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Preface

This book contains the proceedings of the L.M.S. Durham Symposium on Groups,
Geometry and Combinatorics, July 16-26, 2001, supported by the Engineering and
Physical Sciences Research Council of Great Britain.

Over the past 20 years the theory of groups, in particular simple groups, finite
and algebraic, has influenced a number of diverse areas of mathematics. Such ar-
eas include topics where groups have been traditionally applied, such as algebraic
combinatorics, finite geometries, Galois theory and permutation groups, as well as
several more recent developments. Among the latter are probabilistic and com-
putational group theory, the theory of algebraic groups over number fields, and
model theory, in each of which there has been a major recent impetus provided by
simple group theory. In addition, there is still great interest in local analysis in
finite groups, with substantial new input from methods of geometry and amalgams,
and particular emphasis on the revision project for the classification of finite simple
groups.

The symposium brought together about 70 leading experts in these areas, as
well as 15 postdoctoral fellows and research students.

These proceedings contain 20 survey articles, most of which are expanded ver-
sions of lectures, or series of lectures, given at the symposium. Broadly speaking,
the topics covered in the articles are:

Geometries, amalgams and recognition of simple groups: Bennett et al., Meier-
frankenfeld et al., Timmesfeld
Groups of Lie type and representation theory: Brundan and Kleshchev, Liebeck
and Seitz, Tiep
Probabilistic and asymptotic group theory: Diaconis, Pyber, Shalev
Algebraic combinatorics and permutation groups: Cameron, Fulman and Gural-
nick, Liebeck and Shalev, Praeger, Trofimov
Computational group theory and sporadic groups: Kantor and Seress, Norton,
Wilson
Applications: Altinel et al., Miiller , Segev

We wish to record our gratitude to the LMS and EPSRC for their financial
support for the syposium, and to the staff at Durham University for their assistance
with the organisation.

Sasha Ivanov, Martin Liebeck and Jan Saxl
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Classification of Simple K*-Groups of Finite Morley
Rank and Even Type: Geometric Aspects

Tuna Altmel Alexandre V. Borovik* G. Cherlin̂

Introduction

According to a long-standing conjecture in model theory, simple groups of finite
Morley rank should be algebraic. The present paper outlines some of the last in a
series of results aimed at proving the following:

Even Type Conjecture. Let G be a simple group of finite Morley rank of even
type, with no infinite definable simple section of degenerate type. Then G is a
Chevalley group over an algebraically closed field of characteristic 2.

See [13] for a brief informal introduction to the subject, [1] for the most recent
survey of the classification programme, and [14] for further technical details on
groups of finite Morley rank.

An infinite simple group G of finite Morley rank is said to be of even type if
its Sylow 2-subgroups are infinite and of bounded exponent. It is of degenerate
type if its Sylow 2-subgroups are finite. If the main conjecture is correct, then
there should be no groups of degenerate type. So the flavour of the Even Type
Conjecture is that the classification in the even type case reduces to an extended
Feit-Thompson Theorem. Those who are skeptical about the main conjecture would
expect degenerate type groups to exist. The Even Type Conjecture confirms that
this is the heart of the matter.

In the present paper we outline some geometric arguments which play the crucial
role at the final stages of analysis which has been undertaken in [3, 17, 4, 5, 7].

We work in the following context. Let G be a counterexample to the Even Type
Conjecture of minimal Morley rank. This allows us to assume that every proper
simple definable connected section of G is a Chevalley group over an algebraically
closed field. We adopt the terminology of the classification of finite simple groups
and say that G is a K*-group. We take a 2-Sylow° subgroup S of G (that is, the
connected component of a Sylow 2-subgroup), a Borel subgroup B containing S,
and the set M of minimal 2-local° subgroups containing B as a proper subgroup.
It is shown at some point of our analysis [5, 7] that if P G M then O2' (P/02(P)) c=:

*Partially supported by the Royal Society Leverhulme Trust Senior Research Fellowship,
t Supported by NSF Grant DMS 0100794.
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SL2(K) for some algebraically closed field of characteristic 2 and Cp(C>2(P)) ^
O2(P).

We have the following natural case division:

Thin Groups: \M\ ^ 1. This case occurs in the nature only if M = 0 and
G~SL2{K).

Quasithin Groups: \M.\ = 2. In that case, we need to identify G with one of
the Lie rank 2 Chevalley groups: PSL3(/£'), PSp4(K) or G2(K) over an alge-
braically closed field of characteristic 2.

Generic Groups: \M\ > 3. In that case, G is a Chevalley group of Lie rank

Interestingly, each of these cases is resolved by an application of the amalgam
method. In the case of thin groups, the crucial role is played by the Pushing-Up
Theorem [5], proven, in our context, by essentially the same amalgam argument as
its finite group prototype, due to Stellmacher [23].

Generic groups can be handled either by constructing a £?iV-pair in G of (Tits)
rank at least 3 [11] and the subsequent application of the classification of I? TV-pairs
of finite Morley rank (Kramer, van Maldeghem and Tent [18]), or by the analysis
of the centralisers of p-elements for odd primes p [12] which eventually leads to
the construction in G of a system of "root SX2-subgroups" and application of the
Curtis-Phan-Tits Theorem; see the paper by Bennett and Shpectorov [10] in this
volume for the discussion of the underlying amalgams.

In this paper, we are dealing with quasithin groups and prove for them the
following

Identificatio n Theorem Let G be a simple K*-group of finite Morley rank and
even type. Suppose that G is generated by two 2-locaP subgroups Pi, P2 each con-
taining the connected component of the normaliser of a fixed Sylovf 2-subgroup of
G. Assume that O2 (Pi)/O2{Pi) cz SL2(i7i) with Fi an algebraically closed field of
characteristic 2, fori = 1,2, and that C°P.{O2{Pi)) ^ O2(Pi)- Then G is a Lie rank
2 Chevalley group over an algebraically closed field of characteristic 2.

The proof of the Even Type Conjecture itself from these ingredients will be the
subject of one further paper.

The proof of the Identification Theorem relies very heavily on the amalgam
method in the form used by Stellmacher in [22] and by Delgado and Stellmacher
[15], particularly the former version. We have found that the type of arguments
that are used in conjunction with the amalgam method can generally be adapted
to the context of groups of finite Morley rank with comparatively littl e alteration,
though some attention to detail is required, notably in conjunction with some basic
facts of representation theory for which the analogs are obtained through some ad
hoc arguments, and definability issues. Accordingly we will not devote much space
here to the adaptation of those arguments, merely summarising the general flow,
recording precisely the point to which they bring us, and pointing out a few issues

2



that do require specific attention. A detailed account of the adapted argument will
be found in the technical report [6]. A model for this sort of argument is also found
in the appendix to [5], where an analog of the much shorter amalgam argument of
[23] is presented.

The amalgam method delivers a great deal of information. We will show that
once this information is in hand, the identification theorem can then be proved very
efficiently on the basis of general principles, using two ingredients: a classification
theorem for BN pairs of finite Morley rank and Tits rank 2 due to Kramer, Tent,
and van Maldeghem [18] and a uniqueness result of Tits for parabolic amalgams
for which Bennett and Shpectorov [9] have recently given a simple proof based on
general principles.

1 Preliminaries

For general background on groups of finite Morley rank we refer to [13, 14]. A
broader discussion of the problem to which the present paper is addressed is found
in [1].

We will now present the main technical notions involved in the statement of the
Identification Theorem.

Definition 1 Let G be a group of finite Morley rank.

1. A definable section of G is a quotient H/K with K < H and K, H definable
in G. The section is proper if K > 1 or H < G.

2. G is a K-group if every infinite simple definable section of G is a Chevalley
group over an algebraically closed field.

3. G is a K*-group if every infinite simple definable proper section of G is a
Chevalley group over an algebraically closed field.

Definition 2 Let G be a group of finite Morley rank and S a Sylow° 2-subgroup
(the connected component of a Sylow 2-subgroup).

1. G is degenerate if S = 1.

2. G is of even type if G is nondegenerate and S is of bounded exponent and
definable.

3. G is of odd type if G is nondegenerate and S is divisible abelian.

A simple .K"*-group of finite Morley rank is of one of these three types: degen-
erate, odd type, or even type [16, 2].

Definition 3 Let G be a group of finite Morley rank and of even type.

1. A 2-local° subgroup of G is a group of the form NQ(Q) where Q is a connected
definable 2-subgroup of G.
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2. A Borel subgroup of G is a maximal connected solvable subgroup of G.

3. A standard Borel subgroup of G is a Borel subgroup which contains a Sylow0

2-subgroup.

4. O2 (G) is the minimal definable normal subgroup of G such that G/O2 (G)
contains no involutions.

4. C>2(G) is the largest definable normal 2-subgroup of G.

A few remarks are in order. First, with regard to standard Borel subgroups, if G
is a i£T*-group of even type then the standard Borel subgroups are those of the form
NG(S) with S a Sylow° 2-subgroup of G. Secondly, it is not immediately clear that
O2 exists, but when G is of even type this is the case. In practice we will take G
to be a connected i^*-group of even type and in this case 02{G) is itself connected
[5].

With these definitions, the Identification Theorem has a precise meaning. The
underlying idea is to work with an appropriate notion of parabolic subgroup, and for
our purposes "parabolic" is best taken to mean: 2-local°, and containing a standard
Borel. Earlier papers have dealt with the existence of parabolics in this sense [5]
and with their structure [7].

2 The amalgam method

2.1 The issues

The basis for the proof of the Identification Theorem is the amalgam method as
applied in [22] and in greater generality in [15]. We will indicate how this method
is used in our context, and what it produces. On the whole, this chapter of finite
group theory goes over very smoothly to our context once the principles on which
it relies are suitably translated. Accordingly we will not give the details of these
arguments here; they may be found in [6]. On the whole we followed the line of [22]
rather than the more general [15] as it is more efficient in our particular case.

The amalgam method has already been used in the context of groups of finite
Morley rank in [5]; indeed, the original proofs of "pushing up" results in finite
group theory [8, 19] do not seem to go over to our context, but the version given
by Stellmacher in [23], based squarely on the amalgam method, goes over quite
smoothly, as seen in the appendix to [5], where the argument is given in detail in
the context of groups of finite Morley rank. We also refer to [5] for a verification
that some of the key properties of SL2 which are used in amalgam arguments hold
in our context. We will indicate below what sorts of adaptations generally need to
be made in our context.

In the context of the Identification Theorem, the amalgam method begins by
introducing the graph T associated with the right cosets of P\ and P2, where two
distinct cosets are linked by an edge if they meet. Thus this is a bipartite graph on
which G acts naturally, and it should be thought of as a labeled graph in which every
vertex and edge is labeled by its stabiliser under the action of G. The universal
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cover f of this graph in the topological sense is a tree which is associated to the
free product G of P\ and Pi over their intersection, which is easily seen to be the
standard Borel subgroup B. The objective is to show, after a lengthy analysis which
can take place either in T or in f, that T has a quotient T* on which G acts (not
faithfully) with the following properties:

(a) F*  is a generalized n-gon, and the image G* of G in Aut(r* ) has a (B, 7V)-pair
of rank 2.

(b) The triple (B, Pj, P2) m G is isomorphic with the corresponding triple in G*
(one says that G is parabolic isomorphic with G*).

The intent of course is to apply a classification theorem to G* in order to de-
termine the possible isomorphism types, at which point the isomorphism type of
the triple (S,P1,P2) in G is known, and one can return to G and complete the
identification of G without further use of the amalgam method.

An obvious and potentially serious drawback of this approach from the point
of view of groups of finite Morley rank is that the group G will not be definable
and will not be a group of finite Morley rank, and hence a priori  the same problem
arises in G*. This is handled by showing that G is "locally" of finite Morley rank
and that G* is actually of finite Morley rank. We will deal with this more explicitly
below.

The other issues that arise are merely technical, and are of two sorts. On the one
hand certain chapters of finite group theory that are applied in this context have
to be developed appropriately in our category, the most problematic one being the
representation theory of the group SL2, which is handled in a largely ad hoc way as
the representations involved are taken over the field of 2 elements and are infinite
dimensional; Morley rank has to replace dimension as the measure of size here, and
the representation theory is inevitably in a rudimentary state, but sufficient for the
limited needs of the amalgam method. The other point that bears watching is the
role of connectedness in the analysis. This is absent in the finite case, but comes
up naturally in the transposition to the context of groups of finite Morley rank, as
can be seen quite clearly already in [5], where some care had to be taken around
this point.

We will say no more about these technical points, but we will discuss the defin-
ability issue, and also state explicitly the result delivered by the amalgam method,
which serves as the point of departure for the identification of the group G.

2.2 Definability

Definition 4 Let G be a group acting on a graph T.

1. For any vertex 6 and any k > 0, Ak(S) is the set of vertices lying at distance
at most fc from 6 in T, and Gk(8) is the set of elements of G which can
be expressed as a product of at most fc elements of G, where each element
stabilises some vertex in Ak(S).
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2. The pair (G, F) is locally of finite Morley rank if for each k and 6 the pair
(Gk(S), Afc(<5)) has finite Morley rank, where the latter is a 2-sorted structure
consisting of a partial group, a graph, and a partial action of the partial group
on the graph. (A partial group is simply the restriction of a group, viewed as
a relational system, to a subset.)

Because the amalgam method always works locally in the graph T, whatever
can be done with groups of finite Morley rank can also be done with groups which
are locally of finite Morley rank, in this context. As far as the universal cover is
concerned, we have the following.

Lemma 1 Let V = (P,Q,B) be a structure consisting of two groups P,Q. Let
G = P *B Q be the free product with amalgamation and let T be the associated tree
of cosets, on which G acts naturally. Then the structure Q = (G, T) consisting of
G acting on T is locally interpretable in V in the following sense: for any vertex
6 £ V(F) and any k ^ 0 the graph Ak(S), the partial group Gk(S), and the partial
action of Gk(S) on Ak(S) are all interpretable in V.

Proof. Let X = P U Q and let i?fc(a;i,  %k) be the relation on X denned by:
"xi  xk = 1 in G". Everything comes down to the definability of this relation in
V, which is proved by induction based on the following property of free products
with amalgamation: if x\,..., Xk are alternately from P\B and Q\B then the
product is nontrivial. In the remaining cases, either the product can be shortened,
and induction applies, or else k = 1. Bearing in mind that the natural maps of P
and Q into G are embeddings, the claim follows.

Corollar y 2 Under the stated hypotheses, if V has finite Morley rank then (G, T)
is locally of finite Morley rank.

We must also look at the passage from the universal cover to a generalized n-
gon. This is handled at the outset in [15] by two results, (3.6) (p. 77) and (3.7)
(p. 79), most of which involve no finiteness hypothesis:

Fact 1 [15] Let T be a tree and K a Cartan subgroup of G with apartment T =
T(K). Suppose that T fulfills the uniqueness and exchange conditions and that
s > 3. Then there exists an equivalence relation f» on T which is compatible with
the action of G so that:

1. f = (F/ «) is a generalised (s — l)-gon;

2. Gf, n Gs = 1 for each 6 £ V(T); here Gf, is the kernel of the action of G on
f.

3. G/Gf has a (B,N)-pair of rank 2.

The precise meaning of the hypotheses is not really relevant here; for the most
part they represent the conditions which must be verified in the course of a detailed
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analysis. Also, in quoting this statement verbatim, we have omitted the context,
which is more general than that of the Identification Theorem, apart from a finite-
ness hypothesis that plays no role here. However it may be remarked that in the
case which actually concerns us, the Borel subgroup B splits as S xi K with S a
Sylow0 2-subgroup and K a complement which may be called a "maximal torus",
and the apartment T may be defined as the fixed-point set of K, which will be a
2-way infinite path on which the normaliser of K acts, with two orbits. We will also
enter somewhat more into the details below, in discussing the Moufang property.

What needs to be added to this fact is the following:

Lemma 3 In the context of Fact 1, if (G,T) is locally of finite Morley rank then
the "quotient" (G/Gf~,T) has finite Morley rank.

Proof. This requires an examination of the construction off as given in [15]. There
are two points to be observed.

In the first place, the quotient F is covered by As_i(<5) for any vertex 8 € V(T).
Secondly, with 8 fixed, it needs to be seen that the equivalence relation sa, which we
factor out, is definable on As_i(5). In the proof of Fact 1 it is shown that equivalent
pairs in f lie at distance at least 2(s — 1), and the argument shows that on Aa_i(<5)
the equivalence relation is given by:

a « (3 iff d(a, /3) = 2(s — 1) and j(a, /?) is conjugate under G to a subpath of T

where j(a, /3) is the path from a to /3. Here we may replace T by two fixed subpaths
of T of length 2(s—1), and the problem of definability reduces to the relation: "(a, (5)
is conjugate to (ao, /?o)" where the four vertices a, /3, ao, /?o lie in a set of the form

The action of a vertex stabiliser Gg is transitive on the set of neighbors A (6),
so if a and ao a re in fa°t conjugate and at distance 2d, and 8 is the midpoint of the
path joining a and ao, then there is an element of Gd(8) carrying a to ao. Thus the
following serves as a definition of conjugacy, for such pairs: "a, ao lie at distance
Id for some (bounded) d, and with 8 the midpoint of the path joining them, there
is g e Gd{8) such that a9 = ao and /39 is conjugate to /?0 under Gao";  in the final
clause we have a bound on d(/39, /3o), so this condition is also definable.

This disposes of all definability issues: when the amalgam method succeeds, the
group G* (or G/Gf, in the current notation) has finite Morley rank, and for that
matter is interpretable in the original group G, in the notation of the Identification
Theorem.

2.3 Application of the amalgam method (the Moufang prop-
erty)

We have already indicated the main thrust of the amalgam method in our context,
namely:

Fact 2 [6] Under the hypotheses of the Identification Theorem, there is a group G*
of finite Morley rank which is parabolic isomorphic to G, and which has a rank 2
(B, N)-pair.
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This leaves something to be desired however. We would like to apply the classi-
fication of Moufang (B, N) pairs of Tits rank at least 2 and of finite Morley rank,
given in [18].

Definition 5 Let F be a generalised n-gon, G = AutF.

1. For 7 = (So,..., 5n-i) a path of length n — 1 in F, let U(-f) be the intersection
of GAI(«) for 8 — Si,... ,8n-i.

2. F is Moufang if for every path 7 = (<5o, , ̂ n-i) in F, the group U(")) operates
transitively on A(<So) \ {Si}-

As it happens the Moufang property follows from general principles for the
generalised (s — l)-gons delivered by Fact 1 in the context of the Identification
theorem.

At this point one should actually invoke the definition of s:

Definition 6 In the context of the amalgam method (e.g., the Identification The-
orem):

1. A path 7 = (So,  Sn) in F is regular if G7 (the pointwise stabiliser) operates
transitively on A(<So) \ {Si} and on A(<Sn) \ {Sn-i}.

2. s is the minimum length of a non-regular path.

It follows easily from the definition of s, and induction, that any two paths of
equal length I, with I ^ s, are conjugate under the action of G.

Now the following is contained in the analog of [15, (14.1)]:

Fact 3 Let 7 = (<5o,... ,<$s-i) be a path of length s — 1 ^ 2. Then O2(G7) acts
transitively on A(<50) \ {<5o}  and A(Ss-i) \ {<5s_i} .

Here the notation O2(G-y) simply represents a Sylow 2-subgroup of G7 since G7

is contained in a Borel subgroup, of the form S x K with S a Sylow 2-subgroup and
K a torus; furthermore some conjugate of if is a complement to C?2(G7) (any path
of length at most s — 1 is conjugate to a path contained in T = TK)-

Now to verify the Moufang property for the generalised (s — l)-gon furnished
by Fact 1 in the context of the Identification Theorem, let 7 = (SQ, ... ,<5s-2) be
a path of length s - 2 in f, and extend it to a path 7 = (SQ, ... ,<5s-i) of length
s — 1. Let Q = C>2(G7). It suffices to show that Q fixes the neighbors of each Si for
1 ^ i ^ s — 2. Or, more simply:

Lemma 4 If 6 £ V(T) and a,/3 are distinct neighbors of S, then O2(Gap) fixes
A(S).

Now Ga/3 = Gas n G/3S is the intersection of two Borel subgroups of Gs, and
O2(Gap)/O2(Gs) is the intersection of two distinct Sylow subgroups of SL2, hence
trivial, that is: O2(Gap) ^ O2(Gs), and as Gs acts transitively on A(<5), it follows
that O2(Gs) fixes all neighbors of 8. Thus the lemma is immediate.



3 Identification

We apply a very general result from [18, Theorem 3.14]:

Fact 4 Let G* be an infinite simple group of finite Morley rank with a spherical
Moufang BN-pair of Tits rank 2. Then G* ~ PSL3(.F), PSp4(F), or G2(F) for
some field F.

This field must of course be algebraically closed as it will also have finite Morley
rank.

Thus we now have as a corollary of the amalgam analysis sketched in the previous
section:

Lemma 5 Under the hypotheses of the identification theorem, the triple (B,Pi,P2)
is isomorphic to a triple consisting of a Borel subgroup and the two minimal parabolic
subgroups containing it, in one of the groups G* ^ PSL3(F), PSp4(F), or G2(F)
for some algebraically closed field F (of characteristic 2, as we work with even type).

Evidently we now want to identify G itself with the appropriate one of these
three groups. We use a theorem of Tits found in [20, Chapter II , Theorem 8]; for
an alternative proof, based on Tits' Lemma [24], see Bennett and Shpectorov [9].

Fact 5 Let G* be a Chevalley group of Lie rank 2 and let P\,P2 be minimal parabol-
ics containing a common Borel subgroup B. Let N be the normaliser of a Cartan
subgroup of B. Then G* is the universal closure of the amalgam of P\, P2, and N.

(The idea of the proof given by Bennett and Shpectorov is to adjoin to the
natural point/line geometry associated with G* a third kind of object, the set of
apartments, where an apartment is incident with its elements. This has the effect
of making the geometry simply connected, and a very general result of Tits [24] on
groups acting flag-transitively on simply connected geometries then applies.)

To complete the proof of the Identification Theorem we may therefore proceed
as follows. Let G* be the target group PSL3(i?), PSp4(F), or G2(F). Working in
the original group G, fix a maximal torus K in B and let N = NG(K).

Lemma 6 // CG{K) = K then G ~ G*.

Proof. Let K be a maximal torus in B. Pi = O2(Pi) x (Li x Ki) with Li ~ SL2(F)
and K = (K f~l Li)Ki. Let Wi £ Li be an involution inverting K Pi Li and let
W = (wi,w2), a = ui\w2. Evidently the structure of Pj and P2 determine the map
W —* A\it(K), so as G and G* are parabolic isomorphic, W acts on K like D3-\.
In particular as~l £ CQ(K) = K, and a is inverted by both w\ and w2. It follows
that as~l = 1.

Thus KW ~ NG-(K). By Fact 5 the subgroup of G generated by P1 ,P2 , - ^^
is isomorphic with G* and as Pi, P2 already generate G, we have G ca G*.

In the proof of the next lemma we make use of information on centralisers of
semisimple elements in semisimple algebraic groups found in [21].

9
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Fact 6 [21, Corollary 4.6] Let G* be a semisimple algebraic group and x a semisim-
ple element of G* of prime order p. Let ir : G —*  G* be the canonical map from the
simply connected cover. If p does not divide | ker  7r | then CG-(X) is connected.

Fact 7 [21, 3.19] Let G* be a semisimple algebraic group and andy any semisimple
element. Then Cc (y) is reductive.

Combining these two:

Corollar y 7 With the hypotheses and notation of Fact 6, CG* (%) is connected and
reductive. In particular if G* is one of the groups SL3, Sp4, or G2 over an al-
gebraically closed field of characteristic 2 and x is a semisimple element of prime
order p > 3, then Co* (x) is a torus or the product of a torus with SL2.

Proof. CG* (%) is reductive of Lie rank 2, and contains a central element of order
greater than 3. The claim follows.

Lemma 8 CG{K) = K.

Proof. We will make free use of the parabolic isomorphism of G and G*.
With Ki,Li as in the preceding proof, Cpt(Ki) = Li x K{ with Li ~ SL2(JF),

with F the base field of G*. More exactly, L, ~ SL2(.Fi) with F\ and F2 defmably
isomorphic, but this amounts to the same thing.

Take a e K of order greater than 3. As observed above CG* (a) is reductive and
is either a torus, or the product of a torus with SL2(F).

In particular the rank of Cs(a) is at most / = rk(F) for any such element a.
Accordingly the same applies to CQ (a) for any Sylow0 2-subgroup Q of G, and any
a normalising Q of order greater than 3. Let U be a Sylow° 2-subgroup of CG(JK"J)
(i = 1 or 2). It follows that rk(C7) < / . As rk(5 n Li) = / , we conclude that 5 D Li
is a Sylow0 2-subgroup of CG(Ki).

Let Ui = S fl Li. Then we have

(*) Ui < Li < CG(Ki)

and CG(Ki) is a connected iiT-group, with Ui as &  Sylow 2-subgroup.
By (*) we have 02(CG(Ki)) = 1, and by an elementary result on iiT-groups [4,

2.33] it follows that C°G{Ki)  = E(CG{Ki))  * 0(CG(Ki)). Here E = E(CG(Ki)) is
a central product of quasisimple algebraic groups, Ui is a Sylow 2-subgroup of E,
and Ui ^ Li ^ E. It is then easy to see that Li = E. As a result, Li is normalised
by CG{Ki)  for i = 1,2 and hence:

Both L\ and L2 are normalised by CG{K).

The groups Li ~ SL2(i7'), i = 1,2, do not allow definable groups of outer
automorphisms [14, Theorem 8.4]. Hence CG{K) must act on Li via inner auto-
morphisms commuting with K D Li and hence CG(K) = (K f~l Li) x CG(KLi). Let
Hi = CG{KLi).  Since {KnL1){K^L2) £.K, it follows that CG(K) = K(Hxr\H 2).
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Now H = Hi n i?2 centralises {C/i, £̂ 2) = S and H centralises each Li, hence
also each Pi, hence G. As G is simple, H = 1 and CG(K) = K. O

This completes the identification of G.
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Curtis-Phan-Tits Theory

CD. Bennett, R. Gramlich, C. Hoffman, S. Shpectorov

Abstract
We demonstrate that there is a relation between the Curtis-Tits theorem

and Phan's theorems that goes beyond the similarity in appearance. We
present a geometric construction connecting those theorems and suggesting
that Phan's theorems can be thought of as "twisted versions" of the Curtis-
Tits theorem. The construction itself further suggests that Phan's theorems
are only some of many possible such theorems. We make this explicit by
presenting a new Phan-type theorem for the symplectic groups.

1 Introduction

An important step of the classification of finite simple groups announced in 1981 and
of the ongoing Gorenstein-Lyons-Solomon revision of the classification is the iden-
tification of the "minimal counterexample" with one of the known simple groups.
This step follows the local analysis step, when inside the minimal counterexample
G one reconstructs one or more of the proper subgroups using the inductive as-
sumptions and available techniques. Thus the input of the identification step is a
set of subgroups of G that resemble certain subgroups of some known simple group
G referred to as the target group. The output of the identification step is the state-
ment that G is isomorphic to G. Two of the most widely used identification tools
are the Curtis-Tits theorem (see [GLS], Theorem 2.9.3) and Phan's theorem [Phi].

The Curtis-Tits theorem allows the identification of G with a simple Chevalley
group G provided that G contains a system of subgroups identical to the system
of appropiately chosen rank two Levi factors from G. In the particular case where
G is of type An, the system in question consists of all the groups SL(3,q) and
SL(2, q) x SL(2, q) lying in G ̂  (P)SL(n + 1, q) block-diagonally.

Phan's theorem deals with the case G = (P)SU(n + l,q2) and the system of
block-diagonal subgroups SU{3,q2) and SU(2,q2) x SU{2,q2) of G. Thus, Phan's
theorem appears to be similar to the An case of the Curtis-Tits theorem. However,
unlike the case of An, the block-diagonal SU(3,q2) and SU(2,q2) x SU(2,q2) are
not Levi factors in SU(n + l,q2)- Consequently, Phan's theorem is not a special
case of the Curtis-Tits theorem.

One of the purposes of this paper is to demonstrate that the relation between the
Curtis-Tits theorem for the type An and Phan's theorem goes beyond a similarity
in appearance. To this end, we present a geometric construction revealing a deeper
connection between these theorems and suggesting that Phan's theorem is simply
a "twisted" version of the Curtis-Tits theorem for An. Furthermore, from this
point of view, there appears to be a much broader variety of "Phan-type" theorems
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that includes Phan's theorem and his further results from [Ph2] as special cases
corresponding to particular diagrams (such as An) and particular "twists". We
stress this point in the by presenting a new Phan-type theorem for the case of
G = (P)Sp(2n,q) and a system of semisimple subgroups of rank two which again
do not come from Levi factors of G (cf. [GHSh]).

It should also be noted that the construction generalizes well to the case of
infinite fields and/or nonspherical diagrams. In fact, there already exists a version
of the Curtis-Tits theorem for a broad class of Kac-Moody groups (cf. [M]). We
believe it to be a very interesting problem to develop a parallel Phan-type theory
for arbitrary diagrams.

The structure of the paper is as follows: In Section 2 we introduce some notions
from the areas of diagram geometry, chamber systems and amalgams of groups.
In Section 3 we discuss the proof of Phan's theorem from [BSh]. In Section 4 we
introduce the language of buildings and twin buildings and present an overview of
Miihlherr's geometric proof of the Curtis-Tits theorem. Finally in Section 5 we
present our construction and discuss the new Phan-type theorem for Sp(2n, q) from
[GHSh] and further examples. Along the way we pose a number of open problems.

2 Geometries and amalgams

2.1 Geometries

A pregeometry over / is a set of elements F together with a type function t and a
reflexive and symmetric incidence relation ~. The type function maps F onto the
type set /, and for any two elements x, y € F with x ~ y and t(x) = t(y) we have
x = y. A flag in F is a set of pairwise-incident elements. Notice that the type
function injects any flag into the type set. A geometry is a pregeometry for which
t induces a bijection between any maximal flag of F and I.

The residue resr(F) of a flag F in a geometry F is the set of elements from
T\F that are incident to all elements of F. It follows that the residue resr(-F) is a
geometry with type set I\t(F). The rank of the geometry F is the cardinality of its
type set /. We will only consider the case where / is finite. The rank of the residue
of a flag F is called the corank of F. The geometry F is connected if the graph
with vertex set F and edges given by ~ is connected. The geometry F is residually
connected if the residue in F of every flag of corank at least 2 is connected.

An automorphism of a geometry F is a permutation of its elements that preserves
type and incidence, and we denote the group of all automorphisms of F by Aut F.
A subgroup G < Aut F acts flag-transitively on F if G is transitive on the set of
maximal flags. A geometry that possesses a flag-transitive automorphism group is
also called flag-transitive. Finally, a parabolic subgroup (or simply a parabolic) H of
G is the stabilizer in G of a non-empty flag F of F. The rank of the parabolic H is
the corank of F.
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2.2 Simplicial complexes

A simplicial complex S is a pair (X, A) where X is a set and A is a collection
of subsets of X such that if A £ A and B C A then B G A. The subsets from
A are called simplices. A morphism from a complex S = (X, A) to a complex
<S' = (X', A') is a map between X and X' that takes simplices to simplices. The
star of a simplex A € A is the set of all subsets B £ A. such that A C B, and we
define a covering to be a surjective morphism <j>  from S to <$' such that for every
A s A the function <f>  maps the star of A bijectively onto the star of 4*{A).

A path on a complex S is a sequence XQ, XI, ..., xn of elements of X such that
Xi-i and Xi are contained in a simplex for all i = l , . . . ,n. We do not allow
repetitions, so Xi-i =£ Xi for all i. The complex <S is connected if every two elements
of X can be connected by a path. The following two operations on paths are called
elementary homotopies: (a) substituting a subsequence x: y, x (a return) by just x,
and (b) substituting a subsequence x, y, z, x (a triangle) by x, provided that x, y
and z lie in a common simplex. Two paths are homotopically equivalent if they
can be obtained from one another by a finite sequence of elementary homotopies.
A loop is a closed path, that is, a path with xo = xn. We say that the loop is
based at the point XQ = xn. A loop is called null-homotopic if it is homotopically
equivalent to the trivial path XQ. The fundamental group 7Ti(«S, X), where x € X, is
the set of equivalence classes of loops based at x with respect to the homotopical
equivalence. The product is defined by the concatenation of loops. Notice that
the fundamental group is independent up to isomorphism of the choice of the base
vertex x inside a fixed connected component. The coverings of S, taken up to a
certain natural equivalence, correspond bijectively to the subgroups of 7Ti(<S, a;). A
connected complex S is called simply connected if it has no proper coverings, or,
equivalently, if 7Ti(<S, X) = 1.

To every geometry F one can associate its flag complex .F(r). This is the sim-
plicial complex defined on the set F, whose simplices are the flags of F. We will say
that F is simply connected if -F(F) is simply connected.

2.3 Chamber systems

A chamber system over a type set 7 is a set C, called the set of chambers, together
with equivalence relations ~i, i S /, on C. For i £ I and chambers c,d € C, we
say that c and d are i-adjacent if c ~j d. More generally, we say that c and d are
adjacent if they are i-adjacent for some i € I. A chamber system C is called thick
if for every i & I and every chamber c £ C, there are at least three chambers (c
and two further chambers) ?-adjacent to c. A chamber system is called thin if c is
i-adjacent to exactly two chambers (itself and one further chamber) for all i e /
and c e C.

If F is a geometry with type set I then one can construct a chamber system
C = C(T) over / as follows: The chambers are the maximal flags of F, and two
maximal flags are i-adjacent if and only if they contain the same element of type
j for all j € / \ {i} . A chamber system is called geometric if it can be obtained in
this way from some geometry.

If F is residually connected, it can be recovered from the associated chamber
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system C(T) as follows: For J C /, a J-cell is an equivalence class of the minimal
equivalence relation containing the relations ~i for all i £ J. The poset of all cells
ordered by reverse inclusion is naturally isomorphic to the poset of the flags of F
ordered by inclusion. Under this isomorphism the cell corresponding to a flag F
consists of all chambers (maximal flags) containing F. In particular, the elements
of type i of F correspond to the (J \ {£})-cells.

2.4 Amalgams of groups

An amalgam of groups is a set A = U;<=/ ̂ *  with a partial operation of multiplication
such that

(Al ) the restriction of the multiplication to every Gi makes Gi a group;

(A2) the product ab is defined if and only if a, & £ Gi for some i € I; and

(A3) Gi fl Gj is a subgroup of Gi and Gj for all i,j £ /.

A completion of the amalgam A is a group G together with a mapping <j>  from
A to G such that (i) the restriction of <j>  to every Gi is a homomorphism and (ii)
4>(A) generates G. The universal completion of A is the group U(A) with generators
{ts | s £ A} and relations txty = txy for all pairs of elements x, y £ A such that
x,y £ Gj for some i. The corresponding mapping is given by x i—> tx. By abuse of
notation we identify the completion (G, <f>)  with just the group G, and in this sense
we can think of every completion as a quotient of the universal completion U(A).

In terms of amalgams, the identification problem (see the introduction) amounts
to finding the universal completions of certain amalgams arising in Chevalley groups.
An important observation due to Jacques Tits connects completions of amalgams
with geometries, and we finish this section with a discussion of this result.

2.5 Tits' lemma

Given a geometry F and a flag-transitive group G < Aut F, we associate an amalgam
A with them as follows. Let F be a maximal flag of F. Then A = \JieI Gi, where
Gi is the stabilizer in G of the element of type i from F. This amalgam A is called
the amalgam of maximal parabolics, and notice that A is independent of the choice
of F if we consider it up to isomorphism. Furthermore, if F is connected then A
generates G so that G is a completion of A.

The following proposition (Tits' lemma) is a restatement for the case of geome-
tries of Corollaire 1 from [Tl]

Proposition 2.1. Let T be a connected geometry and let G < AutF be a flag-
transitive group of automorphisms. Moreover, let F be a maximal flag ofY. Then
G is the universal completion of the amalgam A of maximal parabolics with respect
to F if and only if the geometry F is simply connected.

This result reduces the problem of identifying the universal completion of certain
amalgams to proving that the corresponding geometries are simply connected. As
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we have mentioned above, simple connectedness can be verified by proving that the
fundamental group of the corresponding flag complex is trivial, that is, by proving
that every loop on the flag complex is null-homotopic.

3 Phan's theorem

3.1 History

In 1975, Kok-Wee Phan gave a method for identifying an unknown group G with a
quotient of the unitary group SU(n + 1, q2), by finding in G a generating configu-
ration of subgroups SU(3, q2) and SU(2, q2) x SU(2, q2). We begin by looking at a
configuration of such subgroups in SU(n + 1, q2) to motivate our later definition.

Suppose n > 2 and q is a prime power. Let G = SU(n + l,q2), and let U% =
SU(2} q2), i = 1,2,..., n, be the subgroups of G corresponding to the 2 x2 blocks
along the main diagonal. Define Di to be the diagonal subgroup of Ui and notice
that D{ is a maximal torus of Ui of size q+1. When q^2, the group G is generated
by the subgroups Ui, and the following hold for 1 < i,j < n:

(PI) if i-j\>l  then [x,y] = 1 for all x € Ut and y € UJ;

(P2) if \i - j \ = 1 then (Ui, Uj) is isomorphic to SU(3, q2); and

(P3) [x, y] = l for all i S A a n d ye Dj.

Suppose now that G is an arbitrary group containing a system of subgroups
Ui = SU(2, q2), and suppose a maximal torus Di of size q + 1 is chosen in each [/,.
If the conditions (P1)-(P3) above hold true for G, we will say that G contains a
Phan system of rank n. In [Phi] Kok-Wee Phan proved the following result:

Theorem 3.1. // G contains a Phan system of rank n > 3 with q > 4, then G is
isomorphic to a factor group of SU(n + 1, q2).

Phan's proof of this result, however, is somewhat incomplete. Much of the
proof is calculation-based, and many of these calculations are left to the reader.
Moreover, while Phan apparently deals with the question of what the Phan system
generates if the amalgam A formed by the subgroups Uij = (Ui, Uj) is exactly as in
SU(n+l, q2), he never addresses the question of the uniqueness of A. Unfortunately,
this is crucial. Indeed, nothing in the conditions (P1)-(P3) tells us right away that
A must be as in SU(n + 1, q2). Potentially, there may be many such amalgams, in
which case G could be a quotient of the universal completion of any one of those
amalgams. Thus, the proof of the uniqueness of A must be an important part of
the proof of Phan's theorem.

3.2 Strategy

Let us assume for now that the uniqueness of A is known so that A can be identified
with the amalgam formed by block-diagonal subgroups SU(3,q2) and SU(2,q2) x
SU(2, q2) of G = SU(n +1, q2). Under this assumption, what remains to be shown
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is that the universal completion of A coincides with G. A natural way to show this
is via Tits' lemma.

In order to apply Tits' lemma we need a geometry on which G acts
transitively, so that A is (or at least, is related to) the corresponding amalgam
of maximal parabolics. Such a geometry has, in fact, already appeared in the lit-
erature (e.g. see [A]). This geometry, Af = Af(n,q2), is defined as follows. Let V
be the (n + l)-dimensional unitary space over GF(q2). The elements of Af are the
proper non-singular subspaces U of V. The type of U is given by its dimension and
the incidence is defined by containment. Fixing an orthonormal basis {e\,..., era+1}
in V, we make G act on A/", and it is easy to see that this action is flag-transitive.
The next key fact is that A/" is almost always simply connected. Deferring the exact
statement and a discussion of the proof until the next subsection, we just mention
that the case where q > 3 is odd was first done in [D].

Once Af is known to be simply connected, Tits' lemma implies that G is the
universal completion of the amalgam A of maximal parabolics associated with Af.
Choosing the maximal flag consisting of all the subspaces Ui = (ei,...,ef), the
amalgam A is the union of the block-diagonal subgroups

(GU(i,q2)xGU(n + l-i,q2))+,

where the plus indicates that within this direct product we only take matrices
with determinant equal to one. In particular, A is completely contained in A.
Unfortunately, A is not equal to A, which means that we have to do more work.

Let G be the universal completion of A- Notice that G = SU(n + l,q2) is
generated by A and hence G is a completion of A. This means that G is a quotient
of G. Thus, it suffices to show that G cannot be larger than G. We accomplish this
by finding a copy of A inside G, that extends A. This implies that G is in turn a
quotient of G and hence G cannot be larger than G.

Let As be the subamalgam of A formed by all parabolics of rank at most s.
Recall that in each Ui we have a torus D; of order q +1. Viewing A as embedded in
G, define D — n A- We show that D is in fact the direct product of the £>;'s and
that U^D is isomorphic to the full rank 2 parabolic from A. Furthermore, the union
of the subgroups UijD in G produces an amalgam isomorphic to the subamalgam
A\ of A. The remaining part is easy, as we inductively extend every As to As+i
using the case s = 2 as a base of induction. Notice that the simple connectedness
of Af = Af(s + l,q) is used in extending As.

At this point we turn to the question of how the simple connectedness is proven.

3.3 Simple Connectedness

Recall that simple connectedness can be shown by proving that every loop of the flag
complex of Af is null-homotopic. Fixing a base element x to be a point (an element
of type 1), a standard technique is to reduce every loop of Af based at a; to a loop in
the point-line incidence graph (lines are elements of type 2). This technique requires
that the geometry in question contains sufficiently many connected residues, which
is the case for the geometry Af. In fact, for q ̂  2, Af is residually connected.

Thus, we only need to consider loops fully contained in the point-line incidence
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graph. Every such loop can be understood as a loop in the collinearity graph E of
TV". The vertices of E are the points of J\f and two points are adjacent if and only
if they are collinear {i.e., incident to a common line).

A loop in E that is contained entirely within the residue of an element of M
(such a loop is called geometric) is null-homotopic. Thus, proving that M is simply
connected requires showing that every loop in S can be decomposed into a product
of geometric loops. In fact, we only use geometric triangles for this.

The key fact that allows us to proceed is that, with few exceptions, E has
diameter two. By induction every loop in S is a product of loops of length up
to five. Hence it suffices to show that every loop 7 of length 3, 4, and 5 is null-
homotopic. For large N, one can always find a point that is perpendicular to all the
points on 7. This produces a decomposition of 7 into geometric triangles. Hence
the claim is essentially obvious for large n. All the difficulty of the proof lies in the
case of small n, where we resort to a case-by-case analysis and the proof at times
becomes rather intricate.

We end this section with the exact statement from [BSh].

Proposition 3.2. The geometry J\f — H{n + l,q2) is simply connected if (n, q) is
not one of (3,2) and (3,3).

Our proof of this proposition is computer-free with the exception of the case
n = 5 and q = 2, which was handled by Jon Dunlap using a Todd-Coxeter coset
enumeration in GAP ([GAP]). Notice that neither one of the exceptions above is
simply connected, so that the result is (in a sense) best possible.

3.4 Uniqueness of A

Notice that Phan does not address the cases q < 4 at all. Furthermore his definitions
do not even make sense for q = 2. To include all possible cases in our theorem, we
need to modify Phan's setup.

We say that a group G possesses a weak Phan system if G contains subgroups
Ui ^ SU(2, q2), i = 1,2,..., n, and Uitj, l<i<j<n,so  that the following hold:

(wPl) If \i — j \ > 1 then Uij  is a central product of Ui and Uj\

(wP2) For i = 1,2,..., n— 1, the groups Ui and Ui+\  are contained in t/^+i, which is
isomorphic to SU(3, q2) or PSU(3, q2); moreover, Ui and Uj+i  form a standard
pair in t ^+ i ; and

(wP3) The subgroups Uij, 1 < i < 3 < n, generate G.

Here a standard pair in SU(3, q2) denote a pair of subgroups SU(2, q2) conjugate
as a pair to the pair of block-diagonal SU(2,q2)'s. Standard pairs in PSU(3,q2)
are defined as the images under the natural homomorphism of the standard pairs
from SU(3, q2).

This definition leaves a lot of possibilities for the members of the amalgam A =
[jUij,  producing a variety of amalgams so that we are unable to make any claims
of uniqueness in the general case. We call an amalgam A unambiguous if every
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Uij  is isomorphic to just SU(3, q2) or SU(2, q2) x £77(2, q2) (rather than a quotient
of these groups). Using some "scissors-and-glue" methods, one can associate to
every amalgam A of weak Phan type an unambiguous amalgam whose universal
completion has U(A) as a quotient, reducing the analysis of A to the case where
A is unambiguous. However even in this case we cannot claim uniqueness, and we
must impose another restriction. A non-collapsing amalgam is an amalgam such
that U(A) 7̂  1 (this simple definition works in all cases except for q = 2; the latter
case requires the stronger condition that every Ui embeds into U(A)). Clearly, from
the point of view of Phan's theorem, we are only interested in the non-collapsing
amalgams. It is interesting that although many unambiguous amalgams exist, only
one of them is non-collapsing.

Proposition 3.3. If A = [jUij  is unambiguous and non-collapsing, then it is iso-
morphic to the canonical amalgam of block-diagonal subgroups of the group SU(n +
I,?2)-

We use the non-collapsing condition as follows. For e = , define D\ =
Nut(Ui+e). Note that this normalizer makes sense in Uiti+e. Assuming that A
is non-collapsing, we have a completion H in which every member of A embeds.
Working in H we show that Dfl = D 1̂ for alH = 2, . . ., n— 1. This extra condition
makes A unique. It also enables us to introduce the tori Di = Dfl = D 1̂ as in
Phan's original setup.

The main part of the uniqueness proof splits into the cases n = 3 and n > 3.
In the first case we use Goldschmidt's Lemma (cf. 2.7 of [G]) to prove that the
amalgam of Uu and C/23 with joint subgroup Vi is unique up to isomorphism. To
identify A we need to decide which subgroups of C/12 and C/23 can serve as U\ and C/3.
Once these subgroups are found, the remaining member C/13 is added to C/12 U C/23
as Ui x C/3.

The condition on U\ and C/3 is that each must form a standard pair with C/2. It
can be seen that C/2 acts transitively by conjugation on the candidates for U\ and
on candidates for C/3. Since conjugation by an element of C/2 is an automorphism of
the amalgam C/12 U C/23, we can assume that U\ is a fixed subgroup. On the other
hand, for C/3 we have many possibilities that lead to many amalgams. Fortunately
we have the extra condition arising from the assumption that A is non-collapsing.
This condition leaves only two candidates for C/3 and we complete the proof by
finding an automorphism of C/12 U C/23 that stabilizes U\ and permutes the two
candidates for C/3.

For the n > 3 case, we now appeal to induction using the case n = 3 as the
base. In the end, combining all the above we obtain the following two theorems.

Theorem 3.4. // G contains a weak Phan system of rank n at least three with
q > 3 then G is isomorphic to a factor group of SU(n + 1, q2).

Theorem 3.5. Suppose G contains a weak Phan system of rank n specified below
with q = 2 or 3.

(1) Suppose q = 3, n > 4, and additionally, for i — 1,2,... ,n — 2, the subgroup
generated by Uiti+i  and Ui+i ti+2 is isomorphic to a factor group of SU(4,9).
Then G is isomorphic to a factor group of SU(n +1,9).



21

(2) Suppose q = 2, n > 5 and, for i = 1,2,... ,n — 3, i/ie subgroup generated
by Uiti+\, Ui+i ti+2 and Ui+2,i+3  is isomorphic to a factor group of 5C/(5,4).
Then G is isomorphic to a factor group of SU(n + 1,4).

Notice that the extra conditions are required, for q < 3 and small n, as the
geometry Af is not simply connected and in the case, n = 2 and q = 2, it is not
even connected.

4 The Curtis-Tits theorem

The following formulation of the Curtis-Tits theorem is taken from [GLS].

Theorem 4.1. LetG be the universal version of a finite Chevalley group of (twisted)
rank at least 3 with root system E, fundamental system II , and root groups Xa,
a S S. For each J C II let Gj be the subgroup of G generated by all root subgroups
Xa,  e J. Let D be the set of all subsets of'H with at most 2 elements. Then G
is the universal completion of the amalgam \JJ€D Gj.

We first discuss the similarities and differences between Phan's theorem and the
Curtis-Tits theorem. Let us consider the case of the Chevalley group of type An,
which is G = SL(n + l,q). With the usual choice of the root subgroups in G,
the subgroups Gj = Gij are the block-diagonal subgroups SL(3,q) and SL(2,q) x
SL(2,q), which we note are similar to the subgroups in the amalgam in Phan's
theorem. The main difference between the two theorems is that the Curtis-Tits
theorem merely claims that the universal completion of the known amalgam (the
one found in SL(n + l,q), i.e., \JJ€D Gj) is SL(n + l,q), while Phan's theorem
makes a claim about the completion of an arbitrary Phan amalgam.

Clearly, as we are again trying to find the universal completion of an amalgam,
Tits' lemma appears to be a natural tool for this task. To use it, one needs to find
a suitable geometry on which G acts flag-transitively with the correct amalgam of
maximal parabolics, and then prove that the geometry is simply connected. We
begin by modifying the amalgam so as to replace the rank 2 subgroups, Gj, with
the maximal ones. Consider the amalgam A = Uasn ^n\{oi} - By induction on the
rank, the Curtis-Tits theorem is equivalent to the following.

Theorem 4.2. Under the assumptions of Theorem 4-1, the group G is the universal
completion of the amalgam A-

In the rest of this section we will discuss a geometric proof of this theorem given
by Muhlherr in [M].

Recall that a finite Chevalley group G acts on its natural finite geometry called
a building. Let J be a set and M be a Coxeter matrix over I. Let (W, S) be the
Coxeter system of type M, where S = {$i \ i G J}. A building of type M is a pair
B = (C,S) where C is a set and 6 : C x C —> W is a distance function satisfying the
following axioms. Let x,y e C and w = 6(x,y). Then

(Bl) w = 1 if and only if x = y;
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(B2) if z £ C is such that 6(y, z) = s £ S, then 6(x, z) = w or ws; furthermore if
l(ws) = l(w) + 1, then S(x, z) = ws; and

(B3) if s £ S, there exists z £ C such that 8(y, z) = s and 6(x, z) = ws.

In this survey we will concentrate (unlike Miihlherr) on finite buildings, in which
case the diagram is spherical, although a number of results that we state also apply
to the non-finite case.

Given a building B = (C,S) we can define a chamber system on the set of
chambers C (we denote the chamber system by C as well) where two chambers c
and d are i-adjacent if and only if 6(c, d) = S*. Conversely, the building B can be
recovered from its chamber system C. We will only consider those buildings B for
which C is thick. If B is a building, its chamber system contains a class of thin
subsystems called apartments. In an apartment E, for any c G £ and w G W,
there is a unique chamber d £ £ such that 6(c, d) = w. Every pair of chambers of
C is contained in an apartment. Notice that the chamber system C defined by a
building is always geometric. Let F = T(B) be the corresponding geometry. It is
well known that F is simply connected. Unfortunately, we cannot use this to prove
the Curtis-Tits theorem because it corresponds to the wrong amalgam. So we need
to find a different geometry.

Given two buildings B+ = (C+,<5+), B- = (C_,<5_) of the same type M, a
codistance (twinning) is a map <5* : (C+ x C_) U (C_ x C+) —> W such that the
following axioms hold where e = , x € Ce, y G C_e and w = 5»(a;, y):

(Tl) St(y,x) = w-i;

(T2) if z G C_e such that 6-e(y,z) = s G S and l(ws) = l(w)-l, then<5*(:r;,z) = ws;
and

(T3) if s G S, there exists z G C_e such that 6-e(y, z) = s G S and 6*(x, z) = ws.

A twin building of type M is a triple (B+,13-,6*), where B+ and i?_ are buildings
of type M and 5*  is twinning between B+ and £_.

Tits showed (cf. Proposition 1 of [T2]) that every spherical twin building can
be obtained as follows from some building B = (C, 6) of the same type M. Let
B+ = (C+,6+) be a copy of B, define B- — (C-,6-) as (C,WQ8WQ), and let 5*  be
defined as WQ8 and 6wo on C+ x C_ and C_ x C+ respectively. Here w$ is the longest
element of the Weyl group W.

Given a twin building T = (S+,S_,(5*), one can define a chamber system
Opp(T) = {(c+, c_) G C+ x C- | <5*(c+, c_) = l w } . Chambers a; G C+ and y G C_
with S»(x,y) = lw are called opposite, hence the notation. Note that Opp(T) is
a geometric chamber system. Its corresponding geometry is denoted by Fop and is
called the opposites geometry. It can be described as follows. Let T+ and F_ be
the building geometries that correspond to B+ and B-. Elements x+ G F+ and
x- G F_ of the same type i £ I are called opposite if they are contained in opposite
maximal flags (i.e., chambers). The elements of Fop of type i are pairs (x+,x-) of
opposite elements of type i. Two pairs (a;+, X-) and (x'+, x'_) are incident in Fop if
both x+ and x'+ are incident in F+ and x~ and x'_ are incident in F_. Clearly, a
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pair (c+, c_) 6 Opp(T) produces a maximal flag in Fop, and it can be shown that
every maximal flag is obtained in this way.

We now give some examples.

Example la. Let G = PSL(n + l,q), i.e., M is of type An. Then the building
geometry F is the projective space, whose elements of type i, 1 < i < n, are all the
i-dimensional subspaces in the corresponding (n + l)-dimesional vector space V.
The geometries F+ and F_ are isomorphic respectively to F and the dual geometry
of F (same as F except that the type of the i-dimensional subspace is n + 1 — i).
Elements (subspaces) x+ € F+ and x_ € F_ of type i are opposite if they intersect
trivially and thus form a direct sum decomposition V = x+ © X-. It follows that
these decompositions are the elements of Top.

Example 2a. Let G = PSp(2n,q), which corresponds to the diagram Cn. Then F
is the geometry of all totally isotropic subspaces of a nondegenerate 2n-dimensional
symplectic space V. In this case, both F+ and F_ are isomorphic to F. Two
i-dimensional totally isotropic subspaces x+ and x_ are opposite if X- intersects
trivially with the orthogonal complement of x+. Such pairs (x+,x-) are the ele-
ments of Top.

In general, if the twin building consists of two isomorphic parts B+ = B = B-,
which is the case for a spherical diagram, the automorphism group Aut (23) of the
building acts on the twin building T by automorphisms, in particular, it preserves
the opposition relation, and hence it also acts on Top. It can be shown that the
action of Aut (S) on the set of pairs of opposite chambers is transitive, thus it is
flag-transitive on Fop. The stabilizers of the elements of a maximal flag of Top are
Levi factors in the maximal parabolic subgroups (in the sense of Chevalley groups)
of G. The Levi factors differ from the members of the amalgam of Theorem 4.2 only
by the Cartan subgroup. To be precise, the full Levi factors are the products of the
subgroups Gu\{a]  with the Cartan subgroup H. This is not a major impediment
as the Cartan subgroup can be recovered piecewise from the initial amalgam A.
Therefore the Curtis-Tits theorem is equivalent to the following:

Theorem 4.3. / / T = (B+,B-,6») is a spherical twin building of rank at least
three, then the geometry Top is simply connected.

This was proved by Miihlherr in [M] for twin buildings with arbitrary (that is,
not only spherical) Coxeter matrix M. His proof is case-independent, short and
elegant. The claim is derived directly from the axioms of twin buildings, properties
of apartments in buildings, and certain connectivity properties of buildings. How-
ever his proof does not cover a number of exceptional (small field) cases where the
connectivity fails. In particular, in the spherical case, the groups G = Sp(2n, 2)
and ^4(2) are not covered by his proof. In the nonspherical case Miihlherr has to
exclude tree residues and rank 2 residues related to the buildings of type ^2(2),
2Fi(2), G2(2), and £2(3). Miihlherr remarks that in the nonspherical situation
there appear to be counterexamples. Hence a general proof for all M may not be
possible. In the spherical case we know by the original Curtis-Tits proof that there
are no counterexamples. Thus the following seems to be an interesting problem.

Problem 1. Generalize Muhlherr's proof to cover all spherical matrices M.
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As we have already noticed, the Curtis-Tits theorem is not concerned with the
question of the uniqueness of the amalgam A = \JaeU Gn\{ a} - In our opinion this
makes applying the Curtis-Tits theorem more complicated. Indeed, in order to
apply it one has to show that inside the group G under consideration there is an
exact copy of the amalgam A. Thus it would be advantageous to strengthen the
Curtis-Tits theorem by solving the following problem.

Problem 2. Prove that any non-collapsing amalgam of groups isomorphic to Gn\{o:}
with given isomorphism types of their intersections is in fact isomorphic to A.

5 Flipflop geometries

We will start with an example.

Example lb. Consider the situation of Example la, but change the field of def-
inition to GF(q2), so that G = PSL(n + l,q2). Consider a unitary polarity a,
that is, an involutory isomorphism from T onto the dual of T which is denned by
a nondegenerate Hermitian form $ o n 7. More precisely, a sends every subspace
of V to its orthogonal complement with respect to $. This a produces an in-
volutory automorphism of the twin building T that switches C+ and C_ (or else,
F+ and F_). It is an automorphism in the sense that it transforms 6+ into <5_
and vice versa, and preserves 6*. Note that a induces an automorphism of G,
which, by abuse of notation, will also be denoted by a. Consider Ga = CG(&)
and TCT = {(x+fx-) e Top | xa+ = &-} . Then Ga = PSU(n + l,q2) acts on rff .
Notice that the elements of TCT are of the form (x+,xJ) where x_ = x"+ = x+
and V = x+ © x_ = x+ © a;+. Thus, the mapping (x+, xJ) i-» x+ establishes an
isomorphism between Ta and the geometry of all proper nondegenerate subspaces
of the unitary space V, as denned by $. This is exactly the geometry from Section
3 that was used for a new proof of Phan's first theorem.

This suggests the following general construction. Let T = (B+, B-, 5*) be a twin
buiding. Consider an involutory automorphism a oil with the following properties:

(Fl) C£=C_;

(F2) a flips the distances, i.e., Se(x,y) = 6-€{xa,ya) for e = ; and

(F3) a preserves the codistance, i.e., 6*(x,y) = 8»{xa,y").

We additionally require that there be at least one chamber c €  such that
6*(c,ca)  lw- Such cr's will be called flips.

Let Ca be the chamber system whose chambers are pairs {c,ca) that belong to
Opp(T). Note that by our assumption Ca is non-empty. We do not know if Ca

is geometric in general, however this is the case in each of our examples with the
possible exception of exception of Example 5. If Ca is geometric, let r a denote the
corresponding geometry. It will be referred to as the flipflop geometry.

In case of a spherical twin building, we can compute the action of a on the
Coxeter diagram of the building, as has been done in Section 3.3 of [Gr]. Indeed,
using Tits' characterization of spherical twin buildings (Proposition 1 of [T2]), we
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have 6{c,d) — 5+(c,d) = 6-(ca,d<T) = WQ8(C",da)wo- Therefore, the flip a acts on
the Coxeter diagram via conjugation with the longest word WQ of the Weyl group.
This gives the following characterization of a flip of a spherical twin building.

Proposit ion 5.1. Let T = (B+,B-,83f) be a spherical twin building. An adjacen-
cy-preserving involution a that interchanges B+ and B- and maps some chamber
onto an opposite chamber is a flip if and only if the induced map or on the building
B = (C,8) satisfies 6(c,d) = uiQ8(ca,d(J)u>o for all chambers c,d £ C where u>o is the
longest word in the Weyl group W.

Note that, in the case of a building of type An, a flip gives a polarity a. The
condition that a chamber is mapped to the opposite chamber implies in particular
that there is a 1-space not incident to it polar. This excludes symplectic polarities
and orthogonal polarities in characteristic two. Conversely given any unitary or an
orthogonal polarity in odd characteristic, we can find an orthogonal basis for the
corresponding form. This in turn will  give an apartment in which each chamber is
mapped to its opposite.

Here are some additional examples.

Example 2b. Consider the situation of Example 2a, but with the field of definition
of order q2. Let {e i , . . ., en, / i , . . . , / „ }  be a hyperbolic basis of the symplectic space
V. (So that (et, fj) = 8ij.) Consider the semilinear transformation a of V which
is the composition of the linear transformation given by the Gram matrix of the
form and the involutory field automorphism applied to the coordinates with respect
to the above basis. It can be shown that a produces a flip of T. Furthermore,
CCT is geometric and Ga = PSp(2n, q) acts flag-transitively on the corresponding
flipflop geometry FCT. The geometry FCT can be described as follows. For u, v € V
let ((u,v)) = (u,va), where (-, ) is the symplectic form on V. Then ) is a

nondegenerate Hermitian form. The flipflop geometry F^ can be identified (via
(x+, x~) H-> x+) with the geometry of all subspaces of V which are totally isotropic
with respect to , ) and, at the same time, nondegenerate with respect to .

The configuration of Example 2b was looked at in [GHSh]. It is proved there
that Fa is almost always simply connected. Here is the main theorem from that
paper.

Theorem 5.2. The flipflop geometry Ta described in Example 2b is simply con-
nected if n> 5 or n = 4, q > 3 or n = 3, q > 8.

We expect that some of the larger ^'s on this list of exceptions are there only be-
cause of the shortcomings of our particular proof, so that the final list of exceptions
will  be shorter.

The above theorem leads to a new "Phan-type" result on groups generated
by subgroups Ui ^ SU(2,q2). Here we have that {UuUi+ i) ^ SU{3,q2) for all
1 < i < n—1, while (C/n_i, Un) = 5p(4, q). As in Phan's original situation Ui and Uj
with \i — j \ > 1 commute elementwise. An amalgam of subgroups as indicated here
is called a Phan system of type Cn. For the exact statements and other applications,
see [GHSh]. We have to point out that the uniqueness of amalgams is not addressed
in [GHSh] leaving the following an open problem.
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Problem 3. // q is sufficiently large prove that any non-collapsing Phan system
of type Cn is in fact isomorphic to the canonical Phan system inside the group
Sp(2n,q).

We expect that this problem can be solved by using the same methods as given
in [BSh]. Consequently, for small q one first has to introduce the notion of a weak
Phan system of type Cn as in Section 3 and then study unambiguous, non-collapsing
weak Phan systems.

Example 3. For G = PS0(2n, q2,+) and PS0(2n + 1, q2) (diagrams Dn and Bn,
respectively) flips can be constructed by the same algorithm as in Example 2b, that
is, a can be defined as the composition of the linear transformation given by the
Gram matrix, say, taken with respect to a hyperbolic basis (the actual requirement
is that all entries of the Gram matrix must be in the subfield GF(q)) and the
involutory field automorphism with respect to the same basis. In both cases we
checked that this a produces a flipflop geometry on which Ga acts flag-transitively.
While we have not obtained an exact result on the simple connectivity of Ta, it is
clear that T^ is simply connected for all sufficiently large n and q, leading to new
"Phan-type" theorems, cf. [BGHSh]. Notice that the Dn case here is likely to lead
to Theorem 1.9 from Phan's second paper [Ph2]. This conjecture is underscored
by our above observation (before Proposition 5.1) that a flip acts via conjugation
with the longest word of the Weyl group on the diagram Dn. Indeed, for n even,
Phan's target group is Spin+(q) (the universal Chevalley group of type Dn(q)) and
conjugation with the longest word leaves the diagram invariant, while for n odd,
Phan's target group is Spin~(q) (the universal Chevalley group of type 2Dn(q2))
and conjugation with the longest word interchanges the two nodes representing the
two classes of maximal totally singular subspaces. Another flip is induced by the
linear transformation given by the Gram matrix with respect to a hyperbolic basis
alone, without applying the involutory field automorphism.

Example 4. Now consider the group G = PS0(2n, q, —) acting on the flag complex
C of totally singular subspaces of a nondegenerate orthogonal form of — type on the
vector space V of dimension 2n over GF(q). Choose two opposite chambers c and
d of that flag complex and let U be the subspace of V that is perpendicular to the
n — 1 dimenional subspaces that appear in c, d. Fix a hyperbolic basis

{ei,... ,en_ i , / i , . . ., jfn-i}

of the vector space c© d such that c = ((ei),..., (ei,... ,en_i)) and d = (( / i ) , . . .,
(/i i  fn-i)) and, moreover, fix some orthogonal basis of U. Then there exists a
linear map on V that preserves the form, maps ê  onto ft and vice versa, and acts
by scalar multiplication on each of the vectors of the orthogonal basis of U, e.g., the
Gram matrix of the form with respect to the given basis. This linear map induces a
flip  a of the twin building belonging to the flag complex C. Notice, unlike Example
3, that we cannot compose this flip a with an involutory field automorphism that
acts entrywise on the vectors with respect to the given basis in order to obtain
another flip, because this field automorphism would not commute with a.

Example 5. Let G be the universal Chevalley group of type E§{q2) and consider
its 27-dimensional module V, a vector space over GF(q2). For sake of simplicity
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let us assume that q is not divisible by two. A vector x £ V is represented by the
triple (x^,xW,x^) where x^\ 1 < i < 3, is a (3 x 3)-matrix over GF{q2). The
shadow space .E^iC?2) can be described as the geometry on certain subspaces of V,
cf. Section 5.2 of Cohen's Chapter 12 of [Bu]. There exists a nondegenerate bilinear
form , ) on V defined by

(x, y) = trace (x^y  ̂ + x^y  ̂ + x^y™).

Define g" £ GL (V) o be the adjoint of g"1 with respect to the form , . More
precisely p" is characterized by (gx,g^y) = (x,y) for all x, y £ V. The map
tt : GL (V) —> GL (V) : 5 H j *  induces an involutory automorphism a of the
group G. This automorphism a in turn induces a correlation j3 of the geometry
EQt\{q2), i-e., an incidence-preserving permutation of £6,1 (<72) that does not neces-
sarily preserve types. In fact, 0 induces the involutory graph automorphism on the
Coxeter diagram E§. The composition of (3 and the involutory field automorphism
acting entrywise on the representation (x^,x 2̂\x^) of any vector x £ V induces
a map a on the corresponding twin building T that satisfies the axioms of a flip
except that we did not check whether there exists a chamber that is mapped to an
opposite chamber. We do, however, strongly believe that such a chamber exists.
This observation is underscored by the fact that the centralizer in G of the com-
position of a and the involutory field automorphism equals 2Ee(q2) and, thus, the
present setting is likely to lead to an alternative proof of Phan's Theorem 2.6 of
[Ph2]. The correlation j3 can be expected to induce a flip as well.

We do not have a concrete example of a flip for an  twin building, but we will
discuss a general method for finding flips in the case where conjugation with the
longest word of the Weyl group acts trivially on the diagram, which, for example,
applies in the F4 case. As a concrete example, one would hope to find a flip that
centralizes the group F4(g) inside the group Fi(q2); the resulting flipflop geome-
try should admit the flipflop geometry of type B3 from [BGHSh] and the flipflop
geometry of type C3 from [GHSh] as residues.

Let T = (B+,B-,6*) be a twin building. Define the automorphism group
Aut (T) to be the set of all permutations a of T with

 <5e(c, d) = 6e(ca, da) for all c,d £CC if a preserves C+ and C_,

 6e(c, d) = 6-c(ca, da) for all c, d £ Ce if a interchanges C+ and C_, and

 <5*(c,d) = 6*{ca,da) for all c £ Ce, d £ C_e,

where e = . Clearly, if a,/3 £ Aut(T) both interchange C+ and C_ then their
product ap preserves C+ and C_. So, Aut (T) is of the form Aut(i?).2. If there
exists a flip or any other distance-switching and codistance-preserving involution of
T, then Aut (T) even is a semidirect product.

Now suppose we have a spherical twin building with a Coxeter diagram such
that conjugation with the longest word WQ acts as the trivial automorphism on the
diagram. Then the map r assigning to each chamber c of  the unique chamber d
of Cji with £*(c, d) = wo (called the closest chamber to c) is contained in Aut (T).
Moreover, r commutes with any automorphism of T that preserves C+ and C_, so
Aut (T) is even a direct product. This implies the following.
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Proposition 5.3. Let T = (B+,B~,5*) be a spherical twin building such that
conjugation with the longest word wo of the Weyl group acts trivially on its Coxeter
diagram. Then Aut (T) = Aut (B) x (r), where r is the automorphism assigning to
each chamber c £  the unique closest chamber d £ dp. Moreover, any flip of T
is the product ar for an involutory a € Aut (B) such that there exists a chamber
c S C with 6(c, ca) = wo. Conversely, every such ar is a flip.

This partial result motivates the following problem.

Problem 4. Classify all flips for all spherical twin buildings. For each flip inves-
tigate ra and its simple connectivity.

Of course, it would be much nicer to have general building-theoretic arguments
(Miihlherr's type) in place of a case-by-case analysis. In particular, this concerns
showing that Ca is always geometric.

Besides the spherical case the investigation of flips might be interesting for the
nonspherical case as well.

Problem 5. Find an interesting flip for a nonspherical twin building.

A flip might be considered interesting if it either centralizes or flips an interesting
geometry or if it has an interesting centralizer. Also, Miihlherr's proof of the Curtis-
Tits theorem has established a Curtis-Tits-type theorem for certain Kac-Moody
groups. It might be worth the effort to investigate whether interesting Phan-type
theorems can be proved for Kac-Moody groups as well. A starting point for the
search of flips of nonspherial twin buildings might be [B] on diagram automorphisms
induced by certain root reflections.
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REPRESENTATIO N THEORY OF SYMMETRI C GROUPS AND
THEI R DOUBLE COVERS

JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

1. INTRODUCTION

In this article we will give an overview of the new Lie theoretic approach to the
p-modular representation theory of the symmetric groups and their double covers
that has emerged in the last few years. There are in fact two parallel theories here:
one for the symmetric groups Sn involving the affine Kac-Moody algebra of type
Apl1, and one for their double covers Sn involving the twisted algebra of type A^^.
In the case of Sn itself, the theory has been developed especially by Kleshchev [19],
Lascoux-Leclerc-Thibon [21], Ariki [1] and Grojnowski [9], while the double covers
are treated for the first time in [4] along the lines of [9], after the important progress
made over C by Sergeev [35, 36] and Nazarov [30, 31].

One of the most striking results at the heart of both of the theories is the explicit
description of the modular branching graphs in terms of Kashiwara's crystal graph
for the basic module of the corresponding affine Lie algebra. Note that the results
described are just a part of a larger picture: there are analogous results for the
cyclotomic and affine Hecke algebras, and their twisted analogues, the cyclotomic
and affine Hecke-Clifford superalgebras. However we will try here to bring out only
those parts of the theory that apply to the symmetric group, since that is the most
applicable to finite group theory.

2. THE SYMMETRIC GROUP

In this section, we describe the representation theory of the symmetric group Sn

over a field F of arbitrary characteristic p.

2.1. Formal characters. For k = 1,..., n, we define the Jucys-Murphy element
k-i

xk:=J2(ik)£FSn, (1)

see [15, 28]. I t is straightforward to show that the elements xi,X2,- n commute
wit h one another. Moreover, we have by [15] or [29, 1.9]:

Theorem 2 .1. The center of the group algebra FSn is precisely the set of all
symmetric polynomials in the elements x\, X2, , xn.

Now let M be an .FS^-module. Let / = Z/pZ identified with the prime subfield
of F. For i = ( i i , . . ., in) E In, define

M[i]  :=  {v G M | (xr - ir)Nv = 0 for AT » 0 and each r - 1,. . ., n}.

31
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Thus, M[i]  is the simultaneous generalized eigenspace for the commuting operators
Xi,  xn corresponding to the eigenvalues ii,...,in respectively.

Lemma 2.2. Any FSn-module M decomposes as M = © i e /n M[j] .

Proof. It suffices to show that all eigenvalues of xr on M lie in /, for each
r = 1,... ,n. This is obvious if r = 1 (as x\ = 0). Now assume that all eigenvalues
of xr on M lie in /, and consider xr+i.  Let v £ M be a simultaneous eigenvector
for the commuting operators xr and xr+ i. Consider the subspace N spanned by v
and srv.

Suppose that N is two dimensional. Then the matrix for the action of xr on

( i c \
_ . J for some i,j G I and c £ F

(by assumption on the eigenvalues of xr). Hence, the matrix for the action of
f \f j i \

xr+ \ = srxTsr + sr on N is I 1 . I. Since v was an eigenvector for xr+ i, we
see that c = —1, hence v has eigenvalue j for a;r+i as required.

Finally suppose that iV is one dimensional. Then, srv =  Hence, if xrv = iv
for i £ I, then xr+ \v = (srxrsr + sr)v = (i  l)v. Since i  1 £ /, we are done.

We define the formal character ch M of a finite dimensional .FS^-module M to
be

chM := ^ dim(M[|])e-, (2)
iein

an element of the free Z-module on basis {e-\i£ In}. This is a useful notion, since
ch is clearly additive on short exact sequences and we have the following important
result proved in [38, §5.5]:

Theorem 2.3. The formal characters of the inequivalent irreducible FSn-modules
are linearly independent.

Given i=  {i\,... ,in) £ J", define its weight wt(i) to be the tuple 7 = (7;)i6j
where 7, counts the number of ir (r = 1,..., n) that equal  j . Thus, 7 is an element
of the set r n of /-tuples of non-negative integers summing to n. Clearly i,i£ / " lie
in the same 5n-orbit (under the obvious action by place permutation) if and only
if wt(£) = wt(i), hence Tn parametrizes the Sn-orbits on /" .

For 7 £ Tn and an F5n-module M, we let

M[ 7]:=
i£l™ with wt(i)=7

Unlike the M[i],  the subspaces M[y\ are actually F5n-submodules of M. Indeed,
as an elementary consequence of Theorem 2.1 and Lemma 2.2, we have:

Lemma 2.4. The decomposition M = ©7 ep -^H *s precisely the decomposition
of M into blocks as an FSn-module.

We will say that an F5n-module M belongs to the block 7 if M = Af [7].

2.2. Induction and restriction operators. Now that we have the notion of for-
mal character, we can introduce the {-restriction and i-induction operators ej and
/;. Suppose that 7 £ Tn. Let 7 + i £ Tn+i be the tuple (6i)iei with 6j = 7,- for

(3)

N with respect to the basis
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j ^ i and Si = ~/i + 1. Similarly, assuming this time that 7; > 0, let 7 — i e ]?„_!
be the tuple (<SJ)J6J with 8j = 7, for j ' ^ i and 6» = 7*  — 1.

If M is an F5n-module belonging to the block 7 e Fn, define

e M̂ := (res|"_ M)[7 — i] (interpreted as 0 in case 7, = 0), (4)

f i] . (5)

Extending additively to arbitrary F5n-modules M using Lemma 2.4 and making
the obvious definition on morphisms, we obtain exact functors

> F/Sn_i-mod and fc : FSn-mod —> FSn+i-mod.

The definition implies:

Lemma 2.5. For an FSn-module M we have

Note that e M̂ can be described alternatively as the generalized eigenspace of xn

acting on M corresponding to the eigenvalue i. This means that the effect of e, on
characters is easy to describe:

if c h M = Y ^ ai e1 then ch(ejM)^ V^ a  ̂ in_lti)& 1. (6)

Let us also mention that there are higher divided power functors e[ , f\ for
each r > 1. To define them, start with an .F.S'n-module M belonging to the block 7.
Let j + ir = 7 + i + H \-i (r times), and define 7 — V similarly (assuming 7* > r).
View M instead as an F(Sn x S'7.)-module by letting Sr act trivially. Embedding
Sn x Sr into Sn+r in the obvious way, we then define

^ r + n. (7)

Extending additively, we obtain the functor /̂  : FSn-mod —> F5n+r-mod. This
exact functor has a two-sided adjoint ef' : FSn+r-mod —> F5n-mod. It is defined
on a module M belonging to block 7 by

e\r)M :=  (MSr)['y - ir]  (interpreted as zero if 7, < r), (8)

where MSr denotes the space of fixed points for the subgroup Sr < Sn+ r that
permutes n + 1, . . ., n + r, viewed as a module over the subgroup Sn < Sn+r that
permutes 1,. . ., n. The following lemma relates the divided power functors ef and
f\r' to the original functors e*, /;:
Lemma 2.6. For an FSn-module M we have

e\M £ (ef)M)®r\ f[M  £ ( j f  )M)® r!.

The functors e r̂' and f>r>  have been defined in an entirely different way by Gro-
jnowski [9, §8.1], which is the key to proving their properties including Lemma 2.6.
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2.3. The affine Kac-Moody algebra. Let Rn denote the character ring of FSn,
i.e. the free Z-module spanned by the formal characters of the irreducible FSn-
modules. In view of Theorem 2.3, the map ch induces an isomorphism between Rn

and the Grothendieck group of the category of all finite dimensional .FS'n-modules.
Similarly, let i?*  denote the Z-submodule of Rn spanned by the formal characters
of the projective indecomposable FS^-modules. This time, the map ch induces an
isomorphism between R  ̂ and the Grothendieck group of the category of all finite
dimensional projective FS'n-modules.

Let

R. (9)

The exact functors e; and fo induce Z-linear operators on R. Since induction and
restriction send projective modules to projective modules, Lemma 2.5 implies that
e; and /» do too. Hence, R* C R is invariant under the action of ej and f{.

Extending scalars we get C-linear operators e» and fc on Re := C®z-R = C®zR*.
There is also a non-degenerate symmetric bilinear form on Re, the usual Cartan
pairing, with respect to which the characters of the projective indecomposables and
the irreducibles form a pair of dual bases.

Theorem 2.7. The operators e*  and fa (i € /) on Re satisfy the defining relations
of the Chevalley generators of the affine Kac-Moody Lie algebra g of type A^\
(resp. Aoa in case p = 0), see [16]. Moreover, viewing Re as a g-module in this
way,

(i) Re is isomorphic to the basic representation V(Ao) of Q, generated by the
highest weight vector e° (the character of the irreducible FSo-module);

(ii) the decomposition of Re into blocks coincides with its weight space decom-
position with respect to the standard Cartan subalgebra of g;

(iii ) the Cartan pairing on Re coincides with the Shapovalov form satisfying
(e°,e°) = l ;

(iv) the lattice R* c Re is the Z-submodule of Re generated by e° under the
action of the operators f\ — f[/r\  (i € I,r > 0);

(v) the lattice R c Re is the dual lattice to R* under the Shapovalov form.

This was essentially proved by Lascoux-Leclerc-Thibon [21] and Ariki [1] (for a
somewhat different situation), and another approach has been given more recently
by Grojnowski [9, 14.2],[10].

2.4. The crystal graph. In view of Theorem 2.7, we can identify Re with the
basic representation of the affine Kac-Moody algebra g = A _1. Associated to this
highest weight module, Kashiwara has defined a purely combinatorial object known
as a crystal, see e.g. [18] for a survey of this amazing theory. We now review the
explicit description of this particular crystal, due originally to Misra and Miwa [26].
This contains all the combinatorial notions we need to complete our exposition of
the representation theory.

Let A = (Ai > A2 >) be a partition. We identify A with its Young diagram

A = {(r , s) e Z>0 x Z>0 I s < Xr}.
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Elements (r, s) G Z>o x Z> 0 are called nodes. We label each node A — (r, s) of A
with its residue res A G / defined so that res A = (s — r) (mod p), see Example 2.8
below.

Let i G I be some fixed residue. A node yl G A is called i-removable (for A) if

(RO) res A — i and A - {A} is the diagram of a partition.

Similarly, a node B £ A is called i-addable (for A) if

(AO) res B — i and A U {B} is the diagram of a partition.

Now label all i-addable nodes of the diagram A by + and all i-removable nodes by —.
The i-signature of A is the sequence of pluses and minuses obtained by going along
the rim of the Young diagram from bottom left to top right and reading off all the
signs. The reduced i-signature of A is obtained from the i-signature by successively
erasing all neighbouring pairs of the form —h

Example 2.8. Let p = 3 and A = (11,10,9,9,5,1). The residues are as follows:

0
2
1

0
2
1

1
0
2
1
0

2
1
0
2
1

0
2
1
0
2

1
0
2
1

0

2
1
0
2

0
2
1
0

1
0
2
1

2
1
0
2

0
2

1

The 2-addable and 2-removable nodes are as labelled in the diagram:

Hence, the 2-signature of A is +,—,—,+ and the reduced 2-signature is +, - (the
nodes corresponding to the reduced 2-signature have been circled in the above
diagram).

Note the reduced i-signature always looks like a sequence of +'s followed by
—'s. Nodes corresponding to a — in the reduced i-signature are called i-normal,
nodes corresponding to a + are called i-conormal. The leftmost i-normal node
(corresponding to the leftmost — in the reduced i-signature) is called i-good, and
the rightmost i-conormal node (corresponding to the rightmost + in the reduced
i-signature) is called i-cogood.

We recall finally that a partition A is called p-regular if it does not have p non-zero
equal parts. It is important to note that if A is p-regular and A is an i-good node,
then A — {.A}  is also p-regular. Similarly if B is an i-cogood node, then A U {B} is
p-regular.
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The basic crystal graph of type A\(i)

lolljolilol |o|i|o|i|o|il loiiioiiioiiiol

oTTolilol lo|i|o|i|o|i| |o|ilolilolilol loiiioiiioiiioinw

By [26], the crystal graph associated to the basic representation V(Ao) of 0 can

now be realized as the set of all p-regular partitions, with a directed edge A —̂-> /J,
of color i € I if  (J, is obtained from A by adding an i-cogood node (equivalently, A
is obtained from /i by removing an i-good node). An example showing part of the
crystal graph for p = 2 is listed below.

2.5. The modular  branching graph. Now we explain the relationship between
the crystal graph and representation theory. The next lemma was first proved in
[20], and in a different way in [11].

Lemma 2.9. Let D be an irreducible FSn-module and i £ I. Then, the module
&iD  (resp. fiD) is either zero, or else, is a self-dual FSn-i- (resp. FSn+i-)  module
with irreducible socle and head isomorphic to each other.

Introduce the crystal operators ei,ff. for an irreducible F5n-module D, let

iiD :=  socle(eiD), fiD :=  socle(/iD). (10)

In view of Lemma 2.9, e{D and fiD are either zero or irreducible. Now define the
modular branching graph: the vertices are the isomorphism classes of irreducible

for all n > 0, and there is a directed edge [D]  ——t [E]  of color i ifFSn -modules
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E = fiD (equivalently by Probenius reciprocity, D = iiE). The fundamental result
is the following:

Theorem 2.10. The modular branching graph is uniquely isomorphic (as an I-
colored, directed graph) to the crystal graph of'§2.4-

This theorem was first stated in this way by Lascoux, Leclerc and Thibon [21]:
they noticed that the combinatorics of Kashiwara's crystal graph as described by
Misra and Miwa [26] is exactly the same as the modular branching graph first
determined in [19]. A quite different and independent proof of Theorem 2.10 follows
from the more general results of [9].

Theorem 2.10 has some important consequences. To start with, it implies that
the isomorphism classes of irreducible F5n-modules are parametrized by the vertices
in the crystal graph, i.e. by p-regular partitions. For a p-regular partition A of n,
we let Dx denote the corresponding irreducible .FS'n-module. To be quite explicit
about this labelling, choose a path

0 Ju D A , . .. Ji*  A

in the crystal graph from the empty partition to A, for i 1 (. . ., in € / . Then,

Dx:=f in...filD0, (11)

where Dz denotes the irreducible F5o-module. Note the labelling of the irreducible
module Dx defined here is known to agree with the standard labelling of James [13],
although James' construction is quite different.

Let us state one more result about the structure of the modules eiDx and fiDx,
see [2, Theorems E, E'] for this and some other more detailed results.

Theorem 2.11. Let A be a p-regular partition ofn.

(i) Suppose that A is an i-removable node such that // := A - {A} is p-regular.
Then, [e;£>A : D^] is the number of i-normal nodes to the right of A (count-
ing A itself), orO if A is not i-normal.

(ii) Suppose that B is an i-addable node such that u := A U {B} is p-regular.
Then, [faDx : Dv]  is the number of i-conormal nodes to the left of B (count-
ing B itself), or 0 if B is not i-conormal.

2.6. Mor e on characters. Let M be an F5n-module. Define

Ei{M) = max{r > 0 | e\M  0}  ^(Af ) = max{r > 0 | f?M £ 0}. (12)

Note 6i(M) can be computed just from knowledge of the character of M: it is
the maximal r such that e^">rT  ̂ appears with non-zero coefficient in ch M. Less
obviously, <fi(M)  can also be read off from the character of M. By additivity of /*,
we may assume that M belongs to the block 7 S Tn. Then

8ifi - 2ji +  7 i_i + 7i+i, (13)

see [9, 12.6]. We note the following extremely useful lemma from [11], see also [9,
§9]:

Lemma 2.12. Let D be an irreducible FSn-module, e = 6i(D),<p — tfi(D). Then,

e\e)D £ e\D, f\v)D S f?D.
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The lemma implies that

Ei(D) = max{r > 0 | er{D ̂  0}, tp^D) = max{r > 0 | fiD  ̂ 0}.

Thus, 6i{D) can also be read off directly from the combinatorics: if D = Dx, then
Ei{D) is the number of '—'s in the reduced i-signature of A. Similarly, ifi(D)  is the
number of '+'s in the reduced i-signature of A.

Now we can describe an inductive algorithm to determine the label of an irre-
ducible FS^-module D purely from knowledge of its character ch D. Pick i £ /
such that e := Si(D) is non-zero. Let E = ef'D, an irreducible FSn_e-module
with explicitly known character thanks to Lemmas 2.12, 2.6 and (6). By induction,
the label of E can be computed purely from knowledge of its character, say E = Dx.
Then, D = ffE = D  ̂ where (i is obtained from A by adding the rightmost e of the
i-conormal nodes.

We would of course like to be able to reverse this process: given a p-regular
partition A of n, we would like to be able to compute the character of the irreducible
FS'n-module Dx. One can compute a quite effective lower bound for this character
inductively using the branching rules of Theorem 2.11. But only over C is this lower
bound always correct: indeed if p = 0 then Dx is equal to the Specht module Sx

and

ch.Sx= J2 e(il in)

summing over all paths 0 —̂+  —̂->  —^ A in the characteristic zero crystal
graph (a.k.a. Young's partition lattice) from 0 to A. (Reducing the residues in
(14) modulo p in the obvious way gives the formal characters of the Specht module
in characteristic p.) We refer to [32] for a concise self-contained approach to the
complex representation theory of Sn along the lines described here.

Now we explain how Lemma 2.12 can be used to describe some composition fac-
tors of Specht modules—this provides new non-trivial information on decomposition
numbers which is difficult to obtain by other methods. The following result follows
easily from Lemma 2.12.

Lemma 2.13. Let M be an FSn-module and set e = Si(M). // [e\e)M : D ]̂ =
m > 0 then f?D» ^ 0 and [M : / f C ] = m.
Example 2.14. Let p = 3. By [13, Tables], the composition factors of the Specht
module S(6.4,2,l) a r e DWf jD(9,4)> £)(9,22)) £>(T,4,3)> £,(6,5,2)( I?(6,4,3)> a n d 0(6,4,2,1);

all appearing with multiplicity 1. As ei(5(6'4'2 )) = 1 (by (14) reduced modulo
3) and ei5(6-4'2^ = S 6̂-4*2'1), application of Lemma 2.13 implies that the follow-
ing composition factors appear in S 6̂'4'2 ) with multiplicity 1: £)(12>1 \
0(9,3,2)j 0(8,4,2)> 0(62,2)( 0(614a)> a n d £)(6,4,22)_

Given i = (i\,... ,in) G In we can gather consecutive equal terms to write it in
the form

where js  ̂ j s + 1 for all 1 < s < r. For example (2,2,2,1,1) = (2312). Now, for an
F5n-module M, the tuple (15) is called extremal if

(14)

(15)
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for all s = r, r — 1 , . . ., 1. Informally speaking this means that among all the n-tuples
i such that M[i]  ^ O we first choose those with the longest jV-string in the end, then
among these we choose the ones with the longest jr-i-string preceding the jV-string
in the end, etc. By definition M[i]  ^ 0 if i is extremal for M.

Example 2.15. The formal character of the Specht module gt5-2) in characteristic
3 is

e(02i020i)

_|_e(0212010) _|_ 2e(0122010) + e(0120210) + e(0120120)

The extremal tuples are (012202l) , (0122010), (0120210), and (0120120).

Our main result about extremal tuples is

Theorem 2.16. Let i = (ii,... ,in) = (j'J™1 .. .j™7') be an extremal tuple for an
irreducible FSn-module Dx. ThenDx = fon ...f^D®, anddimDx[i]  = m1 ! . . . m r ! .
In particular, the tuple i is not extremal for any irreducible D  ̂^ Dx.

Proof. We apply induction on r. If r = 1, then by considering possible n-tuples
appearing in the Specht module Sx, of which Dx is a quotient, we conclude that
n = 1 and D = D^. So for r = 1 the result is obvious. Let r > 1. By definition of
an extremal tuple, mr = Sjr(Dx). So, in view of Lemmas 2.6 and 2.12, we have

emrD\ = mr\e™r-DX.

Moreover, (j™1 . . . j^Tf1) *s clearly an extremal tuple for the irreducible module
e™rDx. So the inductive step follows.

Corollar y 2.17. / / M is an FSn-module and i — (ii,..., in) = (j™1 ... j™r) is an
extremal tuple for M then the multiplicity of Dx :=  fin  f^D0 as a composition
factor of M is &\mM[i}/(m\\.. .mr\).

We note that for any tuple i represented in the form (15) and any FS^-module M
we have that dim M[i]  is divisible by m i ! . . . mr\. This follows from the properties of
the principal series modules ('Kato modules') for degenerate afHne Hecke algebras,
see [11] for more details.

Example 2.18. In view of Corollary 2.17 extremal tuple (012202l ) in Example 2.15
yields the composition factor £)(5>2) of S(5'2), while the extremal tuple (0120120)
yields the composition factor D 7̂\ It turns out that these are exactly the compo-
sition factors of 5( 5 '2 ), see e.g. [13, Tables].

For more non-trivial examples let us consider a couple of Specht modules for
n = 11 in characteristic 3. For S^-6'3'1 ), Corollary 2.17 yields composition factors
£,(6,3,i2); £)(7,3,i)) a nd £>(8,2,i) b u t <m i s s e s' £)(n); and for S(4'3'22> we get hold of
£(4,3,2̂  0(5,3,2,1), £,(8,2,1)? a nd £,(8,3)j b u t <miss> 2£>(") and Z?^'4'12), cf. [13,

Tables].

We record here one other useful general fact about formal characters which follows
from the Serre relations satisfied by the operators e;-.

Lemma 2.19. Let M be an FSn-module. Assume i,j,i\,... ,in-2 S / andi^j.
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(i) Assume that \i — j \ > 1. Then for any 1 < r < n — 2 we have

dim M[( i i ,...,ir,i,j, ir+1,..., i n_2) ]

= dim M[(i lt ...,ir,j,i, ir+i ,..., in-2)].

(ii ) Assume that \i — j \ = 1 and p > 2. TTien for any 1 < r < n — 3 we /iai>e

2 d i m M [ ( i i , . . . ,ir,i,j,i, ir+ i,..., i n _ 3 ) ]

= d i m M [ ( i i , . . . , i r , i , i , j , ir+ i,..., in-3)]

+  dim M [ ( i i , . . . , v . j , i, i, ir+u ..., i n_3 ) ] .

(iii ) Assume that \i — j \ = 1 and p = 2. T/ien /or any 1 < r <n — A we have

dim M[(«i , ...,ir,i,i, i,j, ir+1,..., i n_4) ]

+ 3 dim M [ ( i x , . . . , v , i, j , i, i, ir+1,..., «n_4)]

= dim M[(i\,... ,ir,j,i,i, i, ir+ i,..., in-i)\

+ 3 dim M[(ii,...  ,ir,i,i,j,i, ir+x,..., i n_4 ) ] .

2.7. Blocks. Finally we discuss some properties of blocks, assuming now that
y / 0. In view of Theorem 2.7(ii), the blocks of the FSn for all n are in 1-
1 correspondence with the non-zero weight spaces of the basic module V^Ao) °f
0 = A^'21. So let us begin by describing these following [16, ch.12].

Let P = 0 i e / ZAj © Z6 denote the weight lattice associated to g. Let a, (i £ I)
be the simple roots of $j, defined from

a0 = 2A0 - Ai - Ap_i + S, on = 2Â  - A i+1 - A<_i (*^0). (16)

There is a positive definite symmetric bilinear form (,|.) on R ®z P with respect to
which CXQ, ... ,ap-i,Ao and A o, . . ., Ap_i,<5 form a pair of dual bases. Let W denote
the Weyl group of g, the subgroup of GL(R ®z P) generated by Si (i £ I), where
Si is the reflection in the hyperplane orthogonal to a*. Then, by [16, (12.6.1)], the
weight spaces of V(Ao) are the weights

{wA0 - d6 | w G W, d £ Z>0} .

For a weight of the form wAo — dS, we refer to WAQ as the corresponding maximal
weight, and d as the corresponding depth.

There is a more combinatorial way of thinking of the weights. Following [24,
I.I , ex.8] and [14, §2.7], to ap-regular partition A one associates the corresponding
j>-core A and p-weight d: A is the partition obtained from A by successively removing
as many hooks of length p from the rim of A as possible, in such a way that at each
step the diagram of a partition remains. The number of p-hooks removed is the
p-weight d of A. The p-cores are in 1-1 correspondence with the maximal weights,
i.e. the weights belonging to the W-orbit WAo, and the p-weight corresponds to
the notion of depth introduced in the previous paragraph, see [21, §5.3] and [22, §2]
for the details.

Now Theorem 2.7(ii) gives yet another proof of the Nakayama conjecture: the
F5n-modules Dx and D1*  belong to the same block if and only if A and /J, have the
same p-core. We will also talk about the p-weight of a block B, namely, the p-weight
of any A such that Dx belongs to B.
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The Weyl group W acts on the g-module Re from §2.3, the generator s» (i £ 7)
of W acting by the familiar formula

Si = exp(-e;)exp(/;)exp(-e;).

The resulting action preserves the Shapovalov form, and leaves the lattices R and
R* invariant. Moreover, W permutes the weight spaces of Re in the same way as
its defining action on the weight lattice P. Since W leaves 6 invariant, it follows
that the action is transitive on all weight spaces of the same depth. So using
Theorem 2.7(iii) we see:

Theorem 2.20. Let B and B' be blocks of symmetric groups with the same p-
weight. Then, B and B' are isometric, in the sense that there is an isomorphism
between their Grothendieck groups that is an isometry with respect to the Cartan
form.

The existence of such isometries was first noticed by Enguehard [8]. Implicit in
Enguehard's paper is the following conjecture, made formally by Rickard: blocks B
and B' of symmetric groups with the same p-weight should be derived equivalent.
This has been proved by Rickard for blocks of p-weight < 5. Moreover, it is now
known by work of Marcus [25] and Chuang-Kessar [6] that the famous Abelian
Defect Group Conjecture of Broue for symmetric groups follows from the Rickard's
conjecture above.

There is one situation that is particularly straightforward, when there is actually
a Morita equivalence between blocks of the same p-weight. This is a theorem of
Scopes [34], though we are stating the result in a more Lie theoretic way following
[22, §8]:

Theorem 2.21. Let A, A + a^,..., A + rcti be an ai-string of weights of V̂ (Ao) (so
A — on and A + (r + l)a, are not weights of ^(Ao),). Then the functors f;' and
ef define mutually inverse Morita equivalences between the blocks parametrized by
A and by A + rati.

Proof. Since e\r and f\r' are both left and right adjoint to one another, it
suffices to check that e\r and /,  induce mutually inverse bijections between the
isomorphism classes of irreducible modules belonging to the respective blocks. This
follows by Lemma 2.12.

Let us end the discussion with one new result here: we can in fact explicitly
compute the determinant of the Cartan matrix of a block. The details of the proof
will appear in [5]. Note in view of Theorem 2.20, the determinant of the Cartan
matrix only depends on the p-weight of the block. Moreover, by Theorem 2.7(iii),
we can work instead in terms of the Shapovalov form on y(Ao). Using the explicit
construction of the latter module over Z given in [7], we show:

Theorem 2.22. Let B be a block of p-weight d of FSn. Then the determinant of
the Cartan matrix of B is pN where

N = y - ri + r2 +  (p - 2 + n \ (p - 2 + r2

— 1 V n } \ r?
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3. T HE DOUBLE COVERS

We turn now to the representation theory of the group algebra FSn, where
Sn denotes one of the double covers of the symmetric group and F is a field of
characteristic p ^ 2. We will assume that F contains square roots of (the images
of) all integers, since that ensures that F is a splitting field for Sn for all n (see [3,
Remark 10.5]).

3.1. Analogues of the Jucys-Murphy elements. For definiteness, we work with
the double cover Sn defined by generators £, §x,..., sn_i subject to the relations

C = 1, C î = SiCi 5? = 1, SiSj = (SjSi, §iSi+i§i = Si+i§iSi+i,

for all admissible i,j with \i — j \ > 1. Note right away that 1 = £+ + £_ is a
decomposition of the identity as a sum of mutually orthogonal central idempotents,
where C  = (1 T 0 /2- So we can decompose

The algebra £+FSn is isomorphic to the group algebra FSn itself, so we focus our
attention instead on the summand S(n) := (,.FSn.

The algebra S(n) is the twisted group algebra of Sn over F. It can be realized
directly as the algebra generated by the elements U := C~h subject only to the
relations

t{ = 1, utj = —tjU, titi+iU  = U+xUti+i,

for admissible i, j with \i — j \ > 1. For 1 < i < j < n, let

[i  j]  = ~[J i]  = (-I)'"* " V i  ti+1tit i+1... tj-L (17)

These 'transpositions' satisfy the relations

[i  j)2 = 1, [ij][kl]  = -[kl][ij]  if {i, j}  n {k,l} = 0,

[i  j]  [j  k] [i  j]  = \j k] [i  j]  [j  k] = [k i]  for distinct i, j , k

(cf. [36, (1.1)]). Finally, for distinct 1 < i l t . . . ,ir < n, let

[ii  ii  ... ir]  = ( - l ) 7" " 1^ ... irii]  = [i r-i ir][*r- 2 ir]  [h ir],

giving the 'r-cycles'.

For 1 < k < n, the analogue of the Jucys-Murphy element is
fc-i

in particular, y\ — 0. This definition appears in Sergeev [36]; Nazarov originally
used a different approach [31]. One checks using the relations that:

{ -ykU iii^k-l,k,

-yk-iU + l if * = As — 1, (19)
U + 1 if i = k.

I t follows that ykVi = -yiVk if k  ̂ I. Now using these facts, it is easy to show:

(a) for 1 < fc, I < n, y\ and yf commute;
(b) U commutes with y\ for k  ̂ i, i + 1;
(c) U commutes with yf + yf+1 and j/| j/?+1.

(18)

(19)
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This implies:
Lemma 3.1. The symmetric polynomials in the elements y\,y\,... ,y  ̂ belong to
the center of S(n).

However it is not in general true that center of S(n) equals the set of symmetric
polynomials in the y\,..., y\. We need to view S(n) instead as a Z2-graded algebra
- a superalgebra S(n) = 5(n)g ©5(n)j - by declaring that the generators U are odd.
Then:
Theorem 3.2. The even center of S(n) (i.e. the space Z(S(n))o of all central
elements of degree 0) is the set of all symmetric polynomials in the y\,..., y^.

Proof. For each w £ Sn, make a fixed choice for a representation of w as a product
of disjoint cycles (all of length > 1). If w = (ii  ... ia)(ji  jb)  is this choice,
define [w]  := [i\  . .. ia][ji  jb]  S S(n). The {[w]  \ w £ Sn} then form a basis
for S(n). We will say that w £ Sn appears in x £ S(n) if the coefficient of [w]  is
non-zero when x is expanded in terms of this basis.

Let A = (Ai >  > Ah > 0) be an odd partition of n, i.e. all its non-zero parts
are odd. Define

w€Sn/S,,

where S\ denotes the stabilizer of the n-tuple (Ai — 1, A2 — 1,..., A& — 1,0,..., 0)
under the natural action of Sn on n-tuples by place permutation. Also let

u\ :=  (n - Ai + 1 ... n)(n — A2 + 1 ... n — \{)...

(n-\h + l  n - Ah_i) € Sn,

where Aj = Ai +  + Aj. Fix a total order > on the odd partitions of n so that
A > \x if either A has more non-zero parts than fi, or if A, /i have the same number
of non-zero parts but A > \i in the usual dominance ordering. By exactly the same
argument as in the proof of [29, 1.9], [u\]  appears in p\ but not in any p  ̂ with
fj, > A. This implies that the p\ are linearly independent, as A runs over all odd
partitions of n.

Finally, the p\ are symmetric polynomials in the y\,..., y\ by definition. So we
have shown that the dimension of the subspace of S(n) spanned by the symmetric
polynomials in the y\,... ,y£ is at ^east *^e number of odd partitions of n. On the
other hand, by consideration of the conjugacy classes of even elements in Sn (see
[37, 2.1] or [33, p.172]), dim Z(S(n))o is equal to the number of odd partitions of n.
So an application of Lemma 3.1 completes the proof.

3.2. Formal characters. Motivated in part by Theorem 3.2, we will be interested
from now on in the S(n) -supermodules, i.e. the Z2-graded 5/(n)-modules where S(n)
is viewed as a Z2-graded algebra as before. We refer to [3, §2] for basic notions here.
Let us just recall here that there are two sorts of irreducible S'(n)-supermodule D:
type M or type Q according to whether the endomorphism algebra Ends(n)(.D) is
one or two dimensional. In case D has type M, it is irreducible when viewed as an
ordinary 5(n)-module. But if D is of type Q it decomposes as D = £>+ © £>_ where

 are non-isomorphic irreducible 5r(n)-submodules - but not subsupermodules -
of D. Providing we keep track at all times of the type of an irreducible supermodule,
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we can easily recover results about ordinary representation theory. Incidentally, if
D has type M then D = D® sgn, and if D has type Q then D+ S £>_ <g> sgn.

Now we proceed along the lines of §2.1. Let I = (p - l ) / 2 (resp. £ = oo if p = 0).
Let / = { 0 , 1 , . . ., £}. Given a tuple i = (ii , . . . ,«„) S / n and an 5(n)-supermodule
M , we let

v&M
N

y2r - lr^\+  ̂ ) v = 0 f o r J V » 0 a n d r = l , . . .) n :
2

Lemma 3.3. Any S(n)-supermodule M decomposes as M = ® i e j n M[i] .

Proof. This follows from [4, 4.9,9.9] on noting that the image of our element y\
under the map tp : S(n) -*  W(n) from [4, 9.8] is equal to one half of the image of
the element denoted x\ in [4]. P

We let Tn denote the set of all /-tuples of non-negative integers summing to n,
and define the weight of i € In in the same way as in §2.1. Given 7 € Tn and an
5(n)-supermodule M, we set

M[ 7] :=
i£/n with wt(j)=7

as before. Theorem 3.2 and Lemma 3.3 imply:

Lemma 3.4. The decomposition M = 0 7 £ r n M[y]  is the precisely the decomposi-
tion of M into superblocks as an S(n)-supermodule.

Now fix i € / " of weight 7. Consider the Clifford superalgebra with odd generators
c\,..., cn subject to the relations

crcs = -c3cr (r^s), c» = * r ( i r 2 + 1 ) . (20)

By [3, 2.7,2.9,2.10], it has a unique irreducible supermodule U(i), of type M if (n—70)
is even, type Q if (n — 70) is odd. Moreover,

(21)

Now suppose that M is an 5*(n)-supermodule. The subspace M[i]  is obviously
invariant under the action of the subalgebra of S(n) generated by the y^. Moreover,
these yk satisfy the above relations (20) on every irreducible constituent of M[i].
This shows that dimMfi ] is divisible by dimU(i). Now define the formal character
of M by

(22)
( 1 I I  I I  1 7 I /. )

16/"
an element of the free Z-module on basis {e-\i£ / " } . By [4, 5.12,9.10], we have:

Theorem 3;5. The characters of the pairwise inequivalent irreducible S{n)-supermodules
are linearly independent. Moreover, the type of an irreducible S(n)-supermodule D
can be read off from its character: if D belongs to the block 7 then D is of type M if
(n — jo) is even, type Q if (n — 70) is odd.
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3.3. Induction and restriction operators. Next we introduce the analogues of
the i-induction and i-restriction functors. Note S(n — 1) is naturally embedded in
S(n) as the subalgebra generated by t\,..., tn-2- So we have natural restriction
and induction functors res j™^ and indj™ ~̂ := S{n + \)®s{n)^-

Let M be an 5(n)-supermodule belonging to the block 7 G Tn. Given i e I,
define

reSjM := (ressj™_1N.M)[7 — i]  (interpreted as zero in case 7, = 0), (23)

^ + 1 ) ^], (24)

where the notation 7  i is as in §2.2. These definitions extend in an obvious way to
give exact functors resj and indj. We note in particular that reSjM is the generalized
eigenspace of eigenvalue i(i  + l)/2 for the action of y\. By the definition and Lemma
3.3, we have:
Lemma 3.6. For an S(n)-supermodule M,

iel i€l

The next elementary lemma, proved rather indirectly in [4, 9.13,9.14], shows
how the functors res, and indj can be refined to obtain the correct definition of the
operators ej and /j in this setting.
Lemma 3.7. Let D be an irreducible S(n)-supermodule, and i £ I.

(i) There is an S(n — l)-supermodule eiD, unique up to isomorphism, such that

^ J e^D © eiD ifi=/=0  and D is of type Q,
% ~ I e{D ifi  = 0 or D is of type M.

(ii) There is an S(n+l)-supermodule fiD, unique up to isomorphism, such that

iD ® ?iD ^ l ^ ° and D is °f type ®!
%  ̂ t.rt if i = 0 or D is of type M.

We have now defined the operators ej, fi(i  € /) on irreducible S(n)-supermodules
(but note they are not functors defined on arbitrary supermodules, unlike before).
Extending linearly, they induce operators also denoted ej, /j at the level of charac-
ters. The effect of ej on characters is exactly the same as before:

if c h M = Y ^ a j e- then ch (ejM) = Y^ O(ii,...,tn_i,i)e1. (25)

This is one reason we have chosen to normalize characters the way we did in (22).

There are also divided power operators e\r' and f\r\ Again we just state a
lemma characterizing them uniquely, rather than giving their explicit definition:

Lemma 3.8. Let D be an irreducible S(n)-supermodule, and i £ / .

(i) There is an S(n — r)-rsupermodule ef'D, unique up to isomorphism, such
that

{ieSi)rD £*  <j (ejr)£>j®2Lr/2J'-! ifi^Q and D is of type M,

>)^)® 2 l ( r+1 ) /2J r! ifi^O andD is of type Q.
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(ii) There is an S(n + r)-supermodule f\r D, unique up to isomorphism, such
that

r (f\r)D)®*  ifi=o,
(indi)rD £*  I I)jffi2L-/»Jri ifi^O andD is of type M,

[ (/«£))®2l<r+1)/2Jr! ifi  ^ 0 andD is of type q.

Note comparing Lemmas 3.6 and 3.8, we see that

er = r!e|r), f\ = r!/<r} (26)

at the level of characters.

3.4. The afHne Kac-Moody algebra. Now things go in almost exactly the same
way as §2.3. Let Rn denote the character ring of S(n), i.e. the free Z-module
spanned by the formal characters of the irreducible i^^n-supermodules, and let i?*
denote the Z-submodule of Rn spanned by the formal characters of the projective
indecomposable 5(n)-supermodules. Let

n, R* = ®R*nCR. (27)
n>0 ra>0

The ei and /; induce Z-linear operators on R, stabilizing R*. Extending scalars
we get C-linear operators e, and /, on Re := C ®% R = C <g>z R*. Finally, we
have the symmetric Cartan form on Re, with respect to which the characters of the
projective indecomposable supermodules and the irreducible supermodules form a
pair of dual bases.

Theorem 3.9. The operators e  ̂and fi (i G I) on Re satisfy the defining relations
of the Chevalley generators of the affine Kac-Moody Lie algebra Q of type Ayp_x

(resp. Boo in case p = 0), see [16]. Moreover, viewing Re as a Q-module in this
way,

(i) Re is isomorphic to the basic representation V̂ (Ao) of g, generated by the
highest weight vector e° (the character of the irreducible FS(Q)-module);

(ii) the decomposition of Re into superblocks coincides with its weight space
decomposition with respect to the standard Cartan subalgebra of Q;

(iii ) the Cartan form on Re coincides with the Shapovalov form satisfying (e°, e°)
l ;

(iv) the lattice R* C Re is the Z-submodule of Re generated by e° under the
action of the operators f>r' = f\jr\ (i G I,r > 0);

(v) the lattice R C -Re is the dual lattice to R* under the Shapovalov form.

This was proved in [4, 7.16].

3.5. The crystal graph. Next we describe the crystal underlying the basic repre-
sentation V(Ao) of the affine Kac-Moody algebra g = Ap^. This explicit combina-
torics is due to Kang [17]. We will work now with the set of all p-strict partitions,
i.e. the partitions A = (Ai, A2,...) with the property that p divides \r whenever
Xr = Xr+ i. For example, the 0-strict partitions are the partitions with no repeated
non-zero parts.
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Given a p-strict partition A, we label its nodes with residues taken from the set
/ = {0,1, . . ., £} (recall £={p- l)/2 or oo if p = 0). The labelling depends only on
the column and follows the repeating pattern

starting fom the first column and going to the right, see Example 3.10 below. The
residue of the node A is denoted res A.

Let i £ I be some fixed residue. A node A = (r, s) £ A is called i-removable (for
A) if one of the following holds:

(Rl) res A ~ i and A — {A} is again a p-strict partition;
(R2) the node B = (r, s + 1) immediately to the right of A belongs to A, res A =

res B = i, and both A — {B} and A — {A, B} are p-strict partitions.

Similarly, a node B = (r, s)
holds:

A is called i-addable (for A) if one of the following

(Al ) res B = i and A U {B} is again an p-strict partition;
(A2) the node A = (r, s — 1) immediately to the left of B does not belong to A,

res A = res B = i, and both A U {A} and A U {A, B} are p-strict partitions.

We note that (R2) and (A2) above are only possible in case i = 0.
Now label all i-addable nodes of the diagram A by + and all i-removable nodes

by - . The i-signature of A is the sequence of pluses and minuses obtained by going
along the rim of the Young diagram from bottom left to top right and reading
off all the signs. The reduced i-signature of A is obtained from the i-signature by
successively erasing all neighbouring pairs of the form H—. Warning: for historical
reasons, the rule for obtaining the reduced i-signature here is different from in §2.4:
there one deleted pairs of the form —(-.

Note the reduced i-signature always looks like a sequence of —'s followed by
+'s. Nodes corresponding to a — in the reduced i-signature are called i-normal,
nodes corresponding to a + are called i-conormal. The rightmost i-normal node
(corresponding to the rightmost — in the reduced i-signature) is called i-good, and
the leftmost i-conormal node (corresponding to the leftmost + in the reduced i-
signature) is called i-cogood.

Example 3.10. Let p = 5, so £ = 2. The partition A = (16,11,10,10,9,5,1) is
p-strict, and its residues are as follows:

0
0
0
0
0
0
0

1
1
1
1
1
1

2
2
2
2
2
2

1

^

1
1
1

i—
i

0
0
0
0
0
0

0
0
0
0
0

1
1

^

1
1

2
2
2
2
2

i—
i

1
1
1
1

0
0
0
0

0
0

1 2 1 0 0
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The O-addable and O-removable nodes are as labelled in the diagram:

0
0 +

+

—
—0

Hence, the O-signature of A is —,—,+,+,—,—,— and the reduced O-signature is
— ,—,—. Note the nodes corresponding to the —'s in the reduced O-signature have
been circled in the above diagram. So, there are three 0-normal nodes, the rightmost
of which is 0-good; there are no O-conormal or 0-cogood nodes.

Finally we call a p-strict partition A restricted if either p = 0 or

A i - A j + i <p if jo | A;,

\ ~ A;+i <p if p-f A€,

for each i = 1,2, The crystal graph associated to the basic representation
of Q is now the set of all restricted p-strict partitions of n, for all n > 0, with a
directed edge A —*-*  fi of color i £ I if \x is obtained from A by adding an ?-cogood
node (equivalently, A is obtained from \x by removing an «-good node). For an
example in case p — 3, see below.

3.6. The modular  branching graph. The connection between the crystal graph
and the representation theory of S(n) now proceeds in exactly the same way as in
§2.5. The starting point is the following lemma proved in [4, 6.6,9.13,9.14]:

Lemma 3.11. Let D be an irreducible S(n)-supermodule and i e I. Then, the
supermodule e{D (resp. fiD) is either zero, or else is a self-dual S(n — 1)- (resp.
S(n + 1)-) supermodule with irreducible socle and head isomorphic to each other.

The crystal operators ii, fi are defined on an irreducible 5(n)-supermodule D by

D), fiD :=  soc\e(f{D). (28)

In view of Lemma 3.11, iiD  and fiD are either zero or irreducible. The modular
branching graph has vertices equal to the isomorphism classes of irreducible S(n)-

supermodules for all n > 0, and there is a directed edge [D]  ——t [E]  of color i if
E = fiD (equivalently by Frobenius reciprocity, D = iiE). The fundamental result
is the following:

Theorem 3.12. The modular branching graph is uniquely isomorphic (as an I-_
colored, directed graph) to the crystal graph of §3.5.

As before, Theorem 3.12 yields a parametrization of the isomorphism classes of
irreducible S'(n)-supermodules by the vertices of the crystal graph. Precisely, if A
is a restricted p-strict partition of n, choose a path

0
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The basic crystal graph of type i(2)

in the crystal graph from the empty partition to A, for ii,... ,in 6 /  Define

D(A) := / i n . . . /i l D(0), (29)

where D(0) denotes the irreducible 5(0)-supermodule. Using Theorem 3.5 for the
second statement, we have:
Corollar y 3.13. The supermodules

{D(X) | A a restricted p-strict partition of n}

form a complete set of inequivalent irreducible S(n) -supermodules. Moreover, letting
hpi(X) denote the number of parts of X not divisible by p, D(X) has type M or Q
according to whether (n — hpi(X)) is even or odd respectively.

This corollary solves the labelling problem for irreducible representations of the
double covers of the symmetric group. That the restricted p-strict partitions should
be suitable for this was suggested first by Leclerc and Thibon [23]. Note we gave an
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entirely different construction of the irreducible S'(n)-supermodules, also labelled
by restricted p-strict partitions, in [3]. At present we cannot prove that the two la-
bellings agree, though we expect this to be the case. Another problem, which would
be very useful in applications, is to find a representation theoretic interpretation of
the normal and conormal nodes along the lines of Theorem 2.11.

It is easy to obtain a parametrization of the irreducible S(n)-modules (not super)
from Corollary 3.13. If D(X) has type M, it is an irreducible 5(n)-module in the
ordinary sense, but we denote it by D(X, 0) to make it clear we have forgotten the
Z2-grading. But if D(X) has type Q, it decomposes as

D(X) = D(X,+)@D(X,-)

as an 5(n)-module. Then a complete set of pairwise non-isomorphic 5(n)-modules
is given by the {D(X, 0)}  U {D(fj,, }  as A runs over all restricted p-strict partitions
of n with n — hpi (A) even and as /J, runs over all restricted p-strict partitions of n
with n — hpi(/j,)  odd.

Let us finally note that there are analogues of the results of §2.6 too. For an
irreducible S(n)-supermodule D, set

£;(£>) = max{r > 0 | (res^-D ^ 0}, (30)

=  max{r > 0 | (ind^-D ^ 0}. (31)

As before £i(D) can be computed just from knowledge of the character of D. More-
over, for D belonging to the block 7 € Tn, fi(D) is related to £i{D) by the formula

{ 1 - 27o + 271 i = 0,

£i{D)-2li+ji-1+ji+1 i = l,...,t-2, . ,
e m - ^ x +le2 + 27, t = / - l  ( 3 2)for i ^ 1, or

Po(D) = eoCD) + 1 - 2 7 0+ 4n, Vi(I>) = e i (D)-271+7o. (33)

if ^ = 1.
The analogue of Lemma 2.12 holds exactly as stated before, so £j(D(A)) and

ipi(D(X)) can also be read off directly from the crystal graph as the number of '—'s
resp. '+'s in the reduced i-signature of A. So one obtains an inductive algorithm to
determine the label of an irreducible S'(n)-supermodule D purely from knowledge
of its character ch D, in exactly the same way as before.

3.7. Blocks. To state some results about blocks,  let g = A^ix and let P =
0 i e 7 ZAi © Z<5 be the associated weight lattice. The simple roots at (i S I) can be
denned by

a0 = 2A0 - Ai,
ai = -2A0 + 2Ai -A 2 ,
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if e  ̂ 1, and

a0 = 2A0 - Ai , ai = -4A0 + 2Ai + <5

if £ = 1. Let (.|.) be the positive definite symmetric bilinear form on R ®z P
with respect to which 2a0, a\,..., a^_i, \oti, Ao and AQ,.. .,At,6 form a pair of
dual bases. The Weyl group W is the subgroup of GL(M (g>2 P) generated by the
reflections Si(i £ I) in the hyperplanes orthogonal to the a*. Then, by [16, (12.6.1)],
the weights of the g-module V(AQ) are the

{wA0 -dS\weW,de Z>0} .

There are combinatorial notions paralleling this description of weights, namely,
Morris' notions of p-bar core and p-bar weight [27]. Let A be a p-strict partition.
By a p-bar of A, we mean one of the following:

(Bl) the rightmost p nodes of row i of A if Ai > p and either p|A; or A has no
row of length (Aj — p);

(B2) the set of nodes in rows i and j of A if A; + Xj = p.

If A has no p-bars, it is called a p-bar core. In general, the p-bar core A of A is
obtained by successively removing p-bars, reordering the rows each time so that the
result is still a p-strict partition, until it is reduced to a core. The p-bar weight d of
A is then the total number of p-bars that get removed.

Now we get the classification of superblocks from Theorem 3.9(ii): irreducible
5(n)-supermodules D(X) and D((j) belong to the same superblock if and only if A
and ii  have the same p-bar core. Moreover, exactly as for Theorem 2.20, superblocks
B and B' of the same p-bar weight are isometric, in the sense that there is an
isomorphism between their Grothendieck groups (induced by the action of W) which
is an isometry with respect to the Cartan pairing.

It is more natural from the point of view of finite group theory to ask for a
description of the ordinary (not super) blocks of S{n). This does not seem to follow
easily from the present theory, unless we invoke the work of Humphreys [12] (in
fact, all we need from [12] is to know the number of ordinary blocks). There are
two sorts of superblocks, of type M or Q according to whether all the irreducible
supermodules belonging to the superblock are of type M or Q. Corresponding to
superblocks of type M, there are ordinary blocks all of whose irreducible modules
are of the form D(X,0), and D(X,0) and D(fi,0) belong to the same block if and
only if A and \x have the same p-bar core. Corresponding to superblocks of type
Q, there are ordinary blocks consisting of irreducible modules of the form D(X, .
Again, D(X, E) and D(n, S) belong to the same block if and only if A and \i have the
same p-bar core, with one exception: if A is itself a p-bar core, then D(A, +) and
D(X, —) are in different blocks.

Finally let us state the analogue of Theorem 2.22 giving the Cartan determinant
of a superblock, see [5]:
Theorem 3.14. Let B be a superblock of p-bar weight d of S(n). Then the deter-
minant of the Cartan matrix of B is pN where N equals

2 + ra \ /

r2 ) \
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the sum being over all partitions A = ( l 7^ 1" 2. . .) h d.

Note for superblocks of type M, this same formula gives the Cartan determinant
of the corresponding ordinary block of S(n). It appears that the same is true for
superblocks of type Q, but we do not see how to deduce this from the theorem:
the problem is that the ordinary block has twice as many irreducibles as in the
corresponding superblock.
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Coherent configurations, association schemes and
permutation groups

Peter J. Cameron

Abstract

Coherent configurations are combinatorial objects invented for the purpose
of studying finite permutation groups; every permutation group which is not
doubly transitive preserves a non-trivial coherent configuration. However,
symmetric coherent configurations have a much longer history, having been
used in statistics under the name of association schemes.

The relationship between permutation groups and association schemes
is quite subtle; there are groups which preserve no non-trivial association
scheme, and other groups for which there is not a unique minimal association
scheme.

This paper gives a brief outline of the theory of coherent configurations
and association schemes, and reports on some recent work on the connection
between association schemes and permutation groups.

1 Coherent configurations

This section contains the definitions of coherent configurations and of various spe-
cialisations (including association schemes), and their connection with finite per-
mutation groups. It is by no means a complete survey of this topic, but it includes
some historical remarks.

1.1 Definitions
Let Q be a finite set. A coherent configuration on 0, is a set V = {R\,..., Rs}  of
binary relations on Q (subsets of tt2) satisfying the following four conditions:

(a) V is a partition of £l2;

(b) there is a subset Vo of V which is a partition of the diagonal A = {(a, a) : a €
fi};

(c) for every relation Ri € V, its converse Rj = {(/3, a) : (a,/3) € Ri} is in V; say

(d) there exist integers p^, for 1 < i,j, k < s, such that,for any (a, j3) £ Rk, the
number of points 7 6 ft such that (a, 7) £ Ri and (7, f3) £ Rj is equal to p^
(and, in particular, is independent of the choice of (a,/?) G Rk)-
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The numbers p  ̂ are called the intersection numbers of the coherent config-
uration V. (They are so-called because pf  is the cardinality of the intersection
Ri(a) n Rj{0) for (a, 0) G Rk, where R(a) = {0 G 12 : {a, 0) G i?}.)

We can represent a binary relation i? on O by its basis matrix A(R), whose rows
and columns are indexed by O, and whose (a, 0) entry is 1 if (a, 0) G R, 0 otherwise.
Using these matrices, and letting I and J be the identity and all-1 matrices, the
axioms take the following form:

(a) £>(ifc) = J.
t=i

t

(b) V^ J4(-Ri) = /, where {i?i,..., i?t}  is the subset referred to in (b) above.

(c) For each i, there exists i*  such that A(Ri)T = A(Ri»).

(d) For each pair i,j, we have

(1)
fc=i

It follows from (b) and (d) that the span of {A(R\),..., A(RS)} (over the complex
numbers) is an algebra, and from (c) that this algebra is semisimple (and so is
isomorphic to a direct sum of matrix algebras over C). This algebra is called the
basis algebra of the configuration. We denote the basis algebra of V by BA(P).
Note that BA(T') consists of all the functions from Q,2 to C which are constant on
the parts of V.

Moreover, if Pj is the sx.s matrix with (i, k) entry pfy, then the map A(Rj) i-> Pj
for j = 1,.. ., s extends linearly to an algebra isomorphism. (Indeed, Equation (1)
shows that this map is the regular representation of BA(7->), written with respect to
the basis matrices.) Thus the matrices P\,... ,Pa also span an algebra, called the
intersection algebra of V.

The irreducible modules for the intersection algebra, and their multiplicities in
the module CO, can be calculated from the intersection numbers. The multiplicities
must of course be non-negative integers. This is one of the most powerful methods
for showing nonexistence of coherent configurations with given intersection numbers.
See Higman [16] for an early application to permutation groups.

Many familiar algebraic and combinatorial objects are coherent configurations.
These include strongly regular and distance-regular graphs, symmetric and quasi-
symmetric designs, partial geometries, generalised polygons, difference sets, and
Schur rings. Moreover, as Delsarte [9] showed, the study of special subsets of
coherent configurations provides a common context for much of design theory and
coding theory. Delsarte also introduced new methods (such as linear programming)
in this general context and applied them to both codes and designs.

Two extreme examples of coherent configurations will be important to us:

 The trivial configuration on fl consists of the two relations E and Cl2 \ E,
where E = {(a, a) : a G Q} is the diagonal (the relation of equality).
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 The discrete configuration on Q. is the partition of Q2 into singleton sets.

1.2 Permutation groups

If G is any permutation group on fl, then the partition of Q2 into orbits of G
is a coherent configuration, which we denote by K{G). We refer to this as the
group case; a coherent configuration of the form fC(G) is called Schurian. The
trivial and discrete c.c.s are Schurian, corresponding to the symmetric group and
the identity group respectively. Indeed, D. G. Higman [16, 17] introduced coherent
configurations in order to study permutation groups, as the titl e of his early lecture
notes [18] suggests.

An automorphism of a partition V of ft2 is a permutation of fi  which fixes every
set in V; a weak automorphism is a permutation which maps each member of V to a
member of  The automorphisms of V form a group, the automorphism group of V,
denoted by Aut(P). We will  be concerned almost exclusively with automorphisms
(which are sometimes called strict automorphisms); but we note the following fact.
(The order relation on partitions is the usual one, which will be discussed further
in the next section.)

Propos i t ion 1.1 Let G be a group of weak automorphisms of the coherent con-
figuration V on Cl. Let VG be the partition of Q whose parts are the unions of
the G-orbits on the parts of V. Then VG is a coherent configuration; it is the
unique finest coherent configuration coarser than V which admits G as a group of
automorphisms, m

We note also that G is a group of automorphisms of the coherent configuration
K{G); that is, G < Aut(/C(G)). The group G is said to be 2-closed if Aut(/C(G)) =
G: that is, any permutation of Cl which fixes every G-orbit on pairs belongs to G.
There is thus a bijection between Schurian coherent configurations and 2-closed
permutation groups on fi.

1.3 Some special coherent configurations

Let V be a coherent configuration on ft. The sets F such that {(a, a) : a £ F}
belong to V are called the fibres of V; they form a partition of fl. We say that V is
homogeneous if there is only one fibre. HV = fC(G), the fibres of V are the orbits
of G on fl; so K(G) is homogeneous if and only if G is transitive.

Table 1 gives the numbers of homogeneous coherent configurations on small
numbers n of points (n < 30, n ^ 29). These configurations have been computed
by A. Hanaki and I. Miyamoto [15], and are available from Hanaki's Web page
(which gives the configurations explicitly). The numbers up to 23 are cited by
Bannai [5, p. 48]. By checking which of the configurations are Schurian, we obtain
the numbers in the third column of the table. These numbers can also be calcu-
lated in another way. Alexander Hulpke [8, 20, 21] has computed the transitive
permutation groups of degree at most 29. Those of degree at most 23 are included
in GAP [13]; I am grateful to Alexander for providing me with data on larger de-
grees. We can check which of these are 2-closed, either by using a built-in GAP
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function, or more efficiently using nauty [28], which is interfaced with GAP using
the share package GRAPE [32]. Reassuringly, all methods give the same answer! The
values for n = 29 follow from another result of Hanaki and Miyamoto (personal
communication) that any non-Schurian homogeneous coherent configuration on 29
points is a complementary pair of strongly regular graphs, together with the result
of Spence [33] that there are 41 strongly regular graphs on 29 points, of which only
one is self-complementary. The last two columns of the table will be described later
in this section.

The table shows that, on small numbers of points, most homogeneous coherent
configurations arise from groups. (Indeed, the smallest non-Schurian example has
15 points; it is a "strongly regular tournament", whose automorphism group has
order 21 and has three orbits on points.) This pattern is unlikely to hold in general;
it is plausible that the proportion which are Schurian tends to zero as the number
of points increases. Pyber [30] gives some results on the number of subgroups of
Sn; it is likely that only a small proportion of these are 2-closed. However, only in
special cases such as particular strongly regular graphs do good estimates for the
numbers of coherent configurations exist.

The combinatorial explosion is not revealed by the data in Table 1, although
it probably begins shortly after this point. For example, for n = 36, McKay and
Spence [29] have shown that there are 32 548 strongly regular graphs with param-
eters (36,15,6,6) (these are particular homogeneous coherent configurations), of
which only one is Schurian!

A homogeneous c.c. is called thin if all basis matrices have row and column
sums 1. A thin homogeneous c.c. is Schurian, and arises from a regular permu-
tation group. For this reason, homogeneous c.c.s are sometimes called generalized
groups [36].

A coherent configuration is called symmetric if all the relations are symmetric.
A symmetric c.c. is homogeneous. (For, given any relation R in a c.c. with fibres
Fi,...,Ft, there are indices i,j such that R C Ft x Fj.) If V = K{G), then V is
symmetric if and only if G is generously transitive, that is, any two points of fi  are
interchanged by some element of G.

Let V he &  c.c. on Cl. The symmetrisation pw™ of V is the partition of Cl2
whose parts are all unions of the parts of V and their converses. It may or may not
be a c.c; if it is, we say that V is stratifiable. The name, arising in statistics [2],
will be explained later. It can be shown that, if V = K{G), then V is stratifiable
if and only if the permutation representation of G is real-multiplicity-free, that
is, if it is decomposed into irreducibles over R, they are pairwise non-isomorphic.
(Equivalently, the complex irreducibles have multiplicity at most one except for
those of quaternionic type, that is, Frobenius-Schur index —1, which may have
multiplicity 2.)

Finally, a coherent configuration is called commutative if its basis matrices com-
mute with one another. It can be shown that, if V = K{G), then V is commutative
if and only if the permutation representation is (complex)-multiplicity-free.

Thus, the following implications hold:

Proposition 1.2 A symmetric c.c. is commutative; a commutative c.c. is stratifi-
able; and a stratifiable c.c. is homogeneous, m



59

Number of
points

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Homogeneous
c.c.s

1
1
2
4
3
8
4

21
12
13
4

59
6

16
25

222
5

95
7

95
32
16
22

750
45
34

502
185
26

243

2-closed
trans, groups

1

l—
i

2
4
3
8
4

21
12
13
4

59
6

16
24

206
5

93
6

95
32
16
4

669
32
24

122
124

6
228

Association
schemes

1
1
1
3
2
4
2

10
6
8
2

21
4
8

10
63
4

32
3

41
11
8
2

157
33
24
39

106
24
79

2-closed, gen.
trans, groups

1

|—
i

1
3
2
4
2

10
6
8
2

21
4
8

10
56
4

32
3

41
11
8
2

136
20
14
38
47
4

73

Table 1: Homogeneous c.c.s and 2-closed groups
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None of these implications reverses.
We note also that, if V = K,{G), then V is trivial if and only if G is doubly

transitive.

1.4 History and terminology

A symmetric coherent configuration is usually known as an association scheme. As-
sociation schemes were first used in the context of experimental design in statistics,
by R. C. Bose and his school, as "carriers" of partially balanced designs [7]. The
basis algebra of an association scheme, and the isomorphism to the intersection
algebra, were constructed by Bose and Mesner [6], and for this reason the basis
algebra is often called the Bose-Mesner algebra of the association scheme.

There are several reasons why only symmetric c.c.s are used. First, the relations
which arise in practice in treatment and plot structures and the covariance matrices
that arise are almost always symmetric. Indeed, these relations are often defined
by concurrences in blocks. Secondly, statistical data consists of real numbers, and
a large part of the work consists in computing orthogonal decompositions of real
vector spaces; association schemes are a valuable tool for this purpose. In an asso-
ciation scheme, the basis matrices are commuting symmetric real matrices, and so
the vector space Rn has an orthogonal decomposition into common eigenspaces of
these matrices. These eigenspaces are called strata. (This is the origin of the term
"stratifiable".) Further, the Moore-Penrose inverse of any matrix in BA(P) is also
in BA(P).

General coherent configurations were defined at about the same time by Hig-
man [17] and by Weisfeiler and Leman [34]; the latter used the term cellular algebra
for the algebra generated by the basis matrices. Subsequently, Delsarte in his the-
sis [9] showed the importance of association schemes in coding theory. Though his
discussion applies to any commutative c.c. (and he extended the usage of the term
"association scheme" to this class), his important examples are all symmetric. Ban-
nai [5], in a recent survey, uses the term "non-commutative association scheme" for
a homogeneous coherent configuration. More recently, there have been signs that
the term "association scheme" or "scheme" is being applied to any coherent config-
uration (see [11], for example).

I propose that this term should be restricted to its original meaning of "sym-
metric coherent configuration". This proposal is motivated in part by the large
numbers of papers on association schemes in the statistical literature (see the ref-
erences in [4]). I have adopted my proposal in this paper.

Symmetric matrices are so pervasive in statistics that, in the study of estima-
tion of variance components, the fourth condition in the definition of a coherent
configuration (closure under multiplication) is sacrificed; instead, closure under the
Jordan product AoB = \{AB + BA) is required. (This product is commutative and
preserves symmetry of matrices.) Then Wedderburn's theorem on simple associa-
tive algebras must be replaced by some form of the Jordan-von Neumann-Wigner
theorem on simple Jordan algebras. See Jacobson [23] for the theory of Jordan
algebras, and Malley [27] for the statistical applications.

It is worth recording here a question to which I don't know the answer. Define



61

a Jordan scheme to be a partition V of 02 with the properties that the diagonal is
a single part, every part is symmetric, and there are numbers q  ̂such that

s

A{Ri)A{Rj) + AiRjMRi) = £ q^A(Rk). (2)
fc=i

The span of the symmetric matrices A{Ri) over the real numbers is thus a Jordan
algebra, and contains the Moore-Penrose inverse of each of its elements.

Clearly, the partition Qsym obtained by symmetrising a homogeneous coherent
configuration is a Jordan scheme. Are there any others?

The fourth column in Table 1 gives the number of association schemes on n
points for n < 30. This number is obtained from the information provided by
Hanaki and Miyamoto [15], simply by checking which of the configurations are
symmetric. (As noted earlier, in the case n = 29, the classification of strongly
regular graphs by Spence [33] is also used.) The fifth column lists the number
of generously transitive groups of degree n which are 2-closed, or equivalently the
number of Schurian association schemes. The smallest number of points in a non-
Schurian association scheme is 16; an example of such a scheme is the Shrikhande
strongly regular graph [31].

Note also that the term "cellular algebra" has been used with an entirely different
meaning by Graham and Lehrer [14] and in a number of subsequent papers.

2 The partial order

The set of partitions of ft X Q forms a lattice, under the ordering given by V ^ Q
if V refines Q (that is, every 'P-class is contained in a Q-class). We use the symbol
V to denote the join in this lattice. Thus, (0:1,0:2) and (/?i,/?2) lie in the same
V V Q-class if it is possible to move from {a-y, a%) to (/?i, /?2) by a sequence of moves
each within either a P-class or a Q-class.

The following result is due to Higman [19]; the short proof here is due to Bai-
ley [3].

Theorem 2.1 The join (in the partition lattice) of two c.c.s is a c.c. The same
holds for homogeneous, stratifiable, commutative, or symmetric c.c.s.

Proof A function is constant on the classes of V V Q if and only if it is constant
on both the P-classes and the Q-classes. So BA(P V Q) = BA(P) n BA(Q).

From this, we deduce the following result.

Theorem 2.2 The coherent configurations on Cl form a lattice.

Proof We must show that any two coherent configurations have a greatest lower
bound. But the g.l.b. of V and Q is the join of all the coherent configurations
lying below both V and Q; and this set is non-empty, since it contains at least the
discrete c.c. (Note that the meet of two coherent configurations is not the same as
their meet as partitions!)
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This argument fails for any of the other classes of coherent configurations, since
there may be no c.c. in the appropriate class below any given V and Q. We will see
examples for association schemes later.

Theorem 2.1 also has the following consequence.

Corollar y 2.3 Let V be any partition of Q?. Then there is a unique coherent
configuration V* on ft which is maximal with respect to being a refinement of V.
Moreover, Aut(P) = Aut(P*).

Proof The set of coherent configurations below V is non-empty (since it contains
the discrete c.c.) and so has a supremum. The construction shows that any permu-
tation preserving V will preserve V*. The converse holds since V* refines V. m

The coherent configuration V* can be computed efficiently from V. First, re-
placing V by V A VT if necessary (where VT is the partition whose parts are the
converses of the parts of V), we can assume that V — VT. Let V' be the partition
in which two ordered pairs (ai,0i) and (a2,/32) are in the same part whenever, for
any two parts X, Y of V, the numbers of points 7 £ Q, for which (0^,7) G X and
(7, A) e Y are equal for i = 1,2. Clearly, if V = VT, then V = (P')T. Now
set Vo = V and Vn+i  = Vn for n > 0. There exists n such that Vn = Vn+i]  set
V* = 'Pn.This is the required coherent configuration.

This provides a useful reduction for the problem of finding the automorphism
group of a partition of Q,2: we may assume that the partition is a coherent con-
figuration. It also explains why coherent configurations provide difficult test cases
for this problem, since this reduction gives no extra information in this case. This
problem includes the problem of finding the automorphism group of a graph (con-
sider the partition of fl2 into the diagonal, the set of edges, and the set of non-edges
of the graph). This is the original context in which coherent configurations arose in
the work of Weisfeiler and Leman [34].

Coherent configurations were also used by the Soviet school for establishing the
maximality of certain subgroups of symmetric and alternating groups, using the
following principle:

Proposition 2.4 Let G be a 2-closed permutation group on ft. Suppose that no
coherent configuration lies strictly between )C(G) and the trivial configuration on fi .
Then any proper supergroup of G in Sym(fl) is doubly transitive. *

For example, Kaluznin and Klin [25] verified the maximality in this sense of
K.(G), where G is the symmetric group of degree n in its action on m-sets, for
n sufficiently large in terms of m, and thus showed the maximality of G in the
symmetric or alternating group of degree (^).

Much more is known now about maximality, but the proofs typically use the
classification and subgroup structure of the finite almost-simple groups (see [26]).
As a result, many interesting questions on the maximality of K{G) for various groups
G remain unanswered! (See Faradzev et al. [12] for an account of some of the results
that have been obtained.)
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At about the same time, Kageyama [24] was considering the same question for
association schemes, motivated by the question of when the number of associate
classes in a partially balanced incomplete block design could be reduced.

We conclude this section with a curiosity. Let An denote the lattice of c.c.s on
a fixed n-set, say {0,1, . . ., n - 1}.

Proposition 2.5 For any n, there is an embedding of An as a down-set in An+i
preserving zero, join and meet.

Proof Let V be a c.c. on {0,1, . . ., n - 1}, with fibres Fi,...,Ft. We define F(V)
to be the partition of {0,..., n} 2 consisting of the following sets of pairs: all the
parts of V; the sets {(x, n) : x G Fi}  and their converses for i = 1,.. ., t; and the
set {(n,n)}. It is not difficult to show that F(V) is a c.c, and that every c.c. that
has {(n,n)} as one of its parts arises in this way. Moreover, F maps the discrete
c.c. to the discrete c.c. and preserves join and meet.

Note that the direct limit of these lattices and maps is the "lattice of all finite
coherent configurations". (The direct limit contains no top element; this has to be
adjoined.)

3 AS-friendly and AS-free groups

In the remainder of this paper, we will be concerned with association schemes. Al-
though there is a coherent configuration fC(G) associated with every permutation
group G (and this configuration is trivial if and only if the group is doubly transi-
tive) , this is far from being the case for association schemes. Since any association
scheme is a homogeneous coherent configuration, I will consider only transitive per-
mutation groups in this section, which reports on work of Alejandro et al. [1]. I
have sketched some of the proofs, but refer to [1] for full details.

We begin with some definitions. Let G be a transitive permutation group on
the finite set fi.

(a) We say that G is AS-free if the only G-invariant association scheme on fi is
the trivial scheme.

(b) We say that G is AS-friendly if there is a unique minimal G-invariant associ-
ation scheme on fi.

Of course, if we replaced "AS" by "CC" in the above definitions, then every group
would be CC-friendly, and the CC-free groups would be precisely the doubly tran-
sitive groups.

Note that a 2-homogeneous group G (one which is transitive on the 2-element
subsets of fi) is AS-free, since the symmetrisation of /C(G) is the trivial configura-
tion.

It is difficult, both theoretically and computationally, to decide whether a tran-
sitive group G of large rank is AS-friendly or AS-free: we have to merge the sym-
metrised orbitals in all possible ways and check whether an association scheme is
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obtained. The following idea can be used to reduce the search for G-invariant
association schemes. Suppose that the permutation character of G has the form
7T = X)eiXi> where the Xi a re distinct irreducible characters. Then the rank of G
(the number of orbits on Q2) is equal to ]T) e2, while the dimension of the largest
commutative semisimple subalgebra of BA(/C(G)) is 'JT ei. So, if some of the mul-
tiplicities e, are large, then a lot of merging is required.

3.1 Basic theory

We begin with an example of a group which is not AS-friendly. Let G be the
symmetric group Sn (for n > 5), acting on the set fi  of ordered pairs of distinct
elements from the set { l , . . . ,n } : we write the pair (i,j) as ij  for brevity. The
coherent configuration JC(G) consists of the following parts:

k) : i,j,k distinct},

Ri = {(ij,  kj) : i,j, k distinct},
R5 = {(ij,ki)  :i,j,k distinct},
Re = {(ij,jk)  : i,j, k distinct},
fl 7 = {(ij , kl) : i,j,k,l distinct}.

We have flj  = Re; all other relations are symmetric. The symmetrised partition is
not an association scheme, but we find three minimal association schemes as follows:

 the pair scheme: {fli , fl2, R3 U fl4, fls U fl6, fl7}  (see [24, pp. 576-578]);

 two "divisible" schemes {fli , fl3, fl2 U fl4 U fl5 U fl6 U fl7}  and {Rx, fl4, fl2 U
fl3Ufl 5Ufl 6Ufl 7}.

These are all incomparable, so there is not a unique minimal association scheme.
The next result shows how the concepts just defined are related to more familiar

concepts of permutation group theory.

Theorem 3.1 The following implications hold between properties of a permutation
group G:

2-transitive =>  2-homogeneous  AS-free =>  primitive

gen. trans. =>  stratifiable =>  AS-friendly =*> transitive

None of these implications reverses, and no further implications hold. *

Since the properties of a permutation group G listed in the theorem depend
only on K,(G), it suffices to consider 2-closed groups. Table 2 gives the numbers of
2-closed groups of small degree which are respectively 2-transitive, 2-homogeneous,
AS-free, primitive, generously transitive, stratifiable, AS-friendly, and transitive.
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n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

2T
1

i—
i

1
1
1
1
1
1
1
1

i—
i

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

i—
i

1
1
1

2H
1
1
2

i—
i

1
1
2
1
1
1
2
1
1
1
1

i—
i

1
1
2

i—
i

1
1
2
1
1

i—
i

2
1
1

i—
i

A$

H
-i

1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1

Pr

i—
i

i—
i

2
1
3
1
4

i—
i

2
2
4

i—
i

6
1
2
4
5
1
6
1
3
1
4
1
9
1
5
4
6
1

GT
1

i—
i

1
3
2
4
2
10
6
8
2
21
4
8
10
56
4
32
3
41
11
8
2

136
20
14
38
47
4
73

St
1
1
2
4
3
7
4
20
12
11
4
47
6
14
23
171
5
71
6
73
29
14
4

454
32
20
112
103
6

166

AF

H
- »

H
- i

2
4
3
7
4
20
12
11
4
47
6
14
23
171
5
71
6
73
29
14
4

454
32
20
112
103
6

166

Tr
1
1
2
4
3
8
4
21
12
13
4
59
6
16
24
206
5
93
6
95
32
16
4

669
32
24
122
124
6

228

Table 2: Small 2-closed permutation groups
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Note that up to degree 30, every AS-free group is 2-homogeneous and every AS-
friendly group is stratifiable.

The smallest 2-closed primitive group which is not AS-friendly is PSL(2,11),
with degree 55. The smallest 2-closed primitive groups which are AS-friendly but
not stratifiable are PSL(2,13), with degrees 78 and 91. These groups are numbers
(55,1), (78,1), (91,1) and (91,3) in the list of primitive groups available in GAP.
The smallest examples of AS-free groups which are not stratifiable have degree 234,
and are isomorphic to PSL(3,3) and PSL(3,3) : 2, numbers (234,1) and (234,2)
in the list. (Further examples of such groups will be given later.) 2-homogeneous
groups which are not generously transitive are well known (such groups must have
prime power degree congruent to 3 mod 4). I hope to make the GAP code used for
these tests available shortly.

The class of AS-friendly groups is also closed under taking supergroups, wreath
products, and primitive components:

Theorem 3.2 (a) If a group has an AS-friendly subgroup, then it is AS-friendly.

(b) The class of AS-friendly permutation groups is closed under wreath product
(with the imprimitive action).

(c) Let G be imprimitive; let T be a system of imprimitivity and A a block in T,
and let H be the permutation group induced on A by its setwise stabiliser and
K the group induced on T by G, so that G < H\K. If G is AS-friendly, then
so are H and K.

(d) The same assertions hold with "stratifiable" or "generously transitive" in place
of "AS-friendly". *

3.2 Regular groups

Groups whose regular representation is AS-friendly have been determined. In par-
ticular, the properties "AS-friendly" and "stratifiable" coincide for regular groups.

Following Bailey [3], a partition P = {Pi,... ,PS} of a group G is called a
blueprint if the partition V = {R\,..., Rs} of G x G given by

Ri = {{x,y):xy-i G Pi}

is a coherent configuration on G. Note that this coherent configuration is invariant
under right translation by G. This condition is equivalent to the assertion that
the sums (in the group ring 7LG) of the classes P\,... ,Pa span a Schur ring: see
Wielandt [35].

The inverse partition of a group G is the partition whose parts are the sets
{g,g-l}iorg£G.

Theorem 3.3 For a finite group G, the following four conditions are equivalent:

(a) the regular action of G is AS-friendly;

(b) the regular action of G is stratifiable;
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(c) the inverse partition of G is a blueprint;

(d) either G is abelian, or G = Q x A where Q is the quaternion group of order 8
and A is an elementary abelian 2-group.

Proof I will outline briefly the two non-trivial parts of the proof.
Clearly (c) implies (b) implies (a). To show that (a) implies (c), we proceed as

follows. Let P be the minimal blueprint on G; we must show that P is the inverse
partition. So take an element g € G; we must show that (1, h) lies in the same class
as (1,5) if and only if h = g . Now the right cosets of H — (g) form a system
of imprimitivity, and so G < H I Sm, where m — \G : H\. This group preserves
the association scheme obtained by "nesting" the cyclic scheme on H in the trivial
scheme on m points, so the unique minimal G-invariant scheme is contained in this
one. But in this scheme, we see that the result holds.

Also, the proof that (d) implies (b) uses relatively straightforward representa-
tion theory. Suppose that a group satisfies (c). It is easy to see that, given any
two elements g,h £ G, either g and h commute, or each inverts the other. Thus
every subgroup of G is normal, and the structure is determined by the theorem of
Dedekind (see [22], Satz 7.12 on p. 308) and a littl e more work.

3.3 Primitive groups

We have seen that 2-homogeneous groups are AS-free. Are there any other transitive
AS-free groups?

A permutation group is called non-basic if there is a bijection between Q and
FA (the set of functions from A to F) for some finite sets F and A, which induces
an isomorphism from G to a subgroup of Sym(F) I Sym(A) with the product ac-
tion. This concept arises in the O'Nan-Scott classification of primitive permutation
groups, see [10], p. 106. Of course, a group is basic if it is not non-basic.

Theorem 3.4 Let G be a transitive AS-free group. Then G is primitive and basic,
and is 2-homogeneous, diagonal or almost simple.

Proof An imprimitive permutation group G preserves the "divisible" association
scheme whose parts are the diagonal, the G-congruence with the diagonal removed,
and the rest of fi x fi, while a non-basic group preserves a Hamming scheme (see
Delsarte [9]). By the O'Nan-Scott theorem, basic primitive groups are affine, di-
agonal, or almost simple. An affine group has an abelian regular normal subgroup
and thus is stratifiable; so if such a group is AS-free, then it is 2-homogeneous.

Almost simple AS-free groups which are not 2-homogeneous do exist. This can
be seen from the paper of Faradzev et al. [12]. These authors consider the following
problem. Let G be a simple primitive permutation group of order at most 106 but
not PSL(2, q). Describe the coherent configurations above K(G). Table 3.5.1 on
p. 115 gives their results. In several cases, no non-trivial configuration consists
entirely of symmetric matrices: such groups are of course AS-free. The smallest
example is the group PSL(3,3), acting on the right cosets of PO(3,3) (a subgroup
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isomorphic to S4), with degree 234; as we have seen, this is the smallest AS-free
group which is not 2-homogeneous. Other examples of AS-free groups in this list
are M12, degree 1320; Ji, degree 1463, 1540 or 1596; and J2, degree 1800. The
situation is not well understood!

The table also gives another example of a primitive group which is not AS-
friendly; this is Mi 2, with degree 495.

No AS-free primitive diagonal group is known at present. It is known that the
socle of such a group must have at least four simple factors:

 A primitive diagonal group whose socle has two factors is a group of weak
automorphisms of the conjugacy class configuration of a simple group (corre-
sponding to the blueprint formed by the conjugacy classes), and indeed K.(G)
is commutative for such groups G (so they are stratifiable).

 A primitive diagonal group whose socle has three factors preserves a Latin
square scheme based on the Cayley table of the simple group. However, it is
not known whether such groups are AS-friendly.

Thus, the smallest possible degree of an AS-free diagonal group is 216 000.
In the next subsection I report on a more general investigation of diagonal groups

(not necessarily primitive).

3.4 Diagonal groups

The diagonal group D(T, n), where T is a group and n a positive integer, is denned
as the permutation group on the set

£l = Tn = {[ Xl,...,xn} :xu...,xn£T}

generated by the following permutations:

(a) the group Tn acting by right translation, that is, the permutations

[xi,...,xn]  H-> [xiti,...,xntn]

for * i , . . . , i n ST;

(b) the automorphism group of T, acting coordinatewise, that is,

[xi,...,xn]  H-> [zf,...,s£]

for a € Aut(T);

(c) the symmetric group Sn, acting by permuting the coordinates, that is,

7T : [xi,X2,... ,Xn] H-> [x\ir,Z2in  > Xnn]

for n G Sn;

(d) the permutation

T : [a j i , ^ , . . . , ^] h-> [x^1,x 1̂X2,---,x 1̂xn\.
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The group D(T, n) is a "maximal diagonal group"; by Theorem 3.2, if any diag-
onal group having a normal subgroup Tn+1 acting on the cosets of the diagonal is
generously transitive, stratifiable, or AS-friendly, then D(T,n) will have this prop-
erty. If T is abelian, then D(T, n) has an abelian regular normal subgroup consisting
of the permutations of type (a), and so is AS-friendly (and even stratifiable). For
non-abelian groups T, it is not known when D(T, n) can be AS-friendly. However,
the following result is known about generous transitivity and stratifiability.

Theorem 3.5 Let T be a non-abelian finite group.

(a) If D(T,n) is stratifiable, then n < 8; and if D(T,n) is generously transitive,
then n < 7.

(b) The group D(T, 7) is generously transitive if and only if T is the quaternion
group of order 8.

Proof The group D(T,n) is generously transitive if and only if every n-tuple of
elements of T can be inverted by a combination of transformations of types (b)-(d).
If T is non-abelian, it is shown that this is impossible for suitably chosen 8-tuples,
while for 7-tuples we find that any two non-commuting elements generate Qg. The
argument for stratifiability is similar but a bit more complicated.

The group D(T, n) is primitive if and only if T is characteristically simple, and
is AS-free only if T is simple. It seems likely that the bounds in the theorem can
be improved for non-abelian simple groups T.

Acknowledgment I am grateful to P. P. Alejandro, R. A. Bailey, A. Hanaki,
A. Hulpke, M. H. Klin, L. H. Soicher and E. Spence for helpful comments.
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MATHEMATICA L DEVELOPMENTS FROM THE ANALYSIS
OP RIFFLE SHUFFLING

Persi Diaconis

1. Introduction The most common method of mixing cards is the ordinary riffl e
shuffle, in which a deck of n cards (often n = 52) is cut into two parts and the
parts are riffled together. A sharp mathematical analysis for a natural model of
riffl e shuffling was carried out by Bayer and Diaconis (1992). This gives closed form
expressions for the chance of any permutation and allows analytic approximation
and exact numerical evaluation to show things like "seven shuffles are necessary and
suffice to approximately randomize 52 cards". These results are carefully stated in
Section 2A.

The shuffling work builds on earlier studies of Jordan (magic tricks), Borel
(bridge), Gilbert, Shannon, Reeds (basic model) and D. Aldous (coupling). This
background is described in Section 2B. The "seven shuffles" result is mildly depen-
dent on the choice of metric and a number of alternative measures of randomness
are discussed in Section 2C.

There is a mathematical reason that allows riffl e shuffles to be analyzed so
completely. The basic shuffling model falls squarely into Solomon's descent algebra
(and indeed gives an independent development). This allows shuffling theorems to
be translated into permutation enumeration results (e.g. how many permutations
have a given number of descents and a given cycle structure). The eigenvalues of the
Markov chain underlying shuffling were actually first determined in an investigation
of Hochschild homology(Hanlon). There is an intimate connection with free Lie
algebras and the Poincare-Birkoff-Witt Theorem (Bergeron-Bergeron-Garsia). The
chance of a given cycle structure after riffl e shuffling equals the chance that a random
degree n polynomial has a given number of irreducible factors. This in turn is
explained by considering the connection between shuffling and the action of the
associated Lie type group SLn(Fq) on its Lie algebra (Fulman). Finally, shuffling
gives a fairly direct interpretation of Schur symmetric functions (Stanley-Fulman).
These results are described in section three.

The analyses above seem so rich and natural that they call out for generaliza-
tion. A sweeping generalization of the theory was discovered by Bidigare, Hanlon
and Rockmore. This involves random walk on the chambers of a hyperplane ar-
rangement. The classical braid arrangement gives riffl e shuffles but there are many
other hyperplane arrangements where the chambers can be labeled by natural com-
binatorial objects and much (but not all) of the theory goes through. In an amazing
synthesis, Ken Brown has shown that almost everything can be pushed through to
random walks on idempotent semi-groups. This allows analysis of natural random
walk on the chambers of spherical buildings. These results are described in Section
4.

The final section describes ten open problems.
Throughout I have tried to show the links with algebra. To be fair, many of

the authors cited have no interest in the card shuffling implication of their work.
This paper has improved from detailed comments of Ken Brown, Nantel Bergeron,
Jason Fulman, Adriano Garsia and J.C. Uyemura-Reyes.
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2A. Basic Shuffling.

The basic riffl e shuffling model was introduced by Gilbert and Shannon (See
Gilbert (1955)) and independently by Reeds (1981). It can be described as a prob-
ability distribution Q(w) on the symmetric group Sn - the GSR Distribution. One
description of Q is as follows: cut the deck into two piles according to the binomial
distribution so the chance that pile one has j cards is (n)/2™. Then, sequentially
drop cards from the bottoms of the two piles according to the following rule: if at
some stage pile one has "A" cards and pile two has "J5" cards, drop the next card
from pile one with probability A /(A + B). This is continued until the two piles
are exhausted and then the piles are pushed together. An equivalent description
in terms of inverse riffl e shuffles is due to Gilbert, Shannon and Reeds. An inverse
shuffle begins by labeling each of n cards zero or one by a flip of a fair coin. Then,
all the cards labeled zero are removed and placed on top keeping the cards in the
same relative order. It is a simple exercise to show that the forward and backward
descriptions are the same. Prom either description, given the cut, all ways of in-
terleaving are equally likely, so the GSR shuffle is a maximum entropy model. The
identity has probability ^ t l  while all other possible permutations have probability
1/2".

Repeated shuffles are modeled by convolution:

Thus the chance of w after two shuffles is calculated as the chance of first choos-
ing u and then choosing the permutation resulting in w. Similarly, Q*k{w) =
SuQ*^"1''(wu~1)Q(u). These ingredients complete the description of the GSR
measure Q*k(w). Of course, shuffling is an example of random walk on a group and
of a finite state-space Markov chain. See Saloff-Coste (2001, 2002), for an extensive
overview with relevance to shuffling.

Repeated shuffling converges to the uniform distribution U(w) = 1/n!. The
earliest works on Markov chains, due to Markov (1906) and Poincare (1912), used
shuffling cards as an example. They gave results which allow us to conclude that

Q*k(w) -> U{w) as k -> co.

It is natural to try to quantify this statement. The usual distance to stationarity is
the total variation distance

\\Q*k - U\\ = max \Q*k(A) - U{A)\ =  £ \Q*k(w) - U(w)\.
w

Consider the middle term. Its interpretation is this: let A be any subset of Sn (e.g.
the set of all permutations where the ace of spades is in the top half). Calculate
the chance of A after k shuffles (that is Q*k(A)). Calculate the uniform measure
of A (namely |.A|/n!). Take the difference between these numbers and then take
the A which makes this difference as large as possible. This is a very non-forgiving
distance. If \\Q*k — U\\ < e then shuffling is close to uniform for any set A.
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These definitions translate the basic question "how many times should a deck
of cards be shuffled to adequately mix it?" into a well posed math problem: given
e > 0 how large should k be to have \\Q*k — U\\ < e? A historical review of progress
on this problem is contained in the following section. Here we state the basic result.
Theorem 1. [Bayer-Diaconis]. When n = 52, the distance to uniformity is

k: 1 2 3 4 5 6 7 8 9 10

\\Q*k-U\\ 1.000 1.000 1.000 1.000 .924 .614 .334 .167 .085 .043

For general n, and k = | log2 n + c

Remarks The total variation distance is a number between zero and one. A graph
of Q*k vs k shows it stays close to its maximum until a bit before | log2 n and then
falls exponentially fast to zero. The analysis shows that for k = | log2 n + c the
distance goes to one doubly exponentially fast as c —> — oo and to zero exponentially
fast as c —* oo. These asymptotic results are borne out by the data for n = 52. The
cutoff occurs at about seven shuffles. From six shuffles on, the variation distance
falls by a factor of 2 for each extra shuffle. It is worth noting that the table is derived
from exact results from Theorem 2 below not from an asymptotic approximation.

It is natural to wonder if this mathematics has much to do with real shuffles.
People used to think that cards were suitably well mixed after three, four or five
shuffles. Like many things people believe, this is simply not true. In Section 2B a
classical card trick and some extensive analysis of bridge hands are used to prove
this point.

Theorem 1 is a consequence of a more central result. To explain it, it is useful to
have a geometric description of riffl e shuffles. Picture n points dropped uniformly
and independently into the unit interval. Label the ordered points, left to right,
as xi,X2,...,xn. Now perform the baker's transform of [0,1] to itself. This takes
x —> 2a; (mod 1). The points Xi are permuted inducing a permutation w. Note that
there are a binomial number of the Xj in [0,1/2]. The baker's map stretches these
out to [0,1]. The same holds for the points in [|, 1]. These two sets of points are
interrleaved. It is not hard to see that the induced permutation has exactly the
GSR distribution Q(w).

This geometric description suggests a variant which will prove useful. For posi-
tive integer a, consider the a-shuffle which results from n random points under the
map x —> ax (mod 1). In shuffling language one may cut the deck into a-packets ac-
cording to the multinomial distribution ( )/an with 0 < n, < n, ££=1n; =

n. The a packets are sequentially mixed, dropping a card from the ith packet
with probability proportional to packet size. These equivalent definitions result in
a probability Qa(w). In present notation Q2{w) — Q{w). From the geometric de-
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scription, it is easy to see that an a-shuffle followed by a 6-shuffle is the same as an
ab shuffle thus Qa*Qb = Qab and Q%k = Q^k. It is enough to study only a-shuffles.
The main result of Bayer-Diaconis can now be stated.

In + a — r\

Theorem 2 For all positive integers n and a, Qa{w) = ^ with r = r(w)
the number of rising sequences in w.

To explain, consider a permutation w as an arrangement of a deck of cards, with
Wi the label of the card at position i. Decompose w into disjoint rising sequences by
finding card labeled 1, and then card labeled 2 if label 2 is below label 1. Continue
until label k stopping if label k + 1 is above one of {1,2,. . ., k}. Remove cards
labeled {1,2,. . ., fc}. This is the first rising sequence. Continue with the reduced
deck, finding {k+l,...,k + £} a second rising sequence and so on. Thus, for n = 9,
the permutation 716248359 has rising sequences 123, 45, 6, 789. Let r = r(w) be
the number of rising sequences obtained. Thus 1 < r < n. Another description:
r(w) = d(w~1) +1 with d(w~1) the number of descents in w"1. Descents will make
a major appearance in Section 2C.

We will not give a proof of Theorem 2 here (see Bayer-Diaconis (1992) or the clear
elementary treatment of Mann (1995)). It is straightforward from the geometric
description using the "stars and bars" argument of elementary combinatorics. The
hard part was discovering the result. We did this by looking at exact computer
calculations for small decks (size 3, 4, 5) and noticing a pattern.

Theorem 2 gives yet another description of the GSR measure

If w = id

Q(w) = ^ 1/2" If w has 2 rising sequences

otherwise.

Theorem 2 reduces the calculation of total variation to evaluating

2k - j \in + 2k - j \

n2kn n!

with kn(j) the number of permutations with j rising sequences. At this point
another surprise occurred. The kn(j) are very well studied as the coefficients of
Eulerian polynomials (Stanley, 1997). This allowed careful asymptotic analysis and
led to Theorem 1.

This concludes our overview of the basic shuffling story. We turn to a bit of
history and then some more mathematical consequences.

2B. History and Practical Consequences.

The earliest treatments of Markov chains treat card shuffling as a leading exam-
ple (Markov (1906), Poincare (1912), Doob (1954)). These treatments show that
shuffling cards eventually results in a well mixed deck. It is very hard to guess
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how many shuffles are needed. When n = 52, n! = 8 x 1067. For the other popular
method of shuffling (overhand) Pemantle (1984) shows order n2 logn shuffles suffice.
This is more than 2500 when n = 52.

Emil Borel in Borel and Cheron (1940) began a quantitative investigation by
studying how long individual cards and pairs of cards take to randomize. This
allowed him to conclude that at least six or seven shuffles are needed. Similar
conclusions are drawn by Keller (1995).

Independently, magicians had discovered that rising sequences allowed good card
tricks to be performed if cards are not well shuffled. Details and references appear
in Bayer-Diaconis (1992). Bridge players went from hand shuffling to computer
generated shuffling in their tournaments. A comparison of before and after suit
distribution shows that the standard four or five riffl e shuffles followed by a cut are
grossly inadequate Berger (1973). Thorpe (1972) is an early survey detailing ways
of taking advantage of poor shuffling in casino games.

Modern work on the mathematics of riffl e shuffling begins with work of Gilbert
(1955). He reports joint work with Shannon on the GSR model. They proved some
combinatorial properties of GSR shuffles and suggested log2 n would be enough. The
model was independently discovered by Reeds (1981) who made extensive computer
studies. Aldous (1983) gave a coupling argument which proves that f log2 n shuffles
are sufficient for n large. Aldous and Diaconis (1986) carefully prove that

n- l

This bound becomes less than \ for k — 11 when n = 52.
An empirical study of the GSR model compared to actual shuffles appears in

Diaconis (1988). This concludes that the model is a good fit. Of course, much
depends on the shuffler - casino dealers (along with the present author) can shuffle
close to perfectly and eight perfect shuffles recycle the deck! See Diaconis-Graham-
Kantor (1983) or Morris (1990) for more of this. There is much further work to
do in developing tractable models with a few parameters which allow individual
tuning. Because of its maximum entropy property the GSR model offers a provable
lower bound to any less uniform distribution.

As a final practical note, Diaconis-Holmes (2000) analyze a class of mechanical
'shelf-shufflers' used in casino games. In these, a deck of n cards is distributed
randomly onto a shelves. At each stage, cards are placed at random above or below
previously placed cards on a shelf. At the end, the packets are output in random
order (it turns out not to matter). The shuffle is not repeated. It turned out that
the theory developed for type B (hyperoctahedral group) gave a complete analysis.

2C. Other Measures of Randomness

The results of Theorem 2 allow computation in various alternatives to the total
variation metric. Aldous and Diaconis (1983) derive results for separation distance
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As discussed above this needs k = 11 to make it small when n = 52. Su (1995),
Trefethan-Trefethan (2002) and Stark et al. (2000) derive results for entropy dis-
tance that suggest k = 5 or 6 shuffles suffice when n = 52. The theorem of Stark
et al. (2000) shows that the entropy distance decreases by a constant factor up to
log2 n shuffles when it goes to zero exponentially. A graph of the distance versus
entropy for small values of n seems to show a discontinuous derivative at log2 (n).
If true, this would be a new kind of phase transition. Lovasz and Winkler (1995)
use Theorem 2 to show that a very different distance, the expectation of the fastest
strong stationary time will be small after k ~ 11.

All of the above are global measures of uniformity. In explaining the convergence
results to a popular audience, the following notion seemed useful. Consider playing
the following game. A deck of cards is on the table. Guess at the top card. This
card is then shown and discarded. Then guess at the next card (which is then shown
and discarded) and so on. If the deck is perfectly mixed, the chance that the first
guess is correct is 1/n, the chance the second guess is correct is l/(n — 1), etc. Thus
1/n + l/(n — 1) + ... + 1 correct guesses are expected. When n = 52 this is about
4.5. Suppose instead that k riffl e shuffles have been carried out. A conjectured
optimal strategy for guessing was derived by McGrath (see Bayer-Diaconis (1992)).
Using the strategy yields about 5.01 correct guesses after seven shuffles with 4.97
correct following seven shuffles and a cut. In related work, Ciucu (1998) studies the
optimal guessing strategy following fc-riffle shuffles when no feedback is given. He
proves that for 2n cards if k > 21og2(2n) + 1, the best strategy is to guess card 1
for the first half of the deck and card 2n for the second half. For k < 21og(2n),
there are better strategies. In particular, after one shuffle he shows that guessing
1,2,2,3,3,4,4,... in order gives y/8n/Tr correct guesses asymptotically. His analysis
rests on an explicit diagonalization of the Markov chain which tracks the position
of the card labeled 1. This is closely related to work in Section 4B below.

The above study suggested looking at classical permutation enumeration ques-
tions (e.g. number of fixed points or cycles) after an a-shuffle. This turned out to
be surprisingly neat. For example, the expected number of fixed points is

Ea(Fp) = 1 + - + — + ... + - ^ j - .

For cycles, the full story was derived by Diaconis-McGrath-Pitman (1995). Let
Qa(ni,ri2,... nn) be the chance that an a-shuffle results in a permutation with n,
i-cycles. They proved

(2.1) Qa(n,...nn) = ̂ fl(ni + fi(a)) with fi{a) = -Y,^d)ai'd
i = l d\i

The proof uses a remarkable bijection of Gessel and indeed gives a self-contained
proof of Gessel's results - see Gessel-Reutenauer (1993) for Gessel's version with
extensive application to enumerating permutations by descents and cycle structure.
The formula 2.1 and some analysis show that features of a permutation that only
depend on cycle structure become random before | log2 n-shuffles; the length of the
longest cycle is close to its uniform distribution after one shuffle.

In a different direction, discussed further in Section 3B, Fulman (2002) has
shown that the length of the longest increasing subsequence has its correct limiting
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distribution after § log2 n shuffles. These results also imply that the patience sorting
solitaire game described by Aldous-Diaconis (1995) will then behave as if the deck
was random.

Uyemura-Reyes (2002) has studied the number of riffl e shuffles required to ran-
domize just a few cards e.g. the original top card. He derives bounds using coupling
and remarkable formulas for how the eigen-values of the GSR shuffles split by rep-
resentations. His results generalize earlier profound work of Bergeron, Bergeron,
Garsia (1989), and Hanlon (1990). They are discussed further in 4B below.

All of this shows that "seven shuffles suffice" is just a rough guide. From Theo-
rem 1, it is where the cutoff happens.

To finish off this part of the shuffling story we note that the analysis has been
broadened to show that the age old custom of following shuffling by a random
cut does not help appreciably in convergence. This is illustrated in Bayer-Diaconis
(1992) and much more sharply in Fulman (2000B). This last paper connects shuffling
with cuts to cyclic descent theory.

3. Some Mathematical Connections

A. Descent Theory

A permutation w has a descent at i if wi+ \ < to;. The set of all such i makes
up the descent set D(w) C {1,2,. . ., n — 1}  = [n — 1]. Descents record the up down
pattern in permutations and are a natural object of combinatorial study. Stanley
[1972, 1986] lays out the classical theory and Buhler et al. (1994) make a fascinating
connection to the mathematics of juggling. Stadler (1997) develops links between
descents, shuffling and juggling for permutations of multisets.

Let S C [n — 1] and let as = ^ w. Louis Solomon (1976) observed
w.D(w)=S

that as elements of the group algebra Q[Sn], the as are the basis for a subalgebra
now called Solomon's descent algebra. In particular asaT = Y,ucSTau for cgT 6
Z. Solomon's motivation was to give a group theoretic interpretation of Mackey's
induction theorem. He did this in a unified way for classical Weyl groups. The
development he started now has a life of its own.

The connection to shuffling cards comes through the following observations. The
set of permutations with a single descent at position i (along with the identity) are
exactly the permutations realized by removing an i element subset of 1,2,..., n and
placing them to the left (keeping all else in its same relative order). This is exactly
the inverse riffl e shuffles consonant with i cards cut. Summing in i, let A\ = %™=iai
this is the sum of all permutations with a single descent. Excepting the identity, it
is also the result of an arbitrary inverse riffle. If Q is the Gilbert-Shannon-Reeds
measure then, as an element in Q[Sn],

Thus the neat convolution properties of the GSR measure show that if Ai is the
sum of permutations with exactly i descents (so AQ = id), then AQ, AI,...,An_i
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are a basis for a commutative subalgebra of the descent algebra. In particular,
AiAj = AjAi = EcfjAk. This commutative subalgebra of the descent algebra ap-
pears in Bayer-Diaconis (1992). As explained there, close relatives had been discov-
ered by Gerstenhaber-Schack [1987] in their development of Hochschild Homology
and by Loday [1988], Hanlon [1990] in their development of cyclic homology. The
idempotents of this algebra act naturally on a complex constructed from the usual
bar resolution and, for commutative algebras, commute with the boundary maps.
Hence their kernel and image offer a natural Hodge-type splitting of the associated
homology.

It would take us too far afield to explain the connections between the descent
algebra, the free-Lie algebra, and Philip Hall's commutator calculus. Fortunately,
this has been splendidly carried out by Garsia (1990) and Garsia-Reutenauer (1989)
as summarized by Reutenauer [1993]. This book contains a central chapter on shuffle
algebras. It omits most of the topics discussed in the present review! A number
of other appearances of shuffling are in the series of papers by Nantel Bergeron
(with several sets of coauthors) listed in the bibliography. These extend previous
results to more general Coxeter groups, include applications to Vassiliev invariants
and much else.

B. Connections with Symmetric Function Theory

The theory of symmetric functions as developed by Stanley (1972, 1999) and
Macdonald (1985) has had a great unifying effect on combinatorics. Many seemingly
isolated facts about balls in boxes, permutations and partitions are nowadays seen
as formulae for change of basis. Schurs symmetric functions are at the heart of this
theory. A charming discovery of Stanley (2001) developed by Fulman (2002) shows
how Schur functions arise in a natural way from riffl e shuffling. Let 9\, 9%,  be
non-negative numbers that sum to one. Drop n balls into a set of boxes with 0; the
chance of a ball dropping into box i. Suppose the box counts are Ni, N2,  with
N\ + N2 + ... = n. Take a deck of n cards; cut off the top iVi , cards, then the next
N2 cards (forming a separate pile), etc. of course, many of the piles may be empty.
Riffle shuffle these piles together as in Section 2a. This results in a final permutation
w. Apply the Schensted map to w to get a pair of standard Young-tableaux of the
same shape A.

Proposition The probability that the above procedure results in the partition A
is the Schur function s  ̂ times the dimension f\ of the associated representation of
the symmetric group:

I , 0 2,

Stanley's proof of this proposition uses quasi-symmetric functions, an emerg-
ing tool in algebraic combinatorics. Fulman's proof of the proposition uses only
classical facts from symmetric function theory. Both authors develop corollaries
and variations. One striking application to shuffling due to Fulman shows that the
distribution of features of a permutation dependent on the shape of the associated
Young-tableaux- e.g. the longest increasing subsequence - have the correct limiting
distribution after | log2n shuffles. Stanley (1999) (2002) is a good place to start
reading about quasi-symmetric functions. Aguiar and Sottile (2002), Billera, Hsiao
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and Van Willigenburg (2001) and Garsia, Wallach (2002) are relevant, significant
studies. All have shuffles as part of their combinatorial essence.

3C Work of Fulman Some profound connections between shuffling and the
enumerative theory of finite groups of Lie type have been developed by Jason Ful-
man. Some of this has already made an appearance above in Sections 2B and 3B.
This section describes some further developments. Yet others appear in the rich
collection of papers listed in the bibliography.

One striking result of Fulman explains a mystery. A main result in Diaconis-
McGrath-Pitman (1995) is a closed formula for the cycle structure of a permu-
tation after an a-shuffle (see (2.1) in Section 2C). It was also observed that this
formula answers a second question: pick a random monic degree n polynomial
xn + an-ixn~l + ... + a0 with coefficients in Fg by choosing a0, a\,..., an_i from
the uniform distribution. Factor this polynomial into irreducible factors and sup-
pose there are n; irreducibles of degree i. The chance of a given nl l n2, . . . ,nn

occurring is given by (2.1) with a = q. This was proved by observing that two for-
mulae agreed - that is,.without understanding. Fulman [1998] found a conceptual
explanation and an extension to other groups and shuffling schemes.

Fulman's explanation begins with a simply connected, semi-simple group G de-
fined over Fq. Let Q be the Lie algebra. Consider the orbits of semi-simple el-
ements of Q under the adjoint action of Q. For example, for groups of type A,
G = SLn(Fq), Q = s£(n, q) and semi-simple elements correspond to monic degree n
polynomials with coefficient of xn~x vanishing. For types A and B, Fulman shows
that there is a natural map <E> from the semi-simple orbits to the conjugacy classes of
the Weyl group W such that a uniformly chosen orbit maps to the measure induced
by a-shuffling with a — q. Thus a randomly chosen polynomial maps to an a-shuffle
and the factors map to cycles. For shuffles of type B, the correspondence is with
symmetric polynomials f(z) = f(—z)

In algebraic group theory there is an analog of the map $ which carries semi-
simple conjugacy classes of the group G to conjugacy classes of the Weyl group.
Picking a semi-simple class uniformly induces a probability distribution on conju-
gacy classes. Fulman [1997] managed to find a card shuffling interpretation of this
map as well and give an enumerative theory that works for all split semi-simple
groups. His work uses results of Cellini and Carter's work on the Brauer complex.
Indeed, Carter (2002) has recently extended Fulman's work to more general groups.

We give the card shuffling version of Fulman's work for type A. Define an F-
shuffle of a deck of In cards as follows: choose an even number j , between 1 and
In with probability ( 2" j / 22 n~1 . Remove the top j cards of the deck. Remove the
bottom j cards of the deck and place them on top of the original top j cards to form
a packet of size 2j. Shuffle this packet with the remaining In — 2j cards. Fulman
derives remarkable closed form generating functions for the cycles of a permutation
after an F-shuffle. He also shows that F-shuffles convolve nicely and, for special
deck sizes, gives an alternate description in terms of a riffl e followed by a cut.

The analogous developments for type B yield closed formulae for the cycles of
randomly chosen unimodal permutations. These arise in dynamical systems and in
social choice theory.
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One further aspect of Fulman's work deserves special mention (and follow-up!).
The shuffling work in Diaconis-McGrath-Pitman (1995) leans on a remarkable bi-
jection of Gessel between multisets of primitive necklaces and permutations with
cycle structure equal to that of the necklace. Fulman shows that by refining the
correspondence <5 described above to a map to the Weyl group (instead of just to
conjugacy classes) one recovers Gessel's bijection in a group theoretically natural
way.

3C. Work of Lalley

Steve Lalley has written a series of papers studying extensions of the basic
Gilbert-Shannon-Reeds model to less uniform methods of riffl e shuffling. Even
changing the method of cutting the deck in two from a fair binomial distribution to
a skewed binomial distribution with parameter p < \ destroys a basic symmetry.
For this case, Lalley [2000] conjectures that there is a sharp threshold for the mixing
time at Cplogn for Cv = (3 4- 6p)/log(l/p2 + q2) with 6p the unique solution of
pe + qe = [p1 + q2)2. Observe that Cx = § log2 n in agreement with Theorem 1.
Lalley [2000] and Fulman (1998) give upper and lower bounds of this form for the
mixing time but sharp results are conjectural.

Lalley [1996], [1999] expands the basic interlacing mechanism underlying the
GSR shuffle. To explain, recall the dynamical systems description of GSR shuffles
as the permutation induced by n uniform points in [0,1] under the baker's trans-
formation x i—> 2x mod(l). This results in all interleaving being equally likely. It
is natural to consider more general maps / : [0,1] —+ [0,1] which preserve Lebesgue
measure. Lalley works with piecewise C2 maps which are piecewise monotone in-
creasing. He shows that several interpretable shuffles can be so described. For
example, the biased cut shuffles described above or shuffles where the left card is
dropped with probability uA/(uA + wB) when packets are of size A, B, here u, w
are fixed parameters. When u = w = \ this becomes the original GSR shuffle.

The main result of Lalley [1996] shows that when n is large, for fixed i, the
number Ni of cycles of length i after an /-shuffle are approximately independent
geometric random variables with P(Ni = k) = (1 — w)wk the parameter w de-
pends on i and on the map / in a simple way. Further, the Ni are approximately
independent. The main result of Lalley [1999] gives a lower bound for the num-
ber of /-shuffles required to mix N cards; at least h~1logN shuffles are needed
where h is the 'fiber entropy' associated to /. The proofs are a marvelous mix of
ergodic-theoretic symbolic dynamics and combinatorics.

One interesting aspect of these /-shuffles is that, aside from a-shuffles, the suc-
cessive permutations chosen for repeated convolution are not independent. They
form a stationary sequence. This is not necessarily bad; perhaps real shufflers re-
member a few steps back - if a particularly lumpy shuffle was just made the next
shuffle might be neater. See also Dubrow-Fill (1995). There is much to follow up
from Lalley's work. Perhaps the leading problem is to prove any kind of upper
bound for /-shuffles or better, to determine where cutoffs appear.

3D. Early Shuffling

The basic combinatorial shuffling of two sequences, one with m letters x\,..., xm



83

and one with n letters j / i , . . . , yn, into the formal sum of sequences of n + m letters
in all orders that preserve the order of the z's and the order of the j/'s (thus f "^m J
terms) appears in other areas of algebra.

Perhaps earliest is the classical wedge product of two alternating forms. If V is
a vector space and / : Vm —> 1Z, g : Vn —» TZ are alternating multilinear functions,
then / A g : Vn+m —» TZ may be constructed as the function

/ A g(xu ..., xn+m) = ^2 sgn(a)f(xai,..., a:<7m)0(a;<7m+1, , xan+m)
cr

where the sum is over all shuffles. A splendid account of this classical subject
appears in Cartan (1967, pg. 179-188). The shuffling construction guarantees that
/ A g is alternating, that / A g = (—l)mng A / and that the wedge product is
associative. Cartan's proof of this last statement results from the following fact:
with three packets of cards of sizes £, m, n, shuffling £ into m and then the n into this
joint packet results in the same distribution as shuffling in any of the other orders, or
indeed shuffling the 3 packets together simultaneously as in the 3-shuffles described
in Section 2d. More general shuffles appear when studying flag manifolds. A flag is
an increasing sequence of subspaces. If the successive dimensions are n\, n\ + n ,̂...
then shuffles based on cutting off packets of size n\,n2,..  appear. In particular,
such shuffles index a basis for the homology of the associated flag variety. See Fulton
(1997) or Shahshahani (2002) for textbook descriptions.

Eilenberg-MacLane (see MacLane 1950) used the shuffle construction as a basic
building block for constructing a chain complex giving an appropriate cohomology
theory for Abelian groups. They get H2(n, G) as the group of Abelian extensions
of G by 7r.

Shuffles appear frequently in other basic constructions in algebraic topology. For
example, if X is a space with an associative, commutative product, Milgram (1967)
defined a product on the classifying space B(X) using shuffles. This work was
systematized by Steenrod (1967) and further by MacLane (1970). Shuffles appear
in the Eilenberg-Zilber Theorem and in explicit proofs of the Kiinneth formula
giving a chain equivalence between a chain complex for the product of two spaces
and the tensor product of the two chain complexes. See Hatcher (2002, pg. 278)
for details and Dupont (2001, pg. 29) for a charming appearance in the world of
scissors congruences! The essence of much of this is that the shuffling map gives a
natural triangulation of the product of two simplices.

From a modern view, many of these appearances of shuffling occur because of
the many natural Hopf algebras in mathematics. See Schneider-Sternberg (1993)
for references and pointers to Rees' shuffle algebras and Chen's iterated integrals.
Perhaps even more basic, the permutatedron is the convex hull of all permutations
of the vector (1,2,3,..., n) in Rn. It is a convex poly tope with vertices indexed by
permutations. It may be seen that the edges and faces of various dimensions are
indexed by shuffles. See Billera and Sarangarajan (1996) for a clear statement and
proof. It would be marvelous if some of what we know about shuffling illuminates
these applications or vice versa.

4. Some Generalizations
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There are a bewildering variety of extensions of riffl e shuffling where much of
the successful analysis goes through. It is easiest to lead into this by considering
inverse riffl e shuffles where a subset is selected at random and moved to the top. A
natural generalization is to partition [n] into ordered blocks {B\,B2,  Bk). Then
remove all cards with labels in block one and move these to the top (keeping the
cards within a block in their original relative order). Next cards with labels in B2
are removed and put directly below those in B\, and so on with cards having labels
in block k finishing at the bottom. Let B be the space of all ordered blocks of
any shape if a weight w(B),B E B is specified with w{B) > 0 T,w(B) = 1, then a
random walk can proceed.

Inverse riffl e shuffles and the GSR model proceed from the uniform distribution
on the set of 2™ partitions into two blocks. A widely studied special case puts
weights wx,W2,...,wn on each card and then removes card i to top. This arises as
a method of rearranging files so that frequently called for items are near the top.
See Fill [1996] for an extensive survey. Curiously, the special case with W{ = 1/n
for all i is central in Wallach (1986) and Garsia-Wallach (2002).

As will emerge, there is a relatively complete theory for this class of walks - a
description of stationary distribution, reasonable rates of convergence and a com-
plete description of the associated eigenvalues. This will follow from the following
sweeping generalization.

A. Hyperplane Walks

Bidigare-Hanlon-Rockmore (1999) introduced a class of walks on chambers of a
hyperplane arrangement which includes the walks above as a special case. Their
works was completed in various ways by Bidigare (1997), Brown [2000, 2001],
Brown-Diaconis [1998]. Billera-Brown-Diaconis (1999) offer an introduction.

The story begins with a set A of affine hyperplanes in Rd. This cuts Rd into
regions called chambers. These chambers are polyhedra with sides called the faces
of the arrangement. For example, three lines in the plane in general position yield 7
chambers (2-dimension), 9 one dimensional faces and three zero-dimensional faces
(the three points of intersection). Given a face F and a chamber C, the projection
of F on C, written FC, is the unique chamber with F as a face and closest to C.
Here closeness if measured by the number of hyperplanes in A one must cross in
moving from C to FC.

Let wp > 0 YJWF — 1 be weights on the faces of the arrangement A. Define a
random walk on the set of chambers by moving from C to FC when F is chosen with
probability %. The theory depends on the lattice C of all possible intersections of
elements in A. Here are the main theorems of Bidigare-Hanlon-Rockmore [1999],
Brown-Diaconis [1998].

Theorem 1 Let A be a hyperplane arrangement in Rd. Let C be the intersection
lattice of A and wp a probability measure on the faces. Then, the transition matrix
of the Markov chain is diagonalizable. For each W £ £ there is an eigenvalue

xw =
F<W
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with multiplicity

mw =

where \x is the Mobius function of C.

Theorem 2

(a) The Markov chain of Theorem 1 has a unique stationary distribution TV if and
only if for each H € A there is a face F not in H with wp > 0.

(b) The stationary distribution in (a) can be described by sampling faces without
replacement from wp to get an ordering F\, i<2, Then, for any chamber
Co, the product F1F2F3...Co is a chamber distributed from rr.

(c) For TT as in (a), (b), and starting chamber Co

To complete this section, let us show how these hyperplane walks extend riffl e
shuffles. The braid arrangement A<j consists of hyperplanes Hy = {x G Rd :
Xi = Xj}. All points within the same chamber have the same relative order so the
chambers may be labeled with permutations. The faces are points in Rd which lie
on some of the H  ̂ and on various sides of the rest. These may be labeled by block
ordered partitions (Bi,B2, ., Bk) of [n]. Finally, the action FC of a block ordered
partition on the permutation corresponding to C results from removing cards from
the first block and moving to the top, etc., as described in the introduction to this
section.

The present description does not do justice to the wealth of examples of hyper-
plane arrangements where the chambers have natural names and the walk has a
natural interpretation. We can only hope that the reader will consult the references
above.

B. Some Representation Theory

I  want to describe work of Bergeron-Bergeron-Garsia (1989), Hanlon [1990] and
Uyemura-Reyes (2002) which shows a deep interplay between the shuffling schemes
of Section A and the representation theory of the symmetric group. To keep things
manageable, consider random walks on the braid arrangement driven by invariant
face weights: w(F) = w(aF). This includes (uniform) random to top and inverse
riffl e shuffles as special cases. Let Q(a) = HFid-CTw(F). These walks may be
described via repeated convolution by the probability measure Q.

It is natural to ask how the eigenvalues of the walk split up by representation.
Recall that the irreducible representations of Sn are indexed by partitions v of n. If
pv{p) is the associated matrix representation, we are asking about the eigenvalues of
the matrix Q(u) = YiaQ{(j)pu{a). By general theory (Diaconis (1988, Chapter 3E))
these are a subset of the eigenvalues from Theorem 1 in Section 4A Above. For the
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braid arrangement, the eigenvalues are indexed by block ordered partitions. How-
ever, because of the symmetry w(F) = w(aF), the eigenvalues only depend on the
underlying number partition. Thus for each pair of partitions (/i, v) we may ask how
many times the eigenvalue A^ occurs in the matrix Q{pv). To describe the answer
we need both the usual irreducible characters \v °f Sn and the Lie characters ip^
(Reutenauer (1993, Chapter 8)). These Lie characters may be described by taking
a permutation of cycle type /J, in Sn- Its centralizer is a product of Wreath products
SkwrCj. Take a £ primitive j'th root of 1, consider the one dimensional character of
Cj which takes Xj,... ,xn to £a!i+---+!i:*. This induces a one dimensional character
of the Wreath Product. Taking a product of these 1-dimensional characters over
all factors in the centralizer and then inducing up from the centralizer to Sn gives
tjjfj,.  The main theorem below was proved by Hanlon [1990] for the case of GSR
shuffles. Richard Stanley (personal communication) conjectured the general result
which was proved by Uyemura-Reyes (2002).

Theorem 3

For an S
of the eigenvalue

eorem 3

For an Sn invariant hyperplane walk on the braid arrangement the multiplicity
he eigenvalue AM of Theorem 1 in the vth irreducible representation of Sn equals

Remarks

(a) Lie characters have been extensively investigated when \x = (n), see Stem-
bridge (1989), where an explicit decomposition formula is given. For general
partitions /x, much less is known. Theorem three shows that the Sn invariant
shuffles are equivalent objects in the group algebra. Any such shuffle is a
linear combination of what may be called \x shuffles as described in the in-
troduction to this section. As shown in Diaconis-Fill-Pitman [1992, Sec. 5],
these \x shuffles form a basis for the descent algebra.

(b) Uyemura-Reyes (2002) shows how the numbers described above allow bounds
on how many shuffles of a given type are required to randomize a subset
of cards, e.g. the original top card or top 13 cards. Here is one example.
If k = log2 (n/c), after k inverse GSR shuffles, let Qk be the probability
distribution of the position of the original top card. Then Qk is close to
uniform if c is small:

(c) These connections to representation theory are crucially used in Fulman (2000B)
to get nice formulae for the cycle structure of shuffles followed by a cut.

C. Brown's Semigroup Walks

Ken Brown [2000, 2001] has given a marvelous extension of the hyperplane walks
which leads to interesting special cases and a conceptual explanation of why the
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eigenvalues of these non-symmetric Markov chains are non-negative real numbers.
The brief treatment given here is a shuffling together of two of Brown's papers and
the reader is strongly encouraged to read the originals.

Let S be a finite semigroup satisfying x2 — x for all x € S. A random walk is
driven by a probability distribution w(x),x G S. At each stage, one picks x from
w(x) and multiplies on the left. Thus the transition matrix is

K(a,t)= £>(* )
x-s=t

In all the examples, the state space of the walk is restricted to a left ideal / in S.
Example 1. Hyperplane Walks. Let S be the set of faces of a hyperplane arrange-
ment with / the set of chambers under the product of Section 4A. This product is
idempotent and the results of Section 4A will be seen as special cases of the main
theorem below.
Example 2. q analogs Let MAT(n, £, q) be the set of n x £ matrices of rank £ with
coefficients in Fg. Let S = U2=1MAT(n,£,q) and / = GLn(q) = MAT{n,n,q).
Define a product on S as follows: If s has columns (ai, , 8e) and t has columns
(ti,... ,tm) form s  t by appending the columns of t to the columns of s in order
t\, £2,  deleting a U if it is linearly dependent on the columns already there. This
is an idempotent associative product and GLn(q) is an ideal.

The "q — 1 case" consists of ordered strings from 1,2,... n, without repeated
values and the ideal becomes the symmetric group Sn. Thus if s = (3,5) and
t = (23145) st = 35214 and we see the move to the front chain.
Example 3. The free idempotent semigroup Fn on 1,2,... n, may be described as
the equivalence class of finite strings under the equivalence relations w2 = w for all
subwords. For example, when n = 2, we get the six strings

S ={1,2,12,21,121,212}

Brown (following Green and Reees (1952)) shows that F$ has order 159 and Fn has

order Er= i0n '= i ( i -i + l)23'-
Let I be the ideal of all words having each of {1,2,..., n}  appearing at least

once (for n = 2,1 = {12,21,121,212}). Any probability measure on S induces a
Markov chain on / by left multiplication.

Return now to the general case of an idempotent semigroup S. Brown introduces
a support map supp : S —> L with L an explicitly constructed semilattice. The
support map is a subjection satisfying supp (xy) = supp x V supp y and supp x >
supp y if and only if x = xyx. The set L indexes the eigenvalues of the walk. For
hyperplane walks, L is the intersection lattice. For matrices, L is the subspace
spanned by the columns. For the free idempotent semigroup L is the collection
of subsets of {1,2,..., n}  under union. The natural ideal I is the two sided ideal.
{x : supp x = 1}. This specializes to the ideals given in the three examples above.

Brown gives a version of theorems one and two of Section 4A: For each X £
L there is an eigenvalue Ax = Ss u pp x<x w{x) with a neat way of computing
multiplicities. If the product of x with wx ^ 0 is in I then there is a unique
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stationary distribution ?r which may be described as the distribution of the random
element x\X2  CQ with x\, x2, . .. sampled without replacement from w(x). Finally,
for any starting state Co € /,

H

where H ranges over the maximal elements of L.
The key to the analysis is a surprising, complete character theory. (Most semi-

groups do not have a reasonable character theory.) Brown shows that all represen-
tations of 5 are one dimensional and that the representations are indexed by L; the
'Fourier transform' of the random walk now yields the eigenvalues.

One aspect of Theorem 1 that needn't go through: the Markov chain needn't
be diagonalizable. To help the reader navigate, Brown first worked in idempotent
semigroups satisfying the additional identity xyx = xy. These are called left regular
bands in the semigroup literature; most of the examples considered above are left
regular bands. Under this condition the chain is diagonalizable. In later work,
Brown showed that nearly everything goes through in the general case. There is a
tantalizing extension to a walk on the chambers of a building. Here, while a product
is well denned, it is not associative. This creates a mess but there are some positive
results as well.

5. Some Open Problems

1. Almost none of the walks presented here have good lower bounds available.
Examples include riffl e shuffles with the deck cut exactly in two (see Section
3A) or any of Fulman's shuffles (Section 3C). It would be nice to have a lower
bound in some generality for the general hyperplane walks of Section 4A.
Usually, reasonable lower bounds are easier to prove than upper bounds. See
[Diaconis, 1988] or [Saloff-Coste 1997] for the usual techniques. One idea for
a systematic approach: Brown's method (Section 4C) finds a representation
theoretic interpretation. With characters available, perhaps David Wilson's
[2001] approach may be pushed through.

2. It should be the case that essentially all the walks discussed here show a
sharp cutoff in their approach to stationarity; proving this requires sharp
upper bounds as well as sharp lower bounds. The general upper bounds
(e.g., Theorem 2 of Section 4A) are often slightly off in the few cases where
sharp answers are known. For example, for ordinary riffl e shuffles, the general
approach shows 2 log2 n + C shuffles suffice for randomness while Theorem
1 of Section 2A shows the right answer is | log2 n + C. The original paper
of Bidigare-Hanlon-Rockmore gives a potentially sharper upper bound. It
would be very instructive to compare the two variations. In preliminary work,
Brown-Diaconis [1998] found them similar but Uyemura-Reyes [2002] found
examples where the BHR bound is a genuine improvement. It may be that
the bounds of BHR or Theorem 2 of Section 4A are sharp for some other
metric; this happens for ordinary riffl e shuffles with separation distance as
discussed in Section 2C. At a more abstract level, it may be possible to prove
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the existence of a sharp threshold without being able to locate it along the
line of concentration inequalities see Ledoux [2000].

3. A very clear set of problems is to give any kind of upper bounds for Lalley's
/-shuffles of Section 3C. Presumably, these all mix n cards in order logn steps
but at present we don't know that order 2" steps suffice.

4. For practical reasons it is natural to seek models of riffl e shuffling cards that
result in neater shuffles than the GSR shuffles. This arises in studying the
way Las Vegas dealers shuffle; they drop cards in close to perfect alternation
while the GSR method has packet sizes geometrically distributed. Here is a
suggestion whose analysis is completely open: the Markovian Model is driven
by a 2-state Markov chain with transition matrix.

(poo Poi ]
\^io Pn)

To shuffle a deck of n cards, run the chain starting in stationarity to produce
X\, X2, , xn a binary sequence. If this sequence has k zeros and n — k ones,
cut off the top k cards as a left hand pile, the n — k remaining as a right hand
pile. Use the zeros and ones (from right to left say) to dictate if the next drop
is from left or right.

For example, with n = 10 cards the sequence 0101100110 results in 5 cards
being cut off and the final arrangement 1,6,2,7,8,3,4,9,10,5. This includes
the GSR model by taking pij = 1/2 and perfect shuffles by taking poi = Pio =
1. It is natural to begin with a symmetric cut, so poi = Pio an (i Poo — Pu-
There is every hope that this model will produce neat and useful analyses.
It must be the case that (for symmetric shuffles with 0 < poi < 1) there
is a sharp threshold at Ologn + C with 6 = 0(p). For practical purposes
one could estimate 6(p) from computer experiments and also estimate p by
watching dealers shuffle. This would allow one to derive reasonable ways of
exploiting the structure if the dealers do not shuffle enough. The following
seems clear: Since p  ̂ = 1/2 requires seven shuffles and this is the fastest
method, most neat shufflers will require a good many more shuffles and there
will be plenty of structure to take advantage of! Incidentally, the case of
'random perfect shuffles', each time choosing randomly to do a perfect in or
out shuffle, has been analyzed by Uyemura-Reyes (2002). For perfect shuffles,
not all permutations are possible so the walk is random on a subgroup. For
decks of size 2fc, he shows order k2 steps are necessary and suffice. The case
of general decks remains open.

5. I want to record empirical work which yields a quite different natural model for
riffl e shuffling. In joint work with my student Arnab Chakraborty we studied
commonly available machines for shuffling cards. These machines have the
user cut the deck in two halves (placed into the left and right sides of the
machine). Then a button is pushed which activates rubber wheels touching
the bottoms of the two packets. These spin cards off the bottoms into a central
region where they drop onto a collecting place. At the end of one shuffle the
user retrieves the deck, cuts it into two and the process continues.
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In our empirical work we found that an "opposite" GSR model seemed to fit
the data. In the GSR model, if at some stage there are A cards in the left
half and B cards in the right half, the chance of dropping the next card from
the left half is A/(A + B). In the mechanical shuffler, the chance seemed to
be B/(A + B); it was more likely for a card to be dropped from the smaller
half. Of course, once all the cards in a half are used up, the remaining cards
are dropped on top. This seems like a natural candidate for careful study.

One may interpolate between models with a one-parameter family of the
following form. If at some stage there are A cards in the left half and B
cards in the right half, the chance of dropping the next card from the left
is AeBl~e/(A9Bl~e + BeA1~9). Again, for practical purposes 9 could be fit
from data and a cutoff parameter could be estimated by simulation.

6. The GSR is the most uniform single riffl e shuffle in the sense that, given the cut,
it makes all shuffles equally likely. It is not clear (though it seems plausible)
that it is also the probability on shuffles so that Q *  Q is closest to uniform
(as well as Q*k for all k). This may be a simple problem but it seems worth
clarifying. A similar case that would shed some light: on Z/mZ (the integers
mod m), consider all probability measures with support in [—a, a]. Find the
probability P in this set such that P*k is closest to uniform (say in entropy
or total variation distance). Is this uniform?

7. A beautiful set of conjectures has arisen from thesis work of J.C. Uyemura-
Reyes. To describe them, consider first the random to top shuffle. This has
eigenvalues 0,1/n, 2/n,... (n — 2)/n, 1 with multiplicity of j/n the number
of permutations in Sn with j fixed points. This was proved by Phatarphod
and independently by Wallach (1986) and follows from Theorem 1 of Section
4A. Next consider the multiplicative reversibilization of random to top. This
is random to top followed by top to random: It may also be described as:
remove a random card and insert it in a random position.

Numerical work shows that the eigenvalues are all of the form quadratic func-
tion of (j)/n2. For some cases this can be proved. For example, zero occurs
with multiplicity the number of derrangements and the eigenvalues in repre-
sentations near the trivial representation (or alternating representation) can
be proved of this form. There must be a way to understand these! Work of
Phil Hanlon and Patricia Hersh indicates that this question fits very neatly
into algebra, along the lines of Section 3A.

Using the available results one may conjecture where the cutoff occurs for
mixing. For either random to top or top to random, n log n is the cutoff. It
seems that random to random must be faster but perhaps not by more than
a factor of two. We conjecture that 3/4n log n is the cutoff here. This is what
is required to kill the eigenvalues from the n — 1 dimensional representation.
Uyemura-Reyes [2002] proves a lower bound of form ^nlogn and an upper
bound of An log n. At present writing we do not know that n2 x eigenvalue is
an integer.

Again, in preliminary work, it seems as if the eigenvalues of the multiplicative
symmetrization of any hyperplane walk from a Coxeter group with symmetric
face weights generated by a finite reflection group will be "nice" in the same
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sense. To be specific, consider the permutation group Sn- Fix a composition
jx = {fix, /Lt2, , fJr) of n. A symmetric fi shuffle removes a uniformly chosen
subset of n\ cards (keeping them in their same relative order, then, from the
remaining n — //j cards, a random subset of size fi2, and so on. With a final
packet of size fir. These r packets are shuffled together by a GSR shuffle.

8. A very simple to state conjecture: After k GSR shuffles of n cards consider
turning up cards from the top one at a time. What is the optimal guessing
strategy to maximize the expected number of correct guesses? A conjectured
optimal strategy due to McGrath is described in Bayer-Diaconis [1992]. There
is related work in Ciucu (1998). Prove that McGrath's strategy is optimal. An
easier version (still open) asks the same question following k top to random
shuffles with k fixed and known.

9. Less of a conjecture than a suggestion; many of the semigroup walks in Brown
[2000] seem worthwhile studying in depth. To take one example; Brown [2000,
Section 6.3] introduced a fascinating family of walks on phylogenetic trees.
Walks on such trees are currently an active area of study. See Diaconis-
Holmes [2002] for pointers to work by Aldous and to the currently very active
work in biology. Brown's walks are driven by weights u>ij.  A first natural
problem is to study the stationary distribution of Brown's walk as a natural
family of non-uniform distributions on trees. They carry over to trees the Luce
model which has been very actively studied for permutations. One might even
contemplate estimating Brown's parameters Wjj from data. It is also natural
to carry out some careful analyses of rates of convergence for natural families
of weights: randomly chosen i.i.d. uniform weights, Zipf type weights, or Wij
the distance from i to j in some natural geometric structure.

10. A most annoying problem: find some use for the eigenvalues of the many walks
in the section above. For reversible Markov chains there are good bounds on
the rate of convergence based on eigenvalues. Are there any explicit bounds on,
e.g., L2 distances for non-symmetric chains? Going further, are there bounds
on the multiplicative symmetrization of a chain based on knowledge of the
eigenvalues of the original chain? This would allow the wealth of eigenvalue
information reported above to be used for comparison purposes as explained
in Saloff-Coste [1997].
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DERANGEMENT S IN SIMPL E AND PRIMITIV E GROUPS

JASON FULMAN AND ROBERT GURALNICK

ABSTRACT. We investigate the proportion of fixed point free permutations (de-
rangements) in finite transitive permutation groups. This article is the first in
a series where we prove a conjecture of Shalev that the proportion of such
elements is bounded away from zero for a simple finite group. In fact, there
are much stronger results. This article focuses on finite Chevalley groups of
bounded rank. We also discuss derangements in algebraic groups and in more
general primitive groups. These results have applications in questions about
probabilistic generation of finite simple groups and maps between varieties over
finite fields.

1. INTRODUCTION

Let G be a group and X a transitive G-set. An element of g € G is called a
derangement on X if g has no fixed points on X. We are interested in showing that
under certain hypotheses the set of derangements of G on X is large - in particular,
we will mainly focus on the case where G is finite. We then define S(G,X) to
be the proportion of elements in G that are derangements acting on X. The rare
situations when 6(G, X) is very small are also quite interesting and arise in the
theory of permutation and exceptional polynomials, coverings of curves and graph
theory.

The study of derangements goes back to the origins of permutation group theory.
It is an elementary result of Jordan that if X is a finite transitive G-set of cardinality
n > 1, then S(G,X) > 0. It is also one of the earliest problems in probability theory
- the problem was considered by Montmort [?] in 1708. Diaconis pointed out to us
that Frobenius in 1904 showed that G < Sn is A;-fold transitive if and only if the
first k moments of the number of fixed points is equal to the first k moments of a
Poisson(l) random variable. He used this to determine character tables of Mathieu
groups.

Jordan's result fails if G is infinite. There are various constructions for exam-
ple where any two nontrivial elements of G are conjugate. Then G contains no
derangements in any transitive action with a nontrivial point stabilizer. Another
example is the case of GL(V) where V is a finite dimensional vector space over an
algebraically closed field and X is the set of subspaces of fixed dimension or more
generally X is the set of flags of a given type (every matrix is similar to an upper
triangular matrix is the equivalent formulation). The same holds for any connected
algebraic group over an algebraically closed field acting its on flag variety — every
element is contained in a Borel subgroup and all Borel subgroups are conjugate.

Guralnick was partially supported by National Science Foundation grant DMS-9970305.
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Derangements have proved to be very useful. In particular, they have applications
to images of rational points for maps between curves over finite fields (and more
generally to higher dimensional varieties as well). See [GW] for more details. They
also are useful in studying probabilistic generation (see [GLSS]). £From Chapter
3D of [Dia], one sees that derangements are useful for bounding convergence rates
of random walks on finite groups; page 43 gives applications to lower bounds and
since character ratios are sometimes fixed point ratios, derangements are relevant
to upper bounds as well. We will explore these ideas further in future articles.

Recall that G is called a Probenius group of degree n if G acts transitively on
a set of cardinality n such that no element in G fixes 2 points (and \G\ > n).
Surprisingly, it was only very recently that Cameron and Cohen proved:
Theorem 1.1. [CC] If X is a transitive G-set of cardinality n > 2, then 6{G, X) >
1/n with equality if and only if G is a Probenius group of cardinality n(n — 1) (and
in particular, n is a prime power).

The proof is quite elementary. Another proof of this is given in [GW] and the
result is extended in various ways. In particular, it was shown that:
Theorem 1.2. [GW] If X is a transitive G-set of cardinality n > 6, then S(G, X) >
2/n unless G is a Frobenius group of cardinality n(n — 1) or n(n — l)/2 (and in
particular, n is a prime power).

The proof of this result seems to require the classification of almost simple 2-
transitive groups (and so the classification of finite simple groups).

Note that when trying to produce lower bounds for the proportion of derange-
ments, there is no loss in assuming that G acts faithfully on X. We will typically
make that assumption.

We particularly want to focus on the case of primitive permutation groups and
simple and almost simple groups. The Aschbacher-0 'Nan-Scott theorem [AS] gives
the structure of primitive permutation groups and reduces many questions about
them to almost simple groups (groups which have a unique minimal normal sub-
group which is nonabelian simple).

A primitive permutation group G of degree n is called affine if it preserves an
affine structure on the set. This is equivalent to saying that G has a nontrivial
normal elementary abelian p-subgroup N for some prime p. Necessarily, |7V| = n is
a power of p. In particular, primitive Frobenius groups are always affine permutation
groups.

The major part of this paper deals with 6(G, X) when G is a finite nonabelian
simple group. In particular, we will discuss a recent result of the authors proving
a conjecture that has been attributed to Shalev. This theorem is proved in a series
of papers by the authors starting with this one - see also [FG1], [FG2] and [FG3].
Theorem 1.3. There exists a positive number S such that 6(G, X) > 6 for all finite
nonabelian simple groups G and all nontrivial transitive G-sets X.

Note that it suffices to prove the previous theorem, when X is a primitive G-set
(for if / : Y -> X is a surjection of G-sets, then 6(G,Y) > 6(G,X)). We also
note that as stated this is an asymptotic result - we only need to prove that there
exists a 6 > 0 such that for any sequence Gj, Xi with \Xi\ —> oo with <S(Gj, X,) > 6
for all sufficiently large i. This result is known for G alternating essentially by [D]
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and [LuP] and for G = PSL(d, q) for a fixed q [Sh] for many families of actions.
Shalev's method used some difficult results about the order of a random matrix; we
use simpler properties of random matrices.

We will prove much more specific theorems and obtain much better asymptotic
results. Our proof shows that we can take 6 to be roughly 1/25 aside from finitely
many exceptions (and it is likely that there are no exceptions).

This paper is a partially expository paper regarding variations on this theme in
[FG1] and [FG2]. We will discuss in detail analogous results for algebraic groups
and give the proof for finite Chevalley groups of bounded rank.

As in [LuP] and [Sh], we obtain results about families of subgroups as well. The
following result is proved in [FG1], [FG2] and [FG3].

Theorem 1.4. Let X := Xn(q) be a classical group of dimension n over¥q. Let
I(X) be the union of all proper irreducible subgroups ofX except whenX = Sp2m(q)
we do not include the irreducible subgroups containing &fm(q) with q even. Then

In the theorem, we can take X to be a simple classical group or the full conformal
subgroup or anything in between. Moreover, we can allow a center. Of course if X is
not quasisimple, we only consider maximal subgroups which do not contain F*(X).
In [FG4], we will use this result to obtain some new results about probabilistic
generation.

One might think that Theorem 1.3 is valid for almost simple groups. However,
examples constructed in [FGS] and [GMS] (coming from problems in coverings of
curves) show that the result fails for almost simple groups. We give some examples
of this phenomenon later in the paper. The presence of field automorphisms is
critical in producing such examples.

However, we do prove that the result on simple groups does lead to a weaker
bound for primitive groups which are not affine. See §8.

Theorem 1.5. Let X be a primitive G-set with \X\ = n. There exists a positive
number S such that either

(1) 6(G,X)>6/log(n);or
(2) G preserves an affine structure on X.

We will investigate the affine case in future work.

We will also consider a slight refinement of this problem:

Let G be a normal subgroup of A with A and G acting transitively on a finite
A-set X. Assume that A/G is generated by the coset aG.

We wish to investigate the quantity S(A, G,X), the proportion of derangements
in the coset aG. We note the following easy facts:

(1) the quantity 6(A,G,X) does not depend on the choice of the generating
coset aG; and

(2) S(G,X) = 6(G,G,X).

This quantity is important in studying maps of varieties over finite fields via a
Cebotarev density theorem (see' [GW] for more details). In contrast to the case
A — G, there may be no derangements in a given coset. This turns out to be a
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very special and important case in the study of exceptional covers [FGS] and graph
theory [GLPS]. See §6 and §7 for further discussion.

In [GW], the following was shown via an elementary proof:

Theorem 1.6. Let G be a normal subgroup of A with A/G cyclic. Let X be a
transitive A-set of cardinality n > 2. Either 6(A, G,X) = 0 or S(A, G,X) > 1/n.
Moreover, equality holds if and only if A = G is a Frobenius group of order n(n—1).

One of the eventual goals of this project is to greatly improve this result.
We now give a brief sketch of the contents and ideas of the paper.
Let G be a group acting primitively and faithfully on the transitive G-set X and

let H be the stabilizer of a point x e X. Set

CG{H) := UueauHu'1.

An element g s G is a derangement if and only if g £ CG{H).

The proofs of many of these results are heavily dependent upon the classification
of finite simple groups - both in the fact that we are assuming the complete list of
finite simple groups and in using information about subgroups of the finite simple
groups. Since Theorem 1.3 is really an asymptotic result, we are considering the
following situation - we have a sequence (Gi,Xi) where Gi is a finite nonabelian
simple group and Xi is a primitive G;-set of cardinality of ri{.  We may assume that
\Gi\ (or n,) tends to infinity. We need to show that liminf 6{Gi,Xi) > 8 for some
positive 8 (a single 8 for all such sequences). This implies that 8{G,X) > 8 for all
but finitely many simple G and primitive X, whence 8(G, X) is bounded away from
0 for all simple G and primitive X.

In [FG1], [FG2] and [FG3], we obtain much stronger results.
By passing to infinite subsequences, to prove Theorem 1.3, it suffices to assume

that all the Gi are alternating groups (of increasing degree), are all Chevalley groups
of a given type (and rank) over fields of size g; with <& —> oo or are classical groups
of dimension di over fields of cardinality qi with d*  —> oo.

In the case of alternating (and symmetric groups), we can apply the work of
Dixon [D] and Luczak-Pyber [LuP]. We improve some of these results in [FG1]
and [FG2]. In the case of Chevalley groups of fixed type, we can use the theory
of algebraic groups and algebraic geometry to obtain the desired results. Here the
dichotomy is between subgroups that contain maximal tori and those that do not.
See §2, §3 and §4.

Now consider the case that the Gi are classical groups of dimension di over a
field of size qi. We subdivide this case further. First of all, either the qi —> oo or
we may assume that qi = q is constant. In the first situation, by [GL], it suffices
to consider only semisimple regular elements. We subdivide each case further using
the idea of Aschbacher's classification of maximal subgroups of classical groups [A2].
In particular, we consider subspace stabilizers and show that we can reduce certain
questions to the study of the Weyl group (and so to symmetric groups). We prove
in [FG1] the following result about subspace stabilizers. For the next theorem, in
the case of a linear group, all subspaces are considered to be totally singular.
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Theorem 1.7. Let Gi be a sequence of classical groups with the natural module
of dimension d{. Let Xi be a Gi-orbit of either totally singular or nondegener-
ate subspaces (of the natural module) of dimension fc< < d$/2. // ki —* oo, then
lim6(Gi,Xi) = 1. If k{ is a bounded sequence, then there exists 0 < <?i < S? < 1 so
that Si <6(Gi,Xi) <62.

One of the key ingredients in the proof of Theorem 1.3 for fixed q is getting
estimates for the number of conjugacy classes for finite Chevalley groups of rank
r over a field of size q. We show that there is an explicit universal constant C so
that the number of conjugacy classes of such a group is at most Cqr - see §9. See
also Gluck [Gl] and Liebeck-Pyber [LiP] for weaker estimates. These results are of
independent interest and should be useful (see the above mentioned references for
some applications). Two other important ideas in the proof are an upper bound for
the maximum size of a conjugacy class and a result that says that most elements in
a classical group are nearly regular semisimple (i.e. they are regular semisimple on a
subspace of small codimension). Another ingredient we use in the proof of Shalev's
conjecture (for q fixed) is precise estimates on proportions of regular semisimple
elements (proved via generating functions). See [FNP]. Finally, we require results
on random permutations.

This article is organized as follows:
We first discuss derangements in algebraic groups (in algebraic actions) - see

§2. We then prove Theorem 1.3 for groups of bounded rank in §§3, 4 - the second
of which focuses on subgroups containing a maximal torus. As a corollary (§5),
we solve for bounded rank groups a problem studied by Dixon [D] and McKay
(unpublished) for symmetric groups. The case of classical groups with rank going
to oo is treated in [FG4]. In §§6, 7, we give some examples and mention the
connection with so called exceptional permutation actions and give a short proof
of Theorem 1.6. In §8, we then show how Theorem 1.5 follows as a corollary to
Theorem 1.3. In the final section, we tabulate some of our results about conjugacy
classes for classical groups.

2. ALGEBRAIC GROUPS

In this section, we investigate the existence of derangements in (algebraic) per-
mutation actions for connected algebraic groups. We refer to [HI] for the basic
results about algebraic groups.

We first make a simple observation that holds for solvable groups (not just alge-
braic groups).

Lemma 2.1. Let G be a solvable group and H a proper subgroup of G. Then
G.

Proof. Let A be the last term in the derived series of G. If HA  ̂ G, we can pass to
G/A and the result follows by induction on the derived length (the case of abelian
groups being obvious). So assume that G = HA and in particular, H does not
contain A. Then H n A is normal in G (since H n A is normal in H and in the
abelian group A). It follows that the only elements in A which have fixed points
are the elements of A n H, a proper subgroup of A.
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We now consider connected algebraic groups. We restrict attention to semisimple
groups.

Let G be a connected semisimple algebraic group and X a nontrivial faithful
algebraic G-set G/H. In particular, if is a proper closed subgroup of G. Let
J = \Jg&GH9. Let J' denote the complement of J - thus, J' is precisely the set of
derangements.

Let T denote a maximal torus of G and N its normalizer. Note that T is self
centralizing and N/T is a finite group (the Weyl group of G). Moreover, any two
elements of T are conjugate in G if and only if they are conjugate in N. We recall
that any two maximal tori of G are conjugate.
Lemma 2.2. Let G be a connected semisimple algebraic group over an algebraically
closed field. Let H be a closed subgroup of G and J = \JgeGH9. Then the closure
J of J is all of G if and only if T has a fixed point on X.

Proof. Since the set of semisimple elements of G contains an open subvariety of G,
the reverse implication is clear.

Assume that J is dense in G. Let S be a maximal torus of the connected
component HQ of H. Let d=\H : HQ\.

Since J is the image of the morphism / : H xG —» G with f(h, g) = hg, it follows
that J contains a dense open subset of its closure and so under this hypothesis an
open subset of G.

Note that if g 6 G is semisimple regular, then the there are at most dr solutions
to xd = g (where r is the rank of G) - for xd = g implies that x € CG(g), a maximal
torus of rank r. This implies that the dth power map on G is dominant and so the
set of dth powers of elements in J also contains an open subvariety of G. This
implies that the union of the conjugates of HQ contains an open subvariety of G.
Since the union of the conjugates of S contains an open subvariety of Ho, we have
that \JgeGSg contains an open subvariety of G.

By conjugating, we may assume that S < T. We have the surjection from

G/T x S -> UgeGS9 given by (gT,s) -» s9, whence

dim G = dim UgeGS3 < dim G + dim 5 - dim T,

and so dimS = dimT and S=T.

Of course, every element is contained in a Borel subgroup. So if if is a parabolic
subgroup (i.e. an overgroup of a Borel subgroup), there are no derangements. We
can give an easy proof that these are the only examples if H is connected.
Theorem 2.3. Let G be a semisimple algebraic group over an algebraically closed
field k of characteristic p. Let H be a closed proper subgroup of G. Assume that
H is connected or that p does not divide the order of the Weyl group of G (this
includes the case p = 0).

(a) // H contains a maximal torus of G and a regular unipotent element of G,
then H is a parabolic subgroup of G.

(b) // {JgeaH9 = G, then H is a parabolic subgroup.

Proof. If UpeG-ET9 = G, the previous lemma implies that H contains a maximal
torus. Clearly, it contains a regular unipotent element, whence (b) follows from (a).
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We now prove (a). Let Ho be the connected component of H. We will first show
that Ho contains a regular unipotent element. We can then reduce to the case that
H is connected.

If p = 0, this is clear because all unipotent subgroups are connected. Let T be a
maximal torus of Ho (which is also a maximal torus of G). Since all maximal tori
of H are i70-conjugate, it follows that H = NH(T)H0, whence \H : Ho\ = \NH{T) :
NH0 (T) I is a divisor of the order of the Weyl group of G. In particular, it has order
prime to p and so Ho contains all unipotent elements of H.

If Ho is a parabolic subgroup, then so is H (and indeed H = Ho as any over-
group of a Borel subgroup is a parabolic subgroup). So we may assume that H is
connected.

Let BH be a Borel subgroup of H containing T and let B be a Borel subgroup of
G containing BJJ. Let U be the unipotent radical of B. Since H is connected, BH
contains a regular unipotent element u as well (because every unipotent element
of H is conjugate to an element of U). We can write u — v\[Ua{ta) where the a
are the simple roots relative to T, ta ^ 0 and v G [U, U]. It follows that uT[U, U]
contains all elements in U which have a nonzero entry in Ua for each simple root
a. Thus, [u, T][U,  U] = U. Since U is nilpotent, this implies that U = [u, T] and so
B = TU <H. Thus, BH = B and H > B as required.

There are only a handful of examples of proper closed nonconnected subgroups
containing a conjugate of every element of G. This requires a result of Saxl and
Seitz. We note that the result of [SaSe] has the unneeded hypothesis that the
characteristic is good (their proof never uses this fact). We will use the following
fact in the next result - any positive dimension closed subgroup of a simple algebraic
group is contained in a maximal closed subgroup.
Theorem 2.4. Let G be a simple algebraic group over an algebraically closed field
k of characteristic p. Let H be a closed proper subgroup of G. Assume that H is
not contained in a parabolic subgroup. The following are equivalent:

(a) H contains a maximal torus ofG and a conjugate of every unipotent element
ofG;

(b) H contains a conjugate of every element of G;
(c) The characteristic ofk is 2 and (G, H) = (Sp{2m, k), O(2m, k)) or (G, H) =

(G2(k),A2(k).2).

Proof. Clearly (b) implies (a).
We next show that (a) implies (c). So assume that H satisfies (a). If H is maximal

(among closed subgroups), then Theorem C of [SaSe] shows that (c) holds.
Let M be a maximal closed subgroup of G containing H. Then (G, M) satisfies

the conclusion of (a) as well and so as noted, (G, M) satisfies (c). In particular, k
has characteristic 2. Moreover, H must have maximal rank and is not connected.

If G = G2(k) and if is a proper (disconnected) rank 2 subgroup of M, then the
only possibility is that H is contained in the normalizer of a maximal torus, which
does not contain a conjugate of every unipotent element.

So we may assume that G = Sp(2m, k). If m = 1, then M is the normalizer of a
maximal torus T and M/T has order 2 and so clearly H = M. So consider the case
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that G = Sp(2m,k),m > 2. If H acts reducibly on the natural module V for G,
then H is contained in the stabilizer of a proper subspace W. Take W of minimal
dimension. Since H is not contained in a parabolic subgroup, it follows that this
subspace is nondegenerate. The stabilizer of such a subspace is not contained in a
conjugate of M, a contradiction.

Suppose that the connected component Ho does not act irreducibly on V. Then
either H is contained in a maximal subgroup not contained in O(2m, k), a contra-
diction or V = Wi © W2, where Ho is irreducible on each Wi and Wi is a maximal
totally singular subspace of dimension m. Thus, H is contained in the stabilizer of
a pair of complementary totally singular subspaces. We claim that H contains no
transvections. A transvection in H cannot swap the two spaces and so would have
to stabilize each Wi. The action on W\ is dual to that on W2 and so the element is
not a transvection.

Thus, HQ acts irreducibly on V, whence Ho is semisimple. Since H has rank
m, this forces HQ to contain the connected component of O(2m, k), whence H =
0(2m,k).

All that remains is to verify that (c) implies (b).
This is well known for the first family (see [SaSe], Lemma 4.1) The latter case is

an easy consequence of the first case (since G2(k) < Sp(6, k), Sp(6, k) = 0(6, k)A<x.2
and A2.2 = G2(k)n0e(k)). D

3. GROUPS OF BOUNDED RANK I

In this section and the next, we consider the case where the groups have bounded
rank. We will prove Theorem 1.3 in this case. The next section deals with subgroups
containing a maximal torus. We deal with the other cases in this section.

As we have observed, as stated it is an asymptotic result. We only need to pro-
duce a S so that the proportion of derangements is at least 6 for all but finitely many
cases. If this fails, there would be a sequence with the proportion of derangements
all less than <5. Thus, Theorem 1.3 is an asymptotic result (as noted, eventually
we want a non-asymptotic version). Since the groups have bounded rank, we may
assume that they have fixed type X(qi) with X a simple algebraic group and only
the field size is varying. We can use methods of algebraic geometry and algebraic
groups to study this situation.

We recall that F*(H) is the generalized Fitting subgroup of H. See [Al] . In
particular, F*(H) simple just means that F*(H) < H < Aut(H). There is no
harm in considering covering groups of almost simple groups since all the maximal
subgroups will contain the center.

Fix a type of simple algebraic group X of rank r. Let a be an endomorphism of
X with fixed point group Xa of finite order. We will typically write X(q) = Xa if q
is the absolute value of the eigenvalues of a on the character group of the maximal
torus T of X. In the case of the Suzuki or Ree groups q will not be an integer. This
will cause no problems. Indeed, in those cases, one knows all the maximal subgroups
and it is quite easy to obtain our results. We may take X simply connected or of
adjoint type or anything in between - this allows us to obtain results for Chevalley
groups generated by inner-diagonal automorphisms.
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The maximal subgroups H of X(q) (which do not contain F*(X(q))) are of four
types:

(1) \H\ < N for some fixed TV = N{X);
(2) H = NX(q)(X(q')) for some q' dividing q (this includes the twisted forms,

e.g., 2£6(g) < Ee(q2));
(3) H = Ya where Y is a proper cr-invariant algebraic subgroup of X of rank

s < r and the connected component of Y is semisimple;
(4) H — Ya where Y is a proper cr-invariant algebraic subgroup of X of maximal

rank r.

This is well known for the case of classical groups (see [A2]). If H is of exceptional
type, this follows in a very precise way from results of Liebeck and Seitz [LSI]. See
the remarkable paper of Larsen and Pink [LaP] for a classification free proof of
the previous result. Note that if Y is a maximal cr-invariant positive dimensional
algebraic subgroup, then either Y has maximal rank or the connected component
of Y is semisimple (for if the unipotent radical of Y is nontrivial, Y is a parabolic
subgroup by the Borel-Tits theorem and if it contains a normal torus, then Y
contains a maximal torus).

We also note the following result.

Lemma 3.1. If X is a simple connected algebraic group and Y is a proper positive
dimensional a-invariant subgroup , then Y is contained in a maximal proper closed
a-invariant subgroup. Moreover, there is a bound m — m(X) for the number of
connected components for any maximal cr-invariant closed subgroup.

Proof. Let Y\ be a proper closed u-invariant subgroup of X containing Y that has
maximal dimension. Let Yo be the connected component of  Then Nx(Yo) is
maximal among cr-invariant closed subgroups (for any such overgroup would have
the same dimension as Yo whence would have connected component Yo).

All that remains is to prove the statement about the number of components. So
we may assume that Y is a maximal proper closed cr-invariant subgroup. If Yo has
a unipotent radical, then Y is contained in a parabolic subgroup and in particular
is connected.

So assume Yo is reductive. If Yo is not semisimple, then the connected component
of Z(YQ) is a nontrivial torus and Y is contained in the normalizer of this torus,
whence we may take Y to be the normalizer of this torus. Thus, Yo contains a
maximal torus and so contains its centralizer (which is contained in the maximal
torus). By the Prattini argument, any closed subgroup containing a maximal torus
has at most \W\ components, where W is the Weyl group of X.

So we may assume that Yo is semisimple. Let C = CX(YQ). Then C is finite
(since C D Yo is finite). If X is classical and Yo is not simple acting irreducibly
on the natural module, then the result follows by [A2] which gives all possibilities
for Y (although the fields are assumed to be finite, the proofs go through without
change for the algebraic closure - see [LS3] for a treatment of the algebraic group
case). If Yo is simple acting irreducibly, then C < YQ and Y/YQ is bounded by the
size of the (algebraic) outer automorphism group and so has order at most 6.
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If X is exceptional, all such maximal subgroups are classified (see [LS2], Corollary
2 - we only need to handle the case where F*(Y) is not quasisimple, such maximal
subgroups were classified much earlier) and the result follows by inspection.

Let Mi denote the maximal subgroups in the corresponding families i = 1, 2,3
or 4 above.

We will deal with each of these families separately. In this section, we deal with
the first three cases. In the next section, we deal with the remaining case. The
purpose of this section is to prove:
Theorem 3.2. l im, -^ | U?=1 UMeMiM\/\X(q)\ = 0.

This is not true for Mi (compare with the result Lemma 2.2 for algebraic groups).
We first start with some general known results.
Lemma 3.3. Let U be a unipotent connected group of dimension r defined over the
finite field Fq. Let r = gcr where g is an algebraic automorphism of U and a is the
q-Frobenius map. Then \UT\ = qr.

Proof. Suppose that Y is a connected T invariant subgroup of U. The result would
follow by induction and Lang's theorem (since \UT\ = \YT\\(U/Y)T\). So we may
assume this is not the case. It follows that U is abelian of exponent p (where p is
the prime dividing q). Then X is just a product of copies of the field and another
application of Lang's theorem (applied to Aut(X)) gives that T and a are conjugate
via an element of Aut(X) and the result follows.

Lemma 3.4. Let x € X(q). Let C be the centralizer of x in X(q).

(1) If x is unipotent, then \C\ is divisible by qr.
(2) |C|>(g-ir.

Proof. If x is unipotent, the result follows since all unipotent classes are known
as well as their centralizers. Aside from the cases of Suzuki and Ree groups, this
also follows from the previous lemma. Let B be a a invariant Borel subgroup with
unipotent radical U containing x and consider the connected component of Cv(x).
Since regular unipotent elements are dense in B, it follows that dimCs(x) > r and
so C has order divisible by the cardinality of the subgroup of fixed points in Cu(x).
By the previous lemma (applied to cr acting on U), this cardinality is divisible by
qr. A variation of the previous lemma could be applied to the case of Suzuki and
Ree groups.

We note that the result holds for semisimple groups as well.
We prove the second statement more generally for reductive groups of rank r.

Write x = su — us with u unipotent and s semisimple. Pass to the connected
component of D of Cx(s)- This is still reductive of rank r. Write D = AB with
A a central torus in C and B = [C, C] semisimple with A of rank a and B of rank
b. Since a torus of rank a over the field of q elements has at least size (q — 1)° and
CB(?)(U) has order divisible by qb, we see that \C\ > (q — l)aqb, whence the second
statement holds.

The following was originally proved by Steinberg in the case of simply connected
X. See [Ca] or [H2].
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Lemma 3.5. The number of conjugacy classes of semisimple elements in X(q) is
at most qr with equality if X is simply connected.

The next result follows from [GL].
Lemma 3.6. The proportion of regular semisimple elements in X(q) is greater than

The previous result indicates that the proportion of elements which are not
semisimple regular goes to 0 linearly with 1/q. The same is thus true for the
set of derangements which are not semisimple regular. Thus, it suffices to consider
the set of derangements which are semisimple (and indeed regular). We will do so
in the next two sections without further comment.
Lemma 3.7. | UMZMI M\/\X(q)\ -> 0 as q —> oo.

Proof. Ujf6M,M is a union of at most N' conjugacy classes of elements for some
N' (that depends only on N and so only on X). Thus the union has order at most
\X{q)\N'/{q - l)r and the result follows.

Lemma 3.8. | UM€M2 M\/\X(q)\ - »0as? -»oo.

Proof. Consider X{q'). The number of semisimple conjugacy classes in X{q') is at
most (q')r. Let S(q',q) denote the union of the semisimple conjugacy classes of
X(q) intersecting X(q'). Thus,

\S(q',q)\ <\X(q)\(qr/(q-l)r.

In the case of the Suzuki or Ree groups, we write X = X(p2a+1) (this conflicts
slightly with our notation above). The number of possible classes of subfield groups
is the number of distinct prime divisors of 2a +1, whence the estimate above shows
that the union of the semisimple elements in any subfield group is certainly at most
J2b \X(q)\qr/b/(q — l ) r , where b ranges over prime divisors of 2a + 1. This yields
the result.

Consider the remaining cases. Write q = pa. Note that for each choice of q'
(corresponding essentially to a prime divisor of a), there are at most 2c choices
for S(q,q') where c is the order of the group of outer diagonal automorphisms
(6c in case X = D4). This is because we may take a — ocrfqi where r is a graph
automorphism, a is a diagonal automorphism and fq is the standard Frobenius (any
two such elements in the coset with the same order are conjugate up to diagonal
automorphisms - see 1.7.2 [GoLy]). In fact as noted above, we only need to consider
semisimple elements, the diagonal outer automorphisms will not make a difference,
but we do not need to use this.

Lemma 3.9. | UMEM3 M\/\X{q)\ —> 0 as q —> 00.

Proof. It follows by the theory of high weights if X is classical [GKS] and by [LS2] if
X is exceptional that there are only finitely many conjugacy classes (with a bound
depending only upon X) in M3. Thus, it suffices to show the result for a fixed
type of subgroup Y < X. Then Ya has at most of conjugacy classes of semisimple
elements (where c is the number of connected components of Y - note that c is
bounded in terms of X). It follows that \Ug€xaY^\ < \Xa\cq3 /(q—l)r, whence the
result.
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This completes the proof of Theorem 3.2. The next section deals with

4. MAXIMA L RANK SUBGROUPS

In this section we consider M.\. It follows from the results on algebraic groups
that the proportion of derangements will be positive in this case. For the Suzuki
and Ree groups, one just inspects the maximal rank subgroups and the result about
derangements follows quite easily. We assume for the rest of the section that we
are not in any of those cases. We remark again that it suffices to consider only
regular semisimple elements (since as q > oo, the proportion of regular semisimple
elements is 1 + 0{l/q)).

Keep notation as in the previous section. Let Y be a cr-stable subgroup of
X of maximal rank and H = Ya. The possibilities are that Y is a parabolic
subgroup (maximal with respect to being cr-stable) or is reductive. Let YQ denote
the connected component of Y. Let Ho = (Y0)a. This is a normal subgroup of H.

There exists a cr-stable maximal torus T contained in a Borel subgroup B of X.
A maximal torus of Xa is Sa where S is a u-stable maximal torus of X. There is
a notion of nondegenerate maximal tori (for example, if X = SL(n), then over the
field of 2-elements, a maximal torus might be trivial, see §3.6 in [Ca] for details).
We will just note that if the maximal torus contains a regular semisimple element,
then Nxa (Sa) = Nx(S)a and so is nondegenerate - this follows since S = Cx{Sa)-
Moreover (for fixed X), if q is sufficiently large, all maximal tori contain regular
semisimple elements (indeed almost all elements are regular semisimple).

Let W be the Weyl group of G (more precisely identify W = Nx (T)/T). Consider
the semidirect product W(a). There is a bijection between conjugacy classes of
maximal tori in Xa and W-classes of elements in the coset aW (see [SpSt] or
[Ca]). In particular, if a is a field automorphism, a commutes with W and so
the correspondence is with W-conjugacy classes (this latter fact is still true for all
groups of type A and type Dn with n odd).

Let Tw denote a maximal torus of Xa corresponding to aw. Let Nw be the
normalizer in Xa of Tw. Then \NW : Tw\ = |Cw(<nu)|. Let f(w) be the size of
W-class of aw. So f(w) = \W : Cw(crw)\ = \W\\TW\/\NW .

In particular, we see that

| UgeXr Tl\l\Xa\ < \TW\/\NW\ = f(w)/\W\.

Since a semisimple regular element lies in a unique maximal torus, it follows that
the union of all regular semisimple elements of Xa that are conjugate to an element
of Tw has cardinality at most |XCT|/(w)/|M^|.

Since the proportion of elements which are not semisimple regular tends to 0 as
q —> oo and the same is true for each maximal torus, it follows that the inequality
above becomes equality as q —> oo.

We first show that the collection of elements which are conjugate to an element
of H but not Ho is small. We need the following result. A very easy result (see
Proposition 4.3 below) gives an upper bound (always at least 1/2) for the proportion
of derangements contained in HQ (assuming that H  Ho).
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Lemma 4.1. Let G be a connected reductive algebraic group with a an endomor-
phism ofG such that Ga is finite. Assume that all eigenvalues of a on the character
group ofT have absolute value q. Let S and T be distinct cr-stable maximal tori of
G. Then \Ta : (S D T)a\ > (q - l)/2.

Proof. Consider a counterexample with dim G minimal. Since G is reductive, G
is the central product of Z and H where H is semisimple and Z is the connected
component of the center of G. Since Z is contained in every maximal torus, there
is no loss in taking G = H to be semisimple. We can replace G by its universal
central extension (since the center will be contained in every maximal torus) and
so assume that G is a direct product of simply connected simple algebraic groups.

If S n T = Z(G), the result is clear (pass to the simple case). Otherwise, we can
consider H = CG{X) with x G S fl T \ Z(G). Then H is connected and reductive
and S, T are maximal tori in H.

Note that if G = SL(2), we do have equality in the previous result.
Proposition 4.2.

lim \
q—>oo

Proof It suffices to consider a single coset yYo for some element y G Ya \ Yo .
We will obtain an upper bound on the number of conjugacy classes of semisimple

regular elements of Xa that intersect yYo. We will do this by bounding the number
of Ya classes in that coset.

Suppose that u G yYo (~)Xa is a semisimple regular element. Then the centralizer
of u in the algebraic group is a cr-stable maximal torus T. Let S be a a stable
maximal torus of Yo containing T (~l Yb- The number of (Yb)a conjugates of u is

Since [.Ŝ l < (q + l)r, it follows that the number of conjugates of u in the coset
u{Yo)a is at least \{Yo)a\qr~1/2 (up to a small error term). This implies that there
are at most 2qr~1 classes of semisimple regular elements in this coset (again up to
a term of smaller order). Since each class has size approximately O(\Xa\)/qr, the
union of these classes has size O(\Xa\/q) as required.

We now consider the connected component Yo and its fixed points Ho- We first
note that if Ho =fi  H, then we have the following easy estimate for derangements.

Lemma 4.3. If H ^ Ho, then | UgeXr, # o l / l ^ l < 1/\H  Ho\ < 1/2.

Proof. Since H normalizes Ho, Ugexa Ho is the union where g ranges over a transver-
sal of Xa/H, whence the cardinality of this union is less than \Xa : -Hil-Hol =
\Xa\/\H : Ho\. a

We just remark that Lang's theorem implies that \H : HQ\ is the number of
cr-stable cosets of Yo in Y.

Let 5 be a a stable maximal torus of YQ. Then S = xTx~x where x~xa{x) G
N(T). Note that x~1N(S)x = N(T). So we have subgroups T < x-1NH(S)x <
x~1NY{S)x < N(T) and this gives rise to corresponding subgroups 1 < Wo <
Wi < W in W the Weyl group of T.
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The a-stable maximal tori of H (up to iJCT-conjugacy) are of the form ySy~l =
yxT(yx)~1 where v := y~lo{y) e NH(S). Moreover, we see that S is conjugate to
Tw where

w = {yxyX(r{yx)T = x~1y~la{y)(r{x) € TW0,

where T = x~la(x)T e W.
Thus, setting R to be the union of all Xa conjugates of maximal tori of Ha,

we see that |i?|/|Xa| < 1}2f(w)/\W\ where the sum is a set of representatives F of
conjugacy classes in W that are represented by elements in TWQ.

We note that R is precisely the set of conjugacy classes of regular semisimple
elements conjugate to an element of Ha (since the centralizer of such an element
will be a maximal torus in H). Thus, we have an upper bound for the proportion
of regular semisimple elements in Xa that are not derangements in Xa/Ya. By
Proposition 4.2, we can replace Ha by Ya (up to an O{l/q) term) and we can
consider all elements (not just regular semisimple elements) by introducing another
such term (by [GL]) and so we see that 8{Xa, Ya) > 1 - J2wer f(w)/\w\ + °(lli)-
We just need to bound X^er f(w)/\W\ away from 1.

There is one very easy case - if a does not involve a graph automorphism and
Wl  ̂ W, then 1 - J2wer f(w)/\W\ < 8{W, W/Wt). Note in this case f(w) is just
the size of the PF-conjugacy class of w. This can be computed for the exceptional
Weyl groups. In any case, for bounded rank, we can even use the Jordan bound
to see this is bounded away from 1. For classical groups, using [D], [LuP], [FG1],
[FG2] we see that this quantity will typically be at most 2/3.

If <7 does involve a graph automorphism, then we consider the group Z defined
above. Since a stabilizes both W\ and WQ, we can define Z\ and ZQ in an obvious
manner. Note that in this case f(w) is the size of the W-class of aw. Thus, we still
have a bound 1 - X^er f(w)/\W\ < 6(Z, W, Z/Zi).

We note by inspection that unless W = W\, there are always derangements in the
coset aW. Since except for type D4, W can be thought as of a subgroup of index 2
in Z (only the graph automorphism makes a difference), exceptionality would force
\W : W\\ to have odd index.

There are only a few cases where W = W\. In all cases, we see that whenever this
happens H ^ HQ and so the upper bound of 1/2 + O(l/q) holds. One possibility
is that H is a maximal torus. In that case, we note directly that f{w)/\W\ < 1/2.
Another possibility is X = G% and H = Ai- Similarly, there is the possibility of
(X,Y) = (Fi,Di).

The only other such possibility for X classical is in characteristic 2 with X of
type Bn and Y of type Dn. Then Wo has index 2 in W = W\. In this case, one sees
that there are two possible forms of Ya (i.e. two conjugacy classes corresponding the
single Xa class of a stable conjugates of Y) - the two forms of orthogonal groups.
One form of the orthogonal group has maximal tori Tw with w € Wo and the other
the complement (note a maximal torus is contained in a unique orthogonal group
in the symplectic group). Thus, S(Sp{2m, 2a), O£(2m, 2°)) = 1/2 + O(l/2a).

We note that our analysis works for any form of the Chevalley group and for any
fixed coset in the group of inner-diagonal automorphisms.

Thus, we have proved:
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Theorem 4.4. Let r be a positive integer. Let S be a simple Chevalley group of
rank at most r over the field of q elements and S < G with G contained in the group
of inner-diagonal automorphisms of S. Let X be a transitive faithful G-set. Then
there exists 6 > 0 such that 6(G, S,V) > 6 + O(l/q) for any transitive G-set V.

We will give an explicit 6 in the sequel. Note that the error term depends only
on r (and we do remove that dependence in [FG1], [FG2] and [FG3]).

If X is classical, then the possibilities for Y are rather limited. There is the
special case in characteristic 2 when X is symplectic and Y is an orthogonal group.
The remaining cases are essentially when Ya is the group preserving a decomposition
of the space or Ya is an extension field group (both forms of Y < CI Sm where C is
a classical group on a subspace). In the bounded rank case, we have seen that we
could work with the connected piece.

If the rank increases, there are two added complications. If q is fixed, then we
can no longer deal with only semisimple regular elements (the error term may be
larger than the main term). Even if q increases, the error term associated with
reducing to the connected component may be increasing with the rank. Thus, the
analysis is much more difficult. See [FG1] and [FG2]. We also want to produce an
explicit S that is valid for either all cases or all but a specified finite set of cases.

We close this section by considering a few examples.

(1) Let G = PSL(n, q) and let H be the stabilizer of a fc-dimensional vector
space. In this case H is the set of fixed points of a connected subgroup
and so we see from the analysis above that for a fixed n, limg_>oo 6(G, H) =
S(Sn,Yk) where Yk = Sk x Sn-h is a Young subgroup. By [D], S(Sn,Yk) >
1/3 and by [LuP] (and also by [FG1]), 5(Sn,Yk) -» 1 as k -> oo (for
k < n/2). This example holds more generally for any parabolic subgroup
- the limiting proportion of derangements is precisely the proportion of
derangements of the Weyl group acting on the cosets of the corresponding
parabolic subgroup.

(2) Let G = Sp(2n, q) with q even. Let H = Oe(2n, q). Then H is the set of a
fixed points on some a invariant conjugate of O(2n) < Sp(2n). The Weyl
group of the connected component of O(2n) has index 2 in the Weyl group
of Sp(2n) and so we see that limg_>oo S(G, H) = 1/2 (each type corresponds
to maximal tori in one coset of the Weyl group of £2). Note that a regular
semisimple element is contained in precisely one orthogonal group.

(3) Let G(q) = E&(q) and H{q) = Dg(q)- Since the corresponding algebraic
subgroup is connected, it follows that

lim 6(G(q),G(q)/H(q)) = S(W(E8),W(D8)).
q—too

5. GENERATION AND DERANGEMENTS

In this section, we indicate how some generation results follow immediately from
our results. See [FG4] for more results about probabilistic generation that follow
from the results in this paper, [FG1], [FG2] and [FG3].

If G is a finite simple group, set PG(X) the probability that a random y € G
satisfies G = (x,y). Let PQ be the minimum of PG{X) over all nontrivial x. It
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follows by [GK] that PQ > 0. One can easily deduce the following result (a special
case of [GLSS]):
Theorem 5.1. Let X be a type of simple algebraic group. Then one has that

Recall that a group G is generated invariably by the elements x\,  , xm if the
elements yi,-  ,ym generate G whenever yi is conjugate to Xi for i = 1,  , m.
Luczak and Pyber [LuP] proved the following conjecture of McKay, useful in com-
putational Galois theory. (We make the constants in Theorem 5.2 more explicit in
forthcoming work).
Theorem 5.2. (JLUP]J There exists N so that for all n > N and all e > 0, there
is a constant C = C(e) so that C permutations, chosen from Sn uniformly and
independently, generate Sn invariably with probability at least 1 — e.

For Chevalley groups of bounded rank, we have the following result.
Theorem 5.3. Let X be a type of simple algebraic group. For any e > 0, there is
a constant C = C(e) (not depending upon q) so that C elements, chosen from X{q)
uniformly and independently, generate X(q) invariably with probability at least 1 —e.

Proof. The probability that some j / i , . . . , ym generate a maximal subgroup in Mi, i <
3 tends to 0 as q —* oo by Theorem 3.2. Indeed our proof shows that this proba-
bility is O(l/qm). There are at most d (depending only on X) conjugacy classes
of maximal subgroups in Mi and the probability that some conjugate of a random
element x € G is contained in one is at at most 1 — 8 for some 6 > 0 (for some 8 de-
pending only on X). Thus, the probability that some collection of yi are contained
in one of these maximal subgroups is at most d(l — 8)m. So for q sufficiently large,
we can choose an m so with probability greater than 1 — e, m random elements
invariably generate X(q). Note that we are ignoring the possibility that X{q) may
not be simple - however, this quotient is bounded in terms of X and so is not a
problem.

We will prove the analogous result for classical groups of unbounded rank in a
future article.

6. EXCEPTIONALITY AND DERANGEMENTS

In this section, we discuss the notion of exceptional permutation representations
and its connection to curves. See [GMS] for a more elaborate discussion of these
ideas.

Let G be a normal subgroup of A. Let X be a transitive A-set that is also
transitive for G. We say that (A, G, X) is exceptional if A and G have no nontrivial
common orbits on X x X (the trivial orbit being the diagonal). We note the following
easy example. See [GMS] for more examples and some classification theorems.

Recall that a Hall subgroup H of a finite group G is a subgroup with gcd(|iJ|, \G :

Theorem 6.1. Let A be a finite group and G a normal Hall subgroup. Then A =
GD for some complement D (by the Schur-Zassenhaus theorem). Let H = NA{D)
and X = A/H. Then {A, G, X) is exceptional.
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Proof. Suppose not. We can identify X with the set of conjugates of D. Let
K = CG{D) = G l~l H. It is easy to see that exceptionality is equivalent to K and
H having no common orbit (other than D itself). Suppose D ^ E is in a common
orbit. Then the length of this orbit divides \K\ and in particular has order prime
to \D\. Thus, \H : NH(E)\ has order prime to D, whence NH(E) contains a Hall
7r-subgroup Di of H (where w is the set of primes dividing \D\). Since D and Di
are both Hall 7r-subgroups of H, they are conjugate in H (by the Schur-Zassenhaus
theorem), whence D normalizes some fiT-conjugate of E. So we may assume that
D normalizes E. Then DE is a 7r-subgroup, whence D — E, a contradiction.

In particular, this result applies to the case G is a Chevalley group defined over
the field of qb elements, b is relatively prime to \G\ and we take D to be the cyclic
group of order b of field automorphisms of G. Specifically, take G = L(2,pb) with
b any prime not dividing p(jp2 - 1). See [GMS]. In this family of examples, the
degree of the permutation representation has size less than p3b and the proportion
of derangements is less than 1/6 (since all derangements are contained in G and
\A: G\ = b). Thus, even for almost simple groups acting primitively, the proportion
of derangements can be less than any given e > 0. The best general result one could
hope for is S(A, X) > Cjlog \X\. See §8 for such a result.

Some easy facts about exceptional triples are (see [FGS], [GW], [GMS]):

(1) If A/G is generated by the coset aG, then (A,G,X) is exceptional if and
only if every element in the coset aG has a unique fixed point or equivalently
6(A,G,X) = 0.

(2) If A/G is cyclic and (A, G, X) is exceptional, then so is (A, G, Y) where Y
is the image of a morphism of A-sets from X is an A-morphism.

In particular, xiA/G has prime order and (A, G, X) is exceptional, then S(A, X) <
IGI/1̂ 41 (since all derangements are contained in G).

So the analog of Shalev's conjecture for almost simple groups fails. In future
work, we hope to obtain a result that says that Shalev's conjecture holds except for
certain primitive actions (mostly related to the case where the point stabilizer is the
set of fixed points of some Lang-Steinberg endomorphism of an algebraic group).

As we have remarked, S(A, G, X) is related to images of rational points for maps
between curves and higher dimensional varieties over finite fields. The connection
is through the following estimate that follows from the Cebotarev density theorem
(see [GTZ] or [GW] for more details).

We make this more precise.
Let U, V be smooth projective curves defined over F := Fq the field of q elements.

Let U{qa) denote the Fq*  rational points off/. Let / : U —» V be a separable rational
map of degree n also defined over F. Let F(U) and F(V) be the function fields of U
and V over F. Let A be the arithmetic monodromy group of this cover (i.e. A is the
Galois group of the Galois closure of F(U)/F(V)) and G the geometric monodromy
group of the cover (the subgroup of A which acts trivially on the algebraic closure
of F). Let H be the subgroup of A trivial on F(U) (so \A:H\—n). Note that A/G
is cyclic. Let xG be a generator for A/G. It follows from the Cebotarev density
theorem (cf. [GTZ]) that:



116

Theorem 6.2.
\f(U(qa))\ = 1 - 6((xa, G), G, H) + 0{qa'2).

The special case where S((xa,G),G,H) = 0 gives rise to exceptional covers. In
this case, it is not difficult to show that / is in fact bijective on rational points. Of
course, this cannot be the case if xa G G. See [FGS], [GMS] and [GSa] for more
about exceptional covers. By [GSt], any group theoretic solution does give rise to
some cover of curves with the appropriate property.

7. DERANGEMENTS IN A COSET

In this section, we present a proof of the Guralnick-Wan result - Theorem 1.6
that is a bit different than the one given in [GW]. It is more in the spirit of the
proof in [CC] and an unpublished proof of Marty Isaacs (both for the case A = G).

Let G be a normal subgroup of A with A/G generated by aG. Suppose that A
and G both act on the finite set X. Let f(g) be the number of fixed points of g on
X. We note the following well known easy result (cf. [GW]).
Lemma 7.1. 5D9gG f(a9) ~ \G\C> where c is the number of common A,G-orbits
on X.

Now suppose that A and G are both transitive on X (and so in particular c = 1
in the previous result). Let H be the stabilizer of a point and set K = H n G.

Let A denote the derangements in the coset xG. There must be some element
in the coset with a fixed point and so we may assume that a € H.

We split xG into three disjoint sets, xK, A and T (the complement of the union
of xK and A).

Breaking up the sum into the sum into two pieces, one over xK and the other
the remaining terms, we see that

\G\ = £ f(a9) + E Ka9) *  C\K\ + \°\ ~ \K\ ~ N.

where d is the number of common H, K orbits on X (of course, d > 1).
This yields |A| > (d-l)\K\ or 6{A,G,X) > ( d - l ) / n.
If d = 1, then it is easy to see that A is empty (using the fact that the average

number of fixed points is 1). So we obtain:
Theorem 7.2. If (A, G, X) is not exceptional, then 6(A, G, X) > 1/n.

If d > 3, we see that S(A, G, X) > 2/n. It would be interesting to characterize
those groups where d — 2 (this includes the case where G is 2-transitive) and
classify the actions where S(A, G, X) < 2/n (presumably only Probenius groups
and exceptional actions).

8. PRIMITIVE GROUPS

As we have seen in the previous section, we cannot hope to extend Shalev's
conjecture to the almost simple case. There are many more examples in case of
affine primitive groups and also diagonal actions (again related to exceptionality -
see [GMS] for examples).
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In this section we show how one can obtain a weaker result for primitive groups
with no normal abelian subgroup (so in particular as long as the degree is not a
prime power). The example in the previous section shows that one can do no better
than this theorem. We do hope to classify which primitive representations have few
derangements.
Theorem 8.1. Let G be a primitive group of degree n and assume that G has no
normal abelian subgroup. Then there exists a positive constant 6 such that 6(G, X) >
(5/logn.

We prove this by reducing to the almost simple case and then to the simple case.
We first need some auxiliary lemmas.
We will use the following result (which depends on the classification of finite

simple groups - see [GMS] for a proof).
Lemma 8.2. Ifh is an automorphism of a finite nonsolvable group J, then Cj(h) =/=
1.
Lemma 8.3. Let G be a transitive permutation group with a regular nonsolvable
normal subgroup N acting on X. Then 8{G,X) > 1/2.

Proof. We can identify N with X. A point stabilizer H is a complement to N and
the action on X is equivalent to the conjugation action of H. If h £ H, then the
number of fixed points is just |CJV(/I)I > 1 (by the previous result). Thus every
element either has zero or at least 2 fixed points. Since the average number of fixed
points is 1, this implies that 6(G, X) > 1/2.

We say that G preserves a product structure on X if X can be identified with
Y x ... x Y (t > 1 copies) and G embeds in Sy I St in its natural action (Sy is
the symmetric group on Y and each of the t copies acts on one copy of Y, the
St permutes the coordinates). In particular, there is a homomorphism TT from G
into St. We assume that this image is transitive (which is always the case if G is
primitive on X). Let G\ denote the preimage of the stabilizer of 1 in TT(G). SO G\
acts on Y. If G is primitive, it follows that G\ is as well [AS].

Lemma 8.4. 6{G,X) > S(GuY)/t.

Proof. The proportion of elements in G\ is 1/t. If g £ G\, then g a derangement
on Y implies that g is a derangement on X.

Note in particular that log \X\ = ilog |Vj.
By examining the possibilities of primitive permutation groups (see [AS]) and

using the two previous lemmas, there are only two cases remaining - G is almost
simple or X is of full diagonal type (we explain this more fully below). Let H be
a point stabilizer. In particular, G has a unique minimal normal subgroup N a
direct product of t copies of a nonabelian simple L and either t = 1 or we may
view H fl N = L as the diagonal subgroup of N (note that all diagonal subgroups
are conjugate in Aut(TV) so there is no loss of generality in assuming that H 0 N
is the canonical diagonal subgroup - alternatively, the arguments below are valid
with H (~1 N any diagonal subgroup).

We next handle the diagonal case.
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Lemma 8.5. Let G be a finite group with a unique minimal normal subgroup
N = L*  with L a nonabelian finite simple group and t > 1. Let D be a diagonal
subgroup of N and assume that G = NH with H = NQ{D). Then S(G,G/H) >
1/log, \G/H\.

Proof. Suppose that g € G has a unique fixed point on G/H. We claim that g is
transitive on the t conjugates of L. Conjugating by an element of the transitive
subgroup N allows us to assume that g € H. Since g has a unique fixed point, it is
invariant under CG(9) and so Ca(g) < H. In particular, Cjv(ff) < D. This implies
the claim - for if g leaves invariant some proper factor JVi of N, then CNX (g) ^ 1
(by Lemma 8.2) but JVi n D = 1.

Now the proportion of elements in G that induce at i-cycle on the t conjugates
of L is at most 1 — 1/t (1/i of the elements normalize L). Thus, the proportion
of elements with a unique fixed point is at most 1 — 1/t, whence at least half the
remaining elements must be derangements. Thus, the proportion of derangements
is at least l/2t. Since \G : H\ = IL^'1 > 60*-1, we have It < (t - I)log260 <
log2 \G/H\.

n
One can show that in most cases above, one can obtain an estimate not involving

the log term. However, if the action of G on the ^-conjugates of L is cyclic of order
t and t does not divide the order of L, then in fact one can do no better than the
previous result (this is another example of exceptionality).

If G is almost simple, then we can apply Theorem 1.3. Note that this implies
the same result for almost simple groups as long as the socle of G has bounded
index (with perhaps a different constant). Indeed, in the sequel we actually prove
the result for all Chevalley groups contained in the group of inner diagonal auto-
morphisms. Since the group of graph automorphisms always has order at most 6,
we only need worry about field automorphisms. A simple inspection shows that the
group of the field automorphisms has order at most log2 n where n is the degree
of the permutation representation. Thus, we have proved our result follows from
Theorem 1.3. We have proved Theorem 1.3 in the bounded rank case. As we noted
in the introduction, the complete proof of Theorem 1.3 is contained in [FG1], [FG2]
and [FG3].

9. NUMBERS OF CONJUGACY CLASSES IN FINITE CLASSICAL GROUPS

To conclude this paper we record some upper bounds on the number of conjugacy
classes in the finite classical groups. These are treated fully in [FG2] where the
results are used as a key ingredient in proving Theorem 1.3 and more. We mention
that upper bounds on numbers of conjugacy classes are also of interest in random
walks [Gl], [LiSh] and for computation of Fourier transforms on finite groups [MR].

The bounds we present are of the form cqr where r is the rank and c is a small
explicit constant. The paper [LiP] had previously established the bound (6q)r and
the paper [Gl] had established bounds such as cq3r. Thus our bounds in Theorem 9.1
are sharper for classical groups. For exceptional groups, one can compute precisely
the number of classes as a monic polynomial in q (see [H2] for some discussion of
this and references). In even characteristic O(2n + l,q) is isomorphic to Sp(2n,q)
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so we omit this case. Here we only state the results for a specific form of each
group. This gives bounds for the simple groups using the fact that the number of
conjugacy classes decreases when one takes homomorphic images and also using the
lemma below to pass to a subgroup or overgroup of bounded index. In [FG2], we
actually prove results for more forms of the groups.
Theorem 9.1. Let k(G) denote the number of conjugacy classes of a finite group
G.

(1) k(SL(2,q))<q + 4.
(2) k(SL(3,q))<q2+q + S.
(3) k(SU(3, q)) < q2 + q + 10.
(4) For n>4, k(SL{n, q)) < £  + q1+i.

(5) For n > 4, k(SU(n, q)) < 11.5 ( £ + 2 + 1) .

(6) k(Sp(2n,q)) < 12qn if q is odd.
(7) k(Sp(2n,q)) < 21Aqn if q is even.
(8) k{O {2n,q)) < 29qn if q is odd.
(9) klo^n^q)) < 19.5?" if q is even.

(10) k(SO(2n+l,q)) < 7.3&qn if q is odd.

Our proof of Theorem 9.1 uses generating functions for numbers of conjugacy
classes in finite classical groups [Lu], [M], [MR], [W] and is largely inspired by the
proof in [MR] that GL(n, q) has at most qn classes and that GU(n, q) has at most
8.26g™ conjugacy classes. However some new ingredients (combinatorial identities)
are required.

Let kp(G) denote the number of conjugacy classes of p'-elements of G. This is
also the number of absolutely irreducible representations of G in characteristic p.
If p does not divide G, then kp(G) = k(G) the number of conjugacy classes of G
(and also the number of irreducible complex representations). We also employ the
following useful lemma, which allows us to move between various forms of the finite
classical groups-at least when \G/H\ is bounded. This is proved in [Ga] for k(G).
The modification for p'-classes is straightforward and we omit the proof.
Lemma 9.2. Let H be a subgroup of G with G/H of order d. Fix a prime p.
Then kp(G) < dkp(H) and kp(H) < dkp(G). If H is normal in G, then kp(G) <
kp(H)kp(G/H).

In fact using generating functions it is possible to understand the asymptotic
behavior of the constant c in the bound cqn of Theorem 9.1. More precisely, we
establish in [FG2] the following result.
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Theorem 9.3. (1) limn-M)Ok<<GIfi iq» = 1

(3) KmB

(4) K m ^

is odd.

+oo gn — 2 nSiC1-1/?*) 2 ^ "
k(SO(2n+l,q)) _ proo (l-l/g4i)2 if ,„
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Computing with matrix groups*

William M. Kantor and Akos Seress

1 Introductio n

A group is usually input into a computer by specifying the group either using a
presentation or using a generating set of permutations or matrices. Here we will
emphasize the latter approach, referring to [Si3, Si4, Serl] for details of the other
situations. Thus, the basic computational setting discussed here is as follows: a
group is given, specified as G = (X) in terms of some generating set X of its
elements, where X is an arbitrary subset of either Sn or GL(d, q) (a familiar example
is the group of Rubik's cube). The goal is then to find properties of G efficiently,
such as |G|, the derived series, a composition series, Sylow subgroups, and so on.

When G is a group of permutations there is a very well-developed body of
literature and algorithms for studying its properties (see Section 2). The matrix
group situation is much more difficult, and is the focus of the remaining sections of
this brief survey. Sections 4 and 5 discuss the case of simple groups, and section 6
uses these to deal with general matrix groups. We will generally emphasize the
group-theoretic aspects of the subject, rather than ones involving implementation in
the computer systems GAP [GAP4] or MAGMA [BCP]. Thus, the word "efficiently"
used above will usually mean for us "in time polynomial in the input length of the
problem" rather than "works well in practice".

One can ask for the relevance of such questions to finite group theory. Certainly
computers have been involved in the construction of sporadic simple groups, as well
as in the study of these and other simple groups. We will make a few comments
concerning the expected uses in GAP and MAGMA of the results presented here.
However, our point of view includes a slightly different aspect: the purely mathe-
matical questions raised by computational needs have led to new points of view and
new questions concerning familiar groups.

2 Permutation groups

We begin with a brief discussion of the case of permutation groups. Here, X is a set
of permutations of {1,2,..., n} , and then the word "efficiently" will mean "in time

2000 Mathematics Subject Classification: Primary 20D06; Secondary: 20-04, 20P05, 68W30.
*  This research was supported in part by the National Science Foundation.
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polynomial in the input length |-X"|nlogn of the problem" (|X|nlogn is roughly
the number of keystrokes needed to input X into a computer). The problem is
that a small generating set X can specify a very large group G, so large that it is
absurd (both from the theoretical and practical points of view) to imagine listing
the elements of G.

The development of efficient computer algorithms for permutation groups was
begun by Sims [Sil, Si2]. If G'*' is the pointwise stabilizer of {1 , . . ., i — 1}, then

(2.1) G =  GW > GW  G M = 1

where \G\ = Ui'1 |Gw :G| i +1 I| and |G[i] :Gl i+1l | is the length of the orbit 0*  of i
under G'*' and hence is at most n. Sims developed a data structure to find (gen-
erators for) all of these subgroups G'1' and orbits 0*  simultaneously and efficiently.
This yielded \G\ using only elementary group theory: it did not involve structural
properties of groups.

The ideas behind the point stabilizer chain construction can also be used for
finding many other properties of G, such as the derived series, solvability, and
nilpotence, in polynomial time. The application most important from an algorith-
mic point of view is a Membership Test: given h € Sn, decide whether or not h G G;
and if it is, obtain h from the generating sets of the G'*'.

The above ideas have been implemented in GAP and MAGMA . A detailed de-
scription of point stabilizer constructions, and of many other permutation group
algorithms, can be found in [Ser2].

3 Matrix groups

We now turn to the case of a group G = (X) in which X is an arbitrary set
of invertible matrices over some finite field Fq. The questions remain the same:
efficiently find properties of G, such as \G\, solvability, a composition series, etc. If
X C GL(d,q) then the input length is \X\d2logq (since logg bits are required to
write each of the d? entries of a matrix)1. Once again a small generating set X can
specify a very large group G.

These problems seem to be very hard. The fundamental difference from the per-
mutation group setting is that there is no longer, in general, a decreasing sequence
of subgroups from G to 1 in which all successive indices are "tiny" (as was the case
in (2.1)), even with the very generous definition of "tiny" meaning "polynomial in
the input length". However, under reasonable additional conditions, and allowing
probabilistic components to the algorithms, this has become an actively studied
area. Some of the results use the exact representation of G on ¥dq implicit in the
above description (such as eigenvalues, minimal polynomials and so on), but most
of those we survey below avoid trying to deal with the exact representation.

First we need to know that random elements can be found. According to an
amazing result of Babai [Ba2], in polynomial time, with high probability one can
find independent, nearly uniformly distributed2 random elements of G = (X) <

s are always to the base 2.
2Meaning: for all j g G , ( l - e)/\G\ < Prob(a; = g) < (1 + e)/\G\ for some fixed e < 1/2.
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This tour de force involves combinatorial methods but nothing about the
structure of G; note that |G| is never known here. The results presented in this
survey all involve probabilistic estimates, and it is straightforward to have these
estimates take the "nearly" part of these "nearly uniform" elements into account;
therefore it is convenient to make believe that we actually have uniformly distributed
random elements when discussing later results. In practice, a heuristic algorithm
from [CLMNO] is used for finding random group elements, and that method is
adequate for algorithms in which correctness of the output is ultimately verified (cf.
[Ba3]). The points of view in [Ba2] and [CLMNO] are merged in the recent paper
[Pakj. Moreover, a new algorithm for random element generation is described in
[Co].

A second important tool in almost all of the results below involves the order of
an element g £ GL(d, q). In general, we do not want to assume that we can find
\g\; for example, testing that an element has order qd — 1 seems to require at least
having the prime factorization of the rather large integer qd — 1 (however, compare
Theorem 4.3 below and the remarks following it). Nevertheless, it is possible to
determine qualitative properties of \g\ without actually computing the order. There
are algorithms in [NePl, NiP, KS2] that can be used to decide whether or not \g\ is
divisible by some primitive prime divisor* of pk — 1 for a given prime p and given
exponent fc.

4 Nonconstructive recognition of simple groups

In the matrix group setting, the problem of recognizing simple groups began with
the following groundbreaking result:

Theorem 4.1 [NePl] There is a randomized polynomial-time algorithm which,
when given 0 < e < 1 and G = (X) < GL(V), outputs either "G definitely contains
SL(V)" or "G does not contain SL(^), and the probability that the latter assertion
is incorrect, given that G does contain SL(y), is less than e. 4

Thus, the algorithm gives an answer guaranteed to be correct if it is "Yes", but
there is a small probability that the answer "No" will be incorrect. Randomized
algorithms that may return an incorrect answer, where the probability of an incor-
rect output can be controlled by the user, are called Monte Carlo algorithms. A
special case of Monte Carlo algorithms is the class of Las Vegas algorithms: in this
case, an incorrect answer can be recognized, so we can achieve that the output is
always correct; however, the algorithm may report failure.

The proof of Theorem 4.1 relies heavily on CFSG5: the algorithm searches for
certain matrices in G that occur with high probability in SL(V), and then uses
nonalgorithmic consequences of CFSG to determine the subgroups of GL(d, q) con-
taining such elements. This theorem was followed by others [NiP, CLG1] that

3This means that \g\ is divisible by a prime divisor of pk — 1 that does not divide p1 — 1 whenever
1 < i < k. Such prime divisors exist for all but a very limited type of pairs p, k [Zs].

4In the future we will avoid e and merely say that such an algorithm succeeds "with arbitrarily
high probability".

5The classification of the finite simple groups.
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decide, similarly, whether or not a given subgroup G = (X) < GL(d, q) contains a
classical group defined on V as a normal subgroup.

These are nonconstructive recognition algorithms, outputting either "G contains
a normal classical group", or "G probably does not contain any classical group of
d x d matrices as a normal subgroup". They do not tell us how to "get" any
given elements of the classical group from the given generating set (e.g., elementary
matrices in the situation of the above theorem).

Of course, there is no reason to expect that a quasisimple subgroup G of GL(d, q)
appears in the most natural representation. Even if we have an irreducible repre-
sentation of SL(d, q) on some vector space V, the characteristic and dimension of
V may very well be quite different from those of the more familiar d-dimensional
representation. In order to handle arbitrary matrix groups, this possibility must
be taken into account; and when dealing with an unknown representation some of
the more standard tools of linear algebra (minimal and characteristic polynomials,
eigenvalues and eigenvectors) do not appear to be sufficiently helpful in identifying
composition factors of the group being studied.

In general, it would be especially nice to be able to recover the more natural
representations from the given "arbitrary" one; we will return to this in the next
section. For now, we note that the name of a simple factor can be determined under
suitable additional conditions (Theorems 4.2 and 4.3).

Theorem 4.2 [BKPS] There is a polynomial-time Monte Carlo algorithm which,
when given G = (X) < GL(y) such that G/Z(G) is isomorphic to a simple group
of Lie type of known characteristic p, finds the name of G/Z(G).

Note that the name gives at least one additional piece of information about
G, namely \G/Z(G)\. The proof of this theorem in [BKPS] handles all situations
except for distinguishing the pairs PSp(2m, q), Q(2m + 1, q) with q odd and m > 3,
where entirely different techniques were needed [AB]. Our proof is relatively simple
(using information already obtained while proving Theorem 4.3 below). We start
with a sample of independent (nearly) uniformly distributed random elements of
G. We then find the three largest integers V\> v%> v$ such that a member of the
list has order divisible by a primitive prime divisor of one of the integers pv — 1 for
v = vi,v2 or V3; our sample is chosen large enough so that, with high probability,
these are the three largest v such that |G| is divisible by a primitive prime divisor
of pv — 1. In a lot of cases, the triple {v 1, v%, vs} determines the name of G. In the
remaining cases, we investigate the occurrence of element orders divisible by two
appropriately chosen primitive prime divisors. While this idea is simple enough, it
becomes more awkward and detailed if p is a Fermat or Mersenne prime and no such
primitive prime divisor greater than 2 occurs. Nevertheless, the algorithm is not
complicated, and has already been implemented in MAGMA by Malle and O'Brien.

While the assumption that p is known is a natural one (cf. Section 6), it would
be better to be able to avoid this. A result that preceded the previous theorem
attempts to do this:

Theorem 4.3 [KS3] There is a polynomial-time Monte Carlo algorithm which,
when given G = (X) < GL(V) such that G/Z(G) is isomorphic to a simple group
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of Lie type of unknown characteristic and such that the order of any given element
of G can be computed, finds the name of G/Z{G).

The proof of this theorem rests on a nonalgorithmic property of groups G of Lie
type in characteristic p. Define a graph T(G) whose vertices are the prime powers
ra that occur as orders of elements of G, for all primes r 7̂  p and integers a > 0.
Prime powers r°, sb are joined if and only if G has an element of order lcm(ra, sb)
(thus, every vertex of T(G) has a loop). We say that two vertices of F(G) are
equivalent if they have the same neighbors, and denote by A(G) the quotient graph
with respect to this equivalence relation, with vertex set F(A(G)). We view A(G)
as a simple graph (i.e., without loops and multiple edges) and as a weighted graph:
the weight of v £ V(A(G)) is the least common multiple of the prime powers in the
equivalence class v. This weighted graph usually determines G:

Theorem 4.4 [KS3] Let G and G* be finite simple groups of Lie type such that
A(G) = A(G*). Then G = G* with some specific exceptions.

These exceptions include, of course, the pairs PSp(2m, q), 0,{2m + l,q) for q odd
and m > 3; additional exceptions are PSp(4,g),PSL(2,92); PSp(6,g),Pfi+(8,g),
Q(7, q); PSp(8, q), PIT(8, q); and PSL(3,2), G2(2)'.

Since p is involved in the definition of A(G), how can the above theorem be used
to prove Theorem 4.3? This requires additional properties of G:

(i) [GL] If G has characteristic p and is defined over Vq, then the proportion of
elements of order divisible by p is at most 5/q. (We note that a lower bound
of 2/5q for this proportion was proved in [IKS], also motivated by uses in
Computational Group Theory.)

(ii) [KS3, Lii ] If r, s =/=  p are primes such that G has an element of order divisible
by lcm(ra, sb), then the proportion of such elements is large (at least c/(Lie-
rank(G))3, for an absolute constant c).

Now the proof of Theorem 4.3 starts by testing all "small" primes p ("small"
means bounded from above by an explicit function of the input length) using
[KS1, KM] (cf. Theorem 5.3 and the remarks following it) in order to try to find the
characteristic of G. (Note that Theorem 4.2 does not quite apply: it is at least con-
ceivable that that theorem could output an answer even if p is not the characteristic
of G; and we do not know the probability that this strange possibility might occur.)
If this fails then we find a set of suitably many independent random elements of G,
and find their orders, This number is chosen so that, by (i), with high probability
none of these orders is divisible by p. This number is also chosen so that, by (ii),
for every pair ra, sb arising in the definition of F(G), with high probability one of
our elements has order divisible by lcm(r°, sb). Using this we determine A(G), and
then the name of G.

According to E. O'Brien, in actual computations with matrix groups G using
MAGMA it is standard to find exact orders of elements of G using extensive tables
of prime power factorizations of integers of the form pk — 1 for suitable p and k.
Therefore, we expect that there will be a version of the above theorem of more than
theoretical importance.
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Theorem 4.4 leads to a question already alluded to that might make the theorem
even more useful in our computational setting. Consider a group H of Lie type over
a field of characteristic r  ̂ p. Define a weighted graph AP(H) for H using the
same description as above but with p in place of the correct characteristic r (so
that, for example, r is one of the vertices of AP(H)). Then we conjecture that, if
AP(H) = A(G) for a group G of Lie type in characteristic p, then H = G.

Once again we emphasize that the results in this section do not provide any
means of calculating with the given matrix group G using its more familiar repre-
sentations.

5 Constructive recognition of simple groups

As suggested in the preceding section, there is a need for constructive recognition
algorithms, which allow us to get from our generating set X to any given element of
G.e These are of fundamental importance when simple groups are used to handle
general groups (see the next section).

In the situation of Theorem 4.1, constructive recognition means the following:

Theorem 5.1 [CLG2] There is a Las Vegas algorithm which, when given G = (X)
such that SL(y) < G < GL(y), with arbitrarily high probability outputs a new
generating set X* (in terms of X) such that there is a polynomial-time procedure
that gets from X* to any given g £ G.

However, the algorithm in [CLG2] producing X* does not quite run in poly-
nomial time: there is a factor q in the timing, where V is a vector space over
¥q. The corresponding result has also been proved for all classical groups: given
G = (X) < GL(d, q) having a normal classical subgroup C defined on V, algorithms
in [Ce, Brol, Bro2] output, with high probability, a new generating set X* such that
there is a polynomial-time procedure that gets from X* to any given g e G. The
version of this theorem in [Bro2] handles all symplectic, orthogonal and unitary
groups simultaneously in a more or less uniform manner.

It is not known how to get around the factor of q in the timing indicated above
without some other type of assumption. In [CoLG] a lovely idea was introduced to
avoid this factor: assume the availability of a way to handle Discrete Logarithms.
Given F* = (p) and a £ F*, the Discrete Log Problem asks for an exponent i such
that a = pl. There are procedures for accomplishing this that are significantly
faster than the O(q) time approach that tests all integers with 0 < i < q. Discrete
Logs led to the next

Theorem 5.2 [CoLG] There is a Las Vegas algorithm which, when given G = {X}
such that SL(y) < G < GL(l^) = GL(2,q), and also given a way to handle Discrete
Logs in F*, with arbitrarily high probability outputs a new generating set X* such
that there is a polynomial-time procedure that gets from X* to any given g € G. The

6More precisely, such that we can find a straight-line program from X to any given g S G: a
sequence g\,..., g  ̂= g with each term either a member of X, the product of two previous terms
or the inverse of a previous term.
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time requirement is a polynomial of the input length plus the time of polynomially
many calls to the Discrete Log subroutine.

This result has been extended in [LGO] to deal with arbitrary irreducible rep-
resentations of SL(2,g). This extension is fundamental for Theorems 5.5 and 6.1
below.

We next turn to arbitrary representations of classical groups. While we could
assume irreducibility, this does not seem to provide useful information about the
general situation.

Theorem 5.3 [KS2] There is a Las Vegas algorithm which, when given G = (X) <
GL(V) with G = G' and G/Z(G) isomorphic to some (unknown) classical simple
group of given characteristic, with arbitrarily high probability finds the classical group
C, and outputs a new generating set X* (in terms of X) together with an injective
map X* —> C that extends to a constructive isomorphism \P: G/Z(G) —> C.

This means that there is a polynomial-time procedure to get to any given g s G
from X*, and polynomial-time procedures which take any given g € G or c £ C and
find (gZ(G))  ̂ or ci&~1; moreover, it means that if a set X* and map X* —> C are
output then they are guaranteed to behave as just indicated.

Versions of this theorem are in [CFL], where it was first shown that this type
of result could be proved (in the case G = PSL(d, 2)), and later in [Bra] when
G/Z(G) = PSL(d, q) with d > 4, q > 4. As in Theorem 5.1, the previous theorem
does not quite run in polynomial time: once again there is a factor of at least q in
the timing. The case of the exceptional groups of Lie type other than 2Fi(q) (also
assuming a given characteristic) has been close to completion for a few years [KM] ;
once again the algorithm has an undesirable factor of q in its timing.

Remark 5.4 We stated Theorem 5.3 in its simplest form. It can be extended to
handle matrix groups G that have an almost simple classical factor group G/N of
given characteristic, provided that we can test membership in N. This extension will
play an important role in Section 6. So will the fact that there are similar extensions
for the exceptional groups [KM] and for the alternating groups [BLNPS]. These and
related results are discussed in [Ka2].

The characteristic assumption in the preceding theorem can be removed using
Theorem 4.3. When the characteristic is known, the idea behind the theorem is
to try to construct an element in a large conjugacy class, one of whose powers is a
(long) root element of G (but usually not a long root element of the underlying group
GL(V )̂!); with reasonably high probability7, an element of G has this property.
These root elements and their random conjugates are then used to generate larger
subgroups, eventually leading to a subgroup of rank one less than that of G (if G
does not already have rank 1).

Combining the Discrete Log results in Theorem 5.2 and its sequel [LGO] with
ideas from the proof of Theorem 5.3 and some new ideas (in [Bro2]) has led to
algorithms for many classical groups:

7But much less than 1/g, requiring many more that q selections to make it likely that an element
of the desired sort is obtained; this is a principal cause of the timing not being polynomial.
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Theorem 5.5 [BK, Bro2] There is an algorithm which, when given G — (X) <
GL(y) such thatG/Z(G) S C = PSL(d,g), PSp(2m,g) or PSU(d,q) and (q, \V\) ^=
1, and also given a way to handle Discrete Logarithms in ¥*, with arbitrarily high
probability outputs a constructive isomorphism \I>: G/Z{G) —> C. The time require-
ment is a polynomial of the input length plus the time of polynomially many calls
to the Discrete Log subroutine.

The orthogonal groups present additional difficulties, but should be completed
in the near future. Analogous constructive isomorphisms for alternating groups are
in [BB1, BLNPS, BP]. There are only a bounded number of sporadic groups, so
these do not enter into our asymptotic timing questions.

The algorithms announced in Theorems 5.1-5.5 can also be used as Monte Carlo
algorithms to decide whether a given group G is such that G/Z{G) is simple of a
type indicated in these theorems. As in the case of nonconstructive recognition,
the correctness of a "Yes" answer can be verified, but the verification is much more
complicated than in the cases covered by Theorem 4.1 and its extensions. Namely,
we have to compute a generating set X**  and a short presentation in terms of X**,
and prove that G = (X**)  by expressing the original generators of G in terms
of X**.  A presentation for a quasisimple group G is called short if its length8 is
(9(log2 \G\). Such short presentations are known for almost all simple groups:

Theorem 5.6 [BGKLP, Suz, HS] For all simple groups except, perhaps, 2G2(q),
there is a presentation of length O(log° |G|), where c = 2; in fact c = 1 for most G.

The proof in [BGKLP] uses simple tricks to adapt the usual Curtis-Steinberg-
Tits presentations for these groups when the rank is at least 2, while the cases
2B2(q) and PSU(3,(z) require different ideas to modify the standard presentations
for these groups [Suz, HS]. Short presentations have the following nonalgorithmic
consequence needed in the proof of Theorem 6.1:

Theorem 5.7 [BGKLP] Every finite group G with no composition factor of the
form ^2(3) has a presentation of length O(log3|G|).

The exponent 3 here is best possible.
Although the primary use of constructive recognition algorithms is in computa-

tions with matrix groups, they are useful for computing with permutation groups as
well. For example, all modern Sylow subgroup algorithms for permutation groups
reduce to the case of simple groups [Kal, Mo, KLM, CCH]. For any given simple
permutation group one first determines an explicit isomorphism with a known sim-
ple group, and afterwards studies Sylow subgroups of the concrete simple groups.
Deterministic algorithms producing such isomorphisms are in [Kal, KLM] . In the
matrix group setting, finding Sylow subgroups should not be difficult, but conjugat-
ing one to another may present some difficulties. Another application of construc-
tive recognition algorithms is the computation of maximal subgroups of permutation
groups [EH].

8The length of a presentation (X | R) is \X\ + Y^reR lx(r)-
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6 General matrix groups

Given G = (X) < GL(d,q), there are two basic approaches to exploring properties
of G. One of these is a geometric approach, led by Leedham-Green, and com-
monly called the "The computational matrix group project". This approach uses
Aschbacher's classification [Asch] of subgroups of GL(d, q). (It was first suggested
in [Pr] to use Aschbacher's theorem as a guide in the design of what amounted to
nonconstructive algorithms for the study of matrix groups.) There are nine cate-
gories in this classification, and the goal is to find at least one category to which G
belongs. Eight of these categories describe geometric subgroups of GL(d, q), which
means that G preserves some structure associated with the action of G on the vector
space V — F .̂ Moreover, in seven categories, the kernel N of the action on this
structure enables us to consider N and G/N acting in smaller dimension, or over
a smaller field, or as a permutation group on a small domain. For example, one
category consists of irreducible but imprimitive matrix groups. This means that
the dimension d can be written as a product d = ab, and there is a decomposition
V = Vi®  -®Va into subspaces of dimension b such that G transitively permutes the
set {Vi,... , Va} ; the normal subgroup N is the kernel of this permutation action,
and G/N is a transitive permutation group of degree a.

If we can recognize the action of G on the appropriate structure then handling G
can be reduced to recursively handling both iV and G/N. This reduction bottoms
out when a group is a classical group in its natural action (which is the eighth geo-
metric subgroup category of the Aschbacher classification), or G modulo the scalar
matrices is almost simple (the ninth category). These two cases are handled by the
constructive recognition algorithms for almost simple groups described in Section 5.
Note that, even if we have the images of generators of G under a homomorphism
ip defined by the action on some geometric structure where lm(ip) is almost simple,
usually constructive recognition of Im(< )̂ is needed in order to obtain generators
for Ker(<p).

As a result of extensive research summarized in [LG], there are practical algo-
rithms for recognizing most categories of the Aschbacher classification.

By contrast, the other approach, initiated by Babai and Beals [BB1], tries to
determine the abstract group-theoretic structure of G. Every finite group G has a
series of characteristic subgroups 1 < Ooo(G) < Soc*(G) < Pker(G) < G, where
Ooo(G) is the largest solvable normal subgroup of G; Soc*(G)/Ooo(G) is the so-
cle of the factor group G/Ooo{G), so that Soc*(G)/Ooo(G) is isomorphic to a
direct product Ti x  x Tj. of nonabelian simple groups that are permuted by
conjugation in G; and Pker(G) is the kernel of this permutation action. Given
G = (X) < GL(d,pe), Babai and Beals [BB2] construct subgroups Hi,...,Hk such
that Hi/Ooo^i) = T{. Having these Hi at hand, it is possible to construct the
permutation group G/Pker(G) < Sk, which then can be handled by permutation
group methods.

The Babai-Beals algorithm is Monte Carlo, and runs in polynomial time in the
input length. Contrary to the geometric approach, it does not use the geometry
associated with the matrix group action of G. The fact that G < GL(d,pe) is only
used when appealing to a simple consequence of [LS, FT]: if Ti is of Lie type in
characteristic different from p, then Ti has a permutation representation of degree
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polynomial in d.
Combining the Babai-Beals method with constructive recognition algorithms

for simple groups, we obtain the following result.

Theorem 6.1 [KS4] Given G = {X) < GL(d,pe), there is a Las Vegas algorithm
that computes the following.

(i) The order of G.

(ii)  A series of subgroups 1 = No < N\ <  < iVm_i < Nm = G, where Ni/Ni-i
is a nonabelian simple group or a cyclic group for all i.

(iii)  A presentation of G.

(iv) Given any g G GL(d,pe), the decision whether g £ G, and if g G G, then a
straight-line program from X, reaching g.

The algorithm uses an oracle to compute discrete logarithms in fields of charac-
teristic p and size up to ped. In the case when all of those composition factors of
Lie type in characteristic p are constructively recognizable with a Discrete Log ora-
cle, the running time is a polynomial in the input length \X\d?elogp, plus the time
requirement of polynomially many calls to the Discrete Log oracle.

The current list of groups recognizable with a Discrete Log oracle is given in
Theorem 5.5.

In part (ii) of Theorem 6.1, we construct a series of subgroups that is "almost"
a composition series of G. However, some of the cyclic factor groups may not be
simple, since we do not assume that we can factor large integers. Using discrete logs
seems to be necessary, since already for 1 x 1 matrix groups G < GL(l,g), finding
|G| amounts to solving a version of the discrete log problem in F*. Also, finding and
identifying the composition factors, or at least the nonabelian composition factors,
seems to be unavoidable, even if the goal is only to compute the order of the input
group.

The special case of Theorem 6.1, when the input group is solvable, was already
covered a decade ago by the following remarkable theorem of Luks:

Theorem 6.2 [Lu] Theorem 6.1 holds for solvable matrix groups. In fact, there is
a deterministic algorithm that computes the required output.

We sketch the proof of Theorem 6.1. Given G = (X) < GL(d,pe), the algorithm
announced in Theorem 6.1 starts by appealing to the results of [BB2] to compute a
composition series for G/Pker(G), generators for Pker(G), and generators for some
subgroups Hi < Pker(G), i — 1,2,..., k, such that Hi/Ooo{Hi) = T» for the simple
groups Ti involved in Soc*(G)/Ooo(G) = Ti x  x Tk. Next, we use an extension
of Theorem 4.2 to find polynomially many possibilities for the name of the Ti.
Given any g e Hi, we can test whether g e O^Hi), by testing the solvability of
(gHi). This implies that the primitive prime divisor computations necessary for the
algorithm in Theorem 4.2 can be carried out in Ti :— Hi/O^Hi). If T, is of Lie
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type then its characteristic is either p o ra prime less than d? [LS, FT], so we have
only polynomially many possibilities for this name.

After that, we replace each Hi by its normal closure in Pker(G). This step
maintains the property that Hi/O^Hi) = %, but also makes Hi invariant under
the conjugation action of Pker(G).

We now deal with the subgroups H\,..., H  ̂ sequentially. The conjugation ac-
tion of Pker(G) on H\ also defines a homomorphism ipi: Pker(G) —» Aut(Ti). Using
again our ability to test membership in Ooo(H\), if T\ is not of Lie-type in charac-
teristic p, or if Ti is defined in characteristic p but over a field of size q < d?, then
the extension of Theorem 5.3, mentioned in Remark 5.4, can be used to construct
the kernel K\ := Kev(ipi) of this action.

The only remaining possibility is that T\ is of Lie type of characteristic p, and the
size q of the field of definition is greater than d?. In this case, the crucial observation
is that Hi/Ooo(Hi) cannot act nontrivially on any elementary abelian section of
Ooo(Hi) that is not a p-group, since then we would have a cross-characteristic
representation of Hi/Ooo{Hi) of degree not allowed by [LS, FT]. Hence the solvable
residual H%° (the last term of the derived series of Hi) is an extension of a p-group
by a simple group isomorphic to T\. Therefore, in an appropriate basis, which can
be found by the Meat-Axe [HR, IL, NeP2], the matrices for the elements of iff °
have the following form:

' / *
A
0 _

The blocks in position (2,2) of these matrices define Ti modulo scalars. Hence,
concentrating on these blocks, we can perform a constructive recognition with a
Discrete Log oracle (see Theorem 5.5). After that, as we outlined for the other
possibilities for the isomorphism type of Ti, we obtain generators for Ki.

The same procedure is repeated for the conjugation action of K\ on Hi, con-
structing its kernel Ki, and so on. Eventually the kernel Kk is a solvable group,
which is handled by Luks's methods (see Theorem 6.2).

As the very last step of the algorithm, we construct a presentation for G. This
presentation verifies the correctness of the output.
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A survey of maximal subgroups of exceptional
groups of Lie type

Martin W. Liebeck and Gary M. Seitz

The object of this survey is to bring the reader up to date with recent results
concerning the maximal subgroups of finite and algebraic groups of exceptional
Lie type. The first section deals with algebraic groups, and the second with finite
groups.

1 Maximal subgroups of exceptional algebraic groups

Let G be a simple algebraic group of exceptional type G2, .F4, E&,E7 or Eg over an
algebraically closed field K of characteristic p. The analysis of maximal subgroups of
exceptional groups has a history stretching back to the fundamental work of Dynkin
[3], who determined the maximal connected subgroups of G in the case where K has
characteristic zero. The flavour of his result is that apart from parabolic subgroups
and reductive subgroups of maximal rank, there are just a few further conjugacy
classes of maximal connected subgroups, mostly of rather small dimension compared
to dim G. In particular, G has only finitely many conjugacy classes of maximal
connected subgroups.

The case of positive characteristic was taken up by Seitz [15], who determined the
maximal connected subgroups under some assumptions on p, obtaining conclusions
similar to those of Dynkin. If p > 7 then all these assumptions are satisfied. This
result was extended in [7], where all maximal closed subgroups of positive dimension
in G were classified, under similar assumptions on p.

In the years since [15, 7], the importance of removing the characteristic assump-
tions in these results has become increasingly clear, in view of applications to both
finite and algebraic group theory (see for example Section 2 below for some such
applications). This has finally been achieved in [11]. Here is a statement of the
result.

Theorem 1 ([11]) Let M be a maximal closed subgroup of positive dimension in
the exceptional algebraic group G. Then one of the following holds:

(a) M is either parabolic or reductive of maximal rank;
(b) G = Er, p ̂  2 and M = (22 x JD4).5t/m3;
(c) G = £8, P ¥= 2,3,5 and M = Ai x Sym5;
(d) M° is as in Table 1 below.
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The subgroups M in (b), (c) and (d) exist, are unique up to conjugacy in Aut(G),
and are maximal in G.

Table 1

G
G2

Fi
E6

E7

E8

M u simple

Ai (p > 7)
Ai(p>13), G2(p = 7),
A2(p^2,3), G2(p^7),
Ci(p^2), F4

A\ (2 classes,p > 17,19 resp.),
A2 (p > 5)
Ax (3 classes, p> 23,29,31 resp.),
B2 (p > 5)

M u not simple

AxG2 (p ^ 2)
A2G2

A 1A 1(p^2,3), AaG2(p^2),
A1-F4, G2C3
i4 iX 2(p^2,3), A 1G2G2(p^2),
G2F4

For notational convenience in the table, we set p — 00 if K has characteristic
zero; thus, for example, the condition p > 7 includes the characteristic zero case.

In fact [11] has a somewhat more general version of Theorem 1, which allows
the presence of Frobenius and graph morphisms of G.

A few remarks are in order concerning the subgroups occurring in the conclusion
of Theorem 1.

The subgroups of G of type (a) in the theorem are well understood. Maximal
parabolic subgroups correspond to removing a node of the Dynkin diagram. Sub-
groups which are reductive of maximal rank are easily determined. They correspond
to various subsystems of the root system of G, and a complete list of those which
are maximal in G can be found in [11, Table 10.3].

The subgroups under (b) and (c) of Theorem 1 were constructed in [2, 7]: in
(b), the connected component M° = D4 lies in a subsystem A7 of G, and in (c),
M° = Ax lies in a subsystem A4A4, with restricted irreducible embedding in each
factor.

The subgroups in Table 1 are constructed in [15, 16, 17], apart from a few cases
in small characteristic which can be found in [11].

Theorem 1 has a number of consequences. The first is the following, which
applies to all types of simple algebraic groups, both classical and exceptional.

Corollar y 2 If H is a simple algebraic group over an algebraically closed field, then
H has only finitely many conjugacy classes of maximal closed subgroups of positive
dimension.

Another major consequence of Theorem 1 is that sufficiently large maximal
subgroups of finite exceptional groups of Lie type are known. We shall discuss this
in the next section.

Also determined in [11] are the precise actions of maximal subgroups X in Table
1 on the adjoint module L(G), as a sum of explicit indecomposable modules. An
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interesting feature of these actions is that very few types of indecomposables arise.
Indeed, with one exception, each restriction L(G) j X is the sum of indecomposables
of one of the following three types: an irreducible module V(X); an indecomposable
tilting module T(X); or an indecomposable module A(A;7) of shape fj,\(X © j)\fJ.
arising in the following way: suppose A, 7, fi are dominant weights for X such that
T{\) — /uJA|/u and T(j) = ju|7|/a (where fj, denotes the irreducible V(fj.), etc.). Then
A(A;7) denotes an indecomposable module of shape /x|(A © 7 )^ with socle and
cosocle both of type /J,, and which is obtained as a section of T(A) © T(-y), by taking
a maximal submodule and then factoring out a diagonal submodule of the socle.
The one exception to the above is X = G2 < E§ with p = 3, in which case L{G)' [ X
is uniserial with series 10|01|11|01|10.

Finally, we mention that as a consequence of Theorem 1, together with work
on finite subgroups of exceptional groups described in the next section, all closed
subgroups of G which act irreducibly on either the adjoint module for G, or on one
of the irreducible modules of dimension 26 — 6Pt3, 27 or 56 for G =  or E7
respectively, have been determined in [12].

2 Maximal subgroups of finite exceptional groups

In this section let G be an adjoint simple algebraic group of exceptional type over
K = ¥p, the algebraic closure of the prime field Fp, where p is a prime, and let a be
a Frobenius morphism of G. Denote by Ga the fixed point group {g e G : g" = g}.
Then Go :=  G'a is a finite simple exceptional group (exclude the cases G2(2)' =
U3{3) and 3G2(3)' =

Throughout the section, let H be a maximal subgroup of GCT; all the results
below apply more generally to maximal subgroups of any almost simple group with
socle Go, but we restrict ourselves to Ga for notational convenience. The ultimate
aim is of course to determine completely all the possiblities for H up to conjugacy.
This task is by no means finished, but there has been a great deal of recent progress,
and our aim is to bring the reader up to date with this.

First, we present a "reduction theorem", reducing considerations to the case
where H is almost simple. In the statement reference is made to the following
exotic local subgroups of Ga (one GCT-class of each):

23.SL3(2) < G2(p)(p>2)
33.SL3(3) < FA(p)(p>h)
33+3.SZ,3(3) < JE7|(p) (p = e mod 3,p > 5)
53.5L3(5) < E8(pa) (p ^ 2,5; a = 1 or 2, as p2 = 1 or - 1 mod 5)
25+10.5i5(2) < E8(p)(p>2)

Note that these local subgroups exist for p = 2 in lines 2, 3 and 4, but are non-
maximal because of the containments 33.SX3(3) < £4(3) < F4(2), 33+3.SX3(3) <
07(3) < 2E6(2) and 53.5L3(5) < L4(5) < E8(4) (see [2]).

Theorem 3 ([7, Theorem 2]) Let H be a maximal subgroup of Ga as above. Then
one of the following holds:

(i) H is almost simple;
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(ii ) H = Ma, where M is a maximal a-stable closed subgroup of positive dimen-
sion in G as in Theorem 1;

(iii ) H is an exotic local subgroup;

(iv) G = E8,p > 5 and H = (Alt5 x Alt6).22.

A version of this theorem was also proved by Borovik [1], who in particular
discovered the interesting maximal subgroup in part (iv).

In view of this result attention focusses on the case where H is an almost simple
maximal subgroup of Ga. Let H be such, and write Ho = F*(H), a simple group.
The analysis falls naturally into two cases: Ho G Lie(p), and HQ & Lie(p), where
Lie(p) denotes the set of finite simple groups of Lie type in characteristic p. We call
these generic and non-generic subgroups, respectively.

We first discuss non-generic subgroups. Here we have the following result, which
determines the possibilities for Ho up to isomorphism; however the problem of
determining them up to conjugacy remains open.

Theorem 4 ([10]) Let S be a finite simple group, some cover of which is contained
in the exceptional algebraic group G , and assume S  Lie(p). Then the possibilities
for S and G are given in Table 2.

Table 2

S
G2

F4

Alt 5,Alt 6,L2(7),L2(8),L2(13),£/3(3),
Alt 7(p = 5), Ji(p = 11), J2(p = 2)

above, plus: Alt 7_io,L2(17),L2(25),L2(27),L3(3),l/4(2),Sp6(2),^(2),3D4(2), J2

E7

Es

above, plus: Al t n,L 2( l l ) , L2(19), L8(4), Ui{3)?FA(2)', M n ,
Alt u(p = 2,3), Ga(3)(p = 2), nT(3)(p = 2), M22(p = 2,7),

J3(p = 2),Fi22(p = 2), Mi 2(p = 2,3,5)

above, plus: Alt 12, Alt13, L2(29), L2(37), U3(8), M12,
Alti 4(p = 7), M22(p = 5), Ru(p = 5),HS(p = 5)

above, plus: Alt 14-17,L2(16),L2(31),L2(32),L2(41),L2(49),
L2(61),L3(5),P5p4(5),G2(3),2JB2(8),

Alt 18(p = 3), L4(5)(p = 2), Th(p = 3),2B2(32)(p = 5)

This is actually a condensed version of the main result of [10], which also de-
termines precisely which simple groups (rather than just covers thereof) embed in
adjoint exceptional groups.

We now move on to discuss generic maximal subgroups H of Ga - namely, those
for which Ho = F*(H) lies in Lie(p). The expectation in this case is that in general
H is of the form Ma, where M is a maximal closed cr-stable subgroup of positive
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dimension in G, given by Theorem 1. This is proved in the next result, under some
assumptions on the size of the field over which HQ is defined. In [9], a certain
constant t(G) is defined, depending only on the root system of G; and R. Lawther
has computed the values of t(G) for all exceptional groups except Eg: we have
t(G) = u(G)  (2,p - 1), where u(G) is as follows

G
u(G)

G2

12
Fi
68

E6

124
E7

388

Theorem 5 ([9]) Let H be a maximal subgroup of the finite exceptional group Ga

such that F*(H) = H{q), a simple group of Lie type over¥q, afield of characteristic
p. Assume that

q > t(G), ifH(q) = L2(q), 2B2(q) or *?2(g)
q > 9 and H(q) ^ 711(16), otherwise.

Then one of the following holds:
(i) H(q) has the same type as G (possibly twisted);
(ii) H = Ma for some maximal closed a-stable subgroup M of positive dimension

in G (given by Theorem 1).

Writing Ga = G(qi), the subgroups in (i) are subgroups of the form G(q) or a
twisted version, where Fq is a subfield of F9l; they are unique up to GCT-conjugacy,
by [8, 5.1].

One of the points of this result is that it excludes only finitely many possibilities
for F*(H) = H(q), up to isomorphism. Since there are also only finitely many
non-generic simple subgroups up to isomorphism, the following is an immediate
consequence.

Corollar y 6 There is a constant c, such that if H is a maximal subgroup of Ga

with \H\ > c, then either F*(H) — H{q) has the same type as G, or H = Ma where
M is maximal closed a-stable of positive dimension in G.

This is all very well, but in practice one needs more information concerning the
generic almost simple maximal subgroups which are not covered by Theorem 5. A
useful result in this direction is the following, which determines generic maximal
subgroups of rank more than half the rank of G. For a simple group of Lie type
H(q), let ik(H(q)) denote the untwisted Lie rank of H(q).

Theorem 7 ([5, 13]) Suppose H is a maximal subgroup of Ga such that F*(H) =
H(q), a simple group of Lie type in characteristic p, with rk(H(q)) > ^rk(G). Then
either H(q) has the same type as G, or H = Ma where M is maximal closed a-stable
of positive dimension in G. In the latter case, the possibilities are as follows:

(i) M is a subgroup of maximal rank (possibilities determined in [6]);
(ii) Go = El(q) and H(q) = F4(<z) or CA(q) (q odd);
(iii ) G'a = E7(q) and H(q) =  3  (with M as in Theorem l(b)j .
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This is proved in [5, Theorem 3] assuming that q > 2, and in [13] for q = 2. The
maximal subgroups in part (iii ) were omitted in error in [5]. They arise when M is
the maximal closed subgroup (22 x D^.Symz in Theorem l(b) and a acts on M as
(Tqw, where o~q is the standard field morphism and w € Syms has order 3 (so that
MCT = 3D4(q).3).

For the reader's convenience, we now present a compendium result which sum-
marises almost all of the work above on maximal subgroups of Ga.

Theorem 8 Let H be a maximal subgroup of the finite exceptional group Ga over
^qi Q — Pa  The one of the following holds:

(I) H = MCT where M is maximal closed a-stable of positive dimension in G; the
possibilities are as follows:

(a) M (and H) is a parabolic subgroup;

(b) M is reductive of maximal rank: the possibilities for H are determined
in [6];

(c) G = E7,p>2 andH= (22 x Pn+(q).22).Sym3 or3At(g).3;

(d) G = E8) p > 5 and H = PGL2{q) x Sym5;

(e) M is as in Table 1, and H = Ma as in Table 3 below.

(II ) H is of the same type as G;

(III ) H is an exotic local subgroup;

(IV) G = E8, p > 5 and H = (Alt5 x Alt6).22;

(V) F*(H) — HQ is simple, and not in Lie(p): the possibilities for Ho are given
up to isomorphism by [10] (see also Theorem 4 above);

(VI ) F*(H) = H(qo) is simple and in Lie(p); moreover rk(H(q0)) < \rk{G),
and one of the following holds:

(a) go < 9;

(b) fr(go) = ^ ( 1 6 );

(c) go < t(G) and H(q0) = Ai(q0), 2B2(qQ) or aG3{%)-

In cases (I)-(IV) , H is determined up to Ga-conjugacy.
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Table 3

G'a
G2(q)
F

Er(q)

Es(q)

possibilities for F*(Ma),M in Table 1
A1(q)(p>7)
i4i(g)(p>13), G2(g)(p = 7), i4 i (g)xG2(g)(p>3,g>5)
A%{q) (p > 5), G2(g) (p ^ 7), G4(g) (p > 3), F4(g),

i4i(g) (2 classes,? > 17,19), A\{q) (p > 5), i42(g) x Ax(g) (p > 5),
^i(g) x G2(g) (p > 3,g > 5), i4i(g) x F4(g) (g > 4), Ga(g) x Cz{q)
Ai(q) (3 classes',p > 23,29,31), B2(q) (p > 5), Ax{q) x ^4|(g) (p > 5),
G2\q) x F4(g), Ai(q) x G2(g) x G2(g) (p > 3,9 > 5),

We remind the reader that, as mentioned before, the above results apply more
generally to maximal subgroups of all almost simple groups whose socle is a finite
exceptional group of Lie type.

Bounds for the orders of maximal subgroups of finite groups of Lie type have
proved useful in a variety of applications. For exceptional groups, the first such
bounds appeared in [4]; using some of the above results, these were improved as
follows in [14].

Theorem 9 ([14, 1.2]) Let H be a maximal subgroup of the finite exceptional group
Ga overFq, q =pa. Assume that \H\ > 12aq56, 4aq30, 4aq2S oriaq20, according
as G = Es,Er,Ee or F^, respectively. Then H is as in conclusion (I)(a),(b) or (e)
of Theorem 8.

It should be possible to improve these bounds substantially.

Despite the progress reported above, there remain some substantial problems
to tackle in the theory of maximal subgroups of finite exceptional groups. The
most obvious ones are the determination of the conjugacy classes of non-generic
simple subgroups (Theorem 8(IV)), and of generic simple subgroups over small
fields (Theorem 8(V)). Of these, perhaps the most challenging and important is to
reduce substantially the t(G) bound for subgroups of rank 1 in Theorem 8(V(c)),
especially for G — E&, where t(G) is currently unknown (and in any case is known
to be quite large).
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Bases of primitive permutation groups

Martin W. Liebeck and Aner Shalev

1 Introduction

Let G be a permutation group on a finite set fl of size n. A subset of tt is said to be
a base for G if its pointwise stabilizer in G is trivial. The minimal size of a base for
G is denoted by b(G). Bases have been studied since the early years of permutation
group theory, particularly in connection with orders of primitive groups and, more
recently, with computational group theory. In this paper we survey some of the
recent developments in this area, with particular emphasis on some well known
conjectures of Babai, Cameron and Pyber.

We begin with a number of examples.

(1) Obviously b(Sn) = n - 1 and b(An) = n - 2.

(2) At the other extreme, b(G) = 1 if and only if G has a regular orbit on ft.

(3) Let G = Sk acting on the set ft of pairs in {l,...fc} . Write k — Zl + r
with 0 < r < 2, and define B to be the subset of ft consisting of the pairs
{1,2} , {2,3} , {4,5} , {5,6},... , {3/ - 2,3/ - 1}, {3Z - 1,3/}  (adding also {31,3/ + 1}
if r = 2). It is easy to see that B is a base so that b(G) < |fc -f 1 in this example.

(4) If G = PGLd(q) acting on the set U of 1-spaces in the underlying vector space
Vd(q), then b(G) = d + 1, a minimal base being {(vi),... , (vd), {vi + ... + vd)},
where v\,..., vd is a basis for Vd(q)-

(5) Let G be the affine group AGLd{q) acting on Vd(q), of degree qd. Then b(G) =
d+1.

(6) Let G = S2 I Ck in its natural imprimitive, transitive representation of degree
2k having A; blocks of imprimitivity of size 2. Then b(G) = k.

If {u)\,..., u>b} is a base for G of size b = b(G), then

Each term on the right hand side is at most n and at least 2, and so we have

Proposition 1.1 We have 26(G) < |G| < nb{-G^. Consequently

log ft
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In examples (1), (3), (4) and (5) above we see that b(G) ~ '°| ^ (where / ~ g
means that f/g is bounded between two positive constants); whereas in example
(6),6(G)~log|G|.

Despite the elementary nature of Proposition 1.1, the connection it gives between
the order of G and the value of b(G) has been much exploited, leading to a number
of important results and conjectures which we shall discuss below.

2 General bounds

The problem of bounding the order of a primitive permutation group of degree n not
containing An is one of the oldest in permutation group theory, going back to the
19th century. One of the principal methods is to bound b(G) and use Proposition
1.1. The most striking early result is due to Bochert:

Theorem 2.1 (Bochert [5]) If G is a primitive permutation group of degree n not
containing An, then b(G) < j .

Using Proposition 1.1 it follows from this that \G\ < nn/2.
Almost a hundred years later, Babai proved the first substantial improvement

of Bochert's result:

Theorem 2.2 (Babai [1, 2]) Let G a primitive permutation group of degree n not
containing An.

(i) If G is not 2-transitive then b(G) < A-^/nlogn.

(ii) // G is 2-transitive then b(G) < c îoen, where c is an absolute constant.

The 2-transitive case was improved by Pyber:

Theorem 2.3 (Pyber [16]) If G is a 2-transitive group of degree n not containing
An, then b(G) < clog2n, where c is an absolute constant.

Note that Example (3) in the Introduction gives a primitive, not 2-transitive
group of base size c</n; and Examples (4), (5) give 2-transitive groups of base size
clogn. This shows that the bounds in Theorems 2.2(i) and 2.3 are not far off best
possible.

The above results were proved using combinatorial methods, in particular not
using the classification of finite simple groups.

The first general result on base sizes using the classification was the following:

Theorem 2.4 (Liebeck [11]) If G is a primitive group of degree n, then either
(i) b(G) < 9 log2 n, or

(ii) G is a subgroup of Sm I Sr containing (Am)r, where the action of Sm is on
k-sets and the wreath product has the product action of degree (™)r-

Using this one can easily deduce a sharp result of the form b(G) < c^/n for prim-
itive groups and b(G) < clogn for 2-transitive groups (where G ^ An), somewhat
improving the classification-free results 2.2 and 2.3.
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3 Conjectures of Babai and Cameron

In this section we discuss some conjectures and results concerning base sizes of some
important classes of primitive permutation groups. The first conjecture stems from
the following well known result.

Theorem 3.1 (Babai-Cameron-Palfy [3]) Let d be a positive integer, and let G be
a primitive group of degree n not involving Ad as a section. Then \G\ < n d̂\
where f(d) depends only on d.

The function f(d) obtainable from the proof in [3] is of the form O(dlogd). A
new proof by Pyber (unpublished) shows that f(d) can be chosen to be linear in d.

Seeking a structural explanation of this result in the light of Proposition 1.1,
Babai conjectured that any group G as in the statement has a base of size bounded
in terms of d alone. The first indication that this might be true came from analysis
of the solvable case:

Theorem 3.2 (Seress [18]) // G is a solvable primitive permutation group, then
b(G) < 4.

This corresponds very closely to the rather tight bound \G\ < 24~1/3n3:244 on
the order of a primitive solvable group G obtained in [15, 20]; indeed, the bound of
4 in Theorem 3.2 is best possible, since there are primitive solvable groups of order
larger than n3.

Babai's conjecture was finally proved:

Theorem 3.3 (Gluck-Seress-Shalev [10]) There exists a function g(d) such that if
G is a primitive group not involving Ad, then b(G) < g(d).

The proof in [10] shows that g(d) can be chosen as a quadratic function of d.
This is improved to a linear function in [13, 1.4].

The other class of primitive groups we shall discuss in this section are the almost
simple primitive groups. Here again there is a result on orders:

Theorem 3.4 (Liebeck [11]) IfG is an almost simple primitive permutation group
of degree n, then one of the following holds:

(i) \G\ < n9;
(ii) F*(G) = Am acting on k-subsets or an orbit of partitions of {1 , . . ., m};
(iii ) F* (G) is a classical group in a subspace action.

In (iii) , a subspace action of a classical group Go = F*(G) with natural mod-
ule V is a primitive action on an orbit of subspaces of V, or pairs of subspaces of
complementary dimensions (when Go = PSL(V) and G contains a graph automor-
phism), or on the cosets of an orthogonal subgroup Ofm(q) < Go = Sp2m(q) with
q even.

A version of this result with nQ in (i) (c unspecified) appeared in [6, 6.1]; and
an improvement with n5 replacing n9 in (i), allowing also the exceptions G = Mn

with n G {23,24}, appears in [12, Proposition 2].
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Definition We call primitive actions of groups as in (ii) or (iii ) of Theorem 3.4
standard actions.

It is natural to ask whether there is a base-size analogue of Theorem 3.4, and
indeed the following conjecture was posed by Cameron.

Conjecture 3.5 (Cameron [7, 3.4]) There is a constant c such that if G is an
almost simple primitive group in a non-standard action, then b(G) < c.

In [8], Cameron and Kantor suggested a probabilistic strengthening of this con-
jecture: if G is as above, then almost every c-tuple is a base for G. This has now
been established:

Theorem 3.6 (Liebeck-Shalev [13, 1.3]) There is a constant c such that ifG is an
almost simple primitive group in a non-standard action, then the probability that a
random c-tuple of points from the permutation domain forms a base for G tends to
1 as |G\ —> oo. In particular, Cameron's conjecture holds.

For G an alternating or symmetric group, Theorem 3.6 was proved by Cameron
and Kantor [8] with c = 2.

The proofs of Theorems 3.3 and 3.6 use results on fixed point ratios as a main
tool, as we shall now discuss. For a permutation group G on a set D, of size n,
and an element x G G, define fix(a;) to be the number of fixed points of x and
rfix(a;) = fix(a;)/n. Thus rfix(:r) is the probability that a random point of Cl is fixed
by x. Therefore the probabilibity that a random fc-tuple is fixed by x is iGx(x)k. If
a given fc-tuple is not a base, then it is fixed by some element x £ G of prime order.
Hence if Q(G, fc) is the probability that a random fc-tuple is not a base for G, then

*. (t)

the sum being over elements x € G of prime order.
Now assuming G is primitive and M is a point stabilizer, we have rfix(a;) =

\x° C\ M\/\xG\. In the crucial case where G is an almost simple group of Lie type
in a non-standard action, it is established in [13, Theorem (*)] that this ratio is
bounded above by |zG|~6, where e is a positive constant. Plugging this into (f) and
choosing fc large enough (greater than 11/e will do), it is possible to deduce that
Q(G, k) —> 0 as \G\ —» oo, which is enough to prove Theorem 3.6.

As for Theorem 3.3, the proof starts with a far from straightforward reduction
to the cases where G is almost simple, or of affine type with a point stabilizer Go
being a primitive linear group. Define rfix(G) to be the maximum value of rfix(z)
for 1 ̂  x € G. Then (f) gives

Q(G,k)< |G|rfix(G)*.

In the two cases above, it is shown in [10] that the right hand side tends to 0 as
\G\ —> oo for a suitable choice of fc = g(d). Thus in fact a stronger, probabilistic
form of Theorem 3.3 holds for these types of primitive groups.
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4 Pyber's Conjecture

A conjecture for arbitrary primitive groups which generalizes the conjectures in the
previous section was formulated by Pyber in [17]:

Conjecture 4.1 (Pyber) There is a constant c, such that if G is a primitive per-
mutation group of degree n, then

m < log n

Note that this conclusion does not hold for all transitive groups G, as is shown
by Example (6) of the Introduction.

Seress [19] has shown that to prove Pyber's conjecture, it is sufficient to establish
it in the cases where G is either almost simple or of affine type.

Suppose first that G is almost simple. If the action is non-standard, then by
Theorem 3.6, b(G) is bounded above by a constant, and so Pyber's conjecture
holds in this case. For standard actions, Benbenishty [4] has verified that Pyber's
conjecture holds. Hence we have

Theorem 4.2 Pyber's conjecture holds for almost simple groups.

Now suppose that G is affine. Here G < AGL(V), where V is a finite vector
space of order n = pd (p prime); identifying V with the group of translations we
have G = VH, where the point stabilizer H = GQ is an irreducible subgroup of
GL(V), and b(G) = 1 + b(H) (where b(H) is the minimal size of a base for H in its
action on vectors).

A couple of special cases of the problem have appeared: the solvable case (see
Theorem 3.2), and the case where H is a ;?'-group. In the latter case Gluck and
Magaard [9] show that b(H) < 95.

Recently we have solved the case in which H acts primitively as a linear group
on V (in other words, H does not preserve any non-trivial direct sum decomposition
of V).

Theorem 4.3 (Liebeck-Shalev [14]) There is a constant c such that if H < GL(V)
is an irreducible, primitive linear group on a finite vector space V, then either

(i) b(H) < c, or

(ii) b(H) < 18£§J£| + 27.

In proving this result, we study the structure of primitive linear groups which
have unbounded base sizes. The first step is to analyse quasisimple linear groups.
Here are some obvious examples of such groups having unbounded base sizes.

(1) Let H = Cld(q), a classical group with natural module V of dimension d
over Fg. Then in its action on V, we have b(H) ~ d.

(2) Let H = Cldiq1^), where Fgi/r is a subfield of Fq, and take H to act
naturally on V = Vd(q)- If v\,..., vj is an Fg-basis of V, and Ai,..., Ar is a basis
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for Fg over F?i/r , then Yli A» ĵ, Y^i ^iVr+i,  is a base for H, and hence we see
that b{H) ~ d/r in the unbounded case.

(3) Let H = Ad+s (<5 = 1 or 2) acting on its irreducible deleted permutation
module V = Vd(q) over ¥q. It is straightforward to see that b(H) ~ logd/logq in
the unbounded case.

An important intermediate result in [14] shows that these are the only examples
of quasisimple groups with unbounded base sizes:

Proposition 4.4 ([14, 2.2]) If H < GLd{q) with E{H) quasisimple and absolutely
irreducible on Vd{q), then either

(i) b{H) < c for some absolute constant c, or
(ii) E{H) = Cld(q1/r) or Ad+S as in Examples (2), (3) above.

In the statement, E(H) as usual denotes the product of all quasisimple subnor-
mal subgroups of H.

Note that Proposition 4.4 does not require the assumption of primitivity of H
as a linear group.

The next step in the proof involves analysis of tensor products, and we present
another couple of examples.

(4) Let V = Vm{q) ® Vm(q), and let H = GLm(q) <g> GLm(q) acting naturally on
V (where GLm(q) <g> GLm(q) denotes the image of GLm(q) x GLm(q) in GL{V)).
We claim that b(H) < 3. To see this, identify V with Mm(q), the space of all
m x m matrices over ¥q, with if-action (g, h) : A -> gTAh for g,h € GLm(q),
A £ V. Then the stabilizer of the identity matrix, Hi = {(h~T,h) : h € GLm(q)},
and (h~T, h) sends A to h~1Ah. It is well known that SLm(q) is 2-generated, say
SLm(q) = (C,D). Then HItC,D = 1, proving the claim.

(5) Extending the previous example, it can be shown that if V = Va(q) ® Vb(q)
with a <b, and H = Cla(q) ® Clb{ql r̂) acting naturally on V, then either b(H) is
bounded or b(H) ~ b/ar.

Here is our structure theorem, on which the proof of Theorem 4.3 is based. It
is a simplified version of [14, Theorem 2].

Theorem 4.5 ([14]) Suppose H < GLd(q) is primitive and absolutely irreducible.
Then one of the following holds:

(i) b{H) < c for some absolute constant c;
(ii) H < GLa(q) <g> Clh{ql'r) (d = ab), H contains the factor Clb{qllr)', and

b(H) ~ b/ar;
(iii ) H < GLa(q) ® Sb+s (d — ab,6 = 1 or 2), H contains the factor Ab+s, and

b(H)~logb/(a\ogq).

In view of the above results, to complete the proof of Pyber's conjecture it
remains to handle the affine case where the linear group H = Go acts imprimitively
onF.
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Introduction

Let p b ea fixed prime and if be a finite group whose order is divisible by p. A
p-local subgroup of H is a subgroup of the form NH(U), where U is a non-trivial
p-subgroup of H.

We say that H has characteristic p if CH(OP(H)) < OP(H), where OP{H) is the
largest normal p-subgroup of H. If all the p-local subgroup of H have characteristic
p, we say that H has local characteristic p.

In this paper we describe the current status of a project whose goals are

- to understand the p-local structure of finite simple groups of local character-
istic p, and

- to classify the finite simple groups of local characteristic 2.

The generic examples of groups of local characteristic p are the groups of Lie
type defined over fields of characteristic p. Also some of the sporadic groups have
local characteristic p, for example J4, M24 and Th for p = 2, McL for p = 3, Ly for
p = 5, and O'N for p = 7.

But also every group with a self-centralizing cyclic Sylow p-subgroup, like Alt(p),
is of local characteristic p. These latter groups are particular examples of groups
with a strongly p-embedded subgroup. Because of such groups we used the word
"understand" rather than "classify" in the first item.

We hope to obtain information that allows to understand why, apart from groups
with a strongly p-embedded subgroup, p-local subgroups of groups of local charac-
teristic p look like those in the above examples.

For p = 2 Bender's fundamental classification of groups with a strongly 2-
embedded subgroup puts us in a much better situation. In this case the infor-
mation collected about the 2-local structure actually suffices to classify the finite
simple groups of local characteristic 2. This then can be seen as part of a third
generation proof of the classification of the finite simple groups.

At this point we should also justify another technical hypothesis we have not
mentioned yet. We will assume that the simple sections (i.e., the composition
factors of subgroups) of p-local subgroups are "known" simple groups, a property
that surely holds in a minimal counterexample to the Classification Theorem of the
finite simple groups.

One final word about a possible third generation proof of the classification and
its relation to existing proofs. In 1954 R. Brauex [Br] suggested to classify the
finite simple groups by the structure of the centralizers of their involutions. In
principle the classification went this way, based on the epoch-making Theorem of
Feit-Thompson [FeTh] which shows that every non-abelian finite simple group pos-
sesses involutions. Of course,, a priori, there are as many centralizers as there are
finite groups, so one of the main steps in the proof is to give additional information
about the possible structure of centralizers of involutions in finite simple groups
(this corresponds to the first item of our project).

In a given simple group the centralizers of involutions are particular 2-local
subgroups, and there are basically two cases: Either every such centralizer has
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characteristic 2, in which case the group is of local characteristic 2, or this is not
the case.

In the latter case, with a great amount of work, one can prove that there exists
a centralizer of an involution that has a certain standard form. There is a well
established machinery that can then be used to classify the corresponding groups.

The situation is more complicated if the simple group has local characteristic
2. The actual classification then works with a suitably chosen odd prime p and
centralizers of elements of order p rather than involutions. For example, in the
groups Ln(2m), which are of local characteristic 2, one would choose an element of
order p in a standard torus, or an element of order 3 if m = 1. The idea is then
to prove that there exists a p-element whose centralizer is again in some standard
form. This needs very delicate signalizer functor and uniqueness group arguments,
moreover, the classification of quasi-thin groups has to be done separately.

If successful, our classification of groups of local characteristic 2 would give an
alternative proof that does not need the above described switch to another prime
and also does not need the separate treatment of quasi-thin groups.

In fact, in view of the part of the classification that deals with groups that are
not of local characteristic 2, it might be desirable to classify groups of parabolic
characteristic 2 rather than of local characteristic 2. Here a parabolic subgroup of H
is a subgroup of H which contains a Sylow p-subgroup of H. And H has parabolic
characteristic p if all p-local, parabolic subgroups of H have characteristic p. The
remaining simple groups would then have a 2-central involution whose centralizer
is not of characteristic 2, a condition which seems to be fairly strong. We hope
that our methods also work in the more general situation of groups of parabolic
characteristic p, but have not spent much time on it.

Notation and Hypothesis

Let p be a fixed prime and H be a finite group whose order is divisible by p.
The largest normal p-subgroup of H, OP(H), is called the p-radical of H.
H is p-minimal if every Sylow p-subgroup S of H is contained in a unique

maximal subgroup of H and S ̂  OP(H). The p-minimal parabolic subgroups of H
are called minimal parabolic subgroups.

If every simple section of H is a known finite simple group, then H is a /C-group.
If every p-local subgroup of if is a /C-group, then H is a /Cp-group.

A proper subgroup M of H is called strongly p-embedded if p divides \H|, but
does not divide \H n H9\ for any g e G \ H.

F;(H) is defined by F;(H)/OP(H) = F*(H/OP(H)).
For any set T of subgroups of H and U < H we set

Tv :=  {T e T | T < U} and T(U) := {T e T | U < T}.

We further set

£ := {L < H | CH(OP(L)) < OP{L)}  and V := {P € L \ P is p-minimal},
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and denote the set of maximal elements of £ by M.. Observe that in the case when
H has local characteristic p and S G Sylp(H),

JC contains every p-local subgroup of H,

M. is the set of maximal p-local subgroups of H,

C(S) is the set of parabolic subgroups containing S with a non-trivial p-radical,

V(S) is the set of p-minimal parabolic subgroups containing S with a non-
trivial p-radical.

Let 1 = Do < Di < ... Dra_i < Dn = H be a chief-series for H and put Vi =
Di/Di-i.  The shape of H is define to be the ordered tuple (H/CniVi), T^)i<i<n-
Isomorphisms between the shapes of two groups are defined in the canonical way.
Note that by the Jordan Holder Theorem the shape of H is unique up to isomor-
phism. Abusing language we will say that two groups have the same shape if they
have isomorphic shapes.

From now on we assume

Main Hypothesis G is a finite Kp-group of local characteristic p with trivial
p-radical.

In the following we will discuss the principal steps and subdivisions in the in-
vestigation of G. It splits into three major parts:

 Modules

 Local Analysis

 Global Analysis.

In the first part we collect information about pairs (H, V), where if is a finite )C-
group and V is a faithful ¥pH-module fulfillin g certain assumptions, like quadratic
action or 2F. The results of this part serve as an invaluable background for the
local analysis.

The local analysis generates information about the structure of the p-local sub-
groups of G, and in the global analysis this information is used to identify G up to
isomorphism.

1 The Modules

In this part we collect some theorems about finite groups and their Fp-modules that
are needed in the local analysis of groups of local characteristic p. Some of these
theorems are known, others are not. Proofs for the theorems in this section will
appear in [BBSM].
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Let H be a finite group, V an ¥PH module and A < H. We say that A acts
quadratically on V if [V, A, A] = 0. Let i be a positive real number. We say that
A is an iF-offender provided that |V/CV(A)| < \A/CA(V)\\ A is an offender if A
is an lF-offender. If in addition [V, A] =/=  0, A is called a non-trivial iF-offender.
If there exists a non-trivial zî -offender in H then V is called an iF-module. An
FF-module is a li^-module.

We say that H is a C/C-group if every composition-factor of H is isomorphic to
one of the known finite simple groups.

1.1 Results

Theorem 1.1.1 (Quadratic Module Theorem) LetH be a finite CK,-group with
F*{H)  quasi-simple, V be a faithful irreducible ¥pH-module and A < G such that

(i) [V,A,A] = 0.

(ii) H={AH).

(iii ) \A\ > 2.

Then one the following holds:

1. p = 2, H = Alt(n) or Sym(n) and V is the natural module.

2. p = 2, H = Alt(n) and V is the spin-module.

3. p = 2, H £ 3.Alt{6), Alt(7), 3.t74(3), Ml2, Aut(M12), Aut(M22), 3.M22,
; Ji, Co\, Coi or 3.Sz and V is known.

4. p — 2, H = 0^(2) and V is tte natural module.

5. p = 3, H = 2.yU£(n) and V is the spin module.

6. p = 3, ff S PGUn{2) and V is the Weil-module.

7. p = 3, H  ̂ 2.Spe(2), 2.fig(2), 2.J2, 2.G2(4), 2.52, 2.Coi and V is torn

8. G = F*(iJ)  ̂CTG$(F) zs a proup of Lie type over the field F with charF = p.
Moreover, if\A\ > |F| or if there exists a root subgroup R of H with Af]R  ̂ 1
and A -  ̂R, then V = V(\i) where A, is a fundamental weight with A;(a) = 1
for the highest long root a £ $.

Theorem 1.1.2 (FF-Module Theorem) Let H be a finite CJC-group and V a
faithful, irreducible FF-module for H over¥p. Suppose thatF*(H) is quasi-simple
and that H is generated by the quadratic offenders on V. Then one of the following
holds (where q is a power of p):

1. H<*'SLn(q), n > 2; Sp2n(q), n > 2; SUn(q), n > 4; $#n(g), n > 3; Cl2n(q),
n > 4; or Q,n(q), n > 7, n and q odd; and V is the corresponding natural
module.



160

2. H = SLn(q), n > 3 and V is i/ie exterior square of a natural module.

3. H = Clr(q), and V is the spin-module.

4. H = n*0(q) and V is one of the two half-spin modules.

5. H = Ofn(q), p = 2, n > 3 and V is the natural module.

6. H  ̂ G2{q), p = 2 and \V\ = q6.

7. H = Alt(n) or Sym(n), p=2 and V is the natural module.

8. H ^ Alt(7), p = 2 and \V\ = 24.

9. H& 3.Alt(6), p = 2 and \V\ = 26.

Let V be an Fpi?-module and S € Sylp(H). The group Op>(CH(CV(S))) is
called a point stabilizer for H on V. V is called p-reduced if OP(H/CH(V)) = 1.

Lemma 1.1.3 (Point Stabilizer  Theorem) Let H be a finite CK-- group, V a
WPH-module, L a point stabilizer for HonV and A < OP(L).

(a) IfV isp-reduced, then \V/CV{A)\ > \A/CA(V)\.

(b) Suppose V is faithful and irreducible for H, F*(H) is quasi-simple, H = {AH)
and A is a non-trivial offender on V. Then H = SLn(q), Sp2n(<l), Gi(q) or
Sym(n), where p = 2 in the last two cases, n = 2,3 mod (4) in the last case,
and q is a power of p. Moreover, V is the corresponding natural module.

Theorem 1.1.4 Let H be a finite CK-group with F*(H) quasi-simple. Let V be a
faithful irreducible ¥PH module. Suppose there exists 1  ̂ A < T £ Sylp(H) such
that \A\ > 2 and (A1) acts quadratically on V for all S < L < H. Then

(a) F*(H)A ^ SLn(q),Sp2n(q),SUn(q),G2(qy or Sz(q), where p = 2 in the last
two cases.

(b) Let I be an irreducible F*(H)A submodule ofV. Then one of the following
holds:

1. I is a natural module for F*(H)A.

2. p = 2, F*(H)A = Lz(q), H induces a graph automorphism on F*(H)
and I is the adjoint module.

3. p = 2, F*(H)(A) = Sp&(q) and I is the spin-module.

(c) Either A is contained in a long root subgroup of F*{H)A, orp = 2, F*(H)A =
Spi(q), A < Z{SC\F*(H)A) and H induces a graph automorphism onF*{H).

The information given in the above theorem can be used to prove the following
corollary, which is of great help in the local analysis.
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Corollar y 1.1.5 (Strong L-Lemma) Let L be a finite CK-group with OP(L) = 1
and V a faithful FpL-module. Suppose that there exists 1 ̂  A < S 6 Sylp(L) such
that

(*) {Ap) acts quadratically on V for every proper subgroup P < L satisfying
A<PandSC\Pe Sylp(P).

Then

(a) L = SL2(pm), Sz(2m) or Dir, where p = 2 in the last two cases and r is an
odd prime.

(b) [V, L]Cv{L)/Cv{L) is a direct sum of natural modules for L.

Let H be a finite group, V a Fpi?-module and A < H. We say that A is cubic
on V if [V, A, A, A] = 0. We say that V is a cubic 2F-module if H contains a
non-trivial cubic 2i?-offender. The following theorem is due to R. Guralnick and G.
Malle [GM]:

Theorem 1.1.6 (The 2F-Module Theorem,I) Let H be a finite CK-group and
V a faithful irreducible cubic 2F-module for H. Suppose thatF*(H) is quasi-simple,
but F*(H) is not a group of Lie-type in characteristic p. Then one of the following
holds:

1. F*(H)/Z(F*(H))  £*  Alt(n), p = 2 or 3 and one of the following holds.

1. V is the natural module.

2. H = Alt(n), p = 2,n = 7or9 and V is a half-spin module.

3. H = Sym(7), p = 2 and V is the spin-module.

4. F*(H)  £*  2.Alt(5), p = 3 and V is the half spin module.

5. F*(H) S 3.Alt(6) and \V\ = 26.

2. F*(H) * G2(2)', p = 2 and \V\ = 26.

3. F*(H)  ̂  3.C/4(3), p = 2 and \V\ = 212.

4. F*(H)  ̂  2.1,3(4), p = 3 and \V\ = 36.

5. F*{H)  Si Sp6(2), p = 3 and \V\ = 37.

6. F*{H)  ^ 2.^6(2), p = 3 and \V\ = 38.

7. F*(F) S 2.^(2), p -3and |V| = 38.

8. F*(H) = M\2, M22, M23, M24, p = 2 and V is a non-trivial composition factor
of dimension 10,10,11,11 resp. of the natural permutation module.

9. F*(H) = 3.M22, P = 2 and \V\ = 212.

10. F*(H) = 3-x, p = 2 and V is the 12-dimensional module which arises from
the embedding into G2(4).
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11. F*(H) = C02 or Co\, p = 2 and V is 22- resp. 24-dimensional module
arising from the Leech Lattice

12. F*(H) £*  Mn or 2.M12, p = 3 and \V\ = 35 and 36 respectively.

It is not known whether Case 11 in the preceding theorem really occurs. We
tend to believe it does not.

1.2 An Example

To get an idea how these theorems are used in the local analysis we now discuss
briefly a particular but fairly general situation.

Let G be as in the Main Hypothesis, that is a finite /Cp-group of local char-
acteristic p with trivial p-radical. Fix S S Sylp{G) and put Z :— CliZ(S). Let
Mi, M2 € C(S) and put F{ = F*(Mi).  Suppose that

(i) Fi/Op{Fi)  is quasisimple, i = 1,2,

(ii) Op((FltF2)) = l,

(iii ) Mi = SFiti = 1,2.

Let Zi :=  (ZMi) and Vi :=  {Zfl) for i  ̂ j . Note first that Zj < Z{OV{M6)) <
S < M,, so Zi and Vi are normal subgroups of M;.

As an elementary consequence of (i) we get:

(1) Let U < Mi and Ft < NMi(U). Then either Ft < U, or UnOp(Mi) G Sylp(U).

This property (1) together with (iii ) applied to U = CMi(i?i/Op(M i)) and U =
) , V a non-central Mj-chief factor in Op(Mi), gives:

(2) Suppose that V is a non-central M;-chief factor in Op(Mi). Then

CS(V) = Op(Mt) = Cs(Fi/Op(Mi)).

Next we show that one of the following cases holds:

(I) There exist g £ G and i £ {1,2} , say i = 1, such that

[Zi, Z{\  1, [ZUZ(] <Zxn Z{ and ZXZ\ <MXV\ M{.

(II ) There exists an i G {1,2} , say i = 1, such that Z\ ^ Op{Mi),  and (I) does
not hold.

(Ill ) Vi and V2 are elementary abelian, and (I) does not hold.
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To see this, assume that (I) apd (II) do not hold. Then VXV2 < 0p(Mx)n0p(M2),
and either (III ) holds, or for some i G {1,2} , say i = 2, V2 is not abelian. In the
latter case, there exists g G M2 such that [Zx, Z[)  ̂ 1. Since (Zx,Zf) < OP(M2) <
MinM f we also have [Zx,Zf] < Zxf)Zf. This gives (I) contrary to our assumption.
We now discuss these three cases separately.

Assume case (I). We can choose the notation such that

\Zf/Cz((Zx)\>\Zx/CZl(Zf)\,

so Z\ is a quadratic offender on Zx.

Clearly [ZX,MX}^1 since [Zx,Zf]  ̂ 1, so the definition of Zx implies that Mx ^
CMl{Z\)S. Thus [ZX,OP{MX)\ ^ 1 and there exists a non-central Mi-chief factor
V = U/W of Zi. From (2) we conclude that Cz?(Zi ) = CZ«(V) = Z{ n Op(Mi) .
It follows that

\V/CV{Z{)\ < \U/Cv{Z{)\ < \Zx/CZl{Z{)\ < \Zf/Czf(Zx)\ = \Z{/Czl{V)\.

Hence Z\ is a non-trivial quadratic offender on V, and the FF-Module Theorem
gives the structure of Fi/Op(Mi) and V.

Assume case (II) . Then

[OP(M2), ZltZi]  < [OP{M2) n Zi, Zi] = 1,

so Z\ is quadratic on every M2-chief factor V of OP(M2). Hence (unless it is the
case that |ZiOp(Mi)/O p(Mi) | = 2), the Quadratic Module Theorem applies to
M2/CM 2 (V ) and A = ^ I C M 2 ( ^ ) / C M 2 ( ^ ) - But in this case one also gets informa-
tion about Mi :

Among all subgroups U_< M2 with Zx < U, U D S € Sylp(U) and Zx % OP(U)
choose U minimal and set U = U/OP(U). Then for every proper subgroup OP(U) <
P <U with Sr\P G Sylp(P) and Z\ < P we get that Z\ < OP(P). But this implies,
since we are not in case (I), that X :=  (Zf) is abelian. Hence as above, since X
is normal in S D P, [OP(P), X, X] = 1. This shows that the Strong L-Lemma 1.1.5
applies with L = U,V = OP(U)/${OP(U)) and A = ~ZX.

Set B :=  Zi D OP(U) and B :=  Bx for some x G U \ Nu(S D U). Note that
U = (Zu Zf) and so U normalizes BB and B D B < Z(U). By 1.1.5, \ZX/B\ <
\B/B fl B\ and CB(y) = B D B for every y G Z\ \ B. It follows that

ZxICZl{B) < \ZX/BC\B\ = \Zx/B\\B/BnB\ = |Zi/B||B/BnB| < \B/SnB

so BjB D B is a 2.F-offender on Zx. Using (ii) we see that the 2.F-Module Theorem
applies to MXJCM1{ZX) and a non-central Mi-chief factor of Zx.

Assume case (III) . Note that (Cjwi(Vri),M3) < NG(ZJ) and so by condition (ii)

Fi ^ CMi (Yi) for every i G 7.

In particular by (1) Cs(Vi) < Op(Mi) for every i £ I. Since by property (ii)
J(5) ^ Op(Mi ) n OP(M2) we may assume that
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(** ) F1 £ CMl(Vi) and 3(S) £ CMl{Vx).

Let D be the inverse image of Op(M1/CMl(Vi)). Pick A € A(S) such that A ^
CMI(VI) . According to the Thompson Replacement Theorem we may assume that
A acts quadratically on V\. The maximality of A gives

iViHCUMH^ n A\~l = \VXCA{V{)\ < \A\

and thus \Vi/CVl(A)\ = |Vi/Vi f\ A\ < \A/CA{Vi)\, so A is a quadratic offender
on V\. This looks promising, but Ao := Af l D might not centralize V\. This is
an obstacle for the application of the FF-Module Theorem to F\A and non-central
Fiyl-chief factors of V\.

Evidently \A0/CA(Vi)\ < \A/A0\ or \A/A0\ < \AQ/CA{V{)\. In the first case

iVi/Cv^AOl < MM r\A\ < \A/CA{V{)\ = IA/AOWAO/CAWI < \A/A0\2,

so in this case, using again (2), A/Ao is a quadratic 2F-offender on the non-central
FiA-chief factors of V\.

In the second case

|^/CVl (A0)| < \V1/VlKA\ < \A/CA{V{)\ = IA/AOUO/CM)] < lAo/C^)]2,

so Ao is a quadratic 2F-offender on V\. An elementary calculation then shows that
there exists a quadratic 2F-offender on Z-x-

This concludes the discussion of the cases (I) - (III) . In all cases the module
theorems from 1.1 reveal the structure of F\jOv{F\) or FijOv{F-i).

2 The Local Analysis

In this part we discuss the p-local structure of G, where G is, according to our Main
Hypothesis, a finite /Cp-group of local characteristic p with trivial p-radical. We fix

S € Sylp(G), Z :=  0^(5).

For further notation see the introduction.
The basic idea is to study the structure of L € C by its action on elementary

abelian normal subgroups contained in Z(OP(L)) and by its interaction with other
elements of £ having a common Sylow p-subgroup. It is here where the module
results of Part 1 are used.

The appropriate candidates for such normal subgroups in Z(OP(L)) are the
p-reduced normal subgroups, i.e. elementary abelian normal subgroups V of L
with OP(L/CL(V)) = 1. Note that an elementary abelian normal subgroup V
is p-reduced iff any subnormal subgroup of L that acts unipotently on V already
centralizes V. Here are the basic properties of p-reduced normal subgroups. They
include the fact that there exists a unique maximal p-reduced normal subgroup of
L which we always denote by YL-
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Lemma 2.0.1 Let L be a finite group of characteristic p and T £ Sylp(L).

(a) There exists a unique maximal p-reduced normal subgroup YL of L.

(b) Let T < R < L and X a p-reduced normal subgroup of R. Then (XL) is a
p-reduced normal subgroup of L. In particular, YR < YL.

(c) Let TL = CT{YL) and LT = NL(TL). Then L = LTCL(YL), TL = OP(LT)
andYL = Q,1Z(TL).

(d) YT = fiiZ(T),  ZL :=  (QiZ(T)L) is p-reduced for L and ftiZ(T)  <ZL< YL.

(e) Let V be p-reduced normal subgroup of L and K a subnormal subgroup of L.
Then \V,OP(K)\ is a p-reduced normal subgroup of K.

Of course, the action of L on YL might be trivial, whence YL = iliZ(T), T £
Sylp(L). This leads to another notation. Let H be any finite group and T €
Sylp(H). Then PH(T) :=  Op' (CH(^iZ(T))) is called & point stabilizer of H. In the
above situation trivial action on YL implies that Op'(L) =  PL(T). Here are some
basic (but not entirely elementary) facts about point stabilizers.

Lemma 2.0.2 Let H be a finite group of local characteristic p, T € Sylp(H) and
L a subnormal subgroup of H. Then

(a) (Kieler Lemma) CL$liZ{T)) = CL{Q.lZ{T n L))

(b) PL(TnL) = Op'(PH(T)nL)

(c) CL(YL) = CL(YH)

(d) Suppose L = (LijL^) for some subnormal subgroups L\,L  ̂ ofH. Then

(da) PL(TDL) = (PLl(TnL1),PL2(TDL2)).

(db) For i = l , 2 let Pi be a point stabilizer of Lt. Then (Pi,P2) contains a
point stabilizer of L.

It is evident that all elements of £(S) having a normal point stabilizer are
contained in NQ(Z). Therefore, controlling NQ{Z), or better a maximal p-local
subgroup containing NQ(Z), means controlling all elements of L £ JC(S) with trivial
action on YL- This point of view leads to the next definition and subdivision.

Let C be a fixed maximal p-local subgroup of G containing NQ(Z). Put

E:=Op(F;(C5(Yd))), Q:=OP(C)

The major subdivision is:

Non-E-Uniqueness (~^E\) : E is contained in at least two maximal p-local sub-
groups of G.

E-Uniqueness (E\) : C is the unique maximal p-local subgroup containing E.
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Another subdivision refers to the rank of G. Define the rank of G to be the
minimal size of a non-empty subset £ of V{S) with (£) ̂  C. If no such subset
exists we define the rank to be 1. Note that rankG = 1 if and only if 1^(5)1 = 1.
The cases rank G = 1 and rank G > 2 are treated separately, so in the El-case we
will assume, in addition, that G has rank at least 2.

The subgroup (A4(S)) is called the p-core of G (with respect to S). Note that
G has a proper p-core if G has rank 1, so the rank 1 case can be treated in this
more general context.

2.1 Pushing Up

At various times in the local analysis we encounter a p-local subgroup L of G and
a parabolic subgroup H of L such that No(Op(H)) and L are not contained in
a common p-local subgroup of G. In other words OP((L, NG(OP(H)))) = 1. In
this section we provide theorems that allow us, under additional hypotheses, to
determine the shape of L.

For a p-group R we let VU\(R) be the class of all finite C/C-groups L containing
R such

(a) L is of characteristic p,

(b) R = OP(NL(R))

(c) NL(R) contains a point stabilizer of L.

Let VU.2{R) be the class of all finite CK,- groups L containing R such that L is
of characteristic p and

L= (NL(R),H\R<H<L,HeVUi(R)).

Let VUz{R) be the class of all finite C/C-groups L such that

(a) L is of characteristic p.

(b) R < L and L = (RL)

(c) L/CL(YL) = SLn(q), Sp2n(q) or G^iq), where q is a power of p and p = 2 in
the last case.

(d) YL/CYL{L) is the corresponding natural module.

(e) OP(L) < R and NL(R) contains a point stabilizer of L.

(f) If L/CL(YL) ? G2(q) then R = OP(NL(R)).

Let VU.4,(R) be the class of all finite CK- groups L containing R
such that L is of characteristic p and

L = (NL(R),H\ R<H<L,H£ PU3(R)).
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For a finite p-group T let A(T) be the set of elementary abelian subgroups of
maximal order in T, J(T) = (A{T)), the Thompson subgroup of T, and B(T) =
Cj?(fiiZ(J(T))), the Baumann subgroup of T. Recall that a finite group F is p-
closed if Op> (F) = OP(F). The following lemma is a generalization of a well known
lemma of Baumann, also the proof is similar to Baumann's.

Lemma 2.1.1 (Baumann Argument) Let L be a finite group, R a p-subgroup
ofL, V := ftiZ(Op(Z,)), K := (B(R)L), V = V/CV{OP{K)), and suppose that each
of the following holds:

(i) OP(L) <RandL= (J{R)L)NL(3{R)).

(ii) CK{V) is p-closed.

(iii ) \V/Cy(A)\ > \A/CA(V)\ for all elementary abelian subgroups A of R.

(iv) // U is an FF-module for L/OP(L) with V < U and U = Cu{B{R))V, then
U = Cu{OP(K))V.

ThenOp(K) <B{R).

Using the Point Stabilizer Theorem 1.1.3 and the Baumann Argument 2.1.1 one
can prove

Lemma 2.1.2 Let R be ap-group. Then VUi{R) C VUi(B(R)).

Similarly,

Lemma 2.1.3 Let L be a finite p-minimal CK- group of characteristic p. Let T e
Sylp(L). Then either L centralizes fiiZ(T)  (and so PL(T) is normal in L) or
L e VUi(B(T)).

If i i is a group and E is a set of groups containing R we define

OR(S) = {T<R\T<L,VL£Y,)

So OR(H) is the largest subgroup of R which is normal in all L e S.

Theorem 2.1.4 Let R be a finite p-group with R = B(R) and S o subset of
VUZ(R). Suppose OR(Z) = 1. Then there exists L e E such that OP(L) has
one of the following shapes: (where q is a power of p.)

1. qnSLn{q)';

2. q2nSp2n(q)',P odd;

3. q1+2nSp2n(q)',p = 2;

3. 26G2(2)',p = 2;
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4. q1+6+8SP6(q),p = 2;

5. 21+4+6L4(2),p = 2; or

6. q1+2+2SL2(q)',p = 3.

Examples for above configurations can be found in SLn+i(q), Lpn(r)( with q =
p\r — l), Sp2n+2(q), Ru, F^q), Co2 and G2(q), respectively.

We are currently working on determining the shapes of all L 6 S, not only of
one. We expect all elements L G S to have one of the structures of the previous
theorem, except for one additional possibility namely L/OP(L) = SL<2(q) and all
non-central chief-factors for L on OP(L) are natural. For a given R, the number of
such chief-factors is bounded. But as R varies it cannot be bounded.

About the proof: Using elements A £ A(R) and their interaction with the Yi's,
L € £ one shows that there exist L, M € £ such that {Yff) is not abelian. The
fact that {Ylf) is not abelian allows us to pin down the structure of L and M.
(Compare this with the cases (I) and (II ) in 1.2).

Theorem 2.1.5 (The Pushing Up Theorem) Let R be a finite p-group, 1 <
i < 4, and £ a subset ofVUi(R) with O#(£) = 1. If i = 3 or 4 suppose that
R = B(R). Then the shape of (B(R)L) will  be known for all LeE.

Given 2.1.2, the Pushing Up Theorem should be a straightforward but tedious
consequence of 2.1.4. The details still need to be worked out.

2.2 Groups with a Proper p-Core

Recall from the introduction that a proper subgroup M < G is strongly p-embedded
if M is not a p'-group but MnM9 is a p'-group for every g £ G\M. The following
lemma is well known and elementary to prove:

Lemma 2.2.1 Let H be a finite group, T a Sylow p-subgroup of H and M a proper
subgroup of H with p dividing \M\. Put K := (NG(A) | 1 ̂  A < T). Then M is
strongly p-embedded iff No (A) < M for all non-trivial p-subgroups A of M and iff
M contains a conjugate of K. In particular, H has a strongly p-embedded subgroup
if and only if p divides \H\ and K is a proper subgroup of M.

Note that the group K from the preceding lemma contains the p-core of H with
respect to T. Thus if our G has a strongly p-embedded subgroup then G also has a
proper p-core. We say that G satisfies CGT if G has proper p-core but no strongly
p-embedded subgroups.

2.2.1 Strongly p-embedded subgroups

Suppose that G has a strongly p-embedded subgroup. If p = 2, we can apply
Bender's theorem [Be]:

Theorem 2.2.2 (Bender) Let H be a finite group with a strongly 2-embedded sub-
group. Then one of the following holds:
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1. Let t be an involution in H. Then H = O(if)C//(i) and t is the unique
involution in Cn(t)-

2. O2'(H/O(H))  ̂ L2(2k),U3(2k) or Sz{2k).

If p 7̂  2 we end our analysis without a clue.

2.2.2 CGT

Suppose that G satisfies CGT. Let M :=  (M(S)) be the p-core with respect to 5.
According to CGT, M is a proper subgroup of G, but M is not strongly p-embedded.
Thus there exists g £ G\M such that \M D M9\p -fc 1. Evidently we can choose g
such that MnS9 is a Sylow p-subgroup of MnM». Thus |S9nM|p ^ 1. If Sg < M,
then Sgm = S for some m € M. Since NG(S) < M we obtain the contradiction to
5 g M. Thus S9 ^ M. Also 5s e £.

Among all L G £ satisfying I ^ M w e choose X such that \L(lM\p is maximal.
Then \L D M|p > |55 n M|p ^ 1. Let T G 5t/^(L n M) and without loss T < S.

If T = S we get that £ G C{S) and so by the definition of M, L < M, a
contradiction. Thus T  ̂ S. Let C be a non-trivial characteristic subgroup of T.
Then NS(T) < NG(C) and so |M(~I -/VG(C)|P > |Mf~lL|. Hence the maximal choice
of |M n i | p implies A^G(C) < M. In particular, A^L(C) < M D L. For C = T we
conclude that T G Sylp(L). We can now apply the following theorem with L in
place of H:

Theorem 2.2.3 (Local C(G,T)-Theorem) Let H be a finite K.p-group of char-
acteristic p, T a Sylow p-subgroup of H, and suppose that

C(H,T) := (NH{C) \1=£C a characteristic subgroup ofT)

is a proper subgroup of H. Then there exists an H-invariant set V of subnormal
subgroups of H such that

(a) H=(V)C(H,T)

(b) [Di,D 2]  = 1 for all Dx  ̂ D2 6 V.

(c) Let D G V, then D ^ C(H,T) and one of the following holds:

1. D/Z(D) is the semi-direct product of SL2(pk) with a natural module for
SL2(pk). Moreover OP(D) = [OP(D),D] is elementary abelian.

2. p = 2 and D is the semi-direct product of Sym(2k + 1) with a natural
module for Sym(2k + 1).

3. p = 3, D is the semi-direct product of O3(D) and 5L2(3fc), $(£>) =
Z{D) < O3(D) has order Zk, and both [Z(O3(D)),D] andO3(D)/Z(O3(D))
are natural modules for D/OP(D).

For p = 2 the local C(G, T)-theorem was proved by Aschbacher in [Asch] without
using the A^-hypothesis. For us it will be a consequence of 2.1.5. Using the local
C(G, T) theorem and that G is of local characteristic p it is not difficult to show:
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Theorem 2.2.4 Suppose that G fulfills CGT. Let M be a p-core for G and L € C
such that \L n M\p is maximal with respect to L ^ M. Then there exists a normal
subgroup D of L such that D/Z(D) S q2SL2(q) and CL{D) < OP(L).

Using the preceding theorem, A. Him is currently trying to show that for p = 2,
G cannot fulfil l CGT.

2.3 -El

In this section we assume that we are in the ->E!-case, so E is contained in C and
at least one other maximal p-local subgroup of G. To illustrate this situation we
look at a few examples.

Let p = 2, q = 2k and G = Fi(q)(a) where a induces a graph automorphism of
order 2. ( Yes, G is not of local characteristic 2, only of parabolic characteristic 2.
But as we mostly look at subgroups containing a Sylow p-subgroup, or at least a
large part of the Sylow p-subgroup, it is difficult for us to detect that G is not of
local characteristic p.)

Note that G' is a group of Lie-type with Dynkin-diagram

Also S is only contained in two parabolic subgroups, namely the cr-invariant
Bi- and A\ x Ai-parabolic. Trying to treat this amalgam would not be easy. To
determine E, note that Z(S) has order q and is contained in the product of the
highest long root group and the highest short root group. It follows that E < G' and
E is essentially the i?2-parabolic. So E is contained in the B3- and CVparabolic,
and G wil l be identified by the (Spe(q), Sp6(q))-&m&lg&m.

As a second example consider G = E$(q) I Sym(pk) (Again this is a group of
parabolic characteristic p, but not of local characteristic p.) Here E helps us to find
p-local subgroups which are not of characteristic p. Let H be the normalizer of a
root subgroup in Es(q), i.e. the ^-parabolic. Then C is H I Sym(pk), and E is
essentially a direct product of pk copies of H. Hence, E is contained in a p-local
subgroup L which is a direct product of pk — 1 copies of H and E$ (q), so L is not
of characteristic p.

As a final example consider p = 2 and G = M24. Then C = 24I-4(2) and so
CQ{YQ) = C-2(C) and E = 1. It seems that E is not of much use in this case, but
E = 1 can only occur if C/OP(C) acts faithfully on YQ. Together with the fact that
C contains NQ{Z), the E = 1-situation can be handled with the amalgam method.

To summarize, the -i.E!-case detects situations which allow a treatment via the
amalgam method. The general idea is to find a p-subgroup R and a set S of
subgroups of G containing R such that we can apply the Pushing Up Theorem
2.1.5 to (R,Z).

To get started we choose a subgroup X of C such that X is the point stabilizer
of some subnormal subgroup X of C and such that X is maximal with respect
to M(EX)  ̂ {C}. By assumption M(E) ^ C so such a choice is possible. For
L € C(EX) let SQ(L) be the largest subnormal subgroup of C contained in L. We
choose L such that in consecutive order
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LI. L £ C{EX) with L % C.

L2. \C fl L\p is maximal.

-L3. SQ{L) is maximal.

LA. C 0 L is maximal.

L5. L is minimal.

Let R = OP(C fl L). Consider the following two conditions:

(PU-L) Nd(R)-£LnC.

-. (PU-L) Nd(R) = LnC

If (PU-L) holds we define H :=  NQ(R). Note here that L n C < H.

If -i (PU-L) holds we choose a C f~l I/-invariant subnormal subgroup N oi C
minimal with respect to N j£ L and put i? = JV(£ D C).

Note that in both cases H  L and H<1L = CDL, since CDL < H <C. Let
T be a Sylow p-subgroup oi H D L such that T f i l i s a Sylow p-subgroup of X.
Without loss T < S.

Lemma 2.3.1 (a) OP((H,L)) = 1.

(b) 7VG(f2!Z(T)) < C.

(c) T is a Sylowp-subgroup of L and H f)L contains a point stabilizer of L.

(d) If ^(PU-L) holds, then OP(NH(R)) = R and Q < R. In particular, H is of
characteristic p.

Proof: Suppose (a) is false. Then there exists a p-local subgroup L* of G with
(H, L) < L*. Since L < L*, L*  fulfill s all the assumptions on L (except for the
minimality of L, our last choice). But H < L* and so CV\L < CC\L* contradicting
(L4). This proves (a).

We claim that EX < No(CliZ(T)). Since X is subnormal in C, and T contains
a Sylow p-subgroup of X and so of X, we conclude that T is a Sylow p-subgroup of
(X,T). Thus by the Kieler Lemma 2.0.2, X < C^(fiiZ(TnX) ) < CG(QiZ(T)) <
JVG(ttiZ(T)). Similarly E < NG(£liZ(T)).

By the choice of C, NG{O,IZ(S)) < C. Thus to prove (b) we may assume T ^ S.
Since NS{T) < iV5(fiiZ(T) ) we conclude that |C?niVG(fiiZ(T))|p > \CnL\p. If (LI)
holds for iVG(niZ(T)) we obtain a contradiction to (L2). Thus JVG(^iZ(T)) < C
and (b) holds.

By (b) NL(T) < H and so T is a Sylow p-subgroup of L. Hence (c) follows from
(b).

Suppose -. (PU-L) holds. Then

Lf)C< NH(R) < N5{R) = if lC , and
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NQ(R)) < OP{N5(R)) = OP

so R = OP(NH(R)) and Q < R. This is (d). D

Proposition 2.3.2 Suppose ->E\ and that (PU-L) holds. Set S = LH. Then
R) andOR(E) = 1.

Proof: By 2.3.l(c) and since R is normal in H, £ C VUi(R). As H and L both
normalize OR(S) we get from 2.3.1(a) that 0R(E) = 1. D

In view of the preceding proposition the (PU-L)-case can be dealt with via the
Pushing Up Theorem 2.1.5. The -i (PU-L)-case is more complicated. As a first step
we show

Lemma 2.3.3 Suppose -.£! and -. (PU-L). Put E = {H,L}. Then OR(S) = 1 =
OB(JJ)(S) and L G VU\{R) C 'PW^B^)). If H 0 L contains a point stabilizer of
H, then E C ^Wi(iJ) C

Proof: By 2.3.1(a) OR(£) = 1 and by 2.3.1(c), L G VUi{R). It H n L con-
tains a point stabilizer of H, then by 2.3.1(d) H £ VU\{R). By 2.1.2, VUi(R) C
PW4(B(i?)). Also OB(i?)(E) < Oj?(S) = 1 and all parts of the lemma have been
verified.

The preceding lemma is the main tool in the proof of:

Proposition 2.3.4 Suppose-^El, -. (PU-L) andYH < OP(L). ThenH e VU4(B(R)).

Outlin e of a Proof: Suppose that H £ VU4(B(R)). Note that by 2.3.1(d)
Q < OP(H) <R,soYH<Q. Since H £ VUi{B{R)), B(R) is not normal in H and
so B(R) ^ OP(H). The definition of H (and the minimal choice of N) shows that
N = [N, B(R)]. As H 0 VUi{R), we get [YH, N]^ 1 and thus also [YH, B(R)]  ̂ 1.
It follows that YH is an FF-module for H. Let H j= H/CH(YH). Then there exist
subnormal subgroups i f i , . . . , iiTm of AT such that if ; is quasi-simple and

m

¥ = ^ ! x  x ~Km and [yff , iV] = 0 [ y f f , Ki\.
t=i

(Note here that i? ^ VU\(R) rules out the case where JV is solvable.) We show
next:

(*) Let 1 ^ x G CS((S n if i)Cs(i ;!:i/Op(ii: i)). Then Ai(Co(x)) = {C}.

Since if j and X are subnormal in C and Ki  ̂ X we get [if;,X ] < Op(Ki). By
2.0.2 and the choice of x, CG(%) contains a point stabilizer of (Ki, X). Suppose that
CG{X) < L* for some L* G C with L*  C. Then the maximal choice of X implies
that X contains a point stabilizer of Ki. But then by 2.0.2(d), H D L contains a
points stabilizer of H, which contradicts 2.3.3 and H £ VUi(R). So (*) holds.
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We apply the amalgam method to (H, L) using the standard notation as it is
given in [DS]. For a = Hg put Kai = K? and Ca = Cs.

Suppose that b is even and (a, a') is a critical pair with a = H. Typically we
will find 1 / sg [Ya, Ya>]  such that x is centralized by a Sylow p-subgroup of Kai

and Ka'j. Thus (*) implies Ca = Cai. But this contradicts Ya < Op(Ca) and
Ya £ 0p{Ga>).

A typical case where one cannot find such an x is, when Ki = Q,fn(2) and
A := [[Ya,Kai],Ya>]  has order 2 (for some i) and M(CG(A))  ̂ {C}. Then there
exists CG(A) <L*e£ with Z*  ^ C. It is easy to see that K{R* G PU4(R*). Using
the Pushing Up Theorem 2.1.5 one derives a contradiction.

Suppose that b is even, but a ^ H for every critical pair (a, a'). One then
proves that YHYL is normal in L and Op((Op(i/') i:')) < OP(H). Another application
of 2.1.5 gives a contradiction.

So b is odd and without loss a = H. Let a! + 1 € A(a') with VQ, J£ GQ/+ I .

One usually gets that Ya n <Qa' fl (Qa'+i contains an element x as in (*). This
forces Ya'+i  < Ca>  n Ga+1 < Ga. This allows us to find y € Va'+i H <5a with
CG{V) < Ga'4-i. Hence ya < Ga'+i, a contradiction. D

The propositions in this section together with the Pushing Up Theorem leave
us with the following open problem:

2.3.1 The open "-.£! , b = 1"-Problem

Suppose ->E\, ->(PU-L), YH ^ OP(L) and H £ VUi(B(R)). Determine the shapes
of H and L.

2.4 E!

The way we usually use E\ is through an intermediate property called Q- Uniqueness.

(Q!) CQ{X) < C for all 1 ^ x 6 CG{Q)

Lemma 2.4.1 E\ implies Q\.

Proof: Since C is a maximal p-local subgroup, NQ(Q) = C. Thus x S CG{Q) =
CQ{Q). Since C is of characteristic p we conclude x G Z(Q). Without loss \x
has order p and thus x G £liZ(Q). Note that EQ/Q has no p-chief-factors and so

YBQ. By 2.0.2(c)

= CE(YQ) = E

Thus S < CG{x) and S! implies CG(x) <C. D

The reader might want to verify that Ln(q) is an example of a group which
fulfill s Q\ but not E\.
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In this section we assume Q\ and that G has rank at least two. For L G C define
L° = (Q9\geG,Q9<L).

Lemma 2.4.2 Suppose Q\.

(a) C° = Q, in particular, any p-subgroup of G contains at most one conjugate
ofQ.

(b) IfLeC with Q < OP(L), then L<C. In particular, if 1 ̂  X < Z(Q) then
NG{X) < C.

(c) IfQuQ* G QG with Z(Q1)nZ(Q2)  ̂ 1, then Q1 = Q2.

(d) LetLeC with Q < L. Then

(da) L° = (QL°)

(db) L = L°(LnC).

(dc) [CL{YL),L°\<OV{L).

(dd) IfL acts transitively on Y[, then L° =NG(YL)°.

(de) IfL°  ̂ Q, then CYL(L°) = 1.

Proof: (a) Let g e G with Q9 < C. We may assume that Q9 < S. Then
Z{S) < CG(Q9) and thus S < CG(x) < C9 for 1 ̂  x G Z(S). Since NG(S) <
NG(fliZ(S)) < C we conclude that S is in a unique conjugate of C, so C = C9 and

(b) By (a) Q = OP(L)°<L  and so L < NG(Q) = C. By Q\ we have CG(X) < C,
so Q < OP{CG{X)) < OP{NG{X)) and we are done.

(c) As (Qi, Q2) < CG(Z{Qi) n Z(Q2)), we get from Q! and (a) that Qx = Q2.

(d) By (a) each Sylow p-subgroup of L° contains a unique G-conjugate of Q.
Thus Sylow's Theorem gives

{Q9 \Q9 <L}  = QL° = QL,

in particular (da) holds and by the Frattini argument L = L°NL(Q). Then also
(db) holds since NL(Q) < C. Note that CYL(Q) =£ 1, SO CL(YL) < L D C by Q\.
Thus

\CL{YL), Q] < CL{YL) n Q < OP(CL(YL)) < Op(L),

and (dc) follows from (da).

Let Q9 < NG{YL). Then there exists 1 ̂  x G CYL(Q9). If L is transitive on Vf ,
then x is also centralized by an i-conjugate of Q. On the other hand, by Q\ and
(a) CG(x) contains a unique conjugate of Q. Hence Q9 < L and NG(YL)° = L°.

(de) follows immediately from Q\ and (a).
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2.4.1 The Structur e Theorem

In this section we assume Q\ and that G has rank at least two. Our goal is to
determine the action of L on YL for all L G C(S) with L jt C.

For this let MX{S) be the set of all M G M(S) such that

M{L) = {M}  for all L G CM(S) with M = LCM(YM)

To explain the relevance of this set we define a partial ordering on a certain
subset of C(S). For L G £ define it = LCG(YL) and so L = it iff CG{YL) < L.
Then clearly Yj, is a p-reduced normal subgroup of it and so Yj, < Y^t. Thus
CG(YLI) <  CG(YL) < It  We conclude that every L € C is contained in a member
of

£* = {L G £ | CG{YL) < L}

For L l 5 L2 G ^(-5) we define

The following lemma has an elementary proof:

Lemma 2.4.3 (a) <C is a partial ordering on

(b) M$(S) is precisely the set of maximal elements in &(S) with respect to -C.

(c) IfL,He £{S) with It < H\ then YL < Y#+ and L° <H°. D

Let L G C(S) with L jt C. As we have said earlier, we want to determine the
action of L on YL . This will be done using a particular point of view based on the
following elementary observations.

By the preceding lemma tf 4C M for some M G Mt(S), so

L=(Ln M)CL{YL) = (L  n M)(L n C)

since CL{YL) < C; in particular, also M ^ C.
It is easy to see that

L = {VL(S))NL(S) = (VL(S))(L n C),

so there exists P G PLC-S) with P %C.
According to these observations it suffices to study the action of M on YM,

where M G Mt(P) for a given P G V{S) with P jtC. This point of view allows a
case subdivision that requires another definition:

For L G C(S) we write gb(L) = 1 if YM ^ <2 for some M G £( i ), and gb(L) > 1
otherwise. In the above discussion we now distinguish the cases gb(P) > 1 and
gb(P) — 1. These two cases are treated in the next two sections. We remark that
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of the actual groups have gb{P) = 1. Indeed among the groups of Lie Type in
characteristic p, only 2FA{2k), zD4(q) and (for p ^ 3) G2{q) fulfil l El, rankG > 1
and gb(P) > 1.

We further set

C° = {L e C | OP(L) < L°} and V° = V n £°.

Note that for P € P(S), P G V° iff P £ C.

2.4.1.1 The Structur e Theorem for  YM < Q

In this section we discuss a proof of the following theorem:

Theorem 2.4.4 (M-Structur e Theorem for  YM < Q) Suppose Ql and that P e
V°(S) with gb(P) > 1. Let M £ Mt{P). Then one of the following two cases holds
for~M:= M/CM{YM) and Mo := M°CS(YM):

(a) (aa) Wo S SLn(pk) orSp2n(pk) andCjjiM^) S Cq, q\pk-l, orUS SpA(2)

and Mo = 5^4(2)' (and p = 2),

(ab) [YM, M°] is the corresponding natural module for Mo,

(ac) CMo(YM) = Op(Mo), or p - 2 and M0/O2(M0) S 35p4(2)'.

(b) (ba) P = MQS, YM — Yp, and there exists a unique normal subgroup P*  of
P containing OP(P) such that

(bb) P^ = K1x---xKr, Ki^ SL2{pk), YM = Vi x  x Vr, where V> :=
[YM,Ki]  is a natural Ki-module,

(be) Q permutes the subgroups Ki of (bb) transitively,

(bd) OP(P) = OP(P*) = OP(MQ), and P*CM(YP) is normal in M,

(be) either CMo(YP) = Op{Ma), or p = 2, r > 1, Kt  ̂ SL2{2), and
CMO{YP)I02{MQ) = Z(M0/O2(M0)) is a 3-group.

A second look at the situation discussed in section 1.2 (with Mi corresponding
to M) might help the reader to appreciate the conclusion of the Structure Theorem.
In section 1.2 we have assumed that F*(M\/Op{Mi))  is quasisimple. Here we get a
similar statement as a conclusion in part (a), and part (b) shows that only for "small
groups" it is not true (in fact, this case later will be ruled out in the P!-Theorem).

In section 1.2 we found that YMX is an FF-module or a 2P-module for Mi,
where the second case is basically ruled out here by the hypothesis YM < Q- But
in the FF-module case a glance at the FF-Module Theorem 1.1.2 shows that by far
not all possible groups actually occur in the conclusion of the Structure Theorem.
In the following we want to demonstrate, using the groups Sym(I) and C?2(2fc) as
examples, how these additional groups are ruled out.

Suppose that M = Sym(I), \I\ > 9, p = 2, and Y :=  [YM, M]  is the non-central
irreducible constituent of the natural permutation module for Sym(I). To describe
the action of M on Y let V be a GF(2)-vector space with basis Vk, k S I, and set
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k for every J C I . Then Sym(I) acts on V via Vk <-> Wfcx, a; £ Sym(I).
Let Ve : - {wj | J C 7, | J\ even}  and Fe = Ve + (u/)/(uj). Then Ve is the irreducible
constituent meant above, so Y =p Ve-

Assume first that Q does not act transitively on I. Then there exists a proper Q-
invariant subset J of / with \J\ < \I\J\ and vj £ Cy{Q)- Hence Q\ gives CM(VJ) <
C and Q < O2(CM{vj)). Note that Cj^{aj) 9£ Sym(J) x Sym(I\J) (respectively

Sym(I)lC2, if \J\ = \I\J\). By 2.4.2(b) Q ̂  1, we conclude that O2(Sym(J))  ̂ 1
or O2(Sym(I \ J)) ^ 1. Since |/| > 9, | J\ <\I\  J\, and O2(5ym(n)) = 1 for all
n > 5, we get that \J\ G {2,4}  and O2(Sym(I \ J)) = 1. Thus Q < Sym(J), and
Q centralizes every tTj. for J* C / \ J. Choose such an J*  with | J*| = 2. Then
Cjf(vj.) = 5ym(J*) x 5ym(/ \ J*) and Q < O2(CJ^(VJ.)) n O2(Sym(J)). We
conclude that (5 = 1 since C>2{Sym(I\ J*)) = 1. But this is impossible by 2.4.2(b).

Assume now that Q is transitive on /. Let J be an orbit of a maximal subgroup
of Q that contains the stabilizer of a point. Then \J\ = | | /| and Q centralizes vj
since vj = J>i\j.  Now a similar argument as above leads to a contradiction.

As a second example let p = 2, M S G2(g), 9 = 2fc, and Y := [F^M ] be
the module of order q6. In addition, suppose that there exists g € G with YY9 <
MC\M9 and [Y, Y9]  j=  1. Then it is easy to see that |W| = <?3 and |[Y, Y9]\  = q3.
Let 1 ̂ = x e [Y, Y9]. Since M act transitively on Y, there exist h G M such that
[a;, Qft] = 1 Prom Q! applied to Q\ CG{x) < Ch. From the hypothesis YM < Q we
get Y <Qh and so Y < O2(CG(^) ); in particular

Y < O2(CM»(a;)) for all 1 ̂  a: G {Y,Y9}.

This contradicts the action of M9 on Y9.

Outlin e of a proof for  2.4.4: Let H be minimal in M with S < H and
Af = HCM(YM)- Then by definition of Atf^S1), M is the unique maximal p-local
subgroup containing H. Let Y = YH(= YM)-

We consider the following cases:

(a) [The Orthogonal Case] p = 2, F S O|n(2), [Y,ff ] is the natural module and
Cii{y) ^ M for every non-singular element y e [Y, if] .

(b) /T/ie Symmetric Case] (a) does not hold and there exists g & G with YY9 <

(c) [The Non Abelian Asymmetric Case] Neither (a) nor (b) holds and there exists
LGC with OP(H) < L and Y % OP{L).

(d) /17ie Abelian Asymmetric Case] None of (a),(b) or (c) holds.

In the following we show how these cases arise from the amalgam method and
how they are dealt with.

Choose Pi € VQ(S) with P\ % M and P\ minimal. Since M is the unique
maximal p-local containing H, OP({H,P\)) = 1 and we can apply the amalgam
method to the pair (H, Pi). For notation see [DS].
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Assume that b is even. Let (a, a') be a critical pair. Then Q\ shows that
Ga ~ H, and we obtain g eG with YY9 <Hf)H9 and [Y, Y9]  ^ 1. Hence either
the Symmetric Case or the Orthogonal Case holds. Note that the symmetry in H
and H9 allows to assume that Y9 is an offender on Y.

Suppose that there exists 1 ̂  x G [Y, Y9} that is p-central in both, H and H9.
Then our hypothesis Y < Q and Q\ imply that Y9 < Op(CH(x)), and (after a tech-
nical reduction to one component of H/CH(Y)) the Point Stabilizer Theorem 1.1.3
applies. This gives the desired conclusion since the preceding discussion already
ruled out Sym(n) and G2(2fc).

Suppose now that [Y, Y9} does not contain such an element. Then (again omit-
ting a reduction to components) the FF-Module Theorem 1.1.2 shows that Case (b)
of the Structure Theorem holds, or that \[Y, Y9]\  = 2. The latter possibility leads
to the Orthogonal Case.

Assume now that 6 is odd and (a, a') is a critical pair. Then again Ga ~ H.
If there exists 1 ^ x G Ya with [x,Op(Ga>)}  = 1, then Ya £ Op{CGct,{x)) a nd t h e

Non-Abelian Asymmetric Case (or (a) or (b)) hold.
Suppose that [x, Op(Ga>)]  ^ 1 for all x e Y* (in the actual proof we do not

use Op(Ga>)  but a possibly smaller subgroup of Ga>). Using the action of Ya on
Vai one can show the existence of a strong offender on Ya. Here an offender A on
a module V is called strong, if Cv(a) = Cv(A) for all a G A \ CA{V). This rules
out most of the cases of the FF-module Theorem 1.1.2, and we get what we want,
(except that it does not rule out SLn(q) on a direct sum of natural modules, a case
which we will not discuss here).

This leaves us with the Orthogonal Case or the Non-Abelian Asymmetric Case.
In the Orthogonal Case we choose L minimal with CH(X) < {L D H)CH{Y) and
L  M, where a; is a non-singular vector (i.e. a non-p-central element) in (V,-H].
Let z be a non-zero singular vector in [Y, H]  perpendicular to x, so z is p-central
in H. Then [z,Qh]  = 1 for some h £ H. Let Qz :=  Qh. We now show that
OP((QZ,L)) = 1, [Qz, CL{Z)\ < Qz H JD, and that z and y are not conjugate in G.
Then 2.1.5 gives the shape of L, and one obtains a contradiction.

It remains to discuss the Non-Abelian Asymmetric Case. Let U G C(OP(H))
with Y j£ OP{U) such that first \U n H\p is maximal and then U is minimal. Let
T G Sylp(U n H). If NG{T) £ M, then considering the amalgam (H,NG{T))
we obtain g G G with YY9 £ H n H3 and [Y,Y3]   ̂ 1. But this contradicts
the assumptions of the Non-Abelian Asymmetric Case. Hence NQ(T) < M, in
particular T is a Sylow p-subgroup of U. If Q ^ U we can apply 2.1.5 and get a
contradiction. So Q < U. Since Y < Q but Y £ OP(U), we have U ^ C, and
2.4.2(de) implies CYu(U) = 1.

Let T < X < U . Then by minimality of U, Y < OP(X). Since OP{X) <T <H
we get (Yx) < H. Hence (Yx) is abelian since we are not in the symmetric case.
So 1.1.4 gives the structure of U/OP(U) and Yj/. Moreover, in most cases we can
conclude that Yu is a strong dual offender on Y and in all cases we get some strong
dual offender on Y. Here a group A is called a strong dual offender on a module V
HA acts quadratically on V and [v,A] = [V, A] for all v G V\Cv(A). The existence
of a strong dual offender on Y together with the FF-Module Theorem 1.1.2 gives
the desired conclusion.
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2.4.1.2 The Structur e Theorem for  YM £Q

In this section we outline a proof of the following theorem. (It might be worth-
while to mention that given E\ we do not need to assume in this section that G is
of local characteristic p but only that G is of parabolic characteristic p.)

Theorem 2.4.5 (M-Structur e Theorem for  YM ^ Q) LetM e M(S) withM0

maximal and put K = F*(M°/CM°{YM))- Suppose E\, YM ^ Q and that M°S is
not p-minimal, then one of the following holds

1. K is quasisimple and isomorphic to SLn(q), Q^(q), or E^q). In case of
K = SLn{q), or Ee(q) no element in M induces a diagram automorphism.

2. 7ce*SLn(q)'oSLm(qy

3. p = 1 and~K  ̂ Alt(6),

4. p = 3 and ~K = M n or

, Sp8(2), M22, or M2i

Moreover, the module YM is a 2F-module with quadratic or cubic offender and
contains a module V as in the table below.

K
SLn(q)
SLn{q)
SLn(q*)
SL3(2)
Alt(6)
3Att(6)
Sp8(2)

nfo(?)
Ee(q)
Mn
2Mi2
M22
M24

prime
P

p odd
V
2
2
2
2
P
P
P
3
3
2
2

module
ext. square
sym. square

V(Ai)®V(Af )
natural
natural
6-dim
8-dim

natural
half spin
V(Xi)
5-dim
6-dim
10-dim
11-dim

example
^2n(g)
Sp2n(q)
SU2n(q)
Ga(3).2

Suz
M24

F2

E6(q)
Er(q)
Co3

Cox
M{22)
M(24)

The proof of the above theorem corresponds to the discussion of the Cases (I)
and (II) in section 1.2. Let L e £Q be minimal with YM < S (1 L £ Sylp(L) and
YM ^ OP(L). Note that such a choice is possible since YM £ Q- Let YM < P < L
and S n P e Sylp(P). Then by the minimal choice of L, YM < OP(P) and so

^ OP(P) < S < M. We now consider the following two cases separately:

(IF) There exists g <=  G such that 1 ^ \YM, YM]  < YMC\YM9 and YMYM <

(2F) (Yj£> is abelian for all YM < P < L with SnPe Sylp(P).
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In the lF-Case, possibly after replacing g be g~l, we may assume that A := Yj^
is a quadratic offender on YM-

In the 2F-Case 1.1.5 can be used to get a cubic 2F-offender on YM as in case
(III ) of 1.2.

The FF-module Theoreml.1.2 and the 2F-module Theorem 1.1.6 now allow us
to identify the components (or solvable variants of components) of M°/CM°(YM)
which are not centralizes by A. In the iF-case one can show that A centralizes all
but i of the components. Let K be the product of the components not centralized
by A. By 2.4.2(de), M°/CMo{YM) acts essentially faithful on [YM,K]. This allows
also to obtain information about all of M°/CM°(XM)

2.4.2 The P!-Theorem

In this section we assume Q\ and that G has rank at least 2. Note that this implies
that V°{S)  ̂ 0. We investigate the members of V°(S), and distinguish the two
cases (V°(S)) $. C and (V°{S)) € £. Detailed proofs for the following two theorems
can be found in [PPS].

Theorem 2.4.6 (The P! Theorem,I) Suppose Q\ hold and (P°(S)) £ C. Then

(a) p is odd.

(b) Q = B(S), C = NG{B(S)) and \Q\ has order q3, q a power of p.

(c) P° ~ q2SL2(q) for all P e V°(S)

Outlin e of a Proof: Let L — NG(B(S)). By our assumption not every element
of V°(S) is in L. We first investigate an element P € V°(S) with P % L. Observe
that Q\ implies that SltZ(X) = 1 for every X e V°{S), so by 2.1.3 P S VUi(B(S));
i.e.

(*) P = (NP(B(S)),Po | Po < P,Po G VU3(B(S))).

An application of 2.1.4 and a short argument show that for the groups Po in (*):

(1) YP = Op(P0) = OP(P),

(2) Po/Yp, YP is a natural SX2(g)-module for P0/YP (q = pm), and | B(5)| = q3.

(3) Po is normal in P, and P =

Suppose that p = 2. Then \A(S)\ = 2, so L = SO2(L) < NG(A) for all
A € A(S). It is now easy to see that there exist exactly two maximal 2-local
subgroups containing S. One of them is C and so (V°(S)) is contained in the other.
But this contradicts our hypothesis.

So p is odd. Suppose that Q ^ B(5). Then (ii) shows that q = pfk for some
integer fc > 1. Moreover, [YP,Q] has order at least p(2P-1)fc. Let V = {[YP,Q]d).
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Note that an elementary abelian p-subgroup of 5 not contained in B(S) has order
at most p2k+1. Since p > 2, (2p -l)k>2k + l and so V < B(5).

In particular, Z(V) < CB(s)([Yp, Q]) < Yp. It follows that either V < YP

or [V,YP]  = Z(V) - Z(B(S)). In both cases {Yp) acts trivially on the series
1 < Z{V) < V < Q, so Yp < Q since C has characteristic p. As Yp is not
normal in C we get B(S) = {Yp) < Q. In particular B(S) = B(Q), so C - L and

We have proved that Q < B(5), so by 2.4.2(b) L < C. In particular P £ i for
every P € P°(5), and (1) - (3) hold for every P G V°(S). It remains to prove that
Q = B(S).

Suppose that Q ^ B(S). Again as C is of characteristic p, we get that Z(B(S)) <
Q. Note that NP(B(S)) acts irreducibly on YP/Z(B(S)) and B(S)/YP. It follows
that either YP < Q or Y> n Q = Z(B(5)). The first case gives Q = Y> contrary
to our assumption. The second case shows, with an argument as above using the
series 1 < QiZ(Q) < Q, that £liZ(Q)  ̂ Z(B(S)), so Q is elementary abelian of
order q2.

For every P £ V° (5) let tp be an involution in P that maps onto the central in-
volution of Po/Yp. Then tp normalizes B(5) and so also Q. We conclude that tp in-
verts Z(B(S)) and B(S)/Q and centralize Q/Z{B{S)). There exists X € P°(S) with
Yx ^ YP. Let u = tptjr. Then u centralizes Z(B(S)), B(S)/Q and Q/Z{B{S)). So
if induces a p-element on B(S) and since NG(B(S)) has characteristic p, B(S){u)
is a p-group. By (l)-(3) we conclude that u € 5(5) and tPB(5) = tx B(S). But
then Y> = [B(S),tP]  = [B(S),tx]  = Yx, a contradiction.

We have shown that Q = B(5), and the lemma is proved.

We say that P! holds in G provided that:

(P!-l) There exists a unique P G V°(S).

(P!-2) P°/OP(P°) ^ 5La(?), 9 a power of p.

(P!-3) Vp is a natural module for P°.

(P!-4) CYp{Sr\PD) is normal in (5.

Theorem 2.4.7 (The P! Theorem,!!) Suppose that

(i) Q\ holds and G has rank at least 2.

(ii) P is a maximal element ofV°{S) and gb{P) = 1.

(iii ) M := {V°{S)) G C

Then P! holds in G.

Outlin e of a Proof: Applying the Structure Theorem 2.4.4 to some M G
it is fairly easy to see that P — M. In case (a) of the Structure Theorem
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2.4.4 P°/OP(P°) =  51,2(9) and Yp is the natural P°/Op(P°)-modn\e. In this case
we define Zo := CYp(PT\S) (= D,1Z(SnP0)). In case (b) of the Structure Theorem
we define Zo := CYP(S fl P*), where P*  is as given there.

The main step in the proof of the P [-Theorem is to show that ZQ is normal in C.
Suppose not and let P € VQ(S) be minimal with ZQ $P. Another application of
the Structure Theorem shows that OP((P, P)) = 1. So we can apply the amalgam
method to the pair (P, P).

For 7 = Pg put C7 = C9. Let (a, a') be a critical pair. Suppose that a ~
P ~ a'. Then both Qa and Qa' contain a conjugate of Q. Since 1 ^ [Za,Za>]  <
Z(Qa) n Z{Qa') we conclude from 2.4.2(c) that <5a = <5a' and so ZaZQ/ < Z5a.
Thus [Za, Za/] = 1, a contradiction.

So we may assume that a = P. Since Yp < Q < OP{P) we have b > 1. Suppose
that 6 = 2. By the Structure Theorem Q ( and so also Qp) acts transitively on the
"components" oiGa/Qa. Hence ZQ = [Za, Za>].  This is used to show that Zo<Gp,
a contradiction.

Thus b > 3. A lengthy amalgam argument now leads to contradiction.

We have established that Zo is normal in C. In Case (a) of the Structure
Theorem we are done. So suppose that Case (b) of the Structure Theorem holds.
Since Np(Zo) < C, Q < OP(NP(ZQ)). Since Q acts transitively on the components
we conclude that q = p = 2.

Note that M is the unique maximal 2-local subgroup of G containing P. Suppose
that NG(B(S)) ^ M^JThen O2((P, NG(B(S))) = 1 and 2.1.4 gives a contradiction.
Hence JVG(B(S)) < M. Since_B(S) < CG(Z0) and Zo is normal in C, the Frattini
argument implies C = (C n M)CG(ZQ)-

Let K be the one of the Stym(3)-components of P/OP(P), T a subgroup of
index 2 in S with NS(K) < T, X = (([YP,K]  n Z0)T) and L = NG(X). Then
(K, T,CG(ZO)) < L. Since Q acts transitively on the components of P/OP(P),
Q % T and P = (L D P, Q). Thus O2((Q, L)) = 1. Suppose that T is not a Sylow
2-subgroup of L. Since T is of index 2 in a Sylow 2-subgroup of G, NL(T) contains
a Sylow 2-subgroup of L and G  ̂ But NL(T) < NG(B(S)) < M and so NL(T)
contains a Sylow 2-subgroup of M. One concludes that P < L, a contradiction.

Thus T is a Sylow 2-subgroup of L. Since CL(QiZ(T)) < CG(fliZ(S)) < C
and \Q/Q n T| = 2 we get CL(ftiZ(T)) < QCL{9.iZ{T)). So we can apply 2.1.5 to
£ = LQ and JR = Op(CL(f2iZ(T))). A littl e bit of more work gives a contradiction.

2.4.3 The P! Theorem

Suppose that G fulfill s Q\ and P!. We say that P! holds in G provided that

(P!-l) There exists at most one P £V{S) such that P does not normalize P° and
M :=  (P, P) e C.

(P!-2) If such a P exists then,
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(a) M £ £°.

(b) M°/CMo(YM) S SL3(q),SP4(q) or SpA(2)'

(c) YM is a corresponding natural module.

In this section we outline a proof of the following theorem from [MMPS]:

Theorem 2.4.8 (The P! Theorem) Suppose Q\ and gb(P) > 1 for some P e
V° (S). Then one of the following is true:

1. G fulfills PL

2. Let P G V{S) with P £ NG(P°) and M := (P,P) <£ £. Then

(a) p = 3 or 5.

(b) M/OP(M) S SL3(p)

(c) OP{M)/Z{OP{M)) andZ(Op{M)) are natural SL3(p)-modules for M/OP(M)
dual to each other.

Outlin e of a Proof: We may assume that PI does not hold. Then there exists
Pi € V(S) such that Mi = (P,Pi) 6 £ and Pi ^ NG(P°). The Structure Theorem
2.4.4 shows that Mx/Op(Mi) = SLs(q) or 5^4(9) (or some variant of 5p4(2)) and
that Yjvfi is a corresponding natural module. In particular, if Pi were unique P!
would hold. Hence we can choose P2 having the same properties as Pi and Pi ^ P2.
Define M2 = (P,P2)- The Structure Theorem also implies that (Mi,M 2) $ £ and
so we can apply the amalgam method to (Mi,M2). Fairly short and elementary
arguments show that b < 2. In the 6 = 1 case one easily gets M[  = 24Spi{2)' and
then obtains a contradiction to Y}vtf4 < Q. Fairly routine arguments in the 6 = 2
case show that Mi ~ qr3+35'Z.3(gr) or q3+3+3SLs(q). A littl e extra effort rules out
the second of this possibilities. But the proof that q = 3 or 5 in the remaining case
currently is a rather tedious commutator calculation.

The next lemma collects some information about C/OP(C) which can be easily
obtained using Q\ and P!:

Lemma 2.4.9 Suppose Q\, P\, P! and that G has rank at least three. Let L =
NG{P°). Then

(a) NG(T) <LnC for all OP(C C\L)<T<S.

(b) There exists a unique P G VQ(S) with P j£ L.

(c) P/OP(P) ~ SL2(q).pk.

(d) C/Q has a unique component K/Q. Moreover, P < KS.

(e) C = K(LDC), Lf]C is a maximal subgroup of C and OP(CC\L)

(f) Let Zo = CYp{S n P°) and V = (Y$). Then Z0<V andV < Q.
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(g) Let D = CQ(K/OP(K)). Then D is the largest normal subgroup of C con-
tained in L and D/Q is isomorphic to a section of the Borel subgroup of
Aut(S£2 (

(h) LetV = V/Z0. Then

(ha) [V,Q] = 1

(hb) Cd{V) < D and Cd(V) PiCg(Z0) = Q.

(he) Letl^X < YP/Z0. Then Nd(X) <CC\L.

(hd) C n L contains a point-stabilizer for C on V.

(g) {C,L)iC.

2.4.4 The Small Worl d Theorem

Given Q! and P € V°{S). We say that gb(P) = 2 if gb(P) > 1 and (y /) is not
abelian. If neither gb(P) = 1 nor gb(P) = 2 for P we say that gb(P) is at least
three.

Theorem 2.4.10 (The Small Worl d Theorem) Suppose E\ and let P € V°(S).
Then one of the following holds:

1. G has rank 1 or 2.

2. gb(P) = l orgb{P) = 2.

Outlin e of a Proof: Assume that G has rank at least three and that gb(P) is at
least three . In the exceptional cases of the Pi-theorems (2.4.7, 2.4.6) one easily sees
that gb(P) = 1. Thus P! holds. Also in the exceptional case of the P\ -Theorem
2.4.8 one gets gb(P) = 1 or gb(P) = 2. Thus P\ holds. We proved

Step 1 P! and P! hold.

2.4.9 gives us a good amount of information about E. We use the notation
introduced in 2.4.9.

Since (C,L) $ C, we can apply the amalgam method to the pair (C,L). A
non-trivial argument shows

Step 2 One of the following holds:

1. OP(C fl L)/Q contains a non-trivial quadratic offender on V.

2. There exists a non-trivial normal subgroup A of C(~)L/Q and normal subgroups
YP<Z2<Z3<VofCr\L such that:

(a) A and V/Z3 are isomorphic as ¥pCgnL(Yp)-modules.

(b) \ZZ/Z2\ < \A\.
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(c) [V,A] < Z2 < CTT(A). In particular, A is a quadratic 2F-offender.

(d) [x, A] = Yp~ for all xeZ3\Z2.

(e) Let Z\ = (Yp). Then Y\ < Z2 and Z\ is a natural SL2{q)-module for

Pnc5(zo).

We remark that 1. and 2. of Step 2 correspond to the b > 3- and b = 3-Case
for the amalgam (C, L).

Let X = Cv(Op(K)). Using 1.1.1, 1.1.3 and 2.4.9 (and the Z*-theorem [Gl]) to
deal with the case \A\ = 2) it is not too difficult to derive

Step 3 K/OP{K) S SLn{q), (n > 3), SpM',{n > 2) or G2{q)>,( p = 2).
Moreover, V/X is the natural module for K/OP(K) and C C\ L contains a point-
stabilizer for C on V/W.

An amalgam argument now shows that X = ZQ. In particular, K acts transi-
tively on V. Hence all elements in V are conjugate under K to an element of Yp.
From this it is not to difficult to show that b = 3 in the amalgam (C,L). Finally
also the b = 3 case leads to a contradiction.

We finish this section with

2.4.4.1 The open "gb = 2"-Problem

Suppose P £ V°(S), gb(P) — 2 and that G has rank at least three. Determine the
shape of C and P

Note that by the definition of gb(P) = 2, YP < Q and (Yf) is not abelian. So it
should be possible to treat the gb = 2 problem with the methods of Parker/Rowley
from [PR].

2.4.5 Rank 2

In this section we consider the case where Q\ holds and G has rank 2. The gen-
eral idea is to show that (P, P) is a weak BN-pair and then apply the Delgado-
Stellmacher weak BN-pair Theorem [DS]. More precisely we try to characterize the
situations where no weak BN-pair can be found. The following theorem has been
proved in [Chi] and [Ch2]

Theorem 2.4.11 (The Rank 2 Theorem) Suppose Q\, P\, and P\ and that G
has rank 2. Choose P e VQ{S) such that

(i) (P,P)iC
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(ii) H := (P PI C, P) is minimal with respect to (i).

(iii ) P is minimal with respect to (i) and (ii).

Then one of the following holds:

I- YP^OP{P)

2. (NH{P°)P°,H) is a weak BN-pair.

3. (H,P) has the same shape as a suitable pair of parabolic subgroups in one of
the following groups.

1. Forp = 2, t/4(3).2e, G2(3).2e, £>4(3).2e, HS.2e, F3, F5.2e or Ru.

2. Forp = 3, £>4(3").3e, Fi23 or F2.

3. Forp = 5, F2.

4. Forp = 7, F1.

We will not go into the details of this proof. It is a rather technical application
of the amalgam method applied to the pair (NH(P°)P°,H).

The Rank 2 Theorem leaves as in the rank 2 case with the following open
problem.

2.4.5.1 The open "Rank 2, gb=l"-Proble m

Suppose Q\ holds and there exists P,P € V(S) such that (P,P) $ C, P € V°(S)
and gb(P) = 1. Determine the structure of P.

2.4.6 gb = 1

In this section we assume El and that G has rank at least 3. We investigate the
case where YM ^ Q for some M e M(S) with M° maximal. Put Mo = M°S. The
Structure Theorem 2.4.5 tells us the action of M°/OP(M°) on YM.

But we can get a lot more information. Let us consider one example. Suppose
Mo = F*(Mo/Op(M0)) = SLn(q) and YM is the natural module. Then Jfo has the
following Dynkin diagram

We have that ) C\YM) is a maximal parabolic, which then by El is

in C. Hence there is a unique minimal parabolic P in Mo which is not in C. Notice
that most of our groups we aim at are groups of Lie type in which C is a maximal
parabolic. So there is a unique P € V°(S). Hence we are going to approach this
situation.
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But this unique P does not exist in general, as one can see in Case 2 of the
structure theorem 2.4.5, in Case 3 with M°/O2{M°) = 3A6 and YM a 6-dimensional
module, and in Case 4 with M°/Oz(M°) = M\\ and YM a 5-dimensional module.
Hence one cannot expect a similar theorem as 2.4.7 for "gb = 1".

To be able to state the theorems in this section we need to introduce some
notation:

Let H* be a finite group. We say the G is of identification type H* provided
that:

(11) There exist T* G Sy\P(H*)  and I*  C VH>{T*)  with H* = (/*) .

(12) There exists H < G with CG{H) = 1 = OP(H) and Mo < NG(H).

(13) Let T = 5 H if . Then there exists / C VH{T) with H = (I).

(14) There exists a bijection I —>I*,  L t—> L* such that for all J c / ,

(J)/OP((J)) = (J*)/OP((J*)).

(15) There exist M* ,C* G £#  (T*) such that Mo D -ff has the same structure as
M*  and C C\ H has the same structure as C*.

Theorem 2.4.12 Suppose E\, gb(P) = 1, rankG > 2 and V°{S) ^ {P} . / /p = 2
i/ien G is of identification typ M24, ife or Ln(q).

So suppose from now on that V°{S) = {P}.

Here is another observation. Let P G T-"MQ{S)- Then in our example P corre-
sponds to an end node of the Dynkin diagram of MQ . Hence (in most cases) there
is a unique P in VMQ{S) with P ^ NQ(P°). Let us consider the group G we aim
at, a group of Lie type. Then again in most cases P corresponds to an end node of
the Dynkin diagram of G and there exists a unique minimal parabolic in C(S) not
normalizing P°.

Unfortunately this is not true in general, for example if YM is the exterior square
of the natural SXn(g)-module. To analyze this situation, we consider Pi  ̂ Pi in
V{S) such that P{ does not normalize P° for i = 1,2. Let L = (Pi,P, P2). The
case OP(L) — 1 should be approachable with the amalgam method, (see the open
problem at the end of the section).

So suppose that L € C Prom the structure theorem we conclude that L°/CL° (YL)
SLn(q), n > 4 (on the exterior square), M24 (on a 11-dimensional module) or M22
(on a 10-dimensional module.) These cases lead to the different groups in our next
theorem.

Theorem 2.4.13 Suppose E\, rankG > 2, V(S) = {P} and gb(P) = 1. Further-
more, assume that there exist Pt ^ P2 G V{S) with P{ ^ NG(P°) and (Pi,P,P2) G
C Then G is of identification-type O*(g) or (forp = 2) C02, M(22), Co\, J4, or
M(24)'
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From now on we can assume that there is a unique P in V°(S) and a unique
P € VMO(S) which does normalize P°.

Theorem 2.4.14 Suppose E\, rankG > 2, V(S) = {P}, gb(P) = 1 and that there
exists a unique P € V{S) with P ^ NQ{P°). If p = 2, then G is of identification
type Un(q), 2E6(q), E6(q), E7(q), Sz,F2 or FL

In the remainder of this section, we will illustrate in some examples the basic
ideas of the proof of the theorems. All the examples will be for p = 2.

Example 2.4.15 Let K = F*  (MQ / O2{MQ)) = Mi\ and assume that YM contains
an 11-dimensional submodule V with \YM : V| < 2. Assume further that V is the
module in which L = CK{CV(S)) = 263Sym(6). Then G is of identification type
J4 or M(24)'.

For L we have the following series in V

1<V1<V2<V,

where |Vi| = 2, V2/Vi is the 6-dimensional 35ym(6)-module and VJV\ is the 4-
dimensional 52/m(6)-module. As CDM/02(Mo) contains L, we see that Q02(Mo)/02(Mo)
is the elementary abelian subgroup of order 26 in L.

Suppose V < Q. By 1.1.2 V is not an FF-module and we conclude that
W = ((YM n Q)d) is elementary abelian. Hence W < O2(M0), i.e. [YM, W) = 1.
But as YM £ Q and [Q, YM]  < W this contradicts C5(Q) < Q.

So we have V % Q. This now gives V2 = [V,Q] and Vi = [V2,Q]. Define
W :=  (V2C)- Then V acts quadratically and nontrivially on W. Further from Mo
we see that for any i £ F w e have |[W/Vi,x]\ < 24. Let L\ be the pre-image of L in
Mo. Then Z,i/O2(Ia) s 3Sym(6). Let U = (Vd)Q. Then Cu(W)Q/Q < Z(U/Q).
Hence as |[V^/Vi, a:]| < 24 for a; € V, we see that [F(U/Q), V] = 1. So there is some
component U\ of U/Q containing L[/Q. If U\ is a group of Lie type defined over
a field of characteristic 2 we see that it has to be  or S^n^), for some n.
But in both cases the Srp4(2)-parabolic has no elementary abelian normal subgroup
of order 16. So Ui is not a group of Lie type defined over a field of characteristic
2. As VQ/Q acts quadratically an application of 1.1.1 yields that U\ = 3Ui(Z) or
3M22- This now tells us that Vi is normal in U and that W/V\ involves exactly one
nontrivial irreducible module, which is 12-dimensional. As [V, Q) < W, we see that
[U,Q]  < W. This shows that Li/O2{Li)  possesses exactly three nontrivial chief-
factors in O2(-C'i), two of them 6-dimensional and one 4-dimensional. Since L\ has
a a 4-dimensional and a 6-dimensional factor in V and a 6-dimensional factor in
QO2{M0)/O2(M0), we get that [F*(M 0/O2{M0)),O2(MQ)]  < V. This shows that
O2(M0) = YM and so O2(M0) = V or |O2(M0) : V| = 2.

In both cases we get that Q is extraspecial of order 213 and that C/Q is an auto-
morphism group of 3M22 or 3Ui(3). In the former case we have C/Q = ZAut(M22)
and so G is of identification-type J4. So assume the latter case. Then we have that
C/Q S 3t/4(3).2, or 3t/4(3).4. Now Mo has a geometry with diagram
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and C has one with diagram

The intersection is the geometry for L\. Let P £ T-"MO{S). Then P centralizes the
foursgroup on which PQ acts nontrivially. Hence (Po,P) — PQP- This shows that
we have a geometry with diagram

and that G is of identification-type M(24)'.

Example 2.4.16 Let K = F*(MQ/O2(MQ)) = £lfo(q), q a power of 2, and assume
that YM contains V the half spin module. Then G is of identification-type Ee(q).

Let L = CK(Cv(S)). Then L ~ q&Ln(q) and QO2(M0)/O2(M0) = O2(L).
Note that V has the following Z-series

1< Vi < V2 < V,

where |Vi| = q, |Va/Vi| = q10, \V/V2\ = q5. As in 2.4.15 V £ Q, and so V2 =
[V, Q] = Vf)Q. Now |V/VTlQ| = q5 and V/VDQ is a natural module for L1/O2(L1),
where L\ is the pre-image of L. We can now proceed as in 2.4.15. Let U be as
before, then we again see that \F{U/Q), V] = 1. Let U\ be a component of U/Q
containing O2(Li/Q). Because of quadratic action and the fact that |T^Q/Q| > 32,
we get with 1.1.1 that U\ is a group of Lie type in characteristic two and the list
of possible groups XJ\ and the corresponding modules W in Q. As L\ induces in
some W on Cw(O2(O2(L\))) the 10 - dimensional module, we see that W is not
a V(\) where A belongs to an end node of the Dynkin diagram of U\. Hence
the possible groups U\ are SLn(q), Sp2n(q) or Un(q). Further for t G V we have
[W,t] < Cw{O2{O2(Li))) and CLl(t) has to act on this group. This shows that
|[W,*] | = q6 or q4. This in the first place shows that U\ = SLn(q) and then
that W = V{\2) or V(A3). In both cases we have Ui ^ SL6(q), as \[W,t]\ < q6.
Moreover, [W, t]  is not the natural Ci(t)-module in the case \[W, t]\ = q6. If we
have W = V(X2), then W/Cw(V) is a 5-dimensional I^-module, but there is no
such module in O2(L). So we have that W — V{\$). Now we see that L/O2(L)
induces in QO2(MQ) exactly two 10-dimensional and one 5-dimensional module, as
[V, Q] < (V2C). But in V this group induces one 10-dimensional module and one
5-dimensional one. Further in QO2{M$)/02{MQ) we see another 10-dimensional
module. This shows [K,O2(M0)]  = V. Again YM = O2(M0) and so YM = V.
Now we see that M° S q16Qf0(q) and U S q1+20SL6(q). The intersection is the
SL5 (g)-parabolic. Now in this case we are in the situation of 2.4.14, so any minimal
parabolic not in Mo normalizes P°.

We tr.y to show that H = (M°,U) has a parabolic system with an E§ - diagram.
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We have that MQ = M°S and so there might be some field automorphism involved.
But these field automorphisms are also field automorphisms on L, so they induce
field automorphisms on U/C>2(U). This shows that U and M° have a common
Sylow 2-subgroup, and so G is of identification-type E§{q).

2.4.6.1 The open "P!,gb=l"-Proble m 2

Suppose E\, rankG > 2, V°(S) = {P}, gb(P) = 1 and that there exist Pi,P2 €
V(S) such that for i = 1 and 2:

(i) Pi£NG{P°).

(ii) Mi~{P,Pi)eC

(iii ) (MUM2)$C.

Determine the shape of M\ and Mi.

As a starting point towards a solution of the preceding problem we observe

Lemma 2.4.17 Suppose E\ and V°(S) = {P}. Let P € V(S) with P ^ P, L :=
(P,P) £ £ andP <£ NG(P°). Then L G £° and L°/CL°(YL) S SLz{q), SPi(q),
Cl5(q) (andp odd), Alt(6) (and p = 2), or 2.Mi2 (and p = Z).

Note that in all cases of the preceding lemma L/OP(L) has a weak BN-pair of
rank 2. Hence [StTi] provides a solution to the above open problem. But we believe
that our stronger assumptions allow for a shorter solution.

3 The Global Analysis

We have not yet devoted much time to this part of the project, but here are some
thoughts.

The main tool to identify the group G is via a diagram geometry for a non-local
parabolic subgroup H of G. Usually we will not only know the diagram but also
the group induced on each of the residues and so the isomorphism type of each of
the residues. This allows to identify the geometry and then the group H.

For example if the diagram is the diagram of a spherical building of rank at least
four, then the isomorphism type of the residues uniquely determines the building.
This follows from the classification of spherical buildings, but can actually be proved
using only a small part of the theory of buildings.

For many of the diagrams which we encounter, classification results are available
in the literature. At this time we have not decided which of these results we will
quote and which ones we will revise as part of our program.

The situation when M(S) = {Mi, M2}  is different. If (Mi , M2) is a weak BN-
pair associated to a .BiV-pair of rank 2 defined over a field which is not too small,
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one tries to recover the Weyl group. For p odd, this probably requires a /C-group
assumptions not only for the j>-local subgroups but also for some 2-locals. Once the
Weyl group has been identified, H can be recognized as a group of Lie-type, see
[BS].

Suppose (Mi, M2) is not associated to a £?iV-pair of rank 2. If p = 2, knowledge
of the parabolic subgroups often allows to determine the order of G by counting in-
volutions. The actual identification will be done by some ad hoc methods depending
on the group. If p is odd, the group is probably better left unidentified.

After the group H is identified, one still needs to deal with situations where
H  ̂ G. Usually our choice of the group H will allow us to show that H is the
p-cove with respect to S, but some exceptions will have to be dealt with. The
strongly p-embedded situation has been discussed before. If G has rank 1 the CGT-
theorem 2.2.3 will limit the structure of H. For p = 2 this hopefully will lead to a
contradiction, while for p ^ 2 we might not be able to identify G.
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Modular subgroup arithmetic

Thomas W. Miille r

1. INTRODUCTION

For a group © denote by sn(<3) the number of subgroups of index n in ©. If, for
instance, © is finitely generated or of finite subgroup rank, then sn(©) is finite for all
n. Groups © enjoying the latter property will be referred to as FSG-groups. Modular
subgroup arithmetic deals with divisibility properties of the sequence {sn(®)}n>i
or related subgroup counting functions and their connection with the algebraic
structure of the underlying FSG-group ©. The natural context for these studies
is the theory of subgroup growth, which has evolved over the last two decades in
the work of Grunewald, Lubotzky, Mann, Segal, and others including the present
author; cf. Lubotzky's Galway notes [29], [30], as well as the forthcoming book [31]
by Lubotzky and Segal.

In [29, § 1] particular mention is made of the problem to understand divisibility
properties of the function sn(<8), and Lubotzky explicitly expresses his hope there
that a very interesting theory might be awaiting its discovery. This prediction
has turned out to be remarkably far-sighted and insightful; until recently however,
modular subgroup arithmetic could hardly have been described as a subject area,
since with the exception of Stothers' formulae for the classical modular group not
much was known in this direction. For a finitely generated group © define

II(<S) := {n G N : sn(©) = 1 mod 2} .

Moreover, for © a finitely generated virtually free group, let

n*(©) := {A G N : /A(©) = 1 mod 2} .

Here, f\ (©) is the number of free subgroups in <S of index A m«, where m® denotes
the least common multiple of the orders of the finite subgroups in ©. The sets II(©)
and II*(© ) are called the parity pattern respectively free parity pattern of the group
©. In this notation, the main result of Stothers [50] is that

H(P5L2(Z)) = {2-+1 - 3 } ^ U 2 {2CT+1 - 3 } ^ . (1)

In the course of his proof, Stothers also shows that

n*(P5Z2(Z)) = {2 CT-l} ff >1. (2)

The latter pattern has been shown to occur for a larger class of virtually free groups
of free rank 2, including free products © = G\ *s G2 of two finite groups Gi with
an amalgamated subgroup S of odd cardinality, whose indices (Gi : S) satisfy
{ ( d : S),(G2 : S)} = {2,3}  or = {2,4} ; cf. [33, Prop. 6]. l One of the side
results in the present author's 1989 dissertation [32] provides a somewhat surprising
analogue of (1) for the special linear group SL2(Z):

U(SL2(Z)) = U(PSL2(Z)) U {4}  = {2-+1 - 3 } ^ U 2 {2-+1 - 3 } ^ U {4} ; (3)

1The free rank ^(©) of a finitely generated virtually free group <S is defined as the rank (in the
ordinary sense) of a free subgroup of index mg in ©; cf. section 2.2.
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cf. [32, Satz 2]. During the early 1990's, Grady and Newman in a series of papers
established certain periodicity results for sn(<5) in the case when © is a finitely
generated free product; their results are summarized in Corollary 3. In this context,
Grady and Newman also stated a number of interesting conjectures, which we list
below.

Conjecture 1 ([15]). If® is a free product of r > 2 copies of the cyclic group of
order 2, then 11(0) = N.

Conjecture 2 ([16, Conj. 1]). / /© is a free product of finitely many cyclic groups
of prime orders, containing in its free decomposition at least two copies of the cyclic
group of order 2, then H(<5) = N.

Conjecture 3 ([16, Conj. 2]). If® = C*2 *  CPl *  CPk with primes p,pi,  ,Pk
satisfying Pi > p for all i, then

Conjecture 4 ([17, § 6]). If p is a prime and 0 is a free product of finitely many
finite groups containing in its free decomposition a factor G*2, where G contains a
subgroup of index p, then sn(©) is periodic modulo p.

Clearly, Conjecture 3 => Conjecture 2 => Conjecture 1. [16, Theorem 1] implies the
truth of Conjecture 1 for r > 4; an unconditional proof of Conjecture 1 is found
in section 2.1. Otherwise, apart from numerical evidence, not much appears to be
known concerning these conjectures.

Stothers' striking result (1), which had been conjectured for some time on the basis
of numerical evidence, has, for more than 20 years, stood out as an indication that
a fascinating chapter of subgroup arithmetic might be waiting to be explored; in
particular, it had been a long standing open problem, whether Stothers' formulae
generalize to Hecke groups, i.e., groups of the form © = 5}(q) = C2*Cq for some q >
3. Nevertheless, despite the effort of a number of experts over the next 20 years, the
only new result which eventually emerged in this direction was the author's discovery
in 1998 of an analogue of Stothers' formula (1) for the Hecke group #(5) = C-x * C5,
namely

cf. [35]. The situation changed with the occurrence of the papers [37], [38], and
[40]. Introducing a number of powerful new ideas, these papers have led to a mas-
sive breakthrough, and, at the time of writing, a substantial body of knowledge has
formed concerning modular properties of the function sn(0), as well as the begin-
nings of a systematic theory for the function /A(© ) counting free subgroups of finite
index. Moreover, some of the most recent results (like the description of the parity
pattern for surface groups and other one-relator groups with its representation-
theoretic background) seem to open up completely new and exciting horizons yet
to be explored. The aim of this paper is to describe the present state of knowledge
concerning these questions, to point out open problems and to state a number of
conjectures. If these pages convey some of the complexity and delicate beauty of
the subject matter, the joy and excitement of finding new results in this area, and
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perhaps inspire further development in the field, the effort of writing them will have
been more than worthwhile.

As it presents itself at the moment, the theory falls naturally into five chapters,
(i) A descent principle.

(ii) A criterion for periodicity of the function <s«(©).

(iii ) A systematic investigation of the mod p behaviour of sn(<&)  for free products
© of the form

g = 3(G,gi,ga) = Cqi , (4)
92

where p is a prime, G an arbitrary finite group, and q\, qi are p-powers such
that qiq2 > 1.

(iv) Results concerning the function /A(© ) counting torsion-free (i.e. free) sub-
groups of index Amq in © in the case when © = 9)(q) is a Hecke group for
some q > 3, and with mq :— m^  ̂ = [2, q].

(v) The determination of the parity pattern for a class of one-relator groups in
particular containing all surface groups.

The descent principle relates the mod p behaviour of sn(©) to that of a normal
subgroup 9t of © in the case when the quotient ©/tft is cyclic of p-power order for
some prime p. Even in this restricted form the existence of a stable connection mod
p between the subgroup arithmetic of a group and that of a finite index subgroup
is highly surprising, and has important applications; for instance, it leads to the
explicit determination of the subgroup arithmetic modulo p for fundamental groups
of trees of groups all of whose vertex groups are cyclic of p-power order for some
given prime p (Theorem 2). These aspects as well as a possible generalization of
the descent principle will be described in section 2, while section 3 is devoted to a
result concerning periodicity of the function sn(©) modulo a distinguished prime: if
a finitely generated group © contains as a free factor a free product of finite abelian
groups whose p-Sylow subgroups are non-trivial and have ranks at most 2 (for a
fixed prime p), then generically (i.e. up to a rather weak arithmetic condition)
sn(<&)  will be periodic modulo p (Theorem 3).

As a consequence of the descent principle, the functions sn(©) encountered in sub-
section 2.2 are periodic modulo p, since a tree group © as described above can be
shown to contain a free normal subgroup of index m®, and the subgroup numbers
of finitely generated free groups are periodic modulo every prime. Furthermore, it
turns out that two finite abelian factors usually suffice in Theorem 3 to ensure peri-
odicity, which places groups of the form (4) within a tight and interesting borderline
region. Indeed, as we shall see in section 5, the generic picture for these groups is
one of a peculiar type of fractal behaviour, contrasting with explicit closed formulae
of Stothers' type for the set

: = in e N : sn(MG,qi,q2)) £ 0 mod p}

in certain arithmetic breakdown situations intimately related to Fermat primes. The
key to our results for the groups $)(G,q\,q2) takes the form of a rather intricate
and deep lying identity for the mod p projection Xa,q{z) of the generating series
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E sn+x(Sj(G,q))zn, where $j(G,q) := Sj(G,l,q) = G*q. Despite its complicated
nature, this identity leads to a beautiful and quite comprehensive theory for the
groups fj (G, q), and subsequently, via the descent principle, for groups of the more
general form (4). A sketch of the proof of this functional equation for the GF(p)-
series Xa,q(z) is provided in section 4, while section 5 is devoted to some of its
major consequences.

In section 6, we discuss the present state of affairs concerning modular properties
of the function /A(© ) counting free subgroups of index m® A in a finitely generated
virtually free group ©. Here, a well developed theory exists only in the case when
© = Sj(q) is a Hecke group for some q > 3, and p = 2. The main features of
the latter theory parallel the behaviour modulo 2 of the function sn(©) discussed
in section 5; in particular, Fermat primes again play an important special role in
determining the number-theoretic conditions for a breakdown of what is generically
a peculiar type of fractal behaviour, this breakdown leading to patterns that can
be described in explicit closed form. This area is clearly in need of further research.

One of the main results of [42] is that for © ranging over a certain class of one-
relator groups containing in particular all surface groups, the number sn(<&)  of index
n subgroups in © is odd if and only if n is a square or twice a square, provided
that rk(©) > 3. This remarkable result relies on newly found parity properties
of character values and multiplicities for symmetric groups, as well as on classical
results of Gaufi and Legendre concerning representation numbers of binary quadratic
forms. Our last section is devoted to this topic.

Sections 4 and 6.1, which describe some of the key ideas and new methods underlying
our recent progress in modular subgroup theory, are of a more technical nature; they
may be skipped at first reading, or by readers only interested in an account of the
main new results.

It is my pleasure to thank Peter Cameron for the enthusiasm he has shown for my
work ever since I joined Queen Mary College in 1999, as well as for a number of
stimulating questions and fruitful discussions, some of which are reflected in the
results reported in these pages. Thanks are also due to Christian Krattenthaler for
his valuable comments concerning an early version of some of the material presented
here, and to Martin Liebeck for inviting this report.

2. THE DESCENT PRINCIPLE AND SOME APPLICATIONS

2.1. The descent principle. In general, divisibility properties of subgroup count-
ing functions appear to be rather peculiar to the particular group under investi-
gation, and (unlike their growth behaviour) tend to react extremely sensitively to
deformation of the underlying group within a commensurability class; in particular,
when passing from a group to a subgroup of finite index, arithmetic structure of
this kind is usually severely deformed if not completely destroyed. There is how-
ever one special situation, described in Theorem 1 below, where the existence of a
stable connection modulo a distinguished prime between the subgroup arithmetic
of a group and that of a finite index subgroup can be established. In order to state
this as well as further results, it is convenient to fix some notation. For a prime p
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and an FSG-group © define the p-pattern U.^(<&)  of © to be the family of sets

where
n[p)(©) := j n e N: sn(©) = i mod pj, 0 < i < p;

in particular, II j (©) = n(®) is the parity pattern of © introduced in the previous
section. In this notation our result reads as follows.

Theorem 1 ([38, Theorem 1]). Let © be an FSG-group, p a prime, and let 9t < ©
be a normal subgroup of index pr, with ©/9T cyclic. Then the p-patterns I I^(© )
and Il( p)(9t) are related via the equations

r-l

n | p ) ( © ) = prn^ p)(<n) u ( J W n j p ) ( < n ) n ( N - p N ) Y o < i < P . (5)
p=0

Equivalently, if Xe,(z) denotes the series J2n>o sn+i(®)zn considered modulo p,
and if X<n(z) is the corresponding GF(p)-series for the group Cft, then under our
assumptions

T r-l

p=0 p=0

The proof of Theorem 1, as given in [38], depends on the exploitation of various
group actions as well as two facts from the theory of finite groups:

(i) Frobenius' generalization ([13, § 4, Theorem I]) of Sylow's third theorem, which
states that

if a prime power ps divides the order of a finite group G, then the number of sub-
groups in G of order ps is congruent to 1 mod p,

(ii ) a theorem due to Philip Hall ([19, Theorem 1.6]) to the effect that

for a finite group G, a positive integer n, and an automorphism a € Aut(G) whose
order divides n, the number of solutions in G of the equation

x-a(x)-a2(x)-...-an~l{x) = l (7)

is divisible by the greatest common divisor of n and \G\.

For a = id, the identical automorphism of G, Hall's theorem reduces to the well-
known result of Frobenius concerning the equation xn = 1 in finite groups; cf. [13,
§ 2, Theorem II] and [22]. A short and elegant proof of Frobenius' version of Sylow's
theorem, which is based on the idea of Wielandt [52], can be found in [21, Chap. I,
§7].

As a first illustration of Theorem 1 we give a proof of Conjecture 1.
Corollar y 1. Let © = C r̂ be a free product of r > 2 copies of the cyclic group of
order 2. Then II(© ) = N, i.e., the number sn(<3) of index n subgroups in © is odd
for all n.

Proof. We have m© = 2 and x(©) = — t^-, and hence /x(©) = 1 — m(sx(©) = r — 1.
Here, x(®) is t n e rational Euler characteristic of © in the sense of Wall, and /*(©)
is defined as in Footnote 1. It follows that © contains a finitely generated infinite

(6)
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free subgroup of index 2. On the other hand, M. Hall's recursion formula ([18,
Theorem 5.2])

n-1

sn(Fr) = n(n\y-1 -^((n-fiy.y-'s^Fr)  n>\ (8)

shows that a finitely generated infinite free group has all its subgroup numbers odd,
and our claim follows from equation (5).

Further applications of Theorem 1 will be presented in the next two subsections.

2.2. Divisibilit y properties determined by free normal subgroups. The cat-
egory of graphs used here is described in Serre's book [47]. By Stallings' structure
theorem on groups with infinitely many ends and the subsequent work of Karrass,
Pietrowski, and Solitar, a finitely generated virtually free group © can be presented
as the fundamental group of a finite graph of groups (©(—), V) in the sense of Bass
and Serre with finite vertex groups 0(u); cf. [49] and [26], or [11, Sect. IV. 1.9].
The fact that, conversely, the fundamental group of a finite graph of finite groups
is always virtually free of finite rank is more elementary, and can be found for in-
stance in [47, Sect. II.2.6]. It follows in particular from this characterization and the
universal covering construction in the category of graphs of groups that a torsion-
free subgroup of a finitely generated virtually free group is in fact free (which was
the original contribution of Stallings' work to the structure theory of virtually free
groups).

If i l is a free subgroup of finite index in © then, following an idea of Wall, one
defines the rational Euler characteristic x(®) of 0 as

This is well-defined in view of Schreier's theorem [46], and if <8 = 7ri(©(-), Y) is a
decomposition of © in terms of a graph of groups, then we have

where V(Y) and E(Y) denote respectively the set of vertices and (geometric) edges
of Y. The latter formula reflects the fact that in our situation the Euler character-
istic in the sense of Wall coincides with the equivariant Euler characteristic Xr(©)
of © relative to the tree T canonically associated with © in the sense of Bass and
Serre; cf. [6, Chap. IX, Prop. 7.3] or [48, Prop. 14]. Define the (free) rank JJ(0)
of © to be the rank of a free subgroup of index m« = [|0(v)| : v € V(y)] in ©.
The existence of such a subgroup follows from [47, Lemmas 8 and 10] or formulae
(56) and (57) in section 6. Observe that, in view of (9), (i(Q5) is connected with the
Euler characteristic of © via

1, (11)

which shows in particular that /x(©) is well-defined. The question is now: when is
© going to have a free normal subgroup $ of index m® and with quotient ©/# cyclic
of p-power order? If such an 5 exists, then every vertex group <3(v) must be cyclic
of p-power order, since it embeds isomorphically into ©/#. Conversely, if all &(v)

(9)

(10)
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are cyclic of p-power order, then m© = pr , where pr = max{|©(i>)| : v £ V(Y)},
and every normal free subgroup 5 of index pr satisfies ©/# = Cpr. Assume for the
remainder of this subsection that all vertex groups <5(v) are cyclic of p-power order,
and let me = pr. Our next result provides a sufficient condition for © to contain
free normal subgroups of index m®.

Lemma 1 ([38, Lemma 1]). Let (©(—),Y) be a finite tree of groups all of whose
vertex groups ©(u) are cyclic of p-power order for some fixed prime p, and let © be
its fundamental group. Then © contains precisely

(12)

free normal subgroups of index m®, where (p is Euler's totient function; in particular
such subgroups exist.

Now let © be as in Lemma 1, and suppose that x(©) < 0. Then © contains a free
normal subgroup # of index m® = pr with cyclic quotient and of rank /̂ (©) > 1,
and, by Theorem 1, the p-pattern of © is determined via (5) by the p-pattern of
5- Take for instance p = 2; then, since a finitely generated infinite free group has
all its subgroup numbers odd, we find that the same is true for ©. This yields a
far reaching generalization of Corollary 1. For general p, the subgroup numbers
sn(©), when considered modulo p, will be periodic, as the same holds for every
such free group and each prime. Both statements concerning free groups follow
immediately from M. Hall's recursion formula (8). Let us consider the case p = 3
in more detail. Suppose first that rk(5) is even. Then, by (8), the numbers sn($)
satisfy sn(#) = sn_2(i?) + 2sn_i(3r) mod 3, with initial values a 1(5) = 1 (3) and
82(3) = 0 (3). From this recurrence relation mod 3, one shows that sn($) is periodic
mod 3 with period 8, and, more precisely, that

sn($) = 1 mod 3 if and only if n = 0,1,3 mod 8

sn($) = 2 mod 3 if and only if n = 4,5,7 mod 8.

If, on the other hand, rk(#) is odd, then we find that sn($) = 1 (3) for all n > 1.
Using this information in (5), and summarizing the preceding discussion we obtain
the following.

Theorem 2 ([38, Theorem 2]). Letp be a prime, (©(—),Y) a finite tree of groups
all of whose vertex groups are cyclic of p-power order, and let © be its fundamental
group. Suppose that m« = pr and that x(®) <  0. Then

(i) the function sn(©) is periodic modulo p,
(ii) for p = 2 we have II(©) = N,
(iii ) forp = 3 and fj.(<&)  odd we have Ilf^© ) = N,
(iv) for p = 3 and /it(©) even, sn(<&)  is periodic modulo 3 with period 8  3r .

More precisely, in this case sn(<8) = 1 mod 3 if and only if n is congruent
mod 8  3r to one of the 3r + 1 numbers
0, 37- 1, 3r , 8 -3r - \ 3r + 1, 11 r - 1 , 16-3r - \ 17-3*-1, 19-3*—1, 3?(1 + 24A),
8  3"(1 + 3A), 3"(11 + 24A), 8  3^(2 + 3A), 3"(17 + 24A), 3"(19 + 24A)
with 0 < p < r - 1 and 0 < A < 3r~p~a;
and sn(©) = 2 mod 3 if and only if n is congruent mod 8  3r to one of the
3 r + 1 numbers
4  3 r - \ 5  3 r - \ 7  37-1, 4  3r, 13  3 r - \ 5  3r, 20  3r~\ 7  3r, 23  3*-1,
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4-3p(l+6A), 4-3p(5+6A), 3P(5+24A), 3P(7+24A), 3^(13+24A), 3P(23+24A)
with 0<p<r-l  andQ<\< 3r-p-i .

2.3. A reduction formula. For a finite group G, a prime p, and p-powers qi,qi
with q\qi > 1 form the group © = S)(G,qi,q2) as denned in (4). Write © = (£ |
£«i = 1̂  * © with © = G*92, and consider the subgroup

(J a(u^(Sj(G,qiq2))n(N-PN)), 0 < * < p. (13)
l

generated in © by all the conjugates ©^ for 0 < j < q\. By our construction and
the normal form theorem in the group © = (C) * © we find that

(i) m. < ©,

(ii) (On*n = i,

(iii ) ( 0 * j = ® ,

(iv) 9*  = © * ©c *  * ©c'1-1 ^ fi(G, qxq2).

In particular, © and 9t satisfy the hypotheses of Theorem 1, and (5) gives

U

In section 4 we shall sketch a rather deep lying method for analyzing the p-patterns
of groups of the form G*q, where q > 1 is a p-power. Equation (13) will then allow
us to extend our results to the groups fi(G, qi,q2)-

2.4. A possible generalization of the descent principle. In view of both its
intrinsic interest as well as its applications, it would be important to obtain general-
ized versions of the descent principle. A detailed analysis of the proof of Theorem 1
carried out in [39] reveals that the existence of such a generalization hinges on a
certain homological property of finite p-groups (to be of Frobenius type). We begin
with the relevant definitions.
Definition 1. Letp be a prime.
(i) A non-trivial finite p-group P is termed admissible if, for every finite group
G with p | \G\ and every action a : P —> Aut(G) of P on G, the corresponding set

Der(P,G) = Dera (P,G)

of derivations d : P —> G formed with respect to this action has cardinality a multiple
ofp-
(ii) A finite p-group P is said to be of Frobenius type, if every subgroup Q > 1
of P is admissible.
Definition 2. A group © is called quasi-hamiltonian (sometimes also a Dedekind
group) if every subgroup of © is normal; that is, if © is abelian or hamiltonian.

The structure of hamiltonian groups has been cleared up by Baer: a group © is
hamiltonian if and only if

© ^ Q x2lx <B,
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where 0 is the quaternion group of order 8, 21 is an elementary abelian 2-group, and
05 is a periodic abelian group with all its elements of odd order; cf. [4]. For finite
groups, the latter result had already been proved by Dedekind; cf. [9]. It follows
that a finite p-group P is quasi-hamiltonian if and only if it is either abelian, or
p = 2 and P = Q. x C£ for some r > 0. We can now state our (as it stands not very
useful) generalization of Theorem 1.

Theorem 1'. Let <S be an FSG-group, p a prime, and let 9t < © be a normal
subgroup of index pr with ®/9t quasi-hamiltonian and of Frobenius type. Then
equations (5) and (6) hold.

In view of Theorem 1' and the above remarks, the existence of a useful generalization
of Theorem 1 depends on the solution of the following.

Problem 1. Is a non-trivial finite abelian p-group admissible? Are groups of the
form Q x CJ with r > 0 of Frobenius type?

In fact, the homological property described in Definition 1 appears to be quite deep
and of some independent interest; hence, we might just as well ask the following
more general question.

Problem 2. Which finite p-groups are of Frobenius type?

By Philip Hall's theorem explained in subsection 2.1, cyclic groups of prime power
order are of Frobenius type. Indeed, an equivalent way of stating [19, Theorem 1.6]
is as follows.

Proposition 1. Let C be a finite cyclic group, G a finite group, and let a : C —>
Aut(G) be an action of C on G. Then

\Dera(C,G)\ = O mod gcd(|C|,|

Corollar y 2. A cyclic group of prime power order is of Frobenius type.

Combining Theorem 1' with Corollary 2 we obtain Theorem 1. Unfortunately, no
non-cyclic groups of Frobenius type are known so far. However, the main result of
[54], which states that for a finite group G and a finite abelian group A, |Hom(A, G)|
is divisible by gcd(|.A|, |G|), may be viewed as a sign of hope that Problem 2 might
have a positive answer, at least for abelian p-groups.

3. A CRITERION FOR PERIODICITY MODULO p

The functions sn(©) encountered in Theorem 2 are all periodic modulo a distin-
guished prime p, since their p-divisibility is determined by a free normal subgroup.
In fact, periodicity modulo some distinguished prime of the function sn(©) appears
to be a more general phenomenon. Results in this direction were first proved by
Grady and Newman (see the corollary below). The purpose of this section is to
briefly discuss a far reaching generalization of their results.

Theorem 3 ([38, Theorem 3]). Let p be a prime, s a positive integer, and let
Ai,... ,AS be finite abelian groups, whose orders are divisible by p, and whose p-
Sylow subgroups P\,...,PS satisfy rk{Pa) < 2. Put Pa = Cpea x Cvra with 0 < ra <
la and 1 < a < s, let © be a finitely generated group containing A\ *  * As as a
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free factor, and suppose that

Then the sequence sn(<&),  considered modulo p, satisfies the linear recursion

S ( (V\ \ '—*  ta_- x ^ ,„  ,..,,,mm c . i fĴ  i YY\ r\f^ t  ̂ ftt ^^ 'M f 1 \̂ I

n{*>)  = — / , , -M  sn-P+j( y°) moa p, n  ̂ p, ^IOJ

0/ length p—1 over GF(p); in particular, sn(<3) is periodic modulo p, and for p = 2
we /uroe 11(0) = N.

The proof of Theorem 3 is based on Dey's formula2

^ | H o m ( « ,5 )\ IHomQsyi

as well as the estimates

[j [ ^ J < a < s,

for the p-adic norms of the arithmetic functions \B.om(Aa, Sn)\, which follow from
[27, Theorem 5.1]. As an example, consider the case where © = C*s * € with
some finitely generated group € and a prime p. Then, for 1 < a < s, we have
Aa = Pa — Cp, ra = 0, la = 1, and equation (14) translates into the condition that
s > ^3j or, equivalently,

[4 p = 2
s> <3, p = 3

[2, p>5.

Applying Theorem 3, we find the following.

Corollar y 3. Let <&  be a finitely generated free product.
(i) / / © contains in its free decomposition at least four copies of the cyclic group

of order 2, then II(<5) = N.

(ii ) / / <S contains in its free decomposition three or more copies of the cyclic
group of order 3, then sn(0 ), considered modulo 3, satisfies a two term lin-
ear recurrence relation, and hence is periodic modulo 3.

(iii ) / / © contains in its free decomposition at least two copies of the cyclic
group of prime order p with p > 5, then sn(<S) satisfies a (p—1) term linear
recurrence relation modulo p; in particular, sn(<55) is periodic modulo p.

The results summarized in Corollary 3 are due to Grady and Newman; cf. [16,
Theorem 1], [16, formulae (7), (8)], and [17, Theorem 2].

2Cf. [10, Theorem 6.10]. More general results in this direction can be found in [12] and [36].

(14)

(16)
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4. A FUNCTIONAL EQUATION ASSOCIATED WITH THE GROUPS $)(G, q)

As we already saw in section 2, the investigation of the p-patterns for groups of the
form (4) can be reduced to studying the p-patterns associated with the symmetrized
groups Sj(G,q) = G*q; cf. formula (13). Here, we are going to sketch a method for
analyzing the patterns U^(Sj(G, q)).

4.1. A functional equation for  XG,q{z). Put hn(G) :=  |Hom(G, 5n)|, with the
conventions that ho(G) = 1 and that hn(G) = 0 for n < 0. Our starting point is
the recurrence relation3

hn(G) = ^2 'd(G) (n - l ) d_! hn-d{G), (n > 1, ho(G) = 1), (17)
d

which follows from the identity4

n=0 N d

by differentiating and comparing coefficients. Raising (17) to the q-t\x power and
separating terms gives

^(G) = £(S d(G)(n- l)d_1/ l n .
d\m

+ E

Here, the i/'s are maps y_ : D —> No defined on the set D of positive divisors of
m = \G\, Vd := Z(d), \\v\\  Ed\m^, and l(v) := |{d e I> : ud  0}|. Multiply
both sides of (18) by zn~1/(n — 1)!, sum over n > 1, and interchange summations
to obtain

d|m lldl=9 i l d | m

where
Ha,q(z) := £ K(G)zn/n\ = £ | Hom(io(G, 9), 5n)| zn/n\,

n>0 n>0

M*)  E ((n - X)  ̂ hn-d(G))q zn~xl{n - 1)!,
n>l

and

(
n>\ d\m

For a ring it with identity element 1, an element r (z R, and an integer k, we set ()-)*, :=
r(r — 1) . .. (r — k + 1), with the usual convention that an empty product should equal 1. This is
the falling factorial r of order k. Its counterpart (r)f. := r(r + 1) . .. (r + k — 1), the rising factorial
r of order k, is sometimes called a Pochhammer symbol.

4Cf. for instance [12, Prop. 1].

(18)

(19)
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We have

((n + d - I).-!) 9" 1 K{G)

where Dz — ^ is the differential operator. Next, consider the series TiJ^z) for some
map v_ : D —> No, let d\ < di <  < d( be the divisors d 6 D with ẑ  7̂  0, and
write Vi for fd,:- Proceeding as in the case of £d(z) one finds that

(21)
where

d
n>0 i=l

We now make use of two facts to be commented upon in the next subsection.

(A) For every v £ No the series HQ q(z)/HG,q(z) is an integral power series, and
satisfies the congruence

A0=Ai=0
(22)

where v = k (p), 0 < k < p, and SG,q{z) :=

(B) For every finite group G, each map v_ : D -> No of norm \\v\\ = q, and every

integer fi >
coefficients.
integer fx > 0 the series TZQ u(z)/HG,q(z), viewed as a power series, has integral

Divide both sides of (19) by HG,q{z). Then, by Dey's formula (16), the left-hand
side becomes SG,q(z). Moreover, using (21), assertion (B), and Leibniz's rule for
the derivatives of a product function, we find that, for each finite group G and every
map y_ : D —> No of norm \\v\\ = q, the series T,K(z)/HG,q(z) is an integral power
series. Consequently, since a multinomial coefficient ,-, q'—r with q a p-power and

1 I d I  m & *

£(u) > 1 is always divisible by p, the second sum on the right-hand side of (19),
after division by HG,q{z), turns out to be an integral power series with coefficients
divisible by p, and hence can be ignored modulo p. Similarly, using (20), the first
part of assertion (A), Leibniz's rule, and Lucas' formula for binomial coefficients5

5Cf. for instance [7, Theorem 3.4.1].

(20)
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we find that, for every divisor d of m, the series T,d(z)/HG,q(z) is integral, and that

{)
(23)

where d = i + 1 (p), 0 < i < p, and

«s- E n[ ( ;>- !>) , ]  <«>
0<fc! t , - 1 < i j = l L ™ 1=1 '*

From the previous discussion, formulae (19), (22), (23), and Fermat's Theorem, we
obtain the following.

Theorem 4 ([40, Theorem 1]). For each prime p, every finite group G, and each
p-powerq > 1 the modp projection Xc,q{z) of the generating series SG,q{z) satisfies
the functional equation

xaq{Z)= E E E E E «d(g)cff [k)^n< ^i-D-"
0<i<p  0<k<p d=i+l(p)  0<<r<i(?-l) \0,>~l,---Ak>0 l l £= l V

cr-\-i~\-k=0 (p) Ao— Ai=0

(25)

where

Ya,q(z) := XG,q{z) + Xg-Viz1'*),  (26)

and the coefficients cfl are as in (24).

4.2. Some remarks concerning assertions (A) and (B). It turns out to be
natural to establish assertion (A) in the following more abstract and general form.

Lemma 2 ([40, Lemma 3]). Letp be a prime, and let F(z) and G(z) be power series
with real coefficients. Suppose that (i) F(z) = G'(z)/G(z), (ii) G(0) = 1, and (iii )
that F(z) has integral coefficients. Then, for every v > 0, the series G^(z)/G(z)
is integral, and satisfies the congruence

A0,A!,...,Afc>0 l i f c l W1) Xs?-) t=l
A0 = Ai=0

(27)

where 0 < k < p and v = k (p).

The proof of Lemma 2 rests on an application to the equation

G(z) = exp ( f F(z) dzj
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of Bell's formula (61) for the derivatives of a composite function, and a detailed
combinatorial analysis of the resulting expression for G^\z)/G{z). For a finitely
generated group <5 put

H*{z) :=  £ |Hom(<B,Sn)|*7n! and S*{z) := £ sn+1{<&)  zn.
n>0 n>0

Noting that, in view of [33, Prop. 1], the series Se(z) and H®{z) satisfy the hy-
potheses of Lemma 2, we then deduce the following.
Corollar y 4 ([40, Cor. 17]). Let p be a prime, and let <5 be a finitely generated
group. Then, for every v £ No, the series H  ̂ (z)/H®(z) is integral, and satisfies
the congruence

«) s (s.w + s<r V*))"- *

A0,Ai Xk>0 llt=l
Ao=Ai=0

where 0 < k < p and v = k (p); m particular, assertion (A) concerning the series
Ha,q(z) holds true.

The proof of assertion (B) is more involved. For a non-negative integer a define

4 , := {(A o, A i , . . . , \a) G N^+ 1 : 0 = Ao < Ai < ... < ACT} ,

and put

As usual, the norm ||A|| of a vector A = (Ao,...,ACT) € A is defined as
~Yfj=i ^j- Given a finite group G of order m, we define a system of polynomials
Pc~{t) € Z[i] indexed by two extra parameters i s Z and A = (Ao,..., Aa) 6 A via
the equations

' / 0), (28)

0), (29)
and

PG (*) = 2^ Sd̂ G^ (*  + ACT-l)A <r-i PG
d\m

CT-1

3=0 d\m

0). (30)

An immediate induction on £, followed by induction on ||A||, shows that (28) - (30)
uniquely defines a system {pG~(t)},G e  ̂ of integral polynomials indexed by the
triples

{G,l,X) G Fin x Zx A,
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where Fin denotes the class of all finite groups. As our next result shows, these
polynomials pQ~(t), for each finite group G and every a > 0, relate the subdiagonals
{  IVj=o  hn+\j(G)}  n>0 with A = (Ao,  ,ACT) e A^ of the (a+l)-dimensional rectan-
gular array {h^G) hfMl (G) ... h  ̂ (G)) >Q to the terms h +̂1(G) of its main
diagonal. It is this important observation which underlies our proof of hypothesis
(B).

Lemma 3 ([40, Lemma 4]). For every finite group G, each vector X = (Ao, Ai, . . ., ACT) g A,
and every integer n>0, and with pQ~(t) as defined above, we have

f[  hn+Xj{G) = j  ̂ PoHn) {n)t h°n+_\{G). (31)
i=o e=o

For a finite group G, a vector A = (Ao, A i , . . . , ACT) 6 A, and an integer /z > 0
consider the series

'̂"(z ) := { £ (ft W,(G)) zn/nl]  /{ £ h^(G) z»/nl\.
I n>0 ^ j=0 ' J I ra>0 J

Expanding the polynomials pQ~(t) in terms of the basis (i)0, (t)i, (t)2,

*PaHt) = J2 aGA(K) (*)«. (G- .̂ A) e Fin x Z x A, (32)

where dg- := deg(pg-(t)), and with ag-(/c) £ Z for all G,£,X, and AC, and applying
Lemma 3 as well as Leibniz's formula, one finds that

where

Since the coefficients At:- are well-defined integers, the family of series

is summable (because of the factor z*" H+J~'i ), and the series
are integral for all i, j > 0 by Corollary 4, we conclude that for every G G Fin, A S A,
and fj, > 0 the series VJQ1(Z), considered as a power series, has integral coefficients;
in particular, assertion (B) concerning the series TlQtI/(z)/Hc,q{z) holds true.

4.3. The coefficients cf'a. In order to be able to exploit the functional equation
(25), it is necessary to obtain information concerning the evaluation modulo p of the
coefficients cf£ occurring in this identity. Clearly, c]90 = 1 for i > 0 and CQ a = 0 for

a > 1. No evaluation in closed terms is known for cfl with i > 1 and arbitrary a.
However, our next result provides such a description in terms of Stirling numbers
of the second kind in the case when i = 1.
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Lemma 4 ([40, Lemma 1]). For a > 0, we have c â = S{q,q — u)

Moreover, the well-known identity6

easily furnishes congruences for the S(n, k) in terms of binomial coefficients, which
in turn can be explicitly evaluated modulo a prime via Lucas' congruence. If, for
instance, p = 2, equation (33) gives

(n, & ) * " = * *  mod 2,

which, after expanding (1 + z)~ffc/2T and comparing coefficients, yields the elegant
result that

: \ mod 2. (34)
n — k J

For primes p > 2 the corresponding formulae are more involved. For instance, the
result for p = 3 is that

S{n, k) =
fc-2 , n-fc

0,

k = 0 (3) and n - k = 0 (2)

fc = 2 (3) and n - k = 0 (2)

otherwise

mod 3. (35)

Combining Theorem 4 with Lemma 4, Congruence (34), and Lucas' formula one
obtains a completely explicit functional equation for Xo,g(z) in the case when p = 2.

Corollar y 5 ([40, Cor. 1]). For each finite group G and every 2-power q > 1 the
GF(2)-series Xc,g(z) satisfies the equation

xG,q(z)=

where

and

d=l(2) d=0(2)
(36)

ZG,q(z) :=

In general, we have

(37)
0<r<min(cr,9-l ) ip:{

\\ip\\=ri-tr

sCf. for instance [53, formula (1.6.5)].

(33)
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where

(r-v,n-l), n > 1, (38)
i/=0

and

(39)

By definition, we also have
AM(r,0) = 6rfi. (40)

Formulae (37) - (40) yield a semi-recursive computation of the coefficients cfl,
which is particularly effective if a is close to i(q — 1), since in that case q — r is
small, and the computation of the quantities A  ̂ (r, q — r) involved in equation (37)
takes only few recursive steps. For instance, one finds in this way that

CU(a-l) =  1 m ° d P'  ̂ °> (41)

(42)

and

$ j 1 i = p -2 modp, » > 2. (43)

5. THE PATTERNS nW(Sj(G, qlt q2))

The purpose of this section is to explain some of the results for the p-patterns of
groups of the form (4) which can be obtained via the approach to the patterns
n(p)(ij(Gf,q')) sketched in section 4 in combination with the reduction formula (13)
coming from the descent principle. For further results and more details see [40,
Sects. 4 - 8 ]. In what follows, p will be a prime, G a finite group, and qi,q% will
be p-powers such that q\q2 > 1. Moreover, for 0 < j < p, we put iq1,q2 : =

B.f\Sj(G,qi,q2)) and UG,gi,q2  lKp)(.fj(G, gi,g2)), and we write XG,qi,q2{z) for
the mod p projection of the generating series Yln>o sn+i($)(G,qi,q2)) zn. Finally,

we let AfG,qi,q2 = Uo<j<PnGL92-

5.1. The case where G is in Fin(p). In order to be able to explain what is
perhaps our most striking application of equation (25), we first have to introduce,
for each prime p, a class Fin(p) of finite groups. Given p, a finite group G is said
to be in the class Fin(p) if and only if G satisfies the (at first sight rather curious)
condition that

Vd € N (sd(G) ^0(p)-+d = l (p)j.

Clearly, Fin(2) coincides with the class of all finite groups of odd order. For p > 2
no such description in structural terms is known, but it is easy to write down
lower and upper bounds for Fin(p), showing in particular that these classes are
fairly substantial. Indeed, if all prime divisors of the order of a finite group G
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are congruent to 1 mod p, then G is in Fin(p) (note that, by Dirichlet's Theorem
on primes in arithmetic progressions, there exist infinitely many primes congruent
to 1 mod p). On the other hand, if G is in Fin(p), then the orders of all Sylow
subgroups of G must be congruent to 1 mod p. For, if G is in Fin(p), then in
particular \G\ = 1 (p), hence p does not divide |G|. Then p does not divide the
number of Sylow q-subgroups (for any prime q), since they are all conjugate. But
then the index (and hence the order) of a Sylow q-subgroup must be congruent to
1 mod p. The significance of these classes of groups Fin(p) stems from the fact
that degeneration of the differential equation (25) is governed by a local-to-global
principle: it can be shown that X'G q(z) — 0 (i.e., \J0<J<P^G „  £ 1 + P^o) if and
only if G is in Fin(p). In the latter case, the functional equation (25) reduces to
the algebraic identity

XGM = d{G)z«d-1> (XG,q(z)yq-^a-L>, (44)

which in turn can be explicitly solved by means of Lagrange inversion, to give

<""*  mod p.E
(45)

Here, the vector dGp € W attached to the group G and the prime p is defined as

/ di - 1 di — 1 dr — 1'
&G,p  \ ~ > ~ —>  i ~

where 1 = do < d\ <  < dr = \G\ is the collection in increasing order of those
positive integers d for which Sd(G) ^ 0 (p).7 Combining (45) with the reduction
formula (13), we obtain the following explicit combinatorial description of the p-
pattern ILaigug2 in the case when G is in Fin(p).
Theorem 5 ([40, Theorem 12]). Let p be a prime, let q\ and q% be p-powers such
that qiq2 > 1, and suppose that G is in Fin(p). Then we have

where QQ' consists of all positive integers n = 1 mod pqiQ2 such that the sum

n,

is congruent to j modulo p.

The description of the patterns UGtqi,q2 with G in Fin(p) just given simplifies
considerably if the set Uo<i<p ^f (G) consists of precisely two elements.

As usual, the norm of a vector v = (vi,...,vr) S Ng is defined as ||v|| = 52,. Vj , and if
u = ( u i , . . ., ur) and v = (v\,..., vr) are two such vectors, then their scalar product is given by
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Corollar y 6 ([40, Cor. 13]). / / |G| = m = 1 (p) and |U0 < j < pn5p )(G)| = 2,

then, for 0 < j < p and any p-powers qi,q2 with q\q2 > 1, we have UQ =

and (*  + < * *   ̂ 1 ) A ) = , mod

5.2. Rationality . In this subsection we are going to focus on two related themes:
the question when the series XG,qltq2(z) is a rational function over GF(p), and the
more specific question under which conditions we will  have that XG,qi,q2 (z) = 1/(1 —
z), i.e., that n [v = N. Our first result shows that the latter condition on the
function sn(f)(G, <?i, 92)) is equivalent to a certain system of linear GF(p)-equations
for the subgroup numbers S2(G),..., sp(G) involving the coefficients cf{', , and for
p = 2,3,5 these equations are translated into an equivalent system of structural
conditions on the group G.

Theorem 6 ([40, Theorem 9]). Let p be a prime, let q\ and q% be p-powers such
that qiq% > 1, and let G be a finite group.

(a) We have UG qi Q2 = N if and only if the GF(p)-equations

p+i-v-l

o+p>i{qlq 2-\)

x ((qiq2 - l) t - a)\ c  ̂ si+i (G) = ^ ~  ̂ (46)

hold for v = 1 , 2 , . . ., 2(p - 1).

(b) For p = 2, we have II Q q2 = N if and only if G contains a subgroup of

index 2; in particular, if G is nilpotent of even order, then II Q = M for
any p-powers q\ and q% with q\q% > 1.

(c) Forp = 3, we have I I Q qi = N if and only ifr^G), the rank of the Sylow
2-subgroup S2(G) of the abelianized group G = G/[G,G], is odd, and G
contains a normal subgroup of index 3; in particular, if G is nilpotent of
order divisible by 3, then UQ') = N if and only if r2(G) = 1 (2).

(d) For p = 5, we have n ^ ^ = N if and only if (i) r2(G) = 1 (4), (ii) the
number Cs(G) of conjugacy classes of self-normalizing subgroups of index 3
in G is connected with rs(G) (the rank of the Sylow 3-subgroup of G) via
C3(G) + 3r3(G) = 3 (5), (Hi) xi4(G), the number of non-normal subgroups of
index 4 in G, satisfies u4(G) + 2 -3"1 = 2 (5), where S2{G) =  Ylp>!  C&, and
(iv) G contains a normal subgroup of index 5; in particular, if G is nilpotent
of order divisible by 5, then I I Q q2 = N if and only if ^ ( G) = ^ ( G) =
1 (4) and 04,2 (G) + 3"1 = 1 (5), where 04,2 (G) is the number of conjugacy
classes of index 4 subgroups in G whose normalizer has index 2.

Part (a) is first established in the case qi = 1 by means of the functional equa-
tion (25), and then generalized to groups of the form (4) via formula (13). Using
the information concerning the coefficients c Ĵ provided in subsection 4.3, one then
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shows that for p = 2,3,5 the system of equations (46) is equivalent to the require-
ment that

s2(G) = s3(G) = --- = sp(G) = l mod p . (47)

Assertions (b), (c), and (d) follow from this equivalence, an explicit computation
for the number of normal subgroups of index a prime or the square of a prime in
a finitely generated group, and well-known properties of nilpotent groups. On the
basis of these observations one might expect the following to be true.

Conjecture 5. For a prime p, a finite group G, and p-powers qi,Q2 such that
qiQ.2 > 1, we have Ilg, q2 — N if and only if G satisfies (47).

In fact, the proof of Conjecture 5 in the cases p = 2,3, and 5 suggests the following
strengthened version of Conjecture 5.

Conjecture 6. (i) The congruences modulo p

0<i<p
(48)

hold for 1 < v < p and every p-power q > 1.

(ii ) For p < v < 2(p — 1), all q, and 0 < i < p we have

V^  (—l)qz+a I  v I  ((q — \)i — o~)\ c-l = 0 m od p . (49)
/—/ v i \ v + i — v — 1 I '

0<cr<i(?-l) N '

We now turn to the related question, when the G.F(p)-series Xo,qi,q2(z) is rational.
Here, we have the following result.8

Theorem 7. (a) / / one of the series Xo,qi,q2{z) and XG,qiq2{z) is rational
over GF(p), then both are, and we have deg(XG,qi,q2(z)) > 0 if and only if
deg(XG,qiq2(z))>0.

(b) Let p be a prime, G a finite group, and let q > 1 be a p-power. Suppose
that XGiq(z) is rational over GF(p), and write v for the (total) degree of

(i) Ifv>0, thenG=l.

(ii) If v < 0 and \G\ = 0,1 mod p, then XG,q(z) satisfies the functional
equation

[z) = i+T T T s
0<i<p (q—l)i—p<<j<( q—l)i Ao,Ai,...,Afc>0

with k :=  (q — l)i  — a, as well as the equation

Q. (51)

8Cf. [40, Theorems 6 and 10].
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From formula (13) and Wilson's Theorem one easily finds that

fe)t7/P)- (52)
Hence, if 1GI ? 1,2(Z ) is rational over GF{p), then so is XG,gi,q2{z). To prove the
converse, one shows (with somewhat more effort) that

XG,qig2(z)=XG,guq2(z) + z^[x%-V2(z) + (-lY+1HrX%-*l(z)], (53)

where gx = pr and H : GF(p)+[[z]]  —> Gi^p)"1"!^] ] is the operator on the subalgebra

GF(p)+[[z}]  := {/(* ) € GF(p)[[z}}  : f'(z) = o}

of GF(p)[[z]]  given by f(z) H-> W/(Z) := ( / (z1^ ) )^ 1) . It is not hard to see
that H maps rational functions to rational functions, hence we find from (53) that
rationality of Xa,qi,q2{z) also implies rationality of XG,qiq2(z). The statement in
(a) concerning degrees then follows from (52), while the assertions under (b) are
deduced from the functional equation (25). As a consequence of Theorem 7 we
have the following partial answer to the question when the series Xo,qi,q2{z) will
be rational over GF(p).

Corollar y 7 ([40, Cor. 11]). (i) IfXG,qi,q2(z) is rational anddeg(XG,quq2(z)) >
0, then G = 1; in particular, the setN"o,qi,qi *s infinite, provided that G ^ 1.

(ii) If G is in Fin(p), then XG,qi,q2(z) is rational over GF(p) if and only if
G = l.

(iii ) Let G be a finite group, and let q\ and q2 be 2-powers such that q\q2 > 1.
Then Xa,qltq2(z) is rational over GF(2) if and only ifG=l  or G contains
a subgroup of index 2.

5.3. Divisibilit y patterns and Fermat primes. To conclude this section, we
briefly discuss the question, under which circumstances the sets .A/Gl9l)ga, which
capture much of the information contained in the p-patterns H.G,qi,q2, allow for
a characterization in terms of closed formulae, and, more precisely, under which
conditions formulae of Stothers' type arise. As is already apparent from the ex-
plicit combinatorial description given in Theorem 5, the generic picture for the sets
J^G,qi,q2 — at least in the case when G is in Fin(p) - is very far from allowing for
such a description in closed terms, but rather tends to display a peculiar kind of
fractal behaviour typical of binomial and multinomial coefficients when considered
modulo a prime. For G sFin(p) and G ^ 1, the only exceptions, where closed for-
mulae are found, are in fact of Stothers' type, and are listed below. It seems rather
unlikely that, apart from the case of periodic behaviour, other closed formulae will
be found if G $. Fin(p), but the present state of knowledge does not allow us to
completely rule out this possibility. The more precise question as to the existence of
a (maximal) generalization of Stothers' formula is answered by the following result.
Theorem 8 ([40, Theorem 13]). For a prime p, an integer m > 1, and a p-power
q > 1 denote by Ami(J the set of partial sums of the series 1 + q Yla>i( rn ~ )̂°'
Then, for G a finite group and p-powers q\,q<i with qiq2 > 1, we have

^G,qi,q2 = | J o-A|G|,,lS2
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if and only if q\qi = 2, and G is either cyclic of order a Fermat prime, or G is an
elementary abelian 3-group of rank 2.

As is well known, Fermat primes, i.e., prime numbers of the form 22 +1 with A > 0,
satisfy (or can even be characterized by) a number of curious regularity conditions;
for instance, according to Gaufi [14, § 366] a regular q-gon (q > 2 a prime) can
be constructed by compass and ruler if and only if q is a Fermat prime. Rather
surprisingly, as our last result shows, Fermat primes also play an important special
role in the context of subgroup growth theory. In fact, by specializing Theorem 8
to the case when p = q\ = 2, q2 = 1, and G = Cq with q > 3, we obtain a new
characterization of Fermat primes in terms of the subgroup arithmetic of Hecke
groups.

Corollar y 8 ([40, Cor. 16]). Let q > 3 be an integer. Then q is a Fermat prime if
and only if

6. FREE PARITY PATTERNS IN HECKE GROUPS

In [37], results rather analogous to those for the p-patterns Uc,qi ,92 are established
for the free parity pattern II*(0 ) in the Hecke group case, i.e., when

C2*C q, q > 3.

The basis for these results is the functional equation

x;(z) = i + z(x;(z))»< (54)

for the mod 2 projection X*(z) of the generating function 1 + 2 A > I
where ^q is the free rank of #(q); equation (54) being arrived at by a method some-
what different from that leading to equation (25). We begin by recalling certain
facts about virtually free groups leading up to a sketch of our approach to equa-
tion (54), before describing some of the rather striking consequences of this identity
for the patterns II*  := II *  (3(q)).

6.1. The type rq and identity (54). The type r(0) of a finitely generated vir-
tually free group 0 = TTI(©(—), Y\ is denned as the tuple

T(<8) = (me; &(0) , . . ., &(«) , . . ., U , (©)),

where the C«(®) a re integers indexed by the divisors of m®, given by

U®) = \{e£E(Y): |0(e)||«}| - \{v G V{Y) : |0(t/)||«}|.

It can be shown that the type r(0) is in fact an invariant of the group 0, i.e.,
independent of the particular decomposition of 0 in terms of a graph of groups
(0(—), Y), and that two virtually free groups 0i and 02 contain the same number
of free subgroups of index n for every n £ N if and only if r(©i) = r(02); cf. [33,
Theorem 2]. Note that, as a consequence of (10), the Euler characteristic of 0 can
be expressed in terms of the type T ( 0) via

X (0) = - m -1 Y, <P(mv/K) C(®). (55)
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It follows in particular that if two virtually free groups have the same number of
free index n subgroups for every n, then their Euler characteristics must coincide.
Our approach to the function /(©) : N —» N given by

/A(© ) = number of free subgroups of index Am© in ©

is to relate it to another arithmetic function <7A(©) which turns out to be easier to
compute. Define a torsion-free ©-action on a set fi  to be a ©-action on fl which is
free when restricted to finite subgroups. For a finite set fl to admit a torsion-free
©-action it is necessary and sufficient that |fi| be divisible by m©. For A £ No
define 5A(©) by the condition that

(Am8)!^(0) = number of torsion-free ©-actions on a set with Am© elements,

in particular <7o(®) = 1- Then the arithmetic functions /A(© ) and g\(<8) are related
via the transformation formula9

A>1. (56)

Moreover, an analysis of the universal mapping property associated with the pre-
sentation © = 7Ti(©(-), Y) of © reveals that

A > 0; (57)

(xmti/\e(v)\)\\e(v)\Xm''\*w\\'

compare [33, Prop. 3]. From the latter formula it can be deduced that the se-
quence g\(<£>) is of hypergeometric type and that the generating function @<a(z) :=

X satisfies a homogeneous linear differential equation

M*)*1* e«')(*) = 0 (58)

of order /u(®) with integral coefficients given in terms of the type via

*(« ) EC1)" ^ ^ ) O « ) ( e ) . 0 < /x
3=0 ^ ' K|m8 l < K m »

(me ,fc)=K

(59)
cf. [33, Prop. 5]. Inserting formula (57) into (56) yields a recursive description of
the arithmetic function /*(©) attached to a finitely generated virtually free group
©. However, formulae obtained in this way (referred to as being of Hall type) usually
turn out to be quite unsatisfactory when dealing with number-theoretic aspects of
the sequence /A(© ) such as divisibility properties. Instead, one proceeds as follows.
Introducing the generating function

9See for instance [33, Cor. 1].
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one notes that, in view of equation (56), the series Ee(z) is related to ®<&(z)  via
the identity

"e (z) = me — (log 0e(z)), (60)

and, applying Bell's formula10

,.l f / ~(.i)f~\\ Til

f(IWI) (ff(*) ) (61)

for the derivatives of a composite function with f(t) = e*  and (7(2) = m 1̂ f S© (z) cfz,
one finds that

Combining these identities for 1 < /x < /̂ (<5) with (58), we obtain for B,@(z) the
differential equation

3 = 1

(62)
with $^(0) as in (59). Comparing coefficients in (62) now yields the following.
Proposition 2 ([37, Prop. 1]). Let 0 be a finitely generated virtually free group.
Then the function /A(®) satisfies the recursion

fx+1{<5) =

(63)

coefficients

. . ., AM) := ^ ^ ( «) F^(A i , . . ., A,,),

n
and $„{<&)  is as in (59).

By a partition TT we mean any sequence 7r = {7TJ}J° of non—negative integers, such that
 = 0 for all but finitely many j . |TT| = ^Cfei j"tj  is called the weight of TT, and ||7r|| = X)?ii  wj

| |is the norm or length of the partition TT. If |7r| = 0, w is called the empty partition, otherwise ir is
non-empty. As usual, we also write TT h \x for |TT| = ji, and say that IT is a partition of /i.
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We now restrict to the case where & = Sj(q). Then

{ q, q even

2q, q odd,

( 1, 2 \ K and K < q

- 1 , K = mq

0, otherwise,

and

J q ~ 1 '  1 odd

(^q/z, q even.
We make use of two auxiliary results, the first one concerning the coefficients

, the second a general observation concerning partitions.

Lemma 5 ([37, Lemma 1]). ForO < /i < /xq the integer tip' :=  $M(.fj(q)) is divisible
by rriq, and

m'"  ^ = (N) mod 2.

Lemma 6 ([37, Lemma 2]). Let IT = {^j}j>i  be a partition. Then we have

with equality occurring if and only if |TT| < ||TT|| + 1.

In Proposition 2 put © = #(q), write /A(q) for A(^(q)) and ^ q ) ( A i , . . . , AM) for

Jfi (Xi, , AM), and multiply both sides of (63) by a sufficiently large odd num-
ber F depending only on q to obtain

Y, ^ ( i , , / 1 ) f [ / A i ( q ) , A
H=l  Ai, . . . ,AM >0 j=l

with integers Fj? {\\,..., AM) satisfying

Decompose !F^'{\\,..., AM) as

^ ) ( A i , . . . , A M ) = /

where

A ( q ) ( A ) : = | ^

1°.
and

(64)
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Applying Lemmas 5 and 6 we find that, for each fi € [fJ>q],  the term R  ̂ (Ai,.. .,
is divisible by 2v^+^{m«)  ̂ and that

is even. Moreover, Lemma 5 allows one to show that A^ (A) as well as fxW  ̂ are
also divisible by 2t/â !)+M"2(m,) for a l l  ̂ e  ̂ a nd t h at

= 0(2)andi/2(q) =
mod 2,

0, otherwise

respectively

V M
We conclude that F<j*\\ u..., AM) is divisible by 2^! )+'" '2(m«), and that

, , fO, ()
mod2.

Cu)' otherwise
(65)

Evaluating (64) modulo 2 in the light of (65), and applying the binomial law in the
ring GF(2)[[z]], identity (54) follows.

6.2. The patterns II* . We now pass to some of the consequences for the patterns
II*  of the functional equation (54). Our first result collects together a miscellany of
information; in particular, it resolves the classification problem, and it answers the
question when the series X*(z) is rational over GF{2) (namely never).

Theorem 9. (a) Let qi,q2 > 3 be integers. Then we have 11^ = II* 2 if and
only iffj,qi =/ i i q 2.

(b) Every entry of II*  is congruent to 1 modulo 2V2̂ *\

(c) The first two entries of II*  are 1 and 21/2̂ C|) + 1; in particular, given an
integer a* > 2, the set {l,o;* }  can be extended to a free parity pattern of
some Heche group if and only if a* — 1 is a 2-power.

(d) The series X^(z) is never rational over GF(2); in particular, the set U* is
always infinite.

This is the contents of [37, Theorems 1 and 2]. We also obtain an explicit com-
binatorial description of the patterns 11* somewhat analogous to that afforded by
Theorem 5 for the patterns nG,gi,ga with G S Fin(p).

Theorem 10 ([37, Theorem 3]). Denote by s(x) the sum of digits in the binary
representation of the natural number x. Then, for every q > 3,

n* = {A e N : 0(A) +s(( q̂ - 1)A + 1) -s(MqA) = l } .

Again, it is apparent from Theorem 10 that the parity patterns II*  will not in
general lend themselves to an explicit description in closed terms as in the case of
the modular group. Instead, 11*  generically tends to inherit the peculiar kind of
fractal behaviour observed in Pascal's triangle when considered modulo 2. There is
however one special case where we can describe the patterns 11* in a straightforward
and completely explicit way, namely when fiq is a 2-power. Hence, while a canonical



219

generalization of the free parity pattern met in the modular group ij(3) and in io(4)
to all Hecke groups does not exist, the latter type of pattern precisely characterizes
two infinite series of Hecke groups. For an integer q > 3 define

i.e., A*  is the set of partial sums of the geometric series ^2^L0 fJ  ̂generated by the
free rank fj,q of ij(q).
Theorem 11 ([37, Theorem 4]). Let q > 3 be an integer. Then the following
assertions are equivalent:

(i) II*  = A*

(ii ) q or q — 1 is a 2-power.

By specializing Theorem 11 to the case where q is a prime number, we obtain
another characterization of Fermat primes.
Corollary 9. [37, Cor. 1] Let q > 2 be a prime. Then q is a Fermat prime if and
only if

- .
6.3. An afterthought. The results presented in the last subsection concerning
parity properties of the function /*(©) in the Hecke group case, while rather striking
and certainly interesting in their own right, may perhaps just be taken as promising
indications that a more general theory is awaiting its discovery. Indeed, all our
results on f\(<8) have close analogues in Section 5. Clearly, this area is in need of
further research. We would like to close this section with the following.
Problem 3. Find results concerning the parity of the function /A(© ) for a larger
class of virtually free groups, containing in particular all groups of the forms C2 * Cq

and Cq * Cq with q > 3. What can be said about the divisibility of /*(<8) modulo
arbitrary primes?

7. PARITY PATTERNS IN ONE-RELATOR GROUPS

Most of the major developments concerning the theory of subgroup growth have
so far concentrated on one of two classes of discrete groups: finitely generated
nilpotent groups and finitely generated groups containing a free subgroup of finite
index (i.e. fundamental groups of finite graphs of finite groups). On the other
hand, almost nothing was known until recently concerning the subgroup growth of
one-relator groups. If F is a one-relator group involving d > 3 generators, then, by
a result of Baumslag and Pride [5], F contains a subgroup of finite index which can
be mapped homomorphically onto a non-abelian free group. Hence, in this case
sn(T) grows super-exponentially fast, just like the sequence of subgroup numbers
of-a non-abelian free group. One might feel however that, at least generically, the
relationship between the subgroup growth of one-relator groups and that of free
groups should be rather more intimate than the latter observation seems to imply.
More specifically, one might ask, as Lubotzky does in [29], whether the limit

lim™-^L (66)
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is finite and positive for d > 3, and if so, what this limi t is. In [41], results and
methods from representation theory are employed and further developed to obtain
an asymptotic estimate for the number of index n subgroups in a surface group;
in particular, it is shown that Lubotzky's question as to the existence of the limi t
(66) has an affirmative answer for surface groups, and that the value of (66) in this
case is 2. In this final section, we are concerned with a result from the more recent
paper [42] describing the behaviour modulo 2 of the function sn(F) for a class of
one-relator groups F containing in particular all surface groups.

7.1. The result. We shall work over the alphabet A = {xi,x%,..., x 1̂, x 1̂,
Define a class of words W over A as follows.

(f) x], [Xi, Xj\ G W for all i, j G N and i  ̂ j .

(ii ) If wi, W2 G W have no generator in common, then W1W2 G W.

(iii ) If v G W, and Xi is a generator not occurring in v, then [v, Xi] G W.

(iv) W is the smallest set of words over A satisfying (i), (ii) , and (iii) .

Clearly, all surface group relators
9 h

W[x2i-i )x2i) and Y[x2, g,h>\

are contained in W, as is, for instance, the word w = [x2x2,X3\. For a word
w = w(xi,..., Xd) over A involving the generators x\,..., xj, define the one-relator
group Tw associated with w via

Our next result describes the behaviour modulo 2 of sn(Tw) for words w G W.
Theorem 12 ([42, Theorem 1]). Ifw is in W and involves at least three generators,
then sn(Tw) is odd if and only if n = k2 or n — Ik2 for some k > 1; in particular,
all groups Tw with w £W involving three or more generators share the same parity
pattern, and sn(Tw) is multiplicative modulo 2.

I t appears likely that Theorem 12 is best possible in the sense that if for some word
w over A the function sn(Tw) displays the parity pattern described in Theorem 12,
then in fact w G W.

7.2. Some background: A recurrence relation modulo 2, Euler's pentago-
nal theorem, and results concerning the parit y of the partitio n function.
The key to Theorem 12 lies in a remarkable recurrence relation for the mod 2
behaviour of sn(Tw) with w G W.

Proposition 3 ([42, Theorem 3]). Let w G W be a word involving three or more
generators. Then we have

( + ) 2> H^
fc>l

where

{ 1, n odd and triangular,

0, otherwise.

(67)
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The (representation theoretic) background of Proposition 3 will be discussed in
section 7.3. Looking at equation (67), which descends in triangular numbers, one
cannot but feel reminded of Euler's pentagonal theorem

+ OO

n>\ k>l fc=-oo

which yields the recurrence relation

fc>i

for the partition function p(n), with the convention that p(m) = 0 for m < 0; cf.
[1, Chap. 1.3]. On the other hand, while p(n) is known to satisfy a number of
surprising congruences (for instance modulo 5, 7, 11) when n is in certain special
arithmetic progressions11, there do not seem to be any such congruences modulo
2 or 3. In fact, the parity of p(n) appears to be quite random, and, on the basis
of extensive numerical evidence, it is believed that the partition function is 'about
equally often' even and odd; i.e., that

n<x *
p(n)=0(2)

cf. [45]. Subbarao [51] has conjectured that, for any arithmetic progression r (mod t),
there are infinitely many integers m = r(t) for which p(m) is odd, and also infinitely
many integers n = r (t) for which p(n) is even. Partial results in this direction have
been obtained by Ono [44]. Recently, Nicolas, Ruzsa, and Sarkozy [43] have shown
that, for all r and t,

\ 1 —> oo as x — oo.

n=r{t)
p(n)=0(2)

In an appendix to the latter paper, Serre shows that the same type of result holds
in fact for the coefficients of arbitrary modular forms. Against this background,
Theorem 12 appears remarkable and highly surprising. Once conjectured however,
it can be established by induction on n, using the recurrence relation (67) and
classical results of Gaufi and Legendre concerning the representation numbers of
binary quadratic forms; cf. [14, § 205], [28], [8, Chap. VI.8], and [20, Satz 89].

7.3. Some representation theory. The proof of Proposition 3 depends on certain
parity properties of character values and multiplicities for symmetric groups, which
appear to be both new and of independent interest. Given a word w = w(xi,..., ar<j)
over the alphabet A and an irreducible character x of Sn, define numbers otx(w) G C
by means of the expansion

Nw(n) : = | {(£!, . . . , zd) £5f : w(x1,... ,xd) =  TT} |

Cf. [25] for a comprehensive account up to the 1970's concerning divisibility properties of
p(n). Some exciting recent developments in this area are described in [2] and [3].
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where TT € Sn and the sum is taken over the set Irr(5n) of all irreducible characters
of Sn. Note that Nw(n) is a class function, hence the coefficients ax(w) are well
denned. Applying standard results from the representation theory of symmetric
groups, it is not difficult to establish the following information concerning the ax(w),
which leads to the explicit computation of these coefficients for each word w € W
and all x € Irr(5n) (cf. for instance [24] for the necessary representation theoretic
background).
Lemma 7 ([42, Lemma 1]). Let wi,W2,v be words over A, and let x be an irre-
ducible character of SU.

(i) We have ax(x}) = 1 and ax([xi, Xj\) = ^W for all i,j£N with i ^ j .

(ii) // w\ and w2 have no generator in common, then we have

ax(w1w2) =
(iii ) If Xi does not occur among the generators ofv, then

1

Denote by a the bijection between the self-conjugate partitions of n and the par-
titions of n into distinct odd parts, mapping a self-conjugate partition A onto the
partition given by the symmetric hooks of A (with respect to the main diagonal).
Moreover, denote by C\ the conjugacy class of Sn whose cycle structure is given by
the partition Ahn, and by xx the irreducible character of Sn associated with A.
Then an inductive argument based on the Murnagham-Nakayama rule enables one
to prove the following result.12

Lemma 8 ([42, Lemma 2]). Let Ai,A2 be partitions of n with \\ self-conjugate.
Then xxt (CA2) is odd if and only if X2 = Af.

Call an irreducible character x of Sn symmetric, if x — £«X> where en = X(in) is
the sign character; this is equivalent to demanding that the partition associated
with x be self-conjugate. A rather subtle argument in the G.F(2)-algebra 21 =
GF(2)[Irr(5n)] generated by the irreducible characters of Sn, building heavily on
Lemma 8, now establishes the following.
Lemma 9 ([42, Lemma 3]). Let X^^nd %' be irreducible characters of Sn.

(i) If x is symmetric, then (x | x') — (x2 I £nX') for o,ll k.
(ii) // both x and x' o,re symmetric, then (x2 | x') *5 odd if and only if X —

An irreducible character x of Sn is termed a 2-core character, if -?[T is odd. Note
that, since the degree of an irreducible representation of a finite group G always
divides \G/(,\{G)\, this concept is well denned for arbitrary finite groups; cf. [23] or
[21, Chap. V, Satz 17.10]. For G = Sn, the hook formula shows that an irreducible
character x\ ls 2-core if and only if all hook lengths of the associated partition A
are odd. The latter condition is easily seen to be equivalent to requiring that A is
of the form A = (fc, k — 1,.. ., 1) for some k > 1. It follows that Sn has a 2-core
character if and only if n = ' ^ ' is a triangular number, in which case XA is the
unique 2-core character; in particular, 2-core characters are symmetric. With these

12Note that since n ~ 7r° for all 7r € Sn and exponents a coprime to the order of 7r, characters
of Sn are integer-valued.
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preliminaries, Lemmas 7 and 9 allow us to derive the following result, which is the
decisive tool in proving Proposition 3.
Lemma 10 ([42, Lemma 4]). Let w € W be a word involving d generators, and let
X be an irreducible character of Sn.

(i) If d > 2, then (n\)d~2x(l)otx(w) is an integer.

(ii) If d > 3 and x ŝ n°t 2-core, then (n!)d~2x(l)ax(«;) is even.

(iii ) If d > 2 and x is 2-core, then (n\)d~2 x(l)ctx(w) is odd.
With Lemma 10 in hand, we can now establish Proposition 3: Let w S W be a word
involving d > 3 generators. By the exponential principle, the subgroup numbers
sn{Pw) a re related to the sequence hn(Tw) = \Hom(Tw), Sn)\/n\ via the equation13

n - l
nhn(Tw) = '^2sn-l/(rw)hu(rw), n > \ .

i/=0

Also, since homomorphisms of Tw to Sn can be identified with solutions of the
equation w(x\,..., xj) = 1 in Sn, we have

hn(Tw) = (n!)d"2

X€lrr(Sn)

From Lemma 10 we know that, for w G W, hn(Tw) is odd if and only if n is a
triangular number. Hence, for n > 1, we find that modulo 2

ra-l

«,) + 6(n),
fc>l

the correction term 6(n) coming from the term nhn(rw).
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Counting Nets in the Monster

Simon P. Norton

Abstract
We aim to count the number of conjugacy classes of nets, i.e. triples of

6-transpositions in the Monster up to braiding. An exact answer is given
subject to a conjecture.

1 Introduction

In [3] the author introduced the concept of a net, which was defined in terms of the
concept of quilt introduced in [2] and developed in subsequent work by the second
author of that paper. We start by summarizing these definitions, using the notation
of [3].

We start with a group G and consider the set of (ordered) triples of involutions
(a,b,c) where a,b,c € G. We define two operations x: (a,b,c) i-> (b,ab,c) and y:
(a, b, c) i-> (a, c, bc); then x and y satisfy the relation xyx = yxy which defines a
familiar presentation of the 3-string braid group. Indeed, we may think of x as
an operation that passes a string corresponding to a under one corresponding to b,
while y passes the string corresponding to b under one corresponding to c.

We may also formulate the braid group in terms of the generators s: (a, b, c) H->
(b,c,abc) and t: (a,b,c) i-> (c,bc,abc). As s = xy, t = xyx = yxy, x = s~1t, and
y = is"1, it is clear that (s, t) = (x, y). It is easily seen that the element z = s37= t2,
which is central in (s,t), corresponds to conjugation by abc, an element which is
invariant under both s and t; this gives rise to another familiar presentation of the
braid group as (s,t|s3 = t2).

We now define a quilt as a connected geometry associated with a subset of the
orbits of z on the full set of triples. These are actually the flags of the geometry,
which has rank 3. As it in fact corresponds to a type of polyhedron, we call its
elements vertices (corresponding to orbits under (s)), edges (corresponding to or-
bits under (t)), and faces (corresponding to orbits under {x,z)). Two elements of
different types are incident if the two corresponding orbits share a flag; if they share
more than one flag we regard them as being multiply incident.

As s3 = z, each vertex corresponds to 3 or 1 flags. In the latter case we say that
the vertex is collapsed. Similarly, an edge will correspond to 2 or 1 flags, and in
the latter case we say that the edge is collapsed. If a face has n flags we call it an
n-gon, with the usual specializations for particular values of n; n will always divide
the order of ab, and if they are unequal we may describe the face as collapsed.

Allowing for multiple incidences, the number of incidences between a particular
element and elements of either of the other two types will be equal to the number
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of flags corresponding to that particular element. In particular a collapsed vertex
or edge will be incident with just 1 element of either of the other two types, and
an uncollapsed vertex or edge will be incident with 3 or 2 elements of either of
the other two types. If there are no collapsed vertices or edges, then the geometry
corresponds to an (orientable) trivalent polyhedron, where "going round" a vertex,
edge of face corresponds to applying s, t or x respectively; in other cases we may
consider the geometry to have one or more degenerate vertices or edges.

If the group G is the Fischer-Griess Monster M, and the involutions o, b, c all
belong to the class called 2A in the ATLA S [1] (whose notation we use throughout),
then we call the quilt a net. In this case, because of the 6-transposition property
(which means that the product of any two 2j4-involutions of M has order at most
6), the faces of the polyhedron all have at most 6 sides. The significance of this will
appear in the next section.

Some of the motivation for the study of nets is given in [3].

2 Euler Characteristics and Folded Nets

We define x as the permutation character of the Monster on its 2.A-centralizer
(which has structure 2.B, i.e. a double cover of the Baby Monster), and S as the
set of orbits of the Monster by conjugation on (ordered) triples of transpositions. It
is easy to count the number of orbits in S: this is just the trace of the tensor cube
of x, which turns out to have value 1400384.

This number is too large for one to be able to contemplate a complete enumer-
ation of such triples. To what extent is the problem reduced by passing to the set
of orbits under the braid group, i.e. nets? It is the purpose of this paper to answer
this question.

The Euler Characteristic of a net can be defined as V — E + F where V, E and F
are respectively the numbers of vertices, non-collapsed edges, and faces. A familiar
argument using induction on the size of a net can be used to show that, with this
definition, the value of its Euler Characteristic depends only on the topology of
the surface defined by the union of closed disks corresponding to the faces, where
the intersection of two such disks is determined by the edges and vertices common
to the two relevant faces. In particular, if the surface has genus 0 or 1, the Euler
Characteristic of the net will be 2 or 0 respectively.

Induction can also be used to show that the Euler Characteristic is one-sixth of
the defect of the net, defined as the sum of the defects of its elements, where a non-
collapsed vertex or edge has defect 0, a collapsed vertex has defect 4, a collapsed
edge has defect 3, and an n-gon (whether collapsed or otherwise) has defect 6 — n.
It follows immediately from the 6-transposition property of M that the defect of a
net will always be non-negative, so that its genus will be 0 or 1 (and its defect 12
or 0 respectively). In [3] we used the terms netball and honeycomb for nets of genus
0 and 1 respectively (in the latter case because all faces of a net with defect zero
must clearly be hexagons).

We now define the concept of a folded net. This is the same as that of a net
except that we quotient out the triples of transpositions (a, b, c) by conjugation,
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not by powers of abc, but by the entire Monster. In other words, a folded net can
be obtained from a net by quotienting out those symmetries which correspond to
conjugation by elements of the Monster.

It is clear that the number of conjugacy classes of nets is the same as the number
of folded nets: both are easily seen to be equal to the number of orbits on triples of
transpositions of the compositum of the braid group and the group of conjugations
by elements of M.

It is also clear that the concepts of Euler Characteristic and defect for nets
pass through to folded nets unchanged, and that the folded net corresponding to a
netball will have genus 0. The folded net corresponding to a honeycomb may have
genus either 0 or 1, but all known honeycombs fold to surfaces of genus 0, and the
arguments of [3] suggest that there may be no counterexamples. We therefore make
the following conjecture:

Conjecture 1 All folded nets have genus zero.

3 The Calculations - Part 1

The calculations that follow were done with the aid of the character tables in the
GAP library [4], together with one table at that time not in the library, namely
that for the centralizer in the Monster of an element of class 2B, which has struc-
ture 21+24.Coi. We call this group Z. This table was computed by the author
using Fischer's "matrix" method, and, together with the table of its double cover
21+24.2.Coi, is in the library for GAP release 4.3.

Our procedure is to count the total defect of all the folded nets. Conjecture 1
implies that all folded nets have defect 12, on which assumption division by 12 will
give the number of (folded) nets. Even if we do not assume this conjecture, we will
still know the total number of folded nets which do not have genus 1.

As a first step, which will illustrate the type of argument we use, we count the
number of collapsed vertices in folded nets. Let there be u uncollapsed vertices
and v collapsed vertices. Then 3u + v is the number of orbits of the Monster on
(ordered) triples of transpositions, which we have already seen to be 1400384. We
write x3 for the tensor cube of XJ and X3 f° r the (virtual) character whose value on
any element g G M is x(d3)- (Later we use similar notations with 3 replaced by 2.)
Then we prove:

Theorem 1 The total number of collapsed vertices infolded nets is the trace ofx3,
which has value 683.

Proof. We start by showing that the number of vertices in folded nets is the
same as the number of orbits of the Monster on triples of transpositions subject
to cyclic permutation. The former is just the number of orbits of s on 5, which
is clearly the same as the number of orbits of i - 1si. The latter takes (a,b, c) to
(c,ac,bc), which is conjugate to (c,a,b).

The number of orbits of the Monster on triples of transpositions subject to cyclic
permutation is the trace of (x3 + 2X3)/3- It therefore follows that u + v (the number
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of vertices in folded nets) is equal to the trace of (x3 + 2x3)/3- But we already know
that the trace of x3 is 3w + v. It follows that v is the trace of X3, which can be
calculated to be 683.

The vertices therefore give rise to a defect of 4.683 = 2732. The next step is
to calculate the number of collapsed edges. Let us define xo ss the restriction of
X to 2.5; Xo" a nd Xo" ^ * ne positive and negative parts of xo with respect to the
central involution; and X2+ and X2~ to be the symmetric and exterior squares of
a character X.

Theorem 2 The total number of collapsed edges in folded nets is the trace of
(Xo~ — Xo")2> which has value 5000.

Proof. Let us now write u and v for the number of uncollapsed and collapsed
edges respectively. Then 2u+v is the number of orbits of S, i.e. the number of orbits
of the Monster on triples (a, b, c). This can alternatively be seen as the number of
orbits of the 2.B centralizing any particular transposition b on pairs (a,c), which is
the trace of Xo

We consider the orbits on such pairs, up to conjugation by elements of 2.J5, of
various subgroups of the group generated by (a, c) i-> (c, a) and (a, c) (-  (a, cb). As
(a, c) »-> (ab, cb) is a conjugation by an element of 2.B, this group is a four-group,
say V4, which has five subgroups:

1. The trivial group, say V\. As stated above, the number of orbits is the trace
of Xo> which is the same as the trace of (xo") + (Xo~)

2. The group generated by (a, c) H-» (C, a), say V2. Here the number of orbits is
the trace of Xo+, or that of (xo") + (Xo~) "

3. The group generated by (a, c) t-» (a, c6), say V3. Here the number of orbits is
the trace of (X" )

4. The whole four-group V4. Here the number of orbits is the trace of (xo")

5. The group generated by (a,c) i-» (c,ab), say V5. This is the one we want,
as u + v is the number of orbits on S of t, which takes (a, b, c) to (c, 6°, abc),
or, equivalently, the element taking (a, b, c) to (c, b, ab) (the conjugate of the
previous image by c), or, equivalently, the number of orbits of pairs (a, c) up
to conjugation by elements of CM(6) of the element taking (a, c) to (c, a6). We
evaluate the number of orbits as follows.

There are five types of orbit under V4, according to which of V1-V5 is the stabilizer
of the pair in question. (As V4 is abelian, all pairs in the orbit have the same
stabilizer.) For each subgroup Vi we may write the number of Vi-orbits in one to
the five types of Vi-orbit as a vector Wi\ it is then easily seen that w\ = (4,2,2,1,2),
w2 = (2,2,1,1,1), w3 = (2,1,2,1,1), w4 = (1,1,1,1,1), and w5 = (2,1,1,1,2). So
W5 = W1-W2—W3 + 2u>4, which means that we can express the number of V5-orbits
in terms of the numbers of Vi-orbits for 1 < i < 4. If we do the calculation, we find
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that the number of V5-orbits is (xo) + (Xo) > an<i w e therefore deduce that this
is the value of u + v. It follows that v = (xjj" — x^~)2 as required, and calculation
shows that this has value 5000.

For convenience we keep a running total of the defect as we enumerate it. It is
now 2732 + 3.5000 = 17732.

4 The Calculations - Part 2

We now need to count the number of faces of various types. Recall that a face is
defined as an orbit on S of x = (a,b,c) i-> (b, ab,c). We classify faces according
to the conjugacy class of ab (or, equivalently, the conjugacy class of (a,b)). The
number of sides for each such face will be a divisor of the order of ab. The number of
vertices on such faces will be the inner product of x with the permutation character
of M over CM((G, &)), while the number of such faces will be the inner product of
X with the permutation character of M over Nu((a, b)) H Cu(ab), a group in which
CM((G, b)) has index equal to the order of ab. This will enable us to compute the
defect, which is 6 times the second number minus the first.

When the order of ab is not composite, this enables us to compute exactly how
many such faces have a given number of sides. When ab is composite, this informa-
tion can also be computed, but this requires the evaluation of further inner products
of permutation characters, corresponding to the orbits of the groups generated by
various powers of x. We state the relevant results in each case.

Here are the nine possible conjugacy classes for ab and the calculations for the
associated defects:

1. 1A. In this case a — b and all faces are 1-gons. The number of such faces is
the trace of %2, which is 9, giving a defect of 6.9 —9 = 45 and a running total
of 17732 + 45 = 17777.

2. 2A. The inner products of x with the permutation characters of M over
22.2£6(2).2 and 22.2Ee(2) are 72 and 111, giving rise to a defect of 6.72-111 =
321, or a running total of 17777 + 321 = 18098. In fact there are 33 1-gons
and 39 2-gons.

3. 2B. This time the subgroups for which we need the permutation characters
are 21+24.Co2 and 21+23.Cc>2. We may calculate the permutation characters
by writing down those for Z (= CM(2B) = 21+24.Coi) over these groups and
inducing them up to M. The relevant inner products are 115 and 183, giving
rise to a defect of 6.115-183 = 507, or a running total of 18098+507 = 18605.
In fact there are 47 1-gons and 68 2-gons.

4. 3A Here we use the groups 3 x Fi23 and Fi^s, for which the relevant inner
products are 371 and 993, giving rise to a defect of 6.371 - 993 = 1233, or a
running total of 18605 + 1233 = 19838. In fact there are 60 1-gons and 311
triangles.



232

5. 3C. This time the groups are 3 x Th and Th, with inner products 682 and
2034, giving rise to a defect of 6.682 - 2034 = 2058, or a running total of
19838 + 2058 = 21896. In fact there are 6 1-gons and 676 triangles.

6. 4A. The groups are 21+23.McL.2 and 21+22.McL, and as in Case 3 we can
compute the permutation characters by inducing up to M the permutation
characters of Z over these groups. The inner products are 7426 and 28127,
giving rise to a defect of 6.7426 - 28127 = 16429, so that the running total
is 21896 + 16429 = 38325. If we also compute the inner product of x with
the permutation character of M over 21+23.MoL, which is 14667, we can show
that there are 185 1-gons, 511 2-gons, and 6730 squares.

7. AB. The groups are 4.i<4(2).2 and 2.^(2), giving rise to inner products of
7081 and 27927, so that the defect is 6.7081 - 27927 = 14559, with a running
total of 38325 + 14559 = 52884. Again, we can use the inner product of x
with the permutation character if M over 4.^(2), which is 14117, to show
that there are 45 1-gons, 131 2-gons, and 6905 squares.

8. 5A. The groups are 5 x HN and HN, giving rise to inner products 88337
and 441109, and a defect of 6.88337 - 441109 = 88913, or a running total of
52884 + 88913 = 141797. In fact there are 144 1-gons and 88193 pentagons.

9. The final case is 6A The groups are 3x2.Fi22'2 and 2.Fi22, giving rise to inner
products 153499 and 899891, so that the defect is 6.153499-899891 = 21103,
or an overall total of 141797 + 21103 = 162900. Again, we can use the inner
products with % of the permutation characters of M over 3 x 2.Fi22 and
2.Fi22-2, which are 301203 and 458273 respectively, to show that there are
365 1-gons, 747 2-gons, 5430 triangles, and 146957 hexagons.

Dividing the total defect by 12 completes the proof of:

Theorem 3 The number of folded nets with genus zero is 13575. If we assume
Conjecture 1, this is also the total number of folded nets, or the number of conjugacy
classes of nets.

Whether this number is small enough to make a complete enumeration of nets
feasible is a question that will have to await further study.
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Overgroups of finite quasiprimitive permutation
groups.

Cheryl E. Praeger

Abstract

A permutation group is quasiprimitive if each of its non-trivial normal sub-
groups is transitive. Quasiprimitive permutation groups arise naturally when
studying automorphism groups of vertex-transitive graphs, and they form a
family of permutation groups that properly contains all primitive permutation
groups. In this chapter we describe the current state of our knowledge of the
structure of finite quasiprimitive groups and in particular of the quasiprim-
itive permutation groups containing a given finite quasiprimitive group. To
illustrate how these results can be used in graph theory we discuss their ap-
plication to finite s-arc-transitive graphs and other classes of vertex-transitive
graphs. Many of the results depend on the finite simple group classification.

1 Introduction

A finite transitive permutation group is quasiprimitive if each of its non-trivial
normal subgroups is transitive. Such groups often arise as automorphism groups of
combinatorial or geometric structures, and in this context a natural problem is to
determine the full automorphism groups of these structures. The group theoretic
equivalent of this problem is the problem of determining the overgroups of a given
quasiprimitive permutation group in the symmetric group, and the heart of this
problem is to find all the quasiprimitive overgroups. We shall address these problems
in this chapter. As illustration and motivation we will consider the problem of
understanding the structre of finite s-arc-transitive graphs.

The class of quasiprimitive permutation groups properly contains the class of
primitive groups and admits a similar partition into several distinct sub-classes in an
analogous fashion to that given by the O'Nan-Scott Theorem for primitive groups
(see [20] or [14] for primitive groups and [18] for quasiprimitive groups). A broad-
brush description of finite quasiprimitive groups will be given in §3, identifying eight
'O'Nan-Scott types' of such groups. These 'O'Nan-Scott types' are used as a means
of organising investigations involving quasiprimitive groups, and they also appear
in the statements of the major results.

To show how quasiprimitive groups and the O'Nan-Scott types can be used in
graph theory we consider finite s-arc-transitive graphs in §4. It turns out that each
non-bipartite finite s-arc-transitive graph is a normal cover of a quasiprimitive s-
arc-transitive graph, and that if s > 2 then only four of the eight O'Nan-Scott types
can arise. We discuss the importance of quasiprimitive groups for determining the
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full automorphism group of a quasiprimitive s-arc-transitive graph. In particular it
is crucial to understand the quotient actions of imprimitive quasiprimitive groups
and to know the quasiprimitive overgroups of a given quasiprimitive group G on a
finite set fi, that is the quasiprimitive groups H satisfying G < H < Sym(fi). We
discuss what is known about such quotient actions and overgroups in §5 and §6.
Then in §7 we present various applications of this theory in graph theory. Detailed
information about the finite simple groups was used to prove many of the results
we state.

2 Primitive and quasiprimitive groups

Let G be a transitive permutation group on a set Q.. A partition B of Q is G-invariant
if, for all blocks B £ B and elements g £ G, the image B9 — {a9 | g £ G} is also
a block of B. Since G is transitive on Q, G permutes the parts of B transitively.
We denote the permutation group of B induced by G as Gs, and if B is non-trivial,
that is, if 1 < \B\ < \£l\, we refer to the action of G on B as a non-trivial quotient
action of G. The group G is primitive on f) if there are no nontrivial G-invariant
partitions of Q,; if G is not primitive then we call it imprimitive.

If B consists of the orbits in fi  of a normal subgroup N of G, then B is called a
G-normal partition relative to N. Each G-normal partition B is G-invariant and the
action of G on B is called a normal quotient action of G. Thus G is quasiprimitive
if and only if the only G-normal partitions are the trivial ones, and hence every
primitive group is quasiprimitive. The converse does not hold since, for example,
every transitive action of a non-abelian simple group is quasiprimitive.

Suppose that G is a quasiprimitive group on f2 and B is a G-invariant partition
of Cl. If a normal subgroup of G is intransitive on B then it is also intransitive on fl,
and since G is quasiprimitive on fi, the only normal subgroup intransitive on B is the
identity subgroup. Hence GB = G and GB is quasiprimitive. Thus every non-trivial
quotient action of a quasiprimitive group is quasiprimitive, but the 0'Nan-Scott
types of these actions, as described in §3, may differ. Suppose in addition that B
is maximal in the sense that if B' is a G-invariant partition of Cl properly refined
by B, then B' = {Q}. In this case GB is primitive. Thus each finite quasiprimitive
permutation group has at least one primitive quotient action. However in various
combinatorial applications it is not appropriate to 'pass to a primitive quotient
action' since this action may not have the required combinatorial properties, see §4.

3 Types of quasiprimitive groups

The main theorem in [18] gives a subdivision of the family of finite quasiprimi-
tive permutation groups analogous to that given by the O'Nan-Scott Theorem for
primitive groups.

Theorem 1 [18] Each finite quasiprimitive permutation group belongs to exactly
one of eight pairwise disjoint types, described in Table 1.
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Type
HA
HS

HC

AS
SD
CD

TW
PA

Name
Affine
Holomorph of
a simple group
Holomorph of
a compound group
Almost simple
Simple diagonal
Compound diagonal

Twisted wreath
Product action

soc(G)
N = Z$
N x Ca{N)

N x Ca(N)

N = T
N = Tk

N = Tke

N = Te

N = Te

Description
G = JVGo, Go < GL(iV), Go irreducible
N £*  CG{N) S T, G < Hol(iV)

N S CG(N) SiTk,G < Hol(JV), k > 2

G < Aut(r)
G < JV  (Out(T) x Sfc), k > 2
G < Go wr >?£ in product action
Go of type SD, k > 2,£> 2
JV regular, £ > 2
G < Go wr Si, Go almost simple, H > 2

Table 1: 0'Nan-Scott types for finite quasiprimitive groups

All quasiprimitive groups of the first three types are primitive, whereas each of
the remaining five types contains imprimitive quasiprimitive groups as well as prim-
itive groups. Each quasiprimitive group G in the first three types is permutationally
isomorphic to a primitive subgroup of the holomorph Hol(M) of a certain group M,
where Hol(M) is the semidirect product M-AutM formed with respect to the natu-
ral action of AutM on M, and G contains the base group M of Hol(M). Moreover
M is regular on Q, that is, M is transitive and only the identity element fixes a
point of Ct. Table 1 lists the possible 0'Nan-Scott types of a finite quasiprimitive
group G < Sym(fi), together with information about a minimal normal subgroup JV
of G and the socle soc(G), that is, the product of the minimal normal subgroups of
G. In the table T denotes a non-abelian simple group. In type CD, Go < Sym(A)
is quasiprimitive of type SD, and G < GowrSe acts on fi = A' in product action.
In type PA, Go < Sym(A) is quasiprimitive of type AS, and there is a G-invariant
partition of ft which may be identified with Ae on which G acts in product action.

4 Finite s-arc-transitive graphs

A graph T = (Ct, E) consists of a vertex set tt and a subset E of unordered pairs
from Cl, called edges. An automorphism of F is an element of Sym(fi) that leaves
E invariant, and the full automorphism group of T is the subgroup of Sym(fJ)
consisting of all the automorphisms and is denoted Aut(F). An s-arc is a vertex
sequence (cto, ct\,..., cts) such that {ai_i , a{\ € E for 1 < i < s, and a;_i ̂  a^+i
for 1 < i < s; and a 1-arc is often called simply an arc. For G < Aut(F), we say
that F is (G, s)-arc transitive if G acts transitively on the s-arcs of F.

Let F = (O, E) be a graph and G < Aut(F). For any partition B of fi  the quotient
graph Fg is the graph (B, EB) where {B, C} £ EB if there exist a £ B,/3 £ C such
that {a, (3} G E. If F is connected then also Fg is connected. If B is G-invariant
then the quotient action of G on B leaves EB invariant and hence G induces a group
of automorphisms of Fg. In this case if G is vertex-transitive or arc-transitive on F
then GB will also be vertex-transitive or arc-transitive respectively on Fg. However
if F is (G, s)-arc transitive then GB will not in general be transitive on the s-arcs of
Fg if s > 2. This means that in general an s-arc-transitive graph F will not have a
vertex-primitive s-arc-transitive quotient. Thus there is no hope that the problem of
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classifying finite s-arc-transitive graphs, or even giving a useful description of their
structure, can be reduced to the case of vertex-primitive s-arc-transitive graphs.

Happily when B is a G-normal partition then G does act s-arc transitively on Fg
and moreover, if \B\ > 2, then F is a cover of F,B in the sense that, for {B, C} £ Eg,
each vertex in B is adjacent in F to exactly one vertex in C and vice versa. In this
case we say that F is a normal cover of Fg. If B is the set of orbits of a maximal
intransitive normal subgroup N of G and if \B\ > 2 (possibly N = 1), then G
is both vertex-quasiprimitive and s-arc-transitive on Fs, see [18]. Such a normal
subgroup exists provided that F is not bipartite. It was the wish to understand
vertex-quasiprimitive s-arc transitive graphs that led to the development of the
theory for finite quasiprimitive permutation groups described in §3. It turns out
that only four of the eight O'Nan-Scott types of quasiprimitive permutation groups
can occur as s-arc-transitive automorphism groups of graphs (for s > 2).

Theorem 2 [18] IfG is vertex-quasiprimitive and s-arc-transitive on a finite graph
F with s > 2, then G is of type HA, AS, TW, or PA. Moreover there are examples
for each of these types.

Those with G of type HA were classified in [9], and the almost simple examples
with soc(Cr) = PSL2(g),Sz()̂ or Ree )̂ have also been classified, see [4, 5, 8]. The
first classification depends on the finite simple group classification. However even
in the latter classifications where the groups G were well-known, it was necessary to
determine the full automorphism groups of the graphs constructed in order to decide
whether certain pairs of graphs were isomorphic. Finding the full automorphism
group of a graph F, given a vertex-quasiprimitive s-arc transitive subgroup G of
Aut(F) (s > 2), can be quite difficult. Several questions arise.

Question 1 Can Aut(F) be much larger than G? Is Aut(F) quasiprimitive? If
Aut(F) is quasiprimitive, do G and Aut(F) have the same 0'Nan-Scott types, or
the same socles?

There are examples known of (G, 2)-arc-transitive graphs F with G vertex-
quasiprimitive of type TW or AS, for which Aut(F) is not vertex-quasiprimitive,
see [1, Section 6] and [10]. However, even if Aut(F) is not quasiprimitive, quasiprim-
itive groups play a major role in determining Aut(F). If N is a maximal intransitive
normal subgroup of Aut(F), then both G and Aut(F) induce vertex-quasiprimitive
2-arc-transitive actions on the normal quotient Fg where B is the set of iV-orbits,
and GB = G. Thus to analyse the possibilities successfully we need to know (at
least) the following.

1. The possible O'Nan-Scott types for the (quasiprimitive) quotient actions of
finite quasiprimitive groups for each O'Nan-Scott type.

2. The quasiprimitive overgroups of a given finite quasiprimitive group.

We discuss the current state of our knowledge of quotient actions and overgroups
of quasiprimitive groups in the next two sections. The analysis described here for
finite s-arc-transitive graphs is effective also for other classes of finite arc-transitive
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graphs such as locally primitive graphs or locally quasiprimitive graphs (see [13]).
Bipartite locally s-arc transitive graphs require a specialised analysis that parallels
the one described here, and again quasiprimitive groups play a major role (see [7]).

5 Quotients actions of quasiprimitive graphs

In §2 we defined the quotient action of a transitive permutation group G < Sym(fi)
on a G-invariant partition B of ft, and we saw that if G is quasiprimitive on ft,
then the group GB induced on B is isomorphic to G and is also quasiprimitive.
We saw in §4 above that it is important when computing the full automorphism
group of a vertex-transitive graph with vertex set ft to understand the possibilities
for the 0'Nan-Scott types of GQ and GB. Suppose that B is nontrivial, that is
1 < \B\ < \fl\, so that the quasiprimitive group G is imprimitive of type X €
{AS, SD, CD, TW, PA}  (see §3). Also, since a minimal normal subgroup N of
G must be transitive on ft, it follows that \N\ > \fl\ > \B\ and hence iV is not regular
on B. Thus GB is quasiprimitive of type XB, where XB e {AS, SD, CD, PA} .
In [19] some further restrictions on X, XB were found as follows.

Theorem 3 [19, Theorem 1] Let G be a quasiprimitive permutation group of O'Nan-
Scott type X on a finite set fl, and let B be a non-trivial G-invariant partition of ft.
Then GB is quasiprimitive of type XB for some X, XB such that the (X, XB)-entry
in Figure 3 is the symbol /, and all such pairs (X,XB) can occur.

AS SD CD PA
AS / / - - - \
SD
CD
TW
PA  V

Figure 1: Quasiprimitive Quotient Action Matrix

Again this result depends on the finite simple group classification.

6 Overgroups of finite quasiprimitive groups

Let G < H < Sym(fi) where fi is finite and G, H are quasiprimitive with O'Nan-
Scott types X, Y respectively. If both G and H are primitive then the possibilities
for (X, Y) and a description of the possible inclusions G < H are given in [17]. In
particular the examples in the special case where X = Y = AS but soc(G) ^ soc(H)
may be read off from the tables in [15].

Information about the possible pairs X, Y in the case where H is primitive but
G is imprimitive is given in [2]. This paper also describes the possible inclusions
G < H in all cases except for (X,Y) = (AS, AS), (TW.PA) and (PA.PA). For
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the latter two cases, the results of [3] yield a great deal of information about the
corresponding inclusions. The case (X,Y) = (AS, AS) deserves some comments.
Suppose that X = Y = AS, that N = soc(G),M = soc(H), and N ^ M. Let
a e fi. Then since H is primitive, the stabiliser Ha is maximal in H, and since G
is quasiprimitive, JV is transitive so that H = Ha N. Thus to classify the possible
inclusions G < H in this case we need a solution to the following problem, work on
which is in progress by Liebeck, Saxl and the author.

Problem 1 Classify all factorisations H = AB where H is almost simple, A is
maximal but does not contain soc(H), and B is a non-abelian simple group.

This leaves the case where both G and H are imprimitive. In this case, if B
is a maximal if-invariant partition of Cl, then it follows from the discussion in §2
that GB = G, HB = H, and GB is a quasiprimitive subgroup of the primitive group
HB. Thus information about the possible O'Nan-Scott types XB, YB of GB, HB

respectively is given by [2, 17]. Using this information as a starting point, it was
shown in [19] that either (i) X = Y and soc(G) = soc(H), or (ii) Y — YB and either
X = XB or X = TW, XB = PA. Moreover in case (ii) either (X, Y) = (AS, AS),
or Y = PA and X € {AS,TW,PA} , and there are examples for each of these
possibilities.

A summary statement of these results could be expressed as follows. Putting
the results from [17] into this format is non-trivial and the details for doing this are
given in [19, Section 3]. We note that proofs of the results discussed in this section
depend on detailed information about finite simple groups.

Theorem 4 [2, 17, 19] Let G < H < Sym(Sl) where |O| =n, G,H are quasiprim-
itive of type X, Y respectively such that H ^ An or Sn. Then either X = Y and
soc(G) = soc(H), or X  ̂ SD, Y j=  TW, and the (X,Y)-entry of Figure 2 is the
symbol / . Moreover all such pairs (X, Y) can occur.

HA HS HC AS SD CD PA
HA
HS
HC
AS
CD
TW
PA

\

Figure 2: Quasiprimitive Inclusions Matrix

7 Further applications in graph theory

We complete this chapter on overgroups of finite quasiprimitive groups with a brief
look at several applications of this theory in addition to those mentioned in §4.
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All of these applications depend on the finite simple group classification, either
directly in their proofs or indirectly through their use of the results of §6. The first
application is to finite 4-arc-transitive graphs, where this theory has led to some
interesting restrictions on the number of vertices.

Theorem 5 [11, 12] Suppose that F is a finite s-arc-transitive graph with s > 4.
Then the number of vertices is even and not a power of 2.

Next we consider arc-transitive graphs. In §4 we saw that, if F = (Q, E) is
a finite connected graph, G < Aut(F) with G arc-transitive on F, and B is a G-
invariant partition of fi, then the quotient graph TB is connected and admits GB

as an arc-transitive group of automorphisms. If in addition B is maximal then
Gs is vertex-primitive. The questions in Question 1 can equally well be asked
about the subgroup GB of Aut(Fg). These are essentially questions about the
full automorphism group of a finite connected graph with a given vertex-primitive,
arc-transitive subgroup of automorphisms. A satisfactory answer is given in [16].

Theorem 6 [16] Let G be a vertex-primitive arc- or edge-transitive group of auto-
morphisms of a finite connected graph F. Then either G and Aut(F) have the same
socle, or G < H < Aut(F) where soc(G) ^ soc(H) and G, H are explicitly listed.

Finally we consider graphs F that are vertex-transitive and edge-transitive but
not arc-transitive. Such graphs have been called half-transitive in the literature,
and also a subgroup of Aut(F) with these properties is said to be half-transitive on
F. Suppose that F is given with a half-transitive subgroup G of automorphisms.
In order to decide whether F is half-transitive it is often necessary to determine
Aut(F) and then to check whether or not Aut(F) contains an element interchanging
the two vertices of an edge.

The problem of recognising half-transitive graphs was studied in [6] for the family
of Cayley graphs of simple groups. For a group G and a subset S of G such that
\G fi S and 51""1 = S, the Cayley graph Cay(G, S) of G relative to S is defined as
the graph (G, E) where {x, y} € E if and only if yx~l G S; Cay(G, S) is connected
if and only if S is a generating set for G. Each Cayley graph F = Cay(G, S) admits
the group G acting by right multiplication as a subgroup of automorphisms regular
on vertices, and also admits the subgroup A(G, S) := {x E Aut(G) | Sx = S} in its
natural action on G. Thus Aut(F) contains the semidirect product G  A(G, S) and
in particular is vertex-transitive. Now G  A(G, S) = A^ut(r)(Gf) and F is called a
normal Cayley graph if Aut(F) = G  A(G, S).

In [6, Theorem 1.1] non-normal Cayley graphs of non-abelian simple groups
were analysed and several distinct possibilities were identified for overgroups of
G  A(G, S) in Aut(F). Next a set of technical conditions was developed such that if
these conditions were satisfied then none of the possibilities identified in [6, Theorem
1.1] was allowable and consequently the Cayley graph was normal (see [6, Theorem
1.3]). These conditions were designed in such a way that, if they were satisfied,
then Aut(F) = G  A(G, S) would be half-transitive. Several constructions of new
half-transitive graphs were obtained by finding non-abelian simple groups G and
subsets S satisfying the conditions.
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G
Ap+1

Ree(q)
BM
J l
J4

Ly

P
p = 3 (mod 4), p + 1  ̂ 2a

p divides g2 — q + 1
47
19
43

37 and 67

Table 2: Half-transitive Cay ley graphs

Theorem 7 [6, Constructions 4.1, 4.2, 4.4] Le£ G be a simple group as in Table 2.
Then there exists a half-transitive, connected normal Cayley graph C&y(G,S) of
valency \S\ = 2p, where p is a prime as in Table 2.

This overview of finite quasiprimitive permutation groups focussed on the possi-
ble structures of such groups using a similar framework to that of the O'Nan-Scott
Theorem for finite primitive groups. Special attention was given to the quasiprimi-
tive overgroups of a given quasiprimitive group in terms of the O'Nan-Scott types of
these groups. Various applications of this theory were presented for vertex-transitive
graphs. The effectiveness of the theory in these and other applications is largely
due to its use of the classification of the finite simple groups. The theory seems
particularly well-suited for applications to classes of objects which are closed under
some natural quotient operation.
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Old groups can learn new tricks

Laszlo Pyber

Abstract
In 1937 B. H. Neumann gave a simple construction of continuously many

non-isomorphic finitely generated groups, using families of finite alternating
groups. We describe a generalisation of this construction, designed to settle
various open problems in the area of subgroup growth.

As an unexpected byproduct our groups yield new examples related to a
question of Grothendieck concerning isomorphism of groups with isomorphic
profinite completions.

We also give a quick survey of some areas of infinite group theory in which
these and related constructions based on finite simple groups play a role.

1 Introduction

Let r be a finitely generated group and Af the set of normal subgroups of finite
index in F. Supposing we are given all the finite quotients T/N where N € N, what
can we say about F itself?

The finite quotients T/N together with the natural epimorphisms <PN,M  T/M —>
T/N whenever M < N form an inverse system. The inverse limit of this system
is the profinite completion T of T. Using this language the above question asks for
the properties of T determined by the profinite group F.

Another closely related question is the following: Which profinite groups are
profinite completions of finitely generated groups F?

This question seems to be too general to admit a useful answer. As we will
see in specific instances, however, one can obtain reasonable answers with nice
applications.

Denote by sn (T) the number of subgroups of index at most n in T. If T is finitely
generated then sn(T) is always finite. It is clear that sn(T) = sn(T) for all n, that is,
the subgroup growth function encodes information about the profinite completion
ofF.

The above questions concerning the relationship between F and F lead to the
following

Question 1 Supposing we are given the function sn(T) what can we say about T?

Question 2 What are the possible subgroup growth functions for finitely generated
groups T ?
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There is a well-developed theory around these questions [Lu2], [Lu3], [MS]. In-
deed the behaviour of sn (F) is the main topic of the forthcoming book of Lubotzky
and Segal [LS].

Our main contribution [Py] is a construction (described in Section 5) which
shows that all "reasonable" functions between nlog™ (small growth) and nn (max-
imal growth) can be realised as subgroup growth functions of 4-generator groups.
This essentially completes the investigation of the "spectrum" of possible subgroup
growth types and settles several questions posed by Lubotzky, Mann and Segal (see
Section 3).

Why should one consider the problem of finding groups of given subgroup
growth? Apart from its intrinsic interest such an investigation may lead to the
discovery of groups with unusual properties.

One of the highlights in the parallel theory of word growth of finitely generated
groups was the construction by Grigorchuk [Gri2] of groups of intermediate word
growth. Grigorchuk's construction has led to the solution of many other problems
such as the construction of finitely presented amenable but not elementary amenable
groups [Gri6].

We will briefly review some of these applications related to our main theme (in
Section 2).

Similarly the family of groups we construct has some additional interesting prop-
erties.

Extending a classical result of B. H. Neumann [Ne] we prove that there exist con-
tinuously many non-isomorphic 4-generator residually finite groups with isomorphic
profinite completions.

This (and other examples) indicate that for the profinite completion F to deter-
mine F some rather stringent conditions must hold.

In another direction Grothendieck [Gro2] suggested the following problem (in a
slightly different formulation).

Problem 3 Let F be a finitely generated residually finite group. Let Fo be a finitely
generated subgroup which is dense in the profinite topology ofT. Suppose that YQ ==
F. Under what conditions does this imply that Fo = T?

Platonov and Tavgen [PT1] gave the first example of a pair of groups Fo < F
satisfying the above hypothesis for which Fo ^ F. In Section 6 we describe rather
different examples using our main construction.

2 Word growth

Let F be a group generated by a finite set S. Denote by w%(T) the number of
elements of F of length at most n with respect to S U 5"1. The word growth of F
(with respect to S) is the growth of the sequence w% (F).

A word growth function j(n) is dominated by 6(n) written 7 ^ 8 if there is a
constant c such that 7(71) < 6(cn) for all n. Two functions are equivalent if 7 ^ 5
and 6 ^ 7. If 5i and 52 are two generating sets of F, the corresponding word growth
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functions are in the same equivalence class of functions called the word growth degree
of T.

The word growth of groupjs^has received considerable attention following the
observation [Sch], [Mi] that if M is the universal cover of the compact Riemannian
manifold M then the (geometric) growth of M is equivalent to the word growth of
the fundamental group TTI (M) of the manifold M.

If F = Zd is the free abelian group of rank d then its word growth is polynomial,
more precisely it is equivalent to nd. By a major result of Gromov [Grol] a group
F has polynomial word growth exactly if F is virtually nilpotent.

If T = Fd is a free group of rank d > 2 then its word growth is exponential and
clearly this is the largest possible word growth degree.

In [Gril] Grigorchuk constructed an example of an infinite finitely generated
2-group F as a group acting on the binary rooted tree. This group was designed
to provide a simple solution to the general Burnside problem. In [Gr2] Grigorchuk
proved that the group F has intermediate word growth (strictly between polynomial
and exponential) thereby answering a question of Milnor.

Recently Bartholdi [Barl], [Bar2] (see also [MP]) has shown that for the word
growth degree 7(71) of the above F we have

en" < 7(n) < en"

where
a = 0.5157 and j3 - 0.767.

A remaining open problem is the question of the existence of groups with word
growth degree exactly e^™. Such groups would have interesting additional proper-
ties (see [BG]).

The above mentioned construction has been generalised in various ways. Us-
ing these generalisations Grigorchuk [Gri3] has shown that the set of word growth
degrees of finitely generated groups contains both chains and antichains of contin-
uously large size.

It is also an open problem however, whether there exist groups F with growth
degrees strictly between polynomial and e ^. It is expected that no such group F
can be residually finite. This has been confirmed for residually p-groups [Gri4] and
afterwards for residually nilpotent groups [LM] .

As we will see later the analogous questions for subgroup growth have been
answered in a rather satisfactory way.

In particular, using generalised Grigorchuk groups Segal [Se] showed that there
exist finitely generated groups of arbitrarily small non-polynomial subgroup growth.
This was proved by realising certain profinite groups as profinite completions.

Theorem 2.1 Let (pn) be any sequence of primes exceeding 3. Then there exists a
4-generator group F such that

f*£W =nt^n (the inverse limit of the Wn)

where Wn = PSL(2,pn) wr PSL(2,pn-i)... wr PSL(2,p0) the (iterated) permu-
tational wreath product using the natural permutation representation of each PSL(2, p)
on the points of the protective line over Fp.
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In the same paper [Se] Segal proves a general result concerning realisations of
profinite groups as profinite completions of finitely generated groups.

Theorem 2.2 Let S be any non-empty collection of non-abelian finite simple groups.
Then there exists a 63-generator just infinite group whose upper composition factors
comprise exactly the set S.

3 Subgroup growth

Denote by R(T) the intersection of all finite index subgroups of a group F. Obviously
sn(T/R(T)) = sn(T). So when investigating subgroup growth there is no harm in
assuming R(T) = 1 i.e. that F is a residually finite group. In this respect the study
of subgroup growth is more restricted than the study of word growth.

On the other hand, there is some interest in investigating the subgroup growth
of certain infinitely generated groups. Moreover, sn(T) (and not only its growth)
is determined by F itself. Accordingly sn(T) and the related function an(T) (= the
number of subgroups of index exactly n) has been the subject of investigations of a
number-theoretic flavour (see [Lu2], [LS] and the references therein).

Here we consider the asymptotic behaviour of sn(r). Given a function / we say
that F has subgroup growth type f, if there exist positive constants a and b such
that

(1) «n(r) < f(n)a for all n;
(2) sn(T) > f(n)b for infinitely many n.
If moreover (2) holds for all sufficiently large n we say that F has strict growth

type f. Note that having strict growth type / is an equivalence relation.
A classical result of M. Hall [Ha] implies that F<j (d > 2) has subgroup growth

type nn. Clearly this is the upper limit for finitely generated groups.
Let us mention that Hurwitz had already studied a question which is essentially

counting finite index subgroups of surface groups. Most surface groups turn out to
have subgroup growth type nn (see [LS, 14.4]).

At the other extreme, the smallest possible growth type for an infinite finitely
generated residually finite group F is achieved by the infinite cyclic group Z. For a
relatively elementary proof see [Sh2]. This observation also follows from an (equally
deep) analogue of Gromov's theorem; as proved by Lubotzky, Mann and Segal
[LMS] a finitely generated residually finite group F has polynomial subgroup growth
exactly if F is virtually soluble of finite rank.

In his 1994 ICM talk [Lu3] Lubotzky stated that "it is widely open as to what
the possible types of subgroup growth are for finitely generated groups". Similar
remarks have been made in [MS].

As proved by Lubotzky [Lul] arithmetic groups in characteristic zero with the
congruence subgroup property (e.g. F = SL(d,Z), d > 3) have subgroup growth
type ni°g«/i°gi°gn.

Recently Abert, Nikolov and Szegedy [ANSz] proved that many arithmetic
groups in characteristic p (e.g. F = SL(d,Fp[t\), d > 3) have subgroup growth
type nlog" .
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Some other groups with "small growth", that is of subgroup growth type at
most nlog" have been constructed in [LPSh]. This construction provided a starting
point for the investigations in [Py].

Segal [Se] proved using certain generalised Grigorchuk groups that all functions
/ : N —» N of the form n9^1 such that g(n) is non-decreasing and g(n) < log log n
can be realised as subgroup growth types. In particular (as noted before) there is no
gap between polynomial and non-polynomial subgroup growth. This construction
can also be used to realise many other small subgroup growth types (see [LS]).

The subgroup growth type of finitely generated free soluble groups (of derived
length > 2) and various related groups is exponential (see [PShl]). In [PShl] we
asked whether there exists a finitely generated group F of subgroup growth type
strictly between 2n and nn.

Metabelian groups with fractionally exponential subgroup growth, that is of
growth type en~l have been constructed by Segal and Shalev [SSh] in the case when
7 = i for some positive integer d. In [MS] the following question is raised: "Can a
finitely generated group have growth type en where 7 is irrational?"

The following somewhat unexpected result [Py] answers the questions mentioned
above and essentially completes the picture.

Theorem 3.1 Let f : N —> N be a function such that f(n) = n9^n\ where g(n)
is non-decreasing, logn < g(n) and g(n) = o(n). Then there exists a ̂ -generator
group F having strict growth type f.

Lubotzky [Lu2] asked whether a finitely generated amenable group has at most
exponential subgroup growth. The above groups F turn out to be elementary
amenable which implies a negative answer to this question.

Still we wonder whether the growth type of a finitely generated amenable group
is strictly less than nn.

More provocatively one can ask whether a finitely generated group F of subgroup
growth type nn always has a virtually free quotient. This would be an interesting
counterpart of the Lubotzky-Mann-Segal theorem.

4 Cartesian products of simple groups

Let G be a the Cartesian product of an infinite family of non-abelian finite simple
groups. G is naturally a profinite group with the product topology.

Such groups occur naturally as quotients of various profinite groups. For ex-
ample if F is a non-soluble finitely generated linear group, then F has an open
subgroup H and a (closed) subgroup N, N<H such that G = H/N is of the above
type [DPSSh].

On the other hand, Cartesian products of certain families of simple groups have
been used to realise various small subgroup growth types [Sh3]. Moreover, in [Ma]
the following result is proved using families of finite alternating groups.
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Theorem 4.1 Let f be a non-decreasing function with n < f(ri) < nn for all n.
Then there exists a 2-generator profinite group whose maximal subgroup growth is
of type f.

It is suggested in [MS] that perhaps all intermediate subgroup growth types
between nl°sn/(\ogiogn) ancj 2n a re achieved by such 2-generator profinite groups.
This is essentially confirmed by the next result [Py] for growth types > nIogn.

Theorem 4.2 Let f : N —> N be a function such that °fo „  *s non-decreasing.
oo

Let G be the profinite group Yl Alt(n)^n). Then

f(n)<sn(G)<f(n)n23+121osn.

Since Alt(n) has a subgroup Alt(n — 1) of index n, it is clear that G has at least
/(n) open subgroups of index n for every n. The key to proving the upper bound
is the following amusing elementary result on finite permutation groups.

Proposition 4.3 Let tt be a finite set and H a subgroup of index n in Alt(fi) .
Then the set Cl has a partition Q, — Q.\ U  U flt such that the group A = Alt(fii ) x

 x Alt(fi t) is contained in H and \H : A\ < n3.

As noted in [KL] the finite group Alt(n)n!/8 is generated by two elements for n
oo

sufficiently large, say n > N. This implies that the profinite group Yl Alt(n)^n)
n=N

is generated by two elements if f(n) < ^ for all n > N. Therefore 2-generator
profinite groups of "alternating type" realise all subgroup growth types / between
nlog" and nn such that iofoy£' is non-decreasing.

Using not necessarily finitely generated groups one can easily realise arbitrarily
fast growing functions as subgroup growth functions. However, it may be worth to
point out the following consequence of Theorem 4.2.

Corollar y 4.4 Let f : N —> N be a function such that f(n) = n9  ̂ where g(n) is
non-decreasing and logn < g(n). There is a group G such that G has strict growth
type f.

OO

Proof. It is clear that our statement holds for G = Yl Alt(n)-^n) as a profinite
n=5

group.
It was proved independently by Saxl and Wilson [SW] and Martinez and Zel-

manov [MZ] that in a profinite group G which is a Cartesian product of nonabelian
finite simple groups such that each finite simple constituent occurs only finitely
many times, every finite index subgroup is open (see [LSh] for a more general re-
sult) . Hence considering G as an abstract group we obtain the corollary.

It would be interesting to decide whether the condition logn < g(n) can be
eliminated in the above result.
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In [Py] we also obtain some non-trivial restrictions on the subgroup growth
functions. Suppose for example that /(n) = sn(G) for some group G and say that
/(n) > n21ogn. Then [Py, Proposition 4.3] implies that we have

/(n logn) >/(n)2lo«" .

This shows that at least a weak version of the condition that ° ^ ' should be
non-decreasing holds for any subgroup growth type /.

We end this section .by considering yet another growth function.
For a finitely generated profinite group G set bn(G) = \G/Gn\ where Gn is the

closed subgroup generated by the n-th powers in G. The finiteness of bn(G) follows
from the solution by Zelmanov to the restricted Burnside problem. For a finitely
generated discrete group F set &n(F) = bn(T).

The behaviour of the function bn(T), the index growth of F has been considered
for example in [VZ], [Lul] , [Shi]. Finitely generated groups of polynomial index
growth do not seem to admit a simple characterisation (see [BMP]). However, a
finitely generated pro-p group G has polynomial index growth exactly if G is Ml-
adic analytic. Moreover, by a result of Lazard (see [DDMS, Chapter 11] if G is a
non-p-adic analytic pro-p-group, then its index growth is at least exponential.

Here we point out that for arbitrary finitely generated profinite groups there is
no such gap.

Proposition 4.5 Let f : N —> N be a non-decreasing function with n < f(n) < 2n.
Then there exists a 2-generator profinite group whose index growth is of type f.

Proof. Consider profinite groups G of the form G = Y\PSL(ni,2)^. Choose
i

the sequence fi in such a way that the order k of PSL(rii,2) is divisible by the
product of the orders of the preceding factors PSL(nj,2)h if /, > 1.

If ei denotes the exponent of PSL(rii, 2), then we have

l{*  < \G : G«\ < l{ i+l  i f / i > l .

By [BMP, Proposition 2.4] k < ef holds for some absolute constant R.

Assume that the fi are chosen in such a way that l(*  < f{ei) or fi < 1. Then
we have \G : G~**\  < f(ei)2R if ft > 1 (we use /(e;) > ê  if fi = 1). It follows that
\G : Gn\ < f(n)2R holds for all n.

Furthermore l{*  < f(ei) < 2ei < 2li implies that f{ <  I5^7-. By the results
in [KL] a group of the form PSL(n,q)f can be generated by two elements if / <
\ol^fps'L(n[))\ an<*  n i s sufficiently large. It follows that if fi = 0 for small i, then
the groups PSL(n, 2)  ̂ are 2-generator groups and so is G.

It is easy to see that one can choose the fi to further satisfy l{ i+  > /(ej) and
fi>l  for infinitely many i. For such i we have \G : Ge*\ 3 > f(ei). This completes
the proof of the proposition.
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5 A general construction

Let fix, JI2,  be finite sets of odd size 5 < n\ < n  ̂< .... Denote the elements of
00

fli  by wj, wf,... and set fl = UO,. The profinite group G = f ] Alt (fij ) acts as a
permutation group on the set fi. Define two permutations n and r of fi;  TT acts on fi;
as the 3-cycle TTJ = (w},wj, wf), r acts on fij  as the rij-cycle T; = (iu?-, u>?,..., w™'1)
for all i.

The groups F = (7r, T) were first considered by B. H. Neumann [Ne] who proved
that two such groups F are not isomorphic if the corresponding sequences {n;}
are different (thereby proving the existence of continuously many non-isomorphic
2-generator groups).

At the end of his paper Neumann observes that such a F has a chain of normal
subgroups 1 < D < TV < T such that D is the restricted direct product of the corre-
sponding finite alternating groups, N/D is isomorphic to Alt(Z) (the group of even
permutations of Z) and T/N is an infinite cyclic group. The condition that the
finite alternating groups should have different degrees is used in an essential way.

Essentially the same groups were rediscovered in [LW] where it is shown that F is
amenable and that F is dense in the profinite group G. Later in [LPSh] it was shown
that in fact F = G x Z holds. The starting point to finding useful generalisations of
the groups F was the observation that this follows easily from the remarks in [Ne]
on the structure of F.

In [Py] we give a general construction in which some (but only finitely many)
of the alternating groups used may have the same degrees. What is surprising is
that one can give such a construction where the groups constructed satisfy a similar
strong structure theorem.

We proceed by describing the construction.
Let / : N —> N be a function. Let fii,  f^j  be finite sets of size 7 < n\ < n  ̂<

... such that for every n > 7 exactly f{n) sets have size n. We define $7, G, D, r, TT
as above.

Let li  be a non-decreasing unbounded sequence of positive integers with 2k < rii
and set i>; = j 1 — 1 \ h. Denote the subset w^ui i,..., w0  ̂of Cli by Li and set

00

L=\jLi.
t=i

Let Q be a subgroup of G and Qi the permutation group induced by Q on the
set of upper indices {1 , . . ., n*}  of the elements n},nf ... of Cli. Suppose that the
group Q satisfies the following hypothesis
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SUPP(<?) £ L f° r every q G Q (where supp Q is the set of
elements which are not fixed by q),

QDD = l (1)

if nj = rij  and i  ̂ j then the permutation groups Qi, Qj
are different (we allow them to be equivalent as permu-
tation groups).

The main tool in proving the results in [Py] is the family of groups of the form
r=(7r,r,Q>.

We describe the structure of such a group F in terms of its subgroups D,N =
(7rr) and H = D(T,Q).

Theorem 5.1 (Structur e Theorem) Let T be as above. The following hold:
T = NH andNHH = D.
N/D = Alt(Z).
H/D = Q wr Z (i.e. the wreath product of Q and %).

If Q is a perfect group for example if Q is a nonabelian finite simple group, then
the profinite completion of F turns out to be not much larger than G.

Corollar y 5.2 If Q is a perfect group then T has a subgroup of index < 2 iso-
morphic to G x Z. Moreover, if for all even numbers i we have f(i) = 0 than
f

In particular, choosing Q to be isomorphic to an appropriate Alt(5) subgroup
of G we obtain the following

Theorem 5.3 Let f : N —> N be a function such that f(n) = n3  ̂ where g(n) =
o(n). There exists an integer N > 7 such that for some T the profinite completion F

^  oo

has a subgroup of index at most 2 isomorphic to G x Z, where G = FJ A\t(n) n̂^.
n>N

Moreover for n> N we have sn(T) > f(n).

Together with Theorem 4.2 this easily implies Theorem 3.1.
Combining Theorem 5.3 and Theorem 4.1 we obtain the following

Theorem 5.4 Let f : N —> N be a function such that f(n) = n9  ̂ where 1 <
g(n) = o(n). There exists a A-generator profinite group whose maximal subgroup
growth is of type f.

We remark that our groups F give the first examples of finitely generated groups
with intermediate maximal subgroup growth. The results in [PSh2] indicate these
are indeed the natural examples.
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A similar construction based on sequences of groups of the form PSL(n, 2) (see
[LPSh] for a special case) can be used to show that functions as in Proposition 4.5
can be realised as index growth functions of finitely generated groups.

We end this section with an amusing open problem. Does the group G =
Y[ Alt(i ) have a finitely generated subgroup such that F = G?

i odd
»>5

We remark that a random pair of elements of G generates a dense subgroup
isomorphic to F2 [DPSSh].

6 Groups with given profinite completions

Let T and Fo be finitely generated groups. It is known [DFPR] that f ^ f0
exactly if the set of isomorphism classes of finite quotients of F is equal to the set
of isomorphism classes of finite quotients of TQ.

Many examples have been given of nonisomorphic pairs of polycyclic groups F,
Fo with F = Fo (see [Pi], [Bau]). On the other hand, by a deep result of Griinewald,
Pickel and Segal [GPS] the polycyclic groups with a given profinite completion lie
in finitely many isomorphism classes.

Pickel [Pi] has constructed infinitely many non-isomorphic finitely presented
metabelian groups with isomorphic profinite completions. Of course there can only
be a countable number of such groups. Using Corollary 5.2 in [Py] we show the
following

Theorem 6.1 There are continuously many non-isomorphic ^-generator residually
finite groups with profinite completions isomorphic to

G = JJ Alt(j ) x Z.
j odd

In fact, the same is true for many other profinite groups of the form G =
I ] Alt(j y W x Z.

j odd

It would be interesting to decide whether there exist continuously many finitely
generated residually finite, soluble groups with isomorphic profinite completions.

What if besides F = Fo we assume that Fo is a profinitely dense subgroup of
F? Grothendieck arrived at this problem when he discovered a remarkable close
connection between profinite completions and representation theory [Gro2].

For a group F and a commutative ring A denote by Repj4(F) the category of
finitely presented A-modules on which the group F operates.

Theorem 6.2 Let u : Fo —> F be a homomorphism of finitely generated groups.
The following are equivalent:

a) The continuous homomorphism u : FQ —» F induced by u is an isomorphism.
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b) The "restriction functor"

u*A : RepA (F) -> RepA (F0)

is an equivalence of categories for all commutative rings A.

Grothendieck [Gro2] investigated conditions under which one could conclude
that a homomorphism u as in the above theorem is actually an isomorphism. In
particular he asked whether it is sufficient to assume that F and Fo are finitely
presented.

To our knowledge this question remains open. Relaxing the condition "finitely
presented" to "finitely generated" Platonov and Tavgen [PT1] gave the first con-
struction of negative examples. Their construction is based on a construction of
Higman [Hi] of an infinite finitely presented group with no nontrivial finite quo-
tients. Using a similar approach Bass and Lubotzky [BL] gave new, interesting
examples based on certain hyperbolic superrigid lattices. Soluble examples of de-
rived length 3 were found by Tavgen [Ta].

Some rather different examples can be given using our main construction [Py].

Theorem 6.3 Let I be a set of odd integers (> 7) and set G = f l Alt(j) . There

exists a pair of groups Fo < F such that Fo is dense in the profinite topology of F,
fo = G xZ^f butT ^To.

One can construct in a similar way an abundance of other "alternating type"
examples. It would be interesting to decide whether one can use our construction
to obtain finitely presented ones.

We note that the answer to Grothendieck's problem is positive in many inter-
esting cases for example for finitely generated soluble linear groups. Moreover,
Platonov and Tavgen [PT2] obtained a positive solution when F is a subgroup of
SL(2, K) where K is either the field of real or rational numbers.

It is open however in the case F = SL(d, Z), d > 3.
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SHADOWS OF ELEMENTS , SOLVABILIT Y OF FINIT E
QUOTIENT S AND THE MARGULIS-PLATONO V CONJECTURE

YOAV SEGEV*

1. INTRODUCTION

In this note we wish to keep the presentation as accessible as possible and we
have two goals. The first is to give a brief description of the recent proof obtained by
Rapinchuk, Seitz and myself [12] of the theorem which states that finite quotients of
the multiplicative group Dx of a finite dimensional division algebra D are solvable.
In particular, we will briefly discuss the interplay between the "shadows" of elements
of Dx on a finite index normal subgroup N < Dx, and properties of the commuting
graph of Z>x/TV.

The solvability of finite quotients of Dx is closely related to the Margulis-
Platonov conjecture ([12, section 6]). Since we will not need the complete formula-
tion of the Margulis-Platonov conjecture ((MP) for short), we refere the reader to
[11, appendix A], or [8, chapter 9] for that and for more information about (MP).
Here we briefly mention that (MP) describes the normal subgroup structure of the
isT-rational points of absolutely simple simply connected algebraic if-groups, where
K is a global field (i.e. a finite extension of Q or of the field of rational functions
F(t), where F is a finite field). One can thus sense that (MP) is a fundumental
conjecture.

What we will do in this note, and this is our second goal, is describle the two
formidable challenges left open in conjecture (MP). These are the anisotropic uni-
tary groups SU2(V,/) and SUi(£>, o), the first described in §5 and the second in
§6. We will also include a proof for the well known reduction from the anisotropic
SUn(V,/) case of (MP), n > 2, to the anisotropic SU2(V,/) case and some well
known information about reflections. The two open cases above are basically the
only remaining open cases of (MP), we formulate them precisely: Conjecture 5.1
covers the SU2(V, /) case and Conjecture 6.1 covers the SUi(-D, o) case.

I would like to thank G. Prasad, L. Rowen and G. Seitz for their helpful remarks.
The version of the reduction from the anisotropic SUn(V, /) case, n > 2, to the
SU2(V,/) case, brought in this note, was observed by M. Aschbacher, G. Prasad,
G. Seitz and myself in Caltech at the summer of 1999. Thanks are due also to
J. P. Tignol for pointing out to me [7, Prop. 6.1] (see also [5, exercise 12, pg. 202])
which lead to Lemma 5.3 and consequently Proposition 5.2.

Partially supported by BSF grant no. 2000-171.
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2. FINITE QUOTIENTS OF DX ARE SOLVABLE

The purpose of this section is to give some insight into the proof of the following
theorem.
Theorem 2.1 ([12]). Finite quotients of the multiplicative group Dx of a finite
dimensional division algebra D are solvable.

Here D is a division algebra, i.e., D is a field, except that multiplication in D may
not be commutative (D is sometimes called a skew-field). The center of D, denoted
in this section by K, is a (commutative) field and D is finite dimensional as a vector
space over K. Let us recall that the dimension dim/f D is a square, say n2, and n
is called the degree of D. Before we continue, two remarks concerning Theorem 2.1
are in order. The first is:
Remark 2.2. We note that by [4], for any noncomutative division algebra D (finite
dimensional or infinite dimensional), Dx is never solvable (see also [1, Thm. 19 and
Thm. 20], [14, Thm. 14.4.1, pg. 439] and [18]). Also, using the Zariski density of
Q(K) in G, for any connected nonabelian reductive algebraic group Q defined over
(the arbitrary infinite field) K, it is proved in [17, 12.2(3), pg. 219], that g(K) is
not solvable in this case. It follows immediately ([17, 12.3, pg. 220]) that Dx is not
solvable in the finite dimensional case. Here is a well known elementary proof of
this fact.

Lemma 2.3. Let D be a finite dimensional division algebra with center K and
degree n. Suppose D is not commutative. Then,
(1) if x £ Dx \ Kx, then the number of conjugates of x in Dx is infinite;
(2) if ax is conjugate in Dx to x, where a G Kx, then an = 1;
(3) letH <DX be a normal subgroup such that [H,H}<K X. Then H < Kx;
(4) Dx is not solvable.

Proof. (1): Notice that the centralizer Cp(x) is a division subalgebra of D and if
the number of conjugates of x in Dx is finite, then D is a finite union of subsets of
the form yCn{x). However, viewing D a sa (right) vector space over CD{X) it can
be easily proved that D is not a finite union of proper subspaces.

(2): Let m[X] be the minimal polynomial of x over K. If ax is a conjugate of
x, then ax is also a root of m[X]. But then x is also a root of the polynomial
m[X] — m[aX] which is a polynomial whose free coefficient is zero. Thus a; is a root
of the polynomial X~1 (m[X] —m[aX\), which is possible only if m[X] — m[aX] = 0.
It follows that ak = 1, where k is the degree of m[X]. But k divides n, so an = 1.

(3): Let H < Dx be a normal subgroup such that [H, H] < Kx. Suppose first
that H is abelian and consider the if-subspace E of D spanned by H. This is clearly
a subalgebra of D, hence a division subalgebra of D. Of course E is normalized
by Dx. By the Cartan-Brauer-Hua Theorem (see [3, Theorem 3.9.2, pg. 144] for a
very easy proof) either E — D, or E C K. Since E is abelian, we see that E C K.

The above argument shows that the center of H, Z(iJ), is contained in Kx. Let
x G H \ Z(H). By induction on n we see that CH(X) is contained in the center of
CD(X) SO, in particular, CH(X) is abelian. Further for each y G H, y~xxy = ax, for
some a G Kx, so by (2), [x, y]n = 1 (where [x,y] = x~1y~lxy). It is easy to check
that since [H, H] C Kx, the map y —> [x,y] is a homomorphism H —> Kx whose
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image is finite (it is contained in the subgroup of n-th roots of 1). It follows that
the kernel of this map, CH(X), has finite index in H, and as we saw it is abelian.
As this holds for all x € H \ Z(H) one easily checks that Z(H) has finite index in
H. Replacing H by HKx if necessary we may assume that Z(H) = Kx. But now
we have that Kx has finite index in H, and also by (1), any x e H \ Kx has an
infinite number of conjugates in Dx which are all contained in H. Thus x has an
infinite number of conjugates of the form ax, a G Kx. This contradicts (2).

(4): This is an immediate consequence of (3).

Our second remark is,

Remark 2.4. Theorem 2.1 is false when D is not finite dimensional over K. Indeed
the following example was communicated to me by A. Lichtman and is due to him.
Consider the following Malcev-Neimann power series skew-field:

Let G be an ordered group, i.e. G is a group with a total ordering such that
s < s' and t < t' implies st < s't', for all s,t,s',t' £ G. Let K be a commutative
field. The Malcev-Neimann power series skew-field K{{G)) is the skew-field whose
elements are formal series x = Yl sas > where the sum runs over all s G G, as G K
for all s £ G, and the support of x (i.e. the set supp(x) := {s £ G \ as  ̂ 0}) is
well ordered (via the ordering induced from G). It is easy to check that the natural
definitions of addition and multiplication are valid in K{(G)). By [3, Thm. 2.4.5,
pg. 75], K((G)) is a skew-field. Let e denote the identity element of G and let
N :=  {x G K((G)) | minsupp(a;) = e}. We note that given x e K((G)), if
min supp(a;) = e and the coefficient ae, of e in x is 1, then we can write x = e—y, such
that y = ^2sbs (s > e). The inverse of x in K{{G)) is then given by e + y + y2 +...
(it can be shown that this element belongs to K((G))). This shows how to compute
the inverse of x and as an easy consequence the inverse of any element in K((G)).
Using this one shows that iV is a normal subgroup of K((G))X and it is easy to
check that K((G))X/N ~ G. Taking G to be a free group, we see that G, and
hence any finite group, is a quotient of K((G))*, this shows that the hypothesis in
Theorem 2.1 that D be finite dimensional is essential. For more information about
the Malcev-Neimann construction see [3, Section 2.4].

It seems to us that it is rather accurate to say that the structure of Dx had been
quite mysterious until recently. In fact, even now many questions about Dx are left
open. For example:

Question 2.5 (Rapinchuk, Prasad). Are finite quotients of SLi(Z?) solvable?

Even this question, which is of course closely related to Theorem 2.1, remains
open (see Question 2 in the introduction of [12] for a generalization of the above
question due to Rapinchuk and Prasad). Let us recall that SLi(J3) = {x G Dx

NvdD/K(x) = 1], here Nrd^/x is the reduced norm defined in the first paragraph
of §3 in a slightly more general context. Of course questions regarding normal
subgroups of infinite index in Dx had not been answered or even addressed at all.

Going back to what is known about the structure of Dx, in the paper [15] new
techniques were introduced to obtain information about finite quotients of JDX .
These techniques were further developed and sharpened in [11], where valuation
theory entered the arguments and the results in an explicit and much more signifi-
cant way. Finally, the most general result, Theorem 2.1, was proved in [12]. Since



260

we want to keep this exposition as simple as possible, we will now only give a hint
at the new techniques developed to investigate finite quotients of Dx referring the
interested reader to the actual papers for much more detail.

Let us consider a normal subgroup of finite index N < Dx. The two most
important notions for us here are: The commuting graph of Dx /N and the set
N(a), for a £ Dx, which we call the shadow of a (on the normal subgroup N).
We will define both terms in Definition 2.6 below. It is the interplay between the
commuting graph and the shadows which enables us to prove our Theorem 2.1.
Definitions 2.6. (1) Let a £ Dx. The shadow of a on N is denoted N(a) and
defined by N(a) = {n£N\a + n£ N}.

(2) Suppose Kx C N and let a £ Dx. The K-shadow of a is denoted N(a) and
defined by N(a) = N(a) n Kx.
(3) The commuting graph of a group H is the graph whose vertex set is H \ {1}
and whose edges are pairs of distinct commuting elements. We denote it by A(i2").
This graph has a natural distance function dn( , ) and we let diam(A(if)) be the
diameter of A(iJ) (the largest distance between two vertices, being infinity if the
graph is disconnected - thus the diameter of the complete graph is one).

The reasons that one is led to consider the shadows N(a) of elements a £ Dx are
revealed in the following considerations. First we have,
Theorem 2.7 ([2], [19]). Let D be a division algebra (not necessarily finite dimen-
sional), and let N C Dx be a normal subgroup of finite index. Then D = N — N =
{n — m | n, m £ N}.

Note that a main feature of Theorem 2.7 is that multiplicative properties of N
(being of finite index in Dx), yield additive properties. Indeed many of the re-
sults presented in this section may be viewed as an interplay between additive and
multiplicative properties of D. Here is another basic example. Let

* : Dx -> Dx/N,

be the canonical homomorphism.
Lemma 2.8. Let a S Dx \ N and n £ N. Then a* commutes with (a + n)*.

Proof. Indeed, (a + n)*  = (n~^a + 1)*  and (n~1a + 1)*  commutes with (n~1a)*  =
a*. D

Using Lemma 2.8 one is tempted to consider the following false argument: take
two arbitrary non-identity elements a*,b* £ Dx/N and let d( , ) be the distance
function on A(DX /N). We want to restrict d(a*, b*). By Theorem 2.7, a—b = n—m,
for some m,n £ N, and hence, by Lemma 2.8, a*, (a + TO)* = (b + n)*,b* is a path
in A, proving hereby that diam(A(Dx/JV)) < 2. The reason this argument fails is
that it may happen that a + m = b + n £ N, i.e. that m is in the shadow of a and
n is in the shadow of b. So we are forced to consider the shadows.

Notice that by Theorem 2.7, N(a) is never empty. Further, given a £ Dx \ N, if
n £ N(a~l), then since a + n~1 = a(a~x + ri)ri~ x, it follows that n~l £ N(a). Thus
the shadow of a is a proper nonempty subset of N. Going back to the elements
a*, b* above, it turns out that the failure of the argument showing that d(a*,b*) < 2
caused by the fact that TO £ N(a) (and n £ N(b)) has some gains as well: assuming
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that d(a*, b*) > 2 and working, not only with the shadows of a and b, but with the
shadows of all elements in the coset of a, aN and the coset of b, bN, one sees that
a miraculous thing happens: these shadows tend to align!

Proposition 2.9 (Prop. 6.11 and Lemma 6.12(1) in [11]). Let a,b€Dx \ TV such
that d(a*,b*) > 4. Then given any a' 6 aN and b' G 67V, either N(a') C N(b')
of N(b') C N(a'); furthermore, after perhaps interchanging a and b, we have that
given any a', a" G aN, either N(a') C N(a") or N(a") C N(a').

Once we obtain an element a G Dx \ N such that given any am, an G aN, either
N(am) C N(an) or N(an) C N(am), as in Proposition 2.9, we can define a preorder
relation on N by letting m < n if and only if N(am) C N(an). This is just the be-
ginning of a series of arguments leading to a valuation on D, which can be employed
to restrict the structure of Dx/N. Thus we either have that di&m(A(Dx /N)) is
"small" or the shadows of elements can be used to restrict the structure of Dx /N,
in either case, the structure of Dx /N is restricted.

The situation when di&m(A(Dx /N)) > 4 is handled in [11]. However, for the
proof of Theorem 2.1, this situation is too restrictive. The reason is as follows.
Suppose that Dx/N is not solvable. We wish to employ our commuting graph
techniques, combined with our "shadows techniques" to show that this is impossible.
To do that we have to be able to say something about A(DX /N), when Dx /N is not
solvable. For that we first pass to a minimal nonsolvable quotient, i.e., we replace
N (if necessary) by a larger normal subgroup, so that we obtain that Dx/N is a
minimal nonsolvable group (MNS-group for short), i.e., a nonsolvable group all of
whose proper quotients are solvable. Can we say something about A(DX /N) now?
If we could show that diam(A(Dx /TV)) > 4, then the machinery of [11] would apply
perfectly to obtain a contradiction. However, by [16], diam(A(Dx/./V)) may be 3
(and is always > 3). Luckily the following (somewhat strange) property is satisfied
by H = DX/N.

Property (3|): The group H possess the property (3 )̂ if there are two elements
x,y £ A(H) such that dn{x,y) > 3 and such that if x,a,b,y is a path in A(H),
then there exists h £ H such that d(xh,y) > 3 and xh,ah,b,y is not a path in
A(H).

We call this property Property (3j) because it is immediate that it is satisfied
when the elements x,y £ H satisfy djj{x,y) > 4 and it is (of course) stronger than
diam(A(#)) > 3.

Theorem 2.10 ([12]). Let H be a nonsolvable finite group such that every proper
quotient of H is solvable. Then H has the Property (3|).

Relating Theorem 2.10 to the shadows, a crucial outcome of Property (3 )̂ is the
following proposition. Though we can not obtain the full strength of Proposition
2.9, it is very useful,

Proposition 2.11 (Prop. 5.7 and Lemma 5.6(1) in [12]). Let x,y G Dx \ TV such
that x*,y* satisfy property (3-|) (where H = Dx/N). Then given any x' G xN
and y' € yN, either N(x') C N(y') of N(y') C N(x'). Furthermore, after perhaps
interchanging x and y, we have that given any x', x" G xN, either N(x') C N(x")
orN(x") QN(x').
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Notice that Proposition 2.11 says something about the if-shadows N(x) and not
about the shadows N(x). Note further that unlike N(x), N(x) may be empty.
However Proposition 2.11, together with a series of arguments eventually lead to
a valuation of D and show that Dx /N must be solvable. To conclude this section
we mention that the proof of Theorem 2.10 (and hence, of Theorem 2.1) involves a
heavy use of the classification of finite simple groups, see [12, section 7].

3. HERMITIAN SPACES AND UNITARY GROUPS, NOTATION AND DEFINITIONS

The purpose of this section is to define what we mean by a hermitian space
(V, f) and to define the groups U(V, /) and SU(V, / ) . Let us start by recalling that
a simple algebra A is just a ring with 1 whose only ideals are {0}  and A. Since for
every element z  ̂ 0 in the center of A, Az is an ideal, we see that z is invertible in
A so the center of A is a field which we will denote by L. We say that A is finite
dimensional if the dimension of A as a vector space over L is finite. It is well known
that when A is finite dimensional, A = End£>(T/) = Mn(D), where V is some (right)
vector space over a division algebra D with center L. Let us recall also that the
reduced norm NidA/L: A —> L is given as follows. Let L be the algebraic closure of

L, then A®LL~ = Mn(Z) (for some n). Thus we have the maps a —> o®l -^ Mn(Z)

and given a £ A, the reduced norm of a is defined by Nrd^/L(a) = det(<p(a ® 1)).
It turns out that Nrdyi/^a) € L, for all a £ A.

Now let us fix D to denote a finite dimensional division algebra with center
L. Let us fix V to denote a finite dimensional (right) vector space over D. Let
A := End£>(V). We view L as the center of A (via a —> a  id, for a £ L, where id
is the identity map on V).

An involution of the second kind on A is an antiautomorphism r : A —» A of
order 2 whose restriction to L is nontrivial. So for all a, b S A we have, r(a + b) =
T(CL) + r{b), r{ab) = T(b)T(a) and T(T(O,)) = a. Further, the restriction r: L —> L
is nontrivial. We will denote by K C L the subfield of elements fixed by r. When
A = D (i.e. dim(y) = 1) we sometimes write a° in place of r(a).

Definition 3.1. Let o be an involution of the second kind on D. A hermitian form
on V with respect to o is a map f:VxV—>D such that for all v, w € V and
d£D,

(1) / is biadditive;

(2) f(vd,w) = d°f{v,w) and f(v,wd) = f(v,w)d;

(3)f(w,v) = (f(v,w))°.

The form / is called anisotropic if in addition,

(4) f(v,v) = 0i8v = 0.

Let us note that,

Lemma 3.2. Let o be an involution of the second kind on D and let s € Dx be
a symmetric element (s° = s). Define *:  D —> D by a* = s~1d°s. Then * is an
involution of the second kind on D. Let f be a hermitian form on V, with respect
to o. Then the form f on D defined by f'(v,w) — s~1f(v,w) is a hermitian form
on V with respect to the involution *.
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Proof. This is an easy calculation.

Definition 3.3. If / is a hermitian form on V (with respect to an involution of
the second kind on D which is clear from the context) then we say that (V, f) is a
hermitian space. If the form / is anisotropic, we say that (V, /) is anisotropic and
if the form / is nondegenerate (f(v, w) = 0, Vw G V =>  v = 0), we say that (V, / )
is nondegenerate. Whenever we say that (V, /) is a hermitian space we denote the
involution on D by o.

Definition 3.4. Let (V, / ) be a hermitian space. We denote by U(V, f) the group of
all linear transformations g of V such that f(g(v),g(w)) = f(v,w), for all v,w £V.
If dim(V) = n and we wish to emphasize that, we write Un(V, /) in place of U(V, / ) .
SU(V, /) denotes the subgroup of U(V, / ) of all transformations having reduced
norm 1. We write SUn(Vi / ) when we wish to emphasize the dimension.

4. GENERALIZED REFLECTIONS

We continue with the notation of §3. Let (V, /) be an anisotropic hermitian space
over the division algebra D with the involution of the second kind o: D —> D (see
Definition 3.3). For v,w eV we denote f(v, w) = < v, w >. Let A = Endc(V) and
for an element a € A, let Fix(a) := {v G V | a(v) = v}.

Definition 4.1. A generalized reflection is an element r G U(V, /) such that Fix(r)
is a hyperplane (i.e. a subspace of codimension 1) of V. Given a vector 0  ̂ w £V
and a G Dx such that a° < w,w > a =< w, w >, we denote by rw>a the reflection

?\u,c«( )̂ = v + w(a — l)<w,w > - 1 < w, v > .

rWiCt is the (unique) reflection such that rWta(w) = wa and Fix(rWiCe) — w1- = {v €
V | < v,w > = 0}.
Lemma 4.2. (1) r~]a = rWiQ- i ;

(2) for all g G U(V, / ) , we have grWtOtg~l = rg(w)<a;

(3) rwaip = rw>apa-i;

(4) if r = rWiOl and s = rZtp are two reflections such that r{y) — s(y) ^ y, for some
y G V, then r = s.

Proof. (1): We have w = r~*a(wa) = r~*a(w)a, so r~ja(w) = wa~1. Of course

F i x ( V a) = ™\ SO r~]a = r^a- i.
(2): Let r = rw,a. Then

grg~x(u) = g(g~1(u) + w(a - 1) < w,w >~1< w,g~1(u) >)

= g{g~l(u) + w(a - 1) <g(w),g(w) >~1< g{w),u >)

= u + g(w)(a - 1) < g(w),g(w) >~1< g(w),u >

(3): Both rwatp and rw>apa-i take u; —> wa(5a~l and centralize u;-1.

(4): Write y = 107 + w' = zS + z', where w' (resp. z') are some vectors in
w1- (resp. z1-). Then r(y) = wary + w' = z(3S + z' = s(y). Subtracting we get
w(l — a)7 = z(l —13)6. Hence we can take z = W/J,. Then, y = w~f + w' = W/JLS + z',
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so 7 = fi8. Also, way + w' = wfxf38 + z', so ay — fij38. It follows that afiS = /J,/36,

so afj, = fi/3, or a = /i/?M~\ SO by (3), r ^ = r ^ ^ = r ^ ^ - i = r ^ . tH

L e m m a 4.3. Lei v ,w € V &e distinct vectors such that < v,v > = < w, w >. Set
y = < v — w,v > and (3 = — 7~17°. Then,

(1) < v — w,v — w >= 7 + 7° a d̂ hence j3° < v — w,v — w > (3 =<  v — w,v — w >.
In particular rv_w<p is a generalized reflection.

(2) For all z £ V we have rv-Wip(z) = z — (v — w)y"1 < v — w,z >, in particular,
Tv-w,p is the unique reflection such that rv-Wt/s(v) = w.

Proof. Let s =<  v,v > and notice that 7 =< v — w, v >— s— < w,v > and
< v — w,w >— < v,w > —s = —70. Hence < v — u>, v — w > =< v — w, v >
— < v — w, w > = 7 + 7° (in particular 7 7̂  0). Also

/3° < v - w, v - w > p = /3°(7 + 7°)/3 = 7(7°)~1(7 + 7°h~ V

1 + (7°)~1)7° = 7 + 7° =< v — w, v — w > .

This shows (1).

Set r = rv-Wi0. Given z £ V we have

r(z) = z + (v — w)(/3 — 1) < v — w, v — w >~l< v — w,z >

= z + (v - w)(-7~17° - 1)(7 + 70)" 1 < v - w, z >

= z - (v - w)7~1(7 + 70)(7 + 70)" 1 < v - w, z >

= z — (v — zw)7~1 < v — w, z > .

We have r(v) = v — (v - w)y~l < v — w,v >= v — (v — w)y~ly = w. The uniqueness
of r follows from Lemma 4.2(4).

Corollar y 4.4. Suppose dim(y) = 2, then every element of U(V, f) is either a
reflection or a product of two reflections.

Proof. Let g e U(V,/) and let v e V such that v ^ g{v). Then g(v) G V and of
course < g(v),g(v) > =< v, v >. By Lemma 4.3(2), there exists a reflection r such
that r(v) = g(v). Hence r~lg centralizes v, so r~lg is a reflection.

Remark 4.5. Notice that by the definition of the reduced norm, given a generalized
reflection r = rWtCt, we have NrdA/L(r) = Nrd£)/Z,(Q;). Note further that a € {d G
D I dr(d) = 1} , where r : D —> D is the involution of the second kind on D given
by r(d) = s~ld°s, with s = (w,w) (see Lemma 3.2).

Remark 4.6. By Lemma 4.3(2) it follows immediately that if dim(l/) > 2, then
U(V, / ) is generated by generalized reflection. The following question seems ele-
mentary and a positive answer should be useful.

Question 4.7. Is SU(V, / ) generated by the generalized reflections contained in it?
Does this hold when dim(V) = 2 and the center of D is a global field?
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5. THE REDUCTION FROM dim(V) > 2 TO dim(V) = 2

We continue with the notation of §3. Let D be a finite dimensional division
algebra with center L, let o: D —> D be an involution of the second kind and let K
be the fixed field of o. Let (V, f) be an anisotropic hermitian space over D (with
respect to o). As usual let A = End£j(T^). In this section we wish to reduce the
anisotropic unitary case of conjecture (MP), when dim(l^) > 2 to the following
conjecture:
Conjecture 5.1 ((MP) for anisotropic SU(V,/), dim(7) > 2). Let (VJ) be a two
dimensional anisotropic hermitian space over a finite dimensional division algebra
D. Suppose that the center of D is a global field. If N < SU2(V,f) is a normal
subgroup of finite index, then N = SU2(V, / ) .

In fact, (MP) in this case says that SU(V, /) must be projectively simple, i.e.,
SU(V, f)/Z is simple (as an abstract group), where Z is the center of SU(V, / ) , and
when dim(V) > 2 is arbitrary. But, if K is a global field, then by [6] and [9] any
noncentral normal subgroup of SU(V, /) has finite index. Further, we will show in
this section that the case dim(V) > 2, follows from the case dim(V) = 2, i.e., we
will prove the following well known result.
Proposition 5.2. Suppose that dim(F) > 2. Assume that for any subspace V C V
of dimension two, S\J(V, / ') is projectively simple (i.e. proper normal subgroups are
central), where f is the restriction of f to V' x V. Then SU(V,/) is projectively
simple.

Proposition 5.2 follows easily from the following two lemmas.
Lemma 5.3. Suppose that B is a finite dimensional simple algebra with center L.
Let T and a be two involutions of the second kind on B such that K is the subfield of
elements of L fixed by both r and a. Let \](B,T) := {b G B \ br(b) = 1}  and define
V(B,a) similarly. Then {NrdB/L(&) | b e U(S,r)}  = {NrdB/L(6') | b' G V(B,a)}.

Proof. This is an immediate consequence of [7, Proposition 6.1, pg. 261] (see also
[5, exercise 12, pg. 202]) which says that

NrdB/L (U(S,r)) = {ZL(Z)-1 | Z G NrdB/L (B*)} ,

where i is the unique nontrivial element in G&l(L/K). So we see that the group of
norms Nrds/£,(U(.B,T)) is independent of the involution r.

Lemma 5.4. Suppose dim(V) > 2 and let G = SU(V,/). For a subset S C
V, let Gs :=  {g e G \ g(w) = w,Mw G S}. Let H :=  {H < G | H =
Gu,for some subspace U C Vwith dim({7) = dim(l^) — 2}. Then G is generated by
H.

Proof. We must show that G = (H). If dim(V) = 2, there is nothing to prove,
so suppose dim(V) > 2. Fix a vector v G V, v ^ 0. Of course, Gv = SXJ(U, / ' ) ,
where U = v1- = {u G V \ f(u, v) = 0}  and / ' is the restriction of / to U x U. We
will show that G = (Gv, H), so the lemma will follow by induction on dim(V). Let
g €G. If g GGV, then g G (Gv, H), so suppose g(v) ^ v and let r — rWtOt G U(V, /)
be the unique reflection so that r(g(v)) = v (see Lemma 4.3(2)). By Remark 4.5,
Nrd,4/x,(r) = Nrd£)/x,(a!), and, in the notation of Proposition 5.3, a G U (D ,T ),
where r is as in Remark 4.5. Let u G U, u ^ 0, set t = (u,u) and let a: D —> D
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be the involution <j{d)  = t~1d°t. By Proposition 5.3 there exists /3 £ \J{D,o~) such
that Nrdz?/z,(/3) = NrdD/L(a). Let s = rUtj3. Then, by Remark 4.5 NrdJ4/i(s) =
Nrd^/L(r). Let X = w nuJ-. Then s~V G Gx < (W) and s~lrg e <£„. It follows

< > < G u , W > . D

PROOF OF PROPOSITION 5.2: Let TV < G = SU(V,/) be a noncentral normal
subgroup. By [6] and [9], N has finite index in G. Let H be as in Lemma 5.4.
Then, by the definition of H and by the hypothesis of Proposition 5.2, each H eH
is projectively simple. Since N n H is a normal subgroup of finite index in /?, for all
i f S W, it follows that N f] H is noncentral in H, and hence H < N. We conclude
that G={U)<N.

6. THE CASE WHEN dim(V) = 1

The purpose of this section is to state (MP) in the anisotropic unitary case when
dim(V) = 1 in a simple way. We continue with the notation of §5 except that here
dim(V) = 1. Let {v} be a basis of V and set s = f(v,v). Then it is clear that
U(V,/) S {d G Dx | d°sd = s}, and SU(V,/) s {d G U(V,/) | NrdD/L(d) = 1}.
Let *: I? —> D be the map a —> s " 1 ^ . Then by Lemma 3.2, * is an involution of
the second kind on D and of course, U(V, /) = {d G Dx \ d*d = 1}. Thus replacing
o by * if necessary, we may always assume that

\](VJ)  ̂ Ui(D,o) = {d e Dx \d°d= 1}  and

SU(V, /) SS SUi(I>, o) = {de U(D, o) | NrdD/L(d) = 1}.

To state conjecture (MP) for SUi(£>, o) we must recall that a valuation of D is
a homomorphism v: Dx —» F from Z)x onto a totally ordered group T such that
u(a + b) > min{v(a), v(b)}, whenever a + b ̂  0. Given a valuation u of D and an
element a e F with a > 0, let

mD^(a) = {x G £>x | w(a;) > a}  U {0}

be the two sided ideal of the valuation ring OD>V = {x G DX \ v(x) > 0}  U {0} . The
set of all elements in OD>V which are congruent to 1 modulo this ideal,

!+«*£),„  (a),

is a normal subgroup of D x , let us denote it by Nv<a. We thus have the normal
subgroups of Dx,

m

n " * ' a *   ̂ = ym}  a nd " = {oii,...,am}.

Conjecture (MP) says that when If is a global field, the normal subgroups SU(.D, o)n
N-> - are basically all the proper noncentral normal subgroups of SU(D, o).

Conjecture 6.1 ([(MP) for anisotropic SU(V,/), dim(V) = 1). Let D be a finite
dimensional division algebra with center the global field L. Let o: D —> D be an
involution of the second kind. Let N < SU(D, o) be a proper noncentral normal
subgroup {necessarily of finite index). Then there are valuations t^: Dx —> Fj and
nonnegative elements on € F ,̂ 1 < i < m, such that N D SU(D, o) n iV— —.
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Applications of random generation to residual
properties of some infinite groups

Aner Shalev

1 Results

The purpose of this paper is to survey recent results on random generation of fi-
nite simple groups, and to indicate their use in the study of residual properties
of some infinite groups. These applications form yet another contribution of the
probabilistic approach to some problems in abstract groups. While the first ap-
plication we outline provides a new and shorter proof of an already proven result
(Magnus conjecture), most of the applications we describe constitute new results in
residual properties, and it is unclear whether they can also be established without
a probabilistic approach.

By a finite simple group we mean a nonabelian finite simple group. We assume
below the classification of finite simple groups. Thus, to prove an asymptotic state-
ment for finite simple groups one needs to check it for alternating groups and for
the finite groups of Lie type. Recall that a group G is said to be residually C (where
C is some collection of groups) if the intersection of the normal subgroups N <G
such that G/N € C is trivial. The infinite groups whose residual properties we shall
investigate are free groups, the modular group, as well as general free products of
finite groups. It remains to be seen whether our methods can be applied for more
general groups appearing in combinatorial group theory, such as one relator groups,
free products with amalgamation, hyperbolic groups, etc.

In this section we present three 'pairs' of results: the first result in each pair deals
with random generation, and the second result is a corresponding application to
residual properties. These applications are by no means straightforward corollaries.
Hints of their proof appear in the second section.

The starting point for our discussion is the following theorem, proved by Dixon
[D] for alternating groups, by Kantor and Lubotzky [KL] for classical groups and
some low rank exceptional groups, and by Liebeck and myself [LiShl] for the re-
maining exceptional groups.

Theorem 1 Let S be a finite simple group, and let x,y £ S be two randomly chosen
elements. Then the probability that x,y generate S tends to 1 as |5| —> oo.

This verifies a conjecture of Dixon [D] from 1969. We note that this statement
for alternating groups was already conjectured by Netto in the 19th century. This
result has various interesting applications; the one which is relevant for us is the
following.

269
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Theorem 2 Let C be an infinite set of finite simple groups. Then the free group
F2 is residually C.

Here Fk denotes the free group on k generators. The result for F2 extends
for Fk for all k > 1, since Fk is known to be residually {i^} - Theorem 2, which
was conjectured by Magnus, has a long history, and partial proofs were given by
Katz and Magnus [KM] , Gorchakov and Levchuk [GL], Lubotzky [Lu], Wiegold
[Wi] , Wilson [W] and others. Theorem 2 was finally proved by Weigel in a series
of papers [Wei, We2, We3]. The new proof, by Dixon, Pyber Seress and myself
[DPSSh], applies Theorem 1 to obtain a much shorter proof of a somewhat stronger
result (see Section 2 for more details).

Our next results on random generation deal with generators of specific orders.

Theorem 3 Let S be a finite simple group, and suppose S  ̂ PSp4(q),Sz(q). Let
x, y E S be randomly chosen elements of orders 2,3 respectively. Then the probability
that x,y generate S tends to 1 as \S\ —> 00.

This result for classical and alternating groups is proved in [LiSh2] (we note that
the alternating case follows from a more general yet unpublished result of Miiller
and Pyber). More recently Guralnick and myself proved it for exceptional groups
of Lie type [GSh], based on the fact that these groups are (2,3)-generated [LM] .
We note that if S = PSpi(q) where q is not a power of 2 or 3, then the probability
that randomly chosen elements of orders 2,3 generate S tends to 1/2 [LiSh2], and
this result is also useful for us here.

The main application of Theorem 3 is the determination of the finite simple
quotients of the modular group PSLI^IJ) up to finitely many exceptions, a project
which started already a hundred years ago. In a yet unpublished paper [LiSh4]
Liebeck and myself apply this theorem in the study of residual properties of the
modular group.

Theorem 4 Let C be an infinite set of finite simple groups not containing PSpi(q)
(q a power of 2 or 2) or Sz(q). Then P5Z,2(Z) is residually C.

The exceptions in the theorem are genuine, since PSp4(2k), PSpi(3k) and Sz(q)
are not images of the modular group. The case of alternating groups already follows
from a more general result of Tamburini and Wilson [TW] (see below), so the main
novelty of Theorem 4 is when C consists of groups of Lie type.

Our next result deals with random (r, s)-generation, namely random generation
by elements of arbitrary prime orders r, s. Of course the case r — s = 2 has to be
excluded, since the group generated is dihedral. The fact that alternating groups
are randomly (r, s)-generated is proved in [LiSh2]. The case of classical groups has
just been established in [LiSh3].

Theorem 5 Let r,s be prime numbers, not both 2. Then there exists a number
f(r,s) such that if S is a finite simple classical group in dimension at least f(r,s),
and x,y £ S are randomly chosen elements of orders r, s respectively, then the
probability that x,y generate S tends to 1 as \S\ — 00.
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Note that some assumption on S is needed, since S might not contain elements
of orders r,s. It would be interesting to find out whether the conclusion of Theorem
5 holds assuming only that S has such elements (instead of the assumption of large
rank). Here the case of exceptional groups is also of interest.

Theorem 5 can be used to derive some random (A, i?)-generation results, where
A, B are finite groups. This means generation by a random copy of A and a random
copy of B in S. For alternating groups a result of this type was conjectured by
Lubotzky and proved by Miille r and Pyber (yet unpublished). Some versions for
classical groups are obtained in [LiSh4] using Theorem 5. The idea is that, if A,B
are non-trivial and not both 2-groups, then we may pick elements a £ A and b € B
of prime orders r, s which are not both 2, and then deduce some kind of random
(A, B)-generation of S using the random (r, s)-generation of S. This approach does
not allow us to deal with the case where A, B are both 2-groups (not both of order
2). The core of the problem is where A = C2, B = Ci x Ci. It would be interesting to
find out which families of finite simple groups of Lie type are randomly (C2, C% x C2)
generated.

The results mentioned above, and additional tools, enable us to establish new
residual properties of free products A * B of finite groups A, B. Tamburini and
Wilson showed that, if A, B are non-trivial finite groups, not both of order 2, and
C is an infinite collection of alternating groups, then the free product A * B is
residually C [TW]. The case where C consists of finite simple classical groups can
be solved using a probabilistic argument, with some extra-assumption on the finite
groups A,B.

Theorem 6 Let A, B be non-trivial finite groups, not both 2-groups. Then there
exists a number f(\A\, \B\) depending only on \A\ and \B\ such that, for every
infinite set C of finite simple classical groups of rank at least f(\A\, \B\), the free
product A *  B is residually C.

This theorem is proved in [LiSh4] when the ranks of the groups in C are un-
bounded, and in [LiSh5] for the case of bounded (large) rank. A random (C2) C2 x

C2)-generation result for classical group of large rank would enable us to allow A, B
to be both 2-groups (not both of order 2).

2 Hints of proofs

The probabilistic method, which was applied in many branches of mathematics,
enables one to prove existence theorems in non-constructive ways. Instead of con-
structing an object with the desired properties one shows, using counting arguments
or more general probability measures, that most objects (in some relevant space)
have these properties, and therefore such an object exists.

The possible relevance of this approach to residual properties stems from the
observation that a residual property is an existence statement. Indeed, to say that
G is residually C amounts to saying that, given a non-identity element g € G, there
exists an epimorphism <f>  from G to some group S € C such that cf>(g) ^ 1. In the
traditional approach to residual properties one tries to construct explicitly such a
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homomorphism cf>, which in many cases proves very difficult. The hope is that, in
some of these cases, the existence of <f>  could be established probabilistically.

Suppose G is finitely generated, and that the groups in the collection C are all
finite. Fix an element g G G with g  ̂ 1. For a group S £ C consider the space
X = Hom(G, S) of all homomorphisms from G to S. Then X is finite, and can be
viewed as a probability space, equipped with the uniform distribution. Our aim is
to show that, for a randomly chosen <f>  € X we have

1. Prob(</> is onto and <j>(g)  =£ 1) —> 1 as \S\ —* oo.

This would imply that, for a large enough S S C, the required homomorphism
<j>:  G —> S exists, and so G is residually C.

Now, the task above can be naturally devided into two parts.

2. Show that Prob(</> is onto) —> 1 as |5| —> oo.

3. Show that Prob(0(#) ^ 1) -> 1 as \S\ -* oo.

As we shall see Task 2 is related to random generation, and using existing random
generation results (formulated in the previous section) we shall sometimes get it for
free. In these cases carrying out Task 3 would suffice in order to establish that G
is residually C.

Let us now demonstrate this method in specific situations. The simplest case
is that of G = F%. Fix free generators a,b for G. Then X = Hom(G,S) can be
identified with 5 x S, by attaching to <j>  € X the pair (x, y) £ Sx S, where x = <p(a)
and y — <fi(b).

Then 4> is onto S if and only if x, y generate S, and the probability that this
happens tends to 1 by Theorem 1. Therefore Task 2 is carried out.

For Task 3 we may write g = w(a, b), a non-identity word in the free generators.
Then <f>(g) = w(x,y), and our aim is to show that, when x,y £ S are chosen at
random,

4. Piob(w(x,y) y£ 1) —> 1 as \S\ ~* oo.

For alternating groups and classical groups of unbounded rank this can be shown
using some combinatorial arguments. For simple groups of Lie type of bounded rank
we show this using algebraic geometry (counting g-rational points). See [DPSSh]
for more details.

We note that statement 4 has some additional applications. For example, it
immediately implies a result of Jones [J] that an infinite collection of finite simple
groups generates the variety of all groups. Applying it for the power word w = an

yields some Burnside-type applications, as shown by Mann and Martinez [MM] .
Let us now turn to the modular group G = PSLi^Ei). It is well known that

G = C2 * C3, a free product of groups of orders 2 and 3. Let a,b be canonical
generators for G of orders 2 and 3 respectively. For a positive integer k let Ik(S)
be the set of elements s €. S satisfying sk = 1.

Then X = Hom{G, S) can be identified with I2{S) x I3(S), attaching t o ^ GX
the pair (x, y) S h(S) x h(S) such that x = cf>(a) and y — (f>(b). It is clear that <f>  is



273

onto if and only if x, y generate S. The probability that this happens is essentially
the (2,3)-generation probability, which in most cases tends to 1 by Theorem 3 (I
say essentially, since here we also allow x or y to be 1, but this does not really
matter). In these cases Task 2 is carried out, and we can focus on Task 3.

Again we may write g = w(a,b), a non-identity canonical word in the free
product. Then (/>(g) = w(x, y), and we have to show that

5. ~Pxob(w(x,y) ^ 1 | x2 = y3 = 1) -> 1 as \S\ -> co.

For technical reasons this is shown in a slight variation: instead of letting (x, y)
range over h{S) x h{S), we let them range over D x E, where D,E are certain
large conjugacy classes in S of elements of orders 2 and 3 respectively. Random
generation results where x and y are chosen from such classes are available, and by
applying them essentially the same argument works.

Note that a priori it is not even clear that the probability in 5 is non-zero when
S G C is large enough. Indeed, perhaps for some infinite series of finite simple
groups S, any elements x, y £ S of order 2 and 3 respectively also satisfy some
extra relation w(x,y) = 1 which does not follow from the relations x2 = y3 = 1.
We show that (for S ^ Sz(q)) this is not the case, by passing to algebraic groups
and constructing a subgroup of type PSL^i^) there, using Bass-Serre theory of
groups acting on trees. The general proof of statement 5 is rather long, and applies
combinatorial arguments, algebraic groups, and algebraic geometry.

Let us now examine the case of a general free product G = A*B, where A, B are
non-trivial finite groups, not both 2-groups. To sketch the proof of Theorem 6 let S
be a classical group of large rank (given the groups A, B). The assumption on the
rank ensures that S contains copies of A, B, and we choose such copies which satisfy
some technical extra assumption. This defines injections / : A —-> S, g : B —> S,
and therefore a homomorphism <f>  = f * g : G = A * B —> S. Consider a twist
(fit of that homomorphism, where t € S, (fit = f * (5*), and <?*(&) = t~1g(6)i. The
proof then proceeds by showing that, for a fixed non-identity element g in the free
product A * B, and for a randomly chosen element t G S, we have

6. Prob(</>t is onto) —> 1 as |5| -> 00.

7. Prob(<£t(c/)  1) -> 1 as |5| -> 00.

Statement 6 amounts to saying that, viewing A and B in their embeddings in
S, the probability that A and J5* generate 5 tends to 1. This is indeed the random
(A, B)-generation result proved in [LiSh4] using Theorem 5 as a main tool. The
proof of statement 7 is rather long and technical, and will not be described here.

Finally, let us note that some of the ideas and methods outlined in this paper
can be applied in the context of profinite groups. Recall that a profinite group G
(and its Cartesian powers Gk) can be viewed as a probability space with respect
to the normalized Haar measure. Here too results on random generation serve as
a useful tool. A profinite group G is said to be positively finitely generated (PFG)
if for some k the measure P(G, k) of the set of fc-tuples generating G is positive in
Gk. Various groups were shown to be PFG by Kantor and Lubotzky [KL] , Mann
[Ma] and others. The most general result of this type, which appears in [BPSh], is
the following.
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Theorem 7 Let G be a finitely generated profinite group, d a positive integer, and
suppose the alternating group Ad does not occur as a section H/K, where H, K are
open subgroups of G and K <H. Then G is positively finitely generated.

This enables us to prove the following [DPSSh].

Corollar y 8 Let G be the profinite completion of SLd(L), d > 3. Then G has a
dense free subgroup of finite rank.

Let us sketch the proof. The group G has arbitrarily large nonabelian simple
quotients S modulo open subgroups. Now, if w(a\,..., a )̂ is a non-identity element
of the free group Fk on a\,... ,ak, then for randomly chosen elements xi,..., xk € S,
the probability that w(xi,..., Xk)  ̂ 1 tends to 1. Indeed, for k = 2 this is statement
4 above, and our method actually establishes it for any k. Using this it easily follows
that a random fc-tuple of elements of G generates a discrete subgroup isomorphic
toFk.

On the other hand, by Theorem 7, G is PFG (this special case is already obtained
in [Ma]). Choose a number k (depending on d) such that P{G,k) > 0. It follows
that the measure of fc-tuples in Gk generating a dense Fk subgroup is positive, and
so at least one such /c-tuple exists.

It turns out that, combining Theorem 7 and other tools, one can obtain the
following analogue of the well known Tits alternative for linear groups [DPSSh].

Theorem 9 Let T be a finitely generated group which is linear over some field, and
G its profinite completion. Then either T is virtually soluble, or G has an open
subgroup Go having a dense free subgroup of finite rank.

Pyber conjectures that we may actually take Go = G.
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LOW DIMENSIONAL REPRESENTATIONS OF FINITE
QUASISIMPLE GROUPS

PHAM HUU TIEP

1. INTRODUCTION

Let G be a finite quasisimple group and F an algebraically closed field of char-
acteristic i. In many applications it is very important to know the smallest degree
d\(G) of nontrivial irreducible FG-representations. In this article, we will survey
recent results on the following problem:
Problem 1.1. Given a finite quasisimple group G and £, determine T)j(G) and all
nontrivial irreducible FG-representations of degree QJ(G).

It is usually the case that G has a few irreducible representations of degree T)}(G),
5J(G) + 1, and maybe o|(G) + 2, and then there is a relatively big gap between these
degrees and the next degree. In various applications it is important to know this gap.
Let us denote by 5|(G) the next degree of nontrivial irreducible FG-representations
after 2^(G).
Problem 1.2. Given a Unite quasisimple group G and (,, determine 5|(G).

It turns out that Problem 1.2 is closely related to
Problem 1.3. Given a Unite quasisimple group G, I, and e > 0, classify all irre-
ducible FG-modules of dimension less than (fl](G))2~e.

We note that a solution for the case e = 1/2 of Problem 1.3 would be good
enough for a number of applications that we have in mind.

2. BOUND AND GAP RESULTS FOR SYMMETRIC GROUPS AND ALTERNATING
GROUPS

First we briefly mention the results on Problems 1.1 and 1.2 for covering groups
of the alternating groups An. It is convenient to consider representations of covering
groups G of An together with those of the symmetric groups §„.

In the case of linear representations of symmetric and alternating groups, Prob-
lems 1.1 and 1.2 have been solved by Wagner, resp. by James. It is well known
that t>c(^n) = ^c(-^n) — n — 1, and An, resp. Sn, has exactly 1, resp. 2, irreducible
complex representation of degree n — 1, provided that n > 5. Let nn>e equal 1 if l\n
and 0 otherwise.
Theorem 2.1. [Wagl, Wag2] Assumen > 9. ThenQ}(Sn) = t>)(An) = n - l - K n ^ .
Moreover, the representations of smallest degree can be obtained by reducing the
smallest complex representations modulo i.

The author gratefully acknowledges the support of the NSP (grant DMS-0070647).
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Theorem 2.2, [J] Ifn > 15 then of(Sn) = d}(An) > n(n - 5)/2.

Actually, [J] gives an exact formula for c)f (§„) which depends on £. If n < 14
one can also determine of (§„) and J>f(An) using [JLPW] and various results on
decomposition matrices for Sn and An.

Next, we consider the spin representations, i.e. faithful representations of G,
where G is either a double cover 2Sn = 2+§n or 2~Sn of Sn, or the double cover
2An of An. Certainly, £ ^ 2 in this case. Prom Schur's classification of com-
plex spin representations of 2Sn and 2An, it follows that Dc(2Sn) = 2 n̂~1^2  ̂ and
5c(2An) = 2 n̂~2^2K Moreover, 2Sn, resp. 2An, has one or two faithful complex
representations of degree equal to Z)J.(2Sn), resp. 5c(2An) - those are the so-called
basic spin representations and correspond to the partition (n) in Schur's classifica-
tion. By definition, a basic spin representation in characteristic £ is any irreducible
constituent of the reduction modulo £ of a complex basic spin representation. In
the modular case, a lower bound for flf  (2§n) and t)f (2An) w as obtained by Wagner
in [Wag3], where he showed that VJ(2Sn) > 2 n̂~^/  ̂ and 5](2An) > 2Kn- i-1)/2l ,
if s is the number of nonzero terms in the 2-adic decomposition of n and n > 9.
A precise formula for t)J(2Sn) and i)J(2An) has recently been found by Kleshchev
and the author [KT] . They have also established a lower bound for D|(2Sn) and

f
Theorem 2.3. [KT] Assume n>8.

(i) 0)(2§n) = 2((n-1-K".<)/2J and 5)(2An) = 2 n̂-2~K^'2\
(ii) Let H = 2§n or 2An, and let V be an irreducible faithful Fif-module of

dimension less than 2X)\{H). Then dim V = T>\{H), and V is a basic spin module.

The proof relies particularly on the following characterization of (modular) basic
spin representations of 2Sn and 2An, obtained by Meierfrankenfeld [Me] and Wales
[Wa]. See also section §5.
Proposition 2.4. Let n > 5 and let V be an irreducible 2An-module on which (an
inverse image) of a 3-cycle has a quadratic minimal polynomial. Then V is a basic
spin module.

It is likely that tf(H) = D}(H)  0{n) for H = 2Sn or 2An.

Formulae for 0)(G) and 5|(G) with G being a covering group of most of the
26 sporadic finite simple groups are available in [JLPW] or GAP. The remaining
cases will probably be settled soon, once enough information about decomposition
matrices becomes available. In fact fl](G) have been determined for all covers G
of sporadic groups, cf. [?]. We also mention the paper [HM2] of Hiss and Malle,
where representations of finite quasisimple groups of degree up to 250 were classified.
Keeping this in mind, we will focus on the case of finite quasisimple groups of Lie
type.

3. BOUND RESULTS FOR FINITE GROUPS OF LIE TYPE

From now on to the end of the paper, we assume that G is a finite (quasisimple)
group of Lie type, of simply connected type, in characteristic p. Representations of
G in the defining characteristic p of small degree are investigated in [KL] and more
recently in [Lu2]. We will concentrate on the cross characteristic case and assume
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that F is an algebraically closed field of characteristic i ^ p. We will also assume
that G is none of the following groups: SX2(<?)> ££3(9) with q = 2,4, SL^q) with
q = 2,3, SP4(2Y, SUi(q) with q = 2,3, fi+(2), fi7(3), G2(?) with g = 3,4, 2B2(8),
^4(2), 2F4(2)', 2^e(2). Information about irreducible representations of the groups
in this list can be found in [Atlas, JLPW]. Our assumptions imply in particular
that G is the universal cover of the simple group G/Z(G).

Lower bounds for the degree of irreducible representations of finite groups of Lie
type in cross characteristic were found by Landazuri and Seitz [LS] and improved
later by Seitz and Zalesskii [SZ]. These bounds, bLSz(G), have proved to be very
useful in a vast number of applications. For the reader's convenience, we reproduce
i>LSz(G) in Table I, where <j> n stands for the nth cyclotomic polynomial in q.

TABLE I. The Landazuri-Seitz-Zalesskii bounds for T>j(G), and

G

SLn(q)

Sp2n(q), 2 /g

Sp2n(q), 2|g

SUn(q)

Spin}n(q), g > 3

SpintM, g - 3

Spm2 n +i (g), g > 3

Spin2n+i(q), g = 3

2B2(g)

^ ( g )
G2(g), g = £ = )

G2(g), g = 0(mod3)

4 (?)

Ft(q), 2 /g
^.(g), 2|g

2-Es(g)

-Be (9)

-Er(g)

S8(g)

| bisz(G)

gn-g
n 1 1

(gn - l)/2
(gn-i)(gn-g)

2(g + i)

[«"-1 1
U + iJ

(qn-l)(qn-l+q)
2 1

(gn - ^(g"" 1 - 1)
g 2 - i

(gn - l ) ^ - 1 - 1) 7

Q — 1

(n -\- llff f — 0)

g 2 - l " ' -

qM - 1

(g"-l)(g"-g)
g2 -1

(g-l)^/g72

g(g-i)

q3 ~q
g5 - g3+o

(gs-g4)\/g72

(ga _ ̂ ^ qr ) / 2

gu - 99

g11-^9

g17-915

g 2 9-g2 r

Oc(G)

qn-q
g - 1

(gn - l ) / 2

2(g + l )

gn-i"
.g + l j

(gn - l)(qn~l +q)

g 2 - i
(g" - l)fa—! - 1)

9 2 - l
(g" - l ) ^ " " 1 - 1)

(g" + l ) (g" - 1-g)

g 2 - i

(gn

qin - 1
g 2 - l

- i)(gn - g )
g 2 - l

(g-l)Vg72
g2 - g + 1

g4 + g2 + 1

q5 - q3 + q

(g3 + l ) (q2_ 1)^/^/2

(g3-i)V + g)/2
(g5 + g)(g6-g3 + i)
(g5 + g)(g6 + g3 + i )

q(j>T(t>12(f>14

q<t>lfo<}>124>204>24
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In the particular case of complex representations, that is where £ = 0, one can
find the precise values of ?>c(G) (and ?>£(G)) using the Deligne-Lusztig theory. This
has been done by Zalesskii and the author [TZ1] for classical groups, and by Liibeck
[Lul] for exceptional groups, and the values of Qc(G) are displayed in Table I.

Certainly, bLsz(G) < 5](G) < V^(G), and l>c(G) should be a good approx-
imation for vl(G). Moreover, empirical data seem to imply that the inequality
4(G) - 2 < D\{G) < ^(G) holds in all cases.

Comparing bLSz(G) with QQ(G), one sees that the Landazuri-Seitz-Zalesskii
bounds are very good, and in fact they are the best possible ones in many cases.
In several cases (the lines in Table I with a part of bisz(G) printed boldface), the
difference between $c(G) and bhSziG) is still a polynomial of q or of the rank of
G. It turns out that one can still improve the bound in these cases. We record the
improvements on the Landazuri-Seitz-Zalesskii bounds in Table II .

TABLE II . Improvements on the Landazuri-Seitz-Zalesskii bounds

G || Improved bound for t>e (G)

SLn(q)

SpintM, g > 3

Spifi2n \C[) j Q ̂  3

Spin^q)

Spiri2n+i(q), g > 3

Spm2n+i(q), 9 - 3

Ga(9), g=l(mod3)
G2(g). g = 2(mod3)
Gate). 9 = 0(mod3)

^ ( g )
, 2 /g

"Eete)
#>(«)
E7(g)
Sste)

q'--q i
9 - 1

(gn - l ) (gn 1 + g) o

2 1 "

(gn - ^ ( g " - 1 - 1)
g2 — 1

(g" + l)(qn-> - q)
a2 - 1
9^n - 1 „

2 1

(g"9-T)(g"-g)
0 2 - l

39J

g° - gJ + g - 1
9° + g*  - 2

(o -(- Qf)(of — Q "T" 1) — 2

(o ~i~ ^?)(9 H" Q H~ 1) — 1

9 0 4 0 8 0 1 2 0 2 0 0 24 — 3

*>c(G) _J cf.

9 " - 9
9 - 1

(gn- l ) (g n x + g)

(gn - ^ (g" -1 - 1)
< 7 2 - l

(qn + l)(g" x - g)
g2 - 1
qzn - 1
g 2 - l

92 - 1

9 3 - l
94+92 + l
9° - 9J + 9
9° + 9* + 1

(9° + 9)(9D - 9 *  + 1)

te° + 9)teD + 915 + i )
g07^12^>14

g^408</>12<^2O^24

[GPP£

[Hofl

[Hofl

[Hofl

[Hofl

[Hofl

.1

[Hiss2]
[Hiss2]
[Hiss2]

[Lul , MMT]
[MT2]
[MMT ]
Hof2
Hot'2
Hof2

Notice that there still remain two cases where the difference between $c(G) and
^LSZ{G) is a polynomial of ^/q, namely the cases of  2Fi(q) and Fi(q) with q even.

Question 3.1. Improve the Landazuri-Seitz-Zalesskii bounds for 2  and
with q even.

A partial answer to Question 3.1 in the case of  2Fi(q) and

was given in [Lul] .
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4. GAP RESULTS FOR CLASSICAL GROUPS

Now we proceed to describe further results on Problem 1.1, namely on deter-
mining smallest cross characteristic representations of finite groups of Lie type, and
also on Problems 1.2 and 1.3. At present, these results are in best shape for the
groups SLn(q), SUn{q), and Sp2n{q) with q odd; in particular, t)f (G) « {T>\{G))2~£

in these cases. These groups share the common property that i>c(G) is fairly small,
and complex representations of degree ?>c(G) (and ?>c(G) +1) are the so-called Weil
representations. This kind of representations was first constructed by Weil in [W]
for classical groups defined over local rings. A key ingredient of Weil's construction
is the action of certain classical groups on Heisenberg groups. It turns out that
Weil's construction can also be carried over to the case of classical groups over fi-
nite fields. This has been done in [Ge, Hwl, Is, S, Ward] and gives rise to the class
of complex Weil representations. By definition, (-modular Weil representations are
the nontrivial irreducible constituents of the reduction modulo I of complex Weil
representations. Since the construction relies on the splitting of certain extensions
of extraspecial p-groups by classical groups, this class of representations exists only
for the three aforementioned types of classical groups. But see the subsection 4.4
for an extension of this construction to other finite groups of Lie type. Weil repre-
sentations constitute one of the most interesting classes of (complex and modular)
representations of finite groups of Lie type, with a lot of remarkable features (cf. for
instance [Go, Gr, Tl , TZ2]), and they give answers to many questions concerning
the representation theory of finite groups of Lie type.

4.1. Special linear  groups. Let G = SLn(q) with n > 3, and let /cn,?,̂  = 1 if
£\(qn - l)/(q— 1) and 0 otherwise. Over C, G has q— 1 irreducible Weil representa-
tions, one of degree (qn — q)/(q — 1), and q - 2 of degree (qn — l)/(q — 1). Reduced
modulo £, these complex representations yield (q — l)i>  (inequivalent) irreducible t-
modular Weil representations, one of degree (qn — q)/(q — 1) — Krei!]< and (q - l)t>  — 1
of degree (qn - l)/(q — 1), cf. for instance [GT1]. Here and below, N  ̂denotes the
^"-share of the integer N.
Theorem 4.1. [GT1] Let G = SLn{q) with n > 3, and (n, q) ̂  (3,2), (3,4), (4,2),
(4,3), (6,2), (6,3).

(i) Then 5](G) = (qn - q)/{q - 1) - «„,,,, .
(ii) Let $ be a nontrivial irreducible WG-representation of degree less than

ifn = 3,
d](G):=\  (<7-l)(<?3-l)/(2,<7-l), ifn =

Tien $ is one of (q — 1)? irreducible l-modular Weil representations.

We also mention that t>f (G) = 217 if G = SL6(2) and 6292 if G = SL6(3), see
[GT1].

The main idea of the proof of Theorem 4.1 is as follows. Suppose $ is an irre-
ducible FG-representation of degree less than d|(G). By restricting $ to the first
parabolic subgroup P of G (which is the stabilizer in G of an 1-space in the natu-
ral module F"), we show that $ is a constituent of the Harish-Chandra induction

where ^ is a "small" representation of the Levi subgroup L of P. At this
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stage, the Dipper-James theory of cross characteristic representations of GLn(q)
can be used to decompose R'pi'W) and determine which irreducible constituents of
it may have degree less than d|(G).

The precise value of 52 (G) has been determined by Brundan and Kleshchev in
[BrK] , where the authors follow the method of [J] closely and invoke the representa-
tion theory of GLn(q) as developed in the work of Brundan, Dipper, and Kleshchev
[BrDK] . Generically,

where e = 0, .

4.2. Special unitar y groups. It was already shown in [LS, S] that Q}(SUn(q)) =
[(qn — l)/(q + 1)] if n > 3. Over C, G has <? + 1 irreducible Weil representations,
one of degree (qn + q(-l)n)/(q+l), and q of degree (qn - ( - l ) n) / (g+ 1). Reduced
modulo I, these complex representations yield (q + l)e> (inequivalent) irreducible
(-modular Weil representations, one of degree (qn + q(—l)n)/(q+1) and (g + 1)̂  —1
of degree (gn — (—l)n)/{q+1), cf. for instance [HM1]. The following gap result was
obtained by Hiss and Malle:

Theorem 4.2. [HM1] Let G = SUn(q) with n > 4 and (n,q)  (4,2), (4,3).
Suppose <3> is a nontriviai irreducible ¥G'-representation of degree less than

(q2 + 1)(92 - Q + 1)1% « - 1) - 1, i/n = 4,
2 2 5.

Tien $ is one of (g + 1)̂  Weii representations.

As in the case of Theorem 4.1, part of the proof of Theorem 4.2 is to show
that any PC-representation of "small" degree has to occur in the Harish-Chandra
induction R$(^) of a "small" representation W of the Levi subgroup L of P, where
P is the first parabolic subgroup. The other key ingredients of the proof are the
results of Broue and Michel [BM] on unions of ^-blocks, and Geek's theorem [G2]
about unitriangular shape of the decomposition matrix for GUn(q).

The lower bound for J)|(G) given in Theorem 4.2 has been improved further in
[GMST]. To state the result, let

0, otherwise.

Theorem 4.3. [GMST] Let n > 5 and G = SUn(q). Suppose that $ is a nontriviaJ
irreducible ¥G'-representation of degree less than

if2\nandq = 2,

)(« ) w '  i / 2 l n and 1 > 2'
(qn + IK?"" 1 - q2)/{q2 - l)(q + 1) - < , ,, , ifn > 7 is odd,

Then $ is one of (q + l)e> Weil representations.
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Observe that SUn(q) has an irreducible complex representation of degree

(qn - l){qn~x - q)/(q2 - l)(q +1), if n > 6 is even and q = 2,
{qn ~ l ) ^ " " 1 + l)/(q2 ~ 1)(? + 1), if n > 6 is even and q > 2,
(qn + l ) ^ " " 1 - q2)/(q2 - l)(q + 1), if n > 5 is odd,

cf. [GMST]. Thus we have determined QJ(SUn{q)) (up to a constant < 2). More-
over, it is shown in [GMST] that the lower bound dj(SUn(q)) for D2(SUn(q) estab-
lished in Theorem 4.3 is best possible

 ii£\(q+l)  andn > 5, or
 if q = 2 and n is even.

The main ideas of the proof of Theorem 4.3 will be explained in the next sub-
section.

4.3. Symplectic groups in odd characteristic. Let G = Sp2n(q) with n > 2
and q odd. It is well known that 1>}(Sp2n(q)) - (qn - l)/2, see [LS, S]. Over
C, G has 4 irreducible Weil representations, two of degree (qn — l)/2, and two
of degree (qn + l)/2. Reduced modulo £, these complex representations yield 4
(inequivalent) irreducible (.-modular Weil representations, if £ ^ 2. If £ = 2, we get
2 irreducible 2-modular Weil representations of degree (^n — l)/2, cf. for instance
[GMST]. It was shown by Guralnick, Penttila, Praeger, and Saxl in [GPPS] that the
degree of any nontrivial FG-representation is either 5j(G), or (>j(G) + 1, or at least
2i)}(G). Guralnick, Magaard, and Saxl also proved that any irreducible FG-module
of dimension (qn  l)/2 is a Weil module.

A complete solution to Problems 1.2 and 1.3 is given by the following theorem:
Theorem 4.4. [GMST] Let G = Sp2n(q) with n > 2 and q odd, and let V be a
nontrivial irreducible FG-module of dimension less than (qn — l)(qn — q)/2(q+ 1).
Tien V is a Weil module of dimension (qn  l)/2. In particular, if (n, q)  ̂ (2,3)
then

The case £ = 0 of Theorem 4.4 was proved in [TZ2]. Also, 5f (5p4(3)) equals 10
if £ £ 2,3 and 14 if £ = 2, cf. [Atlas, JLPW].

Sketch of Proof of Theorem 4.4.
Unlike the case of unitary groups, unitriangular shape for the decomposition

matrix of G = Sp2n(q) (or of the conformal symplectic groups CSp2n(q)) has not
been established yet. One of the main novelties of [GMST] is the study of local
properties of low dimensional representations. Let V be a nontrivial irreducible
FG-module with dim(V) < (qn - l)(qn - q)/2(q + 1). Then we show that

, . every long root subgroup of G affords only
' (q— l)/2 distinct nontrivial linear characters on V.

The second main novelty of [GMST] is the gluing method, which is to "glue" V
from its restrictions to a collection C of natural subgroups of G. Here, C consists
of maximal parabolic subgroups, semisimple subgroups Sp2k(q) x Sp2n-2k{q) with
1 < fc < n — 1, and 5Z2(<7n) (naturally embedded in G). The main feature of C is
that every element g £ G is conjugate to an element in a member of C. Now suppose
V has property (1) and let tp be the Brauer character of V. Then we show that
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there is a formal sum ip of the trivial character and the ^-modular Weil characters
of G such that ip\c = ip\c f° r all C £ C. It follows by irreducibility of V that tp is
a Weil character, and so V is a Weil module.

This method works well provided that n > 3. When n = 2, one may use the
results of White [Whl, Wh2, Wh3] on the decomposition matrices of  in cross
characteristics.

Sketch of Proof of Theorem 4.3. Let G = SUn(q) and let V be a nontrivial
irreducible FG-module with dim(V) < d|(G). As in the proof of Theorem 4.4, we
also show that V has certain local properties. By a standard subgroup SU^{q) in
G we mean the pointwise stabilizer in G of a non-degenerate (n — 3)-dimensional
subspace of the natural module F™2- Then one of these local properties is the
following, which was first introduced in [TZ2] for complex representations:

(t>\ The restriction of V to a standard subgroup SUs(q) involves
^ ' only irreducible Weil modules and maybe the trivial module.

Assume n > 6. Then we aim to "push down" dim(V) to below the Hiss-Malle
bound; namely, we show that any FG-module V with property (2) has dimension
less than the bound given in Theorem 4.2. This will imply that V is either the
trivial module or a Weil module. This step also involves using GAP to do some
computation with a parabolic subgroup of SU5(2).

As a rule, the case of groups of low rank (n = 4,5 in this proof) requires fairly
delicate consideration. Some of the ingredients of this consideration are

 the aforementioned results of Broue and Michel [BM],

 the results of Fong and Srinivasan [FS], and of Geek and Hiss [GH] on basic
sets of Brauer characters in an ̂ -block, and

 the study of certain linear relations between Green functions in the £-block
containing V (which follow from property (2)).

4.4. Symplectic groups in even characteristic. Let G = Sp2n(q) with n > 2
and q even. Until very recently, the only available information about low dimen-
sional cross characteristic representations of G with n > 3 (and (n,q) ^ (3,2),
(4,2)) is that VJ(Sp2n(q)) = (qn ~ l)(?n - q)/2(q + 1), see [LS]. When n = 2, the
decomposition matrices of G were determined by White [Wh4].

Another principal difficulty of this case is that the classical construction of Weil
representations does not work here, so a priori it is unclear what is the prototype of
low dimensional cross characteristic representations of G, and what plays the role
of Weil representations here.

Clearly, G may be naturally embedded in SX2n(?) and in SU2n{q)- By restricting
the Weil modules of SL,2n(q) and SU2n(q) to G, we have defined in [GT2] a collection
W consisting of

 four (uniquely determined) irreducible FG-modules of dimension

(gn- l)(gn-g) (qn + l)(qn + q) (0
2(qr + 1) ' 2{q + l) \l '

"0
1
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(whether 0 or 1 is chosen in the formulae depends on n, q,i);

 ((<? — l)er — l)/2 (uniquely determined) irreducible FG-modules of dimension

2

((q + l)c — l)/2 (uniquely determined) irreducible FG-modules of dimension

In many instances, the representations in W behave themselves very similarly to
the Weil representations of SL2n(<i) and SU2n(q)- This justifies why we have called
the representations belonging to W Weil representations of Sp2n(i) with q even.
The Brauer characters of these representations can be worked out using the concept
of dual pairs, invented by Howe [Hw2] for odd characteristic, and developed in [T2]
for characteristic 2.

Let a = 19/15 if (n,q) = (5,2), a = 2 if (n,q) = (5,4) or (6,2), and a = 0
otherwise.

Theorem 4.5. [GT2] Let G = Sp2n(q) with n > 2 even and q even. Let V be a
nontrivial irreducible FG-module of dimension less than

Q2(q-1), n = 2,
21, («,?) = (3,2),

< Z V - 1 ) , n = 3, q>2,
203, (n,q) = (4,2),

3 - 1)?2, n = 4, q>2,

_ i

Then V belongs to the collection W defined above.

Notice that

provided n > 5, so d|(G) is the asymptotically correct bound for df(G). Further-
more, DJ(G) w 5^(G)2~e, similarly to the case of SLn(q), SUn(q), and Sp2n{q) with
^ odd.

As in the case of Theorem 4.4, the proof of Theorem 4.5 [GT2] also involves the
study of local properties of low dimensional representations, and the gluing method.
But both ingredients needed much refinements. We also relied more heavily on the
Deligne-Lusztig theory, and on the results of Broue and Michel [BM].

The methods we used in the proof of Theorem 4.5 should be successful as well
in the case of orthogonal groups, which is being handled now.

5. MINIMA L POLYNOMIAL PROBLEM

In the present and the next sections, we will highlight considerable progress on a
number of problems that has been achieved by using the results on low dimensional
representations described in previous sections.
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Let G be a finite quasisimple group and V be an irreducible FG-module. For
g S G\ Z(G), let o(g) denote the order of g modulo Z(G), and dv{g) denote the
degree of the minimal polynomial of g on V. Clearly, dy{g) < o(g); moreover,
one may expect that dy(g) = o(g) in "generic" position. So the general minimal
polynomial problem may be stated as follows:

Problem 5.1. Under the above notation, classify all triples (G,V,g) such that
dv{a) < o{g).

This problem dates back at least to the classical works of Blichfeldt, Hall and
Higman, and Thompson, and it is far from being solved. We will concentrate on
the case where o(g) is an r-power, where r is a given prime.

5.1. char(F) = £ ̂  r case. Referring to ongoing works of Zalesskii, and of Kleshchev
and Zalesskii concerning the cases where G/Z(G) is a sporadic group, respectively
an alternating group, we will assume that G is a finite quasisimple group of Lie type
in characteristic p.

5.1.1. Unipotent subcase: r = p. The following basic result has been established by
Zalesskii:

Theorem 5.2. [Z] Let G be a Unite quasisimple group of Lie type in characteristic
p, of simply connected type. Suppose that V is an irreducible FG-module with
char(F) = £ ^ p, and g £ G is an element of order p, such that 1 < dv(g) < p.
Then one of the following holds.

(i) G = Sp2n(p) or SUs(p), g a transvection.
(n)G = SL2(p2)orSP4(p).

It remains to determine the possible modules V in Theorem 5.2. The case 5.2(ii)
can easily be done directly. Assume we are in the case 5.2(i). It was shown by
Zalesskii and the author in [TZ2] that V is a Weil module, if £ = 0. It turns out
that the same conclusion is true in any cross characteristic.

Theorem 5.3. [GMST] In case (i) of Theorem 5.2, V is a Weil module.

5.1.2. Semisimple subcase: r ^ p. This subcase turns out to be more subtle than the
unipotent subcase. Nevertheless, DiMartino and Zalesskii have proved the following
theorem:
Theorem 5.4. [DZ] Let G be a finite classical group in characteristic p and W = F™
the natural module for G with n > 4. Let r be a prime other than p, and g € G
be an r-element that fixes a nonzero totally singular subspace ofW. Let V be an
irreducible FG-module in characteristic £ coprime to p such that 1 < dy(g) < \g\.
Then one of the following holds.

(i) G = SP2n(q), q odd, \g\=q+ 1, dim(<7 - \)W = 2.
(ii) G = GUn(q), \g\ = q + 1, dim(5 - 1)W = 1.
(iii ) G = GUn(q), q = 2,\g\=9,n> 4, dim(g - 1)W = 3.

Again, we are interested in determining the possible modules V in Theorem 5.4.
If £ = 0 and G  ̂ Sp4(3), then it was shown by Zalesskii and the author in [TZ2]
that V is a Weil module. The same conclusion is true in any cross characteristic.
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Theorem 5.5. [GMST] In all cases of Theorem 5.4, ifG ^ SpA{3) then V is a Weil
module.

If G = 5p4(3), there is one more possibility for V, namely the unipotent repre-
sentation of degree 6, cf. [GMST].

To identify the modules V in Theorems 5.2 and 5.4, different methods have
been employed in [TZ2] and [GMST]. In [TZ2] one shows that dim(V) is less than
5c(G), therefore V is a Weil module by Theorem 4.4. In [GMST], one shows that
V possesses a local property (property (1) in the case of Sp2n{q)), whence V is a
Weil module by the local characterization of Weil modules obtained in [GMST].

5.2. char(F) = £ = r case. The most interesting subcase is the case of quadratic
modules in characteristic £, that is, G is generated by the set of all elements g € G
for which [g, g, V] = 0. Quadratic pairs (G, V) with F*(G) being quasisimple were
investigated by Thompson [Th] and Ho [HI, H2] in the seventies. The interest
in this problem has recently been renewed by a possible application in the third
generation proof of the classification of finite simple groups theorem (CFSG), which
is being developed by Meierfrankenfeld, Stellmacher, Stroth, and others. Motivated
by this, one would like to classify all quadratic modules for known quasisimple
groups. Using CFSG, Meierfrankenfeld and Chermak have identified possible groups
that can possess quadratic modules:

Theorem 5.6. [Ch] Let G be a finite group with F*(G) quasisimple, £ > 2 a
prime, and let V be a faithful irreducible FgG-module. Suppose that there is an
elementary abelian (.-subgroup A such that G = (AG) and [A, A, V] = 0. Then one
of the following holds.

(a) F*(G)/Z(F*(G)) € Lie(£).
(b) £ = 3, \A\ = 3, and either

(i)G = PGUn(2),n>5;
(ii) G = 2An, n > 5, n ^ 6; or
(iii ) Z(G) is a nontrivial 2-group and G/Z(G) is Sps(2), 0^(2), G2(4), Cox,

Sz, J2.

It remains to classify quadratic modules for the above groups G. Case (a) (under
the assumption that G is perfect) was done by Premet and Suprunenko in [PS].
Case (b)(ii) was handled by Wales in [Wa] and by Meierfrankenfeld in [Me], where
they showed that V is a basic spin module (Meierfrankenfeld has actually found
all indecomposable quadratic modules, not just the irreducible ones). The following
two results of [GMST] settle the remaining cases (b)(i) and (b)(iii):

Theorem 5.7. [GMST] In case (b)(i) of Theorem 5.6, V is a Weil module.

As in the proof of Theorem 5.5, we show that the modules V in 5.6(b)(i) possess
some local property, which implies that V is a Weil module, by means of the local
characterization of Weil modules in [GMST].

Theorem 5.8. [GMST] Each of the groups 2Spe(2), 20^(2), 2J2, 2G2(4), 2Sz,
and 2Co\, has a unique irreducible quadratic ¥3-module V. In the Erst two cases
V can be obtained by reducing the root lattice of type E& modulo 3, and in the last
four cases V can be obtained by reducing the Leech lattice modulo 3.
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One of the main ideas of the proof of Theorem 5.8 is the following. Given a
quadratic module V of a group G in Theorem 5.8, first we show that the quadratic
element a (a generator of A in the notation of Theorem 5.6) is contained in a small
and "easy to handle" subgroup H of G. Next we classify quadratic modules for H,
and then try to identify V using the now available information about the restriction
V\H- For a given group G, this idea may need to be applied repeatedly.

6. RANK 3 PERMUTATION MODULES

In this section we display some new results concerning the submodule structure
of rank 3 permutation modules.

Let G be a rank 3 permutation group on a finite set fi, and F an algebraically
closed field of characteristic I. Many questions of combinatorial nature can be
answered once we know the submodule structure of the corresponding permutation
module Fft.

We will focus on the following situation: G is a finite classical group in charac-
teristic p, V is the natural module for G, and Cl is the set of singular 1-spaces in
V. The action of G on Cl has permutation rank < 3, and yields the main examples
among all rank 3 actions of finite classical groups, whose classification is due to
Kantor and Liebler. When I = 0, the theory is well known and dates back to work
of D. G. Higman in the sixties. In contrast to this, hardly anything at all is known
about the permutation modules in the natural characteristic, that is I = p, except
for the case of the groups Sp2m (i) , where the composition factors of Ff2 were given
by Zalesskii and Suprunenko [ZS], and the case of the groups Sp2m(p), for which
the submodule lattice of ¥Cl was determined by Sin [Sin].

The study of the cross characteristic case, i.e. I ^ p, was first taken up by
Liebeck [Lil , Li2]. To describe his results, we fix some notation. Let , ) denote
the G-invariant, hermitian or bilinear, form on V. For i £ f l , let

, o:=|A(a:)|,

and define the endomorphism 6 of the G-module Ffi by

Then S has three eigenvalues: a, c, d, for some integers ctd. Liebeck defined the
subgraph submodules Uc, Ud, where Ue := (e(x — y) + S(x) — S(y))r for e = c,d, and
proved the following basic result:

Theorem 6.1. [Lil , Li2] Let U be any submodule ofFQ. Then either
(i) U is contained in the (unique) trivial submodule I ofWfl; or
(ii) U contains Uc or Ud-

6.1. Case I : c  ̂ d in F. In this case, S has three different eigenvalues. Using
Theorem 6.1, Liebeck has determined the submodule lattice of Ffl. It turns out
that Ffi has composition length 3 or 4, and the submodule lattice can be pictured
as in Figure III .
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FIGURE III .

Uc

(Depending on (£,n,q), one may have
to switch Uc and Ud in the picture)

6.2. Case I I : c = d (in F). In this case, the structure of Ffi is more complicated,
and the composition length may be 8 or higher. Using the results on low dimensional
cross characteristic representations, we have been able to determine the submodule
lattice of Ffi for

(i) G = Sp2n{q) [LST] (here c — d means q is odd and I = 2), and
(ii) G = GU2n(q), SOfn(q), SO2n+1(q) [ST]. (here c - d means £\(q+l), £\{q + l),

and (i,q) = (2, odd), respectively).
In case (ii), we can also handle the perfect groups SU2n(q) and fl^iq), except

for an ambiguity in the case of SUi(q) with I — 2.
The remaining case is G = SU2n+i{q)  (with n > 1). In this case, we have

determined all composition factors of Ff2, but we do not know the multiplicity say
a of a Weil module as a composition factor of FQ, cf. [ST]. What we do know is
that 2 < a < q+1. It is sensible to conjecture that a = 2, which is Geek's conjecture
[Gl] when n = 1. A proof of Geek's conjecture was announced by Okuyama. Also,
a computer calculation performed by Lux has confirmed our conjecture in the case
of SU5(3).

In future papers we will consider other rank 3 permutation actions of finite groups
of Lie type.

To illustrate our results, we display in Figure IV the submodule lattice of ¥0, in
the case G = Sp2n(q), q odd, and I = 2, cf. [LST].

Length 3 Length 4
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n even

FQ

FIGURE IV.

n odd

X

X

{0}

Here, W and W are Weil modules of dimension (qn — l)/2, I is the trivial
module, and

" \ 0, n odd

7. MORE APPLICATIONS

In this section we mention some more applications in which the results on low
dimensional representations have helped achieve considerable progress.

A typical scheme of applying the results on low dimensional representations is as
follows. Suppose we want to prove some statement V involving representations $
of finite groups G. First one tries to reduce to the case G is quasisimple (or almost
quasisimple). Next, with G being (almost) quasisimple, one shows that either V
holds for $, or $ has degree less than some bound d. At this stage, results on low
dimensional representations should allow one to identify the representations <j> with
deg($) < d, for which some brute force arguments may be needed to establish V.

1. Classification of maximal subgroups of finite classical groups.

(0)

FQ

W

dim (X)
1 n even
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Let G be a finite classical group. According to the fundamental theorem of
Aschbacher [A], any maximal subgroup M of G is a member of either one of the
eight collections d, 1 < i < 8, of naturally denned subgroups of G, or of the
collection S of certain quasisimple subgroups of G. Conversely, if M € Uf=1Ci, then
the maximality of M has been determined by Kleidman and Liebeck in [KL] . It
remains to determine, which M € S are indeed maximal subgroups of G. This in
turn leads to a number of questions concerning modular representations of finite
quasisimple groups, the resolution of which requires a lot of information about low
dimensional representations of finite quasisimple groups, in particular, a solution of
Problem 1.3. We refer the reader to the paper of Magaard [M] in this volume for a
detailed account of this topic.

2. Recognition of finite linear groups.
Results on low dimensional representations are obviously useful for recognizing

finite linear groups, in both theoretical and (computer) computation settings, once
the degree of the representation is given or is bounded. For an illustration, we refer
the reader to the aforementioned paper [HM2] of Hiss and Malle. See also [GPPS],
where results on low dimensional representations have been used to classify the
maximal subgroups of classical groups containing an element of prime order acting
irreducibly on a subspace of large dimension.

3. Results on low dimensional representations have made it possible to achieve
significant progress in a number of more specific problems. We refer the reader

 to [Gu], where low dimensional modules in characteristic p for groups with no
normal p-subgroup are shown to be semisimple,

 to [GT3], where we explore a new approach to the fc(Gy)-problem, and
 to [GT4], in which derangements of finite primitive permutation groups are

studied.
We expect more applications to evolve in near future.
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STRUCTURE AND PRESENTATIONS
OF LIE-TYP E GROUPS

F. G. TIMMESFELD

§ 1 Introduction .

Let B be an irreducible spherical building over the type set / of rank I > 2 (i.e.
|/| = £), considered as a chamber system (for definition see [Ro, chapter 3] or [Til ,
1(4.4)]) and A an apartment of B. Denote by $ the set of roots (half-apartments) of
A (See [Ro, p. 14] or [Til , 1(4.6)]). For each chamber c £ B and each i € I denote
by Aj(c) the set of chambers of B, which are z-adjacent to c. If A^(c) C\A ^ 0 we call
Aj(c) n A an i-panel (or simply panel, if the type is of no importance) of A. Notice
that, since A is a Coxeter (chamber) complex, such an i-panel of A just consists of
a pair of i-adjacent chambers of A.

Denote by Aut(S) the group of type preserving automorphisms of B, i.e. Aut(<B) is
the set of bijections a : B —> B with c ~ d, if and only if ca ~ d" for c,d £ B and
iel. For r G $ let

Ar :=  {a G Aut(S) \ ca = c for each c G B such that A;(c) fl A is a panel of A
contained in r for some i G / } .

AT is called the root subgroup of Aut(B) corresponding to the root r of A.

Since it is fairly complicated to see through this definition lets keep the following
(easiest possible) example in mind (building of type Ae).

(1.1) Example. Let V be an (£ + l)-dimensional vectorspace with basis B =
(v\,  , ve+\) and let B be the set of all maximal flags (chambers) of the projective
space of V, i.e. a chamber c e B is of the form c = (Vj.,  ,Vt) with subspaces Vi
of V satisfying dim Vi = i and Vi C V̂ +i for i = 1,  , i (Ve+i = V). Call two such
chambers c = (Vi,  , Ve) and d = (Wi,  , We) i-adjacent, i G / = {1,  , £}, if
they just differ on the i-th component, i.e. Vj = Wj for all j ^ i. Let A be the set
of such chambers of B which are spanned by vectors in B. Then B is a building (of
type Ae), with apartment set consisting of all possible A's, when B runs over all
possible bases of V. Moreover Aut(2?) = PTL(V).

Now consider the natural action of W = S^+i on B and A. If c = (Wi,  ,
We) G .4. use the convention We+i = V. Then it follows from the definition of A,
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that if {vi, Vj} C Wk, 2<k<£+l,  then vi G Wk-i or Vj € Wk-i- Thus, if we set
for the 'reflection' wr = (ij) G W:

r -.= {c= (W\,  , Wt) G A | If k is the smallest index with {vi, Vj} C Wk, then

«i G Wk-l}

and similarly

—r = {d = (U\,  , Ue) € A | If A; is the smallest index with {«;, u }̂  C Uk, then
^ G t/i(,_i}

it follows that A = r\J (—r),r D (—r) = 0 and rWr = —r. In this situation r and
—7" are the two 'opposite' roots corresponding to the reflection wr. Then it can be
shown that the root group Ar is the image under the homomorphism P : TL{V) —>
PTL(V) of the transvection group corresponding to the point (u<) and hyperplane
i f = (ufc \ k = 1,  +l,k  ̂ j). Moreover it can be shown with elementary
matrix manipulations that

(*) PSL(V) = (Ar | r G $) (i.e. r a root corresponding to some reflection
(ij)  G

Now for each root r of A let

W(r) be the set of apartments of B containing r (as subset).

Then it can be shown, see [Til , 1(4.9)], that Ar acts fixed-point-freely on W(r).
If Ar acts also transitively, whence regularly, on W(r) for each r £ $, then the
building B is called a Moufang-building. An important theorem of J. Tits [Titsl]
shows, that if £ > 3, B is always a Moufang-building. It is well known that for t = 2
this is no longer true.

(1.2) Definition. If B is an irreducible, spherical Moufang building of rank £ > 2,
.4 an apartment of 6 and $ the set of roots of A, then we call

G :=  (Ar | r G $) < Aut(S) the group of Lie-type B, where Ar is the
root-subgroup of Aut(S) corresponding to r.

This definition seems to depend on the choice of the apartment A of B. But, as will
be seen in §3, this is as for Aut(tf) = PTL(V) and G = PSL(V), not the case. In
fact one obtains the same group, starting with any apartment of B. This definition
of a group of Lie-type B generalizes the usual, somewhat vague definition of a group
of Lie-type. It includes

- the simple classical groups of Witt-index £, 2 < £ < oo.
- the simple algebraic groups of relative rank £ > 2.
- the finite groups of Lie-type of rank £ > 2.

The development of a general structure theory (including simplicity) of such groups
of Lie-type B has been started in [Ti2], see also [Til , I §4 and II §5]. One important
ingredient of this structure theory is the theory of rank one groups, see [Til , I].
Here a rank one group X = (A, B) is a group generated by two different nilpotent
subgroups A and B satisfying:
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For each 1 ̂  a £ A there exists a b £ B such that Ab = Ba and vice versa.

Rank one groups come into the theory of groups of Lie-type B through the following
observation, see [Til , 1(4.12)]:

If r and —r are opposite roots of some apartment A of B, then Xr = (Ar, A-r) is
a rank one group.

One should think of such a rank one group as a generalization of SL2{K). In fact
in example (1.1) we always have Xr ~ SL^iK), K the division ring over which V
is defined.

§ 2 Rank one groups

In this section we state, without proof, some properties of rank one groups, since, as
mentioned already in the introduction, the rank one groups are of central importance
for the Lie-type groups of higher rank. Proofs of all these properties can be found
in [Til , I] .

(2.1) Definition . A group X generated by two different nilpotent subgroups A and
B satisfying:

(*) For each a £ A& there exists a 6 £ B satisfying Ab = Ba and vice versa,

wil l be called a rank one group. The conjugates of A (and B) are called the unipotent
subgroups of X and the conjugates of H = Nx(A) 0 Nx{B) are called diagonal
subgroups.

If A is abelian, X is a rank one group with abelian unipotent subgroups, abbreviated
AUS. Moreover, if for each a £ A* and b € B satisfying (*), also

(** ) a6 = b~a

holds, X is called a special rank one group. It follows from [Til , I(1.2)(2)] that this
definition of special is symmetric in A and B. Finally, if for some Nx {A) invariant
subgroup 1 ̂  AQ < A we have ab = b~a for each a £ ^4 ,̂ then X is called relatively
special with respect to AQ. By [Til , 1(1.12)] the following are equivalent:

(1) X is relatively special with respect to AQ.
(2) Xo = (AQ, BO) is a special rank one group, where BQ = AQ for x & X with

Ax = B.

(Since AQ is Nx (A)-invariant we have Ag = AQ for all x, y £ X with Ax = B = Av.)

(2.2) Example. Let A; be a field. Then 5 2̂ (fc) is the group generated by the symbols
a(t),b(t),t G k subject to the relations:

(a) a(t)a(r) = a(t +  r ) ,b(t)b{r ) = b(t + r);t,T £ k.
(b) a(u)n« = b(-t-2u);u£ k and t £ k*, where n(t) = a(-
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Then by [Til , 1(5.1)] St2(k) is a special rank one group with unipotent subgroups
A = {a(t) | t £ k} and B = {b(t) \tek}. Moreover, if |A;| > 4 and \k\ ̂  9, then by
Theorem 10 of [St] St2(k) is the universal central extension of PSL2(k).

Let in the following X = (A, B) be a rank one group and let O = Ax. Then we
have

(2.3) Lemma.

(1) The element b = b(a) satisfying (2.1)(*) is uniquely determined. Moreover
the map x  A* -*  B*,B* -» A* with x{°>) - b(a)>x(b) = a(b) is a
bijection with x2 — id-

(2) X = (C, D) = (C, d) for all C £ D G Q and d e D*.
(3) X is doubly transitive on ft and A is a nilpotent normal subgroup of Nx (A)

acting regularly on $7 — {A}.

See [Til , I] (1.2) - (1.4).

Prom (2.3)(3) one obtains, see [Til , 1(1-3)], that the concept of a rank one group
and of a group with a split UN-pair of rank one are equivalent. Namely, if Y has
a split SAT-pair of rank one and B = U  H, H = BnN and U < B nilpotent with
U fl H = 1, then clearly X = (UY) is a rank one group.

(2.4) Lemma. Suppose N<X. Then either N < Z{X) or X = NA. In particular
we obtain:

(1) Z{X) = Z2(X).
(2) X is quasisimple if it is perfect.
(3) (ax) is not nilpotent for each a G A#.

(2.5) Theorem. Suppose X is special with AUS. Then one of the following holds:

(1) A is an elementary abelian p-group. Moreover for each a £ A* we have
X(a) = (a,b(a))~(P)SL2(p).

(2) A is torsion free and divisible. For each a £ A* let A(a) = {a™ | 0 ^
n, m <E Z}  and B(a) = {b(a)  ̂ \0^n,meZ}. Then X(a) = (A(a), B(a))
is an epimorphic image of 5*2 (Q)-

This is (5.2) and (5.6) of [Til , I]. The proof occupies most of section 5 of chapter
I of [Til] . From (2.5) we obtain the following simplicity result for special rank one
groups.

(2.6) Corollary . Suppose X is special with AUS. Then one of the following holds:

(1) X is quasisimple.
(2) A is an elementary abelian 2 or 3-group. Moreover X' is quasisimple and

\Anx'\ >3.
(3) X~(P)SL2(3) or SL2(2).
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Proof. In case (2.5)(2) or if p > 5 in (2.5)(1) it follows from (2.4)(2) that (1) holds.
That we obtain either (2) or (3) if p < 3 follows from [Til , 1(2.10)].

I actually do not know any example in which neither (1) nor (3) holds. If one could
show this, this would simplify the simplicity proofs for Lie-type groups, which are
not defined over GF(2) or GF(3).

Although there is no complete classification, (2.5) and (2.6) show that special rank
one groups with AUS are reasonably well understood. Hence it is of great impor-
tance to find criteria under which arbitrary rank one groups are special respectively
relatively special. Here the condition is quadratic action.

(2.7) Proposition. Suppose 1 ̂  AQ < Z(A) is i7-invariant and let XQ = (Ao,B0)
where Bo = AQ for i £ X with Ax = B. Suppose X acts on some abelian group N
such that

(a) [N,X,Xo]^0.
(b) [N,A,Ao]  = 0.

Then XQ is special (i.e. X is relatively special with respect to Ao). In particular, if
[N, X, X] £ 0 = [N, A, A], then X is special with AUS.

Proof. This is [Til , 1(2.4)]. Notice that, if K is the kernel of the action of X on
N, then by (2.4) Af)K = 1. Hence if [N,A,A] = 0, then A is abelian by the
3-subgroup lemma. Thus, setting A = Ao, we obtain the second statement.

(2.8) Example.

(1) Let G be a unitary group of Witt-index 1 over some division ring with
natural module V. Let P be an isotropic point of V and

UP := {a e G = 0 and (p-Ly-u c P}

Tp := {tr  G G

Then R = (Up) is a relatively special rank one group with respect to Tp.

That R is a rank one group has been shown in [Til , 1(1.9)]. Now [V, Tp, Up] =
0 = [V,Up,Tp] and (2.7) show that R is relatively special with respect to
TP.

(2) Let G be an orthogonal group of Witt-index 1 and Up as in (1). Suppose
that there exist more than two singular points. Then R = (Up) is a special
rank one group with AUS.

Namely if W is the so called spin-module for G, then it is well known that
[W,UP,Up}=0.
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Finally a result which will be of great importance for us in §4 and which somehow
explains, why the characteristic two case is much harder for Steinberg-presentation
type results.

(2.9) Lemma. Suppose V is a faithful ZX-module, satisfying:

(i) V = [V,X] andCV(X) = 0.
(ii) [V,A,A] = 0.

Then there exists an element r G Z{X) with r = —id on V.

Proof. By (2.7) X is special with AUS. Pick a G A*. Then a G A(a) < X(a) and
X(a) is by (2.5) an image of St2(k), k a prime field. Hence we may set a = a(l)
in the notation of (2.2). Hence r = n(l)2 acts by [Til , I(3.5)(2)] as - id on V. In
particular r G Z(X).

If now A is not an elementary abelian 2-group, then V is not an elementary abelian
2-group. Hence r ^ 1 = r2.

§ 3 On the structure of Lie-type groups.

Let in this section B be an irreducible spherical Moufang building over I of rank
£ > 2, A an apartment of B and $ the set of roots of .4.. Let G = (Ar \ r G $) be
the group of Lie-type B, as defined in (1.2). We start to investigate the structure
of G.

(3.1) Definitions. Fix a chamber c of A and set $+ := { r 6 # j c € r}. Using
the geometric realization of the Weyl-group of A (A is a Coxeter complex!) we
can identify $ with a root-system in the original sense such that $+ becomes the
set of positive roots in this root system. (I.e. $ is of one of the following types
At,Be,Ce,Dt,Ee,F4,G2 or I2(m). By [Tits3] resp. by the Theorem of Tits and
Weiss, see [VM, (5.3.4)] Moufang buildings of type H3 and iJ4 do not exist, and if
B is of type h{rn) then m = 3,4,6 or 8. In the last case, i.e. $ of type 12(8) we
call $ of type 2  see [VM,(5.4)].) For r G $ we fix the following notation:

Ar := the root subgroup of Aut(B) corresponding to r
Xr := (Ar,A-r).

Then, by [Til , 1(4.12)] Xr is a rank one group with unipotent subgroups Ar and
A-r.

Hr := NXr(Ar) D NXr(A-r)
G :=  (Ar\r£ $)

U :=  (Ar\re $+)

H := (Hr I r G *>.

By [Til , 11(5.1)] G acts chambertransitively on B and c is the only chamber of B
fixed by U. (c is obviously fixed by U by definition of the Ar in §1!) Let II be the
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fundamental system contained in $+ . Then each root in $+ can be written as a
linear combination of roots in II with nonnegative coefficients.

Our first aim is to enlarge $ to a possibly nonreduced root system $, such that
for the Ar, r € <E> some sort of "Chevalley-commutator-relations" hold. For this we
may assume that $ is not of type /2(8), since in this case by a theorem of [Tits3],
see also [VM, 5.4.5] these commutator relations hold for $ = 2F4. Now we will have
<& = $ except possibly if B is of type Ce. In the latter case let

1 2 £-1 £

be the Dynkindiagram of II and let W be the Weyl-group of $ acting naturally on
$. Now by [Tits2, 7.4] a building of type Ct can be regarded as a polar space V of
rank £. Let r be a root of $ conjugate to re under W. Then r corresponds to some
point P of V. (Up to duality in case £ = 2. If V is classical with natural G-module
V, then

Ar<UP = {aeG\ Pa-'ld = 0, (p-L)CT-id c P}1)

Let

Tp :=  the set of central elations on V corresponding to P
:= {a e Aut(23) | a fixes each point on each line through P}.

Then we have three cases to distinguish:

(a) Tp = 1. In this case choose $ = $ to be of type Be. (Since originally $
is just the set of half apartments of A, we still have the freedom to choose
the length of the roots appropriately!)

(b) Ar — Tp. In this case choose $ = $ to be of type Ct-
(c) 1 < Tp < Ar. In this case set Air — Tp. Moreover, choose $ to be of type

Be and set

$ = $ U {2r | r e $ short } .

Then $ is a root system of type BCe- Moreover $o = {s G $ | s long }  U
{2r | r £ $ short }  is a root-subsystem of type Ce-

With all this notation we have:

(3.2) Lemma. Suppose $ is of type BCe and r G $ is short. Then the following
hold:

(i) A'r < A2r < Z(Ar).
(ii) Air is i/r-invariant.
(iii ) Xir = {Air-, A-2r) is also a rank one group.
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Proof, (i) If V is a classical polar space, (i) follows immediately by an application
of the 3-subgroup-lemma to the action on the natural module. If V is not classical
(i) follows from the commutator relations of [Tits3] for the root groups on Moufang-
quadrangles, see [Til , 11(5.4)]. (ii) follows directly from the definition of A2r = Tp,
since Hr fixes P. For the proof of (iii) , which is not so easy, see [Til , 11(5.19)].
(The idea of the proof is to apply (2.7) for the action of Xr on some section of
a unipotent subgroup. This Xr-invariant unipotent subgroup is constructed using
again the commutator relations of [Tits3] on Moufang quadrangles!)

If B is not of type Cg. (nor 12(8)), then we simply set <E> := $. Notice that, if s G <£
then As is abelian except possibly in case $ of type BCz and s is short. The proof
for this fact is easy. Namely using the action of the Weyl group on $ it is easy to
see that there exists, except $ of type BC( and s short, a root r G <£ such that
(r,s) is of type A2. Now it follows from the commutator-relations of root-groups
on a Moufang-plane that Ar and As are abelian. The next theorem is of central
importance to the structure of Lie-type groups.

(3.3) Theorem. Suppose r, s G $ with s ^ - r or —2r. Then [Ar, As]  < (A\r+liB  \
\,/j,€¥S and Ar + [is G $).

In (3.3) we use the convention (0) = {1} . Hence the fact that A's = 1 if 2s g $ is
a part of (3.3). For the proof see [Til , 11(5.7)(2)]. Notice that by the commutator-
relations of [Tits3] on Moufang-polygons, see also [VM, (5.4.6)], (3.3) holds if I = 2.
Now the proof of (3.3) consists of showing that (Ar,As) acts faithfully on some
rank 2 residue of B, such that Ar and As induce root-groups on this residue. From
(3.3) we obtain as an immediate Corollary.

(3.4) Corollary . Let h be the greatest "height" of a root in 3>+. Then

(1) U is nilpotent of class at most h.
(2) Ah < Z(U), where h also denotes a root of height h in $+ .

In (3.4) is, as usual, $+ the set of all roots of <£ which are linear combinations of
roots in II with nonnegative coefficients.

(3.5) Notation. Notice that by (2.3)(2) we have in the situation of (3.2) H2r =
Nxir{Ar) fl Nx2r(A-r) < Hr- Moreover, if w G X r̂ interchanges (by conjugation)
A2r and A_2r, it also interchanges Ar and A-r. Hence for r € $ we may choose
an nr G Xr interchanging Ar and A-r, with the convention that, if 2r G $, then
nr G X2r and also interchanges A2r and A_2r. Now set N — (H,nr | r G $). We
have

(3.6) Lemma. Let r , «£ f. Then the following hold:

(1) [H r,Ha]<H rnHs.
(2) [H r,ns]<H s.
(3) H<N and W = N/H is generated by the involutions wa = naH for a G $.
(4) H fixes all chambers of A and W acts as the Weyl-group (of .4) on A.

(Possibly with kernel ^ 1!)
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Proof. By the proof of (1.3) in [Til , 1(4.12)] Hr fixes the roots r and -r globally,
whence it also fixes A = r(j — r. Moreover, again by [Til , 1(4.12)] Hr fixes some
chamber in A and thus all chambers in A, since A is a Coxeter complex. In partic-
ular Hr fixes s and —s, whence A3., A-s, Xs and Hs. This proves (1) and the first
part of (4). Now

Hsns = {n G Xa | n interchanges As and A-s}.

Hence Hr normalizes Hsns and {Hsns) = Ha(na). Since \Hs{na) : Ha\ = 2 this
implies (2). (3) is a consequence of (2). Finally, the second part of (4) follows from
the fact that by [Til , 1(4.12)] nr acts as the "reflection" corresponding to r on A.

By (3.6)(4) H normalizes all Aa, s € $+ and whence normalizes U. Thus we may
set B = U  H. With this notation we have

(3.7) Theorem. The following hold:

(1) B, N is a BTV-pair of G.
(2) U n H = 1 and H = B D N.
(3) H is the kernel of the action of N on A.

For a proof of (3.7) see [Til , II(5.12)(4) and (5.13)]. Notice that by (3.6)(4) we
have

(*) A" r = Aswr for all r,s € $; where wr also denotes the reflection induced
by wr on A and $.

This equation will be of importance for us in §4. Finally, if we set

H :— {a £ Aut(B) | cCT = c for each chamber c of .4},

then by (3.6) (4) H < H and we have

(3.8) Corollary . G < Aut(S) and Aut(S) = GH.

For a proof see [Til , 11(5.18)]. (3.8) follows from (3.7) using the fact, see [Til ,
11(5.16)], that one can show using the BA^-pair decomposition of G that G acts
transitively on the pairs (c, A), where c is a chamber of B and A an apartment of
B containing c. (So called strong transitivity in the theory of buildings.)

(3.9) Notation. A conjugacy class E of abelian subgroups of some group R is
called a class of abstract root subgroups of R, if R = (£) and for all A, B € S one
of the following holds:

(1) (A, B) is a rank one group with unipotent subgroups A and B.
(2) [A,B] = 1.
(3) (A, B) is nilpotent of class at most two and [a, B] = [A, b] = [A, B] G S for

all a G A*, b G £# .
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Nearly simple groups generated by a class of abstract root subgroups have been
classified in [Ti3]. In this classification theory many details about so called S-
subgroups, i.e. subgroups generated by elements of S, are provided. Hence, as the
next theorem shows, this classification theory also gives a lot of information about
subgroups of Lie-type groups.

(3.10) Theorem. Suppose B is not a Moufang octagon. Let H ea highest root in
$+ . Then the following hold:

(1) S = A'fi is a class of abstract root subgroups of the normal subgroup Go =
(E) of G.

(2) G'o is simple.

For the proof of (1) see [Til , 11(5.20)]. (2) follows from (1) using simplicity criteria
for groups generated by abstract root subgroups, see [Til , 11(5.21)]. In (5.21), (5.22)
of [Til , II] it is also shown that G/G'o is "small". Notice that in (3.10)(2) we indeed
must take G'o as the following examples show:

G =
G = G0 = Sp(4,2)~E6,G'0~A6.

§ 4 The Steinberg-presentation.

Let G be a Chevalley-group over the field k with root-system $ of rank i > 2
(i.e. G is not Ai(k)\). Then, if |fc| > 4, by Theorem 10 of [St] the set of symbols
ar(t),r G $, t £ k satisfying the relations

(4.1)

(1) ar{t)ar{r)  = ar{t + r), r € $; t,T e k.
(2) If a, j8 S $ with /? ̂ , then

[aa(t),ap(T)] = naicH.i/3(ci.,-tV);

where i, j runs over all positive integers such that ia + j/3 g $ and the
Cij E k are the so called structure constants. Moreover the product is taken
in order of increasing i + j .

is a presentation for the universal central extension G of G. Notice that in general
(i.e. over infinite fields) G is different from the universal Chevalley-group.

Now the proof of this theorem works in principal as follows. Let G be the group
given by the above presentation and TT : G —* G be the natural homomorphism
mapping the ar(t) onto the root-elements xr(t) of G. Then one has to show:

(i) n is a central extension with ker?r < G'.
(ii) G is centrally closed, i.e. each central extension of G splits.
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To prove (i) let Ar = {ar(t) | t G k} for r G $ and [/ = ( i , | r e $+) and
U = (xr(t) | r G $+ , i £ fc). Then it follows from the fact that each element of
U has a unique expression as a product of the root-elements xr(t),r G $+ , i G k
that TC |p is an isomorphism (and similarly for U~ = (Ar | r G  From this
it follows already, see [St, L 37], that the relations (2.2)(b) hold for a(t) = ar(t)
and b(t) = a_r(£), i.e. that Xr = (Ar,A-r) is a rank one group. Now ker7r <
H = (Hr | r G $), where Hr is defined as in §3. Hence [U, kerTr] < UDkern = 1
and similarly [U~,ker?r] = 1 and thus ker7r < Z(G), since G == (U,U~). Now, as
|fc| > 4 and f > 2, it is easy to see that Q — G'. This shows (i). The proof of (ii) is
more difficult and occupies the central part of §7 of [St].

Now one would like to have a similar theorem for the groups of Lie-type B as defined
in §3. But unfortunately we obtained in (3.3) just "global" commutator-relations for
the root-groups. In fact it seems to be very difficult even to know how elementwise
commutator-relations ought to look like in the general case. Hence we consider in
the rest of this section the following hypothesis:

(4.2) Hypothesis. (St) Let $ be an irreducible, spherical, possibly nonreduced
root-system satisfying the cristallographic condition of rank £ > 2 (i.e. $ is of type
At,Bt,Ct,BCe,l > 2,De,e >4,Et,6<l<  8,F4,G2 or 2F4.) and G is a group
generated by subgroups Ar ^ 1, r G $ satisfying:

(1) For r, s G $ with s ^= —r or — 2r we have

[AT, As]  < (Axr+pS | A, fj, G IN and Ar + /J,S G $)

(Here we use again the convention (0) = {1}! )
(2) Xr = (Art A-r) is a rank one group with unipotent subgroups Ar and A-r

for each r £ $.

(Notice that by (1) Ar is nilpotent of class at most two!)

Clearly by (4.1)(2) and the remarks after (4.1) the universal central extension of
a Chevalley-group satisfies hypothesis (St). Moreover, by §3, all groups of Lie-
type B satisfy (St). Hence this hypothesis seems to be a good substitute to the
Chevalley-commutator-relations (4.1) (1) and (2) in our more general situation. We
have:

(4.3) Main-Theorem. Suppose G is a group satisfying (St) with $ not of type G^
or 2  Then one of the following holds:

(i) G is perfect and there exists a surjective homomorphism n : G —> G, where
G is a group of Lie-type B, mapping the Ar with r ^ 2s; r, s G <E>, onto the
root-subgroups of G corresponding to the roots of some apartment A of B
(in the sense of §3). Moreover ker7r < Z(G) n H, where

H = {Hr I r G *> and Hr = NXr(Ar) n NXr(A-r)-

(ii) $ = JOK with 3 ^ 0 ^ K and either J = } or J =  or J
carries the structure of an irreducible root system \P of rank > 2. Moreover
G = G(J) * G(K), where G(J) = (Xr | r G J) (and similarly G{K)) and
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either G(J) is a rank one group or G{J) satisfies the conclusion of (i) with
respect to * .

(iii ) J' = {r  € $ | Ar is an elementary abelian 2-group }  ^ 0. Let J = J' U {s €
$ | 2s € J'}  and tf = $ - J. Then G = G{J) *

In particular our Main-theorem tells us, that if $ can not be decomposed into the
disjoint union of two nonempty subsets and G is the central product of subgroups
corresponding to these subsets and if no Ar, r £ <E> is an elementary abelian 2-
group, G is a perfect central extension of a group of Lie-type B. In case (ii) the
root-system * is not necessarily a root subsystem of 3>. For example, if $ = B2 the
group G = SLz{K) * SL2iK) satisfies (St) with respect to $ and with ^ of type
A2. It is clear that case (ii) has to occur, since the commutator relations of (4.2)(1)
might degenerate. (For example all commutators in (4.2)(1) might be 1, in which
case obviously G = * r£$Xr.)

Unfortunately the Main-theorem only gives us real information if the characteristic
is different from two. This is due to the fact, that central involutions in some Xr

obtained from (2.7) and (2.9) play a central role in the proof. Namely using these
central involutions one can show that one either is in case (ii) or that one always has
equality in the commutator relations (4.2)(1). Now in the second case one is able
to construct a BN-pair and then show that the Ar with r  ̂ 2s act as root-groups
in the sense of §3 on the corresponding building.

Now, since the proof of this Main-theorem is spread over several papers, and since
the auxiliary results obtained in these papers might also be useful, we will discuss
the proof of (4.3) in more detail in the rest of this section.

The starting point is [Ti4] in which the following two theorems were proven.

(4.4) Theorem. Suppose G satisfies (St) and

(*) For all r,s G $ and all nr e Xr interchanging Ar and A_r we have
A™r = Aswr, where wr is the reflection on $ corresponding to r.

Then there exists a group G of Lie-type B, B an irreducible, spherical Moufang-
building and a surjective homomorphism ix : G —> G, mapping the Ar with r ^ 2a
onto the root-subgroups of G corresponding to the roots of some apartment A of
B. Moreover ker7r < Z(G) D H, H as in (4.3).

This is theorem 1 of [Ti4]. Contrary to (4.3) it also holds for root-systems of type
<?2, 2  and also of type H3, H4 and him), in the latter case showing that for $ of
type Hz, Hi or him) with m > 8 no such group exists. The proof is constructive
in so far, that from the conditions we construct the building B and then show that
the Ar act as root-groups in the sense of §3 on B.

The second theorem of [Ti4] is the starting point for all the later development.

(4.5) Theorem. Suppose G satisfies (St) with $ not of type 2F4 and

(+) always equality holds in (4.2)(1).
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Then G satisfies the hypothesis (*) of (4.4) and whence the conclusion.

Notice that for Chevalley-groups of type Ce, and F4 in characteristic two condition
(+) is not satisfied. This is one of the reasons why characteristic two is an exception
in (4.3). The proof of (4.5) consists of extensive commutator calculations and
applications of the theory of rank one groups, in particular (2.7), (2.5) and [Til ,
1(3.7)], which shows that a quadratic module V for X = (P)SL2(k) is a direct sum
of natural modules, if V = [V, X) and CV{X) = 0.

Next in [Ti5] the case when $ is of type Ae, De or Ee is treated, which is particularly
easy:

(4.6) Proposition. Suppose G satisfies (St) with $ of type At, Dt or Et- Then
$ = $ i U " ' U $ i t with root-subsystems $; of $ and G = G($i) *  *  G($k) where
G($i) = (Xr I r G $i). Moreover either G($i) = Xr (if $; =  or <3($i)
satisfies the conclusion of (4.4) with respect to the root-system $;.

The proof of (4.6) consists of two steps. First a lemma, which solves (4.6) in case
$ = A2, which is used as induction basis:

(4.7) Lemma. Suppose G satisfies (St) with <E> = ,  + s)} of type A<i-
Then one of the following holds:

(i) G = Xr*X3*Xr+3.
(ii) Always equality holds in the commutator-relations (4.2)(1).

This is [Til , 11(1.1)]. The proof is very elementary, but is the basis for similar
proofs in more complicated cases. (I.e. $ of type B2 or BC2!) And secondly a
3-transposition argument applied to the Weyl-group of G.

Now, as the example after (4.3) shows, (4.6) is no longer true in case $ is of type
Bt,Ct, BCi or F4. In fact the possible decompositions of $ and G are quite com-
plicated and in case $ = F4 it is possible that one central factor of G is of type A5,
i.e. is of higher rank than $. But still one needs to describe the situation in case
$ = B-i = C2 first. This is done in the main-result of my student C. Miiller [Mii] :

(4.8) Proposition. Suppose G satisfies (St) with $ of type C2. Then one of the
following holds:

(i) G = Xa * C(Xa) for some long root a £ $, Moreover Xp < C(Xa) for all
/3 G $ - { i a } .

(ii) Aa is an elementary abelian 2-group for all a £ $,
(iii ) Always equality holds in (4.2)(1).

For the proof of (4.8) central involutions in Xa, a £ $ long, obtained from (2.9),
play a central role. Using (4.8), in the next step the case when $ is of type Bt, Ce
or Fi was treated in [Ti6]. We can state the main result of this paper as follows.

(4.9) Theorem. Suppose G satisfies (St) with $ of type Be,Ce,£> 2 or F4. Then
one of the cases of (4.3) holds.
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For the proof of (4.9) one needs first to sharpen (4.8) a littl e bit. That is one shows
that in case (i) either G is a central product of rank one groups or \& — <1> — }
carries the structure of a root-system of type A2, G(ty) satisfies case (i) of the Main-
theorem with B a Moufang-plane and G = Xa *  G(^>). Let now H = (Hr | r £ $),
N — (H,nr I r € $), where nr £ XT interchanges Ar and A_r, and N = N/H.
Then it follows essentially from (4.7) and the slightly strengthened version of (4.8),
that {nr I r £ $}  is a normal set of {3,4}-transpositions of N. (For example if $
is of type B2 but G = Xa *  G(^f), then W($) ~ D% passes into S3 x Z^- Hence
if <fr is of type Be, Ci or F4 and a , ^ £$ and (a, /3) is the root-subsystem spanned
by a and /?, we know the structure of G((a,/3)) and whence of (n7 | 7 € (a, /3)).
From this one obtains that o(nanp) < 4 and nj3 = fig for some 6 £ {a, (3), which
shows that {nr | r S $}  is a set of {3,4}-transpositions of TV.) Now the proof
of (4.9) proceeds by discussing the possibilities for N, which in turn give us the
corresponding possibilities for G. Since very many possibilities arise, which are
simply put together as case (ii) in (4.3), the proof is quite complicated in detail.

Finally the case $ of type BCt remains to be treated, which is done in [Ti7]. Here
the result is the same.

(4.10) Theorem. Suppose G satisfies (St) with $ of type BCe,i> 2. Then one of
the cases of (4.3) hold.

For the proof of (4.10) one first has to prove a similar result as (4.8) in case <fr is of
type BC2- Now one considers the root-subsystem

*o = {2r I r, 2r € $}  U {s e * | 2s £ $}  of type Ct-

One finally gets the possibilities for G from the possibilities for G($o) "with the
help of the description of the rank two subgroups. (I.e. structure of G((a, j3));
a,/3£ $!) Notice that in case (i) of the Main-theorem with $ of type BCt, G is
not necessarily of "type BC£\ For example it may happen that Ar = A<ir for all
r € $ with 2r G $. In that case G = G($o) is of "type Ci'.

It should be mentioned that C. Miiller is working on the case $ of type Gi of
the Main-theorem. It is well known that in this case characteristic three is an
exceptional case, i.e. if G is a Chevalley-group of type G2 in characteristic three
one does not have equality in the commutator-relations (4.2)(1), whence one can
not use (4.5) to identify G. Hence the main problem in case $ of type G% is to
discover, on a purely group theoretic level, why characteristic three is different from
the others.

§ 5 The Curtis-Tits-presentation.

Let B be an irreducible, spherical Moufang-building of rank £ > 2, A an apartment
of B and $ the set of roots of A. Choose a fundamental system II = {r\ ,  , re} in
$ and let G = (Ar \ r € $) be the group of Lie-type B in the notation of §3. Then
it follows from (3.6)(4) that G = {Xr | r € II) , since each root r £ $ is by (3.6)(4)
conjugate under W to some fundamental root and since X™ = Xrn for r £ $, n £ N
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and JV = H{na \ a G II) . (See [Til , 11(5.12)]). Let now R be the amalgamated
product of the XriS = (Xr,Xs), r, s G II amalgamated over the Xr, r G II . Then
the following "theorem" is known as the Curtis-Tits-presentation for G.

"Theorem."  Let ?r : R —> G be the natural homomorphism. Then kerTr < Z(R).

Clearly, by definition of R as amalgamated product, such a natural surjective ho-
momorphism TV : R —> G exists. Hence the whole problem is to show ker?r < Z(R).

Now I do not know what the exact status of this "Theorem" is, since Tits in [Tits2,
13.32] has a stronger hypothesis. Namely instead of the groups Xr,r G II he takes
the subgroups Yr = XrH, r G II and Yr>s = Xr>sH, r, s G II . (Notice that by
(3.6)(4) H normalizes all Ar,r G <!> and whence all Xr,r G $!) and then forms
the amalgamated product R of the Yr,s over the Yr, r, s G II . Under this stronger
hypothesis his conclusion is also stronger, namely he shows that R is isomorphic
to G. Notice that such a conclusion is of course false in the more general situation
of the "theorem", since in the special situation when G is an adjoint Chevalley-
group the universal Chevalley-group might be an image of R. Also Curtis in [Cu]
only treated a special case of our "Theorem". But it should be mentioned that
Gorenstein, Lyons and Solomon in [GLS] proved the above theorem in case of finite
groups of Lie-type.

Now for applications one would like to have a theorem without the hypothesis that
R is the amalgamated product of the XrtS, r,s G II . Just taking for R a group
generated by subgroups Yr isomorphic to Xr such that (Yr,Ys) is also isomorphic
to Xrt3 and the diagram obtained naturally in this situation is the diagram A of B.
Such a theorem has been proved as Theorem 3 of [Ti2]:

(5.1) Theorem. Let A be a spherical Dynkin-diagram of rank I and let R be a
group generated by rank one groups Yi, i G I = {1,  ,£},£ > 2, with unipotent
subgroups Ai and A-i and diagonal subgroups Hi = iVy i(.,4i)n./VYi(A_i) satisfying:

(1) Hi < N(Yj) for l<i,j<L
(2) Yij = {Yi, Yj) = Yi * Yj if and only if i and j are not connected in A (and

i  3)-
(3) If i and j are connected in A, then there exist a Moufang-plane or classical

Moufang-quadrangle Bij with corresponding Lie-type group Gij and a sur-
jective homomorphism TT : Yij —> Gy mapping the unipotent subgroups of Yi
and Yj onto root-subgroups of Gij (in the sense of §3) with kervr < Z{Yij).
Moreover, if Bij is a Moufang quadrangle, then root-subgroups correspond-
ing to short and long roots occur as images.

(4) If i and j are connected in A, then Gij is not denned over GF(2) and
GF(3). Moreover, if Gy ^ PSL3{4), then 2

Then there exist a spherical Moufang-building B of rank I with corresponding Lie-
type group G and a surjective homomorphism a : R —> G with kercr < Z(R)
mapping each Yi, i = 1,  , £ onto XTi, where II = \r\,  , r{\  is a fundamental
root-system with A = A(II) . Moreover kercr < H = (Hi | i = 1,  ,£).
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In the above theorem classical Moufang-quadrangles are just the Moufang quadran-
gles obtained from classical groups of Witt-index 2. Notice that by the classification
of spherical buildings of rank i > 3 only classical Moufang-quadrangles occur as
residues if rank B > 3. Hence all groups of Lie-type B with rank B > 3 satisfy the
hypothesis of (5.1), so long they are not defined over GF(2) and GF(3). Using the
classification of Moufang polygons by Tits and Weiss, it might be possible to get
rid of the condition that the Moufang-quadrangles have to be classical. But for this
one would need to have a good knowledge of the exceptional Moufang-quadrangles
and corresponding Lie-type groups, which I don't have.

The proof of (5.1) works in principal as follows:

(a) First, using the nontrivial action of the Hi on Ai, one shows that one can
arrange in (3) the "local" homomorphisms TV : Yij —> Gij by applying an
automorphism of Gij, such that IT maps Ai and Aj onto "fundamental"
root-subgroups of G^.

(b) Next one constructs a Weyl-group of R and, using the action of this Weyl-
group, one extends the commutator relations between the fundamental root
groups Ai, Aj, 1 < i  ̂ j < £ to arbitrary root-groups.

(c) Now, using (b) one constructs a BN-pair in R, similarly as in the proof of
(4.4).

(d) Now, since unfortunately arbitrary groups with a spherical £?TV-pair are not
known, I proved a theorem similar to the theorem of Seitz [Se] determining
chamber transitive subgroups of finite Lie-type groups, to identify G.

Now, using (4.4) and the arguments in part (b) of the proof of (5.1) one can show.

(5.2) Theorem. Let $ be an irreducible spherical root-system of rank £ > 2 with
fundamental system II (BCt and 2i ?4 are allowed). For each J C II with \J\ = 2 let
<&j  = { r € $ | r is a linear combination of the roots in J} and let $' = |J <&j,  J CH
with \J\ = 2. Let G be a group generated by nonidentity subgroups Ar,r € $'
satisfying:

(1) Xa = (Aa, A-a) is a rank one group for all a € $'.
(2) If a, 13 £ $j with j3 ^ -a or -2a, then

[Aa, Ap] < {Axa+^/3 | A, \x € IN and Xa + fi/3 G $j).

(3) If a, P € $ j and np € Xp interchanging Ap and A^p, then A^f = A^p;
where wp is the reflection on <E>j- corresponding to 0.

Then (1) - (3) hold for all a, j3 € <3>. In particular there exists by (4.4) a group G
of Lie-type B, B an irreducible spherical Moufang building and a surjective homo-
morphism TT : G —» G with ker TT < Z(G) (~)H (H as in (4.3)) mapping the Ar, r £ $
onto the root-subgroups corresponding to the roots of some apartment of B.

The proof of this theorem is quite easy. Namely after having constructed a Weyl-
group one extends (1) - (3) by conjugation of the Weyl-group. Now the theorem
follows from (4.4).
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It is clear that the original Curtis-Tits presentation as stated is a consequence of
(5.2), since (1) - (3) of (5.2) can be checked inside the group Xrs;r,s G II . In
fact, using (4.3) instead of (4.4) one can prove a version of (5.2) without assuming
(3), if the characteristic is different from 2. From (5.2) one can obtain a version of
(5.1), which holds for all fields. (I.e. also for dj denned over GF(2) and GF(3).)
Moreover the proof of this generalization of (5.1) is much easier than the original
proof.
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Vertex stabilizers of locally projective groups of
automorphisms of graphs. A summary

V.I . TROFIMOV

1. Introductio n

For a graph F (in this paper only undirected graphs without loops or multiply
edges are considered), let V(T), E(T) and Aut(T) denote the vertex set, the edge
set and the automorphism group, respectively. For x G V(F), let T(x) = {y G
y(F)|-{>, y) G E(T)}. For G < Aut{T), let Gx be the stabilizer in G of x, and GTx{x)

the restriction of Gx on F(x).
Assume that the following conditions hold:

(*) F is a connected graph, G is a vertex-transitive group of automorphisms of
F, x G ^(F), Gx is finite, and the group Gx has a normal subgroup which is
isomorphic as a permutation group to PSLn(q), where n > 2 and q is a power of
a prime p, acting in the natural way on the set of points of the projective space
PGn-i{q).

Under this assumption, what is the possible structure of GX1
This problem is important in different contexts. In particular, investigations

on the pushing up problem (see, for example, [12]), diagram geometries (see, for
example, [9], [10]), and 2-transitive graphs (see, for example, [28]) can be indicated.

The starting point of consideration of this problem was the case n = 2, q = 2
treated in [23], [24]. The case n = 2, q an arbitrary, was considered in [5]-[7] and in
[27]. In this case the description of Gx can be also derived from [14] and from [4]
(for p = 2, also from [2]).

Turn to the case n > 2. After a period when some basic observations were
made and some rather restricted subcases were handled (see below), this case was
considered in [17] (the proof was published in the series [19]-[21]).

In the present paper we describe this result (for n > 2) with some details and
examples. Note that in the case n = 3 the result can be also derived from [13]. In
addition, note that the classification of finite simple groups did not use in the proof
of the result.

2. Preliminaries

This section contains notation and background results used throughout the pa-
per.

Let F be a graph, and G < Aut(T). For x G V(T) and a non-negative integer
i, Gx denotes the pointwise stabilizer in G of the set of vertices of F which are at
distance at most i from x. Note that Gx = Gx implies Gx = 1 in the case F
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is connected and G is vertex-transitive. For y, y',... G V(F), put G  ̂ , — Gy (~l

G[y} n ... (in [17] and [19]-[21], following [26], this group is denoted by Gi(y,y',...)).

As usually, we write Gy<y^... for Gyj ,t_. For a non-negative integer I, an /-arc of F
i h ( ) f F h h  ̂ f k Iis a path (x0,  xi) of F such that Xk-i  ̂ Xk+i for all 0 < k < I. If G is vertex-
transitive, then s(G) is the maximum of / such that G acts transitively on the set
of J-arcs of F, in the case the maximum exists, or oo, otherwise.

From now on, we wil l assume that F and G satisfy (*) with n > 2, unless
otherwise stipulated.

For any z G V(T), there is a unique structure of projective space PGn-i{q)
on the set T(z) (as the set of points) for which the group GT

Z is a group of
collineations. Throughout the paper, considering T(z) as a projective space we
mean this structure.

For {z,z'} G E(T), the set T(z)/{z') of all lines of T(z) containing z' has an
obvious structure of projective space PGn-2(q), and the group GZIZI induces on
T{z)/{z') a group of collineations.

For {z,z'} G E(T) and Z C T(z'), we denote by Tz,{z) the subgroup of G£,(* #)

generated by all (projective) transvections with the center z, and by Tz> (z, Z) the
pointwise stabilizer in Tz> (z) of Z. It is easy to see that the kernel of the action of

GVz,z>) o n r ( z ' ) / ( z ) is a n extension of Tz> (z) = OP(G^*, ^ by a cyclic group of order

dividing q - 1, and either G[
z
1] = 1 or Tz>{z) = Op((G

l
z
])r^z">).

I t follows from [5], (2.3) (which is an analog of the Thompson-Wielandt theo-

rem), that, for {z,z'} G E(T), Gl^z, is a p-group (see [29]). Hence either G[
z
1] = 1,

or OP(GZ) is the preimage of the subgroup Tz<(z) of (Gz ')r(-z">  in Gz. As a result,

OP{GX)/Gx and Gx /Gx for i > 2 are elementary abelian p-groups. Another
consequence is that s(G) is equal to 2 or 3 (cf. [25], [29]).

If s(G) = 3, then for each 2-arc (z0, z\,Z2) of F there is a (unique determined)
collineation <pZo,ZltZ2 of the projective space T(zo)/{zi) onto the projective space
T(z2)/(zi) which commutes with the natural action of the group GZo>ZltZ2. If s(G) =
2, then for each 1-arc (zo> ^l) of F there is a (unique determined) bijection fZo,Zl of
the set of subspaces of the projective space T{ZQ)/{ZI) with the set of subspaces of
the projective space T(z2)/(zi) which commutes with the natural action of the group
GZOtZl. Excluding the case n = 3 (when fzo,zi is as a correlation as a collineation),
the mapping (pZOiZl is either a correlation (for each 1-arc (ZQ,Z{)) or a collineation
(for each 1-arc {zo,z\)). (See [26], [29].) Accordingly, we distinguish for F and G
the case s(G) = 3, the case s(G) = 2, n = 3, the correlation case (i.e. the
case where s(G) = 2, n > 3 and fZ0!Zl is a correlation for each 1-arc (20, z{) of F),
and the collineation case (i.e. the case where s(G) = 2, n > 3 and <pZo,Zl is a
collineation for each 1-arc (ZQ,ZI) of F).

Assume s(G) = 3. For y G T(x), the group Gx induces on the projective space
T(y)/(x) a group of collineations containing the projective special linear group (see
[29]). Since the kernel of this action of Gx is an extension of OP{GX) by a cyclic
group of order dividing q — 1, it follows that GxjOv{Gx) has a (unique) subgroup
Hi x if2 where Hi is isomorphic to the quotient group of SLn(q) by a subgroup of
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Z(SLn(q)), and Hi is isomorphic to the quotient group of SLn-i(q) by a subgroup
of Z(SLn-i(q)). The group H\ acts naturally on T(x) inducing the projective
special linear group of collineations. In the case H\ = SLn(q), this action lifts to the
natural action of Hi on the n-dimensional vector space V\ over Fq associated with
T(x). As a module of Hi over Fq (respectively Fp), V\ is the natural Fgifi-module
(respectively the natural ¥pH\-m.o&u\e). Similarly, the group Hi < Gx /OP{GX)
acts naturally on T(y)/(x) inducing the projective special linear group. In the
case Hi = SLn-i(q), this action lifts to the natural action of Hi on the (n — 1)-
dimensional vector space Vi over F, associated with T(y)/(x). As a module of if2
over Fq (respectively Fp), Vi is the natural Fgif2-module (respectively the natural
TPpHi-modvle).

Assume now s(G) = 2. The group Gx is an extension of OP(GX) by a cyclic
group of order dividing q — 1. Therefore the group GX/OP(GX) has a (unique)
subgroup if i which is isomorphic to the quotient group of if i = SLn(q) by a
subgroup K of Z(Hi) (we identify Hi with if i in the case K = 1). The group Hi
acts naturally on T(x) inducing the projective special linear group of collineations.
This action lifts to the natural action of H\ on the n-dimensional vector space V\
over Fq associated with F(x). As a module of Hi over Fg (respectively Fp), Vi is the
natural FqHi-module (respectively the natural FpHi-module). An FpHi-module
centralized by K is also regarded as an Fpifi-module.

3. The case G[
x
] = 1

In the case Gx = 1, the group Gx can be easily reconstructed. We outline the
corresponding arguments, since the result was only announced in [18].

Suppose first that Gx = 1. Then s(G) = 2 and either n = 3 or the collineation
case holds. In fact, for y £ T(x) and a £ Op{Gx<y)#, the stabilizer in Gx>y of
the axis of ar(-x  ̂€ Tx(y)# must coincide with the stabilizer in GXiV of the axis of
ar(j/) e Ty(x)#, and the assertion follows.

EXAMPLE 3.1. Let V be an elementary abelian group of order 2m generated by
elements v\,..., vm, where m = 1 -f q + ... + qn~l, q a power of a prime p, n > 2.
Let S be the stabilizer in Aut{V) of the set {vi, ...,vm}. Then S acts faithfully
on {vi, ...,vm}, inducing the symmetric group Symm. Let X be a subgroup of S
such that the group induced by X on {vi,...,vm} has a normal subgroup which
is isomorphic as a permutation group to PSLn(q) acting naturally on the set of
points of PGn-i(q). Denote by G the split extension of V by X. Put Y = uiXvi .
Let F be the graph whose vertices are all subgroups g~lXg, g € G, and whose
edges are all pairs {g~1Xg,g~1Yg}, g G G. (The graph T is the m-dimensional
cube.) Then the group G, acting on V(T) by conjugation, can be regarded as a
group of automorphisms of T. If n = 3, for the graph T and the group G the case
s(G) = 2, n = 3 with Gx

l]  = 1 holds. If n > 3, for the graph T and the group G the
collineation case with Gx = 1 holds.

Suppose now that Gx
l}y = 1 ^ Gx

l\ where {x,y} e E(T). Then s(G) = 3,
Hi = SLn-i{q) and the group OP(GX) (acting faithfully on T(y) as Ty(x)) is the
natural Fpif 2-module and is centralized by ifi . In fact, [Gi^GJ,11] < G[

x}y = 1
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implies that the group CGx {G^)r{-x) contains PSLn(q). It is not the case if Gx1] ^ 1
and s(G) = 2.

EXAMPLE 3.2. Let Mi be a maximal parabolic subgroup of the finite simple
group C?i = PSLn(q) = An-i(q), n > 2, correlated to the node 1 of the Dynkin
diagram of type An-i. Let G2 = Gi. Put G = (Gi x G2)(h) < Aut(Gi x G2) where
ft,2 = 1 and ftGi/i = G2 (we identify Gi x G2 with Inn(G1 x G2)), X = Mi x G2 < G,
y = Gi x hMih < G. Let F be the graph whose vertices are all subgroups g~1Xg,
g G G, and whose edges are all pairs {<7~1.X'<7, g^Fc/}, g £ G. (The graph F is the
complete bipartite graph KmtTn, m = 1 + q + ... + g""1-) Then the group G, acting
on V(F) by conjugation, can be regarded as a group of automorphisms of F. For the
graph T and the group G the case s(G) = 3 with G[x}y = 1 ^ G 1̂, {x,y}  G £(F),
holds.

Suppose finally that Gx = 1 ^ Gx;y, where {x,y} G -E(r). Observe that now
Op^z) is a non-trivial FpiJj-module and, in the case s(G) = 3, also a non-trivial
FpJ£f2-module. Let {j/i , ...,yn} be a frame in T(x). Since Op{Gyi)T  ̂ = Tx(yi) and
[OpCGi/J.cL1^] < Gly} = 1 for 1 < i < n, the group OP{GX) acts faithfully on
T(yi) U ... U r(j/n), inducing on T(j/i) the group Tyt(x), 1 < i < n. If s(G) = 3,
it follows that Hi = SLn(q), H2 = SLn-i(q) and OP(GX) is the tensor product of
the dual of the natural F^i^-module by the natural F9il 2-module, regarded in a
natural way as Fp(Hi x i?2)-module. Assume s(G) = 2. For 1 < i ^ j < n, each
hyperplane of F(j/j) fixed by the stabilizer in Op(GVi) of yj contains <px%yi ((Vi, Vj))-
Since (GL1,1lw)r<«"> < TVj{x) and Op(Gyi) < CG{Gl^yi), it follows (G[x}yi)r  ̂ <
Tyj(x,ipXtyj((yi,yj))). (Moreover, consideration of the action of GXlVilVi on F(j/j)

gives (GL1IIw)r(w) = TytfaipsydyiM))).) We conclude that the group OP(GX) is
of order not greater than qn if either n = 3 or the correlation case holds, and of
order not greater than qn(n~1)/2 if the collineation case holds. Now it is easy to see,
taking in attention that the group OP(GX) contains the Gx^-invariant subgroup
Gi1,1,, of index qn~l, that in the case G[x]  = 1 ^ Gl1!y, {x,y} e E(T), with s(G) = 2
the following assertions hold: if n = 3 or the correlation case holds, then OP(GX) is
the natural Fpifi-module; if the collineation case holds, then OP(GX) is the exterior
square of the dual of the natural ¥qHi-module, regarded in a natural way as FpHi-
module.

EXAMPLE 3.3. Let Mn_i and Mn be maximal parabolic subgroups of the fi-
nite simple group P5L2n-i(g) = A2n_2(g), n > 2, correlated respectively to nodes
n - 1 and n of the Dynkin diagram of type ^42n-2, such that Mn_i h Mn con-
tains a Borel subgroup of PSX2n-i(g)- Thus Mn_i and Mn are the stabilizers in
PSL2n-i{q), acting naturally on the projective space PG2n_2(g), of an (n - 2)-
dimensional subspace and an (n— l)-dimensional subspace which are incident. Put
G = Aut{PSL2n-i(q)), X = NG{Mn-i), Y = NG{Mn) (we identify PSL2n-i{q)
with Inn{PSL2n-i{<l)))- Let T be the graph whose vertices are all subgroups
g~lXg, g £ G, and whose edges are all pairs {g~1Xg,g~1Yg}, g G G. Then
the group G, acting on V(F) by conjugation, can be regarded as a group of au-
tomorphisms of F. For the graph T and the group G the case s(G) = 3 with
GL21 = 1 ̂  Gi1!,, {*,y}  € E(T), holds.
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EXAMPLE 3.4. Let M\ and Mn be maximal parabolic subgroups of the finite
simple group PSLn+i(q) = An(q), n > 2, correlated respectively to nodes 1 and n
of the Dynkin diagram of type An, such that Mi n Mn contains a Borel subgroup of
PSLn+i(q). Thus Mi and Mn are the stabilizers in PSLn+i(q), acting naturally on
the projective space PGn(q), of a point and a hyperplane which are incident. Put
G = Aut(PSLn+1(q)), X = Na(M{), Y = Na(Mn) (we identify PSLn+1{q) with
Inn(PSLn+i(q))). Let F be the graph whose vertices are all subgroups g~xXg,
g G G, and whose edges are all pairs {g~1Xg,g~1Yg}, g E G. Then the group
G, acting on V(F) by conjugation, can be regarded as a group of automorphisms
of F. If n = 3, for the graph F and the group G the case s{G) = 2, n = 3 with
GL2] = 1 ̂  G[x}y, {x,y} eE(T), holds. If n > 3, for the graph F and the group G
the correlation case with G%] = 1 ̂  G^}v, {x,y} G E(T), holds.

EXAMPLE 3.5. Let Mn-\ and Mn be maximal parabolic subgroups of the finite
simple group PQ^nii) = Dn{q), n > 3, correlated respectively to nodes n— 1 and n
of the Dynkin diagram of type Dn, such that Afn_i C\Mn contains a Borel subgroup
of Pfl%n(q). Thus Mn_i and Mn are the stabilizers in P£l%n(q), acting naturally on
the associated polar space, of (n — l)-dimensional subspaces whose intersection is
(n-2)-dimensional. Put G = Pflfn(q)(h) < Aut(PCl n̂(q)) where h~lMn~ih - Mn

and h-xMnh ~ Mn_a (we identify Pft£,(g) with Inn{PQ,%n{q))), X = iVG(Mn_i),
y = No(Mn). Let F be the graph whose vertices are all subgroups g~1Xg, g EG,
and whose edges are all pairs {g~1Xg,g~1Yg}, g £ G. Then the group G, acting
on V(F) by conjugation, can be regarded as a group of automorphisms of F. For the
graph F and the group G the collineation case with Gx = 1 ̂  Ghjy, {x, y} S E(T),
holds.

REMARK 3.1. A remark in [21, I] , p. 1222, concerning the structure of Gx,
for an arbitrary group G acting transitively on the set of 2-arcs of a connected
graph F of finite valency, in the case Gx;y = 1 where {x,y} G E(T), is somewhat
ambiguous. What was meant is that there exists a monomorphism x of Gx into
the stabilizer of a vertex of if|r(x)|,|r(x)| m ^-ut{K\r(x)\,\r(x)\) a nd a mapping ij;  of
the set of vertices of F at distance at most 2 from x into V(i<"|r(x)|,|r(a;)|) such
that i){T(x)) = if|r(a.)|>|r(a.)|(V'(a;)) and, for all g e Gx, x(9)i> = ^9 on the set of
vertices of F at distance at most 2 from x. It is clear (see, for example, the case
Gx;y = 1 7̂  Gx of this Section for n = 3, q = 2,3) that there are normal subgroups
of point stabilizers of finite doubly transitive groups, which are permutationally
isomorphic to no (Gx)r  ̂ with F, G, x, y as above in this Remark.

4. The case s(G) = 3

In [26], Weiss showed that G  ̂ = 1 in the case s(G) = 3 with p > 3.

In [20, II] , it was proved that Gxjy = 1 in the case s(G) = 3 with p = 3, where
{x, y} G E(T). As it was mentioned in [20, II] , Introduction, the latter result implies
that Gx — 1 in the case s(G) = 3 with p = 3. The corresponding proof was given
in [21, I] , Appendix.

Turn to the case s(G) = 3 with p = 2, n = 3. It was proved in [20, II] ,
Propositions 3.2 and 3.3, that in this case Gx}y = 1, where {x, y} G E(T). Using



318

this result, a detail description of Gx was obtained in [21, I] , Proposition 1.1. It
implies that in the case s{G) = 3 with p = 2, n = 3 either Gx = 1 or the following
assertion (a) holds:

(a) Hi £*  SL3(q) and H2 = SL2(q), Glx] = 1, Glx] is the natural F2if 2-module
and is centralized by Hi, Gx /Gx is the dual of the natural F2i?i-module and
is centralized by H2, Gx /Gx is the natural F2H1 -module and is centralized by
H2, Gx /Gx is the tensor product of the natural FqHi-module by the natural
Fgif2-module, regarded in a natural way as F2(i?i x i/2)-niodule, C>2(GX)/Gx is
the tensor product of the dual of the natural F^ili-module by the natural FqH2-
module, regarded in a natural way as F2(-ffi x i^-module.

REMARK 4.1. It can be derived from the proof of Proposition 1.1 of [21,1] that
in the case s(G) = 3 with p = 2, n = 3 and (a) the following holds: $(02(Gx)) =
[O2(Gx),O2(Gx)} = GL31, CGX(G[* ]) = GL21, [O 2(G X ) ,GL 3 1] = GLBI , Z(02(GX)) =

EXAMPLE 4.1 ([26]). Let M2 and M3 be maximal parabolic subgroups of the fi-
nite simple group F^q), q even, correlated respectively to nodes 2 and 3 of the
Dynkin diagram of type F4, such that M2 D M3 contains a Borel subgroup of
FA{q). Put G = Aut{Fi(q)), X = NG(M2), Y = NG{M3) (we identify F4(q)
with Inn(Fi(q))). Let T be the graph whose vertices are all subgroups g~1Xg,
g € G, and whose edges are all pairs {g~1Xg,g~1Yg}, g € G. Then the group G,
acting on V(F) by conjugation, can be regarded as a group of automorphisms of
F. For the graph T and the group G the case s(G) = 3 with p — 2, n — 3 and (a)
holds.

It was proved in [21,1] that Gi21 = 1 in the case s(G) = 3 with p = 2, n > 3.

5. The case s(G) = 2, n = 3

In [19], it was proved that Gx = 1 in the case s(G) = 2, n = 3 with p > 3.
It was proved in [20,1], Theorem 1, that in the case s(G) = 2, n = 3 with p = 3

either Ĝ  = 1 or the following assertion (b) holds:

(b) q = 3 and Gx = 1, Gx is a split extension of the group Oz(Gx) = Gx by
the group Gx/Gxl] = Hx ^ SX3(3), GL2] is the dual of the natural F2F1-module,
GL1]/GL21 is the natural F2#i-module, [Glx],G[x1]]  = Z{G[X1]) = G®.

EXAMPLE 5.1. The group G = Aut{Fi22) has a subgroup X (which is maximal
in a maximal subgroup of Inn(Fi22) isomorphic to f&7(3)) such that |Os(X)| = 36

and X/03(X) S SX3(3). There exists Y conjugated to X in G such that, for the
graph T whose vertices are all subgroups g~lXg, j £ G , and whose edges are all
pairs {g~1Xg,g~1Yg}, g £ G, and for the group G, acting on V(T) by conjugation
and regarded as a group of automorphisms of F, the case s(G) = 2, n = 3 with
p = 3 and (b) holds.
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In [16], Timmesfeld treated the case s(G) = 2, n = 3 with p = 2 in a broader
context of amalgams with rank 2 groups of Lie type in characteristic 2. It follows
from his result that in the case s(G) = 2, n = 3 with p = 2 either Gx — 1 or the
following assertion (c) holds:

[si

(c) q — 2 and Gx = 1, Ĝ  is a split extension of the elementary abelian group
G[x]  of order 24 by the group Gx/G[xl]  = Hi £*  SX3(2), such that the group Gl11 (in
additive notation) is the direct sum of the natural F2.ffj-module [Gx , Gx]  and the
trivial F2#i-module G  ̂ of order 2.

REMARK 5.1. Let T and G satisfy the case s(G) = 2, n = 3 with p = 2 and (c).
For any z G V(T), denote by c*  the involution of G£2]. For any y' G r(z), y" G r (z )\
{y'}, denote by y'+y" the vertex from (y1, y")\{yf, y"}. Then cxcy'Cxcy» = cxcyi+yn
for all y' G r(z), j / " e F(z) \ {</'} , and [G[X] ,GX}*  = {cxcy\y G r(x)} . There are
two conjugacy classes of complements to Gx in Gx. A complement L to Gx in
Ĝ  can be chosen such that, for an arbitrary y G T(x), there exists a collineation
u)y of T(x) onto r(y) which commutes with the natural action of the group Ly (on
r(a:) U r(j/)). For such L, if y € r(x) and z £ T{x) \ {y}, then czcUy  ̂ G L and
(C2cwj,(z))r^ S Ta;(j/, (y,z))#. If L is a complement from another conjugacy class,
then for L we have a situation which is analogous to one from Remark 6.1 below.

EXAMPLE 5.2. The group G = Aut{M22) has a subgroup X (which is maximal
in Inn(M22)) such that \O2(X)\ = 24 and X/O2(X) = SLZ{2). There exists Y
conjugated to X in G such that, for the graph T whose vertices are all subgroups
g~1Xg, g G G, and whose edges are all pairs {g~1Xg,g~1Yg}, g G G, and for the
group G, acting on V(T) by conjugation and regarded as a group of automorphisms
of T, the case s(G) = 2, n = 3 with p = 2 and (c) holds (see [9], [10]).

REMARK 5.2. Another example of T and G for which the case s(G) = 2, n = 3
with p — 2 and (c) holds is given in Remark 6.2 below.

6. The correlation case

It was proved in [19] that Gx = 1 in the correlation case with p > 3.

In [20, I] , Theorem 3, it was shown that Gx;v — 1 in the correlation case with
p = 3, and Gx;y — 1 in the correlation case with p — 2, where {x,y} G S(F). In
[21, II] , Appendix, it was derived from this result that Gx = 1 as in the correlation
case with p = 3, as in the correlation case with q > p = 2. As for the correlation
case with q = 2, in [21, II] , Appendix, it was shown (using the equation Gx;y = 1,
{x,y} G E(T), stated in [20, I] , Theorem 3) that either GL21 = 1 or the following
assertion (d) holds:

(d) GL = 1, Gx is a split extension of the elementary abelian group Gx of order
2n +1 by the group Gx/Gx1] = Hi S SLn(2), such that the group G[x1] (in additive
notation) is the direct sum of the natural F2.#i-module [Gx ,GX]  and the trivial
F2-ffi-module GL2] of order 2.
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REMARK 6.1. Let F and G satisfy the correlation case with q = 2 and (d).
For any z G V(T), denote by cz the involution of Gz . For any y' G T(x), y" G
T(x) \ {y'}, denote by y' + y" the vertex from (y',y") \ {y',y"}. Then (see [21,
II] , Appendix) cxcy,cxcy» = cxcy-+y» for all y' G T(x), y" G T{x) \ {y1}, and
[G lx],Gx]*  = {cxcy\y G T(x)} (cf. Remark 5.1). In addition, if L £*  SZ,n(2) is a
complement to GL in Gx (all such complements are conjugate in Gx), then, for
an arbitrary y G r(x), the group Lv stabilizes a unique hyperplane Zy  ̂ of T(y)
(x g ZVtL). For z G ZyiL, we have Cj,c2 G £ and (cycz) r(x) G Tx(y, <py,x((x, z)))#.

EXAMPLE 6.1 ([21, II] , Appendix). For each positive integer n > 3, we give an
example of a graph F and a group G for which the correlation case with q = 2 and
(d) holds. Let H be the group SLn+\{2) x SLn+i{2) realized in a natural way by
ordered pairs of matrices. Define <J\, a2 G Aut(H) by putting (Tj (A, B) = (B, A) and
0-2(A, B) = ((A*)" 1, (B*)-1) for any element (A,B) of H, where A*  and B* are the
transposes of A and B. Let G be the split extension of H by the elementary abelian
group (<7i, at). Let X be the subgroup of G generated by o\ and all elements of H of
the form (A, A), where the matrix A = (a: )̂ is such that a^n+i = 0 for i = 1,..., n.
Let h be the element of G such that aih— (M', M") G H, where

M" =

(E is the n — 1 by n — 1 identity matrix). Put Y — h~lXh. Let F be the graph
whose vertices are all subgroups g~lXg, g G G, and whose edges are all pairs
{g~lXg,g~lYg}, g G G. Then the group G, acting on V(T) by conjugation, can
be regarded as a group of automorphisms of F. For the graph F and the group G
the correlation case with q = 2 and (d) holds. The group Gx coincides with (<TI).

REMARK 6.2. For n = 3, the construction of Example 6.1 gives an example of
a graph F and a group G for which the case s(G) = 2, n = 3 with p — 2 and (c)
holds.

7. The collineation case

In [19], it was proved that Gx = 1 in the collineation case with p > 3.

In [20, I] , Theorem 2, it was shown that Gx — 1 in the collineation case with
p = 3. In addition, according to [20, I], §4, Remark 2, Gx — 1 in the collineation
case with q > p = 2.

Turn to the collineation case with q = 2. Observe that now C>2{GX) = Gx and
Gx/G$ = Hi = SLn(2). In [21, II] , it was proved that in the collineation case with
q = 2 and n = 4 either Gx = 1 or one of the following assertions (e), (f) holds:

(e) |GL1!| = 211, GL41 = 1, GL31 is the trivial F2H!-module of order 2, G121/

is the natural F2Hi-module, Gx /Gx is the exterior square of the natural F2H1-
module;
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(f) |GL1]| = 214, GL41 = 1, GL3] is the dual of the natural F2#i-module, Gi2l/Gi3]

is the natural F 2 Hi -module, Gi}/Gx is the exterior square of the natural F2H1-
module.

REMARK 7.1. The structure of the vertex stabilizer Gx satisfying (e) (of the
collineation case with q = 2 and n = 4) is as follows (see [21, IV]) . GJfc1' = EX X E2,
where E\ is an extraspecial group 2++6 and E2 is an elementary abelian group of
order 24 which is normal in Gx, Glx] = Z{EX), G[x]  = Z{E{) x E2, and the group
GX/Z(E\) is the split extension of the elementary abelian subgroup Gx jZ{E\) (of
order 210) by a subgroup L £*  S£4(2). Moreover, the F2Z,-module G[x] /Z{Ei) is
the indecomposable extension of the natural F2lr-module E2Z{E\)IZ{E\) by its
exterior square Gx IEIZ(E\), and the preimage of L in Gx is isomorphic to the
universal covering group of L. For any z G V(T), denote by cz the involution of
G13!. For any y' G T(x), y" G T(x) \ {y1}, denote by y' + y" the vertex from
(y',y") \ {y',y"}- Then cy<y> = cy.+yn for all y' G T(x), y" G T(x) \ {y1}, and
Ef = {cy\y G F(a;)}. For an arbitrary y G T(x), there exists a collineation uy

of F(a;) onto T(y) which commutes with the natural action of the group Ly (on

REMARK 7.2. Let H = SLz{2) act naturally on an elementary abelian group W
of order 25. Let R be the split extension of an elementary abelian group E of order
210 by H acting on E as on the exterior square of W regarded as F2i?-module.
Let w be an arbitrary element of W* , and Hw the centralizer of w in H. It can
be shown that the vertex stabilizer Gx satisfying (f) (of the collineation case with
q = 2 and n = 4) is isomorphic to the subgroup WHW of R.

EXAMPLE 7.1. The group G = G02 has a maximal subgroup X (the centralizer
of an involution of class 2B) such that |O2(^)| = 211 and X/O2(X) ^ SL4{2).
There exists Y conjugated to X in G such that, for the graph T whose vertices are
all subgroups g~lXg, g £ G, and whose edges are all pairs {g~lXg, g~lYg}, g G G,
and for the group G, acting on V(T) by conjugation and regarded as a group of
automorphisms of F, the collineation case with q = 2 and n = 4 holds (see [9], [10]).
Thus for the graph T and the group G the collineation case with q = 2, n = 4 and
(e) holds.

EXAMPLE 7.2. The group G = J4 has a subgroup X (which is maximal in a
maximal subgroup of G isomorphic to 210 : £5(2)) such that |O2(^)| = 214 and
X/02(X) = 5X4(2). There exists Y conjugated to X in G such that, for the graph
F whose vertices are all subgroups g-1Xg, g G G, and whose edges are all pairs
{g~iXg,g~1Yg}, g G G, and for the group G, acting on V(T) by conjugation and
regarded as a group of automorphisms of F, the collineation case with q = 2 and
n = 4 holds (see [9], [10]). Thus for the graph F and the group G the collineation
case with q = 2, n = 4 and (f) holds.

In [21, III] , it was proved that in the collineation case with q = 2 and n = 5
[21either Gx' = 1 or the following assertion (g) holds:

(g) ]Gl1]| = 230, GL51 = 1, GL41 is the dual of the natural F2#1-module, GL3]/GL4
[4]
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is the natural F2i?i-module, Gx /Gx is the exterior square of the natural F2Hi-
module, Gx /Gx is the exterior square of the dual of the natural F2H\-module.

REMARK 7.3. In detail the structure of the vertex stabilizer Gx satisfying (g) (of
the collineation case with q = 2 and n = 5) was investigated by A. Ivanov and the
author for the visit of the author in Imperial College in May, 2001. In particular,
i t w as s h o wn t h at $ ( G L 1 ] ) = [ G L ^ G I 1 1 ] = G ! ?1 , C G A G l x ] ) = G ?1 , [ G ^ ! 1

EXAMPLE 7.3. The group G = B has a maximal subgroup X such that
\O2(X)\ = 230 and X/02(X) =* SL5(2). There exists Y conjugated to X in G such
that, for the graph F whose vertices are all subgroups g~1Xg, g € G, and whose
edges are all pairs {g~1Xg,g~1Yg}, g £ G, and for the group G, acting on V(T) by
conjugation and regarded as a group of automorphisms of F, the collineation case
with q = 2 and n = 5 holds (see [9], [10]). Thus for the graph F and the group G
the collineation case with q = 2, n = 5 and (g) holds.

[2]

In [21, IV] , it was proved that Gx' = 1 in the collineation case with q = 2 and
n > 5.

8. Some additional remarks

REMARK 8.1. (On the problem.) It is not difficult to see that the considered
problem of description of the possible structure of Gx under the assumption that
(*) holds is equivalent (for any fixed n and q) to the problem of description of the
possible structure of a group Pi under the following assumption: P\, P2 are finite
groups with one and the same identity and coinciding group operations on Pi
such that the following conditions (i)-(iii ) hold:

(i) PSLn{q) < P j/ f l^f t (Pi nP2)° < PTLn(q), and (Pj nP2)/ f\gePl (Pi
contains a maximal parabolic subgroup of the group PSLn(q) = An-i(q), correlated
to the node 1 (or n — 1) of the Dynkin diagram of type An-i;

(ii) no non-trivial subgroup of Pi n P2 is normalized by Pi U P2;
(iii ) there exists a permutation h on Pi U P2 such that the restriction of h on Pi

is an isomorphism of Pi onto P$-i for i = 1,2.

REMARK 8.2. (More about the problem.) It is natural to consider the problem
of description of Gx satisfying (*) as a case of a general problem of reconstruc-
tion of the stabilizer of a vertex of a connected graph in a vertex-transitive group
of automorphisms by the restriction of this stabilizer on the neighborhood of the
vertex. The latter problem can be refined in the following way. Let R be a per-
mutation group of finite degree. Denote by V(R) the set of pairs (F, G) where F is
a connected graph and G is a vertex-transitive group of automorphisms of F such
that, for x € V(F), the group Gx is finite and the group Gx is isomorphic as a
permutation group to R. Denote by S(R) the set of isomorphic types of Gx for all
(F, G) e V{R) and x G V(r). Then the Vertex Stabilizer Reconstruction Problem
for R (briefly, VSRP for R) is formulated as follows:

Is the set S(R) finite? (And in the case, what is the structure of elements of
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This problem is of interest only for groups R of some special types. There are
many (transitive) groups R for which VSRP is solved negatively. In [28], Weiss
conjectured that VSRP is solved affirmatively for any primitive group R. If R is
primitive, (T,G) € V{R), and G[x}y + 1 for {x,y} G E(T), then G[x}y is a p-group
for a prime p, and F*(GX) = 0p(Gx) (see [11]). It follows that, in the case R is
primitive and G^jy ^ 1 for some (T, G) £ V{R) and {x,y} G E(T), the stabilizer in
R of a point is a local subgroup.

The Weiss Conjecture was verified for many primitive groups R. Here we only
remark on the case Soc(R) is a primitive (/C-)group. The amalgam method and
certain results on representations of nearly simple groups made it possible to confirm
the conjecture in this case when Soc(R) is distinct from PSLn(q), n > 2, acting on a
class of maximal parabolics. (We give some details only in the case Gx;y is a 2-group
for an edge {x,y}, since for odd primes the appropriate results were not published.
If Soc(R) is a primitive (ZC-)group, (T, G) G V(R) and Gx,y is a non-trivial 2-group
for {x, y} G E(T), then [1] implies that one of the following holds: (1) Soc(R) is a
group of Lie type in characteristic 2 (or the derived group of a non-solvable group
of Lie type in characteristic 2) acting on a class of maximal parabolics, (2) R is
Symn, n > 2 and n  ̂ 4,6, acting on the class of transpositions, (3) R is 50^(2),
n > 3, or S0 n̂(2), n > 2, acting on the class of transvections. If (1) with Soc(R)
distinct from PSLn(q), n>2, holds, then it follows from [12] and [3] that G[x}y = 1.
If (2) or (3) holds, then the amalgam method easily gives Gx}v = 1. Note that the
amalgam method can be also applied in the case Soc(R) is PSLs(q) acting on a
class of maximal parabolics, see [16], [13].) If Soc(R) is PSLn{q) = An-i(q) acting
on a class of maximal parabolics, say on the class correlated to a node i of the
Dynkin diagram of type An-\, then either (*) or 1 < i < n — 1 holds. The case
when (*) holds is the subject of the present paper. For the case when 1 < i < n — 1
holds see [30], [22]. In conclusion, note that, taking into account the classification
of finite doubly transitive groups, the result described in the present paper is the
final step for affirmative solution of VSRP for doubly transitive groups R (see a
survey in [28]).

REMARK 8.3. (On the Examples.) Let G be a vertex-transitive group of au-
tomorphisms of a connected graph T. Let f be the regular tree of the same va-
lency as F. There exists a mapping (called universal covering or fibering of T)

 : V(f ) —* V(F) such that, for any x G V(f) , the restriction of 7T on t(x) is a bi-
jection with r(7r(5)). Let G = {g € Aut(f)\ there exists g G G such that irg = gn}
be the covering of G with respect to ir. It is well known (and can be easily seen)
that s(G) = s(G) and, for any x G V(T) and each non-negative integer i, the group
d?!g is isomorphic as an abstract group to GJjLj. In addition, the restriction of TT

on f (x) realizes a permutation isomorphism of G£ with GJJ^I[ . (As a result, in
VSRP for a given R, formulated in Remark 8.2, without loss we can assume that
T is a tree.) Suppose that, in addition, Gx is transitive, where x € V(T). For
{x,y} G E(T), the group (Gx,Gy) coincides with the edge-transitive (not vertex-
transitive) subgroup G+ of index 2 in G, generated by all vertex stabilizers in G.
The group G+ is isomorphic to the amalgamated product Gx *GS.C\G- &y (see [15]).
It follows that, in the case Gx is finite and |F(a;)| > 1, there are infinitely many
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normal subgroups N of finite index in G such that the restriction of the natural
mapping G —> G/N on Gx U Gy is an injection. For any such N, the quotient
group G = G/N can be regarded, in a natural way, as a vertex-transitive group of
automorphism of the quotient graph F = TV \ F under the action of N. Moreover,
it is easy to see that, for any x G V(F) and each non-negative integer i, the group

Gj is isomorphic as an abstract group to G~ and hence to Gx , the group Gx is
permutationally isomorphic to G% and hence to Gx , and s(G) = s(G) = s(G).
Varying N, we get infinitely many finite graphs F and groups G with these proper-
ties. (Note also that under the assumption that (*) holds, for F, G and for F, G one
and the same case from ones marked in Section 2 holds.) In this connection, the
examples of F and G with Gx permutationally isomorphic to a given group and
Gx isomorphic to a given group, for x G V(T) and i > 0, are of special interest in
the case the group G has no non-trivial normal subgroup K such that the restriction
of the natural mapping G — G/K on Gx U Gy, {x, y} G E(T), is an injection. All
Examples from Sections 3-7 have this property.

REMARK 8.4. (On the proof of the result.) Very roughly, the method of the
proof in [19]-[21] can be described as an analog of amalgam method, realized along
a track. In the proof, without loss we may assume that F is a tree (see Remark
8.3). For g G G, a <?-track is a sequence (..., x-i ,xo,xi,...) of distinct vertices of the
tree F such that Xi = gl(xo) and {xi, Xi+{\ G E(T) for all i e Z. The most difficult
part of the proof (for n > 3) is to prove that there is g G G for which a g-track
(..., a;_i, aro, xi,...) with some special properties exists. Among these properties we
emphasize the property G...,a!_1,a!o1a!i,... = 1- This property plays a crucial role in the
approach since it allows to model an amalgam method machinery along the track
(for example, we are certain that Z(Op(GX(ttXl)) ^ G..},x-1,x0,xi,...)- It should be
mentioned that similar concepts of tracks were introduced earlier (see [15], [8]), but
the main problem of the existence of the above mentioned special tracks is original.
The method can be also applied to VSRP (formulated in Remark 8.2) for many
other groups R.

Another ingredient of the proof (excluding the proof in the correlation case) is
the following construction of subgraphs allowing to use induction to investigate an
action of Gx around x.

Suppose that for a tree F and G the case s{G) = 3 holds. Let X be a subspace
of dimension n' > 1 of the projective space F(a;), y € X, and Y a subspace of
dimension n' of the projective space T(y) such that x £ Y. Denote by Tx,Y the
regular subtree of F such that x G V(TX,Y), ^X,Y{X) = X, TX,Y(U) = Y, and
(Pzo,z1,za(Tx,Y(zo)) = ?X,Y(Z2) for e a ch 2" arc (20,21,22) oiTx.Y- Observe that
the stabilizer in G of the set X U Y is contained in G{v{rx,y)}  the stabilizer in G
of the set V(TX,Y)- Let GVx'Y denote the restriction of G{v(rXY)} on V(TX,Y)-

Then GTx>Y < Aut(Tx,Y), and YX,Y and GTx<Y satisfy (*) with n = n' + 1.
Moreover, if n' > 1, then s(Gr*' Y) = 3. It is important that G^}y ^ 1 for some
1 < r < 2ri implies (Grx'Y)ll} y ^ 1 (see [20, II] , Proposition 2.2), and G[x]   ̂ 1
for some 1 < r < 2n' implies (Grx<Y)x 7̂  1 (by analogous arguments). As an
application, if Glx]  ̂ 1 (and the case s(G) = 3 holds), then (GTx-Y)[x]   ̂ 1 for lines
X, Y, and hence p < 3 by, for example, [27].
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A similar construction is used when for a tree F and G the case s(G) = 2,
n = 3 or the collineation case holds. Let X be a subspace of dimension n' > 1
of the projective space T(x). Denote by Tx the regular subtree of F such that
x e V(TX), Tx(x) = X and ifZo,Zl(Tx(z0)) = Txfa) for each 1-arc (zo,zi) of Tx.
Observe that the stabilizer in G of X is contained in G{v(rx)} the stabilizer in G
of the set V(TX). Let GTx denote the restriction of G[V^x)y on V(FX). Then
Grx < Aut(Tx), and Tx and GVx satisfy (*) with n = n' +1. Moreover, if n' > 1,
then s(Grx) = 2 and either n' — 2 or for Tx and Gr x the collineation case holds.
It is important that G%]  ̂ 1 for some 1 < r < n' implies (Grx)x" ]  1 (see [20, I] ,
Proposition 4.1). In this connection note that if for F and G the collineation case
with n = 5, q = 2 and (g) holds and n' = 3, then for Fx and Gr x the collineation
case with n = 4, q = 2 and (e) holds.

f21

Besides the original proof of the equation Gx = 1 in the collineation case with
q = 2, n = 6 (and hence, according to the previous paragraph, in the collineation
case with q = 2, n > 6) by the track method, there is another one given in [21,
IV] . In brief, arguments in [21, IV] are as follows. A careful analysis shows that
in the collineation case with n = 4, q — 2 and (e) the stabilizer of a vertex has
no subgroup isomorphic to SLA2) (see Remark 7.1). Suppose now that for F and

[21

G the collineation case with n = 6, q = 2 and Gx *fi  1 holds. It can be shown
(using triviality of certain cohomology groups of SX6(2)) that the group Gx/G$
has a subgroup isomorphic to SL,4(2) which stabilizes a subspace X of dimension 3
of the projective space F(a;). By the above, for Tx and GTx the collineation case
with n = 4, q = 2 and (e) holds. It follows the group Gx acts trivially on V(TX)-
Hence (GVx)x has a subgroup isomorphic to 51-4(2), a contradiction.
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Computing in the Monster

Robert A. Wilson

Abstract
We give a survey of computational methods and results concerning the

Monster sporadic simple group.
There are now three computer constructions of the Monster which are

proving effective in answering real questions about this group. The first con-
struction over the field of two elements is the fastest for calculations, and has
been used to show the group is a Hurwitz group.

The second construction over the field of three elements, uses an involution
centralizer as the heart of the construction, and has proved to be the most
useful as far as calculations with subgroups is concerned. P. E. Holmes has
used this construction to find explicitly four new conjugacy classes of maxi-
mal subgroups, as well as to eliminate various other possibilities for maximal
subgroups.

The third construction over the field of seven elements uses the same gen-
erators as the first construction, which means that elements given as words in
these generators can be investigated modulo 2 and modulo 7 simultaneously.
This gives enough information in most cases to determine the conjugacy class
of the element.

1 Introduction

The Monster is the largest of the 26 sporadic simple groups, and is of great interest
for a variety of reasons, not least its still mysterious connections with modular forms,
and quantum field theories. Until recently, its immense size has been a serious
barrier to computation in the group. Thus it was too big for a computational
existence proof, and its existence had to be proved 'by hand' [2] (see also [1]).
Determination of maximal subgroups also had to proceed by theoretical arguments
[15, 11, 12, 14].

The smallest matrix representations of the Monster have dimension 196882 in
characteristics 2 and 3, and dimension 196883 in all other characteristics. Thus the
smallest matrices which we could conceivably use to generate the Monster would
require around 5GB of storage each, and on modern workstations with the best
available algorithms it would take several weeks of processor time to multiply two
such matrices.

Despite these obvious difficulties, I decided some years ago to attempt an ex-
plicit construction of these matrices, with no hope of ever being able to use them for
any serious calculation. With the collaboration of Richard Parker, Peter Walsh and
Steve Linton, this project was eventually successful [10]. The generating matrices
were stored in a compact way, so that all the information and special programs
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needed would fit  onto a single 1.44MB floppy disk. This construction was in char-
acteristic 2 for speed, and therefore proceeded by gluing together 3-local subgroups.

However, it soon transpired that these 3-local subgroups were too small to con-
tain many useful subgroups with which to attack the maximal subgroup problem, so
1 began an analogous construction in characteristic 3, using the much larger 2-local
subgroups. This was eventually completed by Beth Holmes [6], who then used the
construction to obtain a complete classification of subgroups of the Monster iso-
morphic to Z/2(23). This major achievement was then quickly followed by 10 more
such classifications, each more astonishing than the last, including the discovery of
four previously unknown maximal subgroups [7, 8, 3].

In the meantime, I had produced a third construction, in characteristic 7, again
using the 3-local subgroups. The idea behind this is that the generators are the same
as in the characteristic 2 construction, so that one can obtain information about
elements 'modulo 14'. In particular, one can calculate character values modulo 14,
in order to provide good conjugacy class invariants.

2 The 2-local construction

We present first the 2-local construction, as it is easier to describe than the earlier
3-local construction, and is closely related to the Griess construction [2]. We give
only an overview, and refer the reader to [6] for details. The idea is to start with a
subgroup 21+24-Co1; which is one of the involution centralizers in the Monster. The
3-modular irreducible representation of degree 196882 for the Monster restricts to
this subgroup as the direct sum of three irreducibles, of degrees 98304, 98280 and
298. The constituent of degree 298 is a representation of the quotient Co\, obtained
from the 24-dimensional Leech lattice representation of the double cover 2- Co\ by
taking a trivial representation off the top and bottom of the symmetric square. The
constituent of degree 98280 is monomial, and can easily be constructed again from
the Leech lattice. Finally, the constituent of degree 98304 is the tensor product of
representations of the double cover, of degrees 24 (the Leech lattice again) and 4096
(obtained by a Clifford algebra construction from the Leech lattice).

Thus an element of this subgroup can be specified by three matrices (over GF(Z),
or more generally, any field of characteristic not 2), of sizes 24, 4096, and 298, and a
monomial permutation on 98280 points. In particular, the storage requirement for
each element is around 3.6MB, rather than the 7.4GB required for a 196882 x 196882
matrix over GF(3). Moreover, elements of this subgroup can be multiplied together
relatively easily—the most time-consuming part of the calculation is multiplying
together the 4096 x 4096 matrices, which takes around a minute, depending on
hardware and software. Most importantly for the sequel, however, is that there is
an easy algorithm for calculating the image of a vector of length 196882, under one
of these elements. This takes less than a second.

Now to produce an element of the Monster not in this subgroup, we first cen-
tralize a second involution, and use a 'standard basis' method to conjugate the first
involution to the second, normalizing the four-group they generate. It turns out
that the conjugating matrix can be chosen to be one of two particular matrices,
and it is easy to check that one of them does not extend our involution central-
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izer to the Monster, and therefore the other one does. This of course relies on the
existence of the Monster, and of this particular representation. An independent
existence proof using this explicit construction has not been attempted.

By careful change of basis in the representations described above, we can ensure
that the final element is reasonably sparse. It turns out that we can write it as a
monomial permutation on 147456 points, followed by 759 identical 64 x 64 matrices,
and an 850 x 850 matrix. This takes up around 0.7MB, and the image of a vector
under this element can be calculated in a fraction of a second.

It is important to realise that only the generators of the Monster can be stored
in one of these two compact formats. For this purpose, we can regard every element
of the involution centralizer 21+24-Coi as a generator. But every element of the
Monster outside this subgroup has to be stored as a word in these generators and the
final generator. Thus multiplying group elements together involves concatenating
words, and can be problematical as unrestrained multiplication rapidly results in
words which are too long to be useful. We shall see in Section 6 some techniques
we have used to get around this major problem.

3 The 3-local constructions

The first computer construction of the Monster [10] was designed to produce the
matrices over GF(2), since calculation with such matrices is much faster than with
matrices over any other field. The disadvantage, however, is that the maximal 2-
local subgroups are no longer available as ingredients of the construction. Thus we
decided to use maximal 3-local subgroups instead. Here again we give only a sketch
of the construction, and refer to [10] for details.

We began with the normalizer of a cyclic group of order 3, generated by a
3i?-element. This group has the shape 31+12'2'5wz:2. The restriction of the rep-
resentation to this subgroup consists again of a tensor product part, a monomial
part, and a small part. The small part is obtained by tensoring the complex Leech
lattice with its dual, reducing modulo 2, and taking a trivial module off the top and
bottom—the result is an irreducible representation of degree 142 over GF(2).

The 'monomial' part is really only monomial for a subgroup of index 2, over the
extension field GF(4). Thus for the whole group it is induced from a 2-dimensional
representation of a subgroup of index 32760.

The 'tensor product' part is again not exactly a tensor product: if we restrict
to the subgroup of index 2, it is the direct sum of two (dual) tensor products
over GF(4), each tensor being the product of one 90-dimensional and one 729-
dimensional representation. The latter is the natural irreducible representation
of the split extension 31+12:2'Suz, while the former is an indecomposable unitary
module for 6'Suz, with constituents of degrees 12, 66 and 12.

These technicalities greatly complicate the construction, as the underlying field
is sometimes of order 2, and sometimes of order 4, and the field automorphism needs
special treatment. Moreover, the construction of the 90-dimensional indecompos-
able module was quite difficult. Once these technical difficulties were overcome,
however, we ended up with an efficient calculating tool for the Monster. The stor-
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age requirement for an element in our subgroup is around 270kB, as opposed to
around 5GB for a full-size matrix.

As in the case of the 2-local construction, we can treat all elements of the sub-
group 31+12'2'Suz:2 as generators, and we just need to find one other generator for
the Monster. We chose another element of class 3B, inside the normal 3-subgroup,
and used a standard basis technique to find an involution swapping these two ele-
ments of order 3. By testing random products, we found the one possibility (out of
8) which extended our 3-normalizer to the Monster.

Again, by careful choice of basis we were able to write this extra element as a
combination of a 'monomial' permutation on 87480 subspaces of dimension 2, two
324 x 324 matrices (repeated 11 and 55 times respectively), and a 538 x 538 matrix.
The storage requirement is around 420kB for this generator.

A similar calculation can be done over any field of characteristic not 3, although
it is easier if there is a cube root of unity in the field. For this reason, we repeated
the calculations over the field of order 7, and obtained the same set of generators for
the Monster in this different representation [17]. Over fields of characteristic bigger
than 3, the dimension is 196883, as there is only one copy of the trivial module in
the tensor product of the complex Leech lattice with its dual, modulo primes bigger
than 3.

4 Basic calculations

In any of the above constructions, the basic operation that we can perform is to
multiply a vector by a generator of the Monster. We can also work inside our chosen
maximal subgroup to create new generators in this subgroup. An element of the
Monster is stored as a word xitiX2t2 ., where the Xi are in our maximal subgroup,
and the £; are equal to the extra generator (or its inverse, in the 2-local version).

An estimate of the order of the element represented by such a word is obtained by
taking a 'random' vector, and applying the letters of the word in order, repeatedly
until the original vector is returned. The number of times the word is scanned is
then a divisor of the order of the element, and is extremely likely to be exactly that
order.

To improve this estimate to an exact calculation, we pre-calculate two vectors,
one of which is fixed by an element of order 71, while the other is fixed by an element
of order 47 but not by an element of order 94. These were found by finding elements
whose estimated orders were 71 and 94, so that their exact orders are also 71 and
94 (as the Monster has no elements of order more than 119), and adding up the 71
images of a random vector under the first, and the 47 images of a vector under the
square of the second element. Now it is easy to show that no non-trivial element
of the Monster fixes both of these vectors. Therefore the exact order of an element
can be calculated by passing both of these vectors through the given word.
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5 Random searches

The first serious calculations we attempted with the first (3-local) construction were
to try to improve estimates for the symmetric genus of the Monster. By character
calculations and using partial information on maximal subgroups, Thompson had
shown that the Monster was a quotient of the triangle group A(2,3,29) = (x, y, z |
x2 = y3 = z29 = xyz =1 ), but the challenge was to find the minimal value of n
such that the Monster is a quotient of A(2,3, n).

It was easy enough to find elements of orders 2 and 3, in classes 25 and 3B,
inside our maximal subgroup. We then wrote down a long list of conjugates of
these two elements, and checked the order of the product in each case. It did not
take long to find products of order less than 29, and then to check many words in
the given conjugates, to verify that they did in fact generate the Monster. By this
method we quickly reduced the value of n to around 17.

The ultimate aim, however, was to reduce n to 7: from Norton's work on maxi-
mal subgroups [12] it seemed very likely that this was the minimal possible value.
However, the probability that a random pair has product of order 7 is of the order
of 10~8, so we would need to look at around 100 million pairs to have a reasonable
chance of success. This we did, using some 10 years of processor time. See [16] for
more details.

6 Advanced calculations

The main difference between calculating in a group given by generators as matrices
or permutations, and calculating in the Monster where elements are given as words
in the generators, is that if you are not careful the elements you need are given
by words whose length increases exponentially with time. Without a method of
shortening words it is impossible to use standard methods for finding elements and
subgroups with the required properties. This is the main reason, apart from sheer
size, why we originally considered serious calculation in this group to be essentially
impossible.

However, with experience, we found two methods of overcoming this obstacle.
The first trick is a method of conjugating one involution to a commuting involution,
by a short word. As we were initally tied to the given involution centralizer, this
was called the 'post', so this method of conjugating one involution to another was
dubbed 'changing post'.

The second trick, which is really the crucial ingredient which enables us to
calculate in the Monster almost as easily as in a small matrix group, is a method of
shortening words. Specifically, if we find a word in the generators, which commutes
with the original 25-element, then it belongs to the original subgroup 21+24-Coi.
Therefore it can be written in the shorthand form as a combination of a 24 x 24
matrix, a 4096 x 4096 matrix, a monomial permutation on 98280 points, and a
298 x 298 matrix. It turns out that this shorthand form can be determined by
calculating just 36 rows of the full 196882 x 196882 matrix for this element. Thus
provided the word for this element is not too long, this standard form can be
calculated fairly quickly.
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By combining this trick with Ryba's method [5] for conjugating an involution
in a group to an involution in a known subgroup, we can in principle shorten any
word to one of length less than about 20. In practice, however, this is still too slow
for arbitrary words, and its effective use is confined to the case described above.
Details can be found in Holmes's Ph. D. thesis [3] (see also [7]).

The first trick is less elegant, but no less effective. It relies on the fact that all
25-elements in 21+24-Coi can be obtained from the central involution by a subset
of the operations: (1) conjugate by t to make it a non-central involution of 21+24,
(2) conjugate by an element of 21+24lCoi, (3) conjugate by t again to move it
outside 21+24, and (4) conjugate again by an element of 21+24-Coi. The method of
conjugating an arbitrary 2-B-element in this group to the central involution, basically
consists of one application of the well-known dihedral group trick to conjugate our
involution to a pre-calculated one in the quotient Coy, and one random search in
the Leech lattice, to find the correct conjugating elements to reverse the above
operation. See [3] or [8] for details.

Another important principle for calculating in large groups is to do the required
calculations in a proper subgroup if at all possible. In many places we need to
work in particular subgroups to search for the particular elements we require. It
is necessary therefore to find suitably small representations of these subgroups in
which to perform such calculations. In some cases we created a permutation rep-
resentation by permuting the images of a carefully chosen vector. In most cases,
however, we chopped a suitable submodule out of the 196882-dimensional module
using a type of condensation technique specifically adapted for the special form of
the representation.

7 Maximal subgroups

The most effective method of classifying maximal subgroups of large simple groups
in a computational setting is to choose an abstract amalgam generating the desired
isomorphism type of subgroup, and to classify all embeddings of that amalgam in
the large simple group. We then look at each embedding to decide whether it indeed
generates the required subgroup.

For example, if we wish to classify subgroups isomorphic to £2(23), we use
the fact that this group can be generated by the Borel subgroup 23:11 and the
normalizer D22 of a torus, intersecting in the torus (of order 11). Thus we first
find all types of 23:11 in the Monster (there is only one, up to conjugacy, and it
can be found inside the involution centralizer). Next we find the normalizer of
the cyclic group of order 11. This is in general not so easy, but in this case we
find that, by choosing the element of order 23 carefully, it is generated by the part
which is in the involution centralizer, and the extra generator t of the Monster.
It is therefore possible to generate all necessary elements, that is the involutions
inverting the element of order 11, by short words in the Monster generators. As
a result we are able to investigate with relative ease the groups so generated, and
find the unique conjugacy class of subgroups of the Monster which are isomorphic
to £2(23). Moreover, we can use the normalizer of the cyclic group of order 23 to
show that every £2(23) in the Monster centralizes a group 53, and therefore its
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normalizer is inside the maximal subgroup 3'iri24-
Other isomorphism types of simple subgroups of the Monster are not so easy

to classify. The most successful calculation so far has been the classification of
subgroups generated by two copies of A5 intersecting in D\Q (see [3, 8, 9]). This
amalgam can generate L2(q), for any q = 1 (mod 5), as well as £3(4), so if we
can successfully classify such amalgams then we will have dealt with many of the
remaining cases. Indeed, the cases £2(9) for q = 9,11,19,29,31,59, 71 are all of this
type, so eight cases can be dealt with in this manner. (In fact, the case £2(29) was
treated earlier in a different way.)

This is easier said than done, however. It is hard to find representatives of
the two classes of A$ that need to be considered—eventually we found them by
making a copy of L%(11) x M\2 in the Monster, itself no small undertaking, and
taking suitable diagonal A5S therein. Finding the normalizer in the Monster of the
subgroup £>io was even more difficult, and involved working inside several different
involution centralizers to find various parts of the required subgroup.

At the end of the calculation, after several months work, we found four new
maximal subgroups by this method. In particular, we found explicitly maximal
subgroups £2(59) and £2(71), thus answering a long-standing question as to whether
these groups were subgroups of the Monster. This shows also that the maximal local
subgroups 59:29 and 71:35 are not maximal subgroups of the Monster. In addition,
we found new maximal subgroups Z2(29):2 and Z,2(19):2.

To summarise the calculations to date, we have completely classified maximal
subgroups of the Monster whose socle is isomorphic to one of the 11 simple groups
L2(q), for q = 9,11,19,23,29,31,59,71, £3(4), Mn or f/4(2). This leaves just 11
cases to consider, namely L2(q), for q = 7,8,13,16,17,27, £3(3), J73(3)> ^3(4),
£/3(8) and Sz(&).

8 Traces and conjugacy classes

We tend to think of the trace of a matrix as being easy and quick to calculate,
but that is only true if we actually have the matrix in front of us. To calculate
the trace of a matrix which is only given as a word in some generators is a much
more challenging problem. Indeed, the only reasonable method we could think of
is essentially to calculate the matrix one row at a time, and extract the diagonal
entries. This leads to a time of around 1 hour per letter of the word (depending of
course on hardware and software) for the trace modulo 2.

On the other hand, the trace modulo 2 is not a very good conjugacy class
invariant. It can only ever distinguish between different 2'-parts of elements, since
modulo 2 we have Tr(x) = Tr(x2). However, if we combine this invariant with
the order, and the traces of powers of the elements, we can distinguish between
most classes of odd-order elements in the Monster. The exceptions are irrational
classes, where we cannot distinguish between elements which generate the same
cyclic subgroup, and two other cases: we cannot distinguish between ZB and 3C,
or between 27,4 and 27B.

To distinguish classes of even order, we need traces modulo an odd prime. This
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was the main reason why I decided to repeat the 3-local construction over the
field of order 7, using exactly the same generators, so that the same words can
be used in both representations simultaneously. Thus we can calculate the trace
mod 2 and the trace mod 7 for the same element of the group, thus obtaining
the character value modulo 14. This gives us a much better class invariant, which
when combined with the order and the traces of powers, discriminates all classes
of cyclic subgroups except 27A and 27.B. However, it is much more expensive to
calculate traces modulo 7—days just to calculate one trace—so it can take weeks
to identify the conjugacy class of an element by this method. With this apparatus
my research student Richard Barraclough is in the process of producing a (partial)
list of conjugacy class representatives. See also [4] for a description of a method
and the results of some experiments designed to produce pseudo-random elements
of the Monster for use in randomized algorithms.

9 Conclusion

At the time of writing, it is less than four years since the publication of our first
paper [10] on constructing the Monster. During that time, we have effectively tamed
the Monster, so that many computations are now feasible inside this huge group.
This was beyond our wildest dreams in 1998, but now seems routine.

It is natural therefore to speculate on what further calculations might be possi-
ble. For example, could we provide an independent existence proof for the Monster?
This seems hard at the present time, but may be possible. At least we could find
elements satisfying a suitable presentation, and perhaps combine this with argu-
ments concerning the 2-local geometry to produce an existence proof independent
of [2].

Other problems worthy of attack include specific questions such as: Does the
196882-dimensional GF(2)-representation support an invariant quadratic form? If
so, is it of +-type or —type? There are also more speculative questions, for example
concerned with classifying Norton's nets (see [13]), where computational assistance
might be valuable. And, can we complete the determination of the maximal sub-
groups of the Monster? There are undoubtedly some hard cases still to crack, and
they may take a huge amount of computer time, but it seems as though this aim is
not completely unreasonable.

Many years ago, I used Moore's law (doubling of computer power every 18
months), plus a postulated doubling of software power every 18 months, and a
doubling of our own brain power every 18 months (perhaps the least plausible
assumption, but with hindsight the most important contribution), to estimate that
we could determine the maximal subgroups of the Monster by the end of the second
millenium AD. No-one seemed to take me seriously at the time, but maybe I was
not so far off the mark.
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