

Java™ 2:
The Complete Reference,

Fifth Edition

About the Author

Herbert Schildt is the world’s leading
programming author. He is an authority on the
C, C++, Java, and C# languages, and is a master
Windows programmer. His programming books
have sold more that 3 million copies worldwide
and have been translated into all major foreign
languages. He is the author of numerous
bestsellers, including Java 2: The Complete
Reference, Java 2: A Beginner's Guide, Java 2
Programmers Reference, C++: The Complete
Reference, C: The Complete Reference, and C#:
The Complete Reference. Schildt holds a master's
degree in computer science from the University
of Illinois. He can be reached at his consulting
office at (217) 586-4683.

Java™ 2:
The Complete Reference,

Fifth Edition

Herbert Schildt

McGraw-Hill/Osborne
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2002 by The McGraw-HIll Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222858-X

The material in this eBook also appears in the print version of this title: 0-07-222420-7

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007222858X

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you d like

and websites, please click here.
more information about this book, its author, or related books

,

Contents at a Glance

Part I The Java Language

1 The Genesis of Java . 3
2 An Overview of Java . 17
3 Data Types, Variables, and Arrays . 41
4 Operators . 73
5 Control Statements . 99
6 Introducing Classes . 129
7 A Closer Look at Methods and Classes 155
8 Inheritance . 189
9 Packages and Interfaces . 223

10 Exception Handling . 249
11 Multithreaded Programming . 273
12 I/O, Applets, and Other Topics . 313

v

Part II The Java Library

13 String Handling . 347
14 Exploring java.lang . 379
15 java.util Part 1: The Collections Framework 439
16 java.util Part 2: More Utility Classes . 505
17 Input/Output: Exploring java.io . 537
18 Networking . 587
19 The Applet Class . 627
20 Event Handling . 653
21 Introducing the AWT: Working with Windows,

Graphics, and Text . 687
22 Using AWT Controls, Layout Managers, and Menus 735
23 Images . 799
24 New I/O, Regular Expressions, and Other Packages 843

Part III Software Development Using Java

25 Java Beans . 885
26 A Tour of Swing . 921
27 Servlets . 949
28 Migrating from C++ to Java . 981

Part IV Applying Java

29 The DynamicBillboard Applet . 1011
30 ImageMenu: An Image-Based Web Menu 1047
31 The Lavatron Applet: A Sports Arena Display 1057
32 Scrabblet: A Multiplayer Word Game . 1069
A Using Java’s Documentation Comments 1133

Index . 1141

vi J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Contents

Preface . xxv

Part I

The Java Language

1 The Genesis of Java . 3
Java’s Lineage . 4

The Birth of Modern Programming: C . 4
The Need for C++ . 6
The Stage Is Set for Java . 7

The Creation of Java . 7
The C# Connection . 9

Why Java Is Important to the Internet . 9
Java Applets and Applications . 10
Security . 10
Portability . 11

Java’s Magic: The Bytecode . 11
The Java Buzzwords . 12

Simple . 13
Object-Oriented . 13

vii

Robust . 13
Multithreaded . 14
Architecture-Neutral . 14
Interpreted and High Performance . 14
Distributed . 15
Dynamic . 15

The Continuing Revolution . 15

2 An Overview of Java . 17
Object-Oriented Programming . 18

Two Paradigms . 18
Abstraction . 18
The Three OOP Principles . 19

A First Simple Program . 25
Entering the Program . 25
Compiling the Program . 26
A Closer Look at the First Sample Program 27

A Second Short Program . 29
Two Control Statements . 31

The if Statement . 31
The for Loop . 33

Using Blocks of Code . 35
Lexical Issues . 37

Whitespace . 37
Identifiers . 37
Literals . 37
Comments . 38
Separators . 38
The Java Keywords . 38

The Java Class Libraries . 39

3 Data Types, Variables, and Arrays . 41
Java Is a Strongly Typed Language . 42
The Simple Types . 42
Integers . 43

byte . 44
short . 44
int . 44
long . 45

Floating-Point Types . 45
float . 46
double . 46

Characters . 47
Booleans . 48
A Closer Look at Literals . 50

Integer Literals . 50
Floating-Point Literals . 50
Boolean Literals . 51

viii J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Character Literals . 51
String Literals . 52

Variables . 52
Declaring a Variable . 52
Dynamic Initialization . 53
The Scope and Lifetime of Variables . 54

Type Conversion and Casting . 57
Java’s Automatic Conversions . 57
Casting Incompatible Types . 57

Automatic Type Promotion in Expressions . 59
The Type Promotion Rules . 60

Arrays . 61
One-Dimensional Arrays . 61
Multidimensional Arrays . 64
Alternative Array Declaration Syntax . 70

A Few Words About Strings . 70
A Note to C/C++ Programmers About Pointers . 71

4 Operators . 73
Arithmetic Operators . 74

The Basic Arithmetic Operators . 74
The Modulus Operator . 76
Arithmetic Assignment Operators . 76
Increment and Decrement . 78

The Bitwise Operators . 80
The Bitwise Logical Operators . 82
The Left Shift . 84
The Right Shift . 86
The Unsigned Right Shift . 87
Bitwise Operator Assignments . 89

Relational Operators . 90
Boolean Logical Operators . 92

Short-Circuit Logical Operators . 93
The Assignment Operator . 94
The ? Operator . 95
Operator Precedence . 96
Using Parentheses . 96

5 Control Statements . 99
Java’s Selection Statements . 100

if . 100
switch . 104

Iteration Statements . 109
while . 109
do-while . 111
for . 114
Some for Loop Variations . 117
Nested Loops . 119

C o n t e n t s ix

Jump Statements . 119
Using break . 120
Using continue . 124
return . 126

6 Introducing Classes . 129
Class Fundamentals . 130

The General Form of a Class . 130
A Simple Class . 131

Declaring Objects . 134
A Closer Look at new . 136

Assigning Object Reference Variables . 137
Introducing Methods . 138

Adding a Method to the Box Class . 138
Returning a Value . 140
Adding a Method That Takes Parameters . 142

Constructors . 145
Parameterized Constructors . 147

The this Keyword . 149
Instance Variable Hiding . 149

Garbage Collection . 150
The finalize() Method . 150
A Stack Class . 151

7 A Closer Look at Methods and Classes 155
Overloading Methods . 156

Overloading Constructors . 159
Using Objects as Parameters . 162
A Closer Look at Argument Passing . 165
Returning Objects . 168
Recursion . 169
Introducing Access Control . 172
Understanding static . 176
Introducing final . 178
Arrays Revisited . 179
Introducing Nested and Inner Classes . 181
Exploring the String Class . 185
Using Command-Line Arguments . 188

8 Inheritance . 189
Inheritance Basics . 190

Member Access and Inheritance . 192
A More Practical Example . 193
A Superclass Variable Can Reference a Subclass Object 196

Using super . 197
Using super to Call Superclass Constructors 197
A Second Use for super . 202

x J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Creating a Multilevel Hierarchy . 203
When Constructors Are Called . 207
Method Overriding . 208
Dynamic Method Dispatch . 211

Why Overridden Methods? . 213
Applying Method Overriding . 214

Using Abstract Classes . 216
Using final with Inheritance . 219

Using final to Prevent Overriding . 219
Using final to Prevent Inheritance . 220

The Object Class . 220

9 Packages and Interfaces . 223
Packages . 224

Defining a Package . 225
Finding Packages and CLASSPATH . 226
A Short Package Example . 226

Access Protection . 227
An Access Example . 229

Importing Packages . 232
Interfaces . 235

Defining an Interface . 235
Implementing Interfaces . 236
Applying Interfaces . 239
Variables in Interfaces . 243
Interfaces Can Be Extended . 246

10 Exception Handling . 249
Exception-Handling Fundamentals . 250
Exception Types . 251
Uncaught Exceptions . 251
Using try and catch . 253

Displaying a Description of an Exception . 254
Multiple catch Clauses . 255
Nested try Statements . 257
throw . 260
throws . 261
finally . 263
Java’s Built-in Exceptions . 265
Creating Your Own Exception Subclasses . 267
Chained Exceptions . 269
Using Exceptions . 271

11 Multithreaded Programming . 273
The Java Thread Model . 275

Thread Priorities . 275
Synchronization . 276

C o n t e n t s xi

Messaging . 276
The Thread Class and the Runnable Interface 277

The Main Thread . 277
Creating a Thread . 280

Implementing Runnable . 280
Extending Thread . 282
Choosing an Approach . 284

Creating Multiple Threads . 284
Using isAlive() and join() . 286
Thread Priorities . 289
Synchronization . 292

Using Synchronized Methods . 292
The synchronized Statement . 295

Interthread Communication . 297
Deadlock . 302

Suspending, Resuming, and Stopping Threads . 305
Suspending, Resuming, and Stopping Threads Using

Java 1.1 and Earlier . 305
Suspending, Resuming, and Stopping Threads Using

Java 2 . 308
Using Multithreading . 311

12 I/O, Applets, and Other Topics . 313
I/O Basics . 314

Streams . 314
Byte Streams and Character Streams . 315
The Predefined Streams . 318

Reading Console Input . 318
Reading Characters . 319
Reading Strings . 320

Writing Console Output . 322
The PrintWriter Class . 323
Reading and Writing Files . 324
Applet Fundamentals . 328
The transient and volatile Modifiers . 331
Using instanceof . 332
strictfp . 335
Native Methods . 335

Problems with Native Methods . 340
Using assert . 340

Assertion Enabling and Disabling Options 343

Part II

The Java Library

13 String Handling . 347
The String Constructors . 348
String Length . 351

xii J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Special String Operations . 351
String Literals . 351
String Concatenation . 352
String Concatenation with Other Data Types 352
String Conversion and toString() . 353

Character Extraction . 355
charAt() . 355
getChars() . 355
getBytes() . 356
toCharArray() . 356

String Comparison . 356
equals() and equalsIgnoreCase() . 357
regionMatches() . 358
startsWith() and endsWith() . 358
equals() Versus == . 359
compareTo() . 359

Searching Strings . 361
Modifying a String . 363

substring() . 363
concat() . 364
replace() . 364
trim() . 365

Data Conversion Using valueOf() . 366
Changing the Case of Characters Within a String . 367
String Methods Added by Java 2, Version 1.4 . 368
StringBuffer . 369

StringBuffer Constructors . 369
length() and capacity() . 369
ensureCapacity() . 370
setLength() . 370
charAt() and setCharAt() . 371
getChars() . 371
append() . 372
insert() . 373
reverse() . 373
delete() and deleteCharAt() . 374
replace() . 375
substring() . 375
StringBuffer Methods Added by Java 2, Version 1.4 376

14 Exploring java.lang . 379
Simple Type Wrappers . 380

Number . 381
Double and Float . 381
Byte, Short, Integer, and Long . 387
Character . 397
Boolean . 401

Void . 402
Process . 402

C o n t e n t s xiii

Runtime . 403
Memory Management . 405
Executing Other Programs . 406

System . 407
Using currentTimeMillis() to Time Program Execution 410
Using arraycopy() . 411
Environment Properties . 412

Object . 412
Using clone() and the Cloneable Interface . 412
Class . 416
ClassLoader . 419
Math . 420

Transcendental Functions . 420
Exponential Functions . 420
Rounding Functions . 421
Miscellaneous Math Methods . 422

StrictMath . 422
Compiler . 423
Thread, ThreadGroup, and Runnable . 423

The Runnable Interface . 423
Thread . 423
ThreadGroup . 426

ThreadLocal and InheritableThreadLocal . 432
Package . 432
RuntimePermission . 434
Throwable . 434
SecurityManager . 434
StackTraceElement . 435
The CharSequence Interface . 436
The Comparable Interface . 436
The java.lang.ref and java.lang.reflect Packages . 437

java.lang.ref . 437
java.lang.reflect . 437

15 java.util Part 1: The Collections Framework 439
Collections Overview . 441
The Collection Interfaces . 442

The Collection Interface . 443
The List Interface . 445
The Set Interface . 447
The SortedSet Interface . 447

The Collection Classes . 448
The ArrayList Class . 449
The LinkedList Class . 452
The HashSet Class . 454
The LinkedHashSet Class . 456
The TreeSet Class . 456

Accessing a Collection via an Iterator . 457
Using an Iterator . 457

xiv J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Storing User-Defined Classes in Collections . 460
The RandomAccess Interface . 462
Working with Maps . 462

The Map Interfaces . 462
The Map Classes . 466

Comparators . 471
Using a Comparator . 472

The Collection Algorithms . 475
Arrays . 480
The Legacy Classes and Interfaces . 484

The Enumeration Interface . 484
Vector . 485
Stack . 490
Dictionary . 492
Hashtable . 494
Properties . 498
Using store() and load() . 502

Collections Summary . 504

16 java.util Part 2: More Utility Classes . 505
StringTokenizer . 506
BitSet . 508
Date . 512

Date Comparison . 514
Calendar . 514
GregorianCalendar . 519
TimeZone . 521
SimpleTimeZone . 522
Locale . 523
Random . 524
Observable . 527

The Observer Interface . 528
An Observer Example . 528

Timer and TimerTask . 531
Currency . 534
The java.util.zip Package . 536
The java.util.jar Package . 536

17 Input/Output: Exploring java.io . 537
The Java I/O Classes and Interfaces . 538
File . 539

Directories . 542
Using FilenameFilter . 543
The listFiles() Alternative . 544
Creating Directories . 545

The Stream Classes . 545
The Byte Streams . 546

C o n t e n t s xv

InputStream . 546
OutputStream . 547
FileInputStream . 548
FileOutputStream . 550
ByteArrayInputStream . 552
ByteArrayOutputStream . 553
Filtered Byte Streams . 555
Buffered Byte Streams . 555
SequenceInputStream . 559
PrintStream . 561
RandomAccessFile . 561

The Character Streams . 562
Reader . 562
Writer . 562
FileReader . 562
FileWriter . 565
CharArrayReader . 566
CharArrayWriter . 567
BufferedReader . 569
BufferedWriter . 570
PushbackReader . 571
PrintWriter . 572

Using Stream I/O . 572
Improving wc() Using a StreamTokenizer 574

Serialization . 577
Serializable . 577
Externalizable . 578
ObjectOutput . 578
ObjectOutputStream . 579
ObjectInput . 580
ObjectInputStream . 581
A Serialization Example . 583

Stream Benefits . 585

18 Networking . 587
Networking Basics . 588

Socket Overview . 588
Client/Server . 589
Reserved Sockets . 589
Proxy Servers . 590
Internet Addressing . 590

Java and the Net . 591
The Networking Classes and Interfaces . 592

InetAddress . 592
Factory Methods . 593
Instance Methods . 594

TCP/IP Client Sockets . 594
Whois . 596

xvi J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

URL . 597
Format . 597

URLConnection . 599
TCP/IP Server Sockets . 601
A Caching Proxy HTTP Server . 602

Source Code . 602
Datagrams . 623

DatagramPacket . 624
Datagram Server and Client . 624

Inet4Address and Inet6Address . 626
The URI Class . 626

19 The Applet Class . 627
Applet Basics . 628

The Applet Class . 629
Applet Architecture . 632
An Applet Skeleton . 632

Applet Initialization and Termination . 634
Overriding update() . 635

Simple Applet Display Methods . 636
Requesting Repainting . 638

A Simple Banner Applet . 639
Using the Status Window . 642
The HTML APPLET Tag . 643
Passing Parameters to Applets . 644

Improving the Banner Applet . 647
getDocumentBase() and getCodeBase() . 648
AppletContext and showDocument() . 649
The AudioClip Interface . 651
The AppletStub Interface . 652
Outputting to the Console . 652

20 Event Handling . 653
Two Event Handling Mechanisms . 654
The Delegation Event Model . 654

Events . 655
Event Sources . 655
Event Listeners . 656

Event Classes . 656
The ActionEvent Class . 658
The AdjustmentEvent Class . 659
The ComponentEvent Class . 660
The ContainerEvent Class . 660
The FocusEvent Class . 661
The InputEvent Class . 661
The ItemEvent Class . 662
The KeyEvent Class . 663
The MouseEvent Class . 664

C o n t e n t s xvii

The MouseWheelEvent Class . 665
The TextEvent Class . 666
The WindowEvent Class . 667

Sources of Events . 668
Event Listener Interfaces . 669

The ActionListener Interface . 670
The AdjustmentListener Interface . 670
The ComponentListener Interface . 670
The ContainerListener Interface . 670
The FocusListener Interface . 670
The ItemListener Interface . 671
The KeyListener Interface . 671
The MouseListener Interface . 671
The MouseMotionListener Interface . 671
The MouseWheelListener Interface . 672
The TextListener Interface . 672
The WindowFocusListener Interface . 672
The WindowListener Interface . 672

Using the Delegation Event Model . 673
Handling Mouse Events . 673
Handling Keyboard Events . 676

Adapter Classes . 680
Inner Classes . 682

Anonymous Inner Classes . 684

21 Introducing the AWT: Working with Windows,
Graphics, and Text . 687

AWT Classes . 688
Window Fundamentals . 691

Component . 691
Container . 692
Panel . 692
Window . 693
Frame . 693
Canvas . 693

Working with Frame Windows . 693
Setting the Window’s Dimensions . 694
Hiding and Showing a Window . 694
Setting a Window’s Title . 694
Closing a Frame Window . 694

Creating a Frame Window in an Applet . 695
Handling Events in a Frame Window . 697

Creating a Windowed Program . 702
Displaying Information Within a Window . 704
Working with Graphics . 705

Drawing Lines . 705
Drawing Rectangles . 706
Drawing Ellipses and Circles . 708

xviii J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Drawing Arcs . 709
Drawing Polygons . 710
Sizing Graphics . 711

Working with Color . 712
Color Methods . 713
Setting the Current Graphics Color . 714
A Color Demonstration Applet . 714

Setting the Paint Mode . 715
Working with Fonts . 717

Determining the Available Fonts . 719
Creating and Selecting a Font . 720
Obtaining Font Information . 722

Managing Text Output Using FontMetrics . 723
Displaying Multiple Lines of Text . 725
Centering Text . 727
Multiline Text Alignment . 728

Exploring Text and Graphics . 733

22 Using AWT Controls, Layout Managers, and Menus 735
Control Fundamentals . 736

Adding and Removing Controls . 736
Responding to Controls . 737

Labels . 737
Using Buttons . 739

Handling Buttons . 739
Applying Check Boxes . 743

Handling Check Boxes . 743
CheckboxGroup . 745
Choice Controls . 748

Handling Choice Lists . 748
Using Lists . 751

Handling Lists . 752
Managing Scroll Bars . 754

Handling Scroll Bars . 756
Using a TextField . 758

Handling a TextField . 759
Using a TextArea . 761
Understanding Layout Managers . 763

FlowLayout . 764
BorderLayout . 766
Using Insets . 768
GridLayout . 770
CardLayout . 772

Menu Bars and Menus . 775
Dialog Boxes . 782
FileDialog . 788
Handling Events by Extending AWT Components . 790

Extending Button . 792
Extending Checkbox . 793

C o n t e n t s xix

Extending a Check Box Group . 794
Extending Choice . 795
Extending List . 795
Extending Scrollbar . 797

Exploring the Controls, Menus, and Layout Managers 798

23 Images . 799
File Formats . 800
Image Fundamentals: Creating, Loading, and Displaying 801

Creating an Image Object . 801
Loading an Image . 801
Displaying an Image . 802

ImageObserver . 803
ImageObserver Example . 805

Double Buffering . 807
MediaTracker . 811
ImageProducer . 815

MemoryImageSource . 815
ImageConsumer . 817

PixelGrabber . 818
ImageFilter . 821

CropImageFilter . 821
RGBImageFilter . 823

Cell Animation . 837
Additional Imaging Classes . 840

24 New I/O, Regular Expressions, and Other Packages 843
The Core Java API Packages . 844
The New I/O Packages . 847

NIO Fundamentals . 847
Charsets and Selectors . 851
Using the New I/O System . 851
Is NIO the Future of I/O Handling? . 859

Regular Expression Processing . 859
Pattern . 859
Matcher . 860
Regular Expression Syntax . 861
Demonstrating Pattern Matching . 861
Two Pattern-Matching Options . 868
Exploring Regular Expressions . 869

Reflection . 869
Remote Method Invocation (RMI) . 874

A Simple Client/Server Application Using RMI 874
Text Formatting . 878

DateFormat Class . 878
SimpleDateFormat Class . 880

xx J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Part III

Software Development Using Java

25 Java Beans . 885
What Is a Java Bean? . 886
Advantages of Java Beans . 887
Application Builder Tools . 887
Using the Bean Developer Kit (BDK) . 888

Installing the BDK . 888
Starting the BDK . 889
Using the BDK . 889

JAR Files . 891
Manifest Files . 892
The JAR Utility . 892

Introspection . 894
Design Patterns for Properties . 894
Design Patterns for Events . 896
Methods . 897

Developing a Simple Bean Using the BDK . 897
Create a New Bean . 898

Using Bound Properties . 902
Steps . 902

Using the BeanInfo Interface . 903
Constrained Properties . 905
Persistence . 905
Customizers . 906
The Java Beans API . 906
Using Bean Builder . 911

Building a Simple Bean Builder Application 913

26 A Tour of Swing . 921
JApplet . 923
Icons and Labels . 923
Text Fields . 925
Buttons . 927

The JButton Class . 927
Check Boxes . 930
Radio Buttons . 932

Combo Boxes . 934
Tabbed Panes . 936
Scroll Panes . 939
Trees . 941
Tables . 946
Exploring Swing . 948

27 Servlets . 949
Background . 950

C o n t e n t s xxi

The Life Cycle of a Servlet . 951
Using Tomcat For Servlet Development . 951
A Simple Servlet . 953

Create and Compile the Servlet Source Code 953
Start Tomcat . 954
Start a Web Browser and Request the Servlet 954

The Servlet API . 954
The javax.servlet Package . 955

The Servlet Interface . 955
The ServletConfig Interface . 956
The ServletContext Interface . 957
The ServletRequest Interface . 957
The ServletResponse Interface . 957
The SingleThreadModel Interface . 957
The GenericServlet Class . 960
The ServletInputStream Class . 960
The ServletOutputStream Class . 960
The Servlet Exception Classes . 960

Reading Servlet Parameters . 960
The javax.servlet.http Package . 962

The HttpServletRequest Interface . 963
The HttpServletResponse Interface . 965
The HttpSession Interface . 966
The HttpSessionBindingListener Interface 967
The Cookie Class . 967
The HttpServlet Class . 969
The HttpSessionEvent Class . 970
The HttpSessionBindingEvent Class . 971

Handling HTTP Requests and Responses . 971
Handling HTTP GET Requests . 971
Handling HTTP POST Requests . 973

Using Cookies . 975
Session Tracking . 977
Security Issues . 979

28 Migrating from C++ to Java . 981
The Differences Between C++ and Java . 982

What Java Has Removed from C++ . 982
New Features Added by Java . 984
Features That Differ . 985

Eliminating Pointers . 985
Converting Pointer Parameters . 986
Converting Pointers that Operate on Arrays 988

C++ Reference Parameters Versus Java Reference Parameters 991
Converting C++ Abstract Classes into Java Interfaces 995
Converting Default Arguments . 999
Converting C++ Multiple-Inheritance Hierarchies . 1001
Destructors Versus Finalization . 1003

xxii J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Part IV

Applying Java

29 The DynamicBillboard Applet . 1011
The APPLET Tag . 1012
Source Code Overview . 1014

DynamicBillboard.java . 1014
BillData.java . 1022
BillTransition.java . 1024
ColumnTransition.java . 1026
FadeTransition.java . 1029
SmashTransition.java . 1033
TearTransition.java . 1036
UnrollTransition.java . 1040

Dynamic Code . 1044

30 ImageMenu: An Image-Based Web Menu 1047
The Source Image . 1049
The APPLET Tag . 1050
The Methods . 1051

init() . 1051
update() . 1051
lateInit() . 1051
paint() . 1051
mouseExited() . 1052
mouseDragged() . 1052
mouseMoved() . 1052
mouseReleased() . 1053
The Code . 1053

Summary . 1056

31 The Lavatron Applet: A Sports Arena Display 1057
How Lavatron Works . 1059
The Source Code . 1060

The APPLET Tag . 1060
Lavatron.java . 1060
IntHash() . 1065

Hot Lava . 1067

32 Scrabblet: A Multiplayer Word Game 1069
Network Security Concerns . 1070
The Game . 1071

Scoring . 1074
The Source Code . 1076

The APPLET Tag . 1076
Scrabblet.java . 1077
IntroCanvas.java . 1090

C o n t e n t s xxiii

Board.java . 1091
Bag.java . 1109
Letter.java . 1111
ServerConnection.java . 1117

The Server Code . 1123
Server.java . 1123
ClientConnection.java . 1127

Enhancing Scrabblet . 1131

A Using Java’s Documentation Comments 1133
The javadoc Tags . 1134

@author . 1135
@deprecated . 1135
{@docRoot} . 1135
@exception . 1135
{@inheritDoc} . 1136
{@link} . 1136
{@linkplain} . 1136
@param . 1136
@return . 1136
@see . 1136
@serial . 1137
@serialData . 1137
@serialField . 1137
@since . 1137
@throws . 1138
{@value} . 1138
@version . 1138

The General Form of a Documentation Comment . 1138
What javadoc Outputs . 1138
An Example that Uses Documentation Comments . 1139

Index . 1141

xxiv J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Preface

The past few years document the following fact: The Web has irrevocably recast
the face of computing and programmers unwilling to master its environment will
be left behind.

The preceding is a strong statement. It is also true. More and more, applications
must interface to the Web. It no longer matters much what the application is, near
universal Web access is dragging, pushing, and coaxing programmers to program for
the online world, and Java is the language that many will use to do it. Frankly, fluency
in Java is no longer an option for the professional programmer, it is a requirement. This
book will help you acquire it.

Aside from being the preeminent language of the Internet, Java is important for
another reason: it has altered the course of computer language development. Many of
the features first mainstreamed by Java are now finding their way into other languages.
For example, the new C# language is strongly influenced by Java. Knowledge of Java
opens the door to the latest innovations in programming. Put directly, Java is one of the
world’s most important computer languages.

xxv

A Book for All Programmers
To use this book does not require any previous programming experience. However,
if you come from a C/C++ background, then you will be able to advance a bit more
rapidly. As most readers will know, Java is similar, in form and spirit, to C/C++. Thus,
knowledge of those langauges helps, but is not necessary. Even if you have never
programmed before, you can learn to program in Java using this book.

What’s Inside
This book covers all aspects of the Java programming language. Part 1 presents an
in-depth tutorial of the Java language. It begins with the basics, including such things
as data types, control statements, and classes. Part 1 also discusses Java’s
exception-handling mechanism, multithreading subsystem, packages, and interfaces.

Part 2 examines the standard Java library. As you will learn, much of Java’s power
is found in its library. Topics include strings, I/O, networking, the standard utilities,
the Collections Framework, applets, GUI-based controls, and imaging.

Part 3 looks at some issues relating to the Java development environment, including
an overview of Java Beans, Servlets, and Swing.

Part 4 presents a number of high-powered Java applets that serve as extended
examples of the way Java can be applied. The final applet, called Scrabblet, is a complete,
multiuser networked game. It shows how to handle some of the toughest issues involved
in Web-based programming.

What’s New in the Fifth Edition
The differences between this and the previous editions of this book mostly involve those
features added by Java 2, version 1.4. Of the many new features found in version 1.4,
perhaps the most important are the assert keyword, the channel-based I/O subsystem,
chained exceptions, and networking enhancements. This fifth edition has been fully
updated to reflect those and other additions. New features are clearly noted in the text,
as are features added by previous releases.

This fifth edition also updates and restores the Sevlets chapter. Previously
this chapter relied upon the now out-dated JSDK (Java Servlets Developers Kit)
to develop and test servlets. It now uses Apache Tomcat, which is the currently
recommended tool.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples and projects in this book is available
free-of-charge on the Web at www.osborne.com.

xxvi J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Special Thanks
Special thanks to Patrick Naughton. Patrick was one of the creators of the Java
language. He also helped write the first edition of this book. For example, much of
the material in chapters 17, 18, 23, 29, 30, 31, and 32 was initially provided by Patrick.
His insights, expertise, and energy contributed greatly to the success of this book.

Thanks also go to Joe O'Neil for providing the initial drafts for chapters 24, 25, 26,
and 27. Joe has helped on several of my books and, as always, his efforts are appreciated.

HERBERT SCHILDT
May 25, 2002
Mahomet, Illinois

P r e f a c e xxvii

For Further Study
Java 2: The Complete Reference is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest:

To learn more about Java programming, we recommend the following:

Java 2: A Beginner's Guide

Java 2 Programmer's Reference

To learn about C++, you will find these books especially helpful:

C++: The Complete Reference

C++: A Beginner's Guide

Teach Yourself C++

C++ From the Ground Up

STL Programming From the Ground Up

To learn about C#, we suggest the following Schildt books:

C#: A Beginner's Guide

C#: The Complete Reference

If you want to learn more about the C language, the foundation of all modern
programming, then the following titles will be of interest:

C: The Complete Reference

Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

xxviii J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Part I
The Java Language

This page intentionally left blank.

Chapter 1
The Genesis of Java

3

4 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

When the chronicle of computer languages is written, the following will be said:
B led to C, C evolved into C++, and C++ set the stage for Java. To understand
Java is to understand the reasons that drove its creation, the forces that

shaped it, and the legacy that it inherits. Like the successful computer languages that
came before, Java is a blend of the best elements of its rich heritage combined with the
innovative concepts required by its unique environment. While the remaining chapters
of this book describe the practical aspects of Java—including its syntax, libraries, and
applications—in this chapter, you will learn how and why Java came about, and what
makes it so important.

Although Java has become inseparably linked with the online environment of the
Internet, it is important to remember that Java is first and foremost a programming
language. Computer language innovation and development occurs for two fundamental
reasons:

■ To adapt to changing environments and uses

■ To implement refinements and improvements in the art of programming

As you will see, the creation of Java was driven by both elements in nearly
equal measure.

Java’s Lineage
Java is related to C++, which is a direct descendent of C. Much of the character of Java
is inherited from these two languages. From C, Java derives its syntax. Many of Java’s
object-oriented features were influenced by C++. In fact, several of Java’s defining
characteristics come from—or are responses to—its predecessors. Moreover, the creation
of Java was deeply rooted in the process of refinement and adaptation that has been
occurring in computer programming languages for the past three decades. For these
reasons, this section reviews the sequence of events and forces that led up to Java. As
you will see, each innovation in language design was driven by the need to solve a
fundamental problem that the preceding languages could not solve. Java is no exception.

The Birth of Modern Programming: C
The C language shook the computer world. Its impact should not be underestimated,
because it fundamentally changed the way programming was approached and thought
about. The creation of C was a direct result of the need for a structured, efficient, high-
level language that could replace assembly code when creating systems programs. As
you probably know, when a computer language is designed, trade-offs are often made,
such as the following:

■ Ease-of-use versus power

■ Safety versus efficiency

■ Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized
one set of traits or the other. For example, although FORTRAN could be used to write
fairly efficient programs for scientific applications, it was not very good for systems
code. And while BASIC was easy to learn, it wasn’t very powerful, and its lack of
structure made its usefulness questionable for large programs. Assembly language
can be used to produce highly efficient programs, but it is not easy to learn or use
effectively. Further, debugging assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to
understand. While languages like Pascal are structured, they were not designed for
efficiency, and failed to include certain features necessary to make them applicable to
a wide range of programs. (Specifically, given the standard dialects of Pascal available
at the time, it was not practical to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was
pressing. By the early 1970s, the computer revolution was beginning to take hold, and
the demand for software was rapidly outpacing programmers’ ability to produce it.
A great deal of effort was being expended in academic circles in an attempt to create a
better computer language. But, and perhaps most importantly, a secondary force was
beginning to be felt. Computer hardware was finally becoming common enough that a
critical mass was being reached. No longer were computers kept behind locked doors.
For the first time, programmers were gaining virtually unlimited access to their
machines. This allowed the freedom to experiment. It also allowed programmers to
begin to create their own tools. On the eve of C’s creation, the stage was set for a
quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the
UNIX operating system, C was the result of a development process that started with
an older language called BCPL, developed by Martin Richards. BCPL influenced a
language called B, invented by Ken Thompson, which led to the development of C
in the 1970s. For many years, the de facto standard for C was the one supplied with
the UNIX operating system and described in The C Programming Language by Brian
Kernighan and Dennis Ritchie (Prentice-Hall, 1978). C was formally standardized in
December 1989, when the American National Standards Institute (ANSI) standard for
C was adopted.

The creation of C is considered by many to have marked the beginning of the
modern age of computer languages. It successfully synthesized the conflicting
attributes that had so troubled earlier languages. The result was a powerful, efficient,
structured language that was relatively easy to learn. It also included one other, nearly
intangible aspect: it was a programmer’s language. Prior to the invention of C, computer
languages were generally designed either as academic exercises or by bureaucratic
committees. C is different. It was designed, implemented, and developed by real,

C h a p t e r 1 : T h e G e n e s i s o f J a v a 5
TH

E
JA

V
A

LA
N

G
U

A
G

E

working programmers, reflecting the way that they approached the job of programming.
Its features were honed, tested, thought about, and rethought by the people who
actually used the language. The result was a language that programmers liked to use.
Indeed, C quickly attracted many followers who had a near-religious zeal for it. As
such, it found wide and rapid acceptance in the programmer community. In short,
C is a language designed by and for programmers. As you will see, Java has inherited
this legacy.

The Need for C++
During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language,
you might ask why a need for something else existed. The answer is complexity.
Throughout the history of programming, the increasing complexity of programs has
driven the need for better ways to manage that complexity. C++ is a response to that
need. To better understand why managing program complexity is fundamental to the
creation of C++, consider the following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done
by manually toggling in the binary machine instructions by use of the front panel. As
long as programs were just a few hundred instructions long, this approach worked.
As programs grew, assembly language was invented so that a programmer could deal
with larger, increasingly complex programs by using symbolic representations of the
machine instructions. As programs continued to grow, high-level languages were
introduced that gave the programmer more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was
an impressive first step, it is hardly a language that encourages clear and easy-to-
understand programs. The 1960s gave birth to structured programming. This is the
method of programming championed by languages such as C. The use of structured
languages enabled programmers to write, for the first time, moderately complex
programs fairly easily. However, even with structured programming methods, once a
project reaches a certain size, its complexity exceeds what a programmer can manage.
By the early 1980s, many projects were pushing the structured approach past its limits.
To solve this problem, a new way to program was invented, called object-oriented
programming (OOP). Object-oriented programming is discussed in detail later in this
book, but here is a brief definition: OOP is a programming methodology that helps
organize complex programs through the use of inheritance, encapsulation, and
polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once a program exceeds somewhere
between 25,000 and 100,000 lines of code, it becomes so complex that it is difficult to
grasp as a totality. C++ allows this barrier to be broken, and helps the programmer
comprehend and manage larger programs.

6 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell
Laboratories in Murray Hill, New Jersey. Stroustrup initially called the new language
“C with Classes.” However, in 1983, the name was changed to C++. C++ extends C
by adding object-oriented features. Because C++ is built upon the foundation of C,
it includes all of C’s features, attributes, and benefits. This is a crucial reason for the
success of C++ as a language. The invention of C++ was not an attempt to create a
completely new programming language. Instead, it was an enhancement to an already
highly successful one.

The Stage Is Set for Java
By the end of the 1980s and the early 1990s, object-oriented programming using C++
took hold. Indeed, for a brief moment it seemed as if programmers had finally found
the perfect language. Because C++ blended the high efficiency and stylistic elements of
C with the object-oriented paradigm, it was a language that could be used to create a
wide range of programs. However, just as in the past, forces were brewing that would,
once again, drive computer language evolution forward. Within a few years, the World
Wide Web and the Internet would reach critical mass. This event would precipitate
another revolution in programming.

The Creation of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and
Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
working version. This language was initially called “Oak” but was renamed “Java”
in 1995. Between the initial implementation of Oak in the fall of 1992 and the public
announcement of Java in the spring of 1995, many more people contributed to the design
and evolution of the language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin,
and Tim Lindholm were key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead,
the primary motivation was the need for a platform-independent (that is, architecture-
neutral) language that could be used to create software to be embedded in various
consumer electronic devices, such as microwave ovens and remote controls. As you
can probably guess, many different types of CPUs are used as controllers. The trouble
with C and C++ (and most other languages) is that they are designed to be compiled
for a specific target. Although it is possible to compile a C++ program for just about
any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The
problem is that compilers are expensive and time-consuming to create. An easier—
and more cost-efficient—solution was needed. In an attempt to find such a solution,
Gosling and others began work on a portable, platform-independent language that
could be used to produce code that would run on a variety of CPUs under differing
environments. This effort ultimately led to the creation of Java.

C h a p t e r 1 : T h e G e n e s i s o f J a v a 7

8 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

About the time that the details of Java were being worked out, a second, and
ultimately more important, factor was emerging that would play a crucial role
in the future of Java. This second force was, of course, the World Wide Web. Had
the Web not taken shape at about the same time that Java was being implemented,
Java might have remained a useful but obscure language for programming consumer
electronics. However, with the emergence of the World Wide Web, Java was propelled
to the forefront of computer language design, because the Web, too, demanded
portable programs.

Most programmers learn early in their careers that portable programs are as
elusive as they are desirable. While the quest for a way to create efficient, portable
(platform-independent) programs is nearly as old as the discipline of programming
itself, it had taken a back seat to other, more pressing problems. Further, because much
of the computer world had divided itself into the three competing camps of Intel,
Macintosh, and UNIX, most programmers stayed within their fortified boundaries,
and the urgent need for portable code was reduced. However, with the advent of the
Internet and the Web, the old problem of portability returned with a vengeance. After
all, the Internet consists of a diverse, distributed universe populated with many types
of computers, operating systems, and CPUs. Even though many types of platforms
are attached to the Internet, users would like them all to be able to run the same
program. What was once an irritating but low-priority problem had become a
high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems
of portability frequently encountered when creating code for embedded controllers
are also found when attempting to create code for the Internet. In fact, the same problem
that Java was initially designed to solve on a small scale could also be applied to the
Internet on a large scale. This realization caused the focus of Java to switch from
consumer electronics to Internet programming. So, while the desire for an architecture-
neutral programming language provided the initial spark, the Internet ultimately led to
Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is
by intent. The Java designers knew that using the familiar syntax of C and echoing
the object-oriented features of C++ would make their language appealing to the
legions of experienced C/C++ programmers. In addition to the surface similarities,
Java shares some of the other attributes that helped make C and C++ successful. First,
Java was designed, tested, and refined by real, working programmers. It is a language
grounded in the needs and experiences of the people who devised it. Thus, Java is also
a programmer’s language. Second, Java is cohesive and logically consistent. Third,
except for those constraints imposed by the Internet environment, Java gives you, the
programmer, full control. If you program well, your programs reflect it. If you program
poorly, your programs reflect that, too. Put differently, Java is not a language with
training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as
simply the “Internet version of C++.” However, to do so would be a large mistake. Java
has significant practical and philosophical differences. While it is true that Java was
influenced by C++, it is not an enhanced version of C++. For example, Java is neither
upwardly nor downwardly compatible with C++. Of course, the similarities with C++
are significant, and if you are a C++ programmer, then you will feel right at home with
Java. One other point: Java was not designed to replace C++. Java was designed to
solve a certain set of problems. C++ was designed to solve a different set of problems.
Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two
reasons: to adapt to changes in environment and to implement advances in the art
of programming. The environmental change that prompted Java was the need for
platform-independent programs destined for distribution on the Internet. However,
Java also embodies changes in the way that people approach the writing of programs.
Specifically, Java enhances and refines the object-oriented paradigm used by C++.
Thus, Java is not a language that exists in isolation. Rather, it is part of an ongoing
process begun many years ago. This fact alone is enough to ensure Java a place in
computer language history. Java is to Internet programming what C was to systems
programming: a revolutionary force that changed the world.

The C# Connection
The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become
part of the baseline for any new language. The success of Java is simply too important
to ignore.

Perhaps the most important example of Java’s influence is C#. Recently created by
Microsoft to support the .NET Framework, C# is closely related to Java. For example,
both share the same general C++-style syntax, support distributed programming, and
utilize the same object model. There are, of course, differences between Java and C#,
but the overall “look and feel” of these languages is very similar. This “cross-pollination”
from Java to C# is the strongest testimonial to date that Java redefined the way we
think about and use a computer language.

Why Java Is Important to the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn,
has had a profound effect on the Internet. The reason for this is quite simple: Java
expands the universe of objects that can move about freely in cyberspace. In a network,
two very broad categories of objects are transmitted between the server and your
personal computer: passive information and dynamic, active programs. For example,

C h a p t e r 1 : T h e G e n e s i s o f J a v a 9
TH

E
JA

V
A

LA
N

G
U

A
G

E

when you read your e-mail, you are viewing passive data. Even when you download a
program, the program’s code is still only passive data until you execute it. However, a
second type of object can be transmitted to your computer: a dynamic, self-executing
program. Such a program is an active agent on the client computer, yet is initiated by
the server. For example, a program might be provided by the server to display properly
the data that the server is sending.

As desirable as dynamic, networked programs are, they also present serious
problems in the areas of security and portability. Prior to Java, cyberspace was
effectively closed to half the entities that now live there. As you will see, Java addresses
those concerns and, by doing so, has opened the door to an exciting new form of
program: the applet.

Java Applets and Applications
Java can be used to create two types of programs: applications and applets. An
application is a program that runs on your computer, under the operating system of that
computer. That is, an application created by Java is more or less like one created using C
or C++. When used to create applications, Java is not much different from any other
computer language. Rather, it is Java’s ability to create applets that makes it important.
An applet is an application designed to be transmitted over the Internet and executed by
a Java-compatible Web browser. An applet is actually a tiny Java program, dynamically
downloaded across the network, just like an image, sound file, or video clip. The
important difference is that an applet is an intelligent program, not just an animation or
media file. In other words, an applet is a program that can react to user input and
dynamically change—not just run the same animation or sound over and over.

As exciting as applets are, they would be nothing more than wishful thinking if
Java were not able to address the two fundamental problems associated with them:
security and portability. Before continuing, let’s define what these two terms mean
relative to the Internet.

Security
As you are likely aware, every time that you download a “normal” program, you
are risking a viral infection. Prior to Java, most users did not download executable
programs frequently, and those who did scanned them for viruses prior to execution.
Even so, most users still worried about the possibility of infecting their systems with
a virus. In addition to viruses, another type of malicious program exists that must be
guarded against. This type of program can gather private information, such as credit
card numbers, bank account balances, and passwords, by searching the contents of
your computer’s local file system. Java answers both of these concerns by providing
a “firewall” between a networked application and your computer.

When you use a Java-compatible Web browser, you can safely download Java
applets without fear of viral infection or malicious intent. Java achieves this protection
by confining a Java program to the Java execution environment and not allowing it

10 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

access to other parts of the computer. (You will see how this is accomplished shortly.)
The ability to download applets with confidence that no harm will be done and that
no security will be breached is considered by many to be the single most important
aspect of Java.

Portability
As discussed earlier, many types of computers and operating systems are in use
throughout the world—and many are connected to the Internet. For programs to
be dynamically downloaded to all the various types of platforms connected to the
Internet, some means of generating portable executable code is needed. As you will
soon see, the same mechanism that helps ensure security also helps create portability.
Indeed, Java’s solution to these two problems is both elegant and efficient.

Java’s Magic: The Bytecode
The key that allows Java to solve both the security and the portability problems just
described is that the output of a Java compiler is not executable code. Rather, it is
bytecode. Bytecode is a highly optimized set of instructions designed to be executed
by the Java run-time system, which is called the Java Virtual Machine (JVM). That is,
in its standard form, the JVM is an interpreter for bytecode. This may come as a bit of
a surprise. As you know, C++ is compiled to executable code. In fact, most modern
languages are designed to be compiled, not interpreted—mostly because of
performance concerns. However, the fact that a Java program is executed by the
JVM helps solve the major problems associated with downloading programs over
the Internet. Here is why.

Translating a Java program into bytecode helps makes it much easier to run a
program in a wide variety of environments. The reason is straightforward: only the
JVM needs to be implemented for each platform. Once the run-time package exists
for a given system, any Java program can run on it. Remember, although the details
of the JVM will differ from platform to platform, all interpret the same Java bytecode.
If a Java program were compiled to native code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is,
of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way
to create truly portable programs.

The fact that a Java program is interpreted also helps to make it secure. Because the
execution of every Java program is under the control of the JVM, the JVM can contain
the program and prevent it from generating side effects outside of the system. As you
will see, safety is also enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs substantially slower than it would
run if compiled to executable code. However, with Java, the differential between the
two is not so great. The use of bytecode enables the Java run-time system to execute
programs much faster than you might expect.

C h a p t e r 1 : T h e G e n e s i s o f J a v a 11
TH

E
JA

V
A

LA
N

G
U

A
G

E

12 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Although Java was designed for interpretation, there is technically nothing about
Java that prevents on-the-fly compilation of bytecode into native code. Along these
lines, Sun supplies its Just In Time (JIT) compiler for bytecode, which is included in
the Java 2 release. When the JIT compiler is part of the JVM, it compiles bytecode into
executable code in real time, on a piece-by-piece, demand basis. It is important to
understand that it is not possible to compile an entire Java program into executable
code all at once, because Java performs various run-time checks that can be done only
at run time. Instead, the JIT compiles code as it is needed, during execution. However,
the just-in-time approach still yields a significant performance boost. Even when
dynamic compilation is applied to bytecode, the portability and safety features still
apply, because the run-time system (which performs the compilation) still is in charge
of the execution environment. Whether your Java program is actually interpreted in the
traditional way or compiled on-the-fly, its functionality is the same.

The Java Buzzwords
No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability
and security, other factors also played an important role in molding the final form of
the language. The key considerations were summed up by the Java team in the
following list of buzzwords:

■ Simple

■ Secure

■ Portable

■ Object-oriented

■ Robust

■ Multithreaded

■ Architecture-neutral

■ Interpreted

■ High performance

■ Distributed

■ Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s
examine what each of the others implies.

C h a p t e r 1 : T h e G e n e s i s o f J a v a 13
TH

E
JA

V
A

LA
N

G
U

A
G

E

Simple
Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will not find
Java hard to master. If you already understand the basic concepts of object-oriented
programming, learning Java will be even easier. Best of all, if you are an experienced
C++ programmer, moving to Java will require very little effort. Because Java inherits
the C/C++ syntax and many of the object-oriented features of C++, most programmers
have little trouble learning Java. Also, some of the more confusing concepts from C++
are either left out of Java or implemented in a cleaner, more approachable manner.

Beyond its similarities with C/C++, Java has another attribute that makes it easy
to learn: it makes an effort not to have surprising features. In Java, there are a small
number of clearly defined ways to accomplish a given task.

Object-Oriented
Although influenced by its predecessors, Java was not designed to be source-code
compatible with any other language. This allowed the Java team the freedom to design
with a blank slate. One outcome of this was a clean, usable, pragmatic approach to
objects. Borrowing liberally from many seminal object-software environments of the
last few decades, Java manages to strike a balance between the purist’s “everything is
an object” paradigm and the pragmatist’s “stay out of my way” model. The object
model in Java is simple and easy to extend, while simple types, such as integers, are
kept as high-performance nonobjects.

Robust
The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To
gain reliability, Java restricts you in a few key areas, to force you to find your mistakes
early in program development. At the same time, Java frees you from having to worry
about many of the most common causes of programming errors. Because Java is a
strictly typed language, it checks your code at compile time. However, it also checks
your code at run time. In fact, many hard-to-track-down bugs that often turn up in
hard-to-reproduce run-time situations are simply impossible to create in Java.
Knowing that what you have written will behave in a predictable way under diverse
conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for
program failure: memory management mistakes and mishandled exceptional
conditions (that is, run-time errors). Memory management can be a difficult, tedious

task in traditional programming environments. For example, in C/C++, the
programmer must manually allocate and free all dynamic memory. This sometimes
leads to problems, because programmers will either forget to free memory that has
been previously allocated or, worse, try to free some memory that another part of
their code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you. (In fact, deallocation is completely automatic,
because Java provides garbage collection for unused objects.) Exceptional conditions in
traditional environments often arise in situations such as division by zero or “file not
found,” and they must be managed with clumsy and hard-to-read constructs. Java
helps in this area by providing object-oriented exception handling. In a well-written
Java program, all run-time errors can—and should—be managed by your program.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive,
networked programs. To accomplish this, Java supports multithreaded programming,
which allows you to write programs that do many things simultaneously. The Java
run-time system comes with an elegant yet sophisticated solution for multiprocess
synchronization that enables you to construct smoothly running interactive systems.
Java’s easy-to-use approach to multithreading allows you to think about the specific
behavior of your program, not the multitasking subsystem.

Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. One
of the main problems facing programmers is that no guarantee exists that if you write
a program today, it will run tomorrow—even on the same machine. Operating system
upgrades, processor upgrades, and changes in core system resources can all combine
to make a program malfunction. The Java designers made several hard decisions in the
Java language and the Java Virtual Machine in an attempt to alter this situation. Their
goal was “write once; run anywhere, any time, forever.” To a great extent, this goal
was accomplished.

Interpreted and High Performance
As described earlier, Java enables the creation of cross-platform programs by compiling
into an intermediate representation called Java bytecode. This code can be interpreted
on any system that provides a Java Virtual Machine. Most previous attempts at cross-
platform solutions have done so at the expense of performance. Other interpreted
systems, such as BASIC, Tcl, and PERL, suffer from almost insurmountable performance
deficits. Java, however, was designed to perform well on very low-power CPUs. As
explained earlier, while it is true that Java was engineered for interpretation, the Java
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent
code. “High-performance cross-platform” is no longer an oxymoron.

14 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Distributed
Java is designed for the distributed environment of the Internet, because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different
from accessing a file. The original version of Java (Oak) included features for intra-
address-space messaging. This allowed objects on two different computers to execute
procedures remotely. Java revived these interfaces in a package called Remote Method
Invocation (RMI). This feature brings an unparalleled level of abstraction to client/
server programming.

Dynamic
Java programs carry with them substantial amounts of run-time type information that
is used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness
of the applet environment, in which small fragments of bytecode may be dynamically
updated on a running system.

The Continuing Revolution
The initial release of Java was nothing short of revolutionary, but it did not mark the
end of Java’s era of rapid innovation. Unlike most other software systems that usually
settle into a pattern of small, incremental improvements, Java continued to evolve at
an explosive pace. Soon after the release of Java 1.0, the designers of Java had already
created Java 1.1. The features added by Java 1.1 were more significant and substantial
than the increase in the minor revision number would have you think. Java 1.1 added
many new library elements, redefined the way events are handled by applets, and
reconfigured many features of the 1.0 library. It also deprecated (rendered obsolete)
several features originally defined by Java 1.0. Thus, Java 1.1 both added and
subtracted attributes from its original specification.

The next major release of Java was Java 2. Java 2 was a watershed event, marking
the beginning of the “modern age” of this rapidly evolving language! The first release
of Java 2 carried the version number 1.2. It may seem odd that the first release of Java 2
used the 1.2 version number. The reason is that it originally referred to the version of
the Java libraries, but it was generalized to refer to the entire release, itself. Java 2
added support for a number of new features, such as Swing and the Collections
framework, and it enhanced the Java Virtual Machine and various programming tools.
Java 2 also contained a few deprecations. The most important affected the Thread class
in which the methods suspend(), resume(), and stop() were deprecated.

The next release of Java was Java 2, version 1.3. This version of Java was the first
major upgrade to the original Java 2 release. For the most part it added to existing
functionality and “tightened up” the development environment. In general, programs
written for version 1.2 and those written for version 1.3 are source-code compatible.
Although version 1.3 contained a smaller set of changes than the preceding three major
releases, it was nevertheless important.

C h a p t e r 1 : T h e G e n e s i s o f J a v a 15
TH

E
JA

V
A

LA
N

G
U

A
G

E

The current release of Java is Java 2, version 1.4. This release contains several important
upgrades, enhancements, and additions. For example, it adds the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also makes changes to the
Collections Framework and the networking classes. In addition, numerous small changes
are made throughout. Despite the significant number of new features, version 1.4
maintains nearly 100 percent source-code compatibility with prior versions.

This book covers all versions of Java 2. Of course, most of the material applies to
earlier versions of Java, too. Throughout this book, when a feature applies to a specific
version of Java, it will be so noted. Otherwise, you can simply assume that it applies to
Java, in general. Also, when referring to those features common to all versions of Java 2,
this book will simply use the term Java 2, without a reference to a version number.

16 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 2
An Overview of Java

17

Like all other computer languages, the elements of Java do not exist in isolation.
Rather, they work together to form the language as a whole. However, this
interrelatedness can make it difficult to describe one aspect of Java without

involving several others. Often a discussion of one feature implies prior knowledge
of another. For this reason, this chapter presents a quick overview of several key
features of Java. The material described here will give you a foothold that will allow
you to write and understand simple programs. Most of the topics discussed will be
examined in greater detail in the remaining chapters of Part 1.

Object-Oriented Programming
Object-oriented programming is at the core of Java. In fact, all Java programs are object-
oriented—this isn’t an option the way that it is in C++, for example. OOP is so integral
to Java that you must understand its basic principles before you can write even simple
Java programs. Therefore, this chapter begins with a discussion of the theoretical aspects
of OOP.

Two Paradigms
As you know, all computer programs consist of two elements: code and data. Furthermore,
a program can be conceptually organized around its code or around its data. That is,
some programs are written around “what is happening” and others are written around
“who is being affected.” These are the two paradigms that govern how a program is
constructed. The first way is called the process-oriented model. This approach characterizes
a program as a series of linear steps (that is, code). The process-oriented model can be
thought of as code acting on data. Procedural languages such as C employ this model to
considerable success. However, as mentioned in Chapter 1, problems with this approach
appear as programs grow larger and more complex.

To manage increasing complexity, the second approach, called object-oriented
programming, was conceived. Object-oriented programming organizes a program around
its data (that is, objects) and a set of well-defined interfaces to that data. An object-oriented
program can be characterized as data controlling access to code. As you will see, by switching
the controlling entity to data, you can achieve several organizational benefits.

Abstraction
An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of
tens of thousands of individual parts. They think of it as a well-defined object with its
own unique behavior. This abstraction allows people to use a car to drive to the grocery
store without being overwhelmed by the complexity of the parts that form the car. They
can ignore the details of how the engine, transmission, and braking systems work. Instead
they are free to utilize the object as a whole.

18 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see
that the car consists of several subsystems: steering, brakes, sound system, seat belts,
heating, cellular phone, and so on. In turn, each of these subsystems is made up of more
specialized units. For instance, the sound system consists of a radio, a CD player, and/or
a tape player. The point is that you manage the complexity of the car (or any other
complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer
programs. The data from a traditional process-oriented program can be transformed
by abstraction into its component objects. A sequence of process steps can become a
collection of messages between these objects. Thus, each of these objects describes its
own unique behavior. You can treat these objects as concrete entities that respond to
messages telling them to do something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural
paradigm for creating programs that survive the inevitable changes accompanying the
life cycle of any major software project, including conception, growth, and aging. For
example, once you have well-defined objects and clean, reliable interfaces to those objects,
you can gracefully decommission or replace parts of an older system without fear.

The Three OOP Principles
All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism.
Let’s take a look at these concepts now.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. One way to think about
encapsulation is as a protective wrapper that prevents the code and data from being
arbitrarily accessed by other code defined outside the wrapper. Access to the code
and data inside the wrapper is tightly controlled through a well-defined interface.
To relate this to the real world, consider the automatic transmission on an automobile.
It encapsulates hundreds of bits of information about your engine, such as how much
you are accelerating, the pitch of the surface you are on, and the position of the shift
lever. You, as the user, have only one method of affecting this complex encapsulation:
by moving the gear-shift lever. You can’t affect the transmission by using the turn signal
or windshield wipers, for example. Thus, the gear-shift lever is a well-defined (indeed,
unique) interface to the transmission. Further, what occurs inside the transmission does
not affect objects outside the transmission. For example, shifting gears does not turn
on the headlights! Because an automatic transmission is encapsulated, dozens of car

C h a p t e r 2 : A n O v e r v i e w o f J a v a 19
TH

E
JA

V
A

LA
N

G
U

A
G

E

manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming.
The power of encapsulated code is that everyone knows how to access it and thus
can use it regardless of the implementation details—and without fear of unexpected
side effects.

In Java the basis of encapsulation is the class. Although the class will be examined
in great detail later in this book, the following brief discussion will be helpful now. A
class defines the structure and behavior (data and code) that will be shared by a set of
objects. Each object of a given class contains the structure and behavior defined by the
class, as if it were stamped out by a mold in the shape of the class. For this reason, objects
are sometimes referred to as instances of a class. Thus, a class is a logical construct; an
object has physical reality.

When you create a class, you will specify the code and data that constitute that
class. Collectively, these elements are called members of the class. Specifically, the data
defined by the class are referred to as member variables or instance variables. The code
that operates on that data is referred to as member methods or just methods. (If you are
familiar with C/C++, it may help to know that what a Java programmer calls a method,
a C/C++ programmer calls a function.) In properly written Java programs, the methods
define how the member variables can be used. This means that the behavior and interface
of a class are defined by the methods that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable
in a class may be marked private or public. The public interface of a class represents
everything that external users of the class need to know, or may know. The private
methods and data can only be accessed by code that is a member of the class. Therefore,
any other code that is not a member of the class cannot access a private method or variable.
Since the private members of a class may only be accessed by other parts of your program
through the class’ public methods, you can ensure that no improper actions take place.
Of course, this means that the public interface should be carefully designed not to expose
too much of the inner workings of a class (see Figure 2-1).

Inheritance
Inheritance is the process by which one object acquires the properties of another object.
This is important because it supports the concept of hierarchical classification. As
mentioned earlier, most knowledge is made manageable by hierarchical (that is, top-down)
classifications. For example, a Golden Retriever is part of the classification dog, which
in turn is part of the mammal class, which is under the larger class animal. Without the
use of hierarchies, each object would need to define all of its characteristics explicitly.
However, by use of inheritance, an object need only define those qualities that make it
unique within its class. It can inherit its general attributes from its parent. Thus, it is the
inheritance mechanism that makes it possible for one object to be a specific instance of
a more general case. Let’s take a closer look at this process.

20 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size,
intelligence, and type of skeletal system. Animals also have certain behavioral aspects;
they eat, breathe, and sleep. This description of attributes and behavior is the class
definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they
would have more specific attributes, such as type of teeth, and mammary glands. This
is known as a subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the
attributes from animals. A deeply inherited subclass inherits all of the attributes from
each of its ancestors in the class hierarchy.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 21
TH

E
JA

V
A

LA
N

G
U

A
G

E

Figure 2-1. Encapsulation: public methods can be used to protect private data

22 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part
of its specialization (see Figure 2-2). This is a key concept which lets object-oriented
programs grow in complexity linearly rather than geometrically. A new subclass inherits
all of the attributes of all of its ancestors. It does not have unpredictable interactions
with the majority of the rest of the code in the system.

Polymorphism
Polymorphism (from the Greek, meaning “many forms”) is a feature that allows one
interface to be used for a general class of actions. The specific action is determined by
the exact nature of the situation. Consider a stack (which is a last-in, first-out list). You
might have a program that requires three types of stacks. One stack is used for integer
values, one for floating-point values, and one for characters. The algorithm that
implements each stack is the same, even though the data being stored differs. In a non–
object-oriented language, you would be required to create three different sets of stack
routines, with each set using different names. However, because of polymorphism, in
Java you can specify a general set of stack routines that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface
to a group of related activities. This helps reduce complexity by allowing the same
interface to be used to specify a general class of action. It is the compiler’s job to select the
specific action (that is, method) as it applies to each situation. You, the programmer, do
not need to make this selection manually. You need only remember and utilize the
general interface.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 23
TH

E
JA

V
A

LA
N

G
U

A
G

E

Figure 2-2. Labrador inherits the encapsulation of all of its superclasses

24 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells
a cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its
bowl. The same sense of smell is at work in both situations. The difference is what is
being smelled, that is, the type of data being operated upon by the dog’s nose! This
same general concept can be implemented in Java as it applies to methods within
a Java program.

Polymorphism, Encapsulation, and Inheritance
Work Together
When properly applied, polymorphism, encapsulation, and inheritance combine to
produce a programming environment that supports the development of far more robust
and scaleable programs than does the process-oriented model. A well-designed hierarchy
of classes is the basis for reusing the code in which you have invested time and effort
developing and testing. Encapsulation allows you to migrate your implementations over
time without breaking the code that depends on the public interface of your classes.
Polymorphism allows you to create clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint,
but cars are more like programs. All drivers rely on inheritance to drive different types
(subclasses) of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche,
or the family minivan, drivers can all more or less find and operate the steering wheel,
the brakes, and the accelerator. After a bit of gear grinding, most people can even
manage the difference between a stick shift and an automatic, because they fundamentally
understand their common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and
gas pedals hide an incredible array of complexity with an interface so simple you can
operate them with your feet! The implementation of the engine, the style of brakes,
and the size of the tires have no effect on how you interface with the class definition
of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get
an antilock braking system or traditional brakes, power or rack-and-pinion steering, 4-,
6-, or 8-cylinder engines. Either way, you will still press the break pedal to stop, turn
the steering wheel to change direction, and press the accelerator when you want to move.
The same interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented
principles, the various parts of a complex program can be brought together to form
a cohesive, robust, maintainable whole.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 25
TH

E
JA

V
A

LA
N

G
U

A
G

E

As mentioned at the start of this section, every Java program is object-oriented.
Or, put more precisely, every Java program involves encapsulation, inheritance, and
polymorphism. Although the short example programs shown in the rest of this chapter
and in the next few chapters may not seem to exhibit all of these features, they are
nevertheless present. As you will see, many of the features supplied by Java are part of
its built-in class libraries, which do make extensive use of encapsulation, inheritance,
and polymorphism.

A First Simple Program
Now that the basic object-oriented underpinning of Java has been discussed, let’s
look at some actual Java programs. Let’s start by compiling and running the short
sample program shown here. As you will see, this involves a little more work than
you might imagine.

/*

This is a simple Java program.

Call this file "Example.java".

*/

class Example {

// Your program begins with a call to main().

public static void main(String args[]) {

System.out.println("This is a simple Java program.");

}

}

The descriptions that follow use the standard Java 2 SDK (Software Development
Kit), which is available from Sun Microsystems. If you are using a different Java
development environment, then you may need to follow a different procedure
for compiling and executing Java programs. In this case, consult your compiler’s
documentation for details.

Entering the Program
For most computer languages, the name of the file that holds the source code to a
program is arbitrary. However, this is not the case with Java. The first thing that you
must learn about Java is that the name you give to a source file is very important. For
this example, the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains
one or more class definitions. The Java compiler requires that a source file use the .java
filename extension. Notice that the file extension is four characters long. As you might

26 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

guess, your operating system must be capable of supporting long filenames. This means
that DOS and Windows 3.1 are not capable of supporting Java. However, Windows
95/98 and Windows NT/2000/XP work just fine.

As you can see by looking at the program, the name of the class defined by the
program is also Example. This is not a coincidence. In Java, all code must reside inside
a class. By convention, the name of that class should match the name of the file that
holds the program. You should also make sure that the capitalization of the filename
matches the class name. The reason for this is that Java is case-sensitive. At this point,
the convention that filenames correspond to class names may seem arbitrary. However,
this convention makes it easier to maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name of
the source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version
of the program. As discussed earlier, the Java bytecode is the intermediate representation
of your program that contains instructions the Java interpreter will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java interpreter, called java. To do
so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output
file named after the class and using the .class extension. This is why it is a good idea to
give your Java source files the same name as the class they contain—the name of the
source file will match the name of the .class file. When you execute the Java interpreter
as just shown, you are actually specifying the name of the class that you want the
interpreter to execute. It will automatically search for a file by that name that has
the .class extension. If it finds the file, it will execute the code contained in the
specified class.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 27
TH

E
JA

V
A

LA
N

G
U

A
G

E

A Closer Look at the First Sample Program
Although Example.java is quite short, it includes several key features which are
common to all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*

This is a simple Java program.

Call this file "Example.java".

*/

This is a comment. Like most other programming languages, Java lets you enter a remark
into a program’s source file. The contents of a comment are ignored by the compiler.
Instead, a comment describes or explains the operation of the program to anyone who
is reading its source code. In this case, the comment describes the program and reminds
you that the source file should be called Example.java. Of course, in real applications,
comments generally explain how some part of the program works or what a specific
feature does.

Java supports three styles of comments. The one shown at the top of the program is
called a multiline comment. This type of comment must begin with /* and end with */.
Anything between these two comment symbols is ignored by the compiler. As the
name suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example
is an identifier that is the name of the class. The entire class definition, including all of
its members, will be between the opening curly brace ({) and the closing curly brace (}).
The use of the curly braces in Java is identical to the way they are used in C, C++, and
C#. For the moment, don’t worry too much about the details of a class except to note
that in Java, all program activity occurs within one. This is one reason why all Java
programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins
with a // and ends at the end of the line. As a general rule, programmers use multiline

comments for longer remarks and single-line comments for brief, line-by-line
descriptions.

The next line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the
line at which the program will begin executing. All Java applications begin execution
by calling main(). (This is just like C/C++.) The exact meaning of each part of this line
cannot be given now, since it involves a detailed understanding of Java’s approach to
encapsulation. However, since most of the examples in the first part of this book will
use this line of code, let’s take a brief look at each part now.

The public keyword is an access specifier, which allows the programmer to control
the visibility of class members. When a class member is preceded by public, then that
member may be accessed by code outside the class in which it is declared. (The opposite
of public is private, which prevents a member from being used by code defined outside
of its class.) In this case, main() must be declared as public, since it must be called
by code outside of its class when the program is started. The keyword static allows
main() to be called without having to instantiate a particular instance of the class. This
is necessary since main() is called by the Java interpreter before any objects are made.
The keyword void simply tells the compiler that main() does not return a value. As
you will see, methods may also return values. If all this seems a bit confusing, don’t
worry. All of these concepts will be discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in
mind that Java is case-sensitive. Thus, Main is different from main. It is important
to understand that the Java compiler will compile classes that do not contain a main()
method. But the Java interpreter has no way to run these classes. So, if you had typed
Main instead of main, the compiler would still compile your program. However,
the Java interpreter would report an error because it would be unable to find the
main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are
called parameters. If there are no parameters required for a given method, you still need
to include the empty parentheses. In main(), there is only one parameter, albeit a
complicated one. String args[] declares a parameter named args, which is an array of
instances of the class String. (Arrays are collections of similar objects.) Objects of type
String store character strings. In this case, args receives any command-line arguments
present when the program is executed. This program does not make use of this
information, but other programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of
the code that comprises a method will occur between the method’s opening curly brace
and its closing curly brace.

28 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

One other point: main() is simply a starting place for your program. A complex
program will have dozens of classes, only one of which will need to have a main()
method to get things started. When you begin creating applets—Java programs that
are embedded in Web browsers—you won’t use main() at all, since the Web browser
uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string “This is a simple Java program.” followed by a new line on
the screen. Output is actually accomplished by the built-in println() method. In this
case, println() displays the string which is passed to it. As you will see, println() can
be used to display other types of information, too. The line begins with System.out.
While too complicated to explain in detail at this time, briefly, System is a predefined
class that provides access to the system, and out is the output stream that is connected
to the console.

As you have probably guessed, console output (and input) is not used frequently
in real Java programs and applets. Since most modern computing environments are
windowed and graphical in nature, console I/O is used mostly for simple, utility
programs and for demonstration programs. Later in this book, you will learn other
ways to generate output using Java. But for now, we will continue to use the console
I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java
end with a semicolon. The reason that the other lines in the program do not end in
a semicolon is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class
definition.

A Second Short Program
Perhaps no other concept is more fundamental to a programming language than that of
a variable. As you probably know, a variable is a named memory location that may be
assigned a value by your program. The value of a variable may be changed during the
execution of the program. The next program shows how a variable is declared and how
it is assigned a value. In addition, the program also illustrates some new aspects of
console output. As the comments at the top of the program state, you should call this
file Example2.java.

/*

Here is another short example.

Call this file "Example2.java".

*/

C h a p t e r 2 : A n O v e r v i e w o f J a v a 29
TH

E
JA

V
A

LA
N

G
U

A
G

E

30 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class Example2 {

public static void main(String args[]) {

int num; // this declares a variable called num

num = 100; // this assigns num the value 100

System.out.println("This is num: " + num);

num = num * 2;

System.out.print("The value of num * 2 is ");

System.out.println(num);

}

}

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the
program is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages)
requires that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the
variable. If you want to declare more than one variable of the specified type, you may
use a comma-separated list of variable names. Java defines several data types, including
integer, character, and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

C h a p t e r 2 : A n O v e r v i e w o f J a v a 31
TH

E
JA

V
A

LA
N

G
U

A
G

E

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string “This is num:”.

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string
that precedes it, and then the resulting string is output. (Actually, num is first converted
from an integer into its string equivalent and then concatenated with the string that
precedes it. This process is described in detail later in this book.) This approach can be
generalized. Using the + operator, you can string together as many items as you want
within a single println() statement.

The next line of code assigns num the value of num times 2. Like most other
languages, Java uses the * operator to indicate multiplication. After this line executes,
num will contain the value 200.

Here are the next two lines in the program:

System.out.print("The value of num * 2 is ");

System.out.println(num);

Several new things are occurring here. First, the built-in method print() is used to
display the string “The value of num * 2 is ”. This string is not followed by a newline.
This means that when the next output is generated, it will start on the same line. The
print() method is just like println(), except that it does not output a newline character
after each call. Now look at the call to println(). Notice that num is used by itself. Both
print() and println() can be used to output values of any of Java’s built-in types.

Two Control Statements
Although Chapter 5 will look closely at control statements, two are briefly introduced
here so that they can be used in example programs in Chapters 3 and 4. They will also
help illustrate an important aspect of Java: blocks of code.

The if Statement
The Java if statement works much like the IF statement in any other language. Further,
it is syntactically identical to the if statements in C, C++, and C#. Its simplest form is
shown here:

if(condition) statement;

32 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, condition is a Boolean expression. If condition is true, then the statement is
executed. If condition is false, then the statement is bypassed. Here is an example:

if(num < 100) println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression
is true, and println() will execute. If num contains a value greater than or equal to 100,
then the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than

== Equal to

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*

Demonstrate the if.

Call this file "IfSample.java".

*/

class IfSample {

public static void main(String args[]) {

int x, y;

x = 10;

y = 20;

if(x < y) System.out.println("x is less than y");

x = x * 2;

if(x == y) System.out.println("x now equal to y");

x = x * 2;

if(x > y) System.out.println("x now greater than y");

// this won't display anything

if(x == y) System.out.println("you won't see this");

}

}

The output generated by this program is shown here:

x is less than y
x now equal to y
x now greater than y

Notice one other thing in this program. The line

int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop
As you may know from your previous programming experience, loop statements are
an important part of nearly any programming language. Java is no exception. In fact,
as you will see in Chapter 5, Java supplies a powerful assortment of loop constructs.
Perhaps the most versatile is the for loop. If you are familiar with C, C++, or C#, then
you will be pleased to know that the for loop in Java works the same way it does in
those languages. If you don’t know C/C++/C#, the for loop is still easy to use. The
simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop
control variable. If the outcome of that test is true, the for loop continues to iterate. If it
is false, the loop terminates. The iteration expression determines how the loop control
variable is changed each time the loop iterates. Here is a short program that illustrates
the for loop:

/*

Demonstrate the for loop.

Call this file "ForTest.java".

C h a p t e r 2 : A n O v e r v i e w o f J a v a 33
TH

E
JA

V
A

LA
N

G
U

A
G

E

34 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

*/

class ForTest {

public static void main(String args[]) {

int x;

for(x = 0; x<10; x = x+1)

System.out.println("This is x: " + x);

}

}

This program generates the following output:

This is x: 0
This is x: 1
This is x: 2
This is x: 3
This is x: 4
This is x: 5
This is x: 6
This is x: 7
This is x: 8
This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization
portion of the for. At the start of each iteration (including the first one), the conditional
test x < 10 is performed. If the outcome of this test is true, the println() statement is
executed, and then the iteration portion of the loop is executed. This process continues
until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost
never see the iteration portion of the loop written as shown in the preceding program.
That is, you will seldom see statements like this:

x = x + 1;

The reason is that Java includes a special increment operator which performs this
operation more efficiently. The increment operator is ++. (That is, two plus signs back
to back.) The increment operator increases its operand by one. By use of the increment
operator, the preceding statement can be written like this:

C h a p t e r 2 : A n O v e r v i e w o f J a v a 35
TH

E
JA

V
A

LA
N

G
U

A
G

E

x++;

Thus, the for in the preceding program will usually be written like this:

for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it
did before.

Java also provides a decrement operator, which is specified as – –. This operator
decreases its operand by one.

Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once
a block of code has been created, it becomes a logical unit that can be used any place
that a single statement can. For example, a block can be a target for Java’s if and for
statements. Consider this if statement:

if(x < y) { // begin a block

x = y;

y = 0;

} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to
logically link two or more statements, you do so by creating a block.

Let’s look at another example. The following program uses a block of code as the
target of a for loop.

/*

Demonstrate a block of code.

Call this file "BlockTest.java"

*/

class BlockTest {

public static void main(String args[]) {

int x, y;

y = 20;

// the target of this loop is a block

for(x = 0; x<10; x++) {

System.out.println("This is x: " + x);

System.out.println("This is y: " + y);

y = y - 2;

}

}

}

The output generated by this program is shown here:

This is x: 0
This is y: 20
This is x: 1
This is y: 18
This is x: 2
This is y: 16
This is x: 3
This is y: 14
This is x: 4
This is y: 12
This is x: 5
This is y: 10
This is x: 6
This is y: 8
This is x: 7
This is y: 6
This is x: 8
This is y: 4
This is x: 9
This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

36 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : A n O v e r v i e w o f J a v a 37
TH

E
JA

V
A

LA
N

G
U

A
G

E

As you will see later in this book, blocks of code have additional properties and
uses. However, the main reason for their existence is to create logically inseparable
units of code.

Lexical Issues
Now that you have seen several short Java programs, it is time to more formally
describe the atomic elements of Java. Java programs are a collection of whitespace,
identifiers, comments, literals, operators, separators, and keywords. The operators
are described in the next chapter. The others are described next.

Whitespace
Java is a free-form language. This means that you do not need to follow any special
indentation rules. For example, the Example program could have been written all on
one line or in any other strange way you felt like typing it, as long as there was at least
one whitespace character between each token that was not already delineated by an
operator or separator. In Java, whitespace is a space, tab, or newline.

Identifiers
Identifiers are used for class names, method names, and variable names. An identifier
may be any descriptive sequence of uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters. They must not begin with a number, lest they be
confused with a numeric literal. Again, Java is case-sensitive, so VALUE is a different
identifier than Value. Some examples of valid identifiers are:

AvgTemp count a4 $test this_is_ok

Invalid variable names include:

2count high-temp Not/ok

Literals
A constant value in Java is created by using a literal representation of it. For example,
here are some literals:

100 98.6 ‘X’ “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the
third is a character constant, and the last is a string. A literal can be used anywhere
a value of its type is allowed.

38 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Comments
As mentioned, there are three types of comments defined by Java. You have already
seen two: single-line and multiline. The third type is called a documentation comment.
This type of comment is used to produce an HTML file that documents your program.
The documentation comment begins with a /** and ends with a */. Documentation
comments are explained in Appendix A.

Separators
In Java, there are a few characters that are used as separators. The most commonly
used separator in Java is the semicolon. As you have seen, it is used to terminate
statements. The separators are shown in the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method
definition and invocation. Also used for defining
precedence in expressions, containing expressions
in control statements, and surrounding cast types.

{ } Braces Used to contain the values of automatically
initialized arrays. Also used to define a block
of code, for classes, methods, and local scopes.

[] Brackets Used to declare array types. Also used when
dereferencing array values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable
declaration. Also used to chain statements together
inside a for statement.

. Period Used to separate package names from subpackages
and classes. Also used to separate a variable or
method from a reference variable.

The Java Keywords
There are 49 reserved keywords currently defined in the Java language (see Table 2-1).
These keywords, combined with the syntax of the operators and separators, form the
definition of the Java language. These keywords cannot be used as names for a variable,
class, or method.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 39
TH

E
JA

V
A

LA
N

G
U

A
G

E

The keywords const and goto are reserved but not used. In the early days of Java,
several other keywords were reserved for possible future use. However, the current
specification for Java only defines the keywords shown in Table 2-1. The assert keyword
was added by Java 2, version 1.4

In addition to the keywords, Java reserves the following: true, false, and null.
These are values defined by Java. You may not use these words for the names of
variables, classes, and so on.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are members of the System class,
which is a class predefined by Java that is automatically included in your programs. In
the larger view, the Java environment relies on several built-in class libraries that contain
many built-in methods that provide support for such things as I/O, string handling,
networking, and graphics. The standard classes also provide support for windowed
output. Thus, Java as a totality is a combination of the Java language itself, plus its
standard classes. As you will see, the class libraries provide much of the functionality
that comes with Java. Indeed, part of becoming a Java programmer is learning to use
the standard Java classes. Throughout Part I of this book, various elements of the standard
library classes and methods are described as needed. In Part II, the class libraries are
described in detail.

abstract continue goto package synchronized

assert default if private this

boolean do implements protected throw

break double import public throws

byte else instanceof return transient

case extends int short try

catch final interface static void

char finally long strictfp volatile

class float native super while

const for new switch

Table 2-1. Java Reserved Keywords

This page intentionally left blank.

Chapter 3
Data Types, Variables,
and Arrays

41

This chapter examines three of Java’s most fundamental elements: data types,
variables, and arrays. As with all modern programming languages, Java supports
several types of data. You may use these types to declare variables and to create

arrays. As you will see, Java’s approach to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part
of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked
for type compatibility. There are no automatic coercions or conversions of conflicting
types as in some languages. The Java compiler checks all expressions and parameters
to ensure that the types are compatible. Any type mismatches are errors that must be
corrected before the compiler will finish compiling the class.

If you come from a C or C++ background, keep in mind that Java is more strictly typed
than either language. For example, in C/C++ you can assign a floating-point value to
an integer. In Java, you cannot. Also, in C there is not necessarily strong type-checking
between a parameter and an argument. In Java, there is. You might find Java’s strong
type-checking a bit tedious at first. But remember, in the long run it will help reduce the
possibility of errors in your code.

The Simple Types
Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float,
double, and boolean. These can be put in four groups:

■ Integers This group includes byte, short, int, and long, which are for whole-
valued signed numbers.

■ Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

■ Characters This group includes char, which represents symbols in a character
set, like letters and numbers.

■ Boolean This group includes boolean, which is a special type for representing
true/false values.

You can use these types as-is, or to construct arrays or your own class types. Thus,
they form the basis for all other types of data that you can create.

42 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 43
TH

E
JA

V
A

LA
N

G
U

A
G

E

The simple types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the simple types are not. They are analogous to
the simple types found in most other non–object-oriented languages. The reason for
this is efficiency. Making the simple types into objects would have degraded performance
too much.

The simple types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the
dictates of the execution environment. However, Java is different. Because of Java’s
portability requirement, all data types have a strictly defined range. For example, an
int is always 32 bits, regardless of the particular platform. This allows programs to be
written that are guaranteed to run without porting on any machine architecture. While
strictly specifying the size of an integer may cause a small loss of performance in some
environments, it is necessary in order to achieve portability.

Let’s look at each type of data in turn.

Integers
Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages, including C/C++, support both signed and unsigned integers.
However, Java’s designers felt that unsigned integers were unnecessary. Specifically,
they felt that the concept of unsigned was used mostly to specify the behavior of the
high-order bit, which defined the sign of an int when expressed as a number. As you will
see in Chapter 4, Java manages the meaning of the high-order bit differently, by adding
a special “unsigned right shift” operator. Thus, the need for an unsigned integer type
was eliminated.

The width of an integer type should not be thought of as the amount of storage it
consumes, but rather as the behavior it defines for variables and expressions of that
type. The Java run-time environment is free to use whatever size it wants, as long as
the types behave as you declared them. In fact, at least one implementation stores bytes
and shorts as 32-bit (rather than 8- and 16-bit) values to improve performance, because
that is the word size of most computers currently in use.

The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Let’s look at each type of integer.

byte
The smallest integer type is byte. This is a signed 8-bit type that has a range from –128
to 127. Variables of type byte are especially useful when you’re working with a stream
of data from a network or file. They are also useful when you’re working with raw
binary data that may not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

short
short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the
least-used Java type, since it is defined as having its high byte first (called big-endian
format). This type is mostly applicable to 16-bit computers, which are becoming
increasingly scarce.

Here are some examples of short variable declarations:

short s;

short t;

“Endianness” describes how multibyte data types, such as short, int, and long, are
stored in memory. If it takes 2 bytes to represent a short, then which one comes first, the
most significant or the least significant? To say that a machine is big-endian, means that
the most significant byte is first, followed by the least significant one. Machines such as
the SPARC and PowerPC are big-endian, while the Intel x86 series is little-endian.

int
The most commonly used integer type is int. It is a signed 32-bit type that has a range
from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Any time you have an integer
expression involving bytes, shorts, ints, and literal numbers, the entire expression is
promoted to int before the calculation is done.

The int type is the most versatile and efficient type, and it should be used most of
the time when you want to create a number for counting or indexing arrays or doing
integer math. It may seem that using short or byte will save space, but there is no
guarantee that Java won’t promote those types to int internally anyway. Remember,
type determines behavior, not size. (The only exception is arrays, where byte is
guaranteed to use only one byte per array element, short will use two bytes, and int
will use four.)

44 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 45
TH

E
JA

V
A

LA
N

G
U

A
G

E

long
long is a signed 64-bit type and is useful for those occasions where an int type is not
large enough to hold the desired value. The range of a long is quite large. This makes
it useful when big, whole numbers are needed. For example, here is a program that
computes the number of miles that light will travel in a specified number of days.

// Compute distance light travels using long variables.

class Light {

public static void main(String args[]) {

int lightspeed;

long days;

long seconds;

long distance;

// approximate speed of light in miles per second

lightspeed = 186000;

days = 1000; // specify number of days here

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);

System.out.print(" days light will travel about ");

System.out.println(distance + " miles.");

}

}

This program generates the following output:

In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating
expressions that require fractional precision. For example, calculations such as square
root, or transcendentals such as sine and cosine, result in a value whose precision
requires a floating-point type. Java implements the standard (IEEE–754) set of

46 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

floating-point types and operators. There are two kinds of floating-point types, float
and double, which represent single- and double-precision numbers, respectively. Their
width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e−045 to 3.4e+038

Each of these floating-point types is examined next.

float
The type float specifies a single-precision value that uses 32 bits of storage. Single
precision is faster on some processors and takes half as much space as double precision,
but will become imprecise when the values are either very large or very small. Variables
of type float are useful when you need a fractional component, but don’t require a
large degree of precision. For example, float can be useful when representing dollars
and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double
Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have
been optimized for high-speed mathematical calculations. All transcendental math
functions, such as sin(), cos(), and sqrt(), return double values. When you need to
maintain accuracy over many iterative calculations, or are manipulating large-valued
numbers, double is the best choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.

class Area {

public static void main(String args[]) {

double pi, r, a;

r = 10.8; // radius of circle

pi = 3.1416; // pi, approximately

a = pi * r * r; // compute area

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 47
TH

E
JA

V
A

LA
N

G
U

A
G

E

System.out.println("Area of circle is " + a);

}

}

Characters
In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is an integer
type that is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent
characters. Unicode defines a fully international character set that can represent all of
the characters found in all human languages. It is a unification of dozens of character
sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more.
For this purpose, it requires 16 bits. Thus, in Java char is a 16-bit type. The range of a
char is 0 to 65,536. There are no negative chars. The standard set of characters known as
ASCII still ranges from 0 to 127 as always, and the extended 8-bit character set, ISO-Latin-1,
ranges from 0 to 255. Since Java is designed to allow applets to be written for worldwide
use, it makes sense that it would use Unicode to represent characters. Of course, the
use of Unicode is somewhat inefficient for languages such as English, German, Spanish,
or French, whose characters can easily be contained within 8 bits. But such is the price
that must be paid for global portability.

More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.

class CharDemo {

public static void main(String args[]) {

char ch1, ch2;

ch1 = 88; // code for X

ch2 = 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

}

48 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program displays the following output:

ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first
127 values in the Unicode character set. For this reason, all the “old tricks” that you
have used with characters in the past will work in Java, too.

Even though chars are not integers, in many cases you can operate on them as if
they were integers. This allows you to add two characters together, or to increment
the value of a character variable. For example, consider the following program:

// char variables behave like integers.

class CharDemo2 {

public static void main(String args[]) {

char ch1;

ch1 = 'X';

System.out.println("ch1 contains " + ch1);

ch1++; // increment ch1

System.out.println("ch1 is now " + ch1);

}

}

The output generated by this program is shown here:

ch1 contains X
ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in
ch1 containing Y, the next character in the ASCII (and Unicode) sequence.

Booleans
Java has a simple type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, such
as a < b. boolean is also the type required by the conditional expressions that govern the
control statements such as if and for.

Here is a program that demonstrates the boolean type:

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 49
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Demonstrate boolean values.

class BoolTest {

public static void main(String args[]) {

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed.");

b = false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

The output generated by this program is shown here:

b is false
b is true
This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see,
when a boolean value is output by println(), “true” or “false” is displayed. Second,
the value of a boolean variable is sufficient, by itself, to control the if statement. There
is no need to write an if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why
the expression 10 > 9 displays the value “true.” Further, the extra set of parentheses
around 10 > 9 is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals
Literals were mentioned briefly in Chapter 2. Now that the built-in types have been
formally described, let’s take a closer look at them.

Integer Literals
Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal
values, meaning they are describing a base 10 number. There are two other bases which
can be used in integer literals, octal (base eight) and hexadecimal (base 16). Octal values
are denoted in Java by a leading zero. Normal decimal numbers cannot have a leading
zero. Thus, the seemingly valid value 09 will produce an error from the compiler,
since 9 is outside of octal’s 0 to 7 range. A more common base for numbers used by
programmers is hexadecimal, which matches cleanly with modulo 8 word sizes, such
as 8, 16, 32, and 64 bits. You signify a hexadecimal constant with a leading zero-x, (0x
or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a through f) are
substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since
Java is strongly typed, you might be wondering how it is possible to assign an integer
literal to one of Java’s other integer types, such as byte or long, without causing a type
mismatch error. Fortunately, such situations are easily handled. When a literal value is
assigned to a byte or short variable, no error is generated if the literal value is within the
range of the target type. Also, an integer literal can always be assigned to a long variable.
However, to specify a long literal, you will need to explicitly tell the compiler that the
literal value is of type long. You do this by appending an upper- or lowercase L to
the literal. For example, 0x7ffffffffffffffL or 9223372036854775807L is the largest long.

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component. They
can be expressed in either standard or scientific notation. Standard notation consists
of a whole number component followed by a decimal point followed by a fractional
component. For example, 2.0, 3.14159, and 0.6667 represent valid standard-notation
floating-point numbers. Scientific notation uses a standard-notation, floating-point number
plus a suffix that specifies a power of 10 by which the number is to be multiplied. The
exponent is indicated by an E or e followed by a decimal number, which can be positive
or negative. Examples include 6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal,
you must append an F or f to the constant. You can also explicitly specify a double literal
by appending a D or d. Doing so is, of course, redundant. The default double type
consumes 64 bits of storage, while the less-accurate float type requires only 32 bits.

50 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can
have, true and false. The values of true and false do not convert into any numerical
representation. The true literal in Java does not equal 1, nor does the false literal equal 0.
In Java, they can only be assigned to variables declared as boolean, or used in expressions
with Boolean operators.

Character Literals
Characters in Java are indices into the Unicode character set. They are 16-bit values that
can be converted into integers and manipulated with the integer operators, such as the
addition and subtraction operators. A literal character is represented inside a pair of single
quotes. All of the visible ASCII characters can be directly entered inside the quotes, such
as ‘a’, ‘z’, and ‘@’. For characters that are impossible to enter directly, there are several
escape sequences, which allow you to enter the character you need, such as ‘\’’ for the
single-quote character itself, and ‘\n’ for the newline character. There is also a mechanism
for directly entering the value of a character in octal or hexadecimal. For octal notation
use the backslash followed by the three-digit number. For example, ‘\141’ is the letter ‘a’.
For hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For
example, ‘\u0061’ is the ISO-Latin-1 ‘a’ because the top byte is zero. ‘\ua432’ is a Japanese
Katakana character. Table 3-1 shows the character escape sequences.

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 51

Escape Sequence Description

\ddd Octal character (ddd)

\uxxxx Hexadecimal UNICODE character (xxxx)

\’ Single quote

\” Double quote

\\ Backslash

\r Carriage return

\n New line (also known as line feed)

\f Form feed

\t Tab

\b Backspace

Table 3-1. Character Escape Sequences

52 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

String Literals
String literals in Java are specified like they are in most other languages—by enclosing
a sequence of characters between a pair of double quotes. Examples of string literals are

“Hello World”
“two\nlines”
“\”This is in quotes\””

The escape sequences and octal/hexadecimal notations that were defined for
character literals work the same way inside of string literals. One important thing to
note about Java strings is that they must begin and end on the same line. There is no
line-continuation escape sequence as there is in other languages.

As you may know, in some other languages, including C/C++, strings are implemented
as arrays of characters. However, this is not the case in Java. Strings are actually object
types. As you will see later in this book, because Java implements strings as objects, Java
includes extensive string-handling capabilities that are both powerful and easy to use.

Variables
The variable is the basic unit of storage in a Java program. A variable is defined by
the combination of an identifier, a type, and an optional initializer. In addition, all
variables have a scope, which defines their visibility, and a lifetime. These elements
are examined next.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of
a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep
in mind that the initialization expression must result in a value of the same (or compatible)
type as that specified for the variable. To declare more than one variable of the
specified type, use a comma-separated list.

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 53
TH

E
JA

V
A

LA
N

G
U

A
G

E

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializing

// d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates
their type. Many readers will remember when FORTRAN predefined all identifiers
from I through N to be of type INTEGER while all other identifiers were REAL. Java
allows any properly formed identifier to have any declared type.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows
variables to be initialized dynamically, using any expression valid at the time the variable
is declared.

For example, here is a short program that computes the length of the hypotenuse of
a right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.

class DynInit {

public static void main(String args[]) {

double a = 3.0, b = 4.0;

// c is dynamically initialized

double c = Math.sqrt(a * a + b * b);

System.out.println("Hypotenuse is " + c);

}

}

Here, three local variables—a, b,and c—are declared. The first two, a and b, are
initialized by constants. However, c is initialized dynamically to the length of the
hypotenuse (using the Pythagorean theorem). The program uses another of Java’s
built-in methods, sqrt(), which is a member of the Math class, to compute the square
root of its argument. The key point here is that the initialization expression may use
any element valid at the time of the initialization, including calls to methods, other
variables, or literals.

54 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The Scope and Lifetime of Variables
So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in
Chapter 2, a block is begun with an opening curly brace and ended by a closing curly
brace. A block defines a scope. Thus, each time you start a new block, you are creating
a new scope. As you probably know from your previous programming experience, a
scope determines what objects are visible to other parts of your program. It also determines
the lifetime of those objects.

Most other computer languages define two general categories of scopes: global
and local. However, these traditional scopes do not fit well with Java’s strict, object-
oriented model. While it is possible to create what amounts to being a global scope,
it is by far the exception, not the rule. In Java, the two major scopes are those defined
by a class and those defined by a method. Even this distinction is somewhat artificial.
However, since the class scope has several unique properties and attributes that do not
apply to the scope defined by a method, this distinction makes some sense. Because of
the differences, a discussion of class scope (and variables declared within it) is deferred
until Chapter 6, when classes are described. For now, we will only examine the scopes
defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if
that method has parameters, they too are included within the method’s scope. Although
this book will look more closely at parameters in Chapter 5, for the sake of this discussion,
they work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible)
to code that is defined outside that scope. Thus, when you declare a variable within a
scope, you are localizing that variable and protecting it from unauthorized access and/or
modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner scope.
This means that objects declared in the outer scope will be visible to code within the
inner scope. However, the reverse is not true. Objects declared within the inner scope
will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.

class Scope {

public static void main(String args[]) {

int x; // known to all code within main

x = 10;

if(x == 10) { // start new scope

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 55
TH

E
JA

V
A

LA
N

G
U

A
G

E

int y = 20; // known only to this block

// x and y both known here.

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

// y = 100; // Error! y not known here

// x is still known here.

System.out.println("x is " + x);

}

}

As the comments indicate, the variable x is declared at the start of main()’s scope and
is accessible to all subsequent code within main(). Within the if block, y is declared.
Since a block defines a scope, y is only visible to other code within its block. This is
why outside of its block, the line y = 100; is commented out. If you remove the leading
comment symbol, a compile-time error will occur, because y is not visible outside of its
block. Within the if block, x can be used because code within a block (that is, a nested
scope) has access to variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they
are declared. Thus, if you define a variable at the start of a method, it is available to all
of the code within that method. Conversely, if you declare a variable at the end of a
block, it is effectively useless, because no code will have access to it. For example, this
fragment is invalid because count cannot be used prior to its declaration:

// This fragment is wrong!

count = 100; // oops! cannot use count before it is declared!

int count;

Here is another important point to remember: variables are created when their
scope is entered, and destroyed when their scope is left. This means that a variable
will not hold its value once it has gone out of scope. Therefore, variables declared
within a method will not hold their values between calls to that method. Also, a
variable declared within a block will lose its value when the block is left. Thus, the
lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be
reinitialized each time the block in which it is declared is entered. For example,
consider the next program.

56 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Demonstrate lifetime of a variable.

class LifeTime {

public static void main(String args[]) {

int x;

for(x = 0; x < 3; x++) {

int y = -1; // y is initialized each time block is entered

System.out.println("y is: " + y); // this always prints -1

y = 100;

System.out.println("y is now: " + y);

}

}

}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is always reinitialized to –1 each time the inner for loop is
entered. Even though it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have
the same name as one in an outer scope. In this regard, Java differs from C and C++.
Here is an example that tries to declare two separate variables with the same name. In
Java, this is illegal. In C/C++, it would be legal and the two bars would be separate.

// This program will not compile

class ScopeErr {

public static void main(String args[]) {

int bar = 1;

{ // creates a new scope

int bar = 2; // Compile-time error – bar already defined!

}

}

}

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 57
TH

E
JA

V
A

LA
N

G
U

A
G

E

Type Conversion and Casting
If you have previous programming experience, then you already know that it is fairly
common to assign a value of one type to a variable of another type. If the two types are
compatible, then Java will perform the conversion automatically. For example, it is
always possible to assign an int value to a long variable. However, not all types are
compatible, and thus, not all type conversions are implicitly allowed. For instance,
there is no conversion defined from double to byte. Fortunately, it is still possible to
obtain a conversion between incompatible types. To do so, you must use a cast, which
performs an explicit conversion between incompatible types. Let’s look at both automatic
type conversions and casting.

Java’s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

■ The two types are compatible.

■ The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example,
the int type is always large enough to hold all valid byte values, so no explicit cast
statement is required.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. However, the numeric types are not compatible
with char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when
storing a literal integer constant into variables of type byte, short, or long.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion
will not be performed automatically, because a byte is smaller than an int. This kind of
conversion is sometimes called a narrowing conversion, since you are explicitly making
the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast
is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For
example, the following fragment casts an int to a byte. If the integer’s value is larger

58 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

than the range of a byte, it will be reduced modulo (the remainder of an integer
division by the) byte’s range.

int a;

byte b;

// ...

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to
an integer type: truncation. As you know, integers do not have fractional components.
Thus, when a floating-point value is assigned to an integer type, the fractional component
is lost. For example, if the value 1.23 is assigned to an integer, the resulting value will
simply be 1. The 0.23 will have been truncated. Of course, if the size of the whole number
component is too large to fit into the target integer type, then that value will be reduced
modulo the target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

This program generates the following output:

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 59
TH

E
JA

V
A

LA
N

G
U

A
G

E

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the
result is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in
this case. When the d is converted to an int, its fractional component is lost. When d is
converted to a byte, its fractional component is lost, and the value is reduced modulo
256, which in this case is 67.

Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions
may occur: in expressions. To see why, consider the following. In an expression, the
precision required of an intermediate value will sometimes exceed the range of either
operand. For example, examine the following expression:

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of
its byte operands. To handle this kind of problem, Java automatically promotes each
byte or short operand to int when evaluating an expression. This means that the
subexpression a * b is performed using integers—not bytes. Thus, 2,000, the result of
the intermediate expression, 50 * 40, is legal even though a and b are both specified as
type byte.

As useful as the automatic promotions are, they can cause confusing compile-time
errors. For example, this seemingly correct code causes a problem:

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

60 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte
variable. However, because the operands were automatically promoted to int when the
expression was evaluated, the result has also been promoted to int. Thus, the result of
the expression is now of type int, which cannot be assigned to a byte without the use of
a cast. This is true even if, as in this particular case, the value being assigned would still
fit in the target type.

In cases where you understand the consequences of overflow, you should use an
explicit cast, such as

byte b = 50;

b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules
In addition to the elevation of bytes and shorts to int, Java defines several type promotion
rules that apply to expressions. They are as follows. First, all byte and short values are
promoted to int, as just described. Then, if one operand is a long, the whole expression
is promoted to long. If one operand is a float, the entire expression is promoted to float.
If any of the operands is double, the result is double.

The following program demonstrates how each value in the expression gets
promoted to match the second argument to each binary operator:

class Promote {

public static void main(String args[]) {

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));

System.out.println("result = " + result);

}

}

Let’s look closely at the type promotions that occur in this line from the program:

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 61
TH

E
JA

V
A

LA
N

G
U

A
G

E

double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i / c, c is promoted to int, and the result is of type
int. Then, in d * s, the value of s is promoted to double, and the type of the subexpression
is double. Finally, these three intermediate values, float, int, and double, are considered.
The outcome of float plus an int is a float. Then the resultant float minus the last
double is promoted to double, which is the type for the final result of the expression.

Arrays
An array is a group of like-typed variables that are referred to by a common name. Arrays
of any type can be created and may have one or more dimensions. A specific element
in an array is accessed by its index. Arrays offer a convenient means of grouping
related information.

If you are familiar with C/C++, be careful. Arrays in Java work differently than they do
in those languages.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables. To create an array,
you first must create an array variable of the desired type. The general form of a one-
dimensional array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type
of each element that comprises the array. Thus, the base type for the array determines
what type of data the array will hold. For example, the following declares an array
named month_days with the type “array of int”:

int month_days[];

Although this declaration establishes the fact that month_days is an array variable,
no array actually exists. In fact, the value of month_days is set to null, which represents
an array with no value. To link month_days with an actual, physical array of integers,

62 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

you must allocate one using new and assign it to month_days. new is a special operator
that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to
allocate memory for arrays. The general form of new as it applies to one-dimensional
arrays appears as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements
in the array, and array-var is the array variable that is linked to the array. That is, to use
new to allocate an array, you must specify the type and number of elements to allocate.
The elements in the array allocated by new will automatically be initialized to zero.
This example allocates a 12-element array of integers and links them to month_days.

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further,
all elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a
variable of the desired array type. Second, you must allocate the memory that will hold
the array, using new, and assign it to the array variable. Thus, in Java all arrays are
dynamically allocated. If the concept of dynamic allocation is unfamiliar to you, don’t
worry. It will be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days.

month_days[1] = 28;

The next line displays the value stored at index 3.

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the
number of days in each month.

// Demonstrate a one-dimensional array.

class Array {

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 63
TH

E
JA

V
A

LA
N

G
U

A
G

E

public static void main(String args[]) {

int month_days[];

month_days = new int[12];

month_days[0] = 31;

month_days[1] = 28;

month_days[2] = 31;

month_days[3] = 30;

month_days[4] = 31;

month_days[5] = 30;

month_days[6] = 31;

month_days[7] = 31;

month_days[8] = 30;

month_days[9] = 31;

month_days[10] = 30;

month_days[11] = 31;

System.out.println("April has " + month_days[3] + " days.");

}

}

When you run this program, it prints the number of days in April. As mentioned, Java
array indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of
the array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java
programs.

Arrays can be initialized when they are declared. The process is much the same as
that used to initialize the simple types. An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas separate the values of the array
elements. The array will automatically be created large enough to hold the number of
elements you specify in the array initializer. There is no need to use new. For example,
to store the number of days in each month, the following code creates an initialized
array of integers:

// An improved version of the previous program.

class AutoArray {

public static void main(String args[]) {

64 J a v a ™ 2 . 0 : T h e C o m p l e t e R e f e r e n c e

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,

30, 31 };

System.out.println("April has " + month_days[3] + " days.");

}

}

When you run this program, you see the same output as that generated by the
previous version.

Java strictly checks to make sure you do not accidentally try to store or reference
values outside of the range of the array. The Java run-time system will check to be sure
that all array indexes are in the correct range. (In this regard, Java is fundamentally
different from C/C++, which provide no run-time boundary checks.) For example, the
run-time system will check the value of each index into month_days to make sure that
it is between 0 and 11 inclusive. If you try to access elements outside the range of the
array (negative numbers or numbers greater than the length of the array), you will
cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of
a set of numbers.

// Average an array of values.

class Average {

public static void main(String args[]) {

double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};

double result = 0;

int i;

for(i=0; i<5; i++)

result = result + nums[i];

System.out.println("Average is " + result / 5);

}

}

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. These, as you might
expect, look and act like regular multidimensional arrays. However, as you will see,

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 65
TH

E
JA

V
A

LA
N

G
U

A
G

E

there are a couple of subtle differences. To declare a multidimensional array variable,
specify each additional index using another set of square brackets. For example, the
following declares a two-dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented
as an array of arrays of int. Conceptually, this array will look like the one shown in
Figure 3-1.

Figure 3-1. A conceptual view of a 4 by 5, two-dimensional array

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.

class TwoDArray {

public static void main(String args[]) {

int twoD[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<5; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

This program generates the following output:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions
separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

twoD[2] = new int[5];

twoD[3] = new int[5];

66 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

While there is no advantage to individually allocating the second dimension arrays
in this situation, there may be in others. For example, when you allocate dimensions
manually, you do not need to allocate the same number of elements for each dimension.
As stated earlier, since multidimensional arrays are actually arrays of arrays, the length
of each array is under your control. For example, the following program creates a two-
dimensional array in which the sizes of the second dimension are unequal.

// Manually allocate differing size second dimensions.

class TwoDAgain {

public static void main(String args[]) {

int twoD[][] = new int[4][];

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<i+1; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<i+1; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

This program generates the following output:

0
1 2
3 4 5
6 7 8 9

The array created by this program looks like this:

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 67
TH

E
JA

V
A

LA
N

G
U

A
G

E

The use of uneven (or, irregular) multidimensional arrays is not recommended
for most applications, because it runs contrary to what people expect to find when
a multidimensional array is encountered. However, it can be used effectively in some
situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then an irregular
array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each
dimension’s initializer within its own set of curly braces. The following program creates
a matrix where each element contains the product of the row and column indexes. Also
notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.

class Matrix {

public static void main(String args[]) {

double m[][] = {

{ 0*0, 1*0, 2*0, 3*0 },

{ 0*1, 1*1, 2*1, 3*1 },

{ 0*2, 1*2, 2*2, 3*2 },

{ 0*3, 1*3, 2*3, 3*3 }

};

int i, j;

for(i=0; i<4; i++) {

for(j=0; j<4; j++)

System.out.print(m[i][j] + " ");

System.out.println();

}

}

}

68 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 69
TH

E
JA

V
A

LA
N

G
U

A
G

E

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.
Let’s look at one more example that uses a multidimensional array. The following

program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with
the product of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.

class threeDMatrix {

public static void main(String args[]) {

int threeD[][][] = new int[3][4][5];

int i, j, k;

for(i=0; i<3; i++)

for(j=0; j<4; j++)

for(k=0; k<5; k++)

threeD[i][j][k] = i * j * k;

for(i=0; i<3; i++) {

for(j=0; j<4; j++) {

for(k=0; k<5; k++)

System.out.print(threeD[i][j][k] + " ");

System.out.println();

}

System.out.println();

}

}

}

This program generates the following output:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

70 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12

0 0 0 0 0
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

This alternative declaration form is included as a convenience, and is also useful when
specifying an array as a return type for a method.

A Few Words About Strings
As you may have noticed, in the preceding discussion of data types and arrays there
has been no mention of strings or a string data type. This is not because Java does not
support such a type—it does. It is just that Java’s string type, called String, is not a
simple type. Nor is it simply an array of characters (as are strings in C/C++). Rather,
String defines an object, and a full description of it requires an understanding of several
object-related features. As such, it will be covered later in this book, after objects are
described. However, so that you can use simple strings in example programs, the
following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of
strings. A quoted string constant can be assigned to a String variable. A variable

of type String can be assigned to another variable of type String. You can use an object of
type String as an argument to println(). For example, consider the following fragment:

String str = "this is a test";

System.out.println(str);

Here, str is an object of type String. It is assigned the string “this is a test”. This string
is displayed by the println() statement.

As you will see later, String objects have many special features and attributes that
make them quite powerful and easy to use. However, for the next few chapters, you
will be using them only in their simplest form.

A Note to C/C++ Programmers About Pointers
If you are an experienced C/C++ programmer, then you know that these languages
provide support for pointers. However, no mention of pointers has been made in this
chapter. The reason for this is simple: Java does not support or allow pointers. (Or
more properly, Java does not support pointers that can be accessed and/or modified
by the programmer.) Java cannot allow pointers, because doing so would allow Java
applets to breach the firewall between the Java execution environment and the host
computer. (Remember, a pointer can be given any address in memory—even addresses
that might be outside the Java run-time system.) Since C/C++ make extensive use of
pointers, you might be thinking that their loss is a significant disadvantage to Java.
However, this is not true. Java is designed in such a way that as long as you stay within
the confines of the execution environment, you will never need to use a pointer, nor would
there be any benefit in using one. For tips on converting C/C++ code to Java, including
pointers, see Chapter 29.

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 71
TH

E
JA

V
A

LA
N

G
U

A
G

E

This page intentionally left blank.

Chapter 4
Operators

73

74 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Java provides a rich operator environment. Most of its operators can be divided
into the following four groups: arithmetic, bitwise, relational, and logical. Java also
defines some additional operators that handle certain special situations. This chapter

describes all of Java’s operators except for the type comparison operator instanceof,
which is examined in Chapter 12.

If you are familiar with C/C++/C#, then you will be pleased to know that most operators
in Java work just like they do in those languages. However, there are some subtle differences,
so a careful reading is advised.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they
are used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot
use them on boolean types, but you can use them on char types, since the char type in
Java is, essentially, a subset of int.

The Basic Arithmetic Operators
The basic arithmetic operations—addition, subtraction, multiplication, and division—
all behave as you would expect for all numeric types. The minus operator also has
a unary form which negates its single operand. Remember that when the division

C h a p t e r 4 : O p e r a t o r s 75
TH

E
JA

V
A

LA
N

G
U

A
G

E

operator is applied to an integer type, there will be no fractional component attached to
the result.

The following simple example program demonstrates the arithmetic operators. It
also illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.

class BasicMath {

public static void main(String args[]) {

// arithmetic using integers

System.out.println("Integer Arithmetic");

int a = 1 + 1;

int b = a * 3;

int c = b / 4;

int d = c - a;

int e = -d;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("e = " + e);

// arithmetic using doubles

System.out.println("\nFloating Point Arithmetic");

double da = 1 + 1;

double db = da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;

System.out.println("da = " + da);

System.out.println("db = " + db);

System.out.println("dc = " + dc);

System.out.println("dd = " + dd);

System.out.println("de = " + de);

}

}

When you run this program, you will see the following output:

Integer Arithmetic
a = 2
b = 6
c = 1

d = -1
e = 1

Floating Point Arithmetic
da = 2.0
db = 6.0
dc = 1.5
dd = -0.5
de = 0.5

The Modulus Operator
The modulus operator, %, returns the remainder of a division operation. It can be
applied to floating-point types as well as integer types. (This differs from C/C++, in
which the % can only be applied to integer types.) The following example program
demonstrates the %:

// Demonstrate the % operator.

class Modulus {

public static void main(String args[]) {

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + y % 10);

}

}

When you run this program you will get the following output:

x mod 10 = 2
y mod 10 = 2.25

Arithmetic Assignment Operators
Java provides special operators that can be used to combine an arithmetic operation
with an assignment. As you probably know, statements like the following are quite
common in programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

76 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : O p e r a t o r s 77
TH

E
JA

V
A

LA
N

G
U

A
G

E

a += 4;

This version uses the += assignment operator. Both statements perform the same
action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a/2 and puts that result back into a.
There are assignment operators for all of the arithmetic, binary operators. Thus,

any statement of the form

var = var op expression;

can be rewritten as

var op= expression;

The assignment operators provide two benefits. First, they save you a bit of typing,
because they are “shorthand” for their equivalent long forms. Second, they are
implemented more efficiently by the Java run-time system than are their equivalent
long forms. For these reasons, you will often see the assignment operators used in
professionally written Java programs.

Here is a sample program that shows several op= operator assignments in action:

// Demonstrate several assignment operators.

class OpEquals {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c = 3;

a += 5;

b *= 4;

78 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

c += a * b;

c %= 6;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

The output of this program is shown here:

a = 6
b = 8
c = 3

Increment and Decrement
The ++ and the – – are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some
special properties that make them quite interesting. Let’s begin by reviewing precisely
what the increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator
decreases its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

is equivalent to

x--;

C h a p t e r 4 : O p e r a t o r s 79
TH

E
JA

V
A

LA
N

G
U

A
G

E

These operators are unique in that they can appear both in postfix form, where
they follow the operand as just shown, and prefix form, where they precede the
operand. In the foregoing examples, there is no difference between the prefix and
postfix forms. However, when the increment and/or decrement operators are part
of a larger expression, then a subtle, yet powerful, difference between these two forms
appears. In the prefix form, the operand is incremented or decremented before the value
is obtained for use in the expression. In postfix form, the previous value is obtained for
use in the expression, and then the operand is modified. For example:

x = 42;

y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is
assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;

y = x;

However, when written like this,

x = 42;

y = x++;

the value of x is obtained before the increment operator is executed, so the value of
y is 42. Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent
of these two statements:

y = x;

x = x + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.

class IncDec {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c;

80 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

int d;

c = ++b;

d = a++;

c++;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}

}

The output of this program follows:

a = 2
b = 3
c = 4
d = 1

The Bitwise Operators
Java defines several bitwise operators which can be applied to the integer types, long,
int, short, char, and byte. These operators act upon the individual bits of their operands.
They are summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

Operator Result

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer, it is important to
understand what effects such manipulations may have on a value. Specifically, it is
useful to know how Java stores integer values and how it represents negative numbers.
So, before continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths.
For example, the byte value for 42 in binary is 00101010, where each position represents
a power of two, starting with 20 at the rightmost bit. The next bit position to the left
would be 21, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So
42 has 1 bits set at positions 1, 3, and 5 (counting from 0 at the right); thus 42 is the sum
of 21 + 23 + 25, which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can
represent negative values as well as positive ones. Java uses an encoding known as
two’s complement, which means that negative numbers are represented by inverting
(changing 1’s to 0’s and vice versa) all of the bits in a value, then adding 1 to the result.
For example, –42 is represented by inverting all of the bits in 42, or 00101010, which
yields 11010101, then adding 1, which results in 11010110, or –42. To decode a negative
number, first invert all of the bits, then add 1. –42, or 11010110 inverted yields 00101001,
or 41, so when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy
to see when you consider the issue of zero crossing. Assuming a byte value, zero is
represented by 00000000. In one’s complement, simply inverting all of the bits creates
11111111, which creates negative zero. The trouble is that negative zero is invalid in
integer math. This problem is solved by using two’s complement to represent negative
values. When using two’s complement, 1 is added to the complement, producing
100000000. This produces a 1 bit too far to the left to fit back into the byte value, resulting
in the desired behavior, where –0 is the same as 0, and 11111111 is the encoding for –1.
Although we used a byte value in the preceding example, the same basic principle
applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not.
To avoid unpleasant surprises, just remember that the high-order bit determines the
sign of an integer no matter how that high-order bit gets set.

C h a p t e r 4 : O p e r a t o r s 81
TH

E
JA

V
A

LA
N

G
U

A
G

E

The Bitwise Logical Operators
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome
of each operation. In the discussion that follows, keep in mind that the bitwise operators
are applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of
its operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced
in all other cases. Here is an example:

00101010 42
&00001111 15

00001010 10

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1,
then the resultant bit is a 1, as shown here:

00101010 42
00001111 15

00101111 47

82 J a v a ™ 2 . 0 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result
is 1. Otherwise, the result is zero. The following example shows the effect of the ^. This
example also demonstrates a useful attribute of the XOR operation. Notice how the bit
pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second
operand has a 0 bit, the first operand is unchanged. You will find this property useful
when performing some types of bit manipulations.

00101010 42
^00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.

class BitLogic {

public static void main(String args[]) {

String binary[] = {

"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",

"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"

};

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b) | (a & ~b);

int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);

System.out.println(" b = " + binary[b]);

System.out.println(" a|b = " + binary[c]);

System.out.println(" a&b = " + binary[d]);

System.out.println(" a^b = " + binary[e]);

System.out.println("~a&b|a&~b = " + binary[f]);

System.out.println(" ~a = " + binary[g]);

}

}

C h a p t e r 4 : O p e r a t o r s 83

84 J a v a ™ 2 . 0 : T h e C o m p l e t e R e f e r e n c e

In this example, a and b have bit patterns which present all four possibilities for
two binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each
bit by the results in c and d. The values assigned to e and f are the same and illustrate
how the ^ works. The string array named binary holds the human-readable, binary
representation of the numbers 0 through 15. In this example, the array is indexed to
show the binary representation of each result. The array is constructed such that the
correct string representation of a binary value n is stored in binary[n]. The value of ~a
is ANDed with 0x0f (0000 1111 in binary) in order to reduce its value to less than 16, so
it can be printed by use of the binary array. Here is the output from this program:

a = 0011
b = 0110

a|b = 0111
a&b = 0010
a^b = 0101

~a&b|a&~b = 0101
~a = 1100

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number
of times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the
<< moves all of the bits in the specified value to the left by the number of bit positions
specified by num. For each shift left, the high-order bit is shifted out (and lost), and a
zero is brought in on the right. This means that when a left shift is applied to an int
operand, bits are lost once they are shifted past bit position 31. If the operand is a long,
then bits are lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when
an expression is evaluated. Furthermore, the result of such an expression is also an int.
This means that the outcome of a left shift on a byte or short value will be an int, and
the bits shifted left will not be lost until they shift past bit position 31. Furthermore,
a negative byte or short value will be sign-extended when it is promoted to int. Thus,
the high-order bits will be filled with 1’s. For these reasons, to perform a left shift on a
byte or short implies that you must discard the high-order bytes of the int result. For
example, if you left-shift a byte value, that value will first be promoted to int and then
shifted. This means that you must discard the top three bytes of the result if what you
want is the result of a shifted byte value. The easiest way to do this is to simply cast the
result back into a byte. The following program demonstrates this concept:

C h a p t e r 4 : O p e r a t o r s 85
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Left shifting a byte value.

class ByteShift {

public static void main(String args[]) {

byte a = 64, b;

int i;

i = a << 2;

b = (byte) (a << 2);

System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);

}

}

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

Since each left shift has the effect of doubling the original value, programmers
frequently use this fact as an efficient alternative to multiplying by 2. But you need to
watch out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will
become negative. The following program illustrates this point:

// Left shifting as a quick way to multiply by 2.

class MultByTwo {

public static void main(String args[]) {

int i;

int num = 0xFFFFFFE;

for(i=0; i<4; i++) {

num = num << 1;

System.out.println(num);

}

}

}

86 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions,
it would produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is
interpreted as negative.

The Right Shift
The right shift operator, >>, shifts all of the bits in a value to the right a specified number
of times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the
>> moves all of the bits in the specified value to the right the number of bit positions
specified by num.

The following code fragment shifts the value 32 to the right by two positions,
resulting in a being set to 8:

int a = 32;

a = a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the
next code fragment shifts the value 35 to the right two positions, which causes the two
low-order bits to be lost, resulting again in a being set to 8.

int a = 35;

a = a >> 2; // a still contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

C h a p t e r 4 : O p e r a t o r s 87
TH

E
JA

V
A

LA
N

G
U

A
G

E

Each time you shift a value to the right, it divides that value by two—and discards
any remainder. You can take advantage of this for high-performance integer division
by 2. Of course, you must be sure that you are not shifting any bits off the right end.

When you are shifting right, the top (leftmost) bits exposed by the right shift are
filled in with the previous contents of the top bit. This is called sign extension and serves
to preserve the sign of negative numbers when you shift them right. For example, –8
>> 1 is –4, which, in binary, is

11111000 –8
>>1
11111100 –4

It is interesting to note that if you shift –1 right, the result always remains –1, since
sign extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to
the right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of hexadecimal
characters.

// Masking sign extension.

class HexByte {

static public void main(String args[]) {

char hex[] = {

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};

byte b = (byte) 0xf1;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

}

}

Here is the output of this program:

b = 0xf1

The Unsigned Right Shift
As you have just seen, the >> operator automatically fills the high-order bit with its
previous contents each time a shift occurs. This preserves the sign of the value. However,

88 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

sometimes this is undesirable. For example, if you are shifting something that does
not represent a numeric value, you may not want sign extension to take place. This
situation is common when you are working with pixel-based values and graphics. In
these cases you will generally want to shift a zero into the high-order bit no matter
what its initial value was. This is known as an unsigned shift. To accomplish this, you
will use Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the
high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets
all 32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits
with zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int
in expressions. This means that sign-extension occurs and that the shift will take place
on a 32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned
right shift on a byte value to zero-fill beginning at bit 7. But this is not the case, since
it is a 32-bit value that is actually being shifted. The following program demonstrates
this effect:

// Unsigned shifting a byte value.

class ByteUShift {

static public void main(String args[]) {

char hex[] = {

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};

byte b = (byte) 0xf1;

byte c = (byte) (b >> 4);

byte d = (byte) (b >>> 4);

byte e = (byte) ((b & 0xff) >> 4);

C h a p t e r 4 : O p e r a t o r s 89
TH

E
JA

V
A

LA
N

G
U

A
G

E

System.out.println(" b = 0x"

+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

System.out.println(" b >> 4 = 0x"

+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);

System.out.println(" b >>> 4 = 0x"

+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

System.out.println("(b & 0xff) >> 4 = 0x"

+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

}

}

The following output of this program shows how the >>> operator appears to do
nothing when dealing with bytes. The variable b is set to an arbitrary negative byte
value for this demonstration. Then c is assigned the byte value of b shifted right by
four, which is 0xff because of the expected sign extension. Then d is assigned the byte
value of b unsigned shifted right by four, which you might have expected to be 0x0f,
but is actually 0xff because of the sign extension that happened when b was promoted
to int before the shift. The last expression sets e to the byte value of b masked to 8 bits
using the AND operator, then shifted right by four, which produces the expected value
of 0x0f. Notice that the unsigned shift right operator was not used for d, since the state
of the sign bit after the AND was known.

b = 0xf1
b >> 4 = 0xff

b >>> 4 = 0xff
(b & 0xff) >> 4 = 0x0f

Bitwise Operator Assignments
All of the binary bitwise operators have a shorthand form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a = a >> 4;

a >>= 4;

Likewise, the following two statements, which result in a being assigned the
bitwise expression a OR b, are equivalent:

a = a | b;

a |= b;

90 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The following program creates a few integer variables and then uses the shorthand
form of bitwise operator assignments to manipulate the variables:

class OpBitEquals {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c = 3;

a |= 4;

b >>= 1;

c <<= 1;

a ^= c;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

The output of this program is shown here:

a = 3
b = 1
c = 6

Relational Operators
The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are
shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

Operator Result

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are
most frequently used in the expressions that control the if statement and the various
loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in
Java (as in C/C++/C#) equality is denoted with two equal signs, not one. (Remember:
a single equal sign is the assignment operator.) Only numeric types can be compared
using the ordering operators. That is, only integer, floating-point, and character operands
may be compared to see which is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For
example, the following code fragment is perfectly valid:

int a = 4;

int b = 1;

boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++,

these types of statements are very common:

int done;

// ...

if(!done) ... // Valid in C/C++

if(done) ... // but not in Java.

In Java, these statements must be written like this:

if(done == 0)) ... // This is Java-style.

if(done != 0) ...

The reason is that Java does not define true and false in the same way as C/C++.
In C/C++, true is any nonzero value and false is zero. In Java, true and false are
nonnumeric values which do not relate to zero or nonzero. Therefore, to test for zero
or nonzero, you must explicitly employ one or more of the relational operators.

C h a p t e r 4 : O p e r a t o r s 91
TH

E
JA

V
A

LA
N

G
U

A
G

E

92 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All
of the binary logical operators combine two boolean values to form a resultant
boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The logical Boolean operators, &, |, and ^, operate on boolean values in the same
way that they operate on the bits of an integer. The logical ! operator inverts the
Boolean state: !true == false and !false == true. The following table shows the effect
of each logical operation:

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

Here is a program that is almost the same as the BitLogic example shown earlier,
but it operates on boolean logical values instead of binary bits:

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 4 : O p e r a t o r s 93

// Demonstrate the boolean logical operators.

class BoolLogic {

public static void main(String args[]) {

boolean a = true;

boolean b = false;

boolean c = a | b;

boolean d = a & b;

boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);

System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

}

}

After running this program, you will see that the same logical rules apply to
boolean values as they did to bits. As you can see from the following output, the
string representation of a Java boolean value is one of the literal values true or false:

a = true
b = false

a|b = true
a&b = false
a^b = true

a&b|a&!b = true
!a = false

Short-Circuit Logical Operators
Java provides two interesting Boolean operators not found in many other computer
languages. These are secondary versions of the Boolean AND and OR operators, and
are known as short-circuit logical operators. As you can see from the preceding table,
the OR operator results in true when A is true, no matter what B is. Similarly, the AND

94 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

operator results in false when A is false, no matter what B is. If you use the || and
&& forms, rather than the | and & forms of these operators, Java will not bother to
evaluate the right-hand operand when the outcome of the expression can be determined
by the left operand alone. This is very useful when the right-hand operand depends on
the left one being true or false in order to function properly. For example, the following
code fragment shows how you can take advantage of short-circuit logical evaluation to
be sure that a division operation will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a
run-time exception when denom is zero. If this line of code were written using the
single & version of AND, both sides would have to be evaluated, causing a run-time
exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases
involving Boolean logic, leaving the single-character versions exclusively for bitwise
operations. However, there are exceptions to this rule. For example, consider the
following statement:

if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether
c is equal to 1 or not.

The Assignment Operator
You have been using the assignment operator since Chapter 2. Now it is time to take
a formal look at it. The assignment operator is the single equal sign, =. The assignment
operator works in Java much as it does in any other computer language. It has this
general form:

var = expression;

Here, the type of var must be compatible with the type of expression.
The assignment operator does have one interesting attribute that you may not be

familiar with: it allows you to create a chain of assignments. For example, consider
this fragment:

C h a p t e r 4 : O p e r a t o r s 95
TH

E
JA

V
A

LA
N

G
U

A
G

E

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using
a “chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of
if-then-else statements. This operator is the ?, and it works in Java much like it does
in C, C++, and C#. It can seem somewhat confusing at first, but the ? can be used very
effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1
is true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of
the ? operation is that of the expression evaluated. Both expression2 and expression3 are
required to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to
the left of the question mark. If denom equals zero, then the expression between the
question mark and the colon is evaluated and used as the value of the entire ? expression.
If denom does not equal zero, then the expression after the colon is evaluated and used
for the value of the entire ? expression. The result produced by the ? operator is then
assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate ?.

class Ternary {

public static void main(String args[]) {

96 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

int i, k;

i = 10;

k = i < 0 ? -i : i; // get absolute value of i

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);

i = -10;

k = i < 0 ? -i : i; // get absolute value of i

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);

}

}

The output generated by the program is shown here:

Absolute value of 10 is 10
Absolute value of -10 is 10

Operator Precedence
Table 4-1 shows the order of precedence for Java operators, from highest to lowest.
Notice that the first row shows items that you may not normally think of as operators:
parentheses, square brackets, and the dot operator. Parentheses are used to alter the
precedence of an operation. As you know from the previous chapter, the square
brackets provide array indexing. The dot operator is used to dereference objects and
will be discussed later in this book.

Using Parentheses
Parentheses raise the precedence of the operations that are inside them. This is often
necessary to obtain the result you desire. For example, consider the following
expression:

a >> b + 3

C h a p t e r 4 : O p e r a t o r s 97
TH

E
JA

V
A

LA
N

G
U

A
G

E

This expression first adds 3 to b and then shifts a right by that result. That is, this
expression can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that
result, you will need to parenthesize the expression like this:

(a >> b) + 3

Highest

() [] .

++ – – ~ !

* / %

+ –

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

Lowest

Table 4-1. The Precedence of the Java Operators

In addition to altering the normal precedence of an operator, parentheses can
sometimes be used to help clarify the meaning of an expression. For anyone reading
your code, a complicated expression can be difficult to understand. Adding redundant
but clarifying parentheses to complex expressions can help prevent confusion later. For
example, which of the following expressions is easier to read?

a | 4 + c >> b & 7

(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of
your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

98 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 5
Control Statements

99

Aprogramming language uses control statements to cause the flow of execution
to advance and branch based on changes to the state of a program. Java’s program
control statements can be put into the following categories: selection, iteration,

and jump. Selection statements allow your program to choose different paths of execution
based upon the outcome of an expression or the state of a variable. Iteration statements
enable program execution to repeat one or more statements (that is, iteration statements
form loops). Jump statements allow your program to execute in a nonlinear fashion. All
of Java’s control statements are examined here.

If you know C/C++/C#, then Java’s control statements will be familiar territory. In fact,
Java’s control statements are nearly identical to those in those languages. However,
there are a few differences—especially in the break and continue statements.

Java’s Selection Statements
Java supports two selection statements: if and switch. These statements allow you to
control the flow of your program’s execution based upon conditions known only during
run time. You will be pleasantly surprised by the power and flexibility contained in
these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if
statement is Java’s conditional branch statement. It can be used to route program
execution through two different paths. Here is the general form of the if statement:

if (condition) statement1;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block). The condition is any expression that returns a boolean value.
The else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,
statement2 (if it exists) is executed. In no case will both statements be executed. For
example, consider the following:

int a, b;

// ...

if(a < b) a = 0;

else b = 0;

100 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are
they both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single
boolean variable, as shown in this code fragment:

boolean dataAvailable;

// ...

if (dataAvailable)

ProcessData();

else

waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you
want to include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;

// ...

if (bytesAvailable > 0) {

ProcessData();

bytesAvailable -= n;

} else

waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater
than zero.

Some programmers find it convenient to include the curly braces when using the if,
even when there is only one statement in each clause. This makes it easy to add another
statement at a later date, and you don’t have to worry about forgetting the braces. In
fact, forgetting to define a block when one is needed is a common cause of errors. For
example, consider the following code fragment:

int bytesAvailable;

// ...

if (bytesAvailable > 0) {

ProcessData();

bytesAvailable -= n;

} else

waitForMoreData();

bytesAvailable = n;

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 101
TH

E
JA

V
A

LA
N

G
U

A
G

E

102 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

It seems clear that the statement bytesAvailable = n; was intended to be executed
inside the else clause, because of the indentation level. However, as you recall,
whitespace is insignificant to Java, and there is no way for the compiler to know what
was intended. This code will compile without complaint, but it will behave incorrectly
when run. The preceding example is fixed in the code that follows:

int bytesAvailable;

// ...

if (bytesAvailable > 0) {

ProcessData();

bytesAvailable -= n;

} else {

waitForMoreData();

bytesAvailable = n;

}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. When you nest ifs, the main thing to remember is that an
else statement always refers to the nearest if statement that is within the same block
as the else and that is not already associated with an else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20), because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i==10). The inner else refers to if(k>100), because it is the closest if
within the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)
statement;

else if(condition)

statement;
else if(condition)

statement;
.
.
.
else
statement;

The if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest
of the ladder is bypassed. If none of the conditions is true, then the final else statement
will be executed. The final else acts as a default condition; that is, if all other conditional
tests fail, then the last else statement is performed. If there is no final else and all other
conditions are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.

class IfElse {

public static void main(String args[]) {

int month = 4; // April

String season;

if(month == 12 || month == 1 || month == 2)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)

season = "Spring";

else if(month == 6 || month == 7 || month == 8)

season = "Summer";

else if(month == 9 || month == 10 || month == 11)

season = "Autumn";

else

season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}

}

Here is the output produced by the program:

April is in the Spring.

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 103
TH

E
JA

V
A

LA
N

G
U

A
G

E

104 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

You might want to experiment with this program before moving on. As you will
find, no matter what value you give month, one and only one assignment statement
within the ladder will be executed.

switch
The switch statement is Java’s multiway branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression.
As such, it often provides a better alternative than a large series of if-else-if statements.
Here is the general form of a switch statement:

switch (expression) {
case value1:

// statement sequence
break;

case value2:
// statement sequence

break;
.
.
.
case valueN:

// statement sequence
break;

default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified
in the case statements must be of a type compatible with the expression. Each case
value must be a unique literal (that is, it must be a constant, not a variable). Duplicate
case values are not allowed.

The switch statement works like this: The value of the expression is compared with
each of the literal values in the case statements. If a match is found, the code sequence
following that case statement is executed. If none of the constants matches the value of
the expression, then the default statement is executed. However, the default statement
is optional. If no case matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence.
When a break statement is encountered, execution branches to the first line of code that
follows the entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 105
TH

E
JA

V
A

LA
N

G
U

A
G

E

// A simple example of the switch.

class SampleSwitch {

public static void main(String args[]) {

for(int i=0; i<6; i++)

switch(i) {

case 0:

System.out.println("i is zero.");

break;

case 1:

System.out.println("i is one.");

break;

case 2:

System.out.println("i is two.");

break;

case 3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than 3.");

}

}

}

The output produced by this program is shown here:

i is zero.
i is one.
i is two.
i is three.
i is greater than 3.
i is greater than 3.

As you can see, each time through the loop, the statements associated with the case
constant that matches i are executed. All others are bypassed. After i is greater than 3,
no case statements match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue
on into the next case. It is sometimes desirable to have multiple cases without break
statements between them. For example, consider the following program:

// In a switch, break statements are optional.

class MissingBreak {

106 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public static void main(String args[]) {

for(int i=0; i<12; i++)

switch(i) {

case 0:

case 1:

case 2:

case 3:

case 4:

System.out.println("i is less than 5");

break;

case 5:

case 6:

case 7:

case 8:

case 9:

System.out.println("i is less than 10");

break;

default:

System.out.println("i is 10 or more");

}

}

}

This program generates the following output:

i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is 10 or more
i is 10 or more

As you can see, execution falls through each case until a break statement (or the end of
the switch) is reached.

While the preceding example is, of course, contrived for the sake of illustration,
omitting the break statement has many practical applications in real programs. To
sample its more realistic usage, consider the following rewrite of the season example
shown earlier. This version uses a switch to provide a more efficient implementation.

// An improved version of the season program.

class Switch {

public static void main(String args[]) {

int month = 4;

String season;

switch (month) {

case 12:

case 1:

case 2:

season = "Winter";

break;

case 3:

case 4:

case 5:

season = "Spring";

break;

case 6:

case 7:

case 8:

season = "Summer";

break;

case 9:

case 10:

case 11:

season = "Autumn";

break;

default:

season = "Bogus Month";

}

System.out.println("April is in the " + season + ".");

}

}

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 107
TH

E
JA

V
A

LA
N

G
U

A
G

E

Nested switch Statements
You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between
the case constants in the inner switch and those in the outer switch. For example, the
following fragment is perfectly valid:

switch(count) {

case 1:

switch(target) { // nested switch

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement
in the outer switch. The count variable is only compared with the list of cases at the
outer level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

■ The switch differs from the if in that switch can only test for equality, whereas
if can evaluate any type of Boolean expression. That is, the switch looks only
for a match between the value of the expression and one of its case constants.

■ No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch can have case constants
in common.

■ A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java
compiler works. When it compiles a switch statement, the Java compiler will inspect
each of the case constants and create a “jump table” that it will use for selecting the
path of execution depending on the value of the expression. Therefore, if you need to
select among a large group of values, a switch statement will run much faster than the
equivalent logic coded using a sequence of if-elses. The compiler can do this because it
knows that the case constants are all the same type and simply must be compared for
equality with the switch expression. The compiler has no such knowledge of a long list
of if expressions.

108 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 109
TH

E
JA

V
A

LA
N

G
U

A
G

E

Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what
we commonly call loops. As you probably know, a loop repeatedly executes the same
set of instructions until a termination condition is met. As you will see, Java has a loop
to fit any programming need.

while
The while loop is Java’s most fundamental looping statement. It repeats a statement or
block while its controlling expression is true. Here is its general form:

while(condition) {
// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as
long as the conditional expression is true. When condition becomes false, control passes
to the next line of code immediately following the loop. The curly braces are unnecessary
if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

// Demonstrate the while loop.

class While {

public static void main(String args[]) {

int n = 10;

while(n > 0) {

System.out.println("tick " + n);

n--;

}

}

}

When you run this program, it will “tick” ten times:

tick 10
tick 9
tick 8
tick 7
tick 6
tick 5
tick 4

110 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

tick 3
tick 2
tick 1

Since the while loop evaluates its conditional expression at the top of the loop, the
body of the loop will not execute even once if the condition is false to begin with. For
example, in the following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)

System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because
a null statement (one that consists only of a semicolon) is syntactically valid in Java. For
example, consider the following program:

// The target of a loop can be empty.

class NoBody {

public static void main(String args[]) {

int i, j;

i = 100;

j = 200;

// find midpoint between i and j

while(++i < --j) ; // no body in this loop

System.out.println("Midpoint is " + i);

}

}

This program finds the midpoint between i and j. It generates the following output:

Midpoint is 150

Here is how the while loop works. The value of i is incremented, and the value of j
is decremented. These values are then compared with one another. If the new value of
i is still less than the new value of j, then the loop repeats. If i is equal to or greater than
j, the loop stops. Upon exit from the loop, i will hold a value that is midway between
the original values of i and j. (Of course, this procedure only works when i is less than j

to begin with.) As you can see, there is no need for a loop body; all of the action occurs
within the conditional expression, itself. In professionally written Java code, short loops
are frequently coded without bodies when the controlling expression can handle all of
the details itself.

do-while
As you just saw, if the conditional expression controlling a while loop is initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable
to execute the body of a while loop at least once, even if the conditional expression is
false to begin with. In other words, there are times when you would like to test the
termination expression at the end of the loop rather than at the beginning. Fortunately,
Java supplies a loop that does just that: the do-while. The do-while loop always executes
its body at least once, because its conditional expression is at the bottom of the loop. Its
general form is

do {
// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then
evaluates the conditional expression. If this expression is true, the loop will repeat.
Otherwise, the loop terminates. As with all of Java’s loops, condition must be a Boolean
expression.

Here is a reworked version of the “tick” program that demonstrates the do-while
loop. It generates the same output as before.

// Demonstrate the do-while loop.

class DoWhile {

public static void main(String args[]) {

int n = 10;

do {

System.out.println("tick " + n);

n--;

} while(n > 0);

}

}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do {

System.out.println("tick " + n);

} while(--n > 0);

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 111
TH

E
JA

V
A

LA
N

G
U

A
G

E

112 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

In this example, the expression (– –n > 0) combines the decrement of n and the test for
zero into one expression. Here is how it works. First, the – –n statement executes,
decrementing n and returning the new value of n. This value is then compared with
zero. If it is greater than zero, the loop continues; otherwise it terminates.

The do-while loop is especially useful when you process a menu selection, because
you will usually want the body of a menu loop to execute at least once. Consider the
following program which implements a very simple help system for Java’s selection
and iteration statements:

// Using a do-while to process a menu selection

class Menu {

public static void main(String args[])

throws java.io.IOException {

char choice;

do {

System.out.println("Help on:");

System.out.println(" 1. if");

System.out.println(" 2. switch");

System.out.println(" 3. while");

System.out.println(" 4. do-while");

System.out.println(" 5. for\n");

System.out.println("Choose one:");

choice = (char) System.in.read();

} while(choice < '1' || choice > '5');

System.out.println("\n");

switch(choice) {

case '1':

System.out.println("The if:\n");

System.out.println("if(condition) statement;");

System.out.println("else statement;");

break;

case '2':

System.out.println("The switch:\n");

System.out.println("switch(expression) {");

System.out.println(" case constant:");

System.out.println(" statement sequence");

System.out.println(" break;");

System.out.println(" // ...");

System.out.println("}");

break;

case '3':

System.out.println("The while:\n");

System.out.println("while(condition) statement;");

break;

case '4':

System.out.println("The do-while:\n");

System.out.println("do {");

System.out.println(" statement;");

System.out.println("} while (condition);");

break;

case '5':

System.out.println("The for:\n");

System.out.print("for(init; condition; iteration)");

System.out.println(" statement;");

break;

}

}

}

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for

Choose one:
4
The do-while:
do {
statement;

} while (condition);

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 113
TH

E
JA

V
A

LA
N

G
U

A
G

E

114 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

In the program, the do-while loop is used to verify that the user has entered a valid
choice. If not, then the user is reprompted. Since the menu must be displayed at least
once, the do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the
keyboard by calling System.in.read(). This is one of Java’s console input functions.
Although Java’s console I/O methods won’t be discussed in detail until Chapter 12,
System.in.read() is used here to obtain the user’s choice. It reads characters from
standard input (returned as integers, which is why the return value was cast to char).
By default, standard input is line buffered, so you must press ENTER before any
characters that you type will be sent to your program.

Java’s console input is quite limited and awkward to work with. Further, most
real-world Java programs and applets will be graphical and window-based. For these
reasons, not much use of console input has been made in this book. However, it is useful
in this context. One other point: Because System.in.read() is being used, the program
must specify the throws java.io.IOException clause. This line is necessary to handle
input errors. It is part of Java’s exception handling features, which are discussed in
Chapter 10.

for
You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is
a powerful and versatile construct. Here is the general form of the for statement:

for(initialization; condition; iteration) {
// body

}

If only one statement is being repeated, there is no need for the curly braces.
The for loop operates as follows. When the loop first starts, the initialization portion

of the loop is executed. Generally, this is an expression that sets the value of the loop
control variable, which acts as a counter that controls the loop. It is important to understand
that the initialization expression is only executed once. Next, condition is evaluated. This
must be a Boolean expression. It usually tests the loop control variable against a target
value. If this expression is true, then the body of the loop is executed. If it is false, the
loop terminates. Next, the iteration portion of the loop is executed. This is usually an
expression that increments or decrements the loop control variable. The loop then iterates,
first evaluating the conditional expression, then executing the body of the loop, and
then executing the iteration expression with each pass. This process repeats until the
controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 115
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Demonstrate the for loop.

class ForTick {

public static void main(String args[]) {

int n;

for(n=10; n>0; n--)

System.out.println("tick " + n);

}

}

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is only needed for the purposes of the loop
and is not used elsewhere. When this is the case, it is possible to declare the variable
inside the initialization portion of the for. For example, here is the preceding program
recoded so that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.

class ForTick {

public static void main(String args[]) {

// here, n is declared inside of the for loop

for(int n=10; n>0; n--)

System.out.println("tick " + n);

}

}

When you declare a variable inside a for loop, there is one important point to
remember: the scope of that variable ends when the for statement does. (That is, the
scope of the variable is limited to the for loop.) Outside the for loop, the variable will
cease to exist. If you need to use the loop control variable elsewhere in your program,
you will not be able to declare it inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime
numbers. Notice that the loop control variable, i, is declared inside the for since it is not
needed elsewhere.

// Test for primes.

class FindPrime {

public static void main(String args[]) {

int num;

boolean isPrime = true;

num = 14;

for(int i=2; i <= num/2; i++) {

if((num % i) == 0) {

isPrime = false;

break;

}

}

if(isPrime) System.out.println("Prime");

else System.out.println("Not Prime");

}

}

Using the Comma
There will be times when you will want to include more than one statement in the
initialization and iteration portions of the for loop. For example, consider the loop
in the following program:

class Sample {

public static void main(String args[]) {

int a, b;

b = 4;

for(a=1; a<b; a++) {

System.out.println("a = " + a);

System.out.println("b = " + b);

b--;

}

}

}

As you can see, the loop is controlled by the interaction of two variables. Since the loop
is governed by two variables, it would be useful if both could be included in the for
statement, itself, instead of b being handled manually. Fortunately, Java provides a way
to accomplish this. To allow two or more variables to control a for loop, Java permits
you to include multiple statements in both the initialization and iteration portions of
the for. Each statement is separated from the next by a comma.

116 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using the comma, the preceding for loop can be more efficiently coded as shown here:

// Using the comma.

class Comma {

public static void main(String args[]) {

int a, b;

for(a=1, b=4; a<b; a++, b--) {

System.out.println("a = " + a);

System.out.println("b = " + b);

}

}

}

In this example, the initialization portion sets the values of both a and b. The two
comma-separated statements in the iteration portion are executed each time the loop
repeats. The program generates the following output:

a = 1
b = 4
a = 2
b = 3

If you are familiar with C/C++, then you know that in those languages the comma is
an operator that can be used in any valid expression. However, this is not the case with
Java. In Java, the comma is a separator that applies only to the for loop.

Some for Loop Variations
The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts, the initialization, the conditional test, and
the iteration, do not need to be used for only those purposes. In fact, the three sections
of the for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically,
this expression does not need to test the loop control variable against some target value.
In fact, the condition controlling the for can be any Boolean expression. For example,
consider the following fragment:

boolean done = false;

for(int i=1; !done; i++) {

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 117
TH

E
JA

V
A

LA
N

G
U

A
G

E

// ...

if(interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is set
to true. It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the
iteration expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.

class ForVar {

public static void main(String args[]) {

int i;

boolean done = false;

i = 0;

for(; !done;) {

System.out.println("i is " + i);

if(i == 10) done = true;

i++;

}

}

}

Here, the initialization and iteration expressions have been moved out of the for. Thus,
parts of the for are empty. While this is of no value in this simple example—indeed, it
would be considered quite poor style—there can be times when this type of approach
makes sense. For example, if the initial condition is set through a complex expression
elsewhere in the program or if the loop control variable changes in a nonsequential
manner determined by actions that occur within the body of the loop, it may be
appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop
(a loop that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {

// ...

}

This loop will run forever, because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors,

118 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

that require an infinite loop, most “infinite loops” are really just loops with special
termination requirements. As you will soon see, there is a way to terminate a loop—
even an infinite loop like the one shown—that does not make use of the normal
loop conditional expression.

Nested Loops
Like all other programming languages, Java allows loops to be nested. That is, one loop
may be inside another. For example, here is a program that nests for loops:

// Loops may be nested.

class Nested {

public static void main(String args[]) {

int i, j;

for(i=0; i<10; i++) {

for(j=i; j<10; j++)

System.out.print(".");

System.out.println();

}

}

}

The output produced by this program is shown here:

..........

.........

........

.......

......

.....

....

...

..

.

Jump Statements
Java supports three jump statements: break, continue, and return. These statements
transfer control to another part of your program. Each is examined here.

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 119
TH

E
JA

V
A

LA
N

G
U

A
G

E

In addition to the jump statements discussed here, Java supports one other way that you
can change your program’s flow of execution: through exception handling. Exception
handling provides a structured method by which run-time errors can be trapped and
handled by your program. It is supported by the keywords try, catch, throw, throws,
and finally. In essence, the exception handling mechanism allows your program to
perform a nonlocal branch. Since exception handling is a large topic, it is discussed
in its own chapter, Chapter 10.

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a
statement sequence in a switch statement. Second, it can be used to exit a loop. Third,
it can be used as a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the
conditional expression and any remaining code in the body of the loop. When a break
statement is encountered inside a loop, the loop is terminated and program control
resumes at the next statement following the loop. Here is a simple example:

// Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

for(int i=0; i<100; i++) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

This program generates the following output:

i: 0
i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
i: 7
i: 8

120 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 121
TH

E
JA

V
A

LA
N

G
U

A
G

E

i: 9
Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break
statement causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, here is the preceding program coded by use of a while
loop. The output from this program is the same as just shown.

// Using break to exit a while loop.

class BreakLoop2 {

public static void main(String args[]) {

int i = 0;

while(i < 100) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

i++;

}

System.out.println("Loop complete.");

}

}

When used inside a set of nested loops, the break statement will only break out of
the innermost loop. For example:

// Using break with nested loops.

class BreakLoop3 {

public static void main(String args[]) {

for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for(int j=0; j<100; j++) {

if(j == 10) break; // terminate loop if j is 10

System.out.print(j + " ");

}

System.out.println();

}

System.out.println("Loops complete.");

}

}

122 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9
Pass 1: 0 1 2 3 4 5 6 7 8 9
Pass 2: 0 1 2 3 4 5 6 7 8 9
Loops complete.

As you can see, the break statement in the inner loop only causes termination of that
loop. The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break
statement may appear in a loop. However, be careful. Too many break statements have
the tendency to destructure your code. Second, the break that terminates a switch
statement affects only that switch statement and not any enclosing loops.

break was not designed to provide the normal means by which a loop is terminated. The
loop’s conditional expression serves this purpose. The break statement should be used to
cancel a loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also
be employed by itself to provide a “civilized” form of the goto statement. Java does
not have a goto statement, because it provides a way to branch in an arbitrary and
unstructured manner. This usually makes goto-ridden code hard to understand and
hard to maintain. It also prohibits certain compiler optimizations. There are, however,
a few places where the goto is a valuable and legitimate construct for flow control. For
example, the goto can be useful when you are exiting from a deeply nested set of loops.
To handle such situations, Java defines an expanded form of the break statement. By
using this form of break, you can break out of one or more blocks of code. These blocks
need not be part of a loop or a switch. They can be any block. Further, you can specify
precisely where execution will resume, because this form of break works with a label.
As you will see, break gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:

break label;

Here, label is the name of a label that identifies a block of code. When this form of break
executes, control is transferred out of the named block of code. The labeled block of
code must enclose the break statement, but it does not need to be the immediately
enclosing block. This means that you can use a labeled break statement to exit from a
set of nested blocks. But you cannot use break to transfer control to a block of code that
does not enclose the break statement.

To name a block, put a label at the start of it. A label is any valid Java identifier
followed by a colon. Once you have labeled a block, you can then use this label as the
target of a break statement. Doing so causes execution to resume at the end of the labeled
block. For example, the following program shows three nested blocks, each with its
own label. The break statement causes execution to jump forward, past the end of the
block labeled second, skipping the two println() statements.

// Using break as a civilized form of goto.

class Break {

public static void main(String args[]) {

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested
loops. For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops

class BreakLoop4 {

public static void main(String args[]) {

outer: for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for(int j=0; j<100; j++) {

if(j == 10) break outer; // exit both loops

System.out.print(j + " ");

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 123
TH

E
JA

V
A

LA
N

G
U

A
G

E

124 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

System.out.println("This will not print");

}

System.out.println("Loops complete.");

}

}

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been
terminated.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.

class BreakErr {

public static void main(String args[]) {

one: for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

}

for(int j=0; j<100; j++) {

if(j == 10) break one; // WRONG

System.out.print(j + " ");

}

}

}

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control to that block.

Using continue
Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop, but stop processing the remainder of the code in its body
for this particular iteration. This is, in effect, a goto just past the body of the loop, to the
loop’s end. The continue statement performs such an action. In while and do-while
loops, a continue statement causes control to be transferred directly to the conditional
expression that controls the loop. In a for loop, control goes first to the iteration portion

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 125
TH

E
JA

V
A

LA
N

G
U

A
G

E

of the for statement and then to the conditional expression. For all three loops, any
intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed
on each line:

// Demonstrate continue.

class Continue {

public static void main(String args[]) {

for(int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println("");

}

}

}

This code uses the % operator to check if i is even. If it is, the loop continues without
printing a newline. Here is the output from this program:

0 1
2 3
4 5
6 7
8 9

As with the break statement, continue may specify a label to describe which
enclosing loop to continue. Here is an example program that uses continue to print
a triangular multiplication table for 0 through 9.

// Using continue with a label.

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {

for(int j=0; j<10; j++) {

if(j > i) {

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

126 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The continue statement in this example terminates the loop counting j and continues
with the next iteration of the loop counting i. Here is the output of this program:

0
0 1
0 2 4
0 3 6 9
0 4 8 12 16
0 5 10 15 20 25
0 6 12 18 24 30 36
0 7 14 21 28 35 42 49
0 8 16 24 32 40 48 56 64
0 9 18 27 36 45 54 63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in
which early iteration is needed, the continue statement provides a structured way to
accomplish it.

return
The last control statement is return. The return statement is used to explicitly return
from a method. That is, it causes program control to transfer back to the caller of the
method. As such, it is categorized as a jump statement. Although a full discussion of
return must wait until methods are discussed in Chapter 7, a brief look at return is
presented here.

At any time in a method the return statement can be used to cause execution to
branch back to the caller of the method. Thus, the return statement immediately terminates
the method in which it is executed. The following example illustrates this point. Here,
return causes execution to return to the Java run-time system, since it is the run-time
system that calls main().

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

The output from this program is shown here:

Before the return.

As you can see, the final println() statement is not executed. As soon as return is
executed, control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it,
the Java compiler would flag an “unreachable code” error, because the compiler would
know that the last println() statement would never be executed. To prevent this error,
the if statement is used here to trick the compiler for the sake of this demonstration.

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 127
TH

E
JA

V
A

LA
N

G
U

A
G

E

This page intentionally left blank.

Chapter 6
Introducing Classes

129

130 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The class is at the core of Java. It is the logical construct upon which the entire Java
language is built because it defines the shape and nature of an object. As such,
the class forms the basis for object-oriented programming in Java. Any concept

you wish to implement in a Java program must be encapsulated within a class.
Because the class is so fundamental to Java, this and the next few chapters will be

devoted to it. Here, you will be introduced to the basic elements of a class and learn
how a class can be used to create objects. You will also learn about methods, constructors,
and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the
most rudimentary form of a class has been used. The classes created in the preceding
chapters primarily exist simply to encapsulate the main() method, which has been used
to demonstrate the basics of the Java syntax. As you will see, classes are substantially
more powerful than the limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a
new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object is an instance of a class. Because an
object is an instance of a class, you will often see the two words object and instance used
interchangeably.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will
see, a class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up
to this point are actually very limited examples of its complete form. Classes can (and
usually do) get much more complex. The general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;

type methodname1(parameter-list) {
// body of method

}
type methodname2(parameter-list) {

// body of method

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 131
TH

E
JA

V
A

LA
N

G
U

A
G

E

}
// ...

type methodnameN(parameter-list) {
// body of method

}
}

The data, or variables, defined within a class are called instance variables. The code
is contained within methods. Collectively, the methods and variables defined within
a class are called members of the class. In most classes, the instance variables are acted
upon and accessed by the methods defined for that class. Thus, it is the methods that
determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance
of the class (that is, each object of the class) contains its own copy of these variables.
Thus, the data for one object is separate and unique from the data for another. We
will come back to this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus
far. However, most methods will not be specified as static or public. Notice that the
general form of a class does not specify a main() method. Java classes do not need to
have a main() method. You only specify one if that class is the starting point for your
program. Further, applets don’t require a main() method at all.

C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes
for very large .java files, since any class must be entirely defined in a single source file.
This design feature was built into Java because it was felt that in the long run, having
specification, declaration, and implementation all in one place makes for code that is
easier to maintain.

A Simple Class
Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {

double width;

double height;

double depth;

}

As stated, a class defines a new type of data. In this case, the new data type is called
Box. You will use this name to declare objects of type Box. It is important to remember

that a class declaration only creates a template; it does not create an actual object. Thus,
the preceding code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Again, each time you create an instance of a class, you are creating an object that
contains its own copy of each instance variable defined by the class. Thus, every Box
object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name
of the object with the name of an instance variable. For example, to assign the width
variable of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within
the mybox object the value of 100. In general, you use the dot operator to access both
the instance variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java

*/

class Box {

double width;

double height;

double depth;

}

// This class declares an object of type Box.

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box();

double vol;

// assign values to mybox's instance variables

mybox.width = 10;

132 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

mybox.height = 20;

mybox.depth = 15;

// compute volume of box

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this
program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is
not necessary for both the Box and the BoxDemo class to actually be in the same source
file. You could put each class in its own file, called Box.java and BoxDemo.java,
respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see
the following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This
means that if you have two Box objects, each has its own copy of depth, width, and
height. It is important to understand that changes to the instance variables of one
object have no effect on the instance variables of another. For example, the following
program declares two Box objects:

// This program declares two Box objects.

class Box {

double width;

double height;

double depth;

}

class BoxDemo2 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 133
TH

E
JA

V
A

LA
N

G
U

A
G

E

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box

vol = mybox1.width * mybox1.height * mybox1.depth;

System.out.println("Volume is " + vol);

// compute volume of second box

vol = mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume is " + vol);

}

}

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained
in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can
use this type to declare objects of that type. However, obtaining objects of a class is a
two-step process. First, you must declare a variable of the class type. This variable does
not define an object. Instead, it is simply a variable that can refer to an object. Second,
you must acquire an actual, physical copy of the object and assign it to that variable. You
can do this using the new operator. The new operator dynamically allocates (that
is, allocates at run time) memory for an object and returns a reference to it. This
reference is, more or less, the address in memory of the object allocated by new.

134 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This reference is then stored in the variable. Thus, in Java, all class objects must be
dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare
an object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line
executes, mybox contains the value null, which indicates that it does not yet point to
an actual object. Any attempt to use mybox at this point will result in a compile-time
error. The next line allocates an actual object and assigns a reference to it to mybox.
After the second line executes, you can use mybox as if it were a Box object. But in
reality, mybox simply holds the memory address of the actual Box object. The effect
of these two lines of code is depicted in Figure 6-1.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 135
TH

E
JA

V
A

LA
N

G
U

A
G

E

Figure 6-1. Declaring an object of type Box

Those readers familiar with C/C++ have probably noticed that object references appear
to be similar to pointers. This suspicion is, essentially, correct. An object reference is
similar to a memory pointer. The main difference—and the key to Java’s safety—is that
you cannot manipulate references as you can actual pointers. Thus, you cannot cause an
object reference to point to an arbitrary memory location or manipulate it like an integer.

A Closer Look at new
As just explained, the new operator dynamically allocates memory for an object. It has
this general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the name of
the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class
is created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their
class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such
things as integers or characters. The answer is that Java’s simple types are not implemented
as objects. Rather, they are implemented as “normal” variables. This is done in the interest
of efficiency. As you will see, objects have many features and attributes that require Java
to treat them differently than it treats the simple types. By not applying the same overhead
to the simple types that applies to objects, Java can implement the simple types more
efficiently. Later, you will see object versions of the simple types that are available for
your use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run
time. The advantage of this approach is that your program can create as many or as
few objects as it needs during the execution of your program. However, since memory
is finite, it is possible that new will not be able to allocate memory for an object because
insufficient memory exists. If this happens, a run-time exception will occur. (You will
learn how to handle this and other exceptions in Chapter 10.) For the sample programs
in this book, you won’t need to worry about running out of memory, but you will need
to consider this possibility in real-world programs that you write.

Let’s once again review the distinction between a class and an object. A class creates
a new data type that can be used to create objects. That is, a class creates a logical
framework that defines the relationship between its members. When you declare an
object of a class, you are creating an instance of that class. Thus, a class is a logical
construct. An object has physical reality. (That is, an object occupies space in memory.)
It is important to keep this distinction clearly in mind.

136 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment
takes place. For example, what do you think the following fragment does?

Box b1 = new Box();

Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred
to by b1. That is, you might think that b1 and b2 refer to separate and distinct objects.
However, this would be wrong. Instead, after this fragment executes, b1 and b2 will
both refer to the same object. The assignment of b1 to b2 did not allocate any memory
or copy any part of the original object. It simply makes b2 refer to the same object as
does b1. Thus, any changes made to the object through b2 will affect the object to
which b1 is referring, since they are the same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other
way. For example, a subsequent assignment to b1 will simply unhook b1 from the
original object without affecting the object or affecting b2. For example:

Box b1 = new Box();

Box b2 = b1;

// ...

b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

When you assign one object reference variable to another object reference variable, you
are not creating a copy of the object, you are only making a copy of the reference.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 137
TH

E
JA

V
A

LA
N

G
U

A
G

E

138 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things:
instance variables and methods. The topic of methods is a large one because Java gives
them so much power and flexibility. In fact, much of the next chapter is devoted to
methods. However, there are some fundamentals that you need to learn now so that
you can begin to add methods to your classes.

This is the general form of a method:

type name(parameter-list) {
// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return
type must be void. The name of the method is specified by name. This can be any legal
identifier other than those already used by other items within the current scope. The
parameter-list is a sequence of type and identifier pairs separated by commas. Parameters
are essentially variables that receive the value of the arguments passed to the method when
it is called. If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods,

including those that take parameters and those that return values.

Adding a Method to the Box Class
Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time you will use methods to access the instance variables defined by the class.
In fact, methods define the interface to most classes. This allows the class implementor
to hide the specific layout of internal data structures behind cleaner method abstractions.
In addition to defining methods that provide access to data, you can also define methods
that are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you
while looking at the preceding programs that the computation of a box’s volume was
something that was best handled by the Box class rather than the BoxDemo class. After

all, since the volume of a box is dependent upon the size of the box, it makes sense to
have the Box class compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {

double width;

double height;

double depth;

// display volume of a box

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo3 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box

mybox1.volume();

// display volume of second box

mybox2.volume();

}

}

This program generates the following output, which is the same as the previous version.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 139
TH

E
JA

V
A

LA
N

G
U

A
G

E

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();

mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator.
Thus, the call to mybox1.volume() displays the volume of the box defined by mybox1,
and the call to mybox2.volume() displays the volume of the box defined by mybox2.
Each time volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion
will help clear things up. When mybox1.volume() is executed, the Java run-time system
transfers control to the code defined inside volume(). After the statements inside
volume() have executed, control is returned to the calling routine, and execution
resumes with the line of code following the call. In the most general sense, a method
is Java’s way of implementing subroutines.

There is something very important to notice inside the volume() method: the
instance variables width, height, and depth are referred to directly, without preceding
them with an object name or the dot operator. When a method uses an instance variable
that is defined by its class, it does so directly, without explicit reference to an object and
without use of the dot operator. This is easy to understand if you think about it. A method
is always invoked relative to some object of its class. Once this invocation has occurred,
the object is known. Thus, within a method, there is no need to specify the object a second
time. This means that width, height, and depth inside volume() implicitly refer to the
copies of those variables found in the object that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the
class in which that instance variable is defined, it must be done through an object, by
use of the dot operator. However, when an instance variable is accessed by code that is
part of the same class as the instance variable, that variable can be referred to directly.
The same thing applies to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what
if another part of your program wanted to know the volume of a box, but not display
its value? A better way to implement volume() is to have it compute the volume of the
box and return the result to the caller. The following example, an improved version of
the preceding program, does just that:

140 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 141
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Now, volume() returns the volume of a box.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo4 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

142 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned
by volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

■ The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

■ The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently
because there is actually no need for the vol variable. The call to volume() could have
been used in the println() statement directly, as shown here:

System.out.println("Volume is " + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically
and its value will be passed to println().

Adding a Method That Takes Parameters
While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or
be used in a number of slightly different situations. To illustrate this point, let’s use
a very simple example. Here is a method that returns the square of the number 10:

int square()

{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very
limited. However, if you modify the method so that it takes a parameter, as shown
next, then you can make square() much more useful.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 143
TH

E
JA

V
A

LA
N

G
U

A
G

E

int square(int i)

{

return i * i;

}

Now, square() will return the square of whatever value it is called with. That is,
square() is now a general-purpose method that can compute the square of any integer
value, rather than just 10.

Here is an example:

int x, y;

x = square(5); // x equals 25

x = square(9); // x equals 81

y = 2;

x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second
call, i will receive the value 9. The third invocation passes the value of y, which is 2 in
this example. As these examples show, square() is able to return the square of whatever
data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter
is a variable defined by a method that receives a value when the method is called.
For example, in square(), i is a parameter. An argument is a value that is passed to
a method when it is invoked. For example, square(100) passes 100 as an argument.
Inside square(), the parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence
of statements, such as:

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed
Java programs, instance variables should be accessed only through methods defined by
their class. In the future, you can change the behavior of a method, but you can’t change
the behavior of an exposed instance variable.

144 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Thus, a better approach to setting the dimensions of a box is to create a method
that takes the dimension of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

// sets dimensions of box

void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

}

class BoxDemo5 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// initialize each box

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you,
then you might want to take some time to experiment before moving on. The concepts
of the method invocation, parameters, and return values are fundamental to Java
programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of
a constructor.

A constructor initializes an object immediately upon creation. It has the same name
as the class in which it resides and is syntactically similar to a method. Once defined,
the constructor is automatically called immediately after the object is created, before the
new operator completes. Constructors look a little strange because they have no return
type, not even void. This is because the implicit return type of a class’ constructor is the
class type itself. It is the constructor’s job to initialize the internal state of an object so
that the code creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each
box to the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the

dimensions of a box.

*/

class Box {

double width;

double height;

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 145
TH

E
JA

V
A

LA
N

G
U

A
G

E

double depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

146 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor
when they were created. Since the constructor gives all boxes the same dimensions,
10 by 10 by 10, both mybox1 and mybox2 will have the same volume. The println()
statement inside Box() is for the sake of illustration only. Most constructors will not
display anything. They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you
allocate an object, you use the following general form:

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding
line of code worked in earlier versions of Box that did not define a constructor. The
default constructor automatically initializes all instance variables to zero. The default
constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor
is no longer used.

Parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object, it
is not very useful—all boxes have the same dimensions. What is needed is a way to
construct Box objects of various dimensions. The easy solution is to add parameters
to the constructor. As you can probably guess, this makes them much more useful. For
example, the following version of Box defines a parameterized constructor which sets
the dimensions of a box as specified by those parameters. Pay special attention to how
Box objects are created.

/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 147
TH

E
JA

V
A

LA
N

G
U

A
G

E

148 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its
constructor. For example, in the following line,

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 149
TH

E
JA

V
A

LA
N

G
U

A
G

E

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the
object. Thus, mybox1’s copy of width, height, and depth will contain the values 10,
20, and 15, respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You
can use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box(double w, double h, double d) {

this.width = w;

this.height = h;

this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While
it is redundant in this case, this is useful in other contexts, one of which is explained in
the next section.

Instance Variable Hiding
As you know, it is illegal in Java to declare two local variables with the same name
inside the same or enclosing scopes. Interestingly, you can have local variables,
including formal parameters to methods, which overlap with the names of the class’
instance variables. However, when a local variable has the same name as an instance
variable, the local variable hides the instance variable. This is why width, height, and
depth were not used as the names of the parameters to the Box() constructor inside the
Box class. If they had been, then width would have referred to the formal parameter,
hiding the instance variable width. While it is usually easier to simply use different
names, there is another way around this situation. Because this lets you refer directly
to the object, you can use it to resolve any name space collisions that might occur
between instance variables and local variables. For example, here is another version of

Box(), which uses width, height, and depth for parameter names and then uses this to
access the instance variables by the same name:

// Use this to resolve name-space collisions.

Box(double width, double height, double depth) {

this.width = width;

this.height = height;

this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing,
and some programmers are careful not to use local variables and formal parameter
names that hide instance variables. Of course, other programmers believe the contrary—
that it is a good convention to use the same names for clarity, and use this to overcome
the instance variable hiding. It is a matter of taste which approach you adopt.

Although this is of no significant value in the examples just shown, it is very useful
in certain situations.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later
reallocation. In some languages, such as C++, dynamically allocated objects must
be manually released by use of a delete operator. Java takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is
called garbage collection. It works like this: when no references to an object exist, that
object is assumed to be no longer needed, and the memory occupied by the object can
be reclaimed. There is no explicit need to destroy objects as in C++. Garbage collection
only occurs sporadically (if at all) during the execution of your program. It will not
occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage
collection, but for the most part, you should not have to think about it while writing
your programs.

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For
example, if an object is holding some non-Java resource such as a file handle or
window character font, then you might want to make sure these resources are freed
before an object is destroyed. To handle such situations, Java provides a mechanism

150 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 151
TH

E
JA

V
A

LA
N

G
U

A
G

E

called finalization. By using finalization, you can define specific actions that will occur
when an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run
time calls that method whenever it is about to recycle an object of that class. Inside the
finalize() method you will specify those actions that must be performed before an
object is destroyed. The garbage collector runs periodically, checking for objects that
are no longer referenced by any running state or indirectly through other referenced
objects. Right before an asset is freed, the Java run time calls the finalize() method on
the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class. This and the other access specifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage
collection. It is not called when an object goes out-of-scope, for example. This means
that you cannot know when—or even if—finalize() will be executed. Therefore, your
program should provide other means of releasing system resources, etc., used by the
object. It must not rely on finalize() for normal program operation.

If you are familiar with C++, then you know that C++ allows you to define a destructor
for a class, which is called when an object goes out-of-scope. Java does not support this
idea or provide for destructors. The finalize() method only approximates the function
of a destructor. As you get more experienced with Java, you will see that the need for
destructor functions is minimal because of Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little
practical value. To show the real power of classes, this chapter will conclude with
a more sophisticated example. As you recall from the discussion of object-oriented
programming (OOP) presented in Chapter 2, one of OOP’s most important benefits
is the encapsulation of data and the code that manipulates that data. As you have seen,
the class is the mechanism by which encapsulation is achieved in Java. By creating
a class, you are creating a new data type that defines both the nature of the data being
manipulated and the routines used to manipulate it. Further, the methods define a
consistent and controlled interface to the class’ data. Thus, you can use the class
through its methods without having to worry about the details of its implementation

or how the data is actually managed within the class. In a sense, a class is like a “data
engine.” No knowledge of what goes on inside the engine is required to use the engine
through its controls. In fact, since the details are hidden, its inner workings can be
changed as needed. As long as your code uses the class through its methods, internal
details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down
on the table is the last plate to be used. Stacks are controlled through two operations
traditionally called push and pop. To put an item on top of the stack, you will use push.
To take an item off the stack, you will use pop. As you will see, it is easy to encapsulate
the entire stack mechanism.

Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.

class Stack {

int stck[] = new int[10];

int tos;

// Initialize top-of-stack

Stack() {

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==9)

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

152 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 153
TH

E
JA

V
A

LA
N

G
U

A
G

E

As you can see, the Stack class defines two data items and three methods. The stack
of integers is held by the array stck. This array is indexed by the variable tos, which
always contains the index of the top of the stack. The Stack() constructor initializes
tos to –1, which indicates an empty stack. The method push() puts an item on the
stack. To retrieve an item, call pop(). Since access to the stack is through push() and
pop(), the fact that the stack is held in an array is actually not relevant to using the
stack. For example, the stack could be held in a more complicated data structure, such
as a linked list, yet the interface defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two
integer stacks, pushes some values onto each, and then pops them off.

class TestStack {

public static void main(String args[]) {

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

// push some numbers onto the stack

for(int i=0; i<10; i++) mystack1.push(i);

for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

}

}

This program generates the following output:

Stack in mystack1:
9
8
7
6
5
4
3
2

1
0
Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.
One last point about the Stack class. As it is currently implemented, it is possible

for the array that holds the stack, stck, to be altered by code outside of the Stack class.
This leaves Stack open to misuse or mischief. In the next chapter, you will see how to
remedy this situation.

154 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 7
A Closer Look at
Methods and Classes

155

This chapter continues the discussion of methods and classes begun in the
preceding chapter. It examines several topics relating to methods, including
overloading, parameter passing, and recursion. The chapter then returns to the

class, discussing access control, the use of the keyword static, and one of Java’s most
important built-in classes: String.

Overloading Methods
In Java it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different. When this is
the case, the methods are said to be overloaded, and the process is referred to as
method overloading. Method overloading is one of the ways that Java implements
polymorphism. If you have never used a language that allows the overloading
of methods, then the concept may seem strange at first. But as you will see, method
overloading is one of Java’s most exciting and useful features.

When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method to
actually call. Thus, overloaded methods must differ in the type and/or number of
their parameters. While overloaded methods may have different return types, the
return type alone is insufficient to distinguish two versions of a method. When Java
encounters a call to an overloaded method, it simply executes the version of the
method whose parameters match the arguments used in the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

156 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters
a: 10
a and b: 10 20
double a: 123.25
Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns
a value is of no consequence relative to overloading, since return types do not play a role
in overload resolution.

When an overloaded method is called, Java looks for a match between the
arguments used to call the method and the method’s parameters. However, this match
need not always be exact. In some cases Java’s automatic type conversions can play a
role in overload resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.

class OverloadDemo {

void test() {

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 157
TH

E
JA

V
A

LA
N

G
U

A
G

E

158 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("No parameters");

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

void test(double a) {

System.out.println("Inside test(double) a: " + a);

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

int i = 88;

ob.test();

ob.test(10, 20);

ob.test(i); // this will invoke test(double)

ob.test(123.2); // this will invoke test(double)

}

}

This program generates the following output:

No parameters
a and b: 10 20
Inside test(double) a: 88
Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore,
when test() is called with an integer argument inside Overload, no matching method
is found. However, Java can automatically convert an integer into a double, and this
conversion can be used to resolve the call. Therefore, after test(int) is not found, Java
elevates i to double and then calls test(double). Of course, if test(int) had been defined,

it would have been called instead. Java will employ its automatic type conversions only
if no exact match is found.

Method overloading supports polymorphism because it is one way that Java
implements the “one interface, multiple methods” paradigm. To understand how,
consider the following. In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to
implement essentially the same method for different types of data. Consider the
absolute value function. In languages that do not support overloading, there are
usually three or more versions of this function, each with a slightly different name.
For instance, in C, the function abs() returns the absolute value of an integer, labs()
returns the absolute value of a long integer, and fabs() returns the absolute value of a
floating-point value. Since C does not support overloading, each function has to have
its own name, even though all three functions do essentially the same thing. This
makes the situation more complex, conceptually, than it actually is. Although the
underlying concept of each function is the same, you still have three names to
remember. This situation does not occur in Java, because each absolute value method
can use the same name. Indeed, Java’s standard class library includes an absolute value
method, called abs(). This method is overloaded by Java’s Math class to handle all
numeric types. Java determines which version of abs() to call based upon the type of
argument.

The value of overloading is that it allows related methods to be accessed by use
of a common name. Thus, the name abs represents the general action which is being
performed. It is left to the compiler to choose the right specific version for a particular
circumstance. You, the programmer, need only remember the general operation being
performed. Through the application of polymorphism, several names have been
reduced to one. Although this example is fairly simple, if you expand the concept,
you can see how overloading can help you manage greater complexity.

When you overload a method, each version of that method can perform any
activity you desire. There is no rule stating that overloaded methods must relate to
one another. However, from a stylistic point of view, method overloading implies a
relationship. Thus, while you can use the same name to overload unrelated methods,
you should not. For example, you could use the name sqr to create methods that return
the square of an integer and the square root of a floating-point value. But these two
operations are fundamentally different. Applying method overloading in this manner
defeats its original purpose. In practice, you should only overload closely related
operations.

Overloading Constructors
In addition to overloading normal methods, you can also overload constructor
methods. In fact, for most real-world classes that you create, overloaded constructors
will be the norm, not the exception. To understand why, let’s return to the Box class
developed in the preceding chapter. Following is the latest version of Box:

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 159
TH

E
JA

V
A

LA
N

G
U

A
G

E

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

As you can see, the Box() constructor requires three parameters. This means that
all declarations of Box objects must pass three arguments to the Box() constructor. For
example, the following statement is currently invalid:

Box ob = new Box();

Since Box() requires three arguments, it’s an error to call it without them. This
raises some important questions. What if you simply wanted a box and did not care (or
know) what its initial dimensions were? Or, what if you want to be able to initialize a
cube by specifying only one value that would be used for all three dimensions? As the
Box class is currently written, these other options are not available to you.

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that
contains an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize

the dimensions of a box various ways.

*/

class Box {

double width;

double height;

double depth;

160 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 161
TH

E
JA

V
A

LA
N

G
U

A
G

E

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

Using Objects as Parameters
So far we have only been using simple types as parameters to methods. However, it is
both correct and common to pass objects to methods. For example, consider the following
short program:

// Objects may be passed to methods.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// return true if o is equal to the invoking object

boolean equals(Test o) {

if(o.a == a && o.b == b) return true;

else return false;

}

}

class PassOb {

public static void main(String args[]) {

162 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println("ob1 == ob2: " + ob1.equals(ob2));

System.out.println("ob1 == ob3: " + ob1.equals(ob3));

}

}

This program generates the following output:

ob1 == ob2: true
ob1 == ob3: false

As you can see, the equals() method inside Test compares two objects for equality
and returns the result. That is, it compares the invoking object with the one that it is
passed. If they contain the same values, then the method returns true. Otherwise,
it returns false. Notice that the parameter o in equals() specifies Test as its type.
Although Test is a class type created by the program, it is used in just the same way
as Java’s built-in types.

One of the most common uses of object parameters involves constructors.
Frequently you will want to construct a new object so that it is initially the same as
some existing object. To do this, you must define a constructor that takes an object of its
class as a parameter. For example, the following version of Box allows one object to
initialize another:

// Here, Box allows one object to initialize another.

class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 163
TH

E
JA

V
A

LA
N

G
U

A
G

E

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons2 {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

Box myclone = new Box(mybox1);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

164 J a v a ™ 2 . 0 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of cube is " + vol);

// get volume of clone

vol = myclone.volume();

System.out.println("Volume of clone is " + vol);

}

}

As you will see when you begin to create your own classes, providing many forms
of constructor methods is usually required to allow objects to be constructed in a
convenient and efficient manner.

A Closer Look at Argument Passing
In general, there are two ways that a computer language can pass an argument to a
subroutine. The first way is call-by-value. This method copies the value of an argument
into the formal parameter of the subroutine. Therefore, changes made to the parameter
of the subroutine have no effect on the argument. The second way an argument can be
passed is call-by-reference. In this method, a reference to an argument (not the value of
the argument) is passed to the parameter. Inside the subroutine, this reference is used
to access the actual argument specified in the call. This means that changes made to the
parameter will affect the argument used to call the subroutine. As you will see, Java
uses both approaches, depending upon what is passed.

In Java, when you pass a simple type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the method.
For example, consider the following program:

// Simple types are passed by value.

class Test {

void meth(int i, int j) {

i *= 2;

j /= 2;

}

}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 165

class CallByValue {

public static void main(String args[]) {

Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +

a + " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +

a + " " + b);

}

}

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values
of a and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because
objects are passed by reference. Keep in mind that when you create a variable of a class
type, you are only creating a reference to an object. Thus, when you pass this reference
to a method, the parameter that receives it will refer to the same object as that referred
to by the argument. This effectively means that objects are passed to methods by use of
call-by-reference. Changes to the object inside the method do affect the object used as
an argument. For example, consider the following program:

// Objects are passed by reference.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

166 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// pass an object

void meth(Test o) {

o.a *= 2;

o.b /= 2;

}

}

class CallByRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +

ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +

ob.a + " " + ob.b);

}

}

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used
as an argument.

As a point of interest, when an object reference is passed to a method, the reference
itself is passed by use of call-by-value. However, since the value being passed refers to
an object, the copy of that value will still refer to the same object that its corresponding
argument does.

When a simple type is passed to a method, it is done by use of call-by-value. Objects are
passed by use of call-by-reference.

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 167
TH

E
JA

V
A

LA
N

G
U

A
G

E

168 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Returning Objects
A method can return any type of data, including class types that you create. For
example, in the following program, the incrByTen() method returns an object in
which the value of a is ten greater than it is in the invoking object.

// Returning an object.

class Test {

int a;

Test(int i) {

a = i;

}

Test incrByTen() {

Test temp = new Test(a+10);

return temp;

}

}

class RetOb {

public static void main(String args[]) {

Test ob1 = new Test(2);

Test ob2;

ob2 = ob1.incrByTen();

System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen();

System.out.println("ob2.a after second increase: "

+ ob2.a);

}

}

The output generated by this program is shown here:

ob1.a: 2
ob2.a: 12
ob2.a after second increase: 22

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 169
TH

E
JA

V
A

LA
N

G
U

A
G

E

As you can see, each time incrByTen() is invoked, a new object is created, and a
reference to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are
dynamically allocated using new, you don’t need to worry about an object going
out-of-scope because the method in which it was created terminates. The object will
continue to exist as long as there is a reference to it somewhere in your program.
When there are no references to it, the object will be reclaimed the next time garbage
collection takes place.

Recursion
Java supports recursion. Recursion is the process of defining something in terms of
itself. As it relates to Java programming, recursion is the attribute that allows a method
to call itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed by
use of a recursive method:

// A simple example of recursion.

class Factorial {

// this is a recursive function

int fact(int n) {

int result;

if(n==1) return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}

}

170 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may
seem a bit confusing. Here is how it works. When fact() is called with an argument of
1, the function returns 1; otherwise it returns the product of fact(n–1)*n. To evaluate
this expression, fact() is called with n–1. This process repeats until n equals 1 and the
calls to the method begin returning.

To better understand how the fact() method works, let’s go through a short
example. When you compute the factorial of 3, the first call to fact() will cause a
second call to be made with an argument of 2. This invocation will cause fact() to
be called a third time with an argument of 1. This call will return 1, which is then
multiplied by 2 (the value of n in the second invocation). This result (which is 2) is
then returned to the original invocation of fact() and multiplied by 3 (the original
value of n). This yields the answer, 6. You might find it interesting to insert println()
statements into fact() which will show at what level each call is and what the
intermediate answers are.

When a method calls itself, new local variables and parameters are allocated
storage on the stack, and the method code is executed with these new variables
from the start. A recursive call does not make a new copy of the method. Only
the arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack, and execution resumes at the point of the
call inside the method. Recursive methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the
iterative equivalent because of the added overhead of the additional function calls.
Many recursive calls to a method could cause a stack overrun. Because storage for
parameters and local variables is on the stack and each new call creates a new copy of
these variables, it is possible that the stack could be exhausted. If this occurs, the Java
run-time system will cause an exception. However, you probably will not have to
worry about this unless a recursive routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer
and simpler versions of several algorithms than can their iterative relatives. For
example, the QuickSort sorting algorithm is quite difficult to implement in an iterative
way. Some problems, especially AI-related ones, seem to lend themselves to recursive
solutions. Finally, some people seem to think recursively more easily than iteratively.

When writing recursive methods, you must have an if statement somewhere to
force the method to return without the recursive call being executed. If you don’t do
this, once you call the method, it will never return. This is a very common error in
working with recursion. Use println() statements liberally during development so that

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 171
TH

E
JA

V
A

LA
N

G
U

A
G

E

you can watch what is going on and abort execution if you see that you have made
a mistake.

Here is one more example of recursion. The recursive method printArray() prints
the first i elements in the array values.

// Another example that uses recursion.

class RecTest {

int values[];

RecTest(int i) {

values = new int[i];

}

// display array -- recursively

void printArray(int i) {

if(i==0) return;

else printArray(i-1);

System.out.println("[" + (i-1) + "] " + values[i-1]);

}

}

class Recursion2 {

public static void main(String args[]) {

RecTest ob = new RecTest(10);

int i;

for(i=0; i<10; i++) ob.values[i] = i;

ob.printArray(10);

}

}

This program generates the following output:

[0] 0
[1] 1
[2] 2
[3] 3
[4] 4
[5] 5
[6] 6

[7] 7
[8] 8
[9] 9

Introducing Access Control
As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through
encapsulation, you can control what parts of a program can access the members of a
class. By controlling access, you can prevent misuse. For example, allowing access to
data only through a well-defined set of methods, you can prevent the misuse of that
data. Thus, when correctly implemented, a class creates a “black box” which may be
used, but the inner workings of which are not open to tampering. However, the classes
that were presented earlier do not completely meet this goal. For example, consider the
Stack class shown at the end of Chapter 6. While it is true that the methods push() and
pop() do provide a controlled interface to the stack, this interface is not enforced. That
is, it is possible for another part of the program to bypass these methods and access the
stack directly. Of course, in the wrong hands, this could lead to trouble. In this section
you will be introduced to the mechanism by which you can precisely control access to
the various members of a class.

How a member can be accessed is determined by the access specifier that modifies its
declaration. Java supplies a rich set of access specifiers. Some aspects of access control
are related mostly to inheritance or packages. (A package is, essentially, a grouping of
classes.) These parts of Java’s access control mechanism will be discussed later. Here,
let’s begin by examining access control as it applies to a single class. Once you
understand the fundamentals of access control, the rest will be easy.

Java’s access specifiers are public, private, and protected. Java also defines a
default access level. protected applies only when inheritance is involved. The other
access specifiers are described next.

Let’s begin by defining public and private. When a member of a class is modified
by the public specifier, then that member can be accessed by any other code. When a
member of a class is specified as private, then that member can only be accessed by
other members of its class. Now you can understand why main() has always been
preceded by the public specifier. It is called by code that is outside the program—that
is, by the Java run-time system. When no access specifier is used, then by default the
member of a class is public within its own package, but cannot be accessed outside of
its package. (Packages are discussed in the following chapter.)

In the classes developed so far, all members of a class have used the default access
mode, which is essentially public. However, this is not what you will typically want
to be the case. Usually, you will want to restrict access to the data members of a
class—allowing access only through methods. Also, there will be times when you
will want to define methods which are private to a class.

172 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

An access specifier precedes the rest of a member’s type specification. That is, it
must begin a member’s declaration statement. Here is an example:

public int i;

private double j;

private int myMethod(int a, char b) { // ...

To understand the effects of public and private access, consider the following
program:

/* This program demonstrates the difference between

public and private.

*/

class Test {

int a; // default access

public int b; // public access

private int c; // private access

// methods to access c

void setc(int i) { // set c's value

c = i;

}

int getc() { // get c's value

return c;

}

}

class AccessTest {

public static void main(String args[]) {

Test ob = new Test();

// These are OK, a and b may be accessed directly

ob.a = 10;

ob.b = 20;

// This is not OK and will cause an error

// ob.c = 100; // Error!

// You must access c through its methods

ob.setc(100); // OK

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 173
TH

E
JA

V
A

LA
N

G
U

A
G

E

System.out.println("a, b, and c: " + ob.a + " " +

ob.b + " " + ob.getc());

}

}

As you can see, inside the Test class, a uses default access, which for this example
is the same as specifying public. b is explicitly specified as public. Member c is given

private access. This means that it cannot be accessed by code outside of its class. So,
inside the AccessTest class, c cannot be used directly. It must be accessed through its
public methods: setc() and getc(). If you were to remove the comment symbol from
the beginning of the following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the

following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.

class Stack {

/* Now, both stck and tos are private. This means

that they cannot be accidentally or maliciously

altered in a way that would be harmful to the stack.

*/

private int stck[] = new int[10];

private int tos;

// Initialize top-of-stack

Stack() {

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==9)

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

174 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 175
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

As you can see, now both stck, which holds the stack, and tos, which is the index of
the top of the stack, are specified as private. This means that they cannot be accessed or
altered except through push() and pop(). Making tos private, for example, prevents
other parts of your program from inadvertently setting it to a value that is beyond the
end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {

public static void main(String args[]) {

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

// push some numbers onto the stack

for(int i=0; i<10; i++) mystack1.push(i);

for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

// these statements are not legal

// mystack1.tos = -2;

// mystack2.stck[3] = 100;

176 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

}

Although methods will usually provide access to the data defined by a class, this
does not always have to be the case. It is perfectly proper to allow an instance variable to
be public when there is good reason to do so. For example, most of the simple classes in
this book were created with little concern about controlling access to instance variables
for the sake of simplicity. However, in most real-world classes, you will need to allow
operations on data only through methods. The next chapter will return to the topic of
access control. As you will see, it is particularly important when inheritance is involved.

Understanding static
There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a class member must be accessed
only in conjunction with an object of its class. However, it is possible to create a
member that can be used by itself, without reference to a specific instance. To create
such a member, precede its declaration with the keyword static. When a member is
declared static, it can be accessed before any objects of its class are created, and without
reference to any object. You can declare both methods and variables to be static. The
most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects
of its class are declared, no copy of a static variable is made. Instead, all instances of the
class share the same static variable.

Methods declared as static have several restrictions:

■ They can only call other static methods.

■ They must only access static data.

■ They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can
declare a static block which gets executed exactly once, when the class is first loaded.
The following example shows a class that has a static method, some static variables,
and a static initialization block:

// Demonstrate static variables, methods, and blocks.

class UseStatic {

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 177
TH

E
JA

V
A

LA
N

G
U

A
G

E

static int a = 3;

static int b;

static void meth(int x) {

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

static {

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String args[]) {

meth(42);

}

}

As soon as the UseStatic class is loaded, all of the static statements are run. First,
a is set to 3, then the static block executes (printing a message), and finally, b is
initialized to a * 4 or 12. Then main() is called, which calls meth(), passing 42 to x.
The three println() statements refer to the two static variables a and b, as well as
to the local variable x.

It is illegal to refer to any instance variables inside of a static method.

Here is the output of the program:

Static block initialized.
x = 42
a = 3
b = 12

Outside of the class in which they are defined, static methods and variables can be
used independently of any object. To do so, you need only specify the name of their
class followed by the dot operator. For example, if you wish to call a static method
from outside its class, you can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared.
As you can see, this format is similar to that used to call non-static methods through
object- reference variables. A static variable can be accessed in the same way—by use
of the dot operator on the name of the class. This is how Java implements a controlled
version of global methods and global variables.

Here is an example. Inside main(), the static method callme() and the static
variable b are accessed outside of their class.

class StaticDemo {

static int a = 42;

static int b = 99;

static void callme() {

System.out.println("a = " + a);

}

}

class StaticByName {

public static void main(String args[]) {

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}

}

Here is the output of this program:

a = 42
b = 99

Introducing final
A variable can be declared as final. Doing so prevents its contents from being
modified. This means that you must initialize a final variable when it is declared.
(In this usage, final is similar to const in C/C++/C#.) For example:

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

final int FILE_SAVE = 3;

final int FILE_SAVEAS = 4;

final int FILE_QUIT = 5;

178 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 179
TH

E
JA

V
A

LA
N

G
U

A
G

E

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were
constants, without fear that a value has been changed.

It is a common coding convention to choose all uppercase identifiers for final
variables. Variables declared as final do not occupy memory on a per-instance basis.
Thus, a final variable is essentially a constant.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This second usage of final is described in
the next chapter, when inheritance is described.

Arrays Revisited
Arrays were introduced earlier in this book, before classes had been discussed. Now
that you know about classes, an important point can be made about arrays: they are
implemented as objects. Because of this, there is a special array attribute that you will
want to take advantage of. Specifically, the size of an array—that is, the number of
elements that an array can hold—is found in its length instance variable. All arrays
have this variable, and it will always hold the size of the array. Here is a program that
demonstrates this property:

// This program demonstrates the length array member.

class Length {

public static void main(String args[]) {

int a1[] = new int[10];

int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};

int a3[] = {4, 3, 2, 1};

System.out.println("length of a1 is " + a1.length);

System.out.println("length of a2 is " + a2.length);

System.out.println("length of a3 is " + a3.length);

}

}

This program displays the following output:

length of a1 is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of
length has nothing to do with the number of elements that are actually in use. It only
reflects the number of elements that the array is designed to hold.

180 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

You can put the length member to good use in many situations. For example, here
is an improved version of the Stack class. As you might recall, the earlier versions of
this class always created a ten-element stack. The following version lets you create
stacks of any size. The value of stck.length is used to prevent the stack from
overflowing.

// Improved Stack class that uses the length array member.

class Stack {

private int stck[];

private int tos;

// allocate and initialize stack

Stack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class TestStack2 {

public static void main(String args[]) {

Stack mystack1 = new Stack(5);

Stack mystack2 = new Stack(8);

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 181
TH

E
JA

V
A

LA
N

G
U

A
G

E

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Notice that the program creates two stacks: one five elements deep and the other
eight elements deep. As you can see, the fact that arrays maintain their own length
information makes it easy to create stacks of any size.

Introducing Nested and Inner Classes
It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B is known to A, but not outside of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class.

There are two types of nested classes: static and non-static. A static nested class is one
which has the static modifier applied. Because it is static, it must access the members of
its enclosing class through an object. That is, it cannot refer to members of its enclosing
class directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a
non-static nested class. It has access to all of the variables and methods of its outer class
and may refer to them directly in the same way that other non-static members of the
outer class do. Thus, an inner class is fully within the scope of its enclosing class.

The following program illustrates how to define and use an inner class. The class
named Outer has one instance variable named outer_x, one instance method named
test(), and defines one inner class called Inner.

// Demonstrate an inner class.

class Outer {

int outer_x = 100;

182 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void test() {

Inner inner = new Inner();

inner.display();

}

// this is an inner class

class Inner {

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

Output from this application is shown here:

display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of class
Outer. Therefore, any code in class Inner can directly access the variable outer_x. An
instance method named display() is defined inside Inner. This method displays
outer_x on the standard output stream. The main() method of InnerClassDemo
creates an instance of class Outer and invokes its test() method. That method creates
an instance of class Inner and the display() method is called.

It is important to realize that class Inner is known only within the scope of class
Outer. The Java compiler generates an error message if any code outside of class Outer
attempts to instantiate class Inner. Generalizing, a nested class is no different than any
other program element: it is known only within its enclosing scope.

As explained, an inner class has access to all of the members of its enclosing class,
but the reverse is not true. Members of the inner class are known only within the scope
of the inner class and may not be used by the outer class. For example,

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 183
TH

E
JA

V
A

LA
N

G
U

A
G

E

// This program will not compile.

class Outer {

int outer_x = 100;

void test() {

Inner inner = new Inner();

inner.display();

}

// this is an inner class

class Inner {

int y = 10; // y is local to Inner

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

void showy() {

System.out.println(y); // error, y not known here!

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

Here, y is declared as an instance variable of Inner. Thus it is not known outside of
that class and it cannot be used by showy().

Although we have been focusing on nested classes declared within an outer class
scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body
of a for loop, as this next program shows.

// Define an inner class within a for loop.

class Outer {

int outer_x = 100;

void test() {

for(int i=0; i<10; i++) {

class Inner {

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

Inner inner = new Inner();

inner.display();

}

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

The output from this version of the program is shown here.

display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100

While nested classes are not used in most day-to-day programming, they are
particularly helpful when handling events in an applet. We will return to the topic
of nested classes in Chapter 20. There you will see how inner classes can be used to
simplify the code needed to handle certain types of events. You will also learn about
anonymous inner classes, which are inner classes that don't have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for
Java. They were added by Java 1.1.

184 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Exploring the String Class
Although the String class will be examined in depth in Part II of this book, a short
exploration of it is warranted now, because we will be using strings in some of the
example programs shown toward the end of Part I. String is probably the most
commonly used class in Java’s class library. The obvious reason for this is that strings
are a very important part of programming.

The first thing to understand about strings is that every string you create is actually
an object of type String. Even string constants are actually String objects. For example,
in the statement

System.out.println("This is a String, too");

the string “This is a String, too” is a String constant. Fortunately, Java handles String
constants in the same way that other computer languages handle “normal” strings, so
you don’t have to worry about this.

The second thing to understand about strings is that objects of type String are
immutable; once a String object is created, its contents cannot be altered. While this
may seem like a serious restriction, it is not, for two reasons:

■ If you need to change a string, you can always create a new one that contains
the modifications.

■ Java defines a peer class of String, called StringBuffer, which allows strings to
be altered, so all of the normal string manipulations are still available in Java.
(StringBuffer is described in Part II of this book.)

Strings can be constructed a variety of ways. The easiest is to use a statement like this:

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is
allowed. For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.
For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing “I like Java.”
The following program demonstrates the preceding concepts:

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 185
TH

E
JA

V
A

LA
N

G
U

A
G

E

186 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Demonstrating Strings.

class StringDemo {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1 + " and " + strOb2;

System.out.println(strOb1);

System.out.println(strOb2);

System.out.println(strOb3);

}

}

The output produced by this program is shown here:

First String
Second String
First String and Second String

The String class contains several methods that you can use. Here are a few. You can
test two strings for equality by using equals(). You can obtain the length of a string by
calling the length() method. You can obtain the character at a specified index within a
string by calling charAt(). The general forms of these three methods are shown here:

boolean equals(String object)
int length()
char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.

class StringDemo2 {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1;

System.out.println("Length of strOb1: " +

strOb1.length());

System.out.println("Char at index 3 in strOb1: " +

strOb1.charAt(3));

if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");

else

System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))

System.out.println("strOb1 == strOb3");

else

System.out.println("strOb1 != strOb3");

}

}

This program generates the following output:

Length of strOb1: 12
Char at index 3 in strOb1: s
strOb1 != strOb2
strOb1 == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any other
type of object. For example:

// Demonstrate String arrays.

class StringDemo3 {

public static void main(String args[]) {

String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)

System.out.println("str[" + i + "]: " +

str[i]);

}

}

Here is the output from this program:

str[0]: one
str[1]: two
str[2]: three

As you will see in the following section, string arrays play an important part in
many Java programs.

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 187
TH

E
JA

V
A

LA
N

G
U

A
G

E

Using Command-Line Arguments
Sometimes you will want to pass information into a program when you run it. This
is accomplished by passing command-line arguments to main(). A command-line
argument is the information that directly follows the program’s name on the command
line when it is executed. To access the command-line arguments inside a Java program
is quite easy—they are stored as strings in the String array passed to main(). For
example, the following program displays all of the command-line arguments that it
is called with:

// Display all command-line arguments.

class CommandLine {

public static void main(String args[]) {

for(int i=0; i<args.length; i++)

System.out.println("args[" + i + "]: " +

args[i]);

}

}

Try executing this program, as shown here:

java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0]: this
args[1]: is
args[2]: a
args[3]: test
args[4]: 100
args[5]: -1

All command-line arguments are passed as strings. You must convert numeric values to
their internal forms manually, as explained in Chapter 14.

188 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 8
Inheritance

189

Inheritance is one of the cornerstones of object-oriented programming because it
allows the creation of hierarchical classifications. Using inheritance, you can create a
general class that defines traits common to a set of related items. This class can then

be inherited by other, more specific classes, each adding those things that are unique to
it. In the terminology of Java, a class that is inherited is called a superclass. The class that
does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a
superclass. It inherits all of the instance variables and methods defined by the
superclass and adds its own, unique elements.

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another
by using the extends keyword. To see how, let’s begin with a short example. The
following program creates a superclass called A and a subclass called B. Notice how
the keyword extends is used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String args[]) {

A superOb = new A();

190 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 191
TH

E
JA

V
A

LA
N

G
U

A
G

E

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

/* The subclass has access to all public members of

its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This
is why subOb can access i and j and call showij(). Also, inside sum(), i and j can be
referred to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent,
stand-alone class. Being a superclass for a subclass does not mean that the superclass
cannot be used by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class
}

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. (This differs
from C++, in which you can inherit multiple base classes.) You can, as stated, create a
hierarchy of inheritance in which a subclass becomes a superclass of another subclass.
However, no class can be a superclass of itself.

Member Access and Inheritance
Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider
the following simple class hierarchy:

/* In a class hierarchy, private members remain

private to their class.

This program contains an error and will not

compile.

*/

// Create a superclass.

class A {

int i; // public by default

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A {

int total;

192 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

This program will not compile because the reference to j inside the sum() method
of B causes an access violation. Since j is declared as private, it is only accessible by
other members of its own class. Subclasses have no access to it.

A class member that has been declared as private will remain private to its class. It is not
accessible by any code outside its class, including subclasses.

A More Practical Example
Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be
extended to include a fourth component called weight. Thus, the new class will contain
a box’s width, height, depth, and weight.

// This program uses inheritance to extend Box.

class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

C h a p t e r 8 : I n h e r i t a n c e 193
TH

E
JA

V
A

LA
N

G
U

A
G

E

194 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight

BoxWeight(double w, double h, double d, double m) {

width = w;

height = h;

depth = d;

weight = m;

}

}

C h a p t e r 8 : I n h e r i t a n c e 195
TH

E
JA

V
A

LA
N

G
U

A
G

E

class DemoBoxWeight {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

}

}

The output from this program is shown here:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight
component. It is not necessary for BoxWeight to re-create all of the features found in
Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any number
of more specific subclasses. Each subclass can precisely tailor its own classification. For
example, the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.

class ColorBox extends Box {

int color; // color of box

ColorBox(double w, double h, double d, int c) {

width = w;

height = h;

depth = d;

color = c;

}

}

Remember, once you have created a superclass that defines the general aspects of
an object, that superclass can be inherited to form specialized classes. Each subclass
simply adds its own, unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object
A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass. You will find this aspect of inheritance quite useful in a variety of
situations. For example, consider the following:

class RefDemo {

public static void main(String args[]) {

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);

Box plainbox = new Box();

double vol;

vol = weightbox.volume();

System.out.println("Volume of weightbox is " + vol);

System.out.println("Weight of weightbox is " +

weightbox.weight);

System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box

System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox

does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);

}

}

196 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to
Box objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox
a reference to the weightbox object.

It is important to understand that it is the type of the reference variable—not the
type of the object that it refers to—that determines what members can be accessed. That
is, when a reference to a subclass object is assigned to a superclass reference variable,
you will have access only to those parts of the object defined by the superclass. This is
why plainbox can’t access weight even when it refers to a BoxWeight object. If you
think about it, this makes sense, because the superclass has no knowledge of what
a subclass adds to it. This is why the last line of code in the preceding fragment is
commented out. It is not possible for a Box reference to access the weight field,
because it does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

Using super
In the preceding examples, classes derived from Box were not implemented as
efficiently or as robustly as they could have been. For example, the constructor for
BoxWeight explicitly initializes the width, height, and depth fields of Box(). Not only
does this duplicate code found in its superclass, which is inefficient, but it implies that
a subclass must be granted access to these members. However, there will be times
when you will want to create a superclass that keeps the details of its implementation
to itself (that is, that keeps its data members private). In this case, there would be no
way for a subclass to directly access or initialize these variables on its own. Since
encapsulation is a primary attribute of OOP, it is not surprising that Java provides
a solution to this problem. Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second
is used to access a member of the superclass that has been hidden by a member of a
subclass. Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor method defined by its superclass by use of the
following form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in
the superclass. super() must always be the first statement executed inside a
subclass’ constructor.

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 8 : I n h e r i t a n c e 197

198 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To see how super() is used, consider this improved version of the
BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.

class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

}

Here, BoxWeight() calls super() with the parameters w, h, and d. This causes the
Box() constructor to be called, which initializes width, height, and depth using these
values. BoxWeight no longer initializes these values itself. It only needs to initialize the
value unique to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since
constructors can be overloaded, super() can be called using any form defined by the
superclass. The constructor executed will be the one that matches the arguments. For
example, here is a complete implementation of BoxWeight that provides constructors
for the various ways that a box can be constructed. In each case, super() is called using
the appropriate arguments. Notice that width, height, and depth have been made
private within Box.

// A complete implementation of BoxWeight.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

C h a p t e r 8 : I n h e r i t a n c e 199
TH

E
JA

V
A

LA
N

G
U

A
G

E

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);

System.out.println();

200 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 201
TH

E
JA

V
A

LA
N

G
U

A
G

E

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight);

System.out.println();

}

}

This program generates the following output:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight():

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

Notice that super() is called with an object of type BoxWeight—not of type Box.
This still invokes the constructor Box(Box ob). As mentioned earlier, a superclass
variable can be used to reference any object derived from that class. Thus, we are able
to pass a BoxWeight object to the Box constructor. Of course, Box only has knowledge
of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is
calling the constructor of its immediate superclass. Thus, super() always refers to the
superclass immediately above the calling class. This is true even in a multileveled

hierarchy. Also, super() must always be the first statement executed inside a subclass
constructor.

A Second Use for super
The second form of super acts somewhat like this, except that it always refers to
the superclass of the subclass in which it is used. This usage has the following
general form:

super.member

Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member names

of a subclass hide members by the same name in the superclass. Consider this simple
class hierarchy:

// Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

202 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. As you will see, super can also be used to call methods that
are hidden by a subclass.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a
superclass and a subclass. However, you can build hierarchies that contain as many
layers of inheritance as you like. As mentioned, it is perfectly acceptable to use a
subclass as a superclass of another. For example, given three classes called A, B,
and C, C can be a subclass of B, which is a subclass of A. When this type of situation
occurs, each subclass inherits all of the traits found in all of its superclasses. In this
case, C inherits all aspects of B and A. To see how a multilevel hierarchy can be useful,
consider the following program. In it, the subclass BoxWeight is used as a superclass to
create the subclass called Shipment. Shipment inherits all of the traits of BoxWeight
and Box, and adds a field called cost, which holds the cost of shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

C h a p t e r 8 : I n h e r i t a n c e 203
TH

E
JA

V
A

LA
N

G
U

A
G

E

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Add weight.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

204 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 205
TH

E
JA

V
A

LA
N

G
U

A
G

E

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

// Add shipping costs

class Shipment extends BoxWeight {

double cost;

// construct clone of an object

Shipment(Shipment ob) { // pass object to constructor

super(ob);

cost = ob.cost;

}

// constructor when all parameters are specified

Shipment(double w, double h, double d,

double m, double c) {

super(w, h, d, m); // call superclass constructor

cost = c;

}

// default constructor

Shipment() {

super();

cost = -1;

}

// constructor used when cube is created

Shipment(double len, double m, double c) {

super(len, m);

cost = c;

}

}

class DemoShipment {

public static void main(String args[]) {

Shipment shipment1 =

new Shipment(10, 20, 15, 10, 3.41);

Shipment shipment2 =

new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();

System.out.println("Volume of shipment1 is " + vol);

System.out.println("Weight of shipment1 is "

+ shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println();

vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is "

+ shipment2.weight);

System.out.println("Shipping cost: $" + shipment2.cost);

}

}

The output of this program is shown here:

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of
Box and BoxWeight, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in Shipment calls the constructor
in BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class
hierarchy, if a superclass constructor requires parameters, then all subclasses must pass
those parameters “up the line.” This is true whether or not a subclass needs parameters
of its own.

206 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

In the preceding program, the entire class hierarchy, including Box, BoxWeight, and
Shipment, is shown all in one file. This is for your convenience only. In Java, all three
classes could have been placed into their own files and compiled separately. In fact, using
separate files is the norm, not the exception, in creating class hierarchies.

When Constructors Are Called
When a class hierarchy is created, in what order are the constructors for the classes that
make up the hierarchy called? For example, given a subclass called B and a superclass
called A, is A’s constructor called before B’s, or vice versa? The answer is that in a class
hierarchy, constructors are called in order of derivation, from superclass to subclass.
Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used. If super() is not used, then the
default or parameterless constructor of each superclass will be executed. The following
program illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {

C h a p t e r 8 : I n h e r i t a n c e 207
TH

E
JA

V
A

LA
N

G
U

A
G

E

C c = new C();

}

}

The output from this program is shown here:

Inside A’s constructor
Inside B’s constructor
Inside C’s constructor

As you can see, the constructors are called in order of derivation.
If you think about it, it makes sense that constructors are executed in order of

derivation. Because a superclass has no knowledge of any subclass, any initialization it
needs to perform is separate from and possibly prerequisite to any initialization
performed by the subclass. Therefore, it must be executed first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass. When an overridden method is called from
within a subclass, it will always refer to the version of that method defined by the
subclass. The version of the method defined by the superclass will be hidden. Consider
the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

208 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 209
TH

E
JA

V
A

LA
N

G
U

A
G

E

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined
within B is used. That is, the version of show() inside B overrides the version
declared in A.

If you wish to access the superclass version of an overridden function, you can do
so by using super. For example, in this version of B, the superclass version of show() is
invoked within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

210 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void show() {

super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

If you substitute this version of A into the previous program, you will see the
following output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().
Method overriding occurs only when the names and the type signatures of the two

methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not

// overridden.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

C h a p t e r 8 : I n h e r i t a n c e 211
TH

E
JA

V
A

LA
N

G
U

A
G

E

}

// overload show()

void show(String msg) {

System.out.println(msg + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}

}

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or
name hiding) takes place.

Dynamic Method Dispatch
While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a name space convention, then it would be, at best, an interesting
curiosity, but of little real value. However, this is not the case. Method overriding
forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.
Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time, rather than compile time. Dynamic method dispatch is
important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can
refer to a subclass object. Java uses this fact to resolve calls to overridden methods at
run time. Here is how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the

type of the object being referred to at the time the call occurs. Thus, this determination
is made at run time. When different types of objects are referred to, different versions
of an overridden method will be called. In other words, it is the type of the object being
referred to (not the type of the reference variable) that determines which version of an
overridden method will be executed. Therefore, if a superclass contains a method that
is overridden by a subclass, then when different types of objects are referred to through
a superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch

class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {

// override callme()

void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String args[]) {

A a = new A(); // object of type A

B b = new B(); // object of type B

C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object

r.callme(); // calls A's version of callme

r = b; // r refers to a B object

r.callme(); // calls B's version of callme

212 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 213
TH

E
JA

V
A

LA
N

G
U

A
G

E

r = c; // r refers to a C object

r.callme(); // calls C's version of callme

}

}

The output from the program is shown here:

Inside A’s callme method
Inside B’s callme method
Inside C’s callme method

This program creates one superclass called A and two subclasses of it, called B
and C. Subclasses B and C override callme() declared in A. Inside the main() method,
objects of type A, B, and C are declared. Also, a reference of type A, called r, is declared.
The program then assigns a reference to each type of object to r and uses that reference to
invoke callme(). As the output shows, the version of callme() executed is determined by
the type of object being referred to at the time of the call. Had it been determined by the
type of the reference variable, r, you would see three calls to A’s callme() method.

Readers familiar with C++ or C# will recognize that overridden methods in Java are
similar to virtual functions in those languages.

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods. Overridden methods are another way that Java implements the “one
interface, multiple methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization. Used correctly, the superclass provides all elements that a subclass can
use directly. It also defines those methods that the derived class must implement on
its own. This allows the subclass the flexibility to define its own methods, yet still
enforces a consistent interface. Thus, by combining inheritance with overridden
methods, a superclass can define the general form of the methods that will be used
by all of its subclasses.

214 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Dynamic, run-time polymorphism is one of the most powerful mechanisms that
object-oriented design brings to bear on code reuse and robustness. The ability of
existing code libraries to call methods on instances of new classes without recompiling
while maintaining a clean abstract interface is a profoundly powerful tool.

Applying Method Overriding
Let’s look at a more practical example that uses method overriding. The following
program creates a superclass called Figure that stores the dimensions of various
two-dimensional objects. It also defines a method called area() that computes the area
of an object. The program derives two subclasses from Figure. The first is Rectangle
and the second is Triangle. Each of these subclasses overrides area() so that it returns
the area of a rectangle and a triangle, respectively.

// Using run-time polymorphism.

class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

double area() {

System.out.println("Area for Figure is undefined.");

return 0;

}

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

C h a p t e r 8 : I n h e r i t a n c e 215
TH

E
JA

V
A

LA
N

G
U

A
G

E

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class FindAreas {

public static void main(String args[]) {

Figure f = new Figure(10, 10);

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

figref = f;

System.out.println("Area is " + figref.area());

}

}

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is
possible to define one consistent interface that is used by several different, yet related,

types of objects. In this case, if an object is derived from Figure, then its area can be
obtained by calling area(). The interface to this operation is the same no matter what
type of figure is being used.

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the
structure of a given abstraction without providing a complete implementation of every
method. That is, sometimes you will want to create a superclass that only defines a
generalized form that will be shared by all of its subclasses, leaving it to each subclass
to fill in the details. Such a class determines the nature of the methods that the
subclasses must implement. One way this situation can occur is when a superclass
is unable to create a meaningful implementation for a method. This is the case with
the class Figure used in the preceding example. The definition of area() is simply a
placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a
method to have no meaningful definition in the context of its superclass. You can
handle this situation two ways. One way, as shown in the previous example, is to
simply have it report a warning message. While this approach can be useful in certain
situations—such as debugging—it is not usually appropriate. You may have methods
which must be overridden by the subclass in order for the subclass to have any meaning.
Consider the class Triangle. It has no meaning if area() is not defined. In this case, you
want some way to ensure that a subclass does, indeed, override all necessary methods.
Java’s solution to this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying
the abstract type modifier. These methods are sometimes referred to as subclasser
responsibility because they have no implementation specified in the superclass. Thus,
a subclass must override them—it cannot simply use the version defined in the
superclass. To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared

abstract. To declare a class abstract, you simply use the abstract keyword in front of the
class keyword at the beginning of the class declaration. There can be no objects of an
abstract class. That is, an abstract class cannot be directly instantiated with the new
operator. Such objects would be useless, because an abstract class is not fully defined.
Also, you cannot declare abstract constructors, or abstract static methods. Any subclass
of an abstract class must either implement all of the abstract methods in the superclass,
or be itself declared abstract.

Here is a simple example of a class with an abstract method, followed by a class
which implements that method:

216 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 217
TH

E
JA

V
A

LA
N

G
U

A
G

E

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

Notice that no objects of class A are declared in the program. As mentioned, it is
not possible to instantiate an abstract class. One other point: class A implements a
concrete method called callmetoo(). This is perfectly acceptable. Abstract classes can
include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used
to create object references, because Java’s approach to run-time polymorphism is
implemented through the use of superclass references. Thus, it must be possible to
create a reference to an abstract class so that it can be used to point to a subclass object.
You will see this feature put to use in the next example.

Using an abstract class, you can improve the Figure class shown earlier. Since
there is no meaningful concept of area for an undefined two-dimensional figure, the
following version of the program declares area() as abstract inside Figure. This, of
course, means that all classes derived from Figure must override area().

// Using abstract methods and classes.

abstract class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas {

public static void main(String args[]) {

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

218 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 219
TH

E
JA

V
A

LA
N

G
U

A
G

E

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

As the comment inside main() indicates, it is no longer possible to declare objects
of type Figure, since it is now abstract. And, all subclasses of Figure must override
area(). To prove this to yourself, try creating a subclass that does not override area().
You will receive a compile-time error.

Although it is not possible to create an object of type Figure, you can create a
reference variable of type Figure. The variable figref is declared as a reference to
Figure, which means that it can be used to refer to an object of any class derived from
Figure. As explained, it is through superclass reference variables that overridden
methods are resolved at run time.

Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a
named constant. This use was described in the preceding chapter. The other two uses
of final apply to inheritance. Both are examined here.

Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times
when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods declared
as final cannot be overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to
do so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by
a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,
thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at run
time. This is called late binding. However, since final methods cannot be overridden, a
call to one can be resolved at compile time. This is called early binding.

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede
the class declaration with final. Declaring a class as final implicitly declares all of its
methods as final, too. As you might expect, it is illegal to declare a class as both
abstract and final since an abstract class is incomplete by itself and relies upon its
subclasses to provide complete implementations.

Here is an example of a final class:

final class A {

// ...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class
There is one special class, Object, defined by Java. All other classes are subclasses of
Object. That is, Object is a superclass of all other classes. This means that a reference

220 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

variable of type Object can refer to an object of any other class. Also, since arrays are
implemented as classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in
every object.

Method Purpose

Object clone() Creates a new object that is the same as
the object being cloned.

boolean equals(Object object) Determines whether one object is equal to
another.

void finalize() Called before an unused object is
recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the
invoking object.

void notify() Resumes execution of a thread waiting on
the invoking object.

void notifyAll() Resumes execution of all threads waiting
on the invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,

int nanoseconds)

Waits on another thread of execution.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final.
You may override the others. These methods are described elsewhere in this book.
However, notice two methods now: equals() and toString(). The equals() method
compares the contents of two objects. It returns true if the objects are equivalent, and
false otherwise. The toString() method returns a string that contains a description of
the object on which it is called. Also, this method is automatically called when an object
is output using println(). Many classes override this method. Doing so allows them to
tailor a description specifically for the types of objects that they create. See Chapter 13
for more information on toString().

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 8 : I n h e r i t a n c e 221

This page intentionally left blank.

Chapter 9
Packages and
Interfaces

223

This chapter examines two of Java’s most innovative features: packages and
interfaces. Packages are containers for classes that are used to keep the class name
space compartmentalized. For example, a package allows you to create a class

named List, which you can store in your own package without concern that it will
collide with some other class named List stored elsewhere. Packages are stored in a
hierarchical manner and are explicitly imported into new class definitions.

In previous chapters you have seen how methods define the interface to the data in
a class. Through the use of the interface keyword, Java allows you to fully abstract the
interface from its implementation. Using interface, you can specify a set of methods
which can be implemented by one or more classes. The interface, itself, does not
actually define any implementation. Although they are similar to abstract classes,
interfaces have an additional capability: A class can implement more than one
interface. By contrast, a class can only inherit a single superclass (abstract or
otherwise).

Packages and interfaces are two of the basic components of a Java program. In
general, a Java source file can contain any (or all) of the following four internal parts:

■ A single package statement (optional)

■ Any number of import statements (optional)

■ A single public class declaration (required)

■ Any number of classes private to the package (optional)

Only one of these—the single public class declaration—has been used in the
examples so far. This chapter will explore the remaining parts.

Packages
In the preceding chapters, the name of each example class was taken from the same
name space. This means that a unique name had to be used for each class to avoid
name collisions. After a while, without some way to manage the name space, you
could run out of convenient, descriptive names for individual classes. You also need
some way to be assured that the name you choose for a class will be reasonably
unique and not collide with class names chosen by other programmers. (Imagine
a small group of programmers fighting over who gets to use the name “Foobar” as a
class name. Or, imagine the entire Internet community arguing over who first named
a class “Espresso.”) Thankfully, Java provides a mechanism for partitioning the class
name space into more manageable chunks. This mechanism is the package. The
package is both a naming and a visibility control mechanism. You can define classes
inside a package that are not accessible by code outside that package. You can also
define class members that are only exposed to other members of the same package.
This allows your classes to have intimate knowledge of each other, but not expose
that knowledge to the rest of the world.

224 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 225
TH

E
JA

V
A

LA
N

G
U

A
G

E

Defining a Package
To create a package is quite easy: simply include a package command as the first
statement in a Java source file. Any classes declared within that file will belong to the
specified package. The package statement defines a name space in which classes are
stored. If you omit the package statement, the class names are put into the default
package, which has no name. (This is why you haven’t had to worry about packages
before now.) While the default package is fine for short, sample programs, it is
inadequate for real applications. Most of the time, you will define a package for
your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a
package called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for
any classes you declare to be part of MyPackage must be stored in a directory called
MyPackage. Remember that case is significant, and the directory name must match the
package name exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled
package statement is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java/awt/image, java\awt\image, or java:awt:image on your
UNIX, Windows, or Macintosh file system, respectively. Be sure to choose your
package names carefully. You cannot rename a package without renaming the
directory in which the classes are stored.

226 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important
question: How does the Java run-time system know where to look for packages that
you create? The answer has two parts. First, by default, the Java run-time system uses
the current working directory as its starting point. Thus, if your package is in the current
directory, or a subdirectory of the current directory, it will be found. Second, you can
specify a directory path or paths by setting the CLASSPATH environmental variable.

For example, consider the following package specification.

package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the
program is executed from a directory immediately above MyPack, or CLASSPATH
must be set to include the path to MyPack. The first alternative is the easiest (and
doesn’t require a change to CLASSPATH), but the second alternative lets your
program find MyPack no matter what directory the program is in. Ultimately, the
choice is yours.

The easiest way to try the examples shown in this book is to simply create the
package directories below your current development directory, put the .class files into
the appropriate directories and then execute the programs from the development
directory. This is the approach assumed by the examples.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package

package MyPack;

class Balance {

String name;

double bal;

Balance(String n, double b) {

name = n;

bal = b;

}

void show() {

if(bal<0)

System.out.print("--> ");

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 227
TH

E
JA

V
A

LA
N

G
U

A
G

E

System.out.println(name + ": $" + bal);

}

}

class AccountBalance {

public static void main(String args[]) {

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();

}

}

Call this file AccountBalance.java, and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this
command, or to have your CLASSPATH environmental variable set appropriately.

As explained, AccountBalance is now part of the package MyPack. This means that
it cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection
In the preceding chapters, you learned about various aspects of Java’s access control
mechanism and its access specifiers. For example, you already know that access to a
private member of a class is granted only to other members of that class. Packages add
another dimension to access control. As you will see, Java provides many levels of
protection to allow fine-grained control over the visibility of variables and methods
within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name
space and scope of variables and methods. Packages act as containers for classes and

228 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

other subordinate packages. Classes act as containers for data and code. The class is
Java’s smallest unit of abstraction. Because of the interplay between classes and
packages, Java addresses four categories of visibility for class members:

■ Subclasses in the same package

■ Non-subclasses in the same package

■ Subclasses in different packages

■ Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of
ways to produce the many levels of access required by these categories. Table 9-1 sums
up the interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit
access specification, it is visible to subclasses as well as to other classes in the same
package. This is the default access. If you want to allow an element to be seen outside
your current package, but only to classes that subclass your class directly, then declare
that element protected.

Table 9-1 applies only to members of classes. A class has only two possible access
levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code
within its same package.

Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package
subclass

No Yes Yes Yes

Same package
non-subclass

No Yes Yes Yes

Different
package
subclass

No No Yes Yes

Different
package
non-subclass

No No No Yes

Table 9-1. Class Member Access

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 229
TH

E
JA

V
A

LA
N

G
U

A
G

E

An Access Example
The following example shows all combinations of the access control modifiers. This
example has two packages and five classes. Remember that the classes for the two
different packages need to be stored in directories named after their respective
packages—in this case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and
SamePackage. The first class defines four int variables in each of the legal protection
modes. The variable n is declared with the default protection, n_pri is private, n_pro is
protected, and n_pub is public.

Each subsequent class in this example will try to access the variables in an instance
of this class. The lines that will not compile due to access restrictions are commented
out by use of the single-line comment //. Before each of these lines is a comment listing
the places from which this level of protection would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one.
The third class, SamePackage, is not a subclass of Protection, but is in the same package
and also has access to all but n_pri.

This is file Protection.java:

package p1;

public class Protection {

int n = 1;

private int n_pri = 2;

protected int n_pro = 3;

public int n_pub = 4;

public Protection() {

System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file Derived.java:

package p1;

class Derived extends Protection {

Derived() {

System.out.println("derived constructor");

System.out.println("n = " + n);

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file SamePackage.java:

package p1;

class SamePackage {

SamePackage() {

Protection p = new Protection();

System.out.println("same package constructor");

System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

Following is the source code for the other package, p2. The two classes defined in
p2 cover the other two conditions which are affected by access control. The first class,
Protection2, is a subclass of p1.Protection. This grants access to all of p1.Protection’s
variables except for n_pri (because it is private) and n, the variable declared with the
default protection. Remember, the default only allows access from within the class or
the package, not extra-package subclasses. Finally, the class OtherPackage has access
to only one variable, n_pub, which was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {

230 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Protection2() {

System.out.println("derived other package constructor");

// class or package only

// System.out.println("n = " + n);

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file OtherPackage.java:

package p2;

class OtherPackage {

OtherPackage() {

p1.Protection p = new p1.Protection();

System.out.println("other package constructor");

// class or package only

// System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only

// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

If you wish to try these two packages, here are two test files you can use. The one
for package p1 is shown here:

// Demo package p1.

package p1;

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 231
TH

E
JA

V
A

LA
N

G
U

A
G

E

232 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Instantiate the various classes in p1.

public class Demo {

public static void main(String args[]) {

Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new SamePackage();

}

}

The test file for p2 is shown next:

// Demo package p2.

package p2;

// Instantiate the various classes in p2.

public class Demo {

public static void main(String args[]) {

Protection2 ob1 = new Protection2();

OtherPackage ob2 = new OtherPackage();

}

}

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse
classes from each other, it is easy to see why all of the built-in Java classes are stored in
packages. There are no core Java classes in the unnamed default package; all of the
standard classes are stored in some named package. Since classes within packages
must be fully qualified with their package name or names, it could become tedious to
type in the long dot-separated package path name for every class you want to use.
For this reason, Java includes the import statement to bring certain classes, or entire
packages, into visibility. Once imported, a class can be referred to directly, using only
its name. The import statement is a convenience to the programmer and is not
technically needed to write a complete Java program. If you are going to refer to a
few dozen classes in your application, however, the import statement will save a lot
of typing.

In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:

import pkg1[.pkg2].(classname|*);

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 233
TH

E
JA

V
A

LA
N

G
U

A
G

E

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on
the depth of a package hierarchy, except that imposed by the file system. Finally, you
specify either an explicit classname or a star (*), which indicates that the Java compiler
should import the entire package. This code fragment shows both forms in use:

import java.util.Date;

import java.io.*;

The star form may increase compilation time—especially if you import several large
packages. For this reason it is a good idea to explicitly name the classes that you want
to use rather than importing whole packages. However, the star form has absolutely
no effect on the run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called
java. The basic language functions are stored in a package inside of the java package
called java.lang. Normally, you have to import every package or class that you want
to use, but since Java is useless without much of the functionality in java.lang, it is
implicitly imported by the compiler for all programs. This is equivalent to the following
line being at the top of all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import
using the star form, the compiler will remain silent, unless you try to use one of the
classes. In that case, you will get a compile-time error and have to explicitly name
the class specifying its package.

Any place you use a class name, you can use its fully qualified name, which
includes its full package hierarchy. For example, this fragment uses an import
statement:

import java.util.*;

class MyDate extends Date {

}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {

}

234 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As shown in Table 9-1, when a package is imported, only those items within the
package declared as public will be available to non-subclasses in the importing code.
For example, if you want the Balance class of the package MyPack shown earlier to be
available as a stand-alone class for general use outside of MyPack, then you will need
to declare it as public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its

show() method are public. This means that they can

be used by non-subclass code outside their package.

*/

public class Balance {

String name;

double bal;

public Balance(String n, double b) {

name = n;

bal = b;

}

public void show() {

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

}

As you can see, the Balance class is now public. Also, its constructor and its
show() method are public, too. This means that they can be accessed by any type of
code outside the MyPack package. For example, here TestBalance imports MyPack
and is then able to make use of the Balance class:

import MyPack.*;

class TestBalance {

public static void main(String args[]) {

/* Because Balance is public, you may use Balance

class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()

}

}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its imple-
mentation. That is, using interface, you can specify what a class must do, but not how
it does it. Interfaces are syntactically similar to classes, but they lack instance variables,
and their methods are declared without any body. In practice, this means that you can
define interfaces which don’t make assumptions about how they are implemented.
Once it is defined, any number of classes can implement an interface. Also, one class
can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined
by the interface. However, each class is free to determine the details of its own
implementation. By providing the interface keyword, Java allows you to fully utilize
the “one interface, multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time.
Normally, in order for a method to be called from one class to another, both classes
need to be present at compile time so the Java compiler can check to ensure that the
method signatures are compatible. This requirement by itself makes for a static and
nonextensible classing environment. Inevitably in a system like this, functionality gets
pushed up higher and higher in the class hierarchy so that the mechanisms will be
available to more and more subclasses. Interfaces are designed to avoid this problem.
They disconnect the definition of a method or set of methods from the inheritance
hierarchy. Since interfaces are in a different hierarchy from classes, it is possible for
classes that are unrelated in terms of the class hierarchy to implement the same
interface. This is where the real power of interfaces is realized.

Interfaces add most of the functionality that is required for many applications which
would normally resort to using multiple inheritance in a language such as C++.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 235
TH

E
JA

V
A

LA
N

G
U

A
G

E

236 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

Here, access is either public or not used. When no access specifier is included, then
default access results, and the interface is only available to other members of the
package in which it is declared. When it is declared as public, the interface can be used
by any other code. name is the name of the interface, and can be any valid identifier.
Notice that the methods which are declared have no bodies. They end with a semicolon
after the parameter list. They are, essentially, abstract methods; there can be no default
implementation of any method specified within an interface. Each class that includes
an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final
and static, meaning they cannot be changed by the implementing class. They must also
be initialized with a constant value. All methods and variables are implicitly public if
the interface, itself, is declared as public.

Here is an example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.

interface Callback {

void callback(int param);

}

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and
then create the methods defined by the interface. The general form of a class that
includes the implements clause looks like this:

access class classname [extends superclass]
[implements interface [,interface...]] {

// class-body
}

Here, access is either public or not used. If a class implements more than one interface,
the interfaces are separated with a comma. If a class implements two interfaces that
declare the same method, then the same method will be used by clients of either
interface. The methods that implement an interface must be declared public. Also, the
type signature of the implementing method must match exactly the type signature
specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

}

Notice that callback() is declared using the public access specifier.

When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client
implements callback() and adds the method nonIfaceMeth():

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

void nonIfaceMeth() {

System.out.println("Classes that implement interfaces " +

"may also define other members, too.");

}

}

Accessing Implementations Through Interface References
You can declare variables as object references that use an interface rather than a class
type. Any instance of any class that implements the declared interface can be referred
to by such a variable. When you call a method through one of these references, the
correct version will be called based on the actual instance of the interface being referred
to. This is one of the key features of interfaces. The method to be executed is looked up
dynamically at run time, allowing classes to be created later than the code which calls
methods on them. The calling code can dispatch through an interface without having
to know anything about the “callee.” This process is similar to using a superclass
reference to access a subclass object, as described in Chapter 8.

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 237
TH

E
JA

V
A

LA
N

G
U

A
G

E

238 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use
interfaces casually in performance-critical code.

The following example calls the callback() method via an interface reference
variable:

class TestIface {

public static void main(String args[]) {

Callback c = new Client();

c.callback(42);

}

}

The output of this program is shown here:

callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was
assigned an instance of Client. Although c can be used to access the callback()
method, it cannot access any other members of the Client class. An interface reference
variable only has knowledge of the methods declared by its interface declaration.
Thus, c could not be used to access nonIfaceMeth() since it is defined by Client but
not Callback.

While the preceding example shows, mechanically, how an interface reference
variable can access an implementation object, it does not demonstrate the polymorphic
power of such a reference. To sample this usage, first create the second implementation
of Callback, shown here:

// Another implementation of Callback.

class AnotherClient implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("Another version of callback");

System.out.println("p squared is " + (p*p));

}

}

Now, try the following class:

class TestIface2 {

public static void main(String args[]) {

Callback c = new Client();

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 239
TH

E
JA

V
A

LA
N

G
U

A
G

E

AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object

c.callback(42);

}

}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of
object that c refers to at run time. While this is a very simple example, you will see
another, more practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by
that interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {

int a, b;

void show() {

System.out.println(a + " " + b);

}

// ...

}

Here, the class Incomplete does not implement callback() and must be declared as
abstract. Any class that inherits Incomplete must implement callback() or be declared
abstract itself.

Applying Interfaces
To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list,
a binary tree, and so on. No matter how the stack is implemented, the interface to the
stack remains the same. That is, the methods push() and pop() define the interface to
the stack independently of the details of the implementation. Because the interface to a

240 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

stack is separate from its implementation, it is easy to define a stack interface, leaving it
to each implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called
IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

}

The following program creates a class called FixedStack that implements a
fixed-length version of an integer stack:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack

FixedStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest {

public static void main(String args[]) {

FixedStack mystack1 = new FixedStack(5);

FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Following is another implementation of IntStack that creates a dynamic stack by
use of the same interface definition. In this implementation, each stack is constructed
with an initial length. If this initial length is exceeded, then the stack is increased in
size. Each time more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.

class DynStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack

DynStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

// if stack is full, allocate a larger stack

if(tos==stck.length-1) {

int temp[] = new int[stck.length * 2]; // double size

for(int i=0; i<stck.length; i++) temp[i] = stck[i];

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 241
TH

E
JA

V
A

LA
N

G
U

A
G

E

stck = temp;

stck[++tos] = item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest2 {

public static void main(String args[]) {

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

}

The following class uses both the FixedStack and DynStack implementations.
It does so through an interface reference. This means that calls to push() and pop()
are resolved at run time rather than at compile time.

242 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 243
TH

E
JA

V
A

LA
N

G
U

A
G

E

/* Create an interface variable and

access stacks through it.

*/

class IFTest3 {

public static void main(String args[]) {

IntStack mystack; // create an interface reference variable

DynStack ds = new DynStack(5);

FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack

// push some numbers onto the stack

for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack

for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;

System.out.println("Values in fixed stack:");

for(int i=0; i<8; i++)

System.out.println(mystack.pop());

}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to
ds, it uses the versions of push() and pop() defined by the DynStack implementation.
When it refers to fs, it uses the versions of push() and pop() defined by FixedStack.
As explained, these determinations are made at run time. Accessing multiple
implementations of an interface through an interface reference variable is the most
powerful way that Java achieves run-time polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply
declaring an interface that contains variables which are initialized to the desired
values. When you include that interface in a class (that is, when you “implement” the
interface), all of those variable names will be in scope as constants. This is similar to
using a header file in C/C++ to create a large number of #defined constants or const
declarations. If an interface contains no methods, then any class that includes such an
interface doesn’t actually implement anything. It is as if that class were importing the

244 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

constant variables into the class name space as final variables. The next example uses
this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants {

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

class Question implements SharedConstants {

Random rand = new Random();

int ask() {

int prob = (int) (100 * rand.nextDouble());

if (prob < 30)

return NO; // 30%

else if (prob < 60)

return YES; // 30%

else if (prob < 75)

return LATER; // 15%

else if (prob < 98)

return SOON; // 13%

else

return NEVER; // 2%

}

}

class AskMe implements SharedConstants {

static void answer(int result) {

switch(result) {

case NO:

System.out.println("No");

break;

case YES:

System.out.println("Yes");

break;

case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:

System.out.println("Soon");

break;

case NEVER:

System.out.println("Never");

break;

}

}

public static void main(String args[]) {

Question q = new Question();

answer(q.ask());

answer(q.ask());

answer(q.ask());

answer(q.ask());

}

}

Notice that this program makes use of one of Java’s standard classes: Random. This
class provides pseudorandom numbers. It contains several methods which allow you
to obtain random numbers in the form required by your program. In this example, the
method nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined
or inherited them directly. Here is the output of a sample run of this program. Note
that the results are different each time it is run.

Later
Soon
No
Yes

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 245
TH

E
JA

V
A

LA
N

G
U

A
G

E

246 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes. When a class implements an interface that inherits
another interface, it must provide implementations for all methods defined within
the interface inheritance chain. Following is an example:

// One interface can extend another.

interface A {

void meth1();

void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A {

void meth3();

}

// This class must implement all of A and B

class MyClass implements B {

public void meth1() {

System.out.println("Implement meth1().");

}

public void meth2() {

System.out.println("Implement meth2().");

}

public void meth3() {

System.out.println("Implement meth3().");

}

}

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new MyClass();

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 247
TH

E
JA

V
A

LA
N

G
U

A
G

E

ob.meth1();

ob.meth2();

ob.meth3();

}

}

As an experiment you might want to try removing the implementation for meth1()
in MyClass. This will cause a compile-time error. As stated earlier, any class that
implements an interface must implement all methods defined by that interface,
including any that are inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of
packages or interfaces, both of these tools are an important part of the Java programming
environment. Virtually all real programs and applets that you write in Java will be
contained within packages. A number will probably implement interfaces as well.
It is important, therefore, that you be comfortable with their usage.

This page intentionally left blank.

Chapter 10
Exception Handling

249

This chapter examines Java’s exception-handling mechanism. An exception is an
abnormal condition that arises in a code sequence at run time. In other words,
an exception is a run-time error. In computer languages that do not support

exception handling, errors must be checked and handled manually—typically through
the use of error codes, and so on. This approach is as cumbersome as it is troublesome.
Java’s exception handling avoids these problems and, in the process, brings run-time
error management into the object-oriented world.

For the most part, exception handling has not changed since the original version
of Java. However, Java 2, version 1.4 has added a new subsystem called the chained
exception facility. This feature is described near the end of this chapter.

Exception-Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method that caused the error.
That method may choose to handle the exception itself, or pass it on. Either way, at
some point, the exception is caught and processed. Exceptions can be generated by the
Java run-time system, or they can be manually generated by your code. Exceptions
thrown by Java relate to fundamental errors that violate the rules of the Java language
or the constraints of the Java execution environment. Manually generated exceptions
are typically used to report some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws,
and finally. Briefly, here is how they work. Program statements that you want to
monitor for exceptions are contained within a try block. If an exception occurs within
the try block, it is thrown. Your code can catch this exception (using catch) and handle
it in some rational manner. System-generated exceptions are automatically thrown by
the Java run-time system. To manually throw an exception, use the keyword throw.
Any exception that is thrown out of a method must be specified as such by a throws
clause. Any code that absolutely must be executed before a method returns is put in
a finally block.

This is the general form of an exception-handling block:

try {
// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}
catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2
}
// ...

250 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 251

finally {
// block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred. The remainder of this
chapter describes how to apply this framework.

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable
is at the top of the exception class hierarchy. Immediately below Throwable are two
subclasses that partition exceptions into two distinct branches. One branch is headed
by Exception. This class is used for exceptional conditions that user programs should
catch. This is also the class that you will subclass to create your own custom exception
types. There is an important subclass of Exception, called RuntimeException.
Exceptions of this type are automatically defined for the programs that you write
and include things such as division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected
to be caught under normal circumstances by your program. Exceptions of type Error
are used by the Java run-time system to indicate errors having to do with the run-time
environment, itself. Stack overflow is an example of such an error. This chapter will
not be dealing with exceptions of type Error, because these are typically created in
response to catastrophic failures that cannot usually be handled by your program.

Uncaught Exceptions
Before you learn how to handle exceptions in your program, it is useful to see what
happens when you don’t handle them. This small program includes an expression that
intentionally causes a divide-by-zero error.

class Exc0 {

public static void main(String args[]) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception. This causes the execution of Exc0
to stop, because once an exception has been thrown, it must be caught by an exception
handler and dealt with immediately. In this example, we haven’t supplied any exception
handlers of our own, so the exception is caught by the default handler provided by the

Java run-time system. Any exception that is not caught by your program will ultimately
be processed by the default handler. The default handler displays a string describing
the exception, prints a stack trace from the point at which the exception occurred, and
terminates the program.

Here is the output generated when this example is executed.

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the
type of the exception thrown is a subclass of Exception called ArithmeticException,
which more specifically describes what type of error happened. As discussed later in
this chapter, Java supplies several built-in exception types that match the various sorts
of run-time errors that can be generated.

The stack trace will always show the sequence of method invocations that led up to
the error. For example, here is another version of the preceding program that introduces
the same error but in a method separate from main():

class Exc1 {

static void subroutine() {

int d = 0;

int a = 10 / d;

}

public static void main(String args[]) {

Exc1.subroutine();

}

}

The resulting stack trace from the default exception handler shows how the entire
call stack is displayed:

java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:4)
at Exc1.main(Exc1.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to
subroutine(), which caused the exception at line 4. The call stack is quite useful for
debugging, because it pinpoints the precise sequence of steps that led to the error.

252 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 253
TH

E
JA

V
A

LA
N

G
U

A
G

E

Using try and catch
Although the default exception handler provided by the Java run-time system is useful
for debugging, you will usually want to handle an exception yourself. Doing so
provides two benefits. First, it allows you to fix the error. Second, it prevents the
program from automatically terminating. Most users would be confused (to say the
least) if your program stopped running and printed a stack trace whenever an error
occurred! Fortunately, it is quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you
want to monitor inside a try block. Immediately following the try block, include a catch
clause that specifies the exception type that you wish to catch. To illustrate how easily
this can be done, the following program includes a try block and a catch clause which
processes the ArithmeticException generated by the division-by-zero error:

class Exc2 {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an
exception is thrown, program control transfers out of the try block into the catch block.
Put differently, catch is not “called,” so execution never “returns” to the try block from
a catch. Thus, the line “This will not be printed.” is not displayed. Once the catch
statement has executed, program control continues with the next line in the program
following the entire try/catch mechanism.

254 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

A try and its catch statement form a unit. The scope of the catch clause is restricted
to those statements specified by the immediately preceding try statement. A catch
statement cannot catch an exception thrown by another try statement (except in the
case of nested try statements, described shortly). The statements that are protected by
try must be surrounded by curly braces. (That is, they must be within a block.) You
cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the
exceptional condition and then continue on as if the error had never happened.
For example, in the next program each iteration of the for loop obtains two random
integers. Those two integers are divided by each other, and the result is used to divide
the value 12345. The final result is put into a. If either division operation causes a
divide-by-zero error, it is caught, the value of a is set to zero, and the program
continues.

// Handle an exception and move on.

import java.util.Random;

class HandleError {

public static void main(String args[]) {

int a=0, b=0, c=0;

Random r = new Random();

for(int i=0; i<32000; i++) {

try {

b = r.nextInt();

c = r.nextInt();

a = 12345 / (b/c);

} catch (ArithmeticException e) {

System.out.println("Division by zero.");

a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

}

}

}

Displaying a Description of an Exception
Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception. You can display this description in a
println() statement by simply passing the exception as an argument. For example, the
catch block in the preceding program can be rewritten like this:

catch (ArithmeticException e) {

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each
divide-by-zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description
of an exception is valuable in other circumstances—particularly when you are
experimenting with exceptions or when you are debugging.

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To
handle this type of situation, you can specify two or more catch clauses, each catching
a different type of exception. When an exception is thrown, each catch statement is
inspected in order, and the first one whose type matches that of the exception is
executed. After one catch statement executes, the others are bypassed, and execution
continues after the try/catch block. The following example traps two different
exception types:

// Demonstrate multiple catch statements.

class MultiCatch {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 255
TH

E
JA

V
A

LA
N

G
U

A
G

E

This program will cause a division-by-zero exception if it is started with no command-
line parameters, since a will equal zero. It will survive the division if you provide a
command-line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the
program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.

When you use multiple catch statements, it is important to remember that
exception subclasses must come before any of their superclasses. This is because a
catch statement that uses a superclass will catch exceptions of that type plus any of
its subclasses. Thus, a subclass would never be reached if it came after its superclass.
Further, in Java, unreachable code is an error. For example, consider the following
program:

/* This program contains an error.

A subclass must come before its superclass in

a series of catch statements. If not,

unreachable code will be created and a

compile-time error will result.

*/

class SuperSubCatch {

public static void main(String args[]) {

try {

int a = 0;

int b = 42 / a;

} catch(Exception e) {

System.out.println("Generic Exception catch.");

}

/* This catch is never reached because

ArithmeticException is a subclass of Exception. */

catch(ArithmeticException e) { // ERROR - unreachable

System.out.println("This is never reached.");

256 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 257
TH

E
JA

V
A

LA
N

G
U

A
G

E

}

}

}

If you try to compile this program, you will receive an error message stating that
the second catch statement is unreachable because the exception has already been
caught. Since ArithmeticException is a subclass of Exception, the first catch statement
will handle all Exception-based errors, including ArithmeticException. This means
that the second catch statement will never execute. To fix the problem, reverse the
order of the catch statements.

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of
another try. Each time a try statement is entered, the context of that exception is
pushed on the stack. If an inner try statement does not have a catch handler for a
particular exception, the stack is unwound and the next try statement’s catch handlers
are inspected for a match. This continues until one of the catch statements succeeds, or
until all of the nested try statements are exhausted. If no catch statement matches, then
the Java run-time system will handle the exception. Here is an example that uses
nested try statements:

// An example of nested try statements.

class NestTry {

public static void main(String args[]) {

try {

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

As you can see, this program nests one try block within another. The program
works as follows. When you execute the program with no command-line arguments, a
divide-by-zero exception is generated by the outer try block. Execution of the program
by one command-line argument generates a divide-by-zero exception from within the
nested try block. Since the inner block does not catch this exception, it is passed on
to the outer try block, where it is handled. If you execute the program with two
command-line arguments, an array boundary exception is generated from within
the inner try block. Here are sample runs that illustrate each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a = 1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two
a = 2
Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException

Nesting of try statements can occur in less obvious ways when method calls are
involved. For example, you can enclose a call to a method within a try block. Inside
that method is another try statement. In this case, the try within the method is still
nested inside the outer try block, which calls the method. Here is the previous program
recoded so that the nested try block is moved inside the method nesttry():

258 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 259
TH

E
JA

V
A

LA
N

G
U

A
G

E

/* Try statements can be implicitly nested via

calls to methods. */

class MethNestTry {

static void nesttry(int a) {

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

}

public static void main(String args[]) {

try {

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a);

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

The output of this program is identical to that of the preceding example.

throw
So far, you have only been catching exceptions that are thrown by the Java run-time
system. However, it is possible for your program to throw an exception explicitly,
using the throw statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of
Throwable. Simple types, such as int or char, as well as non-Throwable classes, such
as String and Object, cannot be used as exceptions. There are two ways you can obtain
a Throwable object: using a parameter into a catch clause, or creating one with the new
operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of the exception. If it does find a match, control
is transferred to that statement. If not, then the next enclosing try statement is
inspected, and so on. If no matching catch is found, then the default exception handler
halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that
catches the exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

260 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up
another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then
rethrown. Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects.
Pay close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. All of Java’s
built-in run-time exceptions have at least two constructors: one with no parameter
and one that takes a string parameter. When the second form is used, the argument
specifies a string that describes the exception. This string is displayed when the object
is used as an argument to print() or println(). It can also be obtained by a call to
getMessage(), which is defined by Throwable.

throws
If a method is capable of causing an exception that it does not handle, it must specify
this behavior so that callers of the method can guard themselves against that exception.
You do this by including a throws clause in the method’s declaration. A throws clause
lists the types of exceptions that a method might throw. This is necessary for all
exceptions, except those of type Error or RuntimeException, or any of their subclasses.
All other exceptions that a method can throw must be declared in the throws clause. If
they are not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{
// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 261

Following is an example of an incorrect program that tries to throw an exception
that it does not catch. Because the program does not specify a throws clause to declare
this fact, the program will not compile.

// This program contains an error and will not compile.

class ThrowsDemo {

static void throwOne() {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

throwOne();

}

}

To make this example compile, you need to make two changes. First, you need to
declare that throwOne() throws IllegalAccessException. Second, main() must define
a try/catch statement that catches this exception.

The corrected example is shown here:

// This is now correct.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

262 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 263
TH

E
JA

V
A

LA
N

G
U

A
G

E

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear
path that alters the normal flow through the method. Depending upon how the
method is coded, it is even possible for an exception to cause the method to return
prematurely. This could be a problem in some methods. For example, if a method
opens a file upon entry and closes it upon exit, then you will not want the code that
closes the file to be bypassed by the exception-handling mechanism. The finally
keyword is designed to address this contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally
block will execute even if no catch statement matches the exception. Any time a
method is about to return to the caller from inside a try/catch block, via an uncaught
exception or an explicit return statement, the finally clause is also executed just before
the method returns. This can be useful for closing file handles and freeing up any other
resources that might have been allocated at the beginning of a method with the intent
of disposing of them before returning. The finally clause is optional. However, each try
statement requires at least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways,
none without executing their finally clauses:

// Demonstrate finally.

class FinallyDemo {

// Through an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

In this example, procA() prematurely breaks out of the try by throwing an
exception. The finally clause is executed on the way out. procB()’s try statement is
exited via a return statement. The finally clause is executed before procB() returns. In
procC(), the try statement executes normally, without error. However, the finally
block is still executed.

If a finally block is associated with a try, the finally block will be executed upon
conclusion of the try.

Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

264 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few
have been used by the preceding examples. The most general of these exceptions
are subclasses of the standard type RuntimeException. Since java.lang is implicitly
imported into all Java programs, most exceptions derived from RuntimeException
are automatically available. Furthermore, they need not be included in any method’s
throws list. In the language of Java, these are called unchecked exceptions because the
compiler does not check to see if a method handles or throws these exceptions. The
unchecked exceptions defined in java.lang are listed in Table 10-1. Table 10-2 lists those
exceptions defined by java.lang that must be included in a method’s throws list if that
method can generate one of these exceptions and does not handle it itself. These are
called checked exceptions. Java defines several other types of exceptions that relate to its
various class libraries.

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 265
TH

E
JA

V
A

LA
N

G
U

A
G

E

Exception Meaning

ArithmeticException Arithmetic error, such as
divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an
incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a
method.

IllegalMonitorStateException Illegal monitor operation, such as
waiting on an unlocked thread.

IllegalStateException Environment or application is in
incorrect state.

IllegalThreadStateException Requested operation not compatible
with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

Table 10-1. Java’s Unchecked RuntimeException Subclasses

266 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not
implement the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an
abstract class or interface.

InterruptedException One thread has been interrupted by
another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Table 10-2. Java’s Checked Exceptions Defined in java.lang

Exception Meaning

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a
numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of
a string.

UnsupportedOperationException An unsupported operation was
encountered.

Table 10-1. Java’s Unchecked RuntimeException Subclasses (continued)

Creating Your Own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, you will probably want
to create your own exception types to handle situations specific to your applications.
This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass
of Throwable). Your subclasses don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course,
inherit those methods provided by Throwable. Thus, all exceptions, including those
that you create, have the methods defined by Throwable available to them. They are
shown in Table 10-3. Notice that several methods were added by Java 2, version 1.4.
You may also wish to override one or more of these methods in exception classes that
you create.

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 267

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains
a completed stack trace. This object can be
rethrown.

Throwable getCause() Returns the exception that underlies the
current exception. If there is no underlying
exception, null is returned. Added by Java 2,
version 1.4.

String getLocalizedMessage() Returns a localized description of the
exception.

String getMessage() Returns a description of the exception.

StackTraceElement[] getStackTrace() Returns an array that contains the stack
trace, one element at a time as an array of
StackTraceElement. The method at the top
of the stack is the last method called before
the exception was thrown. This method
is found in the first element of the array.
The StackTraceElement class gives your
program access to information about each
element in the trace, such as its method
name. Added by Java 2, version 1.4

Throwable initCause(Throwable
causeExc)

Associates causeExc with the invoking
exception as a cause of the invoking exception.
Returns a reference to the exception. Added
by Java 2, version 1.4

Table 10-3. The Methods Defined by Throwable

The following example declares a new subclass of Exception and then uses that
subclass to signal an error condition in a method. It overrides the toString() method,
allowing the description of the exception to be displayed using println().

// This program creates a custom exception type.

class MyException extends Exception {

private int detail;

MyException(int a) {

detail = a;

}

public String toString() {

return "MyException[" + detail + "]";

}

}

class ExceptionDemo {

static void compute(int a) throws MyException {

System.out.println("Called compute(" + a + ")");

268 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement
elements[])

Sets the stack trace to the elements passed
in elements. This method is for specialized
applications, not normal use. Added by Java 2,
version 1.4

String toString() Returns a String object containing a
description of the exception. This method
is called by println() when outputting a
Throwable object.

Table 10-3. The Methods Defined by Throwable (continued)

if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");

}

public static void main(String args[]) {

try {

compute(1);

compute(20);

} catch (MyException e) {

System.out.println("Caught " + e);

}

}

}

This example defines a subclass of Exception called MyException. This subclass
is quite simple: it has only a constructor plus an overloaded toString() method that
displays the value of the exception. The ExceptionDemo class defines a method
named compute() that throws a MyException object. The exception is thrown when
compute()’s integer parameter is greater than 10. The main() method sets up an
exception handler for MyException, then calls compute() with a legal value (less
than 10) and an illegal one to show both paths through the code. Here is the result:

Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

Chained Exceptions
Java 2, version 1.4 added a new feature to the exception subsystem: chained exceptions.
The chained exception feature allows you to associate another exception with an exception.
This second exception describes the cause of the first exception. For example, imagine a
situation in which a method throws an ArithmeticException because of an attempt to
divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let
the calling code know that the underlying cause was an I/O error. Chained exceptions
let you handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, Java 2, version 1.4 added two constructors and two
methods to Throwable. The constructors are shown here.

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 269
TH

E
JA

V
A

LA
N

G
U

A
G

E

In the first form, causeExc is the exception that causes the current exception. That is,
causeExc is the underlying reason that an exception occurred. The second form allows
you to specify a description at the same time that you specify a cause exception. These
two constructors have also been added to the Error, Exception, and RuntimeException
classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3, and are repeated here for the sake of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception.
If there is no underlying exception, null is returned. The initCause() method associates
causeExc with the invoking exception and returns a reference to the exception. Thus, you
can associate a cause with an exception after the exception has been created. However, the
cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you
can’t set it again using initCause().

In general, initCause() is used to set a cause for legacy exception classes which
don’t support the two additional constructors described earlier. At the time of this
writing, most of Java’s built-in exceptions, such as ArithmeticException, do not define
the additional constructors. Thus, you will use initCause() if you need to add an
exception chain to these exceptions. When creating your own exception classes you
will want to add the two chained-exception constructors if you will be using your
exceptions in situations in which layered exceptions are possible.

Here is an example that illustrates the mechanics of handling chained exceptions.

// Demonstrate exception chaining.

class ChainExcDemo {

static void demoproc() {

// create an exception

NullPointerException e =

new NullPointerException("top layer");

// add a cause

e.initCause(new ArithmeticException("cause"));

throw e;

}

public static void main(String args[]) {

try {

demoproc();

270 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

} catch(NullPointerException e) {

// display top level exception

System.out.println("Caught: " + e);

// display cause exception

System.out.println("Original cause: " +

e.getCause());

}

}

}

The output from the program is shown here.

Caught: java.lang.NullPointerException: top layer

Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added
a cause exception, ArithmeticException. When the exception is thrown out of
demoproc(), it is caught by main(). There, the top-level exception is displayed,
followed by the underlying exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the
cause exception can, itself, have a cause. Be aware that overly long chains of exceptions
may indicate poor design.

Chained exceptions are not something that every program will need. However, in
cases in which knowledge of an underlying cause is useful, they offer an elegant solution.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs
that have many dynamic run-time characteristics. It is important to think of try, throw,
and catch as clean ways to handle errors and unusual boundary conditions in your
program’s logic. If you are like most programmers, then you probably are used to
returning an error code when a method fails. When you are programming in Java, you
should break this habit. When a method can fail, have it throw an exception. This is a
cleaner way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a
general mechanism for nonlocal branching. If you do so, it will only confuse your code
and make it hard to maintain.

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 271
TH

E
JA

V
A

LA
N

G
U

A
G

E

This page intentionally left blank.

Chapter 11
Multithreaded
Programming

273

274 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Unlike most other computer languages, Java provides built-in support for
multithreaded programming. A multithreaded program contains two or more
parts that can run concurrently. Each part of such a program is called a thread,

and each thread defines a separate path of execution. Thus, multithreading is a
specialized form of multitasking.

You are almost certainly acquainted with multitasking, because it is supported
by virtually all modern operating systems. However, there are two distinct types
of multitasking: process-based and thread-based. It is important to understand the
difference between the two. For most readers, process-based multitasking is the more
familiar form. A process is, in essence, a program that is executing. Thus, process-based
multitasking is the feature that allows your computer to run two or more programs
concurrently. For example, process-based multitasking enables you to run the Java
compiler at the same time that you are using a text editor. In process-based multitasking,
a program is the smallest unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. This means that a single program can perform two or more tasks
simultaneously. For instance, a text editor can format text at the same time that it is
printing, as long as these two actions are being performed by two separate threads.
Thus, process-based multitasking deals with the “big picture,” and thread-based
multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes
are heavyweight tasks that require their own separate address spaces. Interprocess
communication is expensive and limited. Context switching from one process to
another is also costly. Threads, on the other hand, are lightweight. They share the same
address space and cooperatively share the same heavyweight process. Interthread
communication is inexpensive, and context switching from one thread to the next is
low cost. While Java programs make use of process-based multitasking environments,
process-based multitasking is not under the control of Java. However, multithreaded
multitasking is.

Multithreading enables you to write very efficient programs that make maximum
use of the CPU, because idle time can be kept to a minimum. This is especially
important for the interactive, networked environment in which Java operates, because
idle time is common. For example, the transmission rate of data over a network is
much slower than the rate at which the computer can process it. Even local file system
resources are read and written at a much slower pace than they can be processed by the
CPU. And, of course, user input is much slower than the computer. In a traditional,
single-threaded environment, your program has to wait for each of these tasks to finish
before it can proceed to the next one—even though the CPU is sitting idle most of the
time. Multithreading lets you gain access to this idle time and put it to good use.

If you have programmed for operating systems such as Windows 98 or Windows 2000,
then you are already familiar with multithreaded programming. However, the fact that
Java manages threads makes multithreading especially convenient, because many of
the details are handled for you.

The Java Thread Model
The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the
entire environment to be asynchronous. This helps reduce inefficiency by preventing
the waste of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its
counterpart. Single-threaded systems use an approach called an event loop with polling.
In this model, a single thread of control runs in an infinite loop, polling a single event
queue to decide what to do next. Once this polling mechanism returns with, say, a
signal that a network file is ready to be read, then the event loop dispatches control
to the appropriate event handler. Until this event handler returns, nothing else can
happen in the system. This wastes CPU time. It can also result in one part of a program
dominating the system and preventing any other events from being processed. In
general, in a singled-threaded environment, when a thread blocks (that is, suspends
execution) because it is waiting for some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is
eliminated. One thread can pause without stopping other parts of your program. For
example, the idle time created when a thread reads data from a network or waits for
user input can be utilized elsewhere. Multithreading allows animation loops to sleep
for a second between each frame without causing the whole system to pause. When a
thread blocks in a Java program, only the single thread that is blocked pauses. All other
threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as
soon as it gets CPU time. A running thread can be suspended, which temporarily
suspends its activity. A suspended thread can then be resumed, allowing it to pick up
where it left off. A thread can be blocked when waiting for a resource. At any time, a
thread can be terminated, which halts its execution immediately. Once terminated, a
thread cannot be resumed.

Thread Priorities
Java assigns to each thread a priority that determines how that thread should be
treated with respect to the others. Thread priorities are integers that specify the relative
priority of one thread to another. As an absolute value, a priority is meaningless; a
higher-priority thread doesn’t run any faster than a lower-priority thread if it is the
only thread running. Instead, a thread’s priority is used to decide when to switch from
one running thread to the next. This is called a context switch. The rules that determine
when a context switch takes place are simple:

■ A thread can voluntarily relinquish control. This is done by explicitly yielding,
sleeping, or blocking on pending I/O. In this scenario, all other threads are
examined, and the highest-priority thread that is ready to run is given the CPU.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 275
TH

E
JA

V
A

LA
N

G
U

A
G

E

276 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

■ A thread can be preempted by a higher-priority thread. In this case, a lower-priority
thread that does not yield the processor is simply preempted—no matter what
it is doing—by a higher-priority thread. Basically, as soon as a higher-priority
thread wants to run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows 98, threads of
equal priority are time-sliced automatically in round-robin fashion. For other types of
operating systems, threads of equal priority must voluntarily yield control to their peers.
If they don’t, the other threads will not run.

Problems can arise from the differences in the way that operating systems context-switch
threads of equal priority.

Synchronization
Because multithreading introduces an asynchronous behavior to your programs, there
must be a way for you to enforce synchronicity when you need it. For example, if you
want two threads to communicate and share a complicated data structure, such as a
linked list, you need some way to ensure that they don’t conflict with each other. That
is, you must prevent one thread from writing data while another thread is in the
middle of reading it. For this purpose, Java implements an elegant twist on an age-old
model of interprocess synchronization: the monitor. The monitor is a control mechanism
first defined by C.A.R. Hoare. You can think of a monitor as a very small box that can
hold only one thread. Once a thread enters a monitor, all other threads must wait until
that thread exits the monitor. In this way, a monitor can be used to protect a shared
asset from being manipulated by more than one thread at a time.

Most multithreaded systems expose monitors as objects that your program must
explicitly acquire and manipulate. Java provides a cleaner solution. There is no class
“Monitor”; instead, each object has its own implicit monitor that is automatically entered
when one of the object’s synchronized methods is called. Once a thread is inside a
synchronized method, no other thread can call any other synchronized method on
the same object. This enables you to write very clear and concise multithreaded code,
because synchronization support is built in to the language.

Messaging
After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you
must depend on the operating system to establish communication between threads.
This, of course, adds overhead. By contrast, Java provides a clean, low-cost way for two
or more threads to talk to each other, via calls to predefined methods that all objects

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 277
TH

E
JA

V
A

LA
N

G
U

A
G

E

have. Java’s messaging system allows a thread to enter a synchronized method on an
object, and then wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface
Java’s multithreading system is built upon the Thread class, its methods, and its
companion interface, Runnable. Thread encapsulates a thread of execution. Since
you can’t directly refer to the ethereal state of a running thread, you will deal with it
through its proxy, the Thread instance that spawned it. To create a new thread, your
program will either extend Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. The ones
that will be used in this chapter are shown here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The
remainder of this chapter explains how to use Thread and Runnable to create and
manage threads, beginning with the one thread that all Java programs have: the
main thread.

The Main Thread
When a Java program starts up, one thread begins running immediately. This is
usually called the main thread of your program, because it is the one that is executed
when your program begins. The main thread is important for two reasons:

■ It is the thread from which other “child” threads will be spawned.

■ Often it must be the last thread to finish execution because it performs various
shutdown actions.

Although the main thread is created automatically when your program is started, it
can be controlled through a Thread object. To do so, you must obtain a reference to it
by calling the method currentThread(), which is a public static member of Thread. Its
general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:

// Controlling the main Thread.

class CurrentThreadDemo {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

}

In this program, a reference to the current thread (the main thread, in this case) is
obtained by calling currentThread(), and this reference is stored in the local variable t.
Next, the program displays information about the thread. The program then calls
setName() to change the internal name of the thread. Information about the thread is
then redisplayed. Next, a loop counts down from five, pausing one second between
each line. The pause is accomplished by the sleep() method. The argument to sleep()
specifies the delay period in milliseconds. Notice the try/catch block around this loop.
The sleep() method in Thread might throw an InterruptedException. This would
happen if some other thread wanted to interrupt this sleeping one. This example just

278 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

prints a message if it gets interrupted. In a real program, you would need to handle
this differently. Here is the output generated by this program:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

Notice the output produced when t is used as an argument to println(). This displays,
in order: the name of the thread, its priority, and the name of its group. By default, the
name of the main thread is main. Its priority is 5, which is the default value, and main
is also the name of the group of threads to which this thread belongs. A thread group is
a data structure that controls the state of a collection of threads as a whole. This process
is managed by the particular run-time environment and is not discussed in detail here.
After the name of the thread is changed, t is again output. This time, the new name of
the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the
program. The sleep() method causes the thread from which it is called to suspend
execution for the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may
throw an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify
the period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short
as nanoseconds.

As the preceding program shows, you can set the name of a thread by using
setName(). You can obtain the name of a thread by calling getName() (but note
that this procedure is not shown in the program). These methods are members
of the Thread class and are declared like this:

final void setName(String threadName)

final String getName()

Here, threadName specifies the name of the thread.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 279
TH

E
JA

V
A

LA
N

G
U

A
G

E

280 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Creating a Thread
In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

■ You can implement the Runnable interface.

■ You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable
The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on
any object that implements Runnable. To implement Runnable, a class need only
implement a single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is
important to understand that run() can call other methods, use other classes, and
declare variables, just like the main thread can. The only difference is that run()
establishes the entry point for another, concurrent thread of execution within your
program. This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiate an object of
type Thread from within that class. Thread defines several constructors. The one that
we will use is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new
thread is specified by threadName.

After the new thread is created, it will not start running until you call its start()
method, which is declared within Thread. In essence, start() executes a call to run().
The start() method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 281
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() {

// Create a new, second thread

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Inside NewThread’s constructor, a new Thread object is created by the following
statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the
run() method on this object. Next, start() is called, which starts the thread of execution
beginning at the run() method. This causes the child thread’s for loop to begin. After
calling start(), NewThread’s constructor returns to main(). When the main thread
resumes, it enters its for loop. Both threads continue running, sharing the CPU, until
their loops finish. The output produced by this program is as follows:

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must
be the last thread to finish running. In fact, for some older JVMs, if the main thread
finishes before a child thread has completed, then the Java run-time system may
“hang.” The preceding program ensures that the main thread finishes last, because
the main thread sleeps for 1,000 milliseconds between iterations, but the child thread
sleeps for only 500 milliseconds. This causes the child thread to terminate earlier than
the main thread. Shortly, you will see a better way to wait for a thread to finish.

Extending Thread
The second way to create a thread is to create a new class that extends Thread,
and then to create an instance of that class. The extending class must override the
run() method, which is the entry point for the new thread. It must also call start()
to begin execution of the new thread. Here is the preceding program rewritten to
extend Thread:

282 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 283
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Create a second thread by extending Thread

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

284 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program generates the same output as the preceding version. As you can see, the
child thread is created by instantiating an object of NewThread, which is derived
from Thread.

Notice the call to super() inside NewThread. This invokes the following form of
the Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Choosing an Approach
At this point, you might be wondering why Java has two ways to create child threads,
and which approach is better. The answers to these questions turn on the same point.
The Thread class defines several methods that can be overridden by a derived class.
Of these methods, the only one that must be overridden is run(). This is, of course, the
same method required when you implement Runnable. Many Java programmers feel
that classes should be extended only when they are being enhanced or modified in
some way. So, if you will not be overriding any of Thread’s other methods, it is
probably best simply to implement Runnable. This is up to you, of course. However,
throughout the rest of this chapter, we will create threads by using classes that
implement Runnable.

Creating Multiple Threads
So far, you have been using only two threads: the main thread and one child thread.
However, your program can spawn as many threads as it needs. For example, the
following program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + "Interrupted");

}

System.out.println(name + " exiting.");

}

}

class MultiThreadDemo {

public static void main(String args[]) {

new NewThread("One"); // start threads

new NewThread("Two");

new NewThread("Three");

try {

// wait for other threads to end

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

The output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 285
TH

E
JA

V
A

LA
N

G
U

A
G

E

286 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and
ensures that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding
examples, this is accomplished by calling sleep() within main(), with a long enough
delay to ensure that all child threads terminate prior to the main thread. However,
this is hardly a satisfactory solution, and it also raises a larger question: How can one
thread know when another thread has ended? Fortunately, Thread provides a means
by which you can answer this question.

Two ways exist to determine whether a thread has finished. First, you can call
isAlive() on the thread. This method is defined by Thread, and its general form is
shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running.
It returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly
use to wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes
from the concept of the calling thread waiting until the specified thread joins it.
Additional forms of join() allow you to specify a maximum amount of time that
you want to wait for the specified thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure
that the main thread is the last to stop. It also demonstrates the isAlive() method.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 287
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Using join() to wait for threads to finish.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

class DemoJoin {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: "

+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "

+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "

+ ob3.t.isAlive());

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: "

+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "

+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "

+ ob3.t.isAlive());

System.out.println("Main thread exiting.");

}

}

Sample output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1

288 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Two exiting.
Three exiting.
One exiting.
Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Thread priorities are used by the thread scheduler to decide when each thread should
be allowed to run. In theory, higher-priority threads get more CPU time than lower-
priority threads. In practice, the amount of CPU time that a thread gets often depends
on several factors besides its priority. (For example, how an operating system implements
multitasking can affect the relative availability of CPU time.) A higher-priority thread
can also preempt a lower-priority one. For instance, when a lower-priority thread is
running and a higher-priority thread resumes (from sleeping or waiting on I/O, for
example), it will preempt the lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need
to be careful. Remember, Java is designed to work in a wide range of environments.
Some of those environments implement multitasking fundamentally differently than
others. For safety, threads that share the same priority should yield control once in
a while. This ensures that all threads have a chance to run under a nonpreemptive
operating system. In practice, even in nonpreemptive environments, most threads
still get a chance to run, because most threads inevitably encounter some blocking
situation, such as waiting for I/O. When this happens, the blocked thread is suspended
and other threads can run. But, if you want smooth multithreaded execution, you are
better off not relying on this. Also, some types of tasks are CPU-intensive. Such threads
dominate the CPU. For these types of threads, you want to yield control occasionally,
so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of
Thread. This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level
must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10, respectively. To return a thread to default priority, specify
NORM_PRIORITY, which is currently 5. These priorities are defined as final
variables within Thread.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 289
TH

E
JA

V
A

LA
N

G
U

A
G

E

You can obtain the current priority setting by calling the getPriority() method of
Thread, shown here:

final int getPriority()

Implementations of Java may have radically different behavior when it comes to
scheduling. The Windows XP/98/NT/2000 version works, more or less, as you would
expect. However, other versions may work quite differently. Most of the inconsistencies
arise when you have threads that are relying on preemptive behavior, instead of
cooperatively giving up CPU time. The safest way to obtain predictable, cross-platform
behavior with Java is to use threads that voluntarily give up control of the CPU.

The following example demonstrates two threads at different priorities, which do
not run on a preemptive platform in the same way as they run on a nonpreemptive
platform. One thread is set two levels above the normal priority, as defined by
Thread.NORM_PRIORITY, and the other is set to two levels below it. The threads
are started and allowed to run for ten seconds. Each thread executes a loop, counting
the number of iterations. After ten seconds, the main thread stops both threads. The
number of times that each thread made it through the loop is then displayed.

// Demonstrate thread priorities.

class clicker implements Runnable {

int click = 0;

Thread t;

private volatile boolean running = true;

public clicker(int p) {

t = new Thread(this);

t.setPriority(p);

}

public void run() {

while (running) {

click++;

}

}

public void stop() {

running = false;

}

public void start() {

t.start();

}

}

290 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class HiLoPri {

public static void main(String args[]) {

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

clicker hi = new clicker(Thread.NORM_PRIORITY + 2);

clicker lo = new clicker(Thread.NORM_PRIORITY - 2);

lo.start();

hi.start();

try {

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

lo.stop();

hi.stop();

// Wait for child threads to terminate.

try {

hi.t.join();

lo.t.join();

} catch (InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Low-priority thread: " + lo.click);

System.out.println("High-priority thread: " + hi.click);

}

}

The output of this program, shown as follows when run under Windows 98,
indicates that the threads did context switch, even though neither voluntarily yielded
the CPU nor blocked for I/O. The higher-priority thread got approximately 90 percent
of the CPU time.

Low-priority thread: 4408112
High-priority thread: 589626904

Of course, the exact output produced by this program depends on the speed of your
CPU and the number of other tasks running in the system. When this same program
is run under a nonpreemptive system, different results will be obtained.

One other note about the preceding program. Notice that running is preceded
by the keyword volatile. Although volatile is examined more carefully in the next

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 291
TH

E
JA

V
A

LA
N

G
U

A
G

E

chapter, it is used here to ensure that the value of running is examined each time the
following loop iterates:

while (running) {

click++;

}

Without the use of volatile, Java is free to optimize the loop in such a way that a local
copy of running is created. The use of volatile prevents this optimization, telling Java
that running may change in ways not directly apparent in the immediate code.

Synchronization
When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by
which this is achieved is called synchronization. As you will see, Java provides unique,
language-level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). A
monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread
can own a monitor at a given time. When a thread acquires a lock, it is said to have
entered the monitor. All other threads attempting to enter the locked monitor will be
suspended until the first thread exits the monitor. These other threads are said to
be waiting for the monitor. A thread that owns a monitor can reenter the same monitor
if it so desires.

If you have worked with synchronization when using other languages, such as C or
C++, you know that it can be a bit tricky to use. This is because most languages do not,
themselves, support synchronization. Instead, to synchronize threads, your programs
need to utilize operating system primitives. Fortunately, because Java implements
synchronization through language elements, most of the complexity associated with
synchronization has been eliminated.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods
Synchronization is easy in Java, because all objects have their own implicit monitor
associated with them. To enter an object’s monitor, just call a method that has been
modified with the synchronized keyword. While a thread is inside a synchronized
method, all other threads that try to call it (or any other synchronized method)
on the same instance have to wait. To exit the monitor and relinquish control of
the object to the next waiting thread, the owner of the monitor simply returns
from the synchronized method.

292 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To understand the need for synchronization, let’s begin with a simple example that
does not use it—but should. The following program has three simple classes. The first
one, Callme, has a single method named call(). The call() method takes a String
parameter called msg. This method tries to print the msg string inside of square
brackets. The interesting thing to notice is that after call() prints the opening bracket
and the msg string, it calls Thread.sleep(1000), which pauses the current thread for
one second.

The constructor of the next class, Caller, takes a reference to an instance of the
Callme class and a String, which are stored in target and msg, respectively. The
constructor also creates a new thread that will call this object’s run() method. The
thread is started immediately. The run() method of Caller calls the call() method on
the target instance of Callme, passing in the msg string. Finally, the Synch class starts
by creating a single instance of Callme, and three instances of Caller, each with a unique
message string. The same instance of Callme is passed to each Caller.

// This program is not synchronized.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run() {

target.call(msg);

}

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 293
TH

E
JA

V
A

LA
N

G
U

A
G

E

}

class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Here is the output produced by this program:

Hello[Synchronized[World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to
another thread. This results in the mixed-up output of the three message strings. In
this program, nothing exists to stop all three threads from calling the same method, on
the same object, at the same time. This is known as a race condition, because the three
threads are racing each other to complete the method. This example used sleep() to
make the effects repeatable and obvious. In most situations, a race condition is more
subtle and less predictable, because you can’t be sure when the context switch will
occur. This can cause a program to run right one time and wrong the next.

To fix the preceding program, you must serialize access to call(). That is, you must
restrict its access to only one thread at a time. To do this, you simply need to precede
call()’s definition with the keyword synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

...

294 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This prevents other threads from entering call() while another thread is using it.
After synchronized has been added to call(), the output of the program is as follows:

[Hello]
[Synchronized]
[World]

Any time that you have a method, or group of methods, that manipulates the
internal state of an object in a multithreaded situation, you should use the synchronized
keyword to guard the state from race conditions. Remember, once a thread enters any
synchronized method on an instance, no other thread can enter any other synchronized
method on the same instance. However, nonsynchronized methods on that instance
will continue to be callable.

The synchronized Statement
While creating synchronized methods within classes that you create is an easy and
effective means of achieving synchronization, it will not work in all cases. To understand
why, consider the following. Imagine that you want to synchronize access to objects of
a class that was not designed for multithreaded access. That is, the class does not use
synchronized methods. Further, this class was not created by you, but by a third party,
and you do not have access to the source code. Thus, you can’t add synchronized to
the appropriate methods within the class. How can access to an object of this class be
synchronized? Fortunately, the solution to this problem is quite easy: You simply put
calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {
// statements to be synchronized
}

Here, object is a reference to the object being synchronized. A synchronized block
ensures that a call to a method that is a member of object occurs only after the current
thread has successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 295
TH

E
JA

V
A

LA
N

G
U

A
G

E

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

296 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("Interrupted");

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as
the preceding example, because each thread waits for the prior one to finish before
proceeding.

Interthread Communication
The preceding examples unconditionally blocked other threads from asynchronous
access to certain methods. This use of the implicit monitors in Java objects is powerful,
but you can achieve a more subtle level of control through interprocess communication.
As you will see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing
your tasks into discrete and logical units. Threads also provide a secondary benefit:
they do away with polling. Polling is usually implemented by a loop that is used to
check some condition repeatedly. Once the condition is true, appropriate action is
taken. This wastes CPU time. For example, consider the classic queuing problem,
where one thread is producing some data and another is consuming it. To make the
problem more interesting, suppose that the producer has to wait until the consumer is
finished before it generates more data. In a polling system, the consumer would waste
many CPU cycles while it waited for the producer to produce. Once the producer was
finished, it would start polling, wasting more CPU cycles waiting for the consumer to
finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism
via the wait(), notify(), and notifyAll() methods. These methods are implemented
as final methods in Object, so all classes have them. All three methods can be called
only from within a synchronized context. Although conceptually advanced from
a computer science perspective, the rules for using these methods are actually
quite simple:

■ wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify().

■ notify() wakes up the first thread that called wait() on the same object.

■ notifyAll() wakes up all the threads that called wait() on the same object.
The highest priority thread will run first.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 297
TH

E
JA

V
A

LA
N

G
U

A
G

E

298 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notifyAll()

Additional forms of wait() exist that allow you to specify a period of time to wait.
The following sample program incorrectly implements a simple form of the

producer/consumer problem. It consists of four classes: Q, the queue that you’re
trying to synchronize; Producer, the threaded object that is producing queue entries;
Consumer, the threaded object that is consuming queue entries; and PC, the tiny
class that creates the single Q, Producer, and Consumer.

// An incorrect implementation of a producer and consumer.

class Q {

int n;

synchronized int get() {

System.out.println("Got: " + n);

return n;

}

synchronized void put(int n) {

this.n = n;

System.out.println("Put: " + n);

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 299
TH

E
JA

V
A

LA
N

G
U

A
G

E

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PC {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C to stop.");

}

}

Although the put() and get() methods on Q are synchronized, nothing stops the
producer from overrunning the consumer, nor will anything stop the consumer from
consuming the same queue value twice. Thus, you get the erroneous output shown
here (the exact output will vary with processor speed and task load):

Put: 1
Got: 1
Got: 1
Got: 1
Got: 1
Got: 1

Put: 2
Put: 3
Put: 4
Put: 5
Put: 6
Put: 7
Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five
times in a row. Then, the producer resumed and produced 2 through 7 without letting
the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal
in both directions, as shown here:

// A correct implementation of a producer and consumer.

class Q {

int n;

boolean valueSet = false;

synchronized int get() {

if(!valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int n) {

if(valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

this.n = n;

300 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 301
TH

E
JA

V
A

LA
N

G
U

A
G

E

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PCFixed {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

302 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("Press Control-C to stop.");

}

}

Inside get(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside get()
resumes. After the data has been obtained, get() calls notify(). This tells Producer that
it is okay to put more data in the queue. Inside put(), wait() suspends execution until
the Consumer has removed the item from the queue. When execution resumes, the
next item of data is put in the queue, and notify() is called. This tells the Consumer
that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

Put: 1
Got: 1
Put: 2
Got: 2
Put: 3
Got: 3
Put: 4
Got: 4
Put: 5
Got: 5

Deadlock
A special type of error that you need to avoid that relates specifically to multitasking
is deadlock, which occurs when two threads have a circular dependency on a pair of
synchronized objects. For example, suppose one thread enters the monitor on object X
and another thread enters the monitor on object Y. If the thread in X tries to call any
synchronized method on Y, it will block as expected. However, if the thread in Y, in
turn, tries to call any synchronized method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so that the first thread could
complete. Deadlock is a difficult error to debug for two reasons:

■ In general, it occurs only rarely, when the two threads time-slice in just the
right way.

■ It may involve more than two threads and two synchronized objects. (That is,
deadlock can occur through a more convoluted sequence of events than just
described.)

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 303
TH

E
JA

V
A

LA
N

G
U

A
G

E

To understand deadlock fully, it is useful to see it in action. The next example creates
two classes, A and B, with methods foo() and bar(), respectively, which pause briefly
before trying to call a method in the other class. The main class, named Deadlock, creates
an A and a B instance, and then starts a second thread to set up the deadlock condition.
The foo() and bar() methods use sleep() as a way to force the deadlock condition
to occur.

// An example of deadlock.

class A {

synchronized void foo(B b) {

String name = Thread.currentThread().getName();

System.out.println(name + " entered A.foo");

try {

Thread.sleep(1000);

} catch(Exception e) {

System.out.println("A Interrupted");

}

System.out.println(name + " trying to call B.last()");

b.last();

}

synchronized void last() {

System.out.println("Inside A.last");

}

}

class B {

synchronized void bar(A a) {

String name = Thread.currentThread().getName();

System.out.println(name + " entered B.bar");

try {

Thread.sleep(1000);

} catch(Exception e) {

System.out.println("B Interrupted");

}

System.out.println(name + " trying to call A.last()");

a.last();

304 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

synchronized void last() {

System.out.println("Inside A.last");

}

}

class Deadlock implements Runnable {

A a = new A();

B b = new B();

Deadlock() {

Thread.currentThread().setName("MainThread");

Thread t = new Thread(this, "RacingThread");

t.start();

a.foo(b); // get lock on a in this thread.

System.out.println("Back in main thread");

}

public void run() {

b.bar(a); // get lock on b in other thread.

System.out.println("Back in other thread");

}

public static void main(String args[]) {

new Deadlock();

}

}

When you run this program, you will see the output shown here:

MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last()

Because the program has deadlocked, you need to press CTRL-C to end the program.
You can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC . You
will see that RacingThread owns the monitor on b, while it is waiting for the monitor
on a. At the same time, MainThread owns a and is waiting to get b. This program will
never complete. As this example illustrates, if your multithreaded program locks up
occasionally, deadlock is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads
Sometimes, suspending execution of a thread is useful. For example, a separate thread
can be used to display the time of day. If the user doesn’t want a clock, then its thread
can be suspended. Whatever the case, suspending a thread is a simple matter. Once
suspended, restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between Java 2 and
earlier versions. Although you should use the Java 2 approach for all new code, you
still need to understand how these operations were accomplished for earlier Java
environments. For example, you may need to update or maintain older, legacy code.
You also need to understand why a change was made for Java 2. For these reasons, the
next section describes the original way that the execution of a thread was controlled,
followed by a section that describes the approach required for Java 2.

Suspending, Resuming, and Stopping Threads Using
Java 1.1 and Earlier

Prior to Java 2, a program used suspend() and resume(), which are methods defined by
Thread, to pause and restart the execution of a thread. They have the form shown below:

final void suspend()
final void resume()

The following program demonstrates these methods:

// Using suspend() and resume().

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 15; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(200);

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 305
TH

E
JA

V
A

LA
N

G
U

A
G

E

306 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

class SuspendResume {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try {

Thread.sleep(1000);

ob1.t.suspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.t.resume();

System.out.println("Resuming thread One");

ob2.t.suspend();

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.t.resume();

System.out.println("Resuming thread Two");

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

Sample output from this program is shown here:

New thread: Thread[One,5,main]
One: 15
New thread: Thread[Two,5,main]
Two: 15
One: 14
Two: 14
One: 13
Two: 13
One: 12
Two: 12
One: 11
Two: 11
Suspending thread One
Two: 10
Two: 9
Two: 8
Two: 7
Two: 6
Resuming thread One
Suspending thread Two
One: 10
One: 9
One: 8
One: 7
One: 6
Resuming thread Two
Waiting for threads to finish.
Two: 5
One: 5
Two: 4
One: 4
Two: 3
One: 3
Two: 2
One: 2
Two: 1
One: 1
Two exiting.
One exiting.
Main thread exiting.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 307
TH

E
JA

V
A

LA
N

G
U

A
G

E

The Thread class also defines a method called stop() that stops a thread. Its signature
is shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

Suspending, Resuming, and Stopping Threads Using
Java 2

While the suspend(), resume(), and stop() methods defined by Thread seem to be a
perfectly reasonable and convenient approach to managing the execution of threads,
they must not be used for new Java programs. Here’s why. The suspend() method
of the Thread class is deprecated in Java 2. This was done because suspend() can
sometimes cause serious system failures. Assume that a thread has obtained locks on
critical data structures. If that thread is suspended at that point, those locks are not
relinquished. Other threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, is deprecated in Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread
is writing to a critically important data structure and has completed only part of its
changes. If that thread is stopped at that point, that data structure might be left in a
corrupted state.

Because you can’t use the suspend(), resume(), or stop() methods in Java 2 to
control a thread, you might be thinking that no way exists to pause, restart, or terminate
a thread. But, fortunately, this is not true. Instead, a thread must be designed so that the
run() method periodically checks to determine whether that thread should suspend,
resume, or stop its own execution. Typically, this is accomplished by establishing a flag
variable that indicates the execution state of the thread. As long as this flag is set to
“running,” the run() method must continue to let the thread execute. If this variable is
set to “suspend,” the thread must pause. If it is set to “stop,” the thread must terminate.
Of course, a variety of ways exist in which to write such code, but the central theme will
be the same for all programs.

The following example illustrates how the wait() and notify() methods that are
inherited from Object can be used to control the execution of a thread. This example is
similar to the program in the previous section. However, the deprecated method calls
have been removed. Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named suspendFlag,
which is used to control the execution of the thread. It is initialized to false by the
constructor. The run() method contains a synchronized statement block that checks
suspendFlag. If that variable is true, the wait() method is invoked to suspend the
execution of the thread. The mysuspend() method sets suspendFlag to true. The

308 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

myresume() method sets suspendFlag to false and invokes notify() to wake up the
thread. Finally, the main() method has been modified to invoke the mysuspend() and
myresume() methods.

// Suspending and resuming a thread for Java 2

class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

suspendFlag = false;

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 15; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(200);

synchronized(this) {

while(suspendFlag) {

wait();

}

}

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

void mysuspend() {

suspendFlag = true;

}

synchronized void myresume() {

suspendFlag = false;

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 309
TH

E
JA

V
A

LA
N

G
U

A
G

E

310 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

notify();

}

}

class SuspendResume {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try {

Thread.sleep(1000);

ob1.mysuspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.myresume();

System.out.println("Resuming thread One");

ob2.mysuspend();

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.myresume();

System.out.println("Resuming thread Two");

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

The output from this program is identical to that shown in the previous section.
Later in this book, you will see more examples that use the Java 2 mechanism of thread
control. Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the
way required to ensure that run-time errors don’t occur. It is the approach that must be
used for all new code.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 311
TH

E
JA

V
A

LA
N

G
U

A
G

E

Using Multithreading
If you are like most programmers, having multithreaded support built into the language
will be new to you. The key to utilizing this support effectively is to think concurrently
rather than serially. For example, when you have two subsystems within a program
that can execute concurrently, make them individual threads. With the careful use of
multithreading, you can create very efficient programs. A word of caution is in order,
however: If you create too many threads, you can actually degrade the performance
of your program rather than enhance it. Remember, some overhead is associated with
context switching. If you create too many threads, more CPU time will be spent changing
contexts than executing your program!

This page intentionally left blank.

Chapter 12
I/O, Applets, and
Other Topics

313

This chapter introduces two of Java’s most important packages: io and applet. The
io package supports Java’s basic I/O (input/output) system, including file I/O.
The applet package supports applets. Support for both I/O and applets comes

from Java’s core API libraries, not from language keywords. For this reason, an
in-depth discussion of these topics is found in Part II of this book, which examines
Java’s API classes. This chapter discusses the foundation of these two subsystems, so
that you can see how they are integrated into the Java language and how they fit into
the larger context of the Java programming and execution environment. This chapter
also examines the last of Java’s keywords: transient, volatile, instanceof, native,
strictfp, and assert.

I/O Basics
As you may have noticed while reading the preceding 11 chapters, not much use has
been made of I/O in the example programs. In fact, aside from print() and println(),
none of the I/O methods have been used significantly. The reason is simple: most real
applications of Java are not text-based, console programs. Rather, they are graphically
oriented applets that rely upon Java’s Abstract Window Toolkit (AWT) for interaction
with the user. Although text-based programs are excellent as teaching examples, they
do not constitute an important use for Java in the real world. Also, Java’s support for
console I/O is limited and somewhat awkward to use—even in simple example
programs. Text-based console I/O is just not very important to Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible
support for I/O as it relates to files and networks. Java’s I/O system is cohesive and
consistent. In fact, once you understand its fundamentals, the rest of the I/O system is
easy to master.

Streams
Java programs perform I/O through streams. A stream is an abstraction that either
produces or consumes information. A stream is linked to a physical device by the Java
I/O system. All streams behave in the same manner, even if the actual physical devices
to which they are linked differ. Thus, the same I/O classes and methods can be applied
to any type of device. This means that an input stream can abstract many different
kinds of input: from a disk file, a keyboard, or a network socket. Likewise, an output
stream may refer to the console, a disk file, or a network connection. Streams are a
clean way to deal with input/output without having every part of your code
understand the difference between a keyboard and a network, for example. Java
implements streams within class hierarchies defined in the java.io package.

If you are familiar with C/C++/C#, then you are already familiar with the concept of the
stream. Java’s approach to streams is loosely the same.

314 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Byte Streams and Character Streams
Java 2 defines two types of streams: byte and character. Byte streams provide a
convenient means for handling input and output of bytes. Byte streams are used, for
example, when reading or writing binary data. Character streams provide a convenient
means for handling input and output of characters. They use Unicode and, therefore,
can be internationalized. Also, in some cases, character streams are more efficient than
byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus,
all I/O was byte-oriented. Character streams were added by Java 1.1, and certain
byte-oriented classes and methods were deprecated. This is why older code that
doesn’t use character streams should be updated to take advantage of them, where
appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The
character-based streams simply provide a convenient and efficient means for handling
characters.

An overview of both byte-oriented streams and character-oriented streams is
presented in the following sections.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract
classes: InputStream and OutputStream. Each of these abstract classes has several
concrete subclasses, that handle the differences between various devices, such as disk
files, network connections, and even memory buffers. The byte stream classes are
shown in Table 12-1. A few of these classes are discussed later in this section. Others
are described in Part II. Remember, to use the stream classes, you must import java.io.

The abstract classes InputStream and OutputStream define several key methods
that the other stream classes implement. Two of the most important are read() and
write(), which, respectively, read and write bytes of data. Both methods are declared
as abstract inside InputStream and OutputStream. They are overridden by derived
stream classes.

The Character Stream Classes
Character streams are defined by using two class hierarchies. At the top are two
abstract classes, Reader and Writer. These abstract classes handle Unicode character
streams. Java has several concrete subclasses of each of these. The character stream
classes are shown in Table 12-2.

The abstract classes Reader and Writer define several key methods that the other
stream classes implement. Two of the most important methods are read() and write(),
which read and write characters of data, respectively. These methods are overridden
by derived stream classes.

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 315
TH

E
JA

V
A

LA
N

G
U

A
G

E

316 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for
reading the Java standard data types

DataOutputStream An output stream that contains methods for
writing the Java standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and
println()

PushbackInputStream Input stream that supports one-byte “unget,”
which returns a byte to the input stream

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or
more input streams that will be read
sequentially, one after the other

Table 12-1. The Byte Stream Classes

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 317
TH

E
JA

V
A

LA
N

G
U

A
G

E

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters
to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and
println()

PushbackReader Input stream that allows characters to be
returned to the input stream

Reader Abstract class that describes character
stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character
stream output

Table 12-2. The Character Stream I/O Classes

318 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This
package defines a class called System, which encapsulates several aspects of the
run-time environment. For example, using some of its methods, you can obtain the
current time and the settings of various properties associated with the system. System
also contains three predefined stream variables, in, out, and err. These fields are
declared as public and static within System. This means that they can be used by
any other part of your program and without reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console.
System.in refers to standard input, which is the keyboard by default. System.err refers
to the standard error stream, which also is the console by default. However, these
streams may be redirected to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects
of type PrintStream. These are byte streams, even though they typically are used to
read and write characters from and to the console. As you will see, you can wrap these
within character-based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is
a little more complicated.

Reading Console Input
In Java 1.0, the only way to perform console input was to use a byte stream, and older
code that uses this approach persists. Today, using a byte stream to read console input
is still technically possible, but doing so may require the use of a deprecated method,
and this approach is not recommended. The preferred method of reading console input
for Java 2 is to use a character-oriented stream, which makes your program easier to
internationalize and maintain.

Java does not have a generalized console input method that parallels the standard C
function scanf() or C++ input operators.

In Java, console input is accomplished by reading from System.in. To obtain
a character-based stream that is attached to the console, you wrap System.in in a
BufferedReader object, to create a character stream. BuffereredReader supports a
buffered input stream. Its most commonly used constructor is shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader
that is being created. Reader is an abstract class. One of its concrete subclasses is
InputStreamReader, which converts bytes to characters. To obtain an InputStreamReader
object that is linked to System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for
inputStream. Putting it all together, the following line of code creates a BufferedReader
that is connected to the keyboard:

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the
console through System.in.

Reading Characters
To read a character from a BufferedReader, use read(). The version of read() that we
will be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it
as an integer value. It returns –1 when the end of the stream is encountered. As you can
see, it can throw an IOException.

The following program demonstrates read() by reading characters from the console
until the user types a “q”:

// Use a BufferedReader to read characters from the console.

import java.io.*;

class BRRead {

public static void main(String args[])

throws IOException

{

char c;

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter characters, 'q' to quit.");

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 319
TH

E
JA

V
A

LA
N

G
U

A
G

E

// read characters

do {

c = (char) br.read();

System.out.println(c);

} while(c != 'q');

}

}

Here is a sample run:

Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q

This output may look a little different from what you expected, because System.in is
line buffered, by default. This means that no input is actually passed to the program
until you press ENTER. As you can guess, this does not make read() particularly
valuable for interactive, console input.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of
the BufferedReader class. Its general form is shown here:

String readLine() throws IOException

As you can see, it returns a String object.
The following program demonstrates BufferedReader and the readLine() method;

the program reads and displays lines of text until you enter the word “stop”:

// Read a string from console using a BufferedReader.

import java.io.*;

class BRReadLines {

320 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public static void main(String args[])

throws IOException

{

// create a BufferedReader using System.in

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

String str;

System.out.println("Enter lines of text.");

System.out.println("Enter 'stop' to quit.");

do {

str = br.readLine();

System.out.println(str);

} while(!str.equals("stop"));

}

}

The next example creates a tiny text editor. It creates an array of String objects and
then reads in lines of text, storing each line in the array. It will read up to 100 lines or
until you enter “stop”. It uses a BufferedReader to read from the console.

// A tiny editor.

import java.io.*;

class TinyEdit {

public static void main(String args[])

throws IOException

{

// create a BufferedReader using System.in

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

String str[] = new String[100];

System.out.println("Enter lines of text.");

System.out.println("Enter 'stop' to quit.");

for(int i=0; i<100; i++) {

str[i] = br.readLine();

if(str[i].equals("stop")) break;

}

System.out.println("\nHere is your file:");

TH
E

JA
V
A

LA
N

G
U

A
G

E
C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 321

322 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// display the lines

for(int i=0; i<100; i++) {

if(str[i].equals("stop")) break;

System.out.println(str[i]);

}

}

}

Here is a sample run:

Enter lines of text.
Enter 'stop' to quit.
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.
stop
Here is your file:
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.

Writing Console Output
Console output is most easily accomplished with print() and println(), described
earlier, which are used in most of the examples in this book. These methods are defined
by the class PrintStream (which is the type of the object referenced by System.out).
Even though System.out is a byte stream, using it for simple program output is still
acceptable. However, a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also
implements the low-level method write(). Thus, write() can be used to write to the
console. The simplest form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although byteval is
declared as an integer, only the low-order eight bits are written. Here is a short example
that uses write() to output the character “A” followed by a newline to the screen:

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 323
TH

E
JA

V
A

LA
N

G
U

A
G

E

// Demonstrate System.out.write().

class WriteDemo {

public static void main(String args[]) {

int b;

b = 'A';

System.out.write(b);

System.out.write('\n');

}

}

You will not often use write() to perform console output (although doing so might be
useful in some situations), because print() and println() are substantially easier to use.

The PrintWriter Class
Although using System.out to write to the console is still permissible under Java,
its use is recommended mostly for debugging purposes or for sample programs, such
as those found in this book. For real-world programs, the recommended method of
writing to the console when using Java is through a PrintWriter stream. PrintWriter
is one of the character-based classes. Using a character-based class for console output
makes it easier to internationalize your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and flushOnNewline controls
whether Java flushes the output stream every time a println() method is called. If
flushOnNewline is true, flushing automatically takes place. If false, flushing is not
automatic.

PrintWriter supports the print() and println() methods for all types including
Object. Thus, you can use these methods in the same way as they have been used with
System.out. If an argument is not a simple type, the PrintWriter methods call the
object’s toString() method and then print the result.

To write to the console by using a PrintWriter, specify System.out for the output
stream and flush the stream after each newline. For example, this line of code creates a
PrintWriter that is connected to console output:

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter

import java.io.*;

public class PrintWriterDemo {

public static void main(String args[]) {

PrintWriter pw = new PrintWriter(System.out, true);

pw.println("This is a string");

int i = -7;

pw.println(i);

double d = 4.5e-7;

pw.println(d);

}

}

The output from this program is shown here:

This is a string
-7
4.5E-7

Remember, there is nothing wrong with using System.out to write simple text
output to the console when you are learning Java or debugging your programs.
However, using a PrintWriter will make your real-world applications easier to
internationalize. Because no advantage is gained by using a PrintWriter in the
sample programs shown in this book, we will continue to use System.out to write
to the console.

Reading and Writing Files
Java provides a number of classes and methods that allow you to read and write files.
In Java, all files are byte-oriented, and Java provides methods to read and write bytes
from and to a file. However, Java allows you to wrap a byte-oriented file stream within
a character-based object. This technique is described in Part II. This chapter examines
the basics of file I/O.

Two of the most often-used stream classes are FileInputStream and
FileOutputStream, which create byte streams linked to files. To open a file, you simply
create an object of one of these classes, specifying the name of the file as an argument to
the constructor. While both classes support additional, overridden constructors, the
following are the forms that we will be using:

324 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 325
TH

E
JA

V
A

LA
N

G
U

A
G

E

FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file that you want to open. When you create
an input stream, if the file does not exist, then FileNotFoundException is thrown. For
output streams, if the file cannot be created, then FileNotFoundException is thrown.
When an output file is opened, any preexisting file by the same name is destroyed.

In earlier versions of Java, FileOutputStream() threw an IOException when an
output file could not be created. This was changed by Java 2.

When you are done with a file, you should close it by calling close(). It is defined
by both FileInputStream and FileOutputStream, as shown here:

void close() throws IOException

To read from a file, you can use a version of read() that is defined within
FileInputStream. The one that we will use is shown here:

int read() throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an
integer value. read() returns –1 when the end of the file is encountered. It can throw an
IOException.

The following program uses read() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Note the try/catch blocks
that handle the two errors that might occur when this program is used—the specified
file not being found or the user forgetting to include the name of the file. You can use
this same approach whenever you use command-line arguments.

/* Display a text file.

To use this program, specify the name

of the file that you want to see.

For example, to see a file called TEST.TXT,

use the following command line.

java ShowFile TEST.TXT

*/

import java.io.*;

326 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class ShowFile {

public static void main(String args[])

throws IOException

{

int i;

FileInputStream fin;

try {

fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {

System.out.println("File Not Found");

return;

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Usage: ShowFile File");

return;

}

// read characters until EOF is encountered

do {

i = fin.read();

if(i != -1) System.out.print((char) i);

} while(i != -1);

fin.close();

}

}

To write to a file, you will use the write() method defined by FileOutputStream.
Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared
as an integer, only the low-order eight bits are written to the file. If an error occurs
during writing, an IOException is thrown. The next example uses write() to copy a
text file:

/* Copy a text file.

To use this program, specify the name

of the source file and the destination file.

For example, to copy a file called FIRST.TXT

to a file called SECOND.TXT, use the following

command line.

java CopyFile FIRST.TXT SECOND.TXT

*/

import java.io.*;

class CopyFile {

public static void main(String args[])

throws IOException

{

int i;

FileInputStream fin;

FileOutputStream fout;

try {

// open input file

try {

fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {

System.out.println("Input File Not Found");

return;

}

// open output file

try {

fout = new FileOutputStream(args[1]);

} catch(FileNotFoundException e) {

System.out.println("Error Opening Output File");

return;

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Usage: CopyFile From To");

return;

}

// Copy File

try {

do {

i = fin.read();

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 327
TH

E
JA

V
A

LA
N

G
U

A
G

E

if(i != -1) fout.write(i);

} while(i != -1);

} catch(IOException e) {

System.out.println("File Error");

}

fin.close();

fout.close();

}

}

Notice the way that potential I/O errors are handled in this program and in the
preceding ShowFile program. Unlike some other computer languages, including C
and C++, which use error codes to report file errors, Java uses its exception handling
mechanism. Not only does this make file handling cleaner, but it also enables Java to
easily differentiate the end-of-file condition from file errors when input is being
performed. In C/C++, many input functions return the same value when an error
occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition
often is mapped to the same value as an input error.) This usually means that the
programmer must include extra program statements to determine which event actually
occurred. In Java, errors are passed to your program via exceptions, not by values
returned by read(). Thus, when read() returns –1, it means only one thing: the end of
the file has been encountered.

Applet Fundamentals
All of the preceding examples in this book have been Java applications. However,
applications constitute only one class of Java programs. Another type of program is the
applet. As mentioned in Chapter 1, applets are small applications that are accessed on an
Internet server, transported over the Internet, automatically installed, and run as part of a
Web document. After an applet arrives on the client, it has limited access to resources, so
that it can produce an arbitrary multimedia user interface and run complex computations
without introducing the risk of viruses or breaching data integrity.

Many of the issues connected with the creation and use of applets are found in Part
II, when the applet package is examined. However, the fundamentals connected to the
creation of an applet are presented here, because applets are not structured in the same
way as the programs that have been used thus far. As you will see, applets differ from
applications in several key areas.

Let’s begin with the simple applet shown here:

328 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

g.drawString("A Simple Applet", 20, 20);

}

}

This applet begins with two import statements. The first imports the Abstract Window
Toolkit (AWT) classes. Applets interact with the user through the AWT, not through the
console-based I/O classes. The AWT contains support for a window-based, graphical
interface. As you might expect, the AWT is quite large and sophisticated, and a complete
discussion of it consumes several chapters in Part II of this book. Fortunately, this simple
applet makes very limited use of the AWT. The second import statement imports the
applet package, which contains the class Applet. Every applet that you create must be a
subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be
declared as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT
and must be overridden by the applet. paint() is called each time that the applet
must redisplay its output. This situation can occur for several reasons. For example,
the window in which the applet is running can be overwritten by another window and
then uncovered. Or, the applet window can be minimized and then restored. paint() is
also called when the applet begins execution. Whatever the cause, whenever the applet
must redraw its output, paint() is called. The paint() method has one parameter of
type Graphics. This parameter contains the graphics context, which describes the
graphics environment in which the applet is running. This context is used whenever
output to the applet is required.

Inside paint() is a call to drawString(), which is a member of the Graphics class.
This method outputs a string beginning at the specified X,Y location. It has the
following general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The call to drawString() in the applet causes the message “A Simple
Applet” to be displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike Java programs, applets
do not begin execution at main(). In fact, most applets don’t even have a main() method.
Instead, an applet begins execution when the name of its class is passed to an applet viewer
or to a network browser.

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 329
TH

E
JA

V
A

LA
N

G
U

A
G

E

After you enter the source code for SimpleApplet, compile in the same way that
you have been compiling programs. However, running SimpleApplet involves a
different process. In fact, there are two ways in which you can run an applet:

■ Executing the applet within a Java-compatible Web browser.

■ Using an applet viewer, such as the standard SDK tool, appletviewer. An
applet viewer executes your applet in a window. This is generally the fastest
and easiest way to test your applet.

Each of these methods is described next.
To execute an applet in a Web browser, you need to write a short HTML text file

that contains the appropriate APPLET tag. Here is the HTML file that executes
SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>

</applet>

The width and height statements specify the dimensions of the display area used
by the applet. (The APPLET tag contains several other options that are examined more
closely in Part II.) After you create this file, you can execute your browser and then
load this file, which causes SimpleApplet to be executed.

To execute SimpleApplet with an applet viewer, you may also execute the HTML
file shown earlier. For example, if the preceding HTML file is called RunApp.html,
then the following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing.
Simply include a comment at the head of your Java source code file that contains the
APPLET tag. By doing so, your code is documented with a prototype of the necessary
HTML statements, and you can test your compiled applet merely by starting the applet
viewer with your Java source code file. If you use this method, the SimpleApplet
source file looks like this:

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleApplet" width=200 height=60>

</applet>

*/

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

330 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

g.drawString("A Simple Applet", 20, 20);

}

}

In general, you can quickly iterate through applet development by using these
three steps:

1. Edit a Java source file.

2. Compile your program.

3. Execute the applet viewer, specifying the name of your applet’s source file. The
applet viewer will encounter the APPLET tag within the comment and execute
your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is
shown in the following illustration:

While the subject of applets is more fully discussed later in this book, here are the
key points that you should remember now:

■ Applets do not need a main() method.

■ Applets must be run under an applet viewer or a Java-compatible browser.

■ User I/O is not accomplished with Java’s stream I/O classes. Instead, applets
use the interface provided by the AWT.

The transient and volatile Modifiers
Java defines two interesting type modifiers: transient and volatile. These modifiers are
used to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist
when an object is stored. For example:

class T {

transient int a; // will not persist

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 331

int b; // will persist

}

Here, if an object of type T is written to a persistent storage area, the contents of a
would not be saved, but the contents of b would.

The volatile modifier tells the compiler that the variable modified by volatile can
be changed unexpectedly by other parts of your program. One of these situations
involves multithreaded programs. (You saw an example of this in Chapter 11.) In a
multithreaded program, sometimes, two or more threads share the same instance
variable. For efficiency considerations, each thread can keep its own, private copy of
such a shared variable. The real (or master) copy of the variable is updated at various
times, such as when a synchronized method is entered. While this approach works
fine, it may be inefficient at times. In some cases, all that really matters is that the
master copy of a variable always reflects its current state. To ensure this, simply specify
the variable as volatile, which tells the compiler that it must always use the master
copy of a volatile variable (or, at least, always keep any private copies up to date with
the master copy, and vice versa). Also, accesses to the master variable must be executed
in the precise order in which they are executed on any private copy.

volatile in Java has, more or less, the same meaning that it has in C/C++/C#.

Using instanceof
Sometimes, knowing the type of an object during run time is useful. For example, you
might have one thread of execution that generates various types of objects, and another
thread that processes these objects. In this situation, it might be useful for the processing
thread to know the type of each object when it receives it. Another situation in which
knowledge of an object’s type at run time is important involves casting. In Java, an
invalid cast causes a run-time error. Many invalid casts can be caught at compile time.
However, casts involving class hierarchies can produce invalid casts that can be detected
only at run time. For example, a superclass called A can produce two subclasses, called B
and C. Thus, casting a B object into type A or casting a C object into type A is legal, but
casting a B object into type C (or vice versa) isn’t legal. Because an object of type A can
refer to objects of either B or C, how can you know, at run time, what type of object is
actually being referred to before attempting the cast to type C? It could be an object of
type A, B, or C. If it is an object of type B, a run-time exception will be thrown. Java
provides the run-time operator instanceof to answer this question.

The instanceof operator has this general form:

object instanceof type

332 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 333
TH

E
JA

V
A

LA
N

G
U

A
G

E

Here, object is an instance of a class, and type is a class type. If object is of the specified
type or can be cast into the specified type, then the instanceof operator evaluates to
true. Otherwise, its result is false. Thus, instanceof is the means by which your
program can obtain run-time type information about an object.

The following program demonstrates instanceof:

// Demonstrate instanceof operator.

class A {

int i, j;

}

class B {

int i, j;

}

class C extends A {

int k;

}

class D extends A {

int k;

}

class InstanceOf {

public static void main(String args[]) {

A a = new A();

B b = new B();

C c = new C();

D d = new D();

if(a instanceof A)

System.out.println("a is instance of A");

if(b instanceof B)

System.out.println("b is instance of B");

if(c instanceof C)

System.out.println("c is instance of C");

if(c instanceof A)

System.out.println("c can be cast to A");

if(a instanceof C)

System.out.println("a can be cast to C");

334 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println();

// compare types of derived types

A ob;

ob = d; // A reference to d

System.out.println("ob now refers to d");

if(ob instanceof D)

System.out.println("ob is instance of D");

System.out.println();

ob = c; // A reference to c

System.out.println("ob now refers to c");

if(ob instanceof D)

System.out.println("ob can be cast to D");

else

System.out.println("ob cannot be cast to D");

if(ob instanceof A)

System.out.println("ob can be cast to A");

System.out.println();

// all objects can be cast to Object

if(a instanceof Object)

System.out.println("a may be cast to Object");

if(b instanceof Object)

System.out.println("b may be cast to Object");

if(c instanceof Object)

System.out.println("c may be cast to Object");

if(d instanceof Object)

System.out.println("d may be cast to Object");

}

}

The output from this program is shown here:

a is instance of A
b is instance of B
c is instance of C
c can be cast to A

ob now refers to d
ob is instance of D

ob now refers to c
ob cannot be cast to D
ob can be cast to A

a may be cast to Object
b may be cast to Object
c may be cast to Object
d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know
the type of object with which you are working. However, it can be very useful when you’re
writing generalized routines that operate on objects of a complex class hierarchy.

strictfp
Java 2 added a new keyword to the Java language, called strictfp. With the creation
of Java 2, the floating point computation model was relaxed slightly to make certain
floating point computations faster for certain processors, such as the Pentium.
Specifically, the new model does not require the truncation of certain intermediate
values that occur during a computation. By modifying a class or a method with
strictfp, you ensure that floating point calculations (and thus all truncations) take
place precisely as they did in earlier versions of Java. The truncation affects only the
exponent of certain operations. When a class is modified by strictfp, all the methods in
the class are also modified by strictfp automatically.

For example, the following fragment tells Java to use the original floating point
model for calculations in all methods defined within MyClass:

strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very
small class of problems.

Native Methods
Although it is rare, occasionally, you may want to call a subroutine that is written in a
language other than Java. Typically, such a subroutine exists as executable code for the
CPU and environment in which you are working—that is, native code. For example,
you may want to call a native code subroutine to achieve faster execution time. Or, you
may want to use a specialized, third-party library, such as a statistical package.

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 335
TH

E
JA

V
A

LA
N

G
U

A
G

E

336 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

However, because Java programs are compiled to bytecode, which is then interpreted
(or compiled on-the-fly) by the Java run-time system, it would seem impossible to call
a native code subroutine from within your Java program. Fortunately, this conclusion
is false. Java provides the native keyword, which is used to declare native code methods.
Once declared, these methods can be called from inside your Java program just as you
call any other Java method.

To declare a native method, precede the method with the native modifier, but do
not define any body for the method. For example:

public native int meth() ;

After you declare a native method, you must write the native method and follow a
rather complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code
with a Java program is called the Java Native Interface (JNI). This methodology was
created by Java 1.1 and then expanded and enhanced by Java 2. (Java 1.0 used a
different approach, which is now completely outdated.) A detailed description of the
JNI is beyond the scope of this book, but the following description provides sufficient
information for most applications.

The precise steps that you need to follow will vary between different Java environments
and versions. This also depends on the language that you are using to implement the
native method. The following discussion assumes a Windows 95/98/XP/NT/2000
environment. The language used to implement the native method is C.

The easiest way to understand the process is to work through an example. To
begin, enter the following short program, which uses a native method called test():

// A simple example that uses a native method.

public class NativeDemo {

int i;

public static void main(String args[]) {

NativeDemo ob = new NativeDemo();

ob.i = 10;

System.out.println("This is ob.i before the native method:" +

ob.i);

ob.test(); // call a native method

System.out.println("This is ob.i after the native method:" +

ob.i);

}

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 337
TH

E
JA

V
A

LA
N

G
U

A
G

E

// declare native method

public native void test() ;

// load DLL that contains static method

static {

System.loadLibrary("NativeDemo");

}

}

Notice that the test() method is declared as native and has no body. This is the method
that we will implement in C shortly. Also notice the static block. As explained earlier in
this book, a static block is executed only once, when your program begins execution
(or, more precisely, when its class is first loaded). In this case, it is used to load the
dynamic link library that contains the native implementation of test(). (You will see
how to create this library soon.)

The library is loaded by the loadLibrary() method, which is part of the System
class. This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the
Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you
must use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the
SDK.) You will include NativeDemo.h in your implementation of test(). To produce
NativeDemo.h, use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in
the C file that implements test(). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class NativeDemo */

#ifndef _Included_NativeDemo

#define _Included_NativeDemo

#ifdef _ _cplusplus

extern "C" {

#endif

/*

* Class: NativeDemo

* Method: test

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_NativeDemo_test

(JNIEnv *, jobject);

#ifdef _ _cplusplus

}

#endif

#endif

Pay special attention to the following line, which defines the prototype for the
test() function that you will create:

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the
name of the native function that you implement. That is, instead of creating a C function
called test(), you will create one called Java_NativeDemo_test(). The NativeDemo
component of the prefix is added because it identifies the test() method as being part of the
NativeDemo class. Remember, another class may define its own native test() method that
is completely different from the one declared by NativeDemo. Including the class name in
the prefix provides a way to differentiate between differing versions. As a general rule,
native functions will be given a name whose prefix includes the name of the class in which
they are declared.

After producing the necessary header file, you can write your implementation of
test() and store it in a file named NativeDemo.c:

/* This file contains the C version of the

test() method.

*/

#include <jni.h>

#include "NativeDemo.h"

#include <stdio.h>

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *env, jobject obj)

{

jclass cls;

jfieldID fid;

jint i;

338 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 339
TH

E
JA

V
A

LA
N

G
U

A
G

E

printf("Starting the native method.\n");

cls = (*env)->GetObjectClass(env, obj);

fid = (*env)->GetFieldID(env, cls, "i", "I");

if(fid == 0) {

printf("Could not get field id.\n");

return;

}

i = (*env)->GetIntField(env, obj, fid);

printf("i = %d\n", i);

(*env)->SetIntField(env, obj, fid, 2*i);

printf("Ending the native method.\n");

}

Notice that this file includes jni.h, which contains interfacing information. This file is
provided by your Java compiler. The header file NativeDemo.h was created by
javah, earlier.

In this function, the GetObjectClass() method is used to obtain a C structure that
has information about the class NativeDemo. The GetFieldID() method returns a C
structure with information about the field named “i” for the class. GetIntField()
retrieves the original value of that field. SetIntField() stores an updated value in that
field. (See the file jni.h for additional methods that handle other types of data.)

After creating NativeDemo.c, you must compile it and create a DLL. To do this by
using the Microsoft C/C++ compiler, use the following command line. (You might
need to specifiy the path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java
program, which will produce the following output:

This is ob.i before the native method: 10
Starting the native method.
i = 10
Ending the native method.
This is ob.i after the native method: 20

The specifics surrounding the use of native are implementation- and environment-
dependent. Furthermore, the specific manner in which you interface to Java code is
subject to change. You must consult the documentation that accompanies your Java
development system for details on native methods.

Problems with Native Methods
Native methods seem to offer great promise, because they enable you to gain access to
your existing base of library routines, and they offer the possibility of faster run-time
execution. But native methods also introduce two significant problems:

■ Potential security risk Because a native method executes actual machine code, it
can gain access to any part of the host system. That is, native code is not confined
to the Java execution environment. This could allow a virus infection, for example.
For this reason, applets cannot use native methods. Also, the loading of DLLs can
be restricted, and their loading is subject to the approval of the security manager.

■ Loss of portability Because the native code is contained in a DLL, it must be
present on the machine that is executing the Java program. Further, because each
native method is CPU- and operating-system-dependent, each DLL is inherently
nonportable. Thus, a Java application that uses native methods will be able to run
only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java
programs nonportable and pose significant security risks.

Using assert
Java 2, version 1.4 added a new keyword to Java: assert. It is used during program
development to create an assertion, which is a condition that should be true during the
execution of the program. For example, you might have a method that should always
return a positive integer value. You might test this by asserting that the return value is
greater than zero using an assert statement. At run time, if the condition actually is true,
no other action takes place. However, if the condition is false, then an AssertionError is
thrown. Assertions are often used during testing to verify that some expected condition
is actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here.

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is
true, then the assertion is true and no other action takes place. If the condition is false,
then the assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here.

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This
value is converted to its string format and displayed if an assertion fails. Typically, you
will specify a string for expr, but any non-void expression is allowed as long as it
defines a reasonable string conversion.

340 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here is an example that uses assert. It verifies that the return value of getnum()
is positive.

// Demonstrate assert.

class AssertDemo {

static int val = 3;

// Return an integer.

static int getnum() {

return val--;

}

public static void main(String args[])

{

int n;

for(int i=0; i < 10; i++) {

n = getnum();

assert n > 0; // will fail when n is 0

System.out.println("n is " + n);

}

}

}

Programs that use assert must be compiled using the -source 1.4 option. For example,
to compile the preceding program, use this line:

javac -source 1.4 AssertDemo.java

To enable assertion checking at run time, you must specify the -ea option. For example,
to enable assertions for AssertDemo, execute it using this line.

java -ea AssertDemo

After compiling and running as just described, the program creates the following
output.

n is 3
n is 2
n is 1

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 341
TH

E
JA

V
A

LA
N

G
U

A
G

E

Exception in thread "main" java.lang.AssertionError
at AssertDemo.main(AssertDemo.java:17)

In main(), repeated calls are made to the method getnum(), which returns an integer
value. The return value of getnum() is assigned to n and then tested using this assert
statement.

assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this
happens, an exception is thrown.

As explained, you can specify the message displayed when an assertion fails. For
example, if you substitute

assert n > 0 : "n is negative!";

for the assertion in the preceding program, then the following ouptut will be generated.

n is 3

n is 2

n is 1

Exception in thread "main" java.lang.AssertionError: n is negative!

at AssertDemo.main(AssertDemo.java:17)

One important point to understand about assertions is that you must not rely on
them to perform any action actually required by the program. The reason is that
normally, released code will be run with assertions disabled. For example, consider
this variation of the preceding program.

// A poor way to use assert!!!

class AssertDemo {

// get a random number generator

static int val = 3;

// Return an integer.

static int getnum() {

return val--;

}

public static void main(String args[])

342 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

{

int n = 0;

for(int i=0; i < 10; i++) {

assert (n = getnum()) > 0; // This is not a good idea!

System.out.println("n is " + n);

}

}

}

In this version of the program, the call to getnum() is moved inside the assert statement.
Although this works fine if assertions are enabled, it will cause a malfunction when
assertions are disabled because the call to getnum() will never be executed! In fact, n
must now be initialized, because the compiler will recognize that it might not be
assigned a value by the assert statement.

Assertions are a good addition to Java because they streamline the type of error
checking that is common during development. For example, prior to assert, if you
wanted to verify that n was positive in the preceding program, you had to use a
sequence of code similar to this:

if(n < 0) {

System.out.println("n is negative!");

return; // or throw an exception

}

With assert, you need only one line of code. Furthermore, you don’t have to remove
the assert statements from your released code.

Assertion Enabling and Disabling Options
When executing code, you can disable assertions by using the -da option. You can
enable or disable a specific package by specifying its name after the -ea or -da option.
For example, to enable assertions in a package called MyPack, use

-ea:MyPack

To disable assertions in MyPack use

-da:MyPack

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 343
TH

E
JA

V
A

LA
N

G
U

A
G

E

To enable or disable all subpackages of a package, follow the package name with three
dots. For example,

-ea:MyPack...

You can also specify a class with the -ea or -da option. For example, this enables
AssertDemo individually.

-ea:AssertDemo

344 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Part II
The Java Library

This page intentionally left blank.

Chapter 13
String Handling

347

Abrief overview of Java’s string handling was presented in Chapter 7. In this
chapter, it is described in detail. As is the case in most other programming
languages, in Java a string is a sequence of characters. But, unlike many other

languages that implement strings as character arrays, Java implements strings as
objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement
of features that make string handling convenient. For example, Java has methods to
compare two strings, search for a substring, concatenate two strings, and change the
case of letters within a string. Also, String objects can be constructed a number of
ways, making it easy to obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string
that cannot be changed. That is, once a String object has been created, you cannot change
the characters that comprise that string. At first, this may seem to be a serious restriction.
However, such is not the case. You can still perform all types of string operations. The
difference is that each time you need an altered version of an existing string, a new String
object is created that contains the modifications. The original string is left unchanged. This
approach is used because fixed, immutable strings can be implemented more efficiently
than changeable ones. For those cases in which a modifiable string is desired, there is a
companion class to String called StringBuffer, whose objects contain strings that can be
modified after they are created.

Both the String and StringBuffer classes are defined in java.lang. Thus, they are
available to all programs automatically. Both are declared final, which means that neither
of these classes may be subclassed. This allows certain optimizations that increase
performance to take place on common string operations. Beginning with Java 2,
version 1.4, both String and StringBuffer implement the CharSequence interface.

One last point: To say that the strings within objects of type String are
unchangeable means that the contents of the String instance cannot be changed after it
has been created. However, a variable declared as a String reference can be changed to
point at some other String object at any time.

The String Constructors
The String class supports several constructors. To create an empty String, you call the
default constructor. For example,

String s = new String();

will create an instance of String with no characters in it.
Frequently, you will want to create strings that have initial values. The String class

provides a variety of constructors to handle this. To create a String initialized by an
array of characters, use the constructor shown here:

String(char chars[])

348 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here is an example:

char chars[] = { 'a', 'b', 'c' };

String s = new String(chars);

This constructor initializes s with the string “abc”.
You can specify a subrange of a character array as an initializer using the

following constructor:

String(char chars[], int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and numChars
specifies the number of characters to use. Here is an example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };

String s = new String(chars, 2, 3);

This initializes s with the characters cde.
You can construct a String object that contains the same character sequence as

another String object using this constructor:

String(String strObj)

Here, strObj is a String object. Consider this example:

// Construct one String from another.

class MakeString {

public static void main(String args[]) {

char c[] = {'J', 'a', 'v', 'a'};

String s1 = new String(c);

String s2 = new String(s1);

System.out.println(s1);

System.out.println(s2);

}

}

The output from this program is as follows:

Java
Java

As you can see, s1 and s2 contain the same string.

C h a p t e r 1 3 : S t r i n g H a n d l i n g 349
TH

E
JA

V
A

LIB
R

A
R

Y

Even though Java’s char type uses 16 bits to represent the Unicode character set, the
typical format for strings on the Internet uses arrays of 8-bit bytes constructed from the
ASCII character set. Because 8-bit ASCII strings are common, the String class provides
constructors that initialize a string when given a byte array. Their forms are shown here:

String(byte asciiChars[])
String(byte asciiChars[], int startIndex, int numChars)

Here, asciiChars specifies the array of bytes. The second form allows you to specify a
subrange. In each of these constructors, the byte-to-character conversion is done by
using the default character encoding of the platform. The following program illustrates
these constructors:

// Construct string from subset of char array.

class SubStringCons {

public static void main(String args[]) {

byte ascii[] = {65, 66, 67, 68, 69, 70 };

String s1 = new String(ascii);

System.out.println(s1);

String s2 = new String(ascii, 2, 3);

System.out.println(s2);

}

}

This program generates the following output:

ABCDEF
CDE

Extended versions of the byte-to-string constructors are also defined in which you
can specify the character encoding that determines how bytes are converted to
characters. However, most of the time, you will want to use the default encoding
provided by the platform.

The contents of the array are copied whenever you create a String object from an array.
If you modify the contents of the array after you have created the string, the String will
be unchanged.

350 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

String Length
The length of a string is the number of characters that it contains. To obtain this value,
call the length() method, shown here:

int length()

The following fragment prints “3”, since there are three characters in the string s:

char chars[] = { 'a', 'b', 'c' };

String s = new String(chars);

System.out.println(s.length());

Special String Operations
Because strings are a common and important part of programming, Java has added
special support for several string operations within the syntax of the language. These
operations include the automatic creation of new String instances from string literals,
concatenation of multiple String objects by use of the + operator, and the conversion of
other data types to a string representation. There are explicit methods available to
perform all of these functions, but Java does them automatically as a convenience for
the programmer and to add clarity.

String Literals
The earlier examples showed how to explicitly create a String instance from an array of
characters by using the new operator. However, there is an easier way to do this using
a string literal. For each string literal in your program, Java automatically constructs a
String object. Thus, you can use a string literal to initialize a String object. For example,
the following code fragment creates two equivalent strings:

char chars[] = { 'a', 'b', 'c' };

String s1 = new String(chars);

String s2 = "abc"; // use string literal

Because a String object is created for every string literal, you can use a string literal
any place you can use a String object. For example, you can call methods directly on a
quoted string as if it were an object reference, as the following statement shows. It calls
the length() method on the string “abc”. As expected, it prints “3”.

System.out.println("abc".length());

C h a p t e r 1 3 : S t r i n g H a n d l i n g 351
TH

E
JA

V
A

LIB
R

A
R

Y

String Concatenation
In general, Java does not allow operators to be applied to String objects. The one
exception to this rule is the + operator, which concatenates two strings, producing a
String object as the result. This allows you to chain together a series of + operations.
For example, the following fragment concatenates three strings:

String age = "9";

String s = "He is " + age + " years old.";

System.out.println(s);

This displays the string “He is 9 years old.”
One practical use of string concatenation is found when you are creating very long

strings. Instead of letting long strings wrap around within your source code, you can
break them into smaller pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.

class ConCat {

public static void main(String args[]) {

String longStr = "This could have been " +

"a very long line that would have " +

"wrapped around. But string concatenation " +

"prevents this.";

System.out.println(longStr);

}

}

String Concatenation with Other Data Types
You can concatenate strings with other types of data. For example, consider this
slightly different version of the earlier example:

int age = 9;

String s = "He is " + age + " years old.";

System.out.println(s);

In this case, age is an int rather than another String, but the output produced is the
same as before. This is because the int value in age is automatically converted into its
string representation within a String object. This string is then concatenated as before.
The compiler will convert an operand to its string equivalent whenever the other
operand of the + is an instance of String.

352 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Be careful when you mix other types of operations with string concatenation
expressions, however. You might get surprising results. Consider the following:

String s = "four: " + 2 + 2;

System.out.println(s);

This fragment displays

four: 22

rather than the

four: 4

that you probably expected. Here’s why. Operator precedence causes the concatenation of
“four” with the string equivalent of 2 to take place first. This result is then concatenated
with the string equivalent of 2 a second time. To complete the integer addition first, you
must use parentheses, like this:

String s = "four: " + (2 + 2);

Now s contains the string “four: 4”.

String Conversion and toString()
When Java converts data into its string representation during concatenation, it does so
by calling one of the overloaded versions of the string conversion method valueOf()
defined by String. valueOf() is overloaded for all the simple types and for type Object.
For the simple types, valueOf() returns a string that contains the human-readable
equivalent of the value with which it is called. For objects, valueOf() calls the
toString() method on the object. We will look more closely at valueOf() later in this
chapter. Here, let’s examine the toString() method, because it is the means by which
you can determine the string representation for objects of classes that you create.

Every class implements toString() because it is defined by Object. However, the
default implementation of toString() is seldom sufficient. For most important classes
that you create, you will want to override toString() and provide your own string
representations. Fortunately, this is easy to do. The toString() method has this
general form:

String toString()

To implement toString(), simply return a String object that contains the human-
readable string that appropriately describes an object of your class.

C h a p t e r 1 3 : S t r i n g H a n d l i n g 353
TH

E
JA

V
A

LIB
R

A
R

Y

By overriding toString() for classes that you create, you allow them to be fully
integrated into Java’s programming environment. For example, they can be used in
print() and println() statements and in concatenation expressions. The following
program demonstrates this by overriding toString() for the Box class:

// Override toString() for Box class.

class Box {

double width;

double height;

double depth;

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

public String toString() {

return "Dimensions are " + width + " by " +

depth + " by " + height + ".";

}

}

class toStringDemo {

public static void main(String args[]) {

Box b = new Box(10, 12, 14);

String s = "Box b: " + b; // concatenate Box object

System.out.println(b); // convert Box to string

System.out.println(s);

}

}

The output of this program is shown here:

Dimensions are 10.0 by 14.0 by 12.0
Box b: Dimensions are 10.0 by 14.0 by 12.0

As you can see, Box’s toString() method is automatically invoked when a Box
object is used in a concatenation expression or in a call to println().

354 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : S t r i n g H a n d l i n g 355
TH

E
JA

V
A

LIB
R

A
R

Y

Character Extraction
The String class provides a number of ways in which characters can be extracted from
a String object. Each is examined here. Although the characters that comprise a string
within a String object cannot be indexed as if they were a character array, many of the
String methods employ an index (or offset) into the string for their operation. Like
arrays, the string indexes begin at zero.

charAt()
To extract a single character from a String, you can refer directly to an individual
character via the charAt() method. It has this general form:

char charAt(int where)

Here, where is the index of the character that you want to obtain. The value of where
must be nonnegative and specify a location within the string. charAt() returns the
character at the specified location. For example,

char ch;

ch = "abc".charAt(1);

assigns the value “b” to ch.

getChars()
If you need to extract more than one character at a time, you can use the getChars()
method. It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring
contains the characters from sourceStart through sourceEnd–1. The array that will receive
the characters is specified by target. The index within target at which the substring will
be copied is passed in targetStart. Care must be taken to assure that the target array is
large enough to hold the number of characters in the specified substring.

The following program demonstrates getChars():

class getCharsDemo {

public static void main(String args[]) {

String s = "This is a demo of the getChars method.";

int start = 10;

int end = 14;

char buf[] = new char[end - start];

s.getChars(start, end, buf, 0);

System.out.println(buf);

}

}

Here is the output of this program:

demo

getBytes()
There is an alternative to getChars() that stores the characters in an array of bytes. This
method is called getBytes(), and it uses the default character-to-byte conversions
provided by the platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when you
are exporting a String value into an environment that does not support 16-bit Unicode
characters. For example, most Internet protocols and text file formats use 8-bit ASCII
for all text interchange.

toCharArray()
If you want to convert all the characters in a String object into a character array, the
easiest way is to call toCharArray(). It returns an array of characters for the entire
string. It has this general form:

char[] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to
achieve the same result.

String Comparison
The String class includes several methods that compare strings or substrings within
strings. Each is examined here.

356 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

equals() and equalsIgnoreCase()
To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It
returns true if the strings contain the same characters in the same order, and false
otherwise. The comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase().
When it compares two strings, it considers A-Z to be the same as a-z. It has this
general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It,
too, returns true if the strings contain the same characters in the same order, and
false otherwise.

Here is an example that demonstrates equals() and equalsIgnoreCase():

// Demonstrate equals() and equalsIgnoreCase().

class equalsDemo {

public static void main(String args[]) {

String s1 = "Hello";

String s2 = "Hello";

String s3 = "Good-bye";

String s4 = "HELLO";

System.out.println(s1 + " equals " + s2 + " -> " +

s1.equals(s2));

System.out.println(s1 + " equals " + s3 + " -> " +

s1.equals(s3));

System.out.println(s1 + " equals " + s4 + " -> " +

s1.equals(s4));

System.out.println(s1 + " equalsIgnoreCase " + s4 + " -> " +

s1.equalsIgnoreCase(s4));

}

}

The output from the program is shown here:

Hello equals Hello -> true
Hello equals Good-bye -> false
Hello equals HELLO -> false
Hello equalsIgnoreCase HELLO -> true

C h a p t e r 1 3 : S t r i n g H a n d l i n g 357
TH

E
JA

V
A

LIB
R

A
R

Y

358 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

regionMatches()
The regionMatches() method compares a specific region inside a string with another
specific region in another string. There is an overloaded form that allows you to ignore
case in such comparisons. Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2,
int str2StartIndex, int numChars)

boolean regionMatches(boolean ignoreCase,
int startIndex, String str2,
int str2StartIndex, int numChars)

For both versions, startIndex specifies the index at which the region begins within
the invoking String object. The String being compared is specified by str2. The index
at which the comparison will start within str2 is specified by str2StartIndex. The length
of the substring being compared is passed in numChars. In the second version, if
ignoreCase is true, the case of the characters is ignored. Otherwise, case is significant.

startsWith() and endsWith()
String defines two routines that are, more or less, specialized forms of
regionMatches(). The startsWith() method determines whether a given String begins
with a specified string. Conversely, endsWith() determines whether the String in
question ends with a specified string. They have the following general forms:

boolean startsWith(String str)
boolean endsWith(String str)

Here, str is the String being tested. If the string matches, true is returned. Otherwise,
false is returned. For example,

"Foobar".endsWith("bar")

and

"Foobar".startsWith("Foo")

are both true.
A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startIndex)

Here, startIndex specifies the index into the invoking string at which point the search
will begin. For example,

"Foobar".startsWith("bar", 3)

returns true.

equals() Versus ==
It is important to understand that the equals() method and the == operator perform
two different operations. As just explained, the equals() method compares the
characters inside a String object. The == operator compares two object references to
see whether they refer to the same instance. The following program shows how two
different String objects can contain the same characters, but references to these objects
will not compare as equal:

// equals() vs ==

class EqualsNotEqualTo {

public static void main(String args[]) {

String s1 = "Hello";

String s2 = new String(s1);

System.out.println(s1 + " equals " + s2 + " -> " +

s1.equals(s2));

System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));

}

}

The variable s1 refers to the String instance created by “Hello”. The object
referred to by s2 is created with s1 as an initializer. Thus, the contents of the two
String objects are identical, but they are distinct objects. This means that s1 and s2
do not refer to the same objects and are, therefore, not ==, as is shown here by the
output of the preceding example:

Hello equals Hello -> true
Hello == Hello -> false

compareTo()
Often, it is not enough to simply know whether two strings are identical. For sorting
applications, you need to know which is less than, equal to, or greater than the next. A
string is less than another if it comes before the other in dictionary order. A string is
greater than another if it comes after the other in dictionary order. The String method
compareTo() serves this purpose. It has this general form:

int compareTo(String str)

C h a p t e r 1 3 : S t r i n g H a n d l i n g 359
TH

E
JA

V
A

LIB
R

A
R

Y

360 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, str is the String being compared with the invoking String. The result of the
comparison is returned and is interpreted as shown here:

Value Meaning

Less than zero The invoking string is less than str.

Greater than zero The invoking string is greater than str.

Zero The two strings are equal.

Here is a sample program that sorts an array of strings. The program uses
compareTo() to determine sort ordering for a bubble sort:

// A bubble sort for Strings.

class SortString {

static String arr[] = {

"Now", "is", "the", "time", "for", "all", "good", "men",

"to", "come", "to", "the", "aid", "of", "their", "country"

};

public static void main(String args[]) {

for(int j = 0; j < arr.length; j++) {

for(int i = j + 1; i < arr.length; i++) {

if(arr[i].compareTo(arr[j]) < 0) {

String t = arr[j];

arr[j] = arr[i];

arr[i] = t;

}

}

System.out.println(arr[j]);

}

}

}

The output of this program is the list of words:

Now
aid
all
come
country
for
good
is
men

of
the
the
their
time
to
to

As you can see from the output of this example, compareTo() takes into account
uppercase and lowercase letters. The word “Now” came out before all the others
because it begins with an uppercase letter, which means it has a lower value in the
ASCII character set.

If you want to ignore case differences when comparing two strings, use
compareToIgnoreCase(), shown here:

int compareToIgnoreCase(String str)

This method returns the same results as compareTo(), except that case differences are
ignored. This method was added by Java 2. You might want to try substituting it into
the previous program. After doing so, “Now” will no longer be first.

Searching Strings
The String class provides two methods that allow you to search a string for a specified
character or substring:

■ indexOf() Searches for the first occurrence of a character or substring.

■ lastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods
return the index at which the character or substring was found, or –1 on failure.

To search for the first occurrence of a character, use

int indexOf(int ch)

To search for the last occurrence of a character, use

int lastIndexOf(int ch)

Here, ch is the character being sought.
To search for the first or last occurrence of a substring, use

int indexOf(String str)
int lastIndexOf(String str)

Here, str specifies the substring.

C h a p t e r 1 3 : S t r i n g H a n d l i n g 361
TH

E
JA

V
A

LIB
R

A
R

Y

You can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)
int lastIndexOf(int ch, int startIndex)

int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf(),
the search runs from startIndex to the end of the string. For lastIndexOf(), the search
runs from startIndex to zero.

The following example shows how to use the various index methods to search
inside of Strings:

// Demonstrate indexOf() and lastIndexOf().

class indexOfDemo {

public static void main(String args[]) {

String s = "Now is the time for all good men " +

"to come to the aid of their country.";

System.out.println(s);

System.out.println("indexOf(t) = " +

s.indexOf('t'));

System.out.println("lastIndexOf(t) = " +

s.lastIndexOf('t'));

System.out.println("indexOf(the) = " +

s.indexOf("the"));

System.out.println("lastIndexOf(the) = " +

s.lastIndexOf("the"));

System.out.println("indexOf(t, 10) = " +

s.indexOf('t', 10));

System.out.println("lastIndexOf(t, 60) = " +

s.lastIndexOf('t', 60));

System.out.println("indexOf(the, 10) = " +

s.indexOf("the", 10));

System.out.println("lastIndexOf(the, 60) = " +

s.lastIndexOf("the", 60));

}

}

Here is the output of this program:

Now is the time for all good men to come to the aid of their country.
indexOf(t) = 7

362 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : S t r i n g H a n d l i n g 363
TH

E
JA

V
A

LIB
R

A
R

Y

lastIndexOf(t) = 65
indexOf(the) = 7
lastIndexOf(the) = 55
indexOf(t, 10) = 11
lastIndexOf(t, 60) = 55
indexOf(the, 10) = 44
lastIndexOf(the, 60) = 55

Modifying a String
Because String objects are immutable, whenever you want to modify a String, you
must either copy it into a StringBuffer or use one of the following String methods,
which will construct a new copy of the string with your modifications complete.

substring()
You can extract a substring using substring(). It has two forms. The first is

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a
copy of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and
ending index of the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping
point. The string returned contains all the characters from the beginning index, up to,
but not including, the ending index.

The following program uses substring() to replace all instances of one substring
with another within a string:

// Substring replacement.

class StringReplace {

public static void main(String args[]) {

String org = "This is a test. This is, too.";

String search = "is";

String sub = "was";

String result = "";

int i;

do { // replace all matching substrings

System.out.println(org);

i = org.indexOf(search);

if(i != -1) {

result = org.substring(0, i);

result = result + sub;

result = result + org.substring(i + search.length());

org = result;

}

} while(i != -1);

}

}

The output from this program is shown here:

This is a test. This is, too.
Thwas is a test. This is, too.
Thwas was a test. This is, too.
Thwas was a test. Thwas is, too.
Thwas was a test. Thwas was, too.

concat()
You can concatenate two strings using concat(), shown here:

String concat(String str)

This method creates a new object that contains the invoking string with the contents
of str appended to the end. concat() performs the same function as +. For example,

String s1 = "one";

String s2 = s1.concat("two");

puts the string “onetwo” into s2. It generates the same result as the following sequence:

String s1 = "one";

String s2 = s1 + "two";

replace()
The replace() method replaces all occurrences of one character in the invoking string
with another character. It has the following general form:

364 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by
replacement. The resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

puts the string “Hewwo” into s.

trim()
The trim() method returns a copy of the invoking string from which any leading and
trailing whitespace has been removed. It has this general form:

String trim()

Here is an example:

String s = " Hello World ".trim();

This puts the string “Hello World” into s.
The trim() method is quite useful when you process user commands. For example,

the following program prompts the user for the name of a state and then displays that
state’s capital. It uses trim() to remove any leading or trailing whitespace that may
have inadvertently been entered by the user.

// Using trim() to process commands.

import java.io.*;

class UseTrim {

public static void main(String args[])

throws IOException

{

// create a BufferedReader using System.in

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

String str;

System.out.println("Enter 'stop' to quit.");

System.out.println("Enter State: ");

do {

C h a p t e r 1 3 : S t r i n g H a n d l i n g 365
TH

E
JA

V
A

LIB
R

A
R

Y

366 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

str = br.readLine();

str = str.trim(); // remove whitespace

if(str.equals("Illinois"))

System.out.println("Capital is Springfield.");

else if(str.equals("Missouri"))

System.out.println("Capital is Jefferson City.");

else if(str.equals("California"))

System.out.println("Capital is Sacramento.");

else if(str.equals("Washington"))

System.out.println("Capital is Olympia.");

// ...

} while(!str.equals("stop"));

}

}

Data Conversion Using valueOf()
The valueOf() method converts data from its internal format into a human-readable
form. It is a static method that is overloaded within String for all of Java’s built-in types,
so that each type can be converted properly into a string. valueOf() is also overloaded
for type Object, so an object of any class type you create can also be used as an argument.
(Recall that Object is a superclass for all classes.) Here are a few of its forms:

static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars[])

As we discussed earlier, valueOf() is called when a string representation of some
other type of data is needed—for example, during concatenation operations. You can call
this method directly with any data type and get a reasonable String representation. All
of the simple types are converted to their common String representation. Any object that
you pass to valueOf() will return the result of a call to the object’s toString() method. In
fact, you could just call toString() directly and get the same result.

For most arrays, valueOf() returns a rather cryptic string, which indicates that it
is an array of some type. For arrays of char, however, a String object is created that
contains the characters in the char array. There is a special version of valueOf() that
allows you to specify a subset of a char array. It has this general form:

static String valueOf(char chars[], int startIndex, int numChars)

C h a p t e r 1 3 : S t r i n g H a n d l i n g 367
TH

E
JA

V
A

LIB
R

A
R

Y

Here, chars is the array that holds the characters, startIndex is the index into the array of
characters at which the desired substring begins, and numChars specifies the length of
the substring.

Changing the Case of Characters
Within a String
The method toLowerCase() converts all the characters in a string from uppercase to
lowercase. The toUpperCase() method converts all the characters in a string from
lowercase to uppercase. Nonalphabetical characters, such as digits, are unaffected.
Here are the general forms of these methods:

String toLowerCase()
String toUpperCase()

Both methods return a String object that contains the uppercase or lowercase
equivalent of the invoking String.

Here is an example that uses toLowerCase() and toUpperCase():

// Demonstrate toUpperCase() and toLowerCase().

class ChangeCase {

public static void main(String args[])

{

String s = "This is a test.";

System.out.println("Original: " + s);

String upper = s.toUpperCase();

String lower = s.toLowerCase();

System.out.println("Uppercase: " + upper);

System.out.println("Lowercase: " + lower);

}

}

The output produced by the program is shown here:

Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

String Methods Added by Java 2, Version 1.4
Java 2, version 1.4 adds several methods to the String class. These are summarized in
the following table.

Method Description

boolean contentEquals(StringBuffer str) Returns true if the invoking string contains
the same string as str. Otherwise, returns
false.

CharSequence
subSequence(int startIndex,

int stopIndex)

Returns a substring of the invoking string,
beginning at startIndex and stopping at
stopIndex. This method is required by the
CharSequence interface, which is now
implemented by String.

boolean matches(string regExp) Returns true if the invoking string matches
the regular expression passed in regExp.
Otherwise, returns false.

String
replaceFirst(String regExp,

String newStr)

Returns a string in which the first substring
that matches the regular expression
specified by regExp is replaced by newStr.

String
replaceAll(String regExp,

String newStr)

Returns a string in which all substrings that
match the regular expression specified by
regExp are replaced by newStr.

String[] split(String regExp) Decomposes the invoking string into parts
and returns an array that contains the
result. Each part is delimited by the regular
expression passed in regExp.

String[] split(String regExp, int max) Decomposes the invoking string into parts
and returns an array that contains the
result. Each part is delimited by the regular
expression passed in regExp. The number
of pieces is specified by max. If max is
negative, then the invoking string is fully
decomposed. Otherwise, if max contains
a non-zero value, the last entry in the
returned array contains the remainder
of the invoking string. If max is zero, the
invoking string is fully decomposed.

368 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Notice that several of these methods work with regular expressions. Support for
regular expression processing was added by Java 2, version 1.4 and is described in
Chapter 24.

StringBuffer
StringBuffer is a peer class of String that provides much of the functionality of strings.
As you know, String represents fixed-length, immutable character sequences. In contrast,
StringBuffer represents growable and writeable character sequences. StringBuffer
may have characters and substrings inserted in the middle or appended to the end.
StringBuffer will automatically grow to make room for such additions and often has
more characters preallocated than are actually needed, to allow room for growth. Java
uses both classes heavily, but many programmers deal only with String and let Java
manipulate StringBuffers behind the scenes by using the overloaded + operator.

StringBuffer Constructors
StringBuffer defines these three constructors:

StringBuffer()
StringBuffer(int size)
StringBuffer(String str)

The default constructor (the one with no parameters) reserves room for 16
characters without reallocation. The second version accepts an integer argument that
explicitly sets the size of the buffer. The third version accepts a String argument that
sets the initial contents of the StringBuffer object and reserves room for 16 more
characters without reallocation. StringBuffer allocates room for 16 additional
characters when no specific buffer length is requested, because reallocation is a costly
process in terms of time. Also, frequent reallocations can fragment memory. By
allocating room for a few extra characters, StringBuffer reduces the number of
reallocations that take place.

length() and capacity()
The current length of a StringBuffer can be found via the length() method, while the
total allocated capacity can be found through the capacity() method. They have the
following general forms:

int length()
int capacity()

C h a p t e r 1 3 : S t r i n g H a n d l i n g 369
TH

E
JA

V
A

LIB
R

A
R

Y

Here is an example:

// StringBuffer length vs. capacity.

class StringBufferDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("Hello");

System.out.println("buffer = " + sb);

System.out.println("length = " + sb.length());

System.out.println("capacity = " + sb.capacity());

}

}

Here is the output of this program, which shows how StringBuffer reserves extra
space for additional manipulations:

buffer = Hello
length = 5
capacity = 21

Since sb is initialized with the string “Hello” when it is created, its length is 5. Its
capacity is 21 because room for 16 additional characters is automatically added.

ensureCapacity()
If you want to preallocate room for a certain number of characters after a StringBuffer
has been constructed, you can use ensureCapacity() to set the size of the buffer. This is
useful if you know in advance that you will be appending a large number of small
strings to a StringBuffer. ensureCapacity() has this general form:

void ensureCapacity(int capacity)

Here, capacity specifies the size of the buffer.

setLength()
To set the length of the buffer within a StringBuffer object, use setLength(). Its general
form is shown here:

void setLength(int len)

Here, len specifies the length of the buffer. This value must be nonnegative.
When you increase the size of the buffer, null characters are added to the end of

the existing buffer. If you call setLength() with a value less than the current value
returned by length(), then the characters stored beyond the new length will be lost.

370 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : S t r i n g H a n d l i n g 371
TH

E
JA

V
A

LIB
R

A
R

Y

The setCharAtDemo sample program in the following section uses setLength() to
shorten a StringBuffer.

charAt() and setCharAt()
The value of a single character can be obtained from a StringBuffer via the charAt()
method. You can set the value of a character within a StringBuffer using setCharAt().
Their general forms are shown here:

char charAt(int where)
void setCharAt(int where, char ch)

For charAt(), where specifies the index of the character being obtained. For
setCharAt(), where specifies the index of the character being set, and ch specifies the
new value of that character. For both methods, where must be nonnegative and must
not specify a location beyond the end of the buffer.

The following example demonstrates charAt() and setCharAt():

// Demonstrate charAt() and setCharAt().

class setCharAtDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("Hello");

System.out.println("buffer before = " + sb);

System.out.println("charAt(1) before = " + sb.charAt(1));

sb.setCharAt(1, 'i');

sb.setLength(2);

System.out.println("buffer after = " + sb);

System.out.println("charAt(1) after = " + sb.charAt(1));

}

}

Here is the output generated by this program:

buffer before = Hello
charAt(1) before = e
buffer after = Hi
charAt(1) after = i

getChars()
To copy a substring of a StringBuffer into an array, use the getChars() method. It has
this general form:

void getChars(int sourceStart, int sourceEnd, char target[],
int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. This means that the
substring contains the characters from sourceStart through sourceEnd–1. The array that
will receive the characters is specified by target. The index within target at which the
substring will be copied is passed in targetStart. Care must be taken to assure that the
target array is large enough to hold the number of characters in the specified substring.

append()
The append() method concatenates the string representation of any other type of data
to the end of the invoking StringBuffer object. It has overloaded versions for all the
built-in types and for Object. Here are a few of its forms:

StringBuffer append(String str)
StringBuffer append(int num)
StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation.
The result is appended to the current StringBuffer object. The buffer itself is returned
by each version of append(). This allows subsequent calls to be chained together, as
shown in the following example:

// Demonstrate append().

class appendDemo {

public static void main(String args[]) {

String s;

int a = 42;

StringBuffer sb = new StringBuffer(40);

s = sb.append("a = ").append(a).append("!").toString();

System.out.println(s);

}

}

The output of this example is shown here:

a = 42!

The append() method is most often called when the + operator is used on String
objects. Java automatically changes modifications to a String instance into similar
operations on a StringBuffer instance. Thus, a concatenation invokes append() on a
StringBuffer object. After the concatenation has been performed, the compiler inserts a
call to toString() to turn the modifiable StringBuffer back into a constant String. All of
this may seem unreasonably complicated. Why not just have one string class and have
it behave more or less like StringBuffer? The answer is performance. There are many
optimizations that the Java run time can make knowing that String objects are

372 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

immutable. Thankfully, Java hides most of the complexity of conversion between
Strings and StringBuffers. Actually, many programmers will never feel the need to
use StringBuffer directly and will be able to express most operations in terms of the
+ operator on String variables.

insert()
The insert() method inserts one string into another. It is overloaded to accept values of
all the simple types, plus Strings and Objects. Like append(), it calls String.valueOf()
to obtain the string representation of the value it is called with. This string is then
inserted into the invoking StringBuffer object. These are a few of its forms:

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the
invoking StringBuffer object.

The following sample program inserts “like” between “I” and “Java”:

// Demonstrate insert().

class insertDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("I Java!");

sb.insert(2, "like ");

System.out.println(sb);

}

}

The output of this example is shown here:

I like Java!

reverse()
You can reverse the characters within a StringBuffer object using reverse(), shown here:

StringBuffer reverse()

This method returns the reversed object on which it was called. The following program
demonstrates reverse():

// Using reverse() to reverse a StringBuffer.

class ReverseDemo {

C h a p t e r 1 3 : S t r i n g H a n d l i n g 373
TH

E
JA

V
A

LIB
R

A
R

Y

public static void main(String args[]) {

StringBuffer s = new StringBuffer("abcdef");

System.out.println(s);

s.reverse();

System.out.println(s);

}

}

Here is the output produced by the program:

abcdef
fedcba

delete() and deleteCharAt()
Java 2 added to StringBuffer the ability to delete characters using the methods
delete() and deleteCharAt(). These methods are shown here:

StringBuffer delete(int startIndex, int endIndex)
StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object.
Here, startIndex specifies the index of the first character to remove, and endIndex
specifies an index one past the last character to remove. Thus, the substring deleted
runs from startIndex to endIndex–1. The resulting StringBuffer object is returned.

The deleteCharAt() method deletes the character at the index specified by loc.
It returns the resulting StringBuffer object.

Here is a program that demonstrates the delete() and deleteCharAt() methods:

// Demonstrate delete() and deleteCharAt()

class deleteDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("This is a test.");

sb.delete(4, 7);

System.out.println("After delete: " + sb);

sb.deleteCharAt(0);

System.out.println("After deleteCharAt: " + sb);

}

}

374 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The following output is produced:

After delete: This a test.
After deleteCharAt: his a test.

replace()
Another method added to StringBuffer by Java 2 is replace(). It replaces one set of
characters with another set inside a StringBuffer object. Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex. Thus,
the substring at startIndex through endIndex–1 is replaced. The replacement string is
passed in str. The resulting StringBuffer object is returned.

The following program demonstrates replace():

// Demonstrate replace()

class replaceDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("This is a test.");

sb.replace(5, 7, "was");

System.out.println("After replace: " + sb);

}

}

Here is the output:

After replace: This was a test.

substring()
Java 2 also added the substring() method, which returns a portion of a StringBuffer. It
has the following two forms:

String substring(int startIndex)
String substring(int startIndex, int endIndex)

The first form returns the substring that starts at startIndex and runs to the end of the
invoking StringBuffer object. The second form returns the substring that starts at
startIndex and runs through endIndex–1. These methods work just like those defined for
String that were described earlier.

C h a p t e r 1 3 : S t r i n g H a n d l i n g 375
TH

E
JA

V
A

LIB
R

A
R

Y

StringBuffer Methods Added by Java 2, Version 1.4
Java 2, version 1.4 added several new methods to StringBuffer. They are summarized
in the following table.

Method Description

CharSequence
subSequence(int startIndex,

int stopIndex)

Returns a substring of the invoking
string, beginning at startIndex and
stopping at stopIndex. This method is
required by the CharSequence interface,
which is now implemented by
StringBuffer.

int indexOf(String str) Searches the invoking StringBuffer for
the first occurrence of str. Returns the
index of the match, or –1 if no match is
found.

int indexOf(String str, int startIndex) Searches the invoking StringBuffer for
the first occurrence of str, beginning at
startIndex. Returns the index of the
match, or –1 if no match is found.

int lastIndexOf(String str) Searches the invoking StringBuffer for
the last occurrence of str. Returns the
index of the match, or –1 if no match is
found.

int lastIndexOf(String str, int startIndex) Searches the invoking StringBuffer for
the last occurrence of str, beginning at
startIndex. Returns the index of the
match, or –1 if no match is found.

Aside from subSequence(), which implements a method required by the
CharSequence interface, the other methods allow a StringBuffer to be searched for an
occurrence of a String. The following program demonstrates indexOf() and
lastIndexOf().

class IndexOfDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("one two one");

int i;

376 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

i = sb.indexOf("one");

System.out.println("First index: " + i);

i = sb.lastIndexOf("one");

System.out.println("Last index: " + i);

}

}

The output is shown here.

First index: 0
Last index: 8

C h a p t e r 1 3 : S t r i n g H a n d l i n g 377
TH

E
JA

V
A

LIB
R

A
R

Y

This page intentionally left blank.

Chapter 14
Exploring java.lang

379

380 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This chapter discusses those classes and interfaces defined by java.lang. As you
know, java.lang is automatically imported into all programs. It contains classes
and interfaces that are fundamental to virtually all of Java programming. It is

Java’s most widely used package.
java.lang includes the following classes:

Boolean Long StackTraceElement (Java 2,1.4)

Byte Math StrictMath (Java 2,1.3)

Character Number String

Class Object StringBuffer

ClassLoader Package (Java 2) System

Compiler Process Thread

Double Runtime ThreadGroup

Float RuntimePermission (Java 2) ThreadLocal (Java 2)

InheritableThreadLocal (Java 2) SecurityManager Throwable

Integer Short Void

In addition, there are two classes defined by Character: Character.Subset and
Character.UnicodeBlock. These were added by Java 2.

java.lang also defines the following interfaces:

■ Cloneable

■ Comparable

■ Runnable

■ CharSequence

The Comparable interface was added by Java 2. CharSequence was added by Java 2,
version 1.4.

Several of the classes contained in java.lang contain deprecated methods, most
dating back to Java 1.0. These deprecated methods are still provided by Java 2, to
support an ever-shrinking pool of legacy code, and are not recommended for new code.
Most of the deprecations took place prior to Java 2 and these deprecated methods are not
discussed here. Deprecations that occurred because of Java 2, however, are mentioned.

Java 2 also added several new classes and methods to the java.lang package. The
new additions are so indicated.

Simple Type Wrappers
As we mentioned in Part I of this book, Java uses simple types, such as int and char, for
performance reasons. These data types are not part of the object hierarchy. They are

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 381
TH

E
JA

V
A

LIB
R

A
R

Y

passed by value to methods and cannot be directly passed by reference. Also, there is
no way for two methods to refer to the same instance of an int. At times, you will need
to create an object representation for one of these simple types. For example, there are
enumeration classes discussed in Chapter 15 that deal only with objects; to store a
simple type in one of these classes, you need to wrap the simple type in a class. To
address this need, Java provides classes that correspond to each of the simple types. In
essence, these classes encapsulate, or wrap, the simple types within a class. Thus, they
are commonly referred to as type wrappers.

Number
The abstract class Number defines a superclass that is implemented by the classes that
wrap the numeric types byte, short, int, long, float, and double. Number has abstract
methods that return the value of the object in each of the different number formats.
That is, doubleValue() returns the value as a double, floatValue() returns the value
as a float, and so on. These methods are shown here:

byte byteValue()
double doubleValue()
float floatValue()
int intValue()
long longValue()
short shortValue()

The values returned by these methods can be rounded.
Number has six concrete subclasses that hold explicit values of each numeric type:

Double, Float, Byte, Short, Integer, and Long.

Double and Float
Double and Float are wrappers for floating-point values of type double and float,
respectively. The constructors for Float are shown here:

Float(double num)
Float(float num)
Float(String str) throws NumberFormatException

As you can see, Float objects can be constructed with values of type float or double.
They can also be constructed from the string representation of a floating-point number.

The constructors for Double are shown here:

Double(double num)
Double(String str) throws NumberFormatException

Double objects can be constructed with a double value or a string containing a
floating-point value.

The methods defined by Float are shown in Table 14-1. The methods defined by
Double are shown in Table 14-2. Both Float and Double define the following constants:

MAX_VALUE Maximum positive value

MIN_VALUE Minimum positive value

NaN Not a number

POSITIVE_INFINITY Positive infinity

NEGATIVE_INFINITY Negative infinity

TYPE The Class object for float or double

382 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

byte byteValue() Returns the value of the invoking object as
a byte.

static int compare(float num1,
float num2)

Compares the values of num1 and num2.
Returns 0 if the values are equal. Returns a
negative value if num1 is less than num2.
Returns a positive value if num1 is greater
than num2. (Added by Java 2, version 1.4)

int compareTo(Float f) Compares the numerical value of the
invoking object with that of f. Returns 0 if
the values are equal. Returns a negative
value if the invoking object has a lower
value. Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

int compareTo(Object obj) Operates identically to compareTo(Float)
if obj is of class Float. Otherwise, throws a
ClassCastException. (Added by Java 2)

double doubleValue() Returns the value of the invoking object as
a double.

boolean equals(Object FloatObj) Returns true if the invoking Float object is
equivalent to FloatObj. Otherwise, it
returns false.

Table 14-1. The Methods Defined by Float

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 383
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static int floatToIntBits(float num) Returns the IEEE-compatible,
single-precision bit pattern that
corresponds to the num.

float floatValue() Returns the value of the invoking object as
a float.

int hashCode() Returns the hash code for the invoking object.

static float intBitsToFloat(int num) Returns float equivalent of the
IEEE-compatible, single-precision bit
pattern specified by num.

int intValue() Returns the value of the invoking object as
an int.

boolean isInfinite() Returns true if the invoking object contains
an infinite value. Otherwise, it returns false.

static boolean isInfinite(float num) Returns true if num specifies an infinite
value. Otherwise, it returns false.

boolean isNaN() Returns true if the invoking object
contains a value that is not a number.
Otherwise, it returns false.

static boolean isNaN(float num) Returns true if num specifies a value that is
not a number. Otherwise, it returns false.

long longValue() Returns the value of the invoking object as
a long.

static float parseFloat(String str)
throws NumberFormatException

Returns the float equivalent of the number
contained in the string specified by str
using radix 10. (Added by Java 2)

short shortValue() Returns the value of the invoking object as
a short.

String toString() Returns the string equivalent of the
invoking object.

static String toString(float num) Returns the string equivalent of the value
specified by num.

static Float valueOf(String str)
throws NumberFormatException

Returns the Float object that contains the
value specified by the string in str.

Table 14-1. The Methods Defined by Float (continued)

384 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

static int compare(double num1,
double num2)

Compares the values of num1 and
num2. Returns 0 if the values are
equal. Returns a negative value if
num1 is less than num2. Returns a
positive value if num1 is greater than
num2. (Added by Java 2, version 1.4)

int compareTo(Double d) Compares the numerical value of
the invoking object with that of d.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower value.
Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

int compareTo(Object obj) Operates identically to
compareTo(Double) if obj is of
class Double. Otherwise, throws
a ClassCastException. (Added
by Java 2)

static long doubleToLongBits(double num) Returns the IEEE-compatible,
double-precision bit pattern that
corresponds to the num.

double doubleValue() Returns the value of the invoking
object as a double.

boolean equals(Object DoubleObj) Returns true if the invoking
Double object is equivalent
to DoubleObj. Otherwise, it
returns false.

float floatValue() Returns the value of the invoking
object as a float.

int hashcode() Returns the hash code for the
invoking object.

Table 14-2. The Methods Defined by Double

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 385
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

int intValue() Returns the value of the invoking
object as an int.

boolean isInfinite() Returns true if the invoking object
contains an infinite value.
Otherwise, it returns false.

static boolean isInfinite(double num) Returns true if num specifies an
infinite value. Otherwise, it
returns false.

boolean isNaN() Returns true if the invoking object
contains a value that is not a
number. Otherwise, it returns false.

static boolean isNaN(double num) Returns true if num specifies a
value that is not a number.
Otherwise, it returns false.

static double longBitsToDouble(long num) Returns double equivalent of the
IEEE-compatible, double-precision
bit pattern specified by num.

long longValue() Returns the value of the invoking
object as a long.

static double parseDouble(String str)
throws NumberFormatException

Returns the double equivalent of
the number contained in the string
specified by str using radix 10.
(Added by Java 2)

short shortValue() Returns the value of the invoking
object as a short.

String toString() Returns the string equivalent of the
invoking object.

static String toString(double num) Returns the string equivalent of the
value specified by num.

static Double valueOf(String str)
throws NumberFormatException

Returns a Double object that
contains the value specified by the
string in str.

Table 14-2. The Methods Defined by Double (continued)

The following example creates two Double objects—one by using a double value
and the other by passing a string that can be parsed as a double:

class DoubleDemo {

public static void main(String args[]) {

Double d1 = new Double(3.14159);

Double d2 = new Double("314159E-5");

System.out.println(d1 + " = " + d2 + " -> " + d1.equals(d2));

}

}

As you can see from the following output, both constructors created identical Double
instances, as shown by the equals() method returning true:

3.14159 = 3.14159 –> true

Understanding isInfinite() and isNaN()
Float and Double provide the methods isInfinite() and isNaN(), which help when
manipulating two special double and float values. These methods test for two unique
values defined by the IEEE floating-point specification: infinity and NaN (not a
number). isInfinite() returns true if the value being tested is infinitely large or small
in magnitude. isNaN() returns true if the value being tested is not a number.

The following example creates two Double objects; one is infinite, and the other is
not a number:

// Demonstrate isInfinite() and isNaN()

class InfNaN {

public static void main(String args[]) {

Double d1 = new Double(1/0.);

Double d2 = new Double(0/0.);

System.out.println(d1 + ": " + d1.isInfinite() + ", " + d1.isNaN());

System.out.println(d2 + ": " + d2.isInfinite() + ", " + d2.isNaN());

}

}

This program generates the following output:

Infinity: true, false
NaN: false, true

386 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Byte, Short, Integer, and Long
The Byte, Short, Integer, and Long classes are wrappers for byte, short, int, and long
integer types, respectively. Their constructors are shown here:

Byte(byte num)
Byte(String str) throws NumberFormatException

Short(short num)
Short(String str) throws NumberFormatException

Integer(int num)
Integer(String str) throws NumberFormatException

Long(long num)
Long(String str) throws NumberFormatException

As you can see, these objects can be constructed from numeric values or from strings
that contain valid whole number values.

The methods defined by these classes are shown in Tables 14-3 through 14-6. As
you can see, they define methods for parsing integers from strings and converting
strings back into integers. Variants of these methods allow you to specify the radix,
or numeric base, for conversion. Common radixes are 2 for binary, 8 for octal, 10 for
decimal, and 16 for hexadecimal.

The following constants are defined:

MIN_VALUE Minimum value

MAX_VALUE Maximum value

TYPE The Class object for byte, short, int, or long

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 387
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

int compareTo(Byte b) Compares the numerical value of
the invoking object with that of b.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower value.
Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

Table 14-3. The Methods Defined by Byte

388 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

int compareTo(Object obj) Operates identically to
compareTo(Byte) if obj is of class
Byte. Otherwise, throws a
ClassCastException. (Added
by Java 2)

static Byte decode(String str)
throws NumberFormatException

Returns a Byte object that contains
the value specified by the string
in str.

double doubleValue() Returns the value of the invoking
object as a double.

boolean equals(Object ByteObj) Returns true if the invoking Byte
object is equivalent to ByteObj.
Otherwise, it returns false.

float floatValue() Returns the value of the invoking
object as a float.

int hashCode() Returns the hash code for the
invoking object.

int intValue() Returns the value of the invoking
object as an int.

long longValue() Returns the value of the invoking
object as a long.

static byte parseByte(String str)
throws NumberFormatException

Returns the byte equivalent of the
number contained in the string
specified by str using radix 10.

static byte parseByte(String str, int radix)
throws NumberFormatException

Returns the byte equivalent of
the number contained in the
string specified by str using the
specified radix.

short shortValue() Returns the value of the invoking
object as a short.

String toString() Returns a string that contains
the decimal equivalent of the
invoking object.

Table 14-3. The Methods Defined by Byte (continued)

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 389
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static String toString(byte num) Returns a string that contains the
decimal equivalent of num.

static Byte valueOf(String str)
throws NumberFormatException

Returns a Byte object that contains
the value specified by the string
in str.

static Byte valueOf(String str, int radix)
throws NumberFormatException

Returns a Byte object that contains
the value specified by the string in
str using the specified radix.

Table 14-3. The Methods Defined by Byte (continued)

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

int compareTo(Short s) Compares the numerical value of
the invoking object with that of s.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower value.
Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

int compareTo(Object obj) Operates identically to
compareTo(Short) if obj is of
class Short. Otherwise, throws
a ClassCastException. (Added
by Java 2)

static Short decode(String str)
throws NumberFormatException

Returns a Short object that
contains the value specified by
the string in str.

Table 14-4. The Methods Defined by Short

390 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

double doubleValue() Returns the value of the invoking
object as a double.

boolean equals(Object ShortObj) Returns true if the invoking
Integer object is equivalent
to ShortObj. Otherwise, it
returns false.

float floatValue() Returns the value of the invoking
object as a float.

int hashCode() Returns the hash code for the
invoking object.

int intValue() Returns the value of the invoking
object as an int.

long longValue() Returns the value of the invoking
object as a long.

static short parseShort(String str)
throws NumberFormatException

Returns the short equivalent of the
number contained in the string
specified by str using radix 10.

static short parseShort(String str, int radix)
throws NumberFormatException

Returns the short equivalent
of the number contained in the
string specified by str using
the specified radix.

short shortValue() Returns the value of the invoking
object as a short.

String toString() Returns a string that contains
the decimal equivalent of the
invoking object.

static String toString(short num) Returns a string that contains the
decimal equivalent of num.

static Short valueOf(String str)
throws NumberFormatException

Returns a Short object that contains
the value specified by the string in
str using radix 10.

static Short valueOf(String str, int radix)
throws NumberFormatException

Returns a Short object that contains
the value specified by the string in
str using the specified radix.

Table 14-4. The Methods Defined by Short (continued)

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 391
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

int compareTo(Integer i) Compares the numerical value of
the invoking object with that of i.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower
value. Returns a positive value if
the invoking object has a greater
value. (Added by Java 2)

int compareTo(Object obj) Operates identically to
compareTo(Integer) if obj is of
class Integer. Otherwise, throws
a ClassCastException. (Added
by Java 2)

static Integer decode(String str)
throws NumberFormatException

Returns an Integer object that
contains the value specified by
the string in str.

double doubleValue() Returns the value of the invoking
object as a double.

boolean equals(Object IntegerObj) Returns true if the invoking
Integer object is equivalent
to IntegerObj. Otherwise, it
returns false.

float floatValue() Returns the value of the invoking
object as a float.

static Integer getInteger(String propertyName) Returns the value associated
with the environmental property
specified by propertyName. A
null is returned on failure.

static Integer getInteger(String propertyName,
int default)

Returns the value associated
with the environmental property
specified by propertyName.
The value of default is returned
on failure.

Table 14-5. The Methods Defined by Integer

392 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static Integer getInteger(String propertyName,
Integer default)

Returns the value associated
with the environmental property
specified by propertyName.
The value of default is returned
on failure.

int hashCode() Returns the hash code for the
invoking object.

int intValue() Returns the value of the invoking
object as an int.

long longValue() Returns the value of the invoking
object as a long.

static int parseInt(String str)
throws NumberFormatException

Returns the integer equivalent
of the number contained in
the string specified by str using
radix 10.

static int parseInt(String str, int radix)
throws NumberFormatException

Returns the integer equivalent of
the number contained in the
string specified by str using the
specified radix.

short shortValue() Returns the value of the invoking
object as a short.

static String toBinaryString(int num) Returns a string that contains the
binary equivalent of num.

static String toHexString(int num) Returns a string that contains the
hexadecimal equivalent of num.

static String toOctalString(int num) Returns a string that contains the
octal equivalent of num.

String toString() Returns a string that contains the
decimal equivalent of the
invoking object.

static String toString(int num) Returns a string that contains the
decimal equivalent of num.

Table 14-5. The Methods Defined by Integer (continued)

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 393
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static String toString(int num, int radix) Returns a string that contains the
decimal equivalent of num using
the specified radix.

static Integer valueOf(String str)
throws NumberFormatException

Returns an Integer object that
contains the value specified by
the string in str.

static Integer valueOf(String str, int radix)
throws NumberFormatException

Returns an Integer object that
contains the value specified by
the string in str using the
specified radix.

Table 14-5. The Methods Defined by Integer (continued)

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

int compareTo(Long l) Compares the numerical value of
the invoking object with that of l.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower
value. Returns a positive value if
the invoking object has a greater
value. (Added by Java 2)

int compareTo(Object obj) Operates identically to
compareTo(Long) if obj is of
class Long. Otherwise, throws a
ClassCastException. (Added by
Java 2)

Table 14-6. The Methods Defined by Long

394 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static Long decode(String str)
throws NumberFormatException

Returns a Long object that
contains the value specified by
the string in str.

double doubleValue() Returns the value of the invoking
object as a double.

boolean equals(Object LongObj) Returns true if the invoking long
object is equivalent to LongObj.
Otherwise, it returns false.

float floatValue() Returns the value of the invoking
object as a float.

static Long getLong(String propertyName) Returns the value associated
with the environmental property
specified by propertyName. A
null is returned on failure.

static Long getLong(String propertyName,
long default)

Returns the value associated
with the environmental property
specified by propertyName.
The value of default is returned
on failure.

static Long getLong(String propertyName,
Long default)

Returns the value associated
with the environmental property
specified by propertyName.
The value of default is returned
on failure.

int hashCode() Returns the hash code for the
invoking object.

int intValue() Returns the value of the invoking
object as an int.

long longValue() Returns the value of the invoking
object as a long.

Table 14-6. The Methods Defined by Long (continued)

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 395
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static long parseLong(String str)
throws NumberFormatException

Returns the long equivalent of
the number contained in the
string specified by str in radix 10.

static long parseLong(String str, int radix)
throws NumberFormatException

Returns the long equivalent of
the number contained in the
string specified by str using the
specified radix.

short shortValue() Returns the value of the invoking
object as a short.

static String toBinaryString(long num) Returns a string that contains the
binary equivalent of num.

static String toHexString(long num) Returns a string that contains the
hexadecimal equivalent of num.

static String toOctalString(long num) Returns a string that contains the
octal equivalent of num.

String toString() Returns a string that contains the
decimal equivalent of the
invoking object.

static String toString(long num) Returns a string that contains the
decimal equivalent of num.

static String toString(long num, int radix) Returns a string that contains the
decimal equivalent of num using
the specified radix.

static Long valueOf(String str)
throws NumberFormatException

Returns a Long object that
contains the value specified by
the string in str.

static Long valueOf(String str, int radix)
throws NumberFormatException

Returns a Long object that
contains the value specified by
the string in str using the
specified radix.

Table 14-6. The Methods Defined by Long (continued)

396 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Converting Numbers to and from Strings
One of the most common programming chores is converting the string representation
of a number into its internal, binary format. Fortunately, Java provides an easy way to
accomplish this. The Byte, Short, Integer, and Long classes provide the parseByte(),
parseShort(), parseInt(), and parseLong() methods, respectively. These methods
return the byte, short, int, or long equivalent of the numeric string with which they are
called. (Similar methods also exist for the Float and Double classes.)

The following program demonstrates parseInt(). It sums a list of integers entered
by the user. It reads the integers using readLine() and uses parseInt() to convert these
strings into their int equivalents.

/* This program sums a list of numbers entered

by the user. It converts the string representation

of each number into an int using parseInt().

*/

import java.io.*;

class ParseDemo {

public static void main(String args[])

throws IOException

{

// create a BufferedReader using System.in

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

String str;

int i;

int sum=0;

System.out.println("Enter numbers, 0 to quit.");

do {

str = br.readLine();

try {

i = Integer.parseInt(str);

} catch(NumberFormatException e) {

System.out.println("Invalid format");

i = 0;

}

sum += i;

System.out.println("Current sum is: " + sum);

} while(i != 0);

}

}

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 397
TH

E
JA

V
A

LIB
R

A
R

Y

To convert a whole number into a decimal string, use the versions of toString()
defined in the Byte, Short, Integer, or Long classes. The Integer and Long classes also
provide the methods toBinaryString(), toHexString(), and toOctalString(), which
convert a value into a binary, hexadecimal, or octal string, respectively.

The following program demonstrates binary, hexadecimal, and octal conversion:

/* Convert an integer into binary, hexadecimal,

and octal.

*/

class StringConversions {

public static void main(String args[]) {

int num = 19648;

System.out.println(num + " in binary: " +

Integer.toBinaryString(num));

System.out.println(num + " in octal: " +

Integer.toOctalString(num));

System.out.println(num + " in hexadecimal: " +

Integer.toHexString(num));

}

}

The output of this program is shown here:

19648 in binary: 100110011000000
19648 in octal: 46300
19648 in hexadecimal: 4cc0

Character
Character is a simple wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object
being created.

To obtain the char value contained in a Character object, call charValue(),
shown here:

char charValue()

It returns the character.

398 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The Character class defines several constants, including the following:

MAX_RADIX The largest radix

MIN_RADIX The smallest radix

MAX_VALUE The largest character value

MIN_VALUE The smallest character value

TYPE The Class object for char

Character includes several static methods that categorize characters and alter their
case. They are shown in Table 14-7. The following example demonstrates several of
these methods.

// Demonstrate several Is... methods.

class IsDemo {

public static void main(String args[]) {

char a[] = {'a', 'b', '5', '?', 'A', ' '};

for(int i=0; i<a.length; i++) {

if(Character.isDigit(a[i]))

System.out.println(a[i] + " is a digit.");

if(Character.isLetter(a[i]))

System.out.println(a[i] + " is a letter.");

if(Character.isWhitespace(a[i]))

System.out.println(a[i] + " is whitespace.");

if(Character.isUpperCase(a[i]))

System.out.println(a[i] + " is uppercase.");

if(Character.isLowerCase(a[i]))

System.out.println(a[i] + " is lowercase.");

}

}

}

The output from this program is shown here:

a is a letter.
a is lowercase.
b is a letter.
b is lowercase.
5 is a digit.
A is a letter.
A is uppercase.
is whitespace.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 399
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static boolean isDefined(char ch) Returns true if ch is defined by
Unicode. Otherwise, it returns false.

static boolean isDigit(char ch) Returns true if ch is a digit.
Otherwise, it returns false.

static boolean isIdentifierIgnorable(char ch) Returns true if ch should be
ignored in an identifier.
Otherwise, it returns false.

static boolean isISOControl(char ch) Returns true if ch is an ISO control
character. Otherwise, it returns
false.

static boolean isJavaIdentifierPart(char ch) Returns true if ch is allowed as
part of a Java identifier (other than
the first character). Otherwise, it
returns false.

static boolean isJavaIdentifierStart(char ch) Returns true if ch is allowed
as the first character of a
Java identifier. Otherwise,
it returns false.

static boolean isLetter(char ch) Returns true if ch is a letter.
Otherwise, it returns false.

static boolean isLetterOrDigit(char ch) Returns true if ch is a letter or a
digit. Otherwise, it returns false.

static boolean isLowerCase(char ch) Returns true if ch is a
lowercase letter. Otherwise,
it returns false.

static boolean isMirrored(char ch) Returns true if ch is a mirrored
Unicode character. A mirrored
character is one that is reversed for
text that is displayed right-to-left.
(Added by Java 2, version 1.4)

static boolean isSpaceChar(char ch) Returns true if ch is a Unicode
space character. Otherwise, it
returns false.

Table 14-7. Various Character Methods

400 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Character defines the forDigit() and digit() methods, shown here:

static char forDigit(int num, int radix)
static int digit(char digit, int radix)

forDigit() returns the digit character associated with the value of num. The radix of the
conversion is specified by radix. digit() returns the integer value associated with the
specified character (which is presumably a digit) according to the specified radix.

Another method defined by Character is compareTo(), which has the following
two forms:

int compareTo(Character c)
int compareTo(Object obj)

The first form returns 0 if the invoking object and c have the same value. It returns a
negative value if the invoking object has a lower value. Otherwise, it returns a positive
value. The second form works just like the first if obj is a reference to a Character.
Otherwise, a ClassCastException is thrown. These methods were added by Java 2.

Method Description

static boolean isTitleCase(char ch) Returns true if ch is a Unicode
titlecase character. Otherwise,
it returns false.

static boolean isUnicodeIdentifierPart(char ch) Returns true if ch is allowed as
part of a Unicode identifier (other
than the first character).
Otherwise, it returns false.

static boolean isUnicodeIdentifierStart(char ch) Returns true if ch is allowed
as the first character of a Unicode
identifier. Otherwise,
it returns false.

static boolean isUpperCase(char ch) Returns true if ch is an uppercase
letter. Otherwise, it returns false.

static boolean isWhitespace(char ch) Returns true if ch is whitespace.
Otherwise, it returns false.

static char toLowerCase(char ch) Returns lowercase equivalent of ch.

static char toTitleCase(char ch) Returns titlecase equivalent of ch.

static char toUpperCase(char ch) Returns uppercase equivalent of ch.

Table 14-7. Various Character Methods (continued)

Java 2, version 1.4 adds a method called getDirectionality() which can be used to
determine the direction of a character. Several new constants have been added which
describe directionality. Most programs will not need to use character directionality.

Character also defines the equals() and hashCode() methods.
Two other character-related classes are Character.Subset, used to describe a subset

of Unicode, and Character.UnicodeBlock, which contains Unicode character blocks.

Boolean
Boolean is a very thin wrapper around boolean values, which is useful mostly when
you want to pass a boolean variable by reference. It contains the constants TRUE and
FALSE, which define true and false Boolean objects. Boolean also defines the TYPE
field, which is the Class object for boolean. Boolean defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if
boolString contains the string “true” (in uppercase or lowercase), then the new Boolean
object will be true. Otherwise, it will be false.

Boolean defines the methods shown in Table 14-8.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 401
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

boolean booleanValue() Returns boolean equivalent.

boolean equals(Object boolObj) Returns true if the invoking object is equivalent
to boolObj. Otherwise, it returns false.

static boolean
getBoolean(String propertyName)

Returns true if the system property specified
by propertyName is true. Otherwise, it returns
false.

int hashCode() Returns the hash code for the invoking object.

String toString() Returns the string equivalent of the invoking
object.

static String toString(boolean boolVal) Returns the string equivalent of boolVal.
(Added by Java 2, version 1.4)

static Boolean valueOf(boolean boolVal) Returns the Boolean equivalent of boolVal.
(Added by Java 2, version 1.4)

static Boolean valueOf(String boolString) Returns true if boolString contains the string
“true” (in uppercase or lowercase).
Otherwise, it returns false.

Table 14-8. The Methods Defined by Boolean

Void
The Void class has one field, TYPE, which holds a reference to the Class object for type
void. You do not create instances of this class.

Process
The abstract Process class encapsulates a process—that is, an executing program. It is
used primarily as a superclass for the type of objects created by exec() in the Runtime
class described in the next section. Process contains the abstract methods shown in
Table 14-9.

402 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void destroy() Terminates the process.

int exitValue() Returns an exit code obtained
from a subprocess.

InputStream getErrorStream() Returns an input stream that
reads input from the process’ err
output stream.

InputStream getInputStream() Returns an input stream that
reads input from the process’ out
output stream.

OutputStream getOutputStream() Returns an output stream that
writes output to the process’ in
input stream.

int waitFor()
throws InterruptedException

Returns the exit code returned by
the process. This method does not
return until the process on which
it is called terminates.

Table 14-9. The Abstract Methods Defined by Process

Runtime
The Runtime class encapsulates the run-time environment. You cannot instantiate a
Runtime object. However, you can get a reference to the current Runtime object by
calling the static method Runtime.getRuntime(). Once you obtain a reference to the
current Runtime object, you can call several methods that control the state and
behavior of the Java Virtual Machine. Applets and other untrusted code typically
cannot call any of the Runtime methods without raising a SecurityException.

The methods defined by Runtime are shown in Table 14-10. Java 2 deprecates
the method runFinalizersOnExit(). This method was added by Java 1.1 but was
deemed unstable.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 403
TH

E
JA

V
A

LIB
R

A
R

YMethod Description

void addShutdownHook(Thread thrd) Registers thrd as a thread to be run when
the Java virtual machine terminates.
(Added by Java 2, version 1.3)

Process exec(String progName)
throws IOException

Executes the program specified by
progName as a separate process. An object
of type Process is returned that describes
the new process.

Process exec(String progName,
String environment[])

throws IOException

Executes the program specified by
progName as a separate process with the
environment specified by environment. An
object of type Process is returned that
describes the new process.

Process exec(String comLineArray[])
throws IOException

Executes the command line specified by
the strings in comLineArray as a separate
process. An object of type Process is
returned that describes the new process.

Process exec(String comLineArray[],
String environment[])

throws IOException

Executes the command line specified by
the strings in comLineArray as a separate
process with the environment specified by
environment. An object of type Process is
returned that describes the new process.

Table 14-10. The Commonly Used Methods Defined by Runtime

404 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void exit(int exitCode) Halts execution and returns the value of
exitCode to the parent process. By
convention, 0 indicates normal
termination. All other values indicate
some form of error.

long freeMemory() Returns the approximate number of bytes
of free memory available to the Java
run-time system.

void gc() Initiates garbage collection.

static Runtime getRuntime() Returns the current Runtime object.

void halt(int code) Immediately terminates the Java virtual
machine. No termination threads or
finalizers are run. The value of code is
returned to the invoking process.
(Added by Java 2, version 1.3)

void load(String libraryFileName) Loads the dynamic library whose file is
specified by libraryFileName, which must
specify its complete path.

void loadLibrary(String libraryName) Loads the dynamic library whose name is
associated with libraryName.

boolean removeShutdownHook(Thread thrd) Removes thrd from the list of threads
to run when the Java virtual machine
terminates. It returns true if
successfulthat is, if the thread was
removed. (Added by Java 2, verison 1.3)

void runFinalization() Initiates calls to the finalize() methods of
unused but not yet recycled objects.

long totalMemory() Returns the total number of bytes of
memory available to the program.

void traceInstructions(boolean traceOn) Turns on or off instruction tracing,
depending upon the value of traceOn. If
traceOn is true, the trace is displayed. If it
is false, tracing is turned off.

void traceMethodCalls(boolean traceOn) Turns on or off method call tracing,
depending upon the value of traceOn. If
traceOn is true, the trace is displayed. If it
is false, tracing is turned off.

Table 14-10. The Commonly Used Methods Defined by Runtime (continued)

Let’s look at two of the most common uses of the Runtime class: memory
management and executing additional processes.

Memory Management
Although Java provides automatic garbage collection, sometimes you will want to
know how large the object heap is and how much of it is left. You can use this
information, for example, to check your code for efficiency or to approximate how
many more objects of a certain type can be instantiated. To obtain these values, use the
totalMemory() and freeMemory() methods.

As we mentioned in Part I, Java’s garbage collector runs periodically to recycle
unused objects. However, sometimes you will want to collect discarded objects prior to
the collector’s next appointed rounds. You can run the garbage collector on demand by
calling the gc() method. A good thing to try is to call gc() and then call freeMemory()
to get a baseline memory usage. Next, execute your code and call freeMemory() again
to see how much memory it is allocating. The following program illustrates this idea:

// Demonstrate totalMemory(), freeMemory() and gc().

class MemoryDemo {

public static void main(String args[]) {

Runtime r = Runtime.getRuntime();

long mem1, mem2;

Integer someints[] = new Integer[1000];

System.out.println("Total memory is: " +

r.totalMemory());

mem1 = r.freeMemory();

System.out.println("Initial free memory: " + mem1);

r.gc();

mem1 = r.freeMemory();

System.out.println("Free memory after garbage collection: "

+ mem1);

for(int i=0; i<1000; i++)

someints[i] = new Integer(i); // allocate integers

mem2 = r.freeMemory();

System.out.println("Free memory after allocation: "

+ mem2);

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 405
TH

E
JA

V
A

LIB
R

A
R

Y

406 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("Memory used by allocation: "

+ (mem1-mem2));

// discard Integers

for(int i=0; i<1000; i++) someints[i] = null;

r.gc(); // request garbage collection

mem2 = r.freeMemory();

System.out.println("Free memory after collecting" +

" discarded Integers: " + mem2);

}

}

Sample output from this program is shown here (of course, your actual results
may vary):

Total memory is: 1048568
Initial free memory: 751392
Free memory after garbage collection: 841424
Free memory after allocation: 824000
Memory used by allocation: 17424
Free memory after collecting discarded Integers: 842640

Executing Other Programs
In safe environments, you can use Java to execute other heavyweight processes (that is,
programs) on your multitasking operating system. Several forms of the exec() method
allow you to name the program you want to run as well as its input parameters. The
exec() method returns a Process object, which can then be used to control how your
Java program interacts with this new running process. Because Java can run on a
variety of platforms and under a variety of operating systems, exec() is inherently
environment-dependent.

The following example uses exec() to launch notepad, Windows’ simple text
editor. Obviously, this example must be run under the Windows operating system.

// Demonstrate exec().

class ExecDemo {

public static void main(String args[]) {

Runtime r = Runtime.getRuntime();

Process p = null;

try {

p = r.exec("notepad");

} catch (Exception e) {

System.out.println("Error executing notepad.");

}

}

}

There are several alternate forms of exec(), but the one shown in the example is the
most common. The Process object returned by exec() can be manipulated by Process’
methods after the new program starts running. You can kill the subprocess with the
destroy() method. The waitFor() method causes your program to wait until the
subprocess finishes. The exitValue() method returns the value returned by the
subprocess when it is finished. This is typically 0 if no problems occur. Here is the
preceding exec() example modified to wait for the running process to exit:

// Wait until notepad is terminated.

class ExecDemoFini {

public static void main(String args[]) {

Runtime r = Runtime.getRuntime();

Process p = null;

try {

p = r.exec("notepad");

p.waitFor();

} catch (Exception e) {

System.out.println("Error executing notepad.");

}

System.out.println("Notepad returned " + p.exitValue());

}

}

While a subprocess is running, you can write to and read from its standard input and
output. The getOutputStream() and getInputStream() methods return the handles to
standard in and out of the subprocess. (I/O is examined in detail in Chapter 17.)

System
The System class holds a collection of static methods and variables. The standard input,
output, and error output of the Java run time are stored in the in, out, and err variables.
The methods defined by System are shown in Table 14-11. Many of the methods throw a

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 407
TH

E
JA

V
A

LIB
R

A
R

Y

SecurityException if the operation is not permitted by the security manager. One other
point: Java 2 deprecated the method runFinalizersOnExit(). This method was added by
Java 1.1, but was determined to be unstable.

Let’s look at some common uses of System.

408 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static void arraycopy(Object source,
int sourceStart,
Object target,
int targetStart,
int size)

Copies an array. The array to
be copied is passed in source,
and the index at which point
the copy will begin within
source is passed in sourceStart.
The array that will receive the
copy is passed in target, and
the index at which point the
copy will begin within target
is passed in targetStart.
size is the number of elements
that are copied.

static long currentTimeMillis() Returns the current time in
terms of milliseconds since
midnight, January 1, 1970.

static void exit(int exitCode) Halts execution and returns
the value of exitCode to the
parent process (usually the
operating system). By
convention, 0 indicates normal
termination. All other values
indicate some form of error.

static void gc() Initiates garbage collection.

static Properties getProperties() Returns the properties
associated with the Java
run-time system. (The
Properties class is described
in Chapter 15.)

Table 14-11. The Methods Defined by System

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 409
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static String getProperty(String which) Returns the property
associated with which. A null
object is returned if the desired
property is not found.

static String getProperty(String which,
String default)

Returns the property
associated with which. If the
desired property is not found,
default is returned.

static SecurityManager getSecurityManager() Returns the current security
manager or a null object if no
security manager is installed.

static int identityHashCode(Object obj) Returns the identity hash code
for obj.

static void load(String libraryFileName) Loads the dynamic library
whose file is specified by
libraryFileName, which must
specify its complete path.

static void loadLibrary(String libraryName) Loads the dynamic library
whose name is associated with
libraryName.

static String mapLibraryName(String lib) Returns a platform-specific
name for the library named lib.
(Added by Java 2)

static void runFinalization() Initiates calls to the finalize()
methods of unused but not yet
recycled objects.

static void setErr(PrintStream eStream) Sets the standard err stream
to eStream.

static void setIn(InputStream iStream) Sets the standard in stream
to iStream.

static void setOut(PrintStream oStream) Sets the standard out stream
to oStream.

Table 14-11. The Methods Defined by System (continued)

410 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using currentTimeMillis() to Time Program Execution
One use of the System class that you might find particularly interesting is to use
the currentTimeMillis() method to time how long various parts of your program
take to execute. The currentTimeMillis() method returns the current time in terms of
milliseconds since midnight, January 1, 1970. To time a section of your program, store
this value just before beginning the section in question. Immediately upon completion,
call currentTimeMillis() again. The elapsed time will be the ending time minus the
starting time. The following program demonstrates this:

// Timing program execution.

class Elapsed {

public static void main(String args[]) {

long start, end;

System.out.println("Timing a for loop from 0 to 1,000,000");

// time a for loop from 0 to 1,000,000

start = System.currentTimeMillis(); // get starting time

for(int i=0; i < 1000000; i++) ;

end = System.currentTimeMillis(); // get ending time

System.out.println("Elapsed time: " + (end-start));

}

}

Method Description

static void
setProperties(Properties sysProperties)

Sets the current system
properties as specified
by sysProperties.

static String setProperty(String which, String v) Assigns the value v to the
property named which.
(Added by Java 2)

static void setSecurityManager(
SecurityManager secMan)

Sets the security manager to
that specified by secMan.

Table 14-11. The Methods Defined by System (continued)

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 411
TH

E
JA

V
A

LIB
R

A
R

Y

Here is a sample run (remember that your results probably will differ):

Timing a for loop from 0 to 1,000,000
Elapsed time: 10

Using arraycopy()
The arraycopy() method can be used to copy quickly an array of any type from one
place to another. This is much faster than the equivalent loop written out longhand in
Java. Here is an example of two arrays being copied by the arraycopy() method. First,
a is copied to b. Next, all of a’s elements are shifted down by one. Then, b is shifted up
by one.

// Using arraycopy().

class ACDemo {

static byte a[] = { 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 };

static byte b[] = { 77, 77, 77, 77, 77, 77, 77, 77, 77, 77 };

public static void main(String args[]) {

System.out.println("a = " + new String(a));

System.out.println("b = " + new String(b));

System.arraycopy(a, 0, b, 0, a.length);

System.out.println("a = " + new String(a));

System.out.println("b = " + new String(b));

System.arraycopy(a, 0, a, 1, a.length - 1);

System.arraycopy(b, 1, b, 0, b.length - 1);

System.out.println("a = " + new String(a));

System.out.println("b = " + new String(b));

}

}

As you can see from the following output, you can copy using the same source and
destination in either direction:

a = ABCDEFGHIJ
b = MMMMMMMMMM
a = ABCDEFGHIJ
b = ABCDEFGHIJ
a = AABCDEFGHI
b = BCDEFGHIJJ

412 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Environment Properties
The following properties are available in Java 2, version 1.4:

file.separator java.specification.version java.vm.version

java.class.path java.vendor line.separator

java.class.version java.vendor.url os.arch

java.compiler java.version os.name

java.ext.dirs java.vm.name os.version

java.home java.vm.specification.name path.separator

java.io.tmpdir java.vm.specification.vendor user.dir

java.library.path java.vm.specification.version user.home

java.specification.name java.vm.vendor user.name

java.specification.vendor

You can obtain the values of various environment variables by calling the
System.getProperty() method. For example, the following program displays the path
to the current user directory:

class ShowUserDir {

public static void main(String args[]) {

System.out.println(System.getProperty("user.dir"));

}

}

Object
As we mentioned in Part I, Object is a superclass of all other classes. Object defines the
methods shown in Table 14-12, which are available to every object.

Using clone() and the Cloneable Interface
Most of the methods defined by Object are discussed elsewhere in this book. However,
one deserves special attention: clone(). The clone() method generates a duplicate copy
of the object on which it is called. Only classes that implement the Cloneable interface
can be cloned.

The Cloneable interface defines no members. It is used to indicate that a class
allows a bitwise copy of an object (that is, a clone) to be made. If you try to call clone()
on a class that does not implement Cloneable, a CloneNotSupportedException is

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 413
TH

E
JA

V
A

LIB
R

A
R

Y

thrown. When a clone is made, the constructor for the object being cloned is not called.
A clone is simply an exact copy of the original.

Cloning is a potentially dangerous action, because it can cause unintended side
effects. For example, if the object being cloned contains a reference variable called
obRef, then when the clone is made, obRef in the clone will refer to the same object as
does obRef in the original. If the clone makes a change to the contents of the object

Method Description

Object clone()
throws

CloneNotSupportedException

Creates a new object that is the same as the
invoking object.

boolean equals(Object object) Returns true if the invoking object is
equivalent to object.

void finalize()
throws Throwable

Default finalize() method. This is usually
overridden by subclasses.

final Class getClass() Obtains a Class object that describes the
invoking object.

int hashCode() Returns the hash code associated with the
invoking object.

final void notify() Resumes execution of a thread waiting on
the invoking object.

final void notifyAll() Resumes execution of all threads waiting
on the invoking object.

String toString() Returns a string that describes the object.

final void wait()
throws InterruptedException

Waits on another thread of execution.

final void wait(long milliseconds)
throws InterruptedException

Waits up to the specified number of
milliseconds on another thread of execution.

final void wait(long milliseconds,
int nanoseconds)

throws InterruptedException

Waits up to the specified number of
milliseconds plus nanoseconds on another
thread of execution.

Table 14-12. The Methods Defined by Object

414 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

referred to by obRef, then it will be changed for the original object, too. Here is another
example. If an object opens an I/O stream and is then cloned, two objects will be
capable of operating on the same stream. Further, if one of these objects closes the
stream, the other object might still attempt to write to it, causing an error.

Because cloning can cause problems, clone() is declared as protected inside Object.
This means that it must either be called from within a method defined by the class that
implements Cloneable, or it must be explicitly overridden by that class so that it is
public. Let’s look at an example of each approach.

The following program implements Cloneable and defines the method
cloneTest(), which calls clone() in Object:

// Demonstrate the clone() method.

class TestClone implements Cloneable {

int a;

double b;

// This method calls Object's clone().

TestClone cloneTest() {

try {

// call clone in Object.

return (TestClone) super.clone();

} catch(CloneNotSupportedException e) {

System.out.println("Cloning not allowed.");

return this;

}

}

}

class CloneDemo {

public static void main(String args[]) {

TestClone x1 = new TestClone();

TestClone x2;

x1.a = 10;

x1.b = 20.98;

x2 = x1.cloneTest(); // clone x1

System.out.println("x1: " + x1.a + " " + x1.b);

System.out.println("x2: " + x2.a + " " + x2.b);

}

}

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 415
TH

E
JA

V
A

LIB
R

A
R

Y

Here, the method cloneTest() calls clone() in Object and returns the result. Notice
that the object returned by clone() must be cast into its appropriate type (TestClone).

The following example overrides clone() so that it can be called from code outside
of its class. To do this, its access specifier must be public, as shown here:

// Override the clone() method.

class TestClone implements Cloneable {

int a;

double b;

// clone() is now overridden and is public.

public Object clone() {

try {

// call clone in Object.

return super.clone();

} catch(CloneNotSupportedException e) {

System.out.println("Cloning not allowed.");

return this;

}

}

}

class CloneDemo2 {

public static void main(String args[]) {

TestClone x1 = new TestClone();

TestClone x2;

x1.a = 10;

x1.b = 20.98;

// here, clone() is called directly.

x2 = (TestClone) x1.clone();

System.out.println("x1: " + x1.a + " " + x1.b);

System.out.println("x2: " + x2.a + " " + x2.b);

}

}

The side effects caused by cloning are sometimes difficult to see at first. It is easy to
think that a class is safe for cloning when it actually is not. In general, you should not
implement Cloneable for any class without good reason.

Class
Class encapsulates the run-time state of an object or interface. Objects of type Class are
created automatically, when classes are loaded. You cannot explicitly declare a Class
object. Generally, you obtain a Class object by calling the getClass() method defined
by Object. Some of the most commonly used methods defined by Class are shown in
Table 14-13.

416 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static Class forName(String name)
throws ClassNotFoundException

Returns a Class object given its
complete name.

static Class forName(String name,
boolean how,
ClassLoader ldr)

throws ClassNotFoundException

Returns a Class object given its
complete name. The object is
loaded using the loader specified
by ldr. If how is true, the object is
initialized; otherwise it is not.
(Added by Java 2)

Class[] getClasses() Returns a Class object for each of
the public classes and interfaces that
are members of the invoking object.

ClassLoader getClassLoader() Returns the ClassLoader object that
loaded the class or interface used to
instantiate the invoking object.

Constructor[] getConstructors()
throws SecurityException

Returns a Constructor object for all
the public constructors of this class.

Constructor[] getDeclaredConstructors()
throws SecurityException

Returns a Constructor object for all
the constructors that are declared by
this class.

Field[] getDeclaredFields()
throws SecurityException

Returns a Field object for all the
fields that are declared by this class.

Method[] getDeclaredMethods()
throws SecurityException

Returns a Method object for all the
methods that are declared by this
class or interface.

Table 14-13. Some Methods Defined by Class

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 417
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

Field[] getFields()
throws SecurityException

Returns a Field object for all the
public fields of this class.

Class[] getInterfaces() When invoked on an object, this
method returns an array of the
interfaces implemented by the class
type of the object. When invoked on
an interface, this method returns
an array of interfaces extended by
the interface.

Method[] getMethods()
throws SecurityException

Returns a Method object for all the
public methods of this class.

String getName() Returns the complete name
of the class or interface of the
invoking object.

ProtectionDomain getProtectionDomain() Returns the protection domain
associated with the invoking object.
(Added by Java 2)

Class getSuperclass() Returns the superclass of the
invoking object. The return value
is null if the invoking object is of
type Object.

boolean isInterface() Returns true if the invoking object
is an interface. Otherwise, it
returns false.

Object newInstance()
throws IllegalAccessException,

InstantiationException

Creates a new instance (i.e., a new
object) that is of the same type as
the invoking object. This is
equivalent to using new with the
class’ default constructor. The new
object is returned.

String toString() Returns the string representation of
the invoking object or interface.

Table 14-13. Some Methods Defined by Class (continued)

418 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The methods defined by Class are often useful in situations where run-time type
information about an object is required. As Table 14-13 shows, methods are provided
that allow you to determine additional information about a particular class, such as its
public constructors, fields, and methods. This is important for the Java Beans
functionality, which is discussed later in this book.

The following program demonstrates getClass() (inherited from Object) and
getSuperclass() (from Class):

// Demonstrate Run-Time Type Information.

class X {

int a;

float b;

}

class Y extends X {

double c;

}

class RTTI {

public static void main(String args[]) {

X x = new X();

Y y = new Y();

Class clObj;

clObj = x.getClass(); // get Class reference

System.out.println("x is object of type: " +

clObj.getName());

clObj = y.getClass(); // get Class reference

System.out.println("y is object of type: " +

clObj.getName());

clObj = clObj.getSuperclass();

System.out.println("y's superclass is " +

clObj.getName());

}

}

The output from this program is shown here:

x is object of type: X
y is object of type: Y
y’s superclass is X

ClassLoader
The abstract class ClassLoader defines how classes are loaded. Your application can
create subclasses that extend ClassLoader, implementing its methods. Doing so allows
you to load classes in some way other than the way they are normally loaded by the
Java run-time system. Some of the methods defined by ClassLoader are shown in
Table 14-14.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 419
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

final Class defineClass(String str, byte b[],
int index,
int numBytes)

throws ClassFormatError

Returns a Class object. The
name of the class is in str
and the object is contained
in the array of bytes
specified by b. The object
begins within this array at
the index specified by index
and is numBytes long. The
data in b must represent a
valid object.

final Class findSystemClass(String name)
throws ClassNotFoundException

Returns a Class object given
its name.

Class loadClass(String name,
boolean callResolveClass)

throws ClassNotFoundException

An implementation of this
abstract method must load a
class given its name and call
resolveClass() if
callResolveClass is true.

final void resolveClass(Class obj) The class referred to by
obj is resolved (i.e., its name
is entered into the class
name space).

Table 14-14. Some of the Methods Defined by ClassLoader

420 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Math
The Math class contains all the floating-point functions that are used for geometry and
trigonometry, as well as several general-purpose methods. Math defines two double
constants: E (approximately 2.72) and PI (approximately 3.14).

Transcendental Functions
The following three methods accept a double parameter for an angle in radians and
return the result of their respective transcendental function:

Method Description

static double sin(double arg) Returns the sine of the angle specified
by arg in radians.

static double cos(double arg) Returns the cosine of the angle specified
by arg in radians.

static double tan(double arg) Returns the tangent of the angle
specified by arg in radians.

The next methods take as a parameter the result of a transcendental function and
return, in radians, the angle that would produce that result. They are the inverse of
their non-arc companions.

Method Description

static double asin(double arg) Returns the angle whose sine is specified
by arg.

static double acos(double arg) Returns the angle whose cosine is
specified by arg.

static double atan(double arg) Returns the angle whose tangent is
specified by arg.

static double atan2(double x, double y) Returns the angle whose tangent is x/y.

Exponential Functions
Math defines the following exponential methods:

Method Description

static double exp(double arg) Returns e to the arg.

static double log(double arg) Returns the natural logarithm of arg.

Method Description

static double pow(double y, double x) Returns y raised to the x; for example,
pow(2.0, 3.0) returns 8.0.

static double sqrt(double arg) Returns the square root of arg.

Rounding Functions
The Math class defines several methods that provide various types of rounding
operations. They are shown in Table 14-15.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 421
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static int abs(int arg) Returns the absolute value of arg.

static long abs(long arg) Returns the absolute value of arg.

static float abs(float arg) Returns the absolute value of arg.

static double abs(double arg) Returns the absolute value of arg.

static double ceil(double arg) Returns the smallest whole number greater
than or equal to arg.

static double floor(double arg) Returns the largest whole number less than
or equal to arg.

static int max(int x, int y) Returns the maximum of x and y.

static long max(long x, long y) Returns the maximum of x and y.

static float max(float x, float y) Returns the maximum of x and y.

static double max(double x, double y) Returns the maximum of x and y.

static int min(int x, int y) Returns the minimum of x and y

static long min(long x, long y) Returns the minimum of x and y.

static float min(float x, float y) Returns the minimum of x and y.

static double min(double x, double y) Returns the minimum of x and y.

static double rint(double arg) Returns the integer nearest in value to arg.

static int round(float arg) Returns arg rounded up to the nearest int.

static long round(double arg) Returns arg rounded up to the nearest long.

Table 14-15. The Rounding Methods Defined by Math

Miscellaneous Math Methods
In addition to the methods just shown, Math defines the following methods:

static double IEEEremainder(double dividend, double divisor)
static double random()
static double toRadians(double angle)
static double toDegrees(double angle)

IEEEremainder() returns the remainder of dividend/divisor. random() returns a
pseudorandom number. This value will be between 0 and 1. Most of the time, you will
use the Random class when you need to generate random numbers. The toRadians()
method converts degrees to radians. toDegrees() converts radians to degrees. The last
two methods were added by Java 2.

Here is a program that demonstrates toRadians() and toDegrees():

// Demonstrate toDegrees() and toRadians().

class Angles {

public static void main(String args[]) {

double theta = 120.0;

System.out.println(theta + " degrees is " +

Math.toRadians(theta) + " radians.");

theta = 1.312;

System.out.println(theta + " radians is " +

Math.toDegrees(theta) + " degrees.");

}

}

The output is shown here.

120.0 degrees is 2.0943951023931953 radians.
1.312 radians is 75.17206272116401 degrees.

StrictMath
Java 2, version 1.3 added the StrictMath class. This class defines a complete set
of mathematical methods that parallel those in Math. The difference is that the
StrictMath version is guaranteed to generate precisely identical results across all Java
implementations whereas the methods in Math are given more latitude in order to
improve performance.

422 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 423
TH

E
JA

V
A

LIB
R

A
R

Y

Compiler
The Compiler class supports the creation of Java environments in which Java bytecode
is compiled into executable code rather than interpreted. It is not for normal
programming use.

Thread, ThreadGroup, and Runnable
The Runnable interface and the Thread and ThreadGroup classes support
multithreaded programming. Each is examined next.

An overview of the techniques used to manage threads, implement the Runnable
interface, and create multithreaded programs is presented in Chapter 11.

The Runnable Interface
The Runnable interface must be implemented by any class that will initiate a separate
thread of execution. Runnable only defines one abstract method, called run(), which is
the entry point to the thread. It is defined like this:

abstract void run()

Threads that you create must implement this method.

Thread
Thread creates a new thread of execution. It defines the following commonly
used constructors:

Thread()
Thread(Runnable threadOb)
Thread(Runnable threadOb, StringthreadName)
Thread(String threadName)
Thread(ThreadGroup groupOb, Runnable threadOb)
Thread(ThreadGroup groupOb, Runnable threadOb, String threadName)
Thread(ThreadGroup groupOb, String threadName)

threadOb is an instance of a class that implements the Runnable interface and defines
where execution of the thread will begin. The name of the thread is specified by
threadName. When a name is not specified, one is created by the Java Virtual Machine.
groupOb specifies the thread group to which the new thread will belong. When no thread
group is specified, the new thread belongs to the same group as the parent thread.

The following constants are defined by Thread:

MAX_PRIORITY
MIN_PRIORITY
NORM_PRIORITY

As expected, these constants specify the maximum, minimum, and default
thread priorities.

The methods defined by Thread are shown in Table 14-16. In versions of Java
prior to 2, Thread also included the methods stop(), suspend(), and resume().
However, as explained in Chapter 11, these have been deprecated by Java 2 because
they were inherently unstable. Also deprecated by Java 2 is countStackFrames(),
because it calls suspend().

424 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static int activeCount() Returns the number of threads in the
group to which the thread belongs.

void checkAccess() Causes the security manager to verify
that the current thread can access
and/or change the thread on which
checkAccess() is called.

static Thread currentThread() Returns a Thread object that
encapsulates the thread that calls
this method.

void destroy() Terminates the thread.

static void dumpStack() Displays the call stack for the thread.

static int enumerate(Thread threads[]) Puts copies of all Thread objects in the
current thread’s group into threads. The
number of threads is returned.

ClassLoader getContextClassLoader() Returns the class loader that is used to
load classes and resources for this
thread. (Added by Java 2)

final String getName() Returns the thread’s name.

final int getPriority() Returns the thread’s priority setting.

final ThreadGroup getThreadGroup() Returns the ThreadGroup object of
which the invoking thread is a member.

static boolean holdsLock(Object ob) Returns true if the invoking thread
owns the lock on ob. Returns false
otherwise. (Added by Java 2, version 1.4)

Table 14-16. The Methods Defined by Thread

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 425
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void interrupt() Interrupts the thread.

static boolean interrupted() Returns true if the currently executing
thread has been scheduled for
interruption. Otherwise, it returns false.

final boolean isAlive() Returns true if the thread is still active.
Otherwise, it returns false.

final boolean isDaemon() Returns true if the thread is a daemon
thread (one that is part of the Java
run-time system). Otherwise, it returns
false.

boolean isInterrupted() Returns true if the thread is interrupted.
Otherwise, it returns false.

final void join()
throws InterruptedException

Waits until the thread terminates.

final void join(long milliseconds)
throws InterruptedException

Waits up to the specified number of
milliseconds for the thread on which it
is called to terminate.

final void join(long milliseconds,
int nanoseconds)

throws InterruptedException

Waits up to the specified number of
milliseconds plus nanoseconds for the
thread on which it is called to terminate.

void run() Begins execution of a thread.

void setContextClassLoader(ClassLoader cl) Sets the class loader that will be used
by the invoking thread to cl. (Added
by Java 2)

final void setDaemon(boolean state) Flags the thread as a
daemon thread.

final void setName(String threadName) Sets the name of the thread to that
specified by threadName.

final void setPriority(int priority) Sets the priority of the thread to that
specified by priority.

Table 14-16. The Methods Defined by Thread (continued)

426 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

ThreadGroup
ThreadGroup creates a group of threads. It defines these two constructors:

ThreadGroup(String groupName)
ThreadGroup(ThreadGroup parentOb, String groupName)

For both forms, groupName specifies the name of the thread group. The first version
creates a new group that has the current thread as its parent. In the second form, the
parent is specified by parentOb.

The methods defined by ThreadGroup are shown in Table 14-17. In versions of Java
prior to 2, ThreadGroup also included the methods stop(), suspend(), and resume().
These have been deprecated by Java 2 because they were inherently unstable.

Thread groups offer a convenient way to manage groups of threads as a unit. This
is particularly valuable in situations in which you want to suspend and resume a
number of related threads. For example, imagine a program in which one set of threads
is used for printing a document, another set is used to display the document on the
screen, and another set saves the document to a disk file. If printing is aborted, you
will want an easy way to stop all threads related to printing. Thread groups offer this

Method Description

static void sleep(long milliseconds)
throws InterruptedException

Suspends execution of the
thread for the specified
number of milliseconds.

static void sleep(long milliseconds,
int nanoseconds)

throws InterruptedException

Suspends execution of the thread for
the specified number of milliseconds
plus nanoseconds.

void start() Starts execution of the thread.

String toString() Returns the string equivalent of
a thread.

static void yield() The calling thread yields the CPU to
another thread.

Table 14-16. The Methods Defined by Thread (continued)

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 427
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

int activeCount() Returns the number of threads in
the group plus any groups for
which this thread is a parent.

int activeGroupCount() Returns the number of groups
for which the invoking thread
is a parent.

final void checkAccess() Causes the security manager to
verify that the invoking thread
may access and/or change the
group on which checkAccess()
is called.

final void destroy() Destroys the thread group
(and any child groups) on which
it is called.

int enumerate(Thread group[]) The threads that comprise the
invoking thread group are put into
the group array.

int enumerate(Thread group[], boolean all) The threads that comprise the
invoking thread group are put into
the group array. If all is true, then
threads in all subgroups of the
thread are also put into group.

int enumerate(ThreadGroup group[]) The subgroups of the invoking
thread group are put into the
group array.

int enumerate(ThreadGroup group[],
boolean all)

The subgroups of the invoking
thread group are put into the group
array. If all is true, then all
subgroups of the subgroups (and
so on) are also put into group.

final int getMaxPriority() Returns the maximum priority
setting for the group.

Table 14-17. The Methods Defined by ThreadGroup

428 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

final String getName() Returns the name of the group.

final ThreadGroup getParent() Returns null if the invoking
ThreadGroup object has no parent.
Otherwise, it returns the parent of
the invoking object.

final void interrupt() Invokes the interrupt() method of
all threads in the group. (Added
by Java 2)

final boolean isDaemon() Returns true if the group is a
daemon group. Otherwise, it
returns false.

boolean isDestroyed() Returns true if the group has
been destroyed. Otherwise, it
returns false.

void list() Displays information about
the group.

final boolean parentOf(ThreadGroup group) Returns true if the invoking thread
is the parent of group (or group,
itself). Otherwise, it returns false.

final void setDaemon(boolean isDaemon) If isDaemon is true, then the
invoking group is flagged as a
daemon group.

final void setMaxPriority(int priority) Sets the maximum priority of the
invoking group to priority.

String toString() Returns the string equivalent of
the group.

void uncaughtException(Thread thread,
Throwable e)

This method is called when an
exception goes uncaught.

Table 14-17. The Methods Defined by ThreadGroup (continued)

TH
E

JA
V
A

LIB
R

A
R

Y

convenience. The following program, which creates two thread groups of two threads
each, illustrates this usage:

// Demonstrate thread groups.

class NewThread extends Thread {

boolean suspendFlag;

NewThread(String threadname, ThreadGroup tgOb) {

super(tgOb, threadname);

System.out.println("New thread: " + this);

suspendFlag = false;

start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(getName() + ": " + i);

Thread.sleep(1000);

synchronized(this) {

while(suspendFlag) {

wait();

}

}

}

} catch (Exception e) {

System.out.println("Exception in " + getName());

}

System.out.println(getName() + " exiting.");

}

void mysuspend() {

suspendFlag = true;

}

synchronized void myresume() {

suspendFlag = false;

notify();

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 429

}

}

class ThreadGroupDemo {

public static void main(String args[]) {

ThreadGroup groupA = new ThreadGroup("Group A");

ThreadGroup groupB = new ThreadGroup("Group B");

NewThread ob1 = new NewThread("One", groupA);

NewThread ob2 = new NewThread("Two", groupA);

NewThread ob3 = new NewThread("Three", groupB);

NewThread ob4 = new NewThread("Four", groupB);

System.out.println("\nHere is output from list():");

groupA.list();

groupB.list();

System.out.println();

System.out.println("Suspending Group A");

Thread tga[] = new Thread[groupA.activeCount()];

groupA.enumerate(tga); // get threads in group

for(int i = 0; i < tga.length; i++) {

((NewThread)tga[i]).mysuspend(); // suspend each thread

}

try {

Thread.sleep(4000);

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Resuming Group A");

for(int i = 0; i < tga.length; i++) {

((NewThread)tga[i]).myresume(); // resume threads in group

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.join();

ob2.join();

ob3.join();

430 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

ob4.join();

} catch (Exception e) {

System.out.println("Exception in Main thread");

}

System.out.println("Main thread exiting.");

}

}

Sample output from this program is shown here:

New thread: Thread[One,5,Group A]
New thread: Thread[Two,5,Group A]
New thread: Thread[Three,5,Group B]
New thread: Thread[Four,5,Group B]
Here is output from list():
java.lang.ThreadGroup[name=Group A,maxpri=10]
Thread[One,5,Group A]
Thread[Two,5,Group A]

java.lang.ThreadGroup[name=Group B,maxpri=10]
Thread[Three,5,Group B]
Thread[Four,5,Group B]

Suspending Group A
Three: 5
Four: 5
Three: 4
Four: 4
Three: 3
Four: 3
Three: 2
Four: 2
Resuming Group A
Waiting for threads to finish.
One: 5
Two: 5
Three: 1
Four: 1
One: 4
Two: 4
Three exiting.
Four exiting.
One: 3

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 431
TH

E
JA

V
A

LIB
R

A
R

Y

432 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Two: 3
One: 2
Two: 2
One: 1
Two: 1
One exiting.
Two exiting.
Main thread exiting.

Inside the program, notice that thread group A is suspended for four seconds. As
the output confirms, this causes threads One and Two to pause, but threads Three and
Four continue running. After the four seconds, threads One and Two are resumed.
Notice how thread group A is suspended and resumed. First, the threads in group A
are obtained by calling enumerate() on group A. Then, each thread is suspended
by iterating through the resulting array. To resume the threads in A, the list is
again traversed and each thread is resumed. One last point: this example uses the
recommended Java 2 approach to suspending and resuming threads. It does not rely
upon the deprecated methods suspend() and resume().

ThreadLocal and InheritableThreadLocal
Java 2 added two thread-related classes to java.lang:

■ ThreadLocal Used to create thread local variables. Each thread will have its
own copy of a thread local variable.

■ InheritableThreadLocal Creates thread local variables that may be inherited.

Package
Java 2 added a class called Package that encapsulates version data associated with a
package. Package version information is becoming more important because of the
proliferation of packages and because a Java program may need to know what version
of a package is available. The methods defined by Package are shown in Table 14-18.
The following program demonstrates Package, displaying the packages about which
the program currently is aware.

// Demonstrate Package

class PkgTest {

public static void main(String args[]) {

Package pkgs[];

pkgs = Package.getPackages();

for(int i=0; i < pkgs.length; i++)

System.out.println(

pkgs[i].getName() + " " +

pkgs[i].getImplementationTitle() + " " +

pkgs[i].getImplementationVendor() + " " +

pkgs[i].getImplementationVersion()

);

}

}

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 433
TH

E
JA

V
A

LIB
R

A
R

YMethod Description

String getImplementationTitle() Returns the title of the
invoking package.

String getImplementationVendor() Returns the name of
the implementor of the
invoking package.

String getImplementationVersion() Returns the version number of
the invoking package.

String getName() Returns the name of the
invoking package.

static Package getPackage(String pkgName) Returns a Package object with
the name specified by pkgName.

static Package[] getPackages() Returns all packages about
which the invoking program is
currently aware.

String getSpecificationTitle() Returns the title of the invoking
package’s specification.

String getSpecificationVendor() Returns the name of the owner
of the specification for the
invoking package.

Table 14-18. The Methods Defined by Package

RuntimePermission
RuntimePermission was added to java.lang by Java 2. It relates to Java’s security
mechanism and is not examined further here.

Throwable
The Throwable class supports Java’s exception-handling system, and is the class from
which all exception classes are derived. It is discussed in Chapter 10.

SecurityManager
SecurityManager is an abstract class that your subclasses can implement to create a
security manager. Generally, you don’t need to implement your own security manager.
If you do, you need to consult the documentation that comes with your Java
development system.

434 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

String getSpecificationVersion() Returns the invoking
package’s specification
version number.

int hashCode() Returns the hash code for the
invoking package.

boolean isCompatibleWith(String verNum)
throws NumberFormatException

Returns true if verNum is less
than or equal to the invoking
package’s version number.

boolean isSealed() Returns true if the invoking
package is sealed. Returns
false otherwise.

boolean isSealed(URL url) Returns true if the invoking
package is sealed relative to
url. Returns false otherwise.

String toString() Returns the string equivalent
of the invoking package.

Table 14-18. The Methods Defined by Package (continued)

StackTraceElement
Java 2, version 1.4 adds the StackTraceElement class. This class describes a single
stack frame, which is an individual element of a stack trace when an exception occurs.
Each stack frame represents an execution point, which includes such things as the
name of the method, the name of the file, and the source-code line number. An array
of StackTraceElements is returned by the getStackTrace() method of the Throwable
class. The methods supported by StackTraceElement are shown in Table 14-19. These
methods give you programmatical access to a stack trace.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 435
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

boolean equals(Object ob) Returns true if the invoking
StackTraceElement is the same as the one
passed in ob. Otherwise, it returns false.

String getClassName() Returns the class name of the execution point
described by the invoking StackTraceElement.

String getFileName() Returns the file name of the execution point
described by the invoking
StackTraceElement.

int getLineNumber() Returns the source-code line number of the
execution point described by the invoking
StackTraceElement. In some situations the
line number will not be available, in which
case a negative value is returned.

String getMethodName() Returns the method name of the execution
point described by the invoking
StackTraceElement.

int hashCode() Returns the hash code for the invoking
StackTraceElement.

boolean isNativeMethod() Returns true if the invoking
StackTraceElement describes a native
method. Otherwise, returns false.

String toString() Returns the String equivalent of the invoking
sequence.

Table 14-19. The Methods Defined by StackTraceElement

The CharSequence Interface
Java 2, version 1.4 adds the CharSequence interface. CharSequence defines methods
that grant read-only access to a sequence of characters. These methods are shown
in Table 14-20. This interface is implemented by String and StringBuffer. It is also
implemented by CharBuffer, which is in the new java.nio package (described later
in this book).

The Comparable Interface
Objects of classes that implement Comparable can be ordered. In other words, classes
that implement Comparable contain objects that can be compared in some meaningful
manner. The Comparable interface declares one method that is used to determine what
Java 2 calls the natural ordering of instances of a class. The signature of the method is
shown here:

int compareTo(Object obj)

This method compares the invoking object with obj. It returns 0 if the values are equal.
A negative value is returned if the invoking object has a lower value. Otherwise, a
positive value is returned.

This interface is implemented by several of the classes already reviewed in this
book. Specifically, the Byte, Character, Double, Float, Long, Short, String, and Integer
classes define a compareTo() method. In addition, as the next chapter explains, objects
that implement this interface can be used in various collections. Comparable was
added by Java 2.

436 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

char charAt(int idx) Returns the character at the index
specified by idx.

int length() Returns the number of characters in
the invoking sequence.

CharSequence
subSequence(int startIdx, int stopIdx)

Returns a subset of the invoking
sequence beginning at startIdx and
ending at stopIdx–1.

String toString() Returns the String equivalent of the
invoking sequence.

Table 14-20. The Methods Defined by CharSequence

The java.lang.ref and java.lang.reflect
Packages
Java defines two subpackages of java.lang: java.lang.ref and java.lang.reflect. Each is
briefly described here.

java.lang.ref
You learned earlier that the garbage collection facilities in Java automatically determine
when no references exist to an object. The object is then assumed to be no longer
needed and its memory is reclaimed. The classes in the java.lang.ref package, which
was added by Java 2, provide more flexible control over the garbage collection process.
For example, assume that your program has created numerous objects that you want to
reuse at some later time. You can continue to hold references to these objects, but that
may require too much memory.

Instead, you can define “soft” references to these objects. An object that is “softly
reachable” can be reclaimed by the garbage collector, if available memory runs low.
In that case, the garbage collector sets the “soft” references to that object to null.
Otherwise, the garbage collector saves the object for possible future use.

A programmer has the ability to determine whether a “softly reachable” object has
been reclaimed. If it has been reclaimed, it can be re-created. Otherwise, the object is
still available for reuse. You may also create “weak” and “phantom” references to
objects. Discussion of these and other features of the java.lang.ref package are beyond
the scope of this book.

java.lang.reflect
Reflection is the ability of a program to analyze itself. The java.lang.reflect package
provides the ability to obtain information about the fields, constructors, methods,
and modifiers of a class. You need this information to build software tools that enable
you to work with Java Beans components. The tools use reflection to determine
dynamically the characteristics of a component. This topic is considered in Chapter 25.

In addition, the java.lang.reflect package includes a class that enables you to create
and access arrays dynamically.

C h a p t e r 1 4 : E x p l o r i n g j a v a . l a n g 437
TH

E
JA

V
A

LIB
R

A
R

Y

This page intentionally left blank.

Chapter 15
java.util Part 1: The
Collections Framework

439

The java.util package contains one of Java’s most powerful subsystems: collections.
Collections were added by the initial release of Java 2, and enhanced by Java 2,
version 1.4. A collection is a group of objects. The addition of collections caused

fundamental alterations in the structure and architecture of many elements in java.util.
It also expanded the domain of tasks to which the package can be applied. Collections
are a state-of-the-art technology that merits close attention by all Java programmers.

In addition to collections, java.util contains a wide assortment of classes and
interfaces that support a broad range of functionality. These classes and interfaces are
used throughout the core Java packages and, of course, are also available for use in
programs that you write. Their applications include generating pseudorandom numbers,
manipulating date and time, observing events, manipulating sets of bits, and tokenizing
strings. Because of its many features, java.util is one of Java’s most widely used packages.

The java.util classes are listed here.

AbstractCollection (Java 2) EventObject PropertyResourceBundle

AbstractList (Java 2) GregorianCalendar Random

AbstractMap (Java 2) HashMap (Java 2) ResourceBundle

AbstractSequentialList (Java 2) HashSet (Java 2) SimpleTimeZone

AbstractSet (Java 2) Hashtable Stack

ArrayList (Java 2) IdentityHashMap (Java 2, v1.4) StringTokenizer

Arrays (Java 2) LinkedHashMap (Java 2, v1.4) Timer (Java 2, v1.3)

BitSet LinkedHashSet (Java 2, v1.4) TimerTask (Java 2, v1.3)

Calendar LinkedList (Java 2) TimeZone

Collections (Java 2) ListResourceBundle TreeMap (Java 2)

Currency (Java 2, v1.4) Locale TreeSet (Java 2)

Date Observable Vector

Dictionary Properties WeakHashMap (Java 2)

EventListenerProxy (Java 2, v1.4) PropertyPermission (Java 2)

java.util defines the following interfaces. Notice that most were added by Java 2.

Collection (Java 2) List (Java 2) RandomAccess (Java 2, v1.4)

Comparator (Java 2) ListIterator (Java 2) Set (Java 2)

Enumeration Map (Java 2) SortedMap (Java 2)

EventListener Map.Entry (Java 2) SortedSet (Java 2)

Iterator (Java 2) Observer

440 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 441

The ResourceBundle, ListResourceBundle, and PropertyResourceBundle classes
aid in the internationalization of large programs with many locale-specific resources.
These classes are not examined here. PropertyPermission, which allows you to grant
a read/write permission to a system property, is also beyond the scope of this book.
EventObject, EventListener, and EventListenerProxy are described in Chapter 20. The
remaining classes and interfaces are examined in detail.

Because java.util is quite large, its description is broken into two chapters. This
chapter examines those members of java.util that relate to collections of objects.
Chapter 16 discusses the other classes and interfaces.

Collections Overview
The Java collections framework standardizes the way in which groups of objects are
handled by your programs. Prior to Java 2, Java provided ad hoc classes such as
Dictionary, Vector, Stack, and Properties to store and manipulate groups of objects.
Although these classes were quite useful, they lacked a central, unifying theme. Thus,
the way that you used Vector was different from the way that you used Properties, for
example. Also, the previous, ad hoc approach was not designed to be easily extensible
or adaptable. Collections are an answer to these (and other) problems.

The collections framework was designed to meet several goals. First, the framework
had to be high-performance. The implementations for the fundamental collections
(dynamic arrays, linked lists, trees, and hash tables) are highly efficient. You seldom, if
ever, need to code one of these “data engines” manually. Second, the framework had to
allow different types of collections to work in a similar manner and with a high degree of
interoperability. Third, extending and/or adapting a collection had to be easy. Toward this
end, the entire collections framework is designed around a set of standard interfaces.
Several standard implementations (such as LinkedList, HashSet, and TreeSet) of these
interfaces are provided that you may use as-is. You may also implement your own
collection, if you choose. Various special-purpose implementations are created for your
convenience, and some partial implementations are provided that make creating your own
collection class easier. Finally, mechanisms were added that allow the integration of
standard arrays into the collections framework.

Algorithms are another important part of the collection mechanism. Algorithms
operate on collections and are defined as static methods within the Collections class.
Thus, they are available for all collections. Each collection class need not implement its
own versions. The algorithms provide a standard means of manipulating collections.

Another item created by the collections framework is the Iterator interface. An
iterator gives you a general-purpose, standardized way of accessing the elements
within a collection, one at a time. Thus, an iterator provides a means of enumerating the
contents of a collection. Because each collection implements Iterator, the elements of any
collection class can be accessed through the methods defined by Iterator. Thus, with
only small changes, the code that cycles through a set can also be used to cycle through
a list, for example.

In addition to collections, the framework defines several map interfaces and classes.
Maps store key/value pairs. Although maps are not “collections” in the proper use of
the term, they are fully integrated with collections. In the language of the collections
framework, you can obtain a collection-view of a map. Such a view contains the elements
from the map stored in a collection. Thus, you can process the contents of a map as a
collection, if you choose.

The collection mechanism was retrofitted to some of the original classes defined by
java.util so that they too could be integrated into the new system. It is important to
understand that although the addition of collections altered the architecture of many
of the original utility classes, it did not cause the deprecation of any. Collections simply
provide a better way of doing several things.

One last thing: If you are familiar with C++, then you will find it helpful to know
that the Java collections technology is similar in spirit to the Standard Template Library
(STL) defined by C++. What C++ calls a container, Java calls a collection.

The Collection Interfaces
The collections framework defines several interfaces. This section provides an overview of
each interface. Beginning with the collection interfaces is necessary because they determine
the fundamental nature of the collection classes. Put differently, the concrete classes simply
provide different implementations of the standard interfaces. The interfaces that underpin
collections are summarized in the following table:

Interface Description

Collection Enables you to work with groups of objects; it is at the top of the
collections hierarchy

List Extends Collection to handle sequences (lists of objects)

Set Extends Collection to handle sets, which must contain unique elements

SortedSet Extends Set to handle sorted sets

In addition to the collection interfaces, collections also use the Comparator, Iterator,
ListIterator and RandomAccess interfaces, which are described in depth later in this
chapter. Briefly, Comparator defines how two objects are compared; Iterator and
ListIterator enumerate the objects within a collection. By implementing RandomAccess,
a list indicates that it supports efficient, random access to its elements.

To provide the greatest flexibility in their use, the collection interfaces allow some
methods to be optional. The optional methods enable you to modify the contents of a
collection. Collections that support these methods are called modifiable. Collections that
do not allow their contents to be changed are called unmodifiable. If an attempt is made

442 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

to use one of these methods on an unmodifiable collection, an
UnsupportedOperationException is thrown. All the built-in collections are modifiable.

The following sections examine the collection interfaces.

The Collection Interface
The Collection interface is the foundation upon which the collections framework is
built. It declares the core methods that all collections will have. These methods are
summarized in Table 15-1. Because all collections implement Collection, familiarity
with its methods is necessary for a clear understanding of the framework. Several of
these methods can throw an UnsupportedOperationException. As explained, this
occurs if a collection cannot be modified. A ClassCastException is generated when
one object is incompatible with another, such as when an attempt is made to add an
incompatible object to a collection.

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 443

Method Description

boolean add(Object obj) Adds obj to the invoking collection. Returns
true if obj was added to the collection. Returns
false if obj is already a member of the
collection, or if the collection does not allow
duplicates.

boolean addAll(Collection c) Adds all the elements of c to the invoking
collection. Returns true if the operation
succeeded (i.e., the elements were added).
Otherwise, returns false.

void clear() Removes all elements from the invoking
collection.

boolean contains(Object obj) Returns true if obj is an element of the
invoking collection. Otherwise, returns false.

boolean containsAll(Collection c) Returns true if the invoking collection contains
all elements of c. Otherwise, returns false.

boolean equals(Object obj) Returns true if the invoking collection and obj
are equal. Otherwise, returns false.

int hashCode() Returns the hash code for the invoking
collection.

Table 15-1. The Methods Defined by Collection

444 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

boolean isEmpty() Returns true if the invoking collection is
empty. Otherwise, returns false.

Iterator iterator() Returns an iterator for the invoking collection.

boolean remove(Object obj) Removes one instance of obj from the invoking
collection. Returns true if the element was
removed. Otherwise, returns false.

boolean removeAll(Collection c) Removes all elements of c from the invoking
collection. Returns true if the collection
changed (i.e., elements were removed).
Otherwise, returns false.

boolean retainAll(Collection c) Removes all elements from the invoking
collection except those in c. Returns true if the
collection changed (i.e., elements were
removed). Otherwise, returns false.

int size() Returns the number of elements held in the
invoking collection.

Object[] toArray() Returns an array that contains all the elements
stored in the invoking collection. The array
elements are copies of the collection elements.

Object[] toArray(Object array[]) Returns an array containing only those
collection elements whose type matches that
of array. The array elements are copies of the
collection elements. If the size of array equals
the number of matching elements, these are
returned in array. If the size of array is less
than the number of matching elements, a new
array of the necessary size is allocated and
returned. If the size of array is greater than the
number of matching elements, the array
element following the last collection element
is set to null. An ArrayStoreException is
thrown if any collection element has a type
that is not a subtype of array.

Table 15-1. The Methods Defined by Collection (continued)

Objects are added to a collection by calling add(). Notice that add() takes an
argument of type Object. Because Object is a superclass of all classes, any type of
object may be stored in a collection. However, primitive types may not. For example, a
collection cannot directly store values of type int, char, double, and so forth. Of course,
if you want to store such objects, you can also use one of the primitive type wrappers
described in Chapter 14. You can add the entire contents of one collection to another by
calling addAll().

You can remove an object by using remove(). To remove a group of objects, call
removeAll(). You can remove all elements except those of a specified group by calling
retainAll(). To empty a collection, call clear().

You can determine whether a collection contains a specific object by calling
contains(). To determine whether one collection contains all the members of another, call
containsAll(). You can determine when a collection is empty by calling isEmpty(). The
number of elements currently held in a collection can be determined by calling size().

The toArray() method returns an array that contains the elements stored in the
invoking collection. This method is more important than it might at first seem. Often,
processing the contents of a collection by using array-like syntax is advantageous. By
providing a pathway between collections and arrays, you can have the best of both worlds.

Two collections can be compared for equality by calling equals(). The precise
meaning of “equality” may differ from collection to collection. For example, you can
implement equals() so that it compares the values of elements stored in the collection.
Alternatively, equals() can compare references to those elements.

One more very important method is iterator(), which returns an iterator to a
collection. As you will see, iterators are crucial to successful programming when using
the collections framework.

The List Interface
The List interface extends Collection and declares the behavior of a collection that
stores a sequence of elements. Elements can be inserted or accessed by their position
in the list, using a zero-based index. A list may contain duplicate elements.

In addition to the methods defined by Collection, List defines some of its own,
which are summarized in Table 15-2. Note again that several of these methods will
throw an UnsupportedOperationException if the collection cannot be modified, and
a ClassCastException is generated when one object is incompatible with another,
such as when an attempt is made to add an incompatible object to a collection.

To the versions of add() and addAll() defined by Collection, List adds the methods
add(int, Object) and addAll(int, Collection). These methods insert elements at the
specified index. Also, the semantics of add(Object) and addAll(Collection) defined by
Collection are changed by List so that they add elements to the end of the list.

To obtain the object stored at a specific location, call get() with the index of the
object. To assign a value to an element in the list, call set(), specifying the index of the
object to be changed. To find the index of an object, use indexOf() or lastIndexOf().

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 445
TH

E
JA

V
A

LIB
R

A
R

Y

446 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void add(int index, Object obj) Inserts obj into the invoking list at the
index passed in index. Any preexisting
elements at or beyond the point of
insertion are shifted up. Thus, no
elements are overwritten.

boolean addAll(int index, Collection c) Inserts all elements of c into the invoking
list at the index passed in index. Any
preexisting elements at or beyond the
point of insertion are shifted up. Thus,
no elements are overwritten. Returns
true if the invoking list changes and
returns false otherwise.

Object get(int index) Returns the object stored at the specified
index within the invoking collection.

int indexOf(Object obj) Returns the index of the first instance of
obj in the invoking list. If obj is not an
element of the list, –1 is returned.

int lastIndexOf(Object obj) Returns the index of the last instance of
obj in the invoking list. If obj is not an
element of the list, –1 is returned.

ListIterator listIterator() Returns an iterator to the start of the
invoking list.

ListIterator listIterator(int index) Returns an iterator to the invoking list
that begins at the specified index.

Object remove(int index) Removes the element at position index from
the invoking list and returns the deleted
element. The resulting list is compacted.
That is, the indexes of subsequent elements
are decremented by one.

Object set(int index, Object obj) Assigns obj to the location specified by
index within the invoking list.

List subList(int start, int end) Returns a list that includes elements
from start to end–1 in the invoking list.
Elements in the returned list are also
referenced by the invoking object.

Table 15-2. The Methods Defined by List

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 447
TH

E
JA

V
A

LIB
R

A
R

Y

You can obtain a sublist of a list by calling subList(), specifying the beginning and
ending indexes of the sublist. As you can imagine, subList() makes list processing
quite convenient.

The Set Interface
The Set interface defines a set. It extends Collection and declares the behavior of a
collection that does not allow duplicate elements. Therefore, the add() method returns
false if an attempt is made to add duplicate elements to a set. It does not define any
additional methods of its own.

The SortedSet Interface
The SortedSet interface extends Set and declares the behavior of a set sorted in ascending
order. In addition to those methods defined by Set, the SortedSet interface declares the
methods summarized in Table 15-3. Several methods throw a NoSuchElementException
when no items are contained in the invoking set. A ClassCastException is thrown when an
object is incompatible with the elements in a set. A NullPointerException is thrown if an
attempt is made to use a null object and null is not allowed in the set.

SortedSet defines several methods that make set processing more convenient. To
obtain the first object in the set, call first(). To get the last element, use last(). You can
obtain a subset of a sorted set by calling subSet(), specifying the first and last object in
the set. If you need the subset that starts with the first element in the set, use
headSet(). If you want the subset that ends the set, use tailSet().

Method Description

Comparator comparator() Returns the invoking sorted set’s
comparator. If the natural ordering is
used for this set, null is returned.

Object first() Returns the first element in the
invoking sorted set.

SortedSet headSet(Object end) Returns a SortedSet containing those
elements less than end that are
contained in the invoking sorted set.
Elements in the returned sorted set
are also referenced by the invoking
sorted set.

Object last() Returns the last element in the
invoking sorted set.

Table 15-3. The Methods Defined by SortedSet

The Collection Classes
Now that you are familiar with the collection interfaces, you are ready to examine the
standard classes that implement them. Some of the classes provide full implementations
that can be used as-is. Others are abstract, providing skeletal implementations that
are used as starting points for creating concrete collections. None of the collection
classes are synchronized, but as you will see later in this chapter, it is possible to obtain
synchronized versions.

The standard collection classes are summarized in the following table:

Class Description

AbstractCollection Implements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of
the List interface.

AbstractSequentialList Extends AbstractList for use by a collection that uses
sequential rather than random access of its elements.

LinkedList Implements a linked list by extending
AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

448 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

SortedSet subSet(Object start, Object end) Returns a SortedSet that includes
those elements between start and
end–1. Elements in the returned
collection are also referenced by the
invoking object.

SortedSet tailSet(Object start) Returns a SortedSet that contains
those elements greater than or equal
to start that are contained in the
sorted set. Elements in the returned
set are also referenced by the
invoking object.

Table 15-3. The Methods Defined by SortedSet (continued)

Class Description

AbstractSet Extends AbstractCollection and implements most of
the Set interface.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

In addition to the collection classes, several legacy classes, such as Vector, Stack, and
Hashtable, have been reengineered to support collections. These are examined later in
this chapter.

The following sections examine the concrete collection classes and illustrate their use.

The ArrayList Class
The ArrayList class extends AbstractList and implements the List interface. ArrayList
supports dynamic arrays that can grow as needed. In Java, standard arrays are of a
fixed length. After arrays are created, they cannot grow or shrink, which means that
you must know in advance how many elements an array will hold. But, sometimes,
you may not know until run time precisely how large of an array you need. To handle
this situation, the collections framework defines ArrayList. In essence, an ArrayList is
a variable-length array of object references. That is, an ArrayList can dynamically
increase or decrease in size. Array lists are created with an initial size. When this size is
exceeded, the collection is automatically enlarged. When objects are removed, the array
may be shrunk.

Dynamic arrays are also supported by the legacy class Vector, which is described later
in this chapter.

ArrayList has the constructors shown here:

ArrayList()
ArrayList(Collection c)
ArrayList(int capacity)

The first constructor builds an empty array list. The second constructor builds an array
list that is initialized with the elements of the collection c. The third constructor builds
an array list that has the specified initial capacity. The capacity is the size of the
underlying array that is used to store the elements. The capacity grows automatically
as elements are added to an array list.

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 449
TH

E
JA

V
A

LIB
R

A
R

Y

The following program shows a simple use of ArrayList. An array list is created,
and then objects of type String are added to it. (Recall that a quoted string is translated
into a String object.) The list is then displayed. Some of the elements are removed and
the list is displayed again.

// Demonstrate ArrayList.

import java.util.*;

class ArrayListDemo {

public static void main(String args[]) {

// create an array list

ArrayList al = new ArrayList();

System.out.println("Initial size of al: " +

al.size());

// add elements to the array list

al.add("C");

al.add("A");

al.add("E");

al.add("B");

al.add("D");

al.add("F");

al.add(1, "A2");

System.out.println("Size of al after additions: " +

al.size());

// display the array list

System.out.println("Contents of al: " + al);

// Remove elements from the array list

al.remove("F");

al.remove(2);

System.out.println("Size of al after deletions: " +

al.size());

System.out.println("Contents of al: " + al);

}

}

The output from this program is shown here:

Initial size of al: 0
Size of al after additions: 7

450 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Contents of al: [C, A2, A, E, B, D, F]
Size of al after deletions: 5
Contents of al: [C, A2, E, B, D]

Notice that a1 starts out empty and grows as elements are added to it. When elements
are removed, its size is reduced.

In the preceding example, the contents of a collection are displayed using
the default conversion provided by toString(), which was inherited from
AbstractCollection. Although it is sufficient for short, sample programs, you seldom
use this method to display the contents of a real-world collection. Usually, you provide
your own output routines. But, for the next few examples, the default output created
by toString() will continue to be used.

Although the capacity of an ArrayList object increases automatically as objects are
stored in it, you can increase the capacity of an ArrayList object manually by calling
ensureCapacity(). You might want to do this if you know in advance that you will be
storing many more items in the collection that it can currently hold. By increasing its
capacity once, at the start, you can prevent several reallocations later. Because
reallocations are costly in terms of time, preventing unnecessary ones improves
performance. The signature for ensureCapacity() is shown here:

void ensureCapacity(int cap)

Here, cap is the new capacity.
Conversely, if you want to reduce the size of the array that underlies an ArrayList

object so that it is precisely as large as the number of items that it is currently holding,
call trimToSize(), shown here:

void trimToSize()

Obtaining an Array from an ArrayList
When working with ArrayList, you will sometimes want to obtain an actual array that
contains the contents of the list. As explained earlier, you can do this by calling toArray().
Several reasons exist why you might want to convert a collection into an array such as:

■ To obtain faster processing times for certain operations.

■ To pass an array to a method that is not overloaded to accept a collection.

■ To integrate your newer, collection-based code with legacy code that does not
understand collections.

Whatever the reason, converting an ArrayList to an array is a trivial matter, as the
following program shows:

// Convert an ArrayList into an array.

import java.util.*;

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 451
TH

E
JA

V
A

LIB
R

A
R

Y

class ArrayListToArray {

public static void main(String args[]) {

// Create an array list

ArrayList al = new ArrayList();

// Add elements to the array list

al.add(new Integer(1));

al.add(new Integer(2));

al.add(new Integer(3));

al.add(new Integer(4));

System.out.println("Contents of al: " + al);

// get array

Object ia[] = al.toArray();

int sum = 0;

// sum the array

for(int i=0; i<ia.length; i++)

sum += ((Integer) ia[i]).intValue();

System.out.println("Sum is: " + sum);

}

}

The output from the program is shown here:

Contents of al: [1, 2, 3, 4]
Sum is: 10

The program begins by creating a collection of integers. As explained, you cannot store
primitive types in a collection, so objects of type Integer are created and stored. Next,
toArray() is called and it obtains an array of Objects. The contents of this array are cast
to Integer, and then the values are summed.

The LinkedList Class
The LinkedList class extends AbstractSequentialList and implements the List interface.
It provides a linked-list data structure. It has the two constructors, shown here:

LinkedList()
LinkedList(Collection c)

452 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The first constructor builds an empty linked list. The second constructor builds a linked
list that is initialized with the elements of the collection c.

In addition to the methods that it inherits, the LinkedList class defines some useful
methods of its own for manipulating and accessing lists. To add elements to the start of
the list, use addFirst(); to add elements to the end, use addLast(). Their signatures are
shown here:

void addFirst(Object obj)
void addLast(Object obj)

Here, obj is the item being added.
To obtain the first element, call getFirst(). To retrieve the last element, call

getLast(). Their signatures are shown here:

Object getFirst()
Object getLast()

To remove the first element, use removeFirst(); to remove the last element, call
removeLast(). They are shown here:

Object removeFirst()
Object removeLast()

The following program illustrates several of the methods supported by LinkedList:

// Demonstrate LinkedList.

import java.util.*;

class LinkedListDemo {

public static void main(String args[]) {

// create a linked list

LinkedList ll = new LinkedList();

// add elements to the linked list

ll.add("F");

ll.add("B");

ll.add("D");

ll.add("E");

ll.add("C");

ll.addLast("Z");

ll.addFirst("A");

ll.add(1, "A2");

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 453
TH

E
JA

V
A

LIB
R

A
R

Y

System.out.println("Original contents of ll: " + ll);

// remove elements from the linked list

ll.remove("F");

ll.remove(2);

System.out.println("Contents of ll after deletion: "

+ ll);

// remove first and last elements

ll.removeFirst();

ll.removeLast();

System.out.println("ll after deleting first and last: "

+ ll);

// get and set a value

Object val = ll.get(2);

ll.set(2, (String) val + " Changed");

System.out.println("ll after change: " + ll);

}

}

The output from this program is shown here:

Original contents of ll: [A, A2, F, B, D, E, C, Z]
Contents of ll after deletion: [A, A2, D, E, C, Z]
ll after deleting first and last: [A2, D, E, C]
ll after change: [A2, D, E Changed, C]

Because LinkedList implements the List interface, calls to add(Object) append
items to the end of the list, as does addLast(). To insert items at a specific location,
use the add(int, Object) form of add(), as illustrated by the call to add(1, “A2”) in
the example.

Notice how the third element in ll is changed by employing calls to get() and set().
To obtain the current value of an element, pass get() the index at which the element is
stored. To assign a new value to that index, pass set() the index and its new value.

The HashSet Class
HashSet extends AbstractSet and implements the Set interface. It creates a collection
that uses a hash table for storage. As most readers likely know, a hash table stores

454 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

information by using a mechanism called hashing. In hashing, the informational content
of a key is used to determine a unique value, called its hash code. The hash code is
then used as the index at which the data associated with the key is stored. The
transformation of the key into its hash code is performed automatically—you never see
the hash code itself. Also, your code can’t directly index the hash table. The advantage
of hashing is that it allows the execution time of basic operations, such as add(),
contains(), remove(), and size(), to remain constant even for large sets.

The following constructors are defined:

HashSet()
HashSet(Collection c)
HashSet(int capacity)
HashSet(int capacity, float fillRatio)

The first form constructs a default hash set. The second form initializes the hash
set by using the elements of c. The third form initializes the capacity of the hash set to
capacity. The fourth form initializes both the capacity and the fill ratio (also called load
capacity) of the hash set from its arguments. The fill ratio must be between 0.0 and 1.0,
and it determines how full the hash set can be before it is resized upward. Specifically,
when the number of elements is greater than the capacity of the hash set multiplied by
its fill ratio, the hash set is expanded. For constructors that do not take a fill ratio, 0.75
is used.

HashSet does not define any additional methods beyond those provided by its
superclasses and interfaces.

Importantly, note that a hash set does not guarantee the order of its elements,
because the process of hashing doesn’t usually lend itself to the creation of sorted sets.
If you need sorted storage, then another collection, such as TreeSet, is a better choice.

Here is an example that demonstrates HashSet:

// Demonstrate HashSet.

import java.util.*;

class HashSetDemo {

public static void main(String args[]) {

// create a hash set

HashSet hs = new HashSet();

// add elements to the hash set

hs.add("B");

hs.add("A");

hs.add("D");

hs.add("E");

hs.add("C");

hs.add("F");

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 455
TH

E
JA

V
A

LIB
R

A
R

Y

System.out.println(hs);

}

}

The following is the output from this program:

[A, F, E, D, C, B]

As explained, the elements are not stored in sorted order, and the precise output may vary.

The LinkedHashSet Class
Java 2, version 1.4 adds the LinkedHashSet class. This class extends HashSet, but adds
no members of its own. LinkedHashSet maintains a linked list of the entries in the set,
in the order in which they were inserted. This allows insertion-order iteration over the
set. That is, when cycling through a LinkedHashSet using an iterator, the elements will
be returned in the order in which they were inserted. This is also the order in which
they are contained in the string returned by toString() when called on a LinkedHashSet
object. To see the effect of LinkedHashSet, try substituting LinkedHashSet For HashSet
in the preceding program. The output will be

[B, A, D, E, C, F]

which is the order in which the elements were inserted.

The TreeSet Class
TreeSet provides an implementation of the Set interface that uses a tree for storage.
Objects are stored in sorted, ascending order. Access and retrieval times are quite fast,
which makes TreeSet an excellent choice when storing large amounts of sorted
information that must be found quickly.

The following constructors are defined:

TreeSet()
TreeSet(Collection c)
TreeSet(Comparator comp)
TreeSet(SortedSet ss)

The first form constructs an empty tree set that will be sorted in ascending order
according to the natural order of its elements. The second form builds a tree set that
contains the elements of c. The third form constructs an empty tree set that will be
sorted according to the comparator specified by comp. (Comparators are described later
in this chapter.) The fourth form builds a tree set that contains the elements of ss.

456 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here is an example that demonstrates a TreeSet:

// Demonstrate TreeSet.

import java.util.*;

class TreeSetDemo {

public static void main(String args[]) {

// Create a tree set

TreeSet ts = new TreeSet();

// Add elements to the tree set

ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

System.out.println(ts);

}

}

The output from this program is shown here:

[A, B, C, D, E, F]

As explained, because TreeSet stores its elements in a tree, they are automatically
arranged in sorted order, as the output confirms.

Accessing a Collection via an Iterator
Often, you will want to cycle through the elements in a collection. For example, you
might want to display each element. By far, the easiest way to do this is to employ an
iterator, an object that implements either the Iterator or the ListIterator interface.
Iterator enables you to cycle through a collection, obtaining or removing elements.
ListIterator extends Iterator to allow bidirectional traversal of a list, and the
modification of elements. The Iterator interface declares the methods shown in
Table 15-4. The methods declared by ListIterator are shown in Table 15-5.

Using an Iterator
Before you can access a collection through an iterator, you must obtain one. Each of
the collection classes provides an iterator() method that returns an iterator to the start
of the collection. By using this iterator object, you can access each element in the

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 457
TH

E
JA

V
A

LIB
R

A
R

Y

458 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

boolean hasNext() Returns true if there are more elements. Otherwise,
returns false.

Object next() Returns the next element. Throws
NoSuchElementException if there is not a next element.

void remove() Removes the current element. Throws
IllegalStateException if an attempt is made to call
remove() that is not preceded by a call to next().

Table 15-4. The Methods Declared by Iterator

Method Description

void add(Object obj) Inserts obj into the list in front of the element that will
be returned by the next call to next().

boolean hasNext() Returns true if there is a next element. Otherwise,
returns false.

boolean hasPrevious() Returns true if there is a previous element. Otherwise,
returns false.

Object next() Returns the next element. A
NoSuchElementException is thrown if there is not a
next element.

int nextIndex() Returns the index of the next element. If there is not a
next element, returns the size of the list.

Object previous() Returns the previous element. A
NoSuchElementException is thrown if there is not a
previous element.

int previousIndex() Returns the index of the previous element. If there is
not a previous element, returns −1.

void remove() Removes the current element from the list. An
IllegalStateException is thrown if remove() is called
before next() or previous() is invoked.

void set(Object obj) Assigns obj to the current element. This is the element
last returned by a call to either next() or previous().

Table 15-5. The Methods Declared by ListIterator

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 459
TH

E
JA

V
A

LIB
R

A
R

Y

collection, one element at a time. In general, to use an iterator to cycle through the
contents of a collection, follow these steps:

1. Obtain an iterator to the start of the collection by calling the collection’s
iterator() method.

2. Set up a loop that makes a call to hasNext(). Have the loop iterate as long as
hasNext() returns true.

3. Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling
ListIterator. As explained, a list iterator gives you the ability to access the collection in
either the forward or backward direction and lets you modify an element. Otherwise,
ListIterator is used just like Iterator.

Here is an example that implements these steps, demonstrating both Iterator and
ListIterator. It uses an ArrayList object, but the general principles apply to any type of
collection. Of course, ListIterator is available only to those collections that implement
the List interface.

// Demonstrate iterators.
import java.util.*;

class IteratorDemo {
public static void main(String args[]) {

// create an array list
ArrayList al = new ArrayList();

// add elements to the array list
al.add("C");
al.add("A");
al.add("E");
al.add("B");
al.add("D");
al.add("F");

// use iterator to display contents of al
System.out.print("Original contents of al: ");
Iterator itr = al.iterator();
while(itr.hasNext()) {

Object element = itr.next();
System.out.print(element + " ");

}
System.out.println();

// modify objects being iterated
ListIterator litr = al.listIterator();
while(litr.hasNext()) {

460 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Object element = litr.next();
litr.set(element + "+");

}

System.out.print("Modified contents of al: ");
itr = al.iterator();
while(itr.hasNext()) {

Object element = itr.next();
System.out.print(element + " ");

}
System.out.println();

// now, display the list backwards
System.out.print("Modified list backwards: ");
while(litr.hasPrevious()) {

Object element = litr.previous();
System.out.print(element + " ");

}
System.out.println();

}
}

The output is shown here:

Original contents of al: C A E B D F
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ A+ C+

Pay special attention to how the list is displayed in reverse. After the list is modified,
litr points to the end of the list. (Remember, litr.hasNext() returns false when the end
of the list has been reached.) To traverse the list in reverse, the program continues to
use litr, but this time it checks to see whether it has a previous element. As long as it
does, that element is obtained and displayed.

Storing User-Defined Classes in Collections
For the sake of simplicity, the foregoing examples have stored built-in objects, such as
String or Integer, in a collection. Of course, collections are not limited to the storage of
built-in objects. Quite the contrary. The power of collections is that they can store any
type of object, including objects of classes that you create. For example, consider the
following example that uses a LinkedList to store mailing addresses:

// A simple mailing list example.

import java.util.*;

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 461
TH

E
JA

V
A

LIB
R

A
R

Y

class Address {

private String name;

private String street;

private String city;

private String state;

private String code;

Address(String n, String s, String c,

String st, String cd) {

name = n;

street = s;

city = c;

state = st;

code = cd;

}

public String toString() {

return name + "\n" + street + "\n" +

city + " " + state + " " + code;

}

}

class MailList {

public static void main(String args[]) {

LinkedList ml = new LinkedList();

// add elements to the linked list

ml.add(new Address("J.W. West", "11 Oak Ave",

"Urbana", "IL", "61801"));

ml.add(new Address("Ralph Baker", "1142 Maple Lane",

"Mahomet", "IL", "61853"));

ml.add(new Address("Tom Carlton", "867 Elm St",

"Champaign", "IL", "61820"));

Iterator itr = ml.iterator();

while(itr.hasNext()) {

Object element = itr.next();

System.out.println(element + "\n");

}

System.out.println();

}

}

The output from the program is shown here:

J.W. West
11 Oak Ave
Urbana IL 61801

Ralph Baker
1142 Maple Lane
Mahomet IL 61853

Tom Carlton
867 Elm St
Champaign IL 61820

Aside from storing a user-defined class in a collection, another important thing to
notice about the preceding program is that it is quite short. When you consider that it
sets up a linked list that can store, retrieve, and process mailing addresses in about 50
lines of code, the power of the collections framework begins to become apparent. As
most readers know, if all of this functionality had to be coded manually, the program
would be several times longer. Collections offer off-the-shelf solutions to a wide variety
of programming problems. You should use them whenever the situation presents itself.

The RandomAccess Interface
Java 2, version 1.4 adds the RandomAccess interface. This interface contains no members.
However, by implementing this interface, a collection signals that it supports efficient
random access to its elements. Although a collection might support random access, it
might not do so efficiently. By checking for the RandomAccess interface, client code
can determine at run time whether a collection is suitable for certain types of random
access operations—especially as they apply to large collections. (You can use instanceof
to determine if a class implements an interface.) RandomAccess is implemented by
ArrayList and by the legacy Vector class.

Working with Maps
A map is an object that stores associations between keys and values, or key/value pairs.
Given a key, you can find its value. Both keys and values are objects. The keys must be
unique, but the values may be duplicated. Some maps can accept a null key and null
values, others cannot.

The Map Interfaces
Because the map interfaces define the character and nature of maps, this discussion of
maps begins with them. The following interfaces support maps:

462 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Interface Description

Map Maps unique keys to values.

Map.Entry Describes an element (a key/value pair) in a map. This is an inner
class of Map.

SortedMap Extends Map so that the keys are maintained in ascending order.

Each interface is examined next, in turn.

The Map Interface
The Map interface maps unique keys to values. A key is an object that you use to
retrieve a value at a later date. Given a key and a value, you can store the value
in a Map object. After the value is stored, you can retrieve it by using its key.
The methods declared by Map are summarized in Table 15-6. Several methods
throw a NoSuchElementException when no items exist in the invoking map. A
ClassCastException is thrown when an object is incompatible with the elements
in a map. A NullPointerException is thrown if an attempt is made to use a null object
and null is not allowed in the map. An UnsupportedOperationException is thrown
when an attempt is made to change an unmodifiable map.

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 463
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void clear() Removes all key/value pairs from the
invoking map.

boolean containsKey(Object k) Returns true if the invoking map contains k as
a key. Otherwise, returns false.

boolean containsValue(Object v) Returns true if the map contains v as a value.
Otherwise, returns false.

Set entrySet() Returns a Set that contains the entries in the
map. The set contains objects of type
Map.Entry. This method provides a set-view
of the invoking map.

boolean equals(Object obj) Returns true if obj is a Map and contains the
same entries. Otherwise, returns false.

Table 15-6. The Methods Defined by Map

464 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Maps revolve around two basic operations: get() and put(). To put a value into a
map, use put(), specifying the key and the value. To obtain a value, call get(), passing
the key as an argument. The value is returned.

As mentioned earlier, maps are not collections because they do not implement the
Collection interface, but you can obtain a collection-view of a map. To do this, you
can use the entrySet() method. It returns a Set that contains the elements in the map.
To obtain a collection-view of the keys, use keySet(). To get a collection-view of the
values, use values(). Collection-views are the means by which maps are integrated
into the collections framework.

Method Description

Object get(Object k) Returns the value associated with the key k.

int hashCode() Returns the hash code for the invoking map.

boolean isEmpty() Returns true if the invoking map is empty.
Otherwise, returns false.

Set keySet() Returns a Set that contains the keys in the
invoking map. This method provides a
set-view of the keys in the invoking map.

Object put(Object k, Object v) Puts an entry in the invoking map,
overwriting any previous value associated
with the key. The key and value are k and v,
respectively. Returns null if the key did not
already exist. Otherwise, the previous value
linked to the key is returned.

void putAll(Map m) Puts all the entries from m into this map.

Object remove(Object k) Removes the entry whose key equals k.

int size() Returns the number of key/value pairs in
the map.

Collection values() Returns a collection containing the values
in the map. This method provides a
collection-view of the values in the map.

Table 15-6. The Methods Defined by Map (continued)

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 465
TH

E
JA

V
A

LIB
R

A
R

Y

The SortedMap Interface
The SortedMap interface extends Map. It ensures that the entries are maintained
in ascending key order. The methods declared by SortedMap are summarized in
Table 15-7. Several methods throw a NoSuchElementException when no items are in
the invoking map. A ClassCastException is thrown when an object is incompatible
with the elements in a map. A NullPointerException is thrown if an attempt is made
to use a null object when null is not allowed in the map.

Sorted maps allow very efficient manipulations of submaps (in other words, a
subset of a map). To obtain a submap, use headMap(), tailMap(), or subMap(). To
get the first key in the set, call firstKey(). To get the last key, use lastKey().

Method Description

Comparator comparator() Returns the invoking sorted
map’s comparator. If the natural
ordering is used for the invoking
map, null is returned.

Object firstKey() Returns the first key in the
invoking map.

SortedMap headMap(Object end) Returns a sorted map for those
map entries with keys that are
less than end.

Object lastKey() Returns the last key in the
invoking map.

SortedMap subMap(Object start, Object end) Returns a map containing those
entries with keys that are greater
than or equal to start and less
than end.

SortedMap tailMap(Object start) Returns a map containing those
entries with keys that are greater
than or equal to start.

Table 15-7. The Methods Defined by SortedMap

The Map.Entry Interface
The Map.Entry interface enables you to work with a map entry. Recall that the
entrySet() method declared by the Map interface returns a Set containing the map
entries. Each of these set elements is a Map.Entry object. Table 15-8 summarizes the
methods declared by this interface.

The Map Classes
Several classes provide implementations of the map interfaces. The classes that can be
used for maps are summarized here:

Class Description

AbstractMap Implements most of the Map interface.

HashMap Extends AbstractMap to use a hash table.

TreeMap Extends AbstractMap to use a tree.

WeakHashMap Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap Extends HashMap to allow insertion-order iterations.

IdentityHashMap Extends AbstractMap and uses reference equality when
comparing documents.

466 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

boolean equals(Object obj) Returns true if obj is a Map.Entry whose key and
value are equal to that of the invoking object.

Object getKey() Returns the key for this map entry.

Object getValue() Returns the value for this map entry.

int hashCode() Returns the hash code for this map entry.

Object setValue(Object v) Sets the value for this map entry to v. A
ClassCastException is thrown if v is not
the correct type for the map. An
IllegalArgumentException is thrown if there is
a problem with v. A NullPointerException is
thrown if v is null and the map does not permit
null keys. An UnsupportedOperationException
is thrown if the map cannot be changed.

Table 15-8. The Methods Defined by Map.Entry

Notice that AbstractMap is a superclass for all concrete map implementations.
WeakHashMap implements a map that uses “weak keys,” which allows an element
in a map to be garbage-collected when its key is unused. This class is not discussed
further here. The others are described next.

The HashMap Class
The HashMap class uses a hash table to implement the Map interface. This allows the
execution time of basic operations, such as get() and put(), to remain constant even for
large sets.

The following constructors are defined:

HashMap()
HashMap(Map m)
HashMap(int capacity)
HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map
by using the elements of m. The third form initializes the capacity of the hash map to
capacity. The fourth form initializes both the capacity and fill ratio of the hash map by
using its arguments. The meaning of capacity and fill ratio is the same as for HashSet,
described earlier.

HashMap implements Map and extends AbstractMap. It does not add any
methods of its own.

You should note that a hash map does not guarantee the order of its elements.
Therefore, the order in which elements are added to a hash map is not necessarily the
order in which they are read by an iterator.

The following program illustrates HashMap. It maps names to account balances.
Notice how a set-view is obtained and used.

import java.util.*;

class HashMapDemo {

public static void main(String args[]) {

// Create a hash map

HashMap hm = new HashMap();

// Put elements to the map

hm.put("John Doe", new Double(3434.34));

hm.put("Tom Smith", new Double(123.22));

hm.put("Jane Baker", new Double(1378.00));

hm.put("Todd Hall", new Double(99.22));

hm.put("Ralph Smith", new Double(-19.08));

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 467
TH

E
JA

V
A

LIB
R

A
R

Y

// Get a set of the entries

Set set = hm.entrySet();

// Get an iterator

Iterator i = set.iterator();

// Display elements

while(i.hasNext()) {

Map.Entry me = (Map.Entry)i.next();

System.out.print(me.getKey() + ": ");

System.out.println(me.getValue());

}

System.out.println();

// Deposit 1000 into John Doe's account

double balance = ((Double)hm.get("John Doe")).doubleValue();

hm.put("John Doe", new Double(balance + 1000));

System.out.println("John Doe's new balance: " +

hm.get("John Doe"));

}

}

Output from this program is shown here (the precise order may vary).

Todd Hall: 99.22
Ralph Smith: -19.08
John Doe: 3434.34
Jane Baker: 1378.0
Tom Smith: 123.22

John Doe’s current balance: 4434.34

The program begins by creating a hash map and then adds the mapping of names
to balances. Next, the contents of the map are displayed by using a set-view, obtained
by calling entrySet(). The keys and values are displayed by calling the getKey() and
getValue() methods that are defined by Map.Entry. Pay close attention to how the deposit
is made into John Doe’s account. The put() method automatically replaces any preexisting
value that is associated with the specified key with the new value. Thus, after John Doe’s
account is updated, the hash map will still contain just one “John Doe” account.

The TreeMap Class
The TreeMap class implements the Map interface by using a tree. A TreeMap provides
an efficient means of storing key/value pairs in sorted order, and allows rapid

468 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

retrieval. You should note that, unlike a hash map, a tree map guarantees that its
elements will be sorted in ascending key order.

The following TreeMap constructors are defined:

TreeMap()
TreeMap(Comparator comp)
TreeMap(Map m)
TreeMap(SortedMap sm)

The first form constructs an empty tree map that will be sorted by using the natural order
of its keys. The second form constructs an empty tree-based map that will be sorted by
using the Comparator comp. (Comparators are discussed later in this chapter.) The third
form initializes a tree map with the entries from m, which will be sorted by using the
natural order of the keys. The fourth form initializes a tree map with the entries from sm,
which will be sorted in the same order as sm.

TreeMap implements SortedMap and extends AbstractMap. It does not define any
additional methods of its own.

The following program reworks the preceding example so that it uses TreeMap:

import java.util.*;

class TreeMapDemo {

public static void main(String args[]) {

// Create a tree map

TreeMap tm = new TreeMap();

// Put elements to the map

tm.put("John Doe", new Double(3434.34));

tm.put("Tom Smith", new Double(123.22));

tm.put("Jane Baker", new Double(1378.00));

tm.put("Todd Hall", new Double(99.22));

tm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries

Set set = tm.entrySet();

// Get an iterator

Iterator i = set.iterator();

// Display elements

while(i.hasNext()) {

Map.Entry me = (Map.Entry)i.next();

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 469
TH

E
JA

V
A

LIB
R

A
R

Y

System.out.print(me.getKey() + ": ");

System.out.println(me.getValue());

}

System.out.println();

// Deposit 1000 into John Doe's account

double balance = ((Double)tm.get("John Doe")).doubleValue();

tm.put("John Doe", new Double(balance + 1000));

System.out.println("John Doe's new balance: " +

tm.get("John Doe"));

}

}

The following is the output from this program:

Jane Baker: 1378.0
John Doe: 3434.34
Ralph Smith: -19.08
Todd Hall: 99.22
Tom Smith: 123.22

John Doe’s current balance: 4434.34

Notice that TreeMap sorts the keys. However, in this case, they are sorted by first
name instead of last name. You can alter this behavior by specifying a comparator
when the map is created, as described shortly.

The LinkedHashMap Class
Java 2, version 1.4 adds the LinkedHashMap class. This class extends HashMap.
LinkedHashMap maintains a linked list of the entries in the map, in the order in which
they were inserted. This allows insertion-order iteration over the map. That is, when
iterating a LinkedHashMap, the elements will be returned in the order in which they
were inserted. You can also create a LinkedHashMap that returns its elements in the
order in which they were last accessed.

LinkedHashMap defines the following constructors.

LinkedHashMap()
LinkedHashMap(Map m)
LinkedHashMap(int capacity)
LinkedHashMap(int capacity, float fillRatio)
LinkedHashMap(int capacity, float fillRatio, boolean Order)

470 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The first form constructs a default LinkedHashMap. The second form initializes
the LinkedHashMap with the elements from m. The third form initializes the capacity.
The fourth form initializes both capacity and fill ratio. The meaning of capacity and fill
ratio are the same as for HashMap. The last form allows you to specify whether the
elements will be stored in the linked list by insertion order, or by order of last access. If
Order is true, then access order is used. If Order is false, then insertion order is used.

LinkedHashMap adds only one method to those defined by HashMap. This
method is removeEldestEntry() and it is shown here.

protected boolean removeEldestEntry(Map.Entry e)

This method is called by put() and putAll(). The oldest entry is passed in e. By default, this
method returns false and does nothing. However, if you override this method, then you
can have the LinkedHashMap remove the oldest entry in the map. To do this, have your
override return true. To keep the oldest entry, return false.

The IdentityHashMap Class
Java 2, version 1.4 adds the IdentityHashMap class. This class implements AbstractMap.
It is similar to HashMap except that it uses reference equality when comparing elements.
The Java 2 documentation explicitly states that IdentityHashMap is not for general use.

Comparators
Both TreeSet and TreeMap store elements in sorted order. However, it is the
comparator that defines precisely what “sorted order” means. By default, these classes
store their elements by using what Java refers to as “natural ordering,” which is
usually the ordering that you would expect. (A before B, 1 before 2, and so forth.) If
you want to order elements a different way, then specify a Comparator object when
you construct the set or map. Doing so gives you the ability to govern precisely how
elements are stored within sorted collections and maps.

The Comparator interface defines two methods: compare() and equals(). The
compare() method, shown here, compares two elements for order:

int compare(Object obj1, Object obj2)

obj1 and obj2 are the objects to be compared. This method returns zero if the objects are
equal. It returns a positive value if obj1 is greater than obj2. Otherwise, a negative value
is returned. The method can throw a ClassCastException if the types of the objects are
not compatible for comparison. By overriding compare(), you can alter the way that
objects are ordered. For example, to sort in reverse order, you can create a comparator
that reverses the outcome of a comparison.

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 471
TH

E
JA

V
A

LIB
R

A
R

Y

472 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The equals() method, shown here, tests whether an object equals the invoking
comparator:

boolean equals(Object obj)

obj is the object to be tested for equality. The method returns true if obj and the
invoking object are both Comparator objects and use the same ordering. Otherwise, it
returns false. Overriding equals() is unnecessary, and most simple comparators will
not do so.

Using a Comparator
The following is an example that demonstrates the power of a custom comparator. It
implements the compare() method so that it operates in reverse of normal. Thus, it
causes a tree set to be stored in reverse order.

// Use a custom comparator.

import java.util.*;

// A reverse comparator for strings.

class MyComp implements Comparator {

public int compare(Object a, Object b) {

String aStr, bStr;

aStr = (String) a;

bStr = (String) b;

// reverse the comparison

return bStr.compareTo(aStr);

}

// no need to override equals

}

class CompDemo {

public static void main(String args[]) {

// Create a tree set

TreeSet ts = new TreeSet(new MyComp());

// Add elements to the tree set

ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

// Get an iterator

Iterator i = ts.iterator();

// Display elements

while(i.hasNext()) {

Object element = i.next();

System.out.print(element + " ");

}

System.out.println();

}

}

As the following output shows, the tree is now stored in reverse order:

F E D C B A

Look closely at the MyComp class, which implements Comparator and overrides
compare(). (As explained earlier, overriding equals() is neither necessary nor
common.) Inside compare(), the String method compareTo() compares the two
strings. However, bStr—not aStr—invokes compareTo(). This causes the outcome of
the comparison to be reversed.

For a more practical example, the following program is an updated version of
the TreeMap program shown earlier that stores account balances. In the previous
version, the accounts were sorted by name, but the sorting began with the first name.
The following program sorts the accounts by last name. To do so, it uses a comparator
that compares the last name of each account. This results in the map being sorted by
last name.

// Use a comparator to sort accounts by last name.

import java.util.*;

// Compare last whole words in two strings.

class TComp implements Comparator {

public int compare(Object a, Object b) {

int i, j, k;

String aStr, bStr;

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 473
TH

E
JA

V
A

LIB
R

A
R

Y

aStr = (String) a;

bStr = (String) b;

// find index of beginning of last name

i = aStr.lastIndexOf(' ');

j = bStr.lastIndexOf(' ');

k = aStr.substring(i).compareTo(bStr.substring(j));

if(k==0) // last names match, check entire name

return aStr.compareTo(bStr);

else

return k;

}

// no need to override equals

}

class TreeMapDemo2 {

public static void main(String args[]) {

// Create a tree map

TreeMap tm = new TreeMap(new TComp());

// Put elements to the map

tm.put("John Doe", new Double(3434.34));

tm.put("Tom Smith", new Double(123.22));

tm.put("Jane Baker", new Double(1378.00));

tm.put("Todd Hall", new Double(99.22));

tm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries

Set set = tm.entrySet();

// Get an iterator

Iterator itr = set.iterator();

// Display elements

while(itr.hasNext()) {

Map.Entry me = (Map.Entry)itr.next();

System.out.print(me.getKey() + ": ");

System.out.println(me.getValue());

}

System.out.println();

474 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Deposit 1000 into John Doe's account

double balance = ((Double)tm.get("John Doe")).doubleValue();

tm.put("John Doe", new Double(balance + 1000));

System.out.println("John Doe's new balance: " +

tm.get("John Doe"));

}

}

Here is the output; notice that the accounts are now sorted by last name:

Jane Baker: 1378.0
John Doe: 3434.34
Todd Hall: 99.22
Ralph Smith: -19.08
Tom Smith: 123.22

John Doe’s new balance: 4434.34

The comparator class TComp compares two strings that hold first and last names.
It does so by first comparing last names. To do this, it finds the index of the last space
in each string and then compares the substrings of each element that begin at that
point. In cases where last names are equivalent, the first names are then compared.
This yields a tree map that is sorted by last name, and within last name by first name.
You can see this because Ralph Smith comes before Tom Smith in the output.

The Collection Algorithms
The collections framework defines several algorithms that can be applied to collections
and maps. These algorithms are defined as static methods within the Collections
class. They are summarized in Table 15-9. Several of the methods can throw a
ClassCastException, which occurs when an attempt is made to compare incompatible
types, or an UnsupportedOperationException, which occurs when an attempt is made
to modify an unmodifiable collection.

Notice that several methods, such as synchronizedList() and synchronizedSet(),
are used to obtain synchronized (thread-safe) copies of the various collections. As
explained, none of the standard collections implementations are synchronized. You
must use the synchronization algorithms to provide synchronization. One other point:
iterators to synchronized collections must be used within synchronized blocks.

The set of methods that begins with unmodifiable returns views of the various
collections that cannot be modified. These will be useful when you want to grant some
process read—but not write—capabilities on a collection.

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 475

476 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static int binarySearch(List list, Object value,
Comparator c)

Searches for value in list ordered
according to c. Returns the
position of value in list, or −1 if
value is not found.

static int binarySearch(List list, Object value) Searches for value in list. The list
must be sorted. Returns the
position of value in list, or −1 if
value is not found.

static void copy(List list1, List list2) Copies the elements of list2 to list1.

static Enumeration enumeration(Collection c) Returns an enumeration over c.
(See “The Enumeration
Interface,” later in this chapter.)

static void fill(List list, Object obj) Assigns obj to each element of list.

static int indexOfSubList(List list,
List subList)

Searches list for the first
occurrence of subList. Returns
the index of the first match, or –1
if no match is found. (Added by
Java 2, v1.4)

static int lastIndexOfSubList(List list,
List subList)

Searches list for the last
occurrence of subList. Returns
the index of the last match, or –1
if no match is found. (Added by
Java 2, v1.4)

static ArrayList list(Enumeration enum) Returns an ArrayList that
contains the elements of enum.
(Added by Java 2, v1.4)

static Object max(Collection c,
Comparator comp)

Returns the maximum element
in c as determined by comp.

static Object max(Collection c) Returns the maximum element
in c as determined by natural
ordering. The collection need
not be sorted.

Table 15-9. The Algorithms Defined by Collections

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 477
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

static Object min(Collection c,
Comparator comp)

Returns the minimum element
in c as determined by comp. The
collection need not be sorted.

static Object min(Collection c) Returns the minimum element
in c as determined by natural
ordering.

static List nCopies(int num, Object obj) Returns num copies of obj
contained in an immutable list.
num must be greater than or
equal to zero.

static boolean replaceAll(List list,
Object old,
Object new)

Replaces all occurrences of old
with new in list. Returns true if at
least one replacement occurred.
Returns false, otherwise. (Added
by Java 2, v1.4)

static void reverse(List list) Reverses the sequence in list.

static Comparator reverseOrder() Returns a reverse comparator
(a comparator that reverses the
outcome of a comparison
between two elements).

static void rotate(List list, int n) Rotates list by n places to
the right. To rotate left, use a
negative value for n. (Added
by Java 2, v1.4)

static void shuffle(List list, Random r) Shuffles (i.e., randomizes) the
elements in list by using r as a
source of random numbers.

static void shuffle(List list) Shuffles (i.e., randomizes) the
elements in list.

static Set singleton(Object obj) Returns obj as an immutable set.
This is an easy way to convert a
single object into a set.

Table 15-9. The Algorithms Defined by Collections (continued)

478 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static List singletonList(Object obj) Returns obj as an immutable list.
This is an easy way to convert a
single object into a list. (Added
by Java 2, v1.3)

static Map singletonMap(Object k, Object v) Returns the key/value pair k/v
as an immutable map. This is an
easy way to convert a single
key/value pair into a map.
(Added by Java 2, v1.3)

static void sort(List list, Comparator comp) Sorts the elements of list as
determined by comp.

static void sort(List list) Sorts the elements of list as
determined by their natural
ordering.

static void swap(List list, int idx1, int idx2) Exchanges the elements in list at
the indices specified by idx1 and
idx2. (Added by Java 2, v1.4)

static Collection
synchronizedCollection(Collection c)

Returns a thread-safe collection
backed by c.

static List synchronizedList(List list) Returns a thread-safe list backed
by list.

static Map synchronizedMap(Map m) Returns a thread-safe map
backed by m.

static Set synchronizedSet(Set s) Returns a thread-safe set
backed by s.

static SortedMap
synchronizedSortedMap(SortedMap sm)

Returns a thread-safe sorted set
backed by sm.

static SortedSet
synchronizedSortedSet(SortedSet ss)

Returns a thread-safe set
backed by ss.

static Collection
unmodifiableCollection(Collection c)

Returns an unmodifiable
collection backed by c.

static List unmodifiableList(List list) Returns an unmodifiable list
backed by list.

Table 15-9. The Algorithms Defined by Collections (continued)

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 479
TH

E
JA

V
A

LIB
R

A
R

Y

Collections defines three static variables: EMPTY_SET, EMPTY_LIST, and
EMPTY_MAP. All are immutable. EMPTY_MAP was added by Java 2, version 1.3.

The following program demonstrates some of the algorithms. It creates and
initializes a linked list. The reverseOrder() method returns a Comparator that reverses
the comparison of Integer objects. The list elements are sorted according to this
comparator and then are displayed. Next, the list is randomized by calling shuffle(),
and then its minimum and maximum values are displayed.

// Demonstrate various algorithms.

import java.util.*;

class AlgorithmsDemo {

public static void main(String args[]) {

// Create and initialize linked list

LinkedList ll = new LinkedList();

ll.add(new Integer(-8));

ll.add(new Integer(20));

ll.add(new Integer(-20));

ll.add(new Integer(8));

// Create a reverse order comparator

Comparator r = Collections.reverseOrder();

// Sort list by using the comparator

Collections.sort(ll, r);

Method Description

static Map unmodifiableMap(Map m) Returns an unmodifiable map
backed by m.

static Set unmodifiableSet(Set s) Returns an unmodifiable set
backed by s.

static SortedMap
unmodifiableSortedMap(SortedMap sm)

Returns an unmodifiable sorted
map backed by sm.

static SortedSet
unmodifiableSortedSet(SortedSet ss)

Returns an unmodifiable sorted
set backed by ss.

Table 15-9. The Algorithms Defined by Collections (continued)

// Get iterator

Iterator li = ll.iterator();

System.out.print("List sorted in reverse: ");

while(li.hasNext())

System.out.print(li.next() + " ");

System.out.println();

Collections.shuffle(ll);

// display randomized list

li = ll.iterator();

System.out.print("List shuffled: ");

while(li.hasNext())

System.out.print(li.next() + " ");

System.out.println();

System.out.println("Minimum: " + Collections.min(ll));

System.out.println("Maximum: " + Collections.max(ll));

}

}

Output from this program is shown here:

List sorted in reverse: 20 8 -8 -20
List shuffled: 20 -20 8 -8
Minimum: -20
Maximum: 20

Notice that min() and max() operate on the list after it has been shuffled. Neither
requires a sorted list for its operation.

Arrays
The Arrays class provides various methods that are useful when working with arrays.
Although these methods technically aren’t part of the collections framework, they help
bridge the gap between collections and arrays. Arrays was added by Java 2. Each
method defined by Arrays is examined in this section.

The asList() method returns a List that is backed by a specified array. In other words,
both the list and the array refer to the same location. It has the following signature:

static List asList(Object[] array)

Here, array is the array that contains the data.

480 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 481
TH

E
JA

V
A

LIB
R

A
R

Y

The binarySearch() method uses a binary search to find a specified value. This
method must be applied to sorted arrays. It has the following forms:

static int binarySearch(byte[] array, byte value)
static int binarySearch(char[] array, char value)
static int binarySearch(double[] array, double value)
static int binarySearch(float[] array, float value)
static int binarySearch(int[] array, int value)
static int binarySearch(long[] array, long value)
static int binarySearch(short[] array, short value)
static int binarySearch(Object[] array, Object value)
static int binarySearch(Object[] array, Object value, Comparator c)

Here, array is the array to be searched and value is the value to be located. The last two
forms throw a ClassCastException if array contains elements that cannot be compared
(for example, Double and StringBuffer) or if value is not compatible with the types in
array. In the last form, the Comparator c is used to determine the order of the elements
in array. In all cases, if value exists in array, the index of the element is returned.
Otherwise, a negative value is returned.

The equals() method returns true if two arrays are equivalent. Otherwise, it
returns false. The equals() method has the following forms:

static boolean equals(boolean array1[], boolean array2[])
static boolean equals(byte array1[], byte array2[])
static boolean equals(char array1[], char array2[])
static boolean equals(double array1[], double array2[])
static boolean equals(float array1[], float array2[])
static boolean equals(int array1[], int array2[])
static boolean equals(long array1[], long array2[])
static boolean equals(short array1[], short array2[])
static boolean equals(Object array1[], Object array2[])

Here, array1 and array2 are the two arrays that are compared for equality.
The fill() method assigns a value to all elements in an array. In other words, it fills

an array with a specified value. The fill() method has two versions. The first version,
which has the following forms, fills an entire array:

static void fill(boolean array[], boolean value)
static void fill(byte array[], byte value)
static void fill(char array[], char value)
static void fill(double array[], double value)
static void fill(float array[], float value)
static void fill(int array[], int value)
static void fill(long array[], long value)
static void fill(short array[], short value)
static void fill(Object array[], Object value)

Here, value is assigned to all elements in array.

The second version of the fill() method assigns a value to a subset of an array. Its
forms are shown here:

static void fill(boolean array[], int start, int end, boolean value)
static void fill(byte array[], int start, int end, byte value)
static void fill(char array[], int start, int end, char value)
static void fill(double array[], int start, int end, double value)
static void fill(float array[], int start, int end, float value)
static void fill(int array[], int start, int end, int value)
static void fill(long array[], int start, int end, long value)
static void fill(short array[], int start, int end, short value)
static void fill(Object array[], int start, int end, Object value)

Here, value is assigned to the elements in array from position start to position end–1.
These methods may all throw an IllegalArgumentException if start is greater than end,
or an ArrayIndexOutOfBoundsException if start or end is out of bounds.

The sort() method sorts an array so that it is arranged in ascending order. The
sort() method has two versions. The first version, shown here, sorts the entire array:

static void sort(byte array[])
static void sort(char array[])
static void sort(double array[])
static void sort(float array[])
static void sort(int array[])
static void sort(long array[])
static void sort(short array[])
static void sort(Object array[])
static void sort(Object array[], Comparator c)

Here, array is the array to be sorted. In the last form, c is a Comparator that is used to
order the elements of array. The forms that sort arrays of Object can also throw a
ClassCastException if elements of the array being sorted are not comparable.

The second version of sort() enables you to specify a range within an array that
you want to sort. Its forms are shown here:

static void sort(byte array[], int start, int end)
static void sort(char array[], int start, int end)
static void sort(double array[], int start, int end)
static void sort(float array[], int start, int end)
static void sort(int array[], int start, int end)
static void sort(long array[], int start, int end)
static void sort(short array[], int start, int end)
static void sort(Object array[], int start, int end)
static void sort(Object array[], int start, int end, Comparator c)

Here, the range beginning at start and running through end–1 within array will be
sorted. In the last form, c is a Comparator that is used to order the elements of array.

482 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

All of these methods can throw an IllegalArgumentException if start is greater than
end, or an ArrayIndexOutOfBoundsException if start or end is out of bounds. The last
two forms can also throw a ClassCastException if elements of the array being sorted
are not comparable.

The following program illustrates how to use some of the methods of the Arrays class:

// Demonstrate Arrays

import java.util.*;

class ArraysDemo {

public static void main(String args[]) {

// allocate and initialize array

int array[] = new int[10];

for(int i = 0; i < 10; i++)

array[i] = -3 * i;

// display, sort, display

System.out.print("Original contents: ");

display(array);

Arrays.sort(array);

System.out.print("Sorted: ");

display(array);

// fill and display

Arrays.fill(array, 2, 6, -1);

System.out.print("After fill(): ");

display(array);

// sort and display

Arrays.sort(array);

System.out.print("After sorting again: ");

display(array);

// binary search for -9

System.out.print("The value -9 is at location ");

int index =

Arrays.binarySearch(array, -9);

System.out.println(index);

}

static void display(int array[]) {

for(int i = 0; i < array.length; i++)

System.out.print(array[i] + " ");

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 483
TH

E
JA

V
A

LIB
R

A
R

Y

484 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("");

}

}

The following is the output from this program:

Original contents: 0 -3 -6 -9 -12 -15 -18 -21 -24 -27
Sorted: -27 -24 -21 -18 -15 -12 -9 -6 -3 0
After fill(): -27 -24 -1 -1 -1 -1 -9 -6 -3 0
After sorting again: -27 -24 -9 -6 -3 -1 -1 -1 -1 0
The value -9 is at location 2

The Legacy Classes and Interfaces
As explained at the start of this chapter, the original version of java.util did not include
the collections framework. Instead, it defined several classes and an interface that
provided an ad hoc method of storing objects. With the addition of collections by Java
2, several of the original classes were reengineered to support the collection interfaces.
Thus, they are fully compatible with the framework. While no classes have actually
been deprecated, one has been rendered obsolete. Of course, where a collection
duplicates the functionality of a legacy class, you will usually want to use the collection
for new code. In general, the legacy classes are supported because there is still code
that uses them.

One other point: None of the collection classes are synchronized, but all the legacy
classes are synchronized. This distinction may be important in some situations. Of
course, you can easily synchronize collections, too, by using one of the algorithms
provided by Collections.

The legacy classes defined by java.util are shown here:

Dictionary Hashtable Properties Stack Vector

There is one legacy interface called Enumeration. The following sections examine
Enumeration and each of the legacy classes, in turn.

The Enumeration Interface
The Enumeration interface defines the methods by which you can enumerate (obtain
one at a time) the elements in a collection of objects. This legacy interface has been
superceded by Iterator. Although not deprecated, Enumeration is considered obsolete
for new code. However, it is used by several methods defined by the legacy classes
(such as Vector and Properties), is used by several other API classes, and is currently
in widespread use in application code.

Enumeration specifies the following two methods:

boolean hasMoreElements()
Object nextElement()

When implemented, hasMoreElements() must return true while there are still
more elements to extract, and false when all the elements have been enumerated.
nextElement() returns the next object in the enumeration as a generic Object reference.
That is, each call to nextElement() obtains the next object in the enumeration. The
calling routine must cast that object into the object type held in the enumeration.

Vector
Vector implements a dynamic array. It is similar to ArrayList, but with two differences:
Vector is synchronized, and it contains many legacy methods that are not part of
the collections framework. With the release of Java 2, Vector was reengineered to
extend AbstractList and implement the List interface, so it now is fully compatible
with collections.

Here are the Vector constructors:

Vector()
Vector(int size)
Vector(int size, int incr)
Vector(Collection c)

The first form creates a default vector, which has an initial size of 10. The second form
creates a vector whose initial capacity is specified by size. The third form creates a
vector whose initial capacity is specified by size and whose increment is specified by
incr. The increment specifies the number of elements to allocate each time that a vector
is resized upward. The fourth form creates a vector that contains the elements of
collection c. This constructor was added by Java 2.

All vectors start with an initial capacity. After this initial capacity is reached, the
next time that you attempt to store an object in the vector, the vector automatically
allocates space for that object plus extra room for additional objects. By allocating more
than just the required memory, the vector reduces the number of allocations that must
take place. This reduction is important, because allocations are costly in terms of time.
The amount of extra space allocated during each reallocation is determined by the
increment that you specify when you create the vector. If you don’t specify an
increment, the vector’s size is doubled by each allocation cycle.

Vector defines these protected data members:

int capacityIncrement;
int elementCount;
Object elementData[];

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 485
TH

E
JA

V
A

LIB
R

A
R

Y

The increment value is stored in capacityIncrement. The number of elements currently
in the vector is stored in elementCount. The array that holds the vector is stored in
elementData.

In addition to the collections methods defined by List, Vector defines several legacy
methods, which are shown in Table 15-10.

486 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void addElement(Object element) The object specified by element is
added to the vector.

int capacity() Returns the capacity of the vector.

Object clone() Returns a duplicate of the
invoking vector.

boolean contains(Object element) Returns true if element is
contained by the vector, and
returns false if it is not.

void copyInto(Object array[]) The elements contained in the
invoking vector are copied into
the array specified by array.

Object elementAt(int index) Returns the element at the
location specified by index.

Enumeration elements() Returns an enumeration of the
elements in the vector.

void ensureCapacity(int size) Sets the minimum capacity of the
vector to size.

Object firstElement() Returns the first element in
the vector.

int indexOf(Object element) Returns the index of the first
occurrence of element. If the object
is not in the vector, –1 is returned.

int indexOf(Object element, int start) Returns the index of the first
occurrence of element at or after
start. If the object is not in that
portion of the vector, –1 is
returned.

Table 15-10. The Methods Defined by Vector

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 487
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void insertElementAt(Object element,
int index)

Adds element to the vector at the
location specified by index.

boolean isEmpty() Returns true if the vector is empty
and returns false if it contains one
or more elements.

Object lastElement() Returns the last element in the
vector.

int lastIndexOf(Object element) Returns the index of the last
occurrence of element. If the object
is not in the vector, –1 is returned.

int lastIndexOf(Object element,
int start)

Returns the index of the last
occurrence of element before start.
If the object is not in that portion
of the vector, –1 is returned.

void removeAllElements() Empties the vector. After this
method executes, the size of the
vector is zero.

boolean removeElement(Object element) Removes element from the vector.
If more than one instance of the
specified object exists in the
vector, then it is the first one that
is removed. Returns true if
successful and false if the object is
not found.

void removeElementAt(int index) Removes the element at the
location specified by index.

void setElementAt(Object element,
int index)

The location specified by index is
assigned element.

void setSize(int size) Sets the number of elements in the
vector to size. If the new size is
less than the old size, elements are
lost. If the new size is larger than
the old size, null elements are
added.

Table 15-10. The Methods Defined by Vector (continued)

488 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Because Vector implements List, you can use a vector just like you use an ArrayList
instance. You can also manipulate one using its legacy methods. For example, after you
instantiate a Vector, you can add an element to it by calling addElement(). To obtain
the element at a specific location, call elementAt(). To obtain the first element in the
vector, call firstElement(). To retrieve the last element, call lastElement(). You can
obtain the index of an element by using indexOf() and lastIndexOf(). To remove an
element, call removeElement() or removeElementAt().

The following program uses a vector to store various types of numeric objects. It
demonstrates several of the legacy methods defined by Vector. It also demonstrates the
Enumeration interface.

// Demonstrate various Vector operations.

import java.util.*;

class VectorDemo {

public static void main(String args[]) {

// initial size is 3, increment is 2

Vector v = new Vector(3, 2);

System.out.println("Initial size: " + v.size());

System.out.println("Initial capacity: " +

v.capacity());

Method Description

int size() Returns the number of elements
currently in the vector.

String toString() Returns the string equivalent of
the vector.

void trimToSize() Sets the vector’s capacity equal to
the number of elements that it
currently holds.

Table 15-10. The Methods Defined by Vector (continued)

v.addElement(new Integer(1));

v.addElement(new Integer(2));

v.addElement(new Integer(3));

v.addElement(new Integer(4));

System.out.println("Capacity after four additions: " +

v.capacity());

v.addElement(new Double(5.45));

System.out.println("Current capacity: " +

v.capacity());

v.addElement(new Double(6.08));

v.addElement(new Integer(7));

System.out.println("Current capacity: " +

v.capacity());

v.addElement(new Float(9.4));

v.addElement(new Integer(10));

System.out.println("Current capacity: " +

v.capacity());

v.addElement(new Integer(11));

v.addElement(new Integer(12));

System.out.println("First element: " +

(Integer)v.firstElement());

System.out.println("Last element: " +

(Integer)v.lastElement());

if(v.contains(new Integer(3)))

System.out.println("Vector contains 3.");

// enumerate the elements in the vector.

Enumeration vEnum = v.elements();

System.out.println("\nElements in vector:");

while(vEnum.hasMoreElements())

System.out.print(vEnum.nextElement() + " ");

System.out.println();

}

}

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 489
TH

E
JA

V
A

LIB
R

A
R

Y

The output from this program is shown here:

Initial size: 0
Initial capacity: 3
Capacity after four additions: 5
Current capacity: 5
Current capacity: 7
Current capacity: 9
First element: 1
Last element: 12
Vector contains 3.

Elements in vector:
1 2 3 4 5.45 6.08 7 9.4 10 11 12

With the release of Java 2, Vector added support for iterators. Instead of relying on
an enumeration to cycle through the objects (as the preceding program does), you now
can use an iterator. For example, the following iterator-based code can be substituted
into the program:

// use an iterator to display contents

Iterator vItr = v.iterator();

System.out.println("\nElements in vector:");

while(vItr.hasNext())

System.out.print(vItr.next() + " ");

System.out.println();

Because enumerations are not recommended for new code, you will usually use an
iterator to enumerate the contents of a vector. Of course, much legacy code exists that
employs enumerations. Fortunately, enumerations and iterators work in nearly the
same manner.

Stack
Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack
only defines the default constructor, which creates an empty stack. Stack includes all
the methods defined by Vector, and adds several of its own, shown in Table 15-11.

To put an object on the top of the stack, call push(). To remove and return the top
element, call pop(). An EmptyStackException is thrown if you call pop() when the
invoking stack is empty. You can use peek() to return, but not remove, the top object.
The empty() method returns true if nothing is on the stack. The search() method
determines whether an object exists on the stack, and returns the number of pops that

490 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

are required to bring it to the top of the stack. Here is an example that creates a stack,
pushes several Integer objects onto it, and then pops them off again:

// Demonstrate the Stack class.

import java.util.*;

class StackDemo {

static void showpush(Stack st, int a) {

st.push(new Integer(a));

System.out.println("push(" + a + ")");

System.out.println("stack: " + st);

}

static void showpop(Stack st) {

System.out.print("pop -> ");

Integer a = (Integer) st.pop();

System.out.println(a);

System.out.println("stack: " + st);

}

public static void main(String args[]) {

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 491
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

boolean empty() Returns true if the stack is empty, and returns false
if the stack contains elements.

Object peek() Returns the element on the top of the stack, but
does not remove it.

Object pop() Returns the element on the top of the stack,
removing it in the process.

Object push(Object element) Pushes element onto the stack. element is also
returned.

int search(Object element) Searches for element in the stack. If found, its offset
from the top of the stack is returned. Otherwise, –1
is returned.

Table 15-11. The Methods Defined by Stack

Stack st = new Stack();

System.out.println("stack: " + st);

showpush(st, 42);

showpush(st, 66);

showpush(st, 99);

showpop(st);

showpop(st);

showpop(st);

try {

showpop(st);

} catch (EmptyStackException e) {

System.out.println("empty stack");

}

}

}

The following is the output produced by the program; notice how the exception
handler for EmptyStackException is caught so that you can gracefully handle a
stack underflow:

stack: []
push(42)
stack: [42]
push(66)
stack: [42, 66]
push(99)
stack: [42, 66, 99]
pop -> 99
stack: [42, 66]
pop -> 66
stack: [42]
pop -> 42
stack: []
pop -> empty stack

Dictionary
Dictionary is an abstract class that represents a key/value storage repository and
operates much like Map. Given a key and value, you can store the value in a Dictionary

492 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

object. Once the value is stored, you can retrieve it by using its key. Thus, like a map,
a dictionary can be thought of as a list of key/value pairs. Although not actually
deprecated by Java 2, Dictionary is classified as obsolete, because it is superceded by
Map. However, Dictionary is still in use and thus is fully discussed here.

The abstract methods defined by Dictionary are listed in Table 15-12.
To add a key and a value, use the put() method. Use get() to retrieve the value of a

given key. The keys and values can each be returned as an Enumeration by the keys()
and elements() methods, respectively. The size() method returns the number of key/
value pairs stored in a dictionary, and isEmpty() returns true when the dictionary is
empty. You can use the remove() method to delete a key/value pair.

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 493
TH

E
JA

V
A

LIB
R

A
R

Y

Method Purpose

Enumeration elements() Returns an enumeration of the values
contained in the dictionary.

Object get(Object key) Returns the object that contains the value
associated with key. If key is not in the
dictionary, a null object is returned.

boolean isEmpty() Returns true if the dictionary is empty, and
returns false if it contains at least one key.

Enumeration keys() Returns an enumeration of the keys
contained in the dictionary.

Object put(Object key, Object value) Inserts a key and its value into the
dictionary. Returns null if key is not already
in the dictionary; returns the previous
value associated with key if key is already
in the dictionary.

Object remove(Object key) Removes key and its value. Returns the
value associated with key. If key is not in
the dictionary, a null is returned.

int size() Returns the number of entries in the
dictionary.

Table 15-12. The Abstract Methods Defined by Dictionary

The Dictionary class is obsolete. You should implement the Map interface to obtain
key/value storage functionality.

Hashtable
Hashtable was part of the original java.util and is a concrete implementation of a
Dictionary. However, Java 2 reengineered Hashtable so that it also implements the
Map interface. Thus, Hashtable is now integrated into the collections framework. It is
similar to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hash table. When using a
Hashtable, you specify an object that is used as a key, and the value that you want
linked to that key. The key is then hashed, and the resulting hash code is used as the
index at which the value is stored within the table.

A hash table can only store objects that override the hashCode() and equals()
methods that are defined by Object. The hashCode() method must compute and
return the hash code for the object. Of course, equals() compares two objects.
Fortunately, many of Java’s built-in classes already implement the hashCode()
method. For example, the most common type of Hashtable uses a String object as
the key. String implements both hashCode() and equals().

The Hashtable constructors are shown here:

Hashtable()
Hashtable(int size)
Hashtable(int size, float fillRatio)
Hashtable(Map m)

The first version is the default constructor. The second version creates a hash table that
has an initial size specified by size. The third version creates a hash table that has an
initial size specified by size and a fill ratio specified by fillRatio. This ratio must be
between 0.0 and 1.0, and it determines how full the hash table can be before it is resized
upward. Specifically, when the number of elements is greater than the capacity of the
hash table multiplied by its fill ratio, the hash table is expanded. If you do not specify
a fill ratio, then 0.75 is used. Finally, the fourth version creates a hash table that is
initialized with the elements in m. The capacity of the hash table is set to twice the
number of elements in m. The default load factor of 0.75 is used. The fourth constructor
was added by Java 2.

In addition to the methods defined by the Map interface, which Hashtable now
implements, Hashtable defines the legacy methods listed in Table 15-13.

494 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 495
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void clear() Resets and empties the hash table.

Object clone() Returns a duplicate of the invoking object.

boolean contains(Object value) Returns true if some value equal to value
exists within the hash table. Returns false
if the value isn’t found.

boolean containsKey(Object key) Returns true if some key equal to key
exists within the hash table. Returns false
if the key isn’t found.

boolean containsValue(Object value) Returns true if some value equal to value
exists within the hash table. Returns false
if the value isn’t found. (A non-Map
method added by Java 2, for consistency.)

Enumeration elements() Returns an enumeration of the values
contained in the hash table.

Object get(Object key) Returns the object that contains the value
associated with key. If key is not in the
hash table, a null object is returned.

boolean isEmpty() Returns true if the hash table is empty;
returns false if it contains at least one key.

Enumeration keys() Returns an enumeration of the keys
contained in the hash table.

Object put(Object key, Object value) Inserts a key and a value into the hash
table. Returns null if key isn’t already in
the hash table; returns the previous value
associated with key if key is already in the
hash table.

void rehash() Increases the size of the hash table and
rehashes all of its keys.

Table 15-13. The Legacy Methods Defined by Hashtable

496 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The following example reworks the bank account program, shown earlier, so that it
uses a Hashtable to store the names of bank depositors and their current balances:

// Demonstrate a Hashtable

import java.util.*;

class HTDemo {

public static void main(String args[]) {

Hashtable balance = new Hashtable();

Enumeration names;

String str;

double bal;

balance.put("John Doe", new Double(3434.34));

balance.put("Tom Smith", new Double(123.22));

balance.put("Jane Baker", new Double(1378.00));

balance.put("Todd Hall", new Double(99.22));

balance.put("Ralph Smith", new Double(-19.08));

// Show all balances in hash table.

names = balance.keys();

while(names.hasMoreElements()) {

str = (String) names.nextElement();

System.out.println(str + ": " +

balance.get(str));

}

System.out.println();

Method Description

Object remove(Object key) Removes key and its value. Returns the
value associated with key. If key is not in
the hash table, a null object is returned.

int size() Returns the number of entries in the
hash table.

String toString() Returns the string equivalent of a
hash table.

Table 15-13. The Legacy Methods Defined by Hashtable (continued)

// Deposit 1,000 into John Doe's account

bal = ((Double)balance.get("John Doe")).doubleValue();

balance.put("John Doe", new Double(bal+1000));

System.out.println("John Doe's new balance: " +

balance.get("John Doe"));

}

}

The output from this program is shown here:

Todd Hall: 99.22
Ralph Smith: -19.08
John Doe: 3434.34
Jane Baker: 1378.0
Tom Smith: 123.22

John Doe’s new balance: 4434.34

One important point: like the map classes, Hashtable does not directly support
iterators. Thus, the preceding program uses an enumeration to display the contents
of balance. However, you can obtain set-views of the hash table, which permits the
use of iterators. To do so, you simply use one of the collection-view methods defined
by Map, such as entrySet() or keySet(). For example, you can obtain a set-view of the
keys and iterate through them. Here is a reworked version of the program that shows
this technique:

// Use iterators with a Hashtable.

import java.util.*;

class HTDemo2 {

public static void main(String args[]) {

Hashtable balance = new Hashtable();

String str;

double bal;

balance.put("John Doe", new Double(3434.34));

balance.put("Tom Smith", new Double(123.22));

balance.put("Jane Baker", new Double(1378.00));

balance.put("Todd Hall", new Double(99.22));

balance.put("Ralph Smith", new Double(-19.08));

// show all balances in hashtable

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 497
TH

E
JA

V
A

LIB
R

A
R

Y

Set set = balance.keySet(); // get set-view of keys

// get iterator

Iterator itr = set.iterator();

while(itr.hasNext()) {

str = (String) itr.next();

System.out.println(str + ": " +

balance.get(str));

}

System.out.println();

// Deposit 1,000 into John Doe's account

bal = ((Double)balance.get("John Doe")).doubleValue();

balance.put("John Doe", new Double(bal+1000));

System.out.println("John Doe's new balance: " +

balance.get("John Doe"));

}

}

Properties
Properties is a subclass of Hashtable. It is used to maintain lists of values in which the
key is a String and the value is also a String. The Properties class is used by many other
Java classes. For example, it is the type of object returned by System.getProperties()
when obtaining environmental values.

Properties defines the following instance variable:

Properties defaults;

This variable holds a default property list associated with a Properties object.
Properties defines these constructors:

Properties()
Properties(Properties propDefault)

The first version creates a Properties object that has no default values. The second
creates an object that uses propDefault for its default values. In both cases, the property
list is empty.

In addition to the methods that Properties inherits from Hashtable, Properties
defines the methods listed in Table 15-14. Properties also contains one deprecated
method: save(). This was replaced by store() because save() did not handle errors
correctly.

498 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

One useful capability of the Properties class is that you can specify a default
property that will be returned if no value is associated with a certain key. For example,
a default value can be specified along with the key in the getProperty() method—such
as getProperty(“name”, “default value”). If the “name” value is not found, then
“default value” is returned. When you construct a Properties object, you can pass

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 499
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

String getProperty(String key) Returns the value associated with
key. A null object is returned if key
is neither in the list nor in the
default property list.

String getProperty(String key,
String defaultProperty)

Returns the value associated with
key. defaultProperty is returned if key
is neither in the list nor in the
default property list.

void list(PrintStream streamOut) Sends the property list to the
output stream linked to streamOut.

void list(PrintWriter streamOut) Sends the property list to the
output stream linked to streamOut.

void load(InputStream streamIn)
throws IOException

Inputs a property list from the
input stream linked to streamIn.

Enumeration propertyNames() Returns an enumeration of the
keys. This includes those keys
found in the default property
list, too.

Object setProperty(String key, String value) Associates value with key. Returns
the previous value associated with
key, or returns null if no such
association exists. (Added by Java 2,
for consistency.)

void store(OutputStream streamOut,
String description)

After writing the string specified
by description, the property list is
written to the output stream linked
to streamOut. (Added by Java 2.)

Table 15-14. The Legacy Methods Defined by Properties

another instance of Properties to be used as the default properties for the new instance.
In this case, if you call getProperty(“foo”) on a given Properties object, and “foo” does
not exist, Java looks for “foo” in the default Properties object. This allows for arbitrary
nesting of levels of default properties.

The following example demonstrates Properties. It creates a property list in which
the keys are the names of states and the values are the names of their capitals. Notice
that the attempt to find the capital for Florida includes a default value.

// Demonstrate a Property list.

import java.util.*;

class PropDemo {

public static void main(String args[]) {

Properties capitals = new Properties();

Set states;

String str;

capitals.put("Illinois", "Springfield");

capitals.put("Missouri", "Jefferson City");

capitals.put("Washington", "Olympia");

capitals.put("California", "Sacramento");

capitals.put("Indiana", "Indianapolis");

// Show all states and capitals in hashtable.

states = capitals.keySet(); // get set-view of keys

Iterator itr = states.iterator();

while(itr.hasNext()) {

str = (String) itr.next();

System.out.println("The capital of " +

str + " is " +

capitals.getProperty(str)

+ ".");

}

System.out.println();

// look for state not in list -- specify default

str = capitals.getProperty("Florida", "Not Found");

System.out.println("The capital of Florida is "

+ str + ".");

}

}

500 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 501
TH

E
JA

V
A

LIB
R

A
R

Y

The output from this program is shown here:

The capital of Missouri is Jefferson City.
The capital of Illinois is Springfield.
The capital of Indiana is Indianapolis.
The capital of California is Sacramento.
The capital of Washington is Olympia.

The capital of Florida is Not Found.

Since Florida is not in the list, the default value is used.
Although it is perfectly valid to use a default value when you call getProperty(), as

the preceding example shows, there is a better way of handling default values for most
applications of property lists. For greater flexibility, specify a default property list
when constructing a Properties object. The default list will be searched if the desired
key is not found in the main list. For example, the following is a slightly reworked
version of the preceding program, with a default list of states specified. Now, when
Florida is sought, it will be found in the default list:

// Use a default property list.

import java.util.*;

class PropDemoDef {

public static void main(String args[]) {

Properties defList = new Properties();

defList.put("Florida", "Tallahassee");

defList.put("Wisconsin", "Madison");

Properties capitals = new Properties(defList);

Set states;

String str;

capitals.put("Illinois", "Springfield");

capitals.put("Missouri", "Jefferson City");

capitals.put("Washington", "Olympia");

capitals.put("California", "Sacramento");

capitals.put("Indiana", "Indianapolis");

// Show all states and capitals in hashtable.

states = capitals.keySet(); // get set-view of keys

Iterator itr = states.iterator();

while(itr.hasNext()) {

str = (String) itr.next();

System.out.println("The capital of " +

str + " is " +

capitals.getProperty(str)

+ ".");

}

System.out.println();

// Florida will now be found in the default list.

str = capitals.getProperty("Florida");

System.out.println("The capital of Florida is "

+ str + ".");

}

}

Using store() and load()
One of the most useful aspects of Properties is that the information contained in a
Properties object can be easily stored to or loaded from disk with the store() and
load() methods. At any time, you can write a Properties object to a stream or read
it back. This makes property lists especially convenient for implementing simple
databases. For example, the following program uses a property list to create a simple
computerized telephone book that stores names and phone numbers. To find a
person’s number, you enter his or her name. The program uses the store() and load()
methods to store and retrieve the list. When the program executes, it first tries to load
the list from a file called phonebook.dat. If this file exists, the list is loaded. You can
then add to the list. If you do, the new list is saved when you terminate the program.
Notice how little code is required to implement a small, but functional, computerized
phone book.

/* A simple telephone number database that uses

a property list. */

import java.io.*;

import java.util.*;

class Phonebook {

public static void main(String args[])

throws IOException

{

Properties ht = new Properties();

BufferedReader br =

502 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

new BufferedReader(new InputStreamReader(System.in));

String name, number;

FileInputStream fin = null;

boolean changed = false;

// Try to open phonebook.dat file.

try {

fin = new FileInputStream("phonebook.dat");

} catch(FileNotFoundException e) {

// ignore missing file

}

/* If phonebook file already exists,

load existing telephone numbers. */

try {

if(fin != null) {

ht.load(fin);

fin.close();

}

} catch(IOException e) {

System.out.println("Error reading file.");

}

// Let user enter new names and numbers.

do {

System.out.println("Enter new name" +

" ('quit' to stop): ");

name = br.readLine();

if(name.equals("quit")) continue;

System.out.println("Enter number: ");

number = br.readLine();

ht.put(name, number);

changed = true;

} while(!name.equals("quit"));

// If phone book data has changed, save it.

if(changed) {

FileOutputStream fout = new FileOutputStream("phonebook.dat");

ht.store(fout, "Telephone Book");

C h a p t e r 1 5 : j a v a . u t i l P a r t 1 : T h e C o l l e c t i o n s F r a m e w o r k 503
TH

E
JA

V
A

LIB
R

A
R

Y

fout.close();

}

// Look up numbers given a name.

do {

System.out.println("Enter name to find" +

" ('quit' to quit): ");

name = br.readLine();

if(name.equals("quit")) continue;

number = (String) ht.get(name);

System.out.println(number);

} while(!name.equals("quit"));

}

}

Collections Summary
The collections framework gives you, the programmer, a powerful set of well-engineered
solutions to some of programming’s most common tasks. Consider using a collection the
next time that you need to store and retrieve information. Remember, collections need
not be reserved for only the “large jobs,” such as corporate databases, mailing lists, or
inventory systems. They are also effective when applied to smaller jobs. For example, a
TreeMap would make an excellent collection to hold the directory structure of a set of
files. A TreeSet could be quite useful for storing project-management information.
Frankly, the types of problems that will benefit from a collections-based solution are
limited only by your imagination.

504 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 16
java.util Part 2: More
Utility Classes

505

This chapter continues our discussion of java.util by examining those classes and
interfaces that are not part of the collections framework. These include classes
that tokenize strings, work with dates, compute random numbers, and observe

events. Also, the java.util.zip and java.util.jar packages are briefly mentioned at the
end of this chapter.

StringTokenizer
The processing of text often consists of parsing a formatted input string. Parsing is the
division of text into a set of discrete parts, or tokens, which in a certain sequence can
convey a semantic meaning. The StringTokenizer class provides the first step in this
parsing process, often called the lexer (lexical analyzer) or scanner. StringTokenizer
implements the Enumeration interface. Therefore, given an input string, you can
enumerate the individual tokens contained in it using StringTokenizer.

To use StringTokenizer, you specify an input string and a string that contains
delimiters. Delimiters are characters that separate tokens. Each character in the delimiters
string is considered a valid delimiter—for example, “,;:” sets the delimiters to a comma,
semicolon, and colon. The default set of delimiters consists of the whitespace characters:
space, tab, newline, and carriage return.

The StringTokenizer constructors are shown here:

StringTokenizer(String str)
StringTokenizer(String str, String delimiters)
StringTokenizer(String str, String delimiters, boolean delimAsToken)

In all versions, str is the string that will be tokenized. In the first version, the default
delimiters are used. In the second and third versions, delimiters is a string that specifies
the delimiters. In the third version, if delimAsToken is true, then the delimiters are also
returned as tokens when the string is parsed. Otherwise, the delimiters are not returned.
Delimiters are not returned as tokens by the first two forms.

Once you have created a StringTokenizer object, the nextToken() method is used
to extract consecutive tokens. The hasMoreTokens() method returns true while there
are more tokens to be extracted. Since StringTokenizer implements Enumeration, the
hasMoreElements() and nextElement() methods are also implemented, and they act
the same as hasMoreTokens() and nextToken(), respectively. The StringTokenizer
methods are shown in Table 16-1.

Here is an example that creates a StringTokenizer to parse “key=value” pairs.
Consecutive sets of “key=value” pairs are separated by a semicolon.

// Demonstrate StringTokenizer.

import java.util.StringTokenizer;

506 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 507
TH

E
JA

V
A

LIB
R

A
R

Y

class STDemo {

static String in = "title=Java: The Complete Reference;" +

"author=Schildt;" +

"publisher=Osborne/McGraw-Hill;" +

"copyright=2002";

public static void main(String args[]) {

StringTokenizer st = new StringTokenizer(in, "=;");

while(st.hasMoreTokens()) {

String key = st.nextToken();

String val = st.nextToken();

System.out.println(key + "\t" + val);

}

}

}

Method Description

int countTokens() Using the current set of delimiters, the
method determines the number of tokens left
to be parsed and returns the result.

boolean hasMoreElements() Returns true if one or more tokens remain in
the string and returns false if there are none.

boolean hasMoreTokens() Returns true if one or more tokens remain in
the string and returns false if there are none.

Object nextElement() Returns the next token as an Object.

String nextToken() Returns the next token as a String.

String nextToken(String delimiters) Returns the next token as a String and
sets the delimiters string to that specified
by delimiters.

Table 16-1. The Methods Defined by StringTokenizer

The output from this program is shown here:

title Java: The Complete Reference
author Schildt
publisher Osborne/McGraw-Hill
copyright 2002

BitSet
A BitSet class creates a special type of array that holds bit values. This array can
increase in size as needed. This makes it similar to a vector of bits. The BitSet
constructors are shown here:

BitSet()
BitSet(int size)

The first version creates a default object. The second version allows you to specify its
initial size (that is, the number of bits that it can hold). All bits are initialized to zero.

BitSet implements the Cloneable interface and defines the methods listed in
Table 16-2. Notice that several were added by Java 2, version 1.4.

508 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void and(BitSet bitSet) ANDs the contents of the invoking BitSet
object with those specified by bitSet. The result
is placed into the invoking object.

void andNot(BitSet bitSet) For each 1 bit in bitSet, the corresponding bit in
the invoking BitSet is cleared. (Added by Java 2)

int cardinality() Returns the number of set bits in the invoking
object. (Added by Java 2, version 1.4)

void clear() Zeros all bits. (Added by Java 2, version 1.4)

void clear(int index) Zeros the bit specified by index.

void clear(int startIndex,
int endIndex)

Zeros the bits from startIndex to endIndex–1.
(Added by Java 2, version 1.4)

Object clone() Duplicates the invoking BitSet object.

boolean equals(Object bitSet) Returns true if the invoking bit set is
equivalent to the one passed in bitSet.
Otherwise, the method returns false.

Table 16-2. The Methods Defined by BitSet

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 509
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void flip(int index) Reverses the bit specified by index. (Added by
Java 2, version 1.4)

void flip(int startIndex,
int endIndex)

Reverses the bits from startIndex to endIndex–1.
(Added by Java 2, version 1.4)

boolean get(int index) Returns the current state of the bit at the
specified index.

BitSet get(int startIndex,
int endIndex)

Returns a BitSet that consists of the bits from
startIndex to endIndex–1. The invoking object is
not changed. (Added by Java 2, version 1.4)

int hashCode() Returns the hash code for the invoking object.

boolean intersects(BitSet bitSet) Returns true if at least one pair of corresponding
bits within the invoking object and bitSet are 1.
(Added by Java 2, version 1.4)

boolean isEmpty() Returns true if all bits in the invoking object
are zero. (Added by Java 2, version 1.4)

int length() Returns the number of bits required to hold
the contents of the invoking BitSet. This value
is determined by the location of the last 1 bit.
(Added by Java 2)

int nextClearBit(int startIndex) Returns the index of the next cleared bit, (that
is, the next zero bit), starting from the index
specified by startIndex. (Added by Java 2,
version 1.4)

int nextSetBit(int startIndex) Returns the index of the next set bit (that is, the
next 1 bit), starting from the index specified by
startIndex. If no bit is set, –1 is returned. (Added
by Java 2, version 1.4)

void or(BitSet bitSet) ORs the contents of the invoking BitSet object
with that specified by bitSet. The result is
placed into the invoking object.

void set(int index) Sets the bit specified by index.

Table 16-2. The Methods Defined by BitSet (continued)

Here is an example that demonstrates BitSet:

// BitSet Demonstration.

import java.util.BitSet;

class BitSetDemo {

public static void main(String args[]) {

BitSet bits1 = new BitSet(16);

BitSet bits2 = new BitSet(16);

// set some bits

for(int i=0; i<16; i++) {

if((i%2) == 0) bits1.set(i);

if((i%5) != 0) bits2.set(i);

}

510 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void set(int index, boolean v) Sets the bit specified by index to the value
passed in v. true sets the bit, false clears the
bit. (Added by Java 2, version 1.4)

void set(int startIndex,
int endIndex)

Sets the bits from startIndex to endIndex–1.
(Added by Java 2, version 1.4)

void set(int startIndex,
int endIndex, boolean v)

Sets the bits from startIndex to endIndex–1, to
the value passed in v. true sets the bits, false
clears the bits. (Added by Java 2, version 1.4)

int size() Returns the number of bits in the invoking
BitSet object.

String toString() Returns the string equivalent of the invoking
BitSet object.

void xor(BitSet bitSet) XORs the contents of the invoking BitSet
object with that specified by bitSet. The result
is placed into the invoking object.

Table 16-2. The Methods Defined by BitSet (continued)

System.out.println("Initial pattern in bits1: ");

System.out.println(bits1);

System.out.println("\nInitial pattern in bits2: ");

System.out.println(bits2);

// AND bits

bits2.and(bits1);

System.out.println("\nbits2 AND bits1: ");

System.out.println(bits2);

// OR bits

bits2.or(bits1);

System.out.println("\nbits2 OR bits1: ");

System.out.println(bits2);

// XOR bits

bits2.xor(bits1);

System.out.println("\nbits2 XOR bits1: ");

System.out.println(bits2);

}

}

The output from this program is shown here. When toString() converts a BitSet object
to its string equivalent, each set bit is represented by its bit position. Cleared bits are
not shown.

Initial pattern in bits1:
{0, 2, 4, 6, 8, 10, 12, 14}

Initial pattern in bits2:
{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}

bits2 AND bits1:
{2, 4, 6, 8, 12, 14}

bits2 OR bits1:
{0, 2, 4, 6, 8, 10, 12, 14}

bits2 XOR bits1:
{}

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 511
TH

E
JA

V
A

LIB
R

A
R

Y

512 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Date
The Date class encapsulates the current date and time. Before beginning our
examination of Date, it is important to point out that it has changed substantially from
its original version defined by Java 1.0. When Java 1.1 was released, many of the
functions carried out by the original Date class were moved into the Calendar and
DateFormat classes, and as a result, many of the original 1.0 Date methods were
deprecated. Java 2 added a few new methods to the time and date classes, but
otherwise implemented them in the same form as did 1.1. Since the deprecated 1.0
methods should not be used for new code, they are not described here.

Date supports the following constructors:

Date()
Date(long millisec)

The first constructor initializes the object with the current date and time. The second
constructor accepts one argument that equals the number of milliseconds that have
elapsed since midnight, January 1, 1970. The nondeprecated methods defined by Date
are shown in Table 16-3. With the advent of Java 2, Date also implements the
Comparable interface.

Method Description

boolean after(Date date) Returns true if the invoking Date object contains a
date that is later than the one specified by date.
Otherwise, it returns false.

boolean before(Date date) Returns true if the invoking Date object contains a
date that is earlier than the one specified by date.
Otherwise, it returns false.

Object clone() Duplicates the invoking Date object.

int compareTo(Date date) Compares the value of the invoking object with
that of date. Returns 0 if the values are equal.
Returns a negative value if the invoking object is
earlier than date. Returns a positive value if the
invoking object is later than date. (Added by Java 2)

int compareTo(Object obj) Operates identically to compareTo(Date) if obj is of
class Date. Otherwise, it throws a
ClassCastException. (Added by Java 2)

Table 16-3. The Nondeprecated Methods Defined by Date

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 513
TH

E
JA

V
A

LIB
R

A
R

Y

As you can see by examining Table 16-3, the Date features do not allow you to
obtain the individual components of the date or time. As the following program
demonstrates, you can only obtain the date and time in terms of milliseconds or in its
default string representation as returned by toString(). To obtain more-detailed
information about the date and time, you will use the Calendar class.

// Show date and time using only Date methods.

import java.util.Date;

class DateDemo {

public static void main(String args[]) {

// Instantiate a Date object

Date date = new Date();

// display time and date using toString()

System.out.println(date);

// Display number of milliseconds since midnight, January 1, 1970 GMT

Method Description

boolean equals(Object date) Returns true if the invoking Date object contains
the same time and date as the one specified by date.
Otherwise, it returns false.

long getTime() Returns the number of milliseconds that have
elapsed since January 1, 1970.

int hashCode() Returns a hash code for the invoking object.

void setTime(long time) Sets the time and date as specified by time, which
represents an elapsed time in milliseconds from
midnight, January 1, 1970.

String toString() Converts the invoking Date object into a string and
returns the result.

Table 16-3. The Nondeprecated Methods Defined by Date (continued)

long msec = date.getTime();

System.out.println("Milliseconds since Jan. 1, 1970 GMT = " + msec);

}

}

Sample output is shown here:

Mon Apr 22 09:51:52 CDT 2002
Milliseconds since Jan. 1, 1970 GMT = 1019487112894

Date Comparison
There are three ways to compare two Date objects. First, you can use getTime() to
obtain the number of milliseconds that have elapsed since midnight, January 1, 1970,
for both objects and then compare these two values. Second, you can use the methods
before(), after(), and equals(). Because the 12th of the month comes before the 18th,
for example, new Date(99, 2, 12).before(new Date (99, 2, 18)) returns true. Finally, you
can use the compareTo() method, which is defined by the Comparable interface and
implemented by Date.

Calendar
The abstract Calendar class provides a set of methods that allows you to convert a time
in milliseconds to a number of useful components. Some examples of the type of
information that can be provided are: year, month, day, hour, minute, and second. It is
intended that subclasses of Calendar will provide the specific functionality to interpret
time information according to their own rules. This is one aspect of the Java class
library that enables you to write programs that can operate in several international
environments. An example of such a subclass is GregorianCalendar.

Calendar provides no public constructors.
Calendar defines several protected instance variables. areFieldsSet is a boolean

that indicates if the time components have been set. fields is an array of ints that holds
the components of the time. isSet is a boolean array that indicates if a specific time
component has been set. time is a long that holds the current time for this object.
isTimeSet is a boolean that indicates if the current time has been set.

Some commonly used methods defined by Calendar are shown in Table 16-4.

514 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Calendar defines the following int constants, which are used when you get or set
components of the calendar:

AM FRIDAY PM

AM_PM HOUR SATURDAY

APRIL HOUR_OF_DAY SECOND

AUGUST JANUARY SEPTEMBER

DATE JULY SUNDAY

DAY_OF_MONTH JUNE THURSDAY

DAY_OF_WEEK MARCH TUESDAY

DAY_OF_WEEK_IN_MONTH MAY UNDECIMBER

DAY_OF_YEAR MILLISECOND WEDNESDAY

DECEMBER MINUTE WEEK_OF_MONTH

DST_OFFSET MONDAY WEEK_OF_YEAR

ERA MONTH YEAR

FEBRUARY NOVEMBER ZONE_OFFSET

FIELD_COUNT OCTOBER

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 515
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

abstract void add(int which, int val) Adds val to the time or date
component specified by which. To
subtract, add a negative value. which
must be one of the fields defined by
Calendar, such as Calendar.HOUR.

boolean after(Object calendarObj) Returns true if the invoking Calendar
object contains a date that is later
than the one specified by calendarObj.
Otherwise, it returns false.

boolean before(Object calendarObj) Returns true if the invoking Calendar
object contains a date that is earlier
than the one specified by calendarObj.
Otherwise, it returns false.

Table 16-4. Commonly Used Methods Defined by Calendar

516 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

final void clear() Zeros all time components in the
invoking object.

final void clear(int which) Zeros the time component specified
by which in the invoking object.

Object clone() Returns a duplicate of the invoking
object.

boolean equals(Object calendarObj) Returns true if the invoking Calendar
object contains a date that is equal to
the one specified by calendarObj.
Otherwise, it returns false.

int get(int calendarField) Returns the value of one component
of the invoking object. The
component is indicated by
calendarField. Examples of the
components that can be requested are
Calendar.YEAR, Calendar.MONTH,
Calendar.MINUTE, and so forth.

static Locale[] getAvailableLocales() Returns an array of Locale objects
that contains the locales for which
calendars are available.

static Calendar getInstance() Returns a Calendar object for the
default locale and time zone.

static Calendar getInstance(TimeZone tz) Returns a Calendar object for the
time zone specified by tz. The default
locale is used.

static Calendar getInstance(Locale locale) Returns a Calendar object for the
locale specified by locale. The default
time zone is used.

static Calendar getInstance(TimeZone tz,
Locale locale)

Returns a Calendar object for the
time zone specified by tz and the
locale specified by locale.

final Date getTime() Returns a Date object equivalent to
the time of the invoking object.

Table 16-4. Commonly Used Methods Defined by Calendar (continued)

The following program demonstrates several Calendar methods:

// Demonstrate Calendar

import java.util.Calendar;

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 517
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

TimeZone getTimeZone() Returns the time zone for the
invoking object.

final boolean isSet(int which) Returns true if the specified time
component is set. Otherwise, it
returns false.

void set(int which, int val) Sets the date or time component
specified by which to the value
specified by val in the invoking object.
which must be one of the fields
defined by Calendar, such as
Calendar.HOUR.

final void set(int year, int month,
int dayOfMonth)

Sets various date and time
components of the invoking object.

final void set(int year, int month,
int dayOfMonth, int hours,
int minutes)

Sets various date and time
components of the invoking object.

final void set(int year, int month,
int dayOfMonth, int hours,
int minutes, int seconds)

Sets various date and time
components of the invoking object.

final void setTime(Date d) Sets various date and time
components of the invoking object.
This information is obtained from the
Date object d.

void setTimeZone(TimeZone tz) Sets the time zone for the invoking
object to that specified by tz.

Table 16-4. Commonly Used Methods Defined by Calendar (continued)

class CalendarDemo {

public static void main(String args[]) {

String months[] = {

"Jan", "Feb", "Mar", "Apr",

"May", "Jun", "Jul", "Aug",

"Sep", "Oct", "Nov", "Dec"};

// Create a calendar initialized with the

// current date and time in the default

// locale and timezone.

Calendar calendar = Calendar.getInstance();

// Display current time and date information.

System.out.print("Date: ");

System.out.print(months[calendar.get(Calendar.MONTH)]);

System.out.print(" " + calendar.get(Calendar.DATE) + " ");

System.out.println(calendar.get(Calendar.YEAR));

System.out.print("Time: ");

System.out.print(calendar.get(Calendar.HOUR) + ":");

System.out.print(calendar.get(Calendar.MINUTE) + ":");

System.out.println(calendar.get(Calendar.SECOND));

// Set the time and date information and display it.

calendar.set(Calendar.HOUR, 10);

calendar.set(Calendar.MINUTE, 29);

calendar.set(Calendar.SECOND, 22);

System.out.print("Updated time: ");

System.out.print(calendar.get(Calendar.HOUR) + ":");

System.out.print(calendar.get(Calendar.MINUTE) + ":");

System.out.println(calendar.get(Calendar.SECOND));

}

}

Sample output is shown here:

Date: Apr 22 2002
Time: 11:24:25
Updated time: 10:29:22

518 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

GregorianCalendar
GregorianCalendar is a concrete implementation of a Calendar that implements the
normal Gregorian calendar with which you are familiar. The getInstance() method of
Calendar returns a GregorianCalendar initialized with the current date and time in the
default locale and time zone.

GregorianCalendar defines two fields: AD and BC. These represent the two eras
defined by the Gregorian calendar.

There are also several constructors for GregorianCalendar objects. The default,
GregorianCalendar(), initializes the object with the current date and time in the
default locale and time zone. Three more constructors offer increasing levels of
specificity:

GregorianCalendar(int year, int month, int dayOfMonth)
GregorianCalendar(int year, int month, int dayOfMonth, int hours,

int minutes)
GregorianCalendar(int year, int month, int dayOfMonth, int hours,

int minutes, int seconds)

All three versions set the day, month, and year. Here, year specifies the number of years
that have elapsed since 1900. The month is specified by month, with zero indicating
January. The day of the month is specified by dayOfMonth. The first version sets the
time to midnight. The second version also sets the hours and the minutes. The third
version adds seconds.

You can also construct a GregorianCalendar object by specifying either the locale
and/or time zone. The following constructors create objects initialized with the current
date and time using the specified time zone and/or locale:

GregorianCalendar(Locale locale)
GregorianCalendar(TimeZone timeZone)
GregorianCalendar(TimeZone timeZone, Locale locale)

GregorianCalendar provides an implementation of all the abstract methods in
Calendar. It also provides some additional methods. Perhaps the most interesting is
isLeapYear(), which tests if the year is a leap year. Its form is

boolean isLeapYear(int year)

This method returns true if year is a leap year and false otherwise.
The following program demonstrates GregorianCalendar:

// Demonstrate GregorianCalendar

import java.util.*;

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 519
TH

E
JA

V
A

LIB
R

A
R

Y

class GregorianCalendarDemo {

public static void main(String args[]) {

String months[] = {

"Jan", "Feb", "Mar", "Apr",

"May", "Jun", "Jul", "Aug",

"Sep", "Oct", "Nov", "Dec"};

int year;

// Create a Gregorian calendar initialized

// with the current date and time in the

// default locale and timezone.

GregorianCalendar gcalendar = new GregorianCalendar();

// Display current time and date information.

System.out.print("Date: ");

System.out.print(months[gcalendar.get(Calendar.MONTH)]);

System.out.print(" " + gcalendar.get(Calendar.DATE) + " ");

System.out.println(year = gcalendar.get(Calendar.YEAR));

System.out.print("Time: ");

System.out.print(gcalendar.get(Calendar.HOUR) + ":");

System.out.print(gcalendar.get(Calendar.MINUTE) + ":");

System.out.println(gcalendar.get(Calendar.SECOND));

// Test if the current year is a leap year

if(gcalendar.isLeapYear(year)) {

System.out.println("The current year is a leap year");

}

else {

System.out.println("The current year is not a leap year");

}

}

}

Sample output is shown here:

Date: Apr 22 2002
Time: 11:25:27
The current year is not a leap year

520 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TimeZone
Another time-related class is TimeZone. The TimeZone class allows you to work with
time zone offsets from Greenwich mean time (GMT), also referred to as Coordinated
Universal Time (UTC). It also computes daylight saving time. TimeZone only supplies
the default constructor.

Some methods defined by TimeZone are summarized in Table 16-5.

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 521
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

Object clone() Returns a TimeZone-specific
version of clone().

static String[] getAvailableIDs() Returns an array of String
objects representing the names
of all time zones.

static String[] getAvailableIDs(int timeDelta) Returns an array of String objects
representing the names of all time
zones that are timeDelta offset
from GMT.

static TimeZone getDefault() Returns a TimeZone object that
represents the default time zone
used on the host computer.

String getID() Returns the name of the invoking
TimeZone object.

abstract int getOffset(int era, int year,
int month,
int dayOfMonth,
int dayOfWeek,
int millisec)

Returns the offset that should be
added to GMT to compute local
time. This value is adjusted for
daylight saving time. The
parameters to the method
represent date and time
components.

abstract int getRawOffset() Returns the raw offset that should
be added to GMT to compute local
time. This value is not adjusted for
daylight saving time.

Table 16-5. Some of the Methods Defined by TimeZone

SimpleTimeZone
The SimpleTimeZone class is a convenient subclass of TimeZone. It implements
TimeZone’s abstract methods and allows you to work with time zones for a Gregorian
calendar. It also computes daylight saving time.

SimpleTimeZone defines four constructors. One is

SimpleTimeZone(int timeDelta, String tzName)

This constructor creates a SimpleTimeZone object. The offset relative to Greenwich
mean time (GMT) is timeDelta. The time zone is named tzName.

The second SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
int dstDayInMonth0, int dstDay0, int time0,
int dstMonth1, int dstDayInMonth1, int dstDay1,
int time1)

522 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static TimeZone getTimeZone(String tzName) Returns the TimeZone object for
the time zone named tzName.

abstract boolean inDaylightTime(Date d) Returns true if the date
represented by d is in daylight
saving time in the invoking
object. Otherwise, it returns false.

static void setDefault(TimeZone tz) Sets the default time zone to be
used on this host. tz is a reference
to the TimeZone object to be used.

void setID(String tzName) Sets the name of the time zone
(that is, its ID) to that specified
by tzName.

abstract void setRawOffset(int millis) Sets the offset in milliseconds
from GMT.

abstract boolean useDaylightTime() Returns true if the invoking
object uses daylight saving time.
Otherwise, it returns false.

Table 16-5. Some of the Methods Defined by TimeZone (continued)

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 523
TH

E
JA

V
A

LIB
R

A
R

Y

Here, the offset relative to GMT is specified in timeDelta. The time zone name is passed
in tzId. The start of daylight saving time is indicated by the parameters dstMonth0,
dstDayInMonth0, dstDay0, and time0. The end of daylight saving time is indicated by
the parameters dstMonth1, dstDayInMonth1, dstDay1, and time1.

The third SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
int dstDayInMonth0, int dstDay0, int time0,
int dstMonth1, int dstDayInMonth1, int dstDay1,
int time1, int dstDelta)

Here, dstDelta is the number of milliseconds saved during daylight saving time.
The fourth SimpleTimeZone constructor is:

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
int dstDayInMonth0, int dstDay0, int time0,
int time0mode, int dstMonth1, int dstDayInMonth1,
int dstDay1, int time1, int time1mode, int dstDelta)

Here, time0mode specifies the mode of the starting time, and time1mode specifies the
mode of the ending time. Valid mode values include

STANDARD_TIME WALL_TIME UTC_TIME

The time mode indicates how the time values are interpreted. The default mode used
by the other constructors is WALL_TIME. This constructor and the mode values were
added by Java 2, version 1.4.

Locale
The Locale class is instantiated to produce objects that each describe a geographical or
cultural region. It is one of several classes that provide you with the ability to write
programs that can execute in several different international environments. For example,
the formats used to display dates, times, and numbers are different in various regions.

Internationalization is a large topic that is beyond the scope of this book.
However, most programs will only need to deal with its basics, which include
setting the current locale.

The Locale class defines the following constants that are useful for dealing with
the most common locales:

CANADA GERMAN KOREAN

CANADA_FRENCH GERMANY PRC

CHINA ITALIAN SIMPLIFIED_CHINESE

CHINESE ITALY TAIWAN

ENGLISH JAPAN TRADITIONAL_CHINESE

FRANCE JAPANESE UK

FRENCH KOREA US

For example, the expression Locale.CANADA represents the Locale object for Canada.
The constructors for Locale are

Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String data)

These constructors build a Locale object to represent a specific language and in the
case of the last two, country. These values must contain ISO-standard language and
country codes. Auxiliary browser and vendor-specific information can be provided in
data. The first constructor was added by Java 2, version 1.4.

Locale defines several methods. One of the most important is setDefault(),
shown here:

static void setDefault(Locale localeObj)

This sets the default locale to that specified by localeObj.
Some other interesting methods are the following:

final String getDisplayCountry()
final String getDisplayLanguage()
final String getDisplayName()

These return human-readable strings that can be used to display the name of the
country, the name of the language, and the complete description of the locale.

The default locale can be obtained using getDefault(), shown here:

static Locale getDefault()

Calendar and GregorianCalendar are examples of classes that operate in a locale-
sensitive manner. DateFormat and SimpleDateFormat also depend on the locale.

Random
The Random class is a generator of pseudorandom numbers. These are called
pseudorandom numbers because they are simply uniformly distributed sequences.
Random defines the following constructors:

Random()
Random(long seed)

The first version creates a number generator that uses the current time as the starting,
or seed, value. The second form allows you to specify a seed value manually.

If you initialize a Random object with a seed, you define the starting point for the
random sequence. If you use the same seed to initialize another Random object, you will

524 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 525
TH

E
JA

V
A

LIB
R

A
R

Y

extract the same random sequence. If you want to generate different sequences, specify
different seed values. The easiest way to do this is to use the current time to seed a
Random object. This approach reduces the possibility of getting repeated sequences.

The public methods defined by Random are shown in Table 16-6.
As you can see, there are seven types of random numbers that you can extract

from a Random object. Random Boolean values are available from nextBoolean().
Random bytes can be obtained by calling nextBytes(). Integers can be extracted via
the nextInt() method. Long integers, uniformly distributed over their range, can be
obtained with nextLong(). The nextFloat() and nextDouble() methods return a
uniformly distributed float and double, respectively, between 0.0 and 1.0. Finally,
nextGaussian() returns a double value centered at 0.0 with a standard deviation of 1.0.
This is what is known as a bell curve.

Here is an example that demonstrates the sequence produced by nextGaussian().
It obtains 100 random Gaussian values and averages these values. The program also
counts the number of values that fall within two standard deviations, plus or minus,
using increments of 0.5 for each category. The result is graphically displayed sideways
on the screen.

Method Description

boolean nextBoolean() Returns the next boolean random number.
(Added by Java 2)

void nextBytes(byte vals[]) Fills vals with randomly generated values.

double nextDouble() Returns the next double random number.

float nextFloat() Returns the next float random number.

double nextGaussian() Returns the next Gaussian random number.

int nextInt() Returns the next int random number.

int nextInt(int n) Returns the next int random number within
the range zero to n. (Added by Java 2)

long nextLong() Returns the next long random number.

void setSeed(long newSeed) Sets the seed value (that is, the starting
point for the random number generator) to
that specified by newSeed.

Table 16-6. The Methods Defined by Random

// Demonstrate random Gaussian values.

import java.util.Random;

class RandDemo {

public static void main(String args[]) {

Random r = new Random();

double val;

double sum = 0;

int bell[] = new int[10];

for(int i=0; i<100; i++) {

val = r.nextGaussian();

sum += val;

double t = -2;

for(int x=0; x<10; x++, t += 0.5)

if(val < t) {

bell[x]++;

break;

}

}

System.out.println("Average of values: " +

(sum/100));

// display bell curve, sideways

for(int i=0; i<10; i++) {

for(int x=bell[i]; x>0; x--)

System.out.print("*");

System.out.println();

}

}

}

Here is a sample program run. As you can see, a bell-like distribution of numbers
is obtained.

Average of values: 0.0702235271133344
**

526 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 527
TH

E
JA

V
A

LIB
R

A
R

Y

Observable
The Observable class is used to create subclasses that other parts of your program can
observe. When an object of such a subclass undergoes a change, observing classes are
notified. Observing classes must implement the Observer interface, which defines the
update() method. The update() method is called when an observer is notified of a
change in an observed object.

Observable defines the methods shown in Table 16-7. An object that is being
observed must follow two simple rules. First, if it has changed, it must call
setChanged(). Second, when it is ready to notify observers of this change, it must call
notifyObservers(). This causes the update() method in the observing object(s) to be
called. Be careful—if the object calls notifyObservers() without having previously
called setChanged(), no action will take place. The observed object must call both
setChanged() and notifyObservers() before update() will be called.

Method Description

void addObserver(Observer obj) Add obj to the list of objects observing the
invoking object.

protected void clearChanged() Calling this method returns the status of the
invoking object to “unchanged.”

int countObservers() Returns the number of objects observing the
invoking object.

void deleteObserver(Observer obj) Removes obj from the list of objects
observing the invoking object.

void deleteObservers() Removes all observers for the invoking object.

boolean hasChanged() Returns true if the invoking object has been
modified and false if it has not.

void notifyObservers() Notifies all observers of the invoking object
that it has changed by calling update(). A
null is passed as the second argument to
update().

void notifyObservers(Object obj) Notifies all observers of the invoking object
that it has changed by calling update(). obj
is passed as an argument to update().

protected void setChanged() Called when the invoking object has changed.

Table 16-7. The Methods Defined by Observable

528 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Notice that notifyObservers() has two forms: one that takes an argument and
one that does not. If you call notifyObservers() with an argument, this object is
passed to the observer’s update() method as its second parameter. Otherwise, null
is passed to update(). You can use the second parameter for passing any type of
object that is appropriate for your application.

The Observer Interface
To observe an observable object, you must implement the Observer interface.
This interface defines only the one method shown here:

void update(Observable observOb, Object arg)

Here, observOb is the object being observed, and arg is the value passed by
notifyObservers(). The update() method is called when a change in the
observed object takes place.

An Observer Example
Here is an example that demonstrates an observable object. It creates an observer class,
called Watcher, that implements the Observer interface. The class being monitored is
called BeingWatched. It extends Observable. Inside BeingWatched is the method
counter(), which simply counts down from a specified value. It uses sleep() to wait a
tenth of a second between counts. Each time the count changes, notifyObservers() is
called with the current count passed as its argument. This causes the update() method
inside Watcher to be called, which displays the current count. Inside main(), a
Watcher and a BeingWatched object, called observing and observed, respectively, are
created. Then, observing is added to the list of observers for observed. This means that
observing.update() will be called each time counter() calls notifyObservers().

/* Demonstrate the Observable class and the

Observer interface.

*/

import java.util.*;

// This is the observing class.

class Watcher implements Observer {

public void update(Observable obj, Object arg) {

System.out.println("update() called, count is " +

((Integer)arg).intValue());

}

}

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 529
TH

E
JA

V
A

LIB
R

A
R

Y

/ This is the class being observed.

class BeingWatched extends Observable {

void counter(int period) {

for(; period >=0; period--) {

setChanged();

notifyObservers(new Integer(period));

try {

Thread.sleep(100);

} catch(InterruptedException e) {

System.out.println("Sleep interrupted");

}

}

}

}

class ObserverDemo {

public static void main(String args[]) {

BeingWatched observed = new BeingWatched();

Watcher observing = new Watcher();

/* Add the observing to the list of observers for

observed object. */

observed.addObserver(observing);

observed.counter(10);

}

}

The output from this program is shown here:

update() called, count is 10
update() called, count is 9
update() called, count is 8
update() called, count is 7
update() called, count is 6
update() called, count is 5
update() called, count is 4
update() called, count is 3
update() called, count is 2
update() called, count is 1
update() called, count is 0

More than one object can be an observer. For example, the following program
implements two observing classes and adds an object of each class to the
BeingWatched observer list. The second observer waits until the count reaches
zero and then rings the bell.

/* An object may be observed by two or more

observers.

*/

import java.util.*;

// This is the first observing class.

class Watcher1 implements Observer {

public void update(Observable obj, Object arg) {

System.out.println("update() called, count is " +

((Integer)arg).intValue());

}

}

// This is the second observing class.

class Watcher2 implements Observer {

public void update(Observable obj, Object arg) {

// Ring bell when done

if(((Integer)arg).intValue() == 0)

System.out.println("Done" + '\7');

}

}

// This is the class being observed.

class BeingWatched extends Observable {

void counter(int period) {

for(; period >=0; period--) {

setChanged();

notifyObservers(new Integer(period));

try {

Thread.sleep(100);

} catch(InterruptedException e) {

System.out.println("Sleep interrupted");

}

}

}

}

530 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class TwoObservers {

public static void main(String args[]) {

BeingWatched observed = new BeingWatched();

Watcher1 observing1 = new Watcher1();

Watcher2 observing2 = new Watcher2();

// add both observers

observed.addObserver(observing1);

observed.addObserver(observing2);

observed.counter(10);

}

}

The Observable class and the Observer interface allow you to implement
sophisticated program architectures based on the document/view methodology. They
are also useful in multithreaded situations.

Timer and TimerTask
Java 2, version 1.3 added an interesting and useful feature to java.util: the ability to
schedule a task for execution at some future time. The classes that support this are
Timer and TimerTask. Using these classes you can create a thread that runs in the
background, waiting for a specific time. When the time arrives, the task linked to
that thread is executed. Various options allow you to schedule a task for repeated
execution, and to schedule a task to run on a specific date. Although it was always
possible to manually create a task that would be executed at a specific time using
the Thread class, Timer and TimerTask greatly simplify this process.

Timer and TimerTask work together. Timer is the class that you will use to
schedule a task for execution. The task being scheduled must be an instance of
TimerTask. Thus, to schedule a task, you will first create a TimerTask object and
then schedule it for execution using an instance of Timer.

TimerTask implements the Runnable interface; thus it can be used to create a
thread of execution. Its constructor is shown here:

TimerTask()

TimerTask defines the methods shown in Table 16-8. Notice that run() is abstract,
which means that it must be overridden. The run() method, defined by the Runnable
interface, contains the code that will be executed. Thus, the easiest way to create a timer
task is to extend TimerTask and override run().

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 531

Once a task has been created, it is scheduled for execution by an object of type
Timer. The constructors for Timer are shown here.

Timer()

Timer(boolean DThread)

The first version creates a Timer object that runs as a normal thread. The second
uses a daemon thread if DThread is true. A daemon thread will execute only as long as
the rest of the program continues to execute. The methods defined by Timer are shown
in Table 16-9.

532 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

boolean cancel() Terminates the task. It returns true if
an execution of the task is prevented.
Otherwise, false is returned.

abstract void run() Contains the code for the timer task.

long scheduledExecutionTime() Returns the time at which the last
execution of the task was scheduled to
have occurred.

Table 16-8. The Methods Defined by TimerTask

Method Description

void cancel() Cancels the timer thread.

void schedule(TimerTask TTask,
long wait)

TTask is scheduled for execution after
the period passed in wait has elapsed.
The wait parameter is specified in
milliseconds.

void schedule(TimerTask TTask,
long wait, long repeat)

TTask is scheduled for execution after
the period passed in wait has elapsed.
The task is then executed repeatedly at
the interval specified by repeat. Both
wait and repeat are specified in
milliseconds.

Table 16-9. The Methods Defined by Timer

Once a Timer has been created, you will schedule a task by calling schedule()
on the Timer that you created. As Table 16-9 shows, there are several forms of
schedule() which allow you to schedule tasks in a variety of ways.

If you create a non-daemon task, then you will want to call cancel() to end the task
when your program ends. If you don’t do this, then your program may “hang” for a
period of time.

The following program demonstrates Timer and TimerTask. It defines a timer
task whose run() method displays the message “Timer task executed.” This task is
scheduled to run once very half second after an intial delay of one second.

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 533
TH

E
JA

V
A

LIB
R

A
R

Y

void schedule(TimerTask TTask,
Date targetTime)

TTask is scheduled for execution at the
time specified by targetTime.

void schedule(TimerTask TTask,
Date targetTime,
long repeat)

TTask is scheduled for execution at the
time specified by targetTime. The task is
then executed repeatedly at the interval
passed in repeat. The repeat parameter is
specified in milliseconds.

void scheduleAtFixedRate(
TimerTask TTask,
long wait, long repeat)

TTask is scheduled for execution after
the period passed in wait has elapsed.
The task is then executed repeatedly at
the interval specified by repeat. Both wait
and repeat are specified in milliseconds.
The time of each repetition is relative to
the first execution, not the preceding
execution. Thus, the overall rate of
execution is fixed.

void scheduleAtFixedRate(
TimerTask TTask,
Date targetTime,
long repeat)

TTask is scheduled for execution at the
time specified by targetTime. The task is
then executed repeatedly at the interval
passed in repeat. The repeat parameter is
specified in milliseconds. The time of
each repetition is relative to the first
execution, not the preceding execution.
Thus, the overall rate of execution
is fixed.

Table 16-9. The Methods Defined by Timer (continued)

// Demonstrate Timer and TimerTask.

import java.util.*;

class MyTimerTask extends TimerTask {

public void run() {

System.out.println("Timer task executed.");

}

}

class TTest {

public static void main(String args[]) {

MyTimerTask myTask = new MyTimerTask();

Timer myTimer = new Timer();

/* Set an initial delay of 1 second,

then repeat every half second.

*/

myTimer.schedule(myTask, 1000, 500);

try {

Thread.sleep(5000);

} catch (InterruptedException exc) {}

myTimer.cancel();

}

}

Currency
Java 2, version 1.4 adds the Currency class. This class encapsulates information about a
currency. It defines no constructors. The methods supported by Currency are shown in
Table 16-10. The following program demonstrates Currency.

// Demonstrate Currency.

import java.util.*;

class CurDemo {

public static void main(String args[]) {

Currency c;

534 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

c = Currency.getInstance(Locale.US);

System.out.println("Symbol: " + c.getSymbol());

System.out.println("Default fractional digits: " +

c.getDefaultFractionDigits());

}

}

The output is shown here.

Symbol: $
Default fractional digits: 2

C h a p t e r 1 6 : j a v a . u t i l P a r t 2 : M o r e U t i l i t y C l a s s e s 535
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

String getCurrencyCode() Returns the code (as defined by ISO 4217)
that describes the invoking currency.

int getDefaultFractionDigits() Returns the number of digits after the
decimal point that are normally used by
the invoking currency. For example, there
are 2 fractional digits normally used for
dollars.

static Currency
getInstance(Locale localeObj)

Returns a Currency object for the locale
specified by localeObj.

static Currency
getInstance(String code)

Returns a Currency object associated
with the currency code passed in code.

String getSymbol() Returns the currency symbol (such as $)
for the invoking object.

String getSymbol(Locale localeObj) Returns the currency symbol (such as $)
for the locale passed in localeObj.

String toString() Returns the currency code for the
invoking object.

Table 16-10. The Methods Defined by Currency

The java.util.zip Package
The java.util.zip package provides the ability to read and write files in the popular ZIP
and GZIP file formats. Both ZIP and GZIP input and output streams are available.
Other classes implement the ZLIB algorithms for compression and decompression.

The java.util.jar Package
The java.util.jar package provides the ability to read and write Java Archive (JAR)
files. You will see in Chapter 25 that JAR files are used to contain software components
known as Java Beans and any associated files.

536 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 17
Input/Output:
Exploring java.io

537

This chapter explores java.io, which provides support for I/O operations. In
Chapter 12, we presented an overview of Java’s I/O system. Here, we will
examine the Java I/O system in greater detail.

As all programmers learn early on, most programs cannot accomplish their goals
without accessing external data. Data is retrieved from an input source. The results of
a program are sent to an output destination. In Java, these sources or destinations are
defined very broadly. For example, a network connection, memory buffer, or disk file
can be manipulated by the Java I/O classes. Although physically different, these
devices are all handled by the same abstraction: the stream. A stream, as explained in
Chapter 12, is a logical entity that either produces or consumes information. A stream
is linked to a physical device by the Java I/O system. All streams behave in the same
manner, even if the actual physical devices they are linked to differ.

Java 2, version 1.4 includes some additional I/O capabilities which are contained in the
java.nio package. These are described in Chapter 24.

The Java I/O Classes and Interfaces
The I/O classes defined by java.io are listed here:

BufferedInputStream FileWriter PipedInputStream

BufferedOutputStream FilterInputStream PipedOutputStream

BufferedReader FilterOutputStream PipedReader

BufferedWriter FilterReader PipedWriter

ByteArrayInputStream FilterWriter PrintStream

ByteArrayOutputStream InputStream PrintWriter

CharArrayReader InputStreamReader PushbackInputStream

CharArrayWriter LineNumberReader PushbackReader

DataInputStream ObjectInputStream RandomAccessFile

DataOutputStream ObjectInputStream.GetField Reader

File ObjectOutputStream SequenceInputStream

FileDescriptor ObjectOutputStream.PutField SerializablePermission

FileInputStream ObjectStreamClass StreamTokenizer

FileOutputStream ObjectStreamField StringReader

FilePermission OutputStream StringWriter

FileReader OutputStreamWriter Writer

538 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 539
TH

E
JA

V
A

LIB
R

A
R

Y

The ObjectInputStream.GetField and ObjectOutputStream.PutField inner classes
were added by Java 2. The java.io package also contains two classes that were deprecated
by Java 2 and are not shown in the preceding table: LineNumberInputStream and
StringBufferInputStream. These classes should not be used for new code.

The following interfaces are defined by java.io:

DataInput FilenameFilter ObjectOutput

DataOutput ObjectInput ObjectStreamConstants

Externalizable ObjectInputValidation Serializable

FileFilter

The FileFilter interface was added by Java 2.
As you can see, there are many classes and interfaces in the java.io package. These

include byte and character streams, and object serialization (the storage and retrieval of
objects). This chapter examines several of the most commonly used I/O components,
beginning with one of the most unique: File.

File
Although most of the classes defined by java.io operate on streams, the File class does
not. It deals directly with files and the file system. That is, the File class does not
specify how information is retrieved from or stored in files; it describes the properties
of a file itself. A File object is used to obtain or manipulate the information associated
with a disk file, such as the permissions, time, date, and directory path, and to navigate
subdirectory hierarchies.

Files are a primary source and destination for data within many programs.
Although there are severe restrictions on their use within applets for security reasons,
files are still a central resource for storing persistent and shared information. A
directory in Java is treated simply as a File with one additional property—a list of
filenames that can be examined by the list() method.

The following constructors can be used to create File objects:

File(String directoryPath)
File(String directoryPath, String filename)
File(File dirObj, String filename)
File(URI uriObj)

Here, directoryPath is the path name of the file, filename is the name of the file, dirObj is a
File object that specifies a directory, and uriObj is a URI object that describes a file. The
fourth constructor was added by Java 2, version 1.4.

The following example creates three files: f1, f2, and f3. The first File object is
constructed with a directory path as the only argument. The second includes two
arguments—the path and the filename. The third includes the file path assigned to f1
and a filename; f3 refers to the same file as f2.

File f1 = new File("/");

File f2 = new File("/","autoexec.bat");

File f3 = new File(f1,"autoexec.bat");

Java does the right thing with path separators between UNIX and Windows
conventions. If you use a forward slash (/) on a Windows version of Java, the path
will still resolve correctly. Remember, if you are using the Windows convention
of a backslash character (\), you will need to use its escape sequence (\\) within a
string. The Java convention is to use the UNIX- and URL-style forward slash for
path separators.

File defines many methods that obtain the standard properties of a File object. For
example, getName() returns the name of the file, getParent() returns the name of the
parent directory, and exists() returns true if the file exists, false if it does not. The File class,
however, is not symmetrical. By this, we mean that there are many methods that allow you
to examine the properties of a simple file object, but no corresponding function exists to
change those attributes. The following example demonstrates several of the File methods:

// Demonstrate File.

import java.io.File;

class FileDemo {

static void p(String s) {

System.out.println(s);

}

public static void main(String args[]) {

File f1 = new File("/java/COPYRIGHT");

p("File Name: " + f1.getName());

p("Path: " + f1.getPath());

p("Abs Path: " + f1.getAbsolutePath());

p("Parent: " + f1.getParent());

p(f1.exists() ? "exists" : "does not exist");

p(f1.canWrite() ? "is writeable" : "is not writeable");

p(f1.canRead() ? "is readable" : "is not readable");

p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));

p(f1.isFile() ? "is normal file" : "might be a named pipe");

p(f1.isAbsolute() ? "is absolute" : "is not absolute");

p("File last modified: " + f1.lastModified());

p("File size: " + f1.length() + " Bytes");

}

}

540 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 541
TH

E
JA

V
A

LIB
R

A
R

Y

When you run this program, you will see something similar to the following:

File Name: COPYRIGHT
Path: /java/COPYRIGHT
Abs Path: /java/COPYRIGHT
Parent: /java
exists
is writeable
is readable
is not a directory
is normal file
is absolute
File last modified: 812465204000
File size: 695 Bytes

Most of the File methods are self-explanatory. isFile() and isAbsolute() are not.
isFile() returns true if called on a file and false if called on a directory. Also, isFile()
returns false for some special files, such as device drivers and named pipes, so this
method can be used to make sure the file will behave as a file. The isAbsolute()
method returns true if the file has an absolute path and false if its path is relative.

File also includes two useful utility methods. The first is renameTo(), shown here:

boolean renameTo(File newName)

Here, the filename specified by newName becomes the new name of the invoking File
object. It will return true upon success and false if the file cannot be renamed (if you
either attempt to rename a file so that it moves from one directory to another or use an
existing filename, for example).

The second utility method is delete(), which deletes the disk file represented by the
path of the invoking File object. It is shown here:

boolean delete()

You can also use delete() to delete a directory if the directory is empty. delete()
returns true if it deletes the file and false if the file cannot be removed.

Here are some other File methods that you will find helpful. (They were added
by Java 2.)

Method Description

void deleteOnExit() Removes the file associated with the
invoking object when the Java Virtual
Machine terminates.

boolean isHidden() Returns true if the invoking file is
hidden. Returns false otherwise.

Method Description

boolean setLastModified(long millisec) Sets the time stamp on the invoking
file to that specified by millisec, which
is the number of milliseconds from
January 1, 1970, Coordinated
Universal Time (UTC).

boolean setReadOnly() Sets the invoking file to read-only.

Also, because File supports the Comparable interface, the method compareTo() is
also supported.

Directories
A directory is a File that contains a list of other files and directories. When you create a
File object and it is a directory, the isDirectory() method will return true. In this case,
you can call list() on that object to extract the list of other files and directories inside.
It has two forms. The first is shown here:

String[] list()

The list of files is returned in an array of String objects.
The program shown here illustrates how to use list() to examine the contents of

a directory:

// Using directories.

import java.io.File;

class DirList {

public static void main(String args[]) {

String dirname = "/java";

File f1 = new File(dirname);

if (f1.isDirectory()) {

System.out.println("Directory of " + dirname);

String s[] = f1.list();

for (int i=0; i < s.length; i++) {

File f = new File(dirname + "/" + s[i]);

if (f.isDirectory()) {

System.out.println(s[i] + " is a directory");

} else {

542 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 543
TH

E
JA

V
A

LIB
R

A
R

Y

System.out.println(s[i] + " is a file");

}

}

} else {

System.out.println(dirname + " is not a directory");

}

}

}

Here is sample output from the program. (Of course, the output you see will be
different, based on what is in the directory.)

Directory of /java
bin is a directory
lib is a directory
demo is a directory
COPYRIGHT is a file
README is a file
index.html is a file
include is a directory
src.zip is a file
.hotjava is a directory
src is a directory

Using FilenameFilter
You will often want to limit the number of files returned by the list() method to
include only those files that match a certain filename pattern, or filter. To do this, you
must use a second form of list(), shown here:

String[] list(FilenameFilter FFObj)

In this form, FFObj is an object of a class that implements the FilenameFilter interface.
FilenameFilter defines only a single method, accept(), which is called once for each

file in a list. Its general form is given here:

boolean accept(File directory, String filename)

The accept() method returns true for files in the directory specified by directory that
should be included in the list (that is, those that match the filename argument), and
returns false for those files that should be excluded.

544 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The OnlyExt class, shown next, implements FilenameFilter. It will be used to modify
the preceding program so that it restricts the visibility of the filenames returned by list()
to files with names that end in the file extension specified when the object is constructed.

import java.io.*;

public class OnlyExt implements FilenameFilter {

String ext;

public OnlyExt(String ext) {

this.ext = "." + ext;

}

public boolean accept(File dir, String name) {

return name.endsWith(ext);

}

}

The modified directory listing program is shown here. Now it will only display files
that use the .html extension.

// Directory of .HTML files.

import java.io.*;

class DirListOnly {

public static void main(String args[]) {

String dirname = "/java";

File f1 = new File(dirname);

FilenameFilter only = new OnlyExt("html");

String s[] = f1.list(only);

for (int i=0; i < s.length; i++) {

System.out.println(s[i]);

}

}

}

The listFiles() Alternative
Java 2 added a variation to the list() method, called listFiles(), which you might find
useful. The signatures for listFiles() are shown here:

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 545
TH

E
JA

V
A

LIB
R

A
R

Y

File[] listFiles()
File[] listFiles(FilenameFilter FFObj)
File[] listFiles(FileFilter FObj)

These methods return the file list as an array of File objects instead of strings. The first
method returns all files, and the second returns those files that satisfy the specified
FilenameFilter. Aside from returning an array of File objects, these two versions of
listFiles() work like their equivalent list() methods.

The third version of listFiles() returns those files with path names that satisfy the
specified FileFilter. FileFilter defines only a single method, accept(), which is called
once for each file in a list. Its general form is given here:

boolean accept(File path)

The accept() method returns true for files that should be included in the list (that is,
those that match the path argument), and false for those that should be excluded.

Creating Directories
Another two useful File utility methods are mkdir() and mkdirs(). The mkdir()
method creates a directory, returning true on success and false on failure. Failure
indicates that the path specified in the File object already exists, or that the directory
cannot be created because the entire path does not exist yet. To create a directory for
which no path exists, use the mkdirs() method. It creates both a directory and all the
parents of the directory.

The Stream Classes
Java’s stream-based I/O is built upon four abstract classes: InputStream, OutputStream,
Reader, and Writer. These classes were briefly discussed in Chapter 12. They are used to
create several concrete stream subclasses. Although your programs perform their I/O
operations through concrete subclasses, the top-level classes define the basic functionality
common to all stream classes.

InputStream and OutputStream are designed for byte streams. Reader and Writer
are designed for character streams. The byte stream classes and the character stream
classes form separate hierarchies. In general, you should use the character stream
classes when working with characters or strings, and use the byte stream classes when
working with bytes or other binary objects.

In the remainder of this chapter, both the byte- and character-oriented streams
are examined.

The Byte Streams
The byte stream classes provide a rich environment for handling byte-oriented I/O. A
byte stream can be used with any type of object, including binary data. This versatility
makes byte streams important to many types of programs. Since the byte stream classes
are topped by InputStream and OutputStream, our discussion will begin with them.

InputStream
InputStream is an abstract class that defines Java’s model of streaming byte input. All
of the methods in this class will throw an IOException on error conditions. Table 17-1
shows the methods in InputStream.

546 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

int available() Returns the number of bytes of input currently
available for reading.

void close() Closes the input source. Further read attempts
will generate an IOException.

void mark(int numBytes) Places a mark at the current point in the input
stream that will remain valid until numBytes
bytes are read.

boolean markSupported() Returns true if mark()/reset() are supported
by the invoking stream.

int read() Returns an integer representation of the next
available byte of input. –1 is returned when the
end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into
buffer and returns the actual number of bytes
that were successfully read. –1 is returned
when the end of the file is encountered.

int read(byte buffer[], int offset,
int numBytes)

Attempts to read up to numBytes bytes into
buffer starting at buffer[offset], returning the
number of bytes successfully read. –1 is
returned when the end of the file is
encountered.

Table 17-1. The Methods Defined by InputStream

OutputStream
OutputStream is an abstract class that defines streaming byte output. All of the
methods in this class return a void value and throw an IOException in the case of
errors. Table 17-2 shows the methods in OutputStream.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 547
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void reset() Resets the input pointer to the previously
set mark.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes of input,
returning the number of bytes actually ignored.

Table 17-1. The Methods Defined by InputStream (continued)

Method Description

void close() Closes the output stream. Further write
attempts will generate an IOException.

void flush() Finalizes the output state so that any
buffers are cleared. That is, it flushes the
output buffers.

void write(int b) Writes a single byte to an output stream.
Note that the parameter is an int, which
allows you to call write() with expressions
without having to cast them back to byte.

void write(byte buffer[]) Writes a complete array of bytes to an
output stream.

void write(byte buffer[], int offset,
int numBytes)

Writes a subrange of numBytes bytes from
the array buffer, beginning at buffer[offset].

Table 17-2. The Methods Defined by OutputStream

Most of the methods described in Tables 17-1 and 17-2 are implemented by the
subclasses of InputStream and OutputStream. The mark() and reset() methods are
exceptions; notice their use or lack thereof by each subclass in the discussions that follow.

FileInputStream
The FileInputStream class creates an InputStream that you can use to read bytes from
a file. Its two most common constructors are shown here:

FileInputStream(String filepath)
FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filepath is the full path name of a file,
and fileObj is a File object that describes the file.

The following example creates two FileInputStreams that use the same disk file
and each of the two constructors:

FileInputStream f0 = new FileInputStream("/autoexec.bat")

File f = new File("/autoexec.bat");

FileInputStream f1 = new FileInputStream(f);

Although the first constructor is probably more commonly used, the second allows
us to closely examine the file using the File methods, before we attach it to an input
stream. When a FileInputStream is created, it is also opened for reading.
FileInputStream overrides six of the methods in the abstract class InputStream. The
mark() and reset() methods are not overridden, and any attempt to use reset() on a
FileInputStream will generate an IOException.

The next example shows how to read a single byte, an array of bytes, and a
subrange array of bytes. It also illustrates how to use available() to determine the
number of bytes remaining, and how to use the skip() method to skip over unwanted
bytes. The program reads its own source file, which must be in the current directory.

// Demonstrate FileInputStream.

import java.io.*;

class FileInputStreamDemo {

public static void main(String args[]) throws Exception {

int size;

InputStream f =

new FileInputStream("FileInputStreamDemo.java");

548 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 549

System.out.println("Total Available Bytes: " +

(size = f.available()));

int n = size/40;

System.out.println("First " + n +

" bytes of the file one read() at a time");

for (int i=0; i < n; i++) {

System.out.print((char) f.read());

}

System.out.println("\nStill Available: " + f.available());

System.out.println("Reading the next " + n +

" with one read(b[])");

byte b[] = new byte[n];

if (f.read(b) != n) {

System.err.println("couldn't read " + n + " bytes.");

}

System.out.println(new String(b, 0, n));

System.out.println("\nStill Available: " + (size = f.available()));

System.out.println("Skipping half of remaining bytes with skip()");

f.skip(size/2);

System.out.println("Still Available: " + f.available());

System.out.println("Reading " + n/2 + " into the end of array");

if (f.read(b, n/2, n/2) != n/2) {

System.err.println("couldn't read " + n/2 + " bytes.");

}

System.out.println(new String(b, 0, b.length));

System.out.println("\nStill Available: " + f.available());

f.close();

}

}

Here is the output produced by this program:

Total Available Bytes: 1433
First 35 bytes of the file one read() at a time
// Demonstrate FileInputStream.
im
Still Available: 1398

Reading the next 35 with one read(b[])
port java.io.*;

class FileInputS

Still Available: 1363
Skipping half of remaining bytes with skip()
Still Available: 682
Reading 17 into the end of array
port java.io.*;
read(b) != n) {
S

Still Available: 665

This somewhat contrived example demonstrates how to read three ways, to skip input,
and to inspect the amount of data available on a stream.

Java 2, version 1.4 added the getChannel() method to FileInputStream. This
method returns a channel connected to the FileInputStream object. Channels are used
by the new I/O classes contained in java.nio. (See Chapter 24.)

FileOutputStream
FileOutputStream creates an OutputStream that you can use to write bytes to a file. Its
most commonly used constructors are shown here:

FileOutputStream(String filePath)
FileOutputStream(File fileObj)
FileOutputStream(String filePath, boolean append)
FileOutputStream(File fileObj, boolean append)

They can throw a FileNotFoundException or a SecurityException. Here, filePath is the full
path name of a file, and fileObj is a File object that describes the file. If append is true, the file
is opened in append mode. The fourth constructor was added by Java 2, version 1.4.

Creation of a FileOutputStream is not dependent on the file already existing.
FileOutputStream will create the file before opening it for output when you create
the object. In the case where you attempt to open a read-only file, an IOException
will be thrown.

The following example creates a sample buffer of bytes by first making a String
and then using the getBytes() method to extract the byte array equivalent. It then
creates three files. The first, file1.txt, will contain every other byte from the sample.
The second, file2.txt, will contain the entire set of bytes. The third and last, file3.txt,
will contain only the last quarter. Unlike the FileInputStream methods, all of the
FileOutputStream methods have a return type of void. In the case of an error, these
methods will throw an IOException.

550 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 551
TH

E
JA

V
A

LIB
R

A
R

Y

// Demonstrate FileOutputStream.

import java.io.*;

class FileOutputStreamDemo {

public static void main(String args[]) throws Exception {

String source = "Now is the time for all good men\n"

+ " to come to the aid of their country\n"

+ " and pay their due taxes.";

byte buf[] = source.getBytes();

OutputStream f0 = new FileOutputStream("file1.txt");

for (int i=0; i < buf.length; i += 2) {

f0.write(buf[i]);

}

f0.close();

OutputStream f1 = new FileOutputStream("file2.txt");

f1.write(buf);

f1.close();

OutputStream f2 = new FileOutputStream("file3.txt");

f2.write(buf,buf.length-buf.length/4,buf.length/4);

f2.close();

}

}

Here are the contents of each file after running this program. First, file1.txt:

Nwi h iefralgo e
t oet h i ftercuty n a hi u ae.

Next, file2.txt:

Now is the time for all good men
to come to the aid of their country
and pay their due taxes.

Finally, file3.txt:

nd pay their due taxes.

Java 2, version 1.4 added the getChannel() method to FileOutputStream. This
method returns a channel connected to the FileOutputStream object. Channels are
used by the new I/O classes contained in java.nio. (See Chapter 24.)

552 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

ByteArrayInputStream
ByteArrayInputStream is an implementation of an input stream that uses a byte array
as the source. This class has two constructors, each of which requires a byte array to
provide the data source:

ByteArrayInputStream(byte array[])
ByteArrayInputStream(byte array[], int start, int numBytes)

Here, array is the input source. The second constructor creates an InputStream from a
subset of your byte array that begins with the character at the index specified by start
and is numBytes long.

The following example creates a pair of ByteArrayInputStreams, initializing them
with the byte representation of the alphabet:

// Demonstrate ByteArrayInputStream.

import java.io.*;

class ByteArrayInputStreamDemo {

public static void main(String args[]) throws IOException {

String tmp = "abcdefghijklmnopqrstuvwxyz";

byte b[] = tmp.getBytes();

ByteArrayInputStream input1 = new ByteArrayInputStream(b);

ByteArrayInputStream input2 = new ByteArrayInputStream(b, 0,3);

}

}

The input1 object contains the entire lowercase alphabet, while input2 contains only
the first three letters.

A ByteArrayInputStream implements both mark() and reset(). However, if mark()
has not been called, then reset() sets the stream pointer to the start of the stream—which
in this case is the start of the byte array passed to the constructor. The next example
shows how to use the reset() method to read the same input twice. In this case, we read
and print the letters “abc” once in lowercase and then again in uppercase.

import java.io.*;

class ByteArrayInputStreamReset {

public static void main(String args[]) throws IOException {

String tmp = "abc";

byte b[] = tmp.getBytes();

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 553
TH

E
JA

V
A

LIB
R

A
R

Y

ByteArrayInputStream in = new ByteArrayInputStream(b);

for (int i=0; i<2; i++) {

int c;

while ((c = in.read()) != -1) {

if (i == 0) {

System.out.print((char) c);

} else {

System.out.print(Character.toUpperCase((char) c));

}

}

System.out.println();

in.reset();

}

}

}

This example first reads each character from the stream and prints it as is, in lowercase.
It then resets the stream and begins reading again, this time converting each character
to uppercase before printing. Here’s the output:

abc
ABC

ByteArrayOutputStream
ByteArrayOutputStream is an implementation of an output stream that uses a byte
array as the destination. ByteArrayOutputStream has two constructors, shown here:

ByteArrayOutputStream()
ByteArrayOutputStream(int numBytes)

In the first form, a buffer of 32 bytes is created. In the second, a buffer is created with a
size equal to that specified by numBytes. The buffer is held in the protected buf field of
ByteArrayOutputStream. The buffer size will be increased automatically, if needed.
The number of bytes held by the buffer is contained in the protected count field of
ByteArrayOutputStream.

The following example demonstrates ByteArrayOutputStream:

// Demonstrate ByteArrayOutputStream.

import java.io.*;

554 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class ByteArrayOutputStreamDemo {

public static void main(String args[]) throws IOException {

ByteArrayOutputStream f = new ByteArrayOutputStream();

String s = "This should end up in the array";

byte buf[] = s.getBytes();

f.write(buf);

System.out.println("Buffer as a string");

System.out.println(f.toString());

System.out.println("Into array");

byte b[] = f.toByteArray();

for (int i=0; i<b.length; i++) {

System.out.print((char) b[i]);

}

System.out.println("\nTo an OutputStream()");

OutputStream f2 = new FileOutputStream("test.txt");

f.writeTo(f2);

f2.close();

System.out.println("Doing a reset");

f.reset();

for (int i=0; i<3; i++)

f.write('X');

System.out.println(f.toString());

}

}

When you run the program, you will create the following output. Notice how after the
call to reset(), the three X’s end up at the beginning.

Buffer as a string
This should end up in the array
Into array
This should end up in the array
To an OutputStream()
Doing a reset
XXX

This example uses the writeTo() convenience method to write the contents of f to
test.txt. Examining the contents of the test.txt file created in the preceding example
shows the result we expected:

This should end up in the array

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 555
TH

E
JA

V
A

LIB
R

A
R

Y

Filtered Byte Streams
Filtered streams are simply wrappers around underlying input or output streams that
transparently provide some extended level of functionality. These streams are typically
accessed by methods that are expecting a generic stream, which is a superclass of the
filtered streams. Typical extensions are buffering, character translation, and raw data
translation. The filtered byte streams are FilterInputStream and FilterOutputStream.
Their constructors are shown here:

FilterOutputStream(OutputStream os)
FilterInputStream(InputStream is)

The methods provided in these classes are identical to those in InputStream and
OutputStream.

Buffered Byte Streams
For the byte-oriented streams, a buffered stream extends a filtered stream class by attaching a
memory buffer to the I/O streams. This buffer allows Java to do I/O operations on more
than a byte at a time, hence increasing performance. Because the buffer is available,
skipping, marking, and resetting of the stream becomes possible. The buffered byte stream
classes are BufferedInputStream and BufferedOutputStream. PushbackInputStream also
implements a buffered stream.

BufferedInputStream
Buffering I/O is a very common performance optimization. Java’s BufferedInputStream
class allows you to “wrap” any InputStream into a buffered stream and achieve this
performance improvement.

BufferedInputStream has two constructors:

BufferedInputStream(InputStream inputStream)
BufferedInputStream(InputStream inputStream, int bufSize)

The first form creates a buffered stream using a default buffer size. In the second, the
size of the buffer is passed in bufSize. Use of sizes that are multiples of memory page,
disk block, and so on can have a significant positive impact on performance. This is,
however, implementation-dependent. An optimal buffer size is generally dependent on
the host operating system, the amount of memory available, and how the machine is
configured. To make good use of buffering doesn’t necessarily require quite this degree
of sophistication. A good guess for a size is around 8,192 bytes, and attaching even a
rather small buffer to an I/O stream is always a good idea. That way, the low-level
system can read blocks of data from the disk or network and store the results in your
buffer. Thus, even if you are reading the data a byte at a time out of the InputStream,
you will be manipulating fast memory over 99.9 percent of the time.

Buffering an input stream also provides the foundation required to support moving
backward in the stream of the available buffer. Beyond the read() and skip() methods
implemented in any InputStream, BufferedInputStream also supports the mark() and
reset() methods. This support is reflected by BufferedInputStream.markSupported()
returning true.

The following example contrives a situation where we can use mark() to remember
where we are in an input stream and later use reset() to get back there. This example is
parsing a stream for the HTML entity reference for the copyright symbol. Such a
reference begins with an ampersand (&) and ends with a semicolon (;) without any
intervening whitespace. The sample input has two ampersands to show the case where
the reset() happens and where it does not.

// Use buffered input.

import java.io.*;

class BufferedInputStreamDemo {

public static void main(String args[]) throws IOException {

String s = "This is a © copyright symbol " +

"but this is © not.\n";

byte buf[] = s.getBytes();

ByteArrayInputStream in = new ByteArrayInputStream(buf);

BufferedInputStream f = new BufferedInputStream(in);

int c;

boolean marked = false;

while ((c = f.read()) != -1) {

switch(c) {

case '&':

if (!marked) {

f.mark(32);

marked = true;

} else {

marked = false;

}

break;

case ';':

if (marked) {

marked = false;

System.out.print("(c)");

} else

System.out.print((char) c);

break;

556 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

case ' ':

if (marked) {

marked = false;

f.reset();

System.out.print("&");

} else

System.out.print((char) c);

break;

default:

if (!marked)

System.out.print((char) c);

break;

}

}

}

}

Notice that this example uses mark(32), which preserves the mark for the next 32 bytes
read (which is enough for all entity references). Here is the output produced by this
program:

This is a (c) copyright symbol but this is © not.

Use of mark() is restricted to access within the buffer. This means that you can only
specify a parameter to mark() that is smaller than the buffer size of the stream.

BufferedOutputStream
A BufferedOutputStream is similar to any OutputStream with the exception of an
added flush() method that is used to ensure that data buffers are physically written to
the actual output device. Since the point of a BufferedOutputStream is to improve
performance by reducing the number of times the system actually writes data, you may
need to call flush() to cause any data that is in the buffer to get written.

Unlike buffered input, buffering output does not provide additional functionality.
Buffers for output in Java are there to increase performance. Here are the two available
constructors:

BufferedOutputStream(OutputStream outputStream)
BufferedOutputStream(OutputStream outputStream, int bufSize)

The first form creates a buffered stream using a buffer of 512 bytes. In the second form,
the size of the buffer is passed in bufSize.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 557
TH

E
JA

V
A

LIB
R

A
R

Y

558 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

PushbackInputStream
One of the novel uses of buffering is the implementation of pushback. Pushback is used
on an input stream to allow a byte to be read and then returned (that is, “pushed
back”) to the stream. The PushbackInputStream class implements this idea. It provides
a mechanism to “peek” at what is coming from an input stream without disrupting it.

PushbackInputStream has the following constructors:

PushbackInputStream(InputStream inputStream)
PushbackInputStream(InputStream inputStream, int numBytes)

The first form creates a stream object that allows one byte to be returned to the input
stream. The second form creates a stream that has a pushback buffer that is numBytes
long. This allows multiple bytes to be returned to the input stream.

Beyond the familiar methods of InputStream, PushbackInputStream provides
unread(), shown here:

void unread(int ch)
void unread(byte buffer[])
void unread(byte buffer, int offset, int numChars)

The first form pushes back the low-order byte of ch. This will be the next byte returned
by a subsequent call to read(). The second form returns the bytes in buffer. The third
form pushes back numChars bytes beginning at offset from buffer. An IOException will
be thrown if there is an attempt to return a byte when the pushback buffer is full.

Java 2 made a small change to PushbackInputStream: it added the skip() method.
Here is an example that shows how a programming language parser might use a

PushbackInputStream and unread() to deal with the difference between the = =
operator for comparison and the = operator for assignment:

// Demonstrate unread().

import java.io.*;

class PushbackInputStreamDemo {

public static void main(String args[]) throws IOException {

String s = "if (a == 4) a = 0;\n";

byte buf[] = s.getBytes();

ByteArrayInputStream in = new ByteArrayInputStream(buf);

PushbackInputStream f = new PushbackInputStream(in);

int c;

while ((c = f.read()) != -1) {

switch(c) {

case '=':

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 559
TH

E
JA

V
A

LIB
R

A
R

Y

if ((c = f.read()) == '=')

System.out.print(".eq.");

else {

System.out.print("<-");

f.unread(c);

}

break;

default:

System.out.print((char) c);

break;

}

}

}

}

Here is the output for this example. Notice that = = was replaced by “.eq.” and = was
replaced by “<–”.

if (a .eq. 4) a <- 0;

PushbackInputStream has the side effect of invalidating the mark() or reset()
methods of the InputStream used to create it. Use markSupported() to check any
stream on which you are going to use mark()/reset().

SequenceInputStream
The SequenceInputStream class allows you to concatenate multiple InputStreams.
The construction of a SequenceInputStream is different from any other InputStream.
A SequenceInputStream constructor uses either a pair of InputStreams or an
Enumeration of InputStreams as its argument:

SequenceInputStream(InputStream first, InputStream second)
SequenceInputStream(Enumeration streamEnum)

Operationally, the class fulfills read requests from the first InputStream until it runs
out and then switches over to the second one. In the case of an Enumeration, it will
continue through all of the InputStreams until the end of the last one is reached.

Here is a simple example that uses a SequenceInputStream to output the contents
of two files:

// Demonstrate sequenced input.

import java.io.*;

import java.util.*;

560 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class InputStreamEnumerator implements Enumeration {

private Enumeration files;

public InputStreamEnumerator(Vector files) {

this.files = files.elements();

}

public boolean hasMoreElements() {

return files.hasMoreElements();

}

public Object nextElement() {

try {

return new FileInputStream(files.nextElement().toString());

} catch (Exception e) {

return null;

}

}

}

class SequenceInputStreamDemo {

public static void main(String args[]) throws Exception {

int c;

Vector files = new Vector();

files.addElement("/autoexec.bat");

files.addElement("/config.sys");

InputStreamEnumerator e = new InputStreamEnumerator(files);

InputStream input = new SequenceInputStream(e);

while ((c = input.read()) != -1) {

System.out.print((char) c);

}

input.close();

}

}

This example creates a Vector and then adds two filenames to it. It passes that vector of
names to the InputStreamEnumerator class, which is designed to provide a wrapper
on the vector where the elements returned are not the filenames but rather open
FileInputStreams on those names. The SequenceInputStream opens each file in turn,
and this example prints the contents of the two files.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 561
TH

E
JA

V
A

LIB
R

A
R

Y

PrintStream
The PrintStream class provides all of the formatting capabilities we have been using
from the System file handle, System.out, since the beginning of the book. Here are two
of its constructors:

PrintStream(OutputStream outputStream)
PrintStream(OutputStream outputStream, boolean flushOnNewline)

where flushOnNewline controls whether Java flushes the output stream every time a
newline (\n) character is output. If flushOnNewline is true, flushing automatically takes
place. If it is false, flushing is not automatic. The first constructor does not
automatically flush.

Java’s PrintStream objects support the print() and println() methods for all types,
including Object. If an argument is not a simple type, the PrintStream methods will
call the object’s toString() method and then print the result.

RandomAccessFile
RandomAccessFile encapsulates a random-access file. It is not derived from InputStream
or OutputStream. Instead, it implements the interfaces DataInput and DataOutput,
which define the basic I/O methods. It also supports positioning requests—that is, you
can position the file pointer within the file. It has these two constructors:

RandomAccessFile(File fileObj, String access)
throws FileNotFoundException

RandomAccessFile(String filename, String access)
throws FileNotFoundException

In the first form, fileObj specifies the name of the file to open as a File object. In the
second form, the name of the file is passed in filename. In both cases, access determines
what type of file access is permitted. If it is “r”, then the file can be read, but not
written. If it is “rw”, then the file is opened in read-write mode. If it is “rws”, the file
is opened for read-write operations and every change to the file’s data or metadata
will be immediately written to the physical device. If it is “rwd”, the file is opened for
read-write operations and every change to the file’s data will be immediately written
to the physical device.

The method seek(), shown here, is used to set the current position of the file
pointer within the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning
of the file. After a call to seek(), the next read or write operation will occur at the new
file position.

562 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

RandomAccessFile implements the standard input and output methods, which
you can use to read and write to random access files. It also includes some additional
methods. One is setLength(). It has this signature:

void setLength(long len) throws IOException

This method sets the length of the invoking file to that specified by len. This method can be
used to lengthen or shorten a file. If the file is lengthened, the added portion is undefined.

Java 2, version 1.4 added the getChannel() method to RandomAccessFile. This
method returns a channel connected to the RandomAccessFile object. Channels are
used by the new I/O classes contained in java.nio. (See Chapter 24.)

The Character Streams
While the byte stream classes provide sufficient functionality to handle any type of I/O
operation, they cannot work directly with Unicode characters. Since one of the main
purposes of Java is to support the “write once, run anywhere” philosophy, it was
necessary to include direct I/O support for characters. In this section, several of the
character I/O classes are discussed. As explained earlier, at the top of the character
stream hierarchies are the Reader and Writer abstract classes. We will begin with them.

As discussed in Chapter 12, the character I/O classes were added by the 1.1 release of
Java. Because of this, you may still find legacy code that uses byte streams where
character streams should be. When working on such code, it is a good idea to update it.

Reader
Reader is an abstract class that defines Java’s model of streaming character input. All of
the methods in this class will throw an IOException on error conditions. Table 17-3
provides a synopsis of the methods in Reader.

Writer
Writer is an abstract class that defines streaming character output. All of the methods
in this class return a void value and throw an IOException in the case of errors.
Table 17-4 shows a synopsis of the methods in Writer.

FileReader
The FileReader class creates a Reader that you can use to read the contents of a file. Its
two most commonly used constructors are shown here:

FileReader(String filePath)
FileReader(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path name of a file,
and fileObj is a File object that describes the file.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 563
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

abstract void close() Closes the input source. Further read
attempts will generate an IOException.

void mark(int numChars) Places a mark at the current point in the
input stream that will remain valid until
numChars characters are read.

boolean markSupported() Returns true if mark()/reset() are
supported on this stream.

int read() Returns an integer representation of the
next available character from the invoking
input stream. –1 is returned when the end
of the file is encountered.

int read(char buffer[]) Attempts to read up to buffer.length
characters into buffer and returns the actual
number of characters that were successfully
read. –1 is returned when the end of the file
is encountered.

abstract int read(char buffer[],
int offset,
int numChars)

Attempts to read up to numChars characters
into buffer starting at buffer[offset], returning
the number of characters successfully read.
–1 is returned when the end of the file is
encountered.

boolean ready() Returns true if the next input request will
not wait. Otherwise, it returns false.

void reset() Resets the input pointer to the previously
set mark.

long skip(long numChars) Skips over numChars characters of input,
returning the number of characters actually
skipped.

Table 17-3. The Methods Defined by Reader

The following example shows how to read lines from a file and print these
to the standard output stream. It reads its own source file, which must be in the
current directory.

// Demonstrate FileReader.

import java.io.*;

class FileReaderDemo {

public static void main(String args[]) throws Exception {

FileReader fr = new FileReader("FileReaderDemo.java");

BufferedReader br = new BufferedReader(fr);

String s;

564 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

abstract void close() Closes the output stream. Further write
attempts will generate an IOException.

abstract void flush() Finalizes the output state so that any
buffers are cleared. That is, it flushes the
output buffers.

void write(int ch) Writes a single character to the invoking
output stream. Note that the parameter is
an int, which allows you to call write with
expressions without having to cast them
back to char.

void write(char buffer[]) Writes a complete array of characters to
the invoking output stream.

abstract void write(char buffer[],
int offset,
int numChars)

Writes a subrange of numChars characters
from the array buffer, beginning at
buffer[offset] to the invoking output stream.

void write(String str) Writes str to the invoking output stream.

void write(String str, int offset,
int numChars)

Writes a subrange of numChars characters
from the array str, beginning at the
specified offset.

Table 17-4. The Methods Defined by Writer

while((s = br.readLine()) != null) {

System.out.println(s);

}

fr.close();

}

}

FileWriter
FileWriter creates a Writer that you can use to write to a file. Its most commonly used
constructors are shown here:

FileWriter(String filePath)
FileWriter(String filePath, boolean append)
FileWriter(File fileObj)
FileWriter(File fileObj, boolean append)

They can throw an IOException. Here, filePath is the full path name of a file, and fileObj
is a File object that describes the file. If append is true, then output is appended to the
end of the file. The fourth constructor was added by Java 2, version 1.4.

Creation of a FileWriter is not dependent on the file already existing. FileWriter
will create the file before opening it for output when you create the object. In the case
where you attempt to open a read-only file, an IOException will be thrown.

The following example is a character stream version of an example shown earlier
when FileOutputStream was discussed. This version creates a sample buffer of
characters by first making a String and then using the getChars() method to extract
the character array equivalent. It then creates three files. The first, file1.txt, will contain
every other character from the sample. The second, file2.txt, will contain the entire set
of characters. Finally, the third, file3.txt, will contain only the last quarter.

// Demonstrate FileWriter.

import java.io.*;

class FileWriterDemo {

public static void main(String args[]) throws Exception {

String source = "Now is the time for all good men\n"

+ " to come to the aid of their country\n"

+ " and pay their due taxes.";

char buffer[] = new char[source.length()];

source.getChars(0, source.length(), buffer, 0);

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 565
TH

E
JA

V
A

LIB
R

A
R

Y

FileWriter f0 = new FileWriter("file1.txt");

for (int i=0; i < buffer.length; i += 2) {

f0.write(buffer[i]);

}

f0.close();

FileWriter f1 = new FileWriter("file2.txt");

f1.write(buffer);

f1.close();

FileWriter f2 = new FileWriter("file3.txt");

f2.write(buffer,buffer.length-buffer.length/4,buffer.length/4);

f2.close();

}

}

CharArrayReader
CharArrayReader is an implementation of an input stream that uses a character array as
the source. This class has two constructors, each of which requires a character array
to provide the data source:

CharArrayReader(char array[])
CharArrayReader(char array[], int start, int numChars)

Here, array is the input source. The second constructor creates a Reader from a subset
of your character array that begins with the character at the index specified by start and
is numChars long.

The following example uses a pair of CharArrayReaders:

// Demonstrate CharArrayReader.

import java.io.*;

public class CharArrayReaderDemo {

public static void main(String args[]) throws IOException {

String tmp = "abcdefghijklmnopqrstuvwxyz";

int length = tmp.length();

char c[] = new char[length];

566 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 567
TH

E
JA

V
A

LIB
R

A
R

Y

tmp.getChars(0, length, c, 0);

CharArrayReader input1 = new CharArrayReader(c);

CharArrayReader input2 = new CharArrayReader(c, 0, 5);

int i;

System.out.println("input1 is:");

while((i = input1.read()) != -1) {

System.out.print((char)i);

}

System.out.println();

System.out.println("input2 is:");

while((i = input2.read()) != -1) {

System.out.print((char)i);

}

System.out.println();

}

}

The input1 object is constructed using the entire lowercase alphabet, while input2
contains only the first five letters. Here is the output:

input1 is:
abcdefghijklmnopqrstuvwxyz
input2 is:
abcde

CharArrayWriter
CharArrayWriter is an implementation of an output stream that uses an array as the
destination. CharArrayWriter has two constructors, shown here:

CharArrayWriter()
CharArrayWriter(int numChars)

In the first form, a buffer with a default size is created. In the second, a buffer is created
with a size equal to that specified by numChars. The buffer is held in the buf field of
CharArrayWriter. The buffer size will be increased automatically, if needed. The

number of characters held by the buffer is contained in the count field of
CharArrayWriter. Both buf and count are protected fields.

The following example demonstrates CharArrayWriter by reworking the sample
program shown earlier for ByteArrayOutputStream. It produces the same output as
the previous version.

// Demonstrate CharArrayWriter.

import java.io.*;

class CharArrayWriterDemo {

public static void main(String args[]) throws IOException {

CharArrayWriter f = new CharArrayWriter();

String s = "This should end up in the array";

char buf[] = new char[s.length()];

s.getChars(0, s.length(), buf, 0);

f.write(buf);

System.out.println("Buffer as a string");

System.out.println(f.toString());

System.out.println("Into array");

char c[] = f.toCharArray();

for (int i=0; i<c.length; i++) {

System.out.print(c[i]);

}

System.out.println("\nTo a FileWriter()");

FileWriter f2 = new FileWriter("test.txt");

f.writeTo(f2);

f2.close();

System.out.println("Doing a reset");

f.reset();

for (int i=0; i<3; i++)

f.write('X');

System.out.println(f.toString());

}

}

568 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

BufferedReader
BufferedReader improves performance by buffering input. It has two constructors:

BufferedReader(Reader inputStream)
BufferedReader(Reader inputStream, int bufSize)

The first form creates a buffered character stream using a default buffer size. In the
second, the size of the buffer is passed in bufSize.

As is the case with the byte-oriented stream, buffering an input character stream
also provides the foundation required to support moving backward in the stream
within the available buffer. To support this, BufferedReader implements the mark()
and reset() methods, and BufferedReader.markSupported() returns true.

The following example reworks the BufferedInputStream example, shown earlier,
so that it uses a BufferedReader character stream rather than a buffered byte stream.
As before, it uses mark() and reset() methods to parse a stream for the HTML entity
reference for the copyright symbol. Such a reference begins with an ampersand (&) and
ends with a semicolon (;) without any intervening whitespace. The sample input has
two ampersands, to show the case where the reset() happens and where it does not.
Output is the same as that shown earlier.

// Use buffered input.

import java.io.*;

class BufferedReaderDemo {

public static void main(String args[]) throws IOException {

String s = "This is a © copyright symbol " +

"but this is © not.\n";

char buf[] = new char[s.length()];

s.getChars(0, s.length(), buf, 0);

CharArrayReader in = new CharArrayReader(buf);

BufferedReader f = new BufferedReader(in);

int c;

boolean marked = false;

while ((c = f.read()) != -1) {

switch(c) {

case '&':

if (!marked) {

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 569
TH

E
JA

V
A

LIB
R

A
R

Y

f.mark(32);

marked = true;

} else {

marked = false;

}

break;

case ';':

if (marked) {

marked = false;

System.out.print("(c)");

} else

System.out.print((char) c);

break;

case ' ':

if (marked) {

marked = false;

f.reset();

System.out.print("&");

} else

System.out.print((char) c);

break;

default:

if (!marked)

System.out.print((char) c);

break;

}

}

}

}

BufferedWriter
A BufferedWriter is a Writer that adds a flush() method that can be used to ensure
that data buffers are physically written to the actual output stream. Using a
BufferedWriter can increase performance by reducing the number of times data is
actually physically written to the output stream.

A BufferedWriter has these two constructors:

BufferedWriter(Writer outputStream)
BufferedWriter(Writer outputStream, int bufSize)

570 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The first form creates a buffered stream using a buffer with a default size. In the
second, the size of the buffer is passed in bufSize.

PushbackReader
The PushbackReader class allows one or more characters to be returned to the input
stream. This allows you to look ahead in the input stream. Here are its two constructors:

PushbackReader(Reader inputStream)
PushbackReader(Reader inputStream, int bufSize)

The first form creates a buffered stream that allows one character to be pushed back.
In the second, the size of the pushback buffer is passed in bufSize.

PushbackReader provides unread(), which returns one or more characters to the
invoking input stream. It has the three forms shown here:

void unread(int ch)
void unread(char buffer[])
void unread(char buffer[], int offset, int numChars)

The first form pushes back the character passed in ch. This will be the next character
returned by a subsequent call to read(). The second form returns the characters in
buffer. The third form pushes back numChars characters beginning at offset from buffer.
An IOException will be thrown if there is an attempt to return a character when the
pushback buffer is full.

The following program reworks the earlier PushBackInputStream example by
replacing PushBackInputStream with a PushbackReader. As before, it shows how a
programming language parser can use a pushback stream to deal with the difference
between the == operator for comparison and the = operator for assignment.

// Demonstrate unread().

import java.io.*;

class PushbackReaderDemo {

public static void main(String args[]) throws IOException {

String s = "if (a == 4) a = 0;\n";

char buf[] = new char[s.length()];

s.getChars(0, s.length(), buf, 0);

CharArrayReader in = new CharArrayReader(buf);

PushbackReader f = new PushbackReader(in);

int c;

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 571
TH

E
JA

V
A

LIB
R

A
R

Y

while ((c = f.read()) != -1) {

switch(c) {

case '=':

if ((c = f.read()) == '=')

System.out.print(".eq.");

else {

System.out.print("<-");

f.unread(c);

}

break;

default:

System.out.print((char) c);

break;

}

}

}

}

PrintWriter
PrintWriter is essentially a character-oriented version of PrintStream. It provides the
formatted output methods print() and println(). PrintWriter has four constructors:

PrintWriter(OutputStream outputStream)
PrintWriter(OutputStream outputStream, boolean flushOnNewline)
PrintWriter(Writer outputStream)
PrintWriter(Writer outputStream, boolean flushOnNewline)

where flushOnNewline controls whether Java flushes the output stream every time
println() is called. If flushOnNewline is true, flushing automatically takes place. If false,
flushing is not automatic. The first and third constructors do not automatically flush.

Java’s PrintWriter objects support the print() and println() methods for all types,
including Object. If an argument is not a simple type, the PrintWriter methods will call
the object’s toString() method and then print out the result.

Using Stream I/O
The following example demonstrates several of Java’s I/O character stream classes and
methods. This program implements the standard wc (word count) command. The
program has two modes: if no filenames are provided as arguments, the program

572 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

operates on the standard input stream. If one or more filenames are specified, the
program operates on each of them.

// A word counting utility.

import java.io.*;

class WordCount {

public static int words = 0;

public static int lines = 0;

public static int chars = 0;

public static void wc(InputStreamReader isr)

throws IOException {

int c = 0;

boolean lastWhite = true;

String whiteSpace = " \t\n\r";

while ((c = isr.read()) != -1) {

// Count characters

chars++;

// Count lines

if (c == '\n') {

lines++;

}

// Count words by detecting the start of a word

int index = whiteSpace.indexOf(c);

if(index == -1) {

if(lastWhite == true) {

++words;

}

lastWhite = false;

}

else {

lastWhite = true;

}

}

if(chars != 0) {

++lines;

}

}

public static void main(String args[]) {

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 573

FileReader fr;

try {

if (args.length == 0) { // We're working with stdin

wc(new InputStreamReader(System.in));

}

else { // We're working with a list of files

for (int i = 0; i < args.length; i++) {

fr = new FileReader(args[i]);

wc(fr);

}

}

}

catch (IOException e) {

return;

}

System.out.println(lines + " " + words + " " + chars);

}

}

The wc() method operates on any input stream and counts the number of
characters, lines, and words. It tracks the parity of words and whitespace in the
lastNotWhite variable.

When executed with no arguments, WordCount creates an InputStreamReader
object using System.in as the source for the stream. This stream is then passed to wc(),
which does the actual counting. When executed with one or more arguments,
WordCount assumes that these are filenames and creates FileReaders for each of them,
passing the resultant FileReader objects to the wc() method. In either case, it prints the
results before exiting.

Improving wc() Using a StreamTokenizer
An even better way to look for patterns in an input stream is to use another of Java’s
I/O classes: StreamTokenizer. Similar to StringTokenizer from Chapter 16,
StreamTokenizer breaks up the InputStream into tokens that are delimited by sets of
characters. It has this constructor:

StreamTokenizer(Reader inStream)

Here inStream must be some form of Reader.
StreamTokenizer defines several methods. In this example, we will use only a few.

To reset the default set of delimiters, we will employ the resetSyntax() method. The
default set of delimiters is finely tuned for tokenizing Java programs and is thus too

574 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 575
TH

E
JA

V
A

LIB
R

A
R

Y

specialized for this example. We declare that our tokens, or “words,” are any
consecutive string of visible characters delimited on both sides by whitespace.

We use the eolIsSignificant() method to ensure that newline characters will be
delivered as tokens, so we can count the number of lines as well as words. It has this
general form:

void eolIsSignificant(boolean eolFlag)

If eolFlag is true, the end-of-line characters are returned as tokens. If eolFlag is false, the
end-of-line characters are ignored.

The wordChars() method is used to specify the range of characters that can be used
in words. Its general form is shown here:

void wordChars(int start, int end)

Here, start and end specify the range of valid characters. In the program, characters in
the range 33 to 255 are valid word characters.

The whitespace characters are specified using whitespaceChars(). It has this
general form:

void whitespaceChars(int start, int end)

Here, start and end specify the range of valid whitespace characters.
The next token is obtained from the input stream by calling nextToken(). It returns

the type of the token.
StreamTokenizer defines four int constants: TT_EOF, TT_EOL, TT_NUMBER,

and TT_WORD. There are three instance variables. nval is a public double used to
hold the values of numbers as they are recognized. sval is a public String used to hold
the value of any words as they are recognized. ttype is a public int indicating the type
of token that has just been read by the nextToken() method. If the token is a word,
ttype equals TT_WORD. If the token is a number, ttype equals TT_NUMBER. If the
token is a single character, ttype contains its value. If an end-of-line condition has been
encountered, ttype equals TT_EOL. (This assumes that eolIsSignificant() was invoked
with a true argument.) If the end of the stream has been encountered, ttype equals
TT_EOF.

The word count program revised to use a StreamTokenizer is shown here:

// Enhanced word count program that uses a StreamTokenizer

import java.io.*;

class WordCount {

public static int words=0;

public static int lines=0;

public static int chars=0;

public static void wc(Reader r) throws IOException {

StreamTokenizer tok = new StreamTokenizer(r);

tok.resetSyntax();

tok.wordChars(33, 255);

tok.whitespaceChars(0, ' ');

tok.eolIsSignificant(true);

while (tok.nextToken() != tok.TT_EOF) {

switch (tok.ttype) {

case StreamTokenizer.TT_EOL:

lines++;

chars++;

break;

case StreamTokenizer.TT_WORD:

words++;

default: // FALLSTHROUGH

chars += tok.sval.length();

break;

}

}

}

public static void main(String args[]) {

if (args.length == 0) { // We're working with stdin

try {

wc(new InputStreamReader(System.in));

System.out.println(lines + " " + words + " " + chars);

} catch (IOException e) {};

} else { // We're working with a list of files

int twords = 0, tchars = 0, tlines = 0;

for (int i=0; i<args.length; i++) {

try {

words = chars = lines = 0;

wc(new FileReader(args[i]));

twords += words;

tchars += chars;

tlines += lines;

System.out.println(args[i] + ": " +

lines + " " + words + " " + chars);

576 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

} catch (IOException e) {

System.out.println(args[i] + ": error.");

}

}

System.out.println("total: " +

tlines + " " + twords + " " + tchars);

}

}

}

Serialization
Serialization is the process of writing the state of an object to a byte stream. This is
useful when you want to save the state of your program to a persistent storage area,
such as a file. At a later time, you may restore these objects by using the process of
deserialization.

Serialization is also needed to implement Remote Method Invocation (RMI). RMI
allows a Java object on one machine to invoke a method of a Java object on a different
machine. An object may be supplied as an argument to that remote method. The
sending machine serializes the object and transmits it. The receiving machine
deserializes it. (More information about RMI is in Chapter 24.)

Assume that an object to be serialized has references to other objects, which, in
turn, have references to still more objects. This set of objects and the relationships
among them form a directed graph. There may also be circular references within this
object graph. That is, object X may contain a reference to object Y, and object Y may
contain a reference back to object X. Objects may also contain references to themselves.
The object serialization and deserialization facilities have been designed to work
correctly in these scenarios. If you attempt to serialize an object at the top of an object
graph, all of the other referenced objects are recursively located and serialized.
Similarly, during the process of deserialization, all of these objects and their references
are correctly restored.

An overview of the interfaces and classes that support serialization follows.

Serializable
Only an object that implements the Serializable interface can be saved and restored by
the serialization facilities. The Serializable interface defines no members. It is simply
used to indicate that a class may be serialized. If a class is serializable, all of its
subclasses are also serializable.

Variables that are declared as transient are not saved by the serialization facilities.
Also, static variables are not saved.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 577
TH

E
JA

V
A

LIB
R

A
R

Y

Externalizable
The Java facilities for serialization and deserialization have been designed so that much
of the work to save and restore the state of an object occurs automatically. However,
there are cases in which the programmer may need to have control over these
processes. For example, it may be desirable to use compression or encryption
techniques. The Externalizable interface is designed for these situations.

The Externalizable interface defines these two methods:

void readExternal(ObjectInput inStream)
throws IOException, ClassNotFoundException

void writeExternal(ObjectOutput outStream)
throws IOException

In these methods, inStream is the byte stream from which the object is to be read, and
outStream is the byte stream to which the object is to be written.

ObjectOutput
The ObjectOutput interface extends the DataOutput interface and supports object
serialization. It defines the methods shown in Table 17-5. Note especially the
writeObject() method. This is called to serialize an object. All of these methods will
throw an IOException on error conditions.

578 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void close() Closes the invoking stream. Further write
attempts will generate an IOException.

void flush() Finalizes the output state so that any
buffers are cleared. That is, it flushes the
output buffers.

void write(byte buffer[]) Writes an array of bytes to the invoking
stream.

void write(byte buffer[], int offset,
int numBytes)

Writes a subrange of numBytes bytes from
the array buffer, beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking stream.
The byte written is the low-order byte of b.

void writeObject(Object obj) Writes object obj to the invoking stream.

Table 17-5. The Methods Defined by ObjectOutput

ObjectOutputStream
The ObjectOutputStream class extends the OutputStream class and implements the
ObjectOutput interface. It is responsible for writing objects to a stream. A constructor
of this class is

ObjectOutputStream(OutputStream outStream) throws IOException

The argument outStream is the output stream to which serialized objects will be written.
The most commonly used methods in this class are shown in Table 17-6. They

will throw an IOException on error conditions. Java 2 added an inner class to
ObjectOuputStream called PutField. It facilitates the writing of persistent fields and its
use is beyond the scope of this book.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 579
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void close() Closes the invoking stream. Further write
attempts will generate an IOException.

void flush() Finalizes the output state so that any
buffers are cleared. That is, it flushes the
output buffers.

void write(byte buffer[]) Writes an array of bytes to the invoking
stream.

void write(byte buffer[], int offset,
int numBytes)

Writes a subrange of numBytes bytes from
the array buffer, beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking stream.
The byte written is the low-order byte of b.

void writeBoolean(boolean b) Writes a boolean to the invoking stream.

void writeByte(int b) Writes a byte to the invoking stream. The
byte written is the low-order byte of b.

void writeBytes(String str) Writes the bytes representing str to the
invoking stream.

void writeChar(int c) Writes a char to the invoking stream.

void writeChars(String str) Writes the characters in str to the invoking
stream.

Table 17-6. Commonly Used Methods Defined by ObjectOutputStream

ObjectInput
The ObjectInput interface extends the DataInput interface and defines the methods
shown in Table 17-7. It supports object serialization. Note especially the readObject()
method. This is called to deserialize an object. All of these methods will throw an
IOException on error conditions.

580 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void writeDouble(double d) Writes a double to the invoking stream.

void writeFloat(float f) Writes a float to the invoking stream.

void writeInt(int i) Writes an int to the invoking stream.

void writeLong(long l) Writes a long to the invoking stream.

final void writeObject(Object obj) Writes obj to the invoking stream.

void writeShort(int i) Writes a short to the invoking stream.

Table 17-6. Commonly Used Methods Defined by ObjectOutputStream (continued)

Method Description

int available() Returns the number of bytes that are now
available in the input buffer.

void close() Closes the invoking stream. Further read
attempts will generate an IOException.

int read() Returns an integer representation of the next
available byte of input. –1 is returned when
the end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into
buffer, returning the number of bytes that
were successfully read. –1 is returned when
the end of the file is encountered.

Table 17-7. The Methods Defined by ObjectInput

ObjectInputStream
The ObjectInputStream class extends the InputStream class and implements the
ObjectInput interface. ObjectInputStream is responsible for reading objects from a
stream. A constructor of this class is

ObjectInputStream(InputStream inStream)
throws IOException, StreamCorruptedException

The argument inStream is the input stream from which serialized objects should be read.
The most commonly used methods in this class are shown in Table 17-8. They will throw

an IOException on error conditions. Java 2 added an inner class to ObjectInputStream called
GetField. It facilitates the reading of persistent fields and its use is beyond the scope of this
book. Also, the method readLine() was deprecated by Java 2 and should no longer be used.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 581
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

int read(byte buffer[], int offset,
int numBytes)

Attempts to read up to numBytes bytes into
buffer starting at buffer[offset], returning the
number of bytes that were successfully read.
–1 is returned when the end of the file is
encountered.

Object readObject() Reads an object from the invoking stream.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes in the
invoking stream, returning the number of
bytes actually ignored.

Table 17-7. The Methods Defined by ObjectInput (continued)

Method Description

int available() Returns the number of bytes that are now
available in the input buffer.

void close() Closes the invoking stream. Further read
attempts will generate an IOException.

Table 17-8. Commonly Used Methods Defined by ObjectInputStream

582 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

int read() Returns an integer representation of the next
available byte of input. –1 is returned when
the end of the file is encountered.

int read(byte buffer[], int offset,
int numBytes)

Attempts to read up to numBytes bytes into
buffer starting at buffer[offset], returning the
number of bytes successfully read. –1 is
returned when the end of the file is
encountered.

boolean readBoolean() Reads and returns a boolean from the
invoking stream.

byte readByte() Reads and returns a byte from the
invoking stream.

char readChar() Reads and returns a char from the
invoking stream.

double readDouble() Reads and returns a double from the
invoking stream.

float readFloat() Reads and returns a float from the
invoking stream.

void readFully(byte buffer[]) Reads buffer.length bytes into buffer. Returns
only when all bytes have been read.

void readFully(byte buffer[],
int offset,
int numBytes)

Reads numBytes bytes into buffer starting at
buffer[offset]. Returns only when numBytes
have been read.

int readInt() Reads and returns an int from the
invoking stream.

long readLong() Reads and returns a long from the
invoking stream.

final Object readObject() Reads and returns an object from the
invoking stream.

Table 17-8. Commonly Used Methods Defined by ObjectInputStream (continued)

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 583
TH

E
JA

V
A

LIB
R

A
R

YA Serialization Example
The following program illustrates how to use object serialization and deserialization.
It begins by instantiating an object of class MyClass. This object has three instance
variables that are of types String, int, and double. This is the information we want to
save and restore.

A FileOutputStream is created that refers to a file named “serial,” and an
ObjectOutputStream is created for that file stream. The writeObject() method
of ObjectOutputStream is then used to serialize our object. The object output
stream is flushed and closed.

A FileInputStream is then created that refers to the file named “serial,” and
an ObjectInputStream is created for that file stream. The readObject() method of
ObjectInputStream is then used to deserialize our object. The object input stream is
then closed.

Note that MyClass is defined to implement the Serializable interface. If this is not
done, a NotSerializableException is thrown. Try experimenting with this program by
declaring some of the MyClass instance variables to be transient. That data is then not
saved during serialization.

import java.io.*;

public class SerializationDemo {

public static void main(String args[]) {

// Object serialization

try {

Method Description

short readShort() Reads and returns a short from the invoking
stream.

int readUnsignedByte() Reads and returns an unsigned byte from the
invoking stream.

int readUnsignedShort() Reads an unsigned short from the invoking
stream.

Table 17-8. Commonly Used Methods Defined by ObjectInputStream (continued)

584 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

MyClass object1 = new MyClass("Hello", -7, 2.7e10);

System.out.println("object1: " + object1);

FileOutputStream fos = new FileOutputStream("serial");

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(object1);

oos.flush();

oos.close();

}

catch(Exception e) {

System.out.println("Exception during serialization: " + e);

System.exit(0);

}

// Object deserialization

try {

MyClass object2;

FileInputStream fis = new FileInputStream("serial");

ObjectInputStream ois = new ObjectInputStream(fis);

object2 = (MyClass)ois.readObject();

ois.close();

System.out.println("object2: " + object2);

}

catch(Exception e) {

System.out.println("Exception during deserialization: " + e);

System.exit(0);

}

}

}

class MyClass implements Serializable {

String s;

int i;

double d;

public MyClass(String s, int i, double d) {

this.s = s;

this.i = i;

this.d = d;

}

public String toString() {

return "s=" + s + "; i=" + i + "; d=" + d;

}

}

This program demonstrates that the instance variables of object1 and object2 are
identical. The output is shown here:

object1: s=Hello; i=-7; d=2.7E10
object2: s=Hello; i=-7; d=2.7E10

Stream Benefits
The streaming interface to I/O in Java provides a clean abstraction for a complex and
often cumbersome task. The composition of the filtered stream classes allows you to
dynamically build the custom streaming interface to suit your data transfer
requirements. Java programs written to adhere to the abstract, high-level InputStream,
OutputStream, Reader, and Writer classes will function properly in the future even
when new and improved concrete stream classes are invented. As you will see in the
next chapter, this model works very well when we switch from a file system-based set of
streams to the network and socket streams. Finally, serialization of objects is expected to
play an increasingly important role in Java programming in the future. Java’s
serialization I/O classes provide a portable solution to this sometimes tricky task.

C h a p t e r 1 7 : I n p u t / O u t p u t : E x p l o r i n g j a v a . i o 585
TH

E
JA

V
A

LIB
R

A
R

Y

This page intentionally left blank.

Chapter 18
Networking

587

588 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This chapter explores the java.net package, which provides support for
networking. Its creators have called Java “programming for the Internet.” While
true, there is actually very little in Java, the programming language, that

makes it any more appropriate for writing networked programs than, say, C++ or
FORTRAN. What makes Java a good language for networking are the classes
defined in the java.net package.

These networking classes encapsulate the “socket” paradigm pioneered in the
Berkeley Software Distribution (BSD) from the University of California at Berkeley.
No discussion of Internet networking libraries would be complete without a brief
recounting of the history of UNIX and BSD sockets.

Networking Basics
Ken Thompson and Dennis Ritchie developed UNIX in concert with the C language
at Bell Telephone Laboratories, Murray Hill, New Jersey, in 1969. For many years, the
development of UNIX remained in Bell Labs and in a few universities and research
facilities that had the DEC PDP machines it was designed to be run on. In 1978, Bill Joy
was leading a project at Cal Berkeley to add many new features to UNIX, such as virtual
memory and full-screen display capabilities. By early 1984, just as Bill was leaving to
found Sun Microsystems, he shipped 4.2BSD, commonly known as Berkeley UNIX.

4.2BSD came with a fast file system, reliable signals, interprocess communication,
and, most important, networking. The networking support first found in 4.2 eventually
became the de facto standard for the Internet. Berkeley’s implementation of TCP/IP
remains the primary standard for communications within the Internet. The socket
paradigm for interprocess and network communication has also been widely adopted
outside of Berkeley. Even Windows and the Macintosh started talking “Berkeley
sockets” in the late ‘80s.

Socket Overview
A network socket is a lot like an electrical socket. Various plugs around the network have
a standard way of delivering their payload. Anything that understands the standard
protocol can “plug in” to the socket and communicate. With electrical sockets, it doesn’t
matter if you plug in a lamp or a toaster; as long as they are expecting 60Hz, 115-volt
electricity, the devices will work. Think how your electric bill is created. There is a meter
somewhere between your house and the rest of the network. For each kilowatt of power
that goes through that meter, you are billed. The bill comes to your “address.” So even
though the electricity flows freely around the power grid, all of the sockets in your house
have a particular address.

The same idea applies to network sockets, except we talk about TCP/IP packets
and IP addresses rather than electrons and street addresses. Internet Protocol (IP) is a
low-level routing protocol that breaks data into small packets and sends them to an

address across a network, which does not guarantee to deliver said packets to the
destination. Transmission Control Protocol (TCP) is a higher-level protocol that manages
to robustly string together these packets, sorting and retransmitting them as necessary
to reliably transmit your data. A third protocol, User Datagram Protocol (UDP), sits
next to TCP and can be used directly to support fast, connectionless, unreliable
transport of packets.

Client/Server
You often hear the term client/server mentioned in the context of networking. It seems
complicated when you read about it in corporate marketing statements, but it is actually
quite simple. A server is anything that has some resource that can be shared. There are
compute servers, which provide computing power; print servers, which manage a collection
of printers; disk servers, which provide networked disk space; and web servers, which store
web pages. A client is simply any other entity that wants to gain access to a particular
server. The interaction between client and server is just like the interaction between a
lamp and an electrical socket. The power grid of the house is the server, and the lamp is
a power client. The server is a permanently available resource, while the client is free to
“unplug” after it is has been served.

In Berkeley sockets, the notion of a socket allows a single computer to serve many
different clients at once, as well as serving many different types of information. This
feat is managed by the introduction of a port, which is a numbered socket on a
particular machine. A server process is said to “listen” to a port until a client connects
to it. A server is allowed to accept multiple clients connected to the same port number,
although each session is unique. To manage multiple client connections, a server
process must be multithreaded or have some other means of multiplexing the
simultaneous I/O.

Reserved Sockets
Once connected, a higher-level protocol ensues, which is dependent on which port you
are using. TCP/IP reserves the lower 1,024 ports for specific protocols. Many of these
will seem familiar to you if you have spent any time surfing the Internet. Port number
21 is for FTP, 23 is for Telnet, 25 is for e-mail, 79 is for finger, 80 is for HTTP, 119 is for
netnews—and the list goes on. It is up to each protocol to determine how a client
should interact with the port.

For example, HTTP is the protocol that web browsers and servers use to transfer
hypertext pages and images. It is quite a simple protocol for a basic page-browsing
web server. Here’s how it works. When a client requests a file from an HTTP server,
an action known as a hit, it simply prints the name of the file in a special format to a
predefined port and reads back the contents of the file. The server also responds with
a status code number to tell the client whether the request can be fulfilled and why.

C h a p t e r 1 8 : N e t w o r k i n g 589
TH

E
JA

V
A

LIB
R

A
R

Y

590 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here’s an example of a client requesting a single file, /index.html, and the server
replying that it has successfully found the file and is sending it to the client:

Server Client

Listens to port 80. Connects to port 80.

Accepts the connection. Writes “GET /index.html
HTTP/1.0\n\n”.

Reads up until the second end-of-line (\n).

Sees that GET is a known command and that
HTTP/1.0 is a valid protocol version.

Reads a local file called /index.html.

Writes “HTTP/1.0 200 OK\n\n”. “200” means “here comes the file.”

Copies the contents of the file into the socket. Reads the contents of the file and
displays it.

Hangs up. Hangs up.

Obviously, the HTTP protocol is much more complicated than this example shows,
but this is an actual transaction that you could have with any web server near you.

Proxy Servers
A proxy server speaks the client side of a protocol to another server. This is often
required when clients have certain restrictions on which servers they can connect to.
Thus, a client would connect to a proxy server, which did not have such restrictions,
and the proxy server would in turn communicate for the client. A proxy server has
the additional ability to filter certain requests or cache the results of those requests for
future use. A caching proxy HTTP server can help reduce the bandwidth demands on
a local network’s connection to the Internet. When a popular web site is being hit by
hundreds of users, a proxy server can get the contents of the web server’s popular
pages once, saving expensive internetwork transfers while providing faster access to
those pages to the clients.

Later in this chapter, we will actually build a complete caching proxy HTTP server.
The interesting part about this sample program is that it is both a client and a server.
To serve certain pages, it must act as a client to other servers to obtain a copy of the
requested content.

Internet Addressing
Every computer on the Internet has an address. An Internet address is a number that
uniquely identifies each computer on the Net. Originally, all Internet addresses

C h a p t e r 1 8 : N e t w o r k i n g 591
TH

E
JA

V
A

LIB
R

A
R

Y

consisted of 32-bit values. This address type was specified by IPv4 (Internet Protocol,
version 4). However, a new addressing scheme, called IPv6 (Internet Protocol, version
6) has come into play. IPv6 uses a 128-bit value to represent an address. Although there
are several reasons for and advantages to IPv6, the main one is that it supports a much
larger address space than does IPv4. Fortunately, IPv6 is downwardly compatible with
IPv4. Currently, IPv4 is by far the most widely used scheme, but this situation is likely
to change over time.

Because of the emerging importance of IPv6, Java 2, version 1.4 has begun to
add support for it. However, at the time of this writing, IPv6 is not supported by all
environments. Furthermore, for the next few years, IPv4 will continue to be the dominant
form of addressing. For these reasons, the form of Internet addresses discussed here,
and used in this chapter, are the IPv4 form. As mentioned, IPv4 is, loosely, a subset
of IPv6, and the material contained in this chapter is largely applicable to both forms
of addressing.

There are 32 bits in an IPv4 IP address, and we often refer to them as a sequence
of four numbers between 0 and 255 separated by dots (.). This makes them easier to
remember, because they are not randomly assigned—they are hierarchically assigned.
The first few bits define which class of network, lettered A, B, C, D, or E, the address
represents. Most Internet users are on a class C network, since there are over two
million networks in class C. The first byte of a class C network is between 192 and 224,
with the last byte actually identifying an individual computer among the 256 allowed
on a single class C network. This scheme allows for half a billion devices to live on
class C networks.

Domain Naming Service (DNS)
The Internet wouldn’t be a very friendly place to navigate if everyone had to
refer to their addresses as numbers. For example, it is difficult to imagine seeing
“http://192.9.9.1/” at the bottom of an advertisement. Thankfully, a clearinghouse
exists for a parallel hierarchy of names to go with all these numbers. It is called the
Domain Naming Service (DNS). Just as the four numbers of an IP address describe a
network hierarchy from left to right, the name of an Internet address, called its domain
name, describes a machine’s location in a name space, from right to left. For example,
www.osborne.com is in the COM domain (reserved for U.S. commercial sites), it
is called osborne (after the company name), and www is the name of the specific
computer that is Osborne’s web server. www corresponds to the rightmost number
in the equivalent IP address.

Java and the Net
Now that the stage has been set, let’s take a look at how Java relates to all of these
network concepts. Java supports TCP/IP both by extending the already established
stream I/O interface introduced in Chapter 17 and by adding the features required to
build I/O objects across the network. Java supports both the TCP and UDP protocol

families. TCP is used for reliable stream-based I/O across the network. UDP supports
a simpler, hence faster, point-to-point datagram-oriented model.

The Networking Classes and Interfaces
The classes contained in the java.net package are listed here:

Authenticator (Java 2) InetSocketAddress (Java 2, v1.4) SocketImpl

ContentHandler JarURLConnection (Java 2) SocketPermission

DatagramPacket MulticastSocket URI (Java 2, v1.4)

DatagramSocket NetPermission URL

DatagramSocketImpl NetworkInterface (Java 2, v1.4) URLClassLoader (Java 2)

HttpURLConnection PasswordAuthentication (Java 2) URLConnection

InetAddress ServerSocket URLDecoder (Java 2)

Inet4Address (Java 2, v1.4) Socket URLEncoder

Inet6Address (Java 2, v1.4) SocketAddress (Java 2, v1.4) URLStreamHandler

As you can see, several new classes were added by Java 2, version 1.4. Some of
these are to support the new IPv6 addressing scheme. Others provide some added
flexibility to the original java.net package. Java 2, version 1.4 also added functionality,
such as support for the new I/O classes, to several of the preexisting networking
classes. Most of the additions made by Java 2, version 1.4 are beyond the scope of this
chapter, but three new classes, Inet4Address, Inet6Address, and URI, are briefly
discussed at the end. The java.net package’s interfaces are listed here:

ContentHandlerFactory SocketImplFactory URLStreamHandlerFactory

FileNameMap SocketOptions DatagramSocketImplFactory
(added by Java 2, v1.3)

In the sections that follow, we will examine the main networking classes and show
several examples that apply them.

InetAddress
Whether you are making a phone call, sending mail, or establishing a connection across
the Internet, addresses are fundamental. The InetAddress class is used to encapsulate
both the numerical IP address we discussed earlier and the domain name for that
address. You interact with this class by using the name of an IP host, which is more
convenient and understandable than its IP address. The InetAddress class hides the
number inside. As of Java 2, version 1.4, InetAddress can handle both IPv4 and IPv6
addresses. This discussion assumes IPv4.

592 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : N e t w o r k i n g 593
TH

E
JA

V
A

LIB
R

A
R

Y

Factory Methods
The InetAddress class has no visible constructors. To create an InetAddress object,
you have to use one of the available factory methods. Factory methods are merely a
convention whereby static methods in a class return an instance of that class. This
is done in lieu of overloading a constructor with various parameter lists when
having unique method names makes the results much clearer. Three commonly used
InetAddress factory methods are shown here.

static InetAddress getLocalHost()
throws UnknownHostException

static InetAddress getByName(String hostName)
throws UnknownHostException

static InetAddress[] getAllByName(String hostName)
throws UnknownHostException

The getLocalHost() method simply returns the InetAddress object that represents
the local host. The getByName() method returns an InetAddress for a host name
passed to it. If these methods are unable to resolve the host name, they throw an
UnknownHostException.

On the Internet, it is common for a single name to be used to represent several
machines. In the world of web servers, this is one way to provide some degree of
scaling. The getAllByName() factory method returns an array of InetAddresses that
represent all of the addresses that a particular name resolves to. It will also throw an
UnknownHostException if it can’t resolve the name to at least one address.

Java 2, version 1.4 also includes the factory method getByAddress(), which takes an IP
address and returns an InetAddress object. Either an IPv4 or an IPv6 address can be used.

The following example prints the addresses and names of the local machine and
two well-known Internet web sites:

// Demonstrate InetAddress.

import java.net.*;

class InetAddressTest

{

public static void main(String args[]) throws UnknownHostException {

InetAddress Address = InetAddress.getLocalHost();

System.out.println(Address);

Address = InetAddress.getByName("osborne.com");

System.out.println(Address);

InetAddress SW[] = InetAddress.getAllByName("www.nba.com");

for (int i=0; i<SW.length; i++)

System.out.println(SW[i]);

}

}

594 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here is the output produced by this program. (Of course, the output you see will be
slightly different.)

default/206.148.209.138

osborne.com/198.45.24.162

www.nba.com/64.241.238.153

www.nba.com/64.241.238.142

Instance Methods
The InetAddress class also has several other methods, which can be used on the objects
returned by the methods just discussed. Here are some of the most commonly used.

boolean equals(Object other) Returns true if this object has the same Internet
address as other.

byte[] getAddress() Returns a byte array that represents the object’s
Internet address in network byte order.

String getHostAddress() Returns a string that represents the host address
associated with the InetAddress object.

String getHostName() Returns a string that represents the host name
associated with the InetAddress object.

boolean isMulticastAddress() Returns true if this Internet address is a multicast
address. Otherwise, it returns false.

String toString() Returns a string that lists the host name and the
IP address for convenience.

Internet addresses are looked up in a series of hierarchically cached servers. That
means that your local computer might know a particular name-to-IP-address mapping
automatically, such as for itself and nearby servers. For other names, it may ask a local
DNS server for IP address information. If that server doesn’t have a particular address,
it can go to a remote site and ask for it. This can continue all the way up to the root
server, called InterNIC (internic.net). This process might take a long time, so it is wise
to structure your code so that you cache IP address information locally rather than look
it up repeatedly.

TCP/IP Client Sockets
TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to- point,
stream-based connections between hosts on the Internet. A socket can be used to connect
Java’s I/O system to other programs that may reside either on the local machine or on
any other machine on the Internet.

Applets may only establish socket connections back to the host from which the applet was
downloaded. This restriction exists because it would be dangerous for applets loaded
through a firewall to have access to any arbitrary machine.

There are two kinds of TCP sockets in Java. One is for servers, and the other is for
clients. The ServerSocket class is designed to be a “listener,” which waits for clients to
connect before doing anything. The Socket class is designed to connect to server
sockets and initiate protocol exchanges.

The creation of a Socket object implicitly establishes a connection between the client
and server. There are no methods or constructors that explicitly expose the details of
establishing that connection. Here are two constructors used to create client sockets:

Socket(String hostName, int port) Creates a socket connecting the local
host to the named host and port; can
throw an UnknownHostException or
an IOException.

Socket(InetAddress ipAddress, int port) Creates a socket using a preexisting
InetAddress object and a port; can throw
an IOException.

A socket can be examined at any time for the address and port information
associated with it, by use of the following methods:

InetAddress getInetAddress() Returns the InetAddress associated with
the Socket object.

int getPort() Returns the remote port to which this
Socket object is connected.

int getLocalPort() Returns the local port to which this
Socket object is connected.

Once the Socket object has been created, it can also be examined to gain access to
the input and output streams associated with it. Each of these methods can throw an
IOException if the sockets have been invalidated by a loss of connection on the Net.
These streams are used exactly like the I/O streams described in Chapter 17 to send
and receive data.

InputStream getInputStream() Returns the InputStream associated
with the invoking socket.

OutputStream getOutputStream() Returns the OutputStream associated
with the invoking socket.

C h a p t e r 1 8 : N e t w o r k i n g 595
TH

E
JA

V
A

LIB
R

A
R

Y

Java 2, version 1.4 added the getChannel() method to Socket. This method returns
a channel connected to the Socket object. Channels are used by the new I/O classes
contained in java.nio. (See Chapter 24.)

Whois
The very simple example that follows opens a connection to a “whois” port on the
InterNIC server, sends the command-line argument down the socket, and then prints the
data that is returned. InterNIC will try to look up the argument as a registered Internet
domain name, then send back the IP address and contact information for that site.

//Demonstrate Sockets.

import java.net.*;

import java.io.*;

class Whois {

public static void main(String args[]) throws Exception {

int c;

Socket s = new Socket("internic.net", 43);

InputStream in = s.getInputStream();

OutputStream out = s.getOutputStream();

String str = (args.length == 0 ? "osborne.com" : args[0]) + "\n";

byte buf[] = str.getBytes();

out.write(buf);

while ((c = in.read()) != -1) {

System.out.print((char) c);

}

s.close();

}

}

If, for example, you obtained information about osborne.com, you’d get something
similar to the following:

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

Domain Name: OSBORNE.COM
Registrar: NETWORK SOLUTIONS, INC.
Whois Server: whois.networksolutions.com
Referral URL: http://www.networksolutions.com
Name Server: NS1.EPPG.COM
Name Server: NS2.EPPG.COM

596 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Updated Date: 16-jan-2002

>> Last update of whois database: Thu, 25 Apr 2002 05:05:52 EDT <<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.

URL
That last example was rather obscure, because the modern Internet is not about the
older protocols, like whois, finger, and FTP. It is about WWW, the World Wide Web.
The Web is a loose collection of higher-level protocols and file formats, all unified in a
web browser. One of the most important aspects of the Web is that Tim Berners-Lee
devised a scaleable way to locate all of the resources of the Net. Once you can reliably
name anything and everything, it becomes a very powerful paradigm. The Uniform
Resource Locator (URL) does exactly that.

The URL provides a reasonably intelligible form to uniquely identify or address
information on the Internet. URLs are ubiquitous; every browser uses them to identify
information on the Web. In fact, the Web is really just that same old Internet with all of
its resources addressed as URLs plus HTML. Within Java’s network class library, the
URL class provides a simple, concise API to access information across the Internet
using URLs.

Format
Two examples of URLs are http://www.osborne.com/ and http://www.osborne.com:80/
index.htm. A URL specification is based on four components. The first is the protocol
to use, separated from the rest of the locator by a colon (:). Common protocols are http,
ftp, gopher, and file, although these days almost everything is being done via HTTP (in
fact, most browsers will proceed correctly if you leave off the “http://” from your URL
specification). The second component is the host name or IP address of the host to use;
this is delimited on the left by double slashes (//) and on the right by a slash (/) or
optionally a colon (:). The third component, the port number, is an optional parameter,
delimited on the left from the host name by a colon (:) and on the right by a slash (/).
(It defaults to port 80, the predefined HTTP port; thus “:80” is redundant.) The fourth
part is the actual file path. Most HTTP servers will append a file named index.html
or index.htm to URLs that refer directly to a directory resource. Thus,
http://www.osborne.com/ is the same as http://www.osborne.com/index.htm.

Java’s URL class has several constructors, and each can throw a
MalformedURLException. One commonly used form specifies the URL with a string
that is identical to what you see displayed in a browser:

URL(String urlSpecifier)

C h a p t e r 1 8 : N e t w o r k i n g 597
TH

E
JA

V
A

LIB
R

A
R

Y

598 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The next two forms of the constructor allow you to break up the URL into its
component parts:

URL(String protocolName, String hostName, int port, String path)
URL(String protocolName, String hostName, String path)

Another frequently used constructor allows you to use an existing URL as a
reference context and then create a new URL from that context. Although this sounds a
little contorted, it’s really quite easy and useful.

URL(URL urlObj, String urlSpecifier)

In the following example, we create a URL to Osborne’s download page and then
examine its properties:

// Demonstrate URL.

import java.net.*;

class URLDemo {

public static void main(String args[]) throws MalformedURLException {

URL hp = new URL("http://www.osborne.com/downloads");

System.out.println("Protocol: " + hp.getProtocol());

System.out.println("Port: " + hp.getPort());

System.out.println("Host: " + hp.getHost());

System.out.println("File: " + hp.getFile());

System.out.println("Ext:" + hp.toExternalForm());

}

}

When you run this, you will get the following output:

Protocol: http
Port: -1
Host: www.osborne.com
File: /downloads
Ext:http://www.osborne.com/downloads

Notice that the port is –1; this means that one was not explicitly set. Now that we have
created a URL object, we want to retrieve the data associated with it. To access the
actual bits or content information of a URL, you create a URLConnection object from
it, using its openConnection() method, like this:

url.openConnection()

openConnection() has the following general form:

URLConnection openConnection()

It returns a URLConnection object associated with the invoking URL object. It may
throw an IOException.

URLConnection
URLConnection is a general-purpose class for accessing the attributes of a remote
resource. Once you make a connection to a remote server, you can use URLConnection
to inspect the properties of the remote object before actually transporting it locally.
These attributes are exposed by the HTTP protocol specification and, as such, only
make sense for URL objects that are using the HTTP protocol. We’ll examine the most
useful elements of URLConnection here.

In the following example, we create a URLConnection using the openConnection()
method of a URL object and then use it to examine the document’s properties and content:

// Demonstrate URLConnection.

import java.net.*;

import java.io.*;

import java.util.Date;

class UCDemo

{

public static void main(String args[]) throws Exception {

int c;

URL hp = new URL("http://www.internic.net");

URLConnection hpCon = hp.openConnection();

// get date

long d = hpCon.getDate();

if(d==0)

System.out.println("No date information.");

else

System.out.println("Date: " + new Date(d));

// get content type

System.out.println("Content-Type: " + hpCon.getContentType());

// get expiration date

d = hpCon.getExpiration();

if(d==0)

C h a p t e r 1 8 : N e t w o r k i n g 599
TH

E
JA

V
A

LIB
R

A
R

Y

System.out.println("No expiration information.");

else

System.out.println("Expires: " + new Date(d));

// get last-modified date

d = hpCon.getLastModified();

if(d==0)

System.out.println("No last-modified information.");

else

System.out.println("Last-Modified: " + new Date(d));

// get content length

int len = hpCon.getContentLength();

if(len == -1)

System.out.println("Content length unavailable.");

else

System.out.println("Content-Length: " + len);

if(len != 0) {

System.out.println("=== Content ===");

InputStream input = hpCon.getInputStream();

int i = len;

while (((c = input.read()) != -1)) { // && (--i > 0)) {

System.out.print((char) c);

}

input.close();

} else {

System.out.println("No content available.");

}

}

}

The program establishes an HTTP connection to www.internic.net over port 80. We
then list out the header values and retrieve the content. Here are the first lines of the
output (the precise output will vary over time).

Date: Sat Apr 27 12:17:32 CDT 2002
Content-Type: text/html
No expiration information.
Last-Modified: Tue Mar 19 17:52:42 CST 2002
Content-Length: 5299
=== Content ===

600 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

<html>

<head>
<title>InterNIC | The Internet's Network Information Center</title>
<meta name="keywords" content="internic,network information, domain registration">
<style type="text/css">
<!--
p, li, td, ul { font-family: Arial, Helvetica, sans-serif}
-->
</style>
</head>

The URL and URLConnection classes are good enough for simple programs that
want to connect to HTTP servers to fetch content. For more complex applications,
you’ll probably find that you are better off studying the specification of the HTTP
protocol and implementing your own wrappers.

TCP/IP Server Sockets
As we mentioned earlier, Java has a different socket class that must be used for creating
server applications. The ServerSocket class is used to create servers that listen for
either local or remote client programs to connect to them on published ports. Since the
Web is driving most of the activity on the Internet, this section develops an operational
web (http) server.

ServerSockets are quite different from normal Sockets. When you create a
ServerSocket, it will register itself with the system as having an interest in client
connections. The constructors for ServerSocket reflect the port number that you wish
to accept connections on and, optionally, how long you want the queue for said port to
be. The queue length tells the system how many client connections it can leave pending
before it should simply refuse connections. The default is 50. The constructors might
throw an IOException under adverse conditions. Here are the constructors:

ServerSocket(int port) Creates server socket on the specified
port with a queue length of 50.

ServerSocket(int port, int maxQueue) Creates a server socket on the specified
port with a maximum queue length of
maxQueue.

ServerSocket(int port, int maxQueue,
InetAddress localAddress)

Creates a server socket on the specified
port with a maximum queue length of
maxQueue. On a multihomed host,
localAddress specifies the IP address to
which this socket binds.

C h a p t e r 1 8 : N e t w o r k i n g 601
TH

E
JA

V
A

LIB
R

A
R

Y

602 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

ServerSocket has a method called accept(), which is a blocking call that will wait
for a client to initiate communications, and then return with a normal Socket that is
then used for communication with the client.

Java 2, version 1.4 added the getChannel() method to ServerSocket. This method
returns a channel connected to the ServerSocket object. Channels are used by the new
I/O classes contained in java.nio. (See Chapter 24.)

A Caching Proxy HTTP Server
In the remainder of this section, we will develop a simple caching proxy HTTP server,
called http, to demonstrate client and server sockets. http supports only GET
operations and a very limited range of hard-coded MIME types. (MIME types are the
type descriptors for multimedia content.) The proxy HTTP server is single threaded, in
that each request is handled in turn while all others wait. It has fairly naive strategies
for caching—it keeps everything in RAM forever. When it is acting as a proxy server,
http also copies every file it gets to a local cache for which it has no strategy for
refreshing or garbage collecting. All of these caveats aside, http represents a productive
example of client and server sockets, and it is fun to explore and easy to extend.

Source Code
The implementation of this HTTP server is presented here in five classes and one
interface. A more complete implementation would likely split many of the methods
out of the main class, httpd, in order to abstract more of the components. For space
considerations in this book, most of the functionality is in the single class, and the small
support classes are only acting as data structures. We will take a close look at each class
and method to examine how this server works, starting with the support classes and
ending with the main program.

MimeHeader.java
MIME is an Internet standard for communicating multimedia content over e-mail
systems. This standard was created by Nat Borenstein in 1992. The HTTP protocol uses
and extends the notion of MIME headers to pass general attribute/value pairs between
the HTTP client and server.

CONSTRUCTORS This class is a subclass of Hashtable so that it can conveniently
store and retrieve the key/value pairs associated with a MIME header. It has two
constructors. One creates a blank MimeHeader with no keys. The other takes a string
formatted as a MIME header and parses it for the initial contents of the object. See
parse() next.

parse() The parse() method is used to take a raw MIME-formatted string and enter
its key/value pairs into a given instance of MimeHeader. It uses a StringTokenizer to
split the input data into individual lines, marked by the CRLF (\r\n) sequence. It then

iterates through each line using the canonical while ... hasMoreTokens() ...
nextToken() sequence.

For each line of the MIME header, the parse() method splits the line into two strings
separated by a colon (:). The two variables key and val are set by the substring() method
to extract the characters before the colon, those after the colon, and its following space
character. Once these two strings have been extracted, the put() method is used to store
this association between the key and value in the Hashtable.

toString() The toString() method (used by the String concatenation operator, +)
is simply the reverse of parse(). It takes the current key/value pairs stored in the
MimeHeader and returns a string representation of them in the MIME format, where
keys are printed followed by a colon and a space, and then the value followed by a CRLF.

put(), get(), AND fix() The put() and get() methods in Hashtable would
work fine for this application if not for one rather odd thing. The MIME specification
defined several important keys, such as Content-Type and Content-Length. Some
early implementors of MIME systems, notably web browsers, took liberties with the
capitalization of these fields. Some use Content-type, others content-type. To avoid
mishaps, our HTTP server tries to convert all incoming and outgoing MimeHeader keys
to be in the canonical form, Content-Type. Thus, we override put() and get() to convert
the values’ capitalization, using the method fix(), before entering them into the
Hashtable and before looking up a given key.

THE CODE Here is the source code for MimeHeader:

import java.util.*;

class MimeHeader extends Hashtable {

void parse(String data) {

StringTokenizer st = new StringTokenizer(data, "\r\n");

while (st.hasMoreTokens()) {

String s = st.nextToken();

int colon = s.indexOf(':');

String key = s.substring(0, colon);

String val = s.substring(colon + 2); // skip ": "

put(key, val);

}

}

MimeHeader() {}

MimeHeader(String d) {

C h a p t e r 1 8 : N e t w o r k i n g 603
TH

E
JA

V
A

LIB
R

A
R

Y

parse(d);

}

public String toString() {

String ret = "";

Enumeration e = keys();

while(e.hasMoreElements()) {

String key = (String) e.nextElement();

String val = (String) get(key);

ret += key + ": " + val + "\r\n";

}

return ret;

}

// This simple function converts a mime string from

// any variant of capitalization to a canonical form.

// For example: CONTENT-TYPE or content-type to Content-Type,

// or Content-length or CoNTeNT-LENgth to Content-Length.

private String fix(String ms) {

char chars[] = ms.toLowerCase().toCharArray();

boolean upcaseNext = true;

for (int i = 0; i < chars.length - 1; i++) {

char ch = chars[i];

if (upcaseNext && 'a' <= ch && ch <= 'z') {

chars[i] = (char) (ch - ('a' - 'A'));

}

upcaseNext = ch == '-';

}

return new String(chars);

}

public String get(String key) {

return (String) super.get(fix(key));

}

public void put(String key, String val) {

super.put(fix(key), val);

}

}

604 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

HttpResponse.java
The HttpResponse class is a wrapper around everything associated with a reply from
an HTTP server. This is used by the proxy part of our httpd class. When you send a
request to an HTTP server, it responds with an integer status code, which we store in
statusCode, and a textual equivalent, which we store in reasonPhrase. This single-line
response is followed by a MIME header, which contains further information about the
reply. We use the previously explained MimeHeader object to parse this string. The
MimeHeader object is stored inside the HttpResponse class in the mh variable. These
variables are not made private so that the httpd class can use them directly.

CONSTRUCTORS If you construct an HttpResponse with a string argument, this is
taken to be a raw response from an HTTP server and is passed to parse(), described
next, to initialize the object. Alternatively, you can pass in a precomputed status code,
reason phrase, and MIME header.

parse() The parse() method takes the raw data that was read from the HTTP
server, parses the statusCode and reasonPhrase from the first line, and then constructs
a MimeHeader out of the remaining lines.

toString() The toString() method is the inverse of parse(). It takes the current
values of the HttpResponse object and returns a string that an HTTP client would
expect to read back from a server.

THE CODE Here is the source code for HttpResponse:

import java.io.*;

/*

* HttpResponse

* Parse a return message and MIME header from a server.

* HTTP/1.0 302 Found = redirection, check Location for where.

* HTTP/1.0 200 OK = file data comes after mime header.

*/

class HttpResponse

{

int statusCode; // Status-Code in spec

String reasonPhrase; // Reason-Phrase in spec

MimeHeader mh;

static String CRLF = "\r\n";

void parse(String request) {

C h a p t e r 1 8 : N e t w o r k i n g 605
TH

E
JA

V
A

LIB
R

A
R

Y

606 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

int fsp = request.indexOf(' ');

int nsp = request.indexOf(' ', fsp+1);

int eol = request.indexOf('\n');

String protocol = request.substring(0, fsp);

statusCode = Integer.parseInt(request.substring(fsp+1, nsp));

reasonPhrase = request.substring(nsp+1, eol);

String raw_mime_header = request.substring(eol + 1);

mh = new MimeHeader(raw_mime_header);

}

HttpResponse(String request) {

parse(request);

}

HttpResponse(int code, String reason, MimeHeader m) {

statusCode = code;

reasonPhrase = reason;

mh = m;

}

public String toString() {

return "HTTP/1.0 " + statusCode + " " + reasonPhrase + CRLF +

mh + CRLF;

}

}

UrlCacheEntry.java
To cache the contents of a document on a server, we need to make an association
between the URL that was used to retrieve the document and the description of the
document itself. A document is described by its MimeHeader and the raw data. For
example, an image might be described by a MimeHeader with Content-Type:
image/gif, and the raw image data is just an array of bytes. Similarly, a web page will
likely have a Content-Type: text/html key/value pair in its MimeHeader, while the
raw data is the contents of the HTML page. Again, the instance variables are not
marked as private so that httpd can have free access to them.

CONSTRUCTOR The constructor for a UrlCacheEntry object requires the URL to use
as the key and a MimeHeader to associate with it. If the MimeHeader has a field in it
called Content-Length (most do), the data area is preallocated to be large enough to
hold such content.

append() The append() method is used to add data to a UrlCacheEntry object. The
reason this isn’t simply a setData() method is that the data might be streaming in over a
network and need to be stored a chunk at a time. The append() method deals with three
cases. In the first case, the data buffer has not been allocated at all. In the second, the data
buffer is too small to accommodate the incoming data, so it is reallocated. In the last case,
the incoming data fits just fine and is inserted into the buffer. At any time, the length
member variable holds the current valid size of the data buffer.

THE CODE Here is the source code for UrlCacheEntry:

class UrlCacheEntry

{

String url;

MimeHeader mh;

byte data[];

int length = 0;

public UrlCacheEntry(String u, MimeHeader m) {

url = u;

mh = m;

String cl = mh.get("Content-Length");

if (cl != null) {

data = new byte[Integer.parseInt(cl)];

}

}

void append(byte d[], int n) {

if (data == null) {

data = new byte[n];

System.arraycopy(d, 0, data, 0, n);

length = n;

} else if (length + n > data.length) {

byte old[] = data;

data = new byte[old.length + n];

System.arraycopy(old, 0, data, 0, old.length);

System.arraycopy(d, 0, data, old.length, n);

} else {

System.arraycopy(d, 0, data, length, n);

length += n;

}

}

}

C h a p t e r 1 8 : N e t w o r k i n g 607
TH

E
JA

V
A

LIB
R

A
R

Y

LogMessage.java
LogMessage is a simple interface that declares one method, log(), which takes a single
String parameter. This is used to abstract the output of messages from the httpd. In the
application case, this method is implemented to print to the standard output of the
console in which the application was started. In the applet case, the data is appended to
a windowed text buffer.

THE CODE Here is the source code for LogMessage:

interface LogMessage {

public void log(String msg);

}

httpd.java
This is a really big class that does a lot. We will walk through it method by method.

CONSTRUCTOR There are five main instance variables: port, docRoot, log, cache,
and stopFlag, and all of them are private. Three of these can be set by httpd’s lone
constructor, shown here:

httpd(int p, String dr, LogMessage lm)

It initializes the port to listen on, the directory to retrieve files from, and the interface to
send messages to.

The fourth instance variable, cache, is the Hashtable where all of the files are
cached in RAM, and is initialized when the object is created. stopFlag controls the
execution of the program.

STATIC SECTION There are several important static variables in this class. The
version reported in the “Server” field of the MIME header is found in the variable
version. A few constants are defined next: the MIME type for HTML files,
mime_text_html; the MIME end-of-line sequence, CRLF; the name of the HTML file to
return in place of raw directory requests, indexfile; and the size of the data buffer used
in I/O, buffer_size.

Then mt defines a list of filename extensions and the corresponding MIME types
for those files. The types Hashtable is statically initialized in the next block to contain
the array mt as alternating keys and values. Then the fnameToMimeType() method
can be used to return the proper MIME type for each filename passed in. If the
filename does not have one of the extensions from the mt table, the method returns the
defaultExt, or “text/plain.”

608 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

STATISTICAL COUNTERS Next, we declare five more instance variables. These are
left without the private modifier so that an external monitor can inspect these values to
display them graphically. (We will show this in action later.) These variables represent
the usage statistics of our web server. The raw number of hits and bytes served is
stored in hits_served and bytes_served. The number of files and bytes currently stored
in the cache is stored in files_in_cache and bytes_in_cache. Finally, we store the
number of hits that were successfully served out of the cache in hits_to_cache.

toBytes() Next, we have a convenience routine, toBytes(), which converts its string
argument to an array of bytes. This is necessary, because Java String objects are stored
as Unicode characters, while the lingua franca of Internet protocols such as HTTP is
good old 8-bit ASCII.

makeMimeHeader() The makeMimeHeader() method is another convenience
routine that is used to create a MimeHeader object with a few key values filled in. The
MimeHeader that is returned from this method has the current time and date in the
Date field, the name and version of our server in the Server field, the type parameter
in the Content-Type field, and the length parameter in the Content-Length field.

error() The error() method is used to format an HTML page to send back to web
clients who make requests that cannot be completed. The first parameter, code, is the
error code to return. Typically, this will be between 400 and 499. Our server sends back
404 and 405 errors. It uses the HttpResponse class to encapsulate the return code with
the appropriate MimeHeader. The method returns the string representation of that
response concatenated with the HTML page to show the user. The page includes a
human-readable version of the error code, msg, and the url request that caused the error.

getRawRequest() The getRawRequest() method is very simple. It reads data
from a stream until it gets two consecutive newline characters. It ignores carriage
returns and just looks for newlines. Once it has found the second newline, it turns the
array of bytes into a String object and returns it. It will return null if the input stream
does not produce two consecutive newlines before it ends. This is how messages from
HTTP servers and clients are formatted. They begin with one line of status and then are
immediately followed by a MIME header. The end of the MIME header is separated
from the rest of the content by two newlines.

logEntry() The logEntry() method is used to report on each hit to the HTTP server
in a standard format. The format this method produces may seem odd, but it matches
the current standard for HTTP log files. This method has several helper variables and
methods that are used to format the date stamp on each log entry. The months array is
used to convert the month to a string representation. The host variable is set by the
main HTTP loop when it accepts a connection from a given host. The fmt02d() method
formats integers between 0 and 9 as two-digit, leading-zero numbers. The resulting
string is then passed through the LogMessage interface variable log.

C h a p t e r 1 8 : N e t w o r k i n g 609
TH

E
JA

V
A

LIB
R

A
R

Y

writeString() Another convenience method, writeString(), is used to hide the
conversion of a String to an array of bytes so that it can be written out to a stream.

writeUCE() The writeUCE() method takes an OutputStream and a UrlCacheEntry.
It extracts the information out of the cache entry in order to send a message to a web client
containing the appropriate response code, MIME header, and content.

serveFromCache() This Boolean method attempts to find a particular URL in the
cache. If it is successful, then the contents of that cache entry are written to the client,
the hits_to_cache variable is incremented, and the caller is returned true. Otherwise, it
simply returns false.

loadFile() This method takes an InputStream, the url that corresponds to it, and the
MimeHeader for that URL. A new UrlCacheEntry is created with the information
stored in the MimeHeader. The input stream is read in chunks of buffer_size bytes
and appended to the UrlCacheEntry. The resulting UrlCacheEntry is stored in the
cache. The files_in_cache and bytes_in_cache variables are updated, and the
UrlCacheEntry is returned to the caller.

readFile() The readFile() method might seem redundant with the loadFile()
method. It isn’t. This method is strictly for reading files out of a local file system, where
loadFile() is used to talk to streams of any sort. If the File object, f, exists, then an
InputStream is created for it. The size of the file is determined and the MIME type is
derived from the filename. These two variables are used to create the appropriate
MimeHeader, then loadFile() is called to do the actual reading and caching.

writeDiskCache() The writeDiskCache() method takes a UrlCacheEntry object
and writes it persistently into the local disk. It constructs a directory name out of the
URL, making sure to replace the slash (/) characters with the system-dependent
separatorChar. Then it calls mkdirs() to make sure that the local disk path exists for
this URL. Lastly, it opens a FileOutputStream, writes all the data into it, and closes it.

handleProxy() The handleProxy() routine is one of the two major modes of this
server. The basic idea is this: If you set your browser to use this server as a proxy
server, then the requests that will be sent to it will include the complete URL, where
normal GETs remove the “http://” and host name part. We simply pick apart the
complete URL, looking for the “://” sequence, the next slash (/), and optionally
another colon (:) for servers using nonstandard port numbers. Once we’ve found these
characters, we know the intended host and port number as well as the URL we need to
fetch from there. We can then attempt to load a previously saved version of this
document out of our RAM cache. If this fails, we can attempt to load it from the file
system into the RAM cache and reattempt loading it from the cache. If that fails, then it
gets interesting, because we must read the document from the remote site.

610 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To do this, we open a socket to the remote site and port. We send a GET request,
asking for the URL that was passed to us. Whatever response header we get back from
the remote site, we send on to the client. If that code was 200, for successful file transfer,
we also read the ensuing data stream into a new UrlCacheEntry and write it onto the
client socket. After that, we call writeDiskCache() to save the results of that transfer to
the local disk. We log the transaction, close the sockets, and return.

handleGet() The handleGet() method is called when the http daemon is acting like
a normal web server. It has a local disk document root out of which it is serving files.
The parameters to handleGet() tell it where to write the results, the URL to look up,
and the MimeHeader from the requesting web browser. This MIME header will include
the User-Agent string and other useful attributes. First we attempt to serve the URL out
of the RAM cache. If this fails, we look in the file system for the URL. If the file does not
exist or is unreadable, we report an error back to the web client. Otherwise, we just use
readFile() to get the contents of the file and put them in the cache. Then writeUCE() is
used to send the contents of the file down the client socket.

doRequest() The doRequest() method is called once per connection to the server.
It parses the request string and incoming MIME header. It decides to call either
handleProxy() or handleGet(), based on whether there is a “://” in the request string.
If any methods are used other than GET, such as HEAD or POST, this routine returns a
405 error to the client. Note that the HTTP request is ignored if stopFlag is true.

run() The run() method is called when the server thread is started. It creates a new
ServerSocket on the given port, goes into an infinite loop calling accept() on the server
socket, and then passes the resulting Socket off to doRequest() for inspection.

start() AND stop() These are two methods used to start and stop the server
process. These methods set the value of stopFlag.

main() You can use the main() method to run this application from a command
line. It sets the LogMessage parameter to be the server itself, and then provides a
simple console output implementation of log().

THE CODE Here is the source code for httpd:

import java.net.*;

import java.io.*;

import java.text.*;

import java.util.*;

class httpd implements Runnable, LogMessage {

private int port;

C h a p t e r 1 8 : N e t w o r k i n g 611
TH

E
JA

V
A

LIB
R

A
R

Y

private String docRoot;

private LogMessage log;

private Hashtable cache = new Hashtable();

private boolean stopFlag;

private static String version = "1.0";

private static String mime_text_html = "text/html";

private static String CRLF = "\r\n";

private static String indexfile = "index.html";

private static int buffer_size = 8192;

static String mt[] = { // mapping from file ext to Mime-Type

"txt", "text/plain",

"html", mime_text_html,

"htm", "text/html",

"gif", "image/gif",

"jpg", "image/jpg",

"jpeg", "image/jpg",

"class", "application/octet-stream"

};

static String defaultExt = "txt";

static Hashtable types = new Hashtable();

static {

for (int i=0; i<mt.length;i+=2)

types.put(mt[i], mt[i+1]);

}

static String fnameToMimeType(String filename) {

if (filename.endsWith("/")) // special for index files.

return mime_text_html;

int dot = filename.lastIndexOf('.');

String ext = (dot > 0) ? filename.substring(dot + 1) : defaultExt;

String ret = (String) types.get(ext);

return ret != null ? ret : (String)types.get(defaultExt);

}

int hits_served = 0;

int bytes_served = 0;

int files_in_cache = 0;

int bytes_in_cache = 0;

int hits_to_cache = 0;

612 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

private final byte toBytes(String s)[] {

byte b[] = s.getBytes();

return b;

}

private MimeHeader makeMimeHeader(String type, int length) {

MimeHeader mh = new MimeHeader();

Date curDate = new Date();

TimeZone gmtTz = TimeZone.getTimeZone("GMT");

SimpleDateFormat sdf =

new SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");

sdf.setTimeZone(gmtTz);

mh.put("Date", sdf.format(curDate));

mh.put("Server", "JavaCompleteReference/" + version);

mh.put("Content-Type", type);

if (length >= 0)

mh.put("Content-Length", String.valueOf(length));

return mh;

}

private String error(int code, String msg, String url) {

String html_page = "<body>" + CRLF +

"<h1>" + code + " " + msg + "</h1>" + CRLF;

if (url != null)

html_page += "Error when fetching URL: " + url + CRLF;

html_page += "</body>" + CRLF;

MimeHeader mh = makeMimeHeader(mime_text_html, html_page.length());

HttpResponse hr = new HttpResponse(code, msg, mh);

logEntry("GET", url, code, 0);

return hr + html_page;

}

// Read 'in' until you get two \n's in a row.

// Return up to that point as a String.

// Discard all \r's.

private String getRawRequest(InputStream in)

throws IOException {

byte buf[] = new byte[buffer_size];

int pos=0;

int c;

while ((c = in.read()) != -1) {

C h a p t e r 1 8 : N e t w o r k i n g 613
TH

E
JA

V
A

LIB
R

A
R

Y

switch (c) {

case '\r':

break;

case '\n':

if (buf[pos-1] == c) {

return new String(buf,0,pos);

}

default:

buf[pos++] = (byte) c;

}

}

return null;

}

static String months[] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};

private String host;

// fmt02d is the same as C's printf("%02d", i)

private final String fmt02d(int i) {

if(i < 0) {

i = -i;

return ((i < 9) ? "-0" : "-") + i;

}

else {

return ((i < 9) ? "0" : "") + i;

}

}

private void logEntry(String cmd, String url, int code, int size) {

Calendar calendar = Calendar.getInstance();

int tzmin = calendar.get(Calendar.ZONE_OFFSET)/(60*1000);

int tzhour = tzmin / 60;

tzmin -= tzhour * 60;

log.log(host + " - - [" +

fmt02d(calendar.get(Calendar.DATE)) + "/" +

months[calendar.get(Calendar.MONTH)] + "/" +

calendar.get(Calendar.YEAR) + ":" +

fmt02d(calendar.get(Calendar.HOUR)) + ":" +

fmt02d(calendar.get(Calendar.MINUTE)) + ":" +

fmt02d(calendar.get(Calendar.SECOND)) + " " +

614 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

fmt02d(tzhour) + fmt02d(tzmin) +

"] \"" +

cmd + " " +

url + " HTTP/1.0\" " +

code + " " +

size + "\n");

hits_served++;

bytes_served += size;

}

private void writeString(OutputStream out, String s)

throws IOException {

out.write(toBytes(s));

}

private void writeUCE(OutputStream out, UrlCacheEntry uce)

throws IOException {

HttpResponse hr = new HttpResponse(200, "OK", uce.mh);

writeString(out, hr.toString());

out.write(uce.data, 0, uce.length);

logEntry("GET", uce.url, 200, uce.length);

}

private boolean serveFromCache(OutputStream out, String url)

throws IOException {

UrlCacheEntry uce;

if ((uce = (UrlCacheEntry)cache.get(url)) != null) {

writeUCE(out, uce);

hits_to_cache++;

return true;

}

return false;

}

private UrlCacheEntry loadFile(InputStream in, String url,

MimeHeader mh)

throws IOException {

UrlCacheEntry uce;

byte file_buf[] = new byte[buffer_size];

uce = new UrlCacheEntry(url, mh);

C h a p t e r 1 8 : N e t w o r k i n g 615
TH

E
JA

V
A

LIB
R

A
R

Y

int size = 0;

int n;

while ((n = in.read(file_buf)) >= 0) {

uce.append(file_buf, n);

size += n;

}

in.close();

cache.put(url, uce);

files_in_cache++;

bytes_in_cache += uce.length;

return uce;

}

private UrlCacheEntry readFile(File f, String url)

throws IOException {

if (!f.exists())

return null;

InputStream in = new FileInputStream(f);

int file_length = in.available();

String mime_type = fnameToMimeType(url);

MimeHeader mh = makeMimeHeader(mime_type, file_length);

UrlCacheEntry uce = loadFile(in, url, mh);

return uce;

}

private void writeDiskCache(UrlCacheEntry uce)

throws IOException {

String path = docRoot + uce.url;

String dir = path.substring(0, path.lastIndexOf("/"));

dir.replace('/', File.separatorChar);

new File(dir).mkdirs();

FileOutputStream out = new FileOutputStream(path);

out.write(uce.data, 0, uce.length);

out.close();

}

// A client asks us for a url that looks like this:

// http://the.internet.site/the/url

// we go get it from the site and return it...

private void handleProxy(OutputStream out, String url,

616 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

MimeHeader inmh) {

try {

int start = url.indexOf("://") + 3;

int path = url.indexOf('/', start);

String site = url.substring(start, path).toLowerCase();

int port = 80;

String server_url = url.substring(path);

int colon = site.indexOf(':');

if (colon > 0) {

port = Integer.parseInt(site.substring(colon + 1));

site = site.substring(0, colon);

}

url = "/cache/" + site + ((port != 80) ? (":" + port) : "") +

server_url;

if (url.endsWith("/"))

url += indexfile;

if (!serveFromCache(out, url)) {

if (readFile(new File(docRoot + url), url) != null) {

serveFromCache(out, url);

return;

}

// If we haven't already cached this page, open a socket

// to the site's port and send a GET command to it.

// We modify the user-agent to add ourselves... "via".

Socket server = new Socket(site, port);

InputStream server_in = server.getInputStream();

OutputStream server_out = server.getOutputStream();

inmh.put("User-Agent", inmh.get("User-Agent") +

" via JavaCompleteReferenceProxy/" + version);

String req = "GET " + server_url + " HTTP/1.0" + CRLF +

inmh + CRLF;

writeString(server_out, req);

String raw_request = getRawRequest(server_in);

HttpResponse server_response =

new HttpResponse(raw_request);

writeString(out, server_response.toString());

if (server_response.statusCode == 200) {

UrlCacheEntry uce = loadFile(server_in, url,

server_response.mh);

C h a p t e r 1 8 : N e t w o r k i n g 617
TH

E
JA

V
A

LIB
R

A
R

Y

out.write(uce.data, 0, uce.length);

writeDiskCache(uce);

logEntry("GET", site + server_url, 200, uce.length);

}

server_out.close();

server.close();

}

} catch (IOException e) {

log.log("Exception: " + e);

}

}

private void handleGet(OutputStream out, String url,

MimeHeader inmh) {

byte file_buf[] = new byte[buffer_size];

String filename = docRoot + url +

(url.endsWith("/") ? indexfile : "");

try {

if (!serveFromCache(out, url)) {

File f = new File(filename);

if (! f.exists()) {

writeString(out, error(404, "Not Found", filename));

return;

}

if (! f.canRead()) {

writeString(out, error(404, "Permission Denied", filename));

return;

}

UrlCacheEntry uce = readFile(f, url);

writeUCE(out, uce);

}

} catch (IOException e) {

log.log("Exception: " + e);

}

}

private void doRequest(Socket s) throws IOException {

if(stopFlag)

return;

InputStream in = s.getInputStream();

OutputStream out = s.getOutputStream();

String request = getRawRequest(in);

618 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : N e t w o r k i n g 619
TH

E
JA

V
A

LIB
R

A
R

Y

int fsp = request.indexOf(' ');

int nsp = request.indexOf(' ', fsp+1);

int eol = request.indexOf('\n');

String method = request.substring(0, fsp);

String url = request.substring(fsp+1, nsp);

String raw_mime_header = request.substring(eol + 1);

MimeHeader inmh = new MimeHeader(raw_mime_header);

request = request.substring(0, eol);

if (method.equalsIgnoreCase("get")) {

if (url.indexOf("://") >= 0) {

handleProxy(out, url, inmh);

} else {

handleGet(out, url, inmh);

}

} else {

writeString(out, error(405, "Method Not Allowed", method));

}

in.close();

out.close();

}

public void run() {

try {

ServerSocket acceptSocket;

acceptSocket = new ServerSocket(port);

while (true) {

Socket s = acceptSocket.accept();

host = s.getInetAddress().getHostName();

doRequest(s);

s.close();

}

} catch (IOException e) {

log.log("accept loop IOException: " + e + "\n");

} catch (Exception e) {

log.log("Exception: " + e);

}

}

private Thread t;

public synchronized void start() {

620 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

stopFlag = false;

if (t == null) {

t = new Thread(this);

t.start();

}

}

public synchronized void stop() {

stopFlag = true;

log.log("Stopped at " + new Date() + "\n");

}

public httpd(int p, String dr, LogMessage lm) {

port = p;

docRoot = dr;

log = lm;

}

// This main and log method allow httpd to be run from the console.

public static void main(String args[]) {

httpd h = new httpd(80, "c:\\www", null);

h.log = h;

h.start();

try {

Thread.currentThread().join();

} catch (InterruptedException e) {};

}

public void log(String m) {

System.out.print(m);

}

}

HTTP.java
As an added bonus, here is an applet class that gives the HTTP server a functional “front
panel.” This applet has two parameters that can be used to configure the server: port and
docroot. This is a very simple applet. It makes an instance of the httpd, passing in itself
as the LogMessage interface. Then it creates a panel that has a simple label at the top, a
TextArea in the middle for displaying the LogMessages, and a panel at the bottom that
has two buttons and another label in it. The start() and stop() methods of the applet call
the corresponding methods on the httpd. The buttons labeled “Start” and “Stop” call

their corresponding methods in the httpd. Any time a message is logged, the
bottom-right Label object is updated to contain the latest statistics from the httpd.

import java.util.*;

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class HTTP extends Applet implements LogMessage,

ActionListener

{

private int m_port = 80;

private String m_docroot = "c:\\www";

private httpd m_httpd;

private TextArea m_log;

private Label status;

private final String PARAM_port = "port";

private final String PARAM_docroot = "docroot";

public HTTP() {

}

public void init() {

setBackground(Color.white);

String param;

// port: Port number to listen on

param = getParameter(PARAM_port);

if (param != null)

m_port = Integer.parseInt(param);

// docroot: web document root

param = getParameter(PARAM_docroot);

if (param != null)

m_docroot = param;

setLayout(new BorderLayout());

Label lab = new Label("Java HTTPD");

lab.setFont(new Font("SansSerif", Font.BOLD, 18));

C h a p t e r 1 8 : N e t w o r k i n g 621
TH

E
JA

V
A

LIB
R

A
R

Y

add("North", lab);

m_log = new TextArea("", 24, 80);

add("Center", m_log);

Panel p = new Panel();

p.setLayout(new FlowLayout(FlowLayout.CENTER,1,1));

add("South", p);

Button bstart = new Button("Start");

bstart.addActionListener(this);

p.add(bstart);

Button bstop = new Button("Stop");

bstop.addActionListener(this);

p.add(bstop);

status = new Label("raw");

status.setForeground(Color.green);

status.setFont(new Font("SansSerif", Font.BOLD, 10));

p.add(status);

m_httpd = new httpd(m_port, m_docroot, this);

}

public void destroy() {

stop();

}

public void paint(Graphics g) {

}

public void start() {

m_httpd.start();

status.setText("Running ");

clear_log("Log started on " + new Date() + "\n");

}

public void stop() {

m_httpd.stop();

status.setText("Stopped ");

}

public void actionPerformed(ActionEvent ae) {

String label = ae.getActionCommand();

if(label.equals("Start")) {

start();

622 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

else {

stop();

}

}

public void clear_log(String msg) {

m_log.setText(msg + "\n");

}

public void log(String msg) {

m_log.append(msg);

status.setText(m_httpd.hits_served + " hits (" +

(m_httpd.bytes_served / 1024) + "K), " +

m_httpd.files_in_cache + " cached files (" +

(m_httpd.bytes_in_cache / 1024) + "K), " +

m_httpd.hits_to_cache + " cached hits");

status.setSize(status.getPreferredSize());

}

}

In the files httpd.java and HTTP.java, the code is built assuming that the document
root is “c:\www”. You may need to change this value for your configuration. Because
this applet writes to a log file, it can work only if it is trusted. For example, an applet is
trusted if it is accessible from the user’s class path.

Datagrams
For most of your internetworking needs, you will be happy with TCP/IP-style
networking. It provides a serialized, predictable, reliable stream of packet data. This is
not without its cost, however. TCP includes many complicated algorithms for dealing
with congestion control on crowded networks, as well as pessimistic expectations
about packet loss. This leads to a somewhat inefficient way to transport data.
Datagrams provide an alternative.

Datagrams are bundles of information passed between machines. They are
somewhat like a hard throw from a well-trained but blindfolded catcher to the third
baseman. Once the datagram has been released to its intended target, there is no
assurance that it will arrive or even that someone will be there to catch it. Likewise,
when the datagram is received, there is no assurance that it hasn’t been damaged in
transit or that whoever sent it is still there to receive a response.

C h a p t e r 1 8 : N e t w o r k i n g 623
TH

E
JA

V
A

LIB
R

A
R

Y

Java implements datagrams on top of the UDP protocol by using two classes: The
DatagramPacket object is the data container, while the DatagramSocket is the
mechanism used to send or receive the DatagramPackets.

DatagramPacket
DatagramPacket defines several constructors. Four are described here. The first
constructor specifies a buffer that will receive data, and the size of a packet. It is used
for receiving data over a DatagramSocket. The second form allows you to specify an
offset into the buffer at which data will be stored. The third form specifies a target
address and port, which are used by a DatagramSocket to determine where the data in
the packet will be sent. The fourth form transmits packets beginning at the specified
offset into the data. Think of the first two forms as building an “in box,” and the second
two forms as stuffing and addressing an envelope. Here are the four constructors:

DatagramPacket(byte data[], int size)
DatagramPacket(byte data[], int offset, int size)
DatagramPacket(byte data[], int size, InetAddress ipAddress, int port)
DatagramPacket(byte data[], int offset, int size, InetAddress ipAddress, int port)

There are several methods for accessing the internal state of a DatagramPacket.
They give complete access to the destination address and port number of a packet, as
well as the raw data and its length. Here are some of the most commonly used:

InetAddress getAddress() Returns the destination InetAddress, typically
used for sending.

int getPort() Returns the port number.

byte[] getData() Returns the byte array of data contained in the
datagram. Mostly used to retrieve data from the
datagram after it has been received.

int getLength() Returns the length of the valid data contained in
the byte array that would be returned from the
getData() method. This typically does not equal
the length of the whole byte array.

Datagram Server and Client
The following example implements a very simple networked communications client
and server. Messages are typed into the window at the server and written across the
network to the client side, where they are displayed.

// Demonstrate Datagrams.

import java.net.*;

624 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class WriteServer {

public static int serverPort = 998;

public static int clientPort = 999;

public static int buffer_size = 1024;

public static DatagramSocket ds;

public static byte buffer[] = new byte[buffer_size];

public static void TheServer() throws Exception {

int pos=0;

while (true) {

int c = System.in.read();

switch (c) {

case -1:

System.out.println("Server Quits.");

return;

case '\r':

break;

case '\n':

ds.send(new DatagramPacket(buffer,pos,

InetAddress.getLocalHost(),clientPort));

pos=0;

break;

default:

buffer[pos++] = (byte) c;

}

}

}

public static void TheClient() throws Exception {

while(true) {

DatagramPacket p = new DatagramPacket(buffer, buffer.length);

ds.receive(p);

System.out.println(new String(p.getData(), 0, p.getLength()));

}

}

public static void main(String args[]) throws Exception {

if(args.length == 1) {

ds = new DatagramSocket(serverPort);

TheServer();

} else {

C h a p t e r 1 8 : N e t w o r k i n g 625
TH

E
JA

V
A

LIB
R

A
R

Y

ds = new DatagramSocket(clientPort);

TheClient();

}

}

}

This sample program is restricted by the DatagramSocket constructor to running
between two ports on the local machine. To use the program, run

java WriteServer

in one window; this will be the client. Then run

java WriteServer 1

This will be the server. Anything that is typed in the server window will be sent to the
client window after a newline is received.

This example requires that your computer be connected to the Internet.

Inet4Address and Inet6Address
As mentioned at the start of this chapter, Java 2, version 1.4 added support for IPv6
addresses. Because of this, two new subclasses of InetAddress were created:
Inet4Address and Inet6Address. Inet4Address represents a traditional style, IPv4
address. Inet6Address encapsulates a new-style IPv6 address. Because they are
subclasses of InetAddress, an InetAddress reference can refer to either. This is one
way that Java was able to add IPv6 functionality without breaking existing code or
adding many more classes. For the most part, you can simply use InetAddress when
working with IP addresses because it can accommodate both styles.

The URI Class
Java 2, version 1.4 added the URI class, which encapsulates a Uniform Resource
Identifier. URIs are similar to URLs. In fact, URLs constitute a subset of URIs. A URI
represents a standard way to identify a resource. A URL also describes how to
access the resource.

626 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 19
The Applet Class

627

This chapter examines the Applet class, which provides the necessary support for
applets. In Chapter 12, you were introduced to the general form of an applet and
the steps necessary to compile and run one. In this chapter, we will look at

applets in detail.
The Applet class is contained in the java.applet package. Applet contains several

methods that give you detailed control over the execution of your applet. In addition,
java.applet also defines three interfaces: AppletContext, AudioClip, and AppletStub.

Let’s begin by reviewing the basic elements of an applet and the steps necessary to
create and test one.

Applet Basics
All applets are subclasses of Applet. Thus, all applets must import java.applet. Applets
must also import java.awt. Recall that AWT stands for the Abstract Window Toolkit.
Since all applets run in a window, it is necessary to include support for that window.
Applets are not executed by the console-based Java run-time interpreter. Rather, they
are executed by either a Web browser or an applet viewer. The figures shown in this
chapter were created with the standard applet viewer, called appletviewer, provided
by the SDK. But you can use any applet viewer or browser you like.

Execution of an applet does not begin at main(). Actually, few applets even have
main() methods. Instead, execution of an applet is started and controlled with an
entirely different mechanism, which will be explained shortly. Output to your applet’s
window is not performed by System.out.println(). Rather, it is handled with various
AWT methods, such as drawString(), which outputs a string to a specified X,Y
location. Input is also handled differently than in an application.

Once an applet has been compiled, it is included in an HTML file using the
APPLET tag. The applet will be executed by a Java-enabled web browser when it
encounters the APPLET tag within the HTML file. To view and test an applet more
conveniently, simply include a comment at the head of your Java source code file that
contains the APPLET tag. This way, your code is documented with the necessary
HTML statements needed by your applet, and you can test the compiled applet by
starting the applet viewer with your Java source code file specified as the target. Here
is an example of such a comment:

/*

<applet code="MyApplet" width=200 height=60>

</applet>

*/

This comment contains an APPLET tag that will run an applet called MyApplet in a
window that is 200 pixels wide and 60 pixels high. Since the inclusion of an APPLET

628 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

command makes testing applets easier, all of the applets shown in this book will
contain the appropriate APPLET tag embedded in a comment.

The Applet Class
The Applet class defines the methods shown in Table 19-1. Applet provides all
necessary support for applet execution, such as starting and stopping. It also provides
methods that load and display images, and methods that load and play audio clips.
Applet extends the AWT class Panel. In turn, Panel extends Container, which extends
Component. These classes provide support for Java’s window-based, graphical
interface. Thus, Applet provides all of the necessary support for window-based
activities. (The AWT is described in detail in following chapters.)

C h a p t e r 1 9 : T h e A p p l e t C l a s s 629
TH

E
JA

V
A

LIB
R

A
R

YMethod Description

void destroy() Called by the browser just before
an applet is terminated. Your
applet will override this method if it
needs to perform any cleanup prior to
its destruction.

AccessibleContext
getAccessibleContext()

Returns the accessibilty context for the
invoking object.

AppletContext getAppletContext() Returns the context associated with
the applet.

String getAppletInfo() Returns a string that describes
the applet.

AudioClip getAudioClip(URL url) Returns an AudioClip object that
encapsulates the audio clip found at the
location specified by url.

AudioClip getAudioClip(URL url,
String clipName)

Returns an AudioClip object that
encapsulates the audio clip found at the
location specified by url and having the
name specified by clipName.

URL getCodeBase() Returns the URL associated with the
invoking applet.

URL getDocumentBase() Returns the URL of the HTML
document that invokes the applet.

Table 19-1. The Methods Defined by Applet

630 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

Image getImage(URL url) Returns an Image object that
encapsulates the image found at the
location specified by url.

Image getImage(URL url,
String imageName)

Returns an Image object that
encapsulates the image found at the
location specified by url and having the
name specified by imageName.

Locale getLocale() Returns a Locale object that is used
by various locale-sensitive classes
and methods.

String getParameter(String paramName) Returns the parameter associated with
paramName. null is returned if the
specified parameter is not found.

String[] [] getParameterInfo() Returns a String table that describes
the parameters recognized by the
applet. Each entry in the table must
consist of three strings that contain the
name of the parameter, a description of
its type and/or range, and an
explanation of its purpose.

void init() Called when an applet begins
execution. It is the first method called
for any applet.

boolean isActive() Returns true if the applet has been
started. It returns false if the applet has
been stopped.

static final AudioClip
newAudioClip(URL url)

Returns an AudioClip object that
encapsulates the audio clip found at the
location specified by url. This method is
similar to getAudioClip() except that it
is static and can be executed without
the need for an Applet object. (Added
by Java 2)

Table 19-1. The Methods Defined by Applet (continued)

C h a p t e r 1 9 : T h e A p p l e t C l a s s 631
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

void play(URL url) If an audio clip is found at the location
specified by url, the clip is played.

void play(URL url, String clipName) If an audio clip is found at the location
specified by url with the name specified
by clipName, the clip is played.

void resize(Dimension dim) Resizes the applet according to the
dimensions specified by dim.
Dimension is a class stored inside
java.awt. It contains two integer fields:
width and height.

void resize(int width, int height) Resizes the applet according to
the dimensions specified by width
and height.

final void setStub(AppletStub stubObj) Makes stubObj the stub for the applet.
This method is used by the run-time
system and is not usually called by
your applet. A stub is a small piece of
code that provides the linkage between
your applet and the browser.

void showStatus(String str) Displays str in the status window of the
browser or applet viewer. If the
browser does not support a status
window, then no action takes place.

void start() Called by the browser when an applet
should start (or resume) execution. It is
automatically called after init() when
an applet first begins.

void stop() Called by the browser to suspend
execution of the applet. Once stopped,
an applet is restarted when the browser
calls start().

Table 19-1. The Methods Defined by Applet (continued)

Applet Architecture
An applet is a window-based program. As such, its architecture is different from the
so-called normal, console-based programs shown in the first part of this book. If you
are familiar with Windows programming, you will be right at home writing applets.
If not, then there are a few key concepts you must understand.

First, applets are event driven. Although we won’t examine event handling until
the following chapter, it is important to understand in a general way how the
event-driven architecture impacts the design of an applet. An applet resembles a set
of interrupt service routines. Here is how the process works. An applet waits until an
event occurs. The AWT notifies the applet about an event by calling an event handler
that has been provided by the applet. Once this happens, the applet must take
appropriate action and then quickly return control to the AWT. This is a crucial point.
For the most part, your applet should not enter a “mode” of operation in which it
maintains control for an extended period. Instead, it must perform specific actions
in response to events and then return control to the AWT run-time system. In those
situations in which your applet needs to perform a repetitive task on its own (for
example, displaying a scrolling message across its window), you must start an
additional thread of execution. (You will see an example later in this chapter.)

Second, the user initiates interaction with an applet—not the other way around. As
you know, in a nonwindowed program, when the program needs input, it will prompt
the user and then call some input method, such as readLine(). This is not the way it
works in an applet. Instead, the user interacts with the applet as he or she wants, when
he or she wants. These interactions are sent to the applet as events to which the applet
must respond. For example, when the user clicks a mouse inside the applet’s window,
a mouse-clicked event is generated. If the user presses a key while the applet’s window
has input focus, a keypress event is generated. As you will see in later chapters, applets
can contain various controls, such as push buttons and check boxes. When the user
interacts with one of these controls, an event is generated.

While the architecture of an applet is not as easy to understand as that of a
console-based program, Java’s AWT makes it as simple as possible. If you have
written programs for Windows, you know how intimidating that environment can
be. Fortunately, Java’s AWT provides a much cleaner approach that is more
quickly mastered.

An Applet Skeleton
All but the most trivial applets override a set of methods that provides the basic
mechanism by which the browser or applet viewer interfaces to the applet and controls
its execution. Four of these methods—init(), start(), stop(), and destroy()—are
defined by Applet. Another, paint(), is defined by the AWT Component class. Default
implementations for all of these methods are provided. Applets do not need to
override those methods they do not use. However, only very simple applets will not

632 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

need to define all of them. These five methods can be assembled into the skeleton
shown here:

// An Applet skeleton.

import java.awt.*;

import java.applet.*;

/*

<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends Applet {

// Called first.

public void init() {

// initialization

}

/* Called second, after init(). Also called whenever

the applet is restarted. */

public void start() {

// start or resume execution

}

// Called when the applet is stopped.

public void stop() {

// suspends execution

}

/* Called when applet is terminated. This is the last

method executed. */

public void destroy() {

// perform shutdown activities

}

// Called when an applet's window must be restored.

public void paint(Graphics g) {

// redisplay contents of window

}

}

Although this skeleton does not do anything, it can be compiled and run. When run, it
generates the following window when viewed with an applet viewer:

C h a p t e r 1 9 : T h e A p p l e t C l a s s 633
TH

E
JA

V
A

LIB
R

A
R

Y

634 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Applet Initialization and Termination
It is important to understand the order in which the various methods shown in the
skeleton are called. When an applet begins, the AWT calls the following methods, in
this sequence:

1. init()

2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

Let’s look more closely at these methods.

init()
The init() method is the first method to be called. This is where you should initialize
variables. This method is called only once during the run time of your applet.

start()
The start() method is called after init(). It is also called to restart an applet after it has
been stopped. Whereas init() is called once—the first time an applet is loaded—start()
is called each time an applet’s HTML document is displayed onscreen. So, if a user
leaves a web page and comes back, the applet resumes execution at start().

paint()
The paint() method is called each time your applet’s output must be redrawn. This
situation can occur for several reasons. For example, the window in which the applet is
running may be overwritten by another window and then uncovered. Or the applet

window may be minimized and then restored. paint() is also called when the applet
begins execution. Whatever the cause, whenever the applet must redraw its output,
paint() is called. The paint() method has one parameter of type Graphics. This
parameter will contain the graphics context, which describes the graphics environment
in which the applet is running. This context is used whenever output to the applet
is required.

stop()
The stop() method is called when a web browser leaves the HTML document containing
the applet—when it goes to another page, for example. When stop() is called, the
applet is probably running. You should use stop() to suspend threads that don’t need
to run when the applet is not visible. You can restart them when start() is called if the
user returns to the page.

destroy()
The destroy() method is called when the environment determines that your applet
needs to be removed completely from memory. At this point, you should free
up any resources the applet may be using. The stop() method is always called
before destroy().

Overriding update()
In some situations, your applet may need to override another method defined by the
AWT, called update(). This method is called when your applet has requested that a
portion of its window be redrawn. The default version of update() first fills an applet
with the default background color and then calls paint(). If you fill the background
using a different color in paint(), the user will experience a flash of the default
background each time update() is called—that is, whenever the window is repainted.
One way to avoid this problem is to override the update() method so that it performs
all necessary display activities. Then have paint() simply call update(). Thus, for some
applications, the applet skeleton will override paint() and update(), as shown here:

public void update(Graphics g) {

// redisplay your window, here.

}

public void paint(Graphics g) {

update(g);

}

For the examples in this book, we will override update() only when needed.

C h a p t e r 1 9 : T h e A p p l e t C l a s s 635
TH

E
JA

V
A

LIB
R

A
R

Y

Simple Applet Display Methods
As we’ve mentioned, applets are displayed in a window and they use the AWT to
perform input and output. Although we will examine the methods, procedures, and
techniques necessary to fully handle the AWT windowed environment in subsequent
chapters, a few are described here, because we will use them to write sample applets.

As we described in Chapter 12, to output a string to an applet, use drawString(),
which is a member of the Graphics class. Typically, it is called from within either
update() or paint(). It has the following general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the
upper-left corner is location 0,0. The drawString() method will not recognize newline
characters. If you want to start a line of text on another line, you must do so manually,
specifying the precise X,Y location where you want the line to begin. (As you will see in
later chapters, there are techniques that make this process easy.)

To set the background color of an applet’s window, use setBackground(). To set the
foreground color (the color in which text is shown, for example), use setForeground().
These methods are defined by Component, and they have the following general forms:

void setBackground(Color newColor)
void setForeground(Color newColor)

Here, newColor specifies the new color. The class Color defines the constants shown
here that can be used to specify colors:

Color.black Color.magenta

Color.blue Color.orange

Color.cyan Color.pink

Color.darkGray Color.red

Color.gray Color.white

Color.green Color.yellow

Color.lightGray

For example, this sets the background color to green and the text color to red:

setBackground(Color.green);

setForeground(Color.red);

636 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : T h e A p p l e t C l a s s 637
TH

E
JA

V
A

LIB
R

A
R

Y

A good place to set the foreground and background colors is in the init() method.
Of course, you can change these colors as often as necessary during the execution of
your applet. The default foreground color is black. The default background color is
light gray.

You can obtain the current settings for the background and foreground colors by
calling getBackground() and getForeground(), respectively. They are also defined
by Component and are shown here:

Color getBackground()
Color getForeground()

Here is a very simple applet that sets the background color to cyan, the foreground
color to red, and displays a message that illustrates the order in which the init(),
start(), and paint() methods are called when an applet starts up:

/* A simple applet that sets the foreground and

background colors and outputs a string. */

import java.awt.*;

import java.applet.*;

/*

<applet code="Sample" width=300 height=50>

</applet>

*/

public class Sample extends Applet{

String msg;

// set the foreground and background colors.

public void init() {

setBackground(Color.cyan);

setForeground(Color.red);

msg = "Inside init() --";

}

// Initialize the string to be displayed.

public void start() {

msg += " Inside start() --";

}

// Display msg in applet window.

public void paint(Graphics g) {

msg += " Inside paint().";

g.drawString(msg, 10, 30);

}

}

This applet generates the window shown here:

The methods stop() and destroy() are not overridden, because they are not needed
by this simple applet.

Requesting Repainting
As a general rule, an applet writes to its window only when its update() or paint()
method is called by the AWT. This raises an interesting question: How can the applet
itself cause its window to be updated when its information changes? For example, if an
applet is displaying a moving banner, what mechanism does the applet use to update
the window each time this banner scrolls? Remember, one of the fundamental
architectural constraints imposed on an applet is that it must quickly return control to
the AWT run-time system. It cannot create a loop inside paint() that repeatedly scrolls
the banner, for example. This would prevent control from passing back to the AWT.
Given this constraint, it may seem that output to your applet’s window will be difficult
at best. Fortunately, this is not the case. Whenever your applet needs to update the
information displayed in its window, it simply calls repaint().

The repaint() method is defined by the AWT. It causes the AWT run-time
system to execute a call to your applet’s update() method, which, in its default
implementation, calls paint(). Thus, for another part of your applet to output to its
window, simply store the output and then call repaint(). The AWT will then execute
a call to paint(), which can display the stored information. For example, if part of your
applet needs to output a string, it can store this string in a String variable and then call
repaint(). Inside paint(), you will output the string using drawString().

The repaint() method has four forms. Let’s look at each one, in turn. The simplest
version of repaint() is shown here:

void repaint()

This version causes the entire window to be repainted. The following version
specifies a region that will be repainted:

void repaint(int left, int top, int width, int height)

638 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : T h e A p p l e t C l a s s 639
TH

E
JA

V
A

LIB
R

A
R

Y

Here, the coordinates of the upper-left corner of the region are specified by left and
top, and the width and height of the region are passed in width and height. These
dimensions are specified in pixels. You save time by specifying a region to repaint.
Window updates are costly in terms of time. If you need to update only a small portion
of the window, it is more efficient to repaint only that region.

Calling repaint() is essentially a request that your applet be repainted sometime
soon. However, if your system is slow or busy, update() might not be called
immediately. Multiple requests for repainting that occur within a short time can be
collapsed by the AWT in a manner such that update() is only called sporadically. This
can be a problem in many situations, including animation, in which a consistent update
time is necessary. One solution to this problem is to use the following forms of repaint():

void repaint(long maxDelay)
void repaint(long maxDelay, int x, int y, int width, int height)

Here, maxDelay specifies the maximum number of milliseconds that can elapse before
update() is called. Beware, though. If the time elapses before update() can be called, it
isn’t called. There’s no return value or exception thrown, so you must be careful.

It is possible for a method other than paint() or update() to output to an applet’s
window. To do so, it must obtain a graphics context by calling getGraphics() (defined
by Component) and then use this context to output to the window. However, for most
applications, it is better and easier to route window output through paint() and to call
repaint() when the contents of the window change.

A Simple Banner Applet
To demonstrate repaint(), a simple banner applet is developed. This applet scrolls
a message, from right to left, across the applet’s window. Since the scrolling of the
message is a repetitive task, it is performed by a separate thread, created by the applet
when it is initialized. The banner applet is shown here:

/* A simple banner applet.

This applet creates a thread that scrolls

the message contained in msg right to left

across the applet's window.

*/

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleBanner" width=300 height=50>

</applet>

*/

public class SimpleBanner extends Applet implements Runnable {

String msg = " A Simple Moving Banner.";

Thread t = null;

int state;

boolean stopFlag;

// Set colors and initialize thread.

public void init() {

setBackground(Color.cyan);

setForeground(Color.red);

}

// Start thread

public void start() {

t = new Thread(this);

stopFlag = false;

t.start();

}

// Entry point for the thread that runs the banner.

public void run() {

char ch;

// Display banner

for(; ;) {

try {

repaint();

Thread.sleep(250);

ch = msg.charAt(0);

msg = msg.substring(1, msg.length());

msg += ch;

if(stopFlag)

break;

} catch(InterruptedException e) {}

}

}

// Pause the banner.

public void stop() {

640 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

stopFlag = true;

t = null;

}

// Display the banner.

public void paint(Graphics g) {

g.drawString(msg, 50, 30);

}

}

Following is sample output:

Let’s take a close look at how this applet operates. First, notice that SimpleBanner
extends Applet, as expected, but it also implements Runnable. This is necessary, since
the applet will be creating a second thread of execution that will be used to scroll the
banner. Inside init(), the foreground and background colors of the applet are set.

After initialization, the AWT run-time system calls start() to start the applet running.
Inside start(), a new thread of execution is created and assigned to the Thread variable
t. Then, the boolean variable stopFlag, which controls the execution of the applet, is set
to false. Next, the thread is started by a call to t.start(). Remember that t.start() calls a
method defined by Thread, which causes run() to begin executing. It does not cause
a call to the version of start() defined by Applet. These are two separate methods.

Inside run(), the characters in the string contained in msg are repeatedly rotated left.
Between each rotation, a call to repaint() is made. This eventually causes the paint()
method to be called and the current contents of msg is displayed. Between each
iteration, run() sleeps for a quarter of a second. The net effect of run() is that the
contents of msg is scrolled right to left in a constantly moving display. The stopFlag
variable is checked on each iteration. When it is true, the run() method terminates.

If a browser is displaying the applet when a new page is viewed, the stop() method is
called, which sets stopFlag to true, causing run() to terminate. This is the mechanism used
to stop the thread when its page is no longer in view. When the applet is brought back into
view, start() is once again called, which starts a new thread to execute the banner.

C h a p t e r 1 9 : T h e A p p l e t C l a s s 641
TH

E
JA

V
A

LIB
R

A
R

Y

642 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using the Status Window
In addition to displaying information in its window, an applet can also output a
message to the status window of the browser or applet viewer on which it is running.
To do so, call showStatus() with the string that you want displayed. The status window
is a good place to give the user feedback about what is occurring in the applet, suggest
options, or possibly report some types of errors. The status window also makes an
excellent debugging aid, because it gives you an easy way to output information about
your applet.

The following applet demonstrates showStatus():

// Using the Status Window.

import java.awt.*;

import java.applet.*;

/*

<applet code="StatusWindow" width=300 height=50>

</applet>

*/

public class StatusWindow extends Applet{

public void init() {

setBackground(Color.cyan);

}

// Display msg in applet window.

public void paint(Graphics g) {

g.drawString("This is in the applet window.", 10, 20);

showStatus("This is shown in the status window.");

}

}

Sample output from this program is shown here:

The HTML APPLET Tag
The APPLET tag is used to start an applet from both an HTML document and from an
applet viewer. (The newer OBJECT tag also works, but this book will use APPLET.)
An applet viewer will execute each APPLET tag that it finds in a separate window,
while web browsers like Netscape Navigator, Internet Explorer, and HotJava will allow
many applets on a single page. So far, we have been using only a simplified form of the
APPLET tag. Now it is time to take a closer look at it.

The syntax for the standard APPLET tag is shown here. Bracketed items
are optional.

< APPLET
[CODEBASE = codebaseURL]
CODE = appletFile
[ALT = alternateText]
[NAME = appletInstanceName]
WIDTH = pixels HEIGHT = pixels
[ALIGN = alignment]
[VSPACE = pixels] [HSPACE = pixels]

>
[< PARAM NAME = AttributeName VALUE = AttributeValue>]
[< PARAM NAME = AttributeName2 VALUE = AttributeValue>]
. . .
[HTML Displayed in the absence of Java]
</APPLET>

Let’s take a look at each part now.

CODEBASE CODEBASE is an optional attribute that specifies the base URL of the
applet code, which is the directory that will be searched for the applet’s executable
class file (specified by the CODE tag). The HTML document’s URL directory is used as
the CODEBASE if this attribute is not specified. The CODEBASE does not have to be
on the host from which the HTML document was read.

CODE CODE is a required attribute that gives the name of the file containing your
applet’s compiled .class file. This file is relative to the code base URL of the applet,
which is the directory that the HTML file was in or the directory indicated by
CODEBASE if set.

ALT The ALT tag is an optional attribute used to specify a short text message that
should be displayed if the browser understands the APPLET tag but can’t currently
run Java applets. This is distinct from the alternate HTML you provide for browsers
that don’t support applets.

C h a p t e r 1 9 : T h e A p p l e t C l a s s 643
TH

E
JA

V
A

LIB
R

A
R

Y

644 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

NAME NAME is an optional attribute used to specify a name for the applet instance.
Applets must be named in order for other applets on the same page to find them by
name and communicate with them. To obtain an applet by name, use getApplet(),
which is defined by the AppletContext interface.

WIDTH AND HEIGHT WIDTH and HEIGHT are required attributes that give the
size (in pixels) of the applet display area.

ALIGN ALIGN is an optional attribute that specifies the alignment of the applet.
This attribute is treated the same as the HTML IMG tag with these possible values:
LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE,
and ABSBOTTOM.

VSPACE AND HSPACE These attributes are optional. VSPACE specifies the space,
in pixels, above and below the applet. HSPACE specifies the space, in pixels, on each
side of the applet. They’re treated the same as the IMG tag’s VSPACE and HSPACE
attributes.

PARAM NAME AND VALUE The PARAM tag allows you to specify applet-
specific arguments in an HTML page. Applets access their attributes with the
getParameter() method.

HANDLING OLDER BROWSERS Some very old web browsers can’t execute applets
and don’t recognize the APPLET tag. Although these browsers are now nearly extinct
(having been replaced by Java-compatible ones), you may need to deal with them
occasionally. The best way to design your HTML page to deal with such browsers is to
include HTML text and markup within your <applet></applet> tags. If the applet tags
are not recognized by your browser, you will see the alternate markup. If Java is
available, it will consume all of the markup between the <applet></applet> tags and
disregard the alternate markup.

Here’s the HTML to start an applet called SampleApplet in Java and to display a
message in older browsers:

<applet code="SampleApplet" width=200 height=40>

If you were driving a Java powered browser,

you'd see "e;A Sample Applet"e; here.<p>

</applet>

Passing Parameters to Applets
As just discussed, the APPLET tag in HTML allows you to pass parameters to your
applet. To retrieve a parameter, use the getParameter() method. It returns the value of

the specified parameter in the form of a String object. Thus, for numeric and boolean
values, you will need to convert their string representations into their internal formats.
Here is an example that demonstrates passing parameters:

// Use Parameters

import java.awt.*;

import java.applet.*;

/*

<applet code="ParamDemo" width=300 height=80>

<param name=fontName value=Courier>

<param name=fontSize value=14>

<param name=leading value=2>

<param name=accountEnabled value=true>

</applet>

*/

public class ParamDemo extends Applet{

String fontName;

int fontSize;

float leading;

boolean active;

// Initialize the string to be displayed.

public void start() {

String param;

fontName = getParameter("fontName");

if(fontName == null)

fontName = "Not Found";

param = getParameter("fontSize");

try {

if(param != null) // if not found

fontSize = Integer.parseInt(param);

else

fontSize = 0;

} catch(NumberFormatException e) {

fontSize = -1;

}

param = getParameter("leading");

try {

C h a p t e r 1 9 : T h e A p p l e t C l a s s 645
TH

E
JA

V
A

LIB
R

A
R

Y

if(param != null) // if not found

leading = Float.valueOf(param).floatValue();

else

leading = 0;

} catch(NumberFormatException e) {

leading = -1;

}

param = getParameter("accountEnabled");

if(param != null)

active = Boolean.valueOf(param).booleanValue();

}

// Display parameters.

public void paint(Graphics g) {

g.drawString("Font name: " + fontName, 0, 10);

g.drawString("Font size: " + fontSize, 0, 26);

g.drawString("Leading: " + leading, 0, 42);

g.drawString("Account Active: " + active, 0, 58);

}

}

Sample output from this program is shown here:

As the program shows, you should test the return values from getParameter(). If a
parameter isn’t available, getParameter() will return null. Also, conversions to numeric
types must be attempted in a try statement that catches NumberFormatException.
Uncaught exceptions should never occur within an applet.

646 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Improving the Banner Applet
It is possible to use a parameter to enhance the banner applet shown earlier. In the
previous version, the message being scrolled was hard-coded into the applet. However,
passing the message as a parameter allows the banner applet to display a different
message each time it is executed. This improved version is shown here. Notice that the
APPLET tag at the top of the file now specifies a parameter called message that is linked
to a quoted string.

// A parameterized banner

import java.awt.*;

import java.applet.*;

/*

<applet code="ParamBanner" width=300 height=50>

<param name=message value="Java makes the Web move!">

</applet>

*/

public class ParamBanner extends Applet implements Runnable {

String msg;

Thread t = null;

int state;

boolean stopFlag;

// Set colors and initialize thread.

public void init() {

setBackground(Color.cyan);

setForeground(Color.red);

}

// Start thread

public void start() {

msg = getParameter("message");

if(msg == null) msg = "Message not found.";

msg = " " + msg;

t = new Thread(this);

stopFlag = false;

t.start();

}

// Entry point for the thread that runs the banner.

public void run() {

C h a p t e r 1 9 : T h e A p p l e t C l a s s 647
TH

E
JA

V
A

LIB
R

A
R

Y

char ch;

// Display banner

for(; ;) {

try {

repaint();

Thread.sleep(250);

ch = msg.charAt(0);

msg = msg.substring(1, msg.length());

msg += ch;

if(stopFlag)

break;

} catch(InterruptedException e) {}

}

}

// Pause the banner.

public void stop() {

stopFlag = true;

t = null;

}

// Display the banner.

public void paint(Graphics g) {

g.drawString(msg, 50, 30);

}

}

getDocumentBase() and getCodeBase()
Often, you will create applets that will need to explicitly load media and text. Java will
allow the applet to load data from the directory holding the HTML file that started the
applet (the document base) and the directory from which the applet’s class file was
loaded (the code base). These directories are returned as URL objects (described in
Chapter 18) by getDocumentBase() and getCodeBase(). They can be concatenated
with a string that names the file you want to load. To actually load another file, you
will use the showDocument() method defined by the AppletContext interface,
discussed in the next section.

The following applet illustrates these methods:

// Display code and document bases.

648 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : T h e A p p l e t C l a s s 649
TH

E
JA

V
A

LIB
R

A
R

Y

import java.awt.*;

import java.applet.*;

import java.net.*;

/*

<applet code="Bases" width=300 height=50>

</applet>

*/

public class Bases extends Applet{

// Display code and document bases.

public void paint(Graphics g) {

String msg;

URL url = getCodeBase(); // get code base

msg = "Code base: " + url.toString();

g.drawString(msg, 10, 20);

url = getDocumentBase(); // get document base

msg = "Document base: " + url.toString();

g.drawString(msg, 10, 40);

}

}

Sample output from this program is shown here:

AppletContext and showDocument()
One application of Java is to use active images and animation to provide a graphical
means of navigating the Web that is more interesting than the underlined blue
words used by hypertext. To allow your applet to transfer control to another URL,
you must use the showDocument() method defined by the AppletContext interface.

AppletContext is an interface that lets you get information from the applet’s execution
environment. The methods defined by AppletContext are shown in Table 19-2. The
context of the currently executing applet is obtained by a call to the getAppletContext()
method defined by Applet.

Within an applet, once you have obtained the applet’s context, you can bring
another document into view by calling showDocument(). This method has no
return value and throws no exception if it fails, so use it carefully. There are two
showDocument() methods. The method showDocument(URL) displays the document

650 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

Applet getApplet(String appletName) Returns the applet specified by appletName if it is
within the current applet context. Otherwise, null
is returned.

Enumeration getApplets() Returns an enumeration that contains all of the
applets within the current applet context.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the
audio clip found at the location specified by url.

Image getImage(URL url) Returns an Image object that encapsulates the image
found at the location specified by url.

InputStream getStream(String key) Returns the stream linked to key. Keys are linked to
streams by using the setStream() method. A null
reference is returned if no stream is linked to key.
(Added by Java 2, version 1.4)

Iterator getStreamKeys() Returns an iterator for the keys associated with the
invoking object. The keys are linked to streams. See
getStream() and setStream(). (Added by Java 2,
version 1.4)

void setStream(String key,
InputStream strm)

Links the stream specified by strm to the key passed
in key. The key is deleted from the invoking object if
strm is null. (Added by Java 2, version 1.4)

void showDocument(URL url) Brings the document at the URL specified by url
into view. This method may not be supported by
applet viewers.

void showDocument(URL url,
String where)

Brings the document at the URL specified by url
into view. This method may not be supported by
applet viewers. The placement of the document
is specified by where as described in the text.

void showStatus(String str) Displays str in the status window.

Table 19-2. The Abstract Methods Defined by the AppletContext Interface

at the specified URL. The method showDocument(URL, where) displays the specified
document at the specified location within the browser window. Valid arguments for
where are “_self” (show in current frame), “_parent” (show in parent frame), “_top”
(show in topmost frame), and “_blank” (show in new browser window). You can also
specify a name, which causes the document to be shown in a new browser window by
that name.

The following applet demonstrates AppletContext and showDocument().
Upon execution, it obtains the current applet context and uses that context to
transfer control to a file called Test.html. This file must be in the same directory
as the applet. Test.html can contain any valid hypertext that you like.

/* Using an applet context, getCodeBase(),

and showDocument() to display an HTML file.

*/

import java.awt.*;

import java.applet.*;

import java.net.*;

/*

<applet code="ACDemo" width=300 height=50>

</applet>

*/

public class ACDemo extends Applet{

public void start() {

AppletContext ac = getAppletContext();

URL url = getCodeBase(); // get url of this applet

try {

ac.showDocument(new URL(url+"Test.html"));

} catch(MalformedURLException e) {

showStatus("URL not found");

}

}

}

The AudioClip Interface
The AudioClip interface defines these methods: play() (play a clip from the
beginning), stop() (stop playing the clip), and loop() (play the loop continuously).
After you have loaded an audio clip using getAudioClip(), you can use these methods
to play it.

C h a p t e r 1 9 : T h e A p p l e t C l a s s 651
TH

E
JA

V
A

LIB
R

A
R

Y

The AppletStub Interface
The AppletStub interface provides the means by which an applet and the browser (or
applet viewer) communicate. Your code will not typically implement this interface.

Outputting to the Console
Although output to an applet’s window must be accomplished through AWT
methods, such as drawString(), it is still possible to use console output in your
applet—especially for debugging purposes. In an applet, when you call a method
such as System.out.println(), the output is not sent to your applet’s window. Instead,
it appears either in the console session in which you launched the applet viewer or in
the Java console that is available in some browsers. Use of console output for purposes
other than debugging is discouraged, since it violates the design principles of the
graphical interface most users will expect.

652 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 20
Event Handling

653

This chapter examines an important aspect of Java that relates to applets: events. As
explained in Chapter 19, applets are event-driven programs. Thus, event handling
is at the core of successful applet programming. Most events to which your applet

will respond are generated by the user. These events are passed to your applet in a variety
of ways, with the specific method depending upon the actual event. There are several
types of events. The most commonly handled events are those generated by the mouse,
the keyboard, and various controls, such as a push button. Events are supported by the
java.awt.event package.

The chapter begins with an overview of Java’s event handling mechanism. It then
examines the main event classes and interfaces, and develops several examples that
demonstrate the fundamentals of event processing. This chapter also explains how to
use adapter classes, inner classes, and anonymous inner classes to streamline event
handling code. The examples provided in the remainder of this book make frequent
use of these techniques.

Two Event Handling Mechanisms
Before beginning our discussion of event handling, an important point must be made:
The way in which events are handled by an applet changed significantly between the
original version of Java (1.0) and modern versions of Java, beginning with version 1.1.
The 1.0 method of event handling is still supported, but it is not recommended for new
programs. Also, many of the methods that support the old 1.0 event model have been
deprecated. The modern approach is the way that events should be handled by all
new programs, including those written for Java 2, and thus is the method employed
by programs in this book.

The Delegation Event Model
The modern approach to handling events is based on the delegation event model, which
defines standard and consistent mechanisms to generate and process events. Its concept
is quite simple: a source generates an event and sends it to one or more listeners. In this
scheme, the listener simply waits until it receives an event. Once received, the listener
processes the event and then returns. The advantage of this design is that the application
logic that processes events is cleanly separated from the user interface logic that generates
those events. A user interface element is able to “delegate” the processing of an event to
a separate piece of code.

In the delegation event model, listeners must register with a source in order to receive
an event notification. This provides an important benefit: notifications are sent only to
listeners that want to receive them. This is a more efficient way to handle events than the
design used by the old Java 1.0 approach. Previously, an event was propagated up the
containment hierarchy until it was handled by a component. This required components

654 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

to receive events that they did not process, and it wasted valuable time. The delegation
event model eliminates this overhead.

Java also allows you to process events without using the delegation event model. This
can be done by extending an AWT component. This technique is discussed at the end of
Chapter 22. However, the delegation event model is the preferred design for the reasons
just cited.

The following sections define events and describe the roles of sources and listeners.

Events
In the delegation model, an event is an object that describes a state change in a source.
It can be generated as a consequence of a person interacting with the elements in a
graphical user interface. Some of the activities that cause events to be generated are
pressing a button, entering a character via the keyboard, selecting an item in a list, and
clicking the mouse. Many other user operations could also be cited as examples.

Events may also occur that are not directly caused by interactions with a user interface.
For example, an event may be generated when a timer expires, a counter exceeds a
value, a software or hardware failure occurs, or an operation is completed. You are
free to define events that are appropriate for your application.

Event Sources
A source is an object that generates an event. This occurs when the internal state of
that object changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications
about a specific type of event. Each type of event has its own registration method.
Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example,
the method that registers a keyboard event listener is called addKeyListener(). The
method that registers a mouse motion listener is called addMouseMotionListener().
When an event occurs, all registered listeners are notified and receive a copy of the event
object. This is known as multicasting the event. In all cases, notifications are sent only to
listeners that register to receive them.

Some sources may allow only one listener to register. The general form of such
a method is this:

public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException

C h a p t e r 2 0 : E v e n t H a n d l i n g 655
TH

E
JA

V
A

LIB
R

A
R

Y

Here, Type is the name of the event and el is a reference to the event listener. When such an
event occurs, the registered listener is notified. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an interest
in a specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example,
to remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates
events. For example, the Component class provides methods to add and remove
keyboard and mouse event listeners.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major requirements.
First, it must have been registered with one or more sources to receive notifications
about specific types of events. Second, it must implement methods to receive and
process these notifications.

The methods that receive and process events are defined in a set of interfaces found in
java.awt.event. For example, the MouseMotionListener interface defines two methods to
receive notifications when the mouse is dragged or moved. Any object may receive and
process one or both of these events if it provides an implementation of this interface.
Many other listener interfaces are discussed later in this and other chapters.

Event Classes
The classes that represent events are at the core of Java’s event handling mechanism.
Thus, we begin our study of event handling with a tour of the event classes. As you
will see, they provide a consistent, easy-to-use means of encapsulating events.

At the root of the Java event class hierarchy is EventObject, which is in java.util.
It is the superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.
EventObject contains two methods: getSource() and toString(). The getSource()

method returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.
The class AWTEvent, defined within the java.awt package, is a subclass of

EventObject. It is the superclass (either directly or indirectly) of all AWT-based events

656 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

used by the delegation event model. Its getID() method can be used to determine the
type of the event. The signature of this method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 22. At this
point, it is important to know only that all of the other classes discussed in this section
are subclasses of AWTEvent.

To summarize:

■ EventObject is a superclass of all events.

■ AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.

The package java.awt.event defines several types of events that are generated by
various user interface elements. Table 20-1 enumerates the most important of these event
classes and provides a brief description of when they are generated. The most commonly
used constructors and methods in each class are described in the following sections.

C h a p t e r 2 0 : E v e n t H a n d l i n g 657
TH

E
JA

V
A

LIB
R

A
R

Y

Event Class Description

ActionEvent Generated when a button is pressed, a list item is
double-clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized,
or becomes visible.

ContainerEvent Generated when a component is added to or removed
from a container.

FocusEvent Generated when a component gains or loses
keyboard focus.

InputEvent Abstract super class for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also
occurs when a choice selection is made or a checkable
menu item is selected or deselected.

Table 20-1. Main Event Classes in java.awt.event

658 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The ActionEvent Class
An ActionEvent is generated when a button is pressed, a list item is double-clicked,
or a menu item is selected. The ActionEvent class defines four integer constants that
can be used to identify any modifiers associated with an action event: ALT_MASK,
CTRL_MASK, META_MASK, and SHIFT_MASK. In addition, there is an integer
constant, ACTION_PERFORMED, which can be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)
ActionEvent(Object src, int type, String cmd, int modifiers)
ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event
is specified by type, and its command string is cmd. The argument modifiers indicates
which modifier keys (ALT, CTRL, META, and/or SHIFT) were pressed when the event
was generated. The when parameter specifies when the event occurred. The third
constructor was added by Java 2, version 1.4.

You can obtain the command name for the invoking ActionEvent object by using
the getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command
name equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys
(ALT, CTRL, META, and/or SHIFT) were pressed when the event was generated. Its form
is shown here:

Event Class Description

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked,
pressed, or released; also generated when the mouse enters
or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved. (Added by
Java 2, version 1.4)

TextEvent Generated when the value of a text area or text field is
changed.

WindowEvent Generated when a window is activated, closed, deactivated,
deiconified, iconified, opened, or quit.

Table 20-1. Main Event Classes in java.awt.event (continued)

int getModifiers()

Java 2, version 1.4 added the method getWhen() that returns the time at which the event
took place. This is called the event’s timestamp. The getWhen() method is shown here.

long getWhen()

Timestamps were added by ActionEvent to help support the improved input focus
subsystem implemented by Java 2, version 1.4.

The AdjustmentEvent Class
An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment
events. The AdjustmentEvent class defines integer constants that can be used to identify
them. The constants and their meanings are shown here:

BLOCK_DECREMENT The user clicked inside the scroll bar to decrease
its value.

BLOCK_INCREMENT The user clicked inside the scroll bar to increase
its value.

TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked
to decrease its value.

UNIT_INCREMENT The button at the end of the scroll bar was clicked
to increase its value.

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED,
that indicates that a change has occurred.

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id equals
ADJUSTMENT_VALUE_CHANGED. The type of the event is specified by type,
and its associated data is data.

The getAdjustable() method returns the object that generated the event. Its form
is shown here:

Adjustable getAdjustable()

The type of the adjustment event may be obtained by the getAdjustmentType() method.
It returns one of the constants defined by AdjustmentEvent. The general form is
shown here:

int getAdjustmentType()

C h a p t e r 2 0 : E v e n t H a n d l i n g 659
TH

E
JA

V
A

LIB
R

A
R

Y

The amount of the adjustment can be obtained from the getValue() method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the value represented
by that change.

The ComponentEvent Class
A ComponentEvent is generated when the size, position, or visibility of a component
is changed. There are four types of component events. The ComponentEvent class
defines integer constants that can be used to identify them. The constants and their
meanings are shown here:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,
FocusEvent, KeyEvent, MouseEvent, and WindowEvent.

The getComponent() method returns the component that generated the event. It is
shown here:

Component getComponent()

The ContainerEvent Class
A ContainerEvent is generated when a component is added to or removed from a
container. There are two types of container events. The ContainerEvent class defines
int constants that can be used to identify them: COMPONENT_ADDED and
COMPONENT_REMOVED. They indicate that a component has been added
to or removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event
is specified by type, and the component that has been added to or removed from the
container is comp.

660 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

You can obtain a reference to the container that generated this event by using the
getContainer() method, shown here:

Container getContainer()

The getChild() method returns a reference to the component that was added to or
removed from the container. Its general form is shown here:

Component getChild()

The FocusEvent Class
A FocusEvent is generated when a component gains or loses input focus. These events
are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)
FocusEvent(Component src, int type, boolean temporaryFlag)
Focus Event(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event
is specified by type. The argument temporaryFlag is set to true if the focus event is
temporary. Otherwise, it is set to false. (A temporary focus event occurs as a result of
another user interface operation. For example, assume that the focus is in a text field.
If the user moves the mouse to adjust a scroll bar, the focus is temporarily lost.)

The other component involved in the focus change, called the opposite component, is
passed in other. Therefore, if a FOCUS_GAINED event occurred, other will refer to the
component that lost focus. Conversely, if a FOCUS_LOST event occurred, other will refer
to the component that gains focus. The third constructor was added by Java 2, version 1.4.

You can determine the other component by calling getOppositeComponent(),
shown here.

Component getOppositeComponent()

The opposite component is returned. This method was added by Java 2, version 1.4.
The isTemporary() method indicates if this focus change is temporary. Its form is

shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class
The abstract class InputEvent is a subclass of ComponentEvent and is the superclass
for component input events. Its subclasses are KeyEvent and MouseEvent.

C h a p t e r 2 0 : E v e n t H a n d l i n g 661
TH

E
JA

V
A

LIB
R

A
R

Y

InputEvent defines several integer constants that represent any modifiers, such as
the control key being pressed, that might be associated with the event. Originally, the
InputEvent class defined the following eight values to represent the modifiers.

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by keyboard events
and mouse events, and other issues, Java 2, version 1.4 added the following extended
modifier values.

ALT_DOWN_MASK ALT_GRAPH_DOWN_MASK BUTTON1_DOWN_MASK

BUTTON2_DOWN_MASK BUTTON3_DOWN_MASK CTRL_DOWN_MASK

META_DOWN_MASK SHIFT_DOWN_MASK

When writing new code, it is recommended that you use the new, extended modifiers
rather than the original modifiers.

To test if a modifier was pressed at the time an event is generated, use the
isAltDown(), isAltGraphDown(), isControlDown(), isMetaDown(), and
isShiftDown() methods. The forms of these methods are shown here:

boolean isAltDown()
boolean isAltGraphDown()
boolean isControlDown()
boolean isMetaDown()
boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling
the getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by called getModifiersEx(), which is shown here.

int getModifiersEx()

This method was also added by Java 2, version 1.4.

The ItemEvent Class
An ItemEvent is generated when a check box or a list item is clicked or when a checkable
menu item is selected or deselected. (Check boxes and list boxes are described later in this
book.) There are two types of item events, which are identified by the following integer
constants:

662 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

DESELECTED The user deselected an item.

SELECTED The user selected an item.

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED,
that signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this
might be a list or choice element. The type of the event is specified by type. The specific
item that generated the item event is passed in entry. The current state of that item
is in state.

The getItem() method can be used to obtain a reference to the item that generated
an event. Its signature is shown here:

Object getItem()

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable
object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the
ItemSelectable interface.

The getStateChange() method returns the state change (i.e., SELECTED or
DESELECTED) for the event. It is shown here:

int getStateChange()

The KeyEvent Class
A KeyEvent is generated when keyboard input occurs. There are three types
of key events, which are identified by these integer constants: KEY_PRESSED,
KEY_RELEASED, and KEY_TYPED. The first two events are generated when any
key is pressed or released. The last event occurs only when a character is generated.
Remember, not all key presses result in characters. For example, pressing the SHIFT
key does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example,
VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the
numbers and letters. Here are some others:

VK_ENTER VK_ESCAPE VK_CANCEL VK_UP

VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN

VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL

C h a p t e r 2 0 : E v e n t H a n d l i n g 663
TH

E
JA

V
A

LIB
R

A
R

Y

The VK constants specify virtual key codes and are independent of any modifiers, such
as control, shift, or alt.

KeyEvent is a subclass of InputEvent. Here are two of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code)
KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event
is specified by type. The system time at which the key was pressed is passed in when. The
modifiers argument indicates which modifiers were pressed when this key event occurred.
The virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The character
equivalent (if one exists) is passed in ch. If no valid character exists, then ch contains
CHAR_UNDEFINED. For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods, but the most commonly used ones are
getKeyChar(), which returns the character that was entered, and getKeyCode(), which
returns the key code. Their general forms are shown here:

char getKeyChar()
int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.
When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class
There are eight types of mouse events. The MouseEvent class defines the following
integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

MouseEvent is a subclass of InputEvent. Here is one of its constructors.

MouseEvent(Component src, int type, long when, int modifiers,
int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event
is specified by type. The system time at which the mouse event occurred is passed in

664 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

when. The modifiers argument indicates which modifiers were pressed when a mouse
event occurred. The coordinates of the mouse are passed in x and y. The click count is
passed in clicks. The triggersPopup flag indicates if this event causes a pop-up menu to
appear on this platform. Java 2, version 1.4 adds a second constructor which also allows
the button that caused the event to be specified.

The most commonly used methods in this class are getX() and getY(). These
return the X and Y coordinates of the mouse when the event occurred. Their forms
are shown here:

int getX()
int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the
mouse. It is shown here:

Point getPoint()

It returns a Point object that contains the X, Y coordinates in its integer members: x and y.
The translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.
The getClickCount() method obtains the number of mouse clicks for this event.

Its signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear
on this platform. Its form is shown here:

boolean isPopupTrigger()

Java 2, version 1.4 added the getButton() method, shown here.

int getButton()

It returns a value that represents the button that caused the event. The return value
will be one of these constants defined by MouseEvent.

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.

The MouseWheelEvent Class
The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass
of MouseEvent and was added by Java 2, version 1.4. Not all mice have wheels.

C h a p t e r 2 0 : E v e n t H a n d l i n g 665
TH

E
JA

V
A

LIB
R

A
R

Y

If a mouse has a wheel, it is located between the left and right buttons. Mouse wheels
are used for scrolling. MouseWheelEvent defines these two integer constants.

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

MouseWheelEvent defines the following constructor.

MouseWheelEvent(Component src, int type, long when, int modifiers,
int x, int y, int clicks, boolean triggersPopup,
int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event
is specified by type. The system time at which the mouse event occurred is passed in
when. The modifiers argument indicates which modifiers were pressed when the event
occurred. The coordinates of the mouse are passed in x and y. The number of clicks
the wheel has rotated is passed in clicks. The triggersPopup flag indicates if this event
causes a pop-up menu to appear on this platform. The scrollHow value must be either
WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL. The number of units to scroll
is passed in amount. The count parameter indicates the number of rotational units that
the wheel moved.

MouseWheelEvent defines methods that give you access to the wheel event.
To obtain the number of rotational units, call getWheelRotation(), shown here.

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved
counterclockwise. If the value is negative, the wheel moved clockwise.

To obtain the type of scroll, call getScrollType(), shown next.

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.
If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units

to scroll by calling getScrollAmount(). It is shown here.

int getScrollAmount()

The TextEvent Class
Instances of this class describe text events. These are generated by text fields and text
areas when characters are entered by a user or program. TextEvent defines the integer
constant TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

TextEvent(Object src, int type)

666 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, src is a reference to the object that generated this event. The type of the event is
specified by type.

The TextEvent object does not include the characters currently in the text component
that generated the event. Instead, your program must use other methods associated with
the text component to retrieve that information. This operation differs from other event
objects discussed in this section. For this reason, no methods are discussed here for the
TextEvent class. Think of a text event notification as a signal to a listener that it should
retrieve information from a specific text component.

The WindowEvent Class
There are ten types of window events. The WindowEvent class defines integer
constants that can be used to identify them. The constants and their meanings are
shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window
be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.
(Added by Java 2, version 1.4.)

WindowEvent is a subclass of ComponentEvent. It defines several constructors.
The first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.
Java 2, version 1.4 adds the next three constructors.

WindowEvent(Window src, int type, Window other)
WindowEvent(Window src, int type, int fromState, int toState)
WindowEvent(Window src, int type, Window other, int fromState, int toState)

C h a p t e r 2 0 : E v e n t H a n d l i n g 667
TH

E
JA

V
A

LIB
R

A
R

Y

Here, other specifies the opposite window when a focus event occurs. The fromState
specifies the prior state of the window and toState specifies the new state that the
window will have when a window state change occurs.

The most commonly used method in this class is getWindow(). It returns the
Window object that generated the event. Its general form is shown here:

Window getWindow()

Java 2, version 1.4, adds methods that return the opposite window (when a focus event
has occurred), the previous window state, and the current window state. These methods
are shown here:

Window getOppositeWindow()
int getOldState()
int getNewState()

Sources of Events
Table 20-2 lists some of the user interface components that can generate the events described
in the previous section. In addition to these graphical user interface elements, other
components, such as an applet, can generate events. For example, you receive key and
mouse events from an applet. (You may also build your own components that generate
events.) In this chapter we will be handling only mouse and keyboard events, but the
following two chapters will be handling events from the sources shown in Table 20-2.

668 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Event Source Description

Button Generates action events when the button is pressed.

Checkbox Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates
item events when an item is selected or deselected.

Menu Item Generates action events when a menu item is selected; generates item
events when a checkable menu item is selected or deselected.

Scrollbar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed,
deactivated, deiconified, iconified, opened, or quit.

Table 20-2. Event Source Examples

Event Listener Interfaces
As explained, the delegation event model has two parts: sources and listeners. Listeners
are created by implementing one or more of the interfaces defined by the java.awt.event
package. When an event occurs, the event source invokes the appropriate method defined
by the listener and provides an event object as its argument. Table 20-3 lists commonly
used listener interfaces and provides a brief description of the methods that they define.
The following sections examine the specific methods that are contained in each interface.

C h a p t e r 2 0 : E v e n t H a n d l i n g 669
TH

E
JA

V
A

LIB
R

A
R

Y

Interface Description

ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is
hidden, moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is
added to or removed from a container.

FocusListener Defines two methods to recognize when a component gains
or loses keyboard focus.

ItemListener Defines one method to recognize when the state of an
item changes.

KeyListener Defines three methods to recognize when a key is pressed,
released, or typed.

MouseListener Defines five methods to recognize when the mouse is clicked,
enters a component, exits a component, is pressed, or is
released.

MouseMotionListener Defines two methods to recognize when the mouse is
dragged or moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is
moved. (Added by Java 2, version 1.4)

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or
loses input focus. (Added by Java 2, version 1.4)

WindowListener Defines seven methods to recognize when a window is
activated, closed, deactivated, deiconified, iconified, opened,
or quit.

Table 20-3. Commonly Used Event Listener Interfaces

The ActionListener Interface
This interface defines the actionPerformed() method that is invoked when an action
event occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface
This interface defines the adjustmentValueChanged() method that is invoked when
an adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface
This interface defines four methods that are invoked when a component is resized,
moved, shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown(ComponentEvent ce)
void componentHidden(ComponentEvent ce)

The AWT processes the resize and move events. The componentResized() and
componentMoved() methods are provided for notification purposes only.

The ContainerListener Interface
This interface contains two methods. When a component is added to a container,
componentAdded() is invoked. When a component is removed from a container,
componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)
void componentRemoved(ContainerEvent ce)

The FocusListener Interface
This interface defines two methods. When a component obtains keyboard focus,
focusGained() is invoked. When a component loses keyboard focus, focusLost()
is called. Their general forms are shown here:

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

670 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state
of an item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface
This interface defines three methods. The keyPressed() and keyReleased() methods
are invoked when a key is pressed and released, respectively. The keyTyped() method
is invoked when a character has been entered.

For example, if a user presses and releases the A key, three events are generated in
sequence: key pressed, typed, and released. If a user presses and releases the HOME
key, two key events are generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

The MouseListener Interface
This interface defines five methods. If the mouse is pressed and released at the
same point, mouseClicked() is invoked. When the mouse enters a component, the
mouseEntered() method is called. When it leaves, mouseExited() is called. The
mousePressed() and mouseReleased() methods are invoked when the mouse is
pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface defines two methods. The mouseDragged() method is called multiple
times as the mouse is dragged. The mouseMoved() method is called multiple times as
the mouse is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

C h a p t e r 2 0 : E v e n t H a n d l i n g 671
TH

E
JA

V
A

LIB
R

A
R

Y

The MouseWheelListener Interface
This interface defines the mouseWheelMoved() method that is invoked when the
mouse wheel is moved. Its general form is shown here.

void mouseWheelMoved(MouseWheelEvent mwe)

MouseWheelListener was added by Java 2, version 1.4.

The TextListener Interface
This interface defines the textChanged() method that is invoked when a change occurs
in a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

The WindowFocusListener Interface
This interface defines two methods: windowGainedFocus() and windowLostFocus().
These are called when a window gains or losses input focus. Their general forms are
shown here.

void windowGainedFocus(WindowEvent we)
void windowLostFocus(WindowEvent we)

WindowFocusListener was added by Java 2, version 1.4.

The WindowListener Interface
This interface defines seven methods. The windowActivated() and windowDeactivated()
methods are invoked when a window is activated or deactivated, respectively. If a
window is iconified, the windowIconified() method is called. When a window is deiconified,
the windowDeiconified() method is called. When a window is opened or closed,
the windowOpened() or windowClosed() methods are called, respectively. The
windowClosing() method is called when a window is being closed. The general forms
of these methods are

void windowActivated(WindowEvent we)
void windowClosed(WindowEvent we)
void windowClosing(WindowEvent we)
void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowIconified(WindowEvent we)
void windowOpened(WindowEvent we)

672 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using the Delegation Event Model
Now that you have learned the theory behind the delegation event model and have had
an overview of its various components, it is time to see it in practice. Applet programming
using the delegation event model is actually quite easy. Just follow these two steps:

1. Implement the appropriate interface in the listener so that it will receive the
type of event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient
for the event notifications.

Remember that a source may generate several types of events. Each event must be
registered separately. Also, an object may register to receive several types of events,
but it must implement all of the interfaces that are required to receive these events.

To see how the delegation model works in practice, we will look at examples that
handle the two most commonly used event generators: the mouse and keyboard.

Handling Mouse Events
To handle mouse events, you must implement the MouseListener and
the MouseMotionListener interfaces. (You may also want to implement
MouseWheelListener, but we won’t be doing so, here.) The following applet
demonstrates the process. It displays the current coordinates of the mouse in
the applet’s status window. Each time a button is pressed, the word “Down” is
displayed at the location of the mouse pointer. Each time the button is released,
the word “Up” is shown. If a button is clicked, the message “Mouse clicked” is
displayed in the upper-left corner of the applet display area.

As the mouse enters or exits the applet window, a message is displayed in the
upper-left corner of the applet display area. When dragging the mouse, a * is shown,
which tracks with the mouse pointer as it is dragged. Notice that the two variables,
mouseX and mouseY, store the location of the mouse when a mouse pressed, released,
or dragged event occurs. These coordinates are then used by paint() to display output
at the point of these occurrences.

// Demonstrate the mouse event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

C h a p t e r 2 0 : E v e n t H a n d l i n g 673
TH

E
JA

V
A

LIB
R

A
R

Y

public class MouseEvents extends Applet

implements MouseListener, MouseMotionListener {

String msg = "";

int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init() {

addMouseListener(this);

addMouseMotionListener(this);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse clicked.";

repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse entered.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse exited.";

repaint();

}

// Handle button pressed.

674 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display msg in applet window at current X,Y location.

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

}

}

C h a p t e r 2 0 : E v e n t H a n d l i n g 675
TH

E
JA

V
A

LIB
R

A
R

Y

Sample output from this program is shown here:

Let’s look closely at this example. The MouseEvents class extends Applet and
implements both the MouseListener and MouseMotionListener interfaces. These
two interfaces contain methods that receive and process the various types of mouse
events. Notice that the applet is both the source and the listener for these events.
This works because Component, which supplies the addMouseListener() and
addMouseMotionListener() methods, is a superclass of Applet. Being both the
source and the listener for events is a common situation for applets.

Inside init(), the applet registers itself as a listener for mouse events. This is done
by using addMouseListener() and addMouseMotionListener(), which, as mentioned,
are members of Component. They are shown here:

void addMouseListener(MouseListener ml)
void addMouseMotionListener(MouseMotionListener mml)

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the
object receiving mouse motion events. In this program, the same object is used for both.

The applet then implements all of the methods defined by the MouseListener and
MouseMotionListener interfaces. These are the event handlers for the various mouse
events. Each method handles its event and then returns.

Handling Keyboard Events
To handle keyboard events, you use the same general architecture as that shown in the
mouse event example in the preceding section. The difference, of course, is that you
will be implementing the KeyListener interface.

Before looking at an example, it is useful to review how key events are generated.
When a key is pressed, a KEY_PRESSED event is generated. This results in a call to
the keyPressed() event handler. When the key is released, a KEY_RELEASED event
is generated and the keyReleased() handler is executed. If a character is generated by
the keystroke, then a KEY_TYPED event is sent and the keyTyped() handler is invoked.
Thus, each time the user presses a key, at least two and often three events are generated.
If all you care about are actual characters, then you can ignore the information passed by
the key press and release events. However, if your program needs to handle special keys,
such as the arrow or function keys, then it must watch for them through the keyPressed()
handler.

676 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

There is one other requirement that your program must meet before it can process
keyboard events: it must request input focus. To do this, call requestFocus(), which
is defined by Component. If you don’t, then your program will not receive any
keyboard events.

The following program demonstrates keyboard input. It echoes keystrokes to the
applet window and shows the pressed/released status of each key in the status window.

// Demonstrate the key event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SimpleKey" width=300 height=100>

</applet>

*/

public class SimpleKey extends Applet

implements KeyListener {

String msg = "";

int X = 10, Y = 20; // output coordinates

public void init() {

addKeyListener(this);

requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke) {

showStatus("Key Down");

}

public void keyReleased(KeyEvent ke) {

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, X, Y);

}

}

C h a p t e r 2 0 : E v e n t H a n d l i n g 677
TH

E
JA

V
A

LIB
R

A
R

Y

Sample output is shown here:

If you want to handle the special keys, such as the arrow or function keys, you need
to respond to them within the keyPressed() handler. They are not available through
keyTyped(). To identify the keys, you use their virtual key codes. For example, the next
applet outputs the name of a few of the special keys:

// Demonstrate some virtual key codes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="KeyEvents" width=300 height=100>

</applet>

*/

public class KeyEvents extends Applet

implements KeyListener {

String msg = "";

int X = 10, Y = 20; // output coordinates

public void init() {

addKeyListener(this);

requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke) {

showStatus("Key Down");

int key = ke.getKeyCode();

switch(key) {

678 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

case KeyEvent.VK_F1:

msg += "<F1>";

break;

case KeyEvent.VK_F2:

msg += "<F2>";

break;

case KeyEvent.VK_F3:

msg += "<F3>";

break;

case KeyEvent.VK_PAGE_DOWN:

msg += "<PgDn>";

break;

case KeyEvent.VK_PAGE_UP:

msg += "<PgUp>";

break;

case KeyEvent.VK_LEFT:

msg += "<Left Arrow>";

break;

case KeyEvent.VK_RIGHT:

msg += "<Right Arrow>";

break;

}

repaint();

}

public void keyReleased(KeyEvent ke) {

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, X, Y);

}

}

C h a p t e r 2 0 : E v e n t H a n d l i n g 679
TH

E
JA

V
A

LIB
R

A
R

Y

Sample output is shown here:

The procedures shown in the preceding keyboard and mouse event examples can
be generalized to any type of event handling, including those events generated by
controls. In later chapters, you will see many examples that handle other types of
events, but they will all follow the same basic structure as the programs just described.

Adapter Classes
Java provides a special feature, called an adapter class, that can simplify the creation of
event handlers in certain situations. An adapter class provides an empty implementation
of all methods in an event listener interface. Adapter classes are useful when you want to
receive and process only some of the events that are handled by a particular event listener
interface. You can define a new class to act as an event listener by extending one of the
adapter classes and implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged()
and mouseMoved(). The signatures of these empty methods are exactly as defined in the
MouseMotionListener interface. If you were interested in only mouse drag events, then
you could simply extend MouseMotionAdapter and implement mouseDragged(). The
empty implementation of mouseMoved() would handle the mouse motion events for you.

Table 20-4 lists the commonly used adapter classes in java.awt.event and notes the
interface that each implements.

The following example demonstrates an adapter. It displays a message in the status
bar of an applet viewer or browser when the mouse is clicked or dragged. However, all
other mouse events are silently ignored. The program has three classes. AdapterDemo
extends Applet. Its init() method creates an instance of MyMouseAdapter and registers
that object to receive notifications of mouse events. It also creates an instance of
MyMouseMotionAdapter and registers that object to receive notifications of mouse
motion events. Both of the constructors take a reference to the applet as an argument.

MyMouseAdapter implements the mouseClicked() method. The other
mouse events are silently ignored by code inherited from the MouseAdapter class.
MyMouseMotionAdapter implements the mouseDragged() method. The other mouse
motion event is silently ignored by code inherited from the MouseMotionAdapter class.

680 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Note that both of our event listener classes save a reference to the applet. This
information is provided as an argument to their constructors and is used later to
invoke the showStatus() method.

// Demonstrate an adapter.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet {

public void init() {

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter {

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo) {

C h a p t e r 2 0 : E v e n t H a n d l i n g 681
TH

E
JA

V
A

LIB
R

A
R

Y

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Table 20-4. Commonly Used Listener Interfaces Implemented by Adapter Classes

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter {

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

adapterDemo.showStatus("Mouse dragged");

}

}

As you can see by looking at the program, not having to implement all of the
methods defined by the MouseMotionListener and MouseListener interfaces saves
you a considerable amount of effort and prevents your code from becoming cluttered
with empty methods. As an exercise, you might want to try rewriting one of the
keyboard input examples shown earlier so that it uses a KeyAdapter.

Inner Classes
In Chapter 7, the basics of inner classes were explained. Here you will see why they are
important. Recall that an inner class is a class defined within other class, or even within
an expression. This section illustrates how inner classes can be used to simplify the
code when using event adapter classes.

To understand the benefit provided by inner classes, consider the applet shown
in the following listing. It does not use an inner class. Its goal is to display the string
“Mouse Pressed” in the status bar of the applet viewer or browser when the mouse
is pressed. There are two top-level classes in this program. MousePressedDemo
extends Applet, and MyMouseAdapter extends MouseAdapter. The init() method
of MousePressedDemo instantiates MyMouseAdapter and provides this object as
an argument to the addMouseListener() method.

Notice that a reference to the applet is supplied as an argument to the MyMouseAdapter
constructor. This reference is stored in an instance variable for later use by the mousePressed()
method. When the mouse is pressed, it invokes the showStatus() method of the applet

682 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

through the stored applet reference. In other words, showStatus() is invoked relative to
the applet reference stored by MyMouseAdapter.

// This applet does NOT use an inner class.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="MousePressedDemo" width=200 height=100>

</applet>

*/

public class MousePressedDemo extends Applet {

public void init() {

addMouseListener(new MyMouseAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter {

MousePressedDemo mousePressedDemo;

public MyMouseAdapter(MousePressedDemo mousePressedDemo) {

this.mousePressedDemo = mousePressedDemo;

}

public void mousePressed(MouseEvent me) {

mousePressedDemo.showStatus("Mouse Pressed.");

}

}

The following listing shows how the preceding program can be improved
by using an inner class. Here, InnerClassDemo is a top-level class that extends
Applet. MyMouseAdapter is an inner class that extends MouseAdapter. Because
MyMouseAdapter is defined within the scope of InnerClassDemo, it has access to all of
the variables and methods within the scope of that class. Therefore, the mousePressed()
method can call the showStatus() method directly. It no longer needs to do this via a
stored reference to the applet. Thus, it is no longer necessary to pass MyMouseAdapter()
a reference to the invoking object.

// Inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="InnerClassDemo" width=200 height=100>

</applet>

*/

C h a p t e r 2 0 : E v e n t H a n d l i n g 683
TH

E
JA

V
A

LIB
R

A
R

Y

public class InnerClassDemo extends Applet {

public void init() {

addMouseListener(new MyMouseAdapter());

}

class MyMouseAdapter extends MouseAdapter {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}

}

}

Anonymous Inner Classes
An anonymous inner class is one that is not assigned a name. This section illustrates how
an anonymous inner class can facilitate the writing of event handlers. Consider the applet
shown in the following listing. As before, its goal is to display the string “Mouse Pressed”
in the status bar of the applet viewer or browser when the mouse is pressed.

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="AnonymousInnerClassDemo" width=200 height=100>

</applet>

*/

public class AnonymousInnerClassDemo extends Applet {

public void init() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}

});

}

}

There is one top-level class in this program: AnonymousInnerClassDemo. The init()
method calls the addMouseListener() method. Its argument is an expression that defines
and instantiates an anonymous inner class. Let’s analyze this expression carefully.

684 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The syntax new MouseAdapter() { ... } indicates to the compiler that the code
between the braces defines an anonymous inner class. Furthermore, that class extends
MouseAdapter. This new class is not named, but it is automatically instantiated when
this expression is executed.

Because this anonymous inner class is defined within the scope of
AnonymousInnerClassDemo, it has access to all of the variables and methods
within the scope of that class. Therefore, it can call the showStatus() method directly.

As just illustrated, both named and anonymous inner classes solve some annoying
problems in a simple yet effective way. They also allow you to create more efficient code.

C h a p t e r 2 0 : E v e n t H a n d l i n g 685

This page intentionally left blank.

Chapter 21
Introducing the AWT:
Working with Windows,
Graphics, and Text

687

The Abstract Window Toolkit (AWT) was introduced in Chapter 19 because it
provides support for applets. This chapter begins its in-depth examination.
The AWT contains numerous classes and methods that allow you to create

and manage windows. A full description of the AWT would easily fill an entire book.
Therefore, it is not possible to describe in detail every method, instance variable, or
class contained in the AWT. However, this and the following two chapters explain
the techniques needed to effectively use the AWT when creating your own applets or
stand-alone programs. From there, you will be able to explore other parts of the AWT
on your own.

In this chapter, you will learn how to create and manage windows, manage fonts,
output text, and utilize graphics. Chapter 22 describes the various controls, such as
scroll bars and push buttons, supported by the AWT. It also explains further aspects of
Java’s event-handling mechanism. Chapter 23 examines the AWT’s imaging subsystem
and animation.

Although the main purpose of the AWT is to support applet windows, it can
also be used to create stand-alone windows that run in a GUI environment, such as
Windows. Most of the examples are contained in applets, so to run them, you need
to use an applet viewer or a Java-compatible Web browser. A few examples will
demonstrate the creation of stand-alone, windowed programs.

If you have not yet read Chapter 20, please do so now. It provides an overview of event
handling, which is used by many of the examples in this chapter.

AWT Classes
The AWT classes are contained in the java.awt package. It is one of Java’s largest
packages. Fortunately, because it is logically organized in a top-down, hierarchical
fashion, it is easier to understand and use than you might at first believe. Table 21-1
lists some of the many AWT classes.

688 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Class Description

AWTEvent Encapsulates AWT events.

AWTEventMulticaster Dispatches events to multiple listeners.

BorderLayout The border layout manager. Border layouts use five
components: North, South, East, West, and Center.

Button Creates a push button control.

Table 21-1. Some AWT Classes

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 689
TH

E
JA

V
A

LIB
R

A
R

Y

Class Description

Canvas A blank, semantics-free window.

CardLayout The card layout manager. Card layouts emulate
index cards. Only the one on top is showing.

Checkbox Creates a check box control.

CheckboxGroup Creates a group of check box controls.

CheckboxMenuItem Creates an on/off menu item.

Choice Creates a pop-up list.

Color Manages colors in a portable, platform-independent
fashion.

Component An abstract superclass for various AWT components.

Container A subclass of Component that can hold other
components.

Cursor Encapsulates a bitmapped cursor.

Dialog Creates a dialog window.

Dimension Specifies the dimensions of an object. The width is
stored in width, and the height is stored in height.

Event Encapsulates events.

EventQueue Queues events.

FileDialog Creates a window from which a file can be selected.

FlowLayout The flow layout manager. Flow layout positions
components left to right, top to bottom.

Font Encapsulates a type font.

FontMetrics Encapsulates various information related to a font.
This information helps you display text in a window.

Frame Creates a standard window that has a title bar, resize
corners, and a menu bar.

Graphics Encapsulates the graphics context. This context is
used by the various output methods to display
output in a window.

GraphicsDevice Describes a graphics device such as a screen or printer.

Table 21-1. Some AWT Classes (continued)

690 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Class Description

GraphicsEnvironment Describes the collection of available Font and
GraphicsDevice objects.

GridBagConstraints Defines various constraints relating to the
GridBagLayout class.

GridBagLayout The grid bag layout manager. Grid bag layout
displays components subject to the constraints
specified by GridBagConstraints.

GridLayout The grid layout manager. Grid layout displays
components in a two-dimensional grid.

Image Encapsulates graphical images.

Insets Encapsulates the borders of a container.

Label Creates a label that displays a string.

List Creates a list from which the user can choose. Similar
to the standard Windows list box.

MediaTracker Manages media objects.

Menu Creates a pull-down menu.

MenuBar Creates a menu bar.

MenuComponent An abstract class implemented by various menu
classes.

MenuItem Creates a menu item.

MenuShortcut Encapsulates a keyboard shortcut for a menu item.

Panel The simplest concrete subclass of Container.

Point Encapsulates a Cartesian coordinate pair, stored in x
and y.

Polygon Encapsulates a polygon.

PopupMenu Encapsulates a pop-up menu.

PrintJob An abstract class that represents a print job.

Rectangle Encapsulates a rectangle.

Robot Supports automated testing of AWT- based applications.
(Added by Java 2, vl.3)

Scrollbar Creates a scroll bar control.

Table 21-1. Some AWT Classes (continued)

Although the basic structure of the AWT has been the same since Java 1.0, some of the
original methods were deprecated and replaced by new ones when Java 1.1 was released.
For backward-compatibility, Java 2 still supports all the original 1.0 methods. However,
because these methods are not for use with new code, this book does not describe them.

Window Fundamentals
The AWT defines windows according to a class hierarchy that adds functionality and
specificity with each level. The two most common windows are those derived from
Panel, which is used by applets, and those derived from Frame, which creates a
standard window. Much of the functionality of these windows is derived from their
parent classes. Thus, a description of the class hierarchies relating to these two classes
is fundamental to their understanding. Figure 21-1 shows the class hierarchy for Panel
and Frame. Let’s look at each of these classes now.

Component
At the top of the AWT hierarchy is the Component class. Component is an abstract
class that encapsulates all of the attributes of a visual component. All user interface
elements that are displayed on the screen and that interact with the user are subclasses
of Component. It defines over a hundred public methods that are responsible for
managing events, such as mouse and keyboard input, positioning and sizing the
window, and repainting. (You already used many of these methods when you created
applets in Chapters 19 and 20.) A Component object is responsible for remembering
the current foreground and background colors and the currently selected text font.

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 691
TH

E
JA

V
A

LIB
R

A
R

Y

Class Description

ScrollPane A container that provides horizontal and/or vertical
scroll bars for another component.

SystemColor Contains the colors of GUI widgets such as windows,
scroll bars, text, and others.

TextArea Creates a multiline edit control.

TextComponent A superclass for TextArea and TextField.

TextField Creates a single-line edit control.

Toolkit Abstract class implemented by the AWT.

Window Creates a window with no frame, no menu bar,
and no title.

Table 21-1. Some AWT Classes (continued)

Container
The Container class is a subclass of Component. It has additional methods that allow
other Component objects to be nested within it. Other Container objects can be stored
inside of a Container (since they are themselves instances of Component). This makes
for a multileveled containment system. A container is responsible for laying out (that
is, positioning) any components that it contains. It does this through the use of various
layout managers, which you will learn about in Chapter 22.

Panel
The Panel class is a concrete subclass of Container. It doesn’t add any new methods; it
simply implements Container. A Panel may be thought of as a recursively nestable,
concrete screen component. Panel is the superclass for Applet. When screen output is
directed to an applet, it is drawn on the surface of a Panel object. In essence, a Panel is
a window that does not contain a title bar, menu bar, or border. This is why you don’t
see these items when an applet is run inside a browser. When you run an applet using
an applet viewer, the applet viewer provides the title and border.

Other components can be added to a Panel object by its add() method (inherited
from Container). Once these components have been added, you can position and resize
them manually using the setLocation(), setSize(), or setBounds() methods defined by
Component.

692 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 21-1. The class hierarchy for Panel and Frame

Window
The Window class creates a top-level window. A top-level window is not contained
within any other object; it sits directly on the desktop. Generally, you won’t create
Window objects directly. Instead, you will use a subclass of Window called Frame,
described next.

Frame
Frame encapsulates what is commonly thought of as a “window.” It is a subclass of
Window and has a title bar, menu bar, borders, and resizing corners. If you create a
Frame object from within an applet, it will contain a warning message, such as “Java
Applet Window,” to the user that an applet window has been created. This message
warns users that the window they see was started by an applet and not by software
running on their computer. (An applet that could masquerade as a host-based
application could be used to obtain passwords and other sensitive information without
the user’s knowledge.) When a Frame window is created by a program rather than an
applet, a normal window is created.

Canvas
Although it is not part of the hierarchy for applet or frame windows, there is one other
type of window that you will find valuable: Canvas. Canvas encapsulates a blank
window upon which you can draw. You will see an example of Canvas later in this book.

Working with Frame Windows
After the applet, the type of window you will most often create is derived from Frame.
You will use it to create child windows within applets, and top-level or child windows
for applications. As mentioned, it creates a standard-style window.

Here are two of Frame’s constructors:

Frame()
Frame(String title)

The first form creates a standard window that does not contain a title. The second form
creates a window with the title specified by title. Notice that you cannot specify the
dimensions of the window. Instead, you must set the size of the window after it
has been created.

There are several methods you will use when working with Frame windows. They
are examined here.

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 693
TH

E
JA

V
A

LIB
R

A
R

Y

Setting the Window’s Dimensions
The setSize() method is used to set the dimensions of the window. Its signature is
shown here:

void setSize(int newWidth, int newHeight)
void setSize(Dimension newSize)

The new size of the window is specified by newWidth and newHeight, or by the width
and height fields of the Dimension object passed in newSize. The dimensions are
specified in terms of pixels.

The getSize() method is used to obtain the current size of a window. Its signature
is shown here:

Dimension getSize()

This method returns the current size of the window contained within the width and
height fields of a Dimension object.

Hiding and Showing a Window
After a frame window has been created, it will not be visible until you call
setVisible(). Its signature is shown here:

void setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

Setting a Window’s Title
You can change the title in a frame window using setTitle(), which has this
general form:

void setTitle(String newTitle)

Here, newTitle is the new title for the window.

Closing a Frame Window
When using a frame window, your program must remove that window from the
screen when it is closed, by calling setVisible(false). To intercept a window-close
event, you must implement the windowClosing() method of the WindowListener
interface. Inside windowClosing(), you must remove the window from the screen.
The example in the next section illustrates this technique.

694 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 695
TH

E
JA

V
A

LIB
R

A
R

Y

Creating a Frame Window in an Applet
While it is possible to simply create a window by creating an instance of Frame, you
will seldom do so, because you will not be able to do much with it. For example, you
will not be able to receive or process events that occur within it or easily output
information to it. Most of the time, you will create a subclass of Frame. Doing so lets
you override Frame’s methods and event handling.

Creating a new frame window from within an applet is actually quite easy. First, create
a subclass of Frame. Next, override any of the standard window methods, such as init(),
start(), stop(), and paint(). Finally, implement the windowClosing() method of the
WindowListener interface, calling setVisible(false) when the window is closed.

Once you have defined a Frame subclass, you can create an object of that class.
This causes a frame window to come into existence, but it will not be initially visible.
You make it visible by calling setVisible(). When created, the window is given a
default height and width. You can set the size of the window explicitly by calling the
setSize() method.

The following applet creates a subclass of Frame called SampleFrame. A window
of this subclass is instantiated within the init() method of AppletFrame. Notice that
SampleFrame calls Frame’s constructor. This causes a standard frame window to be
created with the title passed in title. This example overrides the applet window’s
start() and stop() methods so that they show and hide the child window, respectively.
This causes the window to be removed automatically when you terminate the applet,
when you close the window, or, if using a browser, when you move to another page.
It also causes the child window to be shown when the browser returns to the applet.

// Create a child frame window from within an applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AppletFrame" width=300 height=50>

</applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame {

SampleFrame(String title) {

super(title);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString("This is in frame window", 10, 40);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Create frame window.

public class AppletFrame extends Applet {

Frame f;

public void init() {

f = new SampleFrame("A Frame Window");

f.setSize(250, 250);

f.setVisible(true);

}

public void start() {

f.setVisible(true);

}

public void stop() {

f.setVisible(false);

}

public void paint(Graphics g) {

g.drawString("This is in applet window", 10, 20);

}

}

Sample output from this program is shown here:

696 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 697
TH

E
JA

V
A

LIB
R

A
R

Y

Handling Events in a Frame Window
Since Frame is a subclass of Component, it inherits all the capabilities defined by
Component. This means that you can use and manage a frame window that you create
just like you manage your applet’s main window. For example, you can override
paint() to display output, call repaint() when you need to restore the window, and
override all event handlers. Whenever an event occurs in a window, the event handlers
defined by that window will be called. Each window handles its own events. For
example, the following program creates a window that responds to mouse events.
The main applet window also responds to mouse events. When you experiment
with this program, you will see that mouse events are sent to the window in which
the event occurs.

// Handle mouse events in both child and applet windows.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="WindowEvents" width=300 height=50>

</applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame

implements MouseListener, MouseMotionListener {

String msg = "";

int mouseX=10, mouseY=40;

int movX=0, movY=0;

SampleFrame(String title) {

super(title);

// register this object to receive its own mouse events

addMouseListener(this);

addMouseMotionListener(this);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

}

// Handle mouse entered.

public void mouseEntered(MouseEvent evtObj) {

// save coordinates

mouseX = 10;

mouseY = 54;

msg = "Mouse just entered child.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent evtObj) {

// save coordinates

mouseX = 10;

mouseY = 54;

msg = "Mouse just left child window.";

repaint();

}

// Handle mouse pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle mouse released.

698 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "*";

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// save coordinates

movX = me.getX();

movY = me.getY();

repaint(0, 0, 100, 60);

}

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

g.drawString("Mouse at " + movX + ", " + movY, 10, 40);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 699
TH

E
JA

V
A

LIB
R

A
R

Y

// Applet window.

public class WindowEvents extends Applet

implements MouseListener, MouseMotionListener {

SampleFrame f;

String msg = "";

int mouseX=0, mouseY=10;

int movX=0, movY=0;

// Create a frame window.

public void init() {

f = new SampleFrame("Handle Mouse Events");

f.setSize(300, 200);

f.setVisible(true);

// register this object to receive its own mouse events

addMouseListener(this);

addMouseMotionListener(this);

}

// Remove frame window when stopping applet.

public void stop() {

f.setVisible(false);

}

// Show frame window when starting applet.

public void start() {

f.setVisible(true);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 24;

msg = "Mouse just entered applet window.";

repaint();

700 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

// Handle mouse exited.

public void mouseExited(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 24;

msg = "Mouse just left applet window.";

repaint();

}

// Handle button pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "*";

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 701
TH

E
JA

V
A

LIB
R

A
R

Y

// save coordinates

movX = me.getX();

movY = me.getY();

repaint(0, 0, 100, 20);

}

// Display msg in applet window.

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

g.drawString("Mouse at " + movX + ", " + movY, 0, 10);

}

}

Sample output from this program is shown here:

Creating a Windowed Program
Although creating applets is the most common use for Java’s AWT, it is possible to
create stand-alone AWT-based applications, too. To do this, simply create an instance
of the window or windows you need inside main(). For example, the following
program creates a frame window that responds to mouse clicks and keystrokes:

// Create an AWT-based application.

import java.awt.*;

702 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

import java.awt.event.*;

import java.applet.*;

// Create a frame window.

public class AppWindow extends Frame {

String keymsg = "This is a test.";

String mousemsg = "";

int mouseX=30, mouseY=30;

public AppWindow() {

addKeyListener(new MyKeyAdapter(this));

addMouseListener(new MyMouseAdapter(this));

addWindowListener(new MyWindowAdapter());

}

public void paint(Graphics g) {

g.drawString(keymsg, 10, 40);

g.drawString(mousemsg, mouseX, mouseY);

}

// Create the window.

public static void main(String args[]) {

AppWindow appwin = new AppWindow();

appwin.setSize(new Dimension(300, 200));

appwin.setTitle("An AWT-Based Application");

appwin.setVisible(true);

}

}

class MyKeyAdapter extends KeyAdapter {

AppWindow appWindow;

public MyKeyAdapter(AppWindow appWindow) {

this.appWindow = appWindow;

}

public void keyTyped(KeyEvent ke) {

appWindow.keymsg += ke.getKeyChar();

appWindow.repaint();

};

}

class MyMouseAdapter extends MouseAdapter {

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 703
TH

E
JA

V
A

LIB
R

A
R

Y

AppWindow appWindow;

public MyMouseAdapter(AppWindow appWindow) {

this.appWindow = appWindow;

}

public void mousePressed(MouseEvent me) {

appWindow.mouseX = me.getX();

appWindow.mouseY = me.getY();

appWindow.mousemsg = "Mouse Down at " + appWindow.mouseX +

", " + appWindow.mouseY;

appWindow.repaint();

}

}

class MyWindowAdapter extends WindowAdapter {

public void windowClosing(WindowEvent we) {

System.exit(0);

}

}

Sample output from this program is shown here:

Once created, a frame window takes on a life of its own. Notice that main() ends
with the call to appwin.setVisible(true). However, the program keeps running until
you close the window. In essence, when creating a windowed application, you will use
main() to launch its top-level window. After that, your program will function as a
GUI-based application, not like the console-based programs used earlier.

Displaying Information Within a Window
In the most general sense, a window is a container for information. Although we have
already output small amounts of text to a window in the preceding examples, we have

704 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

not begun to take advantage of a window’s ability to present high-quality text and
graphics. Indeed, much of the power of the AWT comes from its support for these
items. For this reason, the remainder of this chapter discusses Java’s text-, graphics-,
and font-handling capabilities. As you will see, they are both powerful and flexible.

Working with Graphics
The AWT supports a rich assortment of graphics methods. All graphics are drawn
relative to a window. This can be the main window of an applet, a child window of
an applet, or a stand-alone application window. The origin of each window is at the
top-left corner and is 0,0. Coordinates are specified in pixels. All output to a window
takes place through a graphics context. A graphics context is encapsulated by the
Graphics class and is obtained in two ways:

■ It is passed to an applet when one of its various methods, such as paint() or
update(), is called.

■ It is returned by the getGraphics() method of Component.

For the remainder of the examples in this chapter, we will be demonstrating
graphics in the main applet window. However, the same techniques will apply to any
other window.

The Graphics class defines a number of drawing functions. Each shape can be
drawn edge-only or filled. Objects are drawn and filled in the currently selected
graphics color, which is black by default. When a graphics object is drawn that exceeds
the dimensions of the window, output is automatically clipped. Let’s take a look at
several of the drawing methods.

Drawing Lines
Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)

drawLine() displays a line in the current drawing color that begins at startX,startY and
ends at endX,endY.

The following applet draws several lines:

// Draw lines

import java.awt.*;

import java.applet.*;

/*

<applet code="Lines" width=300 height=200>

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 705
TH

E
JA

V
A

LIB
R

A
R

Y

</applet>

*/

public class Lines extends Applet {

public void paint(Graphics g) {

g.drawLine(0, 0, 100, 100);

g.drawLine(0, 100, 100, 0);

g.drawLine(40, 25, 250, 180);

g.drawLine(75, 90, 400, 400);

g.drawLine(20, 150, 400, 40);

g.drawLine(5, 290, 80, 19);

}

}

Sample output from this program is shown here:

Drawing Rectangles
The drawRect() and fillRect() methods display an outlined and filled rectangle,
respectively. They are shown here:

void drawRect(int top, int left, int width, int height)
void fillRect(int top, int left, int width, int height)

The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle are
specified by width and height.

To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both
shown here:

void drawRoundRect(int top, int left, int width, int height,
int xDiam, int yDiam)

706 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void fillRoundRect(int top, int left, int width, int height,
int xDiam, int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle
is at top,left. The dimensions of the rectangle are specified by width and height. The
diameter of the rounding arc along the X axis is specified by xDiam. The diameter of
the rounding arc along the Y axis is specified by yDiam.

The following applet draws several rectangles:

// Draw rectangles

import java.awt.*;

import java.applet.*;

/*

<applet code="Rectangles" width=300 height=200>

</applet>

*/

public class Rectangles extends Applet {

public void paint(Graphics g) {

g.drawRect(10, 10, 60, 50);

g.fillRect(100, 10, 60, 50);

g.drawRoundRect(190, 10, 60, 50, 15, 15);

g.fillRoundRect(70, 90, 140, 100, 30, 40);

}

}

Sample output from this program is shown here:

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 707
TH

E
JA

V
A

LIB
R

A
R

Y

Drawing Ellipses and Circles
To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods
are shown here:

void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified
by top,left and whose width and height are specified by width and height.
To draw a circle, specify a square as the bounding rectangle.

The following program draws several ellipses:

// Draw Ellipses

import java.awt.*;

import java.applet.*;

/*

<applet code="Ellipses" width=300 height=200>

</applet>

*/

public class Ellipses extends Applet {

public void paint(Graphics g) {

g.drawOval(10, 10, 50, 50);

g.fillOval(100, 10, 75, 50);

g.drawOval(190, 10, 90, 30);

g.fillOval(70, 90, 140, 100);

}

}

Sample output from this program is shown here:

708 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Drawing Arcs
Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int top, int left, int width, int height, int startAngle,
int sweepAngle)

void fillArc(int top, int left, int width, int height, int startAngle,
int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top,left
and whose width and height are specified by width and height. The arc is drawn from
startAngle through the angular distance specified by sweepAngle. Angles are specified
in degrees. Zero degrees is on the horizontal, at the three o’clock position. The arc is
drawn counterclockwise if sweepAngle is positive, and clockwise if sweepAngle is
negative. Therefore, to draw an arc from twelve o’clock to six o’clock, the start angle
would be 90 and the sweep angle 180.

The following applet draws several arcs:

// Draw Arcs

import java.awt.*;

import java.applet.*;

/*

<applet code="Arcs" width=300 height=200>

</applet>

*/

public class Arcs extends Applet {

public void paint(Graphics g) {

g.drawArc(10, 40, 70, 70, 0, 75);

g.fillArc(100, 40, 70, 70, 0, 75);

g.drawArc(10, 100, 70, 80, 0, 175);

g.fillArc(100, 100, 70, 90, 0, 270);

g.drawArc(200, 80, 80, 80, 0, 180);

}

}

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 709
TH

E
JA

V
A

LIB
R

A
R

Y

Sample output from this program is shown here:

Drawing Polygons
It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(),
shown here:

void drawPolygon(int x[], int y[], int numPoints)
void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and
y arrays. The number of points defined by x and y is specified by numPoints. There are
alternative forms of these methods in which the polygon is specified by a Polygon object.

The following applet draws an hourglass shape:

// Draw Polygon

import java.awt.*;

import java.applet.*;

/*

<applet code="HourGlass" width=230 height=210>

</applet>

*/

public class HourGlass extends Applet {

public void paint(Graphics g) {

int xpoints[] = {30, 200, 30, 200, 30};

int ypoints[] = {30, 30, 200, 200, 30};

int num = 5;

g.drawPolygon(xpoints, ypoints, num);

710 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

}

Sample output from this program is shown here:

Sizing Graphics
Often, you will want to size a graphics object to fit the current size of the window in
which it is drawn. To do so, first obtain the current dimensions of the window by
calling getSize() on the window object. It returns the dimensions of the window
encapsulated within a Dimension object. Once you have the current size of the
window, you can scale your graphical output accordingly.

To demonstrate this technique, here is an applet that will start as a 200×200-pixel
square and grow by 25 pixels in width and height with each mouse click until the
applet gets larger than 500×500. At that point, the next click will return it to 200×200,
and the process starts over. Within the window, a rectangle is drawn around the inner
border of the window; within that rectangle, an X is drawn so that it fills the window.
This applet works in appletviewer, but it may not work in a browser window.

// Resizing output to fit the current size of a window.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

/*

<applet code="ResizeMe" width=200 height=200>

</applet>

*/

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 711
TH

E
JA

V
A

LIB
R

A
R

Y

public class ResizeMe extends Applet {

final int inc = 25;

int max = 500;

int min = 200;

Dimension d;

public ResizeMe() {

addMouseListener(new MouseAdapter() {

public void mouseReleased(MouseEvent me) {

int w = (d.width + inc) > max?min :(d.width + inc);

int h = (d.height + inc) > max?min :(d.height + inc);

setSize(new Dimension(w, h));

}

});

}

public void paint(Graphics g) {

d = getSize();

g.drawLine(0, 0, d.width-1, d.height-1);

g.drawLine(0, d.height-1, d.width-1, 0);

g.drawRect(0, 0, d.width-1, d.height-1);

}

}

Working with Color
Java supports color in a portable, device-independent fashion. The AWT color system
allows you to specify any color you want. It then finds the best match for that color,
given the limits of the display hardware currently executing your program or applet.
Thus, your code does not need to be concerned with the differences in the way color is
supported by various hardware devices. Color is encapsulated by the Color class.

As you saw in Chapter 19, Color defines several constants (for example, Color.black)
to specify a number of common colors. You can also create your own colors, using one of
the color constructors. The most commonly used forms are shown here:

Color(int red, int green, int blue)
Color(int rgbValue)
Color(float red, float green, float blue)

The first constructor takes three integers that specify the color as a mix of red, green,
and blue. These values must be between 0 and 255, as in this example:

new Color(255, 100, 100); // light red.

712 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The second color constructor takes a single integer that contains the mix of red, green,
and blue packed into an integer. The integer is organized with red in bits 16 to 23,
green in bits 8 to 15, and blue in bits 0 to 7. Here is an example of this constructor:

int newRed = (0xff000000 | (0xc0 << 16) | (0x00 << 8) | 0x00);

Color darkRed = new Color(newRed);

The final constructor, Color(float, float, float), takes three float values (between 0.0
and 1.0) that specify the relative mix of red, green, and blue.

Once you have created a color, you can use it to set the foreground and/or
background color by using the setForeground() and setBackground() methods
described in Chapter 19. You can also select it as the current drawing color.

Color Methods
The Color class defines several methods that help manipulate colors. They are
examined here.

Using Hue, Saturation, and Brightness
The hue-saturation-brightness (HSB) color model is an alternative to red-green-blue
(RGB) for specifying particular colors. Figuratively, hue is a wheel of color. The hue is
specified with a number between 0.0 and 1.0 (the colors are approximately: red, orange,
yellow, green, blue, indigo, and violet). Saturation is another scale ranging from 0.0 to
1.0, representing light pastels to intense hues. Brightness values also range from 0.0 to
1.0, where 1 is bright white and 0 is black. Color supplies two methods that let you
convert between RGB and HSB. They are shown here:

static int HSBtoRGB(float hue, float saturation, float brightness)
static float[] RGBtoHSB(int red, int green, int blue, float values[])

HSBtoRGB() returns a packed RGB value compatible with the Color(int) constructor.
RGBtoHSB() returns a float array of HSB values corresponding to RGB integers. If
values is not null, then this array is given the HSB values and returned. Otherwise, a
new array is created and the HSB values are returned in it. In either case, the array
contains the hue at index 0, saturation at index 1, and brightness at index 2.

getRed(), getGreen(), getBlue()
You can obtain the red, green, and blue components of a color independently using
getRed(), getGreen(), and getBlue(), shown here:

int getRed()
int getGreen()
int getBlue()

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 713
TH

E
JA

V
A

LIB
R

A
R

Y

Each of these methods returns the RGB color component found in the invoking Color
object in the lower 8 bits of an integer.

getRGB()
To obtain a packed, RGB representation of a color, use getRGB(), shown here:

int getRGB()

The return value is organized as described earlier.

Setting the Current Graphics Color
By default, graphics objects are drawn in the current foreground color. You can change
this color by calling the Graphics method setColor():

void setColor(Color newColor)

Here, newColor specifies the new drawing color.
You can obtain the current color by calling getColor(), shown here:

Color getColor()

A Color Demonstration Applet
The following applet constructs several colors and draws various objects using
these colors:

// Demonstrate color.

import java.awt.*;

import java.applet.*;

/*

<applet code="ColorDemo" width=300 height=200>

</applet>

*/

public class ColorDemo extends Applet {

// draw lines

public void paint(Graphics g) {

Color c1 = new Color(255, 100, 100);

Color c2 = new Color(100, 255, 100);

Color c3 = new Color(100, 100, 255);

g.setColor(c1);

g.drawLine(0, 0, 100, 100);

714 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

g.drawLine(0, 100, 100, 0);

g.setColor(c2);

g.drawLine(40, 25, 250, 180);

g.drawLine(75, 90, 400, 400);

g.setColor(c3);

g.drawLine(20, 150, 400, 40);

g.drawLine(5, 290, 80, 19);

g.setColor(Color.red);

g.drawOval(10, 10, 50, 50);

g.fillOval(70, 90, 140, 100);

g.setColor(Color.blue);

g.drawOval(190, 10, 90, 30);

g.drawRect(10, 10, 60, 50);

g.setColor(Color.cyan);

g.fillRect(100, 10, 60, 50);

g.drawRoundRect(190, 10, 60, 50, 15, 15);

}

}

Setting the Paint Mode
The paint mode determines how objects are drawn in a window. By default, new output
to a window overwrites any preexisting contents. However, it is possible to have new
objects XORed onto the window by using setXORMode(), as follows:

void setXORMode(Color xorColor)

Here, xorColor specifies the color that will be XORed to the window when an object is
drawn. The advantage of XOR mode is that the new object is always guaranteed to be
visible no matter what color the object is drawn over.

To return to overwrite mode, call setPaintMode(), shown here:

void setPaintMode()

In general, you will want to use overwrite mode for normal output, and XOR mode for
special purposes. For example, the following program displays cross hairs that track
the mouse pointer. The cross hairs are XORed onto the window and are always visible,
no matter what the underlying color is.

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 715
TH

E
JA

V
A

LIB
R

A
R

Y

// Demonstrate XOR mode.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="XOR" width=400 height=200>

</applet>

*/

public class XOR extends Applet {

int chsX=100, chsY=100;

public XOR() {

addMouseMotionListener(new MouseMotionAdapter() {

public void mouseMoved(MouseEvent me) {

int x = me.getX();

int y = me.getY();

chsX = x-10;

chsY = y-10;

repaint();

}

});

}

public void paint(Graphics g) {

g.drawLine(0, 0, 100, 100);

g.drawLine(0, 100, 100, 0);

g.setColor(Color.blue);

g.drawLine(40, 25, 250, 180);

g.drawLine(75, 90, 400, 400);

g.setColor(Color.green);

g.drawRect(10, 10, 60, 50);

g.fillRect(100, 10, 60, 50);

g.setColor(Color.red);

g.drawRoundRect(190, 10, 60, 50, 15, 15);

g.fillRoundRect(70, 90, 140, 100, 30, 40);

g.setColor(Color.cyan);

g.drawLine(20, 150, 400, 40);

g.drawLine(5, 290, 80, 19);

// xor cross hairs

g.setXORMode(Color.black);

g.drawLine(chsX-10, chsY, chsX+10, chsY);

716 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

g.drawLine(chsX, chsY-10, chsX, chsY+10);

g.setPaintMode();

}

}

Sample output from this program is shown here:

Working with Fonts
The AWT supports multiple type fonts. Fonts have emerged from the domain of
traditional typesetting to become an important part of computer-generated documents
and displays. The AWT provides flexibility by abstracting font-manipulation
operations and allowing for dynamic selection of fonts.

Beginning with Java 2, fonts have a family name, a logical font name, and a face
name. The family name is the general name of the font, such as Courier. The logical name
specifies a category of font, such as Monospaced. The face name specifies a specific font,
such as Courier Italic.

Fonts are encapsulated by the Font class. Several of the methods defined by Font
are listed in Table 21-2.

The Font class defines these variables:

Variable Meaning

String name Name of the font

float pointSize Size of the font in points

int size Size of the font in points

int style Font style

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 717
TH

E
JA

V
A

LIB
R

A
R

Y

718 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static Font decode(String str) Returns a font given its name.

boolean equals(Object FontObj) Returns true if the invoking object contains
the same font as that specified by FontObj.
Otherwise, it returns false.

String getFamily() Returns the name of the font family to
which the invoking font belongs.

static Font getFont(String property) Returns the font associated with the system
property specified by property. null is
returned if property does not exist.

static Font getFont(String property,
Font defaultFont)

Returns the font associated with the system
property specified by property. The font
specified by defaultFont is returned if
property does not exist.

String getFontName() Returns the face name of the invoking font.
(Added by Java 2)

String getName() Returns the logical name of the
invoking font.

int getSize() Returns the size, in points, of the
invoking font.

int getStyle() Returns the style values of the invoking font.

int hashCode() Returns the hash code associated with the
invoking object.

boolean isBold() Returns true if the font includes the BOLD
style value. Otherwise, false is returned.

boolean isItalic() Returns true if the font includes the ITALIC
style value. Otherwise, false is returned.

boolean isPlain() Returns true if the font includes the PLAIN
style value. Otherwise, false is returned.

String toString() Returns the string equivalent of the
invoking font.

Table 21-2. Some Methods Defined by Font

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 719
TH

E
JA

V
A

LIB
R

A
R

Y

Determining the Available Fonts
When working with fonts, often you need to know which fonts are available on your
machine. To obtain this information, you can use the getAvailableFontFamilyNames()
method defined by the GraphicsEnvironment class. It is shown here:

String[] getAvailableFontFamilyNames()

This method returns an array of strings that contains the names of the available
font families.

In addition, the getAllFonts() method is defined by the GraphicsEnvironment
class. It is shown here:

Font[] getAllFonts()

This method returns an array of Font objects for all of the available fonts.
Since these methods are members of GraphicsEnvironment, you need a

GraphicsEnvironment reference to call them. You can obtain this reference by
using the getLocalGraphicsEnvironment() static method, which is defined
by GraphicsEnvironment. It is shown here:

static GraphicsEnvironment getLocalGraphicsEnvironment()

Here is an applet that shows how to obtain the names of the available font families:

// Display Fonts

/*

<applet code="ShowFonts" width=550 height=60>

</applet>

*/

import java.applet.*;

import java.awt.*;

public class ShowFonts extends Applet {

public void paint(Graphics g) {

String msg = "";

String FontList[];

GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();

FontList = ge.getAvailableFontFamilyNames();

for(int i = 0; i < FontList.length; i++)

msg += FontList[i] + " ";

g.drawString(msg, 4, 16);

}

}

Sample output from this program is shown next. However, when you run this
program, you may see a different list of fonts than the one shown in this illustration.

Prior to Java 2, you would use the method getFontList() defined by the Toolkit class
to obtain a list of fonts. This method is now deprecated and should not be used by
new programs.

Creating and Selecting a Font
To select a new font, you must first construct a Font object that describes that font.
One Font constructor has this general form:

Font(String fontName, int fontStyle, int pointSize)

Here, fontName specifies the name of the desired font. The name can be specified using
either the logical or face name. All Java environments will support the following fonts:
Dialog, DialogInput, Sans Serif, Serif, Monospaced, and Symbol. Dialog is the font used
by your system’s dialog boxes. Dialog is also the default if you don’t explicitly set a
font. You can also use any other fonts supported by your particular environment, but
be careful—these other fonts may not be universally available.

The style of the font is specified by fontStyle. It may consist of one or more of these
three constants: Font.PLAIN, Font.BOLD, and Font.ITALIC. To combine styles, OR
them together. For example, Font.BOLD | Font.ITALIC specifies a bold, italics style.

The size, in points, of the font is specified by pointSize.
To use a font that you have created, you must select it using setFont(), which is

defined by Component. It has this general form:

void setFont(Font fontObj)

Here, fontObj is the object that contains the desired font.
The following program outputs a sample of each standard font. Each time you click

the mouse within its window, a new font is selected and its name is displayed.

720 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Show fonts.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

/*

<applet code="SampleFonts" width=200 height=100>

</applet>

*/

public class SampleFonts extends Applet {

int next = 0;

Font f;

String msg;

public void init() {

f = new Font("Dialog", Font.PLAIN, 12);

msg = "Dialog";

setFont(f);

addMouseListener(new MyMouseAdapter(this));

}

public void paint(Graphics g) {

g.drawString(msg, 4, 20);

}

}

class MyMouseAdapter extends MouseAdapter {

SampleFonts sampleFonts;

public MyMouseAdapter(SampleFonts sampleFonts) {

this.sampleFonts = sampleFonts;

}

public void mousePressed(MouseEvent me) {

// Switch fonts with each mouse click.

sampleFonts.next++;

switch(sampleFonts.next) {

case 0:

sampleFonts.f = new Font("Dialog", Font.PLAIN, 12);

sampleFonts.msg = "Dialog";

break;

case 1:

sampleFonts.f = new Font("DialogInput", Font.PLAIN, 12);

sampleFonts.msg = "DialogInput";

break;

case 2:

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 721
TH

E
JA

V
A

LIB
R

A
R

Y

722 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

sampleFonts.f = new Font("SansSerif", Font.PLAIN, 12);

sampleFonts.msg = "SansSerif";

break;

case 3:

sampleFonts.f = new Font("Serif", Font.PLAIN, 12);

sampleFonts.msg = "Serif";

break;

case 4:

sampleFonts.f = new Font("Monospaced", Font.PLAIN, 12);

sampleFonts.msg = "Monospaced";

break;

}

if(sampleFonts.next == 4) sampleFonts.next = -1;

sampleFonts.setFont(sampleFonts.f);

sampleFonts.repaint();

}

}

Sample output from this program is shown here:

Obtaining Font Information
Suppose you want to obtain information about the currently selected font. To do this,
you must first get the current font by calling getFont(). This method is defined by the
Graphics class, as shown here:

Font getFont()

Once you have obtained the currently selected font, you can retrieve information about
it using various methods defined by Font. For example, this applet displays the name,
family, size, and style of the currently selected font:

// Display font info.

import java.applet.*;

import java.awt.*;

/*

<applet code="FontInfo" width=350 height=60>

</applet>

*/

public class FontInfo extends Applet {

public void paint(Graphics g) {

Font f = g.getFont();

String fontName = f.getName();

String fontFamily = f.getFamily();

int fontSize = f.getSize();

int fontStyle = f.getStyle();

String msg = "Family: " + fontName;

msg += ", Font: " + fontFamily;

msg += ", Size: " + fontSize + ", Style: ";

if((fontStyle & Font.BOLD) == Font.BOLD)

msg += "Bold ";

if((fontStyle & Font.ITALIC) == Font.ITALIC)

msg += "Italic ";

if((fontStyle & Font.PLAIN) == Font.PLAIN)

msg += "Plain ";

g.drawString(msg, 4, 16);

}

}

Managing Text Output Using FontMetrics
As just explained, Java supports a number of fonts. For most fonts, characters are
not all the same dimension—most fonts are proportional. Also, the height of each
character, the length of descenders (the hanging parts of letters, such as y), and the
amount of space between horizontal lines vary from font to font. Further, the point size
of a font can be changed. That these (and other) attributes are variable would not be of
too much consequence except that Java demands that you, the programmer, manually
manage virtually all text output.

Given that the size of each font may differ and that fonts may be changed while
your program is executing, there must be some way to determine the dimensions and
various other attributes of the currently selected font. For example, to write one line of
text after another implies that you have some way of knowing how tall the font is and

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 723
TH

E
JA

V
A

LIB
R

A
R

Y

how many pixels are needed between lines. To fill this need, the AWT includes the
FontMetrics class, which encapsulates various information about a font. Let’s begin by
defining the common terminology used when describing fonts:

Height The top-to-bottom size of the tallest character in the font

Baseline The line that the bottoms of characters are aligned to (not
counting descent)

Ascent The distance from the baseline to the top of a character

Descent The distance from the baseline to the bottom of a character

Leading The distance between the bottom of one line of text and the
top of the next

As you know, we have used the drawString() method in many of the previous
examples. It paints a string in the current font and color, beginning at a specified
location. However, this location is at the left edge of the baseline of the characters, not
at the upper-left corner as is usual with other drawing methods. It is a common error
to draw a string at the same coordinate that you would draw a box. For example, if
you were to draw a rectangle at coordinate 0,0 of your applet, you would see a full
rectangle. If you were to draw the string “Typesetting” at 0,0, you would only see the
tails (or descenders) of the y, p, and g. As you will see, by using font metrics, you can
determine the proper placement of each string that you display.

FontMetrics defines several methods that help you manage text output. The most
commonly used are listed in Table 21-3. These methods help you properly display text
in a window. Let’s look at some examples.

724 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

int bytesWidth(byte b[], int start,
int numBytes)

Returns the width of numBytes characters
held in array b, beginning at start.

int charWidth(char c[], int start,
int numChars)

Returns the width of numChars characters
held in array c, beginning at start.

int charWidth(char c) Returns the width of c.

int charWidth(int c) Returns the width of c.

int getAscent() Returns the ascent of the font.

Table 21-3. Some Methods Defined by FontMetrics

Displaying Multiple Lines of Text
Perhaps the most common use of FontMetrics is to determine the spacing between
lines of text. The second most common use is to determine the length of a string that is
being displayed. Here, you will see how to accomplish these tasks.

In general, to display multiple lines of text, your program must manually keep
track of the current output position. Each time a newline is desired, the Y coordinate
must be advanced to the beginning of the next line. Each time a string is displayed, the
X coordinate must be set to the point at which the string ends. This allows the next
string to be written so that it begins at the end of the preceding one.

To determine the spacing between lines, you can use the value returned by
getLeading(). To determine the total height of the font, add the value returned by
getAscent() to the value returned by getDescent(). You can then use these values to
position each line of text you output. However, in many cases, you will not need to use
these individual values. Often, all that you will need to know is the total height of a
line, which is the sum of the leading space and the font’s ascent and descent values.
The easiest way to obtain this value is to call getHeight(). Simply increment the Y

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 725
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

int getDescent() Returns the descent of the font.

Font getFont() Returns the font.

int getHeight() Returns the height of a line of text. This value
can be used to output multiple lines of text in
a window.

int getLeading() Returns the space between lines of text.

int getMaxAdvance() Returns the width of the widest character. –1
is returned if this value is not available.

int getMaxAscent() Returns the maximum ascent.

int getMaxDescent() Returns the maximum descent.

int[] getWidths() Returns the widths of the first 256 characters.

int stringWidth(String str) Returns the width of the string specified by str.

String toString() Returns the string equivalent of the
invoking object.

Table 21-3. Some Methods Defined by FontMetrics (continued)

coordinate by this value each time you want to advance to the next line when
outputting text.

To start output at the end of previous output on the same line, you must know
the length, in pixels, of each string that you display. To obtain this value, call
stringWidth(). You can use this value to advance the X coordinate each time you
display a line.

The following applet shows how to output multiple lines of text in a window. It
also displays multiple sentences on the same line. Notice the variables curX and curY.
They keep track of the current text output position.

// Demonstrate multiline output.

import java.applet.*;

import java.awt.*;

/*

<applet code="MultiLine" width=300 height=100>

</applet>

*/

public class MultiLine extends Applet {

int curX=0, curY=0; // current position

public void init() {

Font f = new Font("SansSerif", Font.PLAIN, 12);

setFont(f);

}

public void paint(Graphics g) {

FontMetrics fm = g.getFontMetrics();

nextLine("This is on line one.", g);

nextLine("This is on line two.", g);

sameLine(" This is on same line.", g);

sameLine(" This, too.", g);

nextLine("This is on line three.", g);

}

// Advance to next line.

void nextLine(String s, Graphics g) {

FontMetrics fm = g.getFontMetrics();

curY += fm.getHeight(); // advance to next line

curX = 0;

g.drawString(s, curX, curY);

726 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

curX = fm.stringWidth(s); // advance to end of line

}

// Display on same line.

void sameLine(String s, Graphics g) {

FontMetrics fm = g.getFontMetrics();

g.drawString(s, curX, curY);

curX += fm.stringWidth(s); // advance to end of line

}

}

Sample output from this program is shown here:

Centering Text
Here is an example that centers text, left to right, top to bottom, in a window. It obtains
the ascent, descent, and width of the string and computes the position at which it must
be displayed to be centered.

// Center text.

import java.applet.*;

import java.awt.*;

/*

<applet code="CenterText" width=200 height=100>

</applet>

*/

public class CenterText extends Applet {

final Font f = new Font("SansSerif", Font.BOLD, 18);

public void paint(Graphics g) {

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 727
TH

E
JA

V
A

LIB
R

A
R

Y

Dimension d = this.getSize();

g.setColor(Color.white);

g.fillRect(0, 0, d.width,d.height);

g.setColor(Color.black);

g.setFont(f);

drawCenteredString("This is centered.", d.width, d.height, g);

g.drawRect(0, 0, d.width-1, d.height-1);

}

public void drawCenteredString(String s, int w, int h,

Graphics g) {

FontMetrics fm = g.getFontMetrics();

int x = (w - fm.stringWidth(s)) / 2;

int y = (fm.getAscent() + (h - (fm.getAscent()

+ fm.getDescent()))/2);

g.drawString(s, x, y);

}

}

Following is a sample output from this program:

Multiline Text Alignment
If you’ve used a word processor, you’ve seen text aligned so that one or more of
the edges of the text make a straight line. For example, most word processors can
left-justify and/or right-justify text. Most can also center text. In the following
program, you will see how to accomplish these actions.

In the program, the string to be justified is broken into individual words. For each
word, the program keeps track of its length in the current font and automatically
advances to the next line if the word will not fit on the current line. Each completed
line is displayed in the window in the currently selected alignment style. Each time you
click the mouse in the applet’s window, the alignment style is changed. Sample output
from this program is shown here:

728 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Demonstrate text alignment.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

/* <title>Text Layout</title>

<applet code="TextLayout" width=200 height=200>

<param name="text" value="Output to a Java window is actually

quite easy.

As you have seen, the AWT provides support for

fonts, colors, text, and graphics. <P> Of course,

you must effectively utilize these items

if you are to achieve professional results.">

<param name="fontname" value="Serif">

<param name="fontSize" value="14">

</applet>

*/

public class TextLayout extends Applet {

final int LEFT = 0;

final int RIGHT = 1;

final int CENTER = 2;

final int LEFTRIGHT =3;

int align;

Dimension d;

Font f;

FontMetrics fm;

int fontSize;

int fh, bl;

int space;

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 729
TH

E
JA

V
A

LIB
R

A
R

Y

String text;

public void init() {

setBackground(Color.white);

text = getParameter("text");

try {

fontSize = Integer.parseInt(getParameter("fontSize"));}

catch (NumberFormatException e) {

fontSize=14;

}

align = LEFT;

addMouseListener(new MyMouseAdapter(this));

}

public void paint(Graphics g) {

update(g);

}

public void update(Graphics g) {

d = getSize();

g.setColor(getBackground());

g.fillRect(0,0,d.width, d.height);

if(f==null) f = new Font(getParameter("fontname"),

Font.PLAIN, fontSize);

g.setFont(f);

if(fm == null) {

fm = g.getFontMetrics();

bl = fm.getAscent();

fh = bl + fm.getDescent();

space = fm.stringWidth(" ");

}

g.setColor(Color.black);

StringTokenizer st = new StringTokenizer(text);

int x = 0;

int nextx;

int y = 0;

String word, sp;

int wordCount = 0;

String line = "";

while (st.hasMoreTokens()) {

word = st.nextToken();

730 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

if(word.equals("<P>")) {

drawString(g, line, wordCount,

fm.stringWidth(line), y+bl);

line = "";

wordCount = 0;

x = 0;

y = y + (fh * 2);

}

else {

int w = fm.stringWidth(word);

if((nextx = (x+space+w)) > d.width) {

drawString(g, line, wordCount,

fm.stringWidth(line), y+bl);

line = "";

wordCount = 0;

x = 0;

y = y + fh;

}

if(x!=0) {sp = " ";} else {sp = "";}

line = line + sp + word;

x = x + space + w;

wordCount++;

}

}

drawString(g, line, wordCount, fm.stringWidth(line), y+bl);

}

public void drawString(Graphics g, String line,

int wc, int lineW, int y) {

switch(align) {

case LEFT: g.drawString(line, 0, y);

break;

case RIGHT: g.drawString(line, d.width-lineW ,y);

break;

case CENTER: g.drawString(line, (d.width-lineW)/2, y);

break;

case LEFTRIGHT:

if(lineW < (int)(d.width*.75)) {

g.drawString(line, 0, y);

}

else {

int toFill = (int)((d.width - lineW)/wc);

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 731
TH

E
JA

V
A

LIB
R

A
R

Y

int nudge = d.width - lineW - (toFill*wc);

int s = fm.stringWidth(" ");

StringTokenizer st = new StringTokenizer(line);

int x = 0;

while(st.hasMoreTokens()) {

String word = st.nextToken();

g.drawString(word, x, y);

if(nudge>0) {

x = x + fm.stringWidth(word) + space + toFill + 1;

nudge--;

} else {

x = x + fm.stringWidth(word) + space + toFill;

}

}

}

break;

}

}

}

class MyMouseAdapter extends MouseAdapter {

TextLayout tl;

public MyMouseAdapter(TextLayout tl) {

this.tl = tl;

}

public void mouseClicked(MouseEvent me) {

tl.align = (tl.align + 1) % 4;

tl.repaint();

}

}

Let’s take a closer look at how this applet works. The applet first creates several
constants that will be used to determine the alignment style, and then declares several
variables. The init() method obtains the text that will be displayed. It then initializes
the font size in a try-catch block, which will set the font size to 14 if the fontSize
parameter is missing from the HTML. The text parameter is a long string of text,
with the HTML tag <P> as a paragraph separator.

The update() method is the engine for this example. It sets the font and gets the
baseline and font height from a font metrics object. Next, it creates a StringTokenizer
and uses it to retrieve the next token (a string separated by whitespace) from the string
specified by text. If the next token is <P>, it advances the vertical spacing. Otherwise,
update() checks to see if the length of this token in the current font will go beyond the

732 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LIB
R

A
R

Y

width of the column. If the line is full of text or if there are no more tokens, the line is
output by a custom version of drawString().

The first three cases in drawString() are simple. Each aligns the string that is
passed in line to the left or right edge or to the center of the column, depending upon
the alignment style. The LEFTRIGHT case aligns both the left and right sides of the
string. This means that we need to calculate the remaining whitespace (the difference
between the width of the string and the width of the column) and distribute that space
between each of the words. The last method in this class advances the alignment style
each time you click the mouse on the applet’s window.

Exploring Text and Graphics
Although this chapter covers the most important attributes and common techniques
that you will use when displaying text or graphics, it only scratches the surface of
Java’s capabilities. This is an area in which further refinements and enhancements
are expected as Java and the computing environment continue to evolve. For example,
Java 2 added a subsystem to the AWT called Java 2D. Java 2D supports enhanced
control over graphics, including such things as coordinate translations, rotation, and
scaling. It also provides advanced imaging features. If advanced graphics handling is
of interest to you, then you will definitely want to explore Java 2D in detail.

C h a p t e r 2 1 : I n t r o d u c i n g t h e A W T : W o r k i n g w i t h W i n d o w s , G r a p h i c s , a n d T e x t 733

This page intentionally left blank.

Chapter 22
Using AWT Controls,
Layout Managers,
and Menus

735

736 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This chapter continues our exploration of the Abstract Window Toolkit (AWT).
It examines the standard controls and layout managers defined by Java. It also
discusses menus and the menu bar. The chapter includes a discussion of two

high-level components: the dialog box and the file dialog box. It concludes with
another look at event handling.

Controls are components that allow a user to interact with your application in
various ways—for example, a commonly used control is the push button. A layout
manager automatically positions components within a container. Thus, the appearance
of a window is determined by a combination of the controls that it contains and the
layout manager used to position them.

In addition to the controls, a frame window can also include a standard-style menu bar.
Each entry in a menu bar activates a drop-down menu of options from which the user can
choose. A menu bar is always positioned at the top of a window. Although different in
appearance, menu bars are handled in much the same way as are the other controls.

While it is possible to manually position components within a window, doing so is
quite tedious. The layout manager automates this task. For the first part of this chapter,
which introduces the various controls, the default layout manager will be used. This
displays components in a container using left-to-right, top-to-bottom organization.
Once the controls have been covered, the layout managers will be examined. There
you will see how to better manage the positioning of your controls.

Control Fundamentals
The AWT supports the following types of controls:

■ Labels

■ Push buttons

■ Check boxes

■ Choice lists

■ Lists

■ Scroll bars

■ Text editing

These controls are subclasses of Component.

Adding and Removing Controls
To include a control in a window, you must add it to the window. To do this, you must
first create an instance of the desired control and then add it to a window by calling add(),

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 737
TH

E
JA

V
A

LIB
R

A
R

Y

which is defined by Container. The add() method has several forms. The following form
is the one that is used for the first part of this chapter:

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to
compObj is returned. Once a control has been added, it will automatically be visible
whenever its parent window is displayed.

Sometimes you will want to remove a control from a window when the control is
no longer needed. To do this, call remove(). This method is also defined by Container.
It has this general form:

void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls
by calling removeAll().

Responding to Controls
Except for labels, which are passive controls, all controls generate events when they are
accessed by the user. For example, when the user clicks on a push button, an event is
sent that identifies the push button. In general, your program simply implements the
appropriate interface and then registers an event listener for each control that you need
to monitor. As explained in Chapter 20, once a listener has been installed, events are
automatically sent to it. In the sections that follow, the appropriate interface for each
control is specified.

Labels
The easiest control to use is a label. A label is an object of type Label, and it contains a
string, which it displays. Labels are passive controls that do not support any interaction
with the user. Label defines the following constructors:

Label()
Label(String str)
Label(String str, int how)

The first version creates a blank label. The second version creates a label that contains
the string specified by str. This string is left-justified. The third version creates a label that
contains the string specified by str using the alignment specified by how. The value of how
must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

You can set or change the text in a label by using the setText() method. You can
obtain the current label by calling getText(). These methods are shown here:

void setText(String str)
String getText()

For setText(), str specifies the new label. For getText(), the current label is returned.
You can set the alignment of the string within the label by calling setAlignment().

To obtain the current alignment, call getAlignment(). The methods are as follows:

void setAlignment(int how)
int getAlignment()

Here, how must be one of the alignment constants shown earlier.
The following example creates three labels and adds them to an applet:

// Demonstrate Labels

import java.awt.*;

import java.applet.*;

/*

<applet code="LabelDemo" width=300 height=200>

</applet>

*/

public class LabelDemo extends Applet {

public void init() {

Label one = new Label("One");

Label two = new Label("Two");

Label three = new Label("Three");

// add labels to applet window

add(one);

add(two);

add(three);

}

}

Following is the window created by the LabelDemo applet. Notice that the labels are
organized in the window by the default layout manager. Later, you will see how to
control more precisely the placement of the labels.

738 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 739
TH

E
JA

V
A

LIB
R

A
R

Y

Using Buttons
The most widely used control is the push button. A push button is a component that
contains a label and that generates an event when it is pressed. Push buttons are objects
of type Button. Button defines these two constructors:

Button()
Button(String str)

The first version creates an empty button. The second creates a button that contains str
as a label.

After a button has been created, you can set its label by calling setLabel(). You can
retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)
String getLabel()

Here, str becomes the new label for the button.

Handling Buttons
Each time a button is pressed, an action event is generated. This is sent to any listeners
that previously registered an interest in receiving action event notifications from that
component. Each listener implements the ActionListener interface. That interface defines
the actionPerformed() method, which is called when an event occurs. An ActionEvent
object is supplied as the argument to this method. It contains both a reference to the button
that generated the event and a reference to the string that is the label of the button. Usually,
either value may be used to identify the button, as you will see.

Here is an example that creates three buttons labeled “Yes,” “No,” and “Undecided.”
Each time one is pressed, a message is displayed that reports which button has been

pressed. In this version, the label of the button is used to determine which button has
been pressed. The label is obtained by calling the getActionCommand() method on the
ActionEvent object passed to actionPerformed().

// Demonstrate Buttons

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250 height=150>

</applet>

*/

public class ButtonDemo extends Applet implements ActionListener {

String msg = "";

Button yes, no, maybe;

public void init() {

yes = new Button("Yes");

no = new Button("No");

maybe = new Button("Undecided");

add(yes);

add(no);

add(maybe);

yes.addActionListener(this);

no.addActionListener(this);

maybe.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

String str = ae.getActionCommand();

if(str.equals("Yes")) {

msg = "You pressed Yes.";

}

else if(str.equals("No")) {

msg = "You pressed No.";

}

else {

msg = "You pressed Undecided.";

}

740 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

repaint();

}

public void paint(Graphics g) {

g.drawString(msg, 6, 100);

}

}

Sample output from the ButtonDemo program is shown in Figure 22-1.
As mentioned, in addition to comparing button labels, you can also determine

which button has been pressed, by comparing the object obtained from the getSource()
method to the button objects that you added to the window. To do this, you must keep
a list of the objects when they are added. The following applet shows this approach:

// Recognize Button objects.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonList" width=250 height=150>

</applet>

*/

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 741
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 22-1. Sample output from the ButtonDemo applet

public class ButtonList extends Applet implements ActionListener {

String msg = "";

Button bList[] = new Button[3];

public void init() {

Button yes = new Button("Yes");

Button no = new Button("No");

Button maybe = new Button("Undecided");

// store references to buttons as added

bList[0] = (Button) add(yes);

bList[1] = (Button) add(no);

bList[2] = (Button) add(maybe);

// register to receive action events

for(int i = 0; i < 3; i++) {

bList[i].addActionListener(this);

}

}

public void actionPerformed(ActionEvent ae) {

for(int i = 0; i < 3; i++) {

if(ae.getSource() == bList[i]) {

msg = "You pressed " + bList[i].getLabel();

}

}

repaint();

}

public void paint(Graphics g) {

g.drawString(msg, 6, 100);

}

}

In this version, the program stores each button reference in an array when the buttons
are added to the applet window. (Recall that the add() method returns a reference to the
button when it is added.) Inside actionPerformed(), this array is then used to determine
which button has been pressed.

For simple applets, it is usually easier to recognize buttons by their labels. However, in
situations in which you will be changing the label inside a button during the execution of

742 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 743
TH

E
JA

V
A

LIB
R

A
R

Y

your program, or using buttons that have the same label, it may be easier to determine
which button has been pushed by using its object reference.

Applying Check Boxes
A check box is a control that is used to turn an option on or off. It consists of a small box
that can either contain a check mark or not. There is a label associated with each check
box that describes what option the box represents. You change the state of a check box
by clicking on it. Check boxes can be used individually or as part of a group. Check
boxes are objects of the Checkbox class.

Checkbox supports these constructors:

Checkbox()
Checkbox(String str)
Checkbox(String str, boolean on)
Checkbox(String str, boolean on, CheckboxGroup cbGroup)
Checkbox(String str, CheckboxGroup cbGroup, boolean on)

The first form creates a check box whose label is initially blank. The state of the check
box is unchecked. The second form creates a check box whose label is specified by str.
The state of the check box is unchecked. The third form allows you to set the initial
state of the check box. If on is true, the check box is initially checked; otherwise, it is
cleared. The fourth and fifth forms create a check box whose label is specified by str
and whose group is specified by cbGroup. If this check box is not part of a group, then
cbGroup must be null. (Check box groups are described in the next section.) The value
of on determines the initial state of the check box.

To retrieve the current state of a check box, call getState(). To set its state, call
setState(). You can obtain the current label associated with a check box by calling
getLabel(). To set the label, call setLabel(). These methods are as follows:

boolean getState()
void setState(boolean on)
String getLabel()
void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The string passed
in str becomes the new label associated with the invoking check box.

Handling Check Boxes
Each time a check box is selected or deselected, an item event is generated. This is sent to
any listeners that previously registered an interest in receiving item event notifications
from that component. Each listener implements the ItemListener interface. That interface

744 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

defines the itemStateChanged() method. An ItemEvent object is supplied as the argument
to this method. It contains information about the event (for example, whether it was
a selection or deselection).

The following program creates four check boxes. The initial state of the first box is
checked. The status of each check box is displayed. Each time you change the state of
a check box, the status display is updated.

// Demonstrate check boxes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CheckboxDemo" width=250 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener {

String msg = "";

Checkbox Win98, winNT, solaris, mac;

public void init() {

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

add(Win98);

add(winNT);

add(solaris);

add(mac);

Win98.addItemListener(this);

winNT.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";

g.drawString(msg, 6, 80);

msg = " Windows 98/XP: " + Win98.getState();

g.drawString(msg, 6, 100);

msg = " Windows NT/2000: " + winNT.getState();

g.drawString(msg, 6, 120);

msg = " Solaris: " + solaris.getState();

g.drawString(msg, 6, 140);

msg = " MacOS: " + mac.getState();

g.drawString(msg, 6, 160);

}

}

Sample output is shown in Figure 22-2.

CheckboxGroup
It is possible to create a set of mutually exclusive check boxes in which one and only one
check box in the group can be checked at any one time. These check boxes are often called
radio buttons, because they act like the station selector on a car radio—only one station can

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 745
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 22-2. Sample output from the CheckboxDemo applet

be selected at any one time. To create a set of mutually exclusive check boxes, you must
first define the group to which they will belong and then specify that group when you
construct the check boxes. Check box groups are objects of type CheckboxGroup. Only
the default constructor is defined, which creates an empty group.

You can determine which check box in a group is currently selected by calling
getSelectedCheckbox(). You can set a check box by calling setSelectedCheckbox().
These methods are as follows:

Checkbox getSelectedCheckbox()
void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously selected check
box will be turned off.

Here is a program that uses check boxes that are part of a group:

// Demonstrate check box group.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CBGroup" width=250 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener {

String msg = "";

Checkbox Win98, winNT, solaris, mac;

CheckboxGroup cbg;

public void init() {

cbg = new CheckboxGroup();

Win98 = new Checkbox("Windows 98/XP", cbg, true);

winNT = new Checkbox("Windows NT/2000", cbg, false);

solaris = new Checkbox("Solaris", cbg, false);

mac = new Checkbox("MacOS", cbg, false);

add(Win98);

add(winNT);

add(solaris);

add(mac);

Win98.addItemListener(this);

746 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

winNT.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current selection: ";

msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100);

}

}

Output generated by the CBGroup applet is shown in Figure 22-3. Notice that the
check boxes are now circular in shape.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 747
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 22-3. Sample output from the CBGroup applet

Choice Controls
The Choice class is used to create a pop-up list of items from which the user may
choose. Thus, a Choice control is a form of menu. When inactive, a Choice component
takes up only enough space to show the currently selected item. When the user clicks
on it, the whole list of choices pops up, and a new selection can be made. Each item
in the list is a string that appears as a left-justified label in the order it is added to the
Choice object. Choice only defines the default constructor, which creates an empty list.

To add a selection to the list, call add(). It has this general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order
in which calls to add() occur.

To determine which item is currently selected, you may call either getSelectedItem()
or getSelectedIndex(). These methods are shown here:

String getSelectedItem()
int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.
getSelectedIndex() returns the index of the item. The first item is at index 0. By
default, the first item added to the list is selected.

To obtain the number of items in the list, call getItemCount(). You can set the
currently selected item using the select() method with either a zero-based integer
index or a string that will match a name in the list. These methods are shown here:

int getItemCount()
void select(int index)
void select(String name)

Given an index, you can obtain the name associated with the item at that index by
calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Choice Lists
Each time a choice is selected, an item event is generated. This is sent to any listeners
that previously registered an interest in receiving item event notifications from that
component. Each listener implements the ItemListener interface. That interface defines
the itemStateChanged() method. An ItemEvent object is supplied as the argument to
this method.

748 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 749
TH

E
JA

V
A

LIB
R

A
R

Y

Here is an example that creates two Choice menus. One selects the operating
system. The other selects the browser.

// Demonstrate Choice lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300 height=180>

</applet>

*/

public class ChoiceDemo extends Applet implements ItemListener {

Choice os, browser;

String msg = "";

public void init() {

os = new Choice();

browser = new Choice();

// add items to os list

os.add("Windows 98/XP");

os.add("Windows NT/2000");

os.add("Solaris");

os.add("MacOS");

// add items to browser list

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("Internet Explorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

browser.select("Netscape 4.x");

// add choice lists to window

add(os);

add(browser);

// register to receive item events

os.addItemListener(this);

browser.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current selections.

public void paint(Graphics g) {

msg = "Current OS: ";

msg += os.getSelectedItem();

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Sample output is shown in Figure 22-4.

750 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 22-4. Sample output from the ChoiceDemo applet

Using Lists
The List class provides a compact, multiple-choice, scrolling selection list. Unlike the
Choice object, which shows only the single selected item in the menu, a List object can
be constructed to show any number of choices in the visible window. It can also be
created to allow multiple selections. List provides these constructors:

List()
List(int numRows)
List(int numRows, boolean multipleSelect)

The first version creates a List control that allows only one item to be selected at any
one time. In the second form, the value of numRows specifies the number of entries in
the list that will always be visible (others can be scrolled into view as needed). In the
third form, if multipleSelect is true, then the user may select two or more items at a time.
If it is false, then only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)
void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the
end of the list. The second form adds the item at the index specified by index. Indexing
begins at zero. You can specify –1 to add the item to the end of the list.

For lists that allow only single selection, you can determine which item is currently
selected by calling either getSelectedItem() or getSelectedIndex(). These methods are
shown here:

String getSelectedItem()
int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item. If
more than one item is selected or if no selection has yet been made, null is returned.
getSelectedIndex() returns the index of the item. The first item is at index 0. If more
than one item is selected, or if no selection has yet been made, –1 is returned.

For lists that allow multiple selection, you must use either getSelectedItems() or
getSelectedIndexes(), shown here, to determine the current selections:

String[] getSelectedItems()
int[] getSelectedIndexes()

getSelectedItems() returns an array containing the names of the currently selected
items. getSelectedIndexes() returns an array containing the indexes of the currently
selected items.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 751
TH

E
JA

V
A

LIB
R

A
R

Y

752 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To obtain the number of items in the list, call getItemCount(). You can set the
currently selected item by using the select() method with a zero-based integer index.
These methods are shown here:

int getItemCount()
void select(int index)

Given an index, you can obtain the name associated with the item at that index by
calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Lists
To process list events, you will need to implement the ActionListener interface.
Each time a List item is double-clicked, an ActionEvent object is generated. Its
getActionCommand() method can be used to retrieve the name of the newly selected
item. Also, each time an item is selected or deselected with a single click, an ItemEvent
object is generated. Its getStateChange() method can be used to determine whether a
selection or deselection triggered this event. getItemSelectable() returns a reference
to the object that triggered this event.

Here is an example that converts the Choice controls in the preceding section into
List components, one multiple choice and the other single choice:

// Demonstrate Lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener {

List os, browser;

String msg = "";

public void init() {

os = new List(4, true);

browser = new List(4, false);

// add items to os list

os.add("Windows 98/XP");

os.add("Windows NT/2000");

os.add("Solaris");

os.add("MacOS");

// add items to browser list

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("Internet Explorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

browser.select(1);

// add lists to window

add(os);

add(browser);

// register to receive action events

os.addActionListener(this);

browser.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

repaint();

}

// Display current selections.

public void paint(Graphics g) {

int idx[];

msg = "Current OS: ";

idx = os.getSelectedIndexes();

for(int i=0; i<idx.length; i++)

msg += os.getItem(idx[i]) + " ";

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 753
TH

E
JA

V
A

LIB
R

A
R

Y

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Sample output generated by the ListDemo applet is shown in Figure 22-5. Notice that
the browser list has a scroll bar, since all of the items won’t fit in the number of rows
specified when it is created.

Managing Scroll Bars
Scroll bars are used to select continuous values between a specified minimum and
maximum. Scroll bars may be oriented horizontally or vertically. A scroll bar is actually
a composite of several individual parts. Each end has an arrow that you can click to move
the current value of the scroll bar one unit in the direction of the arrow. The current value
of the scroll bar relative to its minimum and maximum values is indicated by the slider box
(or thumb) for the scroll bar. The slider box can be dragged by the user to a new position.
The scroll bar will then reflect this value. In the background space on either side of the

754 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 22-5. Sample output from the ListDemo applet

thumb, the user can click to cause the thumb to jump in that direction by some increment
larger than 1. Typically, this action translates into some form of page up and page down.
Scroll bars are encapsulated by the Scrollbar class.

Scrollbar defines the following constructors:

Scrollbar()
Scrollbar(int style)
Scrollbar(int style, int initialValue, int thumbSize, int min, int max)

The first form creates a vertical scroll bar. The second and third forms allow you to
specify the orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll
bar is created. If style is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the
third form of the constructor, the initial value of the scroll bar is passed in initialValue.
The number of units represented by the height of the thumb is passed in thumbSize.
The minimum and maximum values for the scroll bar are specified by min and max.

If you construct a scroll bar by using one of the first two constructors, then you
need to set its parameters by using setValues(), shown here, before it can be used:

void setValues(int initialValue, int thumbSize, int min, int max)

The parameters have the same meaning as they have in the third constructor just
described.

To obtain the current value of the scroll bar, call getValue(). It returns the current
setting. To set the current value, call setValue(). These methods are as follows:

int getValue()
void setValue(int newValue)

Here, newValue specifies the new value for the scroll bar. When you set a value, the
slider box inside the scroll bar will be positioned to reflect the new value.

You can also retrieve the minimum and maximum values via getMinimum() and
getMaximum(), shown here:

int getMinimum()
int getMaximum()

They return the requested quantity.
By default, 1 is the increment added to or subtracted from the scroll bar each

time it is scrolled up or down one line. You can change this increment by calling
setUnitIncrement(). By default, page-up and page-down increments are 10. You can
change this value by calling setBlockIncrement(). These methods are shown here:

void setUnitIncrement(int newIncr)
void setBlockIncrement(int newIncr)

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 755
TH

E
JA

V
A

LIB
R

A
R

Y

Handling Scroll Bars
To process scroll bar events, you need to implement the AdjustmentListener interface.
Each time a user interacts with a scroll bar, an AdjustmentEvent object is generated.
Its getAdjustmentType() method can be used to determine the type of the adjustment.
The types of adjustment events are as follows:

BLOCK_DECREMENT A page-down event has been generated.

BLOCK_INCREMENT A page-up event has been generated.

TRACK An absolute tracking event has been generated.

UNIT_DECREMENT The line-down button in a scroll bar has been pressed.

UNIT_INCREMENT The line-up button in a scroll bar has been pressed.

The following example creates both a vertical and a horizontal scroll bar. The
current settings of the scroll bars are displayed. If you drag the mouse while inside
the window, the coordinates of each drag event are used to update the scroll bars.
An asterisk is displayed at the current drag position.

// Demonstrate scroll bars.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet

implements AdjustmentListener, MouseMotionListener {

String msg = "";

Scrollbar vertSB, horzSB;

public void init() {

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

vertSB = new Scrollbar(Scrollbar.VERTICAL,

0, 1, 0, height);

horzSB = new Scrollbar(Scrollbar.HORIZONTAL,

0, 1, 0, width);

756 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

add(vertSB);

add(horzSB);

// register to receive adjustment events

vertSB.addAdjustmentListener(this);

horzSB.addAdjustmentListener(this);

addMouseMotionListener(this);

}

public void adjustmentValueChanged(AdjustmentEvent ae) {

repaint();

}

// Update scroll bars to reflect mouse dragging.

public void mouseDragged(MouseEvent me) {

int x = me.getX();

int y = me.getY();

vertSB.setValue(y);

horzSB.setValue(x);

repaint();

}

// Necessary for MouseMotionListener

public void mouseMoved(MouseEvent me) {

}

// Display current value of scroll bars.

public void paint(Graphics g) {

msg = "Vertical: " + vertSB.getValue();

msg += ", Horizontal: " + horzSB.getValue();

g.drawString(msg, 6, 160);

// show current mouse drag position

g.drawString("*", horzSB.getValue(),

vertSB.getValue());

}

}

Sample output from the SBDemo applet is shown in Figure 22-6.

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 757

Using a TextField
The TextField class implements a single-line text-entry area, usually called an edit control.
Text fields allow the user to enter strings and to edit the text using the arrow keys, cut and
paste keys, and mouse selections. TextField is a subclass of TextComponent. TextField
defines the following constructors:

TextField()
TextField(int numChars)
TextField(String str)
TextField(String str, int numChars)

The first version creates a default text field. The second form creates a text field that
is numChars characters wide. The third form initializes the text field with the string
contained in str. The fourth form initializes a text field and sets its width.

TextField (and its superclass TextComponent) provides several methods that allow
you to utilize a text field. To obtain the string currently contained in the text field, call
getText(). To set the text, call setText(). These methods are as follows:

String getText()
void setText(String str)

Here, str is the new string.

758 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 22-6. Sample output from the SBDemo applet

The user can select a portion of the text in a text field. Also, you can select a portion
of text under program control by using select(). Your program can obtain the currently
selected text by calling getSelectedText(). These methods are shown here:

String getSelectedText()
void select(int startIndex, int endIndex)

getSelectedText() returns the selected text. The select() method selects the characters
beginning at startIndex and ending at endIndex–1.

You can control whether the contents of a text field may be modified by the user
by calling setEditable(). You can determine editability by calling isEditable(). These
methods are shown here:

boolean isEditable()
void setEditable(boolean canEdit)

isEditable() returns true if the text may be changed and false if not. In setEditable(),
if canEdit is true, the text may be changed. If it is false, the text cannot be altered.

There may be times when you will want the user to enter text that is not displayed,
such as a password. You can disable the echoing of the characters as they are typed
by calling setEchoChar(). This method specifies a single character that the TextField
will display when characters are entered (thus, the actual characters typed will not be
shown). You can check a text field to see if it is in this mode with the echoCharIsSet()
method. You can retrieve the echo character by calling the getEchoChar() method.
These methods are as follows:

void setEchoChar(char ch)
boolean echoCharIsSet()
char getEchoChar()

Here, ch specifies the character to be echoed.

Handling a TextField
Since text fields perform their own editing functions, your program generally will not
respond to individual key events that occur within a text field. However, you may want
to respond when the user presses ENTER. When this occurs, an action event is generated.

Here is an example that creates the classic user name and password screen:

// Demonstrate text field.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 759
TH

E
JA

V
A

LIB
R

A
R

Y

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet

implements ActionListener {

TextField name, pass;

public void init() {

Label namep = new Label("Name: ", Label.RIGHT);

Label passp = new Label("Password: ", Label.RIGHT);

name = new TextField(12);

pass = new TextField(8);

pass.setEchoChar('?');

add(namep);

add(name);

add(passp);

add(pass);

// register to receive action events

name.addActionListener(this);

pass.addActionListener(this);

}

// User pressed Enter.

public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Selected text in name: "

+ name.getSelectedText(), 6, 80);

g.drawString("Password: " + pass.getText(), 6, 100);

}

}

Sample output from the TextFieldDemo applet is shown in Figure 22-7.

760 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using a TextArea
Sometimes a single line of text input is not enough for a given task. To handle these
situations, the AWT includes a simple multiline editor called TextArea. Following are
the constructors for TextArea:

TextArea()
TextArea(int numLines, int numChars)
TextArea(String str)
TextArea(String str, int numLines, int numChars)
TextArea(String str, int numLines, int numChars, int sBars)

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its
width, in characters. Initial text can be specified by str. In the fifth form you can specify
the scroll bars that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(), setText(),
getSelectedText(), select(), isEditable(), and setEditable() methods described in the
preceding section.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 761
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 22-7. Sample output from the TextFieldDemo applet

762 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TextArea adds the following methods:

void append(String str)
void insert(String str, int index)
void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of the current
text. insert() inserts the string passed in str at the specified index. To replace text,
call replaceRange(). It replaces the characters from startIndex to endIndex–1, with
the replacement text passed in str.

Text areas are almost self-contained controls. Your program incurs virtually no
management overhead. Text areas only generate got-focus and lost-focus events.
Normally, your program simply obtains the current text when it is needed.

The following program creates a TextArea control:

// Demonstrate TextArea.

import java.awt.*;

import java.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250>

</applet>

*/

public class TextAreaDemo extends Applet {

public void init() {

String val = "There are two ways of constructing " +

"a software design.\n" +

"One way is to make it so simple\n" +

"that there are obviously no deficiencies.\n" +

"And the other way is to make it so complicated\n" +

"that there are no obvious deficiencies.\n\n" +

" -C.A.R. Hoare\n\n" +

"There's an old story about the person who wished\n" +

"his computer were as easy to use as his telephone.\n" +

"That wish has come true,\n" +

"since I no longer know how to use my telephone.\n\n" +

" -Bjarne Stroustrup, AT&T, (inventor of C++)";

TextArea text = new TextArea(val, 10, 30);

add(text);

}

}

Here is sample output from the TextAreaDemo applet:

Understanding Layout Managers
All of the components that we have shown so far have been positioned by the default
layout manager. As we mentioned at the beginning of this chapter, a layout manager
automatically arranges your controls within a window by using some type of algorithm.
If you have programmed for other GUI environments, such as Windows, then you are
accustomed to laying out your controls by hand. While it is possible to lay out Java
controls by hand, too, you generally won’t want to, for two main reasons. First, it is very
tedious to manually lay out a large number of components. Second, sometimes the width
and height information is not yet available when you need to arrange some control, because
the native toolkit components haven’t been realized. This is a chicken-and-egg situation;
it is pretty confusing to figure out when it is okay to use the size of a given component to
position it relative to another.

Each Container object has a layout manager associated with it. A layout manager
is an instance of any class that implements the LayoutManager interface. The layout
manager is set by the setLayout() method. If no call to setLayout() is made, then the
default layout manager is used. Whenever a container is resized (or sized for the first
time), the layout manager is used to position each of the components within it.

The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 763
TH

E
JA

V
A

LIB
R

A
R

Y

Here, layoutObj is a reference to the desired layout manager. If you wish to disable the
layout manager and position components manually, pass null for layoutObj. If you do
this, you will need to determine the shape and position of each component manually,
using the setBounds() method defined by Component. Normally, you will want to
use a layout manager.

Each layout manager keeps track of a list of components that are stored by their
names. The layout manager is notified each time you add a component to a container.
Whenever the container needs to be resized, the layout manager is consulted via its
minimumLayoutSize() and preferredLayoutSize() methods. Each component
that is being managed by a layout manager contains the getPreferredSize() and
getMinimumSize() methods. These return the preferred and minimum size required
to display each component. The layout manager will honor these requests if at all
possible, while maintaining the integrity of the layout policy. You may override
these methods for controls that you subclass. Default values are provided otherwise.

Java has several predefined LayoutManager classes, several of which are described
next. You can use the layout manager that best fits your application.

FlowLayout
FlowLayout is the default layout manager. This is the layout manager that the preceding
examples have used. FlowLayout implements a simple layout style, which is similar to
how words flow in a text editor. Components are laid out from the upper-left corner, left
to right and top to bottom. When no more components fit on a line, the next one appears
on the next line. A small space is left between each component, above and below, as well
as left and right. Here are the constructors for FlowLayout:

FlowLayout()
FlowLayout(int how)
FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and leaves five
pixels of space between each component. The second form lets you specify how each
line is aligned. Valid values for how are as follows:

FlowLayout.LEFT
FlowLayout.CENTER
FlowLayout.RIGHT

These values specify left, center, and right alignment, respectively. The third form
allows you to specify the horizontal and vertical space left between components in
horz and vert, respectively.

Here is a version of the CheckboxDemo applet shown earlier in this chapter,
modified so that it uses left-aligned flow layout.

764 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Use left-aligned flow layout.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="FlowLayoutDemo" width=250 height=200>

</applet>

*/

public class FlowLayoutDemo extends Applet

implements ItemListener {

String msg = "";

Checkbox Win98, winNT, solaris, mac;

public void init() {

// set left-aligned flow layout

setLayout(new FlowLayout(FlowLayout.LEFT));

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

add(Win98);

add(winNT);

add(solaris);

add(mac);

// register to receive item events

Win98.addItemListener(this);

winNT.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

// Repaint when status of a check box changes.

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 765
TH

E
JA

V
A

LIB
R

A
R

Y

msg = "Current state: ";

g.drawString(msg, 6, 80);

msg = " Windows 98/XP: " + Win98.getState();

g.drawString(msg, 6, 100);

msg = " Windows NT/2000: " + winNT.getState();

g.drawString(msg, 6, 120);

msg = " Solaris: " + solaris.getState();

g.drawString(msg, 6, 140);

msg = " Mac: " + mac.getState();

g.drawString(msg, 6, 160);

}

}

Following is sample output generated by the FlowLayoutDemo applet:

Compare this with the output from the CheckboxDemo applet, shown earlier in
Figure 22-2.

BorderLayout
The BorderLayout class implements a common layout style for top-level windows. It
has four narrow, fixed-width components at the edges and one large area in the center.
The four sides are referred to as north, south, east, and west. The middle area is called
the center. Here are the constructors defined by BorderLayout:

BorderLayout()
BorderLayout(int horz, int vert)

766 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The first form creates a default border layout. The second allows you to specify the
horizontal and vertical space left between components in horz and vert, respectively.

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of
add(), which is defined by Container:

void add(Component compObj, Object region);

Here, compObj is the component to be added, and region specifies where the component
will be added.

Here is an example of a BorderLayout with a component in each layout area:

// Demonstrate BorderLayout.

import java.awt.*;

import java.applet.*;

import java.util.*;

/*

<applet code="BorderLayoutDemo" width=400 height=200>

</applet>

*/

public class BorderLayoutDemo extends Applet {

public void init() {

setLayout(new BorderLayout());

add(new Button("This is across the top."),

BorderLayout.NORTH);

add(new Label("The footer message might go here."),

BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "The reasonable man adapts " +

"himself to the world;\n" +

"the unreasonable one persists in " +

"trying to adapt the world to himself.\n" +

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 767
TH

E
JA

V
A

LIB
R

A
R

Y

"Therefore all progress depends " +

"on the unreasonable man.\n\n" +

" - George Bernard Shaw\n\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

}

Sample output from the BorderLayoutDemo applet is shown here:

Using Insets
Sometimes you will want to leave a small amount of space between the container
that holds your components and the window that contains it. To do this, override
the getInsets() method that is defined by Container. This function returns an Insets
object that contains the top, bottom, left, and right inset to be used when the container
is displayed. These values are used by the layout manager to inset the components
when it lays out the window. The constructor for Insets is shown here:

Insets(int top, int left, int bottom, int right)

The values passed in top, left, bottom, and right specify the amount of space between the
container and its enclosing window.

768 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The getInsets() method has this general form:

Insets getInsets()

When overriding one of these methods, you must return a new Insets object that contains
the inset spacing you desire.

Here is the preceding BorderLayout example modified so that it insets its components
ten pixels from each border. The background color has been set to cyan to help make the
insets more visible.

// Demonstrate BorderLayout with insets.

import java.awt.*;

import java.applet.*;

import java.util.*;

/*

<applet code="InsetsDemo" width=400 height=200>

</applet>

*/

public class InsetsDemo extends Applet {

public void init() {

// set background color so insets can be easily seen

setBackground(Color.cyan);

setLayout(new BorderLayout());

add(new Button("This is across the top."),

BorderLayout.NORTH);

add(new Label("The footer message might go here."),

BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "The reasonable man adapts " +

"himself to the world;\n" +

"the unreasonable one persists in " +

"trying to adapt the world to himself.\n" +

"Therefore all progress depends " +

"on the unreasonable man.\n\n" +

" - George Bernard Shaw\n\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 769
TH

E
JA

V
A

LIB
R

A
R

Y

770 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// add insets

public Insets getInsets() {

return new Insets(10, 10, 10, 10);

}

}

Output from the InsetsDemo applet is shown here:

GridLayout
GridLayout lays out components in a two-dimensional grid. When you instantiate
a GridLayout, you define the number of rows and columns. The constructors
supported by GridLayout are shown here:

GridLayout()
GridLayout(int numRows, int numColumns)
GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid
layout with the specified number of rows and columns. The third form allows you
to specify the horizontal and vertical space left between components in horz and vert,
respectively. Either numRows or numColumns can be zero. Specifying numRows as zero
allows for unlimited-length columns. Specifying numColumns as zero allows for
unlimited-length rows.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 771
TH

E
JA

V
A

LIB
R

A
R

Y

Here is a sample program that creates a 4×4 grid and fills it in with 15 buttons, each
labeled with its index:

// Demonstrate GridLayout

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

</applet>

*/

public class GridLayoutDemo extends Applet {

static final int n = 4;

public void init() {

setLayout(new GridLayout(n, n));

setFont(new Font("SansSerif", Font.BOLD, 24));

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

Following is the output generated by the GridLayoutDemo applet:

You might try using this example as the starting point for a 15-square puzzle.

CardLayout
The CardLayout class is unique among the other layout managers in that it stores
several different layouts. Each layout can be thought of as being on a separate index
card in a deck that can be shuffled so that any card is on top at a given time. This can
be useful for user interfaces with optional components that can be dynamically enabled
and disabled upon user input. You can prepare the other layouts and have them hidden,
ready to be activated when needed.

CardLayout provides these two constructors:

CardLayout()
CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify the
horizontal and vertical space left between components in horz and vert, respectively.

Use of a card layout requires a bit more work than the other layouts. The cards are
typically held in an object of type Panel. This panel must have CardLayout selected as
its layout manager. The cards that form the deck are also typically objects of type Panel.
Thus, you must create a panel that contains the deck and a panel for each card in the deck.
Next, you add to the appropriate panel the components that form each card. You then add
these panels to the panel for which CardLayout is the layout manager. Finally, you add this
panel to the main applet panel. Once these steps are complete, you must provide some
way for the user to select between cards. One common approach is to include one push
button for each card in the deck.

When card panels are added to a panel, they are usually given a name. Thus, most
of the time, you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name);

Here, name is a string that specifies the name of the card whose panel is specified
by panelObj.

After you have created a deck, your program activates a card by calling one of the
following methods defined by CardLayout:

void first(Container deck)
void last(Container deck)
void next(Container deck)
void previous(Container deck)
void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and
cardName is the name of a card. Calling first() causes the first card in the deck to be

772 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

shown. To show the last card, call last(). To show the next card, call next(). To show
the previous card, call previous(). Both next() and previous() automatically cycle
back to the top or bottom of the deck, respectively. The show() method displays the
card whose name is passed in cardName.

The following example creates a two-level card deck that allows the user to select
an operating system. Windows-based operating systems are displayed in one card.
Macintosh and Solaris are displayed in the other card.

// Demonstrate CardLayout.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CardLayoutDemo" width=300 height=100>

</applet>

*/

public class CardLayoutDemo extends Applet

implements ActionListener, MouseListener {

Checkbox Win98, winNT, solaris, mac;

Panel osCards;

CardLayout cardLO;

Button Win, Other;

public void init() {

Win = new Button("Windows");

Other = new Button("Other");

add(Win);

add(Other);

cardLO = new CardLayout();

osCards = new Panel();

osCards.setLayout(cardLO); // set panel layout to card layout

Win98 = new Checkbox("Windows 98/XP", null, true);

winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

// add Windows check boxes to a panel

Panel winPan = new Panel();

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 773
TH

E
JA

V
A

LIB
R

A
R

Y

774 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

winPan.add(Win98);

winPan.add(winNT);

// Add other OS check boxes to a panel

Panel otherPan = new Panel();

otherPan.add(solaris);

otherPan.add(mac);

// add panels to card deck panel

osCards.add(winPan, "Windows");

osCards.add(otherPan, "Other");

// add cards to main applet panel

add(osCards);

// register to receive action events

Win.addActionListener(this);

Other.addActionListener(this);

// register mouse events

addMouseListener(this);

}

// Cycle through panels.

public void mousePressed(MouseEvent me) {

cardLO.next(osCards);

}

// Provide empty implementations for the other MouseListener methods.

public void mouseClicked(MouseEvent me) {

}

public void mouseEntered(MouseEvent me) {

}

public void mouseExited(MouseEvent me) {

}

public void mouseReleased(MouseEvent me) {

}

public void actionPerformed(ActionEvent ae) {

if(ae.getSource() == Win) {

cardLO.show(osCards, "Windows");

}

else {

cardLO.show(osCards, "Other");

}

}

}

Following is the output generated by the CardLayoutDemo applet. Each card is activated
by pushing its button. You can also cycle through the cards by clicking the mouse.

Menu Bars and Menus
A top-level window can have a menu bar associated with it. A menu bar displays
a list of top-level menu choices. Each choice is associated with a drop-down menu.
This concept is implemented in Java by the following classes: MenuBar, Menu, and
MenuItem. In general, a menu bar contains one or more Menu objects. Each Menu
object contains a list of MenuItem objects. Each MenuItem object represents something
that can be selected by the user. Since Menu is a subclass of MenuItem, a hierarchy of
nested submenus can be created. It is also possible to include checkable menu items.
These are menu options of type CheckboxMenuItem and will have a check mark next
to them when they are selected.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 775
TH

E
JA

V
A

LIB
R

A
R

Y

776 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To create a menu bar, first create an instance of MenuBar. This class only defines
the default constructor. Next, create instances of Menu that will define the selections
displayed on the bar. Following are the constructors for Menu:

Menu()
Menu(String optionName)
Menu(String optionName, boolean removable)

Here, optionName specifies the name of the menu selection. If removable is true, the pop-up
menu can be removed and allowed to float free. Otherwise, it will remain attached to the
menu bar. (Removable menus are implementation-dependent.) The first form creates an
empty menu.

Individual menu items are of type MenuItem. It defines these constructors:

MenuItem()
MenuItem(String itemName)
MenuItem(String itemName, MenuShortcut keyAccel)

Here, itemName is the name shown in the menu, and keyAccel is the menu shortcut for
this item.

You can disable or enable a menu item by using the setEnabled() method. Its form
is shown here:

void setEnabled(boolean enabledFlag)

If the argument enabledFlag is true, the menu item is enabled. If false, the menu item
is disabled.

You can determine an item’s status by calling isEnabled(). This method is
shown here:

boolean isEnabled()

isEnabled() returns true if the menu item on which it is called is enabled. Otherwise,
it returns false.

You can change the name of a menu item by calling setLabel(). You can retrieve
the current name by using getLabel(). These methods are as follows:

void setLabel(String newName)
String getLabel()

Here, newName becomes the new name of the invoking menu item. getLabel() returns
the current name.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 777
TH

E
JA

V
A

LIB
R

A
R

Y

You can create a checkable menu item by using a subclass of MenuItem called
CheckboxMenuItem. It has these constructors:

CheckboxMenuItem()
CheckboxMenuItem(String itemName)
CheckboxMenuItem(String itemName, boolean on)

Here, itemName is the name shown in the menu. Checkable items operate as toggles.
Each time one is selected, its state changes. In the first two forms, the checkable entry
is unchecked. In the third form, if on is true, the checkable entry is initially checked.
Otherwise, it is cleared.

You can obtain the status of a checkable item by calling getState(). You can set it to
a known state by using setState(). These methods are shown here:

boolean getState()
void setState(boolean checked)

If the item is checked, getState() returns true. Otherwise, it returns false. To check an
item, pass true to setState(). To clear an item, pass false.

Once you have created a menu item, you must add the item to a Menu object by
using add(), which has the following general form:

MenuItem add(MenuItem item)

Here, item is the item being added. Items are added to a menu in the order in which the
calls to add() take place. The item is returned.

Once you have added all items to a Menu object, you can add that object to the menu
bar by using this version of add() defined by MenuBar:

Menu add(Menu menu)

Here, menu is the menu being added. The menu is returned.
Menus only generate events when an item of type MenuItem or CheckboxMenuItem

is selected. They do not generate events when a menu bar is accessed to display a drop-down
menu, for example. Each time a menu item is selected, an ActionEvent object is generated.
Each time a check box menu item is checked or unchecked, an ItemEvent object is
generated. Thus, you must implement the ActionListener and ItemListener interfaces
in order to handle these menu events.

The getItem() method of ItemEvent returns a reference to the item that generated
this event. The general form of this method is shown here:

Object getItem()

Following is an example that adds a series of nested menus to a pop-up window.
The item selected is displayed in the window. The state of the two check box menu
items is also displayed.

// Illustrate menus.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MenuDemo" width=250 height=250>

</applet>

*/

// Create a subclass of Frame

class MenuFrame extends Frame {

String msg = "";

CheckboxMenuItem debug, test;

MenuFrame(String title) {

super(title);

// create menu bar and add it to frame

MenuBar mbar = new MenuBar();

setMenuBar(mbar);

// create the menu items

Menu file = new Menu("File");

MenuItem item1, item2, item3, item4, item5;

file.add(item1 = new MenuItem("New..."));

file.add(item2 = new MenuItem("Open..."));

file.add(item3 = new MenuItem("Close"));

file.add(item4 = new MenuItem("-"));

file.add(item5 = new MenuItem("Quit..."));

mbar.add(file);

Menu edit = new Menu("Edit");

MenuItem item6, item7, item8, item9;

edit.add(item6 = new MenuItem("Cut"));

edit.add(item7 = new MenuItem("Copy"));

edit.add(item8 = new MenuItem("Paste"));

edit.add(item9 = new MenuItem("-"));

Menu sub = new Menu("Special");

778 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 779
TH

E
JA

V
A

LIB
R

A
R

Y

MenuItem item10, item11, item12;

sub.add(item10 = new MenuItem("First"));

sub.add(item11 = new MenuItem("Second"));

sub.add(item12 = new MenuItem("Third"));

edit.add(sub);

// these are checkable menu items

debug = new CheckboxMenuItem("Debug");

edit.add(debug);

test = new CheckboxMenuItem("Testing");

edit.add(test);

mbar.add(edit);

// create an object to handle action and item events

MyMenuHandler handler = new MyMenuHandler(this);

// register it to receive those events

item1.addActionListener(handler);

item2.addActionListener(handler);

item3.addActionListener(handler);

item4.addActionListener(handler);

item5.addActionListener(handler);

item6.addActionListener(handler);

item7.addActionListener(handler);

item8.addActionListener(handler);

item9.addActionListener(handler);

item10.addActionListener(handler);

item11.addActionListener(handler);

item12.addActionListener(handler);

debug.addItemListener(handler);

test.addItemListener(handler);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString(msg, 10, 200);

if(debug.getState())

g.drawString("Debug is on.", 10, 220);

else

g.drawString("Debug is off.", 10, 220);

if(test.getState())

g.drawString("Testing is on.", 10, 240);

else

g.drawString("Testing is off.", 10, 240);

}

}

class MyWindowAdapter extends WindowAdapter {

MenuFrame menuFrame;

public MyWindowAdapter(MenuFrame menuFrame) {

this.menuFrame = menuFrame;

}

public void windowClosing(WindowEvent we) {

menuFrame.setVisible(false);

}

}

class MyMenuHandler implements ActionListener, ItemListener {

MenuFrame menuFrame;

public MyMenuHandler(MenuFrame menuFrame) {

this.menuFrame = menuFrame;

}

// Handle action events

public void actionPerformed(ActionEvent ae) {

String msg = "You selected ";

String arg = (String)ae.getActionCommand();

if(arg.equals("New..."))

msg += "New.";

else if(arg.equals("Open..."))

msg += "Open.";

else if(arg.equals("Close"))

msg += "Close.";

else if(arg.equals("Quit..."))

msg += "Quit.";

else if(arg.equals("Edit"))

msg += "Edit.";

780 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

else if(arg.equals("Cut"))

msg += "Cut.";

else if(arg.equals("Copy"))

msg += "Copy.";

else if(arg.equals("Paste"))

msg += "Paste.";

else if(arg.equals("First"))

msg += "First.";

else if(arg.equals("Second"))

msg += "Second.";

else if(arg.equals("Third"))

msg += "Third.";

else if(arg.equals("Debug"))

msg += "Debug.";

else if(arg.equals("Testing"))

msg += "Testing.";

menuFrame.msg = msg;

menuFrame.repaint();

}

// Handle item events

public void itemStateChanged(ItemEvent ie) {

menuFrame.repaint();

}

}

// Create frame window.

public class MenuDemo extends Applet {

Frame f;

public void init() {

f = new MenuFrame("Menu Demo");

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

setSize(new Dimension(width, height));

f.setSize(width, height);

f.setVisible(true);

}

public void start() {

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 781
TH

E
JA

V
A

LIB
R

A
R

Y

f.setVisible(true);

}

public void stop() {

f.setVisible(false);

}

}

Sample output from the MenuDemo applet is shown in Figure 22-8.
There is one other menu-related class that you might find interesting: PopupMenu.

It works just like Menu but produces a menu that can be displayed at a specific location.
PopupMenu provides a flexible, useful alternative for some types of menuing situations.

Dialog Boxes
Often, you will want to use a dialog box to hold a set of related controls. Dialog boxes
are primarily used to obtain user input. They are similar to frame windows, except that
dialog boxes are always child windows of a top-level window. Also, dialog boxes don’t
have menu bars. In other respects, dialog boxes function like frame windows. (You can
add controls to them, for example, in the same way that you add controls to a frame
window.) Dialog boxes may be modal or modeless. When a modal dialog box is active,

782 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 22-8. Sample output from the MenuDemo applet

all input is directed to it until it is closed. This means that you cannot access other parts
of your program until you have closed the dialog box. When a modeless dialog box is
active, input focus can be directed to another window in your program. Thus, other
parts of your program remain active and accessible. Dialog boxes are of type Dialog.
Two commonly used constructors are shown here:

Dialog(Frame parentWindow, boolean mode)
Dialog(Frame parentWindow, String title, boolean mode)

Here, parentWindow is the owner of the dialog box. If mode is true, the dialog box is modal.
Otherwise, it is modeless. The title of the dialog box can be passed in title. Generally, you
will subclass Dialog, adding the functionality required by your application.

Following is a modified version of the preceding menu program that displays a
modeless dialog box when the New option is chosen. Notice that when the dialog box
is closed, dispose() is called. This method is defined by Window, and it frees all system
resources associated with the dialog box window.

// Demonstrate Dialog box.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="DialogDemo" width=250 height=250>

</applet>

*/

// Create a subclass of Dialog.

class SampleDialog extends Dialog implements ActionListener {

SampleDialog(Frame parent, String title) {

super(parent, title, false);

setLayout(new FlowLayout());

setSize(300, 200);

add(new Label("Press this button:"));

Button b;

add(b = new Button("Cancel"));

b.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

dispose();

}

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 783
TH

E
JA

V
A

LIB
R

A
R

Y

public void paint(Graphics g) {

g.drawString("This is in the dialog box", 10, 70);

}

}

// Create a subclass of Frame.

class MenuFrame extends Frame {

String msg = "";

CheckboxMenuItem debug, test;

MenuFrame(String title) {

super(title);

// create menu bar and add it to frame

MenuBar mbar = new MenuBar();

setMenuBar(mbar);

// create the menu items

Menu file = new Menu("File");

MenuItem item1, item2, item3, item4;

file.add(item1 = new MenuItem("New..."));

file.add(item2 = new MenuItem("Open..."));

file.add(item3 = new MenuItem("Close"));

file.add(new MenuItem("-"));

file.add(item4 = new MenuItem("Quit..."));

mbar.add(file);

Menu edit = new Menu("Edit");

MenuItem item5, item6, item7;

edit.add(item5 = new MenuItem("Cut"));

edit.add(item6 = new MenuItem("Copy"));

edit.add(item7 = new MenuItem("Paste"));

edit.add(new MenuItem("-"));

Menu sub = new Menu("Special", true);

MenuItem item8, item9, item10;

sub.add(item8 = new MenuItem("First"));

sub.add(item9 = new MenuItem("Second"));

sub.add(item10 = new MenuItem("Third"));

edit.add(sub);

784 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// these are checkable menu items

debug = new CheckboxMenuItem("Debug");

edit.add(debug);

test = new CheckboxMenuItem("Testing");

edit.add(test);

mbar.add(edit);

// create an object to handle action and item events

MyMenuHandler handler = new MyMenuHandler(this);

// register it to receive those events

item1.addActionListener(handler);

item2.addActionListener(handler);

item3.addActionListener(handler);

item4.addActionListener(handler);

item5.addActionListener(handler);

item6.addActionListener(handler);

item7.addActionListener(handler);

item8.addActionListener(handler);

item9.addActionListener(handler);

item10.addActionListener(handler);

debug.addItemListener(handler);

test.addItemListener(handler);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString(msg, 10, 200);

if(debug.getState())

g.drawString("Debug is on.", 10, 220);

else

g.drawString("Debug is off.", 10, 220);

if(test.getState())

g.drawString("Testing is on.", 10, 240);

else

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 785
TH

E
JA

V
A

LIB
R

A
R

Y

g.drawString("Testing is off.", 10, 240);

}

}

class MyWindowAdapter extends WindowAdapter {

MenuFrame menuFrame;

public MyWindowAdapter(MenuFrame menuFrame) {

this.menuFrame = menuFrame;

}

public void windowClosing(WindowEvent we) {

menuFrame.dispose();

}

}

class MyMenuHandler implements ActionListener, ItemListener {

MenuFrame menuFrame;

public MyMenuHandler(MenuFrame menuFrame) {

this.menuFrame = menuFrame;

}

// Handle action events

public void actionPerformed(ActionEvent ae) {

String msg = "You selected ";

String arg = (String)ae.getActionCommand();

// Activate a dialog box when New is selected.

if(arg.equals("New...")) {

msg += "New.";

SampleDialog d = new

SampleDialog(menuFrame, "New Dialog Box");

d.setVisible(true);

}

// Try defining other dialog boxes for these options.

else if(arg.equals("Open..."))

msg += "Open.";

else if(arg.equals("Close"))

msg += "Close.";

else if(arg.equals("Quit..."))

msg += "Quit.";

else if(arg.equals("Edit"))

msg += "Edit.";

else if(arg.equals("Cut"))

msg += "Cut.";

786 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

else if(arg.equals("Copy"))

msg += "Copy.";

else if(arg.equals("Paste"))

msg += "Paste.";

else if(arg.equals("First"))

msg += "First.";

else if(arg.equals("Second"))

msg += "Second.";

else if(arg.equals("Third"))

msg += "Third.";

else if(arg.equals("Debug"))

msg += "Debug.";

else if(arg.equals("Testing"))

msg += "Testing.";

menuFrame.msg = msg;

menuFrame.repaint();

}

public void itemStateChanged(ItemEvent ie) {

menuFrame.repaint();

}

}

// Create frame window.

public class DialogDemo extends Applet {

Frame f;

public void init() {

f = new MenuFrame("Menu Demo");

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

setSize(width, height);

f.setSize(width, height);

f.setVisible(true);

}

public void start() {

f.setVisible(true);

}

public void stop() {

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 787
TH

E
JA

V
A

LIB
R

A
R

Y

f.setVisible(false);

}

}

Here is sample output from the DialogDemo applet:

On your own, try defining dialog boxes for the other options presented by the menus.

FileDialog
Java provides a built-in dialog box that lets the user specify a file. To create a file dialog
box, instantiate an object of type FileDialog. This causes a file dialog box to be displayed.
Usually, this is the standard file dialog box provided by the operating system. FileDialog
provides these constructors:

FileDialog(Frame parent, String boxName)
FileDialog(Frame parent, String boxName, int how)
FileDialog(Frame parent)

Here, parent is the owner of the dialog box, and boxName is the name displayed in
the box’s title bar. If boxName is omitted, the title of the dialog box is empty. If how is
FileDialog.LOAD, then the box is selecting a file for reading. If how is FileDialog.SAVE,
the box is selecting a file for writing. The third constructor creates a dialog box for selecting
a file for reading.

788 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

FileDialog() provides methods that allow you to determine the name of the file
and its path as selected by the user. Here are two examples:

String getDirectory()
String getFile()

These methods return the directory and the filename, respectively.
The following program activates the standard file dialog box:

/* Demonstrate File Dialog box.

This is an application, not an applet.

*/

import java.awt.*;

import java.awt.event.*;

// Create a subclass of Frame

class SampleFrame extends Frame {

SampleFrame(String title) {

super(title);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Create frame window.

class FileDialogDemo {

public static void main(String args[]) {

Frame f = new SampleFrame("File Dialog Demo");

f.setVisible(true);

f.setSize(100, 100);

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 789
TH

E
JA

V
A

LIB
R

A
R

Y

FileDialog fd = new FileDialog(f, "File Dialog");

fd.setVisible(true);

}

}

The output generated by this program is shown here. (The precise configuration of the
dialog box may vary.)

Handling Events by Extending AWT
Components
Before concluding our look at the AWT, one more topic needs to be discussed: handling
events by extending AWT components. The delegation event model was introduced in
Chapter 20, and all of the programs in this book so far have used that design. But Java also
allows you to handle events by subclassing AWT components. Doing so allows you to
handle events in much the same way as they were handled under the original 1.0 version
of Java. Of course, this technique is discouraged, because it has the same disadvantages of
the Java 1.0 event model, the main one being inefficiency. Handling events by extending
AWT components is described in this section for completeness. However, this technique
is not used in any other sections of this book.

To extend an AWT component, you must call the enableEvents() method of
Component. Its general form is shown here:

protected final void enableEvents(long eventMask)

790 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The eventMask argument is a bit mask that defines the events to be delivered to this
component. The AWTEvent class defines int constants for making this mask. Several
are shown here:

ACTION_EVENT_MASK KEY_EVENT_MASK

ADJUSTMENT_EVENT_MASK MOUSE_EVENT_MASK

COMPONENT_EVENT_MASK MOUSE_MOTION_EVENT_MASK

CONTAINER_EVENT_MASK MOUSE_WHEEL_EVENT_MASK

FOCUS_EVENT_MASK TEXT_EVENT_MASK

INPUT_METHOD_EVENT_MASK WINDOW_EVENT_MASK

ITEM_EVENT_MASK

You must also override the appropriate method from one of your superclasses in
order to process the event. Table 22-1 lists the methods most commonly used and the
classes that provide them.

The following sections provide simple programs that show how to extend several
AWT components.

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 791
TH

E
JA

V
A

LIB
R

A
R

Y

Class Processing Methods

Button processActionEvent()

Checkbox processItemEvent()

CheckboxMenuItem processItemEvent()

Choice processItemEvent()

Component processComponentEvent(), processFocusEvent(),
processKeyEvent(), processMouseEvent(),
processMouseMotionEvent(), processMouseWheelEvent ()

List processActionEvent(), processItemEvent()

MenuItem processActionEvent()

Scrollbar processAdjustmentEvent()

TextComponent processTextEvent()

Table 22-1. Event Processing Methods

Extending Button
The following program creates an applet that displays a button labeled “Test Button”.
When the button is pressed, the string “action event: ” is displayed on the status line
of the applet viewer or browser, followed by a count of the number of button presses.

The program has one top-level class named ButtonDemo2 that extends Applet. A
static integer variable named i is defined and initialized to zero. This records the number
of button pushes. The init() method instantiates MyButton and adds it to the applet.

MyButton is an inner class that extends Button. Its constructor uses super to pass
the label of the button to the superclass constructor. It calls enableEvents() so that
action events may be received by this object. When an action event is generated,
processActionEvent() is called. That method displays a string on the status line and
calls processActionEvent() for the superclass. Because MyButton is an inner class, it
has direct access to the showStatus() method of ButtonDemo2.

/*

* <applet code=ButtonDemo2 width=200 height=100>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ButtonDemo2 extends Applet {

MyButton myButton;

static int i = 0;

public void init() {

myButton = new MyButton("Test Button");

add(myButton);

}

class MyButton extends Button {

public MyButton(String label) {

super(label);

enableEvents(AWTEvent.ACTION_EVENT_MASK);

}

protected void processActionEvent(ActionEvent ae) {

showStatus("action event: " + i++);

super.processActionEvent(ae);

}

}

}

792 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Extending Checkbox
The following program creates an applet that displays three check boxes labeled
“Item 1”, “Item 2”, and “Item 3”. When a check box is selected or deselected, a string
containing the name and state of that check box is displayed on the status line of the
applet viewer or browser.

The program has one top-level class named CheckboxDemo2 that extends Applet.
Its init() method creates three instances of MyCheckbox and adds these to the applet.
MyCheckbox is an inner class that extends Checkbox. Its constructor uses super to
pass the label of the check box to the superclass constructor. It calls enableEvents()
so that item events may be received by this object. When an item event is generated,
processItemEvent() is called. That method displays a string on the status line and
calls processItemEvent() for the superclass.

/*

* <applet code=CheckboxDemo2 width=300 height=100>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class CheckboxDemo2 extends Applet {

MyCheckbox myCheckbox1, myCheckbox2, myCheckbox3;

public void init() {

myCheckbox1 = new MyCheckbox("Item 1");

add(myCheckbox1);

myCheckbox2 = new MyCheckbox("Item 2");

add(myCheckbox2);

myCheckbox3 = new MyCheckbox("Item 3");

add(myCheckbox3);

}

class MyCheckbox extends Checkbox {

public MyCheckbox(String label) {

super(label);

enableEvents(AWTEvent.ITEM_EVENT_MASK);

}

protected void processItemEvent(ItemEvent ie) {

showStatus("Checkbox name/state: " + getLabel() +

"/" + getState());

super.processItemEvent(ie);

}

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 793
TH

E
JA

V
A

LIB
R

A
R

Y

794 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

}

Extending a Check Box Group
The following program reworks the preceding check box example so that the check
boxes form a check box group. Thus, only one of the check boxes may be selected at
any time.

/*

* <applet code=CheckboxGroupDemo2 width=300 height=100>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class CheckboxGroupDemo2 extends Applet {

CheckboxGroup cbg;

MyCheckbox myCheckbox1, myCheckbox2, myCheckbox3;

public void init() {

cbg = new CheckboxGroup();

myCheckbox1 = new MyCheckbox("Item 1", cbg, true);

add(myCheckbox1);

myCheckbox2 = new MyCheckbox("Item 2", cbg, false);

add(myCheckbox2);

myCheckbox3 = new MyCheckbox("Item 3", cbg, false);

add(myCheckbox3);

}

class MyCheckbox extends Checkbox {

public MyCheckbox(String label, CheckboxGroup cbg,

boolean flag) {

super(label, cbg, flag);

enableEvents(AWTEvent.ITEM_EVENT_MASK);

}

protected void processItemEvent(ItemEvent ie) {

showStatus("Checkbox name/state: " + getLabel() +

"/" + getState());

super.processItemEvent(ie);

}

}

}

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 795
TH

E
JA

V
A

LIB
R

A
R

Y

Extending Choice
The following program creates an applet that displays a choice list with items labeled
“Red”, “Green”, and “Blue”. When an entry is selected, a string that contains the name
of the color is displayed on the status line of the applet viewer or browser.

There is one top-level class named ChoiceDemo2 that extends Applet. Its init()
method creates a choice element and adds it to the applet. MyChoice is an inner class
that extends Choice. It calls enableEvents() so that item events may be received by this
object. When an item event is generated, processItemEvent() is called. That method
displays a string on the status line and calls processItemEvent() for the superclass.

/*

* <applet code=ChoiceDemo2 width=300 height=100>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ChoiceDemo2 extends Applet {

MyChoice choice;

public void init() {

choice = new MyChoice();

choice.add("Red");

choice.add("Green");

choice.add("Blue");

add(choice);

}

class MyChoice extends Choice {

public MyChoice() {

enableEvents(AWTEvent.ITEM_EVENT_MASK);

}

protected void processItemEvent(ItemEvent ie) {

showStatus("Choice selection: " + getSelectedItem());

super.processItemEvent(ie);

}

}

}

Extending List
The following program modifies the preceding example so that it uses a list instead of
a choice menu. There is one top-level class named ListDemo2 that extends Applet. Its
init() method creates a list element and adds it to the applet. MyList is an inner class

796 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

that extends List. It calls enableEvents() so that both action and item events may be
received by this object. When an entry is selected or deselected, processItemEvent()
is called. When an entry is double-clicked, processActionEvent() is also called. Both
methods display a string and then hand control to the superclass.

/*

* <applet code=ListDemo2 width=300 height=100>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ListDemo2 extends Applet {

MyList list;

public void init() {

list = new MyList();

list.add("Red");

list.add("Green");

list.add("Blue");

add(list);

}

class MyList extends List {

public MyList() {

enableEvents(AWTEvent.ITEM_EVENT_MASK |

AWTEvent.ACTION_EVENT_MASK);

}

protected void processActionEvent(ActionEvent ae) {

showStatus("Action event: " + ae.getActionCommand());

super.processActionEvent(ae);

}

protected void processItemEvent(ItemEvent ie) {

showStatus("Item event: " + getSelectedItem());

super.processItemEvent(ie);

}

}

}

Extending Scrollbar
The following program creates an applet that displays a scroll bar. When this control
is manipulated, a string is displayed on the status line of the applet viewer or browser.
That string includes the value represented by the scroll bar.

There is one top-level class named ScrollbarDemo2 that extends Applet. Its init()
method creates a scroll bar element and adds it to the applet. MyScrollbar is an inner
class that extends Scrollbar. It calls enableEvents() so that adjustment events may be
received by this object. When the scroll bar is manipulated, processAdjustmentEvent()
is called. When an entry is selected, processAdjustmentEvent() is called. It displays
a string and then hands control to the superclass.

/*

* <applet code=ScrollbarDemo2 width=300 height=100>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ScrollbarDemo2 extends Applet {

MyScrollbar myScrollbar;

public void init() {

myScrollbar = new MyScrollbar(Scrollbar.HORIZONTAL,

0, 1, 0, 100);

add(myScrollbar);

}

class MyScrollbar extends Scrollbar {

public MyScrollbar(int style, int initial, int thumb,

int min, int max) {

super(style, initial, thumb, min, max);

enableEvents(AWTEvent.ADJUSTMENT_EVENT_MASK);

}

protected void processAdjustmentEvent(AdjustmentEvent ae) {

showStatus("Adjustment event: " + ae.getValue());

setValue(getValue());

super.processAdjustmentEvent(ae);

}

}

}

C h a p t e r 2 2 : U s i n g A W T C o n t r o l s , L a y o u t M a n a g e r s , a n d M e n u s 797
TH

E
JA

V
A

LIB
R

A
R

Y

Exploring the Controls, Menus, and Layout
Managers
This chapter has discussed the classes that comprise the AWT controls, menus, and
layout managers. However, the AWT provides a rich programming environment that
you will want to continue exploring on your own. Here are some suggestions:

■ Try nesting a canvas inside an applet panel.

■ Explore the FileDialog component.

■ Experiment with manual positioning of components by using setBounds().

■ Try nesting controls within panels to gain more control over layouts.

■ Create your own layout manager by implementing the LayoutManager
interface.

■ Explore PopupMenu.

The more you know about the AWT components, the more control you will have over
the look, feel, and performance of your applets and applications.

In the next chapter, we will examine one more of the AWT’s classes: Image. This
class is used to support imaging and animation.

798 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 23
Images

799

800 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This chapter examines the AWT’s Image class and the java.awt.image package.
Together, they provide support for imaging (the display and manipulation of
graphical images). An image is simply a rectangular graphical object. Images are

a key component of web design. In fact, the inclusion of the tag in the Mosaic
browser at NCSA (National Center for Supercomputer Applications) is what caused
the Web to begin to grow explosively in 1993. This tag was used to include an image
inline with the flow of hypertext. Java expands upon this basic concept, allowing
images to be managed under program control. Because of its importance, Java provides
extensive support for imaging.

Images are objects of the Image class, which is part of the java.awt package. Images
are manipulated using the classes found in the java.awt.image package. There are a
large number of imaging classes and interfaces defined by java.awt.image and it is not
possible to examine them all. Instead, we will focus on those that form the foundation
of imaging. Here are the java.awt.image classes discussed in this chapter:

CropImageFilter MemoryImageSource

FilteredImageSource PixelGrabber

ImageFilter RGBImageFilter

These are the interfaces that we will use.

ImageConsumer ImageObserver ImageProducer

Also examined is the MediaTracker class, which is part of java.awt.

File Formats
Originally, web images could only be in GIF format. The GIF image format was created
by CompuServe in 1987 to make it possible for images to be viewed while online, so it
was well suited to the Internet. GIF images can have only up to 256 colors each. This
limitation caused the major browser vendors to add support for JPEG images in 1995.
The JPEG format was created by a group of photographic experts to store full-color-
spectrum, continuous-tone images. These images, when properly created, can be of
much higher fidelity as well as more highly compressed than a GIF encoding of the
same source image. In almost all cases, you will never care or notice which format is
being used in your programs. The Java image classes abstract the differences behind a
clean interface.

Image Fundamentals: Creating, Loading,
and Displaying
There are three common operations that occur when you work with images: creating
an image, loading an image, and displaying an image. In Java, the Image class is used
to refer to images in memory and to images that must be loaded from external sources.
Thus, Java provides ways for you to create a new image object and ways to load one. It
also provides a means by which an image can be displayed. Let’s look at each.

Creating an Image Object
You might expect that you create a memory image using something like the following:

Image test = new Image(200, 100); // Error -- won't work

Not so. Because images must eventually be painted on a window to be seen, the Image
class doesn’t have enough information about its environment to create the proper data
format for the screen. Therefore, the Component class in java.awt has a factory method
called createImage() that is used to create Image objects. (Remember that all of the
AWT components are subclasses of Component, so all support this method.)

The createImage() method has the following two forms:

Image createImage(ImageProducer imgProd)
Image createImage(int width, int height)

The first form returns an image produced by imgProd, which is an object of a class that
implements the ImageProducer interface. (We will look at image producers later.)
The second form returns a blank (that is, empty) image that has the specified width
and height. Here is an example:

Canvas c = new Canvas();

Image test = c.createImage(200, 100);

This creates an instance of Canvas and then calls the createImage() method to actually
make an Image object. At this point, the image is blank. Later you will see how to write
data to it.

Loading an Image
The other way to obtain an image is to load one. To do this, use the getImage() method
defined by the Applet class. It has the following forms:

Image getImage(URL url)
Image getImage(URL url, String imageName)

C h a p t e r 2 3 : I m a g e s 801
TH

E
JA

V
A

LIB
R

A
R

Y

802 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The first version returns an Image object that encapsulates the image found at
the location specified by url. The second version returns an Image object that
encapsulates the image found at the location specified by url and having the name
specified by imageName.

Displaying an Image
Once you have an image, you can display it by using drawImage(), which is a member
of the Graphics class. It has several forms. The one we will be using is shown here:

boolean drawImage(Image imgObj, int left, int top, ImageObserver imgOb)

This displays the image passed in imgObj with its upper-left corner specified by left and
top. imgOb is a reference to a class that implements the ImageObserver interface. This
interface is implemented by all AWT components. An image observer is an object that
can monitor an image while it loads. ImageObserver is described in the next section.

With getImage() and drawImage(), it is actually quite easy to load and display
an image. Here is a sample applet that loads and displays a single image. The file
seattle.jpg is loaded, but you can substitute any GIF or JPG file you like (just make sure
it is available in the same directory with the HTML file that contains the applet).

/*

* <applet code="SimpleImageLoad" width=248 height=146>

* <param name="img" value="seattle.jpg">

* </applet>

*/

import java.awt.*;

import java.applet.*;

public class SimpleImageLoad extends Applet

{

Image img;

public void init() {

img = getImage(getDocumentBase(), getParameter("img"));

}

public void paint(Graphics g) {

g.drawImage(img, 0, 0, this);

}

}

In the init() method, the img variable is assigned to the image returned by
getImage(). The getImage() method uses the string returned by getParameter(“img”)
as the filename for the image. This image is loaded from a URL that is relative to the
result of getDocumentBase(), which is the URL of the HTML page this applet tag was
in. The filename returned by getParameter(“img”) comes from the applet tag <param
name=“img” value=“seattle.jpg”>. This is the equivalent, if a little slower, of using the
HTML tag . Figure 23-1 shows what it
looks like when you run the program.

When this applet runs, it starts loading img in the init() method. Onscreen you can
see the image as it loads from the network, because Applet’s implementation of the
ImageObserver interface calls paint() every time more image data arrives.

Seeing the image load is somewhat informative, but it might be better if you use the
time it takes to load the image to do other things in parallel. That way, the fully formed
image can simply appear on the screen in an instant, once it is fully loaded. You can
use ImageObserver, described next, to monitor loading an image while you paint the
screen with other information.

ImageObserver
ImageObserver is an interface used to receive notification as an image is being
generated. ImageObserver defines only one method: imageUpdate(). Using an image
observer allows you to perform other actions, such as show a progress indicator or an
attract screen, as you are informed of the progress of the download. This kind of

C h a p t e r 2 3 : I m a g e s 803
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 23-1. Sample output from SimpleImageLoad

notification is very useful when an image is being loaded over the network, where the
content designer rarely appreciates that people are often trying to load applets over a
slow modem.

The imageUpdate() method has this general form:

boolean imageUpdate(Image imgObj, int flags, int left, int top, int width, int height)

Here, imgObj is the image being loaded, and flags is an integer that communicates the
status of the update report. The four integers left, top, width, and height represent
a rectangle that contains different values depending on the values passed in flags.
imageUpdate() should return false if it has completed loading, and true if there is
more image to process.

The flags parameter contains one or more bit flags defined as static variables inside
the ImageObserver interface. These flags and the information they provide are listed
in Table 23-1.

804 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Flag Meaning

WIDTH The width parameter is valid and contains the width of the image.

HEIGHT The height parameter is valid and contains the height of the image.

PROPERTIES The properties associated with the image can now be obtained
using imgObj.getProperty().

SOMEBITS More pixels needed to draw the image have been received. The
parameters left, top, width, and height define the rectangle
containing the new pixels.

FRAMEBITS A complete frame that is part of a multiframe image, which was
previously drawn, has been received. This frame can be
displayed. The left, top, width, and height parameters are not used.

ALLBITS The image is now complete. The left, top, width, and height
parameters are not used.

ERROR An error has occurred to an image that was being tracked
asynchronously. The image is incomplete and cannot be
displayed. No further image information will be received. The
ABORT flag will also be set to indicate that the image production
was aborted.

ABORT An image that was being tracked asynchronously was aborted before
it was complete. However, if an error has not occurred, accessing any
part of the image’s data will restart the production of the image.

Table 23-1. Bit Flags of the imageUpdate() flags Parameter

C h a p t e r 2 3 : I m a g e s 805
TH

E
JA

V
A

LIB
R

A
R

Y

The Applet class has an implementation of the imageUpdate() method for the
ImageObserver interface that is used to repaint images as they are loaded. You can
override this method in your class to change that behavior.

Here is a simple example of an imageUpdate() method:

public boolean imageUpdate(Image img, int flags,

int x, int y, int w, int h) {

if ((flags & ALLBITS) == 0) {

System.out.println("Still processing the image.");

return true;

} else {

System.out.println("Done processing the image.");

return false;

}

}

ImageObserver Example
Now let’s look at a practical example that overrides imageUpdate() to make a version of
the SimpleImageLoad applet that doesn’t flicker as much. The default implementation
of imageUpdate() in Applet has several problems. First, it repaints the entire image each
time any new data arrives. This causes flashing between the background color and the
image. Second, it uses a feature of Applet.repaint() to cause the system to only repaint
the image every tenth of a second or so. This causes a jerky, uneven feel as the image is
painting. Finally, the default implementation knows nothing about images that may fail
to load properly. Many beginning Java programmers are frustrated by the fact that
getImage() always succeeds even when the image specified does not exist. You don’t
find out about missing images until imageUpdate() occurs. If you use the default
implementation of imageUpdate(), then you’ll never know what happened. Your
paint() method will simply do nothing when you call g.drawImage().

The example that follows fixes all three of these problems in ten lines of code. First,
it eliminates the flickering with two small changes. It overrides update() so that it calls
paint() without painting the background color first. The background is set via
setBackground() in init(), so the initial color is painted just once. Also, it uses a
version of repaint() that specifies the rectangle in which to paint. The system will set
the clipping area such that nothing outside of this rectangle is painted. This reduces
repaint flicker and improves performance.

Second, it eliminates the jerky, uneven display of the incoming image by painting
every time it receives an update. These updates occur on a scan line-by-scan line basis,
so an image that is 100 pixels tall will be “repainted” 100 times as it loads. Note that
this is not the fastest way to display an image, just the smoothest.

Finally, it handles the error caused by the desired file not being found by
examining the flags parameter for the ABORT bit. If it is set, the instance variable error
is set to true and then repaint() is called. The paint() method is modified to print an
error message over a bright red background if error is true.

Here is the code.

/*

* <applet code="ObservedImageLoad" width=248 height=146>

* <param name="img" value="seattle.jpg">

* </applet>

*/

import java.awt.*;

import java.applet.*;

public class ObservedImageLoad extends Applet {

Image img;

boolean error = false;

String imgname;

public void init() {

setBackground(Color.blue);

imgname = getParameter("img");

img = getImage(getDocumentBase(), imgname);

}

public void paint(Graphics g) {

if (error) {

Dimension d = getSize();

g.setColor(Color.red);

g.fillRect(0, 0, d.width, d.height);

g.setColor(Color.black);

g.drawString("Image not found: " + imgname, 10, d.height/2);

} else {

g.drawImage(img, 0, 0, this);

}

}

public void update(Graphics g) {

paint(g);

}

806 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 3 : I m a g e s 807
TH

E
JA

V
A

LIB
R

A
R

Y

public boolean imageUpdate(Image img, int flags,

int x, int y, int w, int h) {

if ((flags & SOMEBITS) != 0) { // new partial data

repaint(x, y, w, h); // paint new pixels

} else if ((flags & ABORT) != 0) {

error = true; // file not found

repaint(); // paint whole applet

}

return (flags & (ALLBITS|ABORT)) == 0;

}

}

Figure 23-2 shows two separate screens of this applet running. The top screen shows
the image half loaded, and the bottom screen displays a filename that has been
mistyped in the applet tag.

Here is an interesting variation of imageUpdate() you might want to try. It
waits until the image is completely loaded before snapping it onto the screen in a
single repaint.

public boolean imageUpdate(Image img, int flags,

int x, int y, int w, int h) {

if ((flags & ALLBITS) != 0) {

repaint();

} else if ((flags & (ABORT|ERROR)) != 0) {

error = true; // file not found

repaint();

}

return (flags & (ALLBITS|ABORT|ERROR)) == 0;

}

Double Buffering
Not only are images useful for storing pictures, as we’ve just shown, but you can
also use them as offscreen drawing surfaces. This allows you to render any image,
including text and graphics, to an offscreen buffer that you can display at a later time.
The advantage to doing this is that the image is seen only when it is complete. Drawing
a complicated image could take several milliseconds or more, which can be seen by the
user as flashing or flickering. This flashing is distracting and causes the user to perceive
your rendering as slower than it actually is. Use of an offscreen image to reduce flicker

is called double buffering, because the screen is considered a buffer for pixels, and the
offscreen image is the second buffer, where you can prepare pixels for display.

Earlier in this chapter, you saw how to create a blank Image object. Now you will
see how to draw on that image rather than the screen. As you recall from earlier
chapters, you need a Graphics object in order to use any of Java’s rendering methods.
Conveniently, the Graphics object that you can use to draw on an Image is available
via the getGraphics() method. Here is a code fragment that creates a new image,
obtains its graphics context, and fills the entire image with red pixels:

808 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 23-2. Sample output from ObservedImageLoad

Canvas c = new Canvas();

Image test = c.createImage(200, 100);

Graphics gc = test.getGraphics();

gc.setColor(Color.red);

gc.fillRect(0, 0, 200, 100);

Once you have constructed and filled an offscreen image, it will still not be visible.
To actually display the image, call drawImage(). Here is an example that draws a
time-consuming image, to demonstrate the difference that double buffering can make
in perceived drawing time:

/*

* <applet code=DoubleBuffer width=250 height=250>

* </applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class DoubleBuffer extends Applet {

int gap = 3;

int mx, my;

boolean flicker = true;

Image buffer = null;

int w, h;

public void init() {

Dimension d = getSize();

w = d.width;

h = d.height;

buffer = createImage(w, h);

addMouseMotionListener(new MouseMotionAdapter() {

public void mouseDragged(MouseEvent me) {

mx = me.getX();

my = me.getY();

flicker = false;

repaint();

}

public void mouseMoved(MouseEvent me) {

mx = me.getX();

my = me.getY();

flicker = true;

C h a p t e r 2 3 : I m a g e s 809
TH

E
JA

V
A

LIB
R

A
R

Y

810 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

repaint();

}

});

}

public void paint(Graphics g) {

Graphics screengc = null;

if (!flicker) {

screengc = g;

g = buffer.getGraphics();

}

g.setColor(Color.blue);

g.fillRect(0, 0, w, h);

g.setColor(Color.red);

for (int i=0; i<w; i+=gap)

g.drawLine(i, 0, w-i, h);

for (int i=0; i<h; i+=gap)

g.drawLine(0, i, w, h-i);

g.setColor(Color.black);

g.drawString("Press mouse button to double buffer", 10, h/2);

g.setColor(Color.yellow);

g.fillOval(mx - gap, my - gap, gap*2+1, gap*2+1);

if (!flicker) {

screengc.drawImage(buffer, 0, 0, null);

}

}

public void update(Graphics g) {

paint(g);

}

}

This simple applet has a complicated paint() method. It fills the background with
blue and then draws a red moiré pattern on top of that. It paints some black text
on top of that and then paints a yellow circle centered at the coordinates mx,my. The
mouseMoved() and mouseDragged() methods are overridden to track the mouse

position. These methods are identical, except for the setting of the flicker Boolean
variable. mouseMoved() sets flicker to true, and mouseDragged() sets it to false.
This has the effect of calling repaint() with flicker set to true when the mouse is
moved (but no button is pressed) and set to false when the mouse is dragged with any
button pressed.

When paint() gets called with flicker set to true, we see each drawing operation as
it is executed on the screen. In the case where a mouse button is pressed and paint() is
called with flicker set to false, we see quite a different picture. The paint() method
swaps the Graphics reference g with the graphics context that refers to the offscreen
canvas, buffer, which we created in init(). Then all of the drawing operations are
invisible. At the end of paint(), we simply call drawImage() to show the results of
these drawing methods all at once.

Notice that it is okay to pass in a null as the fourth parameter to drawImage(). This
is the parameter used to pass an ImageObserver object that receives notification of
image events. Since this is an image that is not being produced from a network stream,
we have no need for notification. The left snapshot in Figure 23-3 is what the applet
looks like with the mouse buttons not pressed. As you can see, the image was in the
middle of repainting when this snapshot was taken. The right snapshot shows how,
when a mouse button is pressed, the image is always complete and clean due to
double buffering.

MediaTracker
Many early Java developers found the ImageObserver interface far too difficult to
understand and manage when there were multiple images to be loaded. The developer
community asked for a simpler solution that would allow programmers to load all of
their images synchronously, without having to worry about imageUpdate(). In
response to this, Sun Microsystems added a class to java.awt called MediaTracker in a
subsequent release of the JDK. A MediaTracker is an object that will check the status of
an arbitrary number of images in parallel.

To use MediaTracker, you create a new instance and use its addImage() method to
track the loading status of an image. addImage() has the following general forms:

void addImage(Image imgObj, int imgID)
void addImage(Image imgObj, int imgID, int width, int height)

Here, imgObj is the image being tracked. Its identification number is passed in imgID.
ID numbers do not need to be unique. You can use the same number with several
images as a means of identifying them as part of a group. In the second form, width and
height specify the dimensions of the object when it is displayed.

C h a p t e r 2 3 : I m a g e s 811
TH

E
JA

V
A

LIB
R

A
R

Y

Once you’ve registered an image, you can check whether it’s loaded, or you can
wait for it to completely load. To check the status of an image, call checkID(). The
version used in this chapter is shown here:

boolean checkID(int imgID)

Here, imgID specifies the ID of the image you want to check. The method returns true if
all images that have the specified ID have been loaded (or if an error or user- abort has
terminated loading). Otherwise, it returns false. You can use the checkAll() method to
see if all images being tracked have been loaded.

You should use MediaTracker when loading a group of images. If all of the images
that you’re interested in aren’t downloaded, you can display something else to
entertain the user until they all arrive.

If you use MediaTracker once you’ve called addImage() on an image, a reference in
MediaTracker will prevent the system from garbage collecting it. If you want the
system to be able to garbage collect images that were being tracked, make sure it can
collect the MediaTracker instance as well.

812 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 23-3. Output from Double Buffer without (left) and with (right) double
buffering

Here’s an example that loads a seven-image slide show and displays a nice bar
chart of the loading progress:

/*

* <applet code="TrackedImageLoad" width=300 height=400>

* <param name="img"

* value="vincent+leonardo+matisse+picasso+renoir+seurat+vermeer">

* </applet>

*/

import java.util.*;

import java.applet.*;

import java.awt.*;

public class TrackedImageLoad extends Applet implements Runnable {

MediaTracker tracker;

int tracked;

int frame_rate = 5;

int current_img = 0;

Thread motor;

static final int MAXIMAGES = 10;

Image img[] = new Image[MAXIMAGES];

String name[] = new String[MAXIMAGES];

boolean stopFlag;

public void init() {

tracker = new MediaTracker(this);

StringTokenizer st = new StringTokenizer(getParameter("img"),

"+");

while(st.hasMoreTokens() && tracked <= MAXIMAGES) {

name[tracked] = st.nextToken();

img[tracked] = getImage(getDocumentBase(),

name[tracked] + ".jpg");

tracker.addImage(img[tracked], tracked);

tracked++;

}

}

public void paint(Graphics g) {

String loaded = "";

int donecount = 0;

C h a p t e r 2 3 : I m a g e s 813
TH

E
JA

V
A

LIB
R

A
R

Y

for(int i=0; i<tracked; i++) {

if (tracker.checkID(i, true)) {

donecount++;

loaded += name[i] + " ";

}

}

Dimension d = getSize();

int w = d.width;

int h = d.height;

if (donecount == tracked) {

frame_rate = 1;

Image i = img[current_img++];

int iw = i.getWidth(null);

int ih = i.getHeight(null);

g.drawImage(i, (w - iw)/2, (h - ih)/2, null);

if (current_img >= tracked)

current_img = 0;

} else {

int x = w * donecount / tracked;

g.setColor(Color.black);

g.fillRect(0, h/3, x, 16);

g.setColor(Color.white);

g.fillRect(x, h/3, w-x, 16);

g.setColor(Color.black);

g.drawString(loaded, 10, h/2);

}

}

public void start() {

motor = new Thread(this);

stopFlag = false;

motor.start();

}

public void stop() {

stopFlag = true;

}

public void run() {

814 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

motor.setPriority(Thread.MIN_PRIORITY);

while (true) {

repaint();

try {

Thread.sleep(1000/frame_rate);

} catch (InterruptedException e) { };

if(stopFlag)

return;

}

}

}

This example creates a new MediaTracker in the init() method, and then adds each of
the named images as a tracked image with addImage(). In the paint() method, it calls
checkID() on each of the images that we’re tracking. If all of the images are loaded,
they are displayed. If not, a simple bar chart of the number of images loaded is shown,
with the names of the fully loaded images displayed underneath the bar. Figure 23-4
shows two scenes from this applet running. One is the bar chart, displaying that three
of the images have been loaded. The other is the Van Gogh self-portrait during the
slide show.

ImageProducer
ImageProducer is an interface for objects that want to produce data for images. An
object that implements the ImageProducer interface will supply integer or byte arrays
that represent image data and produce Image objects. As you saw earlier, one form of
the createImage() method takes an ImageProducer object as its argument. There are
two image producers contained in java.awt.image: MemoryImageSource and
FilteredImageSource. Here, we will examine MemoryImageSource and create a new
Image object from data generated in an applet.

MemoryImageSource
MemoryImageSource is a class that creates a new Image from an array of data. It
defines several constructors. Here is the one we will be using:

MemoryImageSource(int width, int height, int pixel[], int offset, int scanLineWidth)

The MemoryImageSource object is constructed out of the array of integers specified by
pixel, in the default RGB color model to produce data for an Image object. In the default
color model, a pixel is an integer with Alpha, Red, Green, and Blue (0xAARRGGBB).
The Alpha value represents a degree of transparency for the pixel. Fully transparent is

C h a p t e r 2 3 : I m a g e s 815
TH

E
JA

V
A

LIB
R

A
R

Y

0 and fully opaque is 255. The width and height of the resulting image are passed in
width and height. The starting point in the pixel array to begin reading data is passed in
offset. The width of a scan line (which is often the same as the width of the image) is
passed in scanLineWidth.

The following short example generates a MemoryImageSource object using a
variation on a simple algorithm (a bitwise-exclusive-OR of the x and y address of each
pixel) from the book Beyond Photography, The Digital Darkroom by Gerard J. Holzmann
(Prentice Hall, 1988).

816 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 23-4. Sample output from TrackedImageLoad

C h a p t e r 2 3 : I m a g e s 817
TH

E
JA

V
A

LIB
R

A
R

Y

/*

* <applet code="MemoryImageGenerator" width=256 height=256>

* </applet>

*/

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

public class MemoryImageGenerator extends Applet {

Image img;

public void init() {

Dimension d = getSize();

int w = d.width;

int h = d.height;

int pixels[] = new int[w * h];

int i = 0;

for(int y=0; y<h; y++) {

for(int x=0; x<w; x++) {

int r = (x^y)&0xff;

int g = (x*2^y*2)&0xff;

int b = (x*4^y*4)&0xff;

pixels[i++] = (255 << 24) | (r << 16) | (g << 8) | b;

}

}

img = createImage(new MemoryImageSource(w, h, pixels, 0, w));

}

public void paint(Graphics g) {

g.drawImage(img, 0, 0, this);

}

}

The data for the new MemoryImageSource is created in the init() method. An
array of integers is created to hold the pixel values; the data is generated in the nested
for loops where the r, g, and b values get shifted into a pixel in the pixels array.
Finally, createImage() is called with a new instance of a MemoryImageSource created
from the raw pixel data as its parameter. Figure 23-5 shows the image when we run the
applet. (It looks much nicer in color.)

ImageConsumer
ImageConsumer is an abstract interface for objects that want to take pixel data from
images and supply it as another kind of data. This, obviously, is the opposite of

ImageProducer, described earlier. An object that implements the ImageConsumer
interface is going to create int or byte arrays that represent pixels from an Image
object. We will examine the PixelGrabber class, which is a simple implementation of
the ImageConsumer interface.

PixelGrabber
The PixelGrabber class is defined within java.lang.image. It is the inverse of the
MemoryImageSource class. Rather than constructing an image from an array of
pixel values, it takes an existing image and grabs the pixel array from it. To use
PixelGrabber, you first create an array of ints big enough to hold the pixel data, and
then you create a PixelGrabber instance passing in the rectangle that you want to grab.
Finally, you call grabPixels() on that instance.

The PixelGrabber constructor that is used in this chapter is shown here:

PixelGrabber(Image imgObj, int left, int top, int width, int height, int pixel[],
int offset, int scanLineWidth)

Here, imgObj is the object whose pixels are being grabbed. The values of left and top
specify the upper-left corner of the rectangle, and width and height specify the

818 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 23-5. Sample output from MemoryImageGenerator

C h a p t e r 2 3 : I m a g e s 819
TH

E
JA

V
A

LIB
R

A
R

Y

dimensions of the rectangle from which the pixels will be obtained. The pixels will be
stored in pixel beginning at offset. The width of a scan line (which is often the same as
the width of the image) is passed in scanLineWidth.

grabPixels() is defined like this:

boolean grabPixels()
throws InterruptedException

boolean grabPixels(long milliseconds)
throws InterruptedException

Both methods return true if successful and false otherwise. In the second form,
milliseconds specifies how long the method will wait for the pixels.

Here is an example that grabs the pixels from an image and then creates a
histogram of pixel brightness. The histogram is simply a count of pixels that are a
certain brightness for all brightness settings between 0 and 255. After the applet paints
the image, it draws the histogram over the top.

/*

* <applet code=HistoGrab.class width=341 height=400>

* <param name=img value=vermeer.jpg>

* </applet> */

import java.applet.*;

import java.awt.* ;

import java.awt.image.* ;

public class HistoGrab extends Applet {

Dimension d;

Image img;

int iw, ih;

int pixels[];

int w, h;

int hist[] = new int[256];

int max_hist = 0;

public void init() {

d = getSize();

w = d.width;

h = d.height;

try {

img = getImage(getDocumentBase(), getParameter("img"));

MediaTracker t = new MediaTracker(this);

t.addImage(img, 0);

t.waitForID(0);

iw = img.getWidth(null);

ih = img.getHeight(null);

pixels = new int[iw * ih];

PixelGrabber pg = new PixelGrabber(img, 0, 0, iw, ih,

pixels, 0, iw);

pg.grabPixels();

} catch (InterruptedException e) { };

for (int i=0; i<iw*ih; i++) {

int p = pixels[i];

int r = 0xff & (p >> 16);

int g = 0xff & (p >> 8);

int b = 0xff & (p);

int y = (int) (.33 * r + .56 * g + .11 * b);

hist[y]++;

}

for (int i=0; i<256; i++) {

if (hist[i] > max_hist)

max_hist = hist[i];

}

}

public void update() {}

public void paint(Graphics g) {

g.drawImage(img, 0, 0, null);

int x = (w - 256) / 2;

int lasty = h - h * hist[0] / max_hist;

for (int i=0; i<256; i++, x++) {

int y = h - h * hist[i] / max_hist;

g.setColor(new Color(i, i, i));

g.fillRect(x, y, 1, h);

g.setColor(Color.red);

g.drawLine(x-1,lasty,x,y);

lasty = y;

}

}

}

Figure 23-6 shows the image and histogram for a famous Vermeer painting.

820 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 3 : I m a g e s 821
TH

E
JA

V
A

LIB
R

A
R

Y

ImageFilter
Given the ImageProducer and ImageConsumer interface pair—and their concrete
classes MemoryImageSource and PixelGrabber—you can create an arbitrary set of
translation filters that takes a source of pixels, modifies them, and passes them on to
an arbitrary consumer. This mechanism is analogous to the way concrete classes are
created from the abstract I/O classes InputStream, OutputStream, Reader, and
Writer (described in Chapter 17). This stream model for images is completed by
the introduction of the ImageFilter class. Some subclasses of ImageFilter in the
java.awt.image package are AreaAveragingScaleFilter, CropImageFilter,
ReplicateScaleFilter, and RGBImageFilter. There is also an implementation of
ImageProducer called FilteredImageSource, which takes an arbitrary ImageFilter
and wraps it around an ImageProducer to filter the pixels it produces. An instance
of FilteredImageSource can be used as an ImageProducer in calls to createImage, in
much the same way that BufferedInputStreams can be passed off as InputStreams.

In this chapter, we examine two filters: CropImageFilter and RGBImageFilter.

CropImageFilter
CropImageFilter filters an image source to extract a rectangular region. One situation
in which this filter is valuable is where you want to use several small images from a

Figure 23-6. Sample output from HistoGrab

single, larger source image. Loading twenty 2K images takes much longer than loading
a single 40K image that has many frames of an animation tiled into it. If every
subimage is the same size, then you can easily extract these images by using
CropImageFilter to disassemble the block once your applet starts. Here is an example
that creates 16 images taken from a single image. The tiles are then scrambled by
swapping a random pair from the 16 images 32 times.

/*

* <applet code=TileImage.class width=288 height=399>

* <param name=img value=picasso.jpg>

* </applet>

*/

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

public class TileImage extends Applet {

Image img;

Image cell[] = new Image[4*4];

int iw, ih;

int tw, th;

public void init() {

try {

img = getImage(getDocumentBase(), getParameter("img"));

MediaTracker t = new MediaTracker(this);

t.addImage(img, 0);

t.waitForID(0);

iw = img.getWidth(null);

ih = img.getHeight(null);

tw = iw / 4;

th = ih / 4;

CropImageFilter f;

FilteredImageSource fis;

t = new MediaTracker(this);

for (int y=0; y<4; y++) {

for (int x=0; x<4; x++) {

f = new CropImageFilter(tw*x, th*y, tw, th);

fis = new FilteredImageSource(img.getSource(), f);

int i = y*4+x;

cell[i] = createImage(fis);

t.addImage(cell[i], i);

822 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

}

t.waitForAll();

for (int i=0; i<32; i++) {

int si = (int)(Math.random() * 16);

int di = (int)(Math.random() * 16);

Image tmp = cell[si];

cell[si] = cell[di];

cell[di] = tmp;

}

} catch (InterruptedException e) { };

}

public void update(Graphics g) {

paint(g);

}

public void paint(Graphics g) {

for (int y=0; y<4; y++) {

for (int x=0; x<4; x++) {

g.drawImage(cell[y*4+x], x * tw, y * th, null);

}

}

}

}

Figure 23-7 shows a famous Picasso painting scrambled by the TileImage applet.

RGBImageFilter
The RGBImageFilter is used to convert one image to another, pixel by pixel,
transforming the colors along the way. This filter could be used to brighten an
image, to increase its contrast, or even to convert it to grayscale.

To demonstrate RGBImageFilter, we have developed a somewhat complicated
example, which employs a dynamic plug-in strategy for image-processing filters.
We’ve created an interface for generalized image filtering so that our applet can simply
load these filters based on <param> tags without having to know about all of the
ImageFilters in advance. This example consists of the main applet class called
ImageFilterDemo, the interface called PlugInFilter, and a utility class called
LoadedImage, which encapsulates some of the MediaTracker methods we’ve been
using in this chapter. Also included are three filters—Grayscale, Invert, and
Contrast—which simply manipulate the color space of the source image using

C h a p t e r 2 3 : I m a g e s 823
TH

E
JA

V
A

LIB
R

A
R

Y

RGBImageFilters, and two more classes—Blur and Sharpen—which do more
complicated “convolution” filters that change pixel data based on the pixels
surrounding each pixel of source data. Blur and Sharpen are subclasses of an
abstract helper class called Convolver. Let’s look at each part of our example.

ImageFilterDemo.java
The ImageFilterDemo class is the applet framework for our sample image filters. It
employs a simple BorderLayout, with a Panel at the South position to hold the buttons
that will represent each filter. A Label object occupies the North slot for informational
messages about filter progress. The Center is where the image (which is encapsulated in
the LoadedImage Canvas subclass, described later) is put. We parse the buttons/filters
out of the filters <param> tag, separating them with +’s using a StringTokenizer.

The actionPerformed() method is interesting because it uses the label from a
button as the name of a filter class that it tries to load with (PlugInFilter)
Class.forName(a).newInstance(). This method is robust and takes appropriate action
if the button does not correspond to a proper class that implements PlugInFilter.

824 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 23-7. Sample output from TileImage

TH
E

JA
V
A

LIB
R

A
R

Y
C h a p t e r 2 3 : I m a g e s 825

/*

* <applet code=ImageFilterDemo width=350 height=450>

* <param name=img value=vincent.jpg>

* <param name=filters value="Grayscale+Invert+Contrast+Blur+ Sharpen">

* </applet>

*/

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class ImageFilterDemo extends Applet implements ActionListener {

Image img;

PlugInFilter pif;

Image fimg;

Image curImg;

LoadedImage lim;

Label lab;

Button reset;

public void init() {

setLayout(new BorderLayout());

Panel p = new Panel();

add(p, BorderLayout.SOUTH);

reset = new Button("Reset");

reset.addActionListener(this);

p.add(reset);

StringTokenizer st = new StringTokenizer(getParameter("filters"), "+");

while(st.hasMoreTokens()) {

Button b = new Button(st.nextToken());

b.addActionListener(this);

p.add(b);

}

lab = new Label("");

add(lab, BorderLayout.NORTH);

img = getImage(getDocumentBase(), getParameter("img"));

lim = new LoadedImage(img);

826 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

add(lim, BorderLayout.CENTER);

}

public void actionPerformed(ActionEvent ae) {

String a = "";

try {

a = (String)ae.getActionCommand();

if (a.equals("Reset")) {

lim.set(img);

lab.setText("Normal");

}

else {

pif = (PlugInFilter) Class.forName(a).newInstance();

fimg = pif.filter(this, img);

lim.set(fimg);

lab.setText("Filtered: " + a);

}

repaint();

} catch (ClassNotFoundException e) {

lab.setText(a + " not found");

lim.set(img);

repaint();

} catch (InstantiationException e) {

lab.setText("could't new " + a);

} catch (IllegalAccessException e) {

lab.setText("no access: " + a);

}

}

}

Figure 23-8 shows what the applet looks like when it is first loaded using the applet tag
shown at the top of this source file.

PlugInFilter.java
PlugInFilter is a simple interface used to abstract image filtering. It has only one
method, filter(), which takes the applet and the source image and returns a new image
that has been filtered in some way.

interface PlugInFilter {

java.awt.Image filter(java.applet.Applet a, java.awt.Image in);

}

LoadedImage.java
LoadedImage is a convenient subclass of Canvas, which takes an image at construction
time and synchronously loads it using MediaTracker. LoadedImage then behaves
properly inside of LayoutManager control, because it overrides the getPreferredSize()
and getMinimumSize() methods. Also, it has a method called set() that can be used to
set a new Image to be displayed in this Canvas. That is how the filtered image is
displayed after the plug-in is finished.

import java.awt.*;

public class LoadedImage extends Canvas {

Image img;

public LoadedImage(Image i) {

set(i);

}

void set(Image i) {

C h a p t e r 2 3 : I m a g e s 827
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 23-8. Sample normal output from ImageFilterDemo

MediaTracker mt = new MediaTracker(this);

mt.addImage(i, 0);

try {

mt.waitForAll();

} catch (InterruptedException e) { };

img = i;

repaint();

}

public void paint(Graphics g) {

if (img == null) {

g.drawString("no image", 10, 30);

} else {

g.drawImage(img, 0, 0, this);

}

}

public Dimension getPreferredSize() {

return new Dimension(img.getWidth(this), img.getHeight(this));

}

public Dimension getMinimumSize() {

return getPreferredSize();

}

}

Grayscale.java
The Grayscale filter is a subclass of RGBImageFilter, which means that Grayscale can
use itself as the ImageFilter parameter to FilteredImageSource’s constructor. Then all
it needs to do is override filterRGB() to change the incoming color values. It takes the
red, green, and blue values and computes the brightness of the pixel, using the NTSC
(National Television Standards Committee) color-to-brightness conversion factor. It
then simply returns a gray pixel that is the same brightness as the color source.

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

class Grayscale extends RGBImageFilter implements PlugInFilter {

public Image filter(Applet a, Image in) {

828 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

return a.createImage(new FilteredImageSource(in.getSource(), this));

}

public int filterRGB(int x, int y, int rgb) {

int r = (rgb >> 16) & 0xff;

int g = (rgb >> 8) & 0xff;

int b = rgb & 0xff;

int k = (int) (.56 * g + .33 * r + .11 * b);

return (0xff000000 | k << 16 | k << 8 | k);

}

}

Invert.java
The Invert filter is also quite simple. It takes apart the red, green, and blue channels
and then inverts them by subtracting them from 255. These inverted values are packed
back into a pixel value and returned.

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

class Invert extends RGBImageFilter implements PlugInFilter {

public Image filter(Applet a, Image in) {

return a.createImage(new FilteredImageSource(in.getSource(), this));

}

public int filterRGB(int x, int y, int rgb) {

int r = 0xff - (rgb >> 16) & 0xff;

int g = 0xff - (rgb >> 8) & 0xff;

int b = 0xff - rgb & 0xff;

return (0xff000000 | r << 16 | g << 8 | b);

}

}

Figure 23-9 shows the image after it has been run through the Invert filter.

Contrast.java
The Contrast filter is very similar to Grayscale, except its override of filterRGB() is
slightly more complicated. The algorithm it uses for contrast enhancement takes the
red, green, and blue values separately and boosts them by 1.2 times if they are already
brighter than 128. If they are below 128, then they are divided by 1.2. The boosted
values are properly clamped at 255 by the multclamp() method.

C h a p t e r 2 3 : I m a g e s 829
TH

E
JA

V
A

LIB
R

A
R

Y

830 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

public class Contrast extends RGBImageFilter implements PlugInFilter {

public Image filter(Applet a, Image in) {

return a.createImage(new FilteredImageSource(in.getSource(), this));

}

private int multclamp(int in, double factor) {

in = (int) (in * factor);

return in > 255 ? 255 : in;

}

double gain = 1.2;

Figure 23-9. Using the Invert filter with ImageFilterDemo

private int cont(int in) {

return (in < 128) ? (int)(in/gain) : multclamp(in, gain);

}

public int filterRGB(int x, int y, int rgb) {

int r = cont((rgb >> 16) & 0xff);

int g = cont((rgb >> 8) & 0xff);

int b = cont(rgb & 0xff);

return (0xff000000 | r << 16 | g << 8 | b);

}

}

Figure 23-10 shows the image after Contrast is pressed.

Convolver.java
The abstract class Convolver handles the basics of a convolution filter by implementing
the ImageConsumer interface to move the source pixels into an array called imgpixels.
It also creates a second array called newimgpixels for the filtered data. Convolution
filters sample a small rectangle of pixels around each pixel in an image, called the

C h a p t e r 2 3 : I m a g e s 831
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 23-10. Using the Contrast filter with ImageFilterDemo

convolution kernel. This area, 3×3 pixels in this demo, is used to decide how to change
the center pixel in the area. The two concrete subclasses, shown in the next section,
simply implement the convolve() method, using imgpixels for source data and
newimgpixels to store the result.

The reason that the filter can’t modify the imgpixels array in place is that the next pixel
on a scan line would try to use the original value for the previous pixel, which would
have just been filtered away.

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

abstract class Convolver implements ImageConsumer, PlugInFilter {

int width, height;

int imgpixels[], newimgpixels[];

abstract void convolve(); // filter goes here...

public Image filter(Applet a, Image in) {

in.getSource().startProduction(this);

waitForImage();

newimgpixels = new int[width*height];

try {

convolve();

} catch (Exception e) {

System.out.println("Convolver failed: " + e);

e.printStackTrace();

}

return a.createImage(

new MemoryImageSource(width, height, newimgpixels, 0, width));

}

synchronized void waitForImage() {

try { wait(); } catch (Exception e) { };

}

public void setProperties(java.util.Hashtable dummy) { }

public void setColorModel(ColorModel dummy) { }

832 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public void setHints(int dummy) { }

public synchronized void imageComplete(int dummy) {

notifyAll();

}

public void setDimensions(int x, int y) {

width = x;

height = y;

imgpixels = new int[x*y];

}

public void setPixels(int x1, int y1, int w, int h,

ColorModel model, byte pixels[], int off, int scansize) {

int pix, x, y, x2, y2, sx, sy;

x2 = x1+w;

y2 = y1+h;

sy = off;

for(y=y1; y<y2; y++) {

sx = sy;

for(x=x1; x<x2; x++) {

pix = model.getRGB(pixels[sx++]);

if((pix & 0xff000000) == 0)

pix = 0x00ffffff;

imgpixels[y*width+x] = pix;

}

sy += scansize;

}

}

public void setPixels(int x1, int y1, int w, int h,

ColorModel model, int pixels[], int off, int scansize) {

int pix, x, y, x2, y2, sx, sy;

x2 = x1+w;

y2 = y1+h;

sy = off;

for(y=y1; y<y2; y++) {

sx = sy;

for(x=x1; x<x2; x++) {

C h a p t e r 2 3 : I m a g e s 833
TH

E
JA

V
A

LIB
R

A
R

Y

pix = model.getRGB(pixels[sx++]);

if((pix & 0xff000000) == 0)

pix = 0x00ffffff;

imgpixels[y*width+x] = pix;

}

sy += scansize;

}

}

}

Blur.java
The Blur filter is a subclass of Convolver and simply runs through every pixel in the
source image array, imgpixels, and computes the average of the 3×3 box surrounding
it. The corresponding output pixel in newimgpixels is that average value.

public class Blur extends Convolver {

public void convolve() {

for(int y=1; y<height-1; y++) {

for(int x=1; x<width-1; x++) {

int rs = 0;

int gs = 0;

int bs = 0;

for(int k=-1; k<=1; k++) {

for(int j=-1; j<=1; j++) {

int rgb = imgpixels[(y+k)*width+x+j];

int r = (rgb >> 16) & 0xff;

int g = (rgb >> 8) & 0xff;

int b = rgb & 0xff;

rs += r;

gs += g;

bs += b;

}

}

rs /= 9;

gs /= 9;

bs /= 9;

newimgpixels[y*width+x] = (0xff000000 |

834 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

rs << 16 | gs << 8 | bs);

}

}

}

}

Figure 23-11 shows the applet after Blur.

Sharpen.java
The Sharpen filter is also a subclass of Convolver and is (more or less) the inverse of
Blur. It runs through every pixel in the source image array, imgpixels, and computes
the average of the 3×3 box surrounding it, not counting the center. The corresponding
output pixel in newimgpixels has the difference between the center pixel and the
surrounding average added to it. This basically says that if a pixel is 30 brighter
than its surroundings, make it another 30 brighter. If, however, it is 10 darker, then
make it another 10 darker. This tends to accentuate edges while leaving smooth
areas unchanged.

C h a p t e r 2 3 : I m a g e s 835
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 23-11. Using the Blur filter with ImageFilterDemo

public class Sharpen extends Convolver {

private final int clamp(int c) {

return (c > 255 ? 255 : (c < 0 ? 0 : c));

}

public void convolve() {

int r0=0, g0=0, b0=0;

for(int y=1; y<height-1; y++) {

for(int x=1; x<width-1; x++) {

int rs = 0;

int gs = 0;

int bs = 0;

for(int k=-1; k<=1; k++) {

for(int j=-1; j<=1; j++) {

int rgb = imgpixels[(y+k)*width+x+j];

int r = (rgb >> 16) & 0xff;

int g = (rgb >> 8) & 0xff;

int b = rgb & 0xff;

if (j == 0 && k == 0) {

r0 = r;

g0 = g;

b0 = b;

} else {

rs += r;

gs += g;

bs += b;

}

}

}

rs >>= 3;

gs >>= 3;

bs >>= 3;

newimgpixels[y*width+x] = (0xff000000 |

clamp(r0+r0-rs) << 16 |

clamp(g0+g0-gs) << 8 |

clamp(b0+b0-bs));

}

}

}

}

Figure 23-12 shows the applet after Sharpen.

836 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Cell Animation
Now that we have presented an overview of the image APIs, we can put together
an interesting applet that will display a sequence of animation cells. The animation
cells are taken from a single image that can arrange the cells in a grid specified via
the rows and cols <param> tags. Each cell in the image is snipped out in a way similar
to that used in the TileImage example earlier. We obtain the sequence in which to
display the cells from the sequence <param> tag. This is a comma-separated list of
cell numbers that is zero-based and proceeds across the grid from left to right, top
to bottom.

Once the applet has parsed the <param> tags and loaded the source image, it cuts
the image into a number of small subimages. Then, a thread is started that causes the
images to be displayed according to the order described in sequence. The thread sleeps
for enough time to maintain the framerate. Here is the source code:

// Animation example.

import java.applet.*;

import java.awt.*;

C h a p t e r 2 3 : I m a g e s 837
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 23-12. Using the Sharpen filter with ImageFilterDemo

import java.awt.image.*;

import java.util.*;

public class Animation extends Applet implements Runnable {

Image cell[];

final int MAXSEQ = 64;

int sequence[];

int nseq;

int idx;

int framerate;

boolean stopFlag;

private int intDef(String s, int def) {

int n = def;

if (s != null)

try {

n = Integer.parseInt(s);

} catch (NumberFormatException e) { };

return n;

}

public void init() {

framerate = intDef(getParameter("framerate"), 5);

int tilex = intDef(getParameter("cols"), 1);

int tiley = intDef(getParameter("rows"), 1);

cell = new Image[tilex*tiley];

StringTokenizer st = new

StringTokenizer(getParameter("sequence"), ",");

sequence = new int[MAXSEQ];

nseq = 0;

while(st.hasMoreTokens() && nseq < MAXSEQ) {

sequence[nseq] = intDef(st.nextToken(), 0);

nseq++;

}

try {

Image img = getImage(getDocumentBase(), getParameter("img"));

838 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

MediaTracker t = new MediaTracker(this);

t.addImage(img, 0);

t.waitForID(0);

int iw = img.getWidth(null);

int ih = img.getHeight(null);

int tw = iw / tilex;

int th = ih / tiley;

CropImageFilter f;

FilteredImageSource fis;

for (int y=0; y<tiley; y++) {

for (int x=0; x<tilex; x++) {

f = new CropImageFilter(tw*x, th*y, tw, th);

fis = new FilteredImageSource(img.getSource(), f);

int i = y*tilex+x;

cell[i] = createImage(fis);

t.addImage(cell[i], i);

}

}

t.waitForAll();

} catch (InterruptedException e) { };

}

public void update(Graphics g) { }

public void paint(Graphics g) {

g.drawImage(cell[sequence[idx]], 0, 0, null);

}

Thread t;

public void start() {

t = new Thread(this);

stopFlag = false;

t.start();

}

public void stop() {

stopFlag = true;

C h a p t e r 2 3 : I m a g e s 839
TH

E
JA

V
A

LIB
R

A
R

Y

840 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

public void run() {

idx = 0;

while (true) {

paint(getGraphics());

idx = (idx + 1) % nseq;

try { Thread.sleep(1000/framerate); } catch (Exception e) { };

if(stopFlag)

return;

}

}

}

The following applet tag shows the famous locomotion study by Eadweard
Muybridge, which proved that horses do, indeed, get all four hooves off the ground at
once. (Of course, you can substitute another image file in your own applet.)

<applet code=Animation width=67 height=48>

<param name=img value=horse.gif>

<param name=rows value=3>

<param name=cols value=4>

<param name=sequence value=0,1,2,3,4,5,6,7,8,9,10>

<param name=framerate value=15>

</applet>

Figure 23-13 shows the applet running. Notice the source image that has been loaded
below the applet using a normal tag.

Additional Imaging Classes
In addition to the imaging classes described in this chapter, java.awt.image supplies several
others that offer enhanced control over the imaging process and that support advanced

imaging techniques. Java 2, version 1.4 also adds a new imaging package called
javax.imageio. This package supports plug-ins that handle various image formats.
If sophisticated graphical output is of special interest to you, then you will want to
explore the additional classes found in java.awt.image and javax.imageio.

C h a p t e r 2 3 : I m a g e s 841
TH

E
JA

V
A

LIB
R

A
R

Y

Figure 23-13. Sample output of Animation

This page intentionally left blank.

Chapter 24
New I/O, Regular
Expressions, and
Other Packages

843

When Java 1.0 was released, it included a set of eight packages, called the core
API. These are the packages described in the preceding chapters and are the
ones that you will use most often in your day-to-day programming. Each

subsequent release added to the core API. Today, the Java API contains a large number
of packages. Many of the new packages support areas of specialization that are beyond
the scope of this book. However, five packages warrant an examination here: java.nio,
java.util.regex, java.lang.reflect, java.rmi, and java.text. They support the new I/O
system, regular expression processing, reflection, Remote Method Invocation (RMI),
and text formatting, respectively. Two of these, the new I/O APIs and regular expression
processing, were added by Java 2, version 1.4.

The new I/O APIs offer a different way to look at and handle certain types of
I/O operations. The regular expression package lets you perform sophisticated pattern
matching operations. This chapter provides an in-depth discussion of both of these
packages along with extensive examples. Reflection is the ability of software to analyze
itself. It is an essential part of the Java Beans technology that is covered in Chapter 25.
Examples are provided here to introduce the concept. Remote Method Invocation
(RMI) allows you to build Java applications that are distributed among several machines.
This chapter provides a simple client/server example that uses RMI. The text formatting
capabilities of java.text have many uses. The one examined here formats date and
time strings.

The Core Java API Packages
Table 24-1 lists all of the Java Core API packages defined by Java 2 and summarizes
their functions.

844 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Package Primary Function

java.applet Supports construction of applets.

java.awt Provides capabilities for graphical
user interfaces.

java.awt.color Supports color spaces and profiles.

java.awt.datatransfer Transfers data to and from the
system clipboard.

java.awt.dnd Supports drag-and-drop operations.

Table 24-1. The Core Java API Packages

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 845
TH

E
JA

V
A

LIB
R

A
R

Y

Package Primary Function

java.awt.event Handles events.

java.awt.font Represents various types of fonts.

java.awt.geom Allows you to work with
geometric shapes.

java.awt.im Allows input of Japanese, Chinese, and
Korean characters to text editing components.

java.awt.im.spi Supports alternative input devices. (Added by
Java 2, v1.3)

java.awt.image Processes images.

java.awt.image.renderable Supports rendering-independent images.

java.awt.print Supports general print capabilities.

java.beans Allows you to build software components.

java.beans.beancontext Provides an execution environment
for beans.

java.io Inputs and outputs data.

java.lang Provides core functionality.

java.lang.ref Enables some interaction with the
garbage collector.

java.lang.reflect Analyzes code at run time.

java.math Handles large integers and
decimal numbers.

java.net Supports networking.

java.nio Top-level package for the new Java I/O
classes. Encapsulates buffers. (Added by Java
2, v1.4)

java.nio.channels Encapsulates channels, which are used by the
new I/O system. (Added by Java 2, v1.4)

java.nio.channels.spi Supports service providers for channels.
(Added by Java 2, v1.4)

Table 24-1. The Core Java API Packages (continued)

846 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Package Primary Function

java.nio.charset Encapsulates character sets, which are used by
the new I/O system. (Added by Java 2, v1.4)

java.nio.charset.spi Supports service providers for charsets. (Added
by Java 2, v1.4)

java.rmi Provides remote method invocation.

java.rmi.activation Activates persistent objects.

java.rmi.dgc Manages distributed garbage collection.

java.rmi.registry Maps names to remote object references.

java.rmi.server Supports remote method invocation.

java.security Handles certificates, keys, digests, signatures,
and other security functions.

java.security.acl Manages access control lists.

java.security.cert Parses and manages certificates.

java.security.interfaces Defines interfaces for DSA (Digital Signature
Algorithm) keys.

java.security.spec Specifies keys and algorithm parameters.

java.sql Communicates with a SQL (Structured Query
Language) database.

java.text Formats, searches, and manipulates text.

java.util Contains common utilities.

java.util.jar Creates and reads JAR files.

java.util.logging Supports logging of information related to a
program’s execution. (Added by Java 2, v1.4)

java.util.prefs Encapsulates information relating to user
preferences. (Added by Java 2, v1.4)

java.util.regex Supports regular expression processing.
(Added by Java 2, v1.4)

java.util.zip Reads and writes compressed and
uncompressed ZIP files.

Table 24-1. The Core Java API Packages (continued)

The New I/O Packages
Java 2, version 1.4 added a new way to handle I/O operations. Called the new I/O APIs,
it is one of the more interesting additions that Sun included in the 1.4 release because it
supports a channel-based approach to I/O operations. The new I/O classes are
contained in the five packages shown here.

Package Purpose

java.nio Top-level package for the new I/O system.
Encapsulates various types of buffers which contain
data operated upon by the new I/O system.

java.nio.channels Supports channels, which are essentially open I/O
connections.

java.nio.channels.spi Supports service providers for channels.

java.nio.charset Encapsulates character sets. Also supports encoders
and decoders that convert characters to bytes and
bytes to characters, respectively.

java.nio.charset.spi Supports service providers for character sets.

Before we begin, it is important to emphasize that the new I/O subsystem (NIO) is not
intended to replace the I/O classes found in java.io, which are discussed in Chapter 17.
Instead, the NIO classes supplement the standard I/O system, giving you an alternative
approach, which can be beneficial in some circumstances.

NIO Fundamentals
The new I/O system is built on two foundational items: buffers and channels. A buffer
holds data. A channel represents an open connection to an I/O device, such as a file or
a socket. In general, to use the new I/O system, you obtain a channel to an I/O device
and a buffer to hold data. You then operate on the buffer, inputting or outputting data
as needed. The following sections examine buffers and channels in more detail.

Buffers
Buffers are defined in the java.nio package. All buffers are subclasses of the Buffer
class, which defines the core functionality common to all buffers: current position,
limit, and capacity. The current position is the index within the buffer at which the next
read or write operation will take place. The current position is advanced by most read
or write operations. The limit is the index of the end of the buffer. The capacity is the
number of elements that the buffer can hold. Buffer also supports mark and reset.
Buffer defines several methods, which are shown in Table 24-2.

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 847
TH

E
JA

V
A

LIB
R

A
R

Y

From Buffer are derived the following specific buffer classes, which hold the type
of data that their names imply.

ByteBuffer CharBuffer DoubleBuffer FloatBuffer

IntBuffer LongBuffer MappedByteBuffer ShortBuffer

MappedByteBuffer is a subclass of ByteBuffer that is used to map a file to a buffer.

848 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

final int capacity() Returns the number of elements that the
invoking buffer is capable of holding.

final Buffer clear() Clears the invoking buffer and returns a
reference to the buffer.

final Buffer flip() Sets the invoking buffer’s limit to the current
position and resets the current position to 0.
Returns a reference to the buffer.

final boolean hasRemaining() Returns true if there are elements remaining in
the invoking buffer. Returns false otherwise.

abstract boolean isReadOnly() Returns true if the invoking buffer is
read-only. Returns false otherwise.

final int limit() Returns the invoking buffer’s limit.

final Buffer limit(int n) Sets the invoking buffer’s limit to n. Returns a
reference to the buffer.

final Buffer mark() Sets the mark and returns a reference to the
invoking buffer.

final int position() Returns the current position.

final Buffer position(int n) Sets the invoking buffer’s current position to
n. Returns a reference to the buffer.

final Buffer reset() Resets the current position of the invoking
buffer to the previously set mark. Returns a
reference to the buffer.

final Buffer rewind() Sets the position of the invoking buffer to 0.
Returns a reference to the buffer.

Table 24-2. The methods defined by Buffer

All buffers support various get() and put() methods, which allow you to get data
from a buffer or put data into a buffer. For example, Table 24-3 shows the get() and

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 849
TH

E
JA

V
A

LIB
R

A
R

Y

Method Description

abstract byte get() Returns the byte at the current position.

ByteBuffer get(byte vals[]) Copies the invoking buffer into the array
referred to by vals. Returns a reference to
the buffer.

ByteBuffer get(byte vals[], int start,
int num)

Copies num elements from the invoking
buffer into the array referred to by vals,
beginning at the index specified by start.
Returns a reference to the buffer. If there
are not num elements remaining in the
buffer, a BufferUnderflowException is
thrown.

abstract byte get(int idx) Returns the byte at the index specified by
idx within the invoking buffer.

abstract ByteBuffer put(byte b) Copies b into the invoking buffer at the
current position. Returns a reference to
the buffer.

final ByteBuffer put(byte vals[]) Copies all elements of vals into the
invoking buffer, beginning at the current
position. Returns a reference to the buffer.

ByteBuffer put(byte vals[], int start,
int num)

Copies num elements from vals,
beginning at start, into the invoking
buffer. Returns a reference to the buffer. If
the buffer cannot hold all of the elements,
a BufferOverflowException is thrown.

ByteBuffer put(ByteBuffer bb) Copies the elements in bb to the invoking
buffer, beginning at the current position.
If the buffer cannot hold all of the
elements, a BufferOverflowException is
thrown. Returns a reference to the buffer.

abstract ByteBuffer put(int idx, byte b) Copies b into the invoking buffer at the
location specified by idx. Returns a
reference to the buffer.

Table 24-3. The get() and put() methods defined for ByteBuffer

put() methods defined by ByteBuffer. (The other buffer classes have similar methods.)
All buffer classes also support methods that perform various buffer operations. For
example, you can allocate a buffer manually using allocate(). You can wrap an array
inside a buffer using wrap(). You can create a subsequence of a buffer using slice().

Channels
Channels are defined in java.nio.channels. A channel represents an open connection to an
I/O source or destination. You obtain a channel by calling getChannel() on an object that
supports channels. Java 2, version 1.4 added getChannel() to the following I/O classes.

FileInputStream FileOutputStream RandomAccessFile

Socket ServerSocket DatagramSocket

Thus, to obtain a channel, you first obtain an object of one of these classes and then call
getChannel() on that object.

The specific type of channel returned depends upon the type of object getChannel()
is called on. For example, when called on a FileInputStream, FileOuputStream, or
RandomAccessFile, getChannel() returns a channel of type FileChannel. When called
on a Socket, getChannel() returns a SocketChannel.

Channels such as FileChannel and SocketChannel support various read() and
write() methods that enable you to perform I/O operations through the channel. For
example, here are a few of the read() and write() methods defined for FileChannel.
All can throw an IOException.

Method Description

abstract int read(ByteBuffer bb) Reads bytes from the invoking channel into bb
until the buffer is full, or there is no more input.
Returns the number of bytes actually read.

abstract int read(ByteBuffer bb,
long start)

Beginning at the file location specified by start,
reads bytes from the invoking channel into
bb until the buffer is full, or there is no more
input. The current position is unchanged.
Returns the number of bytes actually read,
or –1 if start is beyond the end of the file.

abstract int write(ByteBuffer bb) Writes the contents of bb to the invoking
channel, starting at the current position.
Returns the number of bytes written.

abstract int write(ByteBuffer bb,
long start)

Beginning at the file location specified by
start, writes the contents of bb to the invoking
channel. The current position is unchanged.
Returns the number of bytes written.

850 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

All channels support additional methods that give you access to and control over the
channel. For example, FileChannel supports methods to get or set the current position,
transfer information between file channels, obtain the current size of the channel, and
lock the channel, among others. FileChannel also provides the map() method, which
lets you map a file to a buffer.

Charsets and Selectors
Two other entities used by NIO are charsets and selectors. A charset defines the way
that bytes are mapped to characters. You can encode a sequence of characters into
bytes using an encoder. You can decode a sequence of bytes into characters using a
decoder. Charsets, encoders, and decoders are supported by classes defined in the
java.nio.charset package. Because default encoders and decoders are provided, you
will not often need to work explicitly with charsets.

A selector supports key-based, non-blocking, multiplexed I/O. In other words,
selectors enable you to perform I/O through multiple channels. Selectors are
supported by classes defined in the java.nio.channels package. Selectors are most
applicable to socket-backed channels.

We will not use charsets or selectors in this chapter, but you might find them
useful in your own applications.

Using the New I/O System
Because the most common I/O device is the disk file, the rest of this section examines
how to access a disk file using the new I/O system. Because all file channel operations
are byte-based, the type of buffers that we will be using are of type ByteBuffer.

Reading a File
There are several ways to read data from a file using the new I/O system. We will look
at two. The first reads a file by manually allocating a buffer and then performing an
explicit read operation. The second uses a mapped file, which automates the process.

To read a file using a channel and a manually allocated buffer, follow this procedure.
First open the file for input using FileInputStream. Then, obtain a channel to this file
by calling getChannel(). It has this general form:

FileChannel getChannel()

It returns a FileChannel object, which encapsulates the channel for file operations. Once
a file channel has been opened, obtain the size of the file by calling size(), shown here:

long size() throws IOException

It returns the current size, in bytes, of the channel, which reflects the underlying file.
Next, call allocate() to allocate a buffer large enough to hold the file’s contents. Because

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 851
TH

E
JA

V
A

LIB
R

A
R

Y

file channels operate on byte buffers you will use the allocate() method defined by
ByteBuffer. It has this general form.

static ByteBuffer allocate(int cap)

Here, cap specifies the capacity of the buffer. A reference to the buffer is returned. After
you have created the buffer, call read() on the channel, passing a reference to the buffer.

The following program shows how to read a text file called test.txt through a
channel using explicit input operations.

// Use the new I/O system to read a text file.

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class ExplicitChannelRead {

public static void main(String args[])

FileInputStream fIn;

FileChannel fChan;

long fSize;

ByteBuffer mBuf;

try

// First, open a file for input.

fIn = new FileInputStream("test.txt");

// Next, obtain a channel to that file.

fChan = fIn.getChannel();

// Now, get the file's size.

fSize = fChan.size();

// Allocate a buffer of the necessary size.

mBuf = ByteBuffer.allocate((int)fSize);

// Read the file into the buffer.

fChan.read(mBuf);

// Rewind the buffer so that it can be read.

mBuf.rewind();

// Read bytes from the buffer.

for(int i=0; i < fSize; i++)

852 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.print((char)mBuf.get());

System.out.println();

fChan.close(); // close channel

fIn.close(); // close file

} catch (IOException exc) {

System.out.println(exc);

System.exit(1);

}

}

}

Here is how the program works. First, a file is opened by using the FileInputStream
constructor and a reference to that object is assigned to fIn. Next, a channel connected
to the file is obtained by calling getChannel() on fIn and the size of the file is obtained
by calling size(). The program then calls the allocate() method of ByteBuffer to
allocate a buffer that will hold the contents of the file when it is read. A byte buffer is
used because FileChannel operates on bytes. A reference to this buffer is stored in
mBuf. The contents of the file are then read into mBuf through a call to read(). Next,
the buffer is rewound through a call to rewind(). This call is necessary because the
current position is at the end of the buffer after the call to read(). It must be reset to
the start of the buffer in order for the bytes in mBuf to be read by calling get(). Because
mBuf is a byte buffer, the values returned by get() are bytes. They are cast to char so
that the file can be displayed as text. (Alternatively, it is possible to create a buffer that
encodes the bytes into characters, and then read that buffer.) The program ends by
closing the channel and the file.

A second, and often easier way to read a file is to map it to a buffer. The advantage
to this approach is that the buffer automatically contains the contents of the file. No
explicit read operation is necessary. To map and read the contents of a file, follow this
general procedure. First, open the file using FileInputStream. Next, obtain a channel to
that file by calling getChannel() on the file object. Then, map the channel to a buffer by
calling map() on the FileChannel object. The map() method is shown here:

MappedByteBuffer map(FileChannel.MapMode how,
long pos, long size) throws IOException

The map() method causes the data in the file to be mapped into a buffer in memory.
The value in how determines what type of operations are allowed. It must be one of
these values.

MapMode.READ MapMode.READ_WRITE MapMode.PRIVATE

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 853
TH

E
JA

V
A

LIB
R

A
R

Y

For reading a file, use MapMode.READ. To read and write, use MapeMode.READ_
WRITE. MapMode.PRIVATE causes a private copy of the file to be made and changes
to the buffer do not affect the underlying file. The location within the file to begin
mapping is specified by pos and the number of bytes to map are specified by size. A
reference to this buffer is returned as a MappedByteBuffer, which is a subclass of
ByteBuffer. Once the file has been mapped to a buffer, you can read the file from
that buffer.

The following program reworks the first example so that it uses a mapped file.

// Use a mapped file to read a text file.

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class MappedChannelRead {

public static void main(String args[]) {

FileInputStream fIn;

FileChannel fChan;

long fSize;

MappedByteBuffer mBuf;

try {

// First, open an file for input.

fIn = new FileInputStream("test.txt");

// Next, obtain a channel to that file.

fChan = fIn.getChannel();

// Get the size of the file.

fSize = fChan.size();

// Now, map the file into a buffer.

mBuf = fChan.map(FileChannel.MapMode.READ_ONLY,

0, fSize);

// Read bytes from the buffer.

for(int i=0; i < fSize; i++)

System.out.print((char)mBuf.get());

fChan.close(); // close channel

fIn.close(); // close file

} catch (IOException exc) {

854 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println(exc);

System.exit(1);

}

}

}

As before, the file is opened by using the FileInputStream constructor and a reference
to that object is assigned to fIn. A channel connected to the file is obtained by calling
getChannel() on fIn, and the size of the file is obtained. Then the entire file is mapped
into memory by calling map() and a reference to the buffer is stored in mBuf. The
bytes in mBuf are read by calling get().

Writing to a File
There are several ways to write to a file through a channel. Again, we will look at two.
First, you can write data to an output file through a channel, by using explicit write
operations. Second, if the file is opened for read/write operations, you can map the file
to a buffer and then write to that buffer. Changes to the buffer will automatically be
reflected in the file. Both ways are described here.

To write to a file through a channel using explicit calls to write(), follow these
steps. First, open the file for output. Then, allocate a byte buffer, put the data you
want to write into that buffer, and then called write() on the channel. The following
program demonstrates this procedure. It writes the alphabet to a file called test.txt.

// Write to a file using the new I/O.

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class ExplicitChannelWrite {

public static void main(String args[]) {

FileOutputStream fOut;

FileChannel fChan;

ByteBuffer mBuf;

try {

fOut = new FileOutputStream("test.txt");

// Get a channel to the output file.

fChan = fOut.getChannel();

// Create a buffer.

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 855
TH

E
JA

V
A

LIB
R

A
R

Y

mBuf = ByteBuffer.allocateDirect(26);

// Write some bytes to the buffer.

for(int i=0; i<26; i++)

mBuf.put((byte)('A' + i));

// Rewind the buffer so that it can written.

mBuf.rewind();

// Write the buffer to the output file.

fChan.write(mBuf);

// close channel and file.

fChan.close();

fOut.close();

} catch (IOException exc) {

System.out.println(exc);

System.exit(1);

}

}

}

The call to rewind() on mBuf is necessary in order to reset the current position to zero
after data has been written to mBuf. Remember, each call to put() advances the current
position. Therefore, it is necessary for the current position to be reset to the start of the
buffer before calling write(). If this is not done, write() will think that there is no data
in the buffer.

To write to a file using a mapped file, follow these steps. First, open the file for
read/write operations. Next, map that file to a buffer by calling map(). Then, write
to the buffer. Because the buffer is mapped to the file, any changes to that buffer are
automatically reflected in the file. Thus, no explicit write operations to the channel
are necessary. Here is the preceding program reworked so that a mapped file is used.
Notice that the file is opened as a RandomAccessFile. This is necessary to allow the
file to be read and written.

// Write to a mapped file.

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class MappedChannelWrite {

856 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public static void main(String args[]) {

RandomAccessFile fOut;

FileChannel fChan;

ByteBuffer mBuf;

try {

fOut = new RandomAccessFile("test.txt", "rw");

// Next, obtain a channel to that file.

fChan = fOut.getChannel();

// Then, map the file into a buffer.

mBuf = fChan.map(FileChannel.MapMode.READ_WRITE,

0, 26);

// Write some bytes to the buffer.

for(int i=0; i<26; i++)

mBuf.put((byte)('A' + i));

// close channel and file.

fChan.close();

fOut.close();

} catch (IOException exc) {

System.out.println(exc);

System.exit(1);

}

}

}

As you can see, there are no explicit write operations to the channel, itself. Because mBuf
is mapped to the file, changes to mBuf are automatically reflected in the underlying file.

Copying a File Using the New I/O
The new I/O system simplifies some types of file operations. For example, the
following program copies a file. It does so by opening an input channel to the source
file and an output channel to the target file. It then writes the mapped input buffer
to the output file in a single operation. You might want to compare this version of the
file copy program to the one found in Chapter 12. As you will find, the part of the
program that actually copies the file is substantially shorter.

// Copy a file using NIO.

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 857
TH

E
JA

V
A

LIB
R

A
R

Y

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class NIOCopy {

public static void main(String args[]) {

FileInputStream fIn;

FileOutputStream fOut;

FileChannel fIChan, fOChan;

long fSize;

MappedByteBuffer mBuf;

try {

fIn = new FileInputStream(args[0]);

fOut = new FileOutputStream(args[1]);

// Get channels to the input and output files.

fIChan = fIn.getChannel();

fOChan = fOut.getChannel();

// Get the size of the file.

fSize = fIChan.size();

// Map the input file to a buffer.

mBuf = fIChan.map(FileChannel.MapMode.READ_ONLY,

0, fSize);

// Write the buffer to the output file.

fOChan.write(mBuf); // this copies the file

// Close the channels and files.

fIChan.close();

fIn.close();

fOChan.close();

fOut.close();

} catch (IOException exc) {

System.out.println(exc);

System.exit(1);

} catch (ArrayIndexOutOfBoundsException exc) {

System.out.println("Usage: Copy from to");

858 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.exit(1);

}

}

}

Because the input file is mapped to mBuf, it contains the entire source file. Thus, the
call to write() copies all of mBuf to the target file. This, of course, means that the target
file is an identical copy of the source file.

Is NIO the Future of I/O Handling?
The new I/O APIs offer an exciting new way to think about and handle some types
of file operations. Because of this it is natural to ask the question, “Is NIO the future
of I/O handling?” Unfortunately, at the time of this writing, this question cannot be
answered. Certainly, channels and buffers offer a clean way of thinking about I/O.
However, they also add another layer of abstraction. Furthermore, the traditional
stream-based approach is both well-understood, and widely used. As explained at
the outset, channel-based I/O is currently designed to supplement, not replace the
standard I/O mechanisms defined in java.io. In this role, the channel/buffer approach
used by the NIO APIs succeeds admirably. Whether the new approach will someday
supplant the traditional approach, only time and usage patterns will tell.

Regular Expression Processing
Another exciting package added by Java 2, version 1.4 is java.util.regex, which
supports regular expression processing. As the term is used here, a regular expression is
a string of characters that describes a character sequence. This general description,
called a pattern, can then be used to find matches in other character sequences. Regular
expressions can specify wildcard characters, sets of characters, and various quantifiers.
Thus, you can specify a regular expression that represents a general form that can
match several different specific character sequences.

There are two classes that support regular expression processing: Pattern and
Matcher. These classes work together. Use Pattern to define a regular expression.
Match the pattern against another sequence using Matcher.

Pattern
The Pattern class defines no constructors. Instead, a pattern is created by calling the
compile() factory method. One of its forms is shown here:

static Pattern compile(String pattern)

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 859
TH

E
JA

V
A

LIB
R

A
R

Y

Here, pattern is the regular expression that you want to use. The compile() method
transforms the string in pattern into a pattern that can be used for pattern matching by
the Matcher class. It returns a Pattern object that contains the pattern.

Once you have created a Pattern object, you will use it to create a Matcher. This is
done by calling the matcher() factory method defined by Pattern. It is shown here:

Matcher matcher(CharSequence str)

Here str is the character sequence that the pattern will be matched against. This is
called the input sequence. CharSequence is an interface that was added by Java 2,
version 1.4 that defines a read-only set of characters. It is implemented by the String
class, among others. Thus, you can pass a string to matcher().

Matcher
The Matcher class has no constructors. Instead, you create a Matcher by calling the
matcher() factory method defined by Pattern, as just explained. Once you have created
a Matcher, you will use its methods to perform various pattern matching operations.

The simplest pattern matching method is matches(), which simply determines
whether the character sequence matches the pattern. It is shown here:

boolean matches()

It returns true if the sequence and the pattern match, and false otherwise. Understand
that the entire sequence must match the pattern, not just a subsequence of it.

To determine if a subsequence of the input sequence matches the pattern, use
find(). One version is shown here:

boolean find()

It returns true if there is a matching subsequence and false otherwise. This method can
be called repeatedly, allowing it to find all matching subsequences. Each call to find()
begins where the previous one left off.

You can obtain a string containing the last matching sequence by calling group().
One of its forms is shown here:

String group()

The matching string is returned. If no match exists, then an IllegalStateException
is thrown.

You can obtain the index within the input sequence of the current match by calling
start(). The index one past the end of the current match is obtained by calling end().
These methods are shown here:

int start()
int end()

860 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

You can replace all occurrences of a matching sequence with another sequence by
calling replaceAll(), shown here:

String replaceAll(String newStr)

Here, newStr specifies the new character sequence that will replace the ones that match
the pattern. The updated input sequence is returned as a string.

Regular Expression Syntax
Before demonstrating Pattern and Matcher it is necessary to explain how to construct a
regular expression. The syntax and rules that define a regular expression are similar to
those used by Perl 5. Although no rule is complicated by itself, there are a large number
of them, and a complete discussion is beyond the scope of this chapter. However, a few
of the more commonly used constructs are described here.

In general, a regular expression is comprised of normal characters, character classes
(sets of characters), wildcard characters, and quantifiers. A normal character is matched
as-is. Thus, if a pattern consists of “xy”, then the only input sequence that will match it
is “xy”. Characters such as newline and tab are specified using the standard escape
sequences, which begin with a \. For example, a newline is specified by \n. In the language
of regular expressions, a normal character is also called a literal.

A character class is a set of characters. A character class is specified by putting the
characters in the class between brackets. For example, the class [wxyz] matches w, x, y,
or z. To specify an inverted set, precede the characters with a ^. For example, [^wxyz]
matches any character except w, x, y, or z. You can specify a range of characters using a
hypen. For example, to specify a character class that will match the digits 1 through 9
use [1-9].

The wildcard character is the . (dot) and it matches any character. Thus, a pattern that
consists of “.” will match these (and other) input seqeunces: “A”, “a”, “x”, and so on.

A quantifier determines how many times an expression is matched. The quantifiers
are shown here:

+ Match one or more.

* Match zero or more.

? Match zero or one.

For example, the pattern “x+” will match “x”, “xx”, and “xxx”, among others.

Demonstrating Pattern Matching
The best way to understand how regular expression pattern matching operates is to work
through some examples. The first, shown here, looks for a match with a literal pattern.

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 861
TH

E
JA

V
A

LIB
R

A
R

Y

// A simple pattern matching demo.

import java.util.regex.*;

class RegExpr {

public static void main(String args[]) {

Pattern pat;

Matcher mat;

boolean found;

pat = Pattern.compile("Java");

mat = pat.matcher("Java");

found = mat.matches(); // check for a match

System.out.println("Testing Java against Java.");

if(found) System.out.println("Matches");

else System.out.println("No Match");

System.out.println();

System.out.println("Testing Java against Java 2.");

mat = pat.matcher("Java 2"); // create a new matcher

found = mat.matches(); // check for a match

if(found) System.out.println("Matches");

else System.out.println("No Match");

}

}

The output from the program is shown here:

Testing Java against Java.
Matches

Testing Java against Java 2.
No Match

Let’s look closely at this program. The program begins by creating the pattern that
contains the sequence “Java”. Next, a Matcher is created for that pattern that has the
input sequence “Java”. Then, the matches() method is called to determine if the input
sequence matches the pattern. Because, the sequence and the pattern are the same,

862 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

matches() returns true. Next, a new Matcher is created with the input sequence “Java 2”
and matches() is called again. In this case, the pattern and the input sequence differ,
and no match is found. Remember, the matches() function returns true only when the
input sequence precisely matches the pattern. It will not return true just because a
subsequence matches.

You can use find() to determine if the input sequence contains a subsequence that
matches the pattern. Consider the following program.

// Use find() to find a subsequence.

import java.util.regex.*;

class RegExpr2 {

public static void main(String args[]) {

Pattern pat = Pattern.compile("Java");

Matcher mat = pat.matcher("Java 2");

System.out.println("Looking for Java in Java 2.");

if(mat.find()) System.out.println("subsequence found");

else System.out.println("No Match");

}

}

The output is shown here:

Looking for Java in Java 2.
subsequence found

In this case, find() finds the subsequence “Java”.
The find() method can be used to search the input sequence for repeated occurrences

of the pattern because each call to find() picks up where the previous one left off. For
example, the following program finds two occurrences of the pattern “test”.

// Use find() to find multiple subsequences.

import java.util.regex.*;

class RegExpr3 {

public static void main(String args[]) {

Pattern pat = Pattern.compile("test");

Matcher mat = pat.matcher("test 1 2 3 test");

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 863
TH

E
JA

V
A

LIB
R

A
R

Y

while(mat.find()) {

System.out.println("test found at index " +

mat.start());

}

}

}

The output is shown here:

test found at index 0
test found at index 11

As the output shows, two matches were found. The program uses the start() method to
obtain the index of each match.

Using Wildcards and Quantifiers
Although the preceding programs show the general technique for using Pattern and
Matcher, they don’t show their power. The real benefit of regular expression processing
is not seen until wildcards and quantifiers are used. To begin, consider the following
example that uses the + quantifier to match any arbitrarily long sequence of Ws.

// Use a quantifier.

import java.util.regex.*;

class RegExpr4 {

public static void main(String args[]) {

Pattern pat = Pattern.compile("W+");

Matcher mat = pat.matcher("W WW WWW");

while(mat.find())

System.out.println("Match: " + mat.group());

}

}

The output from the program is shown here:

Match: W
Match: WW
Match: WWW

864 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As the output shows, the regular expression pattern “W+” matches any arbitrarily long
sequence of Ws.

The next program uses a wildcard to create a pattern that will match any sequence
that begins with e and ends with d. To do this, it uses the dot wildcard character along
with the + quantifier.

// Use wildcard and quantifier.

import java.util.regex.*;

class RegExpr5 {

public static void main(String args[]) {

Pattern pat = Pattern.compile("e.+d");

Matcher mat = pat.matcher("extend cup end table");

while(mat.find())

System.out.println("Match: " + mat.group());

}

}

You might be surprised by the the output produced by the program, which is
shown here:

Match: extend cup end

Only one match is found, and it is the longest sequence that begins with e and ends
with d. You might have expected two matches: extend and end. The reason that the
longer sequence is found is that by default, find() matches the longest sequence that
fits the pattern. This is called greedy behavior. You can specify reluctant behavior by adding
the ? quantifier to the pattern, as shown in this version of the program. It causes the
shortest matching pattern to be obtained.

// Use the ? quantifier.

import java.util.regex.*;

class RegExpr6 {

public static void main(String args[]) {

// Use reluctant matching behavior.

Pattern pat = Pattern.compile("e.+?d");

Matcher mat = pat.matcher("extend cup end table");

while(mat.find())

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 865
TH

E
JA

V
A

LIB
R

A
R

Y

System.out.println("Match: " + mat.group());

}

}

The output from the program is shown here:

Match: extend
Match: end

As the output shows, the pattern “e.+?d” will match the shortest sequence that begins
with e and ends with d. Thus, two matches are found.

Working with Classes of Characters
Sometimes you will want to match any sequence that contains one or more characters,
in any order, that are part of a set of characters. For example, to match whole words,
you want to match any sequence of the letters of the alphabet. One of the easiest ways
to do this is to use a character class, which defines a set of characters. Recall that a
character class is created by putting the characters you want to match between brackets.
For example, to match the lowercase characters a through z, use [a-z]. The following
program demonstrates this technique.

// Use a character class.

import java.util.regex.*;

class RegExpr7 {

public static void main(String args[]) {

// Match lowercase words.

Pattern pat = Pattern.compile("[a-z]+");

Matcher mat = pat.matcher("this is a test.");

while(mat.find())

System.out.println("Match: " + mat.group());

}

}

The output is shown here:

Match: this
Match: is
Match: a
Match: test

866 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using replaceAll()
The replaceAll() method supplied by Matcher lets you perform powerful search and
replace operations that use regular expressions. For example, the following program
replaces all occurrences of sequences that begin with “Jon” with “Eric”.

// Use replaceAll().

import java.util.regex.*;

class RegExpr8 {

public static void main(String args[]) {

String str = "Jon Jonathan Frank Ken Todd";

Pattern pat = Pattern.compile("Jon.*? ");

Matcher mat = pat.matcher(str);

System.out.println("Original sequence: " + str);

str = mat.replaceAll("Eric ");

System.out.println("Modified sequence: " + str);

}

}

The output is shown here:

Original sequence: Jon Jonathan Frank Ken Todd
Modified sequence: Eric Eric Frank Ken Todd

Because the regular expression “Jon.*? “ matches any string that begins with Jon
followed by zero or more characters, ending in a space, it can be used to match and
replace both Jon and Jonathan with the name Eric. Such a substitution is not possible
without pattern matching capabilities.

Using split()
You can reduce an input sequence into its individual tokens by using the split()
method defined by Pattern. The split() method is shown here:

String[] split(CharSequence str)

It processes the input sequence passed in str, reducing it into tokens based on the
delimiters specified by the pattern.

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 867
TH

E
JA

V
A

LIB
R

A
R

Y

For example, the following program finds tokens that are separated by spaces,
commas, periods, and exclamation points.

// Use split().

import java.util.regex.*;

class RegExpr9 {

public static void main(String args[]) {

// Match lowercase words.

Pattern pat = Pattern.compile("[,.!]");

String strs[] = pat.split("one two,alpha9 12!done.");

for(int i=0; i < strs.length; i++)

System.out.println("Next token: " + strs[i]);

}

}

The output is shown here:

Next token: one
Next token: two
Next token: alpha9
Next token: 12
Next token: done

As the output shows, the input sequence is reduced to its individual tokens. Notice that
the delimiters are not included.

Two Pattern-Matching Options
Although the pattern-matching techniques described in the foregoing offer the greatest
flexibility and power, there are two alternatives which you might find useful in some
circumstances. If you only need to perform a one-time pattern match, you can use the
matches() method defined by Pattern. It is shown here:

static boolean matches(String pattern, CharSequence str)

868 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

It returns true if pattern matches str and false otherwise. This method automatically
compiles pattern and then looks for a match. If you will be using the same pattern
repeatedly, then using matches() is less efficient than compiling the pattern and using
the pattern-matching methods defined by Matcher, as described previously.

You can also perform a pattern match by using the matches() method
implemented by String. It is shown here:

boolean matches(String pattern)

If the invoking string matches the regular expression in pattern, then matches() returns
true. Otherwise, it returns false.

Exploring Regular Expressions
The overview of regular expressions presented in this section only hints at their power.
Since text parsing, manipulation, and tokenization are a large part of programming,
you will likely find Java’s regular expression subsystem a powerful tool that you can
use to your advantage. It is, therefore, wise to explore the capabilities of regular
expressions. Experiment with several different types of patterns and input sequences.
Once you understand how regular expression pattern matching works, you will find
it useful in many of your programming endeavors.

Reflection
Reflection is the ability of software to analyze itself. This is provided by the
java.lang.reflect package and elements in Class. Reflection is an important capability,
needed when using components called Java Beans. It allows you to analyze a software
component and describe its capabilities dynamically, at run time rather than at compile
time. For example, by using reflection, you can determine what methods, constructors,
and fields a class supports.

The package java.lang.reflect has an interface, called Member, which defines
methods that allow you to get information about a field, constructor, or method of
a class. There are also eight classes in this package. These are listed in Table 24-4.

The following application illustrates a simple use of the Java reflection capabilities.
It prints the constructors, fields, and methods of the class java.awt.Dimension. The
program begins by using the forName() method of Class to get a class object for
java.awt.Dimension. Once this is obtained, getConstructors(), getFields(), and
getMethods() are used to analyze this class object. They return arrays of Constructor,
Field, and Method objects that provide the information about the object. The
Constructor, Field, and Method classes define several methods that can be used

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 869
TH

E
JA

V
A

LIB
R

A
R

Y

to obtain information about an object. You will want to explore these on your own.
However, each supports the toString() method. Therefore, using Constructor, Field,
and Method objects as arguments to the println() method is straightforward, as shown
in the program.

// Demonstrate reflection.

import java.lang.reflect.*;

public class ReflectionDemo1 {

public static void main(String args[]) {

try {

Class c = Class.forName("java.awt.Dimension");

System.out.println("Constructors:");

Constructor constructors[] = c.getConstructors();

for(int i = 0; i < constructors.length; i++) {

System.out.println(" " + constructors[i]);

}

System.out.println("Fields:");

Field fields[] = c.getFields();

for(int i = 0; i < fields.length; i++) {

System.out.println(" " + fields[i]);

870 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Class Primary Function

AccessibleObject Allows you to bypass the default access control checks.
(Added by Java 2)

Array Allows you to dynamically create and manipulate arrays.

Constructor Provides information about a constructor.

Field Provides information about a field.

Method Provides information about a method.

Modifier Provides information about class and member access
modifiers.

Proxy Supports dynamic proxy classes. (Added by Java 2, v1.3)

ReflectPermission Allows reflection of private or protected members of a class.
(Added by Java 2)

Table 24-4. Classes Defined in java.lang.reflect

}

System.out.println("Methods:");

Method methods[] = c.getMethods();

for(int i = 0; i < methods.length; i++) {

System.out.println(" " + methods[i]);

}

}

catch(Exception e) {

System.out.println("Exception: " + e);

}

}

}

Here is the output from this program:

Constructors:
public java.awt.Dimension(java.awt.Dimension)
public java.awt.Dimension(int,int)
public java.awt.Dimension()

Fields:
public int java.awt.Dimension.width
public int java.awt.Dimension.height

Methods:
public int java.awt.Dimension.hashCode()
public boolean java.awt.Dimension.equals(java.lang.Object)
public java.lang.String java.awt.Dimension.toString()
public void java.awt.Dimension.setSize(java.awt.Dimension)
public void java.awt.Dimension.setSize(int,int)
public void java.awt.Dimension.setSize(double,double)
public java.awt.Dimension java.awt.Dimension.getSize()
public double java.awt.Dimension.getWidth()
public double java.awt.Dimension.getHeight()
public java.lang.Object java.awt.geom.Dimension2D.clone()
public void java.awt.geom.Dimension2D.

setSize(java.awt.geom.Dimension2D)
public final native java.lang.Class java.lang.Object.getClass()
public final void java.lang.Object.wait(long,int) throws

java.lang.InterruptedException
public final void java.lang.Object.wait()

throws java.lang.InterruptedException
public final native void java.lang.Object.wait(long) throws

java.lang.InterruptedException
public final native void java.lang.Object.notify()
public final native void java.lang.Object.notifyAll()

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 871
TH

E
JA

V
A

LIB
R

A
R

Y

The next example uses Java’s reflection capabilities to obtain the public methods of
a class. The program begins by instantiating class A. The getClass() method is applied to
this object reference and it returns the Class object for class A. The getDeclaredMethods()
method returns an array of Method objects that describe only the methods declared by this
class. Methods inherited from superclasses such as Object are not included.

Each element of the methods array is then processed. The getModifiers() method
returns an int containing flags that describe which access modifiers apply for this
element. The Modifier class provides a set of methods, shown in Table 24-5, that can be

872 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

static boolean isAbstract(int val) Returns true if val has the abstract flag set
and false otherwise.

static boolean isFinal(int val) Returns true if val has the final flag set
and false otherwise.

static boolean isInterface(int val) Returns true if val has the interface flag
set and false otherwise.

static boolean isNative(int val) Returns true if val has the native flag set
and false otherwise.

static boolean isPrivate(int val) Returns true if val has the private flag set
and false otherwise.

static boolean isProtected(int val) Returns true if val has the protected flag
set and false otherwise.

static boolean isPublic(int val) Returns true if val has the public flag set
and false otherwise.

static boolean isStatic(int val) Returns true if val has the static flag set
and false otherwise.

static boolean isStrict(int val) Returns true if val has the strict flag set
and false otherwise.

static boolean isSynchronized(int val) Returns true if val has the synchronized
flag set and false otherwise.

static boolean isTransient(int val) Returns true if val has the transient flag
set and false otherwise.

static boolean isVolatile(int val) Returns true if val has the volatile flag set
and false otherwise.

Table 24-5. Methods Defined by Modifier That Determine Access Modifiers

used to examine this value. For example, the static method isPublic() returns true if its
argument includes the public access modifier. Otherwise, it returns false. In the
following program, if the method supports public access, its name is obtained by the
getName() method and is then printed.

// Show public methods.

import java.lang.reflect.*;

public class ReflectionDemo2 {

public static void main(String args[]) {

try {

A a = new A();

Class c = a.getClass();

System.out.println("Public Methods:");

Method methods[] = c.getDeclaredMethods();

for(int i = 0; i < methods.length; i++) {

int modifiers = methods[i].getModifiers();

if(Modifier.isPublic(modifiers)) {

System.out.println(" " + methods[i].getName());

}

}

}

catch(Exception e) {

System.out.println("Exception: " + e);

}

}

}

class A {

public void a1() {

}

public void a2() {

}

protected void a3() {

}

private void a4() {

}

}

Here is the output from this program:

Public Methods:
a1
a2

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 873
TH

E
JA

V
A

LIB
R

A
R

Y

Remote Method Invocation (RMI)
Remote Method Invocation (RMI) allows a Java object that executes on one machine
to invoke a method of a Java object that executes on another machine. This is an
important feature, because it allows you to build distributed applications. While a
complete discussion of RMI is outside the scope of this book, the following example
describes the basic principles involved.

A Simple Client/Server Application Using RMI
This section provides step-by-step directions for building a simple client/server
application by using RMI. The server receives a request from a client, processes it, and
returns a result. In this example, the request specifies two numbers. The server adds
these together and returns the sum.

Step One: Enter and Compile the Source Code
This application uses four source files. The first file, AddServerIntf.java, defines the
remote interface that is provided by the server. It contains one method that accepts
two double arguments and returns their sum. All remote interfaces must extend the
Remote interface, which is part of java.rmi. Remote defines no members. Its purpose
is simply to indicate that an interface uses remote methods. All remote methods can
throw a RemoteException.

import java.rmi.*;

public interface AddServerIntf extends Remote {

double add(double d1, double d2) throws RemoteException;

}

The second source file, AddServerImpl.java, implements the remote interface.
The implementation of the add() method is straightforward. All remote objects must
extend UnicastRemoteObject, which provides functionality that is needed to make
objects available from remote machines.

import java.rmi.*;

import java.rmi.server.*;

public class AddServerImpl extends UnicastRemoteObject

implements AddServerIntf {

public AddServerImpl() throws RemoteException {

}

public double add(double d1, double d2) throws RemoteException {

return d1 + d2;

}

}

874 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The third source file, AddServer.java, contains the main program for the server
machine. Its primary function is to update the RMI registry on that machine. This is
done by using the rebind() method of the Naming class (found in java.rmi). That
method associates a name with an object reference. The first argument to the rebind()
method is a string that names the server as “AddServer”. Its second argument is a
reference to an instance of AddServerImpl.

import java.net.*;

import java.rmi.*;

public class AddServer {

public static void main(String args[]) {

try {

AddServerImpl addServerImpl = new AddServerImpl();

Naming.rebind("AddServer", addServerImpl);

}

catch(Exception e) {

System.out.println("Exception: " + e);

}

}

}

The fourth source file, AddClient.java, implements the client side of this
distributed application. AddClient.java requires three command line arguments. The
first is the IP address or name of the server machine. The second and third arguments
are the two numbers that are to be summed.

The application begins by forming a string that follows the URL syntax. This URL
uses the rmi protocol. The string includes the IP address or name of the server and the
string “AddServer”. The program then invokes the lookup() method of the Naming
class. This method accepts one argument, the rmi URL, and returns a reference to an
object of type AddServerIntf. All remote method invocations can then be directed to
this object.

The program continues by displaying its arguments and then invokes the remote
add() method. The sum is returned from this method and is then printed.

import java.rmi.*;

public class AddClient {

public static void main(String args[]) {

try {

String addServerURL = "rmi://" + args[0] + "/AddServer";

AddServerIntf addServerIntf =

(AddServerIntf)Naming.lookup(addServerURL);

System.out.println("The first number is: " + args[1]);

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 875
TH

E
JA

V
A

LIB
R

A
R

Y

double d1 = Double.valueOf(args[1]).doubleValue();

System.out.println("The second number is: " + args[2]);

double d2 = Double.valueOf(args[2]).doubleValue();

System.out.println("The sum is: " + addServerIntf.add(d1, d2));

}

catch(Exception e) {

System.out.println("Exception: " + e);

}

}

}

After you enter all the code, use javac to compile the four source files that you created.

Step Two: Generate Stubs and Skeletons
Before you can use the client and server, you must generate the necessary stub. You
may also need to generate a skeleton. In the context of RMI, a stub is a Java object that
resides on the client machine. Its function is to present the same interfaces as the
remote server. Remote method calls initiated by the client are actually directed to the
stub. The stub works with the other parts of the RMI system to formulate a request that
is sent to the remote machine.

A remote method may accept arguments that are simple types or objects. In the
latter case, the object may have references to other objects. All of this information must
be sent to the remote machine. That is, an object passed as an argument to a remote
method call must be serialized and sent to the remote machine. Recall from Chapter 17
that the serialization facilities also recursively process all referenced objects.

Skeletons are not required by Java 2. However, they are required for the Java 1.1
RMI model. Because of this, skeletons are still required for compatibility between Java
1.1 and Java 2. A skeleton is a Java object that resides on the server machine. It works
with the other parts of the 1.1 RMI system to receive requests, perform deserialization,
and invoke the appropriate code on the server. Again, the skeleton mechanism is not
required for Java 2 code that does not require compatibility with 1.1. Because many
readers will want to generate the skeleton, one is used by this example.

If a response must be returned to the client, the process works in reverse. Note
that the serialization and deserialization facilities are also used if objects are returned
to a client.

To generate stubs and skeletons, you use a tool called the RMI compiler, which is
invoked from the command line, as shown here:

rmic AddServerImpl

876 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This command generates two new files: AddServerImpl_Skel.class (skeleton) and
AddServerImpl_Stub.class (stub). When using rmic, be sure that CLASSPATH is set
to include the current directory. As you can see, by default, rmic generates both a stub
and a skeleton file. If you do not need the skeleton, you have the option to suppress it.

Step Three: Install Files on the Client and Server Machines
Copy AddClient.class, AddServerImpl_Stub.class, and AddServerIntf.class to a
directory on the client machine. Copy AddServerIntf.class, AddServerImpl.class,
AddServerImpl_Skel.class, AddServerImpl_Stub.class, and AddServer.class to a
directory on the server machine.

RMI has techniques for dynamic class loading, but they are not used by the example at
hand. Instead, all of the files that are used by the client and server applications must be
installed manually on those machines.

Step Four: Start the RMI Registry on the Server Machine
The Java 2 SDK provides a program called rmiregistry, which executes on the server
machine. It maps names to object references. First, check that the CLASSPATH
environment variable includes the directory in which your files are located. Then,
start the RMI Registry from the command line, as shown here:

start rmiregistry

When this command returns, you should see that a new window has been created.
You need to leave this window open until you are done experimenting with the
RMI example.

Step Five: Start the Server
The server code is started from the command line, as shown here:

java AddServer

Recall that the AddServer code instantiates AddServerImpl and registers that object
with the name “AddServer”.

Step Six: Start the Client
The AddClient software requires three arguments: the name or IP address of the server
machine and the two numbers that are to be summed together. You may invoke it from
the command line by using one of the two formats shown here:

java AddClient server1 8 9
java AddClient 11.12.13.14 8 9

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 877
TH

E
JA

V
A

LIB
R

A
R

Y

In the first line, the name of the server is provided. The second line uses its IP address
(11.12.13.14).

You can try this example without actually having a remote server. To do so, simply
install all of the programs on the same machine, start rmiregistry, start AddSever, and
then execute AddClient using this command line:

java AddClient 127.0.0.1 8 9

Here, the address 127.0.0.1 is the “loop back” address for the local machine. Using this
address allows you to exercise the entire RMI mechanism without actually having to
install the server on a remote computer.

In either case, sample output from this program is shown here:

The first number is: 8
The second number is: 9
The sum is: 17.0

Text Formatting
The package java.text allows you to format, search, and manipulate text. This section
takes a brief look at its most commonly used classes: those that format date and time
information.

DateFormat Class
DateFormat is an abstract class that provides the ability to format and parse dates and
times. The getDateInstance() method returns an instance of DateFormat that can
format date information. It is available in these forms:

static final DateFormat getDateInstance()
static final DateFormat getDateInstance(int style)
static final DateFormat getDateInstance(int style, Locale locale)

The argument style is one of the following values: DEFAULT, SHORT, MEDIUM,
LONG, or FULL. These are int constants defined by DateFormat. They cause different
details about the date to be presented. The argument locale is one of the static references
defined by Locale (refer to Chapter 16 for details). If the style and/or locale is not
specified, defaults are used.

One of the most commonly used methods in this class is format(). It has several
overloaded forms, one of which is shown here:

final String format(Date d)

878 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The argument is a Date object that is to be displayed. The method returns a string
containing the formatted information.

The following listing illustrates how to format date information. It begins by
creating a Date object. This captures the current date and time information. Then it
outputs the date information by using different styles and locales.

// Demonstrate date formats.

import java.text.*;

import java.util.*;

public class DateFormatDemo {

public static void main(String args[]) {

Date date = new Date();

DateFormat df;

df = DateFormat.getDateInstance(DateFormat.SHORT, Locale.JAPAN);

System.out.println("Japan: " + df.format(date));

df = DateFormat.getDateInstance(DateFormat.MEDIUM, Locale.KOREA);

System.out.println("Korea: " + df.format(date));

df = DateFormat.getDateInstance(DateFormat.LONG, Locale.UK);

System.out.println("United Kingdom: " + df.format(date));

df = DateFormat.getDateInstance(DateFormat.FULL, Locale.US);

System.out.println("United States: " + df.format(date));

}

}

Sample output from this program is shown here:

Japan: 02/05/08
Korea: 2002-05-08
United Kingdom: 08 May 2002
United States: Wednesday, May 8, 2002

The getTimeInstance() method returns an instance of DateFormat that can format
time information. It is available in these versions:

static final DateFormat getTimeInstance()
static final DateFormat getTimeInstance(int style)
static final DateFormat getTimeInstance(int style, Locale locale)

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 879
TH

E
JA

V
A

LIB
R

A
R

Y

The argument style is one of the following values: DEFAULT, SHORT, MEDIUM,
LONG, or FULL. These are int constants defined by DateFormat. They cause
different details about the time to be presented. The argument locale is one of the
static references defined by Locale. If the style and/or locale is not specified,
defaults are used.

The following listing illustrates how to format time information. It begins by
creating a Date object. This captures the current date and time information and then
outputs the time information by using different styles and locales.

// Demonstrate time formats.

import java.text.*;

import java.util.*;

public class TimeFormatDemo {

public static void main(String args[]) {

Date date = new Date();

DateFormat df;

df = DateFormat.getTimeInstance(DateFormat.SHORT, Locale.JAPAN);

System.out.println("Japan: " + df.format(date));

df = DateFormat.getTimeInstance(DateFormat.LONG, Locale.UK);

System.out.println("United Kingdom: " + df.format(date));

df = DateFormat.getTimeInstance(DateFormat.FULL, Locale.CANADA);

System.out.println("Canada: " + df.format(date));

}

}

Sample output from this program is shown here:

Japan: 20:25
United Kingdom: 20:25:14 CDT
Canada: 8:25:14 o'clock PM CDT

The DateFormat class also has a getDateTimeInstance() method that can format
both date and time information. You may wish to experiment with it on your own.

SimpleDateFormat Class
SimpleDateFormat is a concrete subclass of DateFormat. It allows you to define your
own formatting patterns that are used to display date and time information.

One of its constructors is shown here:

SimpleDateFormat(String formatString)

880 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The argument formatString describes how date and time information is displayed. An
example of its use is given here:

SimpleDateFormat sdf = SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");

The symbols used in the formatting string determine the information that is displayed.
Table 24-6 lists these symbols and gives a description of each.

In most cases, the number of times a symbol is repeated determines how that data
is presented. Text information is displayed in an abbreviated form if the pattern letter
is repeated less than four times. Otherwise, the unabbreviated form is used. For

C h a p t e r 2 4 : N e w I / O , R e g u l a r E x p r e s s i o n s , a n d O t h e r P a c k a g e s 881
TH

E
JA

V
A

LIB
R

A
R

Y

Symbol Description

a AM or PM

d Day of month (1–31)

h Hour in AM/PM (1–12)

k Hour in day (1–24)

m Minute in hour (0–59)

s Second in minute (0–59)

w Week of year (1–52)

y Year

z Time zone

D Day of year (1–366)

E Day of week (for example, Thursday)

F Day of week in month

G Era (that is, AD or BC)

H Hour in day (0–23)

K Hour in AM/PM (0–11)

M Month

S Millisecond in second

W Week of month (1–5)

Z Time zone in RFC822 format

Table 24-6. Formatting String Symbols for SimpleDateFormat

example, a zzzz pattern can display Pacific Daylight Time, and a zzz pattern can
display PDT.

For numbers, the number of times a pattern letter is repeated determines how
many digits are presented. For example, hh:mm:ss can present 01:51:15, but h:m:s
displays the same time value as 1:51:15.

Finally, M or MM causes the month to be displayed as one or two digits. However,
three or more repetitions of M cause the month to be displayed as a text string.

The following program shows how this class is used:

// Demonstrate SimpleDateFormat.

import java.text.*;

import java.util.*;

public class SimpleDateFormatDemo {

public static void main(String args[]) {

Date date = new Date();

SimpleDateFormat sdf;

sdf = new SimpleDateFormat("hh:mm:ss");

System.out.println(sdf.format(date));

sdf = new SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");

System.out.println(sdf.format(date));

sdf = new SimpleDateFormat("E MMM dd yyyy");

System.out.println(sdf.format(date));

}

}

Sample output from this program is shown here:

02:18:23
08 May 2002 02:18:23 CDT
Wed May 08 2002

882 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Part III
Software Development Using Java

This page intentionally left blank.

Chapter 25
Java Beans

885

886 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This chapter provides an overview of an exciting technology that is at the forefront
of Java programming: Java Beans. Beans are important, because they allow you to
build complex systems from software components. These components may be

provided by you or supplied by one or more different vendors. Java Beans defines an
architecture that specifies how these building blocks can operate together.

To better understand the value of Beans, consider the following. Hardware designers
have a wide variety of components that can be integrated together to construct a system.
Resistors, capacitors, and inductors are examples of simple building blocks. Integrated
circuits provide more advanced functionality. All of these different parts can be reused.
It is not necessary or possible to rebuild these capabilities each time a new system is
needed. Also, the same pieces can be used in different types of circuits. This is possible
because the behavior of these components is understood and documented.

Unfortunately, the software industry has not been as successful in achieving the
benefits of reusability and interoperability. Large applications grow in complexity and
become very difficult to maintain and enhance. Part of the problem is that, until recently,
there has not been a standard, portable way to write a software component. To achieve
the benefits of component software, a component architecture is needed that allows
programs to be assembled from software building blocks, perhaps provided by different
vendors. It must also be possible for a designer to select a component, understand its
capabilities, and incorporate it into an application. When a new version of a component
becomes available, it should be easy to incorporate this functionality into existing code.
Fortunately, Java Beans provides just such an architecture.

What Is a Java Bean?
A Java Bean is a software component that has been designed to be reusable in a variety
of different environments. There is no restriction on the capability of a Bean. It may
perform a simple function, such as checking the spelling of a document, or a complex
function, such as forecasting the performance of a stock portfolio. A Bean may be
visible to an end user. One example of this is a button on a graphical user interface.
A Bean may also be invisible to a user. Software to decode a stream of multimedia
information in real time is an example of this type of building block. Finally, a Bean
may be designed to work autonomously on a user’s workstation or to work in
cooperation with a set of other distributed components. Software to generate a pie
chart from a set of data points is an example of a Bean that can execute locally.
However, a Bean that provides real-time price information from a stock or
commodities exchange would need to work in cooperation with other distributed
software to obtain its data.

You will see shortly what specific changes a software developer must make to a
class so that it is usable as a Java Bean. However, one of the goals of the Java designers
was to make it easy to use this technology. Therefore, the code changes are minimal.

Advantages of Java Beans
A software component architecture provides standard mechanisms to deal with
software building blocks. The following list enumerates some of the specific benefits
that Java technology provides for a component developer:

■ A Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.

■ The properties, events, and methods of a Bean that are exposed to an
application builder tool can be controlled.

■ A Bean may be designed to operate correctly in different locales, which makes it
useful in global markets.

■ Auxiliary software can be provided to help a person configure a Bean. This
software is only needed when the design-time parameters for that component
are being set. It does not need to be included in the run-time environment.

■ The configuration settings of a Bean can be saved in persistent storage and
restored at a later time.

■ A Bean may register to receive events from other objects and can generate
events that are sent to other objects.

Application Builder Tools
When working with Java Beans, most developers use an application builder tool, a utility
that enables you to configure a set of Beans, connect them together, and produce a
working application. In general, Bean builder tools have the following capabilities.

■ A palette is provided that lists all of the available Beans. As additional Beans
are developed or purchased, they can be added to the palette.

■ A worksheet is displayed that allows the designer to lay out Beans in a graphical
user interface. A designer may drag and drop a Bean from the palette to this
worksheet.

■ Special editors and customizers allow a Bean to be configured. This is the
mechanism by which the behavior of a Bean may be adapted for a particular
environment.

■ Commands allow a designer to inquire about the state and behavior of a
Bean. This information automatically becomes available when a Bean is added
to the palette.

■ Capabilities exist to interconnect Beans. This means that events generated by
one component are mapped to method invocations on other components.

C h a p t e r 2 5 : J a v a B e a n s 887
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

■ When a collection of Beans has been configured and connected, it is possible to
save all of this information in a persistent storage area. At a later time, this
information can then be used to restore the state of the application.

Sun provides two Bean application builder tools. The first is the BeanBox, which is
part of the Bean Developers Kit (BDK). The BDK is the original builder tool provided
by Sun. The second is the new Bean Builder. Because Bean Builder is designed to
supplant the BeanBox, Sun has stopped development of the BDK and all new Bean
applications will be created using Bean Builder.

Although Bean Builder is the future of Bean development, it is not the sole focus of
this chapter. Instead, both BeanBox and Bean Builder are discussed. The reason for this
is that Bean Builder requires Java 2, version 1.4. It is incompatible with earlier versions
of Java 2. This means that readers of this book using Java 2, version 1.2 or version 1.3
will not be able to use Bean Builder. Instead, they must continue to use the BDK. Further,
readers using version 1.4 cannot use the BDK because it is not compatible with Java 2,
version 1.4. So, if you are using version 1.4, then you must use Bean Builder. If you are
using a version of Java prior to 1.4, you must use the BDK. Thus, both approaches are
described here, beginning with the BDK. Keep in mind that the information about Beans,
Bean architecture, JAR files, and so on, apply to either Bean development tool.

One other point: At the time of this writing, Java 2, version 1.4 is a released product,
but Bean Builder is currently in beta testing. This means that the only way for a 1.4 user
to create a Bean application is to do so using latest Bean Builder beta. For this reason,
we will not examine its features in depth at this time. However, at the end of this
chapter, a general overview is presented and a sample application is created.

Using the Bean Developer Kit (BDK)
The Bean Developer Kit (BDK), available from the JavaSoft site, is a simple example
of a tool that enables you to create, configure, and connect a set of Beans. There is
also a set of sample Beans with their source code. This section provides step-by-step
instructions for installing and using this tool. Remember, the BDK is for use with
versions of Java 2 prior to 1.4. For Java 2, v1.4 you must use the Bean Builder Tool
described at the end of this chapter.

In this chapter, instructions are provided for a Windows environment. The procedures
for a UNIX platform are similar, but some of the commands are different.

Installing the BDK
The Java 2 SDK must be installed on your machine for the BDK to work. Confirm that
the SDK tools are accessible from your environment.

The BDK can then be downloaded from the JavaSoft site (http://java.sun.com). It is
packaged as one file that is a self-extracting archive. Follow the instructions to install
it on your machine. The discussion that follows assumes that the BDK is installed in

888 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

a directory called bdk. If this is not the case with your system, substitute the proper
directory.

Starting the BDK
To start the BDK, follow these steps:

1. Change to the directory c:\bdk\beanbox.

2. Execute the batch file called run.bat. This causes the BDK to display the three
windows shown in Figure 25-1. ToolBox lists all of the different Beans that have
been included with the BDK. BeanBox provides an area to lay out and connect
the Beans selected from the ToolBox. Properties provides the ability to configure
a selected Bean. You may also see a window called Method Tracer, but we
won’t be using it.

Using the BDK
This section describes how to create an application by using some of the Beans
provided with the BDK. First, the Molecule Bean displays a three-dimensional view of
a molecule. It may be configured to present one of the following molecules: hyaluronic
acid, benzene, buckminsterfullerine, cyclohexane, ethane, or water. This component
also has methods that allow the molecule to be rotated in space along its X or Y axis.

C h a p t e r 2 5 : J a v a B e a n s 889
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Figure 25-1. The Bean Developer Kit (BDK)

Second, the OurButton Bean provides a push-button functionality. We will have one
button labeled “Rotate X” to rotate the molecule along its X axis and another button
labeled “Rotate Y” to rotate the molecule along its Y axis.

Figure 25-2 shows how this application appears.

Create and Configure an Instance of the Molecule Bean
Follow these steps to create and configure an instance of the Molecule Bean:

1. Position the cursor on the ToolBox entry labeled Molecule and click the left
mouse button. You should see the cursor change to a cross.

2. Move the cursor to the BeanBox display area and click the left mouse button in
approximately the area where you wish the Bean to be displayed. You should
see a rectangular region appear that contains a 3-D display of a molecule. This
area is surrounded by a hatched border, indicating that it is currently selected.

3. You can reposition the Molecule Bean by positioning the cursor over one of the
hatched borders and dragging the Bean.

4. You can change the molecule that is displayed by changing the selection in the
Properties window. Notice that the Bean display changes immediately when
you change the selected molecule.

890 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-2. The Molecule and OurButton Beans

C h a p t e r 2 5 : J a v a B e a n s 891
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Create and Configure an Instance of the OurButton Bean
Follow these steps to create and configure an instance of the OurButton Bean and
connect it to the Molecule Bean:

1. Position the cursor on the ToolBox entry labeled OurButton and click the left
mouse button. You should see the cursor change to a cross.

2. Move the cursor to the BeanBox display area and click the left mouse button in
approximately the area where you wish the Bean to be displayed. You should
see a rectangular region appear that contains a button. This area is surrounded
by a hatched border indicating that it is currently selected.

3. You may reposition the OurButton Bean by positioning the cursor over one of
the hatched borders and dragging the Bean.

4. Go to the Properties window and change the label of the Bean to “Rotate X”.
The button appearance changes immediately when this property is changed.

5. Go to the menu bar of the BeanBox and select Edit | Events | action |
actionPerformed. You should now see a line extending from the button to the
cursor. Notice that one end of the line moves as the cursor moves. However, the
other end of the line remains fixed at the button.

6. Move the cursor so that it is inside the Molecule Bean display area, and click
the left mouse button. You should see the Event Target Dialog dialog box.

7. The dialog box allows you to choose a method that should be invoked when
this button is clicked. Select the entry labeled “rotateOnX” and click the OK
button. You should see a message box appear very briefly, stating that the tool
is “Generating and compiling adaptor class.”

Test the application. Each time you press the button, the molecule should move a
few degrees around one of its axes.

Now create another instance of the OurButton Bean. Label it “Rotate Y” and map
its action event to the “rotateY” method of the Molecule Bean. The steps to do this are
very similar to those just described for the button labeled “Rotate X”.

Test the application by clicking these buttons and observing how the molecule moves.

JAR Files
Before developing your own Bean, it is necessary for you to understand JAR (Java
Archive) files, because tools such as the BDK expect Beans to be packaged within JAR
files. A JAR file allows you to efficiently deploy a set of classes and their associated
resources. For example, a developer may build a multimedia application that uses
various sound and image files. A set of Beans can control how and when this
information is presented. All of these pieces can be placed into one JAR file.

JAR technology makes it much easier to deliver and install software. Also, the
elements in a JAR file are compressed, which makes downloading a JAR file much
faster than separately downloading several uncompressed files. Digital signatures may
also be associated with the individual elements in a JAR file. This allows a consumer to
be sure that these elements were produced by a specific organization or individual.

The package java.util.zip contains classes that read and write JAR files.

Manifest Files
A developer must provide a manifest file to indicate which of the components in a JAR
file are Java Beans. An example of a manifest file is provided in the following listing. It
defines a JAR file that contains four .gif files and one .class file. The last entry is a Bean.

Name: sunw/demo/slides/slide0.gif

Name: sunw/demo/slides/slide1.gif

Name: sunw/demo/slides/slide2.gif

Name: sunw/demo/slides/slide3.gif

Name: sunw/demo/slides/Slides.class

Java-Bean: True

A manifest file may reference several .class files. If a .class file is a Java Bean, its
entry must be immediately followed by the line “Java-Bean: True”.

The JAR Utility
A utility is used to generate a JAR file. Its syntax is shown here:

jar options files

Table 25-1 lists the possible options and their meanings. The following examples show
how to use this utility.

Creating a JAR File
The following command creates a JAR file named Xyz.jar that contains all of the .class
and .gif files in the current directory:

jar cf Xyz.jar *.class *.gif

If a manifest file such as Yxz.mf is available, it can be used with the following command:

jar cfm Xyz.jar Yxz.mf *.class *.gif

892 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Tabulating the Contents of a JAR File
The following command lists the contents of Xyz.jar:

jar tf Xyz.jar

Extracting Files from a JAR File
The following command extracts the contents of Xyz.jar and places those files in the
current directory:

jar xf Xyz.jar

C h a p t e r 2 5 : J a v a B e a n s 893
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Option Description

c A new archive is to be created.

C Change directories during command execution.

f The first element in the file list is the name of the archive that is to be
created or accessed.

i Index information should be provided.

m The second element in the file list is the name of the external manifest file.

M Manifest file not created.

t The archive contents should be tabulated.

u Update existing JAR file.

v Verbose output should be provided by the utility as it executes.

x Files are to be extracted from the archive. (If there is only one file, that
is the name of the archive, and all files in it are extracted. Otherwise,
the first element in the file list is the name of the archive, and the
remaining elements in the list are the files that should be extracted
from the archive.)

0 Do not use compression.

Table 25-1. JAR Command Options

Updating an Existing JAR File
The following command adds the file file1.class to Xyz.jar:

jar -uf Xyz.jar file1.class

Recursing Directories
The following command adds all files below directoryX to Xyz.jar:

jar -uf Xyz.jar -C directoryX *

Introspection
Introspection is the process of analyzing a Bean to determine its capabilities. This is an
essential feature of the Java Beans API, because it allows an application builder tool to
present information about a component to a software designer. Without introspection,
the Java Beans technology could not operate.

There are two ways in which the developer of a Bean can indicate which of its
properties, events, and methods should be exposed by an application builder tool. With
the first method, simple naming conventions are used. These allow the introspection
mechanisms to infer information about a Bean. In the second way, an additional class is
provided that explicitly supplies this information. The first approach is examined here.
The second method is described later.

The following sections indicate the design patterns for properties and events that
enable the functionality of a Bean to be determined.

Design Patterns for Properties
A property is a subset of a Bean’s state. The values assigned to the properties determine
the behavior and appearance of that component. This section discusses three types of
properties: simple, Boolean, and indexed.

Simple Properties
A simple property has a single value. It can be identified by the following design
patterns, where N is the name of the property and T is its type.

public T getN();
public void setN(T arg);

A read/write property has both of these methods to access its values. A read-only
property has only a get method. A write-only property has only a set method.

894 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The following listing shows a class that has three read/write simple properties:

public class Box {

private double depth, height, width;

public double getDepth() {

return depth;

}

public void setDepth(double d) {

depth = d;

}

public double getHeight() {

return height;

}

public void setHeight(double h) {

height = h;

}

public double getWidth() {

return width;

}

public void setWidth(double w) {

width = w;

}

}

Boolean Properties
A Boolean property has a value of true or false. It can be identified by the following
design patterns, where N is the name of the property:

public boolean isN();
public boolean getN();
public void setN(boolean value);

Either the first or second pattern can be used to retrieve the value of a Boolean
property. However, if a class has both of these methods, the first pattern is used.

The following listing shows a class that has one Boolean property:

public class Line {

private boolean dotted = false;

public boolean isDotted() {

return dotted;

}

public void setDotted(boolean dotted) {

C h a p t e r 2 5 : J a v a B e a n s 895
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

this.dotted = dotted;

}

}

Indexed Properties
An indexed property consists of multiple values. It can be identified by the following
design patterns, where N is the name of the property and T is its type:

public T getN(int index);
public void setN(int index, T value);
public T[] getN();
public void setN(T values[]);

The following listing shows a class that has one read/write indexed property:

public class PieChart {

private double data[];

public double getData(int index) {

return data[index];

}

public void setData(int index, double value) {

data[index] = value;

}

public double[] getData() {

return data;

}

public void setData(double[] values) {

data = new double[values.length];

System.arraycopy(values, 0, data, 0, values.length);

}

}

Design Patterns for Events
Beans use the delegation event model that was discussed earlier in this book. Beans
can generate events and send them to other objects. These can be identified by the
following design patterns, where T is the type of the event:

public void addTListener(TListener eventListener);
public void addTListener(TListener eventListener) throws TooManyListeners;
public void removeTListener(TListener eventListener);

896 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

These methods are used by event listeners to register an interest in events of a specific
type. The first pattern indicates that a Bean can multicast an event to multiple listeners.
The second pattern indicates that a Bean can unicast an event to only one listener. The
third pattern is used by a listener when it no longer wishes to receive a specific type of
event notification from a Bean.

The following listing outlines a class that notifies other objects when a temperature
value moves outside a specific range. The two methods indicated here allow other
objects that implement the TemperatureListener interface to receive notifications when
this occurs.

public class Thermometer {

public void addTemperatureListener(TemperatureListener tl) {
...

}

public void removeTemperatureListener(TemperatureListener tl) {
...

}

}

Methods
Design patterns are not used for naming nonproperty methods. The introspection
mechanism finds all of the public methods of a Bean. Protected and private methods
are not presented.

Developing a Simple Bean Using the BDK
This section presents an example that shows how to develop a simple Bean and
connect it to other components via the BDK.

Our new component is called the Colors Bean. It appears as either a rectangle or
ellipse that is filled with a color. A color is chosen at random when the Bean begins
execution. A public method can be invoked to change it. Each time the mouse is clicked
on the Bean, another random color is chosen. There is one boolean read/write property
that determines the shape.

The BDK is used to lay out an application with one instance of the Colors Bean and
one instance of the OurButton Bean. The button is labeled “Change.” Each time it is
pressed, the color changes.

Figure 25-3 shows how this application appears.

C h a p t e r 2 5 : J a v a B e a n s 897
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Create a New Bean
Here are the steps that you must follow to create a new Bean:

1. Create a directory for the new Bean.

2. Create the Java source file(s).

3. Compile the source file(s).

4. Create a manifest file.

5. Generate a JAR file.

6. Start the BDK.

7. Test.

The following sections discuss each of these steps in detail.

Create a Directory for the New Bean
You need to make a directory for the Bean. To follow along with this example, create
c:\bdk\demo\sunw\demo\colors. Then change to that directory.

898 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-3. The Colors and OurButton Beans

Create the Source File for the New Bean
The source code for the Colors component is shown in the following listing. It is
located in the file Colors.java.

The import statement at the beginning of the file places it in the package named
sunw.demo.colors. Recall from Chapter 9 that the directory hierarchy corresponds to
the package hierarchy. Therefore, this file must be located in a subdirectory named
sunw\demo\colors relative to the CLASSPATH environment variable.

The color of the component is determined by the private Color variable color, and
its shape is determined by the private boolean variable rectangular.

The constructor defines an anonymous inner class that extends MouseAdapter and
overrides its mousePressed() method. The change() method is invoked in response to
mouse presses. The component is initialized to a rectangular shape of 200 by 100 pixels.
The change() method is invoked to select a random color and repaint the component.

The getRectangular() and setRectangular() methods provide access to the one
property of this Bean. The change() method calls randomColor() to choose a color and
then calls repaint() to make the change visible. Notice that the paint() method uses the
rectangular and color variables to determine how to present the Bean.

// A simple Bean.

package sunw.demo.colors;

import java.awt.*;

import java.awt.event.*;

public class Colors extends Canvas {

transient private Color color;

private boolean rectangular;

public Colors() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {

change();

}

});

rectangular = false;

setSize(200, 100);

change();

}

public boolean getRectangular() {

return rectangular;

}

public void setRectangular(boolean flag) {

this.rectangular = flag;

repaint();

}

public void change() {

C h a p t e r 2 5 : J a v a B e a n s 899
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

color = randomColor();

repaint();

}

private Color randomColor() {

int r = (int)(255*Math.random());

int g = (int)(255*Math.random());

int b = (int)(255*Math.random());

return new Color(r, g, b);

}

public void paint(Graphics g) {

Dimension d = getSize();

int h = d.height;

int w = d.width;

g.setColor(color);

if(rectangular) {

g.fillRect(0, 0, w-1, h-1);

}

else {

g.fillOval(0, 0, w-1, h-1);

}

}

}

Compile the Source Code for the New Bean
Compile the source code to create a class file. Type the following:

javac Colors.java.

Create a Manifest File
You must now create a manifest file. First, switch to the c:\bdk\demo directory. This
is the directory in which the manifest files for the BDK demos are located. Put the
source code for your manifest file in the file colors.mft. It is shown here:

Name: sunw/demo/colors/Colors.class

Java-Bean: True

This file indicates that there is one .class file in the JAR file and that it is a Java Bean.
Notice that the Colors.class file is in the package sunw.demo.colors and in the
subdirectory sunw\demo\colors relative to the current directory.

900 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Generate a JAR File
Beans are included in the ToolBox window of the BDK only if they are in JAR files in the
directory c:\bdk\jars. These files are generated with the jar utility. Enter the following:

jar cfm ..\jars\colors.jar colors.mft sunw\demo\colors*.class

This command creates the file colors.jar and places it in the directory c:\bdk\jars.
(You may wish to put this in a batch file for future use.)

Start the BDK
Change to the directory c:\bdk\beanbox and type run. This causes the BDK to start.
You should see three windows, titled ToolBox, BeanBox, and Properties. The ToolBox
window should include an entry labeled “Colors” for your new Bean.

Create an Instance of the Colors Bean
After you complete the preceding steps, create an instance of the Colors Bean in the
BeanBox window. Test your new component by pressing the mouse anywhere within
its borders. Its color immediately changes. Use the Properties window to change the
rectangular property from false to true. Its shape immediately changes.

Create and Configure an Instance of the OurButton Bean
Create an instance of the OurButton Bean in the BeanBox window. Then follow
these steps:

1. Go to the Properties window and change the label of the Bean to “Change”.
You should see that the button appearance changes immediately when this
property is changed.

2. Go to the menu bar of the BeanBox and select Edit | Events | action |
actionPerformed.

3. Move the cursor so that it is inside the Colors Bean display area, and click the
left mouse button. You should see the Event Target Dialog dialog box.

4. The dialog box allows you to choose a method that should be invoked when
this button is clicked. Select the entry labeled “change” and click the OK button.
You should see a message box appear very briefly, stating that the tool is
“Generating and compiling adaptor class.”

5. Click on the button. You should see the color change.

You might want to experiment with the Colors Bean a bit before moving on.

C h a p t e r 2 5 : J a v a B e a n s 901
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Using Bound Properties
A Bean that has a bound property generates an event when the property is changed.
The event is of type PropertyChangeEvent and is sent to objects that previously
registered an interest in receiving such notifications.

The TickTock Bean is supplied with the BDK. It generates a property change event
every N seconds. N is a property of the Bean that can be changed via the Properties
window of the BDK. The next example builds an application that uses the TickTock Bean
to automatically control the Colors Bean. Figure 25-4 shows how this application appears.

Steps
For this example, start the BDK and create an instance of the Colors Bean in the
BeanBox window.

Create an instance of the TickTock Bean. The Properties window should show one
property for this component. It is “Interval” and its initial value is 5. This represents
the number of seconds that elapse between property change events generated by the
TickTock Bean. Change the value to 1.

902 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-4. The Colors and TickTock Beans

C h a p t e r 2 5 : J a v a B e a n s 903
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Now you need to map events generated by the TickTock Bean into method calls on
the Colors Bean. Follow these steps:

1. Go to the menu bar of the BeanBox and select Edit | Events | propertyChange |
propertyChange. You should now see a line extending from the button to
the cursor.

2. Move the cursor so that it is inside the Colors Bean display area, and click the
left mouse button. You should see the Event Target Dialog dialog box.

3. The dialog box allows you to choose a method that should be invoked when
this event occurs. Select the entry labeled “change” and click the OK button.
You should see a message box appear very briefly, stating that the tool is
“Generating and compiling adaptor class.”

You should now see the color of your component change every second.

Using the BeanInfo Interface
In our previous examples, design patterns were used to determine the information that
was provided to a Bean user. This section describes how a developer can use the
BeanInfo interface to explicitly control this process.

This interface defines several methods, including these:

PropertyDescriptor[] getPropertyDescriptors()
EventSetDescriptor[] getEventSetDescriptors()
MethodDescriptor[] getMethodDescriptors()

They return arrays of objects that provide information about the properties, events, and
methods of a Bean. By implementing these methods, a developer can designate exactly
what is presented to a user.

SimpleBeanInfo is a class that provides default implementations of the BeanInfo
interface, including the three methods just shown. You may extend this class and override
one or more of them. The following listing shows how this is done for the Colors
Bean that was developed earlier. ColorsBeanInfo is a subclass of SimpleBeanInfo.
It overrides getPropertyDescriptors() in order to designate which properties are
presented to a Bean user. This method creates a PropertyDescriptor object for the
rectangular property. The PropertyDescriptor constructor that is used is shown here:

PropertyDescriptor(String property, Class beanCls)
throws IntrospectionException

Here, the first argument is the name of the property, and the second argument is the
class of the Bean.

// A Bean information class.

package sunw.demo.colors;

import java.beans.*;

public class ColorsBeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {

try {

PropertyDescriptor rectangular = new

PropertyDescriptor("rectangular", Colors.class);

PropertyDescriptor pd[] = {rectangular};

return pd;

}

catch(Exception e) {

}

return null;

}

}

You must compile this file from the BDK\demo directory or set CLASSPATH so
that it includes c:\bdk\demo. If you don’t, the compiler won’t find the Colors.class
file properly. After this file is successfully compiled, the colors.mft file can be updated,
as shown here:

Name: sunw/demo/colors/ColorsBeanInfo.class

Name: sunw/demo/colors/Colors.class

Java-Bean: True

Use the JAR tool to create a new colors.jar file. Restart the BDK and create an
instance of the Colors Bean in the BeanBox.

The introspection facilities are designed to look for a BeanInfo class. If it exists,
its behavior explicitly determines the information that is presented to a Bean user.
Otherwise, design patterns are used to infer this information.

Figure 25-5 shows how the Properties window now appears. Compare it with
Figure 24-3. You can see that the properties inherited from Component are no longer
presented for the Colors Bean. Only the rectangular property appears.

904 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Constrained Properties
A Bean that has a constrained property generates an event when an attempt is made to
change its value. The event is of type PropertyChangeEvent. It is sent to objects that
previously registered an interest in receiving such notifications. Those other objects
have the ability to veto the proposed change. This capability allows a Bean to operate
differently according to its run-time environment. A full discussion of constrained
properties is beyond the scope of this book.

Persistence
Persistence is the ability to save a Bean to nonvolatile storage and retrieve it at a later
time. The information that is particularly important are the configuration settings.

C h a p t e r 2 5 : J a v a B e a n s 905
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Figure 25-5. Using the ColorsBeanInfo Class

Let us first see how the BDK allows you to save a set of Beans that have been
configured and connected together to form an application. Recall our previous example
involving both the Colors and TickTock Beans. The rectangular property of the Colors
Bean was changed to true, and the interval property of the TickTock Bean was changed
to one second. These changes can be saved.

To save the application, go to the menu bar of the BeanBox and select File | Save.
A dialog box should appear, allowing you to specify the name of a file to which the
Beans and their configuration parameters should be saved. Supply a filename and click
the OK button on that dialog box. Exit from the BDK.

Start the BDK again. To restore the application, go to the menu bar of the BeanBox
and select File | Load. A dialog box should appear, allowing you to specify the name
of the file from which an application should be restored. Supply the name of the file in
which the application was saved, and click the OK button. Your application should
now be functioning. Confirm that the rectangular property of the Colors Bean is true
and that the interval property for the TickTock Bean is equal to one second.

The object serialization capabilities provided by the Java class libraries are used
to provide persistence for Beans. If a Bean inherits directly or indirectly from
java.awt.Component, it is automatically serializable, because that class implements
the java.io.Serializable interface. If a Bean does not inherit an implementation of the
Serializable interface, you must provide this yourself. Otherwise, containers cannot
save the configuration of your component.

The transient keyword can be used to designate data members of a Bean that should
not be serialized. The color variable of the Colors class is an example of such an item.

Customizers
The Properties window of the BDK allows a developer to modify the properties of a
Bean. However, this may not be the best user interface for a complex component with
many interrelated properties. Therefore, a Bean developer can provide a customizer that
helps another developer configure this software. A customizer can provide a
step-by-step guide through the process that must be followed to use the component
in a specific context. Online documentation can also be provided. A Bean developer
has great flexibility to develop a customizer that can differentiate his or her product
in the marketplace.

The Java Beans API
The Java Beans functionality is provided by a set of classes and interfaces in the
java.beans package. This section provides a brief overview of its contents. Table 25-2
lists the interfaces in java.beans and provides a brief description of their functionality.
Table 25-3 lists the classes in java.beans.

906 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

C h a p t e r 2 5 : J a v a B e a n s 907

Interface Description

AppletInitializer Methods in this interface are used to initialize Beans
that are also applets.

BeanInfo This interface allows a designer to specify
information about the properties, events, and
methods of a Bean.

Customizer This interface allows a designer to provide a
graphical user interface through which a Bean may
be configured.

DesignMode Methods in this interface determine if a Bean is
executing in design mode.

ExceptionListener A method in this interface is invoked when an
exception has occurred. (Added by Java 2, version 1.4.)

PropertyChangeListener A method in this interface is invoked when a bound
property is changed.

PropertyEditor Objects that implement this interface allow
designers to change and display property values.

VetoableChangeListener A method in this interface is invoked when a
constrained property is changed.

Visibility Methods in this interface allow a Bean to execute
in environments where a graphical user interface is
not available.

Table 25-2. The Interfaces Defined in java.beans

Class Description

BeanDescriptor This class provides information about a Bean.
It also allows you to associate a customizer
with a Bean.

Beans This class is used to obtain information about
a Bean.

Table 25-3. The Classes Defined in java.beans

908 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Class Description

DefaultPersistenceDelegate A concrete subclass of PersistenceDelegate.
(Added by Java 2, version 1.4.)

Encoder Encodes the state of a set of Beans. Can be used
to write this information to a stream. (Added by
Java 2, version 1.4.)

EventHandler Supports dynamic event listener creation.
(Added by Java 2, version 1.4.)

EventSetDescriptor Instances of this class describe an event that can
be generated by a Bean.

Expression Encapsulates a call to a method that returns a
result. (Added by Java 2, version 1.4.)

FeatureDescriptor This is the superclass of the PropertyDescriptor,
EventSetDescriptor, and MethodDescriptor
classes.

IndexedPropertyDescriptor Instances of this class describe an indexed
property of a Bean.

IntrospectionException An exception of this type is generated if a
problem occurs when analyzing a Bean.

Introspector This class analyzes a Bean and constructs a
BeanInfo object that describes the component.

MethodDescriptor Instances of this class describe a method of
a Bean.

ParameterDescriptor Instances of this class describe a method
parameter.

PersistenceDelegate Handles the state information of an object.
(Added by Java 2, version 1.4.)

PropertyChangeEvent This event is generated when bound or constrained
properties are changed. It is sent to objects that
registered an interest in these events and
implement either the PropertyChangeListener or
VetoableChangeListener interfaces.

Table 25-3. The Classes Defined in java.beans (continued)

A complete discussion of these classes and interfaces is beyond the scope of this
book. However, the following program illustrates the Introspector, BeanDescriptor,

C h a p t e r 2 5 : J a v a B e a n s 909
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Class Description

PropertyChangeListenerProxy Extends EventListenerProxy and implements
PropertyChangeListener. (Added by Java 2,
version 1.4.)

PropertyChangeSupport Beans that support bound properties can use this
class to notify PropertyChangeListener objects.

PropertyDescriptor Instances of this class describe a property of
a Bean.

PropertyEditorManager This class locates a PropertyEditor object for a
given type.

PropertyEditorSupport This class provides functionality that can be
used when writing property editors.

PropertyVetoException An exception of this type is generated if a change
to a constrained property is vetoed.

SimpleBeanInfo This class provides functionality that can be
used when writing BeanInfo classes.

Statement Encapsulates a call to a method. (Added by Java 2,
version 1.4.)

VetoableChangeListenerProxy Extends EventListenerProxy and implements
VetoableChangeListener. (Added by Java 2,
version 1.4.)

VetoableChangeSupport Beans that support constrained properties can
use this class to notify VetoableChangeListener
objects.

XMLDecoder Used to read a Bean from an XML document.
(Added by Java 2, version 1.4.)

XMLEncoder Used to write a Bean to an XML document.
(Added by Java 2, version 1.4.)

Table 25-3. The Classes Defined in java.beans (continued)

PropertyDescriptor, and EventSetDescriptor classes and the BeanInfo interface. It lists
the properties and events of the Colors Bean that was developed earlier in this chapter.

// Show properties and events.

package sunw.demo.colors;

import java.awt.*;

import java.beans.*;

public class IntrospectorDemo {

public static void main(String args[]) {

try {

Class c = Class.forName("sunw.demo.colors.Colors");

BeanInfo beanInfo = Introspector.getBeanInfo(c);

BeanDescriptor beanDescriptor = beanInfo.getBeanDescriptor();

System.out.println("Bean name = " +

beanDescriptor.getName());

System.out.println("Properties:");

PropertyDescriptor propertyDescriptor[] =

beanInfo.getPropertyDescriptors();

for(int i = 0; i < propertyDescriptor.length; i++) {

System.out.println("\t" + propertyDescriptor[i].getName());

}

System.out.println("Events:");

EventSetDescriptor eventSetDescriptor[] =

beanInfo.getEventSetDescriptors();

for(int i = 0; i < eventSetDescriptor.length; i++) {

System.out.println("\t" + eventSetDescriptor[i].getName());

}

}

catch(Exception e) {

System.out.println("Exception caught. " + e);

}

}

}

The output from this program is the following:

Bean name = Colors
Properties:

910 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

rectangular
Events:

propertyChange
component
mouseMotion
mouse
hierarchy
key
focus
hierarchyBounds
inputMethod

Using Bean Builder
As explained at the start of the chapter, the BDK is not compatible with Java 2, version 1.4.
Instead, 1.4 users will need to use the new Bean Builder tool for Bean development. At
the time of this writing, Bean Builder is available only as a beta release, and its final
form and feature set are subject to change. However, because it is the tool that Java 2,
version 1.4 users must use to develop Beans, an overview of Bean Builder is presented
here. (Subsequent editions of this book will cover Bean Builder in detail after it is a
released product.) Keep in mind that the basic Bean information, such as introspection,
described earlier, also applies to Beans used by Bean Builder. Bean Builder is available
from http://java.sun.com.

Bean Builder is similar to the BeanBox offered by the BDK, except that it is more
powerful and sophisticated. Its operation is also similar to the BeanBox except that it is
easier to use. Perhaps the most striking feature of Bean Builder is that it supports two
separate modes of operation: design and test. In design mode, you construct a Bean-based
application, adding the various components, and wiring them together. In test mode,
also called run-time mode, the application is executed and all of the components are live.
Thus, it is extremely easy to construct and then test your application. Futhermore, you
switch between these two modes by checking or clearing a single check box.

Bean Builder provides the three windows shown in Figure 25-6. The top (main)
window holds the current palette set. This includes a default palette from which you
can choose various user-interface objects, such as buttons, scroll bars, lists, and menus.
These are Swing rather than AWT objects. (You will find an overview of Swing in
Chapter 26, but no knowledge of Swing is required to follow along with the example
developed later in this section.) You can also load other palettes and JAR files. Each
component has associated with it a set of properties. You can examine and set these
using the Property Inspector window provided by Bean Builder. The third window,

C h a p t e r 2 5 : J a v a B e a n s 911
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

called the design window (or, designer for short), is the window in which you will
assemble various components into an application.

In general, to build an application, you will select items from a palette and
instantiate them on the designer, setting their properties as necessary by using the
Property Inspector window. Once you have assembled the components, you will wire
them together by dragging a line from one to another. In the process, you will define
the input and output methods that will be called, and what action causes them to be
called. For example, you might wire a push button to a text field, specifying that when
the push button is pressed, the text field will be cleared.

912 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-6. The Bean Builder Windows

Building a Simple Bean Builder Application
It is really quite easy to build an application using Bean Builder. In this section, we
will walk through the construction of a very simple one that contains a label, a slider
control, and a scroll bar. When the slider control is moved, the scroll bar is also moved
by the same amount, and vice versa. Thus, moving one causes the other to move, too.
Once you have completed this walk through, you will be able to easily build other
applications on your own.

First, create a new project by selecting New from the File menu. Next, select
javax.swing.JFrame in the list at the top of the Property Inspector window. JFrame is
the top-level Swing class for the design window. Next, scroll down in the Property
Inspector window until you find title. Change the title to “A Bean Builder App”.
Your screen should look like the one shown in Figure 25-7.

C h a p t e r 2 5 : J a v a B e a n s 913
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Figure 25-7. A new Bean Builder Application

Next, we will add a label to the design. Click on the label button in the Swing
palette. This instantiates a JLabel object, which is the Swing class for a label. Then,
move the mouse to the designer and outline a rectangle near the top of the window.
This defines were the text will go. Then, using the Property Inspector window, find
the text entry. Change it to “Move slider or scroll bar.” After you do this, your screen
will look like Figure 25-8. Now, find the horizontalAlignment field in the Property
Inspector and change its value to CENTER. This will center the text within the label.

Next, select a slider from the palette and add it to the designer. Then, add a scroll
bar. The slider is an instance of the Swing class JSlider and the scroll bar is an instance

914 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-8. After adding a label

of the Swing class JScrollbar. By default, both the slider and the scroll bar have the
same range (0 to 100), so the value of one will translate directly to the value of the
other. To make your application look like the one in this book, position them as shown
in Figure 25-9.

Now it is time to wire the components together. To do this, you will position
the mouse pointer over one of the connection handles, then drag a “wire” from the
connection handle on one component to a connection handle on another component.
The component at which you start is the source of some event and the component at
which you end is the recipient of the event. Each component has four connection

C h a p t e r 2 5 : J a v a B e a n s 915
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Figure 25-9. The design window after added the slider and scroll bar

handles, and it doesn’t matter which one you choose. Begin by wiring a connection
from the slider to the scroll bar, as shown in Figure 25-10.

After you have completed the connection, the Interaction Wizard will appear. It
lets you specify how the two components communicate. In this case, you will define
what takes place when the slider is moved. On the first page you will select the event
method that will be called when the source object (in this case, the slider) changes
position. First, select the Event Adapter radio button (if it is not already selected).

916 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-10. Wiring a connection from the slider to the scroll bar

Then, select change in the Event Sets list. In Event Methods, stateChanged(ChangeEvent)
should already be selected. Your screen will look like Figure 25-11.

Press Next. You will now select the method on the target object (in this case, the
scroll bar) that you want called when the source object changes. In this case, select
the JScrollbar method setValue(int). It sets the current position of the scroll bar.
Your screen will look like Figure 25-12.

C h a p t e r 2 5 : J a v a B e a n s 917
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Figure 25-11. The first page of the Interaction Wizard

Press Next. Now, select the “getter” method that will supply the argument to
setValue(). In this case, it will be JSlider’s getValue() method, which returns the
current position of the slider. A “getter” is a method that uses the get design pattern.
Your screen will look like Figure 25-13. Now, press finish. This completes the connection.
Now, each time the slider changes, the setValue() method of the scroll bar is called
with an argument supplied by the getValue() method of the slider. Thus, moving the
slider also causes the scroll bar to move.

918 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-12. The second page of the Interaction Wizard

Next, repeat this process, except this time, wire the connection from the scroll bar
to the slider box.

Finally, test the application. To do this, uncheck the Design Mode check box. This
causes the application to execute, as shown in Figure 25-14. Try moving the slider
box. When it moves, the scroll bar automatically moves, too. This is because of the
connection that we wired from the slider to the scroll bar. Assuming that you also
wired the reverse connection, moving the scroll bar will cause the slider to move.

C h a p t e r 2 5 : J a v a B e a n s 919
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Figure 25-13. The third page of the Interaction Wizard.

You can save your application by selecting Save in the file menu.
The Bean Builder is a powerful, yet easy to use development tool. If Bean

development is in your future, you will want to master its features. The best way
to do this is to create a number of sample Bean applications. Also, try creating your
own Beans and loading them into the palette. (To do so, create a JAR file containing
your Beans, as described earlier.)

920 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 25-14. The Bean Builder application executing

Chapter 26
A Tour of Swing

921

922 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

In Part II, you saw how to build user interfaces with the AWT classes. Here, we will
take a tour of a supercharged alternative called Swing. Swing is a set of classes that
provides more powerful and flexible components than are possible with the AWT.

In addition to the familiar components, such as buttons, check boxes, and labels, Swing
supplies several exciting additions, including tabbed panes, scroll panes, trees, and
tables. Even familiar components such as buttons have more capabilities in Swing. For
example, a button may have both an image and a text string associated with it. Also,
the image can be changed as the state of the button changes.

Unlike AWT components, Swing components are not implemented by
platform-specific code. Instead, they are written entirely in Java and, therefore, are
platform-independent. The term lightweight is used to describe such elements.

The number of classes and interfaces in the Swing packages is substantial, and this
chapter provides an overview of just a few. Swing is an area that you will want to
explore further on your own.

The Swing component classes that are used in this book are shown here:

Class Description

AbstractButton Abstract superclass for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set of buttons.

ImageIcon Encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (an combination of a
drop-down list and text field).

JLabel The Swing version of a label.

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

JTree Encapsulates a tree-based control.

C h a p t e r 2 6 : A T o u r o f S w i n g 923
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

The Swing-related classes are contained in javax.swing and its subpackages, such
as javax.swing.tree. Many other Swing-related classes and interfaces exist that are not
examined in this chapter.

The remainder of this chapter examines various Swing components and illustrates
them through sample applets.

JApplet
Fundamental to Swing is the JApplet class, which extends Applet. Applets that use
Swing must be subclasses of JApplet. JApplet is rich with functionality that is not
found in Applet. For example, JApplet supports various “panes,” such as the content
pane, the glass pane, and the root pane. For the examples in this chapter, we will not be
using most of JApplet’s enhanced features. However, one difference between Applet
and JApplet is important to this discussion, because it is used by the sample applets in
this chapter. When adding a component to an instance of JApplet, do not invoke the
add() method of the applet. Instead, call add() for the content pane of the JApplet
object. The content pane can be obtained via the method shown here:

Container getContentPane()

The add() method of Container can be used to add a component to a content pane.
Its form is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

Icons and Labels
In Swing, icons are encapsulated by the ImageIcon class, which paints an icon from an
image. Two of its constructors are shown here:

ImageIcon(String filename)
ImageIcon(URL url)

The first form uses the image in the file named filename. The second form uses the
image in the resource identified by url.

The ImageIcon class implements the Icon interface that declares the methods
shown here:

Method Description

int getIconHeight() Returns the height of the icon
in pixels.

int getIconWidth() Returns the width of the icon
in pixels.

void paintIcon(Component comp, Graphics g,
int x, int y)

Paints the icon at position x, y on
the graphics context g. Additional
information about the paint
operation can be provided in comp.

Swing labels are instances of the JLabel class, which extends JComponent. It can
display text and/or an icon. Some of its constructors are shown here:

JLabel(Icon i)
Label(String s)
JLabel(String s, Icon i, int align)

Here, s and i are the text and icon used for the label. The align argument is either LEFT,
RIGHT, CENTER, LEADING, or TRAILING. These constants are defined in the
SwingConstants interface, along with several others used by the Swing classes.

The icon and text associated with the label can be read and written by the
following methods:

Icon getIcon()
String getText()
void setIcon(Icon i)
void setText(String s)

Here, i and s are the icon and text, respectively.
The following example illustrates how to create and display a label containing both

an icon and a string. The applet begins by getting its content pane. Next, an ImageIcon
object is created for the file france.gif. This is used as the second argument to the
JLabel constructor. The first and last arguments for the JLabel constructor are the label
text and the alignment. Finally, the label is added to the content pane.

import java.awt.*;

import javax.swing.*;

/*

924 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 6 : A T o u r o f S w i n g 925
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

<applet code="JLabelDemo" width=250 height=150>

</applet>

*/

public class JLabelDemo extends JApplet {

public void init() {

// Get content pane

Container contentPane = getContentPane();

// Create an icon

ImageIcon ii = new ImageIcon("france.gif");

// Create a label

JLabel jl = new JLabel("France", ii, JLabel.CENTER);

// Add label to the content pane

contentPane.add(jl);

}

}

Output from this applet is shown here:

Text Fields
The Swing text field is encapsulated by the JTextComponent class, which extends
JComponent. It provides functionality that is common to Swing text components. One

926 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

of its subclasses is JTextField, which allows you to edit one line of text. Some of its
constructors are shown here:

JTextField()
JTextField(int cols)
JTextField(String s, int cols)
JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.
The following example illustrates how to create a text field. The applet begins by

getting its content pane, and then a flow layout is assigned as its layout manager. Next,
a JTextField object is created and is added to the content pane.

import java.awt.*;

import javax.swing.*;

/*

<applet code="JTextFieldDemo" width=300 height=50>

</applet>

*/

public class JTextFieldDemo extends JApplet {

JTextField jtf;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add text field to content pane

jtf = new JTextField(15);

contentPane.add(jtf);

}

}

Output from this applet is shown here:

Buttons
Swing buttons provide features that are not found in the Button class defined by the
AWT. For example, you can associate an icon with a Swing button. Swing buttons are
subclasses of the AbstractButton class, which extends JComponent. AbstractButton
contains many methods that allow you to control the behavior of buttons, check boxes,
and radio buttons. For example, you can define different icons that are displayed for
the component when it is disabled, pressed, or selected. Another icon can be used as a
rollover icon, which is displayed when the mouse is positioned over that component.
The following are the methods that control this behavior:

void setDisabledIcon(Icon di)
void setPressedIcon(Icon pi)
void setSelectedIcon(Icon si)
void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for these different conditions.
The text associated with a button can be read and written via the following methods:

String getText()
void setText(String s)

Here, s is the text to be associated with the button.
Concrete subclasses of AbstractButton generate action events when they are

pressed. Listeners register and unregister for these events via the methods shown here:

void addActionListener(ActionListener al)
void removeActionListener(ActionListener al)

Here, al is the action listener.
AbstractButton is a superclass for push buttons, check boxes, and radio buttons.

Each is examined next.

The JButton Class
The JButton class provides the functionality of a push button. JButton allows an icon,
a string, or both to be associated with the push button. Some of its constructors are
shown here:

JButton(Icon i)
JButton(String s)
JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.
The following example displays four push buttons and a text field. Each button

displays an icon that represents the flag of a country. When a button is pressed, the

C h a p t e r 2 6 : A T o u r o f S w i n g 927
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

928 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

name of that country is displayed in the text field. The applet begins by getting its
content pane and setting the layout manager of that pane. Four image buttons are
created and added to the content pane. Next, the applet is registered to receive action
events that are generated by the buttons. A text field is then created and added to the
applet. Finally, a handler for action events displays the command string that is
associated with the button. The text field is used to present this string.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JButtonDemo" width=250 height=300>

</applet>

*/

public class JButtonDemo extends JApplet

implements ActionListener {

JTextField jtf;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add buttons to content pane

ImageIcon france = new ImageIcon("france.gif");

JButton jb = new JButton(france);

jb.setActionCommand("France");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon germany = new ImageIcon("germany.gif");

jb = new JButton(germany);

jb.setActionCommand("Germany");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon italy = new ImageIcon("italy.gif");

jb = new JButton(italy);

jb.setActionCommand("Italy");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon japan = new ImageIcon("japan.gif");

jb = new JButton(japan);

jb.setActionCommand("Japan");

jb.addActionListener(this);

contentPane.add(jb);

// Add text field to content pane

jtf = new JTextField(15);

contentPane.add(jtf);

}

public void actionPerformed(ActionEvent ae) {

jtf.setText(ae.getActionCommand());

}

}

Output from this applet is shown here:

C h a p t e r 2 6 : A T o u r o f S w i n g 929
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

930 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Check Boxes
The JCheckBox class, which provides the functionality of a check box, is a concrete
implementation of AbstractButton. Its immediate superclass is JToggleButton, which
provides support for two-state buttons. Some of its constructors are shown here:

JCheckBox(Icon i)
JCheckBox(Icon i, boolean state)
JCheckBox(String s)
JCheckBox(String s, boolean state)
JCheckBox(String s, Icon i)
JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box
is initially selected. Otherwise, it is not.

The state of the check box can be changed via the following method:

void setSelected(boolean state)

Here, state is true if the check box should be checked.
The following example illustrates how to create an applet that displays four check

boxes and a text field. When a check box is pressed, its text is displayed in the text field.
The content pane for the JApplet object is obtained, and a flow layout is assigned as its
layout manager. Next, four check boxes are added to the content pane, and icons are
assigned for the normal, rollover, and selected states. The applet is then registered to
receive item events. Finally, a text field is added to the content pane.

When a check box is selected or deselected, an item event is generated. This is
handled by itemStateChanged(). Inside itemStateChanged(), the getItem() method
gets the JCheckBox object that generated the event. The getText() method gets the text
for that check box and uses it to set the text inside the text field.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*

<applet code="JCheckBoxDemo" width=400 height=50>
</applet>

*/

public class JCheckBoxDemo extends JApplet
implements ItemListener {

JTextField jtf;

public void init() {

C h a p t e r 2 6 : A T o u r o f S w i n g 931
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

// Create icons
ImageIcon normal = new ImageIcon("normal.gif");
ImageIcon rollover = new ImageIcon("rollover.gif");
ImageIcon selected = new ImageIcon("selected.gif");

// Add check boxes to the content pane
JCheckBox cb = new JCheckBox("C", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("C++", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("Java", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("Perl", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

// Add text field to the content pane
jtf = new JTextField(15);
contentPane.add(jtf);

}

public void itemStateChanged(ItemEvent ie) {
JCheckBox cb = (JCheckBox)ie.getItem();
jtf.setText(cb.getText());

}
}

Output from this applet is shown here:

Radio Buttons
Radio buttons are supported by the JRadioButton class, which is a concrete
implementation of AbstractButton. Its immediate superclass is JToggleButton, which
provides support for two-state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)
JRadioButton(Icon i, boolean state)
JRadioButton(String s)
JRadioButton(String s, boolean state)
JRadioButton(String s, Icon i)
JRadioButton(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the button is
initially selected. Otherwise, it is not.

Radio buttons must be configured into a group. Only one of the buttons in that
group can be selected at any time. For example, if a user presses a radio button that is
in a group, any previously selected button in that group is automatically deselected.
The ButtonGroup class is instantiated to create a button group. Its default constructor
is invoked for this purpose. Elements are then added to the button group via the
following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.
The following example illustrates how to use radio buttons. Three radio buttons

and one text field are created. When a radio button is pressed, its text is displayed in
the text field. First, the content pane for the JApplet object is obtained and a flow
layout is assigned as its layout manager. Next, three radio buttons are added to the
content pane. Then, a button group is defined and the buttons are added to it. Finally,
a text field is added to the content pane.

Radio button presses generate action events that are handled by actionPerformed().
The getActionCommand() method gets the text that is associated with a radio button
and uses it to set the text field.

932 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JRadioButtonDemo" width=300 height=50>

</applet>

*/

public class JRadioButtonDemo extends JApplet

implements ActionListener {

JTextField tf;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add radio buttons to content pane

JRadioButton b1 = new JRadioButton("A");

b1.addActionListener(this);

contentPane.add(b1);

JRadioButton b2 = new JRadioButton("B");

b2.addActionListener(this);

contentPane.add(b2);

JRadioButton b3 = new JRadioButton("C");

b3.addActionListener(this);

contentPane.add(b3);

// Define a button group

ButtonGroup bg = new ButtonGroup();

bg.add(b1);

bg.add(b2);

bg.add(b3);

// Create a text field and add it

// to the content pane

tf = new JTextField(5);

contentPane.add(tf);

}

C h a p t e r 2 6 : A T o u r o f S w i n g 933
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

934 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public void actionPerformed(ActionEvent ae) {

tf.setText(ae.getActionCommand());

}

}

Output from this applet is shown here:

Combo Boxes
Swing provides a combo box (a combination of a text field and a drop-down list)
through the JComboBox class, which extends JComponent. A combo box normally
displays one entry. However, it can also display a drop-down list that allows a user to
select a different entry. You can also type your selection into the text field. Two of
JComboBox’s constructors are shown here:

JComboBox()
JComboBox(Vector v)

Here, v is a vector that initializes the combo box.
Items are added to the list of choices via the addItem() method, whose signature is

shown here:

void addItem(Object obj)

Here, obj is the object to be added to the combo box.
The following example contains a combo box and a label. The label displays an

icon. The combo box contains entries for “France”, “Germany”, “Italy”, and “Japan”.
When a country is selected, the label is updated to display the flag for that country.

C h a p t e r 2 6 : A T o u r o f S w i n g 935
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JComboBoxDemo" width=300 height=100>

</applet>

*/

public class JComboBoxDemo extends JApplet

implements ItemListener {

JLabel jl;

ImageIcon france, germany, italy, japan;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Create a combo box and add it

// to the panel

JComboBox jc = new JComboBox();

jc.addItem("France");

jc.addItem("Germany");

jc.addItem("Italy");

jc.addItem("Japan");

jc.addItemListener(this);

contentPane.add(jc);

// Create label

jl = new JLabel(new ImageIcon("france.gif"));

contentPane.add(jl);

}

public void itemStateChanged(ItemEvent ie) {

String s = (String)ie.getItem();

jl.setIcon(new ImageIcon(s + ".gif"));

}

}

936 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Output from this applet is shown here:

Tabbed Panes
A tabbed pane is a component that appears as a group of folders in a file cabinet. Each
folder has a title. When a user selects a folder, its contents become visible. Only one of
the folders may be selected at a time. Tabbed panes are commonly used for setting
configuration options.

Tabbed panes are encapsulated by the JTabbedPane class, which extends
JComponent. We will use its default constructor. Tabs are defined via the following
method:

void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the
tab. Typically, a JPanel or a subclass of it is added.

The general procedure to use a tabbed pane in an applet is outlined here:

1. Create a JTabbedPane object.

2. Call addTab() to add a tab to the pane. (The arguments to this method define
the title of the tab and the component it contains.)

3. Repeat step 2 for each tab.

4. Add the tabbed pane to the content pane of the applet.

The following example illustrates how to create a tabbed pane. The first tab is titled
“Cities” and contains four buttons. Each button displays the name of a city. The second
tab is titled “Colors” and contains three check boxes. Each check box displays the name
of a color. The third tab is titled “Flavors” and contains one combo box. This enables
the user to select one of three flavors.

C h a p t e r 2 6 : A T o u r o f S w i n g 937
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

import javax.swing.*;

/*

<applet code="JTabbedPaneDemo" width=400 height=100>

</applet>

*/

public class JTabbedPaneDemo extends JApplet {

public void init() {

JTabbedPane jtp = new JTabbedPane();

jtp.addTab("Cities", new CitiesPanel());

jtp.addTab("Colors", new ColorsPanel());

jtp.addTab("Flavors", new FlavorsPanel());

getContentPane().add(jtp);

}

}

class CitiesPanel extends JPanel {

public CitiesPanel() {

JButton b1 = new JButton("New York");

add(b1);

JButton b2 = new JButton("London");

add(b2);

JButton b3 = new JButton("Hong Kong");

add(b3);

JButton b4 = new JButton("Tokyo");

add(b4);

}

}

class ColorsPanel extends JPanel {

public ColorsPanel() {

JCheckBox cb1 = new JCheckBox("Red");

add(cb1);

JCheckBox cb2 = new JCheckBox("Green");

add(cb2);

JCheckBox cb3 = new JCheckBox("Blue");

add(cb3);

}

}

class FlavorsPanel extends JPanel {

public FlavorsPanel() {

JComboBox jcb = new JComboBox();

jcb.addItem("Vanilla");

jcb.addItem("Chocolate");

jcb.addItem("Strawberry");

add(jcb);

}

}

Output from this applet is shown in the following three illustrations:

938 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Scroll Panes
A scroll pane is a component that presents a rectangular area in which a component
may be viewed. Horizontal and/or vertical scroll bars may be provided if necessary.
Scroll panes are implemented in Swing by the JScrollPane class, which extends
JComponent. Some of its constructors are shown here:

JScrollPane(Component comp)
JScrollPane(int vsb, int hsb)
JScrollPane(Component comp, int vsb, int hsb)

Here, comp is the component to be added to the scroll pane. vsb and hsb are int
constants that define when vertical and horizontal scroll bars for this scroll pane are
shown. These constants are defined by the ScrollPaneConstants interface. Some
examples of these constants are described as follows:

Constant Description

HORIZONTAL_SCROLLBAR_ALWAYS Always provide horizontal
scroll bar

HORIZONTAL_SCROLLBAR_AS_NEEDED Provide horizontal scroll bar,
if needed

VERTICAL_SCROLLBAR_ALWAYS Always provide vertical
scroll bar

VERTICAL_SCROLLBAR_AS_NEEDED Provide vertical scroll bar,
if needed

Here are the steps that you should follow to use a scroll pane in an applet:

1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor specify the
component and the policies for vertical and horizontal scroll bars.)

3. Add the scroll pane to the content pane of the applet.

C h a p t e r 2 6 : A T o u r o f S w i n g 939
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

The following example illustrates a scroll pane. First, the content pane of the
JApplet object is obtained and a border layout is assigned as its layout manager. Next,
a JPanel object is created and four hundred buttons are added to it, arranged into
twenty columns. The panel is then added to a scroll pane, and the scroll pane is added
to the content pane. This causes vertical and horizontal scroll bars to appear. You can
use the scroll bars to scroll the buttons into view.

import java.awt.*;

import javax.swing.*;

/*

<applet code="JScrollPaneDemo" width=300 height=250>

</applet>

*/

public class JScrollPaneDemo extends JApplet {

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new BorderLayout());

// Add 400 buttons to a panel

JPanel jp = new JPanel();

jp.setLayout(new GridLayout(20, 20));

int b = 0;

for(int i = 0; i < 20; i++) {

for(int j = 0; j < 20; j++) {

jp.add(new JButton("Button " + b));

++b;

}

}

// Add panel to a scroll pane

int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

JScrollPane jsp = new JScrollPane(jp, v, h);

// Add scroll pane to the content pane

contentPane.add(jsp, BorderLayout.CENTER);

}

}

940 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 6 : A T o u r o f S w i n g 941
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Output from this applet is shown here:

Trees
A tree is a component that presents a hierarchical view of data. A user has the ability to
expand or collapse individual subtrees in this display. Trees are implemented in Swing
by the JTree class, which extends JComponent. Some of its constructors are shown here:

JTree(Hashtable ht)
JTree(Object obj[])
JTree(TreeNode tn)
JTree(Vector v)

The first form creates a tree in which each element of the hash table ht is a child node.
Each element of the array obj is a child node in the second form. The tree node tn is the
root of the tree in the third form. Finally, the last form uses the elements of vector v as
child nodes.

A JTree object generates events when a node is expanded or collapsed. The
addTreeExpansionListener() and removeTreeExpansionListener() methods allow
listeners to register and unregister for these notifications. The signatures of these
methods are shown here:

void addTreeExpansionListener(TreeExpansionListener tel)
void removeTreeExpansionListener(TreeExpansionListener tel)

942 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, tel is the listener object.
The getPathForLocation() method is used to translate a mouse click on a specific

point of the tree to a tree path. Its signature is shown here:

TreePath getPathForLocation(int x, int y)

Here, x and y are the coordinates at which the mouse is clicked. The return value is a
TreePath object that encapsulates information about the tree node that was selected by
the user.

The TreePath class encapsulates information about a path to a particular node in a
tree. It provides several constructors and methods. In this book, only the toString()
method is used. It returns a string equivalent of the tree path.

The TreeNode interface declares methods that obtain information about a tree
node. For example, it is possible to obtain a reference to the parent node or an
enumeration of the child nodes. The MutableTreeNode interface extends TreeNode. It
declares methods that can insert and remove child nodes or change the parent node.

The DefaultMutableTreeNode class implements the MutableTreeNode interface.
It represents a node in a tree. One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have a
parent or children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode
can be used. Its signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.
Tree expansion events are described by the class TreeExpansionEvent in the

javax.swing.event package. The getPath() method of this class returns a TreePath
object that describes the path to the changed node. Its signature is shown here:

TreePath getPath()

The TreeExpansionListener interface provides the following two methods:

void treeCollapsed(TreeExpansionEvent tee)
void treeExpanded(TreeExpansionEvent tee)

Here, tee is the tree expansion event. The first method is called when a subtree is
hidden, and the second method is called when a subtree becomes visible.

Here are the steps that you should follow to use a tree in an applet:

C h a p t e r 2 6 : A T o u r o f S w i n g 943
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

1. Create a JTree object.

2. Create a JScrollPane object. (The arguments to the constructor specify the tree
and the policies for vertical and horizontal scroll bars.)

3. Add the tree to the scroll pane.

4. Add the scroll pane to the content pane of the applet.

The following example illustrates how to create a tree and recognize mouse clicks on
it. The init() method gets the content pane for the applet. A DefaultMutableTreeNode
object labeled “Options” is created. This is the top node of the tree hierarchy. Additional
tree nodes are then created, and the add() method is called to connect these nodes to
the tree. A reference to the top node in the tree is provided as the argument to the
JTree constructor. The tree is then provided as the argument to the JScrollPane
constructor. This scroll pane is then added to the applet. Next, a text field is created
and added to the applet. Information about mouse click events is presented in this text
field. To receive mouse events from the tree, the addMouseListener() method of the
JTree object is called. The argument to this method is an anonymous inner class that
extends MouseAdapter and overrides the mouseClicked() method.

The doMouseClicked() method processes mouse clicks. It calls
getPathForLocation() to translate the coordinates of the mouse click into a TreePath
object. If the mouse is clicked at a point that does not cause a node selection, the return
value from this method is null. Otherwise, the tree path can be converted to a string
and presented in the text field.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.tree.*;

/*

<applet code="JTreeEvents" width=400 height=200>

</applet>

*/

public class JTreeEvents extends JApplet {

JTree tree;

JTextField jtf;

public void init() {

944 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Get content pane

Container contentPane = getContentPane();

// Set layout manager

contentPane.setLayout(new BorderLayout());

// Create top node of tree

DefaultMutableTreeNode top = new DefaultMutableTreeNode("Options");

// Create subtree of "A"

DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");

top.add(a);

DefaultMutableTreeNode a1 = new DefaultMutableTreeNode("A1");

a.add(a1);

DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");

a.add(a2);

// Create subtree of "B"

DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");

top.add(b);

DefaultMutableTreeNode b1 = new DefaultMutableTreeNode("B1");

b.add(b1);

DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");

b.add(b2);

DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");

b.add(b3);

// Create tree

tree = new JTree(top);

// Add tree to a scroll pane

int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

JScrollPane jsp = new JScrollPane(tree, v, h);

// Add scroll pane to the content pane

contentPane.add(jsp, BorderLayout.CENTER);

C h a p t e r 2 6 : A T o u r o f S w i n g 945
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

// Add text field to applet

jtf = new JTextField("", 20);

contentPane.add(jtf, BorderLayout.SOUTH);

// Anonymous inner class to handle mouse clicks

tree.addMouseListener(new MouseAdapter() {

public void mouseClicked(MouseEvent me) {

doMouseClicked(me);

}

});

}

void doMouseClicked(MouseEvent me) {

TreePath tp = tree.getPathForLocation(me.getX(), me.getY());

if(tp != null)

jtf.setText(tp.toString());

else

jtf.setText("");

}

}

Output from this applet is shown here:

946 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The string presented in the text field describes the path from the top tree node to the
selected node.

Tables
A table is a component that displays rows and columns of data. You can drag the
cursor on column boundaries to resize columns. You can also drag a column to a new
position. Tables are implemented by the JTable class, which extends JComponent.
One of its constructors is shown here:

JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and colHeads
is a one-dimensional array with the column headings.

Here are the steps for using a table in an applet:

1. Create a JTable object.

2. Create a JScrollPane object. (The arguments to the constructor specify the table
and the policies for vertical and horizontal scroll bars.)

3. Add the table to the scroll pane.

4. Add the scroll pane to the content pane of the applet.

The following example illustrates how to create and use a table. The content pane
of the JApplet object is obtained and a border layout is assigned as its layout manager.
A one-dimensional array of strings is created for the column headings. This table has
three columns. A two-dimensional array of strings is created for the table cells. You can
see that each element in the array is an array of three strings. These arrays are passed to
the JTable constructor. The table is added to a scroll pane and then the scroll pane is
added to the content pane.

import java.awt.*;

import javax.swing.*;

/*

<applet code="JTableDemo" width=400 height=200>

</applet>

*/

public class JTableDemo extends JApplet {

C h a p t e r 2 6 : A T o u r o f S w i n g 947
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

public void init() {

// Get content pane

Container contentPane = getContentPane();

// Set layout manager

contentPane.setLayout(new BorderLayout());

// Initialize column headings

final String[] colHeads = { "Name", "Phone", "Fax" };

// Initialize data

final Object[][] data = {

{ "Gail", "4567", "8675" },

{ "Ken", "7566", "5555" },

{ "Viviane", "5634", "5887" },

{ "Melanie", "7345", "9222" },

{ "Anne", "1237", "3333" },

{ "John", "5656", "3144" },

{ "Matt", "5672", "2176" },

{ "Claire", "6741", "4244" },

{ "Erwin", "9023", "5159" },

{ "Ellen", "1134", "5332" },

{ "Jennifer", "5689", "1212" },

{ "Ed", "9030", "1313" },

{ "Helen", "6751", "1415" }

};

// Create the table

JTable table = new JTable(data, colHeads);

// Add table to a scroll pane

int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

JScrollPane jsp = new JScrollPane(table, v, h);

// Add scroll pane to the content pane

contentPane.add(jsp, BorderLayout.CENTER);

}

}

Output from this applet is shown here:

Exploring Swing
As mentioned earlier, Swing is a large system, and it has many features that you will
want to explore on your own. For example, Swing provides toolbars, tooltips, and
progress bars. Also, Swing components can provide a pluggable look and feel, which
means that it is easy to substitute another appearance and behavior for an element.
This can be done dynamically. You may even design your own look and feel. Frankly,
the Swing approach to GUI components might replace the AWT classes some time
in the future, so familiarizing yourself with it now is a good idea.

Swing is just one part of the Java Foundation Classes (JFC). You may want to
explore other JFC features. The Accessibility API can be used to build programs
that are usable by people with disabilities. The Java 2-D API provides advanced
capabilities for working with shapes, text, and images. The Drag-and-Drop API
allows information to be exchanged between Java and non-Java programs.

948 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 27
Servlets

949

This chapter presents an overview of servlets. Servlets are small programs that
execute on the server side of a Web connection. Just as applets dynamically extend
the functionality of a Web browser, servlets dynamically extend the functionality

of a Web server. The topic of servlets is quite large, and it is beyond the scope of
this chapter to cover it all. Instead, we will focus on the core concepts, interfaces, and
classes, and develop several examples.

Background
In order to understand the advantages of servlets, you must have a basic understanding
of how Web browsers and servers cooperate to provide content to a user. Consider
a request for a static Web page. A user enters a Uniform Resource Locator (URL) into
a browser. The browser generates an HTTP request to the appropriate Web server.
The Web server maps this request to a specific file. That file is returned in an HTTP
response to the browser. The HTTP header in the response indicates the type of the
content. The Multipurpose Internet Mail Extensions (MIME) are used for this purpose.
For example, ordinary ASCII text has a MIME type of text/plain. The Hypertext
Markup Language (HTML) source code of a Web page has a MIME type of text/html.

Now consider dynamic content. Assume that an online store uses a database to
store information about its business. This would include items for sale, prices, availability,
orders, and so forth. It wishes to make this information accessible to customers via
Web pages. The contents of those Web pages must be dynamically generated in order
to reflect the latest information in the database.

In the early days of the Web, a server could dynamically construct a page by creating
a separate process to handle each client request. The process would open connections
to one or more databases in order to obtain the necessary information. It communicated
with the Web server via an interface known as the Common Gateway Interface (CGI).
CGI allowed the separate process to read data from the HTTP request and write data to
the HTTP response. A variety of different languages were used to build CGI programs.
These included C, C++, and Perl.

However, CGI suffered serious performance problems. It was expensive in terms
of processor and memory resources to create a separate process for each client request.
It was also expensive to open and close database connections for each client request.
In addition, the CGI programs were not platform-independent. Therefore, other
techniques were introduced. Among these are servlets.

Servlets offer several advantages in comparison with CGI. First, performance is
significantly better. Servlets execute within the address space of a Web server. It is
not necessary to create a separate process to handle each client request. Second, servlets
are platform-independent because they are written in Java. A number of Web servers
from different vendors offer the Servlet API. Programs developed for this API can be
moved to any of these environments without recompilation. Third, the Java security
manager on the server enforces a set of restrictions to protect the resources on a server

950 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

machine. You will see that some servlets are trusted and others are untrusted. Finally,
the full functionality of the Java class libraries is available to a servlet. It can communicate
with applets, databases, or other software via the sockets and RMI mechanisms that
you have seen already.

The Life Cycle of a Servlet
Three methods are central to the life cycle of a servlet. These are init(), service(),
and destroy(). They are implemented by every servlet and are invoked at specific
times by the server. Let us consider a typical user scenario to understand when these
methods are called.

First, assume that a user enters a Uniform Resource Locator (URL) to a Web
browser. The browser then generates an HTTP request for this URL. This request is
then sent to the appropriate server.

Second, this HTTP request is received by the Web server. The server maps this
request to a particular servlet. The servlet is dynamically retrieved and loaded into
the address space of the server.

Third, the server invokes the init() method of the servlet. This method is invoked
only when the servlet is first loaded into memory. It is possible to pass initialization
parameters to the servlet so it may configure itself.

Fourth, the server invokes the service() method of the servlet. This method is
called to process the HTTP request. You will see that it is possible for the servlet to
read data that has been provided in the HTTP request. It may also formulate an
HTTP response for the client.

The servlet remains in the server’s address space and is available to process any
other HTTP requests received from clients. The service() method is called for each
HTTP request.

Finally, the server may decide to unload the servlet from its memory. The algorithms
by which this determination is made are specific to each server. The server calls the
destroy() method to relinquish any resources such as file handles that are allocated for
the servlet. Important data may be saved to a persistent store. The memory allocated
for the servlet and its objects can then be garbage collected.

Using Tomcat For Servlet Development
To create servlets, you will need to download a servlet development environment. The
one currently recommended by Sun is Tomcat 4.0, which supports the latest servlet
specification, which is 2.3. (The complete servlet specification is available for download
through java.sun.com.) Tomcat replaces the old JSDK (Java Servlet Development Kit)
that was previously provided by Sun. Tomcat is an open-source product maintained
by the Jakarta Project of the Apache Software Foundation. It contains the class libraries,
documentation, and run-time support that you will need to create and test servlets.

C h a p t e r 2 7 : S e r v l e t s 951
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

You can download Tomcat through the Sun Microsystems Web site at java.sun.com.
The current version is 4.0. Follow the instructions to install this toolkit on your
machine. The examples in this chapter assume a Windows environment. The default
location for Tomcat 4.0 is

C:\Program Files\Apache Tomcat 4.0\

This is the location assumed by the examples in this book. If you load Tomcat in a
different location, you will need to make appropriate changes to the examples. You may
need to set the environmental variable JAVA_HOME to the top-level directory in which
the Java Software Development Kit is installed. For Java 2, version 1.4, the default
directory is C:\j2sdk1.4.0, but you will need to confirm this for your environment.

To start Tomcat, select Start Tomcat in the Start | Programs menu, or run startup.bat
from the

C:\Program Files\Apache Tomcat 4.0\bin\

directory. When you are done testing servlets, you can stop Tomcat by selecting Stop
Tomcat in the Start | Programs menu, or run shutdown.bat.

The directory

C:\Program Files\Apache Tomcat 4.0\common\lib\

contains servlet.jar. This JAR file contains the classes and interfaces that are needed
to build servlets. To make this file accessible, update your CLASSPATH environment
variable so that it includes

C:\Program Files\Apache Tomcat 4.0\common\lib\servlet.jar.

Alternatively, you can specify this class file when you compile the servlets. For
example, the following command compiles the first servlet example:

javac HelloServlet.java -classpath "C:\Program Files\Apache Tomcat

4.0\common\lib\servlet.jar"

Once you have compiled a servlet, you must copy the class file into the directory
that Tomcat uses for example servlet class files. For the purposes of this chapter, you
must put the servlet files into the following directory:

C:\Program Files\Apache Tomcat 4.0\webapps\examples\WEB-INF\classes

952 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

A Simple Servlet
To become familiar with the key servlet concepts, we will begin by building and testing
a simple servlet. The basic steps are the following:

1. Create and compile the servlet source code.

2. Start Tomcat.

3. Start a Web browser and request the servlet.

Let us examine each of these steps in detail.

Create and Compile the Servlet Source Code
To begin, create a file named HelloServlet.java that contains the following program:

import java.io.*;

import javax.servlet.*;

public class HelloServlet extends GenericServlet {

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

pw.println("Hello!");

pw.close();

}

}

Let’s look closely at this program. First, note that it imports the javax.servlet package.
This package contains the classes and interfaces required to build servlets. You will learn
more about these later in this chapter. Next, the program defines HelloServlet as a subclass
of GenericServlet. The GenericServlet class provides functionality that makes it easy to
handle requests and responses.

Inside HelloServet, the service() method (which is inherited from GenericServlet)
is overridden. This method handles requests from a client. Notice that the first argument
is a ServletRequest object. This enables the servlet to read data that is provided via
the client request. The second argument is a ServletResponse object. This enables the
servlet to formulate a response for the client.

The call to setContentType() establishes the MIME type of the HTTP response.
In this program, the MIME type is text/html. This indicates that the browser should
interpret the content as HTML source code.

C h a p t e r 2 7 : S e r v l e t s 953
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Next, the getWriter() method obtains a PrintWriter. Anything written to this stream
is sent to the client as part of the HTTP response. Then println() is used to write some
simple HTML source code as the HTTP response.

Compile this source code and place the HelloServlet.class file in the Tomcat class
files directory as described in the previous section.

Start Tomcat
As explained, to start Tomcat, select Start Tomcat in the Start | Programs menu, or run
startup.bat from the

C:\Program Files\Apache Tomcat 4.0\bin\

directory.

Start a Web Browser and Request the Servlet
Start a Web browser and enter the URL shown here:

http://localhost:8080/examples/servlet/HelloServlet

Alternatively, you may enter the URL shown here:

http://127.0.0.1:8080/examples/servlet/HelloServlet

This can be done because 127.0.0.1 is defined as the IP address of the local machine.
You will observe the output of the servlet in the browser display area. It will

contain the string Hello! in bold type.

The Servlet API
Two packages contain the classes and interfaces that are required to build servlets. These
are javax.servlet and javax.servlet.http. They constitute the Servlet API. Keep in mind
that these packages are not part of the Java core packages. Instead, they are standard
extensions. Therefore, they are not included in the Java Software Development Kit. You
must download Tomcat to obtain their functionality.

The Servlet API has been in a process of ongoing development and enhancement.
The current servlet specification is version is 2.3 and that is the one used in this book.
However, because changes happen fast in the world of Java, you will want to check for
any additions or alterations. This chapter discusses the core of the Servlet API, which
will be available to most readers.

The Servlet API is supported by most Web servers, such as those from Sun,
Microsoft, and others. Check at http://java.sun.com for the latest information.

954 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The javax.servlet Package
The javax.servlet package contains a number of interfaces and classes that establish
the framework in which servlets operate. The following table summarizes the core
interfaces that are provided in this package. The most significant of these is Servlet. All
servlets must implement this interface or extend a class that implements the interface.
The ServletRequest and ServletResponse interfaces are also very important.

Interface Description

Servlet Declares life cycle methods for a servlet.

ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information
about their environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

SingleThreadModel Indicates that the servlet is thread safe.

The following table summarizes the core classes that are provided in the
javax.servlet package.

Class Description

GenericServlet Implements the Servlet and ServletConfig
interfaces.

ServletInputStream Provides an input stream for reading requests from
a client.

ServletOutputStream Provides an output stream for writing responses to
a client.

ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

Let us examine these interfaces and classes in more detail.

The Servlet Interface
All servlets must implement the Servlet interface. It declares the init(), service(), and
destroy() methods that are called by the server during the life cycle of a servlet. A
method is also provided that allows a servlet to obtain any initialization parameters.
The methods defined by Servlet are shown in Table 27-1.

C h a p t e r 2 7 : S e r v l e t s 955
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

The init(), service(), and destroy() methods are the life cycle methods of the
servlet. These are invoked by the server. The getServletConfig() method is called by
the servlet to obtain initialization parameters. A servlet developer overrides the
getServletInfo() method to provide a string with useful information (for example,
author, version, date, copyright). This method is also invoked by the server.

The ServletConfig Interface
The ServletConfig interface is implemented by the server. It allows a servlet to obtain
configuration data when it is loaded. The methods declared by this interface are
summarized here:

Method Description

ServletContext getServletContext() Returns the context for this servlet.

String getInitParameter(String param) Returns the value of the initialization
parameter named param.

Enumeration getInitParameterNames() Returns an enumeration of all
initialization parameter names.

String getServletName() Returns the name of the invoking servlet.

956 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void destroy() Called when the servlet is unloaded.

ServletConfig getServletConfig() Returns a ServletConfig object that contains
any initialization parameters.

String getServletInfo() Returns a string describing the servlet.

void init(ServletConfig sc)
throws ServletException

Called when the servlet is initialized.
Initialization parameters for the servlet can be
obtained from sc. An UnavailableException
should be thrown if the servlet cannot be
initialized.

void service(ServletRequest req,
ServletResponse res)

throws ServletException,
IOException

Called to process a request from a client. The
request from the client can be read from req.
The response to the client can be written to
res. An exception is generated if a servlet or
IO problem occurs.

Table 27-1. The Methods Defined by Servlet

The ServletContext Interface
The ServletContext interface is implemented by the server. It enables servlets to obtain
information about their environment. Several of its methods are summarized in Table 27-2.

The ServletRequest Interface
The ServletRequest interface is implemented by the server. It enables a servlet to
obtain information about a client request. Several of its methods are summarized in
Table 27-3.

The ServletResponse Interface
The ServletResponse interface is implemented by the server. It enables a servlet to
formulate a response for a client. Several of its methods are summarized in Table 27-4.

The SingleThreadModel Interface
This interface is used to indicate that only a single thread will execute the service()
method of a servlet at a given time. It defines no constants and declares no methods.
If a servlet implements this interface, the server has two options. First, it can create
several instances of the servlet. When a client request arrives, it is sent to an available
instance of the servlet. Second, it can synchronize access to the servlet.

C h a p t e r 2 7 : S e r v l e t s 957
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Method Description

Object getAttribute(String attr) Returns the value of the server attribute
named attr.

String getMimeType(String file) Returns the MIME type of file.

String getRealPath(String vpath) Returns the real path that corresponds
to the virtual path vpath.

String getServerInfo() Returns information about the server.

void log(String s) Writes s to the servlet log.

void log(String s, Throwable e) Write s and the stack trace for e to the
servlet log.

void setAttribute(String attr, Object val) Sets the attribute specified by attr to the
value passed in val.

Table 27-2. Various Methods Defined by ServletContext

958 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

Object getAttribute(String attr) Returns the value of the attribute
named attr.

String getCharacterEncoding() Returns the character encoding of
the request.

int getContentLength() Returns the size of the request. The
value –1 is returned if the size is
unavailable.

String getContentType() Returns the type of the request. A
null value is returned if the type
cannot be determined.

ServletInputStream getInputStream()
throws IOException

Returns a ServletInputStream
that can be used to read binary
data from the request. An
IllegalStateException is thrown
if getReader() has already been
invoked for this request.

String getParameter(String pname) Returns the value of the parameter
named pname.

Enumeration getParameterNames() Returns an enumeration of the
parameter names for this request.

String[] getParameterValues(String name) Returns an array containing values
associated with the parameter
specified by name.

String getProtocol() Returns a description of the
protocol.

BufferedReader getReader()
throws IOException

Returns a buffered reader that
can be used to read text from the
request. An IllegalStateException
is thrown if getInputStream() has
already been invoked for this
request.

Table 27-3. Various Methods Defined by ServletRequest

C h a p t e r 2 7 : S e r v l e t s 959

S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Method Description

String getRemoteAddr() Returns the string equivalent of the
client IP address.

String getRemoteHost() Returns the string equivalent of the
client host name.

String getScheme() Returns the transmission scheme of
the URL used for the request (for
example, “http”, “ftp”).

String getServerName() Returns the name of the server.

int getServerPort() Returns the port number.

Table 27-3. Various Methods Defined by ServletRequest (continued)

Method Description

String getCharacterEncoding() Returns the character encoding for the
response.

ServletOutputStream
getOutputStream()
throws IOException

Returns a ServletOutputStream that can be
used to write binary data to the response.
An IllegalStateException is thrown if
getWriter() has already been invoked for
this request.

PrintWriter getWriter()
throws IOException

Returns a PrintWriter that can be used
to write character data to the response.
An IllegalStateException is thrown if
getOutputStream() has already been
invoked for this request.

void setContentLength(int size) Sets the content length for the response to size.

void setContentType(String type) Sets the content type for the response to type.

Table 27-4. Various Methods Defined by ServletResponse

The GenericServlet Class
The GenericServlet class provides implementations of the basic life cycle methods for
a servlet and is typically subclassed by servlet developers. GenericServlet implements
the Servlet and ServletConfig interfaces. In addition, a method to append a string to
the server log file is available. The signatures of this method are shown here:

void log(String s)
void log(String s, Throwable e)

Here, s is the string to be appended to the log, and e is an exception that occurred.

The ServletInputStream Class
The ServletInputStream class extends InputStream. It is implemented by the server
and provides an input stream that a servlet developer can use to read the data from a
client request. It defines the default constructor. In addition, a method is provided to
read bytes from the stream. Its signature is shown here:

int readLine(byte[] buffer, int offset, int size) throws IOException

Here, buffer is the array into which size bytes are placed starting at offset. The method
returns the actual number of bytes read or –1 if an end-of-stream condition is encountered.

The ServletOutputStream Class
The ServletOutputStream class extends OutputStream. It is implemented by the
server and provides an output stream that a servlet developer can use to write data
to a client response. A default constructor is defined. It also defines the print() and
println() methods, which output data to the stream.

The Servlet Exception Classes
javax.servlet defines two exceptions. The first is ServletException, which indicates that
a servlet problem has occurred. The second is UnavailableException, which extends
ServletException. It indicates that a servlet is unavailable.

Reading Servlet Parameters
The ServletRequest class includes methods that allow you to read the names and
values of parameters that are included in a client request. We will develop a servlet
that illustrates their use. The example contains two files. A Web page is defined in
PostParameters.htm and a servlet is defined in PostParametersServlet.java.

The HTML source code for PostParameters.htm is shown in the following listing. It
defines a table that contains two labels and two text fields. One of the labels is Employee

960 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

and the other is Phone. There is also a submit button. Notice that the action parameter
of the form tag specifies a URL. The URL identifies the servlet to process the HTTP
POST request.

<html>

<body>

<center>

<form name="Form1"

method="post"

action="http://localhost:8080/examples/servlet/PostParametersServlet">

<table>

<tr>

<td>Employee</td>

<td><input type=textbox name="e" size="25" value=""></td>

</tr>

<tr>

<td>Phone</td>

<td><input type=textbox name="p" size="25" value=""></td>

</tr>

</table>

<input type=submit value="Submit">

</body>

</html>

The source code for PostParametersServlet.java is shown in the following listing.
The service() method is overridden to process client requests. The getParameterNames()
method returns an enumeration of the parameter names. These are processed in a loop.
You can see that the parameter name and value are output to the client. The parameter
value is obtained via the getParameter() method.

import java.io.*;

import java.util.*;

import javax.servlet.*;

public class PostParametersServlet

extends GenericServlet {

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

// Get print writer.

PrintWriter pw = response.getWriter();

C h a p t e r 2 7 : S e r v l e t s 961
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

// Get enumeration of parameter names.

Enumeration e = request.getParameterNames();

// Display parameter names and values.

while(e.hasMoreElements()) {

String pname = (String)e.nextElement();

pw.print(pname + " = ");

String pvalue = request.getParameter(pname);

pw.println(pvalue);

}

pw.close();

}

}

Compile the servlet and perform these steps to test this example:

1. Start Tomcat (if it is not already running).

2. Display the Web page in a browser.

3. Enter an employee name and phone number in the text fields.

4. Submit the Web page.

After following these steps, the browser will display a response that is dynamically
generated by the servlet.

The javax.servlet.http Package
The javax.servlet.http package contains a number of interfaces and classes that are
commonly used by servlet developers. You will see that its functionality makes it easy
to build servlets that work with HTTP requests and responses.

The following table summarizes the core interfaces that are provided in this package:

Interface Description

HttpServletRequest Enables servlets to read data from an HTTP request.

HttpServletResponse Enables servlets to write data to an HTTP response.

HttpSession Allows session data to be read and written.

HttpSessionBindingListener Informs an object that it is bound to or unbound
from a session.

962 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The following table summarizes the core classes that are provided in this package.
The most important of these is HttpServlet. Servlet developers typically extend this
class in order to process HTTP requests.

Class Description

Cookie Allows state information to be stored on a client
machine.

HttpServlet Provides methods to handle HTTP requests and
responses.

HttpSessionEvent Encapsulates a session-changed event.

HttpSessionBindingEvent Indicates when a listener is bound to or unbound
from a session value, or that a session attribute
changed.

The HttpServletRequest Interface
The HttpServletRequest interface is implemented by the server. It enables a servlet to
obtain information about a client request. Several of its methods are shown in Table 27-5.

C h a p t e r 2 7 : S e r v l e t s 963
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Method Description

String getAuthType() Returns authentication scheme.

Cookie[] getCookies() Returns an array of the cookies in this
request.

long getDateHeader(String field) Returns the value of the date header
field named field.

String getHeader(String field) Returns the value of the header field
named field.

Enumeration getHeaderNames() Returns an enumeration of the header
names.

int getIntHeader(String field) Returns the int equivalent of the header
field named field.

Table 27-5. Various Methods Defined by HttpServletRequest

964 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

String getMethod() Returns the HTTP method for this
request.

String getPathInfo() Returns any path information that is
located after the servlet path and before
a query string of the URL.

String getPathTranslated() Returns any path information that
is located after the servlet path and
before a query string of the URL after
translating it to a real path.

String getQueryString() Returns any query string in the URL.

String getRemoteUser() Returns the name of the user who
issued this request.

String getRequestedSessionId() Returns the ID of the session.

String getRequestURI() Returns the URI.

StringBuffer getRequestURL() Returns the URL.

String getServletPath() Returns that part of the URL that
identifies the servlet.

HttpSession getSession() Returns the session for this request.
If a session does not exist, one is created
and then returned.

HttpSession getSession(boolean new) If new is true and no session exists,
creates and returns a session for this
request. Otherwise, returns the existing
session for this request.

boolean
isRequestedSessionIdFromCookie()

Returns true if a cookie contains the
session ID. Otherwise, returns false.

boolean
isRequestedSessionIdFromURL()

Returns true if the URL contains the
session ID. Otherwise, returns false.

boolean isRequestedSessionIdValid() Returns true if the requested session ID
is valid in the current session context.

Table 27-5. Various Methods Defined by HttpServletRequest (continued)

The HttpServletResponse Interface
The HttpServletResponse interface is implemented by the server. It enables a servlet
to formulate an HTTP response to a client. Several constants are defined. These
correspond to the different status codes that can be assigned to an HTTP response. For
example, SC_OK indicates that the HTTP request succeeded and SC_NOT_FOUND
indicates that the requested resource is not available. Several methods of this interface
are summarized in Table 27-6.

C h a p t e r 2 7 : S e r v l e t s 965
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Method Description

void addCookie(Cookie cookie) Adds cookie to the HTTP response.

boolean containsHeader(String field) Returns true if the HTTP response
header contains a field named field.

String encodeURL(String url) Determines if the session ID must
be encoded in the URL identified
as url. If so, returns the modified
version of url. Otherwise, returns
url. All URLs generated by a
servlet should be processed by
this method.

String encodeRedirectURL(String url) Determines if the session ID
must be encoded in the URL
identified as url. If so, returns
the modified version of url.
Otherwise, returns url. All URLs
passed to sendRedirect() should
be processed by this method.

void sendError(int c)
throws IOException

Sends the error code c to the client.

void sendError(int c, String s)
throws IOException

Sends the error code c and message
s to the client.

void sendRedirect(String url)
throws IOException

Redirects the client to url.

Table 27-6. Various Methods Defined by HttpServletResponse

The HttpSession Interface
The HttpSession interface is implemented by the server. It enables a servlet to read and
write the state information that is associated with an HTTP session. Several of its methods
are summarized in Table 27-7. All of these methods throw an IllegalStateException if the
session has already been invalidated.

966 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void setDateHeader(String field, long msec) Adds field to the header with date
value equal to msec (milliseconds
since midnight, January 1, 1970,
GMT).

void setHeader(String field, String value) Adds field to the header with value
equal to value.

void setIntHeader(String field, int value) Adds field to the header with value
equal to value.

void setStatus(int code) Sets the status code for this
response to code.

Table 27-6. Various Methods Defined by HttpServletResponse (continued)

Method Description

Object getAttribute(String attr) Returns the value associated with the
name passed in attr. Returns null if
attr is not found.

Enumeration getAttributeNames() Returns an enumeration of the attribute
names associated with the session.

long getCreationTime() Returns the time (in milliseconds since
midnight, January 1, 1970, GMT) when
this session was created.

String getId() Returns the session ID.

Table 27-7. The Methods Defined by HttpSession

The HttpSessionBindingListener Interface
The HttpSessionBindingListener interface is implemented by objects that need to be
notified when they are bound to or unbound from an HTTP session. The methods that
are invoked when an object is bound or unbound are

void valueBound(HttpSessionBindingEvent e)
void valueUnbound(HttpSessionBindingEvent e)

Here, e is the event object that describes the binding.

The Cookie Class
The Cookie class encapsulates a cookie. A cookie is stored on a client and contains state
information. Cookies are valuable for tracking user activities. For example, assume that
a user visits an online store. A cookie can save the user’s name, address, and other
information. The user does not need to enter this data each time he or she visits the store.

A servlet can write a cookie to a user’s machine via the addCookie() method of the
HttpServletResponse interface. The data for that cookie is then included in the header
of the HTTP response that is sent to the browser.

C h a p t e r 2 7 : S e r v l e t s 967
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Method Description

long getLastAccessedTime() Returns the time (in milliseconds since
midnight, January 1, 1970, GMT) when
the client last made a request for this
session.

void invalidate() Invalidates this session and removes it
from the context.

boolean isNew() Returns true if the server created the
session and it has not yet been
accessed by the client.

void removeAttribute(String attr) Removes the attribute specified by attr
from the session.

void setAttribute(String attr, Object val) Associates the value passed in val with
the attribute name passed in attr.

Table 27-7. The Methods Defined by HttpSession (continued)

The names and values of cookies are stored on the user’s machine. Some of the
information that is saved for each cookie includes the following:

■ The name of the cookie

■ The value of the cookie

■ The expiration date of the cookie

■ The domain and path of the cookie

The expiration date determines when this cookie is deleted from the user’s machine.
If an expiration date is not explicitly assigned to a cookie, it is deleted when the current
browser session ends. Otherwise, the cookie is saved in a file on the user’s machine.

The domain and path of the cookie determine when it is included in the header of
an HTTP request. If the user enters a URL whose domain and path match these values,
the cookie is then supplied to the Web server. Otherwise, it is not.

There is one constructor for Cookie. It has the signature shown here:

Cookie(String name, String value)

Here, the name and value of the cookie are supplied as arguments to the constructor.
The methods of the Cookie class are summarized in Table 27-8.

968 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

Object clone() Returns a copy of this object.

String getComment() Returns the comment.

String getDomain() Returns the domain.

int getMaxAge() Returns the age (in seconds).

String getName() Returns the name.

String getPath() Returns the path.

boolean getSecure() Returns true if the cookie must be sent using
only a secure protocol. Otherwise, returns false.

String getValue() Returns the value.

int getVersion() Returns the cookie protocol version. (Will be
0 or 1.)

Table 27-8. The Methods Defined by Cookie

The HttpServlet Class
The HttpServlet class extends GenericServlet. It is commonly used when developing
servlets that receive and process HTTP requests. The methods of the HttpServlet class
are summarized in Table 27-9.

C h a p t e r 2 7 : S e r v l e t s 969
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Method Description

void setComment(String c) Sets the comment to c.

void setDomain(String d) Sets the domain to d.

void setMaxAge(int secs) Sets the maximum age of the cookie to secs.
This is the number of seconds after which the
cookie is deleted. Passing –1 causes the cookie
to be removed when the browser is terminated.

void setPath(String p) Sets the path to p.

void setSecure(boolean secure) Sets the security flag to secure, which means
that cookies will be sent only when a secure
protocol is being used.

void setValue(String v) Sets the value to v.

void setVersion(int v) Sets the cookie protocol version to v, which will
be 0 or 1.

Table 27-8. The Methods Defined by Cookie (continued)

Method Description

void doDelete(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP DELETE.

void doGet(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP GET.

Table 27-9. The Methods Defined by HttpServlet

The HttpSessionEvent Class
HttpSessionEvent encapsulates session events. It extents EventObject and is generated
when a change occurs to the session. It defines this constructor:

HttpSessionEvent(HttpSession session)

Here, session is the source of the event.

970 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void doHead(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP HEAD.

void doOptions(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP OPTIONS.

void doPost(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP POST.

void doPut(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP PUT.

void doTrace(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Performs an HTTP TRACE.

long getLastModified(HttpServletRequest req) Returns the time (in
milliseconds since midnight,
January 1, 1970, GMT) when
the requested resource was
last modified.

void service(HttpServletRequest req,
HttpServletResponse res)

throws IOException, ServletException

Called by the server when an
HTTP request arrives for this
servlet. The arguments provide
access to the HTTP request and
response, respectively.

Table 27-9. The Methods Defined by HttpServlet (continued)

HttpSessionEvent defines one method, getSession(), which is shown here:

HttpSession getSession()

It returns the session in which the event occurred.

The HttpSessionBindingEvent Class
The HttpSessionBindingEvent class extends HttpSessionEvent. It is generated
when a listener is bound to or unbound from a value in an HttpSession object. It is
also generated when an attribute is bound or unbound. Here are its constructors:

HttpSessionBindingEvent(HttpSession session, String name)
HttpSessionBindingEvent(HttpSession session, String name, Object val)

Here, session is the source of the event and name is the name associated with the object
that is being bound or unbound. If an attribute is being bound or unbound, its value is
passed in val.

The getName() method obtains the name that is being bound or unbound. Its is
shown here:

String getName()

The getSession() method, shown next, obtains the session to which the listener is
being bound or unbound:

HttpSession getSession()

The getValue() method obtains the value of the attribute that is being bound or
unbound. It is shown here:

Object getValue()

Handling HTTP Requests and Responses
The HttpServlet class provides specialized methods that handle the various types of
HTTP requests. A servlet developer typically overrides one of these methods. These
methods are doDelete(), doGet(), doHead(), doOptions(), doPost(), doPut(), and
doTrace(). A complete description of the different types of HTTP requests is beyond
the scope of this book. However, the GET and POST requests are commonly used
when handling form input. Therefore, this section presents examples of these cases.

Handling HTTP GET Requests
Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked
when a form on a Web page is submitted. The example contains two files. A Web page

C h a p t e r 2 7 : S e r v l e t s 971
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

is defined in ColorGet.htm and a servlet is defined in ColorGetServlet.java. The HTML
source code for ColorGet.htm is shown in the following listing. It defines a form that
contains a select element and a submit button. Notice that the action parameter of the
form tag specifies a URL. The URL identifies a servlet to process the HTTP GET request.

<html>

<body>

<center>

<form name="Form1"

action="http://localhost:8080/examples/servlet/ColorGetServlet">

Color:

<select name="color" size="1">

<option value="Red">Red</option>

<option value="Green">Green</option>

<option value="Blue">Blue</option>

</select>

<input type=submit value="Submit">

</form>

</body>

</html>

The source code for ColorGetServlet.java is shown in the following listing. The
doGet() method is overridden to process any HTTP GET requests that are sent to
this servlet. It uses the getParameter() method of HttpServletRequest to obtain the
selection that was made by the user. A response is then formulated.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ColorGetServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String color = request.getParameter("color");

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

pw.println("The selected color is: ");

pw.println(color);

972 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

pw.close();

}

}

Compile the servlet and perform these steps to test this example:

1. Start Tomcat, if it is not already running.

2. Display the Web page in a browser.

3. Select a color.

4. Submit the Web page.

After completing these steps, the browser will display the response that is dynamically
generated by the servlet.

One other point: Parameters for an HTTP GET request are included as part of the
URL that is sent to the Web server. Assume that the user selects the red option and
submits the form. The URL sent from the browser to the server is

http://localhost:8080/examples/servlet/ColorGetServlet?color=Red

The characters to the right of the question mark are known as the query string.

Handling HTTP POST Requests
Here we will develop a servlet that handles an HTTP POST request. The servlet is
invoked when a form on a Web page is submitted. The example contains two files. A
Web page is defined in ColorPost.htm and a servlet is defined in ColorPostServlet.java.

The HTML source code for ColorPost.htm is shown in the following listing. It is
identical to ColorGet.htm except that the method parameter for the form tag explicitly
specifies that the POST method should be used, and the action parameter for the form
tag specifies a different servlet.

<html>

<body>

<center>

<form name="Form1"

method="post"

action="http://localhost:8080/examples/servlet/ColorPostServlet">

Color:

<select name="color" size="1">

<option value="Red">Red</option>

<option value="Green">Green</option>

C h a p t e r 2 7 : S e r v l e t s 973
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

<option value="Blue">Blue</option>

</select>

<input type=submit value="Submit">

</form>

</body>

</html>

The source code for ColorPostServlet.java is shown in the following listing. The
doPost() method is overridden to process any HTTP POST requests that are sent to
this servlet. It uses the getParameter() method of HttpServletRequest to obtain the
selection that was made by the user. A response is then formulated.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ColorPostServlet extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String color = request.getParameter("color");

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

pw.println("The selected color is: ");

pw.println(color);

pw.close();

}

}

Compile the servlet and perform the same steps as described in the previous
section to test it.

Note: Parameters for an HTTP POST request are not included as part of the URL that
is sent to the Web server. In this example, the URL sent from the browser to the server is:

http://localhost:8080/examples/servlet/ColorGetServlet

The parameter names and values are sent in the body of the HTTP request.

974 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Using Cookies
Now, let’s develop a servlet that illustrates how to use cookies. The servlet is invoked
when a form on a Web page is submitted. The example contains three files as
summarized here:

File Description

AddCookie.htm Allows a user to specify a value for the cookie
named MyCookie.

AddCookieServlet.java Processes the submission of AddCookie.htm.

GetCookiesServlet.java Displays cookie values.

The HTML source code for AddCookie.htm is shown in the following listing.
This page contains a text field in which a value can be entered. There is also a submit
button on the page. When this button is pressed, the value in the text field is sent to
AddCookieServlet via an HTTP POST request.

<html>

<body>

<center>

<form name="Form1"

method="post"

action="http://localhost:8080/examples/servlet/AddCookieServlet">

Enter a value for MyCookie:

<input type=textbox name="data" size=25 value="">

<input type=submit value="Submit">

</form>

</body>

</html>

The source code for AddCookieServlet.java is shown in the following listing. It
gets the value of the parameter named “data”. It then creates a Cookie object that has
the name “MyCookie” and contains the value of the “data” parameter. The cookie is
then added to the header of the HTTP response via the addCookie() method. A feedback
message is then written to the browser.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

C h a p t e r 2 7 : S e r v l e t s 975
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

public class AddCookieServlet extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Get parameter from HTTP request.

String data = request.getParameter("data");

// Create cookie.

Cookie cookie = new Cookie("MyCookie", data);

// Add cookie to HTTP response.

response.addCookie(cookie);

// Write output to browser.

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

pw.println("MyCookie has been set to");

pw.println(data);

pw.close();

}

}

The source code for GetCookiesServlet.java is shown in the following listing. It
invokes the getCookies() method to read any cookies that are included in the HTTP
GET request. The names and values of these cookies are then written to the HTTP
response. Observe that the getName() and getValue() methods are called to obtain
this information.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GetCookiesServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Get cookies from header of HTTP request.

976 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Cookie[] cookies = request.getCookies();

// Display these cookies.

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

pw.println("");

for(int i = 0; i < cookies.length; i++) {

String name = cookies[i].getName();

String value = cookies[i].getValue();

pw.println("name = " + name +

"; value = " + value);

}

pw.close();

}

}

Compile the servlet and perform these steps:

1. Start Tomcat, if it is not already running.

2. Display AddCookie.htm in a browser.

3. Enter a value for MyCookie.

4. Submit the Web page.

After completing these steps you will observe that a feedback message is displayed by
the browser.

Next, request the following URL via the browser:

http://localhost:8080/examples/servlet/GetCookiesServlet

Observe that the name and value of the cookie are displayed in the browser.
In this example, an expiration date is not explicitly assigned to the cookie via the

setMaxAge() method of Cookie. Therefore, the cookie expires when the browser
session ends. You can experiment by using setMaxAge() and observe that the cookie
is then saved to the disk on the client machine.

Session Tracking
HTTP is a stateless protocol. Each request is independent of the previous one. However,
in some applications, it is necessary to save state information so that information can
be collected from several interactions between a browser and a server. Sessions provide
such a mechanism.

C h a p t e r 2 7 : S e r v l e t s 977
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

A session can be created via the getSession() method of HttpServletRequest. An
HttpSession object is returned. This object can store a set of bindings that associate
names with objects. The setAttribute(), getAttribute(), getAttributeNames(), and
removeAttribute() methods of HttpSession manage these bindings. It is important
to note that session state is shared among all the servlets that are associated with a
particular client.

The following servlet illustrates how to use session state. The getSession() method
gets the current session. A new session is created if one does not already exist. The
getAttribute() method is called to obtain the object that is bound to the name “date”.
That object is a Date object that encapsulates the date and time when this page was last
accessed. (Of course, there is no such binding when the page is first accessed.) A Date
object encapsulating the current date and time is then created. The setAttribute()
method is called to bind the name “date” to this object.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DateServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Get the HttpSession object.

HttpSession hs = request.getSession(true);

// Get writer.

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

pw.print("");

// Display date/time of last access.

Date date = (Date)hs.getAttribute("date");

if(date != null) {

pw.print("Last access: " + date + "
");

}

// Display current date/time.

date = new Date();

hs.setAttribute("date", date);

978 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

pw.println("Current date: " + date);

}

}

When you first request this servlet, the browser displays one line with the current
date and time information. On subsequent invocations, two lines are displayed. The
first line shows the date and time when the servlet was last accessed. The second line
shows the current date and time.

Security Issues
In earlier chapters of this book, you learned that untrusted applets are constrained
to operate in a “sandbox”. They cannot perform operations that are potentially
dangerous to a user’s machine. This includes reading and writing files, opening
sockets to arbitrary machines, calling native methods, and creating new processes.
Other restrictions also apply.

Similar constraints also exist for untrusted servlets. Code that is loaded from a
remote machine is untrusted. However, trusted servlets are not limited in this manner.
Trusted servlets are those which are loaded from the local machine.

C h a p t e r 2 7 : S e r v l e t s 979
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

This page intentionally left blank.

Chapter 28
Migrating from C++
to Java

981

This chapter discusses several of the issues that arise when you move from C++
to Java. Since many Java programmers come from a C++ background, it is natural
to want to carry over the skills, techniques, and code acquired in this language.

Although C++ and Java were designed to address the programming needs of two
very different environments, many of the same coding techniques, algorithms, and
optimizations apply to both. However, as explained in Part One, Java is not “the
Internet version of C++.” While there are many similarities between the two languages,
there are also several differences. This chapter reviews those differences and shows
ways to handle some of the more challenging ones.

The Differences Between C++ and Java
Before we look at specific situations, let’s review the basic differences between C++
and Java. The differences fall into three categories:

■ C++ features not supported by Java

■ Features unique to Java

■ Shared features which differ between C++ and Java

Each is examined here.

What Java Has Removed from C++
There are a number of C++ features that Java does not support. In some cases, a
specific C++ feature simply didn’t relate to the Java environment. In other cases, the
designers of Java eliminated some of the duplication of features that exists in C++. In
still other instances, a feature of C++ is not supported by Java because it was deemed
too dangerous for Internet applets.

Perhaps the single biggest difference between Java and C++ is that Java does not
support pointers. As a C++ programmer you know that the pointer is one of C++’s
most powerful and important language features. It is also one of its most dangerous
when used improperly. Pointers don’t exist in Java for two reasons:

■ Pointers are inherently insecure. For example, using a C++-style pointer, it is
possible to gain access to memory addresses outside a program’s code and
data. A malicious program could make use of this fact to damage the system,
perform unauthorized accesses (such as obtaining passwords), or otherwise
violate security restrictions.

982 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

■ Even if pointers could be restricted to the confines of the Java run-time system
(which is theoretically possible), the designers of Java believed that they were
inherently troublesome.

Since pointers don’t exist in Java, neither does the -> operator.

Here are a few more of the most important “omissions”:

■ Java does not include structures or unions. These were felt to be redundant
since the class encompasses them.

■ Java does not support operator overloading. Operator overloading is sometimes
a source of ambiguity in a C++ program, and the Java design team felt that it
causes more trouble than benefit.

■ Java does not include a preprocessor nor does it support the preprocessor
directives. The preprocessor plays a less important role in C++ than it does
in C. The designers of Java felt that it was time to eliminate it entirely.

■ Java does not perform any automatic type conversions that result in a loss of
precision. For example, a conversion from long integer to integer must be
explicitly cast.

■ All the code in a Java program is encapsulated within one or more classes.
Therefore, Java does not have what you normally think of as global variables
or global functions.

■ Java does not allow default arguments. In C++, you may specify a value
that a parameter will have when there is no argument corresponding to
that parameter when the function is invoked. This is not allowed in Java.

■ Java does not support the inheritance of multiple superclasses by a subclass.

■ Although Java supports constructors, it does not have destructors. It does,
however, add the finalize() function.

■ Java does not support typedef.

■ It is not possible to declare unsigned integers in Java.

■ Java does not allow the goto.

■ Java does not have the delete operator.

■ The << and >> in Java are not overloaded for I/O operations.

■ In Java, objects are passed by reference only. In C++, objects may be passed by
value or by reference.

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 983

984 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

New Features Added by Java
There are a number of features in Java that have no equivalent in C++. Perhaps the
three most important are multithreading, packages, and interfaces, but there are
several others that enrich the Java programming environment as well.

■ As explained earlier, multithreading allows two or more pieces of the same
program to execute concurrently. Further, this approach to concurrence is
supported at the language level. There is no parallel for this in C++. If you
need to multithread a C++ program, you will need to do so manually, using
operating system functions. While both methods allow for concurrent execution
of two or more threads, Java’s approach is cleaner and easier to use.

■ There is no feature in C++ that directly corresponds to a Java package. The
closest similarity is a set of library functions that use a common header file.
However, constructing and using a library in C++ is completely different from
constructing and using a package in Java.

■ The Java interface is somewhat similar to a C++ abstract class. (An abstract class
in C++ is a class that contains at least one pure virtual function.) For example, it
is impossible to create an instance of a C++ abstract class or a Java interface.
Both are used to specify a consistent interface that subclasses will implement.
The main difference is that an interface more cleanly represents this concept.

■ Java has a streamlined approach to memory allocation. Like C++, it supports
the new keyword. However, it does not have delete. Instead, when the last
reference to an object is destroyed, the object, itself, is automatically deleted the
next time that garbage collection occurs.

■ Java “removes” the C++ standard library, replacing it with its own set of API
classes. While there is substantial functional similarity, there are significant
differences in the names and parameters. Also, since all of the Java API library
is object-oriented, and only a portion of the C++ library is, there will be
differences in the way library routines are invoked.

■ The break and continue statements have been enhanced in Java to accept labels
as targets.

■ The char type in Java declares 16-bit-wide Unicode characters. This makes
them similar to C++’s wchar_t type. The use of Unicode helps ensure
portability.

■ Java adds the >>> operator, which performs an unsigned right shift.

■ In addition to supporting single-line and multiline comments, Java adds a third
comment form: the documentation comment. Documentation comments begin
with a /** and end with a */.

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 985
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

■ Java contains a built-in string type called String. String is somewhat similar
to the standard string class type provided by C++. Of course, in C++ string is
only available if you include its class declarations in your program. It is not a
built-in type.

Features That Differ
There are some features common to both C++ and Java that each language handles a
bit differently:

■ While both C++ and Java support a Boolean data type, Java does not implement
true and false in the same way as C++. In C++, true is any nonzero value. False
is zero. In Java, true and false are predefined literals, and these are the only
values that a boolean expression may have. While C++ also defines true and
false, which may be assigned to a bool variable, C++ automatically converts
nonzero values into true and zero values into false. This does not occur in Java.

■ When you create a C++ class, the access specifiers apply to groups of
statements. In Java, access specifiers apply only to the declarations that they
immediately precede.

■ C++ supports exception handling that is fairly similar to Java’s. However,
in C++ there is no requirement that a thrown exception be caught.

With these additions, deletions, and differences as a backdrop, the rest of this
chapter will look closely at a few of the key issues that you must deal with when
converting code from C++ to Java.

Eliminating Pointers
When you convert a C++ program into Java, perhaps the greatest number of changes
will be caused by pointers. Most C++ code is heavily dependent upon pointers for its
operation. You can’t program anything very significant in C++ without using a pointer.

There are four general categories of pointer usage that you will encounter in
C++ code:

■ As parameters to functions. Although C++ supports the reference parameter,
there is a large base of legacy code that was originally written in C. C does not
support reference parameters. In C, if a function needs to change the value of an
argument, it is necessary to explicitly pass a pointer to that argument. Therefore,
it is still common to find pointer parameters used in C++ code that was originally
ported from C. Also, in some cases the same function library will need to be
shared by both C and C++ code, which prevents the use of reference parameters.

986 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Additionally, many of the standard library functions supported by C++ are
holdovers from C. When one of these C-based functions requires the address
of an argument, a pointer to the argument is used. Inside the function, the
argument is then accessed through its pointer.

■ To provide a more efficient means of implementing certain constructs—
especially array indexing. For example, it is often more efficient to sequentially
move through an array using a pointer rather than an array index. While modern
compilers implement highly efficient optimizations, pointers can still provide a
significant performance boost. Thus, the use of pointers to access arrays is
ubiquitous in C++ code.

■ To support memory allocation. In C++, when you allocate memory, an
address (that is, a pointer) to that memory is returned. This address must be
assigned to a pointer variable. Once this has been done, the pointer can point to
any part of the allocated memory—or anywhere else, for that matter—by means
of pointer arithmetic. In Java, when an object is allocated by new, a reference to
the object is returned. This reference must be assigned to a reference variable of
a compatible type. While Java reference variables do implicitly point to the
object that was allocated by the new operator, they cannot be manipulated in
the same way as C++ pointers. And they cannot point to memory outside of the
Java run-time context.

■ To provide access to any arbitrary machine address, possibly to call a ROM
routine or to read/write directly to memory. Since Java purposely disallows
such actions, this use of pointers has no direct parallel. If you are writing
applications, not applets, you can always use Java’s native capabilities
(described in Part One) to gain access to native code routines that would
be allowed access to such system resources.

Let’s look at two situations in which pointer-based C++ code is converted to Java.

Converting Pointer Parameters
For the most part, it is quite easy to convert a C++ function that uses pointer
parameters into its equivalent Java method. Since Java passes all objects by reference,
sometimes the conversion simply requires the removal of C++’s pointer operators. For
example, consider this C++ program that reverses the signs of a Coord object, which
stores a pair of Cartesian coordinates. The function reverseSign() is passed a pointer

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 987
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

to the Coord object that will be reversed. As you can see, C++’s *, &, and -> pointer
operators are used to perform the operation.

// Reverse the signs of a coordinate - C++ version.

#include <iostream>

using namespace std;

class Coord {

public:

int x;

int y;

};

// Reverse the sign of the coordinates.

void reverseSign(Coord *ob) {

ob->x = -ob->x;

ob->y = -ob->y;

}

int main()

{

Coord ob;

ob.x = 10;

ob.y = 20;

cout << "Original values for ob: ";

cout << ob.x << ", " << ob.y << "\n";

reverseSign(&ob);

cout << "Sign reversed values for ob: ";

cout << ob.x << ", " << ob.y << "\n";

return 0;

}

988 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program can be recoded into the following Java version. As you can see, most
of the conversion involves the deletion of the C++ pointer operators. Since Java passes
objects by reference, changes to the parameter automatically affect the argument.

// Reverse the signs of a coordinate - Java version.

class Coord {

int x;

int y;

};

class DropPointers {

// Reverse the sign of the coordinates.

static void reverseCoord(Coord ob) {

ob.x = -ob.x;

ob.y = -ob.y;

}

public static void main(String args[]) {

Coord ob = new Coord();

ob.x = 10;

ob.y = 20;

System.out.println("Original values for ob: " +

ob.x + ", " + ob.y);

reverseCoord(ob);

System.out.println("Sign reversed values for ob: " +

ob.x + ", " + ob.y);

}

}

The output from both of these programs is the same and is shown here:

Original values for ob: 10, 20
Sign reversed values for ob: -10, -20

Converting Pointers that Operate on Arrays
Conceptually, converting C++-style pointer-based array accessing into the equivalent
Java-compatible array indexing is straightforward—simply substitute the appropriate

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 989
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

array-indexing statements. However, in practice this may require some thought.
Pointer-based array accessing can be a bit difficult to follow, because the normal C++
coding style encourages rather dense, complex expressions. For example, this short
C++ program copies the contents of one array to another. It uses 0 to mark the end of
the arrays. Pay special attention to the pointer expressions. Even in this simple example,
if you did not know that this program copied the contents of nums to copy (and later
displayed the arrays), it would require some careful thought before you were completely
sure that you knew what the code was doing.

// Copy an array in C++ using pointers.

#include <iostream>

using namespace std;

int main()

{

int nums[] = {10, 12, 24, 45, 23, 19, 44,

88, 99, 65, 76, 12, 89, 0};

int copy[20];

int *p1, *p2; // integer pointers

// copy array

p1 = nums; // p1 points to start of nums array

p2 = copy;

while(*p1) *p2++ = *p1++;

*p2 = 0; // terminate copy with zero

// Display contents of each array.

cout << "Here is the original array:\n";

p1 = nums;

while(*p1) cout << *p1++ << " ";

cout << endl;

cout << "Here is the copy:\n";

p1 = copy;

while(*p1) cout << *p1++ << " ";

cout << endl;

return 0;

}

990 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Even though it is quite simple for C++ code, at first glance the line

while(*p1) *p2++ = *p1++;

still requires a moment of thought to decipher its exact operation. One of the
advantages of Java is that it does not encourage the creation of such expressions
in the first place. Here is the Java version of the program. As you can see, its purpose
and effects are transparent.

// Array copy without pointers using Java.

class CopyArray {

public static void main(String args[]) {

int nums[] = {10, 12, 24, 45, 23, 19, 44,

88, 99, 65, 76, 12, 89, 0};

int copy[] = new int[14];

int i;

// copy array

for(i=0; nums[i]!=0; i++)

copy[i] = nums[i];

nums[i] = 0; // terminate copy with zero

// Display contents of each array.

System.out.println("Here is the original array:");

for(i=0; nums[i]!=0; i++)

System.out.print(nums[i] + " ");

System.out.println();

System.out.println("Here is the copy:");

for(i=0; nums[i]!=0; i++)

System.out.print(copy[i] + " ");

System.out.println();

}

}

Both versions of the program produce the following results:

Here is the original array:
10 12 24 45 23 19 44 88 99 65 76 12 89
Here is the copy:
10 12 24 45 23 19 44 88 99 65 76 12 89

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 991
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Much C++ code is sprinkled with obscure, difficult to understand pointer expressions.
While these expressions do tend to increase speed of execution, they are one of the
most troubling issues associated with the maintenance of C++ programs. They will also
present difficulty when you convert the code to Java. When you are confronted with a
complex pointer expression, it is sometimes useful to begin by breaking it into its
subexpressions so that its exact operation becomes clear.

C++ Reference Parameters Versus Java
Reference Parameters
In the preceding section, you saw an example of a C++ program that used a pointer
parameter. In Java, this became a reference parameter. Of course, C++ also supports
reference parameters. As mentioned, most pointer parameters found in C++ code
are simply holdovers from C. Nearly all new C++ code will use reference parameters
when a function needs access to the argument, itself. (In essence, pointer parameters,
although still common, are actually anachronisms in most C++ code.) Since both Java
and C++ support reference parameters, you might think that the conversion of a C++
function that uses reference parameters to a Java method would involve few changes.
Unfortunately, this is not always the case. To understand why, let’s convert the
following C++ program, which swaps the contents of two Coord objects using
reference parameters:

// Swap coordinates -- C++ version.

#include <iostream>

using namespace std;

class Coord {

public:

int x;

int y;

};

// Swap contents of two Coord objects.

void swap(Coord &a, Coord &b) {

Coord temp;

// swap contents of objects

temp = a;

a = b;

b = temp;

}

992 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

int main()

{

Coord ob1, ob2;

ob1.x = 10;

ob1.y = 20;

ob2.x = 88;

ob2.y = 99;

cout << "Original values:\n";

cout << "ob1: " << ob1.x << ", " << ob1.y << "\n";

cout << "ob2: " << ob2.x << ", " << ob2.y << "\n";

cout << "\n";

swap(ob1, ob2);

cout << "Swapped values:\n";

cout << "ob1: " << ob1.x << ", " << ob1.y << "\n";

cout << "ob2: " << ob2.x << ", " << ob2.y << "\n";

return 0;

}

Following is the output produced by this program. As you can see, the contents of
ob1 and ob2 have been exchanged:

Original values:
ob1: 10, 20
ob2: 88, 99

Swapped values:
ob1: 88, 99
ob2: 10, 20

In Java, all objects are accessed via an object reference variable. Thus, when an
object is passed to a method, only its reference is passed. This means that all objects
are automatically passed by reference to a Java method. Without thinking any deeper
about what is actually occurring, someone might initially try the following (incorrect)
conversion of the preceding program:

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 993
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

// Swap program incorrectly converted to Java.

class Coord {

int x;

int y;

};

class SwapDemo {

static void swap(Coord a, Coord b) {

Coord temp = new Coord();

// this won't swap contents of a and b!

temp = a;

a = b;

b = temp;

}

public static void main(String args[]) {

Coord ob1 = new Coord();

Coord ob2 = new Coord();

ob1.x = 10;

ob1.y = 20;

ob2.x = 88;

ob2.y = 99;

System.out.println("Original values:");

System.out.println("ob1: " +

ob1.x + ", " + ob1.y);

System.out.println("ob2: " +

ob2.x + ", " + ob2.y + "\n");

swap(ob1, ob2);

System.out.println("Swapped values:");

System.out.println("ob1: " +

ob1.x + ", " + ob1.y);

System.out.println("ob2: " +

ob2.x + ", " + ob2.y + "\n");

}

}

994 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The output produced by this incorrect program is shown here:

Original values:
ob1: 10, 20
ob2: 88, 99

Swapped values:
ob1: 10, 20
ob2: 88, 99

As you can see, the values of ob1 and ob2 in main() have not been exchanged!
Although a bit counterintuitive at first, the reason is actually obvious, once you
understand precisely what happens when an object reference is passed to a method.
Java passes all arguments to methods using call-by-value. This means that a copy of the
argument is made, and what occurs to the copy inside the method has no effect on the
argument used to call the method. However, this situation is blurred a bit in the case of
object references.

When an object reference is passed to a method, a copy of the reference variable is
made, as just explained. This means that the parameter inside the method will refer to
the same object as does the reference variable used as an argument outside the method.
Therefore, operations on the object through the parameter will affect the object referred
to by the argument (since they are one and the same). But operations on the reference
parameter, itself, affect only that parameter. Thus, when the preceding program attempts
to swap the objects by exchanging the objects pointed to by a and b, all that is happening
is that the parameters (that is, the copies of the arguments) are exchanging what they
are referring to, but this does not alter what ob1 and ob2 refer to back in main().

To fix the program, swap() needs to be rewritten so that the contents of the objects
are exchanged, not what the parameters refer to. Here is the corrected version of swap():

// Corrected version of swap().

static void swap(Coord a, Coord b) {

Coord temp = new Coord();

// swap contents of objects

temp.x = a.x;

temp.y = a.y;

a.x = b.x;

a.y = b.y;

b.x = temp.x;

b.y = temp.y;

}

If you substitute this version of swap() into the preceding program, the correct results
will be achieved.

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 995
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

Converting C++ Abstract Classes into
Java Interfaces
One of the most innovative aspects of Java is the interface. As explained earlier in this
book, an interface specifies the form of its various methods without specifying any
implementation details. Each class that implements an interface does so by creating
the actual methods declared by the interface. Thus, in Java an interface is the means
by which you can define the general form of a class while ensuring that all specific
versions of the class conform to the same set of rules. The interface is one of the ways
that Java provides support for polymorphism.

In C++, there is no direct parallel to the interface. Instead, in C++, if you wish to
define the form of a class without defining implementation details, you must do so by
using an abstract class. Abstract classes in C++ are similar to abstract classes in Java:
they do not contain a full set of implementation details. In C++, an abstract class contains
at least one pure virtual function. A pure virtual function defines no implementation; it
only defines the function prototype. Thus, a pure virtual function in C++ is essentially
the same as an abstract method in Java. In C++, abstract classes serve a function similar
to interfaces in Java. For this reason, they are one of the items that you will want to
watch for when converting code to Java. While not all C++ abstract classes can be
converted into Java interfaces, many can. Let’s look at two examples.

Here is a short C++ program that uses an abstract class called IntList to define the
form of an integer list. An implementation of this class is created by IntArray, which
uses an array to implement a list of integers.

// A C++-style abstract class and its implementation.

#include <iostream>

#include <cstdlib>

using namespace std;

// An abstract class that defines the form of an integer list.

class IntList {

public:

virtual int getNext() = 0; // pure virtual functions

virtual void putOnList(int i) = 0;

};

// Create an implementation of an integer list.

class IntArray : public IntList {

int storage[100];

int putIndex, getIndex;

public:

IntArray() {

putIndex = 0;

getIndex = 0;

996 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

// Return next integer in list.

int getNext() {

if(getIndex >= 100) {

cout << "List Underflow";

exit(1);

}

getIndex++;

return storage[getIndex-1];

}

// Put an integer on the list.

void putOnList(int i) {

if(putIndex < 100) {

storage[putIndex] = i;

putIndex++;

}

else {

cout << "List Overflow";

exit(1);

}

}

};

int main()

{

IntArray nums;

int i;

for(i=0; i<10; i++) nums.putOnList(i);

for(i=0; i<10; i++)

cout << nums.getNext() << endl;

return 0;

}

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 997
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

In this program, the abstract class IntList defines only the form of an integer list. It
contains only pure virtual functions and does not declare any data. For these reasons, it
can be made into an interface when the program is converted into Java, as shown here:

// Here, IntList is made into an interface which IntArray implements.

// Define interface for an integer list.

interface IntListIF {

int getNext();

void putOnList(int i);

}

// Create an implementation of an integer list.

class IntArray implements IntListIF {

private int storage[];

private int putIndex, getIndex;

IntArray() {

storage = new int[100];

putIndex = 0;

getIndex = 0;

}

// Create an implementation of an integer list.

public int getNext() {

if(getIndex >= 100) {

System.out.println("List Underflow");

System.exit(1);

}

getIndex++;

return storage[getIndex-1];

}

// Put an integer on the list.

public void putOnList(int i) {

if(putIndex < 100) {

storage[putIndex] = i;

putIndex++;

}

else {

System.out.println("List Overflow");

System.exit(1);

}

}

}

class ListDemo {

public static void main(String args[]) {

IntArray nums = new IntArray();

int i;

for(i=0; i<10; i++) nums.putOnList(i);

for(i=0; i<10; i++)

System.out.println(nums.getNext());

}

}

As you can see, there is nearly a one-to-one correspondence between the C++ abstract
class IntList and the Java interface IntListIF. It is possible to convert IntList into
IntListIF because it contained only pure virtual functions. This is the key. If IntList had
contained any data or function implementations, then it would not have qualified for
conversion into an interface.

When you convert or adapt C++ code into Java, look for examples of abstract
classes that contain only pure virtual functions. These are prime candidates for
conversion to Java interfaces. But don’t overlook abstract C++ classes that contain a
small number of implemented functions or data. It is possible that these items don’t
really belong in the abstract class to begin with and should be defined by individual
implementations. Since C++ does not define an interface construct, there was no reason
for C++ programmers to think in terms of one.

Sometimes a concrete member is contained in an otherwise abstract class simply for
expedience—not because it is the most logical place for it. For example, consider the
following abstract C++ class:

// An abstract C++ class.

class SomeClass {

bool isOK;

public:

virtual int f1() = 0;

virtual void f2(int i) = 0;

virtual double f3() = 0;

virtual int f4(int a, char ch) = 0;

};

998 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 999
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

The only reason that this class cannot be made into a Java interface is the existence
of isOK. Presumably, isOK is used to indicate some status associated with the class.
However, if you think about it, there really is no reason for isOK to be defined as a
variable. Instead, you could specify a method called isOK() that returns the status.
In this approach, isOK() will be defined, along with the other methods, by any
implementing class. Thus, you could convert the preceding C++ abstract class into
the following Java interface:

interface SomeClass {

int f1();

void f2(int i);

double f3();

int f4(int a, char ch);

boolean isOK();

}

Many abstract classes in C++ can—and should—be converted into interfaces when
you move code to Java. In doing so, you will probably find that it clarifies the structure
of the class hierarchy.

Converting Default Arguments
One extensively used feature of C++ that Java does not support is default function
arguments. For example, the area() function shown in the following C++ program
computes the area of a rectangle if called with two arguments, or the area of a square
if called with one argument.

// C++ program that uses default arguments.

#include <iostream>

using namespace std;

/* Compute area of a rectangle. For a square,

pass only one argument.

*/

double area(double l, double w=0) {

if(w==0) return l * l;

else return l * w;

}

int main()

{

cout << "Area of 2.2 by 3.4 rectangle: ";

cout << area(2.2, 3.4) << endl;

1000 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

cout << "Area of 3.0 by 3.0 square: ";

cout << area(3.0) << endl;

return 0;

}

As you can see, when area() is called with only one argument, the second defaults to
zero. When this happens, the function simply uses the first argument for both the
length and the width of the rectangle.

While convenient, default arguments are not, of course, necessary. In essence,
default arguments are actually a shorthand form of function overloading in which one
form of the function has a different number of parameters than the other. Thus, to
convert a C++ function that contains one or more default arguments into Java, simply
create overloaded methods that handle each case. In this example, you need a version
of area() that takes two arguments and another that takes only one argument. Using
this approach, here is the preceding program rewritten for Java:

// Java version of area program.

class Area {

// Compute area of a rectangle.

static double area(double l, double w) {

if(w==0) return l * l;

else return l * w;

}

// Overload area() for a square.

static double area(double l) {

return l * l;

}

public static void main(String args[]) {

System.out.println("Area of 2.2 by 3.4 rectangle: " +

area(2.2, 3.4));

System.out.println("Area of 3.0 by 3.0 square: " +

area(3.0));

}

}

Converting C++ Multiple-Inheritance
Hierarchies
C++ allows one class to inherit two or more base classes at the same time. Java does
not. To understand the difference, consider the two hierarchies depicted here:

In both cases, subclass C inherits classes A and B. However, in the hierarchy on the left,
C inherits both A and B at the same time. In the one on the right, B inherits A, and C
inherits B. By not allowing the inheritance of multiple base classes by a single subclass,
Java greatly simplifies the inheritance model. Multiple inheritance carries with it
several special cases that must be handled. This adds overhead to both the compiler
and the run-time system, while providing only marginal benefit for the programmer.

Since C++ supports multiple inheritance and Java does not, you may have to deal
with this issue when porting C++ applications to Java. While every situation is
different, two general pieces of advice can be offered. First, in many cases, multiple
inheritance is employed in a C++ program when there is actually no need to do so.
When this is the case, just convert the class structure to a single-inheritance hierarchy.
For example, consider this C++ class hierarchy that defines a class called House:

class Foundation {

// ...

};

class Walls {

// ...

};

class Rooms {

// ...

};

class House : public Foundation, Walls, Rooms {

// ...

};

S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 1001

Notice that House multiply inherits Foundation, Walls, and Rooms. While there is
nothing wrong with structuring a C++ hierarchy like this, it is not necessary. For
example, here is the same set of classes structured for Java:

class Foundation {

// ...

}

class Walls extends Foundation {

// ...

}

class Rooms extends Walls {

// ...

}

class House extends Rooms {

// ...

}

Here, each class extends the preceding one, with House becoming the final extension.
Sometimes a multiple inheritance hierarchy is more readily converted by including

objects of the multiply inherited classes in the final object. For example, here is another
way that House could be constructed in Java:

class Foundation {

// ...

}

class Walls{

// ...

}

class Rooms {

// ...

}

/* Now, House includes Foundation, Walls, and Rooms

as object members.

*/

1002 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class House {

Foundation f;

Walls w;

Rooms r;

// ...

}

Here, Foundation, Walls, and Rooms are objects that are part of House rather than
inherited by House.

One other point: sometimes a C++ program will contain a multiple-inheritance
hierarchy simply because of poor initial design. A good time to correct this type of
design flaw is when you port to Java.

Destructors Versus Finalization
When you move from C++ to Java, one of the more subtle, yet important issues you
will face is the difference between a C++ destructor and a Java finalize() method.
Although similar in many respects, their actual operation is distinctively different.
Let’s begin by reviewing the purpose and effect of a C++ destructor and the Java
finalize() method.

In C++, when an object goes out of scope, it is destroyed. Just prior to its destruction,
its destructor function is called (if it has one). This is a hard-and-fast rule. There are no
exceptions. Let’s look more closely at each part of this rule:

■ Every object is destroyed when it goes out of scope. Thus, if you declare a
local object inside a function, when that function returns, that local object is
automatically destroyed. The same goes for function parameters and for objects
returned by functions.

■ Just before destruction, the object’s destructor is called. This happens
immediately, and before any other program statements will execute. Thus, a
C++ destructor will always execute in a deterministic fashion. You can always
know when and where a destructor will be executed.

In Java, the tight linkage of the destruction of an object and the calling of its
finalize() method does not exist. In Java, objects are not explicitly destroyed when
they go out of scope. Rather, an object is marked as unused when there are no longer
any references pointing to it. Even then, the finalize() method will not be called until
the garbage collector runs. Thus, you cannot know precisely when or where a call to
finalize() will occur. Even if you execute a call to gc() (the garbage collector), there is
no guarantee that finalize() will immediately be executed.

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 1003
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

While the deterministic behavior of a C++ constructor and the somewhat
probabilistic aspect of finalization are of little concern in most cases, they will have
an impact on others. For example, consider the following C++ program:

// This C++ program can call f() indefinitely.

#include <iostream>

#include <cstdlib>

using namespace std;

const int MAX = 5;

int count = 0;

class X {

public:

// constructor

X() {

if(count<MAX) {

count++;

}

else {

cout << "Error -- can't construct";

exit(1);

}

}

// destructor

~X() {

count--;

}

};

void f()

{

X ob; // allocate an object

// destruct on way out

}

int main()

{

int i;

for(i=0; i < (MAX*2); i++) {

f();

1004 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

cout << "Current count is: " << count << endl;

}

return 0;

}

Here is the output generated by this program:

Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0
Current count is: 0

Look carefully at the constructor and destructor for X. The constructor increments
the value of count as long as count is less than MAX. The destructor decrements count.
Thus, count is incremented when an X object is created and decremented when an X
object is destroyed. But no more than MAX objects can exist at any one time. However,
in main(), f() is called MAX*2 times without causing an error! Here is why. Inside f(),
an object of type X is created, causing count to be incremented, and then the function
returns. This causes the object to immediately go out of scope and its destructor to be
called, which decrements count. Thus, calling f() has no net effect on the value of
count. This means that it can be called indefinitely. However, this is not the case when
this program is converted to Java.

Here is the Java version of the preceding program:

// This Java program will fail after 5 calls to f().

class X {

static final int MAX = 5;

static int count = 0;

// constructor

X() {

if(count<MAX) {

count++;

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 1005
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

}

else {

System.out.println("Error -- can't construct");

System.exit(1);

}

}

// finalization

protected void finalize() {

count--;

}

static void f()

{

X ob = new X(); // allocate an object

// destruct on way out

}

public static void main(String args[]) {

int i;

for(i=0; i < (MAX*2); i++) {

f();

System.out.println("Current count is: " + count);

}

}

}

This program will fail after five calls to f(), as this output shows:

Current count is: 1
Current count is: 2
Current count is: 3
Current count is: 4
Current count is: 5
Error — can’t construct

The reason the program fails is that garbage collection does not occur each time f()
returns. Thus, finalize() is not invoked, and the value of count is not decremented.
After five calls to the method, count reaches its maximum value and the program fails.

1006 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

It is important to emphasize that precisely when garbage collection occurs is
implementation dependent. It is possible that for some implementation of Java, on
some platform, the preceding program will function similarly to its C++ version.
However, the point of the example remains: In C++, you know when and where a
destructor will be called. In Java, you do not know when or where finalize() will be
executed. Therefore, when porting code from C++ to Java, you will need to watch for
instances in which the precise timing of the execution of a destructor is relied upon.

C h a p t e r 2 8 : M i g r a t i n g f r o m C + + t o J a v a 1007
S
O

FTW
A

R
E

D
EV

ELO
P

M
EN

T
U

S
IN

G
JA

V
A

This page intentionally left blank.

Part IV
Applying Java

This page intentionally left blank.

Chapter 29
The DynamicBillboard
Applet

1011

Robert Temple is a software engineer who has designed several highly used applets.
His work includes the ESPNET SportsZone “HitCharts” and “Batter vs. Pitcher”
applets. One of his most impressive applets is DynamicBillboard, which he wrote

while he was at Embry-Riddle Aeronautical University in Florida.
The DynamicBillboard applet displays a sequence of images by repeatedly

changing the image on the screen to another after a period of time. The transition
between one image and the next is done with one of a variety of special effects. One
example of a transition is the SmashTransition, where the new image drops down
from above the old image and appears to smash the old image out of place. The applet
links to other pages through a URL associated with each image. When the user presses
the mouse button with the cursor over the applet, the browser will go to the new page
associated with the current image. The DynamicBillboard applet provides web sites
with an elegant way to rotate ads, banners, or billboards on a single static page.

Robert has included many interesting optimizations. This applet would not be
functional without the careful changes that he crafted. There are enough tips and tricks
in this source code to help you make your applets really fly.

The APPLET Tag
The APPLET tag for DynamicBillboard is fairly easy to configure. You name the main
class in the code parameter and specify the width and height, as with most applets:

<applet code=DynamicBillboard width=392 height=72>

There are several parameters that must be specified for the applet to function
properly. Without them the applet does nothing. Also, you will notice that if you make
any mistakes naming files and such, the behavior is a little unfriendly: either nothing
happens or some of your billboards will be blank. The following parameters are
specified as:

<param name=parameter_name value="your value here">

■ bgcolor This parameter is used to set the background color of the applet
before the first image loads. You can use this to get rid of the gray applet
square quickly.

■ delay This parameter specifies the number of milliseconds between
each billboard. Typically, it’s a number like 5000 or 10000, meaning five or
ten seconds.

1012 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

■ billboards This parameter specifies the number of billboards you wish to
cycle through.

■ bill# This is shorthand for bill0, bill1, bill2, and so on, up to one less than the
number of billboards you’ve specified. (Robert is a typical programmer who
starts counting at 0.) You will have as many of these as you specified in the
billboards parameter. The value of each of these bill#s will be a pair of strings
separated by a comma. The first one is the image name to display for this
billboard. The second is the URL of where to go when the user clicks on this
billboard. Here is an example:

<param name="bill0" value="sample.jpg,http://www.example.com/">

■ transitions This is a list beginning with the number of items in the list as an
integer, followed by the list of Transition subclass names. Here is an example:

<param name="transitions" value="2,TearTransition,SmashTransition">

Here is an example of a complete APPLET tag with all of the transitions discussed
in this chapter:

<applet code=DynamicBillboard width=392 height=72>

<param name="bgcolor" value="#ffffff">

<param name="delay" value="5000">

<param name="billboards" value="5">

<param name="bill0"

value="board1.jpg,http://www.someURL">

<param name="bill1"

value="board2.jpg,http://www.someURL">

<param name="bill2"

value="board3.jpg,http://www.someURL">

<param name="bill3"

value="board4.jpg,http://www.someURL">

<param name="bill4"

value="board5.jpg,http://www.someURL">

<param name="transitions"

value="5,ColumnTransition,FadeTransition,TearTransition,

SmashTransition,UnrollTransition">

</applet>

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1013
A

P
P

LY
IN

G
JA

V
A

Source Code Overview
Robert designed the applet with a fast load time in mind. He tries to keep the size of
the applet to a minimum so that there is less code to send across the network. He also
attempts to delay some of the loading and initializing of the applet until after the first
image is displayed. As far as the user is concerned, the applet is running after the first
image is fully displayed, even though there is a lot more work to be done.

The applet consists of three main classes and any number of transition classes.
The three main classes are DynamicBillboard, BillData, and BillTransition. The
DynamicBillboard class is a top-level Applet subclass that uses all of the other classes.
The BillData class encapsulates a number of billboard attributes, including the image
and the URL associated with the image. The BillTransition class is an abstract class
that contains methods and attributes common to all transitions. The three main classes
are described next, along with five popular transitions.

DynamicBillboard.java
This is the main applet class. It implements Runnable to include a thread that
controls the continuous process of creation and animation of the transitions.
The transition_classes array stores the names of the transition classes as strings.
It uses strings because it loads these classes dynamically using the method
java.lang.Class.forName(String). This allows the applet to put off the loading of
these classes until they are first instantiated.

init()
The init() method is called automatically when the applet is first loaded. Most applets
use this method to perform all of their necessary initialization. Robert, however,
decided to separate his initialization into two methods: init() and finishInit(). The
idea behind splitting up the initialization is to try to display the first image within the
applet in the least amount of time, minimizing the time that the applet is showing a
blank rectangle while it is loading and initializing. The only processing that is done
in this init() method is that which is absolutely necessary to get initial content to the
screen, because the browser will not call paint() until after init() returns.

The first thing that Robert does with init() is to change the background color of the
applet and the parent frame in which the applet is embedded. In the past, the space
that an applet uses on the screen was shown as a solid gray box while the applet was
loading and initializing. This box would tend to stand out on pages that use a background
color other than gray, which is just about every page created since 1994. Robert discovered
a way around this problem. He found that applets always have a parent container in
which they are embedded. Under both Netscape Navigator and Internet Explorer, this
container is derived from the core Java class: java.awt.Container. Robert uses the
methods inherited from java.awt.Component—setBackground() and repaint()—to
change the background color to the value of a bgcolor applet parameter. This makes

1014 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

the applet space stand out less than it does when it is gray. All this is done even before
the applet begins to load the first image.

With newer browsers, this frame no longer defaults to gray but rather uses the
background color of the page. Thus, today applets will not benefit from changing the
background color. However, this appoach still illustrates an interesting technique,
which you can adapt for other purposes.

After changing background colors, Robert’s applet reads in a parameter that tells
how many different billboards there will be and then allocates an array of BillData
objects based on this parameter.

With the help of Math.random(), a random billboard is chosen to start.
parseBillData() is called to parse the parameters for this billboard.

parseBillData()
This method creates and initializes the next billboard (BillData) object that the applet
will use. It only gets called if the billboard object has not been created yet (the element
corresponding to the next billboard object in the billboard array will be null).

Normally, parseBillData() calls the BillData method initPixels() after creating
the new object to initialize a pixel array within the BillData object. The first time this
method is called, however, the applet is still concentrating on getting the first image to
the screen as fast as possible. It knows this because the reference to the image that is
used to paint the applet is still null. So instead it sets the image variable and waits to
call the processor-intensive initPixel() method until after the first image is loaded.

finishInit()
After the first image is displayed on the screen, the applet can finish the rest of its
initialization. This includes initializing the names of all the transition classes and
initializing the pixels array for the first billboard and reading the target parameter.

finishInit() is called from the run() method of the applet. The run() method
restarts from the top each time the user leaves and comes back to the page. When this
happens, finishInit() will be called again. Since the applet has already finished its
initialization, Robert does not want it to reinitialize everything. This is why the applet
checks to see if the delay variable has already been initialized. If it has, then the applet
can skip the rest of the initialization.

start() and stop()
The start() and stop() methods respectively are called when the user comes to or
leaves the page. They ensure that the applet thread that runs the transitions is on or off.

If stop() is called while the applet is in the middle of running a transition, some
data might be left in an improper state. Some variables are reset in start() to make sure
the applet restarts with a new transition.

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1015
A

P
P

LY
IN

G
JA

V
A

In start(), the mouse cursor is changed to a hand so that when the mouse cursor is
over the applet, it will appear to be a link.

run()
The run() method starts with a loop that waits for the first image to be fully loaded
before proceeding. It then finishes the initialization of the applet by calling
finishInit(). From there, it enters the main loop of the program.

This main loop drives the transitions between billboards. Using the delay
parameter passed in from the HTML to the applet, the applet calculates when the next
transition is supposed to be run. While it is waiting, it prepares for the transition. It
starts the preparation by determining which billboard is to be displayed next, parsing
the billboard data from HTML parameters if this has not been done yet for this
billboard. Then it randomly chooses which transition to run next, being careful not to
let the applet run the same transition consecutively.

Once the applet has determined what transition will be run next, it creates a new
instance of this transition class by dynamically loading the class using the String name
and then creating a new instance of the class. The dynamic loading of the transition
classes has a big impact on the loading time of the applet as a whole. Instead of every
single class having to be downloaded before the applet starts, only three classes are
sent initially: DynamicBillboard, BillData, and BillTransition. The other transition
classes are only downloaded by the applet the first time they are needed. This reduces
the initial download of the applet significantly. Some class files might not even need to
be sent if the user leaves the page quickly.

Finally, the applet calls the init() method on the transition object, passing the
applet and image pixels for the current and next billboard as parameters. This creates
all the cell frames that are used to animate a transition. With the transition ready to go,
the applet only need wait for the proper time to start the transition.

The applet performs the transition by using simple frame animation—drawing each
cell in order onto the screen, with a short delay between each frame. The applet calls
the toolkit method sync() just to be sure that the drawing of one cell does not take
place before the previous cell has been shown on the screen. After the last cell is
displayed, the applet draws the image from the next billboard onto the screen to
complete the transition.

Following this, the mouse_over_applet flag is checked to see if the mouse cursor
is currently over the applet. If so, the URL of the previous billboard is showing on the
status bar and must be updated to reflect the URL of the new billboard. This is done
with a call to the applet method showStatus(). The applet has completed this
transition and is now ready to begin the next one.

mouseMoved() and mouseExited()
mouseMoved() and mouseExited() are used to change the text that appears on the
status bar. When the mouse cursor is over the applet, the status bar is supposed to
show the URL that the current billboard links to. So when mouseMoved() gets called,

1016 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

the applet shows the URL on the status bar. When mouseExited() is called, the URL
text is removed from the status bar. Both methods also set the Boolean mouse_inside_
applet to the appropriate value. This variable is used in the run() method after a
transition is run. If the mouse is positioned over the applet when the transition
completes, then the applet knows to show the URL of the new billboard on the
status bar.

mouseReleased()
When the mouse button is pressed with the cursor over the applet and then released,
the mouseReleased() method is called. The applet uses getAppletContext().show-
Document() to send the browser to the URL that the current billboard points to. As
Robert found out, sometimes browsers take a long time to display this new page. To
keep the applet from running more transitions while the new page is waiting to load,
stop() is called to force the main thread to quit. To let users know that the applet is
loading the new page, the applet changes the mouse cursor to the wait cursor.

It is important to remember that users can come back to this page after going to a
new page. The wait cursor will still be present on the applet when users come back.
The start() method is always called when the user comes back to a page with an
applet, so the applet resets the cursor to the hand cursor there.

The Code
Here is the source code for the DynamicBillboard class:

import java.awt.*;

import java.awt.event.*;

import java.net.*;

import java.awt.*;

import java.awt.image.*;

public class DynamicBillboard

extends java.applet.Applet

implements Runnable {

BillData[] billboards;

int current_billboard;

int next_billboard;

String[] transition_classes;

Thread thread = null;

Image image = null;

long delay = -1;

boolean mouse_inside_applet;

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1017
A

P
P

LY
IN

G
JA

V
A

String link_target_frame;

boolean stopFlag;

public void init() {

String s = getParameter("bgcolor");

if(s != null) {

Color color = new Color(Integer.parseInt(s.substring(1), 16));

setBackground(color);

getParent().setBackground(color);

getParent().repaint();

}

billboards = new

BillData[Integer.parseInt(getParameter("billboards"))];

current_billboard = next_billboard

= (int)(Math.random() *billboards.length);

parseBillData();

}

void parseBillData() {

String s = getParameter("bill" + next_billboard);

int field_end = s.indexOf(",");

Image new_image = getImage(getDocumentBase(),

s.substring(0, field_end));

URL link;

try {

link = new URL(getDocumentBase(),

s.substring(field_end + 1));

}

catch (java.net.MalformedURLException e) {

e.printStackTrace();

link = getDocumentBase();

}

billboards[next_billboard] = new BillData(link, new_image);

if(image == null) {

image = new_image;

}

else {

prepareImage(new_image, this);

billboards[next_billboard].initPixels(getSize().width,

getSize().height);

}

1018 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

void finishInit() {

if(delay != -1) {

return;

}

delay = Long.parseLong(getParameter("delay"));

link_target_frame = getParameter("target");

if(link_target_frame == null) {

link_target_frame = "_top";

}

String s = getParameter("transitions");

int field_end = s.indexOf(",");

int trans_count = Integer.parseInt(s.substring(0, field_end));

transition_classes = new String[trans_count];

for(--trans_count; trans_count > 0; --trans_count) {

s = s.substring(field_end + 1);

field_end = s.indexOf(",");

transition_classes[trans_count] = s.substring(0, field_end);

}

transition_classes[0] = s.substring(field_end + 1);

billboards[next_billboard].initPixels(getSize().width,

getSize().height);

mouse_inside_applet = false;

}

public void paint(Graphics g) {

g.drawImage(image, 0, 0, this);

}

public void update(Graphics g) {

paint(g);

}

public void start() {

next_billboard = current_billboard;

image = billboards[current_billboard].image;

setCursor(new Cursor(Cursor.HAND_CURSOR));

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1019
A

P
P

LY
IN

G
JA

V
A

if(thread == null) {

thread = new Thread(this);

thread.start();

}

}

public void stop() {

if(thread != null) {

stopFlag = true;

}

}

public void run() {

while((checkImage(image, this) & ImageObserver.ALLBITS) == 0) {

try { Thread.sleep(600); } catch (InterruptedException e) {}

}

finishInit();

addMouseListener(new MyMouseAdapter());

addMouseMotionListener(new MyMouseMotionAdapter());

int last_transition_type = -1;

BillTransition transition;

long next_billboard_time;

while(true) {

if(stopFlag)

return;

next_billboard_time = System.currentTimeMillis() + delay;

current_billboard = next_billboard;

if(++next_billboard >= billboards.length) {

next_billboard = 0;

}

if(billboards[next_billboard] == null) {

parseBillData();

try { Thread.sleep(120); } catch (InterruptedException e) {}

}

int transition_type = (int)(Math.random() *

(transition_classes.length - 1));

if(transition_type >= last_transition_type) {

++transition_type;

1020 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

last_transition_type = transition_type;

try {

String trans = transition_classes[last_transition_type];

transition = (BillTransition)Class.forName(trans)

.newInstance();

}

catch(Exception e) {

e.printStackTrace();

continue;

}

transition.init(this,billboards[current_billboard].image_pixels,

billboards[next_billboard].image_pixels);

if(System.currentTimeMillis() < next_billboard_time) {

try {

Thread.sleep(next_billboard_time -

System.currentTimeMillis());

} catch (InterruptedException e) { };

}

Graphics g = getGraphics();

for(int c = 0; c < transition.cells.length; ++c) {

image = transition.cells[c];

g.drawImage(image, 0, 0, null);

getToolkit().sync();

try { Thread.sleep(transition.delay); }

catch(InterruptedException e) { };

}

image = billboards[next_billboard].image;

g.drawImage(image, 0, 0, null);

getToolkit().sync();

g.dispose();

if(mouse_inside_applet == true) {

showStatus(billboards[next_billboard].link.toExternalForm());

}

transition = null;

try { Thread.sleep(120); } catch (InterruptedException e) {}

}

}

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1021
A

P
P

LY
IN

G
JA

V
A

public class MyMouseAdapter extends MouseAdapter {

public void mouseExited(MouseEvent me) {

mouse_inside_applet = false;

showStatus("");

}

public void mouseReleased(MouseEvent me) {

stop();

setCursor(new Cursor(Cursor.WAIT_CURSOR));

getAppletContext().showDocument(billboards[current_billboard].link,

link_target_frame);

}

}

public class MyMouseMotionAdapter extends MouseMotionAdapter {

public void mouseMoved(MouseEvent me) {

mouse_inside_applet = true;

showStatus(billboards[current_billboard].link.toExternalForm());

}

}

}

BillData.java
The BillData class is mostly just a data structure for encapsulating attributes associated
with individual billboards. It contains three variables. The first variable stores the
URL to which the billboard is a link. The second variable has an Image that the applet
uses to draw on the screen. The third variable includes a pixel array of the image in
RGB format.

The pixel array is used by transitions in combination with another BillData pixel
array to create the cells for transition animation. The array is only one-dimensional.
The pixels in it are arranged in such a way that the first element in this array is the
top-left corner of the image. The second element is the pixel just to the right of this
corner. Elements that follow are the pixels to the right of this one, and so on, until the
rightmost pixel is reached. Then the leftmost pixel on the next line of the image is used.
This continues until the last index in the array, which corresponds to the pixel on the
bottom-right corner of the image.

You might notice that Robert has made all of the variables in this class public.
Normally, it is good programming practice to hide the data members that should be
read only by other classes. This is done by making them protected or private and then
creating functions to return references to the variables. Unfortunately, in Java this
increases the size of the compiled bytecode even when the one line function is made

1022 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

final and the code is compiled with optimizations. So to make the applet smaller and
hence faster to download, Robert made the data members public.

The Constructor
The constructor for a BillData object simply initializes the URL and Image variables
with the two parameters passed in. Initializing the pixel array is done in a separate
method, because it is very processor-intensive. This gives the applet a chance to initialize
the pixel array only when it needs it.

initPixels()
The initPixels() method creates the pixel array from the image using the Java core
class: java.awt.image.PixelGrabber.

The Code
Here is the source code for the BillData class:

import java.net.*;

import java.awt.*;

import java.awt.image.*;

public class BillData {

public URL link;

public Image image;

public int[] image_pixels;

public BillData(URL link, Image image) {

this.link = link;

this.image = image;

}

public void initPixels(int image_width, int image_height) {

image_pixels = new int[image_width * image_height];

PixelGrabber pixel_grabber = new

PixelGrabber(image.getSource(), 0, 0,

image_width, image_height, image_pixels, 0, image_width);

try {

pixel_grabber.grabPixels();

}

catch (InterruptedException e) {

image_pixels = null;

}

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1023
A

P
P

LY
IN

G
JA

V
A

}

}

BillTransition.java
The BillTransition class is used as a base class for other transition classes. These other
classes create transition cells between two individual billboard images. This abstract
class contains variables and methods that are common to all transitions.

There are no constructors provided in the BillTransition class. This is because the
applet does not use “new” to create new instances and instead uses the factory method,
java.lang.Class.newInstance(). Objects created in this way have no way to directly
initialize themselves using parameters in constructors. This factory method indirectly
creates objects using a default constructor, one without any parameters. The
BillTransition class provides a number of overloaded init() methods to initialize
instances with parameters.

In previous versions of DynamicBillboard, Robert used static variables within
different transition classes to store data that only needed to be initialized once. It was
discovered, however, that when more than one instance of the applet ran from a web
server, the applets would share the static variables. This led to some problems if one
applet needed a different static value than the other when the applets were different
sizes. An example is the FadeTransition class used to create an array whose size
depended on the dimensions of the applet. When another DynamicBillboard was
created with dimensions that were smaller than the previous applet, it would
overwrite this array with an array too small for the first applet. This would cause the
first applet to crash.

Robert introduced the static hash table called object_table in this version of the
applet to work around this problem. Now transition classes can store data inside this
hash table using the transition name in conjunction with the applet size as a key. When
this data needs to be used, the applet can look to see if it exists for the applet’s size
within the hash table. If it does not, then it can create the data and store it in the hash
table for later use. Now if there is more than one applet on a web server and both are
the same size, then only one has to initialize the data.

init()
The init() method is overloaded three times. The first method, which has three
parameters, is abstract and must be overridden by classes derived from this class. The
other two methods initialize data members within this class. Robert’s intention was to
have the init() method of classes that are derived from this class call one of these two
methods to initialize data members of BillTransition.

1024 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

createCellFromWorkPixels()
The createCellFromWorkPixels() method is used to perform the common task of
converting the work_pixels array into an Image object. Notice that it uses the owner
variable to complete this task. This is the only reason the owner variable is needed by
transition classes. When a transition has completed assembly of a new cell in the
work_pixels array, it should call this method.

The Code
Here is the source code for the BillTransition class:

import java.util.*;

import java.awt.*;

import java.awt.image.*;

public abstract class BillTransition {

static Hashtable object_table = new Hashtable(20);

public Image[] cells;

public int delay;

Component owner;

int cell_w;

int cell_h;

int pixels_per_cell;

int[] current_pixels;

int[] next_pixels;

int[] work_pixels;

public abstract void

init(Component owner, int[] current_pixels, int[] next_pixels);

final protected void

init(Component owner, int[] current_pixels, int[] next_pixels,

int number_of_cells, int delay) {

this.delay = delay;

this.next_pixels = next_pixels;

this.current_pixels = current_pixels;

this.owner = owner;

cells = new Image[number_of_cells];

cell_w = owner.getSize().width;

cell_h = owner.getSize().height;

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1025
A

P
P

LY
IN

G
JA

V
A

pixels_per_cell = cell_w * cell_h;

work_pixels = new int[pixels_per_cell];

}

final protected void

init(Component owner, int[] current_pixels, int[] next_pixels,

int number_of_cells) {

init(owner, current_pixels, next_pixels, number_of_cells, 120);

}

final void createCellFromWorkPixels(int cell) {

cells[cell] = owner.createImage(

new MemoryImageSource(cell_w, cell_h,

work_pixels, 0, cell_w));

owner.prepareImage(cells[cell], null);

}

}

ColumnTransition.java
The ColumnTransition class changes one image into another by drawing increasingly
large columns of the new image onto the old image. The column sizes increase to the
left, and the same pixels are always drawn on the left side of each column. This makes
the billboard appear to be sliding in from behind the old billboard through vertical
slots in the current billboard.

To create the cells for this transition, the billboard space is split up into a number of
columns, each column 24 pixels wide. Each of the seven image cells the transition will
create will have pixels on the left side of each column from the old image and pixels
on the right side from the new image. The first cell that is created starts out with only
the three right pixels in each column taken from the new image. With each successive
cell, three more pixels are filled in from the new image. The last cell has only the three
left pixels in each column from the old image.

Because the width of the image space is most likely not perfectly divisible by 24,
there will be some remaining pixels remaining on the right side of the image. These
pixels are accounted for in each cell with the rightmost_columns_max_width and
rightmost_columns_x_start variables.

init()
The init() function starts by calling the base class’ init() method to initialize the variables
contained within this base class. It goes on to initialize the variables associated with the
rightmost column and then copies all of the pixels from the current billboard into the
work pixels. The loop that follows creates all of the cell frames.

1026 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The nextCell() method changes work_pixels, and the method inherited from the
BillTransition class, createCellFromWorkPixels(), is used to convert these pixels into
an image. Because the process of creating the cells can be very demanding on the CPU,
Robert tells the thread to sleep occasionally to allow other threads to run.

nextCell()
The nextCell() method modifies the work_pixels array for the next cell. It loops
through each line of the image starting from the bottom line and fills part of each
column by copying pixels from the next billboard onto the work_pixels array. It does
not ever need to copy pixels from the old billboard, because these were already copied
to the array in the init() method.

It’s worth repeating that the pixel arrays used to form the images are only
one-dimensional. Every width pixel represents one horizontal line of the image.

The Code
Here is the source code for the ColumnTransition class:

import java.awt.*;

import java.awt.image.*;

public class ColumnTransition extends BillTransition {

final static int CELLS = 7;

final static int WIDTH_INCREMENT = 3;

final static int MAX_COLUMN_WIDTH = 24;

int rightmost_columns_max_width;

int rightmost_columns_x_start;

int column_width = WIDTH_INCREMENT;

public void init(Component owner, int[] current, int[] next) {

init(owner, current, next, CELLS, 200);

rightmost_columns_max_width = cell_w % MAX_COLUMN_WIDTH;

rightmost_columns_x_start = cell_w - rightmost_columns_max_ width;

System.arraycopy(current_pixels, 0,

work_pixels, 0, pixels_per_cell);

for(int c = 0; c < CELLS; ++c) {

try { Thread.sleep(100); } catch (InterruptedException e) {}

NextCell();

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1027
A

P
P

LY
IN

G
JA

V
A

try { Thread.sleep(100); } catch (InterruptedException e) {}

createCellFromWorkPixels(c);

column_width += WIDTH_INCREMENT;

}

work_pixels = null;

}

void NextCell() {

int old_column_width = MAX_COLUMN_WIDTH - column_width;

for(int p = pixels_per_cell - cell_w; p >= 0; p -= cell_w) {

for (int x = 0; x < rightmost_columns_x_start; x +=

MAX_COLUMN_WIDTH) {

System.arraycopy(next_pixels, x + p, work_pixels,

old_column_width + x + p, column_width);

}

if(old_column_width <= rightmost_columns_max_width) {

System.arraycopy(next_pixels, rightmost_columns_x_start + p,

work_pixels, rightmost_columns_x_start +

old_column_width + p - 1,

rightmost_columns_max_width -

old_column_width + 1);

}

}

}

}

Here is what the column transition looks like before, during, and after:

1028 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

FadeTransition.java
The FadeTransition class changes one image into another by randomly including a
number of new pixels from the next billboard in each successive cell frame. This makes
the next billboard appear to fade in over the old billboard.

The heart of this transition is a two-dimensional array of short integers called
random. This array holds an index for every element in the next billboard’s image pixel
array. These indexes are randomly distributed in the two-dimensional array. The eight
elements in the first dimension of this array will be used when cells are created, one for
each new cell. The last element is never actually used, because there are only seven
cells. It is included when the random array is created to ensure that the indexes are
randomly distributed correctly.

The FadeTransition uses this array to pick pixels from the next billboard to
overwrite pixels of the old billboard. For the first cell, the work_pixels array contains
nothing but pixels from the old billboard. One-eighth of these pixels get changed to
the next billboard’s pixels. For the following cell, the same work_pixels array is used,
and one-eighth more pixels are filled in from the next billboard. For this cell the
result has one-fourth of the pixels from the next billboard, while the remainder are
from the old billboard. This continues until the last cell, cell number seven, which has
seven-eighths of its pixels from the new billboard. Remember, the DynamicBillboard
applet simply uses the whole image from the next billboard after the last cell to
complete the transition.

Because the size of this two-dimensional array is dependent on the size of the
applet, it must be unique to each applet. Using a static variable to store this array is
unacceptable, because applets of different sizes would share this array. Since it is fairly
time-consuming to create this array, it does not make sense to re-create it every time
this transition is to be used.

This is where the superclass’ static variable, object_table, first comes into play.
Once this array is created, it can be stored in this hash table with a key that includes the
size of the applet. When the array needs to be used, the applet can get the appropriate
one out of the hash table. If it does not exist in the hash table, the applet can then create
the array and store it in the hash table for future use. New applets of the same size as
the current applet will benefit from a usable array already being there. This seems like
a lot of effort, but in practice, web sites tend to use this applet on a large number of
pages with a standard layout size for each banner advertisement. So, it saves an
enormous amount of memory and CPU time to cache these tables.

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1029
A

P
P

LY
IN

G
JA

V
A

createRandomArray()
The createRandomArray() static method creates the two-dimensional random array.
It takes two parameters that describe the size of the applet. It is highly optimized,
because originally it was too slow. It includes its own random-number generator that is
very fast, but with a short cycle. Because of this, it is fairly complicated and beyond the
scope of this book. The basic idea is that Java’s built-in random-number generator is
better at generating truly random distribution, but it is too slow for this application.
Plus, the user will not notice exactly how random this transition is, so Robert’s
home-grown random-number generator is sufficient.

init()
The init() method for this transition starts like all other transitions, with a call to the
base class’ init() method. Then, like some other transitions, it copies all of the old
billboard’s pixels into the work_pixels array.

The two-dimensional random array is pulled out of the object_table for an applet
of this size. If it does not exist yet, it is created and stored in the object_table. With the
random array in hand, the method just loops through each cell and each index in the
random array, copying pixels from the next billboard into the work pixels.

The Code
Here is the source code for the FadeTransition class:

import java.awt.*;

import java.awt.image.*;

public class FadeTransition extends BillTransition {

private static final int CELLS = 7;

private static final int MULTIPLIER = 0x5D1E2F;

private static short[][] createRandomArray(int number_pixels,

int cell_h) {

int total_cells = CELLS + 1;

int new_pixels_per_cell = number_pixels / total_cells;

short[][] random = new short[total_cells][new_pixels_per_cell];

int random_count[] = new int[total_cells];

for(int s = 0; s < total_cells; ++s) {

random_count[s] = 0;

}

int cell;

int rounded_new_pixels_per_cell =

new_pixels_per_cell * total_cells;

1030 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

int seed = (int)System.currentTimeMillis();

int denominator = 10;

while((new_pixels_per_cell % denominator > 0 ||

cell_h % denominator == 0) && denominator > 1) {

--denominator;

}

int new_randoms_per_cell = new_pixels_per_cell / denominator;

int new_randoms = rounded_new_pixels_per_cell / denominator;

for(int p = 0; p < new_randoms_per_cell; ++p) {

seed *= MULTIPLIER;

cell = (seed >>> 29);

random[cell][random_count[cell]++] = (short)p;

}

seed += 0x5050;

try { Thread.sleep(150); } catch (InterruptedException e) {}

for(int p = new_randoms_per_cell; p < new_randoms; ++p) {

seed *= MULTIPLIER;

cell = (seed >>> 29);

while(random_count[cell] >= new_randoms_per_cell) {

if(++cell >= total_cells) {

cell = 0;

}

}

random[cell][random_count[cell]++] = (short)p;

}

for(int s = 0; s < CELLS; ++s) {

for(int ps = new_randoms_per_cell; ps < new_pixels_per_cell;

ps += new_randoms_per_cell) {

int offset = ps * total_cells;

for(int p = 0; p < new_randoms_per_cell; ++p) {

random[s][ps + p] = (short)(random[s][p] + offset);

}

}

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1031
A

P
P

LY
IN

G
JA

V
A

try { Thread.sleep(50); } catch (InterruptedException e) {}

}

random[CELLS] = null;

return random;

}

public void init(Component owner, int[] current, int[] next) {

init(owner, current, next, CELLS);

System.arraycopy(current_pixels, 0, work_pixels,

0, pixels_per_cell);

short random[][] = (short[][])object_table.get(

getClass().getName() + pixels_per_cell);

if(random == null) {

random = createRandomArray(pixels_per_cell, cell_h);

object_table.put(getClass().getName() + pixels_per_cell,

random);

}

for(int c = 0; c < CELLS; ++c) {

try { Thread.sleep(100); } catch (InterruptedException e) {}

int limit = random[c].length;

for(int p = 0; p < limit; ++p) {

int pixel_index = random[c][p];

work_pixels[pixel_index] = next_pixels[pixel_index];

}

try { Thread.sleep(50); } catch (InterruptedException e) {}

createCellFromWorkPixels(c);

}

work_pixels = null;

}

}

Here is what the fade transition looks like before, during, and after:

1032 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

SmashTransition.java
The SmashTransition class changes one image into another by dropping the new
image onto the old one. The old image appears to crumble under the weight of
the new image.

Two instance variables, drop_amount and location, are used to create the frames.
The location variable keeps track of the pixel that the smashed image starts on. The
drop_amount variable stores the number of pixels of the new image to drop onto the
smashed image every frame. In other words, it is the number to add to the location
variable each frame. A static array called fill_pixels is used to color a whole line of the
work_pixels array white.

The smash effect is done by drawing the old image in an accordion-like fashion.
It starts out by drawing the first lines of the old image offset to the right. Each
progressive line is offset a little bit more to the right. This continues until some
maximum left offset is reached. At this point, the offset is reduced every line until
an offset of zero is reached. This continues until all of the lines of the smashed image
are drawn.

It does not draw the lines from the old image in their entirety. It uses a length that
is a bit shorter than the actual length.

The number of lines to draw for the smashed image decreases each frame as the old
billboard becomes more and more compacted. This transition uses lines that are evenly
distributed across the old image. This ensures that the smashed image does not appear
to be falling off the bottom of the applet or sliding under the new image.

setupFillPixels()
The setupFillPixels() static method is used to ensure that the fill_pixels array is
initialized and is at least as long as one whole line for this applet. If this array has not
been initialized yet or is not long enough for this applet, then this method respectively
re-creates or creates and fills in the array. If there is more than one instance of this
applet running, both can share this fill_pixels array, but it must be at least as long as
the widest applet.

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1033
A

P
P

LY
IN

G
JA

V
A

init()
The init() method for this transition starts like all other transitions, with a call to the
base class’ init() method. It follows this with a call to the method described earlier,
setupFillPixels(). The initial values of the drop_amount and location variables are then
calculated. After this, the init() method goes into a loop to create each frame. It actually
does this in reverse, creating the last frame first. It does not have to be done in reverse.
However, running loops in reverse saves one byte of code in the resulting class file. After
each cell is created, the location variable is incremented to the next proper location.

Smash()
The Smash() method modifies the work_pixels array for the next cell. It creates the
smashed image of the old billboard in the work_pixels array and draws in the pixels
for the new image. This method takes one parameter, max_fold, which is used as the
maximum right offset that the lines in the fold will have. It is also used by subtracting
this from the line width to determine the length of the lines to draw for the folds.

The method begins by copying the pixels from the new image onto work_ pixels.
It then initializes a number of variables that it uses to draw the smashed image. The
drawing of this smashed image is done line by line, in a loop. Within the loop, it first
makes the current line totally white. It then copies a portion of the correct line from
the old billboard over this line. To get the accordion effect, it does not start drawing
onto the same pixel location as it did for drawing the white line. It instead offsets
the destination pixels to the right by a few pixels. After drawing in the line, it adds a
number to the offset counter. It follows this with a bounds check to see if the offset has
gone beyond the minimum or maximum offset. If it has, it flips the sign of the number
it adds to the offset counter each line. The effect of this is that the direction of the offset
is reversed.

The Code
Here is the source code for the SmashTransition class:

import java.awt.*;

import java.awt.image.*;

public class SmashTransition extends BillTransition {

final static int CELLS = 8;

final static float FOLDS = 8.0f;

static int[] fill_pixels;

static void setupFillPixels(int width) {

if(fill_pixels != null && fill_pixels.length <= width) {

return;

1034 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

fill_pixels = new int[width];

for(int f = 0; f < width; ++f) {

fill_pixels[f] = 0xFFFFFFFF;

}

}

int drop_amount;

int location;

public void init(Component owner, int[] current, int[] next) {

init(owner, current, next, CELLS, 160);

setupFillPixels(cell_w);

drop_amount = (cell_h / CELLS) * cell_w;

location = pixels_per_cell - ((cell_h / CELLS) / 2) * cell_w;

for(int c = CELLS - 1; c >= 0; --c) {

try { Thread.sleep(100); } catch (InterruptedException e) {}

Smash(c + 1);

try { Thread.sleep(150); } catch (InterruptedException e) {}

createCellFromWorkPixels(c);

location -= drop_amount;

}

work_pixels = null;

}

void Smash(int max_fold) {

System.arraycopy(next_pixels, pixels_per_cell - location,

work_pixels, 0, location);

int height = cell_h - location / cell_w;

float fold_offset_adder = (float)max_fold * FOLDS / (float)height;

float fold_offset = 0.0f;

int fold_width = cell_w - max_fold;

float src_y_adder = (float)cell_h / (float)height;

float src_y_offset = cell_h - src_y_adder / 2;

for(int p = pixels_per_cell - cell_w; p >= location; p -=

cell_w) {

System.arraycopy(fill_pixels, 0, work_pixels, p, cell_w);

System.arraycopy(current_pixels, (int)src_y_offset * cell_w,

work_pixels, p + (int)fold_offset, fold_width);

src_y_offset -= src_y_adder;

fold_offset += fold_offset_adder;

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1035
A

P
P

LY
IN

G
JA

V
A

if(fold_offset < 0.0 || fold_offset >= max_fold) {

fold_offset_adder *= -1.0f;

}

}

}

}

Here is what the smash transition looks like before, during, and after:

TearTransition.java
The TearTransition creates the illusion of the current billboard getting torn off the
applet like a piece of paper. It gets ripped upwards and toward the left to reveal the
next billboard image underneath.

There is only one member variable used in this transition, x_cross. It is used as a
multiplier to create the tear effect. The larger the value of this variable, the smaller the
tear effect will appear to be.

The code for this transition has many optimizations. One optimization of
significance is to create the cell frames in reverse order, building the last cell frame first
and the first, last. In their normal order, each subsequent cell frame reveals a little bit
more of the new image underneath. If the frames were to be created in the normal
order, the tear effect would have to be drawn, along with the new image pixels
revealed in the current frame, which had been covered by the tearing effect in the
previous frame. Doing it in reverse only requires redrawing the tearing effect each cell

1036 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

frame. For example, the last frame, created first, starts out with the tearing effect using
only a small portion of the upper-left corner of the image, while the rest of the pixels
are taken from the new billboard image. In the second to the last frame, which is
created second, the new tear effect draws over a little bit more of the upper-left corner
of the image, while the rest of the image remains the same. The cell frames that follow
draw the new tear effect over more and more of the image, but always covering up the
old tear effect from the last frame.

init()
The init() method for this transition starts like all other transitions, with a call to the
base class’ init() method. It then copies all of the new billboard’s pixels into the
work_pixels array and copies the first line of the old billboard’s pixels onto the first
line of the work_pixels array. After the x_cross variable is initialized, the init() method
loops through each cell frame in reverse order. Inside the loop, it creates each cell
frame and decreases the value of the x_cross variable.

Tear()
The Tear() method modifies the work_pixels array for the next cell. It draws the tear
effect onto the work pixels. It draws the tear effect line by line. To draw one line, the
method copies pixels from the old image pixels into the work_pixels array. It uses two
counters, one that is an index into the work_pixels array, the destination, and one that
references an index into the array of pixels for the old billboard, the source. Both
counters are started at zero. The destination counter is always incremented by one.
The source counter, however, is incremented by a floating-point number that is always
greater than one. When the loop is run until the destination index is larger than the
width of the line, the result is the source index growing faster than the destination
index. The overall effect is that in the destination, only a number of pixels on the left
side of the image will be copied from the source. The pixels taken from the source will
skip some pixels, resulting in pixels taken from the source being evenly distributed
across the line.

Each line of the cell frame will use a larger value for the floating-point number on
the line above. This makes lines toward the bottom draw on fewer pixels for the tear
effect than lines toward the top.

This method has one big optimization that it uses to get around the slow array
indexing in Java. Whenever a element in an array is used, bounds checking is done
to ensure that the index is within the bounds of the array. There is a performance hit
involved in this bounds checking. The standard Java class, System, provides a method
that allows you to copy sections of arrays from one array to another almost as fast or as
fast as copying one array element into another. This method is used to speed up the
creation lines within the cell frames. It only uses this method when the applet knows
some of the source pixels will be adjacent to one another. If the applet skips at least
every other pixel from the source image, then it will use the standard loop method.
An x_increment value less than 0.5 indicates that less than 1.5 will be added to the

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1037
A

P
P

LY
IN

G
JA

V
A

source index counter each time, and there will be a speed benefit from using the array
copy method for a particular line.

The Code
Here is the source code for the TearTransition class:

import java.awt.*;

import java.awt.image.*;

public class TearTransition extends BillTransition {

static final int CELLS = 7;

static final float INITIAL_X_CROSS = 1.6f;

static final float X_CROSS_DIVISOR = 3.5f;

float x_cross;

public void init(Component owner, int[] current, int[] next) {

init(owner, current, next, CELLS);

System.arraycopy(next_pixels, 0, work_pixels, 0,

pixels_per_cell);

System.arraycopy(current_pixels, 0, work_pixels, 0, cell_w);

x_cross = INITIAL_X_CROSS;

for(int c = CELLS - 1; c >= 0; --c) {

try { Thread.sleep(100); } catch (InterruptedException e) {}

Tear();

try { Thread.sleep(150); } catch (InterruptedException e) {}

createCellFromWorkPixels(c);

x_cross /= X_CROSS_DIVISOR;

}

work_pixels = null;

}

final void Tear() {

float x_increment;

int p, height_adder;

p = height_adder = cell_w;

for (int y = 1; y < cell_h; ++y) {

x_increment = x_cross * y;

if(x_increment >= 0.50f) {

float fx = 0.0f;

1038 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

x_increment += 1.0f;

int x = 0;

do {

work_pixels[p++] = current_pixels[height_adder + x];

x = (int)(fx += x_increment);

} while(x < cell_w);

}

else {

float overflow = 1.0f / x_increment;

float dst_end = overflow / 2.0f + 1.49999999f;

int dst_start = 0, src_offset = 0, length = (int)dst_end;

while(dst_start + src_offset + length < cell_w) {

System.arraycopy(current_pixels, p + src_offset,

work_pixels, p, length);

++src_offset;

dst_end += overflow;

p += length;

dst_start += length;

length = (int)dst_end - dst_start;

}

length = cell_w - src_offset - dst_start;

System.arraycopy(current_pixels, p + src_offset,

work_pixels, p, length);

}

p = height_adder += cell_w;

}

}

}

Here is what the tear transition looks like before, during, and after:

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1039
A

P
P

LY
IN

G
JA

V
A

UnrollTransition.java
UnrollTransition makes it appear as if a rolled-up poster is placed on the bottom of the
applet and then unrolled upward, gradually revealing the next image and covering
the old image. To enhance the unroll illusion, the roll gradually decreases in size as it
makes its way upward on the billboard.

Two instance variables are used during the creation of unroll transitions. The
location variable references pixels within the pixel arrays. It stores the current pixel
that the roll first appears on. The unroll_amount array variable tells the class how
many vertical pixels the roll should move upward each frame.

The most difficult part of creating each cell frame is drawing the roll. The only
other task that needs to be completed each frame is to draw the pixels from the new
image onto the space vacated by the roll from the previous frame.

The roll is drawn with scan lines from the new image. The first line of the roll is
drawn with the scan line located at the Y coordinate above the roll’s Y coordinate on
the applet. For example, if the roll is located on line ten for a particular cell frame,
then line nine of the new image will be used to draw the first line of the roll. Each
subsequent line of the roll is drawn using a line from the image located above the
previous line of the new image. So, continuing the example, the second line of the roll
will be drawn using line eight of the new image.

The roll is painted with its 3-D appearance by drawing each line of the roll with a
slight offset to the left. Lines closer to the center of the roll are drawn with a larger
offset than lines close to the top and bottom. The top and bottom lines of the rolls are
then shaded to make it look as if a light were above the applet. This results in the top
line being a bit brighter than the rest of the roll and the bottom line being a bit darker.

createUnrollAmountArray()
Each consecutive cell frame in this transition unrolls the roll onto the applet a little
bit less than the previous cell frame. The createUnrollAmountArray() static method
is used to calculate an array that indicates how much each cell frame should unroll
the roll.

init()
The init() method for this transition starts like all other transitions, with a call to the
base class’ init() method. Then the location variable is initialized to an index past the
last pixel in a pixel array. This is followed by copying all of the old billboard’s pixels
into the work_pixels array.

1040 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

An array that stores the number of pixels to unroll each frame is pulled out of the
object_table for an applet of this height. If it does not exist in the hash table, it is
created and stored in the object_table.

Then the init() method loops through each cell, moving the roll upward by
subtracting from the location variable and drawing each cell frame. It makes the
current thread take a break before and after the processor-intensive cell frame
creation, to allow other threads in Java’s multitasking environment to execute.
After the cell frame is created from the work_pixels array with the call to the
createCellFromWorkPixels() method, the area the roll was on is drawn over with
pixels from the new image. This prepares the work_pixels array for the next cell frame.

Unroll()
The Unroll() method modifies the work_pixels array for the next cell. It draws the roll
onto the work pixels. This method first calculates the offset that it needs to use for
drawing each line of the roll. It then loops through each line of the roll, copying scan
lines from the new image onto the work_pixels array. The pixels that are exposed due
to the left offset of each line are filled in with pixels from the static fill_pixels array.

Another loop then increments though each pixel on the top and the bottom lines of
the roll, brightening pixels on the top line and darkening pixels on the bottom line.

The Code
Here is the source code for the UnrollTransition class:

import java.awt.*;

import java.awt.image.*;

public class UnrollTransition extends BillTransition {

final static int CELLS = 9;

static int fill_pixels[] = { 0xFFFFFFFF, 0xFF000000,

0xFF000000, 0xFFFFFFFF };

private static int[] createUnrollAmountArray(int cell_h) {

float unroll_increment =

((float)cell_h / (float)(CELLS + 1)) /

((float)(CELLS + 2) / 2.0f);

int total = 0;

int unroll_amount[] = new int[CELLS + 1];

for(int u = 0; u <= CELLS; ++u) {

unroll_amount[u] = (int)(unroll_increment * (CELLS - u + 1));

total += unroll_amount[u];

}

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1041
A

P
P

LY
IN

G
JA

V
A

if(total < 0) {

unroll_amount[0] -= 1;

}

return unroll_amount;

}

int location;

int[] unroll_amount;

public void init(Component owner, int[] current, int[] next) {

init(owner, current, next, CELLS, 220);

location = pixels_per_cell;

System.arraycopy(current_pixels, 0,

work_pixels, 0, pixels_per_cell);

unroll_amount = (int[])object_table.get(getClass().getName() +

cell_h);

if(unroll_amount == null) {

unroll_amount = createUnrollAmountArray(cell_h);

object_table.put(getClass().getName() + cell_h, unroll_amount);

}

for(int c = 0; c < CELLS; ++c) {

location -= unroll_amount[c] * cell_w;

try { Thread.sleep(150); } catch (InterruptedException e) {}

Unroll(c);

try { Thread.sleep(100); } catch (InterruptedException e) {}

createCellFromWorkPixels(c);

System.arraycopy(next_pixels, location,

work_pixels, location,

unroll_amount[c] * cell_w);

}

work_pixels = null;

}

void Unroll(int c) {

int y_flip = cell_w;

int offset[] = new int[unroll_amount[c]];

for(int o = 0; o < unroll_amount[c]; ++o) {

offset[o] = 4;

}

offset[0] = 2;

1042 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

if(unroll_amount[c] > 1) {

offset[1] = 3;

}

if(unroll_amount[c] > 2) {

offset[unroll_amount[c] - 1] = 2;

}

if(unroll_amount[c] > 3) {

offset[unroll_amount[c] - 2] = 3;

}

int offset_index = 0;

int end_location = location + unroll_amount[c] * cell_w;

for(int p = location; p < end_location; p += cell_w) {

System.arraycopy(next_pixels,

p - y_flip + offset[offset_index],

work_pixels,

p, cell_w - offset[offset_index]);

System.arraycopy(fill_pixels, 0,

work_pixels,

p + cell_w - offset[offset_index],

offset[offset_index]);

++offset_index;

y_flip += cell_w + cell_w;

}

for(int x = location + cell_w - 1; x > location; --x) {

work_pixels[x] |= 0xFFAAAAAA;

work_pixels[x + unroll_amount[c]] &= 0xFF555555;

}

}

}

Here is what the unroll transition looks like before, during, and after:

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1043
A

P
P

LY
IN

G
JA

V
A

Dynamic Code
Robert has shown us how to create interactive high-performance graphics by
working around many of the apparent limitations in Java. He shows how to use
System.arraycopy() to effectively shuffle pixel data around. He shows how to properly
use cooperative multithreading to do computation and network transfers in the
background while the user isn’t waiting. Robert proves that high-performance direct
pixel manipulation algorithms can be efficiently written in Java if you are careful.

In addition to containing interesting code, DynamicBillboard is a very compelling
applet for nonprogrammers and users alike. It is easily configured by HTML editors,
extensible by Java programmers, and entertaining to web users. In this age of
advertising rates being driven by “click-through,” where advertisers only want to pay
for transfers from a content site to their site, Robert’s applet can be used to increase
traffic and ultimately increase revenue.

1044 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 9 : T h e D y n a m i c B i l l b o a r d A p p l e t 1045
A

P
P

LY
IN

G
JA

V
A

1046 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 30
ImageMenu: An
Image-Based Web Menu

1047

The ImageMenu applet is a simple program that presents an image-based menu
with an arbitrary number of choices in a vertical list. When the user moves the
mouse cursor over these choices, the one under the cursor changes appearance,

indicating that it can be clicked on. When the user clicks on a choice, the web browser
changes to a new document specified for that choice. ImageMenu was created by
David LaVallée, the creator of several interesting applets. Figure 30-1 shows an
instance of ImageMenu.

ImageMenu uses the showDocument() function in AppletContext to make the
hypertext leap to the new pages. The novelty of ImageMenu is that it uses different
portions of a single source image to draw the menu on the screen. Basing a menu on
an image rather than on text frees you to design menus that use any font or image you
desire. You can also provide various types of selection feedback. You no longer need to
rely on the AWT’s limited rendering functions.

1048 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 30-1. An example of ImageMenu

The ImageMenu applet was inspired by an applet called Navigation, created by
top-notch Java programmer Sean Welch. The difference between Navigation and
ImageMenu is efficiency in bandwidth and applet tag specification. The Navigation
applet uses a source image that is the applet’s width times the number of possible
selections wide to display all of its states. Both applets download a single image, which
is much more efficient over the Internet than loading multiple files. A menu of seven
choices for the Navigation applet (100×140 pixels) would require a source image of
700×140. The applet described here, ImageMenu, uses a source image that is two times
the applet width, or 200×140. Most web designers hate typing when they don’t have to,
which leads to the second significant difference between Navigation and ImageMenu:
abbreviated applet parameters.

While ImageMenu is many times more efficient, using a smaller source image and
fewer bytes of parameters, Welch’s Navigation has one inimitable trait—it can display
individually selected “states” that bleed over into the space of the next menu item. The
ImageMenu applet requires that each menu item be self-contained in a rectangular area
that cannot overlap with adjacent items. This would prohibit, for example, ascending
letters (like h) from overlapping descending letters (such as j) in the line above.

The Source Image
While you won’t see the code for Navigation here, looking at its GIF image shows clearly
what it does. The source image for Navigation in Figure 30-2 shows seven columns,
each of which provides a visual representation of a possible selection. However, each
selectable item only has two states, so each row has five redundant copies of the
unselected state.

The source image for ImageMenu is shown in Figure 30-3. Given this image, it is
simple to render any of the seven possible states of a six-choice menu. First, drawImage()
displays the left half of the source image. This is the state where no items are selected.
If any of the items is selected, then the clipping rectangle is simply set to the bounds of
the selected item, and drawImage() is used to display the right-hand side. This will
paint just the selected cell through the clipping rectangle.

C h a p t e r 3 0 : I m a g e M e n u : A n I m a g e - B a s e d W e b M e n u 1049
A

P
P

LY
IN

G
JA

V
A

Figure 30-2. The source image for the Navigation applet

The APPLET Tag
The APPLET tag for ImageMenu contains many pieces of information. We will

use java.util.StringTokenizer to read the urlList and the frame targetList parameters
whose values are plus sign–delimited lists of values. We’ll also infer the coordinates of
each menu item by dividing the height of the applet by the number of URLs parsed in
urlList. For readability in the APPLET tag, we also allow a prefix and suffix, which will
be concatenated with a URL when it’s time to move to a new page.

<applet code="ImageMenu" width=140 height=180 hspace=0 vspace=0>

<param name="img" value="menu.jpg">

<param name="urlPrefix"

value="http://www.osborne.com/">

<param name="urlList"

value="pressroom/pressroom.shtml+aboutus/aboutus.shtml+

1050 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 30-3. The source image for ImageMenu

downloads/downloads.shtml+errata/errata.shtml">

<param name="targetList"

value="_self+_self+_self+_self+_self+_self">

<param name="urlSuffix" value="">

</applet>

The Methods
This is a small applet—about 100 lines of Java source. We will walk through all eight
methods here and then show all the source together at the end of the chapter.

init()
When the applet is being initialized, init() saves the size in the Dimension variable d
and parses the applet param tags. It then uses a StringTokenizer to parse strings delimited
by the plus sign to create the string arrays url and target. The number of URLs that are
parsed is the number that is used to divide the vertical space into menu cells. From this
calculation, init() saves the number and height of the cells in cells and cellH, respectively.

update()
We nullify the update() method of Applet to avoid flashing. As mentioned in Chapter 23,
the update() method in the Applet superclass fills a rectangle with the background color
before calling paint(). Since we’re not going to use repaint(), we can just eliminate
update completely.

lateInit()
The lateInit() private method creates the offscreen Image object that will be used for
double buffering the display of the menu. This method also employs a MediaTracker
object to synchronously get the source image.

paint()
The paint() method is quite simple. First, it checks to see if the offscreen buffer has been
created yet. If it hasn’t, lateInit() is called to create the buffer and load the menu image.

After that, it draws the left half of the image on the offscreen buffer. This requires,
of course, that the menu image be twice the width of the applet. That way, the applet

C h a p t e r 3 0 : I m a g e M e n u : A n I m a g e - B a s e d W e b M e n u 1051
A

P
P

LY
IN

G
JA

V
A

will simply clip away the right half of the menu image when drawImage(img, 0, 0,
null) is called. Then, if any cell is selected (selectedCell >= 0), it sets the clip rectangle
to the bounds of that menu item. You’ll notice that paint() gets the graphics context of
the offscreen image every time. This has the effect of resetting the clipping rectangle to
the bounds of the image. AWT’s lack of a resetClip() method requires some strange
coding style.

Next, the entire image is painted again, but this time, it is offset by the width of the
applet to the left, via drawImage(img, -d.width, 0, null). This has the effect of placing
just the right highlighted menu item in the clip rectangle. Lastly, the offscreen buffer is
copied to the applet window.

The speed of most graphic displays is largely throttled by the speed of the CPU’s
access directly to the screen. Additionally, many modern display cards are optimized for
copying rectangular areas from memory to the display in support of windowing systems.
Therefore, you are much better off doing all your drawing on an offscreen buffer rather
than copying the bits to the screen. On similar PC systems, we have seen between 10
and 400 buffer changes a second, depending on pixel depth and display card architecture.

mouseExited()
Special handling is needed for mouseExited(), because it causes all of the menu items
to be unselected. All we have to do is set selectedCell and oldCell to –1, which makes
the subsequent paint() call show all the items as unselected. Having oldCell set to –1
means that the next time the mouse enters the applet and causes a mouseMoved() call,
the first item will paint properly.

mouseDragged()
The mouseDragged() method is called when the mouse moves with any of its buttons
pressed. In this applet, we want to do the same thing on drag or move, so we just call
mouseMoved() directly, passing in the same parameters we received.

mouseMoved()
Whenever the mouse moves, mouseMoved() checks the y coordinate to see which of the
cells was selected. If the selectedCell is different from oldCell, meaning the user moved
from one cell to another, the menu is repainted. This is an optimization that avoids the
constant repainting of identical screen bits every time the mouse moves. You will notice
that repaint() is not called here. We are taking a shortcut through the normal applet
protocol by calling paint() directly after fetching the Graphics context from

1052 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

getGraphics(). This makes for a much snappier response. After the menu is painted,
the status line is set to reflect the newly selected item, which is also saved in oldCell.

mouseReleased()
mouseReleased() sends the browser to the URL that corresponds to the currently selected
menu item. The desired URL is then constructed. If the URL was improperly formatted
in the APPLET tag, the exception is displayed on the status line and returned without
attempting to switch documents. The showDocument() method puts the document
described in the URL into the frame listed in the target array. As a final feature, the
state of this SHIFT key is checked by calling the isShiftDown() method of MouseEvent.
If SHIFT was pressed, the URL is opened into a new blank browser window instead of
the one specified in target.

The Code
The source code for ImageMenu is shown here:

import java.awt.* ;

import java.awt.event.*;

import java.applet.*;

import java.util.*;

import java.net.*;

public class ImageMenu extends Applet {

Dimension d;

Image img, off;

Graphics offg;

int MAXITEMS = 64;

String url[] = new String[MAXITEMS];

String target[] = new String[MAXITEMS];

String urlPrefix, urlSuffix;

int selectedCell = -1;

int oldCell = -1;

int cellH;

int cells;

public void init() {

d = getSize();

urlPrefix = getParameter("urlPrefix");

C h a p t e r 3 0 : I m a g e M e n u : A n I m a g e - B a s e d W e b M e n u 1053
A

P
P

LY
IN

G
JA

V
A

urlSuffix = getParameter("urlSuffix");

StringTokenizer st;

st = new StringTokenizer(getParameter("urlList"), "+");

int i=0;

while(st.hasMoreTokens() && i < MAXITEMS)

url[i++] = st.nextToken();

cells = i;

cellH = d.height/cells;

st = new StringTokenizer(getParameter("targetList"), "+");

i=0;

while(st.hasMoreTokens() && i < MAXITEMS)

target[i++] = st.nextToken();

addMouseListener(new MyMouseAdapter());

addMouseMotionListener(new MyMouseMotionAdapter());

}

private void lateInit() {

off = createImage(d.width, d.height);

try {

img = getImage(getDocumentBase(), getParameter("img"));

MediaTracker t = new MediaTracker(this);

t.addImage(img, 0);

t.waitForID(0);

} catch(Exception e) {

showStatus("error: " + e);

}

}

public void update(Graphics g) {}

public void paint(Graphics g) {

if(off == null)

lateInit();

offg = off.getGraphics();

offg.drawImage(img, 0, 0, this);

if (selectedCell >= 0) {

offg.clipRect(0, selectedCell * cellH, d.width, cellH)

offg.drawImage(img, -d.width, 0, this);

}

1054 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

g.drawImage(off, 0, 0, this);

}

class MyMouseMotionAdapter extends MouseMotionAdapter {

public void mouseDragged(MouseEvent me) {

mouseMoved(me);

}

public void mouseMoved(MouseEvent me) {

int y = me.getY();

selectedCell = (int)(y/(double)d.height*cells);

if (selectedCell != oldCell) {

paint(getGraphics());

showStatus(urlPrefix + url[selectedCell] + urlSuffix);

oldCell = selectedCell;

}

}

}

class MyMouseAdapter extends MouseAdapter {

public void mouseExited(MouseEvent me) {

selectedCell = oldCell = -1;

paint(getGraphics());

showStatus("");

}

public void mouseReleased(MouseEvent me) {

URL u = null;

try {

u = new URL(urlPrefix + url[selectedCell] + urlSuffix);

} catch(Exception e) {

showStatus("error: " + e);

}

if (me.isShiftDown())

getAppletContext().showDocument(u, "_blank");

else

getAppletContext().showDocument(u, target[selectedCell]);

}

}

}

C h a p t e r 3 0 : I m a g e M e n u : A n I m a g e - B a s e d W e b M e n u 1055
A

P
P

LY
IN

G
JA

V
A

Summary
In use, the ImageMenu applet can look great and it provides a lot of leverage for a very
small program. Use of the showDocument(URL u, String target) in this applet allows
for a subtle optimization in web page design. If you put an ImageMenu applet in a
frame in an HTML frameset and use it to send documents to a second frame, the applet
never has to be reloaded, which makes the user’s experience better.

1056 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 31
The Lavatron Applet:
A Sports Arena Display

1057

Lavatron is a sports arena lightbulb display. Normally, an applet doesn’t
have much of a history, but this one does. David LaVallée, the author of the
ImageMenu applet from Chapter 30, wanted to achieve this kind of effect for a

long time. The history of Lavatron begins way back in 1974, when LaVallée was the
stick boy for the California Golden Seals of the NHL. David recalls, “Our scoreboard
just displayed, well, the score. The game was the thing; there wasn’t much to distract
hockey fans other than the dah-dah-dah-dat-dah-dah of the organ player.”

In 1979, LaVallée became fascinated with the idea of a graphical programmable
scoreboard when he was the repair guy for the Digital Equipment Corporation PDP
11/34 that ran the scoreboard at the Canadian National Exhibition Stadium (where
the Toronto Blue Jays used to play). That scoreboard was based on plain old 100-watt
lightbulbs like you use at home. In 1991, Toronto was treated to the Sony Jumbotron
HDTV scoreboard at the Skydome: true color, images, video, and three times the height
of the Hard Rock Cafe. In 1992, LaVallée wrote the first version of Lavatron in Objective-
C and PostScript. Finally, in 1995, Lavatron was written again from scratch to run under
Java, and it has undergone several performance tweaks and iterations since. The version
shown here has been updated for Java 2.

There are many possible enhancements to Lavatron (see Figure 31-1) that you
might want to try, such as drawing the source image dynamically in memory rather
than downloading it, or scrolling an animated sequence. But it’s an interesting
animated display applet that you may find useful as is.

1058 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 31-1. The Lavatron applet in action. The source image contains a bitmap
of the title Java 2: The Complete Reference on a white background.

How Lavatron Works
Lavatron is able to present an interesting image onscreen because of a small trick that it
employs, and its side effect allows the applet to load very quickly. The reason it loads
so quickly is that there isn’t much data transmitted over the Net. The source image is a
JPEG image that is 64 times smaller than the displayed image. Each pixel in the source
image is scaled up to an 8×8-pixel square. Here is the trick that Lavatron uses to
produce the lightbulb effect. An 8×8-pixel image of a transparent circle surrounded by
a black bezel, with a white highlight for a dash of style, is painted over the scaled-up
color pixel. As an optimization, the bulbs are preassembled into an image that can be
painted once for each column. Figure 31-2 shows what the bulb mask looks like blown
up. The two white pixels are the highlight. The black pixels in the corner are opaque.
Finally, all of the gray pixels in the middle are transparent, to allow the lightbulb color
to show through.

Lavatron paints so fast because it doesn’t have to repaint what it has already drawn.
The technique of copying the area of the screen that’s good and painting just the portion
that’s new is used in many common operations involving scrolling. The awt.Graphics
function copyArea() takes a portion of an image defined by a rectangle and moves it
by an x,y offset from its starting location. As a graphics speed optimization, copyArea()
is hard to beat. It consistently outperforms any other technique of image rendering,
such as the use of drawImage(), or drawImage() through a clipRect(). Building an

C h a p t e r 3 1 : T h e L a v a t r o n A p p l e t : A S p o r t s A r e n a D i s p l a y 1059
A

P
P

LY
IN

G
JA

V
A

Figure 31-2. A blown-up light bulb image

image much larger than your applet, which has several source images concatenated
into a single image, and then using copyArea to move them into place and clipping the
result onscreen is a very fast Java rendering technique.

The Source Code
Lavatron starts by initializing data, which includes loading the source image and
creating the column of bulb images. The last stage of the initialization is painting the
offscreen (double buffer) image full of dimmed (black) lightbulbs to start the display
with a clean image. Subsequent painting of the offscreen image begins by using
copyArea() to move the existing portion of the image to the left by the width of the
column of bulbs about to be added on the right edge. Then the pixel values for the next
column are read and used as the color to fill a column of 8×8 rectangles at the right
edge of the applet. The transparent column of bulbs is painted, and then the whole
backing image is drawn to the screen. Since this applet doesn’t have to do much except
scroll the image, it avoids the normal repaint() loop by forking a thread that repeatedly
calls paint(), pausing only to call yield() to allow other threads to run.

The APPLET Tag
The source code starts with the APPLET tag for Lavatron, shown here. This applet
looks best when the width is an even multiple of the bulb size and the height is the
bulb size times the source image height. The only parameter is for the name of the
source image file, named in img.

<applet code=Lavatron.class width=560 height=128>

<param name="img" value="swsm.jpg">

</applet>

Lavatron.java
The main applet is small, about 100 lines of Java source code. However, there is also
a support class that is required, which is described in the next section.

init()
The init() method first determines the size of the applet by using getSize(), and then
rounds up the size to a multiple of the bulb size, specified by bulbS, and stores it in
offw,offh. It then creates an image that size, called offscreen, for use as a double
buffer for the display. The Graphics object used for drawing on offscreen is saved
in offGraphics. The size of the applet, in bulb units rather than pixels, is stored in
bulbsW,bulbsH.

Next, the image of a column of bulbs is created by calling createBulbs(), passing in
the size of the image to create. Then the image named in the img applet parameter is

1060 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

loaded. This is done by passing the result of getImage() to MediaTracker’s addImage()
method, and then calling waitForID(), which waits until the image is fully loaded
before returning.

To draw the blown-up version of this image, init() needs to retrieve the color
information for each pixel in the image. First, it obtains the size of the image, using
getWidth() and getHeight(), saving the width in pixscan. It then assigns pixels to a
new array of pixscan * h integers. Then a PixelGrabber is created. When grabPixels()
is called, the array is filled in with the color values.

The final step of init() is to paint black bulbs on the offscreen image, which makes
the effect more dramatic as the image scrolls from the right side revealing lighted bulbs.

createBulbs()
The createBulbs() method is a helper to init(). It returns an Image of a stack of bulb
images that can be used to mask out a column of colored squares to make them look
like lit lightbulbs. It is a little tricky, but quite elegant.

First, it allocates the right number of ints in an array to store the pixels. Then, it
declares another array, which is a picture of a single bulb, represented by the numbers
0, 1, and 2. The 0s represent black, the 1s transparent pixels, and the 2s represent the
white highlight. Next, a short array is declared—bulbCLUT (bulb Color Look Up Table).
This maps the 0, 1, and 2 just mentioned into full 32-bit pixel values. The 0xff000000 is
opaque black. The high-order byte is alpha, or transparency. The 0x00c0c0c0 is a fully
transparent light gray, and the 0xffffffff is opaque white.

The for loop runs through each pixel, loading the appropriate 0, 1, or 2 from bulbBits
based on the position in the column. This is achieved by use of the mod (%) operator.
This value is then used to look up the color from bulbCLUT. Given this array of pixels,
createBulbs() returns the output of createImage(), passing in a MemoryImageSource
object prepared with the pixels we just constructed.

color()
The color() method returns the color of the pixel at the x,y position in the source image
as a Color object. Since this applet runs continuously, we decided not to simply create
a new Color object each time a single bulb was painted. This would be abusive of the
garbage-collected heap. Instead, unique Color objects are stored in a hash table. The
maximum number of Color objects in the hash table can be as much as the width times
the height of the source image, but in practice, it is usually much less.

update()
Lavatron overrides update() to do nothing, because we don’t want AWT’s implementation
to cause flicker.

paint()
The paint() method is quite simple. The first step calls copyArea() to move all of the
columns to the left by one column’s width. Then a for loop is used to fill the rightmost

C h a p t e r 3 1 : T h e L a v a t r o n A p p l e t : A S p o r t s A r e n a D i s p l a y 1061
A

P
P

LY
IN

G
JA

V
A

column with rectangles in the Color of the appropriate pixel, using color(). The bulb
image strip is then painted over the new column. Then the current scrolled position,
scrollX, is updated to be one more to the right, modulo the width, pixscan.

start(), stop(), and run()
When the applet starts, it creates and starts a new Thread called t. This thread will call
run(), which will keep calling paint() as fast as possible, while maintaining the courtesy
of calling yield() so that other threads can run. When the applet stop() method is
called, stopFlag is set to true. This variable is checked by the infinite loop in the run()
method. Program control breaks from the loop when stopFlag is true.

A useful enhancement would be to introduce a threshold frame rate, say 30 fps (frames
per second), and change the call to the yield() into an appropriate call to sleep() if the
rendering is too fast.

The Code
Here is the source code for the Lavatron class:

import java.applet.*;

import java.awt.* ;

import java.awt.image.* ;

public class Lavatron extends Applet implements Runnable {

int scrollX;

int bulbsW, bulbsH;

int bulbS = 8;

Dimension d;

Image offscreen, bulb, img;

Graphics offgraphics;

int pixels[];

int pixscan;

IntHash clut = new IntHash();

boolean stopFlag;

public void init() {

d = getSize();

int offw = (int) Math.ceil(d.width/bulbS) * bulbS;

int offh = (int) Math.ceil(d.height/bulbS) * bulbS;

offscreen = createImage(offw, offh);

offgraphics = offscreen.getGraphics();

bulbsW = offw/bulbS;

bulbsH = offh/bulbS;

1062 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

bulb = createBulbs(bulbS, bulbsH*bulbS);

try {

img = getImage(getDocumentBase(), getParameter("img"));

MediaTracker t = new MediaTracker(this);

t.addImage(img, 0);

t.waitForID(0);

pixscan = img.getWidth(null);

int h = img.getHeight(null);

pixels = new int[pixscan * h];

PixelGrabber pg = new PixelGrabber(img, 0, 0, pixscan, h,

pixels, 0, pixscan);

pg.grabPixels();

} catch (InterruptedException e) { };

scrollX = 0;

// paint black bulbs on the offscreen image

offgraphics.setColor(Color.black);

offgraphics.fillRect(0, 0, d.width, d.height);

for (int x=0; x<bulbsW; x++)

offgraphics.drawImage(bulb, x*bulbS, 0, null);

}

Image createBulbs(int w, int h) {

int pixels[] = new int[w*h];

int bulbBits[] = {

0,0,1,1,1,1,0,0,

0,1,2,1,1,1,1,0,

1,2,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,0,

0,0,1,1,1,1,0,0

};

int bulbCLUT[] = { 0xff000000, 0x00c0c0c0, 0xffffffff };

for (int i=0; i<w*h; i++)

pixels[i] = bulbCLUT[bulbBits[i%bulbBits.length]];

return createImage(new MemoryImageSource(w, h, pixels, 0, w));

}

public final Color color(int x, int y) {

int p = pixels[y*pixscan+x];

Color c;

C h a p t e r 3 1 : T h e L a v a t r o n A p p l e t : A S p o r t s A r e n a D i s p l a y 1063
A

P
P

LY
IN

G
JA

V
A

if ((c=(Color)clut.get(p)) == null)

clut.put(p, c = new Color(p));

return c;

}

public void update() {}

public void paint(Graphics g) {

offgraphics.copyArea(bulbS, 0, bulbsW*bulbS-bulbS, d.height,

-bulbS, 0);

for (int y=0; y<bulbsH; y++) {

offgraphics.setColor(color(scrollX, y));

offgraphics.fillRect(d.width-bulbS, y*bulbS, bulbS, bulbS);

}

offgraphics.drawImage(bulb, d.width-bulbS, 0, null);

g.drawImage(offscreen, 0, 0, null);

scrollX = (scrollX + 1) % pixscan;

}

Thread t;

public void run() {

while (true) {

paint(getGraphics());

try{t.yield();} catch(Exception e) { };

if(stopFlag)

break;

}

}

public void start() {

t = new Thread(this);

t.setPriority(Thread.MIN_PRIORITY);

stopFlag = false;

t.start();

}

public void stop() {

stopFlag = true;

}

}

1064 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

IntHash()
As mentioned in the preceding section, Color objects are stored in a hash table rather
than creating the same ones over and over. As a further optimization, we created our
own version of Java’s Hashtable class, which uses normal ints as keys rather than
requiring an Object handle.

Integer data needs much less room to store in the pixel array than Color objects,
so we use a hash table as a mechanism to look up Color objects from the integer value
of any individual pixel. Creating Color objects on the fly from the integer value of
each pixel is very expensive, because it creates a lot of memory garbage that must be
collected. One possible solution would be to use a Java Hashtable, except that doing so
would create just as much garbage, since only objects can be used as keys in a standard
Java hash table. Thus, to store an int in Java’s hash table, you would have to create a
new Integer object as a key to be matched. In a high duty cycle applet like Lavatron,
garbage Integer objects would be created by the thousands per second. This is not a
good solution.

The proper solution was to build our own hash table, IntHash, which uses the
integer data type values rather than the Integer object for its keys. IntHash is about 60
lines of code. The IntHash class duplicates the interface of the java.util.Hashtable class
with the exception that the type of the argument to put() and get() is an int data type
rather than an Object. There’s no need to explain how a hash table works in this
chapter, but suffice it to say that put(42, “Hello”) == get(42).

The Code
Here is the source code for the IntHash class:

class IntHash {

private int capacity;

private int size;

private float load = 0.7F;

private int keys[];

private Object vals[];

public IntHash(int n) {

capacity = n;

size = 0;

keys = new int[n];

vals = new Object[n];

}

public IntHash() {

this(101);

C h a p t e r 3 1 : T h e L a v a t r o n A p p l e t : A S p o r t s A r e n a D i s p l a y 1065
A

P
P

LY
IN

G
JA

V
A

}

private void rehash() {

int newcapacity = capacity * 2 + 1;

Object newvals[] = new Object[newcapacity];

int newkeys[] = new int[newcapacity];

for (int i = 0; i < capacity; i++) {

Object o = vals[i];

if (o != null) {

int k = keys[i];

int newi = (k & 0x7fffffff) % newcapacity;

while (newvals[newi] != null)

newi = (newi + 1) % newcapacity;

newkeys[newi] = k;

newvals[newi] = o;

}

}

capacity = newcapacity;

keys = newkeys;

vals = newvals;

}

public void put(int k, Object o) {

int i = (k & 0x7fffffff) % capacity;

while (vals[i] != null && k != keys[i]) // hash collision.

i = (i + 1) % capacity;

if (vals[i] == null)

size++;

keys[i] = k;

vals[i] = o;

if (size > (int)(capacity * load))

rehash();

}

public final Object get(int k) {

int i = (k & 0x7fffffff) % capacity;

while (vals[i] != null && k != keys[i]) // hash miss

i = (i + 1) % capacity;

return vals[i];

}

1066 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public final boolean contains(int k) {

return get(k)!=null;

}

public int size() {

return size;

}

public int capacity() {

return capacity;

}

}

Hot Lava
This applet is another small example of the kind of amazing performance you can
squeeze out of Java if you are careful and diligent. David LaVallée uses many tricks
to avoid excessive memory allocation and unnecessary calls to AWT drawing
functions. Creating the lightbulb mask image from a small array of integers rather
than a loaded GIF image saves download time and increases flexibility. The use of
paint(getGraphics()) rather than repaint() increases frame rate significantly. The
performance gains from using copyArea() over rerendering the image or calling
drawImage() are profound. Finally, the creation and use of IntHash makes for that
last performance boost by not forcing the system to garbage-collect as often.

C h a p t e r 3 1 : T h e L a v a t r o n A p p l e t : A S p o r t s A r e n a D i s p l a y 1067
A

P
P

LY
IN

G
JA

V
A

This page intentionally left blank.

Chapter 32
Scrabblet: A Multiplayer
Word Game

1069

Scrabblet is a complete multiplayer, networked, client/server game. It is the most
complicated applet in this book, and it handles some of the thorniest issues in Java
programming. Scrabblet consists of more than 1,400 lines of code in 11 classes.

Two of these classes are part of the server side of the applet. The other nine are
downloaded to a web browser and act as the simulation of the game. All of the code
elements used in the game have been described in detail in this book. In this chapter,
we will dissect each class and show how easy it is to build a multiplayer game.

Network Security Concerns
Most applets on the Net today don’t do much with the network after they have
been downloaded. One of the reasons is that networking has been made more difficult
in Java out of security concerns. Most Java applet environments, such as Netscape
Navigator and Microsoft Internet Explorer, severely restrict an applet’s use of the
network. This situation is created by TCP/IP’s lack of authentication in its most basic
protocols. This inherent limitation of the Internet is managed carefully by corporations
that want to protect their proprietary data through the use of firewalls. A firewall is a
computer that sits between a private network and the rest of the Internet. All Internet
connections flow through it, and it is able to filter and reject connections and packets,
both incoming and outgoing. This way, if a program on the outside of the firewall
attempts to attach to an internal network port, the firewall can block it. If it weren’t for
the firewall, system administrators would have to audit the security of each machine
on their internal network. In the case of a firewall-protected network, only the firewall
needs to be secure, and every machine inside is considered “friendly” and left
unprotected from every other machine inside.

This is where Java could have posed a security threat. If Java-enabled browsers
allowed applets to connect to arbitrary Internet addresses, then an applet could act as
a proxy to some malicious program on the outside of the firewall. Once an applet had
been downloaded and automatically run by the web browser, it could then connect to
the neighboring computers and servers. These computers would not expect anything
hostile to come from an internal computer, so they would accept the connections. The
applet would then be free to steal sensitive data and transmit it back through the
firewall to the malicious Internet host.

Because of this scenario, applets are only allowed to make network connections
to exactly one host: the one they were loaded from. This restricts the applet from
snooping around the internal network. One of the many well-publicized “Java security
attacks” from researchers at Princeton University was a way of tricking a Java run-time
system into allowing an applet to open network sockets on otherwise forbidden
machines. Thankfully, this problem was very difficult to reproduce and has
subsequently been addressed.

What does security have to do with a multiplayer game? Plenty. The easiest way to
program a multiplayer game would be to have the players communicate directly with

1070 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

each other, in a “peer-to-peer” network. This way, playing the game would not rely on
having any particular server software running. Unfortunately, the applet is only able to
connect back to the server that it was loaded from. This means that two players have to
communicate all of their messages to each other via the server.

In this chapter, you will see the source code to a simple server, which manages a list
of connected clients and passes messages between those clients. For the most part, this
server knows nothing about the game being played. It just passes the messages blithely
from point A to point B. This function is handled by two classes, Server and
ClientConnection. They will be described at the end of this chapter.

The Game
Before users can play a multiplayer game, they must choose somebody to play against.
Rather than forcing a phone call to arrange a game, this applet takes a different approach.
When it is first run, it prompts the user to enter his or her name (see Figure 32-1). This
name is passed to the server, which broadcasts the player’s name to all other potential
competitors. The user then sees a list of all available players (see Figure 32-2), selects
one, and clicks on the Challenge button. Currently, there is no way to confirm or deny
a challenge; they are automatically accepted. Once a challenge is made, both players
see the game board appear, and all other competitors simply see both players’ names
disappear from the available list.

It is quite an easy game to play, but it is very difficult to win against a skilled
opponent. Players are presented with a 15×15 grid of squares and given a set of seven
square tiles with letters of the alphabet engraved on them (see Figure 32-3). These tiles
are selected at random from a bag of 100 tiles. The tiles can be clicked on with the
mouse and dragged to a destination square on the grid. If the spot is already occupied,
the tile is returned to its original position. Tiles may be adjusted on the board during a
turn, but not when the turn is over.

The first player starts by placing several tiles in a line on the board to form a word
in the English language. The first word must cover the center square. Subsequent
words must touch at least one tile already played on the board. The player clicks on the
Done button to end the turn. If a player can’t find a valid word, the player can pass by
clicking on Done twice in a row without having any tiles on the board. The two players
take turns placing words until all of the tiles are used.

The board shown in Figure 32-3 is for smaller displays, and thus the multiplier
squares are marked with simple characters. 2L doubles the value of the letter on that
square. 3L triples the letter’s value. 2W means the whole word gets double the points;
3W means triple the word score. If you make the applet big enough, it will use more
descriptive labels for these squares, as shown in Figure 32-4.

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1071
A

P
P

LY
IN

G
JA

V
A

1072 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 32-1. The user must type in his or her name to begin

Figure 32-2. The list of competitors

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1073
A

P
P

LY
IN

G
JA

V
A

Figure 32-3. Patrick and Herb are ready to play against each other

Figure 32-4. Everything is clearer with a larger applet (650x700)

Scoring
Scores are assessed at the end of each turn. Each tile has a small number engraved on
its face next to the letter. This score may be multiplied by two or three, depending on
the value (color) of the square on which it was placed. The entire sum for a word may
also be multiplied by two or three if any letter in the word covers the appropriate
square. If a word comes in contact with any other tiles to form additional words, they
are counted separately. If a player uses all seven tiles in a single turn, an additional 50
points are awarded. At the end of the game, the player with the highest score wins.

Figure 32-5 shows an example of a board after a few turns have been taken. Patrick
started with SIRE, worth eight points. That came from the four one-point tiles and the
double-word score on the center tile. Next, Herb played HIRE, using the I from SIRE.
This was worth seven points, the sum of the four tiles involved. Notice that Herb got
credit for reusing Patrick’s I but not the double-word score underneath it. At the point
shown in Figure 32-5, Patrick has played GREAT and is about to click the Done button
to complete his turn. Notice that the tiles in play are brighter than those that have
already been played (see Figure 32-6).

At any time during play, the players may converse by typing in the text entry area
at the top of the applet (see Figure 32-7). These messages will appear one at a time in
the other player’s browser’s status line, typically at the bottom of the browser (see
Figure 32-8).

1074 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 32-5. Scrabblet early in a game

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1075
A

P
P

LY
IN

G
JA

V
A

Figure 32-6. Herb is about to place the D to make HEATED

Figure 32-7. Patrick is complaining about being stuck with the Q without the U

One last word about game play before we get into the source code. The way to win
at this game is to come up with words that score in one direction and also make words
in the other direction. These secondary words tend to be short, two-letter words, but
they add up. In Figure 32-9, Patrick places the Y in DEITY, which will score 21 points
because he gets a face value of 9 doubled to 18, plus he gets to count the word AD,
which runs vertically, for 3 points. Remember that all of the words played with each
turn need to be real words. Eventually, this game will need either an undo for disputed
words or an automatic dictionary checker to resolve conflicts.

The Source Code
Now that you know how to play the game, it is time to examine the source code for the
game. Since several of the classes are quite long, we will sprinkle comments throughout
the code rather than leaving the code till the end.

The APPLET Tag
The APPLET tag for this game is simple. Just name the main class and set the size.
That’s it. There aren’t any <param> tags for Scrabblet. Remember, the bigger you

1076 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Figure 32-8. Herb replies. Notice Patrick’s last message at the bottom

make the applet, the nicer the board looks. The aspect ratio should be a little taller than
it is wide.

<applet code=Scrabblet.class width=400 height=450>

</applet>

Scrabblet.java
The main applet class is found in Scrabblet.java. At almost 300 lines, this is a fairly
complicated applet class, even though most of the game logic is left to the Board class,
found later in this chapter.

We start with the usual collection of import statements, loading almost every
standard Java package. Then we declare Scrabblet to be a subclass of Applet that
implements ActionListener.

import java.io.*;

import java.net.*;

import java.awt.*;

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1077
A

P
P

LY
IN

G
JA

V
A

Figure 32-9. Patrick scores in two directions!

import java.awt.event.*;

import java.applet.*;

public class Scrabblet extends Applet implements ActionListener {

Next comes the declaration of a large collection of instance variables. The server
is our connection to the web server running our game server. This machine’s name
is stored in serverName. The bag represents the shared bag of letters for our game.
Our opponent has his or her own copy of the bag, which is initialized with the same
random sequence of tiles so the two bags stay in synch. The board is our copy of the
playing board. Our opponent also has a copy of the board, and the game keeps them
in synch after each turn.

If the network server can’t be accessed, the single flag is set, and the applet plays
the game in single-player mode. The boolean ourturn is true whenever it is our turn to
play. If a player can’t find a valid word, the player can pass by clicking on Done twice
in a row without having any tiles on the board. The seen_pass variable is used to mark
if the first Done has been clicked on.

To manage the synchronization of the remote player’s board, we keep a copy of the
tiles selected in theirs. Seeing what the other person has in his or her tray is cheating,
so no hacking this applet to display the contents of theirs! The two strings, name and
others_name, hold our name and our opponent’s name, respectively.

private ServerConnection server;

private String serverName;

private Bag bag;

private Board board;

private boolean single = false;

private boolean ourturn;

private boolean seen_pass = false;

private Letter theirs[] = new Letter[7];

private String name;

private String others_name;

Next, we declare eight variables used to manage the user interface. These are all
AWT components that must be manipulated by the applet in some way. topPanel
holds the prompt and the namefield for getting the user’s name at start-up. The done
button is used to signify that you are done with your turn. The chat TextField is used
to enter chat messages. idList is used to display available opponents. The challenge
button is used to attach us to our opponent. The ican Canvas holds the name and
copyright notice at start-up.

1078 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

private Panel topPanel;

private Label prompt;

private TextField namefield;

private Button done;

private TextField chat;

private List idList;

private Button challenge;

private Canvas ican;

init()
The init() method is called once and simply sets up the BorderLayout, figures out
what Internet host the applet came from, and creates the splash screen canvas.

public void init() {

setLayout(new BorderLayout());

serverName = getCodeBase().getHost();

if (serverName.equals(""))

serverName = "localhost";

ican = new IntroCanvas();

}

start()
The start() method is called whenever the browser redisplays the page in which the
applet is found. The large try block at the beginning is used to catch the case where the
network connection fails. If we succeed in making a new ServerConnection and we’ve
never run start() before, we then set up the screen to prompt for the user’s name.
While we are there, we put the splash screen, ican, in the center of the window. In the
case where name is not null, that means the user left the page and has now returned.
We presume we’ve already got the user’s name and jump right to nameEntered(),
the method that is called when the user types return in the name entry field. The
validate() at the end makes sure all of the AWT components are updated properly.

If an exception was thrown, we presume that the net connection failed and go into
single-player mode. The call to start_game() gets things rolling.

public void start() {

try {

showStatus("Connecting to " + serverName);

server = new ServerConnection(this, serverName);

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1079
A

P
P

LY
IN

G
JA

V
A

server.start();

showStatus("Connected: " + serverName);

if (name == null) {

prompt = new Label("Enter your name here:");

namefield = new TextField(20);

namefield.addActionListener(this);

topPanel = new Panel();

topPanel.setBackground(new Color(255, 255, 200));

topPanel.add(prompt);

topPanel.add(namefield);

add("North", topPanel);

add("Center", ican);

} else {

if (chat != null) {

remove(chat);

remove(board);

remove(done);

}

nameEntered(name);

}

validate();

} catch (Exception e) {

single = true;

start_Game((int)(0x7fffffff * Math.random()));

}

}

stop()
The stop() method is called whenever the user leaves the page with the applet. Here,
we just tell the server that we’ve left. We re-create the network connection in start() if
the user returns to the page later.

public void stop() {

if (!single)

server.quit();

}

1080 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

add()
The add() method is called by the ServerConnection whenever a new player enters
the game. We add the player’s name to our List object. Pay special attention to the
formatting of the string in add(). We use that later to extract certain IDs from the list.

void add(String id, String hostname, String name) {

delete(id); // in case it is already there.

idList.add("(" + id + ") " + name + "@" + hostname);

showStatus("Choose a player from the list");

}

delete()
The delete() method is called when a player no longer wants to be identified as
available for play. This happens when a player quits or decides to play with someone
else. Here, we hunt down the id string in our list by extracting the values inside
parentheses. If there are no more names on the list (and we aren’t playing the game
already: bag == null), then we display a special message telling the user to hang out
until someone comes to make a challenge.

void delete(String id) {

for (int i = 0; i < idList.getItemCount(); i++) {

String s = idList.getItem(i);

s = s.substring(s.indexOf("(") + 1, s.indexOf(")"));

if (s.equals(id)) {

idList.remove(i);

break;

}

}

if (idList.getItemCount() == 0 && bag == null)

showStatus("Wait for other players to arrive.");

}

getName()
The getName() method is very similar to delete(), except it simply extracts the name
part of the item and returns it. If the id is not found, then null is returned.

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1081
A

P
P

LY
IN

G
JA

V
A

private String getName(String id) {

for (int i = 0; i < idList.getItemCount(); i++) {

String s = idList.getItem(i);

String id1 = s.substring(s.indexOf("(") + 1, s.indexOf(")"));

if (id1.equals(id)) {

return s.substring(s.indexOf(" ") + 3, s.indexOf("@"));

}

}

return null;

}

challenge()
The challenge() method is called by the ServerConnection whenever another player
challenges us to a game. We could have made this method more complicated, so that it
would prompt the user to accept or refuse the challenge, but instead the challenge is
automatically accepted. Notice that the random seed we use to start the game is passed
back to the other player in the accept() method. This is used by both sides to initialize
the random state of the tile bag to ensure a synchronous game. We call server.delete()
to ensure that we are no longer solicited by other players wanting to play against us.
Notice also that we cede the starting turn to the challenger by setting ourturn to false.

// we've been challenged to a game by "id".

void challenge(String id) {

ourturn = false;

int seed = (int)(0x7fffffff * Math.random());

others_name = getName(id); // who was it?

showStatus("challenged by " + others_name);

// put some confirmation here...

server.accept(id, seed);

server.delete();

start_Game(seed);

}

accept()
accept() is the method called on the remote side in response to the server.accept()
call just mentioned. Just as the other player deleted himself or herself from the list of

1082 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

available players, so must we call server.delete(). We take the first turn by setting
ourturn to true.

// our challenge was accepted.

void accept(String id, int seed) {

ourturn = true;

others_name = getName(id);

server.delete();

start_Game(seed);

}

chat()
The chat() method is called by the server whenever the opponent types in his or her
chat window. In this implementation, the method simply shows the chat message in
the browser’s status message. In the future, it might be nice to log these into a
TextArea.

void chat(String id, String s) {

showStatus(others_name + ": " + s);

}

move()
The move() method is called once for each tile your opponent plays. It looks through
the letters saved in theirs to find the one used. If the square is already occupied, the tile
is returned to the player’s tray. Otherwise, the opponent’s letter is moved onto the
board permanently. Next, the tile is replaced in theirs by bag.takeOut(). If the bag is
empty, a status message appears. The board is repainted to show the new tiles on it.
Note that no scoring is done based on the placement of these tiles. The applet waits
until turn() is called to give the score.

// the other guy moved, and placed 'letter' at (x, y).

void move(String letter, int x, int y) {

for (int i = 0; i < 7; i++) {

if (theirs[i] != null && theirs[i].getSymbol().equals(letter)) {

Letter already = board.getLetter(x, y);

if (already != null) {

board.moveLetter(already, 15, 15); // on the tray.

}

board.moveLetter(theirs[i], x, y);

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1083
A

P
P

LY
IN

G
JA

V
A

board.commitLetter(theirs[i]);

theirs[i] = bag.takeOut();

if (theirs[i] == null)

showStatus("No more letters");

break;

}

}

board.repaint();

}

turn()
The turn() method is called after all of the opponent’s tiles are moved. The remote
instance of Scrabblet computes the score and sends it to us, so our copy doesn’t have
to redo it. Then the score is reported in the status line, and the setEnabled method
allows us to take a turn. othersTurn() tells the board about the score. The board will
reflect the new score at this point.

void turn(int score, String words) {

showStatus(others_name + " played: " + words + " worth " +

score);

done.setEnabled(true);

board.othersTurn(score);

}

quit()
When the other side quits cleanly, quit() is called. It removes the AWT components of
the game and jumps right back into nameEntered(), described next, to get connected
back into the player list.

void quit(String id) {

showStatus(others_name + " just quit.");

remove(chat);

remove(board);

remove(done);

nameEntered(name);

}

1084 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

nameEntered()
The nameEntered() method is called from actionPerformed() whenever ENTER is
pressed in the original prompt for the user’s name. Any AWT components that might
be in the way are removed, and then a new List object, idList, is created to store the
names of the other players. The method also adds a button at the top named challenge,
then notifies the server that we are here by calling setName().

private void nameEntered(String s) {

if (s.equals(""))

return;

name = s;

if (ican != null)

remove(ican);

if (idList != null)

remove(idList);

if (challenge != null)

remove(challenge);

idList = new List(10, false);

add("Center", idList);

challenge = new Button("Challenge");

challenge.addActionListener(this);

add("North", challenge);

validate();

server.setName(name);

showStatus("Wait for other players to arrive.");

if (topPanel != null)

remove(topPanel);

}

wepick() and theypick()
The methods wepick() and theypick() are simply used to start off the game by
picking the seven tiles for each player. It is important that the caller do these in the
right order on each side of the challenge, depending on who goes first. The call to
bag.takeOut() gets a single letter permanently out of the shared bag. The call to
board.addLetter() places the tile on our tray. For the other side, theypick() simply
saves the letters in theirs.

private void wepick() {

for (int i = 0; i < 7; i++) {

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1085
A

P
P

LY
IN

G
JA

V
A

Letter l = bag.takeOut();

board.addLetter(l);

}

}

private void theypick() {

for (int i = 0; i < 7; i++) {

Letter l = bag.takeOut();

theirs[i] = l;

}

}

start_Game()
In single-player mode, start_Game() pops up the splash screen in a Frame window.
It then creates a playing board, passing in no parameters to the constructor, which
indicates single-player mode.

In head-to-head mode, we remove the selection list components and add the chat
window to the applet. We then add the board and Done button to the applet. Next, we
create the bag, and if it is ourturn, wepick() is first, then theypick(). In the case where
we don’t have the first turn, we disable the board and the Done button, and theypick()
is first. We then force the board to repaint, which initializes it.

private void start_Game(int seed) {

if (single) {

Frame popup = new Frame("Scrabblet");

popup.setSize(400, 300);

popup.add("Center", ican);

popup.setResizable(false);

popup.show();

board = new Board();

showStatus("no server found, playing solo");

ourturn = true;

} else {

remove(idList);

remove(challenge);

board = new Board(name, others_name);

chat = new TextField();

chat.addActionListener(this);

add("North", chat);

1086 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

showStatus("playing against " + others_name);

}

add("Center", board);

done = new Button("Done");

done.addActionListener(this);

add("South", done);

validate();

bag = new Bag(seed);

if (ourturn) {

wepick();

if (!single)

theypick();

} else {

done.setEnabled(false);

theypick();

wepick();

}

board.repaint();

}

challenge_them()
The challenge_them() method is called when the challenge button is clicked. It simply
takes the player you had selected in the idList and sends him or her a challenge()
message. It removes the list and button to be ready for the game to start.

private void challenge_them() {

String s = idList.getSelectedItem();

if (s == null) {

showStatus("Choose a player from the list then press Challenge");

} else {

remove(challenge);

remove(idList);

String destid = s.substring(s.indexOf('(')+1,

s.indexOf(')'));

showStatus("challenging: " + destid);

server.challenge(destid); // accept will get called if

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1087
A

P
P

LY
IN

G
JA

V
A

// they accept.

validate();

}

}

our_turn()
When the Done button is clicked, our_turn() is called. First, it checks to see if we’ve
placed tiles in valid locations by calling board.findwords() and storing the result in
word. If word is null, then something is amiss with the tiles, and the method shows
that in the status line. If word is ““, then it knows that there were no tiles in play at the
time. In single-player mode, this is ignored. In competition mode, if we click Done
twice in a row without any tiles in play, we will pass our turn to our opponent.

If you have played tiles and they are in legal positions, you have finished your turn,
so ourturn() commits the letters to the board. Notice that commit() takes the server as
a parameter. It will use this to tell the remote side about the position of each new letter.
Then the method replaces the letters you used. In multiplayer mode, we disable
ourselves and call server.turn() to tell the other player it is his or her turn.

private void our_turn() {

String word = board.findwords();

if (word == null) {

showStatus("Illegal letter positions");

} else {

if ("".equals(word)) {

if (single)

return;

if (seen_pass) {

done.setEnabled(false);

server.turn("pass", 0);

showStatus("You passed");

seen_pass = false;

} else {

showStatus("Press done again to pass");

seen_pass = true;

return;

}

} else {

seen_pass = false;

}

showStatus(word);

1088 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

board.commit(server);

for (int i = 0; i < 7; i++) {

if (board.getTray(i) == null) {

Letter l = bag.takeOut();

if (l == null)

showStatus("No more letters");

else

board.addLetter(l);

}

}

if (!single) {

done.setEnabled(false);

server.turn(word, board.getTurnScore());

}

board.repaint();

}

}

actionPerformed()
The actionPerformed() method is used to grab input from the various components the
applet uses. It handles the Challenge and Done buttons, as well as the name entry field
and the chat entry field.

public void actionPerformed(ActionEvent ae) {

Object source = ae.getSource();

if(source == chat) {

server.chat(chat.getText());

chat.setText("");

}

else if(source == challenge) {

challenge_them();

}

else if(source == done) {

our_turn();

}

else if(source == namefield) {

TextComponent tc = (TextComponent)source;

nameEntered(tc.getText());

}

}

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1089
A

P
P

LY
IN

G
JA

V
A

IntroCanvas.java
The IntroCanvas subclass of Canvas is very simple. It just overrides paint() to draw
the name of the applet and a brief copyright notice. It creates some custom colors and
fonts. The display strings are held in static variables simply for clarity.

import java.awt.*;

import java.awt.event.*;

class IntroCanvas extends Canvas {

private Color pink = new Color(255, 200, 200);

private Color blue = new Color(150, 200, 255);

private Color yellow = new Color(250, 220, 100);

private int w, h;

private int edge = 16;

private static final String title = "Scrabblet";

private static final String name =

"Copyright 1999 - Patrick Naughton";

private static final String book =

"Chapter 32 from 'Java: The Complete Reference'";

private Font namefont, titlefont, bookfont;

IntroCanvas() {

setBackground(yellow);

titlefont = new Font("SansSerif", Font.BOLD, 58);

namefont = new Font("SansSerif", Font.BOLD, 18);

bookfont = new Font("SansSerif", Font.PLAIN, 12);

addMouseListener(new MyMouseAdapter());

}

d()
The private method d() is a convenience method that paints centered text with an
optional isometric offset. This is used to give the main title a highlight/shadow effect
by drawing a white string up and to the left by 1, a black string down and to the right
by 1, and then drawing the string one last time in pink, not offset at all.

private void d(Graphics g, String s, Color c, Font f, int y,

int off) {

g.setFont(f);

FontMetrics fm = g.getFontMetrics();

g.setColor(c);

1090 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

g.drawString(s, (w - fm.stringWidth(s)) / 2 + off, y + off);

}

public void paint(Graphics g) {

Dimension d = getSize();

w = d.width;

h = d.height;

g.setColor(blue);

g.fill3DRect(edge, edge, w - 2 * edge, h - 2 * edge, true);

d(g, title, Color.black, titlefont, h / 2, 1);

d(g, title, Color.white, titlefont, h / 2, -1);

d(g, title, pink, titlefont, h / 2, 0);

d(g, name, Color.black, namefont, h * 3 / 4, 0);

d(g, book, Color.black, bookfont, h * 7 / 8, 0);

}

mousePressed()
In the following code fragment, notice that MyMouseAdapter is an inner class that
extends MouseAdapter. It overrides the mousePressed() method to cause this canvas’
parent to hide() if it is clicked on. This is only useful in single-player mode to dismiss
the pop-up frame.

class MyMouseAdapter extends MouseAdapter {

public void mousePressed(MouseEvent me) {

((Frame)getParent()).setVisible(false);

}

}

}

Board.java
The Board class encapsulates most of the game logic as well as the look and feel of the
board. It is the biggest class in the game, weighing in at over 500 lines of code. There
are several private variables that store the game state. The 15×15 array of Letters
named board is used to store the tiles on each square of the board. The tray array holds
the Letters that are currently on our tray. Remember that the Scrabblet applet class
holds the seven Letters from our opponent. The Point objects orig and here are used to
remember letter positions. The name and others_name variables are used simply to
display names for the scoreboard. In single-player mode, both will be null. The two
players’ scores are stored in total_score and others_score, while our last turn’s result is

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1091
A

P
P

LY
IN

G
JA

V
A

stored in turn_score. The two constructors set up the names of the players, or leave
them blank in single-player mode.

import java.awt.*;

import java.awt.event.*;

class Board extends Canvas {

private Letter board[][] = new Letter[15][15];

private Letter tray[] = new Letter[7];

private Point orig = new Point(0,0);

private Point here = new Point(0,0);

private String name;

private int total_score = 0;

private int turn_score = 0;

private int others_score = 0;

private String others_name = null;

Board(String our_name, String other_name) {

name = our_name;

others_name = other_name;

addMouseListener(new MyMouseAdapter());

addMouseMotionListener(new MyMouseMotionAdapter());

}

Board() {

addMouseListener(new MyMouseAdapter());

addMouseMotionListener(new MyMouseMotionAdapter());

}

othersTurn(), getTurnScore(), and getTray()
These three methods are used to control the access to several private variables.
First, othersTurn() is called by the applet when the other player finishes a turn. It
increments the player’s score and repaints that area of the board to reflect the change.
The getTurnScore() method simply returns the saved last turn’s score, after making
sure the scoreboard is painted with the correct value. The applet uses this method to
pass the score to our opponent, where it will eventually call othersTurn() on the
remote machine. The getTray() method simply provides a read-only access to the
private tray array.

1092 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void othersTurn(int score) {

others_score += score;

paintScore();

repaint();

}

int getTurnScore() {

paintScore();

return turn_score;

}

Letter getTray(int i) {

return tray[i];

}

addLetter()
The addLetter() method is used to place a letter on the tray. The letter is placed in the
first slot that is empty. If the method can’t find an empty slot, it returns false.

synchronized boolean addLetter(Letter l) {

for (int i = 0; i < 7; i++) {

if (tray[i] == null) {

tray[i] = l;

moveLetter(l, i, 15);

return true;

}

}

return false;

}

existingLetterAt()
The private method existingLetterAt() is used to check a board position to see if it has
a letter in it that is not currently in play. This is used by findwords() next to make sure
that at least one letter in a turn is touching an already existing letter.

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1093
A

P
P

LY
IN

G
JA

V
A

private boolean existingLetterAt(int x, int y) {

Letter l = null;

return (x >= 0 && x <= 14 && y >= 0 && y <= 14

&& (l = board[y][x]) != null && l.recall() == null);

}

findwords()
findwords() is a very large method used to examine the state of the board for a legal
turn. If the rules for letter placement are broken, then null is returned. If no tiles were
in play, then ““ is returned. If all of the tiles played in this turn are legal, then the list of
words they formed is returned as a string containing the space-separated words. The
instance variables turn_score and total_score are updated to reflect the value of the
words that were just played.

First findwords() counts the tiles at play, ntiles, storing them in a separate array
called atplay. Next, it looks at the first two tiles (if more than one was played) to
determine if they are vertically or horizontally oriented. Then it inspects all of the other
tiles at play, to make sure they are along the same line. If any of the tiles is out of that
row or column, the method returns null.

synchronized String findwords() {

String res = "";

turn_score = 0;

int ntiles = 0;

Letter atplay[] = new Letter[7];

for (int i = 0; i < 7; i++) {

if (tray[i] != null && tray[i].recall() != null) {

atplay[ntiles++] = tray[i];

}

}

if (ntiles == 0)

return res;

boolean horizontal = true; // if there's one tile,

// call it horizontal

boolean vertical = false;

if (ntiles > 1) {

int x = atplay[0].x;

int y = atplay[0].y;

horizontal = atplay[1].y == y;

1094 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

vertical = atplay[1].x == x;

if (!horizontal && !vertical) // diagonal...

return null;

for (int i = 2; i < ntiles; i++) {

if (horizontal && atplay[i].y != y

|| vertical && atplay[i].x != x)

return null;

}

}

Next, it looks at each tile to be sure that at least one of them is touching an existing
tile on one of its four sides. A special case is made for the beginning of the game: if the
center tile is covered and more than one tile is played, it is legal.

// make sure that at least one played tile is

// touching at least one existing tile.

boolean attached = false;

for (int i = 0; i < ntiles; i++) {

Point p = atplay[i].recall();

int x = p.x;

int y = p.y;

if ((x == 7 && y == 7 && ntiles > 1) ||

existingLetterAt(x-1, y) || existingLetterAt(x+1, y) ||

existingLetterAt(x, y-1) || existingLetterAt(x, y+1)) {

attached = true;

break;

}

}

if (!attached) {

return null;

}

This next loop iterates over every letter in the main word, (i == –1), then comes
back again for each letter (i == 0..ntiles), which might also create a word orthogonal to
the main direction, which is managed via horizontal.

// we use -1 to mean check the major direction first

// then 0..ntiles checks for words orthogonal to it.

for (int i = -1; i < ntiles; i++) {

Point p = atplay[i==-1?0:i].recall(); // where is it?

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1095
A

P
P

LY
IN

G
JA

V
A

int x = p.x;

int y = p.y;

int xinc, yinc;

if (horizontal) {

xinc = 1;

yinc = 0;

} else {

xinc = 0;

yinc = 1;

}

int mult = 1;

String word = "";

int word_score = 0;

The method then picks each tile and moves left or up from it to find the first tile
in each word. Once at the beginning of the word, it moves right or down from it,
inspecting every letter. It counts the letters in letters_seen. For each letter, it determines
the point contribution based on the bonus multiplier beneath it. If the square is played
for the first time, the multiplier value is applied; otherwise the tile is counted at face
value. This score is accumulated in word_score.

// here we back up to the top/left-most letter

while (x >= xinc && y >= yinc &&

board[y-yinc][x-xinc] != null) {

x -= xinc;

y -= yinc;

}

int n = 0;

int letters_seen = 0; // letters we've just played.

Letter l;

while (x < 15 && y < 15 && (l = board[y][x]) != null) {

word += l.getSymbol();

int lscore = l.getPoints();

if (l.recall() != null) { // one we just played...

Color t = tiles[y < 8 ? y : 14 - y][x < 8 ? x : 14 - x];

if (t == w3)

mult *= 3;

else if (t == w2)

1096 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

mult *= 2;

else if (t == l3)

lscore *= 3;

else if (t == l2)

lscore *= 2;

if (i == -1) {

letters_seen++;

}

}

word_score += lscore;

n++;

x += xinc;

y += yinc;

}

word_score *= mult;

One last error check is done on the main word only. Since the loop ends whenever
it hits a blank square or the edge of the board, it should cover all of the freshly played
tiles, as well as some previously played ones. If it sees fewer tiles, then there must have
been a gap in them, which is an illegal position, so it returns null. If that test is passed,
it checks to see if all seven tiles were played, awarding a 50-point bonus if they were.
After inspecting the main word, findwords() inverts the sense of horizontal and looks
for orthogonal words on the subsequent passes.

if (i == -1) { // first pass...

// if we didn't see all the letters, then there was a gap,

// which is an illegal tile position.

if (letters_seen != ntiles) {

return null;

}

if (ntiles == 7) {

turn_score += 50;

}

// after the first pass, switch to looking the other way.

horizontal = !horizontal;

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1097
A

P
P

LY
IN

G
JA

V
A

As findwords() walks across the word, it needs to make sure that it only scores
letters that form at least two-letter words. In this case, it adds the word_score to the
turn_score and appends this word to the result string. Once all of the letters have been
inspected, it totals the score and returns.

if (n < 2) // don't count single letters twice.

continue;

turn_score += word_score;

res += word + " ";

}

total_score += turn_score;

return res;

}

commit() and commitLetter()
The commit() and commitLetter() methods commit the letters that were tentatively
placed on the board. These letters are removed from the tray and painted in a darker
color on the board. As each letter is committed, commit() notifies the server of the
position of each letter by calling move() so that the opponent’s board can be updated.

synchronized void commit(ServerConnection s) {

for (int i = 0 ; i < 7 ; i++) {

Point p;

if (tray[i] != null && (p = tray[i].recall()) != null) {

if (s != null) // there's a server connection

s.move(tray[i].getSymbol(), p.x, p.y);

commitLetter(tray[i]); // marks this as not in play.

tray[i] = null;

}

}

}

void commitLetter(Letter l) {

if (l != null && l.recall() != null) {

l.paint(offGraphics, Letter.DIM);

l.remember(null); // marks this as not in play.

}

}

1098 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

update() and paint()
Many private variables are declared here to provide easy access to the dimensions of
the board. This code also declares two offscreen buffers, one to be used as the image of
the board and all of the permanently set tiles and another to use as a double buffer for
the display. The update() method simply calls paint() to avoid flicker. The paint()
method makes a quick call to checksize() to make sure all of the buffers have been
created, then checks to see if we are dragging a letter around by means of pick != null.
If so, then paint() makes a copy of the offscreen graphics context and clips it to the
bounds of the letter it is painting, x0, y0, w0, h0. Next, it clips the onscreen graphics
context to the same rectangle. This will minimize the number of pixels it will have to
move for each move of the mouse.

To paint, we copy the background image, offscreen, then call paint on each
letter in the tray with the setting of NORMAL. We paint the letter we are dragging
around in the BRIGHT mode. Finally, we copy the double buffer image,
offscreen2, to the screen.

private Letter pick; // the letter being dragged around.

private int dx, dy; // offset to topleft corner of pick.

private int lw, lh; // letter width and height.

private int tm, lm; // top and left margin.

private int lt; // line thickness (between tiles).

private int aw, ah; // letter area size.

private Dimension offscreensize;

private Image offscreen;

private Graphics offGraphics;

private Image offscreen2;

private Graphics offGraphics2;

public void update(Graphics g) {

paint(g);

}

public synchronized void paint(Graphics g) {

Dimension d = checksize();

Graphics gc = offGraphics2;

if (pick != null) {

gc = gc.create();

gc.clipRect(x0, y0, w0, h0);

g.clipRect(x0, y0, w0, h0);

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1099
A

P
P

LY
IN

G
JA

V
A

gc.drawImage(offscreen, 0, 0, null);

for (int i = 0 ; i < 7 ; i++) {

Letter l = tray[i];

if (l != null && l != pick)

l.paint(gc, Letter.NORMAL);

}

if (pick != null)

pick.paint(gc, Letter.BRIGHT);

g.drawImage(offscreen2, 0, 0, null);

}

LetterHit()
LetterHit() returns the letter that is under the point x,y and returns null if no letter
is there.

Letter LetterHit(int x, int y) {

for (int i = 0; i < 7; i++) {

if (tray[i] != null && tray[i].hit(x, y)) {

return tray[i];

}

}

return null;

}

unplay()
This simple method removes a letter from play that was placed on the board but was
not yet committed.

private void unplay(Letter let) {

Point p = let.recall();

if (p != null) {

board[p.y][p.x] = null;

let.remember(null);

}

}

1100 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

moveToTray()
The moveToTray() method is just a simple convenience to compute the screen position
of a letter in a given tray slot.

private void moveToTray(Letter l, int i) {

int x = lm + (lw + lt) * i;

int y = tm + ah - 2 * lt;

l.move(x, y);

}

dropOnTray()
The dropOnTray() method is used whenever we drop a letter over the tray area or off
the board anywhere. This allows us to shuffle the contents of the tray as well as simply
return tiles from the board.

private void dropOnTray(Letter l, int x) {

unplay(l); // unhook where we were.

// find out what slot this letter WAS in.

int oldx = 0;

for (int i = 0 ; i < 7 ; i++) {

if (tray[i] == l) {

oldx = i;

break;

}

}

// if the slot we dropped on was empty,

// find the rightmost occupied slot.

if (tray[x] == null) {

for (int i = 6 ; i >= 0 ; i--) {

if (tray[i] != null) {

x = i;

break;

}

}

}

// if the slot we dropped on was from a tile already

// played on the board, just swap slots with it.

if (tray[x].recall() != null) {

tray[oldx] = tray[x];

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1101
A

P
P

LY
IN

G
JA

V
A

} else {

// we are just rearranging a tile already on the tray.

if (oldx < x) { // shuffle left.

for (int i = oldx ; i < x ; i++) {

tray[i] = tray[i+1];

if (tray[i].recall() == null)

moveToTray(tray[i], i);

}

} else { // shuffle right.

for (int i = oldx ; i > x ; i--) {

tray[i] = tray[i-1];

if (tray[i].recall() == null)

moveToTray(tray[i], i);

}

}

}

tray[x] = l;

moveToTray(l, x);

}

getLetter()
getLetter() is a simple read-only wrapper on the board array.

Letter getLetter(int x, int y) {

return board[y][x];

}

moveLetter()
The moveLetter() method handles the cases where we want to move tiles to board
positions or set them on the tray. If the x,y position is out of range for the board, then
the tray is used. When a letter is moved to the board, it must be a blank slot, otherwise
the letter is sent back to the value stored in orig.

void moveLetter(Letter l, int x, int y) {

if (y > 14 || x > 14 || y < 0 || x < 0) {

// if we are off the board.

if (x > 6)

x = 6;

if (x < 0)

1102 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

x = 0;

dropOnTray(l, x);

} else {

if (board[y][x] != null) {

x = orig.x;

y = orig.y;

} else {

here.x = x;

here.y = y;

unplay(l);

board[y][x] = l;

l.remember(here);

// turn it back into pixels

x = lm + (lw + lt) * x;

y = tm + (lh + lt) * y;

}

l.move(x, y);

}

}

checksize()
This method has a misleading name. checksize() does a lot more than verify the size of
the applet, but it is convenient to do this kind of initialization once, when we confirm
the size of the applet. This method contains the drawing code for the main board
pattern. It paints all of the squares, including the colors and the bonus score text.

private Color bg = new Color(175, 185, 175);

private Color w3 = new Color(255, 50, 100);

private Color w2 = new Color(255, 200, 200);

private Color l3 = new Color(75, 75, 255);

private Color l2 = new Color(150, 200, 255);

private Color tiles[][] = {

{w3, bg, bg, l2, bg, bg, bg, w3},

{bg, w2, bg, bg, bg, l3, bg, bg},

{bg, bg, w2, bg, bg, bg, l2, bg},

{l2, bg, bg, w2, bg, bg, bg, l2},

{bg, bg, bg, bg, w2, bg, bg, bg},

{bg, l3, bg, bg, bg, l3, bg, bg},

{bg, bg, l2, bg, bg, bg, l2, bg},

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1103
A

P
P

LY
IN

G
JA

V
A

{w3, bg, bg, l2, bg, bg, bg, w2}

};

private Dimension checksize() {

Dimension d = getSize();

int w = d.width;

int h = d.height;

if (w < 1 || h < 1)

return d;

if ((offscreen == null) ||

(w != offscreensize.width) ||

(h != offscreensize.height)) {

System.out.println("updating board: " + w + " x " + h + "\r");

offscreen = createImage(w, h);

offscreensize = d;

offGraphics = offscreen.getGraphics();

offscreen2 = createImage(w, h);

offGraphics2 = offscreen2.getGraphics();

offGraphics.setColor(Color.white);

offGraphics.fillRect(0,0,w,h);

// lt is the thickness of the white lines between tiles.

// gaps is the sum of all the whitespace.

// lw, lh are the dimensions of the tiles.

// aw, ah are the dimensions of the entire board

// lm, tm are the left and top margin to center aw, ah in the applet.

lt = 1 + w / 400;

int gaps = lt * 20;

lw = (w - gaps) / 15;

lh = (h - gaps - lt * 2) / 16; // compensating for tray height;

aw = lw * 15 + gaps;

ah = lh * 15 + gaps;

lm = (w - aw) / 2 + lt;

tm = (h - ah - (lt * 2 + lh)) / 2 + lt;

1104 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

offGraphics.setColor(Color.black);

offGraphics.fillRect(lm,tm,aw-2*lt,ah-2*lt);

lm += lt;

tm += lt;

offGraphics.setColor(Color.white);

offGraphics.fillRect(lm,tm,aw-4*lt,ah-4*lt);

lm += lt;

tm += lt;

int sfh = (lh > 30) ? lh / 4 : lh / 2;

Font font = new Font("SansSerif", Font.PLAIN, sfh);

offGraphics.setFont(font);

for (int j = 0, y = tm; j < 15; j++, y += lh + lt) {

for (int i = 0, x = lm; i < 15; i++, x += lw + lt) {

Color c = tiles[j < 8 ? j : 14 - j][i < 8 ? i : 14 - i];

offGraphics.setColor(c);

offGraphics.fillRect(x, y, lw, lh);

offGraphics.setColor(Color.black);

if (lh > 30) {

String td = (c == w2 || c == l2) ? "DOUBLE" :

(c == w3 || c == l3) ? "TRIPLE" : null;

String wl = (c == l2 || c == l3) ? "LETTER" :

(c == w2 || c == w3) ? "WORD" : null;

if (td != null) {

center(offGraphics, td, x, y + 2 + sfh, lw);

center(offGraphics, wl, x, y + 2 * (2 + sfh), lw);

center(offGraphics, "SCORE", x, y + 3 * (2 + sfh), lw);

}

} else {

String td = (c == w2 || c == l2) ? "2" :

(c == w3 || c == l3) ? "3" : null;

String wl = (c == l2 || c == l3) ? "L" :

(c == w2 || c == w3) ? "W" : null;

if (td != null) {

center(offGraphics, td + wl, x,

y + (lh - sfh) * 4 / 10 + sfh, lw);

}

}

}

}

Color c = new Color(255, 255, 200);

offGraphics.setColor(c);

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1105
A

P
P

LY
IN

G
JA

V
A

offGraphics.fillRect(lm, tm + ah - 3 * lt, 7 * (lw + lt), lh +

2 * lt);

Letter.resize(lw, lh);

// if we already have some letters, place them.

for (int i = 0; i < 7; i++) {

if (tray[i] != null) {

moveToTray(tray[i], i);

}

}

paintScore();

}

return d;

}

center()
center() is a convenience routine that checksize() uses to center the “Double Letter
Score” text.

private void center(Graphics g, String s, int x, int y, int w) {

x += (w - g.getFontMetrics().stringWidth(s)) / 2;

g.drawString(s, x, y);

}

paintScore()
The paintScore() method paints the two players’ scores or just the one score in
single-player mode.

private void paintScore() {

int x = lm + (lw + lt) * 7 + lm;

int y = tm + ah - 3 * lt;

int h = lh + 2 * lt;

Font font = new Font("TimesRoman", Font.PLAIN, h/2);

offGraphics.setFont(font);

FontMetrics fm = offGraphics.getFontMetrics();

offGraphics.setColor(Color.white);

offGraphics.fillRect(x, y, aw, h);

offGraphics.setColor(Color.black);

1106 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

if (others_name == null) {

int y0 = (h - fm.getHeight()) / 2 + fm.getAscent();

offGraphics.drawString("Score: " + total_score, x, y + y0);

} else {

h/=2;

int y0 = (h - fm.getHeight()) / 2 + fm.getAscent();

offGraphics.drawString(name + ": " + total_score, x, y + y0);

offGraphics.drawString(others_name + ": " + others_score,

x, y + h + y0);

}

}

private int x0, y0, w0, h0;

selectLetter()
The selectLetter() method checks the mouse position to see if the cursor is over a letter.
If so, it stores that in pick and computes how far the mouse was from the upper-left
corner of the letter, which is stored in dx, dy. It also remembers the original position of
this letter in orig.

private void selectLetter(int x, int y) {

pick = LetterHit(x, y);

if(pick != null) {

dx = pick.x - x;

dy = pick.y - y;

orig.x = pick.x;

orig.y = pick.y;

}

repaint();

}

dropLetter()
In dropLetter(), the user has dropped the letter if he or she was carrying one. It
determines which square on the board the letter was over when it was dropped. It then
calls moveLetter() to attempt to move the letter to that square.

private void dropLetter(int x, int y) {

if(pick != null) {

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1107
A

P
P

LY
IN

G
JA

V
A

// find the center of the tile

x += dx + lw / 2;

y += dy + lh / 2;

// find the tile index

x = (x - lm) / (lw + lt);

y = (y - tm) / (lh + lt);

moveLetter(pick, x, y);

pick = null;

repaint();

}

}

dragLetter()
The dragLetter() method is handled differently than the other mouse-related events.
This is mainly due to performance considerations. The goal is to have as smooth an
interaction with the user as possible. dragLetter() goes to some length to compute the
bounding box of where the tile was before this drag plus where it is now. It then
directly calls paint(getGraphics()). This is nonstandard Java applet programming, but
it performs much more reliably.

private void dragLetter(int x, int y) {

if (pick != null) {

int ox = pick.x;

int oy = pick.y;

pick.move(x + dx, y + dy);

x0 = Math.min(ox, pick.x);

y0 = Math.min(oy, pick.y);

w0 = pick.w + Math.abs(ox - pick.x);

h0 = pick.h + Math.abs(oy - pick.y);

paint(getGraphics());

}

}

mousePressed()
In the following code fragment, notice that MyMouseAdapter is an inner class that
extends MouseAdapter. It overrides the mousePressed() and mouseReleased()
methods.

1108 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The mousePressed() method invokes the selectLetter() method to do the
necessary processing. The x and y coordinates of the current mouse position are
obtained from the argument supplied to the mousePressed() method.

class MyMouseAdapter extends MouseAdapter {

public void mousePressed(MouseEvent me) {

selectLetter(me.getX(), me.getY());

}

mouseReleased()
The mouseReleased() method invokes the dropLetter() method to do the necessary
processing. The x and y coordinates of the current mouse position are obtained from
the argument supplied to the mouseReleased() method.

public void mouseReleased(MouseEvent me) {

dropLetter(me.getX(), me.getY());

}

}

mouseDragged()
In the following code fragment, notice that MyMouseMotionAdapter is an inner class
that extends MouseMotionAdapter. It overrides the mouseDragged() method.

The mouseDragged() method invokes the dragLetter() method to do the necessary
processing. The x and y coordinates of the current mouse position are obtained from
the argument supplied to the mouseDragged() method.

class MyMouseMotionAdapter extends MouseMotionAdapter {

public synchronized void mouseDragged(MouseEvent me) {

dragLetter(me.getX(), me.getY());

}

}

}

Bag.java
The Bag class is very clean compared with Board. It is a simple abstraction for the bag
of letters. When you create a Bag, you pass in a random seed, which allows you to
create two bags that are random but the same by passing in the same random seed. The
random number generator is stored in rand. There are two somewhat strange arrays of
integers, named letter_counts and letter_points. Both arrays are 27 slots long. They

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1109
A

P
P

LY
IN

G
JA

V
A

represent the blank tile in slot 0, and A through Z in 1 through 26. The letter_counts
array says how many of each letter are in a full bag. For example, letter_counts[1] is 9,
which says there are nine A tiles in the bag. Similarly, the letter_points array maps
each letter to its point value. The A tiles are worth only 1 point, and the lone Z is worth
10. There are 100 letters stored in the array called letters. The number of letters actually
left in the bag during game play is stored in n.

import java.util.Random;

class Bag {

private Random rand;

private int letter_counts[] = {

2, 9, 2, 2, 4, 12, 2, 3, 2, 9, 1, 1, 4, 2,

6, 8, 2, 1, 6, 4, 6, 4, 2, 2, 1, 2, 1

};

private int letter_points[] = {

0, 1, 3, 3, 2, 1, 4, 2, 4, 1, 8, 5, 1, 3,

1, 1, 3, 10, 1, 1, 1, 1, 4, 4, 8, 4, 10

};

private Letter letters[] = new Letter[100];

private int n = 0;

Bag()
The Bag constructor takes the seed and makes a Random object out of it. It then scans
through the letter_counts array, making the right number of new Letter objects, being
careful to replace the blank tile with an asterisk. It then calls putBack() for each letter,
to put them in the bag.

Bag(int seed) {

rand = new Random(seed);

for (int i = 0; i < letter_counts.length; i++) {

for (int j = 0; j < letter_counts[i]; j++) {

Letter l = new Letter(i == 0 ? '*' : (char)('A' + i - 1),

letter_points[i]);

putBack(l);

}

}

}

1110 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

takeOut()
This next method is slightly clever and a little inefficient, but in a noncritical way.
takeOut() picks a random number between 0 and n –1. It then extracts the letter at
that offset from the letters array. It closes the hole over that slot in letters using
System.arraycopy(). Then it decrements n and returns the letter.

synchronized Letter takeOut() {

if (n == 0)

return null;

int i = (int)(rand.nextDouble() * n);

Letter l = letters[i];

if (i != n - 1)

System.arraycopy(letters, i + 1, letters, i, n - i - 1);

n--;

return l;

}

putBack()
The putBack() method is used by the constructor to put the tiles in the bag originally.
It could also be used by a future game enhancement that would let players trade in
tiles they were unhappy with in exchange for losing a turn. It simply puts the letter
back at the end of the array.

synchronized void putBack(Letter l) {

letters[n++] = l;

}

}

Letter.java
The Letter class is fairly clean in that it doesn’t know anything about the game or the
board. It merely encapsulates the position and visual rendering of a single letter. It uses
several static variables to hold information about fonts and sizes. This is done so that
the applet doesn’t end up with 100 fonts in memory at once. This has the side effect
that a browser page cannot contain two instances of the Scrabblet applet if they each
have different sizes. The second one to initialize will overwrite the values in these
static variables.

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1111
A

P
P

LY
IN

G
JA

V
A

The w and h variables hold the constant width and height of every letter. The font
and smfont variables are the AWT font objects for the big letter and the smaller point
value. The ints y0 and ys0 store the offset of the baseline of the letter and the points,
respectively. A few constants are provided to be passed back into paint() to describe
which color state to paint in: NORMAL, DIM, and BRIGHT mode.

import java.awt.*;

class Letter {

static int w, h;

private static Font font, smfont;

private static int y0, ys0;

private static int lasth = -1;

static final int NORMAL = 0;

static final int DIM = 1;

static final int BRIGHT = 2;

colors[], mix(), gain(), and clamp()
The colors array is initialized statically with nine color objects—three sets of three
colors. The mix() method is used to take a set of RGB values like 250, 220, 100 and turn
them into three colors, which can be used to provide 3-D–like highlights and lowlights.
The mix() method calls on gain() to boost or decimate the brightness of a given color
and calls on clamp() to make sure it remains in the legal range.

private static Color colors[][] = {

mix(250, 220, 100), // normal

mix(200, 150, 80), // dim

mix(255, 230, 150) // bright

};

private static Color mix(int r, int g, int b)[] {

Color arr[] = new Color[3];

arr[NORMAL] = new Color(r, g, b);

arr[DIM] = gain(arr[0], .71);

arr[BRIGHT] = gain(arr[0], 1.31);

return arr;

}

private static int clamp(double d) {

return (d < 0) ? 0 : ((d > 255) ? 255 : (int) d);

}

1112 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

private static Color gain(Color c, double f) {

return new Color(

clamp(c.getRed() * f),

clamp(c.getGreen() * f),

clamp(c.getBlue() * f));

}

Instance Variables
The valid flag is used to make sure that all of the sizing variables are set up exactly
once, the first time this Letter is painted. There are several variables cached here to
keep from having to do lots of computation each time the applet paints—such as, x0,
w0, xs0, ws0, and gap—which are all explained in the following comments. The tile
Point object is used to remember which square on the 15×15 board this Letter is on. If
this variable is null, then the Letter is not on the board. The x,y pair is used to exactly
locate the Letter.

private boolean valid = false;

// quantized tile position of Letter. (just stored here).

private Point tile = null;

int x, y; // position of Letter.

private int x0; // offset of symbol on tile.

private int w0; // width in pixels of symbol.

private int xs0; // offset of points on tile.

private int ws0; // width in pixels of points.

private int gap = 1; // pixels between symbol and points.

Letter(), getSymbol(), and getPoints()
The symbol is a string that holds the letter displayed, and points is the point value of
this letter. These are both initialized by the only constructor and returned by the
wrapper methods getSymbol() and getPoints(), respectively.

private String symbol;

private int points;

Letter(char s, int p) {

symbol = "" + s;

points = p;

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1113
A

P
P

LY
IN

G
JA

V
A

String getSymbol() {

return symbol;

}

int getPoints() {

return points;

}

move(), remember(), and recall()
The move() method is used to tell this tile where to draw. The remember() method,
however, is more complicated. It can be called with a null, which means that this tile
should “forget” where it was. This indicates that the letter is not in play. Otherwise, it
tells which coordinate on the board this letter is occupying. This state is inspected by a
call to recall().

void move(int x, int y) {

this.x = x;

this.y = y;

}

void remember(Point t) {

if (t == null) {

tile = t;

} else {

tile = new Point(t.x, t.y);

}

}

Point recall() {

return tile;

}

resize()
The resize() method is called once by the board in order to tell every letter how big to
be. Remember, w and h are static, so this affects all Letter instances at once.

static void resize(int w0, int h0) {

w = w0;

h = h0;

}

1114 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

hit()
The hit() method returns true if the xp,yp pair passed in falls inside the bounds of
this Letter.

boolean hit(int xp, int yp) {

return (xp >= x && xp < x + w && yp >= y && yp < y + h);

}

validate()
The validate() method is used to load the fonts to find out how big the letters are,
to decide where to paint them. This information is cached in the private variables
discussed earlier. The results of these calculations are used next in paint().

private int font_ascent;

void validate(Graphics g) {

FontMetrics fm;

if (h != lasth) {

font = new Font("SansSerif", Font.BOLD, (int)(h * .6));

g.setFont(font);

fm = g.getFontMetrics();

font_ascent = fm.getAscent();

y0 = (h - font_ascent) * 4 / 10 + font_ascent;

smfont = new Font("SansSerif", Font.BOLD, (int)(h * .3));

g.setFont(smfont);

fm = g.getFontMetrics();

ys0 = y0 + fm.getAscent() / 2;

lasth = h;

}

if (!valid) {

valid = true;

g.setFont(font);

fm = g.getFontMetrics();

w0 = fm.stringWidth(symbol);

g.setFont(smfont);

fm = g.getFontMetrics();

ws0 = fm.stringWidth("" + points);

int slop = w - (w0 + gap + ws0);

x0 = slop / 2;

if (x0 < 1)

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1115
A

P
P

LY
IN

G
JA

V
A

x0 = 1;

xs0 = x0 + w0 + gap;

if (points > 9)

xs0--;

}

}

paint()
The paint() method is called by the board. It passes in an integer, i, which is one of
NORMAL, BRIGHT, or DIM from this class. That is used as an index into the colors
array to select the base color. A sequence of rectangles is filled to create the appearance
of a 3-D highlighted and shadowed button. If points is greater than zero, indicating a
nonblank letter, then the main letter is drawn, and its point value is drawn next to it.

void paint(Graphics g, int i) {

Color c[] = colors[i];

validate(g);

g.setColor(c[NORMAL]);

g.fillRect(x, y, w, h);

g.setColor(c[BRIGHT]);

g.fillRect(x, y, w - 1, 1);

g.fillRect(x, y + 1, 1, h - 2);

g.setColor(Color.black);

g.fillRect(x, y + h - 1, w, 1);

g.fillRect(x + w - 1, y, 1, h - 1);

g.setColor(c[DIM]);

g.fillRect(x + 1, y + h - 2, w - 2, 1);

g.fillRect(x + w - 2, y + 1, 1, h - 3);

g.setColor(Color.black);

if (points > 0) {

g.setFont(font);

g.drawString(symbol, x + x0, y + y0);

g.setFont(smfont);

g.drawString("" + points, x + xs0, y + ys0);

}

}

}

1116 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

ServerConnection.java
The last class in the client side of this applet is ServerConnection, which encapsulates
the communication with the server and our opponent. There are several variables
declared at the beginning of the class. The socket port number to attach to on the server
is 6564. CRLF is the Internet constant string representing end-of-line. The I/O streams
from and to the server are in and out, respectively. The unique ID by which this
connection is known on the server is stored in id. The ID that we are connected to as
an opponent is stored in toid. The Scrabblet applet we are connecting for is scrabblet.

import java.io.*;

import java.net.*;

import java.util.*;

class ServerConnection implements Runnable {

private static final int port = 6564;

private static final String CRLF = "\r\n";

private BufferedReader in;

private PrintWriter out;

private String id, toid = null;

private Scrabblet scrabblet;

ServerConnection()
The ServerConnection constructor takes the name of an Internet site to attach to and
attempts to open a socket to the right port on that host. If that succeeds, it wraps an
InputStreamReader and a BufferedReader around the input and a PrintWriter around
the output. If the connection fails, an exception is thrown to the caller.

public ServerConnection(Scrabblet sc, String site) throws

IOException {

scrabblet = sc;

Socket server = new Socket(site, port);

in = new BufferedReader(new

InputStreamReader(server.getInputStream()));

out = new PrintWriter(server.getOutputStream(), true);

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1117
A

P
P

LY
IN

G
JA

V
A

readline()
The readline() method is merely a convenience function that converts the IOException
from a readLine() into a simple null return.

private String readline() {

try {

return in.readLine();

} catch (IOException e) {

return null;

}

}

setName() and delete()
The setName() method tells the server to associate this name with us, and the delete()
method is used to remove us from any lists the server is keeping.

void setName(String s) {

out.println("name " + s);

}

void delete() {

out.println("delete " + id);

}

setTo() and send()
The setTo() method binds the ID of the opponent. Future send() calls will go to this
player.

void setTo(String to) {

toid = to;

}

void send(String s) {

if (toid != null)

out.println("to " + toid + " " + s);

}

1118 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

challenge(), accept(), chat(), move(), turn(), and quit()
The following short methods send one-line messages from this client to the server,
which will in turn send those messages on to our opponent. The challenge message is
used to initiate starting a game, and accept is sent in response to a challenge. For each
letter that moves, the move message is sent, and then the turn message is sent at the
end of each turn. If the client quits or leaves the page with the applet on it, it sends the
quit message.

void challenge(String destid) {

setTo(destid);

send("challenge " + id);

}

void accept(String destid, int seed) {

setTo(destid);

send("accept " + id + " " + seed);

}

void chat(String s) {

send("chat " + id + " " + s);

}

void move(String letter, int x, int y) {

send("move " + letter + " " + x + " " + y);

}

void turn(String words, int score) {

send("turn " + score + " " + words);

}

void quit() {

send("quit " + id); // tell other player

out.println("quit"); // unhook

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1119
A

P
P

LY
IN

G
JA

V
A

start()
The next method simply starts the thread that manages the client side of the network.

// reading from server...

private Thread t;

void start() {

t = new Thread(this);

t.start();

}

Keywords
The static variables and static block shown here are used to initialize the keys
Hashtable with a mapping between the strings in keystrings and their position in
the array—for example, keys.get(“move”) == MOVE. The lookup() method takes
care of unpacking the Integer objects into the right int, with –1 meaning the keyword
was not found.

private static final int ID = 1;

private static final int ADD = 2;

private static final int DELETE = 3;

private static final int MOVE = 4;

private static final int CHAT = 5;

private static final int QUIT = 6;

private static final int TURN = 7;

private static final int ACCEPT = 8;

private static final int CHALLENGE = 9;

private static Hashtable keys = new Hashtable();

private static String keystrings[] = {

"", "id", "add", "delete", "move", "chat",

"quit", "turn", "accept", "challenge"

};

static {

1120 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

for (int i = 0; i < keystrings.length; i++)

keys.put(keystrings[i], new Integer(i));

}

private int lookup(String s) {

Integer i = (Integer) keys.get(s);

return i == null ? -1 : i.intValue();

}

run()
run() is the main loop of the game’s connection to the server. It goes into a blocking
call to readline() that will return with a String whenever a line of text comes from the
server. It uses a StringTokenizer to break the line into words. The switch statement
dispatches us to the right code, based on the first word in the input line. Each of the
keywords in the protocol parses the input line differently, and most of them make
method calls back into the Scrabblet class to do their work.

public void run() {

String s;

StringTokenizer st;

while ((s = readline()) != null) {

st = new StringTokenizer(s);

String keyword = st.nextToken();

switch (lookup(keyword)) {

default:

System.out.println("bogus keyword: " + keyword + "\r");

break;

case ID:

id = st.nextToken();

break;

case ADD: {

String id = st.nextToken();

String hostname = st.nextToken();

String name = st.nextToken(CRLF);

scrabblet.add(id, hostname, name);

}

break;

case DELETE:

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1121
A

P
P

LY
IN

G
JA

V
A

scrabblet.delete(st.nextToken());

break;

case MOVE: {

String ch = st.nextToken();

int x = Integer.parseInt(st.nextToken());

int y = Integer.parseInt(st.nextToken());

scrabblet.move(ch, x, y);

}

break;

case CHAT: {

String from = st.nextToken();

scrabblet.chat(from, st.nextToken(CRLF));

}

break;

case QUIT: {

String from = st.nextToken();

scrabblet.quit(from);

}

break;

case TURN: {

int score = Integer.parseInt(st.nextToken());

scrabblet.turn(score, st.nextToken(CRLF));

}

break;

case ACCEPT: {

String from = st.nextToken();

int seed = Integer.parseInt(st.nextToken());

scrabblet.accept(from, seed);

}

break;

case CHALLENGE: {

String from = st.nextToken();

scrabblet.challenge(from);

}

break;

}

}

}

}

1122 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The Server Code
These last two classes are not part of this applet. Rather, they must be installed and
run separately on the web server that the applet classes are to be loaded from. This
will require the security rights to install and run so-called daemon processes on the
web site, which not many people have. Fortunately, most users of this game will not
be setting up their own servers; more likely, they will just play games connected to
existing ones.

Server.java
Server is the main class for the server side of Scrabblet. Once this is installed on the
web server, you have to run it using the command-line Java interpreter for that system,
as shown here:

C:\java\Scrabblet> java Server

Once running, Server will respond with the following message:

Server listening on port 6564

The Server class starts out by declaring a few variables. The port has to be the same
number, 6564, as we saw in ServerConnection. The idcon Hashtable is used to store
all of the connections to all of the clients. We use a hash table rather than an array to
manage frequent insertion and deletion, which require lots of array copying. The id is
incremented for each new connection. This corresponds to the id instance variable we
saw earlier in the client.

import java.net.*;

import java.io.*;

import java.util.*;

public class Server implements Runnable {

private int port = 6564;

private Hashtable idcon = new Hashtable();

private int id = 0;

static final String CRLF = "\r\n";

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1123
A

P
P

LY
IN

G
JA

V
A

addConnection()
The addConnection() method is called every time a new client connects to our applet.
This method creates a new instance of ClientConnection, described next, to manage
the client. It passes in a reference to this Server, the socket the client connected with,
and the current value of id. Finally, it increments the id to have it ready for the next
connection.

synchronized void addConnection(Socket s) {

ClientConnection con = new ClientConnection(this, s, id);

// we will wait for the ClientConnection to do a clean

// handshake setting up its "name" before calling

// set() below, which makes this connection "live."

id++;

}

set()
The set() method is called from ClientConnection in response to the client telling
us its “name.” set() tracks all of the connections in the idcon hash table, and first it
removes this id from the table so that it won’t get duplicates if the client sends its
name twice. The method calls setBusy(false) to signify that this connection is available
to play a game. Then it walks through all of the other connections by enumerating the
keys of the idcon hash table. For all nonbusy connections (those players waiting for
an opponent), set() sends an “add” protocol message so they will all know about this
connection.

synchronized void set(String the_id, ClientConnection con) {

idcon.remove(the_id) ; // make sure we're not in there twice.

con.setBusy(false);

// tell this one about the other clients.

Enumeration e = idcon.keys();

while (e.hasMoreElements()) {

String id = (String)e.nextElement();

ClientConnection other = (ClientConnection) idcon.get(id);

if (!other.isBusy())

con.write("add " + other + CRLF);

}

idcon.put(the_id, con);

broadcast(the_id, "add " + con);

}

1124 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

sendto()
sendto() is called in response to a “to” protocol message. It writes whatever is in the
body string directly to the connection identified by dest.

synchronized void sendto(String dest, String body) {

ClientConnection con = (ClientConnection)idcon.get(dest);

if (con != null) {

con.write(body + CRLF);

}

}

broadcast()
The broadcast() method is used to send a single message, in body, to every single
connection except the one identified in exclude (typically, the sender).

synchronized void broadcast(String exclude, String body) {

Enumeration e = idcon.keys();

while (e.hasMoreElements()) {

String id = (String)e.nextElement();

if (!exclude.equals(id)) {

ClientConnection con = (ClientConnection) idcon.get(id);

con.write(body + CRLF);

}

}

}

delete()
The delete() method is used to tell all of the connected clients to forget they ever heard
of the_id. This is used by clients that are engaged in a game to remove themselves from
other players’ eligibility lists.

synchronized void delete(String the_id) {

broadcast(the_id, "delete " + the_id);

}

kill()
The kill() method is called whenever a client explicitly quits, sending the “quit”
message, or when a client simply dies if the browser quits.

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1125
A

P
P

LY
IN

G
JA

V
A

synchronized void kill(ClientConnection c) {

if (idcon.remove(c.getId()) == c) {

delete(c.getId());

}

}

run()
The run() method is the main loop of the server. It creates a new socket on port 6564
and goes into an infinite loop accepting socket connections from clients. It calls
addConnection() with each socket that it accepts.

public void run() {

try {

ServerSocket acceptSocket = new ServerSocket(port);

System.out.println("Server listening on port " + port);

while (true) {

Socket s = acceptSocket.accept();

addConnection(s);

}

} catch (IOException e) {

System.out.println("accept loop IOException: " + e);

}

}

main()
main() is, of course, the method run by the Java command-line interpreter. It creates a
new instance of Server and launches a new Thread to run it.

public static void main(String args[]) {

new Thread(new Server()).start();

try {

Thread.currentThread().join();

} catch (InterruptedException e) { }

}

}

1126 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

ClientConnection.java
This class is the mirror image of ServerConnection in the applet. One of these is
created for each client. Its job is to manage all of the I/O to and from a client. The
private instance variables hold all of the states about this client. The Socket is stored in
sock. The buffered reader and output streams are stored in in and out. The host name
of the client machine is kept in host. A reference to the Server instance that created this
client is held in server. The name of the player on this client is stored in name, while
the player’s automatically assigned ID number is held in id. The busy Boolean variable
stores whether or not this client is actively engaged in a game.

import java.net.*;

import java.io.*;

import java.util.*;

class ClientConnection implements Runnable {

private Socket sock;

private BufferedReader in;

private OutputStream out;

private String host;

private Server server;

private static final String CRLF = "\r\n";

private String name = null; // for humans

private String id;

private boolean busy = false;

ClientConnection()
The constructor saves the reference to the server and socket and remembers the unique
ID. We wrap an InputStreamReader and a BufferedReader around the input so that it
can call readLine() on it. Then it writes the id back to the client to let it know what
number it is. Finally, it creates and starts a new Thread to handle this connection.

public ClientConnection(Server srv, Socket s, int i) {

try {

server = srv;

sock = s;

in = new BufferedReader(new

InputStreamReader(s.getInputStream()));

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1127
A

P
P

LY
IN

G
JA

V
A

out = s.getOutputStream();

host = s.getInetAddress().getHostName();

id = "" + i;

// tell the new one who it is...

write("id " + id + CRLF);

new Thread(this).start();

} catch (IOException e) {

System.out.println("failed ClientConnection " + e);

}

}

toString()
We override toString() so that we can have a clean representation of this connection
for logging.

public String toString() {

return id + " " + host + " " + name;

}

getHost(), getId(), isBusy(), and setBusy()
We wrap host, id, and busy in public methods to allow read-only access.

public String getHost() {

return host;

}

public String getId() {

return id;

}

public boolean isBusy() {

return busy;

}

public void setBusy(boolean b) {

busy = b;

}

1128 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

close()
The close() method is called if the client explicitly quits or if we get an exception
reading from the socket. We call kill() in the server, which removes us from any lists.
Then we close the socket, which also closes both the input and output streams.

public void close() {

server.kill(this);

try {

sock.close(); // closes in and out too.

} catch (IOException e) { }

}

write()
To write a string to a stream, we have to convert it to an array of bytes, using
getBytes().

public void write(String s) {

byte buf[];

buf = s.getBytes();

try {

out.write(buf, 0, buf.length);

} catch (IOException e) {

close();

}

}

readline()
The readline() method merely converts the IOException from readLine() into a null
return value.

private String readline() {

try {

return in.readLine();

} catch (IOException e) {

return null;

}

}

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1129
A

P
P

LY
IN

G
JA

V
A

Keywords
This section is very similar to the same part of the ServerConnection class, which
represents the other end of the wire. The static variables and static block shown here
are used to initialize the keys Hashtable with a mapping between the strings in
keystrings and their position in the array—for example, keys.get(“quit”) == QUIT.
The lookup() method takes care of unpacking the Integer objects into the right int,
with –1 meaning the keyword was not found.

static private final int NAME = 1;

static private final int QUIT = 2;

static private final int TO = 3;

static private final int DELETE = 4;

static private Hashtable keys = new Hashtable();

static private String keystrings[] = {

"", "name", "quit", "to", "delete"

};

static {

for (int i = 0; i < keystrings.length; i++)

keys.put(keystrings[i], new Integer(i));

}

private int lookup(String s) {

Integer i = (Integer) keys.get(s);

return i == null ? -1 : i.intValue();

}

run()
run() has the loop that manages all of the communication with this client. It uses a
StringTokenizer to parse the input lines, keying off of the first word in each line. The
lookup() method just shown is used to look up these first words in the keys hash
table. We then switch, based on the integer value of the keyword. The NAME
message comes from clients when they first gain a human identity. We call set() in
the server to get this connection set up. The QUIT message is sent when the client
wants to end its server session. The TO message contains a destination ID and a
message body to be sent to that client. We call sendto() in the server to pass the
message along. The last message is DELETE, which is sent by clients that want to
continue being connected but no longer want to have their names listed as available
to play. run() sets the busy flag and calls delete() in the server, which notifies the
clients that we don’t want to be called.

1130 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public void run() {

String s;

StringTokenizer st;

while ((s = readline()) != null) {

st = new StringTokenizer(s);

String keyword = st.nextToken();

switch (lookup(keyword)) {

default:

System.out.println("bogus keyword: " + keyword + "\r");

break;

case NAME:

name = st.nextToken() +

(st.hasMoreTokens() ? " " + st.nextToken(CRLF) : "");

System.out.println("[" + new Date() + "] " + this + "\r");

server.set(id, this);

break;

case QUIT:

close();

return;

case TO:

String dest = st.nextToken();

String body = st.nextToken(CRLF);

server.sendto(dest, body);

break;

case DELETE:

busy = true;

server.delete(id);

break;

}

}

close();

}

}

Enhancing Scrabblet
This applet represents a complete client/server, multiplayer board game. In the future,
the code in Server and ServerConnection could be extended in many ways. It could be
used to support other turn-based games. It could track and maintain a high-score list
for each game. It could be dynamically extensible to understand new protocol verbs.

C h a p t e r 3 2 : S c r a b b l e t : A M u l t i p l a y e r W o r d G a m e 1131
A

P
P

LY
IN

G
JA

V
A

One such example for the game described in this chapter would be to have a lookup
function that checked a series of submitted words against a dictionary stored on the
server. The server could then be the arbiter for such disputes as whether xyzy is a valid
word. You could also construct a word robot, which would reside on the server but act
like another player and use the dictionary to generate the best word placement from its
current set of seven letters. It could even use a list of pithy quotes to throw into the chat
window after each move. You might want to try making some of these enhancements
yourself.

This applet is intended for entertainment and educational purposes. Any similarity
to any and all commercial products is merely coincidental.

1132 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Appendix A
Using Java’s
Documentation
Comments

1133

As explained in Part I, Java supports three types of comments. The first two are
the // and the /* */. The third type is called a documentation comment. It begins
with the character sequence /**. It ends with */. Documentation comments allow

you to embed information about your program into the program itself. You can then
use the javadoc utility program to extract the information and put it into an HTML file.
Documentation comments make it convenient to document your programs. You have
almost certainly seen documentation generated with javadoc, because that is the way
the Java API library was documented by Sun.

The javadoc Tags
The javadoc utility recognizes the following tags:

Tag Meaning

@author Identifies the author of a class.

@deprecated Specifies that a class or member is deprecated.

{@docRoot} Specifies the path to the root directory of the current
documentation (added by Java 2, version 1.3).

@exception Identifies an exception thrown by a method.

{@inheritDoc} Inherits a comment from the immediate superclass. (Added by
Java 2, version 1.4, but not currently implemented.)

{@link} Inserts an in-line link to another topic.

{@linkplain} Inserts an in-line link to another topic, but the link is displayed
in a plain-text font. (Added by Java 2, version 1.4.)

@param Documents a method’s parameter.

@return Documents a method’s return value.

@see Specifies a link to another topic.

@serial Documents a default serializable field.

@serialData Documents the data written by the writeObject()
or writeExternal() methods.

@serialField Documents an ObjectStreamField component.

@since States the release when a specific change was introduced.

@throws Same as @exception.

{@value} Displays the value of a constant, which must be a static field.
(Added by Java 2, version 1.4.)

@version Specifies the version of a class.

1134 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As you can see, all document tags begin with an at sign (@). You may also use
other, standard HTML tags in a documentation comment. However, some tags, such as
headings, should not be used, because they disrupt the look of the HTML file produced
by javadoc.

You can use documentation comments to document classes, interfaces, fields,
constructors, and methods. In all cases, the documentation comment must immediately
precede the item being documented. When you are documenting a variable, the
documentation tags you can use are @see, @since, @serial, @serialField, {@value},
and @deprecated. For classes, you can use @see, @author, @since, @deprecated, and
@version. Methods can be documented with @see, @return, @param, @since,
@deprecated, @throws, @serialData, {@inheritDoc}, and @exception. A {@link},
{@docRoot}, or {@linkplain} tag can be used anywhere. Each tag is examined next.

@author
The @author tag documents the author of a class. It has the following syntax:

@author description

Here, description will usually be the name of the person who wrote the class. The
@author tag can be used only in documentation for a class. You may need to specify
the -author option when executing javadoc in order for the @author field to be
included in the HTML documentation.

@deprecated
The @deprecated tag specifies that a class or a member is deprecated. It is recommended
that you include @see or {@link} tags to inform the programmer about available
alternatives. The syntax is the following:

@deprecated description

Here, description is the message that describes the deprecation. Information specified by
the @deprecated tag is recognized by the compiler and is included in the .class file that
is generated. Therefore, the programmer can be given this information when compiling
Java source files. The @deprecated tag can be used in documentation for variables,
methods, and classes.

{@docRoot}
{@docRoot} specifies the path to the root directory of the current documentation.

@exception
The @exception tag describes an exception to a method. It has the following syntax:

@exception exception-name explanation

A p p e n d i x A : U s i n g J a v a ’ s D o c u m e n t a t i o n C o m m e n t s 1135

Here, the fully qualified name of the exception is specified by exception-name;
explanation is a string that describes how the exception can occur. The @exception
tag can only be used in documentation for a method.

{@inheritDoc}
Inherits a comment from the immediate surperclass. (Not currently implemented by
Java 2, version 1.4)

{@link}
The {@link} tag provides an in-line link to additional information. It has the following
syntax:

{@link name text}

Here, name is the name of a class or method to which a link is added, and text is the
string that is displayed.

{@linkplain}
Inserts an in-line link to another topic. The link is displayed in plain-text font. Otherwise,
it is similar to {@link}.

@param
The @param tag documents a parameter to a method. It has the following syntax:

@param parameter-name explanation

Here, parameter-name specifies the name of a parameter to a method. The meaning of
that parameter is described by explanation. The @param tag can be used only in
documentation for a method.

@return
The @return tag describes the return value of a method. It has the following syntax:

@return explanation

Here, explanation describes the type and meaning of the value returned by a method.
The @return tag can be used only in documentation for a method.

@see
The @see tag provides a reference to additional information. Its most commonly used
forms are shown here.

1136 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

@see anchor
@see pkg.class#member text

In the first form, anchor is a link to an absolute or relative URL. In the second form,
pkg.class#member specifies the name of the item, and text is the text displayed for that
item. The text parameter is optional, and if not used, then the item specified by
pkg.class#member is displayed. The member name, too, is optional. Thus, you can
specify a reference to a package, class, or interface in addition to a reference to a
specific method or field. The name can be fully qualified or partially qualified.
However, the dot that precedes the member name (if it exists) must be replaced by
a hash character.

@serial
The @serial tag defines the comment for a default serializable field. It has the
following syntax:

@serial description

Here, description is the comment for that field.

@serialData
The @serialData tag documents the data written by the writeObject() and writeExternal()
methods. It has the following syntax:

@serialData description

Here, description is the comment for that data.

@serialField
The @serialField tag provides comments for an ObjectStreamField component. It has
the following syntax:

@serialField name type description

Here, name is the name of the field, type is its type, and description is the comment for
that field.

@since
The @since tag states that a class or member was introduced in a specific release. It has
the following syntax:

@since release

A p p e n d i x A : U s i n g J a v a ’ s D o c u m e n t a t i o n C o m m e n t s 1137

Here, release is a string that designates the release or version in which this feature
became available. The @since tag can be used in documentation for variables, methods,
and classes.

@throws
The @throws tag has the same meaning as the @exception tag.

{@value}
Displays the value of a constant, which must be a static field.

@version
The @version tag specifies the version of a class. It has the following syntax:

@version info

Here, info is a string that contains version information, typically a version number,
such as 2.2. The @version tag can be used only in documentation for a class. You may
need to specify the -version option when executing javadoc in order for the @version
field to be included in the HTML documentation.

The General Form of a Documentation
Comment
After the beginning /**, the first line or lines become the main description of your class,
variable, or method. After that, you can include one or more of the various @ tags. Each
@ tag must start at the beginning of a new line or follow an asterisk (*) that is at the
start of a line. Multiple tags of the same type should be grouped together. For example,
if you have three @see tags, put them one after the other.

Here is an example of a documentation comment for a class:

/**

* This class draws a bar chart.

* @author Herbert Schildt

* @version 3.2

*/

What javadoc Outputs
The javadoc program takes as input your Java program’s source file and outputs
several HTML files that contain the program’s documentation. Information about each

1138 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class will be in its own HTML file. javadoc will also output an index and a hierarchy
tree. Other HTML files can be generated. Since different implementations of javadoc
may work differently, you will need to check the instructions that accompany your
Java development system for details specific to your version.

An Example that Uses Documentation
Comments
Following is a sample program that uses documentation comments. Notice the way
each comment immediately precedes the item that it describes. After being processed
by javadoc, the documentation about the SquareNum class will be found in
SquareNum.html.

import java.io.*;

/**

* This class demonstrates documentation comments.

* @author Herbert Schildt

* @version 1.2

*/

public class SquareNum {

/**

* This method returns the square of num.

* This is a multiline description. You can use

* as many lines as you like.

* @param num The value to be squared.

* @return num squared.

*/

public double square(double num) {

return num * num;

}

/**

* This method inputs a number from the user.

* @return The value input as a double.

* @exception IOException On input error.

* @see IOException

*/

public double getNumber() throws IOException {

// create a BufferedReader using System.in

InputStreamReader isr = new InputStreamReader(System.in);

A p p e n d i x A : U s i n g J a v a ’ s D o c u m e n t a t i o n C o m m e n t s 1139

BufferedReader inData = new BufferedReader(isr);

String str;

str = inData.readLine();

return (new Double(str)).doubleValue();

}

/**

* This method demonstrates square().

* @param args Unused.

* @return Nothing.

* @exception IOException On input error.

* @see IOException

*/

public static void main(String args[])

throws IOException

{

SquareNum ob = new SquareNum();

double val;

System.out.println("Enter value to be squared: ");

val = ob.getNumber();

val = ob.square(val);

System.out.println("Squared value is " + val);

}

}

1140 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Index

& (bitwise AND), 80, 82
& (Boolean logical AND), 92, 94
&& (short-circuit AND), 92
* (multiplication), 31, 74
* (regular expression quantifier),

861
* (used in import statement), 233
@ tags (javadoc), 1134–1138
| (bitwise OR), 80, 82
| (Boolean logical OR), 92
|| (short-circuit OR), 92
[], 38, 861, 866
^ (bitwise exclusive OR), 80, 82, 83
^ (Boolean logical exclusive OR), 92
:, 123
, (comma), 38, 116–117
{ }, 27, 28, 35, 38, 63, 254
=, 31, 94–95
= = (relational operator), 90, 91

versus equals(), 359
= = (Boolean operator), 92
!, 92
!=, 90, 91, 92
/, 74
/* */, 27
/** */, 38, 1134
//, 27–28
<, 91
<<, 80, 84–86
<=, 91

–, 74
– –, 35, 74, 78–80
%, 74, 76
(), 38, 96–98
. (dot operator), 132, 140, 177–178
. (regular expression wildcard

character), 861, 865
. (separator), 38, 232, 233
+ (addition), 74
+ (concatenation operator), 31, 185,

352–353, 372, 373
+ (regular expression quantifier),

861, 864–865
++, 34–35, 74, 78–80
? (regular expression quantifier),

861, 865–866
?:, 92, 95–96
>, 90
>>, 80, 86–87
>>>, 80, 87–89
>=, 91
; (semicolon), 29, 38, 110
~, 80, 82

A
abs(), 159
abstract type modifier, 216, 220
Abstract Window Toolkit (AWT),

314, 329, 331, 628, 632, 688, 736

and applet architecture,
631–632

classes, table of, 688–691
components, extending,

790–797
creating stand-alone

windows with, 702–704
AbstractButton class, 927
AbstractCollection class, 448
AbstractList class, 448
AbstractMap class, 466, 467
AbstractSequentialList class, 448
AbstractSet class, 449
accept(), 543, 545, 602
Access control, 172–176

example program, 229–232
and packages, 224, 227–228

Access specifiers, 28, 172, 227–228
Accessibility API, 948
acos(), 420
ActionEvent class, 657, 658–659,

739, 752, 777
ActionListener interface, 669, 670,

739, 752, 777
actionPerformed(), 670, 739
Adapter classes, 680–682
add(), 443, 445, 446, 447, 454, 455,

692, 736–737, 748, 751, 767, 772,
777

addAll(), 443, 445, 446

1141

addCookie(), 965, 967, 975
addElement(), 486, 488
addFirst(), 453
addImage(), 811
addLast(), 453, 454
addMouseListener(), 676
addMouseMotionListener(), 676
addTypeListener(), 655–656
AdjustmentEvent class, 657,

659–660, 756
AdjustmentListener interface, 669,

670, 756
adjustmentValueChanged(), 670
after(), 512, 514
Algorithms, collection, 441,

475–480
ALIGN, 644
allocate(), 850, 851–852
ALT, 643
AND operator

bitwise (&), 80, 82
Boolean logical (&), 92, 94
short-circuit (&&), 92, 93–94

Animation, cell, 837–841
Apache Software Foundation, 951
append(), 372–373, 762
Applet, 10, 328–331

architecture, 632
basics, 628–629
colors, setting and

obtaining, 636–638
executing, 330–331
and the Internet, 10
and main(), 29, 131, 329, 331
outputting to console, 652
passing parameters to,

644–649
request for repaint, 638–641
skeleton, 632–635
and socket connections, 595
string output to, 636
versus application, 10
viewer, 330–331

Applet class, 329, 628–652, 692
methods, table of, 629–631

applet package, 314, 328
applet tag, 16
APPLET tag, HTML, 330–331,

628–629
full syntax for, 643–644

AppletContext interface, 628,
649–651, 1048

methods, table of, 650
AppletStub interface, 628, 652
appletviewer, 330, 628

status window, using, 642

Application builder tools, 887–888
Application versus applet, 10
AreaAveragingScaleFilter class, 821
areFieldsSet, 514
Arguments, 138, 143

command-line, 188
passing, 165–167

Arithmetic operators, 74–80
ArithmeticException, 252, 253, 265
Array(s), 28, 61–70

boundary checks, 64
copying, 408, 411
declaration syntax,

alternative, 70
dynamic, 449–451, 485
initializing, 63–64, 68–69
length instance variable of,

179–181
multidimensional, 64–70
one-dimensional, 61–64
of strings, 187
and strings, 52, 70

arraycopy(), 408, 411
ArrayIndexOutOfBoundsExceptio

n, 256, 265, 482, 483
ArrayList class, 448, 449–452, 462
Arrays class, 480–484
ArrayStoreException, 265
ASCII character set, 47, 48, 51

and the Internet, 350, 356
asin(), 420
asList(), 480
Assembly language, 4, 5
assert(), 16, 39, 340–343
Assertion, 340–344
AssertionError, 340
Assignment operator(s)

=, 31, 94–95
arithmetic (op=), 74, 76–78
bitwise, 80, 89–90
Boolean, 92

atan(), 420
atan2(), 420
AudioClip interface, 628, 651
available(), 548
AWT. See Abstract Window Toolkit
AWTEvent class, 656–657

bit mask constants, 791

B
B, 4, 5
BASIC, 5
BCPL, 5
Bean Builder, 888, 911–920
Bean Developer Kit (BDK), 888–891

BeanBox, 888
BeanDescriptor class, 907, 909–911
BeanInfo interface, 903–904, 907,

910–911
Beans, Java. See Java Beans
before(), 512, 514
Bell curve, 525
Berkeley Software Distribution

(BSD), 588
Berners-Lee, Tim, 597
Beyond Photography, The Digital

Darkroom (Holzmann), 816
binarySearch(), 481
BitSet class, 508–511

methods, table of, 508–510
Bitwise operators, 80–90
Blocks, code. See Code blocks
Boolean

literals, 51
logical operators, 92–94

Boolean class, 401
methods, table of, 401

boolean data type, 42, 48–49
and relational operators, 91

BorderLayout class, 766–768
Borenstein, Nat, 602
break statement, 100, 104, 105–107,

120–124
as form of goto, 122–124

Buffer class, 847–850
methods, table of, 848

Buffer(s), NIO, 847–850
BufferedInputStream class, 316,

555–557
BufferedOutputStream class, 316,

557
BufferedReader class, 318–319, 320,

321, 569–570
BufferedWriter class, 570–571
Buffering, double, 807–811
Button class, 739

extending, 792
Buttons, Swing, 927–934
Byte class, 387, 396, 397

methods defined by, table
of, 387–389

byte data type, 42, 43, 44, 50
ByteArrayInputStream class,

552–553
ByteArrayOutputStream class,

553–554
ByteBuffer class, 848–850, 851, 852

get() and put() methods,
table of, 849

Bytecode, 11–12, 14, 26, 422
byteValue(), 381

1142 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C
C, history of, 4–6

and Java, 4, 6, 8, 13
C Programming Language, The

(Kernighan and Ritchie), 5
C++

code, converting to Java,
985–1003

features not in Java, 982–983
history of, 6–7
and Java, 4, 7, 8, 9, 13
Java features not in, 984–985

C# and Java, 9
Calendar class, 514–518, 524

methods defined by, table
of, 515–517

Call-by-reference, 165, 166–167
Call-by-value, 165–166, 167
cancel(), 532, 533
Canvas class, 693
capacity(), 369–370
capacityIncrement Vector data

member, 485–486
CardLayout class, 772–775
Case-sensitivity and Java, 26, 28, 37
case statement, 104, 105, 107, 108
Casts, 57–59, 60

using instanceof with,
332–335

catch block(s), 250, 253–254
displaying exception

description within,
254–255

using multiple, 255–257
CGI (Common Gateway

Interface), 950
Channel(s), 550, 551, 562, 596, 602,

847, 850–851
char data type, 42, 47–48, 74
Character(s), 42, 47–48

changing case of, 367–368
classes (regular

expressions), 861, 866
escape sequences, table of, 51
extracting, 355–356
literals, 51

Character class, 397–401
methods, table of, 399–400

Character.Subset class, 380, 401
Character.Unicode class, 380, 401
CharArrayReader class, 566–567
CharArrayWriter class, 567–568
charAt(), 186–187, 355, 371
CharBuffer class, 436
Charsets, 851

CharSequence interface, 345, 380,
436, 860

charValue(), 397
Check boxes, 743–747

Swing, 930–932
checkAll(), 812
Checkbox class, 743

extending, 793
CheckboxGroup class, 745–747

extending, 794
CheckboxMenuItem class, 775, 777
checkID(), 812
Choice class, 748

extending, 795
Choice controls, 748–750
Class(es), 130–154

abstract, 216–219, 220, 239
access levels of, 228
adapter, 680–682
and code, 26, 228
in collections, storing

user-defined, 460–462
constructor. See

Constructor
definition of, 20
final, 220
general form of, 130–131
inner, 181–184, 682–685
and interfaces, 235, 236–237
libraries, 25, 39
member. See Member, class
name and source file

name, 26
nested, 181
packages as containers for,

224, 227
public, 228
scope, 54

Class class, 416–419, 869, 872
methods, table of, 416–417

.class file, 26, 133
class keyword, 27, 130
ClassCastException, 265, 400, 443,

445, 447, 463, 465, 471, 475, 481,
482, 483

ClassLoader class, 419
methods, table of, 419

ClassNotFoundException, 266
CLASSPATH, 226, 227
clear(), 443, 445
Client/server model, 589
clone(), 221, 412–415
Cloneable interface, 380,

412–415, 508
CloneNotSupportedException,

266, 412

close(), 314, 325
COBOL, 5
CODE, 643
Code blocks, 35–37
CODEBASE, 643
Collection(s), 440–504

algorithms, 475–480
classes, 448–457
framework overview,

441–442
interfaces, 440, 441–448
and legacy classes and

interfaces, 484
modifiable vs unmodifiable,

442–443
storing user-defined classes

in, 460–462
and synchronization, 475, 484
when to use, 504

Collection interface, 442, 443–445
methods defined by, table

of, 443–444
Collections class, 441, 475–480

algorithms defined by, table
of, 476–479

Collection-view, 442, 464
Color class, 712–715

constants 636
ColorsBeanInfo class, 903
Combo boxes, Swing, 934–936
Comment, 27–28

documentation, 38,
1134–1140

Common Gateway interface
(CGI), 950

Comparable interface, 380, 436,
512, 514, 542

Comparator(s), 471–475
Comparator interface, 442, 471–472
compare(), 471, 472–475
compareTo(), 359–361, 400–401,

436, 514, 542
compareToIgnoreCase(), 361
Compilation unit, 25
compile(), 859–860
Compiler, Java, 26
Compiler class, 423
Component class, 629, 654, 691,

736, 801
componentAdded(), 670
ComponentEvent class, 657, 660
componentHidden(), 670
ComponentListener interface, 669,

670
componentMoved(), 670
componentRemoved(), 670

I n d e x 1143

componentResized(), 670
componentShown(), 670
concat(), 364
Constants, 37
Constructor(s), 145–149

in class hierarchy, order of
calling, 207–208

default, 136, 147
object parameters for,

163–165
overloading, 159–162
parameterized, 147–149
and super, 197–202, 206

Constructor class, 869–870
Container class, 629, 692, 763
ContainerEvent class, 657, 660
ContainerListener interface,

669, 670
contains(), 443, 445, 455
containsAll(), 443, 445
Content pane, 923
contentEquals(), 368
Context switching, 311

rules for, 275–276
continue statement, 100, 124–126
Control statements, 100–127
Controls, 736–775

fundamentals, 736–737
Convolution filters, 824, 831–837
Cookie class, 963, 967–968

methods, table of, 968–969
Cookies, example servlet using,

975–977
cos(), 420
countStackFrames(), 424
createImage(), 801
CropImageFilter class, 821–823
Currency class, 534–535

methods, table of, 535
currentThread(), 278
currentTimeMillis(), 408, 410–411

D
Data type(s)

casting, 57–59, 60
class as, 130, 131
conversion, automatic, 42,

57, 157–159
conversion into string

representation, 353–354,
366–367, 397

promotion of, 44, 59–61
simple, 42–43
wrappers for simple,

380–398

DatagramPacket class, 624
Datagrams, 623–626

server/client example,
624–626

DatagramSocket class, 624, 626
DataInput interface, 561
DataInputStream class, 316
DataOutput interface, 561
DataOutputStream class, 316
Date class, 512–514

methods, table of, 512–513
object comparisons, 514

DateFormat class, 524, 878–879
Decrement operator (– –), 35, 74,

78–80
default statement, 104
DefaultMutableTreeNode class, 942
Delegation event model, 654–656

and Beans, 896–897
event listeners, 654, 656,

669–672
event sources, 654, 655–656,

668–669
using, 673–680

delete operator, 150
delete(), 374–375, 541
deleteCharAt(), 374–375
deleteOnExit(), 541
destroy(), 407, 632, 634, 635, 951,

955, 956
Destructors versus finalize(), 151,

1003–1007
Dialog boxes, 782–790

file, 788–790
Dialog class, 783
Dictionary class, 492–494

abstract methods, table
of, 493

digit(), 400
Dimension class, 689, 694, 711
Directories as File objects, 539,

542–543
creating, 545

dispose(), 783
DLL, 339, 340
do-while loop, 111–114
Document/view, 531
Domain Naming Service (DNS), 591
DOS and Java, 25
Dot operator (.), 132, 140, 177–178
Double buffering, 807–811
Double class, 381–382, 386

methods, table of, 384–385
double data type, 42, 46–47, 50
doubleValue(), 381
Drag-and-Drop API, 948

drawArc(), 709–710
drawImage(), 802, 809
drawLine(), 705–706
drawOval(), 708
drawPolygon(), 710–711
drawRect(), 706
drawRoundRect(), 706–707
drawString(), 329, 628, 636, 724
Dynamic link library (DLL), 339, 340
Dynamic method dispatch,

211–216
DynamicBillboard applet,

1012–1046

E
E (double constant), 420
Early binding, 220
echoCharIsSet(), 759
Edit control, 758
elementAt(), 486, 488
elementCount Vector data

member, 485–486
elementData[] Vector data

member, 485–486
elements(), 493
else, 100–104
empty(), 490, 491
EMPTY_LIST static variable, 479
EMPTY_MAP static variable, 479
EMPTY_SET static variable, 479
EmptyStackException, 490, 492
enableEvents(), 790–791
Encapsulation, 19–20, 24–25,

151–152
and access control, 172

end(), 860
Endian format, 44
endsWith(), 358
ensureCapacity(), 370, 451
entrySet(), 463, 464, 466, 468
enumerate(), 427, 432
Enumeration interface, 484–485

program demonstrating,
488–490

Environment properties, list of, 412
eolIsSignificant(), 575
equals(), 186–187, 221, 357, 401,

443, 445, 471, 472, 482, 494, 513,
514, 594

versus = =, 349
equalsIgnoreCase(), 357
err, 318, 407
Error class, 251, 261, 270
Errors, run-time, 13, 14, 250
Event, definition of, 655

1144 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Event handling, 654–685
and adapter classes, 680–682
event classes, 656–668
by extending AWT

components, 655, 790–797
See also Delegation event

model
EventListener interface, 440
EventListenerProxy class, 441
EventObject class, 656, 657
EventSetDescriptor class, 908,

910–911
Exception class, 251, 267–269, 270
Exception handling, 13, 14, 114,

120, 250–271, 328
block, general form of,

250–251
and chained exceptions, 16,

250, 269–271
and creating custom

exceptions, 267–269
and default exception

handler, 251–252
Exceptions, built-in run-time, 250,

251, 265
checked, table of, 266
constructors for, 261
unchecked

RuntimeException, table
of, 265–266

exec(), 402, 403, 406–407
exists(), 540
exitValue(), 407
exp(), 420
Expressions, regular. See Regular

expressions
extends, 190, 246
Externalizable interface, 578

F
false, 39, 48, 51, 91
FALSE, 401
Field class, 869–870
fields, 514
File(s)

I/O, 324–328, 539–545
pointer, 561
source, 25–26, 131, 224

File class, 539–545
methods, demonstration of

some, 540–541
FileChannel class, 850–851
FileDialog class, 788–789
FileFilter interface, 539, 545
FileInputStream class, 316, 324,

325, 548–550

FilenameFilter interface, 539,
543–544

FileNotFoundException, 325, 548,
550, 563

FileOutputStream, 316, 324, 325,
326, 550–551

FileReader class, 562–565
FileWriter class, 565–566
fill(), 482–483
fillArc(), 709–710
fillOval(), 708
fillPolygon(), 710–711
fillRect(), 706
fillRoundRect(), 706–707
FilteredImageSource class, 815, 821
FilterInputStream class, 555
FilterOutputStream class, 555
final

to prevent class
inheritance, 220

to prevent method
overriding, 219–220

variables, 178–179
finalize(), 150–151, 221

versus C++ destructors,
1003–1007

finally block, 250, 263–264
find(), 860, 863–864, 865
Firewall, 10, 1070
first(), 447, 772–773
firstElement(), 486, 488
firstKey(), 465
Float class, 381–382, 386

methods, table of, 382–383
float data type, 42, 46, 50
Floating-point(s), 42, 45–47

literals, 50
floatValue(), 381
FlowLayout class, 764–766
flush(), 557, 570
FocusEvent class, 657, 661
focusGained(), 670
FocusListener interface, 669, 670
focusLost(), 670
Font class, 717–718, 720

methods, table of, 718
FontMetrics class, 724–733

methods, table of, 724–725
Fonts, 717–733

creating and selecting,
720–722

determining available,
719–720

information, obtaining,
722–723

terminology to describe, 724

for loop, 33–35, 36, 114–119
variations, 117–119

forDigit(), 400
format(), 878–879
forName(), 869
FORTRAN, 5, 6
Frame class, 691, 693
Frame window (s), 693–704

creating stand-alone,
702–704

handling events in, 697–702
within applet, creating,

695–697
Frank, Ed, 7
freeMemory(), 404, 405–406

G
Garbage collection, 150, 151, 405, 437
gc(), 404, 405–406
GenericServlet class, 953, 955, 960
get(), 445, 446, 454, 464, 493

and buffers, 849–850
getActionCommand(), 658, 740, 752
getAddress(), 594, 624
getAdjustable(), 659
getAdjustmentType(), 659, 756
getAlignment(), 738
getAllByName(), 593
getAllFonts(), 719
getAppletContext(), 650
getAscent(), 724, 725
getAttribute, 966, 978
getAttributeNames(), 966, 978
getAudioClip(), 651
getAvailableFontFamilyNames(),

719
getBackground(), 637
getBlue(), 713–714
getByName(), 593
getBytes(), 356, 550
getCause(), 267, 270
getChannel(), 550, 551, 562, 596,

602, 850, 851, 853
getChars(), 355–356, 371–372, 565
getChild(), 661
getClass(), 221, 416, 418–419, 872
getClickCount(), 665
getCodeBase(), 648–649
getColor(), 714
getComponent(), 660
getConstructors(), 869
getContainer(), 661
getCookies(), 963, 976
getData(), 624
getDateInstance(), 878
getDateTimeInstance(), 880

I n d e x 1145

getDeclaredMethods(), 872
getDefault(), 524
getDescent(), 725
getDirectionality(), 401
getDirectory(), 789
getDisplayCountry(), 524
getDisplayLanguage(), 524
getDisplayName(), 524
getDocumentBase(), 648–649, 803
getEchoChar(), 759
getEventSetDescriptors(), 903
GetField inner class, 581
GetFieldID(), 339
getFields(), 869
getFile(), 789
getFirst(), 453
getFont(), 722
getFontList(), 720
getForeground(), 637
getGraphics(), 639, 705
getGreen(), 713–714
getHeight(), 725–726
getHostAddress(), 594
getHostName(), 594
getID(), 657
getImage(), 801–802, 803, 805
getInetAddress(), 595
getInputStream(), 407, 595
getInsets(), 768–769
getInstance(), 516, 519
GetIntField(), 339
getItem(), 663, 748, 752, 777
getItemCount(), 748, 752
getItemSelectable(), 663, 752
getKey(), 468
getKeyChar(), 664
getKeyCode(), 664
getLabel(), 739, 743, 776
getLast(), 453
getLeading(), 725
getLength(), 624
getLocalGraphicsEnvironment(),

719
getLocalHost(), 593
getLocalPort(), 595
getMaximum(), 755
getMessage(), 261, 267
getMethodDescriptors(), 903
getMethods(), 869
getMinimum(), 755
getMinimumSize(), 764
getModifiers(), 658–659, 662, 872
getModifiersEx(), 662
getN(), 894, 895, 896
getName(), 277, 279, 540, 873, 968,

971, 976

getNewState(), 668
GetObjectClass(), 339
getOldState(), 668
getOppositeComponent(), 661
getOppositeWindow(), 668
getOutputStream(), 407, 595
getParameter(), 645, 646, 803
getParent(), 540
getPoint(), 665
getPort(), 595, 624
getPreferredSize(), 764
getPriority(), 277, 290
getProperties(), 408, 498
getProperty(), 409, 412, 499, 500, 501
getPropertyDescriptors(), 903
getRed(), 713–714
getRGB(), 714
getRuntime(), 403, 404
getScrollAmount(), 666
getScrollType(), 666
getSelectedCheckbox(), 746
getSelectedIndex(), 748, 751
getSelectedIndexes(), 751
getSelectedItem(), 748, 751
getSelectedItems(), 751
getSelectedText(), 759
getServletConfig(), 956
getServletInfo(), 956
getSession(), 971, 978
getSize(), 694, 711
getSource(), 656, 741
getStackTrace(), 267, 435
getState(), 743, 777
getStateChange(), 663, 752
getSuperclass(), 417, 418–419
getText(), 738, 758
getTime(), 513, 514
getTimeInstance(), 879–880
getValue(), 468, 660, 755, 968,

971, 976
getWheelRotation(), 666
getWhen(), 659
getWindow(), 668
getWriter(), 954
getX(), 665
getY(), 665
GIF image format, 800
Gosling, James, 7, 8
Goto statement, using labeled

break as form of, 122–124
grabPixels(), 818, 819
Graphics class, 329, 636, 705

drawing methods, 705–711
Graphics

context, 705
sizing, 711–712

GraphicsEnvironment class, 719
GregorianCalendar class, 514,

519–520, 524
GridLayout class, 770–772
group(), 860
GZIP file format, 536

H
hashCode(), 221, 401, 494
Hashing, 455
HashMap class, 466, 467–468
HashSet(), 449, 454–456
Hashtable class, 494–498

and iterators, 497
legacy methods, table of,

495–496
hasMoreElements(), 485, 506, 507
hasMoreTokens(), 506, 507
hasNext(), 459
Header file, creating, 337–338
headMap(), 465
headSet(), 447
HEIGHT, 644
Hexadecimals, 50

as character values, 51
Hierarchical abstraction and

classification, 18–19
and inheritance, 20, 190

Histogram, 819
Hoare, C.A.R., 276
Holzmann, Gerard J., 816
HSB color model, 713
HSBtoRGB(), 713
HSPACE, 644
HTML (Hypertext Markup

Language), 597, 950
file, 330

HTTP, 597, 950
GET requests, handling,

971–973
POST requests, handling,

971, 973–974
server example, caching

proxy, 602–623
server example transaction,

589–590
socket, 589
and URLConnection class,

599–601
HttpServlet class, 963, 969, 971

methods, table of, 969–970
HttpServletRequest interface, 962,

963, 978
methods, table of, 963–964

1146 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

HttpServletResponse interface,
962, 965, 978

methods, table of, 965–966
HttpSession interface, 962, 966

methods, table of, 966–967
HttpSessionBindingEvent class,

963, 971
HttpSessionBindingListener

interface, 962, 967
HttpSessionEvent class, 963, 970–971

I
Icon interface, 924
Icon, rollover, 927
Identifiers, 27, 37
IdentityHashMap class, 466, 471
IEEEremainder(), 422
if statement, 31–33, 35, 100–104, 170

and boolean variables, 101
nested, 102
switch statement versus, 108

if-else-if ladder, 102–104
IllegalAccessException, 262, 266
IllegalArgumentException, 265,

482, 483
IllegalMonitorStateException, 265
IllegalStateException, 265, 860, 966
IllegalThreadStateException, 265
Image class, 800, 801
ImageConsumer interface, 800,

817–820
ImageFilter class, 821–837
ImageIcon class, 923–924
ImageMenu applet, 1048–1056
ImageObserver interface, 800, 802,

803–807
ImageProducer interface, 800, 801,

815–817
imageUpdate(), 803, 804–805, 807

flags, table of, 804
Images, 800–841

animation of, 837–841
creating, loading,

displaying, 801–803
double buffering and,

807–811
implements clause, 236
import statement, 232–233
in, 318, 407
Increment operator (++), 34–35, 74,

78–80
indexOf(), 361–363, 376–377, 445,

446, 486, 488
IndexOutOfBoundsException, 265
Inet4Address class, 592, 626

Inet6Address class, 592, 626
InetAddress class, 592–594, 626
Infinity (IEEE floating-point

specification value), 385
InheritableThreadLocal class,

380, 432
Inheritance, 20–22, 24–25, 176,

190–221
final and, 220
and interfaces, 235,

246–247
multilevel, 203–207
multiple superclass, 192,

1001–1003
init(), 632, 634, 637, 951, 955, 956
initCause(), 267, 270
Inline method calls, 220
Inner classes, 181–184, 682–685
InputEvent class, 657, 661–662
InputStream class, 315, 316, 318,

545, 546, 548
methods, table of, 546–547
objects, concatenating,

559–560
InputStreamReader class, 319
insert(), 373, 762
Insets class, 768–770
Instance of a class, 20, 130

See also Object(s)
Instance variables

accessing, 132, 138, 140, 143
definition of, 20, 131
hiding, 149–150
static, 176–178
as unique to their object,

131, 133
using super to access

hidden, 202–203
instanceof operator, 332–335, 462
InstantiationException, 266
int, 30, 42, 43, 44

and integer literals, 50
Integer(s), 42, 43–45, 81

literals, 50
Integer class, 387, 396, 397

methods, table of, 391–393
Interface(s), 224, 235–247

converting C++ abstract
classes to Java, 995–999

general form of, 235–236
implementing, 236–239
inheritance of, 246–247
reference variables,

237–239, 243
variables, 236, 243–245

interface keyword, 224, 235

Internet, 4, 7, 8, 9, 11
addresses, obtaining, 594
addressing, 590–591
and portability, 10, 11
and security, 10–11,

1070–1071
Internet Protocol (IP)

addresses, 590–591
definition of, 588–589

InterNIC (Internet root server),
594, 596

Interpreter, Java, 26
and main(), 28, 29

InterruptedException, 266, 278
Introspection, 894–897
Introspector class, 908, 909–911
I/O, 314–328, 538–585

channel-based, 16, 847
classes, list of, 538
console, 29, 114, 314, 318–324
error handling, 328
file, 324–328, 539–545
interfaces, list of, 539
new. See New I/O (NIO)
streams. See Streams

io package. See java.io package
IOException, 319, 325, 326, 546,

547, 548, 558, 562, 565, 571, 578,
580, 581, 595, 599, 601, 851

isAbsolute(), 541
isAlive(), 277, 286–289
isAltDown(), 662
isAltGraphDown(), 662
isControlDown(), 662
isDirectory(), 542
isEditable(), 759
isEmpty(), 444, 445, 493
isEnabled(), 776
isFile(), 541
isHidden(), 541
isInfinite(), 386
isLeapYear(), 519
isMetaDown(), 662
isMulticastAddress(), 594
isN(), 895
isNaN(), 386
isPopupTrigger(), 665
isSet, 514
isShiftDown(), 662
isTemporary(), 661
isTimeSet, 514
ItemEvent class, 657, 662–663, 744,

748, 777
ItemListener interface, 669, 671,

743, 748, 777
ItemSelectable interface, 663

I n d e x 1147

itemStateChanged(), 671, 744, 748
Iteration statements, 109–119
Iterator interface, 441, 442, 457–460

methods, table of, 458
iterator(), 444, 445, 457, 459

J
Jakarta Project, 951
JAR files, 536, 891–894
JApplet class, 923
Java

API packages, table of core,
844–846

and C, 4, 6, 13
and C++, 4, 7, 8, 9, 13
and C#, 9
design features, 12–15
and DOS and

Windows 3.1, 26
history of, 4, 7–9, 15–16
and the Internet, 4, 7, 11, 15
as interpreted language,

11, 14
keywords, 38–39
as strongly typed

language, 42
versions of, 15
and Windows 95/98 and

Windows NT, 26
and the World Wide Web, 7,

8, 13
Java 2 SDK (Software

Development Kit), 25
Java 2D API, 733, 948
Java Archive (JAR) files, 536,

891–894
Java Beans, 418, 437, 869, 886–920

advantages of, 887
API, 906–911
and constrained properties,

905
customizers, 906
introspection, 894–897
using the BDK to develop,

897–901
using Bean Builder to

develop, 911–920
using bound property of,

902–903
.java file, 25
Java Foundation Classes (JFC), 948
java (Java interpreter), 26
Java Native Interface (JNI), 336
java package, 234

Java Virtual Machine (JVM), 11, 12,
14, 403

java.applet package, 628
java.awt package, 628, 656, 688

classes, tables of, 688–691
java.awt.Dimension class, 869
java.awt.event package, 654, 656,

669, 680
classes, table of, 657–658

java.awt.image package, 800,
840–841

java.beans package, 906–911
classes, table of, 907–909
interfaces, tables of, 907

java.io package, 314, 538–539
java.io.IOException, 114
java.lang package, 234, 318, 380–437
java.lang.image, 818
java.lang.ref package, 437
java.lang.reflect package, 437, 844,

845, 869
classes, table of, 870

java.net package, 588
classes and interfaces, list

of, 592
java.nio package, 436, 538, 550, 551,

562, 596, 602, 844, 845, 847
java.nio.channels package, 845,

847, 850, 851
java.nio.channles.spi package, 845,

847
java.nio.charset package, 846, 847,

851
java.nio.charset.spi package, 846,

847
java.rmi package, 844, 846, 874
java.text package, 844, 846, 878
java.util package, 440–441, 506, 656
java.util.jar package, 506, 536
java.util.regex package, 846, 859
java.util.zip package, 506, 536, 892
javac (Java compiler), 26
javadoc utility program, 1134,

1138–1139
javah.exe, 337, 339
JavaSoft, 888
javax.imageio package, 841
javax.servlet package, 953, 954–960

interfaces and classes, list
of, 955

javax.servlet.http package, 954,
962–971

interfaces and classes, list
of, 962–963

javax.swing package, 923
javax.swing.tree package, 923

JButton class, 927–929
JCheckBox class, 930–932
JComboBox class, 934–936
JComponent class, 924
JFrame class, 913
JLabel class, 914, 924–925
jni.h, 339
jni_md.h, 339
join(), 277, 286–289
Joy, Bill, 7, 588
JPanel class, 940
JPEG image format, 800
JRadioButton class, 932–934
JscrollBar class, 915
JScrollPane class, 939–940
JSlider class, 914, 915
JTabbedPane class, 936–939
JTable class, 946–948
JTextCompenent class, 925–926
JTextField class, 926
JToggleButton class, 930, 932
JTree class, 941–942
Jump statements, 119–127
Just In Time (JIT) compiler, 12

K
Kernighan, Brian, 5
KeyAdapter class, 681
Keyboard events, handling, 676–680
KeyEvent class, 658, 663–664
KeyListener interface, 669, 671, 676
keyPressed(), 671, 676, 678
keyReleased(), 671, 676
keys(), 493
keySet(), 464
keyTyped(), 671, 676, 678
Keywords, table of Java, 39

L
Label, 123, 125

Swing, 924
Label class, 737–739
last(), 447, 772, 773
lastElement(), 487, 488
lastIndexOf(), 361–363, 376–377,

445, 446, 487, 488
lastKey(), 465
Late binding, 220
LaVallée, David, 1048, 1058
Lavatron applet, 1058–1067
Layout managers, 763–775
LayoutManager interface, 763–764
length(), 186–187, 351, 369–370

1148 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

length instance variable of arrays,
179–181

Lexer, 506
Libraries, class, 25, 39
Lindholm, Tim, 7
LinkedHashMap class, 466, 470–471
LinkedHashSet class, 449, 456
LinkedList class, 448, 452–454
list() and directories, 539, 542–544
List class, 751

extending, 795–796
List controls, 751–754
List interface, 442, 445–447

methods, table of, 446
listFiles(), 544–545
ListIterator interface, 442, 457–460

methods, table of, 458
ListResourceBundle class, 441
Literals, 37, 50–52

regular expression, 861
load(), 404, 499, 502–504
loadLibrary(), 337, 404
Locale class, 523–524, 878, 880
log(), 420, 960
Logical operators, Boolean, 92–94
long, 42, 43, 45

literal, 50
Long class, 387, 396, 397

methods, table of, 393–395
lookup(), 875
loop(), 651
Loops

do-while, 111–114
for. See for loop
infinite, 118–119
nested, 119
and polling, event, 275, 297
while, 109–111

M
main(), 28, 29, 131, 176

and applets, 329, 331
and command-line

arguments, 188
main (default name of main

thread), 279
MalformedURLException, 597
Manifest files, 892
Map interface, 463–464

methods, table of, 463–464
map(), 851, 853–854, 856
Map.Entry interface, 466

methods, table of, 466
MappedByteBuffer class, 848, 854
Maps, 441, 462–471

mark(), 546, 548, 552, 556, 557, 559,
569

markSupported(), 556, 559, 569
Matcher class, 859, 860–861
matcher(), 860
matches(), 368, 860, 862–863,

868–869
Math class, 53, 159, 420–422

rounding methods, table of,
421

max(), 476, 480
MAX_PRIORITY, 289, 423–424
MAX_RADIX, 398
MAX_VALUE, 382, 387, 398
MediaTracker class, 811–815
Member, class, 20, 158

access, table of, 228
Member interface, 869
Memory

allocation using new, 62, 63,
134–136

management, 13–14
and Runtime class, 405–406

MemoryImageSource class, 815–817
Menu applet, Image-based,

1048–1056
Menu bars and menus, 775–782
Menu class, 775, 776
MenuBar class, 775, 776, 777
MenuItem class, 775, 776, 777
Messaging system, 276–277
Method(s), 20, 131, 138–145

abstract, 216–219
calling, 140, 142
dispatch, dynamic, 211–216
factory, 593
final, 219–220
general form, 138
interface, 236, 237
native, 335–340
overloading, 156–162
overriding, 208–216
and parameters, 138, 142–145
passing object to, 166–167
recursive, 169–172
returning object from,

168–169
returning a value from,

140–142
scope defined by, 54–56
static, 176–178
synchronized, 276, 292–295
and throws clause, 261–262

Method class, 869–870, 872
MIME types, 602, 950
min(), 477, 480

minimumLayoutSize(), 764
MIN_PRIORITY, 289, 423–424
MIN_RADIX, 398
MIN_VALUE, 382, 387, 398
mkdir(), 545
mkdirs(), 545
Modifier class, 872

methods, table of, 872
Modulus operator (%), 74–76
Molecule Bean, 889–890
Monitor, 276, 292
Mouse events, handling, 673–676
MouseAdapter class, 680, 681
mouseClicked(), 671, 680
mouseDragged(), 671, 680
mouseEntered(), 671
MouseEvent class, 658, 664–665
mouseExited(), 671
MouseListener interface, 669,

671, 673
MouseMotionAdapter class,

680, 681
MouseMotionListener interface,

656, 669, 671, 673
mouseMoved(), 671, 680
mousePressed(), 671
mouseReleased(), 671
MouseWheelEvent class, 658,

665–666
MouseWheelListener interface,

669, 672, 673
mouseWheelMoved(), 672
Multitasking, 274, 276
Multithreaded programming, 14,

274–311
context switching rules for,

275–276
effectively using, 311
Observable class, Observer

interface and, 531
and synchronization. See

Synchronization
and threads. See Thread(s)
versus single-threaded

system, 275
MutableTreeNode interface, 942
Mutex, 292

N
NAME, 644
Name-space collisions

instance variables and local
variables, 149–150

packages and, 224
Naming class, 875

I n d e x 1149

NaN, 382, 385
native modifier, 336, 339
Naughton, Patrick, 7
Negative numbers in Java,

representation of, 81
NEGATIVE_INFINITY, 382
NegativeArraySizeException, 265
.Net Framework, 9
Networking, 588–626
new, 62, 63, 134–136, 145, 147,

260, 261
New I/O (NIO), 844, 847–859

copying a file using, 857–859
reading a file using, 851–855
writing to a file using,

855–857
next(), 459, 772, 773
nextBoolean(), 525
nextBytes(), 525
nextDouble(), 245, 525
nextElement(), 485, 506, 507
nextFloat(), 525
nextGaussian(), 525
nextInt(), 525
nextLong(), 525
nextToken(), 506, 507, 575
NIO. See New I/O (NIO)
NORM_PRIORITY, 289, 423–424
NoSuchElementException, 447,

463, 465
NoSuchFieldException, 266
NoSuchMethodException, 266
NOT operator

bitwise unary (~), 80, 82
Boolean logical unary (!), 92

notepad, 406–407
notify(), 221, 297–298, 300–302
notifyAll(), 221, 297–298
notifyObservers(), 527, 528
null, 39
Null statement, 110
NullPointerException, 261, 266,

447, 463, 465
Number class, 381
NumberFormatException, 266

O
Oak, 7, 15
Object(s), 20, 130, 136

bitwise copy (clone) of,
412–415

creating, 132, 134–136
initialization with

constructor, 145, 147
to method, passing, 166–167
as parameters, 162–165

returning, 168–169
serialization of. See

Serialization
type at run time,

determining, 332–335
Object class, 220–221, 323, 412

methods, table of, 413
Object reference variables

assigning, 137
declaring, 134–136
and dynamic method

dispatch, 211–212
interface, 237–239
to superclass reference

variable, assigning
subclass, 196–197

OBJECT tag, 643
Object-oriented programming

(OOP), 6, 18–25
model in Java, 13

ObjectInput interface, 580
methods defined by, table

of, 580–581
ObjectInputStream class, 581

methods defined by, table
of, 581–583

ObjectOutput interface, 578
methods defined by, table

of, 578
ObjectOutputStream class, 579

methods defined by, table
of, 579–580

Observable class, 527–531
methods, table of, 527

Observer interface, 527, 528
Octals, 50

as character values, 51
openConnection(), 598–599
Operator(s)

arithmetic, 74–80
assignment, 31, 94–95
bitwise, 80–90
Boolean logical, 92–94
parentheses and, 96–98
precedence, table of, 97
relational, 48, 90–91
ternary, 95–96

OR operator (|)
bitwise, 80, 82
Boolean, 92

OR operator, short-circuit (||), 92,
93–94

OurButton Bean, 890, 891
out output stream, 29, 318, 407
OutputStream class, 315, 316, 322,

323, 545, 547–548
methods, table of, 547

Overloading methods, 156–162,
210–211

Overriding, method, 208–211
and dynamic method

dispatch, 211–216
using final to prevent,

219–220

P
Package(s), 172, 224–235, 247

access to classes contained
in, 227–228

core Java API, table of,
844–846

defining, 225
importing, 232–235

Package class, 380, 432–434
methods, table of, 433–434

package statement, 225, 232
paint(), 329, 632, 634–635, 637, 638,

639, 705, 803
Paint mode, setting, 715–717
Panel class, 629, 691, 692, 772
PARAM NAME, 644
Parameters, 28, 138, 142–145

applets and, 645–648
objects as, 162–165
and overloaded

constructors, 160
and overloaded

methods, 156
reference, C++ versus Java,

991–994
parseByte(), 396
parseInt(), 396
parseLong(), 396
parseShort(), 396
Parsing, 506
Pascal, 5
Pattern class, 859–860
Payne, Jonathan, 7
peek(), 490, 491
Persistence (Java Beans), 905–896
PI (double constant), 420
PixelGrabber class, 818–820
play(), 651
Pointers, 71, 136, 982, 985–991
Polling, 275, 297
Polymorphism, 22–25

and dynamic method
dispatch, 211–216

and interfaces, 235,
238–239, 243

and overloaded methods,
156, 159

pop(), 490, 491

1150 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

PopupMenu class, 782
Port, 589
Portability problem, 8, 10, 11, 14

and data types, 43
and native methods, 340

POSITIVE_INFINITY, 382
pow(), 421
preferredLayoutSize(), 764
previous(), 772, 773
print(), 31, 322, 323, 354, 561, 572
println(), 29, 31, 322, 323, 354, 561,

572
PrintStream class, 316, 318, 322, 561
PrintWriter class, 317, 323, 572
private access specifier, 28, 172, 228

and inheritance, 192–193
Process class, 402

methods, table of, 402
Process-based versus thread-based

multitasking, 274
processActionEvent(), 791,

792, 796
processAdjustmentEvent(),

791, 797
processComponentEvent(), 791
processFocusEvent(), 791
processItemEvent(), 791, 793,

795, 796
processKeyEvent(), 791
processMouseEvent(), 791
processMouseMotionEvent(), 791
processMouseWheelEvent(), 791
processTextEvent(), 791
Programming

multithreaded. See
Multithreaded
programming

object-oriented. See
Object-oriented
programming

structured, 6
Properties, environment, 412
Properties class, 498–504

legacy methods, table
of, 499

PropertyChangeEvent, 902,
905, 908

PropertyDescriptor class, 903, 909,
910–911

PropertyResourceBundle class, 441
protected access specifier, 151,

172, 228
public access specifier, 28, 172, 228
push(), 490, 491
Push buttons, 739–743
Pushback, 558

PushbackInputStream, 316, 558–559
PushbackReader class, 317, 571–572
put(), 464, 468, 471, 493

and buffers, 849–850, 856
putAll(), 464, 471
PutField inner class, 579

R
Radio buttons, 745

Swing, 932–934
random(), 422
Random class, 245, 422, 524–526

methods, table of, 525
RandomAccess interface, 442, 462
RandomAccessFile class, 316,

561–562
read(), 315, 319, 325–326, 328, 556,

558, 571. 850, 852
and end-of-file condition,

328
Reader class, 315, 319, 545, 562

methods defined by, table
of, 563

readLine(), 320, 396, 581, 960
readObject(), 580, 581
rebind(), 875
Recursion, 169–172
Reference parameters, C++ versus

Java, 991–994
Reflection, 437, 869–872
regionMatches(), 358
Regular expressions, 844, 859–869

syntax, 861
wildcards and quantifiers,

861, 864–866
Relational operators, 48, 90–91
Remote interface, 874
Remote method invocation (RMI),

15, 577, 844, 874–878
RemoteException, 874
remove(), 444, 445, 455, 493, 737
removeAll(), 444, 445, 737
removeAttribute(), 967, 978
removeEldestEntry(), 471
removeElement(), 487, 488
removeElementAt(), 487, 488
removeFirst(), 453
removeLast(), 453
removeTypeListener(), 656
renameTo(), 541
repaint(), 638–639

demonstration program,
639–641

replace(), 364–365, 375
replaceAll(), 368, 861, 867

replaceFirst(), 368
replaceRange(), 762
ReplicateScaleFilter class, 821
requestFocus(), 677
reset(), 547, 548, 552, 554, 556,

559, 569
resetSyntax(), 574
ResourceBundle class, 441
resume(), 15, 305–308, 424, 426
retainAll(), 444, 445
return statement, 126–127, 138
reverse(), 373–374
reverseOrder(), 477, 479
rewind(), 853, 856
RGB color model, default, 815–816
RGBImageFilter class, 821, 823–837
RGBtoHSB(), 713
Richards, Martin, 5
Ritchie, Dennis, 5, 588
RMI compiler (rmic), 876–877
rmiregistry (RMI registry), 877
run(), 277, 280, 423, 531, 532

overriding, 282, 284, 531
using flag variable with,

308–310
runFinalizersOnExit(), 403, 408
Runnable interface, 277, 380,

423, 531
implementing, 280–282, 284

Run-time
system, Java, 11
type information, 15,

333, 418
Runtime class, 402, 403–407

executing other programs
and, 406–407

memory management and,
405–406

methods, table of, 403–404
RuntimeException class, 251, 261,

265, 270
RuntimePermission class, 380, 434

S
save(), 498
scanf() C function, 318
schedule(), 532, 533
Scientific notation, 50
Scope(s) in Java, 54–56
Scrabblet applet, 1070–1132
Scroll bars, 754–758
Scroll panes, 939–941
Scrollbar class, 755

extending, 797
search(), 490, 491

I n d e x 1151

Security problem, 10–11, 1070–1071
and native methods, 340
and servlets, 950–951, 979

SecurityException, 266, 403, 408
SecurityManager class, 434
seek(), 561
select(), 748, 752, 759
Selection statements, 100–108
Selectors, 851
Semaphore, 292
SequenceInputStream class, 316,

559–560
Serializable interface, 577
Serialization, 577–585

example program, 583–585
and static variables, 577
and transient variables, 577

Server, 589
proxy, 590

ServerSocket class, 595, 601–602
service(), 951, 953, 955, 956
Servlet(s), 950–979

advantages of, 950–951
example of simple, 953–954
life cycle of, 951
parameters, reading,

960–962
and security, 950–951, 979
and session tracking,

977–979
using Tomcat to develop,

951–952
Servlet interface, 955–956

methods, table of, 956
ServletConfig interface, 955, 956
ServletContext interface, 955–957

methods, table of, 957
ServletException class, 955, 960
ServletInputStream class, 955, 960
ServletOutputStream class,

955, 960
ServletRequest interface, 953, 955,

957, 960
methods, table of, 958–959

ServletResponse interface, 953,
955, 957

methods, table of, 959
Session tracking, 977–979
Set interface, 442, 447
Set-view, obtaining, 497
set(), 445, 446, 454
setAlignment(), 738
setAttribute(), 967, 978
setBackground(), 636, 713
setBlockIncrement(), 755
setBounds(), 692, 764

setChanged(), 527
setCharAt(), 371
setColor(), 714
setContentType(), 953
setDefault(), 524
setEchoCharacter(), 759
setEditable(), 759
setEnabled(), 776
setFont(), 720
setForeground(), 636, 713
SetIntField(), 339
setLabel(), 739, 743, 776
setLastModified(), 542
setLayout(), 763–764
setLength(), 370–371, 562
setLocation(), 692
setMaxAge(), 969, 977
setN(), 894, 895, 896
setName(), 278, 279
setPaintMode(), 715
setPriority(), 289
setReadOnly(), 542
setSelectedCheckbox(), 746
setSize(), 692, 694, 695
setState(), 743, 777
setText(), 738, 758
setTitle(), 704
setUnitIncrement(), 755
setValue(), 755
setValues(), 755
setVisible(), 694, 695
setXORMode(), 715
Sheridan, Mike, 7
Shift operators, bitwise, 80, 84–89
Short class, 387, 396, 397

methods defined by, table
of, 389–390

short data type, 42, 43, 44, 50
show(), 772, 773
showDocument(), 649, 650–651,

1048, 1056
showStatus(), 642, 681
shuffle(), 477, 479
Sign extension, 87
SimpleBeanInfo class, 903, 909
SimpleDateFormat class, 524,

880–882
SimpleTimeZone class, 522–523
sin(), 420
SingleThreadModel interface,

955, 957
size(), 444, 445, 455, 493, 851
Skeletons (RMI), 876–877
skip(), 548, 556, 558
sleep(), 277, 278, 279
slice(), 850

Socket(s)
example program of

client/server, 602–623
overview, 588–589
reserved, 589–590
TCP/IP client, 594–597
TCP/IP server, 601

Socket class, 595–596
SocketChannel class, 850
sort(), 482
SortedMap interface, 465

methods, table of, 465
SortedSet interface, 442, 447–448

methods, table of, 447–448
Source code, 25–26
split(), 368, 867–868
sqrt(), 53, 421
Stack, definition of, 152
Stack class, 490–492

methods, table of, 491
Stack trace, 252, 435
StackTraceElement class, 435

methods, table of, 435
Standard Template Library (STL),

442
start(), 277, 280, 282, 632, 634, 637,

860, 864
startsWith(), 358–359
Statements, 29

null, 110
Statements, control

iteration, 100, 109–119
jump, 100, 119–127
selection, 100–108

static, 28, 176–178
stop(), 15, 308, 632, 634, 635, 651
store(), 498, 499, 502–504
Stream(s)

benefits, 585
buffered, 555–559
classes, byte, 315, 316,

545–562
classes, character, 315, 317,

545, 562–577
definition of, 314, 538
filtered, 555
predefined, 318

StreamTokenizer class, 574–577
strictfp, 39, 335
StrictMath class, 422
String(s)

arrays of, 187, 188
changing case of characters

in, 367
comparison, 356–361

1152 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

concatenating, 185–186,
352–353. 364, 372–373

creating, 348–351
extracting characters from,

355–356
length, obtaining,

186–187, 351
literals, 52, 351
modifying, 363–366
as objects, 52, 70–71,

181–182, 348
parsing formatted input, 506
reading, 320–322
representations of numbers,

converting, 392–393, 396
searching, 361–363

String class, 28, 185, 348
constructors, 348–350

StringBuffer class, 185, 348, 361,
369–377

StringBufferInputStream class, 539
StringIndexOutOfBounds

exception, 266
StringTokenizer class, 506–508

methods, table of, 507
stringWidth(), 725, 726
Stroustrup, Bjarne, 7
Stubs (RMI), 876–877
Subclass, 190, 192
subList(), 446, 447
subMap(), 465
subSequence(), 368, 376
subSet(), 447, 448
substring(), 363–364, 375
Sun Microsystems, 7, 588
super, 176, 197–203

and superclass constructors,
197–202, 206

and instance variables,
202–203

Superclass, 190, 192
suspend(), 15, 305–307, 308,

424, 426
Swing, 922–948

and Bean Builder, 891
component classes, list of

some, 922
switch statement, 104–108
Synchronization, 276, 292–297

and collections, 475
and deadlock, 302–304
race condition and, 294
via synchronized block,

295–297
via synchronized method,

292–295

synchronized modifier, 292
used with method, 292,

295
used with object, 295–297

synchronizedList(), 475, 478
synchronizedSet(), 475, 478
System class, 29, 318, 407

methods, table of, 408–410
System.err standard error

stream, 318
System.in standard input stream,

318, 319
System.in.read(), 114
System.out standard output

stream, 318, 322, 323, 324

T
Tabbed panes, 936–939
Tables, Swing, 946–948
tailMap(), 465
tailSet(), 447, 448
tan(), 420
TCP/IP, 15, 588, 1070

client sockets, 594–597
disadvantages of, 623
reserved sockets, 589–590
server sockets, 601–602
See also Transmission

Control Protocol (TCP)
Temple, Robert, 1012
Ternary operator (?:), 92, 95–96
Text fields, 758–761

Swing, 925–926
Text formatting, 878–882
Text output, managing, 723–733
TextArea class, 761–763
textChanged(), 672
TextComponent class, 758, 761
TextEvent class, 658, 666–667
TextField class, 758, 759
TextListener interface, 669, 672
this, 149–150, 176
Thompson, Ken, 5, 588
Thread(s)

creating, 280–286
daemon, 532
and deadlock, 302–304, 308
definition of, 274
group, 279, 426–432
main, 277, 282, 286
messaging, 276–277, 297–302
possible states of, 275
priorities, 275–276,

289–292, 423
resuming, 305–310, 426

stopping, 305–310
suspending, 277, 278, 279,

305–310, 426
synchronization. See

Synchronization
Thread class, 15, 277,

423–426, 531
constructors, 280, 284, 423
extending, 282–284
methods, table of, 424–426

ThreadGroup class, 426–432
methods, table of, 427–428

ThreadLocal class, 380, 432
throw, 250, 260–261
Throwable class, 251, 254, 267,

269–270, 434
methods defined by, table

of, 267
obtaining object of, 260–261

throws, 250, 261–262, 265
TickTock Bean, 902–903
Time. See Date class
Timer class, 531–534
TimerTask class, 531–534
Timestamps, 659
TimeZone class, 521–522

methods defined by, table
of, 521–522

toArray(), 444, 445, 451–452
toBinaryString(), 397
toCharArray(), 356
toDegrees(), 422
toHexString(), 397
Tokens, 506
toLowerCase(), 367
Tomcat, 951–952
toOctalString(), 397
Toolkit class, 720
toRadians(), 422
toString(), 221, 254, 268, 323,

353–354, 366, 387, 456, 510,
511, 656

totalMemory(), 404, 405–406
toUpperCase(), 367
transient modifier, 331–332
translatePoint(), 665
Transmission Control

Protocol (TCP)
definition of, 589
and stream-based I/O, 592
See also TCP/IP

TreeExpansionEvent class, 942
TreeExpansionListener

interface, 942
TreeMap class, 466, 468–470, 504
TreeNode class, 942

I n d e x 1153

Trees, Swing, 941–946
TreeSet class, 449, 455, 456–457, 504
TreePath class, 942
trim(), 365–366
trimToSize(), 451
true, 39, 48, 51, 91
TRUE, 401
True and false in Java, 51, 91
try block(s), 250, 253–254

nested, 257–259
Two's complement, 81
TYPE, 382, 387, 398, 401, 402
Type

casting, 57–59, 60
checking, 42
conversion, automatic, 42,

57, 157–159
promotion, 44, 59–61

Types, data. See Data types

U
UDP protocol, 589, 591–592, 624
UnavailableException class, 955,

960
unhand() macro, 342
UnicastRemoteObject, 874
Unicode, 47, 48, 51, 315, 350, 356,

401, 562
Uniform Resource Identifier

(URI), 626
UNIX, 5, 588
UnknownHostException,

593, 595
unmodifiable, 475
unread(), 558, 571
UnsupportedOperationException,

266, 442–443, 445, 463, 475
update(), 527, 528, 638, 639, 705

overriding, 635
URI class, 592, 626
URL (Uniform Resource

Locator), 597
specification format, 597

URL class, 597–599, 601
URLConnection class, 599–601
User Datagram Protocol (UDP),

589, 591–592, 624

V
valueBound(), 967
valueOf(), 353, 366–367
values(), 464
valueUnbound(), 967
van Hoff, Arthur, 7
Variable(s), 52–56

declaration, 30–31, 52–53
definition of, 29, 52
dynamic initialization of, 53
final, 178–179
instance. See Instance

variables
interface, 236
object reference. See Object

reference variables
scope and lifetime of, 54–56

Vector class, 462, 485–490
methods, table of, 486–488

Virtual functions (C++), 213
Virtual machine, Java, 400
void, 28, 138
Void class, 401
volatile modifier, 291–292, 331, 332
VSPACE 644

W
wait(), 221, 297–298, 300–302
waitFor(), 407
Warth, Chris, 7
wc(), 572–577
WeakHashMap class, 466, 467
Web browser

executing applet in, 330,
331, 628

handling older, 644
using status window of, 642

Web server and servlets, 950, 951
while loop, 109–111
Whitespace, 37

from string, removing, 365
whitespaceChars(), 575
Whois, 596–597
WIDTH, 644
Window

displaying information in,
704–705

frame. See Frame window
fundamentals, 691–693
status, using, 642

Window class, 693, 783
windowActivated(), 672
windowClosed(), 672
windowClosing(), 672, 694, 695
windowDeactivated(), 672
windowDeiconified(), 672
WindowEvent class, 658, 667–668
WindowFocusListener interface,

669, 672
windowGainedFocus(), 672
windowIconified(), 672
WindowListener interface, 669,

672, 694
windowLostFocus(), 672
windowOpened(), 672
Windows 3.1 and Java, 26
Windows 95/98 and Windows NT

and Java, 26
wordChars(), 575
World Wide Web, 7, 8, 597
wrap(), 850
Wrappers, simple type, 380–401
write(), 315, 322–323, 326–328, 850,

855–856
Writer class, 315, 545, 562

methods defined by, table
of, 564

writeObject(), 578
writeTo(), 554

X
XOR (exclusive OR) operator (^)

bitwise, 80, 82, 83
Boolean, 92

Y
Yellin, Frank, 7

Z
Zero crossing, 81
ZIP file format, 536
ZLIB file format, 536

1154 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9415-9899
FAX +61-2-9415-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

Herbert Schildt
0-07-213485-2

Chris H. Pappas & William
H. Murray, III
0-07-212958-1

Jeffery R. Shapiro
0-07-213381-3

Complete References

For the answers to everything related to your technology, drill as deeply as you
please into our Complete Reference series. Written by topical authorities, these
comprehensive resources offer a full range of knowledge, including extensive product
information, theory, step-by-step tutorials, sample projects, and helpful appendixes.

Herbert Schildt
0-07-213084-9

Arthur Griffith
0-07-222405-3

Ron Ben-Natan & Ori Sasson
0-07-222394-4

For more information on these and other Osborne books, visit our Web site at www.osborne.com

	Cover Page
	About the Author
	Copyright
	Contents at a Glance
	International Contact Information
	The Complete Reference Series
	Preface
	A Book for All Programmers
	What's Inside
	What's New in the Fifth Edition
	Dont' Forget: Code on the Web

	Contents
	Part I The Java Language
	1 The Genesis of Java
	2 An Overview of Java
	3 Data Types, Variables, and Arrays
	4 Operators
	5 Control Statements
	6 Introducing Classes
	7 A Closer Look at Methods and Classes
	8 Inheritance
	9 Package and Interfaces
	10 Exception Handling
	11 Multithreaded Programming
	12 I/O, Applets, and Other Topics

	Part II The Java Library
	13 String Handling
	14 Exploring java.lang
	15 java.util Part 1: The Collections Framework
	16 java.util Part 2: More Utility Classes
	17 Input/Output: Exploring java.io
	18 Networking
	19 The Applet Class
	20 Event Handling
	21 Introducing thr AWT: Working with Windows, Graphics, and Text
	22 Using AWT Controls, Layout Managers, and Menus
	23 Images
	24 New I/O, Regular Expressions, and Other Packages

	Part III Software Development Using Java
	25 Java Beans
	26 A Tour of Swing
	27 Servlets
	28 Migrating from C++ to Java

	Part IV
	29 The DynamicBillboard Applet
	30 ImageMenu: An Image-Based Web Menu
	31 The Lavatron Applet: A Sport Arena Display
	32 Scabblet: A Multiplayer Word Game

	Part I Java Language
	Part II Java Library
	Part III Software Development using Java
	Part IV Applying Java
	AppA Using Java's Documentation Comments
	Index

