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PREFACE 

One can hardly name a branch of natural science or technology in which 
the problems of stability do not claim the  attention of scholars, engineers, 
and  experts who investigate natural phenomena or operate designed ma- 
chines  or systems. If, for a process or a phenomenon, for example, atom 
oscillations or a supernova explosion, a  mathematical model  is constructed 
in the form of a system of differential equations, the investigation of the 
latter is  possible either by a direct (numerical as a rule) integration of the 
equations or by its analysis by qualitative methods. 

The direct Liapunov method based on scalar auxiliary function proves to 
be a powerful technique of qualitative analysis of the real world phenomena. 

This volume examines new generalizations of the matrix-valued auxiliary 
function. Moreover the matrix-valued function is a structure  the elements 
of which  compose both scalar and vector Liapunov functions applied in the 
stability analysis of nonlinear systems. 

Due to  the concept of matrix-valued function developed  in the book, 
the direct Liapunov method becomes  yet more versatile in performing the 
analysis of nonlinear systems dynamics. 

The possibilities of the generalized direct Liapunov method are opened 
up to stability analysis of solutions to ordinary differential equations, sin- 
gularly perturbed systems, and systems with random parameters. 

The reader with an understanding of fundamentals of differential equa- 
tions theory, elements of motion stability theory, mathematical analysis, 
and linear algebra should not be  confused  by the many formulas in the 
book. Each of these subjects is a part of the mathematics curriculum of 
any university. 

In view  of the fact that beginners in motion stability theory usually 
face some  difficulties  in its practical application, the  sets of problems taken 
from various branches of natural sciences and technology are solved at  the 
end of each chapter.  The problems of independent value are  integrated in 
Chapter 5 .  

V 



vi PREFACE 

A certain  contribution to  the development of the Liapunov matrix func- 
tion  method  has been made by the scientists  and  experts of Belgrade Uni- 
versity, Technical University in Zurich, and  Stability of Processes Depart- 
ment of Institute of Mechanics National Academy of Sciences of Ukraine. 

The useful remarks by the reviewers of Marcel Dekker, Inc., have been 
taken  into account in the final version of the book. Great assistance in 
preparing the manuscript for publication has been rendered by S.N. Rasshi- 
valova, L.N. Chernetzkaya, A.N. Chernienko, and V.I. Goncharenko. The 
author expresses his sincere gratitude to all these persons. 

A. A. Martynyuk 
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NOTATION 

R the set of all real numbers 
R+ = [0, +CO) C R the set of all nonnegative numbers 
Rk S-th dimensional real vector space 
R x R" the Cartesian product of R and R" 
7 = [-CO, +CO] = { t :  - CO 5 t 5 +CO} the largest time interval 
7, = [T, +CO) = {t : T 5 t < +CO} the right semi-open unbounded 

interval associated with T 

5 R a time interval of all initial moments to under consideration (or, 
all admissible t o )  

5 = [ to ,  +CO) = {t : to  5 t < +CO} the right semi-open unbounded 
interval associated with t o  

[\z1[ the Euclidean norm of z in Rn 
X ( t ;  to,zo) a motion of a system at t E R iff z(t0) = 20, X( t0 ;  to,zo) zo 
Be = {z E R": JIzcJ) < E }  open ball with center at  the origin and  radius 

& > O  
6 ~ ( t o , ~ )  = max(6: 6 = 6 ( t O , E )  3 zo E & ( t o , & )  * X(t;to,zo) E B,, 

Vt E 5) the maximal S obeying the definition of stability 
AM(t0) = max{A: A = A(to), V p  > 0, Vzo E BA, 3 ( t o , s o , p )  E (O,+w) 

3 X(t; t o ,  SO) E B,, V t E 7,) the maximal A obeying the definition 
of attractivity 

minimal I- satisfying the definition of attractivity 
~,( to ,zo,p)  = min{T: T = T(tO,zo,p) 3 x(t;to,zo) E B,, V t  E 7,) the 

N a time-invariant neighborhood of original of R" 
f : R x N -+ R" a vector function mapping R x N into R" 
C ( z  x N )  the family of all functions continuous on 7, x N 
d i J )  (7 ,  x N )  the family of all functions i-times differentiable on 7, and 

D+w(t, z) (D-v( t ,z) )  the upper right (left) Dini derivative of W along 
j-times differentiable on N 

X($ t o ,  20) at ( 4  S) 

ix 



X NOTATION 

D+w(t, z) (D-v(t ,z))  the lower right  (left) Dini derivative of W along 

D*v(t,z) denotes that  both D+v(t,z) and D+v(t,z) can be used 
Dv(t ,  z) the Eulerian  derivative of W along ~ ( t ;  t o ,  $0) at ( t ,  z) 
Xi(.) the  i-th eigenvalue of a matrix ( e )  

AM(') the maximal eigenvalue of a matrix ( m )  

X,(-) the minimal eigenvalue of a matrix (.) 

X@; t o ,  I o )  at (4 z) 



1 
PRELIMINARIES 

1.1 Introduction 

Nonlinear dynamics of systems is a branch of science that studies  actual 
equilibriums and motions of natural  or artificial  real  objects. However it 
is known that hardly every state of a really  functioning  system is observed 
in practice that corresponds to a mathematically  strict solution of either 
equilibrium  or differential motion  equations. It has been found out  that 
only those  equilibriums and motions of real  systems are evident that possess 
certain  “resistivity” to  the outer  perturbations.  The  equilibrium  states  and 
motions of this kind are referred to  as stable while the others  are called 
unstable. 

The notion of stability  had  been clearly intuited  but difficult to for- 
mulate  and only Liapunov (see Liapunov [ loll) managed to give accurate 
definitions (for the historical  aspect see Moiseev [146]). 

Section 1.2 presents  recent strict definitions of stability of nonautono- 
mous  systems and  other general information necessary for proper  under- 
standing of the monograph.  Presently  there is a series of monographs and 
textbooks that expose the direct  Liapunov  method of motion  stability in- 
vestigation  based  on  auxiliary  scalar  function and provide a lot of many 
illustrative  examples of its application. The books by Chetaev [19], Malkin 
[107], Lur’e [104], Duboshin [32], Demidovich [24], Krasovskii [89], Bar- 
bashin [lo], Zubov [177], Letov [99], Bellman [15], Hahn [66], Harris  and 
Milles [68], Yoshizawa [174], LaSalle and Lefscheta [98], Coppel [23], Lak- 
shmikantham, Leela and  Martynyuk [94] and  others show the modern level 
of Liapunov method development in  qualitative  theory of equations. 

Section 1.3 (subsection 1.3.1) gives a brief account of results  obtained  in 
this direction. 

In 1962 it was proposed by Bellman [16], Martosov [132], and Melnikov 
[l391 to apply  Liapunov  functions consisting of more than one  component. 
Such functions were referred to  as vector Liapunov  functions. A quick 

1 



2 1. PRELIMINARIES 

development of investigations in the field has been summarized in a se- 
ries of monographs such as in  Grujik [55], Michel and Miller  [143], siljak 
[167], Rouche, Habets  and Laloy  [159],  LaSalle  [97], Grujik, Martynyuk and 
Ribbens-Pavella [57], Lakshmikantham, Matrosov and Sivasundaram [96], 
Abdullin, Anapolskii et al. [l]. 

Section 1.3 (subsection 1.3.2) provides a short survey of the direct L i e  
punov method development in terms of vector function. 

The preliminary information and the survey of the direct Liapunov me- 
thod development in terms of both scalar and vector auxiliary functions are 
cited here with the aim to prepare the reader to  the  study of a new method 
in qualitative theory of equations called the method of matrix Liapunov 
functions. 

1.2 On Definition of Stability 

1.2.1 Liapunov’s  original definition 

Liapunov started his investigations with the following  (see Liapunov [ lol l ,  
p.11): 

Let us consider any material system with IC degrees of freedom. Let 
q1, q 2 ,  . . . , q k  be IC independent variables, which we use to determine 
its position. 

We shall assume that quantities  taking real values  for all real 
system positions are taken for  such  variables. 

Considering the mentioned variables as functions in time t we 
shall denote their first time derivatives by qi , q i ,  . , . ,qi. 

In every dynamic problem, in which  forces are prespecified in a 
certain way, such functions will satisfy some IC second order differ- 
ential  equations. 

Let any particular solution for such equations be found 

in which the quantities qj are expressed as real functions in t ,  which 
at every t give  only  possible  values to them.l 

~~ ~ 

l I t can  happen that  the quantities qj by their choice do not  take all real values but 
only those not greater than - and not less than certain bounds. 
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To that particular solution will correspond a definite motion of 
our system. Comparing it  in a known  sense with others, which are 
possible under the same forces, we shall call that motion unper- 
turbed, and all others, with which it is compared, perturbed. 

For t o  understood a given instant, let us denote the values  cor- 
responding to  it of quantities q j ,  $. along any motion with q j o ,  qio. 

Let 

where ~ j ,  E$ are real-valued constants. 
Prespecifying the  constants, which  will be called perturbations, 

a perturbed motion is determined. We shall assume that we may 
prescribe them every number sufficiently small. 

By speaking about  perturbed motions, close to  the unperturbed 
one, we shall comprehend motions, for  which the perturbations  are 
numerically small. 

Let Q1, Q 2 ,  . . . , Qn be any given continuous real-valued functions 
of quantities 

Along the unperturbed motion they become  known functions oft, 
which  will be denoted by FI, F2,. . . , Fn. Along a  perturbed motion 
they will be functions of quantities 

When all E j ,  E$ are equal to zero, then  quantities 

will be equal to zero  for  every t. However, if the constants &j, E$ 

are  not zero, but all are infinitely small, then a question rises:  is it 
possible to specify  such the  latter never  become grater than their 
values? 

A solution of the question, which  is the topic of our investiga- 
tions, depends on both a character of the considered unperturbed 
motion and a choice of the functions &I, Q z ,  . . . , Qn and the instant 
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to. Under a specific choice of the  latter,  the reply to  the question, 
respectively, will characterize in some sense the  unperturbed mo- 
tion, by determining a feature of the  latter, which will be called 
stability, or that contrary to  it, will be called instability. 

We shall be exclusively interested  in  those cases in which the 
solution of the considered question  does not  depend on a choice of 
the  instant to, when perturbations  are  acting.  Thus we accept the 
following definition. 

Let L1, La,. . . , L ,  be arbitrary  given  positive  numbers. If all L,, 
regardless of how  small  they  are,  can be selected positive  numbers 
El ,  Ea, I . . , Eh, E:, Eh,, . m , E(, SO that  for all real E j ,  E $ ,  satisjying 
the  conditions1 

and fo r  all t ,  greater than t o ,  the  inequalities 

IQ1 - F11 c L19 I Q 2  - F’/ C La, I . .  , IQn -Fn( C L,, 

are satisfied, then the  unperturbed motion is stable  with respect to 
the  quantities Q 1 ,  Q z ,  I I . , Q n ;  otherwise it is  unstable  with  respect 
to  the  same  quantities. 

1.2.2 Comments  on  Liapunov’s  original  definition 

COMMENT 1.2.1. The inequalities  on J E ~ I  and  are weak and those  on 
IQj - Fj I are  strong.  This  asymmetry is usually avoided imposing the same 
type of inequalities  on all I E ~ / ,  / E $ [  and I Q j  - Fj/ , which yields stability 
definitions equivalent to Liapunov’s original definition. This equivalence 
can  be easily proved. 

COMMENT 1.2.2. Stability of the reference motion was defined by Lia- 
punov  with  respect to  arbitrary functions Qj that  are continuous in all q i ,  
qi. This  has  been very thoughtful  and physically important because Qj  can 
represent  energy  or  material flow. In  this connection  Liapunov  introduced 
new variables xi, 

IIn  general 121 means the absolute  value of a real-, or modulus of a complex quantity 
X. 
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and accepted the following (Liapunov [loll, p.15): 

We shall  assume that  the number n and  the functions Q8, are 
such, that  the order of the system is n and  that it is reducible 
to  the normal form 

and everywhere  in the sequel we shall consider these  last  equa- 
tions, calling them  the differential equations of a perturbed mo- 
tion. 

All X, in the equations (1) are known functions of quantities 

COMMENT 1.2.3. Stability of the reference motion  requires arbitrary 
closeness of the  perturbed motions to  the reference motion provided their 
sufficient closeness is assured at the  initial  instant t o .  

COMMENT 1.2.4. The closeness of the  perturbed motions to  the refer- 
ence motion is to be realized over unbounded  time  interval G = ( to ,  +m], 
i.e. for all t greater than to.  This  point  has been commonly neglected in 
the literature. Namely, the closeness has been commonly required  either 
on 70 = [ to ,  +m] or on "7j = [ to ,  +W), i.e. for all t not less then to .  This 
difference can  be crucial  in cases when system  motions are discontinuous 
at t = t o .  

COMMENT 1.2.5 k M. Liapunov defined stability of the  reference mo- 
tion for cases when it is not influenced by to. However, the initial  moment 
can essentially influence stability of the reference motion in cases when 
system  motions are  not continuous in t .  Besides, to can essentially influ- 
ence the maximal admissible values of all Ej and E; even when all system 
motions are continuous in t .  

COMMENT 1.2.6.  The  stability of the reference motion was defined by 
A.M.Liapunov  with  respect to initial  perturbations of the general coordi- 
nates q j ,  q;, rather  than with  respect to persistent  external  disturbances. 
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COMMENT 1.2.7.  The stability definition does not  care  about the values 
Ej and E$ except that they must be positive. Hence,  for large values of all 
Lj, the maximal admissible Ej and E; can be so small that they  are not 
useful for engineering needs. 

1.2.3 Relationship  between the reference  motion  and the zero 
solution 

Let 2k be the order of the system and yi, i = 1,2 , .  . . ,2k1 be its  i-th  state 
variable. Using basic physical  laws (e.g. the law  of the energy conservation 
and  the law of the material conservation) we can for a large class of systems 
get state differential equations in the following scalar form 

(1.2.1) 

or  in the equivalent vector form 

(1.2.2) 

where* = ( V i , @ ,  . . I , y ~ k ) ~  E R2k and Y = (Y1,Y2,. . . , &)T, Y :  7 X 

R2k -+ R2k. A motion of (1.2.2) is denoted by q ( t ; t o , y o ) ,   q ( t o ; t o , y o )  E 

yo, and  the reference motion qp(t;  to ,  y,.~). From the physical point of  view 
the reference motion should be realizable by the system. From the math- 
ematical point of  view this means that  the reference motion is a solution 
of (1.2.2), 

(1.2.3) 

Let the Liapunov transformation of coordinates be used, 

(1.2.4) z = y - y r ,  

where y,.(t) E q,.(t;to,y,.o). Let f :  7 x R2’” -+ R2k be  defined by 
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It is evident that 

7 

(1.2.6) f(t,O) 0. 

Now (1.2.2) - (1.2.5) yield 

(1.2.7) - = f ( t ,x) .  
dx 
dt 

In  this way, the behavior of perturbed motions related to  the reference 
motion (in total coordinates) is represented by the behavior of the  state 
deviation z with respect to  the zero state deviation. The reference motion 
in the  total coordinates yi is represented by the zero deviation x = 0 in 
state deviation coordinates x,. With  this in mind, the following result em- 
phasizes complete generality of both Liapunov’s second method and results 
represented in Liapunov [l011 for the system (1.2.7). Let Q:  B2’” + R”, 
n = 2k is admissible but not required. 

THEOREM 1.2.1. Stability of x = 0 of the system (1.2.7) with respect 
to  Q = x is necessary and sufficient for stability of the reference motion 
q,. of the system (1.2.2) with respect to every vector function Q that is 
continuous in y. 

PROOF. Necessity. This part is true because Q(y) = p is contionuous in 
y and evidently stability of x = 0 with respect to z is  implied  by stability 
of v,. with respect to Q(,) = y. 

Suficiency. Let  Li > 0, i = 1,2,. . . ,n, be arbitrarily chosen. Continu- 
ity of Q in y implies existence of la > 0, li = li(L, y,.), L =  (L1,  L2, . . . , L,)T, 
i = 1,2,, . , , n, such that Iyi - yril < la, V i  = 1,2,. . , ,2k, implies IQi(y) - 
Qi(y,)l L*, i = 1,2, . . . , n. Stability of x = 0 of (1.2.7) (with respect 
to  x) guarantees existence of Si > 0, Si = & ( l ) ,  l = (11~12,. . . , l ~ k ) ~ ,  such 
that 1xiol < Si, i = 1,2,. . . ,2k, where X(t;to,xo),  X(to;to,xo) E zo, is 
the solution of (1.2.7), x = (x1,x2, , . .  , ~ 2 r c ) ~ .  Finally, for  every Li > 0, 
i = 1,2,, , , ,n, there is S; > 0, S; = iSj, j = 1,2,. . I , n, such that 
Jyjo - yrjol 5 S;, j = 1,2,. . . , n, implies 

IQi[v(t; to,y~)]  -Q~[TT(~;~o,YTo)]~ < Lt, Vt 1 to, i = 1,2,* - - ,n*  

This theorem reduced the problem of the stability of the reference motion 
of (1.2.2) with respect to Q to  the stability problem of x = 0 of (1.2.7) 
with respect to S; it is stated  and proved herein for the first time. 
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1.2.4 Accepted  definitions of stability 

By the very definition, stationary (time-invariant) systems are those whose 
motions are not effected  by (the choice of) the initial instant t o  E R. How- 
ever, such property is not  characteristic for nonstationary (time-varying) 
systems. It is therefore natural to consider the influence of t o  on stability 
properties of nonstationary systems, which  is motivation for accepting the 
next definitions. 

DEFINITION 1.2.1. The  state x = 0 of the system (1.2.7) is: 

exists S ( t O , E )  > 0, such that 11zo[1 < S(t0,e) implies 
(i) stable with respect to 5 iff for  every t o  E x and every E > 0 there 

(ii) uniformly stable with respect to 70 iff both  (i) holds and for  every 
E > 0 the corresponding maximal 6~ obeying (i) satisfies 

inf[SM(t,E): t E 74 > 0; 

(iii) stable in the whole with respect to X iff both  (i) holds and 

S M ( t , E )  + +m as E + +m, V t  E 5; 

(iv) uniformly stable in the whole with  respect  to 5 iff both (ii) and (iii) 
hold; 

(v) unstable  with respect to X iff  there  are t o  E X, E E (0, +m) 
and T E 7 0 ,  T > t o ,  such that for every S E (O,+m) there is 
20, llxoll < S, for  which 

The expression “with respect to is omitted from (i) - (v) iff x = R. 
These  stability properties hold as t -+ +m but not for t = +m. 

EXAMPLE 1.2.1. (see  Grujid [45]). Let z E R and j! = ( 1  - t ) - lz .  
Then, 

x(t;to,so) = (t - l)-’(to - 1)zo for t o  # 1 and t # 1. 
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For t o  = 1 the motion is not defined and 

IIx(t;to,xo)ll + +m as t + (1 - 0), Vto  E ( -m, l ) ,  V(z0 # 0) E R. 

Hence, 
6"t,&) = 0, V &  > 0, v t  E (-m, l]. 

6n/I(t,&) = E ,  V t  E ( l ,+m),  
However, 

The  state z = 0 is uniformly  stable in the whole with  respect to every 
C (-1, +m), but  it is not  stable. 

EXAMPLE 1.2.2. (see GrujiC: [45]). The first  order  nonstationary  system 
is defined by 

dz (1 + t sin t + t2 cos t ) z  exp{ - ir} 
dt i7~ . exp{ -t sin t }  + t - exp{ - fr} ' 

" - 

Solutions are found  in the form 

so that 

V t o  E (-m,-:), V(z0 # 0) E R. 

This  result and analysis of X(t; t o ,  ZO) yield 

{ O' 

t E (-m, "$1 ; 

S M ( t , E )  = E ,  t E  ( - 5 0 3 ;  

~ 7 ~ [ 7 r + f t . e x p { - ~ + t s i n t ) ] -  , t E [ ~ , + m ) .  
1 

The  state z = 0 is stable in the whole with  respect to (-:, +m) and uni- 
formly stable  in the whole with  respect to every bounded 5 C ( - z ,  +m), 
but  it is not  stable. 

In  these  examples, the motions x are  not continuous in all t E R. 
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PROPOSITION 1.2.1. If there is a time-invariant neighborhood N C Rn 
of z = 0 such that X(t; to ,  20) is continuous  in (t; t o ,  zo) E 70 x R x N ,  then 
stability of x = 0 of the  system (1.2.7) with respect  to  some  non-empty 
5 implies its stability. 

This result  can be easily proved as well as  the following: 

PROPOSITION 1.2.2.  If z = 0 of (1.2.7) is stable (in the whole) then, 
respectively, it is uniformly stable (in the whole) with respect to every 
bounded Z C R. 

EXAMPLE 1.2.3. (see Grujik [45]). Solutions of the first  order non- 
stationary system 

dx P + 2 9  
dt a + Pt + yt2 " 
- = -  a > 0, p2 <4ay, y > o  

are given by 

x ( t ;  t o ,  so) = (a + P t o  + yt i ) (a + Pt + yt2)-1zo. 

In  this case 

Hence, 
inf [ S M ( t , E ) :  t E R] = 0, V E  E (0, +m), 

and 
B M ( t , & )  ++CO M &++CO, V t E  R. 

The  state z = 0 is stable in the whole but  not uniformly. 

for any 5 E (-CO,+CO). 
However, it is uniformly stable in the whole with  respect to = [C, +m) 

DEFINITION  1.2.2.  The  state z = 0 of the system (1.2.7) is: 

(i)  attractive with  respect t o  5 iff for every to E 5 there exists 
A(t0) > 0 and for every C > 0 there exists ' ( t o ;  zo, C) E [0, +CO) 
such that 1 1 x 0 1 1  C A(t0) implies (Ix(t;to,zo)lI C 5, V t  E (to + 
7 ( t o ;  50 , 5)  , +m); 

(ii) x0 - uniformly attractive with respect to 5 iff both (i) is true and 
for every to E 5 there exists A(t0) > 0 and for every 6 E (0, +CO) 
there exists TU[tO, A(to), 51 E [0, +CO) such that 

SUP ['m(to; 20, C) : 20 E Z] = Tu(Z,zo, 6); 
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(iii) to - uniform18 attractive with  respect to  X iff (i)  is true,  there is A > 
0 and for  every (ZO, c) E BA x (0, +m) there exists T ~ ( X , Z O ,  c)  E 
[0, +m) such that 

(iv) uniforrnly attractive with  respect to X iff both (ii) and (iii) hold, that 
is, that (i) is true,  there exists A > 0 and for  every < E (0, +m) 
there is T ~ ( X ,  A, C )  E [0, +m) such that 

(v) The properties (i) - (iv) hold “in the whole” iff (i) true for  every 
A(t0) E (0, +m) and every t o  E X. 

The expression “with  respect t o  X ’I is omitted iff X = R. 

EXAMPLE 1.2.4. For the system of Example 1 the following are found: 

I +m, t E (”00,l) 

The  state x = 0 is: 

(a) attractive in the whole with respect to X = (1, +m), 
(b) to  - uniformly attractive in the whole with respect to any bounded 

(c) x0 - uniformly attractive with respect to X = (1, +m), 
(d) uniformly attractive with respect to any bounded X C (1, +m), 
(e) not attractive. 

X c (1, +m), 

The next results can be easily  verified. 

PROPOSITION 1.2.3. If there is a time-invariant neighborhood N E Rn 
of x = 0 such that X ( t ;  t o ,  xo) is continuous in (t; t o ,  20) E 70 x Rx  N ,  then 
attraction of x = 0 of the system (1.2.7) with respect to some nonempty 
X implies its  attraction. 
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EXAMPLE 1.2.5. We consider the system of Example 1.2.3 once again 
and find: 

i 
inf [ A M ( t ) :  t E R] = +CO, 

min LO, (2y)-1{[~2 - 4ay + 4yc-l A(CX + Pt + ytz)>li - P )  
Trn ( t ,  A, C )  = for A 2 (4ay - PZ)C[4y(a + Pt + yt2)]- ', 

0, for A < (4ay - P2)6[4y(a + Pt + yt2)]-'. 

Hence, 

sup [Trn(t ,  A, C )  : t E R] = +CO for A 1 (4ay - P2)C[4y(a + Pt + yt2)]-1. 

The  state x = 0 is: 

(a) attractive in the whole, 
(b) x. - uniformly attractive in the whole, 
(c) to  - uniformly attractive in the whole with respect to any bounded 

(d) uniformly attractive in the whole with respect to any bounded 5 C 

(e) not uniformly attractive. 

5 c R, 

R, 

DEFINITION 1.2.3. The  state x = 0 of the system (1.2.7) is: 

(i) asymptotically  stable  with  respect  to 5 iff it is both  stable with 
respect to 5 and  attractive with respect to 5; 

(ii) equi-asymptotically  stable  with  respect  to X iff it is both  stable with 
respect to 5 and so-uniformly attractive with respect to X ;  

(iii) quasi-uniformly  asymptotically  stable  with  respect  to X iff it is both 
uniformly stable with respect to 5 and to-uniformly attractive with 
respect to 5; 

(iv) uniformly  asymptotically  stable  with  respect  to 5 iff it is both uni- 
formly stable with respect to X and uniformly attractive with re- 
spect to x; 

(v) the properties (i) - (iv) hold "in the  whole" iff both  the correspond- 
ing stability of x = 0 and  the corresponding attraction of x = 0 
hold in the whole; 

(vi) exponential ly  stable  with  respect  to X iff there  are A > 0 and real 
numbers a 2 1 and P > 0 such that llzoll < A implies 

IIx(t;to,s~)JI 5 aIb011 exp[-P(t - t o ) ] ,  V t  E 7 0 ,  V t o  E X .  
This holds in the  whole iff it is true for A = +m. 
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The expression "with respect t o  Z" is omitted iff 5 = R. 

EXAMPLE 1.2 I 6. (see GrujiC [45]). The second order  system is described 

and  its solutions are found  in the form 

Hence, 

S" ( t ,E )  = - [I + (1 + t2)"(1 - signt)  +sign t] , E 

2 

which implies 

inf [ S M ( t , E ) :  t E R] = 0 ,  V E  E (O,+oo), 

and 

which yields 

sup[Tm(t,A,C): t E R] = +m for 0 < C 5 A ( l + t 2 ) i ,  VA E (O,+oo). 

Therefore, the  state II: = 0 is: 

asymptotically  stable  in the whole, 
equi-asymptotically stable, 
uniformly asymptotically stable  with respect to any  bounded Z c 
R, 
not  equi-asymptotically  stable in the whole, 
not uniformly asymptotically  stable  in the whole with  respect to 
any  bounded '& c R. 

Notice that  the system is linear. 
The  next  results  are  straightforward corollaries to Propositions 1.2.1 - 

1.2.4. 
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PROPOSITION 1.2.5. If there is a time-invariant neighborhood N C Rn 
of z = 0 such that X(t; to,zo) is continuous in (t;  to,zo) E 70 x R x N 
then asymptotic  stability of x = 0 of the  system (1.2.7) with respect to 
some nonempty X implies its  asymptotic stability. 

PROPOSITION 1.2.6. If z = 0 of (1.2.7) is asymptotically stable then it 
is uniformly asymptotically stable with respect to every bounded Ti C R. 

1.2.5 Equilibrium states 

For the sake of clarity we state 

DEFINITION 1.2.4.  State z* of the system (1.2.7) is its equilibrium state 
over X iff 

(1.2.8) x(t; to,z*) = z*, Vt E 7 0 ,  vto E - T i *  

The expression “over 3” is omitted iff 3 = R. 

PROPOSITION 1.2.7. For z* E Rn to be an equilibrium state of the 

(1) for every to E X there is the unique solution X(t; tO,z*) of (1.2.7), 

system (1.2.7) over 3 it is necessary and sufficient that both 

which is defined  for all to E 70 
and 

(2) f(t,z*) =o,  v t  E 7 0 ,  vto E 5- 

PROOF. Necessity.  Necessity of (i) and (ii) for z* to be an equilibrium 

Suficiency. If z* satisfies the condition (ii) then z( t )  = z(t ;  t o ,  z*) = 
state of (1.2.7) is evidently implied by (1.2.8). 

x*, V t E 70 and V t o  E X, obeys 

- d 4 t )  = 0 = f(t,z*) = f[t, z ( t ) ] ,  V t  E 7 0 ,  Vto  E Ti. 
dt 

Hence, X(t; tO,z*) = z* is a solution of (1.2.7) at (&,,x*) for  all t o  E 5, 
which  is unique due to  the condition (i). 

Hence (1.2.8) holds. 

The conditions for existence and uniqueness of the solutions can be found 
in the books by Bellman [15], Hartman [69], Halanay [67] and  Pontriagin 
[l541 (see also Kalman and  Bertram [SO]). 
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PROPOSITION 1.2.8. If z = 0 of the system (1.2.7) is stable with respect 
to x then it is then it is an equilibrium state of the system over 

PROOF. Let x = 0 of (1.2.7) be  stable with  respect to 5 and E > 0 be 
arbitrarily  small.  Then Ilx(t; to ,O) I I  < E for all t E 70 and every t o  E 5 
because zo = 0 and (1x0 1 1  = 0 < 6n/r(to, E )  Let x1 and x2 be two  solutions 
of (1.2.7)  through ( t o , O ) ,  to  E X .  Then, 

for all t E 70 and every to E x because 

Let cn + 0 as n "t +m. It now  follows from (1.2.9) that llXl(t; t o ,  0) - 
x2(t; t o ,  0)ll is less than cn no  matter how large integer n is taken. Hence, 

and 

IIXi(t;to,O)II < &?a, i = 1, 2, 

for  arbitrarily  large integer n. It follows that ~ ( t ;  to, 0) 0 is the unique 
solution of (1.2.7)  on 'To for all t o  E x, which proves that z = 0 is an 
equilibrium state of (1.2.7) over x. 

Let g: R" + R" define an  autonomous system 

(1.2.10) 
dx 
dt 
- = g@). 

Every  stability  property of z = 0 of (1.2.10) is uniform in t o  E R. Besides, 
Proposition 1.2.8 yield the following. 

COROLLARY 1.2.1. If z = 0 of the system (1.2.10) is its equilibrium 
state over some  nonempty  interval 5 C R then  it is an equilibrium state 
of the system. 
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1.3 Brief Outline of Trends  in  Liapunov’s Stability Theory 

1.3.1 Of Liapunov’s  original results 

Liapunov ([ lol l ,  p.25)  defined  two essentially different approaches to solving 
stability problems as follows: 

All ways,  which we can present for solving the question we are 
interested  in, we can divide in two categories. 

With one we associate all those, which lead to a direct inves- 
tigation of a  perturbed motion and in the basis of which there 
is a  determination of general and  particular solutions of the dif- 
ferential equation (1.2.1). 

In general the solutions should be searched in the form of 
infinite series, the simplest type of which can be considered from 
those in the preceding paragraph.  They  are series ordered in 
terms of integer powers of fixed variables. However we shall 
meet series of another  character in the sequel. 

The collection of all ways  for the  stability investigation, which 
are in this category, we call the first method. 

With  another one we associate all those, which are based on 
principles independent of a determination of any solution of the 
differential equations of a perturbed motion. 

One such example is the well-known  way  for an investigation 
of equilibrium stability in the case that there is a force function. 

All these ways can be reduced to a determination  and  an in- 
vestigation of integrals of the equations  (1.2.1),  and in general 
in the basis of all of them, which we shall meet in the sequel, 
there will be always a  determination of functions of variables 
11, z2, . . . , zn, t according to given conditions, which should 
be satisfied by their total derivatives in t ,  taken under an as- 
sumption that 11,12, . . . , zn are functions of t satisfying the 
equations (1.2.1). 

The collection of all ways of such a category we shall call the 
second  method. 

In order to effectively develop the second method Liapunov introduced 
the concept of semi-definite and definite functions  and the notion of de- 
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creasing  functions as follows (Liapunov [ lol l ,  p.59): 

We shall consider herein real-valued functions of real  variables 

obeying  conditions of the norm 

where T and H are  constants, the former of which can  be arbi- 
trarily  large  and  the  latter  may  be  arbitrarily  small  (but different 
than zero). 

Then we shall consider only functions which are continuous 
and one-to-one  under the conditions (40) and vanish at 

Such  properties will possess all functions considered by us 
(even if it were not  mentioned). But, besides that,  they can 
possess special features; for definitions we shall  introduce  several 
terms. 

Consider a function V such that under the conditions T suf- 
ficiently large and H sufficiently small,  it  can  take, apart from 
those  equal to zero, only values of one arbitrary sign. 

Such a function we shall call signconstant. When we wish 
to underline its sign, then we shall say that  it is a positive or 
negative function. 

In  addition to  that, if the function V does not depend  on 
t ,  and  the  constant H can  be chosen sufficiently small so that, 
under the conditions (40) the equation V = 0 can hold only for 
one  set of values of the variables 

then we shall call the function V signdefinite one, and wishing 
to underline its sign -positive-definite or negative-definite. 

We shall use the last  notions also with  respect to functions 
depending  on t .  However, in  such  a case the function V will be 
called signdefinite only under the condition, if for it is possible 
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to find such a  t-independent positive-definite function W ,  for 
which one of two expressions 

v - W   - v - W  

would represent a positive function. 
Hence, each of functions 

z:: + zf - 2z1z2 cost,  t(z? + z;) - 22122 cost 

is signconstant. However, the former is  only signconstant,  and 
the  latter, if n = 2, is simultaneously signdefinite. 

Every function V, for  which the  constant H can be chosen 
so small that for numerical values of that function under the 
conditions (40) there is an upper  bound, will be called bounded. 

In view  of the properties which, under our  assumption, pos- 
sess all functions considered by us, will be such, for example, 
every function independent of t. 

A bounded function can be such that for every positive E ,  

regardless how small,  there is such nonzero number h, for which 
for all values of variables, satisfying conditions 

t 2 T, 1 ~ ~ 1  5 h (S = 1,2,  . . . , n), 

will hold the following: 
IVI I &-  

This condition will satisfy, for example, every function indepen- 
dent oft .  However functions depending on t, even bounded,  can 
violate it. Such a case represents, for example, a function 

sin [(zl + 2 2  + - + zn)t ] .  

When the function V fulfills the preceding requirement,  then 

Such an example is the function 
we shall say that  it admits infinitely small upper bound. 

Let V be a function admitting infinitely small upper  bound. 
Then, if  we know that  the variables satisfy a condition 
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t 2 T,  IVI 2 4  

where 1 is a positive number, hence we conclude that  there is an- 
other positive number A, less than which cannot  be the greatest 
quantity among 1 ~ 1 1 ~ 1 x 2 1 ,  . . . , [ xn / .  

In order to examine behavior of the values of a definite function V along 
system motions without using the motions themselves Liapunov ([loll, 
p.61) proposed the following: 

Simultaneously with the function V we shall often consider an ex- 
pression 

6V 6V 6V 6V 
V‘ = -x1 + -x2 + + -xn + - 

6x1 6x2 ax, at 

representing its  total time derivative, taken under the assumption 
that X I ,  22, . , . , x n  are functions of t ,  which satisfy differential 
equations of a perturbed motion. 

In such cases we shall always assume that  the function V is such 
that V‘ as a function of the variables (39) would be continuous and 
one-to-one under the conditions (40). 

Speaking further  about  the derivative of the function V ,  we shall 
mean that  it is the  total derivative. 

These concepts have been the keystone of the second Liapunov method 
and for a solution of (uniform) stability of x = 0 (Liapunov [loll, p.61): 

THEOREM 1. If the differential equations of a  perturbed motion 
are such that  it is possible to find a signdefinite function V ,  the 
derivative V’ of which in view of these  equations would be either 
a signconstant function with the opposite sign to  that of V ,  or 
identically equal to zero, then  the  unperturbed motion is stable. 

In  addition to this result Liapunov [l011 made the “Remark B” that 
has become the foundation of the asymptotic  stability concept and for a 
solution of (uniform) asymptotic  stability of x = 0. 

In order to illustrate deepness, generality and  importance of Liapunov’s 
results once again,  let following his results be cited (Liapunov [ lol l ,  
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THEOREM 1. When the roots k l ,  kz, . . . , k ,  of the character- 
istic equation  are such that for a given natural number m it is 
impossible to have any relationship of the form 

in which all m, are nonnegative integers, giving their sum equal 
to m, then  it is  always  possible to find just one whole  homoge- 
nous function V of the power m of the quantities k, satisfying 
the equation 

for arbitrarily given  whole  homogenous function U of the quan- 
tities x, of the same power m. 

THEOREM 2.  When the real parts of all roots k ,  are negative 
and when  in the equation (9) there is the function U being sign- 
definite form of any even  power m, then the form V of the power 
m satisfying that equation is  also  sign definite with the opposite 
sign to  that of U. 

Gantmakher [38] recognized the fundamental potential of these results 
and deduced the Liapunov matrix theorem (see Barnett  and Storey [14]). 
This theorem is a fundamental theorem for stability theory. For its presen- 
tation  the following  is needed. 

DEFINITION 1.3.1. A matrix H = (hij) E RnXn is: 

is positive (negative) semi-definite, respectively; 

positive (negative) definite, respectively. 

(i) positive  (negative)  semi-definite iff its  quadratic form V ( z )  =zTHz 

(ii) positive  (negative)  definite iff its  quadratic form V ( z )  = zTHz is 

Let a k-th order principal minor of the matrix H be denoted by 

hili1  hili2 9 hilib 

H [ :; i; . a  - :;] = [ hipil hiZip 
. . . hi,& 

. . .  . . I  ... . . .  . . .  
hikl.1  hibia * * * hikib 
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where 

i jE {1 ,2 , . . - , n } ,  i j< i j+ l ,  ~ ' = 1 , 2 ,  . . . ,  k, k = 1 , 2  , . . . ,  n. 

The leading principal minor of the k-th order of H is 

L h k l   h k 2   h k k ,  

. I .   I . .  . . .  
" *  1 

The following criteria  are well  known  (see Gantmacher [38]). 

THEOREM 1.3.1, Necessary and sufficient for a symmetric n x n matrix 

(1) positive semi-definite is that all its principal minors are non-negative 
H to be: 

(2) negative semi-definite is that both all its even order principal minors 
are non-negative and all its odd order principal minors are non- 
positive 

H [:: i 2  " '  20, k = 2 , 4 ,  . . .  
i 2  . . . ik i k l  I - <0, k = 1 , 3 ,  . . .  ' 

(3) positive definite is that all its leading principal minors are positive 

11 2 . . .  IC 
1 2 I , .  '1 > o ,  1 c = 1 , 2  ,..., n; 

L J 

(4) negative definite is that both its first order leading principal minor 
is negative and  all its leading principal minors are alternatively 
negative and positive 

Notice that a square  matrix A with all real valued elements is (semi-) 
definite iff its symmetric part A, = $ ( A  + AT) is  (semi-) definite, and a 
square  matrix A with complex  valued elements is  (semi-) definite iff its Her- 
mitian  part AH = + ( A  + A*) is (semi-) definite, where A* is the transpose 
conjugate matrix of the matrix A. 

Now, the fundamental theorem of the  stability theorem - the Liapunov 
matrix theorem - can be stated as a corollary to  the preceding Theorems 
1 and 2 by Liapunov. 
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THEOREM 1.3.2.  In order that real parts of all eigenvalues of a matrix 
A, A E RnXn, be negative it is necessary and sufficient that for any positive 
definite symmetric matrix G, G E Rnxn,  there exists the unique solution 
H, H E RnXn, of the (Liapunov) matrix equation 

ATH + HA = -G, 

which is also positive definite symmetric  matrix. 

For solving the Liapunov matrix  equation, see  for example Barnett  and 
Storey [14], and  Barbashin [lo]. 

1.3.2 Classical  and  novel developments of the scalar  Liapunov 
functions method 

Following Liapunov [loll, the classical development of his second method 
consists of a number of stability theorems providing stability conditions are 
imposed on  appropriate  scalar  function V and its  total  time derivative along 
system motions over a time-invariant neighborhood of x = 0. Adequate 
expositions of the classic development of the Liapunov second method can 
be found in the books by Yoshizawa  [174, 1751 and Rouche, Habets  and 
Laloy [159]. 

1.3.2.1 Comparison functions. Comparison functions are used as upper 
or  lower estimates of the function V and  its total time derivative. They 
are usually denoted by p, 'p: R+ -+ R+. The main contributor to  the 
investigation of properties of and use of the comparison functions is Hahn 
[66]. What follows  is mainly based on his definitions and  results. 

DEFINITION  1.3.2. A function p, p: R+ + R+, belongs to 

(i)  the class K [ O , ~ ) ,  0 < a 5 +W, iff both  it is defined, continuous 
and  strictly increasing on [0, a) and 'p(0) = 0; 

(ii) the class K iff (i) holds for a = +W, K = K[o,+m); 
(iii) the class K R  iff both  it belongs to the class K and p(6) -+ +m as 

s + +m; 
(iv) the class L [ O , ~ )  iff both  it is defined, continuous and  strictly de- 

creasing on [0, a) and lim [p(<) : s + +W] = 0; 
(v) the class L iff (iv) holds for Q = +W, L = L[0,+03). 

Let 'p' denote  the inverse function of p, 'p'[cp(C)] G 5. 
The next result was established by Hahn [66]. 
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DEFINITION 1.3.3. A function cp, p: R+ x R+ + R+, belongs to: 

(i) the class KK[o;,,p) iff both cp(0,c) E K [ O , ~ )  for every 6 E [ O , P )  

(ii) the class K K  iff (i) holds for Q = ,L? = +W; 

(iii) the class KLp;,,p) iff both cp(0,C) E Kp,,) for every 6 E [O,P) 

(iv) the class K L  iff (iii) holds for a = P = +W. 

and c p ( 6 , O )  E K[O,O) for every c E P, Q); 

and c p ( 6 , O )  E L[O,P) for every 5 E P, 4 ;  

DEFINITION 1.3.4. Two  functions (PI, cp2 E K or cp1, cp2 E K R  are 
said to  be of the same  order of magnitude if there exist positive  constants 
ai, Pi, i = 1,2,  such that 

1.9.2.2 Some  generalizations of the theory by Liapunov. We shall  set out 
some  generalizations of Liapunov  theorems  with  regard to  the results ob- 
tained by Zubov [178, 1791. 

DEFINITION 1.3.5. A function v:  R x Rn + R is positive definite on 
7 , ,  T E R, if and only if there is a  time-invariant  connected  neighborhood 
N of z = 0, N C R" and a E K[,,,), where a = s u p { ~ ~ z ~ ~ :  z E N }  such 
that v(t,O) = 0, V t  E K ,  and a(llzl1) 5 v(t ,z)  V(t,z) E 7, x N .  

THEOREM 1.3.3. Let  the vector  function f in  system (1.2.7) be contin- 
uous on R x N (on 7, x N).  If  there  exist 

(1) an open connected tirne-invariant neighborhood B of point z = 0; 
(2) a positive definite function  v on B (on 7, x N )  such that: 

(a) v(t, 0) = 0 and for a fixed t E R (t E 7 , )  the function v(t, x) 
is  continuous at the  point x = 0; 
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(b) v(t,z) is definite on any  integral curve z = z(t;to,zo) of 
the system (1.2.7)  unless the curve leaves the definition  do- 
main of function w(t, x) and on every such curve the function 

does not increase when t E R (for all t E 7 , ) )  then and only 
then the  state x = 0 of the system (1.2.7) is stable (on 7 , ) .  

The proof of sufficiency of the theorem conditions is a routine of the 
Liapunov functions method (see e.g. Liapunov [loll, Demidovich [23], etc.). 

In  the proof of necessity of the Theorem 1.3.3 conditions one employes 
the function 

It is easy to verify that these functions satisfy all  conditions of the Theorem 
1.3.3. 

DEFINITION 1.3.6. A function v :  R x Rn + R is  decreasing on 7 , )  r E 
R, if and only if there is a time-invariant neighborhood N of z = 0 and a 
function b E K I ~ , ~ ) ,  such that 

v(t,z) I b(llzll) V t E 7, x N .  

THEOREM 1.3.4. In order that  the solution x = 0 of the system (1.2.7) 
is to-uniformly stable (on 7 , ) )  it is necessary and sufficient that  the function 
w(t, z) mentioned in Theorem 1.3.3 be decreasing on 6 (on 7, x 6) and  all 
conditions of Theorem 1.3.1 be satisfied. 

THEOREM 1.3.5. For the solution z = 0 of the system (1.2.7) to be 
asymptotically  stable (on 7 , ) )  it is necessary and sufficient that  the condi- 
tions of Theorem 1.3.3 be satisfied and along any  integral curve x(t; to, 50) 

the function w(t,x)  tend  to zero as t + $00, i.e. 

w(t) = v (t ,  z(t;to,zo)) 0 for t + +m, 

llzoll y(to), t > to, t o  E 5. 

Theorems 1.3.3 - 1.3.5 have the condition associated with the function 
w(t, z) nonincreasing or decreasing dong the integral curves of the system 
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(1.2.7). As the explicit representation of the integral curves z(t; to,so) of 
the system (1.2.7) is not known, it is impossible to test  this condition. 
Therefore, when these theorems actually are employed, various sufficient 
conditions of function w(t, x) nonincreasing (decreasing) that  are easier to 
check  become of great  importance. 

THEOREM 1.3.6. Let a vector function f in (1.2.7) be continuous on 

(1) an open connected time-invariant neighborhood B of point x = 0; 
(2) the function w ( t ,  x) satisfying condition (2)(a)  of the Theorem 1.3.3; 
(3) the nonpositive function w(t,z)  that is a total derivative of the 

function w(t, x) along the solutions of the system (1.2.7) such that 

R x N (on . 7 ,  x N ) .  If there exist 

w(t,x) L d t )  L 0 for 1 1 ~ 1 1  2 a2 

and 

(4) 1 p(s) ds = -00, 
I 

where I is any infinite system of  closed nonintersecting segments 
on the intervai [to, m), to E x, such that  the lengh of  each one is 
not less than a fixed positive constant, then the  state x = 0 of the 
system (1.2.7) is asymptotically stable (on 7,). 

THEOREM 1.3.7. For the solution x = 0 of the system (1.2.7) to be to- 
uniformly asymptotically stable (on Z), it is necessary and sufficient that 
the function w(t, x) satisfy  all conditions of Theorem 1.3.5 and be decreasing 
on 6 (on 7, x B). 

This theorem is an immediate corollary of Theorems 1.3.4 and 1.3.5. 

THEOREM 1.3.8.  Let a vector function f in system (1.2.7) be continuous 

(1) an open connected time-invariant neighborhood Q of point x = 0; 
(2) the function w(t,x) being positive definite on B (on 7, x B) and 

(3) the function w(t, x) that is negative definite on 6 (on 7, x 0) and 

(4) the correlation 

on R x N (on 7, x N) .  If there exist 

decreasing on 4 (on 7, x B); 

decreasing on 9 (on 7, x B); 

Dw(t,z) = w(t ,z)  for (t, x) E R x Q (V ( t ,s)  E 7, x B), 
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then and only then the  state x = 0 of the system (1.2.7) is uniformly 
asymptotically  stable (on 7,) and uniformly attractive (on 7,). 

COROLLARY 1.3.1.  If the  state x = 0 of the system (1.2.7) is asymptot- 
ically stable (on 7 , ) )  then an independent variable t can be transformed so 
that  the zero solution of the newly obtained system is uniformly attractive 
(on 7 , ) .  

THEOREM 1.3.9. Let the vector function f in system (1.2.7)  be contin- 

(1) the function v(t,x) decreasing on B and  taking negative values in 
the  arbitrarily small semiaxis neighborhood (for any fixed t > T), 
51 = 52 = " *  = x, = 0, t 2 0; 

uous  on R x N (on 7, x N). If there exist 

(2) an integrable function va(t) such that 

Dv(t, x) = w(t ,  x) 

and for 1 1 4 1 2  1 a2, w(t,x) I (Pa(t), 

S va(t) d t  + "00 for t + +W, 

0 

then the equilibrium state x = 0 of the system (1.2.7) is unstable. 

COROLLARY 1.3.2.  If the function w(t,x) satisfies conditions (1)-(2) 
of Theorem 1.3.9, and  the function w(t,s)  is negative definite, then the 
equlibrium state x = 0 of the system (1.2.7) is unstable. 

This corollary is the first Liapunov theorem on instability (see Liapunov 

Following Krasovskii [89] it is easy to prove. 

THEOREM 1.3.10. If x is continuous on x R x JV (on 70 x 7, x N) 
then existence of a time-invariant neighborhood S of x = 0, a function 
v, positive  real numbers VI, q2 and 73 and a positive integer p such that 
v(t ,  x) E C(% x N )  and both, respectively, 

[ loll, p.65). 

(1) r l l l 1 4 1 P  5 x) 5 V211~11P, v ( t ,  x) E R x S (V (4 5) E 7, x S), 

and 

(2) D*v(t,z) I - ~ 3 1 1 ~ 1 1 ~ ,  ( t , ~ )  E R X S ( V ( t , x )  E 7, X S), 
is necessary and sufficient for exponential stability (on 77) of x = 0 of the 
system (2.1.7). 
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THEOREM 1.3.11. If x is continuous on 70 x R x R" (on 70 x 7, x R") 
then existence of a function W ,  positive red numbers ql, q z  and q 3  and a 
positive integer p such that w(t, x) E C(% x R") and both, respectively, 

and 

(2) D*v(t, 2) I - r 1 3 1 1 ~ I I ~ ,  V (t, x) E R X R" (V (t, x) E 7, x R"), 

is necessary and sufficient for exponentid  stability in the whole (on 7,) of 
x = 0 of the system (2.1.7). 

1.3.2.3 Partial stability. We return back to  the system (1.2.7) and represent 
the vector x of the system state  as 

xT = (x:, x g T ,  

where x1 E R"', x2 E R"2, n1 + 122 = n. Then we assume on system of 
the equations (1.2.7) that: 

(HI). In domain t E R, 7, x R(H) x D the right-hand parts of the 
system (1.2.7) are continuous and locally Lipschitzian in x, i.e. 
f E C(R x R(H) x D,  R"), where R(H) = (a1 E R"' : I(z111 < 
H ,  H = cmst > 0}, D = ( 2 2  E Rna: 0 < 11~211 < +W}. 

(Hz ) .  The solution of the system (1.2.7) are zz-continuable, i.e. any solu- 
tion a(t; to, 30)  of the system (1.2.7)  is definite for  all t 2 0 (t E 7, )  
such that  Ilq(t)ll 5 H .  

It was noted by Liapunov [l021 that a more general problem on motion 
stability with respect to a part of variables may be studied. 

The  theory of motion stability with respect to a part of variables is 
exposed by Rumyantzev and Oziraner [161]. In this presentation we restrict 
ourselves to a few results obtained in this direction. 

DEFINITION  1.3.7.  The  state a = 0 of the system (1.2.7) is xl-stable 
with  respect  to 7 , )  iff for  every t o  E and every B > 0 there exists a 
d ( t 0 , ~ )  > 0 such that IIxoll < B(t0,E)  implies Ilxl(t;to,xo)ll < E V t  E 7 0 .  

The other  types of 21-stability are defined in the same way as Definition 

Following the results by Rumyantaev [l601 we shall set  out the following 
1.3.7 taking  into account Definitions 1.2.1 - 1.2.3. 

result. 
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THEOREM 1.3.12. Let the vector function f in system (1.2.7) satisfy 
conditions H1 and Hz. If  there exist the function v ( t , x )  and comparison 
functions a, b and c of class K such that 

(1) a(ll~111) I v ( t , x )  I b(ll.111) v E R x fw x D (V ( 4 4  E 
7, x x D)); 

W )  x D)). 
(2) D+v(t,z) 5 - C ( l 1 ~ 1 1 \ )  V ( t , x )  E R X n(H) X D (V (t,Z) E 7, X 

Then 

(a) any Q > 0 and  any (t0,zo) E R x (B,  n Q ( H ) )  x D ((to,zo) E 
7, x (B,  f l  n(H)) x D), the solution q ( t ;  to, 50)  + 0 uniformly 
relatively (to, 20)  as t + +CO; 

(b)  the  state x = 0 of the system (1.2.7) is uniformly asymptotically 
xl-stable (on 7 , ) .  

1.3.2.4 The development of Marachkov’s  idea. One‘of the  trends in gen- 
eralization of Liapunov’s theorems is the establishment of conditions that 
could replace the condition of function v decreasing in the theorems on as- 
ymptotic stabiliy. The Marachkov’s theorem [l081 is the first result in this 
direction. 

THEOREM 1.3.13. Let the vector function f in the system (1.2.7)  be 

(1) a positive definite function v E @(R x N ,  R+) (v E Cl ( 7 ,  x 

(2) a function c of class K such that 

bounded on R x N (on 7, x N).  If there exist 

N ,  R+)), v( t ,  0) = 0, V t E R (V t E 7 , ) ;  

Dv(t,a) I -c(ll4l) 
V( t , z )  E R x N ( V ( t , x )  E 7, x N ) ,  

then the equilibrium state x = 0 of the system (1.2.7) is asympto- 
tically stable (on 7 , ) ‘  

The Marachkov’s theorem was generalized by Salvadori [l621 via the 
application of two auxiliary functions. We shall formulate this result in  the 
following way. 

THEOREM 1.3.14. Let the vector function f in the system (1.2.7)  be 

(1) a positive definite function v E @(R x N ,  R+) (v E Cl(% x 

continuous on R x N (on 7, x N).  If there exist 

N ,  R+)), v(t,O) = 0, V t  E R ( V t  E 7 , ) ;  
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(2) the function W E C 1 ( R  x N ,  R+) (W E C1(7, x N ,  R+)), w( t , x )  
is positive definite and D W ( ~ , X ) ~ ( ~ , ~ , ~ )  is bounded from above or 
below on R x N (on 7, x N ) ;  

(3) a function c of class K such that 

Dv( t ,x )  5 -c (w( t ,x ) )  on R x N (on7, x N ) .  

Then the equilibrium state x = 0 of the system (1.2.7) is. asympto- 
tically stable (on 7,). 

Below we shall cite a result showing that  the positive definiteness condi- 
tion in Theorem 1.3.13 may be replaced by the condition of positive semidef- 
initeness. 

THEOREM 1.3.15. Let  in condition (1) of Theorem 1.3.13 the function 
W E C 1 ( R x N ) ,  21 E C1(7, x N ) ,  v ( t , z )  2 0 and v(t,O) = 0 V t  E R 
( V t  E 7 , )  and condition (2) be satisfied. 

Then the equilibrium state x = 0 of the  system (1.2.7) is asymptotically 
stable (on 7,)' 

1.9.8.5 Generalized  comparison principle. Further alongside the system 
(1.2.7) the equation 

(1.3.1) 

is considered, where U E R+, g E C(7,  x R+ x R", R ) ,  g(t,O,O) = 0 for 
all t E 7 , .  

We recall that equation (1.3.1) emerges as  a  result of estimation of the 
total derivative D+v(t,z) along a solution of the system (1.2.7) in terms of 
the inequality 

Sometimes an obvious dependence of function g on vector x widens the pos- 
sibility to apply the principle of comparison with scalar Liapunov function 
(cf. Corduneanu [20]). 
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THEOREM 1.3.16. Let  the vector function f in the system (1.2.7) be 
continuous on R x N (on 7, x N ) ,  If there exist scalar function v( t ,x )  
and g( t ,u ,x)  and comparison functions a and b of class K such that 

(1) a(llzll) I v( t ,x )  5 b(llxll) V ( t , x )  E R X N (V ( t , x )  E 7, x N ) ;  
(2) D+v(t, x )  5 g ( t ,  v ( t ,  x), z) V (t ,  x) E R x N (V (t ,  x) E 7, x N ) ,  

then the  property of u-stability of the extended system 

implies the corresponding property of stability of solution x = 0 to  the 
system (1.2.71, 

For the proof of this theorem when 7, = R see Hatvani [71] and for its 
generalization see Martynyuk [110]. 

We note that for the case when estimate (1.3.2) holds with an inverse 
inequality and  the function g( t ,  U, x) = g ( t ,  U )  the theorems on instability 
of solution x = 0 to system (1.2.7) are known  (see Rouche, Habets, Laloy 
[159]) that are based on the principle of comparison with scalar Liapunov 
function. 

1.3.3 A survey of development of the method of vector 
Liapunov  functions 

With  the purpose to weaken the requirements to  the Liapunov functions 
used in the theory of motion stability  it was proposed by Duhem [33]  in 
1902 to apply several Liapunov functions instead of one. 

In modern terms he  discovered a multicomponent Liapunov function. 
After 60 years this idea of multicomponent function was  developed  by  Bell- 
man [16], Matrosov [l321 and Melnikov  [139]. The  papers by Corduneanu 
[20, 211 where the scalar Liapunov function were aplied together with dif- 
ferential inequalities and,the works  by Kamke [81] and Waiewski [l711  have 
become a background for a series of important results in motion stability 
theory  obtained via the principle of comparison with vector Liapunov func- 
tion.  This section reviews basic ideas and results developed lately while 
working out  the method of vector Liapunov functions. 
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1.3.3.1 Scalar  approach. We return back to  the system (1.2.7) and consider 
also a vector  function 

(1.3.3) V( t , z )  = (Ul ( t ,4 ,V2( t ,4  " ' ,  v rn ( t ,4 lT ,  

where W, E C(% X R", R+), S = 1,2,. . . ,m and  its  total derivative along 
solutions of the system (1.2.7) 

(1.3.4) D+V(t, 2) = lim sup {[V(t+d, z+df(t,z)) - V(t ,  S)] 8-l : d - + d + }  

for (t ,s) E x R". 
The notion of the property of having a fixed sign of function (1.3.3) is 

introduced  as follows. By means of a real vector a E Rm one constructs a 
scalar  function 

(1.3.5) w(t,z,a) = a v ( t , z )  ( t , z )  E X R". 

DEFINITION 1.3.8. A vector function V : 70 x R" -+ R" is 
(i) positive  semi-definite  on 7, = [T, +m), T E R iff there exist a 

connected  time-invariant  neighborhood N of point z = 0, N c Rn 
and a real vector a E R" such that 

(a) v( t ,  z, a) is continuous in (t ,  z) E 7, x N;  
(b) v(t, z, a) is nonnegative  on N ;  v(t, z, a) 2 0  V (t, 2, a # 0) E 

(c) w(t,z,a) vanishes whenever x = 0 for any (t, a # 0) E 
7 , x N x R " ;  

7, x R". 

REMARK 1.3.1. Taking Definition 1.3.8 for the sample the other defini- 

The  state vector z of system (1.2.7) is divided into m subvectors, i.e. 

Assume that 

tions for function (1.3.3) are  introduced in a similar way. 

z = (z:, . . . , zz) , where z, E R". and n1 + 122 + + nm = n. 

(1.3.6) ~ ~ d j i ( I I ~ i l i )  I vi(t, $1 5 ~ d j ~ 2 ( l h l l ) ,  t i = L2,  - I ,m, 

where ail and ai2 are some positive  constants  and djil and Qi2 are of class 
K (KR). 

Actually the condition (1.3.6) means' that  the components wi(t, z) of the 
vector  function (1.3.3) are positive definite and decreasing  with  respect to 
a part of variables. 

T 

Let us introduce  designations 

(1.3.7) 
A1 =diag[all,alz,...,al, l, 

-42 = diag [m1, m , .  . . , mm]. 
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PROPOSITION 1.3.2. For. the vector function (1.3.3) to be positive defi- 
nite  and decreming, it is necessary and sufficient that  the bilateral inequd- 
ities 

(1.3.8) UTAlUl 5 ~ ( t ,  X, a) 5 u T A ~ u ~  

be satisfied, where 

T 
UT= ($?1(11~111),' * - >+!m(llxmll)) 9 

UT = ( $ ~ l ( l l X l I l ) , .  . . r~lm(l lxmll)) ' t T 

REMARK 1.3.2. If = $t2 = llxill, then the estimates (1.3.8) are 
known  (see  Krasovskii  [89]) as the  estimates characteristics of the  quadratic 
forms. 

Taking into account (1.3.4) we get for the function (1.3.5) 

(1.3.9) D+V(t, x, a) = aTD+V(t, z). 

Let  for ( t ,  x) E 70 x R" there exist an m x m matrix S(t,  x), for  which 

(1.3.10) D+V(t,  x, a) 5 $,'S(t, x) $3, 

3 T 
where $3 = ( $ ! 3 ~ l l ~ l l l ~ , $ ~ 3 ~ l l ~ 2 1 1 ~ ,  . . '  ,$m3(llxmll)) ' 

Estimates (1.3.8) - (1,3.10) allows  us t o  establish stability conditions for 
the  state x = 0 of system (1.2.7) as follows. 

THEOREM 1.3.17. Let the vector function f in system (1.2.7)  be  con- 
tinuous on R x N (on 7, x N ) .  If there exist 

an open connected time-invariant neighborhood 0 of point x = 0; 
the decreasing positive definite vector function V on G (on 7, x 8); 
the m x m-matrix S(t,x) on B (on 7, x B) such that inequality 
(1 -3.10) is satisfied. 

the  state x = 0 of the system (1.2.7) is uniformly stable if the 
matrix S( t , x )  is negative semidefinite on 8 (on 7, x B); 
the  state x = 0 of the system (1.2.7) ,is uniformly asymptotically 
stable (on 7,) providing the  matrix S(t,  x) is negative definite on 
G (0. 7, x G).  
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PROOF. Formula (1.3.5) and estimates (1.3.8) and (1.3.10) allow us to 
repeat all points of the proof of Theorems 8.1 and 8.3 by  Yoshizawa [l741 
on  uniform (asymptotic) stability. The theorem is  proved. 

REMARK 1.3.3.  New points of the theorem resulting from the applica- 

(a) a possibility to apply the components vr(t, x), i = 1 ,2 , .  , , , m  being 

(b) a possibility to check the property of having a fixed  sign of the 

A specific way of constructing m x m-matrix S(t, x) enables us to derive 
from Theorem 1.3.17 the assertions found in the monographs by  Michel 
and Miller [143], Siljak [l671 and GrujiC, Martynyuk, Ribbens-Pavella [57]. 
Thus, Theorem 1.3.17 proves to be quite universal in the framework of the 
scalar approach of the vector Liapunov function application. 

Also, within the scalar approach the application of the vector Liapunov 
function together with the comparison principle is developed. 

tion of vector function (1.3.3) are 

of a fixed  sign with respect to a part of variables; 

matrix S(t, x) via the algebraic method. 

THEOREM 1.3.18. Let the vector function f in system (1.2.7) be  con- 

(1) an open connected time-invariant neighborhood B of point x = 0; 
(2) the vector function V( t ,  x) and a vector a E R" for which inequaJ- 

(3) the function W E C(% x R+, R),  w(t,O) = 0 such that 

tinuous on R x N (on 7, x N) .  If there exist 

ities (1.3.8) are satisfied; 

D+v(t,x,a) 5 W ( t ,  v ( t , z ,a ) )  v ( t , x )  E 7, x N ,  

(4) the solution r*  = 0 of the comparison equation 

(1.3.11) 
dr 
- d t  = w( t , r ) ,  r ( h )  = ro 2 o 

existing for t 2 to .  
Then 

(a) the  stability of state r = 0 of the equation (1.3.11) implies the 
stability of state x = 0 of the system (1.2.7); 

(b)  the  asymptotic  stability of state r = 0 of (1.3.11) implies the as- 
ymptotic  stability of state x = 0 of the system (1.2.7); 

(c) if, moreover, w(t,x,a) + 0 as 1 1 ~ 1 1  + 0 uniformly on 7 7 ,  then the 
uniform stability  or uniform asymptotic  stability of state r = 0 of 
system (1.3.11) implies the corresponding stability of state x = 0 
of system (1 -2.7). 
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For the analysis of various partial cases of inequality (1.3.11) or the same 
inequality in the integral form see Grujik, Martynyuk and Ribbens-Pavella 

W 1  
One of the Theorem 1.3.18 generalizations is based on the application of 

a majorizing function W E C(7,  x R" x R+, R), w(t, P ,  x) = 0 when r = 0 
and x = 0. 

Besides an extended system 

(1.3.12) 

dx - = f ( t , x ) ,   x ( t0 )  = 50, dt 

- w(t,r,x),  r( to) = PO 2 0 
dr 
dt 
" 

is treated  for which certain type of r-stability of the zero solution (xT, P )  = 
0 yields an  appropriate  type of stability of the  state x = 0 of (1.2.7). 

The theorem has been  developed and applied for the cases  when the 
function w(t,r)  = w(r) ,  i.e. it is independent of t E 7 , .  These and other 
results obtained in this direction are set out by Grujik, Martynyuk and 
Ribbens-Pavella [57]. 

1.3.3.2 Vector approach. The combination of vector function (1.3.3) with 
the comparison system 

(1.3,13) 
du 
d t  
- = O ( t , U ) ,  u(t0) = 'L10 1 0,  

where u E R?, 0 E C(Z x R?, R"), O(t,O) = 0 for all t E 7 , ,  leads to 
the following general result of the method of vector Liapunov functions. 

THEOREM 1.3.19. Let  the vector function f in system (1.2.7) be  con- 

(1) an  open  connected time-invariant neighborhood 9 of point x = 0; 
(2) the vector function V E C(7,  x N ,  RZ;'), V(t ,  x) is locally Lipschit- 

zian in x and a real  vector cr E R" such that  function (1.3.5) 
satisfies bilateral inequality (1-3.8); 

(3) the function O E C(7,  x R?, R"), n(t,O) = 0 and O(t,u) is 
quasimonotone nondecreasing in U when dl t E 7 , )  so that 

tinuous on R x N (on 7, x N) .  I f  there exist 
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Then certain stability  properties of the state U = 0 of the system (1,3,13) 
imply appropriate  stability  properties of the  state x = 0 of the system 
(1.2.7). 

PROOF. We shall cite first an assertion that establishes a relationship 
between the vector function variation and maximal solution to comparison 
system (1.3.13). 

PROPOSITION 1.3.3. Let V E C(% x N ,  RI;",) and V(t,x) be Iocally 
Lipschitzian in x. Let the vector function D+V(t,x) specified by (1.3.4) 
satisfy  the inequality 

D+V(t, x) 5 0 (t, V(t, x)) , V (t, z) E 7, x N ,  

where 0 E C(7, x R?, R?) and  the function n(t,u) be quasimonotone 
increasing in U .  

Assume that  the maximal solution u ~ ( t ;  t o ,  T O )  of the comparison, sys- 
tem 

- = n(t,U) 
du 
dt 

exists on the interval 7, and passes through the point ( t o ,  T ~ )  E 7, x R?, If 
z(t;to,xo) is any solution to system (1.2.7) defined  on [ to, to + 6 ) ,  to E 7, 
and passing through the point (t0,xo) E 7, x N ,  then the condition 

(1.3.14) V(to,xo) I To  

yields the estimate 

(1.3.15) V( t ,4 t ; to ,zo) )  I W ( t ; t o , T o )  V t E  [ t o , t o + d ) .  

Further  the fact that function (1.3.5) satisfies bilateral inequality (1.3.8) 
implies that  the vector function V(t, x) is positive definite and decreasing. 

Estimate (1.3,15) and the fact that  the solution U = 0 of the system 
(1.3.15) possesses a certain  type of stability allow the ,conclusion that  the 
solution z = 0 of the system (1.2.8) has a corresponding type of stability 
(for further details see Lakshmikantham, Leela and Martynyuk [94], etc.). 

In the case  when system (1.3.15) is autonomous 

(1.3.16) 
du 
d t  
- = n(u), U E q ,  

where Cl E C(RI;", R"), Cl(u) satisfies the quasimonotonicity condition and 
the solution of the system (1.3.16) is  locally unique for any uo E RI;" we 
establish a criterion of asymptotic  stability of the  state U = 0 of the system 
(1.3.16) as follows. 
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THEOREM 1.3.20. Let for the system (1.3.16) there exist a neighbor- 
hood U of state U = 0 such that for all U € U, U # 0, n(u) # 0 and 
O(u) = 0 when U = 0. 

The isolated equlibrium state U = 0 of the system (1.3.16) is aaymptot- 
ically stable iff there exists a positive vector U" = KO n U such that  the 
system of inequalities 

n8(u:,. . . ,u;) < o  V S €  [1,m] 

is joint. 
Besides, KO = int K and K = { U  E R": us 2,  S = 1,2, ..., m}. 

Under some additional conditions the theorem is  proved as well for the 
case when the comparison system (1.3.16) has a nonisolated singular point 
(see Martynyuk and Obolenskii [129]). 

Further we assume that  the vector function n(t, U )  has bounded partial 
derivatives in U. 

Designate 

El = P(t) ,  q t ,  U )  = n(t, U )  - P(t)u. 
u=o 

Consider a system comparison equations 

(1.3.17) - = P(t)u + O(t,u),  u(t0) = U0 2 0, 
du 
dt 

and  its linear approximation 

(1,3.18) 

DEFINITION 1.3.9. (siljak [167]). Matrix P(t)  is  called a nonautono- 
mow "matrix iff 

Pij ( t )  { < 0 for all t E 771, i =j;  

> O  forall t € % ,  i # j ,  i, j = 1 , 2 ,  ..., m. 
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DEFINITION 1.3.10. Nonautonomous linear system (1.3.18) is  called a 
reducible comparison system, provided that  there exists a Liapunov trans- 
formation c = Q(t)y by means of which it can  be reduced to the system 

with a constant "matrix B. Moreover 

Recall that for the Liapunov transformation 

there exists Q-l(t) and Q E Cl(%, Rmxm). 
Besides, the values 

are finite. 

THEOREM 1.3  -21, Let  for  the  system (1.2.7) the following conditions 
hold  true 

(1) there  exists  a  positive  definite  decreascent vector function V(t,z) 
such that 

(1.3.20) D+V(t, 2) I P(t)V(t,  2) + @ (t, V(t, , 

where P( t )  is a  nonautonomous "matrix and @(t,u) is quasi- 
monotone in U and 

(2) a  matrix P( t )  reducible in the  sense of Liapunov. 

Then the following assertions are valid 

(a) if the  matrix B in the  system 

(1.3.21) * = B y  + Q-'@(t, Qy) 
dt 
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has all eigenvalues  with negative real  parts, then the zero solution 
of comparison system (1.3.17) is uniformly asymptotically stable; 

(b) if the  matrix B in the system (1.3.21) has all eigenvalues  with  neg- 
ative red  parts  and in addition V(t, x) 2 A 1 ( ~ ) ) ~  for some A > 0, 
then the zero solution of comparison equation (1.3.17) is exponen- 
tially stable; 

(c) if the  inequality (1.3.20) holds with a reversed sign and the ma- 
trix B in system (1-3.21) has at least one eigenvalues  with positive 
real parts, then the zero solution of comparison system (1.3.1 7) is 
unstable. 

PROOF. We apply to system (1.3.17) the Liapunov transformation U = 
Q(t)y  and get system (1.3.21). By condition (1) of the Theorem 1.3.21 

Il@(t, Q9)II S &l lQ~l l  
for  some E > 0 and hence, the fact that llyll 5 2 yields 

IC 

IIQ-'@(t, QdI I  5 ~ W y l l .  

So, it is clear that if all eigenvalues of the matrix B in the system (1.3.21) 
have negative real parts,  then  the solutions of the system 

vanish and  furthermore the solutions of the systems (1.3.21) and (1.3.17) 
respectively possess the same property. 

Assertions (b)  and (c) are proved  in the same manner. 

If in Theorem 1.3.21 inequality (1.3.20)  is satisfied with a constant  matrix 
P being an "matrix, then all assertions of the Theorem 1.3.21 remain valid 
without the transformation of the system (1.3.17) to (1.3.21). 

1.4 Notes 

1.2. The work  by Liapunov [l011  was published more than 100 years ago; 
nevertheless its ideas still inspire many investigations today. Therefore in 
Sections 1.2 and  1.3 are included not to repeat  the contents of this  paper 
but  to cite the basic statements of the second Liapunov method according 
to  the original (see Liapunov [loll). 

Comments 1.2.1- 1.2.7, Theorem 1.2.1 and Definitions 1.2.1-1.2.3  are 
set out according to  Grujit, Martynyuk and Ribbens-Pavella [57],  where a 
huge bibliography on stability  theory is available as well. 
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1.3. A short survey of main  directions of the method of Liapunov func- 
tions begins with a review of its original  results (see Liapunov [loll).  The 
survey of classical and new trends of the method of scalar  Liapunov func- 
tions is based on the results by Zubov [178, 1791 (Theorems  1.3.3-1.3.9), 
Hahn [66] and Krasovskii [89] (Theorems 1.3.10 and 1.3.11). Theorem 
1.3.12 is due  to Rumyantzev [l601 and  Theorem 1.3.13 is due to Marachkov 
[108]. Theorem 1.3.14 is based on the results by Salvadori [162], while The- 
orem 1.3.16 is due to Hatvani [71].  For recent development in the method 
of scalar  Liapunov  functions see Lakshmikantham and  Martynyuk [92]. 

The survey of the development of the  method of the vector Liapunov 
function  takes  into  account the results by Bellman [16], Matrosov [132], 
Melnikov [139], Corduneanu [20, 211, Kamke [81], etc.  Theorem 1.3.17 
is due to Michel and Miller [143]. Theorem 1.3.18 is a generalization of 
results by Corduneanu [20, 211 and is related to  the results by GruijE, 
Martynyuk  and Ribbens-Pavella [57]. Theorem 1.3.19 is a development 
of Theorem  1.6-1 by Matrosov,  Lakshmikantham and  Sivasundaram [96]. 
Theorem 1.3.20 is due to Martynyuk  and Obolenskii [129]. Theorem  1.3.21 
is new. 





MATRIX  L IAPUNOV  FUNCTION 

METHOD IN GENERAL 

2.1 Introduction 

The  short survey of the direct Liapunov method development cited in Chap- 
ter 1 shows that  the generalizations of this method in terms of multicom- 
ponent functions make this  method more versatile in applications. On the 
other  hand unsolved still is the problem of construction of appropriate func- 
tions  or systems of functions in terms of which the  further development of 
this  fruitful technique is possible. In  this  regard a two indices system of 
functions (a matrix-valued function) is proposed in this  chapter  as a basis 
for construction of both scalar or vector Liapunov functions. 

This  chapter gives an account of the foundations of the  method of matrix 
Liapunov functions that is a new method of qualitative analysis of nonlinear 
systems. 

The  Chapter is organized as follows. 
In Section 2.2 all necessary notions of the direct Liapunov method based 

on matrix-valued function are introduced. 
In Section 2.3 the theorems of direct Liapunov method on motion sta- 

bility are  set out where a scalar function constructed on the set of the 
two-indices system of functions is applied. 

In Section 2.4 a scalar function constructed in ,terms of a matrix-valued 
function is incorporated  together with the principle of comparison. 

The basic theorems of the method of matrix Liapunov functions are 
presented in Section 2.5.  Also the aggregation forms are developed  for 
autonomous large scale systems in terms of matrix-valued functions and 
the  estimates of asymptotic  stability domains are discussed. 

Section 2.6 deals with a new direction in stability  theory refered to M a 
L'multistability of motion". For the analysis of multistability of large scale 
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systems  consisting of two, three  or four  subsustems the method of matrix- 
valued Liapunov  functions is employed in  combination  with the method of 
comparison  with  scalar and vector  Liapunov  functions. 

Section 2.7 presents  applications of some general  results in the problems 
of mechanics, automatics regulation and  mathematical biology. 

2.2 Definition of  Matrix-Valued  Liapunov  Functions 

2.2.1 The property of having  a Axed sign of the matrix-valued 
function 

Together  with the system (1.2.10) we shall consider a two-indices system 
of functions 

(2.2.1) V(z) = [vij(z)] , i, j = 1,2,  . . . , m, 

where vii E C(R", R+) and vij E C(R", R) for all i # j .  Moreover it is 
assumed that 

(i) vij(z)  are locally Lipschitzian in I; 
(ii) vij(0) = 0 for all i, j = 1,2, . . , ,  m; 

(iii) vij (I) = vjr(x) in any  open  connected  neighborhood of point 2 = 0. 

REMARK 2.2.1. If wij 3 0 for all i # j = 1,2, .  . . ,m then U(I) = 
diag [Q (11, . . . vmm(s)l  and 

(2.2.2) V(z) = U(z)e ,  e E R" 

is a vector  function. 

REMARK 2.2.2. If vij 0 for all i # j = 1 , 2 , .  . ,m and  there exists 
at least  one value of k E [l, m] such that vii 3 0 for all i = 1 ,2 , .  . . , k - 
1, k + 1,. , . ,m and vkk(z) > 0 satisfies the conditions  (i) - (ii),  then 

(2.2.3) U(I) = vkk(z) for all I E N, N E R", 

is a positive  definite  scalar  function. 
Thus  the two-indices system of functions (2.2.1) is a basis for construc- 

tion of both scalar and vector  Liapunov  functions. 
However, for the matrix-valued  function (2.2.1) to solve the stability 

problem for the equilibrium state 'I = 0 of the system  (1.2-10) it should 
possess the property of having a fixed sign in the sense of Liapunov. 
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It runs as follows: 

(i) the concept of positive definiteness of a matrix-valued function 
(2.2.1) should be compatible with the well-known concept of posi- 
tive definiteness of a matrix; 

(ii) the concept of positive definiteness of a matrix function (2.2.1) 
should be compatible with Liapunov’s original concept of positive 
definiteness of scalar functions; 

(iii) the concept of positive definiteness of a matrix function (2.2.1) 
should be directly applicable to stability analysis and  adequate to 
Liaponuv’s (second) method. 

For the sake of preciseness the following definition will be used throught 
the book, which is based  on the corresponding definition by Liapunov [l011 
and Hahn [66], GrujiC [47l and Martynyuk [116]. 

DEFINITION  2.2.1. The matrix-valued function U: R” + Rmxm is: 

(i) positive  semi-definite iff there is a time-invariant neighborhood N 
of x = 0, N c R“, such that 

(a) U is continuous on N: U(x) E C ( N ) ,  
(b) U vanishes at the origin: U ( 0 )  = 0, 
(c) v(x, y) = yTU(x)y 1 0  V(x # 0, 1/ # 0) E N x Rm; 

(ii) positive  semi-definite  on a neighborhood S of x = 0 iff (i) holds for 

(iii) positive  semi-definite in the  whole iff (i) holds for N = R”; 
(iv) negative  semi-definite  (on a neighborhood S of x = 0 in the  whole) 

iff (-U) is positive semi-definite (on the neighborhood S or in the 
whole, respectively). 

N = S ;  

REMARK  2.2.3. Stability analysis shows  sufficiency of using a fixed  vec- 
tor q E Rm insted of any 9 in (c), that is o = R” -+ R is  defined  by 

v ( x ) = q T ~ ( x ) y ,  q = ( r ~ l , * . * , q m )  9 qaZ0, i = 1 , 2 , - * . > m a  T 

Iff all = 1 in 9, then q = I = (1,1, ,.. , E R8 and 

m 

U(S> = C uaj (x), uij (2) = uja(x). 
&j=l 

REMARK  2.2.4. In case m = 1,then Definition 2.2.1 reduces to Lia- 
punov’s original definition of positive definiteness concept (cf. Liapunov 

[ loll). 
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REMARK 2.2.5. It is to be noted that matrix-valued function U defined 
by U ( x )  = 0 for all x E R" is both positive and negative semi-definite. 
This ambiguity can be avoided by introducing the notion of strictly positive 
(negative) semi-definite and  there is E E N such that U(%) > 0 (U(q < 
0), respectively. 

DEFINITION 2.2.2. The matrix-valued function U:  R" + ,Rmxm is: 

positive  definite iff there is a time-invariant neighborhood N ,  N C 
R", of x = 0, such that it is both positive semi-definite on N and 
v(z, y )  = yTU(x)g > 0 V (x # 0, y # 0)  E N X Rm; 
positive  definite  on a neighborhood S of x = 0, iff (i) holds  for 
N = S ;  
positive  definite in the whole, iff (i) holds  for N = R"; 
negative  definite (on a neighborhood S of x = 0 in the  whole) iff 
(-U) is positive definite (on the neighborhood S or in the whole, 
respectively). 

The expression "on 7," is omitted iff all corresponding requirements hold 

Together with the system (1.2.7) we shall consider a two-indices system 
for  every r E R. 

of functions 

(2.2.4) V( t ,  Z) = [vij ( t l  x)] l i, j = 1,2, , m, 

where  ai E C(Z X Rn, R+), vij E C(% X R", R) for  all i # j .  Moreover 
the next conditions are making 

(i) vij ( t ,  x) are'locally Lipschitzian in x; 
(ii) vij(t, 0) = 0 for  all t E R ( t  E 7 , )  i, j = 1,2, . . . , m; 
(iii) V i j  ( t ,  x) = V j i  ( t ,  x) in any open connected neighborhood N of point 

z = 0 for all t E R (t  E Z). 

PROPOSITION 2.2.1. The matrix-valued function U :  R x R" 4 RmXm 
is positive definite on 7 , ,  r E R iff it can be written as 

Y T W 1  Z)Y = YTU,(tl %)Y + a(l l~l l) ,  

where U+(t, x) is a positive semi-definite matrix-vdued function and 
a E K .  
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DEFINITION 2.2.3.  Set vC,(t) is the  largest  connected  neighborhood of 
x = 0 at t E R which can be associated with a function U :  R x R" + 
Rmxm so that x E v ~ ( t )  implies v(t,x, y) < C, y E Rm. 

REMARK 2.2.6. In order to understand  and  appreciate deepness and 
importance of Liapunov's concept of definite functions let scalar functions 
v and W be considered, v ,  W :  R x R" x R" + R. Let them obey the 
following  on 7, x N ,  where N is a connected neighborhood of x = 0: 

(i) v is positive  definite  on 7, x N ;  
(ii) W is positive  semi-definite  on 7, x N and w( t , x ,  y) > 0 Q (t ,  x # 

Let v ~ ( t )  and w ~ ( t )  be associated with v and W in sence of Definition 

(a) there is 5 E (0, +m) such that q ( t )  EN,  Q t  E 7 , )  V(  E (0,t); 
(b) for any E E (0, +W) for  which wC(r) E N there is t E 7 , ,  t > r ,  

0) E 7, x N, but  it is not positive on 7, x N .  

2.2.3. Then,  the following  is true: 

such that w ~ ( t )  \ N # 0. 
DEFINITION 2.2.4. The matrix-valued function U :  R x Rn + R8x8 is: 

(i) decreasing o n  7 , )  r E R, iff there is a time-invariant neighborhood 
N of x = 0 and  a positive definite function W on N ,  W :  R" + R, 
such ,that y V ( t ,  z)y 5 w(z), V (t ,  x) E 7, x N; 

(ii) decreasing o n  7, x S iff (i) holds for N = S; 
(iii) decreasing in the  whole  on.7, iff (i) holds for N = R". 

The expression "on 77" is omitted iff all corresponding conditions still 
hold  for  every r E R. 

PROPOSITION 2.2.2.  The matrix-valued function U :  R x R" + Rmxm 
is decreasing on 7 , ,  r E R, iff i t   cm be written as 

y T w ,  X)Y = YTu-(t,x)Y + b(llxll>, (Y # 0) E Rm, 

where U-( t ,  x) is a negative semi-definite matrix-valued function and 
b E K. 

Barbashin and Krasovskii [12, 131 discovered the concept of radially un- 
bounded functions. They showed  necessity of it for asymptotic  stability in 
the whole. 

DEFINITION 2.2.5.  The matrix-valued function U :  R x R" + Rmx" 

(i) radially  unbounded  on X ,  r E R, iff llxll+ W implies yTU(t, x)y + 
is: 

+m, V t  E 7 , ,  y E R"; 

, , , . . . , , , ..._.. ,,,.. 1. ,I... .. ,,,, Ij, .,-.,. j . ,  ,,.. ." .. ..* ., ..,. .,. ,. . .  ... ,,....... I ... . . .  . . . .. . . . . .. . . . 
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(ii) radially  unbounded iff 1 1 ~ 1 1  + M implies u V ( t , s ) y  + +m, V t  E 

Z , V r E R ,   P E R " .  

PROPOSITION 2.2.3. The matrix-valued function U :  R x R" -+ Rmxm 
is radially unbounded in the whole  (on 77) iff it can be written m 

where U+(t,x) is a positive semi-definite matrix-valued function in the 
whole (on %) and a E KR. 

2.2.2 Dini derivative and  Eulerian  derivative 

In this section the notations of upper and lower limit of a function $: R + 
R are needed (see  McSchane [138]). In brief  (see  Demidovich [24]) they 
can be explained as follows. 

Let tk be a member of a sequence S; (S?) obeying 

(i) tk E R for  every integer k, tk < r ( t k  > r )  

and 

(ii) tk + r- (tk "t r+) as k "t +m. 

DEFINITION 2.2.6. 

(i) Number a E R is the  partial limit of the function $ over  the se- 
quence S; (St) iff for  every E > 0 there is an integer N such that 
k > N implies I$(tk) - 0 1  < E ;  

(ii) the symbol Q = +m (a = -m) is the  partial  limit of the function 
$ over  the  sequence S; (St) iff for  every E E (0, m) there is an 
integer N such that, respectively, k > N implies $(tk) > l/& 

('$'(tk) -l/&); 
(iii) the  greatest  (smallest)  partial  limit of the function t,b over  the se- 

quence S; is its left upper (lower) limit at t = r, respectively, 
which  is denoted by lim sup [$(t) : t + 7-1, (lim inf [$(t) : t + F ] ) ;  

(iv) right  upper  (lower)  limit of $ at t = r is analogously defined when 
everywhere ' in (iii) 7- and S; are respectively replaced by T+ 

and S$. 
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DEFINITION  2.2.7. Let U be a continuous  function U: 7, x R" + 
RmXm, U E C(7,  x N )  and let  solutions x of the system (2.1.7) exist 
and be defined on 7, x N ,  Then, for ( t ,  z) E 7, x N 

( 9  

is the upper right Ding derivative of U along the motion x at ( t , x ) ;  
(ii) 

is the lower right Dini derivative of U along the motion x at ( t , x ) ;  
(iii) 

is the upper left Dini derivative of U along the motion x at ( t , x ) ;  
0.1 

is the lower left Dini derivative of U along the motion x at ( t ,z ) .  
(v)  The function U has  Eulerian  derivative U ,  U(t,z) = $U(t,z) at 

( t , z )  along the motion x iff 

D+U(t, Z) = D+U(t, X)  = D-U(t ,  S) = D-U(t, Z) = DU(t ,  2) 

and  then 
U( t ,  z) = DU(t,  x): 

If U i j  is differentiable at ( t , z )  then (see Liapunov [loll) 

aui j  
&j(t,z) = - at + (graduij)Tf(t,z) 

and 

Effective application of D+U in the framework of the second Liapunov 
method is based on the result by Yoshizawa [174], which enables  calculation 
of D+U without utilizing system  motions themselves. 
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THEOREM 2.2.1. Let the matrix-valued function U be continuous and 
locally Lipschitzian in x over.7, x S and S be an  open  set.  Then, 

D+U(t, x) = lim sup {[U (t + 6 ,  z + ef(t,  x)) - U ( t ,  x)] 8-l : d + O+} 

holds  along solutions x of the system (2.1.7) at ( t , x )  E 7, x G. 

DmU will mean that both D+U and D+U can be used. 

2.3 Direct Liapunov's Method  in Terms of Matrix-Function 

The following results are useful  in the subsequent sections, 

PROPOSITION 2.3.1. Suppose m(t)  is continuous on (a ,b ) .  Then m(t)  
is nondecreasing (nonincreasing) on (a, b) iff 

D+m(t) 2 0 (5  0) for every t E (a,b),  

where 
~ + m ( t )  = limsup { [m(t  + e) - m(t)] 6- l :  6 + o+}. 

Following Liapunov [ loll, Persidskii [152], Yoshizawa [l741 and Grujik, 
Martynyuk  and Ribbens-Pavella [54], the next result is obtained. 

THEOREM 2.3.1. Let the vector function f in system (2.1.7)  be contin- 
uous on R x N (on 7 , ) -  If there exist 

(1) an open connected time-invariant neighborhood S E N of point 
x = o ;  

(2) a positive definite on G (on 7, x G) matrix-valued function U ( t ,  x) 
and vector y E Rm such that function v( t ,x ,  y) = yTU(t,x)y is 
locally Lipschitzian in z and D+v(t, x, y) 5 0. 

Then 

(a) thestate z = 0 ofsystem (2.1.7) isstable (on 7 , ) )  provided U ( t , x )  

(b)  the  state x = 0 of system (2.1.7) is uniformly stable (on x), pro- 
is weakly decreasing on G (on 7, x G); 

vided U ( t ,  z) is decrement on B (on 7, x B). 

P.ROOF. We shall prove first assertion (a) of Theorem 2.3.1. The fact 
that function U ( t ,  x) is weakly decreasing on G (on 7, x G) implies that for 
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any t o  E R ( t o  E 7 , )  and zo E G there exists a constant do = 6( to)  > 0, 
a vector y E Rm and a function b E CK such that 

(2.3.1) y T W o , ~ 0 ) Y  I W O ,  llzoll), llzoll < 60. 

Further, since V( t ,z )  is positive definite  on G (on 7, x G) then 

(2.3.2) a(1lzll) I yTU(t, z)y V (t ,  x) E R x G (V (t ,  z) E 7, x G )  . 
Let E > 0 and to E R ( t o  E 7 7 )  are  arbitrary.  The  properties of functions 
a E K and b E CK yield the existence of a S1 = S l ( t 0 , ~ )  > 0 continuously 
dependent  on to and such that 

(2.3.3) W O ,  61) < a(&). 

We define 6(to) = min(60, SI}. It is clear that inequalities (2.3.1) - (2.3.3) 
are satisfied for 1(201( < 6. Therefore, 

(2.3.4) 4ll.oll) PT~(t0,~O)2/ I b( t  Ilzoll) < a(&) 

which yield )120)1 < E .  

Now  we claim that for any  solution X(t; to, 20) of system (2.1.7) with the 
initial  conditions 20: llzoll < 6 the inequality Ilx(t; to,zo)ll < E V t  E 5 
holds. If not,  there exists a tl > t o  such that 

(2.3.5) l l x ~ ~ l ; ~ o , ~ o ~ l l  = E  and l lX(t ; to,~o) l l  < E  V t  E [tO,tl) 

for some  solution ~ ( t ;  t o ,  zo) of system (2.7.1). Let 

m(t> = u T w ,  x ( t ;  t o ,  zo))l/ When t E [ t o ,  tll. 

Since v(t ,  z, g )  is locally Lipschitzian in z, then we get by condition (2) 

Hence, we find in view of Proposition 2.3.1 that m(t) is a nonincreasing 
D+v(t, 2, y) = D+m(t) 5 0. 

function  on [ to,  t l ] .  Thus, we have 

a(&) = a(IIX(tl;to,~o)ll) I ldTU(tl, X(tl;to,zo))Y 

I YTU(t0, Z0)Y I a(&). 

The contradiction  obtained shows that  the  state z = 0 of system (2.1.7) is 
stable (on 7 7 ) .  

To prove assertion (b) of Theorem 2.3.1 it is sufficient to note that by 
condition (b) of Theorem 2.3.1 function U(t ,z )  is decreasing and function 
b in  inequality (2.3.1) can  be  taken  independent of t o  E R. This proves the 
theorem. 
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THEOREM 2.3.2.  Let  the vector function f in system (2.1.7) be contin- 
uous  on R x Rn (on 7, x R"), If  there exist 

(1) radially unbounded positive definite in the whole matrix-valued 
function U E C (R x R", R"'") (or U E C(7, x R", R"'") 
(on 7,) and vector y E R" such that  the function v ( t ,x ,y )  = 
yTU ( t ,  x) y is locally Lipschitzian in x and 

Then 

(a)  the  state x = 0 of system (2.1.7) is stable in the whole  (on 7,), 

(b) the  state x = 0 of system (2.1.7) is uniformly stable in the whole 
provided U( t ,  x) is weakly decreasing in the whole (on 7 , ) ;  

(on G), provided U ( t ,  x) is decreasing in the whole (on 7 , ) .  

REMARK 2.3.1. If f is  locally Lipschitzian on R x N (on 7 , )  then U in 
the preceding theorems is also locally Lipschitzian on R x N (on 7 , )  which 
enables effective calculation of D+U via Theorem 2.2.1. 

REMARK 2.3.2. The proceding theorems hold also when D+U is  re- 
placed by D+U (McShane [l381 and LaSalle [97]). 

Following Liapunov [loll, Massera [130, 1311, Yoshizawa [174], Halanay 
[67], Hahn [66], GrujiC, Martynyuk and Ribbens-Pavella [57] the next result 
is obtained. 

.L* 

THEOREM 2.3.3.  Let the vector function f in system (2.1.7) be contin- 

(1) open connected time-invariant neighborhood G C N of the  point 
x = o ;  

(2) positive definite on G (on 7, x G) matrix-valued function U ( t , x ) ,  
a vector y E R" and positive definite on B function II, such that 
the function v(t, x, y) = yW( t ,   z ) y  is locally Lipschitzian in x and 

uous on R x N (on 7, x N).  If there exist 

Then 

(a) iff U( t , x )  is weakly decreasing on 9 (on 7, x G), the  state x = 0 

(b) iff U ( t ,  x) is decreasing on 9 (on 7, x G), the  state x = 0 of system 
of system (2.1.7) is asymptotically stable (on 7 , ) ;  

(2.1.7) is uniformly asymptotically stable (on 7,)- 
4 
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PROOF. Necessity. Consider assertion (b) of Theorem 2.3.3. Let a = 0 
of (2.1.7) be uniformly asymptotically stable (on 7 , ) .  Let E > 0 be 
arbitrarily chosen, be such that BC E N ,  A E (0, +m) and E = 

. , . , E Rm and 
min{h+),A,C). Let P = B€,  cp E K[O,&), Q E (1, +m>, a, = ( L 1 ,  

yTU(t, a)y = v(t,a) = sup{cp [Ilx(t + a; t,a)11] (1 + aa)( l  + a)-l : 

a E [0, +m)}, V t  E R. 

The function v is decreasing and positive definite on h/ (on 7, x P) because 
x is continuous in all its arguments, cp E K[O,&), (1 + aa)( l+  a)-’ is also 
continuous, X(t; t 0 , O )  E 0, cp(0) = 0, and cp(lla1l) I v(t,a) I cp[ll(a)] 
V t  E 7 0 ,  V t o  E R (V to  E X), V a  E G, where IT E 

Let a* = X(t + 8 ;  t,a),  a = X ( t ;  to, ao), B > 0, so that 

v(t + e, a*) 

= sup{cp [Ilx(t + e + 0; t + B, a*)lll (1 + Qa)(l+ ay” : a E [o, +m)} 

= SUP{C~ [~lx(t + e + 0; t ,  ~ ) 1 1 ]  (1 + ~ ) ( i  + .)-l : V E [o, +m)} 

= cp [Ilx(t + 8 + a*; t ,  a)11] (1 + aa*)( l+  a*)-’, V t  E R. 

Let A = min 1, - , The existence of a* E [0, T~(A,V)]  obeying the 

last  equation is guaranteed by continuity of x, cp E K[o ,~ )  continuity of 
(1 + ac)(l  + o)-l and uniform attraction of a = 0 .  

I 3 
Let a = 8 + c*. Then (see Halanay [67]), 

(Q - q e  ”-=- 
l 1+a* + Qv* l l + a  + [l - (l + ao*)( l+ a) 1 > O  

so that 

5 [l - (1 + (a- aa*)( l  +a)  1 
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This  inequality in limit as B + O+ takes the form 

where 

is the continuous function, T ( A )  E [T~ (A ,v ) ,  +m), because z = 0 is 
uniformly attractive (see Halanay [67]). 

Hence, $ is positive definite on G (on 7, x G).  
Suflciency. Under the conditions of Theorem 2.3.3 all conditions of 

Theorem 2.3.1 are fulfilled. Hence, IC = 0 of (2.1.7) is uniformly stable (on 
7 , ) .  Its uniform attraction (on 77)  is proved as follows. 

Let C be such that BC C G. Let and E K[o,c~ obey 

(2.3.6) 

Let 

(2.3.7) 

As shown in the proof of the sufficiency part of Theorem 2.3.1, the condi- 
tions (2.3.3) and (2.3.4) guarantee that IIzoll < A implies 

and  that v is decreasing in t along motions x of (2.1.7). 
Let 

(2.3.8) 
inf {v( t ,  ~ ( t ;  t o ,  zo)) : t E 70) = v, 

V t o  E R (Vto E X ) ,  1 1 ~ 0 1 1  A. 

Obviously Y 2 0. If v > 0 then 
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so that 

which contradicts  (2.3.8). Hence, y = 0 which together  with  (2.3.5), (2.3.8) 
and positive definiteness of v on B (on 7, x g) prove that Ilx~ll < A implies 

lim [Ilx(t;  to,xo)ll: t + +m] = 0, V t  E R (V to  E 7 , ) ,  

i.e. that  x = 0 is attractive. Let now p > 0 be  arbitrarily chosen, 

y = lim {w(z) : E E BA .\ Bp},  y = ? ( p ) ,  

and 

Then 

so that 

I IX( t ; to ,~o) I I  < P ,  

V t  E ( t o  + ~ ~ ( a , p ) ,  +m), V t o  E R ( t o  E X ) ,  VZO E BA 

which proves that  attraction of z = 0 is uniform (on 7 , ) .  

Following Barbashin  and Krasovskii [12, 131 and  Martynyuk [116], and 
the proceding proof in which we choose cp E K R  it is easy to prove. 
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THEOREM 2.3.4. Let  the vector function f in system (2.1.7)  be contin- 

(1) radially unbounded positive definite in the whole matrix-valued 
function V(t ,z)  E C (R x R", Rmx") (or U ( t , x )  E C (7, x R", 
Rmxm) (on 7,)) a vector y E R" and a positive definite in the 
whole function 8, such that  the function 

uous  on R x R" (on 7, x R"). If there exist 

is locally Lipschitzian in x and 

Then 

(a) iff V( t ,  S) is weakly decreasing in the whole  (on 7,), the  state x = 0 
of system (2.1.7) is asymptotically stable in the whole  (on 7,); 

(b) iff V(t,e) is decreasing in the whole  (on 7 , ) ,  the  state x = 0 of 
system (2.1.7) is uniformly asymptotically stable in the whole  (on 
7,)' 

Following Krasovskii [89], Grujib, Martynyuk and Ribbens-Pavella [57] 
and He and Wang [72] and utilizing v(<) = <P in the proof of Theorem 
2.3.3, it is easy to prove the following result. 

THEOREM 2.3.5.  Let  the vector function f in system (2.1.7)  be contin- 

(1) an open connected time-invariant neighborhood 6 E N of the  point 
x = o ;  

(2) a matrix-valued function U ( t , x )  and a vector y E R" such that 
the function v(t,  x, y) = gTU(t, s)y is locally Lipschitzian in S; 

(3) functions cp2 E K and a positive real number 71 and positive 
integer p such that 

uous on R x N (on 7, x N) .  If there exist 

771 l 141P L 4 4  x, Y) 5 cpl(llZll) v ( t ,  3, v #  0) E R x B x R" 

and 
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Then, i f f  the comparison functions 91 and 9 2  axe of the same magnitude, 
the  state x = 0 of system (2.1.7) is exponentially stable (on 7,). 

REMARK 2.3.2. The  statement of Theorem 2.3.6 remains valid, if 
C p l ( I I 4 )  = r12 l l4 lP and (Pz(ll.ll) = r131l41P, 92, 7 3  = cmst > 0. 

THEOREM 2.3.6.  Let the vector function f in system (2.1.7) be contin- 
uous on R x R" (on 7, x R"). I f  there exist 

(1) radially unbounded positive definite in the whole matrix-valued 
function U ( t ,  x) E C ( R  x R", Rmx") (or U ( t , x )  E C ( 7 ,  x R", 
Rmxm)) (on 7,) and vector y E R" such that  the  function 

is locally Lipschitzian in 2; 

integer q such that 
(2) functions $1, $9 E KR a positive red number 71 and positive 

and 

Then, if the comparison functions $1 , $2 , axe of the same magnitude, the 
state x = 0 of system (2.1.7) is exponentially stable in the whole (on 7 , ) -  

PROOF. The proof is similar to  that of Theorem 2.3.5. 

REMARK 2.3.3.  The assertion of Theorem 2.3.6 remains valid, if 
Cpl(11~11) = r121141q and (Pz(ll4l) = r/31141q. 

PROPOSITION 2.3.2. In order that  the  state x = 0 of system (2.1.7) be 
exponentially stable (on 7,) in the whole, it is necessary and sufficient  for 
it to be exponentially stable (on 7 , )  and uniformly asymptotically stable 
in the whole (on 7,). 

Following Zubov [l781 and taking  into account the results by Martynyuk 
[l161 we shall  formulate and prove a result  on  instability. 
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THEOREM 2.3.7. Let the vector function f in system (2.1.7) be contin- 

(1) an open connected time-invariant neighborhood G C N of the  point 
z = o ;  

(2) amatrix-valuedfunction U(t ,z )  E C1s1(R x G, R""") or V( t ,  z) E 
C1ll (7, x 8, R""") and a vector y E R" such that  the function 
v(t ,  z, U) = yTU(t, z)y is strictly positive semi-definite (on 7, ) and 
satisfies the relation 

uous on R x N (on 7, x N).  If there exist 

dv 
dt 
- = A V  + &x), x = A( t ,  S), 

where g(z) is a positive semi-definite function on 8; 
(3) a number E > 0 such that when 6 > 0 (6 < E )  for continuous 

on 70 x R x $7 (on 70 x 7, x g) solution X(t; to,zo) of system 
(2.1.7) which satisfies the condition llzoll < 6, v(t0,zo) > 0 implies 
Ilx(t; t o ,  z0)ll < E V t  E R (V to  E 7 , )  the  inequality 

does not hold for all  t 2 to, t o  E R ( t o  E 7 , ) )  t E 5. 
Then and only then the state x = 0 of system (2.1.7) is unstable (on 7 , ) .  

PROOF. Necessity.  Let the  state z = 0 of system (2.1.7) be unstable 
(on 7 , ) .  We construct two functions v and 8 satisfying the conditions of 
Theorem 2.3.7. The instability (on 7 , )  of state z = 0 of system (2.1.7) 
yields the existence of an E* > 0 such that for any 6 > 0 a 20 and a 
to, t o  E R ( to  E 7 , )  can be taken so that  the inequality 

(2.3.9) 

does not hold  for all t 2 0 in spite of the fact that ((zo(( < 6, t o  1 0. 
Let t = t(t0,zo) be the  next  time  after to when inequality (2.3.9) is 

violated. The set of points ll = {( to,zo):  ))zo)) < 6, to _> 0) is divided 
conventionally into sets rI1 and rI2 such that 

(A) for (t0,zo) E rI1 the solutions X(t; to,zo) of system (2.1.7) satisfy 

(B) for ( to ,  zo) E the solutions X(t; t o ,  zo) of system (2.1.7) intersect 
condition (2.3.9) provided all t 2 60. 

the surface 11z11 = E* when the time increases. 
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We set  in case (A) y = (1, 1, . . , , 1) E Rm and 

(2.3.10) yTV(t,z)y = v( t ,z )  0 v t  E 7 0 .  

For the case (B) we set y = (1, 1, . . . , 1) E R" and 

It is clear that v(t,zo) 0 for function (2.3.10) when t 1 to, and 

v( t ,  20) = exp ( to - t ( t o ,  20)) 

for function (2.3.11). 

Theorem 2.3.7 we obtain X = 1 and I?= 0. 
Hence, we get dv/dt = v. Comparing this result  with  condition (2) of 

Function v is strictly positive semi-definite (on 7 , )  and  bounded, 

J X(s) ds diverges as t - to + 00, since X = 1. Therefore,  condition (3) of 

the Theorem 2.3.7  is also satisfied. 

t 

t o  

Suficiency. Let all hypotheses of Theorem 2.3.7 be satisfied. 
We are going to show that  the  state z = 0 of system (2.1.7) is unstable 

(on X), If not,  then using E > 0 a S > 0 can  be  taken so that 

when /(zo(( < S. 
According to condition  (2) of Theorem 2.3.7 we take t o  and zo so that 

v(to,  xo,  y) > 0 and consider along the solution X(t; t o ,  ~ 0 )  of system (2.1.7) 
the correlation 

(2.3.13) 

where &(t) = v (t ,  X ( t ;  t o ,  50)) and P(t )  = $(x(t; t o ,  20)). 

In view of P(t )  2 0 for all t E R we find from correlation (2.3.13) 
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This inequality contradicts condition (3) of Theorem 2.3.7 and, therefore, 
inequality (2.3.9) can be satisfied for all t E 7 0 ,  i.e. the  state z = 0 of 
system (2.1.7) is unstable (on 7 7 ) .  

COROLLARY 2.3.1.  If conditions (1) and (2) of Theorem 2.3.7 are  sat- 

(1) the function w(t,z, y) = y V ( t , s ) y  is bounded (on 77);  

(2) J X ( s ) d s  + $00 as t + +m. 

isfied and 

t 

t o  

Then  the  state z = 0 of system (2.1.7) is unstable (on 77).  

COROLLARY 2.3.2. If conditions (1) and (2) of Theorem 2.3.7 are  sat- 

(1) the function w(t, z, U )  = yTU(t, z)y is bounded (on 77) ;  
(2) the function X is a positive constant. 

isfied and 

Then the  state z = 0 of system (2.1.7) is unstable (on 77) .  

REMARK 2.3.4.  Corollary 2.3.2 is a new  version of Liapunov's theorem 
on instability (cf. Liapunov [ loll, Theorem 111, pp. 68). 

COROLLARY 2.3.3.  If conditions (1) and (2) of Theorem 2.3.7 are  sat- 
isfied and 

(1) E =&) V t  E 70 ( V t  E 77) V z E  G; 
d t  

(2) using number E > 0 and 6 > 0 can be taken so that g(.) > 0 for 
2, v) > E .  

Then the  state z = 0 of system (2.1.7) is unstable (on 77) .  

REMARK 2.3.5. Corollary 2.3.3 is a new  version of Chetaev's theorem 
on instability (cf. Chetaev [19], pp. 33). 

2.4 On Comparispn Method 

The concept of the  matrix Liapunov function together with the theory of 
differential inequalities provides a very general comparison principle under 
much  less restrictive assumptions. In  this set up,  the  matrix Liapunov func- 
tion may be viewed as a transformation that reduces the  study of a given 
complicated differential system to  the  study of relatively simpler scalar dif- 
ferential equations. 
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2.4.1 Differential  inequalities 

Let  us consider the following scalar differential equation 

(2.4.1) - = g( t ,u) ,  4 t o )  = U0 I 0, t o  E R ( t o  E %l, 

where g E C(R x R, R) (or g E C(% x R,  R)) and g ( t ,  0) = 0 V t  E 7 0 ) .  

du 
d t  

DEFINITION 2.4.1.  Let y ( t )  be a solution of (2.3, l l )  existing on some 
interval J = [ to ,   to  +Q), 0 < Q 5 +m, t o  E R ( to  E %). Then y ( t )  is said 
to be the mcaxdmel solution of (2.4.1) if for  every solution u(t) = u(t; t o ,  50) 

of (2.4.1) existing on J ,  the following inequalities hold 

A minimal solution is  defined similarly by reversing the inequality (2.4.2). 
We need the following  known results for our discussion the proof of which 

may be found in (see e.g. Olech and Opial [150], Yoshizawa [174], and 
Lakshmikantham, Leela and  Martynyuk [94]). 

PROPOSITION 2.4.1. Let g E C(R x R,R) (or g E C(% x &R) )  and 
y ( t )  = y ( t ;  to, 20)  be the maximal solution of (2.4.1) existing on J. Suppose 
that m E C(R, R+) (m E C(%, R+)) and 

(2.4.3) D*m(t) 5 g ( t ,  4 t ) )  , t E J, 

where D* is any fixed Dini derivative. 
Then m(t0) 5 uo implies 

(2.4.4) m(t) 5 y ( t ) ,  V t  E J. 

PROPOSITION 2.4.2. Let g E C(R x R,R) (or g E C(% x R,R)) and 
p( t )  = p ( t ;  t o ,  50) be the minimal solution of (2.4.1) existing on J. Suppose 
that m E C(R, R+) (m E C(%, R+)) and 

(2.4.5) D*m(t) 2 g ( t ,  m($) ) ,  t E J. 

Then m(t0) 2 uo implies 

(2.4.6) m(t)  2 p ( t ) ,  V t  E J. 

. .. , , , ... , ., . , .L. ,. , .~ .. , . ..,, ..I , ,"..,.."X .-.., ., ... ,. . ... . .., . . . .. ,, .. ,. ... . .. . ... , . . . . . . . ,, , 
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PROPOSITION 2.4.3.  Let for system (1.2.7) there exist 
(1) a matrix-valued function U E C(Rx  R", Rmxm) (U E C(7,  X R", 

R m x m ) )  and a vector y E R" such that  the function v(t,x, y) = 
yTU(t, z)y is locally Lipschitzian in z for every t E R (t E 7,) :  

(2) a majorizing function g E C ( R  x R+,R) g E C(7,  x R+,  R), 
g( t ,O)  = 0 V t  E 70 ( V t  E 7 , )  such that 

D+W(t, 2, Y)  I 9 (t ,  W(t, 2, Y))  
V (t,z,y) E R x R" x R" ( 7 ,  x R" x R m ) ;  

(3) a maximal solution y(t) =y( t ;  t o ,  UO) of comparison equation (2.4.1) 

Then along any solution X(t; t o ,  zo) of system (1.2.7) existing on J1 C J 
the  estimate 

(2.4.7) W(to,zo,uo) L uo, t o  E R ( t o  E 7 , )  
implies the  inequality 

(2.4.8) V ( 4  x ( t ; t o , zo ) ,~ )  5 y ( t )  V t  E J1 n J. 

on J .  

PROOF. Let m(t) = W ( t ,  X(t; to,zo),y) and X(t; t o ,  $0) being a solution 
of (1.2.7) such that (2.4.7). Since v(t,z, p) is  locally Lipschitzian in z, we 
get, by (1.2.7) and (2.4.1), the differential inequality 

D+m(t) L g (t ,  m(t)) , 4 t o )  L UO,  to E R ( t o  E 'G), t E J ,  

and  Proposition 2.4.1 gives the desired result (2.4.8). 

A comparison result analogous to Proposition 2.4.3 which  yields  lower 
bounds is the following. 

PROPOSITION 2.4.4.  If in Proposition 2.4.3, assumption (2) is reversed 
to 

D++ z, Y) 2 9 ( 6  4 4  2,211) 
V (t,z,y) E R x  R" x Rm ( 7 ,  x R" x Rm) 

and p ( t )  = p ( t ;  t o ,  UO)  is the minimal solution of (2.4.1) existing for t 2 to, 
then 

v ( t ,   ~ ( t ; t o , z o ) , ~ )  2 p( t )  V t  E J,  to E R ( t o  E 7 , )  
whenever v(to,so,y) 2 UO. 

PROOF is similar to proof of Proposition 2.4.3. 

In some situations,  estimating D+w(t,z,y) as a function of t, z and 
v(t, z, y) is more natural (see  e.g. Matrosov [134], Hatvani [71], and Grujik, 
Martynyuk and Ribbens-Pavella [57]). 
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PROPOSITION 2.4.5. Let for system (1.2.7) there exist 

(1) a matrix-valued function U E C(Rx R", Rmxm) (U E C(Z x R", 
Rmxm)) and a vector y E R" such that  the function v( t ,z ,  v) = 
y V ( t , z ) p  is locally Lipschitzian  in z for every t E R (t E 7 , ) :  

(2) a  majorizing function g E C(R x R" x R+, R) g E C(7,  x Rn x 
R+, R), g ( t , z , u )  nondecreasing in U ,  g( t ,  0,O) = 0 V t  E '7ij such 
that 

(3) a maximal solution r ( t )  = r ( t ;  t o ,  uo, so) of  comparison equation 

exist for all t 2 t o ,   t o  E R (to E 7 , ) .  

Then v(to,zo, v) 5 uo implies 

PROOF is similar to proof of Proposition 2.4.3. 

COROLLARY  2.4.1. If in conditions of Proposition 2.4.3 

(i) g ( t , u )  E 0 V t  E R ( V t  E 7 , )  
then 

(ii) g ( t , u )  = X(t)u 
then 

(iii) g( t ,  U )  = a exp [-ku] + cp(t) - a, where cp: R + R; a, k = const, 
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then 

(iv) g(t,u) = -c(u), c E K 
then 

where G(u) = - if - < +W and 
ds ds 

ds ds 
0 4 8 )  0 4 8 )  

6 4 s )  0 4 s )  
G(u) = J - if J - = W; S = const > 0, 

G-l is a function converse to  the function G. 

2.4.2 Theorems on stability via  matrix  Liapunov  functions  and 
scalar  comparison  equations 

The estimates of function w(t,s, y )  found in Propositions 2.4.3-2.4.4 allow 
the reduction of the problem on stability of state z = 0 of system (1.2.7) 
to  the stability investigation of solution U = 0 of equation (2.4.1). Let us 
formulate first stability definitions for solution U = 0 of equation (2.4.1). 

DEFINITION 2.4.2. The  state U = 0 of the equation (2.4.1) is: 

(i) stable  with  respect t o  5 iff for any t o  E Z and any E E ( 0 , ~ )  
there exists S(t0,e) such that for any UO, 0 5 uo < S an estimation 
y ( t ;  touo) < E is  fulfilled for all t E 7 0 ;  

(ii) uniformly  stable  with  respect to Z iff conditions of the definition 
2.4.2 (i) are fulfilled and for  every E E ( 0 , ~ )  the corresponding 
maximal S denoted by S M ( t ,  e) obeys: 

inf (SM(t,e) : t E X) > 0; 

(iii) stable in the  whole  with  respect to  Z iff conditions of the definition 
2.4.2 (i)  are fulfilled and S M ( t ,  E) + +W, V e  + +W, V t E X; 

(iv) uniformly stable in the  whole  with  respect  to Z iff conditions of the 
definition 2.4.2 (ii), (iii) are fulfilled. 
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DEFINITION 2.4.3. The  state U = 0 for the equation (2.4.1) is: 

(i) attractive  with  respect  to % iff for any t o  E 5 there exists A(t0) > 0 
and for any C > 0 and U O ,  : 0 5 uo 5 A(t0) there is T(tO,zo,C) E 
[O,m) such that  an estimation y ( t ;  t o ,  U O )  < C is  fulfilled  for all 

(ii) uo - attractive  with  respect  to % iff conditions under (i) are fulfilled 
and for any to  E 5 and any q E (0, +m) there exists A(t0) > 0 
and T u ( t o , A ( t o ) , q )  E [0, +m) such that 

t E ( t o  + T ( t O , X O ,  C )  + m); 

SUP (Tm( t ,Uo, r l ) :  0 5 ‘110 5 A(t0)) = Tu(tO,A(to),77); 

(iii) to - uniformly  attract ive  with  respect  to iff conditions of (i)  are ful- 
filled and for any q E (0, +m) there exists A > 0 and ~ ~ ( u 0 , q )  E 
[0, +m) such that 

SUP (Tm( tO ,UO,q ) :  (to,uo E 5) = T u ( U 0 , q ) ;  

(iv) uniformly  attractive  with  respect  to iff conditions of the definitions 
2.4.3 (i)-(iii)  are fulfilled and for any q E (0, +m) there exists 
A > 0 and T ~ ( A , ~ )  E [0, +m) such that 

SUP (Tna(tO,UO,q):  (t0,uO) E % x [o 5 U0 5 A]) = T u ( A , r ] ) -  

DEFINITION 2.4.4. The  state U = 0 of the equation (2.4.1) is: 

(i) asymptotically  stable  with  respect  to x iff it is stable with respect 
to % and  attractive with respect to 3; 

(ii) equi-asymptotically  stable  with  respect  to % iff it is stable with re- 
spect to % and uo - uniformly attractive with respect to %; 

(iii) quasi-asymptotically  stable  with r-espect t o  iff it is  uniformly stable 
with respect to  and t o  - uniformly attractive with respect to 5; 

(iv) exponentially  stable  with  respect  to iff there exists A > 0 and 
real values Q 2 1 such that for 0 5 uo 5 A the inequality 

u(t;to,uo) 5 QUO exp ( -p( t  - t o ) ) ,  V t  E 7 0 ,  Vto E % 

is valid. 

Definitions 2.4.4 (i) - (iv) become the corresponding definitions of as- 
ymptotic  stability in the whole provided both  the corresponding type of 
stability in the whole and  attraction in the whole. 

In Definitions 2.4.2 - 2.4.4, the expression “with respect to 5” can be 
omitted iff % = R. 
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THEOREM 2.4.1. Let vector-function f in system (1.2.7) be continuous 

(1) an open connected time-invariant neighborhood B C N of point 

(2) a matrix-valued function U E C ( R  x B, R""") (U E C(7,  X B, 
R""")) and vector y E R" such that  the function w(t, z, y) = 
yW(t,x)y is locally Lipschitzian in x for  every  t E R (t E 7,); 

(3) a majorizing function g E C ( R  x R+, R) (g E C(7,  X R+, R))  
g(t,O) = 0 V t  E 70 (Vt E 7 , )  such that 

on R x N (on 7, x N) ,  If there exist 

x = o ;  

Then  properties of the function 

and  properties of the zero solution of the equation (2.4.1) 

- = g( t ,u ) ,  u(t0) = U0 1 0 
du 
dt 

provide  the  corresponding  properties of the  state x = 0 of system (1.2.7). 

REMARK 2.4.1. In condition (2) of Theorem 2.4.1 alongside the function 
defined by (2.4.9) another  suitable function, such as 

w(t,z) = max{uij(t,x): (i, j) E [1,rn]}, 

or 4 4  = Q ( U t ,  x)) 

v(t,x,rl) = r l T W , X ) r l ,  rl E R,m, 7 > 0, 

can be utilized, where Q E C (R""", R+), &(U) is nondecreasing in U and 
Q(0)  = 0. 

We shall state some properties of the zero solution of equation (2.4.1) 
and function (2.4.9) and prove Theorem 2.4.1. 

PROOF. Case A .  Let g ( t , u )  = 0, solution U = 0 of equation (2.4.1) 
be stable with respect to 72' and function (2.4.9) be positive definite on B 
( 7 ,  x B). Then, by Theorem 2.3.1 the  state x = 0 of system (1.2.7) is 
stable (on 7 , ) .  
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Case B. Let solution U = 0 of equation (2.4.1 be  stable with respect 
to 5, uo - uniformly attractive  on 5 and function (2.4.9) is decreasing 
on 8 (7, x 8). We are going to show that in this case the  state z = 0 
of system (1.2.7) is equi-asymptotically stable (on 7 , ) .  In  fact, for the 
function w(t,z, y) mentioned above there exist functions a, b E K such 
that 

(2.4.10) 
4ll.ll) I v(t ,z,y)  I b(llzL.11) v (t ,s,y) E R x 8 x Rm 

V (t; Z, v) E 7, X 8 X Rm. 

Let E E (%H) and t o  E R (to E 'G) be prespecified. The fact that 
U = 0 is stable with respect to 5 implies that for a(&) > 0 and to E R 
( t o  E 7 , )  there exists a 61 = & ( t o , & )  > 0 such that  it follows from 
uo 61 that u(t;  to,uo) < a(&) for all t 2 to .  We take u0 = v(to,zo,y)  
and 6 = d ( t 0 ,  E )  > 0 so that 

(2.4.11) b(6)  < 61. 

Let the solution x(t;to,zo) of system (1.2.7) start in domain: t o  E R 
( to E 7 , )  and 11z011 < S. We claim that I\x(t;to,zo)J1 < E for  all to  E 5. 
If not,  there exists other solution ~ ( t )  with the initial conditions in the 
same domain and value tl > t o  such that 

By Proposition 2.4.3 we have the  estimate 

where y ( t )  is the maximal solution of equation (2.4.1). 
Seeing that 

(2.4.14) 

and in view  of inequalities (2.4.11) - (2.4.13) we get 

This proves stability with respect to 5 of the  state z = 0 of system (1.2.7). 
Further it follows  from the property of uo - uniform attraction of the 

solution U = 0 of equation (2.4.1) that, given a(q) > 0 and to E R 
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( t o  E 7 , ) )  0 < 7 < H there exists a Si = S:( to )  > 0 and T =  to, 7) > 0 
such that uo < Si implies u(t; t o ,  uo) < a(7) for all t 1 to + T. We take 
uo = w(t0, 50, p) the same  as before and find St  = S t ( t 0 )  > 0 such that 

(2.4.15) b(S,*) < Si. 

Let 60 = min(Sl+,S,") and JJzoJJ < SO. Proceeding as in the proof of st& 
bility (on 7 , )  of the  state z = 0 of system (1.2.7) we conclude that 
(Ix(t;to,zo)Jl < H for t 2 to .  Assume that there exists a sequence ( t k } ,  

t k  2  to+^, t k  +W as IC + +W and 7 5 Ix(t;to,so)l, where x ( t ; t o , z o )  
is a solution of system (1.2.7) with the initial conditions llzoll < SO and 
to E R (to E 7 , ) -  Taking into account estimates (2.4.8) and (2.4.15) we get 

This proves that  the  state z = 0 of system (1.2.7) is attractive (on 7 , ) .  By 
Definition 2.4.4 (ii) the  state z = 0 of system (1.2.7) is equi-asymptotically 
stable (on 7 , ) .  

THEOREM 2.4.2. Let vector-function f in system (1.2.7) be continuous 

(1) conditions (1) - (2) of Theorem 2.4.1 are satisfied and 
(2) there exists a majorizing function G such that G E C (R x R+,  R) 

(G E C(% x R+,  R)) G(t,O) = 0 V t  E 70 ( V t  E 7 , )  such that 

on R x N  ( o n 7 , x N ) .  If 

Then properties of the function 

mnd instability  properties of the zero solution of the equation 

(2.4.17) 
du 
dt 
- = G(t,u),  to) = uo 2 0 

imply  instability (on 77) of the  state x = 0 of the system (1.2.7). 

PROOF. In order to prove Theorem 2.4.2 we shall state some properties 
of the function (2.4.16). Namely, assume positive definite on P (on 7, x Q) 
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function, and for any 6 > 0 and t o  E R ( t o  E 7 , )  an 10 is found, 11z011 c 6, 
such that v(to,zo, y) > 0 V y E Rm. Instability of the zero solution of 
equation (2.4.17) ensures that given E* > 0 and to  E R ( to  E '&),for any 
6* > 0 a U O :  0 5 uo < S* can be found so that p( t ;  t o ,  U O )  2 E * .  Since 
function (2.4.16) is positive definite on 0 (on 7, x B), a function a E K 
can be taken so that 

We take E > 0 so that 

(2.4.18) a(&) < E * .  

This is  possible due to assumptions on function v(t ,  z, y). 
Now  we determine uo 5 6* and t 1 t o  so that p ( t ;  t o ,  UO)  2 E * .  If m, 

is taken in accordance with (2.4.18) and t 4 70 (t 4 7 , )  then the theorem 
is proved, since the solution ~ ( t ;  t o ,  zo) cannot cease its existence without 
leaving the domain llzll < E .  Let to E 70 ( t o  E 7 , ) -  Then we get according 
to Proposition 2.4.4 

Consequently, I I ~ ( t ; t o , z o ) l l  > E and the  state z = 0 of system (1.2.7) is 
unstable (on 7 , ) .  

2.5 Method of Matrix  Liapunov Functions 

As already mentioned in the introduction the application of matrix Lia- 
punov functions make it possible to establish easily verified stability condi- 
tions for the  state x = 0 of system (1.2.7) in terms of the property having a 
fixed  sign of special matrices. The results presented in this section demon- 
strate  the opportunities of the matrix Liapunov functions technique. 

2.5.1 Nonautonomous systems 

General Theorems 2.3.1 - 2.3.7 allows  sufficient stability conditions for the 
state z = 0 of system (1.2.7) to be constructed as follows. 
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THEOREM 2.5.1. Let the vector-function f in system (l .2.7) be contin- 
uous  on R x h/ (on 7, x N). If there exist 

(1) an open connected time-invariant neighborhood B c N of the point 

(2) a matrix-valued function U E C(R x N ,  Rmxm) and a vector 
y E R" such that  the function v( t ,z ,  y) = y W ( t , e ) y  is locally 
Lipschitzian in x for all t E R (t E 7,); 

x = o ;  

(3) functions qil, $i2, E K, Jiaz E CK, i = 1,2,  . . , , m; 
(4) rn x m matrices Aj(y), j = 1,2,3, &(y) such that 

Then, if  the  matrices Al(y),  Az(y),  &(y),  (y # 0) E R" are positive 
definite and A3(y) is negative semi-definite, then 

(a)  the  state x = 0 of system (1.2.7) is stable (on 7 , ) )  provided condi- 

(b) the  state x = 0 of system (1.2.7) is uniformly stable (on 7,), pro- 
tion  (4)(a) is satisfied; 

vided condition (4)(b) is satisfied. 

PROOF. We shall prove assertion (a). Since matrices A1 (y) and &(y) 
V(y # 0) E R" are positive definite, then X"(A1) > 0 and AM(&) > 0, 
where X, ( B )  and A M ( * )  are minimal and maximal eigenvalues of matrices 
A1 (y) and &(y) respectively. 

Condition (3) of Theorem 2.5.1 provides the existence of functions R E 
K and p E CK such that 
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Consequently, 

and 

Since matrix &(g )  is negative semi-definite, then 

(2.5.3) 
D+v(t,z,y) I 0 V( t , z , y  # 0)  E R x 9 x Rm 

(V( t ,z ,y  # 0) E 7, x 9 x R" ) .  

Taking into account (2.5.1) - (2.5.3) one  can  easily  see that all conditions of 
Theorem 2.3.1 are satisfied and the  state z = 0 of system (1.2.7) is stable 

The proof of assertion (b) of the Theorem 2.5.1 is the  same, seeing that 
(on 7 , ) .  

$i2 E K.  

THEOREM 2.5.2. Let the vector-function f in system (1.2.7) be contin- 

(1) a matrix-valued function U E C ( R  x R",  RmX") (V E C(7, x R", 
RmX"))  and a vector y E R" such that  the function v(t,z, y) = 
yTU(t,z)y is locally Lipschitzian in z for all t E R (t E 7 , ) ;  

(2) functions (pli, (p2 i ,  (psi E KR, & E CKR, i = 1,2, . . . , m; 
(3) m x m matrices ~ j ( y ) ,  j = I, 2,3, & ( y )  such that 

uous on R x R" (on 7, x R"), If there exist 
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Then,  provided that  matrices Bl (y ) ,   Bz (y )  and &(v), V(g # 0) E R" 
are positive  definite and  matrix B3(y)  is negative  definite, 

(a) under  condition  (3)(a) the  state z = 0 of system (1.2.7) is stable 

(b) under  condition (3)(b) thestate z = 0 ofsystem (1.2.7) is uniformly 
in the whole (on 7 , ) ;  

stable in the whole (on 7 , ) .  

PROOF. Under conditions (1)-(3)(a) of Theorem 2.5.2 the function 
v(t,z, y) is radially  unbounded positive definite in the whole  (on 7 , )  and 
weakly decreasing  in the whole  (on 7 , ) .  Since the  matix B3 (g), V (g # 
0) E R" is negaitive semi-definite, then we have in consequence of condi- 
tion  (3)(c) of Theorem 2.5.2 

D+v(t, 2,1/> I 0 V(t,z,y # 0) E R x Rn x Rm 
(V( t ,z ,y :#  0) E 7, x R" x Rm) . 

According to Theorem 2.3.2 the  state z = 0 of system (1.2.7) is stable  in 
the same  manner  taking  into  account  conditions (1) - (3)  (b) and  (3)(c). 

THEOREM 2.5.3. Let  the  vector-function f in  system (1.2.7) be contin- 

(1) an open connected  timeinvaxiant  neighborhood Q C N of the  point 
x = o ;  

(2) a matrix-valued  function U E C (R x N ,  RmX") (U E C(7 ,  x N ,  
Rmx"))  and a vector y E R" such that  the function v(t,z, y) = 
y V ( t , z ) g  is locally  Lipschitzian  in z for  all t E R (t E 7 , ) ;  

uous on R x n/ (on 7, x h/). If  there  exist 

(3) functions qli, q2i, q3i E K, i72i E CK, i = 1,2, . . . , m; 
(4) m X m matrices Cj(2/), j = 1,2,3, &(v) such that 
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where function m(t, a )  satisfies the condition 

uniformly in t E R (t E X ) .  

and  matrix C3(y) (y # 0) E R" is negative definite, then 
Then, provided the matrices Cl (y), Cz(y), &(v) are positive definite 

(a) under condition (4)(a) the  state x = 0 of the system (1.2.7) is 

(b) under condition (4)(b) the  state z = 0 of the system (1.2.7) is 
asymptotically stable (on 7,); 

uniformly asymptotically stable (on X ) .  

PROOF. Following the arguments from the proof of Theorem 2.5.1 under 
conditions (1) - (4)(a)  the function v(t, z, y) is positive definite on B (on 
7, x B) and weakly decreasing on B (on 7, x $7). Consider condition (4)(c). 
Since q3a E K, i = 1,2, . , . , m there exists a function W E K such that 

(2.5.4) 

Due to matrix C3(y) (y # 0) E R" being negative definite all its eigenval- 
ues are negative so that  X~((c3) < 0. Therefore, we get in view  of (2.5.4) 

(2.5.5) 

Under condition (2.5.2)  for the given neighborhood 9 C N of point z = 0 
a 0 < p < 1 can be taken so that 

(2.5.6) 

D*v(t, 2, Y) L xM(c3)w(ll4l) + m (6 v3(ll4l)) 

V(t,z,y # 0) E R x B x R" (V(t,z,y # 0) E 7, x B x R"). 

Im(t9 rl(ll4l)l - ~ ~ M ( ~ 3 ) r / 3 T ( l l ~ l l ) 1 7 3 ( l I ~ I o  

V(t,z,y # 0) E R x B x R" (V(t,z,y # 0) E 7, x B x R"). 

Together with inequalities (2.5.5) condition (2.5.6)  yields the estimate 

D*v(t,z,y) L (1 - P)xM(c3)w(ll.ll),  XM(C3) < 0. 

Thus, function D*v(t, z, y) is negative definite  on Q (on 7, x B). Therefore, 
all conditions of Theorem 2.3.3 are satisfied and  the state z = 0 of the 
system (1.2.7)  is asymptotically stable (on 7 , ) .  

Assertion (b) of Theorem 2.5.3 is  proved in the same manner taking  into 
account that condition (4)(b) ensures function v(t, z, y) decreasing on 6 
(on X x B). 
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THEOREM 2 -5.4.  Let the vector-function f in system (1.2.7) be contin- 
uous  on R x R" (on 7, x R") and conditions (1) - (3) of Theorem 2.5.2 are 
satisfied. 

Then, provided that matrices B1 (y), &(p) and &(p) are positive def- 
inite and  matrix B3(y) V (y # 0) E R" is negative definite, 

(a) under condition (3)(a) of Theorem 2.5.2 the  state x = 0 of system 
(1.2.7) is asymptotically  stable  in  the whole  (on 7); 

(b) under condition (3)(b) of Theorem 2.5.2 the  state x = 0 of system 
(1.2.7) is uniformly asymptotically stable  in  the whole  (on 7 , )  I 

PROOF. Under conditions (1) -(3)(a) of Theorem 2.5.2 the function 

Because matrix &(v) V (y # 0) E R" is negative definite, proceeding 
v(t, x, y) is radially unbounded positive definite in the whole (on K ) .  

as in the proof of Theorem 2.5.2 we arrive at  the estimate 

Since 9 3 a  E CK,  i = 1,2,  . . , ,  m, there exist a function 8(11x11) E K R  
such that 

~ ( 1 1 4 1 )  2 (Pr(11~11)(P3(11~11). 
Therefore, 

Thus, function D*v(t,  x, y) is negative definite in the whole (on K ) .  
According to Theorem 2.3.4 the  state x = 0 of system (1.2.7) is asympto- 

tically stable in the whole (on K ) .  
The proof of assertion (b) of Theorem 2.5.4 is similar to  the above and 

takes into account the fact that by conditions (2) and (3) of Theorem 2.5.2 
the function w(t, x, y) is radially unbounded positive definite and decreasing 
in the whole (on K ) .  

THEOREM 2.5.5. Let  the vector-function f in system (1 -2.7) be contin- 

(1) an open connected time-invariant neighborhood Q C N of the  point 

uous on R x N (on 7, x N). If there exist 

x = o ;  
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(2) a matrix-valued function U E C ( R  x N ,  R"'") and a vector 
g E R" such that  the function v(t, x, g) = gV(t ,x)y  is locally 
Lipschi tzian in x for all t E R (t E 7 , ) ;  

(3) functions u2i, u3i E K ,  i = 1,2, . . . , m, a positive real  number A, 
and positive integer p ,  m x m matrices F2(g), F3(g) such that 

Then,  provided that  the  matrices F2(g) (g # 0) E R"  axe positive definite, 
the  matrix F3(g) (p # 0) E R" is negative definite and functions u2i, 
03i axe the  same  magnitude, then the  state x = 0 of system (1.2.7) is 
exponentially stable (on 7 , ) .  

PROOF. Under conditions (1) - (4)(a) function v(t, z, g) is positive defi- 
nite  and decreasing (on 7 , ) .  In  fact, we have the estimate 

Since the functions u3i E K ,  i = 1,2,  . . . , m, there  exists a function 
x E K such that 

x(ll41) L ~zT(II4l)~2(11.ll)* 
Therefore 

We reduce condition (4)(b) of Theorem 2.5.5 to  the form 

D*v(t, x,?/) S x M ( F 3 ) 4 l l 4 l > ,  XM(F3) c 0 
(2.5.8) 

V(t ,x,g) E R x B x R" (V(t,x,y) E 7, x B x R"), 

where T E K is such that 
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Since functions x and  are of the same magnitude,  there exist constants 
ICl > 0 and k2 > 0 such that 

k1x(llzII) I n(ll4l) I k2x( l l4 l ) .  

We get from inequalities (2.5.7) and (2.5.8) 

(2.5.9) 

where X = XM(F3)AG(F2) ,  X < 0. 

D*v(t ,  2, Y) I W ,  5, Y) 
V ( t , z , p # O ) E R x B x R "   ( V ( t , z , y # O ) E 7 , x G x R m ) ,  

In view of the  estimate from the left in (2.5.7) we obtain from (2.5.9) 

2, Y) S 4 t o ,  5 0 ,  Y) exp ( X ( t  - t o ) )  

and 

We designate according to Definition 1.2.3 (vi) 

From (2.5.10) we obtain 

IIx(t;tozo)ll I ax+(IIzoll) exp (P(t - t o ) )  v t  E 7 0 ,  V t o  E Ti. 
This proves Theorem 2.5.5. 

THEOREM 2.5.6. Let the vector-function f in system (1.2.7) be contin- 

(1) a matrix-valued function U E C ( R  x R", Rmx") (U E C(7, x Rn, 
Rmx")) and a vector y E R" such that  the function v(t,  z, y) = 
yTU(t, z)y is locally Lipschitzian in z for all t E R ( V t  E 7 , ) ;  

(2) functions vzi, v3i E KR, i = 1,2, . ,., m, a positive  real  number 
A2 > 0 and a positive integer q;  

(3) m x m matrices HZ, H3 such that 

uous on R x Rn (on 7, x R"). If there exist 

A z l l ~ l l P  I 44 Z,Y) I ~zT(ll~ll>H2(Y>~2(11~11) 

(a) V ( t ,  z, y # 0 )  E R x Rn x Rm (V (t ,  2, p) E 7, x Rn X R") ; 
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Then, if the  matrix H2(y) V (y # 0) E R" is positive definite, the  matrix 
H3(y) V (y # 0) E R" is negative definite and functions vzi, v3i axe  of the 
same magnitude, the state x = 0 of system (1.2.7) is exponentially stable 
in the whole  (on 77). 

PROOF of this Theorem is similar to  that of Theorem 2.5.5 taking  into ac- 
count the fact that under conditions of Theorem 2.5.6 the function w(t, x, y) 
is radially unbounded (on %), Inequality (2.5.10) is replaced by 

We designate P = X1q-l and define function @(A) = A, Xh(H2)g$ (A) 
whenever 11xo1( < A, A = +m. Then 

- L  L. 

This proves Theorem 2.5.6. 

THEOREM 2.5.7. Let the vector-function f in system (1.2.7) be contin- 

(1) an open connected time-invariant neighborhood 0 C N of the  point 

(2) amatrix-vduedfunction U E Cl ( R  x N ,  RmX") (U E C1(z x N ,  

(3) functions $li, $a i ,  $ 3 ~  E K,  i = 1,2, . . . , m, m x m matrices 

uous  on R x N (on 77 x N). If there exist 

x = o ;  

Rmx")) and a vector y E R"; 

Al(y), Az(y>, G(y) and a constant A > 0 such that 

(4) point x = 0 belong to &l; 
(5) w(t,z,y) = 0 on 70 x (OB n BA), where BA = {x: 11x11 < A}. 
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Then, if matrices Al(y), A2(y) and G(y) V (y # 0) E R" are positive 
definite, the  state x = 0 of system (1.2.7) is unstable (on 7,). 

PROOF. Under conditions (1) - (3)(a) of Theorem 2.5.7 it is easy to ob- 
tain for function v(t,  x, y) the estimate 

Here Y E K and Y(l l4l) I ~ T ( l l ~ l l ) ~ l ( I l ~ l l ) ,  c E K and C ( l l 4 l )  1 
~2T( l l . 11~~2(11~11) .  

Since AM(&) > 0, X"A2) > 0, then by estimate (2.5.11) function 
v ( t , x ,  y) is positive and bounded (on 7 , ) .  Hence,  for  every 6 > 0 an 
x0 E 9 n BA and  a a > 0 can be found such that a 2 v(to,xo, y) > 0 
V(y # 0) E R". 

Condition (3)(b) of Theorem 2.5.7 is reduced to  the form 

Here I E K and E S ~ ~ ~ l l ~ l l ~ ~ 3 ~ l l ~ l l ~ ~  
In view  of (2.5.11) and (2.5.12) we have for x(t;to,xo E P 

Hence, it follows that  the solution ~ ( t ;  t o ,  so) must leave neighborhood B 
some time  later.  But because of condition (5) it cannot leave B through 
aP E BA. Consequently, ~ ( t ;  t o ,  ZO) leaves the domain BA and the  state 
x = 0 of system (1.2.7) is unstable (on 77).  

2.5.2 Autonomous systems 

2.5.2.1 Definitions of stability  domains and their  estimates. For a while our 
attention will be focused  on the difference  between the notions "domain" 
and "region". 
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Referring to LaSalle and Lefschetz [98] a “region” is an open connected 
set. However,  Santa10  [l631  defined “domain” as  an open and connected set, 
and “region” as  the union of a domain with some, none, or all its boundary 
points. 

We want to emphasize that, for stability analysis of nonlinear systems, 
only a neighborhood (either open or  closed or  neither open nor closed) of 
the origin is of interest herein. Hahn [66]  used “domain” in this sense. The 
reason for using a neighborhood that can be closed  is that  the domain of 
asymptotic  stability of an equilibrium of a nonlinear system can be closed. 

We accept: 

DEFINITION 2 -5.1, A set D,, D, c R”’, is the  domain of the  equilibrium 
state x = 0 defined by 

where Ds(&)  is such a neighborhood of x = 0 that Ilx(t; O,zo)l( c E 

V t E R+, holds provided only that x0 E D8(&) for every E E R+. 
0 

The next definition has been commonly  used (see Krasovskii [89], Hahn 
[66], LaSalle and Lefschetz [98]). 

DEFINITION 2.5 -2. A set D,, D, C R”, is the  domain of attraction of 
the equilibrium state x = 0 of the system (1.2.10) if and only if it is such 
a neighborhood of x = 0 that 

lim [ Ilx(t; 0, xo),ll: t + +m] = 0 

holds provided only that x0 E D,. 

It is now natural to accept the definition of the domain of asymptotic 
stability of x = 0 in the form. 

DEFINITION 2.5.3. A set D ,  D C R”, is the  domain of asymptotic 
stability of x = 0 of the system (1.2.10) if and only if it is both a neighbor- 
hood of x = 0 and  the intersection of its domain of stability  and domain 
of attraction,  that is, that D = D, f l  D,  is a neighborhood of x = 0. 

The exact determination of the domain of asymptotic  stability has great 
engineering and  theoretical  importance. Unfortinately, we can realize it 
only  in special cases. For these reasons we investigate its  estimate E defined 
as follows. 
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DEFINITION 2.5.4. A set E,  E c Rm, is an  estimate  set (in brief, 
estimate) of the asymptotic  stability  domain D of x = 0 of the system 
(1.2.10) if and only if 

(i) E is a neighborhood of x = 0, 
(ii) E E D 

and 
(iii) E is positively invariant set of the system  (1.2,10), that is, that 

x0 E E implies X(t; 0,zo) E E for every t E R+. 

2.5.2.2 System  description  and  decomposition. Suppose  autonomous sys- 
tem (1.2.10) to  be decomposed into m interconnected  subsystems 

(2.5.13) 
dxi - dt = &(xi) + h(s) 

with  individual  subsystems 

(2.5.14) 

where xi E R"', g = (g1 T T  ,g2, .  . . x = (x?,. . . Besides gi E 
C(R"i,R"i), hi E C(Rn,Rni) and gi(0) ='O, hi(0) = 0 Vi = 1 ,2 , .  I .  ,m. 

dxi 
= gi(zi), ~ ( 0 )  = Z ~ O ,  i = 1 ,2 , .  . . ,m, 

ASSUMPTION 2.5.1.  There  are connected  neighborhoods Ni of = 0 

(i)  motions zi(t,zio) of (2.5.14) are continuous  in (t,zio) E R+ x Ni, 
V i  = 1,2, .  . . ,m such that  both 

where si(0,xio) 3 0 Vi = 1,2, .  . . ,m; 

and 
(ii)  motions s( t ,  xo) of (1.2.10) (or  (2.5.13)) are continuous  in (t ,  xo) E 

R+ x N ,  where N = N I  x N2 x x Nm and s(0,xo)  E 0. 

Let U :  R" + Rmxm be the matrix-valued  function  with  elements uij E 

Let us construct the function 
C(R*,R) for i # j and U i j  E C(Rn,R+) for i = j .  

d x ,  v) = y W ) Y  
by means  vector y E Rm which was used above. We shall use expressions 
of one of Dini derivatives of function U 

D+U(x) = limsup{[U(x(t + 8),z) - U ( x ) ]  8- l :  0 "+ o+), 
D+U(z) = liminf { [V(z( t  + 8 ) , x )  - U(z ) ]  8-1 : 8 + O+} 

with the function U ( x ) .  We shall  denote by symbol D*U(x) the possibility 
of utilizing  any of functions D+U(x) or D+U(z). 
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ASSUMPTION 2.5 -2.  Matrix-valued function U is radially increasing on 
N ,  that is, the following inequality holds  elementwise 

2.5.2.3 A metric aggregation f o rm.  Metric on R" will be introduced by the 
Euclidean norm 1 1  11. A metric aggregation form is determined by 

ASSUMPTION 2.5.3. There  are U E C(Rn,Rmxm),  W E C(Rn,Rm) 
and real number aij such that 

(i) w(z) = 0 for z E N iff z = 0; 

(ii) U ( z )  E C(N,RmXm); 

i ~ m l l l W ( ~ ) 1 I 2  ' " ~mm11w(~)112 ) 
Q11IIW(~)ll2 * * ~ l m l l W ( 4 l l 2  

(iii) D * U ( z ) <  ............................... V z E N .  

THEOREM 2.5.8. Let  Assumptions 2.5.1 -2.5.3 hold. In order for the set 
E (2.5.1 7) to be an  estimate of D it is sufficient that U is positive definite 
on N ,  aij < 0 and uij(x) is radially unbounded  in  case N is unbounded, 
V i , j = l , 2 ,  ..., m .  

PROOF. Positive definiteness of U(z) on N implies positive definiteness 
of uij(z) on N V ( i ,  j )  E [1,m]. The conditions (iii) of Assumption 2.5.3 
proves 

(2.5.18) D*uij(z) 5 aajIlw(z)l12 Vz E N V ( i ,  j )  E [l,rn]. 
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Since Q i j  < 0 and W(%) = 0 iff x = 0 due to (i) of Assumption 2.5.3 then 
Assumption 2.5.1,  (2.5.18) and Assumption 2.5.2 prove that Eij (2.5.17) is 
an  estimate of D V ( i , j )  E [l, m]. Hence E (2.5.17) is also an  estimate of D. 

Let vi: Rn -+ Rm be defined by 

(2.5.19) vi = ( ~ i I , ~ i a , .  . . , ~ i ~ ) ~ ,  vi  = 1 , 2 , .  . . ,m. 

ASSUMPTION 2.5.4. Vector b E R” is elementwise positive, bTvi is 
positive  definite on N and radially  unbounded in case N is unbounded, 
and ki E (0, +W) is such that a set 

(2.5.20) 
= { X :  bTvi(z) < ki}, ki < +W -+ 8K = {z: bTvi(x) = ki}, 

vi E [&m] 

is the largest  connected  neighborhood of x = 0 in N determined by bTvi(x). 

THEOREM 2.5.9.  Let Assumptions 2.5.1,  2.5.3 and 2.5.4 hold. In order 
for the  set E (2.5.21) 

(2.5.21) E = U{K: i E [ l ,m]} 

to be estimate of D it is sufficient that  the  matrix A = ( Q i j )  and  the vector 
b obey elementwise Ab < 0. 

PROOF. From (iii) Assumption 2.5.3 and b > 0 (Assumption 2.5.4) it 
results 

(2.5.22) D*U(x)b 5 Abllw(z)l12 Vz E N .  

The condition Ab < 0, (i) of Assumption 2.5.3 and (2.5.22) prove 
D*U(z)b < 0 elementwise on N ,  x # 0. This  result,  Assumption 2.5.4, 
and (2.5.19) prove that  both bTvi is positive definite and D*U(x)b element- 
wise negative (x # 0) on the closure Ei (2.5.21), V i  E [1,m]. These  facts 
and Assumption 2.5.1 prove that Ei = K is an estimate of D. Since this 
holds for every i E [l,m],  then E (2.5.20), (2.5.21) is an  estimate of D. 

Let k be  the  greatest number or the symbol +W such that  the set Vj 

(2.5.23) 
Vj = {x: bTU(x)b < IC}, IC < +CO + aVj = { X :  bTU(x)b = k} 

is the largest  connected  neighborhood of x = 0 in N determined by b 
and V .  
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THEOREM 2.5.10. Let  Assumptions 2.5.1 and 2.5.3 hold. In  order for 
the  set E = Vi (2.5.23) to be an estimate of D of x = 0 of (1.2.10) it 
is sufficient that U is positive definite on N ,  W(.) = b v ( x ) b  is radially 
unbounded  in case N is unbounded, the vector b is elementwise positive 
and  the  scalar bTAb is  negative  for A = (Qd j ) .  

PROOF. Positive definiteness of U on N means that v(x) = b v ( x ) b  
is positive definite on N. Condition (iii) of Assumption 2.5.3 and b > 0 
imply 

D*v(z) = bTD*U(s)b 5 (bTAb)llW(x)ll V Z  E N .  

These  results, bTAb C 0, the condition (i) of Assumption 2.5.3 and As- 
sumption 2.5.1 prove that E = Vi (2.5.21) is an estimate of D. 

2.5.2.4 A quadratic aggregation form. A generalized quadratic  aggregation 
form is this  setting introduced by 

ASSUMPTION 2.5.5.  There  are U E C(R",RmXm), W E C(R", Rm) 
and  matrices Aij E Rmxm such that 

(i) ~ ( x )  = Ofor z E N iff x = 0; 

(ii) U ( x )  = 0 for x E N iff x = 0; 

w ~ ( z ) A ~ ~ w ( z )  . . . wT(x)Almw(~)  
(iii) D*U(z) 5 '. , . . . . . . . . . , . . . . , . .  . . , . .  . . . . . . . , . . . . . 

w ~ ( z ) A ~ ~ w ( z )  WT(x)AmmW(.) 

THEOREM 2.5.11. Let  Assumptions 2.5.1,  2.5.2 and 2.5.5 hold. In  order 
for  the  set E (2.5.1 7) to be an estimate of D it is sufficient that U is positive 
definite on N ,  uaj(x) is  radially  unbounded  in case N is  unbounded V ( i ,  j) E 
[l,m], and  the  matrix (Aaj + A;) is negative  definite V ( i , j )  E [l,m]. 

PROOF. Let X M ( A ~ ~  + A;) be the maximal eigenvalue of (Aij + A;) 
and 

1 
2 

adj = -X,(Aaj + Az).2.5.24 

Negative definiteness of (Aij + A;) implies aaj < 0 V (i, j) E [l, m]. This 
resullt and  the conditions of Theorem 2.5.11 satisfy all the requirements of 
Theorem 2.5.8, which proves the  statement of Theorem 2.5.11. 
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THEOREM 2.5.12. Let Assumptions 2.5.1, 2.5.4 and 2.5.5 hold. In  order 
for the  set E (2.5.21),  (2.5.22) to be an estimate of D i t  is sufficient that 

the  matrix C [bj(Aij + A;)] is negative definite for all i E [l, m]. 
m 

j=1 

PROOF. Using b > 0 elementwise (Assumption 2.5.4) we derive 

from (2.5.24). Negative definiteness of C [bj(Aij + A;)], and  the condi- 
m 

j=1 

tions (i) and (iii) of Assumption 2.5.5 prove negativeness of bTD*vi(s) for 
every (z # 0) E N V i  E [1,m], due to (2.5.25). This  result,  and Assump- 
tion 2.5.1, positive definiteness of bTvi on N V i  E [ l ,m] prove that E 
(2.5.21),  (2.5.22) is an  estimate of D. 

THEOREM 2.5.13. Let Assumptions 2.5.1 and 2.5.5 hold. In order for 
the  set E = V h  (2.5.23) to be an  estimate of D it is sufficient that 
U is positive definite on N ,  v(.) = bv (z )b  is radially unbounded in 
case N is unbounded, the vector b is elementwise positive and  the  matrix 

C [bibj(Aij + A;)] is negative definite. 
m 

i , j=1 

PROOF. Function v(z), v(.) = b V ( s ) b ,  is positive definite on N due 
to positive definiteness of U ( z )  on N .  Its derivative D*v(z) is negative for 
every (z # 0) E N in view  of (i) and (iii) of Assumption 2.5.5, 

and negative definiteness of C [bibj(Aij + A;)]. These results and As- 

sumption 2.5.1 prove that E = V h  (2.5.23) is an estimate of D. 

m 

d, j=1 

2.5.2.5 Generalized Michel’s  aggregation f a r m .  The aggregation form will 
be generalized by referring to Grujid, Martynyuk and Ribbens-Pavella [57] 
and Michel [l411 as follows: 
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ASSUMPTION 2.5.6. There are U E C(Rn,RmXm), W E C(Rn,Rm), 
W(.) = [ w ~ ( z ) ,  . . . ,wm(x)IT, and vector aij E R8 such that 

(i) Wij(z) = 0 for z E N iff z = 0: 
(ii) the matrix-valued function U(z) is continuous on N ,  U E C(N,  

(iii) the matrix-valued function U ( x ) ,  the vector function W and  the 
R"""); 

vector aij obey (2.5.26) 

W (z)aTIW(x) . . . 201 (x)aT8w<x) 

Wa(+%J(z) ' * 'ws(+:aW(z) 

(2.5.26) D*U(s)  5 . . , . . . . . , . . , . . , . . , . . . , . . . , . . . , , . . Vx E N .  

Let 

THEOREM 2.5.14. Let Assumptions 2.5.1,  2.5.2 aad 2.5.6 hold. In order 
for the  set E (2.5.1 7) and  its closure F to be estimates of D it is sufficient 
that U ( x )  is positive definite  on N ,  uij (x) is radially unbounded in case N 
is unbounded V k = 1,2,. . . ,m, of A1 is non-negative and  the vector E j l  
is negative elementwise V j E [l, m]. 

PROOF. Since U(z)  = [v l (s) ,  v2 (x ) ,  . . . , vm(x)] then (2.5.26) can be 
rewritten  as 

D*U(z) 5 W(%)  [Ab(.), A2w(z), . , . , A"w(x)], 
(2.5.27) 

W ( x )  = diag{w(x), WZ(~), - . .  ,wm(z)}. 

Let j E [l,m] be arbitrarily chosen. Positive definiteness of U ( x )  on N 
implies positive definiteness of u i j ( Z )  on N V (i, j )  E [l, m]. From E j l  < 
0, the definitions of Ej and V j ,  (2.5.27) and Assumption 2.5.6 it follows that 
D*uij(x) < 0 Vx E BEij V i  E [ l ,m]. This  result, Assumption 2.5.1 and 
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Assumption 2.5.3 prove positive invariance of &j with respect to motions 
of (1.2.10). The definitions of Aj  and Ej imply A j  5 Ej elementwise. 
Hence Ejl < 0 implies A j l  < 0. 

Since ai, 2 0, IC # j ,  then  there is positive diagonal Dj = diag{dlj, dzj ,  
. . . , d y j )  such that [ (Aj)TDj+DjAj ]  is negative definite. Hence a function 
v j ,  v 3  (2) = (dj)Tvj (x) for dj  = ( d l j ,  dzj , .  , . , dmj)T, is positive definite and 

D*v'(z) 5 ;; w ~ ( z )  [ (A j )TDj  + DjA j ]  W(.) < 0 
1 

V (z # 0) E N due to negative definiteness of the  matrix [ (Aj)TDj + Dj Aj] 
and  (i) of Assumption 2.5.6. These results, Assumption 2.5.3 together with 
positive invariance of all Eij prove that Eij and F . .  are  estimates of D. 
Since this holds for  every (i, j )  E [l, m], then E a n c E  are  estimates of D 
of X = 0 of (1.2.10). 

Let 

Aj = (ajl, aj2, .  , c ~ j , ) ~ ,  b = diag(b1, b 2 , .  . . , bm), 

A(b) = (ATb, ATb, . . . , A,b) T T  . 
THEOREM 2.5.15. Let  Assumptions 2.5.1, 2.5.4 and 2.5.6 hold. In order 

for the  set E (2.5.20),  (2.5.21) to be an  estimate of D it is sufficient that 
the vector ATb is negative elementwise V i  E [l, m]. 

PROOF. Since b > 0 (Assumption 2.5.4) then (2.5.19) and (2.5.27) yield 
(2.5.28) due to (iii) of Assumption 2.5.6, 

(2.5.28) 
bTD * v1 ( X )  W (z) bTA1w(z) 

D*U(z)b= (.......) 5 ( ...... .) '#ZEN. 

Elementwise negativeness of ATbi V i  E [l,m], (i) of Assumption 2.5.6 and 
(2.5.28) imply bTD*vi(z) < 0 V(z # 0) E N .  Hence, Assumption 2.5.1 
and Assumption 2.5.4 prove that E (2.5.20),  (2.5.21) is an  estimate of D.  

THEOREM 2.5.16. Let  Assumptions 2.5.1 and 2.5.6 hold. In order for 
the  set E = V h  (2.5.23) to be an estimate of D it is sufficient that U ( x )  is 
positive definite on N ,  v(.) = bTU(z)b is radially unbounded in  case N is 
unbounded and  the  matrix  [AT(b)B + BA(b)] is negative definite for the 
elementwise positive vector b. 

bTD*v,(x) %2(s) bTA,w(z) 
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PROOF. Theorem 2.5.16 is  proved  in the same way as Theorem 2.5.13. 
m 

In order to achive this the  matrix C [bdbj(Aij + A;)] should be replaced 
i,j=l 

by the matrix  [AT(b)B + BA@)] in the proof of Theorem 2.5.13. 

2,5.2.6 GrujiG$djak)s aggregation f o m .  The aggregation form can be ap- 
plied to matrix-valued function aggregation of (1.2.10) as follows: 

ASSUMPTION 2.5.7. There  are U E C(Rn, R"""), W E C(Rn,Rm), 
and vectors aij E Rm such that 

(i) W(.) = 0 for x E N iff x = 0; 

(ii) U ( x )  E C(Rn,  Rmxm): 

( 
azur(x) . . . aTmw(x) 

azlw(x) . . . az,w(x) ) (iii) D*U(z) 5 ........................ V z E N .  

THEOREM 2.5.17. Let Assumptions 2.5.1, 2.5.3 and  2.5.7hold. In or- 
der for the  set E (2.5.17) and  its closure F to be estimates of D it is 
sufficient that V ( z )  is positive definite on N ,  U i j ( x )  is radially unbounded 
in case N is unbounded V ( i , j )  E [l,m], off-diagonal element aii (k # i, 
k,i = 1,2,, . . ,m) of Aj  is nonnegative and  the vector Ejl is negative 
elementwise V j E [l,m]. 

PROOF. The condition (iii) of Assumption 2.5.7 can be set in the form 

(2.5.29) D * U ( x )  5 [A1w(x), A2w(x), , . . , Amw(s)] Vx E N .  

We consider now d ( x )  = lTd(s). Positive definiteness of V ( x )  on N 
implies positive definiteness of all uij (x), hence of all d ( z ) ,  on N .  Radial 
unboundedness of all U i j  (x) implies radial unboundedness of all wj  (x) in case 
N is unbounded. Assumption 2.5.2 implies radial increasing of all d ( s ) .  
From (2.5.29) and (i) of Assumption 2.5.7 it follows that D * d ( x )  < 0 
V (x # 0) E N ,  V j E [1,m]. The definition of Ej and Ejl < 0 prove 
positive invariance of Eij V (i, j )  E [l, m]. These results and Assumption 
2.5.1 prove that  both E (2.5.17) and F are estimates of D. 

THEOREM 2.5.18. Let Assumptions 2.5.1, 2.5.4 and 2.5.6 hold. In order 
for the  set E (2.5.20))  (2.5.21) to be an  estimate of D it is sufficient that 
the vector ATb is negative elementwise V i  E [l, m]. 
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PROOF. Since b > 0 (Assumption 2.5.4) then (2.5.19) and (2.5.29) in 
view  of (iii) of Assumption 2.5.7 yield 

(2.5.30) D*U(x) b = ( . . . . , . .  . . .) 5 ( .  . . . . . . . .) Vs E N .  

Now, A T b  < 0 elementwise, (i) of Assumption 2.5.7 and (2.5.30) imply 
D*vi(x) < 0 V(z # 0) E N for vi(.) = b v i ( x )  V i  E [l,m]. This  result, 
Assumption 2.5.1 and Assumption 2.5.4 prove that E (2.5.20),  (2.5.21) is 
an  estimate of D. 

b%*v1 (x) b T A l w ( x )  

b%*v,(x)  bTA,w(x) 

THEOREM 2.5.19. Let  Assumptions 2.5.1 and 2.5.7 hold.  In  order for 
the  set E = v k  (2.5.23) to be an estimate of D i t  is sufficient that U ( x )  is 
positive  definite on N ,  v(.) = b T U ( z ) b  is radially  unbounded in case N is 
unbounded and the vector AT(b )b  is negative elementwise for  the element- 
wise positive vector b. 

PROOF. Since U ( x )  is positive definite on N for g = b E Rm, then 
'U, v = b T U ( x ) b ,  is also positive definite on N .  From b > 0 and (iii) of 
Assumption 2.5.7 we derive 

D*v(x) 5 b T A ( b ) w ( x )  Vx E N 

so that 
D*v(e) < 0 V(z # 0) E N 

due to (i) of Assumption 2.5.7 and AT(b )b  < 0. These  results  and Assump- 
tion 2.5.1 prove that E = v k  (2.5.23) is an  estimate of D .  

2.5.2.7 L-aggregation form. L-aggregation form is being introduced in this 
framework by 

ASSUMPTION 2.5.8. There  are U E C(Rn,RmXm), W E C(Rn, Rm), 
b E R", b = (b l ,   b2 , .  , . , bm)T and A E Rmxm such that 

(i) Ilw(s)II = 0 for x E N iff z = 0; 

(ii) U ( x )  E C(Rn, Rmxm);  

(iii) v(%) = b T U ( z ) b  obeys 

D*v(x) 5 wT(z)(ATB + BA)w(z) Vz E N 

for B = diag (b l ,   b2 , .  , . , b,). 
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THEOREM 2.5.20. Let Assumptions 2.5.1 and 2.5.8 hold. In  order for 
the  set E = vk (2.5.23) to be an estimate of D it is sufficient that U ( x )  is 
positive definite on N ,  W(.) is radially unbounded in case N is unbounded 
and  the  matrix (ATB + BA) is negative definite. 

PROOF. The function U(z)  is positive definite on N due to positive 
definiteness of V ( z )  on N .  Negative definiteness of (ATB + BA) and 
conditions (i)  and (iii) of Assumption 2.5.8 imply D*w(z) < 0 V (z # 0) E 
N .  These results and Assumption 2.5.1 prove that E = V k  (2.5.23)  is an 
estimate of D. 

2.6 On Multistability of Motion 

AS is well known, stability analysis of nonlinear systems is made under the 
assumption of the “equality” of all solutions coordinates with respect to 
dynamical properties as  it is accepted in classical papers by Liapunov [l011 
and his adherents.  The exeption is made for stability with respect to a 
part of variables. In the problem, phase vector of variables is divided into 
two subvectors, the norm of one of which  is said to be “nonincreasing” to 
infinity for the finite time. 

2.6.1 General  problem on multistability 

A large-scale system of dimension n is  governed  by 

(2.6.1) 

where z( E R”’, t E 7 , ,  7, = [T, +m), r E R, to E X, X C R, f i :  7, x 
Rnl x - x R”* + Rni and  it is assumed that f d  ( t ,  11 , . . . , z8) = 0 for  all 
t E 7, iff z1 = x2 = = z8 = 0. Together with (2.6.1) we shall show  in 
vector notion the system (1.6.1) 

(2.6.2) 

8 

where z E R”, n = C ni; f :  7, x R” + R”, zo = (%To, ..., zTo) . It is 

clear that f ( t ,  z) = 0 for all t E 7, iff z = 0 . 
T 

i=1 
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DEFINITION 2.6.1.  System (2.6.1) is called rnultistabilitgl (on 7,) iff its 
zero solution (s?, . . . , s:)' = 0 is stable in some type (on 7 , )  and  attractive 
(on 7 , )  with  respect to groups of variables {cc:}, i = 1,2, .  . .,S (with 
respect to  totality of groups of variables {s?, . . . , sT}, 1 < S). 

REMARK 2.6.1.  When  multistability of solution s = 0 of (2.6.1) is 
discussed with  respect to all groups of variables {x;, . . . , sT} system (2.6.2) 

is defined in  domain B(p) = { si : C 11sill < p }  or in Rn as  usual. 
i 

REMARK 2.6.2. If multistability of solution z = 0 of (2.6.1) is discussed 
with  respect to a group of variables {z:,. . . , s?}, l < S then  it is sufficient 
to define system (2.6.1) in the domain 

~ ( . ) ( p )  = {x?: 1 1  (x?, . . . ,snTll < p } ,  p = const, 

D(.,(P) = {x?: 0 II (Z ; r+ l , " . ,G)T l l  < +m}, 

here  solution s( t ,  S )  = ($(t, S ) ,  . . . ,zT(t, of the  system (2.6.1) is as- 

sumed to  be continuable  along (zz1,. . . ,sa , i.e.  solution (s:, . . . , 
is definite for all t E 7, for which 1 1  (z?(t), . . , sT(t))'II 5 p. 

The  construction of sufficient (and necessary)  conditions  ensuring mul- 
tistability of zero solutions of (2.6.1) in terms of Definition 2.6.1 makes the 
general  problem on multistability of motion. 

T T 

2.6.2 On the relationship of the definition of multistability with 
the other notions of stability of motion 

We shall recall the well known definition with reference to system (2.6.1). 

DEFINITION 2.6.2.  The zero solution 21 = 22 = . .-  = ss = 0 of system 

(i) stable  relatively Z if for  any E > 0 and to E 5 there exist S(t0, E )  > 
0 such that C Ilzi(t;  to, xo)ll < E for all C llaaoII < S and all t 2 to; 

(ii) asymptotically  stable  relatively 5 if the conditions of Definition 2.6.2 

(2.6.1) is 

8 8 

i i 

8 

(i)  are satisfied and C Ilzi(t;to,zo)l( -+ 0 as t + $03. 
i= 1 

Having compared Definition 2.6.1 with Definition 2.6.2, we see that if 
all  subvectors xi in system (2.6.1) are homogeneous with  respect to  the 
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dynamical  properties  and in Definition 2.6.1 of stability  one  Euclidean  norm 

llxll = C 11xill is used, Definition 2.6.1 of multistability  degenerates  into 

Definition 2.6.2 of stability in the sense of Liapunov of the zero solution of 
the system  (2.6.1) iff 5 = R. 

8 

i= 1 

(i) 

(ii) 

The 

DEFINITION  2.6.3.  The zero solution of the system (2.6.1) is 

stable relatively the subvectors X I ,  . . . , xk ( k  < S) and respect to  
5, if for every E > 0 and t o  E 5 there exist S1 ( t o ,  E )  > 0 and 

& ( t o , & )  > 0 such that C Ilxi(t;to,xio)ll C E for C llxioII < 61 

and C llxi0II < 62 for all t 2 to;  

asymptotically stable with respect to  the subvectors X I , ,  . . ,xk (k < 
S) relatively 5 if under  conditions  (i) of Definition 2.6.3 the relation 

k k 

i=l i=l 
8 

i=k+l 

k 

i=l 
C IIxi(t;to,aio)ll + 0 holds for all t + +CO. 

comparison of Definition 2.6.1 and 2.6.3 shows that if the subvectors 
x i ,  i < k are homogeneous relatively the dynamical  properties  and the 
solution of the system (2.6.1) is continuable  relatively X k + l , .  . , , x 8 ,  the 
Definition of multistability  with  respect to a part of the variables implies 
Definition 2.6.1. 

According as Movchan [147], Lakshmikantham and Salvadori [93], Lak- 
shmikantham, Leela and  Martynyuk [94] we consider the classes of functions 

M = { p  E C(R+ x Rn, R+): inf p( t ,x )  = 0}, 

MO = { p  E M :  infp(t,x) = 0 for all t E R+}. 
( t + )  

X 

DEFINITION  2.6.4. System (2.6.1) is 

(i) (po,p)-stable with respect to  Z, if for any E > 0 and to  E 5 there 
exists a positive function S ( t o , E ) ,  being continuous  in t o  E Z for 
every E > 0 and such that po(to,xo) < S implies p( t ,x ( t ) )  < E for 
all t 5 t o ;  

(ii) asymptotically (PO, p)-stable with respect to 5 if under the conditions 
of Definition 2.6.4 (i) p( t ,x ( t ) )  + 0 as t + +CO. 

The comparison of Definitions 2.6.1 and 2.6.4 yields that  the Definition 
2.6.4 provides the general  characteristics of the dynamical  properties of the 
subvectors x i ,  i = 1 ,2 ,  , . . , S, without  distinguishing between them. 
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Let us consider the 

DEFINITION 2.6.5. 

system (2.6.1) and introduce the measures 

System (2.6.1) is multistable  with respect to the  mea- 
sures (po,, , , , ps-l) relatively 5, iff it is (PO,. . . , pk)-stable in some type 
(on Z), k C S - 1. 

Thus,  the examination of Definitions 2.6.2 - 2.6.5 indicates that only Def- 
inition 2.6.5 is a generalization of Definition 2.6.1, while the rest of the 
definitions follow  from it. 

2.6.3 Multistability investigation 

In order to apply the method of matrix Liapunov function to  the problem 
in question, we introduce classes of matrix-valued function with particular 
properties. 

Together with (2.6.1) we consider a two-indexed system of functions 

(2.6.3) U(*, x) = [v& 4 1  , i, j E P ,  SI 

with vai E C(% x Rn, R+) and vij E C(% x Rn, R) for i # j E [l, S]. 

The notion of the definiteness of an auxiliary function (that is  used in 
the direct Liapunov's method) is a main one, since this behaves as  a scalar 
function having all norm properties. 

DEFINITION 2.6.6. The matrix-valued function U: %xB(~,~)  x D ~ + l , ~ )  + 

(i) positive  definite on G, r E R, with respect to  variables (x:, . . . , x 3  
iff there exist time-invariant connected neighborhoods N * ,  N* C 
R' of z = 0 ,  a vector cp E R;, cp > 0 and  a scalar positive definite 
in the sence of Liapunov function W :  N* + R+ such that 

R E X E  is: 

(a) U(t,z)  E C (% x N* x D ( ~ + I , ~ ) ,  R""); 

(c> cpTU(t, Z)cp 2 WCZT,,, for all ( 4  5 # 0, cp # 0) E z x  

(b) U ( t ,  x) = 0 for  all t E 7, and (x?, . , . , x 2  = 0; 

N* x D(l+l,S) x R;, q , l  = (S:, ' - * > 4 ;  
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(ii) positive  definite on  7, x G* with respect to  variables (x?, . , , , x 3  
if conditions of Definition 2.6.6 (i) hold for B(1,,) = G*; 

(iii) positive  definite in the whole (on 7 , )  with  respect to variables (x:,) 
if condition of Definition 2.6.6 (i) hold for = R,; 

(iv) negative  definite (in  the  whole) on 7, x B(1,l) (on 7 , )  with respect 
to  variables (z~,), iff (-U) is positive definite  (in the whole) on 
7, x BQJ) (on 7 , )  with  respect to variables (x : l ) .  

PROPOSITION 2.6.1.  The  matrix-valued  function U:  7, x R" + RBx8 is 
positive definite on 7, with respect  to (x:, . . . , x a ,  iff i t  can be represented 
in the form 

(2.6.4) c p T W  4 c p  = cpTU+(t, 4 c p  + W(& ' * ' , 4 ,  

where U+ (t, x) is positive semi-definite with respect  to  all variables (x?, . . . , 
x> and W is  a  function  explicitlyindependent o f t  E 7, and positive definite 
with respect  to variables (x:, . . . , x3 ;  1 < S. 

PROOF. Necessity. Let the matrix-valued  function U ( t ,  x) be (x?, . . . , 
x 3  positive definite  on 7 , .  Then, by Definition 2.6.6 there  exists a positive 
definite in the sense of Liapunov  function tu($, . . . , x 3  such that on the 
domain 7, x x DQ+~,#)  x R$ condition (i) of Definition 2.6.6 is 
satisfied. We introduce the function 

cpTU+(t, z)cp = c p w ,  x)cp - W<.:,,) 

which, is non-negative  by condition 2.6.6 (c). Hence the function cpTU(t, z)cp 
can  be  presented  in the form (2.6.4). 

Suficiency. Let equality (2.6.4) be  satisfied, where cpv+( t ,x)p 2 0 
and tu(z?,,) is a positive definite function  with  respect to  the variables 
(x?, . . . , $3, Then equality (2.6.4) implies 

c p T w  x)cp - w(4-J) = cpTU+(t, 4 c p  2 0. 

Hence condition 2.6.6 (c) for the function cpTU(t,z)cp holds. This proves 
the Proposition 2.6.1. 

PROPOSITION 2.6.2.  The  matrix-valued  function U :  7, x R" -+ RBx8 is 
positive  definite on 7, with respect  to variables (x?, . . . , x 3  (in the whole) 
iff there  exist  function a E K ( K R )  such that 

(2.6.5) c p T W  2 a ( I I (q1)  T T  II) 
in the domain 7, x N* X D ( I + ~ , ~ )  X R;. 
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DEFINITION 2.6.7. The matrix-valued function U: 7, x R" + RaXs  is 
called 

(i) decreasing on 7, with  respect  to  variables (x:, , . . , x 3  iff there ex- 
ists time-invariant connected neighborhood h/" E R' of x = 0 ,  
a positive definite function 202 : N* + R+ and a vector cp E R;, 
cp > 0 such that 

(a) conditions (a), (b) of Definition 2.6.6 hold and 

(b) cpTU(t,x)cp 2 WZ(~:,) for all (t ,  x # 0, cp # 0) E 7 , x  
N* x D(b+l,s) x R;. 

PROPOSITION 2.6.3.  The matrix-valued function U :  7, x R" + REX"  
is decreasing on 7, with respect to variables (x?, . , . , x a ,  iff it can  be 
presented in the form 

where U-( t ,x)  is negative semi-definite with respect to dl of variables 
(x:, . . , , x 3 ,  and w 2  is independent of t E 7, positive definite function 
of variables (x?, . . . , x 3 ,  I < S. 

PROOF. Repeating the same argument as in Proposition 2.6.1, one can 
show there is a matrix-valued function V ( t ,  x) for  which the condition 
(2.6.6) holds. 

PROPOSITION 2.6.4. The  matrix-vdued function U: 7, x R" -b R S X a  
is decreasing on 7, x N* with respect to variables (xy,. . . , x 3  iff there 
exist a function b E K[O,~J,  where a = s ~ p { x ? ~  E N * }  and estimate 

holds for d l  ( t , z )  E 7, x h/" x D(,+l,a) x R;. 

Let U E C ( X  x R", Raxa) .  The right-hand upper Dini derivative of 
functions U ( t ,  x) along solutions of the system (2.6.1) are defined by 

(2.6.8) D+U(t,Z) = [D+wij(t,z)] vi ,  j E [l,s], 

where 
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2.6.4 Principle of comparison  and multistability 

The investigation of multistability of the solution of systems of differential 
equations (2.6.1) via the comparison  technique assumes the presence of the 
corresponding comparison theorems. 

2.6.4.1 The functions of SL-class. All scalar  functions of the  type 

(2.6.9) v(t ,  z, a) = aTU(t, z)a,  

where U E C(7,  x R", R,'') are  attributed  to  the class SL. 
The vector a can  be defined as 

(i) a = y E R8, y # 0; 
(ii) a = E C(R", R:), $(O) = 0; 

(iii) a = B E C(7 ,  X R", R8)  B(t, 0 )  = 0 ,  V (t ,  z) E 7, X N ;  
(iv) a = 'p E R$, 'p > 0. 

Applying  function  (2.6.9) and quasimonotone  nondecreasing  in U for each 
t function g :  g E C(R$, R), g ( t , O )  = 0 we shall  formulate the following 
comparison  result, 

PROPOSITION 2.6.5. Let the  function U :  7, x R" "t RBXs be locally 
Lipschitzian in x. Suppose that  the  function 

(2.6.10) 'p*D+U(t, $)'p D+v(t, z, 'p) 

and the  function g E C(R+ x R" x R+, R) such that 

holds for ( t ,  z, 'p) E R+ x R" x R;. Let z( t )  = z(t;  t o ,  20) be a solution of 
(2.6.1) existing on [ to ,  m) and r ( t ;  t o ,  zo, ug) be the maximal solution of 

(2.6.11) 

existing for t 1 to .  Then v(to,zo, 'p) 5 uo implies 
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PROOF is similar to  the proof of Proposition 2.4.3. 

COROLLARY  2.6.1. If all conditions of Proposition 2.6.5 are satisfied 
and function g ( t ,  z, v )  satisfies either of the conditions 

Cl. g ( t ,  z, v)  = 0 for all t 2 t o ;  
CZ. g(t ,z,v)  = $TA$, where $ E C(Rn, R;), $(O) = 0, A is a con- 

stant  matrix s x s; 
CS. g(t ,z,v)  = wTBw + r ( t ,  w,(P),  where W E C(Rn, R;), B is a 

constant  matrix s x S, T E C(R+ x RI; x RI;, R) is a polynomial 
in  power  higher than two; 

C4. g( t ,z ,v)  = W ( t , w , c p )   + r * ( t , ~ , c p ) ,  where W E C(R+ x R; x 
R$,  R) is atleast  a second-power polynomial, and T* is the same 
polynomial as in case CS; 

CS. g ( t ,  z, v) = wT(z> [ATB + BA] W ( % ) ,  where W E C(R*, R"), A E 
Rsxs, b E R", B = diag ( b l , .  . . , b e ) ,  then  estimate (2.6.12)  is sat- 
isfied, and  the investigation of comparison equation (2.6.11) is sim- 
plified. 

2.6.4.2 The functions of VL-class. All vector functions of the  type 

(2.6.13) L(t ,  S, b )  = AU(t, z)b, 

where U E C(7,  x Rn, R""), A is a constant  matrix s x 8 ,  and vector b 
is  defined according to (i) - (iv) similarly to  the definition of the vector a. 

For any function U ( t ,  S), which is associated with system (2.6.1) we shall 
define the function 

(2.6.14) D+L(t, z,cp) = AD+U(t, z)cp 

for all (t,z,cp) E 7, x R" x R;. 

PROPOSITION 2.6.6. Let there'&ist 

(1) a matrix-valued function U E C(% x R", RsXs) such that U(t,z)  

(2) a constant S x s matrix A, a vector cp E RI; and vector y E R" 
is locally Lipschitzian in x; 

such that 

Y T W  E ,  cp) 2 a(llzll), 

where a E K ;  
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(3) a vector function G E C(7, x Rn X R;, R") such that  G(t, z, U )  is 
quasimonotone nondecreasing in U for every t E R+ such that  the 
estimate 

holds; 

w(t; to, 'WO, 20) be the maximal solution of 
(4)  let z(t;to,zo) be any solution of (2.6.1) existing on [to, 00) and 

(2.6.16) 
- du = G(t,z,U), u(to) = W O  2 0 
dt 

existing for t 2 to. Then L(to,zo, 9) W O  implies 

PROOF. It is  proved in a standard way by the comparison method (see 
e.g. Lakshmikantham, Leela and Martynyuk [94]). 

COROLLARY 2.6.2. Let conditions (1) and (2) of Proposition 2.6.6  be 
satisfied and in conditions (3) and (4) the function G E C(7, x R", R"). 
Then,  estimate (2.6.17) is satisfied for the maximal solution w*(t;to,wo) of 
the comparison system 

(2.6.18) - = G(t,u), u(t0) = uo 2 0. 
du 
dt 

COROLLARY 2.6.3. Let conditions (1) and (2) Proposition 2.6.6 be sat- 
isfied and the function G(t, z, L )  have the form 

where P = bij] is a S x 8 matrix with elements pij 2 0 (i # j) and 
m E C(7, x R", R8) is quasimonotone in L and 

uniformly in t 2 to. 
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Then, estimate (2.6.18) is true for the maximal solution w(t;  to,wo) of 
the comparison system 

- = Pu + rn(t,u), u(t0) = 200 2 0. 
du 
dt 

2.6.4.8 The functions of ML-class. In order to formulate the theorem of 
comparison with matrix-valued Liapunov function relatively to arbitrary 
cone K in space R" we shall need  some auxiliary information. Following 
Lakshmikantham, Leela and Martynyuk [94] a proper subset K C R" is 
called a cone if the following properties hold: 

(2.6.19) 
X K C K ,  X > O ,  K + K c K ,   K = T  

K n { -K }  = (0) and  int K # 0 

where R denotes the closure of K ,  int K is the interior of K.  We shall 
denote by 8K the boundary of K.  The cone K induces the order relations 
on Rn defined  by 

(2.6.20) 
z s y  iff y - x ~ K  and 

z C y  iff y - z c i n t K .  

K 

K 

The set K* defined by K* = {p E R": p(z) > 0 for all z E K}, where 
p(s) denotes the scalar product (p, a) ,  is  called the adjoint cone and satis- 
fies the properties (2.6.19). 

We note that K = (K*)* ,  z E int K iff p(z) > 0 for all p E KO+ and 
z E 8K iff p(z) = 0 for  some p E K,, where KO = K . -  (0). 

We can now  define as quasimonotone property  a function relative to  the 
cone K .  

A function f E C(R", R") is said to be quasimonotone nondecreasing 

relative to K if z 5 y and p(z - y) = 0 for  some p E K,* implies 

If f is linear, that is, f(z) = As where A is an n by n matrix,  the 
quasimonotone property of f means the following: z 2 0 and p(z) = 0 
for some cp E KO+ imply p(Az) 2 0. 

If K = R?, the function f is said to be quasimonotone nondecreasing if 
z C y and zi = yi for some i, 1 5 i 5 n, implies fe(z) 5 fi(y). 

K 

cp (f (X) - fb ) )  5 0. 
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We consider the system 

(2.6.21) 

where g E C(R+ X Rn, R"), g ( t , a )  is a locally Lipschitxian in z. Let 
zl(t; t o ,  zlo), z2(t;  t o ,  azo) be solutions of the system (2.6.21) with the initial 
conditions ( t o ,  210) and ( t o ,  2 2 0 )  respectively. 

DEFINITION 2.6.8. We shall say that system (2.6.21) has monotone 
(strictly) solutions, if 

imply the inclusions 

for all t 2 to respectively. 

DEFINITION  2.6.9. System (2.6.21)  is said to belong the class Wo(K) 
(W8(K))  if ( z  - y) E 6K, z # y implies the inequalities 

respectively. 

DEFINITION  2.6.10. The operator p ( t ,  z )  is positive on J1 x D if z E D 
implies p ( t ,  z )  2 0 for all t E J1, with respect t o  the cone K.  

We shall formulate now a basic Proposition of the principle of comparison 
in the space, ordered by an  arbitrary cone. 

PROPOSITION 2.6.7. Let 

(1) there exists a function g ( t , z )  E Wo(K) continuous in open ( t , ~ )  
set J1 x D and satisfying the uniqueness conditions of solutions 
z ( t ;  to ,  zo) of system 

(2.6.22) 

(2) there exists a function h(t, y) continuous on  open (t, y) set J2 x D C 

J1 X D, JZ E J1 such that S ( t ,  2/) - h(t, Y) = ~ ( t ,  Y), where ~ ( t ,  Y) 
is a positive operator on set JO x D,  where Jo = J1 n J2. 
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Then satisfy the relation 
z ( t )  - Y(t) E K 

whenever zo - yo E K,  where y(t) is an arbitrary solution of the system 

(2.6.23) - = h(t,Y), Y(t0) =yo. dY 
dt 

PROOF. Together with system (2.6.21) consider a weakly perturbed sys- 
tem 

(2.6.24) - = g( t ,  z )  + E ( Z ,  U*)U, 
dz 
dt 

where U E K, U* E K* and E E ( O , E * ) ,  the solution z ( t , ~ ) . =  z( t ;  tO,zo,E) 
of which exists on [to,T], where T E JO and lim z( t ,e)  = z ( t )  uniform on 

 to,^), where z ( t )  is a solution of system (2.6.22). Let z ( t , ~ )  - y(t) 4 K 
for all t E [to, 7). Then  there exists a t* E [ to ,  7-1 such that 

E+O 

~ ( t ,  E )  - y(t) E K for all t E [ t o ,  t*) 

and z ( t ,E )  - y(t) 4 K for the values t > t* arbitrarily close to t*. For 
t = t* the inclusion 

(2.6.25) Z ( t * , E )  - y(t*) E aK 

and  the condition 

are satisfied. For the function m(t,E) = z ( t , a )  - y(t) we make the differ- 
ential  equation, in view of the system of equations (2.6.22) and (2.6.23). 
Namely 

By condition (2) of Proposition 2.6.7 

(2.6.27) 
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where p ( t ,  y) is a positive operator. By conditions (1) and (2) of Proposition 
2.6.7 p(t*,y) 2 0 and g ( t * , z )  - g ( t * ,  y) 2 0 whenever ( z  - y) E 8K. The 
last condition is satisfied due to (2.6.25) and (2.6.26). The item E ( Z , U * ) U  

is also non-negative, since U E K and U* E K*. 
We confront with the set of point m from the boundary of cone K the 

indicatory function 6(- 1 K), setting 

6(m I K)  = 
i f m e  K; 

{";m, i f m $ K .  

For the indicatory function 6(m I K) we compute the subgradient r (m)  
and scalar multiply the right and left side of the equation by r(m). We get 

(7, %) < -a, a = const > o 

at point t = t u .  Therefore, m(t,E) will not leave the cone K for  all t > t* 
as E + 0. The proof  is complete. 

2.6.5 The system (2.6.1) analysis for S = 2 

For the system (2.6.1) we construct a matrix-valued function 

(2.6.28) U ( t ,  z) = [v&, z)] , i, j = 1,2, 

where z E RNo, No = n 1  + 122 and vij is  locally Lipschitzian in z. With 
the aid of vector y E R2, y # 0 we construct a scalar function 

Function (2.6.29) allows us to investigate multistability of the system under 
definite conditions. 

2.6.5.1 Direct  application of matrax-valued junction. Suppose that system 
(2.6.1) is  defined  in domain 

and  the following stability definition holds true for it. 
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DEFINITION 2.6.11. System (2.6.1) is  called multistable (on 7 , )  if its 
zero solution (z~, z a T  = o is 

(i) uniformly (x:, 23-stable with respect to x; 
(ii) uniformly asymptotically zT-stable with respect to x. 
THEOREM 2.6.1. Let vector-function f = (fT,faT in (2.6.1) continu- 

"Ous on R x & ( p )  x & ( p )  on ( 7 ,  x & ( p )  x & ( p ) ) .  If there exists 

(1) open connected time-invariant neighborhood G of z = 0 ; 
(2) matrix-valued function U ( t ,  x) is 

(a) positive definite on G (on 7, x G); 
(b) decreasing on Q (on 7, x G); 

(3) matrix-valued function D+U(t, z) is 
(a) negative semi-definite on R x G (on 7, x G); 
(b) 2:-negative definite on R x G (on 7, x G). 

Then  system (2.6.1) is multistability (on 7 , )  in the sense of  Definition 
2.6.11. 

PROOF. If conditions (l), (2), (3)(a) of the Theorem 2.6.1 hold  for  sys- 
tem (2.6.1) with function (2.6.29), then all hypotheses of Theorem 2.5.1 are 
fulfilled and  state (x = 0) E RNo is  uniformly stable (on 7 , ) .  

If conditions (l), (2), (3)(b) of Theorem 2.6.1 hold  for system (2.6.1) 
with function (2.6.29), then all hypotheses of Theorem 2.5.3 are fulfilled 
and  state (x = 0) E RNO is uniformly asymptotically zz-stable (on 7 , ) .  

The Theorem 2.6.1 is proved. 

Further we suppose that multistability of (2.6.1) for S = 2 is investigated 
in the domain 

(2.6.31) 7, x & ( p )  x D2, D2 = {z2: 0 < 11x211 < +m}. 

The next result can be  easily  verified  (see  e.g. Martynyuk [122]). 

THEOREM 2.6.2. Let vector function f = (fr,faT in (2.6.1) be  con- 

(1) an open connected time-invariant neighborhood G of (z = 0) E R"'; 
(ii) matrix-valued function U ( t ,  z) is 

tinuous on R x & ( p )  x D2 (on 7, x & ( p )  x &). If there exists 

(a) z7-positive definite on G (on 7, x G); 
(b) decreasing on G (on 7, x G); 
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(c) x?-decreasing  on 8 (on 7, x 8); 
(3) matrix-valued function D+U(t,  x) is 

(a) negative semi-definite on R x 8 (on 7, x 8); 
(b) x?-negative definite on R x 8 (on 7, x 8); 
(c) negative definite on R x 8 (on 7, x 8). 

Then, respectively 

(a) the conditions (l), (2)(a) and (3)(a) axe sufficient for stability of 
state ( x  = 0 )  E RNo of (2.6.1) (on 7 , ) ;  

x?-stability of state ( x  = 0)  E RNo of (2.6.1) (on T) ;  

xT-stability of state ( x  = 0)  E RNo of (2.6.1) (on 7 , ) ;  

(b) the conditions (l), (2)(a),  (2)(b) and (3)(a) axe sufficient  for  uniform 

(c )  the conditions (l), (2)(a) and (3)(c) are sufficient  for  asymptotic 

2.6.5.2 The  application of matrix-valued  Liapunov function via transition 
to vector function. Basing on matrix-valued function U ( t ,   x )  and vector 
y E R8, y # 0, S = 2 we construct  a vector function 

where A is a constant 2 by 2 matrix. Consider a system of comparison 

(2.6.33) 
du 
dt 
- = G(t,u),  u(to) = uo 2 0 

g l ( t , O )  = g2(t,O,0) = 0 for all t E 7 , .  

DEFINITION 2.6.12. A comparison system (2.6.33) is called multistable 
(on X,), if its zero solution is 

(i) 211-stable with respect to 7 , ;  
(ii) uniformly uz-stable with respect to 7 , .  
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THEOREM 2.6.3. Let vector function f = (fiT,faT in (2.6.1) be  con- 

(1) a matrix-valued function U :  7, x & ( p )  x D2 + Rax2, vector 
9 E R2, y # 0 and a constant matrix A 2 by 2 such that com- 
ponents Li(t, x, v), i = 1,2 of vector function (2.6.32) are locally 
Lipschitzian in x and satisfy  the conditions 

tinuous on R x & ( p )  x D2 (on 7, x & ( p )  x &) .  If there exists 

(a) Ll(t,O,y) = 0 V t  E R (t E 7 , ) ;  

(b) a(llz1II) L J52(t, x, 9) 5 b ( l l ~ l l l >  + bl (Ll(t,Z,V)) 
for all (t, x) E 7, x & ( p )  x D2 n BE(q) when  each 
o < r ] < p ;  

(2) a vector function g E C(7, x R:, R2) ,  G(t,u) is quasimonotone 
nondecreasing with respect to U for the components of  which 

(a) D+Ll(t, x, 9) L 91 ( 4  L1 (t ,  2, 91, 0) 
hold for all (t ,  x) E 7, x B1 ( p )  x D2 , and 

(b) D+L2(t, x,9) 5 92 (t, L1 ( t ,  5, ~ h ( t ,  5, Y)) 
hold for all ( t ,  x) E 7, x B1 ( p )  x D2 n Bf(q) for o < q < p; 

(3) zero solution of system (2.6.33) is multistable (on 7,)in  the sense 
of Definition 2.6.12. 

Then the system (2.6.1) is x?-stable (on 7,)# 

PROOF. Let ( t o , & ) :  to E 5 and 0 < e, p be given. It follows from 
condition (3) of the theorem that for given e l ,  e2 > 0 and to E 5 there 
exist 610 = &o(to, e l )  > 0 and 620 = 6 2 0 ( ~ 2 )  > 0 such that 

(a) qTuo < 610 implies that u1 (t; to, uo) < e1 V t 2 t o  and 
(b) qTu0 < 820 implies that u2 (t ;  t o ,  ug) < ~2 V t 2 to. 

Let e2 = a(&) and € 1  = b l l  -620 . It follows  from the continuity of the 

function Ll( t ;  x, y) and condition (l)(a)  that there exists 61 = & ( t o , € )  > 0 
such that 

Ll(to,zo,y) < 610 and I I~o I I  61.  

Let c5 = min ( d l , & ) .  It is  clear that 6 depends on to E 5 and on 0 < E < p. 
For 6 defined in this way, we can assert that  the zero solution of  (2.6.1)  is 
x:-stable (on 7,)with respect to 5. 

Assume the countary, i.e., that  the zero solution of (2.6.1)  is not xT- 
stable (on 7,)when all the conditions of Theorem 2.6.3 are fulfilled. Then 

(1 ) 
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for the solution z(t;to,zo) of (2.6.1) with initial conditions t o  E 7a' and 
I(zo(( < 6 there exists a time t z  > t l  > t o  such that 

(2.6.34) 
Ilz1(ta)ll = E  P ,  Ilzl(tl)ll = 62(4 

zz ( t )  E Jql,Z,(P) nJq,2)(7), 7 =  W )  > 0 

at  the same time that Ilzz(t)(l < +m. 

obtain 
Let m(t) = L (t, z ( t ) ,  g); in view  of condition (2) of the theorem we 

Let u*(t) = U (t ;  t l ,  m(t1)) 2 0 be the extension of u(t) to  the left  from tl 
to t o ,  and let u*(to) = u2;. We assume that Ll(to,zo,y) = ul(t0) and that 
U* (to) = Uo. 

F'rom the differential inequality 

and  the comparison theorem we have 

(2.6.37) mi(t) I W(t;to,uo), t o  5 t 5 t i , uo (u i ( to>,Uz( t~))~.  

From this  it is  clear that u(t) = (u1 (t ;  t o ,  uo), U; (t; t l ,   m ( t ~ ) ) ) ~  is a solution 
of (2.6.33)  on [ to ,  tl]. From condition (1) of Theorem 2.6.3 and inequalities 
(2.6.34), (2.6.35) and (2.6.37) we obtain 

From the fact that 

as soon as qTu0 < 610 and also from conditions (2.6.34), we have, by 
condition (1) (a) 

Lz (t l ,z(t l) ,g) I b(Ilz1(t)lO + bl (L1 ( t l ,4 t l ) ,P))  
(2.6.39) I b ( & ( E ) )  + bl (by' ( i 6 z o ) )  < 5 6 z o  1 + 5620 1 = 620. 
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It follows  from the uniform uz-stability of the zero solution of (2.6.33) with 
respect to  that 

Inequality (2.6.40) contradicts condition (2.6.37). This completes the proof 
of the theorem. 

2.6.6 The system (2.6.1) analysis for S = 3 

Suppose that for S = 3 the right-hand side of (2.6.1) are defined in the 
region 

Consider a matrix-valued function 

(2.6.42) U(t,,x) = [ ~ i j ( t , ~ ) ]  , i, j = 1,2,3, 

where wij E C(7 ,  x RN1, R), wij(t, x) are locally Lipschitzian in x, NI = 
n1 + nz + 123. With the aid of vector cp E R:, cp > 0 and matrix-valued 
function (2.6.42) we construct the function 

(2.6.43) v(t, 5, P) = c p T W  x)cp, 

where W E C(7 ,  x RN1 x R:, R). 

S 

Function (2.6.42)  is applied in two approaches as in Section 2.6.5. 

2.6.6.1 Direct application of matrix-valued function. 

DEFINITION  2.6.13. System (2.6.1) is multistable (on 7,) if its zero so- 
lution is 

(i) to-uniformly (zT,z3-stable in the whole (on 7, ) ;  
(ii) asymptotically x;-stable in the whole (on z), 
THEOREM 2.6.4. Let vector function f = (fy,fT,faT in (2.6.1) be 

continuous on R x & ( p )  x & ( p )  x D3 (on 7, x &(p) x B2(p) x D3). If 
there exists 

(1) an open connected time-invariant neighborhood G* of point (x = 
0 )  E RNo, NO = n1 + nz; 
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(2) a matrix-valued  function U( t ,  z) 
(a) (z?, zT)-positive  definite on Q* (on 7, x Q* x 0 3 ) ;  

(b)  decreasing on g* x D3 (on 7, x Q* x 03) ;  

(a) negative semi-definite on R x Q* x D3 (on 7, x Q* x 0 3 ) ;  

(a) &negative semi-definite on R x Q (on 7, x Q* x 0 3 ) ;  

(3) a matrix-valued  function D+U(t, x) is 

(4) a constant m > 0 for which 

I l f Z ( t , ~ 1 , ~ 2 , ~ 3 ) 1 1  5 m V ( t , z )  E 7, x & ( P )  x & ( P )  x D 3  

Then,  respectively 

(a) hypotheses (I), (2)(a) and (3)(a) axe sufficient for (xT, z2-stability 
of (z = 0) E RN1, NI = n 1 +  nz +n3 of the system (2.6.1) (on 7 , ) ;  

(b) hypotheses ( l) ,  (2)(a),  (2)(b) and (3)(a) axe sufficient for uniform 
(z;f,x2-stability of (z = 0) E RN1 of the system (2.6.1) (on 7 , ) ;  

(c) hypotheses (l), (2) and (3)(b)  axe sufficient for  asyrnptotical xT- 
stability  in  the whole of state (x = 0) E RN1 of  (2.6.1) (on 7 , ) .  

PROOF. We show that if all hypotheses of Theorem 2.6.4 are satisfied, 
then for 11z01( < A, A < +m the correlation 

is valid. Suppose  on the contrary. That  there exists a number 6* > 0, a 
point 22; : 11z811 < A and a sequence t k  + cx) such that inequality 

holds true. 
Let t k  - t k - 1  3 a > 0, IC = 1 ,2 , .  I .  We present  zz-component of solu- 

tion z( t )  = (zT(t),zT(t),zr(t))T of the system (2.6.1) in the neighborhood 
of t = t k  in the form 

(2.6.46) zz(t; t o ,  x;) = Z Z ( t k i  t o ,  z;) + fi (S, x ( s ;  t o ,  .X)) ds. 
t b  j 

In view of (2.6.45) and (2.6.46) we have 

, .  , , , .  , ._,.. , ,", .... ......, _..,,.,., ,,._." ...,. - . _ " .  ..._....... .. ....,.. I.., ^^ . .  I . . .  . .  . 
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Hence, there exists a P, 0 C P C -a such that 
1 
2 

(2.6.47) 
l 
s d *  5 llz2(t;tO,z:)ll 5 P V t  E [ t k  - P,  t k  + P] 

for k = 1 , 2 , .  , . .By force of Proposition 2.6.3 and hypotheses (3)(b) of the 
theorem we have 

where c E K R .  
From the Liapunov correlation for function v(t,  z, g) we have 

This shows that  the condition v . ( t k  + P ,  z(tk + P ;  t o ,  zg), p) 1 0 is violated 
for k being large enogh. Therefore, (2.6.44) is proved. 

2.6.6.2 The application of matrix-valued function via transition to vector- 
function. Suppose U :  7, x R" + R3x3 ,  Q is a 3 by 3 constant  matrix  and 
y E R3. Construct a vector function 

(2.6.49)  L(t, X ,  'P) = Qv ($3 

where L E C(7,  x R" x R3,   R3) ,  
Let a, b be functions from  classes K1 and KZ, where K1 = { a  E 

C(O,p) ,  R+)  increases with U and a(u) "+ 0 as U 0}, and K2 = { b  E 
C (0,3p), R+) increases with U and b(u) + 0 as U "+ 0). 

Suppose that  the components L1 (t ,  z, g), . . . , L3(t, z, g) of the function 
(2.6.49) satisfy the following conditions: 

(A) Ll ( t ,O,y)  = 0 for all t E R or t E 7 , ,  and 
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where a2 E K1 and bz E KZ. 
(C) For any 0 < 71 < p there exist an < p such that 

where a3 E K1 and b3 E KZ. 

DEFINITION  2.6.14.  The comparison system 

(2.6.50) - = G(t,z), z(to) = zo 2 0, 

where z = (U,  w , ~ ) ~ ,  G = (gl(t,u),  ga(t,'u), g ~ ( t , w ) ) ~  is multistable (on 
7 , )  if its zero solution is 

dz 
dt  

(i) u-equistable (on X), and 
(ii) (w,w)-uniformly stable (on 7 , ) .  

Following Lakshmikantham, Leela and  Martynyuk [94], Martynyuk [l181 
and Koksal [SS] the next result is obtained. 

THEOREM 2.6.5.  Let vector function f = (fF,fT,faT in (2.6.1) be 
continuous on R x Bl(p) x & ( p )  X D3  (on 7, x Bl(p) x B2(p) x 0 3 ) .  If 
there exists 

(1) matrix-valued function U(t,s), a vector y E R3  and a constant 
3 by 3 matrix Q for which components L1,  L2, L3 of (2.6.49) the 
conditions (A) - (C) axe satisfied; 

(2) functions gh E C(7,  x R+, R), gk(t, 0) = 0 V t  E 7, such that 

(a) The  inequality 

holds in the  domain 7, x B1 ( p )  X B2(p)  X D3 X R3. 
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(b) The inequality 

holds in the domain 7, x B1 ( p )  x B2 ( p )  x D3 x RS n B,C(ql). 

(c)  The inequality 

holds in the domain 7, x B1 ( p )  x B z ( p )  x D3 x RS n BP(q2). 

(3) The zero solution of system (2.6.50) is multistable (on 7,) in the 
sence of Definition 2.6.14. 

Then the zero solution of system (2.6.1) is (xT,xg-stable (on. 7,). 

2.6.7 The system (2.6.1) analysis for S = 4 

For S = 4 the system (2.6.1) is considered in  region 

Let NI  = 121 + - + 124. 
DEFINITION 2.6.15. System (2.6.1) is multistable (on 7,) if its zero so- 

lution ((x?, . . . , zqT) = 0) E RNa is 

(i) to-uniformly (x?, z:, 23-stable (on 7 , ) ;  
(ii) asymptotically (z:, $)-stable (on 7,) ;  
(iii) practically x:-stable (on 7 , ) ,  i.e. if given (&A)  with 0 C X C A, 

the inequality llsoll < X implies 1123(t)ll C A for all t E 7 , .  

THEOREM 2.6.6. Let vector function f = (f?,. . . , faT in (2.6.1) be 
continuous on R x & ( p )  x & ( p )  x &(p )  x D4 (on 7, X & ( p )  x & ( p )  x 
B 3 ( p )  x 04). If there exists 

(1) a matrix-valued function U ( t ,  2) which is 

(a) (s?, z:, x 3  -positive definite (on 7,); 
(b) (z:, x:, 23 -decreming (on 7,); 

(2) the matrix-valued function D+U(t, z) which is 
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(c) (z;, za-negative definite (on 7,); 

(3) a constant m1 E R+, m1 > 0 for which 

II (f,'(t,z), f:(t,4)TII 5 m1 

in the domain 7, x B1 ( p )  x B z ( p )  x B3 (p )  x D4; 

inequality 
(4) a vector 'p E R:, 'p > 0 such that for all t E K ,  given (X,A) 

sup (cpTU(t,z)'p for llzll C X) < inf (pTU(t,z)'p for 11z311 = A )  

holds  true. 
Then  system (2.6.1) is multistable in the sense of Definition 2.6.15. 

PROOF. Properties  (i)  and (ii) of the zero solution of the system (2.6.1) 
are implied by hypotheses (1) and (2) of the Theorem 2.6.6, when function 
w ( t ,  z, 'p) = 'pTU(t, z)'p and its derivative D+w(t, z, 'p) are considered along 
with  solution of the system (2.6.1). To prove practical  stability  (on 7 , )  of 
state (z = 0) E RNS with respect to variables of vectors zT it is sufficient 
to make sure that when hypotheses of Theorem 2.6.6 hold, the value of 
norm 11z3(t; t o ,  z0)ll does not reach the value of A for all t E 7, provided 
I(zo() X for any to E 5 E R. By hypotheses (2) of the Theorem 2.6.6 we 
have 

D+W(t, 2, 'p) 5 0 

in the domain 7, x & ( p )  x B z ( p )  X B3(p) x D4. Hence 

(2.6.51) 

Let hypotheses  (3) of Theorem 2.6.6 be satisfied and  inequality \)z3(t)ll < A 
be false for some t E 7 , .  If the violation of the inequality  takes place at 
t* E 7 , ,  then 

(2.6.51) w(t*,z,p) 1 inf ('pTU(t,z)'p) for 11~311 = A)  I 

From (2.6.51) and (2.6.52) we get 

46 2, 'p) 5 4 t 0 ,  20, 'p) 

5 SUP ('pTU(t,z)'p) for 1 1 4 1  X) 

The inequality (2.6.53) contradicts hypothesis (4) of the Theorem 2.6.6 and 
proves that (z = 0) E RN2 is practically  stable (on 7 , )  with respect to 
variable x:. 
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2.7 Applications 

In  this section we present some applications of general theorems of matrix- 
valued Liapunov functions method to system of equations that model real 
engineering problems. 

2.7.1 The problem of Lefschetz 

We consider a problem on stability in a  product space for a system of 
differential equations of the perturbed motion 

(2.7.1) 

Here y E RP, z E Rq, g :  RP + RP, G:  RP x Rq + RP, h: Rq + Rq, 
H :  RP x Rq + Rq. In  addition, function g, G; h, H are continuous on RP, 
Rq,  RP x Rq and  they vanish  for y = z = 0. 

The problem itself  is to point out the connection between the stability 
properties of equilibrium state y = z = 0 with respect to system (2.7.1) on 
RP x Rg and  its nonlinear approximation 

(2.7.2) 

ASSUMPTION 2.7.1. Let there exist the time-invariant neighborhood 
Nu E RP and Nx Rq of the equilibrium state y = 0 and z = 0, re- 
spectively and let there exist a matrix-valued function 

(2.7.3) 
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ASSUMPTION 2.7.2. Let there exist constants aij, i = 1,2; j = 1,2,  
U . . ,8 such that 

THEOREM 2.7.1. Suppose that 
(1) all conditions of Assumptions 2.7.1,  2.7.2 are fulfilled; 
(2) the  matrix 

be positive definite; 
and 

(3) the  matrix 
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Then the  state of equilibrium y = z = 0 of the system (2.7.1) is uni- 
formly asymptotically  stable. 

If conditions of Assumptions 2.7.1,  2.7.2 are fulfilled for Nv = RP, Nv = 
Rg and conditions (2), (3) of the theorem hold, then the equlibrium state 
y = z = 0 of the system (2.7.1) is uniformly asymptotically  stable in the 
whole. 

PROOF. On the basis of estimations (2.7.4), it is not difficult to show 
that  the function v = qV(y ,z )q  satisfies the estimate 

(2.7.6) W 2 UT@TC@U, 

where U T =  ( I l Y l l ,  Ilzll), @ = di%[rll,r/Zl. 
Also, in view  of Assumption 2.7.1 and the estimates (2.7.5), the deriva- 

tive Dv(y,z) defined  by Dw(y,z) = qTDU(y,z)q satisfies 

(2.7.7) Dv(y,  z) 5 uTSu, 

By virtue of (2) and (3) and  the inequalities (2.7.6),  (2.7.7), we see that 
all conditions of Theorem 2.5.3 are verified  for the function w(y, z) and  its 
derivative. Hence the proof  is complete. 

If in estimate (2.7.5) we change the sign of inequality for the opposite 
one,  then by means of the method similar to  the given one we can obtain 
an  estimate 

Dw(y, z )  2 uT& 

which  allows us to formulate instability conditions for the equilibrium state 
y = z = 0 of system (2.7.1) on the basis of Theorem 2.5.7. 

The  statement of Theorem 2.7.1 shows that asymptotic  stability of the 
equilibrium state y = z = 0 of system (2.7.1) can hold  even if the equi- 
librium state y = z = 0 of system (2.7.2) has no properties of asymptotic 
quasi-stability (cf.  Lefschetz [loo]). 

2.7.2 Autonomous large scale systems 

We consider a large scale systems be decomposed into  three subsystems 

(2.7.8) 

- = c z  + h(x, y,  z), 
dz 
dt 
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where x E Rnl, y E Rna, z E RnS, n1 + n2 + n3 = n; A, B and C are 
constant matrices of the corresponding dimensions 

f E C(Rnl x Rna x RnS, Rnl ) ;  
g E C(R"* x Rna x Rn9, R n a ) ;  
h E C(Rnl x Rna x Rns, RnS).  

Moreover, the vector-functions f ,  g and h vanish  for 2 = y = z = 0 and 
contain variables 2, y and z in first power,  i.e. the subsystems 

(2.7.9) 

(2.7.10) 

(2.7.11) 

dx 
dt 
- = AX; 

dY 
dt 
dz - = cz; 
dt 

- = By; 

are not complete linear approximation of the system (2.7.8). Physically 
speaking this corresponds to  the situation when the connections between 
subsystems (2.7.9) - (2.7.11) are carried out by time-invariant linear blocks. 
For  different dynamical properties of subsystems (2.7.9) - (2.7.11) sufficient 
total stability conditions will be established for the  state 2 = y = z = 0 of 
the system (2.7.8). 

The solution algorithm for this problem is based on actual construction 
of the matrix-valued function 

with the elements 

(2.7.13) 

where Pii, i = 1,2,3, are symmetrical and positive definite matrices, 5 2 ,  

P13 and P23  are constant matrices. It can be  easily  verified that for the 
functions (2.7.13) there exist estimates 
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(2.7.15) v@, 9, Z, v) = TJTU(z, v, z)q. 

PROPOSITION 2.7 .1 .  Let for system (2.7.8) there exists matrix-valued 
function (2.7.12) with elements (2.7.13) and estimates (2.7.14). Then for 
function (2.7.15) the  estimate 

(2.7.16) 
W(Z, g, Z,  q)  2 U ~ H ~ P H U  

~ ( x # O , Y # ~ , ~ # O ) E N ~ , ~ N ~ ~ N ~  

is satisfied, where uT= ( 1 1 4 1 ,  I l ~ l l ,  1 1 . 4 1 ) ;  H = diag[rl1,rl2,rl3], 
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REMARK 2.7.1. The dynamical properties of subsystems (2.7.9)-(2.7.11) 
influence only the sign of coefficients p11,  p21 and p31. The constants p12, 

p139 p22, p239 p329  p33 can always  be taken positive and  the rest of the 
constants  are independent of matrices A, B and C. 

In view of the above remark we introduce the following designations 

c11 = ‘%p14 f 2171(r]2p27 f r]3p37); 

c22 = r]2p24 f 2r/2(%p17 f V3p3.10); 

c33 = ‘$P34 + 2r]3(r]lp1.10 + 72p2.10). 

2 

2 
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Hence we have 
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PROPOSITION 2.7.4. The  matrix S is negative definite if and only if 

(1) r112Pll + c11 0; 

(2) rl:r122PllP21 + rl:Pllc22 + r),2P2lCll + Cl lC22  - 4 > 0; 

(3) $p11  (q22qiP21p31 + 722p2lC33 + qip31C22 + c22c33 - 0223) + $p21 x 
(qip31cll + cllc33 - 0123) +‘$p31 (cllc22 - 4 2 )  f C l l C 2 2 C 3 3  +2012X 

U13p23 - cl10223 - c22C.123 - c330122 < 0. 

REMARK 2.7.2. If subsystems (2.7.9) - (2.7.11) are nonasymptotically 
stable, i.e. p11 = p21 = p31 = 0, the conditions of Proposition 2.7.4 
become 

(1’) c11 < 0; 
(2’) CllC22 - 4 2  > 0; 
(3’) cllc22c33 + 2g12013023 - cl10223 - c220123 - c330122 < 0. 

REMARK 2.7.3. If subsystem (2.7.9) is nonasymptotically stable, sub- 
system (2.7.10) is asymptotically stable  and (1.7.11) is unstable, i.e. 
p11 = 0, p21 < 0, p31 > 0, the conditions of Proposition 2.7.4 become 

(1”) c11 < 0; 

(2”) ll;p21c11 + Cl lC22  - 4 > 0; 

(3”) $p21 (r/ip31Cll + cllc33 - 4 3 )  + $p31 (cllc22 - &) + cllC22C33 

f2g12ff13023 - c110223 - c22C+3 - C33ff122 < 0. 

PROPOSITION 2.7.5. Matrix S is negative seini-definite iff the inequality 
signs < and > in Proposition 2.7.4 are replaced by 2 and correspon- 
dingly. 

Function (2.7.15) and  its total derivative (2.7.18) together with estimates 
(2.7.16) and (2.7.19) allows US to establish sufficient conditions of stability 
(in the whole) and  asymptotic  stability (in the whole) for system (2.7.8). 

THEOREM 2.7.2. Suppose that  the system (2.7.8) be such that 

(1) in product N = NZ x x NZ there is the matrix-valued function 

(2) there exist the vector 7 E R:, qi > 0, i E [l, 31; 
(3) the  matrix P is positive definite; 
(4) the  matrix S is negative semi-definite or equals to zero. 

U: h/ + R3x3; 
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Then the  state x = y = z = 0 of the system (2.7.8) is uniformly stable. 

If all estimates mentioned in conditions of Theorem 2.7.2 are satisfied 
for N, = R"1, Nu = R"?, NZ = Rn3 and function (2.7.15) is radially 
unbounded, the  state x = y = z = 0 of the system (2.7.8) is uniformly 
stable in the whole. 

PROOF. Under all conditions of Theorem 2.7.2 the conditions of  well- 
known Barbashin-Krasovskii's theorem are satisfied, and hence, the corre- 
sponding type of stability of state x = y = z = 0 of the system (2.7.8) 
takes place (see Theorem 2.5.2). 

Let there exists the domain 51 = { (x, y, z )  E N ,  0 5 v($, g, z ,  q) < a, 
0 

a E R+} C Rn where Dv(x,  g, z,  q) 5 0. 
We designate by M the largest invariant set in 51 where 

THEOREM 2.7.3.  Suppose that  the system (2.7.8)  be such that 

(1) the conditions (1) - (3) of Theorem 2.7.2  be satisfied; 
(2) on the  set 51 Dv(x,  y, z ,  q)  5 0 i.e. the  matrix S is negative semi- 

definite. 

Then the  set M is attractive relative to the domain 51, i.e. all motions of 
system (2.7.8) starting on set fl tend  to  the  set M m t + +W. 

Proof of this Theorem is similar to  that of Theorem 26.1 by Hahn [66]. 

THEOREM 2.7.4.  Suppose that  the system (2.7.8) is such that 

(1) the conditions (1) - (3) of Theorem 2.7.2 axe satisfied; 
(2) the  matrix S is negative semi-definite. 

Then the equilibrium state x = g = z = 0 of the system (2.7.8) is uniformly 
asymptotically  stable. 

If all estimates mentioned in conditions of Theorem 2.7.4 are satisfied 
for NZ = Rnl, Nu = R"?, NZ = Rn3 and function (2.7.15) is radially 
unbounded, the  state x = y = z = 0 of the system (2.7.8) is  uniformly 
asymptotically stable in the whole. 

The proof  is similar to  that of Theorem 25.2 by Hahn [66]. 
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2.7.3 Large scale  Lur'e-Postnikov system 

We consider the system of equations 

(2.7.21) 

where 

Assume that for system (2.7.8) matrix-valued  function (2.7.12) is con- 
structed  with elements (2.7.13) for which estimates (2.7.14) are satisfied, 
and  matrix (2.7.17) is positive definite. It is easy to verify that for the to- 
tal derivative of function (2.7.15) by virtue of system (2.7.21) the following 
estimate 

(2.7.22) Dv(s ,  y, z ,q )  5 UT& 

is satisfied, where S = [Zij],  Zij = Zji V ( i , j )  E [ l ,  31 and 
- 

uij, i # j ,  i, j E [1,3] are norms of matrices: 
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Q1 = (y); 43 = (;l); 

c21 = (Of); 
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Ici = 1, i = 1,2,3. 

We take matrix-valued function U ( z )  elements in the form 

vll(z) = zTdiag (1,l)z; U22(Y) = YTdiag (1,l)Y; 

2)33(2) = zTdiag (1,l)z; v12(z, p) = zTdiag (O,l, 0.1)~; 

w13(z, z )  = xTdiag (0.1,O.l)~; ~23(p,  z)  = pTdiag (0.1,O.l)~. 

For elements vdj(*) estimates 

u11(z) 2 1 1 4 1 2 ,  v22(2/) 1 l lYI l2, v33(z) 2 11zl12, 

vl2(x,Y) 2 - 0 - 1 ~ ~ ~ ~ ~ ~ / $ ’ / ~ ;  U13(z,z) 2 -0.111zI111Z11; 
v23(p,z) 3 -0.lllpllllzll 

are satisfied, and  matrix F corresponding to matrix P in estimate (2.7.16) 

1 -0.1  -0.1 

-0.1 -0.1 1 
P - = ( -0.1 1 -0.1) 

is positive definite. 

valued function U(z,  p, z ) ,  the matrix 3 takes the values 
If q = (1,1, then, given  choice of elements vcj ( m ) ,  i, j E [l, 31 matrix- 

S =  

for Ic5 = 0; 
0.15  -0.2 

-5.202  0.18 

0.18 -0.34 for ka = Ici = 1. 

0.03 0.012  -0.202 

It easy to verify that in both cases matrix 3 is negative definite. 
By Theorem 2.7.4 we find that  the  state x = p = z = 0 of system 

(2.7.21) with vectors and matrices defined  in Example 2.7.1 is asymptoti- 
cally stable in the whole  (i.e., system (2.7.21) is absolutely stable). 
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2.7.4 A generalized  Loth-Volterra  system 

We consider a generalized LotbVolterra system of the form 

d X l  

dt 

d x 2  

dt 

" - 51 (bl  + a11(2)21 + a 1 2 ( 4 4  , 

- x 2   ( a 2  + a 2 1  (z)z1 + U22 (s)s2) , 
(2.7.23) 

" 

where s1, 2 2  E R+, aej E C (R:, R ) ,  b l ,  bz are  constants, s E R:. 
The generalized Lotka-Volterra system (2.7.23) can have several equilib- 
rium states se determined as solutions of 

(2.7.24) se = 0 or A(z)se = -b 

when b # 0 and detA(z) = 0 Vs E S(p),  S(p) E R: or b = 0, 
det A(z) # 0 Vs E S(p), in  which  case s e  = 0 is the unique equilibrium 
state of (2.7.23) which  is a singular case. 

Otherwise, the system (2.7.23) can have finitely many (detA(s) # 0 
Vs E S(p) ,  b # 0) or infinitely many (det A(%) = 0 Vs E S(p), b = 0) 
equilibrium states. If we are interested in properties of s # 0, then we use 
the Liapunov transformation of the  state variables, 

(2.7.25) 2/1 = 21 - se17 2/2 = 5 2  - 2 e 2  

and  transform (2.7.23) into 

= (a11(s)2/1 + a 1 2 ( ~ ) 2 / 2 )   s e 1  + (a11(~)2/1+ a12(s)2/2)2/1, 
d2/1 

9 2  

(2.7.26) 

= ( a 2 1  (z)a/l+ a 2 2  ( ~ 1 ~ 2 )   s e 2  + (W (z)2/1 + a 2 2   ( ~ ) 2 / 2 )  2/2 * 

Together with equations (2.7.26) for i = 1,2,  we consider the real functions 
Vaj (91, 2/2) and matrix-valued function 

(2.7.27) 

with elements 

(2.7.28) 
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a, P > 0 and 7 a constant. 

scalar function 
By means of the vector qT = (71, 72) E R:, qi > 0 we shall construct a 

(2.7.29) ' 49) = VTV(Y)7 

for the generalized Lotka-Volterra system (2.7.23). 
For all y E S(p) the inequality 

(2.7.30) V(Y) 2 U ~ H ~ P H U  

(2.7.31) 

The  total derivatives of the matrix-valued function (2.7.27) along solutions 
of (2.7.23) are given by 

and 

(2.7.32) 
dv 
- dt 5 UT(C + G(Y1, Y2>)U, 

Here we have 
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and 

all(Y1) = 2Qrl12lallllYlL 

m2(Yz) = 2Prlaalaz2111/21, 

4 Y l , Y 2 )  = (arl:lal2l+ 171rl21Y(az1 + a l l ) ( )  91 

+ (Pr1221az1l + r11rl2IY(az2 + a12)l) 82. 

Inequalities (2.7.30) and (2.7.32) imply the following theorem, which is the 
main  result of this section. 

THEOREM 2.7.5. The  equilibrium x e  of the generalized Loth-Volterra 
system (2.7.23) is asymptotically stable if 

(1) the  matrix P is  positive definite; 
(2) there  exists  a  constant matrix B such that 

G(v1, yz) 5 B V (91, ~ 2 )  E S(p) ;  

(3) there  exists a constant  matrix c such that 

C(Z1,22) I c v (21,xz) E S(p) ;  

(4) the  matrix c + G is negative  definite. 

We believe that  this result is the first of its kind for such generalized 
Lotka-Volterra  systems. 

2.8 Notes 

2.1. The following is a summary of the formulation of the  matrix Liapunov 
function  method: 

* discovery of double-index system of functions, a structure  suitable 
for constructing  Liapunov  functions (see Martynyuk  and Gutowski 

* formulation of the basic  concepts of the MLMF on the basis of 
double-index  system  function (see Djordjevit [27,29], Grujit: [47], 
Martynyuk [log, 112,1161.); 

* formulation of the principle of invariance and investigation of au- 
tonomous  systems (see Djordjevit [28]; Grujit [47]; Grujit, Mar- 
tynyuk  and  Ribbens-Pavella [57]; Martynyuk [116], etc.); 

~ 2 3 1 ) ;  
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* development of methods for constructing  matrix Liapunov  functions 
(see Djordjevit [30], Martynyuk  and Krapivny [124], GrujiC and 
Shaaban [61], etc.); 

(a)  systems  with lumped  parameters (see DjordjeviC  [27-301,  GrujiC 
[47], Martynyuk [126], Martynyuk  and Miladzhanov [125], etc.); 

(b) systems  with a small  parameter  multiplying a derivative (see 
Martynyuk [114], Martynyuk  and Miladzhanov [128], etc.); 

(c) systems  with  random  parameters (see Azimov [7], Azimov and 
Martynyuk [8], Martynyuk [115], etc.); 

* construction of sufficient condition of stability for 

2.2. The results  in  this section are  due to GrujiC [47], Martynyuk 
[116,121]. Propositions  2.2.1-2.2.3  are new. 

2.3. Theorems  2.3.1-2.3.4 uses the results of Liapunov [ lol l ,  Persidskii 
[152], Yoshizawa [174], Zubov 11781 and  Grujit,  Martynyuk  and Ribbens- 
Pavella [57]. 

2.4. Theorems 2.4.1-2.4.2 are new. They generalize well-known the- 
orems of comparison method  in  motion  stability  theory (see e.g. Laksh- 
mikantham, Leela and  Martynyuk [94]). 

2.5. Theorems 2.5.1-2.5.7 of this section are new. The results of the 
investigation of autonomous  system  (Theorems 2.5.8 - 2.5.20) are presented 
based  on  those by  GrujiC 1471 and  Grujit,  Martynyuk  and Ribbens-Pavella 

l571 - 
2.6. The notion of multistability of motion is formulated  in  terms of re- 

fusal from “homogeneous” behavior of components of solutions for nonlinear 
system.  This notion  can be viewed as well as generalization of stability  with 
respect to a part of variables (see e.g. Rumiantzev [l601 and Aminov and 
Sirazetdinov M ) ,  The results of sections 2.6.1 - 2.6.4 are new. Theorem 
2.6.3  is taken from Martynyuk [118]. Theorems 2.6.4 and 2.6.5 were pub- 
lished by Martynyuk [l17 and  Theorem 2.6.6 the  same  author [119]. In  the 
investigation of nonlinear  systems by vector Liapunov  functions the notion 
of multistability of comparison system was used by Lakshmikantham, Leela 
and  Rao [95]. 

2.7. In  subsection 2.7.1 the solution of the Lefschetz [loo] problem  is 
presented  according to Martynyuk [lll]. Moreover, the results by Djor- 
djeviC [29] are used. The results of subsections 2.7.2 - 2.7.3 are  taken from 
Martynyuk  and Miladzhanov [125]. The results of subsection 2.7.4 are  taken 
from Reedman  and  Martynyuk [37]. 





3 
STABILITY OF SINGULARLY-PERTURBED 

3.1 Introduction 

SYSTEMS 

The physical system can consist of subsystems that react differently to  the 
external  impacts. Moreover,  each of the subsystems has  its own scale of 
natural  time. In the case  when the subsystems are  not interconnected, 
the dynamical properties of each subsystem are examined in terms of the 
corresponding time scale. It turned  out  that  it is reasonable to use such in- 
formation when the additional conditions on the subsystems are formulated 
in the investigation of large scale systems. The existence of various time 
scales related to  the separated subsystems is mathematically expressed by 
arbitrarily small positive parameters pi present at the  part of the higher 
derivatives in differential equation. If the parameters pi vanish, the number 
of differential equations of the large scale system is diminished and, hence 
the appearance of algebraic equations. 

This is just  the singular case  allowing the consideration of various  pecu- 
liarities of the system with different time scales. 

The  chapter is arranged as follows. 
Section 3.2 provides mathematical description of the system with quick 

and slow variables and  states  the problem of investigation. 
Section 3.3 deals with asymptotic  stability conditions for singularly per- 

turbed system in terms of scalar Liapunov function. 
Section 3.4 deals with Lur'e-Postnikov systems in terms of scalar Lia- 

punov function. 
In Section 3.5 the notion of the property of having a fixed  sign  is  formu- 

lated for matrix-valued function for singularly perturbed system. 
In Section 3.6 the matrix-valued Liapunov function is introduced and 

the  structure of estimation of this function total derivative along solution 
of the system under consideration is determined. 

In  the Section 3.7 and 3.8 general results of the direct Liapunov method 
are  stated for singularly perturbed system via matrix-valued function. 



128 3. STABILITY OF SINGULARLY-PERTURBED  SYSTEMS 

In Section 3.9 the method of constructing elements of the matrix-valued 
function is concretized and linear singularly perturbed systems are investi- 
gated using this method. 

Section 3.10 contains some applications of general results to systems 
modeling mechanics problems such as oscillating system of solid bodies 
and Lur'e-Postnikov system. 

The final Section 3.11 is supplied with detailed bibliography comments 
to  the sections of the chapter. 

3.2 Description of Systems 

The singularly perturbed system S being considered below,  is described by 
two systems of nonlinear differential equations 

(3.2.1) 

(3.2.2) 

where (xT, yT)T is a vector of state of the whole system, x E Rn, y E Rm, 
f E C(R x R" x Rm x M ,  R"), g E C ( R  x R" x Rm x M, Rm). The 
parameter p is positive and is supposed to be arbitrarily small. We set 
p E (0,1] = M .  

The  states x = 0 and = 0 have open connected neighborhoods N, 
Rn and Ny C R" respe&ively. The vector-function f and g are such that 
for = 0 system (3,2.1),  (3.2.2) has the only equilibrium state in 
the Cartesian  product N, x Ny of the sets N, and Ny for any p E (0, l]. 
If p takes zero value, system (3.2,1),  (3.2.2) degenerates into system So, 
which  is described by the differential and algebraic equation 

(3.2.3) 

(3.2.4) 

It is supposed that g ( t ,  x ,  y, 0) vanishes for any t E R and x E N,, iff = 0. 
This requirement is motivated by an effective application of the Liapunov's 
coordinates  transformation by Hoppensteadt [74] in the investigation of 
singularly-perturbed systems. The system of lower order 

(3.2.5) 
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obtained in  result, is of importance in the stability investigation of sys- 
tem (3.2.1),  (3.2.2). If p > 0 is a sufficiently small value of the parameter, 
then system (3.2.1),  (3.2.2) consists of the  parts which accomplish slow and 
quick motions. The quick system S, (or the boundary layer) is obtained 
from system (3.2,1),  (3.2.2) after the change of the time scale by introducing 
the variable 

T = (t - to),%-'. 

Then,  the quick system corresponding to system (3.2.2) becomes 

(3.2.6) 

In this system LY and b, b = ( P I , .  ,., ,&), are scalar and vector parame- 
ters, introduced instead of t E R and x E N, respectively. We suppose as 
earlier, that g vanishes  for any t E R, z E N,, p E (0, l] iff y = 0. The sep- 
aration of the time-scales  in the investigation of stability of system (3,2,1), 
(3.2.2) is essential due to  the fact that  the analysis of the degenerate sys- 
tem SO (3.2.5) and the quick system S, (3.2.6) is a more simple problem in 
comparison with the general problem of stability of system (3.2.1),  (3.2.2). 
The  next problem to be considered  is to establish conditions for the vector- 
function f and g under which the property of uniform asymptotic  stability 
in the product NZ x Nv of system (3.2.1),  (3.2.2) can be obtained from the 
same property of solutions of system (3.2.5) and (3.2.6). 

3.3 Asymptotic Stability Conditions 

We introduce two assumptions on systems (3.2.5) and (3.2.6) connected 
with positive definite functions 6' and V .  
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ASSUMPTION  3.3.1.  There exist 

(1) a decreasing positive definite on Nx and radially unbounded for 

(2) positive definite function p E C(RQ, R+) and $ E C(R", R+) on 

(3) non-negative numbers (1 and 52 ,  51 < 1, and  the conditions are 

N, = R" function 8 E C(lJ)(R x N,,, R+) ; 

N, and Nu, respectively; 

satisfied: 
(a) et@, z> + e,T(t, z)f (t ,  z, 0) 5 -v(.) W ,  4 E R x &o; 
(b) e,T(t,x)[f(t,z,y,p) - f(t,z,v,O)l I51(P(x) + 52$(!/), 

V(t,z,y,p) E RxNxo xNUo x M .  

Conditions (1)-(3)(a) of Assumption 3.2.1 ensure uniform asymptotic 
stability of z = 0 of system (3.2.5) in the whole,  when N, = R". Con- 
dition (3)(b) is a requirement to  the qualitative properties of the vector- 
function f on N, x Nu. 

ASSUMPTION  3.3.2.  There exist 

(1) a decreasing positive definite on N, x Nu and radially unbounded in 
y uniformly relatively x E N, for Nu = R" function V ( t ,  x, p) E 
C( lJJ ) (R  x N, x N,,R+) (or V( t ,y )  E C('J)(R x Nu,,R+) de- 
creasing and positive definite on Nu and radially unbounded for 
Nv = R"); 

(2) non-negative numbers ( 1 ,  &., Q ,  (4 (€1  < 1, 6 < 1) and  an integer 
n >  1; 

(3) positive definite functions tp E C(Rn, R+), $ E C(Rm, R+) on Nx 
and Nu respectively and  the following conditions are satisfied 

(a) V:g(a, b ,  Y, 0) I -$(Y) v(a, b, Y) E R X N x  X Nu or (v(a, b, 
g) E R x N, x Nu,) respectively; 

y ,p)  E RxN,xN,xM or (V(a,b,y ,p)  E RxN,xNu,xM) 
respectively; 

(C) V,+Vz f (a ,hy ,p )  IE3c~(b)+~4$(2/)V(a,b,y,p) ~ R x N x x  
Nu X M or (V(a, b, y, p)  E R x N, X Nu, x M )  respectively. 

(b) V,T[g(a, b,y ,p )  - g ( %  4 2/,0)1 I EIP'"cp(b) + 6$(ar) b, 

The constants 51,  (2, G ,  52  and &I, <4 mentioned in Assumption 3.3.1, 
3.3.2 must be taken as small as possible. If the function V does not depend 
on z, then  it is to be positive definite on Nu only. If, in addition Nu is 
time-invariant, then condition (c) in Assumption 3.3.2  is omitted. 

Let 



3.3 ASYMPTOTIC  STABILITY  CONDITIONS 131 

This value  is a lower estimate of the upper boundary of the admissible 
change of p. 

THEOREM 3.3.1. In order that  the equilibrium state (zT,yT)T = 0 of 
system (3.2.1), (3.2.2) to be  uniformly asymptotically stable, it is sufficient 
that conditions of Assumptions 3.3.1 and 3.3.2 be satisfied for every p E 
(0, ji) and for p + 0 M soon M the inequality 

1 > 51 + 51G"-l+ 53 

holds. 

asymptotically stable in the whole  for  every p E (0,ji) and for p + 0. 
If  moreover N, x Nu = R"+", then the equilibrium state is uniformly 

PROOF. Let the function v be defined  by the formula v = 6 + V .  
Then v( t ,z ,  y )  E C(lsl~l)(R X N,, x N,,) and, since the conditions of 
Assumptions 3.3.1 and 3.3.2 are satisfied, it is decreasing and positive on 

N, x Nv, The Euler derivative d'(t' z(t)' y( t ) '  of it along the motion of 

system (3.2.1),  (3.2.2) z(t) = (zT(t),gT(t))T # 0 (z(t) = 0, t E [to,+co[) 
means that  the equilibrium state is reachable and therefore is not consid- 
ered,  due to system (3.2.1),  (3.2.2) is 

dt 

dv 1 
dt P 
- = et + e,Tf + vt + v,Tf + -vyTg. 

The right-side part of this expression is transformed to the form 

du 
dt - = et + e m  z,o, 0) + C [ f ( t ,  Y ,  P )  - f ( t ,  z, O , O ) l +  V X t ,  2, Y ,  0) 

1 1 

c1 
+ --V,Tg(t, z, Y ,  0) + LV,T[$(t, 2, Y ,  P)  - z, Y ,  ON. 

Conditions (3)(a) and (3)(b) of Assumption 3.3.1 and (3)(a)-(3)(c) of As- 
sumption 3.3.2 lead to  the estimate 

du 1 - 5 -(l - 51 - &p"-' - 53)(P(z) - ;[l - :;2 - p(C2 +54) ]$b ) ,  
(3.3.1) dt 

vpE(O,ii) p+O V( t ,z ,y )ERxNxoxN,o .  

Let 

N o z  = ( 2 :  z = 0 , y  E N,o},  No, = ( 2 :  z E N x o , y  = O}, 

No = Nox X Nou. 



132 3. STABILITY OF SINGULARLY-PERTURBED SYSTEMS 

It is clear that 

Nx X Nu = N,o X NVo X No X {z: z = 0). 

Let v~ be a maximal positive number, for  which the largest connected 
neighborhood U,, ( t )  of point z = 0 is such, that 

v(t,  2, Y) E p, W ) ,  v (2, v) E ‘dt E R, 

is a subset of the product N = Nx x Nu for  every t E R. The existence of 
the value v~ > 0 is  implied by the positive definiteness of function v on 
N and  the time-invariance of the neighborhood of point z = 0. 

Let ~ i ,  T(*, t o  5 ~i < 7: 5 +W denote the times when z ( t )  E V,, (t)  \ 

U,, ( t o )  \ NO then i = 0, TO = t o ,  [TO, T*) = [ to ,  T*) is the first interval to 
be considered and  the next is [T:,T~]. If z(t0) E NO, then i = 1, T$ = to 
and [T$, 711 is the first interval to be considered, and  the next is (71,~;). 

In what follows, i 2 0 is an integer. 

No V t  E ( T ~ , T ( * ) ,  76 > to and z(t)  E No V t  E [~&1,7i]. If z(to) E 

Let 
((t;to,zo,p) = (XT(t ; tO,zO,p),~T(t ; tO,zo,p))T,  

((to; tO,ZO, p)  E zo, 

is a motion of system (3.2.1),  (3.2.2) for the initial values zo and t = to 
when p > 0. 

PROPOSITION 3.3.1. The function v isstrictly decreasingin t E [T:-~, 7-4 

dong motions ( ( t ;  to, zo, p)  of system (3.2,1),  (3.2.2) for every p E (0,  p) 
and for p + 0. 

PROOF. 
Part 1. Let there exist a  time t* E [T:-~, q [  when v(t ,   z( t ) ,  y(t)) 5 

v(t*,a(o,y(fl) for  some t E ( ~ i - l , ~ r - ~ ) .  If t* = T:-~, then  there exist 71, 
7 2  E (‘G-1,7(*-1), < 7 2  suchthat ~(TI,Z(TI),L’(TI)) 5 ~(TZ,~(T~),Y(T~)) 

due to  the continuity of function V and C at t E x, V t  E R which ensures 
the continuity of functions f and g.  Therefore, there exists a 73 E [SI, ?2], 

- 

when 

However, this  contradicts  estimate (3.3.1) because of the positive definite- 
ness of functions cp and $J and  the fact that 

(1 - 51 - 51pn-l - 53) > 0, - [l - 52 - p(C2 +&) l  > 0 V p  E (0 ,P) .  
1 
/J 
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Hence, the equality t* = ~ f - ~  is  impossible and a value t* E (T?-~,T~] is 
to be considered. Let TI C [T?-~, 7 5 )  be a  set of all times t such that 
z( t )  = 0, T2 C [T;-~,T~) be a set of all times t ,  such that g ( t )  = 0. Since 
z ( t )  = 0 is excluded V t  E [to, +W[, then, by virtue of the continuity of 
the system motion it should be TI = [T?-~, ~ a )  or T2 = [ T ; , ~ ,  ~ i ) .  To be 
specific, we suppose that TI = [T; . -~,T~),  Then e(t,z(t)) = e(t,O) V t  E Tl 
and v( t ,  s(t), y ( t ) )  = v( t ,  0, g( t ) ) .  Moreover, 

This  contradicts the assumption that t* E TI. Now let T2 = [T$-~, ~ i ) .  Then 
g ( t )  = 0 V t  E Tz. Therefore 

that contradicts the assumption that t^ E T2. In general, there exists no 
value t* E [T;-~, ~ a [  mentioned above. 

Part 2. Inequalities (3,3.1),  (3.3.2), estimates of ji and conditions 1 > 
c1 + &j i r - l  + E3,  5 2  > 0, 43 > 0 together with the positive definiteness of 
functions cp and $ prove that  the function v strictly decreases on interval 

Part 3. Let there exist i E [ T ; - ~ , T ~ ]  such that v( t ,z ( t ) ,g ( t ) )  2 
v(i ,z( i) ,  y(8) for  some t E ( ~ i ,  T;). Hence, there exist 7 1 , 7 2  E ( q ,  T,'), 

71 < 7 2  such that ~(51, z(71), ~(71)) 5 v(72,2(72), 2 4 7 2 ) )  due to  the con- 
tinuity of v(t ,  z( t ) ,  y ( t ) )  and 6 in t and because of description of Section 3.2. 

Therefore, 373 E [ 7 1 , 7 2 ]  is such that - v ( t ,  z( t ) ,  y(t))It=Ta 2 0 and 

The combination of assertions of Parts 1-3 proves Proposition 3.3.1. 
In view  of the positive definiteness of v we establish according to  the 

results Part 1 the uniform stability of state z = 0 of system (3.2.1),  (3.2.2) 
for V p E (0, ji) and for p + 0. Further  on, because of the positive definite- 
ness of functions cp and + and the fact that (1 - 51 - - J 3 )  > 0 and 
(1 - Cl - Elpn- l )  > 0 V p  E (10, j2) as p + 0 and  due to  the estimate of ji, 
$ v  is  proved to be smaller than a negative definite function on Nz0 x Ngo, 

[T?-l ,Ti),  Tt-1 2 t o ,  v i  2 1. 

d 
dt 

this  contradicts condition (3.3.1). 
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on No, and on Nov. This result together with the conditions of positive def- 
initeness and decrease of function v proves  uniform attraction in the whole 
of the  state z = 0 of system (3.2,1),  (3.2.2) and completes the prove of 
the first assertion of the theorem. In the case  when Nx x Nv = the 
function v will be radially unbounded and  this together with the other con- 
ditions proves the second assertion of the theorem. This theorem is applied 
in the absolute  stability analysis of singularly perturbed Lur’e-Postnikov 
systems. 

3.4 Singularly Perturbed Lur’e-Postnikov Systems 

Let system (3.2.1),  (3.2.2) be the Lur’e-Postnikov type system (see  Grujik 

W 1  1 

(3.4.1) 

(3.4.2) 

The matrices A(.) and vectors c(.) and q(.) are of the  appropriate dimensions. 
The nonlinearities * i ,  i = 1,2 are continuous, ai(0) = 0, and in Lur’e 
sectors [0, ki], ki E (0, +m) satisfy the conditions 

War) E [O, hi], i = 1’2; vui E (-m, +m). 
pi 

The nonlinearities Or are considered incidentally, for  which the  state x = 0, 
y = 0 is the only equilibrium state of the degenerate system 

(3.4.3) - = AllX + qlcpl(o:), 
dx 
dt 

U; = CT1X 

and  the system, describing the boundary layer respectively 

(3.4.4) U; = c;2y. 
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This  assumption is valid if 

Then 
1/2  

O(2)  = d m , ( 4 ) d o 0 )  

is the Liapunov  function for degenerate  system (3.4.3) for any  taking 
the values in [0, Kl], where H1 is a solution of the equations 

(3.4.5) ATlH1 + H1.411 + q1qT = - ~ l l ~ ,  h1 + Hlql = - f i q 1  

for 

(3.4.6) 7 = kc1 - ( lCTlq1, h1 = -($1dT1c11 + SI). 
1 
2 

Now  we shall verify the conditions of Assumptions 3.3.1 and 3.3.2. 
The verification of conditions of Assumption 3.3.1: Let H1 and e(z) be 

defined as above. Hence, the function O(z) is decreasing  positive definite on 
Rn and radially  unbounded. We shall check up  the condition (3)(a) first 

(a) in this case Bt = 0 and 

@:(4f(z,0,0) 5 - p ; l l l ~ l l  V(a: # 0) E Rnl 
1 

where Q = A112(H1 + &$lklcllcTl) and A(.) is a maximal eigen- 
value of matrix ( e ) .  Hence 
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and, besides, Nx = Rn, NXo = {e :  e # 0,e E Rn}; 
(b) for the function 8(e) we have 

X{Al2Y + a 1 [ @ 1 ( 4  - @ 1 ( 4 7 1 }  5 Clcp(4 + C2+(Y), 

VXEN,~, V ~ E R "  Vp€(O, l ] .  

Incidentally 

+(P> = P3llYll,  c1 = h(r)1r)3)-1r)2114111 IIc111l 

and 

(2 = (r)lp3)-1r)2(h llc12lI IIqlIl + I ) A l 2 l l ) ,   7 1  = A1"(H1), 

where A(.) is a minimal eigenvalue of matrix ( 9 ) .  The value p3 > 0 
will be  defined  below. The numbers 51 and 52 and  the functions 8,  
cp and $J satisfy the conditions of Assumption 3.3.1. 

The verification of the conditions of Assumption 3.3.2: We take  the 
function V(g)  = 11y11 as the auxiliary function. This choice  shows the 
alternative to  the choice of the Liapunov functions. The function V is 
decreasing positive definite in Rn and radially unbounded. In order to 
verify condition (3)(a) of Assumption 3.3.2, we present the system of the 
boundary layer in the form suggested by Rosenbrok 

where 

D22("2) = A22  + a2(4)qzc :2 ,  a 2 ( 4  = -. 0 2  (4) 
4 

The  matrix &(a2) = Dr2(a2) + D22 (a2) is negative definite for  each 
(o,cpz) E R X &([O,Kz]) iff D22(0) and &(K)  are negative definite. In 
the case under consideration this assumption is fulfilled. At last +(g) = 
p 3 ( 9 )  and V: g(a, b, v, 0) 5 -$J(y) V (y # 0) E Rm ensure the satisfaction 
of condition (3) (a). 

For condition (3)(a) we have 

1 

V(y # 0) E Rm. 

V,T[9(% 4 Y, cl) - 9(a,b, Y, 011 = 7 y T b 4 2 1 b  + 42[@2(02) - @ 2 ( 4 ) ]  } 
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Let 

We assume that 62 5 1, then 

This corresponds to condition (3) in Assumption 3.3.2 for T = 1. Checking 
up condition (3)(c) we take  into account that V, 5 0 and Vi I 0 and, 
therefore, 53 = 0 and (4 = 0. The lower estimate of the upper bound of 
the parameter p changes and has the form 

Now the inequality 1 > (1 + (1 ensures absolute stability of the  state 
z = (zT,yT)T = 0 of system (3,4,1), (3.4.2). 

EXAMPLE 3.4.1. Let 

All = 0 -;), Q1 = ( lo - l ) ,  c11 = ( 0 2 ) ,  
0 -10- 

A12 = I, c12 = (:> , 9 = 2 

and 

4 1  = 1 0 - ~ 1 ~ ,  c21 = ( , k2 = 1, 

A 2 2 =  (-; -;), q 2 =  (;), c22= (;). 
In this example we take $1 = 1, ~1 = 10-1 so that 
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Further 

is  defined from the equation 

in the form 

H " Z ( 1  1) .  
1 3 1  

Hence = 0.16 and 1)2 = 0.45. The matrix &(a2) 

The matrices 8 2 2  and &2( 1) are negative definite. 

reads 

Finally, (1 = 0.05, 
(2 = 1.88, 51 = 0.02 and 52 = 0.002. Therefore F = 0.52. Since (1 + 
(1 = 0.53 is smaller then 1, the  state z = (zT,yT)' = 0 of the system 
defined in this example is absolutely stable for  each p E (0; F), i.e. p E 
(0; 0.52) on &(L) ,  L = [O,K], K = diag(2,l).  The advantage of the 
separation of the time-scales in this example is that  the order of the system 
in question is diminished. Namely, instead of the system of the fourth order 
one investigates two systems of the second order and verifies the inequality 
1 > C1 + 51 I Moreover, the lowering of the order of the systems simplifies 
the construction of the Liapunov functions. 

However, the dimensions m and n of the reduced systems (3.2.5) and 
(3.4.3) and  the systems of the boundary layer (3.2.6) and (3.4.4) are high 
enough so that one faces the problem of the lowering their order again, 

3.5 The Property of Having a Fixed 
Sign of Matrix-Valued hnct ion 

Alongside the system (3.2.1)-(3.2.2) we shall consider first a more simple 
case. 
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3.5.1 Case A. 

Let perturbed motion  equations be given in the form 

(3.5.1) 

(3.5.2) Pz da, = d t ,  2, a,), 

where x E Rn, a, E R", f E C(R x Rn x Rm,Rn) and g E C(R x Rn x 
R*, R"), p E M. For p = 0 we obtain from (3.5.1) and (3.5.2) 

dx 
dt - = f(4 x,  a,), 

(3.5.3) 

(3.5.4) 

Assume that g ( t , s ,  y) vanishes if and only if g = 0. Then we get  from 
system (3.5.3)-(3.5.4) the system 

(3.5.5) 
dx 
dt - = f(t,x,O), 

which describes slow motions  in  system (3.5.1)-(3.5.2). The quick system 
(boundary layer)  corresponding to system (3.5.2) has  the form 

where T = (t  - tO)p-l, LY and b are  the same as  in system (3.2.6). 
We define the functions 

and represent  system (3.5.1)-(3.5.2) as 

(3.5.7) 
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In order to investigate systems (3.5.1) and (3.5.2) with subsystems (3.5.5) 
and (3.5.6) we shall consider the matrix-valued function 

The elements v11 and v22 of matrix U corresponds to  the subsystems (3.5.5) 
and (3.5.6) and functions v12 = v21 are responsible for the interconnections 
of the subsystems. Using the matrix-valued function U( t ,  2, g, p )  we intro- 
duce the scalar function 

(3.5.9) V @ ,  51 Y, P)  = WTWl 2 1  9, CLI'UI, 
where W E R2. 

DEFINITION 3.5.1. The matrix-valued function U : R+ 
M R2x2 is referred to as 

x Rm x Rn x 

(i) positive  definite, iff there exist connected neighborhoods N, and Nv 
of points x = 0 and y = 0 N, E Rm, Na( E Rn such that 

(a) U E C(R+ x N, x Nv x M ,  R2x2) 
(b) U(t,O,O,p) = 0 V t  E R+, V p  E M ;  

(c) 'UITU(t,xlY,P)w > U(Z,Y) V ( t , z  # 0,Y # 0,w # 0) E R+ x 
N x x N , x M x R 2 ;  

satisfied on N, x Nv = S; 

(i) are satisfied for N, x Na( = Rm x R". 

(ii) positive  definite  on S iff the conditions of Definition 3.5.1, (i) are 

(iii) positioe  definite in the  whole, iff all conditions of Definition 3.5.1, 

REMARK 3.5.1. It can be easily seen that this definition of the property 
of having a fixed sign of matrix-valued function U agrees with the well- 
known notions such as 

(i) positive definiteness of the numerical matrix; 
(ii) positive definiteness of the scalar Liapunov function; 
(iii) conceptual applicability of function (3.5.9) in the construction of 

the direct Liapunov's method of motion stability investigation. 

In many problems of stability  it is  sufficient to use a fixed vector q E R2 

Let q = ( q l ,  ~ 2 ) ~ )  qi > 0, i = 1,2 then 
(or 77 E R:) instead of the vector in formula (3.5.9). 

(3.5.10) V @ ,  5, Y, P )  = q T W ,  2 1  Y, P)V. 
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DEFINITION 3.5.2.  The matrix-valued function U E C(R+ x R" x R" x 

(i)  q-positive  definite, iff there exist connected  neighborhoods h(, and 
Nu of points x = 0 and y = 0, N, E R", Nv G R" such that 

M, R2x2)  is  called 

(a) U E C(R+ x N, x Nu x M ,  R2x2) ;  

(c)  rlTU(t, $,g, 4 7  > U(%, v) V (x # 0, Y # 0) E Nx x Nv, 
(b) U(t,O,O,p) = O  V t  E R+, Vp E M ;  

v( t ,p)  E R+ X M ;  
(ii) q-positive  definite  on S, iff all conditions of Definition  3.5.2 (i) are 

(iii) q-positive  definite in the whole,  iff all conditions of Definition  3.5.2 
satisfied for N, x Nu = S; 

(i) are satisfied for N, x Nu = Rm x R". 

Definition 3.5.2 agrees with points (i)-(iii) of Remark 3.5.1. In particular, 
the vector q can  be unique, i.e. qi = 1 and i = 1,2. 

REMARK  3.5.2.  The definitions of positive semi-definiteness and q-posi- 
tive semi-definiteness of matrix-valued function U are introduced  on the 
basis of Definitions 3.5.1 and 3.5.2, in conditions (c) of which the U(%, g) 
should  be replaced by 2 0. 

REMARK  3.5.3. Functions  (3.5.9)  and (3.5.10) can  be also constructed 
in the form 

V(t,  x, y, p,  W )  = wTUTUw, W E R2 

or 
V(t,x,y,CL) = V T U T h ,  ' rl E R:. 

In addition,  the requirements to  the elements of matrix-valued function U 
satisfying the conditions of Definitions 3.5.1 and 3.5.2 can be weakened. 

The algebraic conditions of the  property of having a fixed  sign of func- 
tion (3.5.10) are  formulated in terms of the assumptions on elements vij(t, a )  

of the matrix-valued function U. 

ASSUMPTION 3.5.1.  There exist functions vll(t,x),  vzz(t,y,p), 2112(t,x, 
y, p ) ,  functions cpi and qbi of class K(KR) ,  i = 1 ,2  and  constants cyii > 0, 
aid > 0, i = 1 , 2  and g12, E12 such that - 

(1) Qll4(llxll) I vll(t,x) 5 ~114( l lx I l )  

(2) PE22NllYll) I 2122( t ,2 / ,P)  I PE22+22(IlVll) 

V ( t ,  x) E R+ X N Z  (V(t, Z) E R+ X R"); 
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V ( t , y , p )  E R+ X Nv X M (R+ X R" X M ) ;  

(3) PL(y12(Pl(I1~l1)$1(11Y11) I 'Ul2(t, 5, Y, P)  I P ~ l 2 ( P 2 ~ l l ~ l l ~ ~ 2 ~ l l Y l l ~  

(4) 'UlZ(t, x, v, P )  = 'U21 (t ,  x, Y, P )  

V ( t ,  x, v, P) E R+ X N Z  X Nv X M (R+ X R" X R" X M ) ;  

V ( t , x , y , p )  E R+ X N Z  xN, X M (R+ X R" X R" X M ) .  

The following assertion is  valid. 

PROPOSITION 3.5.1. If for the elements q j ( t ,  S ) ,  i, j = 1,2, of matrix- 
valued function (3.5.8) the conditions of Assumption 3.5.1 are satisfied, 
then function (3.5.10) satisfies the  bilaterd estimate 

(3-5.11) 
UTA(Pb1 I V( t ,  5, Id, P )  I u:B(P)uz 

V ( t , x , y , P )  E R+ X N E  X Nv X M(R+ X Rm X R" X M ) ,  

where UT = ( Y l , + l ) ,  4 = (Y2,@2),  

4Pu) = HTAl ( P W ,  B(P) = HTAz(P)H, H = diag(q1 , rl2); rl1,qz > 0, 

PROOF. We get the estimate from above in inequality (3.5.11). In view 
of expression (3.5.10) and inequalities (1)-(4) of Assumption 3.5.1 we have 

or 

Hence, in view  of the designations adopted in Proposition 3.5.1 we get the 
estimate from above in inequality (3.5.11). The  estimate from below  is 
obtained in the same way. 
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3.6 Matrix-Valued Liapunov Function 

The conception of the  property of having a fixed sign of matrix-valued 
function admitted in Definitions 3.5.1 and 3.5.2 allows  us to introduce the 
matrix-valued Liapunov function in the following  way.  We introduce the 
designations 

The sign D*U shows that  both derivatives D+U and D+U can be used, 
where 

D+U(t, Z, y, p )  = lim sup{[U(t + 8, z( t  + e, -), y ( t  + e, - ) , p )  

D+U(t, z, y,p) = liminf{[U(t + O,z(t + e , . ) , y ( t  + e , . ) , p )  

- u(t, 9, p)]e-l: e + o+}; 

- u(t, x ,  p)]e-l: e + o+}. 

In  this  notation D+U (D+U) is the upper (lover) right-side Dini derivative 
of matrix-valued function U relatively (t ,  z, y). 

DEFINITION 3.6.1. Matrix-valued function U : R+ x NE x N, x M + 
R2x2 is referred to as 

(i) matrix-valued  Liapunov function of the S(w) type, if 
(a) the matrix-valued function U(t ,z ,y ,  p)  is positive definite and 

decreasing on R+ x N, x Ny x M + R Z x 2 ;  
(b)  the matrix-valued function D*U(t,z, y,p)  is nonpositive on 

R+ x NE x N, for p E (0,po) and  as p + 0 and 
D*U(t ,  O,O, p)  = 0 for all t E R+; 

(ii) matrix-valued  Liapunov function of AS(w) type, if 
(a) the matrix-valued function U ( t ,  z, y, p)  is positive definite and 

decreasing on R+ x N, x Nv x M ;  
(b)  the matrix-valued function D*U(t, z, y, p)  is strictly negative 

on R+ x N,o x N,o for p E (0,po) and  for p + 0 and 
D*(t,O,O,p) = 0 for t E R+, N,o = {(x # 0) E N,}, N,o = 

(iii) matrix-valued  Liapunov-Chetayev function of NS(w)  type, if there 
exist a to E (T,  m), T E R, some value E > 0 ( B ,  C N, x Nv) 

{(U # 0) E N,}. 
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and an open  set D E B, such that on [to, m) x D the following 
conditions are satisfied 

(a) 0 < U ( t ,  z, y, p)  5 Q < m component wise, there Q is a 2 x 2 
matrix; 

for p + 0, where a is of class K, and moreover 
(b) WTD+W,W,P)W L a(V(t,s,!/, P , W ) >  for P E (0,PO) and 

(c) (z = 0,y = 0) E m ;  
(d) U ( t ,  2, Y, p)  = 0 on [ t o ,  m[x  (82) n BE). 
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PROPOSITION 3.6.1. If all conditions of Assumption 3.6.1 are satisfied, 
then for the upper right Dini derivative of function (3.5.10) the upper esti- 
mate 

(3.6.1) D+V(t, Z, 3, p)  5 UZC(~)UZ V(t, Z, 9, p )  E R+ X N Z  X Nv X M 

is satisfied, where 

and 

PROOF. In  view of the fact that 

D+V(t, .) = bTD+[W&, 4 7 7 ,  i, j = 1,2 

the estimates (a)-(h) for the elements of matrix U ( t ,  2, , p )  lead to inequal- 
ity (3.6.1). 

We introduce the values p j ,  j = 1, . I . ,4 ,  po, p* by the formulas 
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Besides, 

Should p0 > 1, we shall consider p E (0, l]. 

PROPOSITION 3.6.2. The matrix C(p) is negative definite for every p E 
(0,po) and for p + 0, provided that 

(b) 2~2pzs + ~ ( ~ 1 1  + PIZ) 0; 
(a) p14 + p16 > 0; 

(c) 7 2  (p26 + p22) + 271 (p24 + p28) 0; 
(d) p18 > 0; 
(e) a > 0; 
(f) c < 0. 

PROOF. Conditions (a)  and  (b) imply that c11 < 0 for  every p E (0, p1) 

and p -+ 0; conditions (c) and  (d) imply that c22 < 0 for  every p E (0, p2) 

and for p -+ 0; and conditions (e) and  (f) imply that cllc22 - c&. > 0 for 
every p E (0,pg) and for p + 0. 

All these conditions hold  for  every p E (0,po) and for p + 0, where 
p0 = min (p1, p2,p3). The conditions are sufficient  for the  matrix C(p) 
negative definite. 

REMARK 3.6.1. If for conditions (a)-(c), (e) and  (f) Proposition 3.6.2 
is satisfied and ,018 5 0, then  its assertion is true for p0 = min (111, p3) .  

REMARK 3.6.2. If for conditions (b)-(f) Proposition 3.6.2 is satisfied 
and p14 + p16 5 0, then  its assertion is true for p0 = min (p2, p~lg). 

REMARK 3.6.3. If for conditions (b),  (c), (e) and (f) Proposition 3.6.2 is 
satisfied and p18 5 0, p14 + p16 5 0, then  its assertion is true for p. = p3. 

We note that  the quadratic form uTC(p)u2 is  given in the cone R: 
formed by the functions ( 9 2 ,  $9). Therefore the following result is valid. 
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PROPOSITION 3.6.3.  The  matrix C(p) is conditionally negative definite, 
i.e. uzC(p)uz < 0 for u2 E R: \ 0, for every p E (0, po) and for p + 0, if 

for every p E (0, po) and for p + 0. 

Estimates (3-5.11) and (3.6.1)  allow us to formulate the generalizations 
of the classical results on stability  and instability of unperturbed motion of 
system (3.5.1), (3.5.2) as follows. 

3.7 General Theorems on Stability and Instability in Case A 

The equilibrium state (zT,yT)T = 0 of system (3.5,1), (3.5.2) is investi- 
gated by means of function (3.5.10)  being a special case of function (3.5.9). 
Estimates (3.5.11) and (3.6.1) allows  us to formulate algebraic condi 
tions ensuring the presence of some properties of the equilibrium state 
(zT, p ) T  = 0. 

THEOREM 3.7.1. Let the motion (zT(t;tO,zO,p),yT(t;tO,yO,~))T of 
system (3.5.1), (3.5.2) be continuous for (to,xo,'yo) E R+ x Nx x Nu and 
p E MO C M .  In order that  the equilibrium state = 0 of 
system (3.5.1),  (3.5.2) be uniformly stable for every p E (0,po) and for 
p + 0 it is necessary that all conditions of Assumptions 3.5.1 and 3.6.1 be 
satisfied and  it is sufficient that 

(1) the matrices A1 (p )  + AF(p) and A2(p) + AT(p) be conditionally 

(2) the  matrix C(p) be non-positive for every p E (0,po) and for 

If in addition, N, x Nv = Rrn+lz, then the equilibrium state (zT, gT)T = 

positive; 

p+o .  

0 is uniformly stable in the whole for every p E (0, po) and for p + 0. 

PROOF, Estimate (3.5.11)  implies that if Assumption 3.5.1 and condi- 
tion (1) of Theorem 3.7.1 hold, the function V( t ,  z, y, p)  is definite positive 
and decreasing. The conditions of Assumption 3.6.1 and condition (2) 
of Theorem 3.7.1 ensure nonpositiveness of function D+V(t ,z,y,p) on 
R+ x Nx x Nv for  every p E (0,po) and for p + 0. The combination 
of this conditions is equivalent to  the conditions of Liapunov's theorem on 
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stability of the equilibrium state (zT,yT)T = 0 (see Liapunov [ loll, and 
GrujiE, Martynyuk and Ribbens-Pavella [57]). 

If M, x Nu = Rm+n, then functions (vi, Qt) belong to class KR and 
estimates (3.5, l l )  and (3.6.1) are satisfied for  all (x,y) E Together 
with conditions (1) and (2) of Theorem 3.7.1 this ensures stability in the 
whole of the  state (zT,yT)T = 0. 

The theorem is proved. 

THEOREM 3.7.2. Let  the motion (zT(t; to, 20, p) ,  yT(t; to, yo, of 
system (3.5.1) and (3.5.2) be continuous for (to,xo,yo) E R+ x Nx x Nu 
and p E MO C M .  For the equilibrium state  (xT,yT)T = 0 of  sys- 
tem (3.5.1),  (3.5.2) be  uniform asymptotically stable for every p E (0, po) 
and for p + 0 it is necessary that dl conditions of Assumptions 3.3.1 
and 3.3.2 be satisfied and  it is sufficient that 

(1) the  matrices A l ( p )  + AT(p)  and A2(p)  + AT(p)  be conditionally 

(2) the  matrix C(p) be conditionally negative for every p E (0, po) and 

I f ,  in addition, N, x Nu = then the equilibrium state (zT, yT)T 
is uniformly asymptotically stable in the whole for every p E (0, po) and 
for p + 0. 

positive; 

for p + 0. 

PROOF. The proof of Theorem 3.7.2 is similar to  that of Theorem 3.7.1, 
taking  into account that its conditions are equivalent to  the conditions 
of the theorem on uniform asymptotic  stability (GrujiE, Martynyuk and 
Ribbens-Pavella [57] ). 

The theorem is proved. 

PROPOSITION 3.7.1. Let in Assumption 3.6.1 in conditions (a)-(h) the 
inequality sign “5 ” be replaced by “3. ”, the  constants p i j  ( i  = 1,2; 
j = 1 , .  , . ,8) be replaced by pij ( i  = 1,2; j = 1, .  , . ,8) and  the pair of 
functions ( 9 2 ,  $2) be replaced by the pair of function (VI, $1). 

Then for the upper right-side Dini derivative of function (3.5.10) the 
estimate from below 

(3-7.1) D+V(t, 5, U, p)  1 uTc(p)u~ V (t, z,g, p)  E R+ X Nx X Nu X M 

is satisfied, where the  matrix c ( p )  has  the  same  structure m the  matrix 
C(P>. 

THE PROOF of Proposition 3.7.1 ‘is similar to  that of Proposition 3.6.1. 
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THEOREM 3.7.3. Let  the motion (zT(t; t~,z~,p),yT(t; t~,g~,p))T of 
system (3.5.1) and (3.5.2) be continuous for (to,zo,yo) E R+ x NZ x Ny. 
For the equilibrium state (zT, Y ~ ) ~  = 0 of system (3.5.1),  (3.5.2) is unsta- 
ble for every p E (0, po) and for p "t 0 it is necessary that  the conditions 
of Assumption 3.5.1 and Proposition 3.7.1 be satisfied, and it is sufficient 
that 

(1) the  matrices A1 ( p )  + A T ( p )  and & ( p )  + AT ( p )  be conditionally 

(2) the  matrix e ( p )  be conditionally positive for every p E (0, po) and 
positive; 

for p "t 0. 

PROOF. Due to inequality (3.5.11) and condition (1) of Theorem 3.7.3 
the function V(t, $,g ,  p)  is positive definite and bounded for  every p E 
(0, po) and for p 3 0. Inequality (3.7.1) and condition (2) of Theorem 3.7.3 
together with the above condition are equivalent to  the conditions of the 
second Liapunov's theorem on instability (see Liapunov [loll). 

This completes the proof. 

3.8 General Theorems on Stability and Instability in Case B 

We consider the general system (3.2.1)-(3.2.2) and matrix-valued function 
(3.5.8). Systems of (3.2.1)-(3.2.2) type  are  attributed to Case B of inclusion 
of a small parameter. Functions 

are considered as perturbed systems describing slow motions and  as a 
boundary layer of systems (3.2.5) and (3.2.6) respectively. 

ASSUMPTION  3.8.1. For the systems of equations (3.2.1) and (3.2.2) 
all conditions of Assumption 3.5.1 are satisfied, and for function (3.5.8) 
estimates (3.5.11) are valid. 

ASSUMPTION  3.8.2. There exist 

(1) the functions vi, $q E K ,  i = 1,2,  v s k ,  S, k = 1,2 mentioned in 

(2) a constants pij ( i  = 1,2, j = 1 , 2 , .  . . ,8) such that 
Assumption 3.6.1; 



PROPOSITION 3.8.1. If dl conditions of Assumption 3.8.2 are satisfied, 
then for the upper right Dini derivative of function (3.5.8) dong a solution 
of (3.2.1)-(3.2.2) the upper estimate 

is satisfied, where 

and 
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THE PROOF is similar to  the proof of Proposition 3.6.1. 

We introduce the values Pi, PO, C*, i = 1,2,3,4 by the formulas 

Moreover, 

PROPOSITION 3.8.2.  The matrix Co(p )  is negative definite for every 
p E (0, Po)  and for p + 0, provided that 

(a) p11 + p12 < 0; 
(b) p14 + P16 + p26 > 0; 
(c) 72  (p21 + p22) + 271  (p24 -k p28) < 0; 
(d) p18 > 0; 
(e) E > 0; 
(f) E <  0. 

THE PROOF is similar to  that of Proposition 3.6.2. 

REMARK 3.8.1. If conditions (a), (b), (c), (e) and  (f) of Proposition 
3.8.2 are satisfied and p18 5 0, then  its assertion is true for F0 = 
min (F1 , F3) * 

. .  . . ,. . . . . . . . . . . , , , , , , . , , . , . 
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REMARK  3.8.2. If conditions (a), (c), (e)  and (f) of Proposition 33.2 
are satisfied and p14 + p16 + P26 5 0, then  its assertion is true for PO = 
min ( P 2 ,  PS.) 

REMARK  3.8.3. If conditions (a), (c), (e) and (f) of Proposition 3.8.2 
are satisfied and p18 5 0, P14 + P16 + p26 5 0, then  its assertion is true for 
P o  = P 3 -  

THEOREM 3.8.1. Let motion (sT(t;tO,xO,p);yT(t; t o , y ~ , p ) ) ~  of the 
system (3.2.1)-(3.2.2) be cpntinuous for (to,xo,yo) E R+ x N, x Nu and 
p E MO C M .  In  order that  the equilibrium state (xT,yT)T = 0 of sys- 
tem (3.2.1)-(3.2.2) be  uniformly asymptotically stable for every p E (0, Po) 
and for p + 0 it is sufficient that 

(1) conditions of Assumptions 3.8.1 and 3.8.2 be satisfied; 
(1) matrices A1 ( p )  + AT(p) and A2(p) + A$(p) be conditionally pos- 

(2) matrix Co(p) be negative definite for every p E (0,po) and for 

I f ,  moreover, N, x Nu = Rmfn,  functions cp1, $1 E KR, i = 1,2, 
then the equilibrium state (zT,yT)T = 0 of the system (3.2.1)-(3.2.2) is 
uniformly asymptotically stable in the whole. 

itive definite; 

p -+ 0. 

THE PROOF is similar to  that of Theorem 3.7.1. 

Sufficient instability conditions for state (xT, yT)T = 0 of the system 
(3.2.1)-(3.2.2) are established in the same way as in Theorem 3.7.2. 

3.9 Asymptotic Stability of Linear Autonomous Systems 

For the mentioned class of systems two  cases of singular perturbation  are 
considered. 

3.9.1 Case A 

Consider the system 

(3.9.1) 
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where x E R", y E Rm, Al l ,  A12,  A21,  A22 are  constant matrices with 
corresponding dimensions, p E [0, l] is a small parameter. 

We construct  the matrix-valued function (3.5.1) of elements vij ( i , j) E 
[l, 21) in the form 

~ 1 1 ( ~ )  = zTB1z, 

(3.9.2) v22(y,Cl) = PYTB2Y; 

w12(x, Y ,  P) = v21(5, Y I P) = PTB3Y. 

Besides, matrices B1 and B2 are symmetric and positive definite, and B3 
is a  constant  matrix. 

Further we need the following estimate (see  DjordjeviC [28]) 

PROPOSITION 3.9.1. Let an A E Rnxm and B E RmXT, x E R", 
y E RT. Then the bilinear form xTABy satisfies the bilateral estimate 

- X ~ ( A A T ) X ~ ( B ~ B ) I I ~ I I  I ~ ~ I I S  z T ~ ~ y ~  X ~ ( A A ~ ) X ? ( B ~ B ) ~ ~ ~ ~ ~  I I ~ I J ,  

where X M ( A A ~ )  and AM (BTB) are maximal eigenvalues of the matrices 
AAT and BTB respectively. 

PROOF. Let Q! E R. We construct the vector 

W = aATz + By, 

and consider the inequality 

(3.9.3) WTW 3 0 

Since wT = asTA + yTBT, then (3.9.3) is equal to 

(3.9.4) a2xTAATz + 2axTABy + yTBTBy 1 0. 

In order that  the polynomial (3.9.4) be non-negative it is  sufficient that its 
discriminant be non-positive. Hence, we get 

( Z ~ A B Y ) ~  5 ( Z ~ A A ~ Z ) ( Y ~ B ~ B Y )  

and 

(3.9.5) I ~ ~ A B ~ I  5 ( x T ~ ~ T 2 ) 1 / 2 ( y T ~ T ~ y ) 1 / 2 .  

Hence, it follows the estimate from Proposition 3.9.1. 



154 3. STABILITY OF SINGULARLY-PERTURBED SYSTEMS, 

COROLLARY 3.9.1. If in Proposition 3.9.1 B = I (I is an  identity m e  
trix)  and T = n, then  bilateral  estimate becomes 

for all A E Rn, z E Rn, p E Rn. 

In view  of estimates typical for the  quadratic forms and with regard 
to Corollary 3.9.1 it is  easily  seen that for functions (3.9.2) the following 
inequalities are valid: 
(3.9.7) 

vll(z) 1 xm(Bl)l1412 v z  E Nzo; 
v22(31, P)  1 CLXm(B2)llvl12 v (p, P )  E N v o o  x M ;  

v12(z, p, P)  = v 2 1 h  Y, P )  L -P$(83B3T)II4 Ilpll 

V (5, v ,  P)  E &O X &O X M .  

For the function V(z,p,p) = qTU(z,p,p)r], r ]  E R:, the  matrix A1(p) 
from estimate (3.5.11) has the form 

Since by assumption on matrix B1 have Am(B1) > 0, and  then for the 
function V ( z ,  p, p)  to be positive definite it is sufficient that 

for  every p E (0, p;) and for p + 0. 
The fact that 

dV(z:, 9, p )  T dU(z,  v, p)  
dt =' dt rl 

yields 
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where z = (sT, yT)T and 

Let $ V ~ ( x , y , p )  be an upper bound of the expression (3.9.6). It is easy 
to verify that 

where U = (IIxlI, I l v l l ) T  and 

Cb) = ( 
A M  ( c 1 1   X 3 C 1 2 C T 2 )  + p X ~ ( f f 1 2 f f & )  

k%l2CTZ) + p X 2 ( f f l 2 f f ? 2 )  "22) + p A k r ( a 2 2 )  

Here X M ( C ~ ~ )  and X ~ ( u . 2 2 )  are maximal eigenvalues of matrices cii, 
i = 1,2 and g 2 2  respectively; and A 2 ( c 1 2 c T 2 )  and A ~ ( a 1 2 ~ 7 ~ ~ )  are norms 
of matrices c12 and 0 1 2  respectively. 

In this case, the values p 2 ,   p 3  and p0 are expressed as follows 

where 

Sufficient conditions for  uniform asymptotic  stability of the  state 
(xT, yT)T = 0 of (3.9.1) are established in terms of Theorem 3.7.1. Namely, 
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the equilibrium state (zT,yT)T = 0 of system (3.9.1) is  uniformly asymp- 
totically stable in the whole if 

(1) inequality (3.9.8) is satisfied; 
(2) the following inequalities are satisfied 

(a) ”11) 0; 

(b) X~(c22)  < 0; 

(c) h ( c 7 2 2 )  > 0; 

(d) X~(c12cT2) - ~ . ~ ( C I I ) X M ( C ~ ~ )  0- 

This assertion follows  from the fact that for functions (3.9.2) under con- 
dition (3.9.8) the function V($, y, p)  = q V ( x ,  y ) ~  is positive definite and 
radially unbounded, and under condition (2) D+V(x, y, p)  along solutions 
of system (3.9.1) is negative definite. Therefore, all conditions of Theo- 
rem 3.7.1 are satisfied. 

3.9.2 Case B 

Consider the system 

(3.9.11) 

where, x E Rn, y E R*, p E (0, l] and matrices All, ,.. ,A22 are  the 
same as in system (3.9.1). 

In order to establish conditions for uniform asymptotic  stability of equi- 
librium state (xT,yT)T = 0 of system (3.9.11) we incorporate the Theo- 
rem 3.7.3. To this end we take  the elements of a matrix-valued function in 
the form of (3.9.2) and assume that  the estimate (3.5.11) is satisfied for the 
function V(z, p, p) .  

We have  for the  total derivative of function V(x, y ,p)  along a solutions 
of system (3,9.11) 
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where 

For the upper bound $ V ~ ( z , g , p )  of expression (3.9.12) we have the 
estimate 

where 

In this case, the values Pi ,  i = 1,4, PO and p” are defined aa 
- 

where 
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3.0.3 Example 

Let the system (3.9.1) be 

= (-0.5  0.6) " (-0.2 5 ) 0.5 0.1  3.6  0.3 

(3.9.14) 

'Z-(-l -8)"+( 1 -8)l' 
& - -7 0.5 -3 0.5 

where z E R2, p E (0, l]. 

with the elements 
We take for the system (3.9.14) the matrix-valued function U(z,y ,p)  

2111 (z) = zTdiag [2,2]z; 

(3.9.15) w22(y,  p)  = pyTdiag [l, l ] ~ ;  

2112(z ,y ,  p)  = WZI (5, y, p)  = pzTdiag I0.4; 0.41~. 

Let q = (1,l). Then  matrix A l ( p )  in estimate (3.5.11) for the function 

V ( z ,  Y,P> = 17wb,Y,Pu)q, 17 E R: 
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with elements (3.9.15) and the estimates (3.9.16) has the form 

It can be easily  verified that matrix A1(p) is positive definite for  every 
p E (0, l] and for p + 0. 

The elements of matrix C(p) from the estimate 

where U = ( 1 1 ~ 1 1 ,  I l ~ l l ) ~ ,  have the values 

(3.9.17) 

Xn/r(~ll) = -1.291723; 

Xn/r(~22) = -2.89; 

X ~ ( 0 - 2 2 )  = 2.000713; 

X 2 ( ~ 1 2 . T , )  = 0.784953; 

X z ( 0 1 2 c ~ T ~ )  = 0.165452; 

The values of parameters p2, p3 and p0 are 

p2 = 1.444485; p3 = 1.779742; 

p0 = min (p2, p3) = 1.444485. 

With regard to (3.9.17) we find that 

(a) X ~ ( c 1 l )  < 0; 
(b) Xlw(c22) < 0; 
(c) X M ( 0 2 2 )  > 0; 
(d) XM((C~~C?') - X M ( C ~ ~ ) X " ( C ~ ~ )  = -3.117332 < 0, 

and p0 = 1.444485. 
By Theorem 3.7.3 the equilibrium state (zT,yT)T = 0 of the system 

(3.9.14) is  uniformly asymptotically stable in the whole  for  every p E (0, l] 
and for p + 0. 
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3.10 Applications 

Consider some applications of general results to  the problems of mechanics. 

3.10.1 Plane two-component  pendulum 

Let two absolutely solid bodies form a pendulum as shown  on Figure 3.10.1. 
Body I is rotating  around hinge 01 and contains a sphere cavity. A 

round body I1 is  placed into  this cavity and is  freely connected with body I 
at point 0 2 .  For the sake of simplicity we assume that  the center of mass 
of body I1 coincides with point 0 2 .  

FIGURE 3.10.1  Plane two-component pendulum 

The bodies forming such a pendulum are suhjected to  the weight  force 
and moments of elasticity force and friction with a large coefficient of pro- 
portionality to relative rotation  angulars  and relative angular velocities of 
the links. Body I moves in the medium with viscous friction. The motion 
equations of this system in the form of moment of momentum equations for 
the  total system relative to point 01 and for body I1 relative to point 0 2  

are 
d 

“(11Ql + I2n2) = -PlsiniP1 - NlQ1, 
dr 

(3.10.1) 

d@1 d@2 - = Q,, 
d r  

- 0 2 .  
dr  
” 
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Here we designate by 01 and 0 2  the rotation angulars of the system ele- 
ments, by Q 1  and Q2 its angular velocities, by I1 and I2 the moments of 
inertia, by T the  natural time, by P the  total weight of the system, by 1 
the distance from point 01 to  the center of masses, by NI the coefficient of 
moment of friction of outer forces  for the system, by K2 and NZ the coeffi- 
cients of stiffness and friction of moments of interaction forces  between the 
bodies. 

In system (3.10,l) we get over  from variables 01, 0 2 ,  01, Q 2  to  the set 
91, 01, A ,  U containing the variables A = 0 2  - 01, U = Q2 - 01 with 
respect to which tight co-actions take place. Then we obtain the following 
equations 

d 
dT 

I1 - = -P1 sin @l - N l Q l +  K2A + &U, 

dA - = U. 
d7 

In the system (3.10.2) we get over to  the pure normalized values 

Let us consider a class of motions for  which 

(a)  the oscillations of body I are large (!B* = I); 
(b)  the moments of inertia  are of the same order ( I ,  = 11); 
(c) the stiffness of elastic forces  is essentially larger than  the coefficient 

of regeneration K1 = P1 due to  the condition K1 << K Z .  
We estimate  partial time constants of the system. Time constants ~i 

of slow oscillations due to condition (c) are  estimated by 71" = I l /K1, the 
time  constant 7 2  of quick oscillations of body I1 due to elasticity is estimated 
by the correlation 7 2  = I2/k2. For KZ 1 K1 we have p = 7 2 / 7 1  <C 1. 
We estimate characteristic angular velocities of the system with respect to 
variables Q 1 ,  U by the correlations Q, = @ * / T I  and U, = A,/rz. 

Assume that  the oscillation moments and moments of forces of elastic 
interaction are  the values of the same order (K2A* = K1). We take  the 
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value of the order of  slow partial oscillations (T* = 71) as  the characteristic 
time.  In result of the normalization of (3.10.3) equations (3.10.2)  become 

dw - = - sin cp1- 251wl+ B + 252'11, 
dt 

- dcpl 

(3.10.4) dt 
= w1; 

p x  = i 2  sincpl - (1 + i2)(6 + 2 5 2 4 ,  
du 

d6 
P d t  = 

Here all variables 91, w1, S and U have the values of the order of one, 
i 2  = 1 2 / 1 1  and <I, <2 are dimensionless  coefficients of damping of the first 
and second partial oscillating links. In system (3.10.4) we make the change 
of variables 

sincpl = S I ,  w1 = 5 2 ,  u=yl ,   ( l+ i2)6- izs incpl=y2 

and linearize the system. In result we get 

(3.10.5) 

where 

0 1 0 

= (1 1 + i 2  -251) 9 A12 = ( 2;2 1 ) , 
1 + i 2  

5 = ($1, 52)*, y = (v1, ~ 2 ) ~ ,  ,U is a small parameter. 
For system (3.10.5) we construct matrix-valued function with elements 

(3.10.6) 
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where 71 and 72 are constants satisfying the conditions 

Functions (3.10.6) satisfy the  estimates 

where 

It can be easily verified that when inequalities (3.10.7) are satisfied, then 

Matrix A1(p) in estimate (3.5.11) for matrix-valued function with ele- 
kl > 0 and k 2  > 0. 

ments (3.10.6) has  the form 

(3.10.8) 

and is positive definite for any p E (0, j&), where 

1/2 
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Matrix Co(p) is negative definite for  every p E (0, Po) and p + 0, where 
PO = min ( P 2 ,  Pa) and 

where 

if one of the following conditions (i)-(iv) is satisfied 
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By Theorem 3.7.1 the equilibrium state ( x ~ , Y ~ ) ~  = 0 of system (3.10.5) 
is uniformly asymptotically stable for every p E (O,p*) and for p + 0, 
where ji* = min (,&, GO). 

3.10.2 Singularly perturbed Lur’e systems 

In  this  section, the stability of a singularly perturbed system of the Lur’e 
form is analyzed on the basis of the Liapunov matrix-valued function. We 
obtain sufficient conditions for the absolute  stability of a system of the Lur’e 
form and we indicate the bounds of the variation of the small parameter. 

8.10.2.1 Singularly  Perturbed Lur ’e System. Case A .  We consider the au- 
tonomous singularly perturbed system of Lur’e type 

where x E NZ E. R”, y E N,  E Rm, p E (0, l] is a small parameter, 
the matrices A(-) and the vectors c(-), a ( - )  having appropriate dimensions. 
The nonlinearities fi, i = 1,2, are continuous, fa(0) = 0 and in the 
Lur’e  sectors [0, ki], La E (0, +m) satisfy the conditions fa(ua)/oa E (0, hi], 

Moreover, we consider only those nonlinearities fi for  which the  state 
i = 1,2; Vat E (-m,+m). 

( ~ ~ , y ~ ) ~  = 0 is the unique equilibrium state of the degenerate  system 

(3.10.10) - = Alia: + q1fi(a:); 0: = cT1x 

and of the system, describing the  boundary layer, 

(3.10.11) c”x = AzzY + a z f z ( 4 ;  Q2 0 = CL9 

This  assumption holds if 

dx 
dt 

c;Ai1qi > 0. 

We introduce the following notations: 

f (z ,  0) = AllX + a 1 f d d ;  

f*(Z,Y) = Al2Y + 41[f1(m) - f 1 ( 4 > 1 ;  

S(0,Y) = AZZY + a z f i ( 4 ) ;  
g*(x,v) = A2lX + 92[f2(42) - fZ(421. 
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Then  the system (3,lO.g) takes the form 

- = f(x,O) + f * (x ,9 ) ;  

dY 

dx 
dt 

c”z = d o ,  v) + g*(%, U). 

Together with system (3.10.9) and subsystems (3.10.10),  (3.10.11) we shall 
consider the matrix-valued function 

where 
2111 = xTB12; 2112 = pyTB2y; v12 = pxTB3y; 

where B1 and B2 are symmetric, positive-definite matrices; B3 is a constant 
matrix.  With the aid of the matrix-valued function (3.10.12) we introduce 
the scalar function 

where qT = (q1,72); q E R:; qi > 0, i = 1,2. 

satisfy the estimates 
We assume that  the elements of the matrix-valued function (3.10.12) 

where A,(&) are  the minimal eigenvalues of the matrices Bi, i = 1,2; 
XP(B3Br) is the norm of the  matrix (B#:); X,(B3BZ) is the maximal 
eigenvalue of the matrix B&; NUo = {p: a, E Nu, g # 0); M = (0, l]. 

Under the estimates (3.10.14), for the function (3.10.13) we have the 
estimate 

v(z, v, p)  1 uTHTAHu V (x, y, p)  E NZ x Nu x M ,  
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For the derivatives of the elements of the matrix-valued function (3.10.12) 
along the solutions of the system (3.10.9) we have the following estimates; 

where p11,  p12,  p21, ,722, p18, P26 are  the maximal eigenvalues of the 
matrices 

respectively; p13 , p23 , pls , pi?, p:L2, p:(' are  the norms of the ma- 112  112  112 
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trices 

respectively, 

Denoting the upper bound of the derivative of the function (3.10.13) by 
d 
-VM(Z, v, p ) ,  we find the estimate 
dt 

(3.10.16) 

where 

d 
dt  Y I  cl) I UTC(P)U, 

We introduce the quantities 

P1 = - 72 (P21 + P22) -b+d= 
2??1/318 

; p2 = 2a ; Po = min (M, p2), 

where 
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PROPOSITION 3.10.1. The matrix C(p) is negative-definite for every 
p E (0, l] and for p + 0 if the following conditions hold: 

(a) 011 < 0, 

(c) 7?2(P21 + P22) 0, 
(b) %P18 > 0, 

(d) c < 0. 

REMARK 3.10.1. If VlP18 5 0 and the conditions (a),  (b), (d) of Propo- 
sition 3.10.1 are satisfied, then its assertion remains  valid  for p0 = p2. 

THEOREM 3.10.1. Assume that  the singularly perturbed Lur'e system 
(3.10.9) is such that  the matrix-valued function (3.10.12) has been  con- 
structed for it,  the elements of  which satisfy the estimates (3.10.14), and 
for the  upper bound of the derivative of the function (3.10.13) the esti- 
mate (3.10.15) holds. 

In this case,  if 

(a) the  matrix A is positive-definite; 
(b) the  matrix C(p) is negative-definite  for  every p E (0, po) and for 

then the equilibrium state (xT, yT) = 0 of the  system (3.10.9) is uniformly 
asymptotically stable for every p E (0,po) and for p + 0. 

If, furthermore, N, x Nv = Rn+m then the equilibrium state of the 
system (3.10.9) is uniformly asymptotically stable on the whole  for  every 
p E (0, PO) and for p + 0. 

p + 0, 

PROOF. On the basis of the matrix-valued function (3.10.12), with the 
aid of the vector E R:, V > 0, we construct  the  scalar function (3.10.13). 
Under the  estimates (3.10.14) one  can  show that 

4 2 ,  y,p) L uTHTAHu, V (x, y,p) E N, x Nv x M.  

Then from condition (a) of Theorem 3.10.1 there follows that  the function 
V(%, y, p)  is positive-definite. 

For the derivative -V(x, y, p )  the  estimate (3.10.15) holds. From here 

and from condition (b) of Theorem 3.10.1 there follows that  the deriv- 

ative -V(s, y,p) of the function (3.10.13) is negative-definite for every 

d 
dt 

d 
dt 



170 3. STABILITY OF SINGULARLY-PERTURBED SYSTEMS 

p E (0,po) and for p + 0. As is  known  (see  GrujiC, Martynyuk and 
Ribbens-Pavella [l]), these conditions are sufficient  for the uniform asymp- 
totic  stability of the equilibrium state of the system (3.10.9). 

In  the case NZ x Nu = Rnfm the function V ( x ,  y,p) is radially un- 
bounded which, together with the other conditions, proves the second as- 
sertion of this theorem. This is the absolute stability of the system (3.10.9), 
p0 being ari estimate of the upper bound of the variation of the parameter p. 

3.10.2.2 Singularly  Perturbed  Lur’e  System.  Case B. Assume that  the sin- 
gularly perturbed system is the Lur’e-type system: 

Here we preserve all the assumptions made regarding the system (3.10.9), 
including the assumption on the equilibrium state, i.e., the conditions on 
the system (3.10.10), (3.10.11). 

We assume that for the system (3.10.17) we have constructed the matrix- 
valued function (3.10.12)  for the elements of which the estimated (3.10.14) 
are satisfied. We introduce the following notations: 

The system (3.10.17) takes the form 

By virtue of the system (3.10.17), for the derivatives of the elements vij of 



3.10 APPLICATIONS 171 

where 
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We introduce the quantities 

El = - 71 (P11 + P121 - 72(PZl + P22). i;+ 
272P26 

; p 2 = -  
271Pl8 

I F 3 = -  2 z  9 

E O  =min(El,C2,E3); 
- 2 1/2 

- 2 1/2 

a =[%P23 + 7172(P:[2 + -4$dPlBP26; 

=[7iPi3 + r]172(P:[2 + P:d2)l[7aPz3 + 7172(P:i2 + P:62)1 
2 1/2 

- 2qlq2[7lPlS(PlI + Pl2) + 722PZS(PZl + P22)]; 2 

- 2 1/2 c =[%P13 + 71772(P:i2 + P:(2)]2 - $$(P11 + P12)(P21 + P22). 

If it  turns  out  that p0 > 1, then we consider p E (0 , l ) .  

PROPOSITION 3.10.2. The matrix c ( p )  is negative-definite for every 
p E (0, po) and for p + 0 the following conditions hold: 

(a> rll(P11 + P121 0; 

(c) 72(P2l + P22) < 0; 

(e) ti > 0; 
(f) F <  0. 

(b) 72P26 > 0; 

(d) VlP18 > 0; 

REMARK 3.10.2. If r]2P26 5 0 and conditions (a), (c)-(f) of Proposition 
3.10.2 are satisfied, then  its assertion remains valid  for EO = min (c2, ,&). 

REMARK 3.10.3. If 7lPl8 5 0 and conditions (a)-(c), (e), (f) of Pro- 
position 3.10.2 are satisfied, then  its assertion remains valid  for 60 = 
min(Fl,p3)* 

REMARK 3.10.4. If 1;/2/)26 6 0, V1P18 6 0 and conditions (a), (b), (e), 
(f) of Proposition 3.10.2 are satisfied, then  its assertion remains valid  for 
Po = P 3 .  

THEOREM 3.10.2. Assume that  the singularly perturbed Lur’e system 
(3.10.1 7) is such that  the matrix-valued function (3.10.12) has been  con- 
structed for it,  the elements of which satisfy the  estimates (3.10.14), and 
for  the upper bound of the derivative of the function (3.10.13) the esti- 
mate (3.10.19) holds. 

In this case, if 

(a)  the  matrix A is positive-definite; 



3.10 APPLICATIONS 173 

(b) the  matrix C(p) is negative-definite for every ,G E (0, PO) and for 

then the equilibrium state (zT,2/T)T = 0 of the system (3.10.17) is uni- 
formly asymptotically stable for every ,G E (0 , j i o )  and for p + 0. 

If, furthermore, NZ x Ny = R”+” then the equilibrium state of the 
system (3.10.1 7) is uniformly asymptotically stable on the whole for every 
,G E (0, GO) and for p + 0. 

p -+ 0, 

320.8.3 Example. We consider a system of the form  (3.10.17)  in  which 

A11 = (-1 0 -;) ; 
41”  (l1); c11= ( -0.01 ) ;  

A I 2  = (;  ;) ; c12 = (;) (kl = 2); 

A21=( 0.001 0 o.ool);  0 c21=(  0 ‘o 001 ) ;  .=(;);  
A22 = (-; -;) ; 

c22 = (;) (k2 = 1). 

The matrix-valued function (3.10.12) has the elements 

for  which we have the estimates 

If r]i = 1, i = 1,2 ,  then the matrix 

A = ( -0.Olp o.2 -OsOlp  2p 1 
is positive-definite for  every p E (0, l) .  
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Moreover, for the elements of the  matrix c ( p )  we have: 

(1) for k,t = kc: p11 = -0.15290, p12 = 0.00043, p21 = -7.67545, 
p22 = 4.82843, p18 = 0.012, p26 = 0.00002, pic2 = 0.00490, 

pic2 = 0.01414, and ii: = 0.00084, g = 0.01909, E = -0.15638, 

(2) for k t  = 0: p11 = -0.15279, p21 = -12, p18 = 0.01, p26 = 
0.00001, pic2 = 0.4, pic2 = 0.002, pik2 = 0.02414, pis/2 = 0.05, 
p12 = p22 = pic2 = pic2 = 0, and ii: = 0.00068, b = 0.01506, 

P13 = 0.46165, p:(2 = 0.02415, pic2 = 0.00002, pi(' = 0.05117, 

= 7623.205, 812 = 118.6257, F 1 3  = 6.13236; 

- 
C = -1.6398, p21 = 7639.5, pa2 = 600, p23  = 2 ~ " .  

It is easy to verify that in both cases the'conditions of Proposition 3.10.2 
are satisfied. 

The  quantity j& = min (pcj, i = 1,2;  j = 1,2,3) = 6.13236 > 1. 
Thus, on the basis Proposition 3.10.2, in the given example the  matrix 

e ( p )  is negative-definite for every p E (0, l)  and for p + 0. On the basis 
of Theorem 3.10.2, the  state (xT, yT) = 0 of the system,  determined in this 
example, is absolutely stable for  every p E (0 , l )  and for p + 0. 

We note that this example has been investigated in (Grujib, Martynyuk 
and Ribbens-Pavella [57])  by the vector function method. The obtained 
estimate  has been ,Z = 0.52. 

The use of the Liapunov matrix-valued function in the  theory of absolute 
stability of a singularly perturbed system may turn  out  to be preferable to 
the method of the scalar or vector function because of two circumstances: 
the Liapunov matrix-valued function broadens the possibilities for the dy- 
namical  properties of the degenerate system (3.10.10) and of the boundary- 
layer system  (3,10.11),  and may give a more accurate  estimate of the upper 
value of the parameter p,  

3.11 Notes 

3.1. Singularly-perturbed systems are known to be  rather widely  used in 
the engineering and technology as models of real processes (see e.g. surveys 
by  Vasiljeva and  Butuzov [170];  Kokotovid, O'Malley, and  Sannuti [86, 871; 
Grujib [50, 511; and some others).  Stability  properties of SPS were stud- 
ied by Gradshtein [43]; Tikhonov [169]; Klimushev and Krasovskii [84, 851; 
Hoppensteadt [73-771; Wilde and Kokotovid  [172]; siljak [168]; Zien [176]; 
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Porter [156-1581; Habets [64,65]; E. Geraschenko and M. Geraschenko [41]; 
GrujiC [48, 52, 541; Martynyuk  and Gutowsky [123]; Martynyuk [114]; Mar- 
tynyuk and Miladzhanov [126-1281. Monograph by  GrujiC, Martynyuk  and 
Ribbens-Pavella [57] contains rather full list of bibliography on the  SPS 
stability. 

The present chapter describes a way  of the Liapunov’s direct method  ap- 
plication basing on auxiliary matrix-valued function. This  approach  admits 
a weakening of some requirements to dynamical properties of the subsys- 
tems.  In the chapter  the investigation of the problem on absolute  stability 
of singularly-perturbed Lur’e-Postnikov system is made minutely. 

3.2. The description of system (3.2.1),  (3.2.2) follows  GrujiC [48] and 
Grujid, Martynyuk  and Ribbens-Pavella [57]. 

3.3-3.4. The contents of Section 3.3 and 3.4 may be found in GrujiC, 
Martynyuk  and Ribbens-Pavella [57]. 

3.5-3.8. The presentation of these sections is based on results by Mar- 
tynyuk [l141 and  Martynyuk  and Miladzhanov [128]. 

3.9. The results of this section are due to Martynyuk  and Miladzhanov 
[126,  1271. 

3.10. The motion equations of the plane two-component pendulum are 
due to Novozhilov [149]. The investigation of these  equations made in this 
section corresponds to Miladzhanov [145]. 

The problem of absolute  stability plays a  central role in stability  theory 
as a consequence of its theoretical  and applied importance. In 1944, Lur’e 
and Postnikov have  shown that  the mathematical model of hydraulic ser- 
vosystems is described by a system of differential equations of a special form. 
These systems have been called  Lur’e-Postnikov systems or Lur’e systems. 
The problem of absolute  stability, closely related with these  systems,  has 
become classical in control theory. Since 1944, various approaches to  the 
solution of the stability problem of Lur’e systems have been suggested. The 
majority of them are directed at the determination of sufficient conditions 
for absolute  stability. The first results have been obtained by Lur’e. The 
conditions obtained by him are purely algebraic and  the stability prob- 
lem reduces to the verification of the existence of solutions for nonlinear 
algebraic equations. A sufficiently complete bibliography regarding this 
problem can be found in GrujiC, Martynyuk and Ribbens-Pavella [57] and 
Gelig, Leonov and Yakubovich [39]. 
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Popov’s elegant frequency criteria (see Popov [155]) have been widely 
used and have stimulated  further investigations in various directions of the 
theory of absolute stability. Grujik [53] has established necessary and suf- 
ficient conditions (Liapunov-type conditions) for absolute  stability, from 
which  follows that, in the family of functionals, one has to use more than 
one function, the form of which  need not be affected by the form of the 
nonlinearities of the  system. Likhtarnikov and Yakubovich  [l031 have pre- 
sented a new approach for the analysis of the absolute  stability of nonlinear 
systems. The essence of this  approach consists in the fact that  to a linear 
block in an automatic system one associates a linear .manifold in some func- 
tional space; the non-linear blocks are described in an analogous manner. 
Moreover, the intersection of the sets of all possible processes on the  input 
g ( t )  and  the  output c(t) characterizes a closed system (the class of the corre- 
sponding  systems).  Then, on the basis of the theorem on the minimization 
of quadratic functionals in linear spaces under quadratic  constraints, one 
constructs  absolute  stability  criteria. 

The investigation of the Lur’e-Postnikov system in subsection 3.10.2  is 
presented in accordance with Martynyuk  and Miladzhanov [126]. 



4 
STABILITY  ANALYSIS OF STOCHASTIC SYSTEMS 

4.1 Introduction 

The impact estimation of perturbations,  both determined and  random ones, 
is of a  great  importance for the functioning of real physical systems. There- 
fore, it is reasonable to consider systems modeled by stochastic differential 
equations. The present chapter deals with the various types of probabi- 
lity stability for the above mentioned type of equations and develops the 
method of matrix-valued Liapunov functions with reference to  the system of 
equations of Kats-Krasovskii’s form [82] and Ito’s form [78]. In  the chapter 
sufficient conditions are formulated for stability  and  asymptotic  stability 
with respect to probability, global stability with respect to probability, etc. 

The notion of averaged derivative of matrix-valued Liapunov function 
along solutions of the system that has the meaning of infinitesimal operator 
[34] is crucial in the investigations of this  chapter. In a large number of 
cases this  operator defines  unequivocally a random Markov  process that 
models the perturbation in the system. 

4.2 Stochastic Systems of Differential Equations in General 

4.2.1 Notations 

For the convenience of readers we collect the following additional nomen- 
clature. 

Let R” be  an n-dimensional Euclidean space with norm I ( .  (I, V, = a/&, 
V,, = d2/dudv, where U and v can be either scalars or vectors. For 
instance, if x E R” and v E Rm -+ R, then V,v denotes the gradient 
of vector v and  Vx+v is a matrix with elements d2v/dxidZj, k ,  j E [l,n]. 
Let 7 = R+ = [0, +m) and (QA, P )  denote a probability space with 

177 
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probability measure P ,  defined  on the a-algebra A of w-sets (W E 0) in the 
sample space 0. Every A measurable function on 0 is said to be random 
variable. A sequence of the random variables designated by {x(t), t E 7) 
is  called a random process with parameter value t from 7. We designate by 
R [ 7 ,  R[n, R"]] the class of random processes  defined on 7 with the values 
in R[0, R"]. Random function x E R[[a, b]: R[0, R"]] is  called measurable 
on the product, provided that x(t,w) is a function measurable on (A' x d) 
and defined on [a, b] x $2 with the values  in R", where A' designates the 
a-algebra of measurable in the sense of Lebesque sets on [a, b]. 

For the set A E A, P(A)  denotes the probability of event A and P ( A / B )  
means the conditional probability of event A under condition B E d. Func- 
tion z( t ,  W )  is  called continuous with respect to t E [a, b] if 

where 6 > (C 0) when t =a@).  

fined  on [a, b]. 
We designate by C[[a, b] ,  R[n, R"]] the class of continuous functions de- 

Function x(t) admits derivative x'(t) for t E [a, b] provided 

Let E. denote the expectation operator  and {xt, t E 7)  be a Markov 
process. Then EElaxt denotes the expected value of xt at t E 7 if it is 
known that x8 = x. 

4.2.2 The Motion Equations of Random Parameter Systems 

4.2.S.l  Equations of Kats-Krasovskii Form. We consider a system modeled 
by equations of the form 

(4.2.1) - = f(t, x, d t ) )  

with determined initial conditions 

dx 
dt 

(4.2.2) 
(4.2.3) 
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Here x E R”, t E 7 (or t E 7, = [T, +oo),~ 2 0), y ( t )  is a perturbation 
vector that can take the values  from Y C R” for  every t E 7. 

We  zL9sume that  the vector function f is continuous with respect to every 
variable and satisfies Lipschitz condition in variable x, i.e. 

Ilf(t, xl ,  v) - f(t, X I 1 ,  9111 5 LIlx‘ - xrlIl 

in domain B(7,p, Y): t E 7, llzll < p, y E Y ( p  = const or p = +m) 
uniformly  in t E 7 and y E Y,  and is bounded for  all (t, y) E 7 x Y in 
every bounded domain 11x:)1 < p* (p* = const > 0). 

Moreover, we assume that 

i.e. the unperturbed motion of system (4.2.1) corresponds to  the solution 

In system (4.2.1) the random  perturbation y ( t )  is considered to be a 
random Markov  process  (see  e.g.  Doob [31] and Dynkin [34]). Further, two 
main types of random Markov functions are under consideration. 

Case A. The vector y ( t )  consists of components ys, 8 = 1 , 2 , .  . . , T 

which are independent of each others pure discontinuous Markov  processes, 
the transition functions P{p, 7; A, t }  of which admit the expansion 

x ( t )  I O .  

Here o(At) is an infinitesimal value of the highest order of smallness 
relatively At, qs(t,r] ,  P )  and &(t,q) are some  known functions such that 

In general we assume almost all realizations pa ( t ,  W )  of random process y ( t )  
to be piecewise constant functions continuous from the right. 

It should be noted that if the set Y = {VI, . . . , yh} is one-dimensional 
and finite, then the representation of functions q( t ,  r], p) and B(t, r ] )  means 
the representation of transition  matrix 
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where paj(t, t + At) is a probability of transition ya + y j  during the time 
from t to t + At. 

The process g ( t )  is  called a homogeneous Markov chain with a finite 
number of states, if q(t,i, j) = g(i, j ) .  

Case B. Vector g ( t )  is a solution of the generalized differential Ito equa- 
tion (see  e.g. Arnold [5] or  Gikhman  and Skorokhod [42]). 

( 4 . 2 4  = a(t,  Y(t))dt + b(t,  y(t))&(t) + 1 c(t, dt ) ,  4 w ,  du) 

Besides, a(t, y) and c(t, y,u) are r-component vectors with values in RT, 
y E RT, U E RT, b ( t ,  v) is a r x m-matrix, w(t) is a standard m-dimensional 
Wienner process with independent coordinates, y( t ,   A)  = v(t ,  A)  - tX(A), 
y( t ,   A) is a Poisson measure in R' having a compact carrier, Ev(t, A)  = 
tX(A), the process w(t) and  the measure v(t,A) are independent of each 
other. 

For the existence conditions with only probability 1 and continuous from 
the right solution of the equation (4.2.8) see Gikhman and Skorokhod [42]. 

Following Kats and Krasovskii [82] we shall use the following descriptive 
interpretation of the solution of (4.2-1). Let almost every realization y(t, W )  

of a  random process y(t) and the initial condition (4.2.2),  (4.2.3) generate 
completely continuous realization x(t ,  W )  of solutions to  the equation 

(4.2.9) 

lying in the domain B ( 7 ,  p, Y)  and continuable on 7, = [T, +CO). 
Then,  the  set of these realizations forms an (n + r)-dimensional ran- 

dom Markov process {x( t ) ,  y ( t ) )  that will be referred to as the solution of 
equations (4.2.1) satisfying conditions (4.2.2) and (4.2.3). 

4.Z.Z.a Equation of It0 Form. We consider the equation 

(4.2.10) dx = f (t,  z)dt + a(t,   z)dy(t),  

where t E 7, xt E Rn, f :  7 x Rn + Rn, U :  7 x Rn + RnXm and 
{y( t ) ,  t E 7)  is a Markov process with independent increments. The sys- 
tem of the equations (4.2.10) is perturbed by two specific types of stochastic 
processes. 

Case C. {y ( t )  , t E 7)  = { zt ,  t E 7) is a normed m-dimensional Wien- A 

ner process with independent components. ' 
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Case D. { y ( t ) ,  t E 7) g {q t , t  E 7) is a normed rn-dimensional dis- 
continuous Poisson process with independent components. 

For the physical interpretation of equation (4.2.10)  see  e.g. Arnold [ 5 ] ,  
Kushner [go], et al.  Functions f and  are assumed to be  smooth enough 
and  there exists a separable  and measurable Markov process {st, t E 7) 
satisfying system (4.2.10), that is completely continuous with probability 1. 

4.2.3 The Concept of Probability Stability 

The notions of probability stability are obtained in terms of Definitions 
1.2.1-1.2.3 by replacement of ordinary convergence s + 0, used there, 
by various types of the probability convergence  (convergence with respect 
to probability, convergence  in mean square or almost probable stability). 
Before we introduce the definitions iet us pay attention to  the following. 

Let the process y ( t )  be defined by Ito equation  (4.2.8). Moreover, equa- 
tions (4.2.1) and (4.2.8) and  initial conditions (4.2.2) and (4.2.3) generate 
(n + r)-dimensional Markov process {st, y ( t ) } .  

If z(t0) = 0, then we have with probability 1 that z( t )  = 0 for all t E 7 
and, therefore, the vector function (0, y ( t ) )  is a solution of this system. Let 
~ ( t )  E Y for all t E 7, and  the set D = (0, Y }  is a time-invariant set for 
the process {st, y ( t ) )  in the sense that 

P{ { s ( t ) , d t ) }  E D l 4 t o )  = so, Y(t0) = Yo) = 1 

for {ZO,YO) E D. 
Similar equality is valid  for the processes {z ( t ) ,  y ( t ) }  generated by pure 

discontinuous Markov functions ~ ( t ) .  Therefore, the notion of probability 
stability discussed herein is based on the stability of an  invariant  set, for 
instance D = {O,Y). 

DEFINITION 4.2.1.  The  state s = 0 of the system (4.2.1)  is: 

(i) stable in probability with respect to Z if and only if for  every to  E 5 
and every E > 0, and 1 > p > 0 there exists & ( t o , & )  > 0, such that 

(4.2.11) 11~011 c &( to ,& )  and yo E y 

implies 

(4.2.12) 
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for all t E 7 0 ;  
(ii) uniformly  stable in probability  with  respect t o  X if and only if both 

(i) holds and for  every E > 0 the corresponding maximal r 5 ~  obeying 
(i) satisfies 

inf [&“to, E )  : t o  E X ]  > 0; 

(iii) stable in probability in the whole  with  respect  to X if and only if 
both (i) holds and 

(iv) uniformly  stable in probability in the  whole  with  respect  to X if and 
only if both (ii) and (iii)  holds. 

(v) unstable in probability  with  respect  to X if and only if there  are 
t o  E X ,  E > 0, p > 0 and r E 7 0 ,  r > to such that for every 6 > 0 
there is 20: IIxoll < 6 and yo E Y ,  for  which 

The expression “with respect to X” is omitted from (i)-(v) if and only 
if X = R. 

DEFINITION 4.2.2. The  state x = 0 of the system (4.2.1) is: 

(i) attractive in probability  with  respect  to Z if and only if for  every 
t o  E X there exists A(t0) > 0 and for  every c > 0 there exists 
r ( to ,xO,yo,c)  E’[O, +W) and p > 0 such that 

implies 

(ii) ( X O ,  yo)-unifomly  attractive in probability  with  respect  to X if and 
only if both (i) is true  and for  every to E X there exists A(t0) > 0 
and for c E (0, +m) there exists r U [ t o , A ( t o ) , Y , c ]  E [0, +W) such 
that 
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(iii) to-uniformly  attract ive in probabil ity  with  respect  to 5 if and only 
if (i) is true, there is A > 0 and for  every ( z o , y o , c )  E BA x Y x 
(0, +m) there exists ~ ~ ( 5 ,  zo,yo, c )  E [0, +m) such that 

s u P [ ~ m ( t O , ~ O , Y o , c ) :   t o  E 5, yo E Y ]  = ~ u [ 5 , z o , y o , c ] ;  

(iv) uniformly  attractive in probability  with  respect to 5 if and only if 
both (ii) and (iii) hold, that is, that (i) is true,  there exists A > 0 
and for every c E (0, +m) there is T ~ [ Z ,  A, Y, c)  E [0, +m) such 
that 

~ ~ P [ ~ ~ ( ~ O , ~ O , Y O , C ) :  ( t o , z o , y o )  E 5 X BA X V ]  = ~ ~ ( 5 , A , y , c ) .  

(v)  The properties (i)-(iv) hold “in the whole” if and only if (i) is true 
for  every A(t0) E (0, +m) and every to  E 5. 

The expression “with respect to 5” is omitted if and only  if 5 = R. 

DEFINITION 4.2.3.  The  state 2 = 0 of the system (4.2.1)  is: 

asymptotically  stable in probabil ity  with  respect  to 5 if and only if 
it is both  stable in probability with respect to 5 and  attractive in 
probability with respect to 5; 
equi-asymptotically  stable in probabil ity  with  respect  to 5 if and 
only if it is both  stable in probability with respect to  and 
(20, yo)-uniformly attractive in probability with respect to 5; 
quasi-uniformly  asymptotically  stable in probability  with  respect 
t o  5 if and only if it is both uniformly stable in probability with 
respect to 5 and to-uniformly attractive in probability with respect 
to 5; 
uniformly  asymptotically  stable in probabil ity  with  respect  to 5 if 
it is both uniformly stable in probability with respect to 5 and 
uniformly attractive in probability with respect to 5; 
the properties (i)-(iv)  hold “in the whole” if and only if’both  the 
corresponding stability in probability of x = 0 and the correspond- 
ing attraction in probability of z = 0 hold in the whole; 
exponentially  stable in probabil ity  with  respect  to 5 if and only if 
there  are A > 0 and real numbers a, 5 1, p > 0 and 0 < p < 1 
such that (1z0(1 < A and yo E Y implies 
I 

This holds  in the whole if and only if it is true for A = +m. 
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The expression “with respect to 5” is omitted if and only if 5 = R. 

REMARK 4.2.1.  The definitions of stability in probability based on the 
inequality 

under the condition 
llzoll 6 and yo E y 

does not characterize separate realizations of the process {z( t ) ,  y ( t ) } .  I.e. 
the solution can satisfy the condition (4.2.13), though at  the same time 
almost all realizations may not leave the domain 11x11 < E (at various 
times). Therefore, following Kats  and Krasovskii [82] we consider inequality 
(4.2.12) instead of (4.2.13). 

REMARK 4.2.2.  The probabilities mentioned in  Definitions 4.2.1-4.2.3 
are  not specified  in the general case by the finite dimensional distributions 
of the process { ~ ( t ) ,  y ( t ) }  and may not exist. However, it is  known  (see 
Doob [31]) that a separable modification of the process {s ( t ) ,  y(t)} can be 
considered, having with probability 1 the realization continuous from the 
right. In this case  all realizations in question have the meaning. 

4.2.4 Stochastic Matrix-Valued Liapunov  Function 

We relate with the system (4.2.1) the stochastic matrix-valued function 

(4.2.14) 

where ( t , z ,g )  E E and wkl(t,O,y(t)) E 0 V t  E 7 and y E Y,  and, besides, 

Similar to  the determined case  (see Chapter 2) the property of having a 
fixed  sign  of matrix-valued stochastic function (4.2.14) is of importance in 
the stability investigation of a stochastic system (4.2.1). 

The concept of the property of having a fixed  sign must correspond to 

vhl(t, m )  = W l k ( t ,  m )  V (k # 1 )  E [I, 839 ‘Ukl E C(“ X Rn X Y,R [Y, R]). 

(1) the property of having a fixed  sign of stochastic  matrix; 
(2) the property of having a fixed  sign of scalar stochastic Liapunov 

(3) the construction of direct Liapunov method for stochastic systems. 
function; 
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To  achieve this we act as follows. 
Let z E R" and function V E C(7 x Rn x Y" x R", R [Y, R])  be defined 

by the formula 

In view of Definitions 2.2.1-2.2.2 we present some definitions for stochastic 
matrix-valued Liapunov function. 

DEFINITION 4.2.4. The  stochastic matrix-valued function II: R+x 
B(p)  x Y + R [Y, R"""] is referred to as 

( 9  

(ii) 

(iii) 

positive  (negative)  definite, if and only if there exists a time-inva- 
riant connected neighborhood N of point x = 0 (N E R") and 
positive definite in the sense of Liapunov function w(x) such that 

(a) TI is continuous, i.e. II E C(R+ x N x Y, R [Y, RsXs])  
(b) II(t,O,y) = 0 V t  E R+ and y E Y ;  
(c) inf V ( t ,  x, 9, z )  = w(2) V (t ,  y, z)  E R+ x Y x Rs; 

(SUP V( t ,  Z, 9, Z) = -w(z) V ( t ,  U, Z) E R+ X Y X R'); 
positive  (negative)  definite o n  S, if and only if all conditions of 
Definition 4.2.4 (i) are satisfied for N = S; 
positive  (negative)  definite in the  whole, if and only if all conditions 
of Definition 4.2.4 (i)  are satisfied for N = R*. 

REMARK 4.2.3. If function 11 does not depend on t E R+, then in 
Definition 4.2.4 the requirement of fdnction ~ ( x )  existence is omitted  and 
conditions (a)-(c)  are modified, and condition (c) becomes 

(c') V ( x ,  y, z )  = zTII(x, y)z > 0 V (x # 0, z # 0, y) E N X R' X Y ,  
(V(s,y ,z)  < 0 V(x # 0, z # 0,y) E N  x R" x Y ) .  

DEFINITION 4.2.5. The  stochasticmatrix-valued function II: R+ xB(p) 
X Y  + R[Y,  RsxSJ is referred to as 

(i) positive  semi-definite, if and only if there exist a time-invariant con- 
nected neighborhood N of point x = 0 (N E R") such that 

(a) II is continuous in (t ,  2) E R+ X N ;  
(b) 11 is non-negative on N :  zTIT(t, x, y)z 2 0 V (t ,  x, y) E R+ x 

(c) 11 vanishes at the origin zTII(t, 0, y)z = 0 V ( z  # 0, y E Y ) ;  
N x Y .  

(ii) positive  semi-definite  on R+ x S x Y if and only if (i) holds for 
N = S; 
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(iii)  positive semi-definite in the whole  if and only if (i) holds for N = 

(iv) negative semi-definite (in  the whole)  if and only if (-11) is positive 
Rn ; 

semi-definite (in the whole)  respectively. 

The following assertion is  proved in the same manner as Proposition 
2.6.1 from Chapter 2. 

PRO.POSITION 4.2.1. "he stochastic matrix-valued function II: R+ x 
B(p) x Y + R[Y, Rsxs]  is positive definite, if and only if there exists a 
vector z E Rs and a positive definite in the sense of Liapunov function 
a E K such that 

(4.2.16) zTII(t, 2, y)z = zTrI+(t, 2, y)z + a(x), 

where  1T+(t, x, y) is a  stochastic positive semi-definite matrix-valued func- 
tion. 

DEFINITION 4.2.6. The stochastic matrix-valued function 11: R+ x B ( p )  

(i) decreasing, if and only if there exists a time-invariant connected 
neighborhood N of point x = 0 and a positive definite on N func- 
tion b E K such that 

X Y  + R[Y,  Raxs] is referred t o  as 

V(t,x,y,z) = zTII(t,z,y)z 5 b ( 2 )  

for all ( t , x ,  y) E R+ x N x Y x RB; 
(ii) decreasing on S if and only if (i) holds for N = S; 
(iii) decreasing in the whole  if and only if (i) holds for N = R". 

PROPOSITION 4.2.2. The  stochastic matrix-valued function II: R+ x 
B(p) x Y + R [Y,  RsXs] is decreasing, if and only if there exists a vector 
z E Rs and a positive definite in the sense of Liapunov function c E K 
such that 

(4.2.17) zTII(t, x, y)z = zTQ-(t, x, y)z + c(x), 

where Q-(t ,  x, 9) is a stochastic negative semi-definite matrix-valued func- 
tion. 

DEFINITION 4.2.7. The  stochastic matrix-valued function II : R+ x R" x ,~ 

Y + R [Y, Raxs ]  is referred to as  radidly unbounded if and only if 
zTII(t,2,y)z + cx) as llzll + +m and y E Y ,  t E R+. 
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PROPOSITION 4.2.3. The stochastic matrix-valued function II: R+ x 
R" x Y -+ R [Y, RBXB]  is radially unbounded, if and only if there exist a 
vector z E RB and a function y E KR such that 

for all ( t , x ,  y) E R+ x R" x Y ,  where Q+(t,x, y) is a positive semi-definite 
in the whole matrix-valued function. 
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PROPOSITION 4.2.4. If all conditions of Assumption 4.2.1 axe satisfied, 
then for the function 

(4.2.19) V(t, 299, 7) = r l T w  2, Y>V, 

with a  constant positive vector q E R$ the bilateral estimate 

(4.2.20) U ~ H ~ A ~ H U  5 v( t ,x ,y ,q)  5 W ~ H ~ A ~ H W  

takes place for all (t ,  z, v) E R+ x NO x Y ,  where 

UT = (cpl(llPll>,~1(11411>,Xl(ll~ll>>, 
WT = (cpz(llPll),~z(11411>, xz(llrll>) 

and A1 = [&l, A2 = [ z k l ] ,  H = diag(r]l, q 2 , q Z ) .  

Estimates (4.2.20) are proved by direct substitution by estimates (a)-(i) 
from Assumption 4.2.1 into the form 

8 

V(t, 5, Y, v) = c r ] l q k v Z k ( t ,  5, 9). 
l , k = l  

Estimates (4.2.20) imply 

PROPOSITION 4.2.5. If in the bilateral estimate (4.2.20) 

(1) the  matrix HTAl H is positive definite (semi-definite); 
(2) the  matrix HTAz H is positive definite; 
(3) the condition (1) is satisfied and functions cp1, $1, x1 are of class 

KR, 
then stochastic function (4.2.19) is 

(1) positive definite (semi-definite); 
(2) decreasing; 
(3) radially unbounded 

respectively. 

PROOF. Assertion (1) of Proposition '4.2.5 follows  from the fact  that 

X,(Al)uTU 5 U ~ H ~ A ~ H U ,  x,(A,) > 0, 

where A1 = HTAIH. In fact, since (q1,$1,~1)  E K ,  then a function 
@ E K ,  0 = @ ( 1 1 2 1 1 )  is found such that 

@(ll4l) I cp:(llPll> + $12(11411) + X ? ( l l ~ l I ) -  
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Therefore, 

~m(Al)@(ll.ll) I uTHTAIHu I v@, 5, v ,  7) 

for all ( t , z ,  y) E R+ x NO x Y. 
Assertions (2) and (3) of Proposition 4.2.5 are proved similarly. 

4.2.5 Structure of the Stochastic Matrix-Valued  Function 
Averaged Derivative 

The averaged derivative, that is computed as in determined case without 
integrating system (2.2.1), is analogous to  the  total derivative of matrix- 
valued function for the stochastic system (4,2.1). 

Let (7, z, y) be a point in domain B ( 7 ,  p ,  Y). 

DEFINITION 4.2.8.  Any  of the limits 

D+E[II] = limsup { {E[II( t ,  z, y) 1 Z(T) = z, y(7) = y] 

- I I (7 ,z ,y ) } ( t -7 ) -1 : t -+7+0} ;  
(4.2.21) 

D+E[II] = liminf {{E[II(t, z, y) 1 z(7) = z, y(7) = y] 

- n(7,2, y ) } ( t  - 7)-l: t -+ 7 + o}; 

where E [  - I ] is a conditional mathematical  expectation, is called an 
averaged derivative’ of Stochastic matrix-valued function n(t, x, y ( t ) )  along 
the solution of system (4.2.1) at point (7,z, y). D*E[II] denotes the case, 
when D+E[II] and D+E[II] are applicable. 

The value D*E[II] is an averaged value of the stochastic matrix-valued 
function II(t, z, y) derivative along all realizations of process {z ( t ) ,  y ( t ) )  
initiating from point (5, 9) at time 7. If 

where P{. - a }  is a  transition function of solution to system (4.2.1) with the 
initial conditions z(7) = z, y(7) = y,  then 

(4.2.22) D + E [ ~ I ]  = lim sup { [T$ - I I (T ,  z, y ) ] ( t  - .)-l : t -+ 7 + 0} ; 
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(4.2.23) D+E[IT] = lim  inf { [T:Il- I ~ ( T ,  2, g ) ] ( t  - T ) - ~ :  t + T + 0} 
at the point ( ~ , z , y ) .  

rator of process {z ( t ) ,  y(t)}. 

zations of the random process y ( t ) ,  

The right-side part of (4.2.22) and (4.2.23) is a weak infinitesimal ope- 

We shall present the formulas for D+E[II] computation for various reali- 

1. Let in the system (4.2.1) the process y ( t )  be pure discontinuous and be 

described by the relations (4.2.5) and (4.2.6). Then - along solutions 

of system (4.2.1) at point (7, x, v) is computed as 
dt 

" - V9kl (T, x, Y) + [Vzuk1(7,2, Y>lTf(7,  2, Y(t)) 
dt 

(4.2.24) 
" 

p = l  

for all (IC, 1 )  E [l, S], where P p  is a vector, every p-th component of which 
equals to P,  and  the others are zero. 

2. Let in the system (4.2.1) y ( t )  be a simple scalar Markov chain with a 
finite or countable number of states  and  transition probabilities satisfying 
the correlation 

P{2/(t) = 2/j I ~ ( 7 )  = vi} = qij(t - 5) + o(t - 8 )  

for all i # j .  We compute - dE[nl by the formula 
dt 

" dE[nl - V T v k l ( T ,  x,!!) + [vzukb(T, 2, 2/)ITf(7, 2, 2/(t)) 

(4.2.25) 
dt 

+ C [ v k l  (T, x,2/j) - uk1(~,x,  2/r)l~y. 
j#i 

3. Let in the system (4.2.1) y ( t )  be a Markov  process generated by 
the generalized differential Ito equation (4.2.8). In  this case we compute 

at point ( T , z , ~ )  by the formula 
dt 

(4.2.26) 
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where g(7,g) = c(7, g ,  u)X(du). 

COROLLARY  4.2.1. If in the formula (4.2.26) c(t, y,u) 3 0, then - dE[HI 
dt 

corresponds to  the case  when y(t) is a diffusion  process. 

REMARK 4.2.4.  Operator - dE[nl for c # 0 is local in variable z, but 
dt 

non-local in g ,  

4. Let in the system (4.2.10) g(t) be a normalized Wienner process 

with independent components. We compute - dE[nl at point (T,s) by the 
formula 

dt 

” - v rvk l (7 ,  z) + [vz%1(7, 5)ITf(T, x) 
(4.2.27) dt 

1 + 5 tr z ) = V z z W ( T ,  z) l4 t ,  4 1 ,  

where k, 1 E [ l , s ] .  

5. Let in the system (4.2.10) g(t) be a normalized jump Poisson  process 

with independent components qi. Then - dEIH1 at point (T ,E )  is computed 

by the formula 
dt 

where k, 1 E [l,s]. 
Here it is assumed that during the interval At the jumps  take place with 

the probability Pint + o(At) and  the zero average of the jumps obeys the 
probability Pi ( a ) .  

We establish Liapunov correlation for stochastic matrix-valued function 
l I ( t ,z,y( t ) ) .  With  this end we construct function (4.2.19) by means of 
vector r ]  E R$. Let V ( t ,  z, g, r ] )  be such that for it  there exists 

E [ W ,  W ,  11) I 4.) = Y(7) = 311 
and 

(4.2.29) -= dEIVl  H(T,  2, g )  
dt 
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on the trajectories of the Markov process {a(t),  y(t)} at point (T,Z,Y). 

Moreover, we assume that 

(4.2.30) 

Formula (4.2.30) is  valid  for the homogeneous Markov processes and 
functions V independent of time (see Dynkin [34]) and for the processes 
being considered here (see Kushner [90]). 

Let Q c R" be  a bounded open set  and U = Q x Y be a set from 
which the process {s(t),g(t)} comes out for the first time at time T*. It is 
easy to notice that ~ ~ ( t )  = min { t ,  T*} is a Markov momentum, such that 
Er,(t) C +m. Therefore, if {z(s),y(s)} E U, then 

is valid. 
It is also clear that  the process {z(.rm(t)), y(.r,(t))) is strictly Markov. 

Between zE[ll] and --E[V] it is true  that 
d d 

dt 

(4.2.31) 
d d 
"EIV(4 dt 5, Y, d l  = sT-$[II(t, 2, Y)177. 

We return back to  the system (4.2.1) and assume that g(t) is a sim- 
ple scalar Markov chain with a finite number of states. System (4.2.1) is 
decomposed into  three subsystems 
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and B = &(p) x &(p) x &(p). 
Vector-functions X, Y and 2 and F, G and H vanish, if and only if 

We introduce designation 
p = q = T = 0 respectively. 
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PROPOSITION 4.2.6. If for  the  system (4.2.1), decomposed to the form 
of (4.2.32), there exists a stochastic matrix-valued function Il(t, x ,  y) the 
elements of which satisfy the conditions of Assumption 4.2.1 and  all con- 
ditions of Assumption 4.2.2 axe satisfied, then  the structure of stochastic 

matrix-valued function averaged derivative is defined by  the inequa- 
li ty 

dt 

dE[V] dE[II] 
(4.2.33 ) - - - qT-q 5 U ~ S U  V( t ,X ,y )  E R+ X No X Y 

dt dt  

where S x s-matrix S has the elements expressed by formulas 
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ckl = Clk, (k,l) E [l931 : 

c11 = '$ (p11 + p141 + 2771(772P27 + r/3p37), 

c22 = 1/;(p21 + p24) + 272(Vlp17 + r/3p3.10), 

c33 = vi(p3l f p341 f 2773(r]lp1.10 + 732p2.10), 

c12 =2V1plS + 2r/2p2S + 7717?2(p12 + p22 + p18 + p28) 
1 2  1 2  

+ 73(71/338 + q2p3.11), 

c13 =;'$P16 f 273p36 + r]17]3(p13 f p32 f pl.11 + p39) 
1 2  

+ 772(7lp29 + r/3p2.11), 

c23 =2'hP26 + 57]3p36 + 772r/3(p23 + p33 + p2.12 + p3.12) 
1 2  1 2  

+ vl(r/2pl9 + 773101.12). 

THE PROOF of this proposition is similar to  the proof of Proposition 
2.7.3. 

REMARK 4.2.5. Actually, the  structure of the stochastic matrix-valued 
function rI(t, x, y) averaged derivative is established by formula (4.2.33) and 
is based on the stochastic SL-function (see Martynyuk [120]). The  structure 
of the stochastic matrix-valued function ll(t,x, y) averaged derivative is 
somewhat different  provided the stochastic VL-function is applied, i.e. 

(4.2.34) W ,  2, v) = ANt ,  x, y)b, 

where A is a constant S x s-matrix  and b is an s-vector. 

4.3 Stability to Systems  in Kats-Krasovskii Form 

In terms of the stochastic matrix-valued function II(t, x, 9) constructed for 
system (4.2.1), the criteria of stability with respect to probability are in 
form similar to Theorems 2.3.1-2.3.3. 

THEOREM 4.3.1. Let the equations ofperturbed motion (4.2.1). are such 

(1) there exists a matrix-valued function ll: R+ xB(p) XY +R[Y, R"""] 
in the time-invariant neighborhood N S Rn of equilibrium state 
x = 0; 

that: 
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(2) there exists a vector Q E Re (v E R;); 
(3) stochastic  scalar function (4.2.19) is positive definite; 
(4) the averaged derivative (4.2.25) is negative definite or negative semi- 

Then the equilibrium state x = 0 of system (4.2.1) is stable with respect 
to probability. 

PROOF. Let arbitrary numbers E E (O,p) ,  p E (0,l) and to  E 'R+ be 
given. Under the conditions (1)-(2) of Theorem 4.3.1 we have the function 

definite. 

V( t ,  Z,Y, 9) = r l T w ,  2, V)% 17 E R8 (7 E R:), 

that is positive definite by condition (3) of Theorem 4.3.1. Therefore, a 
number ~1 > 0 is found, such that 

inf V(t ,s ,  y, 7) = e1 for t E R+, 11x11 3 E ,  y E Y, Q E R' (7 E R:), 

We designate B(&) = {(S, g) E Rn x Y :  11x11 < E ,  g E Y } ,  Let T, be 
the time of trajectory (s(t), y ( t ) )  first leaving the domain B(&) and let 
T,(T) = min (T, 7,). We have by condition (4) 

Now  we take 6 > 0 so that 

Hence we get for T + +cm 

This proves the theorem. 
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THEOREM 4.3.2. Let the equations ofperturbed motion (4.2.1) axesuch 

(1) hypotheses (1) and (2) of Theorem 4.3.1 axe satisfied; 
(2) the  stochastic matrix-valued function n(t, x, y) is positive definite 

(3) the averaged derivative is negative definite. 

that: 

and decreasing; 

dt 
Then the equilibrium state x = 0 of the system (4.2.1) is asymptotically 
stable with probabilityp(H), i.e. if IJzoIJ 5 H0 and a,o E Y,  t o  2 0 then 

PROOF. Let a number p ( H )  < 1 be given. Theorem 4.3.1 implies that 
under the conditions of Theorem 4.3.2 the equilibrium state x = 0 of 
system (4.2.1) is stable with respect to probability. Therefore, for any 
e E (0, p )  and to 2 0 a 6 = d(t0, E )  > 0 can be found  such that 

(4.3.3) 

whenever 
1 1 ~ 0 1 1  < 6 and YO E Y. 

Let us show that  the number H0 mentioned in conditions of Theo- 
rem 4.3.2 can be taken as H0 = 6. To this end we define  for arbitrary 
numbers y E ( 0 , ~ )  and 0 < Q < +m the number yl > 0 from the 
inequality 

(4.3.4) 
SUP [ V ( t , W , d  for t E R+, 1 1 4 1  c 71, Y E y, rl E R;] 

< - inf [V(t ,z,y,  7) for t E R+, y1 I 11x11 5 E ,  a, E Y and q E R;]. 

The arguments similar to those used  in the proof of Theorem 4.3.1 yield 

Q 
2 
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whenever 
I I W I I  I 71 and Y(t) E y. 

We claim th& there exists a T > to such that 

(4.3.6) 

If this is not  true,  then for trajectory {z ( t ) ,  y ( t ) }  the inequality 

1 
P{llz(to + 7111 71 I Z0,llO) > 1 - p - P ( W .  

WYl I Il4t)II c, t 1 t o  l xo,llo} > p .  1 

holds, that yields by condition (3) of Theorem 4.3.2 

(4.3.7) 
t+W lim E[V(.ra(t),2(701(t)),ll(701(t)),77) I ~ 0 , l l O l  = "00. 

Here T a ( t )  = min(T*,t), where T* is a time of trajectory (z( t ) ,y( t ) )  first 
leaving the set B1 = {(x, 9): 71 < 11x11 < E ,  y E Y}. 

Since the function II(t,z, y) is positive definite, the correlation (4.3.7) 
can not  be satisfied. This proves inequality (4.3.6). The estimates (4.3.3), 
(4.3.5) and (4.3.6) imply that for arbitrary q > 0 a T > 0 is found so that 

whenever ))x0 1 )  < H0 and yo E Y .  
This proves Theorem 4.3.2. 

THEOREM 4.3.3.  Let the equations ofperturbed motion (4.2.1) aresuch 

(1) hypotheses ( l ) ,  (2) and (3) of the Theorem 4.3.1 are satisfied for 

(2) the function U ( t ,  z, v) is positive definite in the whole and radially 

(3) the averaged derivative 9 is negative definite in B('T,oo, Y ) ,  

Then the equilibrium state x = 0 of the system (4.2.1) is stable with 
respect  to  probability in the whole. 

that: 

N = R"; 

unbounded; 

dt 

A theorem allowing  us to find asymptotic  stability with respect to pro- 
bability and  stability with respect to probability in the whole  on the basis 
of negative semi-definite averaged derivative is considered. 
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Let an open domain G containing the origin be definite in space Rn. 
Function $(t, x, y) : TO x G x Y + R is referred to as positive definite on 
G x Y if for any numbers T- > E > 0 there exists a number S > 0 such 
that  $(t,x, y) 2 6 holds  for all t 2 to, (x, 9) E (N n { E  5 [1z(1 5 T }  x Y). 

Matrix-valued function @(t,x, y): TO x G x Y Rmx" satisfies  hy- 
potheses A if: 

(a)  the function @ is bounded for all t 2 to in any finite domain 11z11 L 
P,  21 E Y ;  

(b) averaged derivative qT - q is bounded in any finite domain due 
dt 

to system (4.2.1), i.e. there exists a constant K such that 

(c) the function qT%q is positive definite in domain G x Y. 
dt 

Then  the following statement is  valid. 

THEOREM 4.3.4. Let the equations ofperturbed motion (4.2.1) as def- 
inite in domain B(To,oo, Y) and such that: 

(1) hypotheses '(1) and (2) of  Theorem 4.3.3 axe satisfied; 
(2) averaged derivative (4.2.13) satisfies hypothesis 

where H ( x )  is continuous in domain G; 
(3) the  set D = {z: x # 0, H ( $ )  = 0) is non-empty and does not 

possess mutual  points with bound 6'N in domain N in the sense 
that inf 11x1 - > K2 > 0 x1 E . ~ G ,  22 E D n { E  5 llzll 5 T } ;  

(4) there exists a matrix-valued function @(t, x, p) satisfying hypotheses 
A.  

Then the equilibrium state x = 0 of the system (4.2.1) is stable with 
respect to  probability  in  the whole. 

. .  . . "  . . . . . . I * , . .  . ^ .  ~ ....,.. . . . . " _...._."I , , .  , .. ,.,, .,_,....... ... ,. . . . 
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4.4 Stability to Systems in Ito's Form 

4.4.1 Decomposition of perturbed motion equations 

We consider a system of the equations with random parameters in the form 

(4.4.1) dw(t )  = f ( t ,  w)dt + U ( t ,  w ) d t ( t ) ,  

where t E 7, W E R", f :  7 x R" + Rn, U :  7 x Rn + RnXm, and 
{<(t), t E 7 )  is an independent measurable random Markov process. 

Assume that  the system (4.4.1) allows decomposition into Z intercon- 
nected subsystems that can be described by equations in the form 

(4.4.2) 

Each interconnected subsystem (4.4.2) consists of the independent subsys- 
tem 

and link functions 

Here wi E R"', W E R", W = (W?, wzT,. , . , w ? ) ~ ,  <i E Rm', f i :  x 

{&(t),  t E 7 )  are independent measurable Markov processes. 
We assume on function f i  and oii that they satisfy the existence condi- 

tion for solutions to subsystems (4.4.3), and link functions (4.4.4) vanish, 
if and only if Wj = 0 and W = 0. Thus,  the points W = 0 and w j  = 0, 
j E [1,Z] are  the only equilibrium states of systems (4,4,1),  (4.4.2) and 
(4.4.3) respectively. 

Rni -+ R"', : 7 x Rnj + R": x m j ,  gi : 7 x Rn1 x . . x R"[ + R"', and 



4.4 STABILITY TO SYSTEMS IN ITO'S FORM 201 

The transformation of systems (4.4.1) to (4.4.2) is referred to as the 
decomposition of stochastic It0 system of the  first level. Suppose that from 
system (4.4.1) couples (i, j )  of interconnected subsystems are taken in the 
form 

(4.4.5) 

Then  the (i, j )  couple (4.4.5) can be represented as 

Besides, the free (i, j )  couple has the form 

and  the link functions are represented by the formulas 

Further we need the following assumptions. 
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ASSUMPTION 4.4.1. There exists a time invariant open connected neigh- 
borhood Ni s R"', a function vii(t, W ( ) :  T X Ni + R+, the comparison 
functions $ i l l  ?,6i2 and $i3 and the positive real numbers pi such that for 
all i E [l, l ]  estimates 

( 4  $il(Ilwill) I vii(t,wi) I ? ,6 i2 ( l l ~ i l l ) ;  

are satisfied for any wi E Ni and t E 7. 

DEFINITION 4.4.1. The isolated subsystems (4.4.3) possesses property 
d(Ni), provided all conditions of Assumption 4.4.1 are satisfied for each of 
the subsystems. 

DEFINITION 4.4.2. If in Assumption 4.4.1 ?,6il(Ilwill) = cilllwil12, 

$~i~(l lwi l l )  = ca211wil12 and ?,6i3(llwill) = - 1 1 4 1 2 ,  where ~ $ 1  and ci2 are 
ci i  

Pi 
positive constants,  and c i i  constants i E [l, l ] ,  then isolated subsystem 
(4.4.3) is said to possess property B(Ni). 

DEFINITION 4.4.3. If in Assumption 4.4.1 Ni = R"' for all i E [l,Z] 
and functions $11, $12 E KR, then isolated subsystems (4.4.3) are said to 
possesses property Bi (W). 

ASSUMPTION 4.4.2. There exist a time-invariant open connected pro- 
ducts of neighborhood Ni X Nj C R"' X Rnj of point W i j  = 0, functions 
wij (t, wi j )  : 7 X Ni X Nj -+ R+, a functions $ijl $:j and of class K and 
positive real numbers pij ,  p?j and p,"j such that for  all ( i  < j )  E [l, l ]  the 
estimates 

(a) Iclij(IIwijII) I v i j ( t ,w i j )  I $?j(IIwijII); 

(b) I P ~ ~ $ ~ ~ ( I I w ~ I I )  + 2 p : j $ ~ ~ 2 ( ~ ~ w i ~ ~ ) ? , 6 ~ ~ 2 ( ~ ~ w j ~ ~ ) + ~ , " j $ i 3 ( ~ ~ w j ~ ~ )  

are satisfied for any w i j  E Ni x Nj and t E 7. 

DEFIINITION 4.4.4. Isolated couples ( i , j )  of subsystems (4.4.7) pos- 
sesses property A(Ni X Nj), if for  every of them all conditions of Assump- 
tion 4.4.2 are satisfied. 
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c$IJwij112, (i < j )  E [l,Z], where ci j ,  c!j are constant,  then the in- 
dependent couples (i, j )  of subsystems (4.4.7) are said to possess property 
B(Ni X Nj). 

DEFINITION 4.4.6. If in Assumption 4.4.2 Ni = Rni and  the func- 
tions iT!ij, E KR, then the independent couples (i, j )  of the subsystems 
(4.4.7) are said to possess property Aij(m). 

REMARK 4.4.1. In Assumptions 4.4.1 and 4.4.2 the constants pa, i E 
[l, I] and c c  ( i  < j )  E [l, I] are negative if independent subsystems (4.4.3) 
and independent couples (i, j )  of subsystems (4.4.7) are exponentially stable 
with respect to probability. 

REMARK 4.4.2. The  matrix Bij, defined by the expression 

is negative semi-definite (negative definite), if the independent couples (i, j )  
of subsystems (4.4.7) are  stable (asymptotically stable) with respect to 
probability. 

4.4.2 Structure of the Hierarchical  Matrix-Valued  Function 
Averaged  Derivative 

We construct for subsystems (4.4.3) the functions wii(t,wi), i E [1,2] and for 
couples ( i ,  j )  of subsystems (4.4.7) the functions vi j ( t ,wi j )  ( i  < j) E [l, l ] .  
Let us construct from the above mentioned elements the matrix-valued 
function. 

where II: 7 x R"' X R"$ x Y + R[Y,RLX']. 

(4.4.3) and (4.4.7) in the large-scale system (4.4.1)- 
The function (4.4.9) reflects the hierarchy of stochastic subsystems 

The application of formula (4.2.27) to systems (4.4.2) and (4.4.6) yields 

the following expressions for - dEI1 
dt 
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Similarly we have 
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(4.4.11) 

( i  c j )  E [ L  4, 
a 

OU 

(4.4.10) and (4.4.11) become 

where V, = -, and Sij is the Kronecker symbol. 

REMARK 4.4.3. If, in particular, g i j ( t ,w)  = 0 for all i # j ,  then 

i E [1,1]; 

(i c j )  E [L11 

Thus,  the  structure of averaged derivative (4.4.10), (4.4.11) represents 
adequately the hierarchical dependence of subsystems in large-scale system 
(4.4.1). 

4.4.3 Sufflcient Conditions for Stability to Probability 
of Stochastic Ito  System 

To formulate sufficient conditions for stability with respdct to the probabi- 
lity of system (4.4.1) we make some assumptions on the system. 
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ASSUMPTION 4.4.3. The system (4.4.1) allows first and second  level 

(1) independent subsystems (4.4.3) possess property A(Ni) V i  E [l, I ] ;  
(2) independent couples (i, j) of subsystems (4.4.7) possess property 

decompositions and 

A(Ni X N j )  V (i # j) E [I, 11. 

REMARK 4.4.4. If for the system (4.4.1) there exist p and q (p < q )  E 
[1,1] for  which no free couple (p ,q )  of (4.4.7) can be found, then we take 
"P&, Z p q )  = 0- 

ASSUMPTION 4.4.4. There exist time-invariant neighborhoods Ni E 
R"' and Ni x Ni E R"' x R"$ of states wi = 0 and w i j  respectively, 
constants b i j ,  d i ,  $6 = $:, a i j ,  U&, pFj and functions (pi3 E K such that 
estimates 

(1) g p w i v i i ( t , w i )  5 ' $ ' ~ ~ a ( l b i l l )  bik'$':{a(llWkll), 

(2) T ; v w i j V i j ( t , W i j )  I C ' k = l  p=k ~ ~ ~ : i 2 ( ( l l w k I l ) ~ ~ g z ( l l w p l l ) ;  

(3) (u~)Tvwiw'?Jii(t,wi)ui 5 dilluill2; 

(4) ( u i ) T v w ~ j ~ i j v i j ( t , w i j ) u i  I ~ & l I ~ i l 1 2 ;  
( 5 )  I I a i j ( t , w j ) I l a  I ~ j ' $ ' j 3 ( I I w j I t ) ;  

(6) I Ia ! j ( t ,Wk) I Ia  I P F ~ ' $ ' ~ ~ ( I I w ~ I I ) ,  
are satisfied for  all U;,  wi E R"', w i j  E Rni x Rnj , t E 7, (i # j) E [l, I], 
p ,  k =  1 , 2  ,..., 1. 

An important  part in the  structure of averaged derivative of the function 
(4.2.15) is  played  by a symmetric I x I matrix 

S = ;(S + ST), 

where 9 is an upper triangle matrix with elements TPpe defined as 
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Sufficient conditions for stability  with  probability of the system (4.4.1) 
are  obtained in terms of the function (4.4.9) being  applied in construction 
of the function 

Namely, we shall prove the following result. 

THEOREM 4.4.1. Let  the perturbed motion of the equation (4.4.1) axe 
such that: 

(1) {,$(t),t E 7) is a normalized Wienner process and aij(t,w) # 0, 

(2) all  conditions of Assumptions 4.4.1-4.4.4 axe satisfied 
(3) the  matrix S is 

V ( 4 A  E [1,4; 

(a) negative semi-definite; 

(b)  negative  definite. 

Then the equilibrium state W = 0 of system (4.4.1) is 

(a)  stable in  probability; 
(b) asymptotically stable in probability. 

PROOF. We take  the functions V i j ( t ,  a )  according to Assumption 4.4.1 
and a vector q E R:, q > 0. The function (4.4.14) in coordinate  form is 

l 1 

(4.4.15) 
i= 1 

1 

i=1 i=1 j=i+l 



208 4. STABILITY ANALYSIS OF STOCHASTIC  SYSTEMS 

Assumption 4.4.1 implies that  at  the presence of properties A(Nd) and 
d(Ni x Nj) the bilateral  estimate 

1 l 

i= 1 

1 1 

2=1 

is  valid  for function (4.4.15) when all wi E Ni, wij E Ni X Nj and t E 7. 
Since +iz E K and +;j E K,  then  the function V( t ,  W )  is  posi- 

tive  definite  and decreasing. Moreover, functions Sl( l lw l l )  and S,(llwll) E 
K can  be found such that 

forall wEN=Nlx.- .xNl,  t E 7 .  

For the function (4.4.14) the averaged derivative a along the solu- 
dt 

tions of (4.4.1) is 

for all t E 7 and ~1 E Ni, w i j  E Ni X Nj. 
In view of conditions (c) of Assumptions 4.4.3 and 4.4.4 we get the 
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estimate 

for all t E 7 and wi E Ni. 

mate (4.4.12) 
With regard to  the  structure of the  matrix S we get from esti- 

(4.4.18) 

where *(llwll> = ( $ ; 3 / 2 ( l l ~ l l l ) ,  ' m  ' 7~:,/z(llwlll)) 
T 

Since by condition (3)(a) of Theorem 4.4.1 the  matrix S is negative 
semi-definite, then XM(S) 5 0 and 

for all t E 7 and wi E Ni. 

that 
Since vi3 E K ,  there exists a comparison function *3(l lwl l)  E K such 

1 

C $ i 3 ( l l W i l l )  I *3(llwll> 
i= 1 

forall w i ~ N i  and w E N = N l x  . . .  Nl. 

. . . . . , . . . . , ... ., ,.,.,. . ...,.., . , .... , ^. ,, . . .. .., .. . . . . .. ..... . . . . . .  . .. . ... , . . , . . . , , , . ./ , 
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Hence 

(4.4.19) 

is negative semi-definite for all t E 7 and W E N.  
Thus all conditions of Theorem 4.3.1 from Section 4.3 are satisfied, and 

the equilibrium state W = 0 of system (4.4.1) is stable in probability. 
To verify assertion (b) of Theorem 4.4.1 it is  sufficient to  note that 

under condition (3)(b) in the estimate (4.4.18) AM < 0. Then according 
to inequality (4.4.19) all hypotheses of Theorem 4.3.2 are satisfied and 
the equilibrium state W = 0 of system (4.4.1) is asymptotically stable in 
probability. 

The Theorem 4.4.1 is  proved. 

ASSUMPTION 4.4.5. The system (4.4.1) allows the first and  the second 

(1) independent subsystems (4.4.3) possess the property Bj(oo), j E 

(2) independent couples (i, j )  of the subsystems (4.4.7) possess the 

level decompositions and 

[1,13; 

property Aij(oo), V ( i  # j )  E [1,1]. 

THEOREM 4.4.2. Let the  perturbed motion of the equations (4.4.1) are 
such that 

{c(t), t E 7) is a normalized process and g i j ( t , w j )  # 0 V ( i , j )  E 

dl conditions of Assumption 4.4.5 are satisfied; 
the conditions of Assumption 4.4.4 are satisfied for N;, = Rni, 
Ni x Nj = Rnc x Rnj with functions (pi3 E KR, i E [1,1]; 
the  matrix S is negative definite. 

[l, 11; 

Then, the equilibrium state W = 0 ofsystem (4.4.1) is asymptoticdlystable 
in  probability in the whole. 

PROOF. Under the conditions of Assumption 4.4.5 the function (4.4.14) 
satisfies estimates (4.2.20) and  its averaged derivative (4.2.27) satisfies  in- 
equality (4.4.18) where functions 4 i 3  E KR. In consequence of condition (4) 

of Theorem 4.4.2 and  estimate (4.4.19), dE[V(t’ W ) 3  is negative definite for 

all t E 7 and W E Rn. Thus, all conditions of Theorem 4.3.3 are satisfied 
and  the equilibrium state W = 0 of system (4.4.1) is asymptotically stable 
in probability in the whole. 

dt 
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REMARK 4,4.5. If for the perturbed motion the equations (4.4.1) are 
such that oi j ( t ,u j )  = 0 for all (i,j) E [ l , &  i.e. random interconnec- 
tions between the subsystems are  absent,  then the  structure of matrix S is 
simplified and  its elements are: 

1 1 

++l  i=p+l 

Here qp, p E [ 1 ,  Z] are components of vector q E R: 

4.5 Applications 

In  this section general results on stochastic stability are applied in the 
investigation of some real processes  models. 

4.5.1 Stochastic Version of the Lefscheta Problem 

The following problem is a development of the Lefscheta [loo] problem we 
dealt with in Chapter 2. 

Let us  decompose system (4.2.1) into two subsystems 

where p E R"*, q E Rna, X E C[To x Bp,R [n ,Rn* ] ] ,  Y E C[To x B,, 

G vanish if and only if p = 0 and q = 0 respectively. 
R[n, R"a]], F E C[To X B,R[Q, R"']], G E C[To X B,  R[n, Rna]], X ,  F ,  Y ,  

ASSUMPTION 4.5.1. There exist time-invariant neighborhoods Np C_ 

Rnl, N, C_ R"' of the equilibrium states p = 0, q = 0 respectively, and a 
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matrix-valued function If(t, 2, y) with elements Vkl  k, I = 1 , 2  such that 

allC~(IlPll> 5: vl l( t ,P,y) I ~llC2”(11PII) VP E Np0,VY E y ;  

(.22C~(Ilqll) I v22(t,q,y) I ~22c22(11~11) vq E Nq0,b E y ;  

al2cl(llPII)$1(11~1I) 5 vlz(t,P,q,y) I ~12C2(llPll)~2(11~lI) 

(4.5.2) 

v(P, 4,9) E Npo x Nqo x y 

w h e r e ~ ~ ~ = { ~ E N p , p # O } , N q O = { q ~ N q , q # O } , E ~ ~ , ~ ~ k = c o n s t > 0 ,  
a12, 512 = const, k = 1,2; C k ,  are functions of class K. 

If conditions of the Assumption 4.5.1 are satisfied, properties of the func- 
tion (4.4.14) (property of having a fixed sign, the existence of an infinitely 
small upper  bound;  an infinitely large lower bound) are defined by proper- 
ties of matrices A = HTAIH; B = HTAzH where 

(4.5.3) A1 = A2 = [Ekb], H = diag (171, q2), k, I = 1,2. 

We introduce the designation 

A ( V k l )  = ~ W & k l ( t , d  - 4 t , * , A I ,  k, 1 = L 2  
i#j 

ASSUMPTION 4.5.2.  There exist constants pkr, k = 1,2; T = 1 ,2 , .  . . , l 0  
and functions <(11pll), $(11q11) of class K ( K R )  such that 

VtWl + ( V p v W  + + h )  I P11C2 + hll(C,@), 

Vtv22 + (Vqv,T,)Y + ,A(v22) 5 P12@2 + h21(5,$), 

1 

1 

. . .  
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PROPOSITION 4.5.1. If all hypotheses of Assumption 4.5.2 are satisfied 
and 

(a) the  matrix C = [cij], C i j  = C j i ,  i # j; i, j = 1 , 2  with elements 

c11 = q?(P11 + P121 + qgP22 + %1W(P15 + P18 + P25 + & S ) ,  

c22 = %p14 + (P21 f p24) + 2qlQ2(/317 + P110 + p27 + PZlO), 

c12 = Z('dP13 + qgP23) + qlqZ(Pl6 + p19 + P26 + &Q), 

2 2 

1 

is negative definite, then due to system (4.5.1) averaged derivative 

(4.5.4) 

is a negative definite function. 

If besides hypothesis (a), hypothesis (b) is satisfied, hypotheses of As- 
sumptions 4.5.1 and 4.5.2 are satisfied 

(4.5.5) 
h(S, = 11: (h11 + h121 + 77; (h21 + h22) 

+ 2%172(h13 + h14 + h 3  + h )  5 0 

for p E R"1, q E R"=, nl + n2 = n and for functions C(llpll) E KR, 
$(11q11) E KR, then the averaged derivative (4.5.4) is negative definite in 
the whole. 

THEOREM 4.5.1. If the system of equations ofperturbed motion (4.5.1) 
is such that all hypotheses of Assumptions 4.5.1 and 4.5.2 (a) are satisfied 
and matrices A and B are positive definite and  matrix C is negative definite, 
the equilibrium state p = 0, q = 0 of the system (4.5.1) is asymptotically 
stable with respect to probability 

If  in  Assumption 4.5.1 and 4.5.2 Np = R"', Np = Rna the functions 
C(I1pI1) and $(llq11) are of class KR, the equilibrium state p = 0, q = 0 is 
asymptotically stable with respect to probability in the whole. 

The assertions of Theorem 4.5.1 are implied by estimate 

(4.5.6) 

where = (C, $)T and by the fact that if the hypotheses of Theorem 4.5.1 
are satisfied, the hypotheses of Theorems 4.3.2 and 4.3.3 are satisfied  re- 
spectively. 
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4.5.2 Stability in Probability of Oscillating System 

Let us consider for an oscillating system the  perturbed motion equations 
which are of the form 

2 = A I ( ~ ) P +  fl(P,q,r,y(t)), d t  

d t  
dr 
d t  

(4.5.7) - d4 = A2(P)cr + f2 (P ,  4, T ,  

- = A3(Y)7- + f S ( P , Q , ~ , Y ( t ) ) .  

Here p, q, T E R2, E C(B,R[Y,R2]), 

0 , i = 1,2,3 

The functions ai(y) and bi(y) are bounded and y(t) is a homogeneous 
Markov chain with a finite number of states Y = (91,. . . ,g,} and with 
transitional probabilities 

~ i j ( ~ )  = C X ~ ~ T  + o(T), aij = const (i # j )  E [ I ,T ] .  

We designate bi(yk) = b i ,  ai(yk) = ai and amume that bi > 0. Matrix- 
valued function IIb, q, v ,  y(t)) elements vik(*) are taken in the form 

(4.5.8) 
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For the function 

(4.5.9) v(P, Q, T ,  Y(t)) = rlTn(P, Q ,  T ,  Y (t))r], 

where r]  E R$ the  matrix A 1  in the estimate of (4.2.20) has  the form 

(-:,l -1" 1::;) , if O <  b i  5 1, i =  1,2,3; 
-0 , l   - 0 , l  - 

A1 (Yk) = 

, if b i  > 1, i = 1,2,3.  

The  matrix 2 1  is positive definite, if 

(4.5.10) 

For the averaged derivative dE[vi'(*)l of the function r I (P,q, r ,g( t ) )  with 

elements (4.5.8) it is easy to establish  estimate  in the form 
dt 
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where U = (IIpII, 11q11, I l ~ l l ) ~ ,  7 = (1,1, and  matrix S elements are 

(4.5.12) 
2ai 3 

c i i ( y k ) = - ( a - A b i - x d : i ) ,  i = l , 2 , 3 ;   k = 1 , 2  ,..., r ;  
bi 1=1 

1 0 1  6 

c l z ( ~ k ) = ~ ( x d ' , , + t l a : + a 2 , 1 + 0 , 1 l A b ~ l ) ,  k = l , 2 , . , . , ? - ;  

c l s ( y k ) = - ( ~ d ~ 3 + ~ l a : + a f I + 0 , 1 1 A b 3 1 ) ,  2 k = l , 2 , . . , , r ;  

c a 3 ( y r ) = 5 ( x d " , , + ~ l a 2 + a i l + O , l l A b 2 l ) ,  k = 1 , 2 ,  ..., r,  

1=1 bk 

1 0 1  

1=1 k 

1 0 1  

6 

6 

1=1 bk 

where 

Here d t j ,  i, j E [1,3], IC E [1,6] are  constants  that  are found when esti- 

mating d E [ v i j ( * ) ]  
d t  * 

The  matrix S with  elements (4.5.12) is negative definite if 
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where 

Thus, under conditions (4.5.10) the function (4.5.9) is positive definite, 
and when inequalities (a)-(c) are satisfied its averaged derivative (4.5.11) 
is negative definite. 

Applying Theorem 4.3.3 we conclude that conditions (4.5.10) and 
(a)-(c) are sufficient  for stability in probability in the whole of the equilib- 
rium state p = Q = T = 0 of oscillating system (4.5.7). 

4.5.3 Stability in Probability of a Regulation System 

We consider an autonomous stochastic regulation system 

l 

k=l  
where = c c z w ~ ,  bi,  wi E Rni, Cik E Rnh, Aij are  constant  matrices 

of the corresponding to vector wj dimensions, {zr(t), t E T} ,  is a mi- 
dimensional Wienner process. Besides, fi(&) = 0, if and only if Bi = 0, 
0 5 fa(&) k& provided f3i # 0. 

First level decomposition results in the system 
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with the independent subsystems 

and link functions 

(4.5.17) gi(w) = C Aijwjdt + bifi(Oi)dt, i E [1,1]. 
1 

( 3 Z i )  
j=l 

The second level decomposition yields 

dwi =Aiiwidt + Aijwjdt + ui(wi)dzi 

(4.5.18) 

Equations (4.5.18) are represented as 

l 

dwij = Aijwi jdt + aij  dzij + C Zf jwkd t  + Bi jd t ,  
- 

(4.5.19) (Jgtj) 
(i c j )  E [l,Z]. 

Here W i j  = (wi , wj ) , wij E R"' X Rni and matrices & ,  Zb, a i j ,   B i j  

with dimensions (ni +nj) x (ni +nj), (ni +nj )  x nk, (ni +nj )  x (mi +mj) ,  
(ni + nj) X 1 V (i, j, IC) E [l, I ]  respectively, are defined  by formulas 

T T T  

Alongside the systems (4.5.15) and (4.5.19) we shall consider the matrix- 
valued function 
(4.5.20) 

II(w)=[diag(vii(wi))+(vij(wij))], i < j E [ l , l ] ,  i = 1 , 2 ,  ..., I 
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with the elements 

vii(wi) = WTPiiwi i E [1,11; 

V i j ( W i j )  = W$PijWij (i < j )  E [1 , I ] .  

Matrices Pia are found by Liapunov  equations 

(4.5.21) AEPii + PiiAii = -Gii, i E [1,I] 

where Gia are symmetric positive definite matrices of dimensions ni x ni. 
Matrices Pij are also found by Liapunov  equations 

(4.5.22) 

where Gij are  symmetric positive definite matrices of dimensions (ni + 
nj )  X (ni + nj) .  

The functions via(wi) and V i j ( w i j )  are positive definite if matrices Aii 
and &j are  stable. We shall  suppose that  this condition is satisfied for the 
systems (4.5.15) and (4.5.19). 

-T 
AijPij + PijZij = -Gij, (i < j )  E [1,I ]  

Now  we introduce  symmetric  matrices of dimensions np x np: 
l 

~ p p  =  pp + 2$cpPb;k;ppp, + q p  C qj(Gij + ~ i p )  
j=1 

( j # p )  

l 

+ 47, C qj  [Cppb,Tk;P$ + CjpbTk5F:j 
j=p+l 

+ C j p  b; kiFpj + cjj b? k; Pjp] , P E [ 1, I ] ,  

and  matrices of dimensions np x nq, (p < 9 )  E [ l , I ] :  

F P 9  = rl,2A~pPqq + qpPPb;k;c:q + 2rlPl;l l lGPP 
1 1 

+ V P  C qj  (ATpP,Pj + AjpPqj) + qq C qj ( ATppjq + ATpPjq) T "T 

(j#d 
j=q j=q 
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Here 

kb = (or BibTFpqwi > 0, or BibTPiiwi > 0); 

0, in the other cases. 

We designate by AM(=,,) and Az(EpqEpq) the maximal eigenvalue 
of matrix S,, and the norm of matrix EFqzPq respectively.  For system 
(4.5.14) the following result is valid. 

THEOREM 4.5.2. If system of the equations (4.5.14) is such that 

(1) the first and second level decompositions are described by equations 

(2) the  matrices Aii and &j in systems (4.5.15) and (4.5.19) are stable; 
(3) the  matrix S with elements 

(4.5.15) and (4.5.19) respectively; 

{ hffP)+,,, 

P = %  

S P q  = A, ( = p q E p q ) ,  P 4; 

P > 4, (Pd7) E [l,& 

(a) negative semi-definite; 
(b) negative definite. 

Then, the equilibrium state W = 0 of system (4.5.14) is 

(a) uniformly stable in probability; 
(b) uniformly asymptotically stable in probability. 

PROOF. We construct by means of the function (4.5.20) the function 

(4.5.23) V ( W )  = qTII(w)q, q E R:, q > 0. 

By condition (2) of Theorem 4.5.2 the function V(w) is positive definite 
and radially unbounded. For the averaged derivative 

it is easy to obtain the estimate 
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where U = ( I ~ w ~ I I , .  . . , I l ~ l l l ) ~ ,  Under the condition (3) of Theorem 4.5.2 the 
averaged derivative (4.5.24) is negative semi-definite or  negative definite. 
According to Theorem 4.3.4 the Theorem 4.5.2 is proved. 

4.6 Notes 

4.1. General  outlines  on  probability  theory and  theory of stochastic pro- 
cesses can  be  found  in the books by Doob [31], Gikhman and Skorokhod [42], 
Dynkin [34], etc.  The problems of stochastic  stability  are  presented  in a 
number of monographs (see e.g. Kushner [go], Arnold [ 5 ] ,  Khasminskii [83], 
Michel and Miller [143], Ladde and Lakshmikantham [91], etc.).  In  these 
investigations the second Liapunov  method is further developed with  inter- 
esting  applications. 

4.2. Stochastic  system  in the form of (4.2.1) is called here the Kats- 
Krasovskii form with reference to  Kats  and Krasovskii [82] where it was 
introduced. 

Basic definitions of stochastic  stability  are  formulated  as the genera- 
lization of Definitions 2.2.1-2.2.4 from Chapter 2 for stochastic  systems. 
Stochastic  matrix-valued  function is introduced  according to Martynyuk 
[l151 and averaged derivative is due to  Kats  and Krasovskii [82] and Mar- 
tynyuk [115]. 

4.3. Theorems 4.3.1-4.3.4 are  due  to  Martynyuk [115]. 
4.4. Theorems 4.4.1,  4.4.2 are  taken from Azimov and  Martynyuk [8] 

and Azimov [6]. 
4.5. Stochastic version of the Lefschetz [loo] problem is presented ac- 

cording to Martynyuk [115]. Oscillating  system (4.5.7) was investigated by 
Azimov and  Martynyuk [8], and system of automatic control (4.5.14) was 
considered by  Azimov [7]. 





5 
SOME  MODELS OF REAL  WORLD PHENOMENA 

5.1 Introduction 

This  chapter  contains several examples of real world phenomena that illus- 
trate  the versatility and applicability of the matrix-valued Liapunov func- 
tions  in  stability  investigation of its equilibrium state. 

Section 5.2 deals with  mathematical models in population. The neigh- 
borhood of the non-trivial  equilibrium state is investigated in the general 
case for a predator-prey  system  and  estimates of stability,  asymptotic st& 
bility and instability  domains are found  in this section. 

In  Section 5.3 the model of an orbital  astronomical  observatory is con- 
sidered.  Conditions are established  under which the whole system is stable 
even though  its  separate subsystem are  unstable. 

In  Section 5.4 we discuss a power system model consisting of N gen- 
erators. General  conditions are specified for asymptotic  stability of the 
equilibrium state of such a system to  be applicable  in the case of 3 ,5  
and 7 generators to obtain the system  parameters  such that  the system 
is asymptotically  stable, while the  method of scalar or vector Liapunov 
functions have failed to work herein. 

Finally, in Section 5.5 the motion in space of winged aircraft is treated. 

5.2 Population Models 

We shall discuss in this section mathematical models in population  dynam- 
ics. In  particular, we consider mathematical models of population  growth 
of competing  as well as predator-prey species as  prototype models of our 
analysis. The models are based on  certain simplifying assumptions as stated 
below. 

(1) The density of a species, that is, the number of individuals  per  unit 
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area, can be represented by a single variable, when  differences of 
age, sex and genotype are ignored. 
Crowding affects all population members equally. This is  unlikely 
to be true if the members of the species occur in clumps rather  than 
being evently distributed  throughout the available space. 
The affects of interactions within and between  species are  instanta- 
neous. This means that there is  no  delayed action on the dynamics 
of the population. 
Abiotic environmental factors are sufficiently constant. 
Population growth rate is density-dependent even at the lowest den- 
sities. It may be more reasonable to suppose that there is  some 
threshold density below  which individuals do not interfere with one 
another. 
The females in a sexually reproducing population always  find mates, 
even though the density may be low. 

The assumptions relative to density dependency and crowding  affects 
the fact that  the growth of any species  in a restricted environment must 
eventually be limited by a shortage of resources. 

5.2.1 Competition 

For simplicity, let us first consider a two-species community model  living 
together  and competing with each other for the same limiting resources. 
Under assumptions (1)-(6), a mathematical model of population growth of 
two competing species  is described by 

(5.2.1) 

where xi is the population density of species i for i = 1,2 and for i, j = 
1 ,2 ,  ai, bij are positive constants. These equations are derived from the 
Verhulst-Pearl logistic equation 

(5.2.2) i = 1,2,  

by including the additional terms -bijxj for i, j = 1,2 and i # j to 
describe the inhibiting effects of each  species  on its competior. The logistic 
equation is best regarded as a purely descriptive equation. 
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The  important features of (5.2.2) we: 

(a)  The species increase exponentially whenever they  are isolated. 
(b) They approach their equilibrium without oscillations in the absence 

of its  competitor. 

In (5.2.1), for i = 1 ,2  aizi can be interpreted  as the potential rate of 
increase that  the i th species  would  grow if the resources were unlimited 
and intra/inter-specific effects are neglected. Here ai is the intrinsic rate of 
natural increase of the e' th species, at/bii = Ici is referred as the carrying 
capacity if the i th species.  From this (5.2.2) can be written  as 

(5.2.3) 

We observe that  the per capita growth rate (S> / xi. will be negative 

or positive depending on the population density zi > ki or zi < ki. Thus 
the constants ki determine the  saturation level of population densities. 

5.2.2 Predator-Prey 

In the community of competing species, each  species inhibits the multiplica- 
tion of the other species. In a community of two  species in which one species 
is a parasite or predator  and the other  its host or prey, a different  form of in- 
teraction between these two  species takes place. The  mathematical models 
for host-parasite  and predator-prey systems are equivalent. Obviously, the 
more abundant  the prey, the more opportunities  there  are for the predator 
to breed. However, as the  predator population grows, the number of prey 
eaten by the predator increases. To formulate the mathematical model 
describing the predator-prey interaction between  two species, we assume 
the following: (a) in the absence of a predator,  the prey species satisfies 
assumptions (1)-(6) and  (b) the predator cannot survive without the pres- 
ence of prey and the  rate at which prey are  eaten is proportional to  the 
product of the densities of predator  and prey.  Under these assumptions, 
a  mathematical model describing the predator-prey interaction between a 
prey and  a  predator in a given community is  given  by 

- = a(a1  - bllIl - bl2X2), 
dxl 
dt 

dx2 - = z2(-a2 + b2111) ,  d t  

(5.2.4) 
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where 2 1  is prey density and 1 2  is predator density and a l ,  a2, b l l ,  b21 are 
positive constants. 

From the foregoing  discussion with regard to  the two-species competi- 
tion model and the predator-prey model, we can readily generalize to n 
interacting species so that  the general model  is described by 

where xi is density of the i th species  in the community, ai, -bai are positive 
constants  and b y ,  i # j, are  constants with any sign. Any arbitrary sign 
for b i j ,  i # j ,  allows us a  greater flexibility  for the interactions between the 
i th and j th species in the community. For example, in a competitive model, 
bij , b j i ,  i # j, are  both negative, while  for a predator-prey model, b i j ,   b j i ,  

i # j ,  are of opposite signs. In  a model  for  commensalism (symbiosis), 
b i j ,   b j i ,  i # j ,  are  both positive. 

The system (5.2.5) is represented in the vector form 

(5.2.6) - = X ( a  + Bs), s(0) = so 5 0 

and decomposed into two subsystems 

dx 
dt 

(5.2.7) 

(5.2.8) X ( a  + Bs) = 0. 

From (5.2.8) it is easy to conclude that z = 0 is an equilibrium which  is 
not  interesting  and so, we must assume that X # 0. In this case (5.2.8) 
reduces to 

(5.2.9) a+Ba:=O, 

where B is an  n by n  matrix  and  a is an n-vector. 
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We assume that  there exists an equilibrium population x* > 0 as a 
positive solution 

(5.2.10) x* = -B-la 

of (5.2.9). This  assumption is consistent with consideration of community 
stability.  In the case when b has all off-diagonal elements non-negative, 
that is B is a Metzler matrix,  then it is known that stability of B implies 
x* > 0. It is possible to show that for a Metzler matrix B, the quasi- 
dominant diagonal condition 

(5.2.11) 

with di > 0, is equivalent to saying that -B-l is non-negative and since 
B-l cannot have a row of zeros, positivity of the vector a implies positivity 
of x*. 

If B is a Metzler matrix,  then  an elegant solution of the problem on 
stability of state x* is obtained by means of the function 

Our aim is to establish stability conditions for system (5.2.6) without 
assuming matrix B being Metzler. This may be achived by decomposition 
of system (5.2.6) with further application of the matrix-valued function. 

By means of the Liapunov transformation 

(5.2.12) y = z - x *  

we reduce the system (5.2.7) to  the form 

where 

X: = diag {X:~,IC:~, . . . ,xzn,}, S = 1,2, 

Y, = diag{y,l,y,2,. . . ,ysn,}, S = 1,2.  
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For the system (5.2.13) the matrix-valued function 

is constructed with the elements 

(5.2.15) 

Here P8 are positive definite symmetric matrices of the dimensions n, x n,, 
S = 1,2, and P3 is a constant  matrix nl by nz. 

For the function 

the following estimates  are valid 

(5.2.17) U ~ H ~ D ~ H U  5 v(Y,q) 5 U ~ H ~ D ~ H U ,  

where 

We have for the function D+V(y, 7) = qTD+U(y)q: 

Here 



norm of matrix F12 and 08j(y) is the norm of matrix G,j, S, j = 1,2. 
It follows  from (5.2.18) that 

D+V(Y, 73) 1 U T V *  - G(Y)IU, (5.2.20) 

where 

and cT1, c;2 are minimal eigenvalues of the  matrices F11, F 2 2  respectivc 
Let us introduce  the following notations 

Estimates (5.2.17), (5.2.19) and (5.2.20) yield the following assertion. 

:ly. 
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PROPOSITION 5.2.1. The equilibrium state zc of the system (5.2.6) is: 

(1) Stable (asymptotically) in the domain Ill (l&) if the  matrix D1 is 

(2) Unstable in the domain l& if the  matrices D1 and C* are positive 
positive definite and  the  matrix C is negative definite. 

definite. 

PROOF. The fact that  the matrix D1 is positive definite yields that 
the function V(p) if positive definite for  all E RI;. Since the  matrix 
C is negative definite, then by estimate (5.2.19) the function D+V(y) is 
non-positive in the domain Ill. Hence  all conditions of Theorem 2.3.3 are 
satisfied, and  the equilibrium state x* is stable. 

The other assertion of Proposition 5.2.1 follows  from Theorem 2.3.7. 

5.3 Model of Orbital Astronomic Observatory 

According to Geiss,  Cohen et al. [40] the orbital astronomic observatory 
consists of following  blocks: 

(1). observatory vehicle 
(2) observatory body 
(3) compensation system 
(4) engine 
(5) system of data (error) processing. 

The subsystems (1)-(4) are physycal and  its  states  are characterized by 
the variables y1, y2, 93 and 94 respectively.  Under  some assumptions the 
mathematical model of the motion control system for the observatory is 
described by the equations 



5.3 MODEL OF ORBITAL  ASTRONOMIC OBSERVATORY 231 

(5.3.2) 

Furthermore 

0 
(5.3.4) Y(312) = J- l ( -yz3 ;q , 

Y22 -3121 0 

(5.3.5) 

(5.3.6) 
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under  some  additional  assumptions the system (5.3.1) is reduced to  the 
form 

dxr 
(5.3.13) 

- = Ailxi + + Ai323 + v&f(C), d t  
C = CX, V i  = 1,2,3, 

besides, xi, i = 1,2,3, is determined  as 

x1 = (:c), Aw, x2=(:;0),  Awe %S=(::), 

A% 

and (v, 8, g) are Euler  anglers specifying the  rotating motion of the ob- 
servatory, (W,, we, W @ )  are  the velocities of its changing, V,,  V,,  V, are  the 
components of vector V that determines the velocity of plane-parallel mo- 
tion, 51, 5 2 ,  x3 specify the observatory  deviation from the directed  position 

A v  = P* - v ,  A8 = 8* - 8, A$ = $* - $; 
AV, = V$ - V,, AVO = V,* - Ve, AV$ - V$; 
Aw, = W; - W,, Awe = W; -we ,  Aw@ = W $  - W $ .  
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r: = ( d i , p ? i , p ! i )  9 i = 1,273; Tji = ( p j l , p j 2 r p j 3 )  9 j = 2 , 3 ;  

f (Z)  = ((pl(al)tV2(02),(p3(a~))T, c = ( 0 1 , f l 2 , 0 3 )  , 

T 

T 

(ai ) 
E [O, l] Vac E R, pi(%) E C(R, R). 

ai 

The elements a,, S = 1,2,  , . . , 7 ,  of the matrices Aij as well as  the values 
rt i  ( i . k )  E [ l ,3 ] ,  r i k ,  i = 2,3,  k E [1,3] are known real constants. 

System (5.3.13) has a unique equilibrium state ( x  = 0) E R3. 
The problem is to establish conditions for asymptotic  stability in the 

whole of system (5.3.13). 
Let us use the algorithm of constructing the hierarchical Liapunov func- 

tion (see Martynyuk  and Krapivny [124]). The first level decomposition of 
system (5.3.13) results in the independent subsystems 

and the relation functions 

(5.3.15) 

The second  level decomposition yields three couples of the independent 
subsystems 

(5.3.16) 

g l ( X : )  = A1222 + A1323 + v B I ~ ( C ) ,  
gc(x )  = 0, i = 2,3.  

dxij - - = A . . x . .  
dt ag a3 + V & j f ( C ) ,  ( i  C j )  = 1 ,2 ,3 ,  
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where zij = (zT, x?) and  the matrices & and Bij are 

The relation functions between them  are 

(5.3.17) 

where 

Afj  = (2;:) = ( ' ; l ) ,  = (7). 
We construct for the subsystem (5.3.14) the function 

(5.3.18) vii(xi) = x T H ~ ~ x ~ ,  i = 1,2,3, 

where Hii > 0 satisfy the algebraic Liapunov equations 

(5.3.19) AEHii + HiiAii = Gii, i = 1,2,3, 

where Gii < 0 if and only if the subsystems 

are asymptotically stable. For functions (5.3.18) the estimates 

(5.3.20) 
~ m ( ~ i i ) l l ~ i l 1 2  5 v i i ( 4  5 "ii)IlXill2 

Vxi E Rni ,  i = 1,2,3, n1 = n2 = n3 = 3,  

are known. 

alongthe solutions of subsystems (5.3.14) the estimates 
Assume that for  all xi E R3 for the functions vii(za) time-derivative 

(5.3.21) 

are satisfied and for (5.3.15) 

(5.3.22) 
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where 

We construct for (i, j)-couples of subsystem (5.3.16) the functions 

where the matrices Hij > 0 satisfy the algebraic Liapunov equations 

for Gij < 0 if and only if (i, j)-couples 

are asymptotically stable. 
For functions vij(sij) the estimates 

take place. 

solutions of subsystems (5.3.16) the estimates 
We assume now that for the functions vij(xij) time-derivative along the 

are satisfied for all xi E R3  and for (5.3.17) 
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The  contstants p i j ,  p,", p!j can be determined as follows 

Here the matrices H; and Rij, ( i  < j )  = 1,2,3, of the dimensions 3 x 3 
are the blocks of the  matrix Hij so that 

Using the matrix-valued function U ( s )  with elements (5.3.18) and 
(5.3.24), and by virtue of (5.3.21), (5.3.22), (5.3.27) and (5.3.28) we see 
that 

(5.3.31) 

where 

The  matrix S in (5.3.31) has the form 

S = #I + P ) ,  
l 
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where II is the upper  triangle  matrix  with  the elements 

(5.3.32) 

i=l j=i+l 
TPk = 0, k C p. 

The  matrix S in the  estimate (5.3.31) is negative definite, if 

(5.3.33) 511 c 0, 522 c 0, S33 C 0 

and 

(5.3.34) 511522 - s : ~  > 0, det S C 0 

since Si j  > 0 V ( i  # j) E [1,3]. 
Stability  conditions (5.3.33),  (5.3.34) are analyzed for two cases, first, for 

the case when only the first level decomposition is made.  This  corresponds 
to  the approach based on the vector Liapunov  function,  applied by  GrujiC, 
Martynyuk  and  Rbbens-Pavella [57]. 

In  this case the elements of matrix II for system (5.3.13) are in view of 
(5.3.23)-(5.3.30) and (5.3.32) 

We introduce the designations 

and  the  matrix D = [dij] the elements of which are expressed via the 
elements of matrix rI as follows 

d . .  = - Ti j 
q; ' (i, j) = 1,2,3.  
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Therefore we have 

(5.3.35) 
1 -  -T 1 

S = z(II + II ) = ,(Q0 + DTQ). 

The  matrix S is negative definite if and only if the  matrix D is an M -  
matrix.  The  matrix D is an upper triangular  and dij 1 O (i, j )  = 1,2,3,  
hence, if dai < 0, then D is the "matrix. Therefore, the conditions for 
matrix S being negative definite are 

(5.3.36) X M ( G ~ ~ )  + 2~llHiiII IlriiII < 0 V i  = 1 ,2 ,3 ,  

These are  the well-known conditions for the asymptotic stability in the 
whole of system (5.3.13). 

Let us show conditions (5.3.33),  (5.3.34) for the asymptotic  stability in 
the whole of the system (5.3.13) to be more general than  the conditions 
(5.3.36). 

The conditions (5.3.36) are satisfied if X M ( G ~ ~ )  < 0. This means that 
the subsystems 

(5.3.37) - = &xi, i = 1,2,3,  
dxi  
d t  

obtained from (5.3.14) must be asymptotically stable. 
Therefore, if one of the subsystems (5.3.37) is unstable, the conditions 

(5.3.36) are not satisfied and  the approach based on the vector function 
does not work. 

Assume the 3rd subsystem from (3.5.37) is unstable, i.e. X M ( G ~ ~ )  > 0. 
In view  of the second  level decomposition one of conditions (3.5.33), namely 
s33 < 0 becomes 

It is clear that, if the 3rd subsystem forms asymptotically stable couples 
(2,3) and (1,3),  then XM(G13) < 0 and XM(G23) < 0. This may  prove to 
be sufficient  for inequality (5.3.36) to be satisfied. However this inequality 
may be derived by means of the matrix-valued function only. 

Thus,  the application of the matrix-valued function and two-level  decom- 
position yields  less strict conditions for the asymptotic  stability in the whole 
of the system (5.3.13) as compared with conditions (5.3.36) established by 
means of the vector Liapunov function. 
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5.4 Power System  Model 

The dynamical and  structural complexity combined with the high order of 
the power system  make  many  methods developed in  theory of differential 
equations  inapplicable in the investigation of these  systems. The  method of 
Liapunov  functions  (scalar, vector or matrix) is one of the methods used in 
the analysis of stability  and  the  estimation of asymptotic  stability  domains. 
In  this section we shall show the application of the matrix-valued  Liapunov 
function to  be advantageous as compared  with the results by the vector 
Liapunov  function. 

5.4.1 Description of the Power System 

Considered is the N-machine power system  with uniform mechanical damp- 
ing X. The i th machine  motion is modeled by the equations 

(5.4.1) + DJ = pmi - ped, i = 1,2 , .  . . , N, 

where 

and Mi E R is the inertia coefficient of the i th machine, Di E R is the 
mechanical  damping of the i th machine, Pmi E R is the mechanical power 
delivered by the i th machine, Ei E R is the modulus of the internal  voltage, 
xj E R is the magnitude of the  (i,j)-th element of the reduced  admittances 
matrix Y ,  Si E R is the absolute  rotor angle: Sij = Si - Sj  = S ~ N  - & N ,  

S:j = SpS!, Bij E R is the angle of the (i, j)-th element of the reduced 
admittances  matrix. 

Let  us take  the Nth machine as a standard one and  introduce  (2N - 1) 
state variables 

(5.4.3) 

where uij E R is a subsidiary  variable, wi E R is the absolute  angular 
speed of the i th machine  rotor. Here SfN are  the solutions of the system of 
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equations 

i =  1,2 ,..,, N. 

The motion of the whole N-machine  system  can be described by the 
equations 

where Aij = EjEiY&, Ai = A ~ N ,  f i j  are non-linear functions 

satisfying the conditions 

(5.4.7) 

as soon as aij take  the value on  compact  intervals Jij: 

(5.4.8) Jij = { aij : - 2 ( ~  - 8ij + d:') 5 ~ i j  5 2(eij - d:j) } , 

The constants <ij in (5.4.7) are determined as follows 

5.4.2 Mathematical Decomposition of the Power system 
model 

The  state vector of the whole system is designated as 



241 

are  introduced. 
System (5.4.5) is represented as 

(5.4.10) 

Each subsystem of (5.4.10) consist of free subsystems 

(5-4.11) 

and relation functions 

The vector of nonlinearities Fi(0i) is a decomposition of two nonlinearities 

The  other matrices and functions appearing in the system (5.4.14) are 

X = DiM;' is a uniform damping, i - 1,2, . . . , N ;  
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5.4.3 Application Algorithm of the Matrix-Valued  Function 

The elements vij of the matrix-valued function U ( Z )  are  taken as 

i = 1 , 2  , . ' . ,  8, 

v i j ( ~ i ,  ~ j )  = ~ ~ i j  f i j ( ~ i j )  daij 
(5.4.15) 1 0 

( i # j ) ,  i , j = 1 , 2  ,..., S. 

Here Hi are 2 x 2 symmetric positive definite matrices, ~ i k  and aij are 
arbitrary positive numbers. 

Let 77 = ( l , .  E R$ and 

V ( z , q )  = vTU(z)q, O(Z) = [&j(Zi,Zj)]. 

The function V i j  time-derivative along the solutions of the i th intercon- 
nected subsystem is 

(5.4.16) 

where 

(5.4.18) 

Further we introduce the following matrices 
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where ai = diag { m ,  ~ i 2 }  and bi = {&I, &2} are prescribed values. 
The expressions (5.4.18) and (5.4.18) are transformed as 

where 

and 

(5.4.22) 

where 

and 

(5.4.23) 

Combining (5.4.21) and (5.4.22) yields 

(5.4.24) 8 

For functions V i j  defined  by (5.4.15) we have 
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where d = (l,O)T. 
We have  for function 

(5.4.27) 

and 

Further we show that  the right-hand part of (5.4.26) can be estimated by 
the expression wT(z)Aw(z), i.e. 

It should be noted that o(z) is not estimated by the expression 

Then the matrices Hi are taken in the form 
W(z)AW(z)  in view of (5.4.24)-(5.4.28). 

(5.4.30) 

where Ici are  arbitrary positive constants and matrices Gi are computed 

(5.4.31) 
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and transform the expression -xTDiixi as 

(5.4.33) 

The right-hand part of (5.4.33) may  be estimated by the value 
-&rn(Qi)llxi1I2: 

(5.4.34) - x T D ~ ~ x ~  5 -Xin(Qi)JI~i((2, i = 1 , 2 , .  . . , S, 

where Xirn(&i) is the minimal eigenvalue of the  matrix Qi, the elements of 
which are determined as 

We note that E i j  E (0, (ij) and  the  constants ki are  taken according to 
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To estimate  the right-hand part of (5.4.37) the functions 21 : R2 + R and 
2 2  : R3 -+ R  are  introduced by the formulas 

Having noted that the expressions xilxjl, X ~ I X ~ Z ,  ~ i 2 ~ j l  can be  treated 
as the components of the 3-dimensional subspace, where each of the expres- 
sions may take  either positive, negative or zero value, the  estimate of the 
righ-hand part of (5.4.37) can be obtained in the form 

In view  of (5.4.34) and (5.4.38) we get for the elements aij of matrix A: 

We formulate now the following assertion. 

PROPOSITION 5.4.1. In order for  the equilibrium state x = 0 ofsystem 
(5.4.10) to be asymptotically stable it  is  sufficient  that  the inequalities 

all  . . I  al, 

. . -  ass 
(5.4.41) (-1)k > o ,  k = 1 , 2  , m , . ,  L?, . . I * . . . . . . . , , 

be satisfied. 
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PROOF. Let the matrix A in estimate (5.4.29) be constructed according 
to (5.4.39) and (5.4.40). When inequalities (5.4.41) are satisfied, the matrix 
A is negative definite, and by (5.4.40) A = AT. The function V(z,r]) = 
qTU(z)r] is positive definite, since Hi = HT is positive definite, yik > 0 
and aij > 0 and  the integral terms in (5.4.14) and (5.4.15) are non-negative 
in the neighborhood of z = 0. Thus, function V(z ,q)  for system (5.4.10) 
is positive definite and V(z, r ] )  is negative definite in the neighborhood of 
z = 0 due to inequalities (5.4.41). By Theorem 2.3.3 the equilibrium state 
z = 0 of system (5.4.10) is asymptotically stable. 

5.4.4 Numerical  examples 

5.4.4.1 Example. The proposed algorithm of the power system stability 
analysis is applicable to  the 3-machine power system considered by  JociC, 
Ribbens-Pavella and Siljak [79]. We admit the following parameter values 
for the system (5.4.10): 

N = 3; E 1  = 1.017; E 2  = 1.005; E 3  = 1.033; 6 1 2  = 5"; 

6 1 3  = 2'; 6 2 3  = -3"; Y j 2  = 0.98 X 10-3L860; l 5 3  = 0.114L88"; 

Y 2 3  = 0.106L89"; M 1  = M 2  = 0.01; M 3  = 2.0. 

Treating the  third machine as a standard one we get two subsystems. Let 
us take the constants X = 0.3, c 1 1  = c 2 1  = 0.06 and ~ 1 2  = ~ 2 3  = 1 1 2  = 
5 2 1  = 0,001. The matrix A = [&l, defined by formula (5.4.39) is of the 
form 

A =  (-1.1506  1.0671  -1.0437  1.0814) 

The  matrix 2A = A + AT satisfies conditions (5.4.41) and therefore the 
equilibrium state z = 0 is asymptotically stable. It is important  to note 
that in this case Jocid, Ribbens-Pavella and Siljak [79] established the con- 
ditions of asymptotic stability for X = 100, E = 0,99. In a paper by Shaa- 
ban  and GrujiC [l641 the asymptotic  stability of the system in question was 
stated for X = 0.45, = c 2 1  = 0.10. 

The asymptotic  stability conditions for the equilibrium state z = 0 
obtained herein are  the least value  for the parameters X and E .  
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5.4.4.2 Example. Let in system (5.4.10) N = 4 and  the  parameter values 
are  the following  (see El-Abiad and Nagappan [35]): 

E1 = 1.057/5.7', E2 = 1.152/14.4', E3 = 1.095/2.3', E4 = l.O/O.l', 

U11 = O M /  - 88.1', Y22 = 0.873/ - 83.2', y33 = 1.014/ - 75.5', 
Y44 = 2.447/ - 69,7', Y12 = 0.124/82.1', Y13 = 0.065/82.4', 

Y23 = 0.064/88.2', Y24 = 0.655/96.8', 

y34 = 0.754/99', l54 = 0.658/91.1'; 
M1 = 1130, M2 = 2260, M3 = 1508, M4 = 75350. 

Choosing the fourth machine as a standard one we get three subsystems. 
For the values X = 0.8, ~ 1 1  = ,521 = ,531 = 0.5 the matrix A (see formula 
(5.4.39)) is 

-4.9087  3.7790  1.8484 
A = ( 1.8109  -2.7037  0.9811 

1.4073  1.4898  -4.8370 

The  matrix a = - ( A  + AT) satisfies the conditions (5.4.41) and therefore, 

the  state x = 0 of the system is asymptotically stable. Earlier it has been 
stated (see  GrujiC and  Shaaban [Sl]) that  the asymptotic  stability of the 
equilibrium state x = 0 of the system takes place provided that X = 1.0 
and = = ~3 = 0.60. 

Therefore, this case as well the proposed algorithm allows  us to establish 
the conditions of asymptotic  stability for smaller valies of A and E .  

1 
2 

5.4.4.9 Example. Let  in system (5.4.10) N = 7 and the parameter values 
are taken following Shaaban  and GrujiC [164]. Taking the seventh machine 
as  a  standard one we get six subsystems. For the values X = 2.0, = 0.80, 
i = 1,2,3; E ~ I  = 0.85, j = 4,5,6, the  matrix A (see (5.4.39)) is 

A =  

(-2.0176 1.0286 0.2408 0.2521 0.2876 0.2730 
1.3301 -2.3742 0.2660 0.2785 0.3177 0.2952 
0.2944 0.3111 -1.8805 0.8070 0.2744 0.2594 
0.2910 0,2714 0.7547 -1.9315 0.2848 0.2577 
0.3022 0.2949 0.2357 0.2505 -1.9757 0.7701 

\ 0.3155 0.2941 0.2461 0.2577 0.8847 -2.1405 

and a = - ( A  + AT) satisfies the conditions (5.4.41). Then  the equilib- 
1 
2 
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rium state z = 0 of the system is asymptotically stable.  In the above 
mentioned paper by Shaaban  and GrujiC  [l641 the asymptotic  stability of 
the equilibrium state was established for X = 3.0 and E ~ I  = 0.95, i = 
1 , 2 , .  . . ,6. This applies to  the smaller values of X and E as well as to the 
asymptotic  stability of the equilibrium state z = 0. 

The application of the approach to three-four and seven-machine system 
enables us to conclude as follows  (see  GrujiC and  Shaaban  [Sl]): 

(1) We can decrease the value of the parameter X for  which asymptotic 
stability of 2 = 0 of the system is assured (value of X is decreased 
from  100 to only 0.3 for the three-machine system,  and decreased by 
33% of that in Shaaban  and GrujiC  11641 for the four and seven m& 
chine systems). Noting that  the smaller value of X means that  the 
generator is  less damped  and that  it is more difficult to assure  sta- 
bility, we can deduce that  the developed approach is more powerful 
then those developed so far via vector Liapunov functions. 

(2) Smaller value of the parameter E can be assumed and  the asymptotic 
stability assured by applying the developed approach (value of E is 
assumed to be 85% of that in Shaaban  and GrujiC  [l641  for the four 
and seven machine systems, and  it is decreased from 0.10 to only 
0.06 for the three-machine system).  This essentially means that  the 
developed approach can lead to larger asymptotic  stability domain 
estimates. 

(3) Using the developed approach, we can decrease the conservativeness 
of the decomposition-aggregation method. 

(4) The matrix-valued Liapunov function methodology leads to more 
adequate scalar Liapunov functions for  power systems and simplifies 
their  construction via the vector Liapunov function concept. 

( 5 )  The stability  test  computation is reduced to only the negative defi- 
niteness test of a single  elementwise constant aggregation symmetric 
matrix.  Its dimension is reduced to the number S = N - 1 of the 
subsystems of an N-machines power system. 

5.5 The Motion in Space of Winged Aircraft 

According to Aminov and Sirazetdinov [2] we will consider the case when 
the  aircraft, moving with fixed absolute value of the velocity, performs a 
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manouvre with constant load factor.  Thus, to  the undistrturbed motion 
there corresponds constant values of the angles of attack a0 and of side- 
slip Po, and  angular velocities of pitch wP0, yaw wUo and  rotation wXo. 
Their deviations from the  perturbed values will be called a, p, W % ,  wu,  wx 
respectively. The deviations of the angular velocities of side-slip, yaw and 
rotation  must not exceed  given limits. 

We consider the equations of the  perturbed motion in the form (see 
Byushgens and  Studnev [B]) 

d a  1 1 
- dt = pw, - -c;a 2 - ppwx - p $ S e ,  

&P 

dt  
" - m;a + rn;"w, - pAwXwu + m2Se, 

(5.5.1) dP 1 1 
dt 2 
- = pw, + pp + paw0 + -Cf"Sr, 

- = m{@ + m p w ,  + ~ B W , W ,  + m$Sr, h, 
dt 

&X 

dt - mgP + m;m wx - pcw,w,  + m: Sa, 
" 

where 

J P  J ,  J x  

and p is the aircraft relative density, c, are  the coefficients of the aerody- 
namic forces, m, are  the coefficients of the aerodynamic moments, S,, S,, 
Sa are  the deviations of the elevator, aileron and  rudder,  and Jx,  J,,   JP are 
the  aircraft moments of inertia with respect to  the connected coordinate 
system. 

We take  the law of stabilization in the form 

We substitute  the values (5.5.2) into equations (5.5.1). We use the notations 



(5.5.3) 

Using this  notation we can write system (5.5.1) as 

(5.5.4) 

We shall find the conditions connected to  the coefficients of the system 
(5.5.4) under which the solution of the system x = 0 is multistability, i.e., 
asymptotically stable with respect to  (x4,x5),  and  stable with respect to 

We use the Theorem 2.6.1. In our example N = 2, i.e., there axe two 
groups of variables (x1,x2,23) and  (x4,x5). We consider the matrix-valued 
Liapunov function 

(21 I x2,23)* 

and  ER:, q i = l ,   i = 1 , 2 , . , . , 5 .  
The function 
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is positive definite, decreasing and radially unbounded. In view  of the 
system (5.5.4) the derivative of the function (5.5.5) is 

DV(s,r)) = - b z b 3 a l l r c ;  - b 2 b 3 a 1 6 ~ 1 z 6  + 2 b l b 3 a 2 2 5 ;  

(5.5.6) + ( 2 b l b 3 a 2 ~  + a 5 2 ) z m  - b l b 2 a 3 3 z ;  

+ ( a 4 3  - b l b 2 a 3 4 ) z 3 z 4  + a 4 4 4  + 
In order to solve our problem we have to find the conditions whereby 

function (5.5.6) is non-positive with respect to ( 5 1 ,   ~ 2 , 2 3 )  and negative 
definite with respect to (z4 ,z6) .  

The method of finding these conditions is given by  Aminov and Sirazetdi- 
nov [3] and is as follows. We equate the derivative DV(z,r)) of (5.5.6) to 
the function 

(5.5.7) 
= - ( c 1 1 z 1  + c 1 6 z 5 ) 2  - + c 2 5 z s ) 2  

- ( c 3 3 3 3  + c 3 4 z 4 ) 2  - ( c 4 z 4 ) 2  - ( c 5 z 5 ) Z  

and, comparing coefficient of like terms of (5.5.6) and (5.5.7), we find the 
conditions for the existence of the coefficients of function (5.5.7) which are 
in fact the required conditions for the function (5.5.6) to be non-positive 
with respect to (31, ~ 2 , ~ 3 )  and negative definite with respect to ( 5 4 ,   z 5 ) .  

These conditions are 

On substituting  the values of the coefficients (5.5.3) into inequality (5.5.8) 
we obtain the sufficient conditions that solve the aircraft space manouvre 
problem. 

5.6 Notes 

5.2. The basic result of this section (Proposition 5.2.1) is  new. The descrip- 
tion of model and the competition discussion  is due to Lakshmikantham, 
Leela and Martynyuk [94]. For the large number of references  on this topic 
see Freedman [36]. The application of the Metzler matrix  theory  and vector 
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Liapunov functions in the investigation of thise problems is due to Siljak 
[167], GrujiC and  Burgat [56], etc. 

5.3. The description of the model of an  orbital  astronomical observa- 
tory is taken from Geiss, Cohen et al. [40] and  Grujit [55]. The results 
of investigation of this model are cited following Krapivny supervised by 
A.  A. Martynyuk. The comparison of the obtained  results with those by 
GrujiC, Martynyuk  and Ribbens-Pavella [57] has displayed the advantages 
of the matrix-valued function application. For other  results on the subject 
see Siljak [167], Abdullin, Anapolskii et a1 [l], etc. 

6.4. The results of this section are  due  to GrujiC and  Shaaban [61]. 
The scalar Liapunov functions are applied by El-Abiad and Nagappan [35], 
Michel, Fouad and  Vittal [142]. For the application of vector Liapunov 
functions see Pai  and  Narayana [151], GrujiC, Martynyuk  and Ribbens- 
Pavella [57], GrujiC and Ribbens-Pavella [58],  [59], GrujiC, Ribbens-Pavella 
and Bouffioux [60], JociC, Ribbens-Pavella and Siljak [79], Michel, Nam 
and  Vittal [144], Shaaban  and GrujiC [164],  [165], etc. Matrix-valued Li- 
apunov functions are applied by Miladzhanov [l451 including the systems 
with structural  perturbations. 

5.5. The results of this section are  due  to Martynyuk [l111 and Aminov 
and Sirazetdinov [2]. 
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