorem

π–λ, 6
Alaoglu’s, 186
Arzela–Ascoli, 190
Baire’s category, 234
Banach–Steinhaus, 234
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Bolzano–Weierstrass, 2
Campbell’s, 78, 219
Cayley–Hamilton, 252
Central Limit, 176, 229

Lindeberg condition, 177
semigroup-theoretical proof of, 350
with random number of terms, 229

Cohen’s Factorization, 231
Donsker, 193
Doob’s Optional Sampling, 118
Fubini, 9
Hahn–Banach, 151
Hille–Yosida, 309

algebraic version of, 318
Hunt, 289
Kakutani–Krein, 222
Lévy, 139
Lebesgue Dominated Convergence, 8
Lindeberg-Feller, 177
Monotone Class, 6
Monotone Convergence, 8
of Pontryagin and Van Kampen, 225
portmanteau, 179
Prohorov’s, 188
Radon–Nikodym, 101
Riesz, 158
Scheffé’s, 199
Steinhaus, 34
Stone–Weierstrass, 223
Tichonov’s, 185
Tonelli, 9
Trotter–Kato, 342

Sova–Kurtz version, 345
Urysohn’s, 187
von Neumann’s Ergodic, 166
Weierstrass’, 73

tightness, 187
topology, 1

Hausdorff, 1
weak, 167
weak∗, 170

transform
Fourier, 213
Fourier abstract, 225
Fourier cosine, 214
Gelfand, 206, 207
Laplace, 210

Wiener
measure, 190
process, 125

Wright–Fisher model, 105

Yosida approximation, 311
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